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Résumé

Cette these développe des modeles de la structure par terme de taux d’intérét
—et des écarts de taux d’intérét— dans lesquels les changements de régimes occu-
pent une place centrale. On montre notamment que ce type de modélisation est
particulierement adapté pour rendre compte du comportement non-linéaire de ce
type de variables financieres. Ces modeles sont exploités afin de répondre a des
questions clés pour les décideurs économiques et/ou les participants de marché,
notamment: quels sont les effets de la crise financiéere récente sur la structure par
terme des taux d’Etat 7 Comment modéliser I'influence du risque systémique sur
la courbe des taux 7 Comment l'illiquidité d’une obligation ou le risque de défaut
de son émetteur influencent la valorisation de ce titre 7 Quelles sont les compen-
sations demandées par les investisseurs pour supporter le risque de taux associé

aux décisions de politique monétaire ?

Les modeles présentés sont fondés sur 'hypothese d’absence d’opportunité d’arbitrage.
Ce type d’approche a acquis une importance croissante pour les décideurs comme
pour les participants de marché au cours de la derniére décennie. En effet, tout en
permettant un ajustement fin des données, les modeles vérifiant cette hypothese
fournissent un cadre cohérent pour I'analyse des fluctuations des taux obligataires

et des primes de risque qu’elles incluent.

Dans la spécification de nos modeles, une grande importance est accordée a la
simplicité des formules de valorisation d’actifs. Ceci est crucial pour I'estimation
des parametres des modeles et pour faciliter 'inférence statistique. La simplicité

des calculs repose sur l'utilisation des propriétés des processus composés auto-



regressifs (Car) pour obtenir des formules quasi-explicites de prix obligataires'.
Dans notre approche, les dynamiques physique et risque-neutre des processus sont
explicites. Disposer de la dynamique historique rend notamment possibles les
exercices de prévision et, de maniere générale, est important pour les besoins de

gestion des risques financiers (notamment pour le calcul des Values-at-Risk, VaR).

Le premier chapitre est une revue de la littérature liée aux différents sujets étudiés
dans cette these. Dans le deuxieme chapitre, nous développons un cadre général de
modélisation des fluctuations de courbes de taux associées a différents émetteurs.
Les probabilités de défaut des emprunteurs sont fonctions de facteurs observables
ou non, a valeurs discretes ou réelles. Alors que l'accent est mis sur la modéli-
sation du risque de défaut, on montre comment ce cadre permet également de
valoriser les titres obligataires illiquides. Une version simple du modele est es-
timée pour reproduire la dynamique des écarts de taux entre les obligations émises
par des entreprises américaines d’'une part et celles émises par le Trésor américain
(Treasuries) d’autre part. Ce second chapitre montre par ailleurs comment les
changements de régimes peuvent étre utilisés pour reproduire des phénomenes de
contagion sectorielle. Enfin, le cadre initial est étendu pour modéliser les transi-
tions de notations de crédit et 'influence de celles-ci sur les structures par terme

de taux d’intérét.

Le chapitre 3 présente une analyse des fluctuations jointes de courbes de taux
d’Etat de dix pays de la zone euro entre 1999 et 2012. Deux régimes intervi-
ennent dans le modele, I'un de ceux-ci correspondant aux périodes de crise fi-
nanciere. Ces régimes conditionnent la dynamique de cinq facteurs observables.
Le taux d’intérét sans risque de court-terme, ainsi que les intensités de défaut
et d’illiquidité, dépendent linéairement de ces cing facteurs. Ces spécifications
permettent d’expliquer la majeure partie des variations des taux d’intérét inclus
dans I’échantillon —pour les différents pays et les différentes maturités considérées.
L’estimation suggere en outre que l'introduction du régime de crise est importante
pour expliquer 'accroissement de la volatilité des écarts de taux sur la période

récente. Cette étude propose également un moyen d’identifier la partie des taux

'Pour une analyse exhaustive de ces processus, voir Darolles, Gourieroux et Jasiak (2006).



d’intérét liée a la valorisation de lilliquidité relative des obligations souveraines.
A cet égard, les résultats indiquent que bien que la liquidité soit un facteur im-
portant pour expliquer les écarts de taux d’Etat sur les cinq dernieres années, les
inquiétudes relatives a la qualité de crédit des Etats de la zone euro constituent le

principal motif de leurs variations sur la période 2010-2012.

Le chapitre 4 complete 'analyse du chapitre précédent en se concentrant sur les
cinq derniéres années, i.e. la période de crise financiere 2007-2012. La modélisation
repose sur des facteurs de risque latents (non observables). La modélisation des
périodes de crise est plus précise que dans le chapitre précédent. En effet, nous
distinguons ici deux types de tensions : celles liées a des motifs de liquidité et celles
liées & des motifs de crédit. Plus précisément, nous introduisons deux chaines, I'une
dite de liquidité et I'autre dite de crédit. Pour la chaine de liquidité, deux états
sont possibles: «faibles tensions» et «périodes de turbulences». Pour la chaine de
crédit, un troisiéme niveau de tension («crise aigue») s’ajoute aux deux premiers.
L’estimation met en évidence un lien de causalité entre les deux types de tensions :
la probabilité d’entrer dans une période de turbulences liées a des modifs de crédit

est plus forte lorsque la situtation de liquidité est déja détériorée.

Le chapitre 5 examine 'influence de la politique monétaire sur la courbe des taux
d’intérét. Bien que les taux directeurs fixés par la banque centrale jouent un role
central dans la dynamique de la structure par terme des taux d’intérét, peu de
modeles sont cohérents avec les spécificités des trajectoires de taux directeurs.
Ce chapitre vise a pallier ce manque en présentant un cadre dans lequel le taux
d’intérét (de court terme) auquel les banques se refinancent aupres de la banque
centrale est & valeurs discrétes (ce sont des multiples de 0.25%) et positives. En
particulier, contrairement a la plupart des modeles de la structure par terme, celui-
ci est conforme a I’existence d’une borne inférieure (en zéro) pour les taux courts.
Ces propriétés découlent d’une utilisation innovante (et intensive) des changements
de régimes. En dépit d’un trés grand nombre de régimes (246), le modele reste
maniable, ce qui est illustré par son estimation sur données quotidiennes relatives a
la zone euro, I’échantillon couvrant les 13 dernieres années. Les résultats suggerent

que la partie courte de la courbe des taux integre des primes de risque, celles-ci



correspondant aux compensations demandées par les investisseurs pour supporter
le risque de taux associé aux décisions de politique monétaire. Ce modele est
également utilisé afin d’évaluer I'influence sur la courbe des taux d’engagements

de la banque centrale sur une trajectoire future de son principal taux directeur.



Summary

This doctoral thesis studies the potential of regime-switching models to capture
salient features of the dynamics of interest rates. It is notably shown that these
techniques can be used in several ways to reproduce various forms of yield and
spread non-linearities. Different innovative frameworks, combining flexibility and
tractability, are proposed. They are brought to data so as to tackle questions that
are key for both policy-makers and practitioners alike. These questions include the
following: What are the effects of the ongoing financial crisis on the term-structure
of sovereign spreads? How to model yield-curve reactions to increases in systemic
risk? What are the effects of market liquidity on the term structure of interest
rates? How are priced the probabilities of default (PDs) in defaultable-bond yields
of different maturities?” What are the compensations required by investors to hedge

against uncertain monetary-policy decisions?

The models that are presented throughout this thesis rule out arbitrage oppor-
tunities. Such models are becoming increasingly important to policy makers and
practitioners. Indeed, beyond being able to provide a good fit of interest rates along
the whole maturity spectrum, these models allow to study the driving factors be-
hind the term structure of interest rates and the risk premia within a consistent

framework.

Particular attention is paid to the tractability of the proposed models. Tractability
is notably obtained through an extensive use of Car’s ~-Compound autoregressive
processes— properties,? which leads to quasi-explicit formulas for bond prices. Both

historical and risk-neutral dynamics are explicitly modeled, which is helpful for

2For an in-depth analysis of Car processes, see Darolles, Gourieroux and Jasiak (2006).



choosing appropriate specifications under the physical —or real-world— measure, for
dealing simultaneously with pricing and forecasting or also for risk-management

purposes (e.g. Value-at-Risk calculations).

The first chapter of this dissertation goes through the different topics that are
studied in the thesis and reviews the connected literature. The second chapter
develops a general framework aimed at modelling the joint dynamics of yield curves
associated with different issuers. In this reduced-form framework, the default
probabilities are modeled directly as functions of observable or latent factors, the
latter being discrete or real-valued. Regime-switching features lie at the heart of
this framework. While the focus is on default modelling, the specifications can
also account for the pricing of some liquidity premia using the same machinery
(as in Duffie and Singleton, 1999). A basic form of the model is fitted on the
term structure of spreads between U.S. corporate BBB-rated bonds and risk-free
(Treasury) yields. Some extensions are proposed, including a sector-contagion

model as well as the explicit modelling of credit-rating transitions.

In Chapter 3, the framework is applied to model the joint fluctuations of ten
euro-area sovereign yield curves over the period 1999-2012. In the model, there
are two regimes: a “tranquil” regime and a crisis one. These regimes affect the
dynamics of five euro-area wide observable factors. These factors affect the riskfree
short-term rate as well as the default and illiquidity intensities associated with the
different issuers. This framework is able to capture most of the fluctuations of
the various interest rates (over the different countries and different maturities) of
the estimation sample. Further, the setup makes it possible to account for the
dramatic rise in spreads that have been observed for some countries over the last
few years. Also, this study proposes a way to identify liquidity-related components
in sovereign bond yields. Regarding the latter point, the estimation results suggest
that while liquidity is an important driver of euro-area sovereign spreads, most of
the 2010-2012 spreads’ fluctuations correspond to concerns regarding the credit

quality of sovereign issuers.

Chapter 4 builds on the previous chapter by focusing on the last five years (instead



of the last thirteen years hereinbefore). Contrary to Chapter 3, the pricing factors
are unobservable. In addition, the crisis modelling is more precise. Specifically, we
distinguish between two kinds of crises: liquidity-related ones and credit-related
ones. For the credit chain, there are three possible states: “calmer periods”,
“turmoil periods” and “severe-crisis periods”; for the liquidity chain, there are
two possible states: “calmer periods” and “turmoil periods”. The empirical part
of Chapter 4 provides evidence of causality between the two types of crisis, the
probability of switching from the calm credit state to the credit-crisis state being

higher when the liquidity situation is already deteriorated.

Chapter 5 investigates the influence of monetary policy on the yield curve. In
this study, a key role is given to the central-bank policy rate. In the model,
the policy rate follows a realistic step-like path (with values that are multiples of
0.25%) and can not turn negative. Therefore, by contrast with most of the existing
term-structure models, this one is consistent with the zero-lower bound (ZLB).
These appealing features are obtained thanks to an extensive and innovative use
of regime shifts. In spite of a very large number of regimes (246), the model
remains tractable and is easily brought to data. This is illustrated by estimating
the model on euro-area daily data covering the last 13 years. The results notably
point to the existence of monetary-policy-related risk premia at the short-end of
the yield curve. Furthermore, this model is used in order to assess the influence of
forward-guidance measures —defined as commitments of the central bank regarding

the future paths of the policy rate— on the yield curve.

10



1. Survey of the literature

Abstract: This first chapter reviews the literature connected to the present thesis.
Section 1.1 surveys the contributions that have highlighted the ability of Marko-
vian regime-switching techniques to model nonlinear dynamics in a tractable way.
Section 1.2 illustrates the fact that these techniques have been employed in many
studies exploring the dynamics of economic and financial variables. Section 1.3
focuses on the use of regime switching in term-structure models: Subsection 1.3.1
deals with risk-free yields and Subsection 1.3.2 considers defaultable-bond pricing.
The subsequent Sections deal with the additional topics that are covered by this
thesis: the simultaneous modelling of different yield curves (Section 1.4), systemic
risk and contagion (Section 1.5), credit-rating migrations (Section 1.6), monetary-
policy and the yield curve (Section 1.7) and the decomposition in spreads into

liquidity and credit components (Section 1.8).
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Survey of the literature

Résumé

Il existe une importante littérature sur l'existence de non-linéarités dans la dy-
namique des taux d’intérét (voir par exemple Ait-Sahalia, 1996, Stanton, 1997 ou
Boudoukh et al., 1999). Plus précisément, plusieurs études montrent I'existence de
différents régimes conditionnant la dynamique des taux d’intérét (voir notamment

Hamilton, 1988 ou Ang et Bekaert, 2002).

Alors que le comportement récent des taux d’intérét illustre de maniere édifiante
la notion de changement de régimes, 1'utilisation de modeles a changements de
régimes pour l'analyse de la structure par terme des taux d’intérét est encore
relativement limitée. Alors que différentes études présentent des modeles dans
lesquels les déformations d’une unique courbe de taux dépendent de I'état d’une
variable aléatoire a valeurs discretes (Monfort et Pégoraro, 2007, Ang, Bekaert et
Wei, 2008, Dai, Singleton et Yang, 2007, ou Pérignon and Smith, 2007), un nombre
tres restreint de contributions considerent la modélisation jointe de différentes
courbes de taux affectées par des changements de régimes (Dionne et al., 2011 et

Siu, Erlwein et Mamon, 2008).

Ce premier chapitre propose une revue de la littérature concernant la modélisation
des changements de régimes d’une maniere générale et leurs applications a la mod-
élisation des variables financieres et des taux d’intérét en particulier. Cette revue
de la littérature couvre également divers champs d’études auxquels les travaux

présentés dans cette these sont liés, ceux-ci ont trait a:
o la modélisation du risque systémique et des phénomenes de contagion;
o la modélisation des changements de notations de crédit;
o l'influence de la politique monétaire sur la structure par terme des taux
d’intérét;
e l'influence de la valorisation de la qualité de crédit et de la liquidité sur la

structure par terme des taux d’intérét.
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1.1 Regime switching: A tool to model non-linear dynamics

1.1. Regime switching: A tool to model non-linear

dynamics

Linear models —such as autoregressive (AR) models, moving average (MA) models,
and mixed ARMA models— are extensively used to model the dynamics of economic
or financial variables. These models, that are extremely popular among academics,
practitioners and policy makers, are quite successful in numerous applications.
However, it has often been found that simple linear time series models usually leave
certain aspects of economic and financial data unexplained. By definition, they are
unable to capture nonlinear dynamic patterns such as asymmetry, extreme events
or volatility clustering. Typically, the properties of output growth in recessions
are, in various ways, different from expansion time (see e.g. Hamilton, 1989, Lo
and Piger, 2005 or Sichel, 1994 among innumerable others). Inflation also presents
different kinds of nonlinearities, notably in crises periods (see e.g. Stock and
Watson, 2010). Therefore, in many cases, linear models are not sufficient and
non-linear approaches have to be resorted to. Accordingly, over the last two to
three decades, we have witnessed a rapid growth of the development of nonlinear

time series models (see e.g. Granger and Tetasvirta, 1993).

Regime-switching models, closely linked to the seminal work of Hamilton (1988,
1989 and 1990), are among the most popular nonlinear time series models in the
literature. The fact that the regimes can switch over time makes it possible to
account for various non-linear behavior of the modeled variables. In the standard
regime-switching framework, the change in the regimes is controlled by an un-
observable state variable that follows a Markov chain, that is, the current value
of the state variable depends on its immediate past value. A given regime can
be persistent or not, depending on the probabilities of switching to alternative
regimes. The Markov switching model is therefore suitable for describing corre-
lated data that exhibit distinct dynamic patterns during different time periods.
The standard framework has notably been extended by Filardo (1994) to allow
for time-varying transition probabilities (implying that regime-switching models

encompass threshold auto-regressive models of Tong and Lim, 1980) or, from an
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1.2 Regime switching in economics and finance

econometric point of view, by Kim (1994) that integrates the regime-switching
features within a state-space framework including unobserved factors affected by

Gaussian shocks.

Of course, regime-switching models are not the only models that can handle non-
linear behavior of random variables. There exist models that can handle more
general forms of non-linearity. In particular, the so-called artificial neural network
models, due to their “universal approximation” property, are capable of charac-
terizing any nonlinear pattern in data (see e.g. Kuan and White, 1994). Un-
fortunately, these models suffer from identification-related problems and are far
less tractable than regime-switching models. As will be illustrated throughout the
present thesis, the latter still allow for a substantial degree of flexibility, making

them appropriate to study a wide range of phenomena.

By appropriately mixing conditional normal (or other types of) distributions, large
amounts of non-linear effects can be generated within regime-switching frame-
works. Regime switching models can provide a good approximation for more com-
plicated processes driving security returns. Regime switching models also nest as a
special case jump models, since a jump is a regime which is immediately exited next
period and, when the number of regimes is large, the dynamics of a regime switch-
ing model approximates the behavior of time-varying parameter models where the

continuous state space of the parameter is appropriately discretized.

1.2. Regime switching in economics and finance

Abrupt changes are a prevalent feature of economic systems and financial markets.
These changes are of different natures: some are transitory (jump-like) and some
tend to persist for protracted periods. As mentioned above, both types of changes
can be captured by regime-switching models (see Ang and Timmermann, 2011
and Guidolin, 2011); this is going to be illustrated in the present thesis.! Regime-

switching models parsimoniously capture stylized behavior of many financial series

1Specifically, in the model developed in Chapter 3, the crisis regime may last for several years.
By contrast, the stress episodes introduced in Chapter 4 have a life expectancy of a few weeks.
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1.2 Regime switching in economics and finance

including asymmetries, fat tails, skewness, persistently occurring periods of tur-
bulence followed by periods of low volatility, volatility clustering, time-varying

correlations.

The use of the regime-switching method for modelling dynamics and asymmetries
in stock prices has become very popular and various adaptations of the basic set-
up have been proposed (e.g. Perez-Quiros and Timmermann, 2001 or Ang and
Chen, 2002). Regime-switching setups have also been estimated to analyze the
dynamics of exchange rates (Ang, 2011, Kanas, 2006, Engel, 1994, Bollen, Gray
and Whaley, 2000 and Dewachter, 2001), and of various alternative prices such as
electricity prices (e.g. Haldrup and Nielsen, 2006) or commodity prices (e.g. Chen
and Insley, 2012).

Regime-switching models have proven useful in building coincident indicators (Kim
and Yoo, 1995 and Kim and Nelson, 1998) or in developing forecasting tools (Chau-
vet and Potter, 2000) or optimal portfolio choice (Guidolin and Timmermann,

2007).

The ongoing financial crisis is strengthening the case for including regime-switching
features in financial models (see Christensen, Lopez and Rudebusch, 2008). This
is notably illustrated by Chapters 3 and 4 of the present thesis that study the
dynamics of government-bond interest rates amid the so-called euro-area sovereign
debt crisis (exploiting the general framework presented in Chapter 2). The crisis
period itself can be seen as a succession of different regimes or phases; this idea is
omnipresent: it can be found in academic work (e.g. Bech and Lengwiler, 2011),

in official speeches (Stark, 2009) or in the medias (The Guardian, 2011).

The fact that the idea of regime changes is natural and intuitive has contributed
to its popularity. Economic explanations for these types of time-variation in a
series’ dynamics point into main three directions. According to the first, regimes
identified by econometric methods can be associated with different periods in reg-
ulation, policy, and other secular changes (see e.g. Hamilton, 1988, Sims and
Zha, 2006, Davig, 2004). The second strand of economic explanations relates

market-price movements to macroeconomic fundamental influences. In particular,

15



1.3 Yield-curve dynamics and regime switching

numerous studies confirm that the conditional moments of stock returns are busi-
ness cycle dependent (Cecchetti, Lam and Mark, 1990, Hamilton and Lin, 1996,
Schwert, 1989, Campbell et al., 2001 or Perez-Quiros and Timmermann, 2001).
The third type of explanation attributes nonlinearities to particular behavior of
market participants (e.g. noise traders). There is a large literature that reports
that speculative trading may cause fads, bubbles or even market crashes (Funke,

Hall and Sola, 1994, van Norden and Vigfusson, 1998 or Jeanne and Rose, 2002).

1.3. Yield-curve dynamics and regime switching

1.3.1. Regime shifts in default-free yield-curve dynamics

Strong evidence points to the existence of regime switching in the dynamics of the
term structure of interest rates. Thus, Hamilton (1988) finds that changes in the
Federal reserve operating procedures leads to regime-switching in the dynamics of
the term structure of interest rates. In addition to such a shift, Cai (1994) finds
that the 1974 oil shock resulted in a regime shift in the asymptotic volatility of
the three-month Treasury bill. Gray (1996) shows that the assumption of a single
regime is a source of misspecification in models of the short rate. Garcia and Perron
(1996) use the Hamilton filter to characterize the time series behavior of the ex-
post U.S. real interest rate during the period 1961 to 1986 and show that the real
interest rate series during this time period would be best characterized by three
states. Adding term spread in their estimation, Ang and Bekaert (2002) identify
regimes that are closely linked to business cycles, suggesting that large periodic
shifts in interest rates across distinct regimes present a systematic risk to investors
(see also Wu and Zeng, 2005 or Bansal and Zhou, 2002). The same authors (2002)
show that regime switching is efficient in capturing nonlinear dynamics of the short-
term interest rate exhibited by Ait-Sahalia (1996). Christiansen (2004) estimates
a two-state Markov-switching model for the short-rate and the slope of the yield
curve: his estimated regimes turn out to depict low and high variances regimes

for short-rate changes. The economy appears to have been in the high-variance
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1.3 Yield-curve dynamics and regime switching

state during unusual economic periods such as oil or stock-market crises, or more

generally during the official recession periods.

Monfort and Pegoraro (2007) show that the introduction of regime switching in
term-structure models leads to term-structure models that are well-specified under
the historical probability and that are able to explain the expectation-hypothesis
puzzle (why the long and short term interest rate differential does not predict the
future interest rate changes), over short and long horizons. Following Veronesi
and Yared (1999) and Evans (2003), Ang Bekaert and Wei (2008) develop term
structure models with regime shifts to investigate the joint dynamics of real and
nominal yields. They identify inflation and real factor sources behind regime
shifts and analyze how they contribute to nominal interest-rate variations. Dali,
Singleton and Yang (2007) develop a model with regime-shift risks that are priced
by investors. Allowing for state-dependent transition probabilities, their model
makes it possible to conveniently capture asymmetry in the cyclical behavior of
interest rates. Pérignon and Smith (2007) show that allowing for regime shifts in

the pricing factor volatilities dramatically improves the model’s fit.

In Chapters 2 to 4 of the present thesis, the emphasis is put on defaultable-bond
pricing. By contrast, in Chapter 5, an innovative use of regime-switching features
is proposed to model the term structure of riskfree yields. Contrary to the above-
mentioned studies, the number of regimes involved in the model introduced in
Chapter 5 can be very large (tens or hundreds). In spite of that, the model remains
tractable and makes it possible to model the specific dynamics of the central-bank
policy rate in a satisfying way. The latter point implies that this model can be

exploited to investigate the effects of monetary-policy on the yield curve.?

1.3.2. Regime shifts in spreads’ dynamics

While the previous subsection puts forward the importance of modelling regime
switching in yield-curve models, a few has been done to integrate such a feature

in term-structure models of defaultable bonds. However, empirical studies point

2This is also discussed below in 1.7.
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1.3 Yield-curve dynamics and regime switching

to the existence of different regimes in the default risk valuation. Davies (2004
and 2008) uses Markov-Switching Vector Auto-Regression (MS-VAR) estimation
techniques and finds that credit spreads exhibit distinct high- and low-volatility
regimes. Alexander and Kaeck (2008) detect a pronounced regime-specific be-
havior of Credit default swap (CDS) spreads. Cenesizoglu and Essid (2010) or
Bruche and Gonzales-Aquado (2010) find switching behavior in default rates and
recovery-rate distributions. Hackbarth, Miao and Morellec (2006) build a theoret-
ical model to explain the dependence of credit spread on business-cycle regimes.
In the same vein, Bhamra, Kuehn and Strebulaev (2007), Chen (2008) and David
(2008) adopt a Merton structural model including regime switching to assess the
influence of different states of the economic cycles on the credit-risk premia. This
can be related to the analysis of Bangia et al. (2002) who illustrate the importance
of distinguishing between expansion and contraction phases for the assessment
of loss distribution of credit portfolios. Without deriving a complete model of
the credit-spread term structure, Maalaoui, Dionne and Frangois (2009) estimate
Markov-switching specifications to investigate the links between credit spreads and
their determinants. Their results suggest that the failure of single-regime models
to find significant links between potential determinants (see e.g. Collin-Dufresne,
Goldstein and Martin, 2001) may stem from the fact that these determinants have
opposite average effects in the two regimes they identify. Dionne et al. (2011)
propose a model of the term-structure of interest rates associated with default-
able bonds. Regime switching affects the dynamics of the risk factors, that are
observable macroeconomic variables. Siu, Erlwein and Mamon (2008) present a
framework to price credit default swaps in the presence of regime-switching in the

default intensities processes.

The potential of regime-switching features to account for the fluctuations of the
term-structure of (credit-)risky yields in a no-arbitrage framework is explored in
Chapters 2 to 4 of this thesis. In the proposed setups, the probabilities of default
of the debtors depend on the different regimes and on factors that can be observed
or latent. Therefore, the whole term structure of interest rates is affected by the

regimes. While this framework is highly flexible, it remains particularly tractable,

18



1.4 Jointly modelling the physical and risk-neutral dynamics of different yield
curves

bond yields being given by quasi-explicit formula. This property stems from the
fact that the processes involved are Compound auto-regressive (Car), implying
that multi-horizon Laplace transforms of these processes are obtained by recursive

formulas.

1.4. Jointly modelling the physical and risk-neutral

dynamics of different yield curves

Motivated by derivative-pricing or credit-risk-management objectives, a large strand
of the recent literature related to fixed-income securities has focused on the joint
modelling of several yield curves. In this context, Jarrow, Lando, Turnbull (1997),
Lando (1998) or Duffie and Singleton (1999) have highlighted the potential of affine
term-structure models (ATSM) to describe the joint dynamics of yield curves as-
sociated with various obligors subject to default risk. Their intensity-based —or
reduced-form— approaches used to model defaults differ from the more structural
approaches originating in Black and Scholes (1973) and Merton (1974). In the
latter, the default of a firm is modeled in terms of the relationship between its
assets and liabilities. The asset value process is modeled as a geometric Brown-
ian motion and default occurs when the asset value at maturity is lower than the
liabilities. Important industry models like KMV’s Portfolio Manager or the JP
Morgan’s CreditMetrics model are based on this approach (see Crouhy, Glai and
Mark, 2000for a comparative analysis of industry credit-risk models). Cathcart
and El-Jahel, 2006) have shown that the two approaches (reduced-form and struc-
tural) are somewhat reconcilable. As shown by Duffie and Singleton (1999), in
an intensity-based framework, the modelling of defaultable claims is based on the
standard affine term-structure machinery readily available for default risk mod-
elling and estimation. Since then, numerous further developments have illustrated
the flexibility and tractability of affine-term structure models to jointly model dif-
ferent yield curves (see e.g. Duffee, 1999, Collin-Dufresne and Solnik, 2001, Dai
and Singleton, 2003, Collin-Dufresne, Goldstein and Hugonnier, 2004 and Gourier-
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oux, Monfort and Polimenis, 2006).

Despite the importance of sovereign credit risk in the financial markets, relatively
little research proposing models of the joint dynamics of sovereign yields has ap-
peared in the literature. Notable recent exceptions include Pan and Singleton
(2008) and Longstaff et al. (2011). These two contributions point to an important
degree of commonality across sovereign credit risk. More precisely, they show that
the risk premia included in sovereign credit spreads are substantial and covary im-
portantly with economic measures of global event risk. According to Longstaff et
al., an important source of commonality in sovereign credit spreads may be their

sensitivity to the funding needs of major investors in the sovereign credit markets.

Chapters 3 and 4 propose models that depict the joint dynamics of different euro-
area sovereign yield curves. In these models, the dynamics of the stochastic dis-
count factor implies that the physical and the risk-neutral dynamics of the pricing
factors —and notably the default process— do not coincide. The risk-neutral dynam-
ics is the dynamics of the pricing factors that would be consistent with observed
prices under the (potentially false) assumption that investors are risk-neutral. In
our framework, we can assess the size of the (potential) errors that are implied
by assuming that the historical and the risk-neutral dynamics coincide. A typical
example lies in the computation of market-based probabilities of default (PDs).
To get these, the vast majority of practitioners or market analysts resort to ap-
proaches ending up with risk-neutral PDs.> While risk-neutral PDs are relevant
for pricing purposes, historical ones are needed (a) if one wants to extract real-
world investors’ perception of the credit quality of the issuer, (b) for the sake of

forecasting or more generally (c) for risk management purposes.?

3Most of these methodologies build on Litterman and Iben (1991), see e.g. (amongst many
others) Bank of England (2012), CMA (2011) and O’Kane and Turnbull (2003). Studies
resorting to these methods are usually silent about this caveat. Notable recent exceptions
include Blundell-Wignall and Slovik (2010), in an OECD study, who note: “In the real world,
actual defaults are fewer than market-driven default probability calculations would indicate.
That is because market participants demand a risk premium — an excess return — compared
to the risk-neutral rate, and that premium cannot be observed. This makes it difficult to
use the above measure [the risk-neutral PDs] to imply the likelihood of actual defaults in the
periphery of Europe or anywhere else.”

4Regarding the latter point, note for instance that Value-at-Risk measures (VaR) should be
based on the real-world measure and not on the risk-neutral one (see Gourieroux and Jasiak,
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The results of Chapters 3 and 4 suggest that the sources of common fluctuations
across euro-area countries’ yields command such credit-risk premia. This is con-
sistent with the fact that sovereign risk cannot be diversified away. The analysis
shows that, because of these premia, the physical probabilities of default of euro-

area countries are substantially lower than their risk-neutral counterparts.

1.5. Systemic risk, default clustering and contagion

While there is no strong consensus on the definition of systemic risk, the general
view is that this kind of risk would differ from the systematic ones in terms of
the severity and frequency of the associated shocks. More precisely, systematic
shocks are frequent and not extreme while systemic shocks would be infrequent
and extreme (see e.g. Das and Uppal, 2004 or Baur and Schulze, 2009). For de
Bandt and Hartmann (2000), a systemic event is an event where the release of bad
news about a financial institution, or even its failure, or the crash of a financial
market leads in a sequential fashion to considerable adverse effects on one or sev-
eral other financial institutions or markets, e.g. their failure or crash. Obviously,
disentangling systematic from systemic risks may not be a trivial task. In partic-
ular, difficulties arise from the fact that systematic shocks can turn into systemic
ones. For instance, in some contexts —notably when the level of uncertainty is
high—, temporary systematic shocks can lead to defaults and generate significant

negative aftershocks, including liquidity spirals.®

In a model accommodating regime shifts, it is natural to associate systematic and
systemic risk with the Gaussian shocks and the regime shifts, respectively (see
e.g. Gonzales-Hermosillo and Hesse, 2009 or Abdymomunov, 2012). Billio et al.
(2012) propose an other use of regime-switching features to investigate systemic
risks; in their approach, the regimes are key to model of the interconnectedness of

the financial system.

2009).
5See Brunnermeier and Pedersen, 2009 for a structural analysis of this and e.g. Hesse and
Gonzalo-Hermosillo (2009) for empirical evidence.
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The contagion literature focuses on the interdependencies between the defaults of
different debtors.® In the so-called contagion models, if one of the debtor defaults,
it affects the default probability of the other debtors. Contagion effects, whose
consequences are cascades of subsequent spread changes, are explained by the
existence of close ties between firms. These ties may be of legal (e.g. parent-
subsidiary), financial (e.g. trade credit), or business nature (e.g. buyer-supplier).
Through these channels, economic distress of one firm can have an immediate
adverse effect on the financial health of that firm’s business partners (Giesecke,
2004, Egloff, Leippold and Vanini, 2005). Jarrow and Yu (2001) develop a primary-
secondary approach: in case a primary entity defaults, the spreads of other debtors
jump upwards; meanwhile, default of secondary firms do not have any impact on
other debtors in the portfolio. In the infectious-default model developed by Davies
and Lo (2001), the default of a debtor triggers a regime shift: in the high-risk

regime, the default intensities of all debtors are increased.”

Das et al. (2007) test whether default events can reasonably be modeled as depen-
dent solely on exogenous observable factors.® As Duffie et al. (2009) and Giesecke
and Kim (2010), they find that doubly-stochastic settings perform badly if no la-
tent covariates —also called frailty components— enter the intensity specifications.
Dutffie et al. (2009) further argue that including frailty covariates in the hazard-rate
specifications is necessary to accommodate default clustering.” Collin-Dufresne,
Goldstein and Helwege (2008), Bai et al. (2012) and Jorion and Zhang (2007)
also find that default events are associated with significant increases in the credit
spreads of other firms, consistent with default clustering in excess of that sug-
gested by the standard doubly stochastic models. Azizpour and Giesecke (2008)

find that contagion effects represent a significant additional source of default clus-

SFor an extensive survey of the contagion literature, see e.g. Liitkebohmert (2009).

"Other contagion mechanisms based on the same kinds of approaches are proposed by Frey and
Backhaus (2003) or Yu (2007).

8Nevertheless, using a different specification of the default intensity, Lando and Nielsen (2008)
cannot reject the assumption of conditional independence for default histories recorder by
Moody’s between 1982 and 2006. Lando and Nielsen conclude that the test proposed by Das
et al. (2007) is mainly a misspecification test.

9Frailty models come from the biostatistics literature. In these models, the intensity of a point
process is proportional to an unobservable variable, the frailty parameter. For a survey of
frailty models, see Hougaard (2000) [155].
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tering (over and beyond the effect due to firms’ exposure to observable and frailty
risk factors). Koopman, Lucas and Schwaab (2012) show that modelling frailty

contributes to obtain a proper modelling of default rates during crisis.

Two Subsections of Chapter 3 specifically deal with systemic risk and contagion.
Subsection 2.8.2 shows that the general framework introduced in Chapter 3 can
accommodate the specific contagion case where one entity —or, for the sake of
tractability, a small number of them— affects the default probability of the others:
it suffices to make one of the regimes corresponds to the default state of this
entity. Further, Subsection 2.8.3 explains how the regime-switching feature can
be exploited in order to capture “sector-contagion” phenomena. The sectors can
represent different industries or different geographical areas. Each sector can be
“infected” or not, and when a sector gets infected, the default intensities of its
constituents (the debtors) shift upwards. In this context, sector contagion stems
from the parameterization of the matrix of regime-transition probabilities. For
instance, it is easy to model infection probabilities that depend positively on the

number of sectors already infected.

1.6. Credit-migration modelling

The default of a debtor is the most basic credit event. More generally, credit events
include changes in credit ratings like these attributed by agencies like Moody’s,
Standard & Poor’s or Fitch. There are several reasons why it may be desirable
to model not only default events but also rating transitions (see Cantor, 2004 or
Gagliardini and Gourieroux, 2001). Several of the main credit models currently
being used in the industry, such as J.P. Morgan’s CreditMetrics (1997), draw
on the credit-migration approach. For presentation, comparison and evaluation
of these models, one can refer to Crouhy, Glai and Mark (2000), Gordy (2000)
or Lopez and Saidenberg (2000). First, because of the importance of ratings in
terms of risk management, modelling credit migration is key for practitioners. For
instance, the VaR or capital adequacy numbers may be based on a portfolio rating’s

distribution (see Saidenberg and Schuermann, 2003). In addition, some portfolio
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managers are constrained by limits based on the ratings of the bond they held.
Second, such models are obviously required to price credit-event options. Third,
when complete default historical data sets are not available (or do not go back far
in time), exploiting credit-migration matrices may allow to extrapolate long-term
default predictions from short-term credit risk dynamics. Similarly, to the extent
that rating classes are seen as approximately homogenous, having a rating-based
term structure model at one’s disposal makes it quick to get a rough estimate of

the fair value of a bond (given the rating of the issuer).!?

In their seminal study of credit spread, Jarrow, Lando and Turnbull (1997) model
rating transitions as a time-homogenous Markov chain. That is, in their model,
whether a firm’s rating will change in the next period depends on its current
rating only and the probability of changing from one rating to the other remains
the same over time. In addition, in their setting, the market risk and the credit
risk are assumed to be independent. Different studies suggest however that —per-
period— transition probabilities are time-varying (see e.g. Lucas and Lonski, 1992,
Belkin, Suchower and Wagner, 1998, Farnsworth and Li, 2007 or Feng, Gourieroux
and Jasiak, 2008). In addition to time-variability, Nickell, Perraudin and Varotto
(2000) show that conditioning a transition matrix on the industry (to which the

company belongs) is desirable.

Lando (1998) extends the framework developed by Jarrow, Lando and Turnbull
(1997) by allowing for dependence between the market risk and the credit risk!!
and by making the rating-transition probabilities depend on the state variables.
Other examples of term-structure models allowing for time-varying probabilities
of rating migrations include Bielecki and Rutkowski (2000) and Wei (2003). In
Subsection 2.8.4 of the present thesis, it is shown how the general framework pro-
posed in Chapter 3 can be extended in order to model credit-rating migrations.
In that model, the probabilities of migrating from one rating to another is time-

varying and can, in particular, depends on regimes. In such a context, bond prices

10This assumption is for instance made in J.P. Morgan’s CreditMetrics (1997). It is also made,
e.g., by Feldhiitter and Lando (2008).

1 Amongst the earliest studies suggesting that such a feature is required, see Longstaff and
Schwartz (1995) or Duffee (1998).
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are still given by closed-form recursive formulas.

1.7. Monetary-policy and the yield curve

While there is a strong empirical support for the assertion that monetary policy
is a major driver of the yield-curve fluctuations (see e.g. Cochrane and Piazzesi,
2002 or Rigobon and Sack, 2004), the quantitative aspects regarding the trans-
mission mechanism along the yield curve —from the overnight interbank market to
longer-term interest rates— are less clear.!? Among the vast number of interest-rate
term-structure models, only a very few deal explicitly with monetary-policy deci-
sions. This lack, which is particularly pronounced at a time when policymakers
have to consider all possible options to deal with the crisis, partly reflects the speci-
ficities of the process followed by the policy rate —or central-bank target— and the
technical difficulties associated with incorporating such a process in a no-arbitrage
framework.'® Piazzesi (2005) and Fontaine (2009) propose term-structure mod-
els in which changes in the target rate have (realistic) discrete supports. They
estimate their models on U.S. data covering respectively the periods 1994-1998
(weekly) and 1994-2007 (daily). However, their models technically imply non-zero
probabilities of negative interest rates for all maturities on the term structure.
While this caveat may be tenable when the short-term interest rate is far enough
from zero —the conditional probabilities of having negative interest in the subse-
quent periods being negligible—, it is more problematic when the zero-lower bound

(ZLB) is binding,.

Actually, most of the tractable yield-curve models are not consistent with this zero
lower bound (See Dai and Singleton (2003) or Piazzesi (2010)). Hamilton and Wu
(2012) propose a way to adapt the standard Gaussian framework to account for
an extended period of constant short-term rate. However, they implicitly assume

that when this phase ends, (a) such a phenomenon cannot happen again and (b),

12This is the so-called interest-rate channel of monetary-policy decisions.

13See e.g. Rudebusch (1995), Hamilton and Jorda (2002), Balduzzi, Bertola and Foresi (1997)
and Balduzzi et al. (1998) for models of the U.S. Federal Funds rate target (the Fed funds
rate is the U.S. overnight interbank rate).
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the short-term rate can turn negative again. Andreasen and Meldrum (2011) or
Kim and Singleton (2011) show that the quadratic Gaussian framework can be
used to preclude negative interest rates. Indeed, in these models, the short-term
rate is a quadratic function of underlying factors; this quadratic function can
be such that the short-rate —and therefore longer-term rates— is always positive.
Nevertheless, to ensure the tractability of this approach, the underlying factors
are affected by homoskedastic Gaussian shocks. Hence, the probability that a
quadratic combination of these factors remains very close to zero for a protracted
period of time is extremely low. The latter point implies that these models are
not consistent with prolonged periods of very low interest rates, limiting their
relevance in the current context. By contrast, as is illustrated in Chapter 5 of the
present thesis, regime switching features make it possible to satisfyingly account

for long periods of time of very low and/or constant policy rates.

A notable feature of the monetary policy behavior is that changes in the policy
rate tend to be followed by changes of the same direction, giving rise to eas-
ing/tightening monetary-policy phases (see e.g. Mooreand Richard, 2002, Heine-
mann and Ullrich, 2007 or the speech by Smaghi, 2009). These phases are usually
very persistent and typically last for a few quarters or years. For Bikbov and
Chernov (2008), shifts in the overall monetary policy stance (from accommodative
to tightening or vice versa) may have more important effects on interest rates than
a single interest rate change does. Bikbov and Chernov show that a model with
regime shifts is the most convenient tool to capture such policy behavior. Davig
and Gerlach (2006) identify states that imply different responses of the yield curve

to unexpected changes in the federal funds target.

The model introduced in the fifth chapter of this thesis addresses these different
issues. This innovative model builds on an extensive use of regime-switching fea-
tures. In this model, the short end of the yield curve is explicitly influenced by
the central-bank policy rate, the latter being a multiple of 25 basis points. Oc-
currences of target moves depend on a hidden monetary-policy regime and on the
level of the current target rate. An appealing feature of this model is that it is

consistent with positive policy rates, making it appropriate to deal with the zero-
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lower-bound restriction. To illustrate the flexibility and tractability of this model,
it is estimated on daily euro-area data. The results suggest that the dynamics of
the term structure of riskfree (OIS) rates is closely related to monetary-policy ex-
pectations. The estimation also reveals the existence of sizable risk premia at the
short-end of the yield curve, which suggests that the widespread market practice
that consists in using money-market forwards to proxy market forecasts of future

target moves is biased.

1.8. Decomposing the term structure of spreads

There is compelling evidence that yields and spreads are affected by liquidity con-
cerns'. In particular, using euro-area data, Beber, Brandt and Kavajecz (2009)
provide evidence of a nontrivial role in the dynamics of sovereign bond spreads,
especially for low credit risk countries and during times of heightened market un-
certainty.’® In recent studies, some authors develop affine term-structure models to
breakdown several kinds of spreads into different components, including liquidity-
related ones. These approaches are based on the assumption that there exists
commonality amongst the liquidity components of asset prices and bond in par-
ticular.'® For instance, Liu, Longstaff and Mandell (2006) use a five-factor affine
framework to jointly model Treasury, repo and swap term structures. One of their
factors is related to the pricing of the Treasury-securities liquidity and another
factor reflects default risk.'” Feldhiitter and Lando (2008) develop a six-factor
model for Treasury bonds, corporate bonds and swap rates that makes it possible

to decompose swap spreads into three components: a convenience yield from hold-

14Gee, e.g., Longstaff (2004), Landschoot (2004), Chen, Lesmond and Wei (2007), Covitz and
Downing (2007) or Acharya and Pedersen (2005).

15Such a behaviour is captured in a theoretical framework by Vayanos (2004).

16See e.g. Chordia and Subrahmanyam (2000), Brockman, Chung and Pérignon (2009), Fontaine
and Garcia (2012), Feldhiitter and Lando, (2008), Longstaff, Mithal and Neis (2005), Liu,
Longstaff and Mandell (2006) or Dick-Nielsen, Feldhtutter and Lando (2011).

17As noted by Feldhiitter and Lando (2008), the identification of the liquidity and credit risk
factors in Liu et al. relies critically on the use of the 3-month general-collateral repo rate (GC
repo) as a short-term risk-free rate and of the 3-month LIBOR as a credit-risky rate. Liu et
al. define the liquidity factor as the spread between the 3-month GC repo and the 3-month
Treasury-bill yield (and is therefore observable). In each yield, their liquidity component is
the share of the yield that is explained by this factor.
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ing Treasuries, a credit-element associated with the underlying LIBOR rate, and a
factor specific to the swap market. They find that the convenience yield is by far
the largest component of spreads. Longstaff, Mithal and Neis (2005) use informa-
tion in credit default swaps —in addition to bond prices— to obtain measures of the
nondefault components in corporate spreads. They find that the nondefault com-
ponent is time-varying and strongly related to measures of bond-specific illiquidity

as well as to macroeconomic measures of bond-market liquidity.

In recent studies, some authors rely on the affine-term structure framework to
model yield curves associated not only with different obligors but also with dif-
ferent fixed-income instruments (e.g. bonds, repos, swaps). Further, the authors
exploit this modelling to breakdown credit spreads or swap spreads into different
components. Specifically, Liu, Longstaff and Mandell (2006) use a five-factor affine
framework to jointly model Treasury, repo and swap term structures. One of their
factors is related to the pricing of the Treasury-securities liquidity and another
factor reflects default risk.'® Feldhiitter and Lando (2009) develop a six-factor
model for Treasury bonds, corporate bonds and swap rates that makes it possible
to decompose swap spreads into three components: a convenience yield from hold-
ing Treasuries, a credit-element associated with the underlying LIBOR rate, and a
factor specific to the swap market. They find that the convenience yield is by far
the largest component of spreads. Longstaff, Mithal and Neis (2005) use informa-
tion in credit default swaps —in addition to bond prices— to obtain measures of the
nondefault components in corporate spreads. They find that the nondefault com-
ponent is time-varying and strongly related to measures of bond-specific illiquidity

as well as to macroeconomic measures of bond-market liquidity.

Chapter 3 and 4 present no-arbitrage affine term-structure model (ATSM) of the
dynamics of euro-area sovereign yields and spreads, respectively. In addition to the

term structures of sovereign entities, the dataset includes yields associated with

18As noted by Feldhiitter and Lando (2009), the identification of the liquidity and credit risk
factors in Liu et al. relies critically on the use of the 3-month general-collateral repo rate (GC
repo) as a short-term risk-free rate and of the 3-month LIBOR as a credit-risky rate. Liu et
al. define the liquidity factor as the spread between the 3-month GC repo and the 3-month
Treasury-bill yield (and is therefore observable). In each yield, their liquidity component is
the share of the yield that is explained by this factor.
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KfW (Kreditanstalt fir Wiederaufbau), a German agency. A liquidity-related pric-
ing factor is then identified by exploiting the term structure of the the KfW-Bund
spreads. Indeed, the bonds issued by KfW, guaranteed by the Federal Republic
of Germany, benefit from the same credit quality than their sovereign counter-
parts —the Bunds— but are less liquid. Therefore, the KfW-Bund spread should
be essentially liquidity-driven.'® It is demonstrated that liquidity-related factors
significantly contribute to the dynamics of intra-euro spreads, supporting recent

findings by Favero et al. (2010) or Manganelli and Wolswijk (2009).

9See Schwarz (2009).
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2. Default, liquidity and crises: An

econometric frameworkl

Abstract: In this Chapter, we present a general discrete-time affine framework
aimed at jointly modelling yield curves associated with different debtors. The
underlying fixed-income securities may differ in terms of credit quality and/or
in terms of liquidity. The risk factors follow conditionally Gaussian processes,
with drifts and variance-covariance matrices that are subject to regime shifts de-
scribed by a Markov chain with (historical) non-homogenous transition probabil-
ities. Importantly, bond prices are given by quasi-explicit formulas, ensuring the
tractability of the framework. This tractability is illustrated by the estimation of
a term-structure model of the spreads between U.S. BBB-rated corporate bonds
and Treasuries. Alternative applications are proposed, including a sector-contagion

model as well as the explicit modelling of credit-rating transitions.

IThis Chapter is based on an article featuring the same title, published in the Journal of Fi-
nancial Econometrics and co-authored with Alain Monfort. We are grateful to Christian
Gourieroux, Damiano Brigo, Olesya Grishchenko, Wolfgang Lemke, Andrew Siegel, Simon
Dubecq and Hans Dewachter for helpful discussions and comments on previous versions of
this paper. We are also grateful to participants at the Banque de France internal seminar,
at the C.R.E.D.L.T. conference (Venice) 2010, at CREST seminar 2010, at the Paris finance
international meeting 2010, at CORE Econometrics Seminar 2011, at SoFiE annual meet-
ing (Chicago) 2011, at Erasmus University (Rotterdam) 2011 and at Financial Risk Forum
(Paris) 2011. We thank Béatrice Saes-Escorbiac and Aurélie Touchais for excellent research
assistance. Any remaining errors are ours. The views expressed in this Chapter are ours and
do not necessarily reflect the views of the Banque de France.
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Résumé

Ce chapitre présente un cadre économétrique général visant a modéliser de maniere
jointe les fluctuations de courbes de taux associées a différents émetteurs obli-

gataires.

Les titres sous-jacents a ces courbes peuvent différer en termes de qualité de crédit

de I’émetteur et/ou en termes de liquidité.

o Les émetteurs des obligations peuvent faire défaut (risque de crédit), impli-
quant une perte pour les détenteurs des obligations qu’ils ont émises. Le
fait que la probabilité de défaut d’un émetteur peut varier dans le temps

implique que la valorisation des obligations varie également.

o Le cadre présenté dans ce chapitre permet également de modéliser I'influence
des différences de liquidité —cette derniere étant définie par la facilité avec
laquelle il est possible de trouver une contrepartie pour acheter/vendre un

titre— sur les prix obligataires.

Les risques de crédit et de liquidité sont respectivement modélisés par le biais
d’intensités de défaut et d’illiquidité. Dans ce modele de forme réduite, les in-
tensités et le taux court sans risque dépendent de trois types de variables: des
facteurs «macroéconomiquesy, des facteurs «microéconomiquesy» et une variable
de régimes. Les facteurs dits «macroéconomiques» peuvent affecter les intensités
(de défaut et d’illiquidité) caractérisant toutes les entités de 1’économie considérée;
les facteurs «microéconomiquesy» sont spécifiques aux différentes entités. Tous ces
facteurs suivent des processus auto-regressifs multi-variés et sont affectés par des
chocs gaussiens dont les covariances dépendent du régime qui prévaut au mo-
ment du choc. Les tendances (drifts) de ces processus dépendent également des
régimes. La dynamique des régimes est définie par une chaine de Markov dont les
probabilités de transitions peuvent étre non-homogenes sous la mesure historique
(elles peuvent dépendre des valeurs retardées des facteurs). Conditionnellement
aux facteurs et aux régimes, les défaut des différentes entités de 1’économie sont

indépendants.

L’introduction d’un facteur d’escompte stochastique permet la valorisation d’actifs
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et notamment d’obligations dans cette économie. Le facteur d’escompte stochas-
tique dépend des facteurs et des régimes. Nous en déduisons la dynamique risque-
neutre du vecteur regroupant les facteurs et les régimes et montrons que celle-ci est
composée auto-régressive (voir Darolles, Gourieroux et Jasiak, 2006 pour une étude
de ces processus «Cary) lorsque les probabilités de transition des régimes sont ho-
mogenes —i.e. ne dépendent pas du temps— sous la mesure risque-neutre. Dans ce
cas, la valorisation d’obligations émises par des entités risquées (pouvant faire dé-
faut) est obtenue a partir de formules quasi-explicites reposant sur un algorithme
récursif. Ce résultat découle des propriétés des processus composés auto-régressifs,
et plus précisément du calcul de leurs transformée de Laplace multi-horizon (qui
est exponentielle affine). Ainsi, bien que riche, ce modele bénéficie de l'existence
de méthodes simples pour valoriser les obligations de maturité longue émise par

les entités risquées.

L’estimation de ce type de modele est ensuite étudiée. La méthode d’estimation
dépend du caractére observable ou non des différents facteurs et régimes. Les
différents cas (facteurs observables ou non, régimes observables ou non, soient
quatre possibilités) sont considérés tour a tour. En particulier, dans le cas ou tout
ou partie des facteurs et des régimes sont inobservables, on présente une méthode
de calcul de la vraisemblance reposant a la fois sur le filtrage de Kitagawa-Hamilton

et sur les techniques d’inversion a la Chen et Scott (1993).

La simplicité de ces calculs est illustrée en estimant une des nombreuses spéci-
fications envisageables sur données américaines. Dans cet exemple, on modélise
la dynamique de la structure par terme des écarts de taux d’intérét entre (a) les
obligations émises par des entreprises américaines présentant la notation de crédit
BBB d’une part et (b) les obligations du Trésor américain d’autre part. Les don-
nées d’estimation couvre la période allant de mars 1995 a juillet 2011, a fréquence
hebdomadaire. Cet exemple montre notamment que 'utilisation des régimes per-
met de reproduire de maniere satisfaisante les moments d’ordre trois et quatre
de la distribution des écarts de taux sur la période considérée (contrairement aux

modeles dans lesquels les facteurs suivent des processus gaussiens).
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Ce chapitre propose également une utilisation innovante des changements de régime
pour modéliser des phénomenes de contagion. Dans ce modele, on consideére
N secteurs (qui peuvent correspondre & différentes régions ou encore différents
secteurs industriels). Chaque secteur est constitué de différentes entités (pou-
vant faire défaut) qui émettent des obligations. A chaque période, chacun des
secteurs peut étre «infecté» ou non. Le modeéle comprend 2V régimes, chaque
régime décrivant 1’état de chacun des secteurs (infecté ou non). Les probabilités
de défaut des entités d’un secteur dépendent de 1’état de leur secteur respectif.
Dans ce cadre, il est aisé de faire dépendre la probabilité d’infection d’un secteur
des états des autres secteurs, ce qui permet de modéliser des effets de contagion
entre secteurs. Par exemple, on peut faire dépendre la probabilité d’infection d'un
secteur du nombre de secteurs qui sont infectés a la date précédente. Les formules

de valorisation d’obligations sont toujours valables dans ce cadre.

Ce chapitre présente également une extension du cadre décrit précédemment visant
a permettre la modélisation des transitions de notations de crédit et I'influence de
celles-ci sur les courbes de taux. Dans cette extension, on augmente le nombre
d’états de crédit, de deux (défaut ou non défaut) a K classes de qualité de crédit:
la K%™me correspond a I’état de défaut et la premiére a la meilleure qualité de crédit
(par exemple AAA dans le systeme de notations de Standard&Poor’s). Les prob-
abilités de transition d’une notation a une autre varient dans le temps ; la matrice
de probabilités de transition dépendant notamment des régimes. On montre que
des formules quasi-explicites pour les prix obligataires sont encore disponibles dans

ce cadre. Un exemple numérique illustre le fonctionnement de ce type de modele.
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2.1. Introduction

There is strong evidence of regime switching in the dynamics of interest rates
(see, e.g., Hamilton, 1988 or Cai, 1994). Regime shifts have been successfully
introduced in term-structure models of risk-free interest rates by, amongst others,
Bansal and Zhou (2002), Monfort and Pegoraro (2007), Dai, Singleton and Yang
(2007) or Ang Bekaert and Wei (2008). Whereas these contributions put forward
the importance of modelling regime switching in yield-curve models, a few has
been done to integrate such a feature in term-structure models of defaultable
bonds. However, empirical studies point to the existence of different regimes in
the default risk valuation (see, e.g., Davies, 2004 or Alexander and Kaeck, 2008).
From a theoretical point of view, Hackbarth, Miao and Morellec (2006) provide
a theoretical model to explain the dependence of credit spreads on business-cycle
regimes. In the same vein, Bhamra, Kuehn and Strebulaev (2007) and David
(2008) adopt structural models including regime switching to assess the influence

of different states of the economic cycles on the credit-risk premia.

The main aim of the present Chapter is to propose a general multi-issuer dynamic
framework including switching regimes, both in the historical and the risk-neutral
worlds. Particular attention is paid to the tractability of the model and its es-
timation. Tractability is notably obtained through an extensive use of Car’s —
Compound autoregressive processes— properties (see, e.g. Darolles, Gourieroux
and Jasiak, 2006), which leads to quasi-explicit formulas for riskless and default-
able bond prices. Both historical and risk-neutral dynamics are explicitly mod-
elled, which is helpful for choosing appropriate specifications under the historical
measure, for dealing simultaneously with pricing and forecasting, for Value-at-Risk

calculations or for Sharpe-ratio computations.?

In our modelling of defaults, correlations between default events arise through de-

pendence on some common underlying stochastic factors —also called “risk factors”—

2Regarding the latter point, see Duffee (2010). The fact that our framework is defined in
discrete time makes it easier (compared with continuous-time models) to properly specify
the dynamics of the observable risk factors under the historical probability measure (see e.g.
Duffie and Singleton, 1999) or Gourieroux, Monfort and Polimenis, 2006).
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which influence the default probabilities of every single loans. Some of the factors
may be unobserved, so, in this sense, our model accommodates frailty. This feature
is advocated by recent papers suggesting that including only observable covariates
in default-intensity specifications results in poorly-estimated conditional probabil-

ities of default (see e.g. Lando and Nielsen, 2008 or Duffie et al., 2009).

In our approach, regime shifts may affect pricing through several channels: (i)
regimes affect the historical and risk-neutral dynamics of the risk factors, (ii)
regimes appear in the stochastic discount factor (s.d.f.) —which implies that regime-
transition risk is priced— and (iii) regimes appear in the default-intensity functions.
This results in a large degree of flexibility in the model specifications, which is
illustrated by several numerical examples in the Chapter. In particular, since
default intensities can be affected by the regime variable, our model is appropriate

to capture default clustering.

In order to show some of the framework advantages and to illustrate its tractability,
we estimate a simple model of the term structure of the spreads between U.S. BBB-
rated corporate bonds and Treasuries. In particular, a comparison of this model
with purely Gaussian model highlights the potential of regime switching to capture

salient features of the spread distributions.

Beyond the enrichment of the specifications of the risk factors and those of the
default intensities by introducing nonlinearities, the regime-switching feature can
be further exploited to handle specific forms of contagions. Contagion effects,
whose consequences are cascades of subsequent spread changes, is explained by the
existence of close ties between firms (see, e.g., Jarrow and Yu, 2001, Davies and
Lo, 2001 or Giesecke, 2004). Contagion takes place when the default probability
of any debtor can be affected by the default event of another one. Given that our
baseline model relies on the conditional-independence assumption —which states
that, conditional on the underlying factors and regimes, the default events of
the firms in a portfolio are independent— direct contagion effects is not captured.
Nevertheless, we can model specific contagion effects in two distinct ways. First,

our framework can accommodate the specific contagion case where one entity —or,
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for the sake of tractability, a small number of them— affects the default probability
of the others: it suffices to make one of the regimes corresponds to the default
state of this entity. Second, the regime-switching feature can be exploited in order
to capture “sector-contagion” phenomena. The sectors can represent different
industries or different geographical areas. Each sector can be “infected” or not, and
when a sector gets infected, the default intensities of its constituents (the debtors)
shift upwards. In this context, sector contagion stems from the parameterization
of the matrix of regime-transition probabilities. For instance, it is easy to model
infection probabilities that depend positively on the number of sectors already

infected.

Our baseline model considers only one credit event: the default of the debtor.
However, credit events include more generally the changes in credit ratings like
those attributed by agencies like Moody’s, Standard & Poor’s or Fitch.? It turns
out that our framework can be adapted to accommodate time-varying credit-rating
migration probabilities along the lines of Lando (1998) while keeping quasi-explicit

bond-pricing formulas.*

The remainder of the Chapter is organised as follows. Sections 2.2 and 2.3 respec-
tively present the historical and risk-neutral dynamics of the variables. Section 2.4
gives the bond-pricing formulas with zero or non-zero recovery rates. Section 2.5
deals with internal-consistency restrictions that arise when yields or asset returns
are included amongst the risk factors. In Section 2.6, we discuss the estimation
of such models, which is illustrated by an estimation of a term-structure model
of spreads between U.S. BBB-rated corporate bonds and Treasuries. Section 2.7
shows how the model accommodates the pricing of liquidity. Section 2.8 investi-
gates possible extensions of the framework: Subsection 2.8.1 deals with multi-
lag dynamics of the risk factors; Subsection 2.8.2 deals with the specific case

where one of the Markov chains coincides with the default state of a given entity;

3Several of the main credit models currently being used in the industry draw on the credit-
migration approach. For presentation, comparison and evaluation of these models, see e.g.
Gordy (2000), Cantor (2004) or Gagliardini and Gourieroux (2001).

40ther examples of term-structure models allowing for time-varying rating-migration probabil-
ities include Bielecki and Rutkowski (2000) and Wei (2003).
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Subsection 2.8.3 presents a sector-contagion model and Subsection 2.8.4 shows how

to introduce rating-migration modelling in the framework. Section 2.9 concludes.

2.2. Information and historical dynamics

2.2.1. Information

The new information of the investors at date t is w] = (z;,y;,2;,d,) where z is
a regime variable that can take a finite number J of values, y; is a multivariate
macroeconomic factor, r, = (xll’t, e ,x}v7t) is a set of specific multivariate factors
T, associated with debtor n, and d; = (di¢,...,dn,;) is a set of binary variables
indicating the default (d,; = 1) or the non-default (d,; = 0) state of entity n. The
whole information set of the investors at date ¢ is w} = (wy, ..., w,). At this stage,
we do not make any assumption about the observability of these variables by the
econometrician (this is done below in Section 2.6). The regimes influence bond
pricing through different channels (they will appear in the dynamics of the risk
factors y; and z,,4’s, in the stochastic discount factor and in the default-intensity
functions). In the baseline framework, the regimes are viewed as transitory: none of
these regimes is absorbing but this restriction is relaxed in a specific case presented

in Subsection 2.8.2.

2.2.2. Historical dynamics

It is convenient to make the regime variable z; valued in {ej, ... e;}, the set of
column vectors of the identity matrix I;.> The conditional distribution of z; given

w,_; is characterised by the probabilities:

p (e | wey) =7 (2 | ze-1, Ye-1) - (2.1)

5Indeed, this implies that any function of the regimes taking the value fj in the jth regime, say,
is the linear function of z;: f'z; with f' = (f1... f1).
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The probability m(e; | e;,y:—1) that z shifts from regime ¢ to regime j between
period ¢ — 1 and ¢, conditional on y,_;, is also denoted by ;;,—1. These specifi-
cations allow for state-dependent transition probabilities, as in Ang and Bekaert

(2002) or Dai, Singleton and Yang (2007).

The conditional distribution of y, given 2, and w, ; is Gaussian and given by:®

Y = (2 2e-1) + Pye—1 + Q (24, 21-1) & (2.2)

where the ¢, are independently and identically N (0, ) distributed. Specifications
(2.1) and (2.2) imply that, in the universe (2, y;), 2, Granger-causes y;, y; causes z;
and there is instantaneous causality between z; and 1;. Moreover, in the universe
wy = (2¢, Yp, Ty, dy), (x4, d;) does not cause (z,y;). As noted by Ang, Bekaert and
Wei (2008), instantaneous causality between z; and y, implies that the variances of
the factors y;, conditional on w;_1, embed a jump term reflecting the difference in
drifts p across regimes. Such a feature, that allows for conditional heteroskedas-
ticity, is absent from the Dai, Singleton and Yang (2007) setting. It should be
noted that our framework nests the case where there is no instantaneous causal-
ity between z; and %, in the historical dynamics.” Contrary to Bansal and Zhou
(2002), matrix ¢ is not regime-dependent: this is for the sake of tractability when

it comes to bond pricing.®

The x,¢’s,n =1,..., N are assumed to be independent conditionally to (z;, y¢, w,_1).

The conditional distribution of z,,; is Gaussian and defined by:

Tnt = Qin (2, 20-1) + Qont + QsnYi—1 + QunTni—1 + Qsn (21, 221) e (2.3)

where the shocks 7, are IIN(0,I). Specifications (2.1), (2.2) and (2.3) imply
that, in the universe (z¢, Yr, Tnt), (2¢, Yt) causes Ty, ¢, T, does not cause (z, y;) and

there is instantaneous causality between (z;,v;) and x, . Moreover, denoting by

6These specifications allow for various and rich dynamics of the risk factors y; such as, notably,
threshold auto-regressive dynamics (TAR) or self-exciting TAR (SETAR).

"Formally, this corresponds to g (z¢, ze—1) = p(2¢—1) and Q (24, 2¢-1) = Q (2¢_1).

8Indeed, the model of Bansal and Zhou (2002) [21] does not admit a closed-form exponential
affine solution (they proceed by linearizing the discrete-time Euler equations and by solving
the resulting linear relations for prices).
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Tt the vector z; excluding x,, ¢, (T4, d¢) does not cause (2, yt, Tn,) in the whole

universe wy.

Finally, the d,,;’s, n = 1,..., N, are independent conditionally to (z;, ys, z¢, w,_;)

and the conditional distribution of d,,; is such that:

]. lf dn,t—l - ].,
p(dn,t =1 | Ztvytuxbwtfl) = (24)
1= exp (—Ang) if s =0,

with A, ; = oz;th + 5;1% + V;ﬁn,t-

In other words, state 1 of d,,; is an absorbing state and exp (—\, ) is the survival
probability. Since the default probability 1 — exp (—A,+) is close to A, if A, is
small, A, ; is called the default intensity. The default intensity is expected to be
positive, which is not necessarily the case since the ¢,’s are Gaussian. However,

the parameterization of the model may make this extremely unfrequent.

In the universe (2, Yt, Tnt, dnt), (2t Yt, Tn ) causes d,,; whereas d,,; does not causes

(2t, Yt, Tnt) and there is instantaneous causality. In the whole universe wy, (Ty,t, d )

does not cause (2, Yi, Tnt, dnyt). The causality scheme is summarised in Figure 2.1.

Figure 2.1.: Causality scheme
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In the proposition below, we consider the historical conditional Laplace transform

of the distribution of (2, y;) given w,_;, that is p;_1(u,v) = E;_1 [exp (v'z; + v'y)].

Proposition 1. The historical conditional Laplace transform of (z,y,) given w,_,
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2.3 Stochastic discount factor and risk-neutral dynamics

18:

0i1 (u,v) = exp (V@1 + [I1, ..., 5] ze-1), (2.5)
where l; = log Z}‘]:1 Tijt—1€XD {Uj + ' (e, e;) + %U,Q (ej,e;) Y (ej,¢) v}.
Proof. See Appendix 2.A.1. n

This Laplace transform is not, in general, exponential affine in (z;_1, ¥y, 1), since
y;—1 appears in the m;;,’s. This is the case if the m;,’s do not depend on y,_;
and then, by definition, (z,v;) is Car(1).? As detailed in Darolles, Gourieroux
and Jasiak (2006) or Bertholon, Monfort and Pegoraro (2008), Car processes are
omnipresent in asset-pricing literature due to the fact that, when the dynamics is
Car, there exist recursive algorithms to compute multi-horizon Laplace transforms,
which is key for term-structure modelling. As will be illustrated below, we will rely
heavily on the properties of the Car processes in the risk-neutral world to ensure
tractability in bond pricing (section 2.4), but, as mentioned above the historical

dynamics will not be Car in general.

2.3. Stochastic discount factor and risk-neutral

dynamics
2.3.1. Stochastic discount factor
We assume that the riskless short-term rate between ¢ — 1 and ¢ is:
Ti—1 = (1/1th1 + bllytfl. (26)

This includes the case where r,_; is the first component of y, 1 (a; = 0 and

by = e1). Then, we define the stochastic discount factor M;_;; between ¢ — 1 and

9Recall that a random process A; is Car(1) if its conditional Laplace transform (given informa-
tion available up to date t — 1) is exponential affine in As_;.

40



2.3 Stochastic discount factor and risk-neutral dynamics

t by:
7 ! 1 I
Mt—Lt = exp |—a;z—1 — bjy—1 — 5’/ (Zt, Zt—17yt—1) v (Zt, Zt—layt—l) +
+v/ (24, 21-1, Y1) €0 + 5 (Zi-1, Y1—1) Zt} ) (2.7)

The v and ¢ vectors can be seen respectively as the prices of risk associated with
the (standardised) innovations of the process y; and the regimes z;. Regarding the
latter, the fact that we must have E;_1(M;_1:) = exp(—ay 2,1 — byy—1) implies
that F,_; exp (5/ (2e—1, Y1) zt) = 1, which is equivalent to:

J
> Mije-1€xp [0 (eq, ye-1)] = 1, Vi, g1, (2.8)
j=1

where d; is the j component of 4.

In our framework, the variables (z,,+,d, ), specific to entity n, do not appear in
the stochastic discount factor, which reflects the fact that these entities have no
impact at the macroeconomic level (in Subsection 2.8.2, we discuss the case where

one entity has a “systemic” status).

2.3.2. Risk-neutral dynamics
2.3.2.1. The conditional risk-neutral distribution of (z;,y;) given w,

Let us now consider the conditional risk-neutral Laplace transform of (z;, y;) given
w1, P2 (u,v) == B2 (exp [z + v'y]), and let us introduce the simplified no-

tations:

pe = p(2e,2-1)

Q= Qz,2-1), Bz, 2001) = U =5
v = V(2 21, Y1)

(

1 = 0 Zt—layt—l)'
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2.3 Stochastic discount factor and risk-neutral dynamics

Proposition 2. The conditional risk-neutral Laplace transform of (zi,y:) given

Wy_q 18!

909—1 <U7 U) = exp |:U,q)yt—1 + < ALt,l(u, 'U) c. A‘]’tfl(u, U) > Zt_1:| s (29)

where

J
1
Aiga(u,v) = log(z Tijt—1 €XP {U,Q (ej, ei) v <€j7 €, Yi—1) + 51/2 (ej, e;) v+
j=1

V' (ejsei) +uy + 05 (eq, ye-1)}) -
Proof. See Appendix 2.A.2. m

As mentioned above, Car processes are particularly convenient because the com-
putation of their multi-horizon Laplace transforms is straightforward, as will be

shown below. This motivates the next Corollary.

Corollary 1. The risk-neutral dynamics of (z, y;) is Car(1) if the risk sensitivities

d and v, appearing in the s.d.f., satisfies the constraints (for any i, j and t):

0j (€, Ye—1) = log [W;j/w (e | 61’,(%71)} (2.10)

v (6j7 €, yt—l) = (ej7 €i>_1 [(I)*yt—l + H* <€j7 62)] )

[

Jor any transition matriz 7; *(e; | €:), any matriz ®* and any function p*.

It is important to note that these constraints still allow for a large number of
degrees of freedom in the specification of the s.d.f., since the transition matrix
{m};}, the matrix ®* and the vectors u* (e;,e;) are arbitrary. If the constraints

(2.10) are satisfied, the risk-neutral conditional Laplace transform becomes:

o1 (u,v) = exp [V (D + &)y, 1 + ( Ai(u,v) ... A%(u,v) ) Zt—l] , (2.11)
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2.3 Stochastic discount factor and risk-neutral dynamics

where, for any 1,

J

1
> T exp {Uj + ' [ (e, ) + pt (e, )] + S0 (e, €) U}) :

Al (u,v) = log
J=1 2

Comparing with equation (2.5), we deduce that the risk-neutral dynamics of (2, y;)

is then defined by:
Ye = p (2, ze1) + 15 (2, 2000) + (@ + @) ypq + Q (2, 201) €7, (2.12)

where, under Q, z; is an homogenous Markov chain defined by the transition
matrix {7}, and e ~defined by e =&, — Q7" (2, 21) [1* (20, 2-1) + P*yp1] is
TIN®(0,1). Note thatfi = p + p* and ® = & + ®* are arbitrary and that the Q

function is the same in the historical and risk-neutral worlds.

2.3.2.2. The risk-neutral distribution of (z;,d;) given (z;, y:, w, ;)

Lemma 1. Let us consider a partition of wy = (w’l’t, w;’t) . Af My_q4 is a function
of (w4, w,_1), the risk-neutral probability density function, or p.d.f. , of wi, given

Wy_q 18!

Jo(wiy |w, 1) = fwiy | w_1) My_ypexp (ri—1)

(where f is the historical conditional p.d.f. of wi, given w,_;) and the conditional
risk-neutral distribution of way given (wyy, w,_1) is the same as the corresponding

historical distribution.

Proof. See Appendix 2.A.3. O]

Since M;_1; is a function of (z,y;) but not of (x4, d;), the previous lemma shows
that the risk-neutral distribution of (x,d;) given (2, ys, w,_;) is the same as the
historical one and it is given by equations (2.3) and (2.4). In particular, the

functional forms of the default intensities A, ; are the same as in the historical
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2.4 Pricing

world. Of course, since the dynamics of (z;, ;) are different in the two worlds, the

same is true for the z,,’s and the A, ;’s.

In addition, it can be shown that (2, vy, 2,:) is Car(l) under the risk-neutral

measure (see Appendix 2.A.4). However, it is not the case for (z;, yt, Tnt, dnt)-

It is also clear that the causality structure of the risk-neutral dynamics is similar to
the historical one, the only difference being the non-causality from y; to z; implied

by the homogeneity of the matrix {r};}.

2.4. Pricing

2.4.1. Defaultable bond pricing with zero recovery rate

The price at t of a riskless zero-coupon bond with residual maturity A is given by:

B(t,h) = E2[exp (—ry — ... — epn1)] (2.13)

where 14,1 = allztﬂ-,l + b’lytﬂ,l, i =1,...,h. The following proposition shows
that, thanks to the risk-neutral causality structure of our model, there exists an
analogous formula for the price of defaultable bonds with zero recovery rates.
Naturally, the case of risk-free bond pricing is nested within the more general

defaultable-bond pricing case (with a zero default intensity).

Proposition 3. The price of a zero-recovery-rate zero-coupon defaultable bond

issued by debtor n is given by:
By (t,h) = EZ [exp (= (ri + Aups1) = o = (g1 + Ain))] (2.14)

which is exponential linear in (¢, Yi, Tnt):

BY (t,h) = exp (—Cil,hzt — fvlz,hyt — Q;L,hxn,t) (2.15)
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2.4 Pricing

The defaultable yields are therefore linear in (24, Yi, Tny):

Ry (t,h) = (c,n,hzt + f;,hyt + g;—bﬁxn,t) ; (2.16)

SIS

In Equations (2.15) and (2.16), (c;, 4, fo 1, Gnp) 95 computed recursively by:

/
/ / ’ Y — / Y / /
(Cn,im n,h> gn,h) = (&17 bl’ 0) —a (th+1 - (cn,h—l — ay, fn,h—l - bl’ _gn,h—l) )

where

/
n’

e the sequence wp, h = 1,...,H is defined by wy = (—al, =G, —.) and

wp = (—a),—ay, =0, —=b, =) forh=1,...,H=1, with ¢, o = a1, fno = b1,
gno = 0;

e The function a is defined by a(u,v,w) = [(A1,..., Ay), (V' +w'Qa,) (P+D*)+
W' Q3p, W' Qun), where

J
Ai(ua v, ’LU) = log(z 7rz>'kj exp{uj + (U, + w,QQn) [/L (6]', 61') + M* (ej> 61)] +
j=1

1
W' (€5, €5) + 5(v + W' Q2n) T (e, €) (v + Q) +
1
§w/Q5n (€j7 ei) QIBn (ej’ ei) w}).
Proof. The price of a zero-coupon bond providing one money unit at ¢+ h if entity

n is still alive at ¢t + A and zero otherwise is:

Bf(t, h) = EP exp (—Tt — ... rt—i—h—l) ]I{dn,t+h20}:|
e E;@ EQ <eXp (_Tt — ... rt_l,_h_l) ]I{dn,t+h:0} | §t+h’gt+h’£n,t+h7 dn,t — 0>:|
E? exp (=re— . = 1egn1) Q (dn,t+h =0 Ze4m Yy g Lnpns Ao = 0)} :
Moreover,

Q (A trn =0 Zern Yy s Zoans dng = 0)

_ h _ _
- Hi:l @ (dn,t+i =0 | §t+h7gt+h7&n,t+h7 dn,tJri*l - 0)
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2.4 Pricing

and, since d,,; does not Q-cause (2, ys, Tn¢) in the Granger’s or Sims’ sense, we
) ) ’ ) s )

have:10

Q (dn7t+i =0 | §t+h7yt+h7£n,t+h7 dn,tJrifl = O)
= Q (dn,tﬂ‘ =0 Zttir Yy p Lnttio dn i1 = 0)

- xp (A

where the last equality comes from the fact that the conditional historical and
risk-neutral distributions of d,,; are the same (see Subsectionsec.2.3.2.2). Hence,
Equation(2.14) holds. The latter suggests that since the r.y;’s and the A, y;’s
are linear in the (244, Yiyi, Tneti)’s, the bond prices are multi-horizon Laplace

transforms.

Besides, it can be shown (see Appendix 2.A.4) that (z;, y¢, ©,,) is Car(1) under Q,
with a conditional Laplace transform of the type exp[a'(u, v, w).(z;, y;, 77, ;)']. The
recursive formulas presented in Proposition 3 directly stem from Appendix 2.A.5,
where it is explained how to exploit the Car(1) property of (2, yi, ,,+) to compute

its multi-horizon Laplace transforms. m

2.4.2. Defaultable bond pricing with non-zero recovery rate

In the next Proposition, we present conditions under which quasi-explicit formulas

are still available in the case of non-zero recovery rates.

Proposition 4. If, for any bond issued by debtor n before t, the recovery payoff
—that is assumed to be paid at time t in case of default between t—1 andt of debtor
n— is equal to the product of a function (., (with 0 < (., < 1) of the information
available at time t by the survival-contingent market value of the bond at t, the

price at t of a bond with residual maturity h is:

BP(t,h) = ER [exp(—re — - = Teyno1 = Anggs = - = Angin)] (2.17)

10A process X; does not cause Y; in Granger’s sense if and only if, for any ¢, Y; is independent
of (X¢—1,...,X1) conditionally on (Y;_1,...,Y7). This is equivalent to the non-causality in
Sims’ sense (X; does not cause the stochastic process Y; in Sims’ sense iff X; is independent
from(Y;41,Yito, ..., Yr) conditionally on (¥, X;—1Yi—1,...,X1,Y1)).
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2.5 Internal consistency (IC) conditions

where an,s is defined by (for any s):

exp(—Ans) = exp(—Ans) + (1 —exp(—Ans)) Cus-

Proof. The proof of this proposition is a special case of Appendix 4.A, associated

with Chapter 4 (where a slightlty more general framework is presented). O

The assumption of Proposition 4 is similar to the “Recovery of Market Value”
assumption made by Duffie and Singleton (1999) except that, in their discrete-
time approach, they assume that (; is known at time ¢t — 1, and that conditionally

to the information at ¢t — 1, d,,; is independent of the recovery payoft at ¢.

2.5. Internal consistency (IC) conditions

2.5.1. IC conditions based on riskless yields

If the short rate r; is a component of y,;, for instance the first one, we have to
impose an internal consistency condition implying that r, = a’l 2+ bllyt is equal to

the first component of y;, that is:
a1 = 07 bl - g17

where €; is the vector selecting the i** component of ;.

Moreover, if another component of y,, for instance the second one, is equal to a risk-
less yield of maturity hg —i.e. R(t, hg)— we have to impose that (1/hg) (a}m 2+ b}loyt)

is equal to the second component of y,, that is
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2.5 Internal consistency (IC) conditions

2.5.2. IC conditions based on defaultable yields

Similarly, if the first component of z,,; is a defaultable yield with residual maturity

ho, equation (2.15) implies that we have to impose:

tho =0
fn»ho =0
9n.he = hoéq

where é; denotes the vector selecting the i component of z,, .

2.5.3. IC conditions based on asset returns

If the first component of y; is the geometric return of a market index, we have to

impose
exp (—1¢) Ei@ (exp (Y1,641)) = 1.
Using equation (2.11), this gives
( Ay ... A ) 24 (@14 @) v = ay2 + by,
with A}, = log{ 3-]:1 T eXp [,ul (ej,€) + 1 (€5, €;) + 507 (e, ei)} }, w1 and pf be-

ing the first components of x4 and p* respectively, o2 being the (1,1) entry of X
and ®; and @7 the first rows of ® and ®* respectively. Then we get

/

— * *
ay ( Ao oAby )

by = (P + D7) .

Similarly, if the first component of z,; is the return of a stock attached to entity

n, we must have:

exp (—741) Ei@ (exp (l‘l,n,t+1)) =1
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2.6 Inference

or

re = log [EZ (exp (w1n,041))] -

Using the fact that (z;, yi, ,,) is Car(1) under Q (see Appendix 2.A.4), it is read-
ily seen that log [E,i@ (exp (a:lm’tﬂ))} is linear in 2, ¥4, x, and the IC constraint

follows.

2.6. Inference

2.6.1. Observability

We assume that y; and the x,,’s are partitioned into y; = (yy;,ys,)" and z,; =
(1t To ), that yy, and 1, are observed by the econometrician and that ya
and x5, are not. Moreover, we assume that the regime variable z; is equal to
21t ® 294 where 21 and 2o, are valued respectively in E; = {ey,...,ey } and
Ey ={e1,...,es}, where ® denotes the Kronecker product operator. We assume
further that z;, is observed by the econometrician whereas z;; is not. Besides,
we observe at each date t a vector of risk-free yields denoted by R; and, for each
obligor n, a vector of defaultable yields denoted by Rﬁ .- Note that if some yields

are included in the vectors y; or z,, they do not enter the vectors R; and RT’Z .

2.6.2. Estimation methods

Regarding estimation, it is convenient to distinguish two main kinds of equations.
While the first kind of equations defines the dynamics of the factors (i.e., equations
2.2 and 2.3), the second kind is concerned with the fit of observed yields. If the
number of unobserved factors is lower than the number of yields to fit, some pricing
errors arise. Obviously, if one wants to compute the log-likelihood of the model,
one has to specify a distribution type for these pricing errors. Usually, these are

supposed to be (i.i.d.) normally distributed in the affine term-structure literature.
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2.6 Inference

In the absence of latent factors or regimes, the computation of the likelihood of
the model is straightforward. On the contrary, specific techniques are required
as soon as some factors and/or some Markov chains are unobserved. Table 2.1
proposes techniques that can be implemented in the different possible cases. For
instance, when the model includes latent variables but no unobserved Markov
chains, the log-likelihood can be computed by means of the Kalman filter or the
so-called inversion techniques (see Chen and Scott, 1993) may be resorted to.
Absent unobserved factors y,;, the Kitagawa-Hamilton filter can be used if some
regimes are unobserved. Appendix 2.B shows how to adapt the standard Hamilton
filter in order to deal with partially-hidden Markov chains. Finally, if there are
both unobserved regimes and factors, two techniques can be implemented. First,
one can use Kim’s (1994) filter that allows to approximate the log-likelihood in
the presence of both kinds of unobserved processes. Second, inversion techniques a
la Chen and Scott (1993) may still be used; the implied adjustments to deal with

unobserved regimes being detailed in Appendix 2.C.

Table 2.1.: Estimation methods

Notes: This Tablesums up the different estimation procedures that can be implemented depending
on the observability of the regimes (z;) and of the factors (y:). The unobserved regimes and factors
(if any) are respectively denoted by 2z, and y2¢. In the Table, the notation y2; = @ (respectively
zo+ = @) corresponds to those models in which there are no latent factors (respectively no latent
regimes).

Yot =@ Yo,0 F O
Zo4 =@ “Standard techniques” Kalman filter /

Inversion techniques
2ot # @ Kitagawa-Hamilton filter Kim filter /
Kitagawa-Hamilton filter 4 Inv. techniques

2.6.3. Estimation example: a simple model of the

BBB-Treasury spreads

In this subsection, we illustrate the flexibility and the tractability of the framework
by estimating a model using real data. Note that this example reflects only one,
out of many, possible uses of the framework. (the multiplicity of its applications

is addressed in Section 2.8.)
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2.6 Inference

We consider one defaultable entity whose funding costs are representative of those

of BBB-rated corporates.!!

As commonly assumed, bonds issued by the U.S.
Treasury are supposed to be riskfree (i.e., the U.S.-Treasury default intensity is
zero). Dropping the debtor index in that subsection(since we consider only one

risk entity), the BBB-rated-firms’ default intensity is defined as:

At = Y1+ Yau

where the y; ;’s are some risk factors following:

0 _ we
Y1t _ M1 f1 ot ¥1 Yi,t—1 n t (2.18)

Yot 0 0 pe 0 o Y201 0

with ¢; ~ i.i.d. N(0,1) and where z; is a three-state Markov chain which is inde-

pendent from ¢; and has a matrix of transition probabilities of the form:

P11 (I—pnn) O
P=1(1—pa2—ps) P22 P23 (2.19)
0 (1 - P33) P33

While the first regime is conceived as being a “tranquil” regime, the third is sup-
posed to correspond to a “crisis” regime. The second acts as an intermediary
regime: under this regime, the risk factors y;, and y,; have the same dynam-
ics as under the tranquil regime, but with the threat of switching to the third
regime (such a threat does not exist under the first regime since the probability
of switching from the first to the third regime is null). The “crisis” nature of the
third regime stems from the fact that the drift associated with the process yo, (i.e.

0,0, p2)z;) is strictly positive only under this last regime, assuming that ps > 0.

It is important to note that conditionally on the information available at time ¢,
the means and variances of future hazard rates ;. depend on the current regimes.

For instance, whereas the one-period-ahead variance of the intensity is w? under

1 Among others, Feldhiitter and Lando (2008) also consider firms that are representative of some
credit-rating classes.
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2.6 Inference

the first regime, it is p3paz(1 — po3) + w? (> w?) under the second regime. This
illustrates in particular the fact that the model is able to generate some forms of

stochastic volatility.

The risk-neutral dynamics of y;; and y,, is assumed to be similar to its historical
counterparts (equations 2.18 and 2.19), except that parameters 1, va, f11, po and
the p;;’s are respectively replaced by ¢, @3, i, u5 and by some p;;’s. Besides, the

e¢’s in equation (2.18) are replaced by some £;’s that are normal in the risk-neutral

world.

For the sake of simplicity, we assume that y;, and y, are independent from the
factors driving the short-term risk-free rate under both historical and the risk-
neutral measure. This implies that we can estimate the dynamics of y;; and yo
without defining a process for the short rate and that the estimation requires only

spreads data.!?

The data are weekly and cover the period from 17 March 1995 to 1 July 2011.
The spreads are computed by subtracting from the corporate yields the Treasury
zero-coupon rates of the same maturities.'®> We consider four maturities: 1, 2, 3
and 5 years. The spreads are assumed to be observed with i.i.d. measurement
errors. The model can be seen as a state-space model with (a) four measurement
equations (relating the observed spreads to the modelled ones, the discrepancy
being the measurement —or pricing— errors) and (b) transition equations defined by
(2.18) and (2.19). The parameters are estimated by maximising the log-likelihood,
using the approximation proposed by Kim’s (1994). Additional details regarding
the estimation —including the developed state-space version of the model and the

parameter estimates— are presented in Appendix 2.D.

The upper panel of Figure 2.2 displays the estimated components of the default
intensity (i.e. factors y;, and y2,). The second panel shows the (smoothed) prob-

abilities of being in each of the three regimes. As expected, the failure of LTCM

12Such an assumption is for instance made by Pan and Singleton (2008) or Longstaff et al.
(2011).

13Zero-coupon yield curves have been obtained by applying bootstrap techniques on the BBB
(coupon) yield curve provided by Bloomberg (tickers C009). The risk-free yields are US
STRIPS yields extracted from Bloomberg (tickers C079).
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2.6 Inference

(Fall 1998), the bursting out of the internet bubble (2001) or the recent financial
crisis (2007-2009) are associated with the crisis-regime periods (see the black areas
of this second panel).!* The lowest two panels of Figure 2.2 display respectively
the 2-year and 5-year observed spreads together with their model-implied counter-
parts, showing that the model captures most of the spread fluctuations (close to

99% of the spread fluctuations are accounted for by the model).

An important feature of the model is that it is not only capable of fitting the
data, but it is also relevant to simulate realistic ones. Obviously, this is key if
one wants to use the model to compute Values-at-Risk, for instance. In order
to illustrate this, we have compared our estimated regime-switching model (RS
model hereinafter) with two alternative (purely) Gaussian models. In the first
alternative model, the default intensity is a simple AR(1); in the second model,
the default intensity is a sum of two independent Gaussian AR(1) processes. The
standard deviations of the spread pricing errors obtained with the RS model, the
1-factor Gaussian model and the 2-factor Gaussian model are respectively of 8, 10
and 7 basis points. However, the quality of the data resulting from Monte-Carlo
simulations of the Gaussian models is poor in comparison with the RS model. This
is illustrated in Figure 2.3. The first row of charts shows, for the 2-year and the 5-
year maturities, the unconditional distributions of spreads simulated by the three
models mentioned above. These distributions are compared with the sample-data
ones. The charts show that the Gaussian models are inappropriate to capture the
tails’ shapes: in particular, while the one-factor Gaussian model often generates
negative spreads, the two-factor Gaussian model fails to generate high spreads. By
contrast, the RS model is able to keep the number of simulated negative spreads
at a minimum while allowing for frequent high (crisis) spreads. The skewness and
kurtosis of the sample data are impressively well reproduced by the RS model:
considering the 5-year maturity, the skewness of the simulated spread is of 1.78 vs.
1.83 for the sample data and the kurtosis are respectively of 7.45 vs. 7.46. The

superiority of the RS model in terms of simulation of plausible spreads is further

14T,00king both at the first and second panel in Figure 2.2, one can check that the second factor
y2,+ is pushed upwards during crisis periods.
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2.6 Inference

highlighted by the lower plots in Figure 2.3: according to these charts, the RS
model performs well in terms of fitting the 5th, 50th and 95th quantiles of the

spreads (as well as their mean).

Figure 2.2.: BBB vs. Treasury Spreads, Estimation results

Notes: The upper panel presents the smoothed (using Kim's (1994) filter) estimates of the two
factors y; ;+ and y2 ; that are such that the default intensities A; of BBB-rated corporates is given by
At = Y11+ Y2, Grey-shaded areas correspond to 95% confidence intervals. The second panel reports
the (smoothed) probabilities of being in the “tranquil-times” regime 1 (white), the “intermediary”
regime 2 (in grey) or the “crisis” regime 3 (in black). For each date, the three vertical bars (white,
grey and black) sums to one. The lowest two panels display model-implied spreads together with
observed ones for two respective maturities: 2 years and 5 years.
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2.7 Liquidity risk

2.7. Liquidity risk

There is compelling evidence that yields and spreads contain components that
are closely linked to liquidity.'®> The estimation of the liquidity premium is of
concern for several reasons. First, gauging the liquidity-risk premium provides
policy makers —central bankers in particular— with insights on the valuation of
liquidity by the markets (see Taylor and Williams, 2008 or Michaud and Upper,
2008). Second, if one wants to extract default probabilities from market data, one
has to distinguish between what is related to default and what is caused by the

liquidity of the considered bonds.

However, the identification of the liquidity premium, that is, distinguishing be-
tween the default-related and the liquidity-related components of yield spreads,
remains a challenging task. Empirical evidence points to the existence of com-
monality amongst the liquidity components of prices of different bonds (see e.g.
Fontaine and Garcia, 2012). Therefore, the identification of the liquidity compo-
nent relies on the ability to exhibit risk factors that reflects liquidity valuation.
Liu, Longstaff and Mandell (2006) and Feldhiitter and Lando (2008) develop affine
term-structure models where a liquidity factor is latent and the identification is
based on assumptions regarding the relative liquidity of different interest-rate in-
struments.'® In the euro area context, Chapters 3and 4 identify a liquidity latent
factor by exploiting the term-structure of the KfW-Bund spreads. KfW is a Ger-
man public agency whose issuances are fully and explicitly guaranteed by the Fed-
eral Republic of Germany. Accordingly, the spreads between the yields of bonds
issued by KfW and those issued by the German government (called “Bunds”)
mainly reflect liquidity-pricing effects. Alternatively, the liquidity factor could be

proxied by observable factors.!” One may resort to intermediate —or mixed— ap-

15The influence of liquidity effects on bond pricing has been investigated, amongst others, by
Longstaff (2004) [193], Chen, Lesmond and Wei (2007) [63], Covitz and Downing (2007) [76].

16Tn both studies, the liquidity factor that is estimated corresponds to the so-called “convenience
yield”, that can be seen as a premium that one is willing to pay when holding Treasuries.
This premium stems from various features of Treasury securities, such as repo specialness
(see Feldhiitter and Lando, 2008).

17 Among which: bid-ask spreads, market-depth measures, bond supply, spread between bonds
of the same maturity but with different ages or spread between off-the-run and on-the -run
Treasuries (see, e.g., Longstaff, 2004 or Beber, Brandt and Kavajecz, 2009).
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2.7 Liquidity risk

proach, where part of the liquidity-factor dynamics is observable (through observed

proxies) and part of it is latent.

Let us come back to our modelling framework. We have seen above (Section 2.4)
that incorporating default risk in the pricing methodology implies to replace the
short rate r, by a “default-adjusted” short-rate r, + A, ;1. Besides, in order to
take into account recovery-rate effects, A, ;11 can be seen as a “recovery adjusted”
default intensity between t and t + 1 (Subsection 2.4.2). So the price at ¢ of
a defaultable asset providing the payoff ¢ (w,,,) at ¢ + h in case of absence of

default, is:
E,(g@ [eXp (—Tt - )\n,t+1 — . = Tt4h—1 — )\n,t+h) g (th)] .

As suggested by Duffie and Singleton (1999), intensity-based model can also ac-
count for liquidity effects by introducing a stochastic process that is interpreted as
the carrying cost of non-liquid defaultable securities. This process then appears
alongside the default intensity in the spread between the “pure” —i.e. default and
liquidity-adjusted— short rate and the short rate associated with a defaultable
bond. The affine term-structure literature is relatively silent on the interpreta-
tion or the micro-foundations of the illiquidity intensity. In a theoretical paper
analysing interactions between credit and liquidity risks, He and Xiong (2012)
show that such an illiquidity intensity may reflect the probability of occurrence
of a liquidity shock; upon arrival of this shock, the bond investor has to exit by
selling his bond at a fractional cost (i.e. the selling price is equal to a fraction
of the price that would have prevailed in the absence of the liquidity shock); the
fractional cost is the analogous to the fractional loss (1 — () in the default case
(see also Ericsson and Renault, 2006 for a similar interpretation). Let us introduce

an “illiquidity intensity” between ¢ and ¢ + 1, denoted with AL, ;"8 If X, ;41 and

18Chapter 4 (see 4.2.1) explicitly relates the illiquidity intensity to “portfolio liquidation” pro-
cesses as in He and Xiong (2012) and Ericsson and Renault (2006).
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2.8 Model extensions

AL, are specified in an affine way,

Angtl = O/nzt+1 + B;Lytﬂ + ’Y;L«Tn,t—i-l
Mg = ol zer + B e + 7w,
we could price not only riskless bonds B, (¢, h) and defaultable bonds B2 (¢, h) as

above, but also bonds facing liquidity risk BZ (¢, h) and bonds facing both default
and liquidity risk B2 (¢, h). We would have:

B (t,h) = E2lexp (=r¢ — ... — Tryn1)]

BP(t,h) = EQ lexp (=7t — Mgl — -+« — Terh—1 — Anttn)]

BE(t,h) =B |exp (—re— ALy — = = AL )|

BPL(t,h) = ER {exp (—rt — Mtt1 — )\ﬁ,tﬂ — = Tiph—1 — Antth — /\ﬁ,t+h)] )

In the context of a Car(1) risk-neutral dynamics of (z¢, ¥4, T, ¢), these prices are ex-

ponential linear in (2, y¢, ,,¢) and the corresponding yields are linear in (z;, ¥z, T t).

2.8. Model extensions

2.8.1. Multi-lag dynamics for y; and z,; processes

The model can easily be extended to allow for v, and x,, dynamics that include
several lags. In particular, when observed data are used in the estimation pro-
cess —the y;; and z1,; defined in Section 2.6-, preliminary analysis of the data
could point to the need of taking different lags into account to model the historical
dynamics of these variables. The flexibility in the choice of the lag structure consti-
tutes an advantage of working in discrete-time over most continuous-time models
(see, e.g., Monfort and Pegoraro, 2007 or Gourieroux, Monfort and Polimenis,

2006).

Equations (2.2) and (2.3) imply that the multivariate factors y; and x; follow auto-

regressive process of order one. However, to the extent that a VAR (p) amounts to a
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VAR(1) once the last p lags of the endogenous variable are stacked in the same vec-
tor, the pricing techniques of the bonds —namely equation (2.16)— are not affected
if y; and x; follow VAR(p). However, in order to make the estimation strategy pre-
sented in Section 2.6 still effective —in particular regarding inversion techniques—,
the unobserved vector variables yo, and x5, + should not enter equations (2.2) and
(2.3) with lags larger than one. To the extent that this restriction only applies to
the unobserved factors —for which insights on the appropriate distributions are a

priori not readily available— such a constraint is not really restrictive.

2.8.2. Interpretation of a regime as the default state of an

entity

In this subsection, we consider the specific case where the regime variable z; is the
Kronecker product of several basic regime variables, one of them corresponding to
the default or non-default state of a given entity (indexed by zero). The specificity
of that situation lies in the fact that the default of this entity then enters the
s.d.f.. Therefore, we leave the framework described in Subsection 2.3.1 where all
defaultable entities were small enough to have no impact at the macroeconomic
level. As a consequence, the “zero” entity may represent a whole industry or a
very big institution. This could be extended to a few major entities but one has
to bear in mind that increasing their number results in an exponential growth in

the dimension of z;.

The fact that this default enters the s.d.f. results in new components in bond
prices. As pointed out by Yu (2002) and Jarrow, Lando and Yu (2005), such

components arise only when the default-event risk is not diversifiable.

As mentioned in the introduction, this interpretation is also linked with previous
studies attempting to introduce contagion effects in affine term-structure models.
Indeed, the default of entity zero may lead to a simultaneous increase in the default
intensities of any other debtor (through the regime variable z; that may enter all

default intensities).
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2.8 Model extensions

For sake of simplicity, let us assume that such a crisis variable is the only regime
captured by z;, which can be observable or not. In this case, assuming that the

state ey = (0,1)" is the absorbing crisis state, we have:

7T(€2 | 627yt—1) =1

7T(el ’ 627%71) = 0.

Moreover, we could specify:

™ (61 ’ 61,%71) = exp (_)\O,tfl)a

with Xg;—1 = ao + Bly—1. In this case, A\g;—1 can be interpreted as a systemic-
risk intensity. Conditions (2.10) {7 (e; | €i, y+—1) exp [d; (s, y:—1)] = 7};} imply the
followings:
o w5 = 0, my=1, 01 (e2,9;_1) is undefined, &3 (e2,14;—1) = 0 and, therefore,
) (62, yt—l) 2z = 0.
o exp [01 (€1, y—1)] = 77, exp ()\O,t—l) or 01 (€1, y—1) = log 7} + g + Boye—1-
o exp[ds (e1,y:1)] = (1 — 7)) [1 —exp (_)‘O,t—l)]ia or &3 (1, Y1) = log (1 — 77y ) —
log [1 — exp (—an — Byye-1)]-

Denoting 75, = exp (—Aj), Aj being the systemic-risk intensity in the risk-neutral

world, we get:
0 (el,yt—l) = )\O,tfl - AS

02 (e1,ye-1) = log[l —exp (=Ag)] —log [l — exp (—Ag—1)]

~ log (A;) — log (Aos—1) if AS, Aos—1 are small.

In particular, the risk-neutral intensity Aj and the historical intensity\o;_; are

different functions, contrary to what happened in the previous Sections. Both the
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riskless yields:

1
R (t, h) = E (a%Zt + b%yt)

and the defaultable yields:

RD (t,h) = (C/n,hzt + frne +g7/1,hxn,t)

SRS

will be different functions of y; (and of z,; for RP (t,h)) before and after the

systemic crisis. The term structure of the impact of the systemic crisis will be:

agp — Q1 p for the riskless yield of residual maturity A,

Conmh — Cipnp  for the defaultable yield of residual maturity h, for the ntentity.

2.8.3. A sector-contagion model
2.8.3.1. General approach

In this subsection, we propose another specific use of the regimes that makes it
possible to model sector-contagion phenomena. As explained in the introduction,
our assumptions prevent us from making the default intensity of any entity depend
on the default event of other entities. In other words, the baseline framework does
not allow us to account for contagion at the debtor level (except in the specific case
presented in 2.8.2). Nevertheless, as shown here, this can be done at a sector level,
the sectors representing for instance different industries or different geographical

areas.

Specifically, in this model, each debtor belongs to one of the sectors. At each
period, a sector is either “infected” or not infected. When a sector is infected,
the default intensities of its constituent entities tend to be higher. Let us denote
by S;: the state the it" sector at time t: Si+ is equal to [0, 1]" if the ith sector is

infected at time ¢, and is equal to [1, 0] otherwise. If we have Ng sectors, then we
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have to consider 2Vs regimes, the regime variable 2, being given by:
20 =511 ® 52 ®...° SNy

where ® denotes the Kronecker product. In such a model, one can make the
default intensity of any firm depend on the state of the sectors (and, in particular,
on the state of its own sector). Further, the sector-contagion phenomena can be
obtained through the specification of the regime-transition matrix. Indeed, this
matrix contains the probabilities that any sector gets infected (or cured) given the

states of the other sectors.

2.8.3.2. Numerical example

In this example, we make use of processes y; and z; whose dynamics are defined in
Tables 2.2 and 2.3. We consider three homogeneous sectors. The probability that
a sector gets cured /infected at time ¢ depends on the number of infected sectors at
the previous period. In that case, the regime-transition matrix is defined by a set
of probabilities like the one reported in Table2. In our example, the probability
of getting infected is far higher when at least one sector is already infected than
when none of them is infected. The default intensities of sector-i firms are given

by:

N = 0014002 x Trg_y +0.02 x Ty 3T 3 Trgp_yy +0.002y,

where S} = [0,1]S;;. This implies that the default intensity of a Sector-i entity
increases by two percentage points when Sector ¢ gets infected and increases by

an additional two percentage points if all sectors become infected simultaneously.

Let us now consider a portfolio of 600 debtors, with 200 debtors in each sector.
Figure 2.2 shows a simulation of the timing of defaults for this portfolio. Each
panel corresponds to one of the three sectors. At one point, Sector 1 gets infected
(see the grey area in the first panel of Figure 2.2). While the default intensities of

Sector-2 and Sector-3 firms are not contemporaneously impacted by the infection
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Table 2.2.: Calibration of the sector-contagion model

Notes: The second (respectively the third) lines reports the probabilities, for any sector, of getting
infected (resp. cured), depending on the number of infected sectors during the previous period.

Numb. of infected sect. (3,[0,1].5; ) 0 1 2 3
Proba. of getting infected (in t + 1) 0.25% 10% 10% -
Proba. of getting cured (in t + 1) - 10% 10% 10%

of the first sector, 5-year default probabilities of Sector-2 and Sector-3 firms shift
upwards. This is a consequence of the fact that once Sector 1 is infected, the
probability that Sector 2 and Sector 3 get infected over the next periods is higher.
A few periods later, Sector 3 and then Sector 2 get infected.

2.8.4. modelling credit-rating transitions

In their seminal study of credit spread, Jarrow, Lando and Turnbull (1997) model
rating transitions as a time-homogenous Markov chain. That is, in their model,
whether a firm’s rating will change in the next period depends on its current rating
only and the probability of changing from one rating to the other remains the same
over time. Different studies suggest however that —per-period— transition proba-
bilities are time-varying and that simple Markov processes are not appropriate to
model credit migrations (see e.g. Lucas and Lonski, 1992 or Feng, Gourieroux and

Jasiak, 2008 or Bangia et al., 2002).

In the present subsection, we show how our framework can be adapted in order
to account explicitly for rating migration. Building on Lando’s (1998) approach
(see also Feldhiitter and Lando, 2008), the structure accommodates a time-varying
rating-migration matrix while allowing different ratings to respond in a correlated
yet different fashion to the same change in the general economic conditions. The
time variability of the rating-migration probabilities results from Gaussian shocks
as well as from regime shifts. Note that the model that we propose here is very
general and may be suited to address various features of empirical evidences re-
garding credit-rating transitions. In particular, this framework is such that the
marginal dynamics of the credit ratings (once the regime variable and the factors

have been integrated out) depends on the whole history of the past ratings and
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therefore is not Markovian.

2.8.4.1. Adaptation of the framework

While most of the previous framework is still valid, some changes regard the mod-
elling of the default intensity. Specifically, the historical dynamics of (z¢, yt, T 1),
as well as the s.d.f. specifications are still given by equations (2.1), (2.2), (2.3)
and (2.7). However, in this adapted framework, each firm n is also characterised
by a credit-rating process, denoted by 7, ;. For any firm n and period ¢, 7,,; can
take one of K values: the first K — 1 values correspond to credit ratings and the
K™ corresponds to the default state. For instance, rating 1 can be the highest
(Aaa in Moody’s rankings) and K —1 can be the lowest (C in Moody’s rankings).
In addition, we have, d,,; = I (7, = K) . Like the d,,’s, the 7,,4,’s, n =1,..., N,
are independent conditionally to(z, ¥, ¢, w,_1). In addition, we assume that the
rating transition probabilities, for firm n and from period ¢ — 1 to period t, is
a function of (zy, 4, 2n). Accordingly, this transition matrix is denoted with

(2, yt, ) and we have:

P(Tn,t :.] | Tnt—1 = iagtagpgt) = Hi,j(zt7yt7 xn,t),

where I1; ; (24, Yr, 2n ), the (4, j) entry of the transition matrix II(2;, ys, ©p¢), repre-
sents the actual probability of going from state ¢ to state j in one time step. Each
of these entries must be in [0, 1] and for each row, the sum of the entries must sum
to one. In other words, [ 1 ... 1 |'is an eigenvector of II(z;, ys, ¥, 1) associated
with the eigenvalue 1. In addition, the default state being absorbing, the bottom
row of II(z, v, xny) isequal to [ 0 --- 0 1 ]. Importantly, the entries of II are
the same function of (z:, y, x,,+) under both measures (as the default intensities in

the baseline model).*

In this context, a defaultable zero-coupon bond providing one money unit at t+ h

if entity n is still alive in ¢ + h and zero otherwise has a price, in period ¢, that is

19Note however that this does not imply that the distributions of these entries are the same
under both measures (since the distributions of (z;, y;, x¢) differ under Q and P).
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given by (assuming that entity n has not defaulted before t):
BP(t,h) = E2 lexp (—ry — ... — ripn_1) I (roen<i} | (2.20)

In order to keep a quasi-explicit formula for defaultable zero-coupon bonds, we

assume that II(z;, v, x, ) admits the diagonal representation:
H(Z'myt, SUn,t) = V‘I’<Zta ytaxn,t)vilv

where the columns of V' are the eigenvectors of II(2;, yt, x,,+) and constitute a basis
in R and W(z, vy, ) is a diagonal matrix of real eigenvalues that are positive
and smaller than one. Given that 1 is an eigenvalue of I1(z, yi, Tpt) , V(2e, Yr, Tnt)

can be written in the following manner:

exp [~ (w)] 0 0

0 - - :
\I/(Ztaynl‘n,t) = ) ) )

with, for any i < K, 9¢; (wy) > 0. Then, it is easily seen that, conditionally on
(§t+h, Yy Lo Tng = z) the probability of defaulting before ¢ + h corresponds
to the entry (i, K) of the matrix that is given by:

V‘I’(Z’Hl, Yi+1, xn,tJrl) e ‘Ij(ZtJrh; Yt+h, $n,t+h)-V71-

This probability is therefore:

K h
P(Tn,t-i-h =K | §t+haﬂt+ha£n,t+ha Tnt = Z) = Z ‘/’LJV],_[% €Xp [_ Z ¢j (wt-i-p)] )
j=1 p=1

where V;; and Vf]l are the entries (i,7) of , respectively,V and V~!. Since
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Vi,Kng( = 1 (see Appendix 2.E) using ¢ = 0, we get:

—1 h
P(Tn,tJrh < K | §t+hayt+h7£n,t+h7 Tn,t = Z) = - ‘/:L,]‘/]T[% exXp |:_ Z wj (thrp)] .
p=1

Jj=1

(2.21)

If the v,’s are some linear combinations of (2, y;, ©,+), equations (2.20) and (2.21)
imply that the price of a bond is a sum of K —1 multi-horizon Laplace transforms.
As a consequence, the bond prices can be obtained using the algorithm presented
in Lemma 2. However, it should be noted that in this context, the yields are no
longer affine in the factors, which implies in particular that the Kalman filter has to
be adapted so as to accommodate the nonlinearity of the state-space measurement
equations. In such a context, Feldhiitter and Lando (2008) use the extended

Kalman filter. As an alternative, the unscented Kalman filter can be implemented.

2.8.4.2. Numerical example

Let us consider the processes r; and z; whose dynamics are specified in Table 2.3.

In the present model, the credit-migration matrices are of the form:

€xp [—06121& - 513/1&] 0 ce 0
0 A
H(Ztayta xn,t) =V . ) V
: exp [_QK—lzt - ﬁK—lyt] 0
I 0 . 0 1 |

In order to get plausible plausible matrices, the first-regime calibration —that in-
volves the «;’s— is based on the one-year-average rating-migration matrix for
European corporates provided by Moody’s (Moody’s, 2010 ). This matrix is re-
ported in Table 2.4. The spectral decomposition of this matrix provides us with
the matrix of eigenvectors V. The eigenvalues are real and comprised between
0 and 1. Accordingly, they are of the form exp(—a;1). The «;; are reported in
Table 2.5. The definition of the second regime requires a second set of «;’s, de-

noted by {a;2}tiz1. x-1. We calibrate the latter in order to have 5-year default
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probabilities that are higher than those obtained with the first-regime transition
matrix (see Tableb). Finally, the ;’s are given by (a; 1 — i 2)/5.
Table 2.3.: Dynamics of risk factors under both measures

Notes: The shocks &; and &} are i.i.d., e, ~ NF(0,1) and &f ~ N®(0,1). The risk-free short-term
rate is rt41 = 4% + y:/100 .

Under P Under Q
Dynamics of yr = 0.6y:_1 + € yr = 0.3+ 08y:_1 + ¢
-, 0.98 0.02 N 0.98 0.02
Transition proba.  {m; ;} = { 0.95 075 w {mp;} = { 001 0.99 }

Table 2.4.: Baseline matrix of rating-migration probabilities

Notes: This matrix is based on Moody's (2010) (Exhibit 12: One-year average ratings-transition for
European corporates 1985-2009). According to the industry standard, the probability of transitions
to the “not rated” state is distributed among all states in proportion to their values (see Bangia et
al., 2002 ).

Aaa Aa A Baa Ba B Caa-C  Default
Aaa 0.911 0.084 0.004 0.000 0.001 0.000 0.000 0.000
Aa 0.009 0.902 0.083 0.005 0.000 0.000 0.000 0.000
A 0.000 0.042 0.898 0.055 0.003 0.000 0.000 0.001
Baa 0.000 0.004 0.072 0.868 0.041 0.009 0.003 0.001
Ba 0.000 0.000 0.007 0.074 0.788 0.107 0.012 0.011
B 0.000 0.000 0.004 0.004 0.073 0.794 0.092 0.033
Caa-C 0.000 0.003 0.001 0.000 0.007 0.106 0.706 0.177

Table 2.5.: Eigenvalues of the transition matrix under both regimes

Notes: “Regime 1" is consistent with the transition matrix reported in Table3. Regime 2 is intended
to depict a “crisis” regime. The o; ;'s (i =1,...,7, j = 1,2) are such that the exp(—a; ;)'s are the
eigenvalues —those different from 1- of the rating-transition matrix obtained under regime j (when
yrp = 0). The 5-year default probabilities are computed conditionally on the absence of regime
switching (i.e. as if the current regime is to last 5 years).

5-yr default prob. Aaa Aa A Baa Ba B Caa-C
Regime 1 0.057% 0.24% 080% 191% 872% 21.8% 52.0%
Regime 2 0774 % 1.79% 3.01% 6.40% 16.74% 32.6% 63.2%
-log(eigenvalues) 1%t ond 3rd 4th Gtk 6th Tth

a;q (i=1,...,K—1) 0009 0069 0097 0143 0213 0311  0.464
aip (i=1,...,K—1) 0017 0110 0146 0205 0294 0463  0.807

Figure 2.5 displays yield curves for selected ratings under both regimes (for y, = 0,
i.e. its unconditional value). Figure 2.6 presents some simulation results. The
upper panel shows the time fluctuations of downgrade probabilities for two different

ratings. The lower panel displays yield spreads between 10-year zero-coupon bonds
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issued by A-rated or Baa-rated firms and 10-year zero-coupon bonds issued by

Aaa-rated firms.

2.9. Conclusion

In this Chapter, we have proposed an econometric framework aimed at jointly
modelling yield curves associated with different defaultable issuers. Default inten-
sities and yields are affine functions of a multivariate process which is Compound
autoregressive (Car) in the risk-neutral world and thus provides us with quasi-

explicit (recursive) formulas for both risk-free and defaultable bond prices.

The risk factors follow discrete-time conditionally Gaussian processes, with drifts
and variance-covariance matrices that are subject to regime shifts described by
a Markov chain with (historical) non-homogenous transition probabilities. The
regime-switching feature is relevant for credit models in several respects. First, it
makes it possible to capture non-linear behaviours of yields and spreads, which is
consistent with empirical evidence. Second, it is appropriate to capture default
clusters. Third, it offers some ways of dealing with specific forms of contagion. In
this respect, we show how the framework can be used to capture sector-contagion
phenomena. An other extension accommodates credit-rating migrations. While
flexible, the model remains tracTableand amenable to empirical estimation. To

that end, a sequential estimation strategy is proposed in the Chapter.
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2.A. Proofs of Sections 2.3 and 2.4

2.A.1. Proof of Proposition 1

We have

wio1 (u,v) = Eyq(explu'z + v'yy)
= Fy g (explu'z + v (2, 201) + 0" @ys 1 +0'Q (24, 201) &)
= F(E{exp[u'z + V' p (2, 20-1) + V' Py 1+
U (2, z-1) & | Wi, 2} | W)
— exp(y)E (exp (a7 + ' (1 )} X
E (exp {0'Q (2, 1) &0 | Wi, z1}) | wia)
= exp(v'®y,_1)E (exp {u'z + v’ (2, 20-1)} ¥
;U,Q (2, 20-1) (26, 2e-1) v | wt_1>

= exp(VPy;1+ [l1,.. ., 5] 2-1).

Using the expression given for the [;’s leads to the result.

2.A.2. Proof of Proposition 2

80971 (u,v) = Elgl (exp [z + v'yy))
[ 1 ! I !
= E_, (exp —5ll +ve+ 0, gz +u'z + v’ytD

= exp (V'Py, 1) ¥

[ 1 ! ! ! !
E,_4 (exp —§th/t +ver+ 0,12+ Wz + 0 + v QtstD

= exp (V'®y;—1) X
1,

[ 1 ! ! i ! / !
E, 4 (exp K + 3 (Vt + v Qt> (Vt + v Qt) + o'y 'z + 5tlztD

1 /
= exp (V®y;_1) Fy_4 (exp |:U/QtVt + §U'Etv + vy + 'z + 5t1ztD )

68



2.A Proofs of Sections 2.3 and 2.4

Using the expression given for A;; 1(u,v) in sec.2.3.2.1 leads to the result.

2.A.3. Pdf under the Q world
By definition,
Jo(wi | wy_y) fo(was| wig, wy 1) = flwie| we ) f(waz| wi e, wy 1) M1 exp(ri—1).

Integrating both sides w.r.t. wy; and using the fact that M;_;, does not depend

on wq, we get the expression of fo(wi | w,_ ;) and, as a consequence,

f(w2,t| wl,tuwtfl) = fQ(wQ,t| wl,tywtfl)'

2.A.4. The risk-neutral Laplace transform of (z;,y;, x,, )

In this appendix, we compute EZ, (exp [u'z; + vy + w'xyy]) and show that it is
exponential affine in (2,1, yt—1, Tns—1), that is, we show that (z;, ys, ,,+) is Car(1)

(see Darolles, Gourieroux and Jasiak, 2006).
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2.A Proofs of Sections 2.3 and 2.4

E2 (exp [u'z + vy + w'])
= B2, (exp[u'z + vy + w0 (qun (26, 2-1) +
Qan¥t + Qsn¥i—1 + QunTni—1 + Qsn (26, 20-1) Mnt)])
= exp (W' QsnY—1 + W QupTnyi—1) X
Ey (exp [u'z + (' + w0/ Q) s+
W an (2, 2e-1) + W' Qsn (245 2—1) Nnt))
= exp (W' Qsnyi—1 + w/Q4n$n,t71) X
By (exp [0z + w'qin (21, 21) + 0/ Qs (205 21) Mgt
(0" + w'Q2n) (e + p1) + (2 + D) yr1 + Qi)
= exp[{(v) + w'Q2n) (P + ) + w'@sn} yer+

W' Qunni—1 + < Ay(u,v,w) ... Ay(u,v,w) ) Zt—1:|
Using the expression given for A;(u,v,w) in Proposition 3 leads to the result.

2.A.5. Multi-horizon Laplace transform of a Car(1) process

Let us consider a multivariate Car(1) process Z; and its conditional Laplace trans-
form given by exp[a’(s)Z; + b(s)]. Let us further denote by L;j(w) its multi-

horizon Laplace transform given by:
Lon(w) = By exp (W 1 Zect + -+ Wi Zign) | t =1, T, h=1,... H,
where w = (w],...,w}) is a given sequence of vectors. We have, for any ¢,

Lt,h(w) = exXp (A;th + Bh)u h = 17 ce 7H7
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2.B Kitagawa-Hamilton algorithm for partially-hidden Markov chains

where the sequences Ay, By, h =1,..., H are obtained recursively by:

Ay = a(wg—nt1 + A1)

By, = bwr—nt1 + Ap—1) + Bp1,

with the initial conditions Ag = 0 and By = 0.

Proof. The formula is true for h = 1 since:
Lii(w) = By (wyZi1) = exp [d' (wy) Zi + b(wh)]

and therefore A; = a(wy) and By = b(wy).

If it is true for h — 1, we get:

Lip(w) = E [exp (W}{—h+1Zt+1> Ei1 (exp (w}{_h+2Zt+2 +...+ w’HZtJFH)ﬂ
= Ek [GXP (W}J_hHZtH) Lt+1,h—1(w)]

= exp {a(w/Hchrl + An 1) Ze + bWy gy + Ana) + Bh—l}

and the result follows. O]

2.B. Kitagawa-Hamilton algorithm for

partially-hidden Markov chains

In this appendix, we describe how to use the Hamilton’s (1990) algorithm within
the estimation strategy presented in Section 2.6, when the Markov chain is par-
tially observed. As noted by Hamilton (1994), while the algorithm was originally
presented in a model with fixed transition probabilities, it readily generalizes to
processes in which transition probabilities depend on a vector of observed vari-

ables.??

208ee e.g. Filardo (1994) ord Diebold, Lee and Weinbach (1993) for implementation examples of
Hamilton’s algorithm in models with time-varying transition probabilities. For introductions
to regime-switching models, see Hamilton (1994) or Kim and Nelson (1999).
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2.B Kitagawa-Hamilton algorithm for partially-hidden Markov chains

Let us denote with ¢, the vector of observed variables (7}, Ri¢, 21,)’. The Hamilton’s
algorithm consists in computing recursively the probabilities p(zy: | §,). As a by
product, the algorithm provides the conditional densities f(g; | §,_,), which makes
it possible to estimate the model parameters by maximization of the log-likelihood.

The algorithm is based on the iterative implementation of the following steps (the
input being p(22-1 |9, ,)):

1. The joint probability p (2o, 20¢1 | §¢—1) is computed using:

P <Z2t; Zot1 | QFl) =p (Zzt | th_l,gH) X p (ZQt—l | QFl)

where the first term of the right-hand side is a sum of entries of the transition

matrix {m;;;—1} and the second term is the input.

2. The joint conditional density f(f, 22, 22¢-1 | §, ) is then given by:

f Dty zat, 2201 | B Y, 1) F (e | zat, 226 1Y, 1) X p(22t722t 119 Y, 1)

where
f(@e | Zzt,22t—1,gt_1) = f(G, R, 211 | Z2t7Z2t—17gt_1)

=[G, R | th,Z2t722t—1,Qt,1) x p(z1t | Z2t72’2t—1agt,1)
with

p(th, Zot ‘ ZZt—hgt_l)

p(zat | Z2t717gt_1)

P21 | ZQt,ZQt—l,Qt_l) =

and all the terms can be computed.

3. The conditional density f(9: | §, ,) is given by:

yt’yt 1 Z Z T (G, 2ot 20— 1|yt 1)

22,t 22,t—1
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2.C Inversion techniques in the presence of unobserved regimes

4. The joint density p (th, 21 | Y t) comes from:

f (D, 220, 2011 | Qt_l)

D (221:, Zot—1 | Qt> =

5. And eventually:

p <Z2t | Qt) = Z p (22t722t—1 |gt> :

22,t—1

2.C. Inversion techniques in the presence of

unobserved regimes

In this appendix, we detail an approach using jointly the Kitagawa-Hamilton filter
and the so-called inversion techniques @ la Chen and Scott (1993). Such an ap-
proach is aimed at estimating models in which there are both latent factors (ya:)
and latent regimes (22¢) (see Section 2.6 for notations). Note that the implementa-
tion of the following estimation strategy requires that the transition probabilities

do not depend on the unobserved vectors ys;—1. The period of observation is

{1,...,T}.

2.C.1. Decompoaosition of the joint p.d.f. and estimation

strategy

Let us denote by 6*¥ the vector of parameters defining the historical dynamics of
(zt,4t), by 0% the vector of parameters defining the conditional p.d.f. of z,; given
243 Y,s Lnyg—y and by 69 the vector of parameters defining the conditional p.d.f. of

dn,t glven zy, gp gn,ta dn,t—l :
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2.C Inversion techniques in the presence of unobserved regimes

The joint p.d.f. of wy is:

I
=

f(wr, ) f (Zt,yt |§t—1>yt_1;92y>

I
A

X
=
=

f (xn,t | gtugﬁgn,t—l; 073;)

3
Il
—
o~
Il
—

=
=

F (dot | 209, T 13 65)

3
Il
—
~+~
Il
_

The parameters appearing in M;_;,; are denoted by 6*. The theoretical values of

R; and RP given by the model are denoted by R; (67, 0*) and RZ, (Gzy 6z, 94 9*)

rYYny v n?

respectively. A sequential strategy of estimation is the following:
1. Estimate 6*Y and 6* from the observations of yy, 214, Ry, t =1,...,T.

2. Estimate the 62’s and the 62’s from the observations of @1,; and RY,, t =

1,...,T, taking as given the values of 6*¥ and 6*, and the values of y,; and

29,4 being fixed at the approximated values obtained from step 1.

The remaining of the current section details these two steps. The methodology
that is proposed builds on the so-called inversion technique developed by Chen
and Scott (1993). This technique is adapted in order to accommodate regime

switching.

2.C.2. Estimation of the parameters (0~Y, 6*)

Using equation (2.16), we have, with obvious notations:

Ry <9zy, 9*) = Az + B1y1,t + B2y2,t-

If m is the dimension of y, let us partition R, in <R/1’t,R/2’t) where Ry, is of

dimension m. With obvious notations, we get:

Ry, (67Y,0%) = Aszy + Boryrs + Basyoy,
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2.C Inversion techniques in the presence of unobserved regimes

and denoting (yl1,m Rlz,t) by §; we get:

~ I 0 0
Y = Y + 2t
Byy By A,
or
Y = Byt + lezt
and

Y = B! (Qt - AZt)

and from equation (2.2) we get:

B! (?jt - Azt) = (2, 20-1) + @ [B ! (gtfl - A’letflﬂ +Q (2, 20-1) &

or
Gy = Az + Bu (2, z-1) + B® {B’l (gt,l - flzt,lﬂ + BQ (24, 20-1) &
or
o= i (2, 21) + ®hor + Q (20, 21) &, (2.22)
with
(2, 2e-1) = Az + Bu (2, 201) — B®B 1Az,

Q(Zt,Zt_l) = BQ (Ztazt—l)-

The conditional distribution of g, given z;, 7 ., is similar to that of y, given z,, 7,1,

and in particular is Gaussian, the difference being that g, is fully observable.
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2.C Inversion techniques in the presence of unobserved regimes

Assuming moreover that the R;; are observed with Gaussian errors we get, with

obvious notations:

Ry = Aiz+ Buyie + Biayar + &
= Az + Buyiy

+ B9 Byy' (Ras — Agzt — Boyyn ) + &, (2.23)

with & ~ IIN (0,02%I).

Putting equations (2.22),(2.23) and (2.1) together, we have a dynamic model in
which the only latent variables are 2 ; and which can be estimated by the maximum
likelihood methods using Hamilton’s approach. At this stage, IC constraints on

(0¥, 6*) must be taken into account.

2.C.3. Estimation of (9%,@‘%)

From the inversion method of 2.C.2, we can get approximations of the y,,’s and
smoothing algorithms provide approximations of the z9,’s (see Kim, 1994) the 2y
are replaced by those states presenting the highest smoothed probabilities. Then
using equation (2.16), we get:

Rgn = C{LZLt + C;LZZt + Dlnyl,t + D;LyQ,t + Flnl’l,n,t + F2n$27n7t. (224)

and using equations (2.2), (2.3) and (2.24) and replacing yo; and zo; by their
approximations, we get a system in which the only latent variables are the xs,, ;.
Taking 67% and 0* as given, the parameters 6% and 62 can be estimated either by

an inversion technique or by Kalman filtering, taking into account IC conditions.

Note that in this strategy, the observable variables d,;’s have not been used. If
the recovery rate was effectively zero, A, ; would be the default intensity and the

conditional p.d.f. of d,; given zy,y,, Ty 4, dp—1 would be:

dn,tdn,t—l + (1 - dn,t—l) €exp [_ (1 - dn,t) )\n,t] X []- — €Xp <_>\n,t)]dn7t .
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2.D Estimation example: U.S. BBB-AAA corporate spreads

This p.d.f. could be incorporated in the likelihood function. However, in the more
realistic case of non-zero recovery rate, we have seen that (see Subsection 2.4.2)
the A, +’s must be interpreted as risk-neutral “recovery adjusted” default intensities
and, therefore, they cannot be used for describing the historical dynamics of the

dnytJS.

2.D. Estimation example: U.S. BBB-AAA corporate

spreads

2.D.1. State-space model

The model introduced in 2.6.3 can be written as a state-space system for the
purpose of estimation. Let denote by s; the 4 x 1 vector containing the BBB-
Treasury spreads with respective maturities of 1, 2, 3 and 5 years. Using a matrix

representation, the measurement equations of the state-space model are given by:
St = cz¢ + [yt + Eerrt

where the €., ; are some i.i.d. pricing (measurement) errors and where the matrices
c and f, that are respectively of dimension 4 x 3 (because there are three regimes)
and 4 x 2 (because there are two factors y;:), are computed by applying the
recursive pricing formulas introduced in Proposition 3. Because both y;; and ys,

are unobserved, the transition equations read:
Yr = pzr + Py + Qey,

where p, ® and €2 are constrained along the lines presented in 2.6.3. The state-
space model is completed by the specification of the matrix of regime-switching

probabilities {m; ;}.
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2.D Estimation example: U.S. BBB-AAA corporate spreads

2.D.2. Estimation results

The estimation is conducted by maximizing the log-likelihood (approximated by
the filter proposed by Kim, 1994). Some of the parameters are calibrated. First,
the unconditional variance of the first (purely Gaussian) factor y;; is constrained
to be relatively small with comparison to the overall standard deviation of the
spreads, so as to make sure that most of the spread fluctuations are to be explained
by the second factor y,;. Specifically, the standard deviation of y;, is set to 10
bp. Alternative estimations have shown that the results are fairly robust to this
first choice. Second, the matrix of probabilities of regime shifts is parameterized
so as to be consistent with the regimes’ interpretation. The “tranquil” regime is
supposed to be persistent and to prevail 50% of the time. By contrast, the crisis
regime is supposed to be relatively short-lived (with an average length of 4 weeks)
and to prevail only 5% of the time. Formally, these constraints mean that (a)
the ergodic distribution of the Markov chain is [50%,45%,5%]" and that (b) the
third diagonal entry of the matrix of transition probabilities (i.e. ps3) is such that
4 = 1/(1 — ps3) (4 weeks = average length of the third regime). The resulting

matrix of transition probabilities (under the historical measure) is:

0976 0.024 0
0.027 0.945 0.028
0 0.250 0.750

The estimated dynamics of 3, under the historical and the risk-neutral measures

are, respectively (standard errors, based on the outer-product estimate of the
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2.D Estimation example: U.S. BBB-AAA corporate spreads

Fisher information matrix, are reported in parentheses below the point estimates):

[ 0.023 0.023 0.023 0.841 0 0.053 0
. (2111)  (2111)  (2111) 2+ (0.010) Yoy + | ©@00) ,
0 0 0.219 0 0.981 0 0
L (0.007) (0.001)

—0.0029 —-0.0029 —0.0029
(0.0001) (0.0001) (0.0001)

Y = 2 +
0 0 0.0063
L (0.0001)
0&00 0 0.053 0
(0.000) Vi1 + (0.001) et
1
L 0 (0.000) 0 0

where ¢; and € are i.i.d. normally distributed shocks under the historical and the

risk-neutral measures, respectively. Besides, the hazard rate is

Ar = 0.622 .
t (0.020) + Y1t + Yo

The risk-neutral probabilities of transition (the 7;,’s) are estimated via MLE (to-

gether with the parameterization of the dynamics of y;):

0.988 0.012 0
(0.001)  (0.001)

0.000 0.511 0.488

(0.014)  (0.534)  (0.524)

0 0.000 1.000
(0.007)  (0.007) |

Finally, the pricing-error standard-deviation estimate (i.e. the standard deviation
of the €¢4's defined in 2.D.1) is 0.08%, or 8 basis points (the standard deviation

of the parameter estimate is 0.001%, or 0.1 bp).
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2.E About the eigenvectors of the rating-migration matrix I1

2.E. About the eigenvectors of the rating-migration

matrix 11

In this appendix, using the notations presented in Subsection 2.8.4, we outline
some properties of matrices [T and V. For notational simplicity, we drop arguments

and time subscripts associated with these matrices.

!/
o Asthe sum of the entries of each line of IT is equal to 1, the vector { 1 --- 1 }
is an eigenvector of II associated with the eigenvalue 1. Consequently, since
this eigenvalue is supposed to be the last one appearing in ¥, the last column

/

of V' —that collects the eigenvectors of II- is proportional to { 1 --- 1

o The fact that default is an absorbing state implies that the last row of II is
[ 0 --- 01 ] Since we have IIV = VW, it comes (considering the last

line of this equation):

Vi Vi = Vkjexp (=),

which implies: Vj < K, Vi ; = 0.

o The two previous points imply that the matrix V' admits the following form:

Via Vik—1 7
V=
Vik-11 Vk-1,k-1 7
I 0 0 7 |

Since VV~! = I, we have (considering the last line and using the notation

V5! for the entry (i,7) of V)

VI;% VI;”lK_l Vg}(]:{o o 0

)

==

and, therefore, for : = 1,..., K, we have VZ-,KVI;}( = 1.
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2.E About the eigenvectors of the rating-migration matrix I1

Figure 2.3.: BBB vs. Treasury Spreads, Simulations

Notes: This Figurecompares the distributions of spreads simulated by different models (with the
sample distributions of spreads, the sample covering the period from March 1995 to July 2011).
Three alternative models are used: the regime-switching one (presented in 2.D) and two “purely
Gaussian” models (involving respectively one and two AR(1) factors). Simulations are based on
50.000 replications of each models. The lower row of panels present the term-structures of the
spreads (observed for the left plot and implied by the models for the other plots); for each panel, the
grey shaded area is delimited by the 5th and the 95th percentiles of the spreads at each considered

maturity. In addition, the lower-row plots present the term structures of medians and means of the
spreads.
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2.E About the eigenvectors of the rating-migration matrix I1

Figure 2.4.: Simulated sample of the sector-contagion model

Notes: Each panel corresponds to one sector. There are 600 debtors in the portfolio (200 per sector).
The vertical bars represent the number of firms that have defaulted during the considered period. At
the end of each period, defaulted firms are replaced by new ones (of the same sector). Grey-shaded
areas indicate periods during which the considered sector is in distress. Darker areas indicate periods
when all three sectors are in distress.
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Figure 2.5.: Yield curves for selected ratings (with impact of regimes)

Notes: The left plot shows yield curves for selected ratings, with y; = 0 and z; = [1,0]" (solid lines)
or z; = [0, 1]’ (dashed lines). The right plot shows the term structure of spreads vs. Aaa-rated bonds.
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2.E About the eigenvectors of the rating-migration matrix I1

Figure 2.6.: Simulated downgrade probabilities and spreads

Notes: The upper plot shows simulated downgrade probabilities for two ratings (the downgrade
can be of one or more notches). Formally, for rating j, the upper panel plots P(7, ¢ > Tnt—1 |
26 Y Ly Tng—1 = j). The grey-shaded areas indicate “crisis” periods. The lower plot shows
the yield spreads between 10-year zero-coupon bonds issued by A-rated or Baa-rated debtors and

zero-coupon bonds issued by Aaa-rated issuers.
Downgrade probabilities (at least one notch)

18% 7 .
15% Rat!ng Aa
N Rating Baa
12%
9%
6% i/VV\jW\/V\\r’WA/WWW
3%
0% ‘ ‘ ‘ ‘ ; ‘ ‘ ‘ ; ‘
0 20 60 80 100 120 140 160 180 200
Spreads vs. Aaa bonds (maturity: 10 years)
150 bp A vs. Aaa
] Baa vs. Aaa
100 bp
oo 7/HJWJ’\\/JM,’V\N/\H\/\JWM/\/_N\\/\A/MVW
0 bp T T T T T T T T T T T T T T T T T T T 1
0 20 40 60 80 100 120 140 160 180 200

83



3. Credit and liquidity risks in

euro-area sovereign yield curvesl

Abstract: In this Chapter, we propose a model of the joint dynamics of euro-
area sovereign yield curves. The arbitrage-free valuation framework involves five
factors and two regimes, one of the latter being interpreted as a crisis regime. Each
country is characterized by a hazard rate, specified as a linear combination of the
factors and the regimes. The hazard rates incorporate both liquidity and credit
components, that we aim at disentangling. We find that a substantial share of the

changes in euro-area yield differentials is liquidity-driven.

!This Chapter is based on an article co-authored with Alain Monfort and entitled “Credit and
liquidity risks in euro-area sovereign yield curves”. We are grateful to Christian Gourieroux,
Glenn Rudebusch, Damiano Brigo, Olesya Grishchenko, Vladimir Borgy, Valére Fourel, Wolf-
gang Lemke, Simon Gilchrist, Kristoffer Nimark, Tao Zha, Christian Hellwig, Jean-Sébastien
Fontaine and Adrien Verdelhan for helpful discussions and comments. We are also grateful
to participants at the Banque de France internal seminar, at the C.R.E.D.I.T. conference
2010, at CREST seminar 2010, at the Paris finance international meeting 2010, at CORE
Econometrics Seminar 2011, at 2011 ESEM meeting, at 2011 IESEG-University of Cambridge
conference on yield-curve modelling, at AFSE annual meeting, at the Bank of England semi-
nar, at CDC seminar and at the ECB Workshop on Asset pricing models in the aftermath of
the financial crisis, at Computational and Financial Econometrics conference (London 2011),
at Bank of Canada seminar. We thank Beatrice Saes-Escorbiac and Aurélie Touchais for
excellent research assistance. Any remaining errors are ours. The views expressed in this
Chapter are ours and do not necessarily reflect the views of the Banque de France.
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Résumé

Ce chapitre propose une modélisation jointe des dynamiques de courbes de taux
de dix Etats de la zone euro sur la période 1999-2012. Ce modele, qui exclut
les opportunités d’arbitrage, est un cas particulier du cadre général proposé dans
le chapitre précédent. Chaque pays est caractérisé par une intensité de crédit —
reflétant son risque de défaut— et une intensité de liquidité —reflétant la valorisation
de la relative illiquidité des titres émis par ces Etats. Chacune de ces intensités
est une combinaison linéaire de cinq facteurs ainsi que d’'un vecteur de sélection
de dimension 2 x 1 indiquant quel régime prévaut a chaque date, I'un de ces deux
régimes étant interprété comme un régime de crise. Les facteurs et les régimes

sont communs aux dix pays.

Les cinq facteurs sont eux-mémes des combinaisons linéaires de taux d’intérét
observés. Les trois premiers sont tirés de taux d’Etat allemand, qui sont considérés
comme des taux sans risque : le premier correspond au taux a 10 ans, le second est
un facteur de pente (différence entre un taux long et taux court) et le troisieme est
un facteur de convexité (position d’un taux de maturité intermédiaire par rapport
a la moyenne d’'un taux long et d’'un taux court). Le quatrieme et le cinquieme
facteurs sont les deux premieres composantes principales d’un échantillon de quatre
séries temporelles d’écarts de taux; ce sont les écarts entre les taux a 10 ans frangais,
espagnols, italiens et hollandais d’une part et le taux a 10 ans allemand d’autre

part.

Dans ce modele, les taux sont des combinaisons linéaires des facteurs et des
régimes. Les facteurs sont donc des fonctions de taux d’intérét qui dépendent
eux-mémes des facteurs. Aussi, une procédure d’estimation spécifique doit-elle
étre définie pour respecter la cohérence interne du modele. Cette procédure est
mise en oeuvre lors de l'estimation de la dynamique risque-neutre des facteurs.
Une méthode spécifique, fondée sur une utilisation de la méthode des moments
généralisés, est proposée. Le calcul des écarts-types des parametres estimés via

cette méthode est détaillé.

La dynamique historique des facteurs est estimée séparément de la dynamique
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risque-neutre. Il a été montré que I'on tend a sous-estimer la persistence des pro-
cessus en échantillon fini (voir notamment Jardet, Monfort et Pegoraro, 2013).
Afin de traiter ce probleme, qui a d’importantes conséquences pour l’estimation
des primes de risque, nous mettons en oeuvre la méthode proposée par Kim et
Orphanides (2012). Cette méthode consiste & pénaliser, lors de l'estimation du
modele, ces combinaisons de parametres qui impliquent que les prévisions de taux
fondées sur le modele sont éloignées de celles réalisées par les prévisionnistes. Nous
utilisons trois séries de prévisions: l'une pour le premier facteur (taux long alle-
mand) et les deux autres pour le quatriéme et le cinquiéme facteur (composantes
principales d’écarts de taux). Ces séries temporelles de prévisions sont issues du

Consensus Forecast.

L’estimation suggere que l'existence du régime de crise est clé pour expliquer
I’accroissement de la volatilité des taux sur la période récente. L’ajustement
des données est de bonne qualité. En moyenne a travers les pays et les matu-

rités, ’écart-type des erreurs de mesure de taux d’intérét est de 18 points de base

(0.18%).

A ce stade, on dispose d’'un modele dans lequel chaque taux d’intérét est une
combinaison linéaire des cinq facteurs et de la variable de régime. Il reste ensuite
a décomposer chaque taux d’intérét en une composante crédit et une composante
liquidité. Cela revient a décomposer en deux parties l'intensité globale associée
a chaque pays. Notre stratégie d’identification de la partie liquidité de chaque
intensité repose sur 'interprétation de I'écart de taux KfW-Bund. KfW est une
banque publique allemande dont les titres sont completement et explicitement
garantis par 'état fédéral allemand. Aussi, les Bunds, qui sont les obligatons
émises par I’Etat fédéral allemand, et les obligations émises par KfW bénéficient-
elles de la méme qualité de crédit. En conséquence, 1’écart de taux entre ces
titres reflete essentiellement la valorisation de la différence de liquidité entre les
deux types de titres. Nous vérifions que les écarts de taux KfW-Bund sont tres
corrélés avec le méme type d’écarts de taux relatifs a d’autres pays de la zone
euro. Nous en déduisons que la valorisation de la liquidité obligataire en zone

euro repose sur un unique facteur de liquidité. L’identification de celui-ci est
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réalisée en incluant la structure par terme associée aux obligations émises par
KfW dans notre estimation. Il en résulte que le facteur de liquidité est lui aussi
une combinaison des cing facteurs et de la variable de régime. Pour chacun des
autres pays, l'intensité d’illiquidité est obtenue comme une transformation affine
du facteur de liquidité précédemment identifié. Cette transformation est estimée en
maximisant la part des fluctuations de chaque intensité nationale (incluant crédit
et liquidité) pouvant étre expliquées par les fluctuations du facteur de liquidité,
tout en intégrant des objectifs supplémentaires concernant la positivité des écarts
de taux et des intensités de crédit (qui correspondent & des probabilités de défaut,

qui sont donc positives).

Nos résultats suggerent que la liquidité est déterminante pour expliquer les varia-
tions des prix obligataires. En particulier, jusqu’en 2009, les différences de liquidité
expliquent la majeure partie des écarts de taux d’intérét entre les pays les mieux
notés par les agences de crédit (Allemagne, Autriche, Finlande, France et Pays-
Bas). En revanche, depuis lors, c’est surtout la dégradation de la qualité de crédit
vis-a-vis de celle de I’Allemagne —du moins telle que percue par les marchés— qui

explique le creusement des écarts de taux.
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3.1. Introduction

One of the most spectacular symptoms of the crisis that began in mid-2007 is
the dramatic rise in intra euro-area government-bond yield spreads. Whereas all
euro-area sovereign 10-year bond yields were contained in a range of 50 bp between
2002 and 2007, the average spreads over Germany of only two countries were lower
than 50 basis points in 2011, the debt-weighted mean being of about 250 bp. Since
the inception of the euro in 1999 and the resulting elimination of exchange-rate
risk, intra~euro-area spreads reflect the fluctuations of compensations demanded by
investors for holding essentially two kinds of risks: credit and liquidity risks.? The
credit risk is linked to the issuer’s probability of default (PD). If investors assess
that the PD of some indebted country is higher than in the past, the prices of the
bonds issued by this country fall because the expected loss increases. Liquidity
risk arises from the potential difficulty that one may have in selling the asset
before its redemption (for instance if one is required to do so in distressed market
conditions, where it is difficult to find a counterpart for trade relatively quickly).
In many ways, the ongoing financial crisis has illustrated why, along with credit
risk, liquidity risks matter and should not be underestimated (see Brunnermeier,

2009).

Disentangling credit and liquidity effects in bond prices is important in several
respects. For instance, appropriate policy actions that may be needed to address
a sharp rise in spreads depend on the source of the movement: if the rise in
spreads reflects poor liquidity, policy actions should aim at improving market
functioning. But if it is linked to credit concerns, the solvency of the debtors should
be enhanced (see Codogno, Favero and Missale, 2003). Furthermore, optimal
investment decisions would benefit from such a decomposition. In particular, those
medium to long-term investors who buy bonds to hold them until redemption seek

to buy bonds whose price is low because of poor liquidity, since it provides them

2Indeed, an overwhelming share of the euro-area sovereign debt is denominated in euros (see
Eurostat, 2011). Note however that over the recent period, i.e. since Spring 2012 onward,
there is evidence that there have been fears on the part of investors of the reversibility of the
euro (see notably the speech by Draghi on 6 September 2012). This period is not covered by
the empirical studies of this Chapter and the following.
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with higher long-run returns than more liquid bonds with the same credit quality

(see Longstaff, 2009).

In this chapter, we present a no-arbitrage affine term-structure model (ATSM)
of the dynamics of ten euro-area sovereign yield curves. Jointly modelling these
different yield curves allows us to identify and price credit and liquidity risk factors
that are common to euro-area countries. Being euro area-wide, these risks can not
be diversified away by the investors, who demand risk premia to be compensated
for carrying them. The size and dynamics of such risk premia will be studied more
in depth in the next Chapter, the present one focusing on the credit/liquidity

decomposition.

The framework allows for transitions between tranquil and crisis periods, which
is obviously well-suited to account for the fluctuations of yields and spreads over
the last three years. In this reduced-form framework, the default probabilities are
modeled directly instead of defining a stochastic process for the obligor’s asset
value that triggers default when the process reaches some threshold (as in Merton,
1974 ).3 While the focus is on default modelling, the specifications account for the
pricing of some liquidity premia, as originally proposed by Duffie and Singleton
(1999) . The state variables, also named “risk factors”, follow discrete-time inter-
related Gaussian processes. Exploiting the framework developed in the previous
Chapter, the Gaussian processes present drifts and variance-covariance matrices
that are subject to regime shifts. The latter are described by a two-state Markov
chain. The model is estimated using yield data covering the last twelve years.
The five-factor and two-regime model accounts for more than 98% of the variances
of yields driving eleven term structures of interest rates. The fact that a small
set of factors is able to account for most of the fluctuations of sovereign spreads
is consistent with findings by Geyer, Kossmeier and Pichler (2004) and, more

recently, by Longstaff et al. (2011) .

3After having developed criteria to measure the performances of credit models in terms of
default discrimination and relative value analysis, Arora, Bohn and Zhu (2005) compare
structural (e.g. Merton’s) and reduced-form models. Their results suggest that the reduced-
form model outperforms the others when the issuer has many bonds in the market, which is
typically the case for sovereign issuers.
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In addition to the yield curves of ten euro-area countries, we model the yield
curve of KfW (Kreditanstalt fir Wiederaufbau), a German agency. We identify a
liquidity-related pricing factor by exploiting the term structure of the the KfW-
Bund spreads. Indeed, the bonds issued by KfW, guaranteed by the Federal Re-
public of Germany, benefit from the same credit quality than their sovereign coun-
terparts —the Bunds— but are less liquid.* Therefore, the KfW-Bund spread should
be essentially liquidity-driven.® The resulting liquidity-related factor contributes
significantly to the dynamics of intra-euro spreads, supporting recent findings by

Favero et al. (2010) or Manganelli and Wolswijk (2009).

We propose an efficient estimation method to bring the model to the data. The
risk factors are some linear combinations of observed yields. Being observed, the
estimation of the (historical) risk-factor dynamics boils down to the estimation of
a Markov-switching vector-autoregression model. The regime-switching feature of
the model turns out to be particularly relevant to account for the rise in volatility
experienced by fixed-income markets over the last years.® The fact that the factors
are observed yield combinations raises internal consistency issues when it comes
to estimating their risk-neutral dynamics: the model has indeed to correctly price
the bond portfolios that are reflected by these yield combinations. These internal-

consistency restrictions are taken into account by our estimation procedure.

Our estimation dataset is supplemented with survey-based forecasts. As evidenced
by Kim and Orphanides (2005), this alleviates the downward small-sample bias in
the persitence of the yields obtained with conventional estimation.” Such biases
typically result in too sTablelong-horizon expectations of yields and, as a conse-
quence, overstate the variability of term premia. Generating reliable expectations

is key if one wants to use the model to recover probabilities of default from bond

4By abuse of language, we use here the term Bunds for the German sovereign bonds of any
maturity although this name is usually used for ten-year bonds only.

®See Schwarz (2009).

6The pricing framework allows for risk premiums demanded by the investors to be compensated
for the systematic nature of the regime shifts. Regime shifts represent a systematic risk in
the sense that this risk can not be diversified away.

"This way of reducing the bias is not the only one. In particular, Jardet, Monfort and Pegoraro
(2009) use a “near-cointegrated framework” specification of the factors (averaging a stationary
and a cointegrated specification).
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prices (as will be done in the next Chapter).

This study contributes to the term-structure modelling literature in three main
directions. First, we estimate an ATSM explicitly incorporating liquidity and
credit aspects on European data, in a multi-country set up.® Second, we investigate
the potential of the regime-switching feature in credit ATSM. Third, we propose
an efficient estimation methodology, conveniently dealing with internal consistency

problems and incorporating survey-based forecasts data.

The remaining of this Chapter is organized as follows. Section 3.2 presents the
model and details how bonds are priced in this framework. Section 3.3 deals with
the choice and the construction of the data. Section 3.4 presents the estimation
of the model and Section 3.5 examines the implication of the model in terms
of liquidity and credit pricing. Section 3.6 summarizes the results and makes

concluding remarks.

3.2. The model

In this Section, we present the dynamics of the pricing factors and regimes. We
consider three types of variables: five macroeconomic factors gathered in a vector
Yt = (Y16, Y2, Yst, Yaes Ys ¢, a regime variable z; that can take two values: [1,0]
and [0,1]" and d; = (dy4,...,dny), a set of binary variables indicating the default
(dnt = 1) or the non-default (d,: = 0) states of the countries indexed by n.
The next two subsections respectively describe the dynamics under the historical
measure and under the risk-neutral measure. Then Subsection 3.2.3 deals with

the hazard rates and, in particular, introduces the modelling of liquidity pricing.

3.2.1. Historical dynamics of factors (y;) and regimes (z;)

The conditional distribution of y; given z; is Gaussian and is given by:

8Geyer, Kossmeier and Pichler (2004) have also presented a multi-country ATSM. However,
their model only accounts for the spreads’ dynamics (which are supposed to be driven by
factors that are independent from the the riskfree rates) and it does not explicitly accomodate
liquidity-pricing effects.
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Y1t Hi1 H12 Y141 oz 0 0
: — : : 2+ P : + : . 0 €t
UYp,t Hp1  Hp2 Yp,t—1 (72;12’15 ce U;,pzt
= pz+ QY1 + Qz)es, (3.1)

where the ¢,’s are independently and identically N (0, I') distributed. It is a vector
autoregressive model where the drift and the covariance matrix of the innovations
are subject to regime shifts. The regime variable z; follows a two-state Markov

chain whose probabilities of transition are denoted with 7, ;. Formally:
p(Zt:j‘Zt,1 :7/) =T j- (32)

Equation (3.1) implies that there is instantaneous causality between z; and y;, as
in Ang, Bekaert and Wei (2008).° If country n has not defaulted before ¢, the
conditional probability that country n defaults in time ¢ is given by 1 — exp(—/\fm)
where the default intensity A{, is a function of (z,y;). Our framework builds on
the “doubly stochastic” assumption, under which the default times of the different
countries are correlated only as implied by the correlation of their default intensi-
ties. The default state is absorbing, in the sense that d,; = 1 implies dy, 4+p, = 1

for any positive h.

The risk-free one-period rate 7,1, that is the return of a one-period risk-free

investment between ¢ and ¢ + 1 (known in t) is a linear combination of y; and z;:

Ti1 = Q12 + Dy

9Ang et al. (2008) remark that instantaneous causality between z; and y; implies that the
variances of the factors y;, conditional on past values of (z¢, y:), embed a jump term reflecting
the difference in drifts p accross regimes. This feature is absent from the Dai, Singleton and
Yang (2007) setting.
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3.2.2. The risk-neutral dynamics

Under the risk-neutral measrure @, the dynamics of y; is given by:

Y1t Pl Mg Y1,t—1 o112 0 0
’ = : S 7 : + o0 | &(33)
Ypt Pp1 Py Ypt—1 Uzlﬂzt cee Uépzt
= 'z + My + Qz)e; (3.4)

where, under Q, z; is an homogenous Markov chain defined by a transition matrix

{7}, and where ¢} is IIN (0, ).

Given the historical and the risk-neutral dynamics, it can be shown that the
stochastic discount factor (s.d.f.) is exponential affine in (z;,y;). More precisely,

in this context, the s.d.f. M;_;, between ¢t —1 and ¢ is of the form (see Chapter 2):

! 1 I

Mt—l,t = €exp _a/1zt—1 - b1yt—1 - 57/ (Ztu zt—l’yt—l) v (Ztu Zt—hyt—l) +

+I// (Zt; Zt—1, ytq) €+ [5121;71]/24 ) (3-5)

where 0 is a 2x2 matrix whose (i, j) entry is In(7}; /7;;) and where Q (z;) v (2, Y1) =
(®* — ®)yp—1 + (u* (2:) — p(2)). The risk-sensitivity matrix ¢ and function v re-

spectively price the (standardized) innovations €; of y; and the regimes z;.

3.2.3. Hazard rates

As explained in Section 2.7, in such a framework, the pricing of defaultable bonds
boils down to the pricing of risk-free bonds if the risk-free short rate is replaced
with a short rate embedding credit and liquidity risks. The differential between
the latter and the risk-free short rate is termed with hazard rate and is denoted by
Ant (for country n). Intuitively, in the absence of liquidity pricing and with a zero

recovery rate, the hazard rate would simply be the default intensity )\fm. In the
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presence of non-zero recovery rate, the pure default intensity has to be replaced
by the a loss-adjusted credit intensity\;,, (see Subsection 2.4.2). Assuming that
the recovery payoff is equal to a constant fraction ( of the bond price that would

have prevailed in the absence of default, the credit intensity A} ; is given by:1°
exp (—)\fm) = exp (—)\it) +¢ {1 — exp (—)\it)] .

Liquidity-pricing effects are introduced through an illiquidity intensity denoted
by AL, We assume further that credit and illiquidity intensities are affine in
(z¢,y¢). More precisely, under both measures, the hazard rate of the bonds issued

by country n reads:

/ !/
Ant = (Oéfl)/ zt + (ﬁ;)/yt + (04£L> 2zt + (ﬁﬁ) Ye oo (3.6)
credit-related (A7, ;) liquidity-related (X! ,)

Further, we assume that the country-specific illiquidity intensities )\fm are driven
by a unique factor denoted by ¢, the latter being a linear combination of (2, ;).

Formally, for all countries n, we have:

A= Von Vi XA =00+ Vin X (2 + Biw) - (3.7)

3.2.4. Pricing

It is well-known that the existence of a positive stochastic discount factor is equiv-

alent to the absence of arbitrage opportunities (see Hansen and Richard, 1987

100f course, when ¢ is equal to Z€T0,\j, ¢ = )‘;lut’ and when( is equal to one, the bond is equivalent
to a risk-free bond.

1See Section 2.7. The affine term-structure literature is relatively silent on the interpretation or
the microfoundations of the illiquidity intensity. In a theoretical paper analyzing interactions
between credit and liquidity risks, He and Xiong (2012) show that such an illiquidity intensity
may reflect the probability of occurence of a liquidity shock; upon the arrival of ths shock,
the bond investor has to exit by selling his bond at a fractional cost (i.e. the selling price
is equal to a fraction of the price that would have prevailed in the absence of the liquidity
shock); the fractional cost is the analogous to the fractional loss (1 — ¢) in the default case
(see also Ericsson and Renault, 2006 for a similar interpretation).
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and Berholon, Monfort and Pegoraro, 2008) and that the price at ¢ of a risk-free

zero-coupon bond with residual maturity h, denoted by By, is given by:

Boin = E;@ lexp (=rip1 — .. — rean)], (3.8)

where ry; = a’lztﬂ-,l + b’lytﬂ-,l, i =1,...,h.*> Under our recovery assumptions,
the price of a defaultable and illiquid zero-coupon bond issued by country n and
with a residual maturity of h has a price at time t that is given by (if debtor n
has not defaulted before time t; see Appendix 4.A for a proof in a more general

context):

Bn,t,h = E;@ [exp (—Tt+1 — .. — Tt+h — /\n,t—l-l — ... — )\n’t_i'_h):l . (39)

Since both the r4;’s and the A, ;1;’s are affine in (2, y;), and since(z, y;) is com-
pond auto-regressive of order one under Q, the prices of bonds are exponential

affine in (z;,y,):"

By = exp (=Conz = fonth) (3.10)
and the associated yields are:

Ruon =7 (Conzt+ frntt) (3.11)

S

where (c, ;,, f ) are computed recursively.

12As for the hazard rates (see equation 3.6), the risk-free short-term rate is the same function
of (z¢,4;) under both measures.

13 Appendix 3.A.1 derives the Laplace transform of (z;,%;) and shows that (z;,y;) is Com-
pound auto-regressive of order one. Appendix 2.A.5 shows how to compute the multi-horizon
Laplace transform of compound auto-regressive processes. (See Darolles, Gourieroux and
Jasiak, 2006 or Bertholon, Monfort and Pegoraro, 2008 for in-depth presentations of com-
pound auto-regressive —or Car— processes.)

14The general recursive formulas are presented in Appendix 2.A.55.15. To apply these in the
current case, one has (a) to use the Laplace tansform of (z;,y:) presented in Appendix 2.A.5
and (b) take a sequence wp, h = 1,..., H defined by wg = (—a,, —f,) and wy, = (—a, —
ay, =B, —bvy,—,) for h=1,...,H — 1, with ¢, 0 = a1 and f, o = by.
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3.3. Data

The data are monthly and cover the period from July 1999 to March 2011. We
exclude the first 6 months of 1999 so as to avoid potential effects linked to the euro
introduction. The estimation involves end-of-month yields as well as survey-based
yield forecasts. We consider the yield curves of ten euro-area countries: Austria,
Belgium, Finland, France, Germany, Ireland, Italy, the Netherlands, Portugal and
Spain. Greece data are excluded from the analysis because appropriate euro-
denominated bond yields are not available before 2001, when Greece joined the
euro area. Consistently with the fact that, among sovereign euro-area bonds, the
German Bunds are perceived to be the "safest haven" both in terms of credit quality

and liquidity, we consider the German bonds as risk-free.!

Appendix 3.B details the sources of the data and the preliminary computations
performed to get end-of-month zero-coupon yields. The following subsection( 3.3.1)
introduces the KfW-Bund spreads that will be exploited to identify the liquidity-
related latent factor A\f. In 3.3.2, we provide a preliminary analysis of euro-

area yield differentials and in 3.3.3, we detail the computation of the factors

Yty -5 Yst-

3.3.1. The KfW-Bund spread

Our identification of a liquidity-related latent factor is based on the yield spreads
between German federal bonds and KfW agency bonds. The latter are less liquid
than the sovereign counterparts, the so-called Bunds, but are explicitly and fully

guaranteed against default by the German federal government.'® Consequently,

15Tn particular, the German bond market is the only one in Europe that has a liquid futures
market, which boosts demand for the German Bund compared to other euro area debt and
bolsters its liquidity (see e.g. Pagano and von Thadden, 2004, Ejsing and Sihoven, 2009 or
Barrios et al., 2009).

16 An understanding between the European Commission and the German Federal Ministry
of Finance (1 March 2002) stated that the guarantee of the Federal Republic of Ger-
many will continue to be available to KfW. The three main rating agencies —Fitch, Stan-
dard and Poor’s and Moody’s— have assigned a triple-A rating to KfW (see KfW website
http://www.kfw.de/kfw/en/KfW_ Group/Investor_ Relations/index.jsp). In addition, as the
German federal bonds, KfW’s bonds are zero-weighted under the Basel capital rules. The
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the spread between these two kinds of bonds can be seen as a measure of the
German government bond-market liquidity premium demanded by investors. In
the same spirit, Longstaff (2004) computes liquidity premia based on the spread
between U.S. Treasuries and bonds issued by Refcorp, that are guaranteed by the
U.S. Treasury.

Panel A of Figure 3.1 shows that the KfW-Bund spreads of different maturities are
highly correlated. This suggests that a single factor may be adequate to model the
term structure of these spreads. Here, it is important to check that this liquidity-
pricing measure is not purely specific to Germany. To that purpose, we look at
comparable liquidity-driven spreads —between government-guaranteed bonds and
their sovereign counterparts— in alternative countries.!” In France for instance,
the CADES (Caisse d’amortissement de la dette sociale) issues bonds that are
guaranteed by the French government. Panel B compares one of the KfW-Bund
spreads with a CADES-OAT spread (OATs are French government-issued bonds)
and displays spreads of government-guaranteed bank bonds —issued by the Dutch
NIBC bank and the Austrian Raiffeisen Zentalbank— over their respective sovereign
counterparts. This exercise points to a substantial degree of correlation among

liquidity-driven spreads from different European countries.

3.3.2. Euro-area government yields

Table 3.1 suggests that euro-area government yields are highly correlated across
countries and across maturities (see also Favero, Pagano and von Thadden, 2010
[115]). Table 3.2 reports the correlations between the spreads vs. Germany for
different countries over the sample periods and presents a principal-component
analysis of these spreads across countries. The correlations suggest that spreads
largely comove across countries. The principal-component analysis (see lower part

of Table 3.2) indicates that, for different maturities (2, 5 and 10 years), the first two

relevance of the KfW-Bund spread as a liquidity proxy is also pointed out by McCauley
(1999), the ECB, 2009 and is exploited by Schwarz (2009).

1"Note that such alternative (term structures of) spreads are not available on our whole estima-
tion period, that is why we use essentially KfW-Bund spreads to identify our liquidity factor
within our econometric approach.
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Figure 3.1.: Differentials between government and government-guaranteed bonds

Notes: The first plot shows the spreads between KfW bond yields and their sovereign counterparts.
The second plot compares the spread between a KfW bond maturing in 2014 and its sovereign
counterpart with other spreads between government-guaranteed European bonds and their respective
sovereign counterparts: CADES’, NIBCAP's and RZB’s bonds are respectively guaranteed by the
French, Dutch and Austrian governments (the spreads are demeaned and standardized). The yields
come from Barclays Capital.

Panel A - KfW-Bund spreads across maturities Panel B - Liquidity spreads across countries

Spreads vs. German Govt

Spreads vs. Guaranteeing Govt (normalized)

Obp T T T T -3 T T T T
May-07  Jul-08 Aug-09  Oct-10 Dec-11 May-07  Jul-08 Aug-09  Oct-10 Dec-11
— KFW 4.250% Jul 14 — KFW 4.250% Jul 14
...... KFW 2.250% Apr 15 ------ CADES 4.000% Oct 14
KFW 4.125% Jul 17 RZB 3.625% Feb 14
KFW 3.875% Jan 19 NIBCAP 3.500% Apr 14

principal components roughly explain 90% of the spread variances across countries.
This suggests that a model with a limited number of common factors may be able
to explain the bulk of euro-area yield-differential fluctuations. The estimation is
based on four benchmark maturities per country: 1, 2, 5 and 10 years. The short

end of the risk-free yield curve is augmented by the 1-month EONIA swap.!8

3.3.3. Construction of the factors y;

As explained in Section 3.2.4, our framework implies that (modeled) bond yields
end up being some linear combinations of the regime variables z; and of the factors
y;- Therefore, appropriate factors have to capture a large share of the common

fluctuations of yields. Natural candidates for the y;’s are the principal components

18Data providers such as Bloomberg do not propose 1-month sovereign German yields. We
decide to replace it with the 1-month EONIA swap rates as swap yields are often considered
as risk-free yields, see e.g. Collin-Dufresne, Goldstein and Martin (2001).
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Table 3.1.: Descriptive statistics of selected yields

Notes: The Tablereports summary statistics for selected yields. The data are monthly and cover the
period from July 1999 to March 2011. Two auto-correlations are shown (the 1-month and the 1-
year auto-correlations). The yields are continuously compounded and are in percentage annual terms
(see Appendix 3.B for details about their construction). The lower panel of the Tablepresents the
covariances and the correlations (in italics) of the yields. The 1-month rate is the 1-month EONIA
swap.

German yds Italian yds Portuguese yds Irish yds

1-mth 2-year 10-year  2-year  10-year  2-year  10-year  2-year  10-year
Mean 2.761 2.961 4.086 3.288 4517 3.428 4.609 3.537 4.672
Median 2.832 3.091 4.084 3.32 4.459 3.474 4.45 3.51 4.568
Standard dev. 1.371 1.18 0.718 1.046 0.581 1.046 0.79 1.125 1.048
Skewness -0.243 | -0.303 -0.076 | 0.175 0.17 0.488 0.952 1.285 1.974
Kurtosis 2.09 2.131 2.323 2.059 2.189 3.664 4.967 6.398 9.232
Auto-cor. (lag 1) 0.998 0.988 0.973 0.98 0.962 0.896 0.962 0.936 0.963
Auto-cor. (lag 12) 0.475 0.53 0.586 0.491 0.571 0.132 0.29 0.037 0.279

Correlations \ Covariances
1-mth EONIA swap | 1.867 1.521 0.73 1.306 0.432 0.835 0.114 0.636 -0.276
0.713 1.149 0.423 0.728 0.144 0.577 -0.18

German 2-yr yd

German 10-yr yd 0.744 0.516 0.588 0.345 0.349 0.201 0.283 0.037
Italian 2-yr yd 0.917 0.937 1.086 0.451 0.84 0.316 0.747 0.12
Italian 10-yr yd 0.545 0.619 0.827 0.337 0.325
Portug. 2-yr yd 0.586 0.593 0.466 0.773 0.61
Portug. 10-yr yd 0.106 0.155 0.355 0.384 0.753
Irish 2-yr yd 0.415 0.438 0.351 0.639 0.855
Irish 10-yr yd -0.193 -0.146 0.049 0.11 1.092

of the set of yields time series. However, since we do not have survey-based fore-
casts of all the yields that we consider in the estimation —there are 40 of them—,
doing so would deprive us of survey-based forecasts of the factors. If, as in Kim
and Orphanides (2012), we want to incorporate such data in the estimation of
the historical dynamics of the factors, these need to be based on variables for
which some forecasts are available. To that respect, the Consensus Forecasts pro-
vide us with 3-month-ahead and 12-month-ahead forecasts of the 10-year sovereign
yields of 5 countries: France, Germany, Italy, the Netherlands and Spain. As a
consequence, if we construct some factors that are given by combinations of these
yields, 3-month and 12-month ahead survey-based forecasts of these factors can be
included in the estimation procedure. (The advantages of using survey forecasts in

the estimation of the historical dynamics of the factor are outlined in Section 3.1.)
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The Consensus Forecasts are produced monthly by Consensus Economics, which
surveys financial and economics forecasters. The survey is released around the
middle of the month.'® Note that the survey implicitly targets yields-to-maturity
of coupon bonds and not zero-coupon bonds. However, our zero-coupon yields
remain very close to coupon yields over the estimation sample. The remaining
discrepancy will be attributed to the deviation between the survey-based forecasts

and the model-based ones (the ¢;¢’s introduced in equation 3.12 below).

Nevertheless, all of our factors can not be based on 10-year yields since we would
then miss the drivers of the deformation of the term structure of interest rates.
In other words, we also have to consider factors that will be able to capture the

changes in the slope and the curvature of the yield curves.?

Taking all these remarks into account, we use the following factors: the first three
are the level, the slope and the curvature of the German yield curve;?' the last
two factors are the first two principal components of the 10-year-maturity spreads
(vs. Germany) of France, Italy, the Netherlands and Spain. Eventually, survey-
based forecasts are available for three out of five factors (the first factor, i.e. the
10-year German yield, and the last two factors, associated with 10-year spreads

vs. Germany).

The factors yi4, ..., ys+ that result from this procedure are plotted in the upper

two panels in Figure 3.2.

19The number of respondents varies across time and countries. One average over the estimation
period, while more than 20 forecasters contribute to the German forecasts, around 10 take
part to the Italian ones. For each yield, we use the mean of the forecasts produced by the
different survey contributors.

20The importance of such factors has been investigated by various empirical studies in the wake
of Litterman and Scheinkman (1991).

21The first (level) factor is the 10-year German rate, the second (slope) factor is the difference
between the spread between the 10-year and the 1-year rates, the third (curvature) factor is
computed as the difference between (a) the 3-to-10 year and (b) the 1-to-3 year slope of the
yield curve (that is, 2 times the 3-yr yield minus the sum of the 1-yr and the 10-yr yields).
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3.4. Estimation

3.4.1. Main lines of the estimation strategy

As Ang, Piazzesi and Wei (2006) or Moench (2008), our estimation procedure
involves two steps. In the first one, we estimate the historical dynamics of factors
y; and regimes z; by maximizing the log-likelihood using the Kitagawa-Hamilton
algorithm. At the end of this first step, the Kitagaw-Hamilton smoother is used
to estimate the regime variables z; and these are taken as fixed in the next step.
The latter concerns the joint estimation of the risk-neutral dynamics of (z;, y;) and
of the specifications of the hazard rates A, ;. This second step is based on non-
linear-least-squares techniques, taking into account the internal-consistency issue.
Then, it remains to perform the decomposition of the hazard rates into credit and

liquidity components. This final operation will be detailed in Section 3.5.

3.4.2. Historical dynamics of (z;,y;)

The historical dynamics of (2, y;) is defined by a Markov-switching VAR (see equa-
tions 3.1 and 3.2). This set of five equations is augmented with equations linking
survey-based forecasts to their model-based equivalent. These six additional equa-

tion read:
Ef,ft = Ey(yjeen) + €jne, 7 € {1,4,5}, h € {3,12}, (3.12)

where E]Cf . s the h-period ahead survey-based forecast, E;(y;41) is its equivalent
model-based forecast, and the €;,,’s are the measurement errors, assumed to be

normally i.i.d.. The model-based forecasts stem from:

Ey(yren) = [pP" + QuP"™ . 4 @M uP] 2 + @My, (3.13)

The parameters are estimated by maximizing the associated log-likelihood. Two

kinds of constraints are imposed in the estimation. First, we impose some con-
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straints on the matrix of regime-switching probabilities. The probability of re-
maining in the crisis regime is then calibrated so as to imply an average length of
the crisis of 2 years; this length being consistent with the findings of Cecchetti,
Kohler and Upper (2009) who investigate worldwide banking crises over the ast
30 years.?? Second, we constrain the unconditional means of the factors. Except
for the first factor, the unconditional means of the factors are set to their sam-
ple means. The mean of the first factor (10-year German yield) is set to 4.75%.
Indeed, its sample mean, which is of 4.10%, is low compared to the average of
the long-term forecasts for this yield, the latter being expected to be less affected
by short-sample biases.?® Finally, as in Kim and Orphanides (2012), we let the
estimation to decide the standard deviations of the measurement errors €;;; in

equations (3.12).

Parameter estimates are reported in Table 3.3 and Table 3.4. The second regime,
that we identify as a “crisis” regime, is characterized by particularly high standard
deviations of the innovations ¢;, especially for the shocks affecting y,; and ys; (see

Table 3.4).

The grey-shaded areas in Figure 3.2 indicate the crisis periods. These periods
are estimated as those for which the smoothed probabilities of being in the crisis
regime are larger than 50%. Three crisis periods are estimated: a first between
September 2008 and August 2009, a second between December 2009 and January
2010 and a last that starts in April 2010 and that lasts till the end of the sample
(March 2011).

Figure 3.3 displays survey-based forecasts of three of the factors (y1:, ya: and
Ys.+) together with their model-based equivalent, computed using equation (3.13).
Except for the 12-month ahead forecasts of the fifth factor (bottom right panel

in Figure 3.3), the model is able to reproduce most of the survey-based forecasts’

22Which translates into 7o, = 95%. Cecchetti et al. study 40 systemic banking crises since
1980. This constraint is imposed because preliminary unconstrained estimations resulted in
probabilities of remaining in each of the regimes that was implausibly high.

23For comparison, the average of the 10-year-Bund yield over the last 20 years is approximately
5%. Twice a year, in April and October, the Consensus Forecasts present long-term forecasts
of macroecononmic variables (up to 10 years ahead). Over the last 10 years, the average of
the long-term forecasts of the 10-year German yield is of 4.78%.
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fluctuations.

Figure 3.2.: The five factors y; and the estimated regime variable z;

Notes: These plots show the factors y; ¢, ..., ys that are used in the analysis. The first factor is the
10-year zero-coupon German yield (minus 4.75%). The second factor is a proxy of the yield-curve
slope (difference between the 10-year German yield and the 1-month yield). The third is a proxy
of the yield-curve curvature (10-year German yield + 1-month yield — 2 times the 3-year German
yield). The fourth and fifth factors are the two first PCs of a set of four 10-year spreads vs. Germany
(France, Italy, the Netherlands and Spain). The shaded areas correspond to periods for which the
smoothed probability of being in the crisis regime is above 50% (using Kim's algorithm, 1993).
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3.4.3. Risk-neutral dynamics

The vector 6 of parameters defining the risk-neutral dynamics —that is, matrices

w*, * {7@* j }— and those defining the default intensities —the a’s and the (#’s— is
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Figure 3.3.: Model-based vs. survey-based forecasts

Notes: The Figures compare survey-based forcasts of the factors (derived from the Consensus fore-
casts) with model-based forecasts. The charts of the left column display the three factors for which
some survey-based forecasts are available, namely 1+, Y4+, and ys+. The first factor is the German
10-year yield (minus 4.75 percentage points). The fourth and fifth factors are the first two principal
components of a set of 10-year spreads vs. Germany for 4 countries (France, Italy, Spain and the
Netherlands).
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estimated by means of non-linear least squares. Basically, we aim at minimizing
the sum of squared measurement errors, or SSME, across countries and maturities
(1,2, 5 and 10 years).?* In addition, we have to deal with internal consistency con-
ditions. These conditions arise from the fact that our pricing factors yi,...,ys+
are known linear combinations of the yields; the latter being in turn some com-
binations of the factors (see equation 3.11). To maintain internal consistency, the
model has to correctly “price” the factors (that reflect observed bond-portfolios’
prices). The internal-consistency restrictions involve highly non-linear transfor-
mations of the parameters. As a consequence, numerically minimizing the SSME

under the consistency constraints would considerably slow down the optimization

24The measurement errors are defined as the deviations between modeled and actual yields. In
addition to sovereign yields, KfW’s yields are also used in the estimation.
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procedure.?” We therefore resort to an alternative solution that consists in aug-
menting the SSME with a term penalizing deviations from internal-consistency
restrictions. More precisely, denoting observed yields by ant’h, modeled yields by
R, 1(8), observed factors by ¢;; and modeled factors by v; (), the estimator 0

results from:

6= argmin 3 (Roon — Ruen(0)) +x X (e — v1a(6))*. (3.14)

0 n,t.h i

where y is a parameter defining the relative penalization of the deviations between

modeled (7;) and observed (y;) factors.

The loss function that we aim at minimizing (see equation3.14) being highly non-
linear in the underlying model parameters, it is necessary to find good starting
values so as to achieve convergence in a reasonable computing time.?® We proceed
as follows: (a) we consider only the risk-free rates in (3.14) and we assume that
their term-structure depends on the first three factors (yi4, y2: and ys,) only,
(b) we incorporate the risky yields of a subset of debtors (namely Germany, KfW
and Portugal) and we (re-)estimate the parameterization of the risk-neutral dy-
namics (for the five factors ;) as well the hazard rates of these three entities,
(c) we estimate the hazard rates of the remaining entities, one by one, taking the
other parameters as given. In the final stage, all the parameters are (re)estimated

jointly.2”

Table 3.5 and Table 3.3 present the parameter estimates. The standard deviation
of these estimates are based on a Newey-West (1987) heteroskedasticity and auto-

correlation consistent (HAC) covariance matrix estimator (see Appendix 3.C).

The parameterizations of the hazard rates, presented in Table 3.5, stem from the

decomposition of the hazard rates between liquidity-related and credit-related com-

258ee e.g. Duffie and Kan (1996) for a simple example. Considering only one debtor and no
regime-switching, Joslin, Singleton and Zhu (2011) find a parameterization of their Gaussian
model that automatically satisfies internal consistency restrictions.

26Optimizations are based on iterative uses of quasi-Newton and Nelder-Mead algorithms (as
provided by the Scilab software).

2TThe final stage is itself decomposed into several sub-steps: first, the penalty factor x (for the
internal-consistency restrictions) is set to zero. Then, it is progressively increased, till 1, level
at which deviations between modeled and actual factors y; become neglectible.
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ponents, that will be discussed in the next Section. Indeed, the minimization of
the loss function specified in (3.14) leads to estimates of the «,’s and (3,’s, with
an, = af +a! and B, = 8¢+ (° (a,’s and (3,’s estimates are not reported). A first
look at Table 3.5 suggests that the estimation results in significant impacts of the

factors on the hazard rates.

3.5. Results and interpretation

To begin with, the approach results in a satisfiying fit of the data. Modeled
versus observed spreads are displayed in Figure 3.4 (grey lines for observed spreads,
dotted lines for modeled spreads). On average across countries and maturities
(i.e. across 45 series), the ratios of the measurement-error variances over those
of the yields are lower than 2%: the average (across countries and maturities)
measurement-error standard deviation is around 18 basis points. In the sequel of
this Section, we focus on two specific issues: liquidity pricing and extraction of

default probabilties from bond yields.

3.5.1. The illiquidity intensity

In our model, we assume that there is a single factor that drives the liquidity
pricing in euro-area bond yields. As documented in 3.3.1, the bonds issued by
KfW and those issued by the German government embed the same credit risks —
assumed to be nil here— but are not equally exposed to the liquidity-related factor.

Accordingly, we simply have:
RS — (3.15)

The left part of Table 3.5 presents the estimated specification of A{. According to
the Student-t ratio, the liquidity factor is significatively linked to the five factors,
especially the fifth one (which is the second PC of a set of four 10-year spreads

vs. Germany). In addition, the «a, estimates indicate that the liquidity factor

106



3.5 Results and interpretation

0T 80 90 ¥0 ¢0O 00 0T 80 90 ¥0 ¢0 00 0T 80 90 ¥0 <0 00 0T 80 90 ¥0 <0 00 0T 80 90 ¥0 <O 00 I~
N R N ° '8 0014 o .,..erﬁf/ w 0 Zé(( h..i«»\;l,\ Moty 0
el 1 W2 , et _ Voot
<z, 0071 el NﬂsL i s W 054
] » 00¢€- 0 g
N 1 4 ] 4 by 4 o 4
pung "sa) peauds JA-0T 0091 pung 'sA) peasds JA-QT 0s pung "sa) peauds tTo&mw pung *sA) peaads JA-QT 0s ung sA) peasds L>|oHooH
00Z4 N
008 009 S 0ST/
[puera) 001 [ebniiod oot~ [PUEL 05-,
o .r.i-’.,\w/',\ﬂnwf.\..l 1 ~ 0-
P 4 00TA AT S A
il 007 00T, AV 01 01
H 00€] 00¢- al m y
# 00%] 001 i }A{\n s 05
005/ il X
009 0071 f 0S| 001/
| (pung "sA) peaads JA-z 002 (pung *sA) peauds ‘_>|N00m‘ (pung *sA) peauds JA-7 (pung "sA) peauds JA-7
0T 80 90 ¥0 <O 00 0T 80 90 ¥0 ¢0 00 0T 80 90 ¥0 <O 00 0T 80 90 ¥0 <O 00
L
L o] by z/,}f.,:\:
0 P A e 6 “ 0
ﬁﬁw\?}!\a o oot z,.x_\az\swf R A %
e 09 4 A 00T/
# 0024 W 00T
! 0014 L T 0024 ! 05 !
pung *sA) peads JA-QT pung 'sA) peasds JA-QT00€| pung 'sA) peaids JA-QT pung *sA) peaads JA-QT pung *sA) peads JA-QT
0ST- 00t 00¢€/ szl oSt/
[BHISNY] g [ureds) oor- AR go1- [(dURL 7 0
0 poe s 0 0 —.ras 0 \.{.55./\.,{}.
B P g ] )3? R A XY ) ¥ LU .u..f« o ) 1
) 5 AR | oor] T S R il 0%
Wy 051 ,. 007 1 00T+ S 1
—h 7 n
001 oosl 00z 0s. 00T/
(pung "sA) peauds JA-z (pung "sA) peauds JA-z (pung *sA) peauds JA-7 (pung “sA) peauds JA-z (pung "sA) peauds JA-z

“J\ 101084 A3ipInbi| Y3 Jo UOIIEDYIIIUSPI BY3 WO S}NSDI PAPUNOJUOD BJe BUl| PI|OS 4IB|q BY3 PUE Bul|

P110p 2y3 1ey3 108y ay1 ‘(30d ya|-iaddn) A Jo4 (045Z 03 [enbs sum sanISUSIU] J03GEP By Jo * %y sued 3paud oy 41 jleassd pinom jey3 pesids syi se paandwod SJe SUOIINGLIUOD 3SIY3)
JX 403084 A1pinbi| ay3 jo speaids By3 03 UolINGLIUCD paljdwi-[Ppow B3 si dul| Pijos ¥2e|q Y] (3o|d Jamo|) sieak OT pue (3o|d Jaddn) sieak g :paJspisUOd Sie salNIew om] ‘sHediaiunod
uewa) Jidyl pue (AousSe uewssn) B ‘AAM +) SOLIUNOD 6 JO SPPRIA Byl usamiaq speads (seul| pa1iop) paljdwi-ppow pue (saull pijos A2u8-1ySi) pansasqo asedwod siold 9say| :SII0N

Auewuary "sa speaids parjdwi-ppow ‘sA [eny :*§'¢ 2InSI
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jumps upwards in crisis periods. The resulting estimate of the liquidity factor is
displayed in the upper plot in Figure 3.5, together with a 90% confidence interval.?®
It turns out that this European factor has some comovements with other proxies
of liquidity pricing. Two such measures are displayed in Figure 3.5 (middle and
lower plot). A first proxy, inspired by Manganelli and Wolswijk (2009), consists
of a dispersion measure of the bond yields of Aaa-rated countries. This proxy
is based on the assumption according to which a significant share of the spreads
between Aaa-rated countries should reflect liquidity differences since they are all
supposed to have a very high credit quality.?? The second liquidity proxy is the
bid-ask spread on the 10-year French benchmark bond (lower plot in Figure 3.5).
In addition to concomitant rises in the three proxies in early 2008, one can observe

a common decreasing trend between the early 2000 and 2005.

The liquidity-related factor A\! presents three main humps: in the early 2000s, in
2008 and in 2010. The rise in liquidity premia in the early 2000s —concomitant
with the collapse of the Internet bubble— is also found in U.S. data by Fontaine and
Garcia (2012), Longstaff (2004) or Feldhiitter and Lando (2008). The fact that
the liquidity factor is particularly high during crises periods (burst of the dotcom
bubble and post-Lehman periods) is consistent with the findings of Beber, Brandt
and Kavajecz (2009) who pinpoint that investors primarily chase liquidity during

market-stress periods.?”

Given the liquidity-related factor \!, it remains to perform the default/liquidity
decompositions of the country-specific hazard rate (see equations 3.6 and 3.7).
Specifically, we have to estimate the pair of parameters (77,,,77,,) for each country

n (recall that X

bt = VoA, Intuitively, we look for parameters 47, ’s and 7;,,’s

that are such that (@) an important share of the spread fluctuations is explained by

the liquidity intensity Aﬁ,t under the constraints that (o) the implied risk-neutral

28The computation of this confidence interval is based on the delta method, exploiting the fact
that at each point in time, the estimate of A! is a function of the parameter estimates and of
ye and 2, (Af = oz + Biyr).

29To compute this proxy, we use sovereign yield data (the same as in the rest of the analysis)
of Austria, Finland, France, Germany and the Netherlands, which are the five countries that
remain Aaa-rated over the whole period.

30Such a behaviour is captured in a theoretical framework by Vayanos (2004).
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and historical PDs are positive and that (¢) the liquidity-related parts of the
spreads are positive. In order to achieve this for each country n, we construct a
loss function £,, that quantifies the previous objectives and we look for parameters

('72717 W{n) that minimize this function. This procedure is detailed in Appendix 3.D.

The estimated ~7,, and 77, are shown in the lower panel of Table 3.5. Note that
these parameters are non-linear combinations of the parameters that were esti-
mated in two steps of the estimation procedure. In particular, each vy, is largely
dependent on the estimation of aksw and Sk pw that define the liquidity-related
factor\f. The standard deviations of the estimated ~,’s (reported in Table 3.5)

result from the delta method, taking all these dependencies into account.?!

Figure 3.6.: Sensitivity to the liquidity factor versus debt outstanding

Notes: The coordinates of the countries correspond to () the sensitivities 77 ,, of their hazard rates

AL 4 to the liquidity factor A{ (these sensitivities are reported in the lowest row of Table 3.5) and (y)
their total markeTablesovereign debt (as of the end of 2009, Source: Eurostat).
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Figure 3.6 shows a scatter plot where the coordinates of the countries are the
sensitivities ;,, to the liquidity-related factor and the total markeTabledebt of the
different countries. Leaving Italy aside, there seems to be a negative relationship

between these sensitivities and the debt outstanding. In spite of the large size of

31We assume that the large covariance matrix of the parameter estimates obtained in the first
step and in the second step of the estimation is block diagonal. This would be exact if both
steps of the estimations were independent. This is not rigorously the case since the covariance
matrices of the factor innovations (2(z;){2(z¢)’)— are the same under both measures.
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the tradable debt issued by the Italian government, Italy’s hazard rate appears to
be particularly sensitive to the liquidity factor (among the countries considered in
our subset, only Ireland and Portugal are more exposed than Italy to the liquidity

factor).3?

Moreover, in order to gauge the relative importance of the liquidity-related part of
the spreads, we have computed the spreads (versus German yields) that would pre-
vail if the credit part of the countries’ hazard rates were equal to zero. Figure 3.4
presents the resulting spreads (black solid lines). While, for most countries, the
liquidity-related part of the spread is less important than the credit-related one (as
in Codogno, Favero and Missale, 2003), it turns out to account for a substantial
part of the changes in spreads, especially over the earlier part of the estimation

sample.

3.6. Conclusion

In this Chapter, we present a no-arbitrage model of the joint dynamics of euro-area
sovereign yield curves. In addition to five Gaussian shocks, the model includes a
regime-switching feature that makes it possible to distinguish between tranquil
and crisis periods. Such a regime-switching feature is well suited to account for
the recent/current economic and financial market stress times. As a source of sys-
tematic risk, the regime shifts are priced by investors. Quasi-explicit formulas are
available, which makes the model tracTableand the estimation feasible. The model
is estimated over the last twelve years. The resulting fit is satisfying since the stan-
dard deviation of the yields pricing errors —across countries and maturities— is of
18 basis points. Our estimation suggests that the regimes are key in explaining the
fluctuations of yields over the last three years.® Further, some credit and liquidity

intensities are estimated for each European country included in our dataset. The

32To some extent, such a finding is consistent with the results of Chung-Cheung, de Jong and
Rindi (2004) according to which transitory costs would be more important in the Italian
market, dominated by local traders.

33Counterfactual experiments —whose results are not reported here- have been conducted to
gauge the impact of the crisis regime on model-implied yields: when the crisis periods are
replaced by no-crisis ones, simulated (counterfactual) spreads remain flat from 2008 onwards.

110



3.A Proofs

liquidity intensities are driven by a single European factor whose identification
is based on the KfW-Bund spreads. Indeed, the bonds issued by KfW, guaran-
teed by the Federal Republic of Germany, benefit from the same credit quality
than their sovereign counterparts —the Bunds— but are less liquid. Therefore, the
KfW-Bund spread should be essentially liquidity-driven. Our results indicate that
a substantial part of intra-euro spreads is liquidity-driven. The remaining parts
of the spreads reflect credit-risk pricing. In the next Chapter, we focus on the
financial-crisis period. Further, we extend the analysis by deriving probabilities of

default under the physical measure.

3.A. Proofs

3.A.1. Laplace transform of (z;,y;)

The risk-neutral conditional Laplace transform of (z;, y;) the information available

in time ¢t — 1 is:
o2 (u,v) = exp (VD y_y + [l ... 5] ze-1) | (3.16)
where [; = log Y7 7} exp {uZ +v'pre; + 30" (e) ' (e;) v} and where e; is the

4t column of the identity matrix. Therefore, (2, ;) is compound auto-regressive

of order one —denoted by Car(1)— under the risk-neutral measure.
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Proof. We have

P (u,0) = B2y (explu'z +v'y))

= E2, (expu'z + 0z + 'y +0'Q () 1))

R, (B fexp s+ i+ 01t
V'Q(z) el | })

= exp(v'®*y,_1)EZ, (exp {u'z + vz} x
EZ, (exp{v'Q(z) e | 2}))

= exp(V'®*y,_1)EL, (exp {u'z + vz} x
;’U/Q (20) Q (2) v)

= exp (VO Y1+ [l1,...,l5] 2e-1).

Using the expression given above for the [;’s leads to the result. [

3.B. Sovereign yield data

The estimation of the model requires zero-coupon yields. However, governments
usually issue coupon-bearing bonds. For Germany, France, Spain and Netherlands,
we bootstrap constant-maturity coupon yield curves provided by Barclays Capi-
tal.3* For Belgium, we use zero-coupon yields computed by the National Bank
of Belgium and made available by the BIS. For remaining countries, we resort to
a parametric approach (see BIS, 2005, for an overview of zero-coupon estimation
methods). The yield curves are derived from bond pricing data on regularly replen-
ished populations of sovereign bonds. We choose the parametric form originally
proposed by Nelson and Siegel (1987). Specifically, the yield of a zero-coupon bond

with a time to maturity m for a point in time ¢ is given by:°

34For details about bootstrapping methods, see e.g. Martellini, Priaulet and Priaulet (2003)

35We use the Nelson-Siegel form rather than the extended version of Svensson (1994) because
the latter requires more data to be estimated properly (and for some countries and some
dates, we have too small a number of coupon-bond prices).
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Rr0) = st (-2) (1-ew(-2) +

m T

B K;) <1 - eXP(—T:)> - eXp(—:)]

where © is the vector of parameters [y, 81, B2, 33, T1, T2) . Assume that, for a given
country and a given date t, we dispose of observed prices of N coupon-bearing
bonds (with fixed coupon), denoted by P, Py, ..., Pyy. Let us denote by C'Fy;
the i (on ny) cash flows that will be paid by the k" bond at the date 73,;. We
can use the zero-coupon yields {R*(©)},, 5, to compute a modeled (dirty) price

]Skyt for this k™ bond:

ng
Pei(©) =) CFpsexp (—Tk,iRtﬂ“_t(@)) )
i=1
The approach then consists in looking for the vector © that minimizes the distance
between the N observed prices and modeled bond prices. Specifically, the vector

O, is given by:

N
O, = arg(;nin Z Wi (Pt — Pk7t(@))2
k=1

where the wy’s are some weights that are chosen with respect to the preferences
that one may have regarding the fit of different parts of the yield curve. Intuitively,
taking the same value for all the wy’s would lead to large yield errors for financial
instruments with relatively short remaining time to maturity. This is linked to the
concept of duration (i.e. the elasticity of the price with respect to one plus the
yield): a given change in the yield corresponds to a small/large change in the price
of a bond with a short/long term to maturity or duration. Since we do not want
to favour a particular segment of the yield-curve fit, we weight the price error of

each bond by the inverse of the remaining time to maturity.3°

36Using remaining time to maturity instead of duration has not a large effect on estimated yields
as long as we are not concerned with the very long end of the yield curve.
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3.C Computation of the covariance matrix of the parameter estimates

Coupon-bond prices come from Datastream.?” In the same spirit as Gurkaynak et
al. (2005), different filters are applied in order to remove those prices that would
obviously bias the obtained yields. In particular, the prices of bonds that were
issued before 1990 or that have atypical coupons (below 1% or above 10%) are
excluded. In addition, the prices of bonds that have a time to maturity lower than

1 month are excluded.?®

3.C. Computation of the covariance matrix of the

parameter estimates

The second step of the estimation deals with the parameters defining the risk-
neutral dynamics of (z;,y;) and the parameterization of the hazard rates. In this
appendix, we detail how the covariance matrix of these estimates is derived. The

non-linear least square estimator g is defined by (this is equation 3.14):

N ) . 2 ~

0= argemln Z (Rn,t,h - Rn,t,h(e)) +X Z (yi,t - yi,t(e))Q
n,t,h i

where y; () is the ith entry of the vector of “theoretical” factors, in the sense that

it is a linear combination of the “theoretical” yields R, ;5 (), that are themselves

a combination of observed factors ;.

This estimator must satisfy the first-order conditons:

OR,+1n(0)  ~
Z gglU(Rn,t,h - Rn,t,h(‘g)) + X Z

nt,h t,i

ayi,t(e)
00

(gi,t - yz’,t(‘9>) =0,

where the left-hand side of the previous equation is of dimension & x 1 (the dimen-

sion of vector #). The Taylor expansion of the previous equation in a neighborood

3TNaturally, the number of bonds used differ among the countries (from 19 bonds for the Nether-
lands to 175 bonds for Germany).

38The trading volume of a bond usually decreases considerably when it approaches its maturity
date.
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3.C Computation of the covariance matrix of the parameter estimates

of the limit value 6 leads to (after multiplication by 1/v/T):

1 OR 4.1 (00) , = 0yi1(6o) , -
0 ~ — E —— L (Rpih — Rpin(00)) + E : it — Uit (0
\/T e 90 ( Jth 7t,h( 0)) X - 90 (y t yﬂf( 0))
N 0? Rnth(90) ORyt1(00) (ORp+.1(00) /
T _ _ — vy "vy

ym 60 ' _ ayz',t(eo) 3yz‘,t(90) /
Z [ 8680/ ylt yl,t(eﬂ)) 86 80

t,i

Since E(Rmt,h — Ry 1(00)) =0 and E(g;r — vi(00)) = 0 (for any i), we have

8 Rn 6 a.s.
T Zh 80:92' - (Rt = Ban(60)) 5 0,
nt
a y’L 6 a.s.
Z 86(;9'0 —¥it(fo)) =5 0.
Therefore:
-1
) = ! IRt (6) (ORn4n(bo) ayzt o) ( Ovi+(6o) ,
VT (0 Qo) ~ |7 n%;h 5 £ ; ¥
1 OR,11(00) , ~ S (00
VT rg:h ég( ” (P = Fonn(60)) + XZ yate 2 (T — yi,t(«%))] :

Hence, the asymptotic distribution of /7T (é —(90) is estimated by J 727!

where:

~ ~ 14 —1
l aRn,t,h(e) aRn,t,h(‘g 1 8yzt y; t(e)
T Z 00 ( 00 Z 00 ’

t,i
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3.D Disentangling credit from liquidity risks: the loss function

The second matrix, denoted by 7 , is the estimate of the covariance matrix of

1/VT'Y, v(0) where

ORnin(fo) Oyie(0o) ,

Tt = Z gg( 0) (Rn,t,h - Rn,t,h<‘90>> + XZ y(’;é 0) (yz-,t — y¢,t<(90)) .
n,h i

To computeZ, we use the Newey-West (1987) HAC estimator. This estimate is

given by:

R i=T—m—1 i
1= Kk () cov(Ye, Yeti)
i=—(T—m+1) '
where 4; = %(é) and where cov denotes the sample covariance operator. In prac-

tice, we use the Bartlett kernel x(z) = 1 — |z| and a bandwidth of 5.

3.D. Disentangling credit from liquidity risks: the

loss function

In that appendix, we details the loss function introduced in 3.5.1. This function is
aimed at being minimized in order tofind pairs of (v7,,,7/,,) that are such that (a)
an important share of the spread fluctuations is explained by the liquidity inten-
sity Al , under the constraints that (b) the implied risk-neutral and historical PDs
are positive and that (¢) the liquidity-related parts of the spreads are positive.
Actually, an additional “shadow” parameter is introduced in the loss function to
account for the fact that objective (a) focuses on the fluctuations and not on the
level the spread (this will be clarified below). We consider linearized versions of
the spreads in order to facilitate the optimization. This considerably fasten the op-
timization to the extent that (1) it avoids computations of multi-horizon Laplace
transforms defined by (3.18) at each evaluation of the loss function and (2), it
implies that analytical derivatives of the loss functions are available (which is par-
ticularly welcome when implementing the delta method to get standard deviations

of the estimated ~7,, and v;,,). Formally, we define the following loss function £,
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3.D Disentangling credit from liquidity risks: the loss function

for each country n:

(S0, 61,02) = ;{(m@—{éw(sl@@}HQf
( 50+51AMP}]_>2+ ([RQ— {50+51EQH_)2]
([50+5l T } )2} (3.17)

where [z]_ is equal to z if # < 0 and 0 otherwise, and where the operator #2 is

defined by (for any time series z):
70 _ 1p0
Ty~ = EEt (SEt+1 + ...+ xt+h) . (318)

When z is replaced by the hazard rate \,,, we get a linearized approximation of the
spread vs. Germany at maturity h. The operator ®" is the equivalent expectation
computed under the historical measure.?® The maturity h is supposed to be a
benchmark maturity that is priviledged regarding objectives (a) to (¢). We use
h = 60 months.

Using this loss function, the estimation of the ’ygn’s and the 7}7n’s is based on the

following optimization:

(Yens Vems Vi) = arg min L, (8o, 81, d2).
50,61,02
The three parts of the loss function (the second part including two terms) reflect
the three criteria (a), (b) and (¢) mentionned above. (a) The more the fluctuations
of m can be tracked by those of )\n + , the lower the first part of the loss function
is. In this first term, the shadow parameter J, is introduced because we want this
first part of £,, to focus on the fluctuations and not on the level of the intensities.

Without the shadow parameter do, we would arbitrarily favour those specifications

391f the relationship between spreads and intensities were linear, then 7, + *yt}n/\fm@ would be
the part of the h-period spread (country n vs. Germany) corresponciing toyliquidity effects.
Though the linearity assumption does not strictly hold, the approximation is reasonable as
long as the A’s remain small.
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3.D Disentangling credit from liquidity risks: the loss function

of the liquidity intensity that imply close-to-zero-mean default-related spreads. (b)
The second part of the loss function penalizes the specifications of the liquidity
intensity that generate negative default compensations (under both measures). (c)
The third term implies an additional cost when the liquidity-related part of the

spread is negative.

Generating positive PDs is arguably a more important objective than getting pos-
itive liquidity compensations. As a consequence, y; is taken higher than y;. We
use x1 = 4 and y2 = 1 (see equation 3.17) for all countries except for Finland, for
which we set these parameters to zero. With x; = 4 and yo = 1, we get positive
and statistically significant Finnish PDs in the early 2000s. It may be due to the
fact that the liquidity of Finnish bonds has increased over the last decade; but in
our framework, we can not increase the liquidity spreads in the early 2000s without

producing deeply negative PDs in the late 2000s (penalized when x; = 4).
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3.D Disentangling credit from liquidity risks: the loss function

Table 3.2.: Correlations and preliminary analysis of euro-area yield differentials

Notes: Panel A reports the covariances and correlations (in italics) of 10-year spreads (vs. Germany)
across nine euro-area countries. Panel B presents results of principal-component analyses carried out
on the spreads. There are three analyses that correspond respectively to three maturities: 2 years, 5
years and 10 years. For each analysis, Panel B reports the eigenvalues of the covariance matrices and
the propotions of variance explained by the corresponding component (denoted by “Prop. of var." in

Panel B).
Panel A: Covariance and correlations of 10-year spreads vs. Germany

Fr. It. Sp. Au. Be. Fi. Po. Ne. Ir.
France 0.052 0.023 0.027 0.012 0.077 0.013 0.117
Italy 0.202 0.062 0.088 0.023 0.313 0.032 0.459
Spain 0.951 0.069 0.113 0.025 0.434 0.032 0.623
Austria 0.867 0.684 0.585 0.05 0.047 0.028 0.093 0.024 0.15
Belgium 0.922 0887 0.871 0.854 | 0.061 0.024 0.169 0.023 0.253
Finland 0599 0.358 0.293 0.767 0.615 0.028 0.015 0.053
Portugal 0.738 0.904 0.962 0.486 0.8 0.204 0.042 1.03
Netherlands 0.878 0.67 0514 0911 0.794 0.785 0.41 0.074
Ireland 0.783 0918 0956 0.545 0.83 0.263 0.97 1.534

Panel B: Principal components

Component 1 2 3 4 5 6 7 8 9
2-year spread
Eigenvalue 6.07 1.46 0.71 0.33 0.16 0.12 0.08 0.05 0.02
Prop. of var. 0.67 0.16 0.08 0.04 0.02 0.01 0.01 0.01 0
Cumul. prop. 0.67 0.84 0.92 0.95 0.97 0.98 0.99 1 1
5-year spread
Eigenvalue 6.68 1.56 0.38 0.13 0.09 0.07 0.05 0.02 0.01
Prop. of var. 0.74 0.17 0.04 0.01 0.01 0.01 0.01 0 0
Cumul. prop. 0.74 0.92 0.96 0.97 0.98 0.99 1 1 1
10-year spread
Eigenvalue 6.83 1.62 0.27 0.12 0.06 0.05 0.02 0.02 0.01
Prop. of var. 0.76 0.18 0.03 0.01 0.01 0.01 0 0 0
Cumul. prop. 0.76 0.94 0.97 0.98 0.99 0.99 1 1 1

119



3.D Disentangling credit from liquidity risks: the loss function

Table 3.3.: Parameters defining the historical and risk-neutral dynamics (Part 1/2)

Notes: The table reports the estimates of the parameters defining the dynamics of the factor under historical and
risk-neutral measures. The estimation data are monthly and span the period from April 1999 to March 2011. Standard
errors and Student-t are reported, respectively, in parenthesis and in square brackets below the coefficient estimates.
*¥% ** and * respectively denote significance at the 1%, 5% and 10% significance level.

The historical-dynamics parameterization is estimated by maximizing the log-likelihood (equation 3.3). The covariance
matrix of the parameter estimates is based on the Hessian of the log-likelihood function. The risk-neutral dynamics
of the factors is estimated together with the hazard-rate specifications reported in Table 3.5 using non-linear least
squares. For the latter, the covariance matrix of the parameter estimates is computed using the Newey-West (1987

adjustment (see Appendix 3.C).

Non-Crisis Crisis D1 D2 D; 3 D4 D5
1 0.0054 -0.0052 Dy 0.98*** 0.0089*** 0.017*** -0.015* -0.12%**
(0.0086) - (0.0032) (0.0024) (0.0053) (0.0081) (0.033)
[0.63] - [310] [3.7 [3.3] [-1.9] [-3.6]
o 0.003 -0.0028 Do s -0.012 1.02%** 0.17%** -0.049 0.25%*
(0.019) - (0.013) (0.0108) (0.017) (0.031) (0.12)
[0.15] - [-0.94] [94] [10.4] [-1.6] 2]
3 0.086* -0.082* D3 ; 0.029 -0.054*** 0.88*** 0.091* 0.28
(0.048) - (0.024) (0.02) (0.034) (0.054) (0.17)
[1.8] - [1.2] [-2.7] [26] [1.7] [1.6]
a -0.057*** 0.054*** Dy 0.0023 0.00092 -0.019%** 0.93*** -0.083*
(0.0054) - (0.0033) (0.0025) (0.0046) (0.0076) (0.045)
[-10.7] - [0.72] [0.37] [-4.2] [124] [-1.8]
s -0.016%** 0.015%** D5 ; 0.00054 0.0012 -0.0033 -0.0043 0.85%**
(0.0025) - (0.0015) (0.0013) (0.0024) (0.0033) (0.016)
[-6.5] - [0.36] [0.96] [-1.4] [-1.3] [54]
Non-Crisis Crisis <I>;‘71 <I>;"2 @;"3 <I>;‘74 @;"5
7% 0.017*** 0.016%** o7 1Txx* 0.011*** 0.0026*** 0.00015 0.00027
(0.00047) (0.0022) (0.0004) (0.00026) (0.00063) (-0.00038) (-0.00025)
37] [7.3] [2511] [42] [4.1] [0.17] [0.058]
75 0.044*** 0.069*** 5, 0.013*** 0.98*** 0.13%** -0.00042 -0.0017
(0.0054) (0.019) (0.003) (0.0038) (0.0097) (-0.0028) (-0.0036)
[8.2] [3.7] [4.4] [256] [14] [-0.061] [-0.051]
75 -0.074%** -0.109%** 3, -0.021%** -0.013** 0.88*** -0.0006 -0.0016
(0.0059) (0.025) (0.0043) (0.005) (0.011) (-0.0041) (-0.0047)
[-13] [-4.3] [-4.8] [-2.6] [79] [-0.056] [-0.031]
wy 0.0034*** -0.00106 P 0.00028 -0.00016 -0.00103 1rx* 0.023***
(0.00103) (0.0027) (-0.00045) (-0.0056) (-0.018) (0.0015) (0.0051)
[3.3] [-0.39] [0.54] [-0.45] [-0.83] [689] [4.6]
uE -0.00025 -0.004** 3, 0.000093 -0.00108*** -0.000058 0 THxx
(0.00087) (0.002) (-0.0051) (-0.0021) (-0.024) (0.00067) (0.0033)
[-0.29] [-2] [0.21] [-3.4] [-0.04] [0.0086] [308]
Markov-switching probabilities
TNC,NC 0.96%** TNCNC 1¥¥*
TC,C 0.96 WaC 1H¥*
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Table 3.4.: Parameters defining the historical and risk-neutral dynamics (part 2/2)

Notes: See previous table. This table presents the estimated covariance matrices X(z¢) of the Gaussian shocks Q(z¢)e¢
in equation (3.1) (we have X(z¢) = Q(2t)Q(z¢)’"). The upper (respectively lower) part of the table reports the covariance
matrix associated with the non-crisis (respectively crisis) regime.

Non-crisis regime
it Y2 i3 i i
Y, 0.027%**
(0.0036)
[7.5]
Yo, 0.026%** 0.036***
(0.0038) (0.0048)
[6.9] [7.5]
Y3, -0.031%** -0.027*%**  0.079%**
(0.0053) (0.0057) (0.011)
[-5.8] [-4.7] [7.1]
¥4 -0.0031%%*  -0.0032** -0.00104 0.0038***
(0.00105) (0.0013) (0.0022) (0.00064)
[-3] [-2.5] [-0.48] [6]
Y55  -0.00069* -0.00057 -0.0011 0.0012***  0.00055%**
(0.00038) (0.00047)  (0.00082)  (0.00022) (0.000092)
[-1.8] [-1.2] [-1.4] [5.5] [5.9]

Crisis regime

Y1 0.069%**

(0.019)
[3.6]
S 0.058%KF 11wk
(0.021) (0.032)
[2.8] [3.5]
S3;  -0.0073 0.0013  0.084%*x
(0.015) (0.02) (0.025)
[-0.48] [0.064] [3.3]
N4 -0.041% -0.0103  0.073%** (. 15%xx
(0.022) (0.026) (0.027) (0.042)
[-1.9] [-0.4] [2.7] [3.6]
S5, -0.0081 0.004 -0.0049 -0.0061  0.0106%**
(0.0055)  (0.0069)  (0.0061)  (0.008) (0.003)
[-1.5] [0.59] [-0.81] [-0.77] [3.6]
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3.D Disentangling credit from liquidity risks: the loss function

Figure 3.5.: Liquidity intensity ! and liquidity-pricing proxies

Notes: The upper panel presents the estimate of ¢, which is the factor driving the country-specific
illiquidity intensities /\fm (/\fm = VE,n + 'y}’n)\f, see Section 3.2.3). The shaded area corresponds to
the 90% confidence band based on the covariance matrix of the parameter estimates presented in
Table 3.5 (the delta method is employed, using the fact that at each point in time, the estimate of )\f
is a function of the parameter estimates and of y; and z;: A\f = a}z; + B,y;). The confidence band
does not take into account the uncertainty stemming from the estimation of the regime variable z;.
The middle plot presents a liquidity-pricing measure inspired by Manganelli and Wolswijk (2009): for
each period ¢, it is the mean of the absolute values of the spreads between the 10-year Aaa-rated-
country yields and their average. (The underlying assumption being that most of the spreads between
Aaa countries should be liquidity-driven.) The lower plot shows the bid-ask spreads on the 10-year
French benchmark bond (computed as the monthly medians of high-frequency trade data provided
by Thomson Reuters Tick History).
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4. Credit and liquidity pricing within

the financial crisisl

Abstract: In this chapter, we model the joint dynamics of euro-area sovereign
bond spreads during the crisis period 2007-2012. It is therefore closely related
to the previous one but departs from it in several ways. First, thanks to a more
intensive use of regime-switching features, we identify credit and/or liquidity stress
periods and explore the causality between these two types of stresses. Second,
while the pricing factors were observable in the previous chapter, they are latent
in the present one. Third, the analysis is extended by deriving market-perceived
default probabilities. The latter are obtained by filtering liquidity-pricing effects
and risk premia out of the spreads. We find that the actual —or physical, or
real-world— probabilities of default are significantly lower than their risk-neutral
counterparts. This is consistent with the existence of a non-diversifiable euro-area

sovereign credit risk.

!This Chapter is based on an article entitled “Decomposing euro-area sovereign spreads: credit
and liquidity risks”, coauthored with Alain Monfort. We are grateful to Christian Gourieroux,
Glenn Rudebusch, Thomas Sargent, Vladimir Borgy, Valére Fourel, Wolfgang Lemke, Simon
Gilchrist, Kristoffer Nimark, Tao Zha, Christian Hellwig, Jean-Sébastien Fontaine and Adrien
Verdelhan for helpful discussions and comments. We are also grateful to seminar participants
at the Banque de France, CREST, the Paris finance international meeting 2010, CORE
Econometrics Seminar 2011, ESEM annual meeting 2011, IESEG-University of Cambridge
conference on yield-curve modeling, AFSE annual meeting, the Bank of England, CDC, the
ECB Workshop on Asset pricing models in the aftermath of the financial crisis, Computational
and Financial Econometrics conference (London 2011), the Bank of Canada, the Bundesbank.
We thank Beatrice Saes-Escorbiac and Aurélie Touchais for excellent research assistance. Any
remaining errors are ours. The views expressed in this Chapter are ours and do not necessarily
reflect the views of the Banque de France.
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Résumé

Comme le précédent, ce chapitre présente une analyse empirique des écarts de
taux d’Etat de la zone euro. La période d’étude est plus courte que précédem-
ment (2007-2012 dans le présent chapitre versus 1999-2012 dans le précédent) et la
fréquence d’échantillonage est plus élevée (hebdomadaire versus mensuelle). Par
ailleurs, une utilisation différente des régimes est faite dans le présent chapitre.
Enfin, 'analyse est complétée par le calcul de probabilités de défaut des différents

Etat considérés (telles que pergues par les participants de marché).

Comme dans les chapitres précédents, chaque émetteur (Etat) est caractérisé par
une intensité de crédit, reflétant son risque de défaut, et une intensité d’illiquidité,
reflétant l'illiquidité relative des titres qu’il émet. Les intensités de crédit et
d’illiquidité sont des processus auto-régressifs a innovations gaussiennes dont les
constantes dépendent respectivement de régimes de crédit et de liquidité. Les pre-
miers sont au nombre de trois (état relativement calme, état de stress intermédiaire
ou état de stress élevé) et les seconds au nombre de deux (en état de stress ou non).
Ces deux chaines sont communes a tous les pays considérés. Le modéle comporte

donc six régimes.

Ce type de spécifications permet d’introduire des relations de causalité entre les
deux chaines de maniere simple. Par exemple, la probabilité de passer en régime
de crise de liquidité peut dépendre de I'état, en période précédente, de la chaine

définissant le stress lié au risque de crédit.

Les facteurs, comme les régimes, ne sont pas directement observables. L’estimation
du modele repose sur I'utilisation de 'algorithme de Kim (1994), celui-ci perme-
ttant de traiter simultanément le caractére latent des deux types de variables.
L’estimation des parametres du modele repose sur la maximisation de la fonc-
tion de vraisemblance. Une fois les parameétres estimés, on peut calculer, pour
chaque date, les probabilités d’étre dans chacun des six régimes possibles (condi-
tionnellement aux variables observées que sont les écarts de taux). Ces probabilités
permettent de découper la période 2007-2012 en différentes phases se distinguant

par la prégnance des problemes de liquidité et/ou de de perception de la qualité

125



Credit and liquidity pricing within the financial crisis

de crédit des Etats de la zone euro. IL’estimation met par ailleurs en évidence

'existence de relations de causalité entre les deux chaines (crédit et liquidité).

Comme dans le cadre du chapitre précédent, I'identification des intensité d’illiquidité
des différents pays repose sur I'inclusion de taux relatifs a la banque publique alle-
mande KfW dans les données d’estimation. Plus précisément, notre stratégie
d’identification des intensités d’illiquidité des différents pays repose sur deux hy-
potheses: (a) I'écart de taux KfW-Bund est intégralement expliqué par un facteur
de liquidité et (b) les intensitiés d’illiquidité des différents émetteurs souverains
sont identiques a une transformation affine pres. Malgré une modélisation dif-
férente, cette nouvelle décomposition des écarts de taux en une composante crédit

et une composante liquidité confirme les résultats du chapitre précédent.

Dans ce chapitre, nous montrons également comment calculer les probabilités de
défaut des Etats (pergues par les participants de marché) a partir du modele es-
timé. Si les investisseurs étaient neutres au risque (et si l'illiquidité relative des
obligations n’était pas valorisée), alors I’écart entre le taux d’une obligation émise
par une entité pouvant faire défaut et celui d’une référence sans risque corre-
spondrait a la perte moyenne (ou “espérée”) en cas de défaut de I’émetteur. Dans
ce contexte, moyennant une hypotheése de taux de recouvrement (qui est le ratio
entre le montant recouvré en cas de défaut et la valeur faciale de 1'obligation), il
serait aisé de déduire les probabilités de défaut (pergues par les participants de

marché) a partir de prix d’obligations.

Cette approche, largement utilisée par les analystes de marché, est pourtant er-
ronée car les investisseurs ne sont pas neutres aur risque. Autrement-dit, les
probabilités résultant de I’approche précédente sont des probabilités risque-neutres
et non physiques. L’aversion au risque —reflétée dans notre cadre par le facteur
d’escompte stochastique sous-jacent au modele— explique par exemple pourquoi
nous sommes préts a acquérir des polices d’assurance cotitant en moyenne plus

cher que les remboursements espérés de la part de ’assureur.

Les différences entre les probabilités de défaut calculées sous ’hypothése de neu-

tralité des investisseurs vis-a-vis du risque et celles issues de notre estimation sont
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tres importantes. A titre d’exemple, alors que certaines analyses de marché, comme
celle de CMA (2012), aboutissaient fin 2011 & des probabilités de défaut a cing
ans de pres de 20% pour la France, et pres de 30% pour ’Espagne et 1'Italie, notre
approche fournit des probabilités de défaut percues par les marchés qui seraient
respectivement 4%, 12% et 15%. Les différences enre les probabilités de défault
risque-neutre et les probabilités de défaut dites physiques correspondent a des
primes de risque de crédit. L’existence de telles primes de risque découle de ’aspect
non-diversifiable du risque souverain en zone euro (les contributions récentes étu-
diant ce risque souverain incluent Borri and Verdehlan, 2012 and Longstaff et al.,

2011).
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4.1. Introduction

In this Chapter, we develop a multi-issuer no-arbitrage affine term-structure frame-
work to model the dynamics of bond spreads, with a twofold objective: to disentan-
gle credit and liquidity components in euro-area sovereign spreads and to identify
the part of these spreads corresponding to risk premia, defined as the part that
would not be present if agents were risk-neutral. Risk premia are demanded by
risk-averse investors to be compensated for non-diversifiable —or systematic— risk,
and our results are supportive of the findings of Pan and Singleton (2008) and
Longstaff et al. (2011) who point to the systematic nature of sovereign risk.? The
resulting risk premia associated with sovereign credit quality implies that physical,
or real-world, probabilities of default differ from their risk-neutral counterparts.
Yet, the latter, derived from basic models like Litterman and Iben (1991), are
extensively used by market practitioners, who refer to them as implied default
probabilities.®> Our approach makes it possible to assess the deviations between
the two kinds of PDs and we show that these can be substantial. In particular,
these results are of significant interest in the current context where regulators want

banks to model the actual default risk of even high-rated government bonds.*

In our framework, each country is characterized by a risk intensity which is the sum
of a credit intensity and an illiquidity one. We propose an original use of regime-
switching features to account for the joint dynamics of credit- and liquidity-related
crises, the aim being to make the model consistent with theoretical approaches
highlighting the potentital interactions between these two kinds of risks.5 Credit-

and liquidity-crisis regimes are key drivers of the countries’ intensities, the latter

2Borri and Verdelhan (2011) propose a theoretical framework to investigate the implications of
the investors’ inability to hedge against correlated sovereign risks.

3See e.g. Hull, Predescu and White (2005), Berd, Mashal and Wang (2003), Caceres, Guzzo
and Segoviano (2010) or Berg (2009).

4In early 2012, the European Union introduced new rules on trading-book capital, known as
Basel 2.5. This package notably requires the banks to model the default risk of all sovereign
entities for the first time. This contrasts with the special status that government bonds have
enjoyed since the Basel Committee for Banking Supervision (BCBS) first proposed rules on
the capital treatment of market risks in 1993. As stressed by Carver (Risk Magazine, 2012),
these changes in regulation reveal the practitioners’ lack of tools to extract actual default
probabilities from market prices.

°See e.g. Brunnermeier and Pedersen (2009)[48] or Garleanu and Pedersen (2007)[126].
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being also affected by Gaussian shocks. In this framework, the spreads turn out
to be linear combinations of the regime variables and of latent factors that follow
Gaussian auto-regressive processes whose drifts depend on the regimes. Therefore,
the model can be seen as a linear state-space model with regime switching. The
countries’ illiquidity intensities are driven by a single European liquidity-related
factor. The identification of this factor is based on the exploitation of the term
structure of the spreads between KfW (Kreditanstalt fir Wiederaufbau), a German
agency, and the Bunds, which are the bonds issued by the Federal Republic of
Germany. Indeed, the bonds issued by KfW, guaranteed by the Federal Republic
of Germany, benefit from the same credit quality than the Bunds but are less
liquid.” Therefore, the KfW-Bund spread should be essentially liquidity-driven.®
The resulting liquidity-related factor significantly contributes to the dynamics of
intra-euro spreads, supporting findings by Favero et al. (2010) or Manganelli and
Wolswijk (2009).

The model is estimated on weekly data covering the last five years. These data
consist of sovereign-bond yields associated with eight euro-area countries. Our
estimation dataset is supplemented with survey-based forecasts. As evidenced by
Kim and Orphanides (2012), this alleviates the downward small-sample bias in the
persitence of the yields obtained with conventional estimation.’ Such biases typi-
cally result in too sTablelong-horizon expectations of yields and, as a consequence,
overstate the variability of term premia. Generating reliable expectations is crucial
given our goal of recovering historical —or actual, or real-world— probabilities of

default from bond prices.

The remaining of this Chapter is organized as follows. Section 4.2 presents the
model and details how bonds are priced in this framework. Section 4.3 deals

with the choice and the construction of the data. The estimation of the model

6 Accordingly, we use Kim’s (1994) algorithm to estimate the model parameters by maxmizing
the likelihood.

"By abuse of language, we use here the term Bunds for the German sovereign bonds of any
maturity although this name is usually used for ten-year bonds only.

8See Schwarz (2009). This is also discussed in Subsection 3.3.1.

9This way of reducing the bias is not the only one. In particular, Jardet, Monfort and Pegoraro
(2009) use a “near-cointegrated framework” specification of the factors (averaging a stationary
and a cointegrated specification).
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is detailed in Section 4.4 and Section 4.5 examines the implications of the model
in terms of liquidity and credit pricing. In particular, this Sectionpresents model-
implied physical probabilities of default. Section 4.6 summarizes the results and

makes concluding remarks.

4.2. The model

We consider zero-coupon bonds issued by N debtors. These entities may default
and their bonds are not perfectly liquid, both aspects having an impact on the
bonds prices. Heuristically, a bondholder fears about the default of the bond’s
issuer —that would result in a early and reduced repayment of the bond— and about
the risk of being hit by a liquidity shock.'® In the latter case, the bondholder is
forced to precipitately liquidate her bond holdings and, in such circumstances,

illiquid bonds are sold at a discount.

Subsection 4.2.1 presents the notations and introduces default and liquidity inten-
sities. The historical (respectively risk-neutral) dynamics of the model’s variables
is developed in Subsection 4.2.2 ( 4.2.3). The implications in terms of bond pricing

are developed in Subsection 4.2.4.

4.2.1. Default events, liquidity shocks and associated

intensities

At date t, each investor is provided with the new information @, = (r, 2, 5\;7“
5\27,5, d;, 0;)" where r; is the risk-free short-term rate, z; is a crisis-regime variable,
5\d7t is a IN-dimensional vector containing the default intensities associated with
the respective N debtors, d; is a N-dimensional vector of binary variables dg”)
indicating whether debtor n is in default at date ¢ (dﬁ”) = 1, which is an absorbing
state) or not (d\™ = 0),1 Ay is the liquidity-shock intensity and ¢, is a binary

10The liquidity shock may occur e.g. as a result of unexpected cash shortages, the need to
rebalance a portfolio in order to maintain a hedging or diversification strategy, or a change
in capital requirements (see He and Xiong, 2012).

11We use parenthesis to distinguish country from exponentiation in the superscript.
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variable indicating if the bondholder is affected by the liquidity shock at date ¢
(¢; = 1) or not (¢, = 0).

Denoting by w; the vector w; = (1 2}, ~fj,t, S\Q’t)’ and by w, the cumulated informa-
tion available at date ¢, i.e. w, = (W, Wy_1, ..., W), the conditional probability of

default of debtor n is given by:
P (d,ﬁ”) = 1‘ Wy, d,@l = O,@tfl) =1—exp (—5\((17’?) ,

which is close to 5\277? when this intensity is small. Let us consider a bond issued
by debtor n with a residual maturity of h at date t. We denote by Bt(j;l) the non-
default price of this bond. If debtor n defaults between date ¢ — 1 and date ¢, the
bondholder is assumed to receive —from the borrower— a fraction ¢ of the price that
would have prevailed otherwise at date t. In other words, in the case of default,

the recovery pay-off is ¢ Bt(z).

The conditional probability, for an investor, of being hit by the liquidity shock is:
P (4 = 1] dy, w0, ) =1 — exp <_5‘f,t) .

In particular, this probability does not depend on ¢, ; and d,. Upon the arrival
of the liquidity shock (¢, = 1), the bond investor has to exit by selling her bond
holdings at a fractional cost 1 —0) | that is, the proceed of the sale is then 0(”)B§;§).
A theoretical basis for such a fractional cost can be found in Ericsson and Renault

(2006)2

Conditionally on (wy,w, ), the dg")’s and /¢; are independent. However, condi-
tionally on the past information w,_;, the default events and the liquidity shocks
are not independent because the associated intensities are correlated with each

other.!3

12Tn their model, an investor hit by the liquidity shock must liquidate her bond holdings in a
limited time (between ¢ and ¢+, say). Then, she obtains a Poisson-distributed number K
of offers from traders (K ~ P(y(™)) and retains the best one, each offer being a random
fraction w; (i € [1,,K]) of Bt(f,?, which can then be seen as the price she would get if (")
was infinite. Therefore the higher v(™ | the more liquid the bonds issued by n.

13This assumption appears in the “doubly stochastic” framework (see e.g. Duffie et al., 2005,
Pan and Singleton, 2008 or Longstaff et al., 2011).
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For the sake of bond pricing, it will prove convenient to introduce the fractional-
loss intensities AE]}Q and )\E,Z) (see Appendix 4.A). Intuitively, they correspond to
the expected losses, conditional to w;, associated associated with, respectively, the
default of debtor n and the arrival of a liquidity shock (expressed as fractions of
the price that would have prevailed, absent the default and /or the liquidity shock).
Appendix 4.A shows that these intensities are defined through:

oxp (-4) = s (32 4 ¢ (1 - s (-32))

)

exp (—)\%)) = exp (—5\“) + 6 (1 — exp (—S\g’f)) .

)

(4.1)

When the ngt)’s and S\M are small, these equations are approximately )\gft) =

(1= QA and A = (1 — M)A,

Naturally, when the fractional recovery pay-offs (¢ and #™) are equal to one,
the fractional-loss intensities are null. Hence, when both kinds of losses are ruled
out (¢ = #™ = 1), the bonds issued by debtor n turn out to be risk-free bond.
By contrast, when the recovery pay-offs are null, the fractional-loss intensities
correspond to the conditional probabilities of default and to the probability of
being hit by the liquidity shock, respectively.

4.2.2. Historical dynamics of w;
4.2.2.1. Short rate, credit- and liquidity-related Markov chains

As in Pan and Singleton (2008) or Longstaff et al. (2011), we assume that the
short-term risk-free interest rate is exogenous. Hence, we work conditionnally to
observed values of the r;’s.

The joint dynamics of the recovery-adjusted default intensities ()\gft)) and of the
liquidity intensities ()\%)) crucially depends on an exogenous Markov chain z;.
The regime variable z; is obtained by crossing two regime variables. A first regime

variable zy; defines the liquidity situation, which can be distressed (z¢¢ = [0, 1]')

or not (z¢¢ = [1,0]'). A second regime variable z.,; represents the credit situation,
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the latter being either non-stressed (z.; = [1,0,0]"), distressed (z.; = [0,1,0]') or
severely distressed (z.; = [0,0,1]))."* The credit/liquidity regime of the economy
at date t is then summarized by the six-dimensional selection vector z;, which is

the Kronecker product of z,; and z.:
2t = Zug X Zeyts (42)

The vector z; is valued in {6[16}, . ,6([36]}, where eEM] denotes the M-dimensional

vector whose all entries are equal to 0, except the " that is equal to 1.

Importantly, there may be causal relationships between z,, and z.,. For instance,
we allow for the probability of a change in the liquidity state to depend on the credit
regime (and vice-versa). Formally, let us denote by II the matrix of transition prob-

[6]).

abilities, whose (7, j) entry, denoted by 7, j, corresponds to p(z41 = eg6]|zt =e;
The entries of the row of this matrix summing to one, 30 parameters are required
to specifiy this matrix. In order to keep the model parismonious, some constraints
are introduced. With these constraints, which are detailed in Appendix 4.B, 11

parameters are required to specifiy the matrix II.

4.2.2.2. Historical (P) dynamics of the )\Eﬂ)'s and the )\2)'5

(

The dynamics of the intensities /\gft) and /\Z;) are connected through the regime
variables. Consistently with the liquidity shock interpretation introduced in Sub-
section 4.2.1, we assume that the illiquidity intensities are driven by a single

factor denoted by Ag;.'> This factor, as well as the credit-related ones, follow

14Preliminary modelling with a unique level of credit-distress regime led to a less satisfying fit
of the data. That is why this additional level of credit distress (compared with the unique
liquidity-distress regime) has been introduced in the framework.

5However, this factor is not rigorously equal to the liquidity-shock intensity 5\5,75. Indeed, for

this to be the case in a context where the (™ are not time-varying, the )\g?’s should be

the same up to a multiplicative factor. In other words, the a(({?’s in equation (4.4) should

be equal to zero. That being so, we use these additional degrees of freedom to improve the
model fit.
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auto-regressive processes with drifts depending on the regime variables. Formally:

N = 1l 20+ pa G+ e

vn (4.3)
RO RN RN N
0 Qg+ Qy g Ay
Aot = Hyzes + pedee—1 + 0uEey (4.4)

where the eg’?’s —some country-specific credit shocks— and the g,;’s —some liquidity-

related shocks— are ii.d. N(0,1). We denote by A; the (N + 1) x 1 vector

containing the recovery-adjusted default intensities and the liquidity-related fac-

tor, ie. A\ = [)\gz, . ,)\Eﬁ), Aet|’s and by e; the associated innovations, i.e.
g = [522 b ,eg), ert)/. By abuse of notation, we may denote the entries of \; by

Ai¢ in the following.'® Then, denoting by g the 6 x (N + 1) matrix of drifts,'” by
® the matrix whose diagonal entries are py (/N times) and py, and by ¥ the matrix

whose diagonal entries are the agn)’s and oy, the dynamics of \; reads:

)\t = /UL//Zt + (I))\t,1 + th (45)

Equation (4.5) means that the conditional distribution of A\, given (7, z¢, w,_;) is
N (1 2+ PNy, X?), implying in particular that this distribution depends on @,_,
through \;_; only. Moreover, since r; and z; are exogenous, this implies that the
distribution of w; given w,_; does not depend on (d;_;,¢,_,), that is, (d;, ¢;) does

not Granger-cause wy.

It can be seen that the A;;’s are positively marginally skewed as soon as the p
vectors contain only positive entries. Moreover, the lower the standard deviations
o of the Gaussian shocks (in comparison with the drifts u), the more often the A; ;’s

are positive, which is important given their interpretations in terms of probabilities.

Furthermore, the instantaneous causality between z; and ); implies that the vari-
ances of the \;;’s, conditionally on w;_;, depend on the regime variable z,_;. More

precisely, conditionally to w,;_,, the distributions of the \;;’s are some mixtures

16/\i7t = /\1(113‘, for 4 < N and >\N+1,t = )\g7t.

"The columns of this matrix are ,u((il), ...ugN), and fup.
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of Gaussian distributions, thereby involving a form of heteroskedasticity in the

innovations.!®

4.2.3. Stochastic discount factor and risk-neutral (Q) dynamics

We assume that the stochastic discount factor (s.d.f.) has the following expression:

1 ! !
M1y =exp | =11 — SV +ve+ (021) 2 (4.6)

where § is a 6 X 6 matrix and where the entries of v, are affine in z; and in the
corresponding entries of \;_1, that is v;; = v\ ;A1 + 1/;7Z~zt, say. (v, is a scalar
and v, ; is a vector.) The risk-sensitivity matrix ¢ and the vectors v respectively
price the regimes z; and the (standardized) Gaussian innovations &, of A;. The
fact that we must have Ey(M; 1) = exp(—r;) implies that the entries of § are of
the form In(7j;/m;;) where the j; are such that ¥;7; = 1 for any i. Note that the
variables (d;, f;) do not appear in M;_;,, in other words, we assume that the risk
aversion is completely captured by the pricing of the innovation process ¢, and
the regime process z;. It can be shown that, in such framework, the risk-neutral
(Q) dynamics of (z;, \;) is of the same form as its historical counterpart.!® More
precisely, under Q, z; follows a time-homogenous Markovian chain whose dynamics
is described by the matrix IT* of transition probabilities {7};} and, denoting by

Ai¢ the i entry of \;, we have:
)\i,t = u;“'zt -+ pf)\i,t,l -+ (71'8: (47)

where e, ~ N9(0,1), pf = p; + o3, ; and pf = p; + o

Let us turn to the risk-neutral dynamics of d; and ¢;. As shown in Appendix 4.C,
the conditional distributions —given (wy,w,_;)— of these binary variables are the

same functions of w; under P and Q. In other words, for any n, Xﬁ;f} is the same

18Such a feature is discussed in Ang, Bekaert and Wei (2008).
19This results stems from Lemma 1.
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process in both worlds, and the same is true for 5\(7,5. This stems from the fact
that the variables d; and ¢; do not enter the s.d.f. (that depends on w only).20
However, it is important to stress that while the intensities are the same processes
under both measures, their Q- and P-dynamics are different (because the Q- and
P-dynamics of (z;, A;) differ). As a consequence, the probabilites of default are

different under P and Q.

4.2.4. Bond pricing

In this framework, the price of a defaultable and illiquid zero-coupon bond issued
by country n (not in default at date t) and with residual maturity A has a price

at time ¢ that is given by (see Appendix 4.A):

B = B fexp (—r = -~ revns = Ay — = A = A — = 2]

(4.8)

where r, is the return of a risk-free investment between ¢ and ¢t 4+ 1 and where E2

is the conditional expectation given w,_; in the risk-neutral world.

The short-term risk-free interest rate being exogenous, we have:

Bt(j}l) = EP lexp (—ry — ... — reeno1)] X
ER lexp (=AGh — o = A = M - =N (@)

Denoting by yt(;? the yield-to-maturity of this bond, we obtain:

g = ——In(BY)

=0 D (B9 fexp (A~ — A~ A = ALY

20 Appendix 4.C also shows that in that context, the fact that the distribution of w; given @,
does not depend on (d;,_q,£,_;) —i.e. that (d,¢;) does not cause w;— is true under both
measures.

136



4.3 Data

where yt(f)h) denotes the yield to maturity of a risk-free zero-coupon bond of residual
maturity h at date . The vector (2, \;) being compound auto-regressive of order
one under Q, the second term o