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Directeur de thèse: Dr Bertrand Thirion INRIA Saclay – Parietal team, Saclay, France
Neurospin/CEA, Saclay, France

Conseiller: Dr Fillard Pierre INRIA Saclay – Parietal team, Saclay, France

Rapporteurs: Dr Christian Barillot IRISA, Campus Universitaire de Beaulieu,
Rennes, France

Dr Natasha Lepore Children’s Hospital Los Angeles,
Los Angeles, USA

Examinateurs: Pr. Joan Glaunes MAP5, Université Paris Descartes ,
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Chapter 1

Abstrait

Le recalage des images obtenues par résonance magnétique (IRM) est un défi central pour le
domaine de l’imagerie cérébrale. Le recalage nous permet d’analyser des groupes de sujets.
Une fois tous les sujets alignés, il est possible de construire un atlas statistique représentatif
du groupe; un tel atlas est utilisé pour comparer une image à une population présentant une
pathologie neuro-dégénérative comme Alzheimer et trouver des biomarqueurs.

La forme et la configuration de chaque cerveau change en fonction de l’individu et elle peut
être modulée par une pathologie. Le recalage des images tente d’aligner les structures d’un sujet
avec les structures correspondantes d’un autre sujet ou d’une référence commune (atlas). Cet
alignement est basé sur la recherche d’une transformation menant d’une image vers une autre
tout en conservant les propriétés et structures originelles de cette première. Le principal défi du
recalage consiste donc en l’identification des structures correspondantes a travers les sujets.

Généralement les algorithmes du recalage utilisent des images anatomiques du type T1, qui
montrent un contraste élevé pour la matière grise. Par contre la matière blanche est presque uni-
formément blanche et ne fournit aucune information pour le recalage. En complément, l’imagerie
par diffusion (IRMd) aide à caractériser la structure de la matière blanche, qui est composée de
fibres qui connectent les différentes régions du cerveau. Ces fibres peuvent aider à caractériser
la matière grise car elles caractérisent la connectivité et donc la fonction cérébrale. Pour cette
raison, nous exploitons la complémentarité de ces deux modalités pour améliorer le recalage des
structures du cerveau.

Nous utilisons un algorithme connu pour le recalage des images, nommé algorithme des démons,
et en étendons le principe pour recaler conjointement la matière grise et la matière blanche.
L’information de diffusion peut être représentée par des valeurs scalaires de la quantité de dif-
fusion (par ex. FA, anisotropie fractionnelle), par des image de tenseurs (une représentation
3D de la diffusion dans chaque voxel) ou géométriquement lorsque l’on tente de reconstruire les
faisceaux axonaux de la matière blanche. Nous nous sommes concentré sur la géométrie de la
matière blanche.

Il y a des milliards de fibres axonales dans le cerveau, qui sont représentées par des dizaines de
milliers de tracts à partir d’IRM de diffusion. L’analyse de cette quantité de fibres, et surtout le
recalage des images, est un travail lourd et coûteux en calcul. Ainsi nous utilisons, analysons et
développons des algorithmes de clustering pour simplifier la représentation de la matière blanche.
Ces algorithmes sont définis dans un espace métrique afin de comparer les éléments. Quand on
utilise des métriques plus adaptées à des courbes, nous montrons que la simplification de la
matière blanche est de meilleure qualité.

Notre algorithme de recalage minimise conjointement les distances entre les images T1 et les
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Chapter 1

tracts les plus représentatifs de chaque sujet. Les tracts sont comparés par des métriques de
courbes: le point le plus proche, les Courants et les Mesures. La première métrique requiert
une correspondance explicite entre fibres, le deuxième une correspondance entre faisceaux, et la
dernière aucune correspondance a priori. Chaque métrique a ses avantages et inconvénients, qui
ont étés analysés pendant cette thèse.

Nous avons validé notre algorithme de recalage d’image conjointement à la géométrie dans une
base de donnée de sujets contrôles. Les résultats ont montré qu’en utilisant l’information de
diffusion en complément de l’information anatomique, on améliore systématiquement le recalage
qui utilise seulement de information anatomique de contraste T1, mais aussi le recalage des images
de tenseur ou le recalage de T1 avec FA. En conclusion, on peut affirmer que la structure de
la matière blanche, après simplification, permet de diminuer les erreurs dans le processus de
recalage, et par conséquent améliore les résultats finaux des analyses de groupe.
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Chapter 2

Resumé

Je ferai le Bien : c’est encore la meilleure manière d’être seul.

— de Jean-Paul Sartre Extrait de Le diable et le bon dieu

2.1 Motivation

Depuis le début des années 90, de nombreuses méthodes d’analyse statistique des populations
adaptée à l’imagerie par résonance magnétique ont été proposées afin de mieux comprendre le
développement normal de cerveau et aussi trouver des biomarqueurs des maladies neurodégénératives
à un stade précoce.

Le recalage des images du cerveau consiste à aligner les structures correspondantes pour fa-
ciliter la comparaison entre les différentes sujets. Une fois que tout les images sont alignées,
elles partagent le même système de coordonnées, ce qui signifie que les structures sont alignées
par voxels. Ainsi, les méthodes morphométriques niveau voxel sont utilisées pour détecter des
changements dans différentes études Leporé et al. [2010], Lepore et al. [2008a], Mani et al. [2010a].
L’alignement est obtenu en appliquant une déformation qui peut être analysée afin de mesurer
la quantité de déformation entre une image donnée et un modèle. Ceci est utile dans les études
longitudinales de maladies neurodégénératives telles que la maladie d’Alzheimer, notamment
pour caractériser des changements de structure cérébrale au cours du temps; par exemple, la
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diminution du volume de la matière blanche et l’augmentation de liquide céphalo-rachidien dans
ventricules.

L’IRM anatomique (T1) est la référence dans le domaine de recherche de l’imagerie médicale et
de la radiologie, mais depuis la fin des années 90 d’autres modalités d’imagerie telles que l’IRM
de diffusion et l’IRM fonctionnelle sont devenues important Filler [2009], Bandettini [2012],
Oishi et al. [2008]. L’IRM de diffusion donne des informations sur l’organisation interne de la
matière blanche qui sont les connexions à l’intérieur du cerveau. Les fibres neurales sont les
voies d’interaction du cerveau, mais elles constituent également la liaison avec le reste du corps,
et sont utilisées par le cerveau pour transmettre des informations. Beaucoup d’efforts ont été
appliqués pour dévoiler l’architecture de la matière blanche du cerveau, soit pour l’estimation
de chaque fibre spécifiquement ou pour une analyse au niveau plus générale de l’ensemble. Lors
de cette dernière, un haut niveau d’abstraction est demandé où les efforts ne partent pas sur
la microstructure de la matière blanche, mais plutôt sur le niveau fonctionnel, de savoir quelles
régions sont connectées pour certains groupe de fibres Faria et al. [2012], Oishi et al. [2008]. .

Figure 2.1: À droite une illustration somatosensorielle du cortex moteur primaire et sa topogra-
phie. À gauche, les connexions de la matière blanche impliquées dans le cortex moteur. Images
prises de teachmeanatomy.info and www.merckmanuals.com.

Lorsque nous prenons un verre d’eau et le dirigeons vers notre bouche, de nombreuses régions
du cerveau interagissent pour accomplir cette tâche : le lobe frontal postérieur par exemple
est en charge des mouvements de motricité, le lobe pariétal postérieur d’analyser l’espace, et le
lobe occipital de visualiser l’objet. Ces méta-rôles sont illustrés Fig. 4.1 . Afin de comprendre
comment le cerveau est organisé et comment il fonctionne, nous avons besoin de comprendre
comment il est connecté, et pour cette raison les fibres de la matière blanche sont généralement
classées ensemble en fonction des les régions fonctionnelles qu’elles connectent. Ceci est crucial
pour comprendre et suivre le développement normal du cerveau.

Par exemple, les premiers symptômes de la maladie d’Alzheimer (MA) sont la perte de mémoire
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Figure 2.2: Combinaison de deux schémas de cerveau pour illustrer la variabilité entre un cerveau
normal et un pathologique. Le cerveau de gauche est celui d’un sujet sain, tandis que le cerveau
de droite est celui d’une personne atteint de la maladie d’Alzheimer. Image fournie par The
Alzheimer’s Disease Education and Referral Center, a service of the National Institute on Aging.

à court terme, et sont suivies progressivement par des problèmes de langage et la perte des
fonctions du corps. On s’attend donc à ce que les régions du cerveau associées à ces tâches
développent une grande atrophie physique comme représentée Fig. 4.2, où un sujet normal et
un autre avec la maladie d’Alzheimer sont comparés. La recherche a montrée que la MA est
associée dans ses premières étapes à des anomalies de la microstructure de la matière blanche
(MB) Alves et al. [2012]. Cette dégénérescence peut être vue dans des images fonctionnelles et
anatomiques Cash et al. [2012], Lorenzi et al. [2012], Li et al. [2012], Wagner [2000].

Néanmoins, l’étude de maladies telles que la dyslexie n’ont montré aucune différence entre les im-
ages T1 de sujets avec problèmes de lecture et celles de sujets contrôles. A l’inverse, l’anisotropie
des images de diffusion reflète une diminution de la microstructure des faisceaux de matière
blanche comme indiqué dans Carter et al. [2009], Klingberg et al. [2000]. Dans une étude plus
récente, des différences ont été trouvées dans les matières grise et blanche, ainsi qu’une corrélation
potentielle avec des déficits de parole dans un environnement bruyant Dole et al. [2013]. Un
autre exemple est le syndrome de Gerstmann, qui se caractérise par la tétrade de quatre facultés
cognitives. Dans les années 1920, Gerstmann pensait qu’il y avait un dénominateur commun
fonctionnel essentiel entre pour ces quatre régions. Toutefois, aucune preuve directe n’a encore
été trouvée à partir de la perspective cognitive, mais une étude plus récente suggère une relation
entre les structures interne de la matière blanche qui les connectent Rusconi et al. [2009].

Figure 2.3: Images fonction-
nelles de haute résolution mon-
trant que les régions de détection
d’activation sont clairement vers les
lignes sulcales. Image fournie par
https://humanconnectome.org

Le recalage des images du cerveau est la base
pour l’analyse d’une population, cependant la plupart
des techniques d’enregistrement aujourd’hui utilisent
uniquement les caractéristiques anatomiques telles que
les lignes sulcales. Les lignes sulcales sont de bons
points de référence pour des régions fonctionnelles et
sont la principale information que on peut extraire des
images anatomiques T1 4.3 Goualher et al. [1997, 1998],
Corouge and Barillot [2002]. Cependant, sauf pour les
lignes les plus courantes, la détection et la classification
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des lignes sulcales est difficile à effectuer sur toute la
surface du cerveau, car ils varient beaucoup d’un sujet
à l’autre, tant au niveau de leur taille que de leur em-
placement. D’autres techniques de recalage utilisent l’IRM de diffusion et essaient d’aligner les
régions de haute diffusion en utilisant différentes représentations telles que des images de Tenseur
et des images d’anisotropie fractionnée. Même si cette technique est efficace pour détecter les
régions avec des niveaux de diffusion anormaux dans une population, ce type d’étude ne contient
pas d’informations sur les connections entre régions. Ces connections peuvent être estimées en
suivant les chemins de haute diffusivité pour reconstruire les structures internes de la matière
blanche, les faisceaux de fibres.

Cette thèse se base sur l’hypothèse que le recalage peut devenir plus efficace dans des contextes
multi-modaux, afin d’améliorer la correspondance et la comparaison à travers des sujets Hel-
lier et al. [2002], Lemoine et al. [1991]. Nous visons également à vérifier qu’en ajoutant des
fibres nerveuses connues et fiables, on peut ainsi mieux guider le recalage, non seulement pour
l’alignement des structures, mais aussi pour le reste de la matière blanche et des régions fonc-
tionnelles. Les images anatomiques sont uniformément blanches dans les régions de la substance
blanche et ne contiennent pas d’information de diffusion. Par conséquent, les déformations es-
timées ne garantissent pas l’alignement de la matière blanche. En plus, les images de diffusion
ne sont pas adéquates pour l’analyse du cortex, car elles ne fournissent aucune information per-
tinente pour l’analyse des plissements du cortex, contrairement à la matière grise. Pour ces
raisons, le recalage des images de diffusion est principalement utilisé pour l’analyse de la matière
blanche.

Naturellement, les deux types d’images fournissent des informations utiles pour l’analyse du
cerveau, si bien que dans cette thèse nous avons proposé une technique pour combiner les in-
formations des images anatomiques et de diffusion pour améliorer le recalage. Nous proposons
de représenter la matière blanche par des descripteurs géométriques tel que les courbes, ou des
nuages de points, pour pouvoir les combiner avec l’image anatomique T1.

Nous proposons d’abord des méthodes pour analyse les fibres obtenues para la tractographie,
par les simplifier et faciliter après leur utilisation dans le recalage.

2.2 Représentation de la Matière Blanche

Grâce aux outils pour l’imagerie de diffusion actuels, nous pouvons estimer des millions de fibres
nerveuses dans la matière blanche. Pour être efficace et précis, nous nous proposons d’extraire les
fibres les plus pertinentes et de les intégrer ensuite dans le recalage. Nous analysons et proposons
différentes techniques de regroupement des faisceaux de matière blanche en fonction de leur forme
et de leur distance les uns des autres. Si bien la pertinence d’un faisceau peut être définie par
exemple par son sens anatomique, nous nous concentrons plutôt sur les aspects techniques tels
que notre capacité à les détecter dans différents sujets, ou leur importance au sein d’un seul sujet
(i.e. la taille du faisceau).

Dans le chapitre ?? nous analysons trois algorithmes de classification différents utilisés pour
regrouper les faisceaux de matière blanche:

1. KMeans: un algorithme simple mais largement utilisé et connu. Sa simplicité nous permet
de tester différentes mesures plus adaptées aux courbes pour améliorer les caractéristiques
intrinsèques des eux.
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2. Two Level Average-linkage clustering: un algorithme de clustering agglomératif à
deux niveaux développé par Guevara et al. [2012]. Il travaille sur une segmentation obtenue
par le recalage du sujets sur l’espace de Tailaraich: Elle aide a séparer a priori les fibres par
région avant qu’unalgorithme de classification soit appliqué à chacune. Le regroupement de
second niveau est appliqué sur toutes les représentatives des classes obtenues dans chaque
région de tous les sujets ensemble. Un faisceau a des correspondances à travers les sujets
si dans la classe obtenue à la deuxième étape, il y des représentatives des différents sujets.

3. QuickBundles: un algorithme de clustering rapide développé par Garyfallidis et al.
[2012], qui crée des groupes sur demande en fonction d’un seuil. Chaque fois qu’une nouvelle
fibre est ajoutée, si aucun cluster n’est assez près de la fibre, un nouveau groupe est créé.

Chaque algorithme de clustering analysé a des caractéristiques et des objectifs différents. Two
Level Average-linkage clustering est un pipeline multi-étapes qui aui necessite que les données
soient recalées et segmentées au préalable, et qui implique de multiples étapes de classification.
En conséquence, nous obtenons des faisceaux correspondants entre sujets. Néanmoins des erreurs
peuvent être effectuées à chaque étape, et la fiabilité de la correspondance entre faisceaux peut
être discutée. Quickbundles , au contraire, n’a pas besoin d’information ajoutée a priori et sert
à une rapide compression de la représentation de la matière blanche de haut niveau. KMeans
nous permet d’analyser l’impact de différentes métriques pour le regroupement des faisceaux de
fibres.

Le plus fort pipeline pour l’analyse de la matière blanche a été développé par Guevara et al.
[2012]. Il est basé sur une segmentation déjà définie sur les sujets, où la tractographie est d’abord
divisée en fonction de segmentations précédemment effectuées sur le cortex, à partir des images
T1. Puis l’algorithme de classification est appliqué pour chaque sous-groupe. Un deuxième niveau
de classement de fibres est appliqué sur l’ensemble des représentants de chaque cluster de tous
le sujets, pour détecter les fibres correspondantes à travers les sujets. Cette méthodologie est
robuste, et s’appuie sur de nombreuses étapes de prétraitement pour améliorer les résultats : la
segmentation du cortex en fonction des images T1 déjà alignées contre l’atlas de Tailaraich est
utilisée pour construire une segmentation initiale des faisceaux de matière blanche, et ce dernier
regroupement est effectuée dans l’espace du Tailaraich.

En contraste avec cette dernière technique, QuickBundles a été développé dans Garyfallidis et al.
[2012]. Il s’agit d’un algorithme rapide, capable de traiter une base de données de tractographie
massive en quelques secondes. Bien que QuickBundles n’a pas montré de meilleures performances
que les autres métriques et les autres algorithmes, il est très pratique pour un traitement rapide,
et nous avons constaté que dans le cas moyen, les principaux faisceaux de matière blanche sont
finement détectés.

Pour comparer l’impact des différentes métriques sur l’analyse de la matière blanche, nous avons
choisi l’algorithme K-Means et changé sa métrique pour mieux répondre à nos besoins. Nous
montrons comment des mesures simples telles que la distance euclidienne qui est la plus largement
utilisée avec les algorithmes de clustering, peut être améliorée. Plus précisément, nous nous
intéressons à des métriques où aucune correspondance point à point n’est nécessaire. Ceci est
pertinent dans l’analyse de la substance blanche non seulement parce que les fibres peuvent avoir
des longueurs différentes, mais aussi, en raison de la mauvaise qualité de l’image, une fibre peut se
terminer plus tôt, ou être divisée. Nos résultats montrent que la métrique de Measures (somme
de Dirac deltas centrée a chaque point du fibre) donne de meilleurs resultats que les autres
metriques. Nous avons également mis en place différentes métriques pour évaluer les résultats du
regroupement largement connues dans la littérature de l’apprentissage automatique, mais très
peu utilisée dans la communauté de l’IRM de diffusion en neuro-imagerie.
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Nous sommes conscients que ces distances soit plus adaptées aux courbes et sans correspon-
dance entre points sont plus coûteuses que les distance de point par point, comme la distance
euclidienne. En raison de la grande dimension des données de diffusion, nous nous sommes
retrouvés contraints d’explorer d’autres options. Nous présentons l’analyse multidimensionnelle
qui incorpore les tracts dans une nouvelle espacées défini par la métrique désirée, pour après
être analysée par l’algorithme K-Means. Ceci est réalisé en sélectionnant un pourcentage de
tracts aléatoirement échantillonnées, et nous montrons que, bien que le temps de calcul change
radicalement, la précision reste stable lorsque on varie le pourcentage de fibres a utilise.

2.3 Recalage Multi-modal: T1 et Faisceaux de Fibres

Le cœur de cette thèse concerne sur le recalage multimodal d’images T1 et des descripteurs
géométriques de faisceaux de fibres. Nous explorons différentes représentations de l’architecture
de la matière blanche, où chaque représentation exige différentes connaissances préalable au
recalage. Nous nous appuyons sur un algorithme de recalage des image T1 bien connu, le Demons
Algorithm, qui cherche une déformation difféomorphe qui minimise la somme des distances carrés
entre deux images. La nouvelle approche minimise conjointement la distance entre l’image et les
descripteurs géométriques sur les images et des fibres respectivement des sujets.

Dans le Chapitre 9 nous développons et analysons un algorithme multi-modal avec les distances
géométriques suivantes:

1. Le point le plus proche distance (PPD): les fibres sont représentés comme une
séquence de points. Pour cette distance une correspondance un-à-un est utilisée comme a
priori, et chaque point dans les fibres se déplace vers le point le plus proche sur la fibre
fixe correspondant. Cette métrique est coûteuse, ainsi il est préférable d’avoir des fibres
correspondantes. La déformation est également restreinte par les forces de l’image et des
contraintes de régularisation pour obtenir des déformations difféomorphes.

2. Courants: Cette distance utilise la notion de tangentes dans les courbes (fibres). Les
fibres sont représentées par l’intégrale des champs de vecteurs définis par les tangentes de
chaque position de la fibre ou courbe. Ainsi, une orientation cohérente à travers les fibres
est nécessaire pour une comparaison valable, puisque deux fibres en sens inverse peuvent
induire en erreur le recalage. En conséquence, cette mesure nécessite des correspondances
faisceau-à-faisceau, ou une segmentation de fibres orientées systématiquement entre les
individus.

3. Mesures Pondérées: Cette approche s’appuie sur la notion de courants, néanmoins
avec un sens géométrique plus léger. Dans ce cas, les tangentes sont remplacées par des
poids représentant l’importance des faisceaux (par exemple, leur taille). Chaque faisceau
est représenté par la somme du Dirac deltas centrées en chaque point, pondérée par son
importance pour le sujet. Cet indicateur permet le recalage de deux sujets sans fort a priori
et sans lourde étape de prétraitement.

Différentes approches ont été explorées au cours de cette thèse. La première preuve de concept
a été effectuée en utilisant le point le plus proche. Les résultats ont montré que les recalages
pourraient être largement améliorés, puisque l’alignement de l’image T1 a été maintenue par le
nouvel algorithme, mais l’alignement de la matière blanche a été grandement améliorée. Certains
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sujets ont même montré des améliorations sur l’alignement de T1 vérifiant que l’information en
matière blanche peut en effet conduire à un meilleur recalage global d’un sujet.

Lors de l’utilisation de la métrique PPD, une correspondance fibre-à-fibre est pratique pour des
raisons de calcul. Il a été obtenu en utilisant le pipeline de regroupement moyen de liaison 2
niveaux développé dans Guevara et al. [2012]. Les faisceaux résultants ont été encore simplifiés
pour utiliser une seule fibre représentant le centre de gravité.

Pour éviter l’exigence d’une correspondance fibre-à-fibre qui est difficile à obtenir en pratique,
nous améliorons l’algorithme de recalage en représentant des faisceaux de fibres avec des courants.
Au lieu d’un nuage de points, chaque faisceau est représenté par une somme de Dirac deltas
centrées aux points des fibres associées aux tangentes suivant la direction de la courbe. Bien
que cette nouvelle représentation ne nécessite pas de correspondance fibre-à-fibre entre sujets,
il nécessite un correspondance faisceau à faisceau parce que l’orientation doit être cohérente à
travers les sujets pour une comparaison correct. Les résultats ont montré une conservation du
niveau d’alignement de T1 de tout en améliorant considérablement l’alignement de tractographie
par rapport à l’algorithme original.

Dans une dernière étape, nous supprimons les exigences de correspondance faisceau-à-faisceau.
La raison pour laquelle cette dépendance n’est pas souhaitable est la facilité d’utilisation. Tout
d’abord, l’obtention de faisceaux correspondants entre sujets prend beaucoup de temps en pré-
traitement d’image, mais d’autre part, il n’est pas toujours possible de définir des correspondances
à travers les sujets. Ceci arrive en particulier dans les maladies neurodégénérative, et les études
longitudinales pour analyser le développement du cerveau. En revanche, nous souhaitons toujours
simplifie la représentation de la matière blanc, et une nouvelle mesure a été définie sur cette
base. Nous avons représenté l’ensemble des données de tractographie comme une somme de
Dirac delta centrée à chaque point de chaque représentant de classe. Le regroupement peut être
effectué avec n’importe quel procédé, mais nous avons utilisé QuickBundles. Chaque Dirac delta
est pondérée par la quantité de fibres présent dans le groupe associée. Ce faisant, le recalage est
dirigée principalement par les plus grandes classes, qui sont censées correspondre aux principaux
faisceaux de matière blanche. Avec ce raisonnement, les faisceaux les plus petits sont considérés
comme du bruit et ont un faible impact sur l’alignement. Une fois de plus, les résultats ont montré
une amélioration spectaculaire de l’alignement de la substance blanche, tout en maintenant des
résultats précis pour l’alignement des images T1.

2.4 Conclusion

L’analyse de populations pour détecter les biomarqueurs de la maladie et pour comprendre la
croissance normale est une technique standard motivée par la grande disponibilité des scanners
dans les hôpitaux et l’intérêt de partage les bases de données à des fins de recherche. Le large
éventail de techniques d’imagerie médical où chaque type d’image mesure des caractéristiques
différentes du cerveau, nous amène sur un chemin d’évolution naturelle d’analyse. L’analyse
multi-modale a commence a recevoir de plus en plus d’attention dans le domaine de la neuro-
imagerie, et ce à chaque étape de l’analyse: le regroupement la matière blanche, la détection des
régions d’activation fonctionnelle, la segmentation du cortex, le recalage, etc.

Dans cette thèse, nous avons principalement exploré la simplification de la structure de la sub-
stance blanche, et comment la matière blanche peut être incorporé dans un cadre de référence
pour améliorer l’analyse inter-sujet.
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Dans le Chapitre 8 nous avons effectué une analyse approfondie des techniques visant à simplifier
l’analyse de la tractographie de fibres intra-sujet. Compte tenu de l’intérêt utiliser ces faisceaux
pour le recalage entre sujets, nous nous concentrons sur les principaux faisceaux, c’est-a-dire ceuse
qui sont grands et facilement détectables dans tous les sujets. Nous avons comparé différents
algorithmes de clustering pour la simplification de la matière blanche, du plus célèbre comme
K-Means, au plus récent, Quickbundles, en passant par un algorithme agglomératif hiérarchique.
La suite a été spécialement conçu pour l’analyse rapide des données massives de la substance
blanche.

Nous avons choisi K-Means pour l’analyse de différentes métriques, et nous avons montré que les
métriques qui sont mieux adaptées aux courbes peuvent améliorer les résultats de classification.
Toutefois les même analyses pourraient être faites a une échelle multi-dimensionnelle par Quick-
Bundles ou avec le regroupement agglomératif hiérarchique, avec éventuallement des bénefices
sur la précision de la classification.

Étant donné que les sorties de tractographie sont volumineuses, contenant quelques millions de
tracts, et que les algorithmes de recalage sont coûteux, la simplifications de la matière blanche
est obligatoire.

Dans le chapitre 9 nous avons étendu une méthode bien connue pour le recalage d’images T1,
les démons, et nous avons incorporé l’informations géométrique venant de fibres, en utilisant
différentes métriques plus adaptées a l’analyse des courbes.

Nous avons comparé notre méthode de recalage avec des methodes de recalage avec tenseurs et
muti-modal de T1 + FA (en utilisant le logiciel ANTS). Les résultats de recalage basés sur des
image des tenseurs ont satisfait nos attentes: l’alignement de la matière blanche a été amélioré,
mais le recalage était inutile pour l’analyse d’images anatomiques (T1), et donc pour la plupart des
approches multi-modales qui vont au-delà de l’analyse de la matière blanche. La comparaison
avec le multi-modal T1 + FA était plus intéressant, et a montré que des améliorations de le
recalage de la matiere blanche en utilisant la représentation des courant, mais ANT a montré
des résultats légèrement meilleurs sur les critères d’image. D’autre part, pour la représentation
des mesures pondérées, les résultats ont montré une amélioration dans la substance blanche mais
également en ce qui concerne le critère d’imagerie. Comme nous pensions courants donnent une
meilleure représentation de la forme de mesures, et nous concluons que l’amélioration est liée à
l’application des correspondances entre faisceaux entre sujets.

En guise de travaux futurs sur le recalage, nous voudrions examiner l’utilisation de versions
non-orientées de courants, comme le Varifold ?.

En attendant, les méthodes de recalage proposées seront utilisées pour analyser l’impact de
l’inclusion des connexions de la matière blanche dans le recalage pour analyser des images fonc-
tionnel (IRMf), telles comme la détection des zones d’activation. Nous montrons des résultats
préliminaires à la Fig. 10.1, où des informations de diffusion (telles que le FA) sont ajoutées au
moment du recalage, pour améliorer ensuite la découverte de zones d’activation. Les résultats
indiquent que les informations de connexion pourraient en effet améliorer la sensibilité. Ce
premier résultat motive l’utilisation des méthodes développées dans cette thèse pour améliorer
potentiellement la précision de la détection d’activation IRMf.
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ANTs T1 ANTs T1

ANTs T1 + FA
ANTs T1 + FA

Figure 2.4: Comparaison des résultats d’une analyse de froupe de 20 sujets de la base de données
HCP, en utilisant ANTs pour le recalage avec uniquement des image T1 ; la conjonction de
T1+FA. Les résultats montrent que des valeurs les plus élevées sont obtenues avec l’incorporation
de l’information venant des images de diffusion.
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Summary

”... We have developed speed, but we have shut ourselves in.
Machinery that gives abundance has left us in want. Our
knowledge has made us cynical; our cleverness, hard and unkind.
We think too much and feel too little. More than machinery, we
need humanity. More than cleverness, we need kindness and
gentleness. Without these qualities, life will be violent and all will
be lost...”

—Charles Chaplin, The Barber’s speech, The Great
Dictator (1940)

3.1 Motivation

Since the late 90’s many computational methods for the statistical analysis of brain Magnetic
Resonance Imaging across populations have been proposed in order to better understand normal
development as well as analysing diseases and finding biomarkers at early stage of neurodegen-
erative deseases.

Brain image registration consists in aligning corresponding structures to ease the comparison
between different brain images. Once images are aligned, they share the same coordinate system,
meaning that structures are aligned on a voxel basis. Voxel-based morphometric methods are
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then used to detect changes across different studies Leporé et al. [2010], Lepore et al. [2008a],
Mani et al. [2010a]. Alignment is achieved by warping the images; the deformation fields can
in turn be analysed in order to quantify the shape difference between a given image and a
template. The latter is useful in longitudinal studies of neurodegenerative deseases such as
Alzheimer, where brain changes over time are characterized across subjects, such as decrease of
white matter volume and the increase of cerebral-spinal fluid and ventricles size.

Anatomical MRI (T1) is the reference modality in research and radiology, however since the
late 90’s other image modalities such as diffusion MRI and functional MRI have been gaining
attention Filler [2009], Bandettini [2012], Oishi et al. [2008]. Diffusion MRI yields information on
the underlying organization of the brain white matter, the connections inside the brain. Neural
fibers are the pathways of brain interactions, but they also constitute the connection to the rest
of the body, and are the medium used by the brain to transmit information. Lots of efforts have
been spent to unveil the architecture of the brain white matter, from the estimation of each
single fiber connection, to a bundle level analysis. At the latter, a higher level of abstraction
is sought where the efforts are not on the microstructure of the white matter, but rather at a
functional level Faria et al. [2012], Oishi et al. [2008].

Figure 3.1: On the right the somatosensory illustration of the primary motor cortex and its
topography, while on the left the white matter connections involved. Images taken from teach-
meanatomy.info and www.merckmanuals.com

When we hold a glass of water and direct it to our mouth, many regions of the brain are
interacting to fulfil this task: the posterior frontal lobe in charge of the motor movements, the
posterior parietal lobe to analyse the space, and the occipital lobe to visualize the object, these
meta-roles are illustrated in Fig. 4.1. In order to understand how the brain is organized and
how it works, we need to understand how it is connected, and for this reason white matter fibers
are generally classified together when connecting the same functional regions. This is crucial to
understand and follow normal brain development.
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Figure 3.2: Combination of two brain diagrams to illustrate pathological brain variability. In
the left normal brain, in the right brain of a person with Alzheimer’s disease. Image provided
by The Alzheimer’s Disease Education and Referral Center, a service of the National Institute
on Aging.

For example, early symptoms of Alzheimer (AD) are loss of short time memory, gradually
followed up by language troubles and the loss of body functions. On the other hand, brain
regions associated with those task are considered to develop high physical atrophy as shown in
Fig. 4.2, where a comparison between a normal brain and an Alzheimer diseased brain are shown.
Research has shown that in its early stages, AD is associated with microstructural abnormalities
in white matter (WM) Alves et al. [2012], and these changes can also be observed in functional
and anatomical images Cash et al. [2012], Lorenzi et al. [2012], Li et al. [2012], Wagner [2000].
Nevertheless, studies in diseases such as Dyslexia have shown no difference in T1 images between
poor readers and control subjects, while anisotropy in diffusion images reflected a decrease in the
microstructure of the white matter tracts as shown in Carter et al. [2009], Klingberg et al. [2000].
In a later study, changes were found in both gray and white matter, and a potential correlation
to defects in speech-in-noise deficits Dole et al. [2013]. Another example is the Gerstmann
syndrome, that is characterized by the tetrad of four cognitive faculties. Gerstmann claimed in
1920s, that this resulted from the damage of a common functional denominator essential for those
four regions. However no direct evidence has yet been found from the cognitive perspective, and
a recent study suggests a detriment on the internal white matter structures connecting those
four regions Rusconi et al. [2009].

Figure 3.3: High resolution func-
tional images show that func-
tional activation is confined to
grey matter. Image provided by
https://humanconnectome.org

Brain image registration is the basis of population com-
parison, nevertheless most registration techniques today
rely purely on anatomical features such as sulcal lines,
that are good landmarks for some functional regions and
are the main information that can be extracted from
anatomical T1 images 4.3 Goualher et al. [1997, 1998],
Corouge and Barillot [2002]. However, besides the most
common sulci, sulci detection and classification is hard
to perform on the whole brain surface, as they largely
vary from one subject to another in size and location.
Other registration techniques use diffusion MRI imag-
ing, and try to map together the regions of high diffusion
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by using different diffusion representations such as Ten-
sor based images and Fractional Anisotropy images. Although this technique can be good at
detecting regions with an unexpected diffusion level in comparison to normal subjects, registra-
tion contains no information about connected regions. The later can be estimated following the
paths of high diffusivity to obtain the underlying white matter structures, the fiber tracts.

This thesis is based on the hypothesis that registration should be performed in multi-modal
settings in order to enhance the reliability of the correspondence and the voxel-wise comparison
across subjects Hellier et al. [2002], Lemoine et al. [1991]. We also aim at checking whether using
specifically some reliable neural fibers can guide the registration to not only map functional re-
gions together, but also to characterize the internal organization of the white matter. Anatomical
images are uniformly white in white matter regions, and do not contain diffusion information.
As a result, the estimated deformations do not ensure the alignment of white matter. Likewise,
diffusion images are not adequate for cortex analysis, as they provide no relevant information
for analyzing sulcal folding and gray matter. For these reasons, diffusion based registration is
mostly used for white matter analysis.

Naturally, both images provide useful information for brain analysis, and in this thesis we pro-
posed a technique to simultaneously combine anatomical and diffusion information to enhance
registration. We propose to represent white matter as geometrical structures such as curves, or
point clouds, and to combine them with the T1 anatomical image. We first propose methods to
deal with the tractography outputs, to make it easier to use them in a registration context.

3.2 White Matter Representation

With current diffusion tools, we can estimate millions of fibers tracts in the white matter. For a
registration framework to be efficient and accurate, we propose to extract the most relevant fiber
tracts and incorporate them to the registration. We analyse and propose different techniques to
group white matter tracts that share similar shape and space distances. While the relevance of
a bundle can be differently defined for example by its anatomical meaning, we focus on technical
aspects such as the capacity of detecting them across subjects.

In Chapter 8 we analyse three different clustering algorithms for grouping white matter tracts:

1. KMeans: a simple but widely used and known clustering algorithm. Thanks to its simplicity
we propose and test different metrics to enhance intrinsic curves features.

2. Two Level Average-linkage clustering: a two level agglomerative clustering pipeline de-
veloped by Guevara et al. [2012] was applied based on segmentations priors obtained by
registering subjects to the Talaraich space. In Talaraich space we obtain a segmentation
of the subjects, which allows to apply the clustering algorithm on each sub-region. The
second level clustering finds correspondences across subjects by applying the method to
the cluster representatives obtained in the previous step.

3. QuickBundles: a fast clustering algorithm developed by Garyfallidis et al. [2012], that
creates clusters on demand based on a distance threashold. Each time a new fiber is
added, if no cluster is close enough to the fiber, a new cluster is created.

Each of the clustering algorithms analysed differs greatly by its features and goals. Two Level
Average-Linkage Clustering is multi-step pipeline consisting of registration, segmentation and
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multiple clustering steps. As a result we obtain corresponding bundles across subjects, never-
theless errors can be made at each of the stages, and reliability of a one-bundle to one-bundle
correspondence across subjects is tightened to the reliability and priors included in previous
steps. Quickbundles on the contrary includes no priors on the clustering, and it serves for a fast
high level white matter representation compression. KMeans allows us to analyse the impact of
different metrics when clustering fiber tracts.

The strongest white matter analysis pipeline was developed in Guevara et al. [2012] and it is
based on average linkage clustering, where the tractography dataset is first divided based on
previous segmentations performed on the cortex based on T1 images, and then the algorithm
is applied in each subgroup. A second level of clustering groups fibers from multiple subjects
together to detect corresponding fibers across subjects. This methodology is robust, and it builds
on many preprocessing steps to enhance results: T1 based cortex segmentation is used to infer
a rough initial segmentation of the white matter tracts, and registration needs to be performed
before clustering multiple subjects together.

In contrast with the latter technique, QuickBundles was developed in Garyfallidis et al. [2012],
and is a fast algorithm, capable of clustering a massive tractography database in a matter of
seconds. Although QuickBundles has not showed to perform well on metric comparisons to other
algorithms and metrics, it is very handy for fast preprocessing, and we have found that in average
the main white matter tracts are finely detected.

With the aim to compare the impact of different metrics on white matter analysis, we chose
K-Means algorithm and extended its metric to better suit our needs. We showed how simple
metrics such as Euclidean distances, the most widely used in clustering algorithms, can be
improved. Specifically, we focus on metrics such as Hausdorff and Measures, where no point
to point correspondence is required. This is relevant in white matter analysis not only because
fibers can have different lengths, but also, as a consequence of poor image quality, a fiber can
end earlier or be split. Our results show that the Measure metric outperformed other metrics.
We have also introduced different metrics to evaluate the clustering, which are widely known in
the machine learning literature, but hardly used on the diffusion neuroimaging community.

We are aware that distances such as Hausdorff or Measure are computationally more expensive
than a point-wise distance such as Euclidean, and as a consequence of the high-dimensionality
of the diffusion data, we found ourselves forced to explore other options. We introduced Multi-
dimensional scaling to embed tracts into a new featured spaced defined by the desired metric,
to then cluster the embedded tracts with the regular K-Means algorithm. This is performed by
selecting a percentage of random tracts as sampled, and we show that while computation time
dramatically changes, accuracy remains stable when varying this percentage.

3.3 Multi-modal Registration: T1 and Fiber Tracts

The heart of this thesis is on the multi modal registration of T1 images and the geometric
descriptors of fiber tract. We explore different representations of the white matter architecture,
each of them being associated with different priors to the registration. We build on a well-known
T1 registration algorithm, the Demons Algorithm that estimates a diffeomorphic deformation
that minimizes the sum of squared distances between a target and a source image. The new
approach jointly minimizes both image and geometric descriptor distances between the source
and target images and fibers respectively.
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In Chapter 9 we develop and analyse a multi-modal algorithm with the following geometry
distances:

1. Closest Point Distance (CPD): the fibers are represented as as a sequence of points. For
this distance a one-to-one fiber correspondences are assumed a priori, and each point in
the moving fibers will move towards to closest point on the corresponding fixed fiber. This
restriction comes from its high computational cost. This direction will also be restricted
by the image forces and the regularization constraints to hold for diffeomorphic properties.

2. Currents: This distances uses the notion of tangents across the curves (fibers). Fibers are
represented as the integral of the vector fields defined by its tangents. Thus, a consistent
orientation across fibers is necessary for a proper comparison, as opposites direction may
mislead the registration. As a consequence, this metric requires as a prior some bundle-
to-bundle correspondences, a previous segmentation of fibers consistently oriented across
individuals.

3. Weighted Measures: This builds on a simplification of the currents distance, with a weaker
geometrical meaning. Tangents are replaced by weights representing the importance of
bundles, e.g. size. Each bundle is represented by the centroid of the cluster, weighted by
its importance on the subject. This metric allows registering two subjects without strong
priors and preprocessing steps.

Different approaches have been explored during this thesis. The first proof of concept was
using the Closest Point Distance, where results have shown that T1 registration could be widely
improved, as T1 alignment was maintained by the new algorithm, but white matter alignment was
greatly improved. Some subjects have even shown improvements on the T1 alignment, verifying
that indeed white matter information can lead to better overall inter-subject registration.

When using the CPD metric, a fiber-to-fiber correspondence is convenient for computational
reasons. This was obtained by using the two-level pipeline of average-linkage clustering developed
in Guevara et al. [2012]. The resulting bundles were further simplified to only one representative
fiber, the centroid.

To avoid this fiber-to-fiber requirement which is mostly unrealistic, we upgrade the registration
algorithm by representing fiber bundles with Currents. Instead of a cloud of points, each bundle
is represented by a sum of dirac deltas centered at fiber points associated with the tangents
following the curve direction. Although this new representation does not require fiber-to-fiber
inter-subject correspondences, it does requires bundle-to-bundle correspondence as orientation
needs to be consistent across subjects for a proper registration. Results have once again shown
to hold T1 alignment while dramatically improving tractography alignment in comparison with
the original algorithm.

In this last stage we remove the requirements of bundle-to-bundle correspondences. The reason
why this dependency is undesirable is usability. First, obtaining corresponding bundles across
subjects takes lots of preprocessing time, but second, it is not always plausible to define cor-
respondences across subjects. The latter holds especially in neurodegenerative diseases, and
longitudinal studies for analyzing brain development. But we were still interested in the white
matter simplification, and a new metric was defined on that basis. We represented the whole
tractography dataset as a sum of dirac delta centered at each point of each cluster representative.
The clustering can be performed with any method, but we have used QuickBundles. Each dirac
delta is weighted by the amount of fibers there was in the cluster of the representative. By doing
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so, the registration is lead mostly by the larger clusters, which are expected to be the main white
matter tracts. With this reasoning, small bundles are taken as noise, and have low impact on the
alignment. Once again, results have shown a dramatic improvement of white matter alignment,
while holding accurate results for T1 image alignment.

3.4 Conclusion

Population analysis for detecting disease biomarkers and for understanding normal growth is
nowadays a standard technique linked to the wide availability of scanners in hospitals and the new
interest of sharing research purpose databases. The wide range of imaging techniques measuring
different features of the brain leads to a natural evolution path of the analysis. Multi-modal
analysis has received more and more attention in the neuroimaging field at every stage of analysis:
white matter clustering, functional region activation detection, cortex segmentation, registration,
etc.

Within this thesis we have mainly explored the simplification of white matter structure, and
how white matter can be incorporated into a registration framework to improve inter-subject
analysis.

In Chapter 8 we have performed an extensive analysis of common techniques to simplify intra-
subject fiber tractography analysis. With the interest of further performing inter-subject studies,
we focus only on the main tracts, which are expected to be large and easily detectable across
subjects. We have compared different clustering algorithms for the simplification of white matter,
from the most famous and widely known K-Means, to hierarchical average linkage, and a new
proposed algorithm in the community, QuickBundles. The latter was specially designed for the
fast analysis of massive white matter datasets.

We have chosen K-Means for the analysis of the different metrics on clustering, and we have
proven that metric better suited for curves can enhance clustering results. However further work
could be the implementation of Measures with Multi-dimensional scaling on QuickBundles or on
average linkage clustering and one can hope that it will enhance clustering accuracy.

Given that tractography outputs are large, containing possible few million tracts, and regis-
tration algorithms are computationally expensive to compute, prior simplifications of the white
matter is mandatory.

In Chapter 9 we have extended a well-known method for T1 image registration, the Demon’s
Framework, and incorporated into it the geometrical information coming from fibers tracts by
using different metric well suited for curves.

We have compared our registration methodology to a tensor-based and a muti-modal T1+FA
registration using the ANTs software. For tensor-based registration results were as expected, as
white matter alignment was improved but the registration was useless for T1 analysis, and there-
fore for most multi-modal approaches that go beyond white matter analysis. The comparison
with the multi-modal T1 +FA was more interesting, as for the Currents representation improve-
ments where mostly in white matter, but ANTs showed slightly better results on image criteria.
On the other hand, with the Weighted Measures representation, results showed improvement in
white matter but also regarding the imaging criterion. As we believe that Currents give a better
representation of shape than Measures, we intuitively conclude that the improvement was related
to enforcing bundle correspondences across subjects.
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ANTs T1 ANTs T1

ANTs T1 + FA
ANTs T1 + FA

Figure 3.4: Comparison between a group analysis registration of 20 subjects from the HCP
database, using ANTs with purely T1 images, and ANTs with T1 + FA. Results shows that
higher values are obtained with the incorporation of information coming from diffusion imaging,
hinting at reduced functional variability across subjects.

As future work on registration, it is worth investigating the use of non-oriented versions of
currents, such as with Varifold.

Meanwhile, the proposed registration methods will be used to analyze the impact of including
white matter connections for normalization on fMRI analysis, such as activation zones detection.
A proof of concept of adding diffusion information such as FA to the registration in a group
analysis of activation detection zones is shown in Fig. 10.1, indicating that indeed, connection
information might improve sensitivity. This first results motivates the use of the methods devel-
oped in this thesis to potentially improve the accuracy on fMRI activation detection. A proof
of concept of adding diffusion information such as FA to the registration in a group analysis of
activation detection zones is shown for both registrations on Fig. 10.1 (right images), indicating
that indeed, connection information might improve accuracy. This first results motivates the use
of the methods developed in this thesis to potentially improve the accuracy of fmri activation
detection.
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Abstract

”Find what you love and let it kill you.”

—Charles Bukowski

Since the late 90’s many computational methods for the statistical analysis of brain Magnetic
Resonance Imaging across populations have been proposed in order to better understand normal
development as well as analyzing diseases and finding biomarkers at early stage of neurodegen-
erative deseases.

Brain image registration consists in aligning corresponding structures to ease the comparison
between different brain images. Images are taken to the same coordinate system where voxel-
based morphometric methods are used to detect changes across different studies Leporé et al.
[2010], Lepore et al. [2008a], Mani et al. [2010a]. The deformations applied to achieve the
alignment are further analyzed in order to measure the amount of deformations between a given
image and a template. The latter is useful in longitudinal studies of neurodegenerative deseases
such as Alzheimer, where brain changes over time are characterized across subjects, such as
decrease of white matter volume and the increase of cerebral-spinal fluid in ventricules.

Anatomical MRI (T1) is the reference in research and radiology, however since the late 90’s other
image modalities such as diffusion MRI and functional MRI have been gaining attention Filler
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[2009], Bandettini [2012], Oishi et al. [2008]. Diffusion MRI yields information on the underlying
organization of the brain white matter, the connections inside the brain. Neural fibers are the
pathways of brain interactions, but they also make up the connection to the rest of the body,
and the medium used by the brain to transmit information. Lots of efforts have been applied
to unveil the architecture of the brain white matter, from the estimation of each single fiber
connection, to a bundle level analysis. At the latter, a higher level of abstraction is sought where
the effors are not on the microstructure of the white matter, but rather at a functional level
Faria et al. [2012], Oishi et al. [2008].

Figure 4.1: On the right the somatosensory illustration of the primary motor cortex and its
topography, while on the left the white matter connections involved. Images taken from teach-
meanatomy.info and www.merckmanuals.com

When we hold a glass of water and direct it to our mouth, many regions of the brain are
interacting to fulfill this task: the posterior frontal lobe in charge of the motor movements, the
posterior parietal lobe to analyze the space, and the occipital lobe to visualize the object, these
meta-roles are illustrated in Fig. 4.1. In order to understand how the brain is organized, and
how it works, we need to understand how it is connected, and for this reason white matter fibers
are generally classified together when connecting the same functional regions. This is crucial to
understand and follow normal brain development.

For example, early symptoms of Alzheimer (AD) are loss of short time memory, gradually
followed up by language troubles and the loss of body functions. On the other hand, brain
regions associated with those task are considered to develop high physical atrophy as shown in
Fig. 4.2, where a comparison between a normal brain and an Alzheimer diseased brain are shown.
Research has shown that in its early stages, AD is associated with microstructural abnormalities
in white matter (WM) Alves et al. [2012], and this changes can also analyzed in functional
and anatomical images Cash et al. [2012], Lorenzi et al. [2012], Li et al. [2012], Wagner [2000].
Nevertheless, studies in diseases such as Dyslexia have shown no differences in T1 images between
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Figure 4.2: Combination of two brain diagrams to illustrate pathological brain variability. In
the left normal brain, in the right brain of a person with Alzheimer’s disease. Image provided
by The Alzheimer’s Disease Education and Referral Center, a service of the National Institute
on Aging.

poor readers and control subjects, while anisotropy in diffusion images reflected a decrease in the
microstructure of the white matter tracts as shown in Carter et al. [2009], Klingberg et al. [2000].
In a later study, changes were found in both gray and white matter, and a potential correlation
to defects in speech-in-noise deficits Dole et al. [2013]. Another example is the Gerstmann
syndrome, that is characterized by the tetrad of four cognitive faculties. Gerstmann claimed
in 1920s, that this resulted from the damage of a common functional denominator essential for
those four regions, However no direct evidence has yet been found from the cognitive perspective,
and a recent study suggests a detriment on the internal white matter structures connecting those
four regions Rusconi et al. [2009].

Figure 4.3: High resolution func-
tional images show that activation
detection regions are tightly link to
sulcal lines. Image provided by
https://humanconnectome.org

Brain image registration is the basis of population com-
parison, nevertheless most registration techniques today
rely purely on anatomical features such as sulcal lines,
that are good landmarks for some functional regions and
are the main information that can be extracted from
anatomical T1 images 4.3 Goualher et al. [1997, 1998],
Corouge and Barillot [2002]. However, besides the most
common sulci, sulci detection and classification is hard
to perform on the whole brain surface, as they largely
vary from one subject to another in size and location.
Other registration techniques use diffusion MRI imag-
ing, and try to map together the regions of high diffusion
by using different diffusion representations such as Ten-
sor based images and Fractional Anisotropy images. Although this technique can be good at
detecting regions with an unexpected diffusion level in comparison to normal subjects, registra-
tion contains no information about connected regions. The later can be estimated following the
paths of high diffusivity to obtain the underlying white matter structures, the fiber tracts.

This thesis is based on the hypothesis that registration should be performed in multi-modal
settings in order to enhance the reliability of the correspondence and the voxel-wise comparison

31



Chapter 4

across subjects Hellier et al. [2002], Lemoine et al. [1991]. We also aim at checking whether using
specifically some reliable neural fibers can guide the registration to not only map functional re-
gions together, but also to characterize the internal organization of the white matter. Anatomical
images are uniformly white in white matter regions, and do not contain diffusion information.
As a result, the estimated deformations do not ensure the alignment of white matter. Likewise,
diffusion images are not adequate for cortex analysis, as they provide no relevant information
for analyzing sulcal folding and gray matter. For these reasons, diffusion based registration is
mostly used for white matter analysis.

Naturally, both images provide useful information for brain analysis, and in this thesis we pro-
posed a technique to simultaneously combine anatomical and diffusion information to enhance
registration. We propose to represent white matter as geometrical structures such as curves, or
point clouds, and to combine them with the T1 anatomical image. We show that T1 image jointly
with geometric descriptors from diffusion image can be used to align subjects with the same ac-
curacy as solely T1 image registration. Nevertheless, with joint information we can concurrently
ensure to align gray matter seen in T1 images and white matter structures.

With current diffusion tools, we can estimate millions of neural fibers in the white matter. For
a registration framework to be efficient and accurate, we propose to extract the most relevant
fiber tracts, and incorporate them to the registration. We show that few featured fibers can
help to better guide the white matter registration. Following this line, an exploration of the
white matter architecture has been performed, and we show different techniques for analyzing
white matter and possible ways of organizing them by their similarity in space and shape. The
relevance of bundles has been defined by our capacity of detecting them across subjects, or the
single subject importance (the size of the bundle).

32



Chapter 5

Contributions

”Science must not he a selfish pleasure; those who have the opportunity to devote themselves
to scientific goals ought equally to be the first to put their knowledge at the service of
humanity.”

—Karl Marxs, Economics: Critical Assessments

5.1 Publications

In peer reviewed conference proceedings – Full lenght papers [* Oral Presentation]

– 2013

• Unsupervised Fiber Bundles Registration using Weighted Measures Geometric Demons
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Viviana Siless; Sergio Medina; Pierre Fillard; Bertrand Thirion

Workshop on Multi Modal Brain Image Analysis, Sep 2013, Nagoya, Japan. Springer
Lecture Notes in Computer Science

• A Comparison of Metrics and Algorithms for Fiber Clustering

Viviana Siless; Sergio Medina; Gaël Varoquaux; Bertrand Thirion

Pattern Recognition in NeuroImaging, Jun 2013, Philadelphia, United States.

– 2012

• Joint T1 and Brain Fiber Log-Demons Registration Using Currents to Model Geometry

Viviana Siless; Joan Glaunès; Pamela Guevara; Jean-François Mangin; Cyril Poupon;
Denis Le Bihan; Bertrand Thirion; Pierre Fillard

Medical Image Computing and Computer Assisted Intervention, Oct 2012, Nice, France,
France.

• Connectivity-informed Sparse Classifiers for fMRI Brain Decoding [*]

Bernard Ng ; Viviana Siless; Gaël Varoquaux; Jean-Baptiste Poline; Bertrand Thirion;
Rafeef Abugharbieh

Pattern Recognition in Neuroimaging, Jul 2012, London, United Kingdom.

– 2011

• Joint T1 and Brain Fiber Diffeomorphic Registration Using the Demons [*]

Viviana Siless; Pamela Guevara; Xavier Pennec; Pierre Fillard

Multimodal Brain Image Analysis, 7012, Springer Berlin / Heidelberg, pp. 10-18, 2011,
Lecture Notes in Computer Science, 978-3-642-24445-2

5.2 Abstracts

In peer reviewed conference – abstract [* Oral Presentation; $ awarded]

– 2013

• Brain Image and Fiber Log-demons Registration with Currents [*, $]

Viviana Siless; Joan Glaunès; Pamela Guevara; Jean-François Mangin; Cyril Poupon;
Denis Le Bihan; Bertrand Thirion; Pierre Fillard

Organization for the Human Brain Mapping, June 2013, Seattle, USA.

Trainee Abstract Travel Awards: 140 award recipients out of 1281 applications.

– 2012

• Joint T1 and brain fiber diffeomorphic registration using the demons

Viviana Siless; Pamela Guevara; Xavier Pennec; Pierre Fillard; Bertrand Thirion.

Organization for the Human Brain Mapping, Jun 2012, Beijing, China
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5.3 Invited Talks

– “Joint T1 and Brain Fiber Log-demons Registration using Currents to model Geometry“

The 11th Brain Connectivity Workshop (BCW’2012) will be held on June 6-8, 2012, Beijing,
China

5.4 Awards

– Trainee Abstract Travel Award for the 2013 OHBM Annual Meeting in Seattle, WA, USA.

Submitted abstract: Brain Image and Fiber Log-demons Registration with Currents.

140 award recipients out of 1281 applications.
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Introduction

”the only people for me are the mad ones, the ones who are mad to live, mad
to talk, mad to be saved, desirous of everything at the same time, the ones
who never yawn or say a commonplace thing, but burn, burn, burn like
fabulous yellow roman candles exploding like spiders across the stars.”

— Jack Kerouac, On the Road

6.1 History of brain knowledge

The heart has long been thought to be the substrate of intelligence. In ancient Egypt, from
the late Middle Kingdom onwards, in preparation for mummification the brain was regularly
removed, as it was believe to be head stuffing.

Pythagorean Alcmaeon of Croton (6th and 5th centuries BC) believed that the seat of sensations
was in the brain, and that storing up perceptions gave memory and belief which when stabilized
became knowledge Gross [1987].

In the 4th century BC Hippocrates believed the brain to be the seat of intelligence while Aristotle
thought that the heart was the seat of intelligence and the brain was a cooling mechanism for the
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Figure 6.1: Anatomy of the human brain as we know today drawn in Henry Gray book published
in 1858. A book widely appreciated as an extraordinary and authoritative book in medicine.
Gray and Carter [2002]

blood. He reasoned that humans are more rational than the beasts because they have a larger
brain to cool their hot-bloodedness Bear et al. [2002].

During the Hellenistic period, Herophilos of Chalcedon (c.335/330–280/250 BC) proposed that
the brain rather than the heart housed, the intellect, and he believed that the calamus scriptorius
in the cranium was the seat of the human soul. Erasistratus of Ceos (c. 300–240 BC) concluded
that the heart was not the center of sensations, but instead that it functioned as a pump.

Years have passed but with little advance on the brain understanding. Up to 19th century
cerebral dissection used to be the only way to access the neural architecture Dejerine [1985,
1901]. The brain as we know today is identical as the one describe in Grays Anatomy book
which was published in 1858 Gray and Carter [2002], see Figure 6.1. They knew very little of
the complex functioning of the brain but they knew quite a lot about its anatomy.

Up to now only little is known about the brain compared to other organs. During the 1800s,
scientists debated whether areas of the brain corresponded to specific functions, or if the brain
functioned as a whole. The work of Paul Broca, Carl Wernicke and Korbinian Brodmann eventu-
ally helped to show that different areas of the brain have specific functions Broca [1861], Wernicke
[1897].

6.2 Anatomy

The brain controls the nervous system and regulates the activity of humans (and many other
aspects). Neural tissue uses electrical impulses to send information from one region of the body
to another. How the information is carried through the white matter (WM) and how the different
parts of the brain are connected has not been fully unveil. About 98% of neural tissue is concen-
trated in the brain and spinal cord.

Figure 6.2: Schematic representation of the ma-
jor cellular elements of neural tissue. A neu-
ral cell body in the gray matter extends sev-
eral short dendritic processes and a single, long
axonal process. The axon is in the white mat-
ter, surrounded by an insulating myelin sheath
formed by oligodendrocytes, a glial cell. White
matter also contains two other kinds of glial cells:
astrocytes and microglia. Basser and Özarslan
[2009]

The white matter is a major component of the
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central nervous system (CNS). It is composed
of axonal nerve fibers or neurons covered by
a myelin sheath giving its distinctive color.
White matter axons are often tightly packed
and highly organized. Axons are often called
nerve fibers and bundles of these axons are
called fiber tracts, see Fig. 6.2. White mat-
ter connects gray matter areas together and
carries nerve impulses between neurons.

The gray matter is also a major component
of the CNS composed of unmyelinated neu-
rons as opposed to white matter. It has gray
brown color which comes from the capillary
blood vessels and the neural cell bodies. The
cerebral cortex is the most important struc-
ture of the gray matter and plays a major role in cognitive functions. Gray matter is highly
folded to find a larger surface in the limited volume of the skull. This folding process creates
grooves on the surface of the brain called sulci and ridges called gyri. About two thirds of the
cortical surface is buried in those sulci.

The introduction of modern imaging techniques such as MRI, fMRI, dMRI, PET and MEG is
helping the field of neuroscience to grow rapidly, bringing a new insight into the human brain
analysis.

6.3 Magnetic Resonance Imaging (MRI)

Thanks to MRI one can investigate the anatomy in health and disease avoiding exposure to
ionizing radiation. Diffusion MRI (dMRI) gives insight into the underlying white matter neural
fiber architecture, and functional MRI links anatomical regions to functional tasks with a more
accurate spatial resolution than other techniques such as PET or MEG. A difficulty of functional
analysis is to isolate a task, as even in resting state multiple brain regions are functioning together
at the same time. This can be concluded from fMRI as high correlations are observed in the
spontaneous activity of several regions at resting state. To better analyze the correlation between
functional regions, fMRI can be complemented with dMRI, but also from T1-weighted MR images
as sulcal line landmarks can be extracted from them Ng et al. [2012], Molko et al. [2003], Mangin
et al. [2004] . By combining different modality images with different perspectives from the brain
we will hopefully converge to a complete model of the brain, to help us understand it and analyze
it.

6.3.1 Structural MRI (T1)

Magnetic resonance images primarily reflect water and fat concentration that are observed though
the signal from the hydrogen nuclei. A magnetic field is used to aligned the hydrogen atoms,
which are then excited by the radio-frequency (RF) pulse. MRI images are created by measuring
the excitation and refocusing time. Hydrogen atoms are present in any tissue containing water
molecules. The contrast between different tissues is determined by the rate at which the atoms
return to the equilibrium state.
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Figure 6.3: Spin behavior during MRI imaging: in (a) the spin is aligned with the magnetic field
B0 (white arrow). After applying an RF pulse, the spin rotates away from B0 in (b), and in (c)
precesses about the axis of B0. (d) represents the transverse phase decay, and the longitudinal
amplitude decay is shown in (e), until is alignment with B0 again in (f). Image adapted from
Pipe [2009].

MRI data is collected by turning certain magnetic field on and off in sequence, referred to as pulse
sequence. The spins of the hydrogen nuclei can be modeled as a dipole (north and south poles).
These spins align themselves with the applied external magnetization. The three magnetic fields
generated by an scanner are the B0, radio-frequency (RF) pulses, and magnetic field gradients.
B0 is known as ’no-gradient’ as it is used to align the spins to a reference direction. B0 is a strong
static field of 1.5 to 7 Tesla most commonly, that tends to increase across years. The RF pulses are
applied for brief time, and oscillate at radio frequencies. When the RF pulse frequency is applied
at the Larmor frequency of the spins (γB, γ being the gyromagnetic ratio, and B the magnetic
field strength), it lets them rotate about the z-axis. RF pulses are used for excitation and
refocusing. RF-induced excitation rotates spins away from their preferred orientation along B0.
The part of the magnetization that is perpendicular to B0 decays exponentially with a constant
time T2. The T2 decay time varies with tissues and is typically on the order of milliseconds.
The spins realign themselves exponentially in the direction of B0 with a time constant T1 which
varies with tissues, but is typically of the order of one second. And example of this process is
shown in Fig. 6.3.

Figure 6.4: Comparison of relaxation T1 relax-
ation time across different structures: White
Matter, Gray Matter, and Cerebrospinal Fluid
(CSF). Image adapted from Pooley [2005]

MR Image contrast may be weighted to
demonstrate different anatomical structures
or pathologies. Each tissue returns to its
equilibrium state after excitation by the in-
dependent processes of T1 (spin-lattice) and
T2 (spin-spin) relaxation. Differences in re-
laxation time across different structures such
as gray matter, white matter and CSF (cere-
brospinal fluid) are shown in Fig 6.4. These
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time differences let us characterize different
tissues in the brain using MRI.

T1-weighted images are useful for segmenting
cerebral cortex and identifying fatty tissue.

T2-weighted images are useful for detecting
edema, revealing white matter lesions and as-
sessing zonal anatomy in the prostate and
uterus. The contrast provided between grey and white matter makes it the optimal choice
for many conditions of the central nervous system including demyelinating diseases, dementia,
cerebrovascular disease, infectious diseases and epilepsy.

6.3.2 Diffusion MRI (dMRI)

6.3.2.1 Principles

Diffusion weighted magnetic resonance imaging was introduced in the middle of the 80’s by
Lebihan and Breton [1985], Merboldt et al. [1985], Taylor and Bushell [1985], and today is
the only non invasive technique capable of describing the geometry of the underlying brain
microstructure.

In 1984 diffusion MRI was introduced by Wesbey Wesbey et al. [1984], but their acquisition
sequence was not clinically feasible. Later Taylor and Bushell Taylor and Bushell [1985] did
the first diffusion acquisition using hen’s egg as phantom in a small bore magnet. Lebihan did
the first dMRI acquisition in vivo of the human brain using a whole body scanner Lebihan and
Breton [1985], Bihan et al. [1986]. At that time dMRI was simply the unprocessed result of a
sequence application in only one gradient direction Hagmann et al. [2006].

The first important application of diffusion MRI emerged in early 1990s when it was discovered
that dMRI can detect a stroke in its acute phase Moseley et al. [1990a]. Around the same
time, scientist had also noticed that there is a peculiar property of water diffusion in highly
ordered organs such as brains Moseley et al. [1990b], Doran et al. [1990], Turner et al. [1990] In
these organs water does not diffuse equally in all directions but preferentially along axonal fiber
directions. This property is known as diffusion anisotropy.

Shortly after the first acquisitions of diffusion weighted images in vivo Moseley et al. [1990a]
Basser proposed in Basser [1993] the formalism of Diffusion Tensor (DT) model. Diffusion tensor
imaging describes the three dimensional nature of anisotropy in tissues by assuming that the
average diffusion of water molecules follows a Gaussian distribution. DTI has been proved to be
extremely useful to study the normal and pathological human brain Bihan et al. [2001].

Figure 6.5: Diagram showing the cellular ele-
ments that contribute to diffusion anisotropy.
Image adapted from Hagmann et al. [2006]

Molecular diffusion or Brownian motion was
first formally described by Einstein in 1905
Hagmann et al. [2006]. The term molecular
diffusion refers to the notion than any type
of molecule in a fluid is randomly displaced
as the molecule is agitated by thermal en-
ergy. Most of the molecules travel short dis-
tances and only a few travel further. Typically
the displacement distribution for free water
molecules is a Gaussian (bell shaped) function.
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Figure 6.6: Diffusion probability density function within a single voxel: (a) shows randomly
tubular oriented structures (top left), such as axons (bottom left) that intersect. The 3D dis-
placement distribution is roughly bell shaped, resulting in a symmetric image with no preferential
direction of diffusion. (b) shows the diffusion probability density function withing a voxel which
all the axons are aligned in the same direction. The displacement distribution is cigar shaped and
aligned withe the axons. (c) shows the diffusion probability density function of two populations
of fibers intersecting at 90◦. The displacement distribution produced is a cross shape. Image
adapted from Hagmann et al. [2006].

When molecules are agitated by thermal en-
ergy alone, the displacement distribution is
centered. This means that the average dis-
placement of the molecular population is zero.
Factors other than heat also may contribute to
molecular displacement. The same random diffusion is given to water molecules within imper-
meable spheres that may be introduced into the glass of water. The water molecules inside each
sphere diffuse within the restricted space of that sphere; and the water molecules outside the
sphere move randomly around them. Because molecules inside the sphere cannot move beyond
its boundaries, and because molecules outside cannot penetrate the sphere, the expected dis-
placement distance is reduced. It is difficult to predict the shape of the resultant displacement
distribution, but it will be more or less bell shaped and narrower than that for unrestricted dif-
fusion if the diffusion time interval is sufficiently long. Biological membranes are semipermeable
and water molecules can cross them with some resistance.

Biological tissues are highly heterogeneous as they consist of various compartments and barriers
with different diffusivity, see Fig 6.5 for layers illustration. Neuronal tissue consists of tightly
packed and coherently aligned axons that are surrounded by glial cells and that often are orga-
nized in bundles. As a result, movements of water molecules are hindered in a perpendicular
direction to the axonal orientation rather than parallel to it. Experimental evidence suggests
that the tissue component predominantly responsible for the anisotropy of molecular diffusion
observed in white matter is not myelin, as one might expect, but rather the cell membrane
Beaulieu [2002]. The degree of myelination of the individual axons and the density of cellular
packing seem merely to modulate anisotropy. Furthermore, axonal transport, microtubules, and
neurofilaments appear to play only a minor role in anisotropy measured at MR imaging Beaulieu
[2002]. An illustration of white matter diffusivity hindered by myelination can be seen in Fig.
6.6.

6.3.2.2 Diffusion MRI(dMRI) acquisition

Using a pulsed gradient spin-echo (SE) sequence, spins are exposed to different magnetic field
strengths depending on their position along the gradient axis. A regular diffusion sequence is
shown in Fig. 6.7a. The pulsed gradient SE sequence includes two additional diffusion gradient
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(a) Diagram showing the pulsed gradient SE
sequence. δ is the dilation of the diffusion en-
coding gradient. ∆ is the diffusion time inter-
val . Gphase is the phase encoding gradient ,

Gread is the readout gradient. Gslice section
is the selective gradient. RF radiofrequency
pulse, t acquisition time.

(b) Series of diffusion weighted MR brain im-
ages obtained with variations in the direction
and strength of the diffusion gradient in the
pulsed gradient SE sequence. Each image
show the signal sampled at one point in the
q space (yellow dots). Every sampling point
in the q-space corresponds to a specific direc-
tion strength on the diffusion gradient. MR
signal generated by the phase and frequency
encoding gradients is sampled to fill a q-space
(coordinate system used to organize the signal
measurements).

Figure 6.7: Images adapted from Hagmann et al. [2006].

pulses. The first of the two gradients pulses in this sequence introduces a phase shift that is
dependent on the strength of the gradient at the position of the spin at t = 0 . Before the
application of the second gradient pulse, which induces a phase shift dependent on the spin
position at t = δ, a 180◦ RF pulse is applied to reverse the phase shift induced by the first
gradient pulse. Spins that remain at the same location along the gradient axis during the two
pulses will return to their initial state. However spins that have moved are subject to a different
field strength during the second pulse and therefore do not return to their initial state. Those
spins experience a total phase shift that results in decreased intensity of the measured MR
spectroscopic signal. A diffusion gradient can be represented as a 3D vector q whose orientation
is the direction of diffusion and whose length is proportional to the gradient strength. The
application of a single pulsed gradient SE sequence produces one diffusion weighed image that
corresponds to one position in q-space or, more precisely, that depicts the diffusion-weighted
signal intensity in a specific position q for every brain position.

Figure 6.8: A a Fourier transform is applied
to the q-space images to reconstruct the image
in the standard position space. Image adapted
from Hagmann et al. [2006].

But the values of the measured signal are
most commonly organized in a coordinate sys-
tem known as k-space. Performing the ac-
quisition enables the filling of the k-space as
shown in Fig 6.7b. To transform the raw MR
imaging data from k-space into a position-
encoded visual image, a Fourier transform is
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applied Glockner et al. [2005].

A single application of the pulsed gradient
SE sequence produces one brain image with a
given diffusion weighting. Multiple repetitions
of the sequence each with a different diffusion
weighing are necessary to sample the entirely
of the q-space. The q-space is sampled for a specific diffusion time interval δ which is determined
by the interval between the two gradient pulses.

Like data from conventional MR imaging in which a Fourier transform is applied to the data in
k-space, the q-space data are subject to a Fourier transform in every brain position. An example
is shown in Fig 6.8. The result is a displacement distribution in each brain position.

6.3.2.3 Fractional Anisotropy (FA)

The problem of diffusion weighted imaging is that the interpretation of the resultant images is not
easy. The average diffusion coefficient (ADC) is derived from the equation ADC = −b ln(DWI/b0)
where DWI is the diffusion weighted image intensity for a specific b value and gradient direction.
Thus to obtain and ADC value, two acquisitions are needed. For this reason the ADC is biased
to the gradient used. To overcome this the Trace is defined which average three orthogonal
measurements to better approximate the diffusion coefficients. This methods is equivalent to
the Trace derived from the diffusion tensor that will be discussed in next section. FA (factional
anisotropy) images are used to easily identify regions of high and low diffusivity in the brain.
Its value is high when the diffusion displacement distribution is cigar shaped, and low when no
preferred direction is found. FA quantifies the directional dependence of water diffusion and
depends on features such as axonal integrity, myelination, axon diameter and density. FA can
help to detect tumors, or strokes. Another useful parameter is the principal diffusion direction
which corresponds to the underlying fiber direction within a coherent fiber bundles. By following
these directional estimates, it is possible to perform diffusion tractography and trace the pathways
of underlying fiber bundles.

6.3.2.4 Tensors and fODF

Diffusion tensors were introduced to better model the anisotropy in white matter tissues. Scalar
value images are a limited medium to represent the 3 dimensional information from the white
matter, therefore a tensor model was introduced to model the water direction with an ellipsoid.
This ellipsoid can be decomposed in three vectors that are the eigenvectors of a matrix which
describes the covariance of diffusion displacements in three dimensions. Each eigenvector is
associated to an eigenvalue which gives the intensity of diffusion in the direction guided by the
corresponding vector. The larger eigenvalue corresponds to the vector of principal diffusion
direction. This model is illustrated in Fig. 6.9. The information that can obtained from this
types of images is richer, but it also requires more acquisitions than the previous mentioned
images (ADC, Trace). FA is still a scalar-value image but it is obtained from the eigenvalues
estimated in this method. These images require at least 6 acquisitions, although 60 acquisitions
(or more) are recommended. The tensor representation is still limited: for example, when having
fiber crossing at 90◦, the tensor representation is an isotropic sphere which gives not relevant
information about the principal diffusion orientations as shown in Figure 6.11. For this reason,
a new technique called fODF has been developed to overcome this situation as shown in Fig.
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Figure 6.9: Modeling anisotropy with diffusion tensors. Image taken from http://www.ajnr.org/
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Figure 6.10: Comparison between modeling anisotropy with Tensors and with an ODF. Image
taken from Descoteaux Thesis Descoteaux [2008].

6.10. This representation are generally possible on High Angular Resolution Diffusion Imaging
(HARDI) acquisitions where more than 200 gradient are needed.

6.3.2.5 Tractography

Tractography is one of the most powerful tools developed to aid image interpretation. The pri-
mary purpose of tractography is to clarify the architecture orientation of tissues by integrating
pathways of maximum diffusion coherence. Fibers are constructed following the direction of
the maximum diffusion from voxel to voxel. The fibers depicted with tractography are often
considered to represent individual axons or nerve fibers. Nevertheless, they are more correctly
viewed in physical terms as lines of fast diffusion that follow the local diffusion maxima, re-
flecting only in a general manner the axonal architecture. The connectivity maps obtained with
tractography vary according to the diffusion imaging modality used to obtain the diffusion data.
If we assume the displacement distribution to be a Gaussian distribution as for diffusion tensors,
the representation will be restricted to an ellipsoid. The chosen representation (DTI, fODF,etc)
and the assumptions made by the tracking algorithm to estimate the most probably path from
one node to another one, will bias the tractography result. Deterministic fiber tracking from
diffusion tensor imaging uses the principal direction of diffusion to integrate trajectories over the
image Mori and van Zijl [2002]. This technique ignores the fact that fiber orientation is often
undetermined in the diffusion tensor imaging data, and for this reason probabilistic approaches
have been proposed Hagmann et al. [2003], Parker et al. [2003], Behrens et al. [2003].

6.3.3 Functional MRI (fMRI)

The goal of functional MRI (fMRI) data analysis is to detect brain activity, generally correlations
between brain activation while the subject is demanded to perform a task during the acquisition.
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Figure 6.11: Orientation distribution function map of a coronal brain section. The orientation
distribution function is plotted at every brain position, showing the local diffusion probability
density function. The cortico-spinal tract is easy to see as it is highly anisotropic, however the
corpus callosum, cingulum ,arcuate fasciculus and mid cerebellar penducle are harder to detect.
Hagmann et al. [2006]
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A task can correspond to cognitive states such as memory and recognition, or a motor task such
as moving a hand. fMRI relates brain activity to measured changes in blood flow Huettel et al.
[2008]. This technique relies on the fact that cerebral blood flow and neuronal activation are
coupled, and when an area of the brain is working, blood flow should increase locally. See Fig.
6.12. The fact that the magnetic state of hemoglobin changes with its state of oxygenation was
discovered in 1936 by Pauling and Coryell, before the discovery of nuclear magnetic resonance
(NMR) itself Raichle et al.. However, only in the late 1990s the potential significance of this
effect for functional neuroimaging was realized by Seiji Ogawa .

Figure 6.12: Image adapted from FMRIB, ox-
ford webpage

fMRI uses the Blood-Oxygen-Level Depen-
dent (BOLD) contrast Huettel et al. [2008].
The procedure is similar to MRI but uses the
change in magnetization between oxygen-rich
and oxygen-poor blood as its basic contrast.
This measure is frequently corrupted by noise
from various sources, hence statistical proce-
dures are used to extract the underlying sig-
nal.

In 1982 Thulborn and colleagues demon-
strated relaxation rate (T2) changes in blood
samples due to the magnetic susceptibility
changes caused by the presence of paramag-
netic deoxyhemoglobin.

The change in the MR signal from neuronal activity is called the hemodynamic response (HDR).
Neuronal events trigger 1 to 2 seconds after, time for the vascular system to respond to brain’s
need for glucose. The peak rises at about 5 seconds after the stimulus. If the neurons keep firing,
say during a continuous stimulation, the peak spreads to a flat plateau while the neurons stay
active. After activity stops, the BOLD signal falls below the original level, a phenomenon called
the undershoot. Over time the signal recovers to the baseline Huettel et al. [2008] as shown in
Fig. 6.13.

6.4 Plasticity

The brain is the source of behavior, but in turn it is modified by its own activity, the experiences:
when we regularly practice a sport we increase our motor abilities, which most probably results
in a change on the motor cortex. This ability to adapt and develop itself is known as plasticity.
This dynamic loop between brain structure and brain function is at the root of neural cognition,
learning and plasticity. Recent studies examining inter regional correlations of cortical thickness
reveal that gray matter, anatomical networks and functional organizational patterns are modified
during development, as they are sensitive to training Zatorre et al. [2012]. The brain is not a
static arrangement of circuits but a network of vastly interconnected neurons that are constantly
changing their connectivity and sensitivity. To understand the brain we need to understand
that it changes over time, from birth until old age. Neuroplasticity is the ability of the brain
to change its organizations as a result of experience, including location of functions. Different
type of neuroplasticity regarding white matter and gray matter are illustrated in Fig. 6.14.
A successful brain model needs to combine the shape of anatomical structures, white matter
architecture as a physical network, and functional areas which are not exclusive and interact
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Figure 6.13: The MR signal relates to the changes in blood flow that are followed by the neural
activity. Oxygen-rich blood and oxygen-poor blood have different magnetic properties related
to the hemoglobin that binds oxygen in blood, so if the blood is more oxygenated the signal is
slightly stronger. On the other hand neural activity triggers a much larger change in blood flow
than in oxygen metabolism, and this leads to the blood being more oxygenated when neural
activity increases. This blood oxygenation level dependent (BOLD) effect is the basis for fMRI.
The image is adapted from Richard Buxton at http://cfmriweb.ucsd.edu.

with each other through the white matter connections. Neuroplasticity and genetics makes the
task harder as each component will be exposed to inter-subject variability.

Many studies have exploited anatomical imaging to reveal group differences that reflect skill
knowledge or expertise. Among the first was the demonstration of larger posterior hippocampal
volume in expert taxi drivers Maguire et al. [2000]. The obvious implication suggested that
experience in spatial navigation resulted in plasticity of the structure involved. This conclusion
supported a correlation between years of experience and hippocampal volume in this population.
Musicians consistently show greater gray mater volume and cortical thickness in the auditory
cortex, and they also show differences in motor regions and in white matter organization of the
spinothalamic tract Schneider et al. [2002], Bengtsson et al. [2005]. Juggling, involves rigorous
motor coordinations and anatomical changes have been found after as little as 7 days after
training it. Changes in occipito-parietal regions involved in visio-motor coordination, reaching
and grasping were found regarding gray matter concentration, along with alterations on the white
matter organization which were detected on FA. Driemeyer et al. [2008], Scholz et al. [2009]

It is not always clear whether training or ability should be associated with increases or decreases
in relevant brain regions because of the complex relationship between anatomical changes and
underlying functionality.

6.5 Population Analysis in neuroimaging

To compare different subject in a population we need to find corresponding structures across
subjects.
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Figure 6.14: This figure shows different anatomical changes that are seen on MRI as changes in
gray matter, white matter, and FA. Image adapted from Zatorre et al. [2012]

In the case of the brain one can rely on a wide range of anatomical and functional landmarks
including AC-PC which goes from the superior surface of the anterior commissure to the center
of the posterior commissure as shown in Figure 6.15 Talairach and Szikla [1980], sulcal lines
Mangin et al. [2004], Goualher et al. [1999], sucal ribbons Glaunès et al. [2008], Durrleman et al.
[2007], Auzias et al. [2009], Fillard et al. [2007b]. But each brain has a unique configuration
of gyri and sulci. In particular, secondary and tertiary sulci are not found in all individuals
Ono et al. [1990]. This makes it difficult for software to precisely match sulci between different
individuals. Even common sulci and gyri vary drastically in shape and position among subjects,
and a point-to-point correspondence between brains of different subjects might not be defined.

Figure 6.15: A hierarchical atlas scheme is shown in Lancaster et al.
[2000] to automatically label the anatomical regions of the Tailarach
space.

Nevertheless, to analyze a
population, it is necessary
to at least approximate
these correspondences. Reg-
istration (or normaliza-
tion) is the process of
warping a brain through
a transformation or defor-
mation to roughly match a
standard template image,
an atlas image.
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Figure 6.16: Brodmann areas were based on the cytoarchitectural organization of neurons ob-
served in the cerebral cortex. Maps on humans and different species were published in 1905
Brodmann [1905] Image adapted from http://www.brainm.com.

To integrate the results
across subjects, one ad-
justs every subject to the
atlas and analyze them as
a single group. The most
famous atlases nowadays
are the Talairach and the
Montreal Neurological In-
stitute (MNI).

The Tailarach space, is de-
fined by Jean Talairach us-
ing stereotaxic (“Talairach”) coordinates on a single brain from an elderly woman which was
dissected and photographed. This coordinate format uses three numbers (X, Y, Z) to describe
the distance from the Anterior Commissure (the origin of Talairach space). The X, Y, Z dimen-
sions refer to left-right, posterior-anterior, and ventral-dorsal respectively. i.e. (38, 64, 58)mm
refers to a point in right posterior dorsal region of the brain. Landmarks such as the anterior
and posterior commissures are detectable in every subject in different modalities such as MRI,
PET, etc, making this coordinates system easy to use. Fig. 6.15 show an hierarchical scheme
developed in Lancaster et al. [2000] to label structures in Tailarach space.

Stereotaxic coordinates do not necessarily refer to a well defined sulcal location; their anatomical
meaning is to some extent “probabilistic” Mazziotta et al. [1995]. However, this level of uncer-
tainty is rather a lack of accuracy of the spatial model. Sulcal location and stereotaxic space
may both be probabilistic in terms of functional location. In a study of cortical cytoarchitecture,
Zilles et al. [1997] marked that ”sulci are not generally valid landmarks of the microstructural
organization of the cortex”. Unfortunately, the cytoarchitecture can not be directly examined in
living humans.

Brodmann, in 1905 classified brain regions based on their cytoarchitecture, the appearance of
the cortex under the light of a microscope as shown in Fig 6.16 Brodmann [1905]. According to
him a clear link could be drawn between the microscopic appearance of a region and its func-
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tion. For example, the stripe of the striate cortex delineates the first main cortical area of the
visual system, today known as V1, and Brodmann area 17. However, Brodmann’s Areas were
identified purely based on visual appearance, which is not necessarily related to function. The
atlas has Brodmann’s areas labeled in a rather approximate way: “The brain presented here
was not subject to histological studies and the transfer of the cartography of Brodmann usually
pictured in two dimensional projections sometimes possesses uncertainties”. Attempting to con-
vert stereotaxic coordinates based on MRI scans to Brodmann areas based on cytoarchitecture
raises several problems. First because correspondences can only be drawn in approximation,
and secondly because the delineated Broadman areas in atlases are, again, delineated arbitrarily.
Delineation of the BAs can be obscure, and in neither case is based on cytoarchitectonic data
from the individual brains.

A comparison between Boadmann areas and Tailarach space is shown in Fig. 6.17.

Talairach coordinates map locations of brain structures independent from individual differences
in the size and overall shape of the brain. However, alternative methods such as the Montreal
Neurological Institute and Hospital (MNI) coordinate system have largely replaced Talairach
space Talairach and Szikla [1980].

The MNI atlas aims to define a brain that is more representative of the population. The MNI
created a new template that was approximately matched to the Talairach brain in a two-stage
procedure. First, they took 250 MRI scans from healthy subjects, and manually defined various
landmarks, in order to identify a line very similar to the AC-PC line, and the edges of the
brain. Each brain was scaled to match the landmarks to equivalent positions on the Talairach
atlas. This resulted in the 250 atlas brain that is very rarely used. An extra 55 images were
automatically registered with a linear method Evans et al. [1993], Collins et al. [1994]. The result
is a probabilistic map created by combining scans from different individuals after normalization.
The MNI template widely used nowadays as a common space for further analyzing populations.
A comparison between MNI and Tailarach is shown in Fig. 6.18, where we can see that both
representations are extremely different.

The problem with those atlases, is that none of them gives place for the white matter architec-
ture. A complete model of the brain anatomy should also represent behavior, which is intrinsically
related to the white matter architecture, as it shapes the network responsible for inter-functional
regions communication. Ideally an atlas would represent an averaged population and its vari-
ability on anatomical structures, white matter and functional regions. Through this thesis we
will go through different methodologies to analyze variation across subjects not only regarding
gray matter anatomy but also white matter. The task of finding correspondences across subjects
is hard on the cortex, on the white matter, functional regions, and sulci. Nevertheless, the main
well-known structures are expected to be consistent across subjects. Tools for automatically
detecting those regions are still under development, and we believe that they should all work
together, as finding a functional region will be easier if one could use connection information, or
an approximate location information from a Tailarach space for example. This thesis is based on
the hypothesis that for building a brain model we need to rely on the information coming from
different types of images, as none of them is complete, but they are all complementary. Encour-
aging results will be shown on the combination of multiple modalities. The brain is a complex
entity whose fully mechanism has not been yet unveil, but its research that has been actively
for centuries, and with the new upcomming technologies and the correct methods to combine
different perspectives on the brain, we hopefully will one day understanding is organization and
cross-subject variability.
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Figure 6.17: Correspondence between Tailarach space and Broadman areas. Tailarach lobe
levels are illustrated with patterned color fills. Brodmann areas (cell level) are illustrated on the
left using solid color fills, as long as gyral level structures. Image taken from Lancaster et al.
[2000]

Figure 6.18: Comparison between Tailarach space and MNI. Image adapted from
http://imaging.mrc-cbu.cam.ac.uk.
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Diffusion MRI

”There are things known and there are things unknown, and in
between are the doors of perception.”

—Aldous Huxley, The doors of perception.

Diffusion MRI (dMRI) is currently on of the main modalities used to understand the connectivity
of cortical brain regions. Revealing brain white matter architecture is expected to improve
characterization of neuro-degenerative diseases and understand brain function. Diffusion MRI
is a non-invasive in-vivo technique which can also aid surgical planning, as one could previously
visualize the patterns of the underlying white matter structure.
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7.1 What does dMRI measure?

Figure 7.1: Particles moving randomly observed
through a microscope. The path traced by the
molecules as they travel in a liquid or a gas. Im-
age adapted from Basser and Özarslan [2009]

Diffusion MRI reflects the diffusion properties
of water molecules present on brain tissues.
If we imagine a drop of color dye falling into
a jar of water, initially the drop will appear
concentrated at the initial point, and then it
will spread radially in a spherically symmetric
manner. The physical law that explain this
phenomenon is known as Fick’s first law Fick
[1855], which relates the diffusive particle flux
J to any concentration C difference as: J =
−D∇C. Where D is the diffusion coefficient
that depends on the medium, the temperature
of the environment, and the size of the moving
molecule.

An interesting feature of diffusion is that it
occurs even in thermodynamics equilibrium:
although the net flux vanishes, microscopic motions of molecules still persist. This microscopic
motions were studied by Brown in 1828, who reported that particles moved randomly without
any apparent cause Brown [1828]. In 1905 Einstein concluded that microscopic bodies suspended
in liquid perform movements easily seen in a microscope Einstein [1905]. Einstein used a prob-
abilistic model to describe the motion of an ensemble of particles undergoing the diffusion. He
introduced the displacement distribution which is Gaussian in the restricted case of free diffusion
. Einstein argued that the displacement of a Brownian particle is not proportional to the elapsed
time, but rather to its square root Einstein [1956]. The mean squared displacement is defined as
:

〈x〉2 = 6D∆ (7.1)

With ∆ the elapsed time.

The general diffusion displacement probability density function (PDF) also called diffusion prop-
agator of water molecules is extremely complex, and is still unknown today. Hence simple models
of diffusion have been historically proposed.

Water diffuses more rapidly in the direction aligned with the internal brain structures, and more
slowly as it moves perpendicular to the preferred direction. This also means that the measured
rate of diffusion differs depending on the direction from which an observer is looking. dMRI
measures the averaged diffusion properties of water molecules inside each voxel. The voxel size
is usually small enough to distinguish white matter from gray matter. The white matter in turn
consists of densely packed axons (neuronal projections) in addition to various types of neuroglia
and other small populations of cells, see Fig. 7.2 and 7.3.

Inside a voxel, water molecules are distributed between these cell types and the extracellular
space (80,5 % are intracelular). Thus, even a voxel within a single white matter tract consist of
very inhomogeneous environment, and water molecules are likely to experience high anisotropy
judging from the architecture of the axon. Inside the axon, water molecules are surrounded
by high concentration of neuronal filaments, which are polymers of protein molecules. Both
the axonal membrane and the well-aligned protein fibers within an axon restrict water diffusion
perpendicular to the fiber orientations, leading to anisotropic diffusion, see Fig. 7.4.
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Figure 7.2: Two electromiographs of Central Nervous System (CNS) axons. Cross-section
through a myelinated axons. Neurofilaments and microfilaments are elongated structures that
appear as small tubes. On the left figure, neurofilaments shown with transparent arrows pro-
vide structure and are the main determinants of axonal size (diameter). Microtubules shown
with filled arrows provide the tracks upon which materials are transported along the axons. On
the right figure, mitochondria shown in transparent arrows are the most frequently encountered
axonal organelles. Image adapted from Johansen-Berg and Behrens [2009].

Figure 7.3: On the left an electromiographs of CNS axons through corpus callosal axons. In
the CNS, axons over 0.2 µ in diameter are myelinated. Myelin appears as a dark band around
the paler axon. Some axons (asterisks) do not attain a myelin sheath. On the right we see and
illustration of the arrangement of the myelin sheath and the axon in cross-section. Adapted from
Johansen-Berg and Behrens [2009].

Myelin sheaths that surround the axons may also contribute to the anisotropy for both intra
and extra cellular water. These contributions have been studied using non-myelinated axons,
showing that the contribution of myelin may be significant but that the axonal contribution
dominates. It is known that the myelin sheath can modulate the anisotropy of the diffusion
while the microtubules and neurofilaments do not modify it Beaulieu [2002].
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Figure 7.4: Left figure shows the major structural longitudinal elements of the axons. The intra-
axonal space contains neurofilaments and microtubules parallel to the direction of the axon. On
the left, an schematic illustration shows the oligodendrocyte and the associated axon. Myelin is
the membranous structure generated by the tight wrapping of oligodendrocyte processes around
the axons. Adapted from Basser and Özarslan [2009].

7.2 Models of dMRI

Figure 7.5: Evolution of dMRI acquisition techniques. Starting in 1965 where only one gradient
direction was measured. In 1986 a correlation of diffusion to the direction taken was discover,
which gave birth to the improvement of acquisitions in gradient directions, strength and repre-
sentations such as Diffusion Tensor Imaging in 1994. Image adapted from Poupon [2010]

In this section we will explain the basis of diffusion MRI, and the different models that were
conceived to analyze the different acquisition techniques and associated models that have evolved
through the years as illustrated in Fig. 7.5.
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7.2.1 Apparent Diffusion Coefficient

The Apparent Diffusion Coefficient (ADC) concept was introduced to take into account the fact
that the diffusion process is complex in biological tissues and reflects several different mechanisms.
The field gradient pulse method was initially devised for NMR by Stejskal and Tanner Stejskal
and Tanner [1965] who derived the reduction in signal due to the application of the pulse gradient
related to the amount of diffusion that is occurring through the following equation:

S(TE)

S0
= exp

[
−γ2G2δ2

(
∆− δ

3

)
D

]
(7.2)

where S0 is the signal intensity without the diffusion weighting, S is the signal with the gradient,
γ is the gyromagnetic ratio, G is the strength of the gradient pulse, δ is the duration of the
pulse, ∆ is the time between the two pulses, and finally, D is an scalar representing the diffusion
coefficient.

In order to localize this signal attenuation to get images of diffusion, one has to combine the
magnetic field gradient pulses used for MRI with additional motion-probing gradient pulses. This
combination is not trivial, as cross-terms arise between all gradient pulses.

LeBihan suggested to gather all the gradient terms in a “b factor” (which depends only on
the acquisition parameters), so that the signal attenuation simply becomes Lebihan and Breton
[1985]:

S(TE)

S0
= exp(−b ·ADC) (7.3)

Also, the diffusion coefficient D is replaced by an Apparent Diffusion Coefficient (ADC). ADC
indicates that the diffusion process is not free in tissues but hindered and modulated by many
mechanisms such as: restriction in closed spaces, tortuousity around obstacles, and sources of
IntraVoxel Incoherent Motion (IVIM). IVIM generally refers to the blood flow in small vessels
or cerebrospinal fluid in ventricles which also contribute to the signal attenuation.

At the end, images are weighted by the diffusion process. Those diffusion-weighted images are
still also sensitive to T1 and T2 relaxivity contrast. It is possible to calculate “pure” diffusion
maps by collecting images with at least 2 different values, b1 and b2, of the b factor according to:

ADC =
ln(S2/S1)

b1 − b2
(7.4)

In Moseley et al. [1990a], measures of ADC were taken along the x and y axis to characterize
the level of the tissue anisotropy. At least two acquisitions were required at that moment.

In 1991 Douek suggested that diffusion MRI and measures of the ADC along two directions
could be used to determine orientations of fiber bundles in the white matter Douek et al. [1991].
However, the ADC index is very dependent on the direction of the gradient encoding used in the
acquisitions. It was starting to be clear that rotationally invariant measures were needed.

The mean diffusivity of the water molecules measured at any direction can be expressed as:

d =
1

2∆
〈RT , R〉 (7.5)
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(a) (b)

Figure 7.6: Example of dependency of water diffusion to the gradient direction. In (a) the arrows
of the figure represent the orientation of the encoding axis. Measure orientations are longitudinal,
transversal and perpendicular to the viewing plane. Dark areas have high apparent diffusivity,
and lighter areas lower. (b) illustrates the different orientation encodings behavior given the
microtubule configuration. Image adapted from Hagmann et al. [2006]

where ∆ is the diffusion time, R is the displacement vector, and 〈.〉 denotes the average over all
particles.

This measures the diffusion of the medium, that depends on the medium and the particles,
and does not give any directional information. The scalar constant D known as the diffusion
coefficient, measures the molecule’s mobility. In the isotropic case, it depends on the molecule
type and the medium properties but not on the direction. However Fig 7.6 shows the effect of
changing the diffusion encoding gradient on the diffusion weighted signal intensity. In the corpus
callosum we can see how the direction of the gradient impacts the measure.

7.2.2 DTI: The Tensors

White matter is composed of myelinated axons, that connect various gray matter areas of the
brain to each other, and carry nerve impulses between neurons. The diffusion of water molecules
is Brownian under normal conditions but tend to diffuse anisotropically in fibrous structures such
as white matter fibers.

Then, as myelin sheaths force water molecules to move in a tangential direction along the
fiber rather than orthogonally, we can measure the diffusion of the anisotropic tissue with a
covariance matrix of the particles displacement. This covariance matrix will represent the velocity
of movement along the different directions, which is more informative that an scalar representing
i.e. the average:

D =
1

6τ
〈R,RT 〉 (7.6)

where D is a 3 × 3 symmetric, positive-definite matrix, also called diffusion tensor, but in the
sequel we refer to it simply as tensor.

A symmetric positive definite matrix is a symmetric matrix whose eigenvalues are all strictly
greater than zero. The diffusion tensor D can be decomposed into D = UV UT where U is the
matrix of eigenvectors and V is a diagonal matrix of eigenvalues. #»u i is associated to vi∀i.They
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Figure 7.7: Top image illustrates on the left how Brownian motion occurs inside the microtubules,
on the center an axon, and on the right its tensor representations with corresponding eigenvalues
and eigenvectors. On the bottom image a full brain tensor fitting has been run an is shown in
an axial slice. Image taken from Guevara [2008] and Fillard [2008]

are commonly ordered by the magnitude of the eigenvalues, v1 being the largest eigenvalue, and
consequently, # »u1 is the principal direction of the tensor. As a tensor is a quadratic form, and as
we are modeling a diffusion phenomenon, the eigenvalues are positive.

The diffusion tensor is a model of the covariance matrix of the particles displacement. This
model assumes a Gaussian distribution of the particle displacement, which can be questioned on
crossing fibers regions. Methods such as q-ball and multi-tensor intend to relax such assumptions
Descoteaux [2008], Tuch [2004], Stamm et al. [2012] and will be discussed in next section 7.2.3.

The diffusion tensor D is related to the diffusion-weighted images by the Stejskal and Tanner
diffusion equation:

Si = S0 exp(−b #»gi
TD #»gi) (7.7)

Where Si is the diffusion-weighted image, S0 the baseline image without displacement encoding
gradient i.e. T2; #»gi the diffusion gradient, and b the b-value in smm2 which depends on the
scanning parameters. Typically a b-value of 1000smm2 is used with 7 to 60 gradients directions.
#»gi is the diffusion gradient. Si is the image returned by the scanner. The gradients can be obtain
by linearizing eq 7.7 and solving from least-squares Basser et al. [1994] to more sophisticated
Riemannian frameworks Lenglet et al. [2006], Arsigny et al. [2006], Fillard et al. [2007c] that
forbid degenerated tensors. Choices should be taken depending on the requirement of speed, ro-
bustness to noise, symmetric and positive definite guaranties one must consider when estimating
the diffusion tensor. An example is give in Fig 7.7.

Eventhough DT has earned success in many clinical applications, it is limited when imaging
voxels with multiple fiber populations crossing, branching, fanning (fibers continuously separating
each other, i.e. cortico-spinal tract) or kissing (two fiber populations touching each other without
crossing) Basser et al. [2000]. This configurations are shown in Figure 7.8.

The DT model is limited because of the Gaussian-distribution assumption and the limited num-
ber of degrees of freedom in the model. To overcome this issue multi-tensor model fitting has
been proposed Schultz et al. [2010], Yassine et al. [2006] as well as more sophisticated such as
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Figure 7.8: We show the different configurations that give problematic situation while using a
tensor based representation of white matter: fiber crossing, fanning, branching, kissing, bottle-
neck. Illustration of tensors are shown for two crossing fibers, and the best and the worst case
of a single fiber bundle: high anisotropy and bottleneck.

HARDI models, described in next section.

7.2.3 Q-Ball on High Angular Resolution Diffusion Imaging (HARDI)

The idea is to sample in the q-space along as many directions and q-magnitudes as possible
in order to reconstruct the true diffusion PDF. This true diffusion PDF is model free and can
recover the diffusion of water molecules in any underlying fiber populations. Instead of having
a scalar-valued or tensor-valued image, we now have and image of 3D diffusion distributions.

Figure 7.9: Example of amount of sam-
pling points on the sphere for two dif-
ferent single shell HARDI acquisitions.
Image adapted from Descoteaux [2008]

7.2.3.1 Single and multi-shell imaging

HARDI depends on the number of measurements N and
the gradient strength (b-value), which will directly af-
fect acquisitions time and signal to noise ratio in the
signal.

There are two strategies to acquire HARDI images:

1) DSI (Diffusion Spectrum Imaging): Sampling on the whole q-space 3D cartesian grid

2) Single shell spherical sampling

In 1) a large number of points are taken over the discrete grid (> 200) and the inverse Fourier
transform of the measured DWI signal is taken to obtain an estimate of the diffusion PDF
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Figure 7.10: The left image illustrates two populations of axons crossing each other at 90◦. In
the middle figure we can see an isotropic tensor fit, which in turns gives no directional informa-
tion. Finally on the left figure we see that fODF more accurately represent the crossing of two
populations. Image adapted from Poupon [1999]

Wedeen et al. [2005]. This method requires strong imaging gradients (500 < b < 20000s/mm2).
To visualize the PDF, the isosurface of the diffusion PDF is most commonly taken at a certain
radius r or the diffusion orientations distribution function (ODF) is computed. The diffusion
ODF contains the full angular information of the diffusion PDF and is defined as:

ψ(θ, φ)

∫ inf

0

P (r, θ, φ)dr, θ ∈ [0, φ], φ ∈ [0, 2φ] (7.8)

In 2) a discrete uniform sampling of the sphere is done for a certain radius in q-space (given by
the b-value). The signal attenuation is thus measured on a single shell of q-space Tuch et al.
[1999]. The idea is that the radial information of the diffusion PDF can be discarded if one is
interested in fiber directions. Most of the single shell HARDI techniques aim at reconstructing
the diffusion ODF or variants of this function in order to estimate a function whose maxima
are aligned with the underlying fiber structure. More than 60 measurements are desirable and
medium gradient strengths are acceptable although stronger gradients give better diffusion ODF
reconstructions. An illustration can be seen in Fig. 7.9

7.2.3.2 Q-ball imaging (QBI)

QBI reconstructs a smoothed version of the diffusion ODF directly from single shell or multi-
shell HARDI acquisitions with the Func-Rador transform (FRT) Tuch [2004], Khachaturian et al.
[2007]. The FRT value at a given spherical point is the great circle integral of the signal on the
sphere defined by the plane through the origin perpendicular to the point of evaluation. The
ODF is intuitive because it has its maxima aligned with the underlying population of fibers. It
is better for tractography, as illustrated in Fig. 7.10. The original version has a closed-form,
and spherical harmonic solution reconstructions have been introduced in several works Anderson
[2005], Descoteaux and Deriche [2007].

7.2.4 Fractional Anisotropy (FA)

The largest eigenvalue λ1 gives the principal direction of the DT e1 and the other two eigenvec-
tors expand the orthogonal plane of it. From this eigenvalue decomposition several rotationally
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invariant quantities can be extracted such as trace (=ADCx + ADCy + ADCz), the mean dif-
fusivity λ̄ = trace/3, the fractional anisotropy (FA) Westin et al. [2002]. FA was introduced in
Pierpaoli and Basser [1996] as:

FA =

√
3

2

√
(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2

λ2
1 + λ2

2 + λ2
3

(7.9)

Figure 7.11: Example of variability of
FA values and principal eigenvalues in
relation with the anisotropy of the ten-
sor. Image adapted from Johansen-
Berg and Behrens [2009]

Most often, FA maps are used to visualize regions
of anisotropy. It is a scalar-valued image easier to
visualize than a tensor one. See Fig. 7.11. It is
close to 1 on major white matter tracts and lower in
gray matter, while approaching 0 in cerebrospinal fluid.
A comparison with ADC can be seen in Fig. 7.12.

7.2.5 Mean FA Skeleton Analysis

Analyzing tensor images, fibers, and scalar value maps
such as FA or ADC can be a very complicated task,
especially when performing an inter-subject analysis.
Registration methods aim at finding correspondences across structures, but how can one be sure
of such an alignment? are FA maps actually aligning corresponding structures? No thorough
analysis of these questions have been carried out yet, and everyday tools perform registration
mostly by using T1 images only, giving no guarantee that white matter is correctly aligned.

Figure 7.12: Comparison between FA and ADC
maps. Because it requires more acquisitions, the
level of detail seen in FA maps are higher than
in ADC, as it is dependent on the direction mea-
sured through acquisition. Image adapted from
Johansen-Berg and Behrens [2009]

An attempt to hold a simple scalar-value anal-
ysis, especially of fractional anisotropy of im-
ages, avoiding introducing alignment errors
into morphometry studies, has been achieved
by generating an skeleton of the FA images ?.
First, FA images are computed for every sub-
ject. Then, it is necessary to define a ’median’
subject, or an atlas/target to register to. All
FA images are registered to the template by
using T1 information. However, at this step
a perfect alignment is not mandatory. Once
all FA images are registered to the template
space, an average is performed to generate a
template FA. From the template a thinning is
performed to generate the template skeleton.
This thinning is done with non-maximum sup-
pression perpendicular to the local tract struc-
ture, which results in an skeletonized mean FA
image. An example can be seen in Fig. 7.13.

Figure 7.13: Skeleton com-
pute using TBSS from
FSL. Below the aver-
age FA image, and on
green the calculated skele-
ton. Image captured from
http://fsl.fmrib.ox.ac.uk/.

Each subjects aligned FA image is projected onto the skeleton, by
filling the skeleton with FA values from the nearest relevant tract
center. This is achieved for each skeleton voxel, by searching the
maximum value perpendicular to the local skeleton structure in
the subjects FA image. The average of all subjects FA is fed into
the tract skeleton generation, which aims to represent all tracts
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(FA-based) common to all the subjects. The skeleton represents
each tract as a single line or surface running down the center of the
sheet. Away from the center surface or line, the FA values fall off
gradually becoming very low as one moves out of white matter. To
achieve skeletonization the local surface perpendicular direction
to all voxels in the image is estimated. Then, non-maximum
suppression is performed in this direction. In other words a search
is made along all voxels in the local tract perpendicular direction,
and the voxel with the highest FA is identified as the center of
the tract.

The skeleton tends to be disconnected at many junctions; this is
primarily due to the fact that the tract perpendicular direction is
not well-defined at junctions, and hence the non-maximum sup-
pression perpendicular to the tract cannot work well.

Then the subjects FA are projected to the skeleton. At each point
in the skeleton, the corresponding FA value from each subject is
searched along the line, perpendicular to the tract direction to
find the maximum FA value, and this value is assigned to the skeleton voxel. This approach
achieves a robust alignment across subjects in the perpendicular direction of the tract and not
its parallel direction. This is wanted as FA changes fast as one moves perpendicular to the
local fiber bundle, so even small misalignments in the direction have great effect on the final FA
statistics. Parallel to the tract, FA changes relatively slowly, and the alignment provided by the
initial nonlinear registration is sufficient to align the structures of interest across subjects.

7.3 Tractography

Diffusion MRI fiber tractography or fiber tracking is the only non-invasive tool to obtain infor-
mation on the neural architecture of the human brain white matter in vivo.

Fiber reconstruction is mostly known as fiber tracking or tractography. It consists in building
a geometric representation of the white matter architecture under the hypothesis that diffu-
sion tensors (or HARDI Q-ball) are aligned with the direction of the oriented tissues. In the
case of tensors the hypothesis is wrong for the case of crossing, kissing, fanning, branching or
bottleneck fibers. Figure 7.8 illustrates these configurations. Nevertheless we will present trac-
tography algorithms based on tensor imaging, but they can be extrapolated to HARDI Q-ball
representation.

There are two different approaches in tractography: Deterministic and probabilistic. The deter-
ministic approach is known as streamline: following the principal diffusion direction, integrates
from a seed point the paths expected to belong to the same fiber bundle. In other words, the
principal diffusion direction must be consistent from one voxel to an adjacent one, meaning that
the angle must not brusquely change, see Figure 7.14. The probabilistic approach simulates many
times the diffusion phenomenon from a seed point and simulations are combined to generate a
probability map of the fiber bundle. These maps tend to have high probability values along the
path of the fibers, and low at the end points connecting the gray matter, as it is naturally where
fiber bundles start to split.
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(a) (b)

Figure 7.14: Image (a) show an example of tractography on a crossing fiber setting. Image
adapted from Poupon [2010]. Image (b) shows the tractography path following the tensors of
high fractional anisotropy on the corpus callosum. Image adapted from Fillard [2008].

7.3.1 Streamline tracking - deterministic

By assuming that the largest principal axis of the diffusion tensor aligns with the predominant
fiber orientations in an MRI voxel, we can obtain 2D or 3D vector fields that represent the
fiber orientation at each voxel. The 3D reconstruction of tract trajectories, or tractography, is a
natural extension of such a vector fields.

Tractography can provide macroscopic neuroanatomical information on white matter structure.
Specifically it can parcellate the white matter into fiber structures that contain bundles of axonal
tracts that are running largely in the same orientation.

The real advantage of tractography is its ability to quickly characterize the macroscopic white
mater structures. It is virtually impossible to generate similar datasets using the single-cell level
chemical tracer techniques given that there are 1011 neurons in the brain .

Assuming that the orientations of the largest component of the diagonalized diffusion tensor
represent the orientation of the dominant axonal tracts, a 3D vector field can be obtained where
each vector represents the main local fiber orientation.

Line propagations techniques: The most intuitive way to reconstruct a 3D trajectory from a 3D
vector field is to propagate a line from a seed point by following the local vector orientations, as
illustrated in Fig. 7.14.

However, if a line is propagated simply by connecting voxels which are discrete entities, the
vector information might not be fully reflected in the propagations. When applying a voxel
connection approach in a discrete case, connection rules needs to be defined. A simple pixel
connection scheme cannot however represent the real tract even in such a simple case. In a con-
tinuous representation, a continuous linear propagation approach called FACT (fiber assignment
by continuous tracking) is defined. This approach has been successful to tract neural fibers in a
fixed rat and showed good agreement with histological knowledge Mori and van Zijl [2002], Mori
et al. [1999], Xue et al. [1999]. To be more rigorous one can interpolate diffusion tensors rather
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than the vector of the principal axis.

7.3.1.1 Termination

It is not straightforward to know when the line is over. This is related to the resolution, the noise,
and the method itself. Heuristics are used, and lines are generally terminated when fractional
anisotropy values are low, or similar to gray matter ones. T1 based cortex mask are used also to
determine the end of a fiber as well as possible beginnings.

7.3.1.2 Propagation masks

Propagation masks are used to define the possible seed points, and sometimes also the endpoints.
They are generally cortex based masks, which could be inspired from T1 but also from FA, or
their combination. While being interested in a particular region, the propagation mask can define
a region of interest (ROI).

7.3.1.3 Favorable conditions

Other reasons to fiber endings are unfavorable conditions. An FA value can be low not only when
approaching the cortex, but also in the middle of the path. This can be due to fiber crossing
(when no preferred direction is found in DTI), fiber kissing, fanning,branching or bottleneck. All
these reasons can lead to ambiguity on the paths, obtaining larger angles than expected within
the path of a fiber. Favorable conditions consist in low turning angles through the fiber path,
and low FA value on its endpoints only.

7.3.1.4 Fact

The trajectory of a white matter fiber tract can be represented as a 3D space curve, a vector r(s)
parametrized by the arc length s at the trajectory. The Frenet equation describing the evolution
of r(s) is:

dr(s)

ds
= t(s) (7.10)

where t(s) is the unit tangent vector to r(s) at s. In coherently organized white matter, the
normalized eigenvector ei associated with the largest eigenvalue of the diffusion tensor D, e1 lies
parallel to the local fiber tract direction Tanner [1979], Scollan et al. [1998], Basser et al. [2000].

In Basser et al. [2000] the key idea of the fiber tracking algorithm is to equate the tangent vector
t(s), and the unit eigenvector ei calculated at position r(s).

t(s) = ei(r(s)) (7.11)

Combining we end up having

dr(s)

ds
= ei(r(s)) (7.12)

Which is a system of three implicit (vector) differential equation solved for the fiber tract tra-
jectory tight to the initial condition of r(0) = r0, which specifies the starting point of the fiber
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tract. This can be solved by using the Euler method, approximating the position of the nearby
point on r(s) using a Taylor series expansion, for which its first order can be approximated with
ε1(r(s0)) since the slope of r(s0) at s0, r

′(s0) is assumed to be parallel to it. Then for a small
enough λ

r(s1) ≈ r(s0) + λε1(r(s0)) (7.13)

However a first order approximation is sensitive to noise and image errors, so it is better to use
higher order methods such as Runge-Kutta Ascher and Petzold [1998]. The sign of ε1 should be
chosen to point along the integration path consistently.

7.3.1.5 Fast marching techniques

If we imagine ink being dropped on a glass of water, we can visualize a vector field that indicates
the direction and velocity in which the ink is currently spreading. As we known propagation is
white matter will be restricted by myelin, We can use this analogy to characterize and estimate
white matter paths. The speed for the spreading propagation is defined as:

F (r) = A‖ε1(r).n(r)‖ (7.14)

where A is the anisotropy, ε is the eigenvector and n the orientation normal to the front. This
equation reflects that the spreading speed is largest when the propagating front line is co-linear
with the eigenvector, and minimal when it is perpendicular. The shape of the stain can be
calculated from the vector field which is equivalent to a contour line showing the distance traveled
within an amount of time. Multiple contour lines can be calculated, each representing a stain
shape at a different time point. These multiple contours represent a likelihood of connection map.
The most likely path between an arbitrary point to the seed pixel can be found by following the
gradient of the steepest path.

It is not straightforward to determine the end of a fiber and heuristics on fiber bending, torsion
and endpoints are set. A fiber tracking algorithm can stop for the following reasons:

1. It reached a boundary of the imaging volume: a mask can be estimated using other imaging
techniques such as T1 image.

2. A region with low diffusion anisotropy: due to the fiber endpoint, but it can also happens
on the mid-path because of fiber crossing issues.

3. The angle of curvature is larger than an expected threshold value: i.e. a smooth fiber
bundle should not make brusque turns (i.e. larger than 70◦).

4. The most collinear eigenvector is not the one associated with the large eigenvalues: because
of fiber crossing issues the path to follow can be ambiguous.

7.3.2 Probabilistic tracking - non-deterministic

7.3.2.1 Introduction

This technique uses density functions to estimate global connectivity, i.e. the probability of a
connection existence through the data field between any two distant points. This permits to
quantify the belief of tractography results.
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In diffusion imaging, there is uncertainty caused by noise, artifacts present in any MR scan, but
also by the incomplete modeling of the diffusion signal. These uncertainties may be represented
in the form of probability density functions.

Deterministic techniques that follow the major white matter pathways in the brain Turner et al.
[1990], Ordidge et al. [1994], Jezzard et al. [1998] do not attempt to quantify the uncertainty in
the resulting white matter connections. Streamline approaches are based only on high anisotropic
regions, and they hope for ambiguity to be low. Diffusion anisotropy tends to be low in areas
of high uncertain fiber directions, such as crossing fibers, splitting, merging, etc; although the
converse is not necessarily true. Thus fibers are only traced where anisotropy is high.

When fitting a parametrized model to data, there are two general approaches to be taken. The
first is to look for the set of parameters (ω) which best fit the data. This is called a point estimate
of the parameters. A special case of this is Maximum Likelihood estimation, where one looks
for the set of parameters which maximizes the probability of seeing this realization of the data
given the model and its parameters.

ωML = arg maxΩP(Y |ω,M) (7.15)

where Y is the data and M is the model.

The second approach is to associate a PDF with the parameters. In the Bayesian framework
this distribution is called the posterior distribution on the parameter given the data:

P(ω|Y,M) =
P(Y |ω,M)P(ω|M)

P(Y |M)
(7.16)

Having an hypervolume V in parameter space Ω, and a posterior density function, we could
know how confident we are that ω lies on V. Unfortunately calculating this PDF is seldom
straightforward.

P(Y |M) =

∫
Ω

P(Y |ω,M)P(ω|M)dω (7.17)

This integral is often not tractable analytically. This is a join posterior PDF on all parameter,
however we generally want a single parameter or a subset of parameters. Obtaining the marginal
distribution involves solving large integrals.

P(ωI |Y,M) =

∫
Ω−I

P(Y |ω,M)P(ω|Y,M)dω−I (7.18)

where ωI are the parameters of interest and ω−I are all the other parameters. To solve this
equation is possible to sample the parameter space from the joint posterior distribution, and
perform the integrals numerically. This can be done for example with Markov Chain Monte
Carlo (MCMC) MacKay [2003].

The parameters of real interest in a tensor representation are the three eigenvalues and the three
angles defining the shape and orientations of the tensor. By choosing these parameters in the
model we obtain the posterior PDFs of the parameters of real interest, while being free to also
introduce constraints, such as forcing the eigenvalues to be positive.
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The set of parameters contains rotational parameters to align the principal eigenvector, the
eigenvalues, the non diffusion gradient signal, and a standard deviation to account for errors.
Then for n number of acquisitions, ui and µi measured and predicted values, the probability of
Y given the model M is:

P(Y |ω,M)

n∏
i=1

P(y − i|ω,M) (7.19)

7.3.2.2 Global Connectivity Estimations

Using the previously defined PDFs we can infer a model of global connectivity. We want to know
the probability of an existing connection between points A and B given the knowledge of the
local fiber direction. In order to solve this, we start a connected path from a seed point A and
follow local fiber direction until a stopping criterion is met. If B lies on this path we say that a
connection between A and B exist.

In the case where there is uncertainty associated with (θ, φ)x we compute the probability of a
connection given the data Yx. For this we would need to compute P(∃A→ B|Yx):

P(∃A→ B|Y ) =

∫ 2φ

0

∫ φ

0

...

∫ 2φ

0

∫ φ

0

P(∃A→ B|(θ, φ)x1)P((θ, φ)xn |Y )...

...P((θ, φ)x|Y )dθx1
dφx1

...dθxndφxn (7.20)

Figure 7.15: Probabilistic
tractography example. Im-
age adapted from Behrens
et al. [2003]

For each possible value of fiber direction at every voxel (θ, φ)x we
must incorporate the probability of connection given this (θ, φ)x
and also the probability of this(θ, φ)x given the acquired MR data.
This process is known as marginalization. When there is no un-
certainty in the local fiber direction, this equation reduces to the
streamlining using maximum likelihood solution. However when
local fiber direction is uncertain, the global connectivity pattern
from A will spread to incorporate the known uncertainty in local
fiber direction.

7.3.2.3 Algorithm:

1. Select a random sample (θ, φ) from P(θ, φ|Y ) at z.

2. Move z a distance s along (θ, φ)

3. Repeat until stopping criterion is met.

This probabilistic streamline is said to connect A to all point B along its path. By drawing many
samples we build the spatial PDFs of P(∃A → B|Y ) for all B. We then discretized this distri-
bution into voxels by simply counting the number of probabilistic streamlines that pass through
voxel B and normalize, i.e. divide by the maximum value. An example of the probabilities
between two different ROIs in the brain is shown in Fig. 7.15.
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7.4 Discussion

Altought the probabilistic method is robust, it is sometimes unclear how to deal with uncertain
regions, specially within this thesis where neural fiber information are not the end of the analysis
but the beginning, the input. For this reason we choose a deterministic setting through the
thesis. Nevertheless other methods have been explored and therefore will be mentioned and
analyzed. We use MedInria Toussaint et al. [2007] tractography which is performed using a
modified version of the advection-diffusion algorithm of Weinstein et al. [1999] with a tri-linear
log-Euclidean tensor interpolation and a 4th order Runge-Kutta integration scheme, which was
proved to be more accurate numerically Ascher and Petzold [1998].

7.4.1 Probabilistic vs deterministic tractography

Probabilistic algorithms have advantages in regions where fiber direction is uncertain, as when-
ever it can not progress along a single direction with high confidence, it can progress in many
directions. The uncertainty is represented by voxels with lower probabilities associated. Prob-
abilistic algorithms are more robust to noise: it can be difficult to track beyond a noisy voxel
with a streamline algorithm, and probabilistic errant paths routes tend to disperse quickly end-
ing up being classified with low probability. Therefore we can be confident up to a probability
percentage about the more certain path.

Probabilistic maps can be useful for a final level analysis, group level or subject level Wassermann
et al. [2010b]. But it is hard to incorporate them as priors, as two regions with same low
probability in different subjects do not necessarily correspond to each other. They can be useful
when analyzing a specific regions, the effects of aging or a disease. However, they can be limited
if the goal is to make a global analysis of the general white matter architecture. While it is
true that streamline tracking can nowadays give spurious fibers, streamline tracking algorithms
are always combined with a priori parameter selection of allowed angles, minimum length, low
and high FA values. In Guevara et al. [2012] a tractography propagation mask based on T1
data rather than FA was used in order to improve the accuracy of the anatomical connectivity,
where dilated sulci, and ventricles were removed from the mask Marrakchi-Kacem et al. [2012].
Figure 7.16 show how results can dramatically change when using one technique or the other
one. Unfortunately not much can be concluded from this as using T1 based propagation mask
definitely gives more structural meaning, except when FA values on those regions are low, then
there is no guarantee to avoid the creation of spurious fibers.

Another option to increase confidence in the streamline tracking results, is to compress the
output, and work with the most representative fibers. This will be better discussed in Chapter 8.
Fortunately the research field is evolving fast, resolution is improving HCP [2012], and techniques
are constantly evolving.

7.4.2 FA vs Skeleton

Diffusion fractional anisotropy (FA) as been widely used as a marker for white matter tract
integrity, for example for disease diagnosis, tracking of disease progression, finding disease sub-
categories, studying normal development/aging, and as complementary information to investi-
gating normal brain function Horsfield and Jones [2002], Moseley et al. [2002], Neil et al. [2002].
Some researchers have simply summarized diffusion characteristics globally, such as using the
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Figure 7.16: On the left we see the propagation mask used in tractography based on T1 images,
while a propagation mask based on FA was used on the right figure. Image adapted from Guevara
[2008]

FA histograms in Cercignani et al. [2003] in order to compare different subjects. Other works
intend to localize spatially interesting diffusion-related changes, generally using voxel-wise mor-
phometry (Voxel Based Morphometry (VBM) originally developed for finding local changes in
gray matter density in T1-weighted structural brain images Ashburner and Friston [2000], Good
et al. [2001]. In VBM-FA setting style, registration is performed using FA images, to warp them
into a standard space.

Some researchers doubt the general interpretation of the results from this approach primarily
because there can be ambiguity as to whether apparent changes are really due to change in grey
matter density or simply due to local misalignment, although convincing results can be found in
studies using VBM Watkins et al. [2002]. However the limitations of FA in inter-subjects image
analysis have not been fully investigated yet. So, how can one guarantee that registration of
every subject to a common space has been totally successful? How can one guarantee that any
given voxel contains data from the same white mater (WM) tract from each and every subject?
There are two main issues to be tackled here: resolving for topological variabilities and the exact
alignment of the very fine structures.

A priory we can not guarantee that the voxel-space statistics analysis relies on anatomically
corresponding regions.

Some work have already presented reports on alignment issues specific to diffusion tensor data,
i.e. Jones et al. [2002] use FA to drive affine alignment across subjects. In Park et al. [2004, 2003]
they investigate the registration of DTI tensor component versus FA, or derived information, and
noted some improvements by analyzing DTI although the differences were not large. For exam-
ple, while studying white mater differences in schizophrenics patients, errors in the boundary of
narrow tracts were found, and on those cases a VBM approach should be avoided. The registra-
tion problem is not necessarily resolved by increasing the degrees of freedom of the deformation
model (discussed on Chapter 9), because it is be possible to distort one image to look very much
like another one, not necessarily increasing the confidence of aligned structures. The mentioned
issue while using DTI registration can suggest that a combination of FA and DTI or even T1

image registration should be used, as one can not always rely on one image information, i.e.
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60 gradients 200 gradients

Figure 7.17: Varying amount of fibers depending of image resolution but also tractography
parameter. Fibers on the left do not look realistic due to noise and low image resolution:
128 × 128 × 30 spatial resolution: 1.8 × 1.8 × 4mm 60 gradients, while the image on the right
contains higher image resolution: and spatial resolution: 145 × 145 × 174 spatial resolution:
1.25 × 1.25 × 1.25mm 200 gradients in a 3-shell acquisition. Left image adapted from Fillard
[2008] and right image computed from HCP data HCP [2012] and tracktography has been perform
on MedInria Toussaint et al. [2007].

where white matter information is not strong enough, T1 might introduce relevant constraints.

The skeleton based approach intends to solve some of the registration issues, by using a very
simplistic version of the white matter structure. While it is useful to align diffusion image
primal tracts, or analyzing the main white matter structure across subjects, it discards endpoints
information, making it only suitable for a rough FA density analysis, but hardly useful for
extrapolating connection information, or specifically analyzing a selected fiber bundle (corpus
callosum variability across subjects).

7.4.3 The fairy tale of tractography

Tractography based approaches have fairly complementary advantages and disadvantages. They
can overcome alignment problems by working in the space of individual subjects tractography
results and for this reason they do not require pre-smoothing to correct for registration errors.
However such approaches do not allow the whole brain to be investigated and generally require
user intervention in order to define the tracts to be used. Guide by the magnitude that a white
matter reconstruction output can achieve, it is intuitive to guess that corresponding fibers across
subjects are not easy to find as shown in Figure 7.17:

By simply looking at the fiber tracking result, one can only feel impotent to conclude anything
about the subject’s white matter architecture, and this indicates how hard it can be to analyze
a population. Nevertheless, many studies have confirmed over the years the structure of certain
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Figure 7.18: Illustration of the anatomic relationships of several WM fiber tracts. Images adapted
from Jellison et al. [2004] and Poupon [1999]]

neural fibers connection on the brain such as the ones shown in Figure 7.18 Yendiki et al. [2011],
Wassermann et al. [2013]. The question is thus, through which kind of analysis can one approach
such representations in a data-driven manner? Nowadays there is no method that gives a ground
truth about the white matter architecture segmentation, however, our aim in this thesis is to take
advantage of the new technologies such as dMRI and fMRI. These technologies keep on advancing
and improving their acquisition techniques, and methods need to evolve to extract the maximum
amount of information as possible from the available datasets. We must still remember that no
method will provide us with the ground truth, neither a probabilistic one, nor a deterministic
one.
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Analysis of brain fiber tracts: Compression of

fibers

”Anyone whose goal is ’something higher’ must expect someday
to suffer vertigo. What is vertigo? Fear of falling? No, Vertigo is
something other than fear of falling. It is the voice of the
emptiness below us which tempts and lures us, it is the desire to
fall, against which, terrified, we defend ourselves.”

—Milan Kundera, The Unbearable Lightness of Being

It is a challenge to analyze the underlying architecture of the human brain white matter as the
brain is made up of about 100 billion of neurons. Tractography methods only recover part of
the true brain tracts. Moreover, to provide a sufficient sampling of the connectivity structure
across all brain regions tens of thousands of tracts are necessary. Working with such an amount
of fibers is inconvenient both for clinicians, who need to visualize them, and for research, to
perform further analyses.

Anatomical atlases such as Brodmann areas have been proposed for the cortex to delineate
functional regions, however no complete atlas of the neural fiber architecture has been defined,
and some recent approaches partition them by the regions they connect Wassermann et al. [2013].
However, when analyzing each specific subject, variability is high and ambiguity on delineating
regions increases Ashburner and Klöppel [2011], Ardekani et al. [2005]. Another option is to
focus on the white matter structure, and to group neural fibers by their shape and closeness. We
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Broadmann

hampel highley

Figure 8.1: Example of different granularities while segmenting. In Broadmann areas the corpus
callosum is seen as a whole, while in Hampel a geometric delineation is made and in Highley a
segmentation based on a post morten analysis on axons. Image adapted from and from Hampel
et al. [1998] Highley et al. [1999]

call bundle a group of tracts connecting the same regions in the brain, and that thus share the
same features such as shape, size and location.

Clustering algorithm can help us to group tracts with similar features in bundles. Clustering
techniques can be divided in supervised and unsupervised methods. In unsupervised methods one
solely analyses the set of tracts with no further information about their anatomy. Unsupervised
methods can be great tools to simplify the tractography output, and once a cleaner view of the
fiber architecture is obtained, further analyses can be performed. Nevertheless, those bundles
or clusters obtained through an unsupervised method are not necessarily meaningful from the
anatomical point of view, and it should be seen only as a simplification of the underlying white
matter structure Wassermann et al. [2010a, 2009]. On the other hand, supervised method can
introduce anatomical information before the clustering, and thus the clusters can be considered
as anatomically meaningful Mani et al. [2010b].

With supervised methods, brain white matter segmentation can be done manually or automat-
ically based on atlases. The latter generally relies on registration methods which are imperfect,
hence can introduce errors. In the context of this thesis, we believe that manual and automatic
segmentation could be improved by first simplifying the fiber dataset, and feeding registration
methods with richer and cleaner information.

Unsupervised clustering cannot directly create anatomically valid bundles without extensive
prior information coming from experts or atlases. This is because anatomical bundles differ in
both length and shape, and bundle variance highly changes from one bundle to another: e.g.
corpus callosum variance is high while u-shape fiber bundles variance tend to be small, see Fig
8.2. On the other hand, such validation will be highly ambiguous as for a given structure many
possible segmentations have been proposed with different granularities through the years, as
shown in Fig 8.1.
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Figure 8.2: The variability that can be found within long fiber bundles (upper images) is bigger
than the one we can be in short fiber bundles (bottom images). Image adapted from Guevara
[2008]

Some attempts to gather fiber tracts with similar functional activation zones have recently been
tried in Ge et al. [2013]. However border regions of functional activation are not well defined, and
to solve for these differences, analogously to voxel-based morphometry, the functional images are
smoothed. The latter decreases the confidence especially on borders, which can yield unreliable
results.

In the following sections we will analyze different clustering algorithms, and some techniques
to overcome problems inherent to the high dimensionality of the space under analysis. Another
interesting aspect is the question of what defines two neural fibers to be alike: the shape, location,
connecting regions, lengths. We will analyze different metrics and different methods to evaluate
a problem where no ground truth is known.

8.1 Metrics

A metric is a function that measures object distances in a given space. The most widely used
metric is the Euclidean distance, also known as the L2 distance, which on 3D points, is the
L2-norm over the coordinates. A tract (or fiber) is a sequence of points in a 3-dimensional space:
we define X and Y such that X = x1, ...xN , Y = y1, ...yN where xi, yi ∈ R3. The Euclidean
distance can equally be applied by seeing these sequences of points as a unique point x,y ∈ R3N

where coordinates and points are flattened together. However, the Euclidean distance might not
be the optimal choice to represent neural brain fibers. We will analyze it drawbacks and the
different alternative metrics proposed in the literature to represent brain fiber tracts.

8.1.1 Undirected Euclidean (UE)

The Euclidean distance on vectors of stacked coordinates has been widely used for clustering,
yet in the setting of fiber tracts it can yield very different results depending on the chosen fiber
orientation. Having a consistent orientation for all fibers across the brain is an extremely difficult
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Figure 8.3: Having a fixed number of sampled points, we can see that a point-wise distances such
as Euclidean (bottom-left) can have an impact regarding the length of the fibers, while distances
that compare all-to-all points such as Hausdorff (maximum of the closest point distances might
not). It is straight forward to see also that distances such as Hausdorff are not symmetric.

task without previously segmenting the brain. To overcome this issue we evaluate the distance
in both directions, and select the minimum.

Thus each tract is represented as a sequence of ordered points, which is equivalent to its reverse
version: X = reverse(X) with reverse(x1, ...xN ) = {xN , ..., x1}

The UE is thus defined as follows:

UE(X,Y ) = min(||X − Y ||2, ||X − reverse(Y )||2) (8.1)

where ||X − Y ||2 =
√∑N

i=1 ‖xi − yi‖2

This metric requires streamlines to have the same number of points. By imposing the number of
point per fiber, we force short and long fibers to have different resolution. Although it has been
shown that depending on the application few points can be enough to classify the streamlines
?O’Donnell et al. [2012b], Mayer et al. [2011], O’Donnell et al. [2012a], it might not be the
optimal setting, as longer tracts will contain more information than shorter ones.

The main advantage of UE, is that being a point-wise distance, it is linear in the number of
points: O(2K) = O(K). It is fast to compute, and is sensitive to fiber lengths as shown in Fig
8.3.
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8.1.2 Point Density Model (PDM)

We propose the Point Density Model to better capture the shape of the fibers. PDM is sensitive to
the form of the fiber, its position and is quite robust to missing fiber segments. This last property
is much desired as fibers are often mis-segmented due to noise and crossing fibers (issues). Given

a fiber X we represent it as the sum of Dirac concentrated at each fiber point:
∑k
i=1 δxi (resp.

Y ). If we let Kσ be a Gaussian kernel with scale parameter σ, we can conveniently define the
scalar product between two fibers as follows:

〈X,Y 〉 =
1

k2

k∑
i=1

k∑
j=1

Kσ(xi, yj)

The Point Density Model distance is thus defined as:

PDM2(X,Y ) = 〈X,X〉+ 〈Y, Y 〉 − 2〈X,Y 〉 (8.2)

This distance captures misalignment and shape dissimilarities at the resolution σ. Distances
much larger or much smaller than σ do not influence the metric. As it compares every point in
one set to every point in the other set, its complexity order is: O(N ×M) N being the number of
points in X and M being the number of points in Y. However it can be narrowed by its maximum
if we assume for example that M ≤ N : O(N ×M) ≤ O(N2).

8.1.3 Hausdorff (H)

Informally, two sets are close in the Hausdorff distance if every point of either set is close to some
point of the other set. In other words it is the greatest of all distances from a point in one set to
the closest point in the other set.

Hausdorff metric can be useful to bring together short and long fibers.

H(X,Y ) = max( max
i=1..k

min
j=1..k

‖xi − yj‖, max
j=1..k

min
i=1..k

‖xi − yj‖) (8.3)

The Hausdorff metric does not require the tracts to have the same number of points. As it
compares every point in one set to every point in the other set, its complexity order is: O(N×M)
N being the number of points in X and M being the number of points in Y. However it can be
narrowed by its maximum if we assume for example that M ≤ N : O(N ×M) ≤ O(N2).

8.1.4 Mean Closest Point

This metric takes the average of the closest points between two curves. As the closest point is
asymmetric, it needs to be calculated in both directions. This metric has been conceived to find
the representatives of a cluster, to be sure the centroid will lied on the center of the cluster. Its
time complexity is analogously to Hausdorff, quadratic.

dMCP (A,B) = mean(mean
i

min
j
‖ai − bj‖,mean

i
min
j
‖bi − aj‖) (8.4)
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Affinity Propagation Mean Shift Spectral Clustering

Figure 8.4: Different ways to cluster the same data. This behavior can be obtained changing
algorithms and metrics. The image illustrates the variability of results, and all of them can
be desirable results depending on the problem definition http://scikit-learn.org Pedregosa et al.
[2011]

8.2 Clustering

As illustrated in Figure 8.1, a combinatorial amount of segmentations can be drawn for a given
set of fibers. For a given set of observations X = x1, .., xn and a given distance, different levels
of granularity give us valid solutions that might be useful or not depending on the use case, see
Fig. 8.4.

Clustering algorithms search for homogeneous clusters, with similar variance per clusters. This
variance can be parametrized by the number of clusters or by a variance threshold defined by
the user.

8.2.1 K-Means

The name K-Means comes from MacQueen in 1967 MacQueen [1967] but it was earlier proposed
by Steinhaus in Steinhaus [1956]. K-means is probably the most famous unsupervised clustering
algorithm. The procedure follows a clear way to classify a given dataset through k clusters, where
k is defined a priori. The main idea is to define a centroid for each cluster, and then associate each
element to the cluster whose distance to the centroid is the minimum. K-Means belongs to the
family of amalgamation clustering because of this last association step. The algorithm minimizes
the within-cluster sum of squares error (WCSS) to the cluster with the closest centroid. This is
known as inertia, and is defined as:

mins

k∑
i=1

∑
xj∈Si

‖xj − µi‖2 (8.5)

where µi is the centroid of Si. At initialization µi is randomly selected from the set, and at each
iteration each element evaluate its distance to the centroids, and it is assigned to the cluster with
the closest centroid µ.
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Once every element has been assigned, the centroids can be recomputed to better represent the
cluster: mean element of the cluster. However when every centroid has changed, an element can
find itself closer to the centroid of another cluster. For this reason assignment and centroids are
recalculated iteratively until convergence, when the centroids do not change anymore.

Although it can be proved that the algorithm always terminate, it does not always find the opti-
mal configuration. The algorithm is sensitive to the initial random selection of cluster centroids.
The complexity of the algorithm is O(I ∗D) I being the number of iterations, and D the distance
order. In this case, an Euclidean distance over the points for our setting yields D = O(N ∗M ∗k)
k being the number of clusters, N the number of fibers and M the number of points per fiber.
We will later analyze different metrics to adapt it to our fiber clustering problem, and how to
overcome time complexity issues when using expensive metrics.

8.2.2 QuickBundles

Figure 8.5: Centroid example

QuickBundles is a clustering algorithm that
aims to obtain a fast segmentation of the brain
fiber tracts. Having a list of clusters C =
[c1, .., cM ] and a list of cluster representatives
R = [r1, .., rM ], each fiber tract is compared
to the representatives list sequentially and the
fiber is assigned to the first cluster where the
distance is lower than a defined threshold and
no other comparison is performed. When the
distance is larger than the threshold, the tract
is compared to the next cluster in the list un-
til the list is empty. If no distance between
the representatives in the list and the selected
fiber tract is lower than the threshold, a new
cluster is created with that fiber tract as repre-
sentative. Thus, at initialization the first fiber
to analyze will create the first cluster, and it
will represent it.

The centroid of a cluster is calculated as the
average of the fibers in the cluster see Fig 8.5.
A variable of the sum of fibers in the cluster
is updated at each insertion, and by dividing
this sum of fibers by the number of fibers in the cluster we obtain a centroid in O(1).

Unlike amalgamation clustering, there is no reassignment or updating stage, and distances be-
tween tracts and existing clusters are computed only once. Nevertheless, the threshold parameter
plays a crucial role, as it leads the size and the amount of resulting clusters.

Complexity of QB is in worst case O(N2) but in average it behaves linear O(N). Nevertheless,
the only property that holds on clusters is that the variance is lower than a certain threshold, as
different results ca be obtained based on the different ordering of the fibers: fibers are assigned
to the first acceptable cluster, but not necessarily to the best one. Additionally, clusters and
centroids change as new fibers are processed.

However the presented approach is a good approach for a quick visualization of the organization
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of the fiber tracts in the brain. We will analyze other approaches that can provide stronger
properties on the resulting clusters at the expense of speed.

8.2.3 Hierarchical Agglomerative Clustering

Hierarchical clustering is a different methodology to analyze massive tractography datasets.

Figure 8.6: Illustration of bottom-up and top-dowm clustering approaches on three population of
fibers (violet, blue and green). Different threshold values are held in the intra-cluster variability
across the different stages of the algorithms. It can be started from bottom as well as from the
top.

Hierarchical clustering can be agglomerative (bottom up) or divisive (top down) as shown in
Figure 8.6. In an agglomerative approach, each element starts being a cluster and across itera-
tions clusters are merged to form larger clusters. In the case of divisive clustering, every element
start in the same cluster and they are divided across iterations. The intra-cluster variance varies
across iterations. In the case of fibers, it is extremely hard to define a variance for the whole
tractography, as it will change across bundles (i.e. u-shape, corpus callosum as shown in Fig
8.7), and in Guevara et al. [2011] different thresholds where used on short and long fibers.
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Figure 8.7: Variability of fiber bundles between short and long bundles. ON the left fibers, we
can see the corticospinal bundle, which variability increases as it get closer to the motor cortex
(as it goes up), as the bundle splits between hemispheres, and when reaching the cortex a fanning
is produced. This behaviors is hardly found among short bundles. Images adapted from Guevara
[2008].

8.2.3.1 Average linkage-clustering

Agglomerative average linkage-clustering would start with every single element as a cluster. Over
the iteration the following metric is calculated between clusters A and B:

1

|A| · |B|
∑
x∈A

∑
y∈B

d(x, y). (8.6)

At each iteration the closest clusters are merged together. Each agglomeration occurs at a greater
distance within clusters than in the previous agglomeration, and one can decide to stop clustering
either up to a certain thresholded maximal distance or a number of clusters.

8.2.3.2 Multi-Subject clustering approach

In this section we describe a strategy developed in Guevara et al. [2012] to simultaneously cluster
subject bundles. As a result we expect to obtain a labeling of the bundles per subject, meaning
that we can map corresponding bundles across subjects.

A two level strategy is applied by first performing an intra-subject hierarchical clustering which
results in a compression of the whole tractography into homogeneous bundles. Then a second
level clusters together the bundle centroids from the different subjects.

For the second level a normalization is crucial to account for different brain shapes across sub-
jects, which can have a strong impact as distance metrics are often sensitive to location. There-
fore, all tractography sets are taken to the Talaraich space.
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Figure 8.8: Consistent labeling across subject
Guevara [2008]

Intra-Subject Clustering Using informa-
tion from the Tailarach normalization, the
set is divided into right and left hemisphere,
inter-hemispheric and cerebellum tracts, and
a mask of the thalami was used, see Fig 8.9.
Fibers are also divided based on lengths.

A hierarchical decomposition of tracts in the
space of white matter voxels (or voxel parcels)
is performed. During clustering, white matter
voxels are merged when they are connected by
several tracts leading to reconstruct the gross
mask of the underlying bundles.

To check for homogeneous fascicles, a water-
shed approach is used to detect 3D regions
with high extremity density, and the rest are
discarded. The results are thin and regular
fiber fascicles composed of fibers with similar
length and shape.

An average-link hierarchical clustering can be run on the fascicle centroids to merge fascicles
with similar geometry.

Inter-Subject Clustering Once having a clean clustering for each subject, the aim is to
gather similar clusters from different subjects together. The centroid of each cluster is calculated
using a symmetric closest point distance defined as the mean of the two directed closest point
distances (MCP). The tract that minimizes the sum of distances to the rest of the fascicle fibers
represents the geometry and is at the center of the bundle.

Before clustering bundle centroids from different subjects together, it is imperative to normalize
them, taking them to the same coordinate system. This normalization can be performed based
on T1 images or dMRI; on affine and on non-rigid deformations to improve accuracy. All these
methods on normalization will be further analyzed and discussed in next Chapter 9.

An affinity graph is computed using a pairwise distance between fibers bundle centroids using
the Hausdorff distance. Graph vertices are centroids, and edges are affinity weight. Only weights
higher than a defined threshold are kept. The threshold is different for short and large fibers, as
short fiber bundles tend to be tight, but large fiber bundles tend to have higher variance, e.g. in
extremities. This graph is the input the average link hierarchical clustering.

Clusters that contain bundles from less than half of the subjects are discarded, or if their variance
is higher than a certain threshold. The pipeline is illustrated in Figure 8.10. Thus the algorithm
gives a consistent labeling across subjects as shown in Fig 8.8. Nevertheless, all the stages and
parameter that need to be defined make this approach rather complicated, and it can take days
to run.

8.3 Multidimensional Scaling

A whole brain tractography with current dMRI technologies can produce a few millions of fiber
tracts. A distance matrix, containing distances between elements is sometimes used to avoid
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Figure 8.9: Association fibers connects the various gyri and nuclei within a single cerebral hemi-
sphere. Commissural fibers are connections from a single hemisphere to corresponding locations
in the opposite hemisphere. Projection fibers connects cerebral hemispheres to other parts of the
brain and spinal cord, such as descending tracts of white matter connecting the cerebrum to the
rest of the CNS. Image provided by Pearson education 2004 , Benjamin Cummings
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Figure 8.10: Graphic showing the clustering process starting at the intra-clustering level and
ending at the inter-subject clustering level. Image taken from Guevara [2008]

recalculating the distances. However, in this case a distance matrix is too big to be stored in
memory. To have an idea, on a 64bit machine, where a float uses 8 bytes, a distance matrix on
a million fibers will need 500GB of disk. It is impossible to allocate a full matrix in memory,
therefore distances will need to be recomputed across iterations. Distance on fiber tracts depend
on the number of points per fiber, which can also be computationally expensive. Time complexity
for the distance matrix is O(M2N) M being the number of tracts, N being the number of points
per fiber if using a linear distance such as UE as previously presented.

Ideally we would like to evaluate different distances that could better represent white matter
geometry on a clustering algorithm. Distances such as Hausdorff and Point Density Model have
been widely used in the literature for analyzing neural fiber tracts Siless et al. [2013], Guevara
[2008] However, the main drawback of those distances is their high computational cost, which
is O(N2). In compression algorithms inputs are expected to be massive, thus having a costly
measure to compare them pairwise is inefficient.

8.3.1 Manifold Learning

High-dimensional data is often represented in a simplified manner using techniques such as
manifold learning. The main idea is to assume that the data lies on an embedded (non-linear)
manifold within a higher-dimensional space. If the manifold has a lower intrinsic dimension, then
it can be represented in that dimension, assuming that the dimensionality of the embedding was
high.

The simplest way to accomplish this dimensionality reduction is by taking a random projection
of the data. However, it is likely that interesting structures within the data might be lost.

Algorithms such as PCA (unsupervised Principal components analysis), ICA (unsupervised In-
dependent components analysis), and LDA (supervised Linear Discriminant Analysis) address
the dimensionality reduction problem, however by using a linear projection. These methods can
be powerful but they miss the non-linearity of the structures of interest.

Manifold learning can be seen as a generalization of these linear frameworks to the non-linear
case. In the next section we introduce a manifold learning technique Multidimensional scaling
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Figure 8.11: Multi-step pipeline for multi subject massive tractography clustering Guevara [2008]
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(MDS) used for non-linear cases, however MDS based on Euclidean distances yields a result
identical to PCA. Nevertheless, MDS can also be used with more complex distances such as
Hausdorff or PDM, which are useful for analyzing fiber tracts.

8.3.2 MDS

Multidimensional scaling is an unsupervised approach, that embeds data from the original high-
dimensional space to a low-dimensional space, while holding the subjective distances across
elements. Multidimensional Scaling (MDS) needs a distance metric to infer a feature matrix
from that information. Given a distance matrix ∆, it tries to find vectors x1, ..., xn ∈ RN such
that

‖xi − xj‖2 ≈ ∆i,j (8.7)

Thus it tries to find a new embedding of the points while preserving their distances.

This is done by finding a row and column centering matrix H and then applying an SVD
decomposition. Since ∆ is not symmetric, we need 2 centering matrices H#s and H#F , and
the SVD decomposition is applied on H#s∆H#F . The first N components of the decomposition
yield the best-preserving N-dimensional representation of the data. The optimal embedding is
then given by X = U.SN , where SN represents the first N columns of the diagonal S matrix. The
solution is given by the singular value decomposition performed on the matrix of cross-samples
distances ∆ after centering the rows and columns.

With MDS we obtain a new set of transformed samples F ′ which maps 1-to-1 to the original set
F and approximately preserves the input distances.

8.3.3 Clustering pipeline with MDS

To summarize, MDS given a subset of the distances, allows to embed them into a new set of
fiber-like points. Then new fibers are characterized by their distance to the fiber-like points in
the new embedding.

The algorithm is defined as follows:

1: s← take random sample(F )
2: ∆← compute distance matrix(s, F,metric)
3: F ′ ← multidimensional scaling(∆)
4: L← clustering(F ′, nclusters)

We first take a random sample s from the full set of fibers F . In step 2, we compute the
pairwise distances between fibers in s and fibers in F , creating a distance matrix ∆ ∈ R#s×#F

and metric can be any fiber distance such as UE, Hausdorff or PDM. Note that the size of this
matrix depends linearly on #s×#F .

Step 3 uses the asymmetric version of MDS. This corresponds to using the classical Nyström’s
approach for efficient dimension reduction Fowlkes et al. [2004]. We will discuss the accuracy of
this approximation and the required sample size for it to yield a good trade-off between accuracy
and running time.
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Finally, in step 4 we run the traditional K-Means algorithm over the set F ′ to obtain the clusters
of fibers. The clustering algorithm is run on a linear distance, e.g. the Euclidean distance, as the
embedding of the input fiber tracts already contained information from the non-linear distances
such as Point Density Model or Hausdorff.

The time complexity of the similarity matrix is O(N2k2) N being the number of fiber tracts
and k being the number of points per fiber. By using MDS the time complexity will be reduce
relatively to the random samples p we take, nevertheless p << N as we will later analyze in the
results section: O(Npk2).

8.4 Validation Scheme

The problem of evaluating models in unsupervised settings is notoriously difficult. Ideally, the
loss should be task-dependent; here we consider a set of standard criteria: the inertia of the
clusters, the silhouette coefficient and some measures that require a ground truth: completeness,
homogeneity and adjusted rand index.

8.4.1 Unsupervised Scores

8.4.1.1 Silhouette

The Silhouette Coefficient measures how close a tract is to its own cluster in comparison to the
rest of the clusters, e.g. whether there is another cluster that might represent it better.Rousseeuw
[1987].

The silhouette score for a given tract is defined as:

silhouette =
a− b

max(a, b)
(8.8)

where a is the mean intra-cluster distance and b the mean nearest cluster distance. The main
drawback of this metric is that it is computationally expensive. However we can approximate it
by using MDS, e.g. using only 10% of the fibers, the error compared with the silhouette applied
on the full dataset was less than 10−2 on a random test.

8.4.1.2 Inertia

The Inertia is the variance of the cluster measured by the distance of each fiber of the cluster
to the cluster centroid. This is exactly the function minimized by K-Means, see Section 8.5.
The cluster centroid may not necessarily be a member of the cluster. Having a set of tracts
C = f1, ..., fN , fi = p1, ...pK N being the number of fibers, and K the number of points, then

the centroid of the clusters C is given by c =
∑k

1 p1
k , ..,

∑k
1 pk
k , if we use the Euclidean distance.

The less clusters there are, the bigger the intra cluster variance is, and the larger the inertia is.
This holds true for any metric used. Hence the inertia is not a model selection metric, but it
is useful when comparing scores across algorithms when fixing the number of clusters. Inertia
also assumes clusters to be convex and isotropic, which is not always the case, and it is not a
normalized metric.
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8.4.2 Supervised Scores

These scores can only we used when a predefined labeling is already known. It is useful for
algorithm selection when testing on pre-labeled training data. Thus having a set of fibers F =
{f1, .., fN} of N fiber tracts, partitions of the set of fibers given by a clustering algorithm C =
{C1, ...CK} K being the number of clusters, and a set of labels L = {L1, ..., LM} the ground
truth partitioning of the fiber tracts set, M being the number of ground truth labels. Then the
following scores can be defined:

8.4.2.1 Homogeneity

This score penalizes the clustering scheme in which samples from different modes are clustered
together Rosenberg and Hirschberg [2007]. Tracts belonging to different anatomical structures
should not be clustered together.

8.4.2.2 Completeness

Completeness score measures whether fibers from the same mode are clustered together Rosen-
berg and Hirschberg [2007]. Tracts belonging to the same anatomical structure should be clus-
tered together, and therefore this metric penalizes situations in which samples from the same
class are clustered separately.

8.4.2.3 Rand Index

Named after Willand Rand Rand [1971] is an index of the global consistency of assignments
with respect to the reference labeling Moberts et al. [2005]. The Normalized Adjusted Rand
Index (NARI) is a normalized and corrected for chance index of the global consistency. We
will first see the normalized version NRI.

- a = #{(fi, fj)/fi, fj ∈ Ck, fi, fj ∈ Lm} : The pairs of elements that belongs to the same
cluster in both sets C and L.

- b = #{(fi, fj)/fi ∈ Ck1, fj ∈ Ck2, fi ∈ Lm1, fj ∈ Lm2} : The pairs of elements that are
separated in both clustering sets..

- c = #{(fi, fj)/fi, fj ∈ Ck, fi ∈ Lm1, fj ∈ Lm2 } : The pairs of elements that belongs to
the same cluster in C and to different clusters in L.

- d = #{(fi, fj)/fi ∈ Ck1, fj ∈ Ck2, fi, fj ∈ Lm} : The pairs of elements that belongs to the
same cluster in L and to different clusters in C.

RI =
a+ b

a+ b+ c+ d
=
a+ b(
N
2

) (8.9)

where a and b are seen as agreements between C and L, c and d are disagreements on C and L.
Rand Index is 1 when both clustering are exactly the same, and 0 when intersection is empty.
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A version of Rand Index is defined adjusted by the chance of the element grouping ?. This
version yields values between -1 and 1. It is formulated as follows:

ARI =
P(i)− E(i)

max(i)− E(i)
(8.10)

P (·) is the probability of the index i, E(·) the expected value, and max(i) its upper bound which
is 1.

The contingency table The contingency table T summarizes the overlap of the partitions.
Each entry Ti,j denotes the number between objects in common between Ci and Lj :Ti,j =

|Ci∩Lj |. And we define ai =
∑K
j=1 Ti,j the sum of agreements for a ground truth partition with

all the given clusters, and bj =
∑M
i=1 Ti,j the sum of agreements between a given cluster to all

the ground truth partitions. We now can rewrite the ARI index:

ARI =

∑
ij

(
nij
2

)
− [
∑
i

(
ai
2

)∑
j

(
bj
2

)
]/
(
n
2

)
1
2 [
∑
i

(
ai
2

)
+
∑
j

(
bj
2

)
]− [

∑
i

(
ai
2

)∑
j

(
bj
2

)
]/
(
n
2

) (8.11)

In this metric big clusters have more influence that smaller ones which does not suit completely
our needs, and fiber bundles are naturally not of the same size in the brain. For this reason
the contingency table is normalized so that each ai = G, with G an arbitrary positive value.
Then each Ti,j is multiplied by G

ai
. Now a new a′ is defined where a′i =

∑K
j=1 Ti,j

G
ai

and

b′j =
∑M
i=1 Ti,j

G
ai

. Thus the NARI score is redefined over the new contingency table Moberts
et al. [2005].

8.5 Results

8.5.1 Data description

We use a database of ten healthy volunteers scanned with a 3T Siemens TrioTim scanner. Ac-
quisitions consisted of an MPRAGE T1-weighted ( 240× 256× 160, 1.09375× 1.09375× 1.1mm)
and DW-MRI (128 × 128 × 60, 2.4 × 2.4 × 2.4mm) TR = 15000ms, TE = 104 ms, flip angle =
90o, 36 gradient directions, and b-value = 1300 s/mm2. Eddy currents correction was applied
to DTI data using the FSL software. We used the medInria software for tractography and fibers
shorter than 40mm were discarded ?. This yielded an average of 25000 fibers per subject.

8.5.2 Experiments

We use the MDS+Nyström’s method with 10% of the fibers. The relative error between the true
distance matrix and an approximate one was smaller than 10−2 on a random fiber set.

8.5.2.1 Manually labeled data

We tested the algorithms on a subset of real fibers previously identified from the corpus callo-
sum, corticospinal tract, u-shape, and fronto-occipital. We compared the clustering solutions to
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the ground truth while varying the number of clusters (K-Means) or the threshold parameter
(QuickBundles, see below), using the five criteria described previously.

8.5.2.2 Real data

We performed a parameter selection test over one subject to analyze the impact of the kernel size
for K-Means with Point Density Model. We vary σ from 10 to 60mm and the number of clusters
from 200 to 1200. We noticed that after σ = 42mm the quality of the clusters stop improving
significantly w.r.t. smaller kernel sizes. For the following tests we fixed σ = 42mm. About 20%
of the full set of fibers were used for the random sample, then only 5%, yielding very similar
results yet significantly decreasing running time. Results are shown in Fig. 8.13.

We tested K-Means exhaustively over ten subjects with PDM, Hausdorff and UE while varying
the number of clusters from 18 to 3200. Additionally we compared their output to the available
QuickBundles (QB) clustering algorithm Garyfallidis et al. [2012]. However, in QB the resulting
number of clusters is guided by a threshold value. Therefore we ran QB over one subject varying
the threshold from 5 to 40mm, and selected threshold values based on the number of clusters
obtained to run them over the 10 subjects.

8.5.3 Results and Discussion

8.5.3.1 Manually labeled Data

On the manually labeled data we were able to run the validation criteria that needs a ground
truth, such as Homogeneity, Completeness and NARI. We tested each clustering 10 times while
randomly removing 1/8 of the fibers, to sample variable configurations.

It can be seen in Fig. 8.12 that QB performs well regarding completeness but not so well on
homogeneity, which means that clusters have fibers from different structures but fibers from the
same structure are clustered together. QB obtains higher performance with large numbers of
fibers.

On the other hand, K-Means+PDM obtained high homogeneity but lower completeness, indi-
cating that clusters contain fibers from the same structure but that they are not complete, which
means that some structures are split. For example, cluster A contains mostly fibers from the
corpus callosum, therefore its homogeneity is high. Nevertheless, corpus callosum fibers are also
found in cluster B, being itself highly homogeneous too. Neither A nor B are complete.

Looking at the inertia criterion, we can effectively confirm that clusters of QB have high variance,
and those of K-Means+PDM a lower one. This can also be link to the minimization criteria of
K-Means, as we mentioned in Section 8.5, its minimization energy is exactly inertia.

K-Means+UE performs poorly both regarding homogeneity and completeness compared to the
other approaches; as could be anticipated, it yields lower inertia. A point-to-point Euclidean
distance seems to be a poor representation of the fiber geometric structure.

K-Means+H seems to have a similar behavior as K-Means+PDM except for the silhouette cri-
terion, which means that the resulting clusters are typically not well separated.

Regarding Silhouette and NARI, one can observe that K-Means+PDM plateaus at around 9
clusters and then decreases, while QB reaches a maximal value when more clusters are considered,
and then decreases more slowly.
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(a) H (b) UE (c) QB (d) PDM

Figure 8.12: Manually labeled data results: (top) Example of clusterings obtained with fours
methods on the simulation (bottom) Average of the criteria obtained over 10 random samplings
of the manually labeled data, as a function of the number of clusters obtained.
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Figure 8.13: Silhouette score on real data: (left) Comparison of K-Means with PDM, UE, and
Hausdorff metrics, and QuickBundles. Each curve shows the average score of the ten subjects.
K-Means+PDM is used with two size of the learning set in Nyström step. (right) Dependence
of the results of K-Means+PDM on the parameter σ.

Last, by looking the silhouette criterion K-Means+PDM seems to better assign the clusters to
fibers than QB, which is probably related to the algorithm itself that, unlike K-Means, does not
systematically update the cluster assignment.

8.5.3.2 Real data

On real data we can only use the fully unsupervised criteria, such as inertia and the silhouette
criterion. We focus on the latter. Results are given in Fig. 8.13 for each of the aforementioned
criteria and algorithms. We can see that the K-Means+H and K-Means+UE metrics result in
a poor silhouette score, meaning that the separation between the clusters is not very clear with
these algorithms.

Moreover, K-Means+PDM consistently improved results given by the other algorithms. Nonethe-
less when going to large number of clusters (over 3000) curves between QB and K-Means+PDM
seem to converge in terms of cluster quality, such as measure with Silhouette score.

Note that a given number of clusters can correspond to strikingly different structures in the data,
depending on the algorithm and metric: In Figure 8.14 we show the result of the full brain fiber
clustering for all algorithms on an arbitrary chosen subject. The number of fibers was set to 560
for all of them. Resulting clusters on (e), (f) and (g) seem to be wider and more heterogeneous
than (h), showing that the PDM metric can indeed better capture shape of fibers. Homogeneity
of clusters in comparison to (e) (f) and (g) can clearly be seen on the corpus callosum and the
corticospinal tract. Below, we can see the histograms on the cluster sizes. We see that QB has
the largest amount of small clusters, that likely correspond to outlier fibers, and it also yields very
large clusters. K-Means+PDM also seems to generate a few small clusters, unlike K-Means+H
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(e) H (f) UE

(g) QB (h) PDM

Figure 8.14: (top) 560 clusters on brain: Qualitative algorithm comparison for the resulting
fiber clusters on an arbitrary chosen subject. (below) Histogram of the cluster sizes for the
different algorithms.

and K-Means+UE that do not yield small clusters, meaning that spurious fibers are included in
clusters, and not rejected as outliers.
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Both QB and PDM-K-Means running time are sensitive to the number of clusters, however
QuickBundles’ time complexity is O(NCk) and K-Means+PDM O(NSk2 + NCk), where C is
the number of clusters, k the fiber resolution and S the sample size. In K-Means+PDM, the
creation of the partial distance matrix dominates the time complexity as long as Sk > C.

This code has been implemented in Python based on utilities provided by Scikit-Learn Pedregosa
et al. [2011].

8.6 Conclusion

We presented an analysis and comparison of some of the techniques most commonly used for
fiber clustering.

As our goal is to simplify the complicated structure of brain fibers, we prioritize homogeneous
clusters, where centroids can accurately serve as a cluster representative. Thus simplifying the
dataset by only their centroids.

Three different methods were proposed, where two are fully unsupervised and one uses previous
cortex segmentations to roughly initialize and separate the full tractography (e.g. hemispheres,
inter-hemispheres). In the latter the resulting bundles can be mapped to anatomical bundles,
while in the fully unsupervised methods we can only expect a compression of the fibers.

Nevertheless pipelines attached to supervised clustering methods, especially for inter-subject
analyses are generally long, hard to parametrize and can take days to run, especially with such
dataset magnitude. For these reasons other alternatives have to be considered.

We compared the available metrics found in the literature for measuring distances between fibers,
incorporating PDM which has been used recently to represent geometric structures in the brain,
but never for fiber clustering. We analyze their performance against a fast algorithm called
QuickBundles.

QuickBundles is able to return a segmentation of the white matter in minutes, while KMeans
takes longer.

We show different behaviors of the methods depending on the number of clusters: while QB is
good at isolating outlier fibers in small clusters, it requires a large number of clusters to represent
effectively the whole set of fibers. K-Means+PDM has a better compression power, but is less
robust against outlier fibers. Nevertheless, it clearly outperforms other metrics for all criteria
that we tested.

It is necessary to remind that algorithms that K-Means and QuickBundles, will in general
return an homogeneous set of clusters, but that theses clusters cannot be readily identified
with anatomical bundles. These algorithms are proposed as tools to simplify the white matter
structures, e.g. to represent it with few prototypical ones. By doing so, we not only improve
computation time and visualization comfort, but also we remove spurious fibers, as they will end
up in small irrelevant clusters.

By simplifying white matter underlying architecture we expect to simplify and improve the accu-
racy of further analyses methods. In this thesis, we propose to improve accuracy of brain image
registration by introducing white matter connection information. White matter fiber datasets
are immense, and tractography errors can lead to spurious fibers, therefore it is imperative before
a wise pre-selection of stable bundles to perform further analysis.
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Multi-modal Registration of T1 images and Fiber

tracts

”The rule is, jam tomorrow and jam yesterday – but never jam today.”
”It must come sometimes to ’jam today’,” Alice objected.
”No, it can’t,” said the Queen. ”It’s jam every other day: today isn’t any
other day, you know.”

— Lewis Carroll’s 1871, Through the Looking Glass and What
Alice Found There

As fingerprints, each brain is unique: its shape and size differ among individuals, depending on
genetics and learning experience. Statistical atlases of the human brain anatomy are used to
model the variability of its shape across populations. These atlases are crucial to understanding
the development of the human brain in vivo and most importantly to analyze pathologies in
neurological or psychiatric diseases.

Imaging biomarkers can be used to diagnose neurodegenerative and psychiatric diseases, hence
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finding relevant biomarkers is the first step to early disease detection. Neurological diseases
are known to have an impact on brain anatomy, for instance Alzheimer patients’ ventricles are
larger Chintamaneni and Bhaskar [2012]. To detect such types of pathologies, it is mandatory to
analyze a diseased population and contrast it to a normal one. Manually comparing thousands
of images is not only time consuming, but it might also introduce errors, hence it is crucial to
develop and improve methods to automatically analyze massive datasets of individual images.

Voxel-based morphometry (VBM) compares populations voxel-wise after aligning all subjects
to a reference template. The action of aligning structures together is called Registration, also
know as Matching. Registration is routinely used to perform group analysis on populations or
to analyze changes over time, such as normal growth or neurological disorders.

Ideally, registration finds the optimal spatial transformation that aligns structures from one
subject to another, which should result in an anatomically plausible mapping. Having a fixed
image F in the target or reference space, and a moving image M that we want to align, the
problem is typically handled by minimizing an energy of the form:

E(φ) = S(F,M ◦ φ) +R(φ) (9.1)

The first term quantifies the level of alignment between the target image F and the source im-
age M , while the second term R regularizes the transformation. The transformation φ should
map homologous locations from the brain in the moving image to the fixed one, and at every
position x ∈ Ω is defined as the addition of an identity with the displacement (or update) field
u or φ(x) = x + u(x) is the so-called small deformation framework. When the transformation
is parametrized by a small number of variables and is inherently smooth, regularization intro-
duces prior knowledge by imposing constraints. When the transformation is a non-parametric
deformation, regularization dictates the nature of the transformation, imposing properties, and
improves the estimation of φ given the ill-possessedness of the problem.

An image registration algorithm involves three main components: 1) a deformation model, 2)
an objective function and 3) an optimization method Sotiras et al. [2012]. It is key to wisely
select the components to solve registration problems, and consequently to obtain accurate results.
Ideally the results should be independent from the optimization method, however in a deformable
registration scenario a displacement is estimated for each voxel of the image, and is thus an ill-
posed problem with more unknowns than constraints. Given the non-linearity and non-convexity
of the problem in eq 9.1, it is not possible to have a closed-form or even unique solution, thus
the optimization strategy to estimate the registration parameters is crucial to obtain relevant
solutions Hadamard [2003].

9.1 Deformation models

The deformation model limits the solution to a class of transformations, hence it results from an
inherent compromise between efficiency and power of description. The degrees of freedom or the
parameters to estimate vary from 6 in a rigid transformation, 12 in an affine, and thousands or
even millions when non-parametric/non-rigid 1 deformations are considered, depending directly
on the dimensionality of the space.

1We call non-rigid to free-form deformation, where each voxel can freely deform. Although non-rigid formally
could stand for affine, in the medical imaging community non-rigid is mostly a synonym of free-form.
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The mapping from the source to the target is called forward mapping, while the one from target
to source the backward mapping. In the fist case voxel locations of the source image are usually
mapped to non-voxel locations on the moving image, and the intensity values of the voxels of the
deformed image needs to be calculated. This is shown in Fig 9.1 in red. In the second case when
voxel location of the deformed image are mapped to non-voxel locations in the source image,
their intensities can be easily calculated by interpolating between neighboring voxels. This is
shown in Fig 9.1 in blue.

Moving Fixed

?

Figure 9.1: A deformation can take voxel locations to non-voxel locations (as shown by arrows
mapping from the center of the voxels). The forward mapping (in red) is generally harder to
compute as an interpolation is needed to compute with the image values in the target space,
which are only tractable after applying the deformation and are not expected to lie on voxel
locations. However, in the backward mapping (in blue), from the target desired location, we can
easily interpolate the region that surrounds the mapped location from the target to the source
image (big blue circle).

We will analyze three groups of deformation models that are used in this thesis; however a deeper
analysis on deformation models for medical imaging can be found in Holden [2008], Sotiras et al.
[2012].

9.1.1 Geometric Constraints

When analyzing images from the same subject, one is likely to use a rigid transformation, as
it only contains translations and rotations, preserving volume, size, and shape. These types
of transformations are useful to correct head movement, or roughly align skulls. The situation
occurs with images from different modalities such as T1 and DWI/T2 obtained from one given
subject and also when following normal or disease development over time in longitudinal studies.
Affine registration also contains scale and shear factors, which makes it more useful in inter-
subjects situations. Non-rigid deformations account for morphological differences across objects,
while affine transformations include differences in size, rotation and shear. Affine registration
serves as an initialization step for morphological analysis, therefore we first introduce affine
transformations and in the next sections we introduce and discuss non-rigid settings.
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Original + Rotation + Scaling + Shear + deformable

Given a transformation A ∈ R3X3 and a translation vector t ∈ R3X1, affine transformations are
defined as T ′ = A|t then T ′ ∈ R3X4, and their extension T ∈ R4X4 is defined by completing T ′

on the 4th row: T ′ =

[
A t
0 1

]
Then any array of coordinates in R3 is fiven a shape in R4 by filling the last coordinate with 1:
X ′ = (x1, x2, x3, 1).

Given a fixed and moving image, F and M respectively, we would like to find the transformation
T such that : M(X) = F (T (X)). However, given the degrees of freedom of the transformation,
and the complexity of aligning two different images, the exact equality will most likely not be
achieved. To find the best affine transformation that aligns the moving image onto the fixed
image, we define the following energy:

E(T ) =
∑
x∈Ω

Sim(F (x)−M(T (x))) (9.2)

Where Sim can be any loss function over images, and Ω is the image domain. In Section 9.3.1
we will discuss different available options.

In inter-subject image registration, one may opt for a richer model, that gives more accurate
solutions such as deformable transformations. With non-parametric deformation, symmetry and
topology preservation are important. In medical imaging, anatomical structures should not be
split nor fused together, hence the requirement of topology preservation. On the other hand, a
transformation should be invertible, and its inverse should be computable. However, this does
not ensure us, that the transformation originally computed by minimizing Sim(F,M) is the
same as the one obtained by computing its inverse Sim(M,F ). For this to be true, the energy
formulation needs to be symmetric.

Asymmetric algorithms are biased by the choice of the target domain. The solution may vary
greatly when choosing one subject as target or source. Inverse consistency algorithms force
backward and forward transformations to map one onto the inverse of the other by simultaneously
estimating both, and penalizing the difference. Inverse consistent methods can preserve topology
but are only asymptotically symmetric, as solutions depend on the energy formulation, the terms
and the weights.

Topology preserving algorithms impose transformations and their inverse to be continuous. Dif-
feomorphisms ensure a deformation and its inverse to be differentiable, thus preserving topology.
A diffeomorphism maps a differentiable manifold onto another one, ensuring smoothness of the
map and its inverse.

Most algorithms restrict theirs solutions to the set of diffeomorphic transformations with homo-
geneous boundary conditions, meaning that rigid and affine transformations have already been

100



Multi-modal Registration of T1 images and Fiber tracts

applied and that the borders of the images maps onto each other. This can be assumed, as rigid
and affine registration are simpler and fast problems that can easily be applied as a pre-processing
step.

9.1.2 Physical models

9.1.2.1 Notations

1. #»u is the update or displacement field.

2. #»v is the velocity field.

3. µ, λ are Lamé constants, describing the properties of the material.

4. E( #»u ) is the force field, the loss e.g. E( #»u ) = ‖F + #»u −M‖2.

9.1.2.2 Elastic bodies

In 1981, Broit modeled the image grid as an elastic membrane, that deforms under the influence
of two forces, an external forcing the matching, and an internal enforcing the elastic properties
of the material, until an equilibrium is reached Broit [1981]. Elastic bodies are modeled with the
Navier-Cauchy partial differential equation (PDE):

µ∇2 #»u + (µ+ λ)∇(∇. #»u ) + E( #»u ) = 0

where E(x) is the force field that drives the registration. µ accounts for the rigidity of the
material and λ the Lamé first coefficients, and #»u is the displacement field. This linear elastic
equation assumes small angles of rotation and small linear deformations. As a result, the elastic
registration model penalizes large displacements and is not useful in applications when large
nonlinear deformations are natural Yonovsky et al. [2006].

9.1.2.3 Viscous Fluid

In 1996 Christensen et al. introduce the Viscous Fluid flows models that can recover large
deformations, and were described with the Navier-Strokes equation Christensen et al. [1996]:

λ∇2 #»v + (µ+ λ).∇.(∇. #»v ) + E( #»u ) = 0,

where the first term constraints neighboring points to deform similarly by spatially smoothing
the velocity field. A velocity field is related to the displacement field as #»v = ∂u

∂t + 〈 #»v , ∂u∂x 〉. The
velocity field is integrated in order to estimate the displacement field. The second term allows
the structure to change in mass while µ and λ are the viscosity coefficients.

9.1.2.4 Diffusion Model : Demons Algorithm

In 1998 J.P. Thirion introduced the simple diffusion model into registration as follows Thirion
[1998]:

∇u+ E( #»u ) = 0
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The initial demons algorithm provided an efficient scheme but it was lacking a theoretical ground.
Pennec in Pennec et al. [1999] showed that Demons combined with gradient descent was equiv-
alent to a second order minimization over a Euclidean distance, while for the regularization
scheme it was shown that the global transformations convolved with a Gaussian Kernel, is a
Green function of the diffusion equation under appropriate initial conditions, providing an effi-
cient regularization scheme.

9.1.2.5 Curvature

Curvature registration was introduced by the deformation is modeled with an equilibrium equa-
tion:

∇2u+ E( #»u ) = 0

This regularization scheme does not penalize affine transformations relieving the algorithm from
an affine pre-registration initialization step. Fischer and Modersitzki [2003, 2004]

9.1.2.6 Flows of diffeomorphisms: Large Diffeomorphic Deformation Metric Map-
ping (LDDMM)

Flows of diffeomorphism, also known as LDDMM, was introduced by Beg et al in 2005 Beg
et al. [2005]. It models the deformation by considering its velocity over time according to the
Lagrange transport equation Christensen et al. [1996], Dupuis and Grenander [1998], Trouvé
[1998], Sotiras et al. [2012]. The regularization term R(φ) constraints the velocity field v to be

smooth: R =
∫ 1

0
‖vt‖2V dt, where ‖f‖V = ‖Df‖L2 with D a differential operator.

The fact that the velocity field varies over time allows for large deformations. The distance
between images is defined as the geodesic distance according to a metric that connects them and
this can be used to analyze anatomical variability Miller et al. [2002], Younes et al. [2009].

Demons framework and LDDMM have gained popularity and visibility over the last decade.
LDDMM mathematical approach is sound as it allows for large deformations. On the other
hand, Demons framework is a simple, and fast approach with accurate results, that can be easily
extended for multi-modal registration.

9.1.3 Extrapolating control points

Figure 9.2: Landmark based registration: Few
selected landmarks can induce the whole trans-
formation grid, decreasing the number of param-
eters to estimate.

In this setting the goal is to approximate the
global deformation by fewer parameters than
the whole grid. Landmarks or regions of in-
terest might lead to displacements being de-
fined only at restricted domains of the im-
age. For example, in Figure 9.2 landmarks
set on the main articulations of the skeletons
might be enough to infer the whole deforma-
tion Glaunès et al. [2004]. Nevertheless, by
using only a landmark set on the hands and
foots as shown in the color circles, lead to
an sparse grid of vector field defined only on
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the landmark regions, which are needed to
be extrapolated to the rest of the image do-
main. By estimating the transformation from
a few landmark points, the rest of the image
domain smoothly follows the landmark direc-
tions. These models are rich enough to de-
scribe the needed transformation while having few degrees of freedom and thus facilitating the
inference of the parameters.

9.1.4 Interpolation

9.1.4.1 Radial Basis Interpolation

Radial basis function is a well known interpolation function. The value of an interpolated point
x is given by a kernel K that depends on the distance to the control points pi.

u(x) =
∑
i

wiK(x, pi) (9.3)

We search for the wi such that when evaluated at a control point p, u(p) = p. Evaluations
studies have been presented in Zagorchev and Goshtasby [2006] for non-rigid registration, while
the topology preserving properties have been presented in Yang et al. [2011]. Similar approaches
inspired by interpolation theory have been presented using B-splines, and cubic B-splines Declerck
et al. [1997], Sdika [2008].

9.2 Space of Diffeomorphisms

Diffeomorphic transformations are of particular interest as they preserve topology by definition.
Topology preservation is fundamental to make comparisons in the natural world between ob-
jects that are known to differ across populations while preserving local neighborhood relations.
Cythoarchitectonic brain mapping studies suggest that the layout of cell types in the brain is
generally preserved Schleicher et al. [2005], thus calling for topology preserving methods. Addi-
tionally, the deformation inverse not only exists but it is also smooth.

A diffeomorphism is a smooth invertible transformation with a smooth inverse. Diffeomorphisms
are powerful as by preserving topology, they prevent foldings which are generally physically im-
possible. A topology preserving example is shown Figure 9.3. For these reason, diffeomorphisms
are of special interest in the medical imaging community. The special interest in registration, is
to be able to register a subject to an atlas space to further analyze it, and after inference in the
common space (i.e. an atrophy in a structure, an activation in fMRI), pull back the results to
the original subject space.

The set of diffeomorphism acting upon a given domain have a group structure. More specifically,
they form a Lie group.

A Lie Group G is a manifold together with a smooth composition map usually denoted as
multiplication ( x 7→ s ◦ x for x and s in G) and a smooth inverse map ( x 7→ x−1 for x in G),
that satisfy the group axioms: closure, associativity, existence of a natural element Id. To any
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Figure 9.3: Topology preserving deformation example. On the left figure we can see a vector
field, and on the right its application to a regular grid. As there is no folding, no overlapping
structures have been introduced, no information has been lost, and we can apply the inverse
transformation to recover the original grid.

Figure 9.4: In (a) a graphical example shows how using the exponential and logarithm function
associate the manifold with a tangent vector space in the case of the SO(n) group. In (b) an
unconstrained update u is computed on the Lie Algebra and is projected back onto the Lie group
through the exponential map. Image taken from Vercauteren et al. [2009]

Lie Group can be associated a Lie algebra g, whose underlying vector space is the tangent space
of G at the neutral element Id. The Lie algebra captures the local structure of G.

The Lie group and the Lie algebra are related through the group of exponential which is a
smooth mapping from a neighborhood of 0 in g to a neighborhood of Id in G, shown in Figure
9.4 (a). Canonical coordinates provide local coordinate charts so that for any x ∈ G in some
neighborhood of s, there exists a vector u such that x = s◦exp(u), and formally this composition
of diffeomorphisms is used instead of the addition, to ensure the result is also diffeomorphic. This
operation is shown in Figure 9.4.

9.3 Matching Criteria - Similarity Metric

Depending on the application and on the type of images, we can chose between iconic or geometric
metrics. In iconic settings the intensity values of the image grid are used, and in geometric
metrics, geometric representation of structures are drawn such as surfaces or clouds of points.
Given an anatomical T1 image, accurate and fast results can be obtained by using iconic methods
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Thirion [1998], Beg et al. [2005-02-01], Rueckert et al. [2006]. However, from anatomical brain T1

images we can geometrically represent the brain cortex as a surface to use a geometric approach
for registration Yeo et al. [2010], Vaillant and Glaunès [2005], Collins et al. [1996].

Image or voxel-based registration consists in finding a voxel-wise mapping between a source
and a target image. These methods evaluate the whole image uniformly, without prioritizing
information to drive the registration.

Geometric registration specifically targets the alignment of Structures of Interest (SOI), or land-
marks. Landmarks can be placed in salient locations of an image, but can also be inferred as
a new representation or model of the image, such as for surfaces or fiber tracts. With higher
resolution images we can characterize more details in the images, which facilitates the extraction
of landmarks.

While finding reliable landmarks is generally an open problem, geometric registration is robust
with respect to the initial conditions. In general, landmarks constraints will be enforced through-
out the deformation. Landmarks or geometric models of the image are used to discard irrelevant
information from the original image, e.g. putting few landmarks in the ventricles, prefrontal
cortex and cerebellum might suffice to perform an affine registration.

Durrleman et al in Durrleman et al. [2011] used a subset of fibers as landmarks to perform a
fiber-based registration. While these types of methods clearly improve SOI registration, they are
in general not suitable for inferring a volumetric mapping between two subjects and cannot be
used for comparing other structures than those used specifically during registration.

Hybrid methods combine both types of information in an effort to get the best of both worlds.
For instance, Auzias et al. [2011], Ha et al. [2010] used the mathematical framework of currents
to simultaneously register images and geometric descriptors, while Sotiras et al. [2010] proposed
a Markovian solution to the same problem.

9.3.1 Iconic Methods

The iconic dissimilarity criterion takes into account the intensity information of the image ele-
ments. The criterion should be able to account for the different physical principles behind the
acquisitions of the two images and thus for the intensity relation between them. The properties
of the similarity function (e.g. convexity) may influence the difficulty of the inference and thus
the quality of the obtained results. Convexifying the objective function facilitates the solution
of the problem, however it may lead to a less realistic problem if this involves a distortion of the
time similarity metric.

Let F and M be the fixed and the moving scalar value images, we define the following distances:

9.3.1.1 Sum of Squared Differences (SSD)

In registration this metric is widely used when the same structures are assumed to have the same
intensity values, for instance both images should be T1 or both should be T2 as white matter
appears white in the former, while it appears dark in the later. In addition, if images are from
different scanners, intensities can slightly vary, hence it might be relevant to previously normalize
images. The dissimilarity between two images with the sum of square distances of the intensity
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values is defined as follows:

SSD(F,M) =
∑
p

(F (p)−M(p))2 = ‖F −M‖2 (9.4)

This simple metric is the most widely used in medical imaging. In the case of tensor images,
that are used to represent the white matter structure, we can analogously define an SSD metric.
A tensor being a 3× 3 matrix, the SSD can be computed on the coefficients possibly after some
transformation to take into account positive definiteness of these matrices Zhang et al. [2006],
Yeo et al. [2009], Villalon et al. [2011].

9.3.1.2 Cross Correlation (CC)

Cross-Correlation is a statistic function that also measures the dependency between two measure-
ments. The cross-correlation is zero when the two random variables are independent, however
the converse is not true, as CC only measures linear dependency. The population correlation
coefficient between two random variables X and Y with expected values µX , µy and standard
deviations σx, σy is defined as:

CCX,Y =
cov(X,Y )

σXσY
=

E[(X − µX)(Y − µY )]

σXσY
, (9.5)

where E is the expected value operator, cov means covariance, and, corr the correlation coeffi-
cient. Given two sets of measurements X and Y, the sample correlation coefficient can be used
to estimate the population correlation as:

CCX,Y =

n∑
i=1

(xi − x̄)(yi − ȳ)

(n− 1)sxsy
=

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑
i=1

(xi − x̄)2
n∑
i=1

(yi − ȳ)2

, (9.6)

where x̄ and ȳ are the sample means of X and Y, and sx, sy are their standard deviation. In the
setting of medical imaging, computing the sample mean only makes sense locally to capture the
local structure intensity. So variance is computed locally on a region around each voxel. Local
Cross-correlation, adapts naturally to situations where locally varying intensities occur and is
suitable for some multi-modal problems Brown [1992], Avants et al. [2008], Kim and Fessler
[2004]. The CC depends only on estimates of the local image average and variance which may
be accurately/exactly measured with relatively few samples.

9.3.1.3 Mutual Information (MI)

Inspired by information theory, Mutual Information (MI) measures the mutual dependence be-
tween two random variables. MI can be used to estimate the optimal matching between images
by inferring how much global information is shared in the image pair, which is estimated from
their joint histogram Andronache et al. [2008], Biesdorf et al. [2009], Janssens et al. [2011]. The
globality of this approach makes it very useful for robust rigid registration but may limit its
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performance in deformable registration, in particular, in cases where non-stationary noise pat-
terns or intensity inhomogeneity require a locally adaptive similarity. Using MI in deformation
settings requires a large number of samples for reliable statistics. Therefore, as locality increases
its statistical reliability decreases. Given events e1, ..., em occurring with probabilities p1, ..., pm,
the Shannon entropy is defined as:

H =
∑
i

pi log
1

pi
= −

∑
i

pi log pi (9.7)

The Shannon entropy can also be computed for an image based on the histogram of the gray
values. A probability distribution of gray values can be estimated by counting the number of
occurrences of intensity values, and normalizing by the total number of occurrences. Shannon
entropy is a measure of dispersion of a probability distribution. The Shannon entropy for a joint
distribution is:

H(F,M) = −
∑
f∈F

∑
m∈M

p(f,m) log p(f,m) (9.8)

Mutual information is defined as I(F,M) = H(M) − H(M |F ) = H(F ) + H(M) − H(F,M).
where H(B) is the Shannon entropy of image B, computed on the probability distribution of
the gray values, and H(A,B) is the joint entropy of both images. Registration corresponds to
maximizing mutual information: the images have to be aligned in such a manner that the amount
of information that they contain about each other is maximal.

Then Mutual information is defined as:

MI(F,M) =
∑
f∈F

∑
m∈M

p(f,m) log

(
p(f,m)

p(f) p(m)

)
(9.9)

9.3.2 Geometric methods

Many methods for extracting landmarks or salients point in scalar value images have been pro-
posed such as using the minimal eigenvalue of the tensor structure or using a Laplacian operator
Shi and Tomasi [1994], Lindeberg [1998]. A different approach is to reduce the dimensionality of
the problem to keep only relevant information. In Knops et al. [2004] a K-Means on the image
was performed, to group voxels with same intensity values, and an histogram was made to be
used with MI. A similar approach can be taken over neural fiber tracts, to reduce dimensionality
on such a high dimension data. Using clustering algorithms such as K-Means mentioned in Chap-
ter 8 we can simplify the white matter underlying structure, facilitating the registration task by
reducing its time complexity but also removing noise introduced by spurious fibers. Otherwise,
when a segmentation can be obtained consistently across subjects the registration problem is no
longer fully unsupervised as landmark constraints should be matched. Correspondences can be
assigned by relying solely on the closeness of the descriptors, or based on structural constraints.

In this thesis we will focus on geometric metrics for fiber tracts. So let us start by defining a
representation to be used through the geometric metrics:

Let G be a set of continuous curves. Having a set of bundles from the fixed fibers CF (and moving
CM ), we define the sequence of points in GF as GF = (xF1 , ..., x

F
N ), GM as GM = (xM1 , ..., xML ),

N,L being the number of points.
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9.3.2.1 Closest Point Distance (CPD)

As the name suggests the Closest Point Distance finds for each point of the fixed structure,
the closest one in the moving subject. The metric can be applied to any set of points such as
discretized curves for fiber tracts, or surfaces for the brain cortex, however in the sequel we will
adapt the problem to curves as our focus is on the registration of fiber tracts. The closest point
distance does not need explicit correspondences between points, however it is recommended to
have a one-to-one curve correspondence, as it might lead to unwanted results otherwise, as shown
in fig 9.5. Let us denote by πi the point index in GM,k closest to point i in GF,k, where k is a
label assigned consistently to each of the fibers in the moving and fixed subject. We define the
similarity measure between point set with the CPD:

SimG(GF,k,GM,k) =
1

N

N∑
i=1

||xF,ki − xM,k
πi ||

2
2 (9.10)

fixed moving

on to all
comparison

Figure 9.5: Example of how the closest point
calculates the distances from each point of the
moving curve, to all the points in the fixed one.

This metric can be a good approach for com-
paring single fiber bundles representatives.
Without a fiber to fiber correspondence the
method ends up being a brute force approach
as it would need to compare for each point
in the fiber set the distance to every other.
Assume that we have a dataset of N=3000
fibers (on HARDI data tractography results
in few million fibers), and M=20 points per
fiber, the numbers of comparisons to be made
are (3000 ∗ 20)2, formally O(N2 ∗M2). Com-
puting this metric on the whole dataset is
rather expensive, to avoid this correspond-
ing fibers across subjects can be defined, and
then the time complexity will be reduce to
O(k ∗ M2),with k ,0 ≤ k ≤ N the number
of correspondences. In practice k << N as
corresponding fibers across subjects are hard
to define.

9.3.2.2 Currents

high 
influence

low 
influence

moving fixed

Figure 9.6: Example of currents representation
of curves. The light blue circle intends to rep-
resent the kernel K, and shows that for the cen-
tered blue dirac vector, the bottom part of the
fixed (pink) curve will have low influence. The
neighbors influence is parametrized by the size
of the kernel.

Currents can be used to define a metric on
oriented curves. By representing geometry in
the space of currents, we compare positions
and tangents, or oriented vectors, leading to a
pose and shape-sensitive measure which per-
mits to define a distance between bundles con-
taining different numbers of fibers Glaunès
et al. [2008]. Currents could in theory be used
to represent a set of geometric objects with-
out explicit correspondences, but they require
an orientation to be chosen for each fiber. A
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current can be seen as a sum of oriented seg-
ments. Therefore it is important to find a con-
sistent orientation, otherwise the same fiber
with the opposite orientation cannot be reg-
istered properly. Finding a consistent orien-
tation of the whole set of fibers between two
subjects without prior information, or a la-
beled segmentation of the brain is an open
problem. An example of its difficulty is shown
in fig 9.6. For this reason, we will define it
for corresponding bundles, where bundles can
contain more than one fiber.

We associate to the sequence of N discretized
points in G a specific measure given by the vector valued Diracs: µG =

∑N−1
i=1 τG,iδcG ,i where

cG,i = (xi + xi+1)/2 (center point) and τG,i = xi+1 − xi (tangent vector) if xi and xi+1 belong
to the same curve.

Following Glaunès et al. [2008], let W be a reproducible kernel Hilbert space (r.k.h.s) of vector
fields with kernel KW

β isotropic and Gaussian of size β. Then, the vector space of currents is a

dense span of the set of all the vector valued Diracs currents τδc for any τ, c ∈ R3. A Dirac current
may be seen as an oriented segment entirely concentrated at point c. Given GF = (x1, ..., xN )
and GM = (y1, ..., yL), the sequence of discretized points for a fixed and a moving geometric
descriptor, with N,L the number of points in the bundle. A vector valued Dirac Current can be
associated to each GF := µF and GM := µM .

The scalar product between two sums of vector valued Diracs expresses conveniently in terms
of the kernel KW

β :

〈µF , µM 〉W∗ = 〈
N∑
i=1

τFi δcFi ,

L∑
j=1

τMj δcMj
〉 =

N∑
i=1

L∑
j=1

KW
β (cFi , c

M
j )〈τFi .τMj 〉 (9.11)

Notice that GF and GM can contain more than one curve, and N,L are the number of points in
each curve, which are not necessarily equal. Then the distance is defined as follows:

d2(GF ,GM ) = ||µF − µM ||2W∗ =

〈µF , µF 〉W∗ + 〈µM , µM 〉W∗ − 2〈µF , µM 〉W∗ , (9.12)

where β defines the kernel size. Points at distances much larger than β have a large distance
disregarding the shape. Also, when distances are much smaller than β, they have little impact
due to the smoothing effect of the kernel they are not taken into account. So the distance
captures misalignment and shape dissimilarities until a difference level smaller than β is reached.

Fiber tracts orientation

As currents requires the tangents along the fibers to be defined, it is mostly adaptable in situ-
ations where a previous segmentation is given as prior or fiber bundles correspondences across
subjects is introduced. In Fig. 9.7 we show how orientation is crucial for Currents model and
that a random orientation might force a fiber to be registered to the wrong corresponding struc-
ture. In Fig. 9.7 (e) and (f) we show that an orientation may define a segmentation. Last, In
(g) and (h) a segmentation is introduced to remove the ambiguity.
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Another example is shown in Figure 9.8 where two close Currents take opposite orientation on
a close region, and as a consequence their vectors cancel each other, impeding the moving fiber
to correctly register as the attraction forces will be close to zero.

from down to up 
from left to right

a. b. c.

d. e. f.

g. h.

Predefined 
segmentation

Figure 9.7: In (a) we define an orientation (from down to up, and from let to right) and two lines
as example. In (b) and (c) we show how two new lines adapt to the predefined orientation. In (d)
we show a new line (in red) inbetween the two possible orientations which are opposite to each
other. In (e) we show that by choosing the down-to-up orientation in a registration scheme the
line will rotate clockwise to align itself with the vertical on (same orientation), but by choosing
the left-to-right orientation as in (f) in a registration scheme the line will rotate anti-clockwise
to align to the horizontal one. Finally, if we take (g) as a ground truth segmentation, then
the arrow in (h) with undefined direction in the previous examples will be force to go down to
connect blue→yellow as in (g).

9.3.2.3 Weighted Measures

Weighted Measures are nothing but a simplified version of currents, where the tangent term is
replaced by a scalar value. This loses robustness in the model, but makes it possible to relax a
necessary hypothesis. Because of the complexity of orienting neural fibers, and as in a realistic
scenario one is unlikely to have corresponding bundles, we now define a metric to compare
the whole fiber dataset without requiring critical assumptions on the object. With the new
imaging acquisition techniques resolution is improving and datasets are becoming larger, and
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Opposite direction.
Vector cancel each other.

Moving 

Fixed

Distances are cancelled,
No alignment.

Figure 9.8: Example of a fiber alignment that forces two fibers to take opposite orientations on
a close region. Vector around the yellow are will canceled each other, and therefor the Moving
fiber will not be able to align itself: forces will be zero.

computationally more expensive to analyze. Clustering and segmentation techniques are used to
simplify and compress such datasets, and therefore, this metric will be defined over clusters of
fibers. CF and CM are the set of clusters in the fixed and moving subject respectively. CF,ki will
denote the i-th fiber of the k-th cluster of the fixed subject, and analogous for the moving subject
CM,k
i . |CF | and |CM | denotes the number of fixed and moving clusters, while |CF,i|, |CM,i| stands

for the number of points of the representative bundle of the i-th cluster. The sampling of points
are defined as: xi,j , i ∈ [1..|CF |], j ∈ [1..|CF,i|], where xi,j the j-th point of the representative
from the i-th cluster in CF .

We can associate to the sequence of discretized points in G a specific measure as a sum of

weighted Dirac Measures: µF =
∑|CF |
i=1

∑|CFi |
j=1 wi,jδxi where wi,j =

|CFi |∑|CF |
i=0 |CFi |

, which weights

measures according to the number of fibers that the bundle of CF,i represents. From now on, to
simplify notations, we refer to points from the geometry in GF as xi and to points from GM as yi,
and we assume that wxi (resp. wyi ) is the weight of the xi (resp. yi) given by the corresponding
bundle size. Let GF = (x1, ..., xN ) and GM = (y1, ..., yL) be the fixed and a moving geometric
descriptors and N,L being the number of objects. We define the geometry in the fixed subject
as GF := µF =

∑N
i=0 w

x
i δxi and for the moving subject as GM := µM =

∑L
j=0 w

y
j δyj .

Let Kβ be a Gaussian kernel of width β. Then the scalar product between two sums of Weighed
Measures can be expressed conveniently with a pre-defined kernel Kβ :

〈µF , µM 〉β = 〈
N∑
i=1

wxi δxi ,

L∑
j=1

wyj δyj 〉β =

N∑
i=1

L∑
j=1

Kβ(xi, yj)w
x
i .w

y
j (9.13)

111



Chapter 9

Then the distance between Weighted Measures is defined as follows:

d2
β(GF ,GM ) = 〈µF , µF 〉β + 〈µM , µM 〉β − 2〈µF , µM 〉β (9.14)

The distance captures misalignment and shape dissimilarities at resolution β. Distances much
larger than β do not influence the metric, while smaller ones are considered as noise and thanks
to the smoothing effect of the kernel they are not taken into account.

9.4 Optimization Strategy

In this section we will see some of the most classical techniques to find the point x that minimizes
the function E(.). All the previously presented functions are continuous and differentiable at least
in the targeted neighborhood, property required for the following minimization techniques.

9.4.1 Gradient descent

E being defined and differentiable in a neighborhood of a point a, the decreasing direction of
E(x) from a is in the direction of the negative gradient of E at a: −∇E(a). If b = a − %∇E(a)
for % small enough, then E(a) ≥ E(b). Therefore, starting from an initial guess x0 of a local
minimum of E , and considers the sequence x0,x1,x2, . . . such that:

xn+1 = xn − %n∇E(xn) (9.15)

Where %n is the step size. Hopefully the sequence(xn) converges to the desired local minimum.

This solution is easy to compute, however the need of a small enough unknown % can lead to a
slow convergence rate with small values of %, or to unstable results with high values of %.

E(x) = E(x0) +
1

2
(∇E(x0) +∇E(x))(x− x0) +O(‖x− x0‖3) (9.16)

In general computing ∇E(x) is not possible as x is the optimal unknown position. However, in
image registration, one looks for the optimal transformation φopt such that M ◦ φopt = F , and

so the same should hold for its derivative: ∇(M ◦ φopt) = ∇E .

In other words, we are able to compute ∇φ(x) by using the fixed image, which would be the
optimal result.

By defining ∇ESM
E = 1

2 (∇E(x0) +∇E(x)) we rewrite the Taylor expansion as follows:

E(x) = E(x0) +∇ESM
E (x− x0) +O(‖x− x0‖)3 (9.17)

We can now use Newton-Raphson formula to compute x:

xn+1 = xn +∇ESM−1

E .E(xn) (9.18)
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9.5 Registration algorithm implementation

When analyzing population variability, affine transformation may only serve for intra-subject
registration, and initialization of inter-subject registration. This is because an affine transforma-
tion will fail to capture local variability. With deformations we obtain a more detailed mapping,
based on a richer model but at the expense of ill-posing the problem by increasing the degrees
of freedom.

Having analyzed the most relevant components of registration, we can now select and combine
them in order to implement a registration algorithm. A registration algorithm consists in a
deformation model, an optimization strategy, and a metric.

The selection of these components to be defined explicitly depends on the aim of the study,
the type of input images we have, the required computation speed, and the simplicity of the
model. We will start with an example over a multi-modal affine registration that mostly aims
to show how components can be combined. We will also present the LDDMM framework and
the Demons settings, but our contribution will focus on the extension of the demons framework
to include neural fibers to the registration. We chose Demons because of its flexibility and
speed. Including geometric descriptors into a registration framework can be a challenge, so
multi-modal extensions with image and geometric descriptors within the Demons framework will
be emphasized. All non-rigid algorithm will focus on diffeomorphic deformations.

Algorithms settings:

Section Algorithms
Deformation Model Image (T1) Geometry Minimization

SSD CC Grad. ESM
9.5.2 Affine Affine WM X
9.5.3 LDDMM Flows of Diffeo. X X
9.5.4 ANTS (LDDMM) Flows of Diffeo. X X
9.5.5 Demons Diffusion X X
9.5.6 Tensor Demons Diffusion Tensors X

9.5.7 Geom. Demons

Diffusion X CPD X X
Diffusion X Currents X X
Diffusion X WM X X

9.5.1 Common Notations

Ω is the image domain.
Fixed Image F ∈ ΩF , where ΩF is the fixed image domain.
Moving Image M ∈ ΩM , where ΩM is the moving image domain.
A transformation, generally affine of 12 parameters T ∈ R4×4

A non-rigid deformation φ

9.5.2 Weighted Measures Affine Multi-modal Registration

In Chapter 8 we have seen different methods to cluster neural fiber tracts into bundles. While
this thesis focuses on non-rigid registration methods, affine registration is widely used for initial-
ization, quick analysis, thus it will serve as an introduction to extending registration methods.
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We show how to combine the SSD image metric and the Weighted Measures metric on fiber tracts
to find an affine transformation that maps both from the fixed subject to a moving subject via
gradient descent.

The goal is to find the affine transformation T that minimizes the distance of the images and
the neural fibers between two different subjects, with T ∈ R4×4 as described in Section 9.1.1.

Let GF and GM be the fixed and a moving geometric descriptor and N and L the number of
objects. We define the geometry in the fixed subject as GF =

∑N
i=0 w

x
i δxi and in the moving

subject as GM =
∑L
j=0 w

y
j δyj , where xi, yj are the points of the representative fibers across the

clusters, while wxi andwyj are their corresponding associated weights.

E(T ) =
∑
x∈M

(IF (T (x))− IM (x))2

+

L,L∑
i=0,
j=0

wyi w
y
j e
−
‖T (yi)−T (yj)‖

2

2σ2 − 2

N,L∑
i=0,
j=0

wxi w
y
j e
−
‖xi−T (yj)‖

2

2σ2

Note that T : ΩM → ΩF and as for the image term minimization, the iteration is on coordinates
of ΩM we need to apply T before evaluating IF .

Hence

∇T E =
∑
x∈M

x⊗∇IF (T (x))(IF (T (x))− IM (x))

+

(
− 2

σ2

) L,L∑
i=0,
j=0

wyi w
y
j e
−
‖T (yi)−T (yj)‖

2

2σ2 yi ⊗ (T (yi)− T (yj))

−
(
− 2

σ2

) N,L∑
i=0,
j=0

wxi w
y
j e
−
‖xi−T (yj)‖

2

2σ2 yj ⊗ (xi − T (yj))

Where ⊗ is the tensor product. Then we can use gradient descent to estimate T .

9.5.3 Large Diffeomorphic Deformation Mapping Metric (LDDMM)

This framework overcomes the limitation of small deformations model and ensures that the
transformations are diffeomorphic. The transformation φ of the domain is generated by the
transformation φ = φ1 of the flow of a time-dependent velocity vector field vt : Ω → RN , t ∈
[0, 1] specified by the mapping φt : Ω → Ω, t ∈ [0, 1] in the space of transformations starting
with φ0 = Id. ∀x ∈ Ω and terminating at the end-point t = 1 of the flow to the particular

transformation φ = φ1 = φ0 +
∫ 1

0
vt(φt)dt matching the given images.

The map φ parametrizes over time a family of diffeomorphisms on the image domain Ω, φ(x, t) :
Ω × t → Ω. which can be generated by integrating over time the velocity field v : Ω × t → Rd
trough the ordinary differential equation (o.d.e.).

∂φ(x, t)

∂t
= v(φ(x, t), t) φ(x, 0) = x (9.19)
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v̂ = min
v

∫ 1

0

‖Lv‖2dt+ λ

∫
Ω

Sim(F ◦ φ(x, 1),M)dΩ (9.20)

Where Sim is a similarity metric used on the images, λ > 0 accounts for the precision of the
matching, and L is a differential operator chosen to be a Cauchy-Navier type. A discussion on
the selection of L can be found in Beg et al. [2005]. This equations is proven to satisfy the
following Euler-Lagrange equation:

2v̂t −K(
2

σ2
|∂φv̂t,1|∇(F ◦ φt,0)(F ◦ φt,0 −M ◦ φt,1)) = 0 (9.21)

Let K be a green function for the differential operator L, meaning that for any smooth vector
field f K(LTL)f = f . After discretization of the time index, the energy becomes Beg et al.
[2005]:

E(vk) =

N−1∑
j=0

‖vktj‖
2δt+

1

N

∑
x∈Ω

|F ◦ φt,0(x)−M ◦ φt,1(x)|2 (9.22)

Where N is the number of voxels, δt the size of a timestep, and tj ∈ [0, 1].

9.5.4 Symmetric LDDMM with Cross-Correlation: ANTs

We now explore an extension of the LDDMM framework that is Symmetric and also uses Cross-
Correlation metric, that as discussed in Section 9.3.1.2 can have advantages in multi-modal
problems (i.e. registering T1 to a T2 image) Avants et al. [2008]. With a symmetric diffeomor-
phism we guarantee that the result is not biased by the selected target image. This is a desirable
feature in neuroimaging as when comparing multiple subjects there is no solution today on which
one is the best target.

The prior knowledge that this diffeomorphic map should be applied reciprocally to both images
can be captured by including the constraint Sim(F, φ1(x, 0.5)) = Sim(M,φ2(x, 0.5)) directly to
the formulation of the problem, and φ1(x, 1) = φ−1

2 (φ1(x, 0.5), 0.5)

A symmetric alternative to the equation can be constructed by decomposing φ into φ1, φ2, where
for t ∈ [0, 0.5], v(x, t) = v1(x, t) and for t ∈ [0.5, 1]v(x, t) = v2(x, 1 − t) and by using this new
definition we obtain:

v∗1 , v
∗
2 = min

v1,v2

∫ 0.5

0

‖Lv1‖2 + ‖Lv2‖2dt

+ λ

∫
Ω

Sim(F ◦ φ1(x, 0.5),M ◦ φ2(x, 0.5))dΩ

Where the regularization term is equivalent to eq. 9.20, but the optimization over the split
vector fields tries to find an intermediate point of deformation/matching for both images. Thus,
gradient based iterative convergence deforms F and M along the geodesic diffeomorphism φ to a
fixed point midway F and M.
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A Greedy SyN (moniker Symmetric Normalization ?) is defined, which calculates the gradient
only at the midpoint of the full diffeomorphism, i.e. at t = 0.5. φ1 and φ2 are updated from the
previous iterations using gradient descent with step size δ as:

φj(x, 0.5)← φj(x, 0.5) + (δK ∗ ∇Sim(x, 0.5)) ◦ φj(x, 0.5),∀j ∈ {1, 2} (9.23)

Cross correlation adapts naturally to situations where locally varying intensities occur. Thus, we
look for an spatio-temporal diffeomorphic mapping φ that minimizes the local cross correlation
between an image pair:

F ′ = F (φ1(x, 0.5))− µF (φ1(x,0.5)) and M ′ = M(φ1(x, 0.5))− µM(φ1(x,0.5))

CC(F ′,M ′, x) =
〈F ′(x),M ′(x)〉√

〈F ′(x), F ′(x)〉〈M ′(x),M ′(x)〉
(9.24)

ECC(F ′,M ′) = infφ1
infφ2

∫ 0.5

i=0

{‖v1(x, t)‖2L + ‖v2(x, t)‖2L}dt+

∫
Ω

CC(F ′,M ′, x)dΩ (9.25)

Which by using Beg’s derivation Beg et al. [2005] yields two Euler-Lagrange equations:

∇φ1(x,0.5)ECC(x) = 2Lv1(x, 0.5)+2CC(F ′,M ′, x)

(
M ′(x)− 〈F

′(x),M ′(x)〉
〈F ′(x), F ′(x)〉

F ′(x)

)
‖∂φ1‖∇F ′(x)

(9.26)

∇φ2(x,0.5)ECC(x) = 2Lv2(x, 0.5)+2CC(F ′,M ′, x)

(
F ′(x)− 〈F

′(x),M ′(x)〉
〈M ′(x),M ′(x)〉

M ′(x)

)
‖∂φ1‖∇F ′(x)

(9.27)

That velocities v1, v2 exist in the space of smooth vector fields given by the linear operator L
as well as the determinant of each transformation Jacobian |∂φ|. The update method for the
diffeomorphism comes from discretizing the o.d.e.:

φ(x, t+ δt) = φ(x, t) + δtv(φ(x, t), t) (9.28)

The existence of a solution is guaranteed by the integrability condition established for diffeo-
morphic image registration Dupuis and Grenander [1998], while uniqueness comes from the
uniqueness theorem of o.d.e.s Braun [1980]

Algorithm

1. Initialize φ1 = Id = φ−1
1 = φ2 = φ−1

2

2. Compute CC

3. v= v*K : Smooth v by convolving with a Green Kernel.

4. update φ and approximate φ−1 by using eq. 9.28

5. Generate solution t = 1 : φ1 = φ−1
2 (φ1(x, 0.5), 0.5) and φ2 = φ−1

1 = φ−1
1 (φ2(x, 0.5), 0.5)
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9.5.5 Iconic Diffeomorphic Demons Registration

The Demons algorithms is based on optical flow methods, and it was introduced by Thirion in
Thirion [1998] making an analogy to Maxwell’s demons. Maxwell imagines two containers filled
with gas at the same temperature. A demons watches out for molecules and opens a door to
let pass the faster one to one side, and the slower ones to the other side. As a consequence he
manages to have a change of temperature in both containers 9.10.

The algorithm proposed by Thirion imagines demons at the contour of an object, to inform
whether it is outside or inside of the boundaries of the target. The moving object diffuses
through the contours of the fixed object by the action of the demons. This is illustrated in
Figure 9.9

Figure 9.9: Demons at the contour of the fixed
image. The demons know when they are inside
or outside the target shape, and help the fixed
image diffuse through the contours of the target
image.

In image matching the basic idea is that, given
a moving image M and a fixed image F, the
moving image will diffuse through the con-
tours of the image F, assuming one demon
per voxel. In Vercauteren et al. [2009] a reg-
ularization term was added to the algorithm
in order to make it suitable for medical im-
age registration. The goal is to find a de-
formable displacement field s to align corre-
sponding structures from the moving image to
the fixed image as accurately as possible. Ide-
ally the displacement field s minimizes a dis-
tance between the fixed and the moving image,
while holding some properties such as being
diffeomorphic.

Figure 9.10: Maxwell’s demons: A demon watching the door let pass the faster molecules to
one side, and the slower ones to the other side. As a result he changes the temperature in both
containers, and faster molecules are together, separated from slower ones.

Vercauteren et al. Vercauteren et al. [2009]
introduced a correspondence field c to decou-
ple the minimization of the functional energy:
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E(c, s) =
1

σ2
i

Sim(F,M ◦ c) +
1

σ2
x

dist(φ, c)2 +
1

σ2
T

Reg(φ) (9.29)

where Sim is a similarity measure between images defined by the sum of square differences
(SSD) and Reg(φ) a regularization term chosen to be the harmonic energy ‖∇s‖2. The amount
of regularization is controlled with σT while σi accounts for the image noise.

The term dist(φ, c)2 imposes the displacement field φ to be close to the correspondence field c.
σx weights the spatial uncertainty on the deformation. The c variable accounts for uncertainty
of the displacement field. In other words, c is an exact realization of point-to-point correspon-
dences between images while s allows for some errors. In practice, c differs from φ by a small
displacement field u. The energy minimization is performed by alternating minimization w.r.t.
c and s:

1. The first step consists in optimizing eq. 9.29 w.r.t. c, s being fixed:

min
c

=
1

σ2
i

Sim(F,M ◦ c) +
1

σ2
x

dist(φ, c)2

2. The second step consist in minimizing eq. 9.29 w.r.t. φ, c being fixed:

min
φ

=
1

σ2
x

dist(φ, c)2 +
1

σ2
T

Reg(φ)

In Vercauteren et al. [2008], small deformations are parametrized by a dense displacement field
u: c ← φ ◦ exp(u), exp() being the exponential map in the Lie group sense, which ensures that
the result is diffeomorphic. In the log-domain demons, φ is encoded with the exponential map
as φ = exp(v) and the inverse of φ can be easily computed as φ−1 = exp(−v); then dist(φ, c) =
‖log(φ−1 ◦c)‖ and Reg(φ) = ‖∇log(φ)‖2 where log = exp−1, so that φ◦exp(u) = exp(v)◦exp(u).

Estimation of the update field

To introduce an optimization strategy into Demons, we first develop the Taylor expansion of
M ◦ φ ◦ exp(u) = f(φ ◦ exp(u))

E(φ ◦ exp(u)) = E(φ) +∇Eφu+
1

2
uTHEφu+O(‖u‖3) (9.30)

Where ∇Eφ = ∇E(φ ◦ exp(u))|u=0 This approximation is used in Mahony and Manton [2002] to
adapt the classical Newton-Rapshon method by using an intrinsic update step:

φ← φ ◦ exp(u) (9.31)

where u solves:

HEφu = −∇E
T

φ E(φ) (9.32)

The Hessian matrix is most often difficult and numerically instable to compute, and convergence
problems can arise when it is not positive-definite. To address this issue, most of the non-
linear least squares optimization such as Levenberg-Marquardt are related to the Gauss-Newton
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method Madsen et al. [2004]. Let ψ(.) = 1
2‖E(.)‖2. The Gauss-Newton method is based on a

linear approximation of E in a neighborhood, E(φ ◦ exp(u)) = E(φ) + ∇Eφu + O(‖u‖2). Then a
quadratic approximation to derive the Gauss-Newton method on a Lie group will be:

ψ(φ ◦ exp(u)) ≈ 1

2
‖E(φ) +∇E

T

φ u‖2 (9.33)

We know that ∇Eφ has full rank, hence canceling ψ yields:

(∇E
T

φ ∇Eφ)u = −∇E
T

φ E(φ) (9.34)

By introducing ESM we obtain a second order convergence rate without the need of computing
the Hessian. So we can define a first order Taylor expansion of ∇Eφ(u):

∇Eφ(u) = ∇Eφ(x0) + (x0 + u)THEφ +O(‖u‖2)

(x0 + u)THEφ = ∇Eφ(x0)−∇Eφ(u) +O(‖u‖2)

We can use that equality to remove the Hessian from the second-order Taylor expansion defined
at 9.30:

E(φ ◦ exp(u)) = E(φ) +∇Eφu+
1

2
(∇Eφ(x0)−∇Eφ(u))u+O(‖u‖3)

= f(φ) +
1

2
(∇Eφ(x0) +∇Eφ(u))u+O(‖u‖3)

Thus, in Vercauteren et al. [2008] a new Jacobian is defined ∇E
(ESM)
φ which can be incorporated

in eq. 9.34 for a Gauss Newton step:

∇E
(ESM)
φ =

1

2
(∇Eφ(x0) +∇Eφ(u)) (9.35)

Both, eq. 9.34 and eq. 9.32 can be efficiently solved using a Cholesky or QR decomposition.

Thus let us define ∇p with the ESM gradient as: ∇p = ∇E
(ESM)
φ = 1

2 (∇pφ(F ) +∇pφ(M ◦ φ))

So, we can rewrite the functional by using Taylor expansions and approximations:

F (p)−M ◦ φ ◦ exp(u)(p) ≈ F (p)−M ◦ φ(p) +∇p.u(p)

Also dist(c, φ) = dist(φ, φ ◦ exp(u)) = ‖Id− exp(u)‖ ≈ ‖u‖.
Thus

Ecorr
φ (u) = ‖F (p)−M ◦ φ ◦ exp(u)(p)‖2 +

1

σ2
x

dist(φ, φ ◦ exp(u))2

≈ 1

2|Ωp|
∑
p∈Ω

‖
[
F (p)−M ◦ φ(p)

0

]
+

[
∇p
1
σ2
x
I

]
.u(p)‖2 (9.36)

Which applying Gauss-Newton and Sherman-Morrison formula for the matrix inversion the equa-
tions leads to:

uI(p) = −F (p)−M ◦ φ(p)

‖∇p‖2 + 1
σ2
x

∇Tp (9.37)

The algorithm consists in the following steps:
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1. Choose a starting spatial transformation φ = Id for diffeomorphic demons or for Log-
domain diffeomorphic demons.

2. Given φ, find the optimal update field u minimizing Eq. 9.37.

3. Let v ← φ ◦ exp(u) for diffeomorphic demons or v ← log(exp(v) ◦ exp(u)) for Log-domain
diffeomorphic demons.

4. let v ← K ? v where K is a Gaussian convolution kernel

5. Let φ ← φ ◦ exp(v) for diffeomorphic demons or φ = exp(v) and φ−1 = exp(−v) for
Log-domain diffeomorphic demons.

6. Go to 2. until convergence

Where φ is the diffeomorphism and c are the correspondences obtained from the image. This
update has to be small, which implies that small deformations are applied at each iteration, and
then it is composed with the previous transformation.

The log-domain demons efficiently compute the deformation on the log-domain space, and the
inverse of φ parametrized in the log-domain φ = exp(v) can be easily computed as φ−1 =
exp(−v). Having the exponential map: φ = exp(v), then φ ◦ exp(u) = exp(v) ◦ exp(u) and using
the Baker-Campbell-Hausdorff(BCH) formula yields log(exp(v) ◦ exp(u)) ≈ v + u + 1/2[v, u] +
1/12[v, [v, u]] + ... where [v, u] is the Lie bracket: [v, u] = Jac(v)(p).u(p)− Jac(u)(p).v(p).

9.5.6 Tensor Diffeomorphic Demons: DtRefind

Deforming a tensor image by a transformation φ requires a tensor interpolation and a posterior
tensor reorientation Yeo et al. [2009]. Tensor reorientation is of high importance as locally con-
sistent orientation will define the white matter structures. Consistent orientations is mandatory
for any type of diffusion image analysis, including tractography.

According to the FS tensor reorientations strategy Yeo et al. [2009] for non linear deformation,
one first computes the rotations component of the deformation at voxel:

R(x) = (Jφ(x)Jφ(x)T )−
1
2 Jφ(x) (9.38)

J(x) being the jacobian of the transformation φ. R(.) is a polar decomposition of the jacobian,
and thus a function of the displacement field u in the neighborhood of x. The interpolated tensor
T (.) is reoriented as follows:

T ′(x) = RT (x)T (x)R(x) (9.39)

Therefore the energy can be rewritten as:

E(c, φ) =
1

σ2
i

‖F −RT (M ◦ φ ◦ exp(u))R‖2 +
1

σT
Reg(φ) (9.40)

A Least-Squares Optimization can be used to solved the Gauss-Nexton method:

E(c, φ) = ‖
[
Sim(F,RT (M ◦ φ ◦ exp(u))R)

0

]
+

[
∂φ
∂x
1
σT
I

]
u‖2 (9.41)
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To account for the effect of the displacement field of a neighbor voxel y for the reorientation of
a voxel x, the

∂φ
∂x

term is defined as:

∂φ
∂x,x

= −
∑
x∇(RT (x)(M ◦ φ)R(x))

∂φ
∂x,y

= −
∑
x(
∂RT (x)

∂y
(M ◦ φ)R(x) +RT (x)(M ◦ φ)

∂R(x)

∂y
)

9.5.7 Iconic and Geometric Difffeomorphic Demons: T1+ Fiber Tracts

Schematically, iconic registration is mainly driven by the image contours such as boundaries
between white and gray matter. Nevertheless, brain white matter appears uniformly white
in T1 images, while being composed of neural fibers connecting cortical areas together. This
approach suffers from the aperture problem, as without prior knowledge no distinction can be
made between two points from different structures and same intensity. For this reason, surface-
based registration discards white matter information, which is uniformly white in T1.

Analogously, diffusion images might not give relevant information in regions where FA is low.
FA registration is widely used Avants et al. [2011], Mohammadi et al. [2012], however it discards
the directional information of water molecules in contrast to tensor-image model for registration
Yeo et al. [2009]. Nevertheless, a fiber representation is richer as it contains priors included in
the tractography procedure, and is sparse, as it is only defined to be on the white matter and
on reliable fiber tracts.

Auzias in Auzias et al. [2011] shows a misregistration example in an iconic setting, leading to
the central sulcus being aligned with the post-central.

Registration should align images as well as cortical and internal structures such as sulcal lines and
neural fibers, as their misalignment may have a negative impact on group studies on connection
and activation regions. In this section we describe an extension of the demons framework to
introduce neural fiber information to the iconic registration.

To include geometric descriptors we extended the demons formulation. The definition of c
now carries information coming from both image and geometry. Let GF be the fixed geometric
descriptors and GM the moving one, we aim at minimizing the following energy:

E(c, φ) =
1

σ2
i

[
SimI(F,M ◦ c) + SimG(c ? GF ,GM )

]
+

1

σ2
x

dist(φ, c)2 +
1

σT
Reg(φ), (9.42)

where SimI is the image similarity criterion, SimG the geometric similarity criterion, and c ? GF
denotes the action of c on the geometry. Then c is parametrized by an update field of image and
geometry which is described at the end of this section. Note that φ goes from F to M , thus the
inverse of φ gives the geometric deformation.

Minimization of uG, the update field for the geometry:

u?G = argminuGEG(φ, uG) =
1

σ2
i

SimG(φ ◦ exp(uG) ? GF ,GM ) +
1

σ2
x

∫
ΩG

‖uG‖2, (9.43)

Where φ is the resampling of the deformation field and goes from F to M . Thus, the inverse of
φ gives the geometric deformation.
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9.5.7.1 Metrics

Before moving forward with the algorithm it is necessary to define de similarity metric to be used
on the geometry. In the next section, we describe the Closest Point Distance (CPD), Currents
and Measures, and the gradients to be used for the chosen optimization strategy.

Let us define the action of the correspondence field c on a point set as: c?G = {φ◦exp(uG)(xi)}i∈[1,N ] ≈
{φ(xi) + uG(xi)}i∈[1,N ].

Closest point distance on Geometry This metric is rather simple but under certain condi-
tions, such as having a fiber-to-fiber correspondence across subjects, it can lead to good results.

Let us consider our geometric descriptors as point sets: G = {xi}i∈[1,N ], N being the number
of points. Lets denote by πi the point index in GM closest to point i in GF . We recall that the
similarity of CPD is defined as:

SimG(GF ,GM ) =
1

N

N∑
i=1

||xFi − xMπi ||
2
2 (9.44)

∇G,iCPD = −2(xMπi − φ(xFi )) (9.45)

Geometry in the Space of Currents

The closest point distance does not need explicit correspondences between points and it can be
a good approach for comparing single fiber bundles representatives as in Siless et al.. In contrast,
by representing geometry in the space of currents, we have a pose and shape-sensitive measure
which permits to define a distance between bundles containing different number of tracts. The
analysis of the metric will be performed over a corresponding pair of bundles GF,k and GM,k

We recall that the current C over a geometry GF,k , and GM,k are defined as:

C(GF,k) =

N∑
i=0

e c
F,k
i τF,ki

C(GM,k) =

L∑
i=0

e c
M,k
i τM,k

i

where cF,ki is the center between two points in the geometry of the fixed subject GF,k, cF,ki =
xF,ki +xF,ki+1

2 and τF,ki the tangent τF,ki = xF,ki+1 − x
F,k
i and analogously we define for GM,k, cM,k

i =
xM,ki +xM,ki+1

2 and τM,k
i = xM,k

i+1 − x
M,k
i .

For simplicity we define χA,Bi,j = e‖ c
A
i −c

B
j ‖

2

〈τAi , τBj 〉, where the label k is omitted for simplicity
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as equal k are only taken into account. And the distance between them

‖GF − GM‖W∗C =

N,N∑
i=0,
j=0

χF,Fi,j

+

L,L∑
i=0,
j=0

χM,M
i,j − 2

N,L∑
i=0,
j=0

χF,Mi,j

Derivation:

∂‖F −M‖W∗C
∂xMj

=

∂
∑L,L
i=0,
j=0

χM,M
i,j

∂xMj

−
2∂
∑N,L
i=0,
j=0

χF,Mi,j

∂xMj

∂‖F −M‖W∗C
∂xMj

= −2

L,L∑
i=0,
j=0

χM,M
i,j ( cMi − cMj )

+2

L,L∑
i=0,
j=0

e‖ c
M
i −c

M
j ‖

2

(τMi ) + 2

N,L∑
i=0,
j=0

χF,Mi,j (cFi − cMj )

+ 2

N,L∑
i=0,
j=0

e‖c
F
i −c

M
j ‖

2

(τFi )

Geometry in the space of Weighted Measures

Currents could in theory be used to represent a set of geometric objects without explicit corre-
spondences, but they require an orientation to be chosen for each fiber. It is extremely hard to
find a consistent orientation on a large number of one-dimensional objects in 3D without a prior
segmentation and labeling in each subject. As subject variability is high and –in the absence of
complete fiber atlas– correspondence mistakes can lead to poor solutions, we propose to represent
the geometry using Weighted Measures.

Given a set of bundles from the fixed fibers CF (and moving CM ), we define the set of points in
GF as xi,j , i ∈ [1, ..., |CF |], j ∈ [1, ..., |CFi |], where xi,j the j-th point of the representative from
the i-th bundle in CF . Let Kβ be a Gaussian kernel of size β.

Then the weighted measures for the fixed and the moving geometry is defined as in Section
9.3.2.3:

Fixed Geometry : GF =

N∑
i=0

wxi δxi

Moving Geometry : GM =

M∑
j=0

wyj δyj
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where wxi (resp. wyi ) is the weight of the xi (resp. yi) given by the corresponding bundle size.
With Kβ Gaussian kernel of width β. We recall the scalar product between two sums of Weighed
Measures from Section 9.3.2.3:

〈GF ,GM 〉β = 〈
N∑
i=1

wxi δxi ,

M∑
j=1

wyj δyj 〉β =

N∑
i=1

M∑
j=1

Kβ(xi, yj)w
x
i w

y
j (9.46)

Thus, the distance between Weighted Measures is defined as follows:

d2
β(GF ,GM ) = 〈µF , µF 〉β + 〈µM , µM 〉β − 2〈µF , µM 〉β (9.47)

Minimizing ∇EG(φ, uG) = 0 w.r.t. uG via gradient descent yields to the following update field
equation:

∇G,iWM = − 2

β2

N∑
l=0

wxl w
x
iKβ(φ(xi), φ(xl))(φ(xi)− φ(xl))

+
2

β2

M∑
j=0

wxi w
y
jKβ(φ(xi), yj)(φ(xi)− yj) (9.48)

9.5.7.2 Defining ΩG for Bundles

Since we deal with a discrete set of points, we choose to parametrize the dense update field uG by
a finite set of vectors uG,i using radial basis function extrapolation: uG(x) =

∑N
i=1 ψ(‖x−xi‖)λi,

with ψ(x) = e
− x2
γ2 , where γ > 0 is the interpolation scale.

λi are the interpolation coefficients that are calculated such that uG(xi) = uG,i∀i.

Let us define the matrix A such that:

[A]i,j = ψ(‖xi − xj‖)

where [A]i,j denotes the (i, j) entry of A, Λ = [λ1, ..., λN ] the vector of λs, H(x) the vector such
that [H(x)]i = ψ(‖x− xi‖) and U = [uG,1, ..., uG,N ].

We can write: uG(x) = H(x)A−1U .

There are two different approaches to combine the image and fiber domain:

1. Non-overlapping domains: Since we want fibers to influence the deformation near the
definition domain, we define the domain as the union of γ−radius balls B centered at each
coordinate xi. We control the influence by varying γ and thus, dilating the domain. We
define a binary map ΩγG =

⋃N
i=1B(xi, γ) . The domain of the image correspondence field

is the complementary of ΩγG: ΩγI = Ω\ΩγG. Extrapolation is used to infer the values inside
the balls.

2. Overlapping domains: Extrapolation is used to infer the whole image domain of ΩγG, and
then image and fiber vector fields are summed up, as information should be complementary,
and better lead the registration. Still γ parametrizes the spread of the fiber vector field
influence.
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Optimizing Eq. 9.40 w.r.t. to uG leads to minimizing the following energy:

EG(φ, uG) =
1

σ2
i

SimG(φ ◦ exp(uG) ? GF ,GM ) +
1

σ2
x

∫
ΩG

‖uG‖2, (9.49)

Where the derivative of Sim w.r.t. ui has been already discussed specifically for each of the
similarity measures, and 1

σ2
x

∫
ΩG
‖uG‖2 is the classical demons regularization term.

9.5.7.3 Optimization Method

Along with the different metrics proposed in the previous section we have seen how to compute
their gradient. Once we have computed ∇G,i it is only a matter of choosing the optimization
strategy, as with the strategies proposed in this thesis, it is possible to avoid higher order deriva-
tives computation ?. The simplest optimization strategy will be gradient descent.

uG,i = −%∇fG,i(G
M ? φ) (9.50)

with % small. To avoid finding and optimal %, we can use the ESM and perform a Gauss-Newton
update step:

(∇fG,i(G
M ? φ) +∇fG,i(G

F ))uG,i = −2∇fG,i(G
M ? φ) (9.51)

However, in the case of geometric structures, we derive w.r.t. a point of the fiber, and not w.r.t.
a position in the grid as with images. Therefore, the left side of the equation sum will only
make sense using an extrapolator to find the corresponding position of the fixed geometry fibers
gradient.

9.5.7.4 Iconic + Fibers Demons algorithm

Finally, the Geometric Demons algorithm can be formulated as such:

1. Choose a starting spatial transformation φ = Id for diffeomorphic demons or for Log-
domain diffeomorphic demons.

2. Given φ, compute the update field uI as in Eq. 9.37

3. Given φ, compute the update field uG by minimizing Eq. 9.43

4. Let u← φ ◦ exp(uI + uG)

5. v ← log(exp(v)◦exp(u)) using BCH approximation and exp(u) is efficiently computed with
a few compositions, look Vercauteren et al. [2008] for further details.

6. let v ← Kβ ? v where Kβ is a Gaussian convolution kernel

7. Let c← φ ◦ exp(uI + uG) for diffeomorphic demons or φ = exp(v) and φ−1 = exp(−v) for
Log-domain diffeomorphic demons.

8. Go to 2. until convergence
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9.5.7.5 Parameter Settings

The Demons framework requires various parameters to work in practice. Luckily the classical
demons parameters are stable across subjects and datasets, and do not pose us a parameter
setting problem. Nevertheless, the incorporation of fibers into the algorithm has brought few
more parameter to think about:

1. Deformation smoothing: This parameter applies a convolution with a Gaussian Kernel to
the new computed deformation at each iteration. In our experience this parameter works
well between 1.5mm and 3mm. On lower values results looks sharps and unrealistic, while
higher too smooth and underfitted.

2. Update field smoothing: We have disabled this procedure, although it can be useful when
working with unstable optimizations .

3. Iterations and Scales: We work on a 3 scale resolution setting with iterations defined as
15× 10× 5. 5 iterations at the original resolution which is the more expensive one, and 15

when resolution is divided by 22 = 2#resolutions. We did not find any improvements by
increasing these numbers.

4. Gradient descent steps: We fitted these parameters to have an average of update field
lengths no bigger than 2mm.

5. Number of points per fiber: We used 20 points per fiber for Weighted Measures and Closest
Point Distance, although for Currents we resampled the fibers to be equally distributed in
the space.

6. Fiber domain size for splitting domain setting: Experiments performed with Closest Point
Distance and Currents defined a splitting domain, where it is necessary to be adapted to the

image resolution. At low resolution, the domain radius should be multiply by 2#resolutions,
and ideally original resolution radius should be between 1mm and 3mm.

7. Currents and Weighted Measures Kernel width: This parameter might depend on the
application, however for most of our test we found that starting at 15mm and decreasing
it throughout iterations helps avoiding local minima.

9.5.7.6 Implementation

These algorithms previously mentioned were developed using ITK and VTK libraries McCormick
et al. [2014], Schroeder et al. [2006]. Implementation has been done purely on C++. Our
implementation consist mainly in the following four components:

1. The Registration Component: based on the fixed and the moving images, the fixed and
the moving fibers, it outputs the resulting deformation that would align the moving image
and fibers onto the fixed subject space.

2. The Metric component: This component combines the metric on the fibers and the image.

3. The Optimizer: this component is in charge of performing the minimization of the defined
energy.
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4. The Multi-resolution Registration Component: this component calls registration component
at each of the different resolutions. It changes the input image each time to adapt its
resolution according to the current scale.

The Registration Component: Here the metrics between the images and the fibers are
computed in order to call the optimizer that will provide us with the update field of the current
iteration. The deformation is updated at each iteration, and so the moving fibers are warped
and the moving image is deformed and interpolated to match the target space. This is shown in
Figure 9.11

Fixed image Moving Image

Metric

Interpolator

Optimizer
- Gradient Descent
- ESM 

Registration

deformation

deformation

until convergence or 
a fixed number of iterations

Fixed Fibers

Warper

Moving Fibers

Figure 9.11: Registration Component
Input: Fixed image and fibers, moving image and fibers.
The initial deformation is identity, and the deformation is applied to the moving image by
interpolation. The warper applies the vector field to each of the points in the Moving Fiber; this
results in a sequence of floating points that do not need to fill the whole image grid. The metric
is used by the optimizer to infer the new updated deformation field, and the process is repeated
until convergence.
Output: deformation.

The Metric Component: Throughout this thesis the combination of the image and fiber
metric has been done by an addition. Therefore this component computes the corresponding
metric for fibers, and the corresponding metric for the image and both are combined. This is
illustrated in Figure 9.12
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Fixed image Moving Image

Fiber Metric
- Closest point distance
- Currents
- Weighted Measures

Image Metric
- Sum of squared distances
- Mutual Information
- Cross Correlation

Metric

Score + vector field

Fixed Fibers Moving Fibers

Score + vector fieldScore + vector field

Figure 9.12: Metric Component
Input: Fixed image and fibers, moving image and fibers.
This component calls the metric on images and the metric on fibers, to combine them both
additively . It metric returns the score and the vector field. The combination depends on the
definition of the domains (overlapping, non-overlapping discussed at 9.5.7.2.
Output: It outputs the sum of the scores and a vector field (the derivatives).)

The Multi-Resolution Registration Component This component defines a different res-
olution at each stage of the registration. We can define different scales, where resolution will
be decreased by a factor of two, and we can associate a number of iterations with each scale.
Depending on the scale, the fixed and moving images are down-sampled, and the Registration
Component with the images is evaluated at that resolution, while the fibers are handled at their
resolution. The reason why fibers are not also downsampled is because their sampling is sparse
originally, and fibers are generally represented by few points. Then the registration is performed
along a defined number of iterations. When the Registration Component ends, if it is the last
stage, the deformation is returned, however, if it is not, the deformation is applied to moving
image and fibers, images are resampled according to the deformation, and the registration is
performed again. Figure 9.13 shows this process.

128



Multi-modal Registration of T1 images and Fiber tracts

Fixed image Moving Image

Resampler

Registration

Multi-Resolution Registration

deformation

deformation

if resulution scale == full resolution

Fixed Fibers Moving Fibers

Resampler
Warper

if resolution scale < full resolution

resolution scale ++

Figure 9.13: Multi-resolution Component
Input: Fixed image and fibers, moving image and fibers.
This component is in charge of resampling the images at the required resolution defined by the
current scale. Then the Registration Component is called for a fixed number of iteration, and
the returned deformation is applied to the moving fibers (by a warping component) and it is
used by the resampler to update the moving image. The process is repeated until all resolution
scales have been completed.
Output: It outputs the final deformation.

9.6 Experiments: Geometric Demons (GD)

In this section we evaluate the effect of adding fiber constraints into the demons registration algo-
rithm and compare it to different modalities registration algorithms. We selected the Demons’s
framework because of its simplicity and time complexity. Measuring distances on an unlimited
number of geometric curves can be a computational burden, hence one should be careful not to
challenge the usability of the method.

We started testing our hypothesis that fiber information can better lead registration, by including
the simplest of the presented metrics, the Closest Point Distance (CPD). Throughout all this
section, each algorithm is tested in the 3-steps multi-scale approach with 15, 10 and 5 iterations
at each scale (from small to large).
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9.6.1 Geometric and Iconic Diffeomorphic Demons with Closest Point
Distance

We analyze the joint registration of T1 MRI and brain fibers with the CPD metric. CPD is a
quadratic metric, but it can lead to good results under the assumptions of a one-to-one fiber
correspondences across subjects which can be obtained using a method such as the one described
in Section ??.

In this experiment, Ω was split into two disjoints domains for geometric and iconic loss functions.
The reasons for this were twofold:

1. First we know that fibers are defined on white matter, and T1 images are uniformly white
on those regions, adding no relevant information to the registration.

2. Second, the process of finding a fiber-to-fiber correspondence has been performed in a well-
defined and long process framework, followed by visual validation. We expect those fibers
to be well defined, thus they will not introduce errors to the gray matter registration.

Therefore a parameter γ measures the spread of the domain, which might be seen as the diameter
of a tube along the fiber. As we increase γ the fibers have more influence on the deformation
field.

Two experiments were conducted. First, we performed an exhaustive analysis of the parameter
γ of Sec. 9.5.7.2 to understand its effect on registration accuracy. Second, we compared the
performance between the GD, the Scalar Demons (SD) and the Tensor Demons (TD). For both
experiments, 11 subjects were registered onto one, arbitrarily chosen as the target.

9.6.1.1 NMR Database Description

Analysis was performed for 12 subjects of the NMR public database Poupon et al. [2006]. This
database provides high quality T1-weighted images and diffusion data acquired with a GE Health-
care Signa 1.5 Tesla Excite II scanner. The diffusion data presents a high angular resolution
(HARDI) based on 200 directions and a b-value of 3000 s/mm2 (voxel size of 1.875×1.875×2
mm). Distortion correction and fiber tractography and clustering were performed using the
Brainvisa software package (http://brainvisa.info). Using Guevara et al. [2011], we obtained
corresponding fiber bundles between several subjects and a single representative fiber for each
bundle. About 100 bundles were consistently identified in all subjects. The 50 longest ones (25 in
each hemisphere) were retained for the experiments. For each subject we apply affine registration
from B0 to T1 and use the resulting transformation to align bundles with T1 images. Bundles
were further simplified into point sets, which allows us to use the methodology presented in Sec.
??.

9.6.1.2 Influence of γ

γ parametrizes the influence of the fiber vector field information when extrapolating the vector
field, as defined in Section 9.5.7.2 for non-overlapping domains. We varied γ from 0 (no fiber
influence, which is equivalent to Symmetric T1 Demons (SD)) to 3.0mm. Registration results for
three values of γ are shown in Fig. 9.14. Values of the image and fiber similarity measures for
increasing values of γ are reported in Fig. 9.14 (d) and (e). As expected, when γ increases, fiber
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(a) γ = 0 (b) γ = 1.5 (c) γ = 3

(d) (e)

Figure 9.14: Influence of γ on the registration accuracy. Top: Tracts of 11 subjects were

overlapped after registration with the Geometric Demons for three values of γ. Corresponding fibers in

different subjects share colors. Bottom: Evolution of the image and tracts similarity measures with

varying γ is shown in (d) and (e) (one curve per subject). For each metric, values were scaled using

min-max normalization.

matching improves at the expense of image alignment. Indeed, when fibers have a large influence
on their neighborhood, image-driven forces are discarded, leading to poor image registration.
However, we noticed that a γ value of 1.5mm largely improves fiber alignment while keeping a
good match between images. Notably, in some cases image matching is improved when using
tracts as constraints compared to not using them at all, pointing to the fact that geometry may
indeed help image registration to avoid local minima. In the sequel, a γ of 1.5mm will be used.

9.6.1.3 Comparison with Scalar (SD) and Tensor Demons (TD)

For Symmetric T1 Demons, we registered all 11 T1 images onto the target and applied the
inverted deformation field to the bundles. For DtRefind (Tensor Demons Registration (TD)), we
extracted tensors as in Fillard et al. [2007a] and registered them onto the target tensor image.
Then, inverted deformation fields were applied to each subject’s fibers in the DWI space. Finally,
the linear transformation calculated between the target B0 and T1 images was applied to fibers
to carry them to the T1 space. We evaluated the fiber similarity measure between registered
source and target fibers. Results for each method and each subject are reported in Fig. 9.15.

As expected, TD improved fiber registration compared to SD. Similarly, Geometric Demons
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(a) Scalar Demons (b) Tensor Demons (c) Geometric Demons

(d) (e)

Figure 9.15: Comparison of Scalar, Tensor and Geometric Demons. Top: Fibers of
11 subjects were overlapped after registering with: (a) Scalar Demons, (b) Tensor Demons, (c)
Geometric Demons. Corresponding fibers in subjects share colors. Bottom: Fiber similarity
metric for each subject and each method evaluated on the fibers set (d) used during registration
and (e) left aside.

(GD) further improved fiber alignment consistently for all subjects. However, the same set of
fibers used for registration was used for performance evaluation. This favors our method as we
explicitly optimize a metric evaluated on these fibers. For a fair evaluation, we measured in
another experiment the fiber similarity on the 50 bundles that were left aside (100 bundles were
extracted and only 50 were kept). In other words, we perform registration on half of the bundles
and evaluate the result quality on the other half. Results are shown in Fig. 9.15 (e). We noticed
a similar performance between TD and GD, both improving results obtained by SD. However,
GD was only using sparse information from tensors over the set of fibers not being tested: having
similar results as TD is thus very promising.

9.6.2 Log Iconic Geometric Diffeomorphic Demons with Current Dis-
tance between Fiber Tracts

We have shown that extending the Demons framework to include geometric descriptors of fibers
improves the analysis of structures of interest(SOI) while holding, or even improving, the gen-
eral accuracy on the whole image registration. Aware of the limitation of demanding fiber-wise
correspondences, we introduce the Currents metric as it does not require a fiber-wise correspon-
dence across subjects. Nevertheless, it still needs the correspondences between objects where a
consistent alignment can be found, as discussed in extend in Section 9.3.2.2. In our experiments,
the NMR database described in Section 9.6.1.1 was used, however instead of using the represen-
tatives of the thin clusters obtain with Guevara et al. [2011], we used all fibers in the cluster
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(average 5 fibers per cluster).

Two experiments were conducted. First, we exhaustively analyzed the impact of the parameter
γ in ωγG defined in Sec. 9.5.7.2, to understand its effect on registration accuracy. Second, we
compared the performance between Symmetric Log Domain Demons (SLDD), the Symmetric
Tensor Demons (STD) and ANTs. The inverted deformation field was applied to the fibers
to display the registration. We set the currents kernel size β by using a robust estimator of
the maximum distance between bundles thresholded at 20mm. In consequence, when bundles
are very close, the kernel size will be small letting the registration account for small details.
Nevertheless a threshold is set to avoid aligning bundles at such distances.

9.6.2.1 Influence of γ

γ parametrizes the influence of the fiber vector field information when the vector field is extrap-
olated, as defined in Section 9.5.7.2 for non-overlapping domains. In the first experiment, the 11
subjects were registered onto one, arbitrary chosen as the target subject. We varied γ from 0 to
4.5mm, where γ is scaled by the smallest dimension of the voxel size. We divided our bundles in
5 sets (13 bundles each, with bundles of ∼ 3 tracts, each of 21 points), and used jointly 4 to train,
and the left one to test. The following results show the average of the 5 possible permutations
for choosing the test set. We show results over training set (a), test set (b), and the image (c)
for increasing values of γ in Fig. 9.16. As expected, fiber matching improves as γ increases (a)
at the expense of image alignment (c). Indeed, when fibers have a large influence on their neigh-
borhood, image-driven forces are discarded, leading to poor image registration. Also, comparing
(a) and (b) we note that γ = 4.5mm is overfitting the fibers, misleading the overall registration.
γ = 3.0mm largely improves fiber alignment, while keeping a good match between images. In
the sequel, a γ = 3.0mm will be used. In some cases image matching is slightly improved when
using γ = 1.5mm pointing out that geometry may indeed help image registration to avoid local
minima.

(a) (b) (c)

Figure 9.16: Influence of γ. Similarity measure average of the 5 possible training folds of the

cross-validation with varying γ. Different color curves represent the 11 subjects.

9.6.2.2 Comparison with SLDD, STD and ANTS

For this experiment we permuted both the test set (of the 5 training sets previously defined),
and the target subjects. For each of the 12 subjects the 11 remaining subjects were registered
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to it, and for each fold of the cross-validation. This tests also the stability of the algorithm,
however, a template subject could have been estimated Lepore et al. [2008b]. For SLDD, we
registered 11 T1 images onto each of the 12 subject (selected as target one at a time) and applied
the inverse deformation field to the bundles. For STD, we extracted tensors using Fillard et al.
[2007a] and registered each of them onto each of the 12 subject selected as target tensor image,
one at a time. Then, inverted deformation fields were applied to each subject’s fibers in the DWI
space. Finally, the linear transformation calculated between the target B0 and T1 images was
used to carry fibers to the T1 space. For ANTs, we extracted the FA from the tensors obtained
using Fillard et al. [2007a], and aligned them to their T1 image. We use the cross correlation
setting with equal weight for the image and the FA. Then affine and non-rigid transformation
were applied to images, while the inverse of the non-rigid and the affine were applied to the fibers.
We show the average metric over training sets (i), test sets (j) and image (k) of registering all
subjects to each one with the methods mentioned above in Fig. 9.17. As expected, LGD further

(d) Original (e) LGD (f) SLDD (g) STD (h) ANTs

(i) (j) (k)

Figure 9.17: Comparison of SLDD, STD, ANTs and LGD Top: Source fibers and target
fibers overlapped with registered fibers from an arbitrary chosen registration. Corresponding
fibers in subjects share colors. Bottom: Average of the metric obtained from registering 11
subjects to the target subject.

improved fiber registration in (i) compared to the other algorithms. However, the training set
contains the fibers used during registration; we explicitly optimize a metric evaluated on those
fibers. Analyzing the results over the test set in (j) we see a similar performance compared to
ANTs, and STD, which is remarkable as STD is using information from tensors over the whole
dense grid, and ANTs does a cross correlation between the whole FA grid and T1. By contrast,
in LGD the deformation field was obtained using only sparse information coming from selected
fibers, which are not defined in the regions tested in (j). Therefore having a similar performance
is very promising. We can also see in (k) the image registration for STD was extremely poor.

We time all algorithms with an Intel Xeon 8proc. 2.53GHz, 11.8Gb and obtained: SLDD=19.61min,
STD=10.75min, ANTs=25.63min, and LGD=12.51min.
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9.6.2.3 Discussion

We compared our algorithm against a scalar (SLDD), a tensor (STD), and a multi-modal (ANTs)
registration. Our results show that bundle alignment was improved compared to other algo-
rithms. We get accurate results even for testing set fibers where no information was used from
the support regions of the those fibers, and STD and ANTs were using information from the
whole grid. This shows that a small set of fibers might be sufficient for a proper registration
of the white matter across subjects. Moreover, while fiber alignment is improved, the efficiency
of the image alignment is maintained. When evaluating the algorithm for the different γ val-
ues, we could see that γ = 1.5mm better registers missing structures than γ = 0mm and than
SLDD. However, we believe there is a trade-off to make between image and fiber alignment, and
γ = 3mm notably improved fiber alignment while still obtaining good image registration results.

By using labeled bundles instead of purely tensor information, we add relevant features that
were previously extracted as prior such as region connection. Nevertheless, consistently labeling
fiber bundles across subjects is a hard topic, and it is not always a possible choice. Obstacles can
be noise in the image, subjects with degenerated white matter, algorithm not available, or not
reliable enough. For this reason in the following section we propose a method for comparing white
matter fibers across subjects without the need of any type correspondence. However, when having
a consistent labeling of fiber bundles across subjects, using currents to model their geometry is
an efficient and effective choice. When having corresponding bundles, the computation is reduced
to the within correspondences comparisons instead of an all-to-all comparison, and the tangents
along the tract curves serve to include shape information into the fiber bundle representation.

9.6.3 Log Iconic and Geometric Diffeomorphic Demons with Measures
on fiber tracts

Currents is an appealing similarity metric, as it is pose and shape sensitive; nevertheless the need
for bundles correspondences or analogously an orientation of fibers, is a huge limitation. The
reason is that by doing so, we are introducing a pre-segmentation in the registration procedure.

This can be featured in examples in which one wants to explicitly define regions of interest,
to analyze a disease, the activation of a particular region on fMRI (including only relevant
connections). However, when segmentation comes automatically and is intended to perform on
the whole brain, it is generally based on a pre-defined atlas, and registration to those atlases,
introducing and spreading possible inaccuracy and errors. For these reason, we propose an
approach where no explicit correspondence is needed, and the whole brain can be registered
using white matter information without such strong assumptions.

For these experiments, Weighted Measures Model was introduced, and the domain of the fiber
was defined on the whole grid, meaning that fiber together with image should lead the registra-
tion, without prioritizing one over the other based on the intensity of the image.

This method was tested in a different database, and 3 experiments were performed:

1. The Kernel size of the Weighted Measure Model:

• Different values of kernel size were tested, and were fixed through the iterations of the
algorithm.
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• An adaptive kernel size, where a starting value is selected, then decreased across
iterations, as the distance on the Weighted Measures decreases, the kernel size is
shrunk to capture finer details.

2. We analyze the impact of the regularization over fibers, image and the transformation
properties

3. We compare the algorithm against the Tensor registration, and the multi-modal of T1+FA.

9.6.3.1 Data Description

We used ten healthy volunteers from the Imagen database? scanned with a 3T Siemens Tim
Trio scanner. Acquisitions were MPRAGE for T1 weighted ( 240×256×160, 1.09375×1.09375×
1.1mm3) and DW-MRI (128 × 128 × 60, 2.4 × 2.4 × 2.4mm3) with TR = 15000 ms, TE = 104
ms, flip angle = 90o, 36 gradient directions, and b-value = 1300s/mm2.

For each subject we obtained the linear transformation from the non-weighted image B0 to T1

to align bundles with T1 images. Eddy currents correction was applied to DTI data, and skull
and neck were removed from T1 images using the FSL software.

We used MedInria for fiber tractography, and splines to extrapolate for uniformly distributed
points. Fibers shorter than 50mm were discarded in order to discard U-shape fibers. Within
U-shape brain fibers variability is high and mismatch across subjects can be easily introduced
during registration. We rather trust the image for those regions around the cortex.

As discussed in section ?? we are not interested in using the whole fiber tractography output,
but rather the bundles representatives. We use the QuickBundles algorithm Garyfallidis et al.
[2012] to obtain a clustering of the fibers, and used the representatives given by the algorithm
for registration. The threshold value for the bundles spread width was set to 10mm, which gives
a trade-off between low cluster variability and number of fibers per cluster. This yielded an
average of 600 bundles per subject (range: [323, 927]), where a bundle contains at least one fiber.
Selecting bundles with more than 50 fibers leads to an average of 63 bundles (range: [37, 88]).
In the sequel we refer to this subset as the Training Set, and bundles with less than 50 fibers as
the Test Set.

Before registering with Weighted Measures Geometric Demons (WMGD) we apply a T1 affine
transformation using the MedInria software to take subjects to the target space, and apply the
inverse to the fibers.

After running WMGD we obtained a deformation field that we applied to the moving T1 and
the inverse of the deformation to the fibers.

The rest of this section explains the experiments performed. To assess the sensitivity to pa-
rameters we arbitrary choose a subject as target to register the rest of the dataset. Then, for
performance comparison with other algorithms, we register the subjects to one another, and
average the pairwise distances.

9.6.3.2 Weighted Measures kernel size

To analyze the impact the β parameter defined in Section 9.5.7.1 we register the whole dataset
to an arbitrary subject chosen as target by using the Training Set of bundles. Typically large
kernels would be able to capture large misalignment and details are discarded.
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We run Weighted Measures Geometric Demons with the following parameters fixed % = 0.3, γ =
3mm,σT = 2mm,σi = 1mm,σx = 1mm with a 3-steps multi-scale approach with 15, 10 and 5
iterations at each scale (from small to large). γ parametrizes the influence of the fiber vector
field information when extrapolating the vector field, as defined in Section 9.5.7.2 for overlapping
domains.

We vary β from 0 to 30mm and show results in Figure 9.18 for fibers (a) and for image (b).
However, we believe that decreasing β through iterations might avoid local minima for fiber
registration and improve the accuracy of image registration. We decrease it 0.5% at each iteration
and results are shown in Figure 9.18 for fibers (c) and for image (d).

9.6.3.3 Regularization

To analyze the smoothness of the deformation field, we run experiments with values of σT varying
from 0 to 3.0mm and analyze the impact over the results. Analogous to Section 9.6.3.2 we register
the dataset to an arbitrary subject chosen as target, and we use the Training Set of fibers for
registration. We use the same parameter setting with β = 20mm. In Figure 9.19 results are
shown for fibers (a), image (b) and the regularization term (c).

9.6.3.4 Performance Comparison Experiments

We conducted a cross-validation experiment by performing registration on the Training Set, and
validating results over the Test Set (bundles left out for containing less than 50 fibers). To
validate the robustness of the results we register subjects dataset to one another and plot the
average pairwise distance.

We run Weighted Measures Geometric Demons with the following parameters % = 0.3, γ =
3mm,β = 10mm,σT = 2mm,σi = 1mm,σx = 1mm. β was decreased by 0.5% at each iteration
of the algorithm. Symmetric Tensor Demons (STD) was run with its defaults parameters. For
ANTS we used recommended parameters from documentation except for the weight of T1 and
FA where different combinations were tested. We finally show results with both parameters
equal to 1, which we found to be a fair trade-off. Each algorithm was tested on the 3-steps
multi-scale approach with 15, 10 and 5 iterations at each scale (from small to large).

We recall that for WMGD we first apply a T1 affine transformation using the MedInria soft-
ware to take subjects to the target space, and apply the inverse to the fibers. After running
WMGD we obtained a deformation field that we applied to the moving T1 and the inverse of
the deformation to the fibers. We compare our results to those of ANTS, a multi-modal image
registration combining T1 image and FA, and Symmetric Tensor Demons, a tensor-based regis-
tration algorithm. Before running ANTS, corresponding FA and T1 were aligned using a linear
transformation. The resulting affine transformation and deformation field were applied to the
moving T1 image, and their inverse to the fibers. For tensor-based registration, tensor images
were taken to the target T1 space using an affine transformation for the moving subjects, but
preserving the original resolution. The resulting deformation field was up-sampled to the T1

resolution for application to the image and then inverted for application to the geometry.

9.6.3.5 Weighted Measure: β value

As expected, Figure 9.18 shows that higher β values give better scores for fiber registration while
loosing accuracy on the image registration. Each curve in Figure 9.18 has been normalized by its
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maximum value in order to analyze the impact of the parameter in each subject. However min-
imum values across figures are not comparable as they depend on the maximum value achieved.
When defining a fixed β though the iteration we quickly lose accuracy for the image registration.
When decreasing iteratively β, we can see that with an initial value between 10 and 15, we
improve fiber alignment while still holding the image one.

9.6.3.6 Regularization

In Figure 9.19 we can see that as we increase the regularization, the image accuracy decreases.
However, low regularization will result in sharp deformations, which are often undesirable for the
purpose of registration. As for the fiber accuracy we find that the impact is low, nevertheless, a
fair compromise with the harmonic energy can be found for σT between 1.5 and 2. The difference
of regularization impact over the image and the fibers are related to the resolution differences.

9.6.3.7 Discussion

The aim of WMGD is to align T1 images and fiber tracts simultaneously by only using a set
of bundles that represent well the white matter structure. We compare our results to a tensor-
based registration Symmetric Tensor Demons (STD) and a multi-modal registration of T1 + FA
(ANTS).

Average results for registering the individual datasets to each other are shown in Fig. 9.20
for training set tracts (a), test set (b) and image (c). The WMGD method outperforms the
others on the bundles used in the registration as shown in (a), which is expected, given that
the minimized energy considered those specific bundles. For a fair comparison we tested our
metric on the remaining bundles; the corresponding results are shown in (b). For the left aside
bundles, results are similar but generally improved by our method. These results suggest that a
sparse bundle selection according to their importance can be sufficient and that there is no need
to require datasets to have the same number of bundles. Last, in (c) we compare the methods
with respect to image registration accuracy. It is important to mention that diffusion images
had a lower resolution than the T1 images, maybe giving advantage to ANTS and our algorithm
in accuracy as the level of details of the images were higher. WMGD yields better performance
than ANTS, proving that improvements on bundles registration was not obtained at the expense
of image accuracy.

In Fig. 9.21 we can see the result of registering the dataset to an arbitrary chosen as target.
In (d) we see the fibers even before applying an affine registration, and in (g) we can see some
improvements with respect to (e) and (f) regarding the borders of the image, and a better
alignment of the corpus callosum.

We time all algorithms with an Intel Xeon 8proc. 2.53GHz, 11.8Gb and obtained: STD=5.11min,
ANTs=29.43min, WMGD=44.0min.

9.7 Conclusion

We have analyzed different metrics to represent information from neural brain fibers tracts as
an addition to iconic registration. Each representation was compared to an iconic and a tensor
registration.
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(a) (b)

(c) (d)

Figure 9.18: Registration of the dataset to an arbitrary subject chosen as target. Each curve
encodes one subject registration to the target. β varies in the x-axis. Figures (a) and (b) show
the metric for fiber and image respectively at each β value fixed through iterations. Figures (c)
and (d) show respectively the metric for fibers and image at each initial value of β, and with a
0.5% decrease at each iteration. Curves were normalized by their maximal value.
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(a) (b) (c)

Figure 9.19: Registration of the dataset to an arbitrary chosen as target with varying σT . Each
curve encodes one subject registration to the target. Weighted Measures metric is shown in (a)
for increasing σT , the Sum of Squared Diff. of the image in (b) and in (c) we show the harmonic
energy results. Curves were scaled using min-max normalization.

(a) (b) (c)

Figure 9.20: Registration of the dataset to each subject. STD, ANTS, and WMGD show the
average accuracy of the registration to each subject for the corresponding method. Original
corresponds to the original distances between the dataset and the chosen target subject. Values
were scaled using min-max normalization.
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(d) Original (e) STD (f) ANTS (g) WMGD

Figure 9.21: Overlap of fiber bundle representatives from all subjects registered to an arbitrary
one chosen as target. Colors encode the different subjects. Behind we see the 3D T1 image of
the target subject.

When compared to iconic registration, we significantly improved the registration of fiber tracts,
while holding a competitive performance on iconic alignment. Few subjects displayed a better
iconic alignment while introducing fibers information, however we believe that this statement
can only be proved by analyzing in detail the anatomy of the resulting images, and not the
scores of the metric. This is meant to ensure that no overfitting is happening. Nevertheless,
the improvement of fiber tracts show that iconic criteria might align perfectly the contours of
the image, however without any control of possible misalignment inside regions with uniform
intensity, such as white matter.

When fiber-based registration is compared to tensor registration, it is interesting to see that
tensor registration is unable to yield an acceptable registration of T1, leaving us to wonder
whether the registration can be useful. Nevertheless, it can serve other types of investigation,
such as analyzing the amount of connectivity in a defined region. On the other hand, if tensor
registration fails to align T1 images, it might be hard to extract further features from the resulting
population, i.e. while analyzing connectivity patterns, one might be interested in its relation to
sulcal lines or functional regions, however if gray matter is misaligned, sulcal folding might also
be.

When comparing to a multi-modal algorithms, best results were obtained by using Weighted
Measures. This is probably related to the reliability of the corresponding bundles defined.

It is important to decide whether one should use Currents or Weighted Measures. When analyz-
ing one specific region, i.e. the auditory region, and one can accurately label the fibers connecting
it, it might be advantageous to use Currents, and define the relevant orientation. However, in
more general settings, when one does not have any prior, or any reliable method to introduce
them, Weighted Measures are better suited.
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Conclusion

”He had come a long way to this blue lawn, and his dream must have seemed so
close that he could hardly fail to grasp it. He did not know that it was already
behind him, somewhere back in that vast obscurity beyond the city, where the dark
fields of the republic rolled on under the night. Gatsby believed in the green light,
the orgastic future that year by year recedes before us. It eluded us then, but that’s
no matter — to-morrow we will run faster, stretch out our arms farther. . . . And
one fine morning —— So we beat on, boats against the current, borne back
ceaselessly into the past.”

—The Great Gatsby, by F. Scott Fitzgerald

Population analysis for detecting disease biomarkers and for understanding normal growth is
nowadays a standard technique linked to the wide availability of scanners in hospitals and the new
interest of sharing research purpose databases. The wide range of imaging techniques measuring
different features of the brain leads to a natural evolution path of the analysis. Multi-modal
analysis has been receiving more and more attention in the neuroimaging field at every stage of
analysis: white matter clustering, functional region activation detection, cortex segmentation,
registration, etc.

Within this thesis we have mainly explored the simplication of white matter structure, and how
white matter can be incorporated into a registration framework to improve inter-subject analysis.
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In Chapter 8 we have performed an extensive analysis of common techniques to simplify intra-
subject fiber tractography analysis. With the interest of further performing inter-subject studies,
we focus only on the main tracts, which are expected to be large and easily detectable across
subjects. We have compared different clustering algorithms for the simplification of white matter,
from the most famous and widely known K-Means, to hierarchical average linkage, and a new
proposed algorithm in the community, QuickBundles. The later was specially designed for the
fast analysis of massive white matter datasets.

The strongest white matter analysis pipeline was developed in and it is based on average linkage,
where tractography dataset is first divided based on previous segmentations performed on the
cortex based on T1 images, and then the algorithm is applied for each subgroup. A second level
of clustering group fibers from multiple subjects together to detect corresponding fibers across
subjects. This methodology is robust, and it builds on many preprocessing steps to enhance
results: T1 based cortex segmentation is used to infer a roughly initial segmentation of the
white matter tracts, and registration needs to be performed before clustering multiple subjects
together.

In contrast with the latter technique, QuickBundles was developed in , and is a fast algorithm,
capable of clustering a massive tractography database in a matter of seconds. Although Quick-
Bundles has not showed to perform well on metric comparisons to other algorithms and metrics,
it is very handy for fast preprocessing, and we have found that in average the main white matter
tracts are finely detected.

With the aim to compare the impact of different metrics over white matter analysis, we chose
K-Means algorithm and extended its metric to better suit our needs. We showed how simple
metrics such as Euclidean distances, the most widely used on clustering algorithm, can be im-
proved. Specifically, we focus in metrics such as Hausdorff and Measures, where no point to point
correspondence is required. This is relevant in white matter analysis not only because fibers can
have different lengths, but also, as a consequence of poor image quality, a fiber can end earlier,
or be split. Our results show that the Measure metric outperformed other metrics. We have also
introduced different metrics to evaluate the clustering, which are widely known in the machine
learning literature, but hardly used on the diffusion neuroimaging community.

We are aware that distances such as Hausdorff or Measure are computationally more expensive
than a point-wise distance such as Euclidean, and as a consequence of the high-dimensionality
of the diffusion data, we found ourselves forced to explore other options. We introduced Multi-
dimensional scaling to embed tracts into a new featured spaced defined by the desired metric,
to then cluster the embedded tracts with the regular K-Means algorithm. This is performed by
selecting a percentage of random tracts as sampled, and we show that while computation time
dramatically changes, accuracy remains stable when varying the % of them.

We have chosen K-Means for this analysis, but further work could be the implementation of
Measures with Multi-dimensional scaling on QuickBundles or on average linkage clustering and
one would hope it can enhance clustering accuracy.

In Chapter 9 we have extended a well-known method for T1 image registration, the Demon’s
Framework, and incorporated into it the geometrical information coming from fibers tracts.

Tractography outputs are large, and can contain a few million tracts. Registration algorithms
are computationally expensive to compute, therefore a prior simplification of the white matter
is mandatory.

Different approaches have been explored during this thesis. The first proof of concept was the
representation of the fibers as a sequence of points, and a measure defined by the Closest Point
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Distance (CPD). Results have shown that T1 registration could be widely improved, as T1 align-
ment was maintained by the new algorithm, but white matter alignment was greatly improved.
Some subjects have even showed improvements on the T1 alignment, verifying that indeed white
matter information can lead to better overall inter-subject registration. A requirement for using
the CPD metric was a fiber-to-fiber correspondence. This was obtained by using the 2 levels
pipeline of average-linkage clustering developed in . The resulting bundles were further simplified
to only one representative fiber, the centroid.

To avoid this fiber-to-fiber requirement which is mostly unrealistic, we upgrade the registration
algorithm by representing fiber bundles with Currents. Instead of a cloud of points, each bundle
is represented by a sum of dirac deltas centered at fiber points associated with the tangents
following the curve direction. Although this new representation does not require fiber-to-fiber
inter-subject correspondences, it does requires bundle-to-bundle correspondence as orientation
needs to be consistent across subjects for a proper registration. Results have once again shown
to hold T1 alignment while dramatically improving tractography alignment in comparison with
the original algorithm.

Naturally, the next step was to remove the requirements of bundle-to-bundle correspondences.
The reason why this dependency is undesirable is usability. First, obtaining corresponding bun-
dles across subjects takes lots of preprocessing time, but second, it is not always plausible to
define correspondences across subjects. The latter holds especially in neurodegenerative dis-
eases, and longitudinal studies for analyzing brain development. But we were still interested in
the white matter simplification, and a new metric was defined on that basis. We represented the
whole tractography dataset as a sum of dirac delta centered at each point of each cluster repre-
sentative. The clustering can be performed with any method, but we have used QuickBundles.
Each dirac delta is weighted by the amount of fibers there was in the cluster of the representa-
tive. By doing so, the registration is lead mostly by the larger clusters, which are expected to be
the main white matter tracts. With this reasoning, small bundles are taken as noise, and have
low impact on the alignment. Once again, results have shown a dramatic improvement of white
matter alignment, while holding accurate results for T1 image alignment.

We have compared our registration methodology to a tensor-based and a muti-modal T1 + FA
(ANTS) registration. For tensor-based registration results were as expected, as white matter
alignment was improved but the registration was useless for T1 analysis, and therefore for most
multi-modal approaches that go beyond white matter analysis. The comparison with the multi-
modal T1 + FA was more interesting, as for the Currents representation improvements where
mostly in white matter, but ANTs showed slightly better results on image criteria. On the other
hand, for Weighted Measures representation, results showed improvement in white matter but
also regarding the imaging criterion. As we believe Currents give a better representation of shape
than Measures, we intuitively conclude that the improvement was related to enforcing bundle
correspondences across subjects.

As future work on registration, it is worth investigating the use of non-oriented versions of
currents, such as with Varifold.

Meanwhile, the proposed registration methods will be used to analyze the impact of including
white matter connections for normalization on fMRI analysis, such as activation zones detection.
A proof of concept of adding diffusion information such as FA to the registration in a group
analysis of activation detection zones is shown in Fig. 10.1, indicating that indeed, connection
information might improve sensitivity. This first results motivates the use of the methods devel-
oped in this thesis to potentially improve the accuracy on fMRI activation detection. A proof
of concept of adding diffusion information such as FA to the registration in a group analysis of
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ANTs T1 ANTs T1

ANTs T1 + FA
ANTs T1 + FA

Figure 10.1: Comparison between a group analysis registration of 20 subjects from the HCP
database, using ANTs with purely T1 images, and ANTs with T1+FA. Results shows that higher
values are obtained with the incorporation of information comming from diffusion imaging.

activation detection zones is shown for both registrations on Fig. 10.1 (right images), inciting
that indeed, connection information might improve accuracy. This first results motivates the use
of the methods developed in this thesis to potentially improve the accuracy on fmri activation
detection.
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1999.

Cyril Poupon. Poupon. Technical report, CEA, NeuroSpin, 2010.

M. E. Raichle, A. W. Toga, and J. C. Mazziotta.

William M Rand. Objective Criteria for the Evaluation of Clustering Methods. Journal
of the American Statistical Association, 66(336):846–850, 1971. doi: 10.1080/01621459.
1971.10482356. URL http://www.tandfonline.com/doi/abs/10.1080/01621459.1971.

10482356.

Andrew Rosenberg and Julia Hirschberg. V-measure: A conditional entropy-based external
cluster evaluation measure. In Proceedings of the 2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning (EMNLP-
CoNLL), pages 410–420, 2007. URL http://www.aclweb.org/anthology/D/D07/D07-1043.

Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster
analysis. JCAM, 20(0):53 – 65, 1987. ISSN 0377-0427.

Daniel Rueckert, Paul Aljabar, Rolf Heckemann, Joseph Hajnal, and Alexander Hammers. Dif-
feomorphic registration using b-splines. In LNCS, volume 4191, pages 702–709. Springer Berlin
/ Heidelberg, 2006.

Elena Rusconi, Philippe Pinel, Evelyn Eger, Denis LeBihan, Bertrand Thirion, Stanislas De-
haene, and Andreas Kleinschmidt. A disconnection account of gerstmann syndrome: functional
neuroanatomy evidence. Ann Neurol, 66(5):654–662, Nov 2009. doi: 10.1002/ana.21776. URL
http://dx.doi.org/10.1002/ana.21776.

161

http://dx.doi.org/10.1007/10704282_64
http://dx.doi.org/10.1007/10704282_64
http://dx.doi.org/10.1148/rg.254055027
http://dx.doi.org/10.1148/rg.254055027
http://www.tandfonline.com/doi/abs/10.1080/01621459.1971.10482356
http://www.tandfonline.com/doi/abs/10.1080/01621459.1971.10482356
http://www.aclweb.org/anthology/D/D07/D07-1043
http://dx.doi.org/10.1002/ana.21776


Chapter 10

A. Schleicher, N. Palomero-Gallagher, P. Morosan, S.B. Eickhoff, T. Kowalski, K.de Vos,
K. Amunts, and K. Zilles. Quantitative architectural analysis: a new approach to cor-
tical mapping. Anatomy and Embryology, 210(5-6):373–386, 2005. ISSN 0340-2061. doi:
10.1007/s00429-005-0028-2. URL http://dx.doi.org/10.1007/s00429-005-0028-2.

Peter Schneider, Michael Scherg, H. Günter Dosch, Hans J Specht, Alexander Gutschalk, and
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