
HAL Id: tel-01144630
https://theses.hal.science/tel-01144630

Submitted on 22 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Motion planning and synthesis for virtual characters in
constrained environments

Steve Tonneau

To cite this version:
Steve Tonneau. Motion planning and synthesis for virtual characters in constrained environments.
Computer science. INSA de Rennes, 2015. English. �NNT : 2015ISAR0004�. �tel-01144630�

https://theses.hal.science/tel-01144630
https://hal.archives-ouvertes.fr

Thèse

THESE INSA Rennes
sous le sceau de l’Université européenne de Bretagne

pour obtenir le titre de

DOCTEUR DE L’INSA DE RENNES

Spécialité : Informatique

présentée par

Steve Tonneau
ECOLE DOCTORALE : Matisse

LABORATOIRE : IRISA

Synthèse et planiication de
mouvement pour des

personnages virtuels en
environnements contraints

Motion planning and

synthesis for virtual

characters in constrained

environments

Thèse soutenue le 27.02.2015
devant le jury composé de :

Bruno Arnaldi
Professeur à l’INSA Rennes / Président
Jean-Paul Laumond
Directeur de recherche au LAAS-CNRS / Rapporteur
Marcelo Kallmann
Professeur associé à l’université de Californie / Rapporteur
Taku Komura
Professeur associé à l’université d’Edimbourg / Examinateur
Arjan Egges
Professeur associé à l’université d’Utrecht / Examinateur
Julien Pettré
Chargé de recherche à Inria Rennes / Co-encadrant de thèse
Franck Multon
Professeur à l’université de Rennes 2 / Directeur de thèse

Remerciements

(English version follows for the jury members)

Premièrement je voudrais remercier les membres de mon jury: Jean-Paul Laumond,
Marcelo Kallmann, Bruno Arnaldi, Taku Komura et Arjan Egges. Je vous suis recon-
naissant d’avoir accepté ma requête, et honoré du réel investissement qui a été le vôtre,
s’agissant de la relecture du manuscrit, des discussions avant et après la soutenance,
ou de votre suivi dans la continuité de mes travaux.

First of all, I would like to thank the members of my jury: Jean-Paul Laumond,
Marcelo Kallmann, Bruno Arnaldi, Taku Komura and Arjan Egges. I’m sincerely
grateful and honored in many ways: I really appreciated the quality of your feedback
on the manuscript, the presentation, as well as the discussions we had before and after
the defense.

——————

Ce ne sont pas les étudiants de Mimetic / Hybrid qui me contrediront: des obser-
vations menées sur une population masculine de 3 doctorants en informatique, âgés de
23 à 28 ans, se généralisent naturellement à l’ensemble de la population de la planète.

Aussi, mon unique expérience de 3 ans dans un laboratoire de recherche me permet
de tirer de grandes conclusions quant à la vie du doctorant, et celle de chercheur en
général.

La première, c’est qu’il est plus important de choisir un bon encadrant qu’un sujet de
thèse pertinent. Pour celà, une méthode infaillible (100% de réussite sur la population
étudiée): écrire un mail à tout l’IRISA en disant qu’on veut faire une thèse, sans
donner plus de précisions. Le seul à réagir positivement à ce monument de näıveté
s’appellera à coup sûr Julien Pettré, et c’est lui qu’il faudra remercier en premier, pour
son amitié, pour la confiance accordée, la patience et l’obstination dont il a fait preuve
pour l’obtention de notre bourse, mais aussi pour la patience et l’obstination dont il a
fait preuve à mon égard: tu l’as eu ton planner, et c’est pas dommage!

La deuxième conclusion, c’est qu’un bon directeur de thèse, c’est pas mal non plus.
Si sur son calendrier, malgré le ciel qui lui tombe sur la tête (au sens propre), et un
minimum syndical de 2 réunions à la même heure par jour, il se débrouille toujours
pour caler le nom de ces thésards, foncez bille en tête: avec une probabilité de 1, il
s’agit de Franck Multon. Merci à lui pour nos interactions (actes à paraitre sous le nom
”humour fin de sportif, Star Wars et cinématique inverse”).

L’autre certitude avec la thèse, c’est que pour l’accomplir, il faut les meilleurs dans
son équipe: Fabien (mon pilier, et pas que de bar, c’est rien de le dire), Ferran (best

1

2 Remerciements

party planner ;)), Anne Hélène (Ctrl Alt ... J ???), Teofilo (Go Finland!), Rozenn (je
reviens chaque année jusqu’à ce qu’on gagne ce quiz!), Manu (soutien indéfectible à son
colloc à terre), Kevin (tout est dans le prénom ;)), Merwan (la force tranquile), Julien
B (vainqueur par ko de Ben Stiller au défi défilé), David (chips parce que poivron),
Hui-Yin (best puzzlescript award), Ana Lucia (officemate of the year), Huyen (bonne
année!), Loiez (mon clone), Nathalie (parce que tout), Marc (je te pardonne), Fabrice
(encore merci pour l’arbre), Charles (on va finir par le faire cet article).

Parmi les ”extérieurs rennais”, mention spéciale à Sylvain (mon deuxième pilier)
Fanny, Anna, Hélène, et last but not least Béné.

Pas besoin de remercier mes autres amis, vous ne lirez jamais ces remerciements, et
c’est bien pour ça que je vous aime ;).

Merci à mes parents et à mes frères, vous savez pourquoi.
Et merci à Anneli. Ca, je ne le dirai jamais assez.

Contents

Remerciements 1

1 Introduction 9

2 Related work 17
2.1 Robotics contributions for synthesising motions in constrained environ-

ments . 18
2.1.1 Geometric motion planning . 19
2.1.2 Planning in constrained environments 21
2.1.3 Motion planning for humanoid robots 22

2.1.3.1 Strong heuristics for cyclic motions in simple environ-
ments . 23

2.1.3.2 Contact discretization for constrained environments . . 24
2.1.4 Conclusion . 27

2.2 Example based methods for synthesizing natural motions in constrained
environments . 27
2.2.1 Motion editing techniques . 27
2.2.2 Combining motion planning and example based methods in con-

strained environments . 30
2.2.3 Conclusion . 32

2.3 Model based approaches for natural motions 33
2.3.1 Dynamic models . 33
2.3.2 Biomechanical models . 33
2.3.3 Conclusion . 34

2.4 General conclusion on the related work 35

3 Overview of our framework 37
3.1 Technical problem statement . 37
3.2 EFORT, a heuristic and a method for task efficient contact generation . 38

3.2.1 How to evaluate the “task efficiency” of a configuration? 38
3.2.2 How to generate a task efficient configuration in a constrained

environment? . 38
3.3 A multi stage framework for task efficient planning in constrained envi-

ronments . 39

5

6 Contents

4 Notation conventions and character representation 43

4.1 Notation conventions and mathematical tools 43

4.1.1 Notation conventions . 43

4.1.2 Polytope and residual radius . 44

4.2 Environment definition . 45

4.3 Virtual character definitions and representations 45

4.3.1 Skeleton definition . 45

4.3.2 Character configuration . 45

4.3.3 Character Range Of Motion (ROM) 47

4.3.4 Abstraction of a virtual character 48

4.4 Additional useful definitions . 50

4.4.1 The configuration space . 50

4.4.2 Path, path interpolation, and trajectory 51

5 A heuristic for task efficient contact configurations: the Extended
FORce Transmission ratio (EFORT) 53

5.1 Additional definitions . 54

5.1.1 The jacobian matrix . 55

5.1.2 The velocity ellipsoid . 55

5.1.3 The force ellipsoid . 56

5.1.4 Sample and sample container . 57

5.2 EFORT: a new heuristic for task efficiency 57

5.2.1 The force transmission ratio . 57

5.2.2 EFORT: the Extended FORce Transmission ratio 58

5.3 Real time generation of contact configurations 59

5.3.1 Offline generation of random limb configurations 60

5.3.2 Online computation of task efficient contact configurations . . . 61

5.4 Discussion . 62

5.4.1 Advantages and limitations of EFORT. 63

5.4.2 Relevance of EFORT as a heuristic. 63

5.4.3 Applications and future improvements 64

6 Stage 1: A Reachability Based Probabilistic Road Map (RB-PRM) 65

6.1 Additional definitions . 67

6.1.1 Configurations of RB-PRM . 67

6.1.2 The reachability condition . 67

6.2 Generating RB-PRM . 67

6.2.1 Sampling the configuration space 68

6.2.2 Graph construction . 70

6.2.3 Connecting nodes . 72

6.2.4 Conclusion . 73

6.3 Online request and trajectory generation 74

6.3.1 Path request using the A* algorithm 74

6.3.2 Path refinement and simplification 74

Contents 7

6.3.2.1 Path pruning . 74

6.3.2.2 From a piecewise linear path to a shortcut spline tra-
jectory . 76

6.3.3 Conclusion . 77

6.4 Discussion . 78

6.4.1 Interest of RB-PRM over other probabilistic planners 78

6.4.2 Genericity and relevance of RB-PRM 79

7 Stage 2 and 3: Generation of a task efficient contact trajectory 81

7.1 Two criteria for contact duration and dynamic balance 83

7.1.1 A simple heuristic for contact duration 83

7.1.2 A heuristic for dynamic balance 84

7.2 Stage 2: Extension a collision-free trajectory into a task efficient contact
sequence . 85

7.2.1 Extension algorithm. 86

7.2.2 A modified contact generator, including new heuristics for task
efficiency . 89

7.3 Stage 3: Computing the final trajectory 89

7.3.1 Presentation of ITOMP and motivation. 89

7.3.2 Adaptation of ITOMP into our framework 90

7.4 Discussion . 91

8 Results 93

8.1 Stand alone use of our task efficient contact generator 93

8.1.1 Implementation details . 93

8.1.2 Test scenarios . 94

8.1.3 Comparison against the closest distance heuristic 96

8.1.4 Performance analysis . 98

8.2 Computation of the contact trajectory 99

8.2.1 Implementation details . 99

8.2.2 Test scenarios . 100

8.2.3 Performance analysis . 101

8.3 Discussion . 104

8.4 Discussion on ITOMP integration . 105

9 Conclusion 107

9.1 Findings and contributions . 108

9.1.1 How to generate rapidly a contact configuration compatible with
a force exertion task in an unknown environment? 108

9.1.2 How to compute relevant contact trajectories for a force exertion
task in a constrained environment? 109

9.2 Findings implications . 109

9.3 Limitations of the study . 110

9.4 Recommendation for future research . 110

8 Contents

9.5 A final word . 111

10 Resumé long de la thèse en francais 113
10.1 Introduction . 113
10.2 Définitions . 118

10.2.1 Environnement. 118
10.2.2 Définition et représentation d’un personnage virtuel 118

10.2.2.1 Squelette . 118
10.2.2.2 Configuration . 119
10.2.2.3 Abstraction d’un personnage virtuel 119

10.3 EFORT . 119
10.3.1 EFORT: une nouvelle heuristique pour évaluer la compatibilité

d’une configuration. 120
10.3.2 Génération de contact en temps réel 121

10.4 Etape une de notre planificateur: RB-PRM 121
10.5 Etape 2 et 3: génération d’une trajectoire de contacts 123

10.5.1 Etape 2: génération d’une séquence de contacts 123
10.5.2 Etape 3: optimisation . 124

10.6 Résultats . 124
10.6.1 Scénarios de test . 124

10.7 Conclusion . 126

Author’s publications 129

Bibliography 137

List of Figures 139

List of Tables 145

Chapter 1

Introduction

With the growing complexity of virtual environments comes the need to provide a vir-
tual character with a larger set of motion capabilities. Additionally to walking, running
and jumping, state of the art virtual applications require characters to climb, crawl,
pull or push objects... In the video game Assassin’s creed TM for instance, a character,
controlled by the player or the computer, can climb among the walls of an apparently
large variety of buildings or navigate through the giant trees of a forest (Figure 1.1 -
left).

Figure 1.1: Left: Examples of tree navigation and climbing motions in the video game
Assassin’s creed. © Ubisoft. Right: The bipedal robots Chimp and Schaft at the
DARPA challenge. © DARPA challenge.

Similarly, in the robotics field, humanoid robots leave the safety of research labo-
ratories and are required to navigate among complex environments. An illustration is

9

10 Introduction

the DARPA challenge, where robots are expected to perform complex tasks such as
removing debris while navigating across uneven terrains (Figure 1.1 - right).

An issue common to robotics and computer graphics is therefore to provide a virtual
character (or a robot) with the ability to automatically perform a given motion task in
a constrained environment. In this context, the challenges are numerous: addressing
this issue requires finding a natural looking, feasible trajectory among the obstacles.
The trajectory must prevent the character (robot) from losing balance or colliding with
the environment, while creating the contacts necessary to achieve the motion.

This is the issue we address in this thesis, with a focus on computer graphics
applications.

Motivation and objectives

The computer graphics and robotics fields have addressed autonomy of motion in dif-
ferent ways, each one reflecting the primary objectives that were pursued.

In an interactive context such as video games, the main concern is performance: a
simulation must be reactive to the inputs of the player. Additionally, the quality of
the animations is essential. Any unnatural animation or artefact would immediately
be noticed and have a negative impact on the user experience.

For these reasons, a majority of techniques in the computer graphics field belongs
to the family of example-based methods. In this approach a large part of the work is
done before the execution of the simulation. Each motion is carefully hand designed by
an animator. Another option is to record the motion performed by a real human being
using a motion capture system (Figure 1.2). The animation is then replayed when the
simulation triggers it. This approach provides animators with a complete control of
the motion style, since it is the same as the one recorded. The resulting motion is not
necessarily realistic or physically accurate, but it is accepted as plausible by the user.

Figure 1.2: Motion capture systems allow to replay the motions of real actors in a
virtual environment. © Quantic dreams.

However the drawback of these approaches is that they constrain the design of the
environment to fit to the recorded motion. Some motion adaptation methods exist (see
for instance [WP95, KGP02]), but they only allow small variations from the original

Introduction 11

motion. This can be seen in a state of the art video game such as Assassin’s Creed TM

(Figure 1.1): A climbing character can only move along a vertical or horizontal line (no
diagonal motions), and the height separating two grasping points is fixed, triggering a
specific recorded motion to reach it. In this case the diversity is brought by the work
of the artists who managed to design various environments which all respect the same
constraints. Similarly, the geometry of the forest trees quickly appears stereotypical.

Providing virtual characters with more autonomy of motion would allow to remove
the constraints associated with the design of interactive virtual environments, give more
freedom to the artists and enhance the player experience. A valid solution should be
fast and produce plausible animations.

Conversely, some robots are ultimately designed to navigate in unknown environ-
ments (an extreme example being the exploration of Mars by the robot Curiosity).
The main concern of robotics is to provide robots with capacities of reasoning and
planning. Robotics contributions have proposed a large variety of motion planners:
[KSLO96, LaV98, HBL05, BRL+04, EKMG08]. Motion planners are designed to com-
pute a physically accurate trajectory which allows a robot to navigate through an
unknown environment. The main strength of such planners is their genericity: these
procedural methods can find solutions in a large variety of environments. However the
main drawback is that the resulting motions often look unnatural to a human observer.
This makes them hard to adapt to computer graphics applications.

Providing robotics motion planners with means to synthesize more natural looking
motions while preserving their robustness in constrained environments would make
them suited for computer graphics applications.

Objective examples: We consider two kind of applications, challenging for the exist-
ing motion techniques. On one hand we consider real time, reactive contact generation
(Figure 1.3); on the other hand we consider global motion planning (Figure 1.4).

In Figure 1.3 for instance, a virtual character is controlled by a human player. His
input triggers the task of pushing the cupboard (green overlining). In this context we
address the following issue: generating as fast as possible a target contact configuration
allowing to achieve the task, even under strong environmental constraints.

The two scenes shown in Figure 1.4 present a climbing wall, and we consider the
task of reaching its top. The location of the potential grasps differ from one scene to
another.

These examples are challenging when no assumption on the environment can be
made, because it is impossible to precompute the motion. Indeed, naive example based
approaches could only provide a solution if a motion had been recorded (or hand de-
signed) for each setup, because the sequence of contacts necessary to achieve the ob-
jective varies too much. A motion planner might find a solution in every case, but it
would not look natural.

12 Introduction

Figure 1.3: We want to address the issue of generating relevant contacts for pushing the
cupboard within real time constraints, in spite of the constraints of the environment
(bottom).

To sum up, the examples we address are characterized by the following constraints:

• They are achieved along constrained environments, presenting high risk of colli-
sion with external elements (a climbing wall, a chair and a table...);

• They require important force exertion (climbing, standing up...);

• They are performed through an acyclic sequence of contacts: contrary to cyclic
motions such as walking (for a human, after stepping with one foot, the next step
is always performed with the other foot), no assumption can be made about the
next contact that must be created.

Therefore in this context, a useful motion planner should be able to:

• Find solutions in unknown constrained environments, with numerous obstacles
and narrow passages;

• Generate task efficient contact configurations which, in our case, allow to exert
important forces (Figure 1.5);

• Compute acyclic, non deterministic sequences of contacts.

Therefore, the objective of this thesis is to propose a planner combining those three
properties.

Introduction 13

Figure 1.4: A challenging climbing scenario for existing animation methods.

Figure 1.5: The importance of task efficiency is illustrated in this standing up task. We
need to propose a heuristic that would allow to choose the configurations for the limbs
displayed on the right panel, which seem more suited for a vertical force exertion task.

Contributions

We propose a framework to address our objective examples. In this thesis we consider
reactive contact generation (Figure 1.3) as a sub question of the more complex problem
of motion planning.

Therefore, our first step is the proposal of a real time generator for contact config-
urations. Given a current configuration in the environment and a direction of motion,
our method computes a suitable contact configuration for the character. The method
does not require example motions, and is therefore generic and automatic. To achieve
this we propose a new heuristic called the Extended FORce Transmission ratio, or
EFORT.

Our second step is the design of a global motion planner built upon this contact
generator (Figure 1.6). As an input, the user provides a task, described as a start
configuration (Figure 1.6 - purple character) and a goal configuration (Figure 1.6 -
blue character). Our framework outputs a contact trajectory described by a sequence
of task efficient contact configurations (Figure 1.6 - middle). It is then refined into
a dynamically stable contact trajectory allowing the virtual character to perform the
task (Figure 1.6 - right).

14 Introduction

Task efficient motions in constrained environments

Task specification Collision free
trajectory

Task efficient
contact trajectory

Optimized
dynamic trajectory

(1)

RB-PRM

(2)

EFORT

(3)

Motion
optimization

Figure 1.6: A three stage framework for the automatic computation of contact trajec-
tories in constrained environments.

The framework is divided in three stages:

• In the first stage, we propose a motion planning algorithm which rapidly computes
a promising trajectory to perform the motion task (Figure 1.6 - 1). The planner
is called RB-PRM, which stands for Reachability Based Probabilistic Road Map.
Using a character abstraction (represented by the cylinders in the Figure), RB-
PRM samples configurations which are close enough to the environment to allow
the creation of contacts while avoiding collision. It uses them to compute a
collision free path that connects the start and goal configurations. At this stage,
no contacts are created. RB-PRM provides our planning solution with the first
required property: thanks to its probabilistic approach, it can find solutions in
constrained environments. In the rest of this thesis, all figures related to RB-PRM
are identified with an orange overline.

• In the second stage the collision free trajectory is transformed into a sequence of
task efficient contact configurations (Figure 1.6 - 2), using our contact generator.
Thanks to this step, our planner is provided with the two other properties: it can
compute a sequence of acyclic, task efficient contact configurations. In the rest
of this thesis, all figures related to EFORT are identified with a green overline.

• In the third stage this trajectory is used as a guide to an optimization based
motion planner method. This allows to produce a smoother and more balanced
trajectory (Figure 1.6 - 3). To achieve this last stage, we use the ITOMP op-
timization framework [PPM12]. This integration is done in the context of an
ongoing collaboration with the University of North Carolina (UNC). The key
objective is to demonstrate that the contributions we propose can provide such
frameworks with the capacity of generating motions in constrained environments.

Introduction 15

This framework allows us to propose two contributions:

Contribution 1: With EFORT we provide a method for the real time generation of
task efficient contact configurations. This effectively enhances the autonomy of motion
of virtual characters controlled by the player. EFORT can be used independently from
our framework to be integrated within any animation solution. In a video game applica-
tion, it could compute appropriate configurations in arbitrary geometries. This would
allow more variation in the environments proposed and enhance the user experience.

Contribution 2: We propose a three stage framework to compute contact trajecto-
ries in constrained environments (Figure 1.6). By biasing the search of a valid trajectory
with simple heuristics we are able to rapidly generate a promising guess in any envi-
ronment. This allows us to provide plausible motions in constrained environments for
virtual characters controlled by the simulation.

Summary of chapters

This thesis is organized as follows:
In Chapter 2 we provide a review of the methods proposed in robotics and computer

graphics relative to motion synthesis, with a focus on constrained environments. We
consider our objective examples and analyze how state of the art methods perform
against them.

In Chapter 3, we give an overview of the methods proposed in this thesis. Each
stage is then precisely detailed in their specific chapter.

In Chapter 4, we give several notation conventions and mathematical definitions
used throughout the thesis; We also describe in details the character models used.

In Chapter 5, we present a method for the real time generation of task efficient
contact configurations. We give the details of the method and explain how it can be
integrated within an existing animation system;

In Chapter 6, we present the Reachability-Based Probabilistic Road Map, a mo-
tion planner designed to efficiently compute promising collision free trajectories in an
arbitrary constrained environments (Figure 1.6 - 1);

In Chapter 7, we detail the second and third stages of our framework. First we detail
how the EFORT method is used to transform a collision free trajectory into a contact
trajectory (Figure 1.6 - 2); Then we present the trajectory optimization framework
used in the final stage (Figure 1.6 - 3).

In Chapter 8, we present the results obtained with our framework, and discuss the
ongoing integration with the ITOMP framework;

Finally, this thesis is concluded in Chapter 9. We discuss the advantages and limits
of our framework, and present the improvements we intend to develop in future work.

16 Introduction

Chapter 2

Related work

Motion synthesis has been addressed by many scientific fields and been investigated
for many years, resulting in numerous contributions and formalisms. The selective
review we propose in this chapter focuses on automatic synthesis of plausible motions
for virtual characters in constrained environments (Figure 2.1). In so doing, we explore
contributions made by different fields:

• Research in the robotics field has introduced the notion of configuration space,
a useful formalism which allows to characterize mathematically the motion plan-
ning problem. Several algorithms were proposed to explore this high dimensional
space. Over time, these algorithms have been specialized to address specific is-
sues, such as humanoid motion in constrained environments. In section 2.1, we
underline several properties which make this class of algorithms appealing for our
problem. However, we also underline the fact that those methods do not consider
the naturalness of the resulting motion.

• In section 2.2, we review the computer graphics contributions which address the
issue of synthesizing natural motions in constrained environments. The most
popular approaches are called “example based methods”. Instead of exploring the
configuration space, example based approaches restrain the search for a solution
to a database of reference motions, considered to be natural. In order to adapt
these motions to new environments, they are concatenated, blended or deformed.
We show that while they manage to synthesize natural motions, example based
approaches do not present the properties of completeness proposed by robotics
planners. Therefore they cannot be adapted to constrained environments.

• Finally, in section 2.3 we consider another class of approaches for synthesizing
natural motions. As opposed to example based (or data driven) methods, several

17

18 Chapter 2

Figure 2.1: Our three objective scenarios: climbing a wall, crossing an obstacle race and
pushing a cupboard. In the pushing scenario, the task can be formulated interactively
by a player using a joystick.

contributions use a model approach, inspired from biomechanics. We observe
that the definition of a natural motion varies with the objectives and review seve-
ral models for achieving human-like motions. We show that these contributions
address cyclic motions or manipulating tasks, but that they are rarely integrated
within full body motion planners for constrained environments, which is one of
the goals of this thesis.

In section 2.4, this chapter is concluded with a summary of the reviewed contribu-
tions, a comparison of their properties regarding the requirements of our problem.

2.1 Robotics contributions for synthesising motions in con-
strained environments

To synthesize motion in constrained environments, it is necessary to compute a collision
free trajectory between a starting position and a goal position. This issue is commonly
known as the motion planning problem. A classic illustration is given by the “piano
movers” problem, formulated as follows in [SS83]: “Given a body B, and a region
bounded by a collection of “walls”, either find a continuous motion connecting two
given positions and orientations of B during which B avoids collision with the walls, or
else establish that no such motion exists.” The complexity of the problem stems from
the infinity of postures that a character can take in a given environment. In this section
we review the solutions proposed in the robotics field, based on the configuration space
formalism. We start by explaining the formalism, before describing the early geometric
algorithms proposed to explore it, upon which modern contributions are based. We then
review how these algorithms were modified to specifically address motion synthesis in
constrained environments. We finally present the contributions which explored the
configuration space in order to synthesize balanced trajectories for humanoid robots.

Robotics contributions for synthesising motions in constrained environments 19

Figure 2.2: A humanoid robot with 31 + 6 = 37 degrees of freedom. Each colored dot
represents a degree of freedom around an axis.

2.1.1 Geometric motion planning

The most common formulation of the motion planning problem is proposed by Lozano-
Pérez, who introduces the notion of configuration space in [LP83]. We consider a
kinematic chain composed of N degrees of freedom, that we call a robot, or a virtual
character. An example of robot is given in Figure 2.2. The position and orientation
of all the segments of the robot, which we call a configuration, can be described by
a point q in the configuration space C ⊂ RN . We define Cfree ⊂ C as the space of
configurations that do not collide with the environment (Figure 2.3 - left). Similarly,
Cobs ⊂ C is the space of colliding configurations (Figure 2.3 - right).

With these definitions, the geometric issue of finding a collision free trajectory
in a 3D environment (or workspace), is formulated into the search of a trajectory
q(t) ∈ Cfree between two points in the configuration space (Figure 2.4).

Based on this notion of configuration space, a lot of algorithms have been developed,
of which Lavalle’s book [LaV06] stands as the most recent survey. Probabilistic algo-
rithms have demonstrated their ability to deal with complex environments, comprising
numerous obstacles and narrow passages. The most famous probabilistic planners are
the Probabilistic Road Maps (PRM) [KSLO96] and the Rapidly exploring Random
Trees (RRT) [LaV98]. One strong property of probabilistic planners is the complete-
ness of their algorithm: if a solution exists, the probability of finding it converges to 1,
given an infinite amount of time.

Probabilistic methods generate random configurations in Cfree and connect them
within a graph structure, where the nodes represent the sampled configurations (Fi-
gure 2.5). Two nodes are connected according to a given proximity predicate, usually
called a “local steering method”. It uses basic means such as linear interpolation to
assert that a continuous, collision free path exists between the connected configurations.

To find a path between a start configuration and a goal configuration, the graph
is searched. If a solution exists, it is returned as a discrete sequence of configurations
which indicates how to traverse the graph.

Probabilistic methods can be used to find paths in unknown environments. However,

20 Chapter 2

Obstacle

Robot in Cobs

Robot in Cfree

a) b)

c) d)

Figure 2.3: a) The configuration of the orange robot belongs to Cobs because it collides
with the obstacles; b) the configuration of the grey robot belongs to Cfree because it
does not collide with the obstacles; c),d) an abstract 2D representation of the high
dimensional configuration space of the robot.

Figure 2.4: Motion planning can be viewed as the search of a collision free path between
two points of the configuration space.

Robotics contributions for synthesising motions in constrained environments 21

Figure 2.5: An example of the generation of a PRM graph. Configurations are randomly
sampled until a given condition is met (such as a target number of configurations). Two
configurations are connected together if a collision free path can be found between them.

they need adaptation to be efficient in constrained environments: in the presence of
a lot of obstacles, performances of uniform sampling strategies can be dramatically
affected due to the high probability of generating configurations in collision with the
environment.

2.1.2 Planning in constrained environments

Interesting variations of the generic probabilistic motion planners algorithms have been
developed to address specific cases and applications. Specifically, several contributions
have been proposed for manipulator robots. Such robots are deployed in factories,
where they move their robotic arm to perform assembly tasks. In these constrained
environments, the risk of collision is high. But additionally to finding a collision free
path between the effector and a target location, manipulation planners have to consider
the objects being manipulated [SLCS04]. Object manipulation is a hard problem with
several specificities, and is not studied in this work.

In [KM04], Kallmann et al. introduce the dynamic roadmap approach for manipu-
lator robots. The idea is to generate a roadmap in the reachable workspace of a given
limb of a robot, independently of the environment. At runtime, when a path from
a configuration to another is requested, the roadmap is updated accordingly to the
current situation: upon request if the chosen path is colliding with the environment,
the roadmap is updated by removing the incriminated nodes and a new request is per-
formed. This approach allows for good performances and addresses dynamic situations,
such as moving obstacles.

When there are many obstacles in the environment, uniform sampling of the work-
space is not appropriate: the probability of generating collision free configurations in
narrow passages is low. Several approaches propose a way to bias the sampling to
obtain a higher proportion of interesting configurations [HLM97].

In this case, sampling near obstacles configurations is an efficient way to improve
the coverage of the configuration space [HST94, AW96, YTEA]. In [AW96] Amato et
al. introduce the Obstacle Based PRM (OBPRM). As shown in Figure 2.6, the idea
of OBPRM is to explicitly generate colliding configurations, which are then rotated
randomly, and finally translated in a random direction until a collision free contact

22 Chapter 2

a) b)

c) d)

Figure 2.6: The configuration generation process of the OBPRM algorithm. A point
on the robot surface is selected, as well as another point in one of the obstacle’s surface
(a). The robot is translated so that those two points coincide (b). The robot is then
randomly rotated (c), before being translated in a random direction until the robot is
in contact and collision free(d).

configuration is obtained. The authors also provide an analysis of the different methods
available to bias the sampling while trying to maintain the genericity of PRM based
approaches, in [ABL+98].

Although they are designed for constrained environments, the methods presented in
this section do not address directly the full body motion synthesis of virtual characters,
rather focusing on the complex manipulation problem. Constraints such as balance
are not considered in these purely geometric approaches, but have been studied in
locomotion planning contributions.

2.1.3 Motion planning for humanoid robots

Synthesising locomotion requires considering other aspects than finding collision free
configurations. During human walk, for instance, contacts have to be generated al-
ternately between each foot and the environment, while balance must be maintained
throughout the motion. Previously presented probabilistic methods, i.e. geometric
approaches, do not account for these specificities and therefore require to be extended.

Rather than sampling configurations in Cfree, the objective of locomotion planners
is to generate configurations in CContact ⊂ Cfree, the subset of all the configurations
where a creature is in contact with the environment (Figure 2.7).

To do so, two kinds of approaches have been proposed in robotics, depending on the
complexity of the environment. If the environment can be navigated with motions such

Robotics contributions for synthesising motions in constrained environments 23

Figure 2.7: An example of contact configuration for both feet of a humanoid creature.

as walking or running, simplifications can be made in the sampling process, and the final
motion can be achieved by replaying recorded motions such as motion capture data.
In constrained environments, these simplifications cannot be made and new algorithms
are required to generate contacts.

2.1.3.1 Strong heuristics for cyclic motions in simple environments

Human walk is a stereotypical cyclic motion. Thanks to its predictability in open
environments, deterministic algorithms and strong simplifications of the environment
are an efficient way to obtain natural looking solutions.

For instance in [PLS03, KJ98], the authors propose a 2 stage planner: first the
environment is reduced to 2 dimensions (height is ignored), and a PRM planner is used
to find a collision free trajectory. In Pettré et al., as shown in Figure 2.8, the robot
legs are abstracted to a bounding cylinder to accelerate the collision checking step. In
Kuffner et al. the whole body is abstracted. Secondly, once a 2D trajectory has been
computed, motion capture clips are used to generate the actual walking motions.

Figure 2.8: Pettré et al. use an abstraction of the character to plan a path in a 2D
environment, before using motion capture to recreate the footsteps [PLS03].

In [CLS03], Choi et al. also use a PRM, this time to generate footprints in a 3D
environment. Connections between the nodes of the PRM are defined using similarity
to motion capture clips (Figure 2.9).

Other approaches were proposed, using finite state machine or similar graph ap-

24 Chapter 2

Figure 2.9: Choi et al. combine a PRM planner with a motion capture database to plan
a sequence of footsteps in a 3 dimensional environment [CLS03].

proaches. In [KNK+03, YLvdP07], the authors use forward dynamics to plan a se-
quence of steps in a discretized environment using a footstep transition graph or a finite
state machine.

While these methods achieve natural-looking results, they only apply to determinis-
tic cyclic motions (such as walking or running), in relatively open environments. There-
fore they do not qualify for motion synthesis in constrained environments. A typical
such application is the climbing scenario illustrated Figure 2.10, with two climbing walls
comprising different sets of grasps. Considering the right-side wall, it does not seem
reasonable to start climbing by creating a contact with one foot, whereas considering
the left-side wall, it is probably how the climber would proceed.

Figure 2.10: In two different constrained environments, replaying a deterministic se-
quence of contacts is sometimes impossible. A sequence of valid contact configurations
has to be planned for each new environment.

2.1.3.2 Contact discretization for constrained environments

While the methods proposed in [KNK+03, LCH03] are restricted to walking motions,
in [KvdP01] the authors combine motion planning and finite state machine approaches
to plan motions in a discretized constrained environment (Figure 2.11). However,
the space of valid motions remains limited by the finite state machine, restricted to
walking, crawling, swinging and climbing motions. Hence, unexpected variations of the

Robotics contributions for synthesising motions in constrained environments 25

Figure 2.11: Kalisiak et al. combine motion planning and finite state machines to
synthesize motion in 2.5D constrained environments. Potential contact positions are
manually discretized [KvdP01].

environment cannot be handled by this approach.

To address our objective examples, a solution must be able to generate non stereo-
typical sequences of contacts, referred to as acyclic motions. Contact before motion
methods were introduced in [HBL05, BRL+04]. The idea is to generate incrementally
an adjacency graph from the current configuration to the goal configuration. Two
configurations are adjacent if one and exactly one contact differs from the initial con-
figuration and its successor (Figure 2.12). A local PRM method is used to connect two
adjacent configurations once the adjacency graph has been generated. This approach is
efficient because the probability of finding a path between two adjacent configurations
is high. A major drawback of this method however, is to require that the potential
contacts in the environment be user-inputted. In [EKMG08] Escande et al. remove the
need to specify the contacts manually by introducing a potential-field based algorithm
to generate contact postures. However, to avoid reaching local minima or generating
complicated paths, their method relies on a manually specified initial rough trajectory.
In [BELK09] a method is proposed to automatically compute this input trajectory.
This is achieved using a probabilistic planner to generate configurations in Cfree, later
projected in CContact using inverse kinematics with priorities (Figure 2.13).

Nevertheless, as the name states, contact before motion approaches generate con-
tact configurations independently from the trajectory, which can result in contacts
being generated that are unadapted to the task being performed. To overcome this
limitation, in [MTP12] Mordatch et al. introduce the Contact Invariant Optimiza-
tion (CIO) method, a motion planner which optimizes simultaneously a trajectory and
the contacts created along it. The trajectory is discretized into time windows of 0.5
seconds, during which contacts are set and cannot be changed. Along the process,

26 Chapter 2

Figure 2.12: In contact before motion approaches, a transition between two states exists
only if one and only one contact differs between the two states (effectors in contact are
represented in green).

Figure 2.13: Bouyarmane et al. propose a method to automatically compute input
trajectories for contact before motion planners. Contact configurations are obtained by
applying inverse kinematics to near obstacle collision free configurations [BELK09].

an end-effector is guided towards the nearest surface satisfying dynamic constraints.
However, similarly to potential field approaches, a relevant input trajectory must be
produced for the CIO to work efficiently. In the constrained environments we address,
the optimization method is hard to parameterize and can easily get stuck in local mini-
ma or fail to converge. Contrary to probabilistically complete planners, the CIO might
fail to find a solution which exists. Furthermore, produced trajectories do not satisfy
dynamic balance. Al Borno et al. also propose a full-body trajectory optimization
method that does not require explicit contact definition, but still requires to specify
which obstacles an effector should be in contact with [AdLH12].

Another issue of contact before motion planners and optimization methods is that
the performance is usually low: computing a motion usually requires from several
minutes to hours.

Example based methods for synthesizing natural motions in constrained environments27

2.1.4 Conclusion

Robotics approaches for motion planning are primarily geometric methods. This makes
the issue of synthesising natural looking motions a hard one. Most of the work pre-
sented here focuses in the first place on the hard problem of synthesising a feasible
trajectory of stable contact configurations. Because efficient planners rely on random
generation to find valid trajectories, the solutions they produce have to be refined to
produce natural results. The first class of improvements brought to probabilistic plan-
ners consists in biasing the sampling process to improve the probability of generating
interesting configurations. In constrained environments, stable motions are success-
fully generated thanks to contact before motion approaches. However, they still fail
to generate natural looking motions. Optimization approaches such as the CIO show
promise for improving the quality of these procedural methods, but need additional
work to be applied to complex cases, as they are subject to local minima, performance
and convergence issues.

2.2 Example based methods for synthesizing natural mo-
tions in constrained environments

In the previous section, we present motion planning methods, which can solve motion
planning problems in arbitrary environments, thanks to their completeness property.
Conversely, in this section we review contributions which primarily focus on generating
natural motions in constrained environments. The contributions presented belong to
the “example based” family. These approaches explore the configuration space in a
restricted manner. They consider a database of preexisting motions, considered to be
natural. Naturalness can be subjective (the motions have been designed by a profes-
sional animator) or objective (the motions have been recorded on real human actors
using motion capture). The search of a trajectory in the configuration space is per-
formed in the neighbourhood of these motions, which serve as a basic vocabulary:
motions are blended, deformed, and finally concatenated to achieve a solution motion.
The main advantage of this approach is that the solutions proposed are natural in the
sense that they are similar to the motion database. However, we show that exam-
ple based approaches do not provide the completeness of motion planning approaches,
even when hybrid solutions are proposed, which makes them unadapted to constrained
environments.

2.2.1 Motion editing techniques

The main issue of example based methods in constrained environments is that they
are designed to be played in a predefined setup. If the position of the character varies
a little, or if the environment is slightly modified, the recorded animation is no more
relevant. As an illustration, taking a recorded motion of a character climbing up a
staircase, altering the number of steps and replaying the animation will result in an
unfit motion. Therefore, the reference motion must be adapted to fit the variations.

28 Chapter 2

Three kinds of methods exist to adapt an existing motion to the constraints of a task
or the environment: blending, warping and concatenation. Motion blending consists in
creating new animations by combining two or more existing animations and assigning
weights to them [MMKA04]. A survey of the different blending techniques can be found
in [FHKS12]. Motion warping was proposed by Witkin et al. in [WP95]. It consists
in deforming a motion by manually assigning spacetime constraints to segments of a
virtual creature. The original trajectory is approximated into a curve that matches
the constraints while following the original motion as much as possible (Figure 2.14).
Motion concatenation consists in playing sequentially different motion clips to form a
complex motion. Blending can be used between two motions to improve transitions
between states.

Figure 2.14: By specifying the right space time constraints, Watkin et al. manage to
generate various motions from the initial walking motion (upleft) [WP95].

By combining blending, warping and concatenation, it is possible to generate new
motion sequences adapted to environmental variations.

A more recent approach is proposed by Al-Asqhar et al. in [AAKC13], which adapts
automatically the motions, and allows more important deformations of the environ-
ment and characters. The authors propose to formulate a motion in a constrained
environment using a spatial relationship-based representation. The reference motions
are expressed in terms of their relative position to sampled points of the environment.
A similar approach is used in [PMM+07]. In [HKT10] it is used to adapt distance re-
lationships between several characters in close interaction with each other. This allows
preserving the aspect of the original motion while varying parameters such as the height
and weight of the character or the size of a car in which it enters. It allows important
variations of the environment and the virtual character, as long as the topology is not
changed. Limitations include: transposing a motion from a human to another animal
or adding obstacles.

In [KMA05], Kulpa et al. also consider a different representation of the motion,
which describes constraints intrinsically linked to the motion such as feet contacts with
the ground. This representation allows to use a single reference motion with different

Example based methods for synthesizing natural motions in constrained environments29

characters of various morphologies, but not to adapt it to new environments.

A common tool used in computer animation is Inverse Kinematics [BB04, LP12].
It can be combined with example based motion to provide more natural results. In
his master thesis [Joh09], Johansen develops the locomotion system to adapt walking
motions to height variations of the terrain, by combining motion warping with inverse
kinematics. A reference walking motion is decomposed for each leg of the creature,
according to the phases where the effector lands on the ground, is lifted, or is in the air.
Given a terrain deformation, warping is automatically applied to adapt the trajectory
of the effector to the new constraint. The locomotion system can be manually parame-
terized to avoid too important deformations of the motion (Figure 2.15). In [vBPE10],
van Basten et al. address the same issue by formulating it as a search in the step space,
extracted automatically from a motion capture database. They combine time warping
and inverse kinematics on the result of a closest neighbour search to animate sequences
of steps. Unfortunately these two contributions remain restricted to walking motions.

Figure 2.15: The locomotion system is a tool available to the industry which adapts
walking motions to uneven terrain by combining motion warping and inverse kinematics
(left). It is possible to adjust several parameters to avoid too important deformations
of the original motion and unnatural postures (right). © Unity 3D.

Motion editing techniques can be seen as a set of methods enabling to extend the
vocabulary made available by a reference motion database. They propose variations of
these motions, allowing them to adapt to new environments, provided they have the
same overall topology.

However, they do not avoid a strong simplification of the search space, because they
assume a predetermined way to address a motion, expressed as a sequence of contacts.
This assumption does not hold in constrained environments. In [RBC98] Rose et al.
propose a “verb” and “adverb” formulation which illustrates this. A “verb” describes
a control behavior such as walking, or crawling, and an “adverb” describes the way the
“verb” is achieved: they are the control parameters of the motion. When the “verb”
describes a stereotypical motion such as walking or running, the possible “adverbs” are

30 Chapter 2

various but often similar: walking is always achieved through a stereotypical sequence
of foot contacts, therefore editing the motion is relatively easy. But considering a verb
such as “climbing”, there are many “adverbs” possible, and combining them becomes
much more challenging. Given a reference motion, and a climbing wall where the grasps’
locations are randomly generated (Figure 2.10), there is no guarantee that the recorded
sequence of contacts is achievable on the new wall. However, it would be possible to
record additional climbing motions for various setups. In this case, choosing between
the possibilities requires using motion planning techniques.

2.2.2 Combining motion planning and example based methods in con-
strained environments

As hinted in Section 2.1.3, motion capture is often used in the final stage of global
motion planners to synthesize natural looking walking motions, as in [CLS03, PLS03,
KJ98]. In these situations, the motion capture data has to be organized into specific
structures to request the most appropriate motion for a given situation [LL04].

Some contributions extend the application of such hybrid methods to motion in
constrained environments. In [YKH04], given a collision free manipulation trajectory
computed by a sampling based planner, Yamane et al. apply inverse kinematics to
achieve the motion. The inverse kinematics process is biased using a motion capture
database so that the resulting motion looks as similar as possible to a requested refer-
ence motion.(Figure 2.16). In [HMK11], Huang et al. address a similar problem, but
use motion blending to synthesize the motion. A sampling based planner is used, and
the sampling is performed in the space of the blendable example motions. These meth-
ods allow to produce human-like motions because their results remain similar to the
reference motion, but they are limited by the considered motion database.

Figure 2.16: Yamane et al. address the manipulation problem by combining motion
planning and inverse kinematics. The inverse kinematics step is biased using a motion
capture database which leads to more natural motions [YKH04].

Example based methods for synthesizing natural motions in constrained environments31

The reverse approach can be used efficiently in interactive applications. The motion
capture data can be connected to finite state machines, trees or graphs, which will be
requested to find a feasible trajectory. By requesting such motion graphs, in [KGP02]
Kovar et al. concatenate several sequences of motion to achieve a new, global motion.
In [SH07] Safonova et al. combine the A* pathfinding algorithm with motion graphs.
This allows them to introduce heuristics to find a sequence of motions that will limit
the deformations necessary to achieve the motion (Figure 2.17).

Figure 2.17: Safonova et al. combine motion graphs with pathfinding techniques to
generate an optimized sequence of motions [SH07].

In [LK06], Lau et al. introduce precomputed search trees. From a finite state ma-
chine describing the possible transitions between recorded motions, they create a tree
which describes all the possible transitions from an initial state until a fixed depth (Fig-
ure 2.18). The overall approach is similar to the dynamic roadmap method proposed
in [KM04]. At runtime, given the current state and position of a virtual character in
the environment, an ideal, collision free path is chosen from the tree and the sequence
of motion is played. This approach allows adaptation to dynamic environments, and,
contrary to the work of Safonova et al., provides real time performances. The approach
is extended to unstructured motion graphs in [MK12], where the authors remove the
need to manually design a state machine guiding the search.

Combining motion planning techniques with example based methods makes it pos-
sible to extend the possibilities of synthesizing natural motions in constrained environ-
ments, by decomposing the global motion into a sequence of motion capture clips. Still,
constrained examples remain challenging for these methods (Figure 2.10), because the
set of possible motions remains limited by the database.

32 Chapter 2

Figure 2.18: From a finite state machine describing the motion capabilities of a virtual
character, Lau et al. create a tree that expands all the possible transitions from a given
state up to a fixed depth. At runtime, the motions corresponding to the paths of the
trees are evaluated regarding the current character position and orientation and the
best path is selected and played [LK06].

2.2.3 Conclusion

More generally, example based methods make it possible to compute a natural looking
motion which minimizes the deformations necessary to perform a motion task in a
given environment. However, the space of solutions that can be found remains strongly
restricted to the neighbourhood of the reference motion database. The advantage is that
the generated solutions are always natural in the sense of this database, which make
this approach popular and largely used in open environments. The major drawback is
that in highly constrained environments, these methods do not provide guarantees to
find a solution when it exists.

The main issue is that even when they are deformed, the motions played always
assume a predetermined sequence of contacts to achieve the tasks, which is not a
reasonable assumption in our case (Figure 2.10). Combining this approach with motion
planning allows to extend the possibilities by searching a combination of motions from
the motion database which can address the problem. But being able to address all
the possible combinations requires very large motion libraries, which, as of today, are
tedious and expensive to obtain. A last issue is that motion captures only apply to
humanoids so far, and cannot be easily applied to imaginary creatures, so common in
video games. Those data driven methods can be opposed to model based methods,
which tend to be more flexible.

Model based approaches for natural motions 33

2.3 Model based approaches for natural motions

Model based approaches have been also considered for synthesising natural motions.
For the majority of the models proposed, a motion is considered natural if it satisfies
simplified laws of dynamics, such as balance and effort minimization. Consequently,
we refer to them as dynamic models. We show that existing dynamic models are
often limited to cyclic motions and are not sufficient to describe a natural motion in
constrained environment.

We then review other criteria proposed for a natural motion, and consider their
application to motion synthesis in constrained environments, especially regarding the
issue of contact generation.

2.3.1 Dynamic models

Several computer graphics contributions use simplifications of such models along with
optimization frameworks or controllers. They approximate force actuators using spring
models, and model the motion according to the associated dynamics, and the mini-
mization of various criteria.

Jerk minimization and dynamic balance are commonly used in trajectory optimiza-
tion frameworks [LCH03, QEMR11, MTP12]. To do so, each criterion is formulated as
a cost function that an optimization solver will try to minimize along the trajectory.
However, in section 2.1.3.2 we emphasize that these optimization frameworks are not
adapted to constrained environments.

Several publications focus on gaited locomotion, combining dynamic optimization
with manually designed gait controllers to perform motion. Although the applications
of such methods remain limited to cyclic motions, comparatively to motion capture
approaches they apply to arbitrary creatures and are support to dynamic perturbations
such as external pushes. A drawback of these approaches is that the proposed dynamic
controllers often have to be carefully tuned, which is hard because they depend on a
large number of parameters [CKJ+11]. The most recent contributions work around this
issue by automatically optimizing the parameters of the controllers [WPP13, WPP14].
However, as of today no such solution has been successfully applied to constrained
environments

Furthermore, dynamic balance and jerk minimization do not seem to guarantee
a natural motion in constrained environments. For instance, there are many ways to
stand up from a chair without losing balance, but not all of them are natural. Presented
frameworks cannot discriminate between them, because they assume simple actuation
models. The notion of effort and the analysis of force actuation capabilities in a given
configuration have been considered by biomechanics contributions and recently adapted
to motion synthesis frameworks.

2.3.2 Biomechanical models

The biomechanics community has proposed various models representing the way real
world creatures move based on their capabilities. For instance, complex musculo-

34 Chapter 2

skeletal models aim at simulating more precisely the internal interactions that occur
when muscles are actuated during motion. Recent works such as [WHD+12, MWTK13]
have successfully integrated biologically inspired actuation mechanisms into motion
synthesis frameworks. As of today however, these attempts have succeeded only for a
restricted set of motions, such as walking or running in open environments.

Other contributions identify motion invariants in human motions and propose mod-
els to implement these invariants in robotic simulations [SSL12], or character anima-
tion [01h01]. These contributions are essential to synthesize human-like motions, and
can be used as criteria for evaluating their naturalness. However most of their appli-
cations remain limited to grasping motions. In [Yos85], Yoshikawa proposes one such
criterion, more generic, called the manipulability index. It is a geometric measure quan-
tifying the ability of robotic mechanisms in positioning and orienting end-effectors. The
compatibility of the manipulability index for human beings has been demonstrated by
the biomechanics community in [JBGR12]. Several manipulability based methods have
been proposed to optimize contact configurations for manipulation or locomotion tasks.
In [NL06], Naksuk et al. propose a cost function based on the manipulability index and
use it for trajectory optimization. In [GKNK06], given a manipulation trajectory, an
inverse kinematics solver uses manipulability as a secondary objective to optimize limb
configuration along the trajectory. In [LH03], the sampling of a PRM motion planner
is biased to generate configurations presenting a high manipulability index. Based on
this work, Chiu proposes the force transmission ratio in [Chi87], another index for op-
timizing a manipulator pose relatively to a specific task, expressed as the need to exert
a force in a given configuration. Manipulability based heuristics are appealing because
they are generic means to evaluate configurations, independently from the morphology
of a creature or the environment. In [KHB10] Kallmann et al. use motion invariants to
plan the appropriate number of steps allowing the hand of a humanoid robot to reach
a target in a plausible way.

However, the existing uses of motion invariants for planning in constrained envi-
ronments are limited. The primary use today is motion optimization of manipulation
tasks. One noticeable exception is the inspiring work of Bretl et al. in [BRL+04], where
contact configurations are chosen based on a measure similar to the manipulability.
Drawbacks of their approach include manual specification of the possible contact lo-
cations of the environment, and the restriction of the application to climbing tasks.
Proposing automatic manipulability based planning could allow to generate more nat-
ural looking motions in constrained environments.

2.3.3 Conclusion

Because they do not make assumptions on the environment, model based methods
seem adapted to motion synthesis in constrained environments. However, existing
dynamic approaches focus on cyclic motions in open spaces and have not addressed
the issue yet. Other models, inspired or validated by biomechanics, are more and more
considered to mimic the behavior of real life creatures by evaluating “how natural” a
given configuration might look. Several methods and heuristics for task efficiency have

General conclusion on the related work 35

been proposed to produce more human-like procedural motions, although as of today
none lives up to data driven methods such as motion capture. Most of the available
methods focus on respecting the laws of physics and minimizing energy consumption.
As recent work demonstrates, including other models based on biomechanical definition
is a promising mean to improve the results of procedural motion synthesis.

2.4 General conclusion on the related work

The key observation of this review is that naturalness and control are antagonist no-
tions in motion synthesis [vWvBE+10]. A tradeoff must be found between ad hoc,
natural looking methods and generic planning solutions for constrained environments.
To perform automatic motion synthesis in constrained environments, an ideal planner
should be able to:

1. Find solutions in unknown constrained environments, with numerous obstacles
and narrow passages;

2. Generate natural looking motions, resulting from the creation of suitable contacts;

3. Compute acyclic, non deterministic sequences of contacts.

Table 2.1 summarizes the capabilities of state of the art methods regarding those
three requirements. Additional relevant features such as dynamic balance and perfor-
mance of the method have also been included.

Motion planning methods in robotics provide the completeness necessary to address
the first requirement, thanks to a solid mathematical formalism: the configuration
space. Conversely, example based approaches struggle to find solutions in constrained
environments, their ability to explore the search space being limited by their reference
motions.

Hybrid methods have been developed in an attempt to combine the benefits of both
procedural and example based approaches, obtaining interesting results. However, our
third requirement remains out of reach for example based approaches: because they
replay a recorded motion, they necessarily assume a determined contact sequence to
achieve a given motion. This is not applicable to an unknown environment.

Nevertheless, combining motion planning techniques with methods allowing to gen-
erate more natural motions remains an interesting lead to follow up on. Because exam-
ple based motions do not apply in our context, it is important to provide a definition
for a “natural motion”, and propose new criteria based on it. We observe that while
dynamic balance is one common criterion for naturalness, it does not appear to be suf-
ficient. Other criteria for natural motions have been proposed, but few directly address
motion planning in constrained environments. Therefore there is a need to explore
such criteria for this specific context. Specifically, in constrained environment the sur-
rounding obstacles provide many opportunities to synthesize new motions through the
creation of contacts. There is a need to propose heuristics for task efficient generating
contact configurations, characterized by their ability to exert the efforts required by the
task.

36 Chapter 2

Unknown
constrained
environments

(1)

Naturalness
/ Task

efficiency of
contacts (2)

Acyclic
contact
sequence

(3)

Dynamic
balance

Computational
Speed

Probabilistic planners
[KM04, AW96]

YES +++

Locomotion planners
[PLS03, CLS03]

YES YES +++

Contact before motion
[BELK09]

YES YES YES +

Contact before motion
[BRL+04]

limited YES YES YES ++

CIO [MTP12] YES YES ++

Motion editing
[AAKC13]

YES YES YES real time

Example based planning
[LK06]

YES YES real time

Dynamic controllers
[WPP14]

YES YES real time

Musculo skeletal models
[WHD+12, MWTK13]

YES YES ++

Table 2.1: Feature comparison of state of the art methods.

Chapter 3

Overview of our framework

Contents

2.1 Robotics contributions for synthesising motions in con-
strained environments . 18

2.1.1 Geometric motion planning 19

2.1.2 Planning in constrained environments 21

2.1.3 Motion planning for humanoid robots 22

2.1.4 Conclusion . 27

2.2 Example based methods for synthesizing natural motions
in constrained environments 27

2.2.1 Motion editing techniques . 27

2.2.2 Combining motion planning and example based methods in
constrained environments . 30

2.2.3 Conclusion . 32

2.3 Model based approaches for natural motions 33

2.3.1 Dynamic models . 33

2.3.2 Biomechanical models . 33

2.3.3 Conclusion . 34

2.4 General conclusion on the related work 35

In this chapter, we give an overview of the contributions proposed in this thesis.
First, we recall our problem statement in terms of technical challenges. Then we present
the approach we have chosen to address this issue.

3.1 Technical problem statement

We consider the issue of automatically synthesizing natural motions for virtual charac-
ters in constrained environments.

First, we limit the scope of this thesis to a variety of motions characterized by
the following properties: additionally to being performed in constrained environments,

37

38 Chapter 3

they require important force exertion, and are performed through an acyclic sequence
of contacts. Examples of such tasks are climbing, standing up from a chair, pushing or
pulling a cupboard...

The first obstacle raised by this formulation is the definition of a “natural motion”,
for which there is no consensus in the literature, especially in constrained environments.
As explained in Chapter 2, we choose to define a natural motion as a sequence of
configurations which are optimal for the task being achieved, according to a heuristic
for “task efficiency”. Since the tasks we address require an important force exertion,
we choose to evaluate task efficiency as the capacity a character has to exert a force in
a given direction. Specifically, we are interested in contact configurations, since force
actuation results from them.

This leads us to the formulation of two questions:

• How to evaluate the “task efficiency” of a configuration?

• How to generate a task efficient configuration in a constrained environment?

Answering these two questions provides a partial solution to our initial research ques-
tion, which we reformulate as: given two configurations in a constrained environment,
how to compute a task efficient motion between them?

3.2 EFORT, a heuristic and a method for task efficient
contact generation

Chapter 5 presents our answer to the two questions; we briefly describe this solution
here.

3.2.1 How to evaluate the “task efficiency” of a configuration?

We answer this question with the Extended FORce Transmission ratio (EFORT), a
heuristic for task efficiency. The EFORT heuristic works at the limb level. Given:

• A limb configuration, the end effector of which is in contact with a surface;

• A directional force exertion task, expressed as a vector vt ∈ R
3;

EFORT returns a numerical value used as an indicator of the efficiency of the
configuration regarding a force exertion task. EFORT performs a kinematic analysis
of the joint articulations, and determines the joint angle variation necessary to exert a
force in the desired direction. The more important the variation, the less efficient the
configuration is, and the lower will be the value returned by EFORT.

3.2.2 How to generate a task efficient configuration in a constrained
environment?

We address this issue by proposing a real time generator for task efficient contact
configurations. The generator is implemented as a sampling based method, where the
EFORT heuristic is integrated. Given:

A multi stage framework for task efficient planning in constrained environments 39

• The current global configuration of the virtual character;

• The directional force exertion task vt ∈ R
3;

The generator returns, from a set of automatically computed candidates, the contact
configuration for which the EFORT heuristic returns the highest value.

3.3 A multi stage framework for task efficient planning in
constrained environments

Task efficient motions in constrained environments

Task specification Collision free
trajectory

Task efficient
contact trajectory

Optimized
dynamic trajectory

(1)

RB-PRM

(2)

EFORT

(3)

Motion
optimization

Figure 3.1: A multi step motion planner for the automatic computation of contact
trajectories in constrained environments.

We can use the task efficient contact generator as a basis for a global motion plan-
ning method for constrained environments. Given a start and goal configuration for a
character in a constrained environment, our motion planner generates a task efficient
feasible contact motion connecting the two configurations.

In a first stage, using a probabilistic approach, a collision free path joining the start
and goal is rapidly computed (Figure 3.1 - (1)). Thanks to this stage a solution path
can be found in arbitrary environments. This path is purely geometric : constraints
such as gravity and contact creation are not directly addressed. To ensure that the
configurations along the path will allow to generate relevant contact configurations, we
introduce a new heuristic called the reachability condition:
We first compute the Range Of Motion (ROM) of each limb of the virtual character.
We then transform their convex hull into a 3D object, attached to the root of the
character (Figure 3.2). If such an object collides with the environment, there is a good
chance that a contact might be created between the concerned limb and obstacle. Also,
we consider a second object englobing the trunk of the character, that must fulfill a

40 Chapter 3

collision free constraint (Figure 3.3). The reachability condition we just described is
verified by all the configurations composing the path computed at stage 1.

Atrunk

AROM

A

Figure 3.2: From a virtual humanoid R to its abstraction A = AROM ∪ Atrunk. The
red cylinder denotes Atrunk and must remain collision free. The green spheres are the
objects composing AROM .

In a second stage, we consider the full kinematic and geometric definition of the
character. As shown in Figure 3.1 - (2), the collision free path is transformed into
a sequence of contact configurations, relevant for force exertion tasks. To do so, we
transform a real time local contact generator proposed in Chapter 5 into a global
method for computing task efficient contact sequences. Given a current configuration
and the direction of motion, the contact generator computes a set of possible contact
candidates and returns the best one according to our heuristic for task efficiency, the
Extended FORce Transmission ratio (EFORT). By applying EFORT iteratively along
the path, we obtain a trajectory expressed as a sequence of relevant contacts.

In a third and final stage, the contact trajectory is used as a guide for a high
dimensional optimization method. As shown in Figure 3.1 - (3), the trajectory is refined
to be dynamically balanced, minimize the jerk and respect joint velocities constraints.

A multi stage framework for task efficient planning in constrained environments 41

Figure 3.3: Illustration of the reachability condition. In the three examples shown,
only the rightmost configuration satisfies the condition. It is the only one for which the
red cylinder (Atrunk) is collision free while the green spheres (AROM) collide with the
environment.

42 Chapter 3

Chapter 4

Notation conventions and
character representation

Contents

3.1 Technical problem statement 37

3.2 EFORT, a heuristic and a method for task efficient contact
generation . 38

3.2.1 How to evaluate the “task efficiency” of a configuration? . . . 38

3.2.2 How to generate a task efficient configuration in a constrained
environment? . 38

3.3 A multi stage framework for task efficient planning in con-
strained environments . 39

In this chapter we propose several definitions and conventions used throughout the
thesis. First we define how we denote the mathematical objects used, then we give
several definitions used in the algorithms described in this manuscript with a focus on
the representation of the virtual character, its range of motion and its environment.
The methods presented in this thesis rely on the generic definitions proposed here,
making them adapted to arbitrary creatures and environments.

4.1 Notation conventions and mathematical tools

4.1.1 Notation conventions

A vector is represented by a bold lower case letter:

x = [x1, x2, x3]
T

43

44 Chapter 4

A matrix is represented by a bold upper case letter:

Am,n =

a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n

Variables and functions are represented lower case letters:

f(r) = r + 1

A set is represented with a upper case italic letter:

Ieven = {i ∈ I : ∃k ∈ I, i = 2k}

4.1.2 Polytope and residual radius

In this thesis we use an elaborated model to represent the Range Of Motion of virtual
characters, which can be based on experimental data (section 4.3.3). To accurately
define this Range of Motion, we use a polytope formulation. Polytopes are also used in
the formulation of a criterion for dynamic balance used in this thesis, and detailed in
chapter 7.1. In this section we give basic definitions relative to polytope computation.

A polytope P is a sub space of the Euclidian space R
n defined by a set of hyper-

planes:
P = {s ∈ R

n : As ≤ b}

where A ∈ R
m×n and b ∈ R

m. In this work only convex polytopes are considered.
The residual ball radius r(s), s ∈ P is the radius the largest hypersphere of center s

that can be included in P . The computation method for r(s) is given by in Algorithm 1.

Algorithm 1 r(s) = ResidualRadius(A,b, s)

1: Inputs H-representation of a polytope [A,b], point s
2: Output The residual radius rq
3: m← A.rows, i← 0
4: An ← A,bn ← b
5: while i < m do
6: An(i, :)← A(i, :)/norm(A(i, :))
7: bn(i)← b(i)/norm(A(i, :))
8: i← i+ 1

end while
9: return min(bn −Ans)

We define c ∈ P as the Chebyshev center. It is the center of the largest hypersphere
contained in the polytope P :

min
c,r(c)
{r(c) : ‖c− s‖2, ∀s ∈ P}

Environment definition 45

Finding c is a classical linear optimization problem. In this work we compute c thanks
to the Matlab mpt toolbox1. We use the same toolbox for all the computations pre-
sented in this section.

4.2 Environment definition

An obstacle O ∈W is a set of 3D triangles. A triangle belonging to O is denoted tO. W
is the workspace, the set of all obstacles in the environment. An example of workspace
is shown in Figure 4.1.

Oground

Obox

Figure 4.1: A example of workspace W , composed of two obstacles: the ground and a
box, each one described by a set of triangles.

4.3 Virtual character definitions and representations

4.3.1 Skeleton definition

A virtual character is represented by an arbitrary kinematic chain R. R can be decom-
posed into a number l of subchains Rk, 0 ≤ k < l, each one describing a limb of the
creature. Every joint of a limb possesses at most one child. In Figure 4.2 the six limbs
of the virtual creature appear in light blue. Each limb has one end effector. l = 4 for
a human.

4.3.2 Character configuration

A character possesses a number n ≥ 6 of degrees of freedom, attached to the several
joints that compose the kinematic chain R. 6 degrees of freedom are used to denote
the position and orientation of the geometric root of the character in the workspace W .
The orientation of each joint is described using Euler angles.

The following definitions are illustrated in Figure 4.3:

• A configuration q is a n dimensional vector describing the current position, ori-
entation and joint values of a virtual character.

• qr ∈ R
6 is the vector describing the position and orientation of the root of the

virtual character R.

• qx,y,z ∈ R
3 is the vector describing the position of the root of the virtual character

R.
1http://people.ee.ethz.ch/ mpt/3/

46 Chapter 4

Figure 4.2: Reference posture of a virtual insect composed of 6 limbs and 33 degrees of
freedom. Each limb is composed of 4 degrees of freedom. Each colored dot represents
a degree of freedom around an axis, to which we add the position and orientation of
the root of the creature in the world coordinates.

• qk, 0 ≤ k < l denotes a configuration of a limb Rk, the sub-vector of q that
contains the joint angle values relative to the limb k.

• qk, 0 ≤ k < l is the sub-vector of q that contains the joint angle values which are
not relative to the limb Rk.

• For convenience, we define the operator ⊕:

q = qk ⊕ qk

• pqk denotes the world position of the end-effector of the limb Rk, given the confi-
guration q. Finally, we define

• sk as the vector including the angle values corresponding to the root articulation
of a given limb. In the case of a human for instance, sk denotes the three angles
that define the shoulder or ankle articulation.

Three additional vectors are defined for R:

• amax = [a0, ..., an]
T denotes the maximum acceleration allowed for each degree of

freedom of R;

• vmax = [v0, ..., vn]
T denotes the maximum velocity allowed for each degree of

freedom of R;

• fkmax denotes the maximum force that can be applied by a limb Rk;

Virtual character definitions and representations 47

dofs in s0

dofs in q0

p0q

Figure 4.3: Virtual human in a rest configuration. The right arm is denoted as the
limb R0.

4.3.3 Character Range Of Motion (ROM)

Real world animals and robots have limited motion capabilities. For instance, the
flexion of the human elbow can only be performed in one direction. Traditionally, to
represent those limitations, the angle values that can be taken by a virtual character
are bounded within a closed interval [Wel93]. Considering these constraints, it is easy
to determine the Range of Motion, or ROM, of a given subchain of a virtual character.
For instance, the possible values of the three degrees of freedom of the human shoulder
are enclosed in a a parallelepiped rectangle (Figure 4.4 – bottom left).

However the actual ROM of the shoulder is more complex and restrictive, because
of the dependencies existing between the degrees of freedom, as shown in [HUF04],
[LLDM05] or [MKHB15]. Using fixed joint limits can result in unnatural configurations,
or, if the limits are too restrictive, in the rejection of natural configurations. This is
illustrated in Figure 4.4. For the case of a human, we address this issue by determining
a more accurate ROM for the complex shoulder and hip articulations. To do so we use
the protocol established by Haering et al. in [HRB14].

Using a motion capture system, we record hip and shoulder motions of maximal
amplitude. At each frame of the recorded data, we determine the angular configurations
of the studied articulations. Each configuration can be seen as a three-dimensional
point, where one coordinate describes the value of one Euler angle (Figure 4.5).

We then compute the 3D non-convex hull K including all the recorded angular
configurations. This is achieved using the method proposed in [Lun12]. KHip and
KShoulder represent the Range Of Motion (ROM) of the hip and shoulder. This means
that any configuration included in KHip (respectively KShoulder) is a configuration of
the hip (respectively the shoulder) that is valid for a human.

In this work, the protocol was applied on a single male subject, therefore the com-
puted KHip and KShoulder are specific to him. Haering et al. define a normalized ROM

48 Chapter 4

Shoulder joint limits Shoulder ROM (KShoulder)

Z
(°)

X(°)
Y(°)

Z
(°)

X(°)
Y(°)

Figure 4.4: Generation of two sample configurations. Up: The two configurations lie
within the joint limits of the shoulder, as shown in the bottom left plot. However the
red configuration is rejected because it does not belong to KShoulder (bottom right).

by including 3D poses common to a maximal number of participants into a hull of av-
erage volume. The user of the method has the choice between using an average ROM
fitting any virtual human or using one specific to a given morphology.

In this thesis, in order to enforce the naturalness of a posture, rather than indi-
vidually asserting that each joint value of a given configuration lies between its fixed
limits, we consider simultaneously all the joints of a given articulation and verify that
the point they describe is included in the non-convex hull K that represent the ROM
of the articulation. To do so, we write K as a polytope and use the residual radius
algorithm to assess that a configuration is valid. An additional benefit of this formu-
lation is that is allows the computation of a normalized “distance” between a given
configuration and a ROM violation.

However, the work proposed in this thesis concerns arbitrary creatures which are not
human like, and for which the experimental data does not apply. When the data is not
available, in the rest of this thesis, the Range Of Motion of the character is computed
using the classical joint limits approach: the value of each euler angle associated to the
articulation is bounded.

4.3.4 Abstraction of a virtual character

We consider a virtual character R, as described in section 4.3.2. In the first stage of
our framework, our Reachability Based planner generates configurations based on the

Virtual character definitions and representations 49

Range Of Motion of the right shoulder KShoulder

Z
(°
)
–
R
ot
at
io
n

X (°) –
Abduction / adduction

Y (°) –
Flexion / Extension

Z
(°
)

Y
(°
)

Z
(°
)

X(°) X(°) Y(°)

40

20

0

-20

-40

-60

-80

-100
-200

-100

0

100
200

-100
-50

0
50

100
150

200

Figure 4.5: Representation of the Range Of Motion of the author’s shoulder. The blue
volume is the non convex hull KShoulder including all the shoulder configurations that
were recorded in a motion capture session, following the Y XZ euler angle decomposi-
tion.

obstacles that lie within the Range Of Motion of the character. To do so, it uses a
character abstraction defined here.

We define a character abstraction A as follows:

A = Atrunk ∪AROM (4.1)

where Atrunk and AROM are two sets of 3D objects.

Atrunk is a 3D object englobing the trunk of the character (Figure 4.6 - Red cylinder).
We compute Atrunk so that the following property stands: If Atrunk is collision free for
a given position and orientation of the trunk qr, then there exists at least one set
of joint angle values qr, so that q = qr ⊕ qr ∈ Cfree. This means that if Atrunk is
free of collision for a given position and orientation, then we can find a collision free
configuration for R at these coordinates.

AROM represents the Range Of Motion of each limb of the virtual character. To
compute AROM , we proceed as follows, for each limb Rk, 0 ≤ k ≤ l:

50 Chapter 4

• We randomly sample a large number (> 10000) of valid configurations for the
limb, for which we consider the positions of the end effector, expressed in Rk

coordinates;

• We compute the minimum convex hull encompassing all these points, as described
in section 4.3.3. We obtain a polytope ROMk, which describes the Range Of
Motion of Rk.

Then AROM is defined as the union of all the ROMk:

AROM =
l
⋃

k=0

ROMk (4.2)

AROM is represented by the four green ellipsoids in Figure 4.6.

A is entirely described by a 6 dimensional vector qr = [xq, yq, zq, αq, βq, γq], which
describes the position and orientation of the geometric center of Atrunk.

We define Aq = Aq
trunk ∪A

q
ROM as the position and orientation of A when assigned

a configuration q.

Atrunk

AROM

A

Figure 4.6: From a virtual humanoid R to its abstraction A = AROM ∪ Atrunk. The
red cylinder denotes Atrunk and must remain collision free. The green spheres are the
objects composing AROM .

4.4 Additional useful definitions

4.4.1 The configuration space

C is the configuration space, the set of all possible values of q. Ck is the configuration
space of the limb Rk, the set of all possible values of qk. We define some relevant
subspaces of C and Ck, illustrated in Figure 4.7:

Additional useful definitions 51

q ∈ Cobsq ∈ Cfree q ∈ Ccontact

Figure 4.7: Examples of configurations in Cfree, Cobs and Ccontact

• Cfree is the space of all configurations where there is no inter penetration between
R and the environment W .

• Cobs = Cfree is the space of all configurations presenting interpenetrations be-
tween R and the environment W .

• Ck
contact ⊂ Cfree is the space of all configurations where the end-effector of limb

Rk is in contact with the environment. It is defined by

Ck
contact = {q ∈ Cfree : ∃O ∈W,d(pqk , O) < ǫ} (4.3)

where d is the function computing the minimal Euclidian distance between to
objects, and ǫ ∈ R a small user-defined number.

• CNATURAL ⊂ Cfree is the space of all configurations that lie within the Range Of
Motion (ROM) of a given character. Ck

NATURAL is the space of all the configu-
rations of the limb Rk that lie within the ROM of the limb.

4.4.2 Path, path interpolation, and trajectory

Path. A path P is a n×m matrix [qstart;q1; ...;qm−2,qgoal] of configurations.

We define tmax as the total distance traveled along P from qstart to qgoal;

Path interpolation. We define the path interpolation function P (t), 0 ≤ t ≤ tmax,
defined over m− 1 intervals:

P : [ti, ti+1] → R
n

t 7→ interpolate(P [, i], P [, i+ 1], t−ti
ti+1−ti

)

where ti, 0 ≤ i < m−1 is the total distance traveled from qstart to qi and interpolate
performs the interpolation between two configurations.

52 Chapter 4

Trajectory. We transform a path P into a continuous trajectory T (t) by considering
the maximum joint velocities constraints. We define the time between two consecutive
configurations as the minimum time necessary to reach the second configuration without
violating the velocity limits:

∆ti = max
j=0,...,n

(P[j, i]2 −P[j, i− 1]2)
1
2

vmax[j]

With 0 < i ≤ m, and ∆t0 = 0.
T (t) is then obtained by computing the path interpolation function of P by replacing

the indices ti with the indices ∆ti.

Chapter 5

A heuristic for task efficient
contact configurations: the
Extended FORce Transmission
ratio (EFORT)

Contents

4.1 Notation conventions and mathematical tools 43

4.1.1 Notation conventions . 43

4.1.2 Polytope and residual radius 44

4.2 Environment definition . 45

4.3 Virtual character definitions and representations 45

4.3.1 Skeleton definition . 45

4.3.2 Character configuration . 45

4.3.3 Character Range Of Motion (ROM) 47

4.3.4 Abstraction of a virtual character 48

4.4 Additional useful definitions 50

4.4.1 The configuration space . 50

4.4.2 Path, path interpolation, and trajectory 51

In this chapter we consider our objective examples (Figure 5.1), and the following
question: Given a force exertion motion task (pushing, pulling, standing up, climbing...)
for a virtual character in a constrained environment, how should the next contact be
created in order to efficiently perform the task? Addressing this local issue is essential to
address the global motion planning problem, which requires the generation of plausible
contacts configurations along a trajectory.

To address this issue, we first define what “efficiently perform the task” stands for,
and provide a mean to evaluate this “task efficiency”: the Extended FORce Transmis-
sion ratio (EFORT). Then we propose a real time contact generator to automatically

53

54 Chapter 5

generate candidate configurations and select the best candidate configuration according
to EFORT.

This chapter is organized as follows: In section 5.1 we give additional definitions,
specific to this chapter. In section 5.2 we present EFORT, a kinematic heuristic to
evaluate the task efficiency of a given limb configuration. In section 5.3 we present a
real time contact posture generator based on EFORT. Finally we conclude this chapter
with a discussion on the benefits and drawbacks of EFORT.

Figure 5.1: Where and how to create the next contact for a given limb?

5.1 Additional definitions

In this section we introduce the jacobian matrix and the velocity and force ellipsoids.
We also present the inverse kinematics problem as well as some useful additional defi-
nitions.

As a kinematic heuristic, EFORT deals with a classical issue: studying how varia-
tions of the joint angle values of a kinematic chain affect the position and orientation
of its end effector. It is therefore based on the jacobian matrix, a classical tool used to
map joint velocities to effector velocities.

Using the jacobian matrix of a given configuration, we can determine how much
variation of the joint angles is necessary to move the end effector along a given direction.
This allows us to evaluate how efficient the configuration is to perform the desired
motion: the more variation is necessary, the less efficient is the configuration. The
velocity ellipsoid presented in this section (and similarly, the force ellipsoid) captures
this efficiency in all directions of motion. EFORT extends the force ellipsoid as a
heuristic for task efficiency.

In the following subsections we give the mathematical definitions associated with
those concepts, before concluding with new definitions specific to our work.

Additional definitions 55

5.1.1 The jacobian matrix

We consider a kinematic chain R, described by a configuration vector q = [q0, ..., qn−1]
T .

The position and orientation of the l end effectors pk, 0 ≤ k < l, when expressed in R
coordinates, only depend on q. We can express it as follows:

p = f(q) (5.1)

where p = [p0, ...,pl−1]T .
Differentiating with respect to time, we obtain

ṗ = J(q)q̇ (5.2)

J(q) is the l × n jacobian matrix. Its elements are given by:

Ji,j =
∂pi

∂qj

As a linear approximation of f at q, J(q) describes how small variations from the
configuration q affect the position vector p. It can be seen as the transformation
mapping a velocity in the configuration space into a velocity in the euclidian space.

Because the formulation is used several times throughout the chapter, we define the
jacobian product Jp:

Jp(q) = J(q)J(q)T

For simplicity in the rest of the section J(q) is simply noted J.

5.1.2 The velocity ellipsoid

We consider the unit ball in the configuration space C defined by the set of joint
velocities for which the norm is inferior or equal to 1:

||q̇||2 ≤ 1 (5.3)

From Equation 5.2 we can obtain the following equality:

ṗT (JJT)−1ṗ = q̇T q̇ (5.4)

We can use Equation 5.4 to map the ball into an ellipsoid in the euclidian space
R
m:

ṗT (JJT)−1ṗ ≤ 1 (5.5)

This ellipsoid is called the manipulability ellipsoid, or velocity ellipsoid, introduced
by Yoshikawa in [Yos85]. It describes the set of velocities that can be reached under
the constraints of Equation 5.3 for the current configuration. The longer an axis of
the ellipsoid is, the faster the configuration can move along the direction of the axis.
Figure 5.2 - left shows the velocity ellipsoid for different configurations of a manipulator
with two degrees of freedom.

56 Chapter 5

Additionally, Yoshikawa defines the manipulability index w:

w(q) =
√

J(q)J(q)T (5.6)

w measures the “distance” between a given configuration and a singular configuration.
When w is equal to 0, the configuration is in a singular state; the greater w is, the
further away the configuration is from singularity.

Velocity ellipsoid Force ellipsoid (scale 0.5)

Figure 5.2: Examples of velocity and force ellipsoids for a manipulator composed of
2 dofs and 2 segments. Only the horizontal and vertical speeds are shown (not the
rotation speeds), since it would require being able to draw in four dimensions.

5.1.3 The force ellipsoid

Similarly to the velocity ellipsoid, the force ellipsoid can also be defined. We consider
a force vector f expressed in the task space R

m; we also consider the equivalent joint
torque vector τ . We can define the mechanical work in both spaces:

q̇T τ = ṗT f (5.7)

From Equation 5.2 and 5.7 we obtain:

q̇T τ = q̇TJT f ⇔ τ = JT f

which leads to:
τT τ = fT (JJT)f (5.8)

Therefore, the set of achievable force in R
m subject to the constraint:

||τ ||2 ≤ 1 (5.9)

is the force ellipsoid defined by:
fT (JJT)f ≤ 1 (5.10)

The longer an axis of the force ellipsoid is, the more appropriate the configuration is
to apply a force in the direction of the axis. Figure 5.2 - right shows the force ellipsoid
for different configurations of a manipulator with two degrees of freedom.

EFORT: a new heuristic for task efficiency 57

5.1.4 Sample and sample container

We define a sample s(qk) as the triplet < pqk ,qk,Jp(q
k) >, where:

• qk is a configuration of the limb Rk;

• pqk is the position of the end effector of Rk in configuration qk;

• Jp(q
k) is the jacobian product for the configuration qk.

We also define a sample container Sk as a set of samples. In our implementation, Sk

is an octree data structure, where the end effector positions p serve as spatial indexes.
This implementation allows to perform extremely efficient requests when it comes to
find configurations in contact with the environment, as explained in section 5.3.2.

Finally, we define Qk ∈ CNATURAL as the set of configurations in Sk:

q ∈ Qk ⇔ s(q) ∈ Sk

5.2 EFORT: a new heuristic for task efficiency

In this section we describe EFORT, a mathematic mean to evaluate the “task efficiency”
of a contact configuration. Given the environment and a set of candidate contact
configurations, EFORT returns the most relevant configuration to achieve a given task.
Because the tasks addressed in this thesis require important force actuation (Figure 5.1),
we define the efficiency of a configuration as the ability a limb has to exert a force in a
given direction.

We therefore consider the force ellipsoid defined in section 5.1.3 as a basis for our
heuristic. We use the force transmission ratio proposed by Chiu in [Chi87] to mea-
sure the length of the force ellipsoid in the desired direction. The force transmission
ratio is often used for optimizing a configuration against a single surface for a given
task [GKNK06].

However in our specific problem, we do not know in advance the surfaces with which
a contact must be created (Figure 5.1). Any reachable surface is a potential candidate,
but some surfaces are more appropriated than others. To discriminate between them,
we extend the force transmission ratio to include the quality of the contact surface.

5.2.1 The force transmission ratio

We consider a limb Rk of a virtual character R. R is given a force exertion task denoted
by the translation vector vt. We also consider the current position of R, and a set of
possible contact configurations Qk ∈ Ck, in contact with several reachable surfaces.
We want a heuristic to answer the following question: What is the most appropriate
contact configuration qk ∈ Qk regarding vt? We make the hypothesis that for a subset
of the possible motions, vt will be satisfied more easily if the end-effector can exert
a high force in the direction opposite to vt. This makes sense for the tasks we are

58 Chapter 5

addressing, such as pushing a cupboard, or standing up from a chair, which might
require an important effort.

Under this hypothesis, Chiu defines in [Chi87] the force transmission ratio fT. It
can be used to evaluate the length from the origin to the boundary of the force ellipsoid
in the direction vt:

fT(q
k,vt) = fT(q

k,−vt) = [vt
T (J(qk)J(qk)T)vt]

− 1
2 (5.11)

Therefore, the higher fT is, the more suited the configuration is for the force exertion
task vt.

Given a force exertion task, it appears that the force transmission ratio is a good
tool to evaluate a configuration. However, a drawback of fT is that it does not account
for the obstacle on which the contact is created.

5.2.2 EFORT: the Extended FORce Transmission ratio

We extend the force transmission ratio to include the quality of the contact surface. We
consider that qk is in contact with an obstacle Oi. We weigh fT with the dot product
between the task vt and the normal nOi of Oi.

αEFORT (q
k,vt) = fT(q

k,vt)vt · nOi (5.12)

If we maximize αEFORT , obstacles with normals collinear to the motion task will
be advantaged for contact creation. Therefore αEFORT ensures that force exertion is
actually applied against the obstacle (Figure 5.3).

This small modification largely extends the utility of the force transmission ratio:
αEFORT allows to consider the relevance of the surface the contact is created with. This
results in discarding physically inefficient configurations, as illustrated by Figure 5.3:
we consider the motion task vt indicated by the black arrow. According to the force
transmission ratio only, the top configuration is better to achieve vt. However, con-
sidering the contact surface normals, it appears that this configuration is inefficient.
Indeed, applying a vertical force in this configuration would only result in moving the
effector downward, because the surface reaction would not oppose the force. EFORT
therefore selects the bottom configuration, despite its poor force transmission ratio.

Furthermore, it is interesting to observe that when the force transmission ratio is a
symmetric and positive function, αEFORT is asymmetrical and returns opposite values
for opposite tasks. This makes it possible to distinguish between pulling and pushing
configurations. Important negative values of αEFORT imply that the surface normal
goes in a direction opposite to vt. This is preferred for pulling tasks.

Therefore we can simply define a heuristic for choosing pulling configurations:

αpull(q
k,vt) = −αEFORT (q

k,vt) (5.13)

Real time generation of contact configurations 59

Contact
surface
normal

Motion task
vt

Figure 5.3: EFORT integrates the contact surface normals to the evaluation of contact
configurations and favors surface normals aligned with the task.

5.3 Real time generation of contact configurations

We now describe a method to generate task efficient contact configurations. It com-
putes a set of candidate contact configurations and uses EFORT to return the most
effective for the considered task. For efficiency reasons, the algorithm is decomposed
in two steps:

Offline sampling step. The first step is independent from the environment. A large
set of arbitrary configurations Qk is randomly generated for each limb Rk (Figure 5.4).
Several precomputations are made for each configuration to accelerate runtime perfor-
mance.

Online request step. The second step consists in a request performed on the confi-
guration set Qk. The configurations currently in contact with the environment W will
be selected as potential solutions. Among those we select the configuration for which
EFORT gives the highest score (Figure 5.5) in order to produce the final animation.

60 Chapter 5

5.3.1 Offline generation of random limb configurations

This step is independent from the environment, and thus only has to be run once for
each limb Rk composing our creature R. Figure 5.4 illustrates the sample configuration
generation process. As inputs, we take a number of samples N and a limb Rk. We fill
a sample container Sk with the sample configurations of Rk by repeating four steps N
times:

R0 R1

R3 R2

pq0

1

q0

1

(1) (2)

S3

S2

S1

S0

<pq0

1
,q0

1
, Jp(q

0

1
) >

< pq0

2
,q0

2
, Jp(q

0

2
) >

...
< pq0

N

,q0

N , Jp(q
0

N) >

Figure 5.4: Illustration of the environment-independent offline sampling for N = 5000,
for the right arm first, then for all the limbs. A sample container is created for each
limb. An entry contains a configuration qk, and its jacobian product Jp. Entries
are indexed by the end-effector position pqk. For clarity the samples are shown in a
wireframe form.

Random generation of a configuration qk (Figure 5.4 – 1). This is done by gen-
erating a random angle value for each joint of Rk. The value of the angle is restricted
by a range of motion (ROM) to avoid obtaining unnatural poses.

Computation of the jacobian product Jp(q
k). The jacobian matrix J(qk) is com-

puted and multiplied by its transpose J(qk)T to obtain the jacobian product Jp(q
k),

needed for the runtime computation of the extended force transmission ratio αEFORT .
It can be computed directly from qk but its computation is expensive. Storing it results
in the additional storage of N matrices of size 3 ∗ 3 in memory. However it improves
the online performance since it avoids computing it multiple times and reduces the
computation of αEFORT to two simple matrix products.

Real time generation of contact configurations 61

Computation of pqk (Figure 5.4 – 1). The end-effector position pqk is expressed in

the limb coordinates Rk. Storing pqk allows the implementation of the sample container

Sk as a data structure efficient regarding proximity requests that will be performed at
runtime.

Insertion of the resulting sample in Sk (Figure 5.4 – 2). We create the sam-
ple denoted by the triplet< pqk ,qk,Jp(q

k) >, and store it into the sample container Sk.

As stated earlier, the generation of sample configurations has to be performed for
every limb composing our creature R. For instance, for a virtual human, we would end
up with four sample containers (one for each arm, and one for each leg). We cannot use
a single tree for both arms because the joint limits differ symmetrically in our model.
In this particular case, the symmetric container can be obtained by mirroring the value
of the original one.

5.3.2 Online computation of task efficient contact configurations

Specification of motion
task vt (1)

3D obstacle surfaces (2.a)

Offline presampling of
reachable workspace (2.b)

Selection of contact
postures among
offline samples

(3)

Selection of the best
posture for the task

(4)

Figure 5.5: Online step request. Given the task of getting up (1), We transpose the
samples from our database into the local environment (2), and select the configurations
in contact with the environment (3). Among these candidates, we select the collision-
free configurations that maximize the heuristic αEFORT (4). For clarity the creature
and samples are shown in a wireframe form.

We consider the motion task vt (Figure 5.5 – 1: the black arrow indicates the task
of getting up). To find a contact configuration for a limb Rk that is efficient for vt, we
proceed in four steps:

Identification of the reachable obstacles. We retrieve the obstacle set E ⊂ W of
obstacles potentially reachable by the limb Rk (Figure 5.5 – 2.a: the sofa, the ground

62 Chapter 5

and the wall). E is the result of a collision detection query between the environment
and the non convex hull Ak

ROM , encompassing the range of motion of the limb centered
at the root of Rk.

Selection of the samples in contact. We request Sk for all the samples that
are in contact with an obstacle of E (Figure 5.5 – 2.b). We recall that a configuration
q is in contact if ∃O ∈ E, d(pqk , O) < ǫ . The result of the query is a list of limb

configurations Qk
contact ⊂ (Qk ∩Ck

contact) (Figure 5.5 – 3: Selection of configurations in
contact with the sofa and the ground).

Ordering of the candidate samples. We sort the samples of Qk
contact using our

heuristic αEFORT (q
k,vt). This means that the first sample of Qk

contact, that we call
qk
max, verifies:

∀qk ∈ Qk
contact, αEFORT (q

k,vt) <= αEFORT (q
k
max,vt).

This is the configuration that is the most appropriate for the task regarding the ex-
tended force transmission ratio.

Selection of the best collision-free sample. As an output, the contact gener-
ator returns, if it exists, a collision free contact configuration maximizing αEFORT

(Figure 5.5 – 4: our method places the right hand on the armchair, both feet on the
ground, close to the root, and the left hand on the sofa). Our algorithm does not
provide a guarantee to find such configuration. The selection process is described in
Algorithm 2.

Alignment of effector normal with surface normal using inverse kinemat-
ics In order to create a perfect contact, the end effector and obstacle surface normals
are aligned using an inverse kinematics solver applied on the considered limb. The dot
product of the normal vectors is used as a secondary objective function to be minimized
by the solver, so as to align the effector and obstacle surfaces.

Algorithm 2 Selection of the best candidate configuration qk
max ∈ Qk

contact

1: function SelectConfiguration(Qk
contact)

2: for all qk in Qk
contact do

3: if CollisionFree(qk) then
4: return qk

5: return NULL

5.4 Discussion

In this chapter we presented a real time generator for task efficient contact configura-
tions: given a force exertion task and the current configuration of the virtual character

Discussion 63

in the environment, a contact configuration is automatically generated, based on its
compatibility with the task. This compatibility is evaluated using the heuristic EFORT,
also presented in this chapter.

In this section we discuss our method from three different perspectives: Advan-
tages and limitations of the method, relevance of the EFORT heuristic, and finally
applications and evolutions.

5.4.1 Advantages and limitations of EFORT.

To our knowledge, our contact posture generator is the first automatic real time so-
lution for task efficient contact configurations in constrained environments. EFORT
does not need prior knowledge of the contact surface, making it entirely automatic,
and applicable for any environment, when previous manipulability based approaches
required manual specification of the contact location.

Our method is simple to implement, and efficient regarding performance. It is
generic because it works for arbitrary creatures and environments.

A limitation of our method is that our generator only creates contacts for the end
effectors of a virtual creature. In constrained environments, people also use their
knees, elbows, or any part of their body that might be useful. While the principles
of EFORT could easily be applied to consider creating contacts on discrete locations
(elbow, knee...), considering the creation of contacts for any parts of the creature is
much more challenging with our approach. The issue has been considered by other con-
tributions such as [KE08], but implementing them implies losing the real time property
of our method.

A technical issue of EFORT is that configurations which maximize the force trans-
mission ratio in a given direction tend to be close to singular configurations. This is
not due to a numerical instability and reflects the proximity to joint limits. We over-
come this issue by considering the manipulability index w, presented in section 5.1.2:
the higher w is, the further away the configuration is from singularity. Configurations
for which the manipulability index is not greater than a user defined threshold value
are simply discarded during the sampling process. However, by doing this we also re-
ject potential plausible solutions: a trade-off has to be found between an exhaustive
approach and numerical stability.

5.4.2 Relevance of EFORT as a heuristic.

EFORT is a purely kinematic heuristic. A simple way to summarize it is to say that it
evaluates, for a given configuration how much variation at the joint level is necessary to
produce a variation at the task level. It has been shown that the manipulability measure
is relevant for human beings [JBGR12], but that it is subject to some variations related
to the muscular properties of the human limbs, as well as the joint limitations, not
considered by the heuristic. A more accurate heuristic should integrate those physical
limitations.

64 Chapter 5

Because of this kinematic nature, EFORT does not consider the physics forces
applied to the environment and the virtual creature. It must be used along with other
heuristics which consider these criteria. The integration of dynamic balance within our
contact posture generator is considered in our framework, and explained in Chapter 7.

EFORT maximizes the force transmission ratio in the direction opposite to that of
the motion. This is relevant for the tasks we consider, but many other possibilities could
be considered, using the force or the velocity ellipsoid. Small values of our heuristic
are associated with a good control in the desired directions, which could be interesting
for specific tasks such as writing. It would be interesting to consider these tasks and
propose new heuristics for them.

5.4.3 Applications and future improvements

This thesis presents the integration of EFORT within a complete motion planning
framework, to produce more natural motions in constrained environments. We believe
that the contact posture generator proposed in this chapter can also be used as a
“stand alone” method for real time animation, in a way similar to the locomotion system
proposed in [Joh09]. Contrary to the locomotion system, EFORT is not limited to cyclic
walking and running motions, and can be used to procedurally generate animations in
constrained environments, as illustrated in Chapter 8. Another application that we are
considering for the contact generator is its integration at the design level, within an
animation software. By clicking on a button, an animator could be provided a set of
suggestions for contact configurations for a creature in an environment. This could save
a lot of time in the manual design of complex animations. A last considered application
is the retargetting of motion capture data consisting in objects being manipulated.
EFORT could be used to recompute new contact points relevant for new objects.

Among the possible improvements that could be brought to EFORT, it would be
interesting to consider compatibility of the whole body posture rather than the limb
configuration. Currently we do not integrate the fact that actuating several limbs at
the same time could result in undesired torques on the body in the case of a dynamic
simulation. Therefore we want to combine the method with a complementary global
posture optimization technique [LMEE12]. Doing this would allow us to optimize the
whole body according to the computed limb configurations, and produce more natural
results.

Chapter 6

Stage 1: A Reachability Based
Probabilistic Road Map
(RB-PRM)

Contents

5.1 Additional definitions . 54

5.1.1 The jacobian matrix . 55

5.1.2 The velocity ellipsoid . 55

5.1.3 The force ellipsoid . 56

5.1.4 Sample and sample container 57

5.2 EFORT: a new heuristic for task efficiency 57

5.2.1 The force transmission ratio 57

5.2.2 EFORT: the Extended FORce Transmission ratio 58

5.3 Real time generation of contact configurations 59

5.3.1 Offline generation of random limb configurations 60

5.3.2 Online computation of task efficient contact configurations . 61

5.4 Discussion . 62

5.4.1 Advantages and limitations of EFORT. 63

5.4.2 Relevance of EFORT as a heuristic. 63

5.4.3 Applications and future improvements 64

This chapter presents the first part of our second contribution: the Reachability
Based Probabilistic Road Map (RB-PRM). This high level motion planner serves as an
entry point to our motion planning framework (Figure 6.1 - 1).

Classical motion planners (PRMs or RRTs) generate contact configurations and con-
nect them into a collision-free path in the workspace, independently from the followed
trajectory. To be able to generate task efficient configurations however, the informa-
tion brought by the trajectory is required, as detailed in Chapter 5. RB-PRM results

65

66 Chapter 6

Towards plausible motions in constrained environments

Task specification collision-free
trajectory

Task efficient
contact trajectory

Optimized
dynamic trajectory

(1)

RB-PRM

(2)

EFORT

(3)

Motion
optimization

Figure 6.1: In this chapter we present RB-PRM(1), a global motion planner for
collision-free trajectories.

from this observation and does not try to generate contact configurations. Rather, it
is designed to return collision-free paths that stay close to obstacles. This will allow
further contact creation in the second stage of our framework (Figure 6.1 - 2).

RB-PRM considers the following inputs: a virtual character, the environment, a
motion task expressed as start and goal configurations. It outputs a continuous and
smooth trajectory q(t) going from the start to the goal configurations. q(t) is con-
strained to remain close enough from obstacles while avoiding collisions.

RB-PRM belongs to the Probabilistic Road Map Family (PRM). As such, it ope-
rates in two steps:

• In the first phase we try to capture the topology of the environment into a graph
(section 6.2); a set of collision-free configurations, randomly sampled, are con-
nected to each other if a collision-free path exists between them. At this stage
there is no information on the nature of the future queries (and thus, no infor-
mation on the tasks), therefore the roadmap is not composed of contact configu-
rations. Instead, RB-PRM selects configurations which are “close enough” from
obstacles to allow ulterior contact creation, hence the term “Reachability based”;

• In the query phase, a search is performed among the graph to find a path connect-
ing a start configuration to a goal configuration (section 6.3). Due to the random
nature of planners, the returned path often looks unnatural and requires refine-
ment. We transform it into a smooth, refined and collision-free spline trajectory
using a “shortcut” algorithm.

This chapter introduces the reachability condition, as well as an algorithm to ef-
ficiently generate configurations that verify it. Thanks to this formulation, we can
abstract an arbitrary complex virtual creature into a model entirely described with

Additional definitions 67

little more than 6 degrees of freedom. This is done without losing genericity. More
importantly, in our context of constrained environments, this formulation provides a
heuristic for selecting configurations that will allow ulterior contact creation. The tra-
jectory outputted by RB-PRM is indeed used as an input for the second level of our
framework (Figure 6.1 - 2). Using a real time posture generator, this second level
transforms the said trajectory into a contact trajectory.

The remainder of this chapter is structured as follows: section 6.1 introduces addi-
tional definitions, specific to RB-PRM; section 6.2 describes the offline phase of RB-
PRM; section 6.3 presents the online request phase of RB-PRM; section 6.4 concludes
with a discussion on the benefits and drawbacks of using RB-PRM.

6.1 Additional definitions

6.1.1 Configurations of RB-PRM

In this chapter, we work with the character abstraction A of the virtual character R.
This simplified model is entirely described by the 6 degrees of freedom indicating the
position and orientation of the root of the character qr. The definitions relative to
the character abstraction can be found in Chapter 4. In the present chapter every
configuration mentioned refers to qr. For this reason and to simplify the equations, we
use the notation q instead of qr to describe a configuration.

6.1.2 The reachability condition

We recall that A is composed of two sets of objects, so that A = Atrunk∪AROM . AROM

is represents the Range Of Motion of each limb of the virtual character. Atrunk is a
shape presenting the following property: For a position and orientation of the root qr,
if Atrunk is free of collision, at least one collision-free exists for the virtual character
R at this position. Using the character abstraction A allows us to define “interesting”
configurations (Figure 6.2): If Atrunk is free of collision while the objects of AROM are in
collision with the environment, there is a good chance that a contact configuration can
be found for the virtual character. We call this the reachability condition. We can
then define Creachability as the set of configurations verifying the reachability condition:

Creachability = {q : Aq
ROM ∩W 6= ∅ ∧Aq

trunk ∩W = ∅} (6.1)

The reachability condition can be seen as an extension of the work of Pignon et al. in
[PHL91] and [PHL92], restricted to motion planning for 2D cell decomposed environ-
ments, to the three dimensional unrestricted more general case.

6.2 Generating RB-PRM

In this section we present the algorithm used in the offline step of RB-PRM. It consists
in generating a graph of configurations that captures, at least partially, the topology of

68 Chapter 6

Figure 6.2: Illustration of the reachability condition. In the three examples shown, only
the rightmost configuration is accepted. It is the only one for which the red cylinder
(Atrunk) is collision free while the green spheres (AROM) collide with the environment.

the environment. The configurations (or nodes) are connected if a collision-free path
exists between them. The inputs of this step are: a virtual character abstraction A; the
environment W . During this step, the main difference between RB-PRM and classical
probabilistic planners lies in the way that candidate configurations are generated. The
configurations are required not only to be collision-free, but also to be close enough to
the environment to allow contact creation in an ulterior step. First we describe how
such configurations are generated. Then we describe the graph generation algorithm,
which is based on the Visibility-PRM introduced by Siméon et al. in [NSL99]. This
section is concluded with the description of the local methods used by Visibility-PRM
to connect configurations in the graph.

6.2.1 Sampling the configuration space

The objective of RB-PRM is to generate a graph of configurations which belong to
Creachability. Uniform sampling is not relevant because the probability of randomly gene-
rating such configurations is low. To generate efficiently configurations in Creachability,
we use a variant of the OB-PRM generation method introduced by Yamato et al.
in [AW96], presented in Chapter 2.1.2. The generation of one candidate configuration
(Figure 6.3) is made thanks to Algorithm 3. The idea is to select a triangle in the
workspaceW , to translate the character abstraction A to its position, before translating
and rotating randomly A by small increments until the reachability condition is met.

Two user defined numeric values, LIMIT1 and LIMIT2, ensure that the gene-
ration will not loop infinitely around areas of the workspace where the reachability
condition cannot be met.

To select a triangle tobs to sample, we do not proceed in a purely random manner.
In [ABL+98] Yamato et al. describe two ways of selecting a triangle:

• Randomly select a triangle. This will bias the generation of configurations near
areas of the workspace composed of a lot of triangles;

• Select a triangle with a probability proportional to its area. This will bias the
generation of configurations near large areas (usually, open areas).

Generating RB-PRM 69

a) b)

c) d)

Figure 6.3: RB-PRM configuration generation process. A point in one of the obstacles
surface is selected (a). The root of the character is translated to this point (b). It
is then translated in a random direction (c), before being randomly rotated until the
reachability condition is met (d).

Algorithm 3 Generation of a configuration q ∈ Creachability

1: function GenerateConfiguration

2: q← [0, ..., 0]T /*Set all DOFs to 0*/
3: ntry1← 0;ntry2← 0;
4: while ntry1 < LIMIT1 do
5: Select a triangle tobs ∈ workspace W
6: while ntry2 < LIMIT2 do
7: Translate q to random point of tobs
8: d← Random unit direction
9: while Aq

ROM ∩ tobs 6= ∅ do
10: ǫ← random number, 0 < ǫ ≤ 1
11: Translate q by u = ǫd
12: if q ∈ Creachability then
13: return q
14: else
15: Rotate q randomly
16: ntry2← ntry2+ 1

17: ntry1← ntry1+ 1

18: return failure

70 Chapter 6

Experience showed us that a combination of these two generation methods turns
out to be more appropriate to efficiently cover the workspace. Therefore, each time we
want to select a triangle, we choose a random selection method with a probability s,
or the weighted generation method with a probability 1− s.

6.2.2 Graph construction

RB-PRM is a declination of the Probabilistic Roadmap Algorithm, more precisely of the
Visibility PRM, introduced by Siméon et al. in [NSL99]. For the reader’s convenience
we provide and explain the algorithm in this section, although it is not our contribution.

The term “Visibility” in Visibility-PRM refers to the connectivity of a configuration,
or node, in the graph. We consider a local planner l expressed as a predicate: l(q0,q1)
returns true if a path exists between q0 and q1.

This allows us to define the visibility domain V isl(qg) of a configuration qg as

V isl(qg) = {q ∈ Cfree, l(qg,q)} (6.2)

Figure 6.4 illustrates this notion for a two-dimensional configuration space. Con-
sidering a virtual creature composed of a single non oriented circle, a configuration can
be represented as a 2D point in the plane. This point refers to the center of the circle.
Now we define a local planner l so that l(q0,q1) returns true if a straight line can be
drawn between q0 and q1 without colliding with an obstacle. In the first 3 frames of
Figure 6.4, a configuration is represented by a black dot and the colored area denotes
its visibility domain. The graph generation process is described in Algorithm 4. When
a new configuration q is generated, it is only added to the graph if one of the following
conditions is met:

• q does not belong to the visibility domain of any configuration in the graph (this
happens when the graph is empty for instance). This means that q is interesting
because its location belongs to the unexplored area of the workspace W . The
configuration is called a guard node (black dots in Figure 6.4);

• q belongs to the visibility domains of two configurations for which no path cur-
rently exists in the graph. This means that q allows to connect two previously
unconnected components of the graph. The configuration is called a connecting
node (white dots in Figure 6.4).

Any configuration that does not comply to either one of these conditions is con-
sidered unnecessary and will be rejected. An example of graph generation is shown in
Figure 6.4. From frame g), it appears that Visibility-PRM generates a graph that can
provide sub optimal paths in terms of distance traveled. This is discussed in section 6.4.

The generic Algorithm 4 relies on two methods to be functional: GenerateCon-

figuration and SimplePath. GenerateConfiguration has been introduced in
section 6.2.1. We now need to describe how SimplePath is implemented in RB-PRM.

Generating RB-PRM 71

Algorithm 4 Graph construction using the Visibility PRM Algorithm

1: function Generate-PRM(m: number of tries)
2: Guard← ∅;ntry← 0
3: G← ∅ /*Empty graph*/
4: while ntry < m do
5: q← GenerateConfiguration()
6: qvis ← NULL;Gvis ← ∅
7: for all components Gi of Guard do
8: found← FALSE
9: for all nodes qg of Gi do

10: if SimplePath(q,qg) then
11: found← TRUE
12: if qvis 6= NULL then
13: qvis ← qg;Gvis ← Gi

14: else
15: /*Add two new connections to the graph G*/
16: G← G ∪ {(q,qg), (q,qvis)}
17: Guard← Guard \Gvis

18: Gi ← Gvis ∪Gi
until found

19: if qvis == NULL then
20: Add {q} to Guard; ntry ← 0
21: else
22: ntry ← ntry + 1

23: return G

72 Chapter 6

a) b) c) d)

e) f) g) h)

Figure 6.4: Generation process of the Visibility PRM in a simple 2D case. a)b)c)
Randomly generated configurations are added to the graph, because they cannot be
connected to any existing nodes: they are guard nodes. d) A new configuration is
rejected because it belongs to the green visibility domain, but does not allow to improve
the graph connectivity. e)f) Two connecting nodes are added to the graph because
they allow to connect independent components of the graph. g) A new configuration is
rejected because it fails to improve the graph connectivity. h) The final graph.

6.2.3 Connecting nodes

Local planners, or local steering methods, are used in PRMs to determine whether two
configurations can be connected in the graph. They are called “Local” because they
use really fast and simple methods to try to connect two configurations. Those meth-
ods usually only success if the configurations are close enough, or if the environment
separating them is simple.

The most basic implementation of SimplePath consists in drawing a straight line
between the two configurations, and using linear interpolation at a fixed step to deter-
mine if a collision occurs along the line.

Another simple implementation is the Rotate-At-s method. Rather than progres-
sively rotating the configuration using linear interpolation, the configuration is suddenly
rotated from its original orientation into the final one at a determined step s.

Those two methods are illustrated in Figure 6.5. Depending on the case, as once
again demonstrated by Yamato et al. in [ABL+98], one can find a path when the other
cannot. Using both approaches can therefore be beneficial. Our local planner first
checks for a connection using a straight line planner and, if that fails, uses a rotate-at-s
approach, where s is randomly determined.

We add another condition to our local planner. Not only do we ensure that the
intermediate configurations are collision-free, we also make sure that all of them verify

Generating RB-PRM 73

Figure 6.5: Two examples of local planner: straight line planner with linear interpola-
tion (left); rotate-at-s planner (right). In this particular case the straight line planner
fails to find a local path where the rotate-at-s succeeds.

Figure 6.6: If the reachability condition is not verified by the local planner unrealistic
paths might be found.

the reachability condition, to avoid situations such as the example shown in Figure 6.6.
A consequence of this restriction is the inability to our planner to plan highly dynamic
motions such as jumping. However, considering our initial strong hypothesis of highly
constrained environments this drawback does not appear to be a strong issue.

6.2.4 Conclusion

In this section we describe the different steps leading to the generation of the RB-
PRM graph. This graph is composed of configurations sampled in Creachability. A
configuration is connected to another one in the graph if two conditions are met:

• A simple collision-free path exists between them;

• All the configurations interpolated along this path also belong to Creachability.

74 Chapter 6

The graph we obtain contains a relatively small number of nodes thanks to its design
based on the Visibility-PRM.

6.3 Online request and trajectory generation

With an instance of RB-PRM generated for a given workspace W and a virtual cha-
racter R, we can request the graph for a path between two configurations. As inputs,
the request step takes: the graph generated by RB-PRM; a motion task, expressed as
start and goal configurations. It outputs a smooth continuous trajectory composed of
collision-free configurations from the start to the goal configuration. In this section
we explain how the path is requested and how it is transformed into a smooth spline
trajectory. Finally we detail the algorithms used to simplify the trajectory.

6.3.1 Path request using the A* algorithm

To perform a path request on a RB-PRM graph G, we use the famous A∗ algorithm.
Its implementation is given in Algorithm 5.

For the algorithm to be complete, we need to provide two methods: estimate and
distance. estimate is a heuristic used to estimate the distance between two uncon-
nected nodes, when distance computes the actual distance between two connected
nodes. In this work we use the same method in both case. Therefore in the rest of
this chapter we only refer to the distance method. Once again, we rely on the report
from Yamato et al. [ABL+98] to choose an implementation for distance. We choose
to implement distance as the scaled euclidian distance between two configurations:

distance(q1,q2) = (s
∑

k=x,y,z
|kq1 − kq2 |+ (1− s)

∑

k=α,β,γ
|kq1 − kq2 |)

1
2 (6.3)

Where s ∈ R, 0 ≤ s ≤ 1 is a user defined parameter.

6.3.2 Path refinement and simplification

The random nature of PRMs often result in suboptimal path, in terms of length and
jerkiness of the motion. Several methods exist to simplify a path returned by a PRM
like planner. Given a path as input, as well as the maximum velocity and acceleration
of the character, the path refinement step returns a smoother spline trajectory.

To achieve this goal, two methods are successively employed: the simple “pruning”
method, and the “spline shortcut method”.

6.3.2.1 Path pruning

The path pruning algorithm is a simple method to try to remove redundant nodes from
a returned path. Given a local planner l, and an ordered path P = [q0, ...,qm], a node
qi is redundant if

∃j, k, 0 ≤ j < i < k ≤ n, l(qj,qk)

Online request and trajectory generation 75

Algorithm 5 The A* algorithm

1: function A*(qstart,qgoal)
2: ClosedSet← ∅ //The set of nodes already evaluated.
3: OpenSet← {qstart} //The set of tentative nodes to be evaluated
4: came from← [] //The map of navigated nodes.
5: g score← [] //Cost from start to a node along best known path.
6: g score[qstart]← 0
7: f score← [] //Estimated total cost from start to goal through a node.
8: f score[qstart]← g score[qstart] + estimate(qstart,qgoal)
9:

10: while OpenSet 6= ∅ do
11: //Select element of OpenSet for which f score is minimal
12: qcurrent ← min(OpenSet, f score)
13: if qcurrent == qgoal then
14: return reconstructPath(came from,qgoal)

15: OpenSet← OpenSet− {qcurrent}
16: ClosedSet← ClosedSet ∪ {qcurrent}
17: if qneighbor ∈ ClosedSet then
18: continue

19: for all nodes qneighbor in neighborNodes(qcurrent) do
20: try ← g score[qcurrent] + distance(qcurrent,qneighbor)
21: if qneighbor /∈ OpenSet ∨ try < g score[qneighbor] then
22: came from[qneighbor]← qcurrent

23: g score[qneighbor]← try
24: f score[qneighbor]← g score[qneighbor] + estimate(qneighbor,qgoal)
25: if qneighbor /∈ OpenSet then
26: OpenSet← OpenSet ∪ {qneighbor}

27: return failure

28: function reconstructPath(came from,qcurrent)
29: path← emptyList
30: path.push front(qcurrent)
31: while came from[qcurrent] 6= NULL do
32: qcurrent ← came from[qcurrent]
33: path.push front(qcurrent)

34: return path

76 Chapter 6

Algorithm 6 defines a pruning algorithm. Figure 6.7 illustrates a benefit of the
pruning algorithm.

Algorithm 6 Pruning Algorithm

1: function Prune(P, l)
2: for i = 0 to P.length() do
3: for j = P.length() to i+ 2 do
4: if l(P[i],P[j]) then
5: Remove all nodes between i and j
6: break

Figure 6.7: Pruning algorithm illustration. Blue circles correspond to the start confi-
guration, and red circles to the target configuration.

6.3.2.2 From a piecewise linear path to a shortcut spline trajectory

A popular way to transform a PRM trajectory into a smoother one is to approximate the
trajectory using spline curves. In this step we transform a sequence of configurations P
with no notion of time into a spline trajectory q(t), respecting the character boundaries
in terms of velocity and acceleration. Pan et al. proposed to use the properties of B-
splines to further refine a spline trajectory in constrained environment in [PZM12].
This section will give a simple overview of their method which is implemented in this
thesis. The interested reader is invited to refer to the paper to obtain more complete
details.

Transforming the original path into a B-spline trajectory. Given a path P,
we consider the interpolation function P (t), 0 ≤ t ≤ tmax, defined in Chapter 4. We
recall that tmax denotes the maximum distance traveled along P, and that P (t) returns
the interpolated configurations corresponding to a distance t traveled along P.

We approximate P into a smooth spline q(t).

Figure 6.8 illustrates the process. The idea is to randomly sample m + 1 knots
ti, t0 = 0 ≤ t1 ≤ ... ≤ tm = tmax and use them to create a B-spline q(t) approximating
P (t). If all the configurations of q(t) verify the reachability condition, then q(t) is a
valid approximation. Otherwise we increase the number of samples and try again. This

Online request and trajectory generation 77

algorithm always converges since, as the number of samples increases, the q(t) becomes
more and more similar to P (t), which already verifies the reachability condition.

In the process, the path is transformed into a trajectory. The knots ti, which refer
to the traveled distance along q(t), are reparametrized as time indexes
ui, u0 = 0 ≤ u1 ≤ ... ≤ um using the maximum velocity of the virtual character’s
degrees of freedom:

ui − ui−1 = max
k=x,y,z,α,β,γ

∫ ti
ti−1

qk(t)

vk
max

Figure 6.8: Path approximation as a spline trajectory. A random number of knots are
sampled along the original trajectory and a spline is created with them. While the
spline does not verify the reachability condition (middle), we sample more knots on the
trajectory (right).

The spline shortcut algorithm The spline shortcut algorithm proposed by Pan et
al. is a generalization of the pruning algorithm to B-splines [PZM12]. It exploits the
locality property of B-splines to deform small portions of the curve without altering
the whole trajectory. We apply N times the following steps, where N is a user defined
variable:

• Two knots ua and ub, 0 ≤ ua < ub ≤ um are randomly sampled (Figure 6.9 - b);

• using the same process used to transform the original path into a B-spline (with
q(t) instead of P (t)), a new spline is generated between ua and ub;

• if the new spline verifies the reachability collision, it is merged with q(t) (Fi-
gure 6.9 - c);

• when the reachability condition is not verified, additional knots are sampled (Fi-
gure 6.9 - d,e);

6.3.3 Conclusion

In this section we describe the different steps leading to the computation of a smooth,
collision-free trajectory connecting two configurations.

78 Chapter 6

a) b) c)

d) e) f)

Figure 6.9: Illustration of the spline shortcut algorithm.

First, the RB-PRM graph is requested. The start and goal configurations are tem-
porary added to the graph, and a pathfinding algorithm is run. If a path is found it is
returned, otherwise the algorithm fails.

The path is then transformed into a trajectory, including the notion of time. This
is done by considering the total distance traveled along the path and the maximum
speed the character can travel.

In a last step, the trajectory is approximated and, if possible, simplified, using a
spline shortcut algorithm, introduced by Pan et al. in [PZM12].

6.4 Discussion

In this chapter we present the Reachability Based Probabilistic Road Map. RB-PRM is
designed for the fast generation of a collision-free trajectory for a character abstraction.
The configurations along this trajectory verify the “reachability condition”, ensuring
their proximity to obstacles. The purpose of RB-PRM is to delay the generation of
contact configurations to an ulterior step while computing a promising trajectory for
a virtual character. This will allow the creation of contacts configurations suitable for
the trajectory. The trajectory produced by RB-PRM is smooth and refined thanks to
the implementation of a spline shortcut algorithm.

Other applications could be considered for RB-PRM. For instance it could be used
to plan trajectories for flying drones subject to ground proximity constraints. In this
section we discuss the implications resulting from the use of RB-PRM.

6.4.1 Interest of RB-PRM over other probabilistic planners

Considering the number of already existing probabilistic planners, it seems appropriate
to motivate the need for RB-PRM. This thesis is based on the claim that new heuristics
must be proposed to generate plausible contact configurations, and that these heuristics

Discussion 79

must consider the task being performed. In this chapter we explain that the PRM
approach cannot address this issue correctly because the task is not known when the
contacts are generated.

However, one could argue that when using RRT planners, specifically designed for
single query planning, the task is known prior to the generation of configurations.
However the issue is similar: even if the start and goal configurations are known and
give a rough idea about the direction of motion, in a constrained environment the local
task to perform remains unknown. A configuration can be connected to several others
in the RRT graph, and we have no way of knowing which one will be part of the final
trajectory. Therefore we cannot compute task efficient contact configurations at the
graph generation stage.

This being said, adapting RB-PRM into a RRT like planner would be trivial.

The choice of basing RB-PRM on the visibility PRM rather than a classical PRM
can also be discussed. The visibility PRM has the obvious advantage of usually con-
taining a smaller set of nodes than classical PRM planners. The associated drawback
is that the paths returned by the planner might not be the shortest ones. However
from our experience, in constrained environments this is not too problematic because
there are so many obstacles that the computed trajectory usually goes close to the
shortest possible path (Figure 6.10). Furthermore, we also rely on the spline shortcut
algorithms to remove unnecessary detours in the returned trajectory.

Figure 6.10: Left: While the graph covers the whole workspace W , to go from the blue
configuration to the red one, the green path would be much shorter that the detour
proposed by the graph. Right: In constrained environments the options are more
limited and the problem is less likely to occur.

6.4.2 Genericity and relevance of RB-PRM

One strength of RB-PRM resides in the simplicity of the abstract virtual character
used for the graph generation, associated with the reachability condition. Contrary
to example based approaches such as motion capture, RB-PRM restricts the research
space without suffering from a loss of genericity. In theory any valid solution for a
contact based motion planning problem can be found from our planner.

80 Chapter 6

However, the reachability condition is only a heuristic: a configuration verifying the
condition is not necessarily a valid contact configuration, mostly from a balance point
of view, because the contact creation is delayed. To handle this issue, two non exclusive
options can be considered to complete the reachability condition:

• Before adding a new configuration to the graph, assert that a statically bal-
anced configuration can be generated. This can be achieved in many ways, such
as [BELK09]. This balanced configuration can then be discarded since it will not
be efficient for achieving the task, or stored in the graph as a “backup solution”
if balance is critical in the application.

• A second option is to specialize the reachability condition. For instance, it is
really easy to ensure that several limbs verify the reachability condition. We
could require standing configurations (vertical axis of the configuration loosely
aligned with the work vertical axis) to verify the condition for both legs, and
bent positions to verify it for all limbs. This increases the chances of generating
balanced configurations, although still not guaranteeing it. This is the approach
we chose to implement in some of our test scenarios. Additional constraints can
be also considered regarding the obstacles: minimum size, normal orientation...

In both cases, the genericity of RB-PRM does not hold because of the additional
constraints. The user of RB-PRM must consider these options and weigh the pros
and cons associated to them. In any case, RB-PRM remains a kinematic planner,
and does not provide guarantees that the returned path will ultimately be balanced
all along the trajectory. State of the art methods encounter the same issues as RB-
PRM [BELK09, MTP12]. Our advantage over them is expressed in terms of perfor-
mance and completeness of the approach.

Chapter 7

Stage 2 and 3: Generation of a
task efficient contact trajectory

Contents

6.1 Additional definitions . 67

6.1.1 Configurations of RB-PRM 67

6.1.2 The reachability condition . 67

6.2 Generating RB-PRM . 67

6.2.1 Sampling the configuration space 68

6.2.2 Graph construction . 70

6.2.3 Connecting nodes . 72

6.2.4 Conclusion . 73

6.3 Online request and trajectory generation 74

6.3.1 Path request using the A* algorithm 74

6.3.2 Path refinement and simplification 74

6.3.3 Conclusion . 77

6.4 Discussion . 78

6.4.1 Interest of RB-PRM over other probabilistic planners 78

6.4.2 Genericity and relevance of RB-PRM 79

This chapter addresses the stages 2 and 3 of our framework: we transform a collision-
free trajectory for a 6 dofs character abstraction into a contact trajectory for a virtual
character. In stage 2 (Figure 7.1 - (2)), we take as inputs: the collision-free trajectory,
resulting from stage 1 (Figure 7.1 - (1)); the user defined start and goal configuration
of the character. We output a sequence of discrete task efficient contact configurations
along the trajectory (Figure 7.1 - (2)). Each configuration is separated by a user
defined time step. This stage is the most important step of our motion planner: again,
generating task efficient contact configurations is critical to obtain a feasible motion. To
ensure this property, the method uses the contact generator introduced in Chapter 5.

81

82 Chapter 7

Towards plausible motions in constrained environments

Task specification collision-free
trajectory

Task efficient
contact trajectory

Optimized
dynamic trajectory

(1)

RB-PRM

(2)

EFORT

(3)

Motion
optimization

Figure 7.1: In this chapter we cover the last two stages of our framework, the transfor-
mation of a collision-free trajectory into a contact trajectory (2 and 3).

At this stage, the complete trajectory of the root of the virtual character is known.
This allows additional criteria for contact creation to be considered. Additionally to
maximizing the EFORT heuristic, we propose a heuristic for contact duration: it evalua-
tes whether a contact configuration has a reasonable chance to be maintained in the
next few frames, and favors them. A third criterion is also proposed: considering the
existing contacts, as well as the root velocity and acceleration, it tries to generate
contacts which maintain dynamic balance, based on a criterion proposed in [QEMR11].

The contact sequence obtained after stage 2 provides an approximation of the solu-
tion motion along the trajectory computed in stage 1. The time information associated
with this trajectory must be updated to respect the internal joint velocities limits of the
character. This is achieved by considering the joint variation between successive contact
configurations. This results in a continuous kinematic trajectory. We are interested in
improving it to maintain balance along the motion, and make it smoother.

One way to improve this trajectory is to optimize it using a framework from the lit-
erature (Figure 7.1 - (3)). This last stage enforces relevant properties, namely dynamic
balance and jerk minimization. The output of stage 3 is the final trajectory used to
animate the virtual character.

This chapter is organized as follows: section 7.1 presents two new criteria, integrated
within our generator for task efficient contact generation; section 7.2 describes the
generation of the contact sequence performed in the second stage; section 7.3 discusses
the trajectory optimization performed in the third stage of our framework; section 7.4
concludes with a discussion on these last two stages of our framework.

Two criteria for contact duration and dynamic balance 83

1) 2) 3)

4) 5) 6)

Figure 7.2: From a input trajectory (1), we create a contact for the purple configuration
(2). However, this contact does not hold for the next configuration (3). To ensure that
the contacts hold for a given period of time, we bias the contact generation towards
location included in the Range Of Motion of consecutive configurations (5) (6).

7.1 Two criteria for contact duration and dynamic bal-
ance

In Chapter 5, we present the EFORT heuristic, and a real time generator for task
efficient contact configurations. This generator is a local method: the selected contact
configuration is only chosen based on the current configuration and the local task.

If the trajectory followed by the character is known, it is possible to improve the
contact generator with a simple predictive heuristic for contact duration. Considering
the velocity and acceleration of the character’s root, we can also use a simple heuristic
for dynamic balance. We present these two heuristics in this section. For both heuris-
tics, an implicit parameter is the collision-free trajectory q(t), resulting from stage 1 of
our planner.

7.1.1 A simple heuristic for contact duration

We define a simple criterion for contact duration, based on the Range Of Motion
(ROM) of the virtual character. It asserts that a contact location belongs to the Range
Of Motion of the following configurations in the trajectory: this does not guarantee
that the location will be reachable, because of the obstacles of the environment, but
it discards configurations for which we are sure that they cannot be maintained. This
heuristic is proposed to avoid obtaining too many contact changes along the trajectory.
The ROM of any limb of a virtual character can be abstracted into a 3D object ∈ AROM ,

84 Chapter 7

as defined in Chapter 4.3.2. We consider two successive configurations q1 and q2 for
the root of the virtual character, and a given limb Rk. We want to generate a contact
configuration q1

k ∈ Ck
contact. We would like it to be maintained when the root of the

character is moved towards q2 (Figure 7.2).
In the absence of obstacles, the set of positions reachable by the end effector of

Rk in both configurations is the shape P k
1,2, resulting from the intersection of each

configuration’s associated Range Of Motion (Figure 7.2 - 4):

P k
1,2 = Aq1

ROMk
∩Aq2

ROMk
(7.1)

We propose a heuristic which gives a higher score to contact positions pq1
k contained

by P k
1,2.

αduration(q1
k,q2) =

{

1 if pq1
k ∈ P k

1,2

0 otherwise
(7.2)

This heuristic can be generalized to evaluate the contact duration over a period
of time resulting in w successive configurations q1, ...,qw. To do so we consider the
geometric series αi

d, 0 < i ≤ w:

α1
d(q1

k) = 1

αi
d(q1

k) = αi−1
d (q1

k)αduration(q1
k,qi)

(7.3)

We then define the generalized contact duration heuristic:

αw
duration(q1

k) =

w
∑

i=2
αi
d(q1

k)

w − 1
(7.4)

αw
duration(q1

k) is a normalized function which considers a possible contact location
for w configurations: the upper term of equation 7.4 is equal to the number of successive
configurations, starting from q2, for which the end effector position of q1

k is reachable.

• If αw
duration(q1

k) returns 0, it means that the contact location cannot be reached
by any configuration other than q1.

• If αw
duration(q1

k) returns 1, it means that the contact location is potentially reach-
able by all of the w configurations.

To implement this heuristic, the Range Of Motion AROMk
is approximated into a

sphere to simplify collision checking. The chosen sphere is the Chebyshev sphere. As
defined in Chapter 4.1.2, it is the largest sphere contained by AROMk

.

7.1.2 A heuristic for dynamic balance

In order to bias the contact generation towards balanced configurations, we implement
a criterion proposed by Qiu et al. in [QEMR11]. We present its principles.

To maintain balance, given a set of exterior forces, the considered constraints are
the following:

Stage 2: Extension a collision-free trajectory into a task efficient contact sequence 85

Figure 7.3: An example of a simplified model for the balance criteria: a point mass with
two non-coplanar contacts and one grasp. This figure is reproduced from [QEMR11]

• Contact forces must respect the condition of no slipping, given by the friction
cone from Coulomb’s law (Figure 7.3 – f1 and f2);

• Grasping forces are bounded by a user defined maximal force applicable by a
given limb (Figure 7.3 – f3).

Assuming a simplified model, where the mass m of a virtual character is concen-
trated in one point x (Figure 7.3), the dynamic perturbation w is given by Newton’s
second equation:

w = mẍ−mg =

nt
∑

i=0

fi (7.5)

where g is the gravity and nt is the number of active exterior forces. The authors
prove that the set of dynamic perturbations satisfying the constraints can be written
as a polytope:

̟ = {w ∈ R
3,H(x)w ≤ h}

If for a given x, we have H(x)w ≤ h, then the configuration is stable.
We then define the balance heuristic:

αbalance(q) =

{

1 if w ∈ ̟
0 otherwise

(7.6)

Where w is given by the trajectory function q(t).

7.2 Stage 2: Extension a collision-free trajectory into a
task efficient contact sequence

In stage 2, as an input, we consider the collision-free trajectory computed in stage 1.
The output is a discrete sequence of contact configurations along this trajectory.

86 Chapter 7

This extension is achieved by the algorithm based on the contact generator described
in chapter 5. Given the position and orientation of the root, a limb, and a local
force exertion task, this generator returns a contact configuration which maximizes the
EFORT heuristic.

Additional work is necessary to automatically provide this set of inputs. The posi-
tion and orientation of the root is given by the trajectory computed in the first stage
of our planner (Figure 7.1 - 1). However, we need to define a strategy to determine
when to create a contact for a given limb and when to stop maintaining the contact.
To achieve this, we propose an iterative algorithm based on simple principles: we cre-
ate contacts when the current configuration is not balanced; and we stop maintaining
them (or break them) based on kinematic heuristics. Furthermore, we also need to
generate configurations for the limbs which are not in contact, to make sure they are
collision-free.

Finally, we modify the contact generator to include the new heuristics proposed in
section 7.1.

7.2.1 Extension algorithm.

1) 2) 3.a)

3.b) 4.a) 4.b)

Figure 7.4: Generation of a contact sequence. We consider the previously computed
configuration (1), and try to maintain the contacts for the new configuration (2). If
the configuration is balanced, we move on to the next configuration. If it is not (3.a,
4.a), we generate additional contacts (3.b, 4.b).

Algorithm 7 describes the method used to extend a collision-free trajectory into a
contact sequence (Figure 7.4).

Stage 2: Extension a collision-free trajectory into a task efficient contact sequence 87

Algorithm 7 Extension of a collision-free trajectory into a contact sequence

1: function GenerateContactTrajectory(qstart, qgoal, q(t), ∆t)
2: nstates ← 1/∆t /* number of states in trajectory */
3: T: Contact sequence: matrix of size n× nstates

4: T[, 0]← qstart

5: T[, nstates − 1]← qgoal

6: i← ∆t
7: while i < nstates do
8: qold = T[, i− 1]
9: qr ← q(i∆t)

10: /* compute translation and orientation variation between configurations */
11: ∆p← qr − qr

old

12: qnew ← GenerateFullBodyPosture(qold,∆p)
13: T[, i]← qnew

14: i← i+ 1

15: return T

16: function GenerateFullBodyPosture(qold, ∆p)
17: /* create new configuration from previous state */
18: qnew ← qold

19: qr
new ← qr

new +∆p
20: vt ← ∆px,y,z /*Compute translation task*/
21: vt ← vt/‖vt‖ /*Normalize the task vector*/
22: for k = 0, ..., l do do
23: /* try to maintain contacts from previous states*/
24: if qk

old ∈ Ck
Contact then MaintainContact(qnew,pqk

old

, k,∆p)

25: /* If the new configuration is not stable create new contacts */
26: if !DynamicallyStable(qnew) then
27: for k = 0, ..., l do do
28: if !(qk

new ∈ Ck
Contact) then

29: GenerateContactConfiguration(qnew, k,∆p)

30: /* Find a suitable collision-free collision for limbs not in contact */
31: for k = 0, ..., l do do
32: if (qk

new ∈ Ck
Obs) then

33: GenerateCollisionFreeConfiguration(qnew, k,dt)

34: return qnew

88 Chapter 7

Before going further, we recall that:

• The complete configuration of a virtual character R is given by the vector q ∈ R
n;

• The position and orientation of the root of the character is given by the vector
qr ∈ R

6;

• The position of the root of the character is given by the vector qx,y,z ∈ R
3;

• The configuration of a limb k is given by the vector qk, 0 ≤ k ≤ l.

These definitions are detailed and illustrated in Chapter 4. The algorithm proceeds
in an iterative fashion. First, we choose a time step ∆t. Considering the normalized
trajectory q(t) connecting the start and goal configurations (q(0) = qr

start and q(1) =
qr
goal), we choose nstates = 1/∆t configurations, representative of the trajectory. Then

the following steps are repeated:

1. At step i, we set qr = q(i∆t). qr describes the position and orientation of
the new configuration. We consider the set of contacts existing at the previous
configuration q((i − 1)∆t), and we try to maintain them; In Figure 7.4 - 1) and
-2), we can see that a contact is maintained for one foot, and broken for the other.
This is achieved by the method MaintainContact. It tries to perform inverse
kinematics on the considered limb to move the end effector towards its previous
position. If the target position does not belong in the range of motion of the
limb, or if the inverse kinematics fails to find a collision-free solution, the contact
is broken;

2. Once this is done, we call the method DynamicallyStable on the global con-
figuration. If the method returns true, it means the configuration is balanced. In
this case, the configuration is valid (Figure 7.4 - 2). If not, we try to generate new
contacts by calling the method GenerateContactConfiguration (Figure 7.4
- 3 and 4);

3. In the last stage of the algorithm, we consider all the limbs which are not in
contact and might be colliding with the environment. The method Generate-

CollisionFreeConfiguration looks for the collision-free configuration that is
the closest to the current limb configuration and assigns it to the limb.

The process is repeated until the goal configuration is reached.
As an output of Algorithm 7.4, we obtain a sequence of discrete contact configura-

tions between the start and goal configurations. The time frame of this sequence is given
by the collision-free trajectory resulting from the first stage of our framework(Figure 7.1
- (1)). It does not consider the time constraints associated with the internal joint ve-
locities. To update the time frame separating two successive configurations, we reapply
the spline shortcut algorithm described in Chapter 6.3.2.1. This operation considers
the joint angle variation between two configurations, and computes the minimum time
necessary to achieve the interpolation without violating the joint velocities limits. If

Stage 3: Computing the final trajectory 89

this value is greater than the current time frame, the time parameter of the sequence
in updated. As a result the time separating two consecutive configurations is greater
than the minimum time necessary to achieve their interpolation, while respecting the
joint velocities limits imposed on the model. This step also allows us to define contin-
uous spline trajectories interpolating the motion between two configurations. Using an
inverse kinematics solver then allows us to obtain a continuous kinematic trajectory.

7.2.2 A modified contact generator, including new heuristics for task
efficiency

The method GenerateContactConfiguration of Algorithm 7 performs a call to
the contact generator presented in Chapter 5. The generator considers a set of candidate
contact configurations, and returns the one maximizing the EFORT heuristic. We bring
a small modification to the generator: we integrate the heuristics for contact duration
and balance introduced in section 7.1:

α(qk,vt) = c0αEFORT (q
k,vt) + c1α

w
duration(q

k) + c2αbalance(q
k) (7.7)

where the cX are weighing variable.

7.3 Stage 3: Computing the final trajectory

As an output of the second stage of our algorithm, we obtain a contact trajectory which
describes a sequence of contact configurations achieving the motion from a start and a
goal configurations.

This trajectory is destined to be used as a guide input for a trajectory optimization
framework. In the context of an ongoing collaboration with the Gamma Lab at Univer-
sity of North Carolina (UNC), we chose the ITOMP optimization framework proposed
by Park et al. in [PPM12].

In this section we first present the ITOMP framework, then we describe the inte-
gration of our method within this framework.

7.3.1 Presentation of ITOMP and motivation.

ITOMP is a trajectory optimization framework for characters comprising a high number
of degrees of freedom in dynamic environments. Given a start configuration qstart and a
goal configuration qgoal, ITOMP outputs a smooth and physically accurate trajectory.

To achieve this, first an initial trajectory Tinit is generated by discretizing the
configurations along a curve connecting qstart and qgoal into n + 1 segments equally
spaced in time: Tinit = [qstart, . . .qn,qgoal].

ITOMP optimizes these internal waypoints according to the cost function:

min
c1,...,cn,q1,...,qn

n
∑

i=1

(Cobs(qi) + Cspec(qi, ci)) +
1

2
‖AQ‖2

where

90 Chapter 7

• ‖AQ‖2 is a cost function evaluating the smoothness of the overall motion. It is
computed as the sum of squared accelerations along the trajectory;

• Cobs is a cost function penalizing collisions;

• CSpec denotes a set of context specific cost functions.

• ci = [c0i , . . . , c
l
i] denote a set of contact related variables with the following se-

mantics: if cki is large, then the end effector of the limb Rk must be in contact
for configuration qi; otherwise whether there is a contact or not is not relevant.

In the initial implementation of ITOMP, CSpec addresses two features:

• Physics violation (CPhysics): As in section 7.1.2, a set of constraints for balance is
computed, based on maximum force exertion and Coulomb’s law; To determine
the violation cost, an inverse dynamics resolution is performed using a quadratic
programming method; The ci contact variables are included in the cost function
in such a way that the larger their value is, the lower CPhysics is. This makes
sense because it means that the effectors are in contact, which allows the creation
of the forces necessary to preserve balance.

• Contact Invariant Optimization (CCIO, based on [MTP12]): the cost function is
expressed as the distance separating the end effectors and the closest point in the
obstacles surrounding them, weigthed by the contact variables ci. CCIO equals 0
if all the contact variables equal 0. Otherwise, the closest the end effectors are to
an obstacle (and from contact), the lower CCIO is.

We can observe that CCIO and CPhysics have opposed objectives: CCIO aims at min-
imizing the value of the contact variables towards 0, while CPhysics aims at increasing
them to ensure physical accuracy. The obtained motion results from a compromise be-
tween these two cost functions, as a trajectory which minimizes the number of contacts
while remaining physically accurate.

As for many optimization frameworks, ITOMP is not directly adapted to motion
planning in constrained environments. Because of the complexity and the number
of obstacles, the optimization can easily fall into local optima and fail to produce a
solution. The objective of our collaboration is to provide ITOMP with relevant guide
trajectories to adapt it to constrained environments.

7.3.2 Adaptation of ITOMP into our framework

To fully integrate ITOMP as the third stage of our framework, two modifications are
required: first, the initial trajectory Tinit is replaced by the contact trajectory resulting
from stage 2. This step is immediate and does not require strong modifications of the
framework.

Discussion 91

Furthermore, an additional cost function is added to the set CSpec: In order to main-
tain the task efficiency of the computed contact configurations, the EFORT heuristic
is integrated.

We define Ck
EFORT , the cost function associated to a specific limb Rk:

Ck
EFORT (qi, ci,vt) = cki /αEFORT (q

k
i ,vt) (7.8)

Integrating cki in the equation allows to ensure that EFORT is maximized when the
limb Rk is in contact, and limits its influence when it is not.

We then define the global cost function:

CEFORT (qi, ci) =
l

∑

k=0

Ck
EFORT (q

k
i ,q

{x,y,z}
i+1 − q

{x,y,z}
i) (7.9)

7.4 Discussion

In this chapter, we first presented an algorithm for transforming a continuous collision-
free trajectory into a sequence of discrete task contact configurations. The input trajec-
tory results from the stage 1 of our motion planning solution. It uses a combination of
three heuristics to generate contact configurations along the trajectory: the first heuris-
tic maximizes the ability to apply an important force allowing to perform the motion;
the second heuristic tries to ensure that the created contacts can be maintained for a
user defined time horizon; the last heuristic tries to ensure that the created contacts
maintain dynamic balance.

Then, we present the ITOMP optimization framework, and describe how it is inte-
grated as the third stage of our motion planner: the contact sequence is used as an input
trajectory to guide the optimization process and avoid local minima. Additionally, the
EFORT heuristic is integrated as a cost function within the optimization process to
task efficiency. ITOMP transforms the contact sequence into a smooth, physically ac-
curate trajectory. At the time of writing this thesis, the integration with ITOMP is
not fully functional.

The combination of the stages 1 and 2 allows us to address the objectives of this the-
sis. Given a constrained environment, we are able to compute a trajectory, discretized
as a sequence of task efficient contact configurations.

The main strength of the approach lies in the fact that the trajectory is known
before the contacts are created, which makes it possible to use new heuristics for task
efficiency in the contact creation phase.

The heuristics proposed in this chapter are useful in this regard, however they could
be improved in several ways:

• The heuristic for contact duration is useful to prevent generating contacts which
would be broken immediately after being created. However, the heuristic does
not consider the environment in the evaluation of the validity of a configuration,
and could be improved in this regard;

92 Chapter 7

• The heuristic for balance does not provide guarantees that the resulting configu-
ration will actually be balanced.

Similarly, the contact generation algorithm relies on rather simple rules to decide
when to create or break a contact.

These drawbacks are not inherent to the approach, and future research will try to
improve these aspects of the method. We believe that, as for EFORT, proposing new
heuristics for contact duration, as well as proposing relevant strategies for deciding
when to create and break contacts, is a promising and complex research subject, which
will be addressed in future work.

This being said, the method remains one of the few to address our objectives ex-
amples. Furthermore, the resulting trajectory can be used as a relevant input for an
optimization framework. In this final phase, physics accuracy and smoothness of the
trajectory can be enforced. Additionally, we propose a new cost function to optimize
the contact configurations and locations according to the EFORT heuristic.

Chapter 8

Results

This chapter reviews the results obtained throughout this thesis. It is divided in three
parts: in section 8.1, we detail the results obtained with a “stand alone” use of our
contact generator in real time scenarios, as presented in Chapter 5; in section 8.2, we
depict the outcome of the first two stages of our motion planning framework, presented
in Chapters 6 and 7. These first two sections present implementation details, screen-
shots of the obtained motions, as well as a performance analysis section. A discussion
on the results obtained follows in section 8.3. Finally, in section 8.4, we discuss the
ongoing integration of our method with the ITOMP optimization framework.

The difference of style between the images shown in the first two sections is explained
by a technical reimplementation of the framework.

8.1 Stand alone use of our task efficient contact generator

In this section we consider one application of our contact generator for local planning
in real time applications. The task to be accomplished is either provided along with
the scenario, or inputed by a user with a joystick. It is represented in the figures with
a black arrow, indicating the direction of motion.

In this section we first provide some details about the implementation of the test
framework. Then, we present the results obtained in different scenarios, before com-
paring them with simple heuristics. The section is concluded with the presentation and
discussion of the performances obtained.

8.1.1 Implementation details

The test application was developed using the C++ language.

Environments are described in the obj format, while virtual creatures and scenarios
are described using custom xml files. Rendering is achieved using the OpenGl API. No
other third-party libraries were used. The runs were performed on a laptop with an
Intel Core i7-2760QM 2.40GHz processor and 4 GB of memory. The application is not
multi-threaded.

93

94 Chapter 8

8.1.2 Test scenarios

We consider a virtual creature in a constrained environment. Six coordinates describe
the position and orientation of its root. By default, the initial limb configuration is the
reference posture of the creature (as shown for instance in Figure 8.1). We consider a
directional task, and one or several limbs of the creature. We then use our method to
compute a task efficient contact configuration.

Figure 8.1: Reference posture of a virtual insect composed of 6 limbs. Each limb has 5
degrees of freedom.

Pushing and pulling objects (Figure 8.2 and Figure 8.3). The creature is a
virtual human. Two environments are used: In the pushing scenario, the environment
consists in a cupboard and the ground; in the pulling scenario it consists in a cupboard,
the ground, as well as a rope attached to the cupboard and a small wall. The task
consists in pulling (pushing) the cupboard. We formulate the task as a horizontal
vector, and compute task efficient configurations for the arms and the left leg of the
human. The right foot is already in contact.

Figure 8.2: Configurations found for a pulling task. In the right figure, our creature
uses the pink wall as a better support for the foot. The asymmetry between the arm
configurations is induced by the sampling phase.

Stand alone use of our task efficient contact generator 95

Figure 8.3: In this example of pushing a cupboard, our method (right) is compared
with the closest distance heuristic (middle). The closest distance heuristic places the
hands and left feet at locations close to their original positions (left) while our method
places the end-effectors in configurations relevant for the pushing task.

Multi-limb creatures in constrained environments (Figure 8.4). The envi-
ronment is composed of a challenging set of books placed on a bookshelf. The creature
is an insect with six limbs (Figure 8.1). The input is a forward directional task. This
example shows that our method is generic and can be applied to arbitrary creatures, as
opposed to example-based approaches. In this example the trajectory followed by the
insect is a manual input and does not result from a motion planning method. Similarly,
the change of contact stances is determined by an ad-hoc controller.

Figure 8.4: Configuration sequence for an insect with 6 limbs crossing a bookshelf.
Task efficient contact configurations are found along the trajectory.

96 Chapter 8

Getting up (Figures 8.5, 8.6). The environment is composed of a sofa in a first
example, a chair and a table in a second one. In the initial configuration, depending
on the environment, the human is sitting either on the sofa or the chair. We formulate
the task of getting up as a vertical vector. These examples show the adaptability of
our method: the same task in different environments results in different configurations
that take advantage of the reachable obstacles.

Figure 8.5: Computed configuration for the four limb of a standing up virtual human.

Figure 8.6: Our method (right) is compared with the closest distance heuristic (middle)
in this example of getting up from a chair. In the latter case, the left hand position
(on the side of the table) is not suitable to generate a vertical effort.

8.1.3 Comparison against the closest distance heuristic

Comparing the results obtained by our method is not trivial because few methods per-
form the real time automatic computation of contacts: Several previous contributions
only address cyclic motions such as walking [Joh09, LP12]. Hauser et al. manually
predefine the set of possible contacts [HBL05]. Bretl et al. use a form of manipulability
integrated in a motion planner [BRL+04]. Mordatch et al. use a closest distance ap-
proach as part of an optimization loop that takes several minutes to compute a result
[MTP12]. Therefore we choose to compare the results we obtained with this closest
distance heuristic.

Stand alone use of our task efficient contact generator 97

In Figure 8.6 the environment consists of a chair, the ground and a table. We
compare our method with the closest distance heuristic. The configuration of the left
arm in particular seems more appropriate to generate a vertical effort with our method.

In Figure 8.3 the environment consists of a cupboard and the ground. The task for
a virtual human is to push the cupboard. In the middle we can see that the results
provided by the closest distance heuristic are highly determined by the original location
of the end-effectors. Our method, on the other hand, creates contact configurations
relevant for the pushing task.

In Figure 8.7 the environment is a climbing wall. The creature is a virtual hu-
man. The initial configuration is the reference posture –Figure 8.7 (middle)–. The task
consists in navigating along the wall in arbitrary directions. This example shows the
advantage of our method over heuristics such as the closest distance, or even manip-
ulability based heuristics such as [BRL+04], because the selected configurations vary
according to the motion task.

Figure 8.7: Configurations for a humanoid on a climbing wall. Left: the closest distance
heuristic does not consider the motion task, therefore it always computes the same
configuration. Right: From the same initial root location (position and orientation),
different configurations are computed depending on the task (black arrow).

98 Chapter 8

N = 1 000 N = 10 000 N = 100 000

Human climbing 1 (3) 2 (6) 3 (30)
Getting up 4 (7) 5 (60) 154 (856)
Insect locomotion 1 (4) 8 (40) 55 (370)
Pushing / pulling 1 (1) 5 (6) 34 (70)

Table 8.1: Average time (worst time) (in ms) spent for the generation of one contact
(in step 3 of our framework) relative to the scenario and the number of samples N.

N = 1 000 N = 10 000 N = 100 000

Human climbing 0 1 26
Getting up 41 49 3442
Insect locomotion 20 312 2553
Pushing / pulling 13 142 1387

Table 8.2: Average number of contact configurations found (in step 3 of our framework)
relative to the scenario and the number of samples N.

N = 1 000 N = 10 000 N = 100 000

Generation time 256 1500 18000

Table 8.3: Average time (in ms) spent generating samples (in step 3 of our framework)
relative to the number of samples N.

8.1.4 Performance analysis

Table 8.1, Table 8.2 and 8.3 provide the performances obtained using our contact
generator in the presented scenarios. To analyze them, the reader should have in mind
a few details about the method presented in Chapter 5, recalled here. Our method is
based on a sampling approach. Independently from the environment, a number N of
samples are generated in an offline step. In the online phase, the method compares
these samples and select the most relevant one given the current configuration and
task. N has a strong influence on the performance of the method: the higher its value,
the more likely the method will find good configurations, but the slower it will be.
Therefore, we are interested in finding a value for N that will be as low as possible
while maintaining an acceptable quality in the results obtained.

We have observed that in our scenarios, the number of samples N has a limited
influence on the average maximum value of the EFORT heuristic. Consequently we
focus on the relationship between N and the number of candidate configurations found.
Table 8.1 shows the time spent for one call to our method. Table 8.2 presents the
average number of contact candidates returned by a spatial request. Table 8.3 shows
the time spent during the offline step relative to the number of samples generated. It is
interesting to note that even for N = 100000, the generation time is acceptable, since
this step is only performed once. Parallelization and code optimization could probably
allow to obtain better performances, but the interest of doing this is limited.

We observe that for N ≤ 10000, the computation time is short and the average

Computation of the contact trajectory 99

number of candidates is satisfying. The human climbing scenario is an exception: a
higher number of samples is necessary to find enough contact candidates. This is
because the environment is composed of a small set of small obstacles.

Looking at the worst performances, we observe a correlation between the time
spent in the method and the maximum number of hits obtained. This is explained by
the growing number of requests that must be made. In each scenario, the number of
triangles is about the same (a hundred); the performance variation is explained by their
spatial distribution. For the getting up scenario for instance, setting N = 1000 is a
reasonable choice, where a value of N = 100000 seems more appropriate in the human
climbing scenario. In the case of the insect locomotion scenario, a smaller amount of
samples suffices to correctly cover the Range Of Motion of the limb. The limited range
of motion of each of the insect’s limbs explains this fact.

Under the appropriate conditions on the number of samples, we observed that the
framerate never went below 52 fps even in the worst case scenarios, including: control
of the character, contact generation along the trajectory, and rendering.

Finally, we observe that the memory occupation grows linearly with the number of
samples, and remains in reasonable ranges (from 2 MB for 10 000 samples to 166 MB
for 1 000 000 samples).

8.2 Computation of the contact trajectory

We present in this section the guide trajectories produced by combining the first two
steps of our method. In three different challenging environments, in an offline step,
we first generate a navigation graph using the RB-PRM algorithm, presented in Chap-
ter 6. At runtime, a request is performed to find a collision-free trajectory between two
configurations given as input. The path returned by RB-PRM is then transformed into
a sequence of discrete contacts, according to the method described in Chapter 7. For
these configurations, we only provide the position and orientation of the root, and let
the planner compute the appropriate contacts. Therefore all the contact configurations
shown in the Figure of this section are computed by our motion planner.

8.2.1 Implementation details

The test application was developed using the C++ language. The motion capture data
used to compute the Range Of Motions was processed using the Matlab framework.
The polytopes describing the Range Of Motions are computed using the Matlab mpt
toolbox 1. They are exported to the obj format using a custom Matlab script. The
dynamic balance criteria was implemented using the ccd polytope library 2.

The virtual creatures are described using the urdf file format 3. It is used as a
standard by the popular ROS platform, in which the optimization framework ITOMP

1http://people.ee.ethz.ch/m̃pt/3/
2http://www.inf.ethz.ch/personal/fukudak/cdd home/cdd.html
3http://wiki.ros.org/urdf

100 Chapter 8

is integrated. This choice was therefore made to unify the character description between
our motion planner and ITOMP.

The scenarios where described using a custom text file format. Environments are
described in the obj format. Rendering is achieved using Blender 4.

The runs were performed on a laptop with an Intel Core i7-2760QM 2.40GHz pro-
cessor and 4 GB of memory. The application is not multi-threaded.

8.2.2 Test scenarios

All the scenarios presented in this section were tested with a humanoid virtual character.
In the figures, the black arrow represents the local motion task considered for contact
creation. The first and last figures represent the start and goal positions inputed to
the planner.

Truck egress (Figure 8.8 and Figure 8.9). We consider the truck presented in
Figure 8.8 – left. We work with a simplified geometry of this high resolution model
(Figure 8.8 – right), and we consider a truck egress task. In the scenario we consider
that the doors are blocked, so that the character has to crawl from the front window
to leave the truck. Figure 8.9 presents the sequence of contacts obtained.

Figure 8.8: Left, middle: original high resolution truck model. Right: the simplified
model used in our scenario.

Climbing (Figure 8.10). We consider a climbing wall with several grasps disposed
along it. The virtual character is given the task of climbing along the wall. Figure 8.10
presents the contact sequence obtained for the task. The wall is not represented on the
Figure for clarity reasons.

Crouching (Figure 8.11). We consider an abstract obstacle in the environment,
floating in the air. A goal position on the other side of the obstacle is specified for the
character, forcing him to crouch to cross the obstacle. Figure 8.11 presents the contact

4http://www.blender.org

Computation of the contact trajectory 101

Figure 8.9: The computed contact sequence for the truck egress scenario.

sequence obtained for the task. Because the computed sequence of contacts is rather
long, only selected stances are presented in the Figure. We can see that the character
starts by taking a step back to go down, before crawling forward.

8.2.3 Performance analysis

The number of samples used for generating the contacts of each limb is 10000. Table 8.4
presents the average time (in seconds) spent in the different phases of the planner, for

102 Chapter 8

Figure 8.10: The computed sequence for the climbing scenario.

each phase and each scenario. For the online request phase, we distinguish: the time
spent refining the path computed by RB-PRM, using the spline shortcut algorithm
presented in Chapter 6; the time spent generating the contact sequence. The time
spent for the actual path request of RB-PRM is not indicated; it is always inferior to
15 ms.

The time spent generating the navigation graph can be approximated to one minute.
In the climbing and crouching scenarios, it is much shorter than in the truck egress
scenario, because the topology of the environment is easier to capture.

In the request phase, the use of the spline shortcut algorithm to refine the trajectory
is rather time consuming, especially, again, in the truck egress case. The reason for this

Computation of the contact trajectory 103

2 5 7

8 10 11

13 15 16

17 18 22

Figure 8.11: The computed sequence for the crouching scenario. The number displayed
in each figure corresponds to the order of the configuration in the contact sequence.

is that many collision requests have to be performed to try to simplify the trajectory.

Finally, we observe that generating the contact sequence takes several seconds.
This can be surprising, considering that this step is based on our real time contact
generator. Our current implementation of the dynamic balance criteria explains the
important time spent in this phase. The generation of the contact sequences takes the
most time in the crouching scenario. This is simply explained by the fact that more
states have to be created to achieve the motion.

104 Chapter 8

Generate
RB-PRM
(offline)

Path
refinement

Generating
the contact
sequence

total online time

Truck egress 73 4 10 14
Climbing 2 < 0.1 1 3
Crouching 5 1 12 13

Table 8.4: Average time (in seconds) spent in RB-PRM generation, refinement of the
trajectory, and generation of the contact sequence.

8.3 Discussion

In this chapter we present the results obtained in this thesis. First, we show examples
of generated configurations in a real time, reactive context. Then we show examples
produced by the second stage of our planner.

In both cases, the environment is constrained, and the objective was to generate
task efficient contact configurations. In the first case, we generate only one contact
configuration, and the motion task is manually given by the user. The constraint is
to generate the configuration as fast as possible. In the second case, although it is
considered, performance is less critical. However, this time the user only specifies a
start and goal position, and we use our motion planner to compute a sequence of task
efficient contact configurations.

Therefore we consider three ways of evaluating the results: the ability to compute
a solution, the performance, and the quality of the motion.

Completeness of the method The contact generator we use prevents our methods
from being probabilistically complete. Indeed, the method generates N samples offline
used as inputs for the contact queries. This restricts the contact possibilities to the
neighbourhood of these samples. It is possible to obtain probabilistic completeness if,
instead of relying on a precomputed database of limb configurations, the sampling is
performed online. However, from a practical point of view, performance seems a more
interesting property than completeness for computer animation. Indeed, we show in
this chapter that, when N is high, solutions can be found for a large variety of scenarios.

Performance The performance analysis presented in section 8.1.4 demonstrates that
our contact generator is compatible with real time applications. In this regard, we can
state that our objective is achieved.

Our motion planner, on the other hand, does not present this property. However
compared to similar approaches for computing guide trajectories [BELK09], the plan-
ner is faster by several orders of magnitude, although it does not provide the same
guarantees of dynamic balance.

Discussion on ITOMP integration 105

Quality of the results In the absence of other elaborated heuristics for task effi-
ciency, we compare our results with a simple heuristic which selects the closest contact
available for contact creation. To evaluate the quality of the results produced by our
method, it would be necessary to conduct a user perception study. Motion capture data
would be compared against our method and other heuristics to determine the influence
of the EFORT heuristic on the plausibility of the motion. This study will be conducted
in future research.

One noticeable characteristic of our results is that in some cases, it appears that
the number of contacts stances to perform is high. This can be seen for example in the
crouching scenario (Figure 8.11). This illustrates a limitation of our approach: since
we only consider contacts for the end effectors (even in situations where it would be
more comfortable to use the knees or elbows), the created contacts can sometimes not
be held for long. Future work will consider implementing our method for other possible
contact locations. While applying our method to additional discrete points (such as
knees or elbows) is straightforward, considering contact creation with arbitrary parts
of the body is more challenging.

However, it appears that balance is the main limitation of our framework: it is not
considered for real time applications, and despite a dedicated heuristic proposed with
our motion planner, it cannot be ensured. Our method remains a kinematic motion
planner.

This is the reason why in the third stage of our planner, the trajectories presented
in section 8.2 must be optimized.

8.4 Discussion on ITOMP integration

We recall that the trajectories presented here are not meant to be directly used as a
solution motion; rather, their purpose is to be used as a guide trajectory for the ITOMP
optimization framework, presented in Chapter 7.

The motivation for providing a relevant guide trajectory is that optimization me-
thods often fail to converge in constrained environments, because of their complexity.
At the time of writing this thesis, we only have partial results with a not fully optimal
set of optimization parameters for ITOMP.

ITOMP is based on the Contact Invariant Optimization formulation proposed by
Mordatch et al. in [MTP12]. In this model, a cost function CCIO guides the end effec-
tors towards the nearest obstacles to create contacts. This is problematic in constrained
environments, because the nearest obstacle is not necessarily the most relevant. In the-
ory, this issue should be solved thanks to another cost function Cphysics which enforces
the validation of the law of physics. However, the CIO approach simplifies the contacts
formulation: for instance to generate a climbing motion, hands and feet are allowed
to exert infinite forces. This results in the effectors being guided towards irrelevant
contact configurations, and diverging from the guide trajectory.

To address this issue we first propose a more accurate formulation of the contact

106 Chapter 8

location. Furthermore we integrate the EFORT heuristic as a cost function to enforce
the task efficiency property of the selected contacts.

Another issue that we are facing is that in constrained environments the number of
obstacles impacts the performance of the method, because more collision checks must
be performed at each step to reduce the value of the collision cost function CCollision.
Additionally, the importance of CCollision is greater in this context and increasing its
weights affects the importance of the other costs functions.

An optimization framework for virtual creatures comprising a high number of degrees
of freedom is a complex system with many parameters. We must adapt them to find
the good compromise between respecting the guide trajectory and producing balanced
trajectories.

Chapter 9

Conclusion

This thesis was set out to explore new means of providing virtual characters and robots
with the ability to automatically synthesize motions in constrained environments. Pre-
cisely, it focuses on tasks characterized by the important force exertion they require and
the non stereotypical sequence of contacts needed to achieve them, such as climbing,
standing up, pushing an object... Providing entities with an enhanced autonomy of
motion in constrained environments has several applications, from the deployment of
robots in search and rescue missions, to the improvement of the immersion experience
of a video game player.

The study was driven by two potential applications: firstly, real time motion synthe-
sis in interactive applications such as video games, where the motion must be computed
within milliseconds; secondly, global trajectory planning for simulations, which focus on
computing a feasible and natural looking solution, and in which case the performance
constraints are alleviated.

The existing methods and models were found to be inconclusive on this topic:
robotics motion planners are generic approaches which can compute trajectories in
constrained environments, but produce unnatural motions. Conversely, example based
approaches generate natural looking motions but lack genericity, and often fail in this
context. The study has sought to determine whether new heuristics could be used along
with motion planning methods to address this issue.

This thesis lies in the continuity of robotics approaches, which formulate the prob-
lem as the research of a trajectory decomposed in an ordered sequence of contacts
configurations. Specifically, two research questions were addressed:

1. How to rapidly generate a contact configuration compatible with a force exertion
task in an unknown environment?

2. How to compute relevant contact trajectories for a force exertion task in a cons-
trained environment?

107

108 Conclusion

9.1 Findings and contributions

The two main contributions of this thesis are chapter specific and were summarized
and discussed within the respective chapters:

• Our first contribution was presented in Chapter 5: A heuristic for task efficient
contact configurations: the Extended FORce Transmission ratio (EFORT);

• Our second contribution was presented along Chapter 6: A Reachability Based
Probabilistic Road Map: RB-PRM, and Chapter 7: Stage 2 and 3: generation of
a task efficient trajectory.

In this section we synthesize the contributions to answer the two research questions.

9.1.1 How to generate rapidly a contact configuration compatible
with a force exertion task in an unknown environment?

By proposing EFORT, a simple and generic measure for task efficiency. Ad-
dressing the first research question required defining what is a compatible configuration
and providing a mean to evaluate the said compatibility. The Extended FORce Trans-
mission ratio addresses this issue. It is a tool which evaluates how easily variations
of the joint values of a kinematic chain are transformed into a force exerted against a
surface in a given direction. We chose it consequently as a measure of the potential
force that can be exerted in a direction.

Thanks to those properties, EFORT can be used to compare different candidate
configurations for a given task. It can also be used as a secondary objective of an
inverse kinematics solver to optimize a contact configuration.

Furthermore, EFORT is fast to compute and generic, since it can be applied to any
kinematic chain.

By proposing an automatic real time generator for task efficient configu-
rations. An environment independent sampling based approach, combined with the
EFORT heuristic has proven a relevant way to generate contact configurations in cons-
trained environments. When no assumption on possible contact locations can be made,
sampling the reachable workspace of the considered limb allows to generate rapidly a
large set of possible configurations in contact with the environment. The candidate
which maximizes the EFORT heuristic is then returned as the most compatible config-
uration found.

The combination of the EFORT heuristic and our contact generator allowed us to
propose the first automatic real time generator for task efficient contact configurations
for arbitrary creatures and environments.

Findings implications 109

9.1.2 How to compute relevant contact trajectories for a force exer-
tion task in a constrained environment?

By proposing the Reachability-Based PRM (RB-PRM), a new way to ex-
plore the high dimensional configuration space. The study has determined that
generating relevant contact configurations requires having knowledge of the trajectory
that must be followed. Ideally the trajectory and the contact configurations should be
computed simultaneously, but this objective remains yet to be achieved in constrained
environments. To address the delicate issue of computing a relevant trajectory with-
out directly considering contact generation, the reachability condition was proposed.
Thanks to this heuristic the trajectories computed by RB-PRM are close enough to
obstacles to allow relevant contact creation in a ulterior step.

By computing guide trajectories for optimization frameworks. Combining
RB-PRM and a task efficient contact generator makes it possible to compute a se-
quence of relevant contact configurations achieving a motion task in a constrained
environments. The contact sequence is of a significant help for classical optimization
frameworks, which face strong convergence issues in our context. The combination of
these three bricks will result in the first automatic motion planning solution able to
produce task efficient, dynamically balanced trajectories in constrained environments.

9.2 Findings implications

In this thesis we propose a motion planner which combines task efficiency, robustness
to constrained environments and acyclic motion planning. This unprecedented combi-
nation of properties allow us to synthesize relevant motions for our objective examples,
characterized by constrained environments, requirement for important force exertion
and acyclic contact generation.

Addressing automatically these examples is a significant step towards the long term
goal of providing virtual characters with a complete autonomy of motion.

In the meantime, interactive applications such as video games can already benefit
from our contributions. We propose new procedural means to produce task efficient
motions, not as an alternative, but as a complement to example based approaches
such as motion capture. The additional motion capabilities brought to virtual charac-
ters alleviate the constraints on the design of virtual environments, making them less
stereotypical. This results in an improved player experience.

The automatic generation of contact configurations could also find a useful applica-
tion within a 3D modeling software: providing an animator with contact configurations
instead of letting him manually create the postures could assist him in the animation
process.

110 Conclusion

9.3 Limitations of the study

The contributions of this thesis are organized around the proposal of simple kinematic
heuristics to reduce the complexity of searching feasible trajectories in high dimensional
spaces. As a direct consequence of this approach, they face a number of limitations
which need to be considered.

A first limitation concerns the global optimality of the computed contact configu-
rations. Indeed, our motion planner provides a guarantee that a generated contact is
the most appropriate locally, but does not propose any means to verify that in the long
run the decision is the best. Similarly, the decision of creating or removing a contact
is based on really simple heuristics, which may not lead to the most efficient solution.
Formulating new criteria for optimality objectives (such as “minimizing the number of
contacts created along the trajectory”) and proposing a method to achieve them would
allow to overcome this limitation and improve the quality of the results.

A related limitation of our reachability based approach lies in the fact that dynamic
balance is only addressed once the trajectory has been computed. In its actual state,
our motion planner cannot provide absolute guarantee that a balanced solution can be
found along the trajectory. This is not an issue for computer graphics animations. But
before being able to implement our solution with actual robots, our motion planner
will have to be extended to provide a guarantee of stability.

9.4 Recommendation for future research

Indeed, we believe our contributions might have applications to the robotics field, al-
though this thesis focuses primarily on computer graphics applications. Future research
will consider implementing and testing our motion planning methods with humanoid
robots in real world experiments. To achieve this and improve our contributions, seve-
ral other research questions will be considered in the near future. They all revolve
around the ideas developed in this thesis: to propose and validate simple heuristics to
simplify the search for relevant motion trajectories without losing genericity.

Towards real time contact trajectory generation. The heuristics proposed in
this thesis are really fast to compute, and allow the computation of a rough trajectory
in a few seconds. However, to produce a dynamically balanced trajectory, in the last
stage of our framework, we use a slow optimization method. In future work, we will
try to propose simple heuristics to generate dynamically balanced configurations more
efficiently. Some promising work on stability margin has been proposed by Qiu et al.
in [QEMR11] and used in this thesis. We believe it is a good basis for prospective work
on the possibility to simplify the dynamic optimisation step.

Towards real time contact decision. An exciting and challenging long term ob-
jective is the design of an “acyclic pattern generator” which would allow to generate
relevant contacts with appropriate effectors given an arbitrary configuration. Addi-

A final word 111

tional work is required to understand the laws that determine when to create or break
contacts.

Additional heuristics for task efficiency. This thesis addresses task efficiency as
the ability to exert important forces in a given direction. While this formulation is
adapted to a large set of tasks, there are many more for which it does not apply. In the
future we will work on proposing new heuristics allowing to perform other categories
of tasks, such as writing. We will also consider other heuristics which can be applied
simultaneously to EFORT.

Validation of EFORT through perception studies. Finally, we would like to
experimentally validate the hypothesis that using EFORT allows to produce more plau-
sible motions. To do so we intend to conduct a perception study to determine how the
motions synthesized with EFORT are perceived by human observers. This study also
be completed by a biomechanical analysis based on real human data.

9.5 A final word

As of today, the reasons why we move the way we move in constrained environments
cannot be explained simply. This thesis claims that, above the complexity of balance
constraints, muscular models, collision avoidance, there are simple rules which dictate
how we move in this situation. Knowing them would not remove the necessity for
the complex optimization of trajectories, but it would be of precious help to guide
such motion planning techniques towards optimal solutions. Our future research will
be focused on trying to develop synergies between the fields of computer animation,
robotics and biomechanics to understand what makes a motion natural.

112 Conclusion

Chapter 10

Resumé long de la thèse en
francais

10.1 Introduction

Avec la complexité croissante des environnments virtuels apparâıt le besoin de doter les
personnages virtuels d’une plus grande autonomie de mouvement. En plus de marcher,
courir ou de sauter, les dernières simulation requièrent des personnage qu’ils rampent,
escaladent, poussent ou tirent des objets... Ainsi dans le jeu vidéo Assassin’s creed TM,
le personnage contrôlé par le joueur peut grimper aux murs d’une apparente variété de
batiments, ou se déplacer dans les hauteurs d’une forêt aux arbres géants (Figure 10.1).

.

Figure 10.1: Exemples de mouvements d’escalades et de franchissement d’arbres dans
le jeu vidéo Assassin’s creed. © Ubisoft.

113

114 Résumé long

En parallèle, les robots humanöıdes quittent les laboratoires de recherche oú ils
ont été développés pour être déployés dans des situations complexes, comme dans
des cénarios d’intervention sur des lieux sinistrés (Figure 10.2). Par exemple pendant
le “DARPA challenge”, des robots sont en compétition pour la réalisation de tâches
complexes comme de retirer des débris ou bien encore de se déplacer sur des terrains
inégaux.

Figure 10.2: The robots bipèdes Chimp et Schaft durant le “DARPA challenge”. ©

DARPA challenge.

Dans ces deux contextes il apparait nécessaire de doter les protagonistes d’une
autonomie de mouvement dans ces environnements contraints. C’est la problématique
de cette thèse, qui se concentre sur les applications graphiques.

Motivation et objectifs

Parce qu’elles avaient des objectifs différents, les champs de la robotique et de l’animation
graphique ont traité le problème de la planification de mouvement différement.

Dans le contexte interactif des jeux vidéos, le principal objectif est la performance:
il faut à tout prix éviter la latence qui pourrait fruster le joueur; la simulation doit être
réactive à ses actions. De plus, la qualité des animations est également très importante.
Une animation peu naturelle aurait un impact dramatique sur l’expérience utilisateur.

Pour ces raisons, la plupart des techniques employées dans le domaine graphique
sont dites “basées exemple”. Ces techniques s’appuient sur le travail d’animateurs
qui produisent à la main des animations, ou bien encore des méthodes de capture
de mouvement, puis permettent de reproduire à l’identique les mouvements d’acteurs
réels (Figure 10.3). L’avantage des méthodes basées exemple est qu’elles donnent à
l’animateur un contrôle total sur les animations jouées, et donc sur leur qualité.

Cependant ces méthodes souffrent d’un défaut majeur: elles permettent très peu
de modifications de l’animation de référence, ce qui implique que l’environnement où
l’animation est jouée doit être strictement le même que celui dans lequel elle a été
créée. Celà conduit à des environnements très stéréotypés: Dans le jeu Assassin’s creed
(Figure 10.1), on peut voir que les mouvements d’escalade sont exactement les mêmes

Introduction 115

Figure 10.3: Les techniques de capture de mouvement permettent d’enregistrer et de
rejouer les mouvements d’un acteur réel à l’identique. © Quantic dreams.

que l’on grimpe au mat d’un bateau ou sur le toit d’une maison, parce que les prises
sont placées exactement à la même distance l’une de l’autre.

Motivation 1: Donner aux personnages virtuels une autonomie de mouvement ac-
crue permettrait de donner plus de liberté dans la conception d’environnements virtuels,
et améliorerait l’expérience de jeu du joueur de jeu vidéo. Une solution valide permet-
trait d’obtenir des résultats en temps réel, et de qualité suffisante.

A l’inverse, en robotique l’objectif principal est de permettre aux robots de se déplacer
dans des environnements complexes et inconnus (on peut par exemple penser au robot
Curiosity qui explore la surface de Mars). Il s’agit donc de leur donner des capacités
de raisonnement et de planification de mouvement avant tout. Peu importe la qualité
du mouvement obtenu pourvu que l’objectif soit atteint !

La plupart des contributions en robotique présentent donc des planificateurs de
mouvement [KSLO96, LaV98, HBL05, BRL+04, EKMG08]. Ces planificateurs sont
robustes et peuvent trouver des solutions dans des environnements très complexes,
cependant les mouvement résultant des trajectoires calculées apparaissent en général
peu naturelles à un observateur humain.

Pour pouvoir utiliser ces méthodes en animation graphiques, certains travaux visent
à générer des trajectoires moins chaotiques en utilisant des méthodes d’optimisation
[MTP12]. Cependant, les problèmes de plainification de mouvement sont très complexes
et d’une très grande dimensionalité; quand l’environnement devient trop contraint, les
méthodes d’optimisation classiques échouent.

Motivation 2: Doter les planificateurs de mouvement robotiques d’heuristiques per-
mettant de réduire la complexité du problème de recherche de chemin permettrait
d’améliorer leur performance et la qualité des résultats qu’ils proposent.

Exemples - objectifs: Nous considérons deux types d’application que les techniques
actuelles ne permettent pas de réaliser complètement. D’un côté nous considérons le

116 Résumé long

problème de générer en temps réels des contacts pertinents pour un personnage virtuel
(Figure 10.4); d’un autre côté nous considérons le problème global de planification de
mouvement en environnements contraints (Figure 10.5, Figure 10.6 – Left).

EFORT

EFORT

Figure 10.4: Notre première contribution consiste en un générateur de postures de
contact pour des environnements contraints.

Les exemples illustrés par ces figures sont difficiles parce qu’on ne peut pas utiliser
d’approches déterministes pour trouver une solution. Selon l’environnement, les con-
tacts nécessaires pour réaliser le mouvement vont varier énormément.

Le problème commun à ces exemples est celui de la génération d’une séquence de
contacts pertinente pour réaliser la tâche, et c’est celui auquel nous nous intéressons
dans cette thèse.

Contribution

Nous proposons une méthode pour réaliser nos exemples cibles.
D’abord, nous proposons un générateur de configurations de contacts en temps réel

pour répondre à notre motivation 1. Il est basé sur une heuristique appelé l’Extended
FORce Transmission ratio, our EFORT.

Deuxièmement, nous proposons d’utiliser ce générateur au sein d’une architecture
de planification de mouvement complète, en 3 étapes (Figure 10.6).

Introduction 117

Figure 10.5: Ce scénario d’escalade est problématique pour les méthodes existantes.

Towards plausible motions in constrained environments

Task specification Collision free
trajectory

Task efficient
contact trajectory

Optimized
dynamic trajectory

(1)

RB-PRM

(2)

EFORT

(3)

Motion
optimization

Figure 10.6: Notre solution s’articule en 2 étapes pour déterminer une trajectoire
complète en environnements contraints.

Notre méthode génère en quelques secondes une trajectoire guide pour une méthode
d’optimisation, qui vise à réduire l’espace de recherche et facilite la convergence de
l’optimisation. Our second step is the design of a global motion planner built upon this
contact generator (Figure 10.6).

Nous proposons donc 2 contributions:

Contribution 1: Avec EFORT nous proposons une méthode temps réel pour la
generation de configurations de contact, ce qui a pour effet d’améliorer l autonomie de
mouvement des personnages virtuels.

Contribution 2: Nous calculons des trajectoires guide pour un problème d’optimisation.
Ceci nous permet de trouver des solutions dans des environnements très contraints, pour
lesquels les méthodes existantes ne trouvaient pas de solutions (Figure 10.6).

118 Résumé long

plan du résumé

le reste du résumé de la thèse s’organiser ainsi:

• la section 10.2 présente rapidement les définitions essentielles à la compréhension
des points techniques de la thèse;

• la section 10.3 présente la méthode EFORT pour la génération temps réel de
contacts pertinents pour une tache;

• la section 10.4 présente la première étape de notre planificateur global de mou-
vement, RB-PRM;

• la section 10.5 présente les 2 et 3eme étape de notre planificateur de mouvement.

• la section 10.6 présente les résultats obtenus;

• la section 10.7 conclue le résumé.

10.2 Définitions

10.2.1 Environnement.

Un obstacle O ∈ W est un ensemble de triangles en 3 dimensions. Un triangle de O
est écrit tO.

10.2.2 Définition et représentation d’un personnage virtuel

10.2.2.1 Squelette

Un personnage virtuel est défini par une chaine cinématique R. R comprend l sous
chaines Rk, 0 ≤ k < l. Chaque articulation possède au plus un fils. une articulation
sans fils est un effecteur (Figure 10.7).

Figure 10.7: Un insecte virtuel avec 6 membres et 33 degrés de liberté.

EFORT 119

10.2.2.2 Configuration

Un personnage possède n ≥ 6 articulations. 6 degrés de liberté sont utilisés pour décrire
la position et l’orientation de le racine de R dans W .

Les définitions suivantes sont illustrées par la Figure 10.8. Une configuration q
est vecteur de dimension n qui décrit les valeurs de chaque degré de liberté de R.
qk, 0 ≤ k < l décrit la configuration d’un membre Rk.

pqk décrit la position dans le monde de l’effecteur associé au membre Rk, étant
donnée la configuration q.

dofs in s0

dofs in q0

p0q

Figure 10.8: Humain virtuel au repos.

10.2.2.3 Abstraction d’un personnage virtuel

Nous définissons l’abstraction A d’un personnage virtuel R:

A = Atrunk ∪AROM (10.1)

où Atrunk and AROM sont 2 ensembles d’objets 3d. Atrunk représente le tronc du
personnage (Figure 10.9 - Red cylinder). AROM représente la zone d’atteignabilité de
chaque membre Rk, 0 ≤ k ≤ l.

AROM est représenté par les quatre ellipsoides verts de (Figure 10.9).

10.3 EFORT

Considérant nos exemples cibles (Figure 10.10), nous nous posons la question suivante:
Etant donnée une tâche qui nécessite d’exercer une force importante dans un environn-
ment contraint, et la configuration actuelle d’un personnage virtuel dans l’environnement,
comment créer le prochain contact pour qu’il permette de réaliser la tâche efficacement?

Répondre à cette question est essentiel car c est un premier pas vers la résolution
d’un problème de planification globale (Figure 10.6 - 2).

120 Résumé long

Atrunk

AROM

A

Figure 10.9: Abstraction d’un humain virtuel.

Premièrement, nous commençons par définir ce que nous entendons par “efficace-
ment”, et proposons une heuristique mathématique pour évaluer cette efficacité: EFORT.

Ensuite, nous proposons une méthode qui permet de générer des configurations
candidates et de les comparer au moyen de cette heuristique afin de choisir la meilleure,
tout celà en temps réel.

Figure 10.10: Quand et comment créer le prochain contact pour satisfaire la tâche?

10.3.1 EFORT: une nouvelle heuristique pour évaluer la compatibilité
d’une configuration.

Etant donné l’environnement courant et un ensemble de configurations candidates,
EFORT retourne la configuration la plus appropriée pour réaliser une tâche donnée.

Les tâches que nous considérons nécessitent d’appliquer une force importante Fig-
ure 10.10); pour cette raison nous définissons la compatibilité d’une configuration

Etape une de notre planificateur: RB-PRM 121

comme la mesure de la capacité d’une configuration à appliquer une force dans une
direction donnée.

Pour celà, nous nous basons sur le “force transmission ratio” proposé par Chiu
dans [Chi87]. Il est classiquement utilisé pour optimiser une configuration étant donné
un point de contact déjà connu [GKNK06]. Seulement dans notre cas, nous ne connais-
sons pas à l’avance avec quelle surface nous désirons créer un contact (Figure 10.10).
Chaque surface étant un candidat potentiel, nous étendons le force transmission ratio
pour proposer un moyen de choisir la surface la plus pertinente.

Considérant un membre Rk d’un personnage virtuel R, auquel est donné une tâche
d’actuation de force dans une direction donnée par le vecteur vt; considérant de plus
un ensemble Qk ∈ Ck de configurations possibles, en contact avec différentes surface;
Nous nous posons la question suivante: Quelle est la configuration la plus appropriée
pour réaliser vt?

Etant donnée la formule du “force transmission ratio” fT:

fT(q
k,vt) = fT(q

k,−vt) = [vt
T (J(qk)J(qk)T)vt]

− 1
2 (10.2)

nous considérons chaque candidat et la surface Oi. avec laquelle il est en contact.
La formule de EFORT est donnée par la fonction α:

α(qk,vt) = fT(q
k,vt)vt · nOi (10.3)

où nOi est la normale à Oi.

10.3.2 Génération de contact en temps réel

Nous intégrons EFORT dans une méthode pour générer des configurations de contacts
en temps réel. Pour des raisons d’efficacité la méthode est décomposée en 2 étapes; une
hors ligne et une en ligne.

Echantillonnage hors ligne. Indépendamment de l’environnement, un large ensem-
ble Qk de configurations est généré aléatoirement pour chaque membre du personnage
virtuel; ces configurations respectent les butées articulaires définies par l’utilisateur
pour chaque articulation (Figure 10.11).

Requête en ligne. Lorsque la simulation est lancée, une requête est lancée sur
l’ensemble Qk. Les configurations présentement en contact avec l’environnement sont
retenues en tant que candidates potentielles. De toutes ces configurations, nous choi-
sissons celle qui maximise EFORT (Figure 10.12).

10.4 Etape une de notre planificateur: RB-PRM

Nous présentons la première étape de notre planificateur (Figure 10.6 - 1). Il s’agit d’une
variation des planificateurs de mouvement de la famille des PRMs. Nous nous basons

122 Résumé long

R0 R1

R3 R2

pq0

1

q0

1

(1) (2)

S3

S2

S1

S0

<pq0

1
,q0

1
, Jp(q

0

1
) >

< pq0

2
,q0

2
, Jp(q

0

2
) >

...
< pq0

N

,q0

N , Jp(q
0

N) >

Figure 10.11: Illustration de la génération hors ligne de configurations.

sur l’abstraction d’un personnage virtuel pour définir une condition d’atteignabilité,
illustrée par la Figure 10.13:

Creachability = {(q : Aq
ROM ∩W 6= ∅ ∧Aq

trunk ∩W = ∅} (10.4)

Une configuration qui remplit cette condition est intéressante car elle va potentielle-
ment permettre de générer des contacts, puisqu’au moins un obstacle se retrouve dans
la zone d’atteignabilité.

Nous nous basons sur un algorithme classique de planification de mouvement, le
visibility-PRM, pour générer un graphe de navigation. Cet algorithme est modifié pour
que les configurations générées vérifient la condition d’atteignabilité, permettant ainsi
de calculer des chemins proches des obstacles.

En sortie de l’étape une, nous obtenons donc un chemin sans collision permettant
de relier deux configurations dans l’espace. A ce stade, la création de contacts n’est
pas directement considérée, mais les configurations retournées sont suffisament proches
des obstacles pour permettre leur création.

Etape 2 et 3: génération d’une trajectoire de contacts 123

Specification of motion
task vt (1)

3D obstacle surfaces (2.a)

Offline presampling of
reachable workspace (2.b)

Selection of contact
postures among
offline samples

(3)

Selection of the best
posture for the task
(maximizing α)

(4)

Figure 10.12: Illustration de la requête en ligne d’un contact pertinent.

Figure 10.13: Illustration de la condition d’atteignabilité: (Atrunk) est sans collision et
(AROM) est en collision

10.5 Etape 2 et 3: génération d’une trajectoire de con-
tacts

10.5.1 Etape 2: génération d’une séquence de contacts

A l’étape 1 de notre méthode nous avons généré une trajectoire sans collisions re-
liant une configuration de départ à une configuration d’arrivée. Nous transformons
cette trajectoire en une séquence de contacts en utilisant le générateur de contacts
précédemment proposé. De plus, nous ajoutons une condition de stabilité dynamique
afin de générer des configurations plus pertinentes.

Pour celà on choisit un intervalle on considère les configurations de la trajectoire
à intervalles réguliers et on crée ou rompt des contacts en fonction de la configuration
précédente et des possibilités offertes par la nouvelle position. On essaie autant que
possible de maintenir les contacts existants et on en génère de nouveaux dès que la
condition d’équilibre dynamique est brisée.

Ceci est illustré par la Figure 10.14.

124 Résumé long

1) 2) 3.a)

3.b) 4.a) 4.b)

Figure 10.14: Illustration de l’étape 2

10.5.2 Etape 3: optimisation

La trajectoire générée à l’étape 2 va être optimisée dans une dernière étape. Elle est
utilisée comme trajectoire guide pour la méthode d’optimisation ITOMP développée
par Park et al. [PPM12]. Cette optimisation va servir à rendre la trajectoire dynamique-
ment stable, plus fluide, et par conséquent plus naturelle.

Le fait d’utiliser une trajectoire guide va faciliter grandement la convergence et
permettre de trouver des résultats là où les méthodes précédentes échouaient.

10.6 Résultats

Dans cette section nous présentons les résultats obtenus au cours de cette thèse les
résultats que nous avons obtenu en utilisant notre générateur de contacts dans une
simulation interactive.

10.6.1 Scénarios de test

Dans cette section dans chaque scénario la tâche est indiquée avec un joystick, ou
bien selon une trajectoire manuellement définie. On considère une créature dans un
environnement virtuel. La position est l’orientation de la racine du personnage sont
décrites par 6 coordonnées. Par défaut la posture de base du personnage est sa posture
de référence.

On considère une tâche en effort donnée par un vecteur. Nous utilisons notre
méthode pour calculer des configurations de contact compatibles avec la tâche.

Se lever –Figure 10.12 and Figure 10.15–. L’environnement se compose d’une
chaise et d’une table. Le personnage est un humanöıde. Dans sa configuration initiale
il est assis sur la chaise. La tâche de se lever est donnée par un vecteur vertical.

Résultats 125

Figure 10.15: Comparaison de notre méthode (droite) avec de simples heurisques
comme celle de choisir le contact le plus proche (gauche).

Créatures en environnements contraints. Cette fois l’environnement se compose
d’un ensemble de livres placés sur une étagère. Un insecte virtuel avec 6 effecteurs
traverse l’environnement sur ces livres. La tâche est donnée par une trajectoire qui
pointe vers l’avant de la créature.

Tirer et pousser des objets –Figure 10.16 et Figure 10.17–. La créature est un
humanöıde.

Deux environnements sont utilisés: pour le scénario qui consiste à pousser, l’environnement
se compose d’une armoire et du sol; dans l’autre scénario, on considère également une
corde attachée à l’armoire, ainsi qu’un muret près du personnage.

La tâche consiste à tirer (pousser) une armoire. Elle est formulée comme un vecteur
horizontal. Nous calculons des configurations de contacts pour la jambe gauche et les
bras.

Figure 10.16: Configurations calculées par notre algorithme pour des tâches de
poussées.

Calcul d’une séquence de configurations de contact –Figure 10.18. Un per-
sonnage virtuel est situé dans un environnement dans sa posture de référence. Etant
données une trajectoire pour le centre géométrique, nous calculons une séquence de
contacts le long de la trajectoire. La première configuration calculée est donnée en

126 Résumé long

Figure 10.17: Notre méthode (droite) est comparée avec l’heuristique simple de point
le plus proche (milieu) dans cet exemple de poussée d’armoire.

entrée à la suivante, et ainsi de suite.

Ces exemples démontrent l’intéractivité que notre méthode permet d’atteindre.

Figure 10.18: Séquence de configurations pour un insecte virtuel.

10.7 Conclusion

Le but de cette thèse est l’exploration de nouveaux moyens de doter des personnages
virtuels et des robots d’une plus grande autonomie de mouvement, comprise comme
la capacité à synthétiser automatiquement un mouvement adapté à une tâche donnée
dans un environnement contraint. Parmi ces tâches on s’intéresse à l’escalade, à la
poussée d’objets, où encore à des mouvements consistant à se relever d’une chaise.
Ces tâches nécessitent de générer des efforts importants résultants de la création de
nombreux contacts avec l’environnement.

Les applications sont multiples, depuis l’amélioration de l’expérience d’immersion
du joueur de jeu vidéo jusqu’au déploiement de robots lors de manoeuvres d’assistance
après catastrophe.

Cette thèse est une contribution à la question de recherche suivante: Etant donné
un personnage virtuel à la géométrie quelconque dans un environnement

Conclusion 127

Figure 10.19: Configurations choisies pour un humanöıde pratiquant l’escalade.

quelconque, comment générer automatiquement un mouvement permettant
de réaliser efficacement une tâche de locomotion nécessitant d’importants
efforts?

La littérature existante sur le sujet ne permet pas de proposer une solution entièrement
satisfaisante à cette question complexe, en particulier dans le cadre des environnements
contraints.

Dans ces conditions la topologie du terrain est si complexe que les moyens de
déplacement classiques tels que la marche ou la course ne s’appliquent plus.

Constatant l’impossibilité pour ces modèles classiques à fournir des solutions génériques
et robustes, cette thèse s’inscrit dans la lignée des travaux robotiques procéduraux qui
reformulent le problème comme celui de la recherche d’une séquence de contacts per-
mettant d’atteindre l’objectif.

Plus précisément, deux questions de recherche ont été considérées:

1. Quelles nouvelles heuristiques peuvent être proposées afin de générer des postures
de contact pertinentes pour une tâche et un environnement donné?

2. Comment les intégrer dans une méthode de planification de mouvement qui cal-
cule des trajectoires pertinentes dans des environnements très contraints?

En réponse à la première question, nous avons proposé une nouvelle heuristique
appelée EFORT, pour Extended FORce Transmission ratio. EFORT est un outil qui
évalue la compatibilité d’une posture avec une tâche demandant d’exercer une force dans
une direction donnée. Conjointement à EFORT nous avons proposé une méthode per-
mettant de générer en temps réel une posture de contact maximisant localement cette
heuristique. Cette méthode est automatique, très simple à implémenter, et intégrable
directement au sein de méthodes d’animation existantes.

Pour répondre à la deuxième question, nous nous sommes appuyés sur l’heuristique
EFORT afin de proposer un nouveau planificateur de mouvement, le “Reachability
Based PRM”, ou RB-PRM. Il s’appuie sur des heuristiques géométriques très simples

128 Résumé long

qui permettent de générer très rapidement des séquences de contact dans des environ-
nements contraints. Ces séquences de contact servent ainsi de trajectoires guides à des
méthodes d’optimisation de trajectoire, qui autrement n’arriveraient pas à converger
dans des environnements contraints.

Parmi les limitations de notre méthode, on retiendra que EFORT est une heuris-
tique purement géométrique et incomplète, qui ne tient pas compte d’autres aspects
biomécaniques comme les modèles musculaires. De la même manière, notre planifica-
teur de mouvement s’appuie sur des heuristiques géométriques simples pour trouver
une trajectoire, dont on ne peut garantir la pertinence absolue.

Ces limitations vont être étudiées dans le but d’une application directe à la robotique
au cours de travaux futurs.

Author’s publications

Articles

Journal papers

J1. S. Tonneau, J. Pettré, F. Multon. “Using task efficient contact configurations
to animate creatures in arbitrary environments ”. Computer & Graphics, vol. 45,
pp. 40-50, 2014.

Conference papers

C1. S. Tonneau, J. Pettré, F. Multon. “Task efficient contact configurations for ar-
bitrary virtual creatures”. Proceedings of the 2014 Graphics Interface conference,
GI ’14, pp. 9-16, 2014.

129

130 Publications

Bibliography

[01h01] High-level specification and animation of communicative gestures, 2001.

[AAKC13] Rami Ali Al-Asqhar, Taku Komura, and Myung Geol Choi. Relationship
descriptors for interactive motion adaptation. In Proceedings of the 12th
ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
SCA ’13, pages 45–53, New York, NY, USA, 2013. ACM.

[ABL+98] Nancy M. Amato, O. Burchan, Bayazit Lucia, K. Dale, Christopher
Jones, and Daniel Vallejo. Choosing good distance metrics and local
planners for probabilistic roadmap methods. In In Proc. IEEE Int. Conf.
Robot. Autom. (ICRA, pages 630–637, 1998.

[AdLH12] Mazen Al Borno, Martin de Lasa, and Aaron Hertzmann. Trajectory
Optimization for Full-Body Movements with Complex Contacts. IEEE
transactions on visualization and computer graphics, pages 1–11, Decem-
ber 2012.

[AW96] N.M. Amato and Y. Wu. A randomized roadmap method for path and
manipulation planning. In Robotics and Automation, 1996. Proceedings.,
1996 IEEE International Conference on, volume 1, pages 113–120 vol.1,
Apr 1996.

[BB04] Paolo Baerlocher and Ronan Boulic. An inverse kinematics architecture
enforcing an arbitrary number of strict priority levels. The Visual Com-
puter, 20(6), June 2004.

[BELK09] K. Bouyarmane, a. Escande, F. Lamiraux, and a. Kheddar. Potential field
guide for humanoid multicontacts acyclic motion planning. 2009 IEEE
International Conference on Robotics and Automation, pages 1165–1170,
May 2009.

[BRL+04] Timothy Bretl, Stephen Rock, Jean-Claude Latombe, Brett Kennedy,
and Hrand Aghazarian. Free-climbing with a multi-use robot. In Marcelo
H. Ang Jr. and Oussama Khatib, editors, ISER, volume 21 of Springer
Tracts in Advanced Robotics, pages 449–458. Springer, 2004.

131

132 Bibliography

[Chi87] S Chiu. Control of redundant manipulators for task compatibility. In
Robotics and Automation. Proceedings. 1987 IEEE International Con-
ference on, volume 4, pages 1718–1724, 1987.

[CKJ+11] Stelian Coros, Andrej Karpathy, Ben Jones, Lionel Reveret, and Michiel
van de Panne. Locomotion Skills for Simulated Quadrupeds. ACM Trans-
actions on Graphics, 30(4):Article TBD, 2011.

[CLS03] Min Gyu Choi, Jehee Lee, and Sung Yong Shin. Planning biped loco-
motion using motion capture data and probabilistic roadmaps. ACM
Transactions on Graphics, 22(2):182–203, 2003.

[EKMG08] Adrien Escande, Abderrahmane Kheddar, Sylvain Miossec, and Syl-
vain Garsault. Planning Support Contact-Points for Acyclic Motions
and Experiments on HRP-2. In Oussama Khatib, Vijay Kumar, and
George J Pappas, editors, ISER, volume 54 of Springer Tracts in Ad-
vanced Robotics, pages 293–302. Springer, 2008.

[FHKS12] Andrew W. Feng, Yazhou Huang, Marcelo Kallmann, and Ari Shapiro.
An analysis of motion blending techniques. In International Conference
on Motion in Games, Rennes, France, November 2012.

[GKNK06] L Guilamo, J Kuffner, K Nishiwaki, and S Kagami. Manipulability op-
timization for trajectory generation. In Robotics and Automation, 2006.
ICRA 2006. Proceedings 2006 IEEE International Conference on, pages
2017–2022, 2006.

[HBL05] K Hauser, T Bretl, and J.-C. Latombe. Non-gaited humanoid locomo-
tion planning. In Humanoid Robots, 2005 5th IEEE-RAS International
Conference on, pages 7–12, 2005.

[HKT10] Edmond S. L. Ho, Taku Komura, and Chiew-Lan Tai. Spatial relationship
preserving character motion adaptation. ACM Trans. Graph., 29(4):33:1–
33:8, July 2010.

[HLM97] D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in expansive con-
figuration spaces. In Robotics and Automation, 1997. Proceedings., 1997
IEEE International Conference on, volume 3, pages 2719–2726 vol.3, Apr
1997.

[HMK11] Yazhou Huang, Mentar Mahmudi, and Marcelo Kallmann. Planning hu-
manlike actions in blending spaces. In Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), 2011.

[HRB14] D Haering, M Raison, and M Begon. Measurement and description of
three-dimensional shoulder range of motion with degrees of freedom in-
teractions. Journal of biomechanical engineering, 136(8), August 2014.

Bibliography 133

[HST94] T. Horsch, F. Schwarz, and H. Tolle. Motion planning with many degrees
of freedom-random reflections at c-space obstacles. In Robotics and Au-
tomation, 1994. Proceedings., 1994 IEEE International Conference on,
pages 3318–3323 vol.4, May 1994.

[HUF04] Lorna Herda, Raquel Urtasun, and Pascal Fua. Hierarchical implicit
surface joint limits to constrain video-based motion capture. In Computer
Vision - ECCV 2004, 8th European Conference on Computer Vision,
Prague, Czech Republic, May 11-14, 2004. Proceedings, Part II, pages
405–418, 2004.

[JBGR12] Julien Jacquier-Bret, Philippe Gorce, and Nasser Rezzoug. The ma-
nipulability: a new index for quantifying movement capacities of upper
extremity. Ergonomics, 55(1):69–77, January 2012.

[Joh09] R S Johansen. Automated Semi-procedural Animation for Character Lo-
comotion. Aarhus Universitet, Institut for Informations Medievidenskab,
2009.

[KE08] Abderrahmanne Kheddar and Adrien Escande. Planning of contact sup-
ports for acyclic motion of humanoids and androids: challenges and fu-
ture perspectives. In International Symposium on Robotics, 2008.

[KGP02] Lucas Kovar, Michael Gleicher, and Frédéric Pighin. Motion graphs. In
ACM Transactions on Graphics, volume 21, pages 473–482, New York,
NY, USA, 2002. ACM.

[KHB10] Marcelo Kallmann, Yazhou Huang, and R. Backman. A skill-based mo-
tion planning framework for humanoids. In Robotics and Automation
(ICRA), 2010 IEEE International Conference on, pages 2507–2514, May
2010.

[KJ98] James J. Kuffner and Jr. Goal-directed navigation for animated char-
acters using real-time path planning and control. In In Proceedings of
Captech’98, pages 171–186. Springer-Verlag, 1998.

[KM04] M. Kallman and M. Mataric. Motion planning using dynamic roadmaps.
In Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE
International Conference on, volume 5, pages 4399–4404 Vol.5, April
2004.

[KMA05] R Kulpa, F Multon, and Bruno Arnaldi. Morphology-independent rep-
resentation of motions for interactive human-like animation. Computer
Graphics Forum, 24(3):343–351, 2005.

[KNK+03] James Kuffner, K. Nishiwaki, Satoshi Kagami, Y. Kuniyoshi, M. Inaba,
and H. Inoue. Online footstep planning for humanoid robots. In IEEE

134 Bibliography

Int’l Conf. on Robotics and Automation (ICRA’2003). IEEE, September
2003.

[KSLO96] L E Kavraki, P Svestka, J.-C. Latombe, and M H Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces.
Robotics and Automation, IEEE Transactions on, 12(4):566–580, 1996.

[KvdP01] Maciej Kalisiak and Michiel van de Panne. A grasp-based motion plan-
ning algorithm for character animation. The Journal of Visualization
and Computer Animation, 12(3):117–129, July 2001.

[LaV98] S M LaValle. Rapidly-Exploring Random Trees: A New Tool for Path
Planning. In, 129(98-11):98–11, 1998.

[LaV06] Steven M. LaValle. Planning Algorithms. Cambridge University Press,
New York, NY, USA, 2006.

[LCH03] Tsai-Yen Li, Pei-Feng Chen, and Pei-Zhi Huang. Motion planning for
humanoid walking in a layered environment. In Robotics and Automa-
tion, 2003. Proceedings. ICRA ’03. IEEE International Conference on,
volume 3, pages 3421–3427 vol.3, Sept 2003.

[LH03] P. Leven and S. Hutchinson. Using manipulability to bias sampling dur-
ing the construction of probabilistic roadmaps. Robotics and Automation,
IEEE Transactions on, 19(6):1020–1026, Dec 2003.

[LK06] Manfred Lau and James J. Kuffner. Precomputed search trees: plan-
ning for interactive goal-driven animation. In Symposium on Computer
Animation, pages 299–308, 2006.

[LL04] Jehee Lee and Kang Hoon Lee. Precomputing avatar behavior from
human motion data. In Proceedings of the 2004 ACM SIGGRAPH/Eu-
rographics Symposium on Computer Animation, SCA ’04, pages 79–87,
Aire-la-Ville, Switzerland, Switzerland, 2004. Eurographics Association.

[LLDM05] Joanne E Labriola, Thay Q Lee, Richard E Debski, and Patrick J McMa-
hon. Stability and instability of the glenohumeral joint: The role of
shoulder muscles, January 2005.

[LMEE12] Mingxing Liu, Alain Micaelli, Paul Evrard, and Adrien Escande. Task-
driven posture optimization for virtual characters. In Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
SCA ’12, pages 155–164, Aire-la-Ville, Switzerland, Switzerland, 2012.
Eurographics Association.

[LP83] Tomás Lozano-Pérez. Spatial planning: A configuration space approach.
IEEE Transactions on Computers, C-32:108–120, 1983.

Bibliography 135

[LP12] Sergey Levine and Jovan Popovic. Physically Plausible Simulation for
Character Animation. In Symposium on Computer Animation, pages
221–230, 2012.

[Lun12] J Lundgren. Inpolyhedron - are points inside a volume? MATLAB
Central File Exchange, http://tinyurl.com/ktcgohk, 2012.

[MK12] Mentar Mahmudi and Marcelo Kallmann. Precomputed motion maps for
unstructured motion capture. In Eurographics/SIGGRAPH Symposium
on Computer Animation (SCA), 2012.

[MKHB15] Robert Peter Matthew, Gregorij Kurillo, Jay J. Han, and Ruzena Bajcsy.
Calculating reachable workspace volume for use in quantitative medicine.
In Lourdes Agapito, Michael M. Bronstein, and Carsten Rother, editors,
Computer Vision - ECCV 2014 Workshops, volume 8927 of Lecture Notes
in Computer Science, pages 570–583. Springer International Publishing,
2015.

[MMKA04] S. Menardais, F. Multon, R. Kulpa, and B. Arnaldi. Motion blending for
real-time animation while accounting for the environment. In Computer
Graphics International, 2004. Proceedings, pages 156–159, June 2004.

[MTP12] Igor Mordatch, Emanuel Todorov, and Zoran Popović. Discovery of com-
plex behaviors through contact-invariant optimization. ACM Transac-
tions on Graphics, 31(4):43:1—-43:8, 2012.

[MWTK13] Igor Mordatch, Jack M. Wang, Emanuel Todorov, and Vladlen Koltun.
Animating human lower limbs using contact-invariant optimization.
ACM Trans. Graph., 32(6):203:1–203:8, November 2013.

[NL06] N Naksuk and C S G Lee. Zero moment point manipulability ellipsoid.
In ICRA 2006 Proceedings, pages 1970–1975, 2006.

[NSL99] Carole Nissoux, Thierry Siméon, and Jean-Paul Laumond. Visibility
based probabilistic roadmaps. In Proceedings 1999 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. Human and En-
vironment Friendly Robots with High Intelligence and Emotional Quo-
tients, October 17-21,1999, Hyundai Hotel, Kyongju, Korea, pages 1316–
1321, 1999.

[PHL91] P. Pignon, T. Hasegawa, and J.-P. Laumond. Optimal obstacle growing in
motion planning for mobile robots. In Intelligent Robots and Systems ’91.
’Intelligence for Mechanical Systems, Proceedings IROS ’91. IEEE/RSJ
International Workshop on, pages 602–607 vol.2, Nov 1991.

[PHL92] P. Pignon, T. Hasegawa, and J.-P. Laumond. Basic algorithms for space
structuring in path planning for mobile robots. In Robotics and Automa-

136 Bibliography

tion, 1992. Proceedings., 1992 IEEE International Conference on, pages
2495–2500 vol.3, May 1992.

[PLS03] Julien Pettré, Jean-Paul Laumond, and Thierry Siméon. A 2-stages lo-
comotion planner for digital actors. In Proceedings of the 2003 ACM
SIGGRAPH/Eurographics symposium on Computer animation, SCA ’03,
pages 258–264, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurograph-
ics Association.

[PMM+07] Manuel Peinado, Daniel Meziat, Damien Maupu, Daniel Raunhardt,
Daniel Thalmann, and Ronan Boulic. Accurate on-line avatar control
with collision anticipation. In Proceedings of the 2007 ACM Symposium
on Virtual Reality Software and Technology, VRST ’07, pages 89–97, New
York, NY, USA, 2007. ACM.

[PPM12] Chonhyon Park, Jia Pan, and Dinesh Manocha. Itomp: Incremental tra-
jectory optimization for real-time replanning in dynamic environments,
2012.

[PZM12] Jia Pan, Liangjun Zhang, and Dinesh Manocha. Collision-free and
smooth trajectory computation in cluttered environments. Int. J. Rob.
Res., 31(10):1155–1175, September 2012.

[QEMR11] Zhapeng Qiu, Adrien Escande, Alain Micaelli, and Thomas Robert. Hu-
man motions analysis and simulation based on a general criterion of
stability. In International Symposium on Digital Human Modeling, 2011.

[RBC98] Charles Rose, Bobby Bodenheimer, and Michael F. Cohen. Verbs and
adverbs: Multidimensional motion interpolation using radial basis func-
tions. IEEE Computer Graphics and Applications, 18:32–40, 1998.

[SH07] Alla Safonova and Jessica K. Hodgins. Construction and optimal search
of interpolated motion graphs. ACM Trans. Graph., 26(3), July 2007.

[SLCS04] T. Siméon, J.P. Laumond, J. Cortes, and A. Sahbani. Manipulation
planning with probabilistic roadmaps. International Journal of Robotics
Research, 23(7-8), july 2004.

[SS83] Jacob T. Schwartz and Micha Sharir. On the “piano movers’” problem
i. the case of a two-dimensional rigid polygonal body moving amidst
polygonal barriers. Communications on Pure and Applied Mathematics,
36(3):345–398, 1983.

[SSL12] M. Sreenivasa, P. Souères, and J.P. Laumond. Walking to grasp: Model-
ing of human movements as invariants and an application to humanoid
robotics. IEEE Transactions on Systems, Man, and Cybernetics, 2012.

Bibliography 137

[vBPE10] Ben JH van Basten, PWAM Peeters, and Arjan Egges. The step space:
example-based footprint-driven motion synthesis. Computer Animation
and Virtual Worlds, 21(3-4):433–441, 2010.

[vWvBE+10] H. van Welbergen, B.J.H. van Basten, A. Egges, Zs. M. Ruttkay, and
M.H. Overmars. Real time animation of virtual humans: A trade-off
between naturalness and control. Computer Graphics Forum, 29(8):2530–
2554, December 2010.

[Wel93] Chris Welman. Inverse kinematics and geometric constraints for artic-
ulated figure manipulation. Master’s thesis, Simon Frasor University,
1993.

[WHD+12] Jack M. Wang, Samuel R. Hamner, Scott L. Delp, Vladlen Koltun, and
More Specifically. Optimizing locomotion controllers using biologically-
based actuators and objectives. ACM Trans. Graph, 2012.

[WP95] Andrew Witkin and Zoran Popovic. Motion warping. In Proceedings
of the 22Nd Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’95, pages 105–108, New York, NY, USA, 1995.
ACM.

[WPP13] Kevin Wampler, Jovan Popović, and Zoran Popović. Animal Locomotion
Controllers From Scratch. Computer Graphics Forum, 32:153–162, May
2013.

[WPP14] Kevin Wampler, Zoran Popović, and Jovan Popović. Generalizing lo-
comotion style to new animals with inverse optimal regression. ACM
Trans. Graph., 33(4):49:1–49:11, July 2014.

[YKH04] Katsu Yamane, James Kuffner, and Jessica K Hodgins. Synthesizing
Animations of Human Manipulation Tasks. ACM Trans. on Graphics
(Proc. SIGGRAPH 2004), 2004.

[YLvdP07] KangKang Yin, Kevin Loken, and Michiel van de Panne. Simbicon: Sim-
ple biped locomotion control. ACM Transactions on Graphics, 26(3):Ar-
ticle 105, 2007.

[Yos85] Tsuneo Yoshikawa. Manipulability of Robotic Mechanisms. International
Journal of Robotic Research, 4(2):3–9, 1985.

[YTEA] Hsin-Yi Yeh, Shawna L. Thomas, David Eppstein, and Nancy M. Amato.
Uobprm: A uniformly distributed obstacle-based prm. In IROS, pages
2655–2662. IEEE.

138 Bibliography

List of Figures

1.1 Left: Examples of tree navigation and climbing motions in the video
game Assassin’s creed. © Ubisoft. Right: The bipedal robots Chimp
and Schaft at the DARPA challenge. © DARPA challenge. 9

1.2 Motion capture systems allow to replay the motions of real actors in a
virtual environment. © Quantic dreams. 10

1.3 We want to address the issue of generating relevant contacts for pushing
the cupboard within real time constraints, in spite of the constraints of
the environment (bottom). 12

1.4 A challenging climbing scenario for existing animation methods. 13

1.5 The importance of task efficiency is illustrated in this standing up task.
We need to propose a heuristic that would allow to choose the configura-
tions for the limbs displayed on the right panel, which seem more suited
for a vertical force exertion task. 13

1.6 A three stage framework for the automatic computation of contact tra-
jectories in constrained environments. 14

2.1 Our three objective scenarios: climbing a wall, crossing an obstacle race
and pushing a cupboard. In the pushing scenario, the task can be for-
mulated interactively by a player using a joystick. 18

2.2 A humanoid robot with 31 + 6 = 37 degrees of freedom. Each colored
dot represents a degree of freedom around an axis. 19

2.3 a) The configuration of the orange robot belongs to Cobs because it col-
lides with the obstacles; b) the configuration of the grey robot belongs
to Cfree because it does not collide with the obstacles; c),d) an abstract
2D representation of the high dimensional configuration space of the robot. 20

2.4 Motion planning can be viewed as the search of a collision free path
between two points of the configuration space. 20

2.5 An example of the generation of a PRM graph. Configurations are ran-
domly sampled until a given condition is met (such as a target number of
configurations). Two configurations are connected together if a collision
free path can be found between them. 21

139

140 List of Figures

2.6 The configuration generation process of the OBPRM algorithm. A point
on the robot surface is selected, as well as another point in one of the
obstacle’s surface (a). The robot is translated so that those two points
coincide (b). The robot is then randomly rotated (c), before being trans-
lated in a random direction until the robot is in contact and collision
free(d). 22

2.7 An example of contact configuration for both feet of a humanoid creature. 23

2.8 Pettré et al. use an abstraction of the character to plan a path in a 2D en-
vironment, before using motion capture to recreate the footsteps [PLS03]. 23

2.9 Choi et al. combine a PRM planner with a motion capture database to
plan a sequence of footsteps in a 3 dimensional environment [CLS03]. . . 24

2.10 In two different constrained environments, replaying a deterministic se-
quence of contacts is sometimes impossible. A sequence of valid contact
configurations has to be planned for each new environment. 24

2.11 Kalisiak et al. combine motion planning and finite state machines to
synthesize motion in 2.5D constrained environments. Potential contact
positions are manually discretized [KvdP01]. 25

2.12 In contact before motion approaches, a transition between two states
exists only if one and only one contact differs between the two states
(effectors in contact are represented in green). 26

2.13 Bouyarmane et al. propose a method to automatically compute input
trajectories for contact before motion planners. Contact configurations
are obtained by applying inverse kinematics to near obstacle collision
free configurations [BELK09]. 26

2.14 By specifying the right space time constraints, Watkin et al. manage to
generate various motions from the initial walking motion (upleft) [WP95]. 28

2.15 The locomotion system is a tool available to the industry which adapts
walking motions to uneven terrain by combining motion warping and
inverse kinematics (left). It is possible to adjust several parameters to
avoid too important deformations of the original motion and unnatural
postures (right). © Unity 3D. 29

2.16 Yamane et al. address the manipulation problem by combining mo-
tion planning and inverse kinematics. The inverse kinematics step is
biased using a motion capture database which leads to more natural
motions [YKH04]. 30

2.17 Safonova et al. combine motion graphs with pathfinding techniques to
generate an optimized sequence of motions [SH07]. 31

2.18 From a finite state machine describing the motion capabilities of a vir-
tual character, Lau et al. create a tree that expands all the possible
transitions from a given state up to a fixed depth. At runtime, the mo-
tions corresponding to the paths of the trees are evaluated regarding the
current character position and orientation and the best path is selected
and played [LK06]. 32

List of Figures 141

3.1 A multi step motion planner for the automatic computation of contact
trajectories in constrained environments. 39

3.2 From a virtual humanoid R to its abstraction A = AROM ∪Atrunk. The
red cylinder denotes Atrunk and must remain collision free. The green
spheres are the objects composing AROM 40

3.3 Illustration of the reachability condition. In the three examples shown,
only the rightmost configuration satisfies the condition. It is the only
one for which the red cylinder (Atrunk) is collision free while the green
spheres (AROM) collide with the environment. 41

4.1 A example of workspace W , composed of two obstacles: the ground and
a box, each one described by a set of triangles. 45

4.2 Reference posture of a virtual insect composed of 6 limbs and 33 degrees
of freedom. Each limb is composed of 4 degrees of freedom. Each colored
dot represents a degree of freedom around an axis, to which we add the
position and orientation of the root of the creature in the world coordinates. 46

4.3 Virtual human in a rest configuration. The right arm is denoted as the
limb R0. 47

4.4 Generation of two sample configurations. Up: The two configurations lie
within the joint limits of the shoulder, as shown in the bottom left plot.
However the red configuration is rejected because it does not belong to
KShoulder (bottom right). 48

4.5 Representation of the Range Of Motion of the author’s shoulder. The
blue volume is the non convex hull KShoulder including all the shoulder
configurations that were recorded in a motion capture session, following
the Y XZ euler angle decomposition. 49

4.6 From a virtual humanoid R to its abstraction A = AROM ∪Atrunk. The
red cylinder denotes Atrunk and must remain collision free. The green
spheres are the objects composing AROM 50

4.7 Examples of configurations in Cfree, Cobs and Ccontact 51

5.1 Where and how to create the next contact for a given limb? 54

5.2 Examples of velocity and force ellipsoids for a manipulator composed of
2 dofs and 2 segments. Only the horizontal and vertical speeds are shown
(not the rotation speeds), since it would require being able to draw in
four dimensions. 56

5.3 EFORT integrates the contact surface normals to the evaluation of con-
tact configurations and favors surface normals aligned with the task. . . 59

5.4 Illustration of the environment-independent offline sampling for N =
5000, for the right arm first, then for all the limbs. A sample container
is created for each limb. An entry contains a configuration qk, and its
jacobian product Jp. Entries are indexed by the end-effector position
pqk. For clarity the samples are shown in a wireframe form. 60

142 List of Figures

5.5 Online step request. Given the task of getting up (1), We transpose the
samples from our database into the local environment (2), and select
the configurations in contact with the environment (3). Among these
candidates, we select the collision-free configurations that maximize the
heuristic αEFORT (4). For clarity the creature and samples are shown
in a wireframe form. 61

6.1 In this chapter we present RB-PRM(1), a global motion planner for
collision-free trajectories. 66

6.2 Illustration of the reachability condition. In the three examples shown,
only the rightmost configuration is accepted. It is the only one for which
the red cylinder (Atrunk) is collision free while the green spheres (AROM)
collide with the environment. 68

6.3 RB-PRM configuration generation process. A point in one of the obsta-
cles surface is selected (a). The root of the character is translated to this
point (b). It is then translated in a random direction (c), before being
randomly rotated until the reachability condition is met (d). 69

6.4 Generation process of the Visibility PRM in a simple 2D case. a)b)c)
Randomly generated configurations are added to the graph, because they
cannot be connected to any existing nodes: they are guard nodes. d) A
new configuration is rejected because it belongs to the green visibility
domain, but does not allow to improve the graph connectivity. e)f) Two
connecting nodes are added to the graph because they allow to connect
independent components of the graph. g) A new configuration is rejected
because it fails to improve the graph connectivity. h) The final graph. . 72

6.5 Two examples of local planner: straight line planner with linear inter-
polation (left); rotate-at-s planner (right). In this particular case the
straight line planner fails to find a local path where the rotate-at-s suc-
ceeds. 73

6.6 If the reachability condition is not verified by the local planner unrealistic
paths might be found. 73

6.7 Pruning algorithm illustration. Blue circles correspond to the start confi-
guration, and red circles to the target configuration. 76

6.8 Path approximation as a spline trajectory. A random number of knots
are sampled along the original trajectory and a spline is created with
them. While the spline does not verify the reachability condition (mid-
dle), we sample more knots on the trajectory (right). 77

6.9 Illustration of the spline shortcut algorithm. 78

6.10 Left: While the graph covers the whole workspaceW , to go from the blue
configuration to the red one, the green path would be much shorter that
the detour proposed by the graph. Right: In constrained environments
the options are more limited and the problem is less likely to occur. . . 79

List of Figures 143

7.1 In this chapter we cover the last two stages of our framework, the trans-
formation of a collision-free trajectory into a contact trajectory (2 and
3). 82

7.2 From a input trajectory (1), we create a contact for the purple configura-
tion (2). However, this contact does not hold for the next configuration
(3). To ensure that the contacts hold for a given period of time, we
bias the contact generation towards location included in the Range Of
Motion of consecutive configurations (5) (6). 83

7.3 An example of a simplified model for the balance criteria: a point mass
with two non-coplanar contacts and one grasp. This figure is reproduced
from [QEMR11] . 85

7.4 Generation of a contact sequence. We consider the previously computed
configuration (1), and try to maintain the contacts for the new con-
figuration (2). If the configuration is balanced, we move on to the next
configuration. If it is not (3.a, 4.a), we generate additional contacts (3.b,
4.b). 86

8.1 Reference posture of a virtual insect composed of 6 limbs. Each limb has
5 degrees of freedom. 94

8.2 Configurations found for a pulling task. In the right figure, our creature
uses the pink wall as a better support for the foot. The asymmetry
between the arm configurations is induced by the sampling phase. . . . 94

8.3 In this example of pushing a cupboard, our method (right) is compared
with the closest distance heuristic (middle). The closest distance heuris-
tic places the hands and left feet at locations close to their original po-
sitions (left) while our method places the end-effectors in configurations
relevant for the pushing task. 95

8.4 Configuration sequence for an insect with 6 limbs crossing a bookshelf.
Task efficient contact configurations are found along the trajectory. . . . 95

8.5 Computed configuration for the four limb of a standing up virtual human. 96

8.6 Our method (right) is compared with the closest distance heuristic (mid-
dle) in this example of getting up from a chair. In the latter case, the
left hand position (on the side of the table) is not suitable to generate a
vertical effort. 96

8.7 Configurations for a humanoid on a climbing wall. Left: the closest
distance heuristic does not consider the motion task, therefore it always
computes the same configuration. Right: From the same initial root
location (position and orientation), different configurations are computed
depending on the task (black arrow). 97

8.8 Left, middle: original high resolution truck model. Right: the simplified
model used in our scenario. 100

8.9 The computed contact sequence for the truck egress scenario. 101

8.10 The computed sequence for the climbing scenario. 102

144 List of Figures

8.11 The computed sequence for the crouching scenario. The number dis-
played in each figure corresponds to the order of the configuration in the
contact sequence. 103

10.1 Exemples de mouvements d’escalades et de franchissement d’arbres dans
le jeu vidéo Assassin’s creed. © Ubisoft. 113

10.2 The robots bipèdes Chimp et Schaft durant le “DARPA challenge”. ©

DARPA challenge. 114
10.3 Les techniques de capture de mouvement permettent d’enregistrer et de

rejouer les mouvements d’un acteur réel à l’identique. © Quantic dreams.115
10.4 Notre première contribution consiste en un générateur de postures de

contact pour des environnements contraints. 116
10.5 Ce scénario d’escalade est problématique pour les méthodes existantes. . 117
10.6 Notre solution s’articule en 2 étapes pour déterminer une trajectoire

complète en environnements contraints. 117
10.7 Un insecte virtuel avec 6 membres et 33 degrés de liberté. 118
10.8 Humain virtuel au repos. 119
10.9 Abstraction d’un humain virtuel. 120
10.10Quand et comment créer le prochain contact pour satisfaire la tâche? . . 120
10.11Illustration de la génération hors ligne de configurations. 122
10.12Illustration de la requête en ligne d’un contact pertinent. 123
10.13Illustration de la condition d’atteignabilité: (Atrunk) est sans collision et

(AROM) est en collision . 123
10.14Illustration de l’étape 2 . 124
10.15Comparaison de notre méthode (droite) avec de simples heurisques comme

celle de choisir le contact le plus proche (gauche). 125
10.16Configurations calculées par notre algorithme pour des tâches de poussées.125
10.17Notre méthode (droite) est comparée avec l’heuristique simple de point

le plus proche (milieu) dans cet exemple de poussée d’armoire. 126
10.18Séquence de configurations pour un insecte virtuel. 126
10.19Configurations choisies pour un humanöıde pratiquant l’escalade. 127

List of Tables

2.1 Feature comparison of state of the art methods. 36

8.1 Average time (worst time) (in ms) spent for the generation of one
contact (in step 3 of our framework) relative to the scenario and the
number of samples N. 98

8.2 Average number of contact configurations found (in step 3 of our frame-
work) relative to the scenario and the number of samples N. 98

8.3 Average time (in ms) spent generating samples (in step 3 of our frame-
work) relative to the number of samples N. 98

8.4 Average time (in seconds) spent in RB-PRM generation, refinement
of the trajectory, and generation of the contact sequence. 104

145

Résumé

Avec la complexité croissante des environnements virtuels
apparaît le besoin de doter les personnages qui les peuplent
d'une plus grande autonomie de mouvement. En plus de
marcher, courir et sauter, les simulations interactives actuelles
requièrent des personnages qu'ils rampent, escaladent,
poussent ou tirent des objets... Ces tâches sont caractérisées
par les environnements contraints dans lesquelles elles sont
réalisées, qui présentent un risque fort de collision et réduisent
fortement les possibilités de mouvement; elles le sont aussi par
les forces importantes qui doivent être exercées afin de les
réaliser, résultant de la création de contacts. Ces deux aspects
rendent la synthèse automatique de mouvements très difficile
dans ce contexte.

Cette thèse a pour objectif de proposer une méthode
automatique pour la synthèse de mouvements en
environnements contraints. Pour ce faire, deux problématiques
de recherche ont été posées et étudiées.

La première partie de la thèse porte sur la question de la
génération de contacts pertinents pour la réalisation des tâches
considérées. Une nouvelle heuristique appelée EFORT
(Extended FORce Transmission ratio) est présentée ; elle
permet d’évaluer la compatibilité d’une posture de contact avec
la tâche demandée. Cette heuristique est au cœur d’une
méthode pour la génération temps réel de postures de contact.
Cette méthode s’applique pour des personnages et des
environnements arbitraires, et peut être directement intégrée
au sein de simulations interactives telles que les jeux vidéo.

La deuxième partie porte sur le problème plus global de la
recherche d’une trajectoire pertinente dans un environnement
contraint. Cette recherche de trajectoire passe par la recherche
d’une séquence de postures de contact qui vont permettre le
mouvement. Une nouvelle méthode de planification de
mouvement s’appuyant sur EFORT est donc proposée.

Parce qu’elle est une des premières à simultanément
considérer la complexité de l’environnement et la pertinence
des configurations générées au regard de la tâche à accomplir,
notre méthode constitue un pas significatif vers une plus
grande autonomie de mouvement pour les personnages
virtuels.

N° d’ordre : 15ISAR 04 / D15 - 04

Abstract

With the growing complexity of virtual environments comes the
need to provide virtual characters with a larger autonomy of
motion. Additionally to walking, running and jumping, state of
the art virtual applications require characters to climb, crawl,
pull or push objects... Those tasks are characterized by the
constrained environments in which they are achieved, where
the risk of collision is high and motion capabilities are limited;
they are also associated with important force exertion, resulting
from contact creation. In this context, automatic motion
synthesis is really difficult.

This thesis aims at proposing an automatic method for motion
synthesis in constrained environments. To achieve these goals,
two research problems have been identified and studied.

The first part is dedicated to the issue of generating contact
postures compatible to achieve the considered tasks. We
propose a new heuristic called EFORT (Extended FORce
Transmission ratio). EFORT is used to evaluate the
compatibility of a contact posture with the requested task.
EFORT lies at the center of a new method for the real time
generation of task efficient contact configurations. This
generator finds its applications for arbitrary virtual characters
and environment, and as such can be directly integrated within
video game applications.

The second part of this thesis focuses on the more global issue
of computing a relevant trajectory in a constrained environment.
This issue is seen as the search for a sequence of task efficient
contact postures, suited for achieving the task. Consequently a
new motion planner based on EFORT is proposed.

Because it is one of the first to simultaneously address the
complexity of the environment and task efficiency, our motion
planner is a significant step towards an enhanced autonomy of
motion for virtual characters.

	Remerciements
	Introduction
	Related work
	Robotics contributions for synthesising motions in constrained environments
	Geometric motion planning
	Planning in constrained environments
	Motion planning for humanoid robots
	Strong heuristics for cyclic motions in simple environments
	Contact discretization for constrained environments

	Conclusion

	Example based methods for synthesizing natural motions in constrained environments
	Motion editing techniques
	Combining motion planning and example based methods in constrained environments
	Conclusion

	Model based approaches for natural motions
	Dynamic models
	Biomechanical models
	Conclusion

	General conclusion on the related work

	Overview of our framework
	Technical problem statement
	EFORT, a heuristic and a method for task efficient contact generation
	How to evaluate the ``task efficiency" of a configuration?
	How to generate a task efficient configuration in a constrained environment?

	A multi stage framework for task efficient planning in constrained environments

	Notation conventions and character representation
	Notation conventions and mathematical tools
	Notation conventions
	Polytope and residual radius

	Environment definition
	Virtual character definitions and representations
	Skeleton definition
	Character configuration
	Character Range Of Motion (ROM)
	Abstraction of a virtual character

	Additional useful definitions
	The configuration space
	Path, path interpolation, and trajectory

	A heuristic for task efficient contact configurations: the Extended FORce Transmission ratio (EFORT)
	Additional definitions
	The jacobian matrix
	The velocity ellipsoid
	The force ellipsoid
	Sample and sample container

	EFORT: a new heuristic for task efficiency
	The force transmission ratio
	EFORT: the Extended FORce Transmission ratio

	Real time generation of contact configurations
	Offline generation of random limb configurations
	Online computation of task efficient contact configurations

	Discussion
	Advantages and limitations of EFORT.
	Relevance of EFORT as a heuristic.
	Applications and future improvements

	Stage 1: A Reachability Based Probabilistic Road Map (RB-PRM)
	Additional definitions
	Configurations of RB-PRM
	The reachability condition

	Generating RB-PRM
	Sampling the configuration space
	Graph construction
	Connecting nodes
	Conclusion

	Online request and trajectory generation
	Path request using the A* algorithm
	Path refinement and simplification
	Path pruning
	From a piecewise linear path to a shortcut spline trajectory

	Conclusion

	Discussion
	Interest of RB-PRM over other probabilistic planners
	Genericity and relevance of RB-PRM

	Stage 2 and 3: Generation of a task efficient contact trajectory
	Two criteria for contact duration and dynamic balance
	A simple heuristic for contact duration
	A heuristic for dynamic balance

	Stage 2: Extension a collision-free trajectory into a task efficient contact sequence
	Extension algorithm.
	A modified contact generator, including new heuristics for task efficiency

	Stage 3: Computing the final trajectory
	Presentation of ITOMP and motivation.
	Adaptation of ITOMP into our framework

	Discussion

	Results
	Stand alone use of our task efficient contact generator
	Implementation details
	Test scenarios
	Comparison against the closest distance heuristic
	Performance analysis

	Computation of the contact trajectory
	Implementation details
	Test scenarios
	Performance analysis

	Discussion
	Discussion on ITOMP integration

	Conclusion
	Findings and contributions
	How to generate rapidly a contact configuration compatible with a force exertion task in an unknown environment?
	How to compute relevant contact trajectories for a force exertion task in a constrained environment?

	Findings implications
	Limitations of the study
	Recommendation for future research
	A final word

	Resumé long de la thèse en francais
	Introduction
	Définitions
	Environnement.
	Définition et représentation d'un personnage virtuel
	Squelette
	Configuration
	Abstraction d'un personnage virtuel

	EFORT
	EFORT: une nouvelle heuristique pour évaluer la compatibilité d'une configuration.
	Génération de contact en temps réel

	Etape une de notre planificateur: RB-PRM
	Etape 2 et 3: génération d'une trajectoire de contacts
	Etape 2: génération d'une séquence de contacts
	Etape 3: optimisation

	Résultats
	Scénarios de test

	Conclusion

	Author's publications
	Bibliography
	List of Figures
	List of Tables

