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Résumé 
Un modèle de surface continentale (LSM en anglais) est un modèle numérique décrivant 

les échanges d'eau et d'énergie entre la surface terrestre et l'atmosphère. La physique de la 
surface de la terre comprend une vaste collection de processus complexes. L'équilibre entre la 
complexité du modèle et sa résolution, confronté à des limitations de calcul, représente une 
question fondamentale dans le développement d'un LSM. Les observations des phénomènes 
étudiés sont nécessaires afin d’adapter la valeur des paramètres du modèle à des variables 
reproduisant le monde réel. Le processus d'étalonnage consiste en une recherche des 
paramètres du modèle qui minimisent l’écart entre les résultats du modèle et un ensemble 
d'observations. Dans ce travail, nous montrons comment l'assimilation variationnelle de 
données est appliquée aux bilans d'énergie et d'eau du modèle de surface continentale 
ORCHIDEE afin d’étalonner les paramètres internes du modèle. Cette partie du modèle est 
appelé SECHIBA. Le logiciel YAO est utilisé pour faciliter la mise en œuvre de l'assimilation 
variationnelle 4DVAR.  

Une analyse de sensibilité a été réalisée afin d'identifier les paramètres les plus influents 
sur la température. Avec la hiérarchie des paramètres obtenue, des expériences jumelles à 
partir d'observations synthétiques ont été mises en œuvre. Les résultats obtenus suggèrent que 
l'assimilation de la température de surface a le potentiel d'améliorer les estimations de 
variables, en ajustant correctement les paramètres de contrôle. Enfin, plusieurs assimilations 
ont été faites en utilisant des observations de données réelles du site SMOSREX à Toulouse, 
France. Les expériences faites en utilisant différentes valeurs initiales pour les paramètres, 
montrent les limites de l'assimilation de la température pour contraindre les paramètres de 
contrôle. Même si l'estimation des variables est améliorée, ceci est dû à des valeurs finales des 
paramètres aux limites des intervalles prescrit de la fonction de coût. Afin de parvenir à un 
minimum, il faudrait permettre aux paramètres de visiter des valeurs irréalistes. Les résultats 
montrent que SECHIBA ne simule pas correctement  simultanément la température et les flux 
et la relation entre les deux n’est pas toujours cohérente selon le régime (ou les valeurs des 
paramètres que l’on utilise). Il faut donc travailler sur la physique pour mieux simuler la 
température. En outre, la sensibilité des paramètres à la température n’est pas toujours 
suffisante, donnant une fonction de coût plate dans l’espace des paramètres prescrit. Nos 
résultats montrent que le système d'assimilation mis en place est robuste, puisque les résultats 
des expériences jumelles sont satisfaisants.  

Le couplage entre l'hydrologie et la thermodynamique dans SECHIBA doit donc être 
revu afin d'améliorer l'estimation des variables. Une étude exhaustive de l'erreur des mesures 
doit être menée afin de récupérer des termes de pondération dans la fonction de coût. Enfin, 
l'assimilation d'autres variables telles que l'humidité du sol peut maintenant être réalisée afin 
d'évaluer l'impact sur les performances de l’assimilation.  
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Abstract 

A land surface model (LSM) is a numerical model describing the exchange of water and 
energy between the land surface and the atmosphere. Land surface physics includes an 
extensive collection of complex processes. The balance between model complexity and 
resolution, subject to computational limitations, represents a fundamental query in the 
development of a LSM. With the purpose of adapting the value of the model parameters to 
values that reproduces results in the real world, measurements are necessary in order to 
compare to our estimations to the real world. The calibration process consists in an 
optimization of model parameters for a better agreement between model results and a set of 
observations, reducing the gap between the model and the available measurements. Here we 
show how variational data assimilation is applied to the energy and water budgets modules of 
the ORCHIDEE land surface model in order to constrain the model internal parameters. This 
part of the model is denoted SECHIBA. The adjoint semi-generator software denoted YAO is 
used as a framework to implement the 4DVAR assimilation.  

A sensitivity analysis was performed in order to identify the most influent parameters to 
temperature. With the parameter hierarchy resolved, twin experiments using synthetic 
observations were implemented for controlling the most sensitive parameters. Results 
obtained suggest that land surface temperature assimilation has the potential of improving the 
output estimations by adjusting properly the control parameters. Finally, several assimilations 
were made using observational meteorology dataset from the SMOSREX site in Toulouse, 
France. The experiments implemented, using different prior values for the parameters, show 
the limits of the temperature assimilation to constrain control parameters. Even though 
variable estimation is slightly improved, this is due to final parameter values are at the edge of 
a variation interval in the cost function. Effectively reaching a minimum would require 
allowing the parameters to visit unrealistic values. SECHIBA does not correctly simulates 
simultaneously temperature and fluxes and the relationship between the two is not always 
consistent according to the regime (or parameter values that are used). We must therefore 
work on the physical aspects to better simulate the temperature. Likewise, the parameter 
sensitivity to temperature is not always sufficient, giving as a result a flat cost function.  

Our results show that the assimilation system implemented is robust, since performances 
results in twin experiments are satisfactory. The coupling between the hydrology and the 
thermodynamics in SECHIBA must be reviewed in order to improve variable estimation. An 
exhaustive study of the prior errors in the measurements must be conducted in order to 
retrieve more adapted weighing terms in the cost function. Finally, the assimilation of other 
variables such as soil moisture should be performed to evaluate the impacts in constraining 
control parameters   
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Chapter 1  Introduction  

Land Surface Models. Objectives and 
Organization of the Thesis 

 

1.1 Introduction 

A land surface model (LSM) is a numerical model describing the exchange of water and 

energy between the land surface and the atmosphere. It is used in weather and climate 

modeling to simulate different processes at the Earth’s surface, such as the water, carbon 

fluxes and the thermodynamics from the surface to the atmosphere. The atmospheric model 

provides the forcing above the surface (incoming radiation, precipitation, atmospheric 

temperature and humidity). In exchange, LSM calculates surface variables (soil temperature, 

soil moisture, leaf area index, etc…) and outgoing fluxes to the atmosphere. 

A good description of surface processes is essential for weather and climate applications.  

Located at the boundary between the atmosphere and the soil, LSM provides the link between 

several scientific disciplines subject to intense research in the hydrological, atmospheric, and 

remote sensing communities. LSM contains a set of general components, as mentioned in Liu 

and Gupta, 2007. First, we have the system boundary, which sets the limit conditions to model 

variables, allowing the separation of internal components of a system from external entities. 

Second, forcing inputs describe the model variables modified by the external components of 

the model: these are the inputs of the model. Next, the initial states of the model define a more 

realistic scenario for the state variables. We also have the model parameters, which are part of 

the equations describing the physical phenomena. Finally, the model structure contains a 

description of how the model is decomposed in its elementary processes and the discretization 

path used. 
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Principal components of LSM and their associated physics are explained in the next 

section. 

1.2 Components of land surface models 

1.2.1 Water processes 

The soil surface regulates the exchanges between water and plants. The ability of soil to 

hold water is related to its constitution. It is composed of particles that can be large or 

compact. Depending on soil composition, its ability to absorb water is different. Very dry soil 

cracks and becomes very compact. It cannot store water, which escapes through the large 

cracks on the surface, and runs off. Therefore in such areas the vegetation is limited or 

nonexistent. The water balance defines the soil water content by integrating all the water that 

comes in and all the water that leaves the soil (Musy et al., 1991).   

All movements of water in the soil depend on its structure and its state: the infiltration 

process consists in vertical water movement that enters the soil through tiny cracks together. 

This phenomenon occurs in the first meters below the surface of the Earth. This movement 

maintains the reserves of deep water. The infiltration process modifies in a drastic and 

instantaneous way the pressure and the water content in the ground surface.  

This process is conditioned by several factors of which the most significant comes from 

the soil, through its hydrodynamics characteristics, its texture and its structure. In addition, 

specific conditions can determine the infiltration process: the water flow rate, precipitation 

intensity, etc. 

Hydrological Cycle 

The hydrological cycle is a concept that encompasses the phenomena of movement and 

renewal of water on Earth. Concepts in this section are taken from Musy et al., 2003. This 

definition implies that the mechanisms governing the hydrological cycle does not only occur 

one after the other, but there are also concurrent. Under the effect of solar radiation, water 

evaporates from the soil, oceans and other surfaces such as lakes, rivers, etc. The rise of moist 

air through the atmosphere facilitates its cooling, which is necessary to bring it to saturation, 

causing condensation of water vapor into droplets forming clouds in the presence of 

condensation nuclei. Then the water vapor, transported and stored temporarily in the clouds, is 

returned to oceans and continents through rainfall. Part of the rainfall can be intercepted by 

plants and then be partially restored by evaporation. Intercepted rain not evaporated can 
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further reach the ground (NOAA National Weather Service Jetstream).  

Depending on soil conditions, water might evaporate from the ground, run off, infiltrate 

into the ground where it can be stored as soil moisture or leak into deeper areas to contribute 

to the renewal of groundwater reserves. Flow from the latter can reach the surface at springs 

or streams. Evaporation from the soil, rivers, and plant transpiration complete the cycle. 

 

Figure 1. 1 Water moves through the Earth, changing state and drifting to the atmosphere, the 
oceans and over the land surface and underground, in different processes that coexist. It is 

subject to complex processes; among them we cite precipitation, evaporation, transpiration, 
interception, runoff, infiltration, percolation, storage and subsurface flows. These various 
mechanisms are made possible by the incoming surface energy. (Source: NOAA National 

Weather Service Jetstream). 
 

Water Balance 

We can represent the continuous process of the water cycle in three general phases: 

precipitation, surface runoff, infiltration and evaporation. In each phase we found a transport 

of water and sometimes a change of state. The water balance equation takes these phases into 

account, and it is expressed as follows  

ERPS       [mm]                                                                                              (1.1) 

With P the precipitation (liquid and solid), S the resources (accumulation) in the 

previous period (infiltration, soil moisture, snow, ice), R the surface runoff and groundwater 
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flow and E the evapotranspiration, defined as the integration of evaporation and transpiration. 

Precipitation is the rain water falling on the surface of the earth, both in liquid and solid 

form. In order to produce condensation in the atmosphere, water vapor must reach the dew 

point by cooling or by increasing its pressure. In addition, the presence of certain microscopic 

nuclei allows water droplets to condense. The source of these nuclei may be oceanic 

(chlorides, in particular NaCl produced by sea evaporation), continental (dust, smoke and 

other particles carried out by ascending air currents) or cosmic (meteoric dust). The onset of 

precipitation is favored by the coalescence of water drops. The increase in mass gives them a 

gravitational force sufficient to overcome the updrafts and turbulence of the air and to reach 

the ground. Finally, the course of raindrops or snowflakes must be short enough to prevent 

evaporation of the total mass.  

Evaporation is defined as the transition from liquid to vapor. Water bodies, such as lakes 

and oceans and vegetation cover are the main sources of water vapor. The main factors 

governing the evaporation are the solar radiation, the wind and the soil moisture. The term 

evapotranspiration includes evaporation and plant transpiration. It is a fundamental 

component of the hydrological cycle and its study is essential to determine the water 

resources of a region or watershed. In general, specific analysis of evaporation will be made 

to balance studies and management of water by plants. Evaporation of the soils is produced at 

the surface. Transpiration is produced by plants essentially by the leaves with water extracted 

from the soil in the root zone. Both processes occur simultaneously. The evapotranspiration 

process is conditioned by the evaporative power, which expresses the extraction capacity of 

water, performed by the atmosphere on the ground-vegetation system. This evaporative power 

is determined by the evaporative demand of the air and the system's ability to satisfy this 

request, depending on the availability of water and plant physiology. 

Infiltration refers to the downward movement of water from the land surface into the 

soil. Infiltration can occur naturally following precipitation, or can be induced artificially 

through structural modifications in the ground surface (Musy et al., 1991). The infiltration 

process is characterized by the water influx in the soil. This influx is called infiltration regime, 

which is defined also as the flux density q. The infiltration rate can be influenced by the soil 

properties like its porosity, the hydraulic conductivity and the initial humidity rate.  

The precipitation penetrating the soil creates several zones, as shown in Fig.1.2. These 

zones are: the saturation zone at the soil surface; the transmission zone, which is characterized 

by constant water content; the wetting zone, in which the water content is decreased and ends 
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up in the last zone and finally the wetting front, characterized by an abrupt decrease in the 

water content. 

 

 

 

 

 

 

 

 

Figure 1. 2 Soil profile and the different types of saturation zones. (Musy and Soutter, 1991). 

 

The soil water capacity is expressed as a depth of water that can be infiltrated per unit of 

time. If rainfall supplies water at a rate that is greater than the infiltration capacity, water will 

infiltrate at the capacity rate, with the excess either being ponded, moved as surface runoff, or 

evaporated. If rainfall supplies water at a rate less than the infiltration capacity, all of the 

incoming water volume will infiltrate. In both cases, as water infiltrates into the soil, the 

capacity to infiltrate more water decreases and approaches a minimum capacity. When the 

supply rate is equal to or greater than the capacity to infiltrate, the minimum capacity will be 

approached more quickly than when the supply rate is much less than the infiltration capacity. 

1.2.2 Soil thermodynamics 

Formalism and notations presented in Musy and Soutter (1991) are adopted in this part 

of the work. Soil thermodynamics describes the different processes representing soil 

temperature in space and time. Temperature is a variable characterizing the degree of thermal 

distribution and the level of body heat. Many physical, chemical and biological processes are 

strongly influenced by temperature. The occurrence of thermal gradients results in transfers 

by heat diffusion, liquid flows, soil aeration, drainage and exchanges with the atmosphere. 

They are all conditioned by the thermal state of the soil. The soil temperature at a specific 

point depends on two types of phenomena: on one hand the energy exchange with the outside 

environment, determining the amount of total energy stored in the ground, and on the other, a 
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complex series of transfer processes of heat, depending on the specific thermal properties of 

soil, which determines energy distribution in the ground. 

Energy transfer 

Heat transfers are energy exchanges, following three types of energy physical processes: 

radiation, thermal and latent. They are defined based on the formulation of their dynamics and 

a conservation law. The main parameters involved in the description of the thermal behavior 

of a soil are those used to characterize the stored energy. These values depend on the specific 

thermal properties of the various components of the soil.  

The thermal properties of the soil are conditioned by the characteristics of their texture 

and structure. One of these parameters is Ct, the heat capacity of a body, which is defined by 

dT

dQ

, where dQ is the energy-heat required to raise the body temperature per dT. The isobaric 

heat capacity is denoted by  




TC
Cp

                                                                                                                    (1.2) 

were Cp is the storage capacity of body heat per unit mass and temperature. Internal 

exchanges of energy, thermal energy or sensible heat transfer in soil occur in two different 

processes: thermal conduction and convection. 

 

Figure 1. 3 Thermal conduction between two solid (left) and thermal convection between a 
solid and a fluid (right). (Source: Musy and Soutter, 1991) 

 

The thermal energy exchange in soil generally occurs simultaneously by thermal 
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conduction and convection, denoted as DJ


 and VJ


, respectively (Fig.1.3). Both are based on 

different physical exchange heat processes. Their dynamics is described by different laws, 

depending on the number of phases involved. The total heat flux is defined as 

VDT JJJ


                                                                                                                (1.3) 

Thermal conduction is a diffusion process in which the transfer of energy is due to the 

difference in temperature between two regions of a medium or between two media in contact 

without displacing material. The thermal agitation is transmitted from one molecule or atom 

giving a portion of its kinetic energy to its neighbor. This transfer process ends only when a 

heat balance is reached. The heat flux transferred by conduction is proportional to a gradient 

of decreasing temperature, defined by the Fourier law: 

TgradKJ TD 


                                                                                                    (1.4) 

The Fourier coefficient or thermal conductivity Kt  in Eq.1.4 represents the resistance of 

the material to the propagation of heat by thermal conduction, expressing its ability to transfer 

heat from one point to another. Thermal conductivity depends on the composition of the 

material, its mineral content and organic matter as well as the shape of its constituent 

particles. It varies in space and in time as a function of variations in air moisture. 

In thermal convection, the transfer of energy takes place in the molecules located at the 

boundary between a solid and a fluid in motion. The transfer is carried out by the molecular 

agitation and fluid mass displacement. This heat transfer is expressed in terms of iT , the 

thermal density, is described as 

)( WSpwwi TTcT  
                                                                                            (1.5) 

Where w  is the water density and pwc  is the isobaric heat capacity density. The 

exchanged heat by the movement of the fluid must be associated with the law expressing the 

fluid dynamics. The sensible heat flux transferred by thermal convection vJ


 is written using 

the following expression 

qTJ iv


                                                                                                                     (1.6) 

In natural convection, heat is transferred by density currents that run through the fluid 

under the effect of disparities in temperature at the solid-fluid interface. In this case, the 
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sensible heat flux is expressed as 

TgradDcJ TpwWv 


                                                                                             (1.7) 

where DT is the molecular diffusivity. The temperature gradient determines the transfer of 

thermal energy from one phase to the other. The dynamic law expressing the total sensible 

heat flux results from the sum of conduction and convection transferred by heat flow.  

The general equation of exchange of sensible heat is the combination of the dynamic law 

and the principle of continuity. It can be expressed in terms of thermodynamics principles.  

   
z

K
gradTDdivgradDdiv

t X












                                                                (1.8) 

   


gradDdivgradTKdiv
t

T
c Tpww 





                                                            (1.9) 

The first equation (Eq.1.8), includes the transfer of water under the influence of the 

potential gradient of water and the thermal gradient. Here, D is the water transfer diffusivity, 

DX is the thermal gradient diffusivity and   is the quantity of water in the soil.  The second 

equation (Eq.1.9) is the general equation of heat flux to which we add a latent heat flux due to 

evaporation flow. Here, 
D  and   are terms related to the latent heat flux diffusivity of soil. 

Energy budget 

The sun is the main source of energy reaching the surface of the Earth. In a single year, 

the Earth system (atmosphere, surfaces, and oceans) absorbs sunlight driving photosynthesis, 

evaporation, and melts snow and ice, among other processes. The heat collected is not 

uniform across surface of the Earth. The atmosphere and ocean balance the energy received 

by the Sun through surface evaporation, rainfall, ocean circulation, winds, etc. Mean 

temperature in Earth doesn’t increase relentlessly because the surface and the atmosphere are 

simultaneously radiating heat back to space. This net flow of energy is known as the energy 

budget.  

Variations in the average temperature reflect the balance of energy exchanges between 

the soil and the outside environment. These exchanges occur at the soil-atmosphere interface 

in the form of radiant energy, heat and latent.  

The net radiation is the difference between the amount of incoming radiation and the 

amount of outgoing radiation by the surface. Reflectivity of the atmosphere and the ground 
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surface determines the amount of radiation the surface will absorb. This reflectivity is known 

as albedo, a coefficient that determines the reflected solar radiation for a particular surface. 

Albedo varies with surfaces, leading to net heating inequities throughout the Earth: more 

incoming sunlight is received in the summer hemisphere compared to the winter hemisphere. 

When the Earth is subject to a flow of radiant energy, it absorbs a portion, reflects another and 

transmits the remainder, as it is described in Figure 1.4.  

 

Figure 1. 4 Global Earth Energy Budget. (Source: NASA) 

 

The energy radiation budget exchange to the surface is expressed by the net radiation, 

which is represented by 

    bbhhn RRRRR                                                                              (1.10) 

Where Rh↓ is the incident solar radiation, Rh ↑ is the reflected solar radiation, Rb is the 

radiation emitted by the surface. Rn can be expressed also as the global radiation Rg product 

with the surface albedo α, following the equation 

   LWTSWR n 
41                                                                          (1.11) 

Another element of the energy budget is represented by the exchange of sensible heat. 

The exchange of thermal agitation energy by convection is the main process of sensible heat 
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transfer between the ground and the atmosphere. The convection exchange takes place 

simultaneously by natural convection (heat distribution) and by forced convection, as a result 

of the mechanical stirring action of the wind. The sensible heat flux H is represented by 

gradTDCH Tpaa                                                                                                (1.12) 

where ρa is the air density, Cpa is the isobaric specific heat capacity and Dt is the thermal 

diffusivity. Another type of exchange occurs in the form of latent heat, wherein the energy has 

been converted by a phase change of heat transfer and thus being associated with a mass 

transfer. Sensible heat converts during this process to latent heat, transferred by the vapor 

mass flow. This flow can be expressed in general as the product of the concentration gradient, 

the volume fraction coefficient Vvap and an exchange coefficient De. Diffusive and convective 

effects transfer of water vapor in the air are then defined as 

vapevap VgradDq 


                                                                                              (1.13) 

The latent heat flux associated to the water vapor mass flow is expressed as 

vape
paa pgradD

C
LE






                                                                                       (1.14) 

where LE  is the vaporization latent heat, pvap is the evaporation pressure and γ is the 

psychrometric constant, defined as γ ≈ 0.66.10-2  N/m2K 

Formulation 

The energy budget provides the balance between the balance of radiation and heat 

exchange. It is calculated from the following equation: 

 2W/mGLEHMRn                                                                            (1.15)    

Rn is the net radiation, M represents the part of the radiation energy absorbed by the 

system and used for photosynthesis, and it is usually neglected. G represents the radiation 

energy converted into heat and stored in the system, after deducting the sensible heat flux H 

and latent heat flux LE. 
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Figure 1. 5 Daylight and night energy budgets. (Source: Musy et Soutter (1991)). 

 

1.3 Importance of representing the physics of the soil surface correctly 

Land surface model helps us to understand the processes that trigger the precise climate 

in a region, by analyzing its internal interactions. We are able to understand the current 

climate locally but also the factors that generate a specific climate in other regions. Fluxes 

between soil and the atmosphere can have non-local effects. In addition, climatic conditions 

into the future can be predicted. Its accuracy depends on the degree of precision with which 

the model represents the physics reality and the assumptions about the future factors that 

climate will encounter. 

Furthermore, LSM provides data not directly available or difficult to interpolate. Models 

compute different estimates answering questions about what processes will affect a particular 

region in the future. 

1.4 Challenges in LSM representation 

The land surface physics includes an extensive collection of complex processes. The 

balance between model complexity and resolution, subject to computational limitations, 

represents a fundamental question in the development of LSM. By increasing the 

comprehension of physical phenomena, LSM can grow into a more complex model adding 

new processes extrapolated from the environment. In the next section, some of the 

complexities found in most LSM are presented.  

1.4.1. Surface heterogeneity 

The soil is a complex environment. Its composition includes inorganic and organic 
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particles that determine its inherent characteristics. Its ability to retain water and its density 

varies drastically depending on the percentage of primitive components (sand, silt, or clay) or 

structure (ash, fine, or coarse sand). There may be several types of soil in a small area, with 

their associated features, especially water content. Omission of surface spatial heterogeneity 

in a LSM can cause errors in flux estimation (Courault et al., 2010, Olioso et al., 2005). 

Spatial variations in surface heterogeneity are imperative in order to guarantee an accurate 

simulation of the land-surface fluxes. The sub-grid scale land surface heterogeneity must be 

parameterized in the surface scheme so that the land characteristics are accounted for in the 

model (Manrique et al, 2013). 

1.4.2 Numerical representation 

The development process of a physical model into numerical software extends from the 

physical world to the mathematical model, then to the computational algorithm and finally to 

the computer implementation, involves a number of approximations: physical effects may be 

discarded, continuous functions replaced by discretized ones and real numbers replaced by 

finite precision representations. In consequence, approximation is in the core of scientific 

software and cannot be neglected. It is important to manage them judiciously.  

The accuracy of a computation determines how close the computation (affected by 

random errors) comes to the true mathematical value. It indicates, therefore, the correctness of 

the result. In particular, numerical verification, as Rump (1983) mentioned, is required to give 

confidence that the computed results are acceptable. The precision of a computation reflects 

the exactness of the computed result without reference to the meaning of the computation. It 

is, therefore, the number of significant digits affected by round-off error. Arithmetic 

expressions and variable assignment always produce approximation errors, due to the nature 

of the floating point arithmetic. Approximation modes in computer software will determines 

the precision in the several operations made in the model coded. This precision is independent 

of the code, data or machine. When building LSM numerical representation, we have to be 

aware of these errors and track their propagation.  

1.4.3. Mathematical representation and model calibration 

Representing a physical model need the definition of its numerical and its discretized 

form. In terms of simplicity, models have to include the least amount of parameters needed to 

achieve a good performance in its estimates (parsimonious models). Model building is best 
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achieved by starting with the simplest structure and gradually and accurately increasing the 

complexity as needed to improve model performance (Wainwright et al., 2004). However, 

there is no metric that quantifies the estimate improvement by increasing complexity.  

The parameters that are required to compute real world outputs estimations are best 

defined by a model structure that best represent the processes measured in the real world. In 

practice, this can be difficult to achieve. With our model, we may be interested in trying to 

reconstruct past events that need some parameters that are impossible to measure. In that case 

we may have to make reasonable assumptions based on indirect evidence. These assumptions 

can be made in order to define the model from reality. Several of them will and can be wrong, 

nonetheless they are necessary for the model development. The output of the model depends 

completely on the validity and scope of these assumptions. A parameter measurement must be 

chosen based on the impact the variation of a parameter has on the model output, or the model 

sensitivity to this parameter. 

According to Kirkby et al (1992) there are two types of parameters in a model: the 

physical parameters which define the physical structure of the model, and the process 

parameters or multiplying factors, which weigh the magnitude of variables in the model. The 

physical parameters are determined from experimental measurements. The process parameters 

are defined from a calibration and adjustment process. In both cases, the definition of the 

initial parameter value can be a difficult task. The physical parameters are determined on 

small scales, and then they are extrapolated, given the spatial and temporal variability in the 

region we are working. 

With the purpose of adapting the value of the parameter to a value that reproduces the 

real world, measurements of a phenomenon are necessary in order to compare to our model 

estimates. The calibration process consists in an optimization process against a measure of the 

agreement between model results and a set of observations. It allows the agreement between 

the model and the available measures; however, this process may give clues to poorly defined 

processes in the model (Pipunic et al., 2008). 

With respect to the LSM, many works have focused on the calibration of the models 

based on soil moisture measurements, since it is an observation easy to obtain, it is directly 

measured with high frequency and is the solution of the water budget. There are many sources 

of data available in a wide range of ecosystem.  
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1.5 Thesis Challenges 

1.5.1. State of the art in the use of LST to constrain LSM 

Several works regarding the calibration of LSM based on LST measurements 

demonstrate the improvement in fluxes estimation, when constraining model parameters.  

In Castelli et al. (1999), a variational data assimilation approach is used to include 

surface energy balance in the estimation procedure as a physical constraint (the adjoint 

technique). The authors work with satellite data, where soil skin temperature is directly 

assimilated. As a conclusion, constraining the model with such observation improves model 

fluxes estimations, with respect to in situ measurements.  

In Huang et al. (2003) the authors developed a one-dimensional land data assimilation 

scheme based on ensemble Kalman filter, used to improve the estimation of soil temperature 

profile. They conclude that the assimilation of LST into land surface models is a practical and 

effective way to improve the estimation of land surface state variables and fluxes.  

Reichle et al. (2010) performed an assimilation of satellite-derived skin temperature 

observations using an ensemble-based, offline land data assimilation system. Results suggest 

that retrieved fluxes provide modest but statistically significant improvements. However, they 

noted strong biases between LST estimates from in situ observations, land modeling, and 

satellite retrievals that vary with season and time of day. They highlighted the importance to 

take these biases properly, or else large errors in surface flux estimates can result. In Ghent et 

al. (2011), the authors investigate the impacts of data assimilation on terrestrial feedbacks of 

the climate system. Assimilation of LST helped to constrain simulations of soil moisture and 

surface heat fluxes. Another study by Ghent et al. 2011, investigates the effect that data 

assimilation has on terrestrial feedbacks to the climate system. The authors state that 

representation of highly complex biophysical processes in LSMs over highly heterogeneous 

land surfaces with limited collections of mathematical equations, and the tendency of over 

parameterization, infers a degree of uncertainty in their predictions. Assimilation of land 

surface temperature (LST) to constrain simulations of soil moisture and surface heat fluxes 

can be integrated into the model to update a quantity simulated by the model with the purpose 

of reducing the error in the model formulation. The correction applied is derived from the 

respective weights of the uncertainties of both the model predictions and the observations. 

The results found in this research suggest that there is potential for LST to act as surrogate for 

assimilating other state variables into a land surface scheme. 
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Ridler et al. (2012) tested the effectiveness of using satellite estimates of radiometric 

surface temperatures and surface soil moisture to calibrate a Soil–Vegetation–Atmosphere 

Transfer (SVAT) model, based on error minimization of temperature and soil moisture model 

outputs. Flux simulations were improved when the model is calibrated against in situ surface 

temperature and surface soil moisture versus satellite estimates of the same fluxes.  

In Bateni et al. (2013), the full heat diffusion equation is employed as constrain, in the 

variational data assimilation scheme. Deviations terms of the evaporation fraction and a scale 

coefficient are added as penalization terms in the cost function. Weak constraint is applied to 

data assimilation with model uncertainty, accounting in this way for model error. The cost 

function in this experience contains a term that penalizes deviation from prior values. When 

assimilating LST into the model, the authors proved that the heat diffusion coefficients are 

strongly sensitive to specific deep soil temperature. As a conclusion, it can be seen that the 

assimilation of LST can get a remarkable improvement in the model simulated flows. 

1.5.2 General objectives  

In this work, the LSM used is ORCHIDEE (Krinner et al., 2005), most specifically the 

part of the model computing the energy and hydrology balance (SECHIBA, Ducoudré et al, 

1993). These models are introduced in Chapter 2. 

The general objective of this thesis is to constrain the SECHIBA model parameters by 

assimilating measurements products in a 4DVAR assimilation system. The parameters, once 

constrained, allow the model to improve state variables estimation when comparing them to 

measurements.  

From this general purpose, several specific objectives arise, as mandatory steps to 

implement an effective assimilation system, flexible enough to assimilate different 

observations and constraining at the same time different model parameters. These specific 

objectives are: 

1. Study of SECHIBA and implementation into YAO: the understanding of the model 

physics through its standard Fortran code implementation is a mandatory step, in order to 

extract model dynamics and principal components. By knowing this, the implementation 

of SECHIBA in YAO can be made, by defining a modular graph representing the model 

dynamics and physics of the model. Our implementation of SECHIBA in YAO is called 

SECHIBA-YAO 1D. Once our model is coded, the direct model is verified comparing its 



                                                                    

28 
 

output with the original model. The adjoint model is verified by performing a sensitivity 

analysis, allowing us to obtain, in addition, a parameter hierarchy of the most influential 

parameter in the estimation of land surface temperature. SECHIBA-YAO 1D aims to run 

4DVAR assimilation.  

2. Validate the assimilation system, by implementing twin experiments. The idea is to test 

the robustness of the assimilation system, by computing variable and parameter 

performances. This phase highlights also the limits of the model when varying the control 

parameter set  

3. Improve model estimation by performing a 4D-VAR assimilation of land surface 

temperature, using in situ measurements of SMOSREX site, in Toulouse, France. 

Available measurements of brightness temperature are compared with an equivalent form 

of temperature estimation added to SECHIBA, constraining model parameters to improve 

the simulation of the model variables, such as latent heat flux, sensible heat flux, net 

radiation, brightness temperature and soil moisture. 

1.5.3 Organization 

The thesis is organized such that the theoretical support is presented first, in Chapters 1 

to 4. Experiment results concerning sensitivity analysis and variational data assimilation are 

presented in Chapters 5 to 7. Conclusions of the thesis are presented in Chapter 8. Finally, 

complementary information is presented in the Appendix section. 

In Chapter 1, the introduction to land surface models and the nub of the thesis is 

presented. In Chapter 2, the land surface model used in this work (ORCHIDEE) is introduced, 

and more specifically SECHIBA and its main components and features. Equations governing 

the energy and hydrologic budget computed with SECHIBA are listed. In addition, data 

sources used in this work are introduced: FLUXNET network stations and SMOSREX in situ 

measurements.  

Chapter 3 concerns variational data assimilation theoretical aspects. Additionally, the 

modular graph approach to represent models is presented. It is explained how an equivalent of 

the adjoint and tangent linear model is obtained, by computing the forward and the backward 

of the model through a modular graph decomposition. This approach is the basic idea of the 

YAO software, serving as a framework to implement SECHIBA variational data assimilation.  

In Chapter 4, the YAO approach is presented. This software served us as an adjoint semi 
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generator. Principal components of a YAO project are introduced, as well as the input/output 

data management. Finally, a general guide of how SECHIBA model was implemented in YAO 

is introduced. The different steps from the model conceptualization to the testing phase are 

explained in detail, serving as a guide to future implementations. 

In Chapter 5, once the adjoint of SECHIBA is obtained using its YAO representation, we 

perform a variational sensitivity analysis with the idea of validating the adjoint of the model, 

by comparing the gradients obtained with SECHIBA-YAO 1D to the ones computed with 

finite differences, using the direct model outputs. In addition, we build a parameter hierarchy 

in order to determine the most influential parameters in the computation of land surface 

temperature. The sensitivity study was performed using FLUXNET sites (Kruger Park and 

Harvard Forest).  

In Chapter 6, twin experiments are presented, using the FLUXNET data set. Different 

scenarios were tested in different experiments in order to account for the effect of assimilating 

synthetic observations of land surface temperature. In this chapter we show the potential of 

our assimilation system by using land surface temperature as observation. 

In Chapter 7, assimilation of in situ measurements is presented using the SMOSREX site 

forcing. With different scenarios, this chapter shows the performance of assimilating land 

surface temperature with different initial conditions of parameters, time frames, among others. 

The idea is to show if the optimization of land surface temperature allows to constrain our 

model parameters and to better simulate surface fluxes. 

Finally, in Chapter 8, the conclusion and perspectives of this work are presented. In 

addition, challenges related to the implementation of SECHIBA into YAO are mentioned. 
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Chapter 2 

Description of the Land Surface Model 
ORCHIDEE and datasets 

 

2.1. ORCHIDEE 

ORCHIDEE is a model representing the continental biosphere and its different 

processes, comprising the simulation of soil and vegetation mechanism and simulating 

different fluxes between the soil-atmosphere interface (Polcher et al., 1998, Krinner et al., 

2005, Brender, 2012). ORCHIDEE has different time scales: energy and matter has a 30-

minutes time scale. Species competition processes at 1-year time scale. The vegetation is 

grouped into 13 Plant Functional Type (PFT). The equations governing the processes are 

general, with specific parameters for each PFT. ORCHIDEE is used in a grid-point mode (one 

given location), forced with the corresponding local half hourly gap-filled meteorological 

measurements. 

2.1.1 Modules 

 SECHIBA (Schématisation des Echanges Hydriques à l'Interface Biosphère-

Atmosphère) (Ducoudré et al, 1993) is a biophysical model. It calculates the radiation and 

energy budgets of the surface, and the soil water budget every half hour. The energy and water 

fluxes between the atmosphere and the ground integrate all the vegetation layers; the retrieved 

temperature represents the canopy ensemble and the soil surface. The main fluxes modeled 

are the sensible and latent heat flux between the atmosphere and biosphere, the soil 

temperature and the water reservoirs evolution, the stomata conductance and gross primary 

productivity of the canopy. 
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STOMATE (Saclay Toulouse Orsay Model for the Analysis of Terrestrial Ecosystems) is 

a biogeochemical model. It represents the process related to the carbon cycle, such as carbon 

dynamics, the allocation of photosynthesis (Friedlingstein et al, 1999), respiration and growth 

maintenance, heterotrophic respiration (Ruimy et al., 1993) and phenology (Botta, 1999). 

STOMATE simulates the dynamics of continental carbon with no time every day. It links 

between processes at short time scales determined by SECHIBA and slower processes 

described by the following module. 

LPJ (Lund-Potsdam-Jena) (Sitch et al, 2003) is a model of global dynamics of the 

vegetation. It incorporates the phenomena of interspecific competition for sunlight, fire 

occurrence, seedling establishment, plant mortality, and deduce the dynamic long-term 

(annual time step) of vegetation. 

2.1.2 Biosphere Characterization 

The surface model SECHIBA aims at representing the water and energy exchanges at the 

land surface. However, for a given moisture condition, they are highly dependent on soil type 

and vegetation cover. ORCHIDEE considers the diversity of a given ecosystem by defining 

13 Plant functional Type (PFT). The vegetation is classified according to their ecophysiologic 

characteristics. Twelve common PFT exists, plus the bare soil; they are presented in Table 2.1. 

This classification depends on several parameters such as the appearance of the plant (tree or 

herb), the type of leaf (needle or leaves), the method of photosynthesis (C3 or C4) and the 

phenology type. 

The different functional groups of plants and bare soil can coexist on the same mesh. A 

PFT is not intended to represent a plant species in particular but rather to regroup it, after 

several functional similarities. This will set the main functional characteristics such as height, 

LAI, etc; and thus represent plant diversity around the world.  

LAI (Leaf Area Index) is the total ratio of leaf area of a canopy over an area of soil. It is 

expressed in m2 of leaf area per m2 of soil. For each mesh point, a fraction of PFT fk is defined 

as the vegetation fraction percent covering the studied location, verifying that  1
13

1


k

kf . Each 

fraction is modulated by a maximum max
kf  and by a corresponding LAI with the following 

equation: 

13,2)1,.2min(.max
 kLAIff kkk                                                                              (2.1) 
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If we have a LAI less than 0.5, we reduce linearly the vegetation fraction to zero for a 

LAI equal to zero and we increase equally the fraction of bare soil. Evolution of a LAI for each 

PFT is bounded by minimum and maximum values which are assigned in Table 2.1. These 

values are reached according to the change in soil and vegetation temperatures  

PFT Description Foliage Climate 

0 Bare Soil - - 

1 Rain forest sempervirens Persistent Tropical 

2 Rainforest deciduous - Tropical 

3 Temperate forest of conifers 
sempervirens Persistent Temperate 

4 Temperate forest sempervirens Persistent Temperate 

5 Temperate forest deciduous - Temperate 

6 Boreal coniferous forest sempervirens Persistent Boreal 

7 Boreal deciduous  - Boreal 

8 Boreal coniferous forest deciduous - Boreal 

9 Herbaceous C3 C3 - 

10 Herbaceous C4 C4 - 

11 Agricultural C3 C3 - 

12 Agricultural C4 C4 - 
Table 2. 1 ORCHIDEE's Plant functional type description (d’Orgeval 2006) 

 

In Table 2.2, h represents the prescribed vegetation height in meters, humcste is the root 

profile coefficient (in m-1), rk is the structural resistance (in s.m-1), Tmin and Tmax are maximum 

and minimum values of soil temperature at 50 cm and LAImax and LAImin are the maximum 

and minimum values of LAI for each vegetation fraction. 

Energy balance is solved once, with a subdivision only for latent heat flux in bare soil 

evaporation, interception and transpiration for each type of vegetation. Water balance is 

computed for each vegetation type given that, for a particular location, infiltration and 

evaporation will be different. 
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PFT h humcste rk LAImin LAImax Tmin Tmax 
0 0 0 0 0 0 275.15 273.15 
1 30 0.8 25 8 8 296.15 300.15 
2 30 0.8 25 0 8 296.15 300.15 
3 20 1 25 4 4 278.15 288.15 
4 20 0.8 25 6 6 278.15 288.15 
5 20 0.8 25 0 6 278.15 288.15 
6 15 1 25 4 4 278.15 288.15 
7 15 1 25 0 6 278.15 288.15 
8 15 0.8 25 0 4 278.15 288.15 
9 0.5 4 2.5 1 5 280.15 288.15 

10 0.6 4 2 0 4 284.15 294.15 
11 1 4 2 0 6 280.15 288.15 
12 1 4 2 0 4.5 284.15 294.15 

Table 2. 2 ORCHIDEE's plant functional type principal parameters (d’Orgeval 2006) 

 

 

2.2 SECHIBA 

Our study focuses on the vertical hydrological processes and the energy budget modeled 

in SECHIBA module. The other two modules of ORCHIDEE (i.e. STOMATE and LPJ) were 

not active. We chose to make simple assumptions concerning the modeling of vegetation 

cover. In order to do that, SECHIBA can be used decoupled from STOMATE. 

2.2.1 Forcing 

SECHIBA uses a time step of 30 minutes to represent the physical processes. The spatial 

resolution is determined by the atmospheric forcing used. For simulating surface fluxes and 

water movement in soil, SECHIBA must receive a number of input data from the atmosphere. 

They come either from observation data in a point or a region or from a general circulation 

model. Atmospheric information can only come from meteorological data which are often a 

combination of observations and modeling results. The data set is called an atmospheric 

forcing and the simulation mode is called forcing offline, which is imposed on the model 

simulation. However no feedback from the surface to the atmosphere is possible. 

The relief of the surface is not reproduced in this model but is taken into account 

implicitly in the variability of atmospheric forcing or in the general circulation model (GCM). 

Thus, only the vegetation has an impact on the turbulence near the surface. 
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Variable Description Unit 
Ta 2-meters air temperature K 
qa 2-meters air humidity kg.kg −1 
WN Wind speed at  10 meters  (u) m.s−1 
WE Wind speed at  10 meters  (v) m.s−1 
Psurf Surface pressure Pa 
SWdown Short wave Incident Radiation (sun radiation) W.m−2 
LWdown Long  wave Incident Radiation (infrared radiation) W.m−2 
Pliq Rain kg.m−2 .s−1 
Psnow Snow kg.m−2 .s−1 

Table 2. 3 Input Variables received by SECHIBA 

 

Variables forcing SECHIBA are summarized in Table 2.3. In forcing mode, the air 

temperature and humidity are generally given at 2 meters and the wind at 10 meters. 

Corrections, especially for the wind speed, must be applied to compute a correct friction 

coefficient and turbulent fluxes. 

2.2.2 Energy Budget 

The dynamic of the fluxes modeled in the energy budget are presented in Fig 2.1. Fluxes 

equations and descriptions are summarized in Table 2.4. 

 

Figure 2. 1 Energy Balance 
 

The energy budget main fluxes are part of the energy equation, which has the following 

form 

GHLER n                                                                                                                                     (2.3) 

where Rn is the net radiation on the surface, LE represents the latent heat flux or instantaneous 
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energy consumed by the evaporation from the surface or received by condensation on the 

surface, H corresponds to sensible heat flux or energy (received or dissipated to the surface) 

exchanged by convection between the surface and the air and G is the exchanged heat flux 

between soil surface and depth. In Fig.2.1 T corresponds to transpiration, E is the evaporation 

and Rlw+Rsw correspond to the incoming and outgoing long wave and shortwave incident solar 

radiations. All these fluxes are expressed in W.m-2. 

Flux Equation Description 

Radiation 

LW
net

SW
netnet RRR                       (2.4) 

 

  SWSWSW
net RR  1albedok          (2.5) 

 

 LW
surf

LWLW
net RRR  emisk            (2.6) 

Rsw is the shortwave incident radiation 
SW

  is the surface albedo  
kemis is the surface emissivity  multiplying factor to be 
optimized 
RLW is the thermal radiation 

LW
surfR  is the thermal radiation emitted by surface 

kalbedo is a multiplying factor weighing the effect the SW


has in the computation of SW
surfR . This parameter is 

optimized 
 

Soil heat flux  
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                     (2.7)
 

λ is the soil conductivity, C the soil heat capacity and T the 
soil temperature.  
The soil is discretized on 7 thermal layers. The layers have 
constant depths so that the first layer has a characteristic 
time of 30 minutes and the last of 2 hours. 
kcapa and kcond are multiplying factors weighing the 
parameters λ and C. They are both part of the control 
parameter set 
 
 

Turbulent 
Fluxes 
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Cd is the drag coefficient.  =0.41 is the Von Karman 
Constant 
z0  the roughness length and kz0 is a multiplying factor to 
be optimized. 
U is the normalized wind (m.s-1), 
 

Sensible heat 
flux 

)( asP
a

TTc
r

H 


                     (2.9) 

H is proportional to the temperature gradient in the 
surface-atmosphere interface. 
ρ the air density (kg.m-3),  
Cp the air heat capacity (J.kg-1.K-1) and Ta  and Ts  the air 
and surface temperature in Kelvin 

Latent Heat 
Flux 

 solaird qqCULE   (2.10) 

LE integrates evaporation and transpiration. 
 corresponds to a coefficient integrating evaporation and 
transpiration resistance coefficients. 
In SECHIBA, LE is divided in three components: Bare soil 
evaporation, interception loss and transpiration 
 

Bare Soil Evaporation 
r1=hs.rsolcste 
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E’pot is the potential evaporation, Us the soil humidity 
computed in the hydrological balance, r1 is the bare soil 
evaporation resistance,  
 
rsolcste  equal to 33000 s.m-2, representing the resistance for 
bare soil square meter. This parameter is taken in the 
control parameter set. hs is dry soil height. 
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Interception loss 
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Ik is the foliage intercepted water and I k

max  is the maximum 
quantity that can be intercepted ( mmI k 1.0.LAImax

 ), rk the 
vegetation structural resistance, given by Table 2.2 

Vegetation Stomata Resistance 
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(2.13) 

krveg is a multiplying factor, weighing the calculation of the 
vegetation resistance to transpiration. This parameter is 
optimized. 
R0=12-5 W.m-2 , a=2.3.10-2kg.m-3 and λ=1.5.  

n
SWR  is the net solar radiation: 

SWSW
n
SW RR )1(  . δc is the 

atmosphere water vapor deficit: )0,)(max( aas qTqc   . 
Transpiration  

 air
sat
soldkk qqCUfT  3 (2.14) 

Transpiration is computed for each vegetation fraction. 

3 is a coefficient equivalent to the vegetation stomata 
resistance 

Table 2. 4 Energy budget fluxes 

2.2.3 Hydrological Budget 

The SECHIBA version used in this work models the hydrological budget based on a 

two-layer soil profile (Choisnel model, 1977). The soil layers correspond to the surface and 

the bottom of the soil. The total depth of the layers corresponds to the plants root depth. The 

soil has a unique type, with a total depth of  dpucste = 2m.  The bottom layer of soil acts like a 

bucket that fills with water from the top layer. When the top layer is empty with no water (due 

to evaporation, drainage to the lower layer, or lack of precipitation), this layer disappears. 

When rainfall exceeds the evaporation losses, they recreate a wet surface, allowing it to 

evaporate. If the water quantity is about to saturate the two soil layers, the top layer 

disappears again and excess water is removed by runoff. 

The soil fluxes, as they are modeled in SECHIBA, are presented in Fig 2.2. The different 

operations to obtain the fluxes are summarized in Table 2.3. 

 

Figure 2. 2 Specific variables involved in hydrological budget computing (d’Orgeval, 2006). 
 

In Fig.2.2, Wu is the water content in the top layer, Wl is the water content in the bottom 
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layer, hs is the height of the dry part of soil in the top layer, hu is the height of the top layer 

and hl includes hu plus the height of the dry part of soil in the bottom layer. 

Flux Equation Description 

Atmospheric 
Flux 

Incoming precipitation 

),min(

)0),(max(
max

max

kkk

kkk

IPII

IIPP



             (2.15) 
The sub index k corresponds to the vegetation type. 
Once Pk is estimated, soil reservoirs are updated 
with the atmospheric fluxes. 
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Bare soil evaporation is subtracted only from the 
bare soil vegetation type (δ1k is equal to 1 if k=1 and 
zero if not, and T1 = 0) 
Interception reservoirs are updated extracting the 
evaporation 
 

Maximum 
water content 

in the soil 
eaucste mxdpu .max W                          (2.17) 

mxeau is an internal parameter of the model and its 
equal to 30 kg.m-3. dpucste is total soil depth. Both 
are optimized.   

2-layer water 
content update 
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if  
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W
u
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l
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max
, the water goes as runoff, and the 

surface layer disappears 
For more references in the computing of this flux, 
refer to d’Orgeval (2006), Kuppel (2012). 
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  (2.20) Upper and lower reservoir updates, with updates of 
the layer height. 

Root 
extraction 
potential 

 ls hU .exp)1 cstehum        
 

),max(

.exp

.exp)2

uls

u

s
u

ll

UUU

h

h
U

hU




















cstecste

cste

dpuhum

hum

      (2.21) 

 
 

The root extraction potential Us is computed for 
each vegetation type. The result is used in the 
energy balance computing on the next time step. 
The wilting point is defined as Wwilt=5kg.m-3 
If Wu+Wl  < Wwilt  then Us=0. 
If hu=0, there is no surface reservoir and we have 
case (1), contrary, if hu > 0, we have case (2) 

Table 2. 5  Hydrological budget fluxes 

2.2.4. SECHIBA Parameters 

Several key parameters in SECHIBA are considered in this work. Some parameters are 

standard internal parameters and others are multiplying factors which allow us to understand 

the importance of the several fluxes they are weighing. This subset of parameters are 
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presented in Table 2.6. 

Parameter Description Prior Value Unit Equation 

 Internal Parameters   

humcste Root extraction potential 
coefficient  

Refer to Table 2.2 m-1 2.21 

rsolcste Evaporation resistance 33000 S/m2 2.11 
mindrain Diffusion between reservoirs 0,001 -  

dpucste    Total depth of soil water pool 2 m 2.17, 2.21 
mxeau    Maximum water content 150 Kg/m3 2.17, 2.19, 

2.20, 2.21 

 Multiplying Factors   

kemis Surface Emissivity 1 - 2.6 

kcapa    Soil Capacity  1 - 2.7 
kcond    Soil Conductivity  1 - 2.7 
krveg Vegetation Resistance 1 - 2.13 
kz0         Roughness height 1 - 2.8 

kalbedo Surface albedo 1 - 2.5 
Table 2. 6 SECHIBA Parameters studied in this work. There are 6 internal parameters, 
involved in the model estimations and 5 multiplying factors that are imposed to specific 

fluxes 

 

Model internal parameters (Table 2.6) are the following: rsolcste is a numerical constant 

involved in the soil resistance to the evaporation: this parameter limits the soil evaporation so 

the greater its value the lower the evaporation; humcste and mxeau are related to soil water 

processes: the higher their values, the more water will be available in the model, affecting 

water transfers and especially evapotranspiration; dpucste represents the soil depth in meters. 

The other parameters are multiplicative factors. We consider krveg which is used in the 

calculation of the stomatal resistance, this variable limits the transpiration capacity of leaves, 

the greater its value, the lower the transpiration; kemis is the soil emissivity used to compute 

soil surface temperature. This parameter takes part in the net radiation calculation which 

determines the balance between incoming and outgoing energy at the surface; kalbedo weighs 

the surface albedo which is defined as the reflection coefficient for short wave radiation; kcond 

and kcapa take part in the thermal soil capacity and conductivity, both involved in the 

computation of the soil thermodynamics and kz0 weighs the roughness height which 

determines the surface turbulent fluxes. 
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2.3 Data 

In this section we present the data used to constrain the land surface model SECHIBA. 

Data is the primary source of information for the understanding of a natural process. It serves 

not only to the construction of adequate equations, but also to validate the model outputs. The 

data used in this work correspond to in situ measurements of the forcing necessary to model 

the energy balance and water balance with SECHIBA. They constitute direct observation, 

quasi-continuous with high temporal resolution (30 minutes). 

Several types of sensors and methods have been implemented to improve the 

observability of the biosphere processes. The data retrieved, in a context of data assimilation, 

is an indispensable source of understanding, modeling, validation, and improvement of the 

modeled process. Three in situ sites were selected for this study on SECHIBA YAO 

modeling. They are presented in the next section. 

2.3.1. Eddy Covariance measurements  

Principle 

Flux measurements are widely used to estimate the exchange of heat, water, and carbon 

dioxide, as well as methane and other trace gases. The eddy covariance method is one of the 

most direct ways of measuring such fluxes. In our work, measurements from FLUXNET 

Network are used, which implement eddy covariance methods to measure the exchange of 

water vapor, carbon dioxide, among others fluxes between terrestrial ecosystems and the 

atmosphere.  

 The eddy covariance method (Aubinet et al. 2012) (also known as eddy correlation and 

eddy flux) is used to measure and calculate vertical turbulent fluxes densities of CO2 (Fc), 

latent (LE) and sensible heat (H) flux within vegetation and atmospheric layers. The measured 

variables are compared to the mean covariance between vertical wind velocity (w') and scalar 

(c') fluctuations (As presented in Figure 3.4). In addition, positive flux densities represent 

mass and energy transfer into the atmosphere and away from the surface (Baldocchi et al. 

1988). Turbulent fluctuations are computed as the difference between instantaneous and mean 

scalar quantities. 

In our sites, eddy covariance is used mainly to determine gas emissions rates from land 

and water areas. It can also be used to estimate carbon dioxide, methane and water vapor 

fluxes. 
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The description of the eddy covariance method is based on the work of Burba, 2013. Air 

flow can be imagined as a horizontal flow with numerous rotating eddies (as shown in 

Fig.2.3). Each eddy has 3-D components, including vertical motion of the air. 

 

Figure 2. 3  Representation of horizontal air flow that passes through the tower, and consists 
of differently sized eddies. (Source Burba, 2013) 

 

Closer to the ground, smaller eddies rotate faster, and hence, there is an increased 

transport by higher frequency movements of air. Further away from the ground, larger eddies 

rotate slower, and hence, the transport is increased by lower frequency movements of air.  

 
 

Figure 2. 4 The air flow consist of rotating eddies. Eddy 1 moves parcel of air c1 down with 
the speed w1, while eddy 2 moves parcel c2 up with the speed w2. (Source Burba, 2013). 

 

Each parcel ci of air has a concentration, a temperature, and a humidity unit. At a 

specific point of a tower, by measuring these characteristics and the speed of the vertical air 

movement, we know the vertical upward or downward fluxes of gas and water vapor 

concentrations, temperature, and humidity. 
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 FLUXNET Network 

FLUXNET (Baldocchi et al., 2001) is a network containing regional and global analysis 

of measurements from different tower sites, spread around the globe (Fig. 2.5), and grouped 

in regional networks. The data from all networks is accessible to the scientific community via 

the Fluxnet website (http://fluxnet.ornl.gov).  

 

Figure 2. 5 Distribution of tower sites (source http://fluxnet.ornl.gov) 
 

In this work, we selected two sites: Harvard Forest and Skukuza Kruger National Park.  

Both present contrasted climates and land surface properties to test the tools developed and to 

assess model parameter sensitivities. Only climate measurements (model forcing) from both 

sites are considered. Vegetation characteristics are prescribed and only homogeneous grids are 

considered. Two cases were studied with grassland (PFT 11) and bare soil (PFT 0). Forcing 

for both sites correspond to SECHIBA forcing, with the same sampling frequency (30 

minutes). 

Harvard Forest 

Located in the United States of America, on land owned by Harvard University, the 

station is located at latitude 42º53'78'' N and longitude 72º17'15'' W. It was established in 

1991. The site has a Temperate-Continental climate with hot or warm summers and cold 

winters. The annual mean precipitation is 1071 mm, the mean annual temperature is 6.62 ºC 

and the altitude is 340 m.  

In this work, we performed a simulation from 1992 to 1995 with the Harvard Forest 

forcing. The model state at the end of 1995 was retained in order to be used for our different 

experiments, which were made with 1996 forcing. 

http://fluxnet.ornl.gov/
http://fluxnet.ornl.gov/
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Figure 2. 6 Time series of forcing variables for FLUXNET Harvard Forest from 1995 to 1996. 
 

Meteorological measurements from the last two years of data available are presented in 

Fig. 2.6. These forcing measurements correspond to ORCHIDEE inputs, in unit and scales. 

These atmospheric variables measured at the site impose local forcing over our surface model. 

Skukuza Kruger National Park 

Located at latitude 25° 1' 11" S and longitude 31° 29' 48" E, in South Africa, this Fluxnet 

site was established in 2000. The tower overlaps two distinct savanna types and collects 

information about land-atmosphere interactions. The climate is Subtropical-Mediterranean. 

The total mean annual precipitation is 650 mm, with an altitude of 150 m and the mean annual 

temperature is 22.15 ºC. 

Data for Kruger Park site was available from 2001 to 2003. The first two years were 

used to calibrate the model and 2003 was used to perform the different experiments presented 

in this work. 
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Figure 2. 7. Time series of forcing variables for FLUXNET Kruger Park from 2002 to 2003. 
 

Meteorological measurements from the last two years of data available are presented in 

Fig. 2.7 for Kruger Park. Since Kruger Park is in South Africa in the southern hemisphere, 

annual cycles of fluxes are the inverse of those found in Harvard Forest site, which is located 

in the northern hemisphere. As in Harvard Forest site, forcing measurements shown in the 

curves correspond to ORCHIDEE inputs, in unit and scales. These atmospheric variables 

measured at the site impose local forcing over our surface model 

2.3.2 SMOSREX 

SMOSREX is an experimental site situated on the complex of the ONERA (43°23'N, 1° 

17'E, altitude 188 m above sea level), about 30 km south of Toulouse. At this site, a weather 

station continuously takes measurements of precipitation, temperature at 2 meters, surface 

fluxes, solar and infrared radiation, speed and wind direction, atmospheric pressure and 

specific humidity of the air.  
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Observations and remote-sensing measurements were performed on two types of 

surfaces: bare soil and fallow (de Rosnay et al, 2006.). Weather conditions are very different 

with a cold wet winter and dry hot summer. The humidity and temperature in the soil profiles 

are characterized using measurements at different depths on two parcels of fallow and bare 

soil.  

In this sites, the weather station measures atmospheric variables each 30 minutes, 

matching the frequency used in ECHIBA. Available measurements spread from 2003 to 2011. 

In this work we only used measurements from 2005 to 2006. These measurements are 

presented in Figure 3.9. As it can be seen, more precipitation periods are found in 2006, 

although in 2005 there are several periods during summer where the intensity of precipitation 

is high. Air temperature has important amplitude from day to night during the whole analyzed 

period. The inter-annual variability is significant in terms of characteristics of the annual 

cycle. 

 In addition to the climate measurements, observations of latent and sensible heat fluxes, 

soil temperatures and net radiation are available. However, fluxes have many missing data, as 

it can be seen in Fig. 2.8.(b), where there is no measurement of the latent and sensible heat 

fluxes in winter 2005. Measurements are more complete for soil temperature and net 

radiation, but there are still missing data as well. If one of these flux is considered as part of 

an assimilation process, these missing data have to be taken into account; no parameters 

restitution can be done during the missing time measurements.  
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(a) 

 
(b) 

Figure 2. 8 Time series of forcing variables (a) and measured fluxes (b) for SMOSREX, from 
2005 to 2006. 
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Chapter 3 

Theoretical Principles of Variational Data 
Assimilation 

 

3.1 Introduction and Notation  

The objective of this work, as was mentioned in Chapter 1, is to improve model state 

variables through the implementation of 4DVAR assimilation into SECHIBA, constraining 

model internal parameters. Once the model and the parameters to be optimized were 

presented in Chapter 2, this Chapter introduces the mathematical concepts necessary for the 

implementation of variational data assimilation (VDA).  

Traditionally, VDA is classified into different types, depending on the number of 

dimensions: 3DVAR means that we consider a physical phenomenon described in space by 

one, two or three dimensions. In 4DVAR its evolution over time is also observed. It requires 

the knowledge of a numerical model or direct model M, describing the time evolution of the 

physical phenomenon that is being studied. If we take for example a geophysical problem, the 

direct model allows, among others, to link the studied geophysical variables to observations. 

By varying some geophysical parameters (control variables) assimilation seeks to infer the 

model physical variables that led to the observation values. These physical variables can be, 

for example, initial conditions or poorly known parameters of M. For this second case, the 

variations are considered from a set of initial values given to the control variables. In order to 

infer the right values of the control parameters, VDA aims to determine the minimum of a 

cost function J that measures the difference between the observations and their equivalent 

values calculated by the model M.  
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The desired minimum of the cost function is obtained from the gradient method. 

According to the algorithm considered, it is necessary to use models that are derived from M: 

the adjoint and the tangent linear model. If M is continuous and differentiable, these two 

models are derived from the equations of the model M. With the tangent linear model we 

study, for a specific control variable, the sensitivity of the output values of the model M to 

small perturbations of these variables at a reference point. It corresponds to the value of the 

Jacobian matrix at this point. With the adjoint model, we study changes in control variables, 

in response to a perturbation of the output of the model M. It must therefore be computed in 

the opposite direction to the linear tangent calculation, which implies using the transpose of 

the Jacobian matrix. 

When observations are available, these models are used to implement VDA, minimizing 

the function J, and finding the values of the control variables. We now present the formal 

mathematical notation and the most conventional algorithm currently used in VDA. In this 

work, we adopted the formalism and notations presented in Nardi et al., 2009 and Thiria et al., 

2006. We denote: 

 M as the direct model describing the evolution between two discretization time steps ti 

and ti+1.  

 x(t0) represents the initial state vector of the model, which has to be controlled. It is 

assumed that it has dimension N. 

 Mi(x(t0)) or M(t0,ti) is the model state at time ti from the model state at t0. We denote 

x(ti)= Mi(x(t0)). 

 M(ti,ti+1) means the tangent linear model, which is the Jacobian matrix of the model M 

calculated at x(ti). 

 xb denotes a background vector, which corresponds to a prior estimate of the vector 

x(t0). 

 yo represents the available observations. o
iy  vector corresponds to observations at time 

ti, this vector can be empty if there is no observation in this time step. 

The tangent linear model of Mi calculated at x(t0) is defined as 

   





0

1
1,)(

ij
jjoi tttx MM                                                                                         (3.1) 
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The adjoint model calculated in x(t0) is the transposed matrix of the linear tangent, 

computed as follows 

   
Ti

j
jjoi tttx 








1

0
1,)( MM T                                                                                        (3.2) 

The direct model M is used to estimate state variables that can be matched to real 

measurements. This comparison is performed from an operator H called observation operator. 

H allows the transformation of the output values of M in observable values. The observations 

are not available at every point of the studied area or at every time step, consequently where 

observations are available, H links the observed values and those calculated by the 

composition MH  . In the field of geophysics, this operator allows, for example, to compare 

the outputs of the model M, which calculates the temperature at the surface of the sea, to 

observations recorded by a satellite.  

The cost function J will be defined based on the available observations. It is necessary to 

express the tangent linear and the adjoint of the operator H. We denote: 

 Hi as the observation operator which allows us to calculate the observation variables yi 

at time ti from the state vector x(ti). Subsequently, it is assumed that: 

  ioii
o
i tMH  ))(( xy . (Ɛi is a random variable with zero mean). Thereafter, Ɛi is called 

the observation error. 

 Hi represents the tangent linear model matrix of the operator Hi calculated at x(ti). 

Finally, the most general form of the cost function is defined as follows:              

         





n

i

o
ii

o
ii

bbxJ
0

1
00

1
000 2

1

2

1
yyRyyxxBxx                                    (3.3) 

The first part of the cost function represents the discrepancy to xb. The second part 

represents the distance between the observations and the model estimates. Bo is the covariance 

error matrix of xb and Ro is the covariance error matrix of yo, at time ti, which is supposed to 

be constant over time, and the number of observations is represented by n. 

The minimization of the cost function is made using the adjoint of the model. The 

procedure to implement the minimization is performed by choosing an optimization algorithm 

among the set of those suggested by the optimization techniques. Minimizers M1QN3 and 

M2QN1 (Gilbert and Lemaréchal, 1989), developed by INRIA are widely used for the VDA 

in the field of geophysics. It is also possible, in order to overcome some problems with the 
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convergence and efficiency, using an approximate gradient descent method, called 

incremental algorithm (Weaver et al., 2005, Real et al., 1994, Louvel 2001). 

3.2 Adjoint Method  

In order to minimize J, it is necessary to compute efficiently its gradient, with respect to 

the control parameters. In general, J is a scalar function that measures the difference between 

the outputs y of a model (that we note as G) and observations, so J depends on y. To minimize 

J, it is necessary to calculate its gradient with respect to the model variables x as y=G(x). If 

we note Jy ( Jx respectively) the gradient vectors of J with respect to y (with respect to x, 

respectively), we have 

JJ y
T
xx  G                                                                                                         (3.4) 

This allows the computation of Jx  knowing Jy , in the form of a matrix product of 

this matrix by T
xG , which is the transpose of the Jacobian matrix of G computed at x. VDA 

consists then of minimizing the function J with respect to the initial state  0tx  using the 

gradient method. Taking into account the notations introduced in Section 3.1, the development 

of the calculation of the gradient gives the expression 
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The control parameters are adjusted several times until a stopping criterion is reached. 

The iterations of the gradient method allow us to approach a local minimum of J, which gives 

a possible value of the initial condition  0tx . 

 

Figure 3. 1 Basic iteration of variational data assimilation. (Brajard, 2006) 
 



                                                                    

51 
 

Fig.3.1. shows a basic iteration of the VDA. x is the vector x(t0) in 

the first iteration. The difference between the output of the forward model y and the 

observations yo is measured using the cost function J. As shown in Eq.(3.5) in order to 

minimize this function, it is necessary to use Jy  through the adjoint model, giving as result 

Jx .  

The objective of this work is to show the capacity of 4DVAR to help determining the 

value of the principal parameters of SECHIBA, investigating the impact of the prior choices, 

thus as the principal part of the study concerns the direct model M and twin experiments, we 

take H as the identity matrix and take no background. Regarding the error covariance matrices 

Ro  and Bo , since this work is a prospective study, these correlations are not taken into 

account, and thus both matrices are identity matrices. With this simplification the cost 

function in the different assimilation experiments presented in this work is defined as follows 

    
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0 2
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The observations o
iy  correspond to the land surface temperature measurements, which 

are used in the following experiments. 

3.3. Representing a model and its adjoint through a modular graph 

The description of this section is based on the work by Nardi et al, 2009. Considering 

the case of a discrete physical model (atmospheric, oceanic or other), the state evolution in 

space between two consecutive time steps is governed by a discrete model of evolution: the 

direct model M. As an example, we consider here the case of a model in two spatial 

dimensions. A state variable is denoted by xij(t) where i, j are the spatial coordinates on a 

mesh and t the time index. The discretization leads to a numerical expression for each variable 

xij(t), which gives its functional dependence on other variables that may be located on any 

points of coordinates. These dependencies result in a sequence of functions corresponding to a 

simple modular graph.  

A modular graph is a set of interconnected modules. The modules represent the nodes of 

the graph. A directed arc from Fp module to Fq means that Fp transmits a portion of its output 

to Fq. We also define: 

 Module: A module F is a computational entity; it receives an input vector and computes 

an output vector. A graph is formed by several modules; a module receives its inputs 
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from other modules or from the external environment, and transmits data at the output of 

the other modules or to the outside environment. 

 Basic connection: we schematize the transmissions between modules with connections 

called basic connections. They link the ith output of module Fp to the jth input of Fq 

module, indicating that the ith value calculated by Fp is transmitted to the jth of Fq. 

Transmission of data outside or inside the graph will be represented by a basic connection 

starting from the outputs of some of the modules. A physical model M is represented by a 

modular graph, denoted by Γ. 

In Fig.3.2 a subset of modules is represented as an interconnected graph. Fp module 

transmits the output yp1 to the input xq1 of module Fq and output yp2 to input xq2. The same 

output yp2 will also be sent to input xl1 of module Fl; equally for the other modules. Fig.3.2.a 

represents the basic connections describing the transmission of data between modules. 

Fig.3.2.b represents the modular graph. In general, an arc of a modular graph represents 

several basic connections. 

 

Figure 3. 2 Part of a modular graph with 3 modules. Only one basic connection is allowed by 
a given input, but multiple basic connections can emerge from the same output.  Source: 

Nardi et al, 2009 
 

The modular graph describes the ordering of calculation in a model (Fig.3.3). An arc 

from Fp to Fq indicates that the module Fq can trigger its calculation after that of Fp. The basic 

connections are used to transmit data. 

The modular graph is a graph without circuits. It has at least one input vertex (without 

predecessors) and at least one vertex output (without successors), so there are three types of 

modules: 

 The input modules (without predecessors) receive their data only from the external 
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environment of the graph and send their output to other modules or external environment. 

 Output modules (without successors in the graph) transmit their outputs only to the exterior 

context of the graph. They receive data from other modules or from the exterior 

environment. 

 The internal modules of the graph necessarily receive inputs from predecessors and 

possibly from the external environment and transmit the results to the successors and 

possibly the external environment. 

 

Figure 3. 3 Levels in a modular graph. F1 and F2 are input modules, F3 and F4 are internal 
modules and F5 is an output module. Source: Nardi et al, 2009. 

 

As the modular graph is acyclic, it is possible to number the modules in an order called 

topological order. Thus, with respect to this order, the existence of an arc of Fp to Fq (Fp   

Fq) necessarily implies that p <q. All inputs of a module Fp are grouped in a vector noted xp. 

All of its output are integrated in a vector denoted yp (yp = Fp (xp)). From the above, a given 

module Fq can only be activated if it has its vector xq, which implies that all his predecessors 

have previously been activated. Inputs for basic connections, coming from outside, are 

initialized by the external environment. The topological order indicates a possible 

concatenation of the calculation in the model. The propagation of the calculation in the 

modular graph is done in a natural way using the following procedure, called the “forward” 

procedure: 
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(1) Forward algorithm 
  1) Browse modules of the modular graph going forward, in the direction of the increasing topological order. 

For each module encountered: 

- If it is an input module, initialize its inputs by the corresponding data from the external context. 

- For other cases (output module or internal), if the module takes a part of its inputs from the external 

environment then initialize these inputs by the corresponding data from the external environment, 

initialize the other inputs by the corresponding outputs of the modules predecessors. 

-Trigger the calculation of the module to obtain the results of its output values (yp = Fp (xp)) 

  2) Retrieve the result as a vector y, consisting of data transmitted to the external environment  

We show how, based on the concept of modular graph, we calculate the tangent linear 

and the adjoint of a model. The calculations require matrix multiplications involving the 

Jacobian matrices of each module. The procedure to obtain the tangent linear and the adjoint 

of a modular graph are presented in Appendix A. 

3.3.1. Deployment of a modular graph 

The physical model is computed at each time step and discrete grid point. The evolution 

of the model in the grid is similar at each grid point, having a repetition of calculation. The 

modular graph  , associated with the numerical model M, takes into account this repetition 

by: 

 Defining a modular sub-graph ( g ), which describes the computations needed at time t 

for a given grid point (Fig. 3.4.a). 

 The defined graph is a modular graph whose vertices are g and the arcs represent the 

exchanges between them (Fig. 3.4.b). 

 The complete graph  , with its evolution through time, is obtained by duplicating the 

graph as long as necessary. 
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Figure 3. 4 Two graph abstraction levels. At the lower level (a), we build the graph g ; at the 
space level (b), the same graph g  is repeated for each grid point (2D in this example). The 
space connections between the g  graphs correspond to the basic connections between the 

modules. Source: Nardi et al, 2009 
 

The basic connections coming from the external context of   could be, for example, 

initializations or boundary conditions. Outgoing basic connections transmit their values to 

compute, for example, a cost function. 

3.4. Diagnostic tools for the assimilation system 

An assimilation system is a complex machinery that requires an effective but robust 

functioning. This complexity leads to the definition of diagnostic tools in order to track 

several aspects of the system, to make sure the output is reliable. A number of diagnostic tools 

are presented in this section, listing the different parts of the assimilation system and how to 

test their outputs. More information about the diagnostics tools presented in this section can 

be found in Järvinen (1998) and Errico (1997). 

3.4.1 Test the correctness of the adjoint model 

A test for the correctness of the adjoint model is based on verifying the following scalar 

product 

    dyxdxdydxxdydx TT .,,., 00 MM                                                      (3.7) 

With a machine precision tolerance depending on the relative error, computed with the 

following expression 

   
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                                                                         (3.8) 
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The adjoint test provides no indication of the validity of the derived program; it simply 

indicates the consistency between the linear tangent model (forward) and the adjoint model 

(backward), which is already not negligible. 

3.4.2. Test the correctness of the cost function gradients 

Testing the gradient of the cost function J consist in the evaluation of the gradient, which 

must asymptotically point to the same direction as the difference between two realizations of 

the cost function which are separated by a small perturbation in model state (Järvinen, 1998). 

The test is derived by using first order or second order of Taylor expansion, as follows 

 First Form Second Form 
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In Equations 3.11 and 3.12, C and K are numerical constant proportional to the Hessian 

matrix. The test can be applied during developing time, on individual routines, but it can be 

also implemented to the whole model. 

When this test fails, a general error in the variational assimilation system might be the 

cause. The error is not necessarily just in the adjoint coding. In order to explore the different 

possibilities to find the problem, a first approach consist in working with a reduced definition 

of the problem. If a coding error in the adjoint was made, the cost function gradient test may 

pass, given that errors in coding might produce only relatively small errors in the gradient 

computation. It is important to keep testing the adjoint codes as explained above. 

3.4.3. Derivative test 

The idea is to verify for each input of each module the following expression 
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Where Fj is the jth module of the modular graph and xi its correspondent ith input.  In 

other words, the test is carried out for all the derivatives of the module, i.e. for each derivative 
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of each output with respect to each input (i.e. the Jacobian). 

3.5. Summary 

In this chapter, the general aspects of VDA were presented. It is important to be aware of 

the different components necessary to implement VDA, since they drive the assimilation 

process, allowing us to merge observations into the model. In addition the modular graph 

approach was presented, as an alternative representation of a numerical model. By 

decomposing the model into simpler routines, we can obtain a scalable and easily 

maintainable code, as well as a representation of the direct and adjoint model.  

VDA and modular graph approaches are the base for our implementation methodology 

of 4DVAR, based on the use of a tool called YAO. Theoretical aspects of the tool and the 

implementation process of SECHIBA into YAO are presented in Chapter 4.  
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Chapter 4 

The YAO Approach: Theoretical aspects 
and implementation of SECHIBA-YAO 1D 

 

 

4.1 Introduction 

In Chapter 3, the notions of variational data assimilation (VDA) were presented, as well 

as the representation of a numerical model based on a modular graph approach. At a 

computational level, two difficulties arise when implementing VDA: the first is to obtain a 

program to calculate the adjoint of the model; the second is the execution of  VDA with a 

specific scenario.  

In a VDA system, the user programs the discretized dynamical model, the gradient of the 

cost function through the adjoint model and the minimization operations following a specific 

set-up. From the data-processing point of view this involves two types of problems: First, if a 

direct model program already exists, it is necessary to implement the program which provides 

the adjoint model and its tangent linear model; second, once all these models have been 

implemented, it is necessary to list the calculations according to a certain scenario and to the 

chosen minimization method. The first problem leads to use automatic differentiation 

software and the second to design specific software. In this chapter, YAO is presented as a 

possible solution to cope with these two problems. 

The purpose of SECHIBA implementation into YAO is to provide the scientific 

community with a code that can easily incorporate changes in its physics and that is able to 

run very quickly assimilation experiments, allowing the researchers to focus on issues related 

to the assimilation itself. This chapter is highly operational. It presents the different technical 

steps and shows the difficulties when implementing SECHIBA into YAO. The model in 
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question has already been encoded in Fortran, having 25.000 lines of code. Given that the 

thesis required the recoding of the model in YAO format, this work is an important part of the 

thesis. 

4.2 YAO approach 

YAO, developed at LOCEAN laboratory in France, is a tool for software development. It 

facilitates the implementation of the adjoint method, including features that allow it to act as a 

platform to launch data assimilation scenarios. YAO is not an automatic differentiator. It does 

not generate the adjoint code from a program implementing the direct model. Instead, it is 

based on a numerical representation of the model as a modular graph, as presented in Section 

3.3. The graph contains the calculation flow described by the model. By integrating forward 

and backward the graph, we obtain a computational method equivalent to the adjoint of the 

model at a given point. 

With YAO, the user specifies the type of discretization through a meta-language, the 

scenario, the specification of the direct model, and the derivatives of each routine (line-by-

line). YAO generates the direct model, the tangent linear model and the adjoint model. It also 

allows the user to choose an implementation for the cost function J according to the specific 

scenario. Once the modular graph of a model M is defined, YAO creates a framework for 

developing pre-programmed underlying modular graph and its associated functions. 

The components defined in a YAO implementation of a model are organized in the 

following steps: 

1. Management of different data needed for the application (parameters, forcing, etc). 

2. Choice of the cost function: incorporating (if available) matrices (or operators) variance-

covariance of the background and observation errors. Some cost functions are directly 

available in YAO. It is also possible to integrate other methods (i.e. dual (Louvel, 2001) or 

quasi-static (Pires et al., 1996)) that will be able to communicate with the modular graph 

application. 

3. Choice of the minimizer: with YAO it is possible presently to use 2 of the minimizers of 

INRIA: M1QN3 and M2QN1 (Gilbert and Lemaréchal, 1989). Further minimization 

algorithms can be interfaced.  

4. Tools for verifying the accuracy of adjoint and tangent models: YAO facilitates these 

verifications, allowing access to various validity tests: adjoint test, cost function test, 
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among others (Section 3.5.). 

4.3. Creating a project with YAO 

The implementation of a numerical model in YAO starts with the definition of the 

modular graph describing the dynamics of the model. This is the duty of the user. Elementary 

processes and interconnections (dependencies) between modules are defined in order to catch 

the essence of the model, defining the basic connections. In addition, the user specifies a 

sequence of execution for the modular graph, corresponding to a topological order. Since the 

user must reformulate its direct model in the formalism of modular graph, the direct and 

adjoint model does not show up in the form of separate codes, but as the results of the 

application of the forward and backward modular graph algorithms, as mentioned before. 

In Fig.4.1, a schematic representation of YAO is presented. The executable program of 

the model is made by YAO, based on the user specifications. The big orange square is the 

YAO compiler, which generates the modular graph and the program executable based on the 

Modules files, the Description file and the Chapeau file, all created by the user. The output is 

the executable, which is used to launch specific assimilation experiments, based on scenarios 

defined in the Instruction file. 

 

Figure 4. 1 YAO input and output components, from Nardi (2011). User specifies the 
Modules, Description and Chapeau files. YAO compiler generates the Executable and 

through the Instruction file, assimilations can be launched under specific scenarios 
 

The Description file contains YAO guidelines, which define the modular graph of the 

direct model. Here we define: assimilation time window length, module definition, space 

dimension of each module, basic connections between modules, module computational order 
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and minimizer type. 

The Modules files contain elements of the model as well as its Jacobian matrix. For each 

module, the user generates an independent file. They contain two functions: forward and 

backward; corresponding to the direct and the derivatives of the module, respectively 

The Chapeau (Hat) file is the application main program. Here we define global variables 

and specific user functions. In addition there are a set of mandatory functions allowing the 

user to access in running time the calculations made at the beginning of the application and 

before or after the forward or backward computing. 

The Instruction file is used to execute the application, passing specific user parameter 

and YAO options as well, using the YAO meta-language. 

4.3.1 Input / Output Management 

The management of the inputs and outputs in YAO depends on several user functions 

that facilitate the task of saving model states, loading observation, etc. As it can be seen in 

Fig.4.2, the user can upload observations and model states to the project environment, by 

using the function loadstate, loadobs and outoobs. These uploaded files must have a specific 

format allowing YAO to assign it to the correspondent modules.  

 

Figure 4. 2 Input and output data flow through YAO. Users can upload observations and 
model states to the project environment, following specific YAO notation. 

 

Every observation and model state the user wants to upload must have its match in the 

modular graph. Observations must be declared with an extra keyword, identifying them as the 
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module used in the cost function. The function savestate allow the users to save the state of 

the entire model or a particular module in a specific time step or in an entire trajectory. 

The save and load functions have a set of parameters, required to position in time and 

space the data flow. These parameters involve the module name, the output number, axis 

number, time step, coding type, and data format. More about the functioning of these 

functions can be found in the YAO documentation, by Nardi et al, 2009.  

4.3.2 Diagnostic tools for the generated project 

To verify that the model and its inverse have been properly implemented, there is a set of 

functions to assist the development provided by YAO. These four methods are briefly 

presented in this section. These test are explained in detail in Nardi (2011) and Kane (2010). 

These diagnostic tools are implementations of the test presented in Section 3.5. 

The first test is testdf function. Its purpose is to verify that the functions used to calculate 

the Jacobians are accurate (Section 3.5.3). To do this, YAO relies on the functional derivative 

(called Fréchet derivative (Fréchet, 1941)) and the directional derivative (called Gateaux 

derivative (Gateaux, 1919)). If the differences between the values obtained by YAO and the 

test do not exceed the precision provided as input, the test is considered conclusive. The 

second test (testof) checks the derivatives of the cost function (Section 3.5.2). There is also 

the adjoint test (testad) and the tangent linear test (testlt), (Section 3.5.1) acting to verify the 

accuracy of the transposition of the tangent linear and to verify the accurateness of the tangent 

linear model.  

4.4. Development of SECHIBA-YAO 1D  

The version of SECHIBA implemented in YAO includes the two-layer hydrology 

presented in Section 2.2.3. SECHIBA original code is implemented in a modular scheme, 

having a set of well-defined routines, independent in its processes and with a single entry 

point (a main routines handling the rest of the functionalities). The version of SECHIBA 

chosen works in a one dimension.  

 A set of prognostic variables is defined for each module and its assignation depends on 

the forcing conditions, physics phenomena, etc. SECHIBA can work coupled with the other 

components of ORCHIDEE (STOMATE and LPJ) or it can be used offline, as it was used in 

this work. Once SECHIBA is coded in YAO, it can be easily coupled with the other modules 

of ORCHIDEE. 
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In SECHIBA, the different routines were coded using Fortran language and it runs at any 

resolution and over any region of the globe. As follows, the version of SECHIBA 

implemented in YAO is called SECHIBA-YAO 1D and the original version of the model, 

coded in Fortran, is called SECHIBA-Fortran. 

ORCHIDEE uses MODIPSL and IOIPSL in its internal processes (see 

http://forge.ipsl.jussieu.fr/igcmg/wiki/platform/documentation for more information). 

Developed in IPSL, the first one is a set of scripts allowing the extraction of a given 

configuration from a computing machine and the compilation of the specific machine 

configuration components. MODIPSL is the tree that will host models and tools for 

configuration. IOIPSL helps to manage variables state history, variable normalization, file 

lecture, and among others.  

 

Figure 4. 3 SECHIBA subroutines and its corresponding outputs 
 

The main routines in SECHIBA-Fortran are presented in Fig.4.3. These are the routines 

considered in the YAO implementation of the model. First, DIFFUCO computes the diffusion 

and plant transpiration coefficients based on the atmospheric conditions, solar fluxes, dry soil 

height, soil moisture stress and fraction of vegetation. ENERBIL corresponds to the energy 

budget module. Surface energy fluxes related to the soil are computed, based on atmospheric 

conditions, radiative fluxes, resistances, surface type fractions and surface drag. HYDROLC 

http://forge.ipsl.jussieu.fr/igcmg/wiki/platform/documentation
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is the hydrological budget module, taking as inputs the rainfall, snowfall, evaporation 

components, soil temperature profile and vegetation distribution. CONDVEG helps in the 

computation of the vegetation conditions. The thermodynamics of the model is computed in 

THERMOSOIL, based on a seven-layer soil profile. Finally, SLOWPROC calculates the soil 

slow processes. When SECHIBA is decoupled from STOMATE, this module deals also with 

the LAI evolution.  

 

Figure 4. 4 SECHIBA hyper graph, showing general model dynamics 
 

The different SECHIBA components are interconnected as shown in Fig.4.4. The output 

of the different modules serves as inputs for the next one, thus resulting in an  

interdependency among modules to be considered when modeling SECHIBA-YAO 1D. A 

more detailed graph representation of every main routine can be found in Appendix B. 

4.4.1 Implementation Outline  

Modular Graph 

The implementation of SECHIBA in YAO started with the definition of the modular 
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graph describing the dynamics of the model. Elementary processes and interconnections 

between modules were defined in order to catch the essence of the model. This is a crucial 

step since the modular graph is the basis of all the integration processes made by YAO. Direct 

and adjoint model are computed following the modular graph structure. Consequently it is 

imperative to define the right dynamics of the model.  

With SECHIBA, the modular graph was built as follows (this list represents the thesis 

work): 

1. Every component of the original code was studied in detail line by line directly looking at 

the original FORTRAN code. The code corresponding to the IPSL libraries (MODIPSL 

and IOIPSL) was ignored. The remaining 25000 lines of code corresponding to 

SECHIBA were processed. 

2. The main routine in SECHIBA that calls the other subroutines (Fig.4.3) states the model 

dynamics; hence, the order the subroutines are called was obtained (Fig.4.4). 

3. A list of inputs and outputs for each subroutine was made, for every routine mentioned in 

Fig.4.3. With this, information flows in the model is exactly known. 

4. A second zoom in the subroutines was made in order to understand the internal dynamics. 

This is the last step in the modular graph definition. When studying the subroutines, they 

were very general and a division into simpler elements was inevitable, with the purpose 

of reducing the coupling and increasing the cohesion of the modules. The idea is to have 

a scalable code. Uncoupled modules give more independence when changing part of the 

model. Cohesive modules help to understand the model. 

5. From the initial six subroutines in SECHIBA-Fortran, SECHIBA-YAO 1D modular 

graph has 130 modules, corresponding to every process modeled by SECHIBA and a 

number of temporal modules serving as auxiliary computing. 

6. It is important to mention that every variable and subroutine name was kept as in the 

original model. If a user or developer of SECHIBA-Fortran sees the implementation in 

YAO, he will find his way easily. 

Direct model 

After defining the modular graph in YAO, the second step in the implementation outline 

is the coding of the direct and the derivatives of the modules. The user has two options: a 

mapping between modules and external executables, when they must have the same number 
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of inputs and outputs as the module declared in YAO. The second consist in coding the 

different modules directly with YAO meta-language. Every module will be represented as a 

script and the different processes attributed to the module are implemented inside the script, 

allowing a better control of the physics, i.e. any change in the physics could be made without 

the initial FORTRAN code. In SECHIBA-YAO 1D, the second approach was used.  

For each subroutine, a set of modules was defined, as a decomposition of the main 

subroutine (see Appendix B). Table 4.1 shows the partition made for each subroutine. 

Subroutine Number of 
modules 

DIFFUCO 15 
ENERBIL 22 

HYDROLC 32 
CONDVEG 2 

THERMOSOIL 7 
SLOWPROC 5 

Table 4. 1  SECHIBA Subroutines and number of modules 

 

Given the complexity of some subroutines, particularly ENERBIL and HYDROLC, the 

partition was more important than other subroutines. In effect, both subroutines have a long 

list of processes and its outputs are the core base of SECHIBA. The other subroutines only 

compute ancillary variables to calculate the energy and hydrologic budget.  

 Hereafter, for every module, its process was coded line-by-line, migrating the original 

Fortran code. This coding process introduced some errors: conditions coded inaccurately, 

transposition of inputs and outputs in the module or in the modular graph description file, 

misinterpretation of the original code, portions of code ignored, among others; thus, an 

important debugging work was performed. The validation of the direct model results are 

presented in the section 4.4.2. 

Module Derivatives 

Once the direct model was coded and validated, the next step in the implementation 

process is the derivative calculation of every module defined in SECHIBA-YAO 1D. There 

are two options to code the derivatives: they can be coded line-by-line based on the forward 

computing, in order to obtain the Jacobian matrix of the module, or they can also be produced 

routinely , using an automatic differentiation tool (for example, Tapenade (Hascoët et al, 

2012)).  

http://hal.archives-ouvertes.fr/index.php?action_todo=search&s_type=advanced&submit=1&search_without_file=YES&f_0=AUTHORID&p_0=is_exactly&halsid=4rs19qtmt3rd2pnbatvr39pml0&v_0=98550
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For  this work the first option was applied given that the processes in the different 

modules were not difficult to differentiate, the developer preferred to code by itself the 

Jacobian matrix of the modules. The derivative process is made line-by-line. The outputs are 

derived with respect to every input. YAO will generate automatically, based on these 

derivatives, the tangent linear and the adjoint of the model. 

Nevertheless, the derivative process introduced errors related to the coding process. 

Besides the same kind of errors mention it in the previous point, errors related to the 

derivative process were also introduced: inexact derivatives, expressions that were not 

differentiated among others. In order to reduce it to a minimum number of bugs, the adjoint of 

the model was validated (as it was made with the direct model). This guarantees the accuracy 

when performing assimilation. The validation of the adjoint model is presented in Section 

4.4.3 and in Chapter 5 (Sensitivity Analysis), where several techniques are presented with the 

aim of validating the adjoint model. 

Once the derivatives of the model are validated, the adjoint model made by YAO is 

correct and it can be used to perform VDA. The next step is the definition of assimilation 

scenarios in order to study the potential of the model. To do so, several assimilation scenarios 

are defined in order to establish different experiments. These experiments are presented in the 

Chapter 6 Twin Experiments, where a complete set of experiments are presented. 

4.4.2 Direct model Validation 

We had to make sure that SECHIBA-YAO 1D is equivalent to SECHIBA-Fortran. At the 

end of the migration process, a validation with respect to SECHIBA-Fortran was a 

requirement.  
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 Kruger Park Harvard Forest 
 PFT 0 PFT 11 PFT 0 PFT 11 

Diagnostic variables RMSE Relative error RMSE Relative error RMSE Relative error RMSE Relative error 

Net Radiation 0,0190 0,0013 0,0729 0,0558 0,0215 0,012 0,0315 0,023 

Sensible heat flux 0,0509 0,035 0,0795 0,0658 0,075 0,062 0,071 0,0501 

Latent heat Flux 0,0711 0,0507 0,0841 0,0715 0,0718 0,055 0,0765 0,058 

Soil Evaporation 7,51e-4 1,8e-5 0,0042 0,0035 2,6e-4 1,89e-4 4,2e-4 2,5e-4 

Transpiration - - 0,0025 0,0015 - - 7,1e-4 5,1e-4 

Land surface 
temperature 

6,61e-4 5,74e-4 8,7e-4 5,01e-4 6,34e-4 5,17e-4 1,28e-3 7,01e-4 

Soil Moisture 3,62e-4 9,33e-4 2,5e-4 1,5e-4 2,1e-4 1,25 e-4 6,1e-4 5,9e-4 

Soil Water Content 
(surface layer) 

0,0033 0,0034 0,0025 0,0015 0,0070 0,0065 0,006 0,0051 

Soil Water Content 
(ground layer) 0,0070 0,0012 0,0021 0,0014 0,0039 0,0025 0,0069 0,0062 

Table 4. 2 RMSE and Relative Error between SECHIBA-Fortran and SECHIBA-YAO 1D. 
These errors were computed based on a year simulation on both models. 

  

Both models were run one year for two different scenarios, using the FLUXNET 

Harvard Forest 1996 and Kruger Park 2003 forcing. For nine diagnostic variables, the root 

mean square error and the relative error were computed, as presented in Table 4.2, for one 

type of vegetation (grassland PFT 11) and bare soil (PFT 0). 

Even though small differences are found, the simulations made by SECHIBA-YAO are 

close enough to SECHIBA-Fortran to conclude that the direct model is valid. Both models 

predict the same flux behavior under several forcing scenarios, even though those small 

disparities come up with some extreme cases, the general performance is kept in SECHIBA-

YAO 1D. 

In addition, Fig.4.5 and Fig.4.6 show the time series of several variables during four 

days, using Harvard Forest and Kruger Park forcing, respectively. For the different scenarios 

presented, eight diagnostic variables were compared: net radiation (Rn), latent heat flux (LE); 

land surface temperature (LST), sensible heat flux (H), vegetation water stress, transpiration, 

surface water content and depth water content. It can be seen that the differences are almost 

indiscernible for several of them. Although small differences between both results are more 

perceptible for several curves in this four day time series, in a scale of a year, the accuracy of 

SECHIBA-YAO 1D do not vary too much (Table 4.2). 
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(a) 

 
(b) 

Figure 4.5 Comparison between SECHIBA-Fortran and SECHIBA-YAO 1D outputs, using 
FLUXNET Harvard Forest forcing from 19/07/2003 to 23/07/2003. Each curve is a time series during 
4 days for 8 diagnostic variables. Red curves are the estimations computed with SECHIBA-Fortran. 
Blue curves represents SECHIBA-YAO -1D estimation. (a) is with bare soil  and (b) with grassland. 
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(a) 

 
(b) 

Figure 4.6 Comparison between SECHIBA-Fortran and SECHIBA-YAO 1D outputs, using 
FLUXNET Kruger Park forcing from 07/02/2003 to 11/02/2003. Each curve is a time series during 4 

days of 8 diagnostic variables. Red curves are the estimations computed with SECHIBA-Fortran. Blue 
curves represents SECHIBA-YAO -1D estimation. (a) is with bare soil  and (b) with grassland. 
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4.4.3 Adjoint Model Validation 

Once the direct model is validated and the derivatives of each module are computed, 

YAO generates (while compiling the project) a code that represents the backward integration 

of the modular graph. In order to check that these derivatives are correctly computed, the 

adjoint model was verified in two phases: the first consists in the implementation of the tests 

mentioned in Section 3.4, where different diagnostic tools allow us to determine if the adjoint 

model is accurate. In order to do so, these tests are already implemented in YAO, thus the 

results for the adjoint test, cost function test and derivative tests are presented in the next 

section. The second phase, which is presented in Chapter 5, Sensitivity analysis, consists in a 

gradient sensitivity study concerning the land surface temperature with respect to the control 

parameters. Local sensitivity analysis was computed on SECHIBA-YAO 1D using the adjoint 

model and the results were compared to the gradients calculated using the direct model (finite 

differences) in order to test the exactitude of SECHIBA-YAO 1D adjoint to deliver adequate 

values 

Derivative test 

The derivative test, as it was mentioned in Section 3.4.3, consist in verifying for each 

input of each module that the derivative coded in the module is equal to an approximation 

computed in YAO, (Eq.3.13). The results are not presented since there are very extensive. 

However, all modules passed the test, and thus it can be said that the different derivatives 

coded in each module are valid.  

Adjoint test 

The adjoint test, as it was mentioned in Section 3.4.1 indicates the consistency between 

the linear tangent model (forward) and the adjoint model (backward), by verifying the scalar 

product mentioned in Eq.3.7. The results of applying this test to SECHIBA-YAO 1D are 

presented in the Fig.4.7. It can be observed that both terms are equal up to 16 digits, thus the 

test is verified. 
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  dydxxT ,.0M

 
9.150614798923334e-01 

  dyxdx T ., 0M

 
9.150614798923330e-01 

Difference 4.440892098500626e-16 

Relative error 4.853108e-16 

Figure 4. 7 Results of the adjoint test applied to SECHIBA-YAO 1D. The difference between 
both terms is presented in the lower part of the figure. 

Cost Function test 

The third test presented in this section concerns the calculation of the cost function 

gradients, based on the test presented in Section 3.4.2. As it was mentioned before, the idea of 

this test is to compute the gradients of the cost function in successive iterations, by reducing a 

factor α. The gradient must point in the same direction as the difference between two 

realizations of the cost function which are separated by a small perturbation in model state.  

The test was applied using Kruger Park forcing with grassland (PFT 11), from 

07/02/2003 to 11/02/2003. A perturbation of 1% was applied equally to the different control 

parameters. The α initial value is 1 and it is reduce by a factor of 10 every iteration. The 

results of this test given by YAO are presented in Table 4.3. 

Cost function: J(xo) = 3.745172e-01  
It # α Order 1 1 Order 2K 
1 1.000000e-01 7.352809e+00 7.342809e+03 
2 1.000000e-02 6.729459e+00 7.342459e+03 
3 1.000000e-03 8.306182e+00 7.326182e+03 
4 1.000000e-04 8.368875e+00 7.318752e+03 
5 1.000000e-05 9.760466e-01 7.139534e+03 
6 1.000000e-06 9.170205e-01 7.029795e+03 
7 1.000000e-07 9.077703e-01 2.922297e+05 
8 1.000000e-08 9.208394e-01 2.791606e+06 
9 1.000000e-09 9.017666e-01 2.982334e+07 

10 1.000000e-10 9.017855e-01 2.982145e+08 
Table 4. 3 Cost function test results given by YAO.  

In Table 4.3, results of applying the cost function gradient test are presented. The order 1 

column values must tends towards unity and order 2 column values must tend towards a 

constant K proportional to the Hessian matrix. It can be observed that the first four iteration 

values verified this condition. However, from the 6th iteration onward, the test diverges for the 

order 2: K values do not tend towards constant values. Since the calculation of the order 2 

criteria involves the algebra of very similar quantities, these operations can induce a loss of 

accuracy in the results. In order to pursue this idea, a numerical analysis validation was 

implemented in order to account for the significant digits obtained with the different 
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operations involving the cost function gradient test.   

Numerical validation of SECHIBA-YAO 1D 

Significant digits represent the number of decimal digits in common between a computer 

solution and the results corresponding to the exact mathematical result. To properly quantify 

the accuracy of a computed result, a tool called CADNA is used to retrieve the exact 

significant digits, for every computation made in SECHIBA-YAO 1D. CADNA, means 

Control of Accuracy and Debugging for Numerical Applications. It was developed in LIP6 

laboratory in France. The main objective of CADNA is the accuracy estimation of a computed 

result. It uses concepts and definitions taken from stochastic arithmetic (Vignes, J., 1993) 

regarding order relations and equality relations. It includes the stochastic definitions of all the 

elementary arithmetic operations, order relations and elementary functions defined for the 

classical numerical types. 

CADNA detects numerical instabilities in run time. This debugging is focused in the 

computer capability to give correct results when the code is running. The accuracy estimation 

is available for any intermediate or final result. The exact significant digits of every operation 

are displayed as output. CADNA is able to detect when the conditions for a right estimation of 

the round-off errors are not satisfied anymore and when it happens, CADNA is able to advise 

the users. Therefore, the numerical debugging and the self-validation method are performed 

by systematically detecting numerical instabilities.  

Gradient Test 

The gradient test helps to verify the accuracy of the model gradient by computing the 

residue. The idea is to calculate the variation of the residue defined by Eq.4.1, depending on 

the amplitude α of the perturbation imposed on the control variable. If the gradient is valid, 

the residue should vary as α 2 , meaning as the calculation makes sense on the machine, that is 

to say, as long as the residue is greater than the product ε.J(x0) or as long as the residue has 

still some significant digits, where ε is the “machine zero” (ε =2-53). The residue must be 

quadratic, which proves that the gradient is correct (strictly speaking in the direction of 

disturbance dx). The residue is computed with the following expression 

        dxxJxJdxxJR 000                                                       (4.1) 

In  Eq.4.1, J is the cost function,  is the gradient of the cost function with respect to 

x, dx is the perturbation vector and α is the amplitude of the perturbation. The inputs 



 J
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necessary in order to perform this test are taken from the cost function results obtained, 

presented in Table 4.3. This test was applied using Kruger Park forcing with grassland (PFT 

11), for a different date from the one used in Table4.3, (from 02/02/2003 to 07/02/2003). A 

perturbation of 1% was applied equally to the different control parameters. This test was 

performed with and without CADNA, in order to assess the numerical precision lost when 

computing the residue.  

In Fig. 4.7, the gradient test results are shown. The black dotted line represents α 2, red 

dotted line is α and the blue line is the residue, for different values of the amplitude α, going 

from 10-1 to 10-16. Logarithmic scales were used throughout. As it can be seen in Fig.4.7, the 

first six values of α are quadratic (blue line varies as α 2), however from the 6th iteration 

onwards, the gradient diverges. From the moment the test diverges in Fig.4.7.(b), CADNA 

finds zero significant digits (Fig.4.7.(a)), showing that there is no precision left from that 

point in the residue calculation. Looking closer at the precision of the residue equation, two 

different subtractions introduce a precision lost in the result.  

 

Figure 4. 8  Gradient test result using Kruger Park forcing from 07/02/2003 to 11/02/2003, 
with and without CADNA with grassland (PFT 11). Residue curve (blue) must vary as α2 

(black dotted line) so that the test is valid. 
 

Even though the results without CADNA clearly show a divergence in the residue 
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(Fig.4.7.(b)), the results obtained with CADNA are trust worthier. These clearly indicate a 

loss of accuracy, meaning that these results cannot be taken into account in our analysis of the 

gradient. On the contrary, within the first six iterations, CADNA found significant digits 

indicating that the gradient test is valid, since these increase as α 2. 

The cardinal rule of numerical computing aims to avoid subtracting nearly equal 

numbers. The closer the two numbers are, the more precision is lost in the subtraction. For 

example, if we have two values x and y and they agree to m bits, up to m bits of precision can 

be lost in computing x-y. This behavior can be found in the residue formula: when   becomes 

smaller, the two members of the equation   dxxJ .0  and     00 . xJdxxJ    have almost 

the same value. From the 6th iteration onwards, their value agrees to 12 decimal places, so 

about 12 decimal places are lost in the subtraction. A double precision floating point number 

(as it was declared for all of our variables) contains about 15 significant digits (corresponding 

to machine epsilon). So when increasing  , the rounding error will be higher than 10-15 and 

thus we lost all the precision when computing the residue. 
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Chapter 5 

Sensitivity Analysis of the  SECHIBA-YAO 
1D model using FLUXNET dataset  

 

 

5.1 Introduction 

Sensitivity analysis is the study of the variation of the output of a model (numerical or 

otherwise) with respect to the input (the forcing) or to the parameterization of the different 

processes represented  by the model (Saltelli et al 2008). It is not concerned with what causes 

the output of the model to be what it is, but what the sources of variation are.  In the present 

study, sensitivity  refers to the local impact of the parameters on the model, providing the 

gradients of the calculated model output in the parameter space for a given set of values. It 

also helps to analyze the behavior of the system for a trajectory in the phase space defined by 

the prior values of the parameters. Local analysis has the advantage of facilitating the 

mechanistic interpretation of sensitivities (sign and magnitude) (Saltelli et al., 2008). 

The adjoint state method allows computing the scalar function derivatives for a 

calculation cost independent of the area dimension controlled (Castaing 2007). In the linear 

framework, as in the non-linear, interpretation of the adjoint variables permits an objective 

understanding of the relationship ),( kxJxk  , in the form of 

k

x

x

J

k

J













.

                                                                                                             (5.1)
 

with k the parameter vector, x the state of the model and J a cost function. In a temporal 

framework, the variational approach is used to calculate the effect on the control variables of 



                                                                    

78 
 

time dependent disturbance of the input.  

Several works regarding the implementation of local sensitivity analysis prior to 

assimilation conclude that sensitivity analysis is a mandatory step in the model building 

process. Greenwald et al. 2004 worked with a regional atmospheric modeling system in order 

to explore the connection between cloud microphysics and top of the atmosphere radiances. 

These authors developed an adjoint sensitivity analysis scheme for an observation operator in 

order to understand the potential of the different measurements available and the influence the 

parameters have in the variable estimation. They conclude that sensitivity analysis allowed 

identifying a quantifiable relationship between model parameters and observation operators. 

In addition, Breierova and Choudhari, 1996 mentioned that sensitivity analysis helps the 

modeler to understand the dynamics of a system. Experimenting with a wide range of values 

can offer insights into the behavior of a system in extreme situations. Discovering that the 

system behavior varies for a change in parameter values can identify leverage points in the 

model. In addition, the authors in this work stated that sensitivity analysis helps to build 

confidence in the model by studying the uncertainties that are often associated with model 

parameters.  

Prior to a calibration exercise, sensitivity analysis can be employed, as explained in 

Giering et al. 1998, to investigate the importance of tuning each parameter in the model, i.e. to 

identify a candidate set of important factors for calibration, since the difficulty of calibrating 

models against field or laboratory data increases with the number of processes to be modeled 

(and hence the number of parameters to be estimated).  

When building a numerical model, modelers can conduct sensitivity analysis (Saltelli et 

al 2008) to determine: 

1. If a model accurately reproduces the system or the processes under study. 

2. The factors (parameters or initial conditions) that mostly contribute to the output 

variability. 

3. The model parameters that are insignificant, and that can be eliminated to simplify the 

final model. 

4. If there is some region in the space of parameters for which the model sensitivity is 

maximum and how the sensitivity depends on initial and boundary conditions. 

5. The optimal regions within the space of the factors to be used in a subsequent calibration 
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study. 

6. Parameters interacting with each other. 

In this work, our efforts are focused on points 2, 3, and 4. Once SECHIBA-YAO 1D 

implementation is achieved and the direct model validated (Chapter 4), a sensitivity analysis 

with two main objectives is performed which is reported in this Chapter: to test the accuracy 

of the adjoint method and to determine a parameter hierarchy of the most sensitive parameters 

to the estimation of land surface temperature.  

5.2 Variational Sensitivity Analysis 

The sensitivity analysis we did was based on the use of the adjoint model of SECHIBA 

1D. It has been the subject of an article submitted to the Journal of Geophysical Research 

(JGR). This article is included in the following section. 

5.2.1. Sensitivity analysis with land surface temperature 

Article Summary 

In this paper, a variational sensitivity analysis was done, prior to the implementation of 

variational data assimilation, by using the adjoint model of SECHIBA, generated with the 

adjoint semi-generator software YAO. Once the parameter hierarchy is obtained with the 

sensitivity analysis, twin experiments using synthetic observations are presented, allowing us 

to evaluate the model response to the assimilation process. The results obtained when 

controlling the most sensitive parameters and the initial soil water content show the flexibility 

of the assimilation scheme. 

Article 
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Abstract 

Variational data assimilation is applied to the energy and water budget modules of the ORCHIDEE land surface 

model. This part of the model called SECHIBA, describes the exchanges of water and energy between the 

surface and the atmosphere. The adjoint semi-generator software called YAO was used as a framework to 

implement 4D-VAR assimilation. First, sensitivity analysis was performed in order to validate the adjoint model 

and to identify the most influential parameters. Then, the results of twin experiments using synthetic 

observations are presented in order to demonstrate the robustness of the assimilation. The results obtained when 

controlling the most sensitive parameters and the initial soil water content show the flexibility of the assimilation 

scheme and the potential of land surface temperature variational data assimilation to improve model calibration 

and reduce prediction errors. 

Keywords: Sensitivity Analysis, Data Assimilation, Model Calibration, Land Surface Temperature 

 

1. Introduction 

Land surface models (LSM) simulate the interactions between the atmosphere and the land surface, which 

influence directly the exchange of water, energy and carbon with the atmosphere. They are important tools for 

understanding the main interaction and feedback processes simulating the present climate and making 

predictions of future climate evolution (Harrison et al., 2009). Such predictions are subject to considerable 

uncertainties, related to the difficulty to model the highly complex physics with a limited set of equations that 

does not account for all the interacting processes (Pipunic et al., 2008, Ghent et al. 2011). Understanding these 

uncertainties is important in order to obtain more realistic simulations.  

The main challenge of each dynamical model, regardless its nature, is to have the appropriate source of 

information to produce an accurate response. Observations sample the system of interest in space and time. 

These measurements provide essential information on the model dynamics and contribute to the understanding 

of the system evolution (Lahoz et al. 2010). Data assimilation adds observations to the model, allowing 

extracting valuable information. The idea is to merge the measurements with the dynamical model with the 

purpose to arise a more accurate estimate of the current and future states of the system, together with uncertainty 

estimates in the model states. Two basic methodologies can be used to come up with uncertainties. The 

sequential approach (Evensen 2003),, based on the statistical estimation theory and the Kalman filter, and the 

variational approach (Le Dimet et al., 1986),  (4DVAR) built from the optimal control theory (Robert et al, 

2007). It is well known that both  approaches provide the same solution at the end of the assimilation period, for 

perfect and linear models. These approaches are different, however, mainly because the model is seen as a strong 

constraint in the 4DVAR approach and as a weak constraint in the sequential approach. Variational data 

assimilation has been widely used in land surface applications. The assimilation of land surface temperature 

mailto:hbplod@locean-ipsl.upmc.fr


                                                                    

  

(LST) is suitable for an extensive range of geophysical problems. As mentioned in Ridler et al. (2012), LST is an 

excellent candidate for model optimization since it is solution of the coupled energy and water budgets, and 

allows us to constrain parameters related to evapotranspiration and indirectly to soil water content. In Castelli et 

al. (1999), a variational data assimilation approach is used to include surface energy balance in the estimation 

procedure as a physical constraint (based on adjoint techniques). The authors work with satellite data, where soil 

skin temperature is directly assimilated. They conclude that constraining the model with such observation 

improves model flux estimates, with respect to available measurements. In Huang et al. (2003) the authors 

developed a one-dimensional land data assimilation scheme based on ensemble Kalman filter, used to improve 

the estimation of land surface temperature profile. They demonstrate that the assimilation of LST into land 

surface models is a practical and effective way to improve the estimation of land surface state variables and 

fluxes. Reichle et al. (2010) performs the assimilation of satellite-derived skin temperature observations using an 

ensemble-based, offline land data assimilation system. Results suggest that retrieved fluxes provide modest yet 

statistically significant improvements. However, these authors noted strong biases between LST estimates from 

in situ observations, land modeling, and satellite retrievals that vary with season and time of day. They 

highlighted the importance of taking these biases into account. Otherwise large errors in surface flux estimates 

can result. Ghent et al. (2011) investigated the impacts of data assimilation on terrestrial feedbacks of the climate 

system. Assimilation of LST helped to constrain simulations of soil moisture and surface heat fluxes. Ridler et al. 

(2012), tested the effectiveness of using satellite estimates of radiometric surface temperatures and surface soil 

moisture to calibrate a Soil–Vegetation–Atmosphere Transfer (SVAT) model, based on error minimization of 

temperature and soil moisture model outputs. Flux simulations were improved when the model is calibrated 

against in situ surface temperature and surface soil moisture versus satellite estimates of the same fluxes. In 

Bateni et al. (2013), the full heat diffusion equation is employed in the variational data assimilation scheme as an 

adjoint (constraint). Deviations terms of the evaporation fraction and a scale coefficient are added as penalization 

terms in the cost function. Weak constraint is applied to data assimilation with model uncertainty, accounting in 

this way for model error. The cost function to this experiment contains a term that penalizes deviation from prior 

values. When assimilating LST into the model, the authors proved that the heat diffusion coefficients are 

strongly sensitive to specific deep land surface temperature. As a conclusion, it can be seen that the assimilation 

of LST can achieve a remarkable improvement in the model simulated flows. Since many studies demonstrate 

the usefulness of LST data assimilation, this paper explores the potential of 4DVAR data assimilation in 

constraining ORCHIDEE model.  

In the present study, a variational data assimilation scheme was implemented in the ORCHIDEE Land 

Surface Model, developed at the “Institut Pierre Simon Laplace (IPSL)” in France. In the early stages of this 

work, efforts were concentrated on the biophysical model denoted SECHIBA (Ducoudré et al. 1993), which is 

part of ORCHIDEE. SECHIBA describes the exchanges of water and energy between the surface and the 

atmosphere. The assimilation was conducted by using the adjoint semi-generator software called YAO developed 

at LOCEAN-IPSL (Nardi et al. 2009). YAO serves as a framework to design and implement dynamic models, 

helping to generate the adjoint of the model allowing computing the model gradients. Sensitivity analysis was 

performed in order to test the adjoint of SECHIBA and to identify the most influential parameters in the LST 

estimation. This is a crucial step prior to assimilation (Barrett et al. 2009, Ridler et al. 2012).  

Model parameters as well as initial conditions of surface soil water content were controlled in our 



                                                                    

  

assimilation scheme. Sensitivity analysis were performed for different soil and climate conditions, i.e., for a bare 

soil and a grassland, forced with two different climates provided by two FLUXNET meteorological stations 

(Baldocchi et al, 2001). Next, twin experiments were performed in order to test the robustness of the assimilation 

with our model and to assess the potential of LST assimilation. In addition, the impact of increasing the number 

of control parameter set was tested. The final objective of these experiments is to analyze the potential of 

implementing 4DVAR into SECHIBA, in order to quantify the robustness of the assimilation process to improve 

the estimation of model parameters and reduce model fluxes error, and the capability of LST in constraining 

SECHIBA parameters. 

2. Models and Data  

2.1. ORCHIDEE 

ORCHIDEE is a mechanistic dynamic global vegetation model (Krinner et al., 2005) representing the 

continental biosphere and its different processes. It is part of the IPSL (Institut Pierre Simon Laplace) Earth 

system model (LMDZ, Hourdin et al., 2006; Dufresne et al., 2013) and is composed of 3 modules: SECHIBA, 

STOMATE and LPJ. SECHIBA computes the water and energy budgets at the biosphere-atmosphere interface, 

as well as the Gross Primary Production (GPP); STOMATE (Friedlingstein et al., 1999), is a biogeochemical 

model which represents the processes related to the carbon cycle, such as carbon dynamics, the allocation of 

photosynthesis respiration and growth maintenance, heterotrophic respiration and phenology and finally, LPJ 

(Sitch et al., 2003) models the global dynamics of the vegetation, interspecific competition for sunlight as well as 

fire occurrence. ORCHIDEE has different time scales: 30-minutes for energy and matter, one-day for carbon 

processes and 1-year for species competition processes. The full description of ORCHIDEE can be consulted in 

Ducoudré et al., 1993, Krinner et al., 2005, d’Orgeval et al., 2006, Kuppel et al., 2012. In the present study, 

ORCHIDEE 1.9 version is used in a grid-point mode (one given location), forced by the corresponding local 

half-hourly gap-filled meteorological measurements obtained at the flux towers. In this study, only the 

SECHIBA module is activated.  

2.2 SECHIBA 

SECHIBA (Schématisation des Echanges Hydriques à l'Interface Biosphère-Atmosphère) (Ducoudré et al., 

1993) is a land surface model. It solves every half hour the energy budget of the surface and the soil water 

budget. The land surface is represented as a whole system composed of various fractions of vegetation types 

called PFT (Plant Functional Type). A single energy budget is performed for each grid point, but water budget is 

calculated for each PFT fraction. The resulting energy and water fluxes between atmosphere, ground and the 

retrieved temperature represent the canopy ensemble and the soil surface. The main fluxes modeled are the net 

radiation (Rn), soil heat flux (Q), sensible (H) and latent heat (LE) fluxes between the atmosphere and the 

biosphere, land surface temperature (LST) and the soil water reservoir contents. Energy balance is solved once, 

with a subdivision only for LE in bare soil evaporation, interception and transpiration for each type of vegetation.  

Water balance is computed for each fraction of vegetation (Plant Functional Type or PFT) present in the 

grid. The SECHIBA version used in this work, models the hydrological budget based on a two-layer soil profile 

(Choisnel, 1977). The two soil layers represent respectively the surface and the total rooting zone. The soil is 

considered homogeneous with no sub-grid variability and a total depth of htot = 2m.  The soil bottom layer acts 

like a bucket that fills with water from the top layer. The soil is filled from top to bottom with precipitation; 



                                                                    

  

when evapotranspiration is higher than precipitation, water is removed from the upper reservoir. Runoff arises 

when the soil is saturated.  

SECHIBA inputs are: Rlw the incoming infrared radiation; Rsw the incoming solar radiation; P the total 

precipitation (rain and snow); Ta the air temperature; Qa the air humidity; Ps the atmospheric pressure at the 

surface and U the wind speed. No snowfall is taken into account in the present work. 

2.3 FLUXNET data 

 FLUXNET (Baldocchi et al., 2001) is a network coordinating regional and global analysis of 

observations from micrometeorological tower sites. The flux tower sites use eddy covariance methods (Aubinet 

et al. 2012) to measure the exchange of carbon dioxide (CO2), water vapor, and energy between terrestrial 

ecosystems and the atmosphere.  

Measurement towers sprang up around the world, grouped in regional networks. The data from all 

networks is accessible to the scientific community via the Fluxnet website (http://www.fluxdata.org). In this 

work, we selected 2 sites: Harvard Forest and Skukuza Kruger National Park; both present contrasted climates 

and land surface properties to test the tools developed and assess model parameters sensitivities. Only climate 

measurements (model forcing) from both sites are used. Vegetation characteristics are prescribed and only 

homogeneous grids are considered. Two cases were studied with grassland (PFT 11) and bare soil (PFT 0). 

Forcing for both sites correspond to SECHIBA forcing, with the same sampling frequency (30 minutes). 

Skukuza Kruger National Park 

Located at latitude 25° 1' 11" S and longitude 31° 29' 48" E, in South Africa, this Fluxnet site was 

established in 2000. The tower overlaps two distinct savanna types and collects information about land-

atmosphere interactions. The climate is Subtropical-Mediterranean. The total mean annual precipitation is 650 

mm, with an altitude of 150 m and the mean annual temperature is 22.15 ºC. 

Harvard Forest 

Located in the United States of America, on land owned by Harvard University, the station is located at 

latitude 42º53'78'' N and longitude 72º17'15'' W. It was established in 1991. The site has a Temperate-Continental 

climate with hot or warm summers and cold winters. The annual mean precipitation is 1071 mm, the mean 

annual temperature is 6.62 ºC and the altitude is 340 m. 

 

 3. The Methodology 

3.1 Variational assimilation 

Variational assimilation (4D-VAR) (Le Dimet et al. 1986) consider a physical phenomenon described in 

space and its time evolution. It thus requires the knowledge of a direct dynamical model M, which describes the 

time evolution of the physical phenomenon. M allows connecting the geophysical variables studied with 

observations. By varying some geophysical variables (control variables); assimilation seeks to infer the physical 

variables that led to the observation values. These physical variables can be, for example, initial conditions or 

parameters of M.  

http://www.fluxdata.org/


                                                                    

  

The basic idea is to determine the minimum of a cost function J that measures the misfits between the 

observations and the model estimations. Due to the complexity of this function, the desired minimum is 

classically obtained by using gradient methods, which implies the use of the adjoint model of M. This model is 

derived from the equations of the direct model M. The adjoint model estimates changes in the control variables 

in response to a disturbance of the output values calculated by M. It is therefore necessary to proceed in the 

backward direction to the direct model calculations, which means to use the transpose of the Jacobean matrix. 

When observations are available, the adjoint allows minimizing the cost function J.  

Formalism and notations for variational data assimilation are taken from Ide et al., (1997). M represents 

the direct model, x(t0) is the initial state of the model, , so x(ti) = Mi(x(t0)), where Mi(x(t0) is represented by M1 

M2 M3… Mi(x(t0)). The tangent linear model is noted as M(ti, ti+1), which is the Jacobean matrix of M, in x(ti). The 

background vector is defined as xb, which is an a priori state vector. i
oy  is an observation at time step ti. k is a 

vector containing the control parameters of the model, so the direct model M can be represented also as 

 kxM ii , . The adjoint model T
iΜ  is the linear tangent transpose, defined as: 

   
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M is used to estimate variables, which are most often observed from an observation operator H, allowing 

comparing the observed values and those calculated by the composition H° M, when they are available. The cost 

function J will be defined in terms of observations, so Hi allows us to compute observation variables yi, from 

state vector x(ti).We suppose that    iiii kxMHy  , , where i  is a random variable with zero mean. This 

term represents the sum of the model, observation and scaling error. Finally, the most general form of the cost 

function is defined as follows:              
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The first part of the cost function represents the discrepancy to kb. The second part represents the distance 

between the observations and the model estimates. B0 is the covariance error matrix of kb and Ri is the covariance 

error matrix of yo, at time ti. The objective of this work is to show the capacity of 4DVAR to help determining the 

value of the principal parameters k and initial conditions and also to investigate the impact of the prior choices. 

In our experiments, since the observations are synthetic (produced by the model itself) no transfer function from 

the estimation to the observation are needed, reason why we take H as the identity matrix. In addition since no a 

priori from the control parameters is known, there are no background, thus B0= 0; 

If we note by Jk   and Jy  the gradients of the cost function J, with respect to k and yi, we have: 

  JkxJ yik  ,T
iM                                                                                             (3) 

The expression above allows us to compute Jk , by knowing Jy , in the form of a matrix product of 

this term by the matrix  kx i
T
i ,Μ  , corresponding to the transpose of the Jacobian Matrix. The development of 



                                                                    

  

calculation gives the expression of the gradient of y: 

      
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Control parameters are adjusted several times until a stopping criterion is reached. The iterations of the 

gradient method allow us to approach the desired solution, in order to satisfy a stopping criterion that could be, 

for example, a certain threshold on the norm of the cost function gradient. 

3.2 YAO  

In order to implement the variational data assimilation, the gradient of the cost function need to be 

calculated before the minimization operation. YAO provides a framework helping the implementation of the 

adjoint model using a programming based on a general formalism decomposition of complex systems into 

modular graph (Nardi et al., 2009, http://www.locean-ipsl.upmc.fr/~yao/). The graph is composed of modules 

connected together by nodes and representing the numerical model. The module inputs are the outputs of 

precedent modules. Each module is composed of an elementary function specific to the dynamic model, which is 

differentiable. With YAO, the user specifies the type of discretization through a meta-language as well as the 

specifications of the direct model. YAO compiles and generates an executable that can compute the direct model 

M, the tangent linear model and the adjoint model. It also allows us to choose an implementation for the 

minimization of the cost function J, according to the specific scenario.  

An interface with a quasi Newton optimizer called M1QN3 (Gilbert and Le Marechal 1989) is used to 

minimize the cost function, taking as parameters the cost function and its partial derivatives with respect to the 

control parameters. YAO, using forward and backward integrations of M and its adjoint, yields the derivatives. 

The stopping criterion for M1QN3 is defined by an epsilon, which is based on the norm of the current gradient gk 

with respect to the initial gradient value g1. If epsilonggk 1/ ,  the algorithm stops the minimization. 

3.3 Experiment implementation 
The implementation of SECHIBA in YAO starts with the definition of the modular graph describing the 

dynamics of the model M. Elementary processes and interconnections between modules are defined in order to 

grasp the essence of the model. This is a crucial step since the modular graph is the base for all the integration 

processes made by YAO. Direct and adjoint models are computed following the modular graph structure. The 

second step in the implementation outline is the coding of the direct and the derivatives of the modules. The 

process associated with each module was coded line-by-line, translating the original Fortran code in YAO meta-

language, which is based on C++. At the end of the YAO implementation process, a validation of the direct 

model with respect to the original model was made. Once this validation was achieved, the next step of the 

implementation process is the derivative calculation of each module. This derivative process is based on the 

forward computing, in order to obtain the Jacobean matrix of each module. YAO generates automatically the 

tangent linear and the adjoint of the model.  

Prior to the assimilation process, different scenarios are defined. A scenario makes reference to the 

experimental conditions. It includes the definition of: vegetation fraction (PFT), type of observation to be 

assimilated, observation sampling, time sampling, and atmospheric forcing file, subset of control parameters, 

http://www.locean-ipsl.upmc.fr/~yao/


                                                                    

  

assimilation window size and wished time of the year to start the assimilation. The different scenarios were 

calculated using the adjoint model for several typical summer conditions of the 2 Fluxnet sites selected. The 

dates presented in this paper (2 February 2003 for Kruger Park and 26 August 1996 for Harvard Forest site) are 

representatives of sunny days in summer, with no perturbation coming from clouds and without rainfall events. 

All scenarios have normalized control parameters equal to 1.  

The next section explains the scenarios for the different experiments performed in this work: a local 

sensitivity analysis using the adjoint model, a sensitivity cross-correlation between the gradients of temperature 

with respect to a set of control parameters and several twin experiments, based on the assimilation of simulated 

land surface temperature.  

 

4. Data assimilation experiments 

In order to show the benefit of data assimilation in SECHIBA, we conducted several experiments using 

the SECHIBA model. These experiments show the benefit in using data assimilation for estimating the internal 

parameters of the SECHIBA model. We first did a sensitivity analysis of SECHIBA to detect the most sensitive 

parameters (section 4.1 and 4.2); then, we conducted several data assimilation experiments using a twin 

experiment methodology to show the feasibility of estimating the internal parameters of the SECHIBA model 

(section 4.3).  

4.1 Variational sensitivity analysis  

In order to identify the most sensitive parameters to the estimation of land surface temperature, a 

sensitivity analysis was performed, based on the adjoint model of SECHIBA. The gradients obtained with the 

adjoint model correspond to first-order sensitivity, giving insights of the influence that the control parameters has 

on the land surface temperature. In order to do so, local sensitivities was applied,  providing the slope of the 

calculated model output in the parameter space at a given set of values (Saltelli et al, 2008). This method is really 

local and the information provided is related to a single point in the parameter space. The point investigated is 

usually near the prior value of the parameters. Small variations in parameter values usually do not change the 

local sensitivity dramatically, but a significantly different parameter set may result in completely different 

sensitivity patterns (Saltelli et al., 2008). Local analysis has the advantage of facilitating the mechanistic 

interpretation of sensitivities (in sign and magnitude). 

The accuracy of the adjoint of the model was tested as well; by comparing the gradients computed with 

the adjoint model to a gradients approximation, calculated using the direct model (finite differences). This 

comparison was made for every parameter considered in this study, allowing us to corroborate the precision of 

the adjoint model, verifying the exactitude of the approximated vs. the exact gradient values. 

Parameters prior values used for the sensitivity analysis are the same as the original model ORCHIDEE. 

The sensitivity analysis is performed for a subset of internal parameters related to the energy and water physical 

processes, complementary to the work made by Kuppel et al. 2012, who considered only parameters related to 

the carbon budget.  

The 11 parameters concerned in the analysis are presented in Table 1. There are two groups of parameters: 

internal parameters and multiplying factors. The first group corresponds to physical parameters. The second 



                                                                    

  

group resembles parameters weighting some physical processes in our model. All multiplying factor are equal to 

1 so they do not influence the weighted equation in their prior values. 

 Model internal parameters are the following: rsolcste is a numerical constant involved in the soil resistance 

to evaporation. This parameter limits the soil evaporation, so the greater its value the lower the evaporation; 

humcste, mxeau and mindrain are related to soil water processes, the higher their values, the more water will be 

available in the model reservoir, affecting water transfers and especially evapotranspiration; dpucste represents the 

soil depth in meters. The other parameters are multiplicative factors. We have krveg which is use in the calculation 

of the stomata resistance, this variable limits the transpiration capacity of leaves, the greater its value, the lower 

the transpiration; kemis is the soil emissivity used to compute land surface temperature. This parameter takes part 

in the net radiation calculation which determines the balance between incoming and outgoing energy at the 

surface; kalbedo weights the surface albedo, which is defined as the reflection coefficient for short wave radiation; 

kcond and kcapa take part in the thermal soil capacity and conductivity, both involved in the computation of the soil 

thermodynamics and kz0 weights the roughness height, which determines the surface turbulent fluxes. Although 

humcste is related to vegetation type, in this work only value for PFT 0 (5 m-1) and PFT 11 (2 m-1) are considered. 

Parameter Description Prior Value Unit 

Inner Parameters 

humcste Water stress {5, 0.8, 0.8, 1, 0.8, 0.8, 1, 
1, 0.8, 4, 4, 2, 4} 

m-1 

 

rsolcste Evaporation resistance 33000 S/m2 

mindrain Diffusion between reservoirs 0,001 - 

dpucste    Total depth of soil water pool 2 m 

mxeau    Maximum water content 150 Kg/m3 

Multiplying Factors 

kemis Surface Emmisivity 1 - 

kcapa    Soil Capacity  1 - 

kcond    Soil Conductivity  1 - 

krveg Vegetation Resistant 1 - 

kz0         Roughness height 1 - 

kalbedo Surface albedo 1 - 

Table 1. SECHIBA Parameters studied in this work. There are 6 internal parameters, involved in the models’ estimations and 5 

multiplying factors that are imposed to specific fluxes 

The sensitivity analysis was performed on bare soil (PFT 0) and grassland (PFT 11), in order to quantify 

the role of the vegetation on the land surface temperature parameters’ sensitivity. The work is made on a daily 

basis, in order to observe the diurnal variations of sensitivities. At each half-hour time step, the model is restarted 

every time a gradient is computed, in order to have the updated gradient value. 



                                                                    

  

 
(a) 

 
(b) 



                                                                    

  

 
(c) 

 
(d) 

Figure 1. Sensitivity analysis results for PFT 0 and 11 using gradients obtained both with the adjoint 

model and finite differences. The sensitivities were computed on the surface temperature for Harvard Forest 

(Fig.1 (a) and (b)) and Kruger Park (Fig.1 (c) and (d)) sites.  Blue curves represent the land surface temperature 

derivative with respect to each parameter given by the adjoint each half hour over a day. Red curves represent 

the temperature derivative computed with a finite difference discretization of the model. The first two columns 

correspond to model internal parameters. Third and fourth columns correspond to the multiplying factors added 

to the model. 

Figure 1 compares the sensitivities obtained for each control parameter with both the finite differences and 

the model gradients. Bare soil results are presented in Fig.1a, (Harvard Forest) and Fig.1c (Kruger Park). The 

grassland scenario is illustrated in Fig.1b (Harvard Forest) and Fig.1d (Kruger Park). The efficiency of the 



                                                                    

  

adjoint calculation is first demonstrated in these plots, because the 11 desired parameters sensitivities are 

obtained in a single integration. The results show little discrepancies in some gradients that should not affect the 

conclusion of our study.  

Table 2 presents the 11 parameters ranked in order of their influence, according to the four scenarios 

defined. Parameter hierarchy revealed that the highest gradient values correspond to the ones that have the 

largest influence on the land surface temperature estimate. Clearly kemis is the most influential parameter in the 

calculation of land surface temperature, regardless of the climatology used and vegetation fraction. In addition, 

mindrain is the least influential parameter for all defined scenarios. 

Site Bare Soil (PFT 0)  Grassland (PFT 11) 
Harvard Forest kemis, kcond, kcapa, kz0, kalbedo, 

dpucste, rsolcste, mxeau 
mindrain, krveg humcste, 

 kemis, krveg, kcond, kcapa, kz0, 
mxeau, humcste, kalbedo, dpucste, 
rsolcste mindrain 

Kruger Park kemis, kcond, kcapa, kz0, kalbedo, 
dpucste, rsolcste, mxeau 
mindrain, krveg humcste, 

 kemis, krveg, kcond, kcapa, kz0, 
mxeau, humcste, kalbedo, dpucste,  
rsolcste mindrain 

Table 2. Parameter hierarchy according to each site and vegetation fraction. 

The parameters kcapa, kcond, kzo and kalbedo are the most influential in bare soil conditions, after kemis. In the 

presence of vegetation, several sensitivities change radically: krveg becomes the most important multiplicative 

factor after kemis, kalbedo is less sensitive compared to its influence in the bare soil case and mxeau is more sensitive, 

given that less water is available when a fraction of vegetation is present. The rest of the parameters show 

equivalent sensitivity values regardless the scenario. For humcste and krveg, sensitivities are equal to zero for bare 

soil, because these parameters affect surface temperature only in presence of vegetation.  

Figure 1 also highlights the diurnal characteristics of the parameter sensitivities with a maximum around 

noon in line with the diurnal variation of solar radiation. Parameters with persistent positive sensitivity are: 

rsolcste, krveg and humcste . Parameters with persistent negative sensitivity are: kz0, kalbedo and emis. The sign of the 

gradients reflects the positive or negative feedback on the surface temperature of the processes involved. For 

example, the parameters involved in the evapotranspiration processes present negative sensitivities because a 

reduction (respectively increase) of the evapotranspiration will lead to an increase (respectively decrease) of the 

land surface temperature, when soil water content is sufficient. During the night, parameters sensitivities are 

equivalent for the different sites. In the case of bare soil, the model parameters present about the same 

sensitivities whatever the atmospheric forcing, but with a greater magnitude in Kruger Park, because the incident 

radiation is larger at this site.  

Transpiration processes influence directly the land surface temperature in the presence of vegetation and is 

the dominant process in the studied sites. Therefore krveg has higher sensitivity that kcond, kcapa and kalbedo. . For bare 

soil, on the contrary, the dominant processes are those related to the soil thermodynamics, explaining why kcapa, 

kcond and kemis are the most sensitive parameters. In general, sensitivities are higher in bare soil conditions for the 

control parameters, except for mindrain and mxeau.  

In Kruger Park atmospheric forcing, the air temperature, air humidity and long wave radiation present an 

abrupt change at 10:00 AM (time step 20), due to a cold air stream event. This is reflected in the fluxes 

estimation and parameter sensitivities. In addition, when the difference between air temperature and land surface 



                                                                    

  

temperature is maximum, the sensitivity is also maximum for kcond and kcapa, and when both temperatures are 

equal; these two parameters have sensitivity equal to zero.  

Furthermore, a sensitivity study was performed for different days in winter for both sites, in order to 

compare to the results obtained in summer. The same conditions were considered: two types of vegetation and 

clear sky days. The magnitude of the sensitivities in winter appeared lower than in summer, because of the 

weaker values of net radiation and surface fluxes but the same conclusions were obtained: same sign and diurnal 

variations of the sensitivities and same hierarchy of parameters. 

We note that the derivatives provided by the adjoint and those given a finite difference approach of M are 

quasi-identical showing the ability of the adjoint to provide accurate estimates of the parameter derivatives.   

4.2 Sensitivity cross-correlation 

Pearson Correlation coefficients (r) were computed between land surface temperature gradients with 

respect to control parameters, during 4 days, from 2 February 2003, in Kruger Park with grassland, with the aim 

of identifying a subset of independent parameters and to document possible redundancies. Only 10 of the 11 

parameters mentioned in Table 1 are taken into account since land surface temperature has a small sensitivity 

with respect to mindrain and thus this parameter is discarded. 

 

 Gradients were computed every 30 minutes, so we have a matrix of 192 gradient values for each land 

surface temperature gradients with respect to control parameters. The correlation coefficient r provides 

information on the degree of linear dependency between two gradients. A non-redundant parameter gradient has 

low correlation with the other gradients. It is determinable if land surface temperature is sensitive to it (high 

absolute normalized gradient value). The gradients were divided into two sets: those corresponding to daylight 

(between 7:00 and 20:00) where solar radiation is available and night (between 20:30 and 6:30) without solar 

radiation. The interest of splitting the correlation analysis into day and night comes from the need to study model 

dynamics. The processes implemented into the model vary widely during the day. By computing correlations, 

parameter dynamics arises, in line with the different processes that intervene during day and night.  

Figure 2 presents the correlation matrix of the gradients for both time sub-periods. Upper triangular matrix 

corresponds to coefficients r computed with gradients during day time. Lower triangular matrix relates to 

coefficients computed with gradients during the night. Parameters were sorted according to the hierarchy 

obtained in Table 2. Strong correlations occur between several couples of gradients. These correlations are kept 

only if the gradient is greater than 1 Kelvin in that period. Cells with no color are correlations with p-value < 

0.05 but with gradients under unity, thus they are excluded from the analysis. In general, if the gradients are 

small (cells with no-bold border) and the processes do not intervene in the period of study; the correlation is not 

interpretable in terms of physical processes, given the marginal influence these parameters have on land surface 

temperature variations. Some of these correlations are maintained during day and night (green background), 

meaning that the processes related to these parameters have the same influence in estimating of land surface 

temperature, independently of the hour of the day.  On the other hand, blue cells present significant correlations 

at night (or day) only. The gray background cells correspond to correlations with p-values greater than to 0.05, 

indicating statically insignificant correlations.  
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Figure 2. Pearson coefficient (r) matrix, based on the gradient of temperature with respect to control parameters, during 4 days, from 

2 February 2003, in Kruger Park PFT 11. Gradients were computed every 30 minutes. The triangular upper part correspond to r with 

gradients calculated between 07:00 and 20:00 (day). The triangular lower part correspond to r with gradients calculated between 20:00 and 

07:00 (night) 

Parameter redundancy is considered if several determinable parameters are significantly and notably 

correlated during day and night (gradient >1 Kelvin, p-value < 0.05 and r> |0.5|), two subset of parameters show 

up. Each subset has a high r value (close to 1) between its members. Comparing members of different subset, 

they have low r value (close to zero). The first group is krveg, mxeau and humcste;. Gradients and correlations are 

strong for these parameters, showing the strong dependency between transpiration processes and soil water 

availability.  The second group contains kemis, kcond, kcapa and kz0. The determinability of the parameters of these 

two groups depends in the internal redundancy. High internal correlation yields poor determinability of the 

parameters. Regarding dpucste and kalbedo, during day, Figure 2 shows that they do not have a strong correlation 

with the rest of the parameters (except dpucste and rsolcste, r = -0.94), even though the sensitivity of the 

temperature to these parameters is smaller than unity. Therefore, we might calibrate them independently. 

In view of the results, we can deduce that it is wishful if we do not take into account the redundant 

parameters for the control parameter vector, since a subset of parameters can account for the variability of the 



                                                                    

  

redundant parameters, in the calculation of land surface temperature. 

4.3 Twin experiments 

Twin experiments are synthetic tests checking the robustness of the variational assimilation method. The 

model is run with a set of parameters or initial conditions Ptrue in order to produce pseudo observations of land 

surface temperature. Then Ptrue is randomly noised to obtain Pnoise. Assimilations of land surface temperature 

were then performed during several days (most of the time, one week), leading to a new set of optimized 

parameters denoted Passim. Four different assimilation experiments were performed. 

Experiment Definition 

 The parameters considered in the twin experiments are taken from the sensitivity analysis results. Each 

experiment was perturbed with a uniform distribution random noise reaching 50% of the parameter prior value. 

Control parameters are normalized by their reference value so that relative perturbations are considered. If the 

control parameter values after the assimilation process are close to 1, it means that the parameter prior values 

were retrieved successfully. On the contrary, differences between the values retrieved and the prior value 

represent relative errors on the parameter estimation, after assimilation. 

Conditions Experiment 1 Experiment 2 Experiment 3 Experiment 4 

Assimilation 
period 

2 February 2003, 1 
week (Kruger Park) 

8 August 1996, 1 week 
(Harvard Forest) 

2 February 2003, 1 
week (Kruger Park) 

8 August 1996, 1 week 
(Harvard Forest) 

2 February 2003, 1 
week (Kruger Park) 

8 August 1996, 1 week 
(Harvard Forest) 

2 February 2003,  
4 days 

Number of 
assimilations 500 500 500 500 

Control 
Parameters  

kemis, kcond, kcapa, kz0, 
kalbedo 

kemis, krveg, kcond, kcapa, 
kz0, kalbedo 

All parameters, except 
mindrain  

Initial Surface 
Water Content 

Observations Land surface 
temperature 

Land surface 
temperature 

Land surface 
temperature 

Land surface 
temperature 

Observation 
sampling 30 minutes 30 minutes 30 minutes 30 minutes 

Forcing Kruger Park and 
Harvard Forest 

Kruger Park and 
Harvard Forest 

Kruger Park and 
Harvard Forest Kruger Park 

Vegetation 
type PFT 0 (Bare Soil) PFT 11 (Grassland) PFT 11 (Grassland) PFT 11 (Grassland) 

Table 3. Scenarios for each of the 4 Experiments 

Scenarios for all the assimilation experiments are presented in Table 3. All parameters are controlled at the 

same time.  The duration of each assimilation experiment is one week and the time increment is 30 

minutes. In Experiment 1 the five most sensitive parameters are controlled in bare soil conditions, during one 

week in Kruger Park and Harvard Forest sites. In Experiment 2 the sixth most sensitive parameters are controlled 

in conditions of grassland (PFT 11) in both FLUXNET sites during a week. With these two experiments, we are 

able to assess the effect of the vegetation fraction on the assimilation system. In addition, taking only the most 

sensitive parameters in the control set allow us to increase the assimilation performances, given that the more the 

observed variable is sensitive to a parameter, the easier the minimization process finds its optimal value, thus 

reducing the estimation error. 

In Experiment 3, all parameters, except mindrain, are controlled (since mindrain has no impact in the land 

T



                                                                    

  

surface temperature estimation), during a week, for both sites. Comparing Experiment 3 with Experiments 1 and 

2 allows us to study the impact of taking a larger control parameter set in the assimilation process. In addition, 

we want to test if land surface temperature as observation, provide enough information to constrain the model 

parameters and if we can hope to improve all model state variables. 

Experiment 4 controls the initial condition of the soil water content, during 4-days. In this experiment, no 

parameters were controlled. The idea is to find, after the optimization process the prior initial condition, which 

was perturbed prior to the assimilation.  

We ran 500 assimilations in each experiment by randomly perturbing the initial conditions. This permitted 

us to obtain the control parameters relative errors and model fluxes root mean square error (RMSE) relative 

value, based on their value before and after the assimilation process. The fluxes considered are net radiation (Rn), 

soil heat flux (Q), sensible (H) and latent heat (LE) fluxes between the atmosphere and the biosphere, land 

surface temperature (LST) and the soil water reservoir contents (Water stress). The parameters considered depend 

on the experiment. The mean value of these statistics is presented in the different tables. With similar scenarios, 

Experiment 1 takes the 5 most sensitive parameters with bare soil, next the six most sensitive parameters are 

controlled with grassland for Experiment 2 and finally all the control parameter set is controlled for Experiment 

3. 

Harvard Forest Experiment 1 Experiment 2 Experiment 3 
 Fluxs Prior Final Prior Final Prior Final 

RMSE 

Rn (W/m2) 2.23.10-1 1.27.10-19 2.31.10-1 1.37.10-7 6.33.10-3 4.90.10-5 
Q(W/m2) 1.32.10-1 3.28.10-12 1.33.10-1 2.86.10-6 2.31.10-1 4.18.10-2 
H(W/m2) 2.6.10-1 8.47.10-12 2.95.10-1 1.02.10-7 3.41.10-1 4.99.10-2 
LE(W/m2) 3.04.10-1 1.84.10-17 3.81.10-1 9.44.10-7 3.04.10-1 1.84.10-2 

Water stress 
(%) 

1.29.10-3 6.03.10-19 1.18.10-5 3.16.10-8 6.34.10-3 4.90.10-5 

Temperature 
(K) 

1.67.10-2 5.51.10-15 1.35.10-2 7.66.10-6 5.12.10-2 1.01.10-4 

  

Relative 
Error 

Parameters Prior Final Prior Final Prior Final 
kemis 2.55.10-1 5.71.10-6 2.42.10-1 5.96.10-7 2.63.10-1 2.1.10-3 
krveg - - 2.21.10-1 8.31.10-6 2.54.10-1 1.79.10-2 
kcond 2.4110-1 5.58.10-7 2.7.10-1 5.96.10-6 2.51.10-1 3.30.10-2 
kcapa 2.54.10-1 5.57.10-8 2.69.10-1 5.85.10-6 2.57.10-1 2.61.10-2 
kz0 2.44.10-1 1.27.10-7 2.58.10-1 7.84.10-7 2.57.10-1 2.8.10-3 

kalbedo 2.44.10-1 1.99.10-6 2.39.10-1 2.08.10-6 2.47.10-1 2.37.10-3 
mxeau - - - - 2.58.10-1 7.34.10-2 

humcste - - - - 2.52.10-1 2.7.10-3 
dpucste - - - - 2.42.10-1 2.2.10-3 
rsolcste - - - - 2.54.10-1 2.36.10-3 

Table 4. Model fluxes RMSE and Parameters Relative errors before and after the assimilation process for 

Experiment 3 to 5, on FLUXNET Harvard Forest 

Results for Experiments 1, 2 and 3 are presented in Table 4, corresponding to Harvard Forest results, and 

Table 5, corresponding to Kruger Park site. In Experiment 1, the errors on the retrieved values for all the control 

parameters are of the order of 10-13. Regarding the land surface temperature, the mean RMSE ranges from 0.03, 

prior assimilation, to 3.10-14 after the assimilation process. Same behavior is observed for the different model 

fluxes. Experiment 2 yields similar results as in Experiment 1. The assimilation process allows reducing the 

parameter errors.  

 

Kruger Park Experiment 1 Experiment 2 Experiment 3 



                                                                    

  

 Flux Prior Final Prior Final Prior Final 

RMSE 

Rn (W/m2) 7.39.10-1 2.6.10-20 4.37.10-1 2.28.10-8 1.13.10-1 6.19.10-5 
Q(W/m2) 1.60.10-1 2.36.10-13 1.39.10-1 3.21.10-7 1.88.10-1 6.98.10-4 
H(W/m2) 4.55.10-1 8.47.10-13 4.73.10-1 1.80.10-7 4.46.10-1 1.46.10-3 
LE(W/m2) 1.51.10-1 8.84.10-17 1.24.10-1 8.86.10-7 3.61.10-1 1.01.10-2 

Water stress 
(%) 

7.39.10-5 2.6.10-19 3.32.10-6 1.53.10-8 1.13.10-3 6.19.10-5 

Temperature 
(K) 

3.41.10-2 1.62.10-15 2.75.10-2 1.51.10-7 1.54.10-2 3.4.10-6 

  

Relative 
Error 

Parameters Prior Final Prior Final Prior Final 
kemis 2.58.10-1 3.01.10-13 2.75.10-1 6.08.10-7 2.41.10-1 7.91.10-3 
krveg - - 2.81.10-1 2.76.10-8 2.29.10-1 4.91.10-3 
kcond 2.54.10-1 3.17.10-13 2.73.10-1 6.37.10-8 2.38.10-1 9.16.10-3 
kcapa 2.53.10-1 3.1.10-13 2.73.10-1 5.64.10-8 2.71.10-1 7.86.10-3 
kz0 2.51.10-1 6.7.10-13 2.63.10-1 7.97.10-7 2.43.10-1 4.91.10-3 

kalbedo 2.59.10-1 5.2.10-13 2.63.10-1 2.31.10-6 2.53.10-1 3.47.10-2 
mxeau - - - - 2.46.10-1 6.16.10-3 

humcste - - - - 2.97.10-1 3.7.10-2 
dpucste - - - - 2.52.10-1 2.6.10-2 
rsolcste - - - - 2.41.10-1 1.26.10-2 

Table 5. Model fluxes RMSE and Parameters Relative errors before and after the assimilation process for 

Experiment 3 to 5, on FLUXNET Kruger Park 02 February 2003 

Several realizations of the prior parameters set in Experiments 1 and 2 (20% of the cases) did not converge 

at all. These results depend on the a priori parameter set value. They may indicate that a local minimum was 

reached in the minimization process of the cost function. In the case of non-convergence in Experiment 1, when 

the initial perturbations of kcapa and kcond differ (in sign or magnitude), the assimilation process does not reduce 

the prior errors. As it was mentioned before, the correlation among kcapa and kcond, affects the convergence in the 

parameter space. This highlights the difficulty to characterize these two parameters independently with only 

observations of land surface temperature.  

Relative value of RMSE, with respect to synthetic measurements, for LE, H, Q and Rn in Experiment 3 

prior to assimilation, are equal to 34%, 30% and 23% and 0.6%, respectively. After assimilation, RMSE is 

significantly reduced for both sites. The same holds for the mean relative error of the control parameters. 

Comparing the results from Experiments 1 and 2 to Experiment 3, degradation in fluxes and parameter 

restitution can be observed. Indeed, we find higher errors in the fluxes and the final control parameters when 

increasing the size of the control parameter set. Best performances in the parameters restitution are always for 

the control of 5 parameters, except at the Harvard Forest site, when the same performances were obtained with 5 

or 6 control parameters. When controlling krveg plus 5 parameters in Kruger Park, a degradation is observed. This 

can be explained by the nature of this site: a higher shortwave incident radiation involves a smaller stomata 

resistance, and a larger transpiration, amplifying the weight of this flux in the temperature estimate. krveg 

sensitivity depends on the site and the vegetation fraction. This is important when comparing Tables 4 and 5 with 

Table 6.  

In Table 6, results of controlling the initial state of surface soil water content are presented. These results 

show good performances of the LST assimilation. The initial RMSE for land surface temperature goes from 10-2 

down to 10-16 after assimilation process. Similar results were obtained for the sensible and latent heat fluxes, soil 

heat flux and net radiation. However, the influence that the initial water content has on the land surface 

temperature is limited in the studied cases; when perturbing its initial value, the prior RMSE remains very small 

for LST. Nonetheless, the different independent assimilation tests give conclusive results about the potential of 



                                                                    

  

controlling the initial surface water content. 

 Fluxes Prior Final 

RMSE 

Rn (W/m2) 3.34.10-1 3.33.10-6 
Q(W/m2) 6.42.10-2 7.96.10-15 
H(W/m2) 1.98.10-3 3.23.10-15 
LE(W/m2) 7.8.10-3 5.76.10-16 

Water stress (%) 3.34.10-2 3.32.10-10 
Temperature (K) 1.74.10-2 1.09.10-16 

 

Relative 
Error 

Initial Condition Prior Final 
Surface water 

Content 
3.25.10-1 2.99.10-14 

Table 6. Results for Experiment 4. Fluxes RMSE and Initial conditions for Surface Water Content Relative Error before and after the 

assimilation process, for FLUXNET Kruger Park, 02 February 2003, with PFT 11 

4. Conclusion 

In this study the adjoint of SECHIBA was implemented, using an adjoint semi-generator software called 

YAO. With SECHIBA adjoint, land surface temperature gradients with respect to each control parameter were 

computed, with the aim of carrying out a sensitivity analysis of the parameter influence on LST estimation. 

Gradients were also used to account for parameter correlations. Once the parameter hierarchy was set, twin 

experiments were performed for different scenarios, for testing the robustness of the assimilation scheme. 

Land surface temperature assimilation has the potential of improving the parameters of LSM, by adjusting 

properly the control parameters and initial conditions. In a forecasting approach, this can be valuable, given that 

simulation can be more reliable and fitted to the actual measurements. The improvement in the model fluxes 

after the assimilation of LST was demonstrated. Twin experiments show the power of variational data 

assimilation to improve model parameter estimation. For different scenarios and forcing sites, the different 

experiments were successfully accomplished, meaning that a reduction in the fluxes errors was obtained by 

introducing information given by the LST synthetic observations. In addition, the influence that the size of the 

control parameter set has in the assimilation performance was shown.  

Adding extra parameters to the control set increases the parameter space and the difficulty to minimize the 

cost function. Taking into consideration the results of assimilation of land surface temperature when controlling 

all parameter set (Experiment 3), we can see that, after having made several assimilation runs, land surface 

temperature does not provide enough information to constrain all parameter set, in order to improve the 

estimation of state variables in SECHIBA. In the case of controlling all parameters we cannot hope improving all 

model state variables. 

The first contribution of this work to SECHIBA model is that the potential of LST variational data 

assimilation to improve SECHIBA estimations was shown. Assimilation with the YAO approach allows the 

implementation of different assimilation scenarios in a very simple way, when performing the different twin 

experiments: control parameters and observed variables (once the adjoint code has been generated), assimilation 

windows, observation sampling, time sampling and other different features can be changed easily.  

The second contribution to SECHIBA is the sensitivity analysis results. They show exactly which 

parameters are the most sensitive in the model and serves as a guide to know which parameters have to be 

controlled during the assimilation process. However, it is important to mention that sensitivity analysis depends 

on the region, forcing, PFT, day and night cycle, among other factors. The correlation study highlighted the 



                                                                    

  

interactions between parameters, giving insights into the model conceptualization, putting in evidence part of the 

model dynamics.  
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Conclusion of the article 

In this work, the adjoint of SECHIBA was implemented, using an adjoint semi-generator 

software called YAO. With the SECHIBA adjoint, a sensitivity analysis was performed with 

respect to synthetic measurements of land surface temperatures. To do so, gradients of 

temperatures were computed with respect to each control parameter considered. These 

gradients were obtained with the adjoint model of SECHIBA. Once the hierarchy of the 

parameter influence in the estimation of LST was obtained, temperature gradients were also 

used to account for parameter correlations. Finally, twin experiments were performed for 

different scenarios, for testing the robustness of the assimilation scheme. 

Results obtained suggest that land surface temperature assimilation has the potential of 

improving the parameters of LSM, by adjusting properly the control parameters and initial 

conditions. However, since we are in a twin experiment scheme, where the variations of the 

estimations are accounted only with synthetic data, no other source of error is introduced.  

The improvement in the model variables after the assimilation of LST was demonstrated 

since the initial parameter set values were retrieved in most of the experiments Twin 

experiments show the influence that the size of the control parameter set has in the 

assimilation performance.  Adding extra parameters to the control set increases the parameter 

space and the difficulty of the minimization of the cost function. The potential of LST 

variational data assimilation to improve SECHIBA estimations was shown. Assimilation with 

the YAO approach allows the implementation of different assimilation scenarios in a very 

simple way, when performing the different twin experiments: control parameters and observed 

variables, assimilation windows, observation sampling, time sampling and other different 

features can be changed easily.  

By using the sensitivity analysis, we obtain which parameters are the most sensitive in 

the model and a guide to know which parameters have to be controlled during the assimilation 

process. In addition, the correlation gave us insights to model conceptualization, enhancing 

our knowledge in the model dynamics. 

From the previous experiments shown in this chapter, it was noticed that changing the 

value of parameters in the model does make some differences in the model behavior, 

depending on the parameter. The important thing to keep in mind is that sensitivity tests 

indicate that some parameter changes result in “greater,” or more significant, changes than 

others. In addition, different control parameter set values can change the path computed in the 
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modular graph representing the system dynamics.  

The results of the sensitivity analysis presented in this Chapter are used to perform the 

experiments presented in Chapter 6.  Several assimilation experiments of land surface 

temperature are performed with the purpose of optimizing the most sensitive parameters, 

using 2 FLUXNET forcing database. 
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Chapter 6 

Twin Experiments with SECHIBA-YAO 1D 
using FLUXNET Measurements 

 
 
6.1 Introduction  

In this Chapter, twin experiments are implemented for optimizing the most sensitive 

parameters to the estimation of land surface temperature. This Chapter is a complement of the 

article presented in Chapter 5.  

Twin experiments consist in applying assimilation procedures with simulated data of 

properties usually analogous to those of real data (Malanotte and Young, 1992; Miller and 

Cornuelle, 1999). They consist of synthetic tests checking the robustness of variational data 

assimilation. The results serve as indicators to determine if the assimilation scheme developed 

could work for real data. In the next section, experiment definition and results are presented 

for five experiments. 

6.2 Experiment Definition 

The objective of the experiments presented in this section is to test the effect the diverse 

scenarios have on the assimilation performances. A scenario is defined by several properties, 

described in Table 6.1. 
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Properties Description 
Assimilation period Time window of the assimilation period.  
Number of assimilations For each experiment, a number of assimilation is made 

with the same scenario but with different control 
parameter first guesses 

Control Parameters  Parameters to be optimized in the assimilation procedure 
Observations Model variables considered as observations 
Observation sampling Frequency sampling of the observations 
Forcing Data forcing used to perform the assimilation 
Vegetation type Vegetation fraction considered in the experiment 

Table 6. 1 Scenario properties 

In each experiment, control parameters are normalized by their prior value, so that only 

relative perturbations are considered. If the control parameter values posterior to the 

assimilation process are close to 1, it means that the parameter prior values were retrieved 

successfully. Differences between the values retrieved and the prior values represent relative 

errors on the parameter estimation, posterior to assimilation.  

Scenarios for all the assimilation experiments are presented in Table 6.2. All parameters 

listed in each experiment are controlled at the same time. T for the different experiments is 

set at 30 minutes. From experiments 1 to 5 both FLUXNET sites were used. In experiments 1 

and 2, the six most sensitive parameters are controlled, with grassland vegetation. In 

Experiment 1 several observation samplings are tested going from 30 minutes up to 24 hours. 

During one month, five independent assimilation tests were run for each observation 

sampling. In Experiment 2, a weighted random noise is introduced in the observations, going 

from 10% up to 50% of the true value of the observation. Both Experiments 1 and 2 use 

constant perturbations of the control parameters (-50% its prior value) in order to assess the 

impact of varying the observation sampling and the noise in the observations.  

Experiments 3 to 5 aim to test the parameter restitution by varying the size of the control 

parameter set. In Experiment 3, the five most sensitive parameters are controlled with bare 

soil, during one week using Kruger Park and Harvard Forest forcing. In Experiment 4, the six 

most sensitive parameters are controlled with grassland during a week. With these two 

experiments, we are able to compare the effect of optimizing krveg on the assimilation system. 

In Experiment 5, all parameters, except mindrain, are controlled (since mindrain has no impact 

on LST estimation). Comparing Experiment 5 with Experiments 3 and 4 allow us to study the 

impact of taking a larger control parameter set in the assimilation process. 
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   Parameters   

Scenario Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 

Assimilation 
period 

11/02/2003, 1 month 
(Kruger Park) 

28/08/1996, 1 month 
(Harvard Forest) 

11/02/2003, 1 week 
(Kruger Park) 

28/08/1996, 1 week 
(Harvard Forest) 

11/02/2003, 1 week 
(Kruger Park) 

28/08/1996, 1 week 
(Harvard Forest) 

11/02/2003, 1 week 
(Kruger Park) 

28/08/1996, 1 week 
(Harvard Forest) 

11/02/2003, 1 week 
(Kruger Park) 

28/08/1996, 1 week 
(Harvard Forest) 

Number of 
assimilations 

5 experiments 
5 for each site 

500 500 500 500 

Control 
Parameters  

krveg, kcapa, kcond, 
kzo, kalbedo kemis 

krveg, kcapa, kcond, 
kzo, kalbedo kemis 

 kcapa, kcond, kzo, kalbedo 
kemis 

krveg, kcapa, kcond, 
kzo, kalbedo kemis 

All parameters, 
except mindrain  

Observations Soil Temperature Soil Temperature 
with noise Soil Temperature Soil Temperature Soil Temperature 

Observation 
sampling 

30 minutes, 2, 6, 
12 and 24 hours 1 hour 30 minutes 30 minutes 30 minutes 

Forcing Kruger Park and 
Harvard Forest 

Kruger Park and 
Harvard Forest 

Kruger Park and 
Harvard Forest 

Kruger Park and 
Harvard Forest 

Kruger Park and 
Harvard Forest 

Vegetation 
type 

PFT 11 
(Grassland) 

PFT 11 
(Grassland) PFT 0 (Bare Soil) PFT 11 

(Grassland) 
PFT 11 

(Grassland) 

Table 6. 2 Scenarios for each of the 6 Experiments. 

6.3. Results 

For each of the five hundred assimilations in Experiments 2 to 5, and the five 

assimilations in Experiment 1, we assimilate synthetic observations of land surface 

temperature. Performances are defined as the comparison between prior and final control 

parameter relative errors and model variables root mean square error (RMSE). These 

variables are computed in the same period as the synthetic observations. The variables 

considered are H, LE, Rn, Q and LST. The mean value of these statistics is presented in the 

different Tables. 

6.3.1 Effect of the observation sampling  

Experiment 1 investigates the impact of the observation sampling in the assimilation 

process, since varying the observation frequency lead to different amount of observations 

available for each assimilation experiment.  

Each test in this experiment was labeled with a number. This number serves as reference 

to compare the different results. In Test 4, only two observations per day are taken at noon and 

at midnight. In Test 5, we have one observation per day, taken at noon. 
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Test 
Number 

Sampling 
 Frequencies 

Observations 
per day 

Observation 
per month 

1 30 minutes 48 1440 
2 2 hours 24 720 
3 6 hours 4 120 
4 12 hours 2 60 
5 24 hours 1 30 

Table 6. 3 Sampling frequencies for Experiment 1 

 
 Kruger Park # Test (Posterior to assimilation) 
 Variables Prior 1 2 3 4 5 

RMSE 

Rn (W/m2) 18.4 0.07    0.407    0.504    5.99    10.3    
Q (W/m2) 35 0.049 0.25 0.453 4.57 6.72 
H (W/m2) 25 0.437 0.138 0.43 4.7 10.34 
LE (W/m2) 15.7 0.0601 0.592 0.594 2.43 10.8 

Water stress (m3/m3) 2.5.10-2 2.57.10-3 3.95.10-3 1.57.10-2 1.8.10-2 2.7.10-2 
LST (K) 7.98 0.0601 0.0243 0.592 0.594 1.9 

  

Relative 
Error 
(%) 

 

Parameters Prior 1 2 3 4 5 
kcond 50 0.0183 0.261 0.340 0.921 4.96 
kcapa 50 0.0427 0.172 0.4006 0.91 3.77 
kz0 50 0.00103 0.0162 0.147 0.24 1.34 

krveg 50 0.418 0.909 3.845 4.01 14.97 
kemis 50 0.1704 0.2733 0.77 1.27 4.4 

kalbedo 50 0.128 1.384 3.214 4.15 25.01 

Table 6. 4 Variable RMSE and control parameter relative errors prior and posterior to the 
assimilation, for Experiment 1 (different frequencies sampling in the observations), using 

Kruger Park forcing, PFT 11, from 11/02/2003 to 11/03/2003. 

 

Prior and final errors before and posterior to the assimilation process are presented in 

Table 6.4 and 6.5 for Kruger Park and Harvard Forest sites, respectively. The columns 

represent the different assimilations performed with different frequency sampling in the 

observations. Five independent assimilations were made. The Tables report the mean value of 

the performances of the assimilation system. Even though small errors were found for the 

different tests, we do notice that the assimilation system is sensitive to the observation 

sampling. 

The contribution from the data is demonstrated by an improvement in the optimization 

when increasing the frequency of observation. The final error values in the different tests 

increase by a factor of 10 when reducing the sampling frequency. By decreasing the number 

of observations, the control parameters adjustment is less accurate, and the model estimate 

variables with a larger error. Thus it can be verified that if we have more observations of LST, 

the assimilation system will fit the parameters better, so improved estimations are obtained.  
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 Harvard Forest # Test (Posterior to assimilation) 
 Variables Prior 1 2 3 4 5 

RMSE 

Rn (W/m2) 71.59 1.75 3.16 22.32 48.82 49.05 
Q (W/m2) 21.79 0.19 0.91 3.13 5.63 5.65 
H (W/m2) 13.42 0.15 0.98 1.84 3.98 4.08 
LE (W/m2) 86.23 0.22 0.35 3.81 5.17 11.95 

Water stress 
(m3/m3) 

1.7.10-2 6.7.10-3 1.5.10-3 1.65.10-2 1.69.10-2 2.1.10-2 

LST (K) 5.98 0.08 0.65 0.86 1.27 1.61 
  

Relative 
Error 
(%) 

Parameters Prior 1 2 3 4 5 
kcond 50 0.37 0.54 3.7 5.7 10.14 
kcapa 50 0.36 2.86 4.16 10.55 20.74 
kz0 50 0.0592 0.15 7.61 13.74 16.73 

krveg 50 0.31 0.75 5.25 7.24 17.8 
kemis 50 0.11 0.17 5.82 10.86 13.74 

kalbedo 50 1.54 4.81 12.69 34.11 37.8 
Table 6. 5 Variable RMSE and control parameter relative errors prior and posterior to 

assimilation, for Experiment 1 (different frequencies sampling in the observations), using 
Harvard Forest forcing, PFT 11, from 28/08/1996 to 28/09/1996. 

6.3.2 Effect of random noise in the observation  

Experiment 2 aims to study the impact of introducing a random noise in the synthetic 

observations. The random noise follows a normal distribution with zero mean and variance 1. 

The perturbed observations are computed using the following equation 

 ampLSTLST *

                                                                                            (6.1) 

with *LST  the perturbed observation, LST the original land surface temperature, amp a 

factor weighting the random noise going from 10% to 50%, and   is the normal distribution 

random noise. The control parameter set is composed of the six most influential parameters in 

the computation of LST. The first guess is obtained by perturbing 10% uniformly the control 

parameter set from its prior values. Three experiments are performed, aiming to test the 

impact of introducing different magnitudes of errors prior the assimilation process. The mean 

value of the five hundred independent assimilations is presented. Posterior to each 

experiment, the parameter relative error and the model flux RMSE are computed to quantify 

the quality of the results. 

We note in Tables 6.6 and 6.7 that the parameter restitution is degraded when adding 

random noise to the observations. This shows the sensitivity of the assimilation system has to 

noise affecting the observations of LST. 
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 Kruger Park Amplitude 
 Variables Prior 10% 30% 50% 

RMSE 

Rn (W/m2) 20.67 9.9 9.96 10.09 
Q (W/m2) 4.24 1.88 2.07 3.74 
H (W/m2) 24.7 7.26 7.81 8.32 
LE (W/m2) 4.06 3.78 3.9 6.22 

Water stress 
(m3/m3) 

2.1.10-2 1.5.10-2 1.7.10-2 2.4.10-2 

LST (K) 7.12 0.019 4.48 6.23 
  

Relative 
Error 
(%) 

 

Parameters Prior 10% 30% 50% 
kcond 10 4.5 4.9 11.12 
kcapa 10 1.51 3.35 14.9 
kz0 10 3.24 3.99 4.09 

krveg 10 6.91 10.1 11.5 
kemis 10 2.79 3.14 4.08 

kalbedo 10 1.12 2.01 3.02 
Table 6. 6 Variables RMSE and control parameter relative errors prior and posterior to 

assimilation, for Experiment 2 (different amplitude of random noise in the observation), using 
Kruger Park forcing, from 11/02/2003 to 18/02/2003. 

 
 Harvard Forest Amplitude 
 Variables Prior 10% 30% 50% 

RMSE 

Rn (W/m2) 18.4 5.80 5.95 6.01 
Q (W/m2) 35 3.97 9.58 10.23 
H (W/m2) 25 5.92 11.13 24.01 
LE (W/m2) 15.7 4.77 14.04 15.05 

Water stress (m3/m3) 6.1.10-2 2.3.10-2 4.5.10-2 8.1.10-2 
LST (K) 7.98 0.046 1.42 2.59 

  

Relative 
Error 
(%) 

 

Parameters Prior 1 2 3 
kcond 10 0.83 4.32 7.6 
kcapa 10 4.47 9.05 9.21 
kz0 10 3.85 4.5 7.3 

krveg 10 1.36 7.01 8.04 
kemis 10 2.39 3.62 6.47 

kalbedo 10 1.02 2.58 7.85 
Table 6. 7 Variables RMSE and control parameter relative errors prior and posterior to 

assimilation, for Experiment 2 (different amplitude of random noise in the observation), using 
Harvard Forest forcing, from 28/08/1996 to 04/09/1996. 

 

When increasing the amplitude of the error, the various errors obtained for the three tests 

not only suggest the need to take into account the quality of the observations for the model but 

also the fact that the parameters are not affected in the same way by the data uncertainties. 

However, perturbations are still limited and a deeper exploration should be performed to 

assess the true impact in the assimilation performance of noisy observations. 

6.3.3 Effect of the control parameter set size 

Experiments 3 to 5 test the effect of changing the size of the control parameter set, in 

optimizing different parameters. In each experiment a random noise is added to the parameter 
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prior values. This random noise is computed independently for each parameter. 

Comparison between each of these experiments evaluates the impact of varying the size 

of the control parameter set in the assimilation performance. With similar scenarios, 

Experiment 3 takes the five most sensitive parameters with bare soil, next the six most 

sensitive parameters are controlled with grassland for Experiment 4, and finally all the control 

parameter set is controlled for Experiment 5, with grassland. 

Kruger Park Experiment 3 Experiment 4 Experiment 5 
 Variables Prior Final Prior Final Prior Final 

RMSE 

Rn (W/m2) 7.39.10-1 2.6.10-20 4.37.10-1 2.28.10-8 1.13.10-1 6.19.10-5 
Q (W/m2) 1.60.10-1 2.36.10-13 1.39.10-1 3.21.10-7 1.88.10-1 6.98.10-4 
H (W/m2) 4.55.10-1 8.47.10-13 4.73.10-1 1.80.10-7 4.46.10-1 1.46.10-3 
LE (W/m2) 1.51.10-1 8.84.10-17 1.24.10-1 8.86.10-7 3.61.10-1 1.01.10-2 
Water stress 

(m3/m3) 
7.39.10-2 2.6.10-19 3.32.10-2 1.53.10-8 1.13.10-2 6.19.10-5 

LST (K) 3.41.10-2 1.62.10-15 2.75.10-2 1.51.10-7 1.54.10-2 3.4.10-6 
  

Relative 
Error 

Parameters Prior Final Prior Final Prior Final 
kemis 2.58.10-1 3.01.10-13 2.75.10-1 6.08.10-7 2.41.10-1 7.91.10-3 
krveg - - 2.81.10-1 2.76.10-8 2.29.10-1 4.91.10-3 
kcond 2.54.10-1 3.17.10-13 2.73.10-1 6.37.10-8 2.38.10-1 9.16.10-3 
kcapa 2.53.10-1 3.1.10-13 2.73.10-1 5.64.10-8 2.71.10-1 7.86.10-3 
kz0 2.51.10-1 6.7.10-13 2.63.10-1 7.97.10-7 2.43.10-1 4.91.10-3 

kalbedo 2.59.10-1 5.2.10-13 2.63.10-1 2.31.10-6 2.53.10-1 3.47.10-2 
mxeau - - - - 2.46.10-1 6.16.10-3 

humcste - - - - 2.97.10-1 3.7.10-2 
dpucste - - - - 2.52.10-1 2.6.10-2 
rsolcste - - - - 2.41.10-1 1.26.10-2 

Table 6. 8  Surface variables RMSE and parameter relative errors before and posterior to the 
assimilation process for Experiment 3 to 5 (different control parameter set), using Kruger 

Park forcing, from 11/02/2003 to 18/02/2003. 

 

Results for Experiments 3, 4 and 5 are presented in Tables 6.8 and 6.9. In Experiment 3, 

the errors on the retrieved values for the whole control parameter set are of the order of 10-13. 

Regarding LST, the mean RMSE ranges from 0.03, prior assimilation, to 3.10-14 posterior to 

the assimilation process. We observe the same behavior for the different model variables. 

Experiment 4 yields similar results as Experiment 3. The assimilation process allows reducing 

the parameter errors. 

However, we should note that several estimations of the prior parameter set in 

Experiment 3 and 4 (20% of the cases) did not converge at all. These results depend on the 

prior parameter set values. The reason is probably that several independent assimilations 

should be conducted in order to avoid these types of results. They may indicate that a local 

minimum was reached in the minimization process of the cost function. In the case of non-

convergence in Experiment 3, when the perturbations of kcapa and kcond differ (in sign or 
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magnitude) the assimilation process does not reduce its initial error.  

Harvard Forest Experiment 3 Experiment 4 Experiment 5 
 Variables Prior Final Prior Final Prior Final 

RMSE 
 

Rn (W/m2) 2.23.10-1 1.27.10-19 2.31.10-1 1.37.10-7 6.33.10-3 4.90.10-5 
Q (W/m2) 1.32.10-1 3.28.10-12 1.33.10-1 2.86.10-6 2.31.10-1 4.18.10-2 
H (W/m2) 2.6.10-1 8.47.10-12 2.95.10-1 1.02.10-7 3.41.10-1 4.99.10-2 
LE (W/m2) 3.04.10-1 1.84.10-17 3.81.10-1 9.44.10-7 3.04.10-1 1.84.10-2 

Water stress 
(m3/m3) 

1.29.10-2 6.03.10-19 1.18.10-2 3.16.10-8 6.34.10-2 4.90.10-5 

LST (K) 1.67.10-2 5.51.10-15 1.35.10-2 7.66.10-6 5.12.10-2 1.01.10-4 
  

Relative 
Error 

Parameters Prior Final Prior Final Prior Final 
kemis 2.55.10-1 5.71.10-6 2.42.10-1 5.96.10-7 2.6.10-1 2.1.10-3 
krveg - - 2.21.10-1 8.31.10-6 2.5.10-1 1.79.10-2 
kcond 2.4110-1 5.58.10-7 2.7.10-1 5.96.10-6 2.1.10-1 3.30.10-2 
kcapa 2.54.10-1 5.57.10-8 2.69.10-1 5.85.10-6 2.7.10-1 2.61.10-2 
kz0 2.44.10-1 1.27.10-7 2.58.10-1 7.84.10-7 2.5.10-1 2.8.10-3 

kalbedo 2.44.10-1 1.99.10-6 2.39.10-1 2.08.10-6 2.4.10-1 2.37.10-3 
mxeau - - - - 2.8.10-1 7.34.10-2 

humcste - - - - 2.5.10-1 2.7.10-3 
dpucste - - - - 2.4.10-1 2.2.10-3 
rsolcste - - - - 2.5.10-1 2.36.10-3 

Table 6. 9  Surface variable RMSE and parameter relative errors before and posterior to the 
assimilation process for Experiments 3 to 5 (different control parameter set), using Harvard 

Forest forcing, from 28/08/1996 to 28/08/1996. 

 

RMSE values in Experiment 5 for LE, H, Q and Rn prior to assimilation are of the order 

of 34%, 30% and 23% and 0.6%, respectively. Posterior to assimilation, RMSE is reduced for 

both sites, as well as for the mean relative error of the control parameters. 

Comparing the results from Experiments 4 and 5, degradation in variables and parameter 

restitution can be observed. Indeed, we find larger errors in the variable estimation when 

increasing the control parameter set from six to ten parameters. The best performance in the 

parameters restitution is always found when controlling six parameters.  

In Experiment 4, some degradation is observed, when controlling krveg plus five 

parameters in Kruger Park. This can be explained by the nature of this site: a higher 

shortwave incident radiation involves a smaller stomatal resistance, increasing transpiration, 

amplifying the weight of this flux in the temperature estimation. We deduce that it is better to 

control only the common coefficients where performance is best. krveg sensitivity depends on 

the site and the vegetation fraction.  

Controlling only the most sensitive parameters to LST increases our chances to find 

acceptable control parameter values after assimilation. Optimizing a larger control parameter 

set, as in Experiment 6, makes more difficult for the assimilation system to retrieve the prior 

value of the control parameters with higher accuracy. 
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6.4. Discussion 

This chapter is intended as a complement to the results obtained in the previous Chapter 

5, when the most sensitive parameters to LST were controlled in twin experiments. The 

results reaffirm the potential of 4DVAR in the optimization of SECHIBA parameters, in order 

to improve variables estimation. 

By performing twin experiments, we can have an idea of the effect the different 

assimilation scenarios have on the parameter restitution performances. In addition, it allows 

us to study the impact the assimilation has in the improvement of model flux estimations. 

After presenting the different experiments, some aspects of data assimilation arise when 

analyzing the results. The first one concerns the presence of several local minima due to the 

non-linearity of the SECHIBA model. Second, we have also shown a significant improvement 

in the assimilation performances when the sampling frequency of observations is increased, as 

evaluated in Experiment 1. This suggests that the ability of the model to be constrained 

depends, among other things, on the observations frequency.  

Finally, we observe a strong dependence between the quality of observations and the 

parameters restitution, as in Experiment 2. It seems crucial to take into account the 

uncertainty in the observations, because they do not affect the assimilation performance in the 

same way when estimating each parameter in the minimization process. The introduction of a 

regularization term on the parameters could be used to mitigate this problem. Constraining 

parameters and weighing observations according to their confidence in the minimization 

phase can be modeled through the introduction in the cost function of the variance-covariance 

errors matrices terms (background B and observation R). Of course, this is out of the scope of 

the twin experiments, but it is an important aspect to consider with real observations. 

Once twin experiments using FLUXNET forcing were evaluated, the next step is to 

investigate the impact of VDA in the estimation of parameters with actual measurements, 

using several observed variables. By following the same methodology followed throughout 

Chapter 5 and 6, Chapter 7 presents the results of assimilating LST measurements in the 

framework of SMOSREX experimental database. 
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Chapter 7 

Real measurements study using SMOSREX 
dataset  

 
 
 

7.1 Introduction  

In this Chapter, 4DVAR is applied using real measurements from SMOSREX site, as 

presented in Chapter 2. This dataset includes measurements of the estimated variables 

computed with SECHIBA-YAO 1D, so they can potentially be used as observations in the 

assimilation scheme, or they can be used to assess the improvements or degradation obtained 

after assimilating a specific measurement. 

Previous works show the potential of constraining model parameter via the assimilation 

of brightness temperature measured in SMOSREX.  In their work, Parrens et al., (2013) 

applied a simplified extended Kalman Filter (SEKF) in the surface model ISBA-DF, to 

assimilate microwave brightness temperature observations from the site SMOSREX, in order 

to better constrain the water content of the soil.  

The guiding principle of this Chapter is to assess the impact of assimilating land surface 

temperature for constraining model parameters, based on assimilation performances. The 

assimilation methodology is based on the optimization of the most sensitive parameters to 

LST, as in Chapter 6. The experiments controlling the six and respectively ten most sensitive 

parameters are presented, in order to test the effect of changing the control parameter set. 

Assimilation performances are analyzed by taking a one-day and a seven-day assimilation 

time window. The daily-base assimilations are done during a month, with the idea of 

accounting for parameters variability.  

For each assimilation experiment presented, variable root mean square errors (RMSE) 

are computed based on variable estimation with prior and posterior values of the control 
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parameter set. The final objective of the LST assimilation being the improvement of surface 

processes modeling, the variables considered to assess assimilation contribution are the 

sensible heat flux (H), latent heat flux (LE), net radiation (Rn), soil moisture ( S ) and land 

surface temperature (LST). Since SMOSREX dataset includes measurements of these 

variables, the prior and posterior RMSE can be computed.  

7.2 Key parameters to perform the optimization 

The different experiments presented in this Chapter aims at optimizing the SECHIBA 

parameters listed in Table 7.1. The prior range of variation is prescribed, defining the interval 

in which each parameter is considered physically valid. The equations where each parameter 

occurs are presented in Chapter 2. 

For the six multiplying factors, their prior value is 1, which means that they do not affect 

the corresponding model variables they are weighting. Their prior range is ±50%, i.e. their 

prior value is between 0.5 and 1.5. In addition, the other five model internal parameters were 

normalized such as their prior value is 1. The internal parameters interval correspond to ±50% 

their true value for all the parameters, excepting 2 which have a different prior range: the 

surface emissivity kemis has an interval between 0.94 and 1, since it is physically valid within 

these values and humcste, where the interval is wide enough to explore a more adapted value to 

enhance variable estimation. 

Internal calculations of SECHIBA-YAO 1D use the true value of parameters; however, 

in the experiments presented in the next section, parameter posterior values are given in their 

normalized form.  
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Parameter Description Prior Value Prior range Unit 

 Internal Parameters 

humcste Root extraction potential constant  4 (PFT 11) 0.2-16 m-1 

rsolcste Evaporation resistance 33000 16500-49500 s/m2 

dpucste    Total depth of soil water pool 2 1-3 m 

mindrain Diffusion between reservoirs 0,001 0,0005-0,0015  - 

mxeau    Maximum water content 150 75-225 Kg/m3 

 Multiplying Factors 

kemis Surface Emissivity 1 0.94-1 - 

kcapa    Soil Capacity  1 0.5-1.5 - 

kcond    Soil Conductivity  1 0.5-1.5 - 

krveg Vegetation Stomatal Resistance 1 0.5-1.5 - 

kz0         Roughness height 1 0.5-1.5 - 

kalbedo Surface albedo 1 0.5-1.5 - 

Table 7. 1 SECHIBA parameters studied in this work. There are five internal parameters, 
involved in the model estimations and six multiplying factors that are imposed. In addition the 

prior range is specified for each parameter, defining the prescribed interval of variations. 

 

7.3 LST data assimilation with parameter standard values 

7.3.1. Simulated vs. Observed measurements 

Brightness temperature 

In SMOSREX site, a thermal infrared radiometer (TIR), functioning in the 8-14 μm 

spectral band, measures the surface brightness temperature (TB) at 60° pointing out south, in a 

fallow parcel (de Rosnay et al, 2006).  Thus, we can expect directional effects in the 

measurements (François et al. 1997), especially during the periods of partial canopy coverage. 

In SECHIBA-YAO 1 D, the simulated LST is hemispheric and does not account for solar 

configuration and viewing angle effects, it is also integrated on all the solar spectrum. In this 

case, it does not correspond exactly to TB. However, there is a direct link between both 

variables. If we neglect the directional effects, the total energy emitted by the surface (Rad) 

can be computed using the following expression  

downemisemis LWkLSTkRad )1(4
                                                                   (7.1) 

In equation (7.1), Ɛ is the surface emissivity, kemis is the multiplicative factor for the 

emissivity and LWdown is the long-wave incident radiation, which is an input forcing of 

SECHIBA. Svendsen et al., (1990) proposed a transfer function to link the surface emitted 

radiance towards an observed brightness temperature measured in the limited [8-14] μm 
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spectral band. The empirical formulation is given by Eq. 7.2.  

2.0

1110.7975.6

84.7







 


Rad
TB                                                                                               (7.2) 

This formulation was added into SECHIBA-YAO1 D to allow the calculation of the 

brightness temperature and the comparison with the observed TB from SMOSREX. In order 

to do so, a module was added to SECHIBA-YAO 1D. This is done using YAO and adding a 

subgraph to the initial modular graph. As previously explained, this module contains the 

forward and backward expression (Jacobian) allowing the direct assimilation of TB, as 

presented in Fig.7.1. 

 

Figure 7. 1 Sub-graph added to the modular graph of SECHIBA-YAO 1D in order to simulate 
TB and compare it, to SMOSREX TB observations. 

 

The first task before starting 4DVAR is to compare the behavior of our simulations with 

respect to the measurements. This gives us an idea about any possible corrections within the 

observations prior to the assimilation process, with the goal of improving its performance.  

A comparison was done (Fig.7.2) using the data from 02/06/2006 to 09/06/2006. This 

particular sequence was chosen since the forcing was not affected during this week with any 

particular phenomenon (strong winds, clouds or heavy rain). The results show that 

SECHIBA-YAO 1D underestimates TB during the morning and overestimates it during the 

afternoon and night, compared to the SMOSREX observations, in other words, the diurnal 

amplitude is underestimated in SECHIBA compared to the measurements. Systematic 

differences may suggest directional effects in the observations linked to solar viewing effects 

which cannot be represented in our simple way to calculate LST.   
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Figure 7. 2 Comparison between simulated (blue) and observed (green) TB, from 02/06/2006 
to 09/06/2006. Abscissa corresponds to time steps (336 for a week) and ordinate corresponds 

to brightness temperature in Kelvin. 
 

 
Figure 7. 3 Scatter plot of simulated vs. observed TB, for 2006. Abscissa corresponds to 

estimated TB and ordinate corresponds to SMOSREX measurements of TB, during 2006. 
 

The scatter plot between the observed and simulated TB during 2006 is presented in 

Fig.7.3. The cluster is far from the identity function: the scatter plot shows a deviation from 
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the identity and a larger spread. In order to come up with these differences, a correction 

process called CDF-Matching is applied, with the aim of reducing the discrepancies between 

variables and observations. This method, proposed by Reichle et al., (2004) match the 

dynamics of a particular measurement. It modifies the observations making their statistical 

distribution closer to the one from the model. In their work, Reichle et al., (2004), applied it to 

soil moisture measurements. Another work from Parrens (2013) applied this filter technique to 

microwave observations, using SMOSREX measurements, with promising results. The same 

principle is implemented to our measurements of TB. CDF-Matching was applied to the year 

2006 entirely, since a large number of realizations are needed (Scipal et al., 2008). A number 

of polynomials with several orders were computed with SMOSREX data. We choose finally a 

first order fit which gives an acceptable result. Observations are then rescaled in order to fit 

the computed polynomial. The resulting pseudo observations after CDF-Matching and the 

observed TB are shown in Fig.7.4.  

 
Figure 7. 4 Comparison of the Cumulative distribution function (CDF) of the brightness 
temperature (TB) estimated with SECHIBA (blue), observed in SMOSREX (green) and 

rescaled SMOSREX after CDF-Matching (red), for the year 2006. 
 

Observations rescaled with CDF-Matching have lower diurnal amplitudes of variation. 

They fit better the distribution of SECHIBA estimation, as it can be seen in Fig.7.4 (for the 

year 2006) and Fig.7.5 (for a time series of TB taken during the week from 02/06/2006 to 

09/06/2006). Nevertheless their accuracy decline showing the same drawbacks on the time 

period studied: underestimation at noon and overestimation at night.  
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We compute the RMSE as the root of the square difference between observations and 

estimations, divided by the number of observations. In addition standard deviation from 

SMOSREX prior and after CDF-Matching is computed. The prior RMSE, bias and standard 

deviation were 5.82 K, 14.74 K and 10.40 K. Posterior values of RMSE, bias and standard 

deviation were is 3.28 K, 0.013 K and 8.19 K; showing that the gap between real 

measurements and estimations of TB is reduced. CDF Matching builds pseudo observations 

closer to the simulated variables (TB). In the following we will use these rescaled values of 

TB in our assimilation experiments. 

 

Figure 7. 5 Time series from 02/06/2006 to 09/06/2006 for TB estimated by SECHIBA (blue), 
observed in SMOSREX (green) and rescaled after CDF-Matching for SMOSREX 

measurements (red). 
 

 Soil moisture  

Soil moisture ( S ) profile in SMOSREX is characterized by measurements at different 

depths. Delta T probes sensors (de Rosnay et al, 2006) were installed in the ground at 0-5cm, 

10 cm, 20 cm, 30 cm, 40 cm, 50 cm, 60 cm, 70 cm, 80 cm and 90 cm. In order to obtain a 

comparable variable with SECHIBA, a cumulative quantity of water in the soil profile was 

computed, as an integration of the measurements at different depths, with the following 

equation  






10

0i
ii

obs
s z                                                                                                             (7.3) 
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In equation (7.3), zi and i  represent the thickness and the water content in the layer i. 

The sum integrates the different measurements taken from the ten layers. Soil moisture profile 

is therefore roughly represented and the main temporal and spatial characteristics of 

infiltration and uptake are captured. 

Once the water content from SMOSREX was obtained, the corresponding variable in 

SECHIBA-YAO 1D was computed, in order to compare it with the observations. In 

SECHIBA the soil is divided into two buckets: the upper bucket (Wu) and the bottom bucket 

(Wl). At each time step, water content from each layer is computed with Eq.2.20. In order to 

obtain S  an integration of both layers divided by the maximum quantity of water allowed in 

the profile is computed, with the following expression 

300
ul

s

WW 
                                                                                                    (7.4) 

s
obs
s  and  were normalized between 0 and 1 and thus are easily comparable. Both 

magnitudes represent the soil moisture, quantifying the moisture condition within the 

underlying soil profile. It must be kept in mind that this representation does not account for 

differences in absolute values of soil moisture –playing a role in thermal dynamics and H – 

since the maximum quantity of water varies with the parameters. 

 
Figure 7. 6 Comparison between simulated ( S ) and observed ( obs

S ) soil moisture, from 
02/06/2006 to 09/06/2006, using SMOSREX measurements. 
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We present in Fig.7.6 the estimation by SECHIBA-YAO 1D of S  compared to the soil 

moisture ( obs
S ) observations during the week from 02/06/2006 to 09/06/2006. It can be seen 

that SECHIBA hydrology is not correctly simulated (blue curve): the soil moisture is too large 

and the daily variations too small, compared to obs
S  (red curve). Perhaps by adjusting 

parameters controlling the water stress, SECHIBA could evaporate or transpire the excess of 

stored water.  

7.3.2. Brightness temperature sensitivity analysis  

The gradient sensitivity analysis is applied using SMOSREX forcing in order to retrieve 

the most sensitive parameters to TB. As in Chapter 5, gradients are computed with respect to 

model parameters, using the adjoint model, during the 2ndJune 2006. The idea is to build, as in 

Chapter 5, the parameter hierarchy of the most influential parameters to TB. In Fig.7.7, 

gradients of the brightness temperature with respect to model parameters are presented. 

 
Figure 7. 7 Gradient sensitivity analysis using SMOSREX forcing, with PFT 11, the 

02/06/2003. The sensitivities were computed on TB. Curves represent TB derivative with 
respect to each parameter given by the adjoint model, every half hour over a day. 

 

In Table 7.2 the 11 parameters ranked in order of influence are presented, according to 

the gradients magnitude, computed in Fig.7.7. Parameters hierarchy revealed that the highest 
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gradient values using SMOSREX site matches the gradient values results with FLUXNET 

sites, however the order in the hierarchy of the most sensitive parameters is not the same. 

Even if the magnitude of gradients may vary, parameters related to the thermodynamic are 

among the most sensitive to brightness temperature for both sites (kemis, kcond, kcapa). 

 
 

Table 7. 2. Parameter hierarchy using SMOSREX forcing, for brightness temperature. 

 

The least sensitive parameter (mindrain), is not optimized in the following experiments, 

only the ten most sensitive parameters are taken into account.  

7.3.3. Brightness temperature assimilation during a single day 

Experiment Definition  

This experiment consists in the realization of successive assimilation during a month. 

The assimilations are performed in a time window of one day. At the end of the assimilation, 

the window is moved to the next day, the system is reinitialized and next assimilation is run. 

The initial condition of the model state variables is different from one day to another. By 

controlling the most sensitive parameters and by using rescaled observations of TB, the 

parameter variability is obtained as well as the error evolution through a month. 

Experiment Observation Parameters 
1 Rescaled TB, every 30 minutes mxeau humcste kcapa, kemis, kcond, krveg  

Table 7.3 Configuration for Experiment 1. The six most sensitive parameters in the 
calculation of TB are optimized. The parameter values are set to their prior values (Table 7.1) 

 

In Experiment 1, as shown in Table 7.3, the assimilation of the rescaled TB is performed 

with a sampling of 30 minutes (every time step) is performed. The six most sensitive 

parameters to TB are controlled, based on the parameter hierarchy computed in the previous 

section. These parameters are mxeau, humcste, kcapa, kemis, kcond and krveg. SMOSREX 

measurements were taken from 02/06/2006 during a month, with PFT 11.  

Results 

For each assimilation test, the prior and posterior RMSE calculated between simulated 

and observed measurements are computed. Fig.7.8 shows their values through a month. There 

are days were no observations are available, thus no RMSE is computed. From Fig.7.8, it can 

Variable Hierarchy  
Brightness 

temperature 
mxeau,  humcste,  kcapa, kemis, kcond, krveg, 
dpucste,  kz0, kalbedo, rsolcste, mindrain, 
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be observed that TB estimations are improved with the one-day assimilation scheme. 

Regarding the other variables, Rn and S  have no variation, H is improved every day 

excepting the 10th day and LE is improved excepting the 20th and the 22th day. 

 
Figure 7. 8. Prior and posterior assimilation RMSE values for model variables. Abscissa 
corresponds to the day of the assimilation, beginning from the 02/06/2006 to 02/07/2006. 
Ordinate corresponds to RMSE values. Red curves stand for the RMSE of the different 

variables prior to assimilation. Blue curves are the RMSE after assimilation. 
 

Nonetheless, these improvements are obtained assigning parameters values at the edge 

of their prior range. Fig.7.9 shows the cumulative distribution of the parameters in the 

interval. Parameters kcapa, mxeau and kcond are concentrated around the lower boundary of the 

interval (0.5) in most of the results. Same results are obtained for krveg, whose posterior values 

are most of the time in the upper boundary of the interval (1.5). Although kemis prior range 

interval is restrained between 0.94 and 1, their values remain more or less stable. 

In summary, Experiment 1 allows us to retrieve the evolution during one month of the 

parameters posterior values in successive assimilations of TB.  This is important since it 

allows us to measure the limits of the assimilation process when taking a one-day assimilation 

time window, in order to reduce the gap between estimated and rescaled TB observations. A 

general improvement in simulated variables was obtained at the expense of parameter values 

in the boundaries of the prior range.  
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Figure 7. 9 Parameters posterior values, when assimilating brightness temperature. Plots are 

the cumulative histograms of the parameter posterior values obtained after one day 
assimilation. 

 

7.3.4. Brightness temperature assimilation during a week 

The results of the previous section may suggest that a one-day assimilation time window 

is not enough, in order to calibrate properly control parameters, since improvements in 

variable estimation were obtained at the expense of assigning parameter values at the edge of 

the parameters interval. 

Experiment Definition  

The different scenarios for the assimilation experiments with a seven-day window are 

presented in Table 7.4. As in Experiment 1, SMOSREX forcing was used with vegetation type 

grassland (PFT 11), from 02/06/2006 to 09/06/2006, with an observation frequency of 30 

minutes (every time step). In Experiment 2, the six most sensitive parameters to TB are 

controlled (section 7.3.2). Experiment 3 optimize the ten most sensitive parameters.  

Experiment Observation Parameters 
2 Rescaled TB mxeau humcste kcapa, kemis, kcond, krveg  

3 Rescaled TB kcapa, kemis, kcond, krveg humcste mxeau 
kz0 kalbedo, dpucste, rsolcste, 

Table 7. 4. Scenarios for Experiments 2 and 3. Both experiment used rescaled TB 
observations, with a 30 minutes sampling. 
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Results 

The RMSE computed at the end of the assimilated process is presented in Table 7.5, the 

posterior parameter values retrieved after each assimilation experiment are presented in Table 

7.6. Posterior RMSE of TB in experiment 2, when only six parameters are controlled, is 2.13 

K, which is slightly better that the result obtained in experiment 3, where the posterior RMSE 

is equal to 2.33 K. By observing the posterior RMSE for S , Rn, LE and H , both experiments 

degrade the prior estimations, except for Rn in experiment 2 (RMSE = 64.46 W/m2). By 

controlling less parameters, it seems that the assimilation process degrades less the different 

variables. The amplitude of the RMSE is considerably high for each of the diagnostic 

variables. 

Table 7. 5. Prior and posterior RMSE for Experiments 2 and 3. Gray cells in the table show 
the best RMSE values for each scenario. 

Table 7.6 shows that most of the retrieved parameters are at the boundaries of the 

interval, suggesting that the improvements obtained in the estimation of TB are obtained at the 

expense of assigning parameters values at the edge of the interval. 

 
Figure 7. 10. Time series for TB before and after assimilation. Results correspond to 

Experiment 2.  Red curves are the rescaled SMOSREX measurements. Green curves are 
SECHIBA estimations with the parameters prior values. Blue curves are the estimated TB 

with the optimized parameters. 

 
  RMSE   

TB(K)  S (m3/m3)  Rn (W/m2) LE (W/m2) H  (W/m2) 
Experiments Prior 2.87 5.42.10-1 66.35 54.69 68.28 

2 Posterior 2.13 6.51.10-1 64.46 69.81 92.14 
3 Posterior 2.33 6.52.10-1 66.52 71.84 93.59 
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Experiments kemis krveg kcond kcapa kz0 kalbedo mxeau humcste dpucste rsolcste 
2 1 1.5 0.5 0.5 - - 1.5 1.1 - - 
3 1 1.5 0.5 0.5 0.5 0.81 1.5 1.1 1.5 0.99 

Table 7. 6. Parameter posterior values for Experiments 2 and 3, after assimilating rescaled TB. 
Prior values for each parameter are normalized to 1. Gray cells show parameter at the 

boundaries. 

We use the parameters final value of Experiment 2 (when the reduction of TB RMSE is 

most significant), and perform  comparisons between the estimated variables vs. SMOSREX 

observations prior and after the assimilation process. It can be observed that: 

 Estimated TB after assimilation is closer to the SMOSREX measurements (Figure 7.10) 

 Rn, shows almost no change in the estimation of the flux prior and posterior the 

assimilation. SECHIBA prior estimation underestimates this flux (Figure 7.11.a).  

 For the rest of the variables (H, LE and S ) prior estimations are degraded (Figures 

7.11.b, 7.11c, 7.11d). H is overestimated systematically, similar to S , which is degraded 

because of LE, which is underestimated during the assimilation period. 

The results show how the final parameter values are not suited to improve all variables. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. 11. Time series for Rn (a) H (b), LE (c) and S  (d) before and after assimilation, for Experiment 2, from 02/06/2006 to 09/06/2006. Red curves are the 
SMOSREX measurements. Green curves are estimations with the parameters prior values. Blue curves are the variables with the optimized parameters. 
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7.3.5. Discussion 

Inspecting the prior values of simulated TB with SECHIBA shows that this variable is 

underestimated compared to rescaled SMOSREX measurements. In an assimilation 

experiment, the increase of TB is obtained by decreasing the two parameters kcapa and kcond and 

by increasing krveg and humcste. These parameters values lead to decrease transpiration and 

increase sensible heat flux, which contribute to stress the model errors concerning these 

fluxes, as well as S , since prior values are overestimated. This is exactly what it is obtained 

from Experiments 2 and 3: doing so the TB is improved while LE, H and S  are 

systematically degraded.  

To better assess the functioning of the assimilation tool and to analyze if the contribution 

of TB assimilation would be altered with different initial conditions, a separate region of the 

parameter space was tested. As the uncertainty of humcste is high compared to the rest of the 

model parameters (its value is merely empirical) we choose to modify only this parameter that 

impacts the evapotranspiration. 

7.4 LST variational data assimilation with different prior values  

In the following assimilation experiments, a prior value of humcste of 0.4 is taken instead 

of humcste = 4. This value implies a larger root extraction potential and larger transpiration, 

allowing us to analyze the impact of the TB assimilation in such conditions. In the next 

section, comparison between estimation and observations for TB and S  are presented. 

7.4.1. Simulated vs. Observed measurements 

Different simulated vs. observed variables are presented, in order to better assess the 

impact of humcste in the model simulations. For the different variables, two sets of simulations 

are presented: the first one using the prior value of all parameters presented in Table 7.1 and 

the second by changing only humcste to 0.4. 

Brightness temperature  

The Fig.7.12 presents a comparison between original TB observations of SMOSREX 

and estimations with SECHIBA using humcste equal 4 and 0.4. It is observed that SECHIBA 

underestimates TB with humcste = 4 (blue curve), by comparing it to the observed TB in 

SMOSREX (green curve). Degradation is more pronounced in TB estimations with humcste = 

0.4 (magenta curve) than the estimation with the standard value, and the same systematic 
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discrepancies are observed. 

 
Figure 7. 12. Comparison between SECHIBA TB with humcste =0.4 (magenta), SECHIBA TB 

with humcste = 4 (blue) and SMOSREX original measurements of TB (green), from 
02/06/2006 to 09/06/2006, using SMOSREX forcing. Abscissa corresponds to time steps (336 

for a week) and ordinate corresponds to brightness temperature in Kelvin. 
 

 
Figure 7. 13. Cumulative distribution function (CDF) of the brightness temperature (TB) 

estimated with SECHIBA (blue), SMOSREX (green) and rescaled SMOSREX after CDF-
Matching (red). 
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In order to come up with these differences, CDF-Matching is applied, as described in 

section 7.3, using TB estimations with humcste = 0.4. Observations are then rescaled in order to 

fit the computed polynomial. CDF-Matching was applied to the whole of year 2006, using a 

first-order polynomial. The resulting CDF of estimations and observed TB after CDF-

Matching are shown in Fig.7.13. Prior RMSE, bias and variance are 8.55 K, 8.75 K and 10.40 

respectively. Posterior RMSE, bias and variance are 4.45 K, 0.009 K and 7.91 K. 

Observations rescaled with CDF-Matching have lower amplitudes of variation but they fit 

better the distribution of our estimation. When looking at extreme values, rescaled and 

simulated CDF are closer that the original observations vs. the simulations. 

Soil moisture  

The comparison between the observed and simulated S , for humcste equal 0.4 and 4 is 

presented in Fig.7.14. Estimations with SECHIBA standard values (green curve) overestimate 

S . Even though estimations with humcste = 0.4 (blue curve) are also overestimated, the daily 

variables fit better the SMOSREX observation (red curve) with the same dynamics as the 

SMOSREX measurements. 

 
Figure 7. 14. Comparison between simulated ( S ) and observed soil moisture ( obs

S ), from 
02/06/2006 to 09/06/2006, using SMOSREX measurements. 

 

By reducing humcste, the potential root extraction is increased, leading to an increase in 

transpiration, causing a decrease in the soil water content. It is clear that in the scenario of 
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humcste = 0.4, the prior value is almost twice better, improving the performance of our model. 

7.4.2. Brightness temperature sensitivity analysis  

A gradient sensitivity analysis was performed using SMOSREX forcing in order to 

retrieve the most sensitive parameters to TB, with humcste = 0.4. As in Section 7.3.2, gradients 

are computed with respect to model parameters, using the adjoint model, during the 2nd June 

2006. In Fig.7.15, gradients of the brightness temperature with respect to model parameters 

are presented. 

 

Figure 7. 15. Gradient sensitivity analysis using SMOSREX forcing, with PFT 11, the 
02/06/2003. The sensitivities were computed on the TB, using humcste = 0.4. Curves represent 

TB derivatives with respect to each parameter given by the adjoint model. 
 

In Table 7.7, the eleven parameters ranked in order of influence are presented, according 

to the gradients magnitude, as shown in Fig.7.15. Parameters hierarchy using humcste = 0.4 is 

the same as obtained in Section 7.3.2, where the standard prior value for humcste was used. 

This revealed that, although a different point in the parameter space is taken, the hierarchy 

remains the same even though magnitudes of the sensitivity are smaller in general. 
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Table 7. 7. Parameter hierarchy using SMOSREX forcing, for brightness temperature 

7.4.3. Brightness temperature assimilation during a single day 

Experiment Definition  

This experiment consists in the realization of successive assimilation during a month, 

using a time window of one day; similar to Experiment 1 presented in Section 7.3.3.  

Experiment Observation Parameters 

4 Rescaled TB, every 30 
minutes,  

mxeau humcste kcapa, kemis, kcond, krveg  
humcste = 0.4 

Table 7. 8. Experiment 4. The six most sensitive parameters of TB are optimized. The 
parameter values are set to their prior values, excepting humcste, which is equal to 0.4. 

In Experiment 4, the six most sensitive parameters to TB are controlled, based on the 

parameter hierarchy computed in the previous section. Rescaled SMOSREX TB observations 

were taken from 02/06/2006 during a month, with PFT 11. Standard values for the different 

parameters are taken, excepting humcste, which prior value was equal to 0.4. This experiment 

uses the observations of TB rescaled, obtained after the CDF-Matching process. 

Results 

As in Fig.7.8 we present for each day and each variable (H, LE, TB, Rn and S  ) the 

RMSE computed using the rescaled SMOSREX TB measurements and the corresponding 

values estimated by SECHIBA at the end of the assimilation process (Fig.7.16.a). The 

posterior RMSE for H, LE and TB is reduced. Rn presents no variation. The S  values are 

degraded throughout the month. Fig.7.16.b shows the cumulative distribution of the 

parameters in the interval. The distribution of the parameter posterior values is similar to 

Experiment 1, where humcste = 4.  

In summary, experiment 4 shows that a one-day assimilation of TB globally improves 

estimation of TB, H and LE. Parameter posterior values reach their boundary. In order to test 

the role of the assimilation windows, assimilation during a week of the most sensitive 

parameters is performed in Section 7.4.4 using humcste = 0.4. 

Variable Hierarchy  
Brightness 

temperature 
mxeau,  humcste,  kcapa, kemis, kcond, krveg, 
dpucste,  kz0, kalbedo, rsolcste, mindrain, 
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(a) 

 
(b) 

Figure 7. 16. (a) Comparison of RMSE values prior and after assimilation, during a month. 
Red curves stand for the RMSE of variables prior to assimilation. Blue curves are the RMSE 

after assimilation. (b) Parameters posterior values, when assimilating TB. Plots are the 
cumulative histograms of the parameter posterior values obtained after one day assimilation. 
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7.4.4. Brightness temperature assimilation during a week 

Experiment Definition  

The different scenarios for the assimilation experiments with a seven-day window are 

presented in Table 7.9. As previous experiments, SMOSREX forcing was used with a 

grassland (PFT 11) vegetation type, from 02/06/2006 to 09/06/2006, with an observation 

frequency of 30 minutes (every time step). In Experiments 5, the six most sensitive 

parameters to TB are controlled. Experiment 6 controls the ten most sensitive parameters to 

TB. 

Experiment Observation Parameters Prior value 
5 Rescaled TB mxeau humcste kcapa, kemis, kcond, krveg  humcste = 0.4 

6 Rescaled TB kcapa, kemis, kcond, krveg humcste mxeau 
kz0 kalbedo, dpucste, rsolcste, 

humcste = 0.4 

Table 7. 9. Scenarios for experiments 5 and 6. Every experiment used rescaled TB 
observations, with a 30 minutes sampling. humcste is equal to 0.4. 

In Experiments 5 and 6, prior value for humcste is 0.4. By comparing Experiments 5 with 

6, the impact of controlling a larger parameter set can be measured. Moreover, by matching 

Experiments 2 and 3 with Experiments 5 and 6, the influence of changing the prior value of 

the parameter set can be accounted. 

Results 

Assimilation performances with rescaled TB observations during a week are presented in 

Table 7.5. In addition, the posterior values of parameters retrieved after each assimilation are 

presented in Table 7.6. Final RMSE of TB in Experiment 5, for which only six parameters are 

controlled, is 2.06 K. A slight improvement is obtained with ten controlled parameters (Exp. 

6). However, the differences are marginal: one experiment does not outperform the others. 

Experiments 5 and 6 show a slight degradation of posterior S  RMSE. Improvements are 

obtained for the rest of the variables. RMSE final values for Experiment 6 are larger than 

those obtained in Experiment 5. 

 

 

 

Table 7. 10. Assimilation performances when assimilating rescaled using humcste = 0.4. By 
comparing both experiments, gray cells in the table show the best RMSE value for each 

scenario. 
 

 
  RMSE   

TB 
(K)  S (m3/m3)  Rn 

(W/m2) 
LE 

(W/m2) 
H  

(W/m2) 
Experiments Prior 3.51 5.06.10-1 65.19 121.61 119.31 

5 Posterior 2.06 5.31.10-1 64.45 50.7 55.79 
6 Posterior 2.32 5.51.10-1 67.01 71.5 92.3 
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Experiment kemis krveg kcond kcapa kz0 kalbedo mxeau humcste dpucste rsolcste 
5 1 1.5 0.5 0.5 - - 1.499 1.1 - - 
6 1 1.499 0.5 0.5 0.5 0.5 1.5 1.1 1.5 0.99 

Table 7. 11. Parameter posterior values for experiments 5 and 6, after assimilating rescaled TB 
with humcste = 0.4. Prior values for each parameter are normalized to 1. Gray cells show 

parameter values at the limit of their prior range. 

 

Parameter posterior values are presented in Table 7.11 for Experiments 5 and 6. It can be 

observed that most of the time the posterior values reach their boundaries. These results are 

similar to those in Experiments 2 and 3.  

7.4.5 Discussion 

In this section, the use of a different prior value for humcste was tested in several 

assimilations, with two different assimilation time windows. For both windows (one and 

seven days) posterior RMSE for TB, H and LE was reduced, when constraining control 

parameter with rescaled TB observations. Comparing Experiments 5 and 6, variables posterior 

RMSE all decreased except for a slight degradation of S . Best performances were obtained 

by controlling the six most sensitive parameters (exp. 5). However, even if a higher reduction 

of variables posterior RMSE is obtained using humcste prior value of 0.4, some posterior 

parameters values reach the limit of their prescribed boundaries.  

7.5. Analysis of the assimilation system through twin experiments 

Experiments 1 to 6 show how TB assimilation alone brings a weak constrain on control 

parameters. Forcing the parameters to their prescribed limits increases variable estimation 

accuracy, but the minimum of the cost function is not reached. 

Fig.7.17 shows the sampling of the cost function in the assimilation experiments with 

the standard values of the control parameters. We sampled the cost function by varying the 

parameters from ±50% of their initial value (here the initial value is always 1), from the 

period 02/06/2006 to 09/06/2006, with SMOSREX measurements, with a thirty minute 

frequency. It can be observed that the minimum of each curve is never found inside the 

interval. 

In view of these results, a well-defined minimum within the prescribed boundaries of 

each parameter cannot be found. Reaching a minimum would require the parameters to visit 

unrealistic values. This can be caused by the model, the observations or our assimilation 

system. In order to explore the validity of the latter with SMOSREX forcing, a twin 

experiment was performed using the input forcing from SMOSREX. The conditions for the 



                                                                    

134 
 

twin experiment are the following: The ten most sensitive parameters to TB are optimized 

with their standard values. After the introduction of a random noise up to 50% their prior 

values, the assimilation of synthetic observations of TB is applied from 02/06/2006 to 

09/06/2006, with a frequency of 30 minutes, using SMOSREX forcing. 

 
Figure 7. 17. Cost function variations around prior parameter values, from 02/06/2006 to 

09/06/2006. 
 

 
Figure 7. 18. Comparison of TB: observed (red), modeled with default parameter values 

(magenta), modeled with noised parameters (green) and posterior estimation using the latter 
as prior (blue), from 02/06/2006 to 09/06/2006.
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. 19. Comparison of variables from SMOSREX observations (red), SECHIBA estimation with prior parameter values (magenta), SECHIBA perturbed 
(green) and SECHIBA estimations after twin experiment (blue), Rn (a), H (b), LE (c), S  (d).  
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We present the results of the twin experiments at the end of the assimilation in Fig.7.18 

and Fig.7.19. The figures plot the different time series before and after perturbing the 

parameters; and the results of the twin experiment. Moreover, a comparison with the 

SMOSREX observations is provided. From Fig.7.18 and Fig.7.19, it can be observed that the 

parameter values that generated our standard estimations are retrieved, thus confirming the 

consistency of the assimilation system, as proven in Chapters 5 and 6. However, discrepancies 

in state variables and flux with rescaled SMOSREX observations remain large, with respect to 

the TB amplitude. The perturbations have contrasted impacts on the different variables. Rn is 

insensitive to the perturbation of the parameters (as observed in Fig.7.19.a). The curve before 

and after the perturbation are similar, although the perturbation can reach up to 50% of the 

initial value. So there is little hope that optimization of the selected set of parameter would 

improve this output. The LE flux is overestimated when parameters are perturbed. However 

the prior estimation of LE is closer to the SMOSREX observations. The soil moisture S  is 

overestimated with the parameter perturbation. The assimilation system retrieves the prior 

value. 

These results allow us to state that the assimilation system is consistent in finding the 

optimal values in a twin experiment and confirms the parameter sensitivities and the 

usefulness of assimilating LST to constrain model parameters. The results confirm also that 

the bad performances obtained with real measurements are linked to the non-ability of our 

model to simulate a physical surface temperature comparable to measurements.   

7.6 Conclusion 

In this chapter, the assimilation of TB in SECHIBA was implemented. With different 

scenarios, including two different prior values of humcste (4 and 0.4) and two assimilation time 

windows (one day and seven days). Experiment results show that the model cannot reach a 

proper minimum to improve the variable estimation.  

TB with CDF-Matching was presented, allowing us to match the statistics of SECHIBA 

outputs with the available measurements. Even though rescaling of the whole year 2006 helps 

to fit better our observations with CDF-Matching, the corrections are limited, since the 

observations may present time variability, biases and variance. If these discrepancies are 

limited to the directional effect of the measurements, this is not surprising, i.e. biases during 

summer or winter will not be similar. Instead, it may be better to apply CDF-Matching in a 

shorter time-period, involving the period assimilated with homogeneous climate conditions. 
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Comparing Experiments 1, 2 and 3 (where humcste = 4) with Experiments 4, 5 and 6 

(where humcste = 0.4) it can be observed that the best results were obtained by controlling the 

six most sensitive parameters with an assimilation time window of a single day (Experiments 

1 and 4). However, the choice of an arbitrary prior value is an initial approach. The next step 

would be to perform an exploration in the parameter, selecting the optimal prior values. 

Even though variable estimation is slightly improved, this is due to final parameter 

values at the boundary of a variation interval in the cost function. A cost function sampling 

confirmed these results. We can observe that the cost function does not have a clear minimum 

in the ranges prescribed. In order to reach a minimum, it would require the parameters to visit 

unrealistic values. SECHIBA does not correctly simulates simultaneous temperature and 

fluxes and the relationship between the two is not always consistent according to the regime 

(or parameter values that are used). We must therefore work on the physics to improve the 

temperature simulation. Also, the parameter sensitivity to temperature is not always sufficient, 

giving as a result a flat cost function. 

When attempting to calibrate the model with only a small number of parameters directly 

related to TB, the accuracy in estimating the state of the system can be either improved or 

degraded, depending on the prior scenario chosen for the experiment. However, 

improvements can be limited by several factors to consider: first, the parameters indirectly 

related to TB, which are involved in soil hydrology processes, have a role in the calculation of 

the energy budget; second, the model is not suitable to reproduce the physical reality of the 

measured phenomena. Indeed, observations proved impossible to fit in terms of realistic 

dynamics, showing the limitation of the assimilation method; finally, the control parameter 

vector size may be inadequate. Should other parameters be added to the initial list of eligible 

ones, thus allowing us to explore a wider spectrum of model responses? 

Without prior information on the observations, the approach used in our assimilation 

scheme aims at reproducing the observations in the best way possible. This may not work 

very well due to model and observation errors. An improvement can be expected from 

introducing error information into the assimilation scheme, by using a weighted cost function. 

In the same way, it is necessary to evaluate the way thermodynamics and hydrology are 

coupled in this model, in order to introduce new physical processes, or perhaps to change the 

parameterization of the existing processes, especially the representation of LST. 
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Chapter 8 

Conclusion and Perspectives 

 
 

The objective of this thesis was to improve model variables of the ORCHIDEE 

biosphere model by constraining internal parameters with 4DVAR assimilation of land surface 

temperature observations. 4DVAR merges observations with the model, providing an optimal 

initial parameter estimate that improves the forecast potential of the model. 

The first objective drove us first to the study of the model physics. The study of land 

surface models (as presented in Chapter 1) was a necessary introduction in order to 

understand the processes and variables that can be estimated with this type of models. In 

addition, specificities and complexities were identified. Afterwards, insights of ORCHIDEE 

and especially SECHIBA (which computes the energy and water budgets) were presented in 

Chapter 2. The equations related to the energy and water budgets, implemented in SECHIBA 

were included. Model components were identified in order to understand its dynamics, needed 

to build the modular graph in YAO. The FLUXNET and SMOSREX sites used in this work 

for providing in situ observations were presented. Both sites have measurements 

corresponding to SECHIBA forcing. Their measurements characteristics and different time 

series of input forcing and observed variables are shown, permitting the knowledge of the 

dynamics and particularities of each site. 

Once the physical environment and data were presented, the components of our 

methodology of work were introduced: variational data assimilation concepts (Chapter 3) and 

the introduction to YAO (Chapter 4). The implementation of SECHIBA into YAO was 

explained in detail. It involved complex computational tasks: understanding SECHIBA 

original code, extracting important codes representing the model physics and finally using 

YAO meta-language to define the modular graph of the model and the internal procedures 

encapsulated in the different modules. Even if it was a laborious task, the implementation of 
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SECHIBA in YAO allows us to have an easily maintainable, modifiable and expandable code. 

It also offers the flexibility to run assimilation experiments with various scenarios in a very 

easy way. In addition, although in this work SECHIBA-YAO 1D was used in one dimension, 

the implementation was done to be used in two dimensions. 

Once these steps were accomplished, we can say that SECHIBA-YAO 1D represents the 

original model accurately and that the adjoint model obtained with the backward integration 

of the modular graph, made with YAO, is an equivalent representation of the adjoint model. 

Once SECHIBA-YAO 1D was validated, sensitivity analysis was performed (Chapter 5), 

obtaining a parameter hierarchy. Sensitivity analysis can indicate which parameters influence 

the most, the various output variables, and the accuracy with which it is necessary to estimate 

them. Sensitivities for FLUXNET sites were computed using land surface temperature as 

observation. The parameter hierarchy obtained with the sensitivity analysis serves as a basis 

to choose the most sensitive parameters of the considered variable. Furthermore, it gives an 

opportunity to better understand the dynamical behavior of the system, by highlighting over 

parametrization or parameters that do not concern observation operators. 

The most sensitive parameters were then used in the different assimilation experiments 

performed in Chapter 6. Twin experiments were implemented using FLUXNET forcing, in 

order to test the robustness of our assimilation methodology. Several scenarios were tested 

with synthetic observations, noting the performances of the assimilation when changing the 

observation sampling, the assimilation time window, the observation type and the size of the 

control parameter set. For each experiment, parameter initial values were perturbed before the 

assimilation. The idea was to retrieve the initial value of the parameters that generates our 

synthetic observations. Results were promising, succeeding in most experiments to converge 

to the parameter prior values. Although results with twin experiments are limited, proving 

only that assimilation works accurately, they allow us to assess the impact of various 

configurations, in the parameter restitution performance. 

The assimilation of in situ measurements was conducted in Chapter 7. The aim of this 

chapter was to assess the impact of assimilating land surface temperature observations. 

Different scenarios were tested: first by varying the size of the control parameter set, taking in 

some experiments the six or the ten most sensitive parameters. Second, by testing two 

different evapotranspiration regimes, prescribing different initial condition values for humcste 

(4 and 0.4) and finally with two assimilation time windows of one and seven days. All 

scenarios used TB measurements rescaled with CDF-Matching from SMOSREX database. 
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Sensitivity analysis was computed with this forcing since it is different from FLUXNET site, 

and the results obtained suggest that different processes are more or less predominant in each 

site.  

When assimilating only TB, the scenarios with the best performance were with 

experiments controlling only the six most sensitive parameters (Experiments 1, 2, 4, and 5). In 

addition, using humcste= 0.4 improves flux estimation, as it can be seen in Experiments 5 and 

6, compared to Experiments 2 and 3. It was observed that in all experiments, the model 

parameter final values are at the edge of the validity interval, thus indicating that the 

minimization process did not find a minimum within the defined intervals for each parameter. 

A cost function sampling confirmed these results. We can observe that the cost function does 

not have a clear minimum, in the ranges prescribed. Effectively reaching a minimum would 

require allowing the parameters to visit unrealistic values. SECHIBA does not correctly 

simulates simultaneously temperature and fluxes and the relationship between the two is not 

always consistent according to the regime (or parameter values that are used), giving as a 

result a flat cost function. We must therefore work on the physics to better simulate the 

temperature.  

Results using two different prior values of humcste highlight the need to study the impact 

of this parameter in the model dynamics.  

Several remarks stem from these results:  

1. The assimilation system implemented to apply 4DVAR on SECHIBA is robust, since the 

resulting performances in the twin experiments are satisfactory for all sites (SMOSREX 

and FLUXNET). 

2. It was noticed that the cost function, when assimilating real measurements from 

SMOSREX, does not have its minimum within the parameter intervals. It is may be due 

to the non-ability of our model to simulate a physical surface temperature comparable to 

measurements.   

3. In view of the results using a different prior value for the control parameter set, it was 

shown that the optimization of the surface temperature does not always induce 

improvements on surface fluxes. Depending on the parameter initial conditions, the 

physical processes and their consistency may vary, implying different results in the 

assimilation performances. Therefore, a preliminary work on model errors and sensitivity 

to initial conditions should be performed prior to the assimilation work, to correct model 
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biases and systematic errors. 

4. The coupling between the hydrology and the thermodynamics in SECHIBA must be 

reviewed in order to reflect the interactions between these two parts of the model more 

accurately. In particular, a different hydrology in SECHIBA has been implemented, 

besides the Choisnel hydrology used in this work, reflecting more precisely the 

hydrologic processes, with eleven layers in the soil. 

5. CDF Matching improves the observations. However it is important to apply it during a 

period where the climate conditions are homogeneous, which guarantees a better match 

of the variable dynamics between observations and estimations. In addition, the formula 

used to estimate TB can be reviewed to simulate it with higher accuracy. 

6. An exhaustive study of the TB observations errors must be conducted also in order to 

retrieve more adapted weighing terms values that help us to assess accurately the 

measurement errors magnitude in the cost function, accounting in this way for the 

confidence we give to the observations. Finally, an extensive study of parameters 

correlations has to be done in order to obtain a wider comprehension of the model 

internal processes, accounting them in the cost function. 

Perspectives 

The work that should be undertaken to improve the performances obtained in this work 

is the following:  

1. The different assimilation experiments performed with the SMOSREX dataset expose 

just preliminary results, showing only that local interactions may not be generalized to a 

regional study. A wider regional study, with different data sources, has to be done in order 

to account for the potential of variational data assimilation in constraining SECHIBA 

internal parameters.  

2. The eleven layers hydrology procedure can be implemented in SECHIBA-YAO 1D, in 

order to constrain parameters by assimilating TB observations. Perhaps this hydrology 

would represent more accurately coupling to the soil thermodynamics.  

3. Besides the parameters considered in the control set, there are other parameter of interest 

that can be considered in the assimilation process. Exploring the influence of the 

parameters in the estimations model variables is a mandatory task in order to estimate 

sensitivities and pertinence of parameters within the model. This exploration has to be 
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done in future works every time a new forcing is used or a different variable is observed 

(besides TB). With SECHIBA-YAO 1D, it is straightforward to perform this exploration: 

all parameters are already coded, the user just has to choose which parameters and in 

which variable the sensitivity are going to be computed. 

4. Assimilate a different variable besides TB. For example soil moisture is a good candidate, 

since we observed that high discrepancies were obtained between estimations and 

SMOSREX measurements, thus incorporating relevant information that can be extracted 

from these observations, control parameters can be better constrained. 

Challenges  

After having implemented SECHIBA-YAO 1D, some reflections are made on 

implementation decisions taken and the way the work was performed. This is a constructive 

criticism on the work done. It should help making better decisions in the coming 

developments of models over YAO. When planning the implementation of a model using 

YAO, this scheme should be followed:  

1. Definition and delimitation of the model: it defines the limits of the model to be 

implemented, which routines are vital and which can be eliminated from the original 

model. It must be made between the developer and the experts who know the model.  

2. Adaptation with tools: the developer must first know YAO and the model to be 

implemented. The physics and dynamics must be understood to facilitate the validation 

process. If the model has already been implemented in a programming language, extra 

time is required to understand the logic that was used to produce the original code. 

3. Modular graph: It is the responsibility of the developer to extract the dynamics of the 

model, its components and flow of inputs and outputs in order to precisely define the 

modular graph. This step is very important because it contains the essence of the model, 

which is its dynamics.  

4. Direct model, adjoint model: the coding, based on the original model, is done module by 

module. At the end, a representation of the direct model and adjoint model is obtained. 

5. Validation of the model: The direct model should be validated with the original model to 

confirm its accuracy. The adjoint model should be checked to verify its accuracy. 

At early stages of the implementation, the approach based on the use of SECHIBA-

Fortran routines was chosen, even though feasibility studies were not performed to see if the 
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code was suitable to a differentiation phase. Based on this decision, the general planning of 

the work was formulated, allotting little time to the coding phase, which turned to be the 

longest task. The reason why the original code could not be used is related to the logic used to 

produce this code: the inputs in the routines are systematically modified during the computing 

phase, making impossible to differentiate the inputs, the intermediate variables and the 

outputs. A neat code where input, internal processes and outputs are clearly defined and do not 

change during the calculations is necessary, in order to obtain a consistent code that can be 

differentiated.  Since this was not the case for the version of SECHIBA-Fortran taken, the 

migration of the original code had to be done. 

An extensive study of the code was made to identify external libraries used in the 

original model, which were not necessary in the implementation of SECHIBA-YAO. A wide 

comprehension of the use of these libraries was then done before the implementation of the 

code began, in order to implement possible process made by these libraries, used in the core 

of SECHIBA. 

Once the coding phase has begun, the developer encountered a code that was 

undocumented (when the development began) making really hard to understand the dynamics 

of the different routines. Functions, temporal variables and constant did not have any 

explanation of their use. The developer systematically followed every input, output and 

process in order to understand the code dynamics.  

Besides all these hurdles, understanding the logic used by the developer of SECHIBA 

was a crucial stage. The logic used to code in FORTRAN language is not always the same as 

the logic used in YAO meta-language. Just the fact of migrating a code is a laborious task, it is 

wide known that two different developers do not think in a similar way, reason why rewriting 

a code not only takes time but also may introduces errors.  
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Appendix A 
 
 
Representing the tangent linear and adjoint 
of a modular through a modular graph 
 
 
A.1. Tangent Linear of a modular graph 

Hereafter, for ease of presentation and understanding, we use the matrix notation, the 

calculation results can be obtained without explicitly express the Jacobean matrices (i.e. using 

automatic generators).It is assumed that in a modular graph  from a model M, we can 

compute the tangent linear of each module Fq, based on a perturbation dxq (in a xq point). 

There by, we note Fq the matrix corresponding to the tangent linear equal to the Jacobean 

matrix of Fq calculated in xq, the corresponding module output perturbation is equal to dyq = 

Fqdxq. In the same way that the input vector xq, the vector dxq comes from perturbations in 

the outputs dyp. The tangent linear model can be computed by a forward propagation in the 

modular graph similar to the forward procedure. An example of this calculation is given in 

Figure A.1. 

(2) Lin_forward algorithm 

This algorithm is applied after all inputs xq, from all modules have been calculated (for this, we  apply once the 

forward algorithm for an input vector x defined in the external context of the modular graph). 

1) Initialize perturbation dx from input vector x (this corresponds to all basic connections receiving data from 

the external environment). 

2) Browse the module in the sense of the topological order. Calculate, in a way similar to the procedure 

forward, their linear tangent dyq = Fqdxq at the point xq. 

3) Retrieve the result as a vector dy formed by perturbations transmitted to the external environment 
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Figure A.1. Calculation of tangent linear in a modular graph. Fq is a module for which 

the vector xq ( with components xq,i) has already been calculated, and a perturbation dxq (with 

components dxq,i). We compute dyq = Fqdxq which corresponds to the calculation of the 

tangent linear of the module Fq. dyq,j components can in turn be used by successor modules to 

form their own components dxq,i. on the graph. Source: Nardi et al, 2009 

A.2. Adjoint of a modular graph 
As for the tangent linear model, we assume that we can calculate the adjoint model of 

each module. Thus, for a module Fp having an input vector xp, when receiving a vector dyp 

with the same size as the output vector, its adjoint model in xp is represented by p
T
Pp dyFdx 

, having the same dimension as the input vector of Fp. The matrix T
PF is the transpose of the 

Jacobean matrix of the module Fp calculated at the point xp. We then demonstrate (see 

Appendix 1) that we can calculate the adjoint model of the global model M (represented by its 

graph) for each vector dy having the same size as the output vector of the model ( dydx T


). To do so, we compute the graph in reverse topological order, corresponding to evaluate the 

arcs in the opposite direction, this process it’s called back propagation of the modular graph 

(backward). 

The path in backward mode presents some difficulties compared to the path in the 

forward mode. Indeed, in forward mode, data transmission is always done through the basic 

connections. As illustrated in Fig.A.2.a, one and only one data is transmitted to a particular 

entry. Contrary, when passing in backward mode, more data can be transmitted to a particular 

output of module Fp (example yp2 the Fig.A.2.a). In the case of the adjoint, an intermediate 
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calculation is required. It consists in preparing the vector dyp of module Fp before calculating 

p
T
Pp dyFdx  . It is proved that the jth component of dyp must be calculated as the sum of all 

data types of dxq,i, transmitted to it by back propagation along all basic connections taking 

their input into ypj. Thus, in the case of Fig.A.2.a, we must calculate dyp2 = dxq2 + dxl1. 

Different dxp,i back propagated are either derived from a calculation by a successor module Fp 

or they are calculated (or initialized) by the external context of the modular graph. 

Finally, adjoint calculation of dx in the global model ( dyMdx T
 ) is form by vector 

components of dxp. These operations are summarized in Algorithm 3. Fig.A.4 shows an 

example of the calculations involved. 

(3) Backward algorithm 
This algorithm is applied after all inputs xp of all modules have been calculated one time with the forward 

algorithm for an input vector x. 

1) Initialize the output vector dy of the modular graph   (corresponding to all basic connections transmitting 

data to the exterior environment). 

2) Visit the modules in reverse topological order (backward of the graph). For each module Fp, calculate dyp (as 

described in this paragraph) and calculate the adjoint p
T
Pp dyFdx  . This adjoint is computed in xp (we 

assume by hypothesis that this calculation is possible). 

3) Retrieve the adjoint of dx result. This vector is constituted by the components of the vectors dxp 

corresponding to basic connections taking their inputs in the exterior environment 

 

Figure A.2. Adjoint calculation in a modular graph. The dotted arrows represent the path 

in backward mode during which the adjoint calculation is performed. For this calculation, 

however, we recall that each component dyp,j from a module consists of the successors dxq,i 
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sum of these modules. This operation is represented by the   symbol on the graph. Source: 

Nardi et al, 2009 

In Fig.A.2 the technique used to calculate the adjoint method in a modular graph is 

presented. This is the same graph as that of Fig.A.4. The notations are equivalent except that 

the index p is replaces by q. 

Both algorithms (2 and 3), assume that we know how to calculate the tangent linear and 

the adjoint for each module Fp. Modules can have very different complexities. In a simple 

case, where the module is an analytic function, we can explicitly calculate the Jacobean 

matrix of Fp and make the product Fpdxp and Fp
Tdyp. On more complex modules, we can use 

programs that do these calculations (i.e. a program obtained after using an automatic 

generator, even by another modular graph).  
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Appendix B 

Modular graphs for each major routine of 

SECHIBA 

 
B.1. Outline 
 

In this section, the modular graphs corresponding to each of the most important routines 

of SECHIBA are presented. As a reminder these routines are: DIFFUCO (diffusion 

coefficients), ENERBIL (energy budget), HYDROLC (hydrologic budget), SLOWPROC 

(slow processes such as LAI update), THERMOSOIL (soil thermodynamics), CONDVEG 

(vegetation conditions). In addition, general internal calculations are grouped in INTERSURF 

(general parameters calculation). 
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B.2. DIFFUCO 
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B.3. ENERBIL for evaporation 

This graph represents the evaporation processes modeled inside ENERBIL 
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B.4. ENERBIL for surface fluxes 
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B.5. HYDROLC for soil water content  
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B.6. HYDROLC for canopy water interception 
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B.7. HYDROLC for soil moisture update 
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B.8. THERMOSOIL for soil temperature update 
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B.9. SLOWPROC 

 

 

B.10. INTERSURF 
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Appendix C  
 

Sensitivity Analysis using a Cost Function 
 
 
C.1 Introduction 

Complementary to the sensitivity analysis, another approach to perform a sensitivity 

analysis in the model parameters consists in the definition of a cost function, measuring the 

misfit between the simulated and observed temperature. This approach only requires the use 

of the direct model (like the finite differences). The cost function is defined by 

 




t

i
ii obsxMJ

0

2)(
                                                                                                  (5.1)

 

where M(x) is the simulated model output and obsi is the observed measurement. We 

generate first, in a period of one week, synthetic observations of obs  with the prior value of 

the parameter. Next, a sampling of the cost function is made, by performing consecutives 

calculation of M(x) with a variation interval for each parameters, defined as ±50% the true 

parameter value.  

The approach using a cost function is very useful to perform a sensitivity analysis, if an 

adjoint model is not available. It is straightforward: given the direct model and the target state 

variables a cost function computing can be easily done to rapidly have an idea of the 

parameter influence in the model output. The result using a cost function can be used as a 

priori information to estimates sensitivities with the adjoint model.  

C.2. Land surface Temperature sensitivity 
This sensitivity analysis is made during a week, for soil temperature using both 

FLUXNET sites (Kruger Park and Harvard Forest) with PFT 0 and 11 and SMOSREX (PFT 

11).  

The curves presented in Figure C.1 represent the cumulated square difference of 
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simulated and observed temperatures, for both sites, with bare soil and grassland. Given the 

perturbation made for each parameter, the sampling gives us an idea of the influence of the 

variation of a single parameter has on the soil temperature estimation. When introducing the 

vegetation layer, several parameters have a higher impact in the soil temperature estimation. 

Only kalbedo and rsolcste curves remain constant.  

 

 
(a) 
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(b) 

Figure C.1. Cost Function sensitivity analysis during a month for soil temperature with 

PFT 0 (blue curves) and  PFT 11 (red curves) in FLUXNET Harvard Forest (a), from 24-08-

1996; and Kruger Park (b), from 11-02-2003. 

For the others, in the presence of grassland, the physics of the model introduced new 

variables affecting the sensitivity of these parameters. The 4 most influential parameters, for 

bare soil, are: kz0, rsolcste, kcond and kcapa ; and for grassland, the hierarchy is: kz0, krveg Kcond 

and kcapa Both sites have the same hierarchy, showing that these parameters are independent 

from the forcing and can have values generalizing various types of vegetation, soils and 

climates. In addition, this hierarchy corresponds to the sensitivity analysis results performed 

in the previous section. However, in the Kruger Park results, it can be seen that the magnitude 

of the cost function is higher than the Harvard Forest results, as expected from the previous 

results. This is due to the forcing and the specific characteristics of each site. Harvard Forest 

is more stable during the days of testing. The shortwave solar radiation and the wind speed are 

smoother in this site than the Kruger Park.   

Similar to the study made with FLUXNET sites, the cost function analysis was 

performed using SMOSREX forcing.  
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Figure C.2. Cost Function sensitivity analysis for land surface temperature using 

SMOSREX forcing, during a month, from 02-06-2006.  

In Figure C.2, SMOSREX forcing cost function sampling is presented. The cumulated 

square difference of simulated and observed temperature is presented. Sampling was made 

during a month, starting on June the 2th, 2003, with grassland. The sampling gives us an idea 

of the influence of the variation of a single parameter in model variables.  

The parameter hierarchy for soil temperature cost function is: kz0, dpucste, krveg, mxeau, 

humcste, kcapa, kcond, kemis, kalbedo and rsolcste. As it can be seen, hierarchy does not match the 

hierarchy computed with the gradient method. This is due to the forcing and the specific 

characteristics of the site. The shortwave solar radiation and the wind speed in this site are not 

so smooth, introducing perturbation in the computation of the soil temperature. Changing the 

parameters in the cost function sampling introduce new perturbation that are not accounted 

when computing temperature gradients. Indeed, the cost function method perturbs parameters 

from -50% to +50% their prior value, opposite to the gradient method, when the parameters 

are perturbed only in 1% their prior value and thus the gradients represent accurately the 

exchange rate between the temperature for each unit of parameter. 


