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Résumé

Cette thèse développe des modèles de la structure par terme de taux d’intérêt

–et des écarts de taux d’intérêt– dans lesquels les changements de régimes occu-

pent une place centrale. On montre notamment que ce type de modélisation est

particulièrement adapté pour rendre compte du comportement non-linéaire de ce

type de variables financières. Ces modèles sont exploités afin de répondre à des

questions clés pour les décideurs économiques et/ou les participants de marché,

notamment: quels sont les effets de la crise financière récente sur la structure par

terme des taux d’Etat ? Comment modéliser l’influence du risque systémique sur

la courbe des taux ? Comment l’illiquidité d’une obligation ou le risque de défaut

de son émetteur influencent la valorisation de ce titre ? Quelles sont les compen-

sations demandées par les investisseurs pour supporter le risque de taux associé

aux décisions de politique monétaire ?

Les modèles présentés sont fondés sur l’hypothèse d’absence d’opportunité d’arbitrage.

Ce type d’approche a acquis une importance croissante pour les décideurs comme

pour les participants de marché au cours de la dernière décennie. En effet, tout en

permettant un ajustement fin des données, les modèles vérifiant cette hypothèse

fournissent un cadre cohérent pour l’analyse des fluctuations des taux obligataires

et des primes de risque qu’elles incluent.

Dans la spécification de nos modèles, une grande importance est accordée à la

simplicité des formules de valorisation d’actifs. Ceci est crucial pour l’estimation

des paramètres des modèles et pour faciliter l’inférence statistique. La simplicité

des calculs repose sur l’utilisation des propriétés des processus composés auto-
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regressifs (Car) pour obtenir des formules quasi-explicites de prix obligataires1.

Dans notre approche, les dynamiques physique et risque-neutre des processus sont

explicites. Disposer de la dynamique historique rend notamment possibles les

exercices de prévision et, de manière générale, est important pour les besoins de

gestion des risques financiers (notamment pour le calcul des Values-at-Risk, VaR).

Le premier chapitre est une revue de la littérature liée aux différents sujets étudiés

dans cette thèse. Dans le deuxième chapitre, nous développons un cadre général de

modélisation des fluctuations de courbes de taux associées à différents émetteurs.

Les probabilités de défaut des emprunteurs sont fonctions de facteurs observables

ou non, à valeurs discrètes ou réelles. Alors que l’accent est mis sur la modéli-

sation du risque de défaut, on montre comment ce cadre permet également de

valoriser les titres obligataires illiquides. Une version simple du modèle est es-

timée pour reproduire la dynamique des écarts de taux entre les obligations émises

par des entreprises américaines d’une part et celles émises par le Trésor américain

(Treasuries) d’autre part. Ce second chapitre montre par ailleurs comment les

changements de régimes peuvent être utilisés pour reproduire des phénomènes de

contagion sectorielle. Enfin, le cadre initial est étendu pour modéliser les transi-

tions de notations de crédit et l’influence de celles-ci sur les structures par terme

de taux d’intérêt.

Le chapitre 3 présente une analyse des fluctuations jointes de courbes de taux

d’Etat de dix pays de la zone euro entre 1999 et 2012. Deux régimes intervi-

ennent dans le modèle, l’un de ceux-ci correspondant aux périodes de crise fi-

nancière. Ces régimes conditionnent la dynamique de cinq facteurs observables.

Le taux d’intérêt sans risque de court-terme, ainsi que les intensités de défaut

et d’illiquidité, dépendent linéairement de ces cinq facteurs. Ces spécifications

permettent d’expliquer la majeure partie des variations des taux d’intérêt inclus

dans l’échantillon –pour les différents pays et les différentes maturités considérées.

L’estimation suggère en outre que l’introduction du régime de crise est importante

pour expliquer l’accroissement de la volatilité des écarts de taux sur la période

récente. Cette étude propose également un moyen d’identifier la partie des taux
1Pour une analyse exhaustive de ces processus, voir Darolles, Gourieroux et Jasiak (2006).
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d’intérêt liée à la valorisation de l’illiquidité relative des obligations souveraines.

A cet égard, les résultats indiquent que bien que la liquidité soit un facteur im-

portant pour expliquer les écarts de taux d’Etat sur les cinq dernières années, les

inquiétudes relatives à la qualité de crédit des Etats de la zone euro constituent le

principal motif de leurs variations sur la période 2010-2012.

Le chapitre 4 complète l’analyse du chapitre précédent en se concentrant sur les

cinq dernières années, i.e. la période de crise financière 2007-2012. La modélisation

repose sur des facteurs de risque latents (non observables). La modélisation des

périodes de crise est plus précise que dans le chapitre précédent. En effet, nous

distinguons ici deux types de tensions : celles liées à des motifs de liquidité et celles

liées à des motifs de crédit. Plus précisément, nous introduisons deux chaînes, l’une

dite de liquidité et l’autre dite de crédit. Pour la chaine de liquidité, deux états

sont possibles: «faibles tensions» et «périodes de turbulences». Pour la chaîne de

crédit, un troisième niveau de tension («crise aigue») s’ajoute aux deux premiers.

L’estimation met en évidence un lien de causalité entre les deux types de tensions :

la probabilité d’entrer dans une période de turbulences liées à des modifs de crédit

est plus forte lorsque la situtation de liquidité est déjà détériorée.

Le chapitre 5 examine l’influence de la politique monétaire sur la courbe des taux

d’intérêt. Bien que les taux directeurs fixés par la banque centrale jouent un rôle

central dans la dynamique de la structure par terme des taux d’intérêt, peu de

modèles sont cohérents avec les spécificités des trajectoires de taux directeurs.

Ce chapitre vise à pallier ce manque en présentant un cadre dans lequel le taux

d’intérêt (de court terme) auquel les banques se refinancent auprès de la banque

centrale est à valeurs discrètes (ce sont des multiples de 0.25%) et positives. En

particulier, contrairement à la plupart des modèles de la structure par terme, celui-

ci est conforme à l’existence d’une borne inférieure (en zéro) pour les taux courts.

Ces propriétés découlent d’une utilisation innovante (et intensive) des changements

de régimes. En dépit d’un très grand nombre de régimes (246), le modèle reste

maniable, ce qui est illustré par son estimation sur données quotidiennes relatives à

la zone euro, l’échantillon couvrant les 13 dernières années. Les résultats suggèrent

que la partie courte de la courbe des taux intègre des primes de risque, celles-ci
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correspondant aux compensations demandées par les investisseurs pour supporter

le risque de taux associé aux décisions de politique monétaire. Ce modèle est

également utilisé afin d’évaluer l’influence sur la courbe des taux d’engagements

de la banque centrale sur une trajectoire future de son principal taux directeur.
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Summary

This doctoral thesis studies the potential of regime-switching models to capture

salient features of the dynamics of interest rates. It is notably shown that these

techniques can be used in several ways to reproduce various forms of yield and

spread non-linearities. Different innovative frameworks, combining flexibility and

tractability, are proposed. They are brought to data so as to tackle questions that

are key for both policy-makers and practitioners alike. These questions include the

following: What are the effects of the ongoing financial crisis on the term-structure

of sovereign spreads? How to model yield-curve reactions to increases in systemic

risk? What are the effects of market liquidity on the term structure of interest

rates? How are priced the probabilities of default (PDs) in defaultable-bond yields

of different maturities? What are the compensations required by investors to hedge

against uncertain monetary-policy decisions?

The models that are presented throughout this thesis rule out arbitrage oppor-

tunities. Such models are becoming increasingly important to policy makers and

practitioners. Indeed, beyond being able to provide a good fit of interest rates along

the whole maturity spectrum, these models allow to study the driving factors be-

hind the term structure of interest rates and the risk premia within a consistent

framework.

Particular attention is paid to the tractability of the proposed models. Tractability

is notably obtained through an extensive use of Car’s –Compound autoregressive

processes– properties,2 which leads to quasi-explicit formulas for bond prices. Both

historical and risk-neutral dynamics are explicitly modeled, which is helpful for

2For an in-depth analysis of Car processes, see Darolles, Gourieroux and Jasiak (2006).
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choosing appropriate specifications under the physical –or real-world– measure, for

dealing simultaneously with pricing and forecasting or also for risk-management

purposes (e.g. Value-at-Risk calculations).

The first chapter of this dissertation goes through the different topics that are

studied in the thesis and reviews the connected literature. The second chapter

develops a general framework aimed at modelling the joint dynamics of yield curves

associated with different issuers. In this reduced-form framework, the default

probabilities are modeled directly as functions of observable or latent factors, the

latter being discrete or real-valued. Regime-switching features lie at the heart of

this framework. While the focus is on default modelling, the specifications can

also account for the pricing of some liquidity premia using the same machinery

(as in Duffie and Singleton, 1999). A basic form of the model is fitted on the

term structure of spreads between U.S. corporate BBB-rated bonds and risk-free

(Treasury) yields. Some extensions are proposed, including a sector-contagion

model as well as the explicit modelling of credit-rating transitions.

In Chapter 3, the framework is applied to model the joint fluctuations of ten

euro-area sovereign yield curves over the period 1999-2012. In the model, there

are two regimes: a “tranquil” regime and a crisis one. These regimes affect the

dynamics of five euro-area wide observable factors. These factors affect the riskfree

short-term rate as well as the default and illiquidity intensities associated with the

different issuers. This framework is able to capture most of the fluctuations of

the various interest rates (over the different countries and different maturities) of

the estimation sample. Further, the setup makes it possible to account for the

dramatic rise in spreads that have been observed for some countries over the last

few years. Also, this study proposes a way to identify liquidity-related components

in sovereign bond yields. Regarding the latter point, the estimation results suggest

that while liquidity is an important driver of euro-area sovereign spreads, most of

the 2010-2012 spreads’ fluctuations correspond to concerns regarding the credit

quality of sovereign issuers.

Chapter 4 builds on the previous chapter by focusing on the last five years (instead
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of the last thirteen years hereinbefore). Contrary to Chapter 3, the pricing factors

are unobservable. In addition, the crisis modelling is more precise. Specifically, we

distinguish between two kinds of crises: liquidity-related ones and credit-related

ones. For the credit chain, there are three possible states: “calmer periods”,

“turmoil periods” and “severe-crisis periods”; for the liquidity chain, there are

two possible states: “calmer periods” and “turmoil periods”. The empirical part

of Chapter 4 provides evidence of causality between the two types of crisis, the

probability of switching from the calm credit state to the credit-crisis state being

higher when the liquidity situation is already deteriorated.

Chapter 5 investigates the influence of monetary policy on the yield curve. In

this study, a key role is given to the central-bank policy rate. In the model,

the policy rate follows a realistic step-like path (with values that are multiples of

0.25%) and can not turn negative. Therefore, by contrast with most of the existing

term-structure models, this one is consistent with the zero-lower bound (ZLB).

These appealing features are obtained thanks to an extensive and innovative use

of regime shifts. In spite of a very large number of regimes (246), the model

remains tractable and is easily brought to data. This is illustrated by estimating

the model on euro-area daily data covering the last 13 years. The results notably

point to the existence of monetary-policy-related risk premia at the short-end of

the yield curve. Furthermore, this model is used in order to assess the influence of

forward-guidance measures –defined as commitments of the central bank regarding

the future paths of the policy rate– on the yield curve.
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1. Survey of the literature

Abstract: This first chapter reviews the literature connected to the present thesis.

Section 1.1 surveys the contributions that have highlighted the ability of Marko-

vian regime-switching techniques to model nonlinear dynamics in a tractable way.

Section 1.2 illustrates the fact that these techniques have been employed in many

studies exploring the dynamics of economic and financial variables. Section 1.3

focuses on the use of regime switching in term-structure models: Subsection 1.3.1

deals with risk-free yields and Subsection 1.3.2 considers defaultable-bond pricing.

The subsequent Sections deal with the additional topics that are covered by this

thesis: the simultaneous modelling of different yield curves (Section 1.4), systemic

risk and contagion (Section 1.5), credit-rating migrations (Section 1.6), monetary-

policy and the yield curve (Section 1.7) and the decomposition in spreads into

liquidity and credit components (Section 1.8).
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Survey of the literature

Résumé

Il existe une importante littérature sur l’existence de non-linéarités dans la dy-

namique des taux d’intérêt (voir par exemple Aït-Sahalia, 1996, Stanton, 1997 ou

Boudoukh et al., 1999). Plus précisément, plusieurs études montrent l’existence de

différents régimes conditionnant la dynamique des taux d’intérêt (voir notamment

Hamilton, 1988 ou Ang et Bekaert, 2002).

Alors que le comportement récent des taux d’intérêt illustre de manière édifiante

la notion de changement de régimes, l’utilisation de modèles à changements de

régimes pour l’analyse de la structure par terme des taux d’intérêt est encore

relativement limitée. Alors que différentes études présentent des modèles dans

lesquels les déformations d’une unique courbe de taux dépendent de l’état d’une

variable aléatoire à valeurs discrètes (Monfort et Pégoraro, 2007, Ang, Bekaert et

Wei, 2008, Dai, Singleton et Yang, 2007, ou Pérignon and Smith, 2007), un nombre

très restreint de contributions considèrent la modélisation jointe de différentes

courbes de taux affectées par des changements de régimes (Dionne et al., 2011 et

Siu, Erlwein et Mamon, 2008).

Ce premier chapitre propose une revue de la littérature concernant la modélisation

des changements de régimes d’une manière générale et leurs applications à la mod-

élisation des variables financières et des taux d’intérêt en particulier. Cette revue

de la littérature couvre également divers champs d’études auxquels les travaux

présentés dans cette thèse sont liés, ceux-ci ont trait à:

• la modélisation du risque systémique et des phénomènes de contagion;

• la modélisation des changements de notations de crédit;

• l’influence de la politique monétaire sur la structure par terme des taux

d’intérêt;

• l’influence de la valorisation de la qualité de crédit et de la liquidité sur la

structure par terme des taux d’intérêt.
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1.1 Regime switching: A tool to model non-linear dynamics

1.1. Regime switching: A tool to model non-linear

dynamics

Linear models –such as autoregressive (AR) models, moving average (MA) models,

and mixed ARMA models– are extensively used to model the dynamics of economic

or financial variables. These models, that are extremely popular among academics,

practitioners and policy makers, are quite successful in numerous applications.

However, it has often been found that simple linear time series models usually leave

certain aspects of economic and financial data unexplained. By definition, they are

unable to capture nonlinear dynamic patterns such as asymmetry, extreme events

or volatility clustering. Typically, the properties of output growth in recessions

are, in various ways, different from expansion time (see e.g. Hamilton, 1989, Lo

and Piger, 2005 or Sichel, 1994 among innumerable others). Inflation also presents

different kinds of nonlinearities, notably in crises periods (see e.g. Stock and

Watson, 2010). Therefore, in many cases, linear models are not sufficient and

non-linear approaches have to be resorted to. Accordingly, over the last two to

three decades, we have witnessed a rapid growth of the development of nonlinear

time series models (see e.g. Granger and Ter̈asvirta, 1993).

Regime-switching models, closely linked to the seminal work of Hamilton (1988,

1989 and 1990), are among the most popular nonlinear time series models in the

literature. The fact that the regimes can switch over time makes it possible to

account for various non-linear behavior of the modeled variables. In the standard

regime-switching framework, the change in the regimes is controlled by an un-

observable state variable that follows a Markov chain, that is, the current value

of the state variable depends on its immediate past value. A given regime can

be persistent or not, depending on the probabilities of switching to alternative

regimes. The Markov switching model is therefore suitable for describing corre-

lated data that exhibit distinct dynamic patterns during different time periods.

The standard framework has notably been extended by Filardo (1994) to allow

for time-varying transition probabilities (implying that regime-switching models

encompass threshold auto-regressive models of Tong and Lim, 1980) or, from an
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1.2 Regime switching in economics and finance

econometric point of view, by Kim (1994) that integrates the regime-switching

features within a state-space framework including unobserved factors affected by

Gaussian shocks.

Of course, regime-switching models are not the only models that can handle non-

linear behavior of random variables. There exist models that can handle more

general forms of non-linearity. In particular, the so-called artificial neural network

models, due to their “universal approximation” property, are capable of charac-

terizing any nonlinear pattern in data (see e.g. Kuan and White, 1994). Un-

fortunately, these models suffer from identification-related problems and are far

less tractable than regime-switching models. As will be illustrated throughout the

present thesis, the latter still allow for a substantial degree of flexibility, making

them appropriate to study a wide range of phenomena.

By appropriately mixing conditional normal (or other types of) distributions, large

amounts of non-linear effects can be generated within regime-switching frame-

works. Regime switching models can provide a good approximation for more com-

plicated processes driving security returns. Regime switching models also nest as a

special case jump models, since a jump is a regime which is immediately exited next

period and, when the number of regimes is large, the dynamics of a regime switch-

ing model approximates the behavior of time-varying parameter models where the

continuous state space of the parameter is appropriately discretized.

1.2. Regime switching in economics and finance

Abrupt changes are a prevalent feature of economic systems and financial markets.

These changes are of different natures: some are transitory (jump-like) and some

tend to persist for protracted periods. As mentioned above, both types of changes

can be captured by regime-switching models (see Ang and Timmermann, 2011

and Guidolin, 2011); this is going to be illustrated in the present thesis.1 Regime-

switching models parsimoniously capture stylized behavior of many financial series
1Specifically, in the model developed in Chapter 3, the crisis regime may last for several years.

By contrast, the stress episodes introduced in Chapter 4 have a life expectancy of a few weeks.
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1.2 Regime switching in economics and finance

including asymmetries, fat tails, skewness, persistently occurring periods of tur-

bulence followed by periods of low volatility, volatility clustering, time-varying

correlations.

The use of the regime-switching method for modelling dynamics and asymmetries

in stock prices has become very popular and various adaptations of the basic set-

up have been proposed (e.g. Perez-Quiros and Timmermann, 2001 or Ang and

Chen, 2002). Regime-switching setups have also been estimated to analyze the

dynamics of exchange rates (Ang, 2011, Kanas, 2006, Engel, 1994, Bollen, Gray

and Whaley, 2000 and Dewachter, 2001), and of various alternative prices such as

electricity prices (e.g. Haldrup and Nielsen, 2006) or commodity prices (e.g. Chen

and Insley, 2012).

Regime-switching models have proven useful in building coincident indicators (Kim

and Yoo, 1995 and Kim and Nelson, 1998) or in developing forecasting tools (Chau-

vet and Potter, 2000) or optimal portfolio choice (Guidolin and Timmermann,

2007).

The ongoing financial crisis is strengthening the case for including regime-switching

features in financial models (see Christensen, Lopez and Rudebusch, 2008). This

is notably illustrated by Chapters 3 and 4 of the present thesis that study the

dynamics of government-bond interest rates amid the so-called euro-area sovereign

debt crisis (exploiting the general framework presented in Chapter 2). The crisis

period itself can be seen as a succession of different regimes or phases; this idea is

omnipresent: it can be found in academic work (e.g. Bech and Lengwiler, 2011),

in official speeches (Stark, 2009) or in the medias (The Guardian, 2011).

The fact that the idea of regime changes is natural and intuitive has contributed

to its popularity. Economic explanations for these types of time-variation in a

series’ dynamics point into main three directions. According to the first, regimes

identified by econometric methods can be associated with different periods in reg-

ulation, policy, and other secular changes (see e.g. Hamilton, 1988, Sims and

Zha, 2006, Davig, 2004). The second strand of economic explanations relates

market-price movements to macroeconomic fundamental influences. In particular,
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1.3 Yield-curve dynamics and regime switching

numerous studies confirm that the conditional moments of stock returns are busi-

ness cycle dependent (Cecchetti, Lam and Mark, 1990, Hamilton and Lin, 1996,

Schwert, 1989, Campbell et al., 2001 or Perez-Quiros and Timmermann, 2001).

The third type of explanation attributes nonlinearities to particular behavior of

market participants (e.g. noise traders). There is a large literature that reports

that speculative trading may cause fads, bubbles or even market crashes (Funke,

Hall and Sola, 1994, van Norden and Vigfusson, 1998 or Jeanne and Rose, 2002).

1.3. Yield-curve dynamics and regime switching

1.3.1. Regime shifts in default-free yield-curve dynamics

Strong evidence points to the existence of regime switching in the dynamics of the

term structure of interest rates. Thus, Hamilton (1988) finds that changes in the

Federal reserve operating procedures leads to regime-switching in the dynamics of

the term structure of interest rates. In addition to such a shift, Cai (1994) finds

that the 1974 oil shock resulted in a regime shift in the asymptotic volatility of

the three-month Treasury bill. Gray (1996) shows that the assumption of a single

regime is a source of misspecification in models of the short rate. Garcia and Perron

(1996) use the Hamilton filter to characterize the time series behavior of the ex-

post U.S. real interest rate during the period 1961 to 1986 and show that the real

interest rate series during this time period would be best characterized by three

states. Adding term spread in their estimation, Ang and Bekaert (2002) identify

regimes that are closely linked to business cycles, suggesting that large periodic

shifts in interest rates across distinct regimes present a systematic risk to investors

(see also Wu and Zeng, 2005 or Bansal and Zhou, 2002). The same authors (2002)

show that regime switching is efficient in capturing nonlinear dynamics of the short-

term interest rate exhibited by Aït-Sahalia (1996). Christiansen (2004) estimates

a two-state Markov-switching model for the short-rate and the slope of the yield

curve: his estimated regimes turn out to depict low and high variances regimes

for short-rate changes. The economy appears to have been in the high-variance
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1.3 Yield-curve dynamics and regime switching

state during unusual economic periods such as oil or stock-market crises, or more

generally during the official recession periods.

Monfort and Pegoraro (2007) show that the introduction of regime switching in

term-structure models leads to term-structure models that are well-specified under

the historical probability and that are able to explain the expectation-hypothesis

puzzle (why the long and short term interest rate differential does not predict the

future interest rate changes), over short and long horizons. Following Veronesi

and Yared (1999) and Evans (2003), Ang Bekaert and Wei (2008) develop term

structure models with regime shifts to investigate the joint dynamics of real and

nominal yields. They identify inflation and real factor sources behind regime

shifts and analyze how they contribute to nominal interest-rate variations. Dai,

Singleton and Yang (2007) develop a model with regime-shift risks that are priced

by investors. Allowing for state-dependent transition probabilities, their model

makes it possible to conveniently capture asymmetry in the cyclical behavior of

interest rates. Pérignon and Smith (2007) show that allowing for regime shifts in

the pricing factor volatilities dramatically improves the model’s fit.

In Chapters 2 to 4 of the present thesis, the emphasis is put on defaultable-bond

pricing. By contrast, in Chapter 5, an innovative use of regime-switching features

is proposed to model the term structure of riskfree yields. Contrary to the above-

mentioned studies, the number of regimes involved in the model introduced in

Chapter 5 can be very large (tens or hundreds). In spite of that, the model remains

tractable and makes it possible to model the specific dynamics of the central-bank

policy rate in a satisfying way. The latter point implies that this model can be

exploited to investigate the effects of monetary-policy on the yield curve.2

1.3.2. Regime shifts in spreads’ dynamics

While the previous subsection puts forward the importance of modelling regime

switching in yield-curve models, a few has been done to integrate such a feature

in term-structure models of defaultable bonds. However, empirical studies point
2This is also discussed below in 1.7.
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1.3 Yield-curve dynamics and regime switching

to the existence of different regimes in the default risk valuation. Davies (2004

and 2008) uses Markov-Switching Vector Auto-Regression (MS-VAR) estimation

techniques and finds that credit spreads exhibit distinct high- and low-volatility

regimes. Alexander and Kaeck (2008) detect a pronounced regime-specific be-

havior of Credit default swap (CDS) spreads. Cenesizoglu and Essid (2010) or

Bruche and Gonzales-Aquado (2010) find switching behavior in default rates and

recovery-rate distributions. Hackbarth, Miao and Morellec (2006) build a theoret-

ical model to explain the dependence of credit spread on business-cycle regimes.

In the same vein, Bhamra, Kuehn and Strebulaev (2007), Chen (2008) and David

(2008) adopt a Merton structural model including regime switching to assess the

influence of different states of the economic cycles on the credit-risk premia. This

can be related to the analysis of Bangia et al. (2002) who illustrate the importance

of distinguishing between expansion and contraction phases for the assessment

of loss distribution of credit portfolios. Without deriving a complete model of

the credit-spread term structure, Maalaoui, Dionne and François (2009) estimate

Markov-switching specifications to investigate the links between credit spreads and

their determinants. Their results suggest that the failure of single-regime models

to find significant links between potential determinants (see e.g. Collin-Dufresne,

Goldstein and Martin, 2001) may stem from the fact that these determinants have

opposite average effects in the two regimes they identify. Dionne et al. (2011)

propose a model of the term-structure of interest rates associated with default-

able bonds. Regime switching affects the dynamics of the risk factors, that are

observable macroeconomic variables. Siu, Erlwein and Mamon (2008) present a

framework to price credit default swaps in the presence of regime-switching in the

default intensities processes.

The potential of regime-switching features to account for the fluctuations of the

term-structure of (credit-)risky yields in a no-arbitrage framework is explored in

Chapters 2 to 4 of this thesis. In the proposed setups, the probabilities of default

of the debtors depend on the different regimes and on factors that can be observed

or latent. Therefore, the whole term structure of interest rates is affected by the

regimes. While this framework is highly flexible, it remains particularly tractable,
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1.4 Jointly modelling the physical and risk-neutral dynamics of different yield
curves

bond yields being given by quasi-explicit formula. This property stems from the

fact that the processes involved are Compound auto-regressive (Car), implying

that multi-horizon Laplace transforms of these processes are obtained by recursive

formulas.

1.4. Jointly modelling the physical and risk-neutral

dynamics of different yield curves

Motivated by derivative-pricing or credit-risk-management objectives, a large strand

of the recent literature related to fixed-income securities has focused on the joint

modelling of several yield curves. In this context, Jarrow, Lando, Turnbull (1997),

Lando (1998) or Duffie and Singleton (1999) have highlighted the potential of affine

term-structure models (ATSM) to describe the joint dynamics of yield curves as-

sociated with various obligors subject to default risk. Their intensity-based –or

reduced-form– approaches used to model defaults differ from the more structural

approaches originating in Black and Scholes (1973) and Merton (1974). In the

latter, the default of a firm is modeled in terms of the relationship between its

assets and liabilities. The asset value process is modeled as a geometric Brown-

ian motion and default occurs when the asset value at maturity is lower than the

liabilities. Important industry models like KMV’s Portfolio Manager or the JP

Morgan’s CreditMetrics model are based on this approach (see Crouhy, Glai and

Mark, 2000for a comparative analysis of industry credit-risk models). Cathcart

and El-Jahel, 2006) have shown that the two approaches (reduced-form and struc-

tural) are somewhat reconcilable. As shown by Duffie and Singleton (1999), in

an intensity-based framework, the modelling of defaultable claims is based on the

standard affine term-structure machinery readily available for default risk mod-

elling and estimation. Since then, numerous further developments have illustrated

the flexibility and tractability of affine-term structure models to jointly model dif-

ferent yield curves (see e.g. Duffee, 1999, Collin-Dufresne and Solnik, 2001, Dai

and Singleton, 2003, Collin-Dufresne, Goldstein and Hugonnier, 2004 and Gourier-
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1.4 Jointly modelling the physical and risk-neutral dynamics of different yield
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oux, Monfort and Polimenis, 2006).

Despite the importance of sovereign credit risk in the financial markets, relatively

little research proposing models of the joint dynamics of sovereign yields has ap-

peared in the literature. Notable recent exceptions include Pan and Singleton

(2008) and Longstaff et al. (2011). These two contributions point to an important

degree of commonality across sovereign credit risk. More precisely, they show that

the risk premia included in sovereign credit spreads are substantial and covary im-

portantly with economic measures of global event risk. According to Longstaff et

al., an important source of commonality in sovereign credit spreads may be their

sensitivity to the funding needs of major investors in the sovereign credit markets.

Chapters 3 and 4 propose models that depict the joint dynamics of different euro-

area sovereign yield curves. In these models, the dynamics of the stochastic dis-

count factor implies that the physical and the risk-neutral dynamics of the pricing

factors –and notably the default process– do not coincide. The risk-neutral dynam-

ics is the dynamics of the pricing factors that would be consistent with observed

prices under the (potentially false) assumption that investors are risk-neutral. In

our framework, we can assess the size of the (potential) errors that are implied

by assuming that the historical and the risk-neutral dynamics coincide. A typical

example lies in the computation of market-based probabilities of default (PDs).

To get these, the vast majority of practitioners or market analysts resort to ap-

proaches ending up with risk-neutral PDs.3 While risk-neutral PDs are relevant

for pricing purposes, historical ones are needed (a) if one wants to extract real-

world investors’ perception of the credit quality of the issuer, (b) for the sake of

forecasting or more generally (c) for risk management purposes.4

3Most of these methodologies build on Litterman and Iben (1991), see e.g. (amongst many
others) Bank of England (2012), CMA (2011) and O’Kane and Turnbull (2003). Studies
resorting to these methods are usually silent about this caveat. Notable recent exceptions
include Blundell-Wignall and Slovik (2010), in an OECD study, who note: “In the real world,
actual defaults are fewer than market-driven default probability calculations would indicate.
That is because market participants demand a risk premium – an excess return – compared
to the risk-neutral rate, and that premium cannot be observed. This makes it difficult to
use the above measure [the risk-neutral PDs] to imply the likelihood of actual defaults in the
periphery of Europe or anywhere else.”

4Regarding the latter point, note for instance that Value-at-Risk measures (VaR) should be
based on the real-world measure and not on the risk-neutral one (see Gourieroux and Jasiak,
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1.5 Systemic risk, default clustering and contagion

The results of Chapters 3 and 4 suggest that the sources of common fluctuations

across euro-area countries’ yields command such credit-risk premia. This is con-

sistent with the fact that sovereign risk cannot be diversified away. The analysis

shows that, because of these premia, the physical probabilities of default of euro-

area countries are substantially lower than their risk-neutral counterparts.

1.5. Systemic risk, default clustering and contagion

While there is no strong consensus on the definition of systemic risk, the general

view is that this kind of risk would differ from the systematic ones in terms of

the severity and frequency of the associated shocks. More precisely, systematic

shocks are frequent and not extreme while systemic shocks would be infrequent

and extreme (see e.g. Das and Uppal, 2004 or Baur and Schulze, 2009). For de

Bandt and Hartmann (2000), a systemic event is an event where the release of bad

news about a financial institution, or even its failure, or the crash of a financial

market leads in a sequential fashion to considerable adverse effects on one or sev-

eral other financial institutions or markets, e.g. their failure or crash. Obviously,

disentangling systematic from systemic risks may not be a trivial task. In partic-

ular, difficulties arise from the fact that systematic shocks can turn into systemic

ones. For instance, in some contexts –notably when the level of uncertainty is

high–, temporary systematic shocks can lead to defaults and generate significant

negative aftershocks, including liquidity spirals.5

In a model accommodating regime shifts, it is natural to associate systematic and

systemic risk with the Gaussian shocks and the regime shifts, respectively (see

e.g. Gonzales-Hermosillo and Hesse, 2009 or Abdymomunov, 2012). Billio et al.

(2012) propose an other use of regime-switching features to investigate systemic

risks; in their approach, the regimes are key to model of the interconnectedness of

the financial system.

2009).
5See Brunnermeier and Pedersen, 2009 for a structural analysis of this and e.g. Hesse and

Gonzalo-Hermosillo (2009) for empirical evidence.
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The contagion literature focuses on the interdependencies between the defaults of

different debtors.6 In the so-called contagion models, if one of the debtor defaults,

it affects the default probability of the other debtors. Contagion effects, whose

consequences are cascades of subsequent spread changes, are explained by the

existence of close ties between firms. These ties may be of legal (e.g. parent-

subsidiary), financial (e.g. trade credit), or business nature (e.g. buyer-supplier).

Through these channels, economic distress of one firm can have an immediate

adverse effect on the financial health of that firm’s business partners (Giesecke,

2004, Egloff, Leippold and Vanini, 2005). Jarrow and Yu (2001) develop a primary-

secondary approach: in case a primary entity defaults, the spreads of other debtors

jump upwards; meanwhile, default of secondary firms do not have any impact on

other debtors in the portfolio. In the infectious-default model developed by Davies

and Lo (2001), the default of a debtor triggers a regime shift: in the high-risk

regime, the default intensities of all debtors are increased.7

Das et al. (2007) test whether default events can reasonably be modeled as depen-

dent solely on exogenous observable factors.8 As Duffie et al. (2009) and Giesecke

and Kim (2010), they find that doubly-stochastic settings perform badly if no la-

tent covariates –also called frailty components– enter the intensity specifications.

Duffie et al. (2009) further argue that including frailty covariates in the hazard-rate

specifications is necessary to accommodate default clustering.9 Collin-Dufresne,

Goldstein and Helwege (2008), Bai et al. (2012) and Jorion and Zhang (2007)

also find that default events are associated with significant increases in the credit

spreads of other firms, consistent with default clustering in excess of that sug-

gested by the standard doubly stochastic models. Azizpour and Giesecke (2008)

find that contagion effects represent a significant additional source of default clus-

6For an extensive survey of the contagion literature, see e.g. Lütkebohmert (2009).
7Other contagion mechanisms based on the same kinds of approaches are proposed by Frey and

Backhaus (2003) or Yu (2007).
8Nevertheless, using a different specification of the default intensity, Lando and Nielsen (2008)

cannot reject the assumption of conditional independence for default histories recorder by
Moody’s between 1982 and 2006. Lando and Nielsen conclude that the test proposed by Das
et al. (2007) is mainly a misspecification test.

9Frailty models come from the biostatistics literature. In these models, the intensity of a point
process is proportional to an unobservable variable, the frailty parameter. For a survey of
frailty models, see Hougaard (2000) [155].
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tering (over and beyond the effect due to firms’ exposure to observable and frailty

risk factors). Koopman, Lucas and Schwaab (2012) show that modelling frailty

contributes to obtain a proper modelling of default rates during crisis.

Two Subsections of Chapter 3 specifically deal with systemic risk and contagion.

Subsection 2.8.2 shows that the general framework introduced in Chapter 3 can

accommodate the specific contagion case where one entity –or, for the sake of

tractability, a small number of them– affects the default probability of the others:

it suffices to make one of the regimes corresponds to the default state of this

entity. Further, Subsection 2.8.3 explains how the regime-switching feature can

be exploited in order to capture “sector-contagion” phenomena. The sectors can

represent different industries or different geographical areas. Each sector can be

“infected” or not, and when a sector gets infected, the default intensities of its

constituents (the debtors) shift upwards. In this context, sector contagion stems

from the parameterization of the matrix of regime-transition probabilities. For

instance, it is easy to model infection probabilities that depend positively on the

number of sectors already infected.

1.6. Credit-migration modelling

The default of a debtor is the most basic credit event. More generally, credit events

include changes in credit ratings like these attributed by agencies like Moody’s,

Standard & Poor’s or Fitch. There are several reasons why it may be desirable

to model not only default events but also rating transitions (see Cantor, 2004 or

Gagliardini and Gourieroux, 2001). Several of the main credit models currently

being used in the industry, such as J.P. Morgan’s CreditMetrics (1997), draw

on the credit-migration approach. For presentation, comparison and evaluation

of these models, one can refer to Crouhy, Glai and Mark (2000), Gordy (2000)

or Lopez and Saidenberg (2000). First, because of the importance of ratings in

terms of risk management, modelling credit migration is key for practitioners. For

instance, the VaR or capital adequacy numbers may be based on a portfolio rating’s

distribution (see Saidenberg and Schuermann, 2003). In addition, some portfolio
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managers are constrained by limits based on the ratings of the bond they held.

Second, such models are obviously required to price credit-event options. Third,

when complete default historical data sets are not available (or do not go back far

in time), exploiting credit-migration matrices may allow to extrapolate long-term

default predictions from short-term credit risk dynamics. Similarly, to the extent

that rating classes are seen as approximately homogenous, having a rating-based

term structure model at one’s disposal makes it quick to get a rough estimate of

the fair value of a bond (given the rating of the issuer).10

In their seminal study of credit spread, Jarrow, Lando and Turnbull (1997) model

rating transitions as a time-homogenous Markov chain. That is, in their model,

whether a firm’s rating will change in the next period depends on its current

rating only and the probability of changing from one rating to the other remains

the same over time. In addition, in their setting, the market risk and the credit

risk are assumed to be independent. Different studies suggest however that –per-

period– transition probabilities are time-varying (see e.g. Lucas and Lonski, 1992,

Belkin, Suchower and Wagner, 1998, Farnsworth and Li, 2007 or Feng, Gourieroux

and Jasiak, 2008). In addition to time-variability, Nickell, Perraudin and Varotto

(2000) show that conditioning a transition matrix on the industry (to which the

company belongs) is desirable.

Lando (1998) extends the framework developed by Jarrow, Lando and Turnbull

(1997) by allowing for dependence between the market risk and the credit risk11

and by making the rating-transition probabilities depend on the state variables.

Other examples of term-structure models allowing for time-varying probabilities

of rating migrations include Bielecki and Rutkowski (2000) and Wei (2003). In

Subsection 2.8.4 of the present thesis, it is shown how the general framework pro-

posed in Chapter 3 can be extended in order to model credit-rating migrations.

In that model, the probabilities of migrating from one rating to another is time-

varying and can, in particular, depends on regimes. In such a context, bond prices

10This assumption is for instance made in J.P. Morgan’s CreditMetrics (1997). It is also made,
e.g., by Feldhütter and Lando (2008).

11Amongst the earliest studies suggesting that such a feature is required, see Longstaff and
Schwartz (1995) or Duffee (1998).
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are still given by closed-form recursive formulas.

1.7. Monetary-policy and the yield curve

While there is a strong empirical support for the assertion that monetary policy

is a major driver of the yield-curve fluctuations (see e.g. Cochrane and Piazzesi,

2002 or Rigobon and Sack, 2004), the quantitative aspects regarding the trans-

mission mechanism along the yield curve –from the overnight interbank market to

longer-term interest rates– are less clear.12 Among the vast number of interest-rate

term-structure models, only a very few deal explicitly with monetary-policy deci-

sions. This lack, which is particularly pronounced at a time when policymakers

have to consider all possible options to deal with the crisis, partly reflects the speci-

ficities of the process followed by the policy rate –or central-bank target– and the

technical difficulties associated with incorporating such a process in a no-arbitrage

framework.13 Piazzesi (2005) and Fontaine (2009) propose term-structure mod-

els in which changes in the target rate have (realistic) discrete supports. They

estimate their models on U.S. data covering respectively the periods 1994-1998

(weekly) and 1994-2007 (daily). However, their models technically imply non-zero

probabilities of negative interest rates for all maturities on the term structure.

While this caveat may be tenable when the short-term interest rate is far enough

from zero –the conditional probabilities of having negative interest in the subse-

quent periods being negligible–, it is more problematic when the zero-lower bound

(ZLB) is binding.

Actually, most of the tractable yield-curve models are not consistent with this zero

lower bound (See Dai and Singleton (2003) or Piazzesi (2010)). Hamilton and Wu

(2012) propose a way to adapt the standard Gaussian framework to account for

an extended period of constant short-term rate. However, they implicitly assume

that when this phase ends, (a) such a phenomenon cannot happen again and (b),
12This is the so-called interest-rate channel of monetary-policy decisions.
13See e.g. Rudebusch (1995), Hamilton and Jorda (2002), Balduzzi, Bertola and Foresi (1997)

and Balduzzi et al. (1998) for models of the U.S. Federal Funds rate target (the Fed funds
rate is the U.S. overnight interbank rate).
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the short-term rate can turn negative again. Andreasen and Meldrum (2011) or

Kim and Singleton (2011) show that the quadratic Gaussian framework can be

used to preclude negative interest rates. Indeed, in these models, the short-term

rate is a quadratic function of underlying factors; this quadratic function can

be such that the short-rate –and therefore longer-term rates– is always positive.

Nevertheless, to ensure the tractability of this approach, the underlying factors

are affected by homoskedastic Gaussian shocks. Hence, the probability that a

quadratic combination of these factors remains very close to zero for a protracted

period of time is extremely low. The latter point implies that these models are

not consistent with prolonged periods of very low interest rates, limiting their

relevance in the current context. By contrast, as is illustrated in Chapter 5 of the

present thesis, regime switching features make it possible to satisfyingly account

for long periods of time of very low and/or constant policy rates.

A notable feature of the monetary policy behavior is that changes in the policy

rate tend to be followed by changes of the same direction, giving rise to eas-

ing/tightening monetary-policy phases (see e.g. Mooreand Richard, 2002, Heine-

mann and Ullrich, 2007 or the speech by Smaghi, 2009). These phases are usually

very persistent and typically last for a few quarters or years. For Bikbov and

Chernov (2008), shifts in the overall monetary policy stance (from accommodative

to tightening or vice versa) may have more important effects on interest rates than

a single interest rate change does. Bikbov and Chernov show that a model with

regime shifts is the most convenient tool to capture such policy behavior. Davig

and Gerlach (2006) identify states that imply different responses of the yield curve

to unexpected changes in the federal funds target.

The model introduced in the fifth chapter of this thesis addresses these different

issues. This innovative model builds on an extensive use of regime-switching fea-

tures. In this model, the short end of the yield curve is explicitly influenced by

the central-bank policy rate, the latter being a multiple of 25 basis points. Oc-

currences of target moves depend on a hidden monetary-policy regime and on the

level of the current target rate. An appealing feature of this model is that it is

consistent with positive policy rates, making it appropriate to deal with the zero-
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lower-bound restriction. To illustrate the flexibility and tractability of this model,

it is estimated on daily euro-area data. The results suggest that the dynamics of

the term structure of riskfree (OIS) rates is closely related to monetary-policy ex-

pectations. The estimation also reveals the existence of sizable risk premia at the

short-end of the yield curve, which suggests that the widespread market practice

that consists in using money-market forwards to proxy market forecasts of future

target moves is biased.

1.8. Decomposing the term structure of spreads

There is compelling evidence that yields and spreads are affected by liquidity con-

cerns14. In particular, using euro-area data, Beber, Brandt and Kavajecz (2009)

provide evidence of a nontrivial role in the dynamics of sovereign bond spreads,

especially for low credit risk countries and during times of heightened market un-

certainty.15 In recent studies, some authors develop affine term-structure models to

breakdown several kinds of spreads into different components, including liquidity-

related ones. These approaches are based on the assumption that there exists

commonality amongst the liquidity components of asset prices and bond in par-

ticular.16 For instance, Liu, Longstaff and Mandell (2006) use a five-factor affine

framework to jointly model Treasury, repo and swap term structures. One of their

factors is related to the pricing of the Treasury-securities liquidity and another

factor reflects default risk.17 Feldhütter and Lando (2008) develop a six-factor

model for Treasury bonds, corporate bonds and swap rates that makes it possible

to decompose swap spreads into three components: a convenience yield from hold-
14See, e.g., Longstaff (2004), Landschoot (2004), Chen, Lesmond and Wei (2007), Covitz and

Downing (2007) or Acharya and Pedersen (2005).
15Such a behaviour is captured in a theoretical framework by Vayanos (2004).
16See e.g. Chordia and Subrahmanyam (2000), Brockman, Chung and Pérignon (2009), Fontaine

and Garcia (2012), Feldhütter and Lando, (2008), Longstaff, Mithal and Neis (2005), Liu,
Longstaff and Mandell (2006) or Dick-Nielsen, Feldhütter and Lando (2011).

17As noted by Feldhütter and Lando (2008), the identification of the liquidity and credit risk
factors in Liu et al. relies critically on the use of the 3-month general-collateral repo rate (GC
repo) as a short-term risk-free rate and of the 3-month LIBOR as a credit-risky rate. Liu et
al. define the liquidity factor as the spread between the 3-month GC repo and the 3-month
Treasury-bill yield (and is therefore observable). In each yield, their liquidity component is
the share of the yield that is explained by this factor.
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ing Treasuries, a credit-element associated with the underlying LIBOR rate, and a

factor specific to the swap market. They find that the convenience yield is by far

the largest component of spreads. Longstaff, Mithal and Neis (2005) use informa-

tion in credit default swaps –in addition to bond prices– to obtain measures of the

nondefault components in corporate spreads. They find that the nondefault com-

ponent is time-varying and strongly related to measures of bond-specific illiquidity

as well as to macroeconomic measures of bond-market liquidity.

In recent studies, some authors rely on the affine-term structure framework to

model yield curves associated not only with different obligors but also with dif-

ferent fixed-income instruments (e.g. bonds, repos, swaps). Further, the authors

exploit this modelling to breakdown credit spreads or swap spreads into different

components. Specifically, Liu, Longstaff and Mandell (2006) use a five-factor affine

framework to jointly model Treasury, repo and swap term structures. One of their

factors is related to the pricing of the Treasury-securities liquidity and another

factor reflects default risk.18 Feldhütter and Lando (2009) develop a six-factor

model for Treasury bonds, corporate bonds and swap rates that makes it possible

to decompose swap spreads into three components: a convenience yield from hold-

ing Treasuries, a credit-element associated with the underlying LIBOR rate, and a

factor specific to the swap market. They find that the convenience yield is by far

the largest component of spreads. Longstaff, Mithal and Neis (2005) use informa-

tion in credit default swaps –in addition to bond prices– to obtain measures of the

nondefault components in corporate spreads. They find that the nondefault com-

ponent is time-varying and strongly related to measures of bond-specific illiquidity

as well as to macroeconomic measures of bond-market liquidity.

Chapter 3 and 4 present no-arbitrage affine term-structure model (ATSM) of the

dynamics of euro-area sovereign yields and spreads, respectively. In addition to the

term structures of sovereign entities, the dataset includes yields associated with

18As noted by Feldhütter and Lando (2009), the identification of the liquidity and credit risk
factors in Liu et al. relies critically on the use of the 3-month general-collateral repo rate (GC
repo) as a short-term risk-free rate and of the 3-month LIBOR as a credit-risky rate. Liu et
al. define the liquidity factor as the spread between the 3-month GC repo and the 3-month
Treasury-bill yield (and is therefore observable). In each yield, their liquidity component is
the share of the yield that is explained by this factor.
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KfW (Kreditanstalt für Wiederaufbau), a German agency. A liquidity-related pric-

ing factor is then identified by exploiting the term structure of the the KfW-Bund

spreads. Indeed, the bonds issued by KfW, guaranteed by the Federal Republic

of Germany, benefit from the same credit quality than their sovereign counter-

parts –the Bunds– but are less liquid. Therefore, the KfW-Bund spread should

be essentially liquidity-driven.19 It is demonstrated that liquidity-related factors

significantly contribute to the dynamics of intra-euro spreads, supporting recent

findings by Favero et al. (2010) or Manganelli and Wolswijk (2009).

19See Schwarz (2009).
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2. Default, liquidity and crises: An

econometric framework1

Abstract: In this Chapter, we present a general discrete-time affine framework

aimed at jointly modelling yield curves associated with different debtors. The

underlying fixed-income securities may differ in terms of credit quality and/or

in terms of liquidity. The risk factors follow conditionally Gaussian processes,

with drifts and variance-covariance matrices that are subject to regime shifts de-

scribed by a Markov chain with (historical) non-homogenous transition probabil-

ities. Importantly, bond prices are given by quasi-explicit formulas, ensuring the

tractability of the framework. This tractability is illustrated by the estimation of

a term-structure model of the spreads between U.S. BBB-rated corporate bonds

and Treasuries. Alternative applications are proposed, including a sector-contagion

model as well as the explicit modelling of credit-rating transitions.

1This Chapter is based on an article featuring the same title, published in the Journal of Fi-
nancial Econometrics and co-authored with Alain Monfort. We are grateful to Christian
Gourieroux, Damiano Brigo, Olesya Grishchenko, Wolfgang Lemke, Andrew Siegel, Simon
Dubecq and Hans Dewachter for helpful discussions and comments on previous versions of
this paper. We are also grateful to participants at the Banque de France internal seminar,
at the C.R.E.D.I.T. conference (Venice) 2010, at CREST seminar 2010, at the Paris finance
international meeting 2010, at CORE Econometrics Seminar 2011, at SoFiE annual meet-
ing (Chicago) 2011, at Erasmus University (Rotterdam) 2011 and at Financial Risk Forum
(Paris) 2011. We thank Béatrice Saes-Escorbiac and Aurélie Touchais for excellent research
assistance. Any remaining errors are ours. The views expressed in this Chapter are ours and
do not necessarily reflect the views of the Banque de France.
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Résumé

Ce chapitre présente un cadre économétrique général visant à modéliser de manière

jointe les fluctuations de courbes de taux associées à différents émetteurs obli-

gataires.

Les titres sous-jacents à ces courbes peuvent différer en termes de qualité de crédit

de l’émetteur et/ou en termes de liquidité.

• Les émetteurs des obligations peuvent faire défaut (risque de crédit), impli-

quant une perte pour les détenteurs des obligations qu’ils ont émises. Le

fait que la probabilité de défaut d’un émetteur peut varier dans le temps

implique que la valorisation des obligations varie également.

• Le cadre présenté dans ce chapitre permet également de modéliser l’influence

des différences de liquidité –cette dernière étant définie par la facilité avec

laquelle il est possible de trouver une contrepartie pour acheter/vendre un

titre– sur les prix obligataires.

Les risques de crédit et de liquidité sont respectivement modélisés par le biais

d’intensités de défaut et d’illiquidité. Dans ce modèle de forme réduite, les in-

tensités et le taux court sans risque dépendent de trois types de variables: des

facteurs «macroéconomiques», des facteurs «microéconomiques» et une variable

de régimes. Les facteurs dits «macroéconomiques» peuvent affecter les intensités

(de défaut et d’illiquidité) caractérisant toutes les entités de l’économie considérée;

les facteurs «microéconomiques» sont spécifiques aux différentes entités. Tous ces

facteurs suivent des processus auto-regressifs multi-variés et sont affectés par des

chocs gaussiens dont les covariances dépendent du régime qui prévaut au mo-

ment du choc. Les tendances (drifts) de ces processus dépendent également des

régimes. La dynamique des régimes est définie par une chaîne de Markov dont les

probabilités de transitions peuvent être non-homogènes sous la mesure historique

(elles peuvent dépendre des valeurs retardées des facteurs). Conditionnellement

aux facteurs et aux régimes, les défaut des différentes entités de l’économie sont

indépendants.

L’introduction d’un facteur d’escompte stochastique permet la valorisation d’actifs
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et notamment d’obligations dans cette économie. Le facteur d’escompte stochas-

tique dépend des facteurs et des régimes. Nous en déduisons la dynamique risque-

neutre du vecteur regroupant les facteurs et les régimes et montrons que celle-ci est

composée auto-régressive (voir Darolles, Gourieroux et Jasiak, 2006 pour une étude

de ces processus «Car») lorsque les probabilités de transition des régimes sont ho-

mogènes –i.e. ne dépendent pas du temps– sous la mesure risque-neutre. Dans ce

cas, la valorisation d’obligations émises par des entités risquées (pouvant faire dé-

faut) est obtenue à partir de formules quasi-explicites reposant sur un algorithme

récursif. Ce résultat découle des propriétés des processus composés auto-régressifs,

et plus précisément du calcul de leurs transformée de Laplace multi-horizon (qui

est exponentielle affine). Ainsi, bien que riche, ce modèle bénéficie de l’existence

de méthodes simples pour valoriser les obligations de maturité longue émise par

les entités risquées.

L’estimation de ce type de modèle est ensuite étudiée. La méthode d’estimation

dépend du caractère observable ou non des différents facteurs et régimes. Les

différents cas (facteurs observables ou non, régimes observables ou non, soient

quatre possibilités) sont considérés tour à tour. En particulier, dans le cas où tout

ou partie des facteurs et des régimes sont inobservables, on présente une méthode

de calcul de la vraisemblance reposant à la fois sur le filtrage de Kitagawa-Hamilton

et sur les techniques d’inversion à la Chen et Scott (1993).

La simplicité de ces calculs est illustrée en estimant une des nombreuses spéci-

fications envisageables sur données américaines. Dans cet exemple, on modélise

la dynamique de la structure par terme des écarts de taux d’intérêt entre (a) les

obligations émises par des entreprises américaines présentant la notation de crédit

BBB d’une part et (b) les obligations du Trésor américain d’autre part. Les don-

nées d’estimation couvre la période allant de mars 1995 à juillet 2011, à fréquence

hebdomadaire. Cet exemple montre notamment que l’utilisation des régimes per-

met de reproduire de manière satisfaisante les moments d’ordre trois et quatre

de la distribution des écarts de taux sur la période considérée (contrairement aux

modèles dans lesquels les facteurs suivent des processus gaussiens).
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Ce chapitre propose également une utilisation innovante des changements de régime

pour modéliser des phénomènes de contagion. Dans ce modèle, on considère

N secteurs (qui peuvent correspondre à différentes régions ou encore différents

secteurs industriels). Chaque secteur est constitué de différentes entités (pou-

vant faire défaut) qui émettent des obligations. A chaque période, chacun des

secteurs peut être «infecté» ou non. Le modèle comprend 2N régimes, chaque

régime décrivant l’état de chacun des secteurs (infecté ou non). Les probabilités

de défaut des entités d’un secteur dépendent de l’état de leur secteur respectif.

Dans ce cadre, il est aisé de faire dépendre la probabilité d’infection d’un secteur

des états des autres secteurs, ce qui permet de modéliser des effets de contagion

entre secteurs. Par exemple, on peut faire dépendre la probabilité d’infection d’un

secteur du nombre de secteurs qui sont infectés à la date précédente. Les formules

de valorisation d’obligations sont toujours valables dans ce cadre.

Ce chapitre présente également une extension du cadre décrit précédemment visant

à permettre la modélisation des transitions de notations de crédit et l’influence de

celles-ci sur les courbes de taux. Dans cette extension, on augmente le nombre

d’états de crédit, de deux (défaut ou non défaut) à K classes de qualité de crédit:

la Kième correspond à l’état de défaut et la première à la meilleure qualité de crédit

(par exemple AAA dans le système de notations de Standard&Poor’s). Les prob-

abilités de transition d’une notation à une autre varient dans le temps ; la matrice

de probabilités de transition dépendant notamment des régimes. On montre que

des formules quasi-explicites pour les prix obligataires sont encore disponibles dans

ce cadre. Un exemple numérique illustre le fonctionnement de ce type de modèle.

33



2.1 Introduction

2.1. Introduction

There is strong evidence of regime switching in the dynamics of interest rates

(see, e.g., Hamilton, 1988 or Cai, 1994). Regime shifts have been successfully

introduced in term-structure models of risk-free interest rates by, amongst others,

Bansal and Zhou (2002), Monfort and Pegoraro (2007), Dai, Singleton and Yang

(2007) or Ang Bekaert and Wei (2008). Whereas these contributions put forward

the importance of modelling regime switching in yield-curve models, a few has

been done to integrate such a feature in term-structure models of defaultable

bonds. However, empirical studies point to the existence of different regimes in

the default risk valuation (see, e.g., Davies, 2004 or Alexander and Kaeck, 2008).

From a theoretical point of view, Hackbarth, Miao and Morellec (2006) provide

a theoretical model to explain the dependence of credit spreads on business-cycle

regimes. In the same vein, Bhamra, Kuehn and Strebulaev (2007) and David

(2008) adopt structural models including regime switching to assess the influence

of different states of the economic cycles on the credit-risk premia.

The main aim of the present Chapter is to propose a general multi-issuer dynamic

framework including switching regimes, both in the historical and the risk-neutral

worlds. Particular attention is paid to the tractability of the model and its es-

timation. Tractability is notably obtained through an extensive use of Car’s –

Compound autoregressive processes– properties (see, e.g. Darolles, Gourieroux

and Jasiak, 2006), which leads to quasi-explicit formulas for riskless and default-

able bond prices. Both historical and risk-neutral dynamics are explicitly mod-

elled, which is helpful for choosing appropriate specifications under the historical

measure, for dealing simultaneously with pricing and forecasting, for Value-at-Risk

calculations or for Sharpe-ratio computations.2

In our modelling of defaults, correlations between default events arise through de-

pendence on some common underlying stochastic factors –also called “risk factors”–

2Regarding the latter point, see Duffee (2010). The fact that our framework is defined in
discrete time makes it easier (compared with continuous-time models) to properly specify
the dynamics of the observable risk factors under the historical probability measure (see e.g.
Duffie and Singleton, 1999) or Gourieroux, Monfort and Polimenis, 2006).
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which influence the default probabilities of every single loans. Some of the factors

may be unobserved, so, in this sense, our model accommodates frailty. This feature

is advocated by recent papers suggesting that including only observable covariates

in default-intensity specifications results in poorly-estimated conditional probabil-

ities of default (see e.g. Lando and Nielsen, 2008 or Duffie et al., 2009).

In our approach, regime shifts may affect pricing through several channels: (i)

regimes affect the historical and risk-neutral dynamics of the risk factors, (ii)

regimes appear in the stochastic discount factor (s.d.f.) –which implies that regime-

transition risk is priced– and (iii) regimes appear in the default-intensity functions.

This results in a large degree of flexibility in the model specifications, which is

illustrated by several numerical examples in the Chapter. In particular, since

default intensities can be affected by the regime variable, our model is appropriate

to capture default clustering.

In order to show some of the framework advantages and to illustrate its tractability,

we estimate a simple model of the term structure of the spreads between U.S. BBB-

rated corporate bonds and Treasuries. In particular, a comparison of this model

with purely Gaussian model highlights the potential of regime switching to capture

salient features of the spread distributions.

Beyond the enrichment of the specifications of the risk factors and those of the

default intensities by introducing nonlinearities, the regime-switching feature can

be further exploited to handle specific forms of contagions. Contagion effects,

whose consequences are cascades of subsequent spread changes, is explained by the

existence of close ties between firms (see, e.g., Jarrow and Yu, 2001, Davies and

Lo, 2001 or Giesecke, 2004). Contagion takes place when the default probability

of any debtor can be affected by the default event of another one. Given that our

baseline model relies on the conditional-independence assumption –which states

that, conditional on the underlying factors and regimes, the default events of

the firms in a portfolio are independent– direct contagion effects is not captured.

Nevertheless, we can model specific contagion effects in two distinct ways. First,

our framework can accommodate the specific contagion case where one entity –or,
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2.1 Introduction

for the sake of tractability, a small number of them– affects the default probability

of the others: it suffices to make one of the regimes corresponds to the default

state of this entity. Second, the regime-switching feature can be exploited in order

to capture “sector-contagion” phenomena. The sectors can represent different

industries or different geographical areas. Each sector can be “infected” or not, and

when a sector gets infected, the default intensities of its constituents (the debtors)

shift upwards. In this context, sector contagion stems from the parameterization

of the matrix of regime-transition probabilities. For instance, it is easy to model

infection probabilities that depend positively on the number of sectors already

infected.

Our baseline model considers only one credit event: the default of the debtor.

However, credit events include more generally the changes in credit ratings like

those attributed by agencies like Moody’s, Standard & Poor’s or Fitch.3 It turns

out that our framework can be adapted to accommodate time-varying credit-rating

migration probabilities along the lines of Lando (1998) while keeping quasi-explicit

bond-pricing formulas.4

The remainder of the Chapter is organised as follows. Sections 2.2 and 2.3 respec-

tively present the historical and risk-neutral dynamics of the variables. Section 2.4

gives the bond-pricing formulas with zero or non-zero recovery rates. Section 2.5

deals with internal-consistency restrictions that arise when yields or asset returns

are included amongst the risk factors. In Section 2.6, we discuss the estimation

of such models, which is illustrated by an estimation of a term-structure model

of spreads between U.S. BBB-rated corporate bonds and Treasuries. Section 2.7

shows how the model accommodates the pricing of liquidity. Section 2.8 investi-

gates possible extensions of the framework: Subsection 2.8.1 deals with multi-

lag dynamics of the risk factors; Subsection 2.8.2 deals with the specific case

where one of the Markov chains coincides with the default state of a given entity;

3Several of the main credit models currently being used in the industry draw on the credit-
migration approach. For presentation, comparison and evaluation of these models, see e.g.
Gordy (2000), Cantor (2004) or Gagliardini and Gourieroux (2001).

4Other examples of term-structure models allowing for time-varying rating-migration probabil-
ities include Bielecki and Rutkowski (2000) and Wei (2003).
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2.2 Information and historical dynamics

Subsection 2.8.3 presents a sector-contagion model and Subsection 2.8.4 shows how

to introduce rating-migration modelling in the framework. Section 2.9 concludes.

2.2. Information and historical dynamics

2.2.1. Information

The new information of the investors at date t is w�
t

= (z�
t
, y
�
t
, x
�
t
, d
�
t
) where zt is

a regime variable that can take a finite number J of values, yt is a multivariate

macroeconomic factor, x�
t

= (x�1,t, . . . , x
�
N,t

) is a set of specific multivariate factors

xn,t associated with debtor n, and d�
t

= (d1,t, . . . , dN,t) is a set of binary variables

indicating the default (dn,t = 1) or the non-default (dn,t = 0) state of entity n. The

whole information set of the investors at date t is w�
t

= (w�1, . . . , w
�
t
). At this stage,

we do not make any assumption about the observability of these variables by the

econometrician (this is done below in Section 2.6). The regimes influence bond

pricing through different channels (they will appear in the dynamics of the risk

factors yt and xn,t’s, in the stochastic discount factor and in the default-intensity

functions). In the baseline framework, the regimes are viewed as transitory: none of

these regimes is absorbing but this restriction is relaxed in a specific case presented

in Subsection 2.8.2.

2.2.2. Historical dynamics

It is convenient to make the regime variable zt valued in {e1, . . . , eJ}, the set of

column vectors of the identity matrix IJ .5 The conditional distribution of zt given

wt−1 is characterised by the probabilities:

p (zt | wt−1) = π (zt | zt−1, yt−1) . (2.1)

5Indeed, this implies that any function of the regimes taking the value fj in the jth regime, say,
is the linear function of zt: f �zt with f � = (f1 . . . fJ).
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2.2 Information and historical dynamics

The probability π(ej | ei, yt−1) that zt shifts from regime i to regime j between

period t − 1 and t, conditional on yt−1, is also denoted by πij,t−1. These specifi-

cations allow for state-dependent transition probabilities, as in Ang and Bekaert

(2002) or Dai, Singleton and Yang (2007).

The conditional distribution of yt given zt and wt−1 is Gaussian and given by:6

yt = µ (zt, zt−1) + Φyt−1 + Ω (zt, zt−1) εt (2.2)

where the εt are independently and identically N(0, I) distributed. Specifications

(2.1) and (2.2) imply that, in the universe (zt, yt), zt Granger-causes yt, yt causes zt
and there is instantaneous causality between zt and yt. Moreover, in the universe

wt = (zt, yt, xt, dt), (xt, dt) does not cause (zt, yt). As noted by Ang, Bekaert and

Wei (2008), instantaneous causality between zt and yt implies that the variances of

the factors yt, conditional on wt−1, embed a jump term reflecting the difference in

drifts µ across regimes. Such a feature, that allows for conditional heteroskedas-

ticity, is absent from the Dai, Singleton and Yang (2007) setting. It should be

noted that our framework nests the case where there is no instantaneous causal-

ity between zt and yt in the historical dynamics.7 Contrary to Bansal and Zhou

(2002), matrix Φ is not regime-dependent: this is for the sake of tractability when

it comes to bond pricing.8

The xn,t’s, n = 1, . . . , N are assumed to be independent conditionally to (zt, yt, wt−1).

The conditional distribution of xn,t is Gaussian and defined by:

xn,t = q1n (zt, zt−1) +Q2nyt +Q3nyt−1 +Q4nxn,t−1 +Q5n (zt, zt−1) ηn,t (2.3)

where the shocks ηn,t are IIN(0, I). Specifications (2.1), (2.2) and (2.3) imply

that, in the universe (zt, yt, xn,t), (zt, yt) causes xn,t, xn,t does not cause (zt, yt) and

there is instantaneous causality between (zt, yt) and xn,t. Moreover, denoting by
6These specifications allow for various and rich dynamics of the risk factors yt such as, notably,

threshold auto-regressive dynamics (TAR) or self-exciting TAR (SETAR).
7Formally, this corresponds to µ (zt, zt−1) = µ (zt−1) and Ω (zt, zt−1) = Ω (zt−1).
8Indeed, the model of Bansal and Zhou (2002) [21] does not admit a closed-form exponential

affine solution (they proceed by linearizing the discrete-time Euler equations and by solving
the resulting linear relations for prices).
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2.2 Information and historical dynamics

xn,t the vector xt excluding xn,t, (xn,t, dt) does not cause (zt, yt, xn,t) in the whole

universe wt.

Finally, the dn,t’s, n = 1, . . . , N , are independent conditionally to (zt, yt, xt, wt−1)

and the conditional distribution of dn,t is such that:

p (dn,t = 1 | zt, yt, xt, wt−1) =






1 if dn,t−1 = 1,

1− exp (−λn,t) if dn,t−1 = 0,
(2.4)

with λn,t = α�
n
zt + β

�
n
yt + γ

�
n
xn,t.

In other words, state 1 of dn,t is an absorbing state and exp (−λn,t) is the survival

probability. Since the default probability 1 − exp (−λn,t) is close to λn,t if λn,t is

small, λn,t is called the default intensity. The default intensity is expected to be

positive, which is not necessarily the case since the εt’s are Gaussian. However,

the parameterization of the model may make this extremely unfrequent.

In the universe (zt, yt, xn,t, dn,t), (zt, yt, xn,t) causes dn,t whereas dn,t does not causes

(zt, yt, xn,t) and there is instantaneous causality. In the whole universe wt, (xn,t, dn,t)

does not cause (zt, yt, xn,t, dn,t). The causality scheme is summarised in Figure 2.1.

Figure 2.1.: Causality scheme
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In the proposition below, we consider the historical conditional Laplace transform

of the distribution of (zt, yt) given wt−1, that is ϕt−1(u, v) = Et−1 [exp (u�zt + v�yt)].

Proposition 1. The historical conditional Laplace transform of (zt, yt) given wt−1
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2.3 Stochastic discount factor and risk-neutral dynamics

is:

ϕt−1 (u, v) = exp (v�Φyt−1 + [l1, . . . , lJ ] zt−1) , (2.5)

where li = log�J
j=1 πij,t−1 exp

�
uj + v�µ(ej, ei) + 1

2v
�Ω (ej, ei) Ω� (ej, ei) v

�
.

Proof. See Appendix 2.A.1.

This Laplace transform is not, in general, exponential affine in (zt−1, yt−1), since

yt−1 appears in the πij,t’s. This is the case if the πij,t’s do not depend on yt−1

and then, by definition, (zt, yt) is Car(1).9 As detailed in Darolles, Gourieroux

and Jasiak (2006) or Bertholon, Monfort and Pegoraro (2008), Car processes are

omnipresent in asset-pricing literature due to the fact that, when the dynamics is

Car, there exist recursive algorithms to compute multi-horizon Laplace transforms,

which is key for term-structure modelling. As will be illustrated below, we will rely

heavily on the properties of the Car processes in the risk-neutral world to ensure

tractability in bond pricing (section 2.4), but, as mentioned above the historical

dynamics will not be Car in general.

2.3. Stochastic discount factor and risk-neutral

dynamics

2.3.1. Stochastic discount factor

We assume that the riskless short-term rate between t− 1 and t is:

rt−1 = a�1zt−1 + b�1yt−1. (2.6)

This includes the case where rt−1 is the first component of yt−1 (a1 = 0 and

b1 = e1). Then, we define the stochastic discount factor Mt−1,t between t− 1 and

9Recall that a random process Λt is Car(1) if its conditional Laplace transform (given informa-
tion available up to date t− 1) is exponential affine in Λt−1.

40



2.3 Stochastic discount factor and risk-neutral dynamics

t by:

Mt−1,t = exp
�
−a�1zt−1 − b

�

1yt−1 −
1
2ν

� (zt, zt−1, yt−1) ν (zt, zt−1, yt−1) +

+ν � (zt, zt−1, yt−1) εt + δ
� (zt−1, yt−1) zt

�
, (2.7)

The ν and δ vectors can be seen respectively as the prices of risk associated with

the (standardised) innovations of the process yt and the regimes zt. Regarding the

latter, the fact that we must have Et−1(Mt−1,t) = exp(−a�1zt−1 − b
�
1yt−1) implies

that Et−1 exp
�
δ
� (zt−1, yt−1) zt

�
= 1, which is equivalent to:

J�

j=1
πij,t−1 exp [δj (ei, yt−1)] = 1, ∀i, yt−1, (2.8)

where δj is the jth component of δ.

In our framework, the variables (xn,t, dn,t), specific to entity n, do not appear in

the stochastic discount factor, which reflects the fact that these entities have no

impact at the macroeconomic level (in Subsection 2.8.2, we discuss the case where

one entity has a “systemic” status).

2.3.2. Risk-neutral dynamics

2.3.2.1. The conditional risk-neutral distribution of (zt, yt) given wt−1

Let us now consider the conditional risk-neutral Laplace transform of (zt, yt) given

wt−1, ϕQ
t−1 (u, v) := EQ

t−1 (exp [u�zt + v�yt]), and let us introduce the simplified no-

tations:

µt = µ (zt, zt−1)

Ωt = Ω (zt, zt−1) , Σ(zt, zt−1) = ΩtΩ�t = Σt

νt = ν (zt, zt−1, yt−1)

δt−1 = δ (zt−1, yt−1) .
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2.3 Stochastic discount factor and risk-neutral dynamics

Proposition 2. The conditional risk-neutral Laplace transform of (zt, yt) given

wt−1 is:

ϕ
Q
t−1 (u, v) = exp

�
v
�Φyt−1 +

�
A1,t−1(u, v) . . . AJ,t−1(u, v)

�
zt−1

�
, (2.9)

where

Ai,t−1(u, v) = log(
J�

j=1
πij,t−1 exp

�
v
�Ω (ej, ei) ν (ej, ei, yt−1) + 1

2v
�Σ (ej, ei) v+

v
�
µ (ej, ei) + uj + δj (ei, yt−1)}) .

Proof. See Appendix 2.A.2.

As mentioned above, Car processes are particularly convenient because the com-

putation of their multi-horizon Laplace transforms is straightforward, as will be

shown below. This motivates the next Corollary.

Corollary 1. The risk-neutral dynamics of (zt, yt) is Car(1) if the risk sensitivities

δ and ν, appearing in the s.d.f., satisfies the constraints (for any i, j and t):






δj (ei, yt−1) = log
�
π
∗
ij
/π (ej | ei, yt−1)

�

ν (ej, ei, yt−1) = Ω (ej, ei)−1 [Φ∗yt−1 + µ∗ (ej, ei)] ,
(2.10)

for any transition matrix π∗
ij

= π∗(ej | ei), any matrix Φ∗ and any function µ∗.

It is important to note that these constraints still allow for a large number of

degrees of freedom in the specification of the s.d.f., since the transition matrix

{π∗
ij
}, the matrix Φ∗ and the vectors µ∗ (ej, ei) are arbitrary. If the constraints

(2.10) are satisfied, the risk-neutral conditional Laplace transform becomes:

ϕ
Q
t−1 (u, v) = exp

�
v
� (Φ + Φ∗) yt−1 +

�
A
∗
1(u, v) . . . A∗J(u, v)

�
zt−1

�
, (2.11)
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2.3 Stochastic discount factor and risk-neutral dynamics

where, for any i,

A
∗
i
(u, v) = log




J�

j=1
π
∗
ij

exp
�
uj + v� [µ (ej, ei) + µ∗ (ej, ei)] + 1

2v
�Σ (ej, ei) v

�

 .

Comparing with equation (2.5), we deduce that the risk-neutral dynamics of (zt, yt)

is then defined by:

yt = µ (zt, zt−1) + µ∗ (zt, zt−1) + (Φ + Φ∗) yt−1 + Ω (zt, zt−1) ε∗t , (2.12)

where, under Q, zt is an homogenous Markov chain defined by the transition

matrix {π∗
ij
}, and ε∗

t
–defined by ε∗

t
= εt − Ω−1 (zt, zt−1) [µ∗ (zt, zt−1) + Φ∗yt−1]– is

IIN
Q (0, I). Note thatµ̃ = µ + µ∗ and Φ̃ = Φ + Φ∗ are arbitrary and that the Ω

function is the same in the historical and risk-neutral worlds.

2.3.2.2. The risk-neutral distribution of (xt, dt) given (zt, yt, wt−1)

Lemma 1. Let us consider a partition of wt =
�
w
�
1,t, w

�
2,t
��

. If Mt−1,t is a function

of (w1,t, wt−1), the risk-neutral probability density function, or p.d.f. , of w1,t given

wt−1 is:

fQ (w1,t | wt−1) = f (w1,t | wt−1)Mt−1,t exp (rt−1)

(where f is the historical conditional p.d.f. of w1,t given wt−1) and the conditional

risk-neutral distribution of w2,t given (w1,t, wt−1) is the same as the corresponding

historical distribution.

Proof. See Appendix 2.A.3.

Since Mt−1,t is a function of (zt, yt) but not of (xt, dt), the previous lemma shows

that the risk-neutral distribution of (xt, dt) given (zt, yt, wt−1) is the same as the

historical one and it is given by equations (2.3) and (2.4). In particular, the

functional forms of the default intensities λn,t are the same as in the historical
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world. Of course, since the dynamics of (zt, yt) are different in the two worlds, the

same is true for the xn,t’s and the λn,t’s.

In addition, it can be shown that (zt, yt, xn,t) is Car(1) under the risk-neutral

measure (see Appendix 2.A.4). However, it is not the case for (zt, yt, xn,t, dn,t).

It is also clear that the causality structure of the risk-neutral dynamics is similar to

the historical one, the only difference being the non-causality from yt to zt implied

by the homogeneity of the matrix {π∗
ij
}.

2.4. Pricing

2.4.1. Defaultable bond pricing with zero recovery rate

The price at t of a riskless zero-coupon bond with residual maturity h is given by:

B (t, h) = EQ
t

[exp (−rt − . . .− rt+h−1)] , (2.13)

where rt+i−1 = a�1zt+i−1 + b�1yt+i−1, i = 1, . . . , h. The following proposition shows

that, thanks to the risk-neutral causality structure of our model, there exists an

analogous formula for the price of defaultable bonds with zero recovery rates.

Naturally, the case of risk-free bond pricing is nested within the more general

defaultable-bond pricing case (with a zero default intensity).

Proposition 3. The price of a zero-recovery-rate zero-coupon defaultable bond

issued by debtor n is given by:

B
D

n
(t, h) = EQ

t
[exp (−(rt + λn,t+1)− . . .− (rt+h−1 + λn,t+h))] , (2.14)

which is exponential linear in (zt, yt, xn,t):

B
D

n
(t, h) = exp

�
−c�
n,h
zt − f

�

n,h
yt − g

�

n,h
xn,t

�
(2.15)

44



2.4 Pricing

The defaultable yields are therefore linear in (zt, yt, xn,t):

R
D

n
(t, h) = 1

h

�
c
�

n,h
zt + f

�

n,h
yt + g

�

n,h
xn,t

�
, (2.16)

In Equations (2.15) and (2.16), (c�
n,h
, f
�
n,h
, g
�
n,h

) is computed recursively by:

�
c
�
n,h
, f
�
n,h
, g
�
n,h

�
= (a�1, b�1, 0)−a

�
ωH−h+1 −

�
c
�
n,h−1 − a�1, f �n,h−1 − b�1,−g�n,h−1

���

where

• the sequence ωh, h = 1, . . . , H is defined by ωH = (−α�
n
,−β�

n
,−γ�

n
) and

ωh = (−α�
n
−a�1,−β�n−b�1,−γ�n) for h = 1, . . . , H−1, with cn,0 = a1, fn,0 = b1,

gn,0 = 0,

• The function ā is defined by a(u, v, w) = [(Ã1, . . . , ÃJ), (v�+w�Q2n)(Φ+Φ∗)+

w
�
Q3n, w

�
Q4n], where

Ãi(u, v, w) = log(
J�

j=1
π
∗
ij

exp{uj + (v� + w�Q2n) [µ (ej, ei) + µ∗ (ej, ei)] +

w
�
q1n (ej, ei) + 1

2(v� + w�Q2n)Σ (ej, ei) (v +Q�2nw) +
1
2w
�
Q5n (ej, ei)Q�5n (ej, ei)w}).

Proof. The price of a zero-coupon bond providing one money unit at t+h if entity

n is still alive at t+ h and zero otherwise is:

B
D

n
(t, h) = E

Q
t

�
exp (−rt − . . .− rt+h−1) I{dn,t+h=0}

�

= E
Q
t

�
E

Q
�

exp (−rt − . . .− rt+h−1) I{dn,t+h=0} | zt+h, yt+h, xn,t+h, dn,t = 0
��

E
Q
t

�
exp (−rt − . . .− rt+h−1) Q

�
dn,t+h = 0 | zt+h, yt+h, xn,t+h, dn,t = 0

��
.

Moreover,

Q
�
dn,t+h = 0 | zt+h, yt+h, xn,t+h, dn,t = 0

�

= �
h

i=1 Q
�
dn,t+i = 0 | zt+h, yt+h, xn,t+h, dn,t+i−1 = 0

�
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and, since dn,t does not Q-cause (zt, yt, xn,t) in the Granger’s or Sims’ sense, we

have:10

Q
�
dn,t+i = 0 | zt+h, yt+h, xn,t+h, dn,t+i−1 = 0

�

= Q
�
dn,t+i = 0 | zt+i, yt+i, xn,t+i, dn,t+i−1 = 0

�

= exp (−λn,t+i) .

where the last equality comes from the fact that the conditional historical and

risk-neutral distributions of dn,t are the same (see Subsectionsec. 2.3.2.2). Hence,

Equation(2.14) holds. The latter suggests that since the rt+i’s and the λn,t+i’s

are linear in the (zt+i, yt+i, xn,t+i)’s, the bond prices are multi-horizon Laplace

transforms.

Besides, it can be shown (see Appendix 2.A.4) that (zt, yt, xn,t) is Car(1) under Q,

with a conditional Laplace transform of the type exp[a�(u, v, w).(z�
t
, y
�
t
, x
�
n,t

)�]. The

recursive formulas presented in Proposition 3 directly stem from Appendix 2.A.5,

where it is explained how to exploit the Car(1) property of (zt, yt, xn,t) to compute

its multi-horizon Laplace transforms.

2.4.2. Defaultable bond pricing with non-zero recovery rate

In the next Proposition, we present conditions under which quasi-explicit formulas

are still available in the case of non-zero recovery rates.

Proposition 4. If, for any bond issued by debtor n before t, the recovery payoff

–that is assumed to be paid at time t in case of default between t−1 and t of debtor

n– is equal to the product of a function ζn,t (with 0 ≤ ζn,t ≤ 1) of the information

available at time t by the survival-contingent market value of the bond at t, the

price at t of a bond with residual maturity h is:

B
D

n
(t, h) = EQ

t

�
exp(−rt − . . .− rt+h−1 − λ̃n,t+1 − . . .− λ̃n,t+h)

�
, (2.17)

10A process Xt does not cause Yt in Granger’s sense if and only if, for any t, Yt is independent
of (Xt−1, . . . ,X1) conditionally on (Yt−1, . . . , Y1). This is equivalent to the non-causality in
Sims’ sense (Xt does not cause the stochastic process Yt in Sims’ sense iff Xt is independent
from(Yt+1, Yt+2, . . . , YT ) conditionally on (Yt, Xt−1,Yt−1, . . . ,X1, Y1)).
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2.5 Internal consistency (IC) conditions

where λ̃n,s is defined by (for any s):

exp(−λ̃n,s) = exp(−λn,s) + (1− exp(−λn,s)) ζn,s.

Proof. The proof of this proposition is a special case of Appendix 4.A, associated

with Chapter 4 (where a slightlty more general framework is presented).

The assumption of Proposition 4 is similar to the “Recovery of Market Value”

assumption made by Duffie and Singleton (1999) except that, in their discrete-

time approach, they assume that ζt is known at time t− 1, and that conditionally

to the information at t− 1, dn,t is independent of the recovery payoff at t.

2.5. Internal consistency (IC) conditions

2.5.1. IC conditions based on riskless yields

If the short rate rt is a component of yt, for instance the first one, we have to

impose an internal consistency condition implying that rt = a�1zt+ b
�
1yt is equal to

the first component of yt, that is:

a1 = 0, b1 = �e1,

where �ei is the vector selecting the ith component of yt.

Moreover, if another component of yt, for instance the second one, is equal to a risk-

less yield of maturity h0 –i.e. R(t, h0)– we have to impose that (1/h0)
�
a
�
h0zt + b

�
h0yt

�

is equal to the second component of yt, that is






ah0 = 0

bh0 = h0ẽ2.
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2.5 Internal consistency (IC) conditions

2.5.2. IC conditions based on defaultable yields

Similarly, if the first component of xn,t is a defaultable yield with residual maturity

h0, equation (2.15) implies that we have to impose:






cn,h0 = 0

fn,h0 = 0

gn,h0 = h0ê1.

where êi denotes the vector selecting the ith component of xn,t.

2.5.3. IC conditions based on asset returns

If the first component of yt is the geometric return of a market index, we have to

impose

exp (−rt)EQ
t

(exp (y1,t+1)) = 1.

Using equation (2.11), this gives

�
A
∗
1,0 . . . A

∗
J,0

�
zt + (Φ1 + Φ∗1) yt = a�1zt + b

�

1yt,

with A∗
i,0 = log

��
J

j=1 π
∗
ij

exp
�
µ1 (ej, ei) + µ∗1 (ej, ei) + 1

2σ
2
1 (ej, ei)

��
, µ1 and µ∗1 be-

ing the first components of µ and µ∗ respectively, σ2
1 being the (1, 1) entry of Σ

and Φ1 and Φ∗1 the first rows of Φ and Φ∗ respectively. Then we get






a1 =
�
A
∗
1,0 . . . A

∗
J,0

��

b1 = (Φ1 + Φ∗1)
�
.

Similarly, if the first component of xn,t is the return of a stock attached to entity

n, we must have:

exp (−rt+1)EQ
t

(exp (x1,n,t+1)) = 1
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or

rt = log
�
E

Q
t

(exp (x1,n,t+1))
�
.

Using the fact that (zt, yt, xn,t) is Car(1) under Q (see Appendix 2.A.4), it is read-

ily seen that log
�
E

Q
t (exp (x1,n,t+1))

�
is linear in zt, yt, xn,t and the IC constraint

follows.

2.6. Inference

2.6.1. Observability

We assume that yt and the xn,t’s are partitioned into yt = (y�1t, y
�
2t)� and xn,t =

(x�1,n,t, x
�
2,n,t)�, that y1t and x1,n,t are observed by the econometrician and that y2t

and x2,n,t are not. Moreover, we assume that the regime variable zt is equal to

z1,t ⊗ z2,t where z1,t and z2,t are valued respectively in E1 = {e1, . . . , eJ1} and

E2 = {e1, . . . , eJ2}, where ⊗ denotes the Kronecker product operator. We assume

further that z1,t is observed by the econometrician whereas z2,t is not. Besides,

we observe at each date t a vector of risk-free yields denoted by Rt and, for each

obligor n, a vector of defaultable yields denoted by RD
n,t

. Note that if some yields

are included in the vectors yt or xn,t, they do not enter the vectors Rt and RD
n,t

.

2.6.2. Estimation methods

Regarding estimation, it is convenient to distinguish two main kinds of equations.

While the first kind of equations defines the dynamics of the factors (i.e., equations

2.2 and 2.3), the second kind is concerned with the fit of observed yields. If the

number of unobserved factors is lower than the number of yields to fit, some pricing

errors arise. Obviously, if one wants to compute the log-likelihood of the model,

one has to specify a distribution type for these pricing errors. Usually, these are

supposed to be (i.i.d.) normally distributed in the affine term-structure literature.
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2.6 Inference

In the absence of latent factors or regimes, the computation of the likelihood of

the model is straightforward. On the contrary, specific techniques are required

as soon as some factors and/or some Markov chains are unobserved. Table 2.1

proposes techniques that can be implemented in the different possible cases. For

instance, when the model includes latent variables but no unobserved Markov

chains, the log-likelihood can be computed by means of the Kalman filter or the

so-called inversion techniques (see Chen and Scott, 1993) may be resorted to.

Absent unobserved factors y2,t, the Kitagawa-Hamilton filter can be used if some

regimes are unobserved. Appendix 2.B shows how to adapt the standard Hamilton

filter in order to deal with partially-hidden Markov chains. Finally, if there are

both unobserved regimes and factors, two techniques can be implemented. First,

one can use Kim’s (1994) filter that allows to approximate the log-likelihood in

the presence of both kinds of unobserved processes. Second, inversion techniques à

la Chen and Scott (1993) may still be used; the implied adjustments to deal with

unobserved regimes being detailed in Appendix 2.C.

Table 2.1.: Estimation methods

Notes: This Tablesums up the different estimation procedures that can be implemented depending
on the observability of the regimes (zt) and of the factors (yt). The unobserved regimes and factors
(if any) are respectively denoted by z2,t and y2,t. In the Table, the notation y2,t = � (respectively
z2,t = �) corresponds to those models in which there are no latent factors (respectively no latent
regimes).

y2,t = � y2,t �= �
z2,t = � “Standard techniques” Kalman filter /

Inversion techniques
z2,t �= � Kitagawa-Hamilton filter Kim filter /

Kitagawa-Hamilton filter + Inv. techniques

2.6.3. Estimation example: a simple model of the

BBB-Treasury spreads

In this subsection, we illustrate the flexibility and the tractability of the framework

by estimating a model using real data. Note that this example reflects only one,

out of many, possible uses of the framework. (the multiplicity of its applications

is addressed in Section 2.8.)
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2.6 Inference

We consider one defaultable entity whose funding costs are representative of those

of BBB-rated corporates.11 As commonly assumed, bonds issued by the U.S.

Treasury are supposed to be riskfree (i.e., the U.S.-Treasury default intensity is

zero). Dropping the debtor index in that subsection(since we consider only one

risk entity), the BBB-rated-firms’ default intensity is defined as:

λt = y1,t + y2,t

where the yi,t’s are some risk factors following:




y1,t

y2,t



 =




µ1 µ1 µ1

0 0 µ2



 zt +




ϕ1 0

0 ϕ2








y1,t−1

y2,t−1



+




ωεt

0



 (2.18)

with εt ∼ i.i.d. N (0, 1) and where zt is a three-state Markov chain which is inde-

pendent from εt and has a matrix of transition probabilities of the form:

P =





p11 (1− p11) 0

(1− p22 − p23) p22 p23

0 (1− p33) p33




(2.19)

While the first regime is conceived as being a “tranquil” regime, the third is sup-

posed to correspond to a “crisis” regime. The second acts as an intermediary

regime: under this regime, the risk factors y1,t and y2,t have the same dynam-

ics as under the tranquil regime, but with the threat of switching to the third

regime (such a threat does not exist under the first regime since the probability

of switching from the first to the third regime is null). The “crisis” nature of the

third regime stems from the fact that the drift associated with the process y2,t (i.e.

[0, 0, µ2]zt) is strictly positive only under this last regime, assuming that µ2 > 0.

It is important to note that conditionally on the information available at time t,

the means and variances of future hazard rates λt+k depend on the current regimes.

For instance, whereas the one-period-ahead variance of the intensity is ω2 under

11Among others, Feldhütter and Lando (2008) also consider firms that are representative of some
credit-rating classes.
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2.6 Inference

the first regime, it is µ2
2p23(1 − p23) + ω2 (> ω2) under the second regime. This

illustrates in particular the fact that the model is able to generate some forms of

stochastic volatility.

The risk-neutral dynamics of y1,t and y2,t is assumed to be similar to its historical

counterparts (equations 2.18 and 2.19), except that parameters ϕ1, ϕ2, µ1, µ2 and

the pij’s are respectively replaced by ϕ∗1, ϕ∗2, µ∗1, µ∗2 and by some p∗
ij

’s. Besides, the

εt’s in equation (2.18) are replaced by some ε∗
t
’s that are normal in the risk-neutral

world.

For the sake of simplicity, we assume that y1,t and y2,t are independent from the

factors driving the short-term risk-free rate under both historical and the risk-

neutral measure. This implies that we can estimate the dynamics of y1,t and y2,t
without defining a process for the short rate and that the estimation requires only

spreads data.12

The data are weekly and cover the period from 17 March 1995 to 1 July 2011.

The spreads are computed by subtracting from the corporate yields the Treasury

zero-coupon rates of the same maturities.13 We consider four maturities: 1, 2, 3

and 5 years. The spreads are assumed to be observed with i.i.d. measurement

errors. The model can be seen as a state-space model with (a) four measurement

equations (relating the observed spreads to the modelled ones, the discrepancy

being the measurement –or pricing– errors) and (b) transition equations defined by

(2.18) and (2.19). The parameters are estimated by maximising the log-likelihood,

using the approximation proposed by Kim’s (1994). Additional details regarding

the estimation –including the developed state-space version of the model and the

parameter estimates– are presented in Appendix 2.D.

The upper panel of Figure 2.2 displays the estimated components of the default

intensity (i.e. factors y1,t and y2,t). The second panel shows the (smoothed) prob-

abilities of being in each of the three regimes. As expected, the failure of LTCM

12Such an assumption is for instance made by Pan and Singleton (2008) or Longstaff et al.
(2011).

13Zero-coupon yield curves have been obtained by applying bootstrap techniques on the BBB
(coupon) yield curve provided by Bloomberg (tickers C009). The risk-free yields are US
STRIPS yields extracted from Bloomberg (tickers C079).
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(Fall 1998), the bursting out of the internet bubble (2001) or the recent financial

crisis (2007-2009) are associated with the crisis-regime periods (see the black areas

of this second panel).14 The lowest two panels of Figure 2.2 display respectively

the 2-year and 5-year observed spreads together with their model-implied counter-

parts, showing that the model captures most of the spread fluctuations (close to

99% of the spread fluctuations are accounted for by the model).

An important feature of the model is that it is not only capable of fitting the

data, but it is also relevant to simulate realistic ones. Obviously, this is key if

one wants to use the model to compute Values-at-Risk, for instance. In order

to illustrate this, we have compared our estimated regime-switching model (RS

model hereinafter) with two alternative (purely) Gaussian models. In the first

alternative model, the default intensity is a simple AR(1); in the second model,

the default intensity is a sum of two independent Gaussian AR(1) processes. The

standard deviations of the spread pricing errors obtained with the RS model, the

1-factor Gaussian model and the 2-factor Gaussian model are respectively of 8, 10

and 7 basis points. However, the quality of the data resulting from Monte-Carlo

simulations of the Gaussian models is poor in comparison with the RS model. This

is illustrated in Figure 2.3. The first row of charts shows, for the 2-year and the 5-

year maturities, the unconditional distributions of spreads simulated by the three

models mentioned above. These distributions are compared with the sample-data

ones. The charts show that the Gaussian models are inappropriate to capture the

tails’ shapes: in particular, while the one-factor Gaussian model often generates

negative spreads, the two-factor Gaussian model fails to generate high spreads. By

contrast, the RS model is able to keep the number of simulated negative spreads

at a minimum while allowing for frequent high (crisis) spreads. The skewness and

kurtosis of the sample data are impressively well reproduced by the RS model:

considering the 5-year maturity, the skewness of the simulated spread is of 1.78 vs.

1.83 for the sample data and the kurtosis are respectively of 7.45 vs. 7.46. The

superiority of the RS model in terms of simulation of plausible spreads is further

14Looking both at the first and second panel in Figure 2.2, one can check that the second factor
y2,t is pushed upwards during crisis periods.
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2.6 Inference

highlighted by the lower plots in Figure 2.3: according to these charts, the RS

model performs well in terms of fitting the 5th, 50th and 95th quantiles of the

spreads (as well as their mean).

Figure 2.2.: BBB vs. Treasury Spreads, Estimation results

Notes: The upper panel presents the smoothed (using Kim’s (1994) filter) estimates of the two
factors y1,t and y2,t that are such that the default intensities λt of BBB-rated corporates is given by
λt = y1,t+y2,t. Grey-shaded areas correspond to 95% confidence intervals. The second panel reports
the (smoothed) probabilities of being in the “tranquil-times” regime 1 (white), the “intermediary”
regime 2 (in grey) or the “crisis” regime 3 (in black). For each date, the three vertical bars (white,
grey and black) sums to one. The lowest two panels display model-implied spreads together with
observed ones for two respective maturities: 2 years and 5 years.
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2.7 Liquidity risk

2.7. Liquidity risk

There is compelling evidence that yields and spreads contain components that

are closely linked to liquidity.15 The estimation of the liquidity premium is of

concern for several reasons. First, gauging the liquidity-risk premium provides

policy makers –central bankers in particular– with insights on the valuation of

liquidity by the markets (see Taylor and Williams, 2008 or Michaud and Upper,

2008). Second, if one wants to extract default probabilities from market data, one

has to distinguish between what is related to default and what is caused by the

liquidity of the considered bonds.

However, the identification of the liquidity premium, that is, distinguishing be-

tween the default-related and the liquidity-related components of yield spreads,

remains a challenging task. Empirical evidence points to the existence of com-

monality amongst the liquidity components of prices of different bonds (see e.g.

Fontaine and Garcia, 2012). Therefore, the identification of the liquidity compo-

nent relies on the ability to exhibit risk factors that reflects liquidity valuation.

Liu, Longstaff and Mandell (2006) and Feldhütter and Lando (2008) develop affine

term-structure models where a liquidity factor is latent and the identification is

based on assumptions regarding the relative liquidity of different interest-rate in-

struments.16 In the euro area context, Chapters 3and 4 identify a liquidity latent

factor by exploiting the term-structure of the KfW-Bund spreads. KfW is a Ger-

man public agency whose issuances are fully and explicitly guaranteed by the Fed-

eral Republic of Germany. Accordingly, the spreads between the yields of bonds

issued by KfW and those issued by the German government (called “Bunds”)

mainly reflect liquidity-pricing effects. Alternatively, the liquidity factor could be

proxied by observable factors.17 One may resort to intermediate –or mixed– ap-
15The influence of liquidity effects on bond pricing has been investigated, amongst others, by

Longstaff (2004) [193], Chen, Lesmond and Wei (2007) [63], Covitz and Downing (2007) [76].
16In both studies, the liquidity factor that is estimated corresponds to the so-called “convenience

yield”, that can be seen as a premium that one is willing to pay when holding Treasuries.
This premium stems from various features of Treasury securities, such as repo specialness
(see Feldhütter and Lando, 2008).

17Among which: bid-ask spreads, market-depth measures, bond supply, spread between bonds
of the same maturity but with different ages or spread between off-the-run and on-the -run
Treasuries (see, e.g., Longstaff, 2004 or Beber, Brandt and Kavajecz, 2009).
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proach, where part of the liquidity-factor dynamics is observable (through observed

proxies) and part of it is latent.

Let us come back to our modelling framework. We have seen above (Section 2.4)

that incorporating default risk in the pricing methodology implies to replace the

short rate rt by a “default-adjusted” short-rate rt + λn,t+1. Besides, in order to

take into account recovery-rate effects, λn,t+1 can be seen as a “recovery adjusted”

default intensity between t and t + 1 (Subsection 2.4.2). So the price at t of

a defaultable asset providing the payoff g (wt+h) at t + h in case of absence of

default, is:

E
Q
t

[exp (−rt − λn,t+1 − . . .− rt+h−1 − λn,t+h) g (wt+h)] .

As suggested by Duffie and Singleton (1999), intensity-based model can also ac-

count for liquidity effects by introducing a stochastic process that is interpreted as

the carrying cost of non-liquid defaultable securities. This process then appears

alongside the default intensity in the spread between the “pure” –i.e. default and

liquidity-adjusted– short rate and the short rate associated with a defaultable

bond. The affine term-structure literature is relatively silent on the interpreta-

tion or the micro-foundations of the illiquidity intensity. In a theoretical paper

analysing interactions between credit and liquidity risks, He and Xiong (2012)

show that such an illiquidity intensity may reflect the probability of occurrence

of a liquidity shock; upon arrival of this shock, the bond investor has to exit by

selling his bond at a fractional cost (i.e. the selling price is equal to a fraction

of the price that would have prevailed in the absence of the liquidity shock); the

fractional cost is the analogous to the fractional loss (1 − ζ) in the default case

(see also Ericsson and Renault, 2006 for a similar interpretation). Let us introduce

an “illiquidity intensity” between t and t+ 1, denoted with λL
n,t+1.18 If λn,t+1 and

18Chapter 4 (see 4.2.1) explicitly relates the illiquidity intensity to “portfolio liquidation” pro-
cesses as in He and Xiong (2012) and Ericsson and Renault (2006).

56



2.8 Model extensions

λ
L

n,t+1 are specified in an affine way,






λn,t+1 = α�
n
zt+1 + β �

n
yt+1 + γ�

n
xn,t+1

λ
L

n,t+1 = αL�
n
zt+1 + βL�

n
yt+1 + γL�

n
xn,t+1,

we could price not only riskless bonds Bn (t, h) and defaultable bonds BD
n

(t, h) as

above, but also bonds facing liquidity risk BL
n

(t, h) and bonds facing both default

and liquidity risk BDL
n

(t, h). We would have:






B (t, h) = EQ
t [exp (−rt − . . .− rt+h−1)]

B
D

n
(t, h) = EQ

t [exp (−rt − λn,t+1 − . . .− rt+h−1 − λn,t+h)]

B
L

n
(t, h) = EQ

t

�
exp
�
−rt − λLn,t+1 − . . .− rt+h−1 − λLn,t+h

��

B
DL

n
(t, h) = EQ

t

�
exp
�
−rt − λn,t+1 − λLn,t+1 − . . .− rt+h−1 − λn,t+h − λLn,t+h

��
.

In the context of a Car(1) risk-neutral dynamics of (zt, yt, xn,t), these prices are ex-

ponential linear in (zt, yt, xn,t) and the corresponding yields are linear in (zt, yt, xn,t).

2.8. Model extensions

2.8.1. Multi-lag dynamics for yt and xn,t processes

The model can easily be extended to allow for yt and xn,t dynamics that include

several lags. In particular, when observed data are used in the estimation pro-

cess –the y1,t and x1,n,t defined in Section 2.6–, preliminary analysis of the data

could point to the need of taking different lags into account to model the historical

dynamics of these variables. The flexibility in the choice of the lag structure consti-

tutes an advantage of working in discrete-time over most continuous-time models

(see, e.g., Monfort and Pegoraro, 2007 or Gourieroux, Monfort and Polimenis,

2006).

Equations (2.2) and (2.3) imply that the multivariate factors yt and xt follow auto-

regressive process of order one. However, to the extent that a VAR(p) amounts to a
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VAR(1) once the last p lags of the endogenous variable are stacked in the same vec-

tor, the pricing techniques of the bonds –namely equation (2.16)– are not affected

if yt and xt follow VAR(p). However, in order to make the estimation strategy pre-

sented in Section 2.6 still effective –in particular regarding inversion techniques–,

the unobserved vector variables y2,t and x2,n,t should not enter equations (2.2) and

(2.3) with lags larger than one. To the extent that this restriction only applies to

the unobserved factors –for which insights on the appropriate distributions are a

priori not readily available– such a constraint is not really restrictive.

2.8.2. Interpretation of a regime as the default state of an

entity

In this subsection, we consider the specific case where the regime variable zt is the

Kronecker product of several basic regime variables, one of them corresponding to

the default or non-default state of a given entity (indexed by zero). The specificity

of that situation lies in the fact that the default of this entity then enters the

s.d.f.. Therefore, we leave the framework described in Subsection 2.3.1 where all

defaultable entities were small enough to have no impact at the macroeconomic

level. As a consequence, the “zero” entity may represent a whole industry or a

very big institution. This could be extended to a few major entities but one has

to bear in mind that increasing their number results in an exponential growth in

the dimension of zt.

The fact that this default enters the s.d.f. results in new components in bond

prices. As pointed out by Yu (2002) and Jarrow, Lando and Yu (2005), such

components arise only when the default-event risk is not diversifiable.

As mentioned in the introduction, this interpretation is also linked with previous

studies attempting to introduce contagion effects in affine term-structure models.

Indeed, the default of entity zero may lead to a simultaneous increase in the default

intensities of any other debtor (through the regime variable zt that may enter all

default intensities).
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For sake of simplicity, let us assume that such a crisis variable is the only regime

captured by zt, which can be observable or not. In this case, assuming that the

state e2 = (0, 1)� is the absorbing crisis state, we have:

π (e2 | e2, yt−1) = 1

π (e1 | e2, yt−1) = 0.

Moreover, we could specify:

π (e1 | e1, yt−1) = exp (−λ0,t−1) ,

with λ0,t−1 = α0 + β�0yt−1. In this case, λ0,t−1 can be interpreted as a systemic-

risk intensity. Conditions (2.10) {π (ej | ei, yt−1) exp [δj (ei, yt−1)] = π∗
ij

} imply the

followings:

• π∗21 = 0, π∗22=1, δ1 (e2, yt−1) is undefined, δ2 (e2, yt−1) = 0 and, therefore,

δ
� (e2, yt−1) zt = 0.

• exp [δ1 (e1, yt−1)] = π∗11 exp (λ0,t−1) or δ1 (e1, yt−1) = log π∗11 + α0 + β�0yt−1.

• exp [δ2 (e1, yt−1)] = (1− π∗11) [1− exp (−λ0,t−1)]−1, or δ2 (e1, yt−1) = log (1− π∗11)−

log [1− exp (−α0 − β�0yt−1)].

Denoting π∗11 = exp (−λ∗0), λ∗0 being the systemic-risk intensity in the risk-neutral

world, we get:

δ1 (e1, yt−1) = λ0,t−1 − λ∗0

δ2 (e1, yt−1) = log [1− exp (−λ∗0)]− log [1− exp (−λ0,t−1)]

� log (λ∗0)− log (λ0,t−1) if λ∗0, λ0,t−1 are small.

In particular, the risk-neutral intensity λ∗0 and the historical intensityλ0,t−1 are

different functions, contrary to what happened in the previous Sections. Both the
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riskless yields:

R (t, h) = 1
h

(a�
h
zt + b�hyt)

and the defaultable yields:

R
D

n
(t, h) = 1

h

�
c
�
n,h
zt + f �n,hyt + g�n,hxn,t

�

will be different functions of yt (and of xnt for RD
n

(t, h)) before and after the

systemic crisis. The term structure of the impact of the systemic crisis will be:






a2,h − a1,h for the riskless yield of residual maturity h,

c2,n,h − c1,n,h for the defaultable yield of residual maturity h, for the nthentity.

2.8.3. A sector-contagion model

2.8.3.1. General approach

In this subsection, we propose another specific use of the regimes that makes it

possible to model sector-contagion phenomena. As explained in the introduction,

our assumptions prevent us from making the default intensity of any entity depend

on the default event of other entities. In other words, the baseline framework does

not allow us to account for contagion at the debtor level (except in the specific case

presented in 2.8.2). Nevertheless, as shown here, this can be done at a sector level,

the sectors representing for instance different industries or different geographical

areas.

Specifically, in this model, each debtor belongs to one of the sectors. At each

period, a sector is either “infected” or not infected. When a sector is infected,

the default intensities of its constituent entities tend to be higher. Let us denote

by Si,t the state the ith sector at time t: Si,t is equal to [0, 1]� if the ith sector is

infected at time t, and is equal to [1, 0]� otherwise. If we have NS sectors, then we
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have to consider 2NS regimes, the regime variable zt being given by:

zt = S1,t ⊗ S2,t ⊗ . . .⊗ SNS ,t

where ⊗ denotes the Kronecker product. In such a model, one can make the

default intensity of any firm depend on the state of the sectors (and, in particular,

on the state of its own sector). Further, the sector-contagion phenomena can be

obtained through the specification of the regime-transition matrix. Indeed, this

matrix contains the probabilities that any sector gets infected (or cured) given the

states of the other sectors.

2.8.3.2. Numerical example

In this example, we make use of processes yt and zt whose dynamics are defined in

Tables 2.2 and 2.3. We consider three homogeneous sectors. The probability that

a sector gets cured/infected at time t depends on the number of infected sectors at

the previous period. In that case, the regime-transition matrix is defined by a set

of probabilities like the one reported in Table2. In our example, the probability

of getting infected is far higher when at least one sector is already infected than

when none of them is infected. The default intensities of sector-i firms are given

by:

λi,t = 0.01 + 0.02× I{Sit=1} + 0.02× I{S1
t=1}I{S2

t=1}I{S3
t=1} + 0.002yt,

where Si
t

= [0, 1]Si,t. This implies that the default intensity of a Sector-i entity

increases by two percentage points when Sector i gets infected and increases by

an additional two percentage points if all sectors become infected simultaneously.

Let us now consider a portfolio of 600 debtors, with 200 debtors in each sector.

Figure 2.2 shows a simulation of the timing of defaults for this portfolio. Each

panel corresponds to one of the three sectors. At one point, Sector 1 gets infected

(see the grey area in the first panel of Figure 2.2). While the default intensities of

Sector-2 and Sector-3 firms are not contemporaneously impacted by the infection
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Table 2.2.: Calibration of the sector-contagion model

Notes: The second (respectively the third) lines reports the probabilities, for any sector, of getting
infected (resp. cured), depending on the number of infected sectors during the previous period.

Numb. of infected sect. (
�
i
[0, 1].Si,t) 0 1 2 3

Proba. of getting infected (in t+ 1) 0.25% 10% 10% –
Proba. of getting cured (in t+ 1) – 10% 10% 10%

of the first sector, 5-year default probabilities of Sector-2 and Sector-3 firms shift

upwards. This is a consequence of the fact that once Sector 1 is infected, the

probability that Sector 2 and Sector 3 get infected over the next periods is higher.

A few periods later, Sector 3 and then Sector 2 get infected.

2.8.4. modelling credit-rating transitions

In their seminal study of credit spread, Jarrow, Lando and Turnbull (1997) model

rating transitions as a time-homogenous Markov chain. That is, in their model,

whether a firm’s rating will change in the next period depends on its current rating

only and the probability of changing from one rating to the other remains the same

over time. Different studies suggest however that –per-period– transition proba-

bilities are time-varying and that simple Markov processes are not appropriate to

model credit migrations (see e.g. Lucas and Lonski, 1992 or Feng, Gourieroux and

Jasiak, 2008 or Bangia et al., 2002).

In the present subsection, we show how our framework can be adapted in order

to account explicitly for rating migration. Building on Lando’s (1998) approach

(see also Feldhütter and Lando, 2008), the structure accommodates a time-varying

rating-migration matrix while allowing different ratings to respond in a correlated

yet different fashion to the same change in the general economic conditions. The

time variability of the rating-migration probabilities results from Gaussian shocks

as well as from regime shifts. Note that the model that we propose here is very

general and may be suited to address various features of empirical evidences re-

garding credit-rating transitions. In particular, this framework is such that the

marginal dynamics of the credit ratings (once the regime variable and the factors

have been integrated out) depends on the whole history of the past ratings and
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therefore is not Markovian.

2.8.4.1. Adaptation of the framework

While most of the previous framework is still valid, some changes regard the mod-

elling of the default intensity. Specifically, the historical dynamics of (zt, yt, xn,t),

as well as the s.d.f. specifications are still given by equations (2.1), (2.2), (2.3)

and (2.7). However, in this adapted framework, each firm n is also characterised

by a credit-rating process, denoted by τn,t. For any firm n and period t, τn,t can

take one of K values: the first K − 1 values correspond to credit ratings and the

K
th corresponds to the default state. For instance, rating 1 can be the highest

(Aaa in Moody’s rankings) and K−1 can be the lowest (C in Moody’s rankings).

In addition, we have, dn,t = I (τn,t = K) . Like the dn,t’s, the τn,t’s, n = 1, . . . , N ,

are independent conditionally to(zt, yt, xt, wt−1). In addition, we assume that the

rating transition probabilities, for firm n and from period t − 1 to period t, is

a function of (zt, yt, xn,t). Accordingly, this transition matrix is denoted with

Π(zt, yt, xn,t) and we have:

P (τn,t = j | τn,t−1 = i, zt, yt, xt) = Πi,j(zt, yt, xn,t),

where Πi,j(zt, yt, xn,t), the (i, j) entry of the transition matrix Π(zt, yt, xn,t), repre-

sents the actual probability of going from state i to state j in one time step. Each

of these entries must be in [0, 1] and for each row, the sum of the entries must sum

to one. In other words, [ 1 · · · 1 ]� is an eigenvector of Π(zt, yt, xn,t) associated

with the eigenvalue 1. In addition, the default state being absorbing, the bottom

row of Π(zt, yt, xn,t) is equal to [ 0 · · · 0 1 ]. Importantly, the entries of Π are

the same function of (zt, yt, xn,t) under both measures (as the default intensities in

the baseline model).19

In this context, a defaultable zero-coupon bond providing one money unit at t+h

if entity n is still alive in t+ h and zero otherwise has a price, in period t, that is

19Note however that this does not imply that the distributions of these entries are the same
under both measures (since the distributions of (zt, yt, xn,t) differ under Q and P).
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given by (assuming that entity n has not defaulted before t):

B
D

n
(t, h) = EQ

t

�
exp (−rt − . . .− rt+h−1) I{τn,t+h<K}

�
. (2.20)

In order to keep a quasi-explicit formula for defaultable zero-coupon bonds, we

assume that Π(zt, yt, xn,t) admits the diagonal representation:

Π(zt, yt, xn,t) = V.Ψ(zt, yt, xn,t).V −1
,

where the columns of V are the eigenvectors of Π(zt, yt, xn,t) and constitute a basis

in RK and Ψ(zt, yt, xn,t) is a diagonal matrix of real eigenvalues that are positive

and smaller than one. Given that 1 is an eigenvalue of Π(zt, yt, xn,t) , Ψ(zt, yt, xn,t)

can be written in the following manner:

Ψ(zt, yt, xn,t) =





exp [−ψ1 (wt)] 0 · · · 0

0 . . . . . . ...
... . . . exp [−ψK−1 (wt)] 0

0 · · · 0 1





,

with, for any i < K, ψi (wt) ≥ 0. Then, it is easily seen that, conditionally on
�
zt+h, yt+h, xn,t+h, τn,t = i

�
the probability of defaulting before t+ h corresponds

to the entry (i,K) of the matrix that is given by:

V.Ψ(zt+1, yt+1, xn,t+1) . . .Ψ(zt+h, yt+h, xn,t+h).V −1
.

This probability is therefore:

P (τn,t+h = K | zt+h, yt+h, xn,t+h, τn,t = i) =
K�

j=1
Vi,jV

−1
j,K

exp


−
h�

p=1
ψj (wt+p)



 ,

where Vi,j and V −1
i,j

are the entries (i, j) of , respectively,V and V −1. Since
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Vi,KV
−1
K,K

= 1 (see Appendix 2.E) using ψK ≡ 0, we get:

P (τn,t+h < K | zt+h, yt+h, xn,t+h, τn,t = i) = −
K−1�

j=1
Vi,jV

−1
j,K

exp


−
h�

p=1
ψj (wt+p)



 .

(2.21)

If the ψj’s are some linear combinations of (zt, yt, xn,t), equations (2.20) and (2.21)

imply that the price of a bond is a sum of K−1 multi-horizon Laplace transforms.

As a consequence, the bond prices can be obtained using the algorithm presented

in Lemma 2. However, it should be noted that in this context, the yields are no

longer affine in the factors, which implies in particular that the Kalman filter has to

be adapted so as to accommodate the nonlinearity of the state-space measurement

equations. In such a context, Feldhütter and Lando (2008) use the extended

Kalman filter. As an alternative, the unscented Kalman filter can be implemented.

2.8.4.2. Numerical example

Let us consider the processes rt and zt whose dynamics are specified in Table 2.3.

In the present model, the credit-migration matrices are of the form:

Π(zt, yt, xn,t) = V.





exp [−α1zt − β1yt] 0 · · · 0

0 . . . . . . ...
... . . . exp [−αK−1zt − βK−1yt] 0

0 · · · 0 1





.V
−1

In order to get plausible plausible matrices, the first-regime calibration –that in-

volves the αi,1’s– is based on the one-year-average rating-migration matrix for

European corporates provided by Moody’s (Moody’s, 2010 ). This matrix is re-

ported in Table 2.4. The spectral decomposition of this matrix provides us with

the matrix of eigenvectors V . The eigenvalues are real and comprised between

0 and 1. Accordingly, they are of the form exp(−αi,1). The αi,1 are reported in

Table 2.5. The definition of the second regime requires a second set of αi’s, de-

noted by {αi,2}i=1...K−1. We calibrate the latter in order to have 5-year default
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probabilities that are higher than those obtained with the first-regime transition

matrix (see Table5). Finally, the βi’s are given by (αi,1 − αi,2)/5.

Table 2.3.: Dynamics of risk factors under both measures

Notes: The shocks εt and ε∗
t

are i.i.d., εt ∼ N P(0, 1) and ε∗
t
∼ NQ(0, 1). The risk-free short-term

rate is rt+1 = 4% + yt/100 .
Under P Under Q

Dynamics of yt = 0.6yt−1 + εt yt = 0.3 + 0.8yt−1 + ε∗
t

Transition proba. {πi,j} =
�

0.98 0.02
0.25 0.75

� �
π
∗
i,j

�
=
�

0.98 0.02
0.01 0.99

�

Table 2.4.: Baseline matrix of rating-migration probabilities

Notes: This matrix is based on Moody’s (2010) (Exhibit 12: One-year average ratings-transition for
European corporates 1985-2009). According to the industry standard, the probability of transitions
to the “not rated” state is distributed among all states in proportion to their values (see Bangia et
al., 2002 ).

Aaa Aa A Baa Ba B Caa-C Default
Aaa 0.911 0.084 0.004 0.000 0.001 0.000 0.000 0.000
Aa 0.009 0.902 0.083 0.005 0.000 0.000 0.000 0.000
A 0.000 0.042 0.898 0.055 0.003 0.000 0.000 0.001
Baa 0.000 0.004 0.072 0.868 0.041 0.009 0.003 0.001
Ba 0.000 0.000 0.007 0.074 0.788 0.107 0.012 0.011
B 0.000 0.000 0.004 0.004 0.073 0.794 0.092 0.033
Caa-C 0.000 0.003 0.001 0.000 0.007 0.106 0.706 0.177

Table 2.5.: Eigenvalues of the transition matrix under both regimes

Notes: “Regime 1” is consistent with the transition matrix reported in Table3. Regime 2 is intended
to depict a “crisis” regime. The αi,j ’s (i = 1, . . . , 7, j = 1, 2) are such that the exp(−αi,j)’s are the
eigenvalues –those different from 1– of the rating-transition matrix obtained under regime j (when
yr,t = 0). The 5-year default probabilities are computed conditionally on the absence of regime
switching (i.e. as if the current regime is to last 5 years).

5-yr default prob. Aaa Aa A Baa Ba B Caa-C
Regime 1 0.057% 0.24% 0.80% 1.91 % 8.72% 21.8% 52.0%
Regime 2 0.774 % 1.79 % 3.01% 6.40% 16.74% 32.6% 63.2%
-log(eigenvalues) 1st 2nd 3rd 4th 5th 6th 7th

αi,1 (i = 1, . . . ,K − 1) 0.009 0.069 0.097 0.143 0.213 0.311 0.464
αi,2 (i = 1, . . . ,K − 1) 0.017 0.110 0.146 0.205 0.294 0.463 0.807

Figure 2.5 displays yield curves for selected ratings under both regimes (for yt = 0,

i.e. its unconditional value). Figure 2.6 presents some simulation results. The

upper panel shows the time fluctuations of downgrade probabilities for two different

ratings. The lower panel displays yield spreads between 10-year zero-coupon bonds
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issued by A-rated or Baa-rated firms and 10-year zero-coupon bonds issued by

Aaa-rated firms.

2.9. Conclusion

In this Chapter, we have proposed an econometric framework aimed at jointly

modelling yield curves associated with different defaultable issuers. Default inten-

sities and yields are affine functions of a multivariate process which is Compound

autoregressive (Car) in the risk-neutral world and thus provides us with quasi-

explicit (recursive) formulas for both risk-free and defaultable bond prices.

The risk factors follow discrete-time conditionally Gaussian processes, with drifts

and variance-covariance matrices that are subject to regime shifts described by

a Markov chain with (historical) non-homogenous transition probabilities. The

regime-switching feature is relevant for credit models in several respects. First, it

makes it possible to capture non-linear behaviours of yields and spreads, which is

consistent with empirical evidence. Second, it is appropriate to capture default

clusters. Third, it offers some ways of dealing with specific forms of contagion. In

this respect, we show how the framework can be used to capture sector-contagion

phenomena. An other extension accommodates credit-rating migrations. While

flexible, the model remains tracTableand amenable to empirical estimation. To

that end, a sequential estimation strategy is proposed in the Chapter.
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2.A. Proofs of Sections 2.3 and 2.4

2.A.1. Proof of Proposition 1

We have

ϕt−1 (u, v) = Et−1 (exp [u�zt + v�yt])

= Et−1 (exp [u�zt + v�µ (zt, zt−1) + v�Φyt−1 + v�Ω (zt, zt−1) εt])

= E (E{exp [u�zt + v�µ (zt, zt−1) + v�Φyt−1+

v
�Ω (zt, zt−1) εt] | wt−1, zt} | wt−1)

= exp(v�Φyt−1)E (exp {u�zt + v�µ (zt, zt−1)}×

E (exp {v�Ω (zt, zt−1) εt | wt−1, zt}) | wt−1)

= exp(v�Φyt−1)E (exp {u�zt + v�µ (zt, zt−1)}×
1
2v
�Ω (zt, zt−1) Ω� (zt, zt−1) v | wt−1

�

= exp (v�Φyt−1 + [l1, . . . , lJ ] zt−1) .

Using the expression given for the li’s leads to the result.

2.A.2. Proof of Proposition 2

ϕ
Q
t−1 (u, v) = E

Q
t−1 (exp [u�zt + v�yt])

= Et−1

�
exp
�
−1

2ν
�

t
νt + ν

�

t
εt + δ

�

t−1zt + u�zt + v�yt
��

= exp (v�Φyt−1)×

Et−1

�
exp
�
−1

2ν
�

t
νt + ν

�

t
εt + δ

�

t−1zt + u�zt + v�µt + v
�Ωtεt

��

= exp (v�Φyt−1)×

Et−1

�
exp
�
−1

2ν
�

t
νt +

1
2
�
ν
�

t
+ v�Ωt

� �
ν
�

t
+ v�Ωt

��
+ v�µt + u�zt + δ

�

t−1zt

��

= exp (v�Φyt−1)Et−1

�
exp
�
v
�Ωtνt +

1
2v
�Σtv + v�µt + u�zt + δ

�

t−1zt

��
.
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Using the expression given for Ai,t−1(u, v) in sec. 2.3.2.1 leads to the result.

2.A.3. Pdf under the Q world

By definition,

fQ(w1,t|wt−1)fQ(w2,t|w1,t, wt−1) = f(w1,t|wt−1)f(w2,t|w1,t, wt−1)Mt−1,t exp(rt−1).

Integrating both sides w.r.t. w2,t and using the fact that Mt−1,t does not depend

on w2,t, we get the expression of fQ(w1,t|wt−1) and, as a consequence,

f(w2,t|w1,t, wt−1) = fQ(w2,t|w1,t, wt−1).

2.A.4. The risk-neutral Laplace transform of (zt, yt, xn,t)

In this appendix, we compute EQ
t−1 (exp [u�zt + v�yt + w�xn,t]) and show that it is

exponential affine in (zt−1, yt−1, xn,t−1), that is, we show that (zt, yt, xn,t) is Car(1)

(see Darolles, Gourieroux and Jasiak, 2006).
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E
Q
t−1 (exp [u�zt + v�yt + w�xn,t])

= E
Q
t−1 (exp [u�zt + v�yt + w� (q1n (zt, zt−1) +

Q2nyt +Q3nyt−1 +Q4nxn,t−1 +Q5n (zt, zt−1) ηn,t)])

= exp (w�Q3nyt−1 + w�Q4nxn,t−1)×

E
Q
t−1 (exp [u�zt + (v� + w�Q2n)yt+

w
�
q1n (zt, zt−1) + w�Q5n (zt, zt−1) ηn,t])

= exp (w�Q3nyt−1 + w�Q4nxn,t−1)×

E
Q
t−1 (exp [u�zt + w�q1n (zt, zt−1) + w�Q5n (zt, zt−1) ηn,t+

(v� + w�Q2n) ((µt + µ∗t ) + (Φ + Φ∗) yt−1 + Ωtε∗t )])

= exp [{(v� + w�Q2n) (Φ + Φ∗) + w�Q3n} yt−1+

w
�
Q4nxn,t−1 +

�
Ã1(u, v, w) . . . ÃJ(u, v, w)

�
zt−1

�

Using the expression given for Ãi(u, v, w) in Proposition 3 leads to the result.

2.A.5. Multi-horizon Laplace transform of a Car(1) process

Let us consider a multivariate Car(1) process Zt and its conditional Laplace trans-

form given by exp [a�(s)Zt + b(s)]. Let us further denote by Lt,h(ω) its multi-

horizon Laplace transform given by:

Lt,h(ω) = Et
�
exp
�
ω
�
H−h+1Zt+1 + . . .+ ω�

H
Zt+h

��
, t = 1, . . . , T, h = 1, . . . , H,

where ω = (ω�1, . . . , ω�H) is a given sequence of vectors. We have, for any t,

Lt,h(ω) = exp (A�
h
Zt +Bh) , h = 1, . . . , H,
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where the sequences Ah, Bh, h = 1, . . . , H are obtained recursively by:

Ah = a(ωH−h+1 + Ah−1)

Bh = b(ωH−h+1 + Ah−1) +Bh−1,

with the initial conditions A0 = 0 and B0 = 0.

Proof. The formula is true for h = 1 since:

Lt,1(ω) = Et (ω�HZt+1) = exp [a�(ωH)Zt + b(ωH)]

and therefore A1 = a(ωH) and B1 = b(ωH).

If it is true for h− 1, we get:

Lt,h(ω) = Et

�
exp
�
ω
�
H−h+1Zt+1

�
Et+1

�
exp
�
ω
�
H−h+2Zt+2 + . . .+ ω�

H
Zt+H

���

= Et

�
exp
�
ω
�
H−h+1Zt+1

�
Lt+1,h−1(ω)

�

= exp
�
a(ω�
H−h+1 + Ah−1)Zt + b(ω�H−h+1 + Ah−1) +Bh−1

�

and the result follows.

2.B. Kitagawa-Hamilton algorithm for

partially-hidden Markov chains

In this appendix, we describe how to use the Hamilton’s (1990) algorithm within

the estimation strategy presented in Section 2.6, when the Markov chain is par-

tially observed. As noted by Hamilton (1994), while the algorithm was originally

presented in a model with fixed transition probabilities, it readily generalizes to

processes in which transition probabilities depend on a vector of observed vari-

ables.20

20See e.g. Filardo (1994) ord Diebold, Lee and Weinbach (1993) for implementation examples of
Hamilton’s algorithm in models with time-varying transition probabilities. For introductions
to regime-switching models, see Hamilton (1994) or Kim and Nelson (1999).

71



2.B Kitagawa-Hamilton algorithm for partially-hidden Markov chains

Let us denote with ŷt the vector of observed variables (ỹ�
t
, R1t, z

�
1t)�. The Hamilton’s

algorithm consists in computing recursively the probabilities p(z2t | ŷ
t
). As a by

product, the algorithm provides the conditional densities f(ŷt | ŷ
t−1), which makes

it possible to estimate the model parameters by maximization of the log-likelihood.

The algorithm is based on the iterative implementation of the following steps (the

input being p(z2t−1 | ŷ
t−1)):

1. The joint probability p (z2t, z2t−1 | ŷt−1) is computed using:

p

�
z2t, z2t−1 | ŷ

t−1

�
= p
�
z2t | z2t−1, ŷ

t−1

�
× p
�
z2t−1 | ŷ

t−1

�

where the first term of the right-hand side is a sum of entries of the transition

matrix {πij,t−1} and the second term is the input.

2. The joint conditional density f(ŷt, z2t, z2t−1 | ŷ
t−1) is then given by:

f(ŷt, z2t, z2t−1 | ŷ
t−1) = f(ŷt | z2t, z2t−1, ŷ

t−1)× p
�
z2t, z2t−1 | ŷ

t−1

�

where

f(ŷt | z2t, z2t−1, ŷ
t−1) = f(ỹt, R1t, z1t | z2t, z2t−1, ŷ

t−1)

= f(ỹt, R1t | z1t, z2t, z2t−1, ŷ
t−1)× p(z1t | z2t, z2t−1, ŷ

t−1)

with

p(z1t | z2t, z2t−1, ŷ
t−1) =

p(z1t, z2t | z2t−1, ŷ
t−1)

p(z2t | z2t−1, ŷ
t−1)

and all the terms can be computed.

3. The conditional densityf(ŷt | ŷ
t−1) is given by:

f(ŷt | ŷ
t−1) =

�

z2,t

�

z2,t−1

f(ŷt, z2t, z2t−1 | ŷ
t−1).
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4. The joint density p
�
z2t, z2t−1 | ŷ

t

�
comes from:

p

�
z2t, z2t−1 | ŷ

t

�
=
f(ŷt, z2t, z2t−1 | ŷ

t−1)
f(ŷt | ŷ

t−1)
.

5. And eventually:

p

�
z2t | ŷ

t

�
=
�

z2,t−1

p

�
z2t, z2t−1 | ŷ

t

�
.

2.C. Inversion techniques in the presence of

unobserved regimes

In this appendix, we detail an approach using jointly the Kitagawa-Hamilton filter

and the so-called inversion techniques à la Chen and Scott (1993). Such an ap-

proach is aimed at estimating models in which there are both latent factors (y2,t)

and latent regimes (z2,t) (see Section 2.6 for notations). Note that the implementa-

tion of the following estimation strategy requires that the transition probabilities

do not depend on the unobserved vectors y2,t−1. The period of observation is

{1, . . . , T}.

2.C.1. Decomposition of the joint p.d.f. and estimation

strategy

Let us denote by θzy the vector of parameters defining the historical dynamics of

(zt, yt), by θx
n

the vector of parameters defining the conditional p.d.f. of xn,t given

zt, yt
, xn,t−1 and by θd

n
the vector of parameters defining the conditional p.d.f. of

dn,t given zt, yt, xn,t, dn,t−1.
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The joint p.d.f. of wT is:

f (wT , θ) =
T�

t=1
f

�
zt, yt | zt−1, yt−1; θ

zy
�

×
N�

n=1

T�

t=1
f

�
xn,t | zt, yt, xn,t−1; θxn

�

×
N�

n=1

T�

t=1
f

�
dn,t | zt, yt, xn,t, dn,t−1; θdn

�
.

The parameters appearing in Mt−1,t are denoted by θ∗. The theoretical values of

Rt and RD
tn

given by the model are denoted by Rt (θzy, θ∗) and RD
nt

�
θ
zy
, θ
x

n
, θ
d

n
, θ
∗
�

respectively. A sequential strategy of estimation is the following:

1. Estimate θzy and θ∗ from the observations of y1t, z1t, Rt, t = 1, . . . , T .

2. Estimate the θx
n
’s and the θd

n
’s from the observations of x1n,t and RD

n,t
, t =

1, . . . , T , taking as given the values of θzy and θ∗, and the values of y2,t and

z2,t being fixed at the approximated values obtained from step 1.

The remaining of the current section details these two steps. The methodology

that is proposed builds on the so-called inversion technique developed by Chen

and Scott (1993). This technique is adapted in order to accommodate regime

switching.

2.C.2. Estimation of the parameters (θzy, θ∗)

Using equation (2.16), we have, with obvious notations:

Rt (θzy, θ∗) = Azt +B1y1,t +B2y2,t.

If m is the dimension of y2t, let us partition Rt in
�
R
�
1,t, R

�
2,t
��

where R2,t is of

dimension m. With obvious notations, we get:

R2,t (θzy, θ∗) = A2zt +B21y1,t +B22y2,t,
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and denoting
�
y
�
1,t, R

�
2,t
��

by ỹt we get:

ỹt =




I 0

B21 B22



 yt +




0

A2



 zt

or

ỹt = B̃yt + Ãzt

and

yt = B̃−1
�
ỹt − Ãzt

�

and from equation (2.2) we get:

B̃
−1
�
ỹt − Ãzt

�
= µ (zt, zt−1) + Φ

�
B̃
−1
�
ỹt−1 − Ãzt−1

��
+ Ω (zt, zt−1) εt

or

ỹt = Ãzt + B̃µ (zt, zt−1) + B̃Φ
�
B̃
−1
�
ỹt−1 − Ãzt−1

��
+ B̃Ω (zt, zt−1) εt

or

ỹt = µ̃ (zt, zt−1) + Φ̃ỹt−1 + Ω̃ (zt, zt−1) εt, (2.22)

with





µ̃ (zt, zt−1) = Ãzt + B̃µ (zt, zt−1)− B̃ΦB̃−1
Ãzt−1

Φ̃ = B̃ΦB̃−1

Ω̃ (zt, zt−1) = B̃Ω (zt, zt−1) .

The conditional distribution of ỹt given zt, ỹt−1, is similar to that of yt given zt, ỹt−1,

and in particular is Gaussian, the difference being that ỹt is fully observable.
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2.C Inversion techniques in the presence of unobserved regimes

Assuming moreover that the R1,t are observed with Gaussian errors we get, with

obvious notations:

R1,t = A1zt +B11y1,t +B12y2,t + ξt

= A1zt +B11y1,t

+B12B
−1
22 (R2t − A2zt −B21y1,t) + ξt, (2.23)

with ξt ∼ IIN (0, σ2
I).

Putting equations (2.22),(2.23) and (2.1) together, we have a dynamic model in

which the only latent variables are z2,t and which can be estimated by the maximum

likelihood methods using Hamilton’s approach. At this stage, IC constraints on

(θzy, θ∗) must be taken into account.

2.C.3. Estimation of
�
θ
x

n
, θ
d

n

�

From the inversion method of 2.C.2, we can get approximations of the y2,t’s and

smoothing algorithms provide approximations of the z2,t’s (see Kim, 1994) the z2t
are replaced by those states presenting the highest smoothed probabilities. Then

using equation (2.16), we get:

R
D

t,n
= Cn1 z1,t + Cn2 z2,t +Dn1 y1,t +Dn2 y2,t + F n1 x1,n,t + F n2 x2,n,t. (2.24)

and using equations (2.2), (2.3) and (2.24) and replacing y2,t and z2,t by their

approximations, we get a system in which the only latent variables are the x2,n,t.

Taking θzy and θ∗ as given, the parameters θx
n

and θd
n

can be estimated either by

an inversion technique or by Kalman filtering, taking into account IC conditions.

Note that in this strategy, the observable variables dn,t’s have not been used. If

the recovery rate was effectively zero, λn,t would be the default intensity and the

conditional p.d.f. of dn,t given zt, yt, xn,t, dn,t−1 would be:

dn,tdn,t−1 + (1− dn,t−1) exp [− (1− dn,t)λn,t]× [1− exp (−λn,t)]dn,t .

76
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This p.d.f. could be incorporated in the likelihood function. However, in the more

realistic case of non-zero recovery rate, we have seen that (see Subsection 2.4.2)

the λn,t’s must be interpreted as risk-neutral “recovery adjusted” default intensities

and, therefore, they cannot be used for describing the historical dynamics of the

dn,t’s.

2.D. Estimation example: U.S. BBB-AAA corporate

spreads

2.D.1. State-space model

The model introduced in 2.6.3 can be written as a state-space system for the

purpose of estimation. Let denote by st the 4 × 1 vector containing the BBB-

Treasury spreads with respective maturities of 1, 2, 3 and 5 years. Using a matrix

representation, the measurement equations of the state-space model are given by:

st = czt + fyt + εerr,t,

where the εerr,t are some i.i.d. pricing (measurement) errors and where the matrices

c and f , that are respectively of dimension 4× 3 (because there are three regimes)

and 4 × 2 (because there are two factors yi,t), are computed by applying the

recursive pricing formulas introduced in Proposition 3. Because both y1,t and y2,t
are unobserved, the transition equations read:

yt = µzt + Φyt−1 + Ωεt,

where µ, Φ and Ω are constrained along the lines presented in 2.6.3. The state-

space model is completed by the specification of the matrix of regime-switching

probabilities {πi,j}.
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2.D.2. Estimation results

The estimation is conducted by maximizing the log-likelihood (approximated by

the filter proposed by Kim, 1994). Some of the parameters are calibrated. First,

the unconditional variance of the first (purely Gaussian) factor y1,t is constrained

to be relatively small with comparison to the overall standard deviation of the

spreads, so as to make sure that most of the spread fluctuations are to be explained

by the second factor y2,t. Specifically, the standard deviation of y1,t is set to 10

bp. Alternative estimations have shown that the results are fairly robust to this

first choice. Second, the matrix of probabilities of regime shifts is parameterized

so as to be consistent with the regimes’ interpretation. The “tranquil” regime is

supposed to be persistent and to prevail 50% of the time. By contrast, the crisis

regime is supposed to be relatively short-lived (with an average length of 4 weeks)

and to prevail only 5% of the time. Formally, these constraints mean that (a)

the ergodic distribution of the Markov chain is [50%,45%,5%]’ and that (b) the

third diagonal entry of the matrix of transition probabilities (i.e. p33) is such that

4 = 1/(1 − p33) (4 weeks = average length of the third regime). The resulting

matrix of transition probabilities (under the historical measure) is:





0.976 0.024 0

0.027 0.945 0.028

0 0.250 0.750




.

The estimated dynamics of yt under the historical and the risk-neutral measures

are, respectively (standard errors, based on the outer-product estimate of the
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Fisher information matrix, are reported in parentheses below the point estimates):

yt =




0.023
(2111)

0.023
(2111)

0.023
(2111)

0 0 0.219
(0.007)



 zt +




0.841
(0.010)

0

0 0.981
(0.001)



 yt−1 +




0.053
(0.001)

0

0 0



 εt

yt =





−0.0029
(0.0001)

−0.0029
(0.0001)

−0.0029
(0.0001)

0 0 0.0063
(0.0001)



 zt +




1

(0.000)
0

0 1
(0.000)



 yt−1 +




0.053
(0.001)

0

0 0



 ε
∗
t
,

where εt and ε∗
t

are i.i.d. normally distributed shocks under the historical and the

risk-neutral measures, respectively. Besides, the hazard rate is

λt = 0.622
(0.024)

+ y1,t + y2,t.

The risk-neutral probabilities of transition (the π∗
i,j

’s) are estimated via MLE (to-

gether with the parameterization of the dynamics of yt):





0.988
(0.001)

0.012
(0.001)

0

0.000
(0.014)

0.511
(0.534)

0.488
(0.524)

0 0.000
(0.007)

1.000
(0.007)





.

Finally, the pricing-error standard-deviation estimate (i.e. the standard deviation

of the εerr,t’s defined in 2.D.1) is 0.08%, or 8 basis points (the standard deviation

of the parameter estimate is 0.001%, or 0.1 bp).
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2.E. About the eigenvectors of the rating-migration

matrix Π

In this appendix, using the notations presented in Subsection 2.8.4, we outline

some properties of matrices Π and V . For notational simplicity, we drop arguments

and time subscripts associated with these matrices.

• As the sum of the entries of each line of Π is equal to 1, the vector
�

1 · · · 1
��

is an eigenvector of Π associated with the eigenvalue 1. Consequently, since

this eigenvalue is supposed to be the last one appearing in Ψ, the last column

of V –that collects the eigenvectors of Π– is proportional to
�

1 · · · 1
��

.

• The fact that default is an absorbing state implies that the last row of Π is
�

0 · · · 0 1
�
. Since we have ΠV = VΨ, it comes (considering the last

line of this equation):

∀j VK,j = VK,j exp (−ψj) ,

which implies: ∀j < K, VK,j = 0.

• The two previous points imply that the matrix V admits the following form:

V =





V1,1 · · · V1,K−1 γ

... . . . ... ...

VK−1,1 · · · VK−1,K−1 γ

0 · · · 0 γ





Since V V −1 = I, we have (considering the last line and using the notation

V
−1
i,j

for the entry (i, j) of V −1)

�
V
−1
K,1 · · · V −1

K,,K−1 V
−1
K,K

�
=
�

0 · · · 0 1
γ

�

and, therefore, for i = 1, . . . , K, we have Vi,KV −1
K,K

= 1.
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2.E About the eigenvectors of the rating-migration matrix Π

Figure 2.3.: BBB vs. Treasury Spreads, Simulations

Notes: This Figurecompares the distributions of spreads simulated by different models (with the
sample distributions of spreads, the sample covering the period from March 1995 to July 2011).
Three alternative models are used: the regime-switching one (presented in 2.D) and two “purely
Gaussian” models (involving respectively one and two AR(1) factors). Simulations are based on
50.000 replications of each models. The lower row of panels present the term-structures of the
spreads (observed for the left plot and implied by the models for the other plots); for each panel, the
grey shaded area is delimited by the 5th and the 95th percentiles of the spreads at each considered
maturity. In addition, the lower-row plots present the term structures of medians and means of the
spreads.
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Figure 2.4.: Simulated sample of the sector-contagion model

Notes: Each panel corresponds to one sector. There are 600 debtors in the portfolio (200 per sector).
The vertical bars represent the number of firms that have defaulted during the considered period. At
the end of each period, defaulted firms are replaced by new ones (of the same sector). Grey-shaded
areas indicate periods during which the considered sector is in distress. Darker areas indicate periods
when all three sectors are in distress.

Figure 2.5.: Yield curves for selected ratings (with impact of regimes)

Notes: The left plot shows yield curves for selected ratings, with yt = 0 and zt = [1, 0]� (solid lines)
or zt = [0, 1]� (dashed lines). The right plot shows the term structure of spreads vs. Aaa-rated bonds.
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Figure 2.6.: Simulated downgrade probabilities and spreads

Notes: The upper plot shows simulated downgrade probabilities for two ratings (the downgrade
can be of one or more notches). Formally, for rating j, the upper panel plots P (τn,t > τn,t−1 |
z
t
, y
t
, x
n,t
, τn,t−1 = j). The grey-shaded areas indicate “crisis” periods. The lower plot shows

the yield spreads between 10-year zero-coupon bonds issued by A-rated or Baa-rated debtors and
zero-coupon bonds issued by Aaa-rated issuers.
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3. Credit and liquidity risks in

euro-area sovereign yield curves1

Abstract: In this Chapter, we propose a model of the joint dynamics of euro-

area sovereign yield curves. The arbitrage-free valuation framework involves five

factors and two regimes, one of the latter being interpreted as a crisis regime. Each

country is characterized by a hazard rate, specified as a linear combination of the

factors and the regimes. The hazard rates incorporate both liquidity and credit

components, that we aim at disentangling. We find that a substantial share of the

changes in euro-area yield differentials is liquidity-driven.

1This Chapter is based on an article co-authored with Alain Monfort and entitled “Credit and
liquidity risks in euro-area sovereign yield curves”. We are grateful to Christian Gourieroux,
Glenn Rudebusch, Damiano Brigo, Olesya Grishchenko, Vladimir Borgy, Valère Fourel, Wolf-
gang Lemke, Simon Gilchrist, Kristoffer Nimark, Tao Zha, Christian Hellwig, Jean-Sébastien
Fontaine and Adrien Verdelhan for helpful discussions and comments. We are also grateful
to participants at the Banque de France internal seminar, at the C.R.E.D.I.T. conference
2010, at CREST seminar 2010, at the Paris finance international meeting 2010, at CORE
Econometrics Seminar 2011, at 2011 ESEM meeting, at 2011 IESEG-University of Cambridge
conference on yield-curve modelling, at AFSE annual meeting, at the Bank of England semi-
nar, at CDC seminar and at the ECB Workshop on Asset pricing models in the aftermath of
the financial crisis, at Computational and Financial Econometrics conference (London 2011),
at Bank of Canada seminar. We thank Beatrice Saes-Escorbiac and Aurélie Touchais for
excellent research assistance. Any remaining errors are ours. The views expressed in this
Chapter are ours and do not necessarily reflect the views of the Banque de France.
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Résumé

Ce chapitre propose une modélisation jointe des dynamiques de courbes de taux

de dix Etats de la zone euro sur la période 1999-2012. Ce modèle, qui exclut

les opportunités d’arbitrage, est un cas particulier du cadre général proposé dans

le chapitre précédent. Chaque pays est caractérisé par une intensité de crédit –

reflétant son risque de défaut– et une intensité de liquidité –reflétant la valorisation

de la relative illiquidité des titres émis par ces Etats. Chacune de ces intensités

est une combinaison linéaire de cinq facteurs ainsi que d’un vecteur de sélection

de dimension 2× 1 indiquant quel régime prévaut à chaque date, l’un de ces deux

régimes étant interprété comme un régime de crise. Les facteurs et les régimes

sont communs aux dix pays.

Les cinq facteurs sont eux-mêmes des combinaisons linéaires de taux d’intérêt

observés. Les trois premiers sont tirés de taux d’Etat allemand, qui sont considérés

comme des taux sans risque : le premier correspond au taux à 10 ans, le second est

un facteur de pente (différence entre un taux long et taux court) et le troisième est

un facteur de convexité (position d’un taux de maturité intermédiaire par rapport

à la moyenne d’un taux long et d’un taux court). Le quatrième et le cinquième

facteurs sont les deux premières composantes principales d’un échantillon de quatre

séries temporelles d’écarts de taux; ce sont les écarts entre les taux à 10 ans français,

espagnols, italiens et hollandais d’une part et le taux à 10 ans allemand d’autre

part.

Dans ce modèle, les taux sont des combinaisons linéaires des facteurs et des

régimes. Les facteurs sont donc des fonctions de taux d’intérêt qui dépendent

eux-mêmes des facteurs. Aussi, une procédure d’estimation spécifique doit-elle

être définie pour respecter la cohérence interne du modèle. Cette procédure est

mise en oeuvre lors de l’estimation de la dynamique risque-neutre des facteurs.

Une méthode spécifique, fondée sur une utilisation de la méthode des moments

généralisés, est proposée. Le calcul des écarts-types des paramètres estimés via

cette méthode est détaillé.

La dynamique historique des facteurs est estimée séparément de la dynamique
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risque-neutre. Il a été montré que l’on tend à sous-estimer la persistence des pro-

cessus en échantillon fini (voir notamment Jardet, Monfort et Pegoraro, 2013).

Afin de traiter ce problème, qui a d’importantes conséquences pour l’estimation

des primes de risque, nous mettons en oeuvre la méthode proposée par Kim et

Orphanides (2012). Cette méthode consiste à pénaliser, lors de l’estimation du

modèle, ces combinaisons de paramètres qui impliquent que les prévisions de taux

fondées sur le modèle sont éloignées de celles réalisées par les prévisionnistes. Nous

utilisons trois séries de prévisions: l’une pour le premier facteur (taux long alle-

mand) et les deux autres pour le quatrième et le cinquième facteur (composantes

principales d’écarts de taux). Ces séries temporelles de prévisions sont issues du

Consensus Forecast.

L’estimation suggère que l’existence du régime de crise est clé pour expliquer

l’accroissement de la volatilité des taux sur la période récente. L’ajustement

des données est de bonne qualité. En moyenne à travers les pays et les matu-

rités, l’écart-type des erreurs de mesure de taux d’intérêt est de 18 points de base

(0.18%).

A ce stade, on dispose d’un modèle dans lequel chaque taux d’intérêt est une

combinaison linéaire des cinq facteurs et de la variable de régime. Il reste ensuite

à décomposer chaque taux d’intérêt en une composante crédit et une composante

liquidité. Cela revient à décomposer en deux parties l’intensité globale associée

à chaque pays. Notre stratégie d’identification de la partie liquidité de chaque

intensité repose sur l’interprétation de l’écart de taux KfW-Bund. KfW est une

banque publique allemande dont les titres sont complètement et explicitement

garantis par l’état fédéral allemand. Aussi, les Bunds, qui sont les obligatons

émises par l’Etat fédéral allemand, et les obligations émises par KfW bénéficient-

elles de la même qualité de crédit. En conséquence, l’écart de taux entre ces

titres reflète essentiellement la valorisation de la différence de liquidité entre les

deux types de titres. Nous vérifions que les écarts de taux KfW-Bund sont très

corrélés avec le même type d’écarts de taux relatifs à d’autres pays de la zone

euro. Nous en déduisons que la valorisation de la liquidité obligataire en zone

euro repose sur un unique facteur de liquidité. L’identification de celui-ci est
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réalisée en incluant la structure par terme associée aux obligations émises par

KfW dans notre estimation. Il en résulte que le facteur de liquidité est lui aussi

une combinaison des cinq facteurs et de la variable de régime. Pour chacun des

autres pays, l’intensité d’illiquidité est obtenue comme une transformation affine

du facteur de liquidité précédemment identifié. Cette transformation est estimée en

maximisant la part des fluctuations de chaque intensité nationale (incluant crédit

et liquidité) pouvant être expliquées par les fluctuations du facteur de liquidité,

tout en intégrant des objectifs supplémentaires concernant la positivité des écarts

de taux et des intensités de crédit (qui correspondent à des probabilités de défaut,

qui sont donc positives).

Nos résultats suggèrent que la liquidité est déterminante pour expliquer les varia-

tions des prix obligataires. En particulier, jusqu’en 2009, les différences de liquidité

expliquent la majeure partie des écarts de taux d’intérêt entre les pays les mieux

notés par les agences de crédit (Allemagne, Autriche, Finlande, France et Pays-

Bas). En revanche, depuis lors, c’est surtout la dégradation de la qualité de crédit

vis-à-vis de celle de l’Allemagne –du moins telle que perçue par les marchés– qui

explique le creusement des écarts de taux.
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3.1. Introduction

One of the most spectacular symptoms of the crisis that began in mid-2007 is

the dramatic rise in intra euro-area government-bond yield spreads. Whereas all

euro-area sovereign 10-year bond yields were contained in a range of 50 bp between

2002 and 2007, the average spreads over Germany of only two countries were lower

than 50 basis points in 2011, the debt-weighted mean being of about 250 bp. Since

the inception of the euro in 1999 and the resulting elimination of exchange-rate

risk, intra-euro-area spreads reflect the fluctuations of compensations demanded by

investors for holding essentially two kinds of risks: credit and liquidity risks.2 The

credit risk is linked to the issuer’s probability of default (PD). If investors assess

that the PD of some indebted country is higher than in the past, the prices of the

bonds issued by this country fall because the expected loss increases. Liquidity

risk arises from the potential difficulty that one may have in selling the asset

before its redemption (for instance if one is required to do so in distressed market

conditions, where it is difficult to find a counterpart for trade relatively quickly).

In many ways, the ongoing financial crisis has illustrated why, along with credit

risk, liquidity risks matter and should not be underestimated (see Brunnermeier,

2009).

Disentangling credit and liquidity effects in bond prices is important in several

respects. For instance, appropriate policy actions that may be needed to address

a sharp rise in spreads depend on the source of the movement: if the rise in

spreads reflects poor liquidity, policy actions should aim at improving market

functioning. But if it is linked to credit concerns, the solvency of the debtors should

be enhanced (see Codogno, Favero and Missale, 2003). Furthermore, optimal

investment decisions would benefit from such a decomposition. In particular, those

medium to long-term investors who buy bonds to hold them until redemption seek

to buy bonds whose price is low because of poor liquidity, since it provides them

2Indeed, an overwhelming share of the euro-area sovereign debt is denominated in euros (see
Eurostat, 2011). Note however that over the recent period, i.e. since Spring 2012 onward,
there is evidence that there have been fears on the part of investors of the reversibility of the
euro (see notably the speech by Draghi on 6 September 2012). This period is not covered by
the empirical studies of this Chapter and the following.
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with higher long-run returns than more liquid bonds with the same credit quality

(see Longstaff, 2009).

In this chapter, we present a no-arbitrage affine term-structure model (ATSM)

of the dynamics of ten euro-area sovereign yield curves. Jointly modelling these

different yield curves allows us to identify and price credit and liquidity risk factors

that are common to euro-area countries. Being euro area-wide, these risks can not

be diversified away by the investors, who demand risk premia to be compensated

for carrying them. The size and dynamics of such risk premia will be studied more

in depth in the next Chapter, the present one focusing on the credit/liquidity

decomposition.

The framework allows for transitions between tranquil and crisis periods, which

is obviously well-suited to account for the fluctuations of yields and spreads over

the last three years. In this reduced-form framework, the default probabilities are

modeled directly instead of defining a stochastic process for the obligor’s asset

value that triggers default when the process reaches some threshold (as in Merton,

1974 ).3 While the focus is on default modelling, the specifications account for the

pricing of some liquidity premia, as originally proposed by Duffie and Singleton

(1999) . The state variables, also named “risk factors”, follow discrete-time inter-

related Gaussian processes. Exploiting the framework developed in the previous

Chapter, the Gaussian processes present drifts and variance-covariance matrices

that are subject to regime shifts. The latter are described by a two-state Markov

chain. The model is estimated using yield data covering the last twelve years.

The five-factor and two-regime model accounts for more than 98% of the variances

of yields driving eleven term structures of interest rates. The fact that a small

set of factors is able to account for most of the fluctuations of sovereign spreads

is consistent with findings by Geyer, Kossmeier and Pichler (2004) and, more

recently, by Longstaff et al. (2011) .

3After having developed criteria to measure the performances of credit models in terms of
default discrimination and relative value analysis, Arora, Bohn and Zhu (2005) compare
structural (e.g. Merton’s) and reduced-form models. Their results suggest that the reduced-
form model outperforms the others when the issuer has many bonds in the market, which is
typically the case for sovereign issuers.
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In addition to the yield curves of ten euro-area countries, we model the yield

curve of KfW (Kreditanstalt für Wiederaufbau), a German agency. We identify a

liquidity-related pricing factor by exploiting the term structure of the the KfW-

Bund spreads. Indeed, the bonds issued by KfW, guaranteed by the Federal Re-

public of Germany, benefit from the same credit quality than their sovereign coun-

terparts –the Bunds– but are less liquid.4 Therefore, the KfW-Bund spread should

be essentially liquidity-driven.5 The resulting liquidity-related factor contributes

significantly to the dynamics of intra-euro spreads, supporting recent findings by

Favero et al. (2010) or Manganelli and Wolswijk (2009).

We propose an efficient estimation method to bring the model to the data. The

risk factors are some linear combinations of observed yields. Being observed, the

estimation of the (historical) risk-factor dynamics boils down to the estimation of

a Markov-switching vector-autoregression model. The regime-switching feature of

the model turns out to be particularly relevant to account for the rise in volatility

experienced by fixed-income markets over the last years.6 The fact that the factors

are observed yield combinations raises internal consistency issues when it comes

to estimating their risk-neutral dynamics: the model has indeed to correctly price

the bond portfolios that are reflected by these yield combinations. These internal-

consistency restrictions are taken into account by our estimation procedure.

Our estimation dataset is supplemented with survey-based forecasts. As evidenced

by Kim and Orphanides (2005), this alleviates the downward small-sample bias in

the persitence of the yields obtained with conventional estimation.7 Such biases

typically result in too sTablelong-horizon expectations of yields and, as a conse-

quence, overstate the variability of term premia. Generating reliable expectations

is key if one wants to use the model to recover probabilities of default from bond

4By abuse of language, we use here the term Bunds for the German sovereign bonds of any
maturity although this name is usually used for ten-year bonds only.

5See Schwarz (2009).
6The pricing framework allows for risk premiums demanded by the investors to be compensated

for the systematic nature of the regime shifts. Regime shifts represent a systematic risk in
the sense that this risk can not be diversified away.

7This way of reducing the bias is not the only one. In particular, Jardet, Monfort and Pegoraro
(2009) use a “near-cointegrated framework” specification of the factors (averaging a stationary
and a cointegrated specification).
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prices (as will be done in the next Chapter).

This study contributes to the term-structure modelling literature in three main

directions. First, we estimate an ATSM explicitly incorporating liquidity and

credit aspects on European data, in a multi-country set up.8 Second, we investigate

the potential of the regime-switching feature in credit ATSM. Third, we propose

an efficient estimation methodology, conveniently dealing with internal consistency

problems and incorporating survey-based forecasts data.

The remaining of this Chapter is organized as follows. Section 3.2 presents the

model and details how bonds are priced in this framework. Section 3.3 deals with

the choice and the construction of the data. Section 3.4 presents the estimation

of the model and Section 3.5 examines the implication of the model in terms

of liquidity and credit pricing. Section 3.6 summarizes the results and makes

concluding remarks.

3.2. The model

In this Section, we present the dynamics of the pricing factors and regimes. We

consider three types of variables: five macroeconomic factors gathered in a vector

yt = [y1,t, y2,t, y3,t, y4,t, y5,t]�, a regime variable zt that can take two values: [1, 0]�

and [0, 1]� and d�
t

= (d1,t, . . . , dN,t), a set of binary variables indicating the default

(dn,t = 1) or the non-default (dn,t = 0) states of the countries indexed by n.

The next two subsections respectively describe the dynamics under the historical

measure and under the risk-neutral measure. Then Subsection 3.2.3 deals with

the hazard rates and, in particular, introduces the modelling of liquidity pricing.

3.2.1. Historical dynamics of factors (yt) and regimes (zt)

The conditional distribution of yt given zt is Gaussian and is given by:
8Geyer, Kossmeier and Pichler (2004) have also presented a multi-country ATSM. However,

their model only accounts for the spreads’ dynamics (which are supposed to be driven by
factors that are independent from the the riskfree rates) and it does not explicitly accomodate
liquidity-pricing effects.
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



y1,t
...

yp,t




=





µ1,1 µ1,2
... ...

µp,1 µp,2




zt + Φ





y1,t−1
...

yp,t−1




+





σ
�
11zt 0 0
... . . . 0

σ
�
p1zt · · · σ�ppzt




εt

= µzt + Φyt−1 + Ω(zt)εt, (3.1)

where the εt’s are independently and identically N(0, I) distributed. It is a vector

autoregressive model where the drift and the covariance matrix of the innovations

are subject to regime shifts. The regime variable zt follows a two-state Markov

chain whose probabilities of transition are denoted with πi,j. Formally:

P (zt = j| zt−1 = i) = πi,j. (3.2)

Equation (3.1) implies that there is instantaneous causality between zt and yt, as

in Ang, Bekaert and Wei (2008).9 If country n has not defaulted before t, the

conditional probability that country n defaults in time t is given by 1− exp(−λd
n,t

)

where the default intensity λd
n,t

is a function of (zt, yt). Our framework builds on

the “doubly stochastic” assumption, under which the default times of the different

countries are correlated only as implied by the correlation of their default intensi-

ties. The default state is absorbing, in the sense that dn,t = 1 implies dn,t+h = 1

for any positive h.

The risk-free one-period rate rt+1, that is the return of a one-period risk-free

investment between t and t+ 1 (known in t) is a linear combination of yt and zt:

rt+1 = a1zt + b1yt.

9Ang et al. (2008) remark that instantaneous causality between zt and yt implies that the
variances of the factors yt, conditional on past values of (zt, yt), embed a jump term reflecting
the difference in drifts µ accross regimes. This feature is absent from the Dai, Singleton and
Yang (2007) setting.
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3.2.2. The risk-neutral dynamics

Under the risk-neutral measrure Q, the dynamics of yt is given by:





y1,t
...

yp,t




=


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µ
∗
1,1 µ

∗
1,2

... ...

µ
∗
p,1 µ

∗
p,2


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zt + Φ∗


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y1,t−1
...

yp,t−1




+





σ
�
11zt 0 0
... . . . 0

σ
�
p1zt · · · σ�ppzt




ε
∗
t
(3.3)

= µ
∗
zt + Φ∗yt−1 + Ω(zt)ε∗t (3.4)

where, under Q, zt is an homogenous Markov chain defined by a transition matrix

{π∗
ij
}, and where ε∗

t
is IIN (0, I).

Given the historical and the risk-neutral dynamics, it can be shown that the

stochastic discount factor (s.d.f.) is exponential affine in (zt, yt). More precisely,

in this context, the s.d.f. Mt−1,t between t−1 and t is of the form (see Chapter 2):

Mt−1,t = exp
�
−a�1zt−1 − b

�

1yt−1 −
1
2ν

� (zt, zt−1, yt−1) ν (zt, zt−1, yt−1) +

+ν � (zt, zt−1, yt−1) εt + [δ�zt−1]�zt
�
, (3.5)

where δ is a 2×2 matrix whose (i, j) entry is ln(π∗
ij
/πij) and where Ω (zt) ν (zt, yt−1) =

(Φ∗ − Φ)yt−1 + (µ∗ (zt) − µ (zt)). The risk-sensitivity matrix δ and function ν re-

spectively price the (standardized) innovations εt of yt and the regimes zt.

3.2.3. Hazard rates

As explained in Section 2.7, in such a framework, the pricing of defaultable bonds

boils down to the pricing of risk-free bonds if the risk-free short rate is replaced

with a short rate embedding credit and liquidity risks. The differential between

the latter and the risk-free short rate is termed with hazard rate and is denoted by

λn,t (for country n). Intuitively, in the absence of liquidity pricing and with a zero

recovery rate, the hazard rate would simply be the default intensity λd
n,t

. In the
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presence of non-zero recovery rate, the pure default intensity has to be replaced

by the a loss-adjusted credit intensityλc
n,t

(see Subsection 2.4.2). Assuming that

the recovery payoff is equal to a constant fraction ζ of the bond price that would

have prevailed in the absence of default, the credit intensity λc
n,t

is given by:10

exp
�
−λc
n,t

�
= exp

�
−λd
n,t

�
+ ζ
�
1− exp

�
−λd
n,t

��
.

Liquidity-pricing effects are introduced through an illiquidity intensity denoted

by λ�
n,t

.11 We assume further that credit and illiquidity intensities are affine in

(zt, yt). More precisely, under both measures, the hazard rate of the bonds issued

by country n reads:

λn,t = (αc
n
)� zt + (βc

n
)� yt� �� �

credit-related (λc
n,t

)
+
�
α
�

n

��
zt +

�
β
�

n

��
yt

� �� �
liquidity-related (λ�

n,t
)

. (3.6)

Further, we assume that the country-specific illiquidity intensities λ�
n,t

are driven

by a unique factor denoted by λ�
t
, the latter being a linear combination of (zt, yt).

Formally, for all countries n, we have:

λ
�

n,t
= γ0

�,n
+ γ1
�,n
× λ�

t
= γ0

�,n
+ γ1
�,n
× (α�

�
zt + β��yt) . (3.7)

3.2.4. Pricing

It is well-known that the existence of a positive stochastic discount factor is equiv-

alent to the absence of arbitrage opportunities (see Hansen and Richard, 1987
10Of course, when ζ is equal to zero,λc

n,t
= λd

n,t
, and whenζ is equal to one, the bond is equivalent

to a risk-free bond.
11See Section 2.7. The affine term-structure literature is relatively silent on the interpretation or

the microfoundations of the illiquidity intensity. In a theoretical paper analyzing interactions
between credit and liquidity risks, He and Xiong (2012) show that such an illiquidity intensity
may reflect the probability of occurence of a liquidity shock; upon the arrival of ths shock,
the bond investor has to exit by selling his bond at a fractional cost (i.e. the selling price
is equal to a fraction of the price that would have prevailed in the absence of the liquidity
shock); the fractional cost is the analogous to the fractional loss (1 − ζ) in the default case
(see also Ericsson and Renault, 2006 for a similar interpretation).
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and Berholon, Monfort and Pegoraro, 2008) and that the price at t of a risk-free

zero-coupon bond with residual maturity h, denoted by B0,t,h, is given by:

B0,t,h = EQ
t

[exp (−rt+1 − . . .− rt+h)] , (3.8)

where rt+i = a�1zt+i−1 + b�1yt+i−1, i = 1, . . . , h.12 Under our recovery assumptions,

the price of a defaultable and illiquid zero-coupon bond issued by country n and

with a residual maturity of h has a price at time t that is given by (if debtor n

has not defaulted before time t; see Appendix 4.A for a proof in a more general

context):

Bn,t,h = EQ
t

[exp (−rt+1 − . . .− rt+h − λn,t+1 − . . .− λn,t+h)] . (3.9)

Since both the rt+i’s and the λn,t+i’s are affine in (zt, yt), and since(zt, yt) is com-

pond auto-regressive of order one under Q, the prices of bonds are exponential

affine in (zt, yt):13

Bn,t,h = exp
�
−c�
n,h
zt − f

�

n,h
yt

�
(3.10)

and the associated yields are:

Rn,t,h = 1
h

�
c
�

n,h
zt + f

�

n,h
yt

�
, (3.11)

where (c�
n,h
, f
�
n,h

) are computed recursively.14

12As for the hazard rates (see equation 3.6), the risk-free short-term rate is the same function
of (zt, yt) under both measures.

13Appendix 3.A.1 derives the Laplace transform of (zt, yt) and shows that (zt, yt) is Com-
pound auto-regressive of order one. Appendix 2.A.5 shows how to compute the multi-horizon
Laplace transform of compound auto-regressive processes. (See Darolles, Gourieroux and
Jasiak, 2006 or Bertholon, Monfort and Pegoraro, 2008 for in-depth presentations of com-
pound auto-regressive –or Car– processes.)

14The general recursive formulas are presented in Appendix 2.A.55.15. To apply these in the
current case, one has (a) to use the Laplace tansform of (zt, yt) presented in Appendix 2.A.5
and (b) take a sequence ωh, h = 1, . . . ,H defined by ωH = (−α�

n
,−β�

n
) and ωh = (−α�

n
−

a
�
1,−β�n − b�1,−γ�n) for h = 1, . . . ,H − 1, with cn,0 = a1 and fn,0 = b1.
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3.3. Data

The data are monthly and cover the period from July 1999 to March 2011. We

exclude the first 6 months of 1999 so as to avoid potential effects linked to the euro

introduction. The estimation involves end-of-month yields as well as survey-based

yield forecasts. We consider the yield curves of ten euro-area countries: Austria,

Belgium, Finland, France, Germany, Ireland, Italy, the Netherlands, Portugal and

Spain. Greece data are excluded from the analysis because appropriate euro-

denominated bond yields are not available before 2001, when Greece joined the

euro area. Consistently with the fact that, among sovereign euro-area bonds, the

German Bunds are perceived to be the "safest haven" both in terms of credit quality

and liquidity, we consider the German bonds as risk-free.15

Appendix 3.B details the sources of the data and the preliminary computations

performed to get end-of-month zero-coupon yields. The following subsection( 3.3.1)

introduces the KfW-Bund spreads that will be exploited to identify the liquidity-

related latent factor λ�
t
. In 3.3.2, we provide a preliminary analysis of euro-

area yield differentials and in 3.3.3, we detail the computation of the factors

y1,t, . . . , y5,t.

3.3.1. The KfW-Bund spread

Our identification of a liquidity-related latent factor is based on the yield spreads

between German federal bonds and KfW agency bonds. The latter are less liquid

than the sovereign counterparts, the so-called Bunds, but are explicitly and fully

guaranteed against default by the German federal government.16 Consequently,

15In particular, the German bond market is the only one in Europe that has a liquid futures
market, which boosts demand for the German Bund compared to other euro area debt and
bolsters its liquidity (see e.g. Pagano and von Thadden, 2004, Ejsing and Sihoven, 2009 or
Barrios et al., 2009).

16An understanding between the European Commission and the German Federal Ministry
of Finance (1 March 2002) stated that the guarantee of the Federal Republic of Ger-
many will continue to be available to KfW. The three main rating agencies –Fitch, Stan-
dard and Poor’s and Moody’s– have assigned a triple-A rating to KfW (see KfW website
http://www.kfw.de/kfw/en/KfW_Group/Investor_Relations/index.jsp). In addition, as the
German federal bonds, KfW’s bonds are zero-weighted under the Basel capital rules. The
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the spread between these two kinds of bonds can be seen as a measure of the

German government bond-market liquidity premium demanded by investors. In

the same spirit, Longstaff (2004) computes liquidity premia based on the spread

between U.S. Treasuries and bonds issued by Refcorp, that are guaranteed by the

U.S. Treasury.

Panel A of Figure 3.1 shows that the KfW-Bund spreads of different maturities are

highly correlated. This suggests that a single factor may be adequate to model the

term structure of these spreads. Here, it is important to check that this liquidity-

pricing measure is not purely specific to Germany. To that purpose, we look at

comparable liquidity-driven spreads –between government-guaranteed bonds and

their sovereign counterparts– in alternative countries.17 In France for instance,

the CADES (Caisse d’amortissement de la dette sociale) issues bonds that are

guaranteed by the French government. Panel B compares one of the KfW-Bund

spreads with a CADES-OAT spread (OATs are French government-issued bonds)

and displays spreads of government-guaranteed bank bonds –issued by the Dutch

NIBC bank and the Austrian Raiffeisen Zentalbank– over their respective sovereign

counterparts. This exercise points to a substantial degree of correlation among

liquidity-driven spreads from different European countries.

3.3.2. Euro-area government yields

Table 3.1 suggests that euro-area government yields are highly correlated across

countries and across maturities (see also Favero, Pagano and von Thadden, 2010

[115]). Table 3.2 reports the correlations between the spreads vs. Germany for

different countries over the sample periods and presents a principal-component

analysis of these spreads across countries. The correlations suggest that spreads

largely comove across countries. The principal-component analysis (see lower part

of Table 3.2) indicates that, for different maturities (2, 5 and 10 years), the first two

relevance of the KfW-Bund spread as a liquidity proxy is also pointed out by McCauley
(1999), the ECB, 2009 and is exploited by Schwarz (2009).

17Note that such alternative (term structures of) spreads are not available on our whole estima-
tion period, that is why we use essentially KfW-Bund spreads to identify our liquidity factor
within our econometric approach.
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Figure 3.1.: Differentials between government and government-guaranteed bonds

Notes: The first plot shows the spreads between KfW bond yields and their sovereign counterparts.
The second plot compares the spread between a KfW bond maturing in 2014 and its sovereign
counterpart with other spreads between government-guaranteed European bonds and their respective
sovereign counterparts: CADES’, NIBCAP’s and RZB’s bonds are respectively guaranteed by the
French, Dutch and Austrian governments (the spreads are demeaned and standardized). The yields
come from Barclays Capital.

principal components roughly explain 90% of the spread variances across countries.

This suggests that a model with a limited number of common factors may be able

to explain the bulk of euro-area yield-differential fluctuations. The estimation is

based on four benchmark maturities per country: 1, 2, 5 and 10 years. The short

end of the risk-free yield curve is augmented by the 1-month EONIA swap.18

3.3.3. Construction of the factors yt

As explained in Section 3.2.4, our framework implies that (modeled) bond yields

end up being some linear combinations of the regime variables zt and of the factors

yt. Therefore, appropriate factors have to capture a large share of the common

fluctuations of yields. Natural candidates for the yt’s are the principal components
18Data providers such as Bloomberg do not propose 1-month sovereign German yields. We

decide to replace it with the 1-month EONIA swap rates as swap yields are often considered
as risk-free yields, see e.g. Collin-Dufresne, Goldstein and Martin (2001).
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Table 3.1.: Descriptive statistics of selected yields

Notes: The Tablereports summary statistics for selected yields. The data are monthly and cover the
period from July 1999 to March 2011. Two auto-correlations are shown (the 1-month and the 1-
year auto-correlations). The yields are continuously compounded and are in percentage annual terms
(see Appendix 3.B for details about their construction). The lower panel of the Tablepresents the
covariances and the correlations (in italics) of the yields. The 1-month rate is the 1-month EONIA
swap.

German yds Italian yds Portuguese yds Irish yds

1-mth 2-year 10-year 2-year 10-year 2-year 10-year 2-year 10-year

Mean 2.761 2.961 4.086 3.288 4.517 3.428 4.609 3.537 4.672

Median 2.832 3.091 4.084 3.32 4.459 3.474 4.45 3.51 4.568

Standard dev. 1.371 1.18 0.718 1.046 0.581 1.046 0.79 1.125 1.048

Skewness -0.243 -0.303 -0.076 0.175 0.17 0.488 0.952 1.285 1.974

Kurtosis 2.09 2.131 2.323 2.059 2.189 3.664 4.967 6.398 9.232

Auto-cor. (lag 1) 0.998 0.988 0.973 0.98 0.962 0.896 0.962 0.936 0.963

Auto-cor. (lag 12) 0.475 0.53 0.586 0.491 0.571 0.132 0.29 0.037 0.279

Correlations \ Covariances

1-mth EONIA swap 1.867 1.521 0.73 1.306 0.432 0.835 0.114 0.636 -0.276

German 2-yr yd 0.946 1.385 0.713 1.149 0.423 0.728 0.144 0.577 -0.18

German 10-yr yd 0.744 0.843 0.516 0.588 0.345 0.349 0.201 0.283 0.037

Italian 2-yr yd 0.917 0.937 0.785 1.086 0.451 0.84 0.316 0.747 0.12

Italian 10-yr yd 0.545 0.619 0.827 0.746 0.337 0.406 0.343 0.415 0.325

Portug. 2-yr yd 0.586 0.593 0.466 0.773 0.671 1.086 0.605 1.095 0.61

Portug. 10-yr yd 0.106 0.155 0.355 0.384 0.75 0.737 0.622 0.721 0.753

Irish 2-yr yd 0.415 0.438 0.351 0.639 0.638 0.938 0.815 1.256 0.855

Irish 10-yr yd -0.193 -0.146 0.049 0.11 0.536 0.561 0.913 0.73 1.092

of the set of yields time series. However, since we do not have survey-based fore-

casts of all the yields that we consider in the estimation –there are 40 of them–,

doing so would deprive us of survey-based forecasts of the factors. If, as in Kim

and Orphanides (2012), we want to incorporate such data in the estimation of

the historical dynamics of the factors, these need to be based on variables for

which some forecasts are available. To that respect, the Consensus Forecasts pro-

vide us with 3-month-ahead and 12-month-ahead forecasts of the 10-year sovereign

yields of 5 countries: France, Germany, Italy, the Netherlands and Spain. As a

consequence, if we construct some factors that are given by combinations of these

yields, 3-month and 12-month ahead survey-based forecasts of these factors can be

included in the estimation procedure. (The advantages of using survey forecasts in

the estimation of the historical dynamics of the factor are outlined in Section 3.1.)

99



3.3 Data

The Consensus Forecasts are produced monthly by Consensus Economics, which

surveys financial and economics forecasters. The survey is released around the

middle of the month.19 Note that the survey implicitly targets yields-to-maturity

of coupon bonds and not zero-coupon bonds. However, our zero-coupon yields

remain very close to coupon yields over the estimation sample. The remaining

discrepancy will be attributed to the deviation between the survey-based forecasts

and the model-based ones (the εj,h,t’s introduced in equation 3.12 below).

Nevertheless, all of our factors can not be based on 10-year yields since we would

then miss the drivers of the deformation of the term structure of interest rates.

In other words, we also have to consider factors that will be able to capture the

changes in the slope and the curvature of the yield curves.20

Taking all these remarks into account, we use the following factors: the first three

are the level, the slope and the curvature of the German yield curve;21 the last

two factors are the first two principal components of the 10-year-maturity spreads

(vs. Germany) of France, Italy, the Netherlands and Spain. Eventually, survey-

based forecasts are available for three out of five factors (the first factor, i.e. the

10-year German yield, and the last two factors, associated with 10-year spreads

vs. Germany).

The factors y1,t, . . ., y5,t that result from this procedure are plotted in the upper

two panels in Figure 3.2.

19The number of respondents varies across time and countries. One average over the estimation
period, while more than 20 forecasters contribute to the German forecasts, around 10 take
part to the Italian ones. For each yield, we use the mean of the forecasts produced by the
different survey contributors.

20The importance of such factors has been investigated by various empirical studies in the wake
of Litterman and Scheinkman (1991).

21The first (level) factor is the 10-year German rate, the second (slope) factor is the difference
between the spread between the 10-year and the 1-year rates, the third (curvature) factor is
computed as the difference between (a) the 3-to-10 year and (b) the 1-to-3 year slope of the
yield curve (that is, 2 times the 3-yr yield minus the sum of the 1-yr and the 10-yr yields).
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3.4. Estimation

3.4.1. Main lines of the estimation strategy

As Ang, Piazzesi and Wei (2006) or Moench (2008), our estimation procedure

involves two steps. In the first one, we estimate the historical dynamics of factors

yt and regimes zt by maximizing the log-likelihood using the Kitagawa-Hamilton

algorithm. At the end of this first step, the Kitagaw-Hamilton smoother is used

to estimate the regime variables zt and these are taken as fixed in the next step.

The latter concerns the joint estimation of the risk-neutral dynamics of (zt, yt) and

of the specifications of the hazard rates λn,t. This second step is based on non-

linear-least-squares techniques, taking into account the internal-consistency issue.

Then, it remains to perform the decomposition of the hazard rates into credit and

liquidity components. This final operation will be detailed in Section 3.5.

3.4.2. Historical dynamics of (zt, yt)

The historical dynamics of (zt, yt) is defined by a Markov-switching VAR (see equa-

tions 3.1 and 3.2). This set of five equations is augmented with equations linking

survey-based forecasts to their model-based equivalent. These six additional equa-

tion read:

E
CF

j,h,t
= Et(yj,t+h) + εj,h,t, j ∈ {1, 4, 5}, h ∈ {3, 12}, (3.12)

where ECF
j,h,t

is the h-period ahead survey-based forecast, Et(yj,t+h) is its equivalent

model-based forecast, and the εj,h,t’s are the measurement errors, assumed to be

normally i.i.d.. The model-based forecasts stem from:

Et(yt+h) =
�
µP
h + ΦµP h−1 + . . .+ Φh−1

µP

�
zt + Φhyt. (3.13)

The parameters are estimated by maximizing the associated log-likelihood. Two

kinds of constraints are imposed in the estimation. First, we impose some con-
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straints on the matrix of regime-switching probabilities. The probability of re-

maining in the crisis regime is then calibrated so as to imply an average length of

the crisis of 2 years; this length being consistent with the findings of Cecchetti,

Kohler and Upper (2009) who investigate worldwide banking crises over the ast

30 years.22 Second, we constrain the unconditional means of the factors. Except

for the first factor, the unconditional means of the factors are set to their sam-

ple means. The mean of the first factor (10-year German yield) is set to 4.75%.

Indeed, its sample mean, which is of 4.10%, is low compared to the average of

the long-term forecasts for this yield, the latter being expected to be less affected

by short-sample biases.23 Finally, as in Kim and Orphanides (2012), we let the

estimation to decide the standard deviations of the measurement errors εj,h,t in

equations (3.12).

Parameter estimates are reported in Table 3.3 and Table 3.4. The second regime,

that we identify as a “crisis” regime, is characterized by particularly high standard

deviations of the innovations εt, especially for the shocks affecting y4,t and y5,t (see

Table 3.4).

The grey-shaded areas in Figure 3.2 indicate the crisis periods. These periods

are estimated as those for which the smoothed probabilities of being in the crisis

regime are larger than 50%. Three crisis periods are estimated: a first between

September 2008 and August 2009, a second between December 2009 and January

2010 and a last that starts in April 2010 and that lasts till the end of the sample

(March 2011).

Figure 3.3 displays survey-based forecasts of three of the factors (y1,t, y4,t and

y5,t) together with their model-based equivalent, computed using equation (3.13).

Except for the 12-month ahead forecasts of the fifth factor (bottom right panel

in Figure 3.3), the model is able to reproduce most of the survey-based forecasts’

22Which translates into πC,C = 95%. Cecchetti et al. study 40 systemic banking crises since
1980. This constraint is imposed because preliminary unconstrained estimations resulted in
probabilities of remaining in each of the regimes that was implausibly high.

23For comparison, the average of the 10-year-Bund yield over the last 20 years is approximately
5%. Twice a year, in April and October, the Consensus Forecasts present long-term forecasts
of macroecononmic variables (up to 10 years ahead). Over the last 10 years, the average of
the long-term forecasts of the 10-year German yield is of 4.78%.
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fluctuations.

Figure 3.2.: The five factors yt and the estimated regime variable zt

Notes: These plots show the factors y1,t, . . . , y5,t that are used in the analysis. The first factor is the
10-year zero-coupon German yield (minus 4.75%). The second factor is a proxy of the yield-curve
slope (difference between the 10-year German yield and the 1-month yield). The third is a proxy
of the yield-curve curvature (10-year German yield + 1-month yield − 2 times the 3-year German
yield). The fourth and fifth factors are the two first PCs of a set of four 10-year spreads vs. Germany
(France, Italy, the Netherlands and Spain). The shaded areas correspond to periods for which the
smoothed probability of being in the crisis regime is above 50% (using Kim’s algorithm, 1993).

3.4.3. Risk-neutral dynamics

The vector θ of parameters defining the risk-neutral dynamics –that is, matrices

µ
∗, Φ∗,

�
π
∗
i,j

�
– and those defining the default intensities –the α’s and the β’s– is
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Figure 3.3.: Model-based vs. survey-based forecasts

Notes: The Figures compare survey-based forcasts of the factors (derived from the Consensus fore-
casts) with model-based forecasts. The charts of the left column display the three factors for which
some survey-based forecasts are available, namely y1,t, y4,t, and y5,t. The first factor is the German
10-year yield (minus 4.75 percentage points). The fourth and fifth factors are the first two principal
components of a set of 10-year spreads vs. Germany for 4 countries (France, Italy, Spain and the
Netherlands).

estimated by means of non-linear least squares. Basically, we aim at minimizing

the sum of squared measurement errors, or SSME, across countries and maturities

(1, 2, 5 and 10 years).24 In addition, we have to deal with internal consistency con-

ditions. These conditions arise from the fact that our pricing factors y1,t, . . . , y5,t
are known linear combinations of the yields; the latter being in turn some com-

binations of the factors (see equation 3.11). To maintain internal consistency, the

model has to correctly “price” the factors (that reflect observed bond-portfolios’

prices). The internal-consistency restrictions involve highly non-linear transfor-

mations of the parameters. As a consequence, numerically minimizing the SSME

under the consistency constraints would considerably slow down the optimization
24The measurement errors are defined as the deviations between modeled and actual yields. In

addition to sovereign yields, KfW’s yields are also used in the estimation.
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procedure.25 We therefore resort to an alternative solution that consists in aug-

menting the SSME with a term penalizing deviations from internal-consistency

restrictions. More precisely, denoting observed yields by R̃n,t,h, modeled yields by

Rn,t,h(θ), observed factors by ỹi,t and modeled factors by yi,t(θ), the estimator θ̂

results from:

θ̂ = arg min
θ

�

n,t,h

�
R̃n,t,h −Rn,t,h(θ)

�2
+ χ
�

t,i

(ỹi,t − yi,t(θ))2
. (3.14)

where χ is a parameter defining the relative penalization of the deviations between

modeled (ỹt) and observed (yt) factors.

The loss function that we aim at minimizing (see equation3.14) being highly non-

linear in the underlying model parameters, it is necessary to find good starting

values so as to achieve convergence in a reasonable computing time.26 We proceed

as follows: (a) we consider only the risk-free rates in (3.14) and we assume that

their term-structure depends on the first three factors (y1,t, y2,t and y3,t) only,

(b) we incorporate the risky yields of a subset of debtors (namely Germany, KfW

and Portugal) and we (re-)estimate the parameterization of the risk-neutral dy-

namics (for the five factors yt) as well the hazard rates of these three entities,

(c) we estimate the hazard rates of the remaining entities, one by one, taking the

other parameters as given. In the final stage, all the parameters are (re)estimated

jointly.27

Table 3.5 and Table 3.3 present the parameter estimates. The standard deviation

of these estimates are based on a Newey-West (1987) heteroskedasticity and auto-

correlation consistent (HAC) covariance matrix estimator (see Appendix 3.C).

The parameterizations of the hazard rates, presented in Table 3.5, stem from the

decomposition of the hazard rates between liquidity-related and credit-related com-
25See e.g. Duffie and Kan (1996) for a simple example. Considering only one debtor and no

regime-switching, Joslin, Singleton and Zhu (2011) find a parameterization of their Gaussian
model that automatically satisfies internal consistency restrictions.

26Optimizations are based on iterative uses of quasi-Newton and Nelder-Mead algorithms (as
provided by the Scilab software).

27The final stage is itself decomposed into several sub-steps: first, the penalty factor χ (for the
internal-consistency restrictions) is set to zero. Then, it is progressively increased, till 1, level
at which deviations between modeled and actual factors yt become neglectible.
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ponents, that will be discussed in the next Section. Indeed, the minimization of

the loss function specified in (3.14) leads to estimates of the αn’s and βn’s, with

αn = αc
n

+α�
n

and βn = βc
n

+β�
n

(αn’s and βn’s estimates are not reported). A first

look at Table 3.5 suggests that the estimation results in significant impacts of the

factors on the hazard rates.

3.5. Results and interpretation

To begin with, the approach results in a satisfiying fit of the data. Modeled

versus observed spreads are displayed in Figure 3.4 (grey lines for observed spreads,

dotted lines for modeled spreads). On average across countries and maturities

(i.e. across 45 series), the ratios of the measurement-error variances over those

of the yields are lower than 2%: the average (across countries and maturities)

measurement-error standard deviation is around 18 basis points. In the sequel of

this Section, we focus on two specific issues: liquidity pricing and extraction of

default probabilties from bond yields.

3.5.1. The illiquidity intensity

In our model, we assume that there is a single factor that drives the liquidity

pricing in euro-area bond yields. As documented in 3.3.1, the bonds issued by

KfW and those issued by the German government embed the same credit risks –

assumed to be nil here– but are not equally exposed to the liquidity-related factor.

Accordingly, we simply have:

λ
�

t
= λKfW,t. (3.15)

The left part of Table 3.5 presents the estimated specification of λ�
t
. According to

the Student-t ratio, the liquidity factor is significatively linked to the five factors,

especially the fifth one (which is the second PC of a set of four 10-year spreads

vs. Germany). In addition, the α� estimates indicate that the liquidity factor
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3.5 Results and interpretation

jumps upwards in crisis periods. The resulting estimate of the liquidity factor is

displayed in the upper plot in Figure 3.5, together with a 90% confidence interval.28

It turns out that this European factor has some comovements with other proxies

of liquidity pricing. Two such measures are displayed in Figure 3.5 (middle and

lower plot). A first proxy, inspired by Manganelli and Wolswijk (2009), consists

of a dispersion measure of the bond yields of Aaa-rated countries. This proxy

is based on the assumption according to which a significant share of the spreads

between Aaa-rated countries should reflect liquidity differences since they are all

supposed to have a very high credit quality.29 The second liquidity proxy is the

bid-ask spread on the 10-year French benchmark bond (lower plot in Figure 3.5).

In addition to concomitant rises in the three proxies in early 2008, one can observe

a common decreasing trend between the early 2000 and 2005.

The liquidity-related factor λ�
t

presents three main humps: in the early 2000s, in

2008 and in 2010. The rise in liquidity premia in the early 2000s –concomitant

with the collapse of the Internet bubble– is also found in U.S. data by Fontaine and

Garcia (2012), Longstaff (2004) or Feldhütter and Lando (2008). The fact that

the liquidity factor is particularly high during crises periods (burst of the dotcom

bubble and post-Lehman periods) is consistent with the findings of Beber, Brandt

and Kavajecz (2009) who pinpoint that investors primarily chase liquidity during

market-stress periods.30

Given the liquidity-related factor λ�
t
, it remains to perform the default/liquidity

decompositions of the country-specific hazard rate (see equations 3.6 and 3.7).

Specifically, we have to estimate the pair of parameters (γ0
�,n
, γ

1
�,n

) for each country

n (recall that λ�n,t = γ0
�,n

+γ1
�,n
λ
�
t). Intuitively, we look for parameters γ0

�,n
’s and γ1

�,n
’s

that are such that (a) an important share of the spread fluctuations is explained by

the liquidity intensity λ�
n,t

under the constraints that (b) the implied risk-neutral

28The computation of this confidence interval is based on the delta method, exploiting the fact
that at each point in time, the estimate of λ�

t
is a function of the parameter estimates and of

yt and zt (λ�
t

= α�
�
zt + β�

�
yt).

29To compute this proxy, we use sovereign yield data (the same as in the rest of the analysis)
of Austria, Finland, France, Germany and the Netherlands, which are the five countries that
remain Aaa-rated over the whole period.

30Such a behaviour is captured in a theoretical framework by Vayanos (2004).
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and historical PDs are positive and that (c) the liquidity-related parts of the

spreads are positive. In order to achieve this for each country n, we construct a

loss function Ln that quantifies the previous objectives and we look for parameters

(γ0
�,n
, γ

1
�,n

) that minimize this function. This procedure is detailed in Appendix 3.D.

The estimated γ0
�,n

and γ1
�,n

are shown in the lower panel of Table 3.5. Note that

these parameters are non-linear combinations of the parameters that were esti-

mated in two steps of the estimation procedure. In particular, each γ�,n is largely

dependent on the estimation of αKfW and βKfW that define the liquidity-related

factorλ�
t
. The standard deviations of the estimated γ�,n’s (reported in Table 3.5)

result from the delta method, taking all these dependencies into account.31

Figure 3.6.: Sensitivity to the liquidity factor versus debt outstanding

Notes: The coordinates of the countries correspond to (x) the sensitivities γ1
�,n

of their hazard rates
λ
�

n,t
to the liquidity factor λ�

t
(these sensitivities are reported in the lowest row of Table 3.5) and (y)

their total markeTablesovereign debt (as of the end of 2009, Source: Eurostat).

Figure 3.6 shows a scatter plot where the coordinates of the countries are the

sensitivities γ1
�,n

to the liquidity-related factor and the total markeTabledebt of the

different countries. Leaving Italy aside, there seems to be a negative relationship

between these sensitivities and the debt outstanding. In spite of the large size of

31We assume that the large covariance matrix of the parameter estimates obtained in the first
step and in the second step of the estimation is block diagonal. This would be exact if both
steps of the estimations were independent. This is not rigorously the case since the covariance
matrices of the factor innovations (Ω(zt)Ω(zt)�)– are the same under both measures.
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the tradable debt issued by the Italian government, Italy’s hazard rate appears to

be particularly sensitive to the liquidity factor (among the countries considered in

our subset, only Ireland and Portugal are more exposed than Italy to the liquidity

factor).32

Moreover, in order to gauge the relative importance of the liquidity-related part of

the spreads, we have computed the spreads (versus German yields) that would pre-

vail if the credit part of the countries’ hazard rates were equal to zero. Figure 3.4

presents the resulting spreads (black solid lines). While, for most countries, the

liquidity-related part of the spread is less important than the credit-related one (as

in Codogno, Favero and Missale, 2003), it turns out to account for a substantial

part of the changes in spreads, especially over the earlier part of the estimation

sample.

3.6. Conclusion

In this Chapter, we present a no-arbitrage model of the joint dynamics of euro-area

sovereign yield curves. In addition to five Gaussian shocks, the model includes a

regime-switching feature that makes it possible to distinguish between tranquil

and crisis periods. Such a regime-switching feature is well suited to account for

the recent/current economic and financial market stress times. As a source of sys-

tematic risk, the regime shifts are priced by investors. Quasi-explicit formulas are

available, which makes the model tracTableand the estimation feasible. The model

is estimated over the last twelve years. The resulting fit is satisfying since the stan-

dard deviation of the yields pricing errors –across countries and maturities– is of

18 basis points. Our estimation suggests that the regimes are key in explaining the

fluctuations of yields over the last three years.33 Further, some credit and liquidity

intensities are estimated for each European country included in our dataset. The
32To some extent, such a finding is consistent with the results of Chung-Cheung, de Jong and

Rindi (2004) according to which transitory costs would be more important in the Italian
market, dominated by local traders.

33Counterfactual experiments –whose results are not reported here– have been conducted to
gauge the impact of the crisis regime on model-implied yields: when the crisis periods are
replaced by no-crisis ones, simulated (counterfactual) spreads remain flat from 2008 onwards.
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liquidity intensities are driven by a single European factor whose identification

is based on the KfW-Bund spreads. Indeed, the bonds issued by KfW, guaran-

teed by the Federal Republic of Germany, benefit from the same credit quality

than their sovereign counterparts –the Bunds– but are less liquid. Therefore, the

KfW-Bund spread should be essentially liquidity-driven. Our results indicate that

a substantial part of intra-euro spreads is liquidity-driven. The remaining parts

of the spreads reflect credit-risk pricing. In the next Chapter, we focus on the

financial-crisis period. Further, we extend the analysis by deriving probabilities of

default under the physical measure.

3.A. Proofs

3.A.1. Laplace transform of (zt, yt)

The risk-neutral conditional Laplace transform of (zt, yt) the information available

in time t− 1 is:

ϕ
Q
t−1 (u, v) = exp (v�Φ∗yt−1 + [l1, . . . , lJ ] zt−1) , (3.16)

where li = log�J
j=1 π

∗
ij

exp
�
ui + v�µ∗ej + 1

2v
�Ω (ej) Ω� (ej) v

�
and where ej is the

j
th column of the identity matrix. Therefore, (zt, yt) is compound auto-regressive

of order one –denoted by Car(1)– under the risk-neutral measure.
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Proof. We have

ϕ
Q
t−1 (u, v) = E

Q
t−1 (exp [u�zt + v�yt])

= E
Q
t−1 (exp [u�zt + v�µ∗zt + v�Φ∗yt−1 + v�Ω (zt) εt])

= E
Q
t−1
�
E

Q
t−1{exp [u�zt + v�µ∗zt + v�Φ∗yt−1+

v
�Ω (zt) εt] | zt})

= exp(v�Φ∗yt−1)EQ
t−1 (exp {u�zt + v�µ∗zt}×

E
Q
t−1 (exp {v�Ω (zt) εt | zt})

�

= exp(v�Φ∗yt−1)EQ
t−1 (exp {u�zt + v�µ∗zt}×

1
2v
�Ω (zt) Ω� (zt) v

�

= exp (v�Φ∗yt−1 + [l1, . . . , lJ ] zt−1) .

Using the expression given above for the li’s leads to the result. �

3.B. Sovereign yield data

The estimation of the model requires zero-coupon yields. However, governments

usually issue coupon-bearing bonds. For Germany, France, Spain and Netherlands,

we bootstrap constant-maturity coupon yield curves provided by Barclays Capi-

tal.34 For Belgium, we use zero-coupon yields computed by the National Bank

of Belgium and made available by the BIS. For remaining countries, we resort to

a parametric approach (see BIS, 2005, for an overview of zero-coupon estimation

methods). The yield curves are derived from bond pricing data on regularly replen-

ished populations of sovereign bonds. We choose the parametric form originally

proposed by Nelson and Siegel (1987). Specifically, the yield of a zero-coupon bond

with a time to maturity m for a point in time t is given by:35

34For details about bootstrapping methods, see e.g. Martellini, Priaulet and Priaulet (2003)
35We use the Nelson-Siegel form rather than the extended version of Svensson (1994) because

the latter requires more data to be estimated properly (and for some countries and some
dates, we have too small a number of coupon-bond prices).
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R
m

t
(θ) = β0 + β1

�
−τ1
m

��
1− exp(−m

τ1
)
�

+

β2

��
τ1
m

��
1− exp(−m

τ1
)
�
− exp(−m

τ1
)
�

where Θ is the vector of parameters [β0, β1, β2, β3, τ1, τ2]�. Assume that, for a given

country and a given date t, we dispose of observed prices of N coupon-bearing

bonds (with fixed coupon), denoted by P1,t, P2,t, . . . , PN,t. Let us denote by CFk,i,t
the ith (on nk) cash flows that will be paid by the kth bond at the date τk,i. We

can use the zero-coupon yields {Rm
t

(Θ)}
m≥0 to compute a modeled (dirty) price

P̂k,t for this kth bond:

P̂k,t(Θ) =
nk�

i=1
CFk,i,t exp

�
−τk,iR

τk,i−t
t (Θ)

�
.

The approach then consists in looking for the vector Θ that minimizes the distance

between the N observed prices and modeled bond prices. Specifically, the vector

Θt is given by:

Θt = arg min
Θ

N�

k=1
ωk(Pk,t − P̂k,t(Θ))2

where the ωk’s are some weights that are chosen with respect to the preferences

that one may have regarding the fit of different parts of the yield curve. Intuitively,

taking the same value for all the ωk’s would lead to large yield errors for financial

instruments with relatively short remaining time to maturity. This is linked to the

concept of duration (i.e. the elasticity of the price with respect to one plus the

yield): a given change in the yield corresponds to a small/large change in the price

of a bond with a short/long term to maturity or duration. Since we do not want

to favour a particular segment of the yield-curve fit, we weight the price error of

each bond by the inverse of the remaining time to maturity.36

36Using remaining time to maturity instead of duration has not a large effect on estimated yields
as long as we are not concerned with the very long end of the yield curve.
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Coupon-bond prices come from Datastream.37 In the same spirit as Gurkaynak et

al. (2005), different filters are applied in order to remove those prices that would

obviously bias the obtained yields. In particular, the prices of bonds that were

issued before 1990 or that have atypical coupons (below 1% or above 10%) are

excluded. In addition, the prices of bonds that have a time to maturity lower than

1 month are excluded.38

3.C. Computation of the covariance matrix of the

parameter estimates

The second step of the estimation deals with the parameters defining the risk-

neutral dynamics of (zt, yt) and the parameterization of the hazard rates. In this

appendix, we detail how the covariance matrix of these estimates is derived. The

non-linear least square estimator θ̂ is defined by (this is equation 3.14):

θ̂ = arg min
θ

�

n,t,h

�
R̃n,t,h −Rn,t,h(θ)

�2
+ χ
�

t,i

(ỹi,t − yi,t(θ))2

where yi,t(θ) is the ith entry of the vector of “theoretical” factors, in the sense that

it is a linear combination of the “theoretical” yields Rn,t,h(θ), that are themselves

a combination of observed factors ỹt.

This estimator must satisfy the first-order conditons:

�

n,t,h

∂Rn,t,h(θ)
∂θ

(R̃n,t,h −Rn,t,h(θ)) + χ
�

t,i

∂yi,t(θ)
∂θ

(ỹi,t − yi,t(θ)) = 0,

where the left-hand side of the previous equation is of dimension k×1 (the dimen-

sion of vector θ). The Taylor expansion of the previous equation in a neighborood

37Naturally, the number of bonds used differ among the countries (from 19 bonds for the Nether-
lands to 175 bonds for Germany).

38The trading volume of a bond usually decreases considerably when it approaches its maturity
date.
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3.C Computation of the covariance matrix of the parameter estimates

of the limit value θ0 leads to (after multiplication by 1/
√
T ):

0 � 1√
T




�

n,t,h

∂Rn,t,h(θ0)
∂θ

(R̃n,t,h −Rn,t,h(θ0)) + χ
�

t,i

∂yi,t(θ0)
∂θ

(ỹi,t − yi,t(θ0))


+

√
T

�
θ̂ − θ0

�


 1
T

�

n,t,h

�
∂

2
Rn,t,h(θ0)
∂θ∂θ�

(R̃n,t,h −Rn,t,h(θ0))−
∂Rn,t,h(θ0)
∂θ

�
∂Rn,t,h(θ0)
∂θ

���

+

1
T
χ
�

t,i

�
∂

2
yi,t(θ0)
∂θ∂θ�

(ỹi,t − yi,t(θ0))−
∂yi,t(θ0)
∂θ

�
∂yi,t(θ0)
∂θ

���

 .

Since E(R̃n,t,h −Rn,t,h(θ0)) = 0 and E(ỹi,t − yi,t(θ0)) = 0 (for any i), we have

1
T

�

n,t,h

∂
2
Rn,t,h(θ0)
∂θ∂θ�

(R̃n,t,h −Rn,t,h(θ0)) a.s.→ 0,

1
T

�

t,i

∂
2
yi,t(θ0)
∂θ∂θ�

(ỹi,t − yi,t(θ0)) a.s.→ 0.

Therefore:

√
T

�
θ̂ − θ0

�
�


 1
T

�

n,t,h

∂Rn,t,h(θ0)
∂θ

�
∂Rn,t,h(θ0)
∂θ

��
+ 1
T
χ
�

t,i

∂yi,t(θ0)
∂θ

�
∂yi,t(θ0)
∂θ

��


−1

×

1√
T




�

n,t,h

∂Rn,t,h(θ0)
∂θ

(R̃n,t,h −Rn,t,h(θ0)) + χ
�

t,i

∂yi,t(θ0)
∂θ

(ỹi,t − yi,t(θ0))


 .

Hence, the asymptotic distribution of
√
T

�
θ̂ − θ0

�
is estimated by Ĵ −1ÎĴ −1

where:

Ĵ −1 =


 1
T

�

n,t,h

∂Rn,t,h(θ̂)
∂θ



∂Rn,t,h(θ̂)
∂θ




�

+ 1
T
χ
�

t,i

∂yi,t(θ̂)
∂θ



∂yi,t(θ̂)
∂θ




�


−1

.
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3.D Disentangling credit from liquidity risks: the loss function

The second matrix, denoted by Î, is the estimate of the covariance matrix of

1/
√
T
�
t γt(θ0) where

γt =
�

n,h

∂Rn,t,h(θ0)
∂θ

(R̃n,t,h −Rn,t,h(θ0)) + χ
�

i

∂yi,t(θ0)
∂θ

(ỹi,t − yi,t(θ0)) .

To computeÎ, we use the Newey-West (1987) HAC estimator. This estimate is

given by:

Î =
i=T−m−1�

i=−(T−m+1)
κ

�
i

m

�
ˆcov(γ̂t, γ̂t+i)

where γ̂t = γt(θ̂) and where ˆcov denotes the sample covariance operator. In prac-

tice, we use the Bartlett kernel κ(x) = 1− |x| and a bandwidth of 5.

3.D. Disentangling credit from liquidity risks: the

loss function

In that appendix, we details the loss function introduced in 3.5.1. This function is

aimed at being minimized in order tofind pairs of (γ0
�,n
, γ

1
�,n

) that are such that (a)

an important share of the spread fluctuations is explained by the liquidity inten-

sity λ�
n,t

under the constraints that (b) the implied risk-neutral and historical PDs

are positive and that (c) the liquidity-related parts of the spreads are positive.

Actually, an additional “shadow” parameter is introduced in the loss function to

account for the fact that objective (a) focuses on the fluctuations and not on the

level the spread (this will be clarified below). We consider linearized versions of

the spreads in order to facilitate the optimization. This considerably fasten the op-

timization to the extent that (1) it avoids computations of multi-horizon Laplace

transforms defined by (3.18) at each evaluation of the loss function and (2), it

implies that analytical derivatives of the loss functions are available (which is par-

ticularly welcome when implementing the delta method to get standard deviations

of the estimated γ0
�,n

and γ1
�,n

). Formally, we define the following loss function Ln
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3.D Disentangling credit from liquidity risks: the loss function

for each country n:

Ln(δ0, δ1, δ2) =
�

t

��
λn,t

Q −
�
δ0 + δ1λ�n,t

Q�
+ δ2
�2

+χ1




��
λn,t

P −
�
δ0 + δ1λ�n,t

P��

−

�2

+
��
λn,t

Q −
�
δ0 + δ1λ�n,t

Q��

−

�2



+χ2

��
δ0 + δ1λ�n,t

Q�

−

�2



 (3.17)

where [x]− is equal to x if x < 0 and 0 otherwise, and where the operator •Q is

defined by (for any time series x):

xt
Q = 1
h
E

Q
t

(xt+1 + . . .+ xt+h) . (3.18)

When x is replaced by the hazard rate λn, we get a linearized approximation of the

spread vs. Germany at maturity h. The operator •P is the equivalent expectation

computed under the historical measure.39 The maturity h is supposed to be a

benchmark maturity that is priviledged regarding objectives (a) to (c). We use

h = 60 months.

Using this loss function, the estimation of the γ0
�,n

’s and the γ1
�,n

’s is based on the

following optimization:

(γ0
�,n
, γ

1
�,n
, γ

2
n
) = arg min

δ0,δ1,δ2
Ln(δ0, δ1, δ2).

The three parts of the loss function (the second part including two terms) reflect

the three criteria (a), (b) and (c) mentionned above. (a) The more the fluctuations

of λn,t
Q can be tracked by those of λ�n,t

Q
, the lower the first part of the loss function

is. In this first term, the shadow parameter δ2 is introduced because we want this

first part of Ln to focus on the fluctuations and not on the level of the intensities.

Without the shadow parameter δ2, we would arbitrarily favour those specifications
39If the relationship between spreads and intensities were linear, then γ0

�,n
+ γ1
�,n
λ
�
n,t

Q
would be

the part of the h-period spread (country n vs. Germany) corresponding to liquidity effects.
Though the linearity assumption does not strictly hold, the approximation is reasonable as
long as the λ’s remain small.
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3.D Disentangling credit from liquidity risks: the loss function

of the liquidity intensity that imply close-to-zero-mean default-related spreads. (b)

The second part of the loss function penalizes the specifications of the liquidity

intensity that generate negative default compensations (under both measures). (c)

The third term implies an additional cost when the liquidity-related part of the

spread is negative.

Generating positive PDs is arguably a more important objective than getting pos-

itive liquidity compensations. As a consequence, χ1 is taken higher than χ2. We

use χ1 = 4 and χ2 = 1 (see equation 3.17) for all countries except for Finland, for

which we set these parameters to zero. With χ1 = 4 and χ2 = 1, we get positive

and statistically significant Finnish PDs in the early 2000s. It may be due to the

fact that the liquidity of Finnish bonds has increased over the last decade; but in

our framework, we can not increase the liquidity spreads in the early 2000s without

producing deeply negative PDs in the late 2000s (penalized when χ1 = 4).

118



3.D Disentangling credit from liquidity risks: the loss function

Table 3.2.: Correlations and preliminary analysis of euro-area yield differentials

Notes: Panel A reports the covariances and correlations (in italics) of 10-year spreads (vs. Germany)
across nine euro-area countries. Panel B presents results of principal-component analyses carried out
on the spreads. There are three analyses that correspond respectively to three maturities: 2 years, 5
years and 10 years. For each analysis, Panel B reports the eigenvalues of the covariance matrices and
the propotions of variance explained by the corresponding component (denoted by “Prop. of var.” in
Panel B).

Panel A: Covariance and correlations of 10-year spreads vs. Germany
Fr. It. Sp. Au. Be. Fi. Po. Ne. Ir.

France 0.015 0.045 0.052 0.023 0.027 0.012 0.077 0.013 0.117
Italy 0.915 0.163 0.202 0.062 0.088 0.023 0.313 0.032 0.459
Spain 0.818 0.951 0.277 0.069 0.113 0.025 0.434 0.032 0.623
Austria 0.867 0.684 0.585 0.05 0.047 0.028 0.093 0.024 0.15
Belgium 0.922 0.887 0.871 0.854 0.061 0.024 0.169 0.023 0.253
Finland 0.599 0.358 0.293 0.767 0.615 0.026 0.028 0.015 0.053
Portugal 0.738 0.904 0.962 0.486 0.8 0.204 0.736 0.042 1.03
Netherlands 0.878 0.67 0.514 0.911 0.794 0.785 0.41 0.014 0.074
Ireland 0.783 0.918 0.956 0.545 0.83 0.263 0.97 0.497 1.534

Panel B: Principal components
Component 1 2 3 4 5 6 7 8 9
2-year spread
Eigenvalue 6.07 1.46 0.71 0.33 0.16 0.12 0.08 0.05 0.02
Prop. of var. 0.67 0.16 0.08 0.04 0.02 0.01 0.01 0.01 0
Cumul. prop. 0.67 0.84 0.92 0.95 0.97 0.98 0.99 1 1
5-year spread
Eigenvalue 6.68 1.56 0.38 0.13 0.09 0.07 0.05 0.02 0.01
Prop. of var. 0.74 0.17 0.04 0.01 0.01 0.01 0.01 0 0
Cumul. prop. 0.74 0.92 0.96 0.97 0.98 0.99 1 1 1
10-year spread
Eigenvalue 6.83 1.62 0.27 0.12 0.06 0.05 0.02 0.02 0.01
Prop. of var. 0.76 0.18 0.03 0.01 0.01 0.01 0 0 0
Cumul. prop. 0.76 0.94 0.97 0.98 0.99 0.99 1 1 1
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3.D Disentangling credit from liquidity risks: the loss function

Table 3.3.: Parameters defining the historical and risk-neutral dynamics (Part 1/2)

Notes: The table reports the estimates of the parameters defining the dynamics of the factor under historical and
risk-neutral measures. The estimation data are monthly and span the period from April 1999 to March 2011. Standard
errors and Student-t are reported, respectively, in parenthesis and in square brackets below the coefficient estimates.
***, ** and * respectively denote significance at the 1%, 5% and 10% significance level.
The historical-dynamics parameterization is estimated by maximizing the log-likelihood (equation 3.3). The covariance
matrix of the parameter estimates is based on the Hessian of the log-likelihood function. The risk-neutral dynamics
of the factors is estimated together with the hazard-rate specifications reported in Table 3.5 using non-linear least
squares. For the latter, the covariance matrix of the parameter estimates is computed using the Newey-West (1987
adjustment (see Appendix 3.C).

Non-Crisis Crisis Φi,1 Φi,2 Φi,3 Φi,4 Φi,5
µ1 0.0054 -0.0052 Φ1,i 0.98*** 0.0089*** 0.017*** -0.015* -0.12***

(0.0086) - (0.0032) (0.0024) (0.0053) (0.0081) (0.033)

[0.63] - [310] [3.7] [3.3] [-1.9] [-3.6]

µ2 0.003 -0.0028 Φ2,i -0.012 1.02*** 0.17*** -0.049 0.25**

(0.019) - (0.013) (0.0108) (0.017) (0.031) (0.12)

[0.15] - [-0.94] [94] [10.4] [-1.6] [2]

µ3 0.086* -0.082* Φ3,i 0.029 -0.054*** 0.88*** 0.091* 0.28

(0.048) - (0.024) (0.02) (0.034) (0.054) (0.17)

[1.8] - [1.2] [-2.7] [26] [1.7] [1.6]

µ4 -0.057*** 0.054*** Φ4,i 0.0023 0.00092 -0.019*** 0.93*** -0.083*

(0.0054) - (0.0033) (0.0025) (0.0046) (0.0076) (0.045)

[-10.7] - [0.72] [0.37] [-4.2] [124] [-1.8]

µ5 -0.016*** 0.015*** Φ5,i 0.00054 0.0012 -0.0033 -0.0043 0.85***

(0.0025) - (0.0015) (0.0013) (0.0024) (0.0033) (0.016)

[-6.5] - [0.36] [0.96] [-1.4] [-1.3] [54]

Non-Crisis Crisis Φ∗i,1 Φ∗i,2 Φ∗i,3 Φ∗i,4 Φ∗i,5
µ
∗
1 0.017*** 0.016*** Φ∗1,i 1*** 0.011*** 0.0026*** 0.00015 0.00027

(0.00047) (0.0022) (0.0004) (0.00026) (0.00063) (-0.00038) (-0.00025)

[37] [7.3] [2511] [42] [4.1] [0.17] [0.058]

µ
∗
2 0.044*** 0.069*** Φ∗2,i 0.013*** 0.98*** 0.13*** -0.00042 -0.0017

(0.0054) (0.019) (0.003) (0.0038) (0.0097) (-0.0028) (-0.0036)

[8.2] [3.7] [4.4] [256] [14] [-0.061] [-0.051]

µ
∗
3 -0.074*** -0.109*** Φ∗3,i -0.021*** -0.013** 0.88*** -0.0006 -0.0016

(0.0059) (0.025) (0.0043) (0.005) (0.011) (-0.0041) (-0.0047)

[-13] [-4.3] [-4.8] [-2.6] [79] [-0.056] [-0.031]

µ
∗
4 0.0034*** -0.00106 Φ∗4,i 0.00028 -0.00016 -0.00103 1*** 0.023***

(0.00103) (0.0027) (-0.00045) (-0.0056) (-0.018) (0.0015) (0.0051)

[3.3] [-0.39] [0.54] [-0.45] [-0.83] [689] [4.6]

µ
∗
5 -0.00025 -0.004** Φ∗5,i 0.000093 -0.00108*** -0.000058 0 1***

(0.00087) (0.002) (-0.0051) (-0.0021) (-0.024) (0.00067) (0.0033)

[-0.29] [-2] [0.21] [-3.4] [-0.04] [0.0086] [308]

Markov-switching probabilities

πNC,NC 0.96*** π
∗
NC,NC 1***

πC,C 0.96 π
∗
C,C 1***
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3.D Disentangling credit from liquidity risks: the loss function

Table 3.4.: Parameters defining the historical and risk-neutral dynamics (part 2/2)

Notes: See previous table. This table presents the estimated covariance matrices Σ(zt) of the Gaussian shocks Ω(zt)εt
in equation (3.1) (we have Σ(zt) = Ω(zt)Ω(zt)�). The upper (respectively lower) part of the table reports the covariance
matrix associated with the non-crisis (respectively crisis) regime.

Non-crisis regime
Σi,1 Σi,2 Σi,3 Σi,4 Σi,5

Σ1,i 0.027***
(0.0036)

[7.5]
Σ2,i 0.026*** 0.036***

(0.0038) (0.0048)
[6.9] [7.5]

Σ3,i -0.031*** -0.027*** 0.079***
(0.0053) (0.0057) (0.011)

[-5.8] [-4.7] [7.1]
Σ4,i -0.0031*** -0.0032** -0.00104 0.0038***

(0.00105) (0.0013) (0.0022) (0.00064)
[-3] [-2.5] [-0.48] [6]

Σ5,i -0.00069* -0.00057 -0.0011 0.0012*** 0.00055***
(0.00038) (0.00047) (0.00082) (0.00022) (0.000092)

[-1.8] [-1.2] [-1.4] [5.5] [5.9]

Crisis regime
Σ1,i 0.069***

(0.019)
[3.6]

Σ2,i 0.058*** 0.11***
(0.021) (0.032)

[2.8] [3.5]
Σ3,i -0.0073 0.0013 0.084***

(0.015) (0.02) (0.025)
[-0.48] [0.064] [3.3]

Σ4,i -0.041* -0.0103 0.073*** 0.15***
(0.022) (0.026) (0.027) (0.042)
[-1.9] [-0.4] [2.7] [3.6]

Σ5,i -0.0081 0.004 -0.0049 -0.0061 0.0106***
(0.0055) (0.0069) (0.0061) (0.008) (0.003)

[-1.5] [0.59] [-0.81] [-0.77] [3.6]
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3.D Disentangling credit from liquidity risks: the loss function

Figure 3.5.: Liquidity intensity λ�
t

and liquidity-pricing proxies

Notes: The upper panel presents the estimate of λ�
t
, which is the factor driving the country-specific

illiquidity intensities λ�
n,t

(λ�
n,t

= γ0
�,n

+ γ1
�,n
λ
�

t
, see Section 3.2.3). The shaded area corresponds to

the 90% confidence band based on the covariance matrix of the parameter estimates presented in
Table 3.5 (the delta method is employed, using the fact that at each point in time, the estimate of λ�

t

is a function of the parameter estimates and of yt and zt: λ�t = α�
�
zt + β�

�
yt). The confidence band

does not take into account the uncertainty stemming from the estimation of the regime variable zt.
The middle plot presents a liquidity-pricing measure inspired by Manganelli and Wolswijk (2009): for
each period t, it is the mean of the absolute values of the spreads between the 10-year Aaa-rated-
country yields and their average. (The underlying assumption being that most of the spreads between
Aaa countries should be liquidity-driven.) The lower plot shows the bid-ask spreads on the 10-year
French benchmark bond (computed as the monthly medians of high-frequency trade data provided
by Thomson Reuters Tick History).
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4. Credit and liquidity pricing within

the financial crisis1

Abstract: In this chapter, we model the joint dynamics of euro-area sovereign

bond spreads during the crisis period 2007-2012. It is therefore closely related

to the previous one but departs from it in several ways. First, thanks to a more

intensive use of regime-switching features, we identify credit and/or liquidity stress

periods and explore the causality between these two types of stresses. Second,

while the pricing factors were observable in the previous chapter, they are latent

in the present one. Third, the analysis is extended by deriving market-perceived

default probabilities. The latter are obtained by filtering liquidity-pricing effects

and risk premia out of the spreads. We find that the actual –or physical, or

real-world– probabilities of default are significantly lower than their risk-neutral

counterparts. This is consistent with the existence of a non-diversifiable euro-area

sovereign credit risk.

1This Chapter is based on an article entitled “Decomposing euro-area sovereign spreads: credit
and liquidity risks”, coauthored with Alain Monfort. We are grateful to Christian Gourieroux,
Glenn Rudebusch, Thomas Sargent, Vladimir Borgy, Valère Fourel, Wolfgang Lemke, Simon
Gilchrist, Kristoffer Nimark, Tao Zha, Christian Hellwig, Jean-Sébastien Fontaine and Adrien
Verdelhan for helpful discussions and comments. We are also grateful to seminar participants
at the Banque de France, CREST, the Paris finance international meeting 2010, CORE
Econometrics Seminar 2011, ESEM annual meeting 2011, IESEG-University of Cambridge
conference on yield-curve modeling, AFSE annual meeting, the Bank of England, CDC, the
ECB Workshop on Asset pricing models in the aftermath of the financial crisis, Computational
and Financial Econometrics conference (London 2011), the Bank of Canada, the Bundesbank.
We thank Beatrice Saes-Escorbiac and Aurélie Touchais for excellent research assistance. Any
remaining errors are ours. The views expressed in this Chapter are ours and do not necessarily
reflect the views of the Banque de France.
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Credit and liquidity pricing within the financial crisis

Résumé

Comme le précédent, ce chapitre présente une analyse empirique des écarts de

taux d’Etat de la zone euro. La période d’étude est plus courte que précédem-

ment (2007-2012 dans le présent chapitre versus 1999-2012 dans le précédent) et la

fréquence d’échantillonage est plus élevée (hebdomadaire versus mensuelle). Par

ailleurs, une utilisation différente des régimes est faite dans le présent chapitre.

Enfin, l’analyse est complétée par le calcul de probabilités de défaut des différents

Etat considérés (telles que perçues par les participants de marché).

Comme dans les chapitres précédents, chaque émetteur (Etat) est caractérisé par

une intensité de crédit, reflétant son risque de défaut, et une intensité d’illiquidité,

reflétant l’illiquidité relative des titres qu’il émet. Les intensités de crédit et

d’illiquidité sont des processus auto-régressifs à innovations gaussiennes dont les

constantes dépendent respectivement de régimes de crédit et de liquidité. Les pre-

miers sont au nombre de trois (état relativement calme, état de stress intermédiaire

ou état de stress élevé) et les seconds au nombre de deux (en état de stress ou non).

Ces deux chaînes sont communes à tous les pays considérés. Le modèle comporte

donc six régimes.

Ce type de spécifications permet d’introduire des relations de causalité entre les

deux chaînes de manière simple. Par exemple, la probabilité de passer en régime

de crise de liquidité peut dépendre de l’état, en période précédente, de la chaîne

définissant le stress lié au risque de crédit.

Les facteurs, comme les régimes, ne sont pas directement observables. L’estimation

du modèle repose sur l’utilisation de l’algorithme de Kim (1994), celui-ci perme-

ttant de traiter simultanément le caractère latent des deux types de variables.

L’estimation des paramètres du modèle repose sur la maximisation de la fonc-

tion de vraisemblance. Une fois les paramètres estimés, on peut calculer, pour

chaque date, les probabilités d’être dans chacun des six régimes possibles (condi-

tionnellement aux variables observées que sont les écarts de taux). Ces probabilités

permettent de découper la période 2007-2012 en différentes phases se distinguant

par la prégnance des problèmes de liquidité et/ou de de perception de la qualité
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de crédit des Etats de la zone euro. L’estimation met par ailleurs en évidence

l’existence de relations de causalité entre les deux chaînes (crédit et liquidité).

Comme dans le cadre du chapitre précédent, l’identification des intensité d’illiquidité

des différents pays repose sur l’inclusion de taux relatifs à la banque publique alle-

mande KfW dans les données d’estimation. Plus précisément, notre stratégie

d’identification des intensités d’illiquidité des différents pays repose sur deux hy-

pothèses: (a) l’écart de taux KfW-Bund est intégralement expliqué par un facteur

de liquidité et (b) les intensitiés d’illiquidité des différents émetteurs souverains

sont identiques à une transformation affine près. Malgré une modélisation dif-

férente, cette nouvelle décomposition des écarts de taux en une composante crédit

et une composante liquidité confirme les résultats du chapitre précédent.

Dans ce chapitre, nous montrons également comment calculer les probabilités de

défaut des États (perçues par les participants de marché) à partir du modèle es-

timé. Si les investisseurs étaient neutres au risque (et si l’illiquidité relative des

obligations n’était pas valorisée), alors l’écart entre le taux d’une obligation émise

par une entité pouvant faire défaut et celui d’une référence sans risque corre-

spondrait à la perte moyenne (ou “espérée”) en cas de défaut de l’émetteur. Dans

ce contexte, moyennant une hypothèse de taux de recouvrement (qui est le ratio

entre le montant recouvré en cas de défaut et la valeur faciale de l’obligation), il

serait aisé de déduire les probabilités de défaut (perçues par les participants de

marché) à partir de prix d’obligations.

Cette approche, largement utilisée par les analystes de marché, est pourtant er-

ronée car les investisseurs ne sont pas neutres aur risque. Autrement-dit, les

probabilités résultant de l’approche précédente sont des probabilités risque-neutres

et non physiques. L’aversion au risque –reflétée dans notre cadre par le facteur

d’escompte stochastique sous-jacent au modèle– explique par exemple pourquoi

nous sommes prêts à acquérir des polices d’assurance coûtant en moyenne plus

cher que les remboursements espérés de la part de l’assureur.

Les différences entre les probabilités de défaut calculées sous l’hypothèse de neu-

tralité des investisseurs vis-à-vis du risque et celles issues de notre estimation sont
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très importantes. A titre d’exemple, alors que certaines analyses de marché, comme

celle de CMA (2012), aboutissaient fin 2011 à des probabilités de défaut à cinq

ans de près de 20% pour la France, et près de 30% pour l’Espagne et l’Italie, notre

approche fournit des probabilités de défaut perçues par les marchés qui seraient

respectivement 4%, 12% et 15%. Les différences enre les probabilités de défault

risque-neutre et les probabilités de défaut dites physiques correspondent à des

primes de risque de crédit. L’existence de telles primes de risque découle de l’aspect

non-diversifiable du risque souverain en zone euro (les contributions récentes étu-

diant ce risque souverain incluent Borri and Verdehlan, 2012 and Longstaff et al.,

2011).
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4.1. Introduction

In this Chapter, we develop a multi-issuer no-arbitrage affine term-structure frame-

work to model the dynamics of bond spreads, with a twofold objective: to disentan-

gle credit and liquidity components in euro-area sovereign spreads and to identify

the part of these spreads corresponding to risk premia, defined as the part that

would not be present if agents were risk-neutral. Risk premia are demanded by

risk-averse investors to be compensated for non-diversifiable –or systematic– risk,

and our results are supportive of the findings of Pan and Singleton (2008) and

Longstaff et al. (2011) who point to the systematic nature of sovereign risk.2 The

resulting risk premia associated with sovereign credit quality implies that physical,

or real-world, probabilities of default differ from their risk-neutral counterparts.

Yet, the latter, derived from basic models like Litterman and Iben (1991), are

extensively used by market practitioners, who refer to them as implied default

probabilities.3 Our approach makes it possible to assess the deviations between

the two kinds of PDs and we show that these can be substantial. In particular,

these results are of significant interest in the current context where regulators want

banks to model the actual default risk of even high-rated government bonds.4

In our framework, each country is characterized by a risk intensity which is the sum

of a credit intensity and an illiquidity one. We propose an original use of regime-

switching features to account for the joint dynamics of credit- and liquidity-related

crises, the aim being to make the model consistent with theoretical approaches

highlighting the potentital interactions between these two kinds of risks.5 Credit-

and liquidity-crisis regimes are key drivers of the countries’ intensities, the latter

2Borri and Verdelhan (2011) propose a theoretical framework to investigate the implications of
the investors’ inability to hedge against correlated sovereign risks.

3See e.g. Hull, Predescu and White (2005), Berd, Mashal and Wang (2003), Caceres, Guzzo
and Segoviano (2010) or Berg (2009).

4In early 2012, the European Union introduced new rules on trading-book capital, known as
Basel 2.5. This package notably requires the banks to model the default risk of all sovereign
entities for the first time. This contrasts with the special status that government bonds have
enjoyed since the Basel Committee for Banking Supervision (BCBS) first proposed rules on
the capital treatment of market risks in 1993. As stressed by Carver (Risk Magazine, 2012),
these changes in regulation reveal the practitioners’ lack of tools to extract actual default
probabilities from market prices.

5See e.g. Brunnermeier and Pedersen (2009)[48] or Garleanu and Pedersen (2007)[126].
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being also affected by Gaussian shocks. In this framework, the spreads turn out

to be linear combinations of the regime variables and of latent factors that follow

Gaussian auto-regressive processes whose drifts depend on the regimes. Therefore,

the model can be seen as a linear state-space model with regime switching.6 The

countries’ illiquidity intensities are driven by a single European liquidity-related

factor. The identification of this factor is based on the exploitation of the term

structure of the spreads between KfW (Kreditanstalt für Wiederaufbau), a German

agency, and the Bunds, which are the bonds issued by the Federal Republic of

Germany. Indeed, the bonds issued by KfW, guaranteed by the Federal Republic

of Germany, benefit from the same credit quality than the Bunds but are less

liquid.7 Therefore, the KfW-Bund spread should be essentially liquidity-driven.8

The resulting liquidity-related factor significantly contributes to the dynamics of

intra-euro spreads, supporting findings by Favero et al. (2010) or Manganelli and

Wolswijk (2009).

The model is estimated on weekly data covering the last five years. These data

consist of sovereign-bond yields associated with eight euro-area countries. Our

estimation dataset is supplemented with survey-based forecasts. As evidenced by

Kim and Orphanides (2012), this alleviates the downward small-sample bias in the

persitence of the yields obtained with conventional estimation.9 Such biases typi-

cally result in too sTablelong-horizon expectations of yields and, as a consequence,

overstate the variability of term premia. Generating reliable expectations is crucial

given our goal of recovering historical –or actual, or real-world– probabilities of

default from bond prices.

The remaining of this Chapter is organized as follows. Section 4.2 presents the

model and details how bonds are priced in this framework. Section 4.3 deals

with the choice and the construction of the data. The estimation of the model
6Accordingly, we use Kim’s (1994) algorithm to estimate the model parameters by maxmizing

the likelihood.
7By abuse of language, we use here the term Bunds for the German sovereign bonds of any

maturity although this name is usually used for ten-year bonds only.
8See Schwarz (2009). This is also discussed in Subsection 3.3.1.
9This way of reducing the bias is not the only one. In particular, Jardet, Monfort and Pegoraro

(2009) use a “near-cointegrated framework” specification of the factors (averaging a stationary
and a cointegrated specification).
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is detailed in Section 4.4 and Section 4.5 examines the implications of the model

in terms of liquidity and credit pricing. In particular, this Sectionpresents model-

implied physical probabilities of default. Section 4.6 summarizes the results and

makes concluding remarks.

4.2. The model

We consider zero-coupon bonds issued by N debtors. These entities may default

and their bonds are not perfectly liquid, both aspects having an impact on the

bonds prices. Heuristically, a bondholder fears about the default of the bond’s

issuer –that would result in a early and reduced repayment of the bond– and about

the risk of being hit by a liquidity shock.10 In the latter case, the bondholder is

forced to precipitately liquidate her bond holdings and, in such circumstances,

illiquid bonds are sold at a discount.

Subsection 4.2.1 presents the notations and introduces default and liquidity inten-

sities. The historical (respectively risk-neutral) dynamics of the model’s variables

is developed in Subsection 4.2.2 ( 4.2.3). The implications in terms of bond pricing

are developed in Subsection 4.2.4.

4.2.1. Default events, liquidity shocks and associated

intensities

At date t, each investor is provided with the new information w̃t = (rt, z�t, λ̃�d,t,

λ̃
�
�,t
, d
�
t
, �t)� where rt is the risk-free short-term rate, zt is a crisis-regime variable,

λ̃d,t is a N -dimensional vector containing the default intensities associated with

the respective N debtors, dt is a N -dimensional vector of binary variables d(n)
t

indicating whether debtor n is in default at date t (d(n)
t = 1, which is an absorbing

state) or not (d(n)
t = 0),11

λ̃�,t is the liquidity-shock intensity and �t is a binary
10The liquidity shock may occur e.g. as a result of unexpected cash shortages, the need to

rebalance a portfolio in order to maintain a hedging or diversification strategy, or a change
in capital requirements (see He and Xiong, 2012).

11We use parenthesis to distinguish country from exponentiation in the superscript.

130



4.2 The model

variable indicating if the bondholder is affected by the liquidity shock at date t

(�t = 1) or not (�t = 0).

Denoting by wt the vector wt = (rt,z�t, λ̃�d,t, λ̃��,t)� and by w̃t the cumulated informa-

tion available at date t, i.e. w̃t = (w̃t, w̃t−1, . . . , w̃1), the conditional probability of

default of debtor n is given by:

P
�
d

(n)
t = 1

���wt, d
(n)
t−1 = 0, w̃t−1

�
= 1− exp

�
−λ̃(n)
d,t

�
,

which is close to λ̃(n)
d,t

when this intensity is small. Let us consider a bond issued

by debtor n with a residual maturity of h at date t. We denote by B(n)
t,h

the non-

default price of this bond. If debtor n defaults between date t− 1 and date t, the

bondholder is assumed to receive –from the borrower– a fraction ζ of the price that

would have prevailed otherwise at date t. In other words, in the case of default,

the recovery pay-off is ζB(n)
t,h

.

The conditional probability, for an investor, of being hit by the liquidity shock is:

P (�t = 1| dt, wt, w̃t−1) = 1− exp
�
−λ̃�,t

�
.

In particular, this probability does not depend on �t−1 and dt. Upon the arrival

of the liquidity shock (�t = 1), the bond investor has to exit by selling her bond

holdings at a fractional cost 1−θ(n), that is, the proceed of the sale is then θ(n)
B

(n)
t,h

.

A theoretical basis for such a fractional cost can be found in Ericsson and Renault

(2006)12

Conditionally on (wt, w̃t−1), the d(n)
t ’s and �t are independent. However, condi-

tionally on the past information w̃t−1, the default events and the liquidity shocks

are not independent because the associated intensities are correlated with each

other.13

12In their model, an investor hit by the liquidity shock must liquidate her bond holdings in a
limited time (between t and t+, say). Then, she obtains a Poisson-distributed number K
of offers from traders (K ∼ P(γ(n))) and retains the best one, each offer being a random
fraction ωi (i ∈ [1, ,K]) of B(n)

t,h
, which can then be seen as the price she would get if γ(n)

was infinite. Therefore the higher γ(n), the more liquid the bonds issued by n.
13This assumption appears in the “doubly stochastic” framework (see e.g. Duffie et al., 2005,

Pan and Singleton, 2008 or Longstaff et al., 2011).
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For the sake of bond pricing, it will prove convenient to introduce the fractional-

loss intensities λ(n)
d,t

and λ(n)
�,t

(see Appendix 4.A). Intuitively, they correspond to

the expected losses, conditional to wt, associated associated with, respectively, the

default of debtor n and the arrival of a liquidity shock (expressed as fractions of

the price that would have prevailed, absent the default and/or the liquidity shock).

Appendix 4.A shows that these intensities are defined through:






exp
�
−λ(n)
d,t

�
= exp

�
−λ̃(n)
d,t

�
+ ζ
�
1− exp

�
−λ̃(n)
d,t

��

exp
�
−λ(n)
�,t

�
= exp

�
−λ̃�,t

�
+ θ(n)

�
1− exp

�
−λ̃�,t

��
.

(4.1)

When the λ̃(n)
d,t

’s and λ̃�,t are small, these equations are approximately λ(n)
d,t

=

(1− ζ)λ̃(n)
d,t

and λ(n)
�,t

= (1− θ(n))λ̃�,t.

Naturally, when the fractional recovery pay-offs (ζ and θ(n)) are equal to one,

the fractional-loss intensities are null. Hence, when both kinds of losses are ruled

out (ζ = θ(n) = 1), the bonds issued by debtor n turn out to be risk-free bond.

By contrast, when the recovery pay-offs are null, the fractional-loss intensities

correspond to the conditional probabilities of default and to the probability of

being hit by the liquidity shock, respectively.

4.2.2. Historical dynamics of wt

4.2.2.1. Short rate, credit- and liquidity-related Markov chains

As in Pan and Singleton (2008) or Longstaff et al. (2011), we assume that the

short-term risk-free interest rate is exogenous. Hence, we work conditionnally to

observed values of the rt’s.

The joint dynamics of the recovery-adjusted default intensities (λ(n)
d,t

) and of the

liquidity intensities (λ(n)
�,t

) crucially depends on an exogenous Markov chain zt.

The regime variable zt is obtained by crossing two regime variables. A first regime

variable z�,t defines the liquidity situation, which can be distressed (z�,t = [0, 1]�)

or not (z�,t = [1, 0]�). A second regime variable zc,t represents the credit situation,
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the latter being either non-stressed (zc,t = [1, 0, 0]�), distressed (zc,t = [0, 1, 0]�) or

severely distressed (zc,t = [0, 0, 1]�).14 The credit/liquidity regime of the economy

at date t is then summarized by the six-dimensional selection vector zt, which is

the Kronecker product of z�,t and zc,t:

zt = z�,t ⊗ zc,t, (4.2)

The vector zt is valued in {e[6]
1 , . . . , e

[6]
6 }, where e[M ]

i
denotes the M -dimensional

vector whose all entries are equal to 0, except the ith that is equal to 1.

Importantly, there may be causal relationships between z�,t and zc,t. For instance,

we allow for the probability of a change in the liquidity state to depend on the credit

regime (and vice-versa). Formally, let us denote by Π the matrix of transition prob-

abilities, whose (i, j) entry, denoted by πi,j, corresponds to p(zt+1 = e[6]
j
|zt = e[6]

i
).

The entries of the row of this matrix summing to one, 30 parameters are required

to specifiy this matrix. In order to keep the model parismonious, some constraints

are introduced. With these constraints, which are detailed in Appendix 4.B, 11

parameters are required to specifiy the matrix Π.

4.2.2.2. Historical (P) dynamics of the λ(n)
d,t

’s and the λ(n)
�,t

’s

The dynamics of the intensities λ(n)
d,t

and λ(n)
�,t

are connected through the regime

variables. Consistently with the liquidity shock interpretation introduced in Sub-

section 4.2.1, we assume that the illiquidity intensities are driven by a single

factor denoted by λ�,t.15 This factor, as well as the credit-related ones, follow

14Preliminary modelling with a unique level of credit-distress regime led to a less satisfying fit
of the data. That is why this additional level of credit distress (compared with the unique
liquidity-distress regime) has been introduced in the framework.

15However, this factor is not rigorously equal to the liquidity-shock intensity λ̃�,t. Indeed, for
this to be the case in a context where the θ(n) are not time-varying, the λ(n)

�,t
’s should be

the same up to a multiplicative factor. In other words, the α(n)
0,� ’s in equation (4.4) should

be equal to zero. That being so, we use these additional degrees of freedom to improve the
model fit.
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auto-regressive processes with drifts depending on the regime variables. Formally:






λ
(n)
d,t

= µ(n)�
d
zd,t + ρdλ(n)

d,t−1 + σ(n)
d
ε

(n)
d,t

λ
(n)
�,t

= α(n)
0,� + α(n)

1,� λ�,t

∀n (4.3)

λ�,t = µ�
�
z�,t + ρ�λ�,t−1 + σ�ε�,t (4.4)

where the ε(n)
d,t

’s –some country-specific credit shocks– and the ε�,t’s –some liquidity-

related shocks– are i.i.d. N (0, 1). We denote by λt the (N + 1) × 1 vector

containing the recovery-adjusted default intensities and the liquidity-related fac-

tor, i.e. λt = [λ(1)
d,t
, . . . , λ

(N)
d,t
, λ�,t]�, and by εt the associated innovations, i.e.

εt = [ε(1)
d,t
, . . . , ε

(N)
d,t
, ε�,t]�. By abuse of notation, we may denote the entries of λt by

λi,t in the following.16 Then, denoting by µ the 6× (N + 1) matrix of drifts,17 by

Φ the matrix whose diagonal entries are ρd (N times) and ρ�, and by Σ the matrix

whose diagonal entries are the σ(n)
d

’s and σ�, the dynamics of λt reads:

λt = µ�zt + Φλt−1 + Σεt (4.5)

Equation (4.5) means that the conditional distribution of λt given (rt, zt, w̃t−1) is

N (µ�zt+ Φλt−1,Σ2), implying in particular that this distribution depends on w̃t−1

through λt−1 only. Moreover, since rt and zt are exogenous, this implies that the

distribution of wt given w̃t−1 does not depend on (dt−1, �t−1), that is, (dt, �t) does

not Granger-cause wt.

It can be seen that the λi,t’s are positively marginally skewed as soon as the µ

vectors contain only positive entries. Moreover, the lower the standard deviations

σ of the Gaussian shocks (in comparison with the drifts µ), the more often the λi,t’s

are positive, which is important given their interpretations in terms of probabilities.

Furthermore, the instantaneous causality between zt and λt implies that the vari-

ances of the λi,t’s, conditionally on w̃t−1, depend on the regime variable zt−1. More

precisely, conditionally to w̃t−1, the distributions of the λi,t’s are some mixtures
16
λi,t = λ(i)

d,t
for i ≤ N and λN+1,t = λ�,t.

17The columns of this matrix are µ(1)
d
, ...µ

(N)
d
, and µ�.
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of Gaussian distributions, thereby involving a form of heteroskedasticity in the

innovations.18

4.2.3. Stochastic discount factor and risk-neutral (Q) dynamics

We assume that the stochastic discount factor (s.d.f.) has the following expression:

Mt−1,t = exp
�
−rt−1 −

1
2ν

�

t
νt + ν

�

t
εt + (δzt−1)� zt

�
(4.6)

where δ is a 6 × 6 matrix and where the entries of νt are affine in zt and in the

corresponding entries of λt−1, that is νi,t = νλ,iλi,t−1 + ν �
z,i
zt, say. (νλ,i is a scalar

and νz,i is a vector.) The risk-sensitivity matrix δ and the vectors νt respectively

price the regimes zt and the (standardized) Gaussian innovations εt of λt. The

fact that we must have Et(Mt,t+1) = exp(−rt) implies that the entries of δ are of

the form ln(π∗
ij
/πij) where the π∗

ij
are such that Σjπ∗ij = 1 for any i. Note that the

variables (dt, �t) do not appear in Mt−1,t, in other words, we assume that the risk

aversion is completely captured by the pricing of the innovation process εt and

the regime process zt. It can be shown that, in such framework, the risk-neutral

(Q) dynamics of (zt, λt) is of the same form as its historical counterpart.19 More

precisely, under Q, zt follows a time-homogenous Markovian chain whose dynamics

is described by the matrix Π∗ of transition probabilities {π∗
ij
} and, denoting by

λi,t the ith entry of λt, we have:

λi,t = µ∗�
i
zt + ρ∗iλi,t−1 + σiε∗t (4.7)

where ε∗
i,t
∼ NQ(0, 1), µ∗

i
= µi + σiν �z,i and ρ∗

i
= ρi + σiνλ,i.

Let us turn to the risk-neutral dynamics of dt and �t. As shown in Appendix 4.C,

the conditional distributions –given (wt, w̃t−1)– of these binary variables are the

same functions of wt under P and Q. In other words, for any n, λ̃(n)
d,t

is the same

18Such a feature is discussed in Ang, Bekaert and Wei (2008).
19This results stems from Lemma 1.
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process in both worlds, and the same is true for λ̃�,t. This stems from the fact

that the variables dt and �t do not enter the s.d.f. (that depends on wt only).20

However, it is important to stress that while the intensities are the same processes

under both measures, their Q- and P-dynamics are different (because the Q- and

P-dynamics of (zt, λt) differ). As a consequence, the probabilites of default are

different under P and Q.

4.2.4. Bond pricing

In this framework, the price of a defaultable and illiquid zero-coupon bond issued

by country n (not in default at date t) and with residual maturity h has a price

at time t that is given by (see Appendix 4.A):

B
(n)
t,h

= EQ
t

�
exp
�
−rt − . . .− rt+h−1 − λ(n)

d,t+1 − . . .− λ
(n)
d,t+h − λ

(n)
�,t+1 − . . .− λ

(n)
�,t+h
��
.

(4.8)

where rt is the return of a risk-free investment between t and t+ 1 and where EQ
t

is the conditional expectation given w̃t−1 in the risk-neutral world.

The short-term risk-free interest rate being exogenous, we have:

B
(n)
t,h

= E
Q
t

[exp (−rt − . . .− rt+h−1)]×

E
Q
t

�
exp
�
−λ(n)
d,t+1 − . . .− λ

(n)
d,t+h − λ

(n)
�,t+1 − . . .− λ

(n)
�,t+h
��
. (4.9)

Denoting by y(n)
t,h

the yield-to-maturity of this bond, we obtain:

y
(n)
t,h

= −1
h

ln(B(n)
t,h

)

= y
(0)
t,h
− 1
h

ln
�
E

Q
t

�
exp
�
−λ(n)
d,t+1 − . . .− λ

(n)
d,t+h − λ

(n)
�,t+1 − . . .− λ

(n)
�,t+h
���

(4.10)

20Appendix 4.C also shows that in that context, the fact that the distribution of wt given w̃
t−1

does not depend on (d
t−1, �t−1) –i.e. that (dt, �t) does not cause wt– is true under both

measures.
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where y(0)
t,h

denotes the yield to maturity of a risk-free zero-coupon bond of residual

maturity h at date t. The vector (zt, λt) being compound auto-regressive of order

one under Q, the second term on the right-hand side of (4.10) is linear in (zt, λt).21

Therefore, the spread between the yield associated with the defaultable bond and

the risk-free bond of the same maturity is of the form:

y
(n)
t,h
− y(0)
t,h

= a(n)�
h
zt + b(n)�

h
λt (4.11)

where the (a(n)�
h
, b

(n)�
h

) vectors are computed recursively.22

4.3. Data

4.3.1. Overview

The data are weekly (end of weeks), and cover the period from 1 June 2007 to

13 April 2012 (255 dates), encompassing the ongoing financial crisis. We consider

the yield curves of eight euro-area countries: Austria, Belgium, Finland, France,

Germany, Italy, the Netherlands and Spain. We exclude from the analysis those

countries that were placed under EU-IMF programs during that period, namely

Greece, Ireland and Portugal (in April 2010 for Greece, in November 2010 for Ire-

land and in May 2011 for Portugal). The choice of removing these countries from

the analysis stems from the facts that (a) the three EU-IMF programs cover im-

portant shares of the total estimation period and that (b) these programs coincide

with severe impairments of associated sovereign-debt markets, notably illustrated

by a fall in primary-market activity.23

21Appendix 3.A.1 derives the Laplace transform of (zt, yt) and shows that (zt, yt) is Compound
auto-regressive of order one. Appendix 2.A.5 further shows how to compute the multi-horizon
Laplace transform of compound auto-regressive processes. See Darolles, Gourieroux and
Jasiak (2006) or Bertholon, Monfort and Pegoraro (2008) for in-depth presentations of com-
pound auto-regressive –or Car– processes.

22The general recursive formulas are presented in Appendix 2.A.5.
23These impairments are illustrated by bid-ask spreads on government bonds. Based on bond

prices extracted from the Thomson Reuters tick history database, the bid-ask spreads on
10-year bond issued by Greece, Ireland and Portugal were on average above 200 bp in 2011
(i.e. 2% of the face value, or 3% to 4% of the bond value) while they were lower than 40 bps
for other euro-area countries.
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Sovereign zero-coupon yields are extracted from Bloomberg. As will be detailed

below, our estimation strategy also involves yields of bonds issued by KfW, a public

German agency. The latter (zero-coupon) yields come from the Thomson Reuters

Tick History database. The estimation dataset is completed by 12-month-ahead

forecasts of 10-year sovereign yields for France, Germany, Italy, Spain and the

Netherlands. These forecasts are the mean values of the respondents’ forecasts by

the Consensus Economics’ expert panel. The survey is released around the middle

of the month. Note that the survey implicitly targets yields-to-maturity of coupon

bonds and not zero-coupon bonds. However, our zero-coupon yields remain very

close to coupon yields over the estimation sample. The remaining discrepancy, of

a few basis points, will be attributed to the deviation between the survey-based

forecasts and the model-based ones (the ξ(n)
t ’s introduced in equation 4.13 below).

This monthly series is converted into a weekly one using a cubic spline.

The risk-free rates are proxied by the Overnight Index Swap (OIS) rates. An

OIS is a fixed-for-floating interest rate swap with a floating rate leg tied to the

index of overnight interbank rates, that is the EONIA in the euro-area case.24 OIS

have become especially popular hedging and positioning vehicles in euro financial

markets and grew significantly in importance during the financial turmoil of the

last few years. The OIS curve is more and more seen by market participants as a

proxy of the risk-free yield curve (see e.g. Joyce et al., 2011).25

4.3.2. Euro-area government yields

Table 4.1 reports the correlations between the spreads vs. Germany for different

countries over the sample period.26 The results suggest that euro-area sovereign

24For maturties higher than 12 months, OIS rates are homogenous to constant-maturity coupon
yields. Therefore, we first have to convert Bloomberg-extracted OIS rates into zero-coupon
yields. This is done using standard bootstrapping methods.

25While OIS rates reflect the credit risk of an overnight rate, this may be regarded as negligible
in most situations. Besides, even during financial-markets turmoils, the counterparty risk is
limited in the case of a swap contract, due to netting and credit enhancement, including call
margins (see Bomfin, 2003).

26German debt is often considered as a safe haven in terms of credit and liquidity quality. The
German bond market is the only one in Europe that has a liquid futures market, which boosts
demand for the German Bund compared to other euro area debt and bolsters its liquidity
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spreads are highly correlated across countries and across maturities (see also

Favero, Pagano and von Thadden, 2010). According to these descriptive statis-

tics, spreads’ distributions are positively skewed and often leptokurtic. Table 4.2

presents a principal-component analysis of these spreads across countries. This

analysis indicates that, for different maturities (2, 5 and 10 years), the first two

principal components explain more than 95% of the spread variances across coun-

tries (75% for the first principal component alone). This highlights the importance

of common sources of risk in euro-area sovereign spreads.

Table 4.1.: Descriptive statistics of selected spreads

Notes: The Table reports summary statistics for selected spreads (versus Germany). Two auto-
correlations are shown (the 1-month and the 1-year auto-correlations). The underlying yields are
continuously compounded and are in percentage annual terms. The lower panel of the Tablepresents
the covariances and the correlations (in italics) of the spreads. The data are weekly and cover the
period from 1 June 2007 to 13 April 2012.

France Italy Netherlands Spain
2-year 10-year 2-year 10-year 2-year 10-year 2-year 10-year

Mean 0.198 0.345 1.188 1.388 0.127 0.237 1.073 1.286
Median 0.126 0.255 0.723 0.915 0.092 0.175 0.517 0.751
Standard dev. 0.216 0.321 1.319 1.391 0.109 0.173 1.161 1.238
Skewness 2.736 2.023 2.101 1.756 1.669 1.135 1.169 0.896
Kurtosis 12.245 6.944 7.331 5.432 5.511 3.546 3.73 2.69
Auto-cor. (lag 1) 0.957 0.979 0.984 0.99 0.922 0.963 0.979 0.987
Auto-cor. (lag 12) 0.838 0.894 0.916 0.936 0.782 0.876 0.908 0.926

Correlations \ Covariances
France 2-yr yd 0.047 0.065 0.261 0.271 0.014 0.026 0.194 0.198
France 10-yr yd 0.938 0.103 0.392 0.425 0.018 0.043 0.307 0.336
Italy 2-yr yd 0.915 0.926 1.738 1.808 0.055 0.143 1.421 1.479
Italy 10-yr yd 0.899 0.952 0.986 1.933 0.059 0.162 1.486 1.597
Netherlands 2-yr yd 0.604 0.521 0.382 0.388 0.012 0.015 0.03 0.032
Netherlands 10-yr yd 0.706 0.775 0.626 0.675 0.787 0.03 0.101 0.119
Spain 2-yr yd 0.771 0.824 0.929 0.921 0.237 0.506 1.346 1.406
Spain 10-yr yd 0.741 0.845 0.906 0.928 0.235 0.559 0.979 1.532

(see e.g. Pagano and von Thadden, 2004).
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4.4. Estimation

4.4.1. State-space form of the model

Our estimation is conducted by the maximium-likelihood method, in a single step.

The likelihood function is approximated by means of the Kim’s (1994) filter, that

handles state-space models with Markov-switching.27 The measurement equations

of the model are of two kinds: a first set of equations relates observed spreads –

stacked in a vector denoted by St– to modeled ones; a second one relates observed

survey-based spreads’ forecasts –stacked in a vector denoted by CFt– to model-

implied ones. Let us make these two sets of equations equations more precise.

Consistently with the fact that spreads versus Germany are the most scrutinized

spreads in the euro-area sovereign bond market, the set of observed spreads con-

sists of spreads versus German sovereign-bond yields. As for the German spreads

included in the vector St, we take the yield differentials between Bunds’ yields and

(zero-coupon) OIS rates with comparable maturities (2, 5 and 10 years). These

first measurement equations read:

St = Azt +Bλt + ξS,t (4.12)

where the entries of the matrices A and B are respectively based on the a(n)
h

’s

and the b(n)
h

’s appearing in equation (4.11). More precisely, consistently with

the choice of the observed spreads, and replacing the German index (1) (say) by

GER, the entries of A and B corresponding to German yields are respectively

the aGER
h

’s and the bGER
h

with the appropriate maturities h.28 Those entries of A

and B corresponding to other debtors (n > 1) are of the form a(n)
h
− aGER

h
and

b
(n)
h
− bGER
h

. The vector ξS,t contains i.i.d. normally-distributed pricing errors.
27See also Kim and Nelson (1999). The algorithm has been slightly adapted for this applica-

tion. In particular, for each iteration of the algorithm, in the updating step, we prevent the
algorithm from resulting in values of the ith unobserved variables λi,t that would be below
−2
�
σ

2
i
/(1− ρ2

i
). Note that σ2

i
/(1−ρ2

i
) would be the unconditional variance of the ith unob-

served factor λi,t if µi was null (since the vector µi is positive, the unconditional mean of the
ith factor is higher than zero, implying that the unconditional probability of having λi,t < 0
is lower than 2.5%).

28More rigorously, the vector b(1)�
h

defines one line of the B matrix.
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This set of measurement equations is augmented with equations linking survey-

based 12-month-ahead forecasts of spreads to their model-based equivalent. Four

spreads are considered: the yield differentials between Dutch, French, Italian and

Spanish 10-year bonds and their German counterparts. These equations read:

CF
(n)
t = EP

t

�
y

(n)
t+h,H − yGERt+h,H

�
+ ξ(n)
t , n ∈ {2, 3, 4, 5} (4.13)

where H = 52× 10, h = 52, the ξ(n)
t ’s are i.i.d. normally-distributed measurement

errors and where the model-based forecasts Et(y(n)
H,t+h − yGERH,t+h) are easily derived

using equation (4.11) and:






E
P
t
(λt+h) =

�
µΠh + ΦµΠh−1 + . . .+ Φh−1

µΠ
�
zt + Φhλt

E
P
t
(zt+h) = Πhzt.

(4.14)

Appendix 4.B presents and discusses different constraints that are imposed on the

parameter estimates. In particular, it details the relationship between λKfWt and

λ
GER

t
that is aimed at identifying the liquidity-related factor λ�,t.

4.4.2. Estimation procedure and results

The log-likelihood function is highly non-linear in the underlying model param-

eters. Therefore, good starting values ar required to achieve convergence in a

reasonable computing time.29 In a first step, we estimate the model using data

associated with a subset of debtors, namely Germany, KfW, Italy and France.

In a second step, the parameters defining the dynamics of the risk intensities of

the remaining countries are estimated successively, one country after the other,

taking the other parameters as given. In the final stage, all the parameters are

(re)estimated jointly.

The approach results in a satisfiying fit of the data. Modeled spreads versus ob-

served ones are displayed in Figure 4.1 (grey lines for observed spreads, dotted lines
29Optimizations are based on iterative uses of quasi-Newton and Nelder-Mead algorithms (as

provided by the Scilab software).
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for modeled spreads). The average of the measurement-error standard deviations

is around 18 basis points (across 27 time series: 3 maturities for 9 entities).

Table 4.3 and Table 4.4 present the parameter estimates. The standard deviations

of these estimates are based on the outer product of the first derivative of the

likelihood function. Important differences arise in the parameters across countries.

Naturally, those countries that have been characterized by the highest rises in

spreads are more affected by the crises regimes. Notably, in an intense credit

crisis regime, the drift of the the Italian credit-related factor is 70 times larger

than in a less intense credit crisis (this is obtained by comparing the entries of

the line “µc” with those of the line “µcc” in Table 4.3). It can also be noted that

the auto-regressive coefficients (the ρ’s) of the different factors are higher under

the risk-neutral measure than under the historical one. This suggests that credit

and liquidity intensities factors are more persistent under the risk-neutral measure

than under the historical one. Note that another source of persistence originates

from the regime-switching features: indeed, low switching probabilities generate

persistence in the processes that depend on these regimes (the λi,t’s here). These

transition probabilities are discussed in the next Section.
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Table 4.3.: Parameter estimates (1/2)

Notes: This Tablereports the estimates of the parameters defining the dynamics of the intensities
under the historical and the risk-neutral measures. It is completed by an additional Table(Table 4.4)
that presents the matrices of transition probabilities under both measures. The estimation data are
weekly and span the period from 1 June 2007 to 13 April 2012. Standard errors are reported in
parentheses below the coefficient estimates. ***, ** and * respectively denote significance at the
1%, 5% and 10% significance level. The standard deviations of these estimates are based on the outer
product of the first derivative of the likelihood function. The entries of the µ(n)

c vectors (see equation
4.3) that correspond to the two crises regimes are reported in the lines “µc” and “µcc” of the table.
The entries of the µ(n)

c vectors (see equation 4.3) that correspond to the non-credit-crisis regime is
assumed to be zero (consistently with the existence of periods of very low spreads). it can be checked
that αKfW1,� = αGER1,� + 1; this constraint is imposed in order to identify the liquidity-related factor
(see 4.B.1).

KfW GER SPA ITA FRA NET BEL FIN AUS
Specification of the liquidity intensities

α0,� -0.058* -0.24*** -0.025 -0.24*** -0.24*** -0.24*** -0.24*** -0.16*** -0.24***

(0.03) (0.027) (0.28) (0.027) (0.027) (0.027) (0.027) (0.047) (0.027)

α1,� 0.73*** -0.27*** 0.52 1.1* 0.084 0.41*** 0.53* 0.43*** 0.63***

(0.045) (0.045) (0.45) (0.6) (0.104) (0.051) (0.27) (0.075) (0.091)

Historical dynamics of the intensities λ
µc 0.0101*** 0.0101*** 0.0052*** 0.0051*** 0.0051*** 0.0103*** 0.0051*** 0.0085*** 0.0105***

(0.00087) (0.00087) (0.00044) (0.00044) (0.00044) (0.00052) (0.00044) (0.0015) (0.0018)

µcc 0.0102*** 0.0102*** 0.27*** 0.38*** 0.092*** 0.0104*** 0.24*** 0.013*** 0.071***

(0.00087) (0.00087) (0.032) (0.05) (0.007) (0.00052) (0.022) (0.0041) (0.0078)

ρc 0.99*** - - - - - - - -

(0.00031) - - - - - - - -

σc 0.0025*** 0.0025*** 0.02*** 0.022*** 0.0051*** 0.0028*** 0.012*** 0.0031*** 0.0057***

(0.000027) (0.000027) (0.00022) (0.00024) (0.000056) (0.000031) (0.00013) (0.000034) (0.000063)

µ� 0.076*** - - - - - - - -

(0.0027) - - - - - - - -

ρ� 0.9*** - - - - - - - -

(0.0043) - - - - - - - -

σ� 0.0101*** - - - - - - - -

(0.0002) - - - - - - - -

Risk-neutral dynamics of the intensities λ
µ
∗
c

0.0043* 0.0043* 0.0022* 0.0022* 0.0022* 0.0024** 0.0024** 0.0022* 0.0025*

(0.0023) (0.0023) (0.0012) (0.0012) (0.0012) (0.0012) (0.0012) (0.0013) (0.0012)

µ
∗
cc

0.0044* 0.0044* 0.009 0.0083 0.0047 0.0025** 0.0023** 0.0026** 0.0048

(0.0023) (0.0023) (0.012) (0.013) (0.0043) (0.0012) (0.0012) (0.0013) (0.0044)

ρ
∗
c

1*** 1*** 1*** 1*** 1*** 1*** 1*** 1*** 1***

(0.00012) (0.00012) (0) (0) (0) (0) (0.00054) (0) (0)

µ
∗
�

0.00059 - - - - - - - -

(0.00037) - - - - - - - -

ρ
∗
�

1*** - - - - - - - -

(0) - - - - - - - -

Measurement errors
σperr 0.093*** 0.06*** 0.49*** 0.53*** 0.12*** 0.068*** 0.28*** 0.075*** 0.14***

(0.00051) (0.00033) (0.0027) (0.0029) (0.00068) (0.00037) (0.0016) (0.00041) (0.00076)
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4.4 Estimation

Table 4.4.: Parameter estimates (2/2)

Notes: The Tablereports the estimates of the regime-transition probabilities, i.e. the matrices Π and
Π∗. Note that only 11 parameters are used to define the 36 entries of each of these two matrices
(see Subsectionsec. 4.2.2.1 and Appendix 4.B). Standard errors of the estimates, based on the outer-
product approximation of the Information matrix, are reported in parentheses below the coefficient
estimates. ***, ** and * respectively denote significance at the 1%, 5% and 10% significance level.
NL: no liquidity crisis, L: liquidity crisis, NC: no credit crisis, C: (non intense) credit crisis, CC: intense
credit crisis. Each line of the Tableindicates the probabilities of switching from one regime (defined
by the first column) to another (defined by the second line of the table).

Historical dynamics

at date t: NL-NC NL-C NL-CC L-NC L-C L-CC

at
da

te
t
−

1

NL-NC 0.9994*** 0.00041 0 0.0002*** 0 0

(0.00097) (0.00097) - (0) (0) -

NL-C 0.00014*** 0.98*** 0.000045*** 0*** 0.022*** 0***

(0) (0.0081) (0) (0) (0.0081) (0)

NL-CC 0 0.59*** 0.39*** 0 0.013** 0.0087*

- (0.12) (0.12) - (0.0052) (0.0046)

L-NC 0.19** 0.032 0 0.66*** 0.11*** 0

(0.09) (0.03) - (0.14) (0.038) -

L-C 0.065** 0.22*** 0.076** 0.11*** 0.39*** 0.13**

(0.028) (0.063) (0.036) (0.032) (0.093) (0.056)

L-CC 0 0.22*** 0.14** 0 0.38*** 0.25***

- (0.063) (0.064) - (0.106) (0.081)

Risk-neutral dynamics

at date t: NL-NC NL-C NL-CC L-NC L-C L-CC

at
da

te
t
−

1

NL-NC 0.94*** 0.025 0 0.036 0.00094 0

(0.045) (0.016) - (0.045) (0.0012) -

NL-C 0.000059*** 0.91*** 0.000042*** 0 0.092 0

(0) (0.091) (0) (0) (0.091) (0)

NL-CC 0 0.103 0.8*** 0 0.0105 0.082

- (0.12) (0.19) - (0.021) (0.073)

L-NC 0.0089 0.00036 0 0.95*** 0.039 0

(0.055) (0.0023) - (0.069) (0.034) -

L-C 0 0.000052*** 0 0.094 0.87*** 0.036

(0) (0) (0) (0.103) (0.13) (0.04)

L-CC 0 0 0.000053*** 0 0.11 0.89***

- (0) (0) - (0.14) (0.14)
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4.5 Interpretation

Table 4.5.: Conditional probabilities of transition

Notes: The Tablereports selected probabilities of transition. These probabilities are some combina-
tions of those presented in Table 4.4. “Credit crisis” refers to one of the two credit-crisis regimes
(intense or not). For instance, the probability of staying in a credit-crisis regime (intense or not)
when in a liquidity crisis (at t − 1) is 82% under the historical measure. P (resp. Q) correspond
to the historical (resp. risk-neutral) measure. Standard errors are reported in parentheses below
the coefficient estimates. ***, ** and * respectively denote significance at the 1%, 5% and 10%
significance level.

at date t at date t− 1
no liquidity crisis liquidity crisis

no credit crisis credit crisis no credit crisis credit crisis

under P liq. crisis 0.0002*** 0.022*** 0.78*** 0.64***

(0) (0.0081) (0.12) (0.09)

under Q liq. crisis 0.036 0.092 0.99*** 1***

(0.046) (0.091) (0.057) (0)

under P cred.
crisis

0.00041 0.99986*** 0.14** 0.82***

(0.00097) (0) (0.064) (0.051)

under Q cred.
crisis

0.026 0.99994*** 0.039 0.91***

(0.016) (0) (0.034) (0.103)

4.5. Interpretation

4.5.1. Credit and liquidity crises

The upper two panels in Figure 4.2 present the smoothed probabilities of being

in the different crisis regimes.30 The first period of liquidity crisis begins with

the collapse of Bear Sterns in March 2008. This period is relatively short (a

few weeks). By contrast, the second liquidity-crisis period, that begins with the

Lehman Brothers’ bankruptcy in Spetember 2008 lasted about six months. The

premise of the so-called euro-area crisis (April 2010) and the latest development of

the same crisis (starting in mid-2011) are also identified as liquidity-crisis periods.

Turning to the credit crises, one can distinguish two long stress periods: November
30The smoothed probabilities are obtained by applying Kim’s (1994) filter. While filtered prob-

abilities, as of date t, use only information available up to date t, smoothed probabilities
exploit all sample information.
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4.5 Interpretation

2008 to mid-2009 and April 2010 to the end of the sample (April 2012). Within

these credit-crisis phases, several peak periods of severe market stress –indicated

by black-shaded areas in the second panel of Figure 4.2– are observed, notably in

Autumn 2011. The lower panels in Figure 4.2 display the (smoothed) estimates of

the unobserved factors λt. For instance, looking at the first and the third panel,

one can observe the influence of the occurrence of liquidity crises on the liquidity-

related factor λ�,t.

Besides, the estimated specifications of the regimes’ dynamics are meaningful. The

historical (risk-neutral) dynamics is described by the matrix Π (the matrix Π∗)

reported in Table 4.4. It appears that the adverse states of the world are more long-

lived under the risk-neutral measure than under the historical one, which tends to

give rise to risk premia associated with those bad states of the world. To set an

example, while the probability of remaining in the most adverse regime (liquidity

crisis and severe credit crisis) is of 25% under the historical measure, it is of 89%

under the risk-neutral one. So as to facilitate the interpretation of the transition

probabilities, Table 4.5 presents selected combinations of these. More precisely, it

gives the probabilities of switching to liquidity- or credit-crisis regimes conditional

on the existence of a crisis at the previous period, ruling out the distinction between

the intense and the less intense credit crises. These probabilities illustrate the

causality between the two kinds of crises. Indeed, the probability of switching to a

credit (resp. liquidity) crisis is significantly higher when there is a liquidity (resp.

credit) crisis at the previous period. For instance, the probability of switching to

a credit crisis between date t − 1 and date t is of 14% (resp. 0.04%) if there is

(resp. not) a liquidity crisis at date t− 1.

4.5.2. Liquidity intensity and pricing

In our model, a single factor (λ�,t) drives liquidity pricing in euro-area bond yields.

The first panel in Figure 4.3 illustrates the striking comovements between our es-

timated liquidity factor and another proxy of liquidity pricing, the bid-ask spreads

associated with French 10-year benchmark bonds.
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4.5 Interpretation

The lower part Figure 4.3 is aimed at relating the countries’ sensitivities to the

liquidity-related factor (α(n)
1,� , see equation 4.3) to national marketable-debt charac-

teristics: (a) the countries’ debt outstanding and (b) the average bid-ask spreads of

the countries 10-year benchmark bonds. The first scatter plot of Figure 4.3 shows

that, leaving Italy aside, there seems to be a negative relationship between these

sensitivities and the debt outstanding. In spite of the large size of the tradable

debt issued by the Italian government, Italy’s intensity appears to be particularly

sensitive to the liquidity factor.31 The second scatter plot (bottom-right panel

in Figure 4.3) points to a positive relationship between the countries’ sensitivities

and the bid-ask spreads.

In order to gauge the relative importance of the liquidity-related part of the

spreads, we have computed the spreads (versus German yields) that would pre-

vail if the default intensities were equal to zero. Figure 4.1 presents the resulting

spreads (black solid lines).32 The liquidity-related parts of the spreads turn out to

account for a substantial part of the changes in spreads, especially for the less in-

debted countries (the Netherlands and Finland). The German plot reveals that the

high liquidity of the German Bunds translates into negative spreads versus swap

rates. Such negative spreads can be attributed to the so-called convenience yield

of holding government-issued securities and/or to flight-to-liquidity phenomena

taking place amid the financial crisis.33 While the liquidity factor was explaining

the main part of the spreads’ fluctuations for most of the countries in the post-

Lehman period, the part of the spreads explained by credit-related factors became

predominant for several countries (Austria, Belgium, France, Italy and Spain) over

the last year of the sample.

31To some extent, such a finding is consistent with the results of Chung-Cheung, de Jong and
Rindi (2004) according to which transitory costs would be more important in the Italian
market, dominated by local traders.

32Due to non-linearity effects, the sum of this counterfactual spreads and those that would be
obtained, alternatively, by switching off the liquidity intensities are not strictly equal to the
complete modeled spreads. However, the differences are visually imperceptible.

33See Feldhütter and Lando, 2008 or Liu, Longstaff and Mandell 2006 for empirical studies and
discussions of convenience yield on U.S. data. Flight-to-liquidiyty effects in the euro area
sovereign bond market are investigated by Beber, Brandt and Kavajecz 2009.
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4.5 Interpretation

4.5.3. Default probabilities

In the remaining of the Chapter, we show how our results can be exploited to com-

pute the default probabilities implied by the yield data. In the spirit of Litterman

and Iben (1991), various methodologies that are widely used by practitioners or

market analysts end up with risk-neutral PDs (see, e.g. Chan-Lau, 2006). Our

framework makes it possible to investigate the potential differences that exist be-

tween the latter and their historical, or real-world, counterparts. As stated above

(see Subsection 4.2.3), while the intensities of default are the same processes under

both measures, the P- and Q-probabilities of default are not the same because the

P- and Q-dynamics of these processes differ.

In our framework, the actual PD between time t and time t+ h is given by

P
�
d

(n)
t+h = 1

��� w̃t, d
(n)
t = 0

�
= E

P
t



I�
d

(n)
t+h=1

�

������
d

(n)
t = 0





= 1− EP
t



I�
d

(n)
t+h=0

�

������
d

(n)
t = 0





= 1− EP
t

�
exp(−λ̃(n)

d,t+1 − . . .− λ̃
(n)
d,t+h)

�
. (4.15)

We are then left with the computation of the survival probability EP
t
(exp(−λ̃(n)

d,t+1−

. . .− λ̃(n)
d,t+h)). Recall that exp(−λ(n)

d,t
) = exp(−λ̃(n)

d,t
)+ζ[1−exp(−λ̃(n)

d,t
)]. When λ(n)

d,t

is small, the first order approximation leads to:

λ̃
(n)
d,t
� 1

1− ζ λ
(n)
d,t
. (4.16)

Up to this approximation, the survival probability is a multi-horizon Laplace trans-

form of a compound auto-regressive process of order one. In the same way as for

the yields, the recursive algorithm detailed in Appendix 2.A.5 can be used in order

to compute these probabilities. In the computation, we use a constant recovery

rate of 50%, which corresponds to the average of the recovery rates observed for

sovereign defaults over the last decade (see Moody’s, 2010).
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4.5 Interpretation

Figure 4.4 shows the model-based 5-year probabilites of default (i.e. the proba-

bilities that the considered countries will default during the next 5 years). One-

standard-deviation bands are also reported. These standard deviations take two

kinds of uncertainty into account: (1) the smoothing errors that are associated

with the Kim’s (1994) smoothing algorithm used to estimate the intensities λt and

(2) the uncertainty stemming from the parameters’ estimation (MLE).34

Figure 4.5 presents the model-implied term-structure of PDs as of 9 May 2008

and 30 December 2011. This Figureillustrates the dramatic changes in the term-

structure of PDs that took place over these 3 years. For all countries and especially

for the more indebted ones, the term-structure of the PDs is much higher and

steeper in late 2011 than in Spring 2008.

Finally, it is worth noting that even when taking into account the uncertainty re-

garding the estimated real-world PDs, the gap between these and their risk-neutral

counterparts is significant in many cases, particularly for the most recent years (see

Figure 4.4). Nevertheless, as stated above, risk-neutral PDs are extensively used

by market practitioners and analysts. This mainly stems from the fact that risk-

neutral PDs are relatively easy to compute, using basic methods inspired by the

one proposed by Litterman and Iben (1991) 35. To illustrate, Figure 4.6 compares

the PDs estimates derived from our model with alternative estimates, as of the

end of 2011. Two kinds of alternative estimates are considered: (a) PDs that are

based on the Moody’s credit ratings and the associated matrix of long-run credit-

rating-migration probabilities and (b) risk-neutral probabilities computed by CMA

Datavision (2011). Figure 4.6 shows that our estimates lie somewhere between the

two others.36 In addition, it appears that our risk-neutral PDs (the triangles) are

relatively close to the risk-neutral CDS-based ones computed by CMA.37

34The computation of these standard errors is inspired from Hamilton (1986). It relies on the
assumption that the two kinds of errors (smoothing and MLE) are independent from each
other.

35In particular, these methods do not care about liquidity-pricing effects.
36Credit-rating-based PDs are extremely small (for instance: 6.10−6 for a AAA-rated countries,

6.10−4 for a A-rated countries). This reflects the fact that transition probabilities are based
on past 25-year history of rating changes, during which quick sovereign downgrades were
infrequent (contrary to during the current crisis period).

37The remaining differences between the latter two risk-neutral estimates may be attributed to
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4.6 Conclusion

4.6. Conclusion

In this Chapter, we present a multi-country no-arbitrage model of the joint dy-

namics of euro-area sovereign spreads. At the heart of our model is an innovative

approach capturing the intertwined dynamics of credit- and liquidity-related crises

by a joint modelling of two kinds of switching regimes. These crises are key drivers

of, respectively, credit and illiquidity intensities associated with the different is-

suers.

Using euro-area spread data covering the last five years, we estimate such inten-

sities for eight euro-area countries. The resulting fit is satisfying, the standard

deviations of the yields pricing errors –across countries and maturities– being of

18 basis points. Interestingly, we provide evidence of causal relationships between

credit and liquidity crises periods.

Our approach makes it possible to exhibit the part of the spreads reflecting liquidity-

pricing effects. A key assumption is that the country-specific illiquidity intensities

perfectly comoves, that is, that there exists a single European liquidity-pricing

factor. The identification of the latter is based on the term sturcture of the yield

differentials between the bonds issued by KfW (a German agency) and the Ger-

man sovereign bonds (the Bunds). Indeed, KfW’s liabilities are explicitly and

unconditionally guaranteed by the Federal Republic of Germany. Therefore, the

KfW-Bund spread should be essentially liquidity-driven. Our results indicate that

a substantial part of intra-euro spreads is liquidity-driven.

Given some assumptions regarding the recovery process, our framework makes

it possible to decompose the credit part of the spreads between actual, or real-

world, probabilities of default on the one hand and risk premiums on the other

hand. To that respect, our results suggest that actual PDs are often significantly

lower than their risk-neutral counterparts. According to these results, relying on

risk-neutral PDs to assess the market participants expectations regarding future

(i) the fact that we consider spreads w.r.t. Germany in our methods while the CMA’s method
involves “absolute” CDS, (ii) the absence of treatment of liquidity-pricing effects in the CMA
methodology (while empirical evidence suggests that CDS contain liquidity premia, see Buhler
and Trapp, 2008) or also to (iii) the measurement errors of our approach (see Figure 4.1).
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4.A Pricing of defaultable bonds

sovereign defaults would be misleading.

4.A. Pricing of defaultable bonds

For the sake of notational convenience, we drop the issuer subscript n in this

Appendix.

Let us consider the price BT−1,1, at date T − 1, of a one-period bond issued by the

debtor (before T − 1). If the debtor is not in default at T − 1, then:

BT−1,1 = exp(−rT−1)EQ [(1− dT + ζdT )(1− �T + θ�T ) | w̃T−1]

(w̃T−1 containing the information dT−1 = 0)

= exp(−rT−1)EQ
�
E

Q ((1− dT + ζdT )(1− �T + θ�T ) | wT , w̃T−1)
��� w̃T−1

�

= exp(−rT−1)EQ
��

exp
�
−λ̃(n)
d,T

�
+ ζ
�
1− exp

�
−λ̃(n)
d,T

���
×

�
exp
�
−λ̃�,T

�
+ θ
�
1− exp

�
−λ̃�,T

������� w̃T−1
�
.

The last equality is obtained by using the conditional independence of dt and �t
and the expressions of the conditional Q-distributions of dt and �t (that are the

same as their historical counterparts, as shown in Appendix 4.C). From that,

using the definitions of λd,T and λ�,T given in formula (4.1), it follows that:

BT−1,1 = exp(−rT−1)EQ [exp(−λd,T − λ�,T ) | w̃T−1]

= B(rT−1, zT−1, λT−1) (say)

The fact that EQ [exp(−λd,T − λ�,T ) | w̃T−1] is a function of (zT−1, λT−1) originates

from the assumptions on the distribution of (zT , λT ) given w̃T−1, in particular the

non-causality from (dt, �t) to (zt, λt) under Q (see Appendix 4.C).
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4.B Parameter constraints

Let us then consider BT−2,2, we have:

BT−2,2 = exp(−rT−2)EQ [ (1− dT−1 + ζdT−1)(1− �T−1 + θ�T−1)B(rT−1, zT−1, λT−1)| w̃T−2] ,

w̃T−2 containing the information dT−2 = 0.

Conditioning first by (wT−1, w̃T−2) and using the fact that BT−1(zT−1, λT−1) only

depends on wT−1, we get:

BT−2,2 = EQ [exp(−rT−2 − λd,T−1 − λ�,T−1)B(rT−1, zT−1, λT−1)| w̃T−2] .

Replacing B(rT−1, zT−1, λT−1) by EQ [exp(−rT−1 − λd,T − λ�,T ) | w̃T−1] and using

the fact that exp(−rT−2 − λd,T−1 − λ�,T−1) is function of w̃T−1, we get:

BT−2,2 = E
Q
�
E

Q (exp(−rT−2 − λd,T−1 − λ�,T−1 − rT−1 − λd,T − λ�,T ) | w̃T−1)
��� w̃T−2

�

= E
Q [exp(−rT−2 − λd,T−1 − λ�,T−1 − rT−1 − λd,T − λ�,T )| w̃T−2] .

Applying this methodology recursively leads to equation (4.8).

4.B. Parameter constraints

4.B.1. Econometric identification of the liquidity factor λ�,t

As documented in 3.3.1, the bonds issued by KfW and those issued by the Ger-

man government embed the same credit risks but are not equally exposed to the

liquidity-related factor. Therefore, the sum of the recovery-adjusted default inten-
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4.B Parameter constraints

sity and the liquidity intensity of KfW is given by:38

λ
KfW

t = λ
GER

d,t
+ λKfW

�,t

= λ
GER

d,t
+ αKfW0,� + αKfW1,� λ�,t, (4.17)

that is, the risk intensities of KfW and the Federal Republic of Germany differ only

through αKfW
�

. We impose αKfW1,� = αGER1,� +1 so as to identify the liquidity-related

factor λ�,t (without loss of generality).

4.B.2. Specification of the matrix of transition probabilities Π

Here, we present the specification of the matrix Π that defines the dynamics of

zt, which is the Kronecker product of the liquidity-crisis variable z�,t and of the

credit-crisis variable zc,t. First, we assume that there is no instantaneous causality

between zc,t and z�,t, meaning that conditionally to zt−1, zc,t and z�,t are indepen-

dent. Second, whereas the switching probabilities of the liquidity-regime variable

z�,t between date t − 1 and date t may be influenced by the existence of a credit

crisis at date t− 1, it does not depend on the distinction between the two credit-

crisis levels.39 Third, the probabilities of switching from the severe credit-crisis

state (zc,t−1 = e[3]
3 ) to the no-credit-stress regime (zc,t = e[3]

1 ) is zero, as well as the

opposite. That is, the first credit-crisis level (zc,t = e[3]
2 ) acts as an intermediary

regime between the two others. Fourth, the probability of remaining in the severe-

credit-crisis state does not depend on z�,t. With these restrictions, 11 parameters

are required to define the matrix Π.

4.B.3. The size of the Gaussian shocks

The standard deviations of the Gaussian shocks entering equations (4.3) and (4.4)

are constrained to make sure that the regime variables zt are the main sources of
38For the sake of clarity, we slightly modify the notations by replacing the (n) subcripts by

“KfW” and “GER”.
39Formally, p(z�,t| z�,t−1, zc,t−1 = e[3]

2 ) = p(z�,t| z�,t−1, zc,t−1 = e[3]
3 ).
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4.B Parameter constraints

the spreads fluctuations. If such constraints are not imposed, most of the spread

fluctuations tend to be accounted for by the Gaussian shocks. This phenomenon,

that reflects that Gaussian shocks are more flexible than the discrete-numbered

regimes to fit the spreads, has two undesirable implications within our framework.

First and foremost, the higher the standard deviation of the Gaussian shocks,

the higher the frequency of generating/estimating negative intensities. Second,

the lower the importance of the regime variables, the less information about the

relationships between liquidity- and credit-crises the estimation is brought to re-

veal. Accordingly, we constrain the parameters to be such that a limited part

of the (unconditional) fluctuations of the intensities is accounted for by Gaussian

shocks. Practically, we impose the following constraints on the parameter esti-

mates: σi/
�

1− ρ2
i
≤ 10%σ̃i, where σ̃i is the sample standard deviation of the

(observed) spreads associated with entity i (and where σi is expressed in the same

unit as the spreads). This calibration implies unconditional distribution of the in-

tensities that is consistent with mainly positive intensities. Alternative estimation

(with ratios of 5% and 20%) suggest that the qualitative results presented above

are fairly robust to changes in the 10% ratio.

4.B.4. The auto-regressive coefficient ρc

Under the historical measure, the auto-regressive coefficient ρc is assumed to be

constant across countries. This choice is related to our use of survey-based forecasts

to address the downward bias in the estimated persistency of the factors. Kim and

Orphanides (2012) have shown that using survey-based forecasts of yields makes it

possible to overcome this bias. However, we have survey-based forecasts of spreads

vs. Germany for only four countries (France, Italy, Spain and the Netherlands).

Under the assumption that the persistence of the credit factor is common across

countries, the information content of available survey-based forecasts benefits the

parameterizations of all debtors’ intensities.
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4.C Relationship between the risk-neutral and historical intensities

4.B.5. The standard deviations of the pricing errors

For a given debtor, the standard deviations of the pricing errors (gathered in the

vector ξS,t, see equation 4.12) are assumed to be the same across maturities. How-

ever, they differ across countries, proportionally to the standard deviations of the

observed spreads (the proportionality coefficient being estimated by the MLE).

There are two exceptions: First, given the crucial role of the KfW-Bund spreads

in the identification of the liquidity factor λ�,t, the proportionality coefficient as-

sociated with the pricing errors of the KfW-Bund spreads is twice lower than the

others (to make sure that the liquidity factor properly fits the KfW-Bund spread).

Second, given its different nature, the standard deviation of the Bund-OIS pricing-

errors is twice larger than the others. (What we want to fit in the first place are

the highly scrutinized spreads versus Germany).

4.C. Relationship between the risk-neutral and

historical intensities

In this Appendix, we show that the default intensities are the same processes under

both measures (P and Q) when the stochastic discount factor depends on wt only.

Proof. Recalling that w̃t = (w�
t
, d
�
t
, �t)�, we have:

f
Q
d,�

(dt, �t|wt, w̃t−1) = f
Q(w̃t| w̃t−1)
fQ
w

(wt| w̃t−1)
. (4.18)

Using the definition of the s.d.f., the numerator of (4.18) can be expressed as:

f
Q(w̃t| w̃t−1) = Mt−1,t exp(rt−1)fP(w̃t| w̃t−1)

= Mt−1,t exp(rt−1)fP(dt, �t|wt,w̃t−1)fP
w

(wt| w̃t−1) (4.19)

Since the s.d.f. Mt−1,t depends on wt only, the integration of both sides of (4.19)

156



4.C Relationship between the risk-neutral and historical intensities

w.r.t. (dt, �t) leads to:

f
Q
w

(wt| w̃t−1) =Mt−1,t exp(rt−1)fP
w

(wt| w̃t−1). (4.20)

Using (4.19) and (4.20) to compute the r.h.s. of (4.18), we obtain fQ
d,�

(dt, �t|wt, w̃t−1) =

f
P
d,�

(dt, �t|wt, w̃t−1).�

Moreover, since we have assumed that fP
w

(wt| w̃t−1) = fP
w

(wt|wt−1) and since

Mt−1,t exp(rt−1) does not depend on (dt−1, �t−1), equation (4.20) implies that the

same is true for fQ
w

(wt| w̃t−1). In other words, since we assume that if (dt, �t) does

not Granger cause wt under P, the same is true in the risk-neutral world.
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4.C Relationship between the risk-neutral and historical intensities

Table 4.2.: Principal component analysis of euro-area yield differentials

Notes: This Tablepresents results of principal-component analyses carried out on the spreads versus
Germany. There are three analyses that correspond respectively to three maturities: 2 years, 5 years
and 10 years. For each PC analysis, the Tablereports the eigenvalues of the covariance matrices
and the proportions of variance explained by the corresponding component (designated by “Prop. of
var.”). The data are weekly and cover the period from 1 June 2007 to 13 April 2012. the spred
(versus Germany) of seven countries are included in the analysis (Austria, Belgium, Finland, France,
Italy, Netherlands, Spain).

Component 1 2 3 4 5 6 7
2-year spread

Eigenvalue 5.26 1.34 0.17 0.12 0.06 0.03 0.02
Prop. of var. 75% 19% 2% 2% 1% 0% 0%
Cumul. prop. 75% 94% 97% 98% 99% 100% 100%
5-year spread

Eigenvalue 5.87 0.88 0.12 0.06 0.04 0.02 0.01
Prop. of var. 84% 13% 2% 1% 1% 0% 0%
Cumul. prop. 84% 96% 98% 99% 100% 100% 100%

10-year spread
Eigenvalue 5.56 1.11 0.14 0.12 0.03 0.02 0.01

Prop. of var. 79% 16% 2% 2% 0% 0% 0%
Cumul. prop. 79% 95% 97% 99% 99% 100% 100%
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4.C Relationship between the risk-neutral and historical intensities

Figure 4.2.: Estimated regimes and intensities

Notes: The first two panels display the (smoothed) probabilities of being in the crises regimes (Kim’s
(1994) algorithm). More precisely, there are two liquidity regimes (normal and crisis) and three credit
regimes (normal, distress and severe distress). The last three panels show the nine unobserved factors
(λt). The dynamics of the liquidity factor λ�,t (resp. credit factors λ(n)

c,t
) depends on the liquidity

regime (resp. the credit regime) but not on the credit regime (resp. the liquidity regime).
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4.C Relationship between the risk-neutral and historical intensities

Figure 4.3.: Sensitivity to the liquidity factor versus debt outstanding

Notes: The upper panel plots the estimated liquidity-related factor λ�,t together with the bid-ask
spread on French 10-year benchmark bonds (source: Thomason Reuters Tick History database). In
the first scatter plot, the coordinates of the countries correspond to (x-coordinates) the sensitivities
µ

(n)
1,� of their risk intensities to the European liquidity factor λ�,t (these sensitivities are reported in

the upper part of Table 4.3) and (y-coordinates) their total markeTablesovereign debt (as of the end
of 2009, Source: Eurostat). In the first scatter plot, the abscissa of the countries are the same than
for the previous plot, and the y-coordinates are the average (2010-2012) of the bid-ask spreads of
10-year sovereign bonds (source: Thomson Reuters Tick History database).
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4.C Relationship between the risk-neutral and historical intensities

Figure 4.6.: Default probabilities estimates (5-year horizon)

Notes: This plot displays different estimates of probabilities of default (PD) of 8 euro-area govern-
ments (as of 30 December 2011). The squares and the triangles correspond to outputs of our model.
While the squares indicate “real-world” PDs (i.e. the default proabilities obtained under the physical,
or historical, measure), the triangles are risk-neutral PDs. The vertical black bars associated with
squares delineate the delimit the ±2 standard-deviation area. These standard devations account for
smoothing errors (associated to Kim’s smoothing algorithm, 1994) as well as uncertainty related to
the parameter estimates, following Hamilton’s (1986) approach. The circles indicate the PDs com-
puted by CMA, using an industry standard model and proprietary CDS data from CMA Datavision
(2011). The diamonds correspond to PDs that derive from (a) the Moody’s’ ratings of the countries
(as of 2011Q4) and (b) the matrice of credit-rating-migration probabilities given by Moody’s (2010).
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5. A model of the euro-area yield

curve with discrete policy rates1

Abstract: This Chapter presents a no-arbitrage model of the yield curve that

explicitly incorporates the central-bank policy rate. After having estimated the

model using daily euro-area data, I explore the behaviour of risk premia at the

short end of the yield curve. These risk premia are neglected by the widely-used

practice that consists in backing out market forecasts of future policy-rate moves

from money-market forward rates. The results suggest that this practice is valid in

terms of sign of the expected target moves, but that it tends to overestimate their

size. As an additional contribution, the model is exploited to simulate forward-

guidance measures. A credible commitment of the central bank to keep its policy

rate unchanged for a given period of time can result in substantial declines in

yields. For instance, a central-bank commitment to keep the policy rate at 1%

over the next 2 years would imply a decline in the 5-year rate of about 25 basis

points.

1When writing this Chapter, I have benefited from discussions with Narayan Bulusu, Hans
Dewachter, Simon Dubecq, Jean-Sébastien Fontaine, Rodrigo Guimaraes, Imen Ghattassi,
Wolfgang Lemke, Andrew Meldrum, Jean-Stéphane Mésonnier, Emmanuel Moench, Benoît
Mojon, Fulvio Pegoraro, Francisco Rivadeynera Sanchez, Thomas Sargent, Andrew Siegel
and Paul Whelan. I thank participants at Banque de France seminar, at Bank of England
seminar, at Canadian Economic Association annual meeting (2012), at AFSE annual meeting
(2012) and at ESEM annual meeting (2012), at the ECB workshop “Excess liquidity and
money-market functioning” (2012), at AFFI Paris finance meeting 2012. I thank Béatrice
Saes-Escorbiac and Aurélie Touchais for excellent research assistance. Any remaining errors
are mine. The views expressed in this Chapter are mine and do not necessarily reflect the
views of the Banque de France.
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A model of the euro-area yield curve with discrete policy rates

Résumé

Les évolutions récentes des taux d’intérêt ont mis en lumière une limite de la ma-

jorité des modèles de taux d’intérêt, à savoir leur incapacité à assurer une prob-

abilité nulle à l’occurrence de taux d’intérêt négatifs. En effet, dans un contexte

de taux d’intérêt courts très bas, les modèles dans lesquels les taux courts sont

constamment affectés par des chocs de moyenne nulle attribuent une probabilité

strictement positive à l’occurrence de taux courts négatifs dans le futur (voir no-

tamment Andreasen et Meldrum, 2012). Ce chapitre montre comment l’utilisation

des changements de régimes permet de construire un modèle dans lequel les taux

d’intérêt sont positifs. De plus, il y est montré comment ce type de modèle, dans

lequel la politique monétaire occupe une place centrale, peut être exploité afin

d’étudier l’influence de cette forme de politique économique sur la structure par

terme des taux d’intérêt.

La partie empirique de ce chapitre poprose une modélisation de la structure par

terme des taux OIS (Overnight indexed swaps). Ces instruments ont pris une

importance grandissante au cours de la dernière décennie sur les marchés de taux

d’intérêt. Le taux sous-jacent à cet instrument dérivé est le taux interbancaire au

jour-le-jour, appelé EONIA en zone euro. L’OIS de maturitém mois est un contrat

dans lequel deux contreparties se mettent d’accord pour échanger deux flux à la

maturité de ce swap (i.e. dans m mois). A cette date, l’une des contreparties

donnera à l’autre l’EONIA capitalisé sur cette période (cette somme n’est pas

connue au moment de la négociation du contrat); inversement, la seconde paie un

montant indexé sur un taux fixé à la date de négaociation (c’est le taux du swap).

Il peut être montré que le taux du swap est homogène à un taux obligataire.

Pour modéliser la structure par terme des taux OIS, il convient (a) de définir le

processus suivi par le taux court (l’EONIA) et (b) de spécifier le facteur d’escompte

stochastique.

Une des principales composantes de l’EONIA est le taux des opérations princi-

pales de refinancement des banques auprès de la banque centrale européenne. Ce

dernier, appelé «taux directeur» dans ce qui suit, est fixé par le conseil des gou-
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A model of the euro-area yield curve with discrete policy rates

verneurs de l’Eurosystème ayant lieu, approximativement, à fréquence mensuelle.

Nous modélisons l’EONIA comme la somme de ce taux directeur et d’une com-

posante résiduelle que l’on nomme «écart de taux EONIA». Une particularité du

taux directeur réside dans l’aspect discret de son support. En effet, les princi-

pales banques centrales ont pour pratique de fixer ce taux d’intérêt à des niveaux

qui sont des multiples de 0,25%. La modélisation du taux directeur repose sur

une utilisation intensive des changements de régime. Chaque régime est en effet

défini (a) par un niveau du taux directeur (élément de l’ensemble {0% ; 0,25% ;

0,50% ;. . . ; 10%}), (b) par une «phase» de politique monétaire (durcissement,

assouplissement ou statu quo) et, (c) par l’existence, ou non, d’une situation de

sur-liquidité des banques. Cette dernière caractéritique est introduite afin de re-

produire les chutes persistantes de l’écart de taux EONIA observées depuis la mise

en place par la BCE d’injections de liquidités à taux fixe en 2008. Au total, le

modèle compte 246 régimes (41 × 3 × 2). Pour chaque niveau de taux et chaque

phase de politique monétaire, on définit une probabilité de décision de hausse ou

de baisse de taux lors des conseils des Gouverneurs. Afin de ne pas faire face à un

explosion du nombre de paramètres requis pour spécifier ce modèle, les probabilités

de transition d’un régime à l’autre sont données par des fonctions paramétriques

du niveau de taux directeur.

Pour l’écart de taux EONIA, nous spécifions une dynamique mêlant processus

auto-régressif gaussien et bruit blanc distribué suivant des lois Beta. Ces spécifica-

tions permettent notamment de reproduire l’épaisseur des queues de la distribution

empirique de cet écart de taux.

La spécification du facteur d’escompte stochastique est telle que la dynamique

du taux court sous la mesure risque-neutre est du même type que la dynamique

physique définie précédemment. En revanche, la paramétrisation de cette dy-

namique risque-neutre est différente. Dans ce contexte, nous montrons comment

calculer les taux des OIS. Nous présentons un algorithme permettant de calculer

rapidement ces taux sans avoir recours à des formules récursives pouvant ralentir

le calcul lorsque la fréquence d’échantillonnage du modèle est élevée.
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Le modèle est estimé sur données quotidiennes couvrant la période allant de janvier

1999 à février 2012. Les données d’estimation incluent l’EONIA ainsi que des taux

OIS de maturités 1, 3, 6, 12, 24 et 48 mois. Comme dans les chapitres 3 et 4 de

cette thèse, des données issues d’enquêtes auprès de prévisionnistes sont également

utilisées afin d’améliorer l’estimation de la dynamique historique des processus.

Le modèle est estimé par maximisation de la vraisemblance. La modélisation

inclut des régimes inobservables ainsi que des variables latentes (car l’écart de taux

EONIA comporte plusieurs composantes). Pour traiter simultanément ces deux

types de latence, le calcul de la vraisemblance repose sur une utilisation jointe

du filtre de Kitagawa-Hamilton et de la technique d’inversion à la Chen et Scott

(1993). Une mise en oeuvre innovante de ces dernières est toutefois proposée afin

de réduire l’ampleur d’un problème lié à cette méthode; ce problème est celui du

caractère arbitraire du choix de la maturité des taux supposés être modélisés sans

erreur. La méthode proposée permet d’éviter ce choix et de répartir l’erreur de

mesure sur les différents maturités considérées. Toujours à propos du calcul de la

vraisemblance, il est important de remarquer que du point de vue de l’économètre,

les 246 régimes ne sont que «partiellement» inobservables : à chaque période,

l’économètre observe le niveau du taux directeur mais il n’observe pas (a) la phase

de politique monétaire (durcissement, assouplissement ou statu quo) et (b) la

situation de liquidité bancaire (en excès de liquidité ou non). Autrement dit, du

point de vue de l’économètre, le modèle est un modèle à six régimes inobservables

(3×2) avec probabilités de transition variant dans le temps (en fonction du niveau

observable du taux directeur).

Le modèle obtenu permet l’étude du comportement de primes de risque présentes

dans la partie courte de la courbe des taux. Ces primes de risques sont générale-

ment négligées par la pratique considérant que les taux courts forward calculés à

partir des taux OIS peuvent être interprétés comme les anticipations de marché

des taux de politique monétaire futurs. Les résultats suggèrent que cette pratique

est valide en termes de direction des mouvements anticipés du taux directeur mais

qu’elle tend à surestimer l’amplitude de ces variations. De plus, nous montrons

que le biais résultant de l’absence de prise en compte des primes de risque est
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partciulièrement grand durant les phases de durcissement monétaire.

Le modèle est également utilisé pour simuler l’impact sur la courbe des taux d’un

engagement de la banque centrale concernant la trajectoire future de son taux di-

recteur. Ce type de mesure peut avoir une influence substantielle : un engagement

crédible de la banque centrale à maintenir son principal taux directeur à un niveau

de 1% au cours des deux prochaines années entraînerait une baisse du taux à 5

ans de 25 points de base.
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5.1. Introduction

The standard view of the monetary policy transmission mechanisms suggests that

central banks’ actions are mainly transmitted to the economy through their effect

on market interest rates. According to this standard view, a restrictive mone-

tary policy pushes up both short-term and long-term interest rates, leading to less

spending by interest-sensitive sectors of the economy, and vice versa. While there

is a strong empirical support for the assertion that monetary policy is a major

driver of the yield-curve fluctuations, only a very few term-structure models ex-

plicitly incorporate the “policy rate”, that is the main central bank’s instrument.

Arguably, this reflects the technical difficulties associated with accommodating the

dynamics of this discrete-valued process.2

This Chapter proposes a novel and tracTableno-arbitrage term-structure model

where changes in the monetary-policy rate are explicit and central. This model is

particularly adapted to depict the dynamics of the short-end of the yield curve,

where the influence of monetary policy decisions is the most evident (see Cochrane

and Piazzesi, 2002). The estimation, carried out on euro-area daily data covering

the last 13 years, sheds light on the influence of the ECB monetary policy on

the term-structure of interest rates. Notably, the results show the key effect of the

monetary-policy phases –tightening, easing or status quo– on the shape of the yield

curve. Besides, the analysis provides evidence of the existence of substantial risk

premia at the short- to medium-end of the term structure of interest rates.3 This

implies in particular that the common market practice that consists in backing

out market forecasts of next policy-rate moves from money-market forward rates

is biased.4 More precisely, the results suggest that while this practice is valid in

terms of sign of the expected target moves, it tends to overestimate their size.

Besides, these risk premia turn out to be the most important when the monetary

2See e.g. Rudebusch (1995), Hamilton and Jorda (2002), Balduzzi, Bertola and Foresi (1997)
and Balduzzi et al. (1998) for models of the U.S. Federal Funds rate target.

3The existence of such risk premia in the short end of the euro-area yield curve has notably
been evidenced by Durré, Evjen and Pilegaard (2003).

4This common market practice implicitly assumes that the expectation hypothesis holds at the
short-end of the yield curve.
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policy is in a tightening phase, the deviation between the 12-month-ahead risk-

neutral forecast of the policy rate (this forecast is approximately a forward rate)

and its physical counterpart being of about 50 basis points.

As an additional contribution, this model is exploited to assess the potential ef-

fects of so-called forward policy guidance measures. These measures, that consist

of commitments of the central bank regarding the future path of its policy rate, are

expected to provide more accommodation at the zero lower bound (ZLB).5 Indeed,

the objective of these measures is to provide a stimulus to the economy by making

market participants revising down their expectations of future short-term interest

rates, thereby pushing down medium- to long-term interest rates. The effective-

ness of such measures is the subject of substantial debate (Williams, 2011). Us-

ing new-Keynesian general equilibrium models, Eggertsson and Woodford (2003),

Campbell et al. (2012) or Levin et al. (2010), among others, investigate the im-

pacts of forward policy guidance. While the former two studies find that forward

guidance can be effective in terms of macroeconomic stabilisation, the latter shows

that such measures may be insufficient to deal a “Great Recession”-style shock.

As in Gagnon et al. (2011), Kool and Thornton (2012), Rudebusch and Bauer

(2011) or Jardet, Monfort and Pegoraro (2010), the present Chapter focuses on

the effects of unconventional monetary policies on the term structure of interest

rates. Specifically, as in the latter paper, the model is used to simulate the effects

of commitments of the central bank to keep its policy rate at its current level for

(at least) a deterministic period of time. In the present framework, where the

policy rate is explicit, such a simulation is carried out in a straightforward and

consistent manner. According to the results, forward-guidance measures could

lead to a substantial downward shift in the yield curve. The lower the policy rate,

the larger the effect: for instance, in a context characterised by a policy rate of 1%

(respectively 3.5%), the model predicts that the announcement of a commitment

to keep the target rate unchanged for at least 2 years would be followed by a 25

bp (resp. a 5 bp) decline in the 5-year yield.

5See Bernanke and Reinhart (2004) for a list and discussion of the potential policy options
available to monetary-policy authorities when the zero bound is binding.
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The papers that are the closest to the present one are those by Piazzesi (2005) and

Fontaine (2009). In both papers, the authors propose term-structure models that

explicitly involve the target for the policy rate. They estimate their models on U.S.

data covering respectively the periods 1994-1998 (weekly) and 1994-2007 (daily).

A common drawback of these frameworks is that they do not preclude negative

policy rates. While this caveat may be tenable when the short-term interest rate

is far enough from zero –the conditional probabilities of having negative interest

in the subsequent periods being negligible–, it is more problematic in the current

context of very low interest rates. More generally, many of the tracTableyield-curve

models are not consistent with the ZLB restriction.6 This limitation is addressed

in the present framework.

In my model, changes in the policy rate rate take place on pre-determined monetary-

policy meeting dates and are multiples of 25 basis points (or 0.0025). The model

is consistent with the fact that target-rate changes occur infrequently, on a daily

time scale, and with policy inertia (i.e. that target changes are often followed by

additional changes in the same direction). These appealing features stem from

an original use of regime-switching techniques, each regime being characterised

by a given tick of the policy rate and a given monetary-policy phase: tightening,

easing or status quo. The definition of these phases is consistent with observed

central banks’ target-setting behaviour and communication (see Smaghi, 2009).

The probabilities of occurrences of target moves depend on the monetary-policy

phase and on the level of the target rate. In particular, the probability of a cut in

the policy rate is zero when this rate is at the ZLB, thereby precluding negative

rates.

The shortest-term rate of the yield curve that is considered here is the interbank

overnight interest rate, which most central banks aim at stabilising to a level close

6See Dai and Singleton (2003) or Piazzesi (2010). Hamilton and Wu (2012) propose a way
to adapt the standard Gaussian framework to account for an extended period of constant
short-term rate. However, they implicitly assume that when this phase ends, (a) such a
phenomenon cannot happen again and (b), the short-term rate can turn negative again. An-
dreasen and Meldrum (2011) or Kim and Singleton (2011) show that the quadratic Gaussian
framework can be used to preclude negative interest rates. However, these latter models can
not accommodate long periods of unchanged interest rates.
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to the policy (or target) rate. Therefore, after having specified the dynamics of the

latter, the model is completed by specifying the dynamics of the so-called EONIA

spread, that is the yield differential between the Euro Over-Night Index Average

and the main policy rate. While this spread was mostly transitory before 2007,

persistent deviations appeared in October 2008, following changes in the monetary-

policy implementation in the euro area in response to the financial crisis. To

capture that change in the behaviour of the EONIA spread, an additional two-state

Markov-switching process is introduced, one of these two states corresponding to

a situation in which banks’ excess liquidity translates into a drop of the interbank

rate with respect to the target (see Soares and Rodrigues, 2011).

Consistently with the choice of the EONIA as the shortest-term rate, the empir-

ical exercise uses Overnight Index Swap (OIS) rates as longer-term yields.7 An

OIS is a fixed-for-floating interest rate swap with a floating rate leg tied to the

index of daily interbank rates, that is the EONIA in the euro-area case. OIS

have become especially popular hedging and positioning vehicles in euro financial

markets and grew significantly in importance during the financial turmoil of the

last few years.8 The OIS curve is closely watched by practitioners to gauge what

policy-rate changes the market has already priced in.

The model involves a lot of Markovian regimes –more than 200–, obtained by

crossing the regimes describing the policy rate, the monetary policy phases and

the liquidity states. This distinguishes the present framework from earlier term-

structure models involving regime switching.9 In spite of this unusual feature,

the approach remains tracTableboth in terms of bond pricing and estimation.

The yields of different maturities turn out to be equal to linear combinations of

the factors (including the regime variable), the factors loadings being given by

7This is done only for the second part of my sample, i.e. 2005-2011. Indeed, long-term OIS
are not available before then. In the first part of the sample, I use EURIBOR swaps (see
Subsection 5.2.2).

8While the United States has a liquid Fed Funds future contract (Gurkaynak, 2005 or Gurkay-
nak, Sack and Swanson, 2007), markets in most other countries rely exclusively on their
local-currency-denominated OIS market for hedging central bank policy (Lang, 2010).

9See, e.g., Bansal and Zhou (2002), Dai, Singleton and Yang (2007), Ang, Bekaert and Wei
(2008) or Lemke and Archontachis (2008).
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simple formulas involving a limited number of matrix products.10 The model

can generate the usual shapes of the yield curve (steep, flat, inverse, humped,

inverse-humped) and accommodates heteroskedasticity in the yield dynamics. As

regards the estimation, a key point is that regimes are only partially hidden: a

characteristic of the regimes, namely the central-bank policy rate, is observed by

the econometrician.11 Therefore, the econometric model can be seen as a six-

hidden-state (three monetary-policy regimes and two liquidity regimes) Markov-

switching model with heterogenous probabilities of transition, the latter depending

on the observed target rate.

The model is estimated by maximum likelihood techniques. The computation of

the log-likelihood is based on an innovative joint use of the Kitagawa-Hamilton’s

filter and so-called inversion techniques introduced by Chen and Scott (1993). The

fit of the model is satisfying, the standard deviations of the pricing errors being of

8 basis points (from 1 month to 4 years). An important output of the approach

are the probabilities of being in the different hidden Markovian states. To that

respect, this approach is an illustration of the results of Bikbov and Chernov

(2008) who underline the importance of using yield-curve information to identify

monetary-policy regimes.

The remainder of this chapter proceeds as follows. Section 5.2 presents the data

and emphasises stylised facts. Section 5.3 develops the model. Section 5.4 presents

the estimation strategy and results. Section 5.5 documents the behaviour of policy-

rate-related risk premia. Section 5.6 derives some implications of the model re-

garding the commitment of the central bank to keep the target rate fixed for a

given period of time. Section 5.7 concludes.

10In particular, the derivation of the term-structure of yields does not rely on the recursive
algorithms usually used to solve discrete-time term structure models (as in Ang and Piazzesi,
2003). This point is crucial to make the model easily amenable to estimation using high-
frequency data.

11I assume that market participants observe latent regimes and factors, as in most yield-curve
studies involving latent factors.
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5.2. Data and stylised facts

5.2.1. The EONIA and the Eurosystem’s framework

Contrary to the Fed or the Bank of England, the ECB does not have an explicit

interest-rate target. However, its aim is explicitly to “influence money market

conditions and steer short-term interest rates” (ECB, 2011). This is done by using

primarily the official interest rates: “The (long) chain of causes and effect linking

monetary policy decisions with the price level starts with a change in the official

interest rates by the central bank on its own operations.”

In order to influence short-term money-market rates, a shortage of liquidity is cre-

ated by imposing mandatory reserves on banks within the euro area. Specifically,

credit institutions are required to hold compulsory cash deposits on accounts with

the Eurosystem. The reserve requirements are based on the amount and profile of

liabilities on a bank’s balance sheet as of every month end. The banks can refinance

themselves through the ECB’s weekly Main Refinancing Operations (MROs). In

these weekly refinancing operations, the ECB returns liquidity to the market by

allowing banks to tender for cash (against collateral). By abuse of language, the

rate at which liquidity is supplied in the regular weekly monetary policy operations

is referred to as the “policy rate” (or the “target rate”) in this chapter. However,

there are two additional policy rates in the Eurosystem framework. Indeed, the

latter is completed by a symmetric corridor bracketing the main policy rate.12 The

lower bound of the corridor, called the deposit-facility rate, is the rate at which

counterparties can deposit cash overnight with the Eurosystem. The upper bound

is the lending-facility rate, at which counterparties can borrow funds overnight

from the Eurosystem. The target rate and the corridor is displayed in Panel A of

Figure 5.1.

After having been fixed till June 2000, the MROs’ rate then became variable.13 In

October 2008, in a context of worldwide financial stress, the Eurosystem adopted
12See Kahn (2010) for a comprehensive description and an international comparison of “corridor”

systems.
13At that time, the target, or refi rate, acted as the minimum bid rate at the MRO.
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a fixed-rate full allotment (FRFA) tender procedure: since then, the ECB accom-

modates any demand for liquidity its bank counterparties might express at the

policy rate –against eligible collateral– in unlimited amounts.

While the policy rate defines the rate at which banks can refinance themselves

through the ECB against collateral, EONIA (Euro OverNight Index Average) fix-

ings reflect rates at which banks refinance themselves on the interbank market

on an unsecured basis.14 In “normal” circumstances, EONIA rates trade in close

relation to ECB marginal rates but can also include a premium related to the

unsecured nature of the lending.

Panel A of Figure 5.1 compares the fluctuations of the target with these of the

EONIA. Changes in the policy rate are decided during the first of the bimonthly

meetings of the ECB’s Governing Council. On a daily scale, this implies a step-

like behaviour for the target rate. Over the estimation sample (January 1999 –

February 2012), there were 18 rises in the target rate (16 of 25 bp and 2 of 50

bp) and 16 cuts in target rates (7 of 25 bp, 8 of 50 bp and one of 75 bp). Panel

A of Figure 5.1 also suggests that the EONIA is closely linked to the target rate.

However, by displaying the EONIA spread –i.e. the yield differential between the

EONIA and the policy rate–, Panel B highlights the break in the relationships

between these two rates that occurred in 2008. This break can be related to non-

standard monetary-policy measures that were taken in response to the financial

crisis. A particularly important decision was the one to move from variable rate

tender procedures in liquidity providing operations to FRFA. Together with the

expansion of the spectrum of maturities at which liquidity was being offered to

the market, this measure generated a steady excess of liquidity balances in the

overnight market, as banks began supplying in the interbank market the precau-

tionary cash buffers that they were securing at the ECB.15 An excess supply of

14The EONIA is computed as a weighted average of all overnight unsecured lending transactions
undertaken in the interbank market, initiated within the euro area by the contributing banks.
It is computed by the ECB at the end of every TARGET day (since January, 4 1999). The
banks contributing to the EONIA are the same first class market standing banks as the panel
banks quoting for Euribor. See www.euribor-ebf.eu for more details.

15A large share of the cash buffers is held with the ECB, the banks using massively the marginal
deposit facility.
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liquidity in overnight trades put downward pressure on the overnight interest rate,

which drifted toward the lower limit of the monetary policy corridor (see Beirne,

2012 and Fahr et al., 2010).

Figure 5.1.: Target rate, EONIA and OIS

Notes: Panel A shows the target rate together with the overnight interbank interest rate (EONIA).
Panel B displays the EONIA spread, i.e. the spread between the EONIA and the target. The four
vertical bars in Panel B indicate the four following dates, respectively: 8 October 2008 (introduction
of Fixed-Rate Full Allotment procedures), 3 December 2009 (announcement of the phasing out
of the very long-term refinancing operations), 4 August 2011 (given the renewed financial-market
tensions, announcement of supplementary 6-month LTRO), 8 December 2011 (3-year VLTRO). Panel
C presents the target rate and two OIS yields, the spreads between the latter and the target being
reported in Panel D.

5.2.2. The Overnight Index Swaps

An overnight index swap (OIS) is an interest rate swap whose floating leg is tied to

an overnight rate (the EONIA in the euro-area case), compounded over a specified
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term. OIS contracts involve the exchange of only the interest payments, the prin-

cipal amount being notional. That is, the two parties agree to exchange, on the

agreed notional amount, the difference between interest accrued at the fixed rate

and interest accrued through daily compounding (or geometric averaging) of the

floating overnight index rate. While the tenor of these swaps was usually below

2 years before 2005, the OIS maturities were extended afterwards to more than

10 years (see Barclays, 2008). The OIS curve is more and more seen by market

participants as a proxy of the risk-free yield curve (see e.g. Joyce et al., 2011).16

In spite of that, OIS have failed to attract significant attention from academics for

the time being.

As an interest-rate swap, an OIS can be used to manage interest-rate risks. In

particular, the OIS are structured in such a way that if a bank (a) has some

money available for investment, (b) has access to the overnight interbank market

and (c) can enter OIS contracts, then this bank can synthetically create a fixed-

income instrument that is equivalent to a maturity-h bond paying a coupon equal

to the maturity-h OIS rate.

An important point that is going to be investigated below relates to the use of OIS

curves to back out market expectations of future policy rate’s moves. Heuristically,

under the expectation hypothesis, the forward rates based on the OIS term struc-

ture should reflect the market expectations of the interbank rate, that is supposed

to be close to the target rate. This principle is widely used by market analysts,

investors or central banks themselves.17

16While OIS rates reflect the credit risk of an overnight rate, this may be regarded as negligible
in most situations. Besides, even during financial-markets turmoil, the counterparty risk is
limited in the case of a swap contract, due to netting and credit enhancement, including call
margins (see Bomfin, 2003). To that respect, one can note that German sovereign bonds,
usually perceived as being the European “safest haven” both in terms of credit quality and
liquidity, trade at levels that have remained close to the OIS yield curve over the last years.

17See e.g. Barclays, 2008, Joyce, Relleen and Sorensen, 2008, Joyce and Meldrum 2008, Bank
of England, 2005 or Lang (2010).

177



5.2 Data and stylised facts

5.2.3. Data sources and treatments

The sample period is January 15, 1999 to February 17, 2012 (3416 dates). While

the target rate and the EONIA series come from the ECB, the OIS yields are taken

from Bloomberg. All yields are translated on a continuously compounded basis,

and market holidays are filled with observations from the previous trading days’

rates.18 In the estimation, we consider six maturities (in addition to the overnight

one): 1 month, 3 months, 6 months, 12 months, 2 years and 4 years.

As said above, OIS yields are not available for longer-than-one-year maturities

before 2005. Before that date, we use EURIBOR swaps data in place of the 2-

year and 4-year OIS yields. This appear to be a reasonable assumption given that

the short-term EONIA swaps and maturity-matching EURIBORs had extremely

close variations before 2007.19 Swap yields are homogenous to coupon-bond yields.

Since the pricing formula presented below (Subsection 5.3.2) are consistent with

zero-coupon yields, zero-coupon yields are computed using classic bootstrapping

methods.20

The estimation procedure involves survey-based forecasts of short-term yields (as

in Kim and Orphanides, 2012; this is discussed in Section 5.4). Specifically, 12-

month-ahead forecasts provided by the Consensus Forecasts are used. Forecasts

of the ECB’s policy rate are available since July 2009 only; before that, I use 3-

month EURIBOR forecasts.21 Since EURIBOR and OIS were closely linked until

summer 2007, using EURIBOR forecasts instead of OIS forecasts is appropriate

till then. In mid-2007 however, the widening in the EURIBOR-OIS spread is likely
18Let r denote a market-quoted interest rate (the OIS, say). Using the fact that money-market

rate are based on the ACT/360 day-count basis, the corresponding continuously compounded
rate is computed as ln(1 + d × r/360) × 365/d, where d is the residual maturity of the
instrument.

19During summer 2007, credit and liquidity risks affected unsecured interbank lending rates
(IBOR), leading to a sudden widening of the IBOR-OIS spreads. Before that, this spread
was small and steady. For each maturity (2-year and 4-year), I subtract the 2005-2006 IBOR-
OIS average spread from the EURIBOR swap series used in the estimation before 2005, which
is about 10 basis points (standard deviation below 3 basis points).

20OIS rates with a maturities lower than one year are already homogenous to zero-coupon in-
struments. The bootstrapping methods are applied only for longer-than-one-year maturities.
See Barclays (2008) for more information about EONIA swaps.

21Naturally, the fact that the nature of the forecasted rate changes in mid-2009 is taken into
account in the estimation procedure.
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to induce a bias in the forecasts. This is addressed by subtracting from the EURI-

BOR forecasts –from August 2007 to June 2009– the 1-year-ahead forward spread

between the 3-month EURIBOR and OIS rates (averaged over the same period).

All these survey-based expectations are available at the monthly frequency only

and are released about mid-month. Using a cubic spline, this series is converted

into a daily one. The discrepancies that arise from these approximations are ex-

pected to be captured by measurement errors of the state-space model that will

be presented below.22

5.2.4. Preliminary analysis of the yields

Table 5.1 reports descriptive statistics for the different yields used in the analysis.

These statistics suggest that yields are highly persistent. While the daily auto-

correlation is nearly one, the correlations between the yields and their 1-year lags

is still substantial (higher than 50%). The correlation across maturities is also

extremely high, with near-unit correlations for adjacent maturities. Mean and

median statistics show that the term structure is positively sloped on average.

The lowest Panel in Table 5.1 shows the results of a principal component analysis

carried out on the set of seven spreads between OIS yields –with maturities of 1 day

to 4 years– versus the policy rate. The three principal components are sufficient

to explain most of the fluctuations of these spreads. Notably, the first principal

component explains more than 90% of the variances of the spreads associated with

yields of maturities comprised between 3 months and 1 year. This is graphically

illustrated in Panel D of Figure 5.1, that highlights the common fluctuations in

some of these spreads. Half of the variance of the EONIA spread and of the spread

between the 4-year rate and the target rate is accounted for by this first factor,

indicating that there are important correlations between the EONIA spread and

longer-term spreads. However, further investigations mitigate this finding. Specifi-

22Anticipating on the estimation results presented in Section 5.4, the standard deviation of
the measurement errors associated to the forecasts is slightly larger than 20 bps (σfcst in
Table 5.2), which is of the same order of magnitude as the errors expected from the previous
points.
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cally, the same kind of analysis has been carried out on a shorter sample, excluding

the crisis period: 1999-2008 (bottom of Table 5.1). On that period, the EONIA

spread turns out to be almost orthogonal to the first principal component. There-

fore, the apparent comovement between the EONIA spread and the other spreads

on the whole sample seems to be related to the fall in the EONIA spread that took

place in mid-2008 (see Subsection 5.2.1 for a description of this phenomenon).

5.3. The model

This Sectionformulates a model of the daily dynamics of the overnight interbank

interest rate.23 Two dynamics are considered: the historical (or physical, or real-

world) one and the risk-neutral (or pricing) one. The knowledge of the risk-neutral

dynamics of the interbank rate makes it possible to price financial instruments –

such as the OIS contracts– whose cash flows depend on the overnight interbank

rate. The simultaneous knowledge of the two dynamics allows to study term pre-

miums’ behaviour, as will be done in Section 5.5. The historical (P) and the

risk-neutral (Q) dynamics of the different processes are of the same kind, but their

respective parameterizations differ. These differences and the implied stochastic

discount factor (s.d.f.) are detailed in Subsection 5.3.2, that also deals with the

derivation of the term-structure of OIS rates. Before that, the next subsectionpre-

sents the different components of the overnight interest rate.

5.3.1. The components of the overnight interest rate

The target rate prevailing at date t is denoted by r̄t. As is the case in most currency

areas, the target rate is assumed to be a multiple of 0.25%. I proceed under the

assumption that the target rate is lower than a maximal rate denoted by rmax and

equal to 0.25%×N , say. Therefore:

r̄t = ∆�zr,t

23The extension to a lower frequency is straightforward.
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where zr,t is a selection vector, i.e. one of the column of IN+1, the identity

matrix of dimension (N + 1) × (N + 1) and where the entries of the vector ∆

are the continuously-compounded possible policy rates. Specifically, using the

money-market day-count convention, the ith entry of ∆ is given by log(1 + (i −

1)0.25%/360). Note that at the daily frequency, many of the successive r̄t’s are

equal. In particular, r̄t−1 = r̄t as soon as there is no policy meeting at date t. This

results in a step-like process for the policy rate (as seen in Panel A of Figure 5.1).

The interbank overnight interest rate is denoted by rt. Its deviations from the

target rate are accounted for by two components: ξt and st:

rt = r̄t + st + ξt (5.1)

I assume that r̄t, st and ξt are independent of each others.24 The variables st
and ξt are unobservable but can be inferred from yields through the bond-pricing

model. The historical dynamics of these factors are presented in the following.

The risk-neutral dynamics are of the same kind, but their parameterizations is

different from their physical counterparts. These differences are made explicit in

Subsection 5.3.2.

5.3.1.1. The dynamics of the target rate r̄t

Central bankers can decide to change the target rate at their regular meetings.

On these dates, the target can be raised or cut if the the tightening regime or the

easing regime respectively prevail, but the target remains necessarily unchanged

under the status quo regime. Formally, the monetary regime is represented by a

3-dimensional selection vector zm,t that is valued in the set of the three columns

of the identity matrix I3, corresponding respectively to the tightening, the status

quo and the easing regimes. Contrary to the econometrician, market participants

observe the regime, this knowledge being based on a variety of detailed policy-

relevant information that is not modelled here.

24Such independence assumptions are common in that literature (see Balduzzi et al., 1997 and
1998, or Piazzesi (2005)).
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The Kronecker product of the selection vectors zr,t and zm,t, denoted by z̄t, is

also a selection vector that is valued in the set of the columns of I3(N+1) (re-

call that N + 1 is the number of possible values of the target rate, between 0%

and rmax = N × 0.25%). The dynamics of z̄t is described by a Markov chain.

The matrix of transition probabilities of z̄t is denoted by Π̄t. These matrices are

time-inhomogenous, but in a deterministic way. Indeed, the matrices Π̄t can take

two values, one of them being specific to those days at which a monetary-policy

meeting are scheduled.25 The number of entries of these Π̄ matrices is consider-

able: for rmax = 10%, there are 15.129 of them. However, owing to the following

assumptions, most of these entries are zero:

1. Conditionally on being in an easing, a status quo or a tightening regime,

the target moves are respectively valued in {−0.50%,−0.25%, 0}, {0} and

{0,+0.25%,+0.50%}.

2. Easing or tightening phases are necessarily followed by status quo phases.

Even with these restrictions, many of Π̄t’s entries still require to be parameterised.

Eight sets of probabilities needs to be defined: two of them contain the probabil-

ities of switching to the status quo regime (the probability of exiting the easing

and the tightening regimes are respectively denoted by pES and pTS), two oth-

ers are the probabilities of exiting the status quo regime (pSE and pST ), two of

them contain the probabilities of 25-bp changes in the target rate (rise: pr25; cut:

pc25) and the last two are the probabilities of 50-bp moves (rise: pr50; cut: pc50).

These probabilities may vary with the policy rate. For instance, the probability of

switching from the tightening to the status quo regime could be larger for higher

target rates, say. In order to keep the model parsimonious, the probabilities are

based on logit-based parametric functions of the target rate r̄. Formally, let me

25Contrary to the policy rate (zr,t), that can change only following a monetary-policy meeting,
the monetary-policy regime (zm,t) can switch at any date. For instance, such changes could
be triggered by ECB officials’ speeches or the release of macroeconomic news or figures.
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define the function f by:

f(r̄, [a1, a2]�) = [1 + exp(a1 + a2r̄)]−1
. (5.2)

For i ∈ {TS,ES, SE} , the probabilities pi are characterised by some 2×1 vectors

of parameters αi and are given by f(r̄, αi). Further, so as to have pST + pSE < 1,

the probabilities pST are defined by (1−pSE(r̄))f(r̄, αST ). Moreover, αi vectors are

not defined for each of the four kinds of target moves, but only for two: one for the

rises in the policy rate (αr) and one for the cuts (αc). Two additional parameters,

kr and kc, are then introduced to share the rise and cut probabilities into those

of 25-bp and 50-bp moves. Formally, the conditional probabilities of target-rate

changes (i.e. pc25, pr25, pc50 and pr50) are defined through:






pr25(r̄) = krf(r̄, αr) and pr50(r̄) = (1− kr)f(r̄, αr)

pc25(r̄) = kcf(r̄, αc) and pc50(r̄) = (1− kc)f(r̄, αc)

where kc and kr are valued in [0, 1].26 Eventually, the 15.129 entries of matrix Π̄

are defined by 16 parameters only.

5.3.1.2. The dynamics of ξt

The factor ξt is aimed at capturing the volatile and short-lived (noise) fluctuations

of the EONIA spread. However, as clearly appears on Panel B of Figure 5.1, the

distribution of this component is related to the level of this spread. Typically, the

noise distribution became strongly positively skewed after the drop in the EONIA

spread, in late 2008. As discussed in Subsection 5.2.1, this drop follows the im-

plementation of non-standard monetary-policy measures that gave rise to a banks’

excess liquidity regime. Hence, both the distribution of the noise component of
26Before November 2001, possible changes in the policy rate were discussed in each of the bi-

weekly meetings of the ECB Governing Council. Since then, they are considered during
the first of these two bi-weekly meetings only. Accordingly, for the first part of the sample
(up to November 2001), the target-moves probabilities are divided by two so as to result in
(approximately) the same probabilities of target moves over a month.
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the EONIA spread as well as its (conditional) mean have to be conditioned on

the excess liquidity regime. The latter is modelled by an additional Markovian

regime process zexc,t. This process can take two values [1, 0]� (no excess-liquidity

conditions) or [0, 1]� (excess liquidity conditions). The matrix of transition proba-

bilities associated with this process is time-homogenous and is denoted by Πexc.27

Formally, ξt is given by:

ξt =
�

(wnorm + ξnorm,t) (wexc + ξexc,t)
�
zexc,t

where the wi’s are scalar parameters and the ξi,t’s follow taylor-made distributions,

denoted by L, that allows for non-zero skewness and fat tails. The definition and

features of this distribution are detailed in Appendix 5.A. The support of this

distribution is the compact [−1, 1] (in annualised terms), which is consistent with

the fact that the EONIA is bounded by the corridor set by the ECB’s standing

facilities.28

5.3.1.3. The dynamics of st

The variable st is aimed at contributing to persistent fluctuations of yields that can

not be accounted for by the regime variables (zr,t, zm,t and zexc,t). Combined with

ξt, the latter are expected to account for most of EONIA’s fluctuations. Therefore,

the variable st is expected to have a far lower impact on the overnight rate than

on longer-term yields. To obtain such a feature (without resorting to an explosive

dynamics for st), st is decomposed into two components denoted by s1,t and s2,t,

27The columns of Πexc sum to one. Note that, as zm,t, the regime variable zexc,t is assumed
to be observed by market participants but not by the econometrician (zr,t is observed by
everybody).

28Note that the width of the corridor has changed over time (between 150 and 200 bp). However,
taking into account such a variability would induce severe complexity in the framework.
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that is, st = s1,t + s2,t. The dynamics of [s1,t, s2,t]� is given by:




s1,t

s2,t



 = Φ




s1,t−1

s2,t−1



+ Σεt, εt ∼ i.i.d. N (0, I) (5.3)

where Φ =




ρ1 β

0 ρ2



 and Σ =




0 0

0 σ





The smaller β, the less variable s1,t is. In the limit, if β is equal to zero and

if s1,t was zero at some point in the past, then st = s2,t. I assume this is the

case under the physical measure, but not under the risk-neutral one. Under the

latter measure, if the ρ∗
i
’s –the risk-neutral counterpart of the ρi’s– are close to

one, a shock on s2,t can have a very persistent impact on st. In addition, if β∗

is large enough, these effects are multiplied by feeding through s1,t. Therefore,

st’s innovations may have a far more long-lasting impact under the risk-neutral

measure than under the physical measure. This implies that st may account for a

far larger variance of long-term yields than of short-term yields.29

5.3.1.4. Definition of the single regime variable zt

Defining a single regime variable will prove convenient for notational reasons in the

remaining of this chapter. Accordingly, I introduce the selection vector zt, defined

as the Kronecker product of z̄t and zexc,t. Since z̄t is itself the Kronecker product

of zr,t and zm,t, I have:

zt = zr,t ⊗ zm,t ⊗ zexc,t.

Hence, zt is valued in the set of the columns of I6(N+1), each of the 6(N + 1)

different regimes being characterised by the policy rate (there are N+1 of them), a

monetary-policy stance (there are three of them) and the situation of Eurosystem’s

liquidity (the situation being “normal” or “in surplus”). Recall that zt is observed

by market participants but not by the econometrician (who observes zr,t but not
29The choice of this dynamics builds on Dubecq and Gourieroux (2011).
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zm,t and zexc,t).

Given the assumption of independence between r̄t and (wt, ξt), the matrix of tran-

sition probabilities of zt, denoted by Πt, is equal to the Kronecker product of Π̄t
and Πexc.

5.3.1.5. About the seasonality of the EONIA spread

This framework do not account for potential seasonality in the EONIA spread.

While this could bias the pricing of short-term yields (with maturities of one week,

say), this simplification has a limited impact for longer maturities. As noted by

Balduzzi et al. (1998), only little seasonal variability of the overnight interest rate

should be transmitted to longer-term rates, since seasonal variability is “averaged

out” in the expectation process (especially if one considers maturities that are

multiple of the reserve maintenance period, which is the case in that study).

5.3.2. Pricing

5.3.2.1. The stochastic discount factor (s.d.f.)

I assume that the risk-neutral dynamics of zt and st are of the same kinds as their

historical counterparts except that the Πt’s and Φ are respectively replaced by

Π∗
t
’s and Φ∗ matrices, that depend on the same number of free parameters.30 In

this context, it can be shown that the stochastic discount factor (s.d.f.), or pricing

kernel, is explicit.31 Specifically, the s.d.f. Mt−1,t between t− 1 and t is given by:

Mt−1,t = exp
�
−∆�

m
zt−1 − st−1 − ξt−1 −

1
2ν

�

t−1νt−1 + ν �
t−1εt + (z�

t−1δt)zt
�

where ∆m is the concatenation of six vectors ∆, that is ∆m = 16×1 ⊗ ∆, which

reflects the fact that there are three monetary regimes (zm,t) and two Eurosystem-

liquidity situations (zexc,t), and where the risk sensitivities δt and νt –that price
30In particular, the p∗

ES
, p∗
SE

, p∗
ST

, p∗
TS

, p∗
r25, p∗

c25, p∗
r50 and p∗

c50, that define the Π∗
t
’s matrices,

are based on functions f(r̄, •). Still using the superscript ∗ to denote risk-neutral parameters,
these probabilities depend on some vectors α∗

i
(see end of Subsectionsec. 5.3.1.1).

31See Chapter 2.
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respectively the risks associated to the regime shifts and to the Gaussian shocks

εt– are defined by:






δij,t = log
�
Π∗
t,ij
/Πt,ij

�

νt = Σ−1(Φ∗ − Φ)
�
s1,t s2,t

�� ∀ i, j, t. (5.4)

5.3.2.2. Bond prices

It is well-known that the existence of a positive stochastic discount factor is equiv-

alent to the absence of arbitrage opportunities (see Hansen and Richard, 1987)

and that the price at t of a zero-coupon bond with residual maturity h, denoted

by P (t, h) is given by:

P (t, h) = E
t
(Mt,t+1 × . . .×Mt+h−1,t+h)

= E
Q
t

(exp [−rt − . . .− rt+h−1]) . (5.5)

Substituting equation (5.1) into equation (5.5) leads to:

P (t, h) = EQ
t

�

exp
�

−
h−1�

i=0
(r̄t+i + st+i + ξt+i)

��

(5.6)

Under the assumption that r̄t, st and (wt, ξt) are independent processes, it comes:

P (t, h) =
�
E

Q
t
e
−
�h−1
i=0 r̄t+i

��
E

Q
t
e
−
�h−1
i=0 ξt+i

��
E

Q
t
e
−
�h−1
i=0 st+i

�

= P1(t, h)× P2(t, h)× P3(t, h) (say).

The computations of P1(t, h), P2(t, h) and P3(t, h) are detailed in Appendix 5.C.

It is important to stress that explicit formulas are available to compute each of

these three terms, each of them turning out to be exponential affine in (z�
t
, st)�.

Accordingly, the yields associated with zero-coupon bonds of maturity h, denoted
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by y(t, h), are of the form:

y(t, h) = −1
h

[G(t, h)zt + Ah +Bhst] (5.7)

Note that G(t, h) is deterministic (i.e., the only stochastic components of the yields

are zt and st).

5.4. Estimation

5.4.1. The state-space form of the model

Kim and Orphanides (2012) have shown that the estimation of dynamic no-

arbitrage term structure models with a flexible specification of the market price

of risk is beset by a severe small-sample problem arising from the highly persis-

tent nature of interest rates. They show that using survey-based forecasts of a

short-term interest rate as an additional input to the estimation can overcome

this problem. Following their approach, I enlarge the state-space model to make

the estimated model consistent with 12-month-ahead forecasts of short-term rates

provided by the Consensus Forecasts.32

Let me denote by Rt a vector of M observed yields of maturities h1,. . ., hM , that

is Rt = [y(t, h1), . . . , y(t, hM)]�. Equation (5.7) shows that the these yields are

affine in (zt, st). It is straightforward to show that it is also the case for the 12-

month-ahead forecasts included in the estimation. These forecasts are denoted by

CFt. Introducing some vectors of –supposedly i.i.d. normal– measurement errors

denoted by ξ, we can write:






Rt = Λz,Rzt + Λs,Rst + ξRt

CFt = Λz,Czt + Λs,Cst + ξCt
(5.8)

where the Λ matrices are functions of the model parameters (see Subsection 5.3.2).
32Other methodologies have been proposed to address this problem, see e.g. Jardet, Monfort

and Pegoraro (2009).

188



5.4 Estimation

The model admits a Markov-switching state-space representation whose measure-

ment equations are given by (5.8). The dynamics of the state vectors st and zt are

respectively defined by equation (5.3) and by the matrices of transition probabili-

ties Πt.

5.4.2. Computation of the log-likelihood

Whereas the Markov chain zr,t is observed, the remaining state variables (st, zm,t
and zexc,t) are not. This latency is handled by using an estimation strategy building

on the one mentioned in Section 2.6. The approach consists in applying inversion

techniques à la Chen and Scott (1993) together with the Kitagawa-Hamilton filter

to address the hidden nature of the switching regimes. The idea of the inversion

technique is the following: assuming that a combination of the yields –gathered in

the vector Rt– is observed without error, one can recover the latent variable st as

a function of Rt and zt. Further, one can compute the likelihood function based

on the specified dynamics of the latent factor as well as on the distribution of the

(remaining) pricing errors. Usually, one uses trivial perfectly-priced combinations

of yields: specifically, if there are m latent factors with continuous support in the

model, one assumes that m yields are priced without error. However, as noted for

instance by Piazzesi (2010), the choice of this maturity is arbitrary. Therefore, I

resort to an original alternative approach and choose st in order to minimise the

average squared pricing errors across the different maturities.33 In that case, the

latent factor st (as a function of Rt and zt) is simply obtained by using the OLS

formula:34

st = (Λ�
s,R

Λs,R)−1Λ�
s,R

(Rt − Λz,Rzt). (5.9)

Details of the exact computation of the likelihood are provided in Appendix 5.D.

33I am grateful to Simon Dubecq for providing me with this procedure. To our knowledge,
though particularly efficient compared to classic inversion techniques, it has not been used in
the existing literature.

34Note that this procedure results in one st conditionally to each of the different hidden regimes.
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5.4.3. Estimation results

Table 5.2 reports the maximim-likelihood parameter estimates.35 The computa-

tion of the estimates’ standard errors are based on the outer product of the first

derivative of the likelihood function. The standard deviation of the pricing error

–i.e. the deviation between modelled and observed yields) is equal to eight ba-

sis points–, which is comparable to Piazzesi’s (2005) fit of the U.S. yield curve.36

Panels B, C and D of Figure 5.2 respectively show the fit of the 3-month, the

2-year and the 4-year yields. These plots also show the part of those yields that

is explained by the regime variable zt. It appears that most of the yields’ fluctua-

tions can be accounted for by zt: more than 95% of the sample variances of yields

with maturities lower than 2 years are captured by the term G(t, h)zt appearing

in equation (5.7).37

Panel A of Figure 5.3 illustrates the ability of the model to reproduce survey-based

forecasts of the target rate. Panel B and Panel C respectively present the estimated

(smoothed) probabilities of being in the different monetary-policy regimes (zm,t)

and in the liquidity-surplus regime (zexc,t) characterised by the disconnection of the

EONIA from the main ECB policy rate.38 According to the estimation, the first

period of the liquidity-surplus regime is October 17, 2008, i.e. a few days after the

announcement of the fixed-rate full-allotment procedure by the ECB. This regime

was interrupted three times since then. The last interruption ended on August

2, 2011, two days before the ECB announced supplementary 6-month long-term

refinancing operations (LTRO) in a context of renewed financial tensions.39

Searching for potential explanations of each change in regime is beyond the scope

of this chapter. For the sake of illustration, though, let me highlight an episode

35In order to avoid that the factor st, thanks to its flexible Gaussian dynamics, explains too large
a share of the yield fluctuations, I limit the size of its unconditional variance in the estimation.
Specifically, I impose that the unconditional standard deviation of the st-related component
of the one-year yield is lower than 10 basis points. Eventually, fifty one parameters remain
to be estimated.

36Note however that the sample period used by Piazzesi (2005) is shorter (4 years against 13
years here) and the frequency is higher here (daily vs. weekly).

3785% of the variance of the 4-year yield is accounted for by G(t, h)zt.
38Smoothing is based on Kim’s (1993) algorithm.
39See the press release at http://ecb.int/press/pr/date/2011/html/pr110804_1.en.html.
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Figure 5.2.: Estimated st process and model fit

Notes: Panel A displays the estimated st process (see equation (5.9)). Panels B, C and D compare
model-implied yields with their data (actual) counterparts. The latter panels also display (grey
dashed line) the part of the model-implied yields that is accounted for by the regime variable zt (that
is − 1

h
[G(t, h)zt +Ah] in equation 5.7).

where monetary-policy-regime shifts can be directly related to central bankers’ an-

nouncements.40 During the press conference following the ECB Governing Council

that took place on 5 June 2008, J.-C. Trichet said: “we could decide to move our

rates [by] a small amount in our next meeting”. As is shown in Figure 5.4, this

triggered a change in the monetary-policy regime, from status quo to tightening.

A rate hike was then decided by the Governing Council in the next meeting, on

3 July 2008. The latter meeting was however followed by a more dovish press

conference by Trichet, which induced a return to the status-quo regime in the next

40Naturally, central bankers’ speeches are key events that are subject to indicate changes in
monetary-policy regimes (see e.g. Rosa and Verga, 2008 in the euro-area case).
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few days.

Figure 5.5 illustrates the influence of the monetary-policy regimes on the term

structure of interest rates. For three dates, the modelled yields are compared with

the observed ones. For each date, three additional yield curves are displayed, each

of them corresponding to one of the three monetary-policy regimes. The modelled

yield curve corresponds to one of these three curves, the attribution being based

on the smoothed probabilities associated with the Markov chain zm,t.41 The two

remaining curves are the answers to the question: what if the monetary-policy

stance were different on that date? These plots show that monetary-policy regimes

are key to shape the yield curve. Furthermore, this Figureillustrates the ability

of the model to reproduce various shapes of the yield curve (steep, flat, humped,

inverse-humped).

Figure 5.6 displays the 30-day-ahead probabilities of change in the monetary-policy

regime as well as in the policy rate as functions of the latter.42 Both historical

and risk-neutral probabilities are reported. Interestingly, all three monetary-policy

regimes are more persistent under the risk-neutral measure than under the phys-

ical one, which can be seen from the fact that the risk-neutral probabilities of

exiting a given monetary-policy phase are lower than their historical counterparts.

The implications of the differences between the two dynamics (historical vs. risk-

neutral) are explored in Section 5.5. Overall, the probabilities of monetary-policy

changes substantially depend on the target rate: This appears on the plots of

Figure 5.6 and is also reflected by the statistical significance of the parameters a2
(equation 5.2) that relate the probabilities of changes in the policy rate or in the

monetary-policy regime to the level of the policy rate (see Table 5.2).

In this model, the volatility of the policy rate, and hence of the whole term struc-

ture of interest rates is not trivial. This is illustrated in Figure 5.7, that displays

the standard deviation associated with the model-implied 3-month-ahead forecasts
41In the present case, the smoothing algorithm results in a clear-cut identification of the hidden

monetary-policy regime: Most of the time, the smoothed probabilities are either 1 or 0.
42These probabilities are based on the matrix product Π̄MP Π̄29

NMP
, where Π̄MP and Π̄NMP are

the two possible matrices of transition probabilities for z̄t (= zr,t ⊗ zm,t): Π̄MP (respectively
Π̄NMP ) is the matrix that corresponds to a monetary-policy-meeting day (resp. a day without
meeting).
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of the policy rate. The left-hand (right-hand) side plot regards the historical (risk-

neutral) measure. The volatility of the policy rate turns out to strongly depend

on the level of the rate itself as well as with the monetary-policy phase. Notably,

these results echo those of Fontaine (2009) who finds –using U.S. data– that the

uncertainty is lowest (highest) in tightening (loosening) cycles.

5.5. Term premia associated with target changes

The fact that the historical (P) and the risk-neutral (Q) dynamics of r̄t differ gives

rise to target-related risk premia.43 The existence of such term premia is important

in several respects. Let me mention two of them. First, if these risk premia are

sizeable, OIS forward rates should not be interpreted as the market perceptions

of future target rates, though this is the basis of a widespread market practice

(see Subsection 5.2.2). Second, the existence of risk premia at the short-end of the

yield curve implies that excess returns associated with a long position in money-

market instruments may be partially predicTableor, alternatively said, that the

expectation hypothesis does not hold at the short-end of the yield curve. While

there is strong evidence against the expectation hypothesis for long-term yields,

the evidence is weaker for short-term ones (see Longstaff, 2000).

In order to assess the size of target-related risk premia, policy-rate forecasts are

computed under the two different measures. Conceptually, under the risk-neutral

measure Q, the forecasted paths of the policy rate are very close to the term struc-

ture of forward annualised rates (up to small Jensen-inequality correction terms).

Here, emphasis is put on the risk premia associated with policy-rate changes, those

associated with the st process having a straightforward and orthogonal influence.44

Figure 5.8 displays the term structure of the policy-rate forecasts. Nine pairs of

plots are reported. Each pair of plot corresponds to a given policy rate (1%, 2.5%

43These target-related premia contribute to the total term premia, that also include risk premia
associated with the st component of the EONIA.

44The mean reversion of st being far larger under the historical measure than under the
risk-neutral measure, the risk premia associated with this factor are almost −Bhst/h (see
Subsection 5.3.2 and equation (5.7) for details regarding the latter expression).
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or 4%) and a given monetary-policy phase (tightening, status quo or easing). For

each pair of charts, an upper plot presents the forecasts of the policy rate (w.r.t.

the horizon forecast, on the x axis) and a lower one displays the associated risk

premia, i.e. the spread between the Q and P forecasts. 90% confidence intervals

for the risk premia are reported in the lower charts.45 These premia are discussed

in the following.

First, it appears that the risk premia can be substantial, even at the short end of

the yield curve. In particular, under the tightening regime (see the first column of

charts in Figure 5.8), the risk premia are higher than 50 basis points for maturities

higher than 12 months. Furthermore, for policy rates that are higher than the

sample average (of about 2.5%), the risk premia associated with tightening and

easing monetary-policy regimes turn out to have opposite signs at the short- to

medium-end of the yield curve (see the second and third rows of pairs of charts,

corresponding respectively to a 2.5% and a 4% policy rates). This stems from

the fact that the probabilities of remaining in the tightening and easing regimes

are higher under the risk-neutral measure than under the historical one (as shown

in Figure 5.6), implying higher life expectancies for these regimes and, thereby,

a higher probability –compared with the physical measure P– of having several

policy-rate moves in the next months or quarters. This translates into positive

(negative) risk premia at the short end of the yield curve when the tightening

(easing) regime prevails. Therefore, the estimation results suggest that under the

risk-neutral measure, the central bank is more “aggressive”, in the sense that the

yield curve reflects the behaviour of a central bank that tends to rise (respectively

cut) the policy rate in a more rapid way than under the real-world measure when in

the tightening (resp. easing) regime.46 This supports the findings of Balduzzi et al.

(1997), who observe that the target-change predictions that may be obtained from

the short-end of the yield curve –under the expectation hypothesis– are correct in

45The confidence intervals are based on bootstrap techniques, the parameter estimates being
drawn from their asymptotic distribution, see Figure 5.8’s caption for more details.

46Regarding the rise in rate, this is not any more the case for high target rates, since the risk-
neutral probability of a rise in the target is lower than its historical counterpart when the
policy rate is above 4%. However, note that the unconditional probability of being in the
targeting regime when the target rate is higher than 4% is low (see lowest Panel of Figure 5.6).
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terms of sign, but tend to overestimate the size of realised target moves.

5.6. Estimated impact of forward policy guidance

In the present framework, the behaviour of the central bank is modelled through a

set of probabilities: some of them correspond to probabilities of switching from one

regime to the other (tightening, easing and status quo), some of them correspond

to probabilities of rises or cuts in the target rate (the latter being conditional to the

monetary-policy regime). If a change in these probabilities is made public, it may

have an impact on the whole yield curve because the pricing of financial assets

depend in part on the entire expected future path of short-term interest rates.

This expectation channel of monetary policy transmission is at the heart of the

rationale for forward policy guidance measures. In the current context in which the

zero bound is binding for the overnight nominal interest rate, these measures are

aimed to provide additional stimulus to the economy by pushing down medium-

to long-term interest rates and, thereby, to support other asset prices (see e.g.

Bernanke and Reinhart, 2004).

My framework makes it possible to assess the impacts of such announcements in a

straightforward and consistent manner. In the following, I consider a basic form of

forward guidance in which a central bank commits itself to maintaining its target

rate constant for (at least) a deterministic period of time. The recent decision by

the U.S. Federal Reserve to release federal funds rate forecasts and to extend its

pledge to keep rates near zero at least through late 2014 is of that kind.47 In the

past, other central banks have signalled future policy intentions through official

communication. For instance, the Bank of Canada announced on April 21, 2009

its conditional commitment to “hold current policy rate [close to zero] until the

end of the second quarter of 2010.”48

47See the Fed press release at http://www.federalreserve.gov/monetarypolicy/
files/fomcprojtabl20120125.pdf

48There exist older cases of forward policy guidance: the Reserve Bank of New Zealand an-
nounced a path for its 3-month bank bill rate in 1997, it was followed by the Norges Bank
and the Riskbank in 2005 and 2007, respectively.
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As in nearly all of the existing literature, the following simulations abstract from

issues that could arise under imperfect credibility of the central bank and focus

on the case where the monetary authorities benefit from a perfect commitment

technology.

Let me assume that the central bank has announced at date t that it will keep its

policy rate unchanged for the next p periods. Then, equation (5.7) can be used to

compute the yields of different maturities, up to a few parameters’ adjustments:

the matrix G(t, h) has simply to be replaced by G̃(t, h), the latter being computed

in the same way as the former (i.e. using the formulas presented in Appendix 5.C)

after having modified the matrices of Π∗
t+i, i ≤ p by setting the probabilities of

policy-rate moves to zero.49

Figure 5.9 displays the results of four simulations. These simulations are based

on two different target rates (1% and 3.5%) and two commitment durations (12

months and 24 months). Consistently with the fact that the policy rate is fixed

for several months, the monetary-policy regime is set to the status-quo one (in

the baseline as well as in the counterfactual case). The results suggest that such

measures would have a statistically significant downward impact on the yield curve

(90% confidence intervals of the downward effects are reported for each of the four

cases presented in Figure 5.9). The impact appears to be far larger when the

current target rate is low. For instance, a commitment to keep the target rate

unchanged for the next 24 months leads to a decrease in the 5-year yield of about

25 bp when the target rate is of 1% and of about 5 bp when the target rate is of

3.5%.

5.7. Conclusion

While central banks’ decisions are obvious drivers of the fluctuations of the term

structure of interest rates, only few of the available yield-curve models feature a
49The fact that the probabilities of having policy-rate moves over the next p periods are equal

to zero implies that the same is true under the risk-neutral measure because P and Q are
equivalent measures. If this was not the case, it would imply the existence of infinitely large
Sharpe ratios associated with policy-rate changes.
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realistic modelling of the policy rate. This chapter proposes a framework that

captures simultaneously the dynamics of the policy rate and the yields of longer

maturities. Importantly, this model is consistent with the existence of the zero-

lower-bound restriction, making it appealing in the current context of extremely

low interest rates.

A key ingredient of the model is an extensive and innovative use of switching-

regime features. Each regime is characterised by (a) a target level, (b) a monetary-

policy regime (easing, tightening or status quo) and (c) the Eurosystem aggregate

liquidity situation (normal or “in surplus”). The latter is introduced so as to

accommodate the recent situation in which banks resort massively to the ECB

deposit facility, which has an impact on the overnight interbank rate –the shortest-

maturity yield considered in the model.

In order to illustrate the flexibility of the model, it is estimated using daily data

covering the last thirteen years. Consistently with the choice of the interbank rate

(EONIA) as the shortest yield, the overnight index swap (OIS) curve is fitted.

Being impressively tractable, the model is estimated by standard maximum likeli-

hood techniques. In order to alleviate potential small-sample bias and, hence, to

properly estimate the physical dynamics of the processes, the estimation data set

includes survey-based forecasts of short-term rates.

Various by-products are available, including the estimation of the market-perceived

monetary-policy regime (at the daily frequency). In addition, the model is used

in order to explore the size and influence of risk premia at the short end of the

yield curve, the approach making it possible to exhibit monetary-policy-related

risk premia. My analysis suggests that market yields reflect the behaviour of a

central bank that would tend to rise (respectively cut) the target rate more rapidly

than is physically observed when in a tightening (resp. easing) phase. This has

implications regarding the common practice that consists in inverting the OIS

yield curve to extract market-based short-term forecasts of the policy-rate path.

Specifically, it means that such a practice –that assumes that the expectation

hypothesis holds at the short-end of the yield curve– is valid in terms of sign of
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next target changes, but tend to overestimate their size.

Finally, the model is exploited to predict the potential effects of a forward policy

guidance measure that consists of a commitment of the central bank to keep its

rate unchanged for (at least) a given period of time. The simulations show that,

in the current context of low short-term rates and with a commitment duration of

2 years, such an (unanticipated) announcement would be followed by a decrease

of about 25 basis points of the 5-year rate.

5.A. The L distribution

The L distribution accommodates non-zero skewness and fat tails. A random

variable follows the distribution L(p, αP , βP , αN , βN) if it is equal to I{u=0}vP −

I{u=1}vN , where u is Bernoulli distributed with success probability p, and where vP
and vN follow beta distributions with respective parameters (αP , βP ) and (αN , βN)

[“P” and “N” respectively stand for “positive” and “negative”].

The bond-pricing formula (Subsection 5.3.2 and Appendix 5.C.2) require the com-

putation of E(exp [ξ]), where ξ ∼ L(p, αP , βP , αN , βN):

E(exp [ξ]) = pE(exp ξP ) + (1− p)E(exp ξN)

= p.f(αP , βP ) + (1− p).f(αN , βN)

where f(α, β) is given by:

f(α, β) = 1 +
∞�

k=0

1
k!

�
k−1�

i=0

α+ i
α+ β + i

�

.
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5.B Multi-horizon Laplace transform of a (homogenous) Markov-switching
process

5.B. Multi-horizon Laplace transform of a

(homogenous) Markov-switching process

In the following, I consider a n-state Markov process zt, valued in {e1, . . . , en}, the

set of columns of In, the identity matrix of dimension n × n. I assume that the

matrix of transition probabilities is deterministic and denoted by Pt (the columns

sum to one). We have: P(zt+1 = ei| zt) = e�
i
Pt+1zt.

Computation of Et(exp (α�zt+1))

Et(exp (α�zt+1)) =
n�

i=1
exp(αi)e�iPt+1zt

=
�
M�

i=1
exp(αi)e�i

�

Pt+1zt

=
�

1 · · · 1
�
D(expα)Pt+1zt

where expα is the vector whose entries are the exp(αi)’s and where D(x) is a

diagonal matrix whose diagonal entries are the elements of the vector x.

Computation of Et(exp [α�1zt+1 + α�2zt+2])

The law of iterated expectations leads to:

Et(exp [α�1zt+1 + α�2zt+2]) = Et(Et [exp [α�1zt+1 + α�2zt+2]| zt+1])

= Et (exp [α�1zt+1]Et [exp [α�2zt+2]| zt+1])
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5.C Pricing formulas

Then, using the previous case:

Et(exp [α�1zt+1 + α�2zt+2])

= Et

�
exp [α�1zt+1]

�
1 · · · 1

�
D(expα2)Pt+2zt+1

�

= Et

��
1 · · · 1

�
D(expα2)Pt+2zt+1 exp [α�1zt+1]

�

= Et

��
1 · · · 1

�
D(expα2)Pt+2zt+1z

�
t+1D(expα1)

�
1 · · · 1

���
.

Using the facts that zt+1z
�
t+1 commutes with any matrix and that

zt+1z
�
t+1

�
1 · · · 1

��
= zt+1,

we get:

Et(exp [α�1zt+1 + α�2zt+2]) = Et

��
1 · · · 1

�
D(expα2)Pt+2D(expα1)zt+1

�

=
�

1 · · · 1
�

[D(expα2)Pt+2] [D(expα1)Pt+1] zt.

Generalisation

It is straightforward to generalise and to show that:

Et(exp [α�1zt+1 + . . .+ α�
h
zt+h]) =

�
1 · · · 1

�
[D(expαh)Pt+h]× . . .

. . .× [D(expα1)Pt+1] zt.

5.C. Pricing formulas

In this appendix, I detail the computation of the three multiplicative components

of P (t, h) (the price at date t of a bond with residual maturity h), namely P1(t, h),

P2(t, h) and P3(t, h). More precisely, this appendix propose a way to compute
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5.C Pricing formulas

G1(t, h), G2(t, h), Ah and Bh that are such that:






P1(t, h) = G1(t, h)zt

P2(t, h) = G2(t, h)zt

P3(t, h) = exp(Ah +Bhst)

These formulas leads to equation (5.7).50

5.C.1. Computation of P1(t, h)

The targets r̄t are the only stochastic variables involved in the computation of

P1,(t, h). The previous Appendix shows that the expectation of an exponential-

affine combination of a variable that follows a Markov-switching process is available

in closed form. This leads to the following formula:

P1(t, h) = E
Q
t

�

exp
�

−
h−1�

i=0
r̄t+i

��

= G1(t, h)zt (5.10)

with G1(t, h) =
�

1 · · · 1
� 


1�

i=h−1
D(exp [−∆m])Π∗

t+i



D(exp [−∆m])

and where

• D(x) is a diagonal matrix whose diagonal entries are those of the vector x.

• The matrices Π∗
t
, which are of dimension 6(N + 1) × 6(N + 1), contain the

risk-neutral probabilities of switching from one regime –defined by a policy

rate, a monetary-policy regime and a bank’s liquidity situation– to another.

As their physical-measure counterparts, these matrices can take two values,

depending on whether a monetary-policy meeting is scheduled at date t or

not.

• The product operator � works in a backward direction: if X1 and X2 are

some square matrices, �1
i=2Xi = X2X1

50In equation (5.7), the ith entry of G(t, h) is the logarithm of the ith entry of G1(t, h)+G2(t, h).

201



5.C Pricing formulas

It is important to stress that this formula does not require the use of time-

demanding recursive algorithms used by most alternative discrete-time affine term-

structure models. Since policy meetings do not take place at a fully regular fre-

quency, the matrices Gt should be computed for every date. As in Piazzesi (2005),

I resort however to an intermediate approach where I consider only the exact

number of days until the next decision meeting whereas subsequent meetings are

assumed to be equally spread (every 30 days). The latter approximation, that

leads to the computation of (only) 31 matrices Gi (instead of one per day), results

in negligible pricing errors.

5.C.2. Computation of P2(t, h)

The computation of EQ
�
exp
�
−�h−1

i=0 ξt+i
��

is very close to this of P1(t, h). Indeed,

using the law of iterated expectations, it comes:

P2(t, h) = EQ
t

�

E
Q
�

exp
�

−
h−1�

i=0
ξt+i

������� zexc,t+1, . . . , zexc,t+h−1

�

. (5.11)

Then remark that wt+i+ξt+i=
�
( wnorm + ξnorm,t+i) (wexc + ξexc,t+i )

�
zexc,t+i and

recall that the ξ’s follow L distributions based on beta distributions. Appendix 5.A

gives the Laplace transform of a variable drawn from a L distribution, which

provides us with E(exp(−ξj,t)) for j ∈ {norm, exc}. This leads to:

E
Q
t

�

exp
�

−
h−1�

i=0
ξt+i

��

= EQ
t

�

exp
�
h−1�

i=0

�
ϑnorm ϑexc

�
zexc,t

��

where expϑj = E(exp(−wj− ξj,t)). Then, using Appendix 5.B again, one obtains:

P2(t, h) = G2(t, h)zt (5.12)

with G2(t, h) =
�

1 1
�




D



exp




ϑnorm

ϑexc







Πexc






h−1

D



exp




ϑnorm

ϑexc







Hexc
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5.C Pricing formulas

where Hexc is the selection matrix (whose entries are 0 or 1) that is such that

zexc,t = Hexczt.

5.C.3. Computation of P3(t, h)

We have

P3(t, h) = E
Q
t
e
−
�h−1
i=0 st+i = EQ

t
e
−
�h−1
i=0 s1,t+i+s2,t+i

where




s1,t

s2,t



 = Φ∗



s1,t−1

s2,t−1



+ Σε∗
t
, ε

∗
t
∼ i.i.d. NQ(0, I).

In that Appendix, I describe an algorithm originally presented by Borgy et al.

(2011). This algorithm results in the same matrices than the recursive formula

given in the seminal paper by Ang and Piazzesi (2003). However, this latter

approach turns out to be time-demanding for high-frequency (weekly or daily)

processes. As shown by Borgy et al. (2011), the algorithm described below is

substantially quicker when h is large.

Let me denote by Xt the vector [s1,t, s2,t, s1,t−1, s2,t−1]�. Xt follows:

Xt = µ̃∗ + Φ̃∗Xt−1 + Σ̃ε∗
t
, ε

∗
t
∼ NQ(0, I),

where µ̃∗, Φ̃∗ and Σ∗ are easily deduced from µ∗, Φ∗ and Σ. In the following, I

show how to compute the vectors Ah and Ch that are such that

P3(t, h) = EQ
t

(exp(δ�Xt+1 + . . .+ δ�Xt+h)) = exp (Ah + ChXt)

where δ = [0, 0, 1, 1]�. Denoting by Ft,t+h the random variable Xt+1 + . . . Xt+h, we

get:

P3(t, h) = EQ
t

(exp(δ�Ft,t+h)

Note thatFt+h,h is a Gaussian random variable. We have
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5.C Pricing formulas

Ft+h,h =
�
hI + (h− 1)Φ∗ + . . .+ Φ∗h−1

�
µ
∗ +

�
Φ∗ + Φ∗2 . . .+ Φ∗h

�
Xt +

�
I + . . .+ Φ∗h−1

�
ε
∗
t+1 +

�
I + . . .+ Φ∗h−2

�
ε
∗
t+2 + . . .+ ε∗

t+h.

Therefore Ft+h,h ∼ NQ(Λ0,h + ΛhXt,Ωh) with






Λh = Φ∗
�
Φ∗h − I

�
(Φ∗ − I)−1

Λ0,h = [χ1,h − hI] (Φ∗ − I)−1
µ
∗

and with

Ωh = Var
��
I + . . .+ Φ∗h−1

�
ε
∗
t+1 +

�
I + . . .+ Φ∗h−2

�
ε
∗
t+2 + . . .+ ε∗

t+h
�

= (Φ∗ − I)−1
��

Φ∗h − I
�

ΣΣ�
�
Φ∗h − I

��
+ . . .

+ (Φ∗ − I) ΣΣ� (Φ∗ − I)�
�

(Φ∗ − I)� −1

= (Φ∗ − I)−1 [(h− 1)ΣΣ� − ΛhΣΣ� − ΣΣ�Λ�
h

+ Π(h,Φ∗,Σ)] (Φ∗ − I)� −1

where Π : (h,Φ∗,Σ) →
�
Φ∗h
�

ΣΣ�
�
Φ∗h
��

+ . . . + (Φ∗) ΣΣ� (Φ∗)� + ΣΣ�. Instead

of using a brute-force approach (based on h loops) to compute Π(h,Φ∗,Σ), we

exploit the fact that Π(kp,Φ∗,Σ) = Π(k,Φ∗p,Π(p,Φ∗,Σ)− ΣΣ�) + ΣΣ�. This can

substantially reduce the computation time to compute. It suffices to apply the

latter formula a few times, based on an integer factorization of h. Finally






Ah = δ�Λ0,h + 1
2δ
�Ωhδ

Ch = δ�Λh.
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5.D Computation of the likelihood

Finally, since s1,t ≡ 0 under P, denoting by Bh the second column of Ch, we get:

P3(t, h) = exp (Ah +Bhst) . (5.13)

5.D. Computation of the likelihood





Rt − Λz,Rzt − Λs,RΛs(Rt − Λz,Rzt) = ξR
t

CFt − Λz,Czt − Λs,CΛs(Rt − Λz,Rzt) = +ξC
t

(5.14)






(I − Λs,RΛs)Rt − Λz,Rzt+ Λs,RΛsΛz,Rzt = ξR
t

CFt = Λz,Czt + Λs,Cst + ξCt
(5.15)

This Appendix complements Subsection 5.4.2. For a given vector of observed

yields Rt and a regime vector zt, the latent factor st is given by st = Λs(Rt−Λz,Rzt)

with Λs = (Λ�
s,R

Λs,R)−1Λ�
s,R

(this is eq. 5.9). For a given regime vector zt, there

is the same information in Rt as in {st, R̃t}, where R̃t is any subvector of Rt
containingM−1 yields of distinct maturities. Without loss of generality, I assume

that R̃t = [y(t, h2), . . . , y(t, hM)]�. As a consequence, from the econometrician

point of view, the model reads:






Γ̃ξR
t

= Γ̃ {(I − ΛR)Rt − (I − ΛR) Λz,Rzt}

ξ
C

t
= CFt − (Λz,C − ΛCΛz,R) zt − ΛCRt

εt = 1
σ
Λs [(Rt − ρ2Rt−1)− Λz,R (zt − ρ2zt−1)]

where ΛR = Λs,RΛs, ΛC = Λs,CΛs and where Γ̃ is the (M − 1) ×M matrix that

selects the last M − 1 entries of an M × 1 vector.

Assuming that the εt’s, the ξR
t

’s and the ξcft ’s are i.i.d. normal, the computation of

the log-likelihood associated with the previous model is easily obtained by applying
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5.D Computation of the likelihood

the Kitagawa-Hamilton filter. However, this likelihood is the one associated with

the vector {st, R̃t, CFt}t=1,...,T , while we need to maximise the one associated with

actually observed data {Rt, CFt}t=1,...,T . The latter is obtained by multiplying the

former by the determinant of the Jocobian resulting from this change in variables,

that is
���∂
�
st, R̃

�
t

�
/∂Rt

��� = 1
Λ�s,RΛs,RΛs,R,1 where Λs,R,1 is the first entry of Λs,R.
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5.D Computation of the likelihood

Table 5.1.: Descriptive statistics of yields

Notes: The Tablereports summary statistics for selected yields. The data are monthly and cover
the period from January 1999 to February 2012. Two auto-correlations are shown (the 1-day and
the 1-year auto-correlations). The yields are continuously compounded and are in percentage annual
terms. Panel B presents the covariances and the correlations of the yields. The EONIA spread is the
yield differential between the (annualized) EONIA and the target rate. Panel C reports some results
of a principal-component analysis carried out on the spreads between the yields and the target rate.
More precisely, it shows the share of the variances of the different spreads that are explained by the
first three principal components. Two samples are cnosidered: January 1999 to February 2012 and
January 1999 to August 2008.

Panel A - Descriptive statistics 1999-2012
Target EONIA 1-mth 3-mth 6-mth 12-mth 2-yr 4-yr

Mean 2,64 2,56 2,58 2,60 2,64 2,74 2,94 3,35
Median 2,50 2,57 2,60 2,64 2,67 2,77 2,91 3,37

Standard dev. 1,15 1,34 1,33 1,34 1,34 1,34 1,28 1,16
Skewness 0,14 0,14 0,14 0,14 0,13 0,13 0,17 0,22
Kurtosis 1,91 2,04 2,01 1,95 1,93 1,92 2,02 2,23

Auto-cor. (1 day) 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
Auto-cor. (1 year) 0,52 0,56 0,57 0,57 0,57 0,58 0,60 0,62

Panel B – Correlations \ Covariances
Target 1,31 1,51 1,50 1,49 1,48 1,44 1,34 1,16
EONIA 0,98 1,80 1,77 1,77 1,75 1,71 1,60 1,39

1-mth OIS 0,98 0,99 1,77 1,77 1,76 1,73 1,62 1,41
3-mth OIS 0,98 0,99 1,00 1,78 1,79 1,76 1,65 1,43
6-mth OIS 0,96 0,98 0,99 1,00 1,80 1,78 1,68 1,46
12-mth OIS 0,94 0,96 0,97 0,99 1,00 1,79 1,70 1,48

2-yr OIS 0,91 0,93 0,95 0,96 0,98 0,99 1,65 1,46
4-yr OIS 0,87 0,90 0,91 0,93 0,94 0,96 0,99 1,34

Panel C – Principal component analysis of spreads vs. target
1999-2012

Eonia 1-mth 3-mth 6-mth 12-mth 2-yr 4-yr Total
1st PC 0,51 0,80 0,93 0,96 0,93 0,80 0,48 0,77
2d PC 0,86 0,96 0,97 0,96 0,96 0,99 0,91 0,94
3rd PC 0,99 0,96 0,99 1,00 0,98 0,99 0,99 0,98

1999-2008
1st PC 0,03 0,58 0,89 0,93 0,95 0,89 0,63 0,70
2d PC 0,84 0,74 0,90 0,93 0,96 0,93 0,71 0,86
3rd PC 0,99 0,85 0,97 0,96 0,96 0,99 0,95 0,95

207



5.D Computation of the likelihood

Figure 5.3.: Regimes’ estimates

Notes: Panel A compares the model-implied forecasts with the survey-based ones (Consensus Fore-
casts). Panel B displays the (smoothed) probabilities of being in the different monetary-policy regimes.
Panel C shows the smoothed probabilities of being in the excess-liquidity regime. The four vertical
lines reported in Panel C indicate the following dates: 8 October 2008 (introduction of Fixed-Rate Full
Allotment procedures), 3 December 2009 (announcement of the phasing out of the very long-term
refinancing operations), 4 August 2011 (given the renewed financial-market tensions, announcement
of supplementary 6-month LTRO), 8 December 2011 (3-year VLTRO).
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5.D Computation of the likelihood

Figure 5.4.: Changes in monetary-policy regimes and central-bankers’ announce-

ments

Notes: This Figurerelates some specific (estimated) changes in the monetary-policy regimes to specific
central bankers speeches (summer 2008). The grey shaded area corresponds to the (smoothed)
probability of being in the tightening monetary-policy regime. The two vertical bars indicate the
dates of two subsequent ECB governing councils (5 June 2008 and 3 July 2008). The quotation
from J.-C. Trichet comes from the “Questions & Answers” part of the Press Conference held at the
ECB on 5 June 2008. The extract from the Financial Times comes from www.ft.com (article entitled
“ECB raises interest rates to 4.25%”, by Ralph Atkins).

Figure 5.5.: Fitted yield curves and influence of monetary-policy regimes

Notes: These plots compare model-implied (diamonds) with observed (black circles) yield curves at
different dates. In addition, each plot reports the (model-implied) yield curves that would have been
obtained if other monetary-policy regimes had prevailed. The seven circles (and diamonds) correspond
respectively to the following maturities: 1 day, 1, 3, 6 months, 1, 2 and 4 years.
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5.D Computation of the likelihood

Figure 5.6.: Estimated probabilities of regime changes

Notes: These plots show the estimated probabilities of regime change over the next 30 days (period
which includes only one monetary-policy meeting). As detailed in Subsection 5.3.1, these curves
are based on some parametric forms of the target rate r̄t. Each plot displays the historical, or
physical, probabilities as well as the risk-neutral ones. The upper four panels define the probabilities
of monetary-policy-regime changes, the lower two show the target-change probabilities. Altogether,
these probabilities define the matrices Πt and Π∗

t
describing respectively the dynamics of the Markov

chain zt (indicating the current target rate and the monetary-policy regime) under the physical and
the risk-neutral measures.
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5.D Computation of the likelihood

Figure 5.7.: Standard deviations associated with the 3-month-ahead forecasts of the

policy rate

Notes: These plots present the standard deviations (reported in basis points) associated with the
3-month-ahead forecasts of the policy rate. These standard deviations depend on the target rate and
on monetary-policy phase, which illustrates the heteroskedasticity of the policy rate in the model.
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5.D Computation of the likelihood

Table 5.2.: Parameter estimates

Notes: The Tablereports the estimates of the parameters defining the dynamics of the factor under
historical and risk-neutral measures. The estimation data are daily and span the period from January
1999 to February 2012. Standard errors are reported in parenthesis. The sign “*” (after a number)
denotes significance at the 5% level. The parameters ai relate the probabilities of changes in the
policy rate or in the monetary-policy regime to the level of the policy rate (see Subsectionsec. 5.3.1.1
and notably equation 5.2). The parameters that define the risk-neutral dynamics are indicated by *.
The dynamics of the Markov chain zexc,t is defined by pexc,exc and pnorm,norm which are, respectively,
the probabilities of remaining in the excess-liquidity regime and the non-excess-liquidty regime. σfcst
and σpric are, respectively, the standard deviations of the measurement errors ξC

t
and of the pricing

errors ξR
t

(see equation 5.8).

a
∗
1 a

∗
2 k

∗
a1 a2 k

rise in -0 0.11* 0.61 1.2* -0.17* 0.82*

the target (0.81) (0.036) (0.58) (0.23) (0.014) (0.105)

cut in 0.41 0.098* 0.38 -0.00011 0.11* 0.49*

the target (0.46) (0.02) (0.44) (0.31) (0.0104) (0.14)

ES 3.8* 0.4* 3.9* 0.065*

(0.065) (0.022) (0.22) (0.032)

SE 9* -0.87* 9* -1.3*

(0.49) (0.091) (0.32) (0.072)

TS 4.7* 0.25* 4.1* 0.19*

(0.068) (0.018) (0.37) (0.058)

ST 5.3* 0.109 5.4* -0.33*

(0.081) (0.058) (0.16) (0.09)

αP,norm αN,norm βP,norm βN,norm µnorm pnorm

0.76* 0.22* 8.3* 0.86* 0.04* 0.48*

(0.035) (0.0056) (0.13) (0.064) (0.00012) (0.0105)

αP,exc αN,exc βP,exc βN,exc µexc pexc

0.75* 0.5* 4.6* 9* -0.65* 0.55*

(0.05) (0.038) (0.25) (1.6) (0.0012) (0.021)

ρ
∗
1 ρ

∗
2 β

∗
ρ2 σ

0.9999* 0.9999* 16* 0.94* 0.00007*

(0) (0) (6.1) (0.0012) (0.00003)

p
∗
norm,norm p

∗
exc,exc pnorm,norm pexc,exc σfcst σpric

0.9999* 0.9999* 0.99* 0.9999* 0.23* 0.085*

(0.0001) (0.00014) (0.00093) (0) (0.0029) (0.00021)
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Figure 5.8.: Risk-neutral vs. physical policy-rate forecasts, and associated risk

premia

Notes: These plots show the term structures of the forecasts of the policy rate under the physical (grey
circles) and the risk-neutral (black circles) measures. Up to the Jensen inequality, these curves can be
considered as forward rates of the policy rate (as regards the risk-neutral measure). The three columns
of plots correspond to the current (period 0) monetary-policy regime (either tightening, status quo or
easing). The three rows of plots correspond to different (current) policy rates (1%, 2.5% and 3.5%).
Each of the 9 plots presenting the policy-rate forecasts is completed by a plot (placed below the
first plot) of the corresponding risk premia, i.e. the spread between the two forecast curves (in basis
points). 90% confidence intervals are reported. These confidence intervals are based on bootstrap
techniques: the asymptotic distribution of the parameter estimates is used to draw 1000 alternative
sets of parameter estimates that, in turn, are used to compute 1000 sets of alternative risk premia;
the dashed lines correspond to the 5 and 95 percentiles of the obtained risk-premia distributions.
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Figure 5.9.: Simulation of forward-guidance measures

Notes: These plots show the term-structure impact of a central bank’s commitment to keep the
target rate at its current level for 12 or 24 months. Two different policy rates are considered (1%
and 3.5%). For each policy rate (1% or 3.5%) and each commitment durations (12 or 24 month),
two plots are reported: the upper one displays yield curves with/without commitment of the central
bank, the lower plot present the associated downward effect of the forward-guidance measure (that
is the spread between the two curves plotted in the upper plot, in basis points). Note that here,
I abstract from the effects of the excess-liquidity regime (wt) and st is set at 0, its unconditional
level (the rationale behind this is that in my framework, these two latter factors are independent
from the policy rate, which is the only factor affected by the measure). In the baseline as well as in
the counterfactual case, the monetary-policy regime is set to the status-quo regime. Regarding the
downward effect of the measure (lower plots of each pair of charts), 90% confidence intervals are
reported. These confidence intervals are based on bootstrap techniques: the asymptotic distribution
of the parameter estimates is used to draw 1000 alternative sets of parameter estimates that, in turn,
are used to compute 1000 sets of alternative effects of the measure; the dashed lines correspond to
the 5 and 95 percentiles of the obtained downward-effects distributions.
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MS-VAR Markov Switching Vector Auto-Regressive

PD Probability of default

RS Regime Switching

VAR Vector Auto-Regressive model

VaR Value-at-Risk

ZLB Zero lower bound

230


	Contents
	Abstract
	1 Survey of the literature
	1.1 Regime switching: A tool to model non-linear dynamics
	1.2 Regime switching in economics and finance
	1.3 Yield-curve dynamics and regime switching
	1.3.1 Regime shifts in default-free yield-curve dynamics
	1.3.2 Regime shifts in spreads' dynamics

	1.4 Jointly modelling the physical and risk-neutral dynamics of different yield curves
	1.5 Systemic risk, default clustering and contagion
	1.6 Credit-migration modelling
	1.7 Monetary-policy and the yield curve
	1.8 Decomposing the term structure of spreads

	2 Default, liquidity and crises: An econometric frameworkThis Chapter is based on an article featuring the same title, published in the Journal of Financial Econometrics and co-authored with Alain Monfort. We are grateful to Christian Gourieroux, Damiano Brigo, Olesya Grishchenko, Wolfgang Lemke, Andrew Siegel, Simon Dubecq and Hans Dewachter for helpful discussions and comments on previous versions of this paper. We are also grateful to participants at the Banque de France internal seminar, at the C.R.E.D.I.T. conference (Venice) 2010, at CREST seminar 2010, at the Paris finance international meeting 2010, at CORE Econometrics Seminar 2011, at SoFiE annual meeting (Chicago) 2011, at Erasmus University (Rotterdam) 2011 and at Financial Risk Forum (Paris) 2011. We thank Béatrice Saes-Escorbiac and Aurélie Touchais for excellent research assistance. Any remaining errors are ours. The views expressed in this Chapter are ours and do not necessarily reflect the views of the Banque de France.
	2.1 Introduction
	2.2 Information and historical dynamics
	2.2.1 Information
	2.2.2 Historical dynamics

	2.3 Stochastic discount factor and risk-neutral dynamics
	2.3.1 Stochastic discount factor
	2.3.2 Risk-neutral dynamics
	2.4 Pricing
	2.4.1 Defaultable bond pricing with zero recovery rate
	2.4.2 Defaultable bond pricing with non-zero recovery rate
	2.5 Internal consistency (IC) conditions
	2.5.1 IC conditions based on riskless yields
	2.5.2 IC conditions based on defaultable yields
	2.5.3 IC conditions based on asset returns

	2.6 Inference
	2.6.1 Observability
	2.6.2 Estimation methods
	2.6.3 Estimation example: a simple model of the BBB-Treasury spreads


	2.7 Liquidity risk
	2.8 Model extensions
	2.8.1 Multi-lag dynamics for yt and xn,t processes
	2.8.2 Interpretation of a regime as the default state of an entity
	2.8.3 A sector-contagion model
	2.8.4 modelling credit-rating transitions


	2.9 Conclusion
	2.A Proofs of Sections 2.3 and 2.4
	2.A.1 Proof of Proposition 1
	2.A.2 Proof of Proposition 2
	2.A.3 Pdf under the Q world
	2.A.4 The risk-neutral Laplace transform of (zt,yt,xn,t)
	2.A.5 Multi-horizon Laplace transform of a Car(1) process

	2.B Kitagawa-Hamilton algorithm for partially-hidden Markov chains
	2.C Inversion techniques in the presence of unobserved regimes
	2.C.1 Decomposition of the joint p.d.f. and estimation strategy
	2.C.2 Estimation of the parameters (zy,*)
	2.C.3 Estimation of (nx,nd)
	2.D Estimation example: U.S. BBB-AAA corporate spreads
	2.D.1 State-space model
	2.D.2 Estimation results
	2.E About the eigenvectors of the rating-migration matrix 
	3 Credit and liquidity risks in euro-area sovereign yield curvesThis Chapter is based on an article co-authored with Alain Monfort and entitled ``Credit and liquidity risks in euro-area sovereign yield curves''. We are grateful to Christian Gourieroux, Glenn Rudebusch, Damiano Brigo, Olesya Grishchenko, Vladimir Borgy, Valère Fourel, Wolfgang Lemke, Simon Gilchrist, Kristoffer Nimark, Tao Zha, Christian Hellwig, Jean-Sébastien Fontaine and Adrien Verdelhan for helpful discussions and comments. We are also grateful to participants at the Banque de France internal seminar, at the C.R.E.D.I.T. conference 2010, at CREST seminar 2010, at the Paris finance international meeting 2010, at CORE Econometrics Seminar 2011, at 2011 ESEM meeting, at 2011 IESEG-University of Cambridge conference on yield-curve modelling, at AFSE annual meeting, at the Bank of England seminar, at CDC seminar and at the ECB Workshop on Asset pricing models in the aftermath of the financial crisis, at Computational and Financial Econometrics conference (London 2011), at Bank of Canada seminar. We thank Beatrice Saes-Escorbiac and Aurélie Touchais for excellent research assistance. Any remaining errors are ours. The views expressed in this Chapter are ours and do not necessarily reflect the views of the Banque de France.
	3.1 Introduction
	3.2 The model
	3.2.1 Historical dynamics of factors (yt) and regimes (zt)
	3.2.2 The risk-neutral dynamics
	3.2.3 Hazard rates
	3.2.4 Pricing


	3.3 Data
	3.3.1 The KfW-Bund spread
	3.3.2 Euro-area government yields
	3.3.3 Construction of the factors yt

	3.4 Estimation
	3.4.1 Main lines of the estimation strategy
	3.4.2 Historical dynamics of (zt,yt)
	3.4.3 Risk-neutral dynamics

	3.5 Results and interpretation
	3.5.1 The illiquidity intensity

	3.6 Conclusion
	3.A Proofs
	3.A.1 Laplace transform of (zt,yt)

	3.B Sovereign yield data
	3.C Computation of the covariance matrix of the parameter estimates
	3.D Disentangling credit from liquidity risks: the loss function
	4 Credit and liquidity pricing within the financial crisisThis Chapter is based on an article entitled ``Decomposing euro-area sovereign spreads: credit and liquidity risks'', coauthored with Alain Monfort. We are grateful to Christian Gourieroux, Glenn Rudebusch, Thomas Sargent, Vladimir Borgy, Valère Fourel, Wolfgang Lemke, Simon Gilchrist, Kristoffer Nimark, Tao Zha, Christian Hellwig, Jean-Sébastien Fontaine and Adrien Verdelhan for helpful discussions and comments. We are also grateful to seminar participants at the Banque de France, CREST, the Paris finance international meeting 2010, CORE Econometrics Seminar 2011, ESEM annual meeting 2011, IESEG-University of Cambridge conference on yield-curve modeling, AFSE annual meeting, the Bank of England, CDC, the ECB Workshop on Asset pricing models in the aftermath of the financial crisis, Computational and Financial Econometrics conference (London 2011), the Bank of Canada, the Bundesbank. We thank Beatrice Saes-Escorbiac and Aurélie Touchais for excellent research assistance. Any remaining errors are ours. The views expressed in this Chapter are ours and do not necessarily reflect the views of the Banque de France.
	4.1 Introduction
	4.2 The model
	4.2.1 Default events, liquidity shocks and associated intensities
	4.2.2 Historical dynamics of wt
	4.2.3 Stochastic discount factor and risk-neutral (Q) dynamics
	4.2.4 Bond pricing
	4.3 Data
	4.3.1 Overview
	4.3.2 Euro-area government yields

	4.4 Estimation
	4.4.1 State-space form of the model
	4.4.2 Estimation procedure and results

	4.5 Interpretation
	4.5.1 Credit and liquidity crises
	4.5.2 Liquidity intensity and pricing
	4.5.3 Default probabilities

	4.6 Conclusion
	4.A Pricing of defaultable bonds

	4.B Parameter constraints
	4.B.1 Econometric identification of the liquidity factor ,t
	4.B.2 Specification of the matrix of transition probabilities 
	4.B.3 The size of the Gaussian shocks
	4.B.4 The auto-regressive coefficient c
	4.B.5 The standard deviations of the pricing errors
	4.C Relationship between the risk-neutral and historical intensities
	5 A model of the euro-area yield curve with discrete policy ratesWhen writing this Chapter, I have benefited from discussions with Narayan Bulusu, Hans Dewachter, Simon Dubecq, Jean-Sébastien Fontaine, Rodrigo Guimaraes, Imen Ghattassi, Wolfgang Lemke, Andrew Meldrum, Jean-Stéphane Mésonnier, Emmanuel Moench, Benoît Mojon, Fulvio Pegoraro, Francisco Rivadeynera Sanchez, Thomas Sargent, Andrew Siegel and Paul Whelan. I thank participants at Banque de France seminar, at Bank of England seminar, at Canadian Economic Association annual meeting (2012), at AFSE annual meeting (2012) and at ESEM annual meeting (2012), at the ECB workshop ``Excess liquidity and money-market functioning'' (2012), at AFFI Paris finance meeting 2012. I thank Béatrice Saes-Escorbiac and Aurélie Touchais for excellent research assistance. Any remaining errors are mine. The views expressed in this Chapter are mine and do not necessarily reflect the views of the Banque de France.
	5.1 Introduction
	5.2 Data and stylised facts
	5.2.1 The EONIA and the Eurosystem's framework
	5.2.2 The Overnight Index Swaps
	5.2.3 Data sources and treatments
	5.2.4 Preliminary analysis of the yields

	5.3 The model
	5.3.1 The components of the overnight interest rate
	5.3.2 Pricing
	5.4 Estimation
	5.4.1 The state-space form of the model
	5.4.2 Computation of the log-likelihood
	5.4.3 Estimation results

	5.5 Term premia associated with target changes
	5.6 Estimated impact of forward policy guidance

	5.7 Conclusion
	5.A The L distribution
	5.B Multi-horizon Laplace transform of a (homogenous) Markov-switching process
	5.C Pricing formulas
	5.C.1 Computation of P1(t,h)
	5.C.2 Computation of P2(t,h)
	5.C.3 Computation of P3(t,h)
	5.D Computation of the likelihood
	Bibliography
	Nomenclature


















