
Université Pierre et Marie Curie
École Doctorale Informatique, Télécommunications et Électronique

INRIA, École Normale Supérieure / Équipe PARKAS

A D E C O U P L E D A P P R O A C H
T O H I G H - L E V E L L O O P O P T I M I Z AT I O N

– tile shapes , polyhedral building blocks and low-level compilers –

Par Tobias Christian Grosser

Thése de doctorat en informatique

Codirigée par Albert Cohen et Sven Verdoolaege

Présentée et soutenue publiquement le 21/10/2014

Devant le jury composé de:

Rapporteurs: Mary Hall University of Utah
Franz Franchetti Carnegie Mellon University

Examinateurs: Stef Graillat Université Pierre et Marie Curie
Jean-Luc Lamotte Université Pierre et Marie Curie
Franz Franchetti Carnegie Mellon University
Ponnuswamy Sadayappan Ohio State University
Albert Cohen INRIA
Sven Verdoolaege École Normale Supérieure

Tobias Grosser: A decoupled approach to high-level loop optimization, Tile
shapes, polyhedral building blocks and low-level compilers, Novem-
ber 19, 2014

R É S U M É

Malgré des décennies de recherche sur l’optimisation de boucle aux
haut niveau et leur intégration réussie dans les compilateurs C/C++
et FORTRAN, la plupart des systèmes de transformation de boucle
ne traitent que partiellement les défis posé par la complexité crois-
sante et la diversité du matériel d’aujourd’hui. L’exploitation de la
connaissance dédiée a un domaine d’application pour obtenir le code
optimal pour cibles complexes, tels que des accélérateurs ou des mi-
croprocessors multi-cœur, pose des problèmes pour les formalismes
et outils d’optimisation de boucle existants. En conséquence, de nou-
veaux schémas d’optimisation qui exploitent la connaissance dédiée
a un domaine sont développées indépendamment sans profiter de
la technologie d’optimisation de boucle existante. Cela conduit à des
possiblités d’optimisation raté et ainsi qu’à une faible portabilité de
ces schémas d’optimisation entre des compilateurs différents. Un do-
maine pour lequel on voit la nécessité d’améliorer les optimisations
est le calcul de pochoir itératifs, un probléme de calcul important qui
est réguliérement optimisé par les compilateurs dédiées, mais pour
lequel générer code efficace est difficile.

Dans ce travail, nous présentons des nouvelles stratégies pour l’opti-
misation dédiée qui permettent la génération de code GPU haute per-
formance pour des calculs de pochoir. À la différence de la façon dont
la plupart des compilateurs existants sont mis en œuvre, nous dé-
couplons la stratégie d’optimisation de haut niveau de l’optimisation
de bas niveau et la spécialisation nécessaire pour obtenir la perfor-
mance optimale. Comme schéma d’optimisation de haut niveau, nous
présentons une nouvelle formulation de “split tiling”, une technique
qui permet la réutilisation de données dans la dimension du temps
ainsi que le parallélisme équilibré à gros grain sans la nécessité de
recourir à des calculs redondants. Avec le “split tiling”, nous mon-
trons comment intégrer une optimisation dédiée dans un traducteur
générique source-à-source, C vers CUDA, une approche qui nous
permet de réutiliser des optimisations existants non-dédiées. Nous
présentons ensuite notre technique appelée “hybrid hexagonal / par-
allelogram tiling", un schéma qui nous permet de générer du code
que cible directement les préoccupations spécifiques aux GPUs. Pour
conclure notre travail sur le "loop tiling", nous étudions la rapport en-
tre “diamond tiling” et “hexagonal tiling”. À partir d’une analyse de
“diamond tiling” détailée, qui comprend les exigences qu’elle pose
sur la taille de tuile et les coefficients de front d’onde, nous four-
nissons une formulation unifiée de l’“hexagonal tiling” et du “dia-
mond tiling” qui nous permet de réaliser un “hexagonal tiling” pour

v

des problèmes avec deux dimensions (un temps, un espace) dans le
cadre d’un usage dans un optimiseur générique, comme “Pluto”. En-
fin, nous utilisons cette formulation pour évaluer l’“hexagonal tiling”
et le “diamond tiling” en terme de rapport de calcul-à-communication
et calcul-à-synchronisation.

Dans la deuxième partie de ce travail, nous discutons nos contri-
butions aux composants de l’infrastructure les plus important, nos
“building blocks”, qui nous permettent de découpler notre optimisa-
tion de haut niveau tant des optimisations nécessaires dàns la généra-
tion de code que de l’infrastructure de compilation générique. Nous
commençons par présenter le nouveau “polyhedral extractor” (pet),
qui obtient une représentation polyédrique d’un morceau de code C.
pet utilise l’arithmétique de Presburger en sa généralité pour élargir
le fragment de code C supporté et porter une attention particulière
à la modélisation de la sémantique des langages même en présence
de dépassement de capacité des entiers. Dans une prochaine étape,
nous présentons une nouvelle approche polyédrique pour la généra-
tion de code, qui étend cell-ci au-delà de la génération de flot de con-
trôle classique en permettant la génération de expressions fournies
par l’utilisateur. Avec un mécanisme d’option détaillé, nous donnons
à l’utilisateur un contrôle précis sur les décisions de notre généra-
teur du code et nous ajoutons un support pour la spécialisation ex-
tensive par exemple, avec une nouvelle forme de déroulage de boucle
polyédrique. Pour faciliter la mise en œuvre de transformations polyé-
driques, nous présentons une nouvelle représentation, les “schedule
trees”, qui représentent explicitement la structure d’arbre inhérent
aux ordonnancements polyédriques.

La dernière partie de cet ouvrage présente nos contributions aux
compilateurs du bas niveau. L’objectif principal de cette partie est
notre travail sur la délinéarisation optimiste, une approche pour dériver
une vue de tableau multi-dimensionnel pour des formes accès en
polynômiales multivariées qui résultent souvent de code qui travaille
avec des tableaux multi-dimensionnels avec taille paramétrique.

vi

A B S T R A C T

Despite decades of research on high-level loop optimizations and
their successful integration in production C/C++/FORTRAN com-
pilers, most compiler internal loop transformation systems only par-
tially address the challenges posed by the increased complexity and
diversity of today’s hardware. Especially when exploiting domain
specific knowledge to obtain optimal code for complex targets such
as accelerators or many-cores processors, many existing loop opti-
mization frameworks have difficulties exploiting this hardware. As a
result, new domain specific optimization schemes are developed in-
dependently without taking advantage of existing loop optimization
technology. This results both in missed optimization opportunities as
well as low portability of these optimization schemes to different com-
pilers. One area where we see the need for better optimizations are
iterative stencil computations, an important computational problem
that is regularly optimized by specialized, domain specific compilers,
but where generating efficient code is difficult.

In this work we present new domain specific optimization strate-
gies that enable the generation of high-performance GPU code for
stencil computations. Different to how most existing domain specific
compilers are implemented, we decouple the high-level optimization
strategy from the low-level optimization and specialization necessary
to yield optimal performance. As high-level optimization scheme we
present a new formulation of split tiling, a tiling technique that en-
sures reuse along the time dimension as well as balanced coarse
grained parallelism without the need for redundant computations.
Using split tiling we show how to integrate a domain specific opti-
mization into a general purpose C-to-CUDA translator, an approach
that allows us to reuse existing non-domain specific optimizations.
We then evolve split tiling into a hybrid hexagonal/parallelogram
tiling scheme that allows us to generate code that even better ad-
dresses GPU specific concerns. To conclude our work on tiling schemes
we investigate the relation between diamond and hexagonal tiling.
Starting with a detailed analysis of diamond tiling including the re-
quirements it poses on tile sizes and wavefront coefficients, we pro-
vide a unified formulation of hexagonal and diamond tiling which
enables us to perform hexagonal tiling for two dimensional problems
(one time, one space) in the context of a general purpose optimizer
such as Pluto. Finally, we use this formulation to evaluate hexago-
nal and diamond tiling in terms of compute-to-communication and
compute-to-synchronization ratios.

In the second part of this work, we discuss our contributions to
important infrastructure components, our building blocks, that en-

vii

able us to decouple our high-level optimizations from both the nec-
essary code generation optimizations as well as the compiler infras-
tructure we apply the optimization to. We start with presenting a
new polyhedral extractor that obtains a polyhedral representation
from a piece of C code, widening the supported C code to exploit
the full generality of Presburger arithmetic and taking special care
of modeling language semantics even in the presence of defined in-
teger wrapping. As a next step, we present a new polyhedral AST

generation approach, which extends AST generation beyond classical
control flow generation by allowing the generation of user provided
mappings. Providing a fine-grained option mechanism, we give the
user fine grained control about AST generator decisions and add ex-
tensive support for specialization e.g., with a new generalized form of
polyhedral unrolling. To facilitate the implementation of polyhedral
transformations, we present a new schedule representation, schedule
trees, which proposes to make the inherent tree structure of schedules
explicit to simplify the work with complex polyhedral schedules.

The last part of this work takes a look at our contributions to
low-level compilers. The main focus in this part is our work on opti-
mistic delinearization, an approach to derive a multi-dimensional ar-
ray view for multi-variate polynomial expressions which commonly
result from code that models data as multi-dimensional arrays of
parametric size.

viii

P U B L I C AT I O N S

The following is a list of publications I wrote or contributed to while
working towards my doctoral degree. Ideas, figures, listings and text
of some of these works have been incorporated in this thesis.

The work published in [8, 3] was mostly performed within the con-
text of my diploma degree and is listed due to the relevance for parts
of this work. [4] has been submitted for review, but has not yet been
published. A new technical report which we cite in the AST generation
chapter still needs to be published.

[1] Tobias Grosser, Albert Cohen, Justin Holewinski, P. Sadayappan,
and Sven Verdoolaege. Hybrid Hexagonal/Classical Tiling for
GPUs. In International Symposium on Code Generation and Opti-

mization (CGO), Orlando, FL, United States, 2014.

[2] Tobias Grosser, Albert Cohen, Paul HJ Kelly, J Ramanujam,
P Sadayappan, and Sven Verdoolaege. Split tiling for GPUs:
automatic parallelization using trapezoidal tiles. In 6th Work-

shop on General Purpose Processor Using Graphics Processing Units

(GPGPU), pages 24–31. ACM, 2013.

[3] Tobias Grosser, Armin Größlinger, and Christian Lengauer. Polly
– performing polyhedral optimizations on a low-level intermedi-
ate representation. Parallel Processing Letters (PPL), 22(04), 2012.

[4] Tobias Grosser, Sven Verdoolaege, and Albert Cohen. Polyhedral
ast generation is more than scanning polyhedra. ACM Transac-

tions on Programming Languages and Systems (TOPLAS). (submit-
ted for review).

[5] Tobias Grosser, Sven Verdoolaege, Albert Cohen, and P. Sadayap-
pan. The relation between diamond tiling and hexagonal tiling.
In 1st International Workshop on High-Performance Stencil Computa-

tions (HiStencils).

[6] Tobias Grosser, Sven Verdoolaege, Albert Cohen, and P. Sadayap-
pan. The Promises of Hybrid Hexagonal/Classical Tiling for
GPU. Rapport de recherche RR-8339, INRIA, July 2013.

[7] Tobias Grosser, Sven Verdoolaege, and Sadayappan P. Cohen, Al-
bert. The relation between diamond tiling and hexagonal tiling.
Parallel Processing Letters (PPL), 24(03), 2014.

[8] Tobias Grosser, Hongbin Zheng, Ragesh Aloor, Andreas Sim-
bürger, Armin Größlinger, and Louis-Noël Pouchet. Polly –

ix

polyhedral optimization in LLVM. In C. Alias and C. Bastoul,
editors, 1st International Workshop on Polyhedral Compilation Tech-

niques (IMPACT), Chamonix, France, 2011.

[9] Kevin Stock, Martin Kong, Tobias Grosser, Louis-Noël Pouchet,
Fabrice Rastello, J. Ramanujam, and P. Sadayappan. A frame-
work for enhancing data reuse via associative reordering. In
Conference on Programming Language Design and Implementation

(PLDI), 2014.

[10] Sven Verdoolaege and Tobias Grosser. Polyhedral extraction tool.
In 2nd International Workshop on Polyhedral Compilation Techniques

(IMPACT), Paris, France, January 2012.

[11] Sven Verdoolaege, Serge Guelton, Tobias Grosser, and Albert
Cohen. Schedule trees. In Sanjay Rajopadhye and Sven Ver-
doolaege, editors, 4th International Workshop on Polyhedral Compi-

lation Techniques (IMPACT), Vienna, Austria, January 2014.

x

A C K N O W L E D G M E N T S

Many colleagues, friends and family members supported me during
the time of my doctoral studies, but also during the years leading
towards them. Those influences have been important both in form-
ing this work, but also in forming myself personally. I would like to
express my deep gratefulness to all who have walked with me this
path, the ones I will name personally, but especially the ones who I
will inevitable forget to name.

First and foremost I would like to thank you, Albert, Sven and Sa-
day, you who guided me through these three years of doctoral studies.
Albert, I still remember the moment in a Canadian bar when you told
me I should write you an email in case I would like to do my doctoral
studies with you. From this moment, several years before I actually
started, you have been immensely supportive, leaving me the free-
dom to choose the directions I want to follow, but still supporting me
at any moment I was in need for guidance or help. Sven, working
with you has been an experience. I must admit it was hard to read
your first emails with your always very direct and open feedback,
but I learned quickly how valuable your in-depth feedback is and
now really enjoy working and discussing with you. Saday, thank you
for your supervision and support both during my time in Ohio, but
especially during the many phone calls and Paris visits throughout
the last three years. You did not only help me to shape my research
direction, but also gave helpful advices in so many other ways.

I would like to send a big thank you to Passau and the LooPo
team, especially naming Martin Griebl, Christian Lengauer, Armin
Größlinger and Andreas Simbürger as well as Dirk Beyer and Sven
Apel. All of these supported me from the first years of my studies.
Throughout my PhD I met and got to know many interesting re-
searchers. I would like to especially thank Louis-Noël Pouchet, who
I have been working with in Ohio, Uday Bondugula, who I visited
in Bangalor and Ram (Ramanujam), who I also met very regularly
at many different places. I would like to thank Aart Bik, Beate List
and Stephen Hines for my great time at Google and their support
in the context of my Google Doctoral Fellowship, Anton Lokmotov
for the great time at ARM as well as Sebastian Pop, who I regularly
interact with since my first internship at AMD. The Parkas team, in-
cluding Mark, Francesco, Louis, Tim, Jean, Boubacar, Serge, Michael,
Jun, Antoine, Feng, Guillaume, Riyadh, Adrien, Nhat, Robin, Cédric
and Chandan for the many interesting discussions, the nice coffee
breaks as well as joint travels excursions. Assia and Joelle as well as
all the other administrative staff, who did a great job in supporting

xi

my travels and my conference organization. I would also like to thank
you, Arnaud, Sylvestre and Duncan, for the great time when organiz-
ing the LLVM conference and our regular Paris social. As well as the
LLVM and Polly open source community with many very nice peo-
ple, starting to name them would inevitably make me forgot someone
important. Finally, there are my thesis reviewers Mary Hall and Franz
Franchetti as well as my thesis committee with Stef Graillat and Jean-
Luc Lamotte who I would like to express my thankfulness for their
efforts and comments.

I also had the support of many great friends, including Yulia who
helped with my registration, Amalia who helped with my English
and my roommates Mathieu, Gælle, Caro and Kristin, who supported
my crazy working hours and always prepared great food for me.

I also would like to thank my parents and siblings, Rolf, Waltraud,
Tanja and Michael, who I neglected way too many times as well as my
you Kasia, the woman on my side, who I met right at the beginning
of my studies and who had an infinite amount of patience supporting
me while working on this thesis.

xii

C O N T E N T S

List of Figures . xvii
List of Tables . xviii
List of Listings . xviii
List of Acronyms . xix

i introduction . 1

1 introduction . 3

1.1 Outline . 6

ii background . 9

2 polyhedral compilation 11

2.1 Mathematical Foundations 11

2.1.1 Integer sets 11

2.1.2 Integer maps 13

2.1.3 Named unions sets/named union maps . 15

2.1.4 Libraries for integer sets / maps 15

2.2 Model and Transform Imperative Programs 16

2.2.1 An illustrative example 16

2.2.2 What programs can be modeled? 19

2.2.3 The polyhedral representation 19

2.2.4 Transformations 20

iii tilings and optimizations for stencils . . . 25

3 stencil computations 27

3.1 What are Stencil Computations? 27

3.2 Tiling of Stencil Computations 29

3.3 Related Work . 32

3.4 Our Work on Stencil Computations 35

4 split tiling . 37

4.1 Overview . 37

4.2 Preprocessing . 39

4.3 The Split Tiling Schedule 40

4.3.1 Core algorithm 40

4.3.2 Tile shape simplification 42

4.3.3 Multi-statement loop nests 42

4.4 CUDA Code Generation 44

4.4.1 Shared memory usage 45

4.4.2 Instruction level parallelism 46

4.4.3 Full/partial tile separation 46

4.5 Summary . 46

5 hybrid hexagonal/parallelogram tiling . . 49

5.1 Overview . 49

xiii

xiv contents

5.2 The Hybrid Hexagonal/Parallelogram Schedule . 52

5.2.1 Hexagonal tiling 52

5.2.2 The parallelogram tile schedule 57

5.2.3 Intra-tile schedules 57

5.2.4 Hybrid tiling 58

5.2.5 Tile size selection 59

5.3 CUDA Code Generation 59

5.3.1 Generating CUDA code 59

5.3.2 Shared memory 60

5.3.3 Interleaving computations and copy-out . 61

5.3.4 Stencil specific code generation heuristics . 61

5.4 Summary . 63

6 unification with diamond tiling 65

6.1 Diamond Tiling . 66

6.1.1 The pluto optimizer 66

6.1.2 The diamond tiling extensions 68

6.1.3 Relation between tile sizes and wavefronts 68

6.1.4 Optimal tiles with default wavefront 73

6.2 Unified Diamond and Hexagonal Tiling 74

6.3 Tile Sizes that Maximize Compute/Communication 77

6.4 Summary . 82

7 experimental results 83

7.1 Split-tiling . 83

7.2 Hybrid-Hexagonal 83

7.2.1 Comparison with state-of-the-art tools . . 83

7.2.2 Hybrid tiling and shared memory 87

7.3 Summary . 89

iv polyhedral building blocks 91

8 the concept . 93

9 polyhedral extractor 97

9.1 Overview . 99

9.2 Constructing a Polyhedral Representation 100

9.2.1 Access relations 101

9.2.2 Conditions 102

9.2.3 Loops . 102

9.2.4 Schedule . 103

9.3 Additional Features 103

9.3.1 CLooG specific features 104

9.3.2 Support for unsigned integers 104

9.4 Related Work . 106

9.5 Limitations and Future Work 109

9.6 Summary . 109

10 ast generation . 111

10.1 A new approach to AST generation 113

10.2 Input . 117

contents xv

10.3 Abstract Syntax Tree 118

10.4 New AST Generation features 118

10.4.1 Fine grained option mechanism 119

10.4.2 Isolation . 121

10.4.3 Polyhedral unrolling 122

10.4.4 Partial Unrolling 125

10.4.5 Generating AST Expressions 127

10.5 Experimental Results 128

10.5.1 Existentially quantified variables 128

10.5.2 Performance of AST generation strategies 132

10.5.3 Generation Time 133

10.6 Related Work . 134

10.7 Summary . 135

11 schedule trees . 137

11.1 Schedule Uses . 139

11.1.1 Original execution order 139

11.1.2 Transformations 140

11.1.3 AST generation 141

11.2 Schedule Representations 141

11.2.1 Properties 142

11.2.2 Comparison 143

11.3 Schedule Tree Representation 147

11.3.1 Nodes . 147

11.3.2 Operations 149

11.4 Hybrid hexagonal-parallelogram tiling 151

11.5 Summary . 153

v low-level compilers 155

12 contributions to llvm / polly 157

12.1 Compute out . 157

12.2 AST Generation . 157

12.3 GPolly - Automatic GPU offloading 158

12.4 Representing parallelism 159

13 optimistic delinearization 161

13.1 Motivating example 163

13.2 Problem statement 164

13.3 Array views with single-parameter sizes 166

13.3.1 Multiple array references 169

13.3.2 Array sizes in subscript expressions 170

13.3.3 Arrays of size A[∗][β1P1][β2P2] 172

13.4 Arrays of size “parameter + constant” 172

13.5 Implementation . 179

13.6 Experimental evaluation 180

13.7 Related work . 181

13.8 Summary . 182

xvi contents

vi conclusion . 185

14 conclusion . 187

14.1 Personal contributions 187

14.2 Future work . 188

vii appendix . 191

bibliography . 193

L I S T O F F I G U R E S

1 A two-dimensional integer set (dense) 12

2 A two-dimensional integer set (sparse) 13

3 A two-dimensional integer map 14

4 Iteration Space – Unmodified 17

5 Iteration Space – Tiled 18

6 Heat distribution after running the stencil in List-
ing 1 28

7 Data-flow of the stencil in Listing 1 28

8 Iteration space of 1D-space stencil 29

9 Rectangular tiling of 1D-space stencil 30

10 Iteration space of 1D-space stencil 31

11 Split tiling for the simple example (tile size 8×3). 38

12 Split tiled jacobi-2d kernel 43

13 Two statement kernel 44

14 1D Hexagonal tiling - Created from 1D Split tiling 50

15 Jacobi 2D stencil 51

16 Generated PTX (CUDA bytecode) 51

17 Opposite dependence cone 53

18 A hexagonal tile 53

19 Hexagonal tiling pattern 55

20 n-dimensional tile schedule (±1 distances) 58

21 Symmetric dependences & square tiling (original/transformed) 69

22 Symmetric dependences & non-square tiling (origi-
nal/transformed) 69

23 Asymmetric dependences & square tiling (original/transformed) 71

24 Multiple time steps. Square tiles reduce parallelism.
(original/transformed) 71

25 Multiple time steps. Non-square tiles maximize par-
allelism. (orig./trans.) 72

26 Diamond tiling (original/transformed) 72

27 Hexagonal-tiling (original/transformed) 72

28 The stretching in the transformed space (unstretched/stretched) 76

29 1D hexagonal tiling (T = 6,B = 4) 78

30 The first two time steps of 1D hexagonal tiling (T =

6,B = 4) 79

31 Compute-to-read ratio - Hexagonal vs. diamond tiling 80

32 Compute-to-sync ratio - Hexagonal vs. diamond tiling 81

33 Split-tiling performance (desktop GPU) 84

34 Split tiling performance (mobile GPU) 84

35 Copy code from hybrid hexagonal/parallelogram tiling
(a single loop) 114

xvii

36 Copy code from hybrid hexagonal/parallelogram tiling
(unrolled) 116

37 Example Program 117

38 Interleaved schedule without code generation options 119

39 Interleaved schedule with code generation options 121

40 Modulo conditions (examples not supported by CLooG) 129

41 Existentially quantified variables (examples not sup-
ported by CLooG/codegen+) 130

42 Example schedule tree representation 138

43 Band forest representation of the schedule in Figure 42 146

44 Fuse bands B1 and B2 150

45 Order the active statement instances at B according
to filters F1 and F2 150

46 Input pattern for hybrid tiling 151

47 Output pattern for hybrid tiling 152

48 Linearized expression for multi-dimensional array of
constant size 161

49 Linearized expression for multi-dimensional array of
parametric size 162

50 Subarrays accesses for different parameter values 168

L I S T O F TA B L E S

1 Performance on NVIDIA GTX 470: GStencils/second
& Speedup 85

2 Performance on NVS 5200: GStencils/second & Speedup 85

3 Characteristics of Stencils 86

4 Optimization steps: GFLOPS & Speedup 88

5 Performance counters (units of 109 events) 89

6 Features of different polyhedral extractors 108

7 AST generation strategy based performance (GFLOPS) 132

8 Comparison of some generic schedule representations 144

L I S T O F L I S T I N G S

1 Implementation of a 5-point, 2D-space, jacobi-style
heat stencil 27

2 Split tiled code 39

3 A trivial program 100

xviii

4 Part of CLooG output for thomasset test case 104

5 Unsigned operation in loop bound 105

6 Invalid fusion of program in Listing 5 105

7 Loop with unsigned iterator 105

8 Trivial unrolling example 123

9 Unrolling in the presence of strides 123

10 Unrolling in case of bound, non-constant number of
iterations 124

11 Unrolling with two lower bounds 125

12 Partial unrolling - original loop nest 125

13 Partial unrolling - tiled 126

14 Partial unrolling - tiled + unrolled 126

15 Partial unrolling - tiled + unrolled + isolated core
computation 127

16 A single loop marked parallel using LLVM metadata 159

17 Nested loops marked parallel using LLVM metadata 159

18 A gemm kernel written in C99 using variable length
arrays 162

19 A gemm kernel written using manually implemented
multi-dimensional arrays. 164

20 Array dimensions used in subscripts 169

21 A gemm kernel written in C++ using boost::ublas 180

22 A gemm kernel written in Julia 180

L I S T O F A C R O N Y M S

AST Abstract syntax tree

CLooG Chunky loop generator

clang The LLVM C/C++ compiler

CPU Central processing unit

CUDA NVIDIA’s parallel computing platform

DSL Domain specific language

DRAM Dynamic random-access memory

FPGA Field Programmable Gate Array

gcc gnu compiler collection

GPU Graphics processing unit

GPGPU General-purpose computing on graphics processing units

xix

xx acronyms

ILP Integer linear programming

IP Intellectual property

IR Intermediate representation

isl Integer set library

LLVM LLVM compiler infrastructure

LLVM-IR LLVM intermediate representation

OpenCL Open compute language

OpenMP Open multi-processing

PPCG Polyhedral parallel code generator

PTX Parallel thread execution (NVIDIA IR)

SCC Strongly connected component

SCEV Scalar evolution

SCoP Static control part/program

SIMD Single instruction multiple data

SPU Stream processing unit

Part I

I N T R O D U C T I O N

1
I N T R O D U C T I O N

The steadily growing complexity of problems solved in scientific and
high performance computing has caused a continuous hunger for
compute power. The same growth can be seen with mobile devices,
which have been turned into personal super computers driven by
the increasing demands of gaming and image processing. Looking
back twenty years, the most powerful supercomputer as published
on the TOP500 supercomputer list [52] of July 1994 had a theoretical
peak performance of 236 GFLOPS (double precision) with a power
consumption of almost 500.000 Watts. Today, NVIDIA claims a peak
performance of 365 GFLOPS (single precision) with 5 Watt power con-
sumption for their recently announced mobile platform Tegra K1 [45].
Even though those numbers are not directly comparable, they show
clearly that large compute capabilities have reached mobile. And,
with 54,902 TFLOPS peak performance at the top of today’s Top500

list [52], supercomputers did not stand still either.
A major factor for this enormous progress in compute power and

energy efficiency is, besides others, the increasingly specialized and het-

erogeneous hardware. Both mobile devices and super computer nodes
rely today on multi or many cores, short vector instructions, various
levels of caches and often dedicated accelerators. For programs to
benefit, they need to be optimized to effectively exploit the available
hardware.

In the world of supercomputers it was common to optimize impor-
tant programs manually. Today manual optimization is, even on su-
percomputers, increasingly complemented with automatic program
generation and search space exploration. In the mobile market the
sheer number of different hardware platforms makes manual opti-
mization impractical. This becomes evident just by looking at the
mobile GPU market alone, where there are over ten entirely differ-
ent hardware designs a program needs to be tuned for. IP suppliers
such as ARM, DMP, Imagination Technologies, or Vivante and ver-
tically integrated suppliers such as AMD, Intel, Nvidia, and Qual-
comm, all provide their own designs, in addition to which vendors
such as Samsung and Broadcom use their own internal designs [111].
On Android, the most widely used mobile platform, direct acceler-
ator access is not even possible. Instead the RenderScript compute
interface was designed with automatic performance optimization as
a design goal.

“While testing and tuning a variety of devices is never bad, no

amount of work allows them to tune for unreleased hardware

3

4 introduction

they don’t yet have. A more portable solution places the tuning

burden on the runtime, providing greater average performance

at the cost of peak performance.” [Jason Sams, RenderScript
Tech Lead, 112]

We can conclude that advances in automatic optimization of com-
pute programs are important.

Automatic compiler optimizations have a long history [14]. In the
context of this work, the optimization of loop programs is of partic-
ular interest. Loop optimizations had already been investigated in
the context of FORTRAN compilers over thirty years ago. Together
with early work on data dependence analysis [22], as well as the
introduction of the data dependence graph [85], loop transforma-
tions such as fusion and fission have been introduced to improve
program performance e.g., by enabling better use of vector hardware.
For the very same reason automatic loop interchange has been dis-
cussed [15] and, to reduce expensive memory movements, loop block-
ing [12, 139] was introduced. Even though the precision of data de-
pendence computation has increased throughout the years and loop
transformations have evolved notably, the basic concept of taking
a loop nest and optimizing it step-by-step by applying a set of in-
dividual loop transformations remains important today, with many
production C/C++/FORTRAN compilers relying on the use of these
“classical loop optimizations”. Important work on classical non-trivial
loop transformations has been performed in several commercial com-
pilers such as the KAP compiler or icc, but also in research compilers
such as Parafrase [98], Polaris [34], PIPS [74], SUIF [136] or Cetus [50].

Even though classical loop transformations are well understood,
finding and reasoning about the right sequence to apply them in is
hard. To address this problem researchers have investigated the pos-
sibility of computing an entirely new loop structure [58, 57] directly
from a set of data dependences without ever applying any loop trans-
formations, or of deriving combinations of classical loop transforma-
tions using a single unifying loop transformation theory [137, 138].
As a result of this research the polyhedral model (Chapter 2) evolved,
a generic and compiler independent way to reason about complex
loop nests and their transformation. Within the last two decades this
model has been heavily investigated and regularly serves as an in-
strument to address challenging optimization problems. In fact, it
often enables transformations difficult or even impossible to describe
with classical loop transformations. One such use case are recent C
to GPU code translators [24, 135] which have shown that polyhedral
techniques can even be used for complex program transformations
such as the generation of code to exploit software managed caches.
Another interesting use case is a recent paper discussing the combi-
nation of SIMD code generation and polyhedral loop optimization
techniques [83], a nice example of how to parameterise target inde-

introduction 5

pendent loop transformations to obtain competitive platform specific
code.

Even though polyhedral loop transformation frameworks have many
benefits, at the moment they are, with the exception of IBM XL [36],
mainly employed by research focused compilers [87, 35, 135, 40, 136].
Existing C/C++ open source compilers such as gcc or LLVM currently
do not take advantage of polyhedral loop transformations in their
default optimization sequence, despite the existence of loop transfor-
mation frameworks such as gcc/graphite [122] and LLVM/Polly [3].
As both compilers also do not incorporate an extensive set of classi-
cal loop transformations, programs [65] are required to incorporate
program specific transformations in their source code which reduces
performance portability and increases code bloat.

Domain or problem specific solutions are also hindered by the lack
of generic loop transformation systems. Julia [31], a just-in-time com-
piled language specialized on scientific computing, does for example
not leverage any loop optimization opportunities, even though their
scientific compute kernels would strongly benefit. “Automatic” GPU

code generation still requires explicit user annotated kernel code as
proposed for example by openacc [64]. Anything more complicated is
left to DSL compilers which hardcode specific transformations [70, 68].
Even though DSL compilers commonly obtain great performance, the
ad hoc implementation of the required loop transformation causes
redundant work and, most importantly, the benefits a generic and
formal transformation framework would bring are missed. Overall,
there is a strong need for making generic loop transformations more
accessible.

Motivated by the missing reuse of loop optimization and the grow-
ing, but still lacking, adoption of polyhedral loop optimization tech-
niques that could facilitate such reuse, we aim in this work to widen
the scope in which polyhedral loop optimizations can be used ef-
fectively. As a driving force we develop a set of advanced domain
specific loop optimizations that enable the efficient execution of sten-
cil computations on GPUs. Stencil computations (Chapter 3) as dis-
cussed in this work are computations that iteratively recompute the
elements of a (multi-)dimensional data space, just from the neighbor-
hood of each individual element. Optimizing their execution is dif-
ficult and often requires sophisticated optimization strategies. How-
ever, in contrast to many existing works, we specifically avoid the
implementation of a specialized optimizer. Instead, we aim for a so-
lution that clearly separates domain and target specific optimizations
from non-problem specific code generation strategies and techniques
necessary to obtain peak performance. We do this by developing new
problem specific tiling schemes, which are translated to highly per-
formant code by a general purpose infrastructure that has only been
parameterized to ensure the generation of optimal code. As a result

6 introduction

we hope to show that polyhedral loop optimization techniques can be
successfully used even in highly performance critical codes without
the need to implement specialized code generation strategies.

Following the concept of reusability, we aim to make loop trans-
formations less compiler dependent to facilitate the transfer of opti-
mizations between different generic and domain specific compilers.
To reach this goal we do not only take special care throughout this
work to highlight and address corner cases that may inhibit the use
of our work in production, but we specifically present a set of poly-
hedral building blocks. Such building blocks do not only enable our
new stencil optimizations, but they are designed for reusability in the
context of different domain specific and general purpose compilers.
Going one step further, we present new work in the context of the
LLVM compiler infrastructure that prepares the path for later integra-
tion of our optimizations in a low-level static compiler.

1.1 outline

After some background information on integer sets and polyhedral
compilation given in Chapter 2, the following topics will be discussed
in this thesis.

Tilings and Optimizations for Stencils

Our work on developing new tiling schemes that allow the efficient
execution of iterative stencil computations and similar compute pat-
terns on GPUs.

• In Chapter 4 we discuss the implementation of a split tiling
scheme that enables the time tiled execution of stencil compu-
tations on GPUs ensuring balanced coarse-grained parallelism
without the need for redundant computations. We discuss the
implementation of this tiling scheme in a general purpose poly-
hedral optimizer, including a set of optimizations that enable
the use of software managed shared caches on GPUs.

• In Chapter 5 we discuss an extension and specialization of our
previous work on split tiling. The result is a new tiling scheme
combining hexagonal tiling on one dimension with parallelo-
gram tiling on the remaining dimensions. This new tiling scheme
allows us to better address important GPU specific concerns now
being able to ensure the absence of thread divergence and the
use of coalesced and aligned loads. As a result, we obtain a
tiling scheme that can, even for 3D test cases, profitably use
software managed shared caches on GPUs.

1.1 outline 7

• In Chapter 6 we present a detailed theoretical analysis of dia-
mond tiling, a tiling scheme closely related to our hexagonal
tiling work. In the context of this analysis we present new in-
sights on constraints that diamond tiling poses on tile-sizes and
on wavefront coefficients. We complement these results with a
set of conditions that ensure that the integer points contained
in different tiles are placed at identical offsets. We then unify
the two tiling schemes by providing a formulation of hexagonal
tiling for 2 dimensional problems (1 time dimension, 1 space di-
mension) in the framework of diamond tiling. We complete this
chapter with an analysis of tile sizes that yield optimal compute-
to-communication and compute-to-synchronization ratios.

Polyhedral Building Blocks

A set of polyhedral building blocks that have been developed to fa-
cilitate and generalize the use of polyhedral schedule and data layout
transformations and their use in imperative programs.

• In Chapter 9 we present a polyhedral extraction tool that, by
combining a real C compiler with an advanced integer set li-
brary, pushes the limits of the amount of statically analyzable
code that can be translated to a polyhedral representation. By
presenting how to model integer wrapping with modulo con-
straints, we ensure correctness even in difficult areas of the C
standard.

• In Chapter 10 we present a new AST generator with complete
support for Presburger relations including support for piece-
wise schedules and their use to express index set splitting as a
schedule-only transformation. Going beyond the generation of
control flow, we support the generation of AST expressions from
arbitrary user provided piecewise quasi affine expressions. New
simplification methods for AST expressions allow the exploita-
tion of local context information to generate fast modulo and
division operations. With fine grained options we give the user
precise control over AST generator decisions. Finally, we provide
support for heavy specialization through polyhedral unrolling
and user directed versioning.

• In Chapter 11 we provide a detailed analysis of existing ap-
proaches to describe polyhedral schedules as well as their uses
within the polyhedral tool chain. We then derive a new ap-
proach to describe polyhedral schedules which makes the in-
herent tree structure of polyhedral schedules explicit and which
we use to provide a more intuitive formulation of the schedule
generated by hybrid-hexagonal tiling.

8 introduction

Low-level Compilers

• We will briefly discuss various projects that have taken place
in the context of Polly, our high-level loop optimizer for LLVM.
This includes the need for compute outs to bound compile time,
GPolly a project to bring automatic GPU code generation to a
low-level compiler, our experience with using the isl AST gener-
ator in Polly as well as work on how to annotate parallelism on
LLVM-IR.

• In Chapter 13 we discuss a new approach to delinearize a mul-
tivariate polynomial expression to an access to an array shape
of parametric size. In our work we show how optimistic delin-
earizations enables us to delinearize expressions where the de-
linearization can not be proven statically. We evaluate our work
on code written with Julia, boost::ublas and C99 variable length
arrays.

Part II

B A C K G R O U N D

2
P O LY H E D R A L C O M P I L AT I O N

Polyhedral compilation uses a compact mathematical representation
to precisely model the individual elements of a compute program.
The use of a solid mathematical model enables detailed static analysis
and exact transformations. Dynamic extensions [30] are available for
programs that lack static information. The following chapter gives an
introduction to the mathematical concepts and explains how they are
used to model, analyze and transform compute programs.

2.1 mathematical foundations

(Integer) polyhedra [89] or Presburger relations [106, 105] are the
mathematical foundations of polyhedral compilation. In this section
we give an introduction to the most important concepts. The nota-
tions [131, 130] presented are the ones proposed by isl [128], the in-
teger set library we use for our work. isl itself is built around Pres-
burger relations and uses many ideas originally introduced in the
Omega project [81]. Another important concept used at the core of isl

is parametric integer programming [55].

2.1.1 Integer sets

Integer sets as defined by isl are sets of integer tuples from Zd de-
scribed by Presburger formulas. S = {(i, j) | (a 6 i, j∧ i+ j < b)∨ (4 6

i, j∧ i 6 b∧ j 6 6)} is an example of a two-dimensional integer set
described in terms of two parameters a and b. Figure 1 illustrates S

for a = 1 and b = 8. It shows a triangular red shape containing red
points and a rectangular blue shape containing blue squares. Only
the red points/blue squares located at the integer coordinates within
the colored shapes are the actual elements of S. The colored shapes
have been derived from the description of the integer set. They form
a set of convex shapes that enclose the elements of S and help to visu-
alize S. As there are generally different ways to represent an integer
set, such visualizations are not unique.

Figure 2 illustrates a second set S ′ = {(i, j) | (a 6 i, j ∧ i + j <

b∧ (i) mod 2 = 0)∨ (4 6 i, j∧ i 6 b∧ j 6 6∧ i mod 2 = 0)}. It is
similar to S with the only difference being that additional modulo
constraints have been added that permit only even values on the i-
dimension. Visualizing S ′ with a set of convex shapes that enclose
its elements is hindered by the modulo constraints. Therefore, we

11

12 polyhedral compilation

0 1 2 3 4 5 6 7 8 9
i

0

1

2

3

4

5

6

7

j

Figure 1: A two-dimensional integer set (dense)

illustrate S ′ by directly highlighting the points and squares that are
part of the integer set.

In general, an integer set has the form

S = {~s ∈ Zd | f(~s,~p)} (1)

with ~s representing the integer tuples contained in the integer set, d
the dimensionality of the set, ~p ∈ Ze a vector of e parameters and
f(~s,~p) a Presburger formula that evaluates to true, iff ~s is element of
S for given parameters ~p.

A Presburger formula p is defined recursively as either a boolean
constant (⊤,⊥), the result of a boolean operation such as negation,
conjunction, disjunction or implication (¬p, p1 ∧ p2, p1 ∨ p2, p1 ⇒

p2), a quantified expression (∀x : p, ∃x : p) or a comparison be-
tween different quasi-affine expressions (e1 ⊕ e2,⊕ ∈ {<,6,>,>}). A
quasi-affine expression1 e is defined as a plain integer constant (e.g.,
10), a parameter, a set dimension or a previously introduced quanti-
fied variable. It can also be constructed recursively as the result of a
unary negation of a quasi-affine expression (−e), a multiplication of
an integer constant with a quasi-affine expression (e.g., 10e), an addi-
tion/subtraction of two quasi-affine expressions (e1 ⊕ e2,⊕ ∈ {+,−}),
an integer division of a quasi-affine expression by a constant (e.g.,
⌊e/10⌋) or the result of computing a quasi-affine expression modulo

1 We use the term quasi-affine [54, 55] to describe the potential use of existentially
quantified variables which are, besides set and parameter dimensions, needed to in-
ternally model constructs such as integer divisions, the modulo operations or quan-
tified expressions as affine inequalities.

2.1 mathematical foundations 13

0 1 2 3 4 5 6 7 8 9
i

0

1

2

3

4

5

6

7

j

Figure 2: A two-dimensional integer set (sparse)

a constant (e.g., e mod 10). The set {~s | ⊤} is called the universal set
or the universe and is commonly abbreviated as {~s}.

There are also various properties and operations that can be com-
puted on integer sets. We present the most important ones. Given a
single set we can check if the set is empty, if it is the universal set
or if a certain dimension always has a fixed value. We can also ask
for a sample value contained in the set, for the minimal/maximal
value of a certain dimension or the lexicographically smallest/largest
element of a set. Two sets can be checked for equality, disjointness
or the existence of a subset relation. It is also possible to derive new
sets by computing the complement of a set, by projecting out dimen-
sions from a set or by adding new dimensions to a set. A set can
be approximated by computing various hulls (convex, affine, simple,
polyhedral). Two sets can be combined by intersecting them, comput-
ing their union or the difference between them. The properties and
operations presented generally follow known mathematical seman-
tics and notations. In case uncommon notations are used they will be
explained at the point of usage.

2.1.2 Integer maps

Integer maps are binary relations between integer sets. The first set in
the relation is called the domain or the input set, the second set is the
range or the output set. Integer maps are modeled as pairs of integer
tuples from Zd1 ×Zd2 .

14 polyhedral compilation

0 1 2 3 4 5 6 7 8 9
i

0

1

2

3

4

5

6

7

j

Figure 3: A two-dimensional integer map

Figure 3 illustrates the integer map M = {(i, j)→ (i− 2, j− 3)} with
the input values restricted to the elements contained in the blue rect-
angular of Figure 1. Each black arrow represents a relation between
one input tuple and one output tuple. The input values (blue squares)
shown are the very same values as illustrated in Figure 1. The output
values (red circles) are the same values, but translated according to
M.

The general form of an integer map is

M = {~i→ ~o ∈ Zd1 ×Zd2 | f(~i,~o,~p)} (2)

where ~i describes the d1-dimensional input tuples, ~o the d2-dimen-
sional output tuples, ~p ∈ Ze a vector of e parameters and f(~i,~o,~p) a
Presburger formula that evaluates to true, iff ~i and ~o are related in
M for given parameters ~p. Integer maps can represent arbitrary rela-
tions and can, contrary to what the use of the “→” notation suggests,
relate multiple output values to a single input value. The Presburger
formulas that describe integer maps follow the rules presented for
integer sets with the only difference, that they now reference ~i and
~o instead of ~s. The description of an integer map {~i → (o1, . . . ,od2

) |

o1 = f1(~i,~p), . . . ,od2
= fd2

(~i,~p)} is often syntactically shortened to
{~i→ (f1(~i,~p), . . . , fd2

(~i,~p))}, as shown in our example.
Various properties and operations are defined on integer maps.

Most of them are similar to the ones on integer sets, but can often
be applied to either the entire map or just its range or domain. One
interesting operation is the “application” of a map to a set. In the
previous example, we can apply M to the blue squares and the result

2.1 mathematical foundations 15

will be the set of red circles. Similarly, it is possible to apply maps
to the ranges or domains of other maps. The result of this “chain-
ing” of maps is a map that performs the combined mapping of the
input maps. It is also possible to reverse maps to change the meaning
of input and output dimensions, as well as to obtain the input set
(domain) or the output set (range) of a map.

2.1.3 Named unions sets/named union maps

It is possible to name integer sets and maps according to where they
are used or what they represent. Named integer sets are integer sets
which contain named tuples. An example is the set {S(i,j)} which is
an integer set that lives in a two-dimensional space with the name
“S”. We define named integer maps as integer maps between two
named spaces. The map {S(i, j) → A(i)} is an example of a named
integer map. It is also possible to define integer sets that contain tu-
ples from different spaces, e.g. {S1(i, j);S2(i)}. Such sets are called
(named) union sets. Named union maps are defined accordingly. Op-
erations that can be performed on sets and maps can often be per-
formed on union sets and maps. In case we use such operations with
non-obvious semantics, the actual semantics will be explained at the
point of use. We may omit the prefix ’named’ or ’union’ in cases
where it is either obvious or not relevant for the discussion.

2.1.4 Libraries for integer sets / maps

There exist several libraries that can express and modify integer sets
or related data structures. isl [128], as discussed earlier, is the integer
library we use for our work. It directly supports the operations and
notations given above. Aside from isl, there is the Omega library [81]
which, having served as a source of inspiration for isl, supports sim-
ilar notations and operations. However, omega does not support the
concepts of named sets (maps) or union sets (maps). isl and omega
differ in the algorithms and internal data structures used. While isl
relies on integer division in its internal representation, omega uses
intersections of polyhedra and lattices to represent integer sets and
maps.

In certain (common) situations it is also possible to approximate in-
teger sets by a set of rational polytopes that enclose the points in the
integer set. PolyLib [88] and PPL [20] are libraries which have been
originally developed to perform computations on such rational poly-
topes. In case computations can be performed on rational polytopes,
their use may reduce the theoretical (and practical) computational
complexity at the cost of a reduced precision. PolyLib later gained
support for computations on so called Z-polyhedra, polyhedra that
model only the integer points they contain. PPL also supports inte-

16 polyhedral compilation

ger lattices and allows the creation of objects that have the proper-
ties of both lattices and polyhedra, a feature that can possibly be
used to model integer sets. While representing integer sets with the
above libraries is possible, our experience has shown that doing so
can be inconvenient. First, there is a certain risk for the library user to
accidentally use rational computations for operations where integer
computations are needed. This may result in incorrect results being
obtained. Second, to model certain integer sets correctly additional
helper dimensions (existentially quantified dimensions) need to be
introduced, which the user of these classical libraries needs to keep
track of manually. In contrast, native integer set libraries keep track
of such dimensions automatically. As we make heavy use in our work
of features that require existentially quantified dimensions (modulo
constraints and integer divisions), we choose to use an integer library
that supports them natively.

2.2 model and transform imperative programs

Polyhedra or, in our case, integer sets and maps can be used to
model “sufficiently regular” compute programs with the goal to rea-
son about and precisely control higher-level properties without dis-
traction from imperative or lower-level constructs. To do so the indi-
vidual statement instances in a program (i.e., each dynamic execution
of a statement inside a loop nest), their execution order as well as
the individual array elements accessed are modeled, analyzed and
transformed, whereas control flow constructs, loop induction vari-
ables, loop bounds or array subscripts are hidden and only regen-
erated when converting a transformed loop nest back to imperative
constructs.

2.2.1 An illustrative example

We start with a simple piece of code that consists of a single compute
statement S, which is surrounded by two loops, the i-loop and the
j-loop. Data is loaded and stored to a two-dimensional array A.

for (i = 1; i <= n; i+=1)

for (j = 1; j <= i; j+=1)

S: A[i][j] = A[i-1][j] + A[i][j-1];

To model this computation we construct four data structures. An
iteration space I, a schedule S as well as a relation of read-accesses Aread

and a relation of must-write-accesses Awrite. I is an integer set that
describes the set of statement instances that is executed. It gives no
information about the execution order of these statement instances.
S is an integer map that assigns to each statement instance a possi-
bly multi-dimensional time. It allows us to define an execution order

2.2 model and transform imperative programs 17

0 1 2 3 4 5 6 7 8 9
i

0

1

2

3

4

5

6

7

8

9

j

Figure 4: Iteration Space – Unmodified

by sorting the statement instances according to the lexicographic or-
der of their time stamps. Aread and Awrite are integer maps which
define for each statement instance the memory locations that are ac-
cessed.

For our example, we get the following model:

I = {S(i, jj) | 1 6 j 6 i 6 n}

S = {S(i, j)→ (i, j)}

Aread = {S(i, j)→ A(i− 1, j);S(i, j)→ A(i, j− 1)}

Awrite = {S(i, j)→ A(i, j)}

The illustration of I in Figure 4 represents each statement instance
with a single dot. The arrows between such statement instances il-
lustrate data flow dependences modeled by an integer map D =

{S(i, j) → S(i, j + 1);S(i, j) → S(i + 1, j)}. Those dependences relate
statement instances with the statement instances they depend on.
Computing precise data-flow dependences [54, 104, 92] is one anal-
ysis that is significantly facilitated by the use of an integer set based
representation.

We now try to improve data-locality by ensuring that statement in-
stances that operate on the same data elements are executed in close
time proximity. The data dependences force us to ensure that each
statement instance is always mapped to a point in time that is later
than the execution time of all statement instances it depends on. How-
ever, within these constraints we are free to modify the schedule. A
common transformation to increase data locality is loop tiling. Loop

18 polyhedral compilation

0 1 2 3 4 5 6 7 8 9
i

0

1

2

3

4

5

6

7

8

9

j

Figure 5: Iteration Space – Tiled

tiling is in this case both legal and effective. To implement loop tiling
we define a new schedule

S ′ = {S(i)(j)→ (⌊i/3⌋)(⌊j/3⌋)(i)(j)}

which defines an execution order where the statement instances are
always executed in blocks of size 3× 3. The new execution order is
illustrated in Figure 5 and is shown in two levels. At the higher level,
the blue blocks are executed in lexicographic order. At the lower level,
within the individual blue blocks, the statement instances are again
executed in lexicographic order. As statement instances that are close
by are placed in the same block, they are also executed close by in
time.

Up to this point, the transformation has only be applied at the level
of our abstract model. To materialize it, it is necessary to generate im-
perative code according to it. For this we use a polyhedral AST gener-
ator (discussed in Chapter 10) which translates our abstract schedules
back into a set of imperative loops and conditions. For the example
above the following AST could be generated.

for (i = 1; i <= n/3; i+=1)

for (j = 1; j <= n/3; j+=1)

for (ii = max(1,3 * i); ii <= min(n, 3*i+2); ii+=1)

for (jj = max(ii, 3 * j); ii <= min(n, 3*j+2); jj+=1)

S: A[ii][jj] = A[ii-1][jj-1];

2.2 model and transform imperative programs 19

2.2.2 What programs can be modeled?

A program that is “sufficiently regular” to be modeled, analyzed
and transformed using integer sets and maps is traditionally called
Static control part/program (SCoP) [56, 25]. What is considered a
SCoP depends on what can be translated to an integer set based de-
scription and may look very different in the context of source-level
C/C++ code [28][10], Graphical Dataflow Languages [33] or compiler
IRs [122][3]. Ongoing research continuously widens the set of pro-
grams that can be modeled both by using approximation, but also by
extending the underlying model [127, 30] and the generality of tools
that extract this model. To give the reader an idea of how a SCoP may
be defined, we present a set of common imperative constructs that
can be translated into a polyhedral representation. For a precise and
complete description of what state-of-the-art C/C++ code extractor
can translate we refer to Chapter 9.

A SCoP is a program (region) that consists of a set of statements

possibly enclosed by (not necessarily perfectly) nested loops and con-

ditional branches. Within this region read-only scalar values are called
parameters. The statements in the SCoP are side effect free, besides
explicit reads and writes to multi-dimensional arrays or scalar values.
Loops are regular loop bounds with a single lower and a single upper
bound and increments by fixed, positive integers (i+=10). Both loop
bounds and array accesses are (piecewise-quasi) affine expressions in
terms of parameters and induction variables of outer loops.

2.2.3 The polyhedral representation

The representation we use to model SCoPs consists of the following
components:

iteration space/domain The set of statements instances that
are part of a SCoP. It is modeled as a named union set, where
each named component of the union set describes a statement,
with individual instances of a statement being described by the
elements contained in the corresponding named set.

access relations A set of read, write and may-write access rela-
tions relate statement instances to the data-locations they access.
These access relations are modeled as named union maps.

dependences A relation between statement instances that defines
restrictions on the execution order, due to producer-consumer
relationships or the shared usage of certain data locations. Data
dependences are modeled as named union maps.

schedule An execution order which assigns each statement instance
a multi-dimensional execution time. One statement instance is

20 polyhedral compilation

executed before another statement instance, if its execution time
is lexicographically smaller.

It is important to note that there is a strong separation between
the statement instances themselves and the order in which they are
executed. Program optimizations that do not change the set of state-
ments that are executed, but only change the order they are executed
in, consequently only affect the schedule.

We also want to note that there is a relation between the depen-
dences and the schedule. A schedule is only valid if it is of a form
such that all data-dependences go forward in time. This means, if
we take the data dependences and apply the schedule to the related
statement instances to translate them to the scheduling time they are
executed at, the time at the source of the dependence must be lexico-
graphically strictly smaller than the time at the target. Also, we know
that given a set of dependences, we can compute a schedule and, vice
versa, given an iteration space, access relations and a schedule the
corresponding data dependences can be computed.

In contrast to many previous works we distinguish between (must)
write and may write accesses. This distinction is important to under-
stand if a certain write always overwrites a specific data-location and
consequently makes previously written data inaccessible or if pre-
viously written data may possibly remain intact and accessible for
later reads. This difference is important as in the former case data-
dependences only need to be computed from the last write to subse-
quent reads whereas in the latter case data-dependences to all previ-
ous may writes up to the next must write access need to be computed.
There is no need to track may read accesses separately.

2.2.4 Transformations

The use of integer sets or polyhedra to perform loop optimizations
has a long tradition, both in the history of automatic parallelization,
but also in the optimization of sequential code. Compared to clas-
sical loop transformations the use of integer sets as a mathematical
model has several advantages. Besides the ability to use mathematical
tools to reason about the possible transformations, they simplify the
composition of transformations and they allow us to express transfor-
mations that are otherwise difficult or even impossible to express.

We can group loop transformations according to what program
properties are modified:

• The order in which computations are performed

• The loop structure, but not the order of computation

• The data layout and the data locations accessed

• The computation (algorithmic changes)

2.2 model and transform imperative programs 21

The first three kinds of transformations are regularly modeled with
integer sets, whereas modeling algorithmic changes is more difficult,
but possible in some cases [140]. Integer sets are also used for accel-
erator programming and vectorization, but such transformations are
mostly a combination of execution reordering and data layout trans-
formations supplemented with the generation of specialized target
instructions or library calls. We will use such GPU code generation
techniques in Part iii. In this section we focus on basic computation
reordering transformations, which will be used and extended later in
this work.

Classical transformations that reorder computations are fusion, fis-
sion, reversal, interchange, strip-mining, and skewing. They all change
the order statements instances are executed in and can consequently
be modeled by schedule transformations. The same holds for combi-
nations of such elementary transformations that yield tiling or unroll-
and-jam. The subsequent examples illustrate these transformations as
well as the corresponding iteration spaces I, the original schedule S,
the transformation T and the transformed schedule ST .

Fusion
I = {S1(i) : 1 6 i < n;

S2(i) : 1 6 i < m}

S = {S1(i)→ (0, i);

S2(i)→ (1, i)}

T = {(0, i)→ (i, 0);

(1, i)→ (i, 1)}

ST = {S1(i)→ (i, 0);

S2(i)→ (i, 1)}

// Original loops

for (i=1; i<n; i+=1)

S1(i);

for (i=1; i<m; i+=1)

S2(i);

// Fused loops

for (i=1; i < min(n,m); i+=1) {

S1(i);

S2(i);

}

for (i=max(1,m); i<n; i+=1)

S1(i);

for (i=max(1,n); i<m; i+=1)

S2(i);

Fission
I = {S1(i) : 1 6 i < n;

S2(i) : 1 6 i < n}

S = {S1(i)→ (i, 0);

S2(i)→ (i, 1)}

T = {(i, 0)→ (0, i);

(i, 1)→ (1, i)}

ST = {S1(i)→ (0, i);

S2(i)→ (1, i)}

// Original loop

for (i=1; i<n; i+=1)

S1(i);

S2(i);

// Separated loops

for (i=1; i<n; i+=1)

S1(i);

for (i=1; i<n; i+=1)

S2(i);

22 polyhedral compilation

Reversal
I = {S1(i) : 1 6 i < n}

S = {S1(i)→ (i)}

T = {(i)→ (−i)}

ST = {S1(i)→ (−i)}

// Original loop

for (i=1; i<n; i+=1)

S1(i);

// Reversed loop

for (i=1-n; i<0; i+=1)

S1(-i);

Interchange

I = {S1(i, j) : 1 6 i < n;

∧ 1 6 j < m}

S = {S1(i, j)→ (i, j)}

T = {(i, j)→ (j, i)}

ST = {S1(i, j)→ (i, j)}

// Original loops

for (i=1; i<n; i+=1)

for (j=1; j<m; j+=1)

S1(i,j);

// Interchanged loops

for (i=1; i<m; i+=1)

for (j=1; j<n; j+=1)

S1(j,i);

Strip-Mining

I = {S1(i) : 1 6 i < n}

S = {S1(i)→ (i)}

T = {(i)→ (4 ∗ ⌊i/4⌋, i)}

ST = {S1(i)→ (4 ∗ ⌊i/4⌋, i)}

// Original loop

for (i=1; i<n; i+=1)

S1(i);

// Strip mined loop

for (ti=0; ti<n; ti+=4)

for (i = max(1,ti);

i <= min(n-1,ti+3);

i += 1)

S1(i);

Skewing

I = {S1(i, j) : 1 6 i < n

∧ 1 6 i < m}

S = {S1(i, j)→ (i, j)}

T = {(i, j)→ (i, i+ j)}

ST = {S1(i)→ (i, i+ j)}

// Original loops

for (i=1; i<n; i+=1)

for (j=1; j<n; j+=1)

S1(i,j);

// Skewed loops

for (i=1; i<n; i+=1)

for (j=i+1; j<m+i; j+=1)

S1(i, j-i);

2.2 model and transform imperative programs 23

Tiling

I = {S1(i, j) : 0 6 i < 1024

∧ 0 6 i < 1024}

S = {S1(i, j)→ (i, j)}

T = {(i, j)→

(4 ∗ ⌊i/4⌋,

4 ∗ ⌊j/4⌋, i, j)}

ST = {S1(i)→

(4 ∗ ⌊i/4⌋,

4 ∗ ⌊j/4⌋, i, j)}

// Original loops

for (i=0; i<1024; i+=1)

for (j=0; j<1024; j+=1)

S1(i,j);

// Tiled loops

for (ti=0; ti<1024; ti+=4)

for (tj=0; tj<1024; tj+=4)

for (i=tj; i<ti+4; i+=1)

for (j=tj; j<tj+4; j+=1)

S1(i, j-i);

Unroll and Jam
I = {S1(i, j) : 1 6 i < 1024

∧ 1 6 i < 1024}

S = {S1(i, j)→ (i, j)}

T = {(i, j)→ (4 ∗ ⌊i/4⌋,

j, i)}

ST = {S1(i)→ (4 ∗ ⌊i/4⌋,

j, i)}

// Original loops

for (i=0; i<1024; i+=1)

for (j=0; j<1024; j+=1)

S1(i,j);

// Unroll and jammed loops

for (ti=0; ti<1024; ti+=4)

for (j=0; j<1024; j+=1)

for (i=tj; i<ti+4; i+=1)

S1(i, j-i);

We do not describe all transformations in detail, but invite the
reader to compare the source code transformations with the trans-
formation map T that describe them to get an idea of the concepts
we use to model such transformations. While doing so a couple of
interesting details may be spotted. In the fusion example we see
that fusing two loops does not only work in the trivial case where
the two loops have the same number of iterations, but also in more
general cases where additional loops are needed to enumerate state-
ment instances from one loop that may not have a matching instance
in the other loop. Similar boundary condition handling can be seen
in the strip-mining example where the relevant min/max expressions
have been introduced. For tiling and unroll-and-jam we have chosen
examples that do not require specific boundary condition handling.
Another interesting observation is that strip-mining is modeled as a
schedule only transformation. This was first presented by Kelly et al.
[79], but in later literature strip-mining and consequently tiling and
unroll-and-jam are often shown as transformations that require mod-
ifications of the iteration space [37, 27]. We prefer to model them as
schedule only transformations as this has shown to simplify both the
reasoning about such transformations as well as their implementa-
tion.

24 polyhedral compilation

Another interesting group of schedule transformations are transfor-
mations where different schedules are assigned to different instances
of the same statement. We call such schedules piecewise schedules.
They result for example from index set splitting [63], but also from
tiling schemes as presented in Chapter 4 or Chapter 5. To describe
such schedules, we use the previously introduced integer maps with
just slightly more complex Presburger formulas. Assuming we have
a statement {S(i) | 0 6 i < 2n} where we want to apply a reverse
schedule S1 = {S(i)→ (0,n− i− 1)} to the statement instances {S(i) |

0 6 i < n} and an identity schedule S2 = S(i)→ (1, i)} to the remain-
ing instances {S(i) | n 6 i < 2n}, we can form a combined schedule
{S(i) → (0,n− i− 1) | 0 6 i < n} ∪ {S(i) → (1, i) | n 6 i < 2n}). By
generating code for this schedule, we obtain the following result:

for (i = 0; i < n; i += 1)

S1(n - i - 1);

for (i = n; i < 2 * n; i += 1)

S1(c1);

In previous works index set splitting was often modeled by introduc-
ing (virtual) statement copies. We advocate for the usage of partial
schedules as it eliminates the need for statement copies as another
concept.

There is also a set of classical loop transformations that change the
loop structure, but not the order in which statement instances are
executed. Such transformations are loop unrolling, loop peeling or
loop unswitching. All of these do not require any schedule transfor-
mations, but are different ways of specializing code to reduce control
overhead. In Chapter 10 we discuss our work on translating a sched-
ule back to imperative code (AST generation) and present different
AST generation strategies that correspond to a set of classical execu-
tion order preserving loop transformations.

Part III

T I L I N G S A N D O P T I M I Z AT I O N S F O R S T E N C I L S

3
S T E N C I L C O M P U TAT I O N S

The first part of this thesis is dedicated to the generation of optimized
GPU code for so-called stencil computations. We start in Chapter 3

with an overview, which begins with an introduction to stencil com-
putations in Section 3.1, continues with a discussion of why tiling of
stencil computations is beneficial in Section 3.2 as well as as a discus-
sion of related work in Section 3.3, and concludes in Section 3.4 with
a brief section about our work on stencil computations.

In the following chapters we present two approaches to generate
optimized GPU code for stencil computations. We start with split tiling
in Chapter 4 and subsequently present hybrid hexagonal/parallelo-
gram tiling in Chapter 5. In Chapter 6 we analyse the properties of
our new hexagonal tiling strategy and compare it with work on di-
amond tiling. We finish in Chapter 7 with a set of experiments to
evaluate our work.

3.1 what are stencil computations?

Stencil computations are computations that iteratively update data
in a multi-dimensional grid by recomputing each data point from a
set of neighboring points. Computations of this form are common in
many scientific applications e.g., computational electromagnetism [120],
weather prediction [71], cellular automata [90] or solvers for differen-
tial equations [117].

L1: for (t = 0; t < T; t++)

L2: for (i = 1; i < N-1; i++)

L3: for (j = 1; j < N-1; j++) {

S1: A[(t+1)%2][i][j] = 0.2 * (A[t%2][i][j]

+ A[t%2][i][j-1]

+ A[t%2][i][j+1]

+ A[t%2][i-1][j]

+ A[t%2][i+1][j]);

}

Listing 1: Implementation of a 5-point, 2D-space, jacobi-style heat stencil

Listing 1 shows a possible implementation of a 5-point heat stencil
on a two dimensional data-grid. The outermost loop L1 is the time
loop which enumerates the different time steps, whereas the loops
L2 and L3 scan at each time step the elements of the data-grid. Each

27

28 stencil computations

0 5 10 15

0

5

10

15

t = 0

0 5 10 15

0

5

10

15

t = 10

0 5 10 15

0

5

10

15

t = 50

0 5 10 15

0

5

10

15

t = 100

Figure 6: Heat distribution after running the stencil in Listing 1

1.0 0.0 1.0
i

1.0

0.0

1.0

j

Figure 7: Data-flow of the stencil in Listing 1

data point is then recomputed by statement S1 using data from the
point itself as well as its neighbors in the north, east, south and west.
The pattern in which data is retrieved from the neighbors is called
the stencil. The stencil of our example is shown in Figure 7. To get a
better idea of the computation performed we also illustrate the result
of the heat computation at different points in time (Figure 6).

An interesting observation to make is that even though the data
space itself is two dimensional the array on which the computation
is performed has three dimensions. The additional dimension is used
as a temporary array that ensures that newly computed data values
do not overwrite values still needed to compute other data points
at the same time step.1 There are also stencil computations such as
Gauss-Seidel which do not need a temporary array, but the cost of
the reduced data footprint is a loss of parallelism. For so-called Jacobi
style stencils, the use of a temporary array enables all space loops to
be executed fully in parallel.

1 Instead of using an additional dimension and modulos, existing implementations
often use a second array and switch the pointers to the arrays to alternate. We have
chosen our implementation over pointer switching, as pointer switching complicates
further analysis and optimizations. Another option taken e.g. in Polybench [101] is
to copy after each time step the full temporary array back to the original array. We
do not use this approach as it introduces unnecessary copy overhead.

3.2 tiling of stencil computations 29

0 2 4 6 8 10 12 14
i

0

1

2

3

4

5

6

t

Figure 8: Iteration space of 1D-space stencil

To understand the available parallelism in Jacobi style stencils, we
take a look at an even simpler 1D stencil:

for (t = 0; t < T; t++)

for (i = 1; i < N-1; i++)

A[(t+1)%2][i] = A[t%2][i-1] + A[t%2][i+1];

When analysing its iteration space, illustrated in Figure 8, we ob-
serve that there are no data-dependences (arrows) between the indi-
vidual computations (points) executed within a single time step t, but
all dependences cross at least one time step. This means that within
one time step the individual computations can be executed fully in
parallel – a large amount of fine grained parallelism is available.

3.2 tiling of stencil computations

Even though stencil computations provide a large amount of fine-
grained parallelism, executing them efficiently is non-trivial. Most
stencils perform by default only a small amount of work compared
to the data processed, which means the data transfer commonly lim-
its the achievable performance. To execute such stencils efficiently, it
is important to increase the computation to data transfer ratio. An
effective way to do so is to form larger blocks of work, so called tiles.
For stencil computations, forming tiles is almost generally beneficial,
but individual tiling strategies impact the efficiency of the computa-
tion and the amount of parallelism exposed differently.

The simplest tile shapes we can choose are rectangular tile shapes.
Figure 9 illustrates two kinds of rectangular tile shapes. Figure 9a
shows rectangular tiles that only contain a single time step, but which
combine computations on different elements in the data space. Such

30 stencil computations

0 2 4 6 8 10 12 14
i

0

1

2

3

4

5

6

t

(a) Space tiling

0 2 4 6 8 10 12 14
i

0

1

2

3

4

5

6

t

(b) Time tiling

Figure 9: Rectangular tiling of 1D-space stencil

3.2 tiling of stencil computations 31

0 5 10 15 20
t+i

0

1

2

3

4

5

6

t

(a) skewing + rectangular tiling

0 2 4 6 8 10 12 14
i

0

1

2

3

4

5

6

t

(b) overlapped tiling

Figure 10: Iteration space of 1D-space stencil

a tiling is called space tiling. Space tiling can be used to coarsen the
computation and to enable a certain amount of reuse due to neigh-
boring computations possibly sharing certain input values. However,
the maximal amount of reuse space tiling allows is limited. Higher
levels of reuse can be obtained when using time tiling, a tiling that
combines computations of different time steps in individual tiles. Fig-
ure 9b shows a rectangular tiling that crosses several time steps. We
notice immediately that such a tiling introduces circular dependences
between neighboring tiles. This does not only mean that we lose all
parallelism, but, even worse, there is not any valid execution order of
these tiles.

One way to construct a valid time tiling is to skew the iteration
space (in this case {(t, i) → (t, i + t)}) before applying rectangular
tiling. In Figure 10a we see that all circular dependences disappear.
In fact, it is even possible to schedule neighboring blocks of the same
color as a wavefront where all blocks within one wavefront can be
executed in parallel and only blocks that belong to different wave-
fronts need to be scheduled sequentially. The combination of skew-
ing and rectangular tiling is a good starting point, but not always
optimal. One drawback is the unbalanced coarse-grained parallelism

32 stencil computations

which causes reduced parallelism at the beginning and the end of
the computation. In our illustration this is clearly visible, as the first
two wavefronts (orange squares and blue stars) only contain a single
block, then two wavefronts (purple triangles, orange squares) contain
two blocks and we finish with two wavefronts (blue stars, purple tri-
angles) each consisting of a single block. For this very small iteration
space, we are most of the time in the phase of reduced parallelism.
One may think for realistic problem sizes this may not be the case,
but for higher dimensional stencils and cache restricted environments
this imbalance can be problematic.

We say that tiling schemes ensure concurrent start, if they ensure
that the wavefront of tiles that are executed in parallel is parallel to
the data space hyperplane. Tiling schemes with concurrent start en-
sure balanced coarse-grained parallelism. Overlapped tiling [84, 70]
is one tiling scheme that ensures concurrent start. It can be seen as
a form of rectangular tiling, but with additional computations added
to resolve the circular dependences. As can be seen in Figure 10b,
overlapped tiling has the same amount of coarse-grain parallelism
throughout the computation (in our illustration 3 parallel tiles). How-
ever, the cost of this balanced parallelism is both redundant compu-
tations and the need for additional cache memory to store the results
of the redundant computations. For environments where computa-
tions are cheap, but cache memory is expensive (e.g., GPUs), the latter
might be even more problematic.

3.3 related work

There is a lot of interesting work on optimizing stencil computations.
To give the reader the necessary background on this related work, we
will discuss it before presenting our own work. As we focus in our
work on the development of tiling schemes that enable efficient GPU

code generation, we will begin the discussion in this section with the
most relevant related work and then slowly widen the focus of our
discussion. At the end of this section we will provide related work
on the theoretical analysis of tiling schemes, which is relevant to our
work in Chapter 6.

A very interesting approach for generating optimized stencil codes
for GPUs is presented by Holewinski et al. [70]. In their work they dis-
cuss a DSL compiler that automatically generates CUDA code for sten-
cil computations. Using overlapped tiling, as discussed in Section 3.2,
they ensure data reuse along the time dimension. Overlapped tiling
itself has been introduced earlier by Krishnamoorthy et al. [84] who
evaluate its benefits on a CPU cluster system and a hierarchical form
of overlapped tiling is discussed by Zhou et al. [141] in the context
of OpenCL code generation for CPUs. None of these earlier approaches
discusses the automatic generation of CUDA code. Another time tiling

3.3 related work 33

scheme, called 3.5D tiling, was introduced by Nguyen et al. [96] as
data blocking scheme for both CPU and GPU devices. 3.5D tiling also
uses overlapping regions to ensure the legality of time tiling. To our
understanding their work does not present 3.5D tiling as part of an
end-to-end compiler workflow. Meng and Skadron [94] also look into
a form of overlapped tiling, even though they do not explicitly men-
tion this very term. Instead they use the term ghost zones to describe
the areas of redundant computations. Such ghost zones are also their
main focus of research as they aim to model the performance of CUDA

code in function of ghost zone size. They do not discuss the automatic
generation of GPU code. Finally, the last piece of work we want to men-
tion in the context of time tiling on GPUs is the work of Di and Xue
[51] who model and automatically select tile sizes of GPU kernels. In
their work they use a combination of skewing and rectangular tiling
similar to the approach described at the beginning of Section 3.2.

Time tiling as a way to improve data reuse of stencil computations
has also been used in the context of CPUs. Tang et al. [121] propose
the Pochoir stencil compiler which uses a DSL embedded in C++ to
produce high-performance code for stencil computations using time
tiling obtained with cache-oblivious parallelograms. In their work
they target C++ and Cilk to obtain thread-level parallelism on CPUs,
but do not discuss GPU code generation or related optimizations. Str-
zodka et al. [118, 119] use time skewing with cache-size oblivious
parallelograms to obtain fast CPU code. One major selling point of
their tiling scheme is its cache size independence. Cache size inde-
pendence is an interesting property, but the additional synchroniza-
tion between tiles, as required by their tiling scheme, may hinder its
exploitation on GPUs where inter thread block synchronization prim-
itives are commonly not available. There has also been work from
Henretty et al. who propose a DSL-based approach [68] for generat-
ing high-performance code for multi-core vector-SIMD architectures.
In their work hybrid prismatic tile shapes ensure time tiling. An-
other interesting approach currently only evaluated on CPUs is dia-
mond tiling as presented by Bandishti et al. [21]. Diamond tiling is
a time tiling technique that uses diamond shaped tiles to avoid re-
dundant computations while ensuring balanced coarse grained paral-
lelism. However, to obtain this balanced coarse grained parallelism it
imposes certain restrictions on the choice of tile sizes. An interesting
point of diamond tiling is its integration into a general purpose poly-
hedral optimizer called Pluto [35]. We discuss this technique in detail
in Chapter 6.

There is also interesting work that focuses less on the generation of
optimal tile shapes, but on other aspects relevant for generating good
stencil code. With the PATUS stencil compiler Christen et al. [41] pro-
pose a system which, given the description of a parameterizable code
generation and parallelization strategy as well as the specification of

34 stencil computations

a specific stencil, generates efficient CPU or GPU code using autotun-
ing. Even though PATUS was conceptually designed to support time
tiling, the original implementation missed some essential parts to do
so [42, 6.2] and to our understanding these parts have not yet been
added. Han et al. [66] are developing with PADS pattern-based opti-
mization of stencil codes on CPUs and GPUs using a proposed exten-
sion to OpenMP. Similar to PATUS, code generation strategies can be
provided by the user. To our understanding also no time tiling is used.
Datta et al. [48, 49] develop an optimization and auto-tuning frame-
work for stencil computations, targeting multi-core systems, NVIDIA
GPUs, and Cell SPUs. Similarly to the previous systems, no time-tiling
is considered. For completeness, we also want to point out the ex-
istence of hand-tuning efforts. Micikevicius et al. [95] discussed the
manual optimization of a 3-D finite difference computation stencil.
He uses a space tiling scheme to obtain efficient CUDA code.

Besides domain specific approaches, there also exists a set of gen-
eral purpose optimizers that fully automatically generate parallel GPU

code for a larger range of programs. Such optimizers can often also
generate code for stencil computations. Baskaran et al. [23] present
with C-to-CUDA the first end-to-end automatic source-to-source com-
piler that translates C code to CUDA. It uses Pluto’s scheduling algo-
rithm and supports the use of software managed caches. Using sim-
ilar techniques, Reservoir Labs’ R-Stream [87, 125] is another poly-
hedral compiler that targets GPUs. PPCG [135], an evolution of C-to-
CUDA, generates parallel CPU and GPU code using rectangualar tiling.
It relies on affine transformations to extract parallelism and improve
locality, using a variant of the Pluto algorithm. Par4All [18] is an open
source parallelizing compiler developed by Silkan targeting multiple
architectures. The compiler is not based on the polyhedral model, but
uses abstract interpretation for array regions, performing powerful
inter-procedural analysis on the input code.

We also want to briefly list a set of publications that discuss the the-
oretical analysis of tile shapes. As previously mentioned, such work
is relevant for the last chapter of this part of the thesis. Already very
early there was work by Schreiber and Dongarra [113] on how to de-
rive optimal tile sizes for loop blocking. For rectangular tile shapes
they compute tile sizes that optimize the ratio between the performed
computations and the required data accesses using a simple machine-
independent cost model. Another interesting piece of related work is
the positivity based tile size selection framework of Renganarayana
and Rajopadhye [109]. In their work they show that many cost mod-
els and heuristics in compilers can be described by posynominals
which again can be used to define functions for which the optimal
value can be computed efficiently. This work is of high interest as
it applies across a large range of cost models. However, it does not
provide insights on how to derive new cost models as needed for

3.4 our work on stencil computations 35

example to derive conclusions about new and possibly complex tile
shapes. Orozco et al. [97] use the dependency graph to find the opti-
mal tile shape for stencil computations, and conclude that the optimal
tile shape in terms of compute-to-communication ratio is a diamond.
Even though this finding is interesting by itself, it does not provide
insights about the optimal tile shape when considering communica-
tion reducing techniques (RREDUCED in Chapter 6) or when looking
at the ratio of computation to synchronization.

3.4 our work on stencil computations

Even though there has already been significant work on stencil com-
putations there has been less work on generating GPU code fully au-
tomatically, and even less work when considering techniques that ex-
ploit time tiling.

In the following chapters we present two stencil specific tiling strate-
gies which both exploit time tiling and provide concurrent start, with-
out the need for redundant computations or a reduced freedom in
the selection of tile-sizes. Split-tiling as presented in Chapter 4 is a
technique that provides coarse-grained parallelism on all dimensions,
whereas our hybrid hexagonal/parallelogram tiling scheme (Chap-
ter 5) sacrifices coarse-grained parallelism on some space dimensions
to even better address GPU specific code generation concerns.

All our tiling techniques are described as polyhedral schedule trans-
formations that are applied by a generic GPU code generator (PPCG).
The integration into a general purpose optimizer is challenging in the
first place, but has several benefits. First, we can reuse existing code
generation infrastructure and non-stencil specific optimizations. Sec-
ond, the user can rely on the same GPU code generator for different
types of codes and just benefit from higher quality code on stencil
computations. Finally, the abstract description of the enabling tiling
schemes makes the later integration into other DSL compilers or even
compilers for languages as C/C++, Fortran or Julia [31] possible.

We complete our work on stencils with an analysis of diamond
tiling, a tiling scheme that can be seen as a special case of hexag-
onal tiling. We discuss the constraints diamond tiling imposes on
tile sizes and wavefront coefficients and we formulate additional con-
straints that ensure the uniform placement of integer points across
tiles. Uniform integer point placement can help to reduce control flow
statements and is by construction ensured in our first formulation of
hexagonal tiling. We then provide a second formulation of hexago-
nal tiling, this time in the context of the Pluto framework, which can
describe both diamond and hexagonally tiled code. Using his formu-
lation we analyze the ratio of communication to computation and
communication to synchronization obtained with both diagonal and
hexagonal tiling.

4
S P L I T T I L I N G

One tiling scheme that allows time tiling of stencil computations with-
out introducing unbalanced inter-tile parallelism or redundant com-
putations is split tiling [84]. Split tiling uses index set splitting [63]
to partition the iteration space into phases such that within a single
phase all tiles can be executed in parallel. Due to carefully choosing
the tile shapes of each phase and the use of possibly different shapes
in different phases, split tiling does not require redundant computa-
tions.

In this chapter we propose a generic algorithm to calculate index-
set splitting for an arbitrary number of dimensions and without the
need to construct any larger integer linear program. Using this algo-
rithm we enhance PPCG, a general purpose polyhedral GPGPU code
generator, such that it can use split tiling to generate optimized GPU

code for stencil computations.

4.1 overview

The general idea of split tiling is to divide the iteration space in a se-
quence of bands that are orthogonal to the sequential dimension and
which themselves need to be executed in sequence. Within each band
the iterations are split into phases that partition the band such that
all tiles within a single phase are independent and can consequently
be executed in parallel. Figure 11 illustrates split tiling for the exam-
ple shown in Figure 8. We can see horizontal bands of height three
which are orthogonal to the time dimension and for which a sequen-
tial execution order is enforced by the data dependences. Within each
band we can see two kinds of tiles, orange upright trapezoids as well
as blue inverse triangles. All tiles of the same kind and within the
same band can be executed in parallel, but dependences enforce an
ordering of the individual phases. In this case, the trapezoidal tiles
need to be executed before the triangular tiles. Looking more closely
we see that due to its carefully chosen tile shape, a certain trapezoidal
tile only depends on tiles from an earlier band, but never on tiles in
the same band. Similarly the triangular tiles in a single band never
depend on each other, but only on trapezoid tiles or tiles from an ear-
lier band. The overall result is a time tiling that does not require any
redundant computation, but still provides balanced coarse-grained
parallelism.

To obtain a schedule that implements split tiling, the iteration space
is divided into subspaces and for each subspace a different schedule

37

38 split tiling

0 2 4 6 8 10 12 14
i

0

1

2

3

4

5

6

t

Figure 11: Split tiling for the simple example (tile size 8× 3).

is computed. For the example in Figure 11 we define the subspaces
TO, the orange tile space, and TB, the blue tile space. The schedule for
TO is SO and the schedule for TB is SB. The overall schedule S is a
piecewise integer map where SO is used for all elements in TO and SB
is used for all elements in TB. For each subspace we can now define
a schedule that executes the convex subsets (our tiles) in parallel. SO
and SB define such schedules. For our example we define TO, TB, SB
and SB as follows (tile size 64× 32):

TO = {A(t, i) | (∃i ′, t ′ : t ′ = t mod 32∧ i ′ = i mod 64

∧ i ′ − t ′ 6 0∧ i ′ + t ′ 6 64− 2)}

TB = {A(t, i) | (∃i ′, t ′ : t ′ = t mod 32∧ i ′ = i mod 64

∧ i ′ − t ′ < 64∧ i ′ + t ′ > 64− 2)}

SO = {A(t, i)→ (t ′, 0, i ′, t, i) | t ′ = ⌊t/32⌋ ∗ 32

∧ i ′ = ⌊i/64⌋ ∗ 64}

SB = {A(t, i)→ (t ′, 1, i ′, t, i) | t ′ = ⌊t/32⌋ ∗ 32

∧ i ′ = ⌊(i− 31)/64⌋ ∗ 64}

To generate split tiled CPU code it is sufficient to provide this sched-
ule to a polyhedral code generator such as CLooG [26] or the new isl
AST generator (Chapter 10). The resulting code is shown in Listing 2.
GPU code generation is more involved, but the high-level picture is
rather simple. We use normal CPU host code to enumerate the differ-
ent bands. We then execute each phase of a band individually on the
GPU by mapping each tile to a thread block, creating explicit sequen-
tial GPU code to enumerate the individual time steps of a tile and we
map statements instances that work on different elements of the data
space to independent GPU threads. On top of this we add synchro-
nization that ensures that all elements in a tile that are part of one
time step are computed before computing the elements of the subse-
quent time steps. Further optimizations are applied to take advantage

4.2 preprocessing 39

of shared memory and the on-GPU software managed caches, as well
as to introduce instruction level parallelism.

for (c1=0;c1<=M-1;c1+=32) {

lb = 0;

ub = min(N-2,c1+N-3);

#pragma omp parallel for shared(c1,ub,lb) private(c3,t,i)

for (c3 = lb; c3 <= ub; c3+=64)

for (t = max(1,c1);

t <= min(min(M-1,c1+31),c1-c3+N-2); t++)

for (i = max(1,-c1+c3+t);

i <= min(N-2,c1+c3-t+62); i++)

A[t][i] = A[t-1][i-1] + A[t-1][i+1];

lb = max(-64,-64*floord(-c1+M-3,64)-64);

ub = min(N-34,-c1+M+N-66);

#pragma omp parallel for shared(c1,ub,lb) private(c3,t,i)

for (c3 = lb; c3 <= ub; c3+=64)

for (t = max(max(max(1,c1),c1-c3-62),c1+c3-N+65);

t <= min(M-1,c1+31); t++)

for (i = max(1,c1+c3-i+63);

i <= min(N-2,-c1+c3+t+63); j++)

A[t][i] = A[t-1][i-1] + A[t-1][i+1];

}

Listing 2: Split tiled code

4.2 preprocessing

As a first step, we extract a polyhedral description from our input C
program using pet (Chapter 9), compute dependences using isl [128]
and transform the polyhedral description into some canonical form
that later simplifies the construction of the schedule. The C input
can contain modulos, non-unit stride loops and piecewise affine ex-
pressions, the latter are useful for example to model boundary con-
ditions. There is also no limit on the number of arrays in the kernel.
Focusing on the algorithmic domain of stencil computations, we as-
sume that the input program consists of an outer loop containing
k > 1 perfect nests of loops such that none of the loops in these nests
carry any dependences. That is, all dependences are either carried
by the outer loop or connect instances from different loop nests. If
these conditions are met, then we construct a schedule of the form
{Li(t, s0, . . . , sn) → (k · t+ i, s0, . . . , sn)}, where i satisfying 0 6 i < k

reflects the order in which the loop nests appear inside the outer loop.
If the loop nests have different nesting depths, then they are currently
manually aligned. In the constructed schedule, all dependences are

40 split tiling

carried by the outer dimension k · t+ i, meaning that the remaining
dimensions si are fully parallel.

More generally, we could use a general purpose optimizer such as
Pluto [35] to construct such an initial schedule (i.e., one with a sin-
gle outer sequential dimension followed by only parallel dimension).
This would allow us to consider more general inputs, but is left for
future work.

4.3 the split tiling schedule

We present our new algorithm in steps, starting with the main idea
applied to a single statement stencil, then generalizing it to multi-
statement kernels, and refining the method with necessary optimiza-
tions.

4.3.1 Core algorithm

Given an initial schedule as described in Section 4.2, we partition the
iteration space of the schedule domain by placing equally distanced
hyperplanes orthogonal to the axis of the time dimension. The differ-
ent partitions form bands of fixed height (the height of the tiles). As
the time dimension increases from band to band and as all depen-
dences are carried by the time dimension, the bands can and must
be executed sequentially. To obtain parallelism, we split the iterations
within a single band into tiles of different colors, such that depen-
dences may enforce an execution order between the different colors,
but that within a single color all tiles can be executed in parallel.

To partition the band into different colors, we derive a tile shape for
each color such that the full band can be covered with these shapes.
The tile shape of the first color C0 is constructed by choosing an ar-
bitrary point X. X will be the apex of a pyramid that contains all
iterations within the band that are needed to satisfy the (transitive)
dependences of X. To construct this pyramid, we calculate the de-
pendence distance vectors of the program and attach all of them to
X. Together they form the upper part of a pyramid. We now extend
the dependence vectors backward until their length along the time
dimension matches the tile height we are aiming for. The convex hull
of the extended dependence vectors forms a pyramid. This pyramid
is the minimal set of points that we consider as the shape of the first
color. In some cases it is preferable to have a shape that is wider
along certain space dimensions. We can form such wider shapes by
“stretching” the initial pyramid along these space dimensions. Stretch-
ing along a dimension means to position two copies of the original
shape, such that the positions of the copies only differ in the dimen-
sion along which we stretch them. The stretched shape is now the
convex hull of the two shapes.

4.3 the split tiling schedule 41

In addition to the first color, we derive one color for each space
dimension in the input. The shape of a color Cx (where x corresponds
to some space dimension) is derived by stretching the pyramid of C0

along the x-dimension and by subsequently subtracting the shapes of
all previously calculated colors.

In the case of more than one space dimension, additional colors are
needed. Besides the initial color C0 and the colors for individual di-
mensions, we introduce a color for each combination of dimensions.
This means, for a 3D input, the colors Cxy, Cxz, Cyz as well as Cxyz

are introduced. Their tile shapes are derived by stretching the initial
pyramid along the set of dimensions they are named after. This can
be compared to calculating the different faces of a cube, where the
pyramid itself forms the shape of a vertex, the pyramids stretched
along a single dimension form the differently oriented edges, the
pyramids stretched along two dimensions form the facets and the
pyramid stretched along all three dimensions forms the cube itself.
Stretching the pyramid along more than one dimension (e.g., along
x-y-z) is done recursively. We select one dimension (e.g., y) and cal-
culate the union of the tile shapes that correspond to the colors of
the remaining dimensions (here Cxy, Cx, Cz, C0). This union is then
replicated along the selected dimension, the convex hull of the entire
construct is calculated, and finally the previous colors as well as their
replicated copies are subtracted.

The split tiling schedule is constructed by tiling the original itera-
tion space with the previously calculated tile shapes, such that the
sequential execution of the different bands as well as of the differ-
ent colors is ensured. Tiles of the same color and within the same
band are mapped to parallel dimensions. The iterations within the
tiles are executed according to the original schedule. As the index
set splitting is calculated without considering the bounds of the iter-
ation space, there is no constraint on the shape of the iteration space.
Only as the very last step do we constrain the schedule to the actual
iteration space.

The left part of Figure 12 shows a split tiling of the Jacobi 2D kernel.
The pyramid that forms the first color was placed in the center of
the iteration space. At time step one (the upper left illustration) the
number of elements in the first color is still large. When going down
to time steps two and three we are moving up the pyramid such that
the number of elements executed becomes smaller. At time step three,
color one consists only of a single point, the summit of the pyramid.
The shape of color two forms the connection between two vertical
neighbors of color one. The shape is non-convex and resembles a
simple butterfly. Color three now forms the horizontal connection
between two neighboring shapes of color one. Color four, the last
color constructed, fills the space enclosed by the previously calculated
colors.

42 split tiling

4.3.2 Tile shape simplification

The previously introduced split tiling algorithm starts from a single
pyramid that exactly covers the dependence vectors. Depending on
the dependence vectors, such a minimal pyramid may not always be
parallel to the axes of the iteration space. In case it is not, such as
in Figure 12, subsequent tile shapes may have a non-convex form.
Such non-convex tile shapes are undesirable, not only because they
increase the required amount of communication between the different
tiles, but they also introduce more complex control flow structures.
To avoid such complex control flow structures, we normally widen
the original pyramid to create a rectangular base. This can avoid the
construction of non-convex tiles. Figure 12 illustrates the tile shapes
resulting from the widening of the original pyramid to a rectangular
base. As can been seen, this leads to greatly simplified (and convex)
shapes.

4.3.3 Multi-statement loop nests

Up to this point, our split tiling algorithm is only defined for kernels
typical for single-statement stencils. In this section, we extend it to
stencil computations that apply more than one statement in each iter-
ation of the time loop. We do this by matching for a specific iteration
space pattern that we have observed to commonly appear in multi-
statement stencils (e.g. the Polybench [101] jacobi stencils). We point
out to the reader that our approach is an optimistic heuristic, which
could possibly be generalized to work on a wider range of patterns.
An interesting approach in this area is also proposed by [68] who
models multi-statement stencils in his DSL compiler.

To detect multi statement stencils we look for a SCoP that consists
of an outer sequential dimension (time), an additional sequential
dimension with a known non-parametric number of iterations (the
lexicographic position of the different statements), as well as a set
of fully parallel dimensions (space dimensions). Figure 13 shows a
simple two-statement kernel that matches this pattern. Its iteration
domain is {S(t, i) | 0 6 t < T ∧ 0 6 i < N;P(t, i) : 0 6 t <

T ∧ 0 6 i < N} and its execution order is defined by the following
schedule {S(t, i) → (t, 0, i);P(t, i) → (t, 1, i)}. The following depen-
dences exist: {S(t, i− 2)→ P(t, i);P(t− 1, i− 1)→ S(t, i);S(t− 1, i)→
S(t, i);P(t−1, i)→ S(t−1, i)}. Mapped into the scheduling space, this
yields {(t, 0, i − 2) → (t, 1, i); (t − 1, 1, i − 1) → (t, 0, i); (t − 1, 0, i) →
(t, 0, i); (t− 1, 1, i) → (t, 1, i)}. By analyzing the dependences, we see
that the two outermost dimensions both carry loop dependences. This
means our split tiling algorithm is not directly applicable.

By applying a simple pre-transformation we can canonicalize the
code such that it is again possible to use the previously presented

4.3 the split tiling schedule 43

0 2 4 6 8 10 12 14 16

i

0

2

4

6

8

10

12

14

16

j

Split Tiling (non-simplified), t=1

0 2 4 6 8 10 12 14 16

i

0

2

4

6

8

10

12

14

16

j

Split Tiling (simplified), t=1

Color 1

Color 2

Color 3

Color 4

0 2 4 6 8 10 12 14 16

i

0

2

4

6

8

10

12

14

16

j

Split Tiling (non-simplified), t=2

0 2 4 6 8 10 12 14 16

i

0

2

4

6

8

10

12

14

16

j

Split Tiling (simplified), t=2

Color 1

Color 2

Color 3

Color 4

0 2 4 6 8 10 12 14 16

i

0

2

4

6

8

10

12

14

16

j

Split Tiling (non-simplified), t=3

0 2 4 6 8 10 12 14 16

i

0

2

4

6

8

10

12

14

16

j

Split Tiling (simplified), t=3

Color 1

Color 2

Color 3

Color 4

Figure 12: Split tiled jacobi-2d kernel

split tiling algorithm. We detect that only the outermost time dimen-
sion can have parametric size related to the number of time steps
executed. The size of the second sequential dimension is indepen-
dent of the number of executed time steps. As the second dimension
represents the lexical order of the statements in the source code, its
size is bound by the number of statements in the source code. As
the integer value of this bound is available at compile time, we can
fold the two time dimensions into a single one. For a two statement
kernel this transformation can be described by the following map-
ping {(t, 1, i) → (2t + 1, i) | 0 6 l 6 1}. Applying this mapping on

44 split tiling

the original schedule gives us {S(t, i) → (2t, i);P(t, i) → (2t + 1, i)}
as well as the dependences {(2t, i− 2) → (2t+ 1, i); (2t− 1, i− 1) →

(2t, i); (t − 2, i) → (t, i)}. After this transformation, all dependences
are again carried by the outermost dimensions and the inner parallel
dimensions remain unchanged. Now, the previously presented split
tiling algorithm can be applied.

for (t = 0; t < T; t++) {

for (i = 0; i < N; i++)

S: A[1][i] += A[0][i+1]

for (i = 0; i < N; i++)

P: A[0][i] += A[1][i+2]

}

Figure 13: Two statement kernel

4.4 cuda code generation

To generate CUDA code, we extended the polyhedral GPU code gen-
erator PPCG [135]. PPCG is a state-of-the-art GPU code generator that
translates static control programs in C to CUDA enabled programs.
For certain classes of computations (e.g., linear algebra kernels), this
produces very efficient code that reaches the performance of highly-
tuned libraries. For stencil computations, PPCG performs a basic map-
ping where for each time step, a new kernel instance is spawned and
each kernel applies a single stencil to just a couple of data points.
This mapping exposes a high level of parallelism, but at each time
step all data is read from and written to global memory. This means
the global memory bandwidth becomes the limiting factor of the sten-
cil computation.

By adding support for split tiling, we enabled PPCG to produce
time-tiled CUDA code for stencil like computations. Such code exe-
cutes several iterations of the time loop within each kernel and keeps
intermediate results in shared memory. This significantly lowers the
pressure on the global memory bandwidth and consequently allows
a higher computational throughput.

The split tiling support for PPCG was developed by enhancing and
parameterizing the polyhedral optimization infrastructure that was
already available in PPCG. We specifically avoided the development of
a new domain-specific code generator, but aimed instead at enhanc-
ing an existing GPU optimization framework. From a user’s point of
view, this provides a smoother experience as the same framework
can be used for a wide range of kernels. The only difference is that
it is now possible to obtain improved code for stencil computations.
From the developer’s point of view, the use of a uniform optimization

4.4 cuda code generation 45

framework has several benefits. Developing on top of an existing in-
frastructure speeds up the development of the CUDA code generator.
It also enabled us to develop generic features and optimizations that
can be beneficial for PPCG itself, but that show immediate benefits
for split tiling if parameterized accordingly. The uniform framework
makes it again very easy to specify and communicate the necessary
parameters to the relevant transformations.

When generating split-tiled CUDA code we start from the C code
of the program. This code is read by the polyhedral extraction tool
pet (Chapter 9) which is available from within PPCG. Based on the
extracted polyhedral description, we check if the program is suitable
for split tiling. If this is the case, we derive a split-tiled schedule ac-
cording to the generic algorithm described above. This new schedule
is now provided to the generic PPCG transformation infrastructure
where it replaces the PPCG internal schedule optimizer as well as the
PPCG internal tiling. Instead, we parameterize PPCG with information
about the schedule we provide. This information includes the number
of dimensions of the entire schedule, the number of outer loops that
should be executed on the host side, the first parallel loop that should
be mapped to the GPU, the dimensionality of the tiles, the number of
parallel dimensions in the tiles as well as information about the num-
ber of dimensions that should be considered when keeping values in
shared memory.

PPCG uses this information to map the split tiles to the GPU. The
mapping itself is rather straightforward. The tile loop of the time
dimension is generally kept in the host code where it loops over a
sequence of kernel calls. Each kernel call executes a set of thread
blocks which in turn execute the parallel tiles as available at a certain
time point using a one-to-one mapping from tiles to thread blocks.
Within a tile, the parallel loops that enumerate the space dimensions
are mapped to individual threads in a way that ensures coalesced
memory accesses. The non-parallel loop for the time dimension is
executed sequentially in each kernel. __synchthreads calls are intro-
duced to ensure that each time step is finished before the next one is
started.

4.4.1 Shared memory usage

The most important optimization for split tiling is the use of shared
memory. The standard code that PPCG generates for stencils only uses
shared memory to take advantage of spacial reuse within a single
calculation. Such spacial reuse rarely happens for stencils and the
additional synchronization overhead often outweighs the benefits of
shared memory usage. However, with split tiling, we can now take
advantage of reuse along the time dimension. This means all calcu-
lations within a single tile can be performed in shared memory. The

46 split tiling

only accesses to global memory are transfers from global memory to
shared memory before executing the code of a tile and transfers from
shared memory back to global memory after the execution of a tile
has finished. As each combination of kernel and work group only
execute one tile at a time, there is no reuse of data between differ-
ent tiles. The actual generation of the code that transfers data to and
from shared memory is not specific to split tiling, but we just reuse
the shared memory code generation that is already part of PPCG [135,
Section 7 - Memory Allocation]. To do so we only need to provide
PPCG with information about where we want to exploit reuse, in our
case within individual tiles. In PPCG terms this information can be
transmitted by giving the schedule dimensions in which shared mem-
ory should be exploited.

4.4.2 Instruction level parallelism

On CUDA architectures several kinds of parallelism are available. Par-
allelism due to the execution of parallel threads is the most obvious
one. However, even when generating code without split tiling, PPCG

maps by default several data points to a single thread. Mapping sev-
eral data points to a single thread ensures that there is a certain num-
ber of instructions between two subsequent __syncthreads calls. Ex-
posing this instruction level parallelism is beneficial as it helps to
hide memory access latency. Our split tiling implementation uses
loop unrolling to increase the amount of available instruction level
parallelism.

4.4.3 Full/partial tile separation

One way to avoid overhead due to the evaluation of boundary con-
ditions is to use full/partial tile separation [19, 61, 82]. The idea here
is to generate specialized code for full tiles as well as for tiles that
intersect with the iteration space boundary (i.e., partial tiles). Due to
the absence of checks for the iteration space boundaries, the code of
the full tiles evaluates a lot less conditionals. This is beneficial not
only due to the reduced number of evaluated conditions, but also
as it opens up new possibilities for loop-invariant code motion. Our
split tiling compiler automatically performs full/partial tile separa-
tion (Chapter 10).

4.5 summary

In this chapter we presented a formulation of split tiling as a polyhe-
dral schedule transformation using index set splitting to assign appro-
priate schedules to the different tile shapes. Our split tiled schedule
is constructed directly from the dependence vectors without the need

4.5 summary 47

to formulate and solve ILP problems to optimize tile shapes. It is for-
mulated for an arbitrary number of space dimensions, the extracted
parallelism is not limited to a single dimension, and no fixed relation
between time tile height and the tile width along space dimensions is
imposed.

Our split tiling algorithm has been implemented as a prototype
extension to PPCG, which allows us to automatically generate split
tiled CUDA. The CUDA code is generated such that it uses software
managed shared memory and exploits instruction level parallelism.
By using full/partial tile separation we avoid overhead of boundary
condition checking in the core computation.

The techniques in this chapter have been collaboratively developed
and an earlier version of the text in this chapter has been published
in [2], with the experimental results of this paper being presented in
Chapter 7. To enable the integration of our tiling scheme into PPCG,
Sven Verdoolaege implemented some of the necessary changes in
PPCG.

5
H Y B R I D H E X A G O N A L / PA R A L L E L O G R A M T I L I N G

In this chapter1 we develop a new tiling scheme called hybrid hexago-
nal/parallelogram tiling. Hybrid hexagonal/parallelogram tiling is a
combination of hexagonal tiling on one space dimension and classical
parallelogram tiling on the remaining space dimensions. We develop
this tiling scheme with the goal to create a specialized tiling scheme
that addresses the large number of GPU specific concerns necessary to
reach optimal performance. One observation we can make is that by
only extracting coarse-grained parallelism from one dimension, we
can improve over split tiling. Figure 14a shows again split tiling of a
one dimensional stencil code. We can optimize this code by mirroring
the tile shapes in each second row such that neighboring tiles of the
same color can be merged to form larger, hexagonal tiles (Figure 14b).
Due to this merge, the data movement on the band boundaries can be
fully omitted and the amount of computation executed in a single tile
is doubled without increasing the data the tile works on, both purely
beneficial transformations.

To obtain high performance GPU code many different concerns
need to be addressed. Doing so requires both the development of a
specialized tiling scheme as well as the actual generation of highly ef-
ficient program code. Both of these concerns are closely related. In the
best case, a good tiling scheme does not only improve reuse or reduce
the cache footprint, but also enables the generation of efficient code.
In the following sections we show how complementing hexagonal
tiling with parallelogram tiling enables us to refine the GPU code gen-
eration scheme introduced with split tiling to address a wide range
of GPU specific concerns, many of them essential to maximize perfor-
mance. Our work aims to decouple domain-specific scheduling trans-
formations from general purpose low level optimizations by using
a general purpose AST generator which is parameterized to exploit
the domain specific tiling strategies. Thanks to this approach we can
generate highly optimized and specialized code without the need to
implement any specialized code generation strategies.

5.1 overview

An effective tiling scheme for GPUs must address a number of con-
straints. It must carefully specialize unrolled inner loops to avoid di-
vergent control flow among threads, it must minimize cumbersome
address computations, effectively exploit register reuse, access shared

1 The text of the following chapter is a modified version of [1].

49

50 hybrid hexagonal/parallelogram tiling

2 0 2 4 6 8 10 12 14 16
i

0

1

2

3

4

5

6

t

(a) split tiling

2 0 2 4 6 8 10 12 14 16
i

0

1

2

3

4

5

6

t

(b) merged tiles

Figure 14: 1D Hexagonal tiling - Created from 1D Split tiling

memory instead of global memory as often as possible while avoid-
ing bank conflicts, and achieve coalesced transfers for essential global
memory accesses.

Figure 15 shows a 2D Jacobi stencil in source form, and Figure 16

shows the core of the PTX code, as generated by our tool and extracted
from the CUDA compiler. This highly tuned block is free of control
flow, performs only 3 shared memory loads and 1 store for 5 compute
instructions, no global memory access, and 2 out of the 5 values in
flight are being reused in registers across sequential time steps.

Generating such optimized core loops and thread code is a signifi-
cant challenge, especially for higher-dimensional stencils. We address
this challenge by developing a sophisticated tiling scheme, paired
with an advanced code generation strategy.

We choose a hybrid tiling scheme that combines hexagonal tiling
on the outer dimension with classical parallelogram tiling on all re-
maining ones. Like most tiling schemes, our approach enables reuse

along the time dimension while ensuring balanced parallelism, but hybrid
tiling also addresses issues that make other approaches difficult to
use on GPUs. In contrast to overlapped tiling [70], we perform no redun-

dant computations and more importantly we avoid reserving shared

5.1 overview 51

for (t=0; t < T; t++)

for (i=1; i < N-1; i++)

for (j=1; j < N-1; j++)

A[(t+1)%2][i][j] = 0.2f * (A[t%2][i][j] +

A[t%2][i+1][j] + A[t%2][i-1][j] +

A[t%2][i][j+1] + A[t%2][i][j-1]);

Figure 15: Jacobi 2D stencil

ld.shared.f32 %f361, [%rd10+8200];

add.f32 %f362, %f353, %f361;

add.f32 %f363, %f362, %f345;

ld.shared.f32 %f364, [%rd10+7656];

add.f32 %f365, %f363, %f364;

ld.shared.f32 %f366, [%rd10+7648];

add.f32 %f367, %f365, %f366;

mul.f32 %f368, %f367, 0f3E4CCCCD;

st.shared.f32 [%rd10+1624], %f368;

Figure 16: Generated PTX (CUDA bytecode)

memory space for data used only in redundant computations. This is
important to ensure a high compute-to-memory ratio for each tile. Our
hexagonal tiling approach is closely related to diamond tiling [21],
but has two important differences. First, diamond tiles always have
a narrow peak, whereas the peak of hexagonal tiles is adjustable in
width. For stencil codes, adjusting the width translates into a wider

range of tile size choices and into the possiblity to take adavantage of
fine-grained parallelism even on the hexagonally tiled dimension - the lat-
ter being useful in case there is insufficient parallelism available on
the classically tiled dimensions. The second difference is that for di-
amond tiling, even though all tiles may have identical shapes, the
actual number of integer points may vary between different tiles (see
Chapter 6 for details). This difference may induce control flow diver-
gence, when the diamond peaks sometimes fall on an integer point
and sometimes do not. Our hexagonal tiling ensures an identical num-

ber of computations within each full tile.
Since hexagonal tiling along all spatial dimensions is not required

to achieve an adequate degree of coarse-grained parallelism across
thread blocks, we combine hexagonal tiling on an outer spatial dimen-
sion with classical tiling along the other dimensions, thereby binding
the data footprint of tiles to enable all temporary values to be kept in

shared memory. Also due to the use of classical tiling we can ensure
that the width along the classical tiled dimension remains constant.
By setting the tile width to a multiple of the warp size we can always
ensure full warp execution, stride one accesses and avoidance of bank con-

52 hybrid hexagonal/parallelogram tiling

flicts. Also, as tiles are now always offset by a multiple of the warp
size, we can position them to always ensure cache-line aligned loads.

With our advanced code generation strategy we also exploit the
fact that along the classical tiled dimension, tiles are executed in se-
quence. This enables them to be executed in the same kernel thread
and thereby to exploit reuse between successive tiles. This is by itself al-
ready beneficial, but the real benefit is that the set of values that need
to be loaded per tile is now a multiple of the tile width, which when
chosen to be a multiple of the warp size will ensure that we always

load full cache lines. Finally, we want no conditional execution and no

thread divergence in the core computation. To ensure this we parame-
terize our code generation to create specialized code for full and for
boundary tiles separately and we extensively unroll the innermost
loops.

5.2 the hybrid hexagonal/parallelogram schedule

To calculate a hybrid hexagonal/parallelogram schedule that can be
mapped nicely to the CUDA execution model we take several steps.
First, the input program (Section 4.2) is analyzed statically and trans-
lated into a polyhedral representation. This representation is then
canonicalized for stencil computations. Next, from this abstract infor-
mation we derive a hexagonal schedule as well as a set of classically
tiled schedules. Finally, the individual schedules are then combined
into a hybrid hexagonal/classical execution schedule that material-
izes the ordering of iterations in a hybrid hexagonal/classical tiling.
In addition, we explain how the calculated description of our tile
shapes can be used to select good tile sizes.

5.2.1 Hexagonal tiling

We build hexagonal tiles starting from a two dimensional schedule
space P = (t, s0) and a set of dependences D ⊆ P × P. We first de-
scribe the restrictions on the input problem, then we construct the
hexagonal tile shape and derive from it a hybrid tiling schedule. Fi-
nally, we show that the algorithm computes a correct tiled iteration
space and that it allows parallel execution of the inner tile dimension.

5.2.1.1 Constraints on input

We require that the lexicographic order of the iterations in P is a
valid schedule and that all dependences in D are such that t, the
outer dimension of the index space, carries all dependences. As a
result, the inner dimension s0 is fully parallel. Finally, we assume
that the dependence distances in the s0-direction are bound by a fixed
constant times the dependence distance in the t-direction, both from

5.2 the hybrid hexagonal/parallelogram schedule 53

above and below. Essentially, this assumption corresponds to the fact
that we are dealing with a stencil computation.

5.2.1.2 Hexagonal tile shapes

To derive the tile shape of our hexagonal tiling we calculate two valid
tiling hyperplanes from our dependences and use those hyperplanes
to construct a tile shape for a given height h and width w0. We illus-
trate the process on a slightly contrived example that computes

A[t][i] = f(A[t-2][i-2], A[t-1][i+2]);

∆t

δ0 δ1

Figure 17: Opposite dependence cone

h

1

w0

⌊

δ0h
⌋

1w0

⌊

δ1h
⌋

1 w0

t

s0

Figure 18: A hexagonal tile

We derive the tiling hyperplanes from the given dependences. We
first compute the set of dependence distance vectors. In the exam-
ple, we have { (1,−2); (2, 2) }, meaning that the statement instances
that directly depend on a given statement instance are executed in
the original schedule at an offset (∆t,∆s0) = (1,−2) or (2, 2). Con-
versely, the opposites of these distance vectors are the offsets of state-

54 hybrid hexagonal/parallelogram tiling

ment instances on which the current statement instance directly de-
pends. The cone generated by these opposite distance vectors is an
over-approximation of the set of offsets of statement instances on
which the current statement instance depends directly or indirectly.
This cone (for the example) is shown as the red area in Figure 17. As
we required the input to have strictly positive dependence distances
in the first dimension, the cone lies entirely in the negative ∆t half-
space. Furthermore, because of our requirement of bound distances
in the s0-direction, we can compute constants δ0 and δ1 such that
∆s0 6 δ0∆t (or, equivalently, −∆s0 > δ0(−∆t)) and ∆s0 > −δ1∆t.
These constants can be computed through the solution of an LP-
problem. Figure 17 shows the points (−1,−δ0) and (−1, δ1) in blue
and the cone generated by these two points in red.

The basic idea is now that a tile will compute one or more s0-
instances at a given time step t together with all the instances on
which it depends, except those that have already been computed by
previous tiles. We therefore take w0 + 1 instances at a given time
step and construct a truncated cone that contains all the instances on
which these selected instances depend by taking the union of the op-
posite dependence cones (the red cone from Figure 17) shifted to each
of these instances. Figure 18 shows three such truncated cones in red,
bound by dashed lines. The blue tile shape is the result of subtracting
these three truncated cones from the truncated cone bound by solid
lines. The offsets of the truncated cone have been carefully selected
such that the entire space can be tiled using a single shape. In particu-
lar, the truncated cone on the left has offset (−h− 1,−w0− 1−

⌊

δ0h
⌋

),
the cone on the right has offset (−h− 1,w0 + 1+

⌊

δ1h
⌋

) and the cone
on the bottom has offset (−2h− 2,

⌊

δ1h
⌋

−
⌊

δ0h
⌋

). The tiling is shown
in dotted lines. In the figure, w0 = 3 and h = 2. If there are multiple
statements in the kernel, then choosing h such that h + 1 is a mul-
tiple of the number of statements ensures that each tile starts with
the same statement. To ensure that the result of the subtraction is a
convex shape, the width w0 has to be large enough. This is illustrated
by the large brown dependence vector in Figure 18. If w0 were equal
to 1, then the result of the subtraction would contain an extra compo-
nent to the right of the right truncated cone. Such extra components
can be avoided by imposing

w0 > max
(

δ0 +
{

δ0h
}

, δ1 +
{

δ1h
})

− 1, (3)

with {x} the fractional part of x, i.e., {x} = x− ⌊x⌋. In the example, we
have w0 > 1. The correctness of (3) will be shown in Section 5.2.1.3.

5.2.1.3 Scheduling hexagonal tiles

The schedule of our hexagonal tiling maps the two iteration space
dimensions [t, s0] into a three dimensional tile space [T ,p,S0]. The
schedule alternates between two phases, 0 and 1. In particular, within

5.2 the hybrid hexagonal/parallelogram schedule 55

t

s0
Figure 19: Hexagonal tiling pattern

each time tile T , the schedule first executes the blue tiles of Figure 19

(phase 0) and then the green tiles (phase 1). The tiles that belong
to the same time tile and the same phase are indexed by S0 and
can be executed in parallel. In Figure 19 such tiles form a horizontal
wavefront of identically colored tiles. For phase 0, we have

T = ⌊(t+ h+ 1)/(2h+ 2)⌋ (4)

S0 =

⌊

s0 +
⌊

δ1h
⌋

+w0 + 1+ T
(⌊

δ1h
⌋

−
⌊

δ0h
⌋)

2w0 + 2+ ⌊δ0h⌋+ ⌊δ1h⌋

⌋

(5)

while for phase 1, we have

T = ⌊t/(2h+ 2)⌋ (6)

S0 =

⌊

s0 + T
(⌊

δ1h
⌋

−
⌊

δ0h
⌋)

2w0 + 2+ ⌊δ0h⌋+ ⌊δ1h⌋

⌋

. (7)

The difference in the numerators of the expressions for T ensures that
the blue tiles belong to the same T -tile as the green tiles that have the
same and greater t coordinates. Within this T -tile, the blue tiles are
then executed before the green tiles. The other offsets are required to
make all the tiles line up.

The (T ,S0)-coordinates refer to the boxes in Figure 19, the solid
boxes for phase 0 and the dotted boxes for phase 1. To ensure that
each (t, s0) is only executed once, we only execute parts of these over-
lapping boxes. In particular, we execute the blue tile in each solid
box and the green tile in each dotted box. To describe the hexagons,

56 hybrid hexagonal/parallelogram tiling

we use local coordinates (a,b) within each box. For example, for the
green tiles, we have

a = t mod (2h+ 2)

b = s0 + T
(⌊

δ1h
⌋

−
⌊

δ0h
⌋)

mod
(

2w0 + 2+
⌊

δ0h
⌋

+
⌊

δ1h
⌋)

.

Using these local coordinates, the constraint of the top of the hexagons
can be derived directly from the constraints of the opposite depen-
dence cone. In particular, we have

δ0a− b 6 (2h+ 1)δ0 −
⌊

δ0h
⌋

(8)

a 6 2h+ 1 (9)

δ1a+ b 6 (2h+ 1)δ1 +
⌊

δ0h
⌋

+w0. (10)

The remaining constraints are obtained from subtracting the earlier
truncated cones. Let (a ′,b ′) be the local coordinates in the box at
offset (−h − 1,−w0 − 1 −

⌊

δ0h
⌋

), i.e., a ′ = a + h + 1 and b ′ = b +

w0 + 1 +
⌊

δ0h
⌋

. When subtracting the truncated cone associated to
this box, we need to add the negation of the constraint

δ1a ′ + b ′
6 (2h+ 1)δ1 +

⌊

δ0h
⌋

+w0, (11)

i.e., δ1a+b 6 hδ1 − 1. Let d1 be the denominator of δ1. The negation
of this constraint can then be written as

δ1a+ b > hδ1 −
d1 − 1

d1
. (12)

In principle, we now also need to consider other pieces of the differ-
ence that satisfy (11), but that do not satisfy one of the other two con-
straints. Because of the vertical position of the truncated cone we are
subtracting it is impossible for there to be any integer points that lie in
the original truncated cone, satisfy (11) and do not satisfy a ′ 6 2h+ 1.
To verify that there can be no points in the current truncated cone that
do not satisfy the constraint

δ0a ′ − b ′
6 (2h+ 1)δ0 −

⌊

δ0h
⌋

, (13)

we again rewrite the constraint in terms of the current local coordi-
nates and obtain

δ0a− b 6 (2h+ 1)δ0 −
⌊

δ0h
⌋

+w0 + 1+
⌊

δ0h
⌋

− δ0(h+ 1).

Due to our choice of w0 in (3), we have w0 − δ0 −
{

δ0h
}

+ 1 > 0,
meaning that (13) is implied by the corresponding constraint on the
original truncated cone.

The truncated cone at offset (−h−1,w0+1+
⌊

δ1h
⌋

) similarly yields
the constraint

δ0a− b > δ0h−
⌊

δ0h
⌋

−w0 −
⌊

δ1h
⌋

−
d0 − 1

d0
, (14)

with d0 the denominator of δ0. Finally, the box at offset (−2h −

2,
⌊

δ1h
⌋

−
⌊

δ0h
⌋

) yields the constraint

a > 0. (15)

5.2 the hybrid hexagonal/parallelogram schedule 57

5.2.2 The parallelogram tile schedule

In the remaining spatial dimensions, we apply a more traditional
form of tiling. This means that we lose parallelism along these di-
mensions, but it allows the reduction of the working set within each
tile. Each spatial dimension si with i ∈ [1,n] is strip-mined separately.
Just like hexagonal tiling (see Figure 17), one computes the projection
of the dependence cone onto the time dimension and the given spatial
dimension si. Yet in this case, we only need to consider dependences
on statement instances with higher values for the spatial dimension.
This means that we only need to compute δ1i and that therefore the
dependence distance in the spatial dimension only needs to be bound
in terms of the distance in the time dimension from below. The result-
ing tile shape is a parallelogram with sides that are parallel to the
corresponding side of the opposite dependence cone. Since this tiling
needs to be combined with the hexagonal tiling, the height of these
tiles is equal to 2h+ 2. The width can be independently chosen as wi.
In sum, the corresponding tile dimension is given by

Si =
⌊

(si + δ1iu)/wi

⌋

, (16)

where u is a normalized version of t that ensures that the starting
positions of the tiles in the spatial direction are the same for all time
tiles and for both phases. That is, we set

u = (t+ h+ 1) mod (2h+ 2) for phase 0 and (17)

u = t mod (2h+ 2) for phase 1. (18)

The above normalization is beneficial in two ways. Firstly, the gen-
erated code is simpler because the offset is a constant instead of an
expression that needs to be (re)calculated at each time tile step. Sec-
ondly, constant offsets make it easier to align the load instructions
that fetch data from global to local memory. This is because the loca-
tion and alignment of the load instructions directly depends on the
position of the individual tiles.

5.2.3 Intra-tile schedules

We also specify non-trivial intra-tile schedules t ′, s ′0, . . . , s ′n. It is de-
sirable to minimize the intra-tile coordinates of the schedule, ideally
starting from zero, to ensure an efficient thread to iteration mapping.
To achieve this, we derive the intra-tile schedules from the tile sched-
ule by replacing the outermost integer division by the corresponding
remainder. For the classically tiled dimension this yields

s ′i = (si + δ1iu) mod wi, (19)

58 hybrid hexagonal/parallelogram tiling

5.2.4 Hybrid tiling

The final hybrid tiling is a combination of the hexagonal tiling of
Section 5.2.1 and the classical tiling of Section 5.2.2 as well as the
intra-tile schedules of Section 5.2.3. This tiling is of the form

{(t, s0, . . . , sn)→ (T ,p,S0, . . . ,Sn, t ′, s ′0, . . . , s ′n)}

with tile dimensions defined by (4), p = 0, (5) (for S0), (16) (for Si
with i > 1) and (17) for phase 0 and by (6), p = 1, (7), (16) and (18) for
phase 1. Each phase is only applied to the subset of the domain that
satisfies the conditions (8), (10), (12) and (14) in the local coordinates
of the rectangular tile defined by (T ,p,S0). The constraints (9) and
(15) are automatically satisfied for all points in the rectangular tile.
As an example, Figure 20 shows the phase-0 part of a hybrid tiling
where all δs are equal to 1.

{

(t, s0, s1, . . . , sn)→ (T , 0,S0,S1, . . . Sn, t ′, s ′0, s ′1, . . . , s ′n) |

∃a,b : a = (t+ h+ 1) mod (2h+ 2)∧

b = (s0 + h+ 1+w0) mod (2h+ 2+ 2w0)∧

a− b 6 h+ 1∧ a+ b 6 3h+ 1+w0 ∧

a+ b > h∧ a− b > −w0 − h∧

T = ⌊(t+ h+ 1)/(2h+ 2)⌋∧

S0 = ⌊(s0 + h+ 1+w0)/(2h+ 2+ 2w0)⌋∧
(

∧

k:16k6n

Sk = ⌊(sk + ((t+ h+ 1) mod (2h+ 2)))/wk⌋
)

∧

t ′ = (t+ h+ 1) mod (2h+ 2)∧

s ′0 = (s0 + h+ 1+w0) mod (2h+ 2+ 2w0)∧
(

∧

k:16k6n

s ′k = (sk + ((t+ h+ 1) mod (2h+ 2))) mod wk

)

}

Figure 20: n-dimensional tile schedule (±1 distances)

The schedule is parameterized with the values h, w0, . . . , wn. The
parameter h allows to adjust the distance between two subsequent
tiles on the time dimension, and the different values wi define the
distance between subsequent tiles along the space dimensions si. For
dimensions si with i > 1 the parameter wi gives the exact width
along this dimension, whereas for the dimension s0 the value of pa-
rameter w0 only gives the minimal width. The maximal tile width
along this dimension may increase depending on the current time
step.

It should be noted that there is no need to map the spatial dimen-
sions in the order to s0, . . . , sn in which the spatial loops are nested in
the input code. Instead, any spatial dimension can be chosen as the
one that is hexagonally tiled. However, to ensure our assumptions

5.3 cuda code generation 59

about aligned and coalesced memory accesses hold, it is necessary
that the innermost dimension is the dimension that yields stride one
access. This is a property that inputs normally already have and that
we currently rely on.

5.2.5 Tile size selection

In order to determine appropriate values for the tile size parameters
h and wi, we use a simple model based on the load-to-compute ra-
tio. In particular, we take a generic tile (not at the border) and com-
pute the number of iterations in the tile and the number of loads
performed by the tile. Since the set of iterations and the set of loads
can be described using quasi-affine constraints, these numbers can be
computed exactly as a function of the tile size parameters. For the
experiments in this work, we use manually derived functions, but
tools to count points in integer polyhedra [132] can automate this.
For a 3D stencil with δ0 = δ1 = 1, the number of iterations in a
tile is 2(1 + 2h + h2 +w0(h + 1))w1w2, while the number of loads
depends on the type of stencil and on various optimization choices
described in Section 5.3. We then evaluate these formulas for all val-
ues of the tile size parameters that yield a memory tile size within a
specified bound and select those parameters that yield the smallest
load-to-compute ratio.

5.3 cuda code generation

To generate GPU code, we use the same infrastructure as already de-
scribed in Section 4.4. We continue to use the generic CUDA code
generator of PPCG and get the previously described benefits of a
generic infrastructure. On top of the already known optimizations,
we add additional optimizations that ensure that the code that is gen-
erated exploits the optimization opportunities exposed by our hybrid-
hexagonal schedule. To avoid the implementation of domain specific
transformations we use a decoupled approach where we only use
general purpose options to help the AST generator to generate code
that fits our hybrid-hexagonal schedule.

5.3.1 Generating CUDA code

Our tool uses the previously generated hybrid schedule to create
CUDA code by mapping the schedule’s output dimensions (T ,p,S0,S1, . . . , t, s0, s1)
to nested loops in the generated code. The T dimension is mapped
to the host code, where it takes the form of a for loop repeatedly
iterating over two CUDA kernels — one kernel for p = 0 and the other
one for p = 1. For each kernel call, the dimension S0 is mapped to
a one dimensional grid of thread blocks that are executed in parallel.

60 hybrid hexagonal/parallelogram tiling

In case dimension S0 has more elements than there are thread blocks
supported by CUDA, the individual thread blocks execute multiple
elements of S0.

The remaining dimensions (A1, . . . ,Sn, t, s0, . . . , sn) are code gener-
ated within each kernel. The dimensions (S1, . . . ,Sn, t) are code gen-
erated as sequential loops. As the dimensions (s0, . . . , sn) are fully
parallel they can be mapped to different CUDA thread dimensions. In
case there are more parallel dimensions than there are CUDA thread
dimensions, the outer dimensions will be enumerated sequentially. To
ensure all iterations of a dimension are executed even though there
may be more iterations than threads in a thread block, additional iter-
ations are assigned to threads in a cyclic way: iteration i is mapped to
thread i mod Ti with Ti being the number of threads used for dimen-
sion i. The sequential execution of subsequent time steps is ensured
by generating a synchronization call at the end of each iteration of
the sequential loops.

5.3.2 Shared memory

For hybrid-hexagonal tiled code the use of explicitly managed shared
memory can be more efficient than a hardware managed cache. PPCG

provides the following cache management strategy. Instead of per-
forming all computations on global memory, PPCG allocates shared
memory of the size of the smallest rectangular box that is large enough
to accommodate the data accessed within a single tile. Now instead
of just performing the computation of each tile, PPCG generates code
that loads all data from global to shared memory, executes the com-
putation on shared memory, and finally writes the modified elements
back to global memory. To avoid thread divergence in the load phase,
PPCG can over approximate the shape of the values to load with the
rectangular box used to define the shared memory allocation.

5.3.2.1 Inter-tile reuse

Reducing the number of loads from global memory by reusing values
already available in shared memory is another beneficial optimiza-
tion. Due to the sequential execution of tiles enforced by the classi-
cal schedule at the inner dimension, it is possible to access values
loaded by previous tiles without introducing any memory conflicts.
For our tiling scheme some of the values used in one tile have al-
ready been made available by the preceding tile, either because they
are used by the preceding tile itself or because the preceding tile
over-approximates the values it loads from global memory. To make
such values available to our current tile, we can directly move them
from the shared memory location assigned in the preceding tile to the
shared memory location where the current tile expects those values
to be.

5.3 cuda code generation 61

Another option would be to enforce a static mapping, where a sin-
gle global location is always mapped to the same shared memory lo-
cation. While this would eliminate the internal shared memory copy,
accesses to statically mapped shared memory may induce more com-
plex access patterns and can also cause bank conflicts, which both
hurt the overall performance.

5.3.2.2 Aligned loads

It is important to ensure that loads from global memory to shared
memory are aligned to cache line boundaries. The location of the data
that is loaded from global memory directly depends on the position
of the tiles in space, specifically, the offsets of the tiles along the dif-
ferent space dimensions. When calculating the schedule we ensured
that all these offsets are independent of the time dimension T . As-
suming the size of the innermost data space dimension is a multiple
of the minimal alignment, we select a tile width along the innermost
dimension that is also a multiple of the minimal alignment. This en-
sures that as soon as the first load from an array is perfectly aligned,
the subsequent loads are also perfectly aligned. We allow the tiles in
the schedule to be translated by manually specifying the translation
offset. By specifying the right offset it is possible to fully align the
initial (and therefore all) global memory loads from a specific array.
In case of multiple arrays, it may not always be possible to align the
loads from all arrays.

5.3.3 Interleaving computations and copy-out

When developing our hybrid-hexagonal tiling we have seen that the
separate copy-out phase makes the shared memory usage inefficient
due to a possibly complex to describe set of values that needs to be
copied out, but also due to the absence of overlap between the com-
pute and the copy phase. We consequently extended the generic code
generator to optionally write out values right at the time at which
they are calculated. The unnecessary stores that may possibly be in-
troduced are not overly costly, as for stencils the number of stores
is low compared to the number of reads. Also, because our hybrid
schedule ensures no thread divergence in the compute phase, execut-
ing the copy out next to the computation avoids all thread divergence.

5.3.4 Stencil specific code generation heuristics

During the final translation from the polyhedral program representa-
tion back to an abstract syntax tree (AST), domain specific knowledge
can be used to adapt the code generation heuristics. The same sched-
ule can be written out as an AST in many different ways, resulting

62 hybrid hexagonal/parallelogram tiling

in code that is functionality equivalent but that may have different
performance behavior. The isl AST generator (Chapter 10) offers a
flexible mechanism for allowing the user to choose between differ-
ent ways of generating code across different parts of the schedule.
We exploit this flexibility to implement specialized code generation
heuristics for hybrid tiling.

5.3.4.1 Specialized code for the core computation

To generate optimal code for the core part of the computation we
parameterize the code generation strategy such that specialized code
is generated for full tiles and generic code for the remaining partial
tiles.

When generating our schedule we have been especially careful to
ensure that the number of integer points contained in a tile is the
same for all tiles in the program and that the offsets used to derive
the iterations that belong to a tile are constant within a single phase of
our tiling scheme. We also made sure that within a core tile, there is
no need for conditional execution that would cause thread divergence.
To ensure that the simplicity of the core tiles is maintained and not
lost by the need to handle rarely executed boundary cases we pass
a description of the full tiles to isl’s AST generator, instructing it
to generate code for these full tiles and the remaining partial tiles
separately.

5.3.4.2 Unrolling for hybrid tiled stencils

Unrolling is often beneficial, but it is especially profitable in conjunc-
tion with our hybrid approach. As stated in the previous section, we
construct a hybrid schedule such that the core computation is free
of any thread divergence. In fact it does not require conditional con-
trol flow. However, due to the limited amount of shared memory and
the large number of parallel threads, the number of iterations that
need to be executed within a single thread is relatively low. Hence,
we can unroll the point loops within the tile to create straightline
code. This also contributes to exposing instruction level parallelism.
Furthermore, depending on the tiling parameters chosen, we unroll
neighboring points next to each other such that they can use a single
load to get values that are within the neighborhood of both points.

Note that unrolling is not performed at the AST level, but on the
constraint representation of the kernel. Constraint-based unrolling en-
sures that all conditions can be specialized or eliminated in the un-
rolled code, simplifying them according to the context in which an
instruction is unrolled [124].

5.4 summary 63

5.4 summary

In this chapter we introduced a hybrid hexagonal/parallelogram tiling
scheme for stencils which addresses a large number of GPU specific
concerns relevant for the generation of high-performance parallel GPU

code. With the use of hexagonal tile shapes, an evolution of split-
tiling for one dimension, we ensured both balanced, coarse-grained
parallelism and reuse along the time dimension while maintaining
flexible tile sizes. By combining it with parallelogram tiling we ob-
tained a schedule that enables the generation of highly optimized
code where the core computation has coalesced accesses to global
memory, aligned loads and is free of thread divergence.

To actually generate high performance code we based our work
again on PPCG, which allows us to automatically generate highly
specialized GPU code.

The techniques in this chapter have been collaboratively developed
and an earlier version of the text in this chapter has been published
in [1], with the experimental results of this paper being presented in
Chapter 7. To enable the integration of our tiling scheme into PPCG,
Sven Verdoolaege implemented some of the necessary changes in
PPCG.

6
U N I F I C AT I O N W I T H D I A M O N D T I L I N G

In the previous chapters we discussed split and hybrid tiling as tiling
strategies that enable time tiling without requiring redundant compu-
tations. An alternative to these techniques is diamond tiling [21]. Even
though these different tiling schemes are closely related the exact rela-
tion is by far not obvious and several properties of the different tiling
schemes are underspecified. This becomes very clear by comparing
diamond tiling and hexagonal tiling at a very high level.

Similar to the previously presented approaches, diamond tiling
enables concurrent start without requiring redundant computations,
this time by using n-dimensional parallelotopes1 as tile shapes. In
contrast to previous approaches, these tile shapes are not directly de-
rived from the set of data dependences. Instead, diamond tiling was
presented as an extension to a general purpose scheduling optimizer
which uses an adaptable cost function to determine the optimal tile
shapes [21]. This design choice means that the computation of tile
schedules now requires the solution of ILP problems. Even though
this may be an expensive operation, it allows the use of a possibly
more complex cost model and the integration into a general purpose
optimizer.

In contrast to diamond tiling, with hexagonal tiles it is possible to
adjust the time-tile height and the tile width along the spatial dimen-
sion independently. Hexagonal tiling also permits the creation of tiles
with a flat top and it ensures that tiles not only have the same ratio-
nal shape, but also identical integer point placements. Diamond tiles
do not have these properties. Furthermore, certain properties of dia-
mond tiling have not been discussed in the original publication. Even
though the diamond tiling paper generally explains how to derive
tiling hyperplanes that enable concurrent start, a tile schedule that in-
cludes both the tile sizes as well as the parallel wavefront coefficients
necessary to obtain concurrent start was not presented.

We believe there is a clear need for a more precise analysis and com-
parisons of these tiling techniques. To address this need we provide
in this chapter an analysis of diamond tiling to understand the prop-
erties previously discussed. Using this information we develop a new
tiling strategy for two dimensional problems (one time dimension,
one space dimension) that combines the positive features of diamond
tiling and hexagonal tiling. Using this new tiling scheme we analyze

1 A general term for what is known in 2D as parallelogram and in 3D as paral-
lelepiped.

65

66 unification with diamond tiling

the effect of tile shape and tile size choice on properties such as the
compute-to-communication and compute-to-synchronization ratio.

This chapter2 is structured as follows. Section 6.1 revisits diamond
tiling, providing insights on tile size and wavefront coefficient con-
straints, and discussing constraints and important properties of dia-
mond tiles. We then introduce the unified hexagonal tiling scheme in
Section 6.2 which includes a full formulation for two-dimensional
tiling. Section 6.3 studies tile sizes that maximize the compute-to-
communication ratio and compares the synchronizations induced by
diamond and hexagonal tile shapes. We summarize this chapter in
Section 6.4.

6.1 diamond tiling

The main contribution of diamond tiling [21] is the combination of
affine transformations and a form of rectangular tiling that enables
concurrent start. It is particularly effective on stencil computations.
The idea of concurrent start is to ensure that the wavefront of tiles that
are executed in parallel is aligned to a concurrent start hyperplane
(normally an iteration space boundary) such that the number of tiles
that are executed in parallel remains constant throughout the entire
computation. This ensures that already at the beginning of the compu-
tation a sufficient amount of parallelism is available. Even though the
name “diamond” suggests that the tile shapes are rhombi or rhom-
bohedra (a.k.a. diamonds) and Figure 12 in Bandishti et al. [21] also
uses edges of identical length, the tile shapes formed by diamond
tiling are not restricted to diamonds, but can be more general par-
allelograms (parallelotopes in higher dimensions) as can be seen in
Figure 23. However, some restrictions to the tile shape and sizes must
be enforced to ensure that concurrent start is possible.

6.1.1 The pluto optimizer

Diamond tiling was presented and implemented as an extension to
Pluto [35], a general-purpose optimizer for data locality and paral-
lelism. In contrast to other approaches that directly tile the iteration
space (e.g., Chapter 4, Chapter 5), the original Pluto tiling as well as
diamond tiling are implemented as a two phase process. As a first
step a program transformation is calculated that exposes sequences
of loops (bands) that are tileable with rectangular tiles. In the sec-
ond step a rectangular tiling is performed on these bands. Combined,
this yields tiles with a possibly not rectangular, but parallelotope tile
shape. There are several benefits of separating these two concerns.
First, when calculating the parallel bands Pluto can and does perform
other optimizations, e.g., data locality optimizations such as loop fu-

2 The text of the following chapter is a modified version of [7, 5].

6.1 diamond tiling 67

sion. Second, tiling of the transformed program makes the tile shapes
independent of the tiling hyperplanes, which makes the tiling easier
to describe and analyze.

Pluto calculates program transformations on a polyhedral represen-
tation. In this representation the set of executed program statements
(the iteration space) is modeled with a multi-dimensional integer set
where each element represents an individual statement iteration. The
execution order of elements of the iteration space is described by the
schedule, an integer map that assigns a possibly multi-dimensional
relative execution time to each element of the iteration space. Pro-
gram transformations are performed by modifying the schedule. For
a single statement and a k-dimensional execution time such a sched-
ule has the form S = {~x → (~h0 ·~x, . . . , ~hk ·~x)}, where ~x is an element
of the iteration space, ~hi, for i ∈ {0, . . . ,k}, are tiling hyperplanes
represented by their normal vectors and ~hi · ~x denotes the sum of
the per element products of ~hi and ~x. The result of Pluto’s first step
are exactly these tiling hyperplanes, selected such that the distance
between two statements that depend on each other is not only lexi-
cographically nonnegative (needed for validity of the schedule), but
also nonnegative at each individual dimension. As input, the algo-
rithm takes an overapproximation of the pairs of statement instances
that depend on each other, described using affine constraints. For the
exact algorithm on how to select such hyperplanes, we refer to [35].
For the present discussion, it is sufficient to understand that the all-
nonnegative dependence vectors make rectangular tiling valid.

We present the Pluto rectangular tiling as a schedule only trans-
formation which we believe is easier to understand than the actual
Pluto transformation which modifies the iteration space as well. Con-
ceptually, there should be no difference. Given a schedule S and a set
of tile sizes si, i ∈ {0, . . . ,k} a rectangularly tiled schedule of S con-
sists of two partial schedules. The first one, St, is placed at the outer
level and enumerates the tiles itself. This is called the tile schedule.
The second one, Sp, is placed at the inner level and enumerates the
points within each tile and is called the point schedule. We define
St = {(x0, . . . , xk) → (⌊(~h0 · ~x)/s0⌋, . . . , ⌊(~hk · ~x)/sk⌋)} and Sp = S.
This tiled schedule may already expose parallelism, but exploiting
it may involve a skewed wavefront schedule at the outermost tile
dimension. Then, such a wavefront schedule carries itself all depen-
dences and ensures that the inner loops can be executed in paral-
lel. This yields S ′

t = {(x0, . . . , xk) → (λ0⌊(~h0 · ~x)/s0⌋+ · · ·+ λk⌊(~hk ·

~x)/sk⌋, ⌊(~h1 · ~x)/s1⌋, . . . , ⌊(~hk · ~x)/sk⌋)} with λi ∈ Z>0, i ∈ {0, . . . ,k}.
The λi coefficients control the construction of different wavefronts.
We call λ0 = · · · = λk = 1 the default wavefront coefficients. The
hyperplanes computed by the original Pluto algorithm allow the for-
mation of such a wavefront schedule, but those hyperplanes may not

68 unification with diamond tiling

allow the formation of a wavefront schedule in the direction of a given
concurrent start face (represented by its normal vector ~f).

6.1.2 The diamond tiling extensions

Diamond tiling [21] extends the Pluto algorithm in a way that en-
sures that for the tiling hyperplanes computed there are always wave-
front coefficients that yield concurrent start. From the original publi-
cation [21] we know that “a transformation enables tilewise concur-
rent start along a face ~f if and only if the tile schedule is in the same
direction as the face and carries all inter-tile dependences”. It also
shows that “concurrent start along a face ~f can be exposed by a set of
hyperplanes if and only if ~f lies strictly inside the cone formed by the
hyperplanes, i.e., if and only if ~f is a strict conic combination of all
the hyperplanes”. For a concurrent start hyperplane ~f, it finds tiling
hyperplanes ~hi such that the following equality holds:

m~f = λ1~h1 + · · ·+ λk~hk with λi,m ∈ Z>0. (20)

The main focus of the diamond tiling paper is to prove the conditions
necessary to ensure that the calculated hyperplanes can be used to
construct a concurrent start schedule as well as to give an algorithm
that actually calculates such hyperplanes. We therefore refer to this
publication for details. One question that was explored less is under
which conditions, especially for which tile sizes and for which wave-
front coefficients, the rectangularly tiled schedule achieves concurrent
start. Specifically, the paper does not investigate for which values of
λi, sj the following holds:

m~x · ~f = λ0⌊(~h0 ·~x)/s0⌋+ · · ·+ λk⌊(~hk ·~x)/sk⌋ (21)

6.1.3 Relation between tile sizes and wavefronts

Even though the diamond tiling yields tiling hyperplanes that allow
concurrent start, to construct the full tile schedule the tile sizes si as
well as the wavefront coefficients λi still need to be chosen. Choos-
ing the correct values is important, not only to ensure that the tiles
executed within the wavefront are started concurrently, but also to
control the horizontal distance between neighboring tiles in the par-
allel wavefront and its ratio to the size of the tiles. We call this ratio
the density of the schedule, a property important to understand the
amount of computation that can be performed in parallel. Before sug-
gesting good values, we explore the impact of different choices. Let
us first consider a simple example with symmetric dependences:

for t:

for i:

A[t+1][i] = A[t][i-1] + A[t][i+1]

6.1 diamond tiling 69

0 2 4 6 8 10 12 14 16 18
t

0

2

4

6

8

10

12

14

16

18

i

15 10 5 0 5
t-i

0

5

10

15

20

25

t+
i

Figure 21: Symmetric dependences & square tiling (original/transformed)

0 2 4 6 8 10 12 14 16
t

0

2

4

6

8

10

12

14

16

i

15 10 5 0 5 10
t-i

0

5

10

15

20

25

30

t+
i

Figure 22: Symmetric dependences & non-square tiling (original/transformed)

70 unification with diamond tiling

Pluto’s diamond tiling implementation3 calculates for this kernel
the transformation {(t, i)→ (t− i, t+ i)} and applies rectangular tiling
in the transformed space. The default wavefront coefficients λ0 =

λ1 = 1 are then used to enable parallel execution. This results in the
tile schedule {(t, i) → (⌊(t − i)/s0⌋ + ⌊(t + i)/s1⌋, ⌊(t + i)/s1⌋)}. The
default square tile shapes (s0 = s1) yield both concurrent start as well
as a high density of tiles. Figure 21 illustrates this for s0 = s1 = 4

with the tile wavefront highlighted in red and the concurrent start
hyperplane highlighted in black. The two hyperplanes being parallel
tells us that the tile wavefront has concurrent start. When different
tile sizes are chosen for the two dimensions, the default wavefront
no longer yields concurrent start. In Figure 22 we illustrate for s0 =

4, s1 = 6 that the default wavefront (red) is no longer parallel to the
concurrent start hyperplane (black). Concurrent start is still possible
with the non-default wavefront coefficients λ0 = 2, λ1 = 3, which
yield the schedule {(t, i) → (2⌊(t − i)/6⌋ + 3⌊(t + i)/4⌋, ⌊(t + i)/4⌋)}.
Unfortunately, a non-default wavefront causes a large loss in tile-level
parallelism throughout the computation. This effect is illustrated by
the yellow wavefront in Figure 22, which is parallel to the concurrent
start hyperplane (black). Next we analyze a kernel with asymmetric
dependences:

for t:

for i:

A[t+1][i] = A[t][i-1] + A[t][i+2]

Pluto derives from this kernel the transformation {(t, i)→ (t− i, 2t+
i)}. This transformation combined with square tiling and the default
wavefront coefficients allows concurrent start as shown in Figure 23

for s0 = s1 = 4. The reason for this, possibly surprising, result is that
for a 2 dimensional stencil (1 space, 1 time) with dependence distance
1 in the time direction, the coefficient of the space dimension in the
normal will always be ±1. This ensures that when adding the two
hyperplanes together their coefficients for the space dimension cancel
out and we get again the concurrent start hyperplane. The default
wavefront coefficients combined with square tile sizes therefore yield
a concurrent start wavefront. As already found earlier, non-square tile
sizes will prevent concurrent start with these coefficients.

Another interesting observation is that even though the rational
tile shapes in Figure 23 are identical throughout the original itera-
tion space, the set of contained integer points is not. The reason for
this difference is that even though we use integral tile sizes in the
transformed space, the borders may become non-integral in the orig-
inal space. Varying integer point placements between tiles can cause
problems due to additional conditions in the generated code. As a

3 Tested with version 0.10.0-50-g1a4ac17 from git://repo.or.cz/pluto.git

git://repo.or.cz/pluto.git

6.1 diamond tiling 71

0 2 4 6 8 10 12 14 16 18
t

0

2

4

6

8

10

12

14

16

18

i

20 15 10 5 0 5
t-i

0

5

10

15

20

25

30

35

2t
+
i

Figure 23: Asymmetric dependences & square tiling (original/transformed)

0 2 4 6 8 10 12 14 16 18
t

0

2

4

6

8

10

12

14

16

18

i

0 10 20 30 40 50
t+3i

15

10

5

0

5

t-i

Figure 24: Multiple time steps. Square tiles reduce parallelism. (original/transformed)

next step we consider a case of dependence distances with different
lengths on the time dimension.

for t:

for i:

A[t+1][i] = A[t][i-1] + A[t-2][i+1]

For this kernel, the Pluto implementation derives the transforma-
tion {(t, i)→ (t− i, t+ i)}. The same transformation was already cho-
sen for the example illustrated in Figure 21. Even though differences
in the implementation of Pluto and the published algorithm may be
possible, according to our understanding of the cost function in Pluto,
this is in fact the transformation that the algorithm of [21] would
choose. The resulting tiling yields 8 computations for a per-tile mem-
ory footprint of 3.

Another valid diamond tiling transformation is {(t, i)→ (t+ 3i, t−
i)}. The hyperplanes in this transformation are the ones hybrid hexag-
onal/parallelogram tiling would read off directly from the depen-
dence cone. Given a different cost function, Pluto may also choose
this transformation. The interesting point here is, that the normal of
the concurrent start hyperplane in the transformed space is not any-

72 unification with diamond tiling

0 2 4 6 8 10 12 14 16 18
t

0

2

4

6

8

10

12

14

16

18

i

0 10 20 30 40 50
t+3i

15

10

5

0

5

t-i

Figure 25: Multiple time steps. Non-square tiles maximize parallelism. (orig./trans.)

4 2 0 2 4 6 8
t

4

2

0

2

4

6

8

i

10 5 0 5 10 15 20
t+2i

15

10

5

0

5

10

15
t-i

Figure 26: Diamond tiling (original/transformed)

4 2 0 2 4 6 8
t

4

2

0

2

4

6

8

i

10 5 0 5 10 15
t+2i

12

10

8

6

4

2

0

2

4

6

t-i

Figure 27: Hexagonal-tiling (original/transformed)

6.1 diamond tiling 73

more (1,1), but rather (1,3). In this case, the standard square tiling
illustrated in Figure 24 only yields concurrent start if, instead of the
default wavefront coefficients, λ0 = 1, λ1 = 3 are chosen. As shown
earlier, this severely reduces tile-level parallelism. On the other hand,
for the same memory footprint as before, this tiling executes 16 com-
putations.

We can restore concurrent start with the default wavefront by us-
ing non-square tile sizes. Figure 25 shows a non-square tiling (s0 =

12, s1 = 4) which enables concurrent start, has maximal tile-level par-
allelism and reaches 12 computations for a memory footprint of three.
We therefore prefer this tiling over the previous two.

6.1.4 Optimal tiles with default wavefront

As seen in the previous section, the use of the default wavefront coef-
ficients is necessary to ensure high tile-density. However, by itself this
choice guarantees neither concurrent start nor a shared integer point
placement for all tiles. As those properties are important, we present
the conditions under which they can be reached.

We first explore the integer point placement. Forming the rows of
matrix H from the tiling hyperplane normals ~hi, then tile sizes that
are multiples of the determinant of H will ensure that all tiles have the
same configuration of integer points since det(H) ·H−1 is an integer
matrix. For example, the hyperplanes used in Figure 23 yield

H =

(

1 −1

2 1

)

with det(H) = 3. As s0 = s1 = 4 are not multiples of 3, the tiles may
differ in integer point placement, as illustrated in the figure. On the
other hand, tile sizes s0 = s1 = 3 would ensure a uniform integer
placement across all tiles. The above condition is sufficient indepen-
dently of the chosen wavefront schedule.

Next, we investigate the conditions on tile sizes to ensure concur-
rent start with the default default wavefront coefficients. Let hx,0 be
the first component of ~hx and hx,1 the second. The default wavefront
then is ⌊(h0,0t+h0,1i)/s0⌋+ ⌊(h1,0t+h1,1i)/s1⌋. Now, to achieve con-
current start, we need to ensure that the default wavefront sched-
ule only depends on the time dimension t and that all space di-
mensions (i.e., i) are eliminated. This is true under the condition
s0/|h0,1| = s1/|h1,1|. Note that the wavefront may still depend on
the fractional part of the space dimension, but this only results in a
variation within a fixed range, independently of the size of the do-
main. We can see that in Figure 21, where we reach concurrent start
for the default wavefront, this condition holds with 4/1 = 4/1. On the
other hand, when changing the tile sizes to s0 = 4 and s1 = 6 as in
Figure 22, the previous condition turns into 4/1 = 6/1 and concurrent

74 unification with diamond tiling

start is not possible with the default wavefront. The above shows that
to obtain concurrent start the two tile sizes cannot be chosen indepen-
dently, but need to be scaled together. To make this more clear we
introduce a new variable s which can be chosen freely and which is
then used to define s0 = s|h0,1| and s1 = s|h1,1| such that concurrent
start is obtained. Interestingly, this condition of a single parameter
defining the tile size is exactly what is required by the parametric
tiling approach of Iooss et. al [73].

6.2 unified diamond and hexagonal tiling

In this section we present for a two-dimensional iteration space an
extended formulation of diamond tiling which allows the creation of
hexagonal tiles. The hexagonal tiles calculated are similar to those
presented in Chapter 5, but are not identical in shape.

To obtain such a schedule we start from the diamond tiling ap-
proach, which means we first calculate a set of tiling hyperplanes,
transform the index space with these hyperplanes and then apply
rectangular tiling in the transformed space. We then (optionally) trans-
form the rectangular tiling by “stretching” the rectangular tiles along
the concurrent start hyperplane. The stretched rectangular tiles in the
transformed space form hexagonal tiles in the original space. As a
result we have a single schedule that describes diamond tiling, if tiles
are stretched by a vector of length zero, and hexagonal tiling, if they
are stretched by a non-zero-length vector.

In the following description, we assume that the tiling hyperplanes
h0,h1 are computed by the diamond tiling algorithm as described
in [21]. We focus on the description of the (possibly) stretched tiling
scheme in the transformed space. As input for the stretched tiling
scheme, we take the tile sizes s0, s1 as well as a vector ~v = (v0, v1),
which is parallel to the concurrent start hyperplane (in the trans-
formed space). We also require this hyperplane to have a normal
~n = (n0,n1) that is strictly positive in all components, as guaranteed
by the algorithm of [21].

We first model diamond tiling using a standard 2D rectangular
tiling in the transformed space. In this tiling the symbols s0, s1 define
the tile sizes along the dimensions d0,d1 while T0, T1 are the resulting
tile schedule dimensions (we ignore the point schedule dimensions,
as this mapping is not relevant to this discussion). The following map
describes such a rectangular tiling.

{(d0,d1)→ (T0, T1) | (22)

s0T0 6 d0 < s0(T0 + 1)∧ s1T1 6 d1 < s1(T1 + 1)}

Our goal is to achieve and maintain concurrent start using the de-
fault wavefront. Consequently s0 and s1 cannot be chosen freely (see
Section 6.1.4). We require the user to choose tile sizes that ensure con-

6.2 unified diamond and hexagonal tiling 75

current start. Figure 26 illustrates the above rectangular tiling using
the transformation {(t, i) → (t + 2i, t − i)}, as well as the tile sizes
s0 = 6, s1 = 3. The red tiles show the concurrent start wavefront.

Starting from this rectangular tiling we want to stretch the con-
tained tiles by a vector ~v with components v0, v1, where ~v is paral-
lel to the concurrent start hyperplane. More formally, we want to
compute for each tile represented by T the set of points contained
in a new tile T’. T’ is defined as the Minkowsky sum T + V , where
V = {t~v | 0 6 t 6 1} and the Minkowsky sum of A and B is defined as
A+B = {~a+ ~b | ~a ∈ A, ~b ∈ B}. In addition we translate the new tiles
to again reach a space filling tiling. In principle, ~v can have either of
two possible directions, but to simplify the schedule formulation we
choose ~v such that v0 < 0∧ v1 > 0. Figure 27 shows a stretching as
we obtain it for ~v = (−4, 2) and ~n = (1, 2).

Before we implement the actual stretching, we first add two addi-
tional constraints to each tile. The first one bounds each tile at its
lexicographic minimal point with the concurrent start hyperplane,
the second one bounds each tile at its lexicographic maximal point
with the same (but translated) hyperplane. We implement the lower
boundary by placing the hyperplane at the origin and by offsetting it
for each tile according to the tile sizes. To offset the tile along d0 we
adjust the right hand side of the lower bound by n0s0T0 and n1s1T1.
The upper boundary is implemented by reversing the lower hyper-
plane. The location of the upper hyperplanes for tile (T0, T1) is the
origin of tile (T0 + 1, T1 + 1).

{(d0,d1)→ (T0, T1) | (23)

s0T0 6 d0 < s0(T0 + 1) ∧

s1T1 6 d1 < s1(T1 + 1) ∧

n0s0T0 +n1s1T1 6 n0d0 +n1d1 ∧

n0d0 +n1d1 < n0s0(T0 + 1) +n1s1(T1 + 1)}

As a last step, we now stretch the tiles along ~v. This requires us to
increase the size of the rectangular tiles by v0 in the d0 dimension
and v1 in the d1 dimension. We also account for the shifted positions
of the rectangular tiles by adding some offsets o0,o1 to the upper
and lower tile boundaries that will be derived later in this section.
Finally we adjust the locations of the concurrent start planes by using
c0 = n1(s0 + v0) +n0v1 and c1 = n1(s1 + v1) +n0v0.

{(d0,d1)→ (T0, T1) | (24)

∃o0 = −v0T0 + v0T1,o1 = −v1T0 + v1T1 :

s0T0 + o0 + v0 6 d0 < s0(T0 + 1) + o0 ∧

s1T1 + o1 6 d1 < s1(T1 + 1) + v1 + o1 ∧

c0T0 + c1T1 6 n0d0 +n1d1 ∧

n0d0 +n1d1 < c0(T0 + 1) + c1(T1 + 1)}

76 unification with diamond tiling

1 0 1 2 3 4 5 6

t-i

0

2

4

6

8

10

12

t+
2
i

0,0

1,0 1,1

2 0 2 4 6 8

t-i

5

0

5

t+
2
i

1,1

1,0

0,0

Figure 28: The stretching in the transformed space (unstretched/stretched)

Figure 28 illustrates the last step in detail. On the left side, the red
tiles are the original square tiles (0,0), (1,0) and (1,1), each of size
6× 4. On the right side, the same tiles have been stretched along ~v.
The rectangular tile shapes have been extended by 4 along d0 and
by 2 along d1 resulting in the light blue tile shapes (the dark blue
tile shapes illustrate the contained integer points). We can also see
that the position of the red tile shape of tile (0,0) has not moved.
However, when going one step up to tile (1,0) which means increasing
the tile number T0 by one, we offset the tile by −v0 along d0 as well
as −v1 along d1. Similarly, when going from tile (1,0) to tile (1,1)
which means increasing the tile number T1 by one, we offset the tile
by v0 along d0 and v1 along d1. Combined this yields the offset o0 =

−v0T0 + v0T1 for d0 and o1 = −v1T0 + v1T1 for d1. The new values
c0 and c1 do now also take into account the offset of the plane. When
varying T0 we now do not only need to take the vertical tile size s0
into account, but in addition we include the additional vertical offset
v0 as well as the changed horizontal offset v1. To support concurrent
start hyperplanes of different orientations such offsets are scaled by
the relevant components of ~n. The corresponding changes have been
added when adjusting c1.

A very important observation is that tiles (T0, T1) as well as (T0 +

1, T1 + 1) have overlapping rectangular parts. However, the concur-
rent start hyperplanes added at the position of ~v ensure that tiles are
non-overlapping and still tile the full space. Also, as stretching and
translation are carried along the concurrent start hyperplane, no de-
pendences are violated. Finally, if the previous tiling had concurrent
start, stretching along the concurrent start hyperplane preserves this
property.

6.3 tile sizes that maximize compute/communication 77

6.3 tile sizes that maximize compute/communication

In this section we analyze how to maximize the compute to commu-
nication ratio and show how the tiling strategy choice affects both
compute to communication ratio and synchronization overhead. Us-
ing a simple theoretical compute model, we derive for diamond and
hexagonal tiles basic characteristics such as the number of operations
executed, the amount of communication, the usage of local memory
as well as the amount of synchronization needed for parallelism. We
use these characteristics to understand the effectiveness of the differ-
ent tile shapes. We use the following 3-point heat stencil as illustrative
compute pattern.

for t:

for i:

S: A[(t+1)%2][i] = A[t%2][i-1] + A[t%2][i] + A[t%2][i+1];

For this analysis the iteration space boundaries are not of relevance,
but we obtain the dependences D = { S(t, i)→ S(t+1, i ′) | i ′−1 6 i 6

i ′+ 1} (transitively covered dependences removed), which are for this
specific example code identical to the set of flow dependences (DF =

D). Furthermore, we obtain mappings AR = {S(t, i)→ A(t mod 2, i ′) |
i− 1 6 i ′ 6 i+ 1} and AW = {S(t, i)→ A((t+ 1) mod 2, i)} specifying
for each statement instance the data locations read from and written
to. From this information we compute, e.g., using Pluto, the concur-
rent start tiling hyperplanes t+ i and t− i. However, instead of using
now the full unified schedule (24) to tile the space, we derive a de-
scription of the set of iterations that belong to the single tile that will
be placed at the origin. We use this tile as our tile shape model. To ob-
tain its description we take the unified schedule from (24) and extract
the set of input values that correspond to T0 = T1 = 0:

{(d0,d1) | v0 6 d0 < s0 (25)

∧ o1 6 d1 < s1 + v1

∧ 0 6 n0d0 +n1d1

∧ n0d0 +n1d1 < n1(s0 + v0) +n0v1 +n1(s1 + v1) +n0v0}

We then set (n0,n1) = (1, 1) according to the tiling hyperplanes we
computed for our example and we set (s0, s1) = (T , T) and (v0, v1) =
(−B,B) to introduce two variables T and B that control the size of the
tile.

{(d0,d1) | −B 6 d0 < T ∧ 0 6 d1 < T +B (26)

∧ 0 6 d0 + d1 ∧ d0 + d1 < 2T }

78 unification with diamond tiling

1 0 1 2 3 4 5 6
t

8

6

4

2

0

2

4

i B

T

(a) Iteration space

A[0]8

6

4

2

0

2

4

i

A[1]8

6

4

2

0

2

4

i

(b) Accessed data

Figure 29: 1D hexagonal tiling (T = 6,B = 4)

As a final step, we use our tiling hyperplanes to translate this tile
shape description back into the original space.

I = {S(t, i) | −B 6 (t+ i) < T ∧ 0 6 (t− i) < T +B (27)

∧ 0 6 (t+ i) + (t− i) ∧ (t+ i) + (t− i) < 2T }

The result is I, a parametric tile shape description. It can be expressed
with affine constraints despite the fact that a parametric description of
all tiles can not. The tile shape we obtained has the form of a hexagon.
In the illustration in Figure 29a we can see the two parameters that
define its size: T defines the width of the tile along the time dimension
t, and B defines the distance by which the tile is extended along
the space dimension i. When B = 0 the tile shape degenerates to a
diamond shape.

We now present the data access model we use for the computations
in this tile. Figure 30 illustrates the first steps. At the first time step
(t = 0), five elements are computed. Seven elements are read from
array A[0] (dark small squares) and the resulting five elements are
written into the scratchpad (dark small triangles). At the second time
step (t = 1) seven elements are computed. We already have seven el-
ements in our scratchpad that have been previously read (light large
squares) and five elements that have been previously computed (dark
large squares). For the computation we need to read nine elements
from array A[1] and seven elements are stored back to the scratchpad.
From the nine elements read five can be read from the scratchpad
(light small squares). Similarly, when computing the nine new ele-
ments of the third time step (t = 2), from the eleven elements read,
seven have been computed in a previous time step. Going further in
time we see that with exception of t = 3 all time steps in the decreas-
ing phase (t = 4 and t = 5) only read data that has been computed
in previous time steps. Combining the memory accesses we can de-
rive the set of data elements read (large squares) and the set of data
elements written (small squares) in a tile. For the data elements read,

6.3 tile sizes that maximize compute/communication 79

1 0 1 2 3 4 5 6
t

8

6

4

2

0

2

4

i

(a) Iteration Space (t=0)

A[0]8

6

4

2

0

2

4

i

A[1]8

6

4

2

0

2

4

i

(b) Data

1 0 1 2 3 4 5 6
t

8

6

4

2

0

2

4

i

(c) Iteration Space (t=1)

A[0]8

6

4

2

0

2

4

i

A[1]8

6

4

2

0

2

4

i

(d) Data

Figure 30: The first two time steps of 1D hexagonal tiling (T = 6,B = 4)

we can distinguish between the data elements that need to be read at
least once from external memory (dark large square) and those that
can be read directly from the local scratchpad (light large square).
Similarly, for the data elements written we distinguish between the
data elements that will be used by later tiles (light small square) and
the ones that are only needed in this very tile, but do not need to be
written out (dark small square). This is illustrated in Figure 29b.

We compute for each tile the following characteristics: The number
of compute operations (O), the number of data locations read (RALL),
the number of data locations read not considering data previously
computed in the same tile (RREDUCED), the number of data locations
written to (WALL), the number of data locations written to and needed
by later computations (WREDUCED), the number of synchronization
steps (S), as well as the footprint (F), i.e., the set of all data locations
accessed. As these characteristics correspond to the number of integer
points in certain sets, we can derive parametric closed form expres-
sions by using barvinok [132] to count these points. We perform the
following computations: O = |I|, RALL = |AR(I)|, WALL = |AW(I)|,
F = |AR(I) ∪ AW(I)|. There are only two slightly more complicated
computations. First, RREDUCED = |AW(D−1

F (I) \ I)|, the set of data lo-
cations that are read from within the tile without any statement in
the tile having written to them previously. We compute this as the set
of data locations written from statements that are at the origin of a

80 unification with diamond tiling

10 100 1000 10
4
c

1.03

1.04

1.05

1.06

1.07

r (c)

r (c)◇

Figure 31: Compute-to-read ratio - Hexagonal vs. diamond tiling

flow dependence that ends in the tile, but are themselves not within
the tile. Second, WREDUCED = |AW(D−1

F (U \ I) ∩ I)|, the set of data
locations written to inside the tile and later read by a statement in-
stance outside of the tile without being overwritten in between with
data computed after the execution of the tile finished. We compute
this starting from the universal set from which we remove the state-
ment instances inside the tile to obtain the instances that are not in
this tile. By applying the reverse flow dependences and intersecting
with the tile again, we obtain the set of instances in the tile that write
values that are used outside of the tile. We get the corresponding data
locations by applying AW.

The results4 we obtain from barvinok are the following formulas:

O(T ,B) =
1

2
T2 + TB , S(T) = T − 1

RALL(T ,B) = 2T + 2B+ 2 , WALL(T ,B) = 2T + 2B− 2

RREDUCED(T ,B) = 2T +B+ 1 , WREDUCED(T ,B) = 2T +B− 1

F(T ,B) = 2T + 2B+ 2

As a next step we compute certain properties. We start with the
compute-per-read ratio r(T ,B) = O(T ,B)/RALL(T ,B) and maximize
it for a fixed “cache size” c, i.e., the number of data elements that
fit in the scratchpad. For this we formulate an optimization problem
and use the Mathematica [72] to solve it symbolically. The result is

maxT ,B r(T ,B)
∣

∣

F6c
=

(c−2)2

8c and arg maxT ,B r(T ,B)
∣

∣

∣

F6c
= (1/2(c −

2), 0). We make two observations here: first, r(c) increases linearly
with the available cache size; second, the optimal tile shape has B = 0.
This means it degenerates to a diamond.

When maximizing the ratio r ′(T ,B) = O(T ,B)/RREDUCED(T ,B) we
obtain: r ′

7
(c) = maxT ,B:F(T ,B)6c r

′(T ,B) = c− 1
2

√

c(3c− 4)−1 at T7 =

4 The formulas have been simplified under the assumption T mod 2 = B mod 2 = 0.

6.3 tile sizes that maximize compute/communication 81

5 10 50 100 500 1000
c

1.20

1.25

1.30

1.35

1.40

s (c)

s (c)◇

Figure 32: Compute-to-sync ratio - Hexagonal vs. diamond tiling

1
2

(
√

21c2 − 4
(

3
√

c(3c− 4) + 7
)

c+ 8
√

c(3c− 4) + 4+ 2c−
√

c(3c− 4) − 2

)

and B7 = c− 1
2

√

c(3c− 4) − 1. We see that the optimal ratio is ob-
tained with B 6= 0, a hexagonal tile shape not degenerated to a dia-
mond. We now derive the optimal ratio with the additional constraint
B = 0, which limits our search to diamond shaped tiles. We obtain

r ′⋄(c) = maxT :F(T ,0)6c r
′(T , 0) = (c−2)2

8c at T⋄ = 1/2(c− 2). We can see
that both r ′

7
and r ′⋄ increase linearly with c, showing that hexagonal

tiles are more efficient than diamond tiles. To understand how much
more efficient they are, Figure 31 captures the evolution of r ′

7
/r ′⋄, mak-

ing clear that as soon as the scratchpad can hold more than about 100

data elements, hexagonal tiles yield a ratio O/RREDUCED that is more
than 7% higher than diamond tiles. As WALL and WREDUCED only dif-
fer by a small constant from the corresponding read properties, for
sufficiently large scratchpads ratios similar to the ones we computed
for the read properties will be obtained and similar conclusions can
be taken.

Another interesting property is the amount of synchronization steps
necessary per tile. For this we compute s7 = O(T7,B7)/S(T7) and
s⋄ = O(T⋄,B⋄)/S(T⋄) which give an idea of how much computation
can be performed for a certain number of synchronization steps. Fig-
ure 32 illustrates s7/s⋄ to compare the hexagonal and diamond tiling
strategies. We see that the graph quickly converges to a value above
26%. This means 26% more computations can be executed for the
same amount of synchronization when using hexagonal tiling. As
these results are computed on a model, they obviously do not di-
rectly translate to a specific piece of hardware, but they show that for
hardware where in-tile synchronization is costly hexagonal tiling can
result in significant improvements.

82 unification with diamond tiling

6.4 summary

We presented a formulation of hexagonal tiling that combines the
benefits of diamond tiling and hybrid-hexagonal tiling.

For diamond tiling, we formalized conditions on tile sizes and
wavefront coefficients to ensure concurrent start among tiles. We also
formulated a condition to ensure the same integer point placement
across all tiles. And most importantly, we extended the original dia-
mond tiling algorithm to hexagonal tiles. Using a simple cost model,
we performed a comparative analysis of the compute to communi-
cation ratio of diamond and hexagonal tiling schemes as a function
of tile sizes and characterized the optimal aspect ratio for hexagonal
tiles and the benefit over diamond tiles. The analyses and approaches
developed in this chapter could serve as the basis for practical imple-
mentations that improve on the current state-of-the art in tiling stencil
computations.

The techniques in this chapter have been collaboratively developed
and an earlier version of the text in this chapter has been accepted for
publication in [7].

7
E X P E R I M E N TA L R E S U LT S

After having extensively discussed different tiling strategies, we eval-
uate in the following sections the performance we obtain with both
split-tiling and hybrid-hexagonal tiling schemes.

7.1 split-tiling

To evaluate the performance of our split-tiling implementation we
compare against two compilers: (i) PPCG [135], a state-of-the-art GPU

code generator; (and) (ii) overtile. Holewinski et al.’s [70] GPU stencil
compiler. PPCG uses simple space tiling to generate parallelized GPU
code whereas overtile uses overlapped tiling to exploit reuse along
the time dimension.

We evaluate split tiling on a couple of different kernels consisting of
jacobi-1d (3-point, 5-point, 7-point), jacobi-2d (5-point) as well as a 9-
point poisson solver. The experiments are run on a NVIDIA GeForce
GTX 470 desktop GPU as well as on a NVIDIA NVS 5200M mobile
GPU. The performance is shown in GFLOPS and includes both the
time of the computation itself as well as the data transfer to the GPU.

The results in Figure 33 and Figure 34 show that the split-tiled code
is consistently faster than both PPCG and overtile. Especially for the
one dimensional test cases, we can see an almost 4x improvement
over PPCG and between 30% and 40% over overtile. For the 2D cases
on the mobile GPU, the performance of the different tools is again
closer. On the desktop GPU, on the other hand, the difference between
split tiling as well as PPCG and overtile is again considerable.1

7.2 hybrid-hexagonal

To assess the effectiveness of the hexagonal tiling schemes described
in Chapter 5 we compare in Section 7.2.1 hybrid hexagonal tiling with
state-of-the-art tools, and we analyze in Section 7.2.2 the performance
impact of the different optimization strategies.

7.2.1 Comparison with state-of-the-art tools

To evaluate our hybrid hexagonal/parallelogram tiling scheme we
extend the set of tools used. Besides overtile [70] and PPCG [135]
itself we compare also against Patus-0.1.3 [41] and Par4All-1.4.1 [18].

1 Unfortunately, we cannot report overtile numbers for the poisson solver, as nvcc 4

and 5 both crashed on the CUDA file that overtile produced.

83

84 experimental results

jacobi-1d-3pt jacobi-1d-5pt jacobi-1d-7pt jacobi-2d-5pt poisson-2d-9pt
0

20

40

60

80

100

120

140

P
e
rf

o
rm

a
n
c
e
 [

G
F
L
O

P
S
]

Performance of split-tiling on GeForce GTX 470

split

ppcg

overtile

Figure 33: Split-tiling performance (desktop GPU)

jacobi-1d-3pt jacobi-1d-5pt jacobi-1d-7pt jacobi-2d-5pt poisson-2d-9pt
0

5

10

15

20

25

P
e
rf

o
rm

a
n
c
e
 [

G
F
L
O

P
S
]

Performance of split-tiling on NVS 5200M

split

ppcg

overtile

Figure 34: Split tiling performance (mobile GPU)

7.2 hybrid-hexagonal 85

laplacian 2D heat 2D gradient 2D ftdt 2D

PPCG 5.4 5.1 3.9 0.76

Par4All 7.0 +30% 5.4 +2% 5.5 +41% invalid CUDA

Overtile 10.6 +96% 6.9 +35% 6.7 +72% 5.3 +597%

hybrid 15.0 +177% 15.0 +194% 7.3 +87% 7.3 +860%

(a) Two dimensional tests

laplacian 3D heat 3D gradient 3D

PPCG 2.0 1.8 2.1

Par4All 2.0 ±0% 1.9 +6% 3.1 + 48%

Overtile 3.1 +55% 2.6 +44% 3.6 +71%

hybrid 4.3 +115% 3.9 +116% 3.6 +71%

(b) Three dimensional tests

Table 1: Performance on NVIDIA GTX 470: GStencils/second & Speedup

laplacian 2D heat 2D gradient 2D fdtd 2D

PPCG 1.0 0.97 0.61 0.098

Par4All 1.1 +10% 0.79 -18% 0.9 +55% invalid CUDA

Overtile 2.1 +90% 1.5 +54% 1.1 +80% 0.9 +818%

hybrid 3.2 +211% 2.9 +198% 1.4 +130% 1.0 +920%

(a) Two dimensional tests

laplacian 3D heat 3D gradient 3D

PPCG 0.32 0.29 0.32

Par4All 0.34 +6% 0.35 +20% 0.69 +116%

Overtile 0.66 +106% 0.37 +30% 0.61 +90%

hybrid 0.91 +184% 0.73 +150% 0.73 +128%

(b) Three dimensional tests

Table 2: Performance on NVS 5200: GStencils/second & Speedup

86 experimental results

We were not able to obtain a license for comparative evaluation with
R-Stream [87].

Loads FLOPs/Stencil Data-size Steps

laplacian 2D 5 6 30722 512

heat 2D 9 9 30722 512

gradient 2D 5 15 30722 512

fdtd 2D 3 3 30722 512

3 3 30722 512

5 5 30722 512

laplacian 3D 7 8 3843 128

heat 3D 27 27 3843 128

gradient 3D 7 20 3843 128

Table 3: Characteristics of Stencils

For benchmarks we use a Laplace kernel with two space dimen-
sions, a 2D heat and a 2D gradient stencil as well as a two-dimensional,
multi-stencil fdtd kernel. We also evaluate Laplace, heat and gradient
kernels each having three space dimensions. Table 3 provides detailed
characteristics of the stencils used. We did not evaluate our approach
on one dimensional examples, because the hybrid method boils down
to existing hexagonal or split tiling in this case [2]. All calculations
were performed as single precision floating point computations and
all timings include the data transfer overhead to and from the GPU.
The experiments were conducted on NVIDIA GPUs: the NVS 5200M
for mobile devices and a more powerful GeForce GTX 470.

For each tool, we sought to tune for the optimal tile sizes for the
implemented tiling scheme and a specific benchmark. For PPCG, we
used empirically optimized tile sizes used by the developers of the
tool [135]. For Patus and overtile we used the provided autotuner.
The Patus autotuner was run until completion, while we explored
800 tile sizes for each benchmark with overtile. For hybrid tiling we
selected tile sizes aiming for a low load-to-compute ratio. Par4All was
run with its dynamic tile sizing heuristic, using the options -cuda

-com-optimization to enable GPU code generation. The flags defined
in [135] were used for PPCG, and the hybrid tiling approach was com-
bined with the optimizations discussed in Section 7.2.2. All other
tools were used in the default configuration.

Table 1 and Table 2 show the results for the GTX 470 and NVS
5200, respectively. As a baseline, the general purpose compiler PPCG

is able to create code for all benchmarks, but does not reach optimal
speed. We do not include performance numbers for Patus, because
due to its experimental CUDA support, only laplacian and heat 3D
code could be generated. However, it should be noted that Patus
reaches 3.5 GStencils/second for laplacian 3D on the GTX 470 and

7.2 hybrid-hexagonal 87

0.50 GSTencils/second on the NVS5200, a 75% (56%) of speedup over
PPCG. Except for some slowness on the heat-2D kernel, Par4All pro-
duces reasonably well performing code with good performance on
the gradient 2D and 3D kernels. Par4All uses an internal heuristic
to derive tile sizes. Overtile shows consistently good performance, at-
taining speedups over PPCG code of up to 96% for 2D kernels, very
high speedups of up to 818% for fdtd 2D and up to 106% on 3D
kernels. These results demonstrate the performance a stencil DSL com-
piler combined with auto-tuning can reach. Looking at the auto-tuned
tile sizes we see that Overtile is not able to effectively exploit time
tiling for 3D kernels. Instead, it falls back to a space-tiled version.
This is also in line with Patus, Par4All and PPCG, which do not sup-
port time-tiling in general.

The last row presents results from our hexagonal-hybrid tiling com-
piler. For all 2D kernels, on both the GTX470 and the NVS 5200, we
observe better performance than all previous techniques. Compared
to base PPCG, we observe speedups ranging from 71% and 211%, with
an exceptional 920% speedup for fdtd-2d. The consistently superior
performance for 2D and 3D kernels across the board demonstrates
the effectiveness of our approach. The 2D and 3D heat kernels show-
case our hybrid-hexagonal tiling with performance results that are in
three cases more than two times faster than the second best imple-
mentation.

One of the main reasons for the good performance is that we have
been able to effectively exploit time-tiling for all benchmarks. Each
2D kernel executes eight time steps per tile and each 3D kernel exe-
cutes four time steps per tile. Exploiting time tiling has only become
beneficial due to the careful management of shared memory, as well
as the reduction of overhead due to full-partial tile separation, code
specialization and unrolling. Combined together, this enables excel-
lent performance.

7.2.2 Hybrid tiling and shared memory

Even though hybrid tiling can be beneficial by itself, its full benefits
only manifest when combined with explicitly managed shared mem-
ory. In this section, we analyze how shared memory usage as well as
different shared memory optimizations impact the performance of a
hybrid tiled kernel. As explicit cache management has proven to be
especially challenging for 3D kernels, we choose to analyze the three
dimensional heat kernel.

Table 4 gives an overview of the different configurations we an-
alyzed and their performance on an NVS 5200 as well as a GTX
470 GPU. All configurations where run with 1x10x32 threads and hy-
brid tiles of size h = 2,w0 = 7,w1 = 10,w2 = 32. As described in
Section 5.2.5, tile sizes have been selected to minimize the load-to-

88 experimental results

NVS 5200 GTX 470

(a) no shared memory 8 39

(b) shared memory 8 ±0% 44 +12%

(c) (b) + interleave copy-out 11 +37% 65 +47%

(d) (c) + align loads 12 +9% 70 +7%

(e) (d) + value reuse (static) 11 -8% 73 +5%

(f) (d) + value reuse (dynamic) 19 +58% 105 +50%

Table 4: Optimization steps: GFLOPS & Speedup

compute ratio and to ensure that the inner dimension is a multiple of
the warp size.

Configuration (a) only uses global memory, but no shared memory.
(b) uses shared memory. For each tile we first copy all required values
into shared memory, we then perform the computation within shared
memory and finally we copy the results back to global memory. (c)
eliminates the explicit copy out phase. Instead, results are copied out
as soon as they have been calculated. In (d) we adjust the position of
the tiles in the data space such that all loads from global memory are
aligned. Finally, (e) and (f) show two different approaches that both
enable the reuse of values used and loaded in one tile and used in
a subsequently executed tile. In (e) we eliminate the need to reload
values by statically assigning each global value to a shared memory
location. In (f) we allow a single global value to be dynamically placed
for different tiles at different shared memory locations. To still enable
reuse we add an explicit copy phase scheduled between two subse-
quent tiles. This phase moves values from their old shared memory
location to the location where the next tile expects them to be.

To understand the performance results shown in Table 4 we ana-
lyze the different configurations together with relevant performance
counters. The results are shown in Table 5, in units of 109. The first
one, configuration (a) gives a solid performance baseline. Introducing
explicit shared memory in (b) does not change performance on the
NVS 5200 and gives a 12% performance increase on the GTX470. The
small performance difference is not surprising. Even though the num-
ber of global load instructions is reduced by a factor of 20, the actual
reads from DRAM are mostly unaffected. This shows that our shared
memory management is as effective in avoiding DRAM loads as the
automatic caches are. Looking at the L2 transactions we see large ben-
efits due to our explicit shared memory management. Unfortunately,
the almost unchanged performance suggests that other effects such as
a reduced global load efficiency and the explicit cache management
overhead itself hide the benefits. One cache management problem is
the missing overlap of computation and data-transfers. (c) shows that
that by overlapping copy-out and the actual computation, we can in-

7.3 summary 89

crease performance by 37-47% without changing the amount of data
transferred. Another inefficiency we see is the global load efficiency
of only 30%. (d) partially addresses this by ensuring that all loads
from global memory are fully aligned. However, only after removing
partial global loads in (e) and (f) we are able to fully achieve 100%
global load efficiency. Interestingly, at this point our kernel has been
moved from being bound by global loads to being bound by shared
memory loads. (f) has as efficient global loads as (e), but due to the
way memory is accessed, it is very likely to cause bank conflicts in
shared memory. This is reflected by the number of shared memory
load transactions, which is twice that of all other kernels. The over-
head caused by these bank conflicts unfortunately hides the gains
from the reduction in global loads. On the other hand, (f) shows that
we are able to create a highly performing kernel that achieves 100%
global load efficiency, 100% shared load efficiency and that signifi-
cantly reduces the requests that reach the L2 cache and global mem-
ory.

The overall speedup of 250% for this kernel was only possible due
to the combination of hybrid-hexagonal tiling with careful shared
memory management. Our optimization reaches a point where the
kernel is mostly bound by shared memory. Further reducing the num-
ber of shared memory loads through register tiling would be an in-
teresting angle to increase performance even further.

gld_inst_
32bit

dram_read_tra
nsactions

l2_read_tra
nsactions

shared loads per request

gld_efficiency

(a) 171.0 1.7 12.0 n/a 54%

(b) 8.7 1.8 1.4 1.0 30%

(c) 8.7 1.8 1.4 1.0 30%

(d) 8.8 1.0 0.95 1.0 56%

(e) 7.6 0.97 0.49 1.8 100.00%

(f) 7.6 0.95 0.48 1.0 100.00%
Table 5: Performance counters (units of 109 events)

7.3 summary

We have shown in our experimental evaluation on split tiling that
the integration of domain specific optimizations in general purpose
compilers can yield notable speedups. With split tiling we reach those
speedups not only over PPCG, our general purpose compiler, but we

90 experimental results

also outperform overtile, a specialized stencil compiler, on 1D kernels
and show competitive performance on 2D kernels.

With hybrid-hexagonal tiling we have been able to significantly in-
crease performance for both 2D and 3D kernels. Our tiling technique
has not only been able to outperform general purpose compilers such
as PPCG and Par4All, but we also showed good results over overtile,
a domain specific stencil compiler especially written to generate fast
CUDA code. Especially our experiments on 3D kernels have been in-
teresting, as we showed that only when carefully addressing GPU spe-
cific concerns, the use shared memory can be made efficient enough
to be profitable. As a result we have been able to exploit time tiling
benefits even for 3D kernels.

Part IV

P O LY H E D R A L B U I L D I N G B L O C K S

8
T H E C O N C E P T

The concept of using modular components to build something bigger
is well known even outside of computer science. Computer scientists
themselves get to know this concept in many places, one of the first
being the individual tools available on a Unix shell, where more com-
plex operations such as cat filename | sort | uniq are created by
composing smaller specialized tools. Similarly, optimizing compilers
are often assembled from different building blocks which commonly
include compiler front ends, a set of optimizers, as well as code gen-
erators for different targets.

In the context of high-level loop optimizations, the use of building
blocks is rare. Instead compilers use compiler specific implementa-
tions or, possibly due to the high implementation costs, they omit
high-level loop optimizations altogether (e.g., luajit, V8 - Google’s
Javascript Engine, Julia). As a result, high-level loop optimizations are
only available in a low number of compilers, commonly those with
a strong focus on high-performance computing. Even for these com-
pilers, the set of high-level loop optimizations performed is mostly
limited to classical loop optimizations. More complex transforma-
tions are commonly left to specialized domain specific compilers (e.g.,
Halide [108], Pochoir [121]). We agree that domain specific languages
are a great way to provide a familiar user experience to domain ex-
perts and we also understand that in certain cases the implementation
of a fully specialized domain specific compiler is the quickest path
forward. However, the use of generic compiler infrastructure compo-
nents can give big benefits. Taking Halide as an example, their use
of the LLVM compiler infrastructure [86] for low-level optimizations,
target code generation, scheduling and instruction selection enables
them to generate highly optimized low-level code for various architec-
tures (X86, ARM, NVIDIA PTX) without writing any target specific
code. They can therefore focus on the development of a good domain
specific language and the development of domain specific optimiza-
tion strategies. Similarly, other domain specific compilers often target
C/C++ code, instead of generating platform specific assembly. Even
though slightly indirect, this strategy allows them to reuse existing
general purpose compiler back ends.

We believe that decoupling high-level loop optimizations from both
individual compilers as well as individual optimization strategies can
show similar benefits, as the reuse of compiler back ends shows today.
Not only could a reusable high-level loop optimization infrastructure
reduce the amount of implementation work necessary on the side of

93

94 the concept

compiler developers, but the use of such an infrastructure could also
enable them to perform optimizations too complex for a single DSL

compiler or research project. However, beyond being a convenient in-
frastructure component, decoupled high-level loop optimizations can
also facilitate the transfer of domain specific optimizations back into
general purpose compilers. Especially in the context of loop optimiza-
tions, general purpose compilers are doing reasonably well in detect-
ing and understanding certain compute patterns, such that highly
specialized domain specific optimizations can be applied within such
general purpose compilers. Even though such optimizations may be
less intuitive than the use of a DSL compiler, being automatically avail-
able in widely used general purpose languages possibly in the system
compilers of many important devices may be intriguing for various
use cases, e.g., (performance) portable image processing computa-
tions on mobile devices.

The polyhedral model (Chapter 2), as developed within the last 25

years of compiler research, is a model for high-level loop optimiza-
tions that is entirely independent of specific compilers and which
can be used to describe a large variety of loop transformations. When
working with this model it is common to use a set of nicely decoupled
building blocks. Such building blocks consist of different front ends
that extract polyhedral descriptions from different input languages,
different schedulers which perform general purpose or domain spe-
cific optimizations and AST generators which help to recover imper-
ative program code. When developing tools that provide the differ-
ent building blocks, the focus of existing research has most of the
time been on source-to-source translators with Loopo [62], Pluto [35],
PoCC/PolyOpt [103], Clan [28], Chill [40], but there has also been
previous work on integrating such kinds of loop optimizations in gen-
eral purpose compilers such as IBM/XL [36] and Open64/ORC [44],
with us heavily contributing to the development of high level loop
optimizations in gcc (Graphite [122]) and later LLVM (Polly [8]).

In this part of the thesis we present a set of polyhedral building
blocks used in the development of the domain specific optimizations
presented in Part iii. Implementing our optimizations such that do-
main specific transformations and general purpose infrastructure are
carefully separated adds certain development overhead, but as a re-
sult we are now not only able to decouple our optimizations from
specific compilers, but we also obtain a set of infrastructure building
blocks that facilitate the development of new general purpose and do-
main specific loop optimizations. As these tools already today form
the core of an optimization infrastructure shared between various re-
search tools and open source compiler projects, we hope to contribute
to an increasing portability of high-level loop optimizations. Several
of the building blocks we present follow the tradition of earlier re-
search prototypes, this time however with a strong focus on making

the concept 95

them as generic as possible and embeddable in low-level compilers
as well as domain specific optimizers. We also put a strong focus
on correctness and robustness in corner cases commonly ignored by
research prototypes. Our hope is that this set of building blocks en-
ables research to be both closer to production compilers and that it
facilitates the transfer of research results to such compilers.

We present in Chapter 9 pet, a tool to extract a polyhedral repre-
sentation from C code, which we used as the front end of our domain
specific compiler. In Chapter 10 we introduce our new polyhedral AST

generator, which is configurable to ensure its low-level optimization
strategies complement and exploit our high-level optimizations and
provides facilities for extensive specializations which enable us to gen-
erate high performance code without writing a specialized domain
specific code generator. We finish this part of this thesis with Chap-
ter 11 where we present the concept of polyhedral schedule trees as
a more practical way to represent complex schedule descriptions as
they may result from the GPU specific optimizations we perform.

9
P O LY H E D R A L E X T R A C T O R

To apply polyhedral high-level loop optimizations on a certain in-
put program it is necessary to extract a polyhedral description (Sec-
tion 2.2.3) of the input program. This description can be extracted
in various ways with different approaches having certain advantages
and drawbacks.

When applying polyhedral transformations in general purpose com-
pilers such as IBM-XL [36], gcc (through graphite [100]) or LLVM/clang
(through Polly [3]) the polyhedral model is extracted from a low to
medium level IR. This makes the extraction independent of the in-
put programming language and allows to leverage compiler internal
canonicalization and analysis passes to increase the amount of code
that can be analyzed. However, when analyzing a compiler internal IR,
relating the analysis to the input program becomes difficult. Hence,
direct user feedback about unsupported constructs is normally not
available. Also, the generated code is in most cases again a compiler
internal IR. Synthesizing a higher level language is hard and even if
successful, relating the resulting high level code to the original pro-
gram remains difficult. We conclude that analyzing a compiler inter-
nal IR may not be the best approach if user feedback is required or a
high level language should be generated.

For some applications, including polyhedral source-to-source com-
pilers such as Pluto [35] and PoCC,1 it is therefore more convenient
to extract a polyhedral model from the source language, typically
C or Fortran, or, more commonly, a subset and/or mixture of these
languages. The parsers for these tools usually only analyze those pro-
gram fragments (SCoPs) that need to be converted to the polyhedral
model. This means that information from outside of these SCoPs, such
as the types of variables or the sizes of arrays, is not available in the
output or has to be redeclared using special annotations. By far the
most popular such parser is clan [28], which is used by both Pluto
and PoCC.

For our goal, research on the generation of effective GPU code, none
of the previous approaches is fully satisfactory. Working from within
a compiler IR is interesting when planning to scale to a large num-
ber of diverse applications, but, in the context of our research, the
absence of information about array shapes, the limited user feedback
and the very indirect translation from source code to the polyhedral
model, complicates the evaluation of new high-level optimizations.
Existing source level parsers provide a well suited direct translation,

1 http://pocc.sourceforge.net

97

http://pocc.sourceforge.net

98 polyhedral extractor

but their inability to extract array sizes defined outside of the SCoPs

causes problems in the context GPU code generation. Furthermore,
their rather limited support for the parsing of subscript expressions
makes it hard to transform and specialize index expressions in a way
we believe is necessary for the generation of efficient GPU code. Even
though it would be theoretically possible to extend a parser such as
clan to provide the information we need, we believe this will be a
significant effort with most of the effort spent on improving an in-
complete C parser.

Instead of developing a better C parser, we present a different ap-
proach. pet,2 the library discussed in this chapter, uses a real C com-
piler to parse the input source code into a high-level AST from which
it then directly extracts the polyhedral model. The use of a real C
parser, in our case clang, has many advantages. In particular, clang
has full support for C99 [75], including variable length arrays (VLAs).
This support is crucial for properly parsing the dynamically sized ar-
ray versions of the PolyBench 3.1 benchmarks.3 Additionally, clang
generates very nice diagnostics, allowing us to clearly communicate
to the user which constructs (if any) in the input code are (currently)
not supported by pet.

As the use of a real C compiler enables us to parse a large number
of different language constructs, we are now faced with the question
of how to translate them into a polyhedral model. As explained in Sec-
tion 2.2.3 the work presented here is based on isl, an integer library
that models integer sets and maps in their full generality. pet exploits
this generality to model a wide range of C language constructs, many
of which have not been modeled by existing tools either due to limita-
tions in their parser or due to the use of a less general representation
of integer sets. pet is for example able to parse interesting expres-
sions such as a % b or the ternary expression cond ? a : b, both
very useful for describing iterative stencil computations and bound-
ary condition handling. Special care was also taken to ensure that pet
can parse the code generated by both CLooG and our AST generator
(Chapter 10).

Having more information about our input available also helps to-
wards our goal of bringing polyhedral transformations closer to pro-
duction compilers. As pet has access to the full type information of
the C code, it can model its semantics more precisely. C has for ex-
ample different semantics regarding the wrapping of signed and un-
signed integers in the presence of overflow. Taking them into account
is important as they are not only commonly exploited by production
compilers to improve their optimizations, but they also prevent trans-
formations that may break standard conforming programs that rely
on certain overflow behavior. With pet we aim to model these precise

2 http://pet.gforge.inria.fr/

3 http://www.cse.ohio-state.edu/~pouchet/software/polybench/

http://pet.gforge.inria.fr/
http://www.cse.ohio-state.edu/~pouchet/software/polybench/

9.1 overview 99

semantics, such that tools based on pet are able to match the seman-
tics of standard compliant compilers even in corner cases.

9.1 overview

The input to pet is valid C source code. A polyhedral model will be
constructed for a fragment of this C code. In its default mode of oper-
ation, the fragment to be analyzed needs to be delimited by pragmas,
in particular #pragma scop and #pragma endscop. If any construct
inside this fragment cannot be analyzed by pet, then a warning is
produced pointing out the unsupported construct. If the user speci-
fies the --autodetect option then pet will try to detect a fragment
that fits inside the polyhedral model. In this case, no warnings will
be produced by pet as any code containing unsupported constructs
will be considered to lie outside of the extracted code fragment. Sup-
ported constructs include expression statements, if conditions (see
Section 9.2.2), for loops (see Section 9.2.3) and piecewise quasi-affine
index expressions (see Section 9.2.1).

The output that is generated for a SCoP (Section 2.2.2) consists of
a context, a list of arrays and a list of statements. The context is a
parameter set containing those parameters values for which the SCoP

can be executed. Currently, the context is mainly used to ensure that
all arrays have non-negative sizes. Following C99 6.7.5.2 pet can as-
sume that a SCoP will only be executed with parameters that yield
array sizes larger than zero. However, as both clang and gcc allow
zero sized arrays in non pedantic mode, we also permit parameter
values yielding arrays of size zero. For each array, we keep track of
its “extent”, its element type and (optionally) the set of possible val-
ues. The extent is a set defined in a space named after the array and
containing all allowed array indices. In other words, the extent de-
scribes the size of the array. The set of possible values of an array
may be specified by the user through a #pragma value_bounds.

Each statement consists of a line number, an iteration domain, (part
of) a schedule and a parse tree of the corresponding statement in the
input program. In this parse tree, each access is represented by an
integer map mapping elements from the iteration domain to their
corresponding index. Additionally, we keep track of whether the ac-
cess is a read or a write (or both). The name of the iteration domain
may be specified by a label on the statement. Otherwise, the name is
generated to be of the form S_i. Each statement keeps track of its part
of a global schedule. The entire global schedule corresponds to the
original execution order.

As a trivial example, a dump of the representation of the program
in Listing 3 extracted by pet is as follows.

context: ’[N] -> { : N >= -1 }’

arrays:

100 polyhedral extractor

void foo(int N)

{

int a[N + 1];

#pragma scop

for (int i = 0; i <= N; ++i)

U: a[i] += i;

#pragma endscop

}

Listing 3: A trivial program

- context: ’[N] -> { : N >= -1 }’

extent: ’[N] -> { a[i0] : i0 >= 0 and i0 <= N }’

element_type: int

statements:

- line: 6

domain: ’[N] -> { U[i] : i >= 0 and i <= N }’

schedule: ’[N] -> { U[i] -> [0, i] }’

body:

type: binary

operation: +=

arguments:

- type: access

relation: ’[N] -> { U[i] -> a[i] }’

read: 1

write: 1

- type: access

relation: ’[N] -> { U[i] -> [i] }’

read: 1

write: 0

9.2 constructing a polyhedral representation

In this section we describe in detail how we construct a polyhedral
representation (Section 2.2.3) that models a piece of C code. Specifi-
cally, we describe how we obtain access relations, iteration domains
and schedules from if statements, for loops and accesses to C arrays.
The discussion in this section is limited to the core polyhedral model
and only applies to code where all relevant properties can be derived
statically. However, within these bounds we try to be as generic as
possible by exploiting the full generality of integer maps and sets as
provided by isl. A set of interesting additions to our core translation
are discussed in Section 9.3.

9.2 constructing a polyhedral representation 101

9.2.1 Access relations

An access relation maps an iteration vector to one or more array
elements and is modeled with a named integer map (represented
by an isl_map). This means that the array elements are described
by affine constraints, possibly involving existentially quantified vari-
ables and parameters. Since the model is constructed bottom-up, the
initially constructed access relations have a zero-dimensional domain
and therefore do not involve any iterators. Instead, some of the initial
parameters may be converted to iterators at a later stage.

The access relation is constructed by considering each index ex-
pression individually, one for each dimension of the accessed array.
Each of these index expressions is first recursively constructed as an
isl_pw_aff, i.e., a piecewise quasi-affine expression. These objects
are then converted into maps and combined into a single map. Each
index expression may involve integer constants, parameters and the
following operators: +, - (both unary and binary), *, /, % and the
ternary ?: operator. The second argument of the / and the % oper-
ators is required to be a (positive) integer literal, while at least one
of the arguments of the * operator is required to be a piecewise
constant expression. For example, an index expression of the form
i * (i < 5 ? 2 : 1) is allowed, while an expression of the form
(i > 10 ? i : 1) * (i < 5 ? i : 1) is not, even though it is equiv-
alent to (i > 10 || i < 5) ? i : 1. The first argument of the ?:

operator needs to satisfy the requirements of Section 9.2.2.
Each of the above operators has a corresponding operation in isl

on isl_pw_affs and therefore requires no extra computations in pet.
The only exceptions are the / and % operators. isl does not pro-
vide any operation that directly corresponds to the C integer divi-
sion (which rounds to zero), but instead provides a “floor” (which
rounds to negative infinity) and a “ceil” operation (which rounds to
infinity). An expression of the form a / b is therefore constructed as
a >= 0 ? floord(a,b) : ceild(a,b), with floord and ceild func-
tions that correspond to the floor and ceil operations applied to the
quotient of the arguments. The % is treated in a similar way. For com-
patibility with CLooG (see Section 9.3.1), the functions floord and
ceild are also accepted inside the SCoP, even if they are not explic-
itly defined in the input. Similarly, the functions min and max are also
allowed.

Depending on how a statement accesses memory pet marks the ar-
ray accesses as read-only, write-only or a combined read and write. In
function calls it is also possible to pass (the address of) an entire array
or array slice as a parameter, e.g., f(A) or f(A[i]) in case of a two-
dimensional array A. In such cases, the access relation is constructed
to read/write the entire array (slice).

102 polyhedral extractor

The input program may also contain affine expressions that are not
used as index expressions, but that are instead used directly as ar-
guments to functions calls or operators. Since a program transforma-
tion may change the iterators in these expressions, we also represent
them as access relation. Since there is no array involved, the range of
these relations is a nameless one-dimensional space. This space can
be thought of as the set of integers, with element i having value i.

9.2.2 Conditions

A condition is modeled by an integer set (represented by an isl_set)
containing those elements that satisfy the condition. The input ex-
pression may be any boolean expression involving the &&, || and !

operators and comparisons. A comparison is an expression that ap-
plies one of <, <=, >, >=, == or != to two affine expressions. Such an
affine expression needs to satisfy the same requirements as the index
expressions in Section 9.2.1. An affine expression e itself may also be
used where a comparison is expected, in which case it is treated as
the comparison e != 0. As before, each of the above operations has a
direct counterpart in isl.

9.2.3 Loops

Currently, pet only supports for loops. The only exception is the
infinite loop, which may be written as either for (;;) or while (1).
The contribution of an infinite loop to the iteration domain is of the
form { t | t > 0 }. Recall that the iteration domains are constructed
bottom-up and that each enclosing loop prepends a dimension to the
iteration domain.

Since pet does not yet perform any induction variable recogni-
tion, the induction variable needs to be explicitly available in the
for loop. That is, the loop needs to be written such that it has the
form for (i = init(n); condition(n,i); i += v), where n is any
number of parameters. In particular, the initialization part needs to
assign an expression to a single variable (or initialize a single newly
declared variable) and this same variable needs to be incremented by
a (signed) constant in the increment part. The increment may also be
written i -= -v, i = i + v, ++i or --i (in case v is 1 or −1).

The condition may be any condition that satisfies the requirements
of Section 9.2.2. Note in particular that this means that the condition
may not involve any variables that are being written inside the loop
body as they are not considered to be parameters. In principle, the
condition does not need to involve the induction variable, but such
a condition will result in either an empty or an infinite loop. Let us
now assume that v is positive. A minor variation of the construction
below is used when v is negative. The constraints on the loop iterator

9.3 additional features 103

imposed by the initialization and the stride can be expressed as D =

{ i | ∃α : α > 0∧ i = init(~n) +αv }. If v is equal to 1, this is simplified
to D = { i | i > init(~n) }. This simplification is performed by pet and
does not have any effect on the constructed iteration domain, but it
may result in a simpler representation of this iteration domain.

As to the condition of the for loop, a value of the iterator belongs
to the iteration domain if the condition is satisfied by that value and

all previous values. Define the set C = { i | condition(~n, i) }. The
contribution of the loop to the iteration domain is the set { i ∈ D |

∀i ′ ∈ D : i ′ 6 i =⇒ i ′ ∈ C }, or, in other words, { i ∈ D | ¬∃i ′ ∈ D :

i ′ 6 i∧ i ′ 6∈ C }. In isl, we can compute this set as

D \
(

{ i ′ → i | i ′ 6 i }(D \C)
)

.

That is, we take the elements in D that do not satisfy the condition (C),
map them to later iterations and subtract those later iterations from
D. If condition(n,i) does not involve any lower bounds on i then
any condition satisfied by i is also satisfied by earlier iterations and
the above computation can be simplified to D∩C. This simplification
may again result in a simpler representation of the result.

9.2.4 Schedule

As explained before, each statement maintains its part of the global
schedule. These parts of the schedule are constructed together with
the iteration domains. The initial iteration domains are zero-dimen-
sional and the schedule simply maps this domain to a nameless zero-
dimensional space. If a statement appears in a sequence of statements,
the schedule for these statements is extended with an initial constant
range (i.e., schedule) dimension. The values of these dimensions cor-
respond to the order of the statements in the sequence. If a statement
appears as the body of a loop, then the schedule is extended with
both an initial domain dimension and an initial range dimension. If
the increment on the loop is positive then these new dimensions are
equated. Otherwise they are made to be opposite. That is, the sched-
ule is extended with either { i→ i } or { i→ −i }.

9.3 additional features

Besides the basic constructs described above, pet also supports some
additional features. Data dependent constructs have been used in Ver-
doolaege’s work on equivalence checking [134] and the construction
of dynamic polyhedral process networks. As they are not relevant
to the content of this thesis, we refer the reader to [10, Section 4.1-
4.3]. Features to parse CLooG and isl AST generator output are helpful
e.g., to reanalyze the generated code. As we strive to support the use
of pet also in (semi)automatic modes on possibly preexisting source

104 polyhedral extractor

code, it is important to correctly model C99 even in corner cases. One
interesting corner case we handle successfully are unsigned integers
and their wrapping semantics in case of overflow.

9.3.1 CLooG specific features

for (c1=ceild(n,3);c1<=floord(2*n,3);c1++) {

for (c2=0;c2<=n-1;c2++) {

for (j=max(1,3*c1-n);j<=min(n,3*c1-n+4);j++) {

p = max(ceild(3*c1-j,3),ceild(n-2,3));

if (p <= min(floord(n,3),floord(3*c1-j+2,3))) {

S2(c2+1,j,0,p,c1-p);

}

}

}

}

Listing 4: Part of CLooG output for thomasset test case

The output of CLooG may contain special functions and constructs
that require special care. Most of these have been mentioned before,
but here we provide further details. First of all, as explained in Sec-
tion 9.2.1, the output may contain the “operators” floord, ceild, min
and max. Although macro definitions can be provided for these op-
erators, it is more efficient to recognize them directly inside pet. For
example, a macro definition for floord would have to encode this
operation in terms of integer divisions and would therefore have to
introduce several cases, while there is no need for different cases if it
is recognized directly. Similarly, if the condition of a for loop is of the
form i <= min(a,b), it can be directly encoded as { i | i 6 a∧ i 6 b }

instead of introducing cases depending on the difference between a

and b. This is especially important if there are many nested mins or
maxs as in the classen2 test case. Finally, the simple forward substi-
tution of scalars discussed in Section 9.1 is also essential for parsing
some CLooG outputs. Consider for example part of the output for the
thomasset test case, reproduced in Listing 4. At first sight, the if

statement looks like it involves a data-dependent condition, but by
plugging in the expression assigned to p in the previous statement, it
can be analyzed as a static affine condition.

9.3.2 Support for unsigned integers

In C99 signed and unsigned integer types do not only define different
sets of values, but they also behave differently. Signed values yield
undefined behavior if the result of an expression is not within the
range of representable values (C99 6.5). Like other compilers pet can

9.3 additional features 105

and does assume that undefined behavior is never triggered by a
valid program. Consequently it assumes that for signed types the
results of all expressions fit in the corresponding type. This means
pet can directly translate such expressions to isl_pw_aff expressions.

for (unsigned i = 0; i < n; i++)

A[0] += i;

for (unsigned j = 0; j < n + 1; j++)

B[0] += j;

Listing 5: Unsigned operation in loop bound

for (unsigned i = 0; i < n; i++) {

A[0] += i;

B[0] += i;

}

B[0] += n;

Listing 6: Invalid fusion of program in Listing 5

For unsigned types C99 6.2.5 includes the following exception: “[..]

a result that cannot be represented by the resulting unsigned integer type

is reduced modulo the number that is one greater than the largest value

that can be represented by the resulting type". The program in Figure 5

consists of two loops with n and n+ 1 iterations. If the loop bounds
are represented as i 6 n and j 6 n+ 1, fusing the two loops to the
code in Figure 6 is possible. Yet, this is invalid in the presence of
integer wrapping. If n is the maximal unsigned value, the expression
n + 1 will evaluate to 0 such that in the original code B[0] is not
accessed at all. However, the transformed code accesses B[0] many
times.

To ensure correctness it is necessary to perform all unsigned op-
erations modulo the number of elements in the integer type. This
means for the example above that the loop bounds should not be n

and n+1, but n mod (UINT_MAX+1)) and (n+1) mod (UINT_MAX+ 1).
pet knows about the types of variables and automatically introduces
the necessary modulo operations.

for (unsigned char k=252; (k%9) <= 5; ++k)

S(k);

Listing 7: Loop with unsigned iterator

Let us now consider in a bit more detail how an unsigned loop
iterator affects the way the iteration domain and the schedule are
constructed. The iteration domain is first constructed as explained in

106 polyhedral extractor

Section 9.2.3, but in terms of a virtual loop iterator, with the condi-
tion of the loop changed to apply to the modulo of this virtual loop
iterator instead of the virtual iterator itself. Afterwards, a mapping
is applied to the iteration domain and the domain of the schedule
that wraps the virtual iterator to the real iterator, but only after inter-
secting the domain of the schedule with the iteration domain. This
intersection is needed to ensure that we do not lose any information
as some iterations in the wrapped domain may be scheduled several
times, typically an infinite number of times. As an example of a loop
with an unsigned iterator, consider the loop in Listing 7. The corre-
sponding domain and schedule are as follows.

domain: ’{ S[k] : exists

(e0 = [(507 - k)/256]: k >= 0 and

k <= 255 and 256e0 >= 252 - k and

256e0 <= 261 - k) }’

schedule: ’{ S[k] -> [0, o1] : exists

(e0 = [(-k + o1)/256]: 256e0 = -k + o1 and

o1 >= 252 and k <= 255 and k >= 0 and

o1 <= 261)’

It may be difficult to see, but this loop has 10 iterations, first from
252 to 255 and then from 0 to 5. Applying the scan operator to the
schedule in iscc makes this clear:

{ S[5] -> [0, 261]; S[4] -> [0, 260];

S[3] -> [0, 259]; S[2] -> [0, 258];

S[1] -> [0, 257]; S[0] -> [0, 256];

S[255] -> [0, 255]; S[254] -> [0, 254];

S[253] -> [0, 253]; S[252] -> [0, 252] }

9.4 related work

We are aware of several proprietary compilers, including Cosy [53],
ATOMIUM [38], R-Stream [114] and IBM-XL [36], that use polyhe-
dral techniques. As these systems are not available to us and there is
little documentation on their polyhedral model extractors, we cannot
perform any detailed comparison with these compilers. At least three
polyhedral optimizers, Bee [13], PolyOpt [103], and CHiLL [40] have
been integrated in the ROSE compiler. Bee is to our understanding
not publicly available. As at the time of performing this work neither
CHiLL for ROSE nor PolyOpt were available, we did not perform a
detailed evaluation of their features. However, to our understanding
in 2012 unlike clang, ROSE did not fully support C99. In particular,
ROSE did not support VLAs. Moreover, judging from the documen-
tation [103], PolyOpt imposes somewhat severe restrictions on the
allowed iteration domains, in particular requiring them to be convex.
This means for example that else and != are not supported. On the

9.4 related work 107

other hand, the system does include an optimization engine and code
synthesis. The insieme compiler4 is reported to use an extraction tool
that is somewhat similar to pet in that it also uses clang for parsing
C code. It does however not use isl to construct and represent the
polyhedral model, but instead a custom constraints based representa-
tion. The supported features appear to be similar to those supported
by clan.

The Omega Project contains a dependence analysis tool called pe-
tit [77]. Although it does not appear to be possible to have petit dump
a polyhedral model, the tool necessarily does include a parser. The
input language is similar to Fortran and the parser includes some ad-
vanced features such as induction variable recognition and forward
substitution of scalars. There exists also two polyhedral extractors
built on top of SUIF [16], a compiler framework, which unfortunately
is no longer being actively maintained and has no support for C99.
The first is pers, a frontend used for equivalence checking [133]. pers
uses a combination of SUIF passes, the Omega library [81] and an ad-
hoc constraints based internal representation. Similarly to pers there
exists a version of CHiLL [40] which uses SUIF for parsing. It seems to
be superseeded by the newer ROSE based infrastructure mentioned
above. The LooPo [62] project includes a polyhedral parser, which
accepts subsets of both C and Fortran (or a combination) as input.
Index expressions are required to be affine (rather than piecewise
quasi-affine), but there is support for generic while loops [59]. The
parser that comes with FADAlib [29] also supports while loops, but
does not support many of the constructs supported by pet. PIPS [17]
also performs polyhedral analysis, but mostly in the sense of abstract
interpretation. Although earlier versions allowed for the extraction of
a polyhedral model in our sense, i.e., with access relations and itera-
tion domains, this functionality appears no longer to be supported.

Several open source compilers have support for extracting a polyhe-
dral model from an internal representation, including WRaP-IT [60]
in ORC, graphite [100] in gcc and Polly [3] in LLVM/clang. As ex-
plained in the introduction, such low-level parsers have their advan-
tages and disadvantages when compared to source level parsers such
as pet. In Table 6, we perform a more detailed comparison with
Polly 3.0, which is based on the same compiler infrastructure as pet.
The table also compares against clan [28], which to the best of our
knowledge is currently the most popular source level parser. There
are however many different versions of clan, including some such as
irClan [30] that include some support for data dependent constructs.
This irClan system does not appear to be publicly available though.
Here, we compare against the latest official release (version 0.6.0) as of
2012. Some of the shortcomings pointed out here may have improved
in later versions of clan.

4 http://www.dps.uibk.ac.at/insieme/index.html

http://www.dps.uibk.ac.at/insieme/index.html

108 polyhedral extractor

Feature Polly 3.0 clan 0.6 pet 0.1

General

SCoP Detection (auto) yes no yes

SCoP Detection (pragma) no yes yes

Highlight unsupported code yesa no yes

Parse entire source files yes yesb yes

Parse isolated SCoPs no yes no

Input language variousc C-like C99

Code synthesis yes no no

Classical SCoP

Affine Expressions

- add, multiply yes yes yes

- max yes yes yes

- min no yes yes

- modulo no no yes

- division yes no yes

- floord/ceild no yes yes

- conditional (a ? b : c) no no yes

Comparisons

- <,6,=,>,> yes yes yes

- 6= yes no yes

- Implicit Comparison to Zero yes no yes

Boolean Combinations

- and (&&) no yes yes

- or (||) no no yes

- not (!) no no yes

Loops

- for-loop yes yes yes

- Stride > 1 yes no yes

- Negative Stride yes no yes

- Loop bound restriction SCEVd syntactic isl

Conditions

- if yes yes yes

- else yes no yes

Memory Access

- Array (Static Size) yes yes yes

- Array (Variable Size) no yes yes

- Pointer Arithmetic yes no no

Parse any CLooG Output no noe yes

Semantic Analysis

Propagate Expressions yes no yes

Recognize Induction Variables yes no no

Semantic Loops yes no no

Alias Analysis yes no no

Extensions

Derive Array Sizes no no yes

Infinite Loops no no yes

Wrapping (Unsigned Ops) no no yes

Wrapping (Casts) no no no

Inlining yes no no

a On intermediate language
b clan ignores everything outside the SCoP
c Any language that can be lowered to LLVM IR.
d Scalar Evolution Analysis built around the ideas in [123]
e For example, the fragment in Listing 4

Table 6: Features of different polyhedral extractors

9.5 limitations and future work 109

9.5 limitations and future work

Even though pet is already very powerful, it has several limitations
worth addressing.

The set of acceptable inputs could be expanded by performing
more extensive analyses to obtain more relations between variables.
At the moment, we only perform a very simple form of forward sub-
stitution. There is also currently no support for switch statements,
although it should be fairly easy to add.

Other issues include the following. Like most high-level polyhe-
dral model extractors, pet does not perform any alias analysis, but
instead assumes that none of the arrays accessed in the SCoP overlap.
pet is based on clang, such that conceptually C, C++ or Objective-
C code can be analyzed. At the moment only C is supported. Other
languages such as Fortran are not supported and are unlikely to ever
be supported. Another area where pet can be improved is that of
(implicit) casts. Support for them is not yet available, even though
adding this support should not impose any difficulties. The AST gen-
erated by clang contains the relevant information and the use of isl
makes adding the relevant modulo operations trivial.

9.6 summary

pet, the polyhedral extraction tool presented in this chapter, com-
bines the strengths of both clang and isl to form a new tool that
exploits the generality of integer sets and maps to significantly widen
the set of C programs that can be modeled and reasoned about. We
believe that the improved coverage will help other researchers to in-
crease the generality of the optimizers and transformations they im-
plement. In the context of stencil computations pet has shown to be
immensely helpful as it allowed us to parse stencil kernels written
with efficient modulo notations and/or with specialized boundary
condition handling. Even though pet is still missing some correctness
features such as the correct handling of array aliasing, pet’s support
for unsigned integer operations shows clearly the goal of following
existing standards precisely, such that tools based on pet are enabled
to provide correct transformations even in corner cases. We also be-
lieve that the very same modeling concepts can be used to advance
polyhedral optimizers in production compilers.

The work presented in this chapter has been important to enable
the extraction of compute kernels as used in our work on stencil com-
putations and was also influential as in providing insights on how to
correctly model complex language semantics. It was collaboratively
developed and has in parts been presented in [10]. The initial version
of pet, as described in this chapter, has been implemented by Sven
Verdoolaege and was subsequently extended continuously.

10
A S T G E N E R AT I O N

AST generation, the translation from a polyhedral model to an imper-
ative AST, is a concept essential for enabling the application of poly-
hedral high-level loop optimizations on imperative code. For many
years, this conceptual step has been factored out to specialized tools [26,
81, 39] which act as nice building blocks on our way of decoupling
high-level loop optimizations from specific compilers.

As discussed earlier, our work on generating optimized stencil codes
(Part iii) has been developed with the aim of decoupling the design
of the high-level optimization strategy and the generation of effi-
cient program code that implements this optimization strategy. Even
though there are many good reasons to separate these two concerns,
doing so while still ensuring the generation of highly efficient code
is non-trivial. Most domain specific optimizers use specialized code
generators to reach optimal performance. Being able to compete with
them without implementing specialized AST generation strategies sets
high requirements on various areas of the AST generator. Existing gen-
erators only partially meet these requirements, a fact which does not
only limit their usefulness in the context of our optimization scenario,
but which generally limits the situations in which generic AST gener-
ators can be used.

Existing AST generation approaches focus today mostly on the gen-
eration of control flow, aiming for generating the most efficient con-
trol flow for a given schedule. However, they do not offer facilities
to generate user-provided AST expressions, e.g., to describe memory
locations. As a result, such AST generators can not be used for data-
layout transformations [68] or for mapping data to software managed
caches [70], as they appear on GPUs. Despite specialization being very
important to fully exploit certain optimization schemes, existing AST

generators also support only certain simple forms of specialization.
They commonly produce multiple code versions that are specialized
for certain parameter values with the goal of reducing control over-
head, but they do not allow the user to influence this versioning to
drive the generation of specialized and possibly better performing
code. The separation of full and partial tiles [19, 61, 82] or the special-
ization for boundary conditions as they may appear in stencil com-
putations are use cases that would directly benefit from such user
controlled specialization. Users can still enforce such kinds of ver-
sioning by generating several distinct copies of each statement in the
input description [40], but this kind of statement duplication seems
to only work around a shortcoming of the AST generator. Similar

111

112 ast generation

workarounds are necessary when performing unrolling during AST

generation, where users again revert to duplicating the statements in
the input description [40, 35, 115]. Besides being conceptually unsat-
isfying, duplicating statements causes serious problems. First, by pur-
posefully hiding the fact that statements are identical, the AST genera-
tor is forced to generate duplicate code for them in all cases, missing
redundancies in complex expressions and missing opportunities to
factor colder parts of the code. Secondly, the need to duplicate state-
ments significantly complicates the construction of the AST generation
input. Already the combination of specialization for full/partial tile
separation with possible unrolling of the full tiles requires duplicat-
ing statements for the separation and then reduplicating the state-
ments that should be unrolled. Even though computationally this
reduplication may be cheap, it quickly becomes difficult to under-
stand what kind and how many statement copies actually need to be
computed. If we now wish to minimize code size for colder parts of
the iteration space (e.g., the partial tiles), we run into the next lim-
itation. Even though AST generators provide basic control over the
desirable aggressiveness in separating statements or control flow spe-
cialization (conditional hoisting), the level of control is way too coarse-
grained in existing methods and tools. Also, no guarantees are given
about the maximal number of loop nests and the maximal number of
statements generated, which is problematic for scenarios where code
size is a major concern, such as AST generation for many-core targets
with software-managed caches, embedded processors, and high-level
synthesis [142]. Overall, existing approaches and tools are in many
ways not yet mature for complex AST generation problems.

In this chapter we present an integrated AST generation approach
that besides classical control flow generation from arbitrary integer
maps, allows the generation of AST expressions from arbitrary user-
provided piecewise affine expressions. We define a fine-grained “op-
tion” mechanism that enables the user to request maximal specializa-
tion where needed while retaining control over code size. To enable
aggressive specialization, we allow the user to instruct the AST genera-
tor how to version the code, we provide an integrated polyhedral un-
rolling facility, and we make sure that AST expressions are specialized
according to the context they are generated in. Doing so is essential
to correctly model the floor-division and modulo arithmetic arising
from abstract transformations of the program, and to cast these ex-
pressions to efficient remainder and integer divisions, or to lower the
complexity of operations, as provided by existing instruction set ar-
chitectures and programming languages.

10.1 a new approach to ast generation 113

10.1 a new approach to ast generation

To give an idea of the new AST generation concepts proposed in
this work, we present them in the context of our work on hexago-
nal/parallelogram tiling (Chapter 5). In the following paragraphs we
recapture this work from the code generation perspective highlight-
ing which optimizations need to be performed to obtain efficient code
and which features of a general purpose AST generator are required
to perform these optimizations.

When translating stencil kernels from C code to CUDA, we start
from code consisting of compute statements and loops, which in the
simplest case consists of a single perfectly nested set of loops, with
one outer sequential loop, a set of inner parallel loops and a single
compute statement. To generate CUDA code for this computation it is
necessary to obtain a set of kernels that can be launched sequentially
and that each expose two levels of parallelism: coarse grained par-
allelism, which will be be mapped to so-called CUDA thread blocks,
and fine grained parallelism, which will be be mapped to so-called
CUDA threads. To obtain these two levels of parallelism we divide
the set of individual computations (statement instances) enumerated
by these loops into subsets (tiles). We do this by computing a poly-
hedral schedule that enumerates the set of statement instances with
two groups of loops. A set of outer loops that enumerate the tiles (tile
loops) and a set of inner loops (point loops) that enumerate the state-
ment instances that belong to a certain tile. The first AST generation
problem we encounter is that the hybrid-hexagonal schedule defining
the tile shapes decomposes the computation into phases and applies
to each phase a different schedule. This results in a piecewise schedule

from which an AST needs to be generated.
As a next step, we map the tile and point loops to a fixed number

of thread blocks and threads. We start by looking for a set of parallel
point loops and a set of parallel tile loops. We then strip-mine each
loop by the number of thread blocks and threads. For instance to map
a point loop with n iterations to a set of 1024 kernel threads, we strip-
mine the loop by a factor of 1024 such that each 1024th iteration is
executed by the same thread. The next step is to produce a piece of
CPU code that schedules instances of an accelerated kernel, and the
kernel code itself that defines the computation of a specific thread in
a specific thread block. No actual loops are generated that enumerate
the set of thread blocks and threads, but instead the CUDA run-time
and hardware spawns a set of blocks and threads, and provides the
block and thread ID as a parameter to each thread executing the ker-
nel code. To model this, we first generate the outer loop, then we
introduce the block and thread identifiers and, finally, we generate
kernel code that can reference values in the outer CPU code, taking
into account the AST generation context of the outer C code as well

114 ast generation

for (c2 = 0; c2 <= 1; c2 += 1)

for (c3 = 1; c3 <= 4; c3 += 1)

for (c4 = max(((t1 - c3 + 130) % 128) + c3 - 2,

((t1 + c3 + 125) % 128) - c3 + 3);

c4 <= min(((c2 + c3) % 2) + c3 + 128,

-((c2 + c3) % 2) - c3 + 134);

c4 += 128)

if (c3 + c4 >= 7

|| (c4 == t1 && c3 + 2 >= t1 && t1 + c3 <= 6

&& t1 + c3 >= ((t1 + c2 + 2 * c3 + 1) % 2) + 3

&& t1 + 2 >= ((t1 + c2 + 2 * c3 + 1) % 2) + c3)

|| (c4 == t1 && c3 == 1 && t1 <= 5

&& t1 >= 4 && c2 <= 1 && c2 >= 0))

A[c2][6 * b0 + c3][128 * g7 + c4 - 4] = ...;

Figure 35: Copy code from hybrid hexagonal/parallelogram tiling (a single
loop)

as the constraints on the kernel and thread identifiers. Exploiting this
information is very important to generate high-quality code.

When generating kernel code we also need to rewrite all array sub-
scripts in our compute statement. Traditionally this is done textually
by replacing all references to old induction variables with expressions
that compute the values of the old induction variables from new in-
duction variables. When translating an access A[i+1] where i now is
expressed as c0+ 1, a classical rewrite would yield A[(c0 + 1) + 1].
With our new approach we represent the expression i + 1 itself as
a piecewise quasi affine expression, perform the translation on the
piecewise quasi affine expression, simplify the resulting expression
and use our AST generator to generate an AST expression from this piece-

wise quasi-affine expression. As a result we obtain the code A[c0 + 2].
In this example the only benefit is increased readability, as any com-
piler would constant fold the two additions. However, in general, this
concept is a lot more powerful. It allows the specialization of expres-
sions according to the context in which they are generated. If, for
instance, an access A[i == 0 ? N - 1 : i - 1] is scheduled in a tile
where we know i is never 0, we can simplify the access to A[i - 1].
This simplification removes the overhead of boundary condition han-
dling from the core computation, a transformation for which a nor-
mal compiler misses context information and which traditionally re-
quires specialized statements for boundary and core computations.
With our AST generation approach, statements are automatically spe-
cialized as soon as boundary computations and core computations
are generated as specialized AST subtrees. This is very natural for an
AST generator that allows user-directed versioning.

After having generated basic CUDA code including the rewritten
data accesses, we can start to optimize the code. An essential opti-

10.1 a new approach to ast generation 115

mization is to switch from the use of slow “global memory” to the
use of fast, manually managed “shared memory“ (Section 5.3.2). To
do so we need to change the code of each tile such that, before the
actual computation takes place, the relevant data from global mem-
ory is copied into shared memory, and at the end, the modified
data is copied back from shared to global memory. To perform the
computation in shared memory, we need to adjust all memory ac-
cesses such that they point to the new shared memory arrays using
equally changed index expressions. How exactly the mapping is com-
puted [135] is not of importance here. The important point in this
section is that we can rely fully on our AST generator to generate the
code for the memory accesses from this mapping. To do so we only
need to convert our data mapping into a set of piecewise quasi-affine
expressions that define the new data locations. We then generate AST

expressions for them, relying on the AST generator to ensure that these
expressions are translated into efficient code. This approach enables
us to use possibly complex mappings, without writing specialized
code generation routines. To create the code that moves the data we
create new statements that copy data from a given global memory lo-
cation to a given shared memory location and vice versa. In case there
is more data to copy than there are threads we use a modulo map-
ping to assign data locations to threads. Figure 35 shows the code
generated to copy data back to global memory. There are various
interesting observations to be made. First, we see that our modulo
expressions have been mapped to the C remainder operator %, which
will be translated to fast bitwise operations. This is only possible be-
cause we have context information about the value of t1. Otherwise
we would need to fall back to expensive floord or intMod expressions,
dealing with arbitrary (possibly negative) integers, like the state-of-
the-art AST generators CLooG and CodeGen+ do. Secondly, we see that
we generate a reasonably dense loop nest that enumerates the state-
ments. Because of the presence of existentially quantified variables in
the input description, this is by itself non-trivial (see Section 10.5.1).

Nevertheless, we observe that the generated code is not very effi-
cient. Every loop iteration performs very little computation and eval-
uates a complex condition. One might hope the condition could be
simplified further, but unfortunately the data modified when moving
a 5-point stencil forming a cross over a hexagonal tile shape is by
itself already non-convex. Applying another level of modulo schedul-
ing makes the necessary compute pattern even more complex, such
that obtaining a simpler loop structure is difficult. However, by using
polyhedral unrolling on the inner three loops and by specializing the
statements according to the iteration they are unrolled for we can re-
move almost all control overhead. The result is shown in Figure 36.
The code is very smooth and each array subscript is specialized to the
specific location. We can also see that for the conditionally executed

116 ast generation

A[0][6 * b0 + 1][128 * g7 + (t1 + 125) % 128) - 1] = ...;

A[0][6 * b0 + 2][128 * g7 + (t1 + 127) % 128) - 3] = ...;

if (t1 <= 2 && t1 >= 1)

A[0][6 * b0 + 2][128 * g7 + t1 + 128] = ...;

A[0][6 * b0 + 3][128 * g7 + (t1 + 127) % 128) - 3] = ...;

if (t1 <= 2 && t1 >= 1)

A[0][6 * b0 + 3][128 * g7 + t1 + 128] = ...;

A[0][6 * b0 + 4][128 * g7 + (t1 + 125) % 128) - 1] = ...;

A[1][6 * b0 + 1][128 * g7 + (t1 + 126) % 128) - 2] = ...;

A[1][6 * b0 + 2][128 * g7 + (t1 + 126) % 128) - 2] = ...;

if (t1 <= 3 && t1 >= 2)

A[1][6 * b0 + 2][128 * g7 + t1 + 128] = ...;

A[1][6 * b0 + 3][128 * g7 + (t1 + 126) % 128) - 2] = ...;

if (t1 <= 3 && t1 >= 2)

A[1][6 * b0 + 3][128 * g7 + t1 + 128] = ...;

A[1][6 * b0 + 4][128 * g7 + (t1 + 126) % 128) - 2] = ...;

Figure 36: Copy code from hybrid hexagonal/parallelogram tiling (un-
rolled)

statements the subscripts are optimized according to the conditions
such that the remainder operations disappear entirely. Unrolling this
code is not trivial, as it needs to be performed in the presence of
multiple loop boundaries as well as strides and we need to support
the generation of guarded instructions when unrolling. The guarded
instructions at the innermost level are very cheap on a GPU, as they
can be implemented as predicated instructions. In this small example
this is not very visible, but for realistic tile sizes a larger number of
statements share the same conditions. We perform similar unrolling
for the compute code in our kernel to ensure sufficient instruction
level parallelism is available.

The code in Figure 36 is now close to optimal. However, so far
we only looked at a simplified example, a single tile which does not
touch any iteration space boundaries. In case iteration space bound-
aries are taken into account the generated code is a lot more complex.
To ensure we can still use the “close to optimal” code most of the
time, we use user directed versioning to isolate the core computation
(the full tiles) from the set of tiles that need to take into account the
boundary conditions (partial tiles). Doing so gives us maximal spe-
cialization and best performance. However, we now specialize and
unroll not only the core computation, but also the code that was in-
troduced to handle the boundary cases which increases the size of
the generated code as well as the time necessary to generate it. When
targeting a GPU this may be acceptable, but for FPGAs [142] the cost
may be prohibitive. This problem can be easily addressed by using
fine-grained options to limit the amount of unrolling and specialization
in the boundary tiles.

10.2 input 117

for (int i = 0; i < n; ++i) {

S1: s[i] = 0;

for (int j = 0; j < i; ++j)

S2: s[i] = s[i] + a[j][i] * b[j];

S3: b[i] = b[i] - s[i];

}

Figure 37: Example Program

In summary, extending AST generation beyond the creation of con-
trol flow makes it possible to use automatic AST generation in com-
plex scenarios. Even though existing AST generators combined with
workarounds such as duplicating statements before running the AST

generator can be used to solve some of the previously mentioned
AST generation issues, such workarounds only exist for some features,
they apply only in simple special cases and often inhibit other neces-
sary transformations. By instead carefully integrating several impor-
tant new extensions into a single AST generation approach, we sig-
nificantly extend the concept of automatic AST generation such that
it is usable in complex AST generation scenarios. We ensure that the
different features do not block each other, but when combined pro-
vide novel opportunities and solutions to complex AST generation
problems. As a result we hope to not only significantly simplify AST

generation, but to enable its use in new optimization scenarios.

10.2 input

The input of our AST generator is a polyhedral model of a SCoP as de-
fined in Section 2.2.3. For AST generation the most relevant elements
of this model are the iteration domain and the schedule. We recap-
ture again, the iteration domain describes the statement instances that
need to be executed and the schedule describes the order in which
they should be executed.

For the simple example program in Figure 37, the iteration domain
is

{ S1(i) : 0 6 i < n; S2(i, j) : 0 6 j < i < n; S3(i) : 0 6 i < n }. (28)

and the following is a possible schedule describing the original exe-
cution order.

{ S1(i)→ (i, 0, 0); S2(i, j)→ (i, 1, j); S3(i)→ (i, 2, 0) }. (29)

An alternative execution order may be obtained through the schedule

{ S1(i)→ (0, i, 0, 0); S2(i, j)→ (1, i, 0, j); S3(i)→ (1, i− 1, 1, 0) }. (30)

118 ast generation

The purpose of the AST generator is to construct an AST that visits
the elements of the iteration domain in the lexicographic order of
the integer tuples assigned to the iteration domain elements by the
schedule.

10.3 abstract syntax tree

The generated AST contains only syntactical information and has been
designed to be easily translatable to both C and compiler IR. Each
node of the AST is of one of four types, an if node, a for node, a block

node and a user node. An if node has an AST expression as condition,
a then node and optionally an else node. A for node has initializa-
tion, condition and increment expressions and a body node. A block
node represents a compound statement and maintains a list of nodes.
Finally, the statement expressed by a user node is represented as an
AST expression.

An AST expression is itself a tree with operators in the internal
nodes and integer constants or identifiers as the leaves. The set of
operators contains the standard operators found in C-like program-
ming languages, but also higher level operators such as min and max.
Boolean logical operators and the conditional operator (cond ? a : b)
are available in two forms, lazy and eager. We found in our work on
low-level compilers [3] that eagerly evaluating operands, instead of
using C’s lazy evaluation, is often beneficial as it reduces control over-
head and simplifies the hoisting of loop invariant subexpressions.

The integer division operator also comes in different forms, one
of them corresponding to the mathematical operation ⌊a/b⌋. Unfor-
tunately, this operation cannot be translated directly into a / b in C
because the /-operator in C rounds toward zero rather than toward
negative infinity. A correct translation to C involves a condition on
the sign of a, which can bring significant extra costs on some archi-
tectures such as GPU devices. We therefore also have a form of the
integer division where the result is known to be an integer (such that
rounding becomes irrelevant) and one where the dividend is known
to be non-negative. The user can specify a preference for these lat-
ter forms in which case the AST expression generator will look for
opportunities to use them (see Section 10.4.5).

10.4 new ast generation features

The core control flow generation algorithm and infrastructure devel-
oped in this work uses algorithmic foundations from “Quilleré et al.”
which it extends to handle arbitrary integer maps and combines with
several new optimization strategies, e.g., for component detection. As
improvements to classical AST generation are out of scope for this the-
sis, we refer the interested reader to [4] for a precise description of

10.4 new ast generation features 119

for (int c0 = 0; c0 <= 99; c0 += 1) {

if (n >= c0 + 1) {

for (int c1 = 0; c1 <= 99; c1 += 1) {

if (c1 >= 30)

B(c0, c1);

A(c0, c1);

}

for (int c1 = 100; c1 <= 199; c1 += 1)

B(c0, c1);

} else

for (int c1 = 20; c1 <= 199; c1 += 1) {

if (c1 >= 30)

B(c0, c1);

A(c0, c1);

}

}

Figure 38: Interleaved schedule without code generation options

the internal data structures, a description of how they are used as
well as a couple of interesting optimizations. In this section we focus
on the functionality that goes beyond AST generation. This includes
our new-fine grained option mechanism, the isolation of components,
polyhedral unrolling as well as the generation of user provided AST

expressions.

10.4.1 Fine grained option mechanism

Our new AST generator has an option mechanism that is signifi-
cantly more fine-grained than previous approaches. Where previous
tools allowed certain options to be set only globally or at most on
a per-statement and/or per-dimension level, our new option scheme
allows us to set options on a per instance level. To enable such fine
grained options we describe the options themselves as an integer
map {(s0, . . . , sd−1) → optionname(dim) | cond(s0, . . . , sd−1, dim)},
a mapping from the individual elements of the schedule space into
the option space. The semantics of this mapping is such that for a
specific instance a certain option, as defined by the name in the op-
tion space, is set in case the condition cond(s0, . . . , sd−1, dim) is true
for this instance. As visible in the option map shown, options can
be dimension specific, which means for different dimensions “dim”
different options can be set. The two options easiest to understand
are ’atomic’ (minimize code size) and ’separate’ (minimize control
overhead), which control the amount of separation used during the

120 ast generation

generation of control flow. We will use them to explain our option
mechanism in combination with the following schedule

{

A(i, j]→ (i, j] | 0 6 i < 100∧ ((i < n∧ 0 6 j < 100)∨

(i > n∧ 20 6 j < 200))

B(i, j)→ (i, j) | 0 6 i < 100∧ 30 6 j < 200

},

a slightly contrived example that allows us to reason about different
choices during AST generation. Figure 38 shows the code generated
by our AST generator without any options provided. We can see that
the code is specialized for different values of n and that each case
contains reasonable code. However, depending on our definition of
“optimal” the choices taken by the AST generator may not yet be per-
fect. Assuming we know n is commonly small, we may want to fur-
ther optimize the code such that iterations in the branch that is rarely
executed are optimized for minimal code size, whereas iterations in
the other branch are optimized for minimal control overhead. With
our new option mechanism we can do so easily by providing the op-
tion map {(i, j) → atomic(1) | i < n; (i, j) → separate(1) | i > n}. It
specifies that for all iterations with i < n the loop at dimension one
should be optimized for code size, whereas for iterations with i > n

the loop at dimension one should be optimized for minimal control
flow. Looking at the result shown in Figure 39, we removed one du-
plicated statement and one loop from the rarely executed code at the
top. In the else branch, the often executed part of our code, we elimi-
nated the if condition in the innermost loop at the cost of increasing
code size by introducing an additional for loop.

Even though the optimizations performed in this example are rather
simple, the technique behind them is very powerful. Complex cases
as they arise from the use of complex tile shapes or the generation
of code for boundary condition handling, can often cause significant
code growth which is not only costly in terms of code size, but can
also increase compilation time. Being able to apply different code gen-
eration strategies is consequently very useful. We also believe that the
interface chosen is very convenient, as often the set of iterations that
are within the actual core computation may be rather complex to de-
scribe, but possibly easy to compute using generic operations on inte-
ger maps. Being able to directly feed the integer set description of the
relevant iterations to our AST generator makes it easy to use specific
options just for the iterations in these sets. Despite these benefits, we
would like to note that this interface is rather new and we still need
to gain more experience in how beneficial these fine-grained options
are for a wider set of use cases. As a result the interface as well as the
option granularity may still change.

10.4 new ast generation features 121

for (int c0 = 0; c0 <= 99; c0 += 1) {

if (n >= c0 + 1) {

for (int c1 = 0; c1 <= 199; c1 += 1) {

if (c1 >= 30)

B(c0, c1);

if (c1 <= 99)

A(c0, c1);

}

} else {

for (int c1 = 20; c1 <= 29; c1 += 1)

A(c0, c1);

for (int c1 = 30; c1 <= 199; c1 += 1) {

B(c0, c1);

A(c0, c1);

}

}

}

Figure 39: Interleaved schedule with code generation options

10.4.2 Isolation

The option mechanism also allows the user to ask our AST genera-
tor to isolate a subset of the schedule domain from the other parts
of the schedule domain. A trivial example is the schedule {A(i) →

(floor(i/4), i) | 0 6 i < n} as it results from strip mining a one dimen-
sional loop by four. The code generated by default looks as follows:

for (int ii = 0; ii <= floord(n - 1, 4); ii += 1)

for (int i = 4 * ii; i <= min(n - 1, 4 * ii + 3); i += 1)

A(i);

After strip-mining with a factor of four the inner loop has at most
four iterations. However, we notice that due to a min condition in the
upper bound this very loop may also execute less than four times
in certain cases. Specifically, in case n is not a multiple of four, the
last time the inner loop is executed, only n mod 4 iterations will
be executed. The additional complexity introduced just for the last
iterations often prevents the generation of efficient code for these
cases. In case we strip-mine, for example to vectorize the inner loop,
we need a way to ensure the inner loop has exactly four iterations.
Our AST generator enables us now to provide an option of the form
{(i, j) → separation_class((0) → (1)) | 0 6 i < ⌊n/4⌋}, which ensures
that the iterations of a given set of iterations are at dimension zero iso-
lated from the remaining set of iterations. The result is the following
code.

for (int c0 = 0; c0 < floord(n, 4); c0 += 1)

for (int c1 = 4 * c0; c1 <= 4 * c0 + 3; c1 += 1)

122 ast generation

A(c1);

if (n >= 0 && n >= 4 * floord(n, 4) + 1)

for (int c1 = -((n + 3) % 4) + n - 1; c1 < n; c1 += 1)

A(c1);

We can see that the core computation has been isolated from the han-
dling of the remaining iterations. As a result, the inner loop of the
core computations has now always exactly four iterations with no
complexity added due to the handling of the remainder. The epilog
generated to handle the remainder looks rather complex. However, as
it is rarely executed this complexity has a low price.

As just shown, the isolation support provided by our AST generator
enables the automatic generation of possibly complex prolog/epilog.
Even though we believe this concept is already highly useful when
applied to one dimensional inner loops, its real power is due to it
being universally supported across all dimensions and for subsets of
arbitrary shape. One use case that immediately benefits is the separa-
tion of full and partial tile shapes.

10.4.3 Polyhedral unrolling

Loop unrolling is an optimization commonly used to increase instruc-
tion level parallelism as well as to reduce loop management overhead.
In its simplest form, a loop with a known constant number of loop
iterations n is unrolled by duplicating the loop body n times, by ad-
justing the copied bodies such that each performs one of the origi-
nal loop iterations and by removing the original loop management
structure. This transformation is called “full unrolling”. It is natively
implemented in our AST generator.

As loop unrolling is well supported by existing C/C++ compilers,
one may wonder if there is any benefit from performing loop un-
rolling directly in the AST generator. One obvious benefit is that un-
rolling in the AST generator makes it possible to inspect the unrolled
code. However, more importantly, during AST generation we still have
all polyhedral information available which can be taken into account
both when determining the number of iterations to unroll as well
as when specializing the copies of the original loop body for specific
loop iteration(s). In many cases the additional context information en-
ables the AST generator to heavily simplify the copies of the replicated
loop bodies and to produce less or even no code to handle boundary
cases.

There was previous work on Polyhedral unrolling [124] for the spe-
cial case of full unrolling for a uni-modular schedule, where a dimen-
sion is bound by a single lower and a single upper bound with a con-
stant non-parametric difference between the two constraints defining
the bounds. Listing 8 shows an example of this very specific pattern
both generated as a loop and as a set of unrolled statements. It nicely

10.4 new ast generation features 123

/*

* Input: {A[i]→ [i] : n 6 i < n+ 3}

*/

/* Loop */

for (i = n; i < n + 3; i++)

A(i);

/* Unrolled */

A(n);

A(n+1);

A(n+2);

Listing 8: Trivial unrolling example

/*

* Input: {A[i]→ [i] : 0 6 i < 4096∧ t1 = i mod 1024}

* Context: {0 6 t1 < 1024}

*/

/* As a loop */

for (i = t1; i <= 4095; i += 1024)

A(i);

/* Unrolled */

A(t1);

A(t1 + 1024);

A(t1 + 2048);

A(t1 + 3072);

Listing 9: Unrolling in the presence of strides

illustrates the idea of polyhedral unrolling. The polyhedral unrolling
support in our new AST generation approach provides a highly gen-
eralized version of this polyhedral unrolling. First, it supports more
complex inputs by handling arbitrary integer maps containing exis-
tentially quantified dimensions or defining piecewise schedules. Sec-
ond, it increases the applicability of loop unrolling by avoiding the
matching of specific constraints, but rather inspecting certain proper-
ties of the polyhedral sets. Finally, it extends polyhedral unrolling to
several new use cases, all generalizations of full unrolling.

Due to our support for existentially quantified dimensions, we can
easily express loops with strides. Listing 9 gives an example where
the original loop has a stride of 1024. Such code is commonly cre-
ated when generating code for GPUs where the 4096 iterations are
mapped to 1024 threads. As the number of iterations per-thread are

124 ast generation

commonly low, unrolling is very important to enable instruction level
parallelism.

/*

* Input: {A[i]→ [i] : 0 6 i < n}

* Context: {3 6 n < 6}

*/

/* As a loop */

for (int i = 0; i < n; i += 1)

A(i);

/* Unrolled */

A(0);

A(1);

A(2);

if (n >= 4) {

A(3);

if (n == 5)

A(4);

}

}

Listing 10: Unrolling in case of bound, non-constant number of iterations

We also support unrolling for loops where the number of iterations
is not a constant, but where it is bound by a constant. Listing 10 gives
an example where the loop itself is bound by a parameter n, but we
know that the maximal number of loop iterations can never exceed
five. In this case, we can unroll the loop five times, but need to add
guards for the iterations that may possibly not be executed. Even
though these guards seem similar to the cleanup code necessary for
partial unrolling, this is still full unrolling. Being able to unroll a loop
even though guards are needed can be very beneficial in cases where
the number of guards needed is small or in cases where executing
them is cheap or even free. If, for example, the number of loop iter-
ations in Listing 9 would not have been a multiple of 1024, the last
unrolled statement would need to be guarded. This guarded state-
ment could directly be translated to a predicated instruction which
on modern GPUs has a very low cost.

Another important case is loops with multiple lower bounds, as
commonly introduced by loop tiling. When unrolling such loops it is
very important to choose the lower bound such that the number of
iterations that need to be unrolled is minimized. In Listing 11 we see
two ASTs that are both generated from the schedule {A[i] → [i] : 0 6

i < 5∧n 6 i < n+ 3}. The first one uses 0 as lower bound, the second
one uses n. Comparing both we see that by choosing 0 instead of n as

10.4 new ast generation features 125

/*

* {A[i]→ [i] : 0 6 i < 5 ∧ n 6 i < n + 3}

*/

/* Loop */

for (int i = max(0, a); i <= min(4, a + 2); i += 1)

A(i);

/* Unrolled with a as lower bound */

if (n <= 4 && n >= 0)

A(n);

if (n <= 3 && n >= -1)

A(n + 1);

if (n <= 2 && n >= -2)

A(n + 2);

/* Unrolled with n as lower bound */

if (n <= 0 && n >= -2)

A(0);

if (n <= 1 && n >= -1)

A(1);

if (n <= 2 && n >= 0)

A(2);

if (n <= 3 && n >= 1)

A(3);

if (n <= 4 && n >= 2)

A(4);

Listing 11: Unrolling with two lower bounds

lower bound, we can reduce the number of unrolled statements from
5 to 3. For tiled code, where the size of the original iteration space is
commonly a lot larger than the tile size, this difference can become
very large.

10.4.4 Partial Unrolling

// Original code

// Input: {A[i, j]→ [i, j] : 0 6 i < n∧ 0 6 j < m}

for (i = 0; i < n; i += 1)

for (j = 0; j < m; j += 1)

A(i, j);

Listing 12: Partial unrolling - original loop nest

126 ast generation

// Tiling (2 x 2)

// Input: {A[i, j]→ [⌊i/2⌋, ⌊j/2⌋, i, j] : 0 6 i < n∧ 0 6 j < m}

for (iT = 0; iT < (n + 1) / 2; iT += 1)

for (jT = 0; jT < (m + 1) / 2; jT += 1)

for (iP = 2*iT; iP <= min(n - 1, 2*iT + 1); iP += 1)

for (jP = 2*jT; jP <= min(m - 1, 2*jT + 1); jP += 1)

A(iP, jP);

Listing 13: Partial unrolling - tiled

Unrolling as supported in our AST generator is a rather sophisti-
cated form of full unrolling (Section 10.4.3), unrolling with the goal of
fully eliminating a certain loop. In cases where the number of loop it-
erations is unknown or where full unrolling would yield unnecessary
or unacceptable code growth, it is often better to perform partial un-
rolling. We show now in several steps how partial unrolling possibly
involving multiple loops can be implemented with the new facilities
our AST generator provides.

// Unroll iP and iJ loops

// Input: {A[i, j]→ [⌊i/2⌋, ⌊j/2⌋, i, j] : 0 6 i < n∧ 0 6 j < m}

for (iT = 0; iT < (n + 1) / 2; iT += 1)

for (jT = 0; jT < (m + 1) / 2; jT += 1) {

A(2 * iT, 2 * jT);

if (m >= 2 * jT + 2)

A(2 * iT, 2 * jT + 1);

if (n >= 2 * iT + 2) {

A(2 * iT + 1, 2 * jT);

if (m >= 2 * jT + 2)

A(2 * iT + 1, 2 * jT + 1);

}

}

Listing 14: Partial unrolling - tiled + unrolled

We start with a two dimensional loop nest as shown in Listing 12.
As a first step, we tile this loop nest using the unroll factors as the tile
sizes. The resulting code (shown in Listing 13) contains now two outer
tile loops and two inner point loops, with the number of iterations in
the point loops being bound by the unroll factors. However, as visible
from the presence of min expressions in the loop bounds, the number
of loop iterations is not constant, but may possibly be smaller than the
unroll factor due to n or m not being a multiple of the unroll factor. We
can still ask our AST generator to fully unroll the point loops of our
tiling to obtain the partially unrolled loop nest shown in Listing 14,
but the min conditions reappear as possibly undesired conditions. To
remove them we ask the AST generator to isolate (Section 10.4.2) the

10.4 new ast generation features 127

// Unroll iP and iJ loops & Isolate partial tiles

// Input: {A[i, j]→ [⌊i/2⌋, ⌊j/2⌋, i, j] : 0 6 i < n∧ 0 6 j < m}

for (iT = 0; iT < n / 2; iT += 1) {

for (jT = 0; jT < m / 2; jT += 1) {

A(2 * iT, 2 * jT);

A(2 * iT, 2 * jT + 1);

A(2 * iT + 1, 2 * jT);

A(2 * iT + 1, 2 * jT + 1);

}

if ((m - 1) % 2 == 0) {

A(2 * iT, m - 1);

A(2 * iT + 1, m - 1);

}

}

if ((n - 1) % 2 == 0)

for (jT = 0; jT < (m + 1) / 2; jT += 1) {

A(n - 1, 2 * jT);

if (m >= 2 * jT + 2)

A(n - 1, 2 * jT + 1);

}

Listing 15: Partial unrolling - tiled + unrolled + isolated core computation

tiles that lie entirely in the iteration space from the tiles which are
only partially executed. Doing so removes any conditions from the
core unrolling and separate code is generated for the remaining iter-
ations. The result is now a smooth implementation of register tiling.
The same concept is applicable to loop nests of arbitrary depth and
with possibly complex iteration space boundaries.

10.4.5 Generating AST Expressions

One new core functionality of our AST generator is that it provides
facilities to the user to generate AST expressions from an arbitrary
integer map or piecewise quasi affine expressions. Ensuring efficient
expressions are computed even in the context of modulo constraints
is important for those user generated integer expressions. However,
due to our new AST generation approach generally having widened
the support for modulo constraints, the optimizations discussed here
are also beneficial for AST expressions generated as part of the control
flow.

Within isl integer divisions are represented in terms of greatest
integer parts (⌊·⌋). In principle, these expressions can be translated di-
rectly into their AST expression counterparts, but as explained in Sec-
tion 10.3, for some use cases it is important to know if the first argu-
ment of an integer division is non-negative or if the division is exact.

128 ast generation

Moreover, we typically want an expression of the form m
⌊

(a(~i)/m)
⌋

to be translated to a(~i) − (a(~i) mod m), provided again that a(~i) is
non-negative.

Whenever generating an if or for-condition or a for initialization or
upper bound expression from an expression involving greatest inte-
ger parts, we first check for opportunities to extract modulo expres-
sions and then check the sign of the remaining greatest integer parts.
Note that when generating a conjunction of constraints, we first gen-
erate expressions for the constraints not involving greatest integer
parts such that we can exploit those constraints when simplifying the
remaining constraints.

If we are generating an equality constraint, we first check if the
equality encodes a stride. If so, the stride can be expressed in the AST

using an expression of the form x % m == 0. In this case, the sign
of x is of no importance. For other constraints or expressions in gen-

eral, if we find an subexpression of the form fm
⌊

a(~i)/m
⌋

and we can

prove that a(~i) is non-negative based on context information, then the
expression is replaced by fa(~i) − f · (a(~i) mod m). If a(~i) may be neg-
ative, but −a(~i) +m− 1 can be proved to be non-negative, then it is
replaced by f · (m+ 1− a(~i)) − f · ((m+ 1− a(~i)) mod m) instead, ex-
ploiting the fact that ⌊a/b⌋ = − ⌈−a/b⌉ = − ⌊(−a+ b− 1)/b⌋. More-
over, the a(~i) inside the argument of mod can be replaced by any
a ′(~i) = a(~i) + me(~i). We therefore look for constraints h(~i) > 0

among the shifted shared constraints of the context with coefficients
that are either equal or opposite to those of a(~i) modulo m. Since
h(~i) is known to be non-negative in the context, it can be used di-
rectly as a ′(~i). If no such constraint can be found, we check if a(~i)

or −a(~i) +m − 1 themselves can be proved to be non-negative by
solving an ILP problem. The latter test is also used to check if the
first arguments of the remaining integer divisions are non-negative.
These simple heuristics appear to work out fairly well in practice.

10.5 experimental results

We also performed a set of experiments to evaluate our AST genera-
tor in comparison with CLooG and CodeGen+. Some evaluations, e.g.,
the quality of the generated control flow and the correctness of the
generated code are outside of the scope of this thesis. We refer the
interested reader again to [4]. In our experiments, we mostly focus
on the new AST generation features as well as the support for existen-
tially quantified variables.

10.5.1 Existentially quantified variables

10.5 experimental results 129

// Simple

S(n % 128);

// Shifted

S(((t1 + 121) % 128) + 7);

// Conditional

if ((t1 + 121) % 128 <= 123)

S(((t1 + 125) % 128) + 3);

(a) isl
// Simple

for(i = intMod(n,128); i <= 127; i += 128)

S(i);

// Shifted

for(i = 7+intMod(t1-7,128); i <= 134; i += 128)

S(i);

// Conditional

for(i = 7+intMod(t1-7,128); i <= 130; i += 128)

S(i);

(b) codegen+

Figure 40: Modulo conditions (examples not supported by CLooG)

130 ast generation

// Two e.q. variables

for (int c0 = 0; c0 <= 7; c0 += 1)

if (2 * (2 * c0 / 3) >= c0)

S(c0);

// Multiple bounds

for (i = 0; i <= 1; i += 1)

for (j = max(-((-t1 + t2 - 3)%128) + t2 - 387, t1-384);

j <= min(-t2 + 127, t2 - 383); j += 128)

if (j + 256 == t1 || (j + 384 == t1 && t1 >= 126))

S(i, j);

(a) isl
// Two e.q. variables

S(0); S(2); S(3);

S(4); S(5); S(6); S(7);

// Multiple bounds

if (t1 >= 126)

S(0, t1 - 384);

S(0, t1 - 256);

if (t1 >= 126)

S(1, t1 - 384);

S(1, t1 - 256);

(b) isl unrolled
Figure 41: Existentially quantified variables (examples not supported by

CLooG/codegen+)

10.5 experimental results 131

Generating a valid AST for any valid Presburger relation and en-
suring that we use efficient remainder operations whenever possible
is one of the design goals of our AST generation algorithm. To do so
it is important to correctly handle existentially quantified variables,
as they can result from modulo mappings from global to shared
memory or from a full iteration space to a set of thread ids. We
start with a simple modulo operation {[i] → [i] : i = n mod 128}

to verify that modulo operations can be detected at all. Since older
versions of CLooG (prior to our enhancements) do not allow existen-
tially quantified variables, we do not compare against it in this sec-
tion. For isl and CodeGen+, Figure 40 shows that isl uses a single
statement with a remainder operation, whereas CodeGen+ generates
a loop. Using a loop is very inefficient, not only due to the call to
intMod and the general loop overhead, but especially because the ex-
pression n%128 is invariant of any possibly surrounding loop and has
almost zero cost as the loop invariant code motion pass of a com-
piler normally moves it out of the loop body. Two slightly more com-
plicated examples are mappings from a set of iterations to a set of
threads t1 with {0 6 t1 < 128}. The first mapping is the one-to-
one mapping {[i] → [i] : 7 6 i 6 134∧ i mod 128 = t1} which isl

again translates into a single instruction, the second is the mapping
{[i] → [i] : 7 6 i 6 130 ∧ i mod 128 = t1} which maps 124 itera-
tions to 128 threads. isl lowers this mapping to a single conditional
statement. CodeGen+ generates for both cases a full loop nest. It is in-
teresting to note that all previously shown loops are degenerate loops
with just a single iteration. CodeGen+ is not able to detect those loops,
whereas isl is designed to always recognize degenerate loops.

For the previous test cases only a single existentially quantified
variable was introduced due to the one modulo operation in the
schedule. For more complex use cases, e.g., the modulo mapping of
access functions that already contain modulo expressions or nested
modulo mappings, it is often possible that multiple existentially quan-
tified variables are introduced. The first test case {[i] → [i] : ∃(α,β :

i = 2α+ 3β∧ 0 6 α < 3∧ 0 6 β∧ 0 6 i < 8)} involves two existen-
tially quantified variables in a single equality. CodeGen+ aborts here
with the message guard condition too complex to handle. In Figure 41 we
see that isl is able to generate valid code, which can be unrolled both
for better efficiency and to better understand the computation that is
performed. The next test case is {[i, j]→ [i, j] : ∃(α,β : 0 6 i 6 1∧ t1 =

j+ 128α∧ 0 6 j+ 2β < 128∧ 510 6 t2+ 2β 6 514∧ 0 6 2β− t2 6 5)},
which was reduced from the example in Figure 35. CodeGen+ aborts
with Can’t generate multiple wildcard GEQ guards right now. isl either
generates a loop with multiple loop bounds and remainder condi-
tions or, if unrolled, a set of conditional statements. As Chen [39] does
not discuss how existentially quantified variables are handled, the
scope of support in CodeGen+ is unclear. When inspecting the source

132 ast generation

heat 2D heat 3D

AST generation options GFLOPS speedup GFLOPS speedup

a: no options enabled 1.9 1.0x 4.9 1.0x

b: all optimizations enabled 26.4 13.9x 19.6 4.0x

c1: all, except full/partial separation 19.4 10.2x 18.2 3.7x

c2: all, except IO unrolling 4.5 2.3x 9.6 2.0x

c3: all, except compute unrolling 14.1 7.4x 10.1 2.1x

c4: all, except modulo detection 27.5 14.1x 16.9 3.4x

Table 7: AST generation strategy based performance (GFLOPS)

code of CodeGen+ we found several code paths that require a single
existentially quantified variable per constraint. isl has no limitations
on the number of existentially quantified variables per constraint.

10.5.2 Performance of AST generation strategies

To understand the performance implications of our new AST genera-
tion strategies, we analyze their impact on the run-time of generated
code. We ensure a realistic scenario by analyzing a full end-to-end
domain specific compiler. As compiler we choose the stencil compiler
introduced in Section 10.1. We remind the reader that this compiler
is based on the general purpose compiler PPCG. To create code that
is optimized for the domain of stencil computations the computa-
tion of a generic execution schedule is replaced with the computation
of a hybrid hexagonal/parallelogram execution schedule specifically
optimized for the domain of stencil computations. Besides the do-
main specific schedule, the only other domain specific piece is the
parametrization of our AST generator to isolate (Section 10.4.2) full
tiles from partial tiles as well as to unroll (Section 10.4.3) compute
and IO code. AST expression generation (Section 10.4.5) is used to
specialize the access functions of statements, e.g., after unrolling or
separation.

We perform the evaluation on a NVIDIA NVS 5200M GPU using a
heat 2D and a heat 3D stencil as benchmark. As performance results
have shown large differences between two and three dimensional
stencils, we choose two benchmarks to cover the most common di-
mensionalities. We limit ourselves to a single type of stencil, as the
general tendency between different types of stencils does not vary
enough to give additional insights for this analysis. For further per-
formance results on different hardware and different stencil types,
we refer to Chapter 5. Table 7 shows the results of our analysis. We
see in a that normal AST generation with no further specialization
enabled yields very low performance with just 1.9 GFLOPS in the 2D

10.5 experimental results 133

case and 4.9 GFLOPS in the 3D case compared to b where we enable
all optimizations and obtain 26.4 GFLOPS in the 2D case and 19.6
GFLOPS in the 3D case, a 13.9x speedup in the 2D case and a 4.0x
speedup in the 3D case. To understand better where this speedup
comes from we individually disable certain optimizations. In c1 we
disable full/partial tile separation, which reduces the performance by
27% for heat-2D and 7% for heat-3D. The larger change on 2D is due
to the higher percentage of full tiles. In 3D, already a large amount
of time is spent in partial tiles, so optimizations that speed up the
execution of full tiles are less visible. In c2 and c3 we see that for heat
3D disabling either unrolling of IO or unrolling of compute reduces
the performance by 50%. For the 2D case, disabling unrolling of the
compute code also reduces the performance by 50% and, even more
importantly, without unrolling of the IO code over 80% of the perfor-
mance is lost. This large performance difference is both due to the
increased ILP after unrolling and because of the simplifications en-
abled by unrolling (see Figure 36). In c4 we see that without modulo
detection the performance for heat-3D is reduced by 14% and, sur-
prisingly, slightly increased by 4% in 2D. The increase for heat-2D is
due to register spilling caused by loop invariant code motion which
again was made possible due to the simpler code after modulo de-
tection. Allowing nvcc, the NVIDIA compiler, to use more registers
prevents register spilling and modulo detection becomes again bene-
ficial with a new peak performance of 28.4 GFLOPS for heat 2D, an
8% performance improvement over the previous peak value. Overall,
we see that just generating control flow using polyhedral scanning
is by far not enough to generate high-performant GPU code. Instead,
both polyhedral unrolling and specialization for full and partial tiles
are highly important to obtain code of competitive performance.

10.5.3 Generation Time

Although we have mostly focused on the newly introduced features,
for completeness we also report some AST generation times. For this
experiment, we take 64 of the test cases distributed with CLooG (those
that can be handled by both CLooG 0.14.1 and CodeGen+) and sum
the total AST generation time. For CLooG 0.14.1 (before our enhance-
ments, using PolyLib as a backend), we obtain 0.3s using fixed size
integer computations and 1.0s for arbitrary precision integers. For
CLooG 0.18.1 (including some of our enhancements and using isl for
set operations with arbitrary precision integers), we obtain 0.9s. For
CodeGen+, we find 3.1s and for isl, 1.5s. We attribute the time dif-
ference with respect to CLooG to the fact that we have not yet imple-
mented some of the heuristics of Vasilache et al. [124] and that we
are much more aggressive in our optimizations, resulting in better
output code.

134 ast generation

10.6 related work

There are two major approaches to generic AST generation, one that
is based on a library for Presburger relations and that focuses on
lifting control overhead up [80, 39] and one that is based on rational
polyhedra and that mainly tries to eliminate overhead top-down [26,
107]. Even though we did not present technical details on control
flow generation, we would like to note that the algorithm used can
be seen as a combination of the previous two approaches, using the
same separation algorithm of [26, 107], but built on top of a library
for Presburger relations. Sven Verdoolaege started the original work
on this new AST generator by porting CLooG to isl and improving
CLooG. The knowledge gained from then influenced the development
of the new AST generation approach presented here. Both the original
approaches only allow single disjunct contexts and schedules, with
CLooG also not supporting existentially quantified variables. CodeGen+
can handle such variables in certain cases, but as Chen [39] does not
discuss how such such variables are handled in general, the extent
of support is unclear. In contrast, our AST generator supports the full
generality of Presburger arithmetic, including existentially quantified
variables and piecewise schedules.

Kelly et al. [80] and Chen [39] as well as Quilleré et al. [107] and
Bastoul [26] generate AST expressions as necessary to generate control
flow for scanning the iteration space, but they do not expose any
functionality to generate AST expressions for arbitrary user-provided
piecewise quasi-affine expressions. We also are not aware of any work
that uses the AST generation context to specialize AST expressions. In
particular, we are aware of no work that uses context information to
optimize modulo operations and divisions as they appear in quasi-
affine expressions. CodeGen+ always generates expensive intMod calls
and CLooG only introduces a % operator in cases where the result of
the operator is compared to zero.

Polyhedral unrolling in an AST generator has been proposed (with-
out software being made available) by Vasilache et al. [124] for the spe-
cial case of a unimodular schedule where a dimension that has a sin-
gle lower and single upper bound offset by a constant non-parametric
distance can be fully unrolled. In our work we presented polyhe-
dral unrolling for schedules defined by arbitrary Presburger maps,
with support for unrolling in presence of multiple lower bounds, un-
rolling in the presence of strides and unrolling for loops with bound,
non-constant number of iterations using conditional statements. User-
directed isolation of arbitrary subsets of the iteration space as such
has not been implemented in polyhedral AST generators. The auto-
matic separation used by Bastoul [26] regularly introduces specialized
code versions, but the user can only control the amount of separation
and not the subsets that are separated from each other. Full/partial

10.7 summary 135

tiling has been discussed as an independent transformation by An-
court and Irigoin [19] as well as Goumas et al. [61] and, combined
with unrolling, by Jiménez et al. [76]. In the context of parametric
tiling [82, 110, 67] full/partial tile separation has been researched in
AST generators specialized for this use case. We are not aware of any
work that uses a generic isolation feature provided by a polyhedral
AST generator to perform full/partial tile separation. As parametric
tiling techniques commonly rely on polyhedral AST generators, the
same isolation techniques may be useful in the context of parametric
tiling.

We are not aware of any work that provides configurability on such
a fine grained level. Bastoul [26] originally allowed per-dimension
level control over separation and recently gained per-statement con-
trol. Chen [39] allows per loop level control over the amount of con-
trol flow. Different AST generation strategies for different subtrees of
the generated AST are to our knowledge unique to our work. Also, giv-
ing the user the ability to enforce an “atomic” AST generation strategy
to minimize code size or to enforce unrolling is new.

10.7 summary

In this chapter we widened the scope of polyhedral AST generation,
by presenting an AST generator that extends traditional control flow
generation to the full generality of Presburger arithmetic based in-
teger maps. In particular, we provide support for piecewise affine
schedules as well as schedules with complex uses of existentially
quantified variables, opening AST generation to new application ar-
eas and more sophisticated program optimizations, and enhancing
its reliability—the ability to predictably generate highly efficient con-
trol flow. We also acknowledge that optimization problems are not
limited to control flow restructuring, but also require changes to data
access functions: to support such optimizations, we propose facili-
ties to generate efficient AST expressions from piecewise quasi-affine
forms. Finally, we improve on the state of the art techniques to recover
divisions and modulo expressions in the generated code, and apply
these to the optimization of index expression that commonly appear
in the context of explicitly managed caches. Overall, we widened the
scope of generic AST generators.

However, to implement domain or target specific optimizations
that reach peak performance, it is often necessary to heavily special-
ize the generated code. For this we allowed the AST generator to be
parameterized to perform loop unrolling and partial evaluation of
loop iterators in a very general, polyhedral setting. Furthermore, we
presented how to separate certain parts of the code and show how to
use this separation to generate specialized code for full and partial
tiles. By allowing the specialization of user-provided AST expressions

136 ast generation

according to the context they are generated in, the same feature can
also be used to generate specialized code for boundary conditions.
As maximal specialization may not always be best, we make AST gen-
eration choices such as separation, unrolling and also atomic execu-
tion configurable on a fine-grain level. Each individual contribution
is by itself useful, but only the integration in a single AST generator
ensures their seamless interaction. As demonstrated on hybrid hexag-
onal/classical tiling, the result is an AST generator that can be used to
implement complex domain specific optimizations.

The work presented in this chapter has been motivated by the need
for advanced AST generation techniques that enable us to exploit the
advantages of our new tiling techniques and that simplify the gen-
eration of complex run-time checks in the context of LLVM/Polly. It
was collaboratively developed and will, possibly with modifications,
be submitted for publication [4]. The new AST generation techniques
presented in this chapter have been implemented in isl by Sven Ver-
doolaege, with isl 0.11 being the first isl release with AST generation
support.

11
S C H E D U L E T R E E S

In the previous parts of this thesis we used integer maps to describe
schedule transformations, as this is currently the best understood way
to represent schedules and schedule transformations. However, just
because it is best understood does not mean it is without shortcom-
ings. Quite the contrary, when constructing complex schedule trans-
formations as they arise from advanced tiling schemes, the generation
of GPU mappings or the exploitation of software manged caches flat
schedule descriptions such as the named integer maps we used have
shown to complicate the reasoning over and the construction of more
complex schedules. To make it easier to understand schedules and to
transformation them we looked into new ways to represent them.

To get an idea how such a representation may look like we looked
into how different algorithms generate a schedule and if this gener-
ation may suggest a specific schedule description. Most scheduling
algorithms recursively decompose a dependence graph, at each level
separating the graph into (strongly connected) components and com-
puting a partial schedule for each component separately. This partial
schedule is usually an affine function (possibly quasi-affine and/or
piece-wise). The complete schedule is then obtained as some form of
concatenation of the partial schedules. The order of two statement
instances in the complete schedule is determined by the outer par-
tial schedule that yields a different value for the two instances or the
outer pair of components that separates the two instances, whichever
appears outermost. An overview of several of such early algorithms
is provided by Darte et al. [47]. When constructing tilable bands (e.g.,
the Pluto algorithm [35]), the partial schedules are multi-dimensional
affine functions and the order determined by a partial schedule is
given by the lexicographic order on its function values.

The above description suggests a representation of a schedule in
the form of a tree, with each node representing a partial schedule and
the order of the components determined by the order of the children
of a node. Such a representation also seems the most natural way to
represent the original order of a program, when extracted from some
form of AST. We are however unaware of any prior work that explicitly
operates on such schedule trees (apart from our own “band forests”
in isl). Instead, the schedule trees are encoded in one way or another
and all operations are performed on the encodings of the schedule
trees. Depending on the chosen encoding, these operations quickly
become cumbersome and/or hard to understand.

137

138 schedule trees

sequence

S1(i)

S1(i)→ (i)

S2(i, j);S3(i)

S2(i, j)→ (j);S3(i)→ (i− 1)

sequence

S2(i, j)

S2(i, j)→ (i)

S3(i)

Figure 42: Example schedule tree representation

In this chapter, we propose to use an explicit representation of a
schedule as a tree and to perform all operations directly on this tree.
We argue that such a representation is more natural, more practical and
easier to understand. Figure 42 illustrates a schedule tree representation
of the schedule

T1 : {(i) → (0, i,)}

T2 : {(i, j) → (1, j, 0, i)}

T3 : {(i) → (1, i− 1, 1)}

in Kelly’s abstraction [78, 79] or

ΘS1 =

0 0

1 0

0 0

ΘS2 =

0 0 1

0 1 0

0 0 0

1 0 0

0 0 0

ΘS3 =

0 1

1 −1

0 1

in the representation of Girbal et al. [60]. We first describe the general
concept of a schedule tree and show how it generalizes the differ-
ent schedule representations that have been proposed in the past. We
subsequently propose a specific instance of the schedule tree concept,
which we aim to implement in and integrate into our tools (isl [128],
Polly [3], PPCG [135]). As we plan to refine our design in this pro-
cess, the currently presented representation is not yet final and may
change. However, looking at the current version it can already be
noted that it is more general than earlier proposals, allowing an ex-
plicit representation of subtrees that can be executed in parallel and
the introduction of additional symbolic constants in subtrees. Finally,
we show how we used this new representation to simplify the imple-
mentation of PPCG [135], significantly improving the maintainability
of the tool and enabling future extensions.

11.1 schedule uses 139

11.1 schedule uses

Depending on the framework used, there may be a single iteration
domain containing all statement instances or there may be an iter-
ation domain per statement. Invariably, though, the elements of an
iteration domain are (possibly named) vectors of integers, called itera-

tion vectors. In some approaches, these elements determine an implicit
execution order, but this means that whenever a transformation is ap-
plied that changes the execution order, the iteration domains them-
selves and everything that depends on the iteration domains (such as
access relations and dependences) need to be updated. In this paper,
we will therefore assume that, as is common practice, the execution
order is determined by an explicit schedule that maps the elements of
the iteration domains to some other objects with an implicit execution
order. Note that a schedule only prescribes a relative execution order
and that there are therefore typically an infinite number of ways to
express the same execution order, independently of the chosen sched-
ule representation. In this section, we describe some uses of schedules
in general that we will use to compare the different schedule repre-
sentations in Section 11.2.

11.1.1 Original execution order

Although much work has been devoted to automatic scheduling tech-
niques that construct a schedule directly from the dependence graph,
the ability to interactively perform polyhedral transformations start-
ing from the original execution order is useful for teaching or man-
ual exploration. Some implementations of dataflow analysis [56] (e.g.,
that of isl) also start from a polyhedral representation involving some
form of schedule (even though it may be more advisable to perform
the dataflow analysis before or during the extraction of a polyhedral
representation from an AST using techniques similar to lazy array
data-flow analysis [92] or array region analysis [46]). Our schedules
therefore need to be able to represent the original execution order.

When extracting a polyhedral model from an imperative program,
we mainly need to deal with two constructs in terms of execution
order, compound statements and loops. In order to model the effect
of compound statements, a schedule needs to be able to express a
sequence, i.e., that one set of statement instances should be executed
after some other set of statement instances. To model the effect of a
loop, the schedule needs to be able to express an order defined by
an affine function on the iteration vectors. In the simplest case, the
iteration vectors are composed of the values of the iterators of the
enclosing loops. In this case, the affine function simply projects the
iteration vector onto the iterator of the loop that needs to be mod-
eled. In general, the iteration vectors can be any sequence of integers

140 schedule trees

that uniquely identify a statement instance and a more complicated
function may be required to express the effect of a loop.

11.1.2 Transformations

A polyhedral representation can be transformed either by construct-
ing a new schedule or by modifying some previously obtained sched-
ule. This other schedule may be a schedule representing the original
execution order or it may be the result of an earlier transformation.

11.1.2.1 Schedule Construction

As an example of an automatic scheduling algorithm, let us sketch a
general overview of the “Pluto algorithm” [35]. The algorithm takes a
dependence graph as input and recursively constructs schedule bands.
The dependence graph expresses which statement instances depend
on which other statement instances and therefore need to be executed
after those other statement instances. The nodes of the dependence
graph are composed of the statements, while the edges carry the de-
pendence relations.

At each level of the recursion, the algorithm first checks for (weakly
connected) components in the dependence graph. These components
do not depend on each other in any way and can therefore be sched-
uled independently. Within each component, the algorithm looks for
strongly connected components (SCCs) and (optionally) marks them
to be executed in their topological order. For each (group of) SCC(s),
the algorithm then constructs a sequence (or band) of one-dimensional
affine functions such that each of these functions respects the depen-
dences independently of the other functions in the same band, they
are linearly independent of each of the other functions in the same
and in outer bands, and such that they optimize some optimization
criterion. After the construction of a band is completed, the depen-
dence graph is updated to only contain dependences between pairs
of statement instances that are mapped to the same function values
by the current band and the process repeats.

The constructed schedule is therefore (at least conceptually) a tree
that recursively consists of collections of statement instances that can
be executed in any order, sequences of statement instances that need
to be executed in the specified order and multi-dimensional affine
functions.

11.1.2.2 Schedule modification

Given a schedule (either corresponding to the original execution or-
der or constructed from a dependence graph), we may want to apply
a series of additional transformations. In keeping in line with a clear
separation between the statement instances (in the iteration domain)

11.2 schedule representations 141

and the order in which they are executed (defined by the schedule),
these transformations need to be expressed as transformations on the
schedule itself.

The transformations that we may want to apply include affine (typ-
ically uniform) transformations, statement reordering, fusion, distri-
bution, index set splitting, strip-mining and tiling. Most of these trans-
formations do not require any additional constructs beyond collec-
tion, sequence and multi-dimensional affine functions. The only ex-
ceptions are strip-mining and tiling. These transformations require
the use of integer divisions and/or modulo operations and therefore
require (explicit or implicit) quasi-affine expressions. Note that we only
consider non-parametric strip-mining and tiling here.

11.1.3 AST generation

AST generation takes an iteration domain and a schedule as input and
produces an AST that visits each element of the iteration domain in
the order specified by the schedule. This operation is also known as
polyhedral scanning [19, 39] or code generation [26]. The constraints
on the schedule representation imposed by AST generation are not so
much in what the schedule should be able to express, but in the kind
of constructs for which an AST can be generated. Clearly, generating
an AST for a collection of statement instance groups or for a sequence
of such groups is trivial. Piecewise quasi-affine schedule functions
can also be handled by standard AST generators [26, 39].

The iteration domain and the schedule may refer to symbolic con-
stants (also known as parameters). If the iteration domain is non-
empty for only some values of these symbolic constants, then the gen-
erated AST may contain explicit conditions on the symbolic constants.
Most AST generators allow the user to avoid the generation of such
conditions by providing the AST generator with known constraints on
the symbolic constants. This additional piece of information is known
as the context and is usually passed separately to the AST generator.
A final piece of information required by the AST generator is a set of
options that control the way the AST is generated.

11.2 schedule representations

Many different schedule representations have been proposed in dif-
ferent contexts. Some of these proposed representations only serve
as the input or output to a given algorithm and are therefore typi-
cally unsuitable as a generic schedule representation. Other propos-
als, such as “Kelly’s abstraction” [81, 79], “2d+ 1-schedules” [60] and
“union maps” [129], have been specifically designed as generic repre-
sentations. In this section, we compare some of these representations.

142 schedule trees

11.2.1 Properties

In particular, we compare the following aspects of the schedule rep-
resentation

scatteredness Some representation consist of a single schedule
object, while in other representation the schedule information
is spread over different objects, typically one object for each
statement.

compositionality Compositionality is usually interpreted to mean
that the same schedule representation can be used as both the in-
put and the output of schedule transformations. In some cases,
the schedule transformations themselves can be composed be-
fore being applied to the schedule.

partial schedules Some schedule representations are very restric-
tive and only allow a limited set of predefined, implicit partial
schedules. Other representations allow affine, quasi-affine or
even piecewise quasi-affine partial schedules. Recall that quasi-
affine schedules are required to express strip-mining or tiling.
Some representations also restrict the partial schedules to a sin-
gle dimension.

sequence Many schedule representations do not support an ex-
plicit representation of sequence. Instead, each group of state-
ment instances in the sequence is assigned a distinct increasing
number. These increasing numbers may be assigned as (part of)
a regular partial schedule, or they may be specified through a
dedicated mechanism, typically only allowing a single constant
for all instances of a statement. That is, these dedicated mech-
anisms typically do not allow the set of instances of a given
statement to be broken up into two or more parts.

collection Very few schedule representations are able to express
that groups of statement instances can be executed in arbitrary
order with respect to the other groups. Instead, such collections
are usually encoded in the same way as sequences, fixing a par-
ticular execution order of the groups.

injectivity Some early schedule representations explicitly allowed
different statement instances to be assigned the same value in
order to express inner parallelism. Other representations treat
inner parallelism in the same way as other forms of parallelism
and expect the statement instances that can be executed in paral-
lel (at a given position in the schedule) to be assigned different
values using a partial schedule, but somehow mark one or more
dimensions in this partial schedule as parallel.

11.2 schedule representations 143

singlevaluedness Some schedule representations allow a given
statement instance to be assigned more than one value by the
schedule, i.e., they allow the statement instance to be executed
more than once.

lexicographic order Two schedule values (either within a par-
tial schedule or over the entire schedule) are usually compared
based on the lexicographic order. In some representations, this
lexicographic order is only defined on vectors of the same di-
mension. That is, the (partial) schedule is expected to have the
same dimension across all statements. This corresponds to the
standard definition of lexicographic order as found in most text-
books. We will call this a strict interpretation of lexicographic
order. In other representations, the schedule vectors can have
different dimensions and then the shortest vector is compared
to the prefix of the longest vector of the same size as the shortest
vector. We will call this a relaxed interpretation of lexicographic
order.

11.2.2 Comparison

Some of the earliest schedule representations within the context of
polyhedral compilation appear in Feautrier’s work [57]. The input
schedule is mostly implicitly encoded in the iteration domains, aug-
mented with the number of shared loops for each pair of statements
and the textual order of each pair of statements. The relative order of
two statement instances is determined by the lexicographic order on
the prefixes of their iteration vectors of length equal to the number of
shared loops and by the textual order of the statements. The output
schedule is a multi-dimensional piecewise quasi-affine schedule, with
relaxed lexicographic order, implicit inner parallelism and sequence
encoded as any other schedule row.

The first compositional representation appears to have been pro-
posed by Kelly [78, 79]. Each statement keeps track of its part of the
schedule. The partial schedules may be any multi-dimensional piece-
wise quasi-affine functions. Sequence is encoded by special schedule
dimensions that are marked as “syntactical” and that assign the same
constant value to all instances of a statement. Schedule values are
compared using a relaxed lexicographic order. Although an explicit
index set splitting operation is provided, index set splitting typically
happens implicitly through the use of a piecewise partial schedule.
When transforming a subtree of the schedule, the subtree is identified
by the statements that are transformed by that subtree. The schedules
appear to be padded with zeros prior to being sent to the AST gener-
ator.

The “2d+ 1” representation [60] can be seen as a further special-
ization of Kelly’s abstraction. In particular, the partial schedules are

144 schedule trees

Kelly 2d+ 1 union map

scatteredness per statement per statement single object

compositional schedule schedule transformation

partial schedule

- representation p.w.q.a. affine p.w.q.a.

-dimension arbitrary 1 arbitrary

sequence cst per statement cst per statement p.w.q.a.

collection n/a n/a n/a

injective yes yes yes

single-valued yes yes no

total possibly yes no

lexicographic order relaxed relaxed strict

band forest schedule tree

scatteredness single object single object

compositional schedule schedule

partial schedule

- representation p.w.q.a. p.w.q.a.

-dimension arbitrary arbitrary

sequence p.w.q.a. explicit

collection implicit explicit

injective yes yes

single-valued yes mostly

total yes internally

lexicographic order relaxed relaxed
Table 8: Comparison of some generic schedule representations

11.2 schedule representations 145

restricted to one-dimensional purely affine functions (compared to
the multi-dimensional piecewise quasi-affine functions of Kelly). The
single-dimensional partial schedules are interleaved with constant
statement level dimensions that express sequence. The restriction to
purely affine functions means that they are unable to express strip-
mining and tiling in the schedule itself and instead have to resort to
a modification of the iteration domains, undermining the separation
between iteration domains and schedule and the compositionality of
their approach. The restriction to one-dimensional partial schedules
(between statement level dimensions) means that unimodular trans-
formations involving more than one loop dimension need to be ap-
plied across statement level dimensions. When transforming a sub-
tree of the schedule, the subtree is identified by the values of the
outer shared statement level dimensions (the “β-prefix”). Although
this may appear to be more generic than using the statements in-
volved, this is in fact not the case as each statement can only have a
single β-prefix.

The “union map” representation [129] uses named integer union
maps (Section 2.1.2) to essentially pad the per-statement schedules
of Kelly with zeros to ensure that all schedules have the same di-
mension and then combines the per-statement schedules into a single
schedule object. This single object is a binary relation on tuples that
maps named integer vectors (with the names representing the state-
ments), to integer vectors of a fixed length. The main advantage of
this representation is that it is not tailored to schedules. In particular,
the same abstraction is also used to represent access relations and de-
pendence relations, allowing for a uniform manipulation. Moreover,
the changes to the schedule are also represented using the same ab-
straction and can be combined prior to being applied to the schedule.
The non-specificity to schedules is also the main disadvantage of the
union map representation. Whereas the tree structure is still visible
in Kelly’s abstraction and in the 2d + 1 representation through the
marking as syntactical dimensions and the implicit statement level
dimensions, this structure is completely hidden in the union map
representation. The mapping to a single schedule space also causes
local transformations to potentially have a global effect. For example,
if some part of the schedule tree is tiled, increasing the total number
of schedule dimensions, then the other parts of the schedule need to
be padded to maintain a single schedule space.

The “band forest” abstraction that was available in versions 0.07 to
0.12 of isl builds on top of the union maps, but makes the tree struc-
ture explicit. It was used to represent the schedules computed by isl’s
scheduler, which is very similar to the Pluto scheduler. Each node in
the tree represents a tilable band, with a partial schedule represented
by a union map. Siblings (including the roots of the forest) repre-
sent groups of statement instances that can be executed in parallel.

146 schedule trees

{S1(i)→ (0);S2(i, j)→ (1);S3(i)→ (1) }

{S1(i)→ (i) } {S2(i, j)→ (j);S3(i)→ (i− 1) }

{S2(i, j)→ (0);S3(i)→ (1) }

S2(i, j)→ (i) S3(i)→ ()

Figure 43: Band forest representation of the schedule in Figure 42

Sequence is still encoded, in particular as a single-dimensional band
with a union map that assigns constant values to groups of statement
instances. The children of such a band can be executed in parallel be-
cause the band itself takes care of the ordering. The only operations
that were made available for this abstraction are splitting a band into
two nested bands and tiling a band. Figure 43 shows an example of a
band forest.

Table 8 provides an overview of the above comparison, including
a comparison to the schedule trees of Section 11.3. Note that while
union map schedules are typically single-valued, this is not strictly
required. While the band forest is essentially a tree of union maps
and it is technically possible for the band forest not to be single-
valued, the band forests that are constructed in practice are always
single-valued. The “total” row indicates whether the schedule is a to-
tal function. When using union maps, it is customary to encode the
iteration domain in the domain of the schedule so that no separate
iteration domain object is required. It is then also possible to select a
subset of some larger external iteration domain. This is also possible
in the case of Kelly’s abstraction, but it is not clear if this is the in-
tended use. The abstractions with a relaxed lexicographic order use a
strict order within the partial schedules.

CLooG [26] and the union maps based isl code generator impose
a strict lexicographic order on its input, requiring users to pad the
schedules. Omega’s code generation [39] does not impose a strict or-
der. URUK [60] uses “2d+ 1” schedules, with subtrees identified by
prefixes. Pluto [35] allows partial schedules (i.e., bands) of any dimen-
sion, but maintains the restriction of purely affine partial schedules,
therefore also requiring a modification of the iteration domains to
express tiling (this restriction can be optionally disabled in newer ver-
sions to allow integration into Polly [3]). A strict lexicographic order
is imposed and subtrees are identified by sets of statements and a
loop depth. PoCC [102] appears to be using the schedule represen-
tation of older versions of Pluto where bands were defined globally
across the entire schedule tree. It also has some support for “reen-
trancy” [126], i.e., a conversion back and forth between polyhedral
representation and AST. The Graphite [122] internal representation

11.3 schedule tree representation 147

is similar to Kelly’s, with the “syntactic” label replaced by a “loop
nest tree” (only for the original schedule). The CHiLL [40] representa-
tion is also similar to Kelly’s, except that partial schedules are single-
dimensional as in the 2d+ 1-schedules, with unimodular transforma-
tions applied across partial schedules. Subtrees are identified by sets
of statements and a loop depth. Polly [3] essentially uses union maps,
but breaks them up over the statements. Incremental transformations
in AlphaZ [140] are performed through a modification of the itera-
tion domains. It is also possible to specify an additional purely affine
schedule function with strict lexicographic order.

11.3 schedule tree representation

Based on our experience with the different kinds of schedule repre-
sentation, we designed a new representation that, like the band forest,
maintains an explicit tree structure. Unlike the band forest, however,
the schedule tree has different types of nodes that allow for an easier
manipulation and the ability to attach more information to the tree. In
particular, sequence and collection are represented explicitly as nodes
rather than being encoded in a band or implied by the tree structure.
Our description is still somewhat preliminary, but our use of sched-
ule trees in PPCG provides some initial evidence of the usefulness of
this representation.

11.3.1 Nodes

The following types of nodes are available in the new schedule trees.

context A context node introduces symbolic constants and known
constraints on those symbolic constants. The introduced sym-
bolic constants can be used in the descendants of the context
node. The context node typically appears as the root of the
schedule tree, but it can also be useful to introduce additional
context nodes in the tree. As a convenience to the user, the outer
context node may also be left out, in which case it is assumed
that the symbolic constants used in the tree can take on any
value.

domain A domain node introduces the statement instances that are
scheduled by the descendants of the domain node.

filter A filter node selects a subset of the statement instances intro-
duced by outer domain nodes and retained by outer filter nodes.
Filter nodes are typically used as children of set and sequence
nodes (described next), where the siblings select the other state-
ment instances.

148 schedule trees

sequence A sequence node expresses that its children should be
executed in order. These children must be filter nodes, with typ-
ically mutually disjoint filters.

set A set node is similar to a sequence node except that its children
may be executed in any order.

band A band node contains a partial schedule on the statement
instances introduced by outer domain nodes and retained by
outer filter nodes. This partial schedule may be piecewise quasi-
affine, but is total on those statement instances. Additionally, a
band node contains properties of the band and options that con-
trol the AST generation. The set of properties includes whether
the band is tilable and which of the band dimensions may be
executed in parallel. The AST generation options mainly control
whether a band dimension should be separated or whether it
should be unrolled.

mark A mark node allows the user to mark specific subtrees of the
schedule tree.

Sequence and set nodes have one or more children. The other types
of nodes have at most one child.

The inclusion of context, domain and AST generation options in the
schedule tree means that only a single object needs to be passed to
the AST generator. This is especially important for the options. The
original interface to the isl AST generator allowed for a very generic
specification of options based on constraints on the schedule dimen-
sions. The only purpose of this generic mechanism, however, was to
be able to express that some options should be applied to a specific
node of the schedule tree encoded in the union map. By attaching the
options directly to the band nodes, the complexity of the generic op-
tion mechanism (mostly for the user, but also for the implementation),
can be avoided completely. In particular, if the schedule is modified
after some options have been set, then there is no longer any need to
try and apply the same transformation to the options description as
the local options automatically remain attached to the correct band
node.

Note that while the schedule tree now contains both domain in-
formation (in the domain nodes) and schedule information (in the
band nodes), the information is still kept in separate nodes so that,
internally, the schedule is a total function on the domain. The ex-
plicit representation of a sequence means that the scheduler does not
need to encode the sequence as a piecewise constant partial schedule
only to have the AST generator identify this piecewise constant partial
schedule as a sequence. Note that this type of node is only meant as
a convenience for cases where the scheduler or user wants to impose
an explicit sequence. If an automatic scheduler constructs a partial

11.3 schedule tree representation 149

piecewise affine schedule in one of its substeps that just happens to
be piecewise constant, then the corresponding band node does not
have to be converted to a sequence node. The explicit representation
of a collection rather than forcing an arbitrary order allows the user
and the AST generator to reorder the children, without having to re-
analyze the dependences.

The basic schedule tree representation has the same expressivity as
Kelly’s abstraction, union maps and band forests. The main advan-
tages are the ease of manipulation and the potential for extensions.

11.3.2 Operations

The following operations are available to modify schedule trees. It is
important to note that none of these operations modify the domain
node(s). That is, even though the domain information is integrated in
the schedule object, it is still kept separate from the actual scheduling
information.

• Insert a context, domain, filter or mark node at a given position.

• Apply a piecewise quasi-affine transformation to a band node.
The input space of the transformation is equal to the schedule
space of the original partial schedule. The output space of the
transformation becomes the new schedule space. This opera-
tion can be used to implement any unimodular transformation
on the band, but also strip-mining and tiling within the band,
possibly combined with index set splitting.

• Split a band node into two nested band nodes, each node hold-
ing a part of the original output domain.

• Combine two nested band nodes into a single band node. This
is the opposite of a Split.

• Tile a band node. This operation is essentially the same as tiling
the band within the node through the application of a piecewise
quasi-affine transformation and then splitting the node into a
band corresponding to the tile loops and a band corresponding
to the point loops.

• Fuse two bands. This operation pushes an explicit order on a
pair of bands down, combining the two bands into a single
band. This operation typically has the effect of loop fusion on
AST generation. The bands need to be grandchildren of the same
sequence with adjacent (filter) parents or grandchildren of the
same set. Additionally, the schedule spaces of the bands need
to be the same since the two schedules will be combined into
a single schedule. The two parents are replaced by a single fil-
ter node with as filter the union of the filters. The two bands

150 schedule trees

sequence

. . . F1

B1 : S1

C1

F2

B2 : S2

C2

. . .
⇒

sequence

. . . F1 ∪ F2

B ′ :

S1 if F1

S2 if F2
sequence

F1

C1

F2

C2

. . .

Figure 44: Fuse bands B1 and B2

B

C
⇒

sequence

F1

B

C

F2

B

C

Figure 45: Order the active statement instances at B according to filters F1
and F2

are replaced by a single band with as partial schedule the par-
tial schedules of the original bands on the corresponding filters.
The new band has a single sequence child with as children the
original two filters with in turn as children the children of the
original bands (if any). This transformation is shown schemati-
cally in Figure 44.

• Ordering. This operation takes a band node and two filters that
partition the active statement instances at the band node as in-
put. The tree is updated such that the elements that satisfy the
first filter are executed before the elements that satisfy the sec-
ond filter. That is, the subtree rooted at the band is duplicated.
Each of the filters is inserted in one of the copies of this sub-
tree and subsequently attached as children of a sequence node
that replaces the original band. This transformation is shown
schematically in Figure 45 and can be used to express a general-
ized form of loop distribution that allows for the separation of
a subset of the instances of a statement.

• Reorder the children of a sequence node.

• Sink a band. This operation moves a band node down to the
leaves of the subtree underneath its original position.

11.4 hybrid hexagonal-parallelogram tiling 151

...

B1

B2

...

Figure 46: Input pattern for hybrid tiling

This section has shown how to apply each of the transformations of
Section 11.1.2.2 on a schedule tree representation. Note that we do not
allow for the application of affine transformations across bands. This
restriction can be seen as a form of type safety. Instead, the bands first
need to be explicitly combined and/or fused into a single band node,
after which the transformation can be applied inside the single band
node. In the extreme case all bands are merged into a single band
node, in which case the schedule tree essentially degenerates into a
union map representation.

11.4 hybrid hexagonal-parallelogram tiling

The best way to get a feeling of how schedule trees simplify the de-
scription and modification of complex schedules is to look into how
schedule trees can be used to facilitate the handling of such sched-
ules. One use case where complex schedules are common is PPCG.
We already gained first experience with the use of schedule trees in
PPCG and would like to refer the interested reader to [11, Section
5]. Another situation where complex schedules appear is our hybrid
hexagonal/parallelogram tiling scheme. In this section, we will take
a look at the schedule trees involved in hybrid hexagonal tiling.

Hybrid tiling as described in Section 5.2 can be seen as a trans-
formation of a subtree of a possibly larger schedule tree. For hy-
brid tiling to be applicable, this subtree needs to have certain proper-
ties. Specifically, it needs to consist of a single-dimensional sequential
band B1 followed by a possibly multi-dimensional parallel band B2,
where parallel means all dimensions are parallel. We illustrate such a
schedule tree in Figure 46. When applying hybrid tiling, this subtree
is now replaced by a more complex tree with a shape corresponding
to the tree illustrated in Figure 47. The individual elements in this
tree correspond to the individual parts of our hybrid schedule. The
first node, B3, enumerates the individual tiles along the time dimen-

152 schedule trees

sion. It is followed by a sequence node which enumerates the two tile
phases (phase 0/phase 1). Each phase consists of a filter node (F1/F2)
that selects the iterations belonging of the specific phase, a node that
enumerates the tiles along the hexagonally tiled dimension (B4/B5)
as well as a node that enumerates the tiles along the parallelogram
tiled dimensions (B6/B7). Finally, both phases share the same intra
tile schedule (B1 and B2).

...

B3

sequence

F1

B4

B6

F2

B5

B7

B1

B2

...

Figure 47: Output pat-
tern for hybrid
tiling

The individual nodes can be mapped di-
rectly to certain parts of the hybrid hexago-
nal/parallelogram schedule. B3 consists of
(4) and (6) as well as the constraints on the
hexagonal tile shapes. F1 filters for itera-
tions that belong to phase 0 using the con-
straints given in Section 5.2.1.3, F2 contains
corresponding constraints for phase 1. For
the hexagonally tiled dimension, B4 con-
sists of (5), and B5 of (7). For the parallel-
ogram tiled dimensions, B6 consists of (16)
and (17), and B7 consists of (16) and (18).
The intra tile schedules in B1 and B2 corre-
spond to the schedule in the original input.

Working on a schedule tree also simpli-
fies the description of our GPU code gener-
ation strategy, as we can simply map cer-
tain schedule tree nodes to certain parts of
the GPU code. Hence, we quickly reformu-
late our GPU mapping in terms of schedule
trees: We map B3 and the sequence node to
the host code. F1 and F2 do not yield spe-
cific code, but only restrict the set of itera-
tions enumerated. As the hexagonally tiled
dimension can be executed in parallel, we
map B4 and B5 to block identifiers to en-
able coarse grained parallelism. B6 and B7

bound the shared memory usage, but can
not be executed in parallel. Consequently,
they are mapped to loops executed sequen-
tially within each thread block. B1 is also
not parallel and is consequently mapped to
an explicit loop as well. As B2 is parallel we
map the dimensions that belong to B2 to parallel thread dimensions
(up to three on CUDA) and add synchronization primitives to preserve
the sequential order implied by B1.

11.5 summary 153

11.5 summary

In this chapter we identified that many polyhedral algorithms work
conceptually with schedules of a tree like structure, but that most ex-
isting schedule representations commonly do not expose this struc-
ture. After analyzing and comparing existing schedule representa-
tions, we proposed the idea of exposing this inherent structure in
the form of explicit schedule trees. We presented one instance of such
a schedule tree and described the set of individual tree nodes as well
as the operations available to transform this tree. Our schedule tree is
not only more expressive than existing schedules due to e.g., provid-
ing information about unordered subtrees, but we believe it is con-
ceptually easier to both understand and work with. With our work
on hybrid-hexagonal tiling we showed one use case where schedule
trees facilitate the description and discussion of a complex polyhedral
schedule.

The work in this chapter has been shown useful to facilitate the de-
scription of schedule transformations as they arise from complex GPU

code generation strategies. It has been collaboratively developed and
was published in parts in [11]. Initial prototype implementations of
our schedule tree work have been implemented by Sven Verdoolaege
in the context of isl.

Part V

L O W- L E V E L C O M P I L E R S

12
C O N T R I B U T I O N S T O L LV M / P O L LY

Even though not the main focus of our research, we have been con-
tinuously involved in the development of Polly [3], a high-level loop
optimizer for LLVM. Both by own contributions as well as by men-
toring various students we continued to establish a polyhedral high-
level loop optimization framework which enables easy transfer of our
research results to industry grade compilers.

In the following sections we will give a brief overview of projects
and ideas we have been involved in within the last years. One project,
our work on delinearization, will be discussed in more detail in Chap-
ter 13.

12.1 compute out

For production compilers it is essential that the compile time of a
certain piece of code is predictable. Or said differently, the compila-
tion of a certain source code file can at most take a couple of seconds
with the compile time being linear in the size of the input file. Our
polyhedral optimization techniques unfortunately can not give such
guarantees and can in certain cases take several minutes to complete
(e.g., dependence analysis problems with many parameters). To ad-
dress this concern we added a compute-out timer to isl to bound the
time we spend on our optimizations. In cases when we trigger this
compute-out, we gracefully fall back to the original code.

We tested our compute out on the LLVM test suite.1 We managed
to set the compute timer such that all but two kernels finish within
their compute budget. The failing ones had computation times of over
a minute. Aborting them consequently seems the right choice.

12.2 ast generation

In parallel to the development of our new AST generator (Chapter 10),
we ported the code generation phase in Polly from CLooG to the
new AST generator. This porting effort helped to shape several of the
design decisions in our AST generator. Today, we can run our AST gen-
erator on the full LLVM test suite achieving performance in both com-
pile time as well as generated code similar to CLooG. Even though
many of the interesting features of our new AST generator have only
been used in our research work, we are very much looking forward
to exploit them in the context of LLVM as well.

1 http://llvm.org/docs/TestingGuide.html

157

http://llvm.org/docs/TestingGuide.html

158 contributions to llvm / polly

Under my supervision, Roman Gareev also integrated our new AST

generator into gcc/Graphite, such that we now have a state-of-the-
art polyhedral loop optimization infrastructure available in the two
leading open source compilers.

12.3 gpolly - automatic gpu offloading

Yabin Hu has been developing under my supervision an extension
called GPolly, which combines Polly and PPCG. GPolly is an opti-
mization pass, that without the help of any user annotations automat-
ically detects interesting SCoPs and translates them into CUDA kernels
as well as the corresponding CUDA library calls to schedule the ker-
nels. If GPolly is loaded into clang, a classical C/C++ compiler, the
generated CUDA code is transparently embedded into the final binary.
As a result, the only user interaction necessary to compile a C/C++
program in a way that it takes advantage of GPU acceleration is the
need to enable our GPolly optimizer.

The general flow of GPolly starts with the detection of interesting
SCoPs and their translation to a polyhedral representation. As both
Polly and PPCG use isl to represent the polyhedral information, we
can directly pass the resulting SCoP descriptions to PPCG. Using this
description PPCG then derives a new AST for the given SCoP that de-
scribes both host code and kernel code. As Polly and PPCG use inter-
nally the isl AST generator, the existing infrastructure to translate an
isl AST into LLVM IR can mostly be reused for performing this transla-
tion. Only some additional support for CUDA specific extensions such
as kernel calls, synchronization instructions as well as the allocation
of shared memory is still necessary. Also, some work was necessary
to translate the generated CUDA kernels from LLVM-IR to PTX and to
embed the PTX code correctly into the programs.

We found two of our own contributions very helpful in enabling
the development of GPolly. First of all, the ability to generate user-
defined AST expressions (Chapter 10) and their use to model the
changes to memory accesses after mapping them to GPU global or
local memory made the transfer to Polly very easy as no new code
had to be written to generate these expressions in the context of Polly.
Secondly, to properly derive the footprint of the data that needs to be
transfered to the GPU our work on delinearization (Chapter 13) has
been shown to be essential to handling arrays of parametric size.

We believe being able to develop GPU specific optimizations in the
context of our source-to-source compiler and then moving them di-
rectly to a production compiler shows nicely that the polyhedral
model can help to decouple high-level loop optimizations from spe-
cific compilers.

12.4 representing parallelism 159

12.4 representing parallelism

Preserving information about parallel loops across compiler optimiza-
tions is necessary, but non-trivial when working on a low-level IR.
When compiling a program, parallelism is often exposed or detected
at one point, but still needed at a later point. In between, a large num-
ber of other optimization passes may be run that change the program
structure in a way that the original parallelism information is invalid
for the transformed program. To still use parallelism information in
later passes, it is essential to find a way to provide those passes with
up-to-date information.

for.body:

...

%val0 = load i32* %idx1, !llvm.mem.parallel_loop_access !0

...

store i32 %val0, i32* %idx2, !llvm.mem.parallel_loop_access !0

...

br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0

for.end:

...

!0 = metadata !{ metadata !0 }

Listing 16: A single loop marked parallel using LLVM metadata

outer.for.body:

...

%val1 = load i32* %idx3, !llvm.mem.parallel_loop_access !2

...

br label %inner.for.body

inner.for.body:

...

%val0 = load i32* %idx1, !llvm.mem.parallel_loop_access !0

...

store i32 %val0, i32* %idx2, !llvm.mem.parallel_loop_access !0

...

br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1

inner.for.end:

...

store i32 %val1, i32* %idx4, !llvm.mem.parallel_loop_access !2

...

br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2

outer.for.end:

...

!0 = metadata !{ metadata !1, metadata !2 } ; list of identifiers

!1 = metadata !{ metadata !1 } ; identifier for the inner loop

!2 = metadata !{ metadata !2 } ; identifier for the outer loop

Listing 17: Nested loops marked parallel using LLVM metadata

There are three options how a later pass can get information about
possible loop level parallelism: 1) (re)detect parallelism, 2) actively
preserve parallelism information in intermediate passes or 3) keep
parallelism information as “best-effort”. (Re)detecting parallelism re-
quires a full blown dependence and parallelism analysis to be re-

160 contributions to llvm / polly

run. Unfortunately, the low-level IR generated after high-level loop
transformations is rather difficult to reanalyze. Even if all informa-
tion could be recovered, the dependence problem that needs to be
solved is a lot harder, which means it is rather costly in terms of
compile-time. We can avoid these problems, if we manage to preserve
the parallelism information that is readily available in our loop trans-
formation framework. The canonical way to preserve information in
LLVM is to write an analysis pass that is updated or “preserved” by
each optimization. This approach works very well for generic and
rather simple information, e.g., the loop structure tree or dominance
information. However, teaching low-level passes such as global value
numbering about their effects on loop level parallelism is conceptu-
ally questionable and, due to the large number of passes that need
to be updated, engineering wise expensive. Solution 3) addresses this
issue by taking advantage of LLVM’s metadata. The basic idea behind
this approach is to use IR annotations to mark loops parallel. The key
point here is to choose the annotations such that we can easily detect
if transformations invalidate parallel execution, without requiring the
transformations to actively update any annotations. Passes may still
remove the annotations if they are unknown to them, but this at most
prevents us from detecting a parallel loop. If such cases appear, we
can teach individual transformations to actively preserve parallelism
information.

In LLVM we introduced2 the two metadata types llvm.loop and
llvm.mem.parallel_loop_access which together mark a loop paral-
lel. The llvm.loop metadata is attached to the instruction that forms
the loop’s back edge. It uniquely identifies each loop by referencing
a self referencing metadata node. To mark a loop parallel, we add
to each memory access in the loop the parallel loop access marker.
This marker provides the information that the specific memory ac-
cess does not inhibit the parallel execution of the loop it references. If
all memory accesses within a loop are marked as not inhibiting par-
allel execution of this loop, the loop is parallel. This is the case right
after marking a loop parallel. Subsequent transformations may now
introduce new memory accesses which potentially prevent parallel
execution. However, the newly introduced memory accesses will not
be marked as safe for parallel execution. This can be easily detected
and we can conservatively treat the loop as sequential. Listing 16

shows an example3 where a single loop is marked parallel. The same
annotations work also for nested loops. In this case the metadata may
reference not only a single loop identifier, but a list of loop identi-
fiers. Listing 17 gives an example containing two nested loops, both
marked parallel.

2 The original idea of annotating all memory accesses came from Tobias Grosser, who
also reviewed the changes that have been committed by Pekka Jaaskelainend in
subversion revision 175060 of LLVM. This feature is available since LLVM 3.3 release.

3 These are modified examples from the LLVM 3.4 language reference.

13
O P T I M I S T I C D E L I N E A R I Z AT I O N

Dense multi-dimensional arrays are data structures common to many
compute problems. To allow compilers to perform interesting opti-
mizations, it is often necessary for the compiler to understand the
multi-dimensional nature of these arrays. Unfortunately, while multi-
dimensional arrays are native constructs in C99, Fortran or Julia [32],
information about their multi-dimensionality is often lost when trans-
lating such languages to a low-level compiler IR. In addition, many
programming languages (C90, C++) do not natively support vari-
able size multi-dimensional arrays. In C90 or C++, users implement
such arrays by creating their own classes, templates or macros leav-
ing the compiler without any information about the possible multi-
dimensionality of certain data accesses. As a result, accesses to ar-
rays that are multi-dimensional in nature are seen by the compiler
as single-dimensional accesses that directly correspond to how the
array is laid out in memory. We call this single-dimensional view the
“linearized” view of an array.

Assuming the original index expressions are affine, the linearized
accesses can have different properties. For arrays of constant size, lin-
earized expressions will contain larger integer coefficients (the sizes
of the array dimensions). Despite the presence of these coefficients
the linearized access expression remains affine. We illustrate this for
a simple example in Figure 48. As affine expressions can be precisely
modeled with integer maps, data flow analysis based on integer maps
(e.g., the one provided by isl [128]) will yield optimal results. How-
ever, in cases where the size of the array is parametric (Figure 49),
this is no longer true. The expressions we obtain by linearizing ac-
cesses to arrays of parametric size may now contain multiplications
between loop indexes and variables such as m ∗ i. Performing de-
pendence analysis on the “linearized” view of an array is a complex
problem not supported by most existing dependence analyses.

void constantSize(float A[1024][4096]) {

for (int i = 0; i < 1024; i++)

for (int j = 0; j < 4096; j++)

A[i][j] = i + j;

// A[4096 i + j] = . . . ⇐ expression remains affine

}

Figure 48: Linearized expression for multi-dimensional array of constant
size

161

162 optimistic delinearization

void parametricSize(float A[n][m]) {

for (int i = 0; i < n; i++)

for (int j = 0; j < m; j++)

A[i][j] = i + j;

// A[m i + j] = . . . ⇐ expression is polynomial

}

Figure 49: Linearized expression for multi-dimensional array of parametric
size

We address this issue by presenting a new approach that for several
important cases can derive from a given set of one dimensional mul-
tivariate polynomial array accesses an equivalent multi-dimensional
view in which all array index expressions are affine. As existing data
dependence analyses can precisely analyze the resulting arrays, we
obtain precise data dependency information for kernels with such
polynomial index expressions.

Compared to previous work in this area [91, 93, 116, 43] our ap-
proach is different in two main aspects. First of all, we use an op-
timistic approach in our delinearization, which allows us to derive
valid delinearizations in cases where statically proving the validity
of a certain delinearization is not possible. Instead of giving up, we
derive in these situations a likely delinearization and provide a set
of run-time conditions which can be verified to ensure our assumed
delinearization correctly models the memory accesses. The second
important difference is that we derive an actual delinearization of the
memory reference and do not provide a specialized solution that only
addresses the dependency analysis problem. This means that we are
able to use the result of our delinearization to model our memory
access with multi dimensional integer maps. Such maps can be ana-
lyzed with our existing integer set library and we can use the new
AST generator (Chapter 10) to automatically generate code for possi-
bly adjusted multi-dimensional memory accesses. This is very handy
when aiming for automatic GPU code generation from within a low-
level compiler.

void gemm(int n, int m, int p,

float A[n][p], float B[p][m], float C[n][m]) {

L1: for (int i = 0; i < n; i++)

L2: for (int j = 0; j < m; j++) {

L3: for (int k = 0; k < p; ++k)

C[i][j] += A[i][k] * B[k][j];

}

}

Listing 18: A gemm kernel written in C99 using variable length arrays

13.1 motivating example 163

13.1 motivating example

Listing 18 shows a simple gemm kernel implemented with C99 vari-
able length arrays. When compiling the code with clang and analyzing
the access to A clang’s scalar evolution analysis [99] recovers the SCEV

expression {{A,+,p}L1,+, 1}L3 from the IR. The semantics of a SCEV

expression {Base,+, Inc}Loop is such that the expression has the value
“Base” at the first iteration of the loop “Loop” and the value of the
expression is incremented by “Inc” at each subsequent loop iteration.
As a result, the above expression is equivalent to an access function
A[i * p + k] and shows the perspective of a low-level compiler on
this memory access. We note that neither the original dimensionality
nor the size of the individual dimensions is preserved.

As stated in the introduction, to recover the multi-dimensional
structure of the array access we use an optimistic approach. In case
the multi-dimensionality of an access can not be proven statically, we
provide conditions to verify the delinearization at run-time. To guide
our optimistic delinearization we take advantage of structural infor-
mation provided by the parametric array sizes. For multi-dimensional
arrays with affine access functions we observe that, after linearizing
the accesses to such arrays, all parameters that appear within prod-
ucts of loop induction variables and parameters are derived from
the sizes of the original array dimensions. In the previous example
the only such product is i ∗ p and the contained parameter p di-
rectly corresponds to the inner dimension of the array A. So we could
guess that the original array has been declared as A[][p] with ac-
cess functions A[i][k]. To verify our guess, we need to check that
all possible uses of this access will remain within the bounds of
our assumed array shape. For the inner dimension this means that
∀i, j,k : 0 6 i < n∧ 0 6 j < m∧ 0 6 k < p : 0 6 k < p holds. For
this trivial example, this condition is statically provable. No run-time
check is necessary.

The need for actual run-time checks often arises in existing code
due to the fact that the source code does not provide any informa-
tion on the relation between the sizes of different arrays. Listing 19

shows the very same gemm kernel, but this time implemented with
2D arrays that use dedicated structures to keep the track of the ar-
ray’s size, a style very similar to the implementation of boost::ublas.
If we now look at the access to the array B, we get an expression
B->Base[k * B->size1 + j]. The iteration space constraints that hold
are 0 6 k 6 A->size0∧ 0 6 j 6 C->size1. Showing from this informa-
tion that for all possible values of j, the access to the inner dimension
of B remains within bounds (∀j : 0 6 j 6 B->size1) is not possible.
Instead we require a run-time condition B->size1 > A->size0 to avoid
out of bounds accesses. Only in case B is large enough our delineariza-
tion models the actual run-time behavior correctly. Even though this

164 optimistic delinearization

example looks rather contrived and one could assume that using this
function with matrices B that have a smaller size is possibly not in-
tended, this is in fact a very realistic example. Compilers are required
to preserve the semantics of code even in unlikely, but well defined
situations. As doing so commonly inhibits most useful optimizations
the use of an optimistic approach which enables us to perform useful
optimizations while still being able to preserve full program seman-
tics is important.

struct 2DArray {

size_t size0;

size_t size1;

float *Base;

}

#define ACCESS_2D(A, x, y) *(A->Base + (y) * A->size1 + (x))

#define SIZE0_2D(A) A->size0

#define SIZE1_2D(A) A->size1

void gemm(struct 2DArray *A, struct 2DArray *B,

struct 2DArray *C) {

L1: for (int i = 0; i < SIZE0_2D(C); i++)

L2: for (int j = 0; j < SIZE1_2D(C); j++) {

L3: for (int k = 0; k < SIZE0_2D(A); ++k)

ACCESS_2D(C, i, j) += ACCESS_2D(A, i, k) *

ACCESS_2D(B, k, j);

}

}

Listing 19: A gemm kernel written using manually implemented multi-
dimensional arrays.

13.2 problem statement

We will now state the problem we address more formally:

Given a set of single dimensional memory accesses with index expressions

that are multivariate polynomials in terms of loop iterators as well as sym-

bolic program parameters and a set of corresponding iteration domains, de-

rive a multi-dimensional view of this array such that all index expressions

are linear.

The multi-dimensional view we derive consists of:

• A multi-dimensional array definition, including:

– The number of array dimensions

13.2 problem statement 165

– Sizes for all but the outermost dimension

• For each original array access, a corresponding multi-dimensional
access

We also pose a set of additional requirements on the view we derive:

• The number of array dimensions is minimal. (R1)

• The array sizes are minimal. (R2)

• The new access functions are affine in loop parameters and pro-
gram parameters. (R3)

• For each array access, the memory location directly obtained
from the linearized subscript expression and the memory loca-
tion obtained from the multi-dimensional array after lowering
it using the derived array sizes and assuming a row-major ar-
ray layout are identical for all loop iterators within the iteration
space. (R4)

• The array subscript expressions for all but the outermost dimen-
sion are for all iterations within the iteration space within the
bounds of the multi-dimensional array (R5)

For cases where a multi-dimensional array view can not be proven correct

statically, derive a multi-dimensional view as discussed above and provide a

set of conditions under which this view is valid.

Requirements R1 and R2 are there to ensure that no unnecessarily
complicated array views are computed. There is no point in deriving
array accesses of the form A[1][1][1][n][m] where a leading set of
dimensions is always identical and consequently does not provide
any interesting information. Similarly, in case there is freedom in the
array sizes that can be chosen, we want to obtain the minimal array
size on each dimension (prioritizing inner dimension).

Requirement R3 is necessary to ensure that we can represent the
resulting access expressions as integer maps.

Requirement R4 ensures that the multi-dimensional form of the
array has the same access characteristics as the single dimensional
array. Ensuring the same access characteristics enables us to use the
multi-dimensional view not only for dependence analysis but also for
reasoning about data-locality (e.g., to find stride one accesses).

Requirement R5 ensures together with R4 that if we define a rela-
tion R between the elements of the linearized and the delinearized
array, such that two elements are related iff they map to the same
data-location, this relation is always bijective. This property is impor-
tant as it ensures that for each actual memory location there is only

166 optimistic delinearization

a single data location in our model, which again is necessary for the
correct computation of data dependences.

13.3 array views with single-parameter sizes

In this section we present an algorithmic approach to derive a de-
linearization from a multivariate polynomial to a multi-dimensional
array of the shape A[p0][p1] . . . [pn−1], pi ∈ P with P referring to the
set of program parameters. This means we obtain array shapes with
the size of each dimension being defined by a single parameter and
with multiple dimensions possibly sharing the same parameter. Ar-
rays of such shape are common and appear e.g., in the Julia [32] code,
boost::ublas as well as the Himeno benchmark [69]. The example in
Listing 19 also defines such an array.

The algorithm we propose consists of the following four steps:

1. Collect possible array size parameters

2. Derive dimensionality and array size

3. Compute multi-dimensional access functions

4. Derive validity conditions

As a first step, we collect information about possible array size pa-
rameters. To do this we expand the given polynomial expression into
a sum of products. From this sum, we extract all terms that contain
both a loop induction variable and (possibly multiple) parameters.
Those terms are interesting as the presence of a term that multiplies a
parameter with a loop induction variable makes the expression non-
affine. However, in case a parameter p is an array size parameter, p
may be removed from the index expressions during delinearization
such that the original expression is turned into an access with affine
subscript expressions. Consequently, we guess that p defines the size
of at least one array dimension.

As the second step, we derive the dimensionality and the size of the
array. To do this we start from the terms obtained in the previous step
and assume all of them form products. In case a term is not a product,
we treat it as a product with just a single factor. We remove from
each term all factors that are non-parametric. The resulting terms are
sorted according to the number of factors they have and we check
that the terms with less factors symbolically divide the larger terms.
In case this is true we assume the results of these divisions are the
array sizes.

As the third step, we extract the access functions of the individual
dimensions. For this we start with the original polynomial expression
given and first divide it by the size of the elements accessed. The re-
sulting expression is then divided by the assumed array sizes starting

13.3 array views with single-parameter sizes 167

with the innermost size. The remainder is the access function of the
innermost dimension, the quotient is divided again by the size of the
next array dimension. The new remainder is the access function of
the second array dimension and the quotient is divided further. If no
more array sizes are available, the last quotient becomes the access
function of the outermost dimension.

As a last step, we derive the validity conditions. Up to this step,
the delinearization we propose is an educated guess. It is only valid
if ∀i ∈ [1,n− 1] : 0 6 fi < di holds, with n being the number of ar-
ray dimensions computed, fi being the access function of dimension
i and di being the size of dimension i. To check if these conditions
hold, we can simplify them taking into account the range of the sur-
rounding loop induction variables. In simple cases this simplification
yields ⊤, which means the delinearization has been statically proven
correct. In cases where this is not enough, the remaining conditions
need to be emitted as run-time checks.

We illustrate the full algorithm on a more complex example, the
initialization of a subset of a multi-dimensional array:

/// @param n, m, p: The array sizes.

/// @param A: The full array.

/// @param o1, o2, o3: The offset of the subarray.

/// @param s1, s2, s3: The size of the subarray.

void set_subarray(int n, int m, int p, float A[n][m][p],

int o0, int o1, int o2,

int s0, int s1, int s2) {

L1: for (int i = 0; i < s0; i++)

L2: for (int j = 0; j < s1; j++)

L3: for (int k = 0; k < s2; k++)

A[i+o0][j+o1][k+o2] = 1.0;

}

Start:
4(p(mo0 + o1) + o2) + 4mpi+ 4pj+ 4k

Expand the expression

4pmo0 + 4po1 + 4o2 + 4mpi+ 4pj+ 4k

Extract terms containing loop induction variables

{4mpi, 4pj, 4}

Remove non-parametric components, sort terms, derive sizes :

168 optimistic delinearization

2 0 2 4 6 8 10 12
j

1

0

1

2

3

4

5

6

7

8

i

Figure 50: Subarrays accesses for different parameter values

{mp,p}→ A[][m][p]

Divide by element size: sizeof(float) = 4

Quotient: pmo0 + po1 + o2 +mpi+ pj+ k

Remainder: 0

Divide by inner dimension: p
Quotient: mo0 + o1 +mi+ j

Remainder: o2 + k→ A[?][?][k+ o2]

Divide by second inner dimension: m
Quotient: o0 + i→ A[i+ o0][?][?]
Remainder: o1 + j→ A[?][j+ o1][?]

Reconstruct the full array access:

A[i+ o0][j+ o1][k+ o2]

Derive the validity conditions:

∀i, j,k : 0 6 i < s0 ∧ 0 6 j < s1 ∧ 0 6 k < s2 :

0 6 k+ o2 < p∧ 0 6 j+ o1 < m∧ 0 6 i+ o0

Assuming: s0, s1, s2,o0,o1,o2 > 0

⇒ o1 6 m− s1 ∧ o2 6 p− s2

For the above example, the validity conditions can not be statically
evaluated, but need to be verified at run-time. Figure 50 uses a two

13.3 array views with single-parameter sizes 169

dimensional version of this example (s0 = n = 1) to illustrate two
sets of parameter values, one that satisfies the validity condition and
one that does not. Both examples work on a 2D data array A[m][p]

with m = 8∧ p = 9. The first set of parameter values is o1 = 1∧

o2 = 3∧ s2 = 3∧ s3 = 6, which yields 1 6 8− 3∧ 3 6 9− 6 and
evaluates to ⊤. The corresponding set of data elements (illustrated
in blue) are all within the bounds of the 2D array. However, of the
accesses that correspond to the parameter values o1 = 5∧ o2 = 6∧

s2 = 3 ∧ s3 = 6 (red square) only the left half is within the array
bounds. The right half accesses are out-of-bounds. In this case, the
out-of-bounds accesses access data-locations that correspond to the
array elements {A[i, j] : 4 6 i 6 6∧ 0 6 j 6 2} (red squares). This is
problematic, as e.g., the data stored to A[7][9] affects the values read
from A[6][0]. This relation is not visible in the delinerized program,
which means the corresponding data dependences are not modeled
and certain program transformations may be performed incorrectly.
When checking our validity conditions we see that o2 6 p − s2 ⇒

6 6 9− 6 ⇒ ⊥, which correctly shows that for this set of parameters
we can not rely on our delinearization.

13.3.1 Multiple array references

In case the piece of the program where we would like to apply de-
linerization contains more than one access to the same array, it is
important to ensure that all accesses are delinerized using the same
assumed array declaration. Ensuring this requires only a slight ad-
justment of our algorithm. In the case of multiple arrays, we extract
the terms from all arrays and derive the assumed array size from the
combined terms. Using this common array size, we can then again de-
rive the array accesses individually. The validity conditions are also
derived individually, but redundant conditions are removed in a sub-
sequent step.

for (i = 0; i < p; i++)

for (j = 0; j < n; j++)

for (k = 0; k < m; k++)

S1: A[i][j][k] = 1;

S2: A[1][1][1] = 0;

S3: A[0][0][M-1] = 0;

S4: A[0][N-1][0] = 0;

S5: A[0][N-1][M-1] = 0;

Listing 20: Array dimensions used in subscripts

170 optimistic delinearization

13.3.2 Array sizes in subscript expressions

For cases where the subscript expressions of a delinearized array con-
tain the array size itself as shown in Listing 20, the previously pre-
sented algorithm derives for an access A[0][M-1] with array size M,
the access A[1][-1] as it associates multiples of M with the outer di-
mension. This delinearization is invalid, as the subscript in the inner
dimension becomes negative.

In general there is always a set of delinearizations that differ in their
derived subscript expressions, but which all compute the same ad-
dress expression. For the above example, the accesses A[-1][2*M-1],
A[0][M-1], A[1][-1] and A[2][-M-1] all compute the same address
expression. In fact, for an arbitrary k ∈ N a different, but equivalent,
expression can be computed from an existing expression:

A[f0][f1] with A[∗][s1]

= A[f0s1 + f1] with A[∗]

= A[f0s1 − ks1 + ks1 + f1] with A[∗]

= A[(f0 − k)s1 + (ks1 + f1)] with A[∗]

= A[f0 − k][ks1 + f1] with A[∗][s1]

For d-dimensional accesses we can say that for any pair of neighbor-
ing dimensions t, t+ 1 with t ∈ [0,d− 2] the following equality holds
for all kt ∈ N:

&A[. . . , ft, ft+1, . . .] = &A[. . . , ft − kt,ktst+1 + ft+1, . . .]

This means there exists a set of values kt, t ∈ [0,d − 2] which can
be arbitrarily chosen to generate an infinite number of array accesses
that all yield the same address expressions. However, for a specific
set of loop iterators and parameters all but a single set of kt values
cause out of bound accesses. The question is how to find the right
values of kt, that avoid out of bounds accesses? One idea is to look
at the loop bounds and to statically derive the right values of kt. This
is possible as long as the range of the subscript expression is known,
but causes problems for accesses such as A[N * i + N + p] which
might be modeled as A[i + 1][p-1] in case 0 6 p − 1 < N holds,
but where the right value of k can not be statically derived without
knowledge about the values p can take. An alternative is to create a
piecewise delinearization that chooses the correct value of k depend-
ing on the values of the subscript expressions. For the 2D case we
could be tempted to use a mapping (f0, f1) → (f0 + k,−ks1 + f1) :

∃k : ks1 6 f1 < (k + 1)s1, which models all possible values of k.
Unfortunately, the product between k and s1 is non-affine and conse-
quently this map can not be represented as an integer map. However,

13.3 array views with single-parameter sizes 171

if we bound k such that k ∈ [kl,ku] with kl,ku being known integer
values, we can model this map with a finite number of affine pieces.

(f0, f1)→

(f0 − kl,kls1 + f2) f1 < −kls1
...

(f0 − 1, s1 + f2) −s1 6 f1 < 0

(f0, f1) 0 6 f1 < s1

(f0 + 1,−s1 + f2) s1 6 f1 < 2s1
...

(f0 + ku,−kus1 + f2) kus1 6 f1

Similarly, for d-dimensional accesses we can define set of maps Mt, t ∈
[0,d− 2]:

Mt = (f0, . . . , ft, ft+1, . . . , fd−1)→

(f0, . . . , ft − kt,l,kt,lst+1 + ft+1, . . . , fd−1) ft+1 < −kt,lst+1

...

(f0, . . . , ft − 1, st+1 + ft+1, . . . , fd−1) −st+1 6 ft+1 < 0

(f0, . . . , ft, ft+1, . . . , fd−1) 0 6 ft+1 < st+1

(f0, . . . , ft + 1,−st+1ft+1, . . . , fd−1) st+1 6 ft+1 < 2st+1

...

(f0, . . . , ft + kt,u,−kt,ust+1 + ft+1, . . . , fd−1) −kt,ust+1 6 ft+1

with fi, i ∈ [0,d− 1] the subscript expression at depth i and si, i ∈
[0,d− 1] the size of the i-th dimension. Starting from the highest t, we
apply all maps Mt one by one to the delinearized accesses. For the
example in Listing 20 we obtain the following delinearized accesses
from the original algorithm:

S1(i, j,k)→ A(i, j,k)

S2()→ A(1, 1, 1)

S3()→ A(0, 1,−1)

S4()→ A(1,−1, 0)

S5()→ A(1, 0,−1)

After applying a set of maps Mt generated with values kt,k = 0,kt,u =

0 chosen to only cover two cases, one with no transformation and one

172 optimistic delinearization

with a single multiple of the problem size parameter added, we ob-
tain the following delinearized accesses:

S1(i, j,k)→

A(i− 1,N+ j− 1,M+ k) : k 6 −1∧ j 6 0

A(i, j− 1,M+ k) : k 6 −1∧ j > 1

A(i− 1,N+ j,k) : k > 0∧ j 6 −1

A(i, j,k) : k > 0∧ j > 0

S2()→ A(1, 1, 1)

S3()→ A(0, 0,M− 1)

S4()→ A(0,N− 1, 0)

S5()→ A(0,N− 1,M− 1)

S2, S3, S4 and S5 show directly the correct delinearization. The ac-
cess function for S1 is now slightly more complicated, but the three
additional cases only apply under conditions that are removed when
simplifying the access under the constraints implied by the iteration
domain of S1. After these simplifications we obtain for S1 the map-
ping S1(i, j,k) → A(i, j,k). So the piecewise mappings have all been
statically reduced to maps with just a single piece.

13.3.3 Arrays of size A[∗][β1P1][β2P2]

In certain cases (e.g. resizing of images) we may have array sizes of
the form A[∗][β1P1][β2P2]. Accesses to such arrays would be delin-
earized to an access A[β1f0][β2f1][f2] into an array of size A[∗][P1][P2].
As f1 can be in the range 0 6 f1 < β1P1, the expression β2f1 may
not fit into the new range. To address this we can find the gcd of
the values in each dimension and use it to adjust the array sizes.
Specifically, if all subscript expressions on a certain dimension can
be divided by a value x, we can divide all of them by x and multiply
the size of the next innermost dimension by x. This transformation
is always positive in the sense that it only increases the chance that
our delinearization will be correct. As it reduces the range of the sub-
script expression, the subscript expression is more likely to fit into
the ranges implied by the array size. Similarly, as we increase the size
of the inner dimension the corresponding subscript expressions on
this dimension are also more likely to fit in.

13.4 arrays of size “parameter + constant”

As most implementations of multi-dimensional arrays choose to keep
the sizes of individual dimensions in per-dimension variables, even
multi-dimensional arrays with dimension sizes derived from possi-
bly complex expressions often express the array size as an individual

13.4 arrays of size “parameter + constant” 173

parameter such that resulting expressions can be delinearized with
the approach presented in Section 13.3. However, in certain cases, the
most prominent one being C99 arrays, a compiler may have access to
the full original array declaration. Even though additional informa-
tion is in general positive, in this specific case it allows the compiler
to mix array size information with index expression information such
that delinearizing these expressions becomes a lot more challenging.

We look now at a specific case, where the shape of the array is
of the form A[P0 + α0] . . . [Pn−1 + αn−1], Pi ∈ P, α ∈ N, with Pi
being different for different values of i. As an example we show a
simplified 3D stencil computation which computes the average over
the elements in a diagonal stencil and which uses a one element bor-
der around the actual data elements to avoid the need for special
boundary statements.

long In[Q+2][R+2][S+2];

long Out[O+2][R+2][S+2];

for (long i = 1; i <= Q; i++)

for (long i = 1; i <= R; i++) {

for (long i = 1; i <= S; i++) {

Out[i][j][k] = 0.33f * (In[i][j][k]

+ In[i+1][j+1][k+1]

+ In[i-1][j-1][k-1]);

}

When compiling the access Out[i][j][k] and delinearizing the ac-
cess expression with the approach presented in Section 13.3 we per-
form the following computation:

A[i][j][k] with A[∗][R+ 2][S+ 2]

= A[i(R+ 2)(S+ 2) + j(S+ 2) + k] with A[∗] ← linearize

= A[4i+ 2j+ k+ 2iR+ 2iS+ jS+ iRS] with A[∗] ← expand

= A[RS ∗ i+ S ∗ (2i+ j) + 4i+ 2j+ k+ 2iR] with A[∗] ← sort assuming A[][R][S]

= A[i][2i+ j][4i+ 2j+ k+ 2iR] with A[∗][R][S] ← delinearize

There are two problems. First of all, the previous algorithm fails
to guess an array size, as the terms R, S and RS all appear in prod-
ucts that contain induction variables and our previous approach can
consequently not define an order on the parameters that allow it to
assign parameters to array dimensions. Even if we “guess” the right
parameter ordering, the access functions are still derived according
to the wrong array sizes. As a result we obtain not only incorrect
subscript expressions, but we also obtain subscript expressions that
contain non-affine expressions such as 2iR.

We now present a general approach that allows us to delinearize
polynomial expressions to d-dimensional array shapes of the form

174 optimistic delinearization

A[P0 + α0] . . . [Pd−1 + αd−1], Pi ∈ P, α ∈ N, we look at the two and
three dimensional special cases.

An access to a two dimensional array A[f0(~i)][f1(~i)] with shape
A[∗][P1+α1] corresponds to the single dimensional access A[f0(~i)(P1+

α1) + f1(~i)], which after expansion becomes A[f0(~i)P1 + f0(~i)α1 +

f1(~i)]. However, it is unlikely that this structure is preserved. The
only structure that can be assumed are different terms, each contain-
ing a different set of parameters g{1}(~i)P1 + g∅(~i). To delinearize this
polynomial expression we need to recover expressions f0(~i), f1(~i),α1

as a function of gi’s. As f0(~i) is the only coefficient to P1, recov-
ering the relation f0(~i) = g{1}(~i) is easy. The second equality we
can obtain is g∅(~i) = f0(~i)α1 + f1(~i). With f0(~i) plugged in we ob-
tain g∅(~i) = g{1}(~i)α1 + f1(~i), which allows us to express f1(~i) as
a function of α1: f1(~i) = g∅(~i) − g{1}(~i)α1. For different values of
α1 we obtain different array sizes and the corresponding delineriza-
tions, which all are lowered to the very same linearized function, per-
form the same memory accesses and consequently model the pro-
gram behavior correctly. However, depending on the iteration space
boundaries only certain delinearizations ensure the absence of out of
bounds accesses. As boundary offsets are commonly small and there
is only one value α1 to verify, it is possible to scan a certain number
of α1 by either statically checking for valid delinearizations or possi-
bly even by generating run-time versioned code for different values
of α1.

Looking at the three dimensional case, we observe that an access
A[f0(~i)][f1(~i)][f2(~i)] to an array of shape A[∗][P1 + α1][P2 + α2] is lin-
earized to

f0(~i)(P1 +α1)(P2 +α2) + f1(~i)(P2 +α2) + f2(~i)

which after expansion yields:

f0(~i)P1P2 + f0(~i)P1α2 + f0(~i)P2α1 + f0(~i)α1α2+

f1(~i)P2 + f1(~i)α2+

f2(~i)

The corresponding polynomial expression is:

g{1,2}(~i)P1P2 + g{P1}(
~i)P1 + g{P2}(

~i)P2 + g∅(~i)

From the single term that contains P1P2, the product of all symbolic
parameters defining the array sizes, we recover f0(~i) = g{1,2}(~i). As-
suming P1 is the outermost parameter, we obtain the value of α2 from
the single term that contains P1, but not P2: g{1}(~i) = f0(~i)α2 ⇒ α2 =

g{1}(~i)/f0(~i) = g{1}(~i)/g{1,2}(~i). Looking at the P2 terms, we obtain
the relation g{2}(~i) = f0(~i)α1 + f1(~i). This allows us to derive f1(~i) =

g{2}(~i) − f0(~i)α1 = g{2}(~i) − g{1,2}(~i)α1. Again, an expression contain-
ing α1 as free variable. To obtain f2(~i) we look at the terms without

13.4 arrays of size “parameter + constant” 175

Algorithm 1: Derive a delinearization
Data: A polynomial expression in function of induction variables

and parameters, a list of array size parameters
Result: A set of values αk,k ∈ [1,d− 1], index expressions

fk,k ∈ [0,d− 1] and set of array size parameters
Pk,k ∈ [1,d− 1] or an error if no delinearization found.

collect possible array sizes parameters;
foreach permutation of array sizes parameters do

derive f0;
alpha = derive alpha values;
if alpha 6= [] then

derive subscript expressions;
derive run-time condition;
if run-time condition is a contradiction then

continue;
else

return subscript expressions, run-time-condition,

array-sizes
return No delinearization found!

any parameters. Here we have g∅(~i) = f0(~i)α1α2 + f1(~i)α2 + f2(~i)

from which we can derive f2(~i) = g∅(~i) − f0(~i)α1α2i − f1(~i)α2 =

g∅(~i)− f0(~i)α1α2−(g{2}(~i)− f0(~i)α1)α2 = g∅(~i)− f0(~i)α1α2−g{2}(~i)α2+

f0(~i)α1α2 = g∅(~i) − g{2}(~i)α2. As α1 cancels out, we can unambigu-
ously derive f2(~i). We can conclude that delinearizing to a three-
dimensional array shape does not introduce more freedom. Only α1

remains unknown and different values may need to be explored.
After having understood the basic approach, we now present a gen-

eral algorithm to delinearize polynomial expressions to array shapes
of arbitrary dimensionality. Our high-level algorithm Algorithm 1 is
rather straightforward. We first collect the set of possible array size
parameters and then try for each order to find a valid delinearization.
To check if a valid delinearization exists, we first compute f0(~i) and
use it to try to derive a set of consistent α values. If we succeed, we
derive subscript expressions and run-time conditions. In case the run-
time condition is not a contradiction, we assume we found a valid
delinearization and finish, otherwise we try the next permutation.

To obtain the set of possible array size parameters, we take the
expanded version of the polynomial expression and look again for
parameters that are multiplied with a loop induction variable.

For the remaining analysis it is necessary to understand the shape
of the polynomial expression we analyze. Specifically, that we can
group it such that each term is the product between a subset of the

176 optimistic delinearization

suspected array size parameters and an expression g?(~i) in loop in-
dexes, non array size parameters and integer constants:

g∅(~i)

+ g{1}(~i)P1 + g{2}(~i)P2 + · · ·+ g{d−1}(~i)Pd−1

+ g{1,2}(~i)P1P2 + g{1,3}(~i)P1P3 + · · ·+ g{2,3}(~i)P2P3 + . . .

+ g[1,d−1](~i)P1 . . . Pd−1

=
∑

K∈P([1,d−1])

(

gK(~i)
∏

k∈K

Pk

)

We now want to express the previous polynomial as a d-dimensional
access A[f0(~i)] . . . [fd−1(~i)] to an array of size A[∗][P1+α1] . . . [Pd−1+

αd−1]. To do so, we start by looking at how such an array is lin-
earized:

f0(~i)(P1 +α1)(P2 +α2) . . . (Pd−1 +αd−1)

+ f1(~i)(P2 +α2) . . . (Pd−1 +αd−1)

+ f2(~i)(P3 +α3) . . . (Pd−1 +αd−1)

...

+ fd−2(~i)(Pd−1 +αd−1)

+ fd−1(~i)

=
∑

j∈[0,d−1]

(

fj(~i)
∏

k∈[j+1,d−1]

(Pk +αk)
)

and assume this linearized form yields the same access computation
as the one-dimensional expression we want to delinearize:

∑

K∈P([1,d−1])

(

gK(~i)
∏

k∈K

Pk

)

=
∑

j∈[0,d−1]

(

fj(~i)
∏

k∈[j+1,d−1]

(Pk +αk)
)

=
∑

j∈[0,d−1]

∑

K∈P([j+1,d−1])

(

fj(~i)
∏

k∈K

Pk
∏

k∈[j+1,d−1]\K

αk

)

We now match up terms that contain the same set of parameters:

∀K ∈ P([1,d− 1]) :

gK(~i)
∏

k∈K

Pk =
∑

j∈[0,d−1]
∧K⊆[j+1,d−1]

(

fj(~i)
∏

k∈K

Pk
∏

k∈[j+1,d−1]\K

αk

)

Assuming the parameters to be positive we can drop them on both
sides of the equation:

∀K ∈ P([1,d− 1]) :

gK(~i) =
∑

j∈[0,d−1]
∧K⊆[j+1,d−1]

(

fj(~i)
∏

k∈[j+1,d−1]\K

αk

)

13.4 arrays of size “parameter + constant” 177

Algorithm 2: Derive alpha values

Data: A dimensionality d, a set of expressions gs(~i)

Result: A list of values αk,k ∈ [2,d− 1] or [] in case of
inconsistencies

foreach k ∈ [2,d− 1] do

if g[1,d−1] not evenly divides g[1,d−1]\{k}(~i) then

return [];

αk = g[1,d−1]\{k}(~i)/g[1,d−1](~i);
foreach S ∈ P([2,k− 1] \ (∅ ∪ ([1,d− 1] \ {k})) do

if g[1,d−1](~i) not evenly divides S then

return [];

α ′
k = gS(~i)/g[1,d−1](~i);

if α ′
k 6= αk then

return [];
return {k→ αk : k ∈ [2,d− 1]}

Having established this set of equalities, we start to relate our terms
g?(~i) to the terms f?(~i) and α? that we want to derive. We first derive
f0(~i) = g[1,d−1](~i), which can be trivially derived by setting K =

[1,d− 1] in the previous equation.
Then, we derive the values αk by looking at the terms g[1,d−1]\{k}(~i).

In the four-dimensional case such terms have the form:

g{2,3,4}(~i) = α1f0(~i) + f1(~i)

g{1,3,4}(~i) = α2f0(~i) ⇒ α2 = g{1,3,4}(~i)/g[1,d−1](~i)

g{1,2,4}(~i) = α3f0(~i) ⇒ α3 = g{1,2,4}(~i)/g[1,d−1](~i)

g{1,2,3}(~i) = α4f0(~i) ⇒ α4 = g{1,2,3}(~i)/g[1,d−1](~i)

In general, we derive αk,k ∈ [2,d− 1] as αk = g[1,d−1]\{k}(~i)/g[1,d−1](~i).
Similiar to the two and three dimensional case, we can not derive a
value for α1, as we do not know the value of f1(~i). However, for
higher dimensional cases we can make an interesting observation.
The values of αk can not just be obtained by the equalities presented
above. In fact, there is a larger set of equalities that all need to return
the same values αk for an array view to be a valid delinearization.
Specifically, to derive αk,k ∈ [1,d− 1] we can choose any pair of sets

178 optimistic delinearization

S, ∅ ⊂ S ⊆ [1,k− 1] and T = S ∩ k which can be used to compute αk

as follows:

gS(~i)/gT (~i)

=
∑

j∈[0,d−1]
∧S⊆[j+1,d−1]

(

fj(~i)
∏

x∈[j+1,d−1]\S

αx

)

/
∑

j∈[0,d−1]
∧T⊆[j+1,d−1]

(

fj(~i)
∏

x∈[j+1,d−1]\T

αx

)

=
∑

j∈[0,d−1]
∧S⊆[j+1,d−1]

(

fj(~i)αk

∏

x∈[j+1,d−1]\T

αx

)

/
∑

j∈[0,d−1]
∧T⊆[j+1,d−1]

(

fj(~i)
∏

x∈[j+1,d−1]\T

αx

)

= αk

∑

j∈[0,d−1]
∧S⊆[j+1,d−1]

(

fj(~i)
∏

x∈[j+1,d−1]\T

αx

)

/
∑

j∈[0,d−1]
∧T⊆[j+1,d−1]

(

fj(~i)
∏

x∈[j+1,d−1]\T

αx

)

= αk

∑

j∈[0,d−1]
∧T⊆[j+1,d−1]

(

fj(~i)
∏

x∈[j+1,d−1]\T

αx

)

/
∑

j∈[0,d−1]
∧T⊆[j+1,d−1]

(

fj(~i)
∏

x∈[j+1,d−1]\T

αx

)

= αk

The following lists the closed form expressions that compute α2 and
α3 for the 4D case:

α2 = g{1,3}(~i)/g{1,2,3}(~i)

α3 = g{1}(~i)/g{1,3}(~i)

α3 = g{2}(~i)/g{2,3}(~i)

α3 = g{1,2}(~i)/g{1,2,3}(~i)

As the different values of αk are overdefined, we can use this infor-
mation to cross check our delinearization. Specifically, we can use it
to validate the order of the array size parameters. Algorithm 2 gives
the full algorithm we use to obtain the different alpha values.

After having derived the different values of αk, we can now derive
the terms fj, j ∈ [2,d− 1] by looking at the terms g[j+1,d−1](~i):

g{1,...,d−1}(~i) = f0(~i)

g{2,...,d−1}(~i) = α1f0(~i) + f1(~i)

g{3,...,d−1}(~i) = α1α2f0(~i) +α2f1(~i) + f2(~i)

= α2(α1f0(~i) + f1(~i)) + f2(~i)

= α2g{2,...,d−1}(~i) + f2(~i)

...

g{j,...,d−1}(~i) = αj−1g{j−1(~i),...,d−1}
(~i) + fj−1(~i)

...

g∅(~i) = αd−1g{d−1}(~i) + fd−1(~i)

13.5 implementation 179

Algorithm 3: Derive subscript expressions
Data: A dimensionality d, a set of expressions

gs(~i), s ∈ P([0,d− 1]), a set of values αk,k ∈ [2,d− 1]

Result: A set of expressions fk(~i),k ∈ [0,d− 1]

f0(~i) = g[1,d−1](~i);
/* The next line assumes α1 = 0. */

f1(~i) = g2,d−1](~i);
foreach j ∈ [2,d− 1] do

fj(~i) = g[j+1,d−1](~i) −αjg[j,d−1](~i)

return {j→ fj(~i) : j ∈ [0,d− 1]}

from which we derive fj(~i) = g[j+1,d−1](~i) − αjg[j,d−1](~i). Which for
a 4D array yields:

f0(~i) = g{1,2,3}(~i)

f1(~i) = g{2,3}(~i) −α1g{1,2,3}(~i)

f2(~i) = g{3}(~i) −α2g{2,3}(~i)

f3(~i) = g∅(~i) −α3g{3}(~i)

The general algorithm (Algorithm 3) is straightforward, as it mainly
uses the equalities just given to derive the relevant values.

As a last step, we obtain the set of necessary run-time conditions.
This step is unchanged from Section 13.3 - we use again isl to compute
the set of parameter values for which we can ensure the absence of
out-of-bounds array accesses.

13.5 implementation

We implemented Section 13.3 within LLVM and Polly [3]. In our im-
plementation, LLVM’s scalar evolution framework [99] has been used
to perform the transformation of index expressions necessary for ex-
ample to extract the array size parameter candidates or to perform
the division and remainder computations we use to obtain the sub-
script expressions. Besides the basic delinearization support, we also
implemented support for array size parameters in the index expres-
sions (Section 13.3.2) as well as support for deriving a unique array
shape for a set of accesses (Section 13.3.1). We also have full sup-
port for the generation of run-time conditions that validate our de-
linearization. For the generation of run-time conditions, we exploited
the ability of our new AST generator to generate AST expressions from
user-provided integer sets (Section 10.4.5). This feature allowed us to
use isl to compute the set of run-time constraints that need to be
checked, the AST generator to generate optimal code for them and
Polly’s code generation back end to translate the resulting AST ex-
pressions to LLVM IR. One optimization that has shown useful for

180 optimistic delinearization

reducing the complexity of run-time conditions is to ask isl to remove
any constraints that are only valid for parameter values for which no
memory access is executed. This is obviously valid. In case no data
access is executed, we can not possibly model this access incorrectly.

The algorithm presented in Section 13.4 has been prototyped and
tested in mathematica [72] to ensure we can extend our implementa-
tion in LLVM in the future to cover even more important cases.

13.6 experimental evaluation

#include <boost/numeric/ublas/matrix.hpp>

using namespace boost::numeric::ublas;

void gemm(matrix<float> &C, matrix<float> &A,

matrix<float> &B) {

int n = A.size1();

int m = B.size2();

int p = A.size2();

for (int i = 0; i < n; i++)

for (int j = 0; j < m; j++) {

for (int k = 0; k < p; k++)

C(i,j) += A(i,k) * B(k,j);

}

}

Listing 21: A gemm kernel written in C++ using boost::ublas

function gemm(A,B,C)

n,p = size(A)

m,p = size(B)

@inbounds for i=1:n, j=1:m, k=1:p

C[i,j] += A[i,k]*B[k,j]

end

end

Listing 22: A gemm kernel written in Julia

We tested the implementation of our delinearization on all 30 poly-
bench 3.2 kernels [101] with the use of C99 variable length arrays en-
abled (-DPOLYBENCH_USE_C99_PROT0). From the 29 kernels currently
detected by Polly (Polly skips floyd-warshall due to zero extends in
the loop bounds introduced by the use of 32 bit induction variables),
27 can be correctly delinearized and only two kernels (ludcmp, fdtd-
apml) are currently skipped, due to the array size itself being of the
form N+ 1. It is interesting to note that the Polybench code is writ-
ten in a way that all delinearizations should be statically provable.

13.7 related work 181

Nevertheless our delinearization concluded that run-time checks are
necessary for five benchmarks (correlation, covariance, 2mm, doitgen,
symm). Looking closer into why run-time checks are still generated
we understand that in the original polybench source code certain pa-
rameters have been accidentally swapped in the array declarations
and loop bounds, which unintentionally changed the semantics of
the loop kernels in a way that only if a certain relation between the
different parameter holds (e.g. the matrices are quadratic) the execu-
tion does not inhibit out-of-bound accesses. The run-time conditions
computed directly reflect those conditions and ensure that only in
such cases our optimized loop is used. Even though not foreseen,
this example nicely shows the benefits of our optimistic delineariza-
tion. Not only did it prevent a possible mis-compilation of this code,
but it also ensured that we could still optimize it even though there
exists a set of parameter values under which this optimization is not
correct.

We also verified our delinearization in two other environments.
Listing 21 shows a simple gemm kernel implemented in boost::ublas,
a blas library that uses C++ expression templates to generate effi-
cient code. After extensive inlining, LLVM can remove the noise of the
template instantiations and the matrix multiply kernel is exposed to
Polly. After some trivial loop invariant code motion performed manu-
ally, our Polly combined with delinearization successfully detects this
kernel. In Listing 22 we implemented the same kernel in Julia [32], a
dynamic high-level language for scientific computing. Similarly to
the ublas example, after some simple loop invariant code motion per-
formed manually, delinearizing the array accesses yields the expected
results and the Julia kernel can be optimized with Polly. For matrices
of size 1024× 1024 and type float, already Polly’s default optimiza-
tion speeds up the computation from 15.3 to 2.6 seconds.

13.7 related work

There have been previous approaches for delinearization starting with
Maslov [91] who introduced delinearization to speed up dependence
analysis by reducing the complexity of linear dependence analysis
problems that result from multi-dimensional arrays of known size. In
his work Maslov also briefly discussed how to handle non-linear ar-
ray references as they arise from arrays with symbolic sizes. Maslov’s
work requires the iteration space boundaries to be known, the itera-
tion space itself being rectangular (and starting from zero) and the
boundaries to be integer constants. He lifts the last restriction when
extending his work to arrays with symbolic sizes, but the iteration
space is still required to be rectangular and of a size that allows the
delinearization to be proven statically. Furthermore, Maslov requires
that: “each resulting dimension must contain at least one variable

182 optimistic delinearization

and no variable can appear in more than one dimension”. Maslov
does not explore delinearization outside of the context of dependence
analysis and does not address the problem of finding a consistent
delinearization for a set of array references. Maslov contributed a
second approach in his work on polynomial constraint simplifica-
tion [93] where delinerization in the context of triangular iteration
spaces and possibly non-rectangular (triangular) arrays is discussed.
Even though the restrictions on the shape of the iteration space have
been lifted, the iteration space is still required to statically prove the
delinearization. Also, delinearization is again only applied in the con-
text of dependence analysis. No approach for a consistent delineariza-
tion of a group of array references has been shown. His polynomial
constraint simplification may suffer from an explosion of the number
of constraints, in case of large fixed-size offsets between arrays. Also,
the example shown in the paper is exploiting a special case where
an induction variable is only used in a single array dimension. It is
unclear how general his approach is. Simbürger and Größlinger [116]
recently discussed delinearization within Polly using quantifier elimi-
nation, but again they focused on solving dependence analysis issues.
Cierniak [43] presents a solution independent of dependence analy-
sis, discusses delinearization for non-rectangular arrays and also pro-
vides ideas how to unify the delinearization of multiple subscripts.
However, he does not discuss a symbolic solution and he requires
that each loop index appears in at most one array dimension. In our
approach we aim for a purely symbolic solution to delinearize access
functions not limited to the context of dependence analysis. Our solu-
tion provides a delinearization and the relevant run-time checks even
for cases where delinearization can not be proven correct statically.
We do not impose constraints on the shape of the iteration space and
we allow, except for the presence of array size parameters, arbitrary
affine access functions in the delinearized arrays.

13.8 summary

We have shown an optimistic approach to delinearization that can
express polynomial array accesses as multi-dimensional array shapes
with sizes given as individual parameters, parameters times a con-
stant or parameters plus a constant, with the first two cases even
supporting the use of identical parameters in multiple dimensions.
Thanks to our optimistic approach we are able to delinearize array
accesses even though the delinearization can not be proven statically.
Instead, we provide a set of conditions that can be used to verify
our delinearization at run-time. Our approach has been prototyped
in mathematica and significant parts have also been implemented in
LLVM and Polly. We used this implementation to evaluate our ap-
proach on kernels from Julia, blast::ublas and polybench and have

13.8 summary 183

seen promising results. The new support for parametric sized arrays,
enables the use of Polly to optimize parametric compute problems
expressed in a wide range of programming languages. Or, the other
way around, a wide range of programming languages who use LLVM

as their compiler is now able to benefit from high-level loop optimiza-
tions.

Delinearization as such is highly valuable to enable the exploita-
tion of our tiling techniques in the context of low-level compilers.
Parts of the ideas and techniques presented here have been evolved
in discussions on the LLVM mailing list with contributions from Hal
Finkel, Sebastian Pop and Armin Größlinger. The actual techniques
described have been developed in collaboration with P. Sadayappan, J.
Ramanujam and Sebastian Pop, with Sebastian Pop also contributing
important parts of the delinearization implementation in LLVM.

Part VI

C O N C L U S I O N

14
C O N C L U S I O N

This thesis is concluded with an overview over my personal contribu-
tions and an outlook on further work.

14.1 personal contributions

Tilings and Optimizations for Stencils

• The design, modeling and prototyping of a new split tiling al-
gorithm, its integration into a general purpose polyhedral GPU

compiler and its evaluation on a set of stencil kernels. This also
includes the parametrization of AST generation strategies to en-
sure sufficient specialization and the separation of full and par-
tial tiles in the generated code.

• The evolution of our split-tiling strategy to a one dimensional
hexagonal tiling and its combination with parallelogram tiling
to obtain a hybrid tiling that enables us to address GPU spe-
cific concerns. Besides the polyhedral formulations of the sched-
ule transformation as well as the implementation of a proto-
type, this includes the presentations of optimizations that en-
sure inter-tile reuse and the use of aligned loads to reduce
global memory bandwidth.

• Investigation of the relation between hexagonal and diamond
tiling. From a detailed analysis of diamond tiling in respect
of the constraints it imposes on tile sizes and wavefront co-
efficients and the formulation of conditions that ensure uni-
form integer offsets across all tiles, a formulation of hexago-
nal tiling for two dimensional schedules (1 time dimension, 1

space dimension) applicable in the context of the general pur-
pose optimizer Pluto is derived. An analysis of the tile sizes
that maximize the compute-to-communication and compute-to-
synchronization ratios is provided for both diamond and hexag-
onal tiling.

Polyhedral Building Blocks

• Contributions to the design of a polyhedral extractor to ensure
it correctly reflects C99 semantics even in parts of the standard

187

188 conclusion

that are not widely understood such as e.g., the wrapping be-
havior of unsigned integers in the presence of overflow. To eval-
uate this polyhedral extractor an analysis of the extraction sup-
port in existing tools as well as an in-depth comparison with
Polly and clan was performed.

• Analysis of existing code generation approaches and definition
of new AST generation requirements. Contributions to defining,
designing and testing a new AST generation concept that ex-
pands AST generation beyond the generation of control flow by
allowing the creation of user-defined AST expressions. This in
particular includes work to ensure the generation of efficient
AST expressions in the presence of existentially quantified vari-
able as well as the design and testing of a fine-grained option
system to guide AST generation decisions. An in-depth analysis
of polyhedral unrolling was performed as well as an analysis of
the capabilities of existing code generation approaches.

• An analysis of schedule uses in existing polyhedral compilers
and contributions to the design and formulating of a new tree-
based schedule representation. The evaluation of this schedule
representation by reformulating our hexagonal tiling strategy
in terms of schedule trees.

Low-level Compilers

• A brief overlook over our involvement in the development of
gcc/Graphite and LLVM/Polly, a long standing engineering
and platform effort to enable the use of our techniques at the
level of compiler. IRs.

• Contributions to the requirement analysis and the design of a
new approach for the delinearization of arrays with paramet-
ric size. This also includes the review and discussion when
upstreaming changes to LLVM as well as the implementation
of necessary changes in Polly. Finally, the evaluation of this
approach on programs using multi-dimensional arrays as pro-
vided by C99, Julia and boost::ublast.

14.2 future work

There are several topics that are interesting to address in future work.

Tiling and Optimizations for Stencils

In the context of stencil optimizations we can proceed in different
directions. Investigating the benefits of our work on a wider range of

14.2 future work 189

platforms, e.g., different GPU designs or many-core processors such
as the Xeon PHI, as well as automatic platform-specific tuning could
increase the set of targets that benefit from our work. Orthogonal sten-
cil optimizations such as associative reordering [9] or stencil specific
data-layout transformations [68] may enable further optimization op-
portunities. Similarly, exploiting the large amount of registers avail-
able on GPUs to perform more in-register computations or to cache
temporary values may be beneficial.

We are also interested in the optimization of non-iterative compu-
tations such as sequences of heterogeneous stencils as they arise from
image processing pipelines. In such kernels the height of the time di-
mension is commonly short, such that tiling schemes that can scale
their tile size independently of the time tile height seem to be a good
choice. For heterogeneous stencils it also seems interesting to not use
an over approximation of the dependences to derive tile shapes, but
to generate tile shapes that follow precisely the dependences. Such
tile shapes are more complicated to describe and code generate, but
the integer sets available in isl are generic enough to model them and
with sufficient specialization in the AST generator the generated code
might be very efficient. One interesting approach to implement this
optimization would be to write an LLVM/Polly based optimization
pass that uses our work on delinearization to analyze the stencil code
Halide [108] generates when given a schedule without any optimiza-
tions and to subsequently apply the correct tiling on LLVM-IR. First
tests have already shown that parsing Halide code in Polly requires
only little changes.

In the context of tile shape analysis it would be interesting to con-
sider a wider range and more complex tile shapes as well as to better
incorporate target information. This might allow us to answer ques-
tions such as “what is the optimal tile shape for a kernel with two
degrees of parallelism on a platform with 256 threads, 128 byte cache
line size and 4 data elements per vector?”. Making tile shape analysis
more efficient is another area worth investigating. This could possibly
be done by simplifying the expressions generated by barvinok [132]
through the reduction of redundancy, over approximation or some
other changes, possibly guaranteeing that the resulting expressions
are posynomials [109]. Extending our new AST generator to code gen-
erate quasi-polynomials may be another interesting future contribu-
tion, as it would enable the run-time evaluation of such posynomials.

Polyhedral Building Blocks

One feature we only drafted but did not test yet in our AST gen-
erator is to derive for each (sub)expression the minimal data type
necessary to compute it correctly. Even though at the moment we can
use large 64 bit data types to avoid integer overflows, being able to

190 conclusion

go to smaller data types may be beneficial for both 32 bit architec-
tures and especially targets such as FPGAs. We also hope to further ex-
ploit the ability to automatically generate user provided expressions
to generate more sophisticated run-time checks. One idea interesting
to explore is to allow optimizations that assume run-time behavior
that is difficult to model, but well defined, does not occur. For C,
this is for example the wrapping of unsigned integers. On LLVM IR

such wrapping behavior often needs to be modeled for any type of
integer computation, because after some optimizations have been ap-
plied LLVM is not always able to preserve enough information to
ensure the absence of wrapping. Hence, modeling it correctly is very
important to ensure full correctness.

Even though our experience with schedule trees was until now pos-
itive, it is essential to get more experience and more community feed-
back on their usability. We also would like to explore new use cases,
e.g., their use for the description of combined manual and automatic
transformations. Another interesting use of schedule trees is the pos-
sibility to leave the overall schedule intact and only locally optimize
it in cases where we are certain that the transformation will be purely
positive. Such kinds of uses seem to be helpful in production com-
pilers where it is often more important to ensure that performance
is never degraded rather than to increase the average performance of
all optimized code.

Low-level Compilers

After having increased the kinds of codes we can handle to multi-
dimensional arrays of parametric size, we would like to further widen
the scope of where Polly can be used. This time we would like to
look into dynamic language features as they appear in C++ or in
languages such as Julia [31]. Those languages pose interesting new
research problems such as for example the elimination of run-time
bound checks. In dynamic languages compute kernels often raise out-
of-bounds exceptions in their core compute loops. Being able to cre-
ate run-time checks that guard a version of the code where we can
be sure no run-time checks are needed will allow us to perform ag-
gressive optimizations while at the same time preserving the safety
guarantees given by the language. As a result there may be no need
for the user to decide between a safe version of their code or a fast
version of their code. The ability of our AST generator to generate run-
time checks from possibly complex conditions should be very helpful
for this work.

Part VII

A P P E N D I X

B I B L I O G R A P H Y

[12] Walid Abu-Sufah, David Kuck, and Duncan Lawrie. Automatic
program transformations for virtual memory computers. In
Proceedings of the 1979 National Computer Conference, pages 969–
969. IEEE Computer Society, 1979.

[13] Christophe Alias, Fabrice Baray, and Alain Darte. Bee+ cl@
k: An implementation of lattice-based array contraction in the
source-to-source translator rose. In ACM SIGPLAN Notices, vol-
ume 42, pages 73–82. ACM, 2007.

[14] Frances Allen and John Cocke. A catalogue of optimizing trans-
formations. 1971.

[15] Randy Allen and Ken Kennedy. Automatic translation of for-
tran programs to vector form. ACM Transactions on Programming

Languages and Systems (TOPLAS), 9(4):491–542, 1987.

[16] Saman P Amarasinghe, Jennifer-Ann M Anderson, Monica S
Lam, and Chau-Wen Tseng. An overview of the suif compiler
for scalable parallel machines. In PPSC, pages 662–667, 1995.

[17] Mehdi Amini, Corinne Ancourt, Fabien Coelho, Béatrice
Creusillet, Serge Guelton, FranÃ§ois Irigoin, Pierre Jouvelot,
Ronan Keryell, and Pierre Villalon. PIPS is not (just) polyhe-
dral software. In C. Alias and C. Bastoul, editors, 1st Interna-

tional Workshop on Polyhedral Compilation Techniques (IMPACT),
Chamonix, France, 2011.

[18] Mehdi Amini, Béatrice Creusillet, Stéphanie Even, Ronan
Keryell, Onig Goubier, Serge Guelton, Janice Onanian McMa-
hon, François-Xavier Pasquier, Grégoire Péan, Pierre Villalon,
et al. Par4All: From convex array regions to heterogeneous com-
puting. In IMPACT, 2012.

[19] Corinne Ancourt and François Irigoin. Scanning polyhedra
with do loops. In ACM Sigplan Notices, volume 26, pages 39–
50. ACM, 1991.

[20] Roberto Bagnara, Patricia M Hill, and Enea Zaffanella. The
parma polyhedra library: Toward a complete set of numerical
abstractions for the analysis and verification of hardware and
software systems. Science of Computer Programming, 72(1):3–21,
2008.

193

194 Bibliography

[21] Vinayaka Bandishti, Irshad Pananilath, and Uday Bondhugula.
Tiling stencil computations to maximize parallelism. In Super-

computing, page 40. IEEE Computer Society Press, 2012.

[22] Utpal Banerjee. Data dependence in ordinary programs. PhD the-
sis, Department of Computer Science, University of Illinois at
Urbana-Champaign, 1976.

[23] Muthu Manikandan Baskaran, Nagavijayalakshmi Vy-
dyanathan, Uday Kumar Reddy Bondhugula, J. Ramanujam,
Atanas Rountev, and P. Sadayappan. Compiler-assisted dy-
namic scheduling for effective parallelization of loop nests
on multicore processors. SIGPLAN Notices, 44(4):219–228,
February 2009. ISSN 0362-1340. doi: 10.1145/1594835.1504209.

[24] Muthu Manikandan Baskaran, Jj Ramanujam, and P Sadayap-
pan. Automatic c-to-cuda code generation for affine programs.
In Compiler Construction, pages 244–263. Springer, 2010.

[25] Cédric Bastoul. Efficient code generation for automatic paral-
lelization and optimization. In ISPDC, volume 2, pages 23–30,
2003.

[26] Cédric Bastoul. Code generation in the polyhedral model is eas-
ier than you think. In IEEE International Conference on Parallel Ar-

chitecture and Compilation Techniques, pages 7–16, Juan-les-Pins,
France, September 2004.

[27] Cédric Bastoul. Improving Data Locality in Static Control Programs.
PhD thesis, University Paris 6, Pierre et Marie Curie, France,
December 2004.

[28] Cedric Bastoul. Clan - a polyhedral representation extractor for
high level programs, 2008.

[29] Marouane Belaoucha, Denis Barthou, Adrien Eliche, and Sid-
Ahmed-Ali Touati. Fadalib: an open source c++ library for
fuzzy array dataflow analysis. Procedia Computer Science, 1(1):
2075–2084, 2010.

[30] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Al-
bert Cohen, and Cédric Bastoul. The polyhedral model is more
widely applicable than you think. In Compiler Construction,
pages 283–303. Springer, 2010.

[31] Jeff Bezanson, Stefan Karpinski, Viral B Shah, and Alan Edel-
man. Julia: A fast dynamic language for technical computing.
arXiv preprint arXiv:1209.5145, 2012.

[32] Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and Alan Edel-
man. Julia: A fast dynamic language for technical computing.
CoRR, abs/1209.5145, 2012.

Bibliography 195

[33] Somashekaracharya G Bhaskaracharya and Uday Bondhugula.
Polyglot: a polyhedral loop transformation framework for a
graphical dataflow language. In Compiler Construction, pages
123–143. Springer, 2013.

[34] William Blume, Ramon Doallo, Rudolf Eigenmann, John Grout,
Jay Hoeflinger, Thomas Lawrence, Jaejin Lee, David Padua,
Yunheung Paek, Bill Pottenger, et al. Parallel programming
with polaris. Computer, 29(12):78–82, 1996.

[35] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sa-
dayappan. A practical automatic polyhedral parallelizer and
locality optimizer. SIGPLAN Notices, 43(6):101–113, 2008. ISSN
0362-1340. doi: http://doi.acm.org/10.1145/1379022.1375595.

[36] Uday Bondhugula, Oktay Günlük, Sanjeeb Dash, and Lakshmi-
narayanan Renganarayanan. A model for fusion and code mo-
tion in an automatic parallelizing compiler. In International Con-

ference on Parallel Architectures and Compilation Techniques (PACT),
pages 343–352, 2010.

[37] Uday Kumar Reddy Bondhugula. Effective Automatic Paralleliza-

tion and Locality Optimization Using the Polyhedral Model. PhD
thesis, Columbus, OH, USA, 2008. AAI3325799.

[38] Francky Catthoor, Eddy de Greef, and Sven Suytack. Custom

memory management methodology: Exploration of memory organisa-

tion for embedded multimedia system design. Kluwer Academic
Publishers, 1998.

[39] Chun Chen. Polyhedra scanning revisited. In Conference on Pro-

gramming Language Design and Implementation, pages 499–508,
New York, NY, USA, 2012. ACM.

[40] Chun Chen, Jacqueline Chame, and Mary Hall. A framework
for composing high-level loop transformations. Technical re-
port, USC, 2008.

[41] Matthias Christen, Olaf Schenk, and Helmar Burkhart. Patus:
A code generation and autotuning framework for parallel iter-
ative stencil computations on modern microarchitectures. In
IPDPS, 2011.

[42] Matthias-Michael Christen. Generating and auto-tuning parallel

stencil codes. PhD thesis, University of Basel, 2011.

[43] Michal Cierniak and Wei Li. Recovering logical data and code
structures. Technical report, 1995.

[44] Albert Cohen, Marc Sigler, Sylvain Girbal, Olivier Temam,
David Parello, and Nicolas Vasilache. Facilitating the search

196 Bibliography

for compositions of program transformations. In Proceedings of

the 19th annual international conference on Supercomputing, pages
151–160. ACM, 2005.

[45] NVIDIA Corporation. Tegra k1 technical white paper, v1.0,
2013.

[46] Béatrice Creusillet and Francois Irigoin. Interprocedural array
region analyses. International Journal of Parallel Programming, 24,
December 1996. ISSN 0885-7458.

[47] Alain Darte, Yves Robert, and Frédéric Vivien. Loop paralleliza-
tion algorithms. In Compiler Optimizations for Scalable Parallel

Systems: Languages, Compilation Techniques and Run Time Systems,
volume 1808 of LNCS, pages 141–171. Springer Verlag, 2001.

[48] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams,
Jonathan Carter, Leonid Oliker, David Patterson, John Shalf,
and Katherine Yelick. Stencil computation optimization and
auto-tuning on state-of-the-art multicore architectures. In Pro-

ceedings of SC ’08, pages 4:1–4:12, Piscataway, NJ, USA, 2008.
IEEE Press. ISBN 978-1-4244-2835-9.

[49] Kaushik Datta, Shoaib Kamil, Samuel Williams, Leonid Oliker,
John Shalf, and Katherine A. Yelick. Optimization and perfor-
mance modeling of stencil computations on modern micropro-
cessors. SIAM Review, 51(1):129–159, 2009.

[50] Chirag Dave, Hansang Bae, Seung-Jai Min, Seyong Lee, Rudolf
Eigenmann, and Samuel Midkiff. Cetus: A source-to-source
compiler infrastructure for multicores. Computer, 42(12):36–42,
2009.

[51] Peng Di and Jingling Xue. Model-driven tile size selection
for DOACROSS loops on GPUs. In Proceedings of the 17th

international conference on Parallel processing - Volume Part II,
Euro-Par’11, pages 401–412, Berlin, Heidelberg, 2011. Springer-
Verlag. ISBN 978-3-642-23396-8.

[52] Jack J Dongarra, Hans W Meuer, and Erich Strohmaier. Top500

supercomputer sites. 1994.

[53] ACE Associated Compiler Experts. Parallelization using poly-
hedral analysis, 2008.

[54] Paul Feautrier. Array expansion. In 2nd International Conference

on Supercomputing (ICS’88), pages 429–441. ACM, 1988.

[55] Paul Feautrier. Parametric integer programming. RAIRO

Recherche opérationnelle, 22(3):243–268, 1988.

Bibliography 197

[56] Paul Feautrier. Dataflow analysis of array and scalar references.
International Journal of Parallel Programming, 20(1):23–53, 1991.

[57] Paul Feautrier. Some efficient solutions to the affine schedul-
ing problem. part ii. multidimensional time. International Jour-

nal of Parallel Programming, 21:389–420, 1992. ISSN 0885-7458.
10.1007/BF01379404.

[58] Paul Feautrier. Some efficient solutions to the affine scheduling
problem: Part i. one-dimensional time. International Journal of

Parallel Programming, 21(5):313–348, October 1992. ISSN 0885-
7458. doi: 10.1007/BF01407835.

[59] Max Geigl. Parallelization of loop nests with general bounds in
the polyhedron model. Master’s thesis, Universit at Passau, 1997.

[60] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen,
David Parello, Marc Sigler, and Olivier Temam. Semi-automatic
composition of loop transformations for deep parallelism and
memory hierarchies. Int. J. Parallel Program., 34(3):261–317, June
2006. ISSN 0885-7458. doi: 10.1007/s10766-006-0012-3.

[61] Georgios Goumas, Maria Athanasaki, and Nectarios Koziris.
An efficient code generation technique for tiled iteration spaces.
Parallel and Distributed Systems, IEEE Transactions on, 14(10):
1021–1034, 2003.

[62] Martin Griebl and Christian Lengauer. The loop parallelizer
loopo. In Proc. Sixth Workshop on Compilers for Parallel Computers,
volume 21, pages 311–320. Citeseer, 1996.

[63] Martin Griebl, Paul Feautrier, and Christian Lengauer. Index
set splitting. International Journal of Parallel Programming, 28(6):
607–631, 2000.

[64] OpenACC Working Group et al. The openacc application pro-
gramming interface, 2011.

[65] Gaël Guennebaud. Eigen: a c++ linear algebra library. 2011.

[66] Dongni Han, Shixiong Xu, Li Chen, and Lei Huang. Pads: A
pattern-driven stencil compiler-based tool for reuse of optimiza-
tions on gpgpus. In ICPADS, pages 308–315, 2011.

[67] Albert Hartono, Muthu Manikandan Baskaran, J Ramanujam,
and Ponnuswamy Sadayappan. Dyntile: Parametric tiled loop
generation for parallel execution on multicore processors. In
Parallel & Distributed Processing (IPDPS), 2010 IEEE International

Symposium on, pages 1–12. IEEE, 2010.

198 Bibliography

[68] Tom Henretty, Richard Veras, Franz Franchetti, Louis-Noël
Pouchet, J. Ramanujam, and P. Sadayappan. A stencil compiler
for short-vector SIMD architectures. In International Conference

on Supercomputing (ICS). ACM, 2013.

[69] Ryutaro Himeno. Himeno benchmark, 2011.

[70] Justin Holewinski, Louis-Noël Pouchet, and P Sadayappan.
High-performance code generation for stencil computations on
GPU architectures. In International Conference on Supercomputing

(ICS), 2012.

[71] Song-You Hong, Jimy Dudhia, and Shu-Hua Chen. A revised
approach to ice microphysical processes for the bulk parame-
terization of clouds and precipitation. Monthly Weather Review,
132(1), 2004.

[72] Wolfram Research Inc. Mathematica 9.0, 2012.

[73] Guillaume Iooss, Sanjay Rajopadhye, Christophe Alias, and
Yun Zou. Cart: Constant aspect ratio tiling. In Sanjay Rajopad-
hye and Sven Verdoolaege, editors, Proceedings of the 4th Inter-

national Workshop on Polyhedral Compilation Techniques, Vienna,
Austria, January 2014.

[74] François Irigoin, Pierre Jouvelot, and Rémi Triolet. Semantical
interprocedural parallelization: An overview of the pips project.
In Proceedings of the 5th international conference on Supercomput-

ing, pages 244–251. ACM, 1991.

[75] ISO. Iso c standard 1999. Technical report, 1999. ISO/IEC
9899:1999 draft.

[76] Marta Jiménez, José M Llabería, and Agustín Fernández. Regis-
ter tiling in nonrectangular iteration spaces. ACM Transactions

on Programming Languages and Systems (TOPLAS), 24(4):409–453,
2002.

[77] W Kelly, V Maslov, W Pugh, E Rosser, T Shpeisman, and D Won-
nacott. New user interface for petit and other interfaces: user
guide. University of Maryland, 1995.

[78] Wayne Kelly. Optimization within a Unified Transformation Frame-

work. PhD thesis, 1996.

[79] Wayne Kelly and William Pugh. A unifying framework for iter-
ation reordering transformations. In IEEE First Int. Conf. on Al-

gorithms and Architectures for Parallel Processing (ICAPP 95), vol-
ume 1, April 1995.

Bibliography 199

[80] Wayne Kelly, William Pugh, and Evan Rosser. Code generation
for multiple mappings. In The 5th Symposium on the Frontiers of

Massively Parallel Computation, McLean, VA, 1995.

[81] Wayne Kelly, Vadim Maslov, William Pugh, Evan Rosser, Ta-
tiana Shpeisman, and Dave Wonnacott. The Omega calculator
and library, version 1.1.0. 1996.

[82] DaeGon Kim, Lakshminarayanan Renganarayanan, Dave Ros-
tron, Sanjay Rajopadhye, and Michelle Mills Strout. Multi-
level tiling: M for the price of one. In Proceedings of the 2007

ACM/IEEE Conference on Supercomputing, SC ’07, pages 51:1–
51:12, 2007. ISBN 978-1-59593-764-3. doi: 10.1145/1362622.
1362691.

[83] Martin Kong, Richard Veras, Kevin Stock, Franz Franchetti,
Louis-Noël Pouchet, and P Sadayappan. When polyhedral
transformations meet simd code generation. In Proceedings of

the 34th ACM SIGPLAN conference on Programming language de-

sign and implementation, pages 127–138. ACM, 2013.

[84] Sriram Krishnamoorthy, Muthu Baskaran, Uday Bondhugula,
J. Ramanujam, Atanas Rountev, and P. Sadayappan. Effective
automatic parallelization of stencil computations. In Confer-

ence on Programming Language Design and Implementation (PLDI),
pages 235–244, 2007.

[85] David J Kuck, Robert H Kuhn, David A Padua, Bruce Lea-
sure, and Michael Wolfe. Dependence graphs and compiler
optimizations. In Proceedings of the 8th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, pages 207–218.
ACM, 1981.

[86] Chris Lattner and Vikram Adve. Llvm: A compilation frame-
work for lifelong program analysis & transformation. In Code

Generation and Optimization, 2004. CGO 2004. International Sym-

posium on, pages 75–86. IEEE, 2004.

[87] Allen Leung, Nicolas Vasilache, Benoît Meister, Muthu
Baskaran, David Wohlford, Cédric Bastoul, and Richard Lethin.
A mapping path for multi-GPGPU accelerated computers from
a portable high level programming abstraction. In 3rd Work-

shop on General-Purpose Computation on Graphics Processing Units

(GPGPU), GPGPU ’10, New York, NY, USA, 2010. ACM.

[88] Vincent Loechner. Polylib: A library for manipulating parame-
terized polyhedra, 1999.

[89] Vincent Loechner and Doran K Wilde. Parameterized polyhe-
dra and their vertices. International Journal of Parallel Program-

ming, 25(6):525–549, 1997.

200 Bibliography

[90] W. A. Maniatty, B.K. Szymanski, and T. Caraco. Parallel com-
puting with generalized cellular automata. Technical report,
Department of Computer Science, Rensselaer Polytenchic Insti-
tute, 1998.

[91] Vadim Maslov. Delinearization: An efficient way to break multi-
loop dependence equations. SIGPLAN Not., 27(7):152–161, July
1992. ISSN 0362-1340. doi: 10.1145/143103.143130.

[92] Vadim Maslov. Lazy array data-flow dependence analysis. In
Hans-Juergen Boehm, Bernard Lang, and Daniel M. Yellin, edi-
tors, POPL. ACM Press, 1994. ISBN 0-89791-636-0.

[93] Vadim Maslov and William Pugh. Simplifying polynomial con-
straints over integers to make dependence analysis more pre-
cise. Technical report, In CONPAR 94 - VAPP VI, Int. Conf. on
Parallel and Vector Processing, 1994.

[94] Jiayuan Meng and Kevin Skadron. A performance study for
iterative stencil loops on gpus with ghost zone optimizations.
International Journal of Parallel Programming, 39(1):115–142, 2011.

[95] Paulius Micikevicius. 3d finite difference computation on gpus
using cuda. In Proceedings of 2nd Workshop on General Purpose

Processing on Graphics Processing Units, GPGPU-2, pages 79–84,
New York, NY, USA, 2009. ACM. ISBN 978-1-60558-517-8. doi:
10.1145/1513895.1513905.

[96] Anthony Nguyen, Nadathur Satish, Jatin Chhugani, Changkyu
Kim, and Pradeep Dubey. 3.5-d blocking optimization for sten-
cil computations on modern cpus and gpus. In Proceedings of SC

’10, pages 1–13, Washington, DC, USA, 2010. IEEE Computer
Society. ISBN 978-1-4244-7559-9. doi: 10.1109/SC.2010.2.

[97] Daniel Orozco, Elkin Garcia, and Guang Gao. Locality opti-
mization of stencil applications using data dependency graphs.
In Keith Cooper, John Mellor-Crummey, and Vivek Sarkar, ed-
itors, Languages and Compilers for Parallel Computing, volume
6548 of Lecture Notes in Computer Science, pages 77–91. Springer
Berlin Heidelberg, 2011. ISBN 978-3-642-19594-5. doi: 10.1007/
978-3-642-19595-2_6.

[98] Constantine D Polychronopoulos, Milind B Girkar, Moham-
mad Reza Haghighat, Chia Ling Lee, Bruce Leung, and Dale
Schouten. Parafrase-2: An environment for parallelizing, parti-
tioning, synchronizing, and scheduling programs on multipro-
cessors. International Journal of High Speed Computing, 1(1):45–72,
1989.

Bibliography 201

[99] Sebastian Pop, Albert Cohen, and Georges-André Silber. In-
duction variable analysis with delayed abstractions. In High

Performance Embedded Architectures and Compilers, pages 218–232.
Springer, 2005.

[100] Sebastian Pop, Albert Cohen, Cédric Bastoul, Sylvain Girbal,
Georges-André Silber, and Nicolas Vasilache. Graphite: Poly-
hedral analyses and optimizations for gcc. In Proceedings of the

2006 GCC Developers Summit, page 2006, 2006.

[101] L.-N. Pouchet. PolyBench/C 3.2. http://www.cs.ucla.edu/

~pouchet/software/polybench/.

[102] Louis-Noël Pouchet. Interative Optimization in the Polyhedral

Model. PhD thesis, University of Paris-Sud 11, Orsay, France,
January 2010.

[103] Louis-Noël Pouchet. Polyopt, a polyhedral optimizer for the
rose compiler, 2011.

[104] William Pugh. Uniform techniques for loop optimization. In 5th

International Conference on Supercomputing (ICS’91), pages 341–
352. ACM, 1991.

[105] William Pugh and David Wonnacott. An exact method for analysis

of value-based array data dependences. Springer, 1994.

[106] William Pugh and David Wonnacott. Static analysis of upper
and lower bounds on dependences and parallelism. ACM Trans-

actions on Programming Languages and Systems (TOPLAS), 16(4):
1248–1278, 1994.

[107] Fabien Quilleré, Sanjay Rajopadhye, and Doran Wilde. Gen-
eration of efficient nested loops from polyhedra. International

Journal of Parallel Programming, 28(5):469–498, October 2000.

[108] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Syl-
vain Paris, Frédo Durand, and Saman Amarasinghe. Halide:
A language and compiler for optimizing parallelism, locality,
and recomputation in image processing pipelines. In ACM SIG-

PLAN Conference on Programming Language Design and Implemen-

tation, Seattle, WA, June 2013.

[109] Lakshminarayanan Renganarayana and Sanjay Rajopadhye.
Positivity, posynomials and tile size selection. In High Per-

formance Computing, Networking, Storage and Analysis, 2008. SC

2008. International Conference for, pages 1–12. IEEE, 2008.

[110] Lakshminarayanan Renganarayanan, DaeGon Kim, Sanjay Ra-
jopadhye, and Michelle Mills Strout. Parameterized tiled loops
for free. In ACM SIGPLAN Notices, volume 42, pages 405–414.
ACM, 2007.

http://www.cs.ucla.edu/~pouchet/software/polybench/
http://www.cs.ucla.edu/~pouchet/software/polybench/

202 Bibliography

[111] Jon Peddie Research. Qualcomm single largest proprietary gpu
supplier, imagination technologies the leader in gpu ip, arm
and vivante growing rapidly, according to latest report from
jon peddie research.

[112] Jason Sams. Blog post: Renderscript part 2, 2011.

[113] Robert Schreiber and Jack J. Dongarra. Automatic blocking of
nested loops. Technical report, 1990.

[114] Eric Schweitz, Richard Lethin, Allen Leung, and Benoit Meis-
ter. R-stream: A parametric high level compiler. Proceedings of

HPEC, 2006.

[115] Jun Shirako and Vivek Sarkar. Oil and water can mix! expe-
riences with integrating polyhedral and ast-based transforma-
tions. 2013.

[116] Andreas Simbürger and Armin Größliger. On the variety of
static control parts in real-world programs: from affine via
multi-dimensional to polynomial and just-in-time. In Sanjay
Rajopadhye and Sven Verdoolaege, editors, Proceedings of the

4th International Workshop on Polyhedral Compilation Techniques,
Vienna, Austria, January 2014.

[117] G. Smith. Numerical Solution of Partial Differential Equations: Fi-

nite Difference Methods. Oxford University Press, 2004.

[118] Robert Strzodka, Mohammed Shaheen, Dawid Pajak, and Hans-
Peter Seidel. Cache oblivious parallelograms in iterative stencil
computations. In ICS, pages 49–59, 2010.

[119] Robert Strzodka, Mohammed Shaheen, Dawid Pajak, and Hans-
Peter Seidel. Cache accurate time skewing in iterative sten-
cil computations. 2012 41st International Conference on Paral-

lel Processing, 0:571–581, 2011. ISSN 0190-3918. doi: http:
//doi.ieeecomputersociety.org/10.1109/ICPP.2011.47.

[120] A. Taflove. Computational electrodynamics: The Finite-difference

time-domain method. Artech House, 1995.

[121] Yuan Tang, Rezaul Alam Chowdhury, Bradley C Kuszmaul,
Chi-Keung Luk, and Charles E Leiserson. The Pochoir stencil
compiler. In SPAA, pages 117–128. ACM, 2011.

[122] Konrad Trifunović, Albert Cohen, David Edelsohn, Feng Li, To-
bias Grosser, Harsha Jagasia, Razya Ladelsky, Sebastian Pop,
Jan Sjödin, and Ramakrishna Upadrasta. GRAPHITE two years
after: First lessons learned from eal-world polyhedral compila-
tion. In 2nd GCC Research Opportunities Workshop (GROW), 2010.

Bibliography 203

[123] Robert A Van Engelen. Efficient symbolic analysis for op-
timizing compilers. In Compiler Construction, pages 118–132.
Springer, 2001.

[124] Nicolas Vasilache, Cédric Bastoul, and Albert Cohen. Polyhe-
dral code generation in the real world. In International Confer-

ence on Compiler Construction (CC), volume 3923 of LNCS, pages
185–201, Vienna, 2006. Springer.

[125] Nicolas Vasilache, Benoit Meister, Muthu Baskaran, and
Richard Lethin. Joint scheduling and layout optimization to
enable multi-level vectorization. In IMPACT, Paris, France, Jan-
uary 2012.

[126] Nicolas T. Vasilache. Scalable Program Optimization Techniques in

the Polyhedral Model. PhD thesis, Université Paris Sud XI, Orsay,
September 2007.

[127] Anand Venkat, Manu Shantharam, Mary Hall, and Michelle
Strout. Non-affine Extensions to Polyhedral Code Generation.
In International Symposium on Code Generation and Optimization

(CGO), Orlando, FL, United States, 2014.

[128] Sven Verdoolaege. isl: An integer set library for the polyhedral
model. In Komei Fukuda, Joris Hoeven, Michael Joswig, and
Nobuki Takayama, editors, Mathematical Software (ICMS’10),
LNCS 6327, pages 299–302. Springer-Verlag, 2010.

[129] Sven Verdoolaege. Counting affine calculator and applications.
In C. Alias and C. Bastoul, editors, 1st International Workshop on

Polyhedral Compilation Techniques (IMPACT), Chamonix, France,
2011.

[130] Sven Verdoolaege. Integer sets and relations: from high-level
modeling to low-level implementation, 2013. Spring School on
Polyhedral Code Analysis and Optimizations.

[131] Sven Verdoolaege. Integer set library: Manual - version 0.12.1,
2014.

[132] Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Vincent Loech-
ner, and Maurice Bruynooghe. Counting integer points in para-
metric polytopes using Barvinok’s rational functions. Algorith-

mica, 48(1):37–66, June 2007.

[133] Sven Verdoolaege, Gerda Janssens, and Maurice Bruynooghe.
Equivalence checking of static affine programs using widening
to handle recurrences. In Computer Aided Verification 21, pages
599–613. Springer, June 2009.

204 Bibliography

[134] Sven Verdoolaege, Martin Palkovič, Maurice Bruynooghe,
Gerda Janssens, and Francky Catthoor. Experience with widen-
ing based equivalence checking in realistic multimedia systems.
Journal of Electronic Testing, 26(2):279–292, 2010.

[135] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Igna-
cio Gómez, Christian Tenllado, and Francky Catthoor. Polyhe-
dral parallel code generation for CUDA. ACM Transactions on

Architecture and Code Optimization, 9(4):54:1–54:23, January 2013.
ISSN 1544-3566. doi: 10.1145/2400682.2400713.

[136] Robert P Wilson, Robert S French, Christopher S Wilson,
Saman P Amarasinghe, Jennifer M Anderson, Steve WK Tjiang,
Shih-Wei Liao, Chau-Wen Tseng, Mary W Hall, Monica S Lam,
et al. Suif: An infrastructure for research on parallelizing and
optimizing compilers. ACM Sigplan Notices, 29(12):31–37, 1994.

[137] Michael E Wolf and Monica S Lam. A data locality optimizing
algorithm. ACM Sigplan Notices, 26(6):30–44, 1991.

[138] Michael E Wolf and Monica S Lam. A loop transformation
theory and an algorithm to maximize parallelism. Parallel and

Distributed Systems, IEEE Transactions on, 2(4):452–471, 1991.

[139] Michael Wolfe. Iteration space tiling for memory hierarchies. In
Proceedings of the Third SIAM Conference on Parallel Processing for

Scientific Computing, pages 357–361. Society for Industrial and
Applied Mathematics, 1987.

[140] Tomofumi Yuki, Gautam Gupta, DaeGon Kim, Tanveer Pathan,
and Sanjay Rajopadhye. AlphaZ: A system for design space ex-
ploration in the polyhedral model. In Proceedings of the 25th In-

ternational Workshop on Languages and Compilers for Parallel Com-

puting, 2012.

[141] Xing Zhou, Jean-Pierre Giacalone, María Jesús Garzarán,
Robert H. Kuhn, Yang Ni, and David Padua. Hierarchical over-
lapped tiling. In Proceedings of the 10th Intl. Symp. Code Gen. and

Opt., CGO ’12, pages 207–218, New York, NY, USA, 2012. ACM.
ISBN 978-1-4503-1206-6. doi: 10.1145/2259016.2259044.

[142] Wei Zuo, Peng Li, Deming Chen, Louis-Noël Pouchet, Shunan
Zhong, and Jason Cong. Improving polyhedral code genera-
tion for high-level synthesis. In International Conference on Hard-

ware/Software Codesign and System Synthesis, 2013.

	Dedication
	Résumé
	Abstract
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Figures

	List of Tables
	List of Tables

	List of Listings
	List of Listings

	List of Acronyms
	List of Acronyms

	Introduction
	1 Introduction
	1.1 Outline

	Background
	2 Polyhedral Compilation
	2.1 Mathematical Foundations
	2.1.1 Integer sets
	2.1.2 Integer maps
	2.1.3 Named unions sets/named union maps
	2.1.4 Libraries for integer sets / maps

	2.2 Model and Transform Imperative Programs
	2.2.1 An illustrative example
	2.2.2 What programs can be modeled?
	2.2.3 The polyhedral representation
	2.2.4 Transformations

	Tilings and Optimizations for Stencils
	3 Stencil Computations
	3.1 What are Stencil Computations?
	3.2 Tiling of Stencil Computations
	3.3 Related Work
	3.4 Our Work on Stencil Computations

	4 Split Tiling
	4.1 Overview
	4.2 Preprocessing
	4.3 The Split Tiling Schedule
	4.3.1 Core algorithm
	4.3.2 Tile shape simplification
	4.3.3 Multi-statement loop nests

	4.4 CUDA Code Generation
	4.4.1 Shared memory usage
	4.4.2 Instruction level parallelism
	4.4.3 Full/partial tile separation

	4.5 Summary

	5 Hybrid Hexagonal/Parallelogram Tiling
	5.1 Overview
	5.2 The Hybrid Hexagonal/Parallelogram Schedule
	5.2.1 Hexagonal tiling
	5.2.2 The parallelogram tile schedule
	5.2.3 Intra-tile schedules
	5.2.4 Hybrid tiling
	5.2.5 Tile size selection

	5.3 CUDA Code Generation
	5.3.1 Generating CUDA code
	5.3.2 Shared memory
	5.3.3 Interleaving computations and copy-out
	5.3.4 Stencil specific code generation heuristics

	5.4 Summary

	6 Unification with diamond tiling
	6.1 Diamond Tiling
	6.1.1 The pluto optimizer
	6.1.2 The diamond tiling extensions
	6.1.3 Relation between tile sizes and wavefronts
	6.1.4 Optimal tiles with default wavefront

	6.2 Unified Diamond and Hexagonal Tiling
	6.3 Tile Sizes that Maximize Compute/Communication
	6.4 Summary

	7 Experimental Results
	7.1 Split-tiling
	7.2 Hybrid-Hexagonal
	7.2.1 Comparison with state-of-the-art tools
	7.2.2 Hybrid tiling and shared memory

	7.3 Summary

	Polyhedral Building Blocks
	8 The Concept
	9 Polyhedral Extractor
	9.1 Overview
	9.2 Constructing a Polyhedral Representation
	9.2.1 Access relations
	9.2.2 Conditions
	9.2.3 Loops
	9.2.4 Schedule

	9.3 Additional Features
	9.3.1 CLooG specific features
	9.3.2 Support for unsigned integers

	9.4 Related Work
	9.5 Limitations and Future Work
	9.6 Summary

	10 AST Generation
	10.1 A new approach to AST generation
	10.2 Input
	10.3 Abstract Syntax Tree
	10.4 New AST Generation features
	10.4.1 Fine grained option mechanism
	10.4.2 Isolation
	10.4.3 Polyhedral unrolling
	10.4.4 Partial Unrolling
	10.4.5 Generating AST Expressions

	10.5 Experimental Results
	10.5.1 Existentially quantified variables
	10.5.2 Performance of AST generation strategies
	10.5.3 Generation Time

	10.6 Related Work
	10.7 Summary

	11 Schedule Trees
	11.1 Schedule Uses
	11.1.1 Original execution order
	11.1.2 Transformations
	11.1.3 AST generation

	11.2 Schedule Representations
	11.2.1 Properties
	11.2.2 Comparison

	11.3 Schedule Tree Representation
	11.3.1 Nodes
	11.3.2 Operations

	11.4 Hybrid hexagonal-parallelogram tiling
	11.5 Summary

	Low-level Compilers
	12 Contributions to LLVM / Polly
	12.1 Compute out
	12.2 AST Generation
	12.3 GPolly - Automatic GPU offloading
	12.4 Representing parallelism

	13 Optimistic delinearization
	13.1 Motivating example
	13.2 Problem statement
	13.3 Array views with single-parameter sizes
	13.3.1 Multiple array references
	13.3.2 Array sizes in subscript expressions
	13.3.3 Arrays of size A[*][1 P1][2 P2]

	13.4 Arrays of size ``parameter + constant''
	13.5 Implementation
	13.6 Experimental evaluation
	13.7 Related work
	13.8 Summary

	Conclusion
	14 Conclusion
	14.1 Personal contributions
	14.2 Future work

	Appendix
	Bibliography

