
HAL Id: tel-01145986
https://theses.hal.science/tel-01145986v1

Submitted on 27 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Study and optimization of 2D matrix arrays for 3D
ultrasound imaging

Bakary Diarra

To cite this version:
Bakary Diarra. Study and optimization of 2D matrix arrays for 3D ultrasound imaging. Other [cond-
mat.other]. Université Claude Bernard - Lyon I; Università degli Studi di Firenze, 2013. English.
�NNT : 2013LYO10165�. �tel-01145986�

https://theses.hal.science/tel-01145986v1
https://hal.archives-ouvertes.fr


 
 

       N° d’ordre : 165 - 2013                                                                                       Année 2013          
 

THESE DE L’UNIVERSITE DE LYON  

 

délivrée par 

L’UNIVERSITE CLAUDE BERNARD LYON 1 

et préparée en cotutelle avec 

 

L’UNIVERSITÀ DEGLI STUDI DI FIRENZE 

 

ECOLE DOCTORALE : MÉCANIQUE, ÉNERGÉTIQUE, GÉNIE CIVIL, ACOUSTIQUE 
 

DOTTORATO DI RICERCA : TECNOLOGIE ELETTRONICHE PER L’INGEGNERIA 
DELL’INFORMAZIONE 

 
DIPLOME DE DOCTORAT 

(arrêté du 7 août 2006 / arrêté du 6 janvier 2005) 

soutenue publiquement le 11 octobre 2013 

par 

Bakary  DIARRA  
Ingénieur INSA Lyon 2010 

Study and optimization of 2D matrix arrays for 3D 
ultrasound imaging 

 

                      Jury 

Christian CACHARD Professeur des Universités, Lyon 1 Co-directeur de thèse 
Hervé LIEBGOTT Maitre de Conférences, Lyon 1 Co-directeur de thèse 
Jérôme MARS Professeur des Universités, Grenoble Rapporteur 
Nicolò Attilio SPECIALE Ricercatore Confermato, Bologna Examinateur  
Jean Philippe THIRAN Professeur Associé, Lausanne Examinateur        
Piero TORTOLI Professore Ordinario, Firenze Co-directeur de thèse 
Andrea TRUCCO Professore Associato, Genova Rapporteur 
Marc ROBINI Maitre de Conférences, INSA Lyon Invité 

  



ii 
 

 

 

  



iii 
 

Abstract  

3D Ultrasound imaging is a fast-growing medical imaging modality. In addition to its 
numerous advantages (low cost, non-ionizing beam, portability) it allows to represent the 
anatomical structures in their natural form that is always three-dimensional. The relatively 
slow mechanical scanning probes tend to be replaced by two-dimensional matrix arrays that 
are an extension in both lateral and elevation directions of the conventional 1D probe. This 
2D positioning of the elements allows the ultrasonic beam steering in the whole space. 
Usually, the piezoelectric elements of a 2D array probe are aligned on a regular grid and 
spaced out of a distance (the pitch) subject to the space sampling law (inter-element distance 
must be shorter than a mid-wavelength) to limit the impact of grating lobes. This physical 
constraint leads to a multitude of small elements. The equivalent in 2D of a 1D probe of 128 
elements contains 128x128 = 16,384 elements. Connecting such a high number of elements is 
a real technical challenge as the number of channels in current ultrasound scanners rarely 
exceeds 256. The proposed solutions to control this type of probe implement multiplexing or 
elements number reduction techniques, generally using random selection approaches (« sparse 
array »). These methods suffer from low signal to noise ratio due to the energy loss linked to 
the small number of active elements. In order to limit the loss of performance, optimization 
remains the best solution.  

The first contribution of this thesis is an extension of the « sparse array » technique 
combined with an optimization method based on the simulated annealing algorithm. The 
proposed optimization reduces the required active element number according to the expected 
characteristics of the ultrasound beam and permits limiting the energy loss compared to the 
initial dense array probe.  

The second contribution is a completely new approach adopting a non-grid positioning 
of the elements to remove the grating lobes and to overstep the spatial sampling constraint. 
This new strategy allows the use of larger elements leading to a small number of necessary 
elements for the same probe surface. The active surface of the array is maximized, which 
results in a greater output energy and thus a higher sensitivity. It also allows a greater scan 
sector as the grating lobes are very small relative to the main lobe. The random choice of the 
position of the elements and their apodization (or weighting coefficient) is optimized by the 
simulated annealing.  

The proposed methods are systematically compared to the dense array by performing 
simulations under realistic conditions. These simulations show a real potential of the 
developed techniques for 3D imaging.  

A 2D probe of 8x24 = 192 elements was manufactured by Vermon (Vermon SA, Tours, 
France) to test the proposed methods in an experimental setting. The comparison between 
simulation and experimental results validate the proposed methods and prove their feasibility.  
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Résumé   

L’imagerie échographique en trois dimensions (3D) est une modalité d’imagerie 
médicale en plein développement. En plus de ses nombreux avantages (faible cout, absence de 
rayonnement ionisant, portabilité) elle permet de représenter les structures anatomiques dans 
leur forme réelle qui est toujours 3D. Les sondes à balayage mécaniques, relativement lentes, 
tendent à être remplacées par des sondes bidimensionnelles ou matricielles qui sont un 
prolongement dans les deux directions, latérale et azimutale, de la sonde classique 1D. Cet 
agencement 2D permet un dépointage du faisceau ultrasonore et donc un balayage 3D de 
l’espace. Habituellement, les éléments piézoélectriques d’une sonde 2D sont alignés sur une 
grille et régulièrement espacés d’une distance (en anglais le « pitch ») soumise à la loi de 
l’échantillonnage spatial (distance inter-élément inférieure à la demi-longueur d’onde) pour 
limiter l’impact des lobes de réseau. Cette contrainte physique conduit à une multitude 
d’éléments de petite taille. L’équivalent en 2D d’une sonde 1D de 128 éléments contient 
128x128=16 384 éléments. La connexion d’un nombre d’éléments aussi élevé constitue un 
véritable défi technique puisque le nombre de canaux dans un échographe actuel n’excède que 
rarement les 256. Les solutions proposées pour contrôler ce type de sonde mettent en œuvre 
du multiplexage ou des techniques de réduction du nombre d’éléments, généralement basées 
sur une sélection aléatoire de ces éléments (« sparse array »). Ces méthodes souffrent du 
faible rapport signal à bruit du à la perte d’énergie qui leur est inhérente. Pour limiter ces 
pertes de performances, l’optimisation reste la solution la plus adaptée.  

La première contribution de cette thèse est une extension du « sparse array » combinée 
avec une méthode d’optimisation basée sur l’algorithme de recuit simulé. Cette optimisation 
permet de réduire le nombre nécessaire d’éléments à connecter en fonction des 
caractéristiques attendues du faisceau ultrasonore et de limiter la perte d’énergie comparée à 
la sonde complète de base.  

La deuxième contribution est une approche complètement nouvelle consistant à adopter 
un positionnement hors grille des éléments de la sonde matricielle permettant de supprimer les 
lobes de réseau et de s’affranchir de la condition d’échantillonnage spatial. Cette nouvelle 
stratégie permet d’utiliser des éléments de taille plus grande conduisant ainsi à un nombre 
d’éléments nécessaires beaucoup plus faible pour une même surface de sonde. La surface 
active de la sonde est maximisée, ce qui se traduit par une énergie plus importante et donc une 
meilleure sensibilité. Elle permet également de balayer un angle de vue plus important, les 
lobes de réseau étant très faibles par rapport au lobe principal. Le choix aléatoire de la 
position des éléments et de leur apodization (ou pondération) reste optimisé par le recuit 
simulé.  

Les méthodes proposées sont systématiquement comparées avec la sonde complète dans 
le cadre de simulations numériques  dans des conditions réalistes. Ces simulations démontrent 
un réel potentiel pour l’imagerie 3D des techniques développées. 

Une sonde 2D de 8x24=192 éléments a été construite par Vermon (Vermon SA, Tours 
France) pour tester les méthodes de sélection des éléments développées dans un cadre 
expérimental. La comparaison entre les simulations et les résultats expérimentaux permettent 
de valider les méthodes proposées et de prouver leur faisabilité. 
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Sommario  

L'ecografia 3D è una modalità di imaging medicale in rapida crescita. Oltre ai vantaggi 
in termini di prezzo basso, fascio non ionizzante, portabilità, essa permette di rappresentare le 
strutture anatomiche nella loro forma naturale, che è sempre tridimensionale. Le sonde a 
scansione meccanica, relativamente lente, tendono ad essere sostituite da quelle 
bidimensionali che sono una estensione in entrambe le direzioni laterale ed azimutale della 
sonda convenzionale 1D. Questo posizionamento 2D degli elementi permette l'orientamento 
del fascio ultrasonico in tutto lo spazio. Solitamente, gli elementi piezoelettrici di una sonda 
matriciale 2D sono allineati su una griglia regolare e separati da una distanza (detta “pitch”) 
sottoposta alla legge del campionamento spaziale (la distanza inter-elemento deve essere 
meno della  metà della lunghezza d'onda) per limitare l'impatto dei lobi di rete. Questo 
vincolo fisico porta ad una moltitudine di piccoli elementi. L'equivalente di una sonda 1D di 
128 elementi contiene 128x128 = 16.384 elementi in 2D. Il collegamento di un così grande 
numero di elementi è una vera sfida tecnica, considerando che il numero di canali negli 
ecografi attuali supera  raramente 256. Le soluzioni proposte per controllare questo tipo di 
sonda implementano le tecniche di multiplazione o la riduzione del numero di elementi, 
utilizzando un metodo di selezione casuale (« sparse array »). Questi metodi soffrono di un 
basso rapporto segnale-rumore dovuto alla perdita di energia. Per limitare la perdita di 
prestazioni, l’ottimizzazione rimane la soluzione migliore. 

Il primo contributo di questa tesi è un’estensione del metodo dello « sparse array » 
combinato con un metodo di ottimizzazione basato sull'algoritmo del simulated annealing. 
Questa ottimizzazione riduce il numero degli elementi attivi richiesto secondo le 
caratteristiche attese del fascio di ultrasuoni e permette di limitare la perdita di energia. 

Il secondo contributo è un approccio completamente nuovo, che propone di adottare un 
posizionamento fuori-griglia degli elementi per rimuovere i lobi secondari e per scavalcare il 
vincolo del campionamento spaziale. Questa nuova strategia permette l'uso di elementi più 
grandi, riducendo così il numero di elementi necessari per la stessa superficie della sonda. La 
superficie attiva della sonda è massimizzata, questo si traduce in una maggiore energia e 
quindi una maggiore sensibilità. Questo permette inoltre la scansione di un più grande settore, 
in quanto i lobi secondari sono molto piccoli rispetto al lobo principale. La scelta casuale 
della posizione degli elementi e la loro apodizzazione viene ottimizzata dal simulated 
annealing. I metodi proposti sono stati sistematicamente confrontati con la sonda completa 
eseguendo simulazioni in condizioni realistiche. Le simulazioni mostrano un reale potenziale 
delle tecniche sviluppate per l'imaging 3D.  

Una sonda 2D di 8x24 = 192 elementi è stata fabbricata da Vermon (Vermon SA, Tours 
France) per testare i metodi proposti in un ambiente sperimentale. Il confronto tra le 
simulazioni e i risultati sperimentali ha permesso di convalidare i metodi proposti e 
dimostrare la loro fattibilità.  
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List of symbols  

Generalities on ultrasound imaging  

      Wavelength (m) 

      Density (kg/m3) 

     Pressure transmission coefficient  

    Time delay of nth element  

      Pulsation frequency (rad/s) 

      Sound speed or velocity (m/s2) 

      Central frequency of the probe (MHz)  

      Wave number (m-1) 
R      Energy (power) reflection coefficient 

      Pressure reflection coefficient 
T      Energy (power) transmission coefficient 

      Acoustical impedance (MRay or kg/s2/m2) 

 

From 1D to 2D arrays 

    Theoretical expression  

       Dirac function 

      Angle in lateral direction 

      Angle in elevation direction 

    Time delay of the element (i, j) 

D      Dimension (1D, 2D, 3D) 

       Inter-element distance (m) 

      Piezoelectric element size (m) 
L       Array dimensions (width and height) 

Hs     Transfer function of the 2D array (frequency domain) 

       Transfer function of the 2D array (time domain) 

        Piezoelectric element surface (m2)   

       Pressure function  

M      number of element in lateral direction 

N       number of element in elevation direction 
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     Apodization of the element (i, j) 
Simulated annealing  

       Markov chain  

       Weighting coefficient matrix (between 0 and 1 after normalization) 

      Optimization space 

       Strength of sparsity in the cost function 

       Temporary weighting coefficient during optimization 

     Indexes of active elements 

      Temperature decrease coefficient  

     Active element number in the sparse array 

       Cost function  

     Total number of elements MxN 

     Total number of iterations 

       Pressure function  

    Maximum value of the pressure  

     Authorized sidelobes level 

       Probability  
SA    Simulated annealing 

       Temperature function 

      Space excluding the main lobe area 

   Rectangular array (64x16) 
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Introduction  

The ultrasound imaging plays an important role today in the domain of medical 
diagnosis and therapy domains. Real-time volumetric imaging is an interesting and attractive 
ultrasound imaging technique as it provides more realistic representations of the tissues. Such 
imaging is useful for real time interventional tools tracking and visualization, for moving 
organs imaging like the heart and permits to image deep organs in the human body. Several 
advances have been made in this domain [Light et al. (1997), Yen and Smith (2002)] but 
many obstacles are to be overcome among which the connection difficulty and the energy loss 
caused by the reduction methods. Indeed, these arrays ideally contain several thousand of 
elements whereas the number of channels in recent scanners exceeds seldom 256.  

This thesis focuses on the research of solutions to make 2D arrays usable routinely. 
Making that possible means finding realistic tradeoffs between the active elements number 
and the probe energy. Strategies combining optimization algorithms and innovative elements 
positioning are needed. The element number reduction keeping a good beam pattern 
compared to the full array is not easy as element number and energy are linked. The solutions 
proposed may considerably impact both ultrasound imaging and therapy as HIFU operations. 

This thesis is divided in four chapters: 

 The first chapter presents the general aspect of the ultrasound waves as well as a 
brief introduction to the piezoelectric property and its use in tissue imaging. The 
basis of the echography and its usefulness in today medicine are introduced. 

 The second chapter is about the state of art in the domain of the 2D arrays 
imaging. The chapter begins with a presentation of the ultrasound arrays evolution 
from the classical 1D array to the full 2D array. The mathematical background of 
the 2D arrays, the element number reduction (corner element suppression, sparse 
array techniques) and the optimization algorithm (the simulated annealing), the 
progresses and the challenges in this domain are mentioned. The beam profile of 
the dense array and the sparse array techniques are compared to evaluate their 
advantages and drawbacks. 

 In the third chapter, we present our contributions in terms of optimization and 
element positioning strategies. The methods proposed are the non-grid (sparse) 
array, the variable size non-grid array and an improved version of the simulated 
annealing algorithm. Each technique proposed is compared to its corresponding 
dense arrays for validation. The comparison criteria are the active element number, 
the beam energy (sensitivity), the spatial resolution and the grating lobes level. A 
simulation of the PSF is presented in each case in different scanning angle to 
appreciate the imaging capability of each method.  

 The fourth chapter is dedicated to the experimental validation of the proposed 
optimization technique. The first part of the measurement was conducted using a 
small 8x8 array in the MSDLab, in the University of Florence. The second part of 
the measurements was performed in CREATIS using a new prototype array of 
24x16=192 elements developed according to the simulations realized throughout 
this study. As our ultrasound open research platform (Ula-OP [Tortoli et al. 
(2009), Boni et al. (2012)]) has only 64 channels, the validation is made on 8x8 
sub-arrays to provide realistic comparison between dense and sparse arrays. The 
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measurements concern only the standard sparse arrays as any prototype based on 
the non-grid array is available yet.  

This thesis ends with the conclusion and the perspectives about the future developments of the 
methods proposed. 
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Chapter 1  

Generalities on ultrasound imaging 

This chapter explains the main principles of ultrasound and its application to medical 
imaging. A brief presentation of the piezoelectric effects, the origin of the ultrasound and its 
use in echography are explained. Finally, some simulation tools and the current ultrasound 
imaging limitations are mentioned. 

1.1.  Introduction  

Imaging is indispensable in modern medical practice because it represents the eye of the 
physician both in diagnosis and therapies. For example, ultrasound becomes more and more 
used in surgical tools tracking and follow-up during biopsy and also in minimally invasive 
surgery [Basset and Cachard (2007)]. 

Ultrasound imaging is one of the most widely used imaging modalities nowadays; more 
than a quarter of diagnosis imaging in the world are performed using ultrasound and the 
proportion is continuously growing. This success of ultrasound imaging comes from many 
factors among which its innocuousness and the cheapness of the scanners. An ultrasound 
scanner is mainly composed of the probe, which transmits and receives the echoes, and the 
control system linked to a visualization screen. The probe consists in several piezoelectric 
elements arranged in line (linear array), in curve (convex array) or in several rows and 
columns (2D matrix array). The thickness of the piezoelectric elements imposes the central 
frequency of the probe and their arrangement the scanning type. When the probe is excited, 
the piezoelectric elements vibrate (indirect piezoelectric property) and produce sound waves. 
These waves are used to analyze the support media. Generally a 1D array probe consists of 
128 to 256 piezoelectric elements which are supplied electronically in steps of 64 (most of the 
time) at a time to form a firing line. The interpolation of all lines on the whole probe provides 
a plane image of the medium investigated. The medium physical constituents (scatterers) have 
a considerable impact on the resulting image, their concentration and dimensions determine 
the image texture. However, there are image enhancers like contrast agents that act as 
extrinsic scatterers injected into the medium for a temporary and locally improvement of the 
image quality. Ultrasound imaging has several advantages: it has a good resolution, it is non-
hazardous to the patient, it is the safest imaging modality and an affordable technology 
compared to other imaging modalities. Its disadvantages are the difficulty of interpretation 
(unless highly experienced persons) and its impossibility of imaging organs containing air 
(like lungs) and solids (like bones).  

1.2.  Piezoelectricity and ultrasound

The piezoelectricity is the property of some materials to produce electrical signals when 
they are submitted to a mechanical force (strain), this is called the direct piezoelectric effect 
(Figure  1.1a). The opposite effect does exist too; it consists in transmitting a mechanical force 
(or pressure) when these materials are excited by an electrical signal (Figure  1.1b). This 
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intrinsic property to some materials comes from the dissymmetry in their internal 
composition. When a piezoelectric material is excited by an electrical current, its spectrum 
analysis presents resonance frequencies which depend on its dimensions. The materials cover 
all frequencies domain from low to high frequencies. The most used material in the domain of 
ultrasound imaging is the PZT (Lead Zirconium Titanate) because of its easiness to be cut into 
different shapes to create different wave modes; it can also be used for low voltages and high 
temperatures. New generation ultrasound transducers made of CMUTs (Capacitive 
Micromachined Ultrasonic Transducers)[Wygant et al. (2008)] are getting more and more 
investigated but their use remains in research domain for now. As the human hearing 
spectrum ranges approximately from 12 Hz to 20 kHz, the ultrasound spectrum which ranges 
from the MHz to several tens of MHz is not audible. These ultrasound waves have the 
property to propagate in the media in which they are produced and permit to assess some 
characteristics of these latter. Ultrasound has a lot of application domains among which 
underwater acoustics in military domains and fishing (sonars), telecommunications as filters 
(surface Acoustic Wave), cleaning, and medical imaging (echography) and therapy (HIFU). 
In medical ultrasound imaging (echography), both direct and indirect piezoelectric effects are 
used by the ultrasound probe in reception (Figure  1.1a) and in transmission (Figure  1.1b), 
respectively.  

 

1.3.  Echography  

Echography is the use of the propagation properties of the ultrasound waves to describe 
media (Figure  1.2). The use of ultrasound in medicine began in the 50’s and has been 
routinely employed since the early 70’s. These techniques derived from those employed in the 
radar systems, submarine sonars and the non-destructive control of the materials. The 
advantage of ultrasound in the human body exploration, compared to the other imaging 
modalities (X-ray, IRM, etc…) is on one hand its non-ionizing behavior, painlessness and its 
easiness to implement and in the other hand the cheapness and the portability of the systems.  

The main components of an ultrasound scanner are the piezoelectric elements which 
permit the transmission and the reception of the ultrasound waves. An ultrasound wave is 
characterized by its wavelength (λ) which depends on the resonance frequency (f) of the 
piezoelectric crystal and its propagation celerity (c)  

Figure 1.1: illustration of the piezoelectric effects (a) the direct effect and (b) the indirect effect. (Images from the website 
http://www.robotplatform.com). In ultrasound imaging the piezoelectric elements are supplied by an electrical signal 
(indirect effect) and the vibration generated permits to transmit the ultrasound wave. In reception the echoes sent back by 
the medium constitute a strain which action produces electrical signal (direct effect) transporting the information about 
the medium. 

Force  
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Voltage  
Piezoelectric 
 material 

(a)  (b)  

Piezoelectric 
 material 

Deformation due to 
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 (1.1) 
 

The celerity value depends on the medium and in the biological media its value is assumed to 
be close to that of water which is about . The frequency ranges from 1 MHz to 
20 MHz for most of the applications. The principle of ultrasound imaging is based on the 
interaction with the propagation medium. When the ultrasound propagates in the medium it is 
reflected at different interfaces of this latter. The intensity and the reception time of the 
reflected waves permit to evaluate the interface “intensity” and its position in the medium.  

 
Figure  1.2 illustrates the operating mode of a 1D probe (transducer) transmitting the 
ultrasound and receiving the echo coming from the medium represented by the obstacle. In 
practice the propagation medium contains a huge number of reflectors (also known as 
scatterers) which size compared to the wavelength determines the type of reflection  

 Specular reflection if the incident signal is reflected with the same angle in the opposite 
direction. This type of reflection occurs when the size of the scatterers contained in the 
medium is larger than the wavelength (as in large polite surfaces). It is responsible for the 
brightness of the interfaces (boundaries) between different parts of the medium. 

 Diffuse reflection if the incident signal is reflected in all directions. This type of reflection 
occurs when the size of the scatterers within the medium is smaller than the wavelength as 
in rough surfaces. This kind of reflection is commonly known under the name of 
scattering in ultrasound imaging and it determines the echo texture of the medium. 

A medium is characterized by its acoustical impedance Z (expressed in Rayleigh or kg/s2/m2) 
being the product of the celerity (c in m/s2) of the sound and its density (ρ in kg/m3) 

 (1.2) 
 

This parameter plays an important role in the imaging because it determines the transmission 
and reflection coefficients of the ultrasound wave during its propagation. Let’s consider the 
schematic of Figure  1.3 

Transducer  

Transmission  

Reception   
Obstacle  

 
  

 
  

(Piezoelectric elements)  

cer

 

 

Figure 1.2 : principle of ultrasound imaging. The transmitted waves (blue) are reflected back by the obstacle (target) to the 
probe (red). The transmission and the echoes are regularly separated by the pulse repetition frequency to avoid stationary 
waves formation. 
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Considering the specular case (Figure  1.3a), the reflection and the transmission coefficients 
can be mathematically established. The propagation of ultrasound (under the plane wave, 
homogeneous medium and 1D propagation assumptions) follows the general acoustical 
equation  

 (1.3) 

 

with p the pressure function (in Pa), c the wave celerity (m/s2) and z the propagation direction. 
The solution of that equation can be expressed as   

 (1.4) 
where a is the amplitude of the propagating wave in z direction and b the amplitude of the 
returning wave (in –z direction), k is the wave vector and  the wave pulsation, f is the 
frequency and  the wavelength  

 (1.5) 

In the configuration of specular reflection in Figure  1.3a, the two media have different 
acoustical properties ( ) and they are separated by a large reflector in the 
plane z=0. In the plane z<0, the pressure can be expressed as  

 (1.6) 
where r is the reflection coefficient being the ratio between   from (1.4). The pressure in 
the plane z>0 is 

 (1.7) 
 

z 

x 

ρ1, c1 

ρ2, c2 

θi θr 

θt 

Large reflector  

Incident wave   Reflected wave   

Transmitted wave   

Reflected waves  

Incident wave   
θi 

Diffuse reflection or scattering    Specular reflection    

Figure 1.3 : illustration of the two types of reflection in ultrasound imaging (a) specular and (b) diffuse reflection. The specular 
reflection occurs when the size of the reflector encountered by the ultrasound wave is larger than the wavelength like interfaces 
of different media. The diffuse reflection determines the texture of the ultrasound image and originates from reflectors 
(scatterers) smaller than the wavelength. 

(a) (b) z 

x 
Scatterer   
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where τ is the transmission coefficient in the z>0 plane . The conditions of continuity of the 
pressure at the interface z=0 give 

 (1.8) 
 

and the continuity of the particle velocity at the interface gives 

 (1.9) 

These two continuity conditions permit to determine the transmission and the reflection 
coefficients at the interface z=0 

 (1.10) 

 

where Z1 and Z2 are the acoustical impedances of the two planes as defined in (1.2). If the 
incidence and the transmission angles are equal to zero, then the equation (1.10) becomes 

 (1.11) 

 

The reflection coefficient corresponding to the power is the squared value of that of the 
pressure in (1.10) and (1.11). In the simple case of (1.11), the reflection coefficient becomes  

 and in transmission    

 (1.12) 

 

The equation (1.12) shows the importance of the acoustical properties of the different parts of 
a medium to be explored by ultrasound. In particular, if the difference between the impedance 
is too important (  or ), the reflection coefficient  and , no energy 
is transmitted, so it’s impossible to describe the second medium. This situation occurs when 
the transducer transmits in the air. This can be dangerous for the probe because elements can 
be destroyed by overheating. In the case of , the reflection , no energy is turned 
back to the transducer.  

All these equations are valid in the case of a linear propagation which supposes that all the 
acoustical properties of the media remain constant when they are subjected to the ultrasound 
waves otherwise the equations become more complex in non-linear propagation 
consideration. 

1.4.  Beamforming and image formation 

The delay-and-sum beamforming technique presented in Figure  1.4 is the most used in 
today imaging scanners. It consists in introducing delays ( ) on the probe individual 
elements excitation in such a manner that their responses reach at the same time the target 
area called the focal point. The pressure summation gives a high intensity signal which 
provides a better image resolution and an important penetration depth in the medium 
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explored. In this beamforming technique, linear scanning is made by applying the delay on a 
set of elements for each image line whereas in phased scanning the delay is applied to the 
whole probe. In this technique, the beam is performed in the same time for all frequencies 
[Chitre and Potter (1998)]. To obtain a more uniform beam, specific apodization coefficients 
can be applied to the array elements. The common apodization functions used are the 
windowing function such Hanning, Hamming, Blackman, etc… but any other customized 
apodization function can be applied. The default apodization is the rectangular window in 
which all elements have the same coefficient value.  

 
Each single piezoelectric element transmits an ultrasound beam. This beam presents a 

weak energy and a large directivity whereas high energy and thin beams are needed for good 
resolution images. To increase the beam energy and make thinner its directivity, several 
elements transmit together with delayed signals in such way to obtain a summed beam at a 
focalization point (Figure  1.4). The same technique is used in reception. The image lines 
received by the ultrasound probe are high frequency signal known as RF-lines. These lines 
contain all the information about the medium and permit to determine the depth and the 
amplitude of the different interfaces in the medium. An image is composed of several such 
RF-lines. The image in RF-mode is not easy to interpret as the RF signals oscillate. To reduce 
the dynamic range of the received signals (the ratio between high and low amplitude signals) 
for efficient display, logarithmic compression is applied to the envelope of the RF-image 
obtained by Hilbert Transform. The amplitudes are converted to grayscale spots giving the B-
mode images, B meaning the brightness. This latter is the most used imaging mode in medical 
ultrasound. As ultrasound is attenuated when going deep, an amplifier (TGC: Time Gain 
Compensation) is used to compensate the signal attenuation as a function of the depth. The 
signal processing and display are realized in the scanner which permits the storage of the 
acquired data.  

τ1 

τ2 

…. 

τN 

τi + 

Figure 1.4 : time domain beamforming technique mostly used in the current ultrasound imaging scanners. The delays are 
proportional to the distance between the elements and the focalization point, they permit to steer the beam in any direction on a 
plane for 1D array and in the whole space in case of 2D matrix arrays. They also define the shape of the images. 

Piezoelectric elements  Delays   

RF-line  
Scatterer  
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The image in Figure  1.5a represents an RF image, it contains all the information about 

the medium but is not suitable for visualization. The signal envelope (Figure  1.5b) obtained 
by the Hilbert Transform allows a better distinction of the different interfaces of the medium 
but the background (low amplitude signals) is not clearly visible. The log-compressed signal 
deriving from the envelope shows all the texture of the medium and is easy to interpret. 
Because of that suitability, the B-mode image (Figure  1.5c) is the most used routinely in the 
medical domain. There are three basic transducer designs in ultrasound imaging depending on 
the scanning type (image shapes or field of view)): the linear, the phased array and the curved 
transducers [Brant (2001), Yen and Smith (2002)]. 

The linear transducer (Figure  1.6a) produces rectangular images which width is 
determined by the physical size of the transducer, the associated scanning type is the linear 
scanning. This type of transducers gives a good overall image quality and is adapted mainly to 
the exploration of shallow organs. The phased array (or sector) transducer (Figure  1.6b) is 
small and performs sectorial scanning producing pie-shaped image slices which are narrow in 
near field and provides a wide view in the far-field. This type of scanning is optimal for large 
organs imaging between the ribs as the transducer is small. The curved transducer 
(Figure  1.6c) is a hybrid type between the linear and the sector transducers. It permits a wide 
view in both near and far-field [Brant (2001), Yen and Smith (2002)]. 

 

Figure 1.5: images of a cyst phantom simulated by FIELD II (a) RF-image, (b) envelope image and (c) log-compressed image 
called B-mode. The RF image is the most complete one containing all the information about the medium but its interpretation is 
difficult. The envelope image in linear scale does not permit correct view of the low amplitude zones and hence the use the log-
compressed image.  

(a) (b) (c) 

Figure 1.6: different scan types in classical 1D ultrasound imaging. (a) linear scan adapted to shallow organs, (b) Sectorial 
scanning preferred for large and deep organs and (c) the curved scanning conjugating the advantages of the two first scanning 
types [Brant (2001)].   

(a) (b) (c) 
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1.5.  Simulations tools  

The literature describes many simulation tools for ultrasound imaging each having its 
strong and weak points. Many of these tools use the spatial impulse response concepts 
developed by [Tupholme (1969)] and [P. R. Stepanishen (1971), Peter R. Stepanishen 
(1971)]. The most known and the most reliable of these tools is Field II [Jensen and Svendsen 
(1992), Jensen (1996)], but it is limited to linear ultrasound simulation. This software was the 
first one in ultrasound imaging domain which proposed models comparable to the real case 
taking into account all the parameters of the piezoelectric elements (size, apodization) and the 
propagation medium. In our work, we focus on the 2D matrix arrays implemented in field II. 
Other simulation tools are proposed in the literature with comparable results [Varray et al. 
(2010), Matrone et al. (2011)]. 

The PSF (Point Spread Function) is the image obtained from a point source (scatterer). 
This function characterizes the probe imaging capabilities giving its spatial resolution (in 
lateral and elevation direction), the axial resolution being determined by the probe 
transmitting frequency. As classically in signal processing, the image of the given medium is 
the convolution between the probe PSF and the impulse response of this medium, under the 
conditions of linearity and homogeneity. Let’s considerer for the PSF the function F(x, y, z) 
and for the medium T(x, y, z), the RF image noted I (x, y, z) can be approximated as in 
[Meunier and Bertrand (1995)] by  

 (1.13) 
 

where  is the convolution product function and (x, y, z) the spatial coordinates. In case of 
the 2D B-mode images this equation remains valid but with only two coordinates [Bamber 
and Dickinson (1980), Seggie et al. (1983)]. 

1.6.  Limitations of echography  

Ultrasound imaging helps the physicians in the diagnosis and therapy but there are some 
parts of the human body that cannot be imaged by ultrasound. The organs containing gas like 
the lungs cannot be explored by ultrasound. This is due to the great acoustical impedance 
difference that makes all the transmitted waves reflected back. The same effect is noticed for 
bones; only their outer layers can be seen as explained in the equation (1.12). Ultrasound is 
subject to an important attenuation which makes difficult the imaging of deep organs. This 
attenuation is much influenced by the probe frequency; high frequencies give better image 
resolution but they cannot go deep. The classical 1D array cannot represent volume structures 
but just thin slices which give very few information about the explored media.  

1.7.  Conclusion  

Generalities on ultrasound imaging are detailed in this chapter. The echography is an 
imaging modality which is completely harmless for the patients and makes easy the diagnosis 
for the physicians. The ultrasound scanners are portable and affordable conversely to the 
equipment of many other imaging modalities (CT, MRI, DetScan). The domain is constantly 
developing and some limitations of the classical 1D imaging are being solved using the 2D 
arrays. 
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In the next chapter, the state of art in 3D imaging is reported. The evolution in the 
ultrasound arrays from 1D to the full 2D arrays to provide better images and representations 
of the structures is discussed. The different element reduction techniques applied to the 2D 
matrix arrays, the mathematical background of these arrays and some prototypes of 2D arrays 
currently available for research purposes or commercially available are presented. The chapter 
ends with optimization algorithms. 
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Chapter 2  

State of the art  

In this chapter, the principle of 3D ultrasound imaging, reconstruction techniques and 
the different evolutions of the ultrasound imaging probe from its early beginning to nowadays 
are presented. The advantages and drawbacks of each step of this evolution are detailed. An 
important part of this chapter is dedicated to the 2D arrays imaging capabilities, the 
mathematical background, the obstacles and the possible solutions to their design to permit a 
routinely use in everyday diagnosis. Special attention is reserved to the sparse array 
techniques and the simulated annealing algorithm used for the array optimization. 

2.1.  Introduction  

Ultrasound imaging domain knows an increasing development and the probes get more 
and more sophisticated to provide realistic representation of the media. The evolution of the 
ultrasound probes in time follows the advances in electronics which make possible the control 
of more and more active elements. In this context 3D imaging using 2D matrix array probes is 
one of the most attractive and exciting challenges. 

2.2.  Basic principles of 3D echography  

2.2.1.  Beamforming techniques  

Beamforming is the general term used to refer to the different techniques used to 
combine the individual elements of an ultrasound array to produce an image. The 
beamforming can be realized with focalized beam or without any focalization. A beamformer 
aims at performing [Thomenius (1996)] 

 The control of elements delays and weighting coefficients during transmission 
 The control of delays and necessary signal processing during the reception 
 The summation of different delayed echoes in reception and other possible operations due 

to the particularity of the application intended. 

The principal objectives in general are to obtain the narrowest and the most intense 
beam with lowest possible sidelobes level and to be able to explore the media in depth 
without important attenuations. There can be other, more original, objectives of the 
beamforming, like e.g. the formation of specific images featuring transverse oscillations to 
better estimate transverse motion or stain [Liebgott (2010), Liebgott et al. (2006)]. The 
beamforming can be done analogically or numerically [Thomenius (1996)] in the temporal or 
in the frequency domain [Chitre and Potter (1998)]. There are several beamforming 
techniques used in today’s classical ultrasound imaging devices and the most known is the 
“delay and sum” technique. 
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2.2.1.a  Time domain beamforming (Delay and sum) 

The delay and sum beamforming method (Figure  1.4) is already presented in the 
Section  1.4.  It represents the standard beamforming technique in ultrasound imaging. 

2.2.1.b  Frequency domain beamforming 

The frequency domain beamforming is an attractive alternative to time domain 
beamforming. It has been used a lot in 2D imaging [Mucci et al. (1984), Maranda (1989)] to 
exploit the fastness of Fourier transform. There are two main groups in frequency 
beamforming: the direct methods and the approached methods [Maranda (1989)]. All these 
techniques have been adapted to the 3D imaging in recent studies [Zhang et al. (2002), 
Dhanantwari et al. (2004), Murino and Trucco (1994)]. 

2.2.1.c  Parallel processing 

The parallel processing technique is a promising technique for real time 3D volumetric 
imaging. This technique is used by several researchers such as those from Duke University in 
the USA, one of the most advanced teams in the conception of 2D arrays for 3D imaging. 
They developed their own parallel beamforming algorithm known as Explososcan [Shattuck 
et al. (1984), Smith, Pavy et al. (1991)] which permits to perform real time volumetric 
acquisitions. With a 256 channels beamformer at transmission and reception, they have been 
able to produce until 30 volumes per second [Light et al. (2008)] by creating 16 image lines at 
each single transmission [Ramm and Smith (1990)]. In industry, a dense array probe of 3000 
elements made by Philips (Sonos 7500) used at a frame rate of 20 volumes/second uses also 
the parallel processing. The 3000 elements are integrated on an ASIC in the head of the probe 
and the received signals are collected together to be funneled by 128 channels towards the 
processing system [Savord and Solomon (2003)]. To realize this probe, they use two methods: 
configurable array and sub-array beamforming. 

2.2.1.d  Configurable array 

In the configurable array, any single element can be dynamically connected to its 
neighbors by activating four programmable switches which surround it (Figure  2.1). 
Depending on the interest area to explore and a suitable switch choice, an equivalent 1D 
probe can be obtained in any direction (lateral, diagonal, elevation) as shown in Figure  2.1. 
Volumetric acquisition is relatively easy in this configuration as array elements can be 
activated in any direction and the acquired signals are multiplexed in the probe head to avoid 
the use of supplementary channels compared to a 1D probe. The technique drawback is the 
noise produced by the opening and shutting operations of the switches which deteriorate the 
image signal-to-noise ratio.  
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2.2.1.e  Sub-array beamforming 

The sub-array beamforming method functions as the classical 1D beamforming but in 
two steps. Each sub-array (3000/128 elements) produces a 1D ultrasound beam which are 
then funneled through the 128 channels in parallel (Figure  2.2). This parallelization avoids the 
use of supplementary channels and reduces the system complexity in reception. With this 
configuration, the probe can reach a great frame rate, 20 volumes/second for the Sonos 7500. 

 

2.2.2.  Array and beam parameters 

For arrays composed of more than one row of elements (from 1.25 D to full 2D), the 
lateral direction is the largest dimension (most of the time following the x axis) and the 
elevation direction is the smallest direction and is along the y axis. For squared arrays, the two 
directions are identical. The propagation direction is along the z axis,  is the lateral angle 

Figure 2.1 : reconfigurable array. Gray elements are connected [Savord and Solomon (2003)]. By acting 
different switches, different 1D arrays can be formed in each direction and leading to a row-column-like 
configuration.  

Figure 2.2 : beamforming using sub-arrays. The 3000 channels in the probe head are brought together into just 128 
channels at the probe handle by multiplexing them [Savord and Solomon (2003)]. 
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between the steering direction and the z axis. This angle is in the plane x-z whereas  in the 
x-y plane is the elevation angle (Figure  2.3a).  

 

The beam pattern of these arrays is composed of two main parts: the main lobe and the 
grating lobes (Figure  2.3b). The main lobe is the useful part of the acoustic beam whereas the 
grating lobes are unwanted lobes outside de imaging direction. The latter are linked to the 
spatial periodicity and the size of the elements in relation to the wavelength. They constitute 
the main unwanted parts of the beam. A third part, the sidelobes depends on the weighting (or 
apodization) coefficients and the spatial distribution of the connected elements.  

2.2.3.  3D volume reconstruction  

The reconstruction is the technique used to interpolate classical 2D slices to 3D-like 
structures. Both 3D mechanical and matrix arrays allow volumetric acquisition but with 
different fastness. The first 3D imaging was performed by the user’s manual displacement of 
the 1D probe and is known as freehand 3D ultrasound imaging [Gee et al. (2002), Housden et 
al. (2008)]. Sophisticated reconstruction algorithms are proposed in the literature to correct 
the imprecision in the slice acquisition but this technique remains difficult to use routinely. 
Later motorized probes were introduced to automatize the 2D planes acquisition and to 
maintain a constant scanning step between different slices composing the volume. These 
mechanical probes construct volumes by  acquiring several 2D images using a stepper or a 
continuous current motor (seldom) which speed is about 1 rad/s (or 60 degrees/s)  for most of 
them [Pospisil et al. (2010)] and this limits the volume rate. In general 3D mechanical probes 
produce between 1 to 4 volumes/second  (volume of 25 to 50 images, 50 to 100 lines /image) 
depending on the number of planes (explored sector) and the depth of penetration. Many 3D 
volume reconstruction techniques using the mechanical probes have been made and the main 
techniques are the pyramidal and the rotational techniques. A complete summary of the 

Figure 2.3: (a) 3D reference system and (b) the main parts of the 2D arrays beam. The beam is composed of main lobe (useful 
part) and the grating lobes (unwanted parts). The propagation direction is z, the lateral direction is along x and the elevation 
direction along y. 
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exiting acquisition protocols in 3D imaging is listed in [Gee et al. (2003)]. The difference 
between these methods comes from the coordinates system used and more importantly the 
application domain [Gee et al. (2003)].  

The coordinates of the different planes in pyramidal volume imaging can be expressed 
by using the 3D rotation matrix  (2.1). In this case the x axis is fixed and the rotation is 
made around y and z axis. This kind of scanning gives parallel planes in the elevation 
direction and permits to reconstruct pyramidal volumes [Belohlavek et al. (1993), Smith n.d.] 
( Figure  2.4a). It is similar to the method used in 3D mechanical volume imaging. The angle  
is in the lateral direction (x axis) and  in the elevation (y axis). The scanning is performed in 
the sector range from  to  (  being  or ). 

 (2.1) 

In the 2D imaging, the coordinates of a plane are given  

 (2.2) 

These two equations give the final expression in the 3D pyramidal imaging  

 (2.3) 

  

 
The rotational configuration is adapted to surgical tools tracking as biopsy needles [Bax 

et al. (2008)] and deep intern organs imaging such as the liver and the prostate. The different 
steps of a rotational volume reconstruction are detailed in [Nikolov et al. (2003), Krenning et 

θ 

ϕ 
y 

z 

x 
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z 

x 

Figure 2.4: (a) the pyramidal [Belohlavek et al. (1993)] and (b) the rotational [Tekes et al. (2011)] 3D scanning strategies.  
The pyramidal scanning is inspired from the mechanical 3D imaging whereas the conical scanning uses the spherical 
coordinates to generate rotating planes. 

(a) (b) 
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al. (2003)]. The spherical coordinates are used and the resulting image is a cone-like volume 
[Tekes et al. (2011)] (Figure  2.4b). The lateral angle  between the x and z axis allows the 
plane scanning while the elevation angle ϕ between x and y permits to change the plane 
position in the cone. The angle  varies from 0 to 180 degrees and the scanning is performed 
between  to  to provide symmetrical planes. In the elevation,  ranges from 0 to 360 
degrees but in practice 180 degrees are enough because of the properties of symmetry. 

 

 (2.4) 

 

The rotational scanning permits to simultaneously visualize perpendicular planes to 
characterize the lateral and the elevation imaging features of the 2D arrays.  

In 2D arrays, high frame rates (some tens volumes/second) can be reached thanks to the 
electronic steering. In some imaging modalities such as optical coherence tomography for 
cardiac imaging [Happel et al. (2011), Larina et al. (2012)], 4D (3D+t) imaging is already 
possible in real time. A 4D imaging mode is present on some commercial scanners for 
obstetrics applications dedicated to the following of the fetus development status. For the 
moment, obtaining accurate information about these systems is difficult because the frame (or 
volume) rate depends a lot on the experimental parameters as the exploration depth, the 
central frequency and the volume size. 

2.2.4.  Application domains  

3D ultrasound imaging has many applications, it can replace the classical 2D imaging in 
almost all the using domains of the latter. The main applications domains are prostate, liver 
and cardiac imaging using both 3D mechanical probes [Bax et al. (2008), Kneif et al. (2009)], 
and 2D arrays [Light et al. (1997)]. The 2D arrays permit to increase the volume rate and to 
accede to more information mainly about the c-scan planes (perpendicular planes to the beam 
direction). For example in biopsy guidance, the visualization of the c-scan planes is extremely 
important since such planes usually contain the needle tip and the tumor contours.  

 Examples of such applications are presented in literature [Ding and Fenster (2003), 
Linguraru (2006), Okazawa et al. (2006), Wu Qiu et al. (2008), Aboofazeli et al. (2009), 
Uherčík et al. (2010)]. Other examples include cardiac and obstetric imaging performed at 
Duke university with different 2D arrays [Light et al. (1997)].  

2.3.  Intermediate arrays   

Intermediate arrays are arrays containing not only one line of transducers as the 1D but 
not enough to be considered really as 2D arrays. The objective of these arrays is to produce 
volumetric imaging without any displacement to correct the imprecision of 1D and 3D 
mechanical arrays. Such arrays provide a solution to the elevation resolution problem thanks 
to their capability to focus ultrasonic beams in the two directions (lateral and elevation).  
There are three main notations for the intermediate arrays described hereunder:  1.25D, 1.5D 
and 1.75 D array.  
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2.3.1.  1.25D array 

The main difference between 1.25D and the classical 1D array is the number of 
elements in the elevation direction; the 1.25D has at least three rows of elements in the 
elevation direction (Figure  2.5). The outer row elements are symmetrically connected together 
and connected to the unique channel of the probe. A multiplexor placed in the probe head 
permits the transit of all data (from outer and inner rows) to the channel. In practice, the outer 
row elements size is chosen in such a manner that after their connection together, they give 
the same size as the inner (central) element. This permits to have the same impedance and the 
same acoustical sensibility for outer and inner rows [Wildes et al. (1997)].   

The increase in the row number allows the 1.25D array to have a better elevation 
resolution than 1D array without any additional extra-channel count. Its drawback is its 
incapacity to displace the focal area in elevation; the focal point remains static like in 1D 
imaging. The simulations results realized by [Wildes et al. (1997)] put in evidence the image 
resolution improvement compared to 1D probes in both the near and the far field even though 
the system complexity increases a little due to multiplexor cables.  

 

2.3.2.  1.5D array 

The 1.5D array can contain the same element number as the 1.25D (from 3 to 7 rows in 
general [Barthe and Slayton (1996), Lacaze et al. (1998)]) but the major difference comes 
from the element connection technique. Conversely to 1.25D where all rows use the same 
channel, in the 1.5D array outer rows are also connected by two symmetrically to the central 
row but each pair of rows has its own channel as shown in Figure  2.6. This configuration of 
outer rows allows dynamic focalization by applying a suitable delay times on them during 
transmission and reception as presented in many studies [Angelsen et al. (1995), Tournois et 
al. (1995), Lacaze et al. (1998), Curiel et al. (2002)]. 

The focal area remains always symmetrical in relation to the center of the probe  and 
can move between two extreme elevation positions but no steering is possible in elevation 
[Wildes et al. (1997)]. For this reason, the rows in 1.5D array (also 1.25D) are always odd-
numbered and the more rows there are the more the image resolution is improved at mid-far 
and far field [Daft et al. (1994), Wildes et al. (1997). Comparative studies permit to confirm 

Figure 2.5 : 1.25D array of 5 rows with outer row elements connected together by twos symmetrically to the central (inner) row. 
Inner row is twice larger than the outer ones to maintain the same acoustical impedance and sensitivity for outers and inner 
elements. 
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the efficiency of the 1.5D array compared to the classical 1D probe as described in [Daft et al. 
(1994), Shung (2002)]. Among all the intermediate probes, the 1.5D was the most 
investigated because of its capability of dynamic focalization in elevation and its easiness to 
be controlled by current beamformers. It constitutes a great step in volumetric imaging 
developed later with 1.75D and full 2D arrays. 

 

2.3.3.  1.75D array 

The 1.75D array is an evolution of the 1.5D array and contains at least the same 
elements number as the latter. The main difference with the 1.25D and 1.5D arrays is that 
each element can be controlled separately. In fact in 1.75D array each element has its own 
channel, so there are as many elements as channels. It allows a beam steering in the whole 
space [Puyun Guo et al. (2001)]. An example of such an array is detailed in [Fernandez et al. 
(2003)] with simulation and experimental results showing its contrast and resolution 
improvement compared to the 1.5D array. The array is constituted of 8 rows of 128 elements 
manufactured by Tetrad Co., Englewood, CO and the experiments are carried out with a 
Siemens scanner ELEGRA of 1024 channels imaging a tissue mimicking phantom. They 
demonstrated the capability of the 1.75D array to steer ultrasound beams in a certain limited 
steering angle in elevation (about 5°). Another 1.75D array composed of 10 rows of 128 
elements (approximately 1280 elements) manufactured by Tetrad Inc was studied by [Puyun 
Guo et al. (2001)]. They focused their study on the volumetric acquisitions capability of this 
probe and the angle opening consequence on the ultrasound beam form. According to all these 
results, for an opening angle of approximately 20 degrees (+/-10°) in elevation, the ultrasound 
beam is acceptable.  

The only difference between the 1.75D and the 2D arrays is the number of elements. 
Indeed, a 2D array is ideally squared with as many elements in both lateral and elevation 
directions. 2D arrays constitute the current state of the ultrasound probes evolution. 

A recap of the different kinds of ultrasound probes was established in [Wildes et al. 
(1997), Fernandez et al. (2003)] which summarizes the main characteristics of each one and 
the range of the elements number. 

 

 

Figure 2.6 : 1.5D array of 5 rows with outer rows connected together symmetrically in relation to the central (inner) row. Each 
pair of rows has one channel. This array performs limited beam steering in the elevation direction around its center. 
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Type of probe studied 1D 1.25D 1.5D 1.75D 2D 

Focalization Lateral Lateral Lateral / 
elevation 

Lateral / 
elevation 

Lateral / 
elevation 

Excitation Totality Totality Totality Totality Sparse 

Freedom of rows  No Yes        
(by pair) Yes Yes 

Rows number / 
columns number 1xN (2-7)xN (2-7)xN (2-8+)xN NxN 

Electronic focalization  
in elevation No No Yes  

(symmetric) Yes Yes 

Electronic steering in 
elevation No No No Yes  

(limited) Yes 

Mechanical 
focalization Yes Yes Yes Yes No 

Table  2.1: recapitulative of different types of ultrasound probes and their particularity going from the linear 1D array to the full 2D 
arrays. In each step of evolution the image quality and the technological complexity remain the main constraints. 

2.4.  2D array 

The full 2D arrays are the most advanced arrays in ultrasound imaging. These arrays 
correspond to an extension of the classical 1D array to both lateral en elevation directions. 
The elements of a 2D array probe are aligned on a regular grid and spaced out of a distance 
(the pitch) fewer than a mid-wavelength to avoid grating lobes apparition. This inter-element 
distance limitation is the spatial sampling condition. This constraint leads to a multitude of 
small elements. The equivalent of a 1D probe of 128 elements contains 128x128 = 16,384 
elements in 2D. Connecting such a high number of elements is a technical challenge as the 
number of channels in most of the current ultrasound scanners does not exceed 256. Even if 
the scanners enable the connection of these elements, its realization will necessitate too large 
electrical connecting cables resulting in a heavy and non-suitable probe for everyday routine 
operation. As a consequence, the main issue that must be tackled lays in the elements 
reduction techniques.   

2.4.1.  Dense array  

The dense array is the 2D array completely filled where no reduction method is applied. 
The dense array is also known as the fully sampled array. It constitutes the reference array in 
all element number reduction studies. 

2.4.1.a  Standard used element positioning  

The most used grid for the 2D arrays is the rectangular (or square) one (Figure  2.7a). 
This latter is easy to model as it is a direct extension of the classical 1D probe. Many other 
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grids are proposed in the literature among which the circular one (Figure  2.7b). The circular 
elements disposition gives a better beam pattern in terms of grating lobes compared to the 
square grid but it widens the main lobe [Mendelsohn and Wiener-Avnear (2002)]. Spiral 
configuration in Figure  2.7c was also tried in few studies with the conclusion of a slight beam 
pattern improvement compared to the aforementioned configurations [Tweedie et al. (2009)]. 
In this work we opt for the rectangular grid as reference configuration.   

 

2.4.1.b  Theoretical expression of the 2D array beam 

In the literature, many theoretical expressions of the beam are presented depending on 
the grid type. Let’s consider the simple case of a 2D array used in a sectorial scan presented 
by Figure  2.8. The distance d represents the inter-element distance (pitch),  the element’s 
size and  and  the lateral and elevation angles. 

 

The formula expressing the impulse response of a  2D array  composed of rectangular  
elements presenting a spatial periodicity of (pitch), with dimensions ,  in lateral and 

(a) (c)  
Figure 2.7 : different elements configuration of  2D arrays [Mendelsohn and Wiener-Avnear (2002), Tweedie et al. (2009)]. 
(a) rectangular(or square) ,(b) circular and (c) spiral elements disposition configuration. 

(b)  

Figure 2.8 : 2D linear array and its coordinate system  
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elevation directions respectively was presented in [Brandwood (2012)] by the following 
equation  

 

 

(2.5) 

in which  and  are the beam direction vectors and  and  are their values in case of a 
steering angle  in the lateral direction and  in the elevation direction,  and  are the 
number of elements in the corresponding directions and  is the wavelength. 

 (2.6) 
 

 (2.7) 
 

 (2.8) 
 

 (2.9) 
 

The position of the grating lobes in the 2D array  correspond to the zeros of the  function 
located at the following positions as expressed in  [Turnbull and Foster (1991), Gori et al. 
(2000), A. Austeng and Holm (2002)]  

 (2.10) 
 

 (2.11) 
 

with  and  the grating lobes positions in lateral and elevation direction. 

The equations (2.10) and  (2.11) confirm that for a given wavelength , the bigger is  the 
closer to the main lobe are the grating lobes and inversely. As there is no efficient manner 
proposed currently to reduce the grating lobes, the challenge in terms of beam profile is in 
finding a good tradeoff between the main and grating lobes. In some configurations, the 
grating lobes can be higher than the main lobe if the angles respect the condition of  
(or which leads to completely wrong imaging [Gori et al. (2000)]. Theoretically 
the condition to avoid the grating lobes is the spatial sampling condition clearly explained in 
[Holm (2000), Holm et al. (2001)] and reprised in [Weber et al. (1994), Lockwood and Foster 
(1996), A. Austeng and Holm (2002)]  

 (2.12) 
 

If , with the assumptions of  and , equation (2.11) becomes 
 is not defined, so any grating lobe exists at this pitch value. But for values 

of d between   and  equations do not give precise information about the grating lobes 
positions even if they exist. Turnbull et al [Turnbull and Foster (1991)] showed  that the 
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grating lobes occur in the array response even if the element spacing is less than  . This is 
due to grating lobe contributions coming from the higher frequencies of the pulse. Today, the 
compromise in a 2D array design resides in the choice of the element size which must be 
slightly larger than  to obtain a better main lobe but not too much to limit the grating 
lobes effect. Solutions to overstep the equation (2.12) will open lot of possibilities in the 2D 
arrays imaging capabilities. 

The pressure generated by a 2D array when excited by a pulse  (  is Fourier 
transform of ) depends on the elements factor and the element positions in accordance 
with the field point [Turnbull and Foster (1991), Brandwood (2012)]  

 (2.13) 
 

Equation (2.13) highlights the importance of the element size on the amplitude of the 
transmitted and received signal. The element factor behaves as a modulation signal in the 
whole probe beam pattern [Brandwood (2012)].   

These same remarks can be made using the integral formulation of the acoustical field of 2D 
arrays. In the integral formulation, the theoretical demonstration of the relation between the 
element size and the probe energy is shown by equation (2.14). Assuming the array to an 
infinite planar baffle of surface S composed of several infinitesimal surfaces ds, the radiated 
pressure at a distance  from the array can be expressed using the Rayleigh integral  

 (2.14) 

 

where  is the density of the medium,  the normal acoustical velocity to the array 
surface, c the sound celerity and  is the distance from the aperture to the observation point. 
This pressure function (2.15) is a convolution between the array PSF (2.16) and the derivative 
of the normal velocity   [Matrone et al. (2010)] 

 (2.15) 

where the analytical expression of  is known as  

 (2.16) 

where  is the spatial Dirac function. 
To compute the PSF of a 2D array composed of MxN elements, the integral is discretized and 
the final expression of the equation  (2.16) becomes 

 (2.17) 

 

where  are apodization coefficient,  the delays shown in Figure  1.4 and  the element 
surface. These equations put in evidence the theoretical basis about the importance of the 
array active surface on its beam. 
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The possibility of decoupling between the 2D array beam characteristics in the lateral and 
elevation direction was demonstrated by [Smith et al. (1991)]. The lateral and elevation 
spatial resolutions are defined using the Rayleigh criterion and equal  

 (2.18) 
 

 (2.19) 
 

and in the case in which the same array is used in both transmission and reception, the - 6 dB 
beam width can be approximated by 

 (2.20) 
 

 (2.21) 

 

The equations (2.18) to (2.21) prove that to obtain a good spatial resolution (thin main lobe) 
for a given working frequency the probe must be as large as possible. 

2.4.1.c  Rectangular array design 

The reference array used to illustrate the beam profile of the 2D arrays is a rectangular 
array. Its central frequency is chosen to be suitable to biopsy or cardiac imaging. Classically, 
in liver biopsy, the common frequency range is between 4 and 9 MHz (3 MHz to 7 MHz for 
hepatic ablation operations) [Lee et al. (2004), Okazawa et al. (2006)]. In thoracic biopsy, 
most of the times the frequency varies from 3.5 MHz to 5 MHz [Liao et al. (2000), Sartori et 
al. (2007)], and seldom to 7.5 MHz [Herth and Becker (2003)]. Prototypes of 2D arrays 
studied for biopsy applications at a central frequency of 3.3 MHz exist [Girard et al. (2003)]. 



 Chapter 2. State of the art 
 

 

26 Bakary Diarra 

 

Depending on these references and as suggested by one of our collaborators from the 
Lyon hospital, the central frequency of the reference array is fixed to 3.5 MHz. This 
frequency allows a good penetration depth and it permits the visualization of classical surgical 
micro-tools. The initial probe is a 64x16 matrix array. The inter-element distance is 0.6 
wavelengths  to limit the grating lobes apparition. The dimensions of the array are 

 (16.85 mm) in the lateral direction and  (4.18 mm) in the elevation direction.   

 

     The center to center distance or the inter-element distance  

      The interval between consecutive elements 

              The dimension of the elements 

Parameters  Values 

Central frequency 3.5 MHz 

Element number 64x16=1024  

Element dimensions (width and height) 0.22x0.22 mm² 

Pitch (d) 0.264 mm 
       Table  2.2: the main parameters of the 2D array probe used as reference in the simulations 

The size of the array in the elevation direction is imposed by the inter-costal distance 
which measures roughly 5 mm to take into account the possible wave reflections on the ribs. 
Moreover the pitch must be close to the mid-wavelength (0.22 mm) which permits 

  

 
        

Figure 2.10 : the probe element size and their spacing 

 

Lx = 16.85 mm
Figure 2.9 : the 2D array in x-y plane with squared elements. This 2D array is aimed for biopsy imaging and 

for this reason its height is chosen to be smaller than the intercostal distance 5 mm, it constitutes the reference array 
for the theoretical studies proposed in this work unless otherwise stated. The largest dimension (along x) is the lateral 
direction whereas the other (along y) is the elevation direction. 
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approximately a number of 22  rows in elevation direction. For practical (electronic) 
consideration, multiple numbers of 8 are suitable for beamformers channel number adaption, 
so 16 rows are maintained in elevation. The full array contains 1024 elements, which is too 
much for the current beamformers. Element number reduction techniques are used to make 
possible the control of this array. The complete features of the 2D array  (Figure  2.9) are listed 
in Table  2.2. 

2.4.1.a  PSF phantoms 

The PSF phantoms are used to compare arrays imaging capabilities. The first phantom 
in Figure  2.11a is composed of five isolated scatterers (this number can be smaller or greater) 
placed on the probe’s axis (no-steering). The position of the scatterers goes from 40 mm to 60 
mm depth with a step of 5 mm. The second phantom (Figure  2.11b) presents the same 
characteristics but with the scatterers rotated of an angle of 45 degrees off-axis (steering) in 
both lateral and elevation directions. The last phantom (Figure  2.11c) contains one single 
scatterer placed at 50 mm on the probe axis and is used to compare the beam profile of the 
arrays. The latter phantom permits to evaluate the energy loss, the main lobe width and the 
grating lobes level of different arrays. The scanning sector ranges from – 90° to 90° in both 
lateral and elevation directions for all PSF simulations.   

 

2.4.1.b  Beam characteristics of the dense array 

The beam characteristics evaluation of the proposed 2D array containing 1024 elements 
is performed using the phantom of (Figure  2.11c). The pressure profile in the lateral and 
elevation directions when the scatterer is on the probe axis (no steering) is shown in 
Figure  2.12. These beam profiles are obtained by plotting the non-zero values along in the 
lateral and the elevation direction.  

The main challenges in the use of  2D arrays resides in the element number reduction, 
the grating lobes suppression, the increase of the array resolution making the main lobe 
thinner and the increase of the element size to maximize the array sensitivity improving its 
signal to noise ratio. The beam profiles shown in this study correspond to the worst case of 
the array beam in terms of grating lobes [Austeng and Holm (2002)]. The beams of 
Figure  2.12 are all symmetric and for this reason, when no steering is considered, the 
corresponding beam profiles will always be displayed on a half sector (from 0 to 90 degrees).  

  

Figure 2.11: (a) and (b) represent the five-scatterer phantoms used in the PSF simulations (a) no-steering, (b) steering at (45°, 
45°) in both lateral (along x) and elevation (along  y) directions and (c) represents the single scatterer phantom used to perform 
the beam profiles comparison . All the phantoms have the same dimensions. 

(a) (b) (c) 
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2.4.2.  Element number reduction techniques 

The element number reduction techniques form two main groups: the first group 
successively uses subset of elements to run the whole array (synthetic aperture and row-
column addressing) and the second group completely deactivates some elements (edge 
element deactivation and sparse arrays). The latter group (the one studied in this work) 
presents better perspectives for real-time 3D imaging than the first one as it provides 2D 
arrays completely controllable by current scanners. These reduction techniques are not 
necessary for small  arrays used for feasibility studies highlighting the 2D array efficiency 
compared to the 1D probe [Weber et al. (1994), Weber et al. (1999), Austeng and Holm 
(2000), Eames and Hossack (2008), Fuller et al. (2008)].   

2.4.2.a  Row-column addressing 

The row-column addressing aims at overcoming the connection problem of the 2D 
arrays by reducing the active elements number and to increase the frame rate. The theoretical 
rules of this technique was proposed by Lockwood et al [Morton and Lockwood (2003)] who 
proved a significant reduction capability. For a squared 2D array containing NxN elements, 
the application of the row-column addressing reduces the element number by a factor of N/4.  

Figure 2.12 Simulations with FIELD II of the 64x16 arrays, (a) the perpendicular plane to the array beam at 50 mm depth (C-
scan), the beam profiles in (b) lateral and (c) elevation directions.  The grating lobes are located on the x-y axis center and on the 
diagonals as the scatterer is on the array axis at (0, 50 mm, 0). The beam profiles in lateral and elevation directions show the 
angles at which the grating lobes appear (+/- 40 degrees). Between the main and the grating lobes are the sidelobes.  

(a) (b) (c) 
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In this technique, the transmission elements are placed in elevation direction 

(Figure  2.13a) and those in reception are placed in lateral direction (azimuth) (Figure  2.13b). 
This perpendicular elements connection allows producing a lot of RF-lines simultaneously in 
reception with just one transmission. The probe must have a curvilinear form to facilitate the 
beam defocusing in elevation direction for a better reception. The elevation directivity is 
determined by the curvature of the probe and the scanning sector but a non-suitable 
modification of these two parameters can also deteriorate the lateral focalization. A trade-off 
must be found to optimize the beams in the two directions[Morton and Lockwood (2003)]. 
The 2D arrays manufactured at Duke University [Yen and Smith (2002)] uses this principle 
reaching a high volume acquisition rate. It produces 16 lines in elevation direction for each 
single transmission in lateral direction; this means for one row of elements activated in lateral 
direction, 16 columns are activated in elevation.  

 
The technological realization of the row-column addressing applied to the 2D arrays to 

put in evidence the channel number reduction is described by [Chi Hyung Seo and Yen 
(2009)]. The printed circuit shows the two kinds of electrodes: in transmission, the columns 

Figure 2.13: Principe of row-column addressing and fan shaped beam in (a) transmission, (b) reception and (c) the elements 
connection strategy [Morton and Lockwood (2003)]. In this technique only one row is used in transmission and the reception is 
made with several columns in such a manner to form several RF-lines with just one transmission. Studies showed the real-time 
3D imaging  capabilities of this technique but the image quality are too poor. 

(a) (b) Bottom electrode  

Top electrode  

(c) 

 
(a) (b) (c) 

(d) (e) (f) 

Transmit 

Receive  

Figure 2.14 :detail of row-column addressing technique proposed by [Chi Hyung Seo and Yen (2009)] . In transmission (a) bottom 
electrode, (b) top electrode and (c) activated elements. In reception (d), (e) and (f) are respectively the bottom, top electrodes and 
the activated elements.
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(Figure  2.14a) are grounded whereas the rows (Figure  2.14b) permit the connection of the 
channels. In reception the rows are grounded and the columns connected to the channels 
(Figure  2.14d-e). 

The simulation results obtained are compared to experimental images acquired by an 
Ultrasonix RP scanner. These studies confirm the feasibility of  real time volumetric data 
acquisition if the row-column addressing is combined to parallel processing as detailed in 
[Daher and Yen (2006)]. 

2.4.2.b  Synthetic aperture  

The synthetic aperture technique was applied first in telecommunications for sonar 
antennas and in geological applications before being retrieved in the ultrasound imaging 
domain [Nikolov and Jensen (2003)]. This technique consists in transmitting with a sub-array 
of non-focalized elements and receiving the echo with another sub-array. Nikolov and Jensen 
used a 32x32 2D array subdivided into 16x8 sub-arrays controlled by a 128-channels 
beamformer and ran all the sub-arrays successively by multiplexing. The validation of the 
technique was made in simulations using FIELD II [Nikolov and Jensen (2003)]. Similar 
studies realized  on a 40x40 2D array are presented in [Jensen et al. (1999), Wygant (2006)]. 
The interest of synthetic aperture imaging is its capability to control 2D arrays with a small 
channel number by multiplexing; its drawbacks are the image signal-to-noise degradation due 
to non-focalized transmission, the huge amount of the stored information and its incapability 
to realize fast volume rates as the technique is very time consuming. 

[Daher and Yen (2006)] proposed an advanced version of this technique presenting 
three configurations: 

 Transmission by individual elements and reception by the entire row containing this 
element as in a 1D array imaging. The summation of separate low resolution images gives 
a high resolution image 

 Transmission by an entire sub-array and reception with one row 
 Transmission by randomly selected columns and the reception by randomly selected rows. 

They noticed that the third configuration is the most promising compared to the two 
previous ones for 3D real time imaging. The same configuration was applied to 3D under-
water imaging and the results are comparable to those of the dense array. They conclude that 
the time necessary for synthetic aperture 3D imaging is between one to three times more 
important than with the dense array [Johnson et al. (2002)]. 

2.4.2.c  Edge elements deactivation  

Most of the time, in ultrasound imaging, an apodization coefficient  is applied to each 
element to lower energy dispersions and increase the image dynamic range [Matrone et al. 
(2010)]. These coefficients are chosen to favor central elements up to the outer ones. In case 
of large array the coefficients applied to the outer elements are so small that they don’t 
contribute much to the resulting beam and for this reason they can be deactivated. Going from 
rectangular to its circular enclosed part presents a smoother beam [Turnbull and Foster 
(1991)]. This edge elements deactivation allows a reduction of the active element between 
20% to 30% [Turnbull and Foster (1991), A. Austeng and Holm (2002), Diarra et al. (2011)]. 
The element number reduction from Figure  2.15a to b is 20%. 828 active elements are still too 
many to be controlled individually by current beamformers. The circular enclosed 
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configuration is a first step but it is not sufficient to permit an easy use of 2D arrays. To 
considerably reduce the elements number, the most promising technique is the sparse array 
described in the next section  2.4.2.d . The beam plot in Figure  2.15c-d, performed on the 
phantom of Figure  2.11c, confirms that the circular enclosed array has approximately the 
same beam profile as the dense array with fewer elements. The deactivation of the corner 
elements impacts weakly the array performances.  

  

 

2.4.2.d  Sparse array 

In computer science, a “sparse” matrix is a matrix which contains more zeros than non-
zero values. It can also be understood as a matrix whose non-zero values are so rare that they 
form a scattered grid. Such a technique is ideal for element number reduction in a matrix 
array. The sparse array technique has been adapted to 2D ultrasound arrays as an element 
number reduction technique able to keep acceptable acoustical beam properties [Weber et al. 
(1999), Trucco (1999), Cardone et al. (2001)]. In the ultrasound domain, the technique is 
declined in two main types: the regular and the random sparse arrays. The regular sparse array 
consists in activating elements separated by regular distances all over the array whereas the 
random version breaks this regularity. The random disposition is more efficient than the 
regular one in terms of grating lobes reduction but the regular (periodic) disposition provides 
sharper main lobe than the random one [Brunke and Lockwood (1997)].  

Sparse array is a very promising approach to overcome the beamformers limitations in 
terms of channel number but the selections of the best set of connected elements still need to 
be investigated. A study of Turnbull et al [Turnbull and Foster (1991)] showed that the sparse 
array can reduce the 2D arrays to less than one sixth (1/6) of their initial number without 
much deterioration of the image quality. This possibility provided by the sparse array is a 

(a)  

(b)  

Figure 2.15 : (a) 2D dense array and (b) its corresponding circular enclosed array simulation with FIELD II. The colorbar 
represents the apodization coefficients varying from 0 to 1. Beam plots are compared in (c) lateral and (d) elevation directions 
with a focus point at 50 mm. The edge element deactivation does not significantly modify the array beam features but an 
decrease in the probe energy can be noticed in some cases. 

(c)  (d)  
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solution making possible the control of 2D arrays by the same beamformers as used in 1D 
array imaging. Sparse arrays do not have only good characteristics. Although it really 
simplifies the beamforming operation, it leads to an important energy loss, high sidelobes 
(random sparse array), and high grating lobes (regular sparse array). The sidelobes increase is 
linked to the discontinuity in the probe apodization whereas the inter-element distance greater 
than the mid-wavelength give rise to higher grating lobes[Turnbull and Foster (1991)]. Some 
simulation results of sparse array imaging by FIELD II have been published in [Austeng and 
Holm (2000), A. Austeng and Holm (2002), Andreas Austeng and Holm (2002)]. The 
efficiency of sparse array in 2D array elements number reduction is obvious but this reduced 
array does not provide the same image quality as the dense array. The beam profiles are 
simulated using the phantom of Figure  2.11c. 

Periodic sparse array 

The regular sparse arrays consist in connecting periodically a number of elements; the 
ratio between the initial 2D array pitch and the corresponding regular sparse arrays is noted  
(  in the lateral direction and  in the elevation direction). In Figure  2.16a, both  and  
are equal to 2 but they could be any multiple of the dense array’s pitch [Brunke and 
Lockwood (1997), Bakary Diarra et al. (2012)]. Several periodic patterns can be used in the 
array conception comprising diagonal, circular, vertical and horizontal elements disposition 
[A. Austeng and Holm (2002)]. These techniques give an array which inter-element spacing 
(pitch) is larger than the mid-wavelength and consequently produce sharper main lobe and 
permits a powerful reduction of the necessary channel number. Figure  2.16b and d illustrate 
the first main drawbacks of the sparse array: the energy loss due to the active element 
reduction. This energy loss depends on the ratio of the active element in the array; for a 
reduction of about 68% the energy loss reaches – 23 dB (Figure  2.16b), about -13 dB for a 
43% reduction (Figure  2.16d). The second drawback is highlighted by equation (2.12), the 
larger is the pitch, the higher and closer are the grating lobes [A. Austeng and Holm (2002)]. 

A concept permitting to correct the beam pattern of such arrays is the effective aperture. 
This concept consists in using different configurations in the transmission and the reception 
aperture in such a manner to suppress the grating lobes [Lockwood and Foster (1996), A. 
Austeng and Holm (2002), Bakary Diarra et al. (2012)]. This concept supposes that the final 
beam pattern is obtained by multiplying the transmitted beam function by the received one. In 
these conditions, the effective aperture represents the convolution between the transmit and 
receive aperture functions. Most of the time no element is common to both transmission and 
reception aperture but some exceptions exist. In any case the pitch of the receive and transmit 
aperture (array) should be different in order to efficiently reduce the grating lobes [Karaman 
et al. (2009)]. The grating lobes position in transmission correspond to the zeros position in 
reception and vice versa [Lockwood and Foster (1996), A. Austeng and Holm (2002)]. To 
illustrate this concept we simulate two examples shown in Figure  2.17.  
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(a) 

Figure 2.16 : different configurations of regular sparse arrays deriving from the 64x16 2D array considering its circular 
enclosed part (828 elements). In (a) the array is filled with 1/2 active elements (232 elements in total) and the beam profile 
compared to the dense array is displayed in (b). In (c) two elements are active out of 3 (2/3) (409 elements in total) and its beam 
profile compared to the dense array is displayed in (d). The energy loss is as important as the active elements reduction reaching 
– 23 dB in the 1/2 sparse array and – 13 dB in the 2/3 sparse array. This energy loss in a major drawback of all sparse array 
techniques and impedes their use more often.  
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In Figure  2.17a the 1/2-sparse array (Figure  2.16a) is used in transmission whereas the 

reception is done with the 2/3-sparse array of Figure  2.16c. If both the transmission and 
reception are made by the 1/2-sparse array the grating lobes level is - 22 dB and - 9 dB in 
lateral and elevation directions  (continuous line) and – 29 dB and  -18 dB in the 2/3-sparse 
array case (dashed line). Using the effective aperture concept, these grating lobes are reduced 
of 20 dB in both the lateral and elevation directions (dotted line). In Figure  2.17b, the 2/3-
sparse array is replaced by a 1/3 sparse array (106 active elements), the grating lobes 
reduction is in the same order of magnitude as in Figure  2.17a, 20 dB. The limitations of this 
concept are the necessity of having different arrays in transmission and reception. The grating 
lobes seem to be moved away from the main lobe but not completely suppressed 
(Figure  2.17).  

 

Figure 2.17 : the concept the effective aperture applied to the regular sparse array deriving from the 64x16 2D array. In (a) the 
beam profiles (lateral and elevation directions) correspond to: transmission and reception with the 1/2 sparse array (continuous 
line), transmission and reception with the 2/3 sparse array (dashed line) and transmission with the 1/2 sparse array and 
reception with the 2/3 sparse array (dotted line). In (b) the same simulations are performed replacing the 2/3 sparse array by an 
1/3 sparse array (106 elements in total). The grating lobe reduction is significant in the neighborhood of the main lobe. The 
difficulty resides in the practical realization of different arrays in transmission and reception and the important energy loss. 

(a) (b) 

Figure 2.18: the concept the effective aperture when steering at (45°, 45°). In (a) beam profiles of the regular sparse array 
(deriving from the 64x16 2D array) filled with 1/2 element (continuous line), 2/3 elements (dashed line) and the result when 
transmitting with one configuration and receiving by the other (dotted line), (b) the same results when the 2/3 element sparse 
array is replaced by a 1/3 (109 elements) sparse array. 

(a) (b) 
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When the beam is steered on the side, its profile changes. The differences mainly 
concern the grating lobes position and thus their contribution to the resulting images [Lurton 
(2002)]. The ratio between the grating lobes level with and without using  the effective 
aperture concept remains in the same order of magnitude as without steering, i.e. 20 dB 
(Figure  2.18a-b). The effective aperture allows a considerable reduction of the grating lobes in 
the neighborhood of the main lobe and imposes a smooth increase of the latter elsewhere. 

Random sparse array on a regular grid 

In the literature, the random sparse array means an array which active elements rows (or 
columns) are randomly selected from the dense array. Several examples deriving from the 
64x16 2D array are presented to understand the impact of the active elements on the beam 
profile compared to the original dense array.  

The beam profiles in Figure  2.19d compare the dense (fully sampled) array to the 
random sparse arrays. It can be noticed that a considerable energy loss occurs as the active 
elements number decreases like in the regular sparse array case presented in Figure  2.16. The 
energy reduction is about 21, 26 and 33 dB compared to the dense array when the active 
number is 256, 192 and 128, respectively. Contrary to the regular case another phenomenon 
(local maxima) can appear in the random sparse beam profiles between the main and the 
grating lobes: these are sidelobes. They appear at random positions from one sparse array 
configuration to another (even with the same number of active elements) in opposition to the 
grating lobes which remain at the same position. Figure  2.19d-e-f illustrate well the 
phenomenon.  

For the 256-element sparse array, the most important sidelobe level is 35 dB in the 
lateral direction whereas it is 42 dB in the elevation direction. Figure  2.19e-f correspond to 
the beam profiles in the steering case when the scatterer is located at (45°, 45°) in both lateral 
and elevation directions.  

As the beam characteristics can be quite different when the position of the activated 
element is random, one solution to ensure that the best possible configuration is reached is to 
use an optimization algorithm. As will be detailed later in the document optimization 
techniques can be used both to minimize the element number and the sidelobes level while 
keeping a pre-determined main lobe width.    
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2.4.3.  Prototypes presented in the literature 

Most of the published studies on 2D arrays are theoretical or simulation studies because 
the realization of such probes is a real technological obstacle. The images are simulated on 
tissue mimicking phantoms. The inter-element distance in these probes equals (or is less than) 
the mid-wavelength in all these prototypes to limit the grating lobes. Some prototypes 
manufactured for experimental objectives in research laboratories are listed in Table  2.3. All 
the prototypes are fully controlled for the small ones or controlled by multiplexing circuits for 
the large ones to collect the signals.  

      

2D  w 

    

Figure 2.19 : random sparse arrays (deriving from the 64x16 2D array) with different active element number and their beam 
profiles normalized by that of the 64x16 dense array (a) 256 elements (dashed line) (b) 192 elements (dotted line) and (c) 128 
elements (lozenge line) , (e) and (f) are the beam profiles when the scatterer is placed off axis at (45°, 45° ) in lateral and 
elevation directions. 

(a) 

(b) 

(c) (d) 

(e) (f) 
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 Between all the prototypes, the most elaborated probe is that developed at Duke 
University which is driven in a configuration able to produce up to 47 volumes/second under 
some conditions [Light et al. (1997), Yen and Smith (2002)] with 256 elements. Each volume 
contains 64 sectorial images of 64 lines each one. This probe uses the row-column addressing 
beamforming technique to produce 16 lines at each transmission (16:1) in a sector of 65 
degrees [Xie et al. (2005)]. In industry, [Savord and Solomon (2003)] proposed a 3000-
elements array with beamforming modules in the handle to minimize the co-axes number. The 
array is divided into sub-arrays (3000/128 elements) and the ultrasound beam of each sub-
array is funneled through the 128 channels in parallel. This parallelization avoids the use of 
too many channels and reduces the system complexity. This configuration permits to reach a 
great frame rate, 20 volumes per second [Daher and Yen (2006)].   

  Promising concepts to increase the volume rate in the real time volumetric imaging are 
proposed (22 volumes per second in [Canals et al. (1999)] or probably more [Taki and Sato 
(2007)]). 

 

 

 

 

2D arrays 

Manufacturer Central 
frequency 

Elements 
number 

Volume/second 

Virginia University [Light 
et al. (1997), Girard et al. 

(2003), Fuller et al. (2003)]  

3.3 MHz 

3.5 MHz 

32x32=256 

40x40=3600 

NC 

Thomson [A. Austeng and 
Holm (2002), Bureau et al. 

(1998)]  

5 MHz 50x50=2500 NC 

Vermon [Nikolov and 
Jensen (2003)] 

2.93 MHz 32x32=1024 NC 

GE Vingmed Ultrasound 
[Austeng and Holm (2000)] 

3 MHz 50x50=2500 40 volumes/s  

Coastal  Circuits [Eames et 
al. (2005)] 

5 MHz 60x60=3600 NC  

Philips [Daher and Yen 
(2006)] 

7 MHz 3000 20 volumes/s 

Table  2.3: the prototypes of 2D arrays found in the literature, their different manufacturers and some imaging capabilities. It is 
difficult to obtain complete information about these arrays because most of the time no information is provided about the volume 
scanned the sector width, the scan depth and the volume size.  

2.5.  2D array optimization algorithms 
There are several algorithms for the random elements selection optimization and much 

of them are detailed with simulation results in [Holm et al. (2001)]. All these methods aim to 
reduce the sidelobes level while maintaining the main lobe width constant. The main methods 
are simulated annealing and genetic algorithms [Hopperstad and Holm (1999)].  

2.5.1.  Simulated annealing 

The simulated annealing (SA) algorithm is a global optimization algorithm which 
permits to approximate the global optimum of multi-parameter functions. The optimization 
space can be either continuous or discrete. The name of the algorithm comes from the 
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annealing process consisting in heating and cooling a material to change its crystal 
dimensions and properties. It derived from the Metropolis algorithm [Gubernatis (2005)] 
which was used in substances crystallization process to superimpose a cooling profile to the 
materials. The key feature of SA is that it allows uphill moves (that is, moves that increase the 
value of the objective function) in order to escape local minima. Kirkpatrick adapted the 
method to informatics problem optimization like chip wiring process in electronics or travel 
salesman [Kirkpatrick et al. (1983)]. These problems are similar to the random choice of the 
piezoelectric elements in the sparse array and the SA can naturally be used to optimize this 
choice too. 

In the 2D sparse array design, there are many possible positions (in lateral and elevation 
directions) for a given element as the selection is random. It will be interesting to find the 
most suitable position for each active element to minimize the beam pattern deterioration. 
This optimization depends on the elements’ position, their apodization and the dense array 
beam profile. The application of SA to large 2D sparse-array design was first suggested by 
[Trucco (1999)] and recently refined by [Chen et al. (2010)]. The performance criteria of the 
algorithm are based on the sidelobes level, the active element number and the main lobe 
width. Several configurations of simulated annealing were applied to 2D array optimization 
with different sidelobes, element number reduction criteria and using single element 
weighting coefficients [Trucco (1999)], [Chen et al. (2010)]. [Murino et al. (1996)] minimize 
the sidelobes level when the aperture and the element number are kept fixed but most of the 
time the minimization concerns the element number when the beam pattern of the probe is 
fixed [Trucco and Repetto (1996), Holm et al. (1997)].  

2.5.1.a  Simulated annealing algorithm  

Let  be a real-valued function to be minimized on a general but finite state space . A 
 algorithm with cost function  is a discrete time, non-homogeneous Markov chain 

 whose transitions are guided by a communication mechanism  and controlled by a 
cooling sequence . The communication mechanism gives the probabilities of the 
possible moves for generating a candidate solution from the current solution, and the cooling 
sequence decreases to zero. Formally,  is a map from  to  that has the following 
properties. 

1.  is a Markov matrix:  for all   

2.  is symmetric:  for all . 

3.  is irreducible: for any , there is a path  such that 
, and  for all . 

(Property 2 means that the probability to propose a move from  to  is the same as that to 
propose a move from  to , and property 3 means that any state can be reached from any 
other state in a finite number of moves.) The transitions of  are given by 

 (2.22) 
 

where  is the Markov matrix on  defined by 
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and  (2.23) 
 

Putting it simply, downhill moves are unconditionally accepted, whereas an uphill move from 
 to  at iteration  is accepted with probability . In practice, a 

finite-time realization  of  is generated as follows (Figure  2.20): 

  

The robustness of SA is shown by the equation (2.23), even though the algorithm 
detects a local minimum, it doesn’t get trapped because there is a probability of acceptance of 
a slight increase of the cost function during the SA running. This property permits to reach the 
global minimum of the cost function which is returned when the optimization conditions are 
satisfied. 

2.5.1.b  Main convergence results  

As the temperature  goes to zero, the distribution of   concentrates on the global 
minima of , and  does indeed converge to a global minimum if  [Hajek 
(1988)]. However, logarithmic cooling yields extremely slow convergence, and most 
successful applications of  use exponential schedules. The theoretical justification of 
exponential cooling is given in [Catoni (1992)], where it is shown that the convergence speed 
exponent of  has an upper limit  and that it is possible to construct a family 

 of finite cooling sequences of the form 

 (2.24) 
 

where  depends on (the maximum number of iterations), such that  

        pick an initial state ; 

           for  to  do 

             draw a state  from the probability distribution  on ; 

                   set  ; 

                   set  ; 

                   if   then set  ; 

                   else  set  with probability ; 

                  end  (if) 

             end  (for) 

Figure 2.20: simulated annealing algorithm pseudo-code. The initialization main parameters are the temperature value, 
the temperature decrease coefficient and the sparsely filled 2D array steps 
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 (2.25) 

 

These results are not well-known, and yet they constitute the most significant advance in  
theory beyond the asymptotic properties established in [Hajek (1988)]. They imply in 
particular that for any , there is a family  of finite 
exponential cooling sequences such that  

 (2.26) 

 

for  large enough. In other words, exponential cooling makes it possible for  to have a 
convergence speed exponent arbitrarily close to the best achievable exponent over all possible 
cooling sequences. More elaborate developments in  theory can be found in [Robini and 
Reissman (2013)] and [Robini (2013)]. 

2.5.1.c  Cost function 

The optimization procedure with the SA is made with a cost function which contains all 
the terms to be optimized. The element number and the sidelobes level are the main variables 
to be optimized. A general notation of this function was given first in the domain of 3D 
underwater imaging by [Trucco (1999)] and there exist a slight modified version of this 
technique published by [Chen et al. (2010)]. This function uses the pressure formulation 
established for the far field beam pattern given by [Nielsen (1991)] 

 (2.27) 

 

 

    Coefficient of the  element 

 ,   coordinates of the  element 

   Beam direction vectors 
This beam pattern function is used to fix the sidelobes in the desired area outside the 

main lobe zone. Other terms are necessary to take into account the element number and 
eventually the range of the coefficients. 

The global final function was expressed by [Trucco (1999)] as follows 

 

 

(2.28) 

The formulation given by [Chen et al. (2010)] is slightly different from the former. 
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 (2.29) 

 

  Maximum of pressure 

   Desired sidelobes level to be obtained  

 The area excluding the main lobe, the set of  values satisfying the relation 
 

 Respectively the obtained and desired ratio between the  maximum and minimum 

  Active elements’ number  

The third term in the equation (2.29) is not necessary as the variation of the coefficients 
can be set up directly in the optimization algorithm without making more complex the cost 
function. The area  is the whole space excluding the main lobe width at – 6 dB in both the 
lateral and elevation directions. A study of the SA was applied to wide-band linear arrays too 
by [Cardone et al. (2001)] and by [Trucco (2002)] with good optimization results. 

Other studies based on the SA algorithm for array optimization are presented without 
more details on the optimization process [Hopperstad and Holm (1999), Behar and Nikolov 
(2007)]. There isn’t any precise manner to determine the values of the coefficients   ,  
and  used in the optimization process. The value of each coefficient indicates the 
importance of its corresponding term in the cost function. It would be interesting if there was 
a technique to determine optimal values of these parameters depending on the applications.  

2.5.1.d  Algorithm steps for 2D array  

The basic principles of the SA are maintained when applied to the 2D optimization 
completed by some additional steps. These steps include the random selection of the elements 
and their death and resurrection probabilities. The algorithm begins with the initial value of 
the temperature and the 2D array filled sparsely. An element is randomly selected; in [Chen et 
al. (2010)] version if this element is active it is simply turned off but if it is inactive it is 
resurrected with a certain probability. In Trucco’s version [Trucco (1999)] both the element 
resurrection and the death  are managed by a probability value. After each modification of an 
element state (coefficient), the cost function is re-evaluated to know whether its value 
decreases in which case the modification is maintained otherwise the old state of the element 
is restored based on a probability function that depends on the current temperature. At each 
complete exploration of the 2D array, the active element number is updated and compared to 
its previous value to know if it decreases. The satisfaction of the optimization criteria or the 
reach of the maximum iteration terminates the optimization procedure. For large probes, the 
computation takes much time. A flow chart detailing the different steps of the algorithm is 
shown in Figure  2.21. 
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2.5.2.  Genetic algorithms 

Genetic algorithms are used to find a set of parameters that optimizes the output of an 
objective function. As the simulated annealing, they are suitable for the optimization of non-
linear problems that do not admit any exact solution such as the thinning of the arrays [Haupt 
(1994)]. The random choice of the elements in sparse arrays can also be optimized using 
genetic algorithms. The expected outputs are identical to those of the SA namely the element 
number and the sidelobes minimization. The main difference between the two algorithms is 
linked to the 2D array dimension. Genetic algorithms are suitable for small 2D arrays 
optimization but not efficient for large scale 2D arrays compared to the simulated annealing 
[Chen et al. (2010)]. Some optimization studies on medium 2D arrays with these algorithms 
are reported [Haupt (1994), Lommi et al. (2002), Caorsi et al. (2002), Yang et al. (2006)].  

2.5.2.a  Cost function 

Many different cost functions (known as the fitness) are proposed in the literature for 
2D array thinning using the genetic algorithms. The first one proposed by [Haupt (1994)] is 
suitable for both the 1D and 2D arrays optimization. The same notation is adopted by [Zhang 
et al. (2012)] and a slightly different version by [Kesong et al. (2007)] 

 (2.30) 

Figure 2.21 : flow chart of the simulated annealing algorithm applied to the thinning of the 2D arrays  [Trucco (1999), Chen et al. 
(2010)].  
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where   and are the direction vectors,  and  are respectively 
the inter-element distance in lateral and elevation directions (  generally) and  
is the coefficient matrix of the array. Contrary to the simulated annealing, most of genetic 
algorithms array thinning are based on the binary state of the array elements, the coefficient 
(  in equation (2.30)) are 1 for active elements and 0 for inactive ones. Another approach 
consisting in minimizing the error between the dense array beam and the sparse array was 
used [Weber et al. (1994), Weber et al. (1999)]. In the 1D array case, genetic algorithms gives 
interesting results mainly when combined with MRL (minimum redundancy linear-array) 
[Yang et al. (2006)].  

2.5.2.b  Algorithm steps  

The genetic algorithms differ from the SA algorithm because they don’t use the 
parameters (element coefficients) themselves but a coded value of the latter. In the first step 
each coefficient is coded using the binary coding (most of the time) because of its simplicity. 
The fitness value of the element coefficients permit to establish a probability table used in the 
next steps. The main drawback of the algorithms is their complexity if there are a lot of 
parameters in the problem to solve. A simple flow chart of the algorithm is represented in 
Figure  2.22. 

 

2.6.  Conclusion  

Important advances have been made in 3D ultrasound imaging but obstacles remain in 
the use of the 2D arrays. The mathematical background of the 2D array permits to identify the 

Figure 2.22: flow chart of the genetic algorithm applied to the thinning of 2D array 
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points to be improved to achieve acceptable and fast imaging with these arrays. The 
combination of the simulated annealing and the reduction techniques give encouraging way 
towards real time 3D imaging. 

In the next chapter, our contributions to overcome the limitations inherent to the dense 
arrays are presented. An improved version of the simulated annealing algorithm and new 
element positioning strategies are developed. The performances between the proposed 
methods and those available in the literature are compared in terms of beam energy, image 
contrast and element reduction capabilities. 
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Chapter 3  

New positioning strategies in 2D arrays  

3.1.  Introduction 

From the bibliography investigation, we have identified the current advances in 2D 
array imaging and also noticed the obstacles encountered in this domain regarding both 
physical and technological aspects. The physical limitations concern mainly the spatial 
sampling conditions which impose very small element to reduce the grating lobes at the 
expense of the probe sensitivity (signal-to-noise ratio) and the great number of channels 
needed to drive them. The technological challenges concern the connection of thousands of 
elements on recent beamformers. For this purpose complex multiplexing systems are 
implemented lowering more the array performances.  

Our contribution presented in this chapter can be divided into two main parts:  

1. The first point concerns an improvement the mathematical aspects of the problem and 
proposes a more rigorous formulation  

2. The second point concerns the proposition of new degrees of freedom to improve the 
beam characteristics. Here we propose to use different element positioning strategies and 
elements with variable sizes.  

A comparison between the new elements positioning strategies, called non-grid (sparse) array 
and variable size (non-grid) array, and the standard sparse array without and with 
optimization are presented in this chapter. All simulations results are performed using the 
Field II program and the reference array is the 64x16 array designed in Section  2.4.1.c . 
Furthermore, a square 64x64 2D array is studied to validate the new strategies in a larger and 
more general-purpose array. 

3.2.  Optimization cost function   

The cost function is the most important part of the optimization process. It contains the 
different terms that fix the expected specifications of the beam profile. The optimization 
procedure becomes necessary because of the inconstancy of the beam profile of the sparse 
arrays from a random filling to another, even with the same number of elements. Alternatives 
proposed in the literature to constraint the probe beam to a desired value depending on the 
application has been investigated since years and presented previously. These optimizations 
(often known as thinning) are limited to the ultrasound 2D array design but they are used in 
many fields as the electromagnetic antennas optimization in telecommunications. 

The optimization process can be represented by the simplified chart of Figure  3.1. The 
input parameters are the initial sparse array and the expected beam properties whereas the 
outputs are the optimized array containing the number of active elements and the cost energy 
function.  The optimization is also possible with a fixed number of active elements to find the 
suitable coefficients to fit well a given application. The latter method may not guaranty the
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 fulfillment of all the beam criteria unless the active element number is high enough to fit 
them. The initialization step is important and is realized as follows: 

 Make a quick simulation of the beam profile of the dense array to determine the average 
value of the main lobe width at - 6 dB and use that value to define the optimization zone  

 Approximate by making some simulations with the sparse array to know approximately 
the number of elements which fills the sidelobes constraints expected and use the same 
range of element number at the algorithm beginning. This second point is useful but not 
necessary. It is just a mean to considerably reduce the algorithm convergence time. 

The algorithm principal stop condition is the maximum number of iterations fixed 
preliminarily.  

 

 

3.2.1.  Cost function reformulation  

A general cost function including the parameters of our optimization problem―namely, 
the set of active elements and the maximum side-lobe level―was proposed by [Trucco 
(1999)] (see also [Trucco et al. (2008)]) and refined in [Chen et al. (2010)]. We start with a 
modified description of this function which serves as a basis for discussing our choice. 

Assume that each possible element position is indexed by an integer , 
where  is the total number of positions. Then, any sparse-array configuration can be 
represented by a set  defining the active elements and by a vector 

 containing the weighting coefficients of these elements. More precisely, for 

Simulated 
annealing  

  

2D array 
sparsely filled 

Cost function  

Accepted 
sidelobes level 
and main lobe 
width 

Maximum 
iteration 
number 

Optimized 2D 
array probe 

Stop 
conditions 
reached 

  
  

  
  

Figure 3.1: bloc diagram of the complete optimization scheme applied to the 2D sparse arrays. The inputs of the algorithm are 
the sparse array, the desired beam characteristics such as the sidelobes level, the main lobe width. The outputs are the optimized 
array. 
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any , the -th entry  of  is the weighting coefficient of the active element 
, where  is the bijection from  to  such that . Using 

this representation, the set  of all possible sparse-array configurations is given by 

 (3.1) 

 

Let  be the normalized far-field beam pattern [Nielsen (1991)] of the array , that 
is, 

 (3.2) 

 

where  are the first two coordinates of the difference between the unit arrival 
and steering directions,  is the -norm of , and  denotes the 
position of the th element on the surface of the probe. The optimization problem considered 
in [Trucco (1999)] is equivalent to that of minimizing the function   defined by
 

 (3.3) 

where  controls the strength of the sparsity constraint,  is the maximum sidelobe 
authorized outside the main-lobe region,  stands for the positive part of  (that is, 

)), and  is the set of coordinate pairs  outside the main-lobe region. 

To define our cost function, we first simplify the manipulation of the array configurations 
by representing them by vectors in a subset  of the closed rectangle . Then, the 

th element of an array  is active if , and the sparsity promoting functional used in 
(3.3) is the -norm  . We propose to further reduce the 
complexity of the optimization problem by replacing the -norm by the -norm 

, which, unlike the -norm, is continuous and convex (the use of the -norm 
as a sparsity-promoting functional is reviewed in [Candès et al. (2008)] and [Daubechies et al. 
(2010)]). The solutions to our optimization problem are thus the global minima of the cost 
function  defined by 

 (3.4) 

 

(taking the square of the integral rather than the integral itself is merely a matter of choice), 
where the beam pattern  is given by 

 (3.5) 

 



 Chapter 3. New positioning strategies in 2D arrays 
 

 

48 Bakary Diarra 

 

Minimizing  over  is significantly easier than minimizing  over , but it remains a 
difficult optimization problem, which is the reason why we also use SA. It is important to 
realize that the computed solutions are not sparse in the strict sense that their entries are 
mostly zeros; they are sparse in the weak sense that a great proportion of their entries are very 
close to zero. Consequently, the final solution is obtained by applying a hard-threshold to the 
entries of the output of the minimization process. Denoting this output by , the weighting 
coefficients  of the optimized sparse array are given by  

 (3.6) 

 

where  is a predefined threshold. 

3.2.2.  Optimization strategy  

Designing an efficient  algorithm means smartly choosing the communication 
mechanism  and carefully selecting the cooling sequence . In this section, we 
describe our communication strategy and the associated  algorithm. The tuning of the 
cooling sequence is discussed in Section  3.2.3.  

First of all, to satisfy the finite-state space assumption of the  theory outlined in 
Section  2.5.1.b , we let the domain of  be the discrete set 

 (3.7) 

 

where the positive integer  can be arbitrarily large. That said, we use a communication 
mechanism that generates candidate solutions that differ from the current states by at most 
one element, as in [Trucco (1999)] and [Chen et al. (2010)]. However, since the 
representation of the sparse-array configurations as elements of  (3.7) is simpler than the 
representation in  (3.1), our single-element updating dynamics is simpler than those 
proposed in [Trucco (1999)] and [Chen et al. (2010)]. Indeed, we generate a candidate 
solution  from a configuration  by picking an element index 

 and a weighting coefficient  uniformly at random and setting  and 
 for all . Formally, the associated communication matrix has a quite simple 

expression: for any , 

 (3.8) 

 

This Markov chain is clearly symmetric and irreducible, which are the two requirements on 
the communication mechanism for the convergence of  . 

The exponential cooling sequence (2.24) can be written under the form 
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 (3.9) 

 

where  and  denote the initial and final temperatures, respectively, and  is the total 
number of iterations. Given these parameters, and letting  be the -th vector of the standard 
basis of , the pseudo-code of our  algorithm for sparse-array optimization is presented 
in Figure  3.2: 

    

3.2.3.  Cooling schedule  

The performance of a  algorithm is strongly influenced by the tuning of its cooling 
sequence. Making a dichotomy between the asymptotic and finite-time convergence theories, 
one can use either logarithmic or exponential cooling. For instance, [Trucco (1999)] uses 
logarithmic sequences of the form 

 (3.10) 

 

pick an initial array configuration ; 

    set   ; 

    for  to  do 

           draw  and  uniformly at random; 

           set  ; 

           set ; 

           if  then set ; 

          else  

              set ; 

              draw  uniformly at random; 

              if  then set  ; 

              else set ; 

             end (if) 

          end(if) 

      end (for) 

Figure 3.2: the pseudo-code of the modified simulated annealing algorithm. The 2D array is put in one vector and the 
algorithm running is speed up by computing only the cost function modification due to the disturbance of an element state 
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where , and  is the floor function, whereas [Chen et al. (2010)] use exponential 
sequences of the form 

 (3.11) 

 

with . In both cases, the temperature is updated after each sweep (that is, after each 
cycle through all the elements), and the initial temperature  is chosen empirically so that 
most transitions are accepted at the beginning of the annealing process. The final temperature 
can be fixed in advance by setting the number of sweeps, as in [Trucco (1999)], or it can be 
set adaptively via a termination criterion, as in [Chen et al. (2010)], where it is proposed to 
stop the algorithm when the number of active elements does not decrease over a given number 
of sweeps. 

Contrary to [Trucco (1999)], we suggest to use exponential cooling, which is more robust 
than logarithmic cooling in the finite-time case [Catoni (1992)], and unlike [Chen et al. 
(2010)], we prefer to fix the horizon  of the algorithm so as to keep control over the running 
time. This leaves us with the problem of finding appropriate values for the initial and final 
temperatures, which has been extensively addressed in the early ages of  (see, e.g., 
[Laarhoven and Aarts (1987)]). From our experience, we suggest to select  and  so 
that the uphill acceptance rates (that is, the ratios of the number of accepted uphill moves to 
the number of proposed ones) at the beginning and at the end of the optimization process are 
close to some given values  and  such as . Accurate methods 
to perform these estimations are given in [Robini et al. (1999)], but they are time-consuming. 
In fact, as long as the horizon  is large enough, correct orders of magnitude are satisfactory, 
and thus fast appropriate estimation methods do the job. 

We propose a simple and efficient procedure based on the homogeneous Markov chain 
 with transition probabilities 

 (3.12) 

where  is the communication matrix defined in (3.8). Given a positive integer , we generate 
a finite-time realization of  with  uphill moves, and we set  and  to be the 
temperature values such that the average acceptance probabilities over these uphill moves are 
equal to  and , respectively. More formally, we simulate  until we obtain  
pairs (  of successive states such that , and we let  
and  be the solutions of 

 (3.13) 

for  and . The left-hand side of (3.13) increases with increasing 
temperature, and thus, for any , this equation has a unique solution which can be 
determined by any standard root-finding method. In practice, effective cooling sequences are 
obtained by taking , , and  of the order of 10 to 100 
times the number  of possible element positions.  



 3.3.  Non-grid based array 
 

 

Bakary Diarra 51 

 

3.3.  Non-grid based array 

In this section, the principle of the non-grid array is explained going from the standard 
regular grid element disposition. The beam characteristics (PSF, beam profiles of the standard 
and the non-grid sparse arrays are simulated and compared when both of them are filled with 
the same number of active element. The main purpose of these comparisons in to illustrate the 
beam pattern improvement capabilities in terms of the grating lobes reduction and the main 
lobe thinning provided by the proposed non-grid technique. A hanning apodization is applied 
to both arrays. 

3.3.1.  Method description  

The non-grid based array is a new element placement strategy aimed to overcome the 
limitations of the regular grid-based methods used in the standard 2D arrays [B. Diarra, 
Liebgott, Cachard et al. (2012)]. This technique removes the periodicity in the element 
placement.  

The non-grid array maintains all the characteristics of the main lobe of the beam and 
contributes to suppress its unwanted parts, i.e the grating lobes. In the standard regular grid 
placement, the grating lobes come from the periodicity in the element disposition and the 
relation between the inter-element distance and the wavelength (spatial sampling). The effect 
of the grating lobes is not noticeable in linear scanning but in sectorial scanning, depending 
on the sector width, the contribution of the grating lobes can be as important as the main lobe. 
In that case, the resulting image contains artifacts (fake echoes) which make difficult or even 
impossible its interpretation. Currently, a solution to reduce the grating lobes is to use small 
elements but this choice leads to a poor resolution and, unless a huge number of elements is 
used, a decrease of the probe sensitivity as its active surface is too small. The non-grid based 
(sparse) array is an efficient alternative for the 2D arrays beam pattern improvement. Placing 
the array elements independently from any rows and columns considerations presents several 
advantages; it permits to sharply decrease the grating lobes, and allows overstepping the 
spatial sampling condition which classically limits the element size in the 2D arrays. 
Figure  3.3 describes the principle of the non-grid sparse array. 

[Jian-Yu Lu and Greenleaf (1994)] stated that a random element placement is expected 
to give a better result in terms of grating lobes reduction than the other techniques studied 
until now but they pointed out the difficulty of the conception of such a 2D array. The new 
technology based on the CMUT (Capacitive Micromachined Ultrasonic Transducer) elements 
is a suitable solution to make probes based on the non-grid approach [Bavaro et al. (2008)]. 
Information collected from ultrasound probe manufacturers confirms the feasibility of such an 
array even with the piezoelectric elements under some geometrical constraints such as 
element size and the kerf. 
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3.3.2.  General beam characteristics  

The beam characteristics of the standard sparse array are compared to those of the non-
grid sparse array. In this comparison the same footprint is adopted and the same active 
element number (256). This comparison aims to understand the consequences of unwanted 
parts (grating lobes) of the beam pattern on the resulting images. 

Figure 3.3 : (a) the circular part of the 64x16 2D array (828 elements) in which the inter-element distance is maintained constant 
and (b) the illustration of the non-grid random sparse array with a completely random position for each element avoiding 
overlap between elements (256 elements). The elements position does not follow a specific law, so any periodicity does not exist 
which implies theoretically a complete suppression of the grating lobes making possible the use of wide elements to improve the 
array energy and a natural reduction of the active element number for a given array footprint.  

      (a) 

(b) 
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3.3.2.a  Comparison of the PSF  

 To obtain the PSF of the two arrays, the phantoms of Figure  2.11a-b are used in the 
steered and unsteered cases, respectively. A dynamic focusing is realized in reception at five 
focal points (40, 45, 50, 55, 60 mm) to coincide with the scatterers positions whereas only one 
focus point is used in transmission at 50 mm.   

Unsteering case 

In the lateral direction, as the elements are  wide, if no steering is involved the five 
reflectors are clearly visible without any apparent effect of grating lobes in both array 
configurations (Figure  3.4c-d).  

In the elevation direction, because of the probe small size, the ratio between the main 
and the grating lobes energy is lower. The consequence of this low energy ratio is a 
significant image contrast reduction compared to the lateral direction. When the scatterers are 
on the probe axis, the grating lobes remain important in the standard sparse array 
(Figure  3.4e) while they disappear completely in the non-grid sparse array in Figure  3.4f. 

Steering case  

In the lateral direction, the standard sparse array PSF presents copies of the real 
scatterers (Figure  3.4g). The first copies close to the main scatterers are due to the sidelobes 
and can be considerably reduced using an optimization algorithm whereas the second copies 
beginning at -30° come from the grating lobes. The latter have more energy and cause an 
image contrast reduction by deteriorating the signal to noise ratio. Using the proposed non-
grid array, the side and grating lobes effect is not visible. More generally some sidelobe 
effects may still exist depending on the apodization (Figure  3.4h). 

In the elevation direction, the grating lobes become more important and get closer to the 
probe axis (Figure  3.4i). With the non-grid array, the grating lobes are suppressed 
(Figure  3.4j). This example shows how important is finding a strategy to remove the 
unwanted parts of the array beam to guarantee a better images quality.  
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3.3.2.a  Comparison of the beam profiles  

The beam profile phantom, reported in Figure  2.11c is used for the beam pattern study. 
Both cases, i.e. with and without steering, will be addressed. 

Unsteering case 

In the unsteering case, the c-scan planes permit to put in evidence the presence of the 
grating lobes on the axis and on the diagonals in the standard sparse array (Figure  3.5a) 
whereas they are almost null in the non-grid technique (Figure  3.5b). The sidelobes are spread 
over the whole plane in both methods.  

(a) (b) 

Figure 3.4 : basic examples of comparison of the PSF of the 256-elements ( 0.5 λ width) (a) standard sparse and (b) non-grid 
arrays with a hanning apodization. Illustration and comparison of the grating lobes effect in unsteered case (c)-(d) and (e)-(f) 
and in the steered case (g)-(h) and (i)-(j) in the lateral and elevation directions, respectively of the two 2D arrays. In the standard 
sparse array the grating lobes are so important that they modify the image quality and make difficult its interpretation while in 
the non-grid array technique the effect the grating lobes is negligible.  

(c) (d) 

(e) (f) 

(g) (h) 

(i) (j) 
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In the lateral direction the grating lobes level is -35 dB in the standard sparse array 
(Figure  3.5c) and - 41 dB in the non-grid array (Figure  3.5d), 6 dB better. In both cases the 
maximum sidelobes (around the main lobes) are about -35 dB.  

 
In the elevation direction, the grating lobes reach -18 dB in the standard sparse array 

(Figure  3.5e), 16 dB higher than those of the non-grid array (Figure  3.5f). The main lobes 
remain constant as they are not much sensible to the individual elements position. The major 
improvement shown by Figure  3.5 provided by the non-grid array is the cancellation of the 
grating lobes. The grating lobes are very disturbing in phased array imaging because they 
constitute a source of image artifacts (noise). Their echoes can even be greater than that of the 
main lobe in some configuration distorting the images interpretation. They hinder the optimal 
use of the 2D array by imposing small elements as established in (2.12) deteriorating the array 

(a) (b) 

(e) 

(d) 

(f) 

(c) 

Figure 3.5 : Beam pattern of the two arrays (c)-(d) c-scan, (e)-(f) lateral direction and (g)-(h) elevation direction beams 
with the standard sparse and the non-grid sparse array, respectively. The scatterer is placed on the array axis. 
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sensitivity. By removing this obstacle, it becomes possible to propose arrays with wide 
element leading to an increased active surface, thus a better sensitivity (high signal-to-noise 
ratio) and to scan large sectors.  

Steering case 

The same experiment is carried out with the scatterer placed at 45° in both directions 
using the same arrays presented in Figure  3.5a-b.  

 The beams of Figure  3.6a-b correspond to the c-scan planes of the standard and the 
non-grid sparse arrays. The main lobe has the same properties in the two arrays but the 
principal difference is the grating lobes as in the unsteering case. In both the lateral and 
elevation directions, with the standard (Figure  3.6c-e) as the non-grid (Figure  3.6d-f) sparse 
arrays, the grating lobes results remain in the same order compared to the unsteering case 
(Figure  3.5). The main change is in their positions. 

To generalize the potential improvement provided by the non-grid positioning strategy, 
we realize a statistical study with a huge number of simulations and compare the results to the 
regular-grid sparse arrays. The footprint of the two probes is maintained identical for each 
configuration. The results of this in-depth study are presented in the next section. 

 

 



 3.3.  Non-grid based array 
 

 

Bakary Diarra 57 

 

 
 
 

 

 

 

 
 

Figure 3.6 : example of comparison of the beams of the 256-elements (a) standard sparse and (b) non-grid array. Beam 
correspond to (c)-(d) c-scan, (e)-(f) lateral direction and (g)-(h) elevation direction with the standard sparse and the non-grid 
sparse array respectively. The scatterer is placed at (45°, 45°) in lateral and elevation directions. 

(c) 

(b) (a) 

(d) 

(f) (e) 



 Chapter 3. New positioning strategies in 2D arrays 
 

 

58 Bakary Diarra 

 

3.3.3.  Influence of the element size 

The effect of the piezoelectric elements size on the 2D arrays beam characteristics 
(main and grating lobes) is presented. The aim of this simulation is to put in evidence the 
possibility of using few elements with larger surface to increase the array’s sensitivity and to 
make easy the connection of the 2D arrays to current scanners keeping good beam properties. 

In the literature, the impact of single element size on the beam of the full array is 
established by [Brandwood (2012)] emphasizing the importance of the element size on the 
beam amplitude. The theoretical background of the single element contribution to an array 
beam is detailed in the Section  2.4.1.b  (equation (2.13) to (2.17)). The direct consequence of 
the element widening is the increase of the active surface of the array (better sensitivity). In 
addition, for  a constant array footprint the active element number is reduced (for instance the 
64x16 2D array contains 1024 elements of 0.5 λ while only 400 elements of 0.8 λ width are 
needed).  

The example to put in evidence these theoretical expressions uses three regular dense 
arrays covering the same footprint about 17x4.2 mm². Figure  3.7a presents the array 
containing 828 elements of 0.5λ wide each (0.6 λ pitch), in (b) the 440 elements are 0.7 λ 
wide each (0.8λ pitch) and the last array in (c) composed of 264 elements of 0.9 λ wide (1 λ 
pitch). The beam profiles in Figure  3.7d illustrate the advantages and the disadvantages of the 
element size on the 2D array beam when the footprint is maintained constant. In one hand, the 
sensitivity of the arrays increases as a function of the element size as the active surface of the 
probe is maximized [Kojima (1986), Jian-Yu Lu and Greenleaf (1994)]. On the other hand the 
grating lobes get higher and higher and become closer to the main lobe. This example shows 
the limitations of the standard element disposition techniques in the realization of such arrays. 
The in-depth simulations aim to test the additional improvement and possibilities provided by 
the non-grid array. The ideal and expected result is an efficient suppression of the grating 
lobes independently of the element size to be able to make use of the advantages of the 
element widening.  

 
Figure 3.7 : the same probe footprint filled with (a) 788 elements of 0.5 λ (b) 440 elements of 0.7 λ   (c) 264 elements of 0.9 λ and 
(d) their beam profiles normalized by that of the array in (a). The kerf is fixed to 0.1 λ for each case. 

(a)  

(b)  

(c) 
(d) 
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3.3.3.a  Simulation set-up 

All the results correspond to simulations of the two-way beams obtained using the 
phantom of Figure  2.11c and by steering the transmitted beam over a wide range of angles 
(typically from - 90° to 90°). The transmit (TX) and receive (RX) foci are set to coincide with 
the scatterer depth. 

Two reference dense-arrays are considered: a square 64 64 grid and a rectangular 
64 16 grid, both with deactivated edge elements [Turnbull and Foster (1991)]. The sizes of 
these dense array probes are 17 mm  17 mm in the square case and 17 mm  4.2 mm in the 
rectangular case. The latter dimensions were suggested by physicians for possible liver biopsy 
applications needing intercostal imaging. The elements are squares. In the 4:1 rectangular 
case, the direction of the largest dimension of the probe is called the lateral direction, and the 
other is called the elevation direction. In the square case there shall be no distinction since the 
beam is symmetric. The standard and the non-grid sparse arrays are derived from the dense 
arrays by using respectively the methods described in Sections  2.4.2.d  and  3.3.1. The 
performance of sparse arrays with and without grid-positioning constraints is systematically 
compared.  

Parameter  Value 

64x64 array 64x16 array 

Central frequency 3.5 MHz 

Wavelength (λ) 0.44 mm 

Element number 256 100 

Pitch (d) From 0.3 to 1.1 λ 
        Table  3.1: simulation parameters used for studying the influence of the element size. Exceptionally both 64x64 and 64x16 

arrays are studied in this section to have more general results. The number of active elements is 100 in the 64x16 array and 
256 in the 64x64 arrays. 

3.3.3.b  Results  

Figure  3.8 and Figure  3.9 show the grating-lobe level and the width of the main lobe 
obtained with standard and non-grid sparse arrays when the element size varies between λ/5 
and λ. The number of active elements has been set to 256 for the square case and to 100 for 
the rectangular case. Each box summarizes the statistics of 100 simulations for a fixed 
element size (the upper and lower edges of each box represent the 75th and 25th percentiles, 
respectively, and the central mark is the median). The grating-lobe level of standard sparse 
arrays tends to increase with increasing element size, while the grating-lobe level of non-grid 
sparse arrays remains approximately constant. Moreover, the latter one is 9 dB to 25 dB lower 
than the level obtained with standard sparse arrays. Besides, we can see from Figure  3.9 that 
non-grid positioning does not increase the width of the main lobe but even slightly reduces it 
in the elevation direction.  
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(a) (b) 

(c) (d) 
Figure 3.8: these boxplots represent the evolution of the grating lobes as a function of the active element size in the 
standard and the non-grid array techniques (each box represents 100 simulations):  (a)-(b) square probes with 256 
active elements; (c)-(d) 4:1 rectangular probes with 100 active elements. The results confirm the efficiency of the 
non-grid array to provide much reduced grating lobes even though the element size increases contrary to the 
standard sparse array which grating lobes increase as the element size does. This property of the non-grid array 
permits to maximize the 2D arrays imaging capabilities and to reduce their necessary usual huge number of 
channels. 
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3.3.4.  Influence of the element number 

The impact of the number of piezoelectric elements on the 2D arrays beam 
characteristics (main and grating lobes) is presented. The main purpose of this simulation is to 
compare the standard and the non-grid sparse arrays in terms of beam properties on a wide 
range of active elements number. 

Theoretically, under the assumption that all elements have the same apodization 
coefficient, the equation (2.17) shows, by the term , that with more active elements the 
PSF of the array has a more important energy. The active element number has less impact on 
the main lobe width when the probe footprint is fixed, but the probe energy level considerably 
increases. An illustration of the main lobe width constancy is shown in Figure  3.10 whereas 
the energy loss passing through the dense to the sparse arrays was discussed the 
Section  2.4.2.d .  

(a) (b) 

(c) (d) 
Figure 3.9: the evolution of the main-lobe width as a function of the elements size (each box represents 100 
simulations): (a)-(b) square probes with 256 active elements; (c)-(d) 4:1 rectangular probe with 100 active 
elements. The main-lobe width determines the lateral and elevation resolution of the 2D array. The boxplots show 
that the non-grid array has at least the same (or better) man lobe as the standard sparse array. 
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Figure  3.10 shows the idea of active element number variation developed and 

represented by the boxplots in Figure  3.11 and Figure  3.12. The beam profiles present a 
comparison between the standard and the non-grid sparse arrays when filled with 256 and 192 
active elements.  With 256 active elements, the grating lobes value is -35 dB in the standard 
sparse array against – 45 dB in non-grid array in lateral direction (Figure  3.10a), both methods 
present the same main lobe width. The sidelobes are subject to the elements apodization and 
can change from an example to another. In elevation direction the grating lobes value are -18 
dB and - 41 dB in standard and non-grid array, respectively. When filled with 128 elements 
the difference of the grating lobes is 6 dB and 25 dB in lateral and elevation direction at the 
advantage of the non-grid array. To generalize these values, the simulation is made on the 
large range of active elements to establish a global tendency of the behaviors of the non-grid 
array compared to the standard one.  

3.3.4.a  Simulation set-up  

For standard sparse arrays, the condition (2.12) causes a widening of the main lobe.  

Parameter  
Value 

64x64 array 64x16 array 

Central frequency 3.5 MHz 

Wavelength (λ) 0.44 mm 

Element size (λ/2) 0.22 mm  0.22 mm 

Element number  From 64-1024 From 64- 576 

Pitch (d) 0.6 λ 
       Table  3.2: Simulation parameters used for studying the influence of the number of active elements. The active element 
number in 64x64 array varies from 64 to 1024 and from 64 to 576 in the 64x16 arrays. The footprint of the standard and the 
non-grid sparse arrays is kept constant for each element number. 

Figure 3.10 : comparison between the sparse and the non-grid arrays when element number is 256 (continuous line and dashed 
line respectively) and 192 (lozenge line and dotted line respectively) in (a) lateral and (b) elevation directions. These results 
illustrate the constancy of the main lobe and the variation of the grating lobes as the active elements number varies. Element size 
is kept to 0.5 λ. 

(a) (b) 
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Hence, a pitch value slightly above the half-wavelength is a good trade-off. We set  
and , and the simulation parameters are listed in Table  3.2 (the pitch value is not 
relevant for non-grid sparse arrays). A number of elements ranging from 64 to 1024 is 
activated for the square 64x64 arrays and from 64 to 576 in the 4:1 rectangular arrays. The 
positions of the activated elements are random when there is no grid constraint. 

3.3.4.b  Results  

The results are presented in box plots and each box summarizes the statistics of 100 
simulations for a fixed number of active elements (the upper and lower edges of each box 
represent the 75th and 25th percentiles, respectively, and the central mark is the median). The 
rationale for this type of representation is to provide a comparison between standard and non-
grid arrays that is independent of the optimization method. Figure  3.11 displays the statistics 
of the grating-lobe levels in the lateral and elevation directions as functions of the number of 
active elements. The grating-lobe level of non-grid arrays is significantly lower and decreases 
faster than that of standard arrays. For square probes, the average reduction of the grating-
lobe level produced by random element-positioning ranges from -3 dB to -15 dB. In the 4:1 
rectangular case, this reduction ranges between -3 dB and -17 dB in the lateral direction and 
between -12 dB and - 27 dB in the elevation direction.   

 

(a) (b) 

(c) (d) 
Figure 3.11: Grating-lobe level in the lateral and elevation directions as a function of the number of active 
elements (each box represents 100 simulations): (a)-(b) square probes; (c)-(d) 4:1 rectangular probes. The 
grating lobes decrease as the active element number increase in both methods but the non-grid array presents a 
faster and more decreasing scheme. 
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(a) (b) 

(c) (d) 
Figure 3.12:  Main-lobe width as a function of the number of active elements (each box represents 100 
simulations): (a)-(b) square probes; (c)-(d) 4:1 rectangular probes. The main lobe width remains the same in 
all directions except the elevation direction of the 64x16 arrays. In this latter, the non-grid array present a 
thinner main lobe when active element get greater than 256. This advantage may come from a better use of 
the probe surface in this direction using the non-grid technique. 
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3.4.  Variable size non-grid array 
In this section, the variable size array, a declination of the non-grid element placement 

strategy is presented. A comparison is realized with the standard sparse array when both are 
filled with 256 elements. 

3.4.1.  Method description  

The variable size non-grid array is an extension of the non-grid array technique [B. 
Diarra, Liebgott, Cachard, et al. (2012)] described in the Section  3.3. It aims at improving 
some limitations which may be due to the non-grid array technique.  For ultrasound imaging, 
the non-grid array is a better solution than the standard grid based arrays as it provides better 
resolution and a better sensibility to the array but for applications needing a large main lobe 
(directivity), the use of wide elements is not the best solution as they are too directive. To 
keep the signal-to-noise ratio improvement property of the non-grid array technique and at the 
same time maintain a large directivity, size varying elements is good solution (Figure  3.13). 
The small elements contribute a lot to the beam directivity whereas the large ones provide a 
good sensitivity. This array presents the property to increase the irregularity of the non-grid 
array and thus contributes to a more reduced grating lobes effect [Bakary Diarra et al. (2013)].  

 
The realization of such an element positioning from the non-grid array is not easy. In 

the non-grid array presented in Section  3.3. , the element size is constant and it is quite simple 
to choose a condition controlling the overlap between neighboring elements. In the variable 
size array, each element has its size chosen randomly in the predefined interval and any 
condition does not suit to all of them to avoid overlap. To resolve this problem, the overlap 
control function uses the size of each single element during its placement to know if any 
previous element has not occupied the position chosen. This strategy permits to maintain the 
same probability of finding a position for each element. 

Figure 3.13: principle of variable-size non-grid array. The element size is randomly chosen in an interval between 0.4 λ 
and 0.8 λ. The conjugation of the randomness of the element size and their positions extremely decreases the grating lobes 
and permit to obtain a good sensitivity and directivity. 

wx2 

wy1 

wx1 

    wy2 
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3.4.2.  General beams characteristics  

The beam characteristics of the variable size array are compared to those of the standard 
sparse array with a number of active elements fixed to 256. The size of the elements of the 
standard sparse arrays (w) is kept equal to a mid-wavelength  when the element size 
ranges from  to  (a wider interval can be used) in variable size array (Figure  3.14b). 
The array footprint is constant and identical in the two cases. 

The PSF phantoms presented in Figure  2.11a-b are used to perform the PSF of both 
arrays. In the lateral direction, if no steering is considered, the two arrays have the same PSF 
given by Figure  3.14c and d. When the scatterers are off-axis, the mirror images of the 
scatterers due to the grating lobes appear in the standard sparse array PSF (Figure  3.14e) 
while any effect is detected using the variable size array (Figure  3.14f).   

 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

(i) (j) 
Figure 3.14 : comparison of the PSF of the 256-elements of 0.5 λ width (a) standard sparse and (b) variable size array with a 
hanning apodization. Illustration of the grating lobes effect in unsteered (c)-(d) and steered (at 45°) cases on the 2D array PSF. 
In standard sparse array the grating are so important that they modify the image quality and make difficult its interpretation 
while in the variable size array technique any  grating lobes effect is not visible. 
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In the elevation direction, in both steering and unsteering cases, the standard sparse array 
present grating lobes effect (Figure  3.14g-i) whereas any grating lobes is noticeable with the 
variable size (Figure  3.14h-j). 

3.5.  Optimization results  

In this section, first, the optimization methods proposed in literature (equation (2.28) 
and (2.29)) and our improved version (equation (3.4)) are compared. This comparison is 
conducted only on the regular standard sparse array. In the rest of the optimizations, we use 
the improved version of the algorithm. Secondly, the optimization is applied to the non-grid 
and the variable size arrays, new element positioning strategies proposed in this study. In all 
the optimizations, the edge elements reduction technique is combined to the sparse filling of 
the arrays to further reduce its active elements number.  

The optimization is applied to all the array configurations presented: the standard sparse 
array, the non-grid array and to the variable size element array. The final active element 
number and the sidelobes level value are the main outputs of the optimization. In each case, 
the PSF and the beam profile of the optimized array are compared to those of the 
corresponding dense array. The energy loss and the beam deterioration due to the element 
number reduction are presented too. The main purpose of these comparisons is to illustrate the 
beam improvement capabilities in terms of grating lobes reduction, energy maximization, 
main lobe thinning and active element number reduction, provided by the proposed non-grid 
technique. The reference dense array is the ellipsoidal part of the 64x16 2D array containing 
828 elements. 

 
The algorithm input parameters are: 

 the authorized sidelobes level ,  
 the main lobe width set to be equal to that of the dense array at – 6 dB,  
 the number of iteration  fixed in each optimization with a complete visit of the whole 

probe in each iteration.  

The stabilization term determining the relative importance of the different parts of the cost 
function (  is set to  and to  as in [Trucco (1999)]. This stabilization 

Figure 3.15:  (a) 64x16 dense array main-lobe width in lateral and elevation direction and (b) the sidelobes apparition when the 
2D array is sparsely filled without any optimization. The main-lobes are used to initialize the algorithm when optimizing sparse 
arrays. 

Sidelobes  

(a) (b) 

Δθ = 0.7° Δϕ = 6° 
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coefficient can vary between 1e 5 and 1e 3 without noticeable change on the 
optimization results. The threshold of optimization coefficients is . The 2D array is 
filled about 50 to 40% at the beginning of the algorithm (any percentage can be used but 
not directly the dense array). 

3.5.1.  Optimized standard sparse array 

The optimization results presented are performed using the new approach we proposed 
[B. Diarra, Liebgott, Robini, et al. (2012)] and they are compared to the best one obtained 
with the (reference) methods of [Trucco (1999)] and [Chen et al. (2010)]. The number of 
iterations is fixed to 5000. 

3.5.1.a  Evolution of element number and beam profiles 

The optimization enables a reduction of 79% of the element number (from 828 to 170) 
using the proposed technique. For the same beam characteristics, the reference methods 
provide a reduction of about 72% (from 828 to 235). The mean value of active element 
number decreases to 172 after 200 iterations and remains stable till 1500 iterations. The 
lowest value 170 is reached after 1501 iterations and remains till the end of the optimization 
(Figure  3.16a). The standard deviation of the active element number is 6 and the cost function 
mean value decreases slightly during the optimization (Figure  3.16b).  

  
In terms of beam features, the lateral direction sidelobes are lower than  dB as 

expected and its main lobe width is 0.6° in the sparse array against 0.7° in dense array 
(Figure  3.17c). The sparse array provides a main lobe of 4.6 degree while that of the dense 
array is 6° in elevation direction. The sidelobes are 3 dB higher than expected in this direction 
(Figure  3.18d). A slight reduction of the grating lobes level is noticed falling from  to 

 dB and from  to  dB in lateral and elevation direction, respectively.  The energy 
loss caused by the element reduction to 170 is about 15 dB, the same in each direction 
(Figure  3.19e-f). In practice, this energy loss is important and it has an impact on the array 
imaging features mainly the penetration depth. 

Figure 3.16: (a) the evolution of active elements number in 7 optimizations processes of the 64x16 sparse array and (b) the 
cost function evolution as a function of the iterations number. The standard deviation of the active element number is 6 
and that of the cost function is about 0.3 unit. 

(a) (b) 
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3.5.1.b  Comparison of PSF  

The comparison aims to put in evidence the imaging capabilities of the optimized arrays 
compared to the dense array. The PSF is simulated in both unsteered and steered cases using 
the PSF phantoms presented in Figure  2.11a-b. If no steering is involved, the PSF of the dense 
array (Figure  3.18a) and that of the sparse array (Figure  3.18b) are similar in the lateral 
direction while an improvement of the resolution is provided by the sparse array in elevation 
direction (Figure  3.18d). This resolution improvement comes from the main lobe reduction 
noticed in Figure  3.17d, the grating lobes effect is less significant too. In the steering case, the 
scatterers are placed at (45°, 45°) in the two directions. Contrary to the unsteering case the 
grating lobes are visible in the lateral direction with both the dense (Figure  3.18e) and the 
sparse array (Figure  3.18f) and their effect is more increased in the elevation direction 
(Figure  3.18g-h). This increase is linked to the fact that when the beam is steered, the grating 
lobes which were outside the field of view become completely visible at the same time as the 
main lobe. The sidelobes are slightly higher than – 40 dB in the elevation direction 
(Figure  3.18d-h). 

Figure 3.17: comparison of the beam profiles of (a) the dense array of 828 elements and (b) the optimized sparse arrays of 170 
elements in (c)-(e) lateral and (d)-(f)  elevation directions. Beams (c)-(d) show the ratio between the main lobe and the grating of 
each array, (e)-(f) represent the energy loss caused by the sparse array technique which is 15 dB. 

(c) (d) 

(a) (b) 

(e) (f) 
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3.5.2.  Optimized non-grid sparse array 

The non-grid array optimization necessitates adapting the element coordinates in the 
cost function because there is any relation between them as in the standard sparse array. The 
comparison of the results of optimized 2D sparse array and the dense array (reference) 
permits to appreciate the potentiality of the SA algorithm when applied to the non-grid array 
to allow the design of usable probes for 3D imaging.  

3.5.2.a  Optimization of 0.7 λ element arrays 

Evolution of element number  

The optimization of the non-grid array is performed when elements size is maintained 
constant and greater than a mid-wavelength (0.7 λ in this case) to maximize the probe active 
surface. For element size lower or equal to 0.5 λ, the optimization results are similar to that of 
the standard sparse arrays (except the grating lobes) presented in Section  3.5.1.  

(c) (d) 

(e) (f) 

(h) (g) 
Figure 3.18: (a)-(b) and (c)-(d)  are respectively the PSF in lateral and elevation direction with the dense and the optimized 
sparse arrays when no steering is considered, (e)-(f) and (g)-(h) are the same PSF when the scatterers are placed at (45 °, 45°) off 
axis. The PSF of the sparse  array is similar to that of the dense array but with more important sidelobes. Howether the sparse 
arrays has  better grating lobes reduction capabilities and a better spatial resolution (thinner  main lobe).  

(a) (b) 
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Figure  3.19a represents the evolution of the number of active elements during the 
optimization of the 64x16 non-grid array initially filled with an element number between 300 
and 200. The element size is fixed to  (possible with the non-grid array). The array 
footprint is constant and equal to that of the 64x16 dense array (Figure  3.17a). The initial 
element number is subject to a criterion: it must fulfill the expected beam features. If this 
initial number is too low to provide the imposed beam constraints (sidelobes, main lobe 
width) the algorithm keeps this number during all the optimization procedure because the 
active element number increase is not allowed during the optimization.  

In the optimization process, the number of iterations is important even though up to a 
certain value the array thinning is slow (with few elements turned off). The evolution of the 
active element number in Figure  3.19a shows 3 main zones zoomed in (b) and (c); the first 
zone (Figure  3.19b) goes from 1 to about 250 iterations, the important part of the thinning is 
performed in this zone with a fast element number decrease going from 240 to 160 active 
elements. The second zone (Figure  3.19c) is between 250 and 6000 iterations and is 
characterized by a slight but a continuous decrease of the active element number from 160 to 
150. Depending on the application, one may stop the optimization after some hundreds of 
iterations because only few elements will be deactivated after the first zone (about 10 
elements in this case). The last zone goes from 6000 to 10000, only two elements are 
deactivated (from 151 to 149) in 4000 iterations. It is not relevant to let the optimization 
continue as far. The standard deviation of the optimization is about +/-8 elements between the 
different runs independently of the iterations number. The minimum active elements number 
reached is 142. This number is used for the PSF simulations.   

Comparison of the PSF of the dense and the optimized arrays 

The beam profile phantoms presented in Figure  2.11a-b-c are used. The sector 
considered ranges from  degrees to 90 degrees, corresponding to the maximum possible 
scanning area. The transmission focus is at 50 mm whereas those in reception go from 40 to 
60 mm by a step of 5 mm. The results in the lateral direction when the scatterers are on the 
arrays axis have the same features in the two methods shown by Figure  3.20c-d. In the 
elevation direction, the mirror images due to the grating lobes are important in the dense array 
(Figure  3.20e) whereas the non-grid permits a complete suppression of any undesired effect 
on the PSF (Figure  3.20f). The effect of the grating lobes is more important in the steering 
case because the latter get close to the probe axis and thus their effect becomes more 
significant on the array resulting echoes.  

Figure 3.19: mean and standard deviation values of seven optimized non-grid arrays. The variation is about +/- 8 
elements. The mean active element at the end of the optimization is 142 and presents only 8 dB energy loss compared to 
the dense array. Such an array can be easily controlled by most of the current scanners and makes possible fast 3D 
imaging. The iterations number can be chosen less than 10000 to have a good optimized array. 

1 3 2 
1 2 and 3 

(a) (b) (c) 
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Figure 3.20: comparison between (a) the dense 64x16 array and (b) the optimized non-grid array of 142 elements, (c)-(d) 
and (e)-(f)  are respectively the PSF in lateral and elevation direction with the two arrays when no steering is considered, 
(g)-(h) and (i)-(j) are the same PSF when the scatterers are placed at (45 °, 45°) off axis, (k)-(l) represent the beam profiles 
in lateral and elevation direction showing the energy loss caused by the element number reduction. The PSF of the non-
grid array is very similar to that of the dense array but with a better grating lobes reduction capabilities in the cases of 
steering. The energy loss is limited by the increase of the element size and is about 8 dB against 15 dB in the standard 
sparse arrays.  

(a) (b) 

(c) (d) 

(e) 

(i) 

(f) 

(j) 

(l) (k) 

(h) (g) 
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In Figure  3.20g, performed by the dense array, the mirror images of the scatterers 
appear near the left-hand corner, but in the non-grid array any mark does not exist on the PSF 
presented in Figure  3.20h. In the elevation direction, the ratio between the main lobe and the 
grating is about 20 dB in the dense array against 48 dB in the non-grid array (Figure  3.20l), 
for that reason the PSF presents stronger mirror images (Figure  3.20i) capable of modifying 
the array image characteristics in a realistic imaging situation. The non-grid array, in addition 
to the grating lobes reduction, improves the spatial resolution in the elevation direction giving 
thinner scatterer points than the dense array in (Figure  3.20f-j).  

After the undesired lobes suppression, an important characteristic expected from the 
optimized arrays is the energy level compared to the dense array. In this purpose, the beam 
profile of the non-grid array is normalized by that of the dense array to know exactly the 
energy ratio between them. Figure  3.20k-l corresponding to the beam profile in the lateral and 
elevation direction confirm that the energy loss is only 8 dB for an element number reduction 
going from 828 (dense array) to 142 (non-grid array), a reduction of 83%, in addition an 
improvement of the main lobe is noticed in the elevation direction leading to an better image 
resolution.  

3.5.2.b  Optimization of 0.8 λ element arrays 

Evolution of element number and energy function 

The same optimization process is applied to a 0.8 λ non-grid array with the same 
beams criteria. Such wide element cannot be used in the standard 2D array design at the risk 
of deteriorating the array beam features due to the grating lobes as shown in the Section  3.3.3. 
During the optimization, the active element number decreases sharply from the beginning to 
250 iterations falling to 103 elements in Figure  3.21a. At the end of the optimization the 
standard deviation is less than 2 elements. Concerning the energy function, its variation 
follows the same dynamic as the element number with a standard deviation less than one unit 
(Figure  3.21b). A number iteration fewer than a thousand is largely sufficient in this case. 

 

 

Comparison of the PSF of the dense and the optimized arrays 

The PSF simulations are performed on the PSF phantoms in Figure  2.11a-b-c. Only 
the steering case is considered here as it presents the worst case of the array beam pattern. The 

Figure 3.21: the mean and standard deviation values of seven optimized non-grid array. The variation is about +/- 2 elements. 
The mean active element at the end of the optimization is 102 and presents only 9 dB energy loss compared to the dense array. 
The reduction ratio is about 88% compared to the dense array. 

(a) (b) 



 Chapter 3. New positioning strategies in 2D arrays 
 

 

74 Bakary Diarra 

 

simulations are realized by the optimized non-grid array of 102 active elements 
(Figure  3.21a). The PSF of the non-grid array does not present any grating lobes neither in the 
lateral (Figure  3.22d) nor in the elevation directions (Figure  3.22f) contrary to that of the 
dense array (Figure  3.22c-e). Moreover, the elevation direction resolution is improved since a 
thinner main lobe is provided by the non-grid array (Figure  3.22h).  

Concerning the energy loss caused by the element number reduction, it is about 9 dB 
with 102 active elements (88% thinning). After the main lobe zone, the optimized array beam 
profile presents a flat beam pattern without any undesired lobes. These non-grid arrays are 
controllable by current scanners. They constitute a hope for 3D ultrasound imaging. 

. 

 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
Figure 3.22: comparison between (a) the dense 64x16 array (828 elements of 0.5 λ) and (b) the optimized non-grid array 
of 102 elements (of 0.8 λ width), (c)-(d) and (e)-(f)  are respectively the PSF in lateral and elevation direction with the two 
arrays when steering at (45 °, 45°) off axis. The PSF of the non-grid array is very similar to that of the dense array but 
with better grating lobes reduction capabilities mainly in the case of steering. The energy loss is limited by the increase of 
the element size and is about 9 dB against 15 dB in the standard sparse arrays.  
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3.5.3.  Optimized variable size (non-grid) sparse array 

Firstly, the variable size non-grid array is optimized to its possible low element number 
based on the optimization criteria defined in the standard and the non-grid sparse arrays 
before. The results of this optimization are compared to the dense array.  

Evolution of element number  

The optimization of the variable size array is performed with an iteration number of 
2500, enough to reach a steady optimized element number. The lowest active element number 
obtained after 1200 iterations is 161. This active element number is maintained for the 
comparison with the dense array. 

Comparison of the PSF of the dense and the optimized arrays 

The comparison between the dense array (Figure  3.23a) containing 828 elements and 
the optimized variable size array (Figure  3.23b) with 161 elements is made using the 
phantoms of Figure  2.11. The comparison is about the PSF and the beam profiles. The PSF of 
the dense array, when any steering is involved was presented previously (Figure  3.20a-e) with 
important grating lobes effect while any mirror image exist on the PSF of the variable size 
array (Figure  3.23c-e). This efficiency of the variable size array comes from the non-grid 
placement conjugated to the variation of the elements size. In case of steering, the gating 
lobes become more important in the dense array (Figure  3.20g-i). This steering does not 
impact the capabilities of the variable size case for which the PSF is clean of any unwanted 
effect (Figure  3.23d-f). The beam profiles confirm that the grating lobes of the dense array are 
35 dB and 17 dB against 42 dB and 38 dB in the variable size array in the lateral and 
elevation directions, respectively. In terms of energy ratio, despite the considerable elements 
number reduction (80%), the energy loss is about 11 dB against 15 dB in the standard sparse 
arrays. The variable size array is a good strategy able to include the advantages of the non-
grid array and the standard regular grid. The size of the element can be chosen in a large 
interval based on the targeted application. 
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3.5.4.  Comparison between the three methods 

Three element disposition techniques (the standard, non-grid and variable-size arrays) 
are studied in this thesis. To give an overview of all these techniques, all three are optimized 
at a fixed element number for comparison purposes with an iteration number of 2500. This 
comparison aims to evaluate their relative efficiency in terms of overall imaging capabilities: 
the signal-to-noise ratio (beam energy), the resolution (main lobe width) and contrast (grating 
lobes). The array footprint is constant and identical in all three cases.   

3.5.4.a  Element number fixed to 128 

The arrays studied are represented in Figure  3.24 with (a) the standard sparse, (b) the 
non-grid sparse and (c) the variable size non-grid arrays. In the standard and the non-grid 
sparse arrays the element size is kept equal to a mid-wavelength  and varies from  
to  in the variable size array. The active surface of the latter is more important than that 
of the two formers which have identical surfaces. The comparison of the PSF aims at 

Figure 3.23: (a) the 64x16 dense array of 0.5 λ-width elements and (b) the optimized variable size array of 161 elements sized 
between 0.4 λ and 0.8 λ, (c)-(d) the lateral and (e)-(f) the elevation PSF without and with steering at (45°, 45°) using the variable 
size array. The beam profiles in (g) show the ratio between the main lobe energy and the grating lobe energy ratio in each case 
whereas (h) shows the energy loss compared to the dense array (11 dB).  

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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highlighting the grating lobe reduction capability of each method and the energy ratio 
between the three techniques.  

Comparison of the PSF 

The PSF of the three configurations are compared by simulations using the phantoms 
presented in Figure  2.11a-b. The simulations are performed in both unsteering and steering 
cases. More often the scanning sector exceeds seldom 60 degrees (+/- 30°) but to really study 
the limits, we extend this sector to 180 degrees (+/- 90°) the maximum sector width. The 
transmit focus is situated at 50 mm and the multiple reception foci are set to coincide with the 
scatterers positions (Figure  2.11a-b). When the scatterers are on the probe axis (unsteering) 
the results of the standard sparse, the non-grid and the variable size arrays are displayed by 
Figure  3.24d-e and f respectively. The result of the standard sparse array shows important 
mirror images of the scatterers visible on the two upper corners of the PSF (Figure  3.24d). In 
the non-grid based array case presented by Figure  3.24e, the grating lobes are quasi-inexistent 
with just one small mirror image in the right-hand corner while in the variable size array the 
grating lobes are so weak that any mark can be detected on the PSF (Figure  3.24f).   

In the steering case, in both the lateral and elevation directions, the grating lobes effect 
are more significant in the standard sparse arrays (Figure  3.24g-h) with an effect more 
emphatic in the elevation direction. This latter is due to the small number of elements in this 
direction leading to a grating lobe level about – 20 dB. The non-grid array results 
(Figure  3.24i-j) are clearly better than that of the standard sparse array. In the lateral direction, 
there is any visible effect of the grating lobes but residual marks exist in the elevation 
direction Figure  3.24j.  

The optimal performances are provided by the variable size (non-grid) array which 
completely removes any grating lobes effect on the resulting PSF in both directions 
(Figure  3.24k-l). The efficiency of this latter technique resides in its deep randomness in both 
element positions and size. The beam profile shows a grating lobes below – 45 dB with a 
quasi-flat beam features outside the main lobe area contrary to the standard techniques 
Figure  3.24a.   
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(a) 

(b) 

(c) 

(g) 

(i) 

(k) 

(d) 

(e) 

(f) 

(h) 

(j) 

(l) 
Figure 3.24:  the optimized (a) standard sparse with 128 elements of 0.5 λ, (b) non-grid with 128 elements of 0.5 λ and (c) 
variable size arrays with 128 elements between 0.4 λ and 0.8 λ, (d)-(e)-(f) represent the elevation direction PSF without 
unsteering using standard, non-grid and variable size array respectively.  In the steering case, the scatterer are placed at (45°, 
45°) and the results in lateral and elevation direction are displayed in (g)-(h) in standard sparse, (i)-(j) the non-grid and (k)-(l) 
in the variable size arrays.  
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Comparison of beam profiles and energy ratio  

The beam profiles of the three techniques are compared in terms of main and grating 
lobes. The main lobe width of all configurations is identical despite the use of wide elements 
in the variable size (Figure  3.25a). The grating lobes are respectively – 20 dB, – 40 dB and –
45 dB in the standard, the non-grid and the variable size arrays.  In this optimization process 
the constraint was the number of active elements which is fixed and the expected sidelobe 
lobes level (– 40 dB). As output, the sidelobes value is about – 35 dB in the standard array 
against – 39 dB in the non-grid array and less than – 42 dB in the variable size array.  

In terms of energy, the beams of the sparse and the non-grid arrays are all normalized 
by that of the variable size array. The variable size provides an energy 16 dB more important 
than the standard sparse array and 13 dB better than the non-grid array (Figure  3.25b). These 
results prove the superiority of the new approaches over the standard methods. These results 
will be different when wider elements are used in the non-grid array (  or ) mainly in 
terms of energy. Realistic simulations are made on a cyst phantom to validate all these results 
obtained with the three arrays. 

 

3.5.4.b  Element number fixed to 256 

The common channel number in the most advanced ultrasound scanners today is 256. 
To exploit all the capability of these scanners using sparse 2D arrays, the active element 
number of the standard sparse array and the non-grid sparse arrays is fixed to 256 during the 
optimization. Their beam profiles are then compared to that of the dense array of 828 
elements to evaluate their suitability to 3D ultrasound imaging. The arrays studied are 
represented by Figure  3.26 with (a) the dense array, (b) the standard sparse, (c) the non-grid 
sparse and (d) the variable size non-grid arrays. The element size is kept equal to a mid-
wavelength  in the dense and the standard sparse array,  in the non-grid sparse array 
and varies from  to  in the variable size array. Consequently, the active surface of 
the non-grid arrays (Figure  3.26c-d) is more important than that of the standard sparse array 
even though the array footprints are the same in all cases. 

Figure 3.25:  beam profiles of (a) the standard sparse, the non-grid and the variable size arrays showing the ratio between the 
main and the grating lobes of each method and (b) the energy ratio between the three techniques for the same number of active 
element of 128. The variable size array method provides a better overall sensitivity with an energy 16 dB and 13 dB greater than 
that of the standard sparse and the non-grid arrays, respectively. Moreover, the variable size array presents the lowest grating 
lobe level, 25 dB compared to the standard sparse array and 5 dB compared to the non-grid array.   

(a) (b) 
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Figure 3.26: (a) the ellipsoidal part of the 64x16 2D array of 828 elements, the optimized (b) standard sparse  array with 
256 elements of 0.5 λ, (b) non-grid array with 256 elements of 0.7 λ and (c) variable size arrays with 256 elements between 
0.6 λ and 0.8 λ . The beam profile of each array is compared to that of the dense array to evaluate the energy loss and the 
grating lobes due to the element number reduction. The comparison to the dense array in both lateral and elevation 
direction is (e)-(f) for the sparse array, (g)-(h) for the non-grid array and (i)-(j) for the variable size array. In the standard 
sparse array, the energy loss is about 13 dB compared to the dense array whereas it is 0 dB in the non-grid arrays. The 
grating lobes are -39 dB and – 20 dB in standard sparse array, – 48 dB in non-grid array and at least – 51 dB in variable 
size array against -36 dB and -17 dB in dense array in lateral and elevation directions respectively. 

(a) (b) 

(c) 

0 dB 0 dB 

0 dB 0 dB 

- 39 dB 
- 20 dB 

- 13 dB 
(d) 

- 13 dB 
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The beam profile of each optimized array is normalized by that of the dense array to 
evaluate the energy loss due to the element number reduction; a great importance is also 
attached to the grating lobe reduction capability of each array in relation to the dense array. In  
the standard sparse array, the energy loss is about – 13 dB compared to the dense array and 
the grating lobes are slightly more reduced with –39 dB against – 36 dB in lateral direction 
(Figure  3.26e) and –20 dB against –17 dB in the elevation direction (Figure  3.26f). Using the 
non-grid and the variable-size arrays, the energy loss is completely compensated and the 
grating lobes are drastically reduced (Figure  3.26g to j). With the non-grid array, the grating 
lobes are 12 dB (– 48 dB against –36 dB) and 31 dB (– 48 dB against – 17 dB) lower 
compared to the dense array in lateral and elevation directions respectively (Figure  3.26g-h). 
In the variable-size array, thanks to the randomness of the element size, the grating lobes 
reduction goes from 16 dB (– 52 dB against –36 dB) in lateral direction to 34 dB (–51 dB 
against –17 dB) in elevation direction compared to those of the dense array (Figure  3.26i-j). 
These results show the potential of optimized arrays in terms of real-time 3D ultrasound 
imaging using few active elements within the 2D matrix arrays without any deterioration of 
their beam properties. The methods developed are independent from the array dimensions as 
presented in [B. Diarra et al. (2013)].  

3.6.  Phantom simulations 

In this section, the different optimized arrays of the standard, the non-grid and the 
variable size arrays are tested in realistic phantom simulations. The dense array is always the 
reference array except in the variable array‘s case. In the latter a direct comparison is made 
between the three optimized arrays when the active element number is fixed. 

3.6.1.  Comparison of the dense and standard sparse arrays 

The first simulation compares the non-grid array technique to the standard sparse array. 
The main expected improvement from the non-grid method is a considerable reduction of the 
image noise (grating lobes) which translates in an increase in image contrast and the use of 
wide element maximizes the probe’s active surface leading to a better sensitivity (more 
energy). In the standard sparse array, the element reduction efficiency is an interesting 
property but, because of its important energy loss, the sparse array remains most of the time a 
theoretical approach not exploited in practice. In the first example, the same number of active 
elements is used in both standard and non-grid sparse arrays but with different size. The 
squared element size is 0.5 λ in dense and sparse array to limit the grating lobe whereas their 
size is 0.8 λ in the non-grid array (larger element size can be used to more maximize the probe 
sensibility).   

3.6.1.a  Cyst phantom  

The cyst phantom is a 60×10×60 mm3 numerical phantom. There are five anechoic 
cysts (empty of scatterers) aligned at different depths and parallel to five hyper-echoic 
inclusions (mean scattering amplitude ten times higher than the background amplitude). The 
cysts have a spherical shape with their diameter ranging from 2 to 6 mm. Five hyper-echoic 
point scatterers are also placed at −20 mm in the lateral direction. In this case, the simulations 
were performed using the same number of active elements (177) for both the standard and 
non-grid sparse arrays. The TX focus is at 60 mm and the foci in reception are located at 30, 
50, 70, and 90 mm. Figure  3.27 displays the simulation results for (a) the dense array, (b) the 
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standard sparse array, and (c) the non-grid array. The B-mode images are shown together with 
the profiles at a 60-mm depth. All data are normalized to the peak echo value in the profile 
obtained using the dense array. 

Using the non-grid array, the energy loss is about −5 dB compared to the dense array, 
whereas it is about −18 dB in the standard sparse array. The difference between the 
background and the hyper-echoic cyst (at a 60-mm depth) is 20 dB for the dense array, 21 dB 
for the standard sparse array, and 23 dB for the non-grid sparse array. This contrast 
improvement can be explained by the lower grating-lobe level of the non-grid sparse array. 
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(a) 

(b) 

(c) 
Figure 3.27: Imaging of a cyst phantom: frames and 60-mm-depth profiles obtained with (a) the 64×16 dense array, (b) the 
optimized standard sparse array with 177 elements, and (c) the optimized non-grid sparse array with 177 elements. 
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3.6.1.b  Needle phantom  

The second numerical phantom is a 50 50 30-mm3 tissue volume in which a needle is 
inserted. The homogeneous tissue region is filled with scatterers whose positions are 
randomly sampled and whose strengths follow a Gaussian distribution. The needle is 
cylindrical, 20 mm long with a 0.3-mm radius, characterized by a scatterer concentration 50 
times higher than that of the tissue. The TX focus is at 60 mm and the foci in reception are 
located at 35, 45, 55 and 65 mm. The images obtained with the dense, standard sparse, and 
non-grid sparse arrays described in the previous section are shown in Figure  3.28 together 
with a reference A-line intersecting the needle. All data are normalized to the peak echo value 
obtained from the needle using the dense array. Compared to the dense array, the energy loss 
is about −18 dB for both the non-grid and standard sparse arrays. The needle echo is 26 dB 
higher than tissue for the dense array and 25 dB higher for both the non-grid and standard 
sparse arrays. 
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Figure 3.28: Imaging of a numerical phantom (needle inserted in an homogeneous tissue volume): frames and A-lines 
obtained with (a) the 64×16 dense array, (b) the optimized standard sparse array with 177 elements, and (c) the optimized 
non-grid sparse array with 101 elements. 

(b) 

(c) 

(a) 
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3.6.2.  Simulation of the variable size non-grid array 

3.6.2.a  Cyst phantom  

The phantom used in the simulations to compare the optimized sparse, non-grid and 
variable size arrays is a General Purpose Ultrasound phantom of the Model 054GS 
(Figure  3.29a) manufactured by the society CIRS and containing wires and different 
echogenicity inclusions [Rachedine and Zerhouni (1993)]. Its dimensions are 18x16x10 cm3 
(depth x width x height). All gray scale inclusions have a diameter of 8 mm, the horizontal 
and vertical targets are 0.1 mm-diameter points spaced of 2 cm. The resolution targets have a 
diameter of 0.8 mm and those of the near-field are placed from 1 to 6 mm with a radius of 0.1 
mm. For the simulations the penetration depth is fixed to 10 cm, thus the theoretical phantom 
containing 500 thousand scatterers has a dimension of 10 x16 x 10 cm3. Figure  3.29b shows 
only the part of the phantom chosen in these simulations going from 0 to 10 cm depth. The 
size of the wires was kept identical to 0.8 mm in the simulations to be able to see them 
correctly in all the depth range. 

 

3.6.2.b  Simulation results  

The simulations are realized on the phantom presented in Figure  3.29. The images 
confirm the better signal-to-noise ratio of the variable size array compared to both sparse and 
non-grid array. An A-line is selected to emphasize the amplitude ratio shown before in 
Figure  3.28. The overall image quality is improved decreasing more the grating lobes as 
shown by Figure  3.30 The image of Figure  3.30a obtained by the standard sparse array allows 
observing all the wires and cysts in the phantom but the near-field wires presents a worse 
contrast compared to the non-grid arrays (Figure  3.30b). The best contrast is provided by the 
variable size array with any noticeable undesirable effect on the whole simulated image 
Figure  3.30c. 

   

Figure 3.29: the experimental phantom (a) its dimensions and (b) its internal characteristics. Information from the website of 
CIRS (http://www.cirsinc.com/products/all/80/general-purpose-ultrasound-phantom/). 

(a) (b) 
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3.7.  Summary of optimized arrays 

The beam characteristics of the dense and the optimized arrays are summarized in 
Table  3.3. The number of active elements, the grating lobes and the energy are compared to 
those of the dense array to emphasize the potentiality of each array configuration. The non-
grid array permits to reduce the active element till 102 elements with better energy 
conservation against 170 elements in the standard sparse array with an important energy loss. 
For big arrays such as a 64x64 array the difference between the energy of the standard and 
non-grid sparse arrays can exceed several tens of dB [B. Diarra et al. (2013)]. 

Figure 3.30:  the cyst phantom simulations and the energy ratio using the optimized (a) standard sparse, (b) non-grid and (c) 
variable size arrays for the same number of active element of 128. The variable size array permits to obtain an energy 16 dB and 
13 dB better than the standard sparse and the non-grid array respectively. 

(b) 

(a) 

(c) 
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Table  3.3: the comparison of the standard ,the non-grid and the variable size arrays to the 64x16 dense array. The grating lobes, the 
main lobe and the energy ratios between each sparse array are mentionned. The non-grid array give the best configuration in terms 
of energy and active element whereas the variable size array presents the lowest grating lobes. 

The optimization when the active element number is fixed to 256 shows the superiority 
of the non-grid and the variable size arrays proposed in this study over the standard sparse 
array. With only 256 active elements (about 70% reduction), the same energy is transmitted as 
in the dense array containing 828 elements whereas a loss of 13 dB is noticed with the 
standard sparse array (Table  3.4). In addition the grating lobes are suppressed as they remain 
at least 40 dB lower than the main lobe energy in the two non-grid arrays. 

 
 Dense array Standard sparse 

array 
Non-grid  

sparse array 
Variable-size 

array 
Number of elements 828 256 256 256 

Element size λ/2 λ/2 7λ/10 3λ/5- 4λ/5 
Lateral / Elevation main lobe 

width at −6 dB (degree) 0.7 / 6 0.6 / 4.6 0.6/ 3.7 0.6/ 3.8 

Lateral/ Elevation grating-lobe 
level (dB) −35.6/−17.3 −39 / −20 −48/ −48 −52/ −51 

Energy (dB) 0 −13 0 0 

Active surface (mm²) 49.5 12.4 26 25 
Table  3.4: the comparison of the standard, the non-grid and the variable size arrays to the 64x16 dense array when each array is 
optimized to 256 active elements. The grating lobes, the main lobe and the energy ratios between each sparse array are mentionned. 
The non-grid and the variable-size arrays give the same property in terms of energy whereas the variable size array presents the 
lowest grating lobes. 

3.8.  Conclusion  

In conclusion, the extension of the optimization algorithm based on the simulated 
annealing allows obtaining at least the same thinning level as the reference methods available 
in the literature. The beam profile well fulfills the expected beam features. The new element 
positioning strategies permit obtaining a grating lobe reduction from 5 dB to 20 dB compared 
to the classical methods used currently. When the number of the active elements is fixed to 
256, the energy loss compared to the initial dense array can be completely compensated and 
the grating lobe reduction goes from 9 dB to 31 dB in lateral and elevation direction 

 
Dense array Standard 

sparse array Non-grid sparse array Variable size 
array 

64x16 64x16 64x16 64x16 

Number of elements 828 170 142 102 161 

Element size λ/2 λ/2 7λ/10 4λ/5 2λ/5 − 4λ/5 
Lateral / Elevation main lobe 

width at −6 dB (degree) 0.7 / 6 0.6 / 4.6 0.6/ 3.7 0.6 / 3.9 0.6/4 

Lateral/ 
Elevation 

grating-lobe 
(dB) 

On-axis −35.6/−17.3 −38.6 / −19.2 −40.9/ −40 −40.1/ −39 
 

−42/−41 
 

Off-
axis(Steering) −27.8/−16.3 −28.5 / −21 −38.2/ −33.8 −38 /   −30.2 −42/−38 

Energy (dB)  0 − 15 − 8 − 9 − 11 

Active surface (mm²) 49.5 8.2 13.5 12.6 11.5 
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respectively. These new strategies allow the use of wide elements leading to a significant 
improvement of the sensitivity of the arrays (better signal-to-noise ratio) and an intrinsic 
active element number reduction for a given array footprint. The increase of the element size, 
even slightly, provides a resolution improvement by giving sharper main lobes. In 
applications needing a large directivity, both wide and small elements can be put together to 
keep the advantage of both sensitivity and directivity. The simulations on phantoms confirm 
the results obtained by the PSF. 

The technological realization of the proposed technique seems more difficult than 
regular grid based array used nowadays. But discussion with many manufacturers confirms 
the feasibility of these arrays even with the piezoelectric elements [Fleury (2013)] and no 
problems exist in the CMUT elements case. 

In the next chapter, the measurement results performed by the 8x8 sub-array of 8x24 2D 
array prototype manufactured during this study are exposed. The measurements aimed at 
validating the optimized sparse array techniques proposed in the previous chapter.   
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Chapter 4  

Experiments    

After the theoretical studies of the acoustical beam properties of the 2D arrays, this 
chapter presents a short experimental investigation of the proposed techniques with two small 
prototype probes. The first prototype is an 8x8 2D array available in MSDLab (Florence) and 
the second, an 8x24 2D array, has been manufactured by Vermon (Tours) for CREATIS 
(Lyon). The Ula-OP [Tortoli et al. (2009), Boni et al. (2012)] scanner used in these 
measurements is described, the beam profiles and the imaging capabilities of the two probes 
are presented with the comparison between the measurements and simulations in the 8x24 2D 
array case.  

4.1.  Introduction  

The characteristics of the two prototype probes are summarized in the Table  4.1. The 
8x24 array probe was realized based on bibliography and simulation results. Two 
configurations of the 8x24 array are considered in the optimization: (a) the full array with the 
192 elements and (b) the central 8x8 sub-array of 64 elements. The measurements are realized 
only with the 8x8 sub-array and its corresponding optimized sparse arrays as the scanner can 
control at most 64 elements simultaneously.  

The objective is to validate experimentally the optimization algorithm developed in the 
previous chapter by comparing the results obtained in the measurement to those of the 
simulations. The phantom considered for this validation is the cyst phantom described in the 
Section  3.6.2.a  and represented by Figure  3.29. 

In the volume scanning, both the rotational and the pyramidal acquisition techniques 
(Figure  2.4) are tested. The rotational acquisition is used to show simultaneously 
perpendicular planes while the pyramidal acquisition permits to fix the maximum number of 
parallel planes that can be acquired in the elevation direction without much image quality 
deterioration. This latter technique gives an idea on the size of volumes that can be acquired 
by the array.  
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4.2.  The ULA-OP scanner 

 

The innovative ultrasound scanner used in the experiments is conceived in the MSDLab 
laboratory of Florence, Italy. This scanner can connect at most 64 elements simultaneously in 
its current version and this number can reach 192 by using a multiplexing system. This 
scanner has the particularity to be completely open and adaptable to the user’s own 
configurations. The transmit and receive signal for each single element of an array can be set 
different and in the same manner small 2D arrays can be controlled fully or randomly filled. 
In this study the sparse array technique is optimized by the simulated annealing algorithm to 
find the best coefficient and position for the active elements. By default the Ula-OP is not 
conceived for volume imaging but by modifying the software, this imaging modality becomes 
possible even though the display of volume images is not possible. For 3D imaging, the 
possibility offered currently is the visualization of the individual slices composing a volume 
in real-time. The Ula-Op has a sampling frequency in transmission of 600 MHz and 50 MHz 
in reception. 

 

Parameters  

Probes 

MSDLab Vermon 

Central frequency 2 MHz 3.9 MHz 

Wavelength  0.77 mm 0.39 mm 

Element number 8x8=64 8x24=192 

Element dimensions (width and height) 1.2x1.2 mm² 0.37x0.37 mm² 

Array active surface 92.16 mm2 26.28 mm2 

Pitch  1.4 mm 0.4 mm 
Table  4.1 : the characteristics of 8x8 probe of MSDLab and the 24x8 probe of Vermon 

4.3.  8x8 2D array of MSDLab 

This prototype probe constitutes a beginning in the 2D array experimental study. It 
permitted to test the adaptation of the Ula-OP software to the 3D imaging. 

Figure 4.1: the Ula-Op scanner system used in the experimental measurements 
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4.3.1.  Probe beam profile 

According to the theoretical expression of equation (2.12) the beam pattern of the 8x8 
probe is subject to important grating lobes and does not permit a good imaging quality for 
large sectors as the pitch (1.4 mm) is much larger than the mid-wavelength (0.385 mm). The 
grating lobes exist in lateral, elevation and also in the diagonal directions. In small arrays (like 
8x8), all these grating lobes have about the same amplitude as shown by the c-scan plane 
(Figure  4.2a). The ratio between the main lobe and that of the grating lobes energy is less than 
10 dB (Figure  4.2b) which limits considerably the imaging capability of this probe. The beam 
profile in lateral direction (the same in the elevation by symmetry) presents the grating lobes 
around 25°. The reference PSF phantoms presented Figure  2.11 are used in the simulations. 
The PSF shows the scatterers and their mirror images coming from the grating lobes in both 
unsteering (Figure  4.2c) and steering (Figure  4.2d) cases. To realize an image with less effect 
of these lobes, the sector must not exceed 40° (from -20° to 20°). This PSF gives an idea of 
the results obtainable in the practice case.  

 

4.3.2.  Imaging capabilities 

The measurements with the 8x8 array of MSDLab are made on a Gammex 404GS 
phantom containing anechoic and hyperechoic cysts and 0.1 mm nylon fibers (Figure  4.3a). 
The fibers are separated by a distance of 5 mm and go from 1 to 9 cm in vertical direction; 
they are separated by 10 mm and situated at 5 cm depth in the horizontal direction 
(Figure  4.3). The objective is to determine the probe imaging capability as a function of the 
depth in both lateral and elevation directions.  

(a) (b) (d) 
Figure 4.2 : beam pattern of the 8x8 array probe (a) c-scan plane at 50 mm, (b) and beam profile and (c) - (d) PSF in unsteering 
and steering cases, respectively. The ratio between the main lobe and the grating lobes is less than 10 dB (b). The PSF shows the 
effect of the grating lobes which can deteriorate the probe practical imaging features.   

(c) 
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4.3.2.a  Pyramidal volume scanning  

The first experiment is about the possibility of doing several planes together in the 
elevation direction to make a volume imaging (pyramidal scanning). The focalization point is 
fixed at 40 mm depth and the sector angle value is 40 degrees. The number of lines per image 
is 64 in the lateral direction and 8 in the elevation one (memory limitation of the scanner). 
The images in Figure  4.4 represent seven planes with the six outer planes symmetrical in twos 
around the central one (largest one). Each plane permits to see the fibers included in the 
phantom. The image resolution worsens from the center to the outer planes as the probe 
energy decreases. For a number of planes much important, in addition to the energy loss the 
effect of the grating lobes gets important and it becomes very difficult to obtain realistic 
images.  

 

4.3.2.b  Rotational volume scanning  

This second mode of 3D image generation is the rotational volume imaging. In this 
scanning strategy, the planes of the volume rotate around the probe center. This configuration 
permits to see simultaneously perpendicular planes choosing an angle step of 90 degrees 
between the two planes. Figure  4.5a-b show the cysts and Figure  4.5c-d the fibers in the 
lateral and the elevation directions. This type of imaging is suitable for surgical tool tracking 
as all the planes might pass through the tool and the c-scan plane visualization is optimal. For 
general 3D imaging, this technique provides a more realistic reconstruction of the volume. 
These results confirm the capability of 3D using small 2D array within a limited space. 

Figure 4.3: (a) the cyst and nylon fibers phantom from Gammex  and (b) its components (from the 
website http://www.physics.uk.com/Ultrasound.html). The vertical fibers go from 1 to 9 cm by a step of 
5 mm and the horizontal ones situated at 1 and 5 cm depth going from 5 mm to 45 mm. 

(a) (b) 

Figure 4.4 : pyramidal scanning of seven planes in the elevation direction, the outer planes are symmetrical around the center 
one with the same angle step. The image resolution worsens from the center to the outer because of the energy loss. 
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4.3.2.c  Grating lobes effect 

If the sector scanned is larger than 40 degrees or if the fibers are not on the probe’s axis, 
the mirror image phenomenon is observed confirming the results of the PSF simulations in 
Figure  4.2d. The images show the limitations of the classical element disposition technique 
and the necessity of respecting the spatial sampling condition at the expense of the probe 
capabilities reduction. The group of real fibers is displayed by the main lobe and the copy 
images come from the grating lobes in both directions (Figure  4.6a-b). These results match 
better to the theoretical PSF of this probe given by the Figure  4.2.   

 

4.4.  8x24 2D array 

The 8x24 array, designed according to the theoretical studies, is used to validate the 
proposed optimization technique. The characterization of the probe is made by exciting it by a 
three-cycle pulse (Figure  4.7a), the FFT permits to obtain the spectrum of the probe 
(Figure  4.7b). Figure  4.7c gives the values of the central frequency at different power level 
and the impulse duration.   

Figure 4.5 : simultaneous visualization of perpendicular planes of the cysts (a)-(b) and nylon fibers (c)-(d) in the lateral and 
the elevation directions, respectively. The size of the cysts and the wires are different in the directions. 

(a) (b) (c) (d) 

15 cm 

25 cm 

35 cm 

45 cm 

55 cm 

65 cm 
z 

 Figure 4.6 : illustration of the grating lobes apparition in (a) the lateral and (b) the elevation directions when the wires are out 
of the probe axis. The mirror images (surrounded by ellipsoids) are important and constitute a considerable noise source on 
the array images.  

(a) (b) 

15 cm 

25 cm 

35 cm 

45 cm 

55 cm 

65 cm 
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The central frequency at -6 dB is about 3.9 MHz, this value is used in both the 

simulations and measurements and the bandwidth goes from 3 to 4 MHz. The geometrical 
parameters of the probe are listed in Table  4.1. Five elements (element n° 26, 27, 28, 166 and 
167) are out of order and the other 187 worked correctly. The sensitivity of individual element 
varies in a ratio from 0 to 4 dB. The phantoms of Figure  2.11 are used for the PSF and beam 
profiles simulations in a scanning sector between -90° to 90°. 

4.4.1.  Probe beam profile 

The theoretical beam profile of the 8x24 array presents fewer and better separated (from 
the main lobe) grating lobes than the 8x8 array but its main lobe is larger due to its small size 
(Figure  4.8). The PSF is simulated using the phantoms presented by Figure  2.11. In unsteering 
case, the grating lobes effect is less important in the lateral direction (Figure  4.8b) than that in 
the elevation direction (Figure  4.8c) due to the probe dimension. In the steering case the same 
observation is noticed (Figure  4.8d-e). The beam profiles show a significant difference 
between the energy of grating lobes in the lateral (Figure  4.8f) and the elevation directions 
(Figure  4.8g): 10 dB against 20 dB, respectively.   

These beam properties of the 8x24 2D arrays emphasize the fact that if the sector is 
narrow, the effect of the grating lobes is less visible even though some echoes may come back 
to the array. These echoes reduce the image quality in term of signal-to-noise ratio. The 
maximum acceptable scan sector with the probe is about 60 degrees (from -30 to 30°) 
according to the PSF simulations.    

   

 

(a) (b) 

(c) 
Figure 4.7: the probe characteristics given by the manufacturer Vermon (a) the impulse response,  (b) its Fourier 
transform enable to determine center frequency as well as bandwidth and (c) the important points of the 
spectrum. 
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4.4.2.  Optimized sparse arrays 

The application of the optimization to the 8x24 2D array is divided in two strategies: 

 Using the whole 8x24 2D array of 192 elements randomly filled  
 Choosing 64 elements on the whole array respecting the connection constraints of the 

Ula-Op 
 Using 8x8 sub-arrays of 64 elements to be in concordance with the scanner channel 

number.  

(a) (c) 

(e) (d) 

(b) 

Figure 4.8 : the beam pattern of the dense 8x24 2D array of 192 elements with (a) the c-scan beam at 50 mm, the PSF (b)-(c) 
unsteering and (d)-(e) steering cases, (f)-(g) the beam profiles in lateral and elevation directions, respectively. The PSF shows 
the mirror images due to the grating lobes and the beam profiles give their energy compared to the main lobe. 

(f) (g) 
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The algorithm parameters are set as follows: sidelobes level fixed to -20 dB because of the 
probe small size, the number of iterations is fixed to 3400 and the main lobe width equal to 
that of the corresponding dense array.  

4.4.2.a  Sparse 8x24 2D array 

The optimization process is the same as the previous chapter. This configuration is just 
for theoretical validation as the scanner cannot simultaneously control 192 elements. As 
optimization constraints, the sidelobes must be lower than – 20 dB. 

Evolution of element number and energy function 

After 1000 iterations, the active element number reaches a steady value of 134 
(Figure  4.9a). A thousand iterations are largely sufficient as the element number variation 
remains less than one element till 3400 iterations. About the cost function, its value increases 
from the dense array to some local maxima before becoming steady at its final value. The cost 
function range is not much important as the number of the element is not important like in the 
64x16 2D arrays. The variation of the cost function value from an optimization process to 
another is about one unit (Figure  4.9b). 

 

Comparison of the PSF  

The PSF comparison is realized between the dense (192 elements) and the optimized 
sparse array (134 elements) Figure  4.10a represents the optimized sparse array corresponding 
to 8x24 dense array. The PSF simulations are performed using the phantom of Figure  2.11 
and a Hanning apodization is applied to the dense array. The PSF of the sparse array has a 
better spatial resolution in both the lateral (Figure  4.10b-c) and elevation direction 
(Figure  4.10d-e) than the dense array (Figure  4.8b to e). The beam profiles confirm this 
resolution improvement with a main lobe width of 2 and 6.1 degree for the dense array against 
0.7 and 4.6 degrees in the optimized sparse array in the lateral and elevation direction, 
respectively. The energy of the optimized sparse array is 7 dB more important than that of the 
dense array and the grating lobes decrease of about 2 and 5 dB in both directions 
(Figure  4.10g-f). The advantages of optimization can be summarized in three terms: few 
active elements, thinner main lobe width and better energy level.  

(a) (b) 
Figure 4.9: the evolution of the active element number (a) and the cost function value (b) as function of the iterations for the 
sparse 24x8 array. After an iteration number of 1000, the active element number reaches its final mean value (134) .  
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4.4.2.b  Sparse 8x24 2D array with Ula-OP constraints  

The element connection possibilities are predefined in the Ula-OP scanner. Figure  4.11 
shows the impossibility of the control of arrays containing more than 64 elements. Such 
arrays are divided in three blocks of 64 elements and the elements number ,  and 

 (  are controlled by the same multiplexor, thus they cannot be connected 
at the same time.  

To realize sparse arrays in this condition, 64 elements are randomly chosen between the 
different possibilities and optimized. The optimization aims to improve the sidelobe level 
(lower than – 20 dB) and the main lobe width by providing the suitable apodization 
coefficients to the elements. The interest of the sparse array on the whole probe is the spatial 
resolutions which remain at least the same as for the dense array of 192 elements.  

(a) 

(b) 

Figure 4.10: the optimized 8x24 array sparse configurations with (a) 134 elements spatial positions and apodization (b)-(c) 
correspond to the PSF in the lateral direction  and (d)-(e) the PSF in the elevation direction in unsteering and steering cases 
respectively, (f)-(g) the beam profiles comparison to the dense array to estimate the energy loss. The optimized sparse array has 
more energy, about 7 dB than the dense array. 

(d) 

(f) (g) 

(c) 

(e) 
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PSF simulation 

The PSF of the optimized sparse array is compared to that of the dense array of 192 
elements (Figure  4.8) using the same PSF phantoms (Figure  2.11). 

In the lateral direction, the mirror images of the scatterers (Figure  4.12b-c) are less 
important compared to those of the dense array in both unsteered and steered cases 
(Figure  4.8b-d) because of the coefficient harmonization by the optimization and the relative 
low energy of the sparse array.  In the elevation direction, the same remarks can be made with 
a noticeable reduction of the effect of the grating lobes (Figure  4.12d-e). In both directions the 
spatial resolution is improved in the sparse array case as confirmed by the beam profiles of 
Figure  4.12f and g. 

In the lateral direction, the main lobe width at – 6 dB is 0.8 degree in the sparse array 
against 2.1 degrees in the dense array and 4.2 degrees against 6.1 degrees in the elevation 
direction (Figure  4.12f-g). This resolution improvement is translated in thinner scatterer 
images in the PSF (Figure  4.12) compared to the dense array case (Figure  4.8). The energy 
loss caused by the sparse array is about 8.9 dB. The ratio between the grating lobes and the 
main lobe is 5 dB better in the sparse array (Figure  4.12a). 

This 64-elements sparse array, taking into account the connection constraints, is the best 
configuration  which can be currently obtained with the experimental array but unfortunately 
its dense array version (of 192 elements) cannot be tested in measurements for comparison.   

  

 

  

192 

1 2 3 64 63 62 

64 channels 

MUX 

1 2 3 64 65 66  128 129 130 191 190 

Figure 4.11: the Ula-OP scanner multiplexing system leading to elements conection constraints. The elelemnt n, 
n+64 and n+128  (with n  [1, 64]) are controlled by the same multiplexor, so they can be connected at the same 
time. 
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Phantom imaging   

The experimental and simulation phantom is described in Section  3.6.2.a by the 
Figure  3.29. The first wire position is 6 mm, the second 19 mm and the third is at 38 mm 
depth. The experiments are performed with just the 64 optimized array and any comparison 
can be made with the dense array (of because of the connection impossibility). The transmit 
focus is fixed at 30 mm and the three reception foci coincide with the wires positions. The 
scanning sector is 60 degree width (-/+ 30°). 

The images show clearly the three scatterers (wires) included in the phantom, in both 
directions. The spatial resolution is much better in the lateral direction (Figure  4.13a-c) than 
in the elevation (Figure  4.13b-d) because of the probe rectangular geometry. This spatial 
resolution result is predicted by the PSF in Figure  4.12. The simulation and experiment results 
are similar and they present beam characteristics in the same order. The energy ratio 
normalized by the first scatterer and the – 6 dB width of the three wires (Figure  4.13e-f) are 
summarized in Table  4.2. 

Figure 4.12: (a) the optimized sparse array of 64 active elements made on the whole probe of 192 
elements taking into account the multiplexing constraints of the scanner,(b)-(c) are the PSF in the lateral 
direction and (d)-(e) in theelevation direction in unsteering and steering cases respectively, (f) shows the 
ratio between the main lobe and the grating lobes energy ratio in each case whereas (g) shows the energy 
level of the sparse array compared to the dense array. The energy loss is about 9 dB in the sparse array. 

(a) 

(d) (e) 

(b) (c) 

(f) (g) 
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2D array 
 Measurements Simulations 

Scatterers 
position (mm) 

Main lobe at   
– 6 dB (mm) 

Relative 
energy  (dB) 

Main lobe at  
6 dB (mm) 

Relative 
energy  (dB) 

64 
elements  

6  0.6/0.9 0 0.4/0.9 0 
19 0.9/2.2 1.7 0.8/2.3 1.1 
38 1.3/4.1 -2.8 1.4/4.2 -6 

Table  4.2: the beam characteristics in the measurements and simulations in both the lateral and elevation directions. The – 6 dB 
main lobe width and the energy normailzed by that of the first scatterer are listed. The results in simulations and expriments match 
as well. The first scatterer has more energy than the third and less energy compared to the second in each case. 

 

4.4.2.c  Sparse 8x8 sub-arrays   

The 8x8 sub-array permits the experimental validation of the proposed optimization 
method. The sub-array considered goes from the 65th to the 128th element. 

Evolution of element number and energy function 

The evolution of the element number obtained after the algorithm running is presented. 
In Figure  4.14a the number of the active elements decreases sharply during the first eight 
hundred iterations going from 63 to 50, about a reduction of 22% from the initial 64 elements. 
The results presented correspond to the mean value and the standard deviation of the 
algorithm in eight optimization processes. The minimum of the mean value reached is 49 
elements and the variation is about +/- 3 elements. In the experimental tests, two of the 
optimized arrays (47 and 53 elements) are used to evaluate the algorithm efficiency. 

 

Figure 4.13: (a)-(b) experimental images with the UlaOP scanner and (c)-(d) simulated images with Field II using the 
optimized 64-elements sparse array taking in account  the connection constraints of the UlaOp scanner in the lateral and 
elevation directions, respectively. The beam profiles of the three scatterers (e) in experiment and (f) in simulations. The beam 
profiles show the energy ratio at different scatterer positions. 

(a) (b) 

(c) (d) 

(e) 

(f) 
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Comparison of the PSF  

The comparison is about the PSF of the 8x8 dense array presented in Figure  4.15a and 
its corresponding two optimized sparse arrays of 53 and 47 active elements. The 47-elements 
optimized sparse array is displayed on Figure  4.15b.  

 
Figure  4.16a-b represent the PSF of three (dense and optimized) arrays when no steering 

is involved (the PSF in the elevation is identical as the probe are squared). In this case, the 
grating lobes are important but enough separated from the main lobe to permit making some 
imaging in a sector of 60 degrees (from -30° to 30°).   

Conversely to the first 8x8 array (Section  4.3.1. ), the probe was designed to respect the 
spatial sampling condition. This criterion is at the expense of the probe image resolution 
which gets worse compared to that presented in Figure  4.2. In the steering case, the grating 
lobes are more important (Figure  4.16c-d) as they get close to the probe axis. The beam 
profile in Figure  4.16e confirms that the optimized arrays keep at least the same beam 
characteristics as the dense array. The – 6 dB main lobe width of the dense array is 6 degrees 
when the optimized 53-elements and 47-elements sparse arrays have respectively 4.34 
degrees and 3.92 degrees, about 30% thinner. In addition, the dense array grating lobes are 5 
dB more important than those of the optimized sparse arrays. The sidelobes are higher in the 

Figure 4.14: the evolution of (a)  the active element number and (b) the cost function value as function of the iterations for an 8x8 
2D array from the center of the  24x8 array. An iteration number of 1000 is sufficient for this small array. 

(a) (b) 

Figure 4.15: (a) the 8x8 dense array and (b) its corresponding optimized sparse array with 47 active elements. The 
colorbar indicates the apodization coefficients of the elements.

(a) (b) 



 Chapter 4. Experiments 
 

 

104 Bakary Diarra 

 

sparse arrays about 20 dB (fixed by the algorithm) while they are not existent in the dense 
array. In terms of the probe sensitivity, Figure  4.16f shows that the dense array presents less 
energy than the optimized 53 and 47-elements sparse arrays. The energy is 10 dB and 7 dB 
more important in the sparse arrays. This result is a particular case due to the small size of the 
array used. On Figure  2.11b the apodization coefficients provided by the optimization are 
between 0.2 and 1 whereas the Hanning apodization applied to the dense array contain a lot of 
small coefficients. In addition, given the few number of deactivated elements (between 11 and 
17), the energy of the sparse arrays remains greater than that of the dense array. In practice, 
the algorithm is useful for big arrays allowing the limitation the beam deterioration due to the 
sparse array technique.   

 

 

4.4.3.  Phantom imaging 

The experimental phantom is described in Section  3.6.2.a  by the Figure  3.29. The 
imaging is performed by the central 8x8 sub-array and its corresponding optimized sparse 
arrays (53 and 47 active elements). 

(c) 

(a) (b) 

(d) 

(e) (f) 
Figure 4.16: PSF of the dense array (a)-(c) and the optimized sparse array (53 and 47 elements) (b)-(d) in the lateral direction in 
steering and unsteering case respectively (the same PSF in the elevation by symmetry). The comparison of the beam profiles of 
the dense and the two sparse arrays, (e) shows the ratio between the main lobe and the grating lobes energy ratio in each case 
whereas (f) shows the energy level of the two sparse arrays compared to the dense 8x8 array. The sparse arrays have respectively 
10 dB and 7 dB more energy than the dense array. 
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4.4.3.a  Cyst phantom imaging 

The small 8x8 sub-array and its corresponding optimized sparse arrays are further 
compared. The simulations and the measurements are performed in a sector of 60 degrees 
(from -30 to 30 degrees) and only the zone surrounded on the phantom (Figure  3.29b) is 
considered. The comparison criteria are the image spatial resolution and the signal-to-noise 
ratio (energy). Figure  4.17a-b, and c represents the images of the wires in the lateral directions 
with respectively the dense, the 53-elements and the 47-elements optimized sparse arrays. The 
first wire position is 6 mm, the second 19 mm and the third is at 38 mm depth. The resolution 
in the sectorial scanning gets worse as the beam goes deeper. This spatial resolution 
deterioration comes from two main factors: the array’s relative small size (3.17 x 3.17 mm2) 
and the intrinsic resolution reduction of the scanning type. For that reason, the second wire 
appears wider than the first one and the third wider than the second too.  

In all three arrays, the wires are distinguishable. The sidelobes appear on the sparse 
array images as highlighted in Figure  4.17b-c-e and f at the second wire position. 

 In 

 
In simulations (Figure  4.18), the results confirm the ability of the 8x8 sub-array to 

observe the inclusions. The size and the positions of the wires correspond to those obtained by 
measurements. The near-field wires are correctly detected with a good resolution and those 
situated at 38 mm from the probe appear too large for the same reason as in the experiments. 
The third wire is difficult to see because of the energy loss with all the three arrays. The 
sidelobes effect noticed in experiments is not visible in simulation results because their energy 

Figure 4.17: the experimental images of three wires in the lateral direction with (a) the dense array (b) the 53-elements optimized 
spasre array and (c) the 47-elements optimized sparse arrays, (d), (e) and (f) are the same images in the elevation direction. The 
lateral resolution gets worse as the wire is deeper. The sidelobes apparition in the sparse arrays give rise to mirror images near 
the real wire image (surrounded by the circles) but their value is considerably reduced by the optimization. 

(a) (b) (c) 

(d) (e) (f) 
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is not enough to make a contrast difference with the phantom background. The resolution is 
the same in both lateral and elevation for each array.  

 
 

4.4.3.a  Phantom beam profiles 

The beam profiles give precise information about the spatial resolution of each array at 
the wires positions. The wire width and the energy ratio between the dense and the sparse 
arrays are presented. Usually, the sparse array causes energy loss compared to the dense array 
because of the active element number reduction but the small arrays constitute a special case. 
In the first wire position, in the near field, the dense array energy is 1.16 and 1.24 dB greater 
than that of the 53 and the 47-optimized sparse arrays in the lateral direction (Figure  4.19a). 
In the elevation direction, this energy ratio is 1.12 and 1.87 dB (Figure  4.19b). These results 
are not in agreement with the theoretical optimization results probably because the 
optimization is made in the far field. In the medium field at 20 mm, the sparse arrays have 
more energy than the dense array (Figure  4.19c-d). The same tendency is noticed at 38 mm in 
both directions (Figure  4.19e-f). This energy ratio between the dense and the sparse arrays 
show the improvement brought by the optimization in addition to the element number 
reduction. 

(a) (b) (c) 

(d) (e) (f) 
Figure 4.18: the simulated images of three wires in the lateral direction with (a) the dense array (b) the 53-elements optimized 
spasre array and (c) the 47-elements optimized sparse arrays, (d), (e) and (f) are the same images in the elevation direction. 
The lateral resolution gets worse as the wire is deep. The sidelobes are visible in simulation because their energy is not enough 
to make a contrast difference with the phantom background.  
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The measurement of the wire width at – 6 dB from the first to the third wire with the 

dense and the optimized arrays is summarized in Table  4.3 in both lateral and elevation 
directions. The images in the elevation direction are represented by Figure  4.17e-f and g and 
they have the same characteristics as those in the lateral direction except the – 6 dB width of 
the wires (Table  4.3). These values give a general survey of the resolution improvement 
provided by the optimization.  

 

(a) (b) 

(c) (d) 

(e) (f) 
Figure 4.19: the beam profiles of 8x8 dense array and the 53-elements and the 47-elements optimized sparse arrays at the first 
wire position (6 mm) (a)-(b), the second wire position (19 mm) (c)-(d) and the third wire position(38 mm) (e)-(f) in lateral and 
elevation directions,respectively. These beam profiles are normalized by that of the dense array to evaluable the energy of the 
sparse arrays. Int the near field, the dense array energy is about 1.1 to 1.8 greater than that the spasre arrays while in the far 
field, its energy is less than that of 53-elements spasre array of 2 dB and 0.3 dB compared to the 47-elements spasre array.  
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In simulation, the beam profiles (Figure  4.20) confirm the observations made on the 

PSF (Figure  4.16e-f). In both directions, the – 6 dB main lobe width of the dense array is 1.18 
mm, 3 mm and 5.44 mm for three wires from the shallowest to the deepest. In the 53-elements 
sparse array their values are 0.89 mm, 2.4 mm 4.38 mm and 0.96 mm, 2.36 mm and 4.30 mm 
for the 47-elements sparse array (Table  4.3). These values are in accordance with the 
measurements results. The energy ratio between the dense and the sparse arrays is about 6 dB 
and 4 dB in the near field against 9 dB and 8 dB in medium and far field. These simulation 
results are different from the measurements but in both cases the optimized sparse arrays 
provide more energy in the medium and far field. The difference between simulation and 

Figure 4.20:the simulated beam profiles of 8x8 dense array and the 53-elements and the 47-elements optimized sparse arrays at 
the first wire position (6 mm) (a)-(b), the second wire position (19 mm) (c)-(d) and the third wire position( 38 mm) (e)-(f) in 
lateral and elevation directions,respectively. These beam profiles are normalized by that of the dense array to evaluable the 
energy of the sparse arrays. Int the near field, the dense array energy is about 1.1 to 1.8 greater than that the spasre arrays 
while in the far field, its energy is less than that of 53-elements spasre array of 2 dB and 0.3 dB compared to the 47-elements 

(a) (b) 

(c) (d) 

(e) (f) 
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experiment results can come from physical phenomena such as the medium (attenuation, 
diffraction) and the probe property (element sensitivity). The results validate the capability of 
the optimization to maintain good imaging characteristics. 

4.4.3.b  Summary of comparison  

The comparison between the simulation and the experimental results are summarized in 
the Table  4.3. The main lobe width determining the spatial (lateral and elevation) resolutions 
and the energies (normalized by that of the dense array at each scatterer position) are 
presented. The lateral and elevation directions have almost the same characteristics in each 
case. The table highlights the resolution and the energy improvement provided by the 
optimization applied the sparse arrays.  

2D array 
 Measurements Simulations 

Scatterers 
position (mm) 

Main lobe at   
– 6 dB (mm) 

Relative 
energy  (dB) 

Main lobe at 
– 6 dB (mm) 

Relative 
energy  (dB) 

8x8=64 
6 0.91 0 1.18 0 

19 2.57 0 3 0 
38 5.44 0 5.44 0 

53 
6 0.83 -1.1 0.89 6 

19 2.17 2 2.4 8.7 
38 3.93 2 4.38 9 

47 
6 0.8 -1.8 0.96 4.2 

19 2.25 0.5 2.36 7.5 
38 4.62 0.3 4.30 8 

Table  4.3: summary of comparsion between the measurements and the simulation results using the dense 8x8 array, the 53-elements 
and 47-elements optimized sparse arrays. The table puts into evidence the main lobe thinning and the increase of the energy in the 
medium and far fields provided by the sparse arrays. 

4.5.  Conclusion  

This chapter presents the prototype probes used in the experimental measurements. The 
developed optimization algorithm is tested in realistic case on the 8x8 sub-array from the 
8x24 2D arrays manufactured in this work. The comparison between the simulations and the 
experimental results is made to confirm the validity of the optimization algorithm. The 
comparison criteria are the spatial resolutions, the energy loss and the overall image quality 
provided by the optimized sparse arrays compared to the dense array. All the results confirm 
the imaging capability of the optimized arrays despite the active elements number reduction. 
These results open the way to the 3D imaging from the 2D arrays using optimized sparse 
array techniques without any additional complexity to the current ultrasound beamformers 
(scanners).  

To efficiently validate the methods developed, large 2D arrays and scanners with more 
channels are necessary to significantly feel the power of the optimization. Such equipment 
provides better imaging features than the small arrays used in these experiments. 
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Conclusion and perspectives  

Conclusion 

In this work, improved extensions of the classical methods in the 2D matrix arrays 
design are proposed and new more efficient techniques are developed with clear 
demonstrations of their superiority.  

Firstly an extension of the simulated annealing optimization algorithm is proposed to 
have a more rigorous mathematical formulation as well as an efficient reduction of the active 
elements number. This improved algorithm permits to provide more reduced arrays keeping at 
least the same beam characteristics as in the reference methods. Several optimizations are 
performed to confirm the algorithm’s robustness and its precision. The final active elements 
number in the arrays is considerably reduced to suit to given beam features.  

Secondly, complete innovative techniques are presented. In these techniques the regular 
grid classically used in the 2D array design is suppressed. This grid is responsible for many 
constraints in the realization of efficient matrix arrays. It superimposes the piezoelectric 
elements small size by respecting the spatial sampling conditions and thereby favors the 
apparition of undesired phenomena in the arrays beam pattern known as the grating lobes. The 
small size of the element deteriorates the sensitivity of the whole array and increases its 
necessary element number. The new techniques are based on a completely random positioning 
of the array element. This approach has the potential to overcome the above mentioned 
limitations and opens the way to many interesting effects on the 2D array. The elements can 
be several times wider than in the classical methods leading to a natural reduction of their 
number for a given array footprint. This reduction makes possible the control of the 2D arrays 
by scanners initially adapted to the 1D array. Moreover, the wider are the elements, the more 
important is their energy and the thinner is the beam width. Direct consequences of this 
property are the array sensitivity increase and its spatial resolution improvement. In 
applications needing a large directivity (large main lobe), a conjugation of both wide and 
small elements permits to keep both good sensitivity without modifying the main lobe in 
relation to an array containing only small elements. The new techniques developed are 
optimized using the improved optimization algorithm proposed in this work.  

Thirdly a mean 2D array composed of 8x24=192 elements is manufactured to validate 
the optimization methods developed theoretically and tested by simulations. This array 
contains regular aligned elements and is used to evaluate the standard sparse arrays imaging 
capabilities. The experimental results are compared to those of the simulations to confirm the 
validity of the methods in realistic studies. These measurements are realized on an industrial 
tissue mimicking phantoms but tests on human tissues will be performed in the near future.  
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Perspectives    

This thesis proposes a number of solutions for the element number reduction using matrix 
arrays. However there are still open problem. The perspectives given by this thesis can be 
summarized as follows: 

Take into account in the optimization process more complex parameters as different 
shaped elements (rectangle, triangle) and adapt their size as the function of available surface 
in their position. 

A comparison study of the simulated annealing with another optimization algorithm 
present in literature will be interesting, mainly the genetic algorithms which seems to provide 
interesting solutions in some complex optimization problems. 

The 3D volume reconstruction is an essential field to develop. The combination of the 
(non-grid) sparse array and the compressive sensing are interesting fields to explore for the 
real time 3D imaging as both are sparse methods to minimize the necessary data amount in 
the reconstruction. 

The realization of a prototype array designed on the basis of the proposed non-grid array 
technique to validate by experiment the potentialities given by this new element positioning 
strategy. This prototype may have a footprint large enough to contain wide elements to 
confirm the suppression of the beam undesired lobes. 

Development of a simulation tool for general 2D array imaging and particularly suitable 
to the non-grid arrays to realize volume simulations in an acceptable running time. Currently, 
a simple volume of tens of planes can take more than a day under Field II. 

Experimental tests in medical field (hospital) are required to more validate the 
preliminary phantom imaging. 
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