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Chapter 1

Introduction

This first chapter sets out the context of the research work conducted in this thesis, which is electro-

magnetic modeling of scattering from forest and indicates the main scientific and technical challenges

to be met. We present here the existing 3D full-wave model, developed previously in our lab (L2E :

Laboratory of Electronic and Electromagnetism) in order to pinpoint its weaknesses and explain its

limitations. Then, we justify the choices made to improve the performances of this previous model, by

a quick comparison between the direct and iterative methods. Next we address the novel elements and

the main contributions of this new research work. We conclude this chapter with the thesis outline.

1.1 Context of Application

Forests represent a large part of the earth vegetation coverage. They play a major role in the climate

changes and in the global carbon cycle. Indeed, the evolution of terrestrial biosphere is the least un-

derstood component of the carbon cycle. The greatest uncertainties concern the location and temporal

variation in carbon pools. The forest biomass (mass of the above ground portion of live trees per unit

area) is identified as a crucial information to acquire, since forests are the greatest contributor to the

terrestrial biomass. The contribution of each forest depends mainly on its size and on the number and

species of trees that compose it.

In order to identify the contribution of each forest to the global carbon cycle, researchers have been

deeply interested into the electromagnetic analysis of forest scattering. Hence, several studies have been

conducted to establish a link between the backscattered radar signals and the biomass contained in the

forest under observation [1–6]. They showed that the estimation of the biomass is highly dependent on

the frequency used to observe the forest, and the key conclusion drawn was that lower frequencies are

best suited to this purpose (particularly P and VHF bands). Moreover, they found out that, for these

bands of frequency, the main factors contributing to forest backscatter are the trunks and primary

branches. The contribution of leaves, secondary branches and needles to the measured signal can be

neglected because of the fact that their dimensions are small compared to the incident wavelength.

1
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The polarization is also recognized as an important factor for the evaluation of the forest biomass,

since the HV channel is more sensitive to the variations of this biomass. These studies are based on

the interpretation of experimental data (space/airborne) collected for forest areas whose descriptive

parameters, both geometric and electromagnetic, are not always known. The techniques developed

for this interpretation are often based on polarimetric and interferometric treatments combined with

scattering models based on a simplified representation of the forest (group of cylinders, ellipsoids and

spheres). They are also often dedicated to mono-static radar configurations and are not necessarily

well adaptable to bi-static ones.

On the other hand, numerous research teams have been interested in the developments of "exact"

approaches, or empirical models for the analysis of forest cover. Two types of methods are commonly

used for modeling forest radar backscatter : the first approach is based on the radiative transfer

theory (RT) and the second approach uses the modified Born approximation (DBA). Models using the

radiative transfer theory do not preserve the phase information, since they rely on the transport of

energy in the medium. The most famous model, representative of this approach, is MIMICS (Michigan

Microwave Canopy Scattering) developed at the University of Michigan [7], while in the other side, [8]

is a good reference about the models using the modified Born approximation.

Several studies have also demonstrated that, when we focus on low frequencies (VHF-UHF), we

can legitimately represent a complex forest under radar observation, only by the larger elements of the

illuminated area (trunks and primary branches), since the smaller ones (secondary branches and foliage)

will contribute weakly to the backscattered fields. As example of operational radar in this frequency

band, we can mention here is CARABAS developed by the FOA (Swedish Research Establishment)

(See Figure 1.1b). [9–12].

The approach proposed by our laboratory L2E (Laboratory of Electronics and Electromagnetism)

is quite different in the sense that, initially, the goal was to understand the interactions between an

electromagnetic plane wave and the basic elements of the forest (trunk, primary branches and ground).

Also, we are not only interested in the geophysical application of forest scattering modeling but also

we also want to investigate the military aspect of the forest observation by introducing later a target

under the forest cover. The military application is better known under the name of FoPen for Foliage

Penetration, and has been the subject of numerous research works [13–18] (see Figure 1.1b).

Hence, a rigorous and coherent approach has been adopted with the previous PhD conducted in the

L2E and defended in 2010 by Sami Bellez [19] under the direction of Prof. Roussel. This approach

results in a 3D full-wave model based on the integral volumetric representation of the electric fields

(EFIE). This model aims to focus on the analysis of bi-static scattering mechanisms by a forest in

the VHF and UHF bands. With this 3D full-wave model, no mathematical simplifying approximation

was used while solving the volumetric integral representation of the electric field, in order to take into

account all possible interactions among the scatterers and between the scatterers and the ground. In

the next paragraph, we provide further details about this 3D previous full-wave model.
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(a) BIOMASS (b) FORESTER

Figure 1.1: Two examples of forest scattering applications : On the left, the project BIOMASS
conducted by the European Space Agency (ESA) [20] and on the right FORESTER, the airborne

radar system developed by the American Defence Agency DARPA [17, 18].

1.2 Existing Forest Scattering Model

The previous research works [19, 21–23] aimed to examine the interactions of an electromagnetic plane

wave with a simplified model of a forest medium in a frequency range of 100 to 400 MHz (UHF/VHF).

In the current subsection, we recall simply the theoretical description of the model, including the forest

representation and the integral representation solved by the MoM.

1.2.1 Forest representation

As shown in Figure 1.2, the trees are described by dielectric vertical and tilted cylinders of square cross

section (in a way to discretize it by cubic cells), representing trunks and main branches, respectively.

The trees are placed over a horizontal plane separating two semi-infinite homogeneous media, which

are the air and the forest ground. The effects of leaves, needles, and the roughness of the soil are

ignored in the frequency band under consideration. The orientation of each branch is described by two

angles: β (elevation angle) and α (azimuth angle).

As explained earlier, In order to rigorously characterize the interactions of the forest with a plane

wave of arbitrary polarization, the 3-D full-wave model is based on the volumetric integral representa-

tion of the electric field by using the dyadic Green’s function of a two-layered medium [19, 24, 25].
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(a) Geometry of the forest (b) Dicretization

Figure 1.2: Geometry of the forest before and after discretization. ε1 and ε2 are the free-space and
ground permittivities, respectively, and µ0 is the free-space permeability.

1.2.2 Full-wave model Based on the Integral Representation

The formulation considered previously in [19, 24] is based on the electric-fields integral representation

whose kernel is the Green’s function of a two layered medium. The total field, Et, at any point ÝÑr is

composed of the reference E
ref and the scattered E

s fields,

Et “ E
ref
`E

s (1.1)

Where E
ref is the field present when the trees are removed and is the coherent summation of the

incident field, Ei, and the field reflected from the ground, Er,

E
ref
“ E

i
`E

r (1.2)

The scattered field, Es, is due to the trees occupying a domain Ω made up of the trunks and branches,

and is related to the internal field inside Ω, noted ÝÑE
t
pÝÑr 1q.

E
s
“ r∇∇.` k2

1s

ż

Ω
∆εpÝÑr 1qGpÝÑr ,ÝÑr 1q

ÝÑ
E
t
pÝÑr 1qdÝÑr 1 (1.3)

Here, ∆εpÝÑr 1q= εpÝÑr 1q´ε0
ε0

is the permittivity contrast at the location
ÝÑ
r1 P Ω, k1 is the wavenumber in

air, and GpÝÑr ,ÝÑr 1q is the dyadic Green’s function of the two layers stratified media.

To compute Et, we first have to determine ÝÑE
t
pÝÑr 1q in Ω by solving equation (1.1) when ÝÑr P Ω. This

equation is solved by means of the method of moments. Once ÝÑE
t
pÝÑr 1q in Ω is determined, Es at all

points ÝÑr above the ground interface could be calculated.

1.2.3 The Method of Moment

The integral equation given by (1.1) is solved in [19, 24] by using a Method of Moment. The trees

are discretized, as shown in Figure 1.2b, into elementary cubic cells small enough to consider that the
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field inside is constant. The cell size is equal to or lower than λs/10, where λs is the wavelength inside

the scatterers (see Appendix A). Then the equation (1.1) reduces to a system of 3N linear equations

given by:

3
ÿ

q“1

N
ÿ

n“1

pδmnδpq ´ I
mn

pq q
ÝÑ
E
t
qp
ÝÑr nq “

ÝÑ
E
ref
p pÝÑr mq (1.4)

Where

m,n “ r1...N s ; p, q “ r1...3s

δmn “ 1 if m “ n else δmn “ 0

δpq “ 1 if p “ q else δpq “ 0

I
mn

pq “ r∇∇.` k2
1s∆εp

ÝÑr nq

ż

Vcell

GpqpÝÑr m,ÝÑr
1
nqd
ÝÑr 1n

is the interaction square matrix of size 3N. q and p are the three components x, y or z of the fields,

N is the total number of discretizing cells, m and n are respectively the indices of an observation and

source cells, as well as ÝÑr m and ÝÑr n, are respectively the coordinates of the centers of cells m and n.

Once the elements of the interaction square matrix and the reference field vector are calculated, the

unknown internal field inside the dielectric cells ÝÑE
t
qp
ÝÑr nq can be found by solving (1.4). The scattered

field is obtained by using (1.3) when ÝÑr m is the location of the observation point (position of the

receiving antenna):

ÝÑ
E
s
pp
ÝÑr mq “ r∇∇.` k2

1sˆ

3
ÿ

q“1

N
ÿ

n“1

∆εpÝÑr nq
ÝÑ
E
t
qp
ÝÑr nq

ż

Vcell

GpqpÝÑr m,ÝÑr
1
nqd
ÝÑr 1n

(1.5)

At the end of this subsection, it is interesting to mention that this model was validated by comparing

the results obtained with those derived by FEKO, and then with measurements done in an anechoic

chamber on a scaled model representing the forest [19].

1.3 Challenges and Motivations of the thesis

As mentioned above, the electric-field volumetric integral representation first requires the calculation

of the internal field inside the trees. This field is obtained by using the MoM to solve the electric

volumetric integral equation and this method requires the discretization of trunks and branches into

N elementary cubic cells of side equal to or less than λs/10.

Unfortunately, rigorous numerical methods such as the MoM often become untenable when the

problem becomes so large as to be computationally highly expensive, both in terms of CPU time and

memory. Hence the application of this model was limited to small areas of forest and to low frequencies.
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Indeed, we were not able to carry out simulations with forest simulation scene of N ě Nmax « 13000

on our shared-memory workstation of 42 GB of RAM.

Hence, we can say that the major challenge is to :

Improve as much as possible the performances of the previous 3D dielectric

full-wave model both in terms of computing time and memory storage required,

in order to to handle electrically larger forest simulation scenes than is

possible with conventional MoM for higher frequencies.

In order to respond to this challenge and hence, to improve the performances of the previous model

in terms of computation time and memory use, we propose, in this new research work, to solve the

equation referred to above by using basis functions adapted to the problem of interest, in the context of

the Characteristic Basis Function Method (CBFM) [26, 27]. This method was originally introduced to

the computational electromagnetic community to analyze PEC structures such as microstrip circuits

or patch antennas. Recent studies have shown that CBFM is also an efficient method for solving large

scattering problems involving both PEC and dielectric objects [28–30].

We have chosen this method among others (iterative methods such as FMM [31], MLFMA [32] or

AIM [33] and algebraic algorithm such as ACA [34]) since it enables us to solve the electromagnetic

problem for multiple excitations efficiently. Indeed, it does not require us to repeat the iterative process

anew for each incident angle since. Furthermore, we believe that using a direct solver, as in the case of

the CBFM, is more suitable for our 3D dielectric electromagnetic problem than an iterative solver such

as the MLFMA or the ACA because of potential convergence problem. In fact, the iterative solver may

not converge in some cases, while the direct solver always provides a result [35–37]. That is certainly

the major disadvantage of iterative methods such as the ACA or the FMA which prompted us to drop

it despite its proven strong performances in terms of CPU time and memory storage [38].

Then we also have the fact that some iterative methods requires restrictive conditions on the EM

problem under consideration to ensure the accuracy of the solution. For instance, the ACA, which

is considered as one of the most powerful available numerical method, is theoretically only applicable

to EM problem whose the integral kernels are asymptotically smooth. Consequently, as affirmed in

[34], in a strict sense, the ACA algorithm is not applicable to the electromagnetic wave problems.

Nevertheless, as it has proved itself in numerous previous research works, it is considered as a heuristic

method for this kind of applications [37].

On the other hand, several previous studies have demonstrated the efficiency of the CBFM when

applied to the solution of large electromagnetic scattering problems and have confirmed the advantages

of this direct solution method over the existing iterative methods [39–41]. It is also interesting to note

that the CBFM was successfully improved by hybridizing it with the FMM and the ACA, in the case

of 2D PEC objects [29, 39, 42]. Thus, we benefit at the same time from the advantages of both direct

and iterative solvers.
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In our case, we investigate the suitability of CBFM for the computation of the electromagnetic fields

inside and outside 3D dielectric objects modeling tree trunks in a forest environment. When most

of previous research work, mentioned above, applied the CBFM to 2D scattering problems using the

Rao-Wilton-Glisson (RWG) basis functions, we have applied this new method to 3D dielectric cylinders

in the context of a full-wave model based on the electric field volumetric integral equation.

Therefore, a second major challenge is to :

Investigate the suitability of the CBFM to the computing of electric fields

inside and scattered by dielectric 3D objects and represented by a volumetric

integral equation, and investigate the behaviour of this decomposition domain

method toward the heterogeneity of a natural forest medium.

Consequently, the main novelties, concerning the application of the CBFM, consists of the 3D

volumetric formulation, the dielectric properties of the cylinders modeling an inhomogeneous forest

simulation scene, and finally the application field which is the remote sensing of forest areas.

1.4 Novel elements in the dissertation

In this work, a previous 3D full-wave model for the analysis of forest scattering was enhanced by the

application of the CBFM in the context of a conventional MoM. The novel elements which may be

mentioned are :

- Application of the CBFM to 3D dielectric object modelling tree trunks and branches, starting with

adapting the domain decomposition to the 3D geometry of these trees.

- Comparison between the performances of the CBFM when applied to 3D dielectric objects, with

and without extension along the vertical axis ~z.

- Generalization of the extension for a multilevel CBFM and its implementation with a large forest

simulation scene composed of tree trunks and branches, modelled by dielectric cylinders.

- Application of the Characteristic Basis Function Method (CBFM) on a Non-uniform Mesh, de-

pending on the dielectric properties of the trees.

- Hybridization of the CBFM with the Adaptive Cross Approximation (ACA) algorithm in a context

of 3D dielectric scatterers.

- Comparison of the performances of the CBFM to those achieved by the ACA, preceded by a H-

matrix partitioning of the initial MoM matrix, in when applied to our 3D dielectric forest scattering

model.
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- Enhancement of the performances of our 3D model in terms of computing time through the

implementation of an Open-MP and MPI parallelized FORTRAN code.

Therefore, the developed 3D forest scattering model makes it possible to deal with a substantial

increase in the size of the scattering problems, up to several millions of unknowns, and hence to solve

problems involving much larger forest areas at higher frequencies that were not manageable heretofore

when using conventional methods, e.g., the MoM.

1.5 Outline of the Dissertation

This dissertation is organized as follows. In chapter 2, we detail the numerical procedure of the CBFM

for large scattering problems and we apply its two versions (normal and extended) to our 3D full-wave

model. We display some primary numerical results and then we determine the key parameters to be

handled in order to ensure the accuracy of the CBFM solution, and to guarantee the best performances

in terms of CPU time and memory storage.

Chapter 3 presents the multilevel scheme of the CBFM and stresses the added performance it brings

to the 3D forest model in terms of memory use and computing time.

In Chapter 4, we address the different approaches adopted in order to enhance the performances of

the CBFM, when applied to our 3D dielectric forest scattering model. These approaches encompass

the implementation of the CBFM on a non-uniform mesh depending on the dielectric properties of the

trees, the hybridazation of the CBFM with the ACA while generating the final reduced matrix and

the acceleration of the CBFM FORTRAN code essentially by its OpenMP then MPI parallelization.

The chapter 5 illustrates a comparison between the CBFM based on a direct solver and the iterative

method ACA.

Finally, conclusions and perspectives are drawn in Chapter 6.



Chapter 2

Application of the Characteristic Basis

Function Method to 3D forest model

In this chapter, we apply the Characteristic Basis Function Method (CBFM) to compute the electromag-

netic field scattered by 3D dielectric objects in the context of forest scattering simulation. We study the

effect of some CBFM parameters on the accuracy of the results, and on the performances of the CBFM

when compared to the classical MoM. We show that once the CBFM parameters have been appropriately

chosen, this new method realizes a significant reduction both in terms of CPU time and memory use,

while maintaining a level of accuracy comparable to that of the conventional MoM. Consequently, the

CBFM enables us to handle larger forest area simulation scenes than is possible with classical MoM for

higher frequencies.

2.1 Overview of the Method

The Characteristic Basis Function Method (CBFM) [26, 28], is designed to solve large-scale electro-

magnetic problems [29], even with limited computing resources. The CBFM uses a type of macro basis

function [27, 43] named the Characteristic Basis Function. The use of these basis functions leads to a

significant reduction in the initial number of unknowns, and results in a substantial size reduction of

the MoM matrix such that a direct method can be used for its inversion [30, 44].

Even if the object is electrically large, the user can suitably decompose the under consideration

geometry into M patches, and then use the CBF Method to reduce the size of the matrix equation. A

number of previous studies on the efficiency of the CBFM when solving scattering problems involving

dielectric objects have been carried out [27, 29, 30, 44]. In the present work, we investigate the

suitability of the CBFM for the computation of the electromagnetic field scattered by 3D dielectric

objects representing the trees in a forest environment.

9
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2.1.1 Motivation and advantages

Rather than solving the entire problem in a semi-iterative way, the CBFM creates a single reduced or

compressed matrix which can be inverted by using the conventional LU decomposition algorithm.

Using the CBFM, the linear equation arising from the MoM can be compressed into a reduced linear

equation with M2 unknowns, where M is the number of patches that the CBFM creates to partition

the object. Thus, in the CBFM, the size of the resultant linear equation to be solved does not directly

depend on the dimension of the object. Rather, it depends only on the number of imaginary sub-

domains that the CBFM creates to subdivide the object. This property enables the CBFM to solve

large-scale electromagnetic problems even when using limited computing resources [27, 43].

Our work is based on the version of the CBFM that has been tailored to solve scattering problems,

as opposed to RFIC-types [27] for which the CBFM was originally introduced. The CBFs we introduce

serve as a basis set which does not depend on the incident angle. They are computed by using a

spectrum of plane-waves incident from several possible directions. Initially we do not include buffered

regions as in conventional versions of the CBFM [28]. This first form of application of the CBFM will

be referred to as CBFM-N (Normal CBFM). Next, buffered regions are added in order to mitigate the

problem of edge effects arising from the boundaries of the CBFM blocks. This version of the CBFM

will be referred to as CBFM-E (Extended CBFM).

A comparative study of CBFM-N and CBFM-E is carried out in this chapter by computing the

electromagnetic fields inside 3D dielectric objects representing the trunks and the main branches of the

trees. The scattered fields are derived by solving the electric field integral equation (EFIE). In common

with our previous works [24], the tree trunks and the branches are modeled as dielectric cylinders of

square cross-section. The results obtained by using the two CBFM techniques are compared with the

solution derived by using a legacy MoM code to validate the CBFM results.

2.1.2 The CBFM formulation

As detailed in the description of the 3D modeling approach presented previously in [24], the first step

consists of the dicretization of the tree trunks and branches, modeled as dielectric cylinders, into N

elementary cubic cells small enough to assume that the electric field inside is constant. Hence the cell

size is taken to be less than or equal to λs
10 , where λs is the wavelength inside the scatterer. The linear

system resulting from the application of a Method of Moments (MoM) can be expressed as:

ZE “ Eref (2.1)

where Z is the 3N ˆ 3N full matrix representing the interactions between the different cells in the

cylinders. Eref is the excitation field of size 3N and E is the unknown solution vector of size 3N that

contains information about the total electric field inside the scatterers in the ~x, ~y and ~z directions.
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The CBFM procedure begins by dividing the 3D geometry of the scatterers into M blocks as shown

in Figure 2.1 such that the MoM matrix for each block is manageable in size and therefore could be

easily handled by using a conventional direct solver.

X 

y 

z 

Figure 2.1: 3-dimensional rectangular dielectric object divided into M = 4 blocks

A set of Macro-domain Basis Functions [44] is defined on each block which make up the dielectric

object. To derive a set of macro basis functions which is invariant to the direction of incidence of the

electric field, each block is illuminated by a sufficient number of plane waves impinging upon the object

at different angles of incidence, as shown in Figure 2.2, to generate the macro basis functions for all

blocks.

Because of the wide number of plane waves used, the MBFs would in general have a certain level

of redundancy. To mitigate this problem, we apply Singular Value Decomposition (SVD) algorithm

to the set of MBFs to down-select the number of basis functions and remove the redundancy in the

process [27, 43].

A threshold is set for the normalized singular values of each block and only a small set of dominant

macro basis functions is retained to represent the unknown field and are used as the CBFs for the

individual blocks. These new CBFs enable us to construct a linear set of equations, which is reduced

as compared to the initial one generated by the EFIE using traditional low-level basis functions.
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Figure 2.2: A 3-dimensional rectangular dielectric individual block illuminated by Nθ ˚ Nϕ “ 861
plane waves at equally spaced discrete angles around the object dθ “ dϕ “ 90.

2.1.3 The CBFM numerical procedure

To illustrate the method, let us consider a vertical dielectric cylinder of square cross section comprised

of N cells. We can rewrite the matrix equation (2.1) as :

N
ÿ

n“1

ÿ

q“1

Zmn
pq Eq

n “ Eref ,m
p where p, q “ x, y, z and m,n “ r1, ..., N s (2.2)

Instead of inverting the 3N ˆ 3N matrix Z to solve the equation (2.1), which arises from an ap-

plication of the Method of Moments (MoM) to the EFIE, we apply the Characteristic Basis Function

Method, initially without including extensions, or buffered regions.

We divide the scatterer geometry in M “ 4 blocks as shown in Figure 2.3. The coefficient matrix Z

is then divided into M2 = 16 blocks grouping MoM matrix elements belonging to the 4 blocks.
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Figure 2.3: The coefficient matrix Z is divided in 16 blocks grouping MoM matrix elements belonging
to four blocks.

2.1.3.1 Creation of Macro Basis Functions (MBFs)

To create the macro basis functions for each block, we illuminate the dielectric cylinder by NIPWs “

Nθ ˆNϕ “ 91 incident plane waves of frequency f , for dθ and dϕ equally spaced incident angles (here

dθ “ dϕ “ 300 so Nθ “ 7 and Nϕ “ 13.) The MoM matrix elements that belong to each block can

be easily computed and stored as a 3Nblock ˆ 3Nblock matrix named Zblock or Zii, where Nblock is the

number of elementary cubic cells per block. Next, the NIPWs macro basis functions are determined

for each block by solving the following linear system of equations:

ZiiE
MBFs
ii “ Eref,IPWs

ii (2.3)

where Eref,IPWs
ii is a 3Nblock ˆNIPWs matrix representing the plane waves excitations and EMBFs

ii is

a 3Nblock ˆNIPWs matrix representing the macro-domain basis functions (MBFs).

To better understand the computing procedure of the NIPWs (NθˆNϕ) MBFs, the matrix equation

(2.3) can also be written as follows :

ZiiE
pθ,ϕq
i “ E

ref,pθ,ϕq
i for θ “ 1, 2, ..., Nθ and ϕ “ 1, 2, ..., Nϕ (2.4)

Block matrix equations in (2.4) are used for computing Nθ ˆNϕ MBFs for each block by inverting

this same equation as follows:

E
pθ,ϕq
i “ Z´1

ii E
ref,pθ,ϕq
i for θ “ 1, 2, ..., Nθ and ϕ “ 1, 2, ..., Nϕ (2.5)

The macro basis functions Epθ,ϕqi for each block i for all angles of incidence of Epref,pθ,ϕqqi are com-

puted. If there are N1, N2, ...NM cells in each block, inverting equation (2.4) would yield M sets of

macro basis functions. We arrange the NIPWs = Nθ ˆNϕ macro basis functions of the ith block in a
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matrix named Ei or Eblock.

Ei “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

Ei,θ1,ϕ1
1 Ei,θ2,ϕ1

1 ¨ ¨ ¨ E
i,θNθ ,ϕ1

1 Ei,θ1,ϕ2
1 ¨ ¨ ¨ E

i,θNθ ,ϕNϕ
1

Ei,θ1,ϕ1
2 Ei,θ2,ϕ1

2 ¨ ¨ ¨ E
i,θNθ ,ϕ1

2 Ei,θ1,ϕ2
2 ¨ ¨ ¨ E

i,θNθ ,ϕNϕ
2

Ei,θ1,ϕ1
3 Ei,θ2,ϕ1

3 ¨ ¨ ¨ E
i,θNθ ,ϕ1

3 Ei,θ1,ϕ2
3 ¨ ¨ ¨ E

i,θNθ ,ϕNϕ
3

...
...

. . .
...

...
. . .

...

Ei,θ1,ϕ1

Ni
Ei,θ2,ϕ1

Ni
¨ ¨ ¨ E

i,θNθ ,ϕ1

Ni
Ei,θ1,ϕ2

Ni
¨ ¨ ¨ E

i,θNθ ,ϕNϕ
Ni

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

(2.6)

We have to mention that this procedure, due to the presence of the inversion operation on the matrix

Zii, turns out to be computationally expensive though it is expected to consume much less computation

time and memory than needed in the Method of Moments. This problem may be solved via the use

of the sparse representation, which consists of approximating the inversion with a vector-vector simple

division. Thus instead of inverting the matrix given by (2.4), the macro basis functions for each block

are expressed as :

rE
pθ,ϕq
i “

E
ref,pθ,ϕq
i

Ziii
for θ “ 1, 2, ..., Nθ and ϕ “ 1, 2, ..., Nϕ (2.7)

Previous works [27, 43] have shown that using the sparse representation leads to results that are not

always sufficiently accurate. Hence, in our work, we will initially construct macro-basis function by

inverting (2.4), rather than resorting the sparse approximations.

2.1.3.2 Generation of Characteristic Basis Functions (CBFs)

The number of plane waves used to generate the macro basis functions generally exceeds the degrees

of freedom associated with each block. Consequently, we need to remove the redundancy in the macro

basis functions to improve the condition number of the final reduced matrix. Toward this end, we

compute a new set of characteristic basis functions that are linear combinations of the original macro

basis functions by retaining the dominant ones using the Single Value Decomposition (SVD) algorithm

[27]. Applying the SVD to the macro basis functions in (2.6) leads to:

Ei “ U piqSpiqV piqH

where

U piq “ pu1, u2, ¨ ¨ ¨ , unq P CNiˆNi

V piq “ pv1, v2, ¨ ¨ ¨ , vnq P CNIPWsˆNIPWs

Spiq “ diagpσ1, σ2, ¨ ¨ ¨ , σpq P RNiˆNIPWs and p “ minpNi, NIPWsq

(2.8)

where U piq and V piqH are rectangular orthogonal matrices. Spiq is a diagonal matrix containing singular

values of Epiq such as :

σ1 ě σ2 ě σ3 ¨ ¨ ¨ ě σp
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Next, the singular values are normalized by dividing them by the maximum value σ1, to obtain the p

normalized values of σ :

σNormalizedj “
σj
σ1

for j “ 1, 2, ¨ ¨ ¨ , p (2.9)

We then apply a threshold to the normalized singular values and discard the values (set them equal

to zero) that fall below the threshold, which is typically chosen to be 10´3 or 10´4, depending on

the level of accuracy we desire. This filtering process of eliminating the post-SVD CBFs enables us

to further reduce their redundancy and, consequently, improve the condition number of the reduced

matrix. If we retain Si normalized singular values for the ith block, then the first Si columns of U piq,

denoted by Ci in (2.10) are used as characteristic basis functions for the block i. Following the above

detailed procedure, we construct K primary basis functions (where K “
řM
i“1 Si).

Cpiq “

¨

˚

˚

˚

˚

˚

˝

C
piq
1,1 C

piq
1,2 ¨ ¨ ¨ C

piq
1,Si

C
piq
2,1 C

piq
2,2 ¨ ¨ ¨ C

piq
2,Si

...
...

. . .
...

C
piq
Ni,1

C
piq
Ni,2

¨ ¨ ¨ C
piq
Ni,Si

˛

‹

‹

‹

‹

‹

‚

(2.10)

In the next paragraph, we will use these CBFs to create, using the Galerkin method, the final

reduced matrix of size K ˆK. For our example M “ 4 , the size of the generated reduced matrix is

pK “ S1 ` S2 ` S3 ` S4q
2. The generation of the reduced matrix will be discussed bellow.

2.1.3.3 Generation of the reduced matrix equation

As explained above, we generate our K characteristic basis functions for the M initial blocks (where

Si is the number of CBFs for the ith block and K “ S1`S2` .....`SM ). Then the next step consists

of generating the reduced K ˆK matrix equation for the unknown complex coefficients αpiqk by using

the Galerkin method. This procedure results in a reduced matrix equation given by :

Zcα “ V c ; where α “
M
ÿ

i“1

α
piq
k is a vector of dimension K (2.11)

To generate this matrix, referred to herein as Zc, we need to combine the original MoM matrix and

the K characteristic basis functions by using the Galerkin method as follow:

Zc “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

Cp1qtZ11C
p1q Cp1qtZ12C

p2q ¨ ¨ ¨ Cp1qtZ1MC
pMq

Cp2qtZ21C
p1q Cp2qtZ22C

p2q ¨ ¨ ¨ Cp2qtZ2MC
pMq

Cp3qtZ31C
p1q Cp3qtZ32C

p2q ¨ ¨ ¨ Cp3qtZ3MC
pMq

...
...

. . .
...

CpMqtZM1C
p1q CpMqtZM2C

p2q ¨ ¨ ¨ CpMqtZMMC
pMq

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

(2.12)
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Here Cpiq is a 3Ni ˆ Si matrix which contains the Si characteristic basis functions corresponding

to the Ni cells of block i. Zij where pi ‰ jq is the coupling matrix linking blocks i and j, and Zii is

the self-coupling matrix of block i. The product CpiqtZijCpjq is then an Si ˆ Sj matrix. The initial

matrix is reduced to a K ˆK final matrix (K “ S1`S2` ¨ ¨ ¨ `SM ) . Note also that Zc is diagonally

symmetric and the use of this property saves time during its generation but also memory space needed

to store it. Following this, we generate Vc, the right hand-side of the equation (2.11), of size Kˆ1. We

do this by combining the original Eref of equation (2.2) and the K characteristic basis functions using

the Galerkin method. We should distinguish between Eref of equation (2.2) representing the plane

waves excitations for which we calculate the total electric field inside the object in each direction (~x,

~y), and ~z, and Eref,IPWs
ii of equation (2.3) representing the NIPWs (NIPW “ Nθ ˆ Nϕ) plane waves

excitations used to compute the characteristic basis functions (CBFs).

V C “

´

Cp1qtV1 Cp2qtV2 ¨ ¨ ¨ CpMqtVM

¯T
(2.13)

The next step is to solve the reduced matrix equation given by (2.11). We compute theKˆ1 complex

coefficient vector α (Si coefficients for each block i). For our example with M “ 3, we compute so

K “ S1 ` S2 ` S3 complex coefficients αk.

2.1.3.4 Computing of the total electric field inside the object

In the final step, we compute the total electric field inside the object in each direction ~x, ~y and ~z. This

field can be expressed as a linear combination of the K CBFs weighted by the K complex coefficients

α obtained previously. It is given by :

E “

¨

˚

˚

˚

˚

˚

˝

řS1
k“1 α

p1q
k C

p1q
k

řS2
k“1 α

p2q
k C

p2q
k

...
řSM
k“1 α

pMq
k C

pMq
k

˛

‹

‹

‹

‹

‹

‚

(2.14)

Here
řSi
k“1 α

piq
k C

piq
k is a 3Ni ˆ 1 vector representing the total electric field inside the block i corre-

sponding to a given plane wave excitation. We hence compute the total electric field inside the object

in the 3 directions ~x, ~y and ~z using the simple or “normal" version of the CBFM termed CBFM-N.

2.1.4 The extended CBFM : improved version of the CBFM-N

In order to improve the above CBFM procedure, namely CBFM-N, each block i is extended, along the

vertical axis ~z, by including a buffered region to form an extended block represented by the Ni,eˆNi,e

matrix Ze (see Figure 2.4). Once again, we follow the same procedure as the one applied in the CBFM-

N. In this case, the matrix Cpiq (2.10) for block i is a 3Ni,eˆSi matrix. We return to the original block
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Figure 2.4: The coefficient matrix Z is divided in 16 blocks. Note the extension of each block to
include a buffer region to form the extended block Ze.

size Ni when generating the reduced KˆK matrix of equations (2.11) and (2.12). This new procedure

is termed CBFM-E, i.e., extended CBFM. As indicated in [28] (where the extension is applied to a 2D

structure), the extension of the CBFM block enables us to mitigate the problem of singular behavior

of the current distribution introduced by the truncation that creates fictitious edges.

2.1.5 Primary validation of the CBFM compared to a classical MoM

In order to compare the performances of the CBFM-N and CBFM-E, we apply them to a simple

scattering example composed of one tree trunk, for which we use the scattering model of trunks

above a ground. For this model which has been previously employed in the L2E laboratory, the tree

trunks and branches are represented by finite-length dielectric cylinders of square cross-section and the

ground is modeled by a horizontal plane separating two semi-infinite homogeneous media. Realistic

natural conditions can be described by this model while using appropriate settings of its parameters.

Some of these parameters are the dielectric permittivities associated with the cylinders and with the

plane interface. Previous studies on forest terrain modeling [13, 14], have shown that these relative

permittivities depend on the humidity of the forest environment, which increases with the rainfall rate.

Thus, based on these studies, we assume that trees trunks and moist soil can be correctly simulated

in the VHF/UHF band by using the relative dielectric parameters εs “ 9.6` 0.01j and εg “ 5` 3.6j,

respectively.

We first apply the CBFM-N and CBFM-E for this example of a homogeneous dielectric cylinder of

square section, whose dimensions are 0.09 ˆ 0.09 ˆ 2.7 m3, and which is shown in Figure 2.5. The

frequency of the incident plane wave is equal to 300 MHz. To compute the total electric field inside

the object by using the CBFM procedure, the cylinder representing the tree trunk is discretized into

810 elementary cubic cells, and then divided along the vertical axis into three blocks. Each block is

illuminated by NIPWs “ Nθ ˆNϕ “ 380 incident plane waves with an angular step of dθ “ dϕ “ 200

(0 ď θ ď 1800 and 0 ď ϕ ď 3600). The field calculation is carried out for both vertical and horizontal
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polarizations. The simulations have been carried out on a shared memory workstation equipped with an

Intel Core (TM) i7-2640M (4 processors) running at 2.80 GHz, and using 8 GB of RAM. The simulation

conditions are listed in Table 2.1. Note that the size of the buffered region, for the CBFM-E, is named

here Nberext,floors for number of extended floors along the vertical axis ~z.
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Figure 2.5: A vertical cylinder measuring 0.09 ˆ 0.09 ˆ 2.7 m3 placed over a real ground plane of
relative permittivity εg “ 5` 3.6 j.

Table 2.1: Simulation conditions applied to a vertical cylinder placed above a real ground

Cylinder dimensions 0.09ˆ 0.09ˆ 2.7 m3

Cylinder permittivity εs “ 9.6` 0.01j

Ground permittivity εg “ 5` 3.6j

λ scatterer λs “ 0.048 m

Cell size Tc “ 0.03 m

Number of Cells Nbc “ 810 cells

Number of blocks NB “ 3 (from bottom to top)

Number of extended floors Nberext,floors “ 4

Number of plane waves NIPWs “ Nθ ˆNϕ “ 380

The normalised singular values retained after singular value decomposition (SVD) and normalization

(using a threshold σ “ 10´3) with the CBFM-N and CBFM-E are represented in Figure 2.6. Hence,

the application of the Galerkin procedure (equation (2.12)) results in a reduced matrix Zc111ˆ111 for

the CBFM-N, and Zc119ˆ119 for the CBFM-E. The total electric fields inside the dielectric cylinder

obtained for the incidence direction (θi “ 450; ϕi “ 400) by the CBFM-N and CBFM-E procedures,

are compared with the MoM results, in Fig. 2.7, as functions of the vertical axis z. Figure 2.7 shows

that the total electric field computed with the CBFM matches relatively well with the MoM solution

with some oscillations localized around the boundaries of the blocks, especially when using the CBFM-

N (z “ 0.9 m and z “ 1.8 m). However, we note that the insertion of buffered regions in the CBFM-E

procedure results in a significant reduction of these oscillations; consequently, the results from the

CBFM-E are much closer to those derived by using MoM.
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(a) CBFM-N (b) CBFM-E

Figure 2.6: Using the CBFM-N (a) and the CBFM-E (b), we represent, on the log y-axis, the
normalized singular values for the 3 blocks ( NIPWs “ 380 and Nberext,floors “ 4 for the CBFM-E.

(a) EVx (b) EHy

(c) φVx (d) φHy

Figure 2.7: Variations of the magnitudes and phases of the electric field inside the cylinder for
x “ y “ ´0.03 m computed for (θi “ 450; ϕi “ 400) with the CBFM-N, CBFM-E and MoM.
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Table 2.2 presents a comparison of the two CBFM schemes with the MoM. For this example, we

have employed a combination of 6400 transmitters-receivers (10 ď θi ď 800 and 10 ď ϕi ď 800), as

shown in Fig. 2.8. The distance separating the transmitters-receivers from the target, namely Rt,r, is

equal to 2000 m. It has the same value for all the simulations performed in this work.

Table 2.2: Performance comparison of CBFM and MoM in terms of final matrix size, computing
time and accuracy

Z size Computation time Er,max

CBFM-N 111 5 min 3.09 %

CBFM-E 119 6 min 0.44 %

MoM 2430 1 hour 3 min –
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Figure 2.8: The electric fields inside the dielectric cylinder are computed for 6400 transmitters-
receivers.

We compute Er, the relative error introduced by the CBFM-N and the CBFM-E, for the three

components (x, y and z) of the electric field inside the scatterer, for both polarizations (V and H), for

a given incident direction. The relative error with that of the MoM is defined as follows:

Er “
1

N

Np
ÿ

i“1

|EiCBFM ´ E
i
MoM |

|EmaxCBFM,MoM |
(2.15)

where EiCBFM and EiMoM are the complex electric fields inside the object computed, respectively, by

using the CBFM-N or CBFM-E, and MoM. EmaxCBFM,MoM is the maximal value of the magnitude of

the electric field and Np is the number of calculation points ( number of ~z positions for which the field

inside the scatterer is computed).
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Hence, Er,max is the maximal value of Er obtained by considering each component pEx, Ey, Ezq and

both polarizations (V V and HH)of the electric field. Er,max displayed in Table 2.2 corresponds to the

incident direction (θi “ 450; ϕi “ 400).

(a) EV V (b) φV V

(c) EHH (d) φHH

Figure 2.9: Variations of the magnitude and phase of the backscattered field computed with the
CBFM-N, the CBFM-E and the conventional MoM for an azimuth angle ϕi “ 400 for f “ 300 MHz

and Rt,r “ 2000 m.

We note that, in addition to yielding accurate results, the CBFM enables us to achieve a significant

gain in terms of computation time. In fact, the more complex the problem is, the more significant is

the gain realized by the CBFM, in terms of the CPU time over that of the MoM. The CBFM gains the

advantage over the MoM, since the latter requires the inversion of a large matrix whose size increases

with the number of cells as well as the number of incident angles.

Next, we compare the magnitude of the total backscattered electric field, for the mono-static case

with θi “ r1
0; 10; 800s and ϕi “ 400. Fig. 2.9 shows that the results obtained with the both CBFM

procedures are in good agreement with those derived by the conventional MoM. However, we also
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distinguish a noticeable, albeit slight, difference between the MoM and the CBFM-N results, which

confirms that the CBFM-E is more accurate than the CBFM-N.

Next, we carry out six simulations for the current example to demonstrate the relationship between

the number of points and the computation time while we increase the number of transmitters. The

results, shown in Table 2.3, attest to the fact that the gain in computing time achieved in favour of the

CBFM, increases with the number of calculation points. This represents an additional advantage of the

CBFM when compared to the conventional MoM. Indeed, this new advantage is gained because of the

fact that the computation of the fields inside the scatterers, for different angles of incidence, is carried

out one at a time, thanks to the CBFM approach to handling the problem at hand (see equation 2.14).

This fact not only makes the computation faster, but it also enables us to parallelize the computation

of these fields. On contrast to this, with the conventional MoM, the field computation is performed in

a single block for all the incident directions via the use of a direct solver for linear system of equations,

e.g., the Lapack subroutine GESVX.

NRHS 91 273 546 1001 1911 4641
CBFM-N 9 sec 17 sec 29 sec 52 sec 1 min 32 sec 3 min 45 sec
CBFM-E 13 sec 21 sec 35 sec 58 sec 1 min 56 sec 4 min 1 sec
MoM 55 sec 2 min 38 sec 5 min 31 sec 9 min 38 sec 18 min 44 sec 46 min 35 sec

Table 2.3: Computation time while increasing the number of right hand side NRHS (transmitters)

To complete the discussion of this example, and to confirm the observations we have presented

earlier in regard to the CBFM-N and the CBFM-E, we present the variations of the magnitude of the

backscattered fields by a single cylinder of dimensions 0.004 ˆ 0.004 ˆ 0.144 m3, at f “ 2 GHz, for

different incident angles (θi “ r00; 10; 890s and ϕi “ r00; 10; 3590s) for the two polarizations V V and

HH (see Figures 2.10, 2.11 and 2.12).

Figure 2.10: The mono-static configuration used to compute the total backscattered electric field
θi “ r0

0; 10; 890s and ϕi “ r00; 10; 3590s.
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(a) CBFM-N (b) CBFM-E (c) MoM

Figure 2.11: Variations of the magnitude of the backscattered fields for the VV polarization, computed
with the CBFM-N, CBFM-E and MoM and depending on (ϕi,θi).

(a) CBFM-N (b) CBFM-E (c) MoM

Figure 2.12: Variations of the magnitude of the backscattered fields for the HH polarization, computed
with the CBFM-N, CBFM-E and MoM and depending on (ϕi,θi).

In this section, we have introduced and have validated two CBFM-based procedures and compared

their performances to that of a conventional Method of Moments. The application of the CBFM to

this simple example, provides a good indication of the advantages of the CBFM from the point of view

of the computation time.

Furthermore, we expect that this benefit would be even greater when we solve larger and more

complex problems. Larger simulation scene will be considered at the end of this section.

Next, since we need to maintain an admissible level of accuracy of the CBFM comparing to the

conventional MoM, next, we discuss how to choose some of the parameters in the CBFM-E procedure

to ensure that the desired accuracy is realized. The simulations shown in the next sub-section, have

been performed by using a Fortran program on a shared memory workstation equipped with an Intel

Xeon x5560 (8 tasks) running at 2 GHz, and using 48 GB of RAM.
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2.2 Factors affecting the CBFM performance

In this section, we investigate some CBFM parameters to see how they affect the accuracy of the

results, as well as the performance of CBFM when compared with the MoM in terms of computing

time and required memory resources.

2.2.1 Choosing the number of plane waves NIPWs:

For both the V- and H- polarizations, the number of plane waves NIPWs, that are used to generate the

CBFs for each block, is a crucial factor. This factor has a significant effect on the computation time

and the accuracy of the results obtained with the CBFM. Previous studies on sampling criteria for the

fields radiated by resonant antennas and scatterers [45] have shown that the fields must be sampled

with a minimum of 2pkr0 ` 2πq2 values for each polarization, where k is the wave number and r0 the

radius of the minimum sphere enclosing the antenna or scatterer under consideration. To verify the

validity of this rule for 3D cylindrical objects, we gradually increase the height of a cubic cylinder, or

its half-height r0, viewing it as a single CBFM block. We estimate the number of plane waves needed

to generate the CBFs by increasing the number of plane waves for each height and consequently r0

until the number of CBFs that survive the SVD procedure remains practically unchanged [41]. Then,

we plot the progression of the number of plane waves, NIPWs depending on the ratio
r0

λs
as shown in

Figure. 2.13. We note that the number of plane waves needed to ensure the accuracy of the method

for the cubic cylinder is considerably lower than the theoretical limit mentioned above. The numerical

experiment has been performed at the frequency f “ 450 MHz, by analyzing a single block cylinder

placed over a dielectric ground of complex relative permittivity of εg “ 5 ` 2.1j. The cylinder has a

complex relative permittivity of εs “ 6.5`0.24j, hence, the wavelength inside the scatterer is λs “ 0.261

m.
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Figure 2.13: Number of plane waves (NIPWs) needed for the CBFM process versus the ratio
r0
λs

(where r0 is the half height of the block).
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In order to check the validity of these results, we perform two different simulations of the same

homogeneous dielectric cylinder whose dimensions are 0.12 ˆ 0.12 ˆ 6.2 m3 always with a complex

relative permittivity of εs “ 6`0.24j and placed over a dielectric ground of complex relative permittivity

of εg “ 5 ` 2.1j. As for the example of Figure 2.13, the wavelength inside the scatterer is equal to

λs “ 0.261 m. For the first simulation, the scatterer is divided into 2 blocks of height h “ 3.1 m each

(r0 “ 1.55 m), which corresponds to
r0

λs
« 6 . According to the results shown in Figure 2.13, the

accuracy of the CBFM process is ensured starting from NIPWs “ 992 incident plane waves. For the

second simulation, the scatterer is divided into 10 blocks each with a height h “ 0.62 m (
r0

λs
« 1.2).

According to Figure 2.13, for this case, NIPWs “ 182 incident plane waves should suffice to guarantee

results are accurate.

For each simulation, three numerical experiments with three differentNIPWs values have been carried

out. The NIPWs values chosen refer to the results plotted in Figure 2.13. These experiments enabled

us to determine the accuracy obtained with the retained NIPWs values, depending on
r0

λs
and the block

height h.

The conditions of the experiments carried out are listed in table 2.4.

NIPWs

Simulation 1 NBlocks “ 2 Ñ
r0

λs
« 6 Ñ NIPWs,needed “ 992 [650 ; 992 ; 1406]

Simulation 2 NBlocks “ 10 Ñ
r0

λs
« 1.2 Ñ NIPWs,needed “ 182 [182 ; 380 ; 462]

Table 2.4: The simulation conditions applied to two vertical cylinder placed over a real ground.

2.2.1.1 Simulation 1

The magnitudes and phases of the total electric field inside the dielectric cylinder have been obtained

for the incident angle (θi “ 300; ϕi “ 00) with three different NIPWs values, by using the CBFM-E

procedure. A comparison of these results with those derived by using the MoM are plotted in Figure

2.14. Table 2.5 also provides a comparison of the relative error (%) introduced by the CBFM-E with

that of the MoM for the 3 numerical experiences that we have performed.

The results plotted in Figures 2.14 confirm the estimates of the NIPWs values, given in Figure 2.13,

needed to be retained to obtain the desired accuracy. We note that using NIPWs “ 992 incident

plane waves for the generation of the characteristic basis functions (CBFs) is adequate to ensure the

accuracy of the CBFM-E. This conclusion is further strengthened by observing the backscattered field

for a mono-static configuration, with θi,s “ r0
0; 10; 890s and ϕi,s “ 00. The results plotted in Figure

2.15 show that CBFM-E achieves an excellent level of accuracy with NIPWs “ 992.
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Relative error with the CBFM-E (%) CPU time (sec)

NIPWs ErVx ErVy ErVz ErHx ErHy ErHz –

650 0.88 2.01 8.11 0.2 0.52 3.21 963

992 0.2 0.24 1.16 0.17 0.18 1.59 1315

1406 0.21 0.22 1.56 0.15 0.23 1.64 1996

Table 2.5: The relative error introduced with the CBFM-E for the three values of NIPWs.

(a) EVz (b) EHy

(c) φVz (d) φHy

Figure 2.14: A comparison of the magnitudes EVz and EHy and the phases φVz and φHy of the electric
field inside the scatterer for x “ y “ ´0.045 m computed for (θi “ 300; ϕi “ 00) with the CBFM-E

and MoM and with three NIPWs values (650, 992 and 1406).
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(a) EV V (b) EHH

Figure 2.15: The magnitudes of the backscattered field computed for θi,s “ r00; 10; 890s and ϕi,s “ 00

by the CBFM-E and with the 3 NIPWs values (650, 992 and 1406).

2.2.1.2 Simulation 2 :

For the second simulation, we follow the same lines as in the previous case and derive the magnitude

and phase of the total electric field inside the same dielectric cylinder obtained for the incident angle

(θi “ 300; ϕi “ 00), for three different NIPWs values. The results computed with the CBFM-E are

compared with those obtained from the MoM in Figure 2.16. The relative error (%) introduced by the

CBFM-E compared to the MoM for the three numerical experiments is represented in Table 2.6.

Relative error with the CBFM-E (%) CPU time (sec)

NIPWs EVx EVy EVz EHx EHy EHz –

182 0.81 0.82 1.69 0.29 0.33 0.58 185

380 0.33 0.39 1.03 0.17 0.19 0.47 217

462 0.39 0.34 1.08 0.14 0.2 0.37 218

Table 2.6: The relative error introduced with CBFM-E for the 3 values of NIPWs.

We notice that the relative error stabilizes when NIPWs “ 182 which confirms, once again, the

results given in Figure 2.13. Finally, the magnitude and phase of the backscattered field computed

with a mono-static configuration defined by θi,s “ r00; 10; 890s and ϕi,s “ 00 are plotted in Figure 2.17.

Finally to summarize, the study done in this section confirms, first of all, the crucial effect that

the number of incident plane waves used during the generation of the CBFs, NIPWs, has on the

performances of the CBFM in terms of computation time and accuracy. Furthermore, since we know

that the size of the cells Tc composing the scatterer is always taken around λ
10 , we can retain a constant

NIPWs value equal to 182 for CBFM blocks of a height h equal to λ and so equivalent to 10 floors of
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cells along the vertical axis. This combination (block size, NIPWs) ensures a good level of accuracy

obtained on a reasonable computing time.

(a) EVz (b) EHy

Figure 2.16: A comparison of the magnitudes EVz and EHy of the electric field inside the scatterer for
x “ y “ ´0.045 m computed for (θi “ 300; ϕi “ 00) with the CBFM-E and MoM and with 3 NIPWs

values (182, 380 and 462).

(a) EV V (b) EHH

Figure 2.17: The magnitudes EV V and EHH of the backscattered field computed for θi,s “ r00; 10; 890s
and φi,s “ 00 by the CBFM-E and the MoM with the 3 NIPWs values (182, 380 and 462).

In the next paragraph, we show that reducing the number of incident plane waves (NIPWs) is not

the only benefit of reducing the number of unknowns per block. Indeed, the size of the CBFM blocks

has also a crucial effect on the performance of the CBFM.
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2.2.2 Effect of the blocks size on the CBFM performances :

In this paragraph, we look into the effect of the number and height of the CBFM blocks on the

computing time and on the compression rate. In fact, since the number of CBFs retained for each

block is much lower than the number of original low-level basis functions for the same block, we define

the compression rate CR as the ratio between the number of the original basis functions and the

number of post-CBFM unknowns. The inverted Compression rate, namely ICR is defined as

ICR p%q “
Size of Zc

Size of ZMoM
ˆ 100 “

K

3Nbc
ˆ 100 (2.16)

Therefore, we apply the extended version CBFM-E to a homogeneous dielectric cylinder placed over

a dielectric ground of complex relative permittivity of εg “ 5 ` 3.6j. The cylinder whose dimensions

are 0.18ˆ 0.18ˆ 4.8 m, has a complex relative permittivity of εc “ 6` 0.3j and is illuminated by an

incident plane wave, at a frequency f “ 300 MHz which carry out a wavelength inside the scatterer

equal to λs “ 0.32 m. The cylinder is discretized with a cell size Tc « λ
10 “ 0.03 m which results on

a total number of cells Nbc “ 5760. Hence the total number of original basis functions is equal to

3ˆNbc “ 17280.

To study the influence of the parameter NBlocks on the CBFM performances, we make seven suc-

cessive experiences with the scatterer described bellow, while increasing the number of blocks NBlocks

decomposing it. The different simulation conditions and the results are given in table 2.7 and Figure

2.18. hBlock refers to the height of the CBFM block, NIPWs,needed refers to the minimum number of

plane waves needed to ensure, according to the previous subsection, the accuracy of the results and

finally Zc refers to the final reduced matrix generated thanks to the CBFM process. We note that

increasing the total number of blovks, NBlocks, and as a result, reducing the block size, seems very

attractive in term of computing time. However, it engender, as well, regrettably a decrease of the

compression rate which make the CBFM process expensive in term of memory consumption and thus

cancel one of the strength of this method.

NBlocks 2 4 8 10 16 20 32

hBlock pmq 2.4 1.2 0.6 0.48 0.3 0.24 0.15
r0

λs
3.75 2 ă 1 ă 1 ă 1 ă 1 ă 1

NIPWs,needed 462 380 182 182 182 182 182

Time 1 h 32 min 14 min 7 min 6 min 5 min 3 min 3 min

Zc size 115 202 319 384 585 688 985

Table 2.7: The computing time and the Zc size depending on the size of the CBFM blocks composing
the scatterer.
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(a) (b)

Figure 2.18: The effect of NBlocks on the computing time and on the compression rate

An other simulation is done separately to study the relation between the size of a single block

cylinder and the compression rate. We apply the CBFM-E on this cylinder while increasing its size

and we note each time the number of generated CBFs. The results plotted in Figure 2.19 corroborate

the fact that the compression rate increases with the size of the block.

(a) (b)

Figure 2.19: Compression rate versus the number of basis functions per block.

Therefore, it is tempting to increase the blocks sizes as much as possible to achieve a high compression

rate. However, as may be seen from table 2.7, the use of large blocks, together in the context of the

mono-level CBFM, not only results in a significant increase of the overall CPU time, but also makes

it less suitable for an eventual parallelization. To avoid these disadvantages, we prefer to divide, as

written in the previous subsection, the scatterer on blocks of around λ of height. We will overcome the

engendered compression rate problem thanks to a new multilevel scheme of the CBFM. This scheme

named ML-CBFM will be generously detailed on the third chapter of this report.



Application of the Characteristic Basis Function Method to 3D forest model 31

Carrying on with the NBlock, we check now its impact on the accuracy of the CBFM results. The

magnitude of the total electric field inside the dielectric cylinder obtained for the incidence direction

(θi “ 300; ϕi “ 00), with NBlock “ 4 then NBlock “ 16, computed with the CBFM-E procedures in

comparison to the results given by the MoM are plotted respectively in Figure 2.20 and 2.21.

(a) EVz (b) EHz

Figure 2.20: The magnitudes EVz and EHz of the electric field inside the scatterer for x “ y “ ´0.075
m computed for (θi “ 300; ϕi “ 00) with the CBFM-E and MoM. The scatterer is divided on 4 blocks.

(a) EVz (b) EHz

Figure 2.21: The magnitudes EVz and EHz of the electric field inside the scatterer for x “ y “ ´0.075
m computed for (θi “ 300; ϕi “ 00) with the CBFM-E and MoM. The scatterer is divided on 16 blocks.

We compute the backscattered field for the both cases considering a mono-static configuration defined

by θi,s “ r100; 10; 800s and ϕi,s “ 00. The results are displayed in Figure 2.22 for NBlock “ 4 and Figure

2.23 for NBlock “ 16.
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(a) EV V (b) EHH

(c) φV V (d) φHH

Figure 2.22: The magnitudes EV V and EHH and the phases φV V and φHH of the backscattered field
computed for θi,s “ r100; 10; 800s and ϕi,s “ 00 by the CBFM-E and the MoM for NBlock “ 4

We note that, since the number of incident waves NIPWs fit in with the height of the CBFM block

h, the latter, and consequently NBlock, have not a great influence on the accuracy of the results. To

confirm this observation, we get back over the 7 simulations of Table 2.7 and we display the fields while

NIPWs “ 462 (see Figure 2.24 and 2.25).

The optimal solution is finally the one that was adopted in the previous subsection. To avoid to

overly divide the scatterer but keep in the same time quite a reasonable computation time, we will

divide the cylinder on blocks of h “ λ each and illuminate, consequently, each block, with NIPWs “ 182

incident plane waves while generating the characteristic basis functions.



Application of the Characteristic Basis Function Method to 3D forest model 33

(a) EV V (b) EHH

(c) φV V (d) φHH

Figure 2.23: The magnitudes EV V and EHH and the phases φV V and φHH of the backscattered field
computed for θi,s “ r100; 10; 800s and ϕi,s “ 00 by the CBFM-E and the MoM for NBlock “ 16

(a) EVz (b) EHz

Figure 2.24: The magnitudes EVz and EHz of the electric field inside the scatterer for x “ y “ ´0.075
m computed for (θi “ 300; ϕi “ 00) with the CBFM-E and MoM while NBlock “ r2, 4, 8, 10, 16, 20, 32s.
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(a) EV V (b) EHH

Figure 2.25: The magnitudes EV V and EHH of the backscattered field computed for θi,s “

r100; 10; 800s and ϕi,s “ 00 by the CBFM-E and the MoM while NBlock “ r2, 4, 8, 10, 16, 20, 32s

2.2.3 The effect of the size of the buffered region on the CBFM-E performances :

The performances of the extended version of the CBFM, named the CBFM-E, depends on the number

of floors in the buffered region (along the vertical axe z). For the sake of clarity, we define in Figure

2.26 a three block scatterer composed of 17 floors along the vertical axis z distributed as follow [Block

1 = 5 floors; Block 2 = 7 floors; Block 3 = 5 floors]. Applying the CBFM-E, to this example, with

two extended floors is equivalent to applying, as shown in Figure 2.26 the CBFM-N to three blocks of

respectively 7, 11 and 7 floors along the vertical axis z.

Figure 2.26: Block distribution while applying the CBFM-E with 2 extended floors on a scatterer
divided into 3 blocks.

To study this parameter, named Nberext,floors for number of extended floors, we apply the CBFM-E

on the example of the previous subsection divided in 16 blocks (10 floors by block) illuminated each

by 252 incident plane waves with five different values of Nberext,floors. The impact of the variations of

this parameter on the computation time and the size of the reduced matrix Zc is represented in table

2.8. We display also in this table the performances of the CBFM-N and the MoM.
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CBFM-E CBFM-N MoM

Nberext,floors 2 3 4 5 6 – –

CPU time 3 min 22 sec 4 min 42 sec 6 min 6 min 45 sec 7 min 2 min 29 min

Zc size 518 538 558 580 592 485 17280

Table 2.8: The computing time and the Zc size depending on the size of the buffered region.

As expected, the addition of a buffered region to each block while generating the CBFs and then

its lengthening increase the computation time and the size of the final reduced matrix Zc. Naturally,

this increase is the cost of the improvements brought by the additional floors on the accuracy of the

CBFM process. In order to check this fact, we compute the magnitude of the total electric field inside

the scatterer obtained for the incidence direction (θi “ 300; ϕi “ 00) and the backscattered field with

a mono-static configuration defined by θi,s “ r100; 10; 800s and ϕi,s “ 00. The calculation is done with

Nberext,floors “ r2, 3, 4, 5, 6s. We display the results and the relative error introduced by the CBFM in

comparison to the results given by the MoM in Figure 2.27, 2.28 and 2.29 and table 2.9.

(a) EVz (b) EHz

Figure 2.27: The magnitudes EVz and EHz of the electric field inside the scatterer for x “ y “ ´0.075
m computed for (θi “ 300; ϕi “ 00) with the CBFM-E and MoM while Nberext,floors = r2, 3, 4, 5, 6s.

Indeed, we note that increasing the size of the the buffered region leads to a decrease in the relative

error made by the CBFM. Moreover, the CBFM-N, deprived of this region, induces a significant

degradation in the quality of the results. We notice that starting from Nberext,floors = 4, the CBFM-E

achieves a satisfactory accuracy when compared to the MoM with a relative error introduced on the

scattered field lower than 0.5 % both for ErV V and ErHH .
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(a) EV V (b) EHH

Figure 2.28: The magnitudes EV V and EHH of the backscattered field computed for θi,s “

r100; 10; 800s and ϕi,s “ 00 by the CBFM-E , the CBFM-N and the MoM for Nberext,floors =
r2, 3, 4, 5, 6s.

(a) φV V (b) φHH

Figure 2.29: The phases φV V and φHH of the backscattered field computed for θi,s “ r100; 10; 800s
and ϕi,s “ 00 by the CBFM-E , the CBFM-N and the MoM for Nberext,floors = r2, 3, 4, 5, 6s.

In conclusion to this section, we notice the crucial effect that have some parameters on the CBFM

performances in terms of computing time, compression rate and accuracy of the results comparing to

a classical MoM. To ensure a high efficiency with the CBFM process, we must take into consideration

the effect of these parameters and then operate with the most suitable configuration on block and

buffered region size and plane waves number.

For the general case, we adopt the solution described above, we retain a NIPWs equal to 182 with

CBFM blocks of 10 floors of cells along the vertical axis and for the CBFM-E, a buffered region of

about 4 floors seems enough to ensure the accuracy of the results obtained with the extended version

of the CBFM.
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CBFM-N CBFM-E

Nberext,floors 0 2 3 4 5 6

ErVx 9.66 1.67 1.94 0.92 0.97 0.67

ErVy 4.59 1.42 2.07 1 0.53 0.47

ErVz 29.99 5.05 4.95 2.98 1.92 1.45

ErHx 4.35 1.03 0.96 0.65 0.57 0.44

ErHy 9.88 1.71 1.3 0.95 0.71 0.54

ErHz 31.96 3.83 2.38 1.9 1.49 1.23

ErV V 16.24 1.68 1 0.38 0.18 0.07

ErHH 16.14 1.77 0.72 0.35 0.14 0.05

Table 2.9: The relative error introduced (%) by the CBFM-N and CBFM-E compared to the MoM
depending on the number of extended floors Nberext,floors

2.3 Validation of the CBFM on electrically large simulation Scene

While implementing the CBFM-E, we take advantage of the fact that the CBFs, for each block, are

computed independently to accelerate the CBFM process. Consequently, we realize that CBFM is

highly amenable to parallelization. Towards this end, we implement, with Intel Fortran (64 bits),

OpenMP directives in a Fortran program running on a shared memory workstation equipped with an

Intel Xeon x5560 (8 tasks) at 2.8 GHz and 48 GB of RAM. The OpenMP directives are employed,

not only while we compute the CBFs for the different CBFM blocks, but also while we generate the

reduced final linear equation system, which leads to a significant gain in term of the total CPU time.

Furthermore, for two identical CBFM blocks (same dimensions and same dielectric properties), the

CBFs need to be computed only once and saved for later use to generate the reduced linear equation

system, as well as to compute the total electric field inside the scatterer. Copying the CBFs computed

previously for similar blocks, instead of computing them anew, enables a significant reduction of the

computing time without compromising the accuracy of the CBFM-E solution.

Several examples are shown in this section to illustrate the performance of the CBFM-E while

handling cases with electrically larger forest simulation scenes. The simulation conditions are chosen

while taking into account all the guidelines discussed previously. We expect a significant reduction in

the computation time while maintaining a level of accuracy comparable to that of the conventional

MoM. All the simulations have been performed for a frequency f “ 300 MHz, and the cylinders

modeling the tree trunks and branches have been discretized with a cell size Tc “ 0.03 m. We apply

the CBFM to the simulation scenes with a block height hB almost equal to 0.3 m (10 floors of cells

along the vertical axis z) and with an NIPWs “ 380.

We begin with a moderately large problem with Nbc “ 11640 cells. The forest scene, made up of

40 cubic cylinders modeling 8 trees with 4 branches each, is represented in Fig. 2.30. The cylinders
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have a complex relative permittivity of εs “ 9.6 ` 0.01j, and they are placed over a dielectric ground

of complex relative permittivity of εg “ 5 ` 3.6j. The trees are spaced apart by 0.8 m, and their

maximum height is equal to 3.3 m. The variations of the magnitudes and phases of the backscattered

fields for the HH polarization with a mono-static configuration defined by θi “ θs “ r100; 10; 800s and

ϕi “ ϕs “ 400 are shown in Fig. 2.31. Table 2.10 provides a comparison between the performances of

the CBFM-E and the classical MoM in terms of CPU time and memory consumption. We also display

in this Table the relative difference (Er) introduced by the CBFM-E in the backscattered field, for

both the V V and HH polarizations when compared with the MoM.

Figure 2.30: The simulation scene modeling 8 trees placed over a real ground plane with εg “ 5`2.1j.

Table 2.10: Performances of CBFM-E in terms of reduced final matrix size, computation time and
relative error (%) in comparison with the MoM.

Zc size CPU time (min) ErV V ErHH

CBFM-E 2480 6 0.45 0.

MoM 34920 146 – –
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Figure 2.31: Variation of the magnitude and phase of the backscattered fields (HH), computed with
the CBFM-E and the MoM with a mono-static configuration defined by θi “ θs “ r100; 10; 800s and

ϕi “ ϕs “ 400 and with f “ 300 MHz and Rt,r “ 2000 m.
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We observe that the CPU time required by the CBFM-E is 25 times lower than that of the MoM. In

addition, the CBFM-E ensures a compression rate of about 14 without actually affecting the accuracy

of the results. Therefore, these observations attest to the ability of the CBFM algorithm to overcome

the limitations faced by the conventional MoM in terms of computation time and memory use.

For the next example, we consider a much larger case for which Nbc “ 101800 cells, corresponding

to a maximum height of the trees equal to 10 m. The simulation scene, shown in Fig. 2.32 is composed

of 45 cylinders, modeling 9 trees with 4 branches each. The trees are spaced almost 2 m apart. Since

the RAM available (48 GB) does not allow us to handle an MoM matrix whose size is larger than

about 36000 ˆ 36000, the conventional MoM becomes untenable starting from Nbc « 12000. Hence,

we have only used the CBFM-E to handle such a large electromagnetic problem. The variations

of the magnitude and phase of the backscattered fields for the V V polarization with a mono-static

configuration defined by θi “ θs “ r1
0; 10; 800s and ϕi “ ϕs “ 400, are shown in Fig. 2.33.

Figure 2.32: The simulation scene modeling 9 trees placed over a real ground plane with εg “ 5`2.1j.
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Figure 2.33: Variation of the magnitude and phase of the backscattered fields (VV), computed with
the CBFM-E for a mono-static configuration defined by θi “ θs “ r1

0; 10; 890s and ϕi “ ϕs “ 400.

While the classical MoM is totally unable to handle this large example because of the limitation of

memory resources, the CBFM-E enables us to compute the backscattered field in 104 minutes, thanks

to the compression rate CR “ 21.93.
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2.4 Conclusion

In this chapter, an extended version of the characteristic basis function method (CBFM-E) has been

applied, to 3D dielectric scatterers representing a forest scene. The CBFM-E exhibits a significantly

improved performance for this 3D forest simulation, both in terms of the computing time and the

memory usage, when compared to the conventional MoM.

To ensure that the CBFM-E achieves a good level of accuracy while computing the scattered field

without using excessive memory resources while using the least amount of CPU time, we must stay

within certain range of values when setting CBFM parameters, such as the block height hBlock and

the number of incident plane waves (NIPW ) used to generate the macro-basis functions (MBFs). Once

properly set, the CBFM-E is so efficient that it is able to treat, in just a few minutes, electromagnetic

problem sizes totally intractable with the classical MoM.

The obtained results will certainly help stimulate increased interest in solving problems involving

even larger structures, including forest areas, and performing simulations at higher frequencies.



Chapter 3

The Multilevel Characteristic Basis

Function Method (ML-CBFM)

Even if the conventional CBFM, particularly with its extended version, provides a significant improve-

ment in terms of CPU time and memory consumption comparing to the classical MoM, it is obvious

that the CBFM process will face a memory insufficiency problem when the size of the generated reduced

matrix becomes large. Therefore, in order to increase the compression rate and consequently to reduce

the size of this final matrix, a multilevel CBFM scheme has been developed. This new process consists

of recursive application of the mono-level CBFM and it leads to a better compression of the associated

matrix and thus, extends the CBFM range of applicability.

Hence, in this chapter, we present an overview of the multilevel characteristic basis function method

(ML-CBFM). We detail its numerical procedure and we give several primary results to demonstrate the

ability of the ML-CBFM procedure to increase the compression rate and, thus, to handle electrically

large problems.

3.1 Motivations

As explained previously in paragraph 2.2.2, the height of the block namely hBlock, chosen to decompose

the simulation scene at the beginning of the CBFM procedure, has a crucial effect on the computing

time and the compression rate. In fact, increasing hBlock results in a significant increase of the compres-

sion rate CR but unfortunately, at the same time, engenders a dramatic increase of the corresponding

CPU time (as shown in Figure 2.18). This is due to the increase of the number of cells per block

which considerably slows down the CBFM procedure during the resolution of the linear equation sys-

tem specific to each block (see Equation (2.4)) and during the generation of the final reduced matrix

((see Equation (2.13))). In addition, as detailed in paragraph 2.2.1, increasing hBlock results in an

increase of the number of incident plane waves NIPWs needed to ensure the accuracy of the CBFM

41
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solution which creates further computational burden for the resolution of the equation (2.4). And

finally, greater CBFM blocks would mean a smaller number of blocks which reduces the potential of

the parallelization of the CBFM code especially when the number of available CPUs is quite important

which will engender a situation of under-exploited computer resources. Let us take the example of a

large forest simulation scene discretized into Nbc “ 262040 cells. Two simulations were executed, using

a shared memory workstation equipped with 8 processors, with two different values of CBFM block

height, respectively hBlock,Sim1 “ λ and hBlock,Sim2 “ 4λ. The forest simulation scene is represented

in Figure 3.1 and the conditions and results corresponding to these two simulations are shown in Table

3.1.

Figure 3.1: A numerically large simulation scene modeling 36 trees placed over a real ground plane
with εg “ 5` 2.1j.

Table 3.1: Performances of CBFM-E in terms of compression rate and computation time depending
on the height of the CBFM blocks namely hBlock.

Compression Rate Computing time (min)

hBlock NbcBlock,max Zc size RAM (GB) CR ICR (%) CBFs Zc

λ 250 83080 220 9.46 10.57 6 219

4λ 1000 34507 38 22.78 4.38 56 356

Thanks to these two simulations, we observe the impact of increasing hBlock on the performances

of the CBFM-E both in CPU time and memory resources needed to achieve the computing task. In

this case, it is interesting to mention that the first simulation failed to product final results, since the

available 42 GB of memory does not allow us to store and handle the corresponding final matrix.

Hence, the use of large blocks in the context of the mono-level CBFM increases enormously the

need in terms of memory and the overall CPU time making, thus, untenable and inefficient the CBFM
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process. To overcome these difficulties, we propose the multilevel scheme of the CBFMwhich will enable

us the use of large blocks resulting in an important compression rate without great time consuming.

3.2 Overview of the Multilevel Scheme of the CBFM

In this paragraph, we detail the numerical procedure of the multilevel CBFM-E (MLCBFM-E) and

we discuss the influence of some factors, such as the number of incident plane waves (NIPWs) and the

CBFM block extension, on the accuracy of the MLCBFM-E solution.

3.2.1 Numerical Procedure

The concept of the ML-CBFM is based on an iterative application of the conventional CBFM process,

in which the generated CBFs are progressively grouped to form the upper-level blocks. Figure 3.2

illustrates the block decomposition with a two-level ML-CBFM.

Figure 3.2: A two-level decomposition of a cubic cylinder.

In this scheme, we construct the upper-level CBFs by defining them in terms of their lower-level

counterparts [41]. To clarify the process, we define a sequence of blocks tsequ = t i1,i2, . . ., iL u. We

also define a concatenation operation between this sequence and a new lower level block tseq, bu = t

i1,i2, . . ., iL, b u.

Thus, the nth basis function, pointed by a sequence (seq) of blocks arranged in descending order

from the higher to the lower one, is expressed in equation 3.1 :

~Ftsequ,n “

Btsequ
ÿ

b

Ntseq,bu
ÿ

m

I
pnq
tseq,bu,m

~Ftseq,bu,n (3.1)

where Bseq is the number of blocks in the great block pointed by tsequ; Ntseq,bu is the number of CBFs

in the block pointed by tsequ; and, Ipnq
tseq,bu,m, is the weight for the mth CBF forming the next lower

level [41].

At the end of each level, we generate, as done for a mono-level CBFM (detailed in paragraph 2.1.3), a

reduced matrix Zclevel representing the interactions between the CBFs formed during this level. Hence,



The Multilevel Characteristic Basis Function Method (ML-CBFM) 44

the elements of the final reduced matrix correspond to the reaction terms between the CBFs belonging

to the highest level. The next step consists of solving the final reduced linear equation. So we compute

the KL complex coefficients αk,L where L designate the highest level.

In order to compute the K1 complex coefficients αk,1 corresponding to the first level, we take the

opposite way, and construct the low-level α by defining them in terms of this low-level CBFs and the

next upper-level α as shown in equation 3.2.

¨

˚

˚

˚

˚

˚

˝

α
pl´1q
tseq,1u

α
pl´1q
tseq,2u
...

α
pl´1q
tseq,Bsequ

˛

‹

‹

‹

‹

‹

‚

“ Jtsequα
plq
tsequ (3.2)

Finally we compute the total electric field inside the scatterers as a linear combination of the K1

CBFs computed previously for the first level weighted by the K1 complex coefficients αk,1 as done with

the mono-level CBFM.

For a sake of clarity, let us consider the example of a simple forest simulation scene comprised of

4 trees trunks of height between 3 and 4.5 m. With a simulation frequency equal to 300 MHz and a

uniform dielectric constant εs “ 6.2` 0.2j, the wavelength inside the scatterers is equal everywhere to

λs “ 0.401 m.

We start by dividing the electromagnetic scene into 25 CBFM blocks. Then, in order to apply a

two-Level CBFM-E, we chose to divide these 25 initial blocks in 4 blocks, as shown in Figure 3.3, to

be considered while computing the CBFs for the second level. In fact, each cylinder representing a tree

trunk is considered as a 2nd-level block gathering together six or seven 1st-level CBFM blocks.

Figure 3.3: The blocks dividing a 4 trees simulation scene in order to apply a 2-Level CBFM-E.

Table 3.2 shows the conditions corresponding to the application of the two-level CBFM-E to the

example of Figure 3.3 and a first comparison between the results obtained with a classical mono-level

CBFM-E and those obtained with the two-level CBFM-E is illustrated in Figure 3.4.
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Table 3.2: Conditions of the application of the CBFM-E for the 2 levels of the MLCBFM-E.

size of Zinitiallevel NBlocks hBlock,max (m) NbcBlock,max Size of Zclevel
1stlevel 24000 25 2λs = 0.6 320 1143

2ndlevel 1143 4 12λs = 4.8 448 405

(a) EHH (b) φHH

Figure 3.4: Variation of the magnitude and phase of the backscattered fields (HH), computed with
the CBFM-E, the MLCBFM-E and the MoM with a mono-static configuration defined by θi “ θs “

r00; 10; 800s and ϕi “ ϕs “ 00 and with f “ 300 MHz and Rt,r “ 2000 m.

Since the multilevel scheme of the CBFM-E is based on the use of larger CBFM blocks, we need,

in order to ensure the accuracy of the MLCBFM-E, to check the condition on the number of incident

plane waves (NIPWs) used while generating the CBFM. In fact, the question arises as to whether the

value of NIPWs ensuring the accuracy of the mono-level CBFM-E is satisfactory to equally ensure the

accuracy of the MLCBFM-E, or we need to take into account the higher CBFM block of the higher

level while evaluating the NIPWs value. This issue is discussed in the next paragraph.

3.2.2 Number of Incident Plane Waves (NIPWs) for the MLCBFM-E

As detailed in paragraph 2.2.1, the number of plane waves, NIPWs, used to generate the CBFs for each

CBFM block, has a significant impact in the accuracy of the results obtained with the CBFM-E.

For the multilevel scheme of the CBFM-E, the number NIPWs is set in the beginning of the first

level and used to compute the matrix Eref,IPWs
ii,1 in order to generate the CBFs for the block ii by

solving the following linear equation system :

Zii,1E
MBFs
ii,1 “ Eref,IPWs

ii,1 (3.3)
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where ii is one of the blocks dividing the simulation scene for the first level of the MLCBFM-E,

Eref,IPWs
ii,1 is a 3Nbcii ˆNIPW matrix representing the plane waves excitations for the first level and

EMBFs
ii,1 is an 3NbciiˆNIPW matrix representing the macro-domain basis functions (MBFs) associated

to the block ii.

For a higher level plq, the matrix Eref,IPWs
B,l associated to the block B, is computed, as shown in

equation (3.4), by combining the matrix corresponding to the previous level pl´1q and the characteristic

basis functions (CBFs) computed for the different block ii composing the electromagnetic simulation

scene for the level plq.

Eref,IPWs
B,l “

´

řNb
b“1C

pbqtEref,IPWs
b,l´1

¯T
“

´

Cp1qtEref,IPWs
1,l´1 Cp2qtEref,IPWs

2,l´1 ¨ ¨ ¨ CpNbqtEref,IPWs
Nb,l´1

¯T

(3.4)

where Nb is the number of blocks associated to the level l ´ 1 and composing the current block B

associated to the current level l and Cpbq represents the CBFs of the block b while 1 ă b ă Nb.

Hence, here a crucial concern arises in connection with the choice of NIPWs at the beginning of the

MLCBFM-E procedure. Since the value chosen is indirectly applied to the highest level, the question

to be addressed therefore is whether it is necessary, to ensure the accuracy of the MLCBFM-E, to take

into account the highest height of the CBFM blocks associated to the highest level, while choosing the

value of NIPWs.

For this purpose, we go back to the previous simple example illustrated in Figure 3.1, and we compare

the results obtained with a conventional MoM and a mono-level CBFM-E with those obtained with

a two-level CBFM-E for different values of NIPWs. With the decomposition of the simulation scene

into N “ 25 blocks of height hBlock “ 2λs (r0{λ “ 1), according to the paragraph 2.2.1, a number

NIPWs “ 380 of incident plane waves is satisfactory to guaranty the accuracy of the mono-level CBFM.

As shown in table 3.2, the multilevel scheme of the CBFM-E leads us to consider higher CBFM

block (for the 2nd level) of height hBlock “ 12λs (r0{λ “ 6) corresponding, thus, to NIPWs,needed «

992. Hence, to determine the value needed to ensure the accuracy of the MLCBFM-E solution in

comparison with the mono-level CBFM, we compute the backscattered electric field while increasing

NIPWs,MLCBFM from 380 to 1722.

The performances achieved by the MLCBFM-E are represented in table 3.3 and the computed

backscattered field is illustrated in Figure 3.5 depending on the chosen value of NIPWs,MLCBFM .

The obtained results provides an answer to our above-mentioned question and confirm that we have

to take into account the highest value of hBlock corresponding to the highest level of the MLCBFM-E

procedure in order to ensure its accuracy.
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Figure 3.5: The magnitude of the backscattered field (VV) computed for θi,s “ r00; 10; 800s and
ϕi,s “ 00 by the MLCBFM-E and with the 4 NIPWs values (380, 650, 992 and 1406).

Performances of the MLCBFM-E

NIPW Size of final Zc CR ICR (%) CPU time (sec) ErV V (%)

380 362 66.3 1.5 61 3.41

462 405 59.26 1.7 73 4.45

650 456 52.6 1.9 80 1.23

992 484 49.6 2.02 119 0.

1406 490 48.98 2.04 153 0.

1722 490 48.98 2.04 180 0.

Table 3.3: Performances of the MLCBFM-E in terms of reduced final matrix size, computation time
and relative error (%) in comparison with the MoM depending on the value of NIPWs.

Table 3.3 allows us also to examine once again the impact of the NIPWs value on the CPU time and

memory resources needed to resolve the electromagnetic problem. Hence, the computational burden

brought by a great value of NIPWs, for the implementation of the MLCBFM procedure, prompts us to

avoid to consider CBFM blocks of height ą 20λs, for instance, corresponding to r0{λ ą 10 and hence,

a necessary value of NIPWs ą 2000. Consequently, imposing a maximum limitation on the height of

the blocks of the higher level will lead us to a situation with several 2nd level (and up) blocks in the

same tree trunk. That is why we aim, in the next paragraph, to apply the CBFM block extension

(inside a tree) for different levels starting from the 2nd one.
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3.2.3 Generalization of the CBFM block Extension

Initially, the extension of the CBFM blocks concerned only the first level of the MLCBFM-E. Thereby,

while computing the scattered field with the CBFM-E and ML-CBFM-E, we distinguished, a slight

difference between the results obtained with these two methods. To overcome this limitation, the

extension of the CBFM blocks is generalized and applied for the higher level since the blocks belong

to the same scatterer.

Let us apply a two-level CBFM-E to the simple example of a tree trunk. The cylinder modeling

the trunk is divided into 9 blocks for the first level and into 2 great blocks (5; 4) for the second level.

Figure 3.6 illustrates the extension of the 3rd CBFM block for the level 1, then the extension of the

1st block of level 2.

Figure 3.6: A two-level block extension applied to a single tree trunk divided into 9 blocks for the 1st

level, and into 2 blocks for the 2nd level.

Unlike the extension of the CBFM blocks corresponding to the 1st level, the size of the buffered

region, starting from the 2nd level, is not measured in number of floors along the vertical axis ~z (see

paragraph 2.2.3). For a multilevel extension, for each level plq (l ě 2) presenting a case of multiple

blocks in the same scatterer, the size of the buffered region, for the block I, is calculated on the basis

of the number of CBFs generated with the previous level pl ´ 1q as follows :

NeIplq,bottom “ S
i
pl´1q
b,I

; where ipl´1q
b,I “

Iplq´1
ÿ

N“1

N
pl´1q
blocks,N

NeIplq,upper “ S
i
pl´1q
u,I

; where ipl´1q
u,I “

Iplq
ÿ

N“1

N
pl´1q
blocks,N ` 1

(3.5)
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where Iplq is the number of the block to be extended associated to level plq, S
i
pl´1q
b,I

is the number

of CBFs generated for the block number ib,I associated to level pl ´ 1q and S
i
pl´1q
u,I

is the number of

CBFs generated for the block number iu,I associated to level pl´ 1q. N pl´1q
blocks,N is the number of blocks

associated to level pl ´ 1q composing the block N associated to the level plq. For a sake of clarity, the

blocks ipl´1q
b,I and ipl´1q

u,I corresponding to the block Iplq are illustrated in Figure 3.7.

In order to prove the relevance of the generalized block extension approach, we apply a 2-level

extended CBFM-E (named here MLCBFM-E2) to a simple forest simulation scene of 9 cylinders

modeling 9 tree trunks discretized into Nbc “ 35080 cells, and we compare the results obtained with

those produced by a classical 2-level CBFM-E (MLCBFM-E1, where the extension concerns only the

1st level).

I(2) = 3 

I(2) = 1 

I(2) = 2 

i(1) = 1 

i(1) = 2 

i(1) = 7 

Ib,2
(1) 

Iu,2
(1) 

. 

. 

. 

. 

Figure 3.7: Representation of the blocks ipl´1q
b,I and ipl´1q

u,I (level (l´1)) corresponding to the block Iplq
(level (l))

We display, in Figure 3.8, the electric field inside the 1st tree trunk of hight h “ 4.5 m divided into

15 blocks for the 1st level, then, into 3 blocks for the 2nd level.

We note that a single block extension at the beginning of the 1st level, is not sufficient to avoid

the oscillations due to the edge effect, and, hence, the generalized extension approach, namely the

MLCBFM-E2, achieves a much better concordance with the mono-level CBFM-E. While representing

the backscattered field arising from these two methods, we found that the oscillations, for this exam-

ple, have not a significant effect on the magnitude and phase of the backscattered field both for the

polarizations V V and HH. This is likely due to the small numerical size and the low complexity of

the under consideration simulation scene.

In order to confirm it, we applied the two approaches to a numerically larger simulation scene of

Nbc “ 565920 cells modeling nine trees with four branches each as shown in Figure 3.9 and we display

the magnitude and phase of the backscattered fields for both polarizations V V and V H in Figure 3.10.
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Figure 3.8: Variations of the magnitude EVx of the electric field inside the cylinder for x “ y “ ´1.74
m computed for (θi “ 00; ϕi “ 400) with the classical MLCBFM-E (MLCBFM-1) and the generally

Extended MLCBFM (MLCBFM-2).

Figure 3.9: A numerically large simulation scene comprised of 9 trees with 4 branches each and
discretized into Nbc “ 565920.

It is, thus, clear that we must apply, when needed, the extension of the CBFM blocks for the different

levels of the multilevel scheme in order to guarantee, whatever the simulation scene is, the accuracy

of the MLCBFM-E. Hence, in the rest of this report, the term MLCBFM-E refers to the generally

extended multilevel scheme of the CBFM (noted MLCBFM-E2 in the current paragraph)
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(a) EV V (b) EVH

(c) φV V (d) φVH

Figure 3.10: Variations of the magnitude and phase of the backscattered field (polarization V V and
V H) computed for θi,s “ r00; 10; 800s and ϕi,s “ 400 by the classical MLCBFM-E (MLCBFM-1) and

the generally Extended MLCBFM (MLCBFM-2).

3.3 Numerical Results

We conclude this chapter by comparing the performances of the MLCBFM-E to those achieved by a

mono-level CBFM-E, in terms of CPU time and compression rate, when applied to an electrically large

forest simulation scenes. We start with a medium large example representing 9 trees with 8 branches

each, modelled by 81 cylinders and discretized into Nbc “ 162000 cells. The conditions of application

of the both mono-level and multilevel CBFM-E and the forest simulation scene are shown in table 3.4.

Then, we display, in Figure 3.11, the magnitude and phase of the backscattered electric fields derived

by these two methods with θi,s “ r00; 10; 800s and ϕi,s “ 150 for both polarizations, V V and HH. The

performances of the CBFM-E in terms of computing time and compression rate are compared to those

achived by the MLCBFM-E in Table 3.5.
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Frequency f = 300 MHz

Scatterers permittivity εs 10.2` 1.2 j

Ground permittivity εg 5` 2.1 j

λs scatterer 0.316 m

Cell size Tc “ 0.02 m

Number of Cells Nbc “ 162000

Number of blocks NB “ 484

Block height hB “ 12Tc « λs

NIPW 380 (dθ “ dϕ “ 200)

Number of levels (MLCBFM-E) 3

Block repartition (MLCBFM-E) r484; 113; 32s

Table 3.4: With a 3-Level CBFM-E, the forest simulation scene is divided into 484 blocks for the
first level, 113 blocks for the second, and 32 blocks for the third and last level.

(a) EV V (b) φV V

(c) EHH (d) φHH

Figure 3.11: Variations of the magnitude and phase of the scattered field (polarization V V and HH)
computed for θi,s “ r00; 10; 800s and ϕi,s “ 150 by the mono-level CBFM-E and a 3-level CBFM-E.
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Table 3.5: Performances of the mono-level and the 3-level CBFM-E in terms of CPU time and
compression rate. pZcq

´1 (sec) refers to the CPU time spent to solve the final system of linear
equations associated to Zc.

Size of final Zc CR ICR (%) pZcq´1 (sec) Total CPU (sec)

CBFM-E 17152 28.3 3.53 6330 11460

MLCBFM-E 3879 125.3 0.8 348 5482

Figure 3.11 shows the MLCBFM-E yield accurate results comparing to those derived by the mono-

level CBFM-E. At the same time, the MLCBFM-E enables us to achieve a higher compression rate,

and to reduce significantly the size of the final matrix Zc. This has a direct impact on the total

CPU time, since the smaller is the size of Zc , the faster is the resolution of the associated system of

linear equations. Indeed, as can be seen in Table 3.6, the second and third level make a substantive

contribution to the compression rate without adversely impacting on the CPU time, since these two

levels process small CBFM blocks.

Table 3.6: Details of 3-level CBFM-E applied to a forest simulation scene of Nbc “ 162000 cells. We
display, in red, the CPU time needed to generate the CBFs and to construct Zc for each level.

size of Zinitiallevel NBlocks NbcBlock,max Size of Zclevel CBFs (sec) Zclevel (sec)

1stlevel 486000 484 1863 17152 945 4174

2ndlevel 17152 113 246 6134 5 3

3rdlevel 6134 32 456 3879 5 2

At this stage, we note that the multilevel scheme helps to reduce significantly the CPU time but it

does not enable us to run numerically larger simulation scenes, since we will always need to store the

first level reduced matrix (Zc1) in our shared-memory workstation of 42 GB of RAM. We also see that

the gain in CPU time achieved by the multilevel CBFM-E while resolving the final reduced matrix

was partly mitigated by the great CPU time spent to generate the CBFs and the reduced matrix for

the first level. Hence, a further improvement of the performances of the MLCBFM-E will pass by the

enhancement of the different steps of the mono-level CBFM-E procedure. This will be done in the

next chapter.

To complete the discussion of the multilevel CBFM-E and to confirm the observations made in the

first example, we carry out a new simulation for a larger forest scene composed of 144 modeling 16

trees (see Figure 3.12). As for the previous example, we show in Figure 3.13 a comparison between

the backscattered fields (polarization HH) obtained with the MLCBFM-E and those derived by the

mono-level CBFM-E, and we summarize in Table 3.7 the performances of the two methods in terms

of computing time and compression rate.
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Figure 3.12: A numerically large simulation scene comprised of 16 trees with 8 branches each and
discretized into Nbc “ 314500. and divided initially to 683 blocks of height hB “ 1.3λ.

(a) EHH (b) φHH

Figure 3.13: Variations of the magnitude and phase of the scattered field (polarization HH) com-
puted for θi,s “ r00; 10; 800s and ϕi,s “ 400 by the mono-level CBFM-E and a 2-level CBFM-E.

Table 3.7: Performances of the mono-level and the 2-level CBFM-E in terms of CPU time and
compression rate. pZcq

´1 (sec) refers to the CPU time spent to solve the final system of linear
equations associated to Zc.

Size of final Zc CR ICR (%) pZcq´1 (sec) Total CPU (sec)

CBFM-E 25744 36.65 2.72 10337 28402

MLCBFM-E 7596 124.2 0.8 626 20603

The comparison between the performances of the CBFM-E and MLCBFM-E, summarized in Table

3.7, confirms once again the relevancy of the implementation of a multilevel scheme of the CBFM-E,
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since it enables us to achieve a compression rate which is almost 3 times higher than that obtained

with the mono-level scheme. Thanks to the generalized multilevel extension, we also maintain the

same level of accuracy going from the mono-level scheme to the multi-level one.

3.4 Conclusion

A generally extended multilevel scheme of the CBFM (ML-CBFM-E) has been developed in order to

improve the performances of the conventional version especially in terms of memory resources. The

concept of the ML-CBFM is based on an iterative application of the conventional CBFM process

which results on a higher numerical compression of the electromagnetic problem compared to the one

obtained with a mono-level CBFM-E.

As for the mono-level CBFM-E, ones should set correctly the number of incident plane waves NIPWs

depending on the height of the blocks composing the simulation scene at each level. Otherwise, the

MLCBFM-E yields inaccurate results.

To ensure the accuracy of the MLCBFM-E, whatever the simulation scene is, the extension of the

CBFM blocks is generalized and applied for the higher level since the blocks belong to the same

scatterer. The ML-CBFM results are shown to be in good agreement with those obtained via the

CBFM-E and the conventional MoM, which confirms the fact that the proposed method is not only

computationally efficient, but is accurate as well.





Chapter 4

Efficiency enhancement techniques for the

CBFM with Forest Scattering Modeling

Compared to a conventional Method of Moments, the Characteristic Basis Function Method (CBFM)

has shown excellent performances both in terms of CPU time and required memory storage, while

maintaining a satisfactory level of accuracy. We can now skip the conventional MoM as reference,

and focus on the enhancement of the application of the CBFM in order to cope with the challenging

computational burden posed by the computation of larger forest simulation scenes for higher frequencies.

Hence, in this chapter, we detail the various approaches adopted in order to reduce as much as possible

the CPU time and the required storage, such as the application of the CBFM to a non-uniform mesh

adapted to the dielectric properties of the forest simulation scene, and the hybridization of the CBFM

with an other efficient iterative method namely the ACA (Adaptive Cross Approximation Algorithm).

The main goal of these enhancement techniques is to produce an efficient CBFM code, adapted to

the problem of forest scattering modeling and comparable in terms of computational performances to

the iterative methods (ACA and MLFMM) while maintaining, as a direct method, the advantage of

numerical stability.

4.1 Application of the CBFM to an Adaptive Meshing

In this paragraph, we investigate the suitability and applicability of the CBFM process to a non-

uniform mesh adapted to our 3D full-wave forest scattering model. In fact, this non-uniform mesh

enables us to take advantage of the heterogeneous properties of a natural forest medium, in order to

reduce the corresponding computational burden and, hence to reduce significantly the computation

time and the memory resources needed to calculate the scattered fields.

57
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Let us, first of all, explain and justify the need to implement an adaptive mesh for the 3D forest

simulation scene and show the legitimacy of this approach and, then demonstrate its relevancy to the

increase of the efficiency of the CBFM procedure in terms of CPU time and required storage.

4.1.1 Using Adaptive Meshing to describe a forest simulation scene

As detailed previously, in common with our previous works [24, 46], the tree trunks and primary

branches, making up the under consideration forest simulation scene, are modeled as dielectric cylinders

of square cross-section as shown in Figure 4.1a. To solve the volume integral equation and compute

the electric field inside the scatterers, these tree-trunks and branches are divided into elementary cubic

cells, of cell size Tc small enough so that the internal field is nearly uniform in each cell (see Figure

4.1b).

(a) Geometry of a forest (b) Discretization into elementary cubic cells

Figure 4.1: Example of forest geometry and of discretization into elementary cubic cells. ε1 = ε0,
ε2 and ε are respectively the free space, ground and wood permittivities, and µ0 is the free space

permeability

The previous work reported in [24] demonstrates, by referring to [47], that the scattered fields from

square and circular cross sections, having the same cross sectional areas (noted as cs), are appropriately

equivalent, provided that the condition cs ă p
λs
5
q

2

is satisfied. Thus, this approximation loses its

effectiveness for higher frequencies and larger tree trunks.

Therefore, we need to overcome this limitation in terms of frequency and tree trunk size, before

addressing the issue of non-uniform mesh. For this purpose, we have modified the initial discretization

code, in order to model the tree trunks and branches by using cylinders of circular cross section, while

maintaining the simple cubic shape of the previously used elementary cells. In fact, given the radius

Rs of the circular cross section scatterer, modeling the tree trunk, we compute the dimensions of the

equivalent square cross section cylinder such as π ˆ Rs
2 “ as

2 where as is the side of the square

cross section. Next, we discretize conventionally the equivalent cylinder (of square cross section) into
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elementary cubic cells of size Tc. Finally, we remove the cells located outside the contour defined by

the radius Rs. Hence, the cell i is removed if the distance di “
a

xi2 ` yi2 ą Rs. This simple, though

effective approach is shown in Figure 4.2.

. 
Rs 

Y 

X 

as 

(a) Discretization approach (b) Discretization of cylinder of circular cross

section

Figure 4.2: Example of discretization of a cylinder of circular cross section modeling a tree trunk

Now, in order to confirm the accuracy of the observation made in [24] and [47], on the square and

circular cross sections, and hence to prove the relevancy of the approach illustrated in Figure 4.2, we

carry out two simulations with two different values of cross sectional areas cs. Then, we compare the

results obtained with a tree trunk of a square cross section of area cs to those obtained with a tree

trunk of a circular cross section having the same area cs. The first simulation is performed with a tree

trunk of cross-section area cs,1 “ 0.0036 m2 and dielectric permittivity εs “ 6.2` j 0.2 for a frequency

f “ 300 MHz. Therefore, the condition on cs, cited above, is satisfied for this first simulation. For the

second simulation, we increase cs (cs,2 “ 0.0144 m2) such as this condition is no longer complied with.

The simulations conditions are listed in Table 4.1.

Table 4.1: Conditions of the application of the CBFM-E to 2 cylinders of square and circular cross
section for two different values of cross section area cs.

f (MHz) εs p
λs
5
q

2

cs pm
2q as (m) Rs (m)

Simulation 1
300 6.2` j 0.2 0.00643

0.0036 0.06 0.035

Simulation 2 0.0576 0.24 0.27

Figures 4.4 and 4.5 illustrates the magnitude of the backscattered field, computed for the square and

circular cross section cylinder with the two different values of cs. The backscattered field is presented,

as shown in Figure 4.3 for θi,s “ r100; 20; 800s and ϕi,s “ r00; 20; 3600s for the two polarizations VV and

HH.



Efficiency Enhancement techniques for the CBFM with Forest Scattering modeling 60

Figure 4.3: The mono-static configuration used to compute the total backscattered electric field :
θi,s “ r100; 20; 800s and ϕi,s “ r00; 20; 3600s

(a) EV V (b) EHH

Figure 4.4: Simulation 1 (cs “ 0.0036 m2) : Variations of the magnitude of the backscattered field
computed with the CBFM-E for θi,s “ r100; 20; 800s and ϕi,s “ r00; 20; 3600s. For each polarization (VV
or HH), the figure on the left corresponds to the square cross section cylinder, and the figure on the

right shows the results obtained with the circular cross section cylinder.

(a) EV V (b) EHH

Figure 4.5: Simulation 2 (cs “ 0.0576 m2) : Variations of the magnitude of the backscattered field
computed with the CBFM-E for θi,s “ r100; 20; 800s and ϕi,s “ r00; 20; 3600s. For each polarization (VV
or HH), the figure on the left corresponds to the square cross section cylinder, and the figure on the

right shows the results obtained with the circular cross section cylinder.

The results shown in Figure 4.4 and 4.5, attest to the fact that the approximation of a tree trunk

by a cylinder of cubic cross section is only valid under a certain value of cross section area cs and a

certain frequency. Therefore, the adaptation of the mesh to the circular shape of a natural tree trunk,
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enables us to keep a satisfactory accuracy while applying the CBFM to a more faithful representation

of the forest.

Next, we focus on adapting the mesh to the dielectric properties of the cylinders modeling the tree

trunks and branches. In fact, the implementation of the CBFM on a non-uniform mesh, depending on

the dielectric permittivities of the trees, enables us to exploit the heterogeneity of the natural forest

medium, in order to reduce the numerical size of the simulation scene. Therefore, we can handle larger

forest patches for higher frequencies, while maintaining a satisfactory level of accuracy since we remain

faithful to the dielectric reality of the forest.

In this paragraph, we explain our motivations to implement the CBFM on a non-uniform mesh in

regards to the heterogeneity of a natural forest medium in terms of dielectric constant :

εr,s “ ε1r,s ` j ε2r,s “
ε1s
ε0
` j

ε2s
ε0

(4.1)

where ε1r,s “ Repεr,sq is the real component, and ε2r,s “ Impεr,sq is the imaginary component. The

dissipation factor, or loss tangent, is defined as the ratio

tan ∆ “
ε2r,s
ε1r,s

(4.2)

Hence, we examine the dielectric properties of tree trunks from two perspectives. First, we look

at the variations of the dielectric constant amongst the different trees making up the forest. And

second, we study the behaviour of the electromagnetic wave inside the same tree, depending on the

imaginary part of its dielectric constant, in order to demonstrate the relevancy of the implementation

of a non-uniform mesh inside a single tree.

4.1.1.1 Non-uniform mesh among different trees

The electrical properties of wood have been the subject of numerous previous research works [48–51].

These studies affirm that the trees dielectric properties are strongly correlated with wood core moisture

status. It was, also, proven that it exits a within-tree variability of εs in relation with wood chemistry

and wood flux density depending on the species of the tree [48, 52, 53].

For instance, Figure 4.6 illustrates the variations of the complex relative dielectric constant as a

function of depth into the stem for two types of trees (A and B). According to [48], Tree A, the taller

dominant tree, was 19.7 m tall with a diameter at breast height (DBH) of 24.5 cm and tree B was a

typical sub-dominant tree, 17.8 m tall with DBH of 23.2 cm. Furthermore, Figure 4.7 [53] and Table

4.2 [52] enable us to note a significant variability of the dielectric constant, particularly ε1r,s, depending

on the species of the tree.
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Figure 4.6: Complex relative dielectric constant as a function of depth into the stem for Tree A and
Tree B. Measurements were recorded with a L band (1.25 GHz). Depth is measured from the outer

side of the bark (0 mm) and progresses toward the stem center.

(a) Spruce tree (b) Siberian Pine

(c) Siberian Fir (d) White Pine

Figure 4.7: C-band dielectric measurements for different species of tree : Spruce, Siberian Pine,
Siberian fir and White Pine
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Table 4.2: Measured and calculated data on permittivity of trees at P and VHF bands [52, 54].

Autumn Humidity, mg% ε1r calculated measured ε1r
Pine 67.80 15.5 23.58

Spruce 111.11 30.95 23.19

Larch 71.57 16.61 18.3

Winter

Pine 33.50 6.8 16.45

Spruce 84.10 20.6 20.12

Larch 23.5 4.56 25.61

On the other hand, we know that the real part of the dielectric permittivity ε1r,s is directly related

to the cell size used to discretize the corresponding scatterer. In fact, in order to ensure the accuracy

of the MoM solution, Tc must satisfy the following condition in relation with :

Condition 1 : Tc ď
λs
Dλ

where λs “
λ

b

ε1r,s

(4.3)

and Dλ is a constant chosen almost between 10 and 20, in order to ensure the accuracy of the MoM

solution. Therefore, it is interesting to discretize the 3D forest simulation scene, by using a non-uniform

mesh tailored on the basis of dielectric properties of the scatterers. This approach enable us to avoid

over-discretization of the electromagnetic problem and thereby to reduce the burden on the associated

computing time and memory resources.

For a sake of clarity, let us consider the example of a simple forest simulation scene composed of

four trees trunks with four different values of ε1r,s, comprised between 4.56 and 20.6 as shown in table

4.3. These trees are illuminated by an electromagnetic plane wave of frequency f “ 400 MHz. The

adaptive discretization , depending on the real part of the dielectric constant of each tree, enables us

to reduce significantly the numerical size of this forest simulation scene.

Table 4.3: The significant reduction of the electrical size of the forest simulation scene thanks to the
adaptive meshing amongst the trees. Dλ is taken equal to 12 for this example.

ε
1

r,s

λs
12

dimensions (m3) Tc,uniform (m) Tc,non´uniform (m)

Tree 1 4.56 0.029 0.120ˆ 0.120ˆ 2.400 0.010 0.020

Tree 2 12.95 0.0173 0.150ˆ 0.150ˆ 3.600 0.010 0.015

Tree 3 17.80 0.014 0.120ˆ 0.120ˆ 2.700 0.010 0.010

Tree 4 20.60 0.01375 0.180ˆ 0.180ˆ 4.500 0.010 0.010

Total Number of cells Nbc 300240 213000
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4.1.1.2 Non-uniform mesh inside the same cylinder

Along the same lines, the implementation of a non-uniform mesh inside a single cylinder aims also

to avoid an over-meshing of each tree and, hence, to reduce the initial electrical size of the forest

simulation scene. This approach was motivated by two main reasons. The first is in relation with the

composition of a natural tree trunk, which has a direct influence on ε1r,s of the cylinder modeling this

tree, and the second concerns the behaviour of an electromagnetic wave inside a material depending

on the imaginary component of its dielectric constant (ε2r,s).

In fact, we observed the variations of the real part of the dielectric permittivity depending on the

depth into the tree trunk (see Figure 4.8). Therefore, we noted the existence of a region of high peak

dielectric constant value around 5 or 6 mm, which is explained by the fact that the inner bark is a

living tissue. Hence, the peak observed corresponds to the well-hydrated living cells of the phloem and

cambium tissues, the two main constituents of the inner bark [48].

(a) Variations of ε
1

r,s inside a tree trunk (b) A tree trunk cross section

Figure 4.8: Variations of the real component of the dielectric constant along with the depth into the
tree trunk.

Consequently, it is interesting to take into consideration the variation of ε1r,s with the depth inside

the tree trunk while discretizing it into cells of size Tc ď
λs
Dλ

(see equation ??). That would enable us

to ensure the accuracy of the CBFM with a representation of the forest closer to the reality, without

finely meshing the entire tree trunk. Figure 4.11 illustrates an example of adaptive mesh implemented

for the tree B whose dielectric constant is presented in of Figure 4.8a.
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εr′ ≈ 30  → Tc = 0.01 m εr′ ≈ 10  → Tc = 0.02 m  

Figure 4.9: Example of non-uniform meshing depending on the value of ε
1

r inside the tree trunk.
This example corresponds to a frequency f “ 300 MHz and a constant Dλ “ 14

The other key motivation was in relation with the imaginary part of the dielectric constant ε2r , which

has also a determining influence on the cell size used to discretize the tree trunk. In fact, ε2r is closely

linked to the skin effect that may be encountered on the outer part of the dielectric cylinder modeling

a tree trunk. Let us recall that the skin depth δ is defined as the depth at which the electromagnetic

field in a conducting material has decreased to
1

e
of its initial value. Hence δ determines approximately

the width of the area where the electric field is concentrated, when the depth is measured from the

outer side of the scatterer. The skin depth δ is given by the expression below [55, 56] :

δ “

c

2

ωµσ
“

1
?
σµπf

ñ δ “
67

fp MHzq
a

ε2r
pmq (4.4)

where ω is the angular frequency, µ the permeability and σ the conductivity of the material, directly

linked to the imaginary part ε2r of the dielectric constant. Hence, according to 4.4, the size of the skin

depth region is inversely proportional to ε2r . Figure 4.10 illustrates the variation of the electromagnetic

field inside a dielectric cylinder of square-cross section modeling a tree trunk, computed with the

CBFM-E for an incident plane wave with θi “ 400 and ϕi “ 00. The results shown in Figure 4.10

confirm that the higher the value of ε2r is, the thinner the skin depth region is. On the other hand, it

is known that the cell size, used to descritize the skin depth region, must be equal or less than
δ

5
if we

aim to ensure the accuracy of the MoM solution :

Condition 2 : Tc ď
δ

Dδ
where δ “

67

fp MHzq
a

ε2r
pmq and Dδ « 5 (4.5)

Hence, the idea was to take into account the rapid variations of the electric field inside the skin

depth zone, while keeping the initial cell size Tc equal or less than
λs
Dλ

, with respect to condition 1 (see

equation 4.3), for the rest of the scatterer.
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(a) ε
2

r “ 0.01 (b) ε
2

r “ 6

Figure 4.10: Variation of the electric field inside a cylinder of square cross section computed by the
CBFM-E, with 2 different values ε

2

r , with a frequency f “ 300 MHz, and for an incident plane wave
defined by θi “ 400 and ϕi “ 00.

This approach, considering non-uniform mesh inside the scatterer, as shown in Figure 4.11, is par-

ticularly interesting with high values of ε2r and with large tree trunks. It enables us a significant

reduction of the needed memory resources even before starting the CBFM procedure. It remains to be

seen whether the CBFM is suitable and insensitive to this non-uniform mesh, which will be discussed

in the next paragraph.

(a) Example of variations of ε
2

r

Tc,δ = 0.01 m 
Tc,λ = 0.02 m 

δs 

(b) Corresponding non-uniform mesh

Figure 4.11: Example of non-uniform mesh inside a tree trunk in order to take into account the
variations of the electric field in the skin effect region. With ε

2

r “ 20, the skin depth for this scatterer,
δs, is equal to 0.05 m. So the cell size in the δs zone, namely Tc,δ, must be equal or less than 0.01 m.

At the end of this section dealing with the impact of the dielectric properties of the forest on the

meshing approach, it is worthwhile mentioning, that we have not yet a clear "picture" on the dielectric

constant in a forest medium at VHF and UHF frequency band [52]. In that sense, we have initiated
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recently a cooperation with the LGEP laboratory (SUPELEC, Paris, France) in order to get, according

to their research work, reliable measurements of the dielectric properties of the forest. In the meantime,

we have adopted a wide range of values going up to εr,s “ 30 + j 20. After all, the most important

goal of this section is to ensure a sufficient meshing flexibility depending on the dielectric properties

of a natural forest medium, in order to enable the users of the CBFM code to simulate larger forest

simulation scenes with higher frequencies without incurring any extra costs both in terms of CPU time

and memory.

4.1.2 Applicability of the CBFM to a non-uniform mesh

To carry out a comparison between the performances of the CBFM-E achieved by using a uniform

and a non-uniform mesh, we begin this section by applying the CBFM-E to a simple example, namely

scattering from two tree trunks modeled by two cylinders of circular cross section, whose dimensions are

[Rs,1 “ 0.24 m ; hs,1 “ 3.3 m] and [Rs,2 “ 0.18 m and hs,2 “ 2.1 m], where Rs and hs are, respectively,

the radius and the height of each scatterer . The trees are set above ground, whose complex relative

permittivity is εg “ 5` 3.6j. The cylinders have a complex relative permittivity εs,1 “ 7.2` 0.04j and

εs,2 “ 24.6 ` 0.06j. They are illuminated by an incident plane wave, at a frequency f=300 MHz. To

compute the backscattered electric field using the CBFM-E, each cylinder is divided, along the vertical

axis z, into blocks of height approximately equal to λs each (λs is the wavelength inside each scatterer).

Since the cell size used to discretize the second cylinder (with the highest real permittivity ε1s) must

be less than λs,2
10 “ 0.02 m, we start by discretizing the entire simulation scene into Nbc,1 “ 61440 cells

of size Tc “ 0.015 m. Therefore, in order to observe the behaviour of the CBFM-E that employs a

non-uniform mesh based on the dielectric properties of the two cylinders, we discretize them following

in two ways, namely using : (i) cell size Tc,1 “ 0.03 m for the first; and (ii) cell size Tc,2 “ 0.015

m for the second. This strategy results in a reduced number of cells, namely Nbc,2 “ 21400. The

non-uniform simulation model is shown in Fig. 4.12.

Figure 4.12: 2 vertical cylinders of relative permittivities εs,1 “ 7.2 ` 0.04j and εs,2 “ 24.6 ` 0.06j
discretized respectively by using cell sizes Tc,1 “ 0.03 m and Tc,2 “ 0.015 m
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Figure 4.13 plots the magnitude of the backscattered electric fields obtained with the two simulations

(Nbc,1 “ 61440 and Nbc,2 “ 21400). We see that the results obtained with the non-uniform mesh

are identical to those derived by the CBFM-E using the uniform mesh. However, as expected, the

computation time with Nbc,1 “ 61440 is 6 times higher than that of the second simulation with

Nbc,2 “ 21400 (see Table 4.4).

Table 4.4: Difference between the uniform and non-uniform mesh in terms of CPU time and required
memory storage.

Tc size (m) Z size (3ˆNbc) Zc size CPU time CR

0.015 61440 1222 44 min 5 sec 150
[0.015 ; 0.03 ] 21400 806 7 min 48 sec 79

(a) EV V (b) EHH

(c) φV V (d) φHH

Figure 4.13: Variations of the magnitude and phase of the backscattered fields, for both polarization
V V and HH, computed with the CBFM-E with an uniform and a non-uniform meshes with θi “

r0; 1; 800s and ϕi “ 400

Additionally, the non-uniform mesh enables us to significantly reduce the memory consumption of

the CBFM-E code since it reduces the numerical size of the electromagnetic problem. Nevertheless,
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we notice that the first simulation achieves a better compression rate. Indeed CR1 is equal to 150,

while CR2 is 79. This is due to the fact that we have used identical CBFM block heights for the

two simulations. Indeed, as mentioned earlier, it has been demonstrated that the size of the CBFM

blocks has a direct influence on the compression rate as well as on the computing time. Increasing the

number of elements per block not only results in a significant increase of the compression rate but also,

unfortunately, an increase of the CPU time [30]. To rectify this problem, and to enable the second

simulation to achieve the same compression rate, we can simply divide the second cylinder into CBFM

blocks of height 2λs rather than the present λs.

Next, we apply the CBFM-E to another simple example of a single tree trunk with a high value

of tangent loss (and thus a high value of ε2r), in order to check if the accuracy of the CBFM-E is

maintained when it is applied on a non-uniform mesh inside the same scatterer. Hence, a single tree

trunk is modeled by a cylinder of circular cross section whose dimensions are Rs “ 0.27 m and hs “ 4.5

m. It has a complex relative permittivity εs “ 7.6` 8.9j (tan ∆ “ 1.17). As in the previous example,

the cylinder is set above ground of complex relative permittivity εg “ 5 ` 3.6j, and is illuminated by

an incident plane wave, at f=300 MHz. Therefore, the selected value of ε2r corresponds to a skin depth

inside this scatterer equal to δs “ 0.075 m. Then, we set up the constants Dλ and Dδ respectively

to 10 and 5, which results in the implementation of a non-uniform mesh inside this single tree trunk.

Thus, the skin depth zone is discretized into cells of size Tc,δ “
δs
Dδ

“ 0.015 m, and for the rest of the

scatterer, we use a greater cell size, namely Tc,λ “
λs
Dλ

“ 0.03 m. The first CBFM block of this single

scatterer, discretized as such, is presented in Figure 4.14.

(a) Side view

Y 

X 

Tc,λ = 0.030 m 

Tc,δ = 0.015 m 

(b) Circular cross section

Figure 4.14: Non-uniform discretization of the first CBFM block of a tree trunk of a circular cross-
section whose dimensions are Rs “ 0.27 m and hs “ 4.5 m.

In order to demonstrate the relevancy of this approach, we compare, in Figure 4.15, the results

obtained by applying the CBFM-E on the non-uniform mesh described above, to those obtained with

two uniform cell sizes Tc “ 0.015 m and Tc “ 0.030 m. We present the performances of the CBFM-E

in terms of CPU time and memory requirement, for these three simulations, in Table 4.5.
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Note that, in order to quantify the contribution of the non-uniform mesh in the reduction of the

electrical size of the simulation scene, we define Gnu as the ratio between the number of cells obtained

with a uniform mesh which satisfies the conditions on the cell size (for example, Tc ď
λs
10

and Tc ď
δs
5
),

and the number of cells arising from a non-uniform mesh, depending on the dielectric properties of the

forest simulation scene.

Gnu “
Nbc,uniform

Nbc,non´uniform
“
NbcpTc “ minipT

i
c,λ, T

i
c,δqq

NbcpTc P rT ic,λ;T ic,δsq
(4.6)

where T ic,λ and T ic,δ are, respectively, the cell sizes which fulfil the conditions in relation with the

wavelength inside the scatterer λs and the skin depth δ for each scatterer i.

(a) EV V (b) EHH

(c) φV V (d) φHH

Figure 4.15: Variations of the magnitude and phase of the backscattered fields, for both polarization
V V and HH, computed with the CBFM-E with two uniform meshes (Tc “ 0.015 m and Tc “ 0.030

m) and a non-uniform mesh (Tc “ r0.015; 0.030s m) with θi “ r0; 1; 800s and ϕi “ 400

The first finding is that the non-uniform mesh, inside the scatterer, does not affected the accuracy

of the CBFM-E solution, since we obtained results which match perfectly with those obtained for

Tc “ 0.015 m. Second, the results confirm that Tc “ 0.03 m, which is in fact equal to Tc,λ was not
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sufficient to ensure the accuracy of the CBFM-E, since it does not enable it to take into account

the rapid variations of the electric field inside the skin depth region. Hence the non-uniform mesh has

enabled us to achieve a significant gain in terms of the electrical size of the simulation scene Gnu “ 2.87,

while maintaining the accuracy of the CBFM-E solution, thanks to its applicability to a non-uniform

mesh.

Table 4.5: Performances of the CBFM-E in terms of CPU time and memory requirements when
applied to the two uniform meshes defined by Tc “ 0.015 m and Tc “ 0.030 m and a non-uniform mesh

with Tc “ r0.015; 0.030s m

Tc size (m) Z size (3ˆNbc) Zc size CPU time CR

0.015 61440 1222 44 min 5 sec 150

[0.015 ; 0.03 ] 21400 806 7 min 48 sec 79

0.03 21400 806 7 min 48 sec 79

Furthermore, the non-uniform approach inside the same scatterer, is even more useful and relevant

for large tree trunks with high values of ε2r . In fact, as shown in Figure 4.16, the greater the ratio
Rs
δs

, the greater Gnu is, and hence, the more gain in terms of memory resources and CPU time this

approach brings.

(a) Gnu “ fpRsq (b) Gnu “ fpδsq

Figure 4.16: The gain achieved by the non-uniform mesh increases with the tree trunk size (Rs) and

decreases with the skin depth δs. Therefore, Gnu is directly proportional to the ratio
Rs
δs

We end this paragraph dealing with the applicability of the CBFM-E to a non-uniform mesh inside

the same scatterer, by checking the value of Dδ required to ensure the accuracy of the CBFM-E

solution for high values of ε2r . For this purpose, we apply the CBFM-E to a single cylinder whose

dielectric permittivity is equal to εs “ 7.6 ` 14.8j, with different non-uniform meshes corresponding

to different values of Dδ (see table 4.6). The initial Tc “ 0.03 m complies with the condition on

λs and is used in all cases to discretize the inner region which is not concerned by Dδ. Then, we
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compare the associated results to those obtained by the application of the CBFM-E with a uniform

cell size Tc “ minpTc,λ, Tc,δq. Figure 4.17 shows a comparison of the backscattered fields obtained with

the uniform Tc “ 0.01 m with those derived with the different configurations of non-uniform mesh,

summarized in table 4.6. In fact, a uniform mesh with Tc “ 0.01 m is equivalent to the discretization

of the entire scatterer, and not only the skin depth region, into cells of size Tc ď
δ

5
, resulting thus in a

numerically large simulation scene of Nbc “ 201600 cells.

Table 4.6: Application of the CBFM-E to a cylinder of dimensions Rs “ 0.24 m and hs “ 4.5 m,
and relative dielectric permittivity εs “ 7.6` 14.8 j for different values of Dδ

Dδ Tc (m) Nbc CPU time (sec)

1 0.030 7800 69

2 [0.030 ; 0.020] 19576 455

3 [0.030 ; 0.015] 45824 1410

5 [0.030 ; 0.010] 140032 13024

Figure 4.17 shows that a factor Dδ of 3 - 5 is sufficient to resolve the skin depth and, hence, to ensure

the accuracy of the CBFM-E solution when applied to a dielectric 3D scatterer with a high value of ε2r .

Again, we can see that a uniform mesh with Tc “ Tc,λ, although it is attractive in terms of computation

burden, does not provide satisfactory results when compared to the uniform mesh corresponding to

TcpDδ “ 5q.

Figure 4.17: Comparison of the magnitude of the backscattered fields EV V , obtained by applying
the CBFM-E on a non-uniform mesh for different values of Dδ to that obtained with two uniform
meshes Tc “ 0.030 m (equivalent to Dδ “ 1) and Tc “ TcpDδ “ 5q “ 0.010. The results are plotted

for θi,s “ r0; 1; 80s0 and ϕi,s “ 00.
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Finally, in order to verify the accuracy of the CBFM solution while using a non-uniform mesh for a

larger forest simulation scene, we apply the CBFM-E to a large electromagnetic problem simulating a

forest patch composed of forty five cylinders modeling nine trees. The tree trunks go up to a height

of 4.8 m and are approximately 2 m apart (see Fig. 4.18). The cylinders are placed over a dielectric

ground with a complex relative permittivity of εg “ 5` 2.1j, and the trees themselves have a complex

relative permittivity εs “ ε1s ` ε2s j where ε2s “ 0.9 and ε1s vary from ε1s,min “ 2.9 to ε1s,max “ 24.1. As

the previous example, the simulation scene is illuminated by an incident plane wave at a frequency f

= 300 MHz.

Figure 4.18: A forest simulation scene composed of 45 cylinders modeling 9 trees with 4 branches
each

(a) EV V (b) φV V

Figure 4.19: Variations of the magnitude (a) and phase (b) of the backscattered fields EV V , computed
with the CBFM-E with an uniform and a non-uniform meshes with an azimuth angle ϕi “ 400

For this example, let us assume that the cell size used to discretize the scatterers must be less

than λs
16 . Thus, the highest real permittivity ε1s, equal here to 24.1, corresponds to the lowest cell size

Tc “ 0.01 m. Therefore, we start by discretizing the entire simulation scene into Nbc,1 “ 565920 cells

of size Tc “ 0.01 m. Then, once again, in order to observe the behaviour of the CBFM-E with a

non-uniform mesh based on the dielectric properties of the 45 cylinders modeling the nine trees, we

descritize them using three different cell sizes Tc,1 “ 0.01 m, Tc,2 “ 0.015 m and Tc,3 “ 0.03 m. Hence,
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the simulation scene is now represented by an electromagnetic problem of Nbc,2 “ 171340. The results

obtained with the two simulations (Nbc,1 “ 565920 and Nbc,2 “ 171340) are presented in Table 4.7.

Fig. 4.19 and Fig. 4.20 plot the magnitude of the backscattered electric fields obtained with the two

simulations.

We see, again, that the results obtained with the non-uniform mesh are identical to those derived

by the CBFM-E using the uniform mesh. Furthermore, the non-uniform mesh allows us a significant

reduction of the CPU time and the memory resources needed.

Table 4.7: Performances of the two simulations in terms of memory use and computing time

Tc size (m) Z size (3ˆNbc) CPU time
0.01 1697760 45 h 15 min
[0.01 ; 0.015 ; 0.03] 514020 4 h 12 min

(a) (b)

Figure 4.20: Variations of the magnitude (a) and phase (b) of the backscattered fields EHH , computed
with the CBFM-E with an uniform and a non-uniform meshes with an azimuth angle ϕi “ 400

We have demonstrated in this section that the accuracy of the results obtained by using the CBFM-E

is not compromised when a non-uniform mesh is used. Consequently, we can apply the CBFM-E to

larger forest areas while taking into account the dielectric heterogeneity of the trees as we decompose

the computational domain by adapting the mesh to their dielectric permittivities. We observe that it

is also interesting to investigate the behaviour of the CBFM-E when we use a non-uniform mesh inside

each scatterer to capture the skin effect for high ε2s values (imaginary part of εs), without significantly

increasing the numerical size of the electromagnetic problem.

Now that we have reduced the initial electrical size of the forest simulation scene, thanks to the

robustness of the CBFM and its insensitivity to the non-uniform mesh, we focus on the enhancement

of the different steps of the CBFM algorithm in order to reduce as much as possible the corresponding

CPU time and required storage.
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4.2 Sparse representation of the Macro-Basis Functions (MBFs)

As explained in chapter 2 dealing with the numerical procedure of the CBFM, the macro basis functions

(MBFs) are determined for each block i by inverting its specific MoM matrix Zii of size 3Ni ˆ 3Ni

where Ni is the number of cells in the block i (see equation 2.7). Simulations indicate that this step is a

burdensome task particularly in terms of CPU time. Furthermore, the computing time corresponding

to this part of the CBFM process, increases with the size and the number of the blocks decomposing

the forest simulation scene.

Table 4.8 summarizes CPU time (in seconds) spent to generate the CBFs for different sizes of

CBFM blocks. It includes the time to compute the elements of the matrix Zii, to compute the matrix

Eref,IPWs
ii representing the plane waves excitations, to solve the corresponding matrix equation in

order to generate the MBFs and finally the time allocated for the SVD and normalization applied to

the MBFs in order to compute the CBFs. First, Table 4.8 enables us to define the most expensive

steps, in terms of computing time, which are obviously the resolution of the matrix equation and then,

from a certain value of Ni, the computation of the elements of Zii . Second, it clearly shows that

increasing the size of the CBFM blocks leads to a dramatical increase in the CPU time associated to

the generation of the MBFs of this block. However, we know that implementing the CBFM with small

blocks results in a low compression rate, and thus also dramatically increases required storage.

Table 4.8: Total CPU time (sec) required to compute the Characteristic Basis Functions (CBFs) for
the block i, namely Cpiq, depending on Ni which is the number of cells in this block (@ 300 MHz). It

includes the time to compute Zii and E
ref,IPWs
ii , and to solve the associated matrix equation.

Ni 288 1200 2268 3072 4800

Zii 0 2 6 11 27

Eref,IPWs
ii 0 0 0 1 1

Solving Zii equation 9 568 1056 2230 8407

SVD and normalization 1 13 32 88 304

Total CPU for Cpiq 10 583 1094 2330 8739

Hence, in order to reduce the burden on the CPU time, in the case of large CBFM blocks, previous

studies [27, 43] have proposed to use the sparse representation of the MoM matrices to approximate

the MBFs for each block instead of inverting 2.3. In fact, the sparse representation would reduce

significantly the computation time as matrix inversion that costs Opp3Niq
3q is replaced by Op3Niq

vector-vector divisions (see equation 2.7), where Ni is the size of the CBFM block i. As mentioned

in chapter 2, this approach can have a negative effect on the accuracy of the CBFM solution. The

question, however, is whether or not this effect is so important that it affects the accuracy of the results

obtained for the scattered field, since the ultimate goal of our 3D dielectric model is to compute the

scattered fields by a forest medium.
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In order to check the impact of the sparse representation on the accuracy of the CBFM solution,

and to prove its relevancy to the reduction of the computation time, we apply the CBFM-E with and

without the sparse representation of the MBFs to the large forest simulation scene described in Table

4.9 and illustrated in Figure 4.21.

Figure 4.21: A large simulation scene composed of 225 cylinders modeling 25 trees with 8 branches
each, placed over a real ground plane of relative permittivity εg “ 5` 2.1j.

The variations of the magnitude of the components EVz and EHz of the electric field inside the first

scatterer (Rs “ 0.150 m and hs “ 8.4 m) are shown in Figure 4.22 for the incident plane wave defined

by θi “ 400 and φi “ 00, and the backscatter results for both polarization V V and HH are presented

in Figure 4.23 for θi,s “ r00; 10; 800] and φi “ 00.

As can be seen, the sparse representation approach has a slight impact on the accuracy of the CBFM-

E solution for the calculation of the electric field inside the tree trunks. However, given the targeted

domain of application which is forest scattering modeling, we are more interested in the scattered fields,

and Figure 4.23 shows that the results obtained with the modified CBFM-E for the backscattered fields

match relatively well with those derived by the classical procedure of the CBFM-E.

At the same time, as shown in Table 4.10, the sparse representation of the MBFs enables us to

significantly reduce the CPU time required to generate the CBFs. It is noteworthy that the modified

CBFM-E achieves a slightly smaller compression rate compared to the classical CBFM-E, this does

not, however, alter the fact that the sparse representation of the MBFs increases widely the efficiency

of the CBFM-E without degrading its accuracy.
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Table 4.9: The CBFM-E is applied with and without sparse representation to a large simulation
scene of Nbc “ 221400 cells @ f “ 300 MHz

Number of trees 25 with 8 branches each (225 cylinders)

Scatterers dimensions as P r0.12, 0.15, 0.18s m; hs P r6, 7.2, 8.4, 9.6sm

Scatterers permittivities 6.2` 0.2j ď εs ď 8.4` 1j

Ground permittivity εg “ 5` 2.1j

λ scatterer 0.346 m ď λs ď 0.401 m

Cell size Tc “ 0.03 m

Number of Cells Nbc “ 221400 cells

Number of CBFM blocks NB “ 458

Number of extended floors Nberext,floors “ 4

Number of plane waves NIPWs “ 380 (dθ = dφ = 300)

(a) EVz (b) EHz

Figure 4.22: Comparison of the electric field inside the scatterer (EVz and EHz ) obtained by the
CBFM-E with a sparse representation of the MBFs to that obtained with a classical CBFM-E.

Table 4.10: Performances of CBFM-E with sparse representation of the MBFs (modified CBFM-E)
in terms of computation time and compression rate in comparison with the classical CBFM-E.

Zc size CR ICR (%) CBFs Zc Z´1
c

Classical CBFM-E 24466 27.15 3.68 1 h 20 min 4 h 22 min 1 h 49 min

Modified CBFM-E 27122 24.5 4.08 2 min 48 sec 4h 25 min 2 h 18 min



Efficiency Enhancement techniques for the CBFM with Forest Scattering modeling 78

(a) EV V (b) EVH

(c) EHV (d) EHH

Figure 4.23: Variations of the magnitude of the backscattered fields obtained by the CBFM-E with
a sparse representation of the MBFs, and compared to that obtained with a classical CBFM-E.

In order to measure explicitly the saving of time due to the approximation done on the MBFs through

the sparse representation approach, the gain Gisr has been defined as

Gisr “
Time to generate Epθ,ϕqi

Time to generate rE
pθ,ϕq
i

(4.7)

As shown in Table 4.11, this gain increases with Ni the size of the CBFM blocks decomposing the

simulation scene. Indeed, Gisr represents the ratio between Opp3Niq
3q and Op3Niq. This fact is a major

advantage of the sparse representation approach, since we know that increasing the size of the CBFM

blocks also significantly improves the compression rate achieved by the CBFM-E.
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Table 4.11: Comparison between the classical and the modified CBFM-E in terms of CPU time and
inverted compression rate ICR depending on Ni the size of the CBFM blocks. ĆICR (% is the ICR

achived by the CBFM-E with the sparse representation of the MBFs).

Ni 690 1380 3450

E
pθ,ϕq
i (min) 9 20 349

rE
pθ,ϕq
i (min) ď 1 2 12

Gisr « 9 10 29

ICR (%) 7.22 4.57 2.45
ĆICR (%) 8.77 5.44 2.72

However, despite the gain in terms of CPU time brought by this approximation, the time spent to

generate the reduced matrix Zc is still dominant in comparison to the time spent for the calculation of

the CBFs (see Table 4.10). Hence, we focus in the next paragraph on reducing the CPU time required

to compute Zc by hybridizing the CBFM-E with the Adaptive Cross Approximation algorithm (ACA).

4.3 Hybridization of the CBFM with the ACA Algorithm

The Adaptive Cross Approximation (ACA) algorithm has shown good performance, in terms of com-

pression, when dealing with coupling matrix blocks which represent well-separated MoM interactions.

Consequently, in this subsection, we apply the ACA algorithm to the generation of the reduced matrix

in the context of the CBFM to speed up the most expensive step in the CBFM in terms of the required

CPU time

4.3.1 Outline of the Adaptive Cross Approximation algorithm (ACA)

The Adaptive Cross Approximation Algorithm is an adaptive and on-the fly rank-revealing block

factorization of the rank-deficient sub-matrices [29]. It is based on the compression of the off-diagonal

blocks of the MoMmatrix representing well-separated interactions [57–59]. One of the advantages of the

ACA algorithm is its purely algebraic nature, which makes it suitable for a great variety of application

domain. Furthermore, the application of this algorithm does not require a complete knowledge of the

initial electromagnetic problem, leading thus to a significant gain in term of memory cost and CPU

time.

The ACA algorithm was introduced by Bebendorf, in [58], to solve static and low frequency problems,

where the integral kernels are asymptotically smooth, with OpN logNq complexity. Later, the ACA

was applied successfully to electromagnetic wave problems of moderate and large electrical size in

[34, 37, 60, 61]. In this case, according to [34], the ACA algorithm produces very accurate results using

only a small part of what are needed by conventional MoM both in terms of memory and total CPU.
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Several recent studies [29, 39, 62] have also been interested in the integration of the ACA algorithm in

the CBFM process in order to decrease the time spent while generating the final reduced matrix.

In fact, the initial MoM matrix, which represents remote interactions between the N cells composing

the 3D forest scene, is a full dense matrix, as a result of the volumetric integral representation of the

electric field inside the scatterers. However, the off-diagonal sub-blocks, which describe the interactions

between well-separated original low-basis functions, are numerically rank-deficient and hence can be

approximated by much lower-ranks matrices. This is where the ACA algorithm comes in, since it

allows to approximate those rank-deficient MoM matrix blocks by a much-reduced set of column

vectors [34, 58].

This algorithm works through an adaptive block factorization of the rank deficient sub-matrices. It

enables to approximate the original MoM sub-matrix Zm,n P Cm,n by a much lower-rank matrix rZm,n

while respecting an accuracy level defined by the tolerance ε such as ||Rm,n|| “ ||Zm,n ´ rZm,n||F ď

ε||Zm,n||F , where Rm,n is termed as the error matrix and ||Rm,n||F and ||Zm,n||F refer respectively to

the Frobenius norm of the matrices Rm,n and Zm,n. The ACA algorithm approximates Zm,n through

the following block factorization

rZm,n “ UmˆrV rˆn “

r
ÿ

i“1

Umˆ1
i V 1ˆn

i (4.8)

where r indicates the effective rank of the matrix Zm,n, Umˆr and V rˆn are two dense rectangular

matrices respectively. The ACA works efficiently while it converges after r iterations with r ăă

minpm,nq, then and only then it enables us to gain an appreciable speed advantage relative to a direct

matrix fill method. Since the ACA algorithm does not require a priori full knowledge of the initial

MoM matrix, instead of computing and storing mˆn elements, the algorithm only requires to compute

and store pm` nq ˆ r. This results in a significant reduction of the associated CPU time and memory

storage required.

The ACA algorithm given in [34] is described below. The arrays I “ rI1...Irs and J “ rJ1...Jrs

contain orderly selected row and column indexes of the matrix Zmˆn. As shown in Figure 4.24, uk is

the kth column of the matrix U and vk is the kth row of the matrix V.

We note that the algorithm proceeds by an iterative selection of the rows and columns that contribute

the most to the information included in Zm,n so as to reduce in each iteration the approximation error.

In fact, for instance, the row to be selected for the next iteration corresponds to the location of the

maximum value of the last computed error column, and so forth. At the end of each iteration k, the

convergence is checked through ||Uk||F ||Vk||F ď ε||Z̃pkq||F where ||Z̃pkq||2F “ ||Z̃
pk´1q` ukvk||

2
F ; uk and

vk being respectively the kth column of the matrix U and the kth row of the matrix V . The ACA

algorithm comes to end after r iterations when the tolerated approximation error ε is achieved (named

also εACA ).
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Figure 4.24: The ACA algorithm approximates the matrix Zmˆn through a product form. The details
of this algorithm are given below.

Initialization (k=1):

1) Initialize the 1st row index I1 “ 1 and set rZ “ 0.

2) Initialize the 1st row of the approximate error matrix : rRpI1, :q “ ZpI1, :q.

3) Find the 1st column index J1 : | rRpI1, J1q| “ maxjp| rRpI1, jq|q.

4) v1 “ rRpI1, :q{ rRpI1, J1q

5) Initialize the 1st column of the approximate error matrix : rRp:, J1q “ Zp:, J1q.

6) u1 “ rRp:, J1q.

7) || rZp1q||
2
“ || rZp0q||

2
` ||u1||

2
||v1||

2.

8) Find 2nd row index I2 : | rRpI2, J1q| “ maxip| rRpi, J1q|q, i ‰ I1.

Iterations :

while ||uk||||vk|| ě ε|| rZpkq|| do

% Iteration k

1) Update (Ik)th row of the approximate error matrix : rRpIk, :q ´
řk´1
l“1 pulqIkvl.

2) Find kth column index Jk : | rRpIk, Jkq| “ maxjp| rRpIk, jq|q, j ‰ J1, ..., Jk´1.

3) vk “ rRpIk, :q{ rRpIk, Jkq.

4) Update (Jk)th column of the approximate error matrix : rRp:, Jkq “ Zp:, Jkq ´
řk´1
l“1 pvlqJkul.

5) uk “ rRp:, Jkq.

6) || rZpkq||
2
“ || rZpk´1q||

2
` 2

řk´1
j“1 |u

T
j uk||vkv

T
j | ` ||uk||

2
||vk||

2.

7) Find next row index Ik`1 : | rRpIk`1, Jkq| “ maxip| rRpi, Jkq|q, i ‰ I1, ..., Ik.
end

Algorithm 1: The Adaptive Cross Approximation (ACA) algorithm

It is interesting to note that the ACA algorithm does not require a complete a priori knowledge of

the original matrix. We need only to compute and store rˆ pm` nq terms of Z instead of computing

the entire m ˆ n terms. Hence, the ACA algorithm leads to a significant reduction of the memory

storage in addition to that achieved for the CPU time. The latter scales as Opr2pm`nqq compared to

Opmˆ nq for the computation of the entire original matrix [34].
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It was been confirmed in [34] that the ACA algorithm can be modular and very easily integrated

into various MoM codes. Indeed, in [29], the ACA was used to speed up the generation of the reduced

matrix Zc in the context of the CBFM solution. In this section, we investigate the suitability of this

approach to our 3D dielectric forest scattering model and particularly check the behaviour of the ACA

algorithm toward the heterogeneity of a natural forest medium.

4.3.2 Fast reduced matrix generation using ACA

For a sake of clarity, let us assume that Si CBFs are generated for each block i. Therefore, their use

enables us to replace the initial system of linear equations of size 3N ˆ 3N by a compressed matrix Zc

of size K ˆK where N is the number of cells and K is the total number of the CBFs (K “
řM
i“1 Si

where M is the number of CBFM blocks). The matrix Zc is derived by using the original MoM matrix

and the total K CBFs, using the Galerkin method as depicted below

Zc “

¨

˚

˚

˚

˚

˚

˝

Zc11 Zc12 Zc13 ¨ ¨ ¨ Zc1M

Zc21 Zc22 Zc23 ¨ ¨ ¨ Zc2M
...

...
...

. . .
...

ZcM1 ZcM2 ZcM3 ¨ ¨ ¨ ZcMM

˛

‹

‹

‹

‹

‹

‚

(4.9)

where Zci,j “ă CTi , Z
MoM
i,j Cj ą (4.10)

Here CTi is a 3Ni ˆ Si matrix which contains the Si CBFs corresponding to the Ni cells of block i.

Zij (i ‰ j) is the coupling matrix linking block i to block j. The product Zci,j is then a SiˆSj matrix.

The reduced matrix generation is particularly expensive in terms of CPU time when the number and

size of the CBFM blocks become large (see Table 4.12). On the other hand, it has been shown that

the compression rate, CR, increases with the size of the CBFM blocks.

Table 4.12: CPU time needed to compute the terms of ZMoM
i,j and the product ă CTi , Z

MoM
i,j Cj ą

while generating the reduced matrix Zc. Note that the total CPU time CPUpZcq spent to compute
Zc is equal to N2

B ˆ pCPUpZ
MoM
i,j q `CPUpZci,jqq for an heterogeneous forest simulation scene, where
NB is the total number of CBFM blocks

Ni “ Nj 897 1242 1932 2622 3312 4692 6072

ZMoM
i,j (sec) ď 1 1 3 6 14 27 38

Zci,j (sec) ď 1 ď 1 1 3 6 14 26

To mitigate this problem, we suggest increasing the block size as much as possible to achieve a high

compression rate, and subsequently apply the ACA algorithm to generate the reduced matrix, in order

to significantly speed up this step. With the use of this new hybridized method, we benefit from the



Efficiency Enhancement techniques for the CBFM with Forest Scattering modeling 83

high compression rate achieved by the CBFM without actually increasing the associated CPU time,

thanks to the efficiency of the ACA algorithm.

4.3.2.1 Using ACA to approximate the submatrix Zci,j

The ACA algorithm takes advantage of the rank-deficient nature of the coupling matrix blocks repre-

senting well-separated MoM interactions. In this work, we use it to approximate the submatrix Zci,j ,

representing the interactions between the CBFM blocks i and j, before using it to compute the final

reduced matrix. By using the ACA algorithm as detailed in [29], the submatrix Zci,j , representing

interactions between blocks i and j after compression, is approximated as

Zci,j “ă CTi , Z
MoM
i,j Cj ą«ă CTi ,

rZMoM
i,j Cj ą (4.11)

where rZMoM
i,j “ U3Niˆr

i V
rˆ3Nj
j (4.12)

Figure 4.25: The ACA algorithm construct two dense rectangular matrices vectors

As explained earlier, rZMoM
i,j is a low-rank decomposition of ZMoM

i,j . It is defined as a product of the

two dense rectangular matrices U3Niˆr
i and V rˆ3Nj

j where Ni and Nj are respectively the number of

cells per block i and j and r is the effective rank of the matrix ZMoM
i,j . This rank decreases when the

distance separating the CBFM blocks i and j increases. The ACA algorithm works efficiently when

blocks i and j are well separated and results in a rank r much lower than minp3Ni, 3Njq. Hence the

matrix Zci,j is efficiently computed as

Zci,j “ă CTi , UiVjCj ą (4.13)

Hence, the hybridization of the CBFM-E with the ACA, enables us to reduce the CPU time spent to

compute the matrix product ă CTi , Z
MoM
i,j Cj ą, but also help us to save time and memory space costs

on the computation of ZMoM
i,j . In fact, we only need to compute p3Niˆrq`prˆ3Njq “ 3rˆpNi`Njq

terms of ZMoM
i,j instead of computing the entire 3Ni ˆ 3Nj . As example, let us consider two CBFM

blocks i and j of size Ni “ 1356 cells and Nj “ 2460 cells. We assume here that these two blocks are
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well separated such as the matrix ZMoM
i,j has an effective rank r “ 12 ăăă minp3Ni, 3Njq. Thus, the

integration of the ACA leads to a decrease the number of computed elements of ZMoM
i,j from 30021840

to 137376, which represents a significant gain both in terms of CPU time and memory space required

to store these elements.

It remains to be seen whether the hybridization of the CBFM and the ACA yield a comparable

level of accuracy to that obtained with the CBFM-E in comparison with the conventional MoM, when

applied to our 3D dielectric forest simulation scene. The numerical accuracy and efficiency of the

CBFM-E hybridized with the ACA is assessed in the next paragraph.

4.3.2.2 Primary results on combining CBFM-E and ACA

In order to check the accuracy of the hybridization of the CBFM-E with the ACA, we begin by

applying the modified CBFM-E solution (CBFM-E + ACA) to a small simulation scene composed of 9

dielectric cylinders modeling a tree with 8 branches. The tree trunk is placed over a dielectric ground

with a complex permittivity of εg “ 5`j2.1, and the tree itself has a complex relative permittivity of

εr “ 8.2`j0.9. This homogeneous small simulation scene, presented in Figure 4.26, is illuminated by

an incident plane wave, at a frequency f “ 300 MHz.

Figure 4.26: 9 dielectric cylinders modeling a tree with 8 branches, placed over a real ground plane
of relative permittivity εg “ 5` 2.1j, and discretized into Nbc “ 13920 cells.

Each cylinder is divided, along the vertical axis ~z, into blocks of height equal almost to λ. Then, we

apply the classical CBFM-E and the new hybridized version, with the ACA algorithm while generating

the reduced matrix, and we compare the results to those derived by the conventional MoM. A threshold

of 10´3 is used for the generation of the CBFs (SVD) in the CBFM-E, and the construction of Ui and

Vj in the ACA. We also fixed the maximum number of iterations to Niter,max “ 50 for the ACA

algorithm. Thus Ui and Vj , at the output of the ACA, are used to compute Zci,j if and only if the

effective rank r of ZMoM
i,j is lower than Nit,max “ 50.
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In Figure 4.27, we can observe a satisfactory agreement between the CBFM-E combined with the

ACA, the classical CBFM-E and the conventional MoM. Therefore, the accuracy of the CBFM solution

is not compromised by the integration of the ACA algorithm to the generation of the reduced matrix

Zc, and this despite the fact that the ACA has well compressed all the off-diagonal sub-matrices of Zc

(see Figures 4.28 and 4.29).

(a) EV V (b) EHH

(c) φV V (d) φHH

Figure 4.27: Variations of the magnitude and phase of the backscattered fields, for both polarization
V V and HH, computed with the classical CBFM-E, the CBFM-E hybridized with the ACA and
the conventional MoM with θi “ r0; 1; 800s and ϕi “ 400. The ACA is applied with ε “ 10´3 and

Niter,max “ 50

Figure 4.28 illustrates the variations of Niter,out and the effective rank r depending on di,j the

distance between the CBFM blocks i and j. Niter,out is the number of iterations required by the ACA

to converge, and r is the effective rank of ZMoM
i,j computed by means of a full SVD with a threshold

of 10´3 on the normalized singular values. The size of the initial sub-matrix ZMoM
i,j is 2070 ˆ 2070.

As expected, we note that the effective rank of the coupling sub-matrix ZMoM
i,j decreases rapidly with

the distance di,j separating the CBFM blocks i and j. In fact, the ACA algorithm is computationally

efficient starting from a separation distance of 2λ, thus it is useless, for instance, to apply the ACA
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algorithm to the sub-matrices representing the interactions between two adjacent CBFM blocks. We

can also see in Figure 4.28 that the number of iterations required so that the ACA algorithm converges,

namely Niter,out is approximately equal to the effective rank of the sub-matrix under consideration.

Indeed, the maximal difference between the two values (r´Niter,out) is less than 0.4% of the initial size

of the sub-matrix ZMoM
i,j . Moreover, still on the basis of Figure 4.28, Niter,out is always higher than

the effective rank r which ensures the accuracy of the CBFM-E solution later, since rZMoM
i,j is still then

faithful to the initial ZMoM
i,j . It is therefore appropriate to keep only r, which will represents in the

same time, for the rest of this work, the effective rank of ZMoM
i,j and the number of iterations needed

by the ACA algorithm to approximate ZMoM
i,j .

Figure 4.28: The distribution of the effective rank of ZMoM
i,j and the number of iterations Niter,out

required by the ACA to construct rZMoM
i,j , depending on the distance between the blocks i and j.

Figure 4.29a illustrates the distribution of r for ZMoM
i,j pi ‰ j and i, j ď 88q, the off-diagonal sub-

matrices of the initial ZMoM
41760ˆ41760 representing the tree trunk and branches decomposed into 88 CBFM

blocks. Figure 4.29b shows the sub-matrix compression rate SCRi,jACA achieved by the ACA for each

coupling sub-matrix ZMoM
i,j pi ‰ j and i, j ď 88q. SCRi,jACA is defined as the ratio between the size of

ZMoM
i,j and the number of elements of ZMoM

i,j computed to construct Ui and V j :

SCRi,jACA “
Number of elements in ZMoM

i,j

Number of elements in Ui and Vj
“

3Ni ˆ 3Nj

p3Ni ˆ rq ` pr ˆ 3Njq
“

3Ni ˆNj

r ˆ pNi `Njq
(4.14)

where Ni and Nj are the number of cells in the blocks i and j and r is the effective rank of ZMoM
i,j .

Obviously, given the radial size, namely Rs, of the tree trunk and the branches, the CBFM blocks

composing the tree trunk are numerically much larger than those composing the branches (Nbci,trunk “

690 and Nbci,branch “ 40). These two figures confirm that the sub-matrix compression rate SCRi,jACA
is inversely related to the distance between the blocks i and j. Figure 4.29b particularly shows that

SCRi,jACA depends also on the electrical size of the these two blocks. Indeed, the larger are the blocks

i and j, the higher is the compression rate achieved by the ACA on ZMoM
i,j .
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Figure 4.29: Distribution of the effective rank r and the sub-matrix compression rate SCRi,jACA
related to ZMoM

i,j , depending not only on the distance separating the blocks i and j but also on their
numerical sizes (Ni and Nj). The largest blocks (tree trunk) are of size 3Ni ˆ 3Nj “ 2070ˆ 2070 and
the smallest ones (branches) are of size 120ˆ120. Note that we do not apply the ACA to the diagonal

sub-matrices thus we put the compression rate at 1 for those blocks.



Efficiency Enhancement techniques for the CBFM with Forest Scattering modeling 88

Despite the satisfactory level of accuracy, and the good compression rate brought by the hybridization

of the ACA with the CBFM-E solution, Figure 4.27b shows a disturbing slight difference between

the results obtained with the hybridized version and those obtained with a classical CBFM-E. In

order to avoid any ambiguity, we carry out additional simulations on the same tree, with different

values of εACA and we observe the impact of this crucial parameter on the accuracy of the CBFM-E

combined with the ACA. Figure 4.30 illustrates the variations of the backscattered fields, for the four

polarizations (V V , V H, HV and HH) computed by the classical and the modified CBFM-E with

εACA “ r10´2, 10´3, 10´4s. And Figure 4.31 shows the impact of this change in the value of εACA on

the sub-matrix compression rate SCR1,j
ACA pj ď 16q achieved for sub-matrices the tree trunk.

(a) EV V (b) EVH

(c) EHV (d) EHH

Figure 4.30: Variations of the magnitude the backscattered fields computed with the classical CBFM-
E and the CBFM-E hybridized with the ACA depending on the value of εACA.

It appears that εACA “ 10´2 is not sufficient to ensure the accuracy of the ACA when applied to

approximate ZMoM
i,j . Yet, this value has been used in [29], for PEC objects in a context of analysis of

large antenna systems, so that the relative error is expected to be in the order of few percent or less.
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Hence, clearly this claim is no longer valid when the ACA is applied, as in our case, to 3D dielectric

objects. Rather, it would be more safe to use a threshold equal to 10´3 or 10´4.

On the other hand, we note in Figure 4.31 that decreasing the threshold εACA has a modest impact

on the compression rate. The difference between N p10´3q

iter,out and N
p10´4q

iter,out does not exceed 0.53% of the

initial size of ZMoM
i,j (3Ni “ 3Nj “ 2070). However, we may still prefer εACA “ 10´3 since it enables us

to obtain a satisfactory level of accuracy with a minimum of computing tasks, and hence less memory

space and CPU time. Finally, we can also observe the impact of the threshold value on the total CPU

time in Table 4.13. It is clear that the εACA has not any significant impact on the total CPU time,

at least for this small example of Nbc “ 13920 cells. Note that both the classical and the modified

CBFM-E enable us to reduce significantly the required CPU time comparing to the conventional MoM.

Figure 4.31: A large simulation scene composed of 225 cylinders modeling 25 trees with 8 branches
each, placed over a real ground plane of relative permittivity εg “ 5` 2.1j.

Table 4.13: Performances of the conventional MoM, the classical CBFM-E and the CBFM-E com-
bined with the ACA, in terms of CPU time depending on the value of εACA

MoM Classical CBFM-E CBFM-E + ACA

εACA – – 10´2 10´3 10´4

ZMoM
i,j (sec) – 33 36 40 42

Total CPU time (min) 831 4.9 5.12 4.78 4.8

Next, in order to assess the performances of the CBFM-E when hybridized with the ACA both

in terms of CPU time and memory storage, we move on to a larger forest simulation scene of size

Nbc “ 114770 cells (see Figure 4.32) and we define the total gain in computing time GtotACA as
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GtotACA “
Time to compute ZMoM

Time to compute rZMoM
“

Nb
ÿ

i“1

Nb
ÿ

j“1

Gi,jACA “
Nb
ÿ

i“1

Nb
ÿ

j“1

Time to compute ZMoM
i,j

Time to compute rZMoM
i,j

(4.15)

where Nb is the total number of CBFM blocks. To measure the efficiency of the hybridization of the

CBFM-E with the ACA in terms of gain in required memory resources, we will use the sub-matrix

compression rate SCRi,jACA defined earlier.

It is interesting to note, however, that the gain in required memory space achieved by the ACA

while generating the reduced matrix, contrary to the total compression rate achieved by the CBFM-E,

does not enable us to run larger simulation scenes with higher frequencies. In fact, this gain does not

impact, in any way, the size of the final reduced matrix which corresponds to the required memory

space. This size depends rather principally on the size of the CBFM blocks. However, the compression

rate achieved by the ACA still important and useful since it decreases the number of elements to

compute in ZMoM
i,j . Hence, it is directly converted to a gain in CPU time.

Figure 4.32: 225 dielectric cylinders modeling a forest simulation scene of 25 tree with 8 branches
each, placed over a real ground plane of relative permittivity εg “ 5 ` 2.1j, and discretized into

Nbc “ 114770 cells.

In order to compare the performances of the classical CBFM-E with those achieved by the CBFM-E

when combined to the ACA, we apply these two methods to the large simulation scene of Figure 4.32.

Furthermore, we investigate the influence of the size of the CBFM blocks on the contribution brought

by the ACA. The CPU time and memory storage requirements, for different values of hB (height of

the CBFM blocks) are summarized for the classical and modified CBFM-E in Tables 4.14 and 4.15.
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Table 4.14: Performances of the classical CBFM-E and the CBFM-E combined with the ACA in
terms of CPU time and compression rate (CR). The CPU time to compute the final reduced matrix

Zc and to solve the final linear system of equations are given.

hB Method Size of Zc CR CPU time for Zc CPU time for pZcq´1

λ
Classical CBFM-E

33304 10.34
25 min 26 sec

3 h 56 min
CBFM-E + ACA 19 min 56 sec

r2λ; 3λs
Classical CBFM-E

16978 20.23
34 min 27 sec

47 min
CBFM-E + ACA 9 min 52 sec

r3λ; 5λ; 6λs
Classical CBFM-E

10944 31.46
44 min 45 sec

16 min
CBFM-E + ACA 10 min 12 sec

First, once again, we note the positive impact of the size of the CBFM blocks on the compression

rate CR achieved by the CBFM-E solution. Furthermore, this impact results on a significant reduction

of the total CPU time, since the final reduced matrix is increasingly smaller. This table shows also

that increasing hB enhances the proceeding of the ACA algorithm and substantially increases its

contribution to the gain in CPU time. This is most likely due to the higher sub-matrix compression

rate, SCRi,jACA, achieved by the ACA for each sub-matrix ZMoM
i,j pi ‰ jq. Indeed, Figure 4.33 shows the

compression rate SCRi,jACA achieved for the three first trees, divided into 120 blocks of size hB “ λ and

then, divided into 28 blocks of size hB P r3λ; 5λ; 6λs. We note that the maximum value of SCRi,jACA is

much higher on the right (Figure 4.33b), which confirms that the larger the CBFM block, the higher

the compression rate achieved for the corresponding MoM sub-matrix.

(a) hB “ λ (b) hB = p3λ; 5λ; 6λq

Figure 4.33: Variation of the sub-matrix compression rate, SCRi,jACA, achieved by the ACA for each
sub-matrix ZMoM

i,j pi ‰ jq. On the left, the three trees are divided into 120 blocks, and on the right,
the same trees are now divided into only 28 larger blocks.
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Table 4.15: The total gain in computing time GtotACA achieved by the hybridization with the ACA,
depending on the size of the CBFM blocks composing the same simulation scene.

hB λ r2λ; 3λs r3λ; 5λ; 6λs

GtotACA 1.27 3.49 4.38

(a) EV V (b) EVH

(c) EHV (d) EHH

Figure 4.34: Variations of the magnitude the backscattered fields computed with the classical
CBFM-E and the CBFM-E hybridized with the ACA for a mono-static configuration defined by

θi,s “ r0
0; 10; 800] and φi “ 450.

Hence increasing the size of the CBFM blocks engenders interestingly, in the same time, an increase

in the compression rate CR achieved by the CBFM, and in SCRi,jACA achieved by the ACA. But we

know, according to Chapter 3, that it also results in an additional cost in terms of CPU time, for the

computing of Zc (see Table 4.14). Hence, the hybridization of the CBFM with the ACA, combined

to the use of large blocks, results in an enhancement of the performances of the CBFM in terms of

memory storage without bearing the CPU related costs. Furthermore, the hybridization with the ACA

does not affected the accuracy of the CBFM solution. Indeed, as can bee seen in Figure 4.34. Hence the
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CBFM combined with the ACA yields accurate results with better performances than the conventional

CBFM-E, both in terms of CPU time and memory use. Thus, the goal of the hybridization of the

CBFM-E with the ACA has been achieved for this example.

Next, we investigate the behaviour of the ACA toward the heterogeneity of a natural forest simulation

scene, when this iterative method is applied to approximate the sub-matrices ZMoM
i,j pi ‰ jq. For this

purpose, we apply the CBFM-E hybridized with the ACA to two cylinders of dimensions [Rs,1 “ 0.24

m; hs,1 “ 3.3 m] and [Rs,2 “ 0.18 m; hs,2 “ 2.1 m], while varying the real part of the dielectric constant

of the second cylinder, such as we increase the difference in terms of ε1 between these two cylinders.

The simulations carried out are summarized in Table 4.16.

Table 4.16: The CBFM-E combined with the ACA is applied to two cylinders of dielectric constant
εs,1 and εs,2. The two cylinders are separated by 2 m

Simulation 1 2 3 4 5

ε
1

s,2 7.2 9.6 10.3 15 18.4

ε1s,2 ´ ε
1
s,1 0 2.4 3.1 7.8 11.2

We display, in Figure 4.35, a comparison between the backscattered fields obtained by applying the

conventional CBFM-E and those derived by the CBFM-E hybridized with the ACA for two values

of εACA (10´3 and 10´4), for the simulations 1 and 2. Hence, we investigate the accuracy of the

modified CBFM-E by comparing the results obtained with the maximum value of dielectric contrast

(ε1s,2 ´ ε1s,1 “ 11.2) to those obtained with a homogeneous simulation scene (ε1s,2 ´ ε1s,1 “ 0).

(a) ε1s,2 ´ ε
1
s,1 “ 0 (b) ε1s,2 ´ ε

1
s,1 “ 11.2

Figure 4.35: A comparison between the conventional CBFM-E and the CBFM-E hybridized with
the ACA when applied to two homogeneous, then heterogeneous cylinders. The backscattered fields is

presented for θi,s “ r00; 10; 800] and φi “ 00.

The figure above shows that the heterogeneity of the simulation scene has not the slightest effect on

the accuracy of the CBFM solution when combined with the ACA. The question, however, is whether
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or not increasing ε1s,2 ´ ε1s,1 “ 0 negatively affects the compression rate and the gain in CPU time

achieved by the hybridization with the ACA. To answer this question, Figure 4.36a shows the sub-

matrix compression rate, SCR2,j
ACA, achieved by the ACA for each sub-matrix ZMoM

2,j p12 ď j ď 18q,

depending on the dielectric constrast ε1s,2 ´ ε1s,1. It shows is in a way the impact of the increase of the

real part of the dielectric constant of the second tree, on the compression rate achieved by the ACA

for the interactions of its blocks with the second block of the first tree, whose ε1s is constant. On the

other hand, Figure 4.38b illustrates the CPU time spent by the conventional and modified versions of

the CBFM-E depending on the difference in terms of ε1s between the two cylinders.

(a) SCR2,j
ACA (b) CPU time

Figure 4.36: The performances of the CBFM-E combined with the ACA in terms of CPU time and
sub-matrix compression rate depending on the value of ε1s,2 ´ ε1s,1

First, we note that the heterogeneity of the simulation scene has not a significant impact on the

sub-matrix compression rate. Then, even though it may appear that the increase in ε1s,2 ´ ε1s,1 has a

negative effect on the performances of the modified CBFM-E in terms of CPU time, it is not the case

(see Figure 4.38b). Indeed, for this small example discretized into Nbc “ 7960 cells, and divided into

blocks of a maximum of 520 cells, we can not expect a reduction of the CPU time by the ACA. We

are interested, rather, in the variations of the ratio between the CPU time spent by the conventional

CBFM and that of the modified version. This ratio still almost equal to the constant value of 1.4

despite the increase in ε1s,2 ´ ε1s,1. Therefore, the hybridization with the ACA is apparently insensitive

to the heterogeneity of a forest simulation scene both in terms of computing performances and accuracy.

Furthermore, it turns out that the accuracy of the CBFM-E combined with the ACA is not altered

when the latter is applied on a non-uniform mesh inside the same scatterer. Indeed Figure 4.37 presents

the backscattered fields by a single cylinder of dimensions Rs “ 0.24 m; hs “ 4.5 m of dielectric

permittivity εs “ 7.6` 14.8 j. And, once again, the hybridization with the ACA enables us to reduce

the CPU time spent while generating the final reduced matrix Zc by a half without negatively impacting

the accuracy of the CBFM-E solution. Indeed the conventional CBFM-E achieved the computation of

Zc in 3605 seconds while the modified version yield the same results in only 1722 sec.
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(a) Non-uniform mesh (b) EV V

Figure 4.37: Application of the CBFM-E combined to the ACA on a non-uniform mesh inside the
same scatterer. The magnitude of the backscattered field (polarization VV) corresponds to a mono-

static configuration with θi,s “ r00; 10; 800] and φi “ 00

Finally, Let us consider once again the example of heterogeneous forest simulation scene presented in

Figure 4.18 and discretized using a non-uniform mesh into Nbc “ 171340 cells instead of Nbc “ 565920

cells in the case of a uniform mesh. We show, in Figure 4.38, the magnitude of the backscattered fields

derived by the conventional CBFM-E and the CBFM-E combined with the ACA in comparison to

the results obtained by the CBFM-E with the uniform mesh. The performances achieved by the both

versions of the CBFM-E are illustrated in Table 4.17.

(a) EV V (b) EHH

Figure 4.38: Variations of the magnitude of the backscattered fields (polarization VV and HH)
computed by using the conventional and the modified versions of the CBFM-E on a uniform and a

non-uniform mesh, for θi,s “ r100; 10; 800] and φi “ 400.
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Table 4.17: Performances of the three simulations described above in terms of memory storage
required and computing time

Tc size (m) Z size (3ˆNbc) CPU time

CBFM-E 0.01 1697760 45 h 15 min

CBFM-E
[0.01 ; 0.015 ; 0.03]

514020 4 h 12 min

CBFM-E + ACA 514020 1 h 26 min

The insensitivity of the ACA performances to the non-uniform mesh an to the heterogeneity of the

forest scene allows us thus to benefit in the same time from the improvement in terms of CPU time

and memory storage required brought by the non-uniform discretization of the initial simulation scene

and from the gain in time achieved thanks to the hybridization of the CBFM-E with the ACA. And of

the previous enhancement combine to optimize both the CPU time and the memory use performances

of the conventional CBFM-E. In the next section, we focus on the enhancement of the CBFM-E code.

4.4 Acceleration approaches for the CBFM code proceeding:

In this subsection, we take an interest in the techniques used to accelerate the CBFM code without

damaging the accuracy of the results. Indeed, once the CBFM-E algorithm was enhanced as much

as possible using the approaches mentioned in the previous paragraphs (Sparse representation, non-

uniform mesh, hybridization with the ACA), we focus on the improvement of the CBFM Fortran code

itself. For this purpose, we first exploit the translation symmetry of the forest simulation scene by

neglecting the effect of moving the CBFM blocks, along the axis ~x, ~y and ~z, on the characteristic

basis functions generated at the beginning of the CBFM process. Next, we discuss the OpenMP and

MPI parallel implementation of the CBFM-E code receptively on a shared and distributed memory

workstations.

4.4.1 Neglecting the effect of the position of the CBFM block on its CBFs :

We noted, while starting the implementation of the CBFM-E, that, since two scatterers have the same

dimensions and the same complex relative permittivity εs, even well-spaced, the application of the

CBFM-E to them, results in the same number of CBFs for each two similar blocks ii and jj such as

Nbc,ii “ Nbc,jj . This observation is presented in Figure 4.39. It shows the normalized singular values

obtained while applying the CBFM to the example described in table 4.18. As mentioned in this table,

this simple example is composed of two cubic cylinders spaced by 2 meters along the axis ~x. Each

cylinder is divided, along the vertical axis ~z, into 7 blocks.

This figure confirms that 2 identical CBFM blocks, in terms of size (Nbc,i) and dielectric constant

(εs) give both, after the singular value decomposition, the normalization and the application of the
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Simulation conditions
Frequency f = 2 GHz
Dimensions 0.12 m ˆ 0.12 m ˆ 2.1 m
εs 9.6 + 0.01 j
εg 5 + 2.1 j
λs 0.323 m
Tc 0.03 m
Nbc 2240
NB 14 (from bottom to top)
NIPW 182
σ 10´3

Table 4.18: The simulation conditions applied to 2 vertical cylinder placed over a real ground

threshold, the same number of CBFs upon condition that they have been extended by the same way

while applying the CBFM-E. This observation stimulates an interest on the effect of the spatial shifting

along ~x, ~y and ~z on the fields inside the scatterers and consequently the scattered fields. We began

then by studying the effect of a phase shifting by a constant angle Φ (exp´iΦ) on the singular value

decomposition (SVD) operation (see equation 2.8). We notice that the matrix S is always invariant

and the vectors U and V are invariant or shifted in phase by the same angle Φ depending on the size

of the matrix subjected to the SVD.

(a) CBFM-N (b) CBFM-E

Figure 4.39: The normalized singular values obtained with CBFM-N and CBFM-E using a threshold
equal to 10´3

Consequently, we expect that, once the CBFs are computed for one single scatterer, they can be

used for other identical scatterers, even if they are far away from the initial one (for which we have

computed the CBFs). Copying the CBFs computed for previous similar blocks, instead of computing

it again, will enable us to improve the performances of the CBFM in terms of computing time. On the
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other hand, we hope that this technique will not impact negatively the accuracy of the results obtained

with the CBFM solution.

Therefore, in order to check the validity of this approach, we apply the CBFM-E to two identical

scatterers spaced by a distance ∆. Initially, ∆ is equal to 2 m along the ~x axis. The magnitude

and phase of the components EVz and EHy of the total electric field inside the first dielectric cylinder

obtained for the incidence direction (θi “ 300; ϕi “ 00) by the CBFM-N and the CBFM-E compared

to the results given by the MoM are plotted in Figure 4.40. We display also the backscattered fields

for a mono-static configuration defined by θi “ θs “ r100; 10; 800s and ϕi “ ϕs “ 00 in Figure 4.41.

We notice that, with ∆ equal to 2 m, using the CBFs generated for the first cylinder also for the

second one, have not any influence on the accuracy of the results obtained with the CBFM-E.

(a) EVz (b) EHy

(c) φVz (d) φHy

Figure 4.40: Variations of the magnitudes and phases EVz , EHy , φVz and φHy of the total electric field
inside the first cylinder computed with the CBFM-N, the CBFM-E and the MoM for the incidence

direction (θi “ 300;ϕi “ 00).
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(a) EV V (b) EHH

(c) φV V (d) φHH

Figure 4.41: Variations of the magnitude and phase of the backscattered fields, computed with
the CBFM-N, the CBFM-E and the MoM with a mono-static configuration defined by θi “ θs “

r100; 10; 800s and ϕi “ ϕs “ 00

On the other side, as shows the table 4.19, this approach allows us to achieve, with this example, a

slight computing time gain.

CBFM-N CBFM-E

Classical Version 2 min 11 sec 5 min 21 sec

New Version 1 min 29 sec 3 min 7 sec

Table 4.19: The computing time for the CBFM-N and the CBFM-E with and without neglecting
the effect of the shifting along X, Y and Z on the CBFs (respectively the new version and the classical

version)

Since the parallelism is implemented, for this version, only inside each cylinder, this gain depends on

the degree of parallelism inside each scatterer and so, on the number of blocks by cylinder. The gain

depends also on the size of the reduced matrix computed after CBFs generation. Indeed, increasing

the number of blocks by cylinder increases consequently the degree of parallelism for each cylinder
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which allows an optimal use of the 8 processors of my workstation but unfortunately it decreases in

the same time the compression rate and so increases the size of the reduced matrix and consequently

the computation time related to the resolution of the reduced equation system. In the next section,

we detail the OpenMp and MPI parallelization of the CBFM code.

4.4.2 Parallelization of the CBFM code :

4.4.2.1 The Open MP parallelization of the CBFM

In order to accelerate the CBFM, we take advantage of the fact that the CBFs for each block are

computed independently, as shown in Figure 4.42. Thus, the CBFM process is highly amenable to

parallelization.

Figure 4.42: The CBFs are computed separately for each block before generating the final reduced
matrix.

Toward this end, we implement, initially, openMP directives in a Fortran program running on a

shared memory workstation equipped with an intel Xeon x5560 (8 tasks) at 2.8 GHz and 48 GB

of RAM. The parallel implementation affects the creation of the CBFs for each block but also the

generation of the reduced matrix and the reduced vector Vc representing the right hand-side term of

the equation (2.11) and the computation of the final total field inside the scatterer for the different

incident waves. In practical terms, the openMP directives are introduced since the code presents an

iteration statement (a for loop) which is, fortunately, quite abundant in the CBFM code. To check

the effect of this modification on the computing time, we apply the sequential and the parallel versions

of the CBFM to the simulation example described by table 4.20.

Even with this quite small example (Nbc “ 7040 cells), we notice a significant difference in terms of

computing time between the sequential and parallel versions. To confirm this observation, we compare

the performances of the two versions while increasing the size of the scatterer under simulation. With

a constant block height value (10 floors along the vertical axis ~z), we increase consequently the total
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number of blocks. The experiences are done with a single scatterer whose rectangular base dimensions

are 0.18 m ˆ 0.18 m with a complex relative permittivity of εs “ 9.6 ` 0.01j placed over a dielectric

ground of complex relative permittivity εg “ 5 ` 2.1j. The simulation conditions are listed in table

4.22. For each experience, corresponding to various heights h of the scatterer, we compute the ratio

between the computing time with the sequential version and the one with the parallel version for the

CBFM-N and the CBFM-E. The results are shown in Figure 4.43.

f 300 MHz
Dimensions 4 ˆ [0.12 m ˆ 0.12 m ˆ 2.4 m]
εs 9.6 + 0.01 j
εg 5 + 2.1 j
λs 0.323 m
Tc 0.03 m
Nbc 7040
NB 80
Nfloors 10
Nberext,floors 4
NIPW 182
σ 10´3

Table 4.20: The simulation conditions applied to 4 scatterers placed over a real ground

The results are provided in table 4.21.

CBFM-N CBFM-E MoM

Sequential 3 min 29 sec 7 min 34 sec
46 min 47 sec

Parallel 1 min 33 sec 3 min 3 sec

Table 4.21: The computing time with CBFM-N, CBFM-E and MoM with the sequential and parallel
codes

Hence, the OpenMP parallelization of the CBFM-E code enables us to achieve a significant gain in

computing time. Our CBFM code nevertheless remains limited in terms of numerical size of simulated

forest simulation scene, essentially because of its implementation on a shared memory workstation. In

the next paragraph, we move to a distributed memory configuration, and we discuss then the MPI

parallelization of our CBFM code.

Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Exp7 Exp8 Exp9 Exp10 Exp11

h (m) 2.4 3.9 4.5 5.1 5.7 6.9 7.5 8.4 9.6 10.5 12

NB 8 13 15 17 19 23 25 28 32 35 40

Nbc 2880 4680 5400 6120 6840 8280 9000 10080 11520 12600 14400

Table 4.22: The simulation conditions while increasing the height h of the scatterer under simulation.
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Figure 4.43: The computation time ratio between the sequential and the parallel versions for the
CBFM-N and the CBFM-E depending on the size of the scatterer.

4.4.2.2 The MPI parallelization of the CBFM when applied to the 3D forest scattering

modeling

Since the MPI parallelization is intended to have a significant effect on the performances of our CBFM

code both in terms of CPU time and numerical size of problems under consideration, we present here

our motivations for this technique, and then we detail the MPI implementation for each step of the

CBFM code. Finally, we will end this subsection with some primary numerical results.

- Motivations It is first necessary to mention that the main reason we came up with this issue

is the limitation of the multilevel CBFM-E when applied on a shared memory workstation. In order

to understand this limitation, let us recall that the multilevel scheme of the CBFM-E consists on a

recursive application of the monolevel CBFM in order to reduce as much as possible the size of the

final matrix, before inverting it by using the conventional LU decomposition. The MLCBFM-E is

thus assumed to be more efficient in terms of compression rate CR, and hence applicable to larger

simulation scenes for higher frequencies. As explained in chapter 3, theoretically, this is exactly the

main advantage of the MLCBFM-E compared to the mono-level CBFM-E.

Unfortunately, this theory clashes with the technical reality when the MLCBFM-E is implemented

on a shared memory workstation. As shown in Figure 4.44, even if the MLCBFM-E yield a better

compression rate after further iterations, the first level reduced matrix must be saved. In fact, this

matrix will serves as initial ’MoM matrix’ for the next application of the CBFM-E, and hence must be

fully saved and available for the different CPUs involved in the computation of the CBFs for the next

level.



Efficiency Enhancement techniques for the CBFM with Forest Scattering modeling 103

Figure 4.44: On a shared memory work station, even with the MLCBFM-E, the first level reduced
matrix (CR “ CRmono´levelCBFM ) must be saved. Thus, the MLCBFM-E is stopped as soon as this

size exceeds the available memory resources.

Consequently, the MLCBFM-E, as the mono-level CBFM is stopped as soon as the size of the its

first level reduced matrix exceeds the available memory resources. Therefore, the MLCBFM-E loses

definitely its principal advantage over the classical CBFM-E, even if it maintains a superiority in terms

of CPU time when both the CBFM-E and MLCBFM-E overcome the barrier of the memory space.

Obviously, this technical problem will be solved when the MLCBFM-E code is implemented on a

distributed memory architecture, since none of the involved processors has to save the entire reduced

matrix in its own private memory (see Figure 4.45).

Processor Processor Processor Processor 

Cache Cache Cache Cache 

Main Memory  I/O system  

(a) Shared memory

Interconnection Network  

Processor Processor Processor Processor 
+ 

Cache 
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Cache 
+ 

Cache 

Processor Processor Processor Processor 
+ 

Cache 
+ 

Cache 
+ 

Cache 
+ 

Cache 

Memory Memory Memory Memory 

Memory Memory Memory Memory 

I/O I/O I/O I/O 

I/O I/O I/O I/O 

(b) Distributed memory

Figure 4.45: The shared-memory and distributed-memory architecture.

Moreover, it is important to recall that the distributed-memory architecture itself presents important

and relevant advantages from the point of view of memory resources and computing performances.

Indeed, with a distributed-memory architecture, memory is directly proportional to the number of
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processors. Hence, increasing the available memory resources requires simply an equivalent increase

of the number of processors, and the finance cost, related to the memory, increases linearly with

the needs, which is not the case with the shared-memory workstations. Furthermore, if the code

under consideration is highly amenable to parallelization, its implementation on a distributed-memory

architecture yields a significant reduction in the computing time, since each processor can rapidly access

its own memory without interference and without the overhead incurred with trying to maintain global

cache coherency [63].

These facts, combined with the proven efficiency of the Message Passing Interface (MPI) [64] when

used to parallelize the CBFM [40, 65], prompted us to MPI parallelize our CBFM-E code, once again,

in order to improve its performances both in terms of CPU time and of management of the available

memory resources [66, 67].

Figure 4.46: 20 dielectric cylinders modeling 4 trees with 4 branches each.

For a sake of clarity, let us first of all, consider the application of the CBFM-E to the simple example

of an heterogeneous forest simulation scene, using 4 processors. As shown in Figure 4.46, the simulation

scene is composed of 4 identical trees with 4 branches each, modeled by 20 dielectric cylinders. The

dielectric constant of these trees ranges from εs “ 4.2 ` 0.1j and εs “ 8.2 ` 0.9j. Each tree trunk is

divided into 8 blocks of height hB “ λ, and each branch is divided into 2 blocks of height hB “ 2λ.

Therefore, the entire simulation scene is divided into Nb “ 64 CBFM blocks. The following provides

a description of the MPI parallelization of each step of the mono-level CBFM procedure :

- Partitioning of the forest simulation scene : The parallelization of the CBFM code begins

with an equitable distribution of the CBFM blocks such as each processor receive more or less the same

amount of computing work. In fact, in order to ensure an optimal functioning of the parallel code,

no processor shall have to wait for the others. The simple example of distribution of the 64 CBFM

blocks between the 4 involved processors is shown in Figure 4.47. It should be recalled that, thanks

to the translation symmetry mentioned at the beginning of the current subsection, the CBFs are only
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computed for 3 blocks for each tree trunk. The computed blocks are, from the bottom to the top, the

first, the second and the last of each tree trunk.

Process 0  

Process 1  
Process 2  

Process 2  

CBFs : 11 blocks 
Zc :  16 blocks 

 CBFs : 11 blocks 
Zc :  16 blocks 

 

CBFs : 11 blocks 
Zc :  16 blocks 

 CBFs : 11 blocks 
Zc :  16 blocks 

 

Figure 4.47: Example of a simple partitioning of the CBFM blocks between 4 Processes.

In a broader case, the challenge lies in how to allocate the entire Nb blocks to the processors, for a

random and heterogeneous simulation scene, while taking into account the non-uniformity of the size

of the CBFM blocks and bearing in mind the symmetries exploited to reduce the CPU time while

generating the CBFs. We also need to think about the minimization of the time of communication

between the processes while generating the reduced matrix Zc. All these elements have been verified

and taken into account while implementing the two partitioning algorithm 2 and 3 given below. The

first one deals with the distribution of the total Nb blocks between the available processors and the

second concerns only the allocation of the Nnb blocks, for which the CBFs are computed,where nb

refers to new blocks. Once the simulation scene is distributed equally between the processes, we move

to the next step which is the generation of the CBFs.

- Generation of the CBFs As explained above, since the CBFs for each block are computed

independently, the CBFM algorithm is highly suitable to parallelization at this level. Hence, this step

is carried out fully in parallel without any intercommunication between the N processors.

It is worth mentioning that the version of the CBFM-E, used in this work, and tailored to solve

scattering problems, is more amenable to parallelization while generating the CBFs than that used with

RFIC-Types [27]. Indeed, generating the "secondary" CBFs with the second version of the CBFM-E

requires intercommunication between the processors [68].

- Construction of the reduced matrix Zc For the second stage of the mono-level CBFM-E

procedure, each process computes and stores only a segment of the final reduced matrix. To do it, it
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Distribution of all the CBFM blocks between the N available processors:

1)Initialize the cursor K and the number of cells per process Nbc,proc to 0, and the number of the
process nproc to 1.
2)Initialize permut to 0
3)Compute the average number of cells per process as Nbc,av “ ceilingpNbc{Nq
while K ď Nb do

1) Update Nbc,proc by adding the number of cells of the current block K :
Nbc,proc “ Nbc,proc `Nbc,K
if Nbc,proc ď Nbc,av then

Allocate the block K to the current process nproc and move to the next block (K “ K ` 1).
else

Compute the excess as Excess “ Nbc,proc ´Nbc,av
if pExcess ď 0.6ˆNbc,Kq .and. ppermut ““ 0qq then

1)Put permut to 1

2)Allocate the block K to the current process nproc and move to the next block
(K “ K ` 1) and to the next process (nproc “ nproc ` 1)

else
1)Move to the next process (nproc “ nproc ` 1) and allocate the block K to this new
process, then move to the next block (K “ K ` 1).

2)Do not forget to put permut back to 0.
end

end
end

Algorithm 2: Distribution of the Nb blocks between the N available processes.

Distribution of the CBFM blocks for which the CBFs are computed (The new blocks)

% Iterating on nproc, the number of the process

while nproc ď N do
% Explore the Nb,proc CBFM blocks allocated to process nproc by the Algorithm 1.

while K ď N do
if K is a new block then

1) Add the new block K to the new blocks which will be handled by the current process
nproc and move to the next block (K “ K ` 1).

2) Update the number of the latest block tested and added to nproc a new block :
Klast,nproc “ K.

end
end
Check if the last new block Klast,nproc allocated to nproc is identical to some of the following
blocks allocated by the Algorithm 1 to the next processor nproc ` 1. If it is the case, allocate also
Klast,nproc as a new block to the processor nproc ` 1 in order to avoid a supplementary
communication burden.

end
Algorithm 3: Distribution of the Nnb new blocks between the N available processes
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uses the CBFs computed by itself for its own CBFM blocks, and then communicates with the other

processes in order to retrieve the CBFs of their CBFM blocks. The communications established between

the processes in order to generate the reduced matrix are illustrated in Figure 4.48 for an example of

15 CBFM blocks distributed between 3 processors. This simple example corresponds to 2 different tree

trunks divided into 8 and 7 blocks.

8 

9 

10 

1 

2 

11 

15 

Process (0)  

Process (1)  

Process (2)  

Zc
(0),(0) Zc

(0),(1) Zc
(0),(2) 

Zc
(2),(0) Zc

(2),(2) 

6 

Figure 4.48: Generation of the reduced matrix Zc whith a simulation scene divided into 15 CBFM
blocks distributed between 3 processors. Zc

piq,pjq is the section of Zc which is computed by using the
CBFs computed by processors i and j.

Note that the highlighted blocks (1,2,6,8,9,10,11, and 15) are the new blocks, which means the blocks

for which the CBFs are computed and stored by each of the 3 processors. For instance, process p0q

has computed the CBFs of the blocks 1 and 2 (the two first blocks of the first tree trunk), hence it

calculates independently the section of Zc representing the interactions between the first 5 blocks. But,

the processor p0q needs to communicate with process p1q and process p2q when it comes to computing

the section of Zc representing the interactions between its blocks p1, 2, 3, 4, 5q and the rest of the

simulation scene.

In order to reduce as far as possible the time spent on communications, the transfer of the CBFs

between the processors is performed by moving them sequentially and cyclically from the processor ppq

to the next processor pp` 1q, as detailed in Algorithm 4. Thus, the matrix CBF ppqk includes the CBFs

available for the processor ppq in the iteration k. For example, with a total number of 5 processors,

as shown in Figure 4.49, we have CBF p0q1 “ CBF
p2q
3 and CBF

p4q
2 “ CBF

p2q
5 . Hence, as shown in

Algorithm 4, for each iteration k, each processor uses the available matrix of CBFs to compute a

section of Zc, then sends it to the next processor and receives that of the previous one.
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Initialization (k=0):
1) Each processor p uses its own matrix of CBFs to compute Zc

ppq,ppq. We recall that Zc
piq,pjq is the

section of Zc which is computed by using the CBFs computed by processors i and j.
2) Identify the previous processor pprev “ pN ` p´ 1q%N .
3) Identify the following processor pfoll “ pp` 1q%N .

Iterations:
while k ď N do

% Iteration k

1) Each process send the matrix CBF ppqk´1 to pprev and receive CBF ppfollqk´1 , which is then equally
CBF

ppq
k .

2) Process p uses CBFsppqk to compute the section Zc
ppq,pporgq

of Zc, where porg “ pp` kq%N is the

processor which computed originally the CBFs included in the current CBF ppqk .
end
Algorithm 4: Transfer of the CBFs between the N processors while computing the matrix Zc. Note
that % refers remainder of the division.

It is worth noting that this technique is commonly used to increase the efficiency of the MPI parallel

implementation of matrix multiplication [69].
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Figure 4.49: Example with 5 processors : The matrices of CBFs are cyclically moved from a processor
to an another until finiching the construction the entire final reduced matrix Zc
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The communications between processors while constructing the reduced matrix Zc are achieved

through Point-to-Point Communication Routines such as ’MPI_Send’ and ’MPI_Recv’ and

’MPI_Sendrecv’ and collective Communication routines such as ’MPI_Reduce’. At the end of this

stage, each processor has a section of the final reduced matrix Zc of size 3Nbc,proc ˆ 3Nbc.

- Solving the final reduced matrix Zc Finally, we solve the final system of linear equations

corresponding to Zc by using ScaLAPACK (Scalable Linear Algebra PACKage) subroutines [70]. For

this purpose, the entire matrix Zc is reordered in the cyclic format of ScaLAPACK as shown in Figure

4.50. This involves further communications between the processors in order to redistribute the reduced

matrix Zc.

Figure 4.50: Example of a 9 ˆ 9 matrix distributed between 4 processors in the cyclic format of
ScaLAPACK.

4.4.2.3 Numerical results

It is interesting to recall that most of the simulations presented in this dissertation are carried out with

an OpenMP parallelized FORTRAN code on a shared-memory workstation equipped with 8 processors

and 42 GB of RAM. In order to demonstrate the important contribution of the OpenMP parallelization

in the gain in CPU time achieved by the CBFM-E code, we go back once again to the forest simulation

scene illustrated in Figure 4.18 and we conduct again the simulation described in Table 4.17 but without

using the OpenMp subroutines. Hence, the new simulation is carried out on a single processor. The

resulting CPU times corresponding to the generation of the CBFs, the computation of Zc and the

resolution of the associated system of linear equations are summarized in Table 4.23.
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Table 4.23: Performances of the CBFM-E code in terms of CPU time with and without OpenMP
parallelization

Z size (3ˆNbc) CBFs (min) Zc (min) pZcq´1 (min)

CBFM-E+ OpenMP
514020

44 23 9

CBFM-E 152 86 9

Hence the implementation of an OpenMP parallelized version of the CBFM-E enables us clearly to

take advantage of the 8 available processors and to reduce thus significantly the CPU time spent by

the CBFM-E to compute the backscattered fields.

Concerning the MPI parallelized code, we have not achieved yet the desired and expected perfor-

mances because of some technical problems and of punctual unavailability of the distributed-memory

workstation. It is worth to recall that the main objective of this parallelization was to increase the

available memory storage of up to 80 nodes with 24 GB of RAM available on each node.

4.5 Conclusion

The CBFM-E solution showed in this Chapter a high adaptability to the different approaches intro-

duced to enhance its performances both in terms of CPU time and memory storage required. This

flexibility enables us to take advantage of the heterogeneity of a natural forest simulation scene in

terms of dielectric properties through the implementation of a non-uniform mesh, and to benefit from

the rank deficiency of the MoM sub-matrices that represent interactions between well-spaced blocks

by hybridizing the CBFM-E with the ACA, thus adding the advantages of the CBFM-E to those of

the powerful iterative method.

The nicest and concisely way to end this chapter consists on the following : Before Chapter 4,

the computation of the backscattered fields by the large forest simulation scene in Figure 4.18 takes

about 45 hours to achieve a compression rate CR of 163 (We keep 0.6 % of the initial matrix) and to

yield accurate results comparing to the conventional MoM. After Chapter 4, the optimized CBFM-E

achieves the same level of accuracy and a higher compression rate CR « 195 (ICR = 0.5 %) in only

46 minutes.



Chapter 5

Performance Comparison of the CBFM to

Iterative Methods

We have demonstrated the absolute superiority of the CBFM-E over the conventional Method of Mo-

ments (MoM) both in terms of CPU time and memory storage required, while yielding the same level

of accuracy. Indeed, the CBFM-E is considered as one of the most powerful available numerical meth-

ods to solve large electromagnetic simulation scenes. Being a direct method, its main competitors are

iterative methods such as the Fast Multipole Method (FMM or FMA) and the Adaptive Cross Approxi-

mation Algorithm (ACA). As explained in the introduction of this report, a great deal has been written

about the comparison between the direct and iterative methods in terms of computing time, memory

requirement and accuracy. In this chapter, we investigate this issue in our case of application and we

attempt to provide an element of an answer to the question : Direct or iterative ?, at least for our

3D dielectric forest scattering model. Hence, we compare the performances of the CBFM-E to those

achieved by the ACA when applied to 3D large forest simulation scenes.

5.1 The Adaptive Cross Approximation Algorithm (ACA)

In this section, we apply the Adaptive Cross-Approximation (ACA) Algorithm, preceded by a hi-

erarchical repartition of the elements of the initial full MoM matrix. The purpose is to provide a

comparison between the performances of the CBFM-E and those achieved by the ACA in terms of

accuracy, computing time and memory use, when applied in the context of our 3D dielectric forest

scattering model. This comparison has been carried out through a cooperation with Dr. Xavier Juvi-

gny from the ONERA (French Aerospace Lab). We thus could compare the two methods when applied

to large dielectric forest simulation scenes.

111



Performance comparison of the CBFM to iterative methods 112

5.1.1 H-Matrix representation of the MoM matrix and ACA

As mentioned earlier, The initial MoM matrix, representing remote interactions between the Ncc cells

composing the 3D forest scene, is a dense matrix, as a result of the volumetric integral representation

of the electric field inside the scatterers. However, the off-diagonal sub-blocks, which describe the

interactions between well-separated original low-basis functions, are numerically rank-deficient and

hence can be approximated by much lower-ranks matrices. This is where the ACA algorithm comes

in, since it allows to approximate those rank-deficient MoM matrix blocks by a much-reduced set of

column vectors. The question now arises of what is then the difference between the application of this

ACA in this chapter, and its use in the previous one. Indeed, the ACA was used previously in the

context of the CBFM, only to speed up the computing of Zc by approximating the sub-matrices ZMoM
i,j

where i and j are two CBFM blocks. Here, though, the ACA is applied on the basis of hierarchical

repartition of the initial MoM matrix in order to derive a final sparse compressed matrix. The latter

will be finally solved using an iterative method such as the conjugate gradient method (CG) or the

generalized minimal residual method (GMRES). Hence, the ACA here does not intervene only in the

reduction of the CPU time but its major contribution is the compression rate achieved on the initial

MoM matrix.

Figure 5.1: Hierarchical partitioning and the structure of the resulting H-matrix. Green sub-blocks
are admissible and pink sub-blocks are inadmissible [37].

Therefore, a hierarchical partitioning is applied to the initial MoM matrix, in order to identify the

matrix off-diagonal blocks most likely to undergo an efficient ACA compression. Sufficiently separated

clusters determine sub-blocks that are numerically low rank, that is, suitable to an ACA application.

These sub-blocks are called admissible [37]. On the other hand, sub-block corresponding to a pair of

closely spaced clusters is called inadmissible and is not approximated. The threshold distance that

sets out the admissible and inadmissible sub-blocks is a parameter, typically set to one wavelength of

the frequency under consideration. Another parameter of the geometry decomposition process is the

minimum block size. An inadmissible sub-block may be divided until it reaches that size. An example
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of geometry decomposition, for the preparation of the application of the ACA, is illustrated in 5.1 [37].

More details are provided on the hierarchical matrices in [71].

Once the corresponding H-matrix is constructed, the ACA is applied as shown in Chapter 4, with

the respect to an error tolerance ε. The final step consists on solving the final sparse system of linear

equations by using an iterative solver such as the GMRES or the CG.

5.1.2 Comparison with the CBFM-E for 3D forest scattering modeling

In this paragraph, we carry out a simple comparison between the performances of the CBFM-E and

those achieved by the ACA algorithm when applying the two methods to our 3D dielectric forest

model described previously. The ACA code used was implemented in the language C++ by Dr.

Juvigny (ONERA - High Performance Computing Department). A FORTRAN interface enables us to

compare the CBFM-E and the ACA on the basis of the same meshing an the simulations were carried

out on a shared-memory workstation with 8 processors and 42 GB of RAM.

We start with the straightforward example of a single tree trunk modelled by a homogeneous di-

electric cylinder placed over a real ground. The cylinder, of dielectric constant εs “ 8.2 ` 0.9 j is

illuminated by an incident plane wave of frequency f “ 300 MHz, and therefore is discretized using

a cell size Tc “ 0.03 m into Nbc “ 6240 cells. The CBFM-E is applied after decomposition of the

cylinder into 12 CBFM blocks of heigh hB “ λ.

As shown in Figures 5.2 and 5.3, the results obtained are compared to those derived by the ACA with

four different values of ε (10´2; 10´3; 2 10´3; 10´4). Figure 5.2 shows the variations of the component

EVz of the electric field inside the cylinder under simulation, and Figure 5.3 presents the variations

of the magnitude and phase of the backscattered fields (polarization VV) for θi,s “ r10; 10; 800s and

ϕi,s “ 00. Finally, Table 5.1 summarizes the performances achieved by both CBFM-E and ACA in

terms of computing time and compression rate.

ICR (%) CPU time (sec)

CBFM-E 2.61 141

ACA (ε “ 10´1) 7.29 29 + 806

ACA (ε “ 10´2) 11.39 30 + 940

ACA (ε “ 2 10´3) 12 30 + 1036

ACA (ε “ 10´4) 15.9 32 + 1312

Conventional MoM – 5761

Table 5.1: The computing time and inverted compression rate (ICR) achieved by the CBFM-E and
ACA (with four value of εACA) compared to the conventional MoM. The CPU time spent by the ACA

is presented in this form : CPU(H-Matrix+ACA) + CPU(GMRES)
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First, concerning the accuracy of the solution, Figures 5.2 and 5.3 show that the results obtained

with the ACA match relatively well with those derived by the CBFM-E and the conventional MoM

starting from εACA “ 10´3 which confirms the observations made on εACA in the previous chapter.

However, as can bee seen in Table 5.1, the CBFM-E goes ahead of the ACA in terms of memory

consumption and CPU time. Indeed, the high compression rate achieved by the CBFM-E is due to

the use of large CBFM blocks (Nbc,block “ 736) and to the absence of branches. In fact, the branches

impact negatively the total compression rate because of its small cross-section resulting in a small

number of cells per block.

(a) EVZ (b) φVZ

Figure 5.2: Variations of the magnitude an phase of the component EVZ of the electric field inside
the cylinder under consideration, computed for θi “ 400 and ϕi “ 00, with the conventional MoM, the

CBFM-E and the ACA.

(a) EV V (b) phiV V

Figure 5.3: Variations of the magnitude the backscattered fields computed with CBFM-E and the
ACA depending on the value of εACA.

On the other hand, it is worthwhile mentioning that we have distinguished the CPU time for the

construction of the H-Matrix and the application of the ACA, and that spent to solve the final sparse
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matrix by using a GMRES, because the latter was not optimized yet. Indeed, the simple implementa-

tion of a preconditioner could improve significantly the performances of the GMRES in terms of CPU

time. Thus, we can see that the ACA algorithm could be much faster, and comparable to the CBFM-E

in terms of CPU time if the GMRES is optimized.

Now, we move to the example of a tree trunk with 4 branches in order to investigate the impact of the

structure and meshing approach of our 3D model on the performances of the hierarchical repartition

and the ACA. On that point, let us recall that the the ACA algorithm requires that the integral

kernels be asymptotically smooth, to be successfully applied [34]. The example under consideration is

composed of 5 dielectric cylinders modeling a homogeneous tree of dielectric permittivity εs “ 8.2`0.9j

and illuminated by an incident plane wave of frequency f “ 300 MHz. The simulations are carried

out by using the conventional MoM, the CBFM-E and the ACA with a tolerance ε “ 10´3, for the

three configurations shown in Figure 5.4, depending on βbr, the angle between the tree trunk and each

branch. The corresponding results derived for θi,s “ r10; 10; 800s and ϕi,s “ 00, are also displayed in

the same figure, and the performances of the ACA compared to those achieved by the CBFM-E and

the MoM are summarized in Table 5.2.

ICR (%) CPU time (sec)

ACA

Config. 1 (βbr “ 300) 17.6 9 + 94

Config. 2 (βbr “ 00) 15.9 6 + 57

Config. 3 (βbr “ 900) 78 1187 + 245

CBFM-E – 12.85 27

MoM – – 553

Table 5.2: The computing time and inverted compression rate (ICR) achieved by the ACA for
the three configurations under consideration in comparison to the performances of the CBFM-E
and the conventional MoM. The CPU time is still presented in the form : CPU(H-Matrix+ACA)

+ CPU(GMRES).

Therefore, curiously, we note that both performances and accuracy of the ACA solution critically

depend upon the inclination angle of the branch to the vertical. This can be partly explained by the

asymptotic discontinuity of the used mesh between the tree trunk and the branch (see Figure 5.5),

which introduces an irregularity into the smoothness of the integral kernels, the latter being particularly

important to ensure the accuracy of the ACA solution. Indeed, it was stated in [37], while evoking

the limitations of the ACA, that the iterations may appear to converge while the true error remains

inaccurately large. Furthermore, it confirms that the EFIE (Electric Fields Integral Equation) does

not satisfy the conditions stated in [59] and [72], for the integral equations with the kernels which are

asymptotically smooth.

Nonetheless, we have attempt to adapt the meshing approach to the requirements of the ACA in

terms of asymptotic smoothness, as shown in Figure 5.5. Then, we compare again the backscattered

fields derived by the ACA algorithm to those obtained with the MoM and the CBFM-E.
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(a) Config. 1 : βbr “ 300 (b) Resulting EV V

(c) Config. 2 : βbr “ 00 (d) Resulting EV V

(e) Config. 3 : βbr “ 900 (f) Resulting EV V

Figure 5.4: The variations of the magnitude of the backscattered field (polarization VV) computed
by using the MoM, the CBFM-E and the ACA, for 3 different values of βbr, which is the angle between

the tree trunk and the branch.
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(a) Old Mesh (b) New Mesh

Figure 5.5: We attempt to adapt the meshing in order to guarantee the asymptotic smoothness of
the integral kernels and hence to ensure the accuracy of the ACA solution.

(a) EV V (b) EHH

Figure 5.6: The variations of the backscattered fields (polarization VV and HH) computed by ap-
plying the ACA on the new mesh (see Figure 5.5), for θi,s “ r10; 10; 800s and ϕi,s “ 00.

ICR (%) CPU time (sec)

ACA 21.73 20 + 64

CBFM-E 12.85 26

MoM – 616

Table 5.3: The performances of the ACA in comparison to those achieved by the CBFM-E and the
conventional MoM when applied to the new mesh. The CPU time is still presented in the form :

CPU(H-Matrix+ACA) + CPU(GMRES).
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Obviously, the new meshing approach enables us to significantly improve the performances of the

ACA in terms of CPU time and, more importantly, to ensure its accuracy. However The CBFM-E still

remains more efficient both in terms of computing time and memory storage for this case of application,

especially since this direct method clearly does not depend on the meshing approach used to discretize

the simulation scene and does not suffer from any convergence problem, unlike the iterative methods.

We also noted that increasing the numerical size of the forest simulation scene is absolutely not

in favour of the ACA solution, as the gap in efficiency widens between the CBFM-E and the ACA

algorithm. Indeed, Table 5.4 summarizes the CPU time and inverted compression rate achieved by

the ACA and the CBFM-E when applied successively to two trees with 8 branches discretized into

Nbc “ 12120 cells and Nbc “ 23760 cells.

Tree Nbc = 12120 Nbc = 23760

ICR (%) CPU time (sec) ICR (%) CPU time

ACA 19.4 3513 + 1469 59.18 11438 + 1731

CBFM-E 10.06 172 6.60 390

Table 5.4: The performances of the ACA in comparison to those achieved by the CBFM-E when
applied to two trees discretized into Nbc “ 12120 and Nbc “ 23760 cells. The CPU time is still

presented in the form : CPU(H-Matrix+ACA) + CPU(GMRES).

Moreover, the ACA algorithm maintains an ambiguous behaviour, in terms of compression rate and

CPU time, towards the trees with branches even with the new mesh. Table 5.5 provides a comparison

between the performances of the ACA with a quite large simulation scene composed of a single tree

trunk discretized into Nbc “ 35640 cells (Scene 2), with those achieved with the previous example of

Nbc “ 23760 cells (Scene 1).

Scene 1 : Nbc “ 23760 Scene 2 : Nbc “ 35640

ICR (%) CPU time (sec) ICR (%) CPU time

ACA 59.18 11438 + 1731 16.48 2479 + 3628

CBFM-E 6.60 390 1.68 777

Table 5.5: The performances of the ACA in comparison to those achieved by the CBFM-E when
applied to a tree discretized intoNbc “ 23760 cells and a single tree trunk discretized intoNbc “ 35640.

The CPU time is still presented in the form : CPU(H-Matrix+ACA) + CPU(GMRES).

Finally, we investigate the performances of the ACA algorithm when applied on a non-uniform mesh

inside the same scatterer by applying it to the the single cylinder of dielectric constant εs “ 6.75`6.7j

(see Figure 5.7a. As shown in Figure 5.7b and in Table 5.6, fails the test of non-uniform mesh both in

terms of accuracy and computing performance. This must be due, once again, to the sensitivity of the

H-matrix partitioning and the ACA algorithm to the smoothness of the initial matrix kernel.
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(a) 1st block of the cylinder (b) EV V

Figure 5.7: Application of the CBFM-E and the ACA on a non-uniform mesh inside the same
scatterer. The magnitude of the backscattered field (polarization VV) corresponds to a mono-static

configuration with θi,s “ r00; 10; 800] and φi “ 00.

ICR (%) CPU time (sec)

ACA 21.79 1611 + 5518

CBFM-E 0.65 3138

Table 5.6: The performances of the ACA in comparison to those achieved by the CBFM-E when
applied to a non-uniform mesh inside the same scatterer. The CPU time is still presented in the form

: CPU(H-Matrix+ACA) + CPU(GMRES).

5.2 Conclusion

Hence, we demonstrated in this section that, despite of its proven performances both in terms of

compression rate and reduction of CPU time [34], the ACA, preceded by the hierarchical partitioning

of the MoM matrix, seems to be not adapted to our case of application because of the irregularities in

the kernel of the initial MoM matrix. The limitations of the ACA in relation with its convergence were

pointed out in [36, 37]. Since the CBFM-E, which based on a direct solver, is heir to the accuracy of

the MoM, it does not suffer the convergence problems the ACA suffers from. Thus, the CBFM scored

points against the ACA for this kind of application. One of our perspectives is to compare also the

performances of CBFM-E to those achieved by the MLFMM [73], available under FEKO, when applied

to our 3D dielectric forest model.





Chapter 6

Conclusions and Perspectives

6.1 Conclusions

In this dissertation, a 3-D full-wave model, based on the integral representation of the electric field

and dedicated to the analysis of bi-static scattering mechanisms by a forest in the VHF and UHF

bands was efficiently enhanced. In order to overcome the limitation of the previous 3D model to small

simulations scenes and low frequencies, we have developed, during this research work, a new model

using basis functions adapted to the problem of interest, in the context of the Characteristic Basis

Function Method (CBFM) and we investigated the suitability of this direct method for computing

the electromagnetic fields inside and outside three-dimensional dielectric objects representing the tree

trunks and branches.

The CBFM has shown great performances, when applied to the forest scattering modeling, both

in terms of CPU time and memory resources needed. We have demonstrated that, to ensure a good

level of accuracy by the CBFM-E (extended version of the CBFM), while computing the scattered

field, without over-consuming memory resources and with a minimal CPU time, we must respect some

ranges of value while setting CBFM parameters such as the height h of each block and the number

of incident plane waves (NIPWs) used to generate the macro-basis functions (MBFs). Once properly

set, the CBFM-E is so efficient that it is able to treat in few minutes electromagnetic problems totally

intractable with the classical MoM.

Furthermore, since the CBFM is a highly parallelizable decomposition domain method, we imple-

mented and OpenMP version of the CBFM-E solution. This, in turn, makes it possible to deal with

a substantial increase in the size of the scattering problems, up to several hundred of thousands of

unknowns, and hence to solve problems involving much larger forest areas at higher frequencies.

We have also studied the suitability of the CBFM to the implementation of a non-uniform mesh

which takes into consideration the heterogeneity of the forest medium in terms of dielectric properties.

We found out that we can apply the CBFM-E to larger and more complex forest areas, while taking

121
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into account the dielectric heterogeneity of the trees as we decompose the computational domain, by

adapting the mesh to their dielectric properties.

Then, since we note that the Adaptive Cross Approximation (ACA) algorithm has shown good

performance, in terms of compression, when dealing with coupling matrix blocks representing well-

separated MoM interactions, we have applied the ACA algorithm to the generation of the reduced

matrix in the context of the CBFM in order to speed up the most expensive step in the CBFM

in terms of the required CPU time and we found out that the new hybridized algorithm is highly

efficient, both in terms of computing time and memory use without compromising the accuracy of the

CBFM solution. Furthermore, we compared the CBFM performances, when applied to forest scattering

modeling, to other powerful iterative numerical methods such as the ACA algorithm (preceded here

by the Hierarchical partitioning of the MoM matrix). Thus, the CBFM shows a wide superiority in

terms of accuracy comparing to the ACA, at least when applied to our case of application.

Consequently, we have developed a powerful 3D forest electromagnetic scattering tool which allows

us today to compute large forest electromagnetic problems in few minutes without worrying about the

accuracy of the solution. On the other hand, we have demonstrated the efficiency and accuracy of the

CBFM-E when applied to 3D dielectric objects in the context of the electric volumetric integral equa-

tion, and have consolidated thus its leading position in the computational electromagnetics, especially

against the iterative solvers based numerical methods.

We have thus achieved the two major challenges of this research work.

6.2 Perspectives

Certainly, we have come a long way and a lot of enhancement has been done, but here is still a

lot of work to do with the Characteristic Basis Function Method to improve further and further the

performances of our 3D dielectric forest scattering model. The following provide some of the potential

improvements, with a view to simulating numerically larger forest scenes :

- A 3D domain decomposition of the simulation scene, instead of the current decomposition along

the vertical axis ~z : This will enable us to overcome the limitation in terms of available memory per

process, especially when simulating wide-section forest tree trunks.

- An Efficient MPI parallelization of the multilevel scheme of the CBFM : This entails optimized

distribution of the CBFM blocks betwenn the available processors and reduced time of communication

between them. For the multilevel scheme, in particular, we can draw on the previous research works

dealing with the optimization of the parallelization of the multilevel Fast Multipole Method (MLFMM)

[74–77].

- A Hybridization with the MLFMM in addition to that performed with the ACA in order compute

the far-field interactions between distant CBFM blocks, as can bee seen in [42].
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- Use of the sparsified Adaptive Cross Approximation algorithm instead of the conventional one to

speed up the generation of the reduced matrix Zc. Indeed, it has been confirmed in [78] that the

sparsified algorithm achieves a considerable gain in efficiency over the conventional ACA.

- Application of the sparse representation of the macro-basis functions (MBFs) on a non-uniform

mesh inside the same scatterer, in the case of high value of εs”, in order to avoid the computational

burden brought by the fact that the CBFM block initially scaled in Tc,λ will be discretized into smaller

cells of Tc,δ.

Once the CBFM code optimized, it can be used to provide a data base for backscattered fields

inversion for forest remote sensing, in order to retrieve the parameters of a forest medium [79].

Furthermore, the next step consists in the insertion of metallic targets in the 3D dielectric forest

model. That will bring this simulation tool closer to the military application known under the name of

FoPEN for Foliage Penetration. This new research work based on the volume-surface integral equation

[80] will form the basis of a new PhD conducted in the L2E laboratory and funded by the French

national research agency (ANR) and French Defence Agency (DGA).





Appendix A

Elements of the MoM matrix

The initial MoM matrix [19], which represents the interactions between the different cells compos-
ing the simulation scene, is of size 3Nˆ3N where N is the total number of cells. It is written as follows

Z “

»

–

“

Zmnxx
‰ “

Zmnxy
‰ “

Zmnxz
‰

“

Zmnyx
‰ “

Zmnyy
‰ “

Zmnyz
‰

“

Zmnzx
‰ “

Zmnzy
‰ “

Zmnzz
‰

fi

fl (A.1)

The coefficients Zmnpq of the MoM matrix are expressed as :

Zmnpq “ δmnδpq ´ Zs,mn
pq ´ Zr,mn

pq (A.2)

The product δmnδpq is equal to 1 only for the diagonal elements of the MoM matrix Z. δmn and δpq
are the delta Kronecker functions defined as

δmn, δpq “

"

1 si m “ n, p “ q
0 si m ‰ n, p ‰ q

(A.3)

Zs,mn
pq “ k2

0

ż

Vcell

∆εpÝÑr 1qpr1nqG
s
pqprm, r

1
nqdr

1
n `

3
ÿ

q“1

B2

Bpmqm

ż

Vcell

∆εpÝÑr 1qpr1nqG
s
pqprm, r

1
nqdr

1
n (A.4)

Zr,mn
pq “ k2

0

ż

Vcell

∆εpÝÑr 1qpr1nqG
r
pqprm, r

1
nqdr

1
n `

3
ÿ

q“1

B2

Bpmqm

ż

Vcell

∆εpÝÑr 1qpr1nqG
r
pqprm, r

1
nqdr

1
n (A.5)

rm is the coordinate vector of the observation point m , r1n is the coordinate vector of the center of
the source cell n, p, q “ x, y, z, k0 is the number of wavelength in the air, Gs

pq is the component pq of
the singular Dyadic Green’s function, Gr

pq is the component pq of the regular Dyadic Green’s function

and ∆εpÝÑr 1qpr1q “
εpr1q ´ ε0

ε0
is the dielectric contrast.

We assume that :
ż

Vcell

∆εpÝÑr 1qpr1nqG
ψ
pqprm, r

1
nqdr

1
n “ ∆εpÝÑr 1qn

ż

Vcell

Gψ
pqprm, r

1
nqdr

1
n (A.6)
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where ψ “ s, r. If the domain Ω is homogeneous, the dielectric contrast ∆εpÝÑr 1qpr1nq does not depend
on the position r1n and it is thus equal to ∆εpÝÑr 1q “ εr ´ 1.

A.1 Computing of the terms Zs,mn
pq

According to equation (A.4), the coefficients Zs,mn
pq are obtained as follows

Zs,mn
xx “

"ˆ

k2
0 `

B2

Bx2
m

˙

ş

Vcell
Gs
xxprm, r

1
nqdr

1
n

*

∆εpÝÑr 1qn (A.7)
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0 `
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˙

ş

Vcell
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1
nqdr

1
n

*

∆εpÝÑr 1qn (A.8)
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B2

Bz2
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˙

ş

Vcell
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1
n

*
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xz “

"
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1
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Zs,mn
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"
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Zs,mn
zy “ ∆εpÝÑr 1qn

"
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1
n
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∆εpÝÑr 1qn (A.15)

Now, we have to compute the integrals on the cells of the components of the singular Dyadic Green’s
function. There are two possible cases : The first one is m “ n which means that the observation and
source points are the same. Thus, the integration of the components of the Dyadic Green’s function
will present a singularity and the computing will be done as follows :

Zs,mnpq “

$

’

’

&

’

’

%

PF
ˆż

Vcell

ˆ
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0 `

B2
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˙
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pqprm, r

1
nqdr

1
n

˙

∆εpÝÑr 1qn si p “ q,m “ n

0 si p ‰ q,m “ n

(A.16)

If we approximate the integration on a cubic cell of size cn by that on a spherical cell having the
same center and of radius an “ cn

3

b

3
4π , we can demonstrate that :

PF
ˆ

ş

Vcell

ˆ

k2
0 `

B2

Bp2
m

˙

Gs
pqprm, r

1
nqdr

1
n

˙

“
2

3
ejk0anp1´ jk0anq ´ 1 (A.17)
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Concerning the second case (m ‰ n), we use also the same above approximation :

ż

Vcell

Gs
pqprm, r

1
nqdr

1
n “ κsn ˆGs

pqprm, r
1
nq (A.18)

with :
κsn “ 4π ˆ

sinpk0anq ´ k0an cospk0anq

k3
0

(A.19)

Thus we obtain :

Zs,mnxx “
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ˆ

´k2
0 ´

3

rmn
τmn

˙
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with : rmn “
a

pxm ´ x1nq
2 ` pym ´ y1nq

2 ` pzm ´ z1nq
2 is the distance between the center of the obser-

vation cell m and that of the source cell n and τmn “ jk0 ´
1

rmn
.

A.2 Computing the terms of regular interactions Zr,mn
pq

In this section, we detail the computing of the coefficients Zr,mn
pq . Based on (A.5), we obtain :
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The coefficients Zr,mnpq include the exponentials ejνpxm´x1nq, ejηpym´y1nq, et ejγ0pzm`z1nq. The derivations
B

Bxm
,
B

Bym
, et

B

Bzm
are equivalent to the multiplication of these exponentials respectively by j2πν,

j2πη, et jγ0 :
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The integration of the regular Dyadic Green’s function terms on a cubic cell of size cn is giben by :
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with :
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Finally, this results in these expressions :
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Abstract : A 3-D full-wave model, based on the integral representation of the electric field and ded-
icated to the analysis of bi-static scattering mechanisms by a forest in the VHF and UHF bands was
efficiently enhanced. In order to overcome the limitation of a previous 3D model to small simulations
scenes and low frequencies, we have developed, during this research work, a new model using basis func-
tions adapted to the problem of interest, in the context of the Characteristic Basis Function Method
(CBFM) and we investigated the suitability of this direct method for computing the electromagnetic
fields inside and outside three-dimensional dielectric objects representing the tree trunks and branches.
The CBFM has shown great performances, when applied to the forest scattering modeling, both in
terms of CPU time and memory resources needed. Once properly set, the CBFM-E is so efficient that
it is able to treat in few minutes electromagnetic problems totally intractable with the classical MoM.
Consequently, we have developed a powerful 3D forest electromagnetic scattering tool which allows us
today to compute large forest electromagnetic problems in few minutes without worrying about the
accuracy of the solution. On the other hand, we have demonstrated the efficiency and accuracy of the
CBFM-E when applied to 3D dielectric objects in the context of the electric volumetric integral equa-
tion, and have consolidated thus its leading position in the computational electromagnetics, especially
against the iterative solvers based numerical methods.

Keywords : Forest scattering modeling, VHF-UHF, Volumetric integral equation, Method of Mo-
ments, Characteristic Basis Function Method (CBFM), Adaptive Cross Approximation algorithm
(ACA), High performance computing (OpenMP/MPI)

Résumé : Cette thèse porte sur la modélisation et l’analyse de la propagation électromagnétique dans
un milieu forestier dans les bandes VHF et UHF. L’objectif principal est le développement d’un modèle
numérique "full-wave" tridimensionnel de diffusion par la forêt permettant de caractériser l’interaction
d’une onde électromagnétique avec un milieu forestier. Un tel modèle s’avère, actuellement, un outil
indispensable à l’analyse des mesures radar pour l’étude des paramètres caractéristiques de la forêt
tels que la biomasse forestière, la hauteur des arbres et leur densité. La complexité numérique de ce
modèle a limité son domaine d’application à de petites parcelles de forêt et aux basses fréquences. Pour
pouvoir traiter de larges zones forestières tout en montant en fréquence, et s’approcher ainsi des besoins
et exigences des utilisateurs potentiels de notre modèle, nous avons intégré à ce modèle une méthode
numérique efficace dédiée à l’analyse de larges problèmes électromagnétiques. La méthode en question,
connue sous le nom de Characteristic Basis Function Method (CBFM) était récemment développée
dans le laboratoire de Communication et Electromagnétisme de l’université PennState dirigé par le
Professeur Mittra. Après une optimisation et une adaptation au problème d’intérêt, la CBFM réalise
d’excellentes performances et nous permet une diminution considérable du temps de calcul et des
besoins en espace mémoire sans pour autant dégrader la qualité des résultats obtenus ou altérer la
fidélité du modèle à la réalité du problème électromagnétique traité.

Mots clés : Diffusion électromagnétique par la forêt; VHF–UHF; Equation intégrale en volume;
Méthode des moments (MoM); CBFM; Algorithme ACA; Calcul haute performance (OpenMP/MPI)
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