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Abstract

Machine Translation (MT) systems, which generate automatically the translation of a target

language for each source sentence, have achieved impressive gains during the recent decades and

are now becoming the effective language assistances for the entire community in a globalized

world. Nonetheless, due to various factors, MT quality is still not perfect in general, and the

end users therefore expect to know how much should they trust a specific translation. Building

a method that is capable of pointing out the correct parts, detecting the translation errors and

concluding the overall quality of each MT hypothesis is definitely beneficial for not only the

end users, but also for the translators, post-editors, and MT systems themselves. Such method

is widely known under the name Confidence Estimation (CE) or Quality Estimation (QE). The

motivations of building such automatic estimation methods originate from the actual drawbacks

of assessing manually the MT quality: this task is time consuming, effort costly, and sometimes

impossible in case where the readers have little or no knowledge of the source language.

This thesis mostly focuses on the CE methods at word level (WCE). The WCE classifier

tags each word in the MT output a quality label. The WCE working mechanism is straight-

forward: a classifier trained beforehand by a number of features using ML methods computes

the confidence score of each label for each MT output word, then tag this word with highest

score label. Nowadays, WCE shows an increasing importance in many aspects of MT. Firstly,

it assists the post-editors to quickly identify the translation errors, hence improve their pro-

ductivity. Secondly, it informs readers of portions of sentence that are not reliable to avoid the

misunderstanding about the sentence’s content. Thirdly, it selects the best translation among

options from multiple MT systems. Last but not least, WCE scores can help to improve the

MT quality via some scenarios: N-best list re-ranking, Search Graph Re-decoding, etc.

In this thesis, we aim at building and optimizing our baseline WCE system, then exploiting

it to improve MT and Sentence Confidence Estimation (SCE). Compare to the previous ap-

proaches, our novel contributions spread of these following main points. Firstly, we integrate

various types of prediction indicators: system-based features extracted from the MT system,

together with lexical, syntactic and semantic features to build the baseline WCE systems. We

also apply multiple Machine Learning (ML) models on the entire feature set and then compare

their performances to select the optimal one to optimize. Secondly, the usefulness of all features

is deeper investigated using a greedy feature selection algorithm. Thirdly, we propose a solution

that exploits Boosting algorithm as a learning method in order to strengthen the contribution



of dominant feature subsets to the system, thus improve of the system’s prediction capability.

Lastly, we explore the contributions of WCE in improving MT quality via some scenarios. In

N-best list re-ranking, we synthesize scores from WCE outputs and integrate them with de-

coder scores to calculate again the objective function value, then to re-order the N-best list

to choose a better candidate. In the decoder’s search graph re-decoding, the proposition is to

apply WCE score directly to the nodes containing each word to update its cost regarding on the

word quality. Furthermore, WCE scores are used to build useful features, which can enhance

the performance of the Sentence Confidence Estimation system.

In total, our work brings the insightful and multidimensional picture of word quality predic-

tion and its positive impact on various sectors for Machine Translation. The promising results

open up a big avenue where WCE can play its role, such as WCE for Automatic Speech Recog-

nition (ASR) System (when combined with ASR features), WCE for multiple MT selection,

and WCE for re-trainable and self-learning MT systems.

Keywords : statistical machine translation, Confidence Estimation, N-best list re-ranking, Boost-

ing, Feature Selection, Quality Estimation.
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Chapter 0

Introduction

In 2010, a Dutch news website1 reported an unimaginable story about a Russian trucker,

involved in a bar brawl in the Netherlands was released thanks to an error of Google Translate2.

In the Russian version of the summons translated from Dutch (using this engine), instead of

informing the trucker: “you are to appear in court on 3 August 2010”, the content went more

like: “you have to avoid being in court on 3 August 2010”, which then helped him to go free.

In Dutch, the infinitive verb “voorkomen” can produce two types of meanings: “appear, occur”

or “avoid, prevent”, and the determination of the right one bases also on the context where it

is used. Google Translate accidentally caused a serious situation since it flipped 180 degrees

the text’s content.

This is one of the serious yet not rare stories to demonstrate that the errors of Machine

Translation (MT), in many cases, lead to unanticipated consequences. It is indisputable that

MT systems - the computerized softwares that produce translations for text from one lan-

guage to another (Hutchins and Somers, 1992) - have developed rapidly and fruitfully in recent

decades. Google Translate - an online MT engine, hit a record in 2013 with more than one

billon translations done a day3. With the support of smartphones, handheld devices and web

applications for human communication, MT systems are about to bring more instant, more

time flexible (e.g. at midnight) yet cheaper responses compared to human translators. Nowa-

days, the unprecedented flourish of free, online and interactive MT applications (e.g. Google

Translate, Bing Translator, SysTran, Babel Fish, Apertium, Asia Online, Prompt, OpenLogos,

and much more) gradually enhance human’s ability to access a vast store of global information

and knowledge, regardless of the language in which it is expressed. In many cases, they convey

almost the content expressed in the source text, or at least enable readers to get the gist. In

the first example of Figure 1, although the English translation for the French sentence: “Ce

1http://www.24oranges.nl/2010/08/18/russian-goes-free-thanks-to-google-translation-error/
2https://translate.google.fr/?hl=fr
3http://www.languageinsight.com/blog/2013/04/08/google-hits-1bn-translations-a-day/
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soir, je vais manger avec Pascal Poulet” is imperfect, the English native readers are able to

acquire the sentence’s main message: Who? (I), do what? (eat), with whom? (Pascal) and

when? (tonight). The translation contains only a small confuse biasing the source text content

(“chicken” is not mentioned in the source text since “Poulet” is a family name in this context).

However, there are also plenty of situations where the translation fails to carry the idea and

causes the misunderstandings for users. In the source (English) part of the second example of

Figure 1, the fans of Justin Bieber are wondering whether this singer can ever reach puberty.

Nevertheless, its French translation gives a negative message: he can never reach it (“peut

jamais atteindre”).

Figure 1 – Examples of Machine Translation errors. They can be minor and the readers are able to get
the gist (Example 1), but in some cases so serious that cause misunderstanding (Example 2)

While appreciating MT breakthroughs, users face the fact that its quality still remains a

chasm from perfection. Therefore, beside exploiting MT outputs for various purposes, the users

need also to be aware of how trusty they are; or even better, which portions are reliable and

which are not. Furthermore, these indicators are vital and helpful for other types of actors:

the post-editors wish to be sure that correcting a specific translation will not be more time and

effort consuming than reproducing an another one from scratch. The multiple MT services con-

sider them pivotal criterion for opting the final translation among discrepant MT systems. MT

systems themselves benefit from them to regenerate the better hypothesis. Obviously, using

human resources is definitely cumbersome and impractical for performing this task, especially

in case where the load of translations to be judged keep increasing and need instant quality re-

sponses. Instead, automatic methods which evaluate MT hypotheses at run-time are desirable

for all above issues. These methods are commonly known under the name of “Confidence

Estimation” (CE). Unlike the other evaluation metrics, CE systems are reference-free (e.g.
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judging unseen translated text, without knowing anything about the gold-standard transla-

tions). Interestingly, they are shown to correlate significantly better with human judgments

than the other standard ones such as BLEU4 or NIST (Specia et al., 2010).

Passing a decade since the first work of Blatz et al. (2003) was published, this domain draws

more and more attention and reaches preliminary achievements at different levels of granularity:

sentence-level (Blatz et al., 2004; Nguyen et al., 2011; Specia et al., 2009a,b; Xiong et al., 2010),

word-level (Nguyen et al., 2011; Ueffing and Ney, 2005, 2007; Ueffing et al., 2003), document-

level (Scarton and Specia, 2014) or segment-level (Specia and Giménez, 2010). However, these

contributions are just the first steps, and the road ahead is still very challenging (Blatz et al.,

2004). In Sentence-level CE, which predicts the sentence’s goodness, the major hindrance

originates from the fact that an MT output is seldom fully correct at this level, but is the

mixture between good and nonsensical portions. Proposing a satisfactory measure to decide

whether or not a specific output is correct is therefore extremely hard. On the contrary, the

quality prediction for each word (Word-level CE) is more doable, as it is more likely to be correct

than the entire sentence. But, this advantage does not mean that this is a straightforward task,

since the same words might have different meanings in different contexts. Compare to sentence-

and word-level, the prediction for segments and documents are sparsely investigated, and also

cope with other nontrivial obstacles (the complexity of discourse relations in document level,

and the disambiguation of segment chunking and of the “segment correctness” itself). These

harsh challenges can be mitigated if and only if a diversity of helpful characteristics for each

translation unit to be judged are extracted from quality training corpora and the Machine

Learning (ML) techniques which are capable of learning efficiently from this “knowledge base”

are applied. Investigating new features, combining them wisely to avoid redundancy, proposing

and applying ML models with tuned parameters, optimizing the predictor’s performance, etc.

are the main focuses of almost all researches in the domain of CE so far. Their efforts are

annually presented in some well-known evaluation campaigns, such as WMT (Workshop on

Statistical Machine Translation).

In this thesis, we concentrate mainly on Word-level CE (WCE thereafter), tagging each

word in the MT output a quality label. These predicted labels not only inform target language

readers about the unreliable words, but also speed up the post-editors’ task by channelizing

their attention at only erroneous portions, and help to choose best segments from multiple

MT systems for system combination. Compare to sentence level CE, this sub-domain is less

explored, pioneered by Ueffing et al. (2003). In this work, they used only the information from

4see the detailed definition in Chapter 1

3



Chapter 0. Introduction

SMT system itself to generate binary estimates. Taking cue from this idea, the later researches

enriched the feature set by exploiting external resources and experimented with many other

classification algorithms.

Our attempts throughout this thesis consist of two major objectives. The first objective is

to build efficient WCE classifiers by integrating a variety of features of various types, examining

different ML techniques and employing several optimization methods. The second objective is

to apply the output given by WCE systems on many sectors of Statistical Machine Translation

(SMT), including SMT N -best lists Re-ranking, SMT search graph Re-decoding, or Sentence

level CE for SMT. The novelty of this thesis lies in the following contributions:

• Proposing a number of novel word-level features to combine with the conventional ones.

• Investigating the usefulness of features via three different corpora of two language pairs:

French - English and English -Spanish.

• Deploying a strategy to train and complement from a number of weak WCE sub-models

in order to obtain a composite strong one.

• Proposing sentence-level features based on WCE predicted labels to enhance the predic-

tion performance of SCE systems.

• Establishing re-ranking features from WCE outputs and combining with decoder scores

to re-rank the SMT N -best list and select a better candidate.

• Applying WCE scores (labels, probabilities) to update the SMT search graph which then

raises up the optimal path to become MT new hypothesis.

The thesis consists of two main parts: State-of-the-art (Chapter 1 and Chapter 2), and

Contributions (from Chapter 3 to Chapter 7):

In Chapter 1, we review some basic background of Machine Translation. The brief his-

tory with some remarkable points of its development road is summarized. The linguistic and

computational architectures of MT along with all approaches for each architecture are listed.

We then go further in SMT - the most popular and successful approach so far, starting with

its mathematical model, followed by the indispensable components in each SMT system: Lan-

guage Model (LM), Translation Model and Decoder. We do not forget to talk about some useful

toolkits and resources which allow to build a baseline MT system in a fast and convenient way.

Manual and automatic metrics to assess the MT quality are the last topic of this chapter.
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Chapter 2 brings a complete picture of Word Confidence Estimation (WCE) - main aim

of this thesis. The working mechanism of a WCE system, its essential components and major

applications are first presented. After citing some most prominent work related to WCE,

we lay stress on two issues: “features need to build the predictor” and “ML methods to train

them”. A variety of broadly-used conventional prediction indicators, such as: target (source)

side, alignment context, Word Posterior probability, LM Backoff, Part-of-Speech based, and

other syntactic and semantic features are consequentially presented. Besides, we introduce ML

methods that we will use to train our models, including: Naive Bayes, Logistic Regression,

Decision Tree and Conditional Random Fields. The final part of this chapter presents the

Workshop on SMT (WMT), where we participate in the WCE task for two years 2013 and

2014.

Our contributions begin from Chapter 3 with propositions to build the baseline WCE sys-

tems. We discuss first our (proposed) novel features to combine with the existing ones: Graph

Topology, some syntactic-based, LM-based, POS LM-based and pseudo reference features. The

following sections depict in detail all the steps for building WCE systems: the baseline SMT

systems, the three corpora, the annotated training labels and ML model parameters. In the

preliminary experiments, we combine all features in each system and train them using different

methods. The performances are then analyzed and compared to other “naive” baselines.

Chapter 4 focuses on two main techniques to optimize the baseline systems built from

Chapter 3. The first technique is “Feature Selection” strategy, in which we begin from the

whole set and then eliminate the weakest feature in each iteration until it remains only one. The

method, one part, helps to sort the set in the descending order of feature’s usefulness, another

part, returns the best performing feature combination which yields the best performance. In

the second technique, which is also known as Boosting method, we divide the feature set into

subparts and build weak sub models. The “weak” classifiers are then combined in a reasonable

way to take advantage of their complementarity. The final “composite” classifier is expected to

be much stronger than each individual thanks to this advantage.

From Chapter 5 to the end of this thesis, we exploit the outputs (labels, probabilities)

predicted by WCE systems for some MT sectors. In this chapter, WCE predicted labels are

used to synthesize seven sentence-level scores, from which we train a sentence-level quality

predictor. We then compare this system to another baseline “pure” SCE system (where all

features to train it are directly extracted at sentence level). Interestingly, we propose a method

to combine the scores obtained from both of them and use the new “composite” score to classify

sentences. The objective of all above tests is to investigate whether the information of word

quality can help to improve the effectiveness of SCE predictors.
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Chapter 6 concentrates on another contribution of WCE: improving MT quality via N -best

list re-ranking. Motivated by the belief that SMT decoder scores are inadequate to build an

efficient scoring (objective) function, then result in the decoder’s bad decision, we attempt to

add more six additional scores, synthesized from WCE predicted labels for each sentence of

the list, into this function. In the second pass, our re-ranker takes the new parameter set to

calculate again the score for all hypotheses in the list and select the one with new highest score

to be the best translation. By doing so, we would like to examine whether the MT system

can learn something from the WCE “feedbacks” to perform better. The experiments in this

chapter are conducted in both “real” WCE labels and “oracle” (annotated) ones. In another in-

depth analysis, we simulate the gradual improvement of WCE system performance and observe

its impact on the re-ranking process. Some interesting conclusions are made from the results

obtained at the end of the chapter.

The most outstanding contribution of WCE is described in Chapter 7, where its outputs

are used to re-decode the SMT’s search graph in the second pass of decoding. Relying on the

quality labels (or confidence probabilities) provided by WCE system, we suggest some solutions

to modify the total cost of all hypotheses in the graph containing these words. Specifically, the

reward or penalty scores are determined by WCE outputs and their values are derived from

either the current (first pass) best hypothesis’s cost, or from the current hypothesis’s transition

cost. The updates strengthen paths in which many good words are found, whereas weaken

those in the other way round. Finally, we seek the optimal path with the highest score over the

new updated graph, then backtrack to read off the entire translation. Similar to Chapter 6,

we compute the update scores based on both “real” and “oracle” WCE system’s outputs. The

comparison between two approaches “Re-ranking” and “Re-decoding” with WCE’s assistance

are then made and some important conclusions are reported to close the chapter.

At the end of the thesis, we resume our approach, emphasize the positive achievements

harvested and open up some potential research avenues which can be built up from this work.
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Chapter 1

Theory of Machine Translation

1 Introduction

Nowadays, along with the trend of globalization and economic integration, the demand for

translations of a variety of documents is growing at a rate far beyond the present supply capacity

of the translation profession. Machine Translation (MT) was born as an effective solution to

assist human overcoming the language barriers in a faster, cheaper and more interactive way.

Since decades, MT research has been spread out on numerous of branches, from training,

optimizing, decoding, evaluating and exploiting different types of MT systems, as well as all

accompanied resources of each task. No matter what the research topics are, they require the

solid fundamental MT background. That is why before moving on the main goal of this thesis,

Word Confidence Estimation for SMT, we start by reviewing all the key concepts of MT,

as they are essential for exploring further our research topic.

The chapter begins with the general definition of MT and some remarkable points on its

long history of development. Section 3 presents two major MT architectures: linguistic and

computational architectures. Especially, the statistical approach for MT (SMT) - the systems

that we focus on to build confidence metrics - is detailed in Section 4, containing all components

(Language Model, Translation Model, Decoder). Some useful toolkits for building a SMT

system along with free resources are introduced in Section 5. In the next section, we discuss

about some popular metrics to assess MT quality. Finally, Section 7 summarizes the chapter.

2 General Definition and Brief History

The terminology “Machine Translation (MT)” is now a traditional and standard name for

“computerized systems responsible for the production of translations from one natural language

into another, with or without human assistance” (Hutchins and Somers, 1992). It has several
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earlier names such as: “mechanical translation” and “automatic translation”. Although they

are now rarely used in English, but their equivalents in other languages are still common (e.g.

“traduction automatique” in French, “avtomatičeskii perevod” in Russian).

It is not a surprise when saying that the automatic mechanization of translation has been

one of the oldest dreams of humanity, since long time. The reason is simple: there is too much

and gradually-increased information that we would like to disseminate and understand in other

languages has been translated by hand. As the world becomes more globalized, this problem

becomes more challenging. Since human translators remain limited, expensive and inflexible,

MT systems are becoming more and more effective and friendly support with (almost) free,

instant and unlimited translations.

Nowadays, it is not an exaggeration when saying that human language interpretation has

become a real “industry” with the involvement of top budget firms and government’s invest-

ments. In this industry, translation activities are very diverse, depending on the riches and the

popularity of each language, as well as its speaking community. However, regarding on the level

of computer assistance, or in other words the “automation level”, translation activities can be

categorized into the following sorts:

• Human translation: The translation task is entirely conducted by human translators.

This is the earliest and most popular translation activity and still important today, espe-

cially in case where even minor errors are strictly prohibited (e.g. translations of national

constitutions, military treaties, billion-USD-cost purchase contracts, etc.).

• Machine-aided human translation: Human is still the main actor in the translation

activity, yet their productivity can be improved and accelerated thanks to computers.

Supporting toolkits can suggest the next words relying on the already translated words

so far typed by humans, give hints about better candidates in the current contexts, correct

grammatical mistakes.

• Human-aided machine translation: In this type the translation task is mainly per-

formed by computer, yet improved by human. The human intervention can be made at

any phase. For instance, before translating, they standardize the source text by remov-

ing strange symbols, replacing ambiguous or nonsensical words. During the translation

process, if necessary, they are able to remove some source portions that are unknown (or

hard to translate) for the decoder. Finally, after having results, they can post-edit it to

get the optimal translations.

• Fully automated machine translation: Contradictory to the first type, this time

humans have to do nothing but typing the source text or storing them under the right
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1.2 General Definition and Brief History

format. Computers take responsibility to pre-process, generate hypotheses and select the

best translation for each source sentence. This activity is suitable to translate a huge

amount of text instantly (e.g. commercial websites) and users care much more about the

gists than details (or they can predict the whole message starting from few key words).

Looking back at the MT history: numerous attempts have made in the past, in the U.S,

Europe and some Asian countries, to automate various steps in the translation process. They

range from simple online bilingual dictionaries, terminology banks and other translation aids

to complete MT systems, as described in (Dorr et al., 1999; Hutchins, 2007).

The years of 1950s witnessed the start-up of several pioneer MT projects and research activ-

ities. In the first MT conference, held at Massachusetts Institute of Technology (MIT), USA in

June, 1952; almost in-domain researchers agreed that fully automated MT systems with human

acceptable quality will be hard to obtain; and emphasized on the human interventions either

before or after the translation process. As an activity of showing the feasibility of MT systems,

two researchers: Peter Sheridan (IBM) and Paul Garvin (Georgetown) launched their joint

MT system on January, 7th, 1954. In their rule-based approach, only six grammar rules are

applied over a vocabulary of 250 words to translate 49 Russian sentences into English. Inter-

estingly, such a simple and not significant scientific value attracted a special care of American

media, since it demonstrates the dream about a translation engine implemented by machine

and handled by human is totally viable. Motivated by this potential research stream, there

were many groups have established in the period from 1954 to 1956, e.g. in Cambridge (UK),

Milan (Italy), Moscow (Russia), etc.

The early years of 1960s were considered as prosperous for MT researches, while numerous

MT research groups had been established in many countries throughout the world, spreading

broadly from Europe (Germany, France, Hungary, Bulgaria, Belgium, etc.) to Asia (China,

Japan) and America (Mexico, USA), etc. Although human resources were flourished these

years, yet remarkable achievements were limited, and one of the most outstanding results came

from the work of Benard Vauquois (Grenoble, France). The author developed a system for

translating Russian mathematics and physics texts into French, partially based on interlingua

approach. In this work, he used a pivot language to represent the logical properties of syntactic

relationships and a bilingual transfer mechanism to translate lexical items.

However, in 1964, MT researches faced a “crisis”, followed by the funding cut-off as well as

the community’s neglectfulness afterward. The Automatic Language Processing Advisory Com-

mittee (ALPAC) reported a status of MT development, in which they doubted the feasibility

of automatic MT system. The report illustrated by giving two following examples:
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The pen is in the box. [i.e. the writing instrument is in the container]

The box is in the pen. [i.e. the container is in the playpen or the pigpen]

In these above examples, the word “pen” shows two different meanings, and there is no

way to predict the right one but relying on the context that might come before or after each

sentence. The report therefore raised a question of how the MT system can learn the way to

“remember” a context and make use of it to interpret the correct meaning of words and phrases?

One of the most significant MT systems, which was born and developed in the early years

of 1970s and then installed for many intergovernmental organizations and major corporations,

is SYSTRAN. Starting from a Russian - English version (1970), and then English - French

(1976), the system was rapidly enlarged to deal with the translation from most of the European

languages into English, and the another way round for several of them (e.g. French, Italian,

German, Spanish, Portuguese, etc.). Its components were turned more and more flexible to

enable the development of a new language pair.

Following the success of SYSTRAN, many other systems appeared in the market (commer-

cial versions). METAL (1982), developed in Munich, Germany, supported initially German

- English translations, and then were extended in other languages, such as Dutch, Spanish,

French. WEIDNER system (1981) was designed for microcomputers and mainly concentrated

on Japanese - English. Besides, personal computer market was also the goal of other commercial

softwares, such as PC-TRANSLATOR (from Linguistic Products), GTS (from GlobalLink).

In 1991, the first statistical machine translation (SMT) model was proposed by IBM, and

trained by a huge number of source and target aligned sentence pairs. This signaled the flourish

of SMT systems in the years afterward, lasting until now. At the end of the 1990s, a project

aiming at multinational interlingua MT, was kicked off by the Institute of Advanced Studies

of the United Nations University (Tokyo), for initially the six official languages of the United

Nations and other widely spoken languages, involving the participation of the groups from 15

different countries. More insightful analysis on the evolution of MT systems and researches can

also be referred from (Hutchins, 2007)

3 MT System’s Architecture

The MT architecture can be divided into two main classes: linguistic architecture and computa-

tional architecture (Boitet, 2008). The linguistic architecture of an MT system is characterized

by the representations (e.g. language transfer rules, interlingua) used during the translation

process; meanwhile the computational architecture is characterized by the calculation methods
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used during the translation process.

3.1 Linguistic Architectures

All possible linguistic architectures of an MT system are represented in the “Vauquois trian-

gle” (Vauquois, 1968), as in Figure 1.1, containing:

Figure 1.1 – Vauquois’s triangle

• Direct translation systems: With these systems, the translation from one language

to the another can be performed in one unique step, without the need of analyzing the

source sentence, as well as generating the target one. The translation is done by using

the bilingual dictionary to translate a word or a sequence from source to target language

(Hutchins and Somers, 1992). It is not tough to realize that this approach contains plenty

of drawbacks and limitations, with the lack of syntactic, lexical and semantic analysis.

These shortcomings can be mitigated by the “indirect” translation systems, categorized

into two classes: transfer and interlingual systems.

• Transfer systems : In these types of translation systems, the translation process con-

tains three main steps: (1) source sentence analysis, (2) transformation, and (3) target

sentence generation. They require the linguistic knowledge in both sides, represented by
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the dictionary, grammar, etc.; and the transformation rules which connect two languages

(e.g. a transformation rule table) (Arnold et al., 1994)

• Interlingual Systems: They employ an intermediate language (or pivot language, in-

terlingua) to transform one language into another one. First, the source sentences are

analyzed and transferred to the pivot language. Next, the target sentences are generated

based on this pivot translation. One advantage of this approach is that it can be easily

applied for multiple language translation systems. Indeed, in order to translate between

n different languages, we need n analyzers and n generators instead of employing a total

of n(n ≠ 1) transfer systems. Nevertheless, theoretically, it is complicated to establish

these analyzers as well as generators.

3.2 Computational Architectures

The MT computational architecture can be defined according to the computational methods

for performing the translation task, mainly including three categorizations:

• Rule-based MT (RBMT): is a general term that denotes machine translation sys-

tems based on linguistic information about source and target languages. Basically, these

information can be retrieved from unilingual, bilingual or multilingual dictionaries and

grammars covering the main semantic, morphological, and syntactic rules of each lan-

guage respectively. Having an input source sentence, an RBMT system generates them

to output target sentence on the basis of morphological, syntactic, and semantic analysis

of both the source and the target languages involved in a concrete translation task. Some

popular types of grammars that can be used in RBMT system to model the languages are:

Lexical Functional Grammars (LFG) (Kaplan and Bresnan, 1995), Head-driven Phrase

Structure Grammar (HPSG) (King, 1999), or Tree Adjoining Grammar (TAG) (Kroch

and Joshi, 1985).

• Example-based MT (EBMT): is a method of machine translation often characterized

by its use of a bilingual corpus with parallel texts as its main knowledge base, at run-time.

These MT systems are trained from bilingual parallel corpora, which contain sentence

pairs between a sentence in one language with their translation into another. For doing

the translation, the input sentence is firstly decomposed into certain fragmental phrases.

Then, these fragmental phrases are translated into the target language phrases by the

analogy translation principle with proper examples as its reference. Finally, the target

language phrases are composed into one long target sentence (Nagao, 1984).
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• Statistical Machine Translation (SMT): is a machine translation paradigm where

translations are generated on the basis of statistical models whose parameters are de-

rived from the analysis of bilingual text corpora. These resources allow to estimate the

objective functions of the probabilities of target text (words, n-grams, sequences) given

a corresponding source text. During the decoding, for each source input, SMT decoder

searches for the target hypothesis that maximizes this function value, and consider it as

the best translation (Brown et al., 1990, 1993a). The first ideas of statistical machine

translation were introduced by Warren Weaver in 1949. The availability of huge bilin-

gual texts as well as the high linguistic independence makes SMT take an increasing

importance in the translation industry in recent years with many online engines: Google

Translate1, Bing (Microsoft)2, etc. This approach will be introduced in detail in the next

section.

4 Statistical Machine Translation

4.1 Background

For each source sentence represented by a string fJ
1 = f1...fj...fJ , an SMT system seeks the

target sentence eI
1 = e1...ei...eI that maximizes the following posterior probability:

êÎ
1 = arg max

I,eI
1

{Pr(eI
1|fJ

1 )}(1.1)

By applying Bayes rule, the above expression can be rewritten as follows:

êÎ
1 = arg max

I,eI
1

{
Pr(fJ

1 |eI
1) ú Pr(eI

1)
Pr(fJ

1 )
}(1.2)

We note that the source text remains unchanged during the entire translation process, therefore

the probability Pr(fJ
1 ) does not influence the argmax function’s calculation. In other words,

the task becomes maximizing the product between two components: Pr(fJ
1 |eI

1) and Pr(eI
1),

and both of them can be modeled separately:

• In SMT, the probability Pr(eI
1) is called the Language Model (LM), which provides the

probability of the target words’ occurrences in the target language. It captures the well-

formedness of the target sentence’s syntax. The LM is therefore built on a monolingual
1http ://translate.google.com
2http ://www.bing.com/translator
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corpus of the target language E. Normally, the LM is organized as a multiple-entry file,

in which each entry is a sequence of n target words n = 1, 2, 3, 4, ... (n-grams) and its

occurrence probability in the target language.

• Meanwhile, the probability Pr(fJ
1 |eI

1) is also known as the Translation Model (TM).

The mathematical formula suggests that this model is responsible for searching the word

sequence e in the target language which can be considered as the best translation of the

source word sequence f (having the highest probability). The translation model is trained

on a parallel aligned corpus. To simplify, we can imagine it as a “bilingual dictionary”,

in which each entry is a relation between a word group of the source language with its

target partner (its translation), and each of such relation is assigned with a probability.

Once having these models, the job of SMT decoder is searching among its translation hypotheses

the one that gives the highest product of their scores.

4.2 Language Model

One essential and indispensable component of any SMT system is the Language Model (LM),

which measures how likely it is that a sequence of words S would be uttered by a target language

speaker. In other words, it tells us how likely when we pick randomly a word sequence, it turns

out to be S. As stated before, it handles the “syntactic” part of each SMT output, which plays

vital role to its quality, since we want a SMT system not only to produce words that are true

to the original meaning, but also to connect them properly to form a fluent target language

sentence. Apart from MT, the Language Model is also widely used in numerous other NLP

applications, such as POS tagging, Information Retrieval (IR) (Manning et al., 2008), Speech

Recognition (Rabiner and Juang, 1993), etc.

Among different LM methods, the leading and most well-known one is called n-gram lan-

guage modeling, which is based on statistics of how likely words are to follow each other. Why

do we have to break down the entire sentence into n-gram for calculating the probability? It

is obvious that, in order to calculate the probability of a target sentence Pr(eI
1) in the target

language, one can simply collect a large amount of text and count how often eI
1 occurs in it.

Unfortunately, most of the long sequences cannot be found in the corpus at all, even when

it is enormous. Hence, this decomposition helps collect sufficient statistic and estimate the

probability distributions we need.

According to the n-gram model, the probability Pr(eI
1) in the target language can be
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decomposed into:

Pr(eI
1) = Pr(e1e2....eI) =

I
Ÿ

i=1

Pr(ei|e1e2....ei≠1) (1.3)

Since this model hypothesizes that the word ei of the sentence is dependent to only (n-1)

preceding words, the above probability can be approximated as follows:

Pr(eI
1) = Pr(e1e2....eI) =

I
Ÿ

i=1

Pr(ei|ei≠(n≠1)ei≠(n≠1)+1....ei≠1) (1.4)

Specifically, with n = 2, we obtain the bigram LM, and with n = 3 this is called trigram LM.

In trigram LM, for example, the above probability becomes:

Pr(eI
1) = Pr(e1e2....eI) = Pr(e1)Pr(e2|e1)

I
Ÿ

i=3

Pr(ei|ei≠2ei≠1) (1.5)

All the probabilities in the above product can be estimated thanks to a huge monolingual

target corpus. We would like to emphasize that the target corpus must be big enough to be

considered as a representative of the general target language; and the bigger it is, the more

accurate these probabilities will be (and of course the more sophisticated storing and searching

issues will be). In its simplest form, the estimation of trigram word prediction probabilities,

for instance: Pr(e3|e1e2), can be conducted by counting how often in the training corpus the

sequence e1e2 is followed by the word e3, as opposed to other words. Based on the maximum

likelihood estimation, we compute:

Pr(e3|e1e2) =
count(e1, e2, e3)

q

e count(e1, e2, e)
(1.6)

where count(e1, e2, e3) is the number of occurrences of the sequence e1, e2, e3 in the training

corpus, whereas the sum over all count(e1, e2, e) represents the number of occurrences of the

sequence e1, e2 in the training corpus.

However, the n-gram model can encounter a problem when the n-gram contains a word

that cannot be found in the corpus. No matter how big the training corpus is, it is impossible

to cover all words of the target language (especially for proper names, wrongly spelled words,

or those from specific domain, etc). These words are commonly known as OOV (Out-Of-

Vocabulary). Even when all words in the n-gram occur in the LM, they might not appear

in the right order at the decoder time. These phenomena constitute the zero-value of the

n-gram prediction probability, and therefore the entire sentence’s probability, which makes
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the LM model meaningless. In order to overcome this non-trivial shortcoming, we need some

techniques to adjust the empirical counts to the expected counts (to avoid zero counts). They

are called smoothing algorithms. The add-one smoothing (Chen and Goodman, 1996) adds a

fixed number (say, 1) to every n-gram count for eliminating counts of zero. By doing so, we

need to consider not only the current n-grams in the corpus, but also all imaginary n-grams

that can be made from the corpus’s vocabulary. Meanwhile, back-off smoothing (Katz, 1987)

raises an idea of stepping back to lower order n-gram with richer statistics, rather than staying

at the current n-gram with zero count. It is obvious that we have to define the appropriate

weights to weaken the back-off probability below the original one yet still maintain a positive

value.

Measuring the LM’s quality is also very important. We know that the LM model perfor-

mance depends on multiple factors, such as the corpus on which it is trained, the value of n

(n-gram) used, or the smoothing techniques employed, etc. Ideally, a good LM should assign

a high probability to a fluent, meaningful sentence and a low probability to any ill-formed and

influent one. In order to measure this capability, “perplexity” is proposed (Jelinek et al.,

1977) and then becomes very popular in ML evaluation. Perplexity is defined through the

entropy (measure of uncertainty) of the LM, which can be written as:

H(pLM) = ≠
1
n

logpLM(e1e2....eI) = ≠
1
n

I
ÿ

i=1

logpLM(ei|e1e2....ei≠1) (1.7)

And the perplexity is a simple transformation from this cross-entropy:

PP = 2H(pLM ) (1.8)

According to this definition, a LM L1 is called better than L2 if L1 assigns a lower perplexity

(i.g. lower entropy, higher probability) to the identical good-quality test sentence (or corpus)

than L2.

4.3 Translation Model

To train the translation model, the most crucial and indispensable step is word (or phrase)

alignment. Given two sentences in which one is the translation of another, word (or phrase)

alignment can be considered the connection between these units. According to the type of

alignments, translation models can be divided into two main groups: word-based and phrase-

based models.
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4.3.1 Word-based Model

Let A = aJ
1 = a1a2...aJ denote the alignment information between the source sentence fJ

1 and

the target one eI
1. Each element aj represents the alignment information for the source word

fj and can take value in the interval 0, 1, ..., I. For instance, aj = i means that the word fj is

aligned to ei. In case of i = 0, the word fi has no actual aligned target word, so we assign it

with the “null” word e0. The probability Pr(f |e) now becomes the sum over all probabilities

corresponding to all possible alignments between two sentences:

Pr(f |e) =
ÿ

a

Pr(f, a|e) (1.9)

The five IBM models define their own way to compute Pr(f |e) (Brown et al., 1993a). In IBM

Model 1 and IBM Model 2, in order to generate the sentence f , we need to determine first

its length. Then, with each position j = 1...J , we select the position aj of its aligned target

word, which depends on the target sentence eI
1, the length J and the previously aligned words

(aj≠1
1 , f j≠1

1 ). Finally, the word fj can be produced based on aj
1, f j≠1

1 , J and eI
1. The probability

Pr(f, a|e) can be defined as in the equation 1.10:

Pr(f, a|e) = Pr(J |e)
J

Ÿ

j=1

Pr(aj|a
j≠1
1 , f j≠1

1 , J, e)Pr(f|aj
1, f j≠1

1 , J, e) (1.10)

The IBM Model 1 assumes that each word fj can be aligned to any ei with the identical

probability; and the probability Pr(J |e) is a constant (‘). These above assumptions make

the translation model to depend solely on the lexical model represented by the conditional

probability between fj and eaj
, denoted by t(fj|eaj

):

Pr(f, a|e) =
‘

(I + 1)J

J
Ÿ

j=1

t(fj|eaj
) (1.11)

After some mathematical transformations, Pr(f |e) can be obtained by:

Pr(f |e) =
‘

(I + 1)J

J
Ÿ

j=1

I
ÿ

i=0

t(fj|ei) (1.12)

The IBM Model 2 adds an explicit model for alignment beside the lexical model t(f |e), which

specifies the position of the source word to which the target one is aligned. So, this probability
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depends on the position of the target word, as well as the target sentence’s length.

Pr(f, a|e) = ‘
J

Ÿ

j=1

t(fj|eaj
)a(aj|j, J, I) (1.13)

After some methematical transformations, we obtain:

Pr(f |e) = ‘
J

Ÿ

j=1

I
ÿ

i=0

t(fj|ei)a(i|j, J, I) (1.14)

where
qI

i=0 a(i|j, J, I) = 1

The Hidden Markov Model (HMM )(Rabiner and Juang, 1986) is similar to IBM Model

2 when both distortion and lexical laws are taken into account. The only difference is that

in HMM, the distortion law depends not only on the position of the target words as well as

the length of target sentence as IBM Model 2, but also on the alignment information of the

preceding word.

In IBM Model 3, 4 and 5, three steps are applied to transform from the source to the

target sentence, including:

• Since the number of words in the source sentence is different in general from that in the

target one, each word ei can select a number of „i words in the target sentence that it

will generate (called its fertility). Whenever we meet ei in the source sentence, we will

produce „i copies of ei in the target one.

• For „i copies of ei, we produce words in the target sentence fJ
1 .

• We re-order words in the target sentence to obtain the final sentence.

The IBM Model 3 uses fertility law n(„i|ei) beside alignment and lexical ones for each

position i œ [1, I] in the source sentence. „i is the number of target words aligned to ei. This

model also supports the situation where the target word fj has no actual alignment (consider

to be aligned with e0). We call them the false words. The probability of the target word

aligned to a real source word is p0, and the probability to generate a false word is p1 = 1 ≠ p0.

The distortion (alignment) model of this model is identical to that of model 2.

The IBM Model 4 differs from the model 3 by its distortion model, which defines two

distortion laws. The first one locates the first target word generated by the source word ei, and

the second one locates the remaining „i ≠ 1 words. The IBM Model 5 is almost analogous to

the model 4, except one difference that it removes the deficiency. The distortion model of IBM-

4 does not take into account the target positions that have already been covered. Furthermore,
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IBM-4 assigns the probabilities for words that are not really target word sequences. Thanks

to the deficiency elimination, IBM-5 yields much more promising results. This complicated

model, along with IBM Model 3 and 4 are detailed in (Brown et al., 1993a).

4.3.2 Phrase-based Model

As stated above, in word-based models, each source word is separately translated into a target

word, yielding therefore an erroneous translation in almost cases, especially when a sequence of

source words can be translated into just one unique target one. Moreover, we all know that the

translation of a source word into another language is not simple as a “word-by-word” matching,

but depends on the context where it is placed, or more specific, its surrounding words. That

is the motivation for exploring phrase-based translation. In this approach, unlike word-based

one, the translation’s basic unit is a phrase (word sequence), which will be translated into its

corresponding target phrase.

Nowadays, phrase-based models become the most widely-used and outperform the other

ones thanks to their capability to manage better the word reordering, as well as to translate

the idiomatical expressions. With the training conducted on a huge corpus, it is likely that the

phrase table covers the entire input sentence, which can result in the perfect translation. There

are numerous well-known work on this approach (Koehn et al., 2003; Marcu and Wong, 2002;

Och and Ney, 2004). With this model, the translation process contains three main steps:

• Split the source sentence f into a sequence of phrases f I
1 .

• Translate each source phrase fi in f I
1 into the target phrase ei, using the translation

probability „(fi|ei).

• Re-order the translated phrases to form a “make-sense” and fluent target sentence. This

phrase is modeled by a relative distortion probability distribution d(ai ≠ bi≠1), where ai

denotes the start position of the foreign phrase that was translated into the i-th English

phrase, and bi≠1 denotes the end position of the foreign phrase translated into the (i-1)th

English phrase.

The translation probability of a phrase „(fi|ei) is computed based on Maximum Likelihood

Estimation, and can be written is:

„(fi|ei) =
count(fi, ei)

q

f Õ

i

count(f Õ

i , ei)
(1.15)
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In summary, the best target output sentence ê given an input sentence f according to the

phrase-based model is:

ê = argmaxePr(e|f) = argmaxePr(f |e)PrLM(e) (1.16)

where Pr(f |e) is decomposed into:

Pr(fi|ei) =
I

Ÿ

i=1

„(fi|ei)d(ai ≠ bi≠1) (1.17)

4.4 Log-linear Model

The log-linear model underlying SMT makes the combination of multiple components in which

each reflects one dimension of the translation’s quality. Each component is represented a set

of features, which are weighted and multiplied together. In this model, the probability of a

translation e of an input sentence f is computed as follows:

Pr(e|f) =
Ÿ

i

hi(e|f)λi (1.18)

where hi are the feature functions and ⁄i are the corresponding weights. However, in many

case, the representation of this probability is hindered by its too tiny value (¥ 0), and needs

more convenient way. One effective proposition is to use logs, which yields the negative value

instead. By doing so, what we will compute becomes:

logPr(e|f) =
ÿ

i

log(hi(e, f))⁄i (1.19)

The tuning stage of the decoder is used to set the weights. They can be optimized by

several common algorithms: Minimum Error Rate Training (MERT) (Och, 2003), or MIRA

(Margin Infused Relaxed Algorithm) (Crammer et al., 2006). Moreover, in log-linear model,

we typically employ the following models for calculating the objective function value: phrase

translation model, language model, distance-based reordering model , word penalty, lexicalized

reordering model, etc. The model also supports the integration of other additional feature

functions in order to enhance the system’s performance.
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Figure 1.2 – Translation options are created when translating a Spanish sentence into English (source:
Callison-Burch and Koehn (2005))

4.5 SMT Decoder

Given a source sentence fJ
1 , SMT system seeks the best translation êI

1 which maximizes the

probability:

êI
1 = arg max

I,eI
1

{Pr(eI
1|fJ

1 )} (1.20)

The searching process over all possible translations T for the optimal one is the decoder’s

responsibility. This section discusses the phrase-based decoding process with all detailed steps,

as implemented in Pharaoh (Koehn, 2004) and Moses (Koehn et al., 2007) systems. It starts

by collecting translation options, then applies them to expand hypotheses and searches for

those with cheapest cost. We also present some techniques to avoid the search space explosion,

including “Hypothesis Recombination” and “Pruning”.

4.5.1 Collecting Translation Options

The decoding process starts by collecting all the possible translation options given a source

sentence. First, we consider all possible adjacent source word sequences and employ the phrase

table to match these sequences with the corresponding target sequences. Relying on the phrase

table score of the source - target matching, the future cost of every target sequence (until

all source words are covered) is estimated. Among the totality of possible hypotheses, only

top scoring sequences (regulated by table pruning parameters) are retained, the remaining are

pruned. The retained target sequences are then directly used for beam search process and are

called the translation options. In SMT, the decoder encapsulates translation option along

with its model scores. Ultimately, once all translation options for a particular source sentence

are collected, the search phase can proceed.

Figure 1.2 gives an example about a number of translation options created when translating

the Spanish sentence: “Maria no dio una bofetada a la bruja verde” into English. This example

will be used to illustrate other decoding phases throughout this section. It is straightforward
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Figure 1.3 – New hypotheses are formed by applying translation options on the existing ones, until all
source words are covered (source: Callison-Burch and Koehn (2005))

to see that the translation options vary from short (“Mary”) to long (“did not give”) and the

total number of them can be huge since there are many different ways to segment source words

into phrases, and also many different ways to translate each phrase when refering to the phrase

table. They cover a single or a number of contiguous source word(s).

4.5.2 Expanding Hypothesis

A hypothesis is a partial translation, generated by applying a translation option to translate

one (or multiple) source words, in which each source word is translated one and only one time.

During the translation process, the hypothesis does not need to be built from the beginning, but

by applying a translation option to a previously existing hypothesis. We call this process the

hypothesis expansion. The expansion starts with an empty hypothesis that has translated

no source word and ends with a completed hypothesis that has translated all source words.

The highest-scoring completed hypothesis, according to the model score, is returned as most

probable translation, êI
1. Other incomplete hypotheses are referred to as partial hypotheses. As

can be seen on Figure 1.3, an empty hypothesis is first created with no English word, no source

word covered, and the probability is 1. By picking the translation option “Mary” and apply to

this hypothesis, we extend to Hyp. 1 (see on the figure). Hyp. 1 covers the Spanish word

“Maria”, contains one target word of the final translation (“Mary”) and has the score value of

0.534. The expansion process continues by picking translation options on that way, resulting

in a huge search space for the decoder.

It is noteworthy that although each translation option translates a contiguous sequence
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of source words, but successive translation options do not have to be adjacent on the source

side (e.g. the Hyp.1 and Hyp.2), depending on the distortion limit. However, the target

output is strictly read off from left to right of the target string of successive translation options.

Therefore, successive translation options which are not adjacent and monotonic in the source

will then be reordered. In order to save the memory and to speed up the searching process,

the target translation (MT output) is not stored together with each hypothesis. Instead, the

hypothesis contains a reference to translation option and a back-pointer to the best previous

hypothesis from which it extended. The target output for any hypothesis can be constructed by

simply backtracking from the final hypothesis to the initial empty one and recursively reading

off each target phrase from the translation option.

4.5.3 Recombining Hypothesis

Hypothesis Recombination is a risk-free way to lighten the search space as it becomes larger

and larger with the increase of translation options. This task is conducted by considering the

contextual information used by the language model. We need this step due to the fact that two

partial hypotheses which have identical coverage sets and are limited by identical distortion

constraints can be expanded by the same set of translation options, causing the redundancy.

Commonly, two hypotheses can be recombined without the need of being completely matched,

but just only in case they agree in:

• the source words covered so far

• the last two target words generated

• the end of the last source phrase covered

In Figure 1.4, both hypotheses Hyp. 1 and Hyp. 2 cover the first three spanish words

(“Maria no dio”) and share the same two last target words generated (“not give”), so they can

be recombined into one unique hypothesis (Hyp. 2). After the recombination, the weaker path

(with lower score) is dropped, and its previous optimal hypothesis will now point at the stronger

hypothesis (which is retained). This elimination will not affect the searching quality since the

weaker one obviously cannot lead to highest-score complete path, and therefore cannot be part

of the best translation.

4.5.4 Beam Searching

Once having the search space built, the next step is to search for the optimal hypothesis, with

highest score. The first and most critical challenge we face is the huge size of the search space,
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Figure 1.4 – An example of Hypothesis Recombination (source: Callison-Burch and Koehn (2005))

even after implementing the recombination. Specifically, Koehn estimates an upper bound for

the number of states generated during a brute force search for translating the source sentence

fJ
1 as follows:

N ¥ 2J ú |Ve|
2 ú J (1.21)

where J is the number of foreign words, and |Ve| the size of the target language vocabulary. This

exponentially exploded search space turns the problem of machine translation to be dramatically

more challenging than, for instance, speech recognition. Coping with this issue, Koehn et al.

(2003) propose the “Beam Search” algorithm which compares the hypotheses covering the

analogous number of foreign words and discards the inferior hypotheses (which would never

lead to the final output). So far, this algorithm is widely used in many SMT decoders and is

proven to work fruitfully. Figure 1.5 describes the algorithm used for the beam search . For each

number of the source words covered (1...J), a hypothesis stack is created. The initial empty

hypothesis is stored in the stack for hypotheses without any source word covered. Starting

with this hypothesis, new hypotheses are generated by extending from it using one translation

option from the translation options set, and then are pushed to the appropriate stack relying

on the number of source words covered so far. This process is identically applied for all other
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Figure 1.5 – Pseudo-code of Beam Search algorithm along with the stack organization for the search:
hypotheses are store in the stacks according to the number of source words translated so far. When a
new hypothesis is built from the existing one, it will be placed in a new stack (source: Callison-Burch and
Koehn (2005))

stacks. In case where the amount of stack becomes too enormous, they can be pruned by using

the threshold or histogram pruning (will be discussed in the next section). At the end, the final

stack (hypothesisStack[J ]) contains completed hypotheses, having all source words translated.

The highest scoring hypothesis obtained from this stack is the result of decoding.

4.5.5 Pruning

As mentioned before, recombining hypotheses is a safe way to reduce the search space. Never-

theless, in reality, the total number of hypotheses after recombination is still extremely large,

causing the beam search algorithm intractable. This challenge leads to another elimination,

but this time, it is risky. Pruning is a task of discarding all hypotheses that seem unlikely to

result in a good translation (but there is no certain guarantee that they are definitely useless).

Two types of pruning are employed (Koehn, 2010) to eliminate low scoring hypotheses:

• histogram pruning: we keep top n hypotheses in each stack (e.g., n=100)

• threshold pruning: we keep all hypotheses whose scores are not less than – times of

the score of the current best hypothesis in the stack (e.g., – = 0.001).
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In order to have a less risky elimination, we compare hypotheses by their estimated score to

completion, rather than using just the current score. This score can be computed by adding the

current score with the estimated score of translating the remaining untranslated source words:

h(e, f) ¥ hÕ(eÕ, f, C) + hÕ(Cú) (1.22)

where Cú = {1, 2, ..., J} ≠ C is the set of uncovered positions; hÕ(eÕ, f, C) is the score of a

hypothesis that has translated the source words in the coverage C as eÕ; and hÕ(Cú) is the

future estimated score. Besides, the optimal score for a sequence of source words can be

quickly computed with dynamic programming. It is important to emphasize that in case where

the source words not covered so far are multiple disconnected sequences (not contiguous), the

combined score is simply the product of the score of each sequence.

5 Useful Toolkits and Resources for Statistical Machine

Translation

Recently, the task of building a SMT system becomes more and more doable and convenient,

thanks to a large number of free corpora and open-source toolkits supporting the different

SMT components. For training the translation model, we need a huge bilingual parallel cor-

pus containing source sentences and their translations. These resources can be automatically

crawled from bilingual websites (e.g. news, government, or international organizations web-

sites). Besides, several grand corpora, built by translating from the official documents of

european parliament (Koehn, 2005) or Canadian parliament (Simard, 1998), etc. can be freely

accessed. In this thesis, we will use the Europarl and News parallel corpora that are provided

for WMT evaluation campaign in 2010 (total 1,638,440 sentence pairs) to train our French

- English translation model. Besides, the language model training is even simpler with the

availability of numerous monolingual corpora.

In 1990, the “GIZA” toolkit is developed to train the word alignment and implement the

IBM models (from model 1 to model 3) (Al-onaizan et al., 1999). After that, its successor (and

also the more advanced version), “GIZA++” is released with more new features (Och and Ney,

2003). This version helps to implement the IBM Model 4, as well as HMM. Also, the toolkit

“ISI ReWrite Decoder” (Germann et al., 2001) is designed to deal with IBM Model 4. For the

n-gram Language Model training, SRILM toolkit (Stolcke, 2002) is a prominent software.

As far as the SMT decoder is concerned, “Pharaoh” (Koehn, 2004) is the first tool which

implements the phrase-based translation model, followed by “MOSES” (Koehn et al., 2007) -
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one of the most widely-used SMT systems for research purpose. Both of them encapsulate a set

of scripts for building a phrased-based SMT, involving: aligning words (GIZA++), extracting

segments, training and estimating system and decoder’ parameters, etc. Concerning MOSES, it

takes the log-linear model, containing a set of sub-models. Each model provides one or multiple

scores, constituting the 14 default parameters of the decoder. They are: 5 scores of translation

models, 1 score of distortion model, 1 score of language model, 6 scores of lexical models and

1 score of word penalty model.

6 Machine Translation Evaluation

Generally, in natural language, we do not have only one way to translate from the source

to the target sentence. Using different synonyms, morphological or idiomatic styles, or even

changing word orders can all lead to the right translation. Therefore, evaluating a SMT output

is definitely a nontrivial task and the evaluation metrics need both statistical and linguistic

factors. That explains why the first approaches for this issues relate to the human subjective

judgements. This approach is good since no one can evaluate MT outputs better than a trans-

lator with in-depth knowledge on both source and target languages. However, when dealing

with a huge task load, this will become expensive (effort and time-consuming). Furthermore,

the evaluation result will not homogenous when being conducted by different individuals (with

different language backgrounds, attitudes and emotions, etc). These limitations motivate the

automatic (objective) MT evaluation metrics, which assess the MT output by matching it with

the (one or multiple) gold-standard reference(s). Both evaluation types will be introduced in

this section.

6.1 Human Subjective Judgement

Several methods of evaluation using human subjective judgments are frequently applied in

SMT community. In some cases, the quality of system hypothesis is measured directly, such

as with human judgments; in other cases, it is measured by performing reading tests or other

downstream tasks with the system output, and in still other cases it is measured by calculating

the amount of work required to correct the system output (post-edition efforts).

Two common methods are fluency and adequacy judgments (Callison-Burch et al., 2007;

White, 1994). Fluency requires a speaker fluent in the target language to judge whether the

system output is fluent, regardless of whether content of the output conveys accurately or not

what the source sentences want to say. Meanwhile, Adequacy disregards the level of fluency
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in the system output and, as far as this is possible, measures whether the essential information

in the source can be extracted from the system output. The requirements for an annotator of

adequacy are stricter than for fluency, as the annotator must be bilingual in both the source

and target language in order to judge whether the information is preserved across translation.

In practice, an annotator who is fluent only in the target language could also annotate adequacy

using a set of high quality human translations of the source sentence.

Apart from them, Post-editing (Parton et al., 2012; Specia and Farzindar, 2010), where

the system output is corrected after it is produced, is another common method of measuring

translation quality, with more accurate translation requiring less editing and poor translations

requiring large amounts of editing. This method suffers as an evaluation metric due to the large

amount of work required by human annotators to correct system output, rather than quickly

objectively scoring it on an objective scale. PET (Post-Editing Tool) (Aziz et al., 2012) is an

example of an open-source software that enables post-editors to post-edit and assess machine or

human translations while gathering detailed statistics about post-editing time amongst other

effort indicators. In another interesting toolkit: SECTra_w.1 (Huynh et al., 2008), humans

are enabled to post-edit the MT results using a web translation editor and then measure the

post-editing time in an intuitive way. The post-edited sentences can be added to the set of

reference translations, or become the first one in case where there were not any reference yet.

6.2 Automatic Measures

6.2.1 Word Error Rate (WER)

One of the first automatic metrics used to evaluate SMT systems was Word Error Rate (WER),

which is the standard evaluation metric for Automatic Speech Recognition (ASR). WER is com-

puted as the Levenshtein distance (Levenshtein, 1966) between the words of the MT hypothesis

and the words of the reference translation divided by the length of the reference translation.

The Levenshtein distance is computed using dynamic programming to find the optimal align-

ment between the MT output and the reference translation, with each word in the MT output

aligning to either 1 or 0 words in the reference translation, and vice versa. Those cases where a

reference word is aligned to nothing are labeled as deletions, whereas the alignment of a word

from the MT output to nothing is an insertion. If a reference word matches (or is identical) the

MT output word it is aligned to, this is marked as a match, and otherwise is a substitution.

The WER is then the sums of the number of substitutions (S), insertions (I), and deletions (D)
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divided by the number of words in the reference translation (N) as shown in Equation 1.23

WER =
S + I + D

N
(1.23)

6.2.2 BLEU

BLEU (Bilingual Evaluation Understudy) (Papineni et al., 2002) is the current standard for

automatic machine translation evaluation. The key characteristic of BLEU is its direct ex-

ploitation of multiple references. The BLEU score of a system output is calculated by counting

the number of n-grams (or word sequences), in the system output that occur in the set of

reference translations. BLEU is a precision-oriented metric as it measures how much of the

system output is correct, rather than measuring whether the references are fully reproduced in

the system output. The score is finally defined as follows:

pn =
q

CœCandidates

q

n≠gramœC Countclip(n ≠ gram)
q

CœCandidates

q

n≠gramœC Count(n ≠ gram)
(1.24)

BP =

Y

_

]

_

[

1 if c > r

e1≠
r
c if otherwise

(1.25)

BLEU = BP ú exp(
N

ÿ

n=1

wnlogpn
) (1.26)

Equation 1.24 shows the calculation of the BLEU precision scores for n≠gram of length n, where

Candidates represents all sentences in the test corpus, Count(n≠gram) is the number of times

that an n-gram occurs in a hypothesis, and Countclip(n≠gram) = min(Count, Max_ref_count)

is the minimum value between the n-gram’s count in the hypothesis and the maximum number

of times it occurs in any reference translation (we clip to ensure that n-gram’s count will not

exceed its highest count observed in any reference). Equation 1.25 computes the BLEU brevity

penalty, where c and r are the lengths of the hypothesis and the reference translation, respec-

tively. These terms are combined, as shown in Equation 1.26, to calculate the total BLEU

score, where N is typically 4, and the weight wn is usually set to 1
N

. In addition, BLEU score

can also be represented in the log domain, by transforming Equation 1.26:

logBLEU = min(1 ≠
r

c
, 0) +

N
ÿ

n=1

wnlogpn
(1.27)

29



Chapter 1. Theory of Machine Translation

Since its introduction, BLEU has become widespread in the machine translation community

and is the most commonly reported evaluation metric. However, it contains still several short-

comings (Callison-burch and Osborne, 2006; Lavie et al., 2004; Turian et al., 2003), such as:

the lack of recall in its formula, the compatibility only over large test corpora and not reliable

for individual sentence, the absence of synonym matching, and the inability to detect multiple

proper word orders, etc.

6.2.3 METEOR

METEOR (Metric for Evaluation of Translation with Explicit ORdering) (Banerjee and Lavie,

2005) is an evaluation specifically designed to address several observed drawbacks in BLEU

metric. METEOR is a recall-oriented metric, whereas BLEU is generally precision-oriented. It

firstly calculates both precision and recall3, and combines the two, to form the first element

called Fmean as shown in Equation 1.28 (with a large bias towards recall):

Fmean =
P ú R

– ú P + (1 ≠ –) ú R
(1.28)

In addition to the Fmean, METEOR also uses a fragmentation penalty to bias the score against

hypotheses that have many short sequences of consecutive matches (with the references), called

chunks. Fragmentation is calculated as the number of chunks divided by the number of unigram

matches. The fragmentation penalty is calculated as shown in Equation 1.29, with default

parameters of — = 3.0 and “ = 0.5:

Pen = “ ú fragβ (1.29)

It is noteworthy that unlike BLEU and NIST, METEOR uses flexible criterion to match the

unigrams between the hypothesis and the references. In the “exact” mode (as used in BLEU and

NIST), two unigrams are matched if and only if they are exactly the same (e.g. “houses” maps

to “houses” but not “house”). Besides, the “stemming” mode allows two unigrams derived

from the same root form to be mapped (e.g. “houses” with “house”, “gave” with “given”).

Furthermore, the “synonymy” mode maps two unigrams if they are the synonyms of each other

(e.g. “choose” with “select”, “truck” with “lorry”). Finally, the METEOR score is calculated

by Equation 1.30:

METEOR = (1 ≠ Pen) ú Fmean (1.30)

3Detailed definitions of Precision and Recall can be referred in Chapter 2
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Although having a dominant advantage of covering both precision and recall into its value,

METEOR lacks one of the BLEU’s key features: multiple reference exploitation, so that it is

unable to combine knowledge from multiple reference to judge the MT output.

6.2.4 Translation Edit Rate (TER)

Translation Error Rate (TER) (Snover et al., 2006) addresses the phrase reordering shortcom-

ing of WER by allowing block movement of words, also called shifts, within the hypothesis as

a low cost edit, a cost of 1, the same as the cost for inserting, deleting or substituting a word.

The shifting constraints used by TER aim at reducing the computational complexity of the

model and better modeling the quality of translation.

When TER is used in the case of multiple references, it does not combine the references,

but instead, scores the hypothesis against each reference individually. The reference with

which the hypothesis has the fewest number of edits is deemed the closest reference, and that

number of edits is used as the numerator for calculating the TER score, as is done in Multi-

reference WER (MWER). Rather than using the number of the words in the closest reference

as the denominator, TER uses the average number of words across all of the references. Thus,

the equation for the TER score, where SUB, INS, DEL and SHIFT are the number of

substitutions, insertions, deletions and shifts, respectively, and Navg is the average number of

reference words, is shown in the following equation.

TER =
SUB + INS + DEL + SHIFT

Navg

(1.31)

Nonetheless, TER cannot exploit multiple references as is done in BLEU nor does it incorpo-

rate external linguistic knowledge, e.g., synonyms, as is done in METEOR. These disadvantages

can be overcome through the use of targeted references - references created by humans specifi-

cally for a particular machine translation output - changing it from an automatic metric (TER)

to a semi-automatic metric: HTER.

6.3 Semi-automatic Measure: HTER

HTER (Human-targeted Translation Error Rate) (Snover et al., 2006) is a human-in-the-loop

variant of TER that has also been used to evaluate SMT. HTER requires the use of mono-lingual

human annotators who create references that are targeted to a particular system output. A

targeted reference is crafted by modifying the MT hypothesis with a minimal number of edits so

that this reference is fluent while still preserves the meaning of the other reference translations.
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The use of targeted references has been shown to increase the correlation of automatic metrics

with subjective human judgments, and can be seen as a method of addressing the sparsity of

reference translations. However, since the targeted references cannot be reused and due to the

requirement for human annotators to create targeted references, HTER is unsuited as a purely

automatic machine translation evaluation metric.

7 Conclusions

This chapter presented the basic concepts of Machine Translation. It is a task where translation

is automated partially or entirely by the aid of computer. MT has a long history of development

from the early years of the last century, and is now still attracting researchers and companies

worldwide. MT systems are divided into multiple types based on linguistic or computational

architectures. Among MT approaches, statistical methods are more prominent than the others

with numerous fruitful achievements in both research and commercial systems; thanks to the

availability of bilingual training corpus and the language-independent working mechanism.

The chapter also mentioned some useful toolkits for building various components of a SMT

system (GIZA++, SRILM, MOSES, etc.). From them, researches are able to build their own

experimental systems rapidly. The MT evaluation metrics to access the MT systems perfor-

mance were also presented.
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Chapter 2

Theory of Word Confidence Estimation

1 Introduction

1.1 Confidence Estimation

Statistical Machine Translation (SMT) systems in recent years have marked impressive break-

throughs with numerous commendable achievements, as they produced more and more user-

acceptable outputs. Nevertheless the users still face with some open questions: are these trans-

lations ready to be published as they are? Are they worth to be corrected or do they require

retranslation? It is undoubtedly that building a method which is capable of pointing out the

correct parts, detecting the translation errors, and concluding the overall quality of each MT

hypothesis (output) is crucial to tackle these above issues. Such method is widely known under

the name Confidence Estimation (CE) or Quality Estimation (QE). Technically, Confidence

Estimation can be defined as a task of predicting the quality of the MT output

for a given input. Depending on the use cases, contexts, user types and applications, the

concept “MT output to be judged” can vary from an entire document, a sentence, a segment or

only a word. In terms of granularity, CE problem can be categorized into the following levels:

• Document-level Confidence Estimation (DCE): provides the quality prediction for a new,

unseen translated document. This type of CE is important in scenarios where the entire

text needs to be published without post-edition.

• Sentence-level Confidence Estimation (SCE): measures the entire sentence goodness.

• Segment-level Confidence Estimation (Seg-CE): estimate the quality of a specific segment.

The segment can be an n-gram, a phrase (noun phrase, verb phrase, etc) or the entire

sentence (in this case, it becomes the second type).

• Word-level Confidence Estimation (WCE): points out the confidence score (and quality

label) for each word in the MT hypothesis.
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This thesis mainly focuses on the latter estimate.

Formally, let ti denote the i-th word, ej denote the j-th segment in the target sentence t

generated by an SMT system from a given source sentence s. The source and target sentences

s and t belong to the source and target documents S and T . The job of CE systems is to

calculate the probability of MT output to be correct, called confidence score:

Word level:

word_score = P (Good|i, ti, s) (2.1)

Segment level:

segment_score = P (Good|j, ej, s) (2.2)

Sentence level:

sentence_score = P (Good|t, s) (2.3)

Document level:

document_score = P (Good|T, S) (2.4)

What are the motivations behind the idea of building such automatic estimation methods?

The answers are expected to originate from the actual shortcomings of assessing manually the

translation quality. Firstly, this task is time and effort consuming. Reading a long text

for assessment is definitely a nontrivial work, as it takes time to understand, and even take

more if it is badly expressed. Moreover, the readers would be disappointed after spending a lot

of time scanning text and then realize that it cannot be used for anything and it is better to

re-translate from scratch. Secondly, this task is sometimes impossible, e.g. in case where

the readers have little or no knowledge in the source language, so they cannot say anything

about the adequacy of a given translation.

Due to the fact that an increasing number of MT systems appear and compete in the trans-

lation industry nowadays, many automatic evaluation metrics are proposed to evaluate their

quality, such as BLEU (Papineni et al., 2002), TER (Snover et al., 2008), NIST (Doddington,

2002), METEOR (Lavie and Denkowski, 2009), etc. Nevertheless, unlike these above metrics,

QE methods measure MT quality when the translation references are not available. In other

words, QE gives quality predictions for MT outputs without having any idea about the expected

quality (e.g. post-editions). One another discrepancy is that, QE methods principally aim at

telling how good the translated text is for a given MT system in use when translating an unseen

source text, rather than investigating the evolution of a specific MT system, or comparing the

performance of multiple ones.
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1.2 Mechanism and Components of a WCE System

In the general case, the CE’s objective is to judge each MT output (e.g. word, segment, sentence,

document) quality by tagging it with an appropriate quality label. The quality label is “Good”

in case the output is perfect and does not need any editing operator. On the contrary, if the

output contains errors, depending on the judgement’s scope, the label can be just only “Bad”

(need to be edited), or be further divided into more specific error types (e.g. accuracy, fluency,

coherence, consistency, etc.).

In this thesis, we focus mostly on the binary variant (where quality label set encompasses

“Good” and “Bad”) of the WCE. Figure 2.1 demonstrates the operating mechanism of a binary

classifier: given an MT output word, a classifier which has been trained beforehand calculates

its confidence score, and then compares with a pre-defined threshold –. All words with scores

that exceed this threshold are categorized in the Good label set; the rest belongs to the Bad

label set.

Figure 2.1 – The working mechanism of a binary classifier

Formally, the binary classifier is defined as:

label(ti) =

Y

_

]

_

[

Good if p(ti|s) Ø –

Bad if otherwise
(2.5)

In general, when incorrect words are further decomposed into multiple error types, the

classifier computes the score for every class, and select the one with the highest score to tag

the word. Regardless of binary or multi-class type, WCE system requires two crucial elements

to operate, involving Feature Set and Machine Learning (ML) method.

Features (also commonly known as Prediction Indicators) are the indispensable factor in

any WCE system as they constitute the knowledge base on which the classifier relies to judge

words. Essentially, they are the characteristics (under the numerical or non-numerical form),
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which capture every aspect of target word (e.g. lexical, semantic, syntactic, statistical etc.).

Word posterior probability, number of senses, or number of occurrences in sentence, etc are

examples of numerical features. Meanwhile, the Part-of-Speech tag, constituent label, aligned

source word(s), etc are some representatives for the other type. Depending on the method em-

ployed, the non-numerical features might be required to discretize before using. Word features

are collected from plenty of resources, related to or independent from SMT components. From

SMT N -best list, alignment information, Language Model to outside syntactic and semantic

parsers, all elements can be exploited to obtain useful indicators for word. Once having all fea-

tures extracted, each word in the training and test data is represented by a vector of features,

which will be used to train and test the classifier.

In the training phase, ML algorithm takes the responsibility of learning the probability

distribution function for each possible label of word. We assume that the word ti is represented

by the feature vector fK
ti

= {f1, f2, ..., fK}. Then, the probability distribution function learned

by ML algorithm is written as:

p(label(ti); ti) = p(label(ti)|fK
ti

) (2.6)

where label(ti) œ {Good, Bad} in case of binary classifier. These distributions are then used

to perform the classification. The different approaches in building these functions yield a variety

of ML methods, such as: Naive Bayes, Logistic Regression, Decision Tree, Conditional Random

Fields, etc. Among them, those which are employed in our experiments will be reviewed in

Section 4.

1.3 WCE Applications

WCE shows an increasing importance in many aspects of MT. Firstly, it assists the post-

editors to quickly identify the translation errors, determine whether to correct the sentence or

retranslate it from scratch, hence improve their productivity (Nguyen et al., 2011). Secondly,

it informs readers of portions of sentence that are not reliable (Specia et al., 2011). Such

information is vital to avoid the misunderstanding about the sentence’s content. Thirdly, it

selects the best translation among options from multiple MT and/or translation memory (TM)

(He et al., 2010). Therefore, by using WCE, we can recommend SMT output to a TM user when

it is predicted more suitable for post-editing than the hits provided by TM. Next, WCE can

also be used by the translators in an interactive scenario (Gandrabur and Foster, 2003). More

specifically, the system facilitates translators after every character they type, by displaying all
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possible words will come next, based on the source text and part of the word that has been typed

so far. Last but not least, WCE scores can help to improve the MT quality via some scenarios:

N -best list re-ranking, Search Graph Re-decoding, etc. In re-ranking (Duh and Kirchhoff, 2008;

Nguyen et al., 2011; Zhang et al., 2006), more features are integrated with the existing multiple

model scores for re-selecting the best candidate among N -best list. Meanwhile, the re-decoding

process (Venugopal et al., 2007) intervenes directly into the decoder’s search graph (SG) using

WCE score, driving it to the optimal path (cheapest hypothesis), or the optimal hypothesis.

2 Measuring the Performance of a CE System

We present some common metrics which are widely used to measure the performance of Con-

fidence Estimation system at word and sentence level.

2.1 Precision, Recall and F-score

Generally, the performance of WCE classifiers are measured by using common evaluation met-

rics: Precision (Pr), Recall (Rc) and F-score (F). Suppose that we would like to quantify these

values for label Bad (“B”). Let X be the number of words whose true label is B and have been

tagged with this label by the classifier, Y is the total number of words classified as B, and Z

is the total number of words which true label is B. From these concepts, Pr, Rc and F can be

defined as follows:

Pr =
X

Y
; Rc =

X

Z
; F =

2 ◊ Pr ◊ Rc

Pr + Rc
(2.7)

These calculations can be applied in the same way for other labels. The higher the Precision

is, the better our classification result will be. Precision of a specific label characterizes the

ability of system to predict correctly (for it) over all classified words. Meanwhile, the Recall

reflects how efficient the system is in retrieving the accurate labels from database. F-score is

the harmonic mean of Precision and Recall.

In addition, for multiple-label classification, the system’s overall F score can be computed as

the average of all labels’ F scores, weighted by their frequencies in the test data (Bojar et al.,

2013).

2.2 Classification Error Rate

Another metric, called “Classification Error Rate” (CER) is also widely used in a number of

researches (Blatz et al., 2004; Sanchis et al., 2007; Ueffing and Ney, 2005; Xiong et al., 2010).
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It is the ratio of number of translation errors (i.g. words that are wrongly classified) over total

number of classified words.

CER =
#wrongly_classified_words

#classified_words
(2.8)

2.3 Mean Absolute Error (MAE) and Root Mean Square Error

(RMSE)

Two conventional metrics are used to measure the CE system’s performance at sentence level

include “Mean Absolute Error” (MAE) and “Root Mean Square Error” (RMSE)1. The

MAE is a quantity used to measure how close predicted scores are to the reference scores.

Expressed in words, it is the average over the verification sample of the absolute values of the

differences between the predicted and the reference scores.

Meanwhile, the RMSE measures the average of the errors (difference between predicted

and reference scores). Expressing the formula in words, the differences between reference and

predicted score are each squared and then averaged over the sample. Finally, the square root

of the average is taken. Since the errors are squared before they are averaged, the RMSE gives

a relatively high weight to large errors. This means the RMSE is especially useful when large

errors are particularly undesirable.

Formally, given a test set S = s1, s2, ..., sN , let R(si) and H(si) (i = 1, ..., N) be the reference

score and hypothesis (predicted) score for sentence si, respectively. Then, MAE and RMSE

can be formally defined by:

MAE =
qN

i=1 |R(si) ≠ H(si)|
N

(2.9)

RMSE =

Û

qN
i=1(|R(si) ≠ H(si)|)2

N
(2.10)

3 Previous Work

Confidence measure has been widely exploited in automatic speech recognition (e.g. in dia-

logue system or unsupervised training). In the years of 2003 and 2004, the researchers started

to broaden it in MT domain (Blatz et al., 2003, 2004; Gandrabur and Foster, 2003; Ueffing

et al., 2003) and carried out more and more in-depth related work until present. Coping with

1http://www.52nlp.com/mean-absolute-error-mae-and-mean-square-error-mse/
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WCE, various approaches have been proposed, aiming at two major issues: features and Ma-

chine Learning (ML) methods to build the classifier. In this review, we refer mainly to two

general types of features: internal and external features. “Internal features” (or “system-based

features”) are extracted from the components of MT system itself, generated before or during

translation process (N-best lists, word graph, alignment table, language model, etc.). “Exter-

nal features” are constructed thanks to external linguistic knowledge sources and tools, such as

Part-Of-Speech (POS) Tagger, syntactic parser, WordNet, stop word list, etc.

The authors in (Blatz et al., 2003) combined a considerable number of features by applying

neural network and naive Bayes learning algorithms. In their study, both SCE and WCE were

experimented. Among their features, Word Posterior Probability (henceforth WPP) proposed

by Ueffing et al. (2003) was shown to be the most effective system-based feature. According to

(Ueffing et al., 2003), WPP of a word can be determined by summing up the posterior proba-

bility of all sentences which contain it in a specific position, and then applying a normalization

term on this summation. WPP can be computed on both word graph (constructed by SMT

system) or on the N -best list (SMT’s output). They based on these feature to suggest two

alternative measures on N -best list, involving: “Relative frequency” and “Rank sum”.

In the work of Blatz et al. (2004), the combination of WPP “any” (regarding all sentences

containing the word at any position), WPP “source” (considering all sentences where the word

occurs as the translation of the same source word), and IBM-Model 1 feature (Brown et al.,

1993a) was also shown to outperform all the other single ones, including heuristic and semantic

features. This top 3 helped to improve the baseline of 7% absolute in classification error rate

(CER) (reduced from 36.2% to 29.2%). Another noticeable observation in this work is that

there was almost no progression in system’s performance when more and more features were

added from top 3 (CER 29.2%) to all 17 features (CER 29.6%).

Using solely N-best list as resource, Sanchis et al. (2007) suggested 9 different features

and then adopt a smoothed naive Bayes classification model to train the classifier. Testing

results on bilingual English - Spanish technical manuals translation were consistent with those

obtained by Blatz et al. (2004): IBM Model 1 based features are helpful in detecting wrongly

translated words (CER 17.1%). Besides, features computed by WPP perform more efficiently

(CER 18.4%) than those based on relative frequencies (CER 19.1%) or rank weights (CER

18.8%). Also, among the variants of WPP, the one computed over all N -best sentences that

contain the target word at the “exact” position as it appears in the 1-best was shown to

perform more fruitfully than the “Levenshtein position” or “any position” variants.

Another study (Ueffing and Ney, 2005) introduces a novel approach that explicitly explores

the phrase-based translation model for detecting word errors. A phrase is simply considered as a
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contiguous sequence of words and is extracted from the word-aligned bilingual training corpus.

Its translation probability is computed as a log-linear interpolation of the relative frequency

and the IBM-1 probability. The confidence value of each target word is then computed by

summing over all the probabilities of the phrase pairs in which the target part contains this

word. The authors tested on three different language pairs: French æ English, Spanish æ

English and German æ English, and compared the performances to other state-of-the-art

methods, including word graph, N -best list, and IBM-1 based approaches. Results in all cases

indicated that the proposed method yielded impressive relative reductions of the CER (up to

7.8%) compared to the best existing method on the same language pairs.

In Xiong et al. (2010), the classifier was built by integrating the target word itself, its

POS, its WPP with another lexical feature named “Null Dependency Link” (or “null link”, to

verify whether it has grammatical relations with the surrounding words). Moreover, in order

to capture the contextual environment, in the word’s features vector, they looked as well at the

combinations with features of two words before and two words after the current one. After that,

they trained these indicators by Maximum Entropy model (Berger et al., 1996) and optimized

their weights on a separated development set. Interestingly, linguistic features (target word,

POS and null link) sharply outperformed WPP feature in terms of F-score and CER by a

relative improvement of 15.58% and 8.64%, respectively. Moreover, the syntactic feature “Null

Dependency Link” showed its contribution in detecting translation errors when boosting the

“Recall” score of other classifiers whenever it is used.

Unlike most of previous work, the authors in Soricut and Echihabi (2010) applied solely

external features to rank the MT outputs from best to worse, with the hope that their ranker

can deal with various MT approaches, from statistical-based to rule-based. They focused

on predicting the quality at the document-level. The feature pool includes those relied on

(target and source) text, LM, pseudo reference, examples on development dataset, and the

corresponding MT system’s training data. The training label used was the BLEU score. Then,

given an MT output, its label (BLEU score) is predicted by their regression model. Another

new point in this work is that the metric used to measure their solution’s performance targeted

directly at translation quality gains. In their large scale experiments conducted on 10 different

language pairs in three different domains, the rankers achieved impressive improvement in

volume-weighted BLEU gain (i.e. the average BLEU gain obtained when trading off volume

for accuracy on a predefined scale, denoted by vBLEU∆) varying among domains, from +6.4

(Travel) to +13.5 (HiTech). Also, results show consistent performances across various language

pairs by a high averaged vBLEU∆ of +9.9 for five language pairs considered.

A method to compute the confidence score for both words and sentences relied on a feature-
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rich classifier is proposed by Nguyen et al. (2011). The novel features employed include source

side information, alignment context, and dependency structure. Among them, the two for-

mers took into account the surface structures of both source and target sentences, whereas

the latter utilized deep linguistic structures. Interestingly, the “dependency structure” fea-

ture investigates whether the target and source word have a “Father-Child” agreement (when

they are aligned and so are their fathers) and/or “Children” agreement (their children are also

aligned). In their approach, the sentence’s goodness was synthesized from word scores. The

training process was conducted on a 72000-sentence dataset using Conditional Random Fields

(CRF) (Lafferty et al., 2001) model, followed by the feature selection and parameter tuning

on 2707-sentence development one. On the unseen (¥ 3000 sentences) test set, these first-

time-proposed indicators overwhelmed WPP and POS for absolute F score by best gaps of

2.8 and 2.4 in both binary (Good, Bad) and 4-class (Good, Insertion, Substitution, Shift) sys-

tems. Moreover, their CE scores assisted MT system to re-rank the N-best list which improves

considerably translation quality (measured by TER score).

In the submitted system to the WMT12 shared task on Quality Estimation, the authors in

Langlois et al. (2012) added a total of 49 new features to the baseline provided by the organizers,

including averaged, intra-lingual, basic parser and out-of-vocabulary features. They are then

trained by SVM model, then filtered by forward-backward feature selection algorithm. This

algorithm waives features which linearly correlated with others while keeping those relevant for

prediction. It increases slightly the performance of all-feature system in terms of Root Mean

Square Error (RMSE, 0.01 point gained). The optimization of the radial basis function param-

eters was not able to get more improvement compared to the system with default parameters

and feature selection (0.77 RMSE). Finally, further analysis on kernel selection, parameter op-

timization suggest these techniques cannot yield significant effect on the classifier performance

if the features employed are not strong enough.

WMT 2013 (Bojar et al., 2013) also witnessed several attempts dealing with WCE in its first

launch as shared task. Aiming at an MT system-independent quality assessment, “referential

translation machines” (RTM) method proposed in Bicici (2013) shows its encouraging predic-

tion performance, without accessing any SMT system specific resource and prior knowledge

used to train data or model. RTM takes into account the acts of translation when translating

between two data sets with respect to a reference corpus in the same domain. In addition, an

RTM model relied on the selection of the common training data which is relevant and close

to both the training set and the test one. Bicici (2013) also extended the global learning

model by dynamic training with adaptive weight updates in the perceptron training algorithm.

Meanwhile, Han et al. (2013) employed the CRF model as their Machine Learning method to
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address the problem as a sequence labeling task. As far as prediction indicators are concerned,

Bicici (2013) proposed seven word feature types and found among them the “CCL links” the

most outstanding. Han et al. (2013) focused only on various n-gram combinations for target

words. Interestingly, this was also the first time we participated in this share task. We (Luong

et al., 2013b) integrated a number of new prediction indicators to build the classifier, as well

as a number of optimization attempts to enhance the baseline (classification threshold tuning,

feature selection and boosting technique). They will be consequently mentioned in the next

chapters of this thesis.

4 Features (Prediction Indicators)

In this section, we review and depict in details a number of state-of-the-art features which have

been widely used by previous work, and will be inherited by us to train our WCE classifiers.

Our proposed features will be described in Chapter 3. Generally, the prediction indicators

represent various statistical characteristics or linguistic functions of words and can be extracted

from numerous SMT dependent or independent resources. We categorize them into one of the

following principal classes:

4.1 System-based Features

They are the features extracted directly from the SMT system, without the participation of

any additional external component. Based on the resources where features are found, they can

be sub-categorized as following:

4.1.1 Target Side Features

The information of every target word (at position i in the MT output) that can be taken into

account includes:

• The word itself (Xiong et al., 2010)

• The sequences formed between it and a word before (i ≠ 1/i) or after it (i/i + 1)

• The trigram sequences formed by it and two previous and two following words (including:

i ≠ 2/i ≠ 1/i; i ≠ 1/i/i + 1; i/i + 1/i + 2)

• The number of occurrences in the sentence

For example, with the target sentence: “This decision, crucial to the future of an unstable

region, will test the resolve and western unity.”, these above features for the word “future" are:
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• The word itself: “future”

• The bigram sequences: “the/future” and “future/of”

• The trigram sequences: “to/the/future”, “the/future/of” and “future/of/an”

• The number of occurrences: 1

4.1.2 Source Side Features

Using the alignment information, we can track the source words which the target word is

aligned to. To facilitate the alignment representation,the BIO2 format can be applied: in case

of multiple target words are aligned with one source word, the first word’s alignment information

will be prefixed with symbol “B-” (means “Begin”); and “I-” (means “Inside”) will be added at

the beginning of alignment information for each of the remaining ones. The target words which

are not aligned with any source word will be represented as “O” (means “Outside”). Table 2.1

Target words (MT
output)

Source aligned
words

Target words (MT
output)

Source aligned
words

The B-le to B-de
public B-public look B-tourner
will B-aura again B-à|nouveau
soon B-bientôt at B-son
have I-aura its I-son
the B-l’ attention B-attention
opportunity B-occasion . B-.

Table 2.1 – Example of using BIO format to represent the alignment information

shows an example for this representation, in case of the english hypothesis is “The public will

soon have the opportunity to look again at its attention.”, given its french source: “Le public

aura bientôt l’occasion de tourner à nouveau son attention.”. Since two target words “will” and

“have” are aligned to “aura” in the source sentence, the alignment information for them will

be “B-aura” and “I-aura” respectively. In case a target word has multiple aligned source words

(such as “again”), we separate these words by the symbol “|” after putting the prefix “B-” at

the beginning.

4.1.3 Alignment Context Features

These features are proposed by Nguyen et al. (2011) in regard with the intuition that collocation

is a believable indicator for judging if a target word is generated by a particular source word.

2http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/
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Figure 2.2 – Example of alignment context features

Among various representatives for this type, the most widely-employed surrounding alignment

context information involves:

• Source alignment context features: the combinations of the target word and one word

before (left source context) or after (right source context) the source word aligned to it.

• Target alignment context features: the combinations of the source word and each word

in the window ±2 (two before, two after) of the target word.
Figure 2.2 shows an example of these features. For instance, in case of the target (english)

word “future”, the aligned source (french) word is “avenir”, and the source alignment context

features are: “future/l’ ” and “future/d’ ”. We also get its target alignment context features,

encompassing: “avenir/to”, “avenir/the”, “avenir/of”, and “avenir/an”.

4.1.4 Word Posterior Probability

Word posterior probability (WPP) (Ueffing et al., 2003) is the likelihood of the word occurring

in the target sentence, given the source sentence. Numerous knowledge sources have been

proposed to calculate it, such as word graphs, N-best lists, etc. To quantify it, the key point

is to determine sentences in N-best lists that contain the word e under consideration in a fixed

position i . Let p(fJ
1 , eI

1) be the joint probability of source sentence fJ
1 and target sentence eI

1.

The WPP of e occurring in position i is computed by aggregating probabilities of all sentences

containing e in this position:

pi(e|fJ
1 ) =

pi(e, fJ
1 )

q

eÕ pi(eÕ, fJ
1 )

(2.11)

where

pi(e, fJ
1 ) =

ÿ

I,eI
1

Θ(ei, e) · p(fJ
1 , eI

1) (2.12)
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Here Θ(., .) is the Kronecker function. The normalization in Equation 2.11 is:

ÿ

eÕ

pi(eÕ, fJ
1 ) =

ÿ

I,eI
1

p(fJ
1 , eI

1) = p(fJ
1 ) (2.13)

In this thesis, we exploit the graph that represents MT hypotheses (Ueffing et al., 2002). From

this, the WPP of word e in position i (denoted by WPP exact) can be calculated by summing

up the probabilities of all paths containing an edge annotated with e in position i of the target

sentence. Another form is “WPP any” in case we ignore the position i, or in other words, we

sum up the probabilities of all paths containing an edge annotated with e in any position of the

target sentence. Here, both forms are used and the above summation is performed by applying

the forward-backward algorithm (Ueffing and Ney, 2007).

4.1.5 Language Model Backoff Feature

Applying SRILM toolkit (Stolcke, 2002) with the bilingual corpus, we build 4-gram language
models for the target language. Then, we employ a feature named the backoff behavior, proposed
in Raybaud et al. (2011) of the backward target language model which investigates deeply the
role of two previous words by considering various cases of their occurrences. In other word, we
consider the LM’s backoff behavior to find the target word’s backward sequences. Backoff score
is assigned to each word wi, as following:

B(wi) =

Y

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

]

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

[

7 if wi≠2, wi≠1, wi exists

6 if wi≠2, wi≠1 and wi≠1, wi both exist

5 if only wi≠1, wi exists

4 if wi≠2, wi≠1 and wi exist separately

3 if wi≠1 and wi both exist

2 if only wi exists

1 if wi is out of vocabulary

(2.14)

(The concept “exist” here means “appear in the language model”).

4.2 Lexical Features

A prominent lexical feature that has been widely explored in WCE researches is word’s Part-

Of-Speech (POS) (Blatz et al., 2004; Luong, 2012; Nguyen et al., 2011; Xiong et al., 2010). This

tag is assigned to each word due to its syntactic and morphological behaviors to indicate its
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Figure 2.3 – Example of lexical features

lexical category. We use TreeTagger3 toolkit for POS annotation task and obtain the following

features for each target word:

• Its POS

• Sequence of POS of all source words aligned to it (in BIO format)

• Bigram and trigram sequences between its POS and the POS of previous and following

words. Bigram sequences are POSi≠1, POSi and POSi, POSi+1 and trigram sequences are:

POSi≠2, POSi≠1, POSi; POSi≠1, POSi, POSi+1 and POSi, POSi+1, POSi+2

In addition, we also build four other binary features that indicate whether the word is a:

• stop word (based on the stop word list for target language): commonly used words in the

language (e.g. the, an) which bring few or almost no content information for the sentence.

• punctuation symbol: spacing, conventional signs, or certain typographical devices aiding

to the understanding and correct reading, both silently and aloud, of handwritten and

printed texts (e.g. apostrophe, brackets, colon, comma, dash, hyphen, etc.).

• proper name: words that refer to an unique entity, such as: Paris, Henry, Jupiter, Mi-

crosoft, etc.

• numerical: the decimal number.

In Figure 2.3, with the target word “future” : the POS is “NN”. The POS of aligned source

word(s) is “NOM” (french noun). Bigram POS sequences are: “DT/NN”, “NN/IN”. Trigram

POS sequences are: “TO/DT/NN”, “DT/NN/IN” and “NN/IN/DT”. This word is neither a

stop word nor punctuation, proper name and number.
3http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
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Figure 2.4 – Example of parsing result generated by Link Grammar

4.3 Syntactic Features

Besides lexical features, the syntactic information about a word is also a potential hint for

predicting its correctness. If a word has grammatical relations with the others, it will be more

likely to be correct than those which have no relation. In order to obtain the links between

words, the Link Grammar Parser4 is an effective solution, affording us to build a syntactic

structure for each sentence in which each pair of grammar-related words is connected by a

labeled link. In case of Link Grammar fails to find the full linkage for the whole sentence, it

will skip each word one time until the sub-linkage for the remaining words has been successfully

built. Based on this structure, we get the “Null Link” (Xiong et al., 2010) characteristic of the

word. This feature is binary: 0 in case of word has at least one link with the others, and 1 if

otherwise. Figure 2.4 represents the syntactic structure of an MT output: “The government

in Serbia has been trying to convince the West to defer the decision until by mid 2007.". It is

intuitive to observe in this structure that the words in brackets (including “until” and “mid”)

have no link with the others, meanwhile the remaining ones have. For instance, the word

“trying” is connected with “to” by the link “TO” and with “been” by the link “Pg*b”. Hence,

the value of “Null Link” feature for “mid” is 1 and for “trying” is 0.

4.4 Semantic Features

The word semantic characteristic that we study is its polysemy count (Blatz et al., 2003, 2004).

We hope that the number of senses of each target word given its POS (or that information of

aligned source word) can be a reliable indicator for judging if it is the translation of a particular

source word. For English as the target language, the features “Polysemy count” is built by

applying a Perl extension named Lingua::WordNet5, which provides functions for manipulating

the WordNet 6 database. In case where the target language is Spanish, we employ BabelNet7

- a multilingual semantic network that works similarly to WordNet but covers more European

4http://www.link.cs.cmu.edu/link/
5http://search.cpan.org/dist/Lingua-Wordnet/Wordnet.pm
6http://wordnet.princeton.edu/
7http://babelnet.org
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languages, including this language.

5 Machine Learning Techniques

As stated in Section 1.2, a specific ML algorithm will be needed to learn the probability distri-

bution functions for each label in the training set. These functions play the role of a knowledge

base to perform classification on the test set. This section reviews in details several ML tech-

niques which will build our classifiers. For the sake of consistency, throughout this section, the

following notations are used:

• X = (x1, x2, . . . , xN): the data sequence (in our case, they are the words of a training

sentence)

• Y = (y1, y2, . . . , yN): the output sequence obtained after the labeling task for X. In

binary classification, yi (i = 1, 2, ..., N) can take the value in {Good, Bad} (or {1, 0}).

• c: the class variable. In binary classification, c œ {0, 1} (or {Good, Bad}).

• f = {f1, f2, ..., fK}: the feature vector for each word (we assume to have K features,

therefore the word is characterized by a K-dimensional feature vector).

5.1 Naive Bayes

Naive Bayes model (Lowd, 2005) has been broadly used for clustering and classification. It is

proven to be a very attractive alternative to Bayesian networks for general probability estima-

tion, especially in large or real-time domain. In this model, the class posteriors of the training

instance xi (represented by the vector f) can be calculated via the “Bayes rule” as follows:

P (c|f) =
P (c)P (f |c)

q

cÕ P (cÕ)P (f |cÕ)
(2.15)

The key hypothesis of Naive Bayes model (and also the main reason why it is so named) is

that the features are statistically independent, given a class variable c, so that the conditional

distribution P (f |c) can be written as:

P (f |c) =
K
Ÿ

k=1

P (fk|c) (2.16)
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Given a sample of N training instances, the maximum likelihood estimate of the unknown

probabilities are the conventional frequencies:

P (c) =
N(c)

N
(2.17)

P (fk|c) =
N(fk, c)

N(c)
, k = 1, ..., K (2.18)

where the N(.) notions represent the event counts. Specifically: N(c) is the number of training

instances in class c, and N(fk, c) is the number of instances with feature value fk in class c.

The maximum likelihood estimates assign the zero value (0) to the conditional probability of all

features that can not be found in the training set for class c. However, this behavior is harmful

in case where a new instance that has this feature will automatically be given a probability

P (f |c) = 0, neglecting the other features it may have.

In order to avoid the null estimates, we take into account an absolute discounting smoothing

model borrowed from the statistical language modeling. The idea is to discount a small constant

b œ (0, 1) to every positive count and then distribute the gained probability mass (with a

uniform back-off) among the null counts (unseen events). Therefore, when considering a class

c, if N(fk, c) = 0 for one or more possible values of fk, we denote by N+ the number of features

fk with N(fk, c) > 0 and N0 the number of features fk with N(fk, c) = 0. This model changes

the probability estimate in Equation 2.18 into:

P (fk|c) =

Y

_

]

_

[

N(fk,c)≠b

N(c) if N(fk, c) > 0
b

N(c) ú N+

N0
if N(fk, c) = 0

(2.19)

Once the model has been trained by this manner (P (fk|c) takes the non-zero value), the con-

ditional probabilities of correctness are computed using Equation 2.15.

The above calculation runs smoothly over all features whose value set is limited and discrete.

Nevertheless, in reality, some features may have continuous rather than discrete values. In

that case, we can discretize its value range into a fixed number (normally around 20 to 30)

of intervals . The discretization is conducted in a semi-automatic way by assigning a lower

bound and upper bound for each feature. The value range is then split in a number of equal

intervals of fixed size. The lower bound, upper bound and number of intervals can be set based

on the intuitive observation of the feature’s histograms of the instances from the correct and

incorrect classes. Given this information, our naive Bayes implementation encompasses a func-
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tion to maps the continuous feature value fk to the corresponding discrete interval number (or

index). Then, the probability estimation procedure is used identically as depicted above on the

discretized features.

5.2 Logistic Regression

Logistic Regression (LR) (Friedman et al., 2000) is an ML approach, which assumes a paramet-

ric form for the distribution P (Y |X), then estimates directly its parameters from the training

data. In case where Y takes binary values (i.g. “Good” or “Bad”), the assumed parametric

model is:

P (Y = Good|X) =
1

1 + exp(w0 +
qn

i=1 wixi)
(2.20)

and

P (Y = Bad|X) = 1 ≠ P (Y = Good|X) =
exp(w0 +

qn
i=1 wixi)

1 + exp(w0 +
qn

i=1 wixi)
(2.21)

In general, where Y = (y1, y2, . . . , yN), then the form of P (Y = yk|X) for Y = y1, Y =

y2, ..., Y = yN≠1 can be written as:

P (Y = yk|X) =
exp(wk0 +

qn
i=1 wkixi)

1 +
qN≠1

j=1 exp(wj0 +
qn

i=1 wjixi)
(2.22)

When Y = yN , it becomes:

P (Y = yN |X) =
1

1 +
qN≠1

j=1 exp(wj0 +
qn

i=1 wjixi)
(2.23)

Where wji denotes the weight associated with the j-th class Y = yj and with the input xi. The

two earlier expressions are actually a special case of the two latter ones. The major difference

between the case where Y takes boolean value and that of multi-values is that: when Y takes

N values, we build N ≠ 1 different linear expressions to capture the distributions for N ≠ 1 first

values. The final distribution is computed based on the first N ≠ 1 ones, on regarding that

their sum is equal to 1.

In a nutshell, LR is a function approximation algorithm that uses training data to directly

estimate P (Y |X), in contrast to NB, which estimate parameters for P (Y ) and P (X|Y ). In

this sense, LR is often called as disciminative classifier since we are able to see the distribution

P (Y |X) as directly discriminating the value of the target value Y for any given instance X.
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5.3 Decision Tree

Decision Tree learning (Quinlan, 1986) is one of the most well-known and widely used ML

methods for inductive inference. It uses the Decision Tree (DT) to represent the learned

functions during training and then approximates the discrete-valued target class labels. For

the sake of human readability, the learned trees are converted into the if-then-else rules. This

method is not only simple, but also robust to noisy or incomplete data, capable of learning

disjunctive expressions, handling both numerical and categorical data, and training rapidly

from large amount of data.

In a DT, each node represents an attribute of training instances, and each branch descending

from it corresponds to one of its possible values. The classification process for each test instance

can be summarized as follows: we start from the root node, and move downward to the branch

whose value fits its attribute value. The searching continues until it reaches the leaf node

(most-bottom node). Finally, the value of this node is used to tag the test instance.

At each node of the tree, we are able to determine the optimal attribute to be tested among

the entire set by using a statistical property named Information Gain (IG). Essentially, this

measure computes the expected reduction in entropy caused by partitioning the instances using

this attribute. Formally, the IG of an attribute ai with respect to a collection of N training

instances can be written as:

IG(N, xi) = Entropy(N) ≠
ÿ

vœV alues(xi)

Nv

N
Entropy(Nv) (2.24)

Where V alues(xi) represents the set of possible values for xi and Nv denotes the subset of

N whose xi’s value is v. Beside many advantages, DT learning faces several practical issues,

including: overfitting the training data, managing unexpected errors in pruning, etc. Hence,

various pre- and post- pruning, as well as attribute handling methods are proposed to tackle

them.

5.4 Conditional Random Fields

Conditional Random Fields (CRF) (Lafferty et al., 2001) is a framework for building prob-

abilistic models for segmenting and labeling sequence data. The core idea of CRF can be

summarized as follows: let X = (x1, x2, . . . , xN) be the random variable over data sequence to

be labeled, Y = (y1, y2, . . . , yN) be the output sequence obtained after the labeling task. In

our case, X ranges over words in the MT output, and Y represents the labels tagged for words.

Each element yi (i = 1..N) is assigned one value in the binary set Y N = {Good, Bad}. Then,

51



Chapter 2. Theory of Word Confidence Estimation

the probability of sequence Y given X is:

Pθ(Y |X) =
1

Zθ(X)
exp{

K
ÿ

k=1

◊kFk(X, Y )} (2.25)

where
Fk(X, Y ) =

N
ÿ

t=1

fk(yt≠1, yt, xt) (2.26)

{fk}(k = 1..K) is a set of feature functions, {◊k}(k = 1..K) are the associated parameter

values, and Zθ(x) is a normalization factor, in which the value is calculated by:

Zθ(X) =
ÿ

yœY N

exp
K

ÿ

k=1

◊kFk(X, Y ) (2.27)

In order to estimate the conditional maximum likelihood given T independent sequences

{X i, Y i}, i = 1..T where X i and Y i contains N i symbols, we have to minimize the negated

conditional log-likelihood of the observations, with respect to ◊:

l(◊) = ≠
T

ÿ

i=1

logpθ(Yi|Xi) =
T

ÿ

i=1

{logZθ(Xi) ≠
K

ÿ

k=1

◊kFk(X i, Y i)} (2.28)

The standard solution for this minimization is to apply an additional l2 penalty term,

determined by ρ2

2 ||◊||22, where fl2 is a regularization parameter. The objective function is then

a smooth convex function to be minimized over an unconstrained parameter space. Beside

l2, l1 penalty calculated by fl1||◊||1 can also be exploited to perform the feature selection. It

plays the role of controlling the amount of regularization as well as the number of extracted

features. Their combination helps to decrease the number of nonzero coefficients and to avoid

the numerical problems which can appear in a huge dimensional parameter environment. The

objective function corresponding to this combination is l(◊) + fl1||◊||1 + ρ2

2 ||◊||22.

Several optimization and regularization methods have been proposed to alleviate the param-

eter estimation issue: quasi-Newton (L-BFGS and OWL-QN), resilient propagation (R-PROP),

stochastic gradient descent (SGD-L1), block-wise coordinate descent (BCD) (Lavergne et al.,

2010). Among them, we apply the BCD method to optimize our feature weights.

6 WCE at WMT Campaigns

The Workshop on Statistical Machine Translation (WMT) was first organized in 2006 and

featured a number of SMT related shared tasks: Translation, Evaluation, Quality Estima-
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tion (QE), System Combination, and several in-depth domain translations (featured, medical).

Among them, QE shared task was first launched in 2012, with sentence-level prediction (offi-

cially called Task 1), and then was extended with word-level variant (Task 2) one year later.

We participated in Task 2 from its first edition to present (2013, 2014).

In Task 2, the WMT organizers provide a data set consisting of the source text, its trans-

lation into a target language. The participants are required to assign each translated word an

appropriate quality label. The label can belong to one of the following settings:

• WMT 2013 (Bojar et al., 2013)

– Binary variant: “Keep” (K- no translation error) or “Change” (C- need for editing)

– Multi-class variant: “Keep” (K- no translation error), or “Delete” (need to be re-

moved from sentence), or “Substitute” (need to be replaced by a better word).

• WMT 2014 (Bojar et al., 2014)

– Binary variant: “OK” (no translation error) or “BAD” (need for editing).

– Level 1 variant: “OK” (no translation error), or Accuracy issue (the word does not

accurately reflect the source text), or Fluency issue (the word does not relate to the

form or content of the target text).

– Multi-class variant: Beside three labels of Level 1 variant, translation errors are fur-

ther decomposed into 15 labels based on MQM metric: Terminology, Mistranslation,

Omission, Addition, Untranslated, Style/register, Capitalization, Spelling, Punctua-

tion, Typography, Morphology (word form), Part-of-speech, Agreement, Word order,

Function words, Tense/aspect/mood, Grammar and Unintelligible.

In order to support the participants training their classifiers, the training data including source

text and target translations, along with labels annotated for target tokens are provided.

• In WMT 2013, data set for English æ Spanish language pair is used. The target sentences

are SMT outputs. The annotated labels are derived automatically by computing TER

between the MT outputs and their post-editions. In addition, participants are encouraged

to apply a variety of additional resources for extracting their features: source and target

language models for words and POS tags, SMT N(1000)-best list, parallel data to build

the SMT system, and the code to re-run the entire Moses (Koehn et al., 2007) system (in

case where they need other system-dependent information).
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• In WMT 2014, more language pair options are proposed: English Ωæ Spanish, English

Ωæ German (we participate in only English æ Spanish one). However, the principal

discrepancy from WMT 2013 is a novel setting towards a SMT-independent evaluation.

More specifically, target sentences s are collected from multiple translation means (ma-

chine and human), therefore all SMT specific settings (and the associated features that

could have been extracted from it) become unavailable. The annotations are manually

obtained by professional translators. This initiative puts more challenges on participants,

yet motivates number of SMT-unconventional approaches and inspires the endeavors aim-

ing at an “Evaluation For All”.

The submissions of all teams are evaluated and ranked in term of their classification performance

(Precision, Recall, F-score). Besides, in WMT 2014, in order to appreciate the translation error

detection capability of systems, the main evaluation metric is the average F score for all but

the “OK” class. However, in this thesis, we will report not only this above score, but also the

average F score for all classes, since we believe that the latter one can fully judge systems. For

the non-binary variant, the average is weighted by the frequency of the class in the test data.

All our preparations and official results in both WMT 2013 and WMT 2014 are reported in

Chapter 3.

7 Summary

This chapter introduced the basic background of Word Confidence Estimation (WCE) problem.

WCE systems take a job of identifying the correctly translated words and detecting erroneous

ones. They are trained over a set of training instances (words) in which each one is represented

by a feature vector along with an annotated label. Several ML algorithms can be employed to

learn the probability distribution functions from these instances, which are then used for per-

forming the classification. WCE shows an increasing importance in many MT sectors: assisting

post-editors in identifying MT errors, informing readers of unreliable portions of translation

output, facilitating translators in interactive scenarios, enhancing MT quality (via re-ranking

N-best list or re-decoding the search graph).

Next, we reviewed various WCE approaches. They aim at proposing, integrating and filter-

ing prediction indicators (features), experimenting with different conventional and/or proposed

ML methods, and optimizing models, parameters to enhance the prediction performance. The

chapter then described a set of state-of-the-art features which are broadly employed by previous

work, followed by a number of well-known ML techniques. Evaluation metrics for WCE were

also presented.
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Finally, we discussed about WMT, an annual workshop which proposes many interesting

shared tasks in the field of SMT. We focused on WCE tasks (first launched in 2013) with the

data provided, missions required and assessment methods.

After presenting the basic background of SMT, CE and WCE, the remaining part of this

thesis will report in detail all our contributions for the domain. Our work differs from other

previous researches at these main points: firstly, we integrate various types of prediction in-

dicators: system-based features extracted from the MT system (N-best lists with the score of

the log-linear model, source and target language model etc.), together with lexical, syntactic

and semantic features to see if this combination improves the baseline’s performance (Luong,

2012). Extended from our first work (Luong, 2012), we apply multiple ML models to train this

feature set and then compare the performance to select the optimal one among them. Secondly,

the usefulness of all features is deeper investigated in detail using a greedy feature selection

algorithm. Thirdly, we propose a solution which exploits Boosting algorithm as a learning

method in order to strengthen the contribution of dominant feature subsets to the system, thus

improve of the system’s prediction capability. Lastly, we explore the contributions of WCE

in improving MT quality via re-ranking the N -best list and re-decoding the decoder’s search

graph, as well as enhancing the quality estimation at sentence level. All these initiatives will be

consequentially introduced, starting by the WCE baseline system building in the next chapter.
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Chapter 3

WCE Baseline System Building And

Preliminary Experiments

1 Introduction

After reviewing the basic background WCE, in this chapter, we aim at preparing all components

to build our baseline WCE systems and experiment with them. First, in Section 2, we propose a

set of novel features to be incorporated with the existing ones, as presented in Chapter 2. They

are extracted from various resources and expected to add new and complementary information

to the classification model.

Next, all the indispensable experimental settings for system building and experiments are

discussed in Section 3, including: the baseline SMT systems (fr-en, en-es (WMT 2013), en-

es (WMT 2014)), training and test data, feature set for each system, Machine Learning (ML)

model, annotated labels setting. While describing each step, we present also corresponding

toolkits or resources needed.

Section 4 details the preliminary results (in terms of Precision, Recall and Fscore) obtained

for each system on the dev (if possible) and test set. With systems where dev set is available,

we use it to tune the classification threshold and then apply the optimal value to classify

the test set. After that, the systems’ performances are analyzed and compared to the naive

baselines (which classify words into random or unique label). In this section, we also compare

the performance of different ML approaches on the fr-en test set.

2 Our Proposed Features

During the use of existing resources for extracting state-of-the art features, we discover a

number of other brand new features to further depict word’s characteristic. These discoveries
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motivate us to extract and formulate the novel features. In this chapter, we integrate all of

them with the existing ones (presented in Chapter 2), with the hope that they can complement

each other. The usefulness of each type of features, as well as the best-performing subset will

be investigated in Chapter 4.

2.1 Graph Topology Features

The graph topology features are extracted relying on the N-best list graph merged into a

confusion network. A Confusion Network (CN) (Mangu, 2000), also known as a “sausage”,

is a weighted directed graph, with a peculiarity that each path from the start node to the

end node goes through all the other nodes. On this graph, each word in the hypothesis is

labelled with its WPP, and belongs to one confusion set. The total probability of all edges

(arcs) between two consecutive nodes sums up to 1. When using CN to visualize the N -best

list, every completed path passing through all nodes in the network represents one sentence

in the N-best, and must contain exactly one link from each confusion set. Figure 3.1 gives a

simple CN built from a 12-best list, containing 12 possible paths from the initial node (node 1)

to the final one (node 5). Looking into a confusion set (which the hypothesis word belongs to),

Figure 3.1 – Example of Confusion Network

we find some information that can be useful indicators, including: the number of alternative

paths it contains (called Nodes), and the distribution of posterior probabilities tracked over all

its words (most interesting are maximum and minimum probabilities, called Max and Min).

We assign three above numbers as features for the hypothesis word. For instance, in case of

the word “bat” which belongs to the confusion set connecting node 2 and node 3: its posterior

probability is 0.3; the number of alternative paths is 3 (i.g. “cat”, “rat”, “bat”); the minimum

and maximum values of the posterior probability distribution are 0.1 and 0.6, respectively.
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2.2 Syntactic Features

As stated in Chapter 2, the syntactic characteristics of a word can convey predictions about its

correctness. If a word has grammatical relations with the others, it will be more likely to be

correct than those which has no relation. In case of the target language is English, we select

the Link Grammar Parser1 as our syntactic parser (only for English), allowing us to extract the

“Null Link” feature (which is used in previous work). Beside this, another benefit yielded by

this parser is the “constituent” tree, representing the sentence’s grammatical structure (showing

noun phrases, verb phrases, etc.). This tree helps to produce more word syntactic features,

including its constituent label and its depth in the tree (or the distance between it and the tree

root). While the POS tag reflects word’s lexical function, the constituent label says about its

grammatical role in the sentence. Moreover, the distance to the root node is expected to be an

useful indicator, since the wrong translation tends to request further parsing, hence remains in

a deeper position in the constituent tree (compare with the correct one).

Figure 3.2 represents the syntactic structure as well as the constituent tree for an MT

output: “The government in Serbia has been trying to convince the West to defer the decision

until by mid 2007.". It is intuitive to observe that the words in brackets (including “until” and

Figure 3.2 – Example of constituent tree generated by Link Grammar Parser

“mid”) have no link with the others, meanwhile the remaining ones have. For instance, the

word “trying” is connected with “to” by the link “TO” and with “been” by the link “Pg*b”.

Hence, the value of “Null Link” feature for “mid” is 1 and for “trying” is 0. The figure also

brings us the constituent label and the distance to the root of each word. In case of the word

“government”, these values are “NP” and “2”, respectively.

2.3 Pseudo References

Although WCE is a quality prediction without gold standard references, the comparison of

MT output to another reference (coming from external popular MT engine, such as Google

Translate2 in this work) can become a helpful assistance. It is obvious that this reference

1http://www.link.cs.cmu.edu/link/
2https://translate.google.com
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cannot replace the human translation to judge the MT output, but the better external MT

system is, the closer distance between them will be, and therefore the more reliable this feature

becomes.

Given a source sentence, we use Google Translate to generate the pseudo reference. Using

this translation, we can assign a binary value 1, 0 for each word in the MT output: in case

where this word occurs in the Google Translate’s translation, the value is 1; and otherwise, 0.

It is important to note that in this feature, the position of occurrence does not matter, or in

other manner, the word can appear anywhere in the pseudo-reference. Figure 3.3 illustrates

Figure 3.3 – Using pseudo-reference (from Google Translate) to extract feature

this feature: in the MT hypothesis “Rakfisk de Noruega : Es esto el pescado del mundo más

maloliente ?”, given the source sentence “Norway ’s rakfisk : Is this the world ’s smelliest fish

?”, the words “es”, “esto”, “el”, “más” and “maloliente” take value 0 since they can not be

found in the corresponding Google Translate translation “Rakfisk de Noruega : Este pescado

apestosa del mundo ?”. The remaining words take value 1.

2.4 LM Based Features

In Chapter 2, the LM is exploited by some previous work to take a look at various cases of

occurrences of the current token and its two precedences (back-off behavior). Beside of this,

we also want to investigate the longest possible n-grams that it can combine with the previous

one. We hypothesize that the longer sequence between the current token and the precedences

can be found in the LM, the more likely this one is to be a good translation. Applying SRILM

toolkit (Stolcke, 2002) on the bilingual corpus, we build 4-gram language models for both target

and source side, which permit to compute two features: the “longest target n-gram length” and

“longest source n-gram length” (length of the longest sequence created by the current word

and its previous ones in the target and source LM). Formally, with the target word wi: if the

sequence wi≠2wi≠1wi appears in the target language model while the sequence wi≠3wi≠2wi≠1wi

does not, the n-gram value for wi will be 3. The feature value set to each word hence ranges

from 0 to 4.
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Similarly, we compute the same value for the word aligned to wi in the source language

model. Nevertheless, it is vital to note that in case where the target word is aligned to multiple

source ones, that longest n-gram found among those formed by each of them will be chosen.

Figure 3.4 – Example of Language Model based Features

Given a 4-gram LM and the target sentence as in Figure 3.4, the longest n-gram value for

the word “future” is 3, since the sequence “to the future” can be found in the LM, whereas

“crucial to the future” can not. Similarly, in case of “resolve”, this value will be 4, thanks to

the presence of “will test the resolve” in the LM.

2.5 POS LM Based Features

We exploit the Spanish and English LMs of POS tag (provided as additional resources for

WMT2014 Quality Estimation tasks3) for quantifying the maximum length of the sequences

created by the current target token’s POS and those of previous ones. The same score for POS

of aligned source word(s) is also computed. If the target word has multiple source alignments,

only the longest POS sequence’s length will be selected. Actually, we calculate the similar

feature as listed in Section 2.4, but for POS tags instead of words.

Similarly, the back-off behavior of the word’s POS tag is also taken into consideration.

It takes a look at the co-ocurrence of the POS sequence of the current words and its two

precedences. Let pi denotes the POS of the word wi. Then, POS’s back-off score of wi can be

3http://www.statmt.org/wmt14/quality-estimation-task.html
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determined by:

POS_backoff(wi) =
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7 if pi≠2, pi≠1, pi exists

6 if pi≠2, pi≠1 and pi≠1, pi both exist

5 if only pi≠1, pi exists

4 if pi≠2, pi≠1 and pi exist separately

3 if pi≠1 and pi both exist

2 if only pi exists

1 if pi does not exist.

(3.1)

(The concept “exist” here means “appear in the POS’s language model”).

In summary, three POS LM’s new features for en-es (WMT14) system are built, including:

“longest target POS’s n-gram length”, “longest POS’s source n-gram length” and “POS’s back-

off score”. This is the first time we experiment with these new features (actually, in our fr-en

system which was built prior, we did not think about them).

2.6 Occurrence in Multiple Reference Systems

This feature is designed solely for en-es (WMT2014) system, based on the novel point of this

campaign compared to the previous ones: the target outputs come from multiple translation

means (from statistical MT, rule-based MT systems or even from humans) for the same source

sentences. Given a translation, all the remaining ones of the same source sentence can be

considered as its references. Naturally, one would have an intuition that: the occurrence of

a word in all (or almost) systems implies a higher likelihood of being a correct translation.

Relying on this observation, we add a new binary-value feature, telling whether the current

token can be found in more than N% (in our experiments, we choose N = 50) out of all

remaining translations generated for the same source sentence. Here, in order to make the

judgments more accurate, we propose several additional references besides those provided in

the corpora, coming from: (1) Google Translate system, (2) The baseline SMT engine provided

for WMT2013 English - Spanish QE task. These two MT outputs are added to the already

available (maximum) four MT outputs of a given source sentence, before calculating the (above

described) binary feature. In Figure 3.5, we have five references to match with the current

MT hypothesis: “pero , de hecho , todo es caro . una caña de cerveza o un sándwich te cuestan

la friolera de 9 ( $ 14 ) cada uno .”. The word “todo” takes value 1 since it appears in
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Figure 3.5 – Example of multiple-system occurrence feature

all references (100%), whereas “cuestan” and “friolera” take value 0 for their absence in all

translations (0%).

3 Experimental Settings

3.1 Baseline SMT System

3.1.1 French - English System

Our baseline French - English SMT system (or “fr-en” thereafter for short) is a phrase-based

system, constructed using the Moses toolkit (Koehn et al., 2007). This open-source toolkit

contains all of the necessary components to train the translation model. We keep the Moses’s

default setting: log-linear model with 14 weighted feature functions, including: 7 reordering,

1 language model, 5 translation model and 1 word penalty features (Potet et al., 2010). To

train the translation model, we use the Europarl and News parallel corpora that are used for

WMT evaluation campaign in 2010 (total 1,638,440 sentences). Our target language model

is a standard n-gram language model trained using the SRI language modeling toolkit (Stol-

cke, 2002) on the news monolingual corpus (48,653,884 sentences). Some pre-processing steps

are invoked before decoding, encompassing normalize texts (to remove all strange characters,

symbols...), tokenize and lowercase them (using the scripts: normalize-punctuation.perl, tok-

enizer.perl and lowercase.perl available in Moses toolkit, respectively). Then, the translation

model is filtered according to the input text in order to avoid loading the entire phrase table
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into the internal memory (using the script filter-model-given-input.pl available in Moses toolkit),

thus speeding up the decoding process. After that, in the decoder phase, we also called some

following extended options of Moses for tracking both source and target sides information which

is mandatory to build our system-based features, as well as prepare resources for further WCE

exploitations in MT improvement (discussed in Chapter 6 and Chapter 7):

• -print-alignment-info-in-n-best: Display source-to-target and target-to-source word-to-

word alignments into the N-best list

• -n-best-list FILE SIZE [distinct] : Generate an n-best file of up to SIZE distinct sentences

into file FILE

• “-output-search-graph”, “-search-algorithm 1” and “-cube-pruning-pop-limit 5000” : gen-

erates the search graph which contains all possible hypotheses, uses cube pruning and

adds 5000 hypotheses to each stack.

3.1.2 English - Spanish System

Similarly, the English - Spanish (“en-es”) SMT system used in WMT 2013 is also a Moses

phrase-based system, trained on Europarl and News Commentaries corpora provided by WMT

(Bojar et al., 2013). The n-gram (n=3) LMs of source and target languages are generated

using the SMT training corpora and SRILM toolkit (Stolcke, 2002). The unigram, bigram and

trigram are also provided. The IBM Model 1 lexical labels are generated by using GIZA++

toolkit (Och and Ney, 2003). The configuration file used for decoding, as well as the code to

re-run the entire Moses system can be downloaded from: http://www.quest.dcs.shef.ac.uk.

For feature extraction, we use the entire system and all related resources provided. In WMT14,

since the MT output are collected from multiple translation means (statistical, rule based

systems, even human), there is no specific SMT setting released. We had to use new strategies

to maintain part of system-based features.

3.2 Corpora

3.2.1 French - English Corpus (fr-en)

We use our above SMT system to generate the translation hypothesis for 10,881 source sentences

taken from several news corpora of the WMT evaluation campaign (from 2006 to 2010). A

post-edition task was implemented by using a crowd sourcing platform: Amazon’s Mechanical

Turk (MTurk)4, which allows a “requester” to propose a paid or unpaid work and a “worker” to
4https://www.mturk.com
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Figure 3.6 – French - English corpus preparation: training set = 10,000 triples, test set = 881 triples

perform the proposed tasks. To avoid the huge gaps between the hypothesis and its post-edition

since the correctors can paraphrase or reorder words to form the smoother translation, we highly

recommended them to keep the number of edit operations as low as possible, but still ensure the

accuracy and fluency of this translation with the French sentence. A sub-set (containing 311

sentences) of these collected post-editions was evaluated by a former professional post-editor.

Testing result showed that 87.1% of post-editions improve the hypothesis, while the rest of

12.5% remains equivalent, and only the rest of 0.04% degrades. The corpus construction process

is visualized in Figure 3.6, as well as its detailed description can be found in Potet et al. (2012).

Finally we extracted randomly 10,000 sentences triples (including source sentence, translation

hypothesis and post-edited hypothesis) to form the training set, and keep the remaining 881

sentence triples for the test set.

3.2.2 English - Spanish Corpus of WMT 2013 (en-es_13)

In WMT13, the organizers provided two bilingual data sets, from English to Spanish: the

training and the test ones. The training set consists of 803 MT outputs, in which each token

is annotated with one appropriate label. In the binary variant, the words are classified into

“K” (Keep: no translation error) or “C” (Change: edit operator needed) label, meanwhile in

the multi-class variant, they can belong to “K” (Keep), “S” (Substitution) or “D” (Deletion).

However, in this thesis, we report only the binary task, and the multiple class experiments can

be found in detail in (Luong et al., 2013c) . The test set contains 284 sentences where all the

labels accompanying words are hidden. For optimizing parameters of the classifier, we extract

50 sentences from the training set to form a development set. Since a number of repetitive

sentences are observed in the original training set, the dev set was carefully chosen to ensure

that there is no overlap with the new training set (753 sentences), keeping the tuning process
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accurate. Some statistics about each set can be found in Table 3.1.

Data set Train Dev Test
#segments 753 50 284
#distinct segments 400 50 163
#words 18435 1306 7827
%K : %C 70: 30 77: 23 -

Table 3.1 – Statistics of training, dev and test sets - WMT 2013 en-es corpus.

3.2.3 English - Spanish Corpus of WMT 2014 (en-es_14)

Similarly to WMT 2013, the WMT 2014 organizers released two bilingual data sets for en-

es Quality Estimation (QE) task : the training and the test ones. The major difference

is that the target sentences are collected from multiple translation means (e.g. SMT, rule-

based MT, and even human), with the aim towards a SMT system-independent and broadly-

applied estimation. The training set contains 1.957 MT outputs, in which each token is an-

notated with one appropriate label. In the binary variant, the words are classified into “OK”

(no translation error) or “BAD” (edit operators needed) label. Meanwhile, in the level 1

variant, they belong to “OK”, “Accuracy” or “Fluency” (two latter ones are divided from

“BAD” label of the first subtask). In the last variant, multi-class, beside “Accuracy” and

“Fluency” we have further 15 labels based on MQM metric: Terminology, Mistranslation,

Omission, Addition, Untranslated, Style/register, Capitalization, Spelling, Punctuation, Typog-

raphy, Morphology_(word_form), Part_of_speech, Agreement, Word_order, Function_words,

Tense/aspect/mood, Grammar and Unintelligible. The test set consists of 382 sentences where

all the labels accompanying words are hidden. For optimizing parameters of the classifier, we

extract last 200 sentences from the training set to form a development (dev) set. Besides, the

Spanish - English corpus provided in WMT 2013 (total of 1087 tuples) is also exploited to

enrich our WMT 2014 system. Unfortunately, WMT2013 data can only help us in the binary

variant, due to the discrepancy in training labels. This thesis reports the experiments with

the binary system, and those of the other tasks can be referred in (Luong et al., 2014). Some

statistics about each set can be found in Table 3.2.

Data set Train Dev Test
#segments 1757 200 382
#distinct segments 1757 200 382
#words 40975 6436 9613
%G (OK) : %B (BAD) 67 : 33 58 : 42 -

Table 3.2 – Statistics of training, dev and test sets - WMT 2014 en-es corpus.
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3.3 Annotated (Oracle) Labels Setting

The quality labels for words are used along with features to train the classifier. They can be

set manually by human (which is accurate yet expensive and unfeasible for huge data set) or

automatically by various toolkits. For instance, Xiong et al. (2010) exploit the Levenshtein

alignment between the hypothesis and its reference. In another method, the Translation Error

Rate (TER) alignment is performed by Nguyen et al. (2011).

We inherit the annotations for en-es(WMT2013) corpus which are derived automatically

by computing Word Error Rate (WER) between the MT hypothesis and its post-edited ver-

sion. In case of en-es(WMT2014), the annotations are performed manually by professional

translators. As depicted above, WMT13 supports two types of labels: multi-class and binary,

meanwhile WMT14 provides binary, level-1 (three labels) and multi-class (16 labels). In the

training set of WMT 2013, 70 % are labelled as “good” and the remaining 30% are the “bad”

ones. Meanwhile, in WMT 2014 training set, this percentage is 67% and 33%.

For fr-en corpus, this task is performed by TERp-A toolkit (Snover et al., 2008). As an

extension of TER, TERp-A takes into account the linguistic edit operations, such as Stem

matches, Synonyms matches and Phrase Substitutions besides the TER’s conventional ones

(Exact match, Insertion, Deletion, Substitution and Shift). These additions allow us to avoid

categorizing the hypothesis word as Insertion or Substitution in case it shares same stem, or

belongs to the same synonym set on WordNet, or is the phrasal substitution of word(s) in the

reference. Also in TERp-A, each above-mentioned edit cost has been tuned to maximize the

correlation with human judgment of Adequacy at the segment level. Table 3.3 illustrates the

labels generated by TERp-A for one MT hypothesis (“The result of the hard-line trend is also

important .”) and its reference (“The consequence of the fundamentalist movement also has its

importance .”). Each word or phrase in the hypothesis is aligned to a word or phrase in the

reference with different types of edit: “I” (insertions), “S” (substitutions), “T” (stem matches),

“Y” (synonym matches), and “P” (phrasal substitutions). The lack of a symbol indicates an

exact match and will be replaced by “E” thereafter. We do not consider the words marked with

“D” (deletions) since they appear only in the reference (post-edition). Then, to train a binary

classifier, we re-categorize the obtained 6-label set into binary set: The E, T and Y belong to

the Good (G), whereas the S, P and I belong to the Bad (B) category. Finally, we observed

that out of total words (train and test sets) are 85% labeled “G”, 15% labeled “B”.

Reference The consequence of the fundamentalist movement also has its importance .
S S Y I D P

Hyp After Shift The result of the hard-line trend is also important .

Table 3.3 – Example of training label obtained using TERp-A for fr-en corpus.
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3.4 Feature Set for Systems

We build the feature set for each experimental baseline WCE system by integrating our proposed

features with the state-of-the-art ones.

No fr-en en-es (WMT2013) en-es (WMT2014)
1 Target word Target word Target word
2 Source word Source word Source Word
3 Target POS Target POS Target POS
4 Source POS Source POS Source POS
5 Right target context Right target context Right target context
6 Left target context Left target context Left target context
7 Right source context Right source context Right source context
8 Left source context Left source context Left source context
9 Constituent label Constituent label Constituent label
10 WPP any WPP any Occur in multiple systems
11 Max Max Longest target POS gram

length
12 Min Min Longest source POS gram

length
13 Nodes Nodes Occur in Google Translate
14 Longest target gram

length
Longest target gram length Longest target gram length

15 Longest source gram
length

Longest source gram length Longest source gram length

16 Backoff behaviour Backoff behaviour Backoff behaviour
17 Number of occurrences Number of occurrences Number of occurrences
18 Punctuation Punctuation Punctuation
19 Stop word Stop word Stop word
20 Proper name Proper Name Proper name
21 Numeric Numeric Numeric
22 Polysemy count (target) Polysemy count (target) Polysemy count (target)
23 Distance to Root Distance to Root Distance to Root
24 WPP exact Polysemy count (source) Polysemy count (source)
25 Null link Occur in Google Translate

Table 3.4 – The entire features used to build fr-en, en-es(WMT14) and en-es (WMT13) baseline
WCE classifiers. Please note that feature sets are not exactly the same for three systems.

Since the feature extraction depends on various conditions (e.g. the language pair, the

availability of resources or toolkits, etc.), the set used for fr-en, en-es (WMT13) and en-

es (WMT14) system are not identical (although they share the major part). Among our

proposed features, several ones can not be applied to all three WCE systems. The detailed
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feature set used for each system is listed as seen in Table 3.4. For preliminary experiments, all

of them are used to train the classifier. To wrap up, we employ 25 feature types in fr-en and

en-es(WMT2013) systems, and 24 feature types in en-es(WMT2014) system.

3.5 Classifiers and Toolkits

Motivated by the idea of treating WCE as a sequence labeling task, we employ the Conditional

Random Fields (CRF) model (Lafferty et al., 2001) as our principal model, used to experiment

with all systems. Beside this, in order to judge objectively the CRF model’s performance,

we apply also several other conventional models on fr-en system, including: Decision Tree,

Logistic Regression and Naive Bayes using KNIME platform5, and then compare their results.

KNIME is a user-friendly graphical workbench for the entire system building, testing and

performance analysis/report processes. Each functional module (e.g. the learner, predictor,

scorer, data reader and writer, etc.) is visualized by a “node” which can be easily dragged

from the toolbox and dropped into the working window. They can be customized by users and

are connected together to form the entire data flow. The intuitive design of Naive Bayes,

Logistic Regression and Decision Tree classifiers using this toolkit is shown in Figure 3.7.

Among CRF based toolkits, we selected a console-based one named WAPITI (Lavergne

et al., 2010) to train our classifier. This toolkit is developed by the LIMSI laboratory (France)

with the main advantage of segmenting and labeling rapidly large numbers of sequences with

discriminative models. Besides, it proposes various optimization and regularization methods

to improve both the computational complexity and the prediction performance of these stan-

dard models, such as: Quasi-Newton L-BFGS and OWL-QN, Resilient propagation (R-PROP),

Stochastic gradient descent (SGD-L1), Block-wise coordinate descent (BCD), etc. All param-

eters invoked by each method in the training phase are listed in Table 3.5. We also compare

our classifier with two naive baselines, including:

• Baseline 1 (all-good system): all words in each MT hypothesis are classified into G label.

• Baseline 2: we assigned them randomly yet with respect to the corresponding percentage

of these labels in the corpus (e.g. in case of fr-en corpus, these percentages are: 85% G,

15% B).

5http://www.knime.org/knime-desktop
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Figure 3.7 – Naive Bayes, Logistic Regression and Decision Tree classifiers building and testing
using KNIME toolkit

4 Preliminary Results and Analysis

4.1 Results of CRF Model

We evaluate the performance of our classifiers by using three common evaluation metrics: Pre-

cision (Pr), Recall (Rc) and F-score (F). We perform the preliminary experiments by training

first CRF classifiers with the combination of all features. The classification task is then con-

ducted multiple times, corresponding to a threshold increase from 0.300 to 0.975 (step = 0.025).

When threshold = –, all words in the test set which the probability of G class exceeds – will be

labelled as “G”, and otherwise, “B”. The values of Pr and Rc of “G” and “B” label are tracked

along this threshold variation, and then are averaged for “all-feature” and two naive baseline

systems. It is important to note that, with fr-en system, the optimal classification threshold is

measured on the test set, meanwhile for “en-es (WMT14)” and “en-es (WMT13)” ones,

it is tuned on the dev set (since the annotated labels of the test set are released only at the

end of the WMT campaign).

Before moving on analyzing the performance of each classifier, we take a look at an example

on Figure 3.8, illustrating the classification results and the prediction accuracy given by our
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ML Method Parameters Function Value

CRF a algorithm sgd-l1
maxiter maximum number of iterations 200
stopeps stop epsilon value 0.00005
stopwin stop window size 6

Decision Tree Pruning method Method to reduce tree size to avoid
over-fitting

Minimal
Description
Length

Quality measure Select the quality measure according to
which the split is calculated

Gain Ratio

Min number
records

the minimum number of records re-
quired in each node to ensure the tree’s
further growth.

3

Skip out-of-
domain column

If checked, nominal columns contain-
ing no domain value information are
skipped

Unchecked

Logistic Regres-
sion

values specify the independent columns that
should be included in the regression
model

all

Naive Bayes Skip missing val-
ues

Ignoring missing values in the model
(if this option is activated) or consider
them during the class probability cal-
culation.

Yes (1)

Maximum num-
ber of unique
nominal values
per attribute

All nominal columns with more unique
values than the defined number will be
skipped during learning.

100.000

Table 3.5 – Summary of parameters used in different ML methods for training the classifiers

fr-en classifier in a hypothesis given a source sentence. Each word in the MT hypothesis is

assigned by a label “G” or “B” (displayed in the last row). The oracle labels are in the fourth

row. Comparing these labels, we can easily identify all good words that are correctly judged by

the system, bounded by pink rectangles, such as “operation”, “therefore”, “added”, .... Besides,

some translation errors are correctly detected, as shown in green dashed rectangles (have, is,

a-t-il,...). On the contrary, the grey dotted rectangles contains our system’s prediction errors:

some nonsensical words are recognized as good one (“not2”, combat,...) and vice versa (not1,

a,...).

The classification results of three systems and their “naive” baselines can be seen on Table

3.6. Now, we analyze each system.
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Figure 3.8 – Example of our WCE classification results for one MT hypothesis

4.1.1 “fr-en” System

The results of “fr-en” system is reported in the green zone on Table 3.6. They are the scores

obtained on the test set (since we do not have the dev set) and averaged over all scores during

threshold variation process (as depicted above). The results suggest that the “all feature”

classifier reaches an very impressive F score for “G” label (87.07%), meanwhile an acceptable

performance for “B” one (37.76%). We claim it as “acceptable” due to the fact that the

imbalance occurrence between “B” and “G” label (15% vs 85%) in the corpus would affect the

learning functions. Moreover, the “all feature” classifier outperforms dramatically both two

baselines. Compare to Baseline 1 (always predicts “G”), it is slightly worse in the F score of

“G” labels (2.92 points under), yet exceeds far above in that of “B” one (37.76% vs 0%). With

Baseline 2 (randomly classify), it overwhelms in both labels (3.62 % for “G” and 21.5% for

“B” -relative F score).

We break down the analysis into the fluctuations of F score for “G” and “B” labels in “all

feature” classifier, as shown in Figure 3.9. It can be seen that with the increase of threshold,

the F score (“G” label) gradually and slightly drops from 0.885 to 0.835. On the contrary, the

score (“B” label) moves on the opposite direction from 0.341 to 0.415. The “optimal point”

where the average value between two scores ((F (“GÕÕ) + F (“BÕÕ))/2) reaches maximum is 0.70.

In a nutshell, we find two conclusions can be made from observations are: (1) Since the
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System Label dev test
Pr(%) Rc(%) F(%) Pr(%) Rc(%) F(%)

fr-en All features Good - - - 85.99 88.18 87.07
Bad - - - 40.48 35.39 37.76

Baseline 1 Good - - - 81.78 100.00 89.98
Bad - - - - 0 -

Baseline 2 Good - - - 81.77 85.20 83.45
Bad - - - 18.14 14.73 16.26

en-es All features Good 85.79 84.68 85.23 78.83 83.54 81.12
(WMT13) Bad 50.96 53.16 52.04 52.14 44.45 48.01

Baseline 1 Good 74.24 100.00 85.21 70.21 100 82.49
Bad - 0 - 0 - 0

Baseline 2 Good 76.21 73.97 75.07 72.71 69.87 71.26
Bad 26.35 27.50 26.91 22.12 23.69 22.87

en-es All features Good 68.62 82.69 75.01 67.88 82.92 74.65
(WMT14) Bad 64.38 45.73 53.47 54.22 37.18 44.10

Baseline 1 Good 66.31 100.00 79.74 63.01 100 77.31
Bad - 0 - 0 - -

Baseline 2 Good 70.61 66.65 68.57 68.01 63.33 65.58
Bad 30.76 32.50 31.60 28.98 30.65 29.79

Table 3.6 – Average Pr, Rc and F for labels of each all-feature system and then two naive baselines.

Figure 3.9 – The fluctuation of F score of “G” and “B” label during threshold variation (“fr-en” system)
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classifier tends to memorize “G” labels much better than “B” one, the system optimization

should focus on endeavors to boost the translation error detection capability; and (2) The use

of various types of features is indispensable and helps to enhance sharply WCE system far

above the naive baselines.

4.1.2 “en-es-WMT13” System

The scores of “en-es-WMT13” system on both dev and test set are reported in the red

zone of Table 3.6. On dev set, we observe that the “all feature” classifier outperforms

both baselines in both labels. More specifically, it wins marginally Baseline 1 (0.02%) yet

significantly Baseline 2 (10.16%) in terms of F score (relative) of “G” class. Especially in

“B” class, its score leaves big gaps to both baselines (52.04% vs 0% and 26.91%). During

Figure 3.10 – The fluctuation of F score of “G” and “B” label during threshold variation (“en-es-
wmt2013” system)

the classification threshold tuning (Figure 3.10), the F score of “G” class goes down (almost

linearly) from 86.07% to 80.06%. Meanwhile, the fluctuation of that in “B” one is chaotic

and the peak corresponds to the threshold value of 0.60. In order to determine the optimal

threshold which will be used to classify the test set, we calculate the average F score of both

labels (F (G) + F (B))/2 and plot them as on Figure 3.11. The curve suggests that we can

obtain the highest overall performance at the classification threshold value of 0.625.

Applying this optimal threshold on the blind test set provided by WMT 2013 organizers,

we get the official results of 81.12% and 48.01% F score for “G” and “B” labels, respectively. As

a coherence with previous systems, this one beats its two naive baselines in terms of (F (G) +

F (B))/2 criterion. It is very commendable that more than a half of translation errors is

correctly detected, pointed by the Pr score of 52.14% (“B” class). More interestingly, our
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Figure 3.11 – The optimal threshold decision via threshold variation (“en-es-wmt2013” system)

submitted WCE systems achieved the first rank for Task 2 of WMT 2013 (Bojar et al., 2013),

for both binary and multi-class variants. Nevertheless, it is important to note that we did not

submit directly the above “all feature” system; yet optimize it by a number of techniques

and then select two best performing ones as submission. These optimization solutions will be

discussed in the next chapter (Chapter 4).

4.1.3 “en-es-WMT14” system

The results of “en-es-WMT14” system can be viewed in the white zone on Table 3.6. Actu-

ally, it is the system that we use to participate in WMT 2014 (along with another one obtained

after the feature selection process) (Luong et al., 2014). During experiments, we observe that

the system trained on both WMT2014 + WMT2013 data (which is already available from

WMT 2013) slightly outperforms the one trained solely on WMT2014 dataset. Therefore, we

select the former one to report in this thesis, and for the sake of simplicity, we call it the

“en-es-WMT14” system.

Dealing with WMT 2014 dev set, the “all system” classifier reaches 75.01% F score for

“G” and 53.47% for “B” class. Compared to that of WMT 2013, this system is outperformed

by the score of “G”, yet wins in that of “B” label. The two baselines are totally below it in

average score (F (G) + F (B))/2.

During threshold variation (Figure 3.12), F score (“G”) ranges from 73.61% to 74.81% (it

tends to raise up at the beginning, then goes parallel with the x-axis until the threshold reaches
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Figure 3.12 – The fluctuation of F score of “G” and “B” label during threshold variation (“en-es-
wmt2014” system)

Figure 3.13 – The optimal threshold decision via threshold variation (“en-es-wmt2014” system)

0.775 and finally drops quickly to the bottom). Meanwhile, in case of “B”, the score increases

almost gradually from 52.20% up to 54.47%. Since the growth speed of “B” is faster than the

degradation speed of “G” as seen in the two curves, the average score (F (G) + F (B))/2 tends

to augment from the first bottom point up to the peak at the threshold value of 0.75 and then

fluctuates until the final point (Figure 3.13). We then select this value to classify the WMT

2014 unseen test set.

The official results on test set show promising performance for “G” (74.65%) and honorable

for “B”; and confirm once again that using new features helps to boost the classifier dramatically

above the baselines. Similarly to “en-es-WMT13” system, we attempt to optimize the “all

feature” first (discussed in the next chapter) before deciding the official versions to participate
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in the campaign.

Figure 3.14 – Performance (F ∗) of different “all feature” classifiers (by different models)

4.2 Results of Other ML Methods And a Comparison to CRF Model

In an attempt of investigating the performance of CRF model, we compare the “fr-en all

feature” system with those built by several other models, including: Decision Tree, Logistic

Regression and Naive Bayes. These three classifiers are trained in the same conditions (feature

set, training data set) as we use for CRF model, and then are used to deal with the usual

fr-en test set. The pivotal problem is how to define an appropriate metric to compare them

efficiently? Due to the fact that in our fr-en training corpus, the number of G words sharply

outperforms the B ones, so it is fair to say that with our classifiers, detecting a translation error

should be more appreciated than identifying a good translated word. In other words, we put a

priority in bad translation detection productivity when judging system’s performance. There-

fore, we propose a “composite” score called F ú putting more weight on the system capability of

detecting B words: F ú = 0.70úFscore(B)+0.30úFscore(G), where Fscore(G) and Fscore(B)

are the F scores at each value of threshold. These weights (70%, 30%) are chosen since they

emphasize the role of Fscore(B) while their values are not extremely polarized. Next, we

track all scores amid the threshold variation and then plot them in Figure 3.14. In Logistic

Regression classifier, F ú raises up monotonously from 28.14% to the peak of 51.03% and then

drops rapidly down to the bottom (21.68%). The performance of Decision Tree classifier has
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a narrower change, from 44.93% to 46.27% and then down to 43.01%. Meanwhile, in Naive

Bayes classifier, this score moves in the opposite direction, degrading gradually from 43.01%

to 31.23%. Finally, the “CRF” classifier’s score increases from the starting point (50.96%)

up to the final point (54.14%). Another notable observation is that the “optimal” threshold

(which gives the best F ú) for each classifier is different from the others: 0.975 for CRF, 0.925

for Decision Tree, 0.800 for Logistic Regression and 0.300 for Naive Bayes classifier. Comparing

these curves, the topmost position of CRF one shown in the figure reveals that the CRF model

performs better than all the remaining ones, and it is more suitable to deal with our features

and corpus. We observe different fluctuations of this score.

Hence, in the next sections which propose ideas to improve the prediction capability, we

work only with the CRF classifier.

5 Summary and Conclusion

This chapter reported our preliminary contributions to the domain, starting with gathering

prominent previous features along with suggesting novel ones to combine with them. The

proposed features came from different internal or external resources, and their extractions

required a number of toolkits and libraries. The graph topology (Nodes, Min, Max) features rely

on the N -best list graph merged into a confusion network. The syntactic features (constituent

label, depth in constituent tree) were extracted using specific parsers. The pseudo references

were exploited to build word’s occurrence features. Language Models (in both source and target

sides) for word as well as for the word’s POS tag were also used to obtain additional useful

information (LM-based, POS LM-based, Back-off behavior features).

The next contribution was the exploitation of several datasets to train the baseline WCE

classifiers, followed by the setting of all other crucial elements for experiments. We extracted

25 feature types for fr-en corpus, 25 feature types for “en-es (WMT2013)” and 24 feature

types for“en-es (WMT2014)” ones; then divided into train, dev and test sets. The word

annotated labels were automatically obtained by matching the translation and its reference.

Several Machine Learning models were tested and compared to the main approach - CRF model.

The performances (F scores) obtained on three “all feature” systems reflected the sim-

ilar and coherent phenomena: the classifiers identified good translation better than detected

translation errors, and the feature sets helped to boost efficiently the prediction capability of

all systems above their naive baselines (all-good and random predictions). However, the acute-

ness of each feature has not been considered yet and the question of whether or not redundant
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features exist in the set and undermine the rest remains open. These issues will be directly

addressed in Chapter 4 as an endeavor to improve the “all feature” classifiers’ performances.

In addition, among exploited ML algorithms, the CRF approach overwhelmed all remaining

ones on fr-en data in terms of average score between F score of “G” and “B” classes; revealing

that treating WCE as a sequence labeling task is a wise try. The CRF model will continue be

applied in the up-coming tests.
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Chapter 4

WCE System Optimization Techniques

1 Introduction

The integration of all features boosts dramatically the WCE classifiers (fr-en, en-es (WMT

2013) and en-es (WMT 2014)) performance over their naive baselines, as shown in Chapter

3. Nonetheless, the question concerning whether these “all-feature” systems are the most

effective ones that we can achieve given existing resources and settings remains unanswered. In

this chapter, we propose several solutions to improve the prediction’s accuracy, starting from

“all-feature” systems.

Putting all features altogether might not be the wise try, since some among them are poor

predictors and harm the others when combined. In section 2, we apply the feature selection

strategy to investigate the usefulness of each one, which then helps to retain only the informative

candidates as well as to waive redundant ones. It also yields the best performing subset along

with the optimal system’s performance.

Next, another issue that we are concerned is the system’s learning capability when dealing

with a large amount of features. This leads to another attempt of forming multiple feature

subsets from the original, building a number of sub-models from them, and finally combining

“weak” classifiers in a reasonable way to take advantage of their complementarity. The final

“composite” classifier is expected to be much stronger than each individual thanks to this fact.

The entire process, which is normally known as Boosting technique is detailed in section 3.

2 Feature Selection

As stated before, the all-feature fr-en, en-es (WMT2013) and en-es (WMT2014) systems

yielded appealing F scores for G label, but not very convincing F scores for B label. That

can be originated from the risk that not all of features are really useful, or in other words,
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some are poor predictors and might be the obstacles weakening the other ones. In order to

mitigate this drawback, we propose a method to filter the best features relied on the “Sequential

Backward Selection” (SBS) algorithm1. We start from the full set of N features, and in each step

sequentially remove the most useless one. To do that, all subsets of (N-1) features are considered

and the subset that leads to the best performance gives us the weakest feature (not included

in the considered set). It is important to note that the discarded feature is not considered in

the following steps. We iterate the process until there is only one remaining feature in the set,

and use the following score for comparing systems: Favg(all) = — · Favg(G) + “ · Favg(B), where

Favg(G) and Favg(B) are the averaged F scores for G and B label, respectively, when threshold

varies from 0.300 to 0.975. The coefficients — and “ are determined with respect to the balance

between G and B labels in the corpus: the minor class will be put more weight than the major

one, since it is harder to predict. In fr-en system, the value (—, “) is (0.3, 0.7), and those in

en-es(WMT2013) and en-es(WMT2014) system are analogous with the value of (0.5, 0.5).

Formally, the SBS algorithm can be explained as follows. Let Y={y1, y2, ..., yN} denote the

set of all features, Xk = {xj|j = 1, 2, ..., k}; xj œ Y ; k = (0, 1, 2, ..., N) denote the subset of

feature space of a specified size k. The pseudo-code of this algorithm can be written as:

Algorithm 1 Sequential Backward Selection
Input: Y = {y1, y2, ..., yN}
Output: Xk = {xj|j = 1, 2, ..., k}; xj œ Y ; k = (0, 1, 2, ..., N)

1: {Initialize the feature set}
2: X0 Ω Y
3: k Ω N
4: while k < N do
5: {Identify the worst feature}
6: x≠ = arg maxxœXk

[F (Xk ≠ x)]
7: {Update feature set}
8: Xk+1 Ω Xk ≠ x≠

9: {Continue the selection process}
10: k Ω k + 1
11: end while
12: Output Xk.

Initially, the feature set X0 involves all members, yet at each iteration rejects the weakest

one. The removed feature is one whose absence helps to maximize the objective function F

(Favg(all) in our case). The set will then be gradually reduced until its size reaches a specified

1http://research.cs.tamu.edu/prism/lectures/pr/pr_l11.pdf
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threshold k. In our work, we investigate until the set remains one unique feature. This strategy

enables us to sort the features in descending order of importance, as displayed in Table 4.1.

Figure 4.1 shows the evolution of the WCE performance as more and more features are removed,

and the details of best feature subsets yielding the highest objective function Favg(all). Next,

we will analyze the usefulness of features for each system

No fr-en en-es (WMT2013) en-es (WMT2014)
1 Source POS Source POS Target POS
2 Source word Occur in Google Trans-

late (*)
Longest target gram length
(*)

3 Target word Nodes (*) Occur in mult. systems (*)
4 Backoff behaviour Target POS Target word
5 WPP any WPP any Occur in Google Trans-

late (*)
6 Target POS Left source context Source POS
7 Constituent label (*) Right target context Numeric
8 Left source context Numeric Polysemy count (target) (*)
9 Null link Polysemy count (target) (*) Left source context
10 Stop word Punctuation Right Target context

11 Max (*) Stop word Constituent label (*)
12 Right target context Right source context Longest target POS gram

length (*)
13 Nodes (*) Target word Punctuation
14 Punctuation Distance to root (*) Stop word
15 Polysemy count (*) Backoff behaviour Number of occurrences (*)
16 Longest source gram

length (*)
Constituent label (*) Left target context

17 Number of occurrences (*) Proper name Backoff behaviour
18 Numeric Number of occurrences (*) Polysemy count (source) (*)
19 Proper name Min (*) Source Word
20 Left target context Max (*) Proper Name
21 Min (*) Left target context Distance to root (*)
22 Longest target gram

length (*)
Polysemy count (source) Longest source gram length

(*)
23 Right source context Longest target gram length * Right source context
24 Distance to root (*) Longest source gram length

(*)
Longest source POS gram
length (*)

25 WPP exact Source Word -

Table 4.1 – The ordered feature lists in fr-en, en-es(WMT14) and en-es (WMT13) classifiers after
the Feature Selection. It is worth noticing that feature sets are not exactly the same for three systems. All
bold ones work efficiently in at least two systems. All ones with ” ú ” symbol are proposed by us
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Figure 4.1 – Evolution of system performance (Favg(all)) during Feature Selection process on fr-en
(left, above) and en-es (WMT2013) (right, above) and en-es(WMT2014) (below) system

2.1 fr-en system

Table 4.1 hints that the system-based and lexical features seemingly outperform the other types

in terms of usefulness, since in top 10, they contribute 8 (5 system-based + 3 lexical). However, 2

out of 3 syntactic features appear in the top 10 (“Constituent label” and “Null Link”), indicating

that their role cannot be disdained. It is hard to conclude about the contribution of semantic

feature because so far we have exploited only one representative of this type and it ranks 15

out of 25. Concerning our proposed features, only Constituent Label, Max and Nodes emerge

in the upper part of the list, the remaining ones function ineffectively.

Furthermore, the observations in 10-best and 10-worst performing features suggest that

features belonging to the word origin (source and target words, source and target POS, Stop

word) perform effectively, meanwhile those from word statistical knowledge sources (target and

source language models) are less beneficial. As shown in Figure 4.1 (fr-en part), the best-
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performing subset of feature is top 17 with the Favg(all) value of 52.65%, which slightly exceeds

the top 20 (52.58%) and top 18 (52.57%). The system trained on top 17 is therefore considered

the optimal one obtained thanks to feature selection.

In addition, when the size of the feature set is small (from 1 to 7), we can observe sharply

the growth of the system performance (Favg(all)). Nevertheless the scores seem to saturate as

the feature set increases from 8 up to 25, with almost no progression.

2.2 en-es (WMT 2013) system

In this system, the lexical information of word seems very useful for word quality prediction as

they hold high positions in the list, peculiarly those in top 10: POS of both target and source

sides, numerical and punctuation characteristics. Besides, surrounding words of the target token

or of the source one also help when having 2 out of 4 representatives in top 10 as well. The

outstanding system-based features of this system are WPP (at arbitrary position) and Nodes.

Semantic type contributes one: the polysemy count for target side. On the contrary, three

features encompassing Left target context, Min and Longest target n-gram length are proven

weak with their bottom-most positions in the list. It is disappointing when the Language

Models (in both sides), which is expected to bring useful information to the model, aggravate

it in reality instead.

One commendable point is that the first-time-experimented feature “Occur in Google Trans-

late” is the most prominent (rank 2) among our proposed features for this system, implying

that such an online MT system can be a reliable reference channel for predicting word quality.

In general, the proposed feature set yields a positive contribution to the entire set in this case:

3 of them work efficiently (in top 10), the other 5 individuals play the honorable role from rank

11 to rank 20, and only two remaining ones perform really poorly (rank 21 to 25).

Discarding 5 last features in the list brings the best system with Favg(all) of 67.988%,

followed by top 18 (Favg(all)= 67.864%)

2.3 en-es (WMT2014) system

The en-es (WMT2014) system confirms again the acuteness of information from referential

translation means (references): both representatives of this type (“Occurrence in multiple sys-

tems” and Occur in Google Translate) can be found in high position of top 10 (rank 3 and

5). This suggests to exploit them in the future systems. Apart from these two above features,

we have two more ones appear in top 10, including “Longest target gram length” and “Pol-
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ysemy count” (target side). The role of new feature in this system is also very clear with 4

representatives in top 10, 4 others in the middle and only 3 last ones at the bottom.

The best possible classifier is trained over 18 first features in the list (Favg(all) = 64.02),

followed by top 24 (Favg(all) = 63.43) and top 23 (Favg(all) = 62.66).

2.4 Common Observations in All Systems

Along with appreciating the features working well in each specific system, it is very appealing

to highlight also those that perform well in all (or multiple) systems, since they are the truly

valuable prediction indicators for WCE. It can be seen on three lists (upper parts) of Table 4.1

that “Source POS”, “Target POS”, “Target word” and “Right target context” play clearly their

positive roles in all lists as they emerge in the leading sets. From this fact, we are encouraged

to further extract lexical and context alignment information of word in the future. Beside of

this, we observe that “Polysemy count”, “WPP (any)” and “Left source context” should also

be appreciated since they function fruitfully in two systems. On the opposite direction, we do

not find any “extremely” weak feature appearing in the bottom of all lists. However, those

extracted from LM are shown to be less beneficial in two systems (“Longest target gram length”

and “Longest source gram length”).

Another observation is the progression of performance seems to saturate in all cases when

the number of features increases (from 7 or 8 up to 24 or 25 individuals). In other words,

trivial progressions are obtained when adding more features from these sizes. This phenomenon

raises a hypothesis about our classifier’s learning capability when coping with a large number of

features, hence drives us to an idea of splitting our feature set into smaller subsets, constructing

subsystems and applying Boosting for improving the classification scores, which is detailed in

the next section.

3 Classifier Performance Improvement Using Boosting

If we build a number of “weak” (or “basic”) classifiers by using subsets of our features and

combining them in a reasonable way, should we get a final “composite” classifier with non-

negligible performance improvement over each one? When deploying this idea, our hope is that

multiple models can complement each other as one feature set might be specialized in a part

of the data where the others do not perform very well. This is also the main idea of Boosting

technique.
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3.1 Overview of Boosting Method

Boosting is a machine learning meta-algorithm for reducing bias in supervised learning. It

refers to a general and effective method of producing a very accurate “composite” predictors by

combining basic and moderate individuals. Boosting algorithms work by learning iteratively

“weak” classifiers respect to a distribution and then adding them to a final “strong” classifier.

When they are added, they are typically weighted relied on their accuracies. Once having

added a “weak” learner, the training instances will be also re-weighted: we put more weights

for miss-classified data and less for those are correctly predicted. This act forces the base

learner to pay more attention on the “hardest” examples. In other words, after each iteration,

a new weak classifier will be generated and the current data will be weighted again with more

focus on hard examples, so that the next classifier will handle better on these kind of data.

Finally, the algorithm combines all weak classifiers (by simply taking a weighted majority

vote of their predictions) to form the final composite one, which is believed to be much more

accurate than each single classifier.

Boosting methods were addressed by a number of authors. Schapire (1990) proposes a

polynomial-time method for converting a weak learning algorithm into one that achieves ar-

bitrarily high accuracy. Later, Freund (1995) relies on this idea and improve it by combining

a huge number of hypotheses, each of which is generated by training the given algorithm on

a different set of example. Although they are proven optimal in a certain sense, the most

prominent one is AdaBoost (Freund and Schapire, 1995) since it solves plenty of the practical

difficulties of the previous ones. It is also the one we employ in this thesis. The mechanism

of this algorithm is simply illustrated in Figure 4.2. The AdaBoost algorithm takes as input

a training set (x1, y1), (x2, y2), ..., (xm, ym) where each xi belongs to the instance space X, and

each label yi is on the label set Y . We assume that Y = {≠1, +1} (-1 for “Bad” and +1

for “G”). AdaBoost then calls a underlying learning algorithm (such as Decision Tree, Neural

Network, etc.) repeatedly in a series of iterations t = 1, 2, ..., T . One of the main ideas of this

algorithm is to maintain a distribution or set of weights over the training set. The weight of

this distribution on training example i on loop t is denoted as Dt(i). Initially, all weights are

set equal, but on each round, the weights of incorrectly classified examples are augmented so

that the base learner is encouraged to pay more attention on the hard examples in the training

set. The underlying learner’s job is to find a base classifier ht : X æ R appropriate for the

distribution. In the simplest case, the range of each ht is binary, i.e., restricted to {≠1, +1};

the base learner’s job then is to minimize the error :

‘t = Pri≥Dt
[ht(xi) ”= yi] (4.1)
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Figure 4.2 – AdatBoost algorithm

Once the base classifier ht has been received, AdaBoost chooses a parameter –t œ R that

intuitively measures the importance that it assigns to ht. For binary classifier , we typically set

the value for –t as follows:

–t =
1
2

ln
1 ≠ ‘t

‘t

(4.2)

as in the original description of AdaBoost given by Freund and Schapire (1995). The distri-

bution Dt is then updated based on the errors made by the precedent classifier to make the

up-coming generated one handles them better:

Dt+1 =
Dt(i)

Zt

c(x) (4.3)

where

c(x) =

Y

_

]

_

[

e≠αt if yi = ht(xi)

eαt if yi ”= ht(xi)
(4.4)

therefore

Dt+1 =
Dt(i)

Zt

e≠αtyiht(xi) (4.5)

The final or composite classifier H is a weighted majority vote of the underlying classifiers

where –t is the weight assigned to ht:

H(x) = sign(
T

ÿ

t=1

–tht(x)) (4.6)
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The pseudo-code of AdaBoost algorithm can be written as followings:

Algorithm 2 The boosting algorithm AdaBoost
Input: (x1, y1), (x2, y2), ..., (xm, ym) where xi œ X, yi œ Y = {≠1, +1}
Output: The composite classifier H(x)

1: {Initialize the distributions}
2: for i = 1 to m do
3: D1(i) Ω 1

m
;

4: end for
5: for t = 1 to T do
6: Train base classifier ht using distribution Dt;
7: Apply ht over the test set to obtain the score (label) ht(xj) for each word xj;
8: Choose –t œ R;
9: {Update the distributions}

10: for i = 1 to m do
11: Dt+1(i) Ω Dt(i)

Zt
e≠αtyiht(xi);

12: {where Zt is a normalization factor (chosen so that Dt+1 will be a distribu-
tion)}

13: end for
14: end for
15: {output the final classifier}
16: H(x) = sign(

qT
t=1 –tht(x));

3.2 Boosting Training Data Preparation

The training data for Boosting technique consists of outputs (confidence score) from numerous

base classifiers trained on subsets of all features. Figure 4.3 depicts how we build the training

data to boost fr-en, en-es (WMT2013) and en-es (WMT2014) systems. First, we prepare

23 feature subsets (F1, F2, ..., F23) to train 23 basic classifiers, in which:

• F1 contains all features

• F2 is the best performing set after selection (top 17 in fr-en and and top 20 in en-es

systems)

• Fi (i = 3..23) contains 9 randomly chosen features.

Next, the N-fold (N = 10) cross validation is applied on the training set. We divide it into

10 equal subparts (S1, S2, . . . , S10). In the loop i (i = 1..10), Si is used as the test set and

the remaining data is trained with 23 feature subsets. After each loop, we obtain the results

from 23 classifiers for each word in Si. In the obtained data, the “probability of word to be
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Figure 4.3 – Boosting data training algorithm

G label” (logged in each result file) is filtered to form part of the training data Di. Once

having 10 loops completed, the concatenation of all Di gives us the total training set for our

Boosting system. Therefore, the Boosting training file has 23 columns, each represents the out-

put of one basic classifier for our training set. The detail of this algorithm is described as below:

Algorithm 3 Algorithm to build Boosting training data
Input: Training data {Sk}, Subparts of features {Fj}
Output: Boosting training data {Di}

1: for i = 1 to 10 do
2: TrainSet(i) Ω fiSk (k = 1..10, k ”= i)
3: TestSet(i) Ω Si

4: for j = 1 to 23 do
5: Classifier Cj Ω Train TrainSet(i) with Fj

6: Result Rj Ω Use Cj to test Si

7: Column Pj Ω Extract the “probability of word to be G label” in Rj

8: end for
9: Subpart Di (23 columns) Ω {Pj} (j = 1..23)

10: end for
11: Boosting training set D Ω fiDi (i = 1..10)
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After that, the Bonzaiboost toolkit2 is used for building Boosting model. This is a general

purpose machine learning program based on Decision Tree for building a classifier from text

and/or attribute-value data. In the training command, we invoke AdaBoost algorithm and

keep the number of iterations as 300. All other options are set by default.

In all systems, the Boosting test set is prepared from the usual test data. Firstly, we train

23 feature sets on the training set to obtain 23 classifiers. Then, we use them to test the usual

test set, finally extract the 23 probability columns (like in the above pseudo code) to form the

Boosting test set.

3.3 Results And Analysis

In the testing phase, we use Boosting models to classify the usual test sets and compare the F

scores of “G” and “B” labels to those of corresponding “all feature” estimators. In case of fr-en,

where the dev set is not available, F (G) and F (B) of Boosting classifier are averaged along

the threshold variation on the test set, as the protocol applied on “all-feature” version, which

ensures the fair comparison between them. With en-es (WMT2013) and en-es (WMT2014)

systems, we tune the classification threshold on the dev set and then use the optimal value

(that yields the best performance on this set) to determine the results on the test set. In other

words, the results for them are all computed on these optimal thresholds. The entire scores for

all predictors are combined and displayed in Table 4.2.

System F(G) (%) F(B) (%)
fr-en test Boosting 87.02 40.65

all-feature 87.07 37.76

en-es (WMT2013) dev Boosting 85.54 54.15
all-feature 85.23 52.04

test Boosting 82.77 50.16
all-feature 81.12 48.01

en-es (WMT2014) dev Boosting 75.09 54.11
all-feature 75.01 53.47

test Boosting 74.73 44.42
all-feature 74.65 44.10

Table 4.2 – Comparison of the average F-score between CRF and Boosting systems, obtained on dev
and test set

The scores suggest that using Boosting algorithm on our (CRF) classifiers’ output is an

efficient way to make them predict better. With fr-en system, on the one side, we maintain
2http://bonzaiboost.gforge.inria.fr/x1-20001
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the already good achievement on G class (only 0.05% lost); on the other side we augment 2.89%

the performance in B class. Since the error detection should be more appreciated than good

translation prediction, this improvement in B class is very meaningful. More remarkably, on

en-es (WMT2013) system, the improvements are obtained in both labels when dealing with

both dev and test set, using the optimal classification threshold of 0.575. On the dev set, the

gains are 0.31% and 2.11% for G and B, respectively; and they are even more commendable on

the test set (1.65% and 2.15% improved). It is worth emphasizing this system since it is our

official submission to the WMT13 Shared Task (Quality Estimation) and ranks first among

participants for this task (We are also the winner in the multiple-label task, in which the

predicted labels are “Good”, “Insertion”, “Substitution” instead of binary labels). Consistently,

this tendency repeats once again with en-es (WMT2014) system with the corresponding

threshold of 0.700. When dealing with the dev set, slight improvement is observed for “G”

(0.08%) yet a bit more significant for “B” (0.64%). And also, Boosting method helps to boost

marginally the baseline system with the unseen test data, of about 0.08% and 0.32% for two

labels. If we use the F ú(all) (as used for Feature Selection) as a judgement criteria, it is

straightforward that Boosting technique brings gains for all systems (all variants).

It is likely that Boosting enables different models to better complement one another, in

terms of the later model becomes experts for instances handled wrongly by the previous ones.

Another advantage is that Boosting algorithm weights each model by its performance (rather

than treating them equally), so the strong models (come from all features, best performing set

after selection, etc.) can make more dominant impacts than the others.

4 Summary

Optimizing WCE system performance can be conducted by various ways to strengthen sepa-

rately or in parallel its components: features and ML model. With the first proposition, Feature

Selection strategy, we aimed solely at the interoperability of features. The first achievement of

this method is to reveal the best compatible indicators which yield the highest scores for each

system, optimal than the “all-feature” candidates. Moreover, it helped to understand about

truly valuable indicators for WCE by displaying those that worked effectively in all three sys-

tems, or in more than one system. On the contrary, by taking a look at the bottom of three

lists, we could also observe the really useless and redundant ones that need serious considera-

tions when being combined with others. Next, the ranking of each feature contributed to an

analysis of the usefulness of each major category (system-based, lexical, syntactic and seman-
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tic). For instance, in fr-en system, system-based and lexical features overwhelmed the others

in best-performing top 10 or top 15. This therefore suggested more exploitations of features in

the leading category. However, in this thesis, we stopped only at pointing out informative or

useless features, and the best possible way they can be combined, but still left unanswered the

explanation about why they performed fruitfully or poorly. This question might need in-depth

statistical and linguistic analysis and would be a future work.

In Boosting approach, we would like to intervene in both features and ML model to

improve the performance. From the entire set, multiple subparts were formed to build the

weak models, which then generated the data to train the Boosting model. This training was

performed by applying the base ML algorithm (Decision Tree) in order to get the “weak”

classifier, and then using the prediction errors from the current classifier to build the next one.

In other words, the future classifier was constructed taking into the consideration all the errors

(wrongly classified words) of the current one, so it was expected to handle better these kind

of data. Finally all weak classifiers were combined into a final one which was hopefully much

stronger than each of them. In all fr-en, en-es(WMT2013) and en-es(WMT2014), the

method increased the error detection capability while maintained the already good achievement

in predicting good translation. These results confirmed that if we take advantage of the portion

handled successfully by each weak system and make them complement each other, we can

constitute a composite “stronger” predictor.

So far, we proposed ideas to build and optimize the WCE systems. Once having them, the

next appealing task is to exploit their application in many sectors of SMT. How far can WCE

go to contribute to SMT, and by which manner? The first contribution will be investigated in

the next chapter (Chapter 5).
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Chapter 5

WCE for Improving Sentence Quality

Estimation

1 Introduction

Although the quality of SMT output, in general, is getting better, the translation errors are still

unavoidable, ranging from trivial to serious. Therefore, informing the target language’s reader

whether or not they can trust the specific translation is vital (to avoid the misunderstanding

of the information conveyed in the source text). This chapter will not conduct an in-depth

investigation about the sentence quality assessment techniques. Instead, we aim at exploring

whether the word confidence score can play a positive role to help evaluating better the target

sentence generated by MT system.

Firstly, we briefly summarize the basic background of SCE in Section 2, concerning the

sentence level feature types, ML method can be used to train the predictor, as well as the

way to annotate sentence with a quality label based on post-edition efforts. Next, we propose

an appealing idea to examine the WCE’s effectiveness in enhancing SCE. We build two SCE

systems using (almost) identical common settings: the datasets (both fr-en and en-es language

pairs), the ML technique and the methods of annotation, etc. The unique discrepancy between

them is the feature set: one is trained by truly sentence level features while the other is

trained by sentence level features which are synthesized from WCE’s labels. Furthermore, we

incorporate these two above systems by considering their decisions before determining the final

results (for sentence’s quality). This idea is reported in detail in Section 3 and Section 4. The

comparison of performance of three systems (including the combined one) tells us more about

the WCE usefulness (Section 5). The last section summarizes and draws some conclusions

about our findings.
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2 Sentence-level Confidence Estimation

In SCE, as mentioned in Chapter 2, the task is to judge the quality of a target sentence generated

by SMT given its source sentence. This assessment yields various useful applications, including

informing readers of the target language whether or not they trust the specific translation,

selecting all eligible translations for human post-editing or information gathering; combining

output from different MT systems; re-ranking the MT N -best list, etc.

It is well known that the features for SCE are gathered from various knowledge sources and

toolkits. Most of them are continuous values, since they represent for the entire sentence and

therefore (in many cases) are synthesized from the value of each word by averaging. Regarding

on the resources used for extraction, they can be divided into two main types: black-box features

(which can be built from only input sentence and MT hypothesis, and probably monolingual

and bilingual corpora) and glass-box features (need additional components and resources from

the translation process)

• black-box features: generally, this type exploits the simple and “shallow” characteristics

of both source and target sides, such as: source and target sentence lengths and their ratio;

source and target n-gram frequency in the corpus, etc. These features are essential in

case where the in-depth ones are inaccessible (e.g. in some commercial MT systems).

However, it is not always simple to obtain an efficient and accurate prediction model

relying solely on such simple and basic features.

• glass-box features: this type includes all features that need more SMT resources during

the translation process: N -best list, decoder’s search graph, LM, phrase table, etc. Some

examples of this type can be: SMT model score, phrase and word probabilities, alternative

translations per source word, the degree to which phrases are translated in the same way

throughout the N -best list. It is important to note that, beside the direct components of

the translation process, there are plenty of other lexical, syntactic and semantic resources

that can also be used for extracting sentence-level features, such as: parsers, semantic

networks (WordNet, BabelNet, etc), dependency tree, etc.

Similar to WCE, SCE classifier needs a ML method to learn from these above features. Var-

ious techniques are proposed and experimented. Blatz et al. (2004) use Multi-layer perceptrons

and Naive Bayes to train their 91 features. Meanwhile, Gamon et al. (2005) build a classifier

based on Support Vector Machine (SVM) using linguistic features. Linear Regression is also

exploited and proven to reach promising performance (Quirk, 2004).

If in WCE, annotations are made for each word; this task extends to conclude the entire

96



5.3 SCE Baseline System (System 1)

quality of the sentence in SCE. Although this is not a trivial and straightforward task, it can

be quantified based on the post editing efforts (e.g. how many percent of words need to be

corrected), combining with the subjective judgement of the editor on several criteria (under-

standability, consistency, coherence, fluency of the translation). WMT 2012 and WMT 2013

invite professional translators to perform this manual annotation, regarding to the following

scoring scheme (guidelines) (Callison-Burch et al., 2012):

• [1] The MT hypothesis totally fails to convey the information (content) of source sentence

and is incomprehensible. The editing efforts are therefore much more costly than re-

translating from scratch.

• [2] The major part (about 50% to 70%) of the MT hypothesis needs to be corrected.

Little information is accurately transferred. In order to be qualified for publishing, it

takes significant editing efforts.

• [3] Readers can understand the gist of the hypothesis, but a portion (from 25% - near

50%) of text requires editing

• [4] Generally the hypothesis is clear and understandable. Only a small percentage (10%

- near 25%) will be post-edited. Post-editing is cheaper than re-translating from scratch

in this case.

• [5] The hypothesis is flawless and accurate. It conveys exactly what the source sentences

says and no (or very little) mistake need to be fixed. It might not be the ideal translation,

but reaches the publishable level.

This thesis does not focus on in-depth research about SCE (building and optimizing system),

but investigate whether WCE information can help to improve its performance. In order to do

that, firstly, we build a baseline SCE system using basic sentence-level features.

3 SCE Baseline System (System 1)

The baseline estimator is built and tested on the analogous datasets of WCE system, described

in Chapter 3 for both fr-en and en-es language pairs.

• fr-en: 10000 training samples + 881 testing samples.

• en-es (WMT2013): 753 training samples + 284 testing samples.
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The ML method is CRF (WAPITI toolkit). Instead, for feature set, we take advantage of the

feature extraction software provided by WMT 2012. The source code is free and available for

download at: https://github.com/lspecia/QualityEstimation/blob/master/baseline_

system. It analyses the source and the target files as well as the SMT training corpus to

extract a total of 17 system-independent features for training the predictor. These features are:

• Number of tokens (words) in the source and target sentences

• Average source token length

• Average number of occurrences of the target word within the target sentence

• Number of punctuation marks in source and target sentences

• Language Model probability of source and target sentences using their language models.

• Average number of translations per source word in the sentence: as given by IBM 1 model

that is thresholded so that P (t|s) > 0.2, and so that P (t|s) > 0.01 weighted by the inverse

frequency of each word in the source side of the SMT training corpus

• percentage of unigrams, bigrams and trigrams in frequency quartiles (lower frequency

words) and 4 (higher frequency words) in the source side of the SMT training corpus

• percentage of unigrams in the source sentence seen in the source side of the SMT training

corpus

For training the baseline system, the annotated label for each sentence is a score ranging from

1 to 5, as used in WMT 2012. The difference is that we do not have the judgment sentence

score from post-editors, yet rely on the TER score generated by TERp-A toolkit to determine

it. In other words, we match each hypothesis against its post-edition by TERp-A and its TER

score, which will then be used to annotate it. The mapping between this annotated score and

TER score is following:

score(s) =

Y

_

_

_

_

_

_

_

_

_

_

_

_

]

_

_

_

_

_

_

_

_

_

_

_

_

[

5 if TER(s) < 0.1

4 if 0.1 < TER(s) <= 0.3

3 if 0.3 < TER(s) <= 0.5

2 if 0.5 < TER(s) <= 0.7

1 if TER(s) > 0.7

(5.1)
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4 Proposed WCE-based SCE System (System 2)

In this section, we build another SCE classifier, but unlike the previous one, this classifier is

trained on a set of features based totally on information of WCE outputs. In other words, we

start from all quality labels for words predicted by WCE system, then synthesize them (by

averaging) to form an unique score of the entire sentence. Specifically, we propose seven SCE

features based on the WCE system as follows:

• The ratio of number of good words to total number of words. (1 feature)

• The ratio of number of good nouns to total number of nouns. The similar ones are also

computed for other POS: verb, adjective and adverb. (4 features)

• The ratio of number of n consecutive good word sequences to total number of consecutive

word sequences. Here, n=2 and n=3 are applied. (2 features)

All above features are extracted on both fr-en and en-es corpus, using the identical ML

method and toolkit, and annotated labels. This means that both systems (SYS1 and SYS2)

are comparable: they are build on almost analogous settings, except the features.

5 Experiments and Results

Once having the baseline SCE classifier (SYS1) and the SCE classifier based on WCE output

(SYS2) built for both fr-en and en-es (WMT 2013) training set, we apply them to deal with

the corresponding test sets. Furthermore, to observe the positive impact and effectiveness of

the WCE output on SCE system, we design a third system (called SYS1+SYS2), which takes

the results yielded by SYS1 and SYS2, post-processes them and makes the final decision.

Normally, for each sentence of the test set, SYS1 and SYS2 generate five probabilities for

five integer labels it can be assigned, we then select the label with highest probability as the

official result. Meanwhile, SYS1+SYS2 collects probabilities coming from both systems for

each label, then computes the average between them as its official probability of that label.

Finally, the label with highest likelihood is assigned to this sentence.

Table 5.1 illustrates how SYS1+SYS2 processes the results of SYS1 and SYS2 for one

sentence. In case of the label “2”, SYS1 predicts the probability of 0.34632 and that value by

SYS2 is 0.12775. Therefore, the ultimate value that SYS1+SYS2 computes for this sentence

is: (0.34632 + 0.12775)/2 = 0.23704. Finally, each system concludes the official label based on

the one with the highest value (“2” by SYS1, “3” by SYS2 and “3” by SYS1+SYS2).
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Labels SYS1 SYS2 SYS1+SYS2
1 0.12135 0.21437 0.16786
2 0.34632 0.12775 0.23704
3 0.17829 0.45362 0.31596
4 0.29075 0.06754 0.17915
5 0.06329 0.13672 0.09999
Predicted label: 2 3 3

Table 5.1 – An example about the predicted label generated by SYS1+SYS2 based on the output of
SYS1 and SYS2

The performances measured by MAE and RMSE for three systems of each dataset (fr-

en and en-es) can be viewed on Table 5.2. The scores suggest that the WCE-based SCE

features seem to be slightly beneficial compared to “pure” SCE features. In fr-en corpus, SYS2

reduces 0.0386 MAE and 0.0358 RMSE points of SYS1. In case of en-es(WMT2013), these

improvements are 0.1021 and 0.1218 respectively. Notably, the most remarkable improvement

occurs when the information of both systems is incorporated together. Two SYS1+SYS2

systems in both metrics are the best-performing and boost significantly the pure SCE systems

(the gains obtained amount to 0.1428 MAE in en-es and 0.1463 RMSE in the same language

pair). We find some interesting conclusions that can be drawn from these results: firstly,

the quality of separate words can hint something about the quality of the entire sentence.

Secondly, when the information about word quality and sentence quality are embedded, they

can complement each other and perform more satisfactory than when they stand alone.

System MAE RMSE
fr-en SYS1 0.5584 0.9065

SYS2 0.5198 0.8707
SYS1+SYS2 0.4835 0.8415

en-es (WMT 2013) SYS1 0.7056 1.0339
SYS2 0.6035 0.9121
SYS1+SYS2 0.5628 0.8876

Table 5.2 – Scores of 3 different SCE systems.

6 Conclusions

This chapter emphasized one important role of WCE in SMT: enhancing the performance of

Sentence level Confidence Estimation. Starting from the intuition that the predicted word

quality labels can tell something about the entire sentence’s goodness, we proposed to build
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and compare three different systems. The first one (SYS1) was a pure SCE assessor, trained by

a set of sentence-level features (17 in total, provided by WMT 2012). The second one (SYS2)

was built on the same datasets, identical language pairs and ML method, yet all features were

synthesized from the output of WCE system. The last system (SYS1+SYS2) was actually a

combination of the results yielded by two previous ones: using their average score as the score

to determine the official label. These above predictors were trained on both fr-en and en-es

(WMT2013) datasets . Dealing with the test sets, the WCE-based features were shown to

slightly overwhelm pure SCE-based ones. However, the combination between them dramatically

boosted the performance (by MAE and RMSE) above each individual. The results confirmed

that WCE shows a positive impact in predicting the sentence’s quality; especially when it can

be properly and wisely integrated into the SCE system.
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Chapter 6

WCE for SMT N-best List Re-ranking

1 Introduction

Despite tireless endeavors to improve, SMT models are still imperfect and SMT outputs still

remain a big gap with human translations and are not yet able to be published as they are.

As a consequence, a number of methods to improve MT hypotheses after decoding have been

proposed in the past, such as: post-editing, re-ranking or re-decoding. Post-editing (Parton

et al., 2012) is a human-inspired task where the machine post edits translations in a second

automatic pass. In re-ranking (Duh and Kirchhoff, 2008; Nguyen et al., 2011; Zhang et al.,

2006), more features are used along with the multiple model scores for re-determining the 1-

best among the N -best candidates. Meanwhile, re-decoding process (Venugopal et al., 2007)

intervenes directly into the decoder’s search graph (e.g. adds more reward or penalty scores),

driving it to a better path.

In this chapter, we investigate the first application of WCE in improving MT quality: re-

ranking the N -best list. The method is conducted on fr-en SMT system. Generally, during the

translation task, the decoder traverses through paths in its search space, computes the objective

function values for them and outputs the one with the highest score as the best hypothesis.

Besides, those with lower scores can also be generated in a so-called N -best list. The decoder’s

function consists of parameters from different models, such as translation, distortion, word

penalties, reordering, language models, etc. In the N -best list, although the current 1-best

beats the other ones in terms of model score, it might not be exactly the closest to the human

reference. Therefore, adding more decoder independent features would be expected to raise up a

better candidate (which is located currently somewhere else in the list). In this chapter, we build

six additional features based on the labels predicted by our WCE system, then integrate them

with the existing decoder scores for re-ranking hypotheses in the N -best list. More precisely,

in the second pass, our re-ranker aggregates over decoder and WCE-based weighted scores
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and utilizes the obtained sum to select the best candidate. The novelty of our method lies

in the following contributions: the correlation between WCE-based sentence-level scores and

conventional evaluation scores (BLEU, TER, TERp-A) is first investigated. Then, we conduct

the N -best list re-ranking over different WCE system performance levels: starting by a real

WCE, passing through several gradually improved (simulated) systems and finally the “oracle”

one. From these in-depth experiments, the role of WCE in improving MT quality via re-ranking

N -best list is confirmed and reinforced.

In section 2, we summarize some outstanding approaches in N -best list re-ranking problem.

Section 3 describes the correlation between the word confidence score and some other conven-

tional metrics, followed by the WCE system construction and the proposed re-ranking features.

The experiments along with the results and in-depth analysis of WCE scores’ contribution (as

WCE system gets better) are presented in Section 4 and Section 5.

2 N -best List Re-ranking: General Concept and Related

Work

Conventionally, in SMT, for each source sentence f , the decoder applies all model scores (trans-

lation, LM, penalty etc.) to build the objective function, which helps to seek the optimal path

(highest score) on its huge search space to be the output e1 of the translation process. Beside

this output, for many different goals, the decoder generates also N ≠ 1 other alternative hy-

potheses {e2, e3, ..., eN}, having lower score than e1 and being ranked according to this score.

This list is known as the N -best list.

Since the SMT models are not ideal, the fact of having a sub-optimal sentence on the

highest position of the N -best list occurs as a challenge for SMT improvement’s endeavors.

Table 6.1 illustrates for this phenomena. Compared to the reference (post-edition) given the

source sentence, it is straightforward to realize that the third ranked hypothesis is better than

the current 1-best, with only one “Shift” operator (“association udf” æ “udf association”) is

required to become the reference, although its model score is lower. This hints that the model

scores might not be the reliable criteria for the output quality in some cases. This shortcoming

motivates the idea of building a better N -best list by re-ranking the original one generated by

the decoder. This task can be fulfilled by proposing brand new features which are not used

during decoding and then combining them with model scores so that the better candidates in

the old list have the opportunity to emerge as “optimal” translations.

Walking through various related work concerning this issue, we observe some prominent
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Source (fr) l’association udf hausse le ton et somme le nouveau centre de ne
plus utiliser son sigle.

Post-edition (en) the udf association increases the tone and commands the new centre
to stop using its acronym.

Hypothesis e1 the association udf increase the tone and after the new centre
to stop using its acronym.

Hypothesis e2 the association udf rise the tone and warn the new centre to stop
using the acronym.

Hypothesis e3 the association udf increases the tone and commands the new
centre to stop using its acronym.

Hypothesis e4 the association udf tone and increase the amount the new centre to
use its acronym.

Hypothesis e5 the association udf increase the tone and warn the new centre not
to use its abbreviation.

Table 6.1 – Example of N -best list

ideas. The first attempt focuses on proposing additional Language Models. Kirchhoff and

Yang (2005) train one word-based 4-gram model (with modified Kneser-Ney smoothing) and

one factored trigram one, then combine them in a log-linear fashion with seven decoder scores

for re-ranking N -best lists (N = 2000) of several SMT systems (translation from Finnish,

Spanish, French into English). Their proposed LMs increase the translation quality of the

baselines (measured by BLEU score) from 21.6 to 22.0 (Finnish - English), or from 30.5 to 31.0

(Spanish - English). Nevertheless, they observe that these significant improvements represent

a small portion of the possible increase in BLEU score as indicated by the oracle results (29.8

and 37.4 for two above systems in that order). This fact suggests that better language models

do not have a significant effect on the overall system performance unless the translation model

is improved as well.

Meanwhile, Zhang et al. (2006) experiment a distributed LM where each server, among the

total of 150, hosts a portion of the data and responses its client, allowing them to exploit an

extremely large corpus (2.7 billion word English Gigaword) for estimating N-gram probability.

The quality of their Chinese - English hypotheses after the re-scoring process by using this LM

is improved 4.8% (from BLEU 31.44 to 32.64, oracle score = 37.48).

In one other direction, several authors propose to replace the current linear scoring function

used by the decoder by more efficient functions. Sokolov et al. (2012a) learn their non-linear

scoring function in a learning-to-rank paradigm, applying Boosting algorithm. Their gains on

the WMT’{10, 11, 12} are shown modest yet consistent and higher than those based on linear

scoring functions. More important, their experiments also show that under the tested conditions
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with a tight integration with decoder, a pruning that bases on linear scoring function and a

few standard features, we are not able to conclude that non-linear approach boost dramatically

MT quality towards the oracle performance. Actually, non-linear approach should be employed

earlier in the search space construction with an increased number of features.

Duh and Kirchhoff (2008) use Minimum Error Rate Training (MERT) (Och, 2003) as a weak

learner and build their own solution, BoostedMERT, a highly-expressive re-ranker created by

voting among multiple MERT ones. Their proposed model dramatically beats the decoder’s

log-linear model (43.7 vs. 42.0 BLEU) in IWSLT 2007 Arabic - English task. Nevertheless,

this achievement is still far away from the oracle (BLEU 56.00). Furthermore, the authors

also observe that BoostedMERT is somewhat sensitive to the size of the training set. For small

training data, it improves the training score quite drastically, but the improvement per iteration

fades out as data size increases.

Applying solely goodness (the sentence confidence) scores, Nguyen et al. (2011) obtain very

consistent TER reductions (0.007 and 0.006) as well as BLEU improvements (0.4 and 0.2)

on the dev and test set, respectively) after a 5-list re-ranking for their Arabic - English SMT

hypotheses. The “goodness” score of a sentence is computed by simply averaging the confidence

probabilities over all words. In fact, in order to obtain the reliable “goodness” values, the word

confidence probabilities must be reliable as well, so the authors concentrate on building their

WCE systems based on linguistic and context features. They reach 77.5% and 63.8% as F

scores for “G‘” and “B” labels.

This latter work is the one that is the most related to our contributions. However, the major

differences are: (1) our proposed sentence scores are computed based on word confidence labels;

and (2) we perform an in-depth study of the use of WCE for N-best reranking and assess its

usefulness in a simulated interactive scenario.

3 Our Approach

Our approach can be expressed in three steps: investigate the potential of using word-level score

in N -best list re-ranking, build the WCE system and extract additional features to integrate

with the existing log-linear model.

3.1 Principal Idea

The principle idea is visualized in Figure 6.1. Inheriting the N -best list generated by the

conventional 1-pass decoder, we first apply our WCE system to assign quality labels for all
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words. After that, a “Sentence-level score Builder” will be invoked to synthesize from these

labels to scores at sentence level (the way to compute them is further mentioned in Section 3.4),

resulting in a total of six features per hypothesis. The next task is to combine them with 14

existing model scores (of 1-pass decoder); and the new objective function therefore contains 20

parameters. The weights of these parameters are initialized by default (e.g. Moses’s default

settings for 14 model scores and “all 1s” for six re-ranking scores) and then optimized using

MERT and MIRA methods. After that, the “N-best List Re-ranker” takes the responsibility of

calculating new scores for all candidates, updating weights after each iteration, and finally rank

again the list in the descending order of their final scores (once having the optimization process

finished). The effectiveness of our proposed method is measured by three metrics: BLEU,

TER and TERp-A when matching the new 1-best with the post-edition. Before moving on

the implementation, we verify in the next section whether the “Word Quality Score” can be a

reliable indicator for the sentence quality assessment.

Figure 6.1 – Our approach in applying WCE in re-ranking the SMT N -best list
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3.2 Investigating the correlation between “word quality” scores and

other metrics

Firstly, we investigate the correlation between sentence-level scores (obtained from WCE labels)

and conventional evaluation scores (BLEU (Papineni et al., 2002), TER and TERp-A (Snover

et al., 2008)). For each sentence, a word quality score (WQS) is simply calculated by the ratio

between the number of correctly translated words over the total number of words:

WQS =
#ÕÕGÕÕ(good) words

#words
(6.1)

In other words, we are trying to answer the following question: can the high percentage of

“G” (good) words (predicted by WCE system) in an MT output ensure its possibility of having

a better BLEU and lower TER (TERp-A) value ? This investigation is a strong prerequisite

for further experiments in order to check that WCE scores do not bring additional “noise” to

the re-ranking process.

In this experiment, we compute WQS over our entire French - English data set (total of

10,881 1-best translations) for which WCE oracle labels are available (see Section 3.2 to see

how they were obtained). For each hypothesis, the BLEU score is calculated by applying the

sentence-level BLEU+1 (Nakov et al., 2012) between it and the post-edition. The TER and

TERp-A score are done by TERp-A toolkit (Snover et al., 2008) along with the labels. The

results are plotted in Figure 6.2, where the y axis shows the “G” (good) word percentage,

and the x axis shows BLEU (1a), TER (1b) or TERp-A (1c) scores. It can be seen from

Figure 6.2 that the major parts of points (the densest areas) in all three cases conform the

common tendency: In Figure 6.2a, the higher “G” percentage, the higher BLEU is, leading

to a high positive overall correlation score of 0.7874. The high negative correlations can also

be observed in Figure 6.2b (Figure 6.2c), where the higher “G” percentage, the lower TER

(TERp-A) is and the overall scores are ≠0.8687 and ≠0.7968, respectively. We notice some

outliers, i.e. sentences with most or almost words labeled “good”, yet still have low BLEU

or high TER (TERp-A) scores. This phenomenon is to be expected when many (unknown)

source words are not translated or when the (unique) reference is simply too far from the

hypothesis. Nevertheless, the information extracted from oracle WCE labels seems useful to

build an efficient re-ranker.
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Figure 6.2 – The correlation between WQS in a sentence and its overall quality measured by : (a) BLEU,
(b) TER and (c) TERp-A metrics

3.3 WCE System Preparation

The N -best list re-ranking using WCE needs all N translation candidates for each source

sentence available along with predicted labels. However, due to the inability of obtaining these

data in en-es(WMT2013) and en-es(WMT2014) systems, we will focus only on using fr-en

system.

We use the entire feature set of the baseline fr-en SMT system (as described in Chapter 3)

for experiments, along with one additional new feature: “Occurrence in Google Translate”1. In

other words, the whole 25 feature types of the baseline system, plus this above one will be used

to build the SMT system for our experiments. For the sake of understandability, we briefly list

them as follows:

1We did not think about this feature at the time of building the baseline fr-en SMT system, it is added
during our N -best list re-ranking studies
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• Target Side: target word; bigram (trigram) backward sequences; number of occurrences

• Source Side: source word(s) aligned to the target word

• Alignment Context: the combinations of the target (source) word and all aligned source

(target) words in the window ±2

• Word posterior probability

• Pseudo-reference (Google Translate): whether the current word appears in the pseudo

reference or not2?

• Graph topology: number of alternative paths in the confusion set, maximum and mini-

mum values of posterior probability distribution

• Language model (LM) based: length of the longest sequence of the current word and its

previous ones in the target (resp. source) LM. For example, with the target word wi: if

the sequence wi≠2wi≠1wi appears in the target LM but the sequence wi≠3wi≠2wi≠1wi does

not, the n-gram value for wi will be 3.

• Lexical Features: word’s Part-Of-Speech (POS); sequence of POS of all its aligned source

words; POS bigram (trigram) backward sequences; punctuation; proper name; numerical

• Syntactic Features: Null link; constituent label; depth in the constituent tree

• Semantic Features: number of word senses in WordNet.

Once having the prediction model built with these above features, we apply it on the test set

(881 x 1000 best = 881000 sentences) and get needed WCE labels. According to the Precision

(Pr), Recall (Rc) and F-score (F) shown in Table 6.2, our WCE system reaches very promising

and appealing performance in predicting “G” label, and acceptable for “B” label. These labels

will be used to calculate our proposed features (section 3.3).

Label Pr(%) Rc(%) F(%)
Good (G) 84.36 91.22 87.65
Bad (B) 51.34 35.95 42.29

Table 6.2 – Pr, Rc and F for “G” and “B” labels of our fr-en WCE system

3.4 Proposed Re-ranking Features

Since the scores resulted from the WCE system are for words, we have to synthesize them in

sentence level scores for integrating with the 14 decoder scores. Six proposed scores involve:
2This is our first-time experimented feature and it does not appear in (Luong et al., 2013a)
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Figure 6.3 – Example of our WCE classification results for one MT hypothesis

• The ratio of number of good words to total number of words. (1 score)

• The ratio of number of good nouns (verbs) to total number of nouns (verbs)3. (2 scores)

• The ratio of number of n consecutive good word sequences to the total number of con-

secutive word sequences ; n=2, n=3 and n=4. (3 scores)

For instance, in case of the hypothesis in Figure 6.3: among the total of 18 words, we have 12

labeled as “G” ; and 7 out of 17 word pairs (bigram) are labeled as “GG”, etc. Hence, some of

the above scores can be written as:

#good words

#words
=

12
18

= 0.667

#good bigrams

#bigrams
=

7
17

= 0.4118

#good trigrams

#trigrams
=

3
16

= 0.1875

(6.2)

With the features simply derived from WCE labels and not from CRF model scores (i.e. the

probability p(G), p(B)) , we expect to stretch the evaluation up to the “oracle” setting, where

the users validate a word as “G” or “B” without providing any confidence score.

3We decide not to experiment with adjectives, adverbs and conjunctions since their number can be 0 in many
cases.

111



Chapter 6. WCE for SMT N-best List Re-ranking

4 Experiments

4.1 Experimental Settings

As described in Chapter 3, our SMT system generates 1000-best list for each source sentence,

and among them, the best hypothesis was determined by using the objective function based on

14 decoder scores, including: 7 reordering scores, 1 language model score, 5 translation model

scores and 1 word penalty score. After combining with six proposed re-ranking scores, we have

a total of 20 scores per hypothesis. Table 6.3 gives an example of how these scores are organized

in the data for the hypothesis: “the operation " was not hémorragique and is therefore not have

a combat , " a-t-il added . ” in the N -best list data file. On this table, the red part represents

decoder scores while the blue part contains re-ranking scores.

12 ||| the operation " was not hémorragique and is therefore not have a combat , " a-t-il added . |||
d: 0 -5.30284 0 0 -6.60458 0 0 lm: -277.497 tm: -50.4321 -58.0075 -14.9024 -16.6772
10.9989 w: -18 goodness: 0.6666667 noun: 0.33333334 verb: 0.5 bigram: 0.4117647
trigram: 0.1875 quadgram: 0.13333334 ||| -350.125 ||| 0-1=0-1 2=2 3-5=3-4 6=5 7=6 8-9=7
10-12=8-9 13=10 14-15=11 16=12 17-18=13-14 19=15 20-21=16-17 ||| 0=0 1=1 2=2 3=4 4=3
5=4 6=5 7=6 8=7 9=-1 10=8 11=9 12=-1 13=10 14=-1 15=11 16=12 17=14 18=13 19=15 20=16
21=17 ||| 0=0 1=1 2=2 3=4 4=3,5 5=6 6=7 7=8 8=10 9=11 10=13 11=15 12=16 13=18 14=17
15=19 16=20 17=21

Table 6.3 – Example of one hypothesis with 20 scores (14 model scores + 6 proposed scores)

Initially, all six additional WCE-based scores are weighted as 1.0. Then, two optimization

methods: MERT and Margin Infused Relaxed Algorithm (MIRA) are applied to optimize the

weights of all 20 scores of the re-ranker.

• MERT (Och, 2003) This is an algorithm for optimizing the un-smoothed error count of

the feature function. It starts at a random point in the K -dimentional parameter space

and try to find a better scoring point in the parameter space. To do this, it makes

a one-dimensional line minimization along the pre-defined directions by optimizing one

parameter while keeping all others fixed. The algorithm can start from different initial

parameter values. It is proven to be much faster and more stable than the grid-based line

optimization method (which suffers from the shortcoming of balancing the grid size and

the optimal solution guarantee).

• MIRA (Margin Infused Relaxed Algorithm) (Crammer et al., 2006): This is an online

version of the large-margin training algorithm for structured classification that has been

successfully used for dependency parsing, joint-labeling or chunking. The principle idea of
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this algorithm is to keep the norm of the updates to the weight vector as small as possible,

and considering a margin at least as large as the loss of the incorrect classification. A larger

error means a larger distance between the score of the correct and incorrect translations.

It is important to note that only a number of “active” features satisfying some specific

constraints are kept and updated, unlike the offline training where all possible features

are required to be extracted and selected in advance.

In both methods, we carry out a 2-fold cross validation on the N -best test set. In other

words, we split our N -best test set into two equivalent subsets: S1 and S2. Playing the role of a

development set, S1 will be used to optimize the 20 weights for re-ranking S2 (and vice versa).

Finally two result subsets (all the new 1-best sentences after re-ranking process on S1 and S2)

are concatenated for evaluation. The evaluation is based on three metrics: BLEU, TER and

TERp-A. To better acknowledge the impact of the proposed re-ranking scores, we re-rank the

N -best list not only by using our “real” WCE system labels, but also by using the “oracle”

(or ideal WCE) labels (henceforth called “WCE scores” and “oracle scores”, respectively). To

summarize, we experiment with the three following systems:

• BL: Baseline SMT system with 14 decoder scores (as mentioned above).

• BL+WCE: Baseline with 14 score + 6 “real” WCE scores

• BL+OR: Baseline with 14 scores + 6 “oracle” scores (for simulating an interactive

scenario where the user’s validation on the current hypothesis helps the system to generate

a better one).

4.2 Results and Analysis

The translation quality of BL, BL+WCE and BL+OR, optimized by MERT and MIRA

method are reported in Table 6.4. Meanwhile, Table 6.5 depicts in details the number of

sentences in the two integrated systems which outperform, remain equivalent or degrade the

baseline hypothesis (when matching against the references, measured by TER).

It can be observed from Table 6.4 that the integration of oracle scores significantly boosts

the MT output quality, measured by all three metrics and optimized by both methods employed.

We gained 5.79 and 4.72 points in BLEU score, by MERT and MIRA (respectively). With TER,

BL+OR helps to gain 0.03 point in both two methods. Meanwhile, in case of TERp-A, the

improvement is 0.05 point for MERT and 0.03 point for MIRA. It is worthy to mention that

the possibility of obtaining such oracle labels is definitely doable through a human-interaction

scenario (which could be built from a tool like PET (Post-Editing Tool) (Aziz et al., 2012) for
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Systems MERT MIRA
BLEU TER TERp-A BLEU TER TERp-A

BL 52.31 0.2905 0.3058 50.69 0.3087 0.3036
BL+OR 58.10 0.2551 0.2544 55.41 0.2778 0.2682
BL+WCE 52.77 0.2891 0.3025 51.01 0.3055 0.3012
Oracle BLEU score BLEU=60.48

Table 6.4 – Translation quality of the baseline system (using only decoder scores) and that with additional
scores from “real" WCE or “oracle” WCE system

System MERT
Better Equivalent Worse

BL+WCE 159 601 121
BL+OR 517 261 103

Table 6.5 – Quality comparison (measured by TER) between the baseline and two integrated systems
in details (How many sentences are improved, kept equivalent or degraded, out of 881 test sentences?

instance). In such an environment, once having the hypothesis produced by the first

pass (translation task), the human editor could simply click on words considered as bad (B),

the other words being implicitly considered as correct (G). This validation helps the system to

generate the better hypothesis.

Breaking down the analysis into sentence level, as described on Table 6.5, BL+OR (MERT)

yields nearly 59% (517 over 881) better outputs than the baseline, 24% of equivalent and only

17% of worse ones. Furthermore, Table 6.4 shows that in case of our test set, optimizing by

MERT is pretty more beneficial than MIRA. The reason for this should be investigated in the

future work.

Compared to the “oracle scores”, the contribution of “real” WCE scores seems more modest:

BL+WCE marginally increases BLEU scores of BL (0.46 gain in case of optimizing by MERT

and 0.32 by MIRA). The gains measured by TER and TERp-A are also trivial: only 0.0014

TER and 0.0033 TERp-A points reduced (MERT); and those by MIRA are almost analogous:

0.0032 and 0.0024 (in that order). Since the progressions are negligible, we raise a question

about the signification of the real WCE contribution to the MT quality: do these small gain

really come from WCE scores or simply from the optimizer instability or other factors? In

order to verify this, we estimate the p-value between BLEU of BL+WCE system and BLEU

of baseline BL relying on Approximate Randomization (AR) method (Clark et al., 2011) which

indicates if the improvement yielded by the optimized system is likely to be generated again by

some random processes (randomized optimizers). The p-value can vary widely from statistically

insignificant (at p > 0.05) to highly significant (0.01 < p < 0.05) or strongly significant (p <=
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0.01).

After various optimizer runs, we selected randomly from the large pool a total of n optimizer

outputs and perform the AR test to verify the significance. The AR tests are conducted thanks

to MUTLVAL4 toolkit. Finally, all the corresponding p-values to different values of n (from 2

to 5) are reported on Table 6.6 .

Number of randomly se-
lected optimizers (n=)

p-value
(MERT)

2 0.00
3 0.01
4 0.01
5 0.01

Table 6.6 – The p-values between BL+WCE and BL with different number of optimizer runs

This results (small p-values in all cases) reveals that the improvement yielded by BL+WCE

is significative although small, and they are originated from the contribution of WCE scores,

not by any optimizer variance.

4.3 Comparison to Oracle BLEU Score

For more insightful understanding about WCE scores’ acuteness, we make a comparison with

the optimal BLEU score that could be obtained from the N -best list. We apply the sentence-

level BLEU+1 (Nakov et al., 2012) metric over candidates in the list. Why BLEU + 1 but not

BLEU metric is applicable in sentence level? According to these authors, we can explain by

taking a look at the definition of BLEU metric:

BLEU = BP.(
N
Ÿ

n=1

pn)
1

N (6.3)

BLEU consists of two components: the brevity penalty (BP) and precision component (PC),

the geometric mean of n-gram precisions pn, 1 Æ n Æ N . The BP can be defined as following:

BP =

Y

_

]

_

[

1 if c > r

exp(1 ≠ r
c
) if c Æ r

(6.4)

where c is the length of the candidate, and r is the effective reference corpus length. Since

BLEU is defined at the corpus level, pn, r and c are sums over all sentences of the corpus.
4Source code to carry out the AR test : http://github.com/jhclark/multeval.
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• pn =
q

i
min

q

i
hin

: where min is the number of n-gram matches between a translation and the

references for sentence i, and hin is the number of n-grams in the hypothesis.

• c =
q

i ci: where ci is the length of the MT output for sentence i

• r =
q

i ri: where ri is the reference length for sentence i. In case of multiple references,

this is the closest reference sentence length. It is straightforward to see that when BLEU

score is applied for sentence, pn, c and r become pn = min

hin
, c = ci and r = ri.

With the above definition, BLEU scores can be flawlessly applied at corpus level, since its large

size ensures that the n-gram will always be found. Nevertheless, at sentence level (the one that

we desire to use BLEU for), this causes a problem which might unfortunately bias the “really

bad” and “pretty good” sentences. In Formula 6.3, if at least one pn is zero, the whole score

will be zero. And this possibility often occurs, for instance in case where there is no 4 -gram

match is found. That would lead to a fact that the hypothesis which has no matches at all

will possess the same BLEU score with one having unigram, bigram, trigram matches yet no

4 -gram, resulting in a very inaccurate sentence quality evaluation. Therefore, a strategy to

solve this problem is to use an add-one smoothed version of BLEU , called BLEU +1, in which

pn is redefined as follows: pn = min+1
hin+1 . Beside this, we also apply the add-one smoothing for

the length of the reference translation, i.e. use r = ri + 1. The main idea is to smooth the PC

and the BP consistently, thus maintaining the balance between them: if we assume an extra

n-gram in the reference, then we also should assume that the reference contains an extra word.

After calculating the above sentence-level BLEU + 1 for N -best candidates in the list,

we are able to select the one with highest score to be the “oracle” translation of the source

sentence. Once having all of them for the entire test set, we combine them to form the new

1-best translations. The oracle BLEU score is finally calculated by comparing this new version

of translation and the post-editions, and the score obtained is 60.48.

This score accounts for a fact that the simulated interactive scenario (BL+OR) lacks only

2.38 points (in case of MERT) to be optimal and clearly overpass the baseline (8.17 points

below the best score). This result also reveals that with the help of real WCE labels, we are

able to choose a very small portion of better candidates among N -bests to replace the current

decoder-best hypothesis. However, the improvement, although small yet significant, encourages

us to investigate and analyze further about WCE scores’ impact, supposing WCE performance

is getting better. More in-depth analysis is presented in the next section.
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5 Further Understanding of WCE scores role in N -best

Re-ranking via Improvement Simulation

We think it would be very interesting and useful to answer the following question: do WCE

scores really effectively help to increase MT output quality when the WCE system is getting

better and better? To do this, our proposition is as follows: firstly, by using the oracle labels,

we filter out all wrongly classified words in the test set and push them into a temporary set,

called T. Then, we correct randomly a percentage (25%, 50%, or 75%) of labels in T. Finally,

the altered T will be integrated back with the correctly predicted part (by the WCE system) in

order to form a new “simulated” result set. This strategy results in three “virtual” WCE systems

called “WCE+N%” (N=25, 50 or 75), which use 14 decoder scores and 6 “simulated” WCE

scores. The steps in detail are described in Figure 6.4. In this process, Filter splits correctly

predicted labels from wrong ones, and Corrector(N%) plays the job of replacing randomly

N% of wrong labels by the corresponding oracle ones. It is important to note that, when

the corrected file is combined with the correct part to form the new result file, the position

(index) of labels in each sentence is kept intact as in the original file, to ensure the accuracy of

re-ranking feature values.

Figure 6.4 – The simulation of WCE’s improvement, by replacing a part of wrongly predicted labels by
corresponding oracle ones.
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Table 6.7 shows the performance of these WCE+N% systems in term of the average

weighted F scores (%). From each of the above systems, the whole experimental setting is

System F(“G”) F(“B”) Overall F
WCE+25% 89.87 58.84 63.51
WCE+50% 93.21 73.09 76.11
WCE+75% 96.58 86.87 88.33
Oracle labels 100 100 100

Table 6.7 – The performances (Fscore) of simulated WCE systems

identical to what we did with the original BL+WCE and oracle BL+OR systems: six scores

are built and combined with existing 14 system scores for each hypothesis in the N -best list.

After that, MERT and MIRA methods are invoked to optimize their weights, and finally the

reordering is performed thanks to these scores and appropriate optimal weights. The trans-

lation quality measured by BLEU, TER and TERp-A after re-ranking using “WCE+N%”

(N=25,50,75) can be seen also in Table 6.8. The number of translations which outperform, keep

intact and decline in comparison to the baseline are shown in Table 6.9 for MERT optimization.

We note that all obtained scores fit our guess and expectation: the better performance WCE

Systems MERT MIRA
BLEU TER TERp-A BLEU TER TERp-A

BL 52.31 0.2905 0.3058 50.69 0.3087 0.3036
BL+OR 58.10 0.2551 0.2544 55.41 0.2778 0.2682
BL+WCE 52.77 0.2891 0.3025 51.01 0.3055 0.3012
WCE + 25% 53.45 0.2866 0.2903 51.33 0.3010 0.2987
WCE + 50% 55.77 0.2730 0.2745 53.63 0.2933 0.2903
WCE + 75% 56.40 0.2687 0.2669 54.35 0.2848 0.2822
Oracle BLEU score BLEU=60.48

Table 6.8 – Translation quality of the three “simulated” WCE systems (green zone)

system reaches, the clearer its role in improving MT output quality. Diminishing 25% of the

wrongly predicted words leads to a gain 0.68 point (by MERT) and 0.32 (by MIRA) in BLEU

score, and help to select 28.72% (253 out of 881) better candidate than the current 1-bests.

More significant increases of BLEU 3.00 and BLEU 3.63 (MERT) can be achieved when predic-

tion errors are cut off up to 50% and 75%; with the percentage of better hypotheses generated

are 36.32% and 52.33% in that order. Figure 6.5 presents an overview of the results obtained

and helps us to predict the SMT quality improvements expected as the WCE systems are more

and more improved in the future.
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6.5 Further Understanding of WCE scores role in N -best Re-ranking via
Improvement Simulation

System MERT
Better Equivalent Worse

BL+WCE 159 601 121
BL+OR 517 261 103

WCE+25% 253 436 192
WCE+50% 320 449 112
WCE+75% 461 243 177

Table 6.9 – Quality comparison (measured by TER) between the baseline and three “simulated" systems
(green zone) in details (How many sentences are improved, kept equivalent or degraded, out of 881 test
sentences?

Figure 6.5 – Comparison of the performance of various systems: the integrations of WCE features, which
the quality increases gradually, lead to the linear improvement of translation outputs.

To end up this section, we show on Table 6.10 several examples where WCE scores drive SMT

system to better reference-correlated hypothesis. In the first example, the baseline generates the

hypothesis in which the source phrase “pour sa part” remains untranslated. On the contrary,

WCE+50% overcomes this drawback by resulting in a correct translation phrase: “for his

part”. The latter translation needs only one edit operation (shift for “Bettencourt-Meyers”)

to become its reference, then outperforms the hypothesis. In example 2, BL+OR selects the

better hypothesis, in which the phrases “creuser la tombe" and ‘‘pme du secteur” are translated

into “digging the grave” and “medium-sized businesses”, respectively, better than those of the

baseline (“deepen the grave” and “smes in the sector”).
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Example 1 (from WCE+50%)
Source Pour sa part , l’ avocat de Françoise Bettencourt-Meyers ,

Olivier Metzner , s’ est félicité de la décision du tribunal .
Hypothesis (Baseline
SMT)

The lawyer of Bettencourt-Meyers Françoise , Olivier Metzner
, welcomed the court ’s decision .

Hypothesis
(SMT+WCE scores)

For his part , the lawyer of Bettencourt-Meyers Françoise ,
Olivier Metzner , welcomed the court ’s decision .

Post-edition For his part , the lawyer of Françoise Bettencourt-Meyers ,
Olivier Metzner , welcomed the court ’s decision .
Example 2 (from BL+OR)

Source Pour l’ otre , l’ accord risque “ de creuser la tombe d’ un très
grand nombre de pme du secteur dans les 12 prochains mois
" .

Hypothesis (Baseline
MT)

For the otre the agreement is likely to deepen the grave of a
very large number of smes in the sector in the next 12 months
" .

Hypothesis
(SMT+WCE scores)

For the otre agreement , the risk “ digging the grave of a
very large number of medium-sized businesses in the next 12
months " .

Post-edition For the otre , the agreement risks “ digging the grave of a
very large number of small- and medium-sized businesses in
the next 12 months ” .

Table 6.10 – Examples of MT hypothesis before and after reranking using the additional scores from
WCE+50% (Example 1) and BL+OR (Example 2) system

6 Conclusions

So far, the word confidence scores have been exploited in several applications, e.g. post-editing,

sentence quality assessment or multiple MT-system combination, yet very few studies (except

Nguyen et al. (2011) ) propose to investigate them for boosting MT quality. Thus, in this

chapter, we proposed a number of features extracted from a WCE system and combined them

with existing decoder scores for re-ranking N -best lists. Due to the WCE classifier’s limitations

in predicting translation errors (“B” label), WCE scores ensured only a modest improvement in

translation quality over the baseline SMT. Nevertheless, further experiments about the simula-

tion of WCE performance suggested that such types of score would contribute dramatically if

they are built from an accurate WCE system. They also showed that with the help of an “ideal”

WCE, the MT system reached quite close to its most optimal possible quality. These scores

were totally independent from the decoder, they can be seen as a way to introduce lexical,

syntactic and semantic information (used for WCE) in a SMT pipeline.
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Chapter 7

WCE for SMT Search Graph Redecoding

1 Introduction

Conventionally, during SMT’s decoding, the decoder travels over all complete paths on the

Search Graph (SG), seeks those with cheapest costs and backtracks to read off the best trans-

lations. Although these winners beat the rest in model scores, they might not have the highest

quality with respect to the human references (the most crucial criteria to judge MT quality).

In reality, there are many cases in which the top-ranked sentence is sub-optimal, as shown in

Chapter 6. Beside N -best list re-ranking, the integration of more system-independent scores

directly into the current transition cost of the edges of the SG would be another potential

solution to redirect the decoder to another optimal path, then improve the MT quality. This

problem is also known as the re-decoding. The principal discrepancy between N -best list

re-ranking and Re-decoding is that the former method re-calculates the scores for N -best

candidates to order it again, meanwhile the latter one updates the scores for not only them,

but also all those containing at least one word in the N -best list. Therefore, the former one

offers much more selection, yet requests more computational complexity than the latter one.

In this chapter, we exploit WCE outputs (labels or probabilities) in the second pass of

decoding to enhance the MT quality. By using the confidence score of each word in the N -best

list to update the cost of SG hypotheses containing it, we hope to “reinforce” or “weaken”

them depending on word quality estimation. After the update, new best translations are re-

determined using updated costs. In the experiments on our real WCE scores and ideal (oracle)

ones, the latter significantly boosts one-pass decoder by 7.87 BLEU points, meanwhile the

former yields an improvement of 1.49 points for the same metric.

In Section 2, we introduce the general concept as well as several approaches dealing with

this issue, followed by the description of how the SG is organized and represented in Section 3.

Section 4 details the proposition of integrating WCE based scores into the nodes of SG, the way
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Chapter 7. WCE for SMT Search Graph Redecoding

to calculate them, the way to update the 1-pass SG and seek for the new hypothesis, followed

by an example to illustrate. Next, we conduct the settings for all experimental re-decoders

in Section 5 in both real and oracle scenarios. The results, analysis and comparisons with

re-ranking approach are depicted in Section 6.

2 Re-decoding: General Concept and Related Work

Beside plenty of commendable achievements, the conventional one-pass SMT decoders are still

not sufficient yet in yielding human-acceptable translations (Venugopal et al., 2007; Zhang

et al., 2006). Therefore, a number of methods to enhance them are proposed, such as: post-

editing, re-ranking or re-decoding, etc. Post-editing (Parton et al., 2012) is in fact known to be

a human-inspired task where the machine post edits translations in a second automatic pass.

In re-ranking (Duh and Kirchhoff, 2008; Nguyen et al., 2011; Zhang et al., 2006), more features

are integrated with the existing multiple model scores for re-selecting the best candidate among

N -best list. Meanwhile, the re-decoding process intervenes directly into the decoder’s search

graph (SG), driving it to the optimal path (cheapest hypothesis).

The two-pass decoder has been built by several discrepant ways in the past. Zens and

Ney (2006) introduce n-gram and sentence length posterior probabilities and demonstrate their

usefulness in the 2-pass decoding. The idea to calculate n-gram posterior probabilities is es-

sentially similar to the WPP (Word Posterior Probabilities - see Chapter 2), that we sum up

the sentence probabilities for each occurrence of an n-gram. Meanwhile, the sentence length

posterior probability of a specific target sentence length I is computed by summing the pos-

terior probabilities only over all target sentences with this length in the list . These authors

create the 2-pass decoder using these additional scores on the Chinese - English NIST task

(from 2002 to 2005) and get a significant and promising improvement of the translation qual-

ity. Successively adding higher (than 1) order n-gram posterior probabilities, the quality (in

BLEU) increases consistently across all evaluation sets (up to 1.2%). More interesting, adding

the sentence length posterior probability boosts the overall quality to 1.5% on the development

set, and between 1.1% to 1.6% on the test set. Finally, another interesting property of this

method is that they do not require any additional knowledge source.

Meanwhile, Tromble et al. (2008) present a new approach for multiple-pass decoding: per-

forming Minimum Bayes-Risk Decoding (MBR) on the translation lattices (a compact repre-

sentation for very large N -best lists of MT hypotheses and their likelihoods). MBR aims at

finding the candidate hypothesis that has at least expected loss under the probability model.
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7.2 Re-decoding: General Concept and Related Work

According to this approach, firstly all the set of n-gram that occur in the evidence lattice (used

for computing the Bayes-risk) are extracted. Then, after computing the posterior probability

for each of them, we intersect each n-gram with an appropriate weight to form the weighted

copy of this lattice. Finally, the best path is obtained by seeking on that new word lattice.

Their experiments show that the Lattice MBR decoder yields moderate yet consistent gains over

N -best MBR decoding on Arabic - English, English - Chinese and Chinese - English translation

tasks.

In another attempt, Venugopal et al. (2007) do a first pass translation without LM, but

use it to score the pruned search hyper-graph in the second pass of a probabilistic synchronous

context-free grammar based (PSCFG-based) SMT. Actually, this approach is built upon the

concept of a second pass but uses the N -gram LM to search for alternative, better translations.

The first pass corresponds to a severe parameterization of Cube Pruning considering only the

first-best (LM integrated) chart item in each cell while maintaining unexplored alternatives for

second-pass consideration. The second pass allows the integration of long distance and flexible

history n-gram LMs to drive the search process, rather than simply using such models for

hypothesis re-scoring. The results suggest that the syntactic grammar’s score are more useful

than hierarchical grammar (1.5 BLEU higher) and the syntax based translation quality is very

robust to differences in the number of N -gram LM options explored.

Distinct from the above work, this thesis concentrates on a second automatic pass where

the costs of all hypotheses in the decoder’s SG containing the words of the N -best list will

be updated regarding the word quality predicted by Word Confidence Estimation (Ueffing and

Ney, 2005) (WCE) system. In single-pass decoding, the decoder searches among complete

paths (i.e. those who cover all source words) for obtaining the optimal-cost ones. Essentially,

the hypothesis cost is a composite score, synthesized from various SMT models (reordering,

translation, LMs etc.). Although the N -bests beat other SG hypotheses in term of model

scores, there is no certain clue that they will be the closest to the human references. As the

reference closeness is the users’ most pivotal concern on SMT decoder, this work establishes

one second pass where model-independent scores related to word confidence prediction are

integrated into the first-pass SG to re-determine the best hypothesis. Inheriting the first pass’s

N -best list, the second one involves three additional steps:

• Firstly, apply a WCE classifier on the N -best list to assign the quality labels (“Good” or

“Bad”) along with the confidence probabilities for each word.

• Secondly, for each word in the N -best list, update the cost of all SG’s hypotheses con-

taining it by adding the update score to their current cost ( see Section 3.2 for update
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score detailed definitions).

• Thirdly, search again on the updated SG for the cheapest-cost hypothesis and trace

backward to form the new best translation.

Basically, this initiative originates from an intuition that all parts of hypotheses corresponding

to correct (predicted) words should be appreciated while those containing wrong ones must be

weakened. At the end of the second pass, the costs of complete hypotheses are updated and

the best translation will be selected again with the same protocol as in the first pass. The use

of novel decoder-independent and objective features like WCE scores is expected to raise up

the better candidate, rather than accepting the current sub-optimal one. The new decoder can

therefore use both real and oracle word confidence estimates.

3 Search Graph Structure

The SMT decoder’s Search Graph (SG) can be roughly considered as a “vast warehouse”

storing all possible hypotheses generated by the SMT system during decoding for a given

source sentence. In this large directed acyclic graph, each hypothesis is represented by a path,

carrying all nodes between its begin and end ones, along with the edges connecting adjacent

nodes. One hypothesis is called complete when all the source words are covered and incomplete

otherwise. Starting from the empty initial node, the SG is gradually enlarged by expanding

hypotheses during decoding. To avoid the explosion of search space, some weak hypotheses

can be pruned or recombined. In order to facilitate the access and the cost calculation, each

hypothesis H is further characterized by the following fields (we can access the value of the

field f of hypothesis H by using the notion f(H)):

• hyp: hypothesis ID

• stack: the stack (ID) where the hypothesis is placed, also the number of foreign (source)

words translated so far.

• back: the backpointer pointing to its previous cheapest path.

• transition : the cost to expand from the previous hypothesis (denoted by pre(H)) to

this one.

• score: the cost of this hypothesis, computed by: score(H) = score(pre(H))+transition.

• out: the last output (target) phrase. It is worth to accentuate that out can contain

multiple words.
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7.3 Search Graph Structure

• covered: the source coverage of out, represented by the start and the end position of

the source words translated into out.

• forward: the forward pointer pointing to the cheapest outgoing path expanded from this

one.

• f-score: estimated future cost from this partial hypothesis to the complete one (end of

the SG).

• recombined: the pointer pointing to its recombined1 hypothesis.

Figure 7.1 – An example of search graph representation

Figure 7.1 illustrates a simple SG generated for the source sentence: “identifier et mesurer

les facteurs de mobilization” . The attributes “t” and “c” refer to the transition cost

and the source coverage, respectively. Hypothesis 175541 is extended from 57552, when the

three words from 3rd to 5th of the source sentence (“les facteurs de”) are translated into

“the factors of” with the transition cost of ≠8.5746. Hence, its cost is: score(175541) =

score(57552) + transition(175541) = ≠16.1014 + (≠8.5746) = ≠24.6760. Three rightmost

hypotheses: 204119, 204109 and 198721 are complete since they cover all source words.

Among them, the cheapest-cost one2 is 198721, from which the model-best translation is read

off by following the track back to the initial node 0: “identify the causes of action .” .

1In the SG, sometimes we recombine hypotheses to reduce the search space in a risk-free way. Two hypotheses
can be recombined if they agree in (1) the source word covered so far (2) the last two target words generated,
and (3) the end of the last source phrase covered.

2It is important to note that the concept cheapest cost hypothesis means that it has the highest model’s
score value. In other words, the higher the model score value, the “cheaper” the hypothesis is.
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4 Our Approach: Integrating WCE Scores into SG

In this section, we present the idea of using additional scores computed from WCE output

(labels and confidence probabilities) to update the SG. We also depict the way update scores

are defined. Finally, the detailed algorithm followed by an example illustrates the approach.

Figure 7.2 – Re-decoding Process

As shown in Figure 7.2, firstly, we inherit the N -best list and the SG outputted by the

first pass of decoding. Next, the WCE system is used to generate the quality label and the

probabilities (for each class “G”, “B”) of all words. The reward or penalty scores for word will

be calculated right after by using several definitions (which are detailed in Section 4.2). These

scores are used to alter the cost of all hypotheses containing this word, resulting in a new SG.

The cheapest hypothesis will be selected as new output of the MT system.

4.1 Principal Idea

We assume that the decoder generates N best hypotheses T = {T1, T2, ..., TN} at the end of the

first pass. Using the WCE system (which can only be applied to sequences of words - and not
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directly to the search graph - that is why N best hypotheses are used), we are able to assign

the j-th word in the hypothesis Ti, denoted by tij, with one appropriate quality label, cij ( e.g.

“G” (Good: no translation error), “B” (Bad: need to be edited)), followed by the confidence

probabilities (Pij(G), Pij(B) or P (G), P (B) for short). Then, the second pass is carried out

by considering every word tij and its labels and scores cij, P (G), P (B). Our principal idea is

that, if tij is a positive (good) translation, i.e. cij = “GÕÕ or P (G) ¥ 1, all hypotheses Hk œ SG

containing it in the SG should be “rewarded” by reducing their cost. On the contrary, those

containing negative (bad) translation will be “penalized”. Let reward(tij) and penalty(tij)

denote the reward or penalty score of tij. The new transition cost of Hk after being updated

is formally defined by:

transitionÕ(Hk) = transition(Hk) +

Y

_

]

_

[

reward(tij) if tij = good translation

penalty(tij) if otherwise
(7.1)

The update finishes when all words in the N -best list have been considered. We then re-

compute the new score of complete hypotheses by tracing backward via back-pointers and

aggregating the transition cost of all their edges. Essentially, the re-decoding pass reorders

SG hypotheses in term of the more “G” words (predicted by WCE system) they contain, the

more cost reduction will be made and consequentially, the more opportunity they get to be

admitted in the N -best list. The re-decoding performance depends largely on the accuracy of

confidence scores, or in other words, the WCE quality.

It is vital to note that, during the update process, we might face a phenomena that the

word tij (corresponds to the same source words) occurs in different sentences of the N -best list.

In this case, for the sake of simplicity, we process it only at its first occurrence (in the highest

rank sentence) instead of updating the hypotheses containing it multiple times. In other words,

if we meet the exact tij once again in the next N-best sentence(s), no further score update will

be done in the SG.

4.2 Update Score Definitions

Defining the update scores is obviously a nontrivial task as there is no correlation between

WCE labels and the SG costs. Furthermore, we have no clue about how proportional the SMT

model and WCE (penalty or reward) scores should share in order to ensure that both of them

will be appreciated. In this chapter, we propose several types of update scores, deriving from

the global or local cost.
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4.2.1 Definition #1: Global Update Score

In this type, an unique score derived from the cost of the current best hypothesis Hú (by the

first pass) is used for all updates. This score is normalized by the number of words in this

hypothesis. Additional coefficient(s) – (—) will be used to emphasize the level of impact that

the reward or penalty score will make on the corresponding node in the SG. In this work, we

propose to compute this score by two ways: (a) exploiting WCE labels {cij} to determine where

the score is a reward or penalty one; or (b) using WCE confidence probabilities {P (G), P (B)},

WCE labels being left aside.

Definition 1a:

penalty(tij) = ≠reward(tij) = – ú
score(Hú)

#words(Hú)
(7.2)

Where #words(Hú) is the number of target words in Hú, the positive coefficient – accounts

for the impact level of this score on the hypothesis’s final cost and can be optimized during

experiments using, for instance, CONDOR toolkit. Here, penalty(tij) gets negative sign (since

score(Hú) < 0) and will be added to the transition cost of all hypotheses containing tij in case

where this word is labelled as “B” ; whereas reward(tij) (same value, opposite sign) is used in

the other case.

Definition 1b:

update(tij) = – ú P (B) ú
score(Hú)

#words(Hú)
≠ — ú P (G) ú

score(Hú)
#words(Hú)

= (– ú P (B) ≠ — ú P (G)) ú
score(Hú)

#words(Hú)

(7.3)

Where P (G), P (B) (P (G) + P (B) = 1) are the probabilities of “Good” and “Bad” class of tij.

The positive coefficients – and — can be tuned in the optimization phase. In this definition,

the fact that update(tij) is a reward (reward(tij)) or a penalty (penalty(tij)) will depend

on tij’s goodness. Indeed, we have: update(tij) = reward(tij) if update(tij) > 0, which means:

– ú [1 ≠ P (G)] ≠ — ú P (G) < 0 (since score(Hú) < 0), therefore P (G) > α
α+β

. In other words,

if the confidence score (to be a “G” label) of the word is greater than this threshold, the

corresponding hypothesis will be rewarded. On the contrary, if P (G) is under this threshold,

update(tij) takes a negative value and therefore becomes a penalty. We consider an example

by taking a look again at the SG on Figure 7.1. The current 1-best hypothesis (“identify the

causes of action .”) has 6 words with the cost of -29.906. If we apply the coefficient – = 0.75,

the reward or penalty scores are the same in any word tij of the SG and take the value of:
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penalty(tij) = ≠reward(tij) = 0.75 ú
≠29.906

6
= ≠3.73825 (7.4)

In another example, we assume that the coefficients – = 0.75, — = 0.30 are used in Definition

1b. We consider the hypothesis 182453 and assume that the probabilities for the word “action”

are : P (G) = 0.2, P (B) = 0.8. So, the update score computed for the hypothesis 182453 can

be written as:

update(tij) = – ú P (B) ú
score(Hú)

#words(Hú)
≠ — ú P (G) ú

score(Hú)
#words(Hú)

= (0.75 ú 0.8 ≠ 0.30 ú 0.2) ú
≠29.9061

6
= ≠2.69

(7.5)

Since this update score takes the opposite sign, it is actually the penalty score. It is straightfor-

ward to see that all words with P (G) > 0.75
0.75+0.30 = 0.71 will bring the rewards for all hypotheses

containing it, and vice versa.

4.2.2 Definition #2: Local Update Score

The update score of each (local) hypothesis Hk derives from its current transition cost, even

when they cover the same word tij. Unlike Definition 1, the update score for each word in

this definition differs from each other and depends on the hypothesis where it belongs to. Here,

we exploit also both WCE labels and probabilities for calculating scores. Two sub-types are

defined as follows:

Definition 2a:

penalty(tij) = ≠reward(tij) = – ú transition(Hk) (7.6)

Where transition(Hk) denotes the current transition cost of hypothesis Hk and the coefficient

– plays the same role as that in Definition 1a. In case of the hypothesis 182453 in Figure 7.1,

with = 0.75, transition cost is -5.8272 and “action” classified as a “B” label, the penalty equals

to : 0.75 ú (≠5.8272) = ≠4.3704.

Definition 2b:

update(tij) = – ú P (B) ú transition(Hk) ≠ — ú P (G) ú transition(Hk)

= (– ú P (B) ≠ — ú P (G)) ú transition(Hk)
(7.7)

Where transition(Hk) denotes the current transition cost of hypothesis Hk, and the meanings of
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coefficient – (Definition 2a) or –, — (Definition 2b) are analogous to those of Definition 1a

(Definition 1b), respectively. The update score value for the hypothesis 182453 in Figure 7.1,

with = 0.75, — = 0.30, transition cost is -5.8272, probabilities of “action” : P (G) = 0.2,

P (B) = 0.8, is: (0.75 ú 0.8 ≠ 0.30 ú 0.2) ú (≠5.8272) = ≠3.1466.

4.3 Re-decoding Algorithm

Algorithm 4 Using WCE labels in SG decoding
Input: SG = {Hk}, T = {T1, T2, ..., TN}, C = {cij}
Output: T

Õ

= {T
Õ

1, T
Õ

2, ..., T
Õ

N}

1: {Step 1: Update the Search Graph}
2: Processed Ω ÿ
3: for Ti in T do
4: for tij in Ti do
5: pij Ω position of the source words aligned to tij

6: if (tij, pij) œ Processed then
7: continue; {ignore if tij appeared in the previous sentences}
8: end if
9: Hypos Ω {Hk œ SG| out(Hk) – tij}

10: if (cij = “GoodÕÕ) then
11: for Hk in Hypos do
12: transition(Hk) Ω transition(Hk) + reward(tij) {reward hypothesis}
13: end for
14: else
15: for Hk in Hypos do
16: transition(Hk) Ω transition(Hk) + penalty(tij) {penalize hypothesis}
17: end for
18: end if
19: Processed Ω Processed fi {(tij, pij)}
20: end for
21: end for
22: {Step 2: Trace back to re-compute the score for all complete hypotheses}
23: for Hk in Final (Set of complete hypotheses) do
24: score(Hk) Ω 0
25: while Hk ”= initial hypothesis do
26: score(Hk) Ω score(Hk) + transition(Hk)
27: Hk Ω pre(Hk)
28: end while
29: end for
30: {Step 3: Select N cheapest hypotheses and output the new list T

Õ

}

This above pseudo-code depicts our re-decoding algorithm using WCE labels (Definition 1a
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and Definition 2a). The algorithm in case of using WCE confidence probabilities (Definition

1b and Definition 2b) is essentially similar, except the update step (from line 10 to line 18)

is replaced by the following part:

for Hk in Hypos do
transition(Hk) Ω transition(Hk) + update(tij)

end for

During the update process, the pairs including the visited word tij and the position of its

aligned source words pij is consequentially admitted to Processed, so that all the analogous

pairs (t
Õ

ij, p
Õ

ij) occuring in the latter sentences can be discarded. For each tij, a list of hypotheses

in the SG containing it, called Hypo, is formed, and its confidence score cij (or P (G)) determines

whether all members Hk in Hypo will be rewarded or penalized. Once having all words in the

N -best list visited, we obtain a new SG with updated transition costs for all edges containing

them. The last step is to travel over all complete hypotheses (stored in Final) to re-compute

their scores and then backtrack the cheapest-cost hypothesis to output the new best translation.

These above depictions can be clarified by taking another look at the example in Figure 7.1:

Rank Cost Hypotheses + WCE labels
1 -29.9061 identify the cause of action .

G G G G B B
2 -40.0868 identify and measure the factors of mobilization

G G G G G G G

Table 7.1 – The N -best (N=2) list generated by the SG in Figure 7.1 and WCE labels

from this SG, the N -best list (for the sake of simplicity, we choose N = 2) is generated as the

single-pass decoder’s result. According to our approach, the second pass starts by tagging all

words in the list with their confidence labels, as seen in Table 7.1. Then, the graph update

process is performed for each word in the list, sentence by sentence, which details are tracked

in Figure 7.3. In this example, we apply Definition 1a to calculate the reward or penalty

score, with – = 1
2 , resulting in: penalty(tij) = ≠reward(tij) = 1

2 ú ≠29.9061
6 = ≠2.4922. Firstly,

all hypotheses containing words in the 1st ranked sentence are considered. Since the word

“identify” is labeled as “G”, its corresponding edge (connecting two nodes 0 and 1) is rewarded

and updated with a new cost : tnew = told + reward = ≠1.8411 + 2.4922 = +0.6511. On the

contrary, the edge between two nodes 121252 and 182453 is penalized and takes new cost:

tnew = told + penalty = ≠5.8272 + (≠2.4922) = ≠8.3194, due to the bad quality of the word

“action”. Obviously, the edges having multiple considered words (e.g. the one between nodes
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Figure 7.3 – Details of update process for the SG in Figure 7.1. The first loop (when 1st rank hypothesis
is used) is represented in red color, while the second one is in blue. For edges with multiple updates, all
transition costs after each update are logged. The winning cost is also emphasized by red color.

19322 and 121252) will be updated multiple times, and the transition costs after each update

can be also observed in Figure 7.3 ( e.g. t1, t2, etc). Next, when the 2nd-best is taken into

consideration, all repeated words (e.g. “identify”, “the” and “of”) are waived since they have

been visited in the first loop, whereas the remaining ones are identically processed. The only

untouched edge in this SG corresponds to the word “mobilizing”, as this word does not belong

to the list. Once having the update process finished, the remaining job is to recalculate the final

cost for every complete path and returns the new best translation: “identify and measure

the factors of mobilization” (new cost = ≠22.6414).

5 Experimental Setup

5.1 Datasets and WCE System

The WCE system used for the experiments in this chapter is identical to the system mentioned

in Chapter 6 (for N -best list Re-ranking). The details about the training data, feature set, ML

model, annotated (oracle) labels applied to build it, as well as its performance (on the test set)

can be found in Chapter 6.

One additional important resource, beside the N -best lists, employed for the re-decoding

process, is the Search Graph. During the translation process, the SGs can be extracted by

some parameter settings: “-output-search-graph”, “-search-algorithm 1” (using cube pruning)

and “-cube-pruning-pop-limit 5000” (adds 5000 hypotheses to each stack). They are compactly

encoded under a plain formatted text file that is convenient to transform into user-defined
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structures for further processing. We then store the SG for each source sentence in a separated

file, and the average size is 43.8 MB.

Table 7.2 shows how the SG is stored in the plain text file. Each line stores one hypothesis,

starts by the sentence ID, then lists out all attributes in the common and intuitive format:

attribute_name = value (separated by a space). Please note that not all of them are useful

for the re-decoding and only some will be loaded into our data structure for further processing.

0 hyp=83 stack=1 back=0 score=-7.77332 transition=-7.77332 forward=112 fscore=-39.8677
covered=5-5 out=have a , pC=-3.03304, c=-6.55036, f2e: 0=0 , e2f: 0=0 1=-1
0 hyp=77 stack=1 back=0 score=-8.1269 transition=-8.1269 forward=162 fscore=-39.8569 covered=5-
5 out=was , pC=-3.45506, c=-5.56398, f2e: 0=0 , e2f: 0=0
0 hyp=87 stack=1 back=0 score=-11.0618 transition=-11.0618 forward=280 fscore=-38.9579
covered=5-5 out=gave , pC=-3.80919, c=-6.73818, f2e: 0=0 , e2f: 0=0
0 hyp=85 stack=1 back=0 score=-9.68428 transition=-9.68428 forward=330 fscore=-38.7896
covered=5-5 out=made , pC=-3.96813, c=-6.58037, f2e: 0=0 , e2f: 0=0
0 hyp=90 stack=1 back=0 score=-9.49315 transition=-9.49315 forward=372 fscore=-41.0202
covered=5-5 out=that have , pC=-3.19534, c=-6.89086, f2e: 0=1 , e2f: 0=-1 1=0
0 hyp=78 stack=1 back=0 score=-10.378 transition=-10.378 forward=491 fscore=-42.0968 covered=5-
5 out=, have , pC=-2.26412, c=-5.97011, f2e: 0=1 , e2f: 0=-1 1=0

Table 7.2 – Example of a plain text SG file outputted by Moses

5.2 Experimental Decoders

We would like to investigate the WCE’s contributions in two scenarios: real WCE and ideal

WCE (where all predicted labels are totally identical to the oracle ones). Therefore, we exper-

iment with the seven following decoders:

• BL: Baseline (1-pass decoder)

• BL+WCE(1a, 1b, 2a, 2b): four 2-pass decoders, using our estimated WCE labels

and confidence probabilities to update the SGs, and the update scores are calculated by

Definition (1a, 1b, 2a, 2b).

• BL+OR(1a, 2a): two 2-pass decoders, computing the reward or penalty scores by

Definition (1a, 2a) on the oracle labels

It is important to note that, when using oracle labels, Definition 1b becomes Definition 1a

and Definition 2b becomes Definition 2a, since if a word tij is labelled as “G”, then P (G) = 1

and P (B) = 0, and vice versa. In order to tune the coefficients – and —, we carry out a 2-fold
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cross validation on the test set. First, the set is split into two equivalent parts: S1 and S2.

Playing the role of a development set, S1 will train the parameter(s) which then be used to

compute the update scores on S2 re-decoding process, and vice versa. The optimization steps

are handled by CONDOR toolkit (Berghen, 2004), in which we vary – and — within the interval

[0.00; 5.00] (starting point is 1.00), and the maximum number of iterations is fixed as 50. Test

set is further divided to launch experiments in parallel on our cluster using an open-source

batch scheduler: OAR (Nicolas and Joseph, 2013). This mitigates the overall processing times

on such huge SGs. Finally, the re-decoding results for them are properly merged for evaluation.

6 Results

Systems Performance Comparison to BL p-
BLEU ø TER ¿ TERp-A ¿ B (%) E (%) W (%) value

BL 52.31 0.2905 0.3058 - - - -

BL+WCE(1a) 53.80 0.2876 0.2922 28.72 57.43 13.85 0.00
BL+WCE(1b) 53.24 0.2896 0.2995 26.45 59.26 14.29 0.00
BL+WCE(2a) 53.32 0.2893 0.3018 23.68 60.11 16.21 0.01
BL+WCE(2b) 53.07 0.2900 0.3006 22.27 55.17 22.56 0.01

BL+OR(1a) 60.18 0.2298 0.2264 62.52 24.36 13.12 -
BL+OR(2a) 59.98 0.2340 0.2355 60.18 28.82 11.00 -

BL+OR(NbestRR) 58.10 0.2551 0.2544 58.68 29.63 11.69 -
BL+WCE(NbestRR) 52.77 0.2891 0.3025 18.04 68.22 13.74 0.01

Oracle BLEU score BLEU = 66.48 (from SG)

Table 7.3 – Translation quality of the conventional decoder and the 2-pass ones using scores from real
or “oracle” WCE, followed by the percentage of better, equivalent or worse sentences compared to BL
(B=“Better”, E=“Equal”, W=“Worse”)

Table A.1 shows the translation performances of all experimental decoders and their per-

centages of sentences which outperform, remain equivalent or degrade the baseline hypotheses

(when match against the references, measured by TER). Results suggest that using oracle

labels to re-direct the graph searching boosts dramatically the baseline quality. BL+OR(1a)

augments 7.87 points in BLEU, and diminishes 0.0607 (0.0794) point in TER(TERp-A), com-

pared to BL. Meanwhile, with BL+OR(2a), these gains are 7.67, 0.0565 and 0.0514 (in that

order). Besides, the contribution of our real WCE system scores seems less prominent, yet

positive: the best performing BL+WCE(1a) increases 1.49 BLEU points of BL (0.0029 and

0.0136 gained for TER and TERp-A). More remarkable, tiny p-values (in the range [0.00; 0.01],

seen on Table A.1) estimated between BLEU of each BL+WCE system and that of BL relying
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on Approximate Method (Clark et al., 2011) indicate that these performance improvements are

significant. Results also reveal that the use of WCE labels are slightly more beneficial than that

of confidence probabilities: BL+WCE(1a) and BL+WCE(2a) outperform BL+WCE(1b)

and BL+WCE(2b). In both scenarios, we observe that the global update score (Definition

1) performs more fruitfully compared to the local one (Definition 2).

For more insightful understanding about WCE scores’ usefulness, we make a comparison

with the best achievable hypotheses in the SG (oracles), based on the “LM Oracle” approxima-

tion approach presented in (Sokolov et al., 2012b). This method allows to simplify the oracle

decoding to the problem of searching for the cheapest path on a SG where all transition costs

are replaced by the n-gram LM scores of the corresponding words. The LM is built for each

source sentence using uniquely its target post-edition. We update the SG by assigning all edges

with the LM back-off score of the word it contains (instead of using the current transition cost).

Finally, we combine the oracles of all sentences, yielding BLEU oracle of 66.48.

To better understand the benefit of SG re-decoding, we compare the obtained performances

with those from our previous attempt in using WCE for N -best list re-ranking (green zone

of Table A.1). The idea is to build sentence-level features starting from WCE labels, then

integrate them with existing SMT model scores to recalculate the objective function value,

thus re-order the N -best list (see the previous chapter). Both approaches are implemented

in analogous settings, e.g. identical SMT system, WCE system, and test set. Results sug-

gest that the contribution of WCE in SG re-decoding outperforms that in N-best re-ranking

in both “oracle” or real scenarios. BL+OR(1a) overpasses its corresponding oracle re-ranker

BL+OR(Nbest_RR) in 2.08 points of BLEU, diminishes 0.0253 (0.0280) in TER(TERp-

A). Meanwhile, BL+WCE(1a) wins real WCE re-ranker BL+WCE(Nbest_RR) in 1.03

(BLEU), 0.0015 (TER), 0.0103 (TERp-A). These achievements might originate from the fol-

lowing reasons:

• (1) In re-ranking, WCE scores are integrated at sentence level, so word translation errors

are not fully penalized; and

• (2) In re-ranking, best translation selection is limited to N -best list, whereas we afford

the search over the entire updated SG (on which not only N-best list paths but also those

contain at least one word in this list are altered) .

In Example 1 on Table 7.4, the best translation generated by the re-decoder BL+WCE(1a)

correctly translated the source phrase “se sont très vite rendu compte que” into “realized very

quickly that”, whereas the Baseline SMT does wrongly in terms of voice (passive instead of

135



Chapter 7. WCE for SMT Search Graph Redecoding

active voice): “are very soon realized that". We observe also that in Example 2, there are

a number of source parts that BL+OR(1a) performs better than Baseline SMT, such as:

“à une révolution managériale” æ “for a managerial revolution”

(better than “for a revolution managerial skills”);

or “au centre des préoccupations de l’ entreprise” æ“at the center of the company ’s con-

cerns”

(better than “at the center of the company” ).

Example 1 (from BL+WCE(1a))
Source les scientifiques se sont très vite rendu compte qu’ une partie de ces

ossements appartenaient à une nouvelle espèce .
Hypothesis
(Baseline SMT)

scientists are very soon realised that a portion of the skeletal remains
given belonged to a new species .

Hypothesis
(BL+WCE(1a))

scientists realised very quickly that a portion of the skeletal remains
given belonged to a new species .

Post-edition the scientists realised very quickly that a portion of these bones be-
longed to a new species .

Example 2 (from BL+OR(1a))
Source c’ est pourquoi nous appelons à une révolution managériale qui con-

sisterait à mettre les collaborateurs au centre des préoccupations de l’
entreprise au même titre que le client .

Hypothesis
(Baseline SMT)

this is why we call for a revolution managerial skills to set the staff at
the center of the company as the customer .

Hypothesis
(BL+OR)

this is why we call for a managerial revolution to set the staff at the
center of the company ’s concerns in the same way as the customer .

Post-edition this is why we call for a managerial revolution which would involve
putting the staff at the center of the company ’s concerns to the same
degree as the client .

Table 7.4 – Examples of MT hypothesis before and after re-decoding process, given by two re-decoders:
BL+WCE(1a) (Example 1) and BL+OR(1a) (Example 2)

7 Conclusion and perspectives

This chapter showed another application of WCE information in making MT outputs better.

Different from that in re-ranking process, this time the word quality labels or confidence scores

were more “directly” used to strengthen or weaken the corresponding node containing it, lead-

ing to the re-evaluation of the entire decoder’s SG. We started by presenting the idea and

motivation about the way that MT decoder can benefit from the predicted qualities of words in
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the N -best list. Although the definition of this “benefit” was somewhat quite abstract and not

straightforward, we tried to quantify into so-called “update scores” (or “re-decoding scores”).

These scores could be derived from the current best hypothesis cost (global) or the current

hypothesis’s transition cost (local). Furthermore, they could be handled to be a reward or

penalty for the SG corresponding nodes by using the predicted labels of probabilities. In total,

we proposed four types of update scores. Experiment results showed that the global scores

outperformed the local ones; and the use of WCE labels seemed more beneficial than that of

predicted probabilities.

The contribution of “real” and “oracle” WCE information was similar to what they played

in Re-ranking: while “oracle” WCE labels extraordinarily lifted the MT quality up (7.87 BLEU

points to reach the oracle score), real WCE achieved also the positive and promising gains (1.48

BLEU points). These improvements were significative with very low p-value. Furthermore, the

re-decoders were also shown to overwhelm the re-rankers in both real and oracle scenarios. The

re-decoding method sharpened once again the WCE increasing contributions in every aspect of

SMT, as well as opened up a new outlook for multi-pass decoders for MT as a very potential

tendency.

Our re-decoding proposition can be further extended by focusing more deeply on the word

quality using MQM3 metric as error typology, making WCE labels more impactful. Besides,

the update scores used in this chapter would be further considered towards the consistency

with SMT graph scores to obtain a better updated SG.

3http://www.qt21.eu/launchpad/content/training
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Chapter 8

Conclusion and Perspectives

1 Conclusion

This thesis conducted an insightful and complete research about Word Confidence Estimation

(WCE) for Machine Translation, a sub field of Quality Estimation that has not been explored as

broadly as the one at sentence level. The thesis spread out over seven chapters, but concentrated

on two main issues: how to build and optimize a WCE system? And how to apply the WCE

output to improve other fields in MT? As the thesis comes to the last pages, we would like to

take a look again at all propositions we made as well as to make some compact conclusions

from all the results obtained.

1.1 WCE System Building and Optimization

Walking around many leading and prominent work in the domain, we learned that the feature

processing and the Machine Learning (ML) model play the a pivotal role in building WCE

systems. Therefore, we filtered best-performing features of various categories (system-based,

lexical, syntactic, semantic) from these previous work as part of our feature set. Besides, we

enriched it by proposing a group of other word characteristics that are likely to be good hints

for the quality judgment. They were extracted from the word graph merged into Confusion

Network, the syntactic parser, reference systems, Language Model (of target word and POS).

The entire feature set was then trained on a variety of ML models (Naive Bayes, Logistic

Regression, Decision Tree and Conditional Random Fields). The features and models were

investigated via three different datasets (fr-en, en-es(WMT13), en-es(WMT14)), making the

analysis and conclusion more convincing. The preliminary results showed that the feature set

helped to boost the classifier’s performance far beyond from the “naive” settings (all-good or

random predictions). They also suggested that the CRF model outperformed the others and

should be exploited for further experiments.
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Our next contributions lied on the attempts to make the baseline WCE system better, in-

cluding: discarding poorly-performed features (Feature Selection) and complementing multiple

“weak” classifiers for a better composite classifier. In the former attempt, we applied the “Se-

quential Backward Algorithm” on all systems to rank features according to their usefulness.

The ordered tables helped not only to clarify the role of each feature on each system, but also

to release those who are really beneficial for WCE with their top position in all systems (e.g.

Source POS, Target POS, Target word, Target Context, etc). Furthermore, thanks to the se-

lection strategy, we were able to waive redundant features and just retain the best set which

yielded the optimal performance. In the second attempt, we boosted the baseline system in

another way: from the entire set, multiple subparts were formed to train the basic sub-models,

from which we generated the data for a “Boosting” model training. Essentially, this training

was performed by applying the base ML algorithm (Decision Tree) in order to get a “basic”

classifier, and then using the prediction errors from the current classifier to build the next one.

By doing so, the future classifier is constructed by taking into account all the errors (wrongly

classified words) of the current one, so it is expected to handle better these kind of data. Finally

all weak classifiers were combined into a final one which is hopefully much stronger than each

of them. Not out of our expectations, dealing with the same test sets of all three datasets,

the “Boosting” classifiers showed the significant performances over those without applying this

method. These improvements lead to a conclusion that by taking advantage of the portion han-

dled successfully by each “weak” system and making them complement each other, we could

constitute a composite “stronger” predictor.

1.2 WCE Contributions for SMT

Once having the optimized classifier, we turned our work into another stream: applying the

output of the WCE system to MT. There were totally three (but not limited to) MT applications

that we investigated, including: Sentence Level Confidence Estimation, SMT N -best list Re-

ranking, and SMT search graph re-decoding.

We first proposed seven scores for sentence, synthesized from the word scores (labels) pre-

dicted by WCE to train the SCE predictor, and compared with another “pure” SCE system,

where all features are at sentence level. We also combined two of them in an appropriate way to

see whether WCE features can do anything for SCE. Dealing with the test sets, the WCE-based

features were shown to slightly overwhelm pure SCE-based ones. However, the combination

between them dramatically boosted the performance beyond each individual. The results sug-

gested that WCE showed a positive impact in predicting the sentence’s quality; especially when
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it was wisely integrated into the SCE system.

In another exploitation, we also computed several sentence scores based on WCE labels,

but for another objective: re-rank the N -best list to look for a better hypothesis. Starting from

the observation that the objective function built from multiple model scores selects (in many

cases) the sub-optimal hypothesis as the best translation; we would like to add more parameters

related to word predicted quality into this function. We integrated them with 14 model scores,

resulting in the totality of 20 scores for re-ranking the current N best hypotheses. In our

experiment, WCE scores ensured only a modest improvement in translation quality over the

baseline SMT. Nevertheless, further experiments about the simulation of WCE’s improvement

suggested that such types of score contribute dramatically if they are built from an accurate

WCE system. They also showed that with the participation of an “ideal” WCE, the MT system

reached quite close to its most optimal possible quality. These scores are totally independent

from the decoder, they can be seen as a way to introduce lexical, syntactic and semantic

information (used for WCE) in a SMT pipeline.

If in these two above applications, WCE labels were used to synthesize the sentence score,

in the third scenario, they were used directly to update the corresponding nodes of the SMT

search graph. By doing so, we hoped to raise up the paths that cover many “good” words as

well as weaken those containing many “bad” ones. Essentially, the re-decoding pass re-ordered

SG hypotheses in term of the more “G” words (predicted by WCE system) they contain, the

more cost reduction will be made and consequentially, the more opportunity they get to be

admitted in the N-best list. Compared to the Re-ranking approach, this method has much

more hypotheses to select (on a huge graph rather than limited N best list), and WCE labels

are deeply exploited. This is the clearest and most effective contribution of WCE with the

promising gains obtained on both “real” and “oracle” WCE labels. It sharpened once again

the WCE increasing contributions in every aspect of SMT, as well as opened up a new outlook

for multi-pass decoders for MT as a very potential tendency.

2 Perspectives

The achievements obtained in this thesis are promising yet still can be much more improved in

the future work. Besides, they also open up some new avenues for not only the MT domains,

but also for some others in the fields of Natural Language Processing.
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2.1 Perspectives for WCE System Building

The first focus should be the investigation of more in-depth linguistic features of word. The

knowledge sources that we intend to exploit are: the grammar checker, dependency tree with

linguistic hierarchical relations (e.g. father - child, siblings, etc.), semantic similarity checker

(synonyms, hypernyms, etc.). From them, we can extract word’s syntactic and semantic infor-

mation that can add more useful knowledge to the prediction model.

Concerning the ML model, we would like to understand more deeply about the reason why

CRF method outperforms the other ones (Naive Bayes, Logistic Regression, Decision Tree) on

“fr-en” corpus. Similar experiments to train multiple ML models on “en-es” (WMT13+WMT14)

will be launched to verify if we get the same tendency. Besides, we also would like to integrate

the referential translation model (Bicici, 2013) into all systems as this model performed well

in the WMT 2013’s QE tasks. In addition, an another “hot” topic: Quality Estimation at

segment level will be in our focus.

2.2 Perspectives for WCE Contributions

First, we think about an interactive scenario where WCE instantly and effectively assists users

and MT system. Specifically, we aim at constructing a system that takes feedbacks from users

to regenerate a better hypothesis. With a friendly interface, the system allows them, just by

clicking on the word on a given hypothesis displayed on screen to judge it as a translation error

(by default, all untouched words are implied correct). Right after the user’s judgement, the

system has its own method to learn from this information and evaluate again its “N-best list”

or its “search graph” (corresponding paths containing these judged words) in order to display

the new (hopefully better) output. This system supports multiple corrections: if users are still

not satisfied with the new one, they can continue to specify errors and wait for the new output

after their feedbacks are learnt (in the same way) by the system. The process iterates until the

users feel happy with the output they get. This sentence pair is then pushed to the “waiting

batch”, and when the batch is large enough (reaches a pre-defined size), the MT system will be

retrained using them. By this way, WCE helps MT system gradually learn from its mistakes.

Beyond the boundary of MT domain, WCE can extend to reach other domains, and one

of our targets is the Spoken Language Translation (SLT). We knew that WCE has separately

treated in both MT and Automatic Speech Recognition (ASR). We also knew that SLT systems,

which takes the job of translating human speech utterances from one language to another,

contain both ASR and MT phases. It means that a target word of SLT system is correct if it is

correctly translated by the MT system from the source word that has been previously correctly
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transcribed (from the speech utterance). So, why do not we try to integrate the predicted

scores obtained from MT and ASR modules in an appropriate way to evaluate the word quality

for SLT? This task might be more complicated than each individual (WCE for ASR or MT),

since it requires the specific corpus for building and testing. So far, we have just made available

a French - English corpus of 2643 speech utterances for which a quintuplet containing: ASR

output, verbatim transcript, text translation output, speech translation output, post-edition of

the translation. With the availability of all other components (ASR, MT, WCE systems), this

“joint estimation” idea is expected to deploy soon. We believe that the WCE for SLT can help

to improve the translators’ productivity (in a lecture or movie translation scenario) or it could

be useful in interactive speech-to-speech translation.

Moreover, we would like to try the WCE contribution in Active Learning (AL) approach.

AL aims at reducing the training corpus size yet still maintaining the SMT performance. The

training data reduction can be reached by an intelligent data sampling and is an effective

solution to mitigate the annotation (manual) efforts, since more training data needs more

human-annotated labels. To do this, AL calculates the usefulness of each sample by classifying

it and then measuring how “uncertain” this classification was. We strongly believe that WCE

scores can be used as one of the criteria to judge this “uncertainty” to filter out some irrelevant

training data and retain only those from which the model benefits most. So far, the concrete

steps for this strategy have not been established, yet we hope to get it more and more feasible

in the future work starting from this initiative.

By applying these above techniques and ideas, we hope to have better and better CE systems

and CE applications to join the upcoming evaluation campaigns (WMT, IWSLT, etc.).
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Personal Publications

1. Ngoc-Quang Luong. Integrating lexical, syntactic and system-based features to im-

prove Word Confidence Estimation in SMT. In Proceedings of JEP-TALN-RECITAL, volume

3 (RECITAL), pages 43–56, Grenoble, France, June 4-8 2012.

Confidence Estimation at word level is the task of predicting the correct and incorrect

words in the target sentence generated by a MT system. It helps to conclude the reliability

of a given translation as well as to filter out sentences that are not good enough for

post-editing. This paper investigates various types of features to circumvent this issue,

including lexical, syntactic and system-based features. A method to set training label for

each word in the hypothesis is also presented. A classifier based on conditional random

fields (CRF) is employed to integrate features and determine the word’s appropriate label.

We conducted our preliminary experiment with all features, tracked precision, recall and

F-score and we compared with our baseline system. Experimental results of the full

combination of all features yield the very encouraging precision, recall and F-score for

Good label (F-score: 86.7%), and acceptable scores for Bad label (F-score: 36.8%).

2. BESACIER, L., LECOUTEUX, B., AZOUZI, M. et LUONG NGOC, Q. (2012). The

LIG English to French Machine Translation System for IWSLT 2012. In proceedings of the 9th

International Workshop on Spoken Language Translation (IWSLT), Hong Kong, 5-7 December.

This paper presents the LIG participation to the E-F MT task of IWSLT 2012. The

primary system proposed made a large improvement (more than 3 point of BLEU on

tst2010 set) compared to our last year participation. Part of this improvement was due

to the use of an extraction from the Giga-word corpus. We also propose a preliminary

adaptation of the driven decoding concept for machine translation. This method allows

an efficient combination of machine translation systems, by re-scoring the log-linear model

at the N-best list level according to auxiliary systems: the basis technique is essentially

guiding the search using one or previous system outputs. The results show that the
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approach allows a significant improvement in BLEU score using Google translate to guide

our own SMT system. We also try to use a confidence measure as an additional log-linear

feature but we could not get any improvement with this technique.

3. Ngoc-Quang Luong, Benjamin Lecouteux, Laurent Besacier. LIG System for WMT13

QE Task: Investigating the Usefulness of Features in Word Confidence Estimation for MT. In

Proceedings of the 8th Workshop on Statistical Machine Translation, Sofia, Bulgaria, aug 2013.

This paper presents the LIG’s systems submitted for Task 2 of WMT13 Quality Estima-

tion campaign. This is a word confidence estimation (WCE) task where each participant

was asked to label each word in a translated text as a binary ( Keep/Change) or multi-

class (Keep/Substitute/Delete) category. We integrate a number of features of various

types (system-based, lexical, syntactic and semantic) into the conventional feature set,

for our baseline classifier training. After the experiments with all features, we deploy a

“Feature Selection” strategy to keep only the best performing ones. Then, a method that

combines multiple “weak” classifiers to build a strong “composite” classifier by taking

advantage of their complementarity is presented and experimented. We then select the

best systems for submission and present the official results obtained.

4. Ngoc-Quang Luong, Laurent Besacier, Benjamin Lecouteux. Word Confidence Estima-

tion and its Integration in Sentence Quality Estimation for Machine Translation. In Proceedings

of the fifth international conference on knowledge and systems engineering (KSE), Hanoi, Viet-

nam, oct 2013.

This paper proposes some ideas to build an effective estimator, which predicts the quality

of words in a Machine Translation (MT) output. We integrate a number of features of

various types (system-based, lexical, syntactic and semantic) into the conventional feature

set, for our baseline classifier training. After the experiments with all features, we deploy

a “Feature Selection" strategy to filter the best performing ones. Then, a method that

combines multiple “weak” classifiers to build a strong “composite” classifier by taking

advantage of their complementarity allows us to achieve a better performance in term of

F score. Finally, we exploit word confidence scores for improving the estimation system

at sentence level.

5. Ngoc-Quang Luong, Laurent Besacier, Benjamin Lecouteux. Word Confidence Estimation

for SMT N-best List Re-ranking. In Proceedings of the Workshop on Humans and Computer-

assisted Translation (HaCaT), Gothenburg, Sweden, April 2014.
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This paper proposes to use Word Confidence Estimation (WCE) information to improve

MT outputs via N-best list re- ranking. From the confidence label assigned for each

word in the MT hypothesis, we add six scores to the baseline log-linear model in order

to re-rank the N-best list. Firstly, the correlation between the WCE-based sentence-level

scores and the conventional evaluation scores (BLEU, TER, TERp-A) is investigated.

Then, the N-best list re-ranking is evaluated over different WCE system performance

levels: from our real and efficient WCE system (ranked 1st during last WMT 2013 Quality

Estimation Task) to an oracle WCE (which simulates an interactive scenario where a user

simply validates words of a MT hypothesis and the new output will be automatically re-

generated). The results suggest that our real WCE system slightly (but significantly)

improves the baseline while the oracle one extremely boosts it; and better WCE leads to

better MT quality.

6. Ngoc-Quang Luong, Laurent Besacier, Benjamin Lecouteux. An Efficient Two-Pass

Decoder for SMT Using Word Confidence Estimation. In Proceeding of the Seventeenth Annual

Conference of the European Association for Machine Translation (EAMT), 16th-18th, June,

Dubrovnik, Croatia

During decoding, the Statistical Machine Translation (SMT) decoder travels over all

complete paths on the Search Graph (SG), seeks those with cheapest costs and back-

tracks to read off the best translations. Although these winners beat the rest in model

scores, there is no certain guarantee that they have the highest quality with respect to

the human references. This paper exploits Word Confidence Estimation (WCE) scores in

the second pass of decoding to enhance the Machine Translation (MT) quality. By using

the confidence score of each word in the N-best list to update the cost of SG hypotheses

containing it, we hope to “reinforce” or “weaken” them relied on word quality. After the

update, new best translations are re-determined using updated costs. In the experiments

on our real WCE scores and ideal (oracle) ones, the latter significantly boosts one-pass

decoder by 7.87 BLEU points, meanwhile the former yields an improvement of 1.49 points

for the same metric.

7. Ngoc-Quang Luong, Laurent Besacier, Benjamin Lecouteux. LIG System for Word Level

QE task at WMT14. In Proceedings of the Ninth Workshop on Statistical Machine Translation,

Baltimore, MD, USA, June 26th-27th.

This paper describes our Word-level QE system for WMT 2014 shared task on Spanish

- English pair. Compared to WMT 2013, this year’s task is different due to the lack
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of SMT setting information and additional resources. We report how we overcome this

challenge to retain most of the important features which performed well last year in our

system. Novel features related to the availability of multiple systems output (new point

of this year) are also proposed and experimented along with baseline set. The system

is optimized by several ways: tuning the classification threshold, combining with WMT

2013 data, and refining using Feature Selection strategy on our development set, before

dealing with the test set for submission.

8. Ngoc-Quang Luong, Laurent Besacier, Benjamin Lecouteux. Some Propositions to Im-

prove the Prediction Capability of Word Confidence Estimation for Machine Translation. (ac-

cepted to JCSCE Journal, 2014).

In this article, we propose some ideas to build effective estimators, which predict the

quality of words in a Machine Translation (MT) output. We propose a number of novel

features of various types (system-based, lexical, syntactic and semantic) and then inte-

grate them into the conventional (previously used) feature set, for our baseline classifier

training. The classifiers are built over two different bilingual corpus: French - English

(fr-en) and English - Spanish (en-es). After the experiments with all features, we de-

ploy a “Feature Selection" strategy to filter the best performing ones. Then, a method

that combines multiple “weak” classifiers to constitute a strong “composite” classifier by

taking advantage of their complementarity allows us to achieve a significant improvement

in term of F score, for both fr-en and en-es systems. Finally, we exploit word confidence

scores for improving the estimation system at sentence level.
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Appendix B

TERP Toolkit Guidelines

1 Introduction

TERP is an open-source tool to calculate the TER score between two documents, and in MT

research we can apply it with the MT output (MT hypothesis) and the references. Besides

the TER scores, this tool also assigns for which each word in the MT output with one of the

following labels:

• TERp: E (exact), S (Substitution), I (Insertion) and D (Deletion)

• TERp-A: E (exact), I (Insertion), S (Substitution), T (Stem matches), Y (Synonym

matches), and P (phrasal substitutions)

2 Installation and Execution

• For installing the software, please refer to the below webpage which guides you step by

step: http://www.umiacs.umd.edu/~snover/terp/doc_v1.html

• Calling script and viewing the result:

./bin/terp_ter -r reference_file -h hypothesis_file_to_score

or:

./bin/terpa -r reference_file -h hypothesis_file_to_score
˛

Example:
/home/potetm/TER-plus/bin/terp_ter -r 100.ref.id -h 100.hyp.id

or:

bin/terpa -r ./test_terpa/100.ref.id -h ./test_terpa/100.hyp.id

˛
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3 Some Guidelines

It is very important to note that TERP requires the both two reference and hypothesis file are

in either trans or sgml format. If you know how to convert one file into one of these above

mentioned formats, please go ahead. Otherwise, you can follow these following instructions to

generate it. Suppose that I will generate the sgml file from 100.hyp (containing 100 hypothe-

ses):

1 - Step 1 Check carefully the number of line of this file:
wc 100.hyp.id

=> 100. ˛

2 - Step 2 Write a script look like this:
i=1;

while [ $i -le 100 ]; do

echo "<seg id=\""\$i"\">" >> file1

i=$(($i+1))

done

˛

You will receive the file file1 contains 100 lines, first will be <seg id="1"> and the last will be

<seg id="100">

3 - Step 3

Modify a little bit the above script (or you can create another new script) like following:
i=1

while [ $i -le 100 ]; do

echo "</seg>" >> file1

i=$(($i+1))

done

˛

This yields the file2 with 100 identical rows, each is </seg>

4 -Step 4

Combine the 3 file : file1 , 100.hyp and file2 to form the 100.hyp.id :

paste file1 100.hyp file2 > 100.hyp.id ˛

The received file is in the following format:
<seg id="1"> another important step in the balkans </seg>

<seg id="2"> since the world is focused on iraq , the north-korea and a

possible crisis with iran on the issue of nuclear weapons , kosovo is a

little unremarked . </seg>

˛

and so on...

5 - Step 5 Add the root open and close tag to the 100.hyp.id file
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<hypset>

<seg id="1"> another important step in the balkans </seg>

<seg id="2"> since the world is focused on iraq , the north-korea and a

possible crisis with iran on the issue of nuclear weapons , kosovo is a

little unremarked . </seg>

................................

</hypset>

˛

6 - Step 6

May be your 100.hyp.file contains the symbol ”&” which is illegal in XML format; so in

this case TERP will generate a error like this : “Both the reference and hypothesis file have to

in the same format”. To fix it, I suggest that you replace all the symbol ”&” by ”&emp; ” ,

which exactly represents the ”&” in an XML file. And then you will get the file ready for TER

calculation:

sed ’s/&/&amp;/g’ < ./100.hyp.id > ./100.hyp.tmp

mv ./100.hyp.tmp ./100.hyp.id ˛

Attention: Please do not forget that you need repeat from step 1 to 6 with the file 100.ref

The result display final TER score, for instance:
bin/terpa_quang -r ./test_terpa/100.ref.id -h ./test_terpa/100.hyp.id

Total TER: 0,63 (1643,00 / 2615,00) ˛

The alignment information can be refered in the terp.pra ( located at your current working di-

rectory).
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Appendix C

Training and Testing WCE Classifier Using

WAPITI

1 Introduction

Wapiti is a “very fast toolkit for segmenting and labeling sequences with discriminative models.

It is based on maxent models, maximum entropy Markov models and linear-chain CRF and pro-

poses various optimization and regularization methods to improve both the computational com-

plexity and the prediction performance of standard models”( source: http://wapiti.limsi.

fr). Wapiti is ranked first on the sequence tagging task for more than a year on MLcomp web

site (http://mlcomp.org ).

Compare to other Machine Learning models, Wapiti possesses some following advantages:

• Handle large label and feature sets

• L-BFGS, OWL-QN, SGD-L1, BCD, and RPROP training algorithms

• Powerful features extraction system

• N-best Viterbi output

• Compact model creation

To download it, you can visit this GIT repository: https://github.com/Jekub/Wapiti

2 Data Format and Feature Configuration File

The valid training and testing data files for Wapiti should conform the following regulations:

• Each instance (e.g. a sentence under the form of word sequence) is separated with the

others by an empty line
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Training and Testing WCE Classifier Using WAPITI

• If the instance consists of multiple elements (e.g. words in a sentence), the data repre-

senting each element is organized in one line

• In each line, the data consists of two parts: the first part is the feature vector, features

separated by a “tab” symbol; the second one is the annotated label of this element

For simplicity, we can imagine the data file looks like a matrix. Columns represent features

and annotations. Rows represent data instances (elements). Blank lines are inserted to split

instances. The following tables gives an example of our data, in the right format to train with

Wapiti. It contains two instances (sentences). Each word in the sentence is characterized by

features (8 first columns, they are only a part of our real feature vector) and the training label

(always the last column).
yet RB B-encore B-ADV _x-1 _x-1 une DET:ART B

a DT B-une B-DET:ART encore ADV étape NOM B

crucial JJ B-cruciale B-ADJ étape NOM pour PRP G

step NN B-étape B-NOM une DET:ART cruciale ADJ G

for IN B-pour B-PRP cruciale ADJ les DET:ART G

the DT B-les B-DET:ART pour PRP balkans NOM G

balkans NNS B-balkans B-NOM les DET:ART _x+1 _x+1 G

since IN B-depuis|que B-PRP|PRO:REL _x-1 _x-1 le DET:ART G

the DT B-le B-DET:ART que PRO:REL monde NOM G

world NN B-monde B-NOM le DET:ART est VER:pres G

is VBZ B-est B-VER:pres monde NOM focalisé VER:pper G

focused VBN B-focalisé B-VER:pper est VER:pres sur PRP G

on IN B-sur B-PRP focalisé VER:pper l’ DET:ART G

iraq NP B-l’|irak B-DET:ART|NOM sur PRP , PUN G

, , B-, B-PUN irak NOM la DET:ART G

north JJ B-la|du|nord B-DET:ART|PRP:det|NOM , PUN et KON G

korea NN B-corée B-NOM la DET:ART du PRP:det G

and CC B-et B-KON nord NOM une DET:ART G

a DT B-une B-DET:ART et KON éventuelle ADJ G

possible JJ B-éventuelle B-ADJ une DET:ART crise NOM G

crisis NN B-crise B-NOM éventuelle ADJ avec PRP G

with IN B-avec B-PRP crise NOM l’ DET:ART G

iran NN B-l’|iran B-DET:ART|NOM avec PRP au PRP:det G

over IN B-au|sujet B-PRP:det|NOM iran NOM des PRP:det G

nuclear JJ B-nucléaires B-ADJ armes NOM , PUN G

weapons NNS B-des|armes B-PRP:det|NOM sujet NOM nucléaires ADJ G

, , B-, B-PUN nucléaires ADJ le DET:ART G

kosovo NN B-le|kosovo B-DET:ART|NOM , PUN passe VER:pres G

is VBZ B-passe B-VER:pres kosovo NOM un DET:ART B

somewhat RB B-un|peu B-DET:ART|ADV passe VER:pres inaperçu ADJ G

unnoticed JJ B-inaperçu B-ADJ peu ADV . SENT G

. SENT B-. B-SENT inaperçu ADJ _x+1 _x+1 G

Table B.1: Example of valid data file treated by Wapiti

˛
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2 Data Format and Feature Configuration File

Although the above data file lists all possible features available for use, but the “real” fea-

tures taken into account will be determined in another configuration file. This file enables us

to customize which features we want to train, or even lets us combine multiple columns in the

data file to create new features. The way to represent them can be seen in Table B.2.

In the configuration file, each feature is placed on one line. We have two types of features:

“unigram” and “bigram”. Each one is represented as follows:

[Prefix][Index]:%x[i, j]

where:

- Prefix is a letter to specify the feature type: U (unigram) or B (bigram)

- Index: the index of feature, to differentiate them, e.g. 00,01, etc.

- i: the relative position of the element we want to employ feature

with the current element. For instance: i=0 (the current token), i=-1 (the

previous token), i=1 (the next token).

-j : the zero-based position of the column which we extract data.

˛

Let us give an example to illustrate the representation. Supposing that we are now consid-

ering the word: “crucial” in the following data block:

yet RB B-encore B-ADV _x-1 _x-1 une DET:ART B

a DT B-une B-DET:ART encore ADV étape NOM B

crucial JJ B-cruciale B-ADJ étape NOM pour PRP G

step NN B-étape B-NOM une DET:ART cruciale ADJ G

for IN B-pour B-PRP cruciale ADJ les DET:ART G

the DT B-les B-DET:ART pour PRP balkans NOM G

balkans NNS B-balkans B-NOM les DET:ART _x+1 _x+1 G

˛

and we would like to extract some features for it like:

• The POS of its previous word (1)

• The second word after it (2)

• It’s source word combined with the source word aligned to its previous word (3)

For feature (1): the previous word is located at line -1 and the POS is located at the second

column (index 1), therefore its representation will be U01:%x[-1,1]. Similarly, feature (2) is

U02:%x[2,0] (target word is the first column). For feature (3), we should use the symbol

“/” to combine data, and the representation is U03:%x[0,2]/x[-1,2] (source word is the third

column).
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#Unigram

U00:%x[-2,0]

U01:%x[-1,0]

U02:%x[0,0]

U03:%x[1,0]

U04:%x[2,0]

U05:%x[-1,0]/%x[0,0]

U06:%x[0,0]/%x[1,0]

U07:%x[-2,0]/%x[-1,0]/%x[0,0]

U10:%x[-2,1]

U11:%x[-1,1]

U12:%x[0,1]

U13:%x[1,1]

U14:%x[2,1]

U15:%x[-2,1]/%x[-1,1]

U20:%x[-2,1]/%x[-1,1]/%x[0,1]

U21:%x[-1,1]/%x[0,1]/%x[1,1]

U22:%x[0,1]/%x[1,1]/%x[2,1]

U23:%x[0,0]/%x[-1,1]

U24:%x[0,0]/%x[1,1]

U25:%x[0,0]/%x[-2,1]

U26:%x[0,0]/%x[2,1]

U32:%x[0,2]

U33:%x[0,4]

U34:%x[0,6]

U35:%x[0,4]/%x[0,2]

U36:%x[0,2]/%x[0,6]

U37:%x[0,4]/%x[0,2]/%x[0,6]

U42:%x[0,3]

U43:%x[0,5]

U44:%x[0,7]

U45:%x[0,5]/%x[0,3]

U46:%x[0,3]/%x[0,7]

U47:%x[0,5]/%x[0,3]/%x[0,7]

U50:%x[0,4]/%x[0,0]

U51:%x[0,6]/%x[0,0]

U52:%x[-2,0]/%x[0,2]

U53:%x[-1,0]/%x[0,2]

U54:%x[0,2]/%x[1,0]

U61:%x[0,8]

U62:%x[0,9]

U63:%x[0,10]

U64:%x[0,11]

U65:%x[0,12]

U66:%x[0,17]/%x[-1,12]

U67:%x[0,13]

U68:%x[0,14]

U69:%x[0,15]

U70:%x[0,16]

U75:%x[0,17]

U76:%x[0,18]

U77:%x[0,19]

U78:%x[0,20]

U79:%x[0,21]

#Bigram

B

Table B.2: The Wapiti’s feature configuration file

˛
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3 Commands and Options

The common format for all Wapiti modes (the modes can be: “train”, “label”) is:
wapiti mode [options] [input] [output]

˛

A - Training Mode Options

--me Activate the pure maxent mode.

-T | --type <string>

Select the type of model to train. Can be either "maxent", "memm", or "crf", or "list" to

get a list of supported models types. By default "crf" models are used.

-a | --algo <string>

Select the algorithm used to train the model, specify "list" for a list of available algorithms.

-p | --pattern <file>

Specify the file containing the patterns for extracting features.

-m | --model <file>

Specify a model file to load and to train again.

-d | --devel <file>

Specify the data file to load as a development set.

-c | --compact

Enable model compaction at the end of the training.

-t | --nthread <integer>

Set the number of thread to use. Default is 1.

-j | --jobsize <integer>

Set the size of the job a thread will get each time it have

nothing more to do.

-s | --sparse

Enable the computation of the forward/backward in sparse mode.

-i | --maxiter <integer>

Defines the maximum number of iterations done by the training algorithm.

-1 | --rho1 <float>

Defines the L1-component of the elastic-net penalty.

-2 | --rho2 <float>

Specifies the L2-component of the elastic-net penalty. The default value is 0.00001.

-w | --stopwin <integer>

Set the window size for the devel stopping criterion. Default value is 5.

-e | --stopeps <float>

Set the size of the interval for stopping criterion. Default value is 0.02%.

--clip Enables gradient clipping for the L-BFGS.

--histsz <integer>

Specifies the size of the history to keep in L-BFGS. The default is 5.

--maxls <integer>

Set the maximum number of linesearch step in L-BFGS to perform before giving up.

--eta0 <float>

Set the learning rate for SGD trainer.

--alpha <float>

Set the alpha value of the exponential decay in SGD trainer.

--stpmin <float>

--stpmax <float>

The minimum/maximum step size allowed for the RPROP trainer. Defaults are 1e-8 and 50.0.

˛

B - Label Mode Options
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Options (some most common used):

--me Activate the pure maxent mode.

-m | --model <file>

Specifies a model file to load and to use for labeling. This switch is mandatory.

-l | --label

With this switch, Wapiti will only output the predicted label. Without, it output the full data

with an additional column containing the predicted labels.

-c | --check

Assume the data to be labeled are already labeled so during the labeling process we can

check our own result displaying the error rates.

-s | --score

Output a line with score before the data.

-p | --post

Use posterior decoding instead of the classical Viterbi decoding.

-n | --nbest <int>

Output the N best sequences of labels instead of just the best one. The N sequences of

labels are output in order in the output file

--force

Enable forced decoding for labeling data already partly labelled.

˛
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Resumé

Les systèmes de traduction automatique (TA), qui génèrent automatiquement la phrase de

la langue cible pour chaque entrée de la langue source, ont fait de bon progrès pendant les

dernières décennies et apportent une aide aux utilisateurs dans un monde globalisé multilingue.

Néanmoins, en raison de différents facteurs, sa qualité en général est encore loin de la perfection,

accentuant le désir des utilisateurs de savoir le niveau de confiance qu’ils peuvent mettre sur une

traduction spécifique. La construction d’une méthode qui est capable d’indiquer des bonnes

parties ainsi que d’identifier des erreurs de la traduction, et donc d’estimer la qualité globale

de chaque hypothèse apporterait un bénéfice pour non seulement les utilisateurs, mais aussi les

traducteurs, post-éditeurs, et les systèmes de TA eux-mêmes. Nous appelons cette méthode un

estimateur de mesures de confiance (MC). Les motivations de la construction de ces méthodes

automatiques proviennent des inconvénients réels des mesures manuelles: elles sont chères en

termes de temps et d’efforts humains, et parfois impossible dans le cas où les lecteurs manquent

fondamentalement les connaissances de la langue source.

Cette thèse porte principalement sur les méthodes des MC au niveau des mots (MCM). Le

système d’estimation de MCM assigne à chaque mot de la phrase cible une étiquette de qualité.

Le mécanisme sur lequel ce système repose est simple: il s’agit d’un classificateur appris sur

l’ensemble des paramètres en appliquant des méthodes d’apprentissage. Pour chaque mot dans

la sortie de TA, il calcule les probabilités (scores de confiance) de tous les labels de qualité, et

ensuite choisit celui avec le score le plus élevé comme résultat de classification.

Aujourd’hui, les MCM jouent un rôle croissant dans nombreux aspects de TA. Tout d’abord,

elles aident les post-éditeurs à identifier rapidement les erreurs dans la traduction et donc à

améliorer leur productivité de travail. De plus, elles informent les lecteurs des portions qui ne

sont pas fiables. Troisièmement, elles sélectionnent la meilleure traduction parmi les sorties de

plusieurs systèmes de TA. Finalement, et ce qui n’est pas le moins important, les scores MCM

peuvent aider à perfectionner la qualité de TA des systèmes automatiques: réordonnance des
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listes N-best (liste des N meilleure traductions), ré-décodage du graphe de recherche (GR), etc.

Dans cette thèse, nous visons à renforcer et optimiser notre système de MCM, puis à

l’exploiter pour améliorer la qualité de TA ainsi que les mesures de confiance au niveau des

phrases (MCP). Comparer avec les approches précédentes, nos nouvelles contributions étalent

sur les points principaux comme suivants :

Tout d’abord, nous proposons et intégrons différents types des paramètres: ceux qui sont

extraits du système TA, avec des caractéristiques lexicales, syntaxiques et sémantiques pour con-

struire le système MCM de base. L’application et la comparaison entre les performances de dif-

férents méthodes d’apprentissage nous permettent d’identifier la meilleure (méthode: "Champs

aléatoires conditionnels") qui convient le plus avec nos données.

Ensuite, l’efficacité de tous les paramètres est examinée en utilisant un algorithme heuris-

tique de sélection des paramètres. Troisièmement, nous exploitons l’algorithme Boosting comme

méthode d’apprentissage afin de renforcer la contribution des sous-ensembles des paramètres

dominants du système MCM, et en conséquence d’améliorer la capacité de prédiction du sys-

tème MCM. Ensuite, nous évaluons les contributions des MCM pour l’amélioration de la qualité

de TA via différents scénarios. Pour le reclassement de la liste N-best, nous synthétisons les

scores à partir des sorties du système MCM et puis les intégrons avec les autres scores du

décodeur afin de recalculer la valeur de la fonction objective, qui nous permet de réordonner la

liste pour l’obtention d’un meilleur candidat. Dans un second temps du ré-décodage du graphe

de recherche, nous appliquons des scores de MCM directement aux nœuds contenant chaque

mot pour mettre à jour leurs coûts. Une fois la mise à jour effectuée, la recherche du meilleur

chemin sur le nouveau graphe nous donne la nouvelle hypothèse de TA. Enfin, les scores de

MCM sont aussi utilisés pour renforcer les performances des systèmes de MCP.

La suite de ce résumé présente les points principaux qui sont discutés dans chaque chapitre

de la thèse.

Dans le Chapitre 1, nous examinons les concepts et théories de base de la TA. Une brève

histoire avec les réalisations remarquables pendant sa route de développement est résumée.

Les architectures linguistiques et computationnelles de la TA ainsi que toutes les approches

connues pour chacune sont mentionnés. Nous détaillons ensuite la TA statistique (TAS) -

l’approche la plus populaire et réussie à ce jour, comprenant son modèle mathématique, suivi

par les composants indispensables constituant chaque système de TAS: modèle de langage (ML),

modèle de traduction et le décodeur. Par ailleurs, nous n’oublions pas de parler de certains

outils et ressources utiles qui permettent de construire rapidement et pratiquement un système

de TA de base. Les mesures manuelles et automatiques pour évaluer la qualité de la TA sont

aussi décrites de ce chapitre.
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Le Chapitre 2 apporte une image complète des mesures de confiance au niveau des mots

(MCM) – l’objectif principal de cette thèse. Le mécanisme de fonctionnement d’un système

de MCM, ses éléments essentiels et ses applications principales sont tout d’abord présentés.

Après avoir cité les travaux les plus importants liés aux MCM, nous nous concentrons sur

deux problèmes: “les paramètres utiles pour la construction d’un prédicteur MCM”

et “ les méthodes d’apprentissage pour entrainer les paramètres”. Les paramètres

largement utilisés dans les travaux précédents, tels que: les informations du côté de source

(cible), ceux liés le contexte d’alignement, la probabilité postérieure du mot, le repli du modèle

de langage, ceux fondés sur des étiquettes lexicales, et d’autres caractéristiques syntaxiques

et sémantiques sont présentés. En outre, nous présentons des méthodes d’apprentissage que

nous allons utiliser pour l’entrainement de nos modèles, parmi elles: Naïve Bayes, la régression

logistique, l’arbre de décision, et les champs aléatoires conditionnelles. La dernière partie de

ce chapitre présente les ateliers sur la TAS (WMT), au quel nous avons participé à la tâche de

MCM pour les deux années 2013 et 2014.

Le Chapitre 3 détaille notre construction du système de MCM de base ainsi que les ex-

périmentations préliminaires pour estimer ses performances. Tout d’abord, notre ensemble des

paramètres comporte tous ceux qui sont mentionnés dans le chapitre 2 et les nouveaux que

nous avons extrait en exploitant plusieurs ressources, avec l’espoir qu’ils apportent des ”con-

naissances supplémentaires” pour le modèle de classification. Ces paramètres proposés sont:

• Graph Topology: extraits à partir d’une listes des meilleurs hypothèses (‘N-best list’ en

anglais) fusionnée dans un réseau de confusion, comprenant : Nodes (nombre de chemins

alternatifs), Min et Max (la valeur min et max des probabilités postérieurs).

• Paramètres syntaxiques: Ils sont obtenus en utilisant les arbres syntaxiques comme la

sortie de l’outil ”Link Grammar Parser”, sachant chaque phrase cible. Nous prenons en

compte deux attributs utiles pour chaque mot: le label grammatical (constituant) et la

distance avec la racine.

• Les pseudos références: En considérant la sortie de Google Translate comme une pseudo

référence, nous obtenons un nouveau paramètre indiquant si chaque mot de la phrase

cible se trouve dans cette référence.

• Les paramètres se basant sur le modèle de langage: nous construisons tout d’abord deux

modèles de langage 4-gramme pour les deux cotés (source et cible). Après, nous comptons

la longueur la plus grande possible du n-gramme couvert par le mot en courant et les mots

précédents dans le modèle de langage de coté cible ainsi que coté source.
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• Les paramètres se basant sur le modèle de langage des étiquettes lexicales (POS): nous

comptons aussi la longueur la plus grande possible du n-gramme constitué par la séquence

des POS du mot courant et ceux qui le précèdent.

• Présence dans plusieurs systèmes de référence: Ce paramètre a pour l’objectif de mesurer

la qualité d’un mot en utilisant d’autres moteurs de traduction pour la même phase source.

Si un mot de notre hypothèse se trouve dans la plupart des autres références, sa chance

d’être une bonne traduction est plus élevée.

Nos systèmes de MCM de base sont construits sur trois corpus: (1) le corpus français –

anglais (fr-en: 10881 paires, dont 10000 train et 881 test), (2) le corpus anglais - espagnol

utilisé dans la campagne WMT2013 (en-es_13: 1087 paires = 750 train + 50 dev + 284 test),

(3) le corpus anglais - espagnol utilisé dans la campagne WMT2014 (en-es_14: 2339 paires

= 1957 train + 200 dev + 382 test). Par ailleurs, les étiquettes d’apprentissage (oracle) sont

obtenues en appliquant l’outil TERp-A puis regroupées dans deux labels ”G” (Bon) et ”B”

(mauvais). Afin d’entraîner les systèmes, nous utilisons la technique d’apprentissage intitulée

”Champs aléatoires conditionnels” (CRF) et l’outil correspondant WAPITI. Dans les expéri-

mentations préliminaires, tous les paramètres sont intégrés et chaque système est comparé avec

deux ”Baselines” naïves. Dans la baseline_1, tous les mots sont classifiés comme ”G” et dans

la baseline_2, ils sont labellisés aléatoirement dans les deux catégories en respectant les taux

(ou la distribution) des labels G/B dans le corpus d’apprentissage.

Les résultats obtenus des trois systèmes en termes de scores de Précision, Rappel et F-

score montrent une phénomène commune et très cohérente : les systèmes peuvent identifier les

”bonne traductions” beaucoup mieux que les ”mauvaises traductions ”. De plus, l’utilisation de

tous paramètres (l’ensemble entier permet d’améliorer fortement et clairement les performances

des classificateur comparant avec les Baselines naïves.

Dans le Chapitre 4, nous proposons des techniques exploitées pour perfectionner les sys-

tèmes de MCM de base. Sachant que dans ces systèmes, toutes les paramètres sont combinées

sans regarder la redondance à cause de certaines inutiles et faibles, dans ce chapitre, nous pro-

posons une stratégie pour enquêter l’utilité de chacune pour chaque système, et en conséquence,

retenir celles qui fonctionnent bien, ainsi qu’éliminer toutes les inutiles. Afin de faire ça, nous

appliquons l’algorithme ”Sequential Backward Selection”. Le score pour comparer les systèmes

et donc sélectionner les paramètres est une composition linaire entre le F-score du label ”G” et

celui de ”B” en mettant les poids sur chaque élément dans lequel le F-score(B) a plus priorité.

Les résultats nous permettent non seulement de mieux comprendre le rôle de chaque type de

paramètre mais aussi d’éliminer ceux qui affaiblissent nos systèmes.
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La deuxième méthode d’optimisation porte sur l’amélioration du système par renforce-

ment (“Boosting” en anglais). Cette fois ci, nous aimerions exploiter en parallèle les deux

côtés, comprenant les paramètres et les techniques d’apprentissage pour améliorer les perfor-

mances du système. À partir de l’ensemble complet des paramètres, nous construisons plusieurs

sous-ensembles afin d’entrainer les modèles faibles qui nous permettent de générer les don-

nées pour notre modèle Boosting. Nous avons utilisé la méthode "Arbre de décision" comme

l’apprentissage du premier classificateur. Ensuite, le suivant est construit en prenant en compte

les erreurs de classification fait par ce qui le précède. C’est pour l’objectif de ne pas répéter les

mêmes erreurs dans les classificateurs d’avenir.

Enfin, tous les classificateurs sont combinés dans un système composé. Comme tous les

résultats du système fr-en, en-es(WMT2013) et en-es(WMT2014) l’ont montré, cette méth-

ode nous permet d’augmenter la capacité de la détection des erreurs (B) et, en même temps,

de maintenir (ou d’augmenter aussi) la bonne performance déjà obtenue avec les bons mots

(G). Ces résultats ont montré que le Boosting permet de construire un prédicateur composite

"beaucoup plus fort".

Le Chapitre 5 présente une première application des systèmes MCM : améliorer la per-

formance du système de mesure de confiance au niveau des phrases (MCP). L’objectif de ce

système est de prédire un score global indiquant la qualité (précision, cohérence, etc.) de la

phrase entière, étant donné une phrase source. Notre idée est d’augmenter la précision dans

les scores estimés en intégrant les labels de qualité pour chaque mot comme les paramètres

supplémentaires, avec les paramètres au niveau des phrases qui ont été construites précédem-

ment. Pour cela, nous construisons et testons sur trois systèmes de MCP pour les corpus fr-en

et en-es_13. Le premier système (SYS1) est seulement un système pur MCP, c’est à dire ce

qui est entraîné avec seulement des paramètres au niveau des phrases. Dans ce cas là, nous

utilisons 17 paramètres de base qui ont constitué la Baseline dans la campagne WMT12. Dans

le deuxième système (SYS2), nous synthétisons des paramètres depuis les labels de qualité au

niveau des mots. En d’autres mots, c’est un système MCP basant sur MCM. Nous proposons

sept paramètres suivant :

• Le ratio du nombre de mots corrects sur le nombre total de mots

• Le ratio du nombre de noms corrects sur l’ensemble des bons noms présents

Des paramètres similaires sont calculés pour d’autres étiquettes lexicales (verbes, adjectifs et

adverbes).

181



Resumé

Afin d’observer l’influence des scores MCM dans un système MCP, nous réalisons des ex-

périences sur un troisième système “SYS1+SYS2". Celui-ci prend les résultats prédits par

SYS1 et SYS2, et puis poste-traite les résultats pour choisir le label définitif. Autrement dit,

le SYS1+SYS2 récupère les deux scores issus de SYS1 et SYS2 pour chaque classe (G, B) et

en calcule la moyenne. Finalement, les scores sont comparés et le label correspondant au score le

plus élevé est sélectionné. Sur les corpus test, le système SYS2 fonctionne légèrement mieux que

le SYS1 en termes des mesures MAE et RMSE. Par contre, la combinaison (SYS1+SYS2)

améliore clairement les performances initiales des deux systèmes . Les résultats montrent que

les informations de MCM ont joué un rôle prédominant dans l’amélioration des systèmes de

MCP.

Dans le chapitre 6, nous nous concentrons sur une autre contribution des systèmes de MCM

pour la TA, avec pour objectif d’améliorer les traductions en réordonnant la liste de N meilleurs

hypothèses (en anglais : N-best list). Comme nous l’avons déjà vu, les scores du moteur de

traduction ne sont pas parfaits, et donc la première hypothèse de la liste N-best n’est pas

forcément optimale. L’ajout de scores de confiance sur les mots des N-best est une mesure

efficace pour faire émerger d’autres hypothèses candidates qui sont éloitgnées dans la liste. Le

réordonnancement des N-best peut être considéré comme une seconde passe de décodage. À

partir d’un décodeur de base de Moses, avec 14 scores par défaut, nous proposons des scores

supplémentaires se basant sur des labels d’estimation de qualité des mots :

• le ratio du nombre de mots corrects sur le nombre total de mots

• le ratio du nombre de noms corrects sur l’ensemble des bons noms présents

Le ratio du nombre des séquences contenant n bons mots consécutifs sur la totalité des

séquences de n mots (dans nos travaux, des séquences de 2,3 et 4 ont été utilisées).

Afin de vérifier l’efficacité des paramètres proposés, nous expérimentons trois systèmes de

traduction. Le premier, BL, est la Baseline dans laquelle seulement 14 scores du décodeur sont

utilisés pour ordonner les hypothèses. Dans le deuxième, BL+WCE, le système est enrichi par

six scores supplémentaires extraits à partir des labels de confiance générés par notre système

WCE réel. Le troisième, BL+WCE, contient les mêmes scores, mais les six scores ajoutés

viennent d’un système WCE idéal (qui génère les labels oracles). Ici, BL est un décodeur ‘single-

passe’ alors que les autres sont ‘double-passe’. Les poids assignés aux paramètres sont optimisés

via les méthodes: MERT (Minimum Error Rate Training) ou MIRA (Margin Infused Relaxed

Algorithm). Les performances obtenues montrent que les scores oracles apportent informations

très importantes qui aident à la sélection de meilleures traductions que la Baseline (5.79 points

BLEU gagnés par MERT). Cependant, le rôle des scores réels de MCM est plus léger (avec une

182



légère amélioration de 0.46 point BLEU par MERT). En supposant que l’efficacité des scores

MCM sera plus élevée quand le système de MCM sera plus performant, nous proposons des

expérimentations supplémentaires dans lesquelles une partie (N%, N=25, 50 ,75) des mauvais

labels générés par le système MCM de base est remplacée par les labels oracles. Ensuite, les

scores de ré-ordonnancement sont tous recalculés, constituant trois nouveaux systèmes simulés

WCE+N% (N=25, 50 ,75). Les nouvelles performances (0.68, 3.00 et 3.63 de points BLEU)

montrent une forte corrélation entre performance du système MCM, et son rôle pour améliorer

la qualité du réordonnancement des traductions.

La contribution la plus intéressante se trouve dans le dernier chapitre, Chapitre 7, dans

lequel nous intégrons les scores MCM directement dans le graphe de recherche (GR) (“Search

Graph” en anglais) afin de recalculer les coûts de tous les chemins contenant au moins un mot

dans la N-best Liste. Le chemin de meilleur coût après cette mise à jour deviendra la nouvelle

traduction. En appliquant cette méthode, nous pouvons élargir l’espace de recherche sur une

et avons donc une meilleure chance de choisir la phrase la plus optimale. Pour ce faire, tout

d’abord, nous utilisons notre système de MCM pour obtenir les labels de qualité (G, B) ainsi que

les scores de confiance (probabilités) concernant tous les mots dans la N-best Liste. Ensuite, en

se basant sur ces informations, pour chaque mot, nous modifions les coûts de tous les chemins

dans le GR où ils apparaissent. Le coût d’un chemin peut être augmenté ou baissé en fonction

de la qualité du mot. C’est à dire, si un chemin contient un bon mot, son coût devrait être

baissé et dans le cas contraire, il sera augmenté. Enfin, nous cherchons sur le nouveau GR le

meilleur chemin et générerons la meilleure nouvelle traduction. Nous définissons quatre types

de score pour mettre a jours le GR :

• un score global : identique pour tous les mots et calculé en utilisant les labels (type 1a)

ou la probabilité (type 1b) ;

• un score local : il dépend du coût du chemin actuel et du label du mot (type 2a) ou de

sa probabilité (type 2b).

Comme dans le Chapitre 6, nous expérimentons plusieurs systèmes de traduction “double-

passe” qui utilisent des scores se basant sur les labels réels du MCM ou les oracles. Sans

considérer la baseline, nous avons quatre systèmes basant sur les labels (ou probabilités) qui

viennent du système réel de MCM : BL+WCE(1a,1b,2a,2b) (les scores sont calculés par

type 1a, 1b, 2a ou 2b). De plus, nous avons construit deux autres systèmes BL+OR(1a, 2a)

dans lesquels les scores sont extraits a partir des labels de confiance oracle. Les performances

de tous les systèmes sont affichées dans la Table A.1.
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Resumé

Systems Performance Comparison to BL p-
BLEU ø TER ¿ TERp-A ¿ B (%) E (%) W (%) value

BL 52.31 0.2905 0.3058 - - - -

BL+WCE(1a) 53.80 0.2876 0.2922 28.72 57.43 13.85 0.00
BL+WCE(1b) 53.24 0.2896 0.2995 26.45 59.26 14.29 0.00
BL+WCE(2a) 53.32 0.2893 0.3018 23.68 60.11 16.21 0.01
BL+WCE(2b) 53.07 0.2900 0.3006 22.27 55.17 22.56 0.01

BL+OR(1a) 60.18 0.2298 0.2264 62.52 24.36 13.12 -
BL+OR(2a) 59.98 0.2340 0.2355 60.18 28.82 11.00 -

BL+OR(NbestRR) 58.10 0.2551 0.2544 58.68 29.63 11.69 -
BL+WCE(NbestRR) 52.77 0.2891 0.3025 18.04 68.22 13.74 0.01

Oracle BLEU score BLEU = 66.48 (from SG)

Table A.1 – Translation quality of the conventional decoder and the 2-pass ones using scores from real
or “oracle” WCE, followed by the percentage of better, equivalent or worse sentences compared to BL
(B=“Better”, E=“Equal”, W=“Worse”)

À nouveau, les résultats obtenus (en terme de score BLEU) montrent que les scores MCM

oracle ont amélioré fortement la qualité des traductions (par rapport à la BL) : 7.87 et 7.67

points gagnés par BL+OR(1a) et BL+OR(2a) respectivement. Concernant les labels réels

de MCM, les améliorations sont moins impressionnantes, mais clairement significatives.

Parmi les quatres systèmes, BL+WCE(1a) est le meilleur avec 1.49 points BLEU gagnés.

Les seuils de significativité (p-value) montrent que les points gagnés grâce aux scores de MCM

sont significatifs. Pour mieux comprendre les contributions de cette méthode, nous comparons

les performances des systèmes de réordonnancement de N-best Liste et le système deux passes.

Le système BL+OR(1a) dépasse le BL+OR(Nbest_RR) de 2.08 points BLEU, tandis que le

BL+WCE(1a) obtient de meilleurs résultats que BL+WCE(Nbest_RR) (+1.03 point de

BLEU). Ce résultat s’explique qu’en réordonnant, les scores de MCM sont intégrés au niveau

de la phrase (en calculant la moyenne), ce qui risque de ne pas pénaliser certaines erreurs de

traduction. De plus, en réordonnant, la sélection de meilleure traduction est limitée par la taille

de la liste N-best. Lors d’un redécodage l’espace est au contraire élargit à l’ensemble du graphe

de recherche.
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