
HAL Id: tel-01145843
https://theses.hal.science/tel-01145843

Submitted on 27 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The blind Bayesian approach to Cosmic Microwave
Background data analysis

Flavien Vansyngel

To cite this version:
Flavien Vansyngel. The blind Bayesian approach to Cosmic Microwave Background data analysis.
Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]. Université Pierre et Marie Curie - Paris
VI, 2014. English. �NNT : 2014PA066609�. �tel-01145843�

https://theses.hal.science/tel-01145843
https://hal.archives-ouvertes.fr


Université Pierre et Marie Curie
ED 127 - Astronomie et astrophysique

Institut d’Astrophysique de Paris

The blind Bayesian approach to
Cosmic Microwave Background data analysis

Par Flavien Vansyngel
Thèse de doctorat de Cosmologie

Dirigée par Benjamin D. Wandelt

Présentée et soutenue publiquement le mardi 16 décembre 2014
devant un jury composé de :

Bertrand Laforge Professeur d’université – LPNHE Président du jury
Jacques Delabrouille Directeur de recherche CNRS – APC Rapporteur
Roberto Trotta Senior lecturer – Imperial College Rapporteur
Jean-Loup Puget Directeur de recherche CNRS – IAS Éxaminateur
Guillaume Patanchon Enseignant-Chercheur – APC Éxaminateur



Abstract

The main topic of this thesis is the analysis of Cosmic Microwave Background (CMB)
data. In particular, I present a method, Bayesian Independent component analysis
(BICA), that performs both CMB component separation and CMB power spectrum in-
ference.

I begin with an overview of the properties of the CMB. I present the basics of our
understanding of this emission and I show the power of CMB to constrain cosmological
models. I mainly discuss the CMB power spectrum but I also introduce the study of
CMB statistics at the map level. The main interests of this field are the deviation from
Gaussianity and isotropy of the CMB map. Some statistical anomalies are present at low
level in the CMB map. I therefore highlight the need for a robust error modelling.

Then I present the main source of errors in the CMB products, namely the fore-
grounds. Foregrounds are astrophysical emissions that prevent us directly observing the
primordial temperature fluctuations. I review them; among the most important are the
different galactic emissions and the point sources. Secondary anisotropies, which are late
time effects on the CMB, can also be considered as separate components to be treated as
a foreground. I stress the diversity and the complexity of the maps of the foregrounds.
The difficulty to model them is a problem to individually identify them in the data and
clean them from the signal.

Component separation is a crucial and delicate step in CMB data analysis. Since the
first full sky observation of CMB anisotropies, several approaches have been proposed.
I review several methods aiming at cleaning the CMB from foregrounds. The methods
may be classified in two categories: blind source separation and physical parametrisation.
The methods from the former has a minimal set of assumptions on the physics of the
foregrounds whereas the methods of the latter perform the separation based on a physical
description of the data. Blind methods have the advantage of providing results and errors
that are not constrained by the assumption of too restrictive a model.

Then I present BICA. The method is formulated in a blind Bayesian framework. Thus,
from a common blind data description I build a likelihood distribution and I choose prior
distributions with minimal assumptions. This process results in a posterior distribution
defined on a parameter space that contain all the component maps and power spectra
present in the data. The posterior distribution provides an inference of the CMB map
and power spectrum from the observation maps. Thus, the errors on the reconstruction
include the uncertainties due the presence of foregrounds in the data. I propose two
sampling schemes that aim at exploring the posterior. By considering particular choice of
prior and sampling scheme, I show how the Bayesian formulation of component separation
provide a unifying framework of which previous methods are special cases.

Finally, I present the results of BICA when applied on both simulated data and 2013
Planck data. This method is able to reconstruct the CMB map and power spectrum on
a large fraction of the sky. The main contributions of this thesis is to provide: 1) a CMB
power spectrum on a large multipole range data whose errors take the the presence of
foregrounds into account but without assuming physical models, 2) a CMB map inference
together with an error model including both noise and foregrounds residuals.
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General Introduction

Elements of modern cosmology

Physical cosmology emerged about a century ago, which makes it one the youngest scien-
tific field. Of course, many scientists and philosophers had thought about organising the
universe as a whole in a comprehensive way well before the 20th century. However, their
reasoning did not stand on solid logical bases. Eventually, cosmology went through the
process of mathematisation in the beginning of last century with the then new theories of
space-time and gravity, namely the special relativity (SR, 1905) and the general relativ-
ity (GR, 1915). SR and GR exploit the purely mathematical theories of space that were
developed during the previous century. The results were stupefying, sometimes counter-
intuitive. One of the consequences was that the universe in which we were living could,
in theory, be dynamic and thus have a history. This was an exotic point of view at that
time but it was rather quickly experimentally confirmed with the observation of recessing
objects, which were interpreted as evidence the expansion of the universe (1920s).

Since observations shows strong evidence for the evolution of the universe, and more
specifically expansion, it is worth entering into the details. “What are the parts of the
story?” “What are the beginning and the end?” The latter question is a tricky one since it
leads to metaphysical considerations. The former is simpler to address. The universe at
our time and place is the starting point, the expansion the dynamic, GR the framework
to make predictions. “Place” is removed from the equations via the following cosmological
principle: the universe is isotropic and homogeneous, there is no privileged point in the
universe. Thus, we only need to consider time evolution of the universe.

In order to get to the origins of the universe, or at least to get closer, we have to look
backward in time. Reversing the evolution of our universe makes it contract. In addition
to GR, thermodynamics and statistical physics are the key theories, here. Indeed, given
the cosmological principle, using the same tools for the evolution of the systems “gas in
a box” and “matter in our universe” seems relevant. A thermal history of the universe is
thus constructed. We learn from the gas analogy that the universe is hotter and hotter
as we probe it earlier and earlier. At some point, the pressure and the radiation energy
are high enough to break apart any kind of structure, such that the universe is filled
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with an infinite fluid of elementary particles. In the ionised universe, the photons are not
free anymore because they frequently interact with the electrons. Going forward from
then, the time at which the electrons bind to the nuclei is called recombination, the first
photons to be free to stream form the Cosmic Microwave Background (CMB) and the
place from which the CMB photons we receive has been emitted is the Last Scattering
Surface (LSS).

CMB data analysis

As we will see in the first chapter of this thesis, observations of the Cosmic Microwave
Background (CMB) constrain cosmological models. In particular, the CMB fluctuations
are very sensitive to the parameters of the so called standard model of cosmology (Jung-
man et al., 1996). Current and future experiments designed for CMB analysis are signal
dominated (Planck Collaboration et al., 2013; Schaffer et al., 2011; Bouchet et al., 2011;
Baumann et al., 2009; André et al., 2014). Therefore the remaining issue in deriving cos-
mological information from CMB is the separation between the CMB signal and any other
emission that could hide it or pollute it. These emissions are called the foregrounds. Being
able to propagate component separation uncertainties to final constraints on fundamental
physics is a leading issue in CMB data analysis.

CMB experiments, such as the ongoing Planck mission (Planck Collaboration et al.,
2014a), observe in the microwave domain. The CMB is not the only emission that is
received when observing from the solar system at these frequencies. Free-free, synchrotron
and thermal dust emissions emanating from our galaxy are among the most intense
signals in the microwave domain (Sehgal et al., 2010). An observation of the sky at these
frequencies is therefore a mixture of the photons from the different sources. Therefore
the CMB must be extracted through component separation techniques.

The method I present in this thesis makes no assumption about non-CMB emission.
Concerning the CMB, it only assumes that the CMB emission law follows a black body.
I make use of Independent Component Analysis (ICA) after assuming the mutual inde-
pendence of the different signals constituting the data. Blind separation of independent
sources (e.g. Cardoso (1998)) is a very general process that finds applications in various
fields, from telecommunication to biomedical signals. Blind ICA has previously been
applied in cosmology, particularly in CMB analysis (Baccigalupi et al. (2000); Maino
et al. (2001) and Cardoso et al. (2002, 2008); Delabrouille et al. (2003)). Other methods
(Starck et al., 2004; Starck et al., 2013) exploit sparsity rather than independence to
discern between different signals. In this thesis I adopt the first approach and I propose
a Bayesian instance of semi-blind ICA.

The different component separation methods are mainly characterised by two im-
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portant aspects, the basis in which the data are expressed and the parametrisation of
the data. Current methods performs the separation in different bases such as pixel space
(Eriksen et al., 2006), spherical harmonic space (Tegmark, 1997; Delabrouille et al., 2003)
or needlet space (Delabrouille et al., 2009; Moudden et al., 2005; Fernandez-Cobos et al.,
2012). Their description of the data involves either a non-parametric model and exploits
the independence between the CMB and the non-CMB component only (Delabrouille
et al., 2009; Fernandez-Cobos et al., 2012) or a parametric model that is fitted to the
data (Eriksen et al., 2006). Intermediate between this these two, some methods assume
(Cardoso et al., 2008) coherence through frequency and complete independence of the
components, fitting a non-parametric foreground model to the data via likelihood max-
imisation.

The method I present in this thesis, Bayesian Independent Component Analysis
(BICA), goes one step forward. Based on generic assumptions (e.g. statistical inde-
pendence of the components, spatial coherence between frequencies, spatial or angular
scale statistical independence), a generic statistical model of the components is chosen
such that it allows a full Bayesian exploration of the posterior density. The introduc-
tion of a simple but full generative model that approximates the stochastic model of the
component permits propagating the uncertainties within that model. The simplifying
assumptions allow either a numerical marginalisation over all nuisance parameters (Grat-
ton, 2008) or, as in the present work, a full exploration of the model and a joint sampling
of both the component maps and power spectra. The goal of BICA is to infer both the
CMB map and its power spectrum.
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Chapter 1

Introduction to Cosmic Microwave
Background

Introduction

The Cosmic Microwave Background (CMB) is one of the major observable for modern
cosmology and fundamental physics. The study of the CMB has been a very active field
of research since its first observation (Penzias and Wilson, 1965) and confirmation (Dicke
et al., 1965) and, to a lesser extent since its prediction (Gamow, 1946; Dicke et al., 1946;
Alpher et al., 1948) . Since then, many experiments (Crill et al., 2003; Ruhl et al., 2004;
Ade et al., 2014; Sievers et al., 2013), including three successful space missions (Smoot
et al., 1990; Bennett et al., 1997; Planck Collaboration et al., 2011a), have been dedicated
to the observation of the CMB. The reason for this enthusiasm is that the CMB carries
the imprint of a vast range of phenomena, from particle physics and inflationary era to
galaxy physics and late time universe.

In this chapter I briefly explain the main physical processes that give rise to the
features observed in the CMB. I start with perturbation theory in the early universe
and treat only primordial perturbation – and thus anisotropies. Secondary anisotropies
are treated as if they originated from a different signal (see chapter 2). I link the CMB
observables to the primordial properties of the universe. Then I discuss how the change
in the cosmological parameters affect the CMB and therefore what we can learn from the
study of the CMB.

This chapter is a brief review of Cosmic Microwave Background theory providing a
comprehensive reasoning from the basic assumptions and physics needed, to the CMB
observations and the cosmological models. The curious reader is encouraged to go further
into details with the references therein. Section 1.2 mainly follows the review of Hu (2008)
and is enriched by four text books (Dodelson, 2003; Lyth and Liddle, 2009; Gorbunov
and Rubakov, 2011; Ryden, 2003).
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1.1 Physical context

At early stages, the universe is filled mainly with Cold Dark Matter (CDM) and a fluid
in which photons, protons and electrons are tightly coupled. The latter is of particular
interest here and it is commonly referred to as the photon-baryon plasma, even if, obvi-
ously, electrons are fermions. Within the plasma, a typical photon frequently Compton
scatters off free electrons. Its mean free path is then very small compared to the size of
the horizon, the universe is said to be opaque. The expansion of the universe cools down
the plasma to a point were the number of high energy photons is not large enough to
ionise the medium. Protons and electron bind together to form neutral light elements.
The mean free path of the photons suddenly increases such that, from then, a typical
photon travels freely through the universe. The photons have very low probability to
interact with anything else. The universe is then filled with this remnant light of the
primordial plasma that is called the Cosmic Microwave Background.

Two times and one scale are important to remember during the following treatment:
the time of recombination, the time of radiation-matter equality and the Hubble horizon.

The time of recombination is simply the time at which recombination happens, under
the assumption that the universe goes instantly from the completely ionised state to the
completely neutral state.

As universe expands, the energy density of the different species present in the universe
dilute at a rate that depends on the equation of state. It turns out that the photons
density dilute more rapidly than the matter density. Indeed, in addition to the decay of
the number density, the photons undergo further energy dilution due to the expansion of
their frequency. Today we observe much less energy contained in the photons than in the
matter. Thus, the density of photons and matter were necessarily equal at some point in
the past. This time is the time of radiation-matter equality. This is an import turning
point because during the matter dominated era, i.e. after the time of matter-radiation
equality, the perturbations in the distribution of matter becomes gravitationally unstable.
During the the radiation dominated era, the photons erase the perturbations.

Because of the finite speed of information transport, a point in space is causally con-
nected to a finite volume of space around it. Because the expansion happens everywhere
at the same speed, this region is a filled sphere whose center is the point of interest and
the radius the Hubble horizon. From now on, I will refer to the Hubble horizons by the
terms horizon or horizon scale (when working in Fourier space). This is an important
scale because we are going to extensively use Fourier modes and the modes associated to
scales larger and lower than the horizon do not behave the same way.
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1.2 Our understanding of the CMB

1.2.1 Acoustic oscillations

In the matter dominated era, the photon-baryon plasma is in thermal equilibrium and
experiences acoustic oscillations for scales smaller than the size of the horizon. The
ordinary matter tends to fall into the gravitational wells but, because of the tight coupling
with the photons, it is repulsed by the radiation pressure. There is a competition between
the two phenomena, hence the oscillations.

Because of the frequent interactions between the elements in the plasma, the photon
gas is at thermal equilibrium, including the photons that were emitted at the LSS. There-
fore the CMB emission law follows a black body. It can be described by a temperature
TCMB and the following distribution function (Dodelson, 2003)

f(x,p, t) =

[
exp

(
p

TCMB(t) (1 + Θ (x,−n̂, t))

)
− 1

]−1

(1.1)

where −n̂ = p/p and

Θ (x, n̂, t) =̂
δT (x, n̂, t)

TCMB(t)
(1.2)

is called the brightness function. Θ is independent of the magnitude p of the photon
momentum p because Compton scattering does not change the magnitude of the mo-
mentum. To first order, the perturbed distribution function f keeps the black body form
but with a perturbation in temperature that does not depend on p. Thus, Θ (x, n̂, t) is
the contrast in temperature that an observer at position x and time t sees when looking
in direction n̂ (i.e. the line of sight, the opposite of the photon direction).

f obeys the Boltzmann equation df
dt

= C [f ], which is tedious to solve in its most
general form. Still, in order to give a hint of the dynamic, we will solve the first moments
of the Boltzmann equation. This can be done by integrating the Boltzmann equation
and solving for quantities of interests (see e.g. Ryden (2003)). The first two moments
are the well known continuity and Euler equations. Compton scattering neither creates
nor destroys photons such that changes in the number of photons in a given volume is
due flows entering and exiting the volume. Thus, for photons:

∂nγ
∂t

+∇ · (nγvγ) = 0 (1.3)

∂vγ
∂t

+ (vγ · ∇)vγ = − 1

ργ
∇pγ . (1.4)

Since Θ is small we can linearise the continuity equation and the Euler equation.
Knowing that the number density evolves as nγ ∝ T 3, we can relate nγ to Θ. In addition,
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the equation of state of a gas of photon is pγ = ργ/3. Taking these considerations into
account, the continuity equation and the Euler equation become, after a Fourier transform
(Hu, 2008),

Θ̇ = −1

3
ik · vγ (1.5)

v̇γ = kΘ , (1.6)

where the dot over a quantity means derivation with respect to the conformal time. The
combination of these equations gives a harmonic oscillator equation for Θ

Θ̈ + c2
sk

2Θ = 0 , (1.7)

where the adiabatic sound speed c2
s =̂ ṗγ/ρ̇γ = 1/3. Inflation predicts adiabatic initial

condition (see Kolb and Turner (1990) for a discussion of models). In the adiabatic
mode, Θ̇(0) = 0. Thus the solution for a photon gas with an initial state assumed to be
adiabatic is

Θ(η) = Θ(0) cos (kcsη) . (1.8)

Thus, still in the hypothesis of adiabatic initial condition, this simple treatment implies
two important features:

temporal coherence of the oscillations This is possible if all wavelength have been
created at the same time. Thanks to inflation, this assumption does not violate causality,

the existence of fundamental scale Indeed, the solution is extremal at kn = nπ/csη.
In particular, the mode that has oscillated only once (n = 1) gives the fundamental scales
k1 = π/csη

∗, where η∗ is the time of recombination, and the corresponding multipole is
`1 ∼ 200. We will see that it is a very good approximation considering the high degree
of simplification in this calculation.

The observations of these features in the CMB power spectrum is a strong evidence
for the predominance of adiabatic initial conditions, even if other modes of primordial
fluctuations are possible (Langlois, 2003).

1.2.2 Gravitational effects

Metric perturbation

The metric perturbation for a flat universe can be written in terms of two potentials Φ

and Ψ

ds2 = a2
[
− (1 + 2Ψ) dη2 + (1 + 2Φ) dx2

]
. (1.9)
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In the absence of anisotropic stress and viscosity, Φ and Ψ are the relativistic analogues
of the Newtonian potential and they verify Ψ ∼ −Φ. Perturbations in the metric, i.e.
non zero Φ and Ψ, modify the continuity and the Euler equations as follows (Hu, 2008)

Θ̇ = −1

3
ikvγ − Φ̇ (1.10)

v̇ = k(Θ + Ψ) . (1.11)

Combine again to get the forced harmonic oscillator for Θ

Θ̈ + c2
sk

2Θ = −k
2

3
Ψ− Φ̈ . (1.12)

The effective temperature fluctuation Θ+Ψ verifies the homogeneous harmonic oscillator
equation and the solution is

[Θ + Ψ] (η) = [Θ + Ψ] (0) cos (kcsη) . (1.13)

The competition between gravity and pressure is now explicit in the expression of the
effective temperature ∆T/T = Θ+Ψ. We will return to this phenomenon when addressing
the Sachs-Wolfe effect.

Sachs-Wolfe effect

For scales larger than the horizon, physics can not be causal and the anisotropies are
due to the initial fluctuations of the gravitational potential. Indeed, during inflation the
universe has expanded exponentially with time such that the perturbations on large scales
at the time of recombination have preserved the imprint of the primordial perturbations.

At large scales, i.e. small k, the oscillator of equation 1.13 drifts very slowly from its
initial condition. This is known as the Sachs-Wolfe effect (Sachs and Wolfe, 1967) and
for adiabatic initial conditions the effective temperature is (see White and Hu (1997) for
a detailed treatment)

Θ + Ψ =
1

3
Ψ . (1.14)

Ψ is negative in a potential well and positive in underdense regions. Thus, there is a
balance between the intrinsic temperature of the photons and the gravitational potential.
The effect of the potential prevails such that the photons undergo redshift (resp. blueshift)
when escaping the LSS from an overdense (resp. underdense) region.
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1.2.3 Baryonic effects

The previous treatments neglect the effect of baryons. Because of their mass, baryons add
extra inertia to the baryon-photon fluid. The momentum of the plasma is enhanced by a
factor depending on the baryon-to-photon ratio R = (pb + vb)/(pγ + vγ). As a result, the
sound speed is no longer constant but equal to c2

s = 1/3(1 +R) (Hu, 2008). The speed of
sound decreases compare to the case of a purely photon fluid because baryons are heavy
and reduce the propagation of the perturbations. Then the fluid is no longer relativistic,
as baryons raise the effective mass of the fluid but do not contribute to pressure, which
remains just the pressure of radiation.

The continuity equation for the photon is unchanged but the Euler equation becomes
(Hu, 2008)

[(1 +R) vγ]
. = kΘ + (1 +R)kΨ . (1.15)

The oscillator taking gravity and baryons into account is then[
(1 +R)Θ̇

].
+

1

3
k2Θ = −1

3
k2(1 +R)Ψ−

[
(1 +R)Φ̇

]
. (1.16)

The solution is modified as

[Θ + (1 +R)Ψ] (η) = [Θ + (1 +R)Ψ] (0) cos (kcsη) . (1.17)

The introduction of baryons affects the oscillations in three aspects. First, from Sachs-
Wolfe effect, we can see that the amplitude of the oscillations are enhanced by a factor
(1 + 3R). Second, the perturbations oscillates around a non zero value that is −RΨ.
Third, the acoustic scale increases – by a factor

√
1 +R – since the baryon loading

prevent the perturbation from propagate as far as in the case of a zero mass fluid.

1.2.4 Damping

At small scales, the perturbations are smoothed because of free streaming of the photons.
The photons have a small but non zero mean free path. Thus, the photons erase the
structures smaller than their mean free path because of their diffusion. This effect is
known as Silk damping (Silk, 1968). The scale of dissipation λD can be well approximated
with simple arguments. The mean free-path of a photon is associated to the Compton
mean free-path λC . Thus, if the photon has scattered N times from the initial time to
the time of recombination, the approximate damping distance is given by the square root
of the number of scatterings made – because of the stochasticity of its random walk –
times the Compton length. Hence (Hu, 2008)

λD =
√
NλC =

√
ηrec/λCλC =

√
ηrecλC . (1.18)
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A similar expression arises from more sophisticated reasoning involving the Navier-
Stokes equation in addition to continuity and Euler equations. Silk damping is treated as
an anisotropic stress term. A damped oscillator equation results from this consideration
and the envelope of the solution is a decaying exponential, exp

[
− (k/kD)2] with (Hu,

2008)

kD = λ−1
D =

(
2π√

6

√
ηλC

)−1

. (1.19)

1.2.5 The transfer function and the growth factor

During the radiation dominated era, the perturbations at scales smaller than the hori-
zon are suppressed. As time passes, larger and larger scales enter the horizon and are
undergoing the damping. The small modes spend more time inside the horizon during
the radiation era, such that the smaller the mode is, the more damped it is. The modes
entering after matter radiation equality, i.e. modes k < keq with keq the mode associated
to horizon scale at equality, are much less affected by the damping. Thus the power
spectrum of potential PΦ – and therefore the power spectrum of the brightness function
Pθ – has a different shape than the power spectrum of primordial curvature perturbation
Pζ . In linear perturbation theory, these power spectra are related mode by mode via a
transfer function T (k) as follows (Lyth and Liddle, 2009)

PΘ(k, a) = D(a)2T (k)2 Pζ(k) . (1.20)

D(a) is the growth factor that accounts for the wavelength independent growth at late
times. By construction, T (k � keq) = 1 and D(a0) = 1. T (k) depends on the baryon
density Ωbh

2 and the matter density Ωmh
2 only.

1.2.6 Projection on the sphere

So far, the quantities of interest were defined on the 3-D space. The CMB photons
that we receive here and now from all directions have travelled about the same distance
because the recombination was sudden. Thus, they were then emitted from a sphere and
reflects the density perturbation on this surface. The goal of this section is to link the
3-D spectrum to our observable, which is a 2-D spectrum. No physics is involved in the
calculation since it is a purely geometrical problem.

Let’s express the brightness function into the basis of spherical harmonics (see ap-
pendix D for more details). We have

Θ (x, n̂, t) =
∑
`m

Θ`m(x, t)Y`m(n̂) . (1.21)
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The Θ`m observed here at x0 and now at t0 are the modes of the CMB anisotropies. Let’s
define

a`m =̂ Θ`m(x0, t0) (1.22)

C` =̂ 〈|a`m|2〉 . (1.23)

The C` are the power spectrum of the CMB. The power spectrum does not depend on
m because the statistical isotropy of the emission implies symmetries under rotations of
the expected values.

Focusing on the scalar mode of the Fourier transform of the brightness function, we
can define multipoles Θ` by

Θ(k, n̂, t) =
∑
`

(−i)`
√

4π (2`+ 1)Y`0(n̂)Θ`(k, t) . (1.24)

By taking the inverse of this equation, i.e. by expressing Θ` as an integral involving Θ(k),
and using the orthogonality properties of the spherical harmonics, it can be shown that
(Lyth and Liddle, 2009)

Θ`m(x, t) =
4π

(2π)3 i
`

∫
d3k Θ`(k, t)Y

∗
`m(k̂)eik·x , (1.25)

hence the following expressions for the observed CMB multipoles and the CMB power
spectrum, relating 2-D power spectrum and the 3-D power spectrum of temperature
anisotropies (Lyth and Liddle, 2009)

a`m =
4π

(2π)3 i
`

∫
d3k Θ`(k, t0)Y ∗`m(k̂) (1.26)

C` = 4π

∫ ∞
0

dk k2PΘ`(k, t0) (1.27)

= 4π

∫ ∞
0

dk k2T`(k)2Pζ(k) (1.28)

where T`(k) is the multipole ` of the transfer function T (k) defined in equation 1.20.
The growth factor today being equal to unity, i.e. D(a0) = 1, it does not appear in the
expression for the CMB power spectrum.

1.3 Our understanding from the CMB

Equation 1.1 gives the distribution function of the photons. Other species are significantly
present in the universe and coupled to gravity at that time. The distribution function
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Figure 1.1: Planck CMB power spectrum from Planck Collaboration et al. (2014e). The
red dots are the experimental measurements of CMB power spectrum and the green
line represents the theoretical power spectrum that best fit data. The power spectrum
exhibits three main features: the Sachs-Wolfe plateau for ` . 30, the three first acoustic
peaks and the damping tail for ` & 1000.

has a different expression for each of them – baryons, CDM, neutrinos, . . . It is possible
to solve numerically the full Boltzmann equation to get the evolution of the brightness
function Θ. Codes such as CMBFast1 (Seljak and Zaldarriaga, 1996) or CAMB2 (Lewis
et al., 2000) or CLASS3 (Blas et al., 2011) take cosmological parameters in input, compute
the transfer function, solve numerically the Boltzmann equation, project Θ(t0,x0, n̂) on
the sphere and give the corresponding CMB power spectrum in output. Thus, we have
a way to predict the CMB power spectrum. Conversely, if the relation is bijective, i.e.
there is no degeneracies, from an observed power spectrum we can learn the values of the
parameters of a given model. This is done by exploring the possible values for the set
of cosmological parameters and choosing the ones that give the power spectrum that fits
the available data the best (Planck Collaboration et al., 2014d), with the use of codes
such as PICO4 (Fendt and Wandelt, 2007).

Figure 1.1 shows the Planck power spectra, both experimental and theoretical. It is
1the code is no longer supported by its authors.
2code available at http://camb.info/
3code available at https://lesgourg.web.cern.ch/lesgourg/codes.html
4code available at https://sites.google.com/a/ucdavis.edu/pico/home
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common to plot `(`+1)C`/2π for a reason that will soon be clear. This figure shows nicely
two fundamental scales that separate the different regimes of oscillations. The position
of the first peak at ` ∼ 200, which correspond to the sound horizon at recombination,
separates the oscillating modes – the acoustic peaks – and the modes that never entered
the horizon – the Sachs-Wolfe plateau. The Silk scale at ` ∼ 1000 separates the damped
and undamped modes.

This section presents the current standard model of cosmology. I will show how the
change in parameter values affect the shape of the CMB power spectrum.

1.3.1 Parameters of the standard model of cosmology

The standard model is a cosmological model based on a flat FLRW metric taking into
account CDM and a cosmological constant, in addition to the ordinary matter and radia-
tion. In its simplest formulation, the standard model has 6 free parameters. Two of them
describe the primordial power spectrum as it was after inflation, three of them control
the energy content of the universe and one accounts for the modification of the power
spectrum when propagating during the epoch of reionisation. Figure 1.2 illustrates the
effect of changing the value of the parameters on the shape of the CMB power spectrum.

Initial conditions: AS and nS

The leading paradigm to explain the origins of the primordial fluctuations is inflation
(Linde, 1982; Guth, 1981). According to the simplest models of this theory, the primordial
curvature perturbation ζ would be described by a power spectrum Pζ such that

k3Pζ(k)

2π2
= AS

(
k

k0

)nS−1

(1.29)

with k0 a fiducial normalisation wave number. AS is the overall amplitude of the spectrum
and nS controls the tilt. The particular case ns = 1 describes a scale invariant spectrum
(Harrison, 1970; Zeldovich, 1972) .

In the Sachs-Wolfe regime, where the modes are larger than the horizon i.e. small k
and `, the transfer function T (k) is by definition equal to unity and therefore its multipoles
are simply the square of the spherical Bessel functions, i.e. T`(k) = j2

` (kD
∗) with D∗ the

distance from the last scattering surface. In the case of a primordial scale invariant
spectrum, which it has been proved by Planck to be almost true (Planck Collaboration
et al., 2014e), the integral in equation 1.28 can be performed and the result is (Gorbunov
and Rubakov, 2011)

C` ∼
2π

`(`+ 1)
AS . (1.30)
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Thus, to good approximation at large scales, i.e. ` . 30, the power spectrum `(`+1)C`/2π

is roughly constant (see figure 1.1) and directly probes the variance of the primordial
curvature perturbations in the early universe.

The parameter nS quantifies the deviation from scale invariance. If the matter and
baryon transfer effects are determined, then the acoustic spectrum also constrains the tilt
of the primordial spectrum (Hu, 2008).

Matter content: Ωb and Ωm

Ωb and Ωm are the fractions of the total energy content of the universe contained in
respectively the baryons and the matter. The baryons and total amount of matter affects
the transfer function and, to a lesser extent, the Silk scale.

A change in Ωb leads to a change in the relative heights of the even and odd peaks of
the spectrum, because of the inertia of the baryons in the plasma. Indeed, because of the
mass of the baryons and tight coupling with the photons, the plasma spend more time in
the potential wells. This is called the baryon loading. To quantitatively see this effect,
recall that in the case of non zero baryon-to-photon ratio, the modes oscillate around a
non-zero offset proportional to the baryon-to-photon ratio. In this case, the even and
odd peaks of the power have different height. Thus, the amount of baryons is probed by
evaluating the ratio between consecutive peaks.

Information on Ωm is obtained by looking at the overall amplitude of the acoustic
peaks and the third-to-second peak ratio (Hu, 2008).

Late time effects: ΩΛ and τ

ΩΛ is the fraction of the total energy content of the universe contained in the cosmological
constant. Since dark energy is completely sub-dominant at epoch of recombination, it
can only affect the CMB power spectrum at the largest scales, i.e. the modes entering the
horizon at recent time. The lower the multipole is, the more enhanced it is (Hu, 2008).

The universe was reionised at late time, because of the UV radiation of the forming
stars. The universe is filled with free electrons and a fraction of the CMB photons interact
with them, again via Compton scattering. If τ denotes the optical depth due to travel
through the reionised universe until here, the anisotropies are damped by a factor e−τ .
All modes are damped by the same factor, except those that were beyond the horizon at
recombination (Dodelson, 2003).

1.3.2 Beyond the power spectrum

As we just saw, a lot of information is encoded in the shape of the CMB power spectrum.
It means that, even at high resolution, the description of the CMB is compressed in a
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Figure 1.2: This figure from Hu and Dodelson (2002) shows the reshape of the power
spectrum under variation of the cosmological parameters. In each panel only one param-
eter is allowed to vary. The upper left panel shows the effect of a parameter that is not
discussed in the text, the curvature. Since the curvature affects the angular distance, the
position of the peaks depends strongly on the amount of curvature. Dark energy has an
impact on the lowest multipoles only. Conversely, a variation in matter and baryons do
not affect the scales that were larger than the horizon at the recombination but change
the relative height of the peaks.

couple of thousands numbers and its modelling is reduced to very few parameters. At this
level of modelling, everything seems consistent. However, one could naturally question the
assumptions of isotropy and Gaussianity of the CMB. This requires an analysis at the map
level. Two Planck papers are essentially dedicated to such tests, Planck Collaboration
et al. (2014g) and Planck Collaboration et al. (2014f).

Primordial non-Gaussianity

The standard models for generation of primordial perturbations predict an almost Gaus-
sian statistics for the fluctuations. The almost is important here because certain in-
flationary models have a non-Gaussian signature that would be detectable by Planck.
For Planck analysis, several independent statistical tools have been used to study non-
Gaussianity such as Minkowski functionals, N-point correlation functions, bispectrum5

5The bispectrum is the harmonic analogue of the 3-point correlation function.
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fitting, estimators based on wavelet statistics. They find very little evidence of non-
Gaussianity. The CMB map exhibits some variance, skewness and kurtosis anomalies,
but they seem to be related to other statistical anomalies that are discussed in the next
paragraph.

Statistical tests on the CMB map

The analysis of the WMAP CMB map shed light on some statistical anomalies. The
2013 Planck analysis confirmed these inconsistencies. Hemispherical asymmetry, extreme
hot/cold spots and mode alignment are such anomalies. The fact that two independent
experiments, namely WMAP and Planck, point towards the same anomalies shows that
they are not artefacts due to data acquirement and processing. The significance of the
anomalies is still under debate. But if they turn out to be real deviations from isotropy,
no known physical effect could explain them in the current paradigm. Theories beyond
the standard model could explain some anomalies, e.g. the Cold Spot would be a natural
feature of a Bianchi Vii universe (Jaffe et al., 2005), but so far none of these theories has
been confirmed.

Limitation due to foregrounds

Some statistical inconsistencies in the CMB are at a very low level. In order to put
significant constraints on them, a maximum of information about the CMB is needed
and therefore a maximum fraction of the sky of the map must be used. When working
with a large sky fraction, the foregrounds are significant contaminants and therefore
the CMB must be clean by component separation method before a meaningful analysis
can be made. At the map level, the component separation methods do not provide a
characterisation of foreground uncertainties. At best, the errors are model dependent and
at low resolution (Planck Collaboration et al., 2014c). Unmodelled foreground residuals in
the CMB map could be mistaken for deviation from Gaussianity and/or isotropy because
no error model that include this foreground residuals is available. Late time effect, like
the so called iSW effect, could also be a source of mode alignment and low variance
(Francis and Peacock, 2010).

1.4 Polarisation of the CMB

My main interest during my three years Ph.D. thesis was the temperature of the CMB.
An other important property of the CMB photons is their polarisation. About 10% of
the CMB photons are polarised, which makes a signal of the order of a few µK. Zal-
darriaga and Seljak (1997) proposed a decomposition of the polarisation into two modes,
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E-modes and B-modes. This is in analogy to electrostatics, in which the electric field
(E-field) has a vanishing curl and the magnetic field (B-field) has a vanishing divergence.
Primordial B-modes are of particular interest since they are produced by tensor modes
of the perturbation only. A detection of primordial B-modes would be a strong evidence
for gravitational waves arising from the epoch of inflation. Detecting the B-modes is dif-
ficult, partly because the degree of foreground contamination is unknown, and detecting
primordial B-modes is even more difficult because of the leakage of power from E-modes
to B-modes, due to gravitational lensing. This effect has been measured by the South
Pole Telescope in 2013 (Hanson et al., 2013).

Conclusion

I have briefly presented the Cosmic Microwave Background, from its necessary existence
in an expanding universe to its role as a probe in modern cosmology. I have outlined the
physical processes that give the CMB power spectrum its main features: the Sachs-Wolfe
plateau, the acoustic peaks and the damping tail. Different values for the set of cosmo-
logical parameters lead to different shapes of CMB power spectrum. Boltzmann codes
provide a way to quickly predict the shape of the CMB power spectrum and thus allow
testing possible cosmological models. I also presented studies that show that the CMB
contains little but crucial information at the map level. I have therefore introduced the
need for separation between the primordial CMB fluctuation and any other contribution
in the data. I present a list of the brightest components to take into account in chapter 2
and address the problem of removing them in chapter 3.
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Chapter 2

The microwave sky

Introduction

We saw that the CMB is a powerful probe that allows testing and challenging models of
fundamental physics. Beside the perturbation theory described in the previous chapter,
one can use atomic and statistical physics to infer the thermodynamic properties of the
CMB. In particular, nuclear physics predicts that the recombination between baryons
and electrons occurred at a temperature of the order of 3× 103K (Hu, 2008). Since then,
the universe has expanded by a factor 103 which had the consequence of dropping the
temperature of the CMB by roughly the same factor. The emission of the CMB forms
a black body radiation of about 3K. The CMB signal is therefore the brightest in the
microwave frequency domain, between 10GHz and 500GHz.

Experiments dedicated to the study of the CMB naturally observe in the microwave
domain. Many other emissions than the CMB radiation, from cosmological as well as
from astrophysical source, light up the microwave sky. In CMB analysis, any signal that
is observed together with the CMB is referred to as a foreground.

In order to get a clean CMB signal, foregrounds must be removed, and to be removed
they must be understood, at least in the frequency domain of interest. In this chapter I
will give a list of the foregrounds that need to be taken into account during the separation
step. For each of them I will overview the physical processes from which they emerge and
describe their expected signals, sometimes empirically. This list is meant to be exhaustive
but only in the scope of the Planck mission, i.e. for full sky data between 30GHz and
857GHz at a maximum resolution of 5 arcmin. Also, this overview reflects our current
knowledge of the microwave sky, which is of course not perfect.
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Figure 2.1: The Planck all sky. This image was released with the early results of the
Planck collaboration for communication purpose only, but shows how hard is the task of
CMB cleaning is. In the highest Planck frequencies, the galaxy signal in blue is much
higher than that of CMB in red-orange. In addition, Planck has a high enough resolution
to measure the fine and complex structures of the galaxy, which are another challenge to
overcome for CMB cleaning. Credits: ESA / LFI & HFI Consortia.

2.1 The Planck Sky Model

I will often refer to the Planck Sky Model (PSM) throughout this chapter. The PSM is
a project that aims to simulate a multi-component microwave sky, from a few GHz to
above the THz. It was first developed within the Planck collaboration, especially for this
mission. Thus the software simulates the sky as it can be seen by experiments such as
WMAP or Planck. The goal is to produce realisations of the data as close to the real
data as possible. The software does not propose just one simulation of the sky since the
components can be simulated with different values for their physical parameters. The
simulations are very useful to visualise the data and its expected components and to test
component separation methods.

The components included in the PSM and their simulation process are described in
Delabrouille et al. (2012). For some realisation of certain components, the PSM exten-
sively uses previous attempts of mapping them. In this chapter, original works will be
cited when appropriate, along with the PSM. The code and an exhaustive list of collab-
orators can be found on the web page of the project1.
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Figure 2.2: Thermal dust spatial distribution as simulated by the PSM, based on the work
of Finkbeiner et al. (1999) and Finkbeiner (2003). The high sensitivity of Planck and the
inclusion of detectors observing up to 857GHz makes the dust the brightest component in
the data. Spinning dust is highly correlated with thermal dust and therefore has almost
the same spatial distribution.

2.2 Galactic emissions

The most important foreground that needs to be taken into account during CMB cleaning
is the galaxy. Its signal is several order of magnitudes higher than that of the CMB on
some part of the sky. The galaxy itself is a mixture of different components and each
of them can be simply described by a single physical process. The diffuse emissions are
produced by the interstellar medium (ISM).

Figure 2.1 shows the extent of the problem. This figure was released with the Planck
early results and shows a full sky map made up from a mixture of the Planck observation
maps. It emphasize the angular extent of galactic dust emission. The galaxy is not only
overwhelming all other components in the galactic plane but is also present over almost
all the sky, mostly at high frequencies. The CMB fluctuations are barely distinguishable
in some parts of the sky around the poles.

2.2.1 Dust emission

The ISM is principally composed of dust, which is an aggregation of grains. The electric
and magnetic molecular dipoles within the grains have two modes of excitation: oscillation

1http://www.apc.univ-paris7.fr/~delabrou/PSM/psm.html
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Figure 2.3: Electromagnetic spectrum of thermal and spinning dust combined
(de Oliveira-Costa et al., 1998). Both components peaks outside of the range of observed
frequency and are approximated by power law emissions. Spinning dust peaks around
20GHz while thermal dust, hotter, peaks further in the infrared, around 1000GHz.

(or vibration) and rotation. Each mode is source of a specific radiation. Dust emissions
are the brightest signals of the infrared band.

Thermal dust emission

The thermal dust emission is the dominant component at frequencies above about 80GHz.
Around star formation regions, dust is heated up by interstellar radiation field. The grains
absorb UV and optical photons that leave them in an excited electronic state. Most of
the electronic energy is converted into vibrational energy. The dipoles then emits in
infrared. At Planck frequencies, the dominant source of photons is the big (1µm) grains
that radiate at thermal equilibrium. They have a thermal emission with a frequency-
dependent emissivity. The thermal dust emission law peaks in the infrared, between 100
and 200µm, i.e. about 1000GHz. Therefore, within the Planck frequencies, it can be
approximated by a power law with a positive spectral index varying between 1.5 and 2
across the sky.

Spinning dust

The spinning dust component was not identified as a dust component at the moment
of its discovery Kogut et al. (1996); Leitch et al. (1997); Watson et al. (2005). It was
first named anomalous microwave emission. This emission was significantly correlated to
the thermal dust emission, but the two of them could not be explained by one simple
dust model. The emission is actually due to the spinning of the small dust particles that
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Figure 2.4: Thermal dust power spectrum through frequencies from the simulated full sky
maps of the PSM. The black body law of thermal dust peaks at a higher frequency than
the highest observed frequency of Planck. Dust emission can therefore be approximated
as a rising power law emission. Colours from red to blue respectively represents the
amount of dust in the frequency bands 70GHz, 100GHz, 143GHz, 217GHz and 353GHz.
The CMB anisotropies, whose power spectrum is represented by the black solid line, is
at most as powerful as dust considering the entire sky at low frequencies.

induces rotational electric dipole emission. The intensity of the emission peaks around
20GHz, such that its frequency spectrum can be approximated by a power law emission,
even if there is a high-frequency cut off due to the limited speed at which a grain can spin.
Figure 2.3 shows the frequency dependence of both the spinning dust and the thermal
dust.

Visualisation

Figure 2.2 shows the spatial distribution of thermal and spinning dust over the sky, as
predicted by the PSM from the works of Finkbeiner et al. (1999) and Finkbeiner (2003).
The signal is very high in the galactic plane, as expected, and is also present at high
latitudes which make the dust a component that extends over almost the whole sky.
Figure 2.4 shows the power spectrum of thermal dust at several frequencies together
with the power spectrum of the CMB that best fits the current available data. For any
component separation method, it is very challenging to clean the CMB map from dust
of the highest frequencies.
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Figure 2.5: Synchrotron spatial distribution as simulated by the PSM, based on the work
of Haslam et al. (1982) and Giardino et al. (2002). This map shows the presence of
spurs above and below the galactic plane. These features are due to the field lines of the
magnetic field of the galaxy, in which the electrons are trapped. Since the magnetic field
is present all around the galaxy, emission from electrons comes from a large fraction of
the sky.

2.2.2 Synchrotron emission

Synchrotron emission is due to free electrons spiralling in the magnetic field of the galaxy
(Rybicki and Lightman, 1979). Because of their circular acceleration, the electrons ra-
diate. The intensity of the synchrotron emission depends on the electron density and
the strength of the magnetic field perpendicular to the line of sight. The galactic mag-
netic fields being weak (1-5 µG), the electrons need to be relativistic in order to produce
detectable light. One possible source of relativistic electrons is the ejection and the accel-
eration by supernovae. Thus, cosmic ray electrons come from future star forming regions
and there is a correlation between dust and synchrotron emissions. The intensity of syn-
chrotron emission peaks in the radio band, such that it can be approximated by a negative
slope emission law (cf. Davies and Wilkinson (1998) for a review). Synchrotron has a
steep spectral index, varying over the sky between -3.3 and -2.7. The spatial distribution
of synchrotron emission will change substantially with frequency.

Figure 2.5 shows the spatial distribution of the synchrotron emission over the whole
sky, as predicted by the PSM from the work of Haslam et al. (1982) and Giardino et al.
(2002). As for dust, the signal is the highest in the galactic plane. The broader regions
on both sides of the galactic center are sliced views of the spiral arms of the galaxy. This
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Figure 2.6: Power spectrum of the synchrotron through frequencies from PSM simulations
based on the work by Haslam et al. (1982) and Giardino et al. (2002) on full sky. Colours
from red to blue respectively represents the amount of dust in the frequency bands 70GHz,
100GHz, 143GHz, 217GHz and 353GHz.

map gives a hint on the structures of the galactic magnetic field, for instance with the
bright curved region over the galactic center, called the north galactic spur. Figure 2.6
shows the power spectrum of the synchrotron at different frequencies, together with the
CMB power spectrum that best fits the current data.

2.2.3 Free-free emission

As synchrotron, the free-free emission (or Bremsstrahlung) is a component from the
radio band. Because of the dust radiation coming from the infrared band, the steep
index of synchrotron emission in the radio band and the CMB in between, free-free is
the least well understood galactic component. It is due to electron-ion scattering in
the warm ionised ISM, near star forming regions. The UV radiation from the very
young hot stars ionises the surrounding gas. Then the electrons are decelerated in the
electric fields of the ions and emit photons during the interaction with the nucleus. The
emission reaches is highest intensity in the radio domain. At Planck frequencies, free-free
emission can therefore be modelled by a power law with negative slope. The spectral index
varies little, between −2.15 and −2.14, such that free-free has almost the same spatial
distribution at all frequencies. The velocity distribution of the electrons is well described
by a Maxwellian. This spectral index depends slightly on the electronic temperature of the
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Figure 2.7: Spatial distribution of free-free emission as simulated by the PSM, based on
the work of Dickinson et al, MNRAS, 341, 369 (2003) and Bennett et al. The emission
is the brightest in the galactic plane. It becomes quickly very low compare to the other
components as the latitude decreases or increases. Note the noise in the map at high
galactic latitude.

velocity dispersion. Radio frequency Hα maps provides template for free-free emission,
in regions of low dust optical depth where the maps can be corrected. Hα maps trace the
α line of the Balmer series that probes the surface brightness of the ionised emission from
the entire Galaxy. The largest source of uncertainty comes from the dust absorption of
the α line.

Figure 2.7 shows the spatial distribution of the free-free component over the sky, as
predicted by the PSM and works by Miville-Deschênes et al. (2008). The emission is more
locally distributed than that of dust and free-free but is still very diffuse. Figure 2.8 shows
the power spectrum of the free-free component at different frequencies, together with the
CMB power spectrum that best fits the current data.

2.2.4 Molecular lines

Part of the ISM is composed of dense molecular clouds. Photons from the stars excite
these molecules. Then, the molecules emit through de-excitations. The strongest emission
lines in the frequency range of the Planck mission are those of 12CO. Although highly
correlated, each transition line has a different spatial distribution. The most probable
transitions, and therefore the brightest ones, are (J=1→0), (J=2→1) and (J=3→2),
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Figure 2.8: Power spectrum of the free-free emission through frequencies of PSM simula-
tions based on the work of Miville-Deschênes et al. (2008). Colours from red to blue re-
spectively represents the amount of dust in the frequency bands 70GHz, 100GHz, 143GHz,
217GHz and 353GHz. Thermodynamics unit curves the power law of free-free such that
in units of KCMB free-free looks like having more power at high frequencies. Free-free
emission is particularly powerful at large scales and is therefore a major component in
the range of frequencies of interest.

where J is the total angular momentum of the molecule. Other molecules than 12CO are
present in the ISM – 13CO, HCN and HCO+ among the most abundant (Naylor et al.,
2010) – but they have fainter contributions to the total signal. CO-molecule only is
significant during the component separation step in Planck analysis. PSM maps of CO
spatial distribution are based on the works of Dame et al. (2001).

As a by-product of their 2013 cosmological results, the Planck collaboration released
the first full sky mapping of the spatial distribution of the CO-molecule present in our
galaxy. Figure 2.9 shows the spatial distribution of the CO-molecule component over
the sky, as extracted from 2013 Planck data (Planck Collaboration et al., 2014b). This
map and maps of other transition lines are discussed in the Planck paper on CO emission
(Planck Collaboration et al., 2014b). Figure 2.10 shows the principal emission lines in
the Planck frequency response. The brightest components, (J=1→0) and (J=2→1), are
present in two of the cleanest channels. Emissions from CO molecules were not expected
components to be present in the data. The response of the instruments were chosen
without considering the frequency of emission lines, which could explain the lines right in
the middle of some frequency bands. The Planck collaboration turned that disadvantage
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Figure 2.9: Spatial distribution of CO (J=1→0) transition line. This map is a result of
component separation methods applied to real 2013 Planck data (Planck Collaboration
et al., 2014b). The emission is concentrated in the denser parts of the galaxy.

Figure 2.10: The averaged spectral response of Planck/HFI instrument (Planck Collabo-
ration et al., 2014b). The vertical dashed bars bars represent the CO emission lines. The
three most probable and therefore the brightest transitions happens right in the middle
of the 100, 217 and 353GHz bands.
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Figure 2.11: Point source catalogue as generated by the PSM, partly based on Wood and
Churchwell (1989); Kurtz et al. (1994). As expected, this map looks like a full sky starry
night. Point sources are concentrated in the galactic plane but a non-negligible amount
of them are distributed all across the sky. The clusters of point sources in the bottom
right of the map are the Magellanic clouds.

into a world première result: the first full sky mapping of CO line emission.

2.2.5 Galactic point sources

A compact source is a small source that spreads over a very few pixels. It is spatially
resolved and is very bright compared to the sky around it. The main object causing the
galactic point sources are stars and Ultra Compact Hii (UCHii) regions. UCHii regions
are dense Hii regions whose size does not exceed the parsec.

Figure 2.11 shows a catalogue of galactic point source based on Wood and Churchwell
(1989); Kurtz et al. (1994). There are many of them in the microwave domain. Diffuse
components and point sources have very different generative models, close to Poisson
process. Since a combined treatment of Poisson and Gaussian processes is difficult, point
sources are treated separately from the diffuse emissions. There are several methods to
remove the point sources from the observation maps prior to their use for component
separation. A common way to remove them is to set to zero the pixels that contain
a point source and then fill with fake data the holes thus made in the maps. These
processes are respectively called masking and inpainting. Alternatively, the point source
function (PSF) of the instrument can be fitted to the brightest point sources. The fit is
then subtracted off the data.
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2.3 Extra-galactic components

2.3.1 CMB secondary anisotropies

CMB photons were emitted at a very early time and those that we receive have travelled
through the late universe. During their journey, they crossed the structures of the universe
and they interact with them and their content. The properties of the CMB radiation are
found to be slightly altered as photons undergo physical processes in the structures. The
difference between the CMB before the modifications due to late time effects and after the
modifications are called CMB secondary anisotropies and are considered as components
on their own.

Sunyaev-Zel’dovich effects

Galaxy clusters contain hot electron gas. Photons of the CMB scatter via inverse-
Compton scattering on these electrons. The electrons that interacts with the CMB trans-
fer part of their energy to the photons. Thus, after crossing a galaxy cluster, the CMB
has a modified black body with slightly more energetic photons. This is known as the
Sunyaev-Zel’dovich effect (SZ effect) (Sunyaev and Zeldovich (1972), see Carlstrom et al.
(2002) for a review). The change in temperature is not the same for all lines of sight,
since photons coming from different directions have crossed different structures. Thus,
the SZ effect induces secondary CMB anisotropies.

The SZ distortions due to the thermal energy of the electrons are called the thermal
SZ (tSZ) effect. A second order effect, coined the kinetic SZ (kSZ), is due to the bulk
velocity of the electrons with respect to the rest frame of the CMB. The interaction of
the CMB photons with a moving gas of electrons results in a redshift or blueshift of the
photons, depending on the direction of the cluster velocity with respect to the observer.
Thus, it is a priori undistinguishable from primary anisotropies. However, in a typical
galaxy cluster, the kSZ effect is small, inducing a change in temperature of the order of
10−5.

Figure 2.13 shows the 3K black body, i.e. the CMB electromagnetic spectrum as it
has been emitted at the last scattering surface, the CMB electromagnetic spectrum of
the anisotropies due to the tSZ effect and the kSZ effect. The tSZ spectrum is negative
then positive because the whole CMB spectrum is blueshifted because of the kick of the
hot electrons. It crosses zero at about 217GHz, one of the frequency observed by HFI.
The kSZ spectrum is negative because of the broadening of the CMB spectrum, which
is due to both blueshifting and redshifting of the CMB photons. Figure 2.12 shows a
map of the CMB secondary anisotropies due to the SZ effect. Since the SZ effect is due
to galaxy clusters and is very faint, this component looks like a point source map and
therefore is highly non-Gaussian.
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Figure 2.12: Detail of tSZ (left) and kSZ (right) maps as simulated by the PSM at
353GHz. Blue means lower temperature and red means higher temperature. The size of
the squares is 30 degrees on each side. CMB photons that undergo tSZ effect in spherical
galaxy clusters gain energy. Thus the tSZ map at higher (resp. lower) frequency than
217GHz is made of wide red (resp. blue) dots in direction of the clusters. Since kSZ
blueshifts or redshifts the CMB photons depending on the bulk motion of the cluster,
kSZ map is a repartition of blue and red wide dots.

Figure 2.13: CMB spectral distortions due to thermal SZ effect (left) and the spectrum of
tSZ and kSZ (right) (Sunyaev and Zeldovich, 1980). The dashed curve on the left panel
represent the perfect 3K black body and the solid line represent the same distribution
of photons but that have undergone large y-type distortions. The solid line is a first
order approximation in y. The solid line on the right panel represent the electromagnetic
spectrum of the tSZ difference map in the direction of a galaxy cluster, the dashed line
represents the electromagnetic spectrum of the kSZ difference map, still in the direction
of a cluster where the effect occurs. For comparison, the 3K black body spectrum is also
plotted, after being scaled to tSZ and kSZ spectra.
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Figure 2.14: 3D matter power spectrum including the effects of the structures. The
dashed-dotted line shows the power spectrum of the iSW effect, which treats the grav-
itational effect in linear perturbation. The Rees-Sciama effect is the full resolution, i.e.
including higher orders in the perturbation, of the integrated gravitational effect of the
structures. The figure shows the result of three codes, represented here by the solid,
dotted and dashed lines. Figure from Junk and Komatsu (2012).

Integrated Sachs-Wolfe effect

During its propagation, a CMB photon crosses inhomogeneities. The photons undergo
relativistic effects due to the change of the gravitational potential along their path. For
instance, if a photon crosses an overdensity, it gains energy when falling into the potential
well and loses exactly the same amount of energy when escaping the overdensity. Now, if
the overdensity grows between the moments the photon enters and exits, then the photon
has to escape a deeper potential well than the one it entered in. Therefore, between before
and after the crossing of the overdensity, the photon loses energy. The integrated Sachs-
Wolfe (iSW) effect (Sachs and Wolfe, 1967; Rees and Sciama, 1968) is the overall effect
on the photon energy over its whole path, from the moment it was emitted at the surface
of last scattering to the moment it was detected.

In the CMB power spectrum, the typical scale of the effect of the structures is the
horizon size because smaller structures tend to cancel out. The effect is hard to detect
because of the weak effect on the energy of the photons and because it has the same
electromagnetic spectrum than that of the CMB. In addition, the effect is the biggest
just where cosmic variance is the largest. Figure 2.14 shows a matter power spectrum
including the effect of structures.
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Figure 2.15: Map of integrated gravitational potential (Planck Collaboration et al.,
2014c), from the last scattering surface to our galaxy. In other words, this map traces all
the matter of the observable universe along our light cone.

Figure 2.16: Power spectrum of maps such as that of figure 2.15 (Planck Collaboration
et al., 2014c).
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Lensing

Locally, the universe is not homogeneous. Thus, when the geodesic of a CMB photon
passes near an overdensity, the direction of propagation of the photon changes, due to
the gradient of the gravitational potential. The whole CMB map is distorted due to the
weak lensing. The order of magnitude of the deflection is 2′. Thus, the deflection angle
has a lower value than the resolution of the Planck instruments. But since the deflection
is correlated over several degrees, the effect is still noticeable in the data.

Gravitational lensing is achromatic. Thus, lensing does not change the temperature
of the CMB. The anisotropies have the same frequency dependence than the CMB. As
explained later, the assumption that the CMB follow a black body law emission is crucial
for CMB cleaning. Component separation can not unlens the CMB map. But it must
be treated because weak lensing alters the statistical properties of the primordial CMB
(Lewis and Challinor, 2006) – for example, it introduces non-Gaussianity. Lensing also
provides information about the late universe. For these two reasons, the output CMB of
component separation must be treated in post-processing.

Figure 2.15 shows a full sky gravitational potential map, integrated over the whole
path of the photons. It was reconstructed from a the deflection angle map computed
from the lensed Planck CMB map. Figure 2.16 shows the power spectrum of that map.

2.3.2 Extra-galactic point sources and the Cosmic Infrared Back-
ground

There are two kinds of extra-galactic point sources, one coming from the radio band, one
from the infrared band. The radio sources correspond to galaxies hosting a radio loud
active galactic nuclei (AGN). The infrared sources correspond to dusty galaxies in the
process of forming stars.

As for the galactic point sources, the sources that are resolved need a special treat-
ment, like fitting and removing or masking and inpainting. The unresolved infrared
sources produce a diffuse anisotropic background known as the Cosmic Infrared Back-
ground (CIB). This component is nearly a random Gaussian field and is handled as a
diffuse component in the separation process.

Figure 2.17 shows the relative contribution of the galaxies at different redshift to the
total CIB signal.

Conclusion

I have presented an account of both foreground emissions and CMB secondary anisotropies.
These components are present in the data of any CMB experiment and therefore mix with
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Figure 2.17: Dusty galaxies contribution to CIB per bin of redshift (Planck Collaboration
et al., 2011b). Each color represent the mean galaxy spectrum within a particular redshift
bin. The galaxies that contribute the most to the total CIB signal are that of intermediate
redshifts, around z = 1.

the CMB. The diversity and the complexity of the foregrounds make them difficult to
model and therefore challenging to separate. In the next chapter, I present the main
approaches to CMB component separation.
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Chapter 3

Basic concepts of CMB component
separation

Introduction

All photons emitted through the various physical processes presented in chapter 2 mix
with the CMB and all the components are observed as a single mixed signal per frequency.
After the pre-processing of the data, the operation consisting in recovering the individual
components that compose the signal is called component separation.

The main cosmological goal of missions such as Planck is to extract the map of the
CMB anisotropies because of its power to constrain cosmological models and fundamental
physics, as we glimpsed it in chapter 1 and section 2.3.1. In this case the step is just
called CMB foreground cleaning. The data of an experiment that observes the sky in the
microwave domain is full of information on the late universe and local astrophysics. It
would then be a waste to use the data to just produce the CMB map. Recovering either
the CMB only or a whole set of various physical maps requires different approaches. Thus,
several classes of component separation methods exist. Some of them are more CMB
cleaning oriented and others are more ambitious and aim to recover as many physical
component maps as possible.

In this chapter I first point out the difficulties that component separation has to
overcome, then I sketch the fundamental assumptions that, in principle, allow source
separation. Finally I give an overview of existing component separation methods. Be-
yond recovering clean individual maps, getting meaningful errors on them is equally as
important. I will especially highlight the difference between blind and parametric meth-
ods because both approaches introduce different error estimates.
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Figure 3.1: Details of Planck all sky (figure 2.1, ESA/ LFI & HFI Consortia). Left: Detail
of the galactic bulge. Right: region in the constellation Perseus. If the galaxy were easy
to model the high intensity would not be a problem. But the galaxy exhibits fine and
complex structures in the Planck data that are impossible to model right without a good
physical model. In case of full sky analysis and poor modelling, a bright component leaves
too much residual contamination in the cleaned CMB map.

3.1 The component separation challenge

The principal difficulty in separating the CMB from other components occurs in regions
where the components are much brighter than the CMB or in cases where the components
are similar to the CMB in several respects.

As shown by the Planck all sky in figure 2.1 and by the figures of section 2.2, the galaxy
is brighter than the CMB by several order of magnitudes. That would not be a problem
if the generative model of the galactic components were well known (Cardoso, 1998). But
for all sky observations, complexity of foregrounds increases with the sensitivity and the
resolution of the instruments. Thus, very fine structures of the galaxy can be seen, as
in figure 3.1, and the galactic components can only be accurately described by physical
or very complex statistical models. The necessity of approximating the galactic model
makes the identification of the components uncertain in regions where the galaxy is the
brightest, e.g. the galactic plane. In those cases, foregrounds residuals leak into the
estimate of the CMB map.

Some components, like the diffuse emission of the unresolved point sources, share
several properties with the CMB such as coherence through frequencies, isotropy and
same level of power at multipole ` & 2000. The presence of noise then blurs the remaining
difference between the components and degeneracies therefore occur between them.

Each component has its own peculiarities that need to be modelled either physically
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or in terms of phenomenological model. Each component can be well described, or well
approximated in some basis, but there is no unique basis that models all components
properly. Thus, the diversity of the components can be a problem in writing a model
that would allow a simple description of all components. Approximations are necessary
and lead to non-accuracy in the results. However, as it shown in the following diversity
is also exploited to make the difference between the components and therefore separate
them.

3.2 Key ideas to solve the problem

As a general rule, to separate different components mixed together, we have to make
use of what makes them different from one another. In CMB experiments the feature
that differentiates the most the components is their different frequency behaviour. The
electromagnetic spectrum of the CMB is accurately known, since it has been measured
with high precision by previous missions (Mather et al., 1994). All component separation
methods assume that the CMB is a perfect black body since primordial CMB spectral
distortions are too small to be detected (Chluba, 2014).

Although our knowledge on spectral emissions of most of the individual components
in the data is rather poor, we know that their electromagnetic spectra are distinct. Fur-
thermore, the data can be interpreted as a superposition of the components, i.e. each
frequency contain a specific amount of each component. Thus a multi-frequency data set
is the starting point of many component separation methods.

As an example, figure 3.2 shows the frequency spectra of the main galactic components
in the frequency domain covered by the WMAP satellite. As the components mix linearly,
each band of observation (K, Ka, Q, V, W) is a linear combination of the component
maps, the linear coefficients depending on the emission laws of the components. The
total contribution of the galaxy is also shown. But choosing just one map that scales
through frequencies for the whole galaxy is not enough because the spatial distribution of
the entire galaxy vary from one frequency to another, unlike the individual components
that are approximately coherent through frequency.

Performing blind source separation requires at least one statistical assumption about
the source, either independence (Cardoso, 1998; Cardoso et al., 2008) or sparsity (Zibulevsky
and Pearlmutter, 2000; Bobin et al., 2007). Both are a measure of diversity of the
sources. Independence force the separation of sources that have been independently
emitted whereas sparsity use clear morphological diversity to disentangle between several
signals.

The goal of component separation is to recover the individual components by combin-
ing a linear mixture of them. In other words, it is an inverse problem, from the frequency
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Figure 3.2: The emission laws of the foregrounds taken into account for the WMAP nine
year release (Bennett et al., 2013). The amount of total foreground at each frequency
band of observation (K, Ka, Q, V, W) is a specific superposition of the same foregrounds.
Multi-frequency observations are a powerful way of removing foregrounds. For instance
dust dominates the W band, which makes it easier to remove in other bands. Note that
in units of antenna temperature, the CMB response is not constant through frequencies.

map space to the component map space. The next section discusses methods to solve
this problem.

3.3 Review of component separation methods

The optimal component separation method for CMB data does not exist yet. Source
separation specifically dedicated to the analysis of the CMB signal has been an active
field for a couple of decades now and several fundamental ideas have been introduced.
This section gives an overview of the principal approaches to component separation to-
gether with their respective advantages and disadvantages. I will particularly stress the
differences between the methods that are blind source separation methods and those that
makes use of physical parametric modelling.

3.3.1 Data model

I will first describe the usual description of the data in the space of the spherical harmon-
ics, without loss of generality. The available data is a collection of maps, each of them is
an observation of the full sky at a given frequency and each of them is a specific mixture
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of all the components presented in chapter 2. To good approximation, the flux of the
physical emissions has no influence on each others. This assumption allows us to model
the mixing as a linear combination. Hence the following decomposition for the piece of
data di`m contained in the spherical harmonic coefficient (`,m) of the observation maps
of frequency i (out of Nf frequency bands)

di`m =
Nc∑
k=1

Aiksk`m + ni`m , (3.1)

where the sum runs over the assumed number of components Nc,
sk = {sk`m; ` = [[`min, `max]],m ∈ [[−`, `]]} is the spatial distribution, or map, of the kth
component, Aik is the amount of component k in frequency band i and ni`m is the
instrumental noise present in di`m. Equation 3.1 reads in matrix form

d`m = As`m + n`m . (3.2)

The matrix A, which gathers all the coefficients Aik, is called the mixing matrix.

3.3.2 Internal Linear Combination

The idea of the Internal Linear Combination (ILC) method (Bennett et al., 1992; Tegmark,
1997; Delabrouille et al., 2009) is encapsulated in its name: taking a linear combination
of the multi-frequency data maps in order to cancel all components but one. When all
components are random Gaussian fields, the optimal choice of coefficients is the one that
minimises the variance of the linear combination.

The method can be applied in any basis that can describe the data. The resulting
map is then expressed in the same basis. Historically it has been developed to work in
pixel space and spherical harmonic space. A version of ILC using a needlet decomposition
of the data, named NILC, was one of the four component separation methods that were
retained by the Planck collaboration for the 2013 results and data release. The needlet
basis is a basis for functions defined on the sphere. Its basis vectors look like localised
waves on the sphere, as in figure 3.3. Needlets are then well defined to describe the
complex structures of the galaxy while still having some of the properties of spherical
harmonic basis.

For a recovering of non-CMB component, the method is parametric since the emission
law of the component to be recovered is needed to perform the separation. ILC is therefore
a powerful method for CMB cleaning because its electromagnetic spectrum is accurately
known but is not suitable for blind separation of any other component whose frequency
behaviour is uncertain.

One drawback of ILC is that the errors on the CMB map are only a propagation of
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Figure 3.3: Needlets (or wavelets on the sphere) in pixel space (Leistedt et al., 2013;
Faÿ and Guilloux, 2011). The top figure shows three basis vector of the needlet basis.
They are more or less localized, depending on the scale of the vector. Also, they have
properties of the spherical harmonics since the needlet set is constructed from this basis
– they are localised wavelet on the sphere. Bottom figures shows such an example with
the the function on the sphere "altitude on Earth". The signal is made of needlets of
different scales.

the instrumental noise. In other words, it supposes that the separation is perfect. The
ILC method is optimal if the mixed signals are Gaussian but some of the components,
e.g. the galactic components, are strongly non-Gaussian. Thus, the separation is not
perfect and some unmodelled residual contamination from foregrounds is expected in the
ILC map. Figure 3.6 shows the NILC CMB map together with the CMB map of the
three other official Planck component separation methods (Planck Collaboration et al.,
2014c).

The method involves a weighted average of the observation maps in order to cancel
all components but the one of interest. Usually, ILC weights are derived by minimizing
the variance of a linear combination of the observation maps.

The ILC CMB map is derived as follows. Since the CMB has constant response

44



through frequencies, the data can be written, for each frequency band i,

di = sCMB + sfg,i ,

where sfgs,i contains the mixture all the components but the CMB and the noise. Now
construct an estimator depending on a set of weights {wi; i ∈ [[1,Nf ]]}, such that

∑
iwi = 1

ŝCMB(w) =
∑
i

widi = sCMB +
∑
i

wisfg,i .

Assuming the CMB and the foregrounds to be uncorrelated, one can see that the weights
{wi; i ∈ [[1,Nf ]]} that minimise the variance of ŝCMB(w) are the ones that maximally
reduce the spread of the other components in the estimator. The technique of Lagrange
multipliers is used for the minimisation of the variance, since it has to be done under the
constraint

∑
iwi = 1. At minimum, the estimator becomes:

∀ (`,m), ŝCMB,`m = wTd`m

=
eTC−1

d

eTC−1
d e

d`m (3.3)

where Cd is an estimate of the data covariance and e = (1 . . . ...)T , i.e. e is the frequency
response of the CMB.

3.3.3 Independent Component Analysis

In blind source separation, the simple assumption of mutual independence between the
sources allows the separation of a mixture of non-Gaussian and at most one Gaussian
signals. In CMB component separation, independence can be assumed between each
component or just between the CMB and the foregrounds. In practice, the separation
is performed by minimising of mutual information between the sources, making use of
statistical tools such as the Kullback-Leibler (KL) divergence or Shannon entropy (see
appendix A fore more details on KL divergence and Shannon entropy).

The ICA instance of CMB component separation that was chosen for the presenta-
tion of the 2013 Planck results is called Spectral Matching ICA (SMICA) (Cardoso et al.,
2008, 2002; Delabrouille et al., 2002). The method works at the power spectrum level.
Therefore, it processes the data covariance. SMICA proceeds by minimising the diver-
gence between the data and a model where the CMB is independent with all the other
components.

Depending on the way that the component covariance and the mixing matrix of the
model are parametrised, SMICA is either a blind method or a parametric method. Apart
from independence and coherence, the model assumptions are usually minimal. It is
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usually used as blind as possible, assuming only the CMB anisotropies to be the derivative
of a black body. Thus the products of the minimisation are the elements of the mixing
matrix and the power spectra of the components. The maps of the components can be
estimated by Wiener-filtering the data, using the component spectra as prior covariance.
Figure 3.6 shows the SMICA CMB map together with the CMB map of the three other
official Planck component separation methods.

Since SMICA works at the power spectrum level, the quantities of interest are the
covariances of equation 3.1

R` = AC`A
T +N` (3.4)

where R`, C` and N` are the spectral covariances of the data, the components and the
noise. Independence implies that C` and N` are diagonal matrices. As explained above,
the aim is to fit the model covariance of equation 3.4 to the covariances of the data
R̂` = 1

2`+1

∑
m d`md

T
`m by minimising with respect to A and all C` the function

φ(A, {C`}) =
∑
`

(2`+ 1)D
(
R̂`, R`(A, C`)

)
(3.5)

where D is a divergence between R̂` and R`. In SMICA, the divergence used is the KL
divergence1 between two Gaussians of zero mean and covariance R1 and R2

DKL(R1, R2) =
1

2

(
tr(R1R

−1
2 )− log

∣∣R1R
−1
2

∣∣− Nf

)
. (3.6)

Minimising the SMICA divergence is equivalent to maximising the SMICA likelihood
PSMICA which verifies

− 2 logPSMICA (d |A, C) =
∑
`,m

log |2πR`|+ dT`mR
−1
` d`m . (3.7)

Thus the errors on the parameters at maximum are estimated by inverting their Fisher
Information matrix (see appendix B for more details on Fisher information), which is
then the covariance of the Gaussian distribution that approximates the peak. Since
the likelihood takes into account the presence of foregrounds, the uncertainties of the
component separation process are incorporated in the errors. But the Fisher information
is an average over possible data and does not depend on the actual data.

3.3.4 Sparse blind source separation

The concept of sparsity can be used to solve the blind source separation problem. A
signal is said to be sparse in a basis if a small number of elements of the basis is sufficient

1see appendix A for more details on Kullback-Leibler divergence.
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Figure 3.4: Ridgelets basis vectors in spatial space. This basis is used within sparsity
methods because just one vector can model a long part of a contour. Thus, a component
can expressed with very few coefficient and is sparse in this basis.

to (almost) completely represent the signal. Thus, if all the differences between several
signals are compressed in a few basis coefficients then the components are clearly distin-
guishable. In CMB component separation, the basis is often chosen over-complete, i.e. is
often a collection of several basis, since one basis is not able to catch the diversity of all
components.

Morphological Component Analysis (MCA) (Starck et al., 2013; Starck et al., 2004;
Bobin et al., 2007) is a component separation method that uses the sparse representation
of the components in different bases. Because of the complexity of the spatial structure
of the galaxy, the bases are especially constructed to represent specific shapes, such as
needlets, ridgelets (cf. figure 3.4), curvelets among others. Apart from sparsity, MCA
relies on the incoherence of the bases to represent the components, i.e. a component must
be sparse in one basis only. In practice, MCA minimises the distance between the data
model and the data together with the coherence of the representations of the components.
Figure 3.5 shows the CMB map produced by a generalisation of MCA, from WMAP and
Planck data.

Mathematically, a signal d is said to be sparse in a basis B if most of its coefficients
α in B are zero or almost zero. If B is over-complete, then α is not unique. The sparsest
α is found by solving the following minimisation problem

min
α
‖α‖0 such that d = αB . (3.8)

This is NP-hard optimisation problem. This is overcome by substituting the `0 norm by
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the `1 norm in equation 3.8. The minimisation is then performed much more efficiently
and is still correct. If the signal d is a composite of Nc components, i.e. if

d =
∑
k

sk =
∑
k

αkBk , (3.9)

where Bk are orthonormal basis and B = ∪kBk, then the full minimisation problem
becomes

{sk} = argmin
{sk}

∑
k

∥∥skBTk ∥∥1
+ κ

∥∥∥∥∥d−∑
k

sk

∥∥∥∥∥
2

2

 . (3.10)

In equation 3.10, the first term of the sum assures the sparsity and the second the consis-
tency with the data, weighted by a factor κ. GMCA is a straightforward generalisation
to mixing of components and multichannel observation and it aims to solve the following
minimisation problem

(A, {sk}) = arg min
A,{sk}

[∑
k

∥∥skBTk ∥∥1
+ κ ‖d−As‖2

2

]
. (3.11)

GMCA is a blind method. It is difficult to write a parametric version of this method.
Indeed, the components can be well phenomenologically described in various basis but a
physical parameter can not model simply a component in different basis. For example,
it is complicated to associate a different spectral index per pixel of a component and use
the same indices to parametrise the modes of the same components.

3.3.5 Template fitting

One of the four Planck component separation methods is more specific to CMB compo-
nent separation. The method, named Spectral Estimation Via Expectation-Maximisation
(SEVEM) (Fernandez-Cobos et al., 2012), gives an estimation of the mixing coefficients
of the components, i.e. their frequency spectrum, given a set of templates for the fore-
ground maps. The statistical criteria that the mixing coefficient must satisfy is simple. A
set of foreground templates {tk`m} is chosen and they are linearly combined. The linear
coefficients are the mixing coefficients Aik to be estimated. The sum of these templates
is subtracted from the data and the coefficients are chosen such that the residuals look
like CMB and noise, i.e.

A = argmin
A

∑
`m

(d`m −Atlm)T
(
Ccmb
` eeT +N`

)−1
(d`m −Atlm) , (3.12)

where A has no column dedicated to the CMB and e is Nf-vector filled with ones. The
CMB map is then the difference between the data and the mixing of templates.
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Figure 3.5: CMB map produced by Localised Generalised MCA (LGMCA) (Bobin et al.,
2014), a generalisation of MCA. The analysis took both WMAP nine year data and
Planck 2013 data as input, and used an external dust template to clean the galactic
plane.

Figure 3.6 shows the SEVEMCMBmap together with the CMBmap of the three other
official Planck component separation methods. A template is not necessarily a model of
just one foreground, it could be a linear combination of several of them. Thus, for Planck
2013 results, the templates are constructed by taking the difference between observation
maps close in frequency. Thus, since the components are not constant through frequency
but coherent, the templates contain all relevant components and they are naturally con-
sistent with the data. Also, since the CMB signal is constant through frequency, the
CMB component is absent from the template to be sure to not fit for a CMB frequency
spectrum.

Since the template are chosen without satisfying any statistical criteria, the choice is
then arbitrary. The method is highly parametric because the whole spatial distributions
of the foregrounds are supposed to be exactly known. In the case where the template
were not reflecting the physical components or a mixture of them, the errors would be
underestimated because the approximation would not be taken into account.

3.3.6 Physical parametrisation

The output of blind source separation methods are free of almost any assumption. They
are the start of the physical analysis and they must be post-processed to give meaningful
information. In contrast, physical component separation proposes to perform source
separation and extraction of physical knowledge in one go. The principle is to write the
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data model just like in any method but to make the mixing coefficients and the component
maps and power spectra depends on physical parameters. Any estimation process is then
directly applied to the physical quantities.

Commander (Eriksen et al., 2006, 2008; Stompor et al., 2009) is a method that infers
the CMB map together with foreground physical parameters in a Bayesian framework
(see appendix B for more details on Bayesian analysis). It is one of the four methods that
were retained by the Planck collaboration for the 2013 results. Commander makes use of
Markov Chain Monte Carlo (MCMC) to explore a likelihood or a posterior distribution
written as function of the physical parameters. The method works at the map level. The
data model is the same for every pixel but the parameters of the model can have different
values at different positions on the sky. The model is a sum of components that are more
or less physically parametrised. A common parametrisation of mixing coefficients arises
from the assumption that some components follow power law emissions. Then all the
mixing coefficients of one component depend on its spectral index only.

Let’s denote by θ the set of parameters on which the mixing matrix depends. The
aim of Commander is to explore the following posterior distribution (see appendix A for
more details on notations)

P (θ, s | d) ∝
∏
p

N (dp |A(θ)sp, Np)P (θ, s) (3.13)

where P (θ, s) is the prior distribution on the parameters θ and the component maps s.
Since Commander works at the pixel level, all index (`,m) have been replaced by an
index p. The exploration is done by sampling according to the following two-step scheme

s ← P (s | θ, d)

θ ← P (θ | s, d) .

If the model allows spatial variation of the physical parameters then the parameter
space to explore is huge. For a realistic data modelling, Commander is achievable at low
resolution only and a algorithm called Ruler computes the high-resolution maps from
the Commander maps. The high-resolution maps are estimated by fixing the spectral
dependence of the component pixels, that then allow solving a least square system for
the pixel of the high-resolution maps. Formally, the high resolution piece of component
sp is

sp = argmin
sp

(dp −A(θ)sp)
T N−1

p (dp −A(θ)sp) (3.14)

=
(
A(θ)TN−1

p A(θ)
)−1

A(θ)TN−1
p dp . (3.15)
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Figure 3.6: The CMB maps resulting from the four official component separation methods
used by the Planck collaboration, Commander-Ruler, NILC, SEVEM and SMICA (Planck
Collaboration et al., 2014c). All of them are in very good agreement for both the map
and the power spectrum. All the method produce a map which is either still polluted by
galactic residuals or masked and filled in.

Figure 3.6 shows the Commander-Ruler CMB map together with the CMB map of
the three other official Planck component separation methods. Commander-Ruler is a
parametric method. On one hand, the joint inference of physical parameters and CMB
map allows a propagation of the uncertainty due to component separation to the CMB
and physical models. On the other hand, the results are forced to be in accordance with
the physical model, which can introduce biased estimations if the physical assumptions
are wrong or approximate.

Also, the errors depend on how much the physical model is constraining. On one hand,
if the data model is very specific then there is little space for error exploration. In this case
the error are underestimated if the model is wrong. On an another hand, Commander
can infer parameters of a very general model by allowing independent frequency spectra
at every low resolution pixel. This move is motivated by the will of modelling any sky
signal but the physical model might be too flexible and introduce much freedom. In this
case, in addition to needlessly increase the dimension of the parameter space, the error
bars are oversestimated.
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Conclusion

I have presented the main CMB component separation methods, especially the four meth-
ods that were retained by the Planck collaboration. The main different approaches are
blind source separation and physical parametrisation, i.e. each of them brings more or
less information about the components and the way the mix. Also, each method has its
own error model. The Bayesian formalism used by the parametric method Commander
allows an exploration of the physical parameter space and therefore provides errors that
take the presence of foregrounds. The drawbacks of Commander are that it works at low
resolution only and the errors depend on the assumed physical model. In the next chap-
ter, I present the method I developed during my thesis. It also works within a Bayesian
framework but makes use of a phenomenological model and works at high resolution. This
method perform both CMB cleaning and CMB power spectrum inference that includes
component separation uncertainties.
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Chapter 4

BICA: a semi-blind Bayesian approach
to component separation

Introduction

In this chapter I will describe the principles of Bayesian Independent Component Analysis
(BICA), the blind and Bayesian formulation of CMB component separation that I have
developed during my Ph.D.. The method arises from an ICA-like formulation of the
problem and solves it in a Bayesian framework. ICA is suitable for blind source separation
because of the general statistical assumption on the components. Bayesian analysis allows
the introduction of priors with which the degree of information can be controlled.

Blind separation aim to recover the components of a mixture of signals without as-
suming any physical model in the analysis. They generally make assumption about their
statistical properties. In contrast, physical parametrisation methods base their separation
on physical models. BICA lies in between these two approaches and is then semi-blind.

BICA exploits the full power of Bayesian analysis since it evaluates the full posterior
PDF rather than just some of its properties. From the data, the method provides in
one go an inference of the CMB map and its power spectrum. In other words, without
pre-processing of the observation maps, BICA performs CMB cleaning and CMB analysis
at the same time. By exploring the joint posterior PDF on the component maps, BICA
infers the component maps, their power spectra and their respective amount in the data.
The uncertainty on the parameters is encoded in the shape of the posterior. Thus, since
the foregrounds and the clean CMB map and its power spectrum are inferred from the
same posterior PDF, the uncertainties due to foreground cleaning residuals naturally
propagate to the CMB products.

BICA has a general formulation of the component separation problem. The possibility
of providing prior information can specify the method. Thus, BICA can be seen as a root
formulation for many different methods. It unifies the frameworks in which previous
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methods have been formulated and allows an easier comparison between them on an
analytic level.

The description of the method and the results of this chapter are gathered into the
paper Vansyngel et al. (2014).

4.1 Constructing the component separation PDF

This section details the construction of BICA. From a simple data model, I build the
likelihood and choose the priors. I will show how turning on the stochasticity of the prior
parameters leads to power spectrum inference in addition to CMB cleaning.

4.1.1 The blind Bayesian formulation of the problem

The starting point is the description of the data in equation 3.1, with Nc is the assumed
number of components and Nf the number of frequency channels. The model in this
equation is said to be blind because it makes use of a phenomenological description
of the data. No physics is involved in the model since the observation maps di are
just linear combinations of some component maps, which are simply described by the
collection of their harmonic coefficients. Therefore a blind method aims at recovering
the spatial distribution of the components, and the amount of each component in each
frequency band. The parameters of interest to be sampled are the Nc component maps
sk and the mixing matrix A. The first step of the method is to write Bayes’ theorem for
these parameters. Following the basics of Bayesian analysis described in appendix B, the
probabilistic equation that relates d, A and s is

P (A, s | d) ∝ L (d |A, s)P (A, s) . (4.1)

Although in this work component separation is addressed with a blind analysis, the
flexibility of the Bayesian formalism allows the introduction of a physical parametrisation
of the problem. The current understanding of physical galactic and extra-galactic phe-
nomena can be progressively introduced by a more detailed data model and by assigning
a parametrized prior PDF on the foregrounds. The CMB power spectrum is also highly
parametrizable since its shape depends on a small number of cosmological parameters
(Planck Collaboration et al., 2014e). Thus a joint inference of cleaned CMB map, CMB
power spectrum and cosmological parameters is conceivable, thanks to fast and accurate
Boltzmann code emulators like PICO (Fendt and Wandelt, 2007). A less parametric
approach would be to exploit the smoothness of the power spectra through binning or
representation in terms of smooth basis function, such as splines.
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Also, as in other component separation methods, the Bayesian formulation presented
in this thesis can be extended to infer the CMB polarisation power spectrum.

In the following, I will keep the blind Bayesian approach. In the next subsections, I
derive an expression for the likelihood, choose priors for the parameters and enlarge the
scope of the analysis.

4.1.2 Likelihood distribution

The form of the likelihood depends on the data model and the instrument properties.
Suppose that the noise n in 3.1 is Gaussian with zero mean, anisotropic and indepen-
dent from one spherical harmonic coefficient to another and from one frequency band to
another. The noise is therefore entirely determined by a diagonal covariance N . This
is a good approximation for the WMAP and Planck data (Planck Collaboration et al.,
2013; Jarosik et al., 2011). If A and s are fixed, the stochasticity of d relies on the noise
only. Therefore the likelihood in accordance with the data modelling in equation 3.1 and
Gaussian noise is:

L (d |A, s) =
∏
`,m

N (d`m |As`m, N`)

∝ exp−1

2

∑
`,m

(d`m −As`m)T N−1
` (d`m −As`m) . (4.2)

4.1.3 Prior distributions

The prior does not depend on the data, it is a PDF that is chosen prior to the data
acquisition. Multiplying the likelihood by a prior PDF shapes the posterior PDF. Thus,
the prior PDF brings a priori information into the inference of the parameters and must
be chosen with care. The spatial distribution of the component should not depend on
the way the component mix together. Thus, the prior I put on the mixing matrix and
the component maps are independent, i.e. P (A, s) = P (A)P (s).

Prior on the component maps The simplest inflationary theories predict that CMB
fluctuations are very nearly a Gaussian random field (e.g. Mukhanov (2013)). Therefore,
choosing a Gaussian distribution as a prior for the CMB is physically well motivated.
The generative model of the other components violates Gaussianity. However, a Gaussian
distribution is, in a sense, the least informative prior for the component maps. Indeed,
if one constrains a random variable to be described by its variance σ2 only, the Gaussian
distribution whose PDF has zero mean and variance σ2 is the one that maximises among
all distributions the Shannon entropy of that random variable. Thus, if the components
are constrained to be described by their power spectra C only, the least informative prior
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is:

P (s |C) =
∏
`,m

N (s`m | 0, C`) ∝
∏
`,m

1√
|C`|

exp−1

2
(s`m − s̄`m)T C−1

` (s`m − s̄`m) . (4.3)

The maps {s̄k`m} represent a step forward in the physical modelling of the component
maps. Indeed, choosing non-zero mean, for example templates of galactic emissions,
amounts to include physical information. Concerning the C`’s, they are chosen diagonal.
In other words, the model forces the Gaussian components to be independent. Later
implementations, including the one used for the application of BICA to the Planck data
in chapter 6, include the cross-spectra of the non-CMB components in the inference. Also,
since the prior is the same for all modes m within the same multipole `, the components
are assumed to be statistically isotropic. This is a good assumption for the CMB, but
it is an approximation for the galactic components since the power is concentrated in
the galactic plane. The Gaussian prior is suitable for inclusion of physical information.
For example, I could choose a flat power spectrum (i.e. all multipoles are restrained to
the same value) in order to model a point source like component. This is investigated in
chapter 6 when dealing with diffuse point sources.

Prior on the mixing matrix Some physical information on the mixing matrix is input
in the inference via its prior PDF because it is necessary to recover the CMB map. Since
no CMB spectral distortion has been detected yet, I suppose that the CMB anisotropies
have the emission law of a derivative with respect to temperature of a black body, at CMB
temperature. In thermodynamic units, the response is then constant through frequencies.
Thus the prior distribution for the column of the mixing matrix that is related to the
CMB is a Dirac delta function. These parameters are therefore perfectly known and not
stochastic.

On the remaining elements, I put a prior from the class of priors called Jeffreys prior1.
These priors are said to be non-informative because they conserve the Fisher information
under a change of variable. Driven by the will of having an as blind as possible method, a
Jeffreys prior is put on the mixing matrix. As the likelihood is Gaussian in the coefficients
of A, its Jeffreys prior is a flat distribution:

P (A) ∝ 1 . (4.4)

4.1.4 Hierarchical model and power spectrum inference

The data can be further described in a hierarchical model, in which the prior parameter C
of equation 4.3 becomes a hyperparameter of the model. The additional parameter is then

1see appendix B for more details on Jeffreys priors.
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stochastic and must also be sampled. This move has two motivations. First it introduces
more flexibility in the modelling of the components since all shapes of power spectrum are
potentially investigated. Second and foremost, the posterior on the covariance C provides
an inference of the component power spectra. C must be included in the parameters of
the posterior, and one must chose a prior for it. Equation 4.1 then reads:

P (A, s, C | d) ∝ L (d |A, s)P (A)P (s |C)P (C) . (4.5)

Prior on the power spectra For the same reasons than for the mixing matrix, I choose
a Jeffreys prior for C. The Jeffreys prior for a diagonal covariance Σ is proportional to
1/ |Σ|. Hence:

P (C) ∝
∏
`

1/ |C`| =
∏
`,k

1/C`k . (4.6)

4.1.5 Posterior distribution

Injecting equations 4.2, 4.3, 4.4 and 4.6 into equation 4.5 leads to the explicit expression
of the posterior:

P (A, s, C | d) ∝
∏
`,m

exp−1

2
(d`m −As`m)T N−1

` (d`m −As`m)

∏
`,m

|C`|−
1
2 exp−1

2
(s`m − s̄`m)T C−1

` (s`m − s̄`m)∏
l

|C`|−1 . (4.7)

The results of chapters 5 and 6 do not include a physical model for the spatial distribution
of the component, i.e. s̄ = 0.

Using sampling techniques described in appendix C, samples from the posterior will
provide a PDF of the component maps, their power spectra and the mixing matrix. Next
section discusses approaches to sample from the posterior.

4.2 Deriving the sampling equations

Since the set {A, s, C} has a huge number of parameters (of the order of 107), the brute
force grid evaluation of the posterior is out of the question. Also, no algorithm exists
to directly sample all the parameters at once from the posterior. Indirect sampling is
needed in order to evaluate the posterior (see appendix C for an overview of sampling
techniques).
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4.2.1 First attempt

The posterior has a complex dependence on the whole vector {A, s, C}. If one partitions
{A, s, C} in the subsets mixing matrix A, component maps s and power spectra at each
multipole ` C`, then the conditionals P (X | {A, s, C}\X, d), X ∈ {A, s, C`min

, . . . , C`max},
are easy to sample from. Indeed, by looking at equation 4.7, one can see that the con-
ditional for A and the conditional for s are Gaussian distributions, and the conditional
for each C` is an inverse-Wishart distribution that does not depend on the value of C at
multipoles different from `. Thus, to construct a chain of I samples from the posterior,
a straightforward Gibbs sampler would be:

Sampler 1

1. begin with some initial value of A, s and C, A(0), s(0) and C(0),

2. for i ∈ [[1, I]],

2.1 sample A(i) from the Gaussian distribution P (A | s(i−1), C(i−1), d),

2.2 sample s(i) from the Gaussian distribution P (s |A(i), C(i−1), d),

2.3 for ` ∈ [[`min, `max]],
sample C(i)

` from the inverse-Wishart distribution P (C` |A(i), s(i), d),

3. a histogram of the chain
(
A(i)

⋃
s(i)
⋃
C(i); i ∈ [[1, I]]

)
provides an estimate of the

full posterior P (A, s, C | d).

However, this sampling scheme has a major drawback. Since there is a large number
of spherical harmonics coefficients, the dimensionalities of A (O(1−10)) and C (O(103−
104)) are much smaller than that of s (O(107) for high resolution data). Thus fixing s
while sampling the other parameters confines the sampled parameters to a tiny region
of the overall posterior volume. At each drawing, the parameters move very little away
from their current state, which leads to a slowly converging sampler and highly correlated
successive samples. Besides, the sampling of the maps is much more time-consuming than
the sampling of the mixing matrix or of the power spectra.

The next two subsections present an alternative and more appropriate sampler to
solve the problem.

4.2.2 Marginalisation

One solution to speed up the sampling is to marginalise over as many parameters as
possible. Marginalisation is an operation on a PDF that allows to discard a subset of
parameters while taking into account all its possible values. For example, consider a
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PDF of two variables x and y, P (x, y). Then the marginal distribution of x is obtained
by integrating the PDF over y:

P (x) =

∫
dyP (x, y) , (4.8)

and the following relation holds:

P (x, y) = P (y |x)P (x) . (4.9)

Thus, being able to sample x from P (x) then y from P (y |x) amounts to sample {x, y}
from P (x, y).

Integrating out the component maps s considerably reduces the number of parameters
to be sampled as well as the correlation length in the chain. After marginalising over the
component maps, the dependence of the marginal posterior on the remaining parameters
is more complex than in the full posterior:

P (A, C | d) =

∫
dsP (A, s, C | d)

∝
∏
`

∣∣N` + AC`A
T
∣∣− 2`+1

2 exp−1

2
tr
{(
N` + AC`A

T
)−1

V`

}
∏
`

|C`|−1 , (4.10)

where V` =
∑

m d`md
T
`m, and

P (A, s, C | d) = P (s |A, C, d)P (A, C | d) . (4.11)

4.2.3 Sampling scheme

The marginal posterior can not be sampled from directly and the set of parameters
{A, C} can not be partitioned in order to obtain simple conditional distributions. Besides,
P (s |A, C, d) is Gaussian. From these considerations arises a sampling scheme involving
a Metropolis-Hastings-Gibbs hybrid sampler. This sampling scheme for the complete set
of parameter {A, s, C} is:

Sampler 2

1. begin with initial values of A, C and s, A(0), C(0) and s(0),

2. build a chain
(
{A, C}(i), i ∈ [[1, I]]

)
. For i ∈ [[1, I]],

2.1 propose a candidate A∗ and accept/reject it according to P (A, C | d),
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2.2 for ` ∈ [[`min, `max]],
propose a candidate C∗` and accept/reject it according to P (A, C | d),

3. build a chain
(
s(i); i ∈ [[1, I]]

)
. For i ∈ [[1, I]],

sample s(i) from the Gaussian distribution P (s | {A, C}(i), d),

4. the chain
(
{A, s, C}(i); i ∈ [[1, I]]

)
allows us to calculate any moments of the full

posterior P (A, s, C | d) that we wish to examine.

The sampling of s being much slower than that of A and C, in practice the sampling of
the maps makes use of a subset of the chain

(
{A, C}(i), i ∈ [[1, I]]

)
only.

4.3 Comparison to previous methods

As mentioned in section 3.3, various approaches and methods for CMB estimation have
been developed prior to the method presented in this thesis. In this section I stress the
particularities of BICA and I link it to the methods that have been used for the Planck
2013 release.

4.3.1 Relevance of the method

BICA provides a joint inference of the component maps and of their power spectra,
together with the mixing matrix. Thus, the errors due to multiple components in the
data are encoded in the shape of the posterior, and uncertainties due to component
separation are fully explored.

The number of physical components in the data is larger than the number of observed
frequencies. The advantage of BICA (and of some other methods like SMICA, see next
subsection) is that blindness implies that the assumed components are effective compo-
nents that may combine several physical components. Thus, BICA aim at recovering the
dominant modes of the foregrounds, which contain the largest part of the signal.

Apart from the assumption that the CMB has a black body emission law, which has
been shown to be the case with high accuracy, the data model is a phenomenological
model. Thus, errors do not rely on any strong physical assumptions. If a physical model
were to be used to parametrise the data, the PDF should be exploited with care because
it then would be valid within that particular model only.

Phenomenological models prevent biases that could arise from assuming a constraining
physical context. However, if the data is described via physical laws instead, the physical
quantities are the parameters of the posterior PDF. In this case, the method provides
a direct inference of the parameters of the theory. In BICA there is the possibility of
introducing progressively a parametric model. For instance, instead of describing the
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CMB power spectrum by its value at each multipole, one can sample the few parameters
of the standard model from which the whole shape of the CMB power spectrum can
be derived. Then the uncertainties of the separation step propagate to the inference of
the cosmological parameters. The foregrounds also could be constrained by priors. For
example the mixing matrix can be parametrised with a few spectral indices or include
a prior mean and use the Gaussian to parametrise the deviation from the mean. Since
any value can be chosen for such prior parameters, the information can be controlled and
tuned as wanted.

4.3.2 Comparison to SMICA

Spectral Matching Independent Component Analysis (SMICA) (Cardoso et al., 2008)
is a method that shares several similar aspects with BICA. The parametrisation is the
same, both methods are blind. The parameters are estimated by reducing the diver-
gence between two Gaussian distributions, one whose covariance is constructed from the
model, one whose covariance is the empirical data covariance. In the model, the cross
power spectra between the CMB and the foregrounds are null in order to force uncorre-
lation between the component to be separated. Depending on the binning of the power
spectra, and following the original formulation of SMICA, the method is equivalent to a
maximisation with respect to A and C of the likelihood P (d |A, C) of equation 3.7.

We can understand SMICA analysis from a Bayesian perspective as follows:

1. Begin with the Bayesian formulation, equation 4.5,

2. Construct the same likelihood as that of BICA and choose Gaussian priors for the
component maps, flat priors for the mixing matrix and the power spectra,

3. Marginalise the posterior over all component maps,

4. Maximise the obtained marginal distribution with respect to A, C.

As in BICA, data are post-processed with the obtained value of A, C and N to produce
the maps of the components.

In BICA formalism, the maximisation with respect to {A, C} of the marginal PDF
P (A, C | d) in equation 4.10 is equivalent to a SMICA estimation of the parameters.
Thus instead of just finding the peak of the distribution like SMICA does, the Bayesian
sampler explores the whole distribution over A and C. The shape of the distribution and
in particular the spread around the peak is better appreciated.
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4.3.3 Comparison to Commander

As BICA, Commander (Eriksen et al., 2006, 2008) is a Bayesian formulation of the joint
component separation and CMB power spectrum inference problem. The main difference
between the two approaches is the parametrisation of the problem.

Commander makes intensive use of parametric models to describe the physical emis-
sions while BICA adopts a phenomenological description of the different components.
Thus Commander infers component maps and power spectra within a constraining phys-
ical model, and therefore the most probable values of the parameters and their errors
depend on this model. The results of BICA do not rely on any physical assumption, ex-
cept for the constant response of the CMB signal across frequencies. In Commander, since
a lot of information is given to recover the individual components, the output components
are identified as physical emissions. In BICA, apart from the CMB, no component has a
physical meaning but the non-trivial difference is that our results do not depend on any
complex physical model.

In addition, Commander works at the map level whereas BICA works mainly at the
power spectrum level. Thus, at equal resolution, BICA is faster.

4.3.4 Comparison to ILC

The Internal Linear Combination (ILC) method (Bennett et al., 1992; Tegmark, 1997;
Delabrouille et al., 2009) provides a map of a component, given its frequency spectrum.
Therefore, except for the CMB, it is not a blind method. Recall the ILC the estimator:

∀(`,m), ŝCMB,`m =
eTC−1

d

eTC−1
d e

d`m , (4.12)

where Cd is an estimate of the true data covariance:

Cd`m = CCMB,`ee
T + AtrueCtrue,`mAT

true +N`m . (4.13)

Here the mixing matrix A has no column dedicated to the CMB, Ctrue,`m is the true
underlying covariance of all components but the CMB at multipole numbers (`,m) and
e a vector filled with 1’s, i.e. the frequency response of the CMB.

From the Bayesian perspective, one can understand ILC analysis as follows:

1. Begin with the Bayesian formulation, equation 4.5,

2. Construct the same likelihood as that of BICA and choose Gaussian priors for the
component maps, flat priors for the mixing matrix and the power spectra,

3. Marginalise the posterior over all component maps but the CMB map,
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4. Maximise the obtained marginal distribution with respect to the CMB map.

The solution is:

ŝCMB,`m =
eT
(
N` + AC`A

T
)−1

C−1
CMB,` + eT (N` + AC`AT )−1 e

d`m . (4.14)

If the prior variance of the CMB is infinite (i.e. flat prior) then the two approaches
(equations 4.12 and equation 4.14) are equivalent2. By comparing the usual derivation
of ILC and its Bayesian interpretation, we can see that the true mixing matrix and true
power spectra are approximated by the data covariance. That is why, despite its very
simple formulation, the ILC method gives satisfactory results.

The ILC method avoids degeneracies since it produces a single CMB map. It has a
unique solution because for a fixed mixing matrix and component covariance there is only
one peak in the component subspace. In the Bayesian analysis, since the components are
not individually identifiable, there is a degeneracy in the mixing matrix subspace. Thus,
the BICA posterior distribution is multimodal.

4.3.5 Comparison to SEVEM

Spectral Estimation Via Expectation-Maximisation (SEVEM) (Fernandez-Cobos et al.,
2012) is a template fitting method. This method does the opposite of what ILC does.
Providing a set of template for the component maps, SEVEM finds the electromagnetic
spectra of the templates that fit the data the best. In the Bayesian formulation, templates
can be seen as infinitely narrow priors for the component maps. Thus, in a similar fashion
than for the other methods SEVEM can be understood from a Bayesian perspective as
follows

1. begin with the Bayesian formulation, equation 4.5,

2. choose a Gaussian prior for the mixing matrix, a Gaussian prior for the CMB map
and delta functions centred around the templates for the foregrounds,

3. marginalise over all the component maps,

4. maximise the marginal with respect to the mixing matrix,

5. recover the CMB map as the difference between the data and the mixing of the
templates.

Step 4 is equivalent to a chi-squared minimisation like it is usually carried in template
fitting.

2see appendix F for more details.
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In SEVEM, the model for mixing matrix is the same than that of BICA but the
model for the component maps is much more constraining. The differences between the
templates and the actual components are not evaluated and end up as residuals in the
CMB map. Since the foreground model is supposed to be perfect, only the instrumental
noise is propagated to the CMB map and the errors are therefore underestimated. A
compromise between the strong constraints of SEVEM and the very general blind formu-
lation of BICA would be to use the foregrounds as mean of the Gaussian priors for the
component maps in BICA.

Conclusion

I have presented a new formulation for the CMB foreground cleaning. In my analysis,
I avoid physical assumptions, except that the CMB behaves like a black body and I
model the components as Gaussian random fields. The CMB is then cleaned by jointly
inferring CMB, galactic residuals, and point source power spectra and frequency spectra.
This Bayesian method provides an evaluation of a posterior PDF for the CMB power
spectrum which thus takes into account uncertainties due to the removal of foreground
contamination. I also showed that previous component separation methods can be derived
as special cases of our Bayesian formulation, which thus provides a unified approach for
semi-blind foreground cleaning from multi-frequency CMB data. In the next chapter, I
present an application of the method to a set of simulated data.
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Chapter 5

Application to simulations

Introduction

In order to test the BICA method presented in the previous chapter, I applied it on a set
of simulated data. The simulations of the observation maps contain a minimal foreground
model. This simple data set approaches the model assumed by BICA and is not meant
to faithfully represent the real sky. The aim here is to prove the efficiency of the method
in an optimistic case. An adaptation of BICA for more complex data and its application
to real data can be found in the next chapter.

In this chapter I will first describe the simulations, then qualitatively compare them
to the data model of chapter 4 and explain in which respect they are appropriate for
the test. In the previous chapter I have presented in section 4.2 two samplers that are
supposed to solve the problem. I present the results of both approaches. Sampler 1 does
not provides very conclusive results because of convergence issues but the errors on the
reconstruction still has some interesting properties. Concerning the results of Sampler 2,
I will spend more time describing them since they are very satisfactory. They consist of
a joint blind inference of components maps and power spectra, in particular the CMB.
They are then confronted to a consistency check.

The description of the method and the results of this chapter are gathered into the
paper Vansyngel et al. (2014).

5.1 Description of the simulations

The primary goal of the method is to clean the CMB from foreground contaminations.
It therefore must be expressed in a basis where the CMB anisotropies are modelled as
accurately as possible. The simplest basis to fully describe the CMB is the set of the
spherical harmonics. That is why the method has been built to work in the harmonic
space and that the multi-frequency data is described in this basis.
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In the case of real data, noise is anisotropic and pixels are correlated because of the
noise. Thus, in principle, it would be better to work in pixel space. But then a full
covariance would be needed in order to model the CMB, and this is not achievable. Since
the signal-to-noise ratio is high and the deviation from isotropy and the correlations are
rather low, I work in harmonic space where diagonal covariances are sufficient to almost
perfectly model the CMB and the noise. Also, since the covariances of the component
prior are also inferred, applying the method in harmonic space provides a CMB power
spectrum inference within the component separation step.

Without loss of generality, I chose to use Nf = 4 observation frequencies of a mixing
of Nc = 3 components, including the CMB. In the following, I use a simulation of the
first four HFI frequencies, i.e. the 100GHz, 143GHz, 217GHz and 353GHz channels. For
each frequency i, the coefficients of the simulated data di`m is constructed following the
data model of equation 3.1, i.e. the set of simulations is a noisy composite of CMB and
two galactic emissions.

Figure 5.1 shows the four simulated observation maps. The plot shows the CMB
power spectrum in black and the power spectra of all the foregrounds at each frequency
channel in color, from red to purple being from 100GHz to 353GHz.

5.1.1 The components

Beside the CMB radiation, the two components chosen for the analysis are the thermal
dust emission and the free-free emission. This is motivated by the fact that they are
the two most intense galactic components above 80GHz. In addition, one has a power
law emission with a negative spectral index (free-free) and one a power law emission
with a positive spectral index (dust) such that foregrounds are dominant at high and low
frequencies in the simulated data and alike real data. The data model in equation 3.1
implies that the components are coherent through frequencies. Therefore one map of
each component is simulated.

The power spectrum of the CMB is simulated using the CAMB software (Lewis et al.,
2000) in a standard cosmology model. CAMB is a Boltzmann emulating code that takes
cosmological parameters in input and computes the expected CMB power spectrum based
on perturbation theory. From the resulting power spectrum, a CMB map is simulated
using the HEALPix software1 (see appendix E for more details on HEALPix) (Górski
et al., 2005).

The spatial distributions of the thermal dust and free-free components are simulated
using the publicly available version of the Planck Sky Model (PSM) (Delabrouille et al.,
2012). The free-free map from the PSM has an electron temperature of 7000K, a power
law with spectral index close to −0.15 and is a composite of maps from Dickinson et al.

1code available at http://healpix.sourceforge.net
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Figure 5.1: The simulated data maps at four of the Planck HFI frequencies, from 100GHz
to 353GHz, using realistic spatial distributions of free-free and thermal dust emissions
from the PSM. In these simulated data maps the templates of the component maps are
scaled through frequency according to the mixing matrix. We chose to work with this
set of channels because the CMB is the least contaminated by foregrounds and noise in
this frequency range. The plot shows the power spectrum of the CMB (black line) and
the level of foregrounds at each frequency channel in color (red to purple is 100GHz to
353GHz).
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(2003) and from the WMAP MEM map (Bennett et al., 2013). The thermal dust map
from the PSM is simulated from the Schlegel-Finkbeiner-Davies map, to which the ultra-
compact HII regions are subtracted. More details can be found in Delabrouille et al.
(2012).

5.1.2 The mixing matrix

The mixing matrix scales each component map according to its frequency spectrum. It is a
Nf×Nc matrix where each column represents the frequency behaviour of each component.
As stated above, the CMB is assumed to have constant response through the range of
observed frequencies. In each of the columns dedicated to the non-CMB components, one
entry is fixed in order to break the scale degeneracy between the intensity of a component
map and its amount present in each channel. The simulated mixing matrix obeys these
assumptions. The remaining elements of the mixing matrix to be inferred are chosen such
that they agree with the PSM. A typical mixing matrix is

Atrue =


1 1 t
1 a u
1 b v
1 c 1

 .

Here, the lowest frequency element is fixed for the free-free component and conversely
for dust. The fixed mixing coefficient of free-free and dust are fixed at the frequency
channel where they are the brightest and therefore where data are supposed to have the
most of information about them. As a consequence, all elements a, b, c, t, u, v take their
value between 0 and 1, such that free-free and dust emissions are at their maximum of
intensity at respectively 100GHz and 353GHz in the simulations.

5.1.3 The noise

The noise is simulated at the pixel level and is uncorrelated pixel to pixel. The noise
standard deviation maps are designed to be consistent with the scanning strategy chosen
for the Planck spacecraft. Therefore it is anisotropic. In the harmonic domain the noise is
characterized by one white power spectrum per frequency, derived from the noise standard
deviation maps. Our inference approximates the noise as isotropic. The impact of this
approximation will be assessed in section 5.4.

5.1.4 The data

The component spatial maps and the noise maps are simulated and combined at the pixel
level. Each observation map is then transformed into a collection of spherical harmonic
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coefficients.

5.2 Model approximations to the simulations

The data is not simulated exactly according to the model upon which BICA is based on.
There are three features in the simulations that are not supported by the model: cross
correlation between two different components, non-Gaussianity of the components and
anisotropic noise.

5.2.1 Isotropic noise

A power spectrum completely describes a Gaussian and isotropic random field on the
sphere. The contrapositive is also true: a non-Gaussian or non-isotropic random field
is not completely describes by its power spectrum. The simulated noise is a Gaussian
process but it is anisotropic. Since BICA is working at the power spectrum level, only
a power spectrum of the noise is used. All harmonic coefficients a`m of an anisotropic
random field have different variance C`m. An estimate of the noise power spectrum is
then C` = 1

2`+1

∑
mC`m. It is a good approximation when at each ` the dispersion of

noise power in the C`m for m = −`, . . . , ` is small. In addition, at large scales, where the
noise is the most anisotropic, the signal of the components is dominant by several order
of magnitude in the data. Thus error in estimating the noise is insignificant in the total
power.

5.2.2 Lack of correlation between components

The model for the components is a collection of random Gaussian fields that are un-
correlated between them. It is an approximation because some realistic components are
spatially correlated. For example, the galactic components are all very bright in the
galactic plane and get fainter as latitude increases or decreases. The cross correlation
between the maps gives a spectrum that is far from being null, i.e. the off-diagonal terms
of the covariances C` are in principle non negligible, at least on large scales. In the simple
formulation presented in chapter 4 BICA will find the uncorrelated components that fit
the data the best. The resulting components are then non-physical emissions. Concerning
the CMB anisotropies, no physical processes link them to the galactic emissions. Thus,
their spatial distribution is uncorrelated with the galactic component maps. Forcing
uncorrelation between the CMB map and the foregrounds is physically well motivated,
which leads to a recovery of the true CMB map. This is sufficient if we do not aim at
reconstructing physical foreground maps.
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5.2.3 Gaussianity

Apart from the CMB, the underlying distribution of the component maps is clearly non-
Gaussian. However, in the a priori model, they are represented by isotropic random
Gaussian fields with zero mean. As we will see in the next chapter, it is too much of
an approximation to reconstruct the whole sky component maps. Indeed, in the galactic
plane, where the non-CMB components violate Gaussianity the most, the Gaussian prior
does not fit the component signal. However, at higher latitudes, the components are less
bright and look more Gaussian and isotropic than in the full sky. The Gaussian prior
is then adapted to the sampling problem. One way to reduce non-Gaussianity would be
to include non-zero prior means for the components. In this case, the Gaussian prior
model the fluctuation around that mean and not the entire spatial distributions of the
components. This is still to be investigated.

5.3 Results

This section presents the results of the BICA method, when it is applied to the simulations
presented in the previous section. Since the semi-blind property of the method prevents
from distinguishing between the non-CMB components, this section presents first the
results concerning the CMB followed by the results concerning all the other components.

5.3.1 Full Gibbs sampling treatment

Sampler 1 has several advantages. First, the chain moves at each step. Indeed Gibbs
sampling can be derived from Metropolis-Hastings by choosing the conditional PDF as
the proposal PDF and by construction the acceptance ratio is always 1. Second, there
is no need to test different proposal PDF and of adapting the proposal along the chain.
Third, there is no need of post-processing the samples, the whole set of parameters is
sampled in one chain. Fourth, which comes with second and third, Sampler 1 is quick
and is easy to implement.

Sampler 1 has also two major drawbacks. First, the successive samples in the chain are
very correlated to one another. If the correlation between two samples drops quickly with
their separation in the chain, the chain is said to be mixing well and uncorrelated samples
from the distribution are quickly drawn. Because the dimensionality of the problem, as
explained in section 4.2.1, the mixing matrix and power spectra part are moving very
little each step of the chain, i.e. the chain mixes poorly. The mixing matrix correlation
function of figure 5.2 illustrates this sampling issue. Second, the sampling of one sample
of high resolution component maps takes about 2 seconds on one CPU, which prevents
from constructing the long chains needed to overcome the high correlation length. At

70



Figure 5.2: Correlation function of the mixing matrix chain. The six lines correspond
to the six free parameters of the mixing matrix. Each colour blue and red correspond
to a column of the mixing matrix. The sampling of the maps being computationally
demanding, the sampling of this chain took one week. Thus, this figure shows that the
typical time scale between two uncorrelated samples of mixing matrix is of the order of
one day.

each step the thousands of covariances have to be recomputed and the millions of pixels
have to be sampled. thus, if the chain does not start close to an area where the posterior
has support, the parameters will never get to their most probable values. It is a heavy
burn-in problem. Despite all the advantages, these two drawbacks prevent us from using
Sampler 1.

Before realising how to overcome the convergence issue exposed in section 4.2.1, I
tested Sampler 1 described in the same section. The first runs were conducted in pixel
space and with fixed prior variance for the components. Prior covariances then became
hyperparameters of the problem since I noticed that any error on the component mod-
elling induced bias into the CMB reconstruction, even if the prior is right for the CMB. I
also moved to the spherical harmonic domain in order to be able to have a complete model
for the CMB anisotropies on the full sky. The results of this subsection are the products
of such a configuration, i.e. a low resolution version of the data and the components are
expressed in terms of spherical harmonic coefficients and the covariances are additional
parameters to be sampled.

In order to show some results from adopting this approach, I set the initial values of
the component maps to their true value, and I let the chain evolve. Figure 5.3 shows the
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Figure 5.3: Low resolution binned CMB power spectrum inference. The full Gibbs sam-
pling approach still gives good results. Black solid line is the input scattered C`’s and
the coloured horizontal lines show the evolution of the chain, from red to purple being
from beginning to the end. The length of one horizontal bar corresponds to the size of
the bin.

Figure 5.4: Low resolution sample variance map of CMB samples. This map does not
have exactly the same structure than that of Sampler 2 case (see figure 5.8). This one
has more structures and variance decreases less quickly along the latitudes.
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inference of the first 126 multipoles above the dipole of the CMB. Each of the coloured
horizontal bars represents one sample of a bin and the black line represents the input
power spectrum. If the sampling issues are avoided by starting the chain close to the
peak of the posterior, then the CMB power spectrum is well reconstructed. Figure 5.4
shows the sample variance of the CMB map. As expected, the errors are larger in the
galactic plane.

5.3.2 Self consistent treatments

In order to test the algorithm, I applied the method on simulated data that have been
drawn from the priors and add isotropic noise. The simulated data are then fully consis-
tent with the model. In this case, the resulting mixing matrix maps and power spectra
match their input values. Also, the mismatch (as defined later in equation 5.5) is com-
pletely flat and has the appropriate number of degrees of freedom if a set of simulations
completely consistent with the data model is used. Such test involves Gaussian fore-
grounds and isotropic noise. data composed of foregrounds drawn from an isotropic
Gaussian random field and isotropic noise is the ideal configuration in which BICA can
fully solve the component separation problem, but in this case the foregrounds have no
physical meaning and the noise model is far from that of real experiments.

I also test the impact of anisotropic noise on the results. I drew a set of data from
the priors and this time added anisotropic noise. I observed no significant deviation from
the results of the fully consistent case.

I will now move on to more physically interesting cases.

5.3.3 Products of the method

The output of the BICA sampler presented in the previous chapter is a collection of
samples from the posterior distribution. Each sample, containing one realisation of the
component maps and the power spectra and the mixing matrix, has dimension Npara. A
normalized Npara-dimension histogram would give an estimate of the posterior over all
parameters, but the number of dimension is too large to compute higher moments of the
full posterior distribution with accuracy. Instead, a 1-dimension histogram is computed
for each parameter. It can be shown that this histogram is proportional to an estimate
of the posterior marginalised over all parameters but the one of interest. Then this
histogram is used to compute various quantities (mean, variance, mode, the number of
degrees of freedom, ...) relative to the marginal distribution.

All elements of one column of the mixing matrix are fixed to the same arbitrary con-
stant (I chose 1). This prior information leads the sampler to distribute the information
contained in the data. Any emission that is constant through frequency is transferred
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Figure 5.5: Left: Posterior PDF marginalised over all parameters but the CMB power
spectrum at multipole ` = 5. The histogram is an estimation of the PDF and the solid
red curve is the best fit of an inverse-gamma function to the histogram. Right: number
of degrees of freedom of the CMB C`’s individual marginal distributions (black line). The
2`+ 1 degrees of freedom expected for noiseless all sky is showed by the red dashed line.
Deviation from the ideal case comes from the presence of noise that enlarge uncertainties
on the power spectrum at large multipoles.

into the power spectrum corresponding to the constant mixing matrix column, and any
other emission is transferred into the other power spectra. Since the CMB is the only
coherent signal with constant response across all frequencies, our analysis amounts to
infer a CMB power spectrum in the presence of foregrounds systematics.

Regarding the other components, the unmixing is not unique. Since there is no
physical information on either the power spectra or the frequency spectra, the outcome
of these parameters are mixtures of the data maps that obtains plausible configurations. A
priori, the individual input power spectra of the non-CMB components are not expected
to be identifiable as dust and free-free because I force no correlation between the two
spatial distributions2. The degeneracies come from the permutation of two column of
the mixing matrix. Thus, there is a finite number of degeneracies introduced by using a
phenomenological model. Since each solution are afar from each other, the degeneracies
do not entail the sampling efficiency.

The run took 20 CPU hours to produce the chain from which the posterior is evaluated.

5.3.4 CMB power spectrum inference

The value of a power spectrum at multipole `, C`, is the variance for each of the 2` +

1 harmonic coefficients a`m of the corresponding isotropic map. Thus, for a full sky
treatment, the expected PDF for the C`’s is an inverse-gamma distribution with 2` + 1

2Physically, dust and free-free are spatially correlated since both of them are more prevalent in the
galactic disk than at high latitudes.
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number of degrees of freedom. Indeed an inverse-gamma distribution fits the individual
marginal distributions well, see figure 5.5, as expected (see e.g. Wandelt et al. (2004)).
Figure 5.5 shows the number of degrees of freedom of the inverse-gamma distributions
that fit the marginal distribution of the C`’s. From ` ∼ 500, the number of degrees of
freedom is lower than that of the optimal case of noiseless full sky treatment. This is due
to the noise at large `’s that enlarges the variance of the marginal distribution.

The inverse-gamma distribution is a non-symmetric PDF. To visualise the inference
of the full CMB power spectrum I choose to show the mode of each distribution rather
than the mean. To give an idea of the shape around the peak I compute the variances
of the distribution below and above the mode, as if the distribution were a two-sided
Gaussian. Figure 5.6 shows such a visualisation after a run of BICA. On the upper panel
the black dots show the modes of the marginal distribution of each C`. The grey region
represents the shape as if the distribution were a two-sided Gaussian distribution: upper
error is one upper standard deviation and the lower error is one lower standard deviation.
The solid red line shows the input power spectrum. The lower panel of each plot in the
figure shows the relative error to the input power spectrum. The input power spectrum
of the CMB lies within the error bars and the recovery is accurate at better than the
percent level.

5.3.5 CMB map inference

In section 4.2.3, I described the sampling used to explore the posterior distribution. In
practice I let the Metropolis-Hastings sampler of the marginal evolve until it converges
and draws Nsam uncorrelated samples of {A, C}. Then, for each sample {An, Cn}, I draw
a sample of the component maps sn from the conditional P (s |A=An, C=Cn, d). The chain
{{An, sn, Cn} ;n = 1 . . .Nsam} provides a samples from the full posterior P (A, s, C | d).

The sampling of the sn is straightforward since the conditional P (s |A, C, d) is a
Gaussian distribution, independent from one harmonic coefficient to another. For each
piece of maps s`m the mean and covariance are

µ`m = Σ`A
TN−1

` d`m (5.1)

Σ` =
(
ATN−1

` A + C−1
`

)−1
. (5.2)

Thus, the µ`m’s are obtained by Wiener-filtering the data. There is a loss of power at
high multipole in the mean due to the filter. Sampling the maps corrects this and the
samples of the maps have the correct covariance. Following Wandelt et al. (2004), the
sampling of the maps is done by solving the system

Σ−1
` s`m = ATN−1

` d`m + ξ`m
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Figure 5.6: Input and inferred power spectra of the CMB (top) and the sum of the
non-CMB components (i.e. dust and free-free) at 353GHz (bottom). In the upper panel
of each figure, the black dots at each multipoles represent the peaks of the marginal
posterior, the grey region shows the asymmetric ±1σ-error bar derived from the marginal
posterior, the red line is the input power spectrum. The lower panel represents the relative
error to the input power spectrum. The sampler accurately recovers the power spectrum
of the CMB.
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Figure 5.7: Input and residual CMB map. This residual map represents the absolute
value of the difference between the sample mean and the input map. The errors are
wider in the galactic plane but the uncertainties in this region of the sky are also larger,
as shown on Fig. 5.8. To show the noise in the residual map, it is shown on a decimal
logarithm scale.
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Figure 5.8: Top: Standard deviation map of the CMB map samples. The posterior
distribution is wider in the region of the galactic plane. Bottom: Standardized error
map, all red pixel have value 4 or more. This map is the ratio between the residual map
of the CMB and its standard deviation map (top). Note that the posterior standard
deviation map only represents the part of the uncertainty that is uncorrelated from pixel
to pixel while the Bayesian analysis returns a fully correlated error model for the recovered
map shown in Fig. 5.7. Standardizing with the uncorrelated errors reveals two things: the
isotropic noise approximation leads to overestimated uncertainties in low noise regions;
and an uncorrelated error model does not capture the uncertainties in regions where
foregrounds dominate. See Fig. 5.9 for a visualization of correlated uncertainties.
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Figure 5.9: The figure shows two rows of the posterior correlation matrix for the 2 pixels
marked by a black cross in each map at HEALPix resolution parameter Nside = 16. The
inferred uncertainties due to foreground removal are highly correlated in the galactic
plane and must be taken into account in a meaningful statistical interpretation of the
recovered CMB map.
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where ξ`m is i.i.d. for each s`m from a Gaussian distribution with zero mean and covariance
Σ−1
` .
Marginalising the posterior P (A, s, C | d) over all parameters but one pixel of one

component map leads to a distribution which is consistent with a Gaussian distribution.
I therefore consider the sample mean of the map samples, which is an estimate of the
mean posterior CMB map, as a reference for a recovered CMB map. Fig. 5.7 shows the
input CMB map and the absolute value of the residual map. There is more residual
error in the galactic plane because of foreground contamination. There are pixel to pixel
correlation in the posterior but qualitative errors on the recovered map are given by the
sample variance of each pixel.

Fig. 5.8 shows a map containing the sample standard deviation of each pixel of the
CMB map. As stated above, the errors on the CMB map include the uncertainty due to
the presence of galactic emission. I also plot in Fig. 5.8 the standardized error map, i.e.
the ratio between the residual map and the standard deviation map. If the model were
a perfect description of the data, and if the pixels were not correlated in the posterior,
then this map should be a realisation of an isotropic random Gaussian field, with zero
mean and unit covariance. However, because of the approximations in the modelling
presented in section 5.2, this is not the case. The isotropic noise approximation leads
to an overestimation of the error bars in the regions of low noise. The per-pixel error
is underestimated in highly contaminated regions. The residuals have strong spatial
correlations, see Fig. 5.9. Another explanation could be that the Gaussian model is too
coarse an approximation in regions where the foregrounds are the most intense and highly
non-Gaussian. If it is the case, these results could be used to construct masks from the
sample variance map to mask the observation maps where necessary, since these regions
are the regions of high variances in the posterior variance map (top of Fig. 5.8).

Since the uncertainty in pixels are correlated in the posterior, the variance map gives
only a qualitative idea of the errors on the map, since it is only the diagonal of the
posterior covariance. Pixels in the posterior are correlated and the sample variance map
only is not sufficient to fully describe the error on the reconstructed CMB map. To show
the correlation, I compute the correlation matrix of the CMB map samples on a lower
resolution map. The correlation matrix has a row for every pixel showing the correlation
of this pixel to all other pixels. Figure 5.9 shows the correlation maps of two pixels in the
galaxy plane. The pixels in the galactic plane are highly correlated, which explains at least
part of the excess of standardized error in the galactic plane of Fig. 5.8. An eigenvalue
analysis of the correlation matrix shows that, in addition to noise uncertainties on small
scales, the foreground subtraction uncertainties are dominated by a few, highly correlated
modes, see Fig. 5.10.
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Figure 5.10: The hundred largest eigenvalues of the posterior correlation matrix of the
low resolution CMB map. Two modes dominate.

5.3.6 Inference of non-CMB components

Without any physical information and assuming lack of correlation, the inferred non-CMB
components are not identifiable as free-free and dust. However, the sum of all non-CMB
components is recovered. Figure 5.6 shows the power spectrum of the simulated whole
galactic emission and its inference. Since the CMB is cleaned of all foregrounds, the sum
of all non-CMB components is also well recovered but small biases appear from ` = 1000.
The biases are due to the fact that the correlation between the components are not taken
into account, as explained in section 5.4. These biases are small compared to the CMB
power and therefore have no significant effect on the CMB inference.

5.4 Model checking

The uncertainties on the reconstruction of power spectra directly rely on the shape of
the posterior. Therefore the errors are correctly estimated if the a priori model correctly
describes the data. It is therefore important to asses the quality of the fit achieved by the
model through model checking (Gelman and Meng, 1996). In order to check for biases
in the reconstruction due to assumptions on the statistical properties of the components,
a consistency check is needed. The measure of some mismatch between the empirical
covariance of the data and the covariance of the data model will provide a test of the
model at the power spectrum level. In this section, I construct such a check, starting
from basic statistical tools.
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5.4.1 Construction of the mismatch

At the power spectrum level, only covariances are considered. The empirical data co-
variances at each multipole `, R̂` = 1

2`+1

∑
m d`md

T
`m, will be used as references. R` =

AC`A
T +N is the data covariance from the model of equation 3.1. If the model correctly

represents the data, R̂` and R` at the peak should be close to each other. In order to
compare them, I consider the following generative model for the data at each multipole
`:

p`(d |Σ) =
∏̀
m=−`

N (d`m | 0,Σ) , (5.3)

and compute the KL divergence for p`(· | R̂`) and p`(· |R`). Since the KL divergence
between two Gaussian distribution N1 and N2 with zero mean and respective n × n

covariances Σ1 and Σ2 is

DKL(N1,N2) =
1

2

[
tr
(
Σ1Σ−1

2

)
− log

∣∣Σ1Σ−1
2

∣∣− n] (5.4)

and thanks to the additivity property we have for each `

DKL(p`(· | R̂`), p`(· |R`)) =
2`+ 1

2

[
tr
(
R̂`R

−1
`

)
− log

∣∣∣R̂`R
−1
`

∣∣∣− Nf

]
=̂ D`/2 . (5.5)

Following the analysis of Delabrouille et al. (2003), I will consider D`, i.e. half the
KL divergence, because it can be shown that exp−1

2
D` is proportional to the likelihood.

The posterior PDF on the CMB power spectrum approaches a Gaussian as ` increases,
such that D` has the properties of the chi-squared distribution for sufficiently large `.
For example the number of degrees of freedom is obtained by subtracting the number of
stochastic parameters per multipole from the number of degrees of freedom of a symmetric
matrix Nf ×Nf . Nc spectra are sampled per multipole and one mixing matrix is sampled
for all multipoles. Thus, if the number of degrees of freedom within a mixing matrix are
distributed over all multipoles, the number of degrees of freedom of the pseudo chi-squared
distribution followed by each D` is

Ndof = Nf (Nf + 1) /2−
[
Nc +

(Nf − 1)(Nc − 1)

(`max − `min + 1)

]
' Nf (Nf + 1) /2− Nc .

In particular E [D`] = Ndof , which does not depend on `. In the case of the application
on the simulations, Ndof = 7.
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Figure 5.11: Mismatch between the data and the data modelling. Left: Divergence
between the data covariance and input parameters. The large mismatch at low ` is due
to correlations between the input component maps. Right: Divergence between the data
covariance and the recovered parameters. During sampling, I impose no cross-correlation.
Thus the sampler converges towards components that are uncorrelated but whose power
spectra are almost capable of capturing the covariance of the input component maps.
The red line is the mean of the expected chi-squared distribution that the D`’s should
approximate.

5.4.2 Consistency of the results on simulations

In Fig 5.11 I plot the D`’s for R` containing the inferred value of {A, C}. For comparison,
I also plot the D`’s in the case where A and C are set to their input values. Although the
input parameters are the true parameters to be recovered, the inferred values have lower
mismatch because the components are correlated in the data but not in the model and
the sampler finds uncorrelated components that fit the data better. If the foreground
modelling matches the statistical properties of the input foregrounds, the D`’s should
follow a chi-squared distribution with a number of degrees of freedom Ndof , whose mean
Ndof is represented by the horizontal red line on Fig. 5.11.

5.4.3 Consistency of the results with modified priors

I performed a separation where the cross power spectra of the component are taken into
account during the sampling. I do not sample the cross power spectra but I use the
covariance of the input components instead and I keep them fixed during the sampling,
i.e. each C` is a non-diagonal matrix but only the diagonal is stochastic. In Fig 5.12 I
plot the D`’s with the output values of {A, C} of such a run. Taking the correlation of
the input component maps into account erases the discrepancy at low `. A chi-squared
distribution fits the histogram of the D` for ` large enough (` > 700 for this plot). In the
figure, the fit is shown by three blue solid lines, the solution of the fit and the ±1σ error
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Figure 5.12: Mismatch between the data and the result of a sampler that includes the
input correlations between the components during the sampling process (left) and its PDF
(right). In the left panel the red line represents the mean of the expected chi-squared
distribution that the D`’s should follow. In the right panel, the blue lines are the best
χ2-fit to a chi-squared curve and the ±1 standard deviation error from the fit. The red
dashed line represents the chi-squared distribution with the expected number of degrees
of freedom Ndof = 7. The introduction of the correlation between the input component
erases the large discrepancy at low multipole.

on the fit. The red dashed line represents the chi-squared distribution with the expected
number of degrees of freedom Ndof and it lies within the error bars. The remaining
deviations from an `-independent distribution are due to the differences between the
data model and the data actually used, as explained in section 5.3.2.

Considering a Gaussian model for the components and neglecting the correlations
between the CMB and the non-CMB components do not affect the reconstruction of the
CMB power spectrum since the CMB is not correlated to the foregrounds.

5.5 Discussion

The results are very encouraging. The CMB power spectrum is well reconstructed even
with a simple Gaussian model for the non-Gaussian foregrounds. The production of
variance maps and correlation maps taking the presence of the foregrounds blindly into
account is a major step forward in CMB data analysis.

The fact that the sampler can not distinguish between non-CMB emissions is due to
an additional degree of freedom. Without any information about the physical emissions,
all the recovered components others than CMB are a mixture of the true signals. Putting
a prior either on the mixing matrix, i.e. import knowledge about the frequency spectra, or
on the shapes of the component power spectra would break the degeneracies. Although
the constraints of the priors can be controlled, the blindness of the method would be
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lost with this introduction of a priori information. Furthermore, in this work I impose
decorrelation between the component maps. The foregrounds could be modelled in more
detail to get a full component separation method, but the focus here is on CMB recon-
struction. I showed that including the input cross spectra of the components improves
the mismatch. In the next chapter, I include the cross spectra as additional parameters
to infer.

Unresolved point sources appear as extra power at small angular scales of the inferred
CMB power spectrum. Masking the listed point sources and inpainting in the mask
would be a way to address the point sources issue. In addition allowing the components
to mix differently in different regions of the sky or in different angular scale ranges by
allocating different mixing matrices in each range would reduce mismatch due to lack
of coherence. Also, foregrounds that are not fully coherent from frequency to frequency
may be modelled by increasing the number of components in our model.

In this chapter I reconstruct the CMB maps on the full sky. It remains to be seen
if this is achievable on realistic data and next chapter address this problem. Since our
approach is similar to the one by SMICA, which provides a clean map on a large fraction
of the sky in Planck analysis (Planck Collaboration et al., 2014c), treatment of almost
full sky data should be feasible. Because of the assumption of diagonal covariances in
`-space the effect of a small mask needs to be tested. If a mask has non negligible effect,
masking may be avoided with inpainting. If necessary a Wiener filter method such as
Elsner and Wandelt (2013) could be used to implement a full sampling approach.

The next step is to apply the method to real data (see chapter 6). The main problem
is the instrumental noise. In the work presented in this chapter I assume a simple noise
model. Dealing with real data noise requires developing a more realistic noise model. A
full model of correlated noise involves very large covariance matrices. Therefore alterna-
tive ways to deal with noise like half-ring half difference maps or noise simulations should
be considered.

If joint modelling of foregrounds allows working with a large part of the sky, mode
coupling effects due to the mask may be ignored with high accuracy. This needs to be
tested and it is also addressed in the next chapter.

Conclusion

I have presented the results of BICA on a set of simulations. Both the CMB and galaxy
poser spectra are correctly inferred at the percent level. The results match the expected
statistical properties such as the shape of the marginal posterior for the CMB multipoles
or the number of degrees of freedom of the data mismatch. Full maps of CMB anisotropies
are recovered with their own PDF which reveals that the dominant foreground residuals
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are captured in terms of a small number of error modes. In the next chapter, I apply the
BICA method to the Planck data.
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Chapter 6

Application to Planck data

Introduction

Now that I showed that BICA has robust results when it is applied to simulations, the
next step is to apply it to real data. I worked for a short time with the WMAP data, but
I set this analysis aside when the Planck collaboration released its 2013 data.

The sky simulation of the previous chapter was a simplistic model but the purpose
of the application of BICA to simulations was to validate the concepts of the method.
The Planck data are much more complex than the simulations. Thus, after giving a
brief overview of the Planck data, I build a refined data model that takes into account
additional instrumental and physical modelling. Then I present the first results on the
inference of the parameters of this model and compare them to the results of SMICA.

6.1 The Planck data

The satellite of the Planck mission (Planck Collaboration et al., 2011a) was launched
in May 2009 and reached its orbital position at L2 Lagrange point in July of the same
year. It has since observed the full sky twice. Planck embarked two instruments aboard:
the Low Frequency Instrument (LFI) and the High Frequency instrument (HFI). The
two instruments are designed with different technologies. LFI is composed of transis-
tors whereas HFI makes use of bolometers cooled down to 0.1K. Both instruments map
temperature as well as polarisation of the CMB.

In this work I worked with the Planck public release of 2013 (Planck Collaboration
et al., 2014a). The temperature maps as they were released is an estimate of the sky signal
at each frequency band centred around 30GHz, 44GHz, 70GHz for LFI and 100GHz,
143GHz, 217GHz, 353GHz, 545GHz and 837GHz for HFI. The maps are pre-processed in
order to remove known systematic effects as much as possible. The dipole induced by the
non zero velocity of the solar system in the rest frame of the CMB (Corey and Wilkinson,
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Figure 6.1: Masked half-ring half-difference map and its power spectrum. This map was
obtain by taking the half difference of the two half-ring maps of the 100GHz channel. Then
it was masked with the galactic mask only because the point source mask is inpainted
and filled with noise. The black line on the plot below is the power spectrum of the map.
The power spectrum thus computed is just an estimator of the variance of the noise in
each mode. The red line is a fit to the estimate of the power spectrum that get closer to
the true noise power spectrum. This operation is repeated for all channels and the noise
model is the collection of the fits.

1976) is also removed. I took the maps from the nominal mission as the observation
maps. The nominal maps are built from all the valid detectors of a frequency channel.

Separately are also provided two maps per frequency band called half-ring maps. One
is made of the first half of the scanning ring, one is made of the second half of the scanning
ring only and both cover the full sky. They are very important in order to characterise
some properties of the instrumental noise, as detailed in the next section.

6.2 Additional modelling

The simulations on which I have tested BICA in chapter 5 are an approximation of reality.
Real data are more complex and need a more detailed modelling, of the physics as well
as of the instrument. Through out this section, I will improve parametrisation of the
problem starting from the model I validated against simulations in chapter 5.

6.2.1 Noise

The noise in the nominal maps is anisotropic and correlated pixel to pixel. Thus, a
full Npix × Npix covariance is necessary to model it accurately in pixel space. For high
resolution maps, such an array is too large to be contained in an ordinary computer
RAM, and other ways of representation are needed. Correlation in pixel space induces
colouring of the noise in harmonic space, i.e. the power spectrum of the noise is not flat.
Conversely, a Gaussian random field with a non-constant power spectrum has correlated
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directions on the sphere but the field is isotropic. Using a power spectrum only does not
account for statistical anisotropies in the spatial distribution of the noise. Thus, choosing
to model the noise by a power spectrum amounts to making the approximation of isotropy
of the noise but allows including noise correlations in this isotropic approximation. The
approximation of isotropy do not affect the results by much because the power spectrum
is little biased by the anisotropy (Wandelt et al., 2001).

As it was done for Planck analysis (e.g Planck Collaboration et al. (2014g),Planck
Collaboration et al. (2014d),Planck Collaboration et al. (2014c)), I use the half-ring maps
in order to find the power spectrum that approximates the properties of anisotropy and
correlation the best. Half-ring maps are built using only the first or the second half of
the scanning ring of the nominal mission. For each frequency band, the half-ring maps
contain the same physical signal but with a different realisation of the noise in half the
full data. Thus taking the half difference of the maps cancels out the physical signal
and gives a possible realisation of the noise in the nominal map. Computing the power
spectrum of that map leads to an estimate of the noise variance per multipole in the
nominal map. The higher the multipole is, the largest number of modes it contains, the
better the estimate is. Even if the estimate is good for small scales, the variance estimate
can not be used as it is because of the scatter. I fit a slow varying function to the estimate
to get the noise power spectrum that I use as a model of the instrumental noise.

Due to specifics in the pre-processing of the data, the estimate is a fraction of a percent
lower than the actual power spectrum (Planck Collaboration, 2013). In order to model
this inaccuracy, I add a noise power spectrum normalisation factor fi per frequency band
i to the parameters to sample. Thus, the model becomes

di`m =
∑
k

Aiksk`m +
√
fi ni`m , (6.1)

which reads in terms of covariances

R` = AC`A
T + fN` , (6.2)

where f = diag (fi ; i ∈ [[1,Nf ]]).
The collection of the fi are added in the set of parameters to infer. Including these

parameters adds Nf more dimensions. It is a low number compare to already existing
number of dimensions, such that the inclusion of the normalisation factors does not
disrupt the convergence of the sampler. Since f is actually close to identity, I put a prior
on the fi’s that constrain them to stay around 1 for the LFI channels and 1.005 for the
HFI channels. I chose an inverse-gamma distribution as prior for each fi because f acts
like a diagonal covariance.
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6.2.2 Cross-spectra

The spatial distributions of the components are correlated. For instance the different
components of the galactic signal are all the brightest in the galactic plane. If two maps
a and b are spatially correlated, i.e. 〈a( ~n1)b( ~n2)〉 6= 0 for some pixels, then their cross-
power spectrum Cab

` is non zero:

Cab
` =̂ 〈a`mb∗`m〉 ∝

∫
d ~n1d ~n2 〈a( ~n1)b( ~n2)〉Y ∗`m( ~n1)Y`m( ~n2) 6= 0 . (6.3)

In order to reduce the mismatch between the data and the data model, I add the cross-
spectra of the foregrounds in the set of parameters to be sampled. This move breaks the
assumption of independence between the components. To keep the separation between
the CMB and the foregrounds, I keep the cross-spectra between them equal zero. For
now on, for each multipole `, the non-diagonal covariance C` of the components in the
prior model and equation 6.2 looks like

C` =


Ccmb
` 0T

0 C fg
`

 , (6.4)

where Ccmb
` is the CMB power spectrum at multipole ` and C fg

` is the non-diagonal
covariance of the foregrounds at multipole `. The CMB power spectrum Ccmb

` and the
free parameters of the symmetric matrix C fg

` are sampled for all multipoles `. The Jeffreys

prior for Nc × Nc matrices like that of equation 6.4 is P (C`) ∝
(
Ccmb
` |C fg

` |
Nc+1

2

)−1

.

6.2.3 Point sources

In addition to the galactic signal, a important component to take into account is the
unresolved point sources. Since this component mainly behaves like an isotropic ran-
dom Gaussian field, its power spectrum is flat, i.e. it has the same power at all scales
(Planck Collaboration et al., 2014d). This is a major issue because all the other kinds of
components, CMB among them, have decreasing power spectra such that point sources
dominates the signal in the multipole range ` & 2000.

It is compulsory to input information through prior distributions. Indeed, if I increase
the number of components, I open flat directions because of degeneracies and therefore
adding point source component requires specifying information about the expected power
spectrum. The power spectrum of the point sources is flat because the point sources are
uncorrelated on the map to good approximation. Since point sources are a component
that looks like a realisation of a random Gaussian white noise, a straightforward way
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to model them is to add a component pi`m to the right hand side of equation 6.1 that
satisfies 〈pi`mpj`′m′〉 = δ``′δmm′Φij. Note that Φ, the point sources covariance in harmonic
space, does not depend on ` or m. Hence the further modelling of the covariance

R` = AC`A
T + Φ + fN` . (6.5)

Point sources are spatially uncorrelated. In contrast, the Planck likelihood analysis
showed that the point sources are strongly correlated frequency to frequency (Planck
Collaboration et al., 2014d). This makes the Nf × Nf covariance matrix Φ a low rank
matrix that then can be represented as follows

Φ = βBBT ,

with B a Nf ×Npt matrix and β a scalar. B and β can be seen as a mixing matrix of Npt

component that are coherent through frequencies, uncorrelated from one another, and all
of them have a power spectrum with constant value β.

The covariance Φ is not mathematically low rank but has some low eigenvalues. So
we can see point sources as a mixing of very few component maps that are scaled through
frequency by the matrix B plus one map qi`m per frequency band i in the right hand
side of equation 6.1 that will account for lack of coherence. The coefficients qi`m are
completely independent and 〈qi`mqj`′m′〉 = δ``′δmm′δijφi. Hence the further modelling of
data and its covariance

di`m =
∑
k

Aiksk`m +
∑
h

Bihph`m + qi`m +
√
fi ni`m (6.6)

R` = AC`A
T + βBBT + φ + fN` , (6.7)

where φ = diag (φi; i ∈ [[1,Nf ]]). When Npt > 0, φi is just a correction in frequency band
i, so there is no need to have a non-zero φi in each band. Let’s denote the number of
non-zero φi by N′pt. We have then

Npt + N′pt ≤ Nf . (6.8)

Splitting the point sources into a correlated part (βBBT ) and an uncorrelated part
(φ) is very convenient because it allows to model the point sources with some flexibility.
For examples, the model considering just one point source completely coherent through
frequencies is (Npt,N

′
pt) = (1, 0), the model considering only one uncorrelated point

sources map in each frequency band will be (Npt,N
′
pt) = (0,Nf), . . .

There are constraints on Npt and N′pt. Indeed, if we suppose that Φ in equation 6.5
and βBBT +φ in equation 6.7 have the same physical meaning the maximum number of
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Figure 6.2: Beam window functions of the frequency bands from 70GHz to 353 GHz,
respectively from red to blue. The data of an instrument is the result of a weighting by
its own beam window function of the true signal on the sky. The highest the frequency,
the highest the resolution. Thus, almost all information is suppressed at small scales in
the lowest frequencies.

free parameters of βBBT +φ is the number of free parameters in Φ. Thus, the covariance
Φ being a Nf × Nf symmetric matrix, we have

NptNf + N′pt ≤
Nf(Nf + 1)

2
, (6.9)

which becomes
Npt ≤

Nf

2
(6.10)

when equality in equation 6.8 is reached.
The parameters to sample are all the elements of the mixing matrix B and the non-

zero entries of φ. The normalisation factor for the power spectra β is fixed. As for the
mixing matrix A, the Jeffreys prior for B is a flat prior. The Jeffreys prior for φ is
P (φ) ∝

∏
i φ
−1
i , the product dismissing the vanishing φi.

6.2.4 Beaming

The instruments have a finite resolution. The signal seen in each direction is actually a
weighted average of the underlying signal of neighbouring directions. Since the resolution
is the same in each direction, the observed signal can be seen as a convolution on the
sphere of the true signal with a function, called beam function. Each instrument has a
specific resolution and therefore has a specific beam function.

The beams of the Planck instruments are very close to Gaussian functions. A convolu-
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tion on the real sphere is a simple multiplication in harmonic space, just like between the
real Euclidean space and the Fourier space. In addition, Gaussian functions on the sphere
transform into Gaussian functions with inverse width in harmonic space, with the same
value for all the modes of the same multipole. The transform of the real beam function
is called the beam window function because just a range of scales is selected. This can
be understood as follows: the lower the resolution of the instrument is, the narrower the
beam window function is because the smaller scales of the true signal are smoothed. The
beamed signal is thus less powerful at large multipoles, i.e. at small scales. Figure 6.2
shows the beams of 5 frequency bands of Planck.

The noise is not affected by the beams since the it is not part of the sky signal. Let’s
denote bi` the beam factor at frequency i and scale l. The signal only undergoes the
beams such that equation 6.7 and 6.7 become

di`m = bi`
∑
k

Aiksk`m + bi`
∑
h

Bihph`m + bi`qi`m +
√
fi ni`m (6.11)

R` = b`AC`A
T b` + βb`BB

T b` + b`φb` + fN` , (6.12)

with b` = diag (bi` ; i ∈ [[1,Nf ]]) .
The beams are assumed to be perfectly characterised and are not sampled.

6.2.5 Masking, apodising, inpainting

The galaxy is very bright in the galactic plane and no model is good enough to remove
it without leaving uncharacterised residuals. As I described in the previous chapter,
simulations show that the contaminations in the recovered CMB map are the largest
where the galactic signal is the largest. When the data are not under control, the best
way of treating them is to not use them at all. Thus the usual way to get around the
galaxy issue is to mask it. The Planck collaboration produced several masks that mask
more or less aggressively the galaxy. A similar problem arises with the resolved point
sources and they also need to be masked. Figure 6.3 shows the galactic mask and the
point source mask.

After masking the data maps, no additional modelling enters in equations 6.11 and
6.12. However, masks introduce mode coupling. To correct for this bias, either the masked
observation maps need to be pre-processed or the results need to be post-processed, or
both, depending on the masks applied to the data.

Let’s consider a random isotropic field on the sphere with power spectrum C` and a
mask. Then the power spectrum C̃` of the masked field is related to the original power
spectrum C` as follows

C̃` =
∑
`′

M``′C`′ . (6.13)
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Figure 6.3: Galactic mask (top) and point source mask (bottom). The galactic mask
leaves 80% of the sky. It was apodised with a Gaussian beam with full width at half
maximum of 1 degree. That is why it takes continuously values between 0 and 1 at its
edges. The point source mask masks about 1% of the sky outside the 80% galactic mask.

The coupling matrix M depends on the mask power spectrum only (e.g. Hivon et al.
(2002)). Since masking is a simple multiplication in pixel space, equation 6.13 can be
seen as a convolution in harmonic space. Thus, after having performed a CMB inference,
correctly deconvolving the resulting power spectrum via the inversion of equation 6.13
is necessary to produce a rigorous final power spectrum. This step is deterministic and
does not introduce further error.

Apodising is an operation that smooths the effect of masking. It consists in smoothing
the edges of the mask in order to reduce the mode coupling, i.e. to make the coupling
matrix M of equation 6.13 more diagonal. The galactic masks in figure 6.3 are apodised
by smoothing them with a Gaussian beam that has a full width at half maximum of 1
degree. Thus, the pixels of a mask {mp}p can take any value between 0 and 1. For the
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following, let’s define the fraction of the sky used

fsky =
1

Npix

∑
p

m2
p . (6.14)

The point source mask is not apodised because its effects are treated in a different manner.
Imputation, or inpainting, is a technique that fills the holes that a mask produces

in an observation map with fake data. Inpainting is a general technique for image and
video treatment so very sophisticated algorithms have been developed (see e.g. He and
Sun (2012) for a review). However, I use one of the simplest methods, called diffusive
inpainting, because despite its simplicity it is adapted to the problem of point source
masking. diffusive inpainting consists in filling in the holes by diffusing the observation
map from the edges to the inside of the holes. Since the point source mask contains only
small holes whose sizes do not exceed ten pixels or so, the spread of the smoothing due to
the diffusion is weak. Moreover, diffusive inpainting solve the Laplace’s equation, which
leads to a 1/`2 spectrum, which is similar to the CMB spectrum on large scales. In order
to correct for the small loss of power that the masking still induces at small scales, I add
the noise realisation built from the half-ring half-difference maps in the inpainted region.

6.3 Possible configurations of the data

After pre-processing we have to make choices in the modelling because our model now
allows many different configuration in terms of number of components, in particular for
the restrictive point source components. In this section I list the possible data selections
and model choices, and discuss the impact of these choices on the results.

6.3.1 Mask

Since just a fraction of the available data is used, the reconstruction is less constrained
because the likelihood has a wider shape than in the case of a full sky analysis. Thus,
the smaller the fraction of the sky used is, the larger the errors on the parameters are. I
have chosen to work mostly with rather high sky fractions, that is fsky between 80% and
97%, but I also used lesser sky coverage for consistency checks.

As discussed above, masking reshapes the power spectrum. This geometric effect
needs to be treated for rigorous comparisons with the results of other methods. For these
first test, I have just used the approximation that the coupling matrixM of equation 6.13
is proportional to the identity matrix (Hivon et al., 2002), with

Mij = δijfsky . (6.15)
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Figure 6.4: The five nominal maps 70GHz, 100GHz, 143GHz, 217GHz and 353GHz. This
is the set I mostly used. The first three frequency bands have the same scale in order
to show the CMB. The two other maps have a larger dynamic range to keep the galaxy
from spreading all over the sky. Far outside the galactic plane even the low frequencies
are dominated by point sources on small scales.

This is motivated by the fact that I work on a large fraction of the sky, i.e. with small
masks that have low level of expected coupling.

6.3.2 Frequency range

The Planck instruments observe nine frequency bands. The bands have to be chosen with
care because there is a trade off. The middle bands are the cleanest. The highest and the
lowest bands are very contaminated by dust in the infrared band and synchrotron in the
radio band, respectively, but also contain more information on the foregrounds to clean
the CMB.

The number of assumed components in the data can not exceed the number of fre-
quency bands chosen for the analysis without opening up flat directions in the parameter
space. If a large fraction of the sky is used, then the physical emissions are complex, in-
cluding deviation from coherence. In this case, multiple components are necessary to fit
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one foreground. So when using small masks, a maximum of dimensions in the component
space is necessary, and therefore many frequency bands are needed.

Since the current version of the method works with the same multipole range for each
frequency band, using low resolution maps imposes limitations. Some of the observation
maps, particularly that from LFI, are almost unusable for an analysis that uses multipoles
above ` ∼ 2000. I have worked mostly with the frequency bands ranging from 70 to 353
GHz, i.e. with a number of frequency bands Nf = 5. More recently, I have been using
the Nside = 2048 version of the 70GHz observation map.

6.3.3 Multipole range

There are several reasons for not taking the full range of multipole available. At large
scales, i.e. low multipoles (below ` ∼ 150), the galactic foregrounds dominate, even after
masking. If the separation is performed on a large range of multipoles, then the constant
mixing matrix through frequency is constrained by very large scales as well as low scales,
which can reduce the efficiency of the sampling. Foregrounds are more non-Gaussian on
large scales that on small scales, they are also more dominant and more anisotropic. In
addition, they do not necessarily mix the same way at small and large scales, like it is
assumed in the model via the constant mixing matrix. Therefore there are several special
problems at low multipoles that need to be treated separately. Furthermore, due to the
cosmic variance, rejecting the first hundred multipoles does not affect the constraints
on the cosmological parameters by much. At small scales, i.e. large multipoles (above
` ∼ 2000), noise and point sources dominate and become sources of high contamination
and uncertainty. For all these reasons, I mostly use multipoles ranging from `min = 50 to
`max = 2000.

6.3.4 Number of components

Some methods, like Remazeilles et al. (2011), find the number of dimensions of the compo-
nent subspace from the data themselves. In the general case, the number of components
is a limitation of many component separation models. Indeed, it has to be chosen prior
to the analysis and is fixed during the separation. Furthermore, in BICA the recovered
foregrounds are not physical which means that the true emissions distribute over the
available dimensions in order to minimise the mismatch as much as possible. Thus, the
optimal number of components that will balance chi-squared reduction, convergence and
economy of parameters can only be chosen after several trials. For the frequency range
and the multipole range I chose to work with, the assumed number of components Nc in
the separations I have ran are maximal or almost, i.e. Nc = 4 or 5.

In principle, one could explore a Bayesian model selection approach which chooses
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the number of components necessary to model the data. Here, I take a model checking
approach (see section 5.4) where I use the mismatch as a quality indicator for the analysis.

6.3.5 Point source model

The choice of exact point source model has important consequences for the CMB re-
construction on the small scales. There are numerous different parametrisations of the
point source components via the numbers of uncorrelated and correlated point source
components. The choice of a mask, of a frequency range and of a multipole range is just
a data selection. The number of components is not a critical parameter of the model.
Too few of them will increase the mismatch between the model and the data. Too many
of them will just create convergence problems or degeneracy problems. Physically, the
number of assumed components in the data is never too large because the number of
physical components in the data is always large (cf. chapter 2). The situation with the
point sources is different because there are degeneracies between them and the CMB in
the posterior. Thus, a model that overfits the point sources will remove power from the
CMB at small scales and a model that is not sufficient to capture all the diffuse point
sources will lead to leakage into the CMB power spectrum at small scales. I mostly have
tried Np = 1, 2 correlated point source components and N′p uncorrelated point sources
such that 0 ≤ N′p ≤ Nf − Np.

I mainly used Np = 1 and N′p = Nf − Np. This configuration is motivated by the
fact that this choice amounts to choose one point source map that is coherent through
frequencies and to correct for non coherence with one uncorrelated point source map per
channel. The Jeffreys prior applied to the uncorrelated point sources will act as a sparcity
prior by driving to zero the correction that are not needed.

6.3.6 Choice of prior

The prior on the parameters is the same as that in the case of application to simulations,
except for the component auto and cross spectra. Because of burn-in and convergence
issues, the Jeffreys prior is replaced by a flat prior. Using the Jeffreys prior increases
the correlation between adjacent samples in the Markov chain. I therefore assess in
this section the difference between using a flat prior and a Jeffreys prior. I performed
importance sampling (e.g. Arouna (2003)) on the samples drawn from the posterior with
flat prior in order to see the impact of the change of priors on the sample mean.

Let’s {Ci
` ; i ∈ [[1,Nsam]]} be a collection of samples of the CMB power spectrum at

multipole `. Then an estimator of the mean would be the sample arithmetic mean

A =
1

Nsam

∑
i

Ci
` . (6.16)
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Figure 6.5: Difference between the sample harmonic mean and the sample arithmetic
mean, divided by the sample standard deviation. The estimator of the mean the posterior
containing the Jeffreys prior is lower than that of the posterior without a Jeffreys prior.
The results deviates by a few percent of the error bars.

Now, if the samples are weighted by the Jeffreys prior, i.e. by weights wi = 1/Ci
` be-

cause the CMB is independent from the other component in the Jeffreys prior, then the
estimator becomes

H =

(∑
i

wi

)−1∑
i

wiC
i
` = Nsam

(∑
i

1

Ci
`

)−1

, (6.17)

i.e. the sample harmonic mean. Figure 6.5 shows the difference between the sample har-
monic mean and the sample arithmetic mean, divided by the sample standard deviation,
for all multipoles, for case#1 (see section 6.3.7). In the worst cases, the mean deviates
of a few percent of the error bars. Thus, the results on the CMB power spectrum are
not altered by much, but an improved sampling scheme that takes the Jeffreys prior into
account is necessary to recover the full properties of the posterior containing the Jeffreys
prior.

6.3.7 Test cases

This section presents four data parametrisations on which BICA has been applied. The
results are presented in the next section. In each case the number of assumed components
and/or the fraction of the sky used and/or the range of multipole is different. All cases
use the same frequency bands and the same point source model, whose parameters are
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Frequency bands Nf = 5 70GHz to 353GHz
Point source model (Np,N

′
p) = (1, 4) reference channel: 143GHz

Table 6.1: Table resuming the specifics of the common parameters to the four cases of
table 6.2. Since N′p + Np = Nf , the reference channel of the point source model refers to
the frequency band in which there is no uncorrelated point sources, i.e. the correction in
all other bands are due to the non-coherence of the correlated point source map at this
frequency.

fsky Nc `min

case #1 80% 4 50
case #2 70% 4 50
case #3 80% 5 2
case #4 90% 4 50

Table 6.2: Table summarising the differences between the four cases treated in this chap-
ter. An additional component is needed in case #3 because a multipole range larger in
the large scales in taken into account.

displayed in table 6.1. The frequency band range from 70GHz to 353GHz, i.e. Nf = 5,
and the point source model is a mixture of one correlated point source component and
four uncorrelated point source components, i.e. Np = 1 and N′p = 4 = Nf − Np.

The cases differ in the number of components, which is either Nc = 4 or Nc = 5, the
fraction of the sky used, which is either fsky = 70% or fsky = 80% or fsky = 90%, the
range of multipoles, which is either from `min = 50 or `min = 2 to `max = 2000. These
choices are arranged in four cases gathered in table 6.2. Each case was ran took 3 days
of CPU time.

As discussed above, the correlated part is a component that scales through frequencies
and the uncorrelated part provides a necessary correction due to the slight non-coherence
of the point sources. Since N′p + Np = Nf , there are Nf possible choices for a channel
of reference for the correlated point sources. This choice should not change the results
but changes the rate of convergence. Indeed, at low frequency the noise dominates the
large scales and at high frequencies the galactic emissions dominates, even the small
scales. As for the CMB, most of the information on the point sources is contained in the
intermediate frequency bands. Changing the frequency of reference changes the shape of
the posterior because then this PDF is defined on different parameters. If the reference
channel is either the highest or the lowest frequency band, then the posterior is wider
on the phenomenological parameters but the inference on the physical parameters is the
same. Choosing the 143GHz band as the reference channel for the point sources pins down
the correlated point source component such that the uncertainty on the uncorrelated point
source components is minimal1.

1This is analogous to choosing to pivot of P (k) for cosmological parameters analysis
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Figure 6.6: CMB sample mean map of the four cases. Top left: case #1. Top right: case
#2. Bottom left: case #3. Bottom right: case #4. Large structures of the CMB can be
seen only in case #3 because the other maps are constructed as if there were no power
at multipoles lower than 50. One can notice on the maps stripped from the Sachs-Wolfe
plateau the power of the first peak of the CMB that causes the most visible fluctuations
at scale ∼ 1◦. While the eye is drawn to the familiar large scale pattern in the CMB
temperature map, case #3 is misleading because at the power spectrum level this map
has discrepancies with the 2013 Planck power spectrum at small scales.

6.4 Results

This section presents the first results of applying BICA to the Planck 2013 data in the
four cases gathered in table 6.2. Case #1 is the case using a maximum of data. Case #2

is a consistency check, the difference with case #1 being just a reduction of the fraction of
the sky used. Cases #3 and #4 are two extensions of case #1. The first has a multipole
range that goes down to `min = 2 and, the second has a larger fsky.

6.4.1 CMB map and power spectrum inference

Figure 6.6 shows the sample mean maps of the four test cases. A future work will be
to explore the difference maps and compare them to the error maps returned by the
Bayesian inference, in order to check for consistency of the method.
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Figure 6.7: CMB sample standard deviation maps of the four cases. Top left: case
#1. Top right: case #2. Bottom left: case #3. Bottom right: case #4. The errors
are larger in regions where high foreground signals are not masked. In case #3, only a
few hundreds samples of the CMB map are used to construct this error model. Thus,
convergence towards the true value of the variance is not reached and some features do
not stand out from the background.

Figure 6.7 shows the sample standard deviation maps of the four cases. Each map
highlights the regions with highest uncertainties. As expected, the errors are larger in
the regions of high foreground signal. The same features appears on all the maps. The
large region of uncertainty around the galactic in the map of the case with increased
multipole range (case #3) do not show up in the other maps. The galactic masks provided
by the Planck collaboration do not mask these regions. Thus, the standard deviation
map would be a useful tool to construct masks, which eventually are different for the
range of multipole used. These maps do not reflect all the uncertainty encoded into the
posterior. They only shows the variance in each pixel. However, it is clear that because
the uncertainties are included in the analysis, the cases using a large fraction of the sky
like case #1 can be used for cosmological parameter estimation or recover a clean CMB
map. As it was done for simulations, correlation will have to be computed in order to
better characterise the errors on the reconstructed CMB.

Figure 6.9 shows the inference of the CMB power spectrum. As for the simulation,
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Figure 6.8: Number of degrees of freedom of the marginal distributions. The black
line is the estimated number of degrees of freedom of the marginal distribution over
all parameters but one multipole of the CMB power spectrum. The dashed red line
represents the expected number of degrees of freedom in the case of a noiseless full sky
CMB, i.e. 2` + 1. Thus, this red line represents the maximum information on the CMB
power spectrum that can be reached with one CMB sky only. The sampler of case #3 has
not fully converged such that a few multipoles at small scales have non physical values.
Using a larger range of multipole or a larger fraction of the sky seems to bring more
information but since the inferred power spectrum has larger values at high multipoles
in these cases, the relative error decreases.
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Figure 6.9: CMB power spectrum for the four cases. Top left: case #1. Top right: case
#2. Bottom left: case #3. Bottom right: case #4. The fifth panel at the bottom shows
the inference of the lowest multipole of case #3. In all figures, the black dots and the
blue lines show respectively the mode and the variance of the marginal distribution. The
red power spectrum is the 2013 Planck power spectrum. Cases #3 and #4 are consistent
with the 2013 Planck power spectrum up to ` ∼ 1500, especially at very low multipoles
for case #3, cases #1 and #2 are consistent with the 2013 Planck power spectrum on
the whole multipole range considered for the analysis.
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the black dots represent the mode of the marginal distribution of each multipole and the
blue line around each black dots are the 1σ errors. For comparison the 2013 Planck CMB
power spectrum is also plotted (red points). In each plot, the bottom panel contains
the relative difference between the 2013 Planck power spectrum and the BICA power
spectrum. The first two cases are consistent with the 2013 Planck spectrum, and the
error bars are slightly larger in the case where fsky=70%. For the two other cases, a
deviation appears at small scales. The inferred CMB has a larger value than expected
because it is contaminated by point sources. The introduction of a fifth component
in case #3 reduces the convergence rate such that some multipoles of the CMB power
spectrum have not converged yet. It remains to be investigated what the result would
be after convergence. In principle, since point source signal is significant at small scales
only, there should not be any difference between cases #1 and #3. Since the diffuse
point sources arise from a similar physical process than that of galactic emissions, part
of the galaxy signal could be captured by the point source components. When a larger
fraction of the sky is used, like in case #4, the regular components and the point source
components are not able to compensate for the increase of power in the galactic plane.
Thus, part of the signal leaks to the CMB power spectrum.

An inverse-gamma distribution fits the individual marginal distribution of each mul-
tipole of the CMB. The black line in figure 6.8 is the estimated number of degrees of
freedom of the marginal distribution. The dashed red line represents the expected num-
ber of degrees of freedom in the case of a noiseless full sky CMB, i.e. the number of
modes per multipole. Thus, this red line represents the maximum available information
about the underlying CMB power spectrum with one CMB sky. Information is close to
maximal at multipole ` ≤ 1000 but drops at small scales because of noise, beaming and
point sources. Beaming and point sources were not involved in the test on simulations
and the information about the CMB power spectrum was limited by the noise only. Us-
ing a larger range of multipole or a larger fraction of the sky, cases #3 and #4, slightly
increases the information. But this might be due to the larger statistical power at small
scales that the inference of the CMB power spectrum gives in these cases, and therefore
the error bars are relatively lower.

6.4.2 Inference of the non-CMB components

Except the CMB, the recovered individual components are not physical. Since the CMB
is extracted, the rest of the data is clean of CMB anisotropies. This section presents the
inference of the total of the non-CMB and non-point source like components.

Figure 6.10 shows the sample mean map of the foregrounds at high frequency. Sup-
posing that the CMB is clean of all foregrounds, these maps contain all the non-CMB
components, except point sources, at 353GHz, and particularly the galactic emissions.
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Figure 6.10: Foreground sample mean for the four cases. Top left: case #1. Top right:
case #2. Bottom left: case #3. Bottom right: case #4. This is a map of the sum of
all the non-CMB and non-point source components at the highest frequency band, i.e.
353GHz. Dust is the brightest component at high frequencies and is the component that
spreads the most over the sky. That is why it is the main component in these maps.
The ringing structure in maps of cases #1, #2 and #4 comes from cutting the map at
`min = 50.

Dust has a spatial distribution that covers more sky than the other components. In
addition, it is the brightest component in the frequency bands I used. Thus, the main
visible component in these maps is the emission from dust of the ISM. Since the power
of the galaxy lies principally in the lowest multipoles, the galaxy is more visible in case
#3, where the minimum multipole included in the analysis is the lowest, `min = 2.

Figure 6.11 shows the inferred power spectra of the galaxy. Since the galaxy is not
isotropic, the shape of its power spectrum changes if a different fraction of the sky is used
for the analysis.

6.4.3 Consistency of the results

Figure 6.12 shows the mismatch D` of equation 5.5 between the data covariances of each
multipole and the model covariance R` of equation 6.12. Case #2 is the case where
the mismatch is the flattest because in this case the galaxy is heavily masked and less
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Figure 6.11: Non-CMB non-point source like component power spectrum for the four
cases. Top left: case #1. Top right: case #2. Bottom left: case #3. Bottom right:
case #4. As for the CMB, the black dots represents the peak of the individual marginal
distributions at each multipole, and the blue bar around each dot represents the one-sigma
error around the peak.

components are needed to describe it. In all other cases the mismatch rises at the largest
scales, where the galaxy has more power, in a lesser extent in case #3 because more the
assumed number of components is larger (Nc = 5 against Nc = 4 in cases #1 and #4).

As detailed in section 5.4.1, the number of degrees of freedom is found by subtracting
the number of sampled parameters per multipole to the degrees of freedom of the data
covariance of that multipole. However, for example, if two parameters were completely
correlated in the posterior, then only one parameter, i.e. only one number of degrees of
freedom, would be enough to explain both of them. Figure 6.13 shows the eigenvalues
of the posterior correlation matrix of the component power spectra and cross spectra, at
two multipoles. Only case #1 is shown here, but the same properties are found in all
the other three cases. There are 7 eigenvalues because there are 4 components, including
the CMB, and 3 cross-spectra because cross-spectra between the CMB and the other
components are fixed to zero. In the case of uncorrelated parameters, the two lines would
be flat and all eigenvalues would be 1. This is clearly not the case here and the effective
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Figure 6.12: Mismatch between the data covariance and the model covariance at each
multipole, for the four cases. Top left: case #1. Top right: case #2. Bottom left: case
#3. Bottom right: case #4. Black line is the mismatch at each multipole, red dashed line
represents the expected number of degree of freedom of the distribution of the mismatch
at each multipole. The expected number of degrees of freedom is lower in case #3 because
more parameters per multipole are fitted to the data. The number of degrees of freedom
is higher than expected, maybe because of correlation between parameters (see text).

number of degrees of freedom is larger than shown in figure 6.12 which explain why
the CMB spectrum is a good fit, consistent between cases #1 and #2, in spite of the
offset in mismatch seen in figure 6.12. Furthermore, the blue and red crosses shows the
eigenvalues of a correlation matrix at respectively low (` ∼ 100) and high (` ∼ 2000)
multipoles. Thus, the eigenvalues of high multipoles are decreasing more rapidly than
that of low multipoles, which could explain the difference of heights in the mismatch
between low and high multipoles.

As another test for consistency, I directly compare the values of the data covariance
and the model covariance R` at each multipole `. Figure 6.16 shows the relative difference
of these two quantities. The model slightly overpredicts the data power spectra, which is
another explanation for a higher than expected mismatch.
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Figure 6.13: Two set of eigenvalues of the posterior correlation matrices of the parameters
of two multipoles, one at large scale (` ∼ 100, blue line) one at high multipole (` ∼ 2000,
red line) (see text).

6.4.4 Comparison with SMICA

Among all methods presented in chapter 3.3, SMICA is the one to which BICA is the
most closely related. In this subsection I compare the SMICA map and the BICA map
of the four cases. It is important to note that the procedures of BICA and SMICA for
the Planck analysis are different in several aspects. The BICA model is more complete
than the SMICA one because it includes a description of the point sources. SMICA uses
a very large fraction of the sky (fsky = 97%) and assumes more components (Nc = 6)
than BICA (Nc = 4or5). SMICA performs the separation on a large multipole range,
` = 2 − 4000 and the power spectra are binned. SMICA takes the calibration errors
between the observation channels into account, i.e. the CMB frequency response is a
vector filled with ones, corrected by a factor close to 1 (at the subpercent level or less)
in each channel.

Figure 6.14 shows the difference between the BICA map and the SMICA map. Red
shows an excess in the BICA map, blue an excess in the SMICA map. The maps have
been masked by the mask that I used for the analysis and the SMICA confidence mask.
In cases #1, #2 and #4, i.e. in cases of minimum multipole for analysis `min = 50, the
maps agree on most of the sky. Case #3 indicates that large scales may need a special
treatment. Figure 6.15 shows the power spectra of the maps of figure 6.14.
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Figure 6.14: The difference map between the BICA map and the SMICA map for the
four cases. Top left: case #1. Top right: case #2. Bottom left: case #3. Bottom right:
case #4. Red and blue means excess in respectively the BICA map and SMICA map.
Case #3 seems to indicate that galactic residuals are present in this map.

Conclusion

I have presented the first application of BICA to the 2013 Planck data. Although pre-
liminary, the results are promising. BICA is able to recover the CMB power spectrum
using a large fraction of the sky on large multipole range. The Bayesian framework and
the phenomenological model of the components allows to construct an error map of the
recovered CMB map that takes the presence of the foregrounds into account and that
is free of any physical assumption – apart from the point source model. The results are
consistent with the 2013 Planck results at the power spectrum level. BICA produces a
rich data product ready for further and deeper analysis.
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Figure 6.15: Power spectrum of the difference map between the BICA map and the
SMICA map for the four cases, i.e. the power spectra of the maps of figure 6.14. Top
left: case #1. Top right: case #2. Bottom left: case #3. Bottom right: case #4. The
red line represents the power spectrum of the difference. For comparison, the 2013 Planck
power spectrum is plotted in black. Case #3 suffers of foreground contamination at low
` the least because the model assumes 5 components. The oscillatory pattern may be
due to masking, since the maps are masked with an unapodised point sources mask (the
SMICA confidence mask and the point source mask used in BICA analysis).
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Figure 6.16: Comparison between the data covariance and the model covariance. Only
case #1 is shown here. Each window shows the relative difference between an element
of the data covariance and the model covariance, for the whole range of multipoles, i.e.
between `min = 50 and `max = 2000. Each panel is a frequency cross spectrum A × B
with A,B =70GHz, 100GHz, 143GHz, 217GHz, 353GHz. The black dots represent the
relative difference, red line is zero. There is an overall good fit. the discrepancies in
the 70GHz channel comes from the fact that the data are very noisy above ` ∼ 1000 at
this frequency band. An offset between the data and the model is present in the auto
spectra in frequency bands between 100GHz and 217GHz, which could explain the excess
of mismatch in figure 6.12.
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General conclusion

Accomplishments

In this thesis I have presented a new blind formulation of the CMB inference problem,
named BICA. For all-sky and high resolution data, it unifies parts of the analysis that have
previously been treated separately, such as component separation and power spectrum
inference. I have also presented previous component separation methods and we saw
that two approaches are exploited: blind source separation, where the assumptions about
the sources mixed in the signal are minimal, and physical parametrisation, where the
sources are modelled as faithfully as possible. The most attractive advantage of blind
source separation is to provide results without a priori knowledge that could bias the
results if the physical assumptions are approximate. Thus, the approach of BICA relies
on a phenomenological model of the multi-frequency microwave sky without the need for
physical models of the individual components.

BICA fully makes use of Bayesian statistics. In this framework, I construct a posterior
PDF free of almost any physical assumption and I describe an efficient sampling scheme
that fully explores the component separation uncertainties on the inferred CMB products
such as maps and/or power spectra. The method constructs a PDF over the CMB map
and power spectrum directly from the observation maps. The shape of the PDF, and
therefore the error model, accounts for the presence of foregrounds in the data.

External information about individual components can be incorporated as a prior
giving a flexible way to progressively and continuously introduce physical component
separation from a maximally blind approach. I showed that from the general formulation
of BICA and by ad hoc prior choices, it is possible to connect the Bayesian formalism to
existing component separation methods such as Commander, SMICA, ILC and SEVEM.

I have presented the results of the application of the method to both simulations and
data.

In the case of the application to a simple set of simulations, BICA infers correctly the
CMB power spectrum. The statistical properties of the recovered CMB power spectrum
are close to what is expected if a clean full sky map of the CMB were available. The map
is also well recovered, although the residuals point to the need of masking a small part

113



of the galactic plane.
Additional modelling was necessary before the application to the 2013 Planck data.

The main differences with the simulations are the approximate estimation of the noise
power spectra and the inclusions of beams for the instrumental modelling, the masking of
the observation maps, the inclusion of cross-spectra between the non-CMB components
and the special treatment of diffuse point sources for the physical modelling. The results
reflects only works in progress but I have shown that the inference of the CMB power
spectrum seems robust, since different treatments of the data lead to the same results.
Also, I show consistency with the 2013 Planck power spectrum (Planck Collaboration
et al., 2014d) which is obtained with a different methodology.

The results provide a point of departure for more in-depth analysis, for example
cosmological implications and the impact of the foreground removal uncertainties on
cosmological parameters. Given the promising results of this first application, additional
choices for data selection and model choice remain to be explored.

Future works

First, although the robust inference of the CMB power spectrum, all the results of the
application of BICA to Planck data need further studies. The masking effects even
though small need to be addressed for example using MASTER (Hivon et al., 2002). Full
inpainting of the maps, involving Gaussian realisations under constraints, would also be
a way of avoiding the effects of masking. Due to slow convergence, few map samples were
available to present the results in this thesis. More statistics will help to get a deeper
understanding of the results.

The impact of the choice of priors needs to be addressed. BICA is capable of incorpo-
rating various priors and a continuous range of values for prior parameters. Thus, many
cases have to be tested. In particular, adding a non-zero mean in the Gaussian prior
of the components would reduce the non-Gaussianity and the anisotropy of the galactic
residuals. In this case the model would be closer to the case in which BICA is optimal.

Thanks to its phenomenological method and the possibility of introducing information
with various degrees of confidence, BICA is a very flexible method and it will take time
to explore all of its possibilities. In particular, the posterior PDF on the CMB can be
used as input for a likelihood analysis of the cosmological parameters. Alternatively, a
parametrisation of the CMB power spectrum while keeping a blind description of the
foregrounds would lead to a direct inference of the cosmological parameters within the
CMB cleaning step. The errors would then incorporate the uncertainties due to all the
intermediate steps, from the observation maps to the cosmological parameters, that are
so far needed. Bayesian model provide a way to compare cosmological models. This
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method was applied on WMAP data without considering component separation (Trotta,
2007). In the case of a parametric formulation of BICA, Bayesian model selection would
compare cosmological model directly from the observation maps.

Application to polarisation is a natural extension of the method. The 2014 release of
the Planck data, expected for December of this year, will include polarisation data but
tests on simulation would be necessary before the application to the data.

General covariance learning

The previous paragraph discusses applications to CMB analysis only. However, BICA
can be seen as a particular case of a general method for covariance learning that has
applications beyond the scope of CMB analysis.

Thanks to phenomenological description of the data, it can be applied to any kind of
inverse problem. For example it could be applied to detection of the 21cm line emission
from the reionisation epoch (e.g. Madau et al. (1997)). The 21cm signal is dominated by
foregrounds by several orders of magnitude. Thus, a blind source separation is necessary
because the slightest error in the the foreground modelling induce a huge leakage in the
cosmological component.

The CMB data analysis method presented in this thesis is a particular case of a more
general covariance learning method. The work of thesis shows the power of the Bayesian
approach. Writing the component separation problem by a blind description and solving
it in a Bayesian framework opened new perspectives in CMB data analysis.

115



Appendix A

Statistical basics

For any data analysis, statistics are a necessary tool. Sophisticated and powerful methods
have been developed over the past 25 years especially for CMB analysis since COBE, the
first mission to observe the CMB anisotropies (Smoot). Statistics and probabilities are
well suited for CMB analysis because the CMB is a statistical object. Indeed, our CMB
anisotropy map is a picture of quantum fluctuations from inflation that have barely
evolved.

This appendix gives informal but practical definitions of the mathematical objects
that I use to build the BICA method (see chapter 4) and analyse its products.

A.1 Random variables, distributions and probability
density functions

A random variable is a variable that can take a whole set of values. Each value is more
less possible, the likeliness is quantified by a probability. The probability distribution
– or simply distribution – is a set that gathers all the probabilities. In the scope of
this thesis, four quantities associated to random variables and their distributions are
important1

• the mean or expected value of a random variable, which is the average value
that the random variable takes after after having change its value according to its
probability distribution an infinite number of time,

• themode of a distribution, which is the most probable value of the random variable,

• the standard deviation of a random variable, which quantifies the average devia-
tion from the mean after an infinite number of changes in the value of the random
variable, noted

1For some particular probability distributions, part of these quantities do not exist.
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• the correlation between two random variables, which is a quantification among
others of the influence of one variable on the other one (and conversely), it is a
dimensionless quantity and can take values in [−1, 1].

Equivalently, we can define the variance of a random variable which is the squared stan-
dard deviation and the covariance between two random variables which is the correlation
times the standard deviations of the variables of interest.

Let X be a continuous random variable than can take any real value. Then it has
a probability distribution and the function f : R → R+ is the probability density
function (PDF) of X if

∀x ∈ R , P (X ≤ x) =

∫ x

−∞
duf(u) (A.1)

where P (X ≤ x) is the probability of the event "The value of X is lower or equal to
x". Since P (X ≤ +∞) = 1 for any distribution, a PDF f is normalised to 1. Unlike
probabilities, a PDF can take values greater than 1. It gives the relative probabilities
between events. For example, if f(x) ≥ f(y) then the event "The value of X is equal to
x" is more probable than the event "The value of X is equal to y".

The variable X is not necessarily defined on R and can be, for example, a vector of
length n or an n×n square matrix. In these cases, f still is real-valued but is defined on
Rn or the set of matricesMn(R).

A.2 Gaussian distribution and related distributions

The most common PDFs that come across in probability are the PDFs of Gaussian
processes. A random vector that has a Gaussian distribution can take any value in
Rn and its PDF N is

∀x ∈ Rn , N (x |µ,Σ) =
1√
|2πΣ|

exp−1

2
(x− µ)T Σ−1 (x− µ) . (A.2)

The two parameters µ and Σ are respectively the mean and the covariance matrix of the
Gaussian variable. If an infinite number of realisations of the Gaussian random variable
were available then µ would be the averaged value of the realisations, i.e. the mean. The
diagonal elements of Σ are the variances of the entries of the random vector and the
off-diagonal of Σ are the covariances between the entries of the random vector.

In equation A.2, if Σ is the random variable and if x and µ are fixed, then we get a PDF
for the covariance Σ, up to a normalisation factor. A generalisation of this distribution
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is the inverse-Wishart distribution, whose PDF is

∀Σ ∈M+
n (R) , W−1(Σ |Ψ, ν) =

|Ψ|
ν
2

2
νn
2 Γn(ν

2
)
|Σ|−

ν+n+1
2 exp−1

2
tr(ΨΣ−1) . (A.3)

where M+
n (R) is the set of the positive-definite matrices and Γn is the multivariate

Gamma function. The parameter ν is the number of degrees of freedom of the dis-
tribution. From a likelihood point of view, the more available data there is, the highest
the number of degrees of freedom is and the sharpest the distribution for Σ is. The uni-
variate specialisation of the inverse-Wishart distribution is called the inverse-gamma
distribution.

In equation A.2, the exponent Y = (X−µ)TΣ−1(X−µ) has its own distribution. It is
closely related to the Gaussian distribution and its PDF can be derived from the n-variate
Gaussian PDF. The distribution for the random variable Y is called the chi-squared
distribution with n degree of freedom and its PDF is

∀x ∈ R+ , χ2(x |n) =
1

2n/2Γ
(
n
2

)x(n/2−1) exp (−x/2) . (A.4)

It is defined on R+ because Σ−1 is positive-definite.

A.3 Kullback-Leibler divergence

The Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) is a statistical tool
that measures the dissimilarity between two distributions. If p and q are the PDFs of two
distribution P and Q, then the KL divergence of P and Q is defined as

DKL(P,Q) =

∫
R
dx log

(
p(x)

q(x)

)
p(x) . (A.5)

In this thesis, the bijection between a zero mean Gaussian distribution P and its co-
variance ΣP will lead me to write DKL(ΣP ,ΣQ) rather than DKL(P,Q). Note that the
KL divergence is not symmetric in P and Q and that it is additive for independent
distributions, e.g. if p(x, y) = p1(x)p2(y) and q(x, y) = q1(x)q2(y) then

DKL(P,Q) = DKL(P1, Q1) +DKL(P2, Q2) . (A.6)
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A.4 Shannon entropy

Shannon entropy measures the information content of a random variable. It is defined as
follows. Let X be a random variable with PDF fX . Then its entropy H is

H(X) =

∫
dx fX(x)I(x) = −

∫
dx fX(x) log fX(x) . (A.7)

The less probable the outcome of a random variable is, the more information I(X) =

log
(

1
fX(X)

)
it brings. Thus, the Shannon entropy is the sum of the information of all

values weighted by the probability of their appearance.
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Appendix B

Bayesian inference

Our universe – and a fortiori the CMB – is the only realisation of universes that is at
our disposition. Bayesian statistics is a probabilistic framework in which the data of a
one-event experiment can be treated. Bayesian inference is often opposed to frequentist
estimation, a statistical framework in which the accuracy of the results depends on the
number of times the experiment has been conducted. For example, frequentist statis-
tics are widely used in particle physics because experiments can be repeated as many
times as wanted, thanks to particle accelerators. The component separation that I have
been developing during my thesis is based on Bayesian statistics. This appendix focuses
on the basics of Bayesian analysis that are needed to understand the method and the
interpretation of its products.

B.1 Bayes’ theorem

In data analysis, Bayesian inference is a particular interpretation of the Bayes’ theorem.
Formally this theorem gives a relation between the probabilities of two events A and B
and their conditional probabilities:

P (A |B)P (B) = P (B |A)P (A) . (B.1)

Now, let say I have some data and a model that might explain the data and, in the
Bayes’ theorem, let A be the event "Each parameter of the model has a certain value"
and B the event "The data has a certain value". For that specific model, I want to know
the probability of the event A to be true, with an analysis based on the data. In other
words, I ask the question "What is the probability of the parameters to take certain
values, knowing the value of the available data". By definition, P (A |B) is the answer to
this question.
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The Bayesian way of thinking data analysis is to use the Bayes’ theorem as follows

P (hypotheses | data) ∝ L(data | hypotheses)P (hypotheses) . (B.2)

P (hypotheses | data) is called the posterior probability, L(data | hypotheses) the like-
lihood probability and P (hypotheses) the prior probability. As soon as the data is
acquired, P (data) has taken some fixed value that will never change, thus we can disre-
gard this normalisation quantity. The likelihood measures how likely the available data
is, given the assumed model. The prior is the probability of a particular event to occur,
even before the acquisition of the data. Therefore the prior does not depend on the data,
it depends on the analyst’s choice.

A Bayesian analysis should provide the probability of any event. It is much more
common to make use of probability density functions rather than just probabilities. Doing
a Bayesian inference of some model’s parameters is by definition evaluating the posterior
PDF over these parameters with the use of Bayes’ theorem.

B.2 Jeffreys priors

As it can be seen in equation B.2, the prior PDF shapes the posterior PDF. Thus, the
information that the prior brings to the inference forces the results towards a particular
direction. Jeffreys priors are a class of prior PDF that tends to minimise the information
carried by the prior PDF with respect to the likelihood, they are uninformative priors.

Let L be likelihood, x a set of data and θ = {θi ; i ∈ [[1, N ]]} the set of parameters
that we want to infer. The score function V (θi, x) measure how sensitive the likelihood
is under a variation in θi:

V (θi, x) =
1

L(x | θ)
∂L(x | θ)
∂θi

=
∂ logL(x | θ)

∂θi
, (B.3)

and the Fisher information I(θi), which quantifies how much information on θi is con-
tained in the likelihood, is the variance1 of the score function:

I(θi) = E
[
V (θi, x)2

∣∣θ] = −E
[
∂2 logL(x | θ)

∂θi
2

∣∣∣∣θ] . (B.4)

The mutual information between two entries of θ is the covariance of the score function

I(θi, θj) = E [V (θi, x)V (θj, x)|θ] = −E
[
∂2 logL(x | θ)

∂θj∂θi

∣∣∣∣θ] . (B.5)

1because the mean is zero.
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The matrix I(θ)ij = I(θi, θj) is called the Fisher information matrix.
If πJ is an uninformative prior then it should be invariant under a change of variable.

The answer is the Jeffreys prior:

πJ(θ) = |I(θ)|1/2 . (B.6)
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Appendix C

PDF evaluation techniques

In Bayesian analysis, once the data is available and the analytical form of the posterior
PDF is derived, quantitative informations are extracted from evaluations of the posterior
PDF. This appendix proposes strategies to evaluate a PDF. I first present two simple
intuitive approaches to give but these are impracticable, in the general case complex
sampling techniques has to be used to evaluate a PDF. This kind of algorithms constructs
chains containing a series of samples from the PDF. I describe two algorithms that perform
indirect sampling: Metropolis-Hastings sampling and Gibbs sampling.

C.1 Simple approaches

Grid evaluation The brute force way to evaluate a PDF is to discretise the param-
eter space and to compute the value of the PDF at each node. This solution is rarely
achievable since the time of a full PDF evaluation grows exponentially with the number
of parameters. For example, if one wants to evaluate the posterior over a 10×10 pixel
image with two bins only per pixel, and if one evaluation of the posterior takes 1µs, it
would require 2100 × 1µs, i.e. three million times the age of the universe.

Direct sampling The usual way of evaluating a PDF is by means of random generators.
In some particular cases, the PDF is a common distribution from which it is easy to
sample from, e.g. a Gaussian distribution whose mean and covariance do not depend
on the parameters. The method to evaluate the PDF is then to draw samples from the
distribution and construct a histogram with the samples.

C.2 Metropolis-Hastings sampling

Metropolis-Hastings sampling (Metropolis et al., 1953; Hastings, 1970) estimates the dis-
tribution by building a chain of samples

(
Θ(i) ; i ∈ [[0, I]]

)
. It proceeds as follows:
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Metropolis-Hastings sampling

1. begin with some initial value Θ(0) of Θ,

2. for i ∈ [[1, I]],

2.1 propose a random candidate Θ∗ depending on the current position of the chain
Θ(i−1),

2.2 compute the acceptance ratio a = P (Θ∗)/P (Θ(i−1)),

2.3 accept/reject Θ∗, i.e. Θ(i) = Θ∗ with probability min(1, a), Θ(i) = Θ(i−1) with
probability 1−min(1, a).

It can be shown that the histogram of the resulting chain
(
Θ(i) ; i ∈ [[0, I]]

)
converges

towards the target distribution P (Θ) as I →∞.

C.3 Gibbs sampling

Gibbs sampling (Gelman and Rubin, 1992) is a particular case of Metropolis-Hastings
sampling where the proposal distribution is the marginal distribution. Then it can be
shown (Gelman and Rubin, 1992) that, by construction, the acceptance ratio is always
one and the samples drawn from the marginal are always accepted. The idea of Gibbs
sampling is to split one difficult sampling problem into several easy sampling problems.
Say that we have a set of parameters Θ = {θn ;n ∈ [[1, N ]]} and that we want to sample
Θ from a given distribution P (Θ), which has not a common form. The principle of Gibbs
sampling is to build a chain of samples

(
Θ(i) ; i ∈ [[0, I]]

)
following the scheme:

Gibbs sampling

1. partition Θ =
⋃K
k=1 Θk such that for all k, the conditional distribution P (Θk |Θ\Θk)

is easy to sample from,

2. begin with some initial value Θ(0) of Θ,

3. for i ∈ [[1, I]], for k ∈ [[1, K]],
sample the set of parameters Θ

(i)
k from P (Θk |Θ \ Θk) where Θ \ Θk is fixed to its

latest value, i.e. Θ
(i)
1

⋃
· · ·
⋃

Θ
(i)
k−1

⋃
Θ

(i−1)
k+1

⋃
· · ·
⋃

Θ
(i−1)
K

As for Metropolis-Hastings sampling, it can be shown that the histogram of the resulting
chain

(
Θ(i) ; i ∈ [[0, I]]

)
converges towards the target distribution P (Θ) as I →∞. Gibbs

sampling is achievable only if the set of parameters Θ and its distribution P (Θ) verify
the condition in step 1. If they do not, one should rely on Metropolis-Hastings algorithm.
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C.4 Collapsed sampling

Collapsed sampling is a sampling technique that reduces the dimension of the param-
eter space in order to speed up the sampler. The dimension reduction is achieved via
marginalisation of the posterior. For example, say that we want to sample a set of
three parameters {Θ1,Θ2,Γ} from the distribution P (Θ1,Θ2,Γ) and that the marginal
P (Θ1,Θ2) is known. In addition, each conditional distribution of both the joint distribu-
tion and its marginal can be sampled from directly. A collapsed Gibbs sampler build a
chain of samples

(
{Θ(i)

1 ,Θ
(i)
2 ,Γ

(i)} ; i ∈ [[0, I]]
)
according to the following scheme

Collapsed Gibbs sampling

1. begin with some initial value {Θ(0)
1 ,Θ

(0)
2 ,Γ(0)},

2. for i ∈ [[1, I]],

2.1 sample Θ
(i)
1 from P (Θ1 |Θ(i−1)

2 ),

2.2 sample Θ
(i)
2 from P (Θ2 |Θ(i)

1 ),

2.3 sample Γ(i) from P (Γ |Θ(i)
1 ,Θ

(i)
2 ).

The implementation of BICA in chapter 4 makes use of such a sampler except that
the sampling from the marginal distribution (steps 2.1 and 2.2 in the example) is replaced
by a "propose and accept/reject" step as in Metropolis-Hastings.
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Appendix D

Isotropic Gaussian random field on the
sphere

D.1 Spherical harmonics

The spherical harmonics are a set of functions that form a basis that are convenient for
representation of a function on the sphere. They are defined as follows

∀` ≥ 0,m ∈ [[−`, `]], Y`m(θ, ϕ) =

√
(2`+ 1)

4π

(`−m)!

(`+m)!
Pm
` (cos θ) eimϕ , (D.1)

where Pm
` is the associated Legendre polynomials of degree ` and order m and they verify

the following orthonormal relation∫ π

0

∫ 2π

0

sin θdθdϕ Y`m(θ, ϕ)Y ∗`′m′(θ, ϕ) = δ``′δmm′ . (D.2)

A square-integrable function on the sphere f : (θ, ϕ) ∈ [[0, π]]× [[0, 2π]]→ f(θ, ϕ) ∈ R
can be expressed on the basis of spherical harmonics as a linear combination of the Y`m
as follows

∀(θ, ϕ) ∈ [[0, π]]× [[0, 2π]], f(θ, ϕ) =
∞∑
`=0

∑̀
m=−`

a`m Y`m(θ, ϕ) , (D.3)

where the a`m are the modes of the function f . The inverse relation can be found thanks
to orthonormal relation and

∀(`,m) ∈ N× [[−`, `]], a`m =

∫ π

0

∫ 2π

0

sin θdθdϕ f(θ, ϕ)Y ∗`m(θ, ϕ) . (D.4)

The mode a00 is called the monopole and the set of modes such that ` = 1 constitute
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the dipole.

D.2 Power spectrum

The function is equivalently represented by either {f(θ, ϕ); (θ, ϕ) ∈ [[0, π]] × [[0, 2π]]} or
{a`m; (`,m) ∈ N× [[−`, `]]}. Thus, if f(θ, ϕ) is stochastic so are the a`m. For convenience,
I now change the notation for the coordinate on the sphere: (θ, ϕ) → ~n where ~n is the
unit vector that points toward the point of coordinate (θ, ϕ).

Let f be an isotropic Gaussian random field on the sphere, i.e. the mean is the same
over the sphere and the covariance between two points ~n1 and ~n2 depends on the angle
between them z12 only:

〈f(~n)〉 = f̄ , (D.5)

〈(f( ~n1)− f̄)(f( ~n2)− f̄)〉 = ξ (z12) . (D.6)

The function ξ is called the two-point correlation function. Since the monopole is
the average of f over the sphere i.e.

a00 =
1

4π

∫ π

0

∫ 2π

0

sin θdθdϕ f(θ, ϕ) =̂ f̄ , (D.7)

we can redefine f and the a`m in order to work with zero mean quantities

a`m → a`m − a00 (D.8)

f(θ, ϕ) → f(θ, ϕ)− f̄ . (D.9)

The isotropy of f implies that the covariance of the modes is diagonal, i.e.

〈a`ma`′m′〉 = C`δ``′δmm′ . (D.10)

The collection of the C` is called the power spectrum of the Gaussian random field and
we have the following relation between the two-point correlation function and the power
spectrum:

ξ(z12) =
∑
`

C`
2`+ 1

4π
P`(z12) (D.11)

where P` is the Legendre polynomial of degree `, i.e. the power spectrum are the multi-
poles of the two-point correlation function.
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Appendix E

HEALPix

Hierarchical Equal Area isoLatitude Pixelization1 (HEALPix) (Górski et al., 2005) is a
partition of the 2-D sphere. The pixelisation scheme has three important properties:

• at a given resolution, the pixels have the same areas

• the sphere is hierarchically tessellated, meaning that at, a given resolution, each
pixel divides up into four pixels to give the resolution above. The lowest resolution
is a 12 piece tessellation of the sphere

• the centres of the pixels occur on a minimal number of latitude rings.

The last property is particularly important to allow fast analyses on the sphere, like
transformation from real to harmonic space or Gaussian random realisation of a map
from a power spectrum.

Since a map in HEALPix is hierarchically divided from a 12 piece partition, the
number of pixels of a given resolution is 12Nside

2 with Nside ∈ N∗. Nside is called the
HEALPix resolution parameter of the map.

Figure E.1: HEALPix pixelisation scheme. The figure on the left shows the lowest res-
olution of the pixelisation possible with its 12 pixels. The figure on the right shows the
hierarchical pixelisation.

1code available at http://healpix.jpl.nasa.gov/index.shtml
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Appendix F

Link between ILC and BICA

F.1 Data and notations

For each mode (`,m), the data model is

d`m = scmb`m e+ Asf`m + n`m (F.1)

R` = Ccmb
` eeT + AΣ`A

T +N` (F.2)

where e = (1 . . . 1)T , scmb`m represents the CMB map, sf`m is a vector containing all the
foreground maps, A has no column dedicated to the CMB, R` is the covariance of d`m.
From now on, for simplicity I define

R ≡ R` (F.3)

C ≡ Ccmb
` (is a scalar) (F.4)

F ≡ AΣ`A
T +N` . (F.5)

These quantities are related as follows

R = CeeT + F . (F.6)

F.2 ILC and "BICA derived" formulas

The ILC weights are (Tegmark et al., 2003)

w =
eTR−1

eTR−1e
. (F.7)
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The weights derived following the bayesian approach are (equation 4.14)

w′ =
eTF−1

C−1 + eTF−1e
. (F.8)

Next sections shows the relation between those two formulas.

F.3 Expanding the ILC formula

Let’s expand the ILC formula of equation F.7 following the decomposition of equation F.6.
Let’s start by the inverse of R, using Woodbury matrix identity1. CeeT is not invertible
so the only way to use the Woodbury formula is as follows:

R−1 = F−1 − 1

C−1 + eTF−1e
F−1eeTF−1 . (F.9)

Then the numerator of ILC formula (equation F.7):

eTR−1 = eTF−1 − eTF−1e

C−1 + eTF−1e
eTF−1 (F.10)

=

(
1− eTF−1e

C−1 + eTF−1e

)
eTF−1 (F.11)

Then the denominator of ILC formula (equation F.7): multiplying equation F.10 on the
right by e and factorising by eTF−1e on the right we get

eTR−1e =

(
1− eTF−1e

C−1 + eTF−1e

)
eTF−1e . (F.12)

Dividing equation F.11 by equation F.12 we get the following relation

w =
eTR−1

eTR−1e
=

eT (CeeT + F )−1

eT (CeeT + F )−1e
=

eTF−1

eTF−1e
. (F.13)

F.4 Relation between the two formulas

Finally, we have w = w′ if C →∞, i.e. flat prior for CMB map. The limit is well defined
since (with the notation x ≡ C−1

eTF−1e
)

1− 1

1 + x
=
x→0

x+O(x2) and
x+O(x2)

x+O(x2)
=

1 +O(x)

1 +O(x)
−→
x→0

1 . (F.14)

1The Woodbury matrix identity is (A+ UCV )
−1

= A−1−A−1U
(
C−1 + V A−1U

)−1
V A−1, where A

is n-by-n and invertible, U is n-by-k, C is k-by-k and invertible and V is k-by-n (Woodbury, 1950).
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