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Résumé

Dans cette thèse, nous étudions la stabilisation de certaines équations d'évolution par des lois de rétroaction. Dans le premier chapitre nous étudions l'équation des ondes dans R avec conditions aux limites dynamiques appliquées sur une partie du bord et une condition de Dirichlet sur la partie restante. Nous fournissons des conditions suffisantes qui garantissent une stabilité polynomiale en utilisant une méthode qui combine une inégalité d'observabilité pour le problème non amorti associé avec des résultats de régularité du problème non amorti. L'optimalité de la décroissance est montrée dans certains cas à l'aide des résultats spectraux précis de l'opérateur associé. Dans le deuxième chapitre nous considérons le système sur un domaine de R d , d ≥ 2. On trouve des conditions suffisantes qui permettent la stabilité forte. Ensuite, nous discutons de la stabilité non uniforme ainsi que de la stabilité polynomiale. L'approche en domaine fréquentiel nous permet d'établir une décroissance polynomiale sur des domaines pour lesquels l'équation des ondes avec l'amortissement standard est exponentiellement ou polynomialement stable. Dans le troisième chapitre nous considérons un cadre général d 'équations d'évolution avec une dissipation dynamique. Sous une hypothèse de régularité, nous montrons que les propriétés d'observabilité pour le problème non amorti impliquent des estimations de décroissance pour le problème amorti.
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Introduction

Control theory is the study of the process of controlling the behavior of an operator system to achieve a certain target. Its application ranges widely from earthquake engineering and seismology to fluid transfer, cooling water and noise reduction in cavities, vehicles, such as pipe systems. Acoustics, aeronautics, hydraulics, are also some of the diverse disciplines where control theory is applied. Of the most important notions in modern systems and control theory we mention controllability, stabilizability and observability. Various types of those notions have been introduced for abstract systems defined on Banach or Hilbert spaces and the relations between them has been extensively explored by several authors.

Roughly speaking, the concept of controllability is defined as an ability to do whatever we want with our system. In more technical terms, it is described as the ability to steer our evolution system, whether described in terms of partial or ordinary differential equations, from any initial state to any desired final state in a finite time interval by means of a suitable control (boundary control, internal control, controls localized on open subsets of bounded sets, etc...). The definition of the same concept varies according to the framework or the type of models on which it is applied. The three types of controllability that are mainly defined are exact controllability, null controllability and asymptotic controllability (see [START_REF] Glass | Infinite dimensional controllability[END_REF]). The differences between those definitions are examined for both finite dimensional systems and infinite dimensional systems for time reversible systems (e.g. wave equation) as well as time irreversible systems (e.g. heat equation). In general the different types of controllability are not equivalent. The relations between these concepts were studied and several results on this subject were obtained (see for instance the works of Micu and Zuazua [START_REF] Micu | An introduction to controllability of partial differential equations[END_REF]).

Observability is a measure for how well internal states of a system can be inferred by knowledge of its external outputs. The duality between the controllability and observability of systems of partial differential equations in Banach spaces has been examined in many works such as those of Lions [START_REF] Lions | Exact controllability, stabilization and perturbations for distributed systems[END_REF] where Hilbert uniqueness theorem HUM is explained (see also [START_REF] Nandakumaran | Exact controllability of linear wave equations and hilbert uniqueness method[END_REF]), and the works of Russell and Dolecki and Russell [START_REF] Dolecki | A general theory of observation and control[END_REF][START_REF] Russell | A unified boundary controllability theory for hyperbolic and parabolic partial differential equations[END_REF][START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions[END_REF]. Various methods could be used to prove observability inequalities such as Carleman estimates, microlocal analysis and the multiplier method. For more details on the treatment of observability problems and proving observability inequalities for linear systems, we refer the reader to [START_REF] Zuazua | Controllability and observability of partial differential equations: some results and open problems[END_REF], [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF], and [START_REF] Lions | Exact controllability, stabilization and perturbations for distributed systems[END_REF].

As for stabilizability, it is defined as the ability to find an input control that requires the state response to approache zero as time t → ∞. Different types of stability also occurs. The details of the notions of stability used in our thesis are explained below.

In order to introduce the main theme of our study, the used method and the obtained results let us recall some of the fundamental definitions that are being used throughout the thesis.

iii Definition 0.1 Let X be a Banach space. A one parameter family (S(t)) t≥0 of bounded linear operators defined from X into X is a strongly continuous semigroup of bounded linear operators on X if:

• S(0) = I,(I identity operator on X).

• S(t + s) = S(t)S(s) for every t, s ≥ 0.

• S(t)x → x, as t → ∞, ∀x ∈ X.

Such a semigroup is called a C 0 -semigroup.

Definition 0.2 The infinitesimal generator A of the semigroup (S(t)) t≥0 is defined by: is said to be a dissipative operator. A maximal dissipative operator (A, D(A)) on H is a dissipative operator for which R(λI -A) = H, for some λ > 0. A maximal dissipative operator is also called m-dissipative operator.

D(A) = {x ∈ X| lim t→∞ S ( 
Generally speaking, the first step in dealing with the study of the stability of the solution is to rewrite our evolution system of partial differential equations as a Cauchy problem on some appropriate Hilbert space H called the energy space

U = AU, U (0) = U 0 . ( 1 
)
where A is an unbounded operator on H. Then we prove that A is the infinitesimal generator of a C 0 -semigroup of contractions (S(t)) t≥0 on H in order to deduce the existence of a solution in a certain Hilbert space. The solution is hence of the form U (t) = S(t)U 0 . We mention here Lumer-Phillips theorem (see [START_REF] Lumer | Dissipative operators in a Banach space[END_REF]) which is applied to justify the existence and uniqueness of solutions of some partial differential equations.

Corollary 0.5 Let H be a Hilbert space and let A be a linear operator defined from D(A) ⊂ H into H. If A is maximal dissipative then the initial value problem du dt (t) = Au(t), t > 0 u(0) = u 0 has a unique solution u ∈ C([0, +∞), H), for each initial datum u 0 ∈ H. Moreover, if u 0 ∈ D(A), then u ∈ C([0, +∞), D(A)) ∩ C 1 ([0, +∞), H).

After proving the well posedness of the systems introduced in the chapters of the thesis, we aim to discuss the type of stability of the solution of the systems formulated as [START_REF] Abbas | Remark on stabilization of second order evolution equations by unbounded dynamic feedbacks and applications[END_REF]. We introduce here the notions of stability that we encounter in this work (see [START_REF] Batty | Non-uniform stability for bounded semi-groups on Banach spaces[END_REF] and [START_REF] Bátkai | Polynomial stability of operator semigroups[END_REF] for instance).

Assume that A is a generator of a strongly continuous semigroup of contractions on a Hilbert space H. We say that the semigroup (S(t)) t≥0 generated by A is

• Strongly (asymptotically) stable if for all U 0 ∈ H S(t)U 0 H → 0.

• Exponentially stable if there exist two positive constants C, ω such that

S(t)U 0 H ≤ Ce -ωt U 0 H , ∀t > 0, ∀U 0 ∈ H.
• Polynomially stable if there exist constants α, β, C > 0 such that

S(t)(d -A) -α ≤ Ct -β , t > 0,
for some d > 0. Clearly the definitions of the different kinds of stability could be introduced for the energy of the solution of (1) defined by E(t) = 1 2 U (t) 2 .

In order to show the strong stability of U (t) = S(t)U 0 we study the spectrum of the operator A of (1) and we show that the only pure imaginary elements of its spectrum are countable and belong exclusively to its essential spectrum. The asymptotic stability is thus deduced by Arendt-Batty Theorem (see [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF] and Theorem 1.3.1 in the first chapter). The discussion of the type of stability achieved by our systems is detailed later and is based in the first chapter on the analysis of the spectrum of the operator of a conservative operator associated with the dissipative operator in order to obtain an observability inequality using Ingham's inequality (see [START_REF] Baiocchi | Ingham-Beurling type theorems with weakened gap conditions[END_REF]). While in the second chapter we introduce, as in [START_REF] Muñoz Rivera | Polynomial decay for the energy with an acoustic boundary condition[END_REF], a Lyapunov functional or a resolvent method from [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF] (see also [START_REF] Batty | Non-uniform stability for bounded semi-groups on Banach spaces[END_REF]) to find appropriate estimates on the energy. We moreover use Huang-Prüss Theorem (see [START_REF] Gearhart | Spectral theory for contraction semigroups on Hilbert space[END_REF][START_REF] Huang | Characteristic conditions for exponential stability of linear dynamical system in hilbert spaces[END_REF][START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF]) and a result of [START_REF] Rao | Stabilization of elastic plates with dynamical boundary control[END_REF] (see also [START_REF] Toufayli | Stabilisation polynomiale et contrôlabilité exacte des équations des ondes par des contrôles indirects et dynamiques[END_REF]) to prove the nonuniform stability in certain cases.

Γ 1 relatively open in Γ which could be possibly empty for d > 1. A clamped boundary condition is assumed to be satisfied on a part Γ 1 of the boundary and a dynamic boundary condition on the second part Γ 0 . More precisely, we consider the system defined by        y tt (x, t) -∆y(x, t) = 0 , x ∈ Ω, t > 0, y(x, t) = 0 , x ∈ Γ 1 , t > 0, ∂y ∂ν (x, t) = (δ(x, t), C) , x ∈ Γ 0 , t > 0, δ t (x, t) = Bδ(x, t) -Cy t (x, t) , x ∈ Γ 0 , t > 0, [START_REF] Abbas | Polynomial decay rate for a wave equation with general acoustic boundary feedback laws[END_REF] with the following initial conditions: y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x), x ∈ Ω, δ(x, 0) = δ 0 (x), x ∈ Γ 0 ,

where (•, •) an inner product on

C n with n ≥ 1, B ∈ M n (C), C ∈ C n if d = 1 and C ∈ C 0,1 (Γ 0 , C n ) and B ∈ C(Γ 0 , M n (C)) if d > 1.
The damping of the system is made via the indirect damping mechanism on the part Γ 0 that involves a first order differential equation in the variable δ. The notion of indirect damping mechanisms has been introduced by Russell in [START_REF] Russell | Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain[END_REF] and retains the attention of many authors (see for instance [START_REF] Alabau | Indirect internal stabilization of weakly coupled evolution equations[END_REF][START_REF] Alabau-Boussouira | Indirect stabilization of weakly coupled systems with hybrid boundary conditions[END_REF][START_REF] Russell | A general framework for the study of indirect damping mechanisms in elastic systems[END_REF]). In addition, different models from acoustic theory enter in this framework.

The case n = 1 was considered in [START_REF] Wehbe | Rational energy decay rate for a wave equation with dynamical control[END_REF] (d = 1) and in [START_REF] Toufayli | Stabilisation polynomiale et contrôlabilité exacte des équations des ondes par des contrôles indirects et dynamiques[END_REF] (d ≥ 2) where a polynomial decay in 1 t was proved for initial data in the domain of the associated operator by using the multiplier method, leading to strong geometrical assumption on Γ 0 . In the case n ≥ 2, the third and fourth equations in [START_REF] Abbas | Polynomial decay rate for a wave equation with general acoustic boundary feedback laws[END_REF] are general versions of the so-called acoustic boundary conditions, introduced for n = 2 in [START_REF] Beale | Acoustic boundary conditions[END_REF]. Acoustic boundary conditions arise in many physical applications, in particular they occur in theoretical acoustics, where a part of the boundary is not rigid but subject to small oscillations, see [START_REF] Beale | Spectral properties of an acoustic boundary condition[END_REF][START_REF] Belinsky | Wave propagation in the ice-covered ocean wave guide and operator polynomials[END_REF][START_REF] Littman | On the spectral properties and stabilization of acoustic flow[END_REF][START_REF] Morgül | A dynamic control law for the wave equation[END_REF][START_REF] Muñoz Rivera | Polynomial decay for the energy with an acoustic boundary condition[END_REF] and the references therein for more details. Absorbing boundary conditions like in [START_REF] Barucq | Long-term stability analysis of acoustic absorbing boundary conditions[END_REF] are stronger and lead to exponential decay of the energy, but they do not enter into our framework.

The stability of the wave equation with acoustic boundary condition was first studied by Beale in [START_REF] Beale | Spectral properties of an acoustic boundary condition[END_REF] where he discusses the strong stability of the system,    φ tt (x, t)c 2 ∆φ(x, t) = 0, x ∈ Ω, t > 0 η t (x, t) -∂φ ∂ν (x, t) = 0, x ∈ Γ 0 , t > 0 m(x)η tt (x, t) + d(x)η t (x, t) + k(x)η(x, t) + ρφ t (x, t) = 0, x ∈ Γ 0 t > 0 (4) with m, d, k are positive sufficiently smooth functions defined on Γ 0 . In this case, Γ 1 = ∅ and system (4) can be formulated for c = 1 as (2)by taking

n = 2, δ = η η t , B = 0 1 -k m -d m , C = 0
assuming moreover the existence of a point x 0 ∈ R 3 such that

Γ 1 = {x ∈ Γ|(x -x 0 ).ν ≤ 0}, Γ 0 = {x ∈ Γ|(x -x 0 ).ν ≥ a > 0},
for some constant a > 0. By introducing an appropriate Lyapunov function, the authors prove that the energy decays polynomially with a decay rate of 1 t . In [START_REF] Littman | On the spectral properties and stabilization of acoustic flow[END_REF], the authors consider the wave equation on Ω ⊂ R 2 with acoustic boundary condition on one part of the boundary but replacing the Dirichlet boundary condition on Γ 1 by a Neumann boundary condition. Again the authors obtain a polynomial decay rate depending on the regularity of the initial data.

In the first chapter we study the stability of [START_REF] Abbas | Polynomial decay rate for a wave equation with general acoustic boundary feedback laws[END_REF] for Ω = (0, 1) with Γ 1 = 0, Γ 0 = 1. Then, system (2) is given by

       y tt (x, t) -y xx (x, t)
= 0, 0 < x < 1, t > 0, y(0, t) = 0, t > 0, y x (1, t) -(δ(t), C) C n = 0, t > 0, δ t (t) -Bδ(t) + Cy t (1, t) = 0, t > 0, [START_REF] Alabau | Indirect internal stabilization of weakly coupled evolution equations[END_REF] Using the compact perturbation result of Russell [START_REF] Russell | Decay rates for weakly damped systems in Hilbert space obtained with control-theoretic methods[END_REF], the dissipative system (5) is not uniformly stable (see section 1.4.1 of the first chapter and [START_REF] Morgül | A dynamic control law for the wave equation[END_REF]Rk 2]). Hence we are interested in proving a weaker decay of the energy. More precisely we will give sufficient conditions on B and C that yield the polynomial decay of the energy of our system (for initial data in the domain of the associated operator). Contrary to [START_REF] Wehbe | Rational energy decay rate for a wave equation with dynamical control[END_REF] and [START_REF] Muñoz Rivera | Polynomial decay for the energy with an acoustic boundary condition[END_REF] where a multiplier method is used, we here use a technique, inspired from [START_REF] Ammari | Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force[END_REF][START_REF] Mercier | Polynomial decay rate for a wave equation with weak dynamic boundary feedback laws[END_REF][START_REF] Nicaise | Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks[END_REF], that consists of combining an observability inequality for the associated undamped problem obtained via sharp spectral results with regularity results of the solution of the undamped problem with a specific right-hand side. Moreover, using a careful spectral analysis of the operator associated with [START_REF] Alabau | Indirect internal stabilization of weakly coupled evolution equations[END_REF] we show in some particular situations that our decay rate is optimal.

In the second chapter we study the stability of [START_REF] Abbas | Polynomial decay rate for a wave equation with general acoustic boundary feedback laws[END_REF] for Ω ⊂ R d with d > 1. We further assume that the boundary ∂Ω = Γ is Lipschitz and that that Γ 0 ∩ Γ1 is of class C 1 in the sense explained in the second chapter. In a first step we try to find sufficient conditions that guarantee the strong stability of the system. Here as the domain of the associated operator is not compactly embedded into the natural energy space, we can expect that its spectrum is not only made up of eigenvalues. We prove such a result in our general setting but since Dirichlet boundary conditions are imposed on a part of the boundary, we were not able to use the single-layer potential technique of [START_REF] Beale | Spectral properties of an acoustic boundary condition[END_REF] and instead we use a Fredholm alternative technique. Finally, similar assumptions on B and C as in the one-dimensional case allow us to show that the associated operator has no eigenvalues on the imaginary axis, hence we can obtain the strong stability by using Arendt-Batty theorem (see [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF] and Theorem 1.3.1). In dimension larger than 2, we can not apply the compact perturbation result of Russell [START_REF] Russell | Decay rates for weakly damped systems in Hilbert space obtained with control-theoretic methods[END_REF] (see also section 1.4.1 of the first chapter) in order to prove the non uniform stability of [START_REF] Abbas | Polynomial decay rate for a wave equation with general acoustic boundary feedback laws[END_REF]. Nevertheless by using the spectral properties of the Laplace operator with specific Robin boundary conditions on Γ 0 , we will show that the resolvent of the associated operator is not uniformly bounded on the imaginary axis and by the frequency domain approach [START_REF] Gearhart | Spectral theory for contraction semigroups on Hilbert space[END_REF][START_REF] Huang | Characteristic conditions for exponential stability of linear dynamical system in hilbert spaces[END_REF][START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF], we will conclude that our system is not uniformly stable. Hence we are interested in proving a weaker decay of the energy. More precisely we will give sufficient conditions on Γ 0 , B and C that yield the polynomial decay of the energy of our system (for initial data in the domain of vii the associated operator). A first approach is to use a multiplier method like in [START_REF] Muñoz Rivera | Polynomial decay for the energy with an acoustic boundary condition[END_REF][START_REF] Toufayli | Stabilisation polynomiale et contrôlabilité exacte des équations des ondes par des contrôles indirects et dynamiques[END_REF][START_REF] Wehbe | Rational energy decay rate for a wave equation with dynamical control[END_REF] but this approach requires a quite strong geometrical assumption on Γ 0 . Hence we alternatively use the frequency domain approach from [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF]. In that case, we prove some appropriate bound for the resolvent on the imaginary axis by using the exponential or polynomial decay of the wave equation with the standard damping ∂y ∂ν (x, t) = -y t on Γ 0 , and an assumption on the behavior of ℜ((isI -B) -1 C, C) for all real number s with modulus large enough. This leads to quite weaker geometrical assumption on Γ 0 due to the results from [12, §5] or [START_REF] Lasiecka | Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions[END_REF][START_REF] Lebeau | Stabilisation de l'équation des ondes par le bord[END_REF] for instance. In particular in this second approach as Γ 1 can be empty, we significantly improve results from [START_REF] Beale | Spectral properties of an acoustic boundary condition[END_REF] and [START_REF] Muñoz Rivera | Polynomial decay for the energy with an acoustic boundary condition[END_REF].

In the third chapter, we study the stability of linear control problems coming from elasticity which can be written as

   x ′′ (t) + Ax(t) + Bu(t) = 0, t ∈ [0, +∞) u ′ (t) -Cu(t) -B * x ′ (t) = 0, t ∈ [0, +∞) x(0) = x 0 , x ′ (0) = y 0 , u(0) = u 0 , (6) 
where X and U are two complex Hilbert spaces, x : [0, +∞) → X is the state of the system, u ∈ L 2 (0, T ; U ) is the input function, A is an unbounded positive self-adjoint operator on X, B ∈ L(U, D(A 1 2 ) ′ ) and C is a maximal dissipative operator on U . The second equation of the considered system describes a dynamic control in some models. Some systems that can be covered by the formulation (6) are for example the hybrid systems. System (2) considered in the first chapter can be viewed as an application as well.

In this chapter we give sufficient conditions leading to the uniform or non uniform stability of the solutions of the corresponding closed loop system. We first justify the well-posedness of the problem then we write C as a sum of a skew-adjoint operator -C and a self-adjoint operator -DD * and we prove under a regularity assumption that the observability properties, described by assumption (O), of the undamped problem corresponding to replacing Ĉ by -C in (6) imply decay estimates for the damped problem. We present in the last section of this chapter illustrative examples as applications of the general setting where we obtain polynomial or exponential energy decay rates. Finally, we note that we use a variety of methods in verifying the observability assumption as well as a regularity assumption when Ĉ is unbounded.

Note that the chapters of this thesis correspond to articles which have been published [START_REF] Abbas | Polynomial decay rate for a wave equation with general acoustic boundary feedback laws[END_REF] or submitted [START_REF] Abbas | Remark on stabilization of second order evolution equations by unbounded dynamic feedbacks and applications[END_REF][START_REF] Abbas | The multidimensional wave equation with generalized acoustic boundary conditions I: Strong stability[END_REF][START_REF] Abbas | The multidimensional wave equation with generalized acoustic boundary conditions II: Polynomial stability[END_REF]. Thus we have kept the general structure of the articles but just regrouping [START_REF] Abbas | The multidimensional wave equation with generalized acoustic boundary conditions I: Strong stability[END_REF] and [START_REF] Abbas | The multidimensional wave equation with generalized acoustic boundary conditions II: Polynomial stability[END_REF] in one chapter.

Let us finish this introduction with some notation used in the remainder of the thesis: the notation A B and A ∼ B means the existence of positive constants C 1 and C 2 , which are independent of A and B such that

A ≤ C 2 B and C 1 B ≤ A ≤ C 2 B.
viii 1 Polynomial decay rate for a wave equation with general acoustic boundary feedback laws

Introduction

We consider the following one-dimensional evolution problem with a Dirichlet boundary condition at one end and a dynamical control at the other one, described as follows:

       y tt (x, t) -y xx (x, t) = 0, 0 < x < 1, t > 0, y(0, t) = 0, t > 0, y x (1, t) + (η(t), C) C n = 0, t > 0, η t (t) -Bη(t) -Cy t (1, t) = 0, t > 0, (1.1)
with the following initial conditions:

y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x), 0 < x < 1, η(0) = η 0 , (1.2) 
where B ∈ M n (C), C ∈ C n are given, y represents the transverse displacement of the vibrating string and η denotes the dynamical control variable. Define V = {y ∈ H 1 (0, 1) : y(0) = 0}, endowed with the following inner product (y, z) V = 1 0 y x zx dx, and the energy space

H = V × L 2 (0, 1) × C n ,
endowed with the following inner product,

((y, z, η), (y 1 , z 1 , η 1 )) H = 1 0 y x ȳ1x dx + 1 0 z z1 dx + (η, η 1 ) C n ,
with (•, •) C n an inner product on C n to be well determined. Denote by M the Hermitian positive definite matrix associated with this inner product. For shortness we sometimes use the notation

(•, •) to denote (•, •) C n throughout the rest of the work.
The damping of the system is made via the indirect damping mechanism at the extremity 1 that involves a first order differential equation in η. Using the compact perturbation result of Russell [START_REF] Russell | Decay rates for weakly damped systems in Hilbert space obtained with control-theoretic methods[END_REF], the dissipative system (1.1) is not uniformly stable (see section 1.4.1 and [37,Rk 2]). Hence we are interested in proving a weaker decay of the energy. More precisely we will give sufficient conditions on B and C that yield the polynomial decay of the energy of our system 1 (for initial data in the domain of the associated operator). Contrary to [START_REF] Wehbe | Rational energy decay rate for a wave equation with dynamical control[END_REF] and [START_REF] Muñoz Rivera | Polynomial decay for the energy with an acoustic boundary condition[END_REF] where a multiplier method is used, we here use a technique, inspired from [START_REF] Ammari | Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force[END_REF][START_REF] Mercier | Polynomial decay rate for a wave equation with weak dynamic boundary feedback laws[END_REF][START_REF] Nicaise | Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks[END_REF], that consists of combining an observability inequality for the associated undamped problem obtained via sharp spectral results with regularity results of the solution of the undamped problem with a specific right-hand side. Moreover, using a careful spectral analysis of the operator associated with (1.1) we show in some particular situations that our decay rate is optimal. The chapter is organized as follows. The second section deals with the well-posedness of the problem obtained by using semigroup theory. Section 1.3 is devoted to the analysis of the strong stability of the system. In section 1.4, we perform the spectral analysis of the operator associated with the conservative system and deduce the polynomial stability of the dissipative system. The optimality of the decay is considered in section 1.5. Finally some particular examples illustrating our general framework are presented in section 1.6.

Well-posedness results

In order to solve system (1.1) we use a reduction order argument. Define the linear operator A by

D(A) = {(y, z, η) ∈ H 2 (0, 1) ∩ V × V × C n : y x (1) = -(η, C) C n }, and 
A   y z η   =   z y xx Bη + Cz(1)   , ∀   y z η   ∈ D(A).
We reformulate our problem into a Cauchy problem given by

u = Au, u(0) = u 0 (1.3)
with u = (y, z, η) T and u 0 = (y 0 , y 1 , η 0 ) T . We proceed by proving that A is m-dissipative. The existence of a unique solution of problem (1.3) follows from Lumer-Phillips Theorem (see for instance [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]).

Proposition 1.2.1 Suppose that

ℜ(Bη, η) C n ≤ 0, ∀η ∈ C n . (1.4)
Then the operator A is m-dissipative, thus A generates a C 0 -semigroup of contractions on H.

Proof. Let   y z η   ∈ D(A), we have:   A   y z η   ,   y z η     H = 1 0 z x ȳx dx + 1 0 y xx zdx + (Bη + Cz(1), η) C n = 2iℑ 1 0 z x ȳx dx + z(1)(C, η) C n + (Bη, η) C n .
Hence ℜ(AU, U ) = ℜ(Bη, η) C n ≤ 0, and thus A is dissipative. We would like to show that there exists λ > 0 such that λI -A is surjective. Let λ > 0 be given. Clearly, we have λ ∈ σ(B). For (y 1 , z 1 , η 1 ) ∈ H, we look for (y, z, η) ∈ D(A) such that

(λI -A)   y z η   =   y 1 z 1 η 1   ,
i.e. we are searching for y ∈

H 2 ∩ V, η ∈ C n satisfying y x (1) = -(η, C), η = (λI -B) -1 (η 1 + C (λy(1) -y 1 (1))) ,
and the following strong problem:

λ 2 y -y xx = z 1 + λy 1 = f 1 .
We now define the associated weak problem and we then prove that it admits a unique solution using Lax-Milgram lemma. We state the weak problem as follows, find y ∈ V satisfying

a(y, ϕ) = L(ϕ), ∀ϕ ∈ V (1.5)
where the conjugates of a and L are given by

ā(y, ϕ) = 1 0 λ 2 y φdx + 1 0 y x φx dx + ((λI -B) -1 C, C) C n λy(1) φ(1), L(ϕ) = 1 0 f 1 φdx + (λI -B) -1 (Cy 1 (1) -η 1 ), C C n φ(1).
Clearly, V is a Hilbert space, L is a linear continuous functional defined on V and a is a sesquilinear continuous form on V . Finally, a is coercive since |a(y, y)| ≥ ℜa(y, y). Indeed,

a(y, y) = λ 2 1 0 |y| 2 dx + 1 0 |y x | 2 dx + ((λI -B) -1 C, C)λ|y(1)| 2 ,
and

ℜ(Bη, η) ≤ 0 implies ℜ((λI -B) -1 C, C) ≥ 0, since ℜ (λI -B) -1 C, C = ℜ (u, (λI -B)u) = λ u 2 -ℜ(u, Bu) ≥ 0, with u = (λI -B) -1 C. Hence ℜa(y, y) y 2
V , which implies that a is coercive. Applying Lax-Milgram Lemma, there exists a unique y ∈ V solution of equation (1.5). In particular, setting ϕ ∈ D(0, 1) in (1.5), we get

λ 2 y -y xx = f 1 , in D ′ (0, 1). (1.6)
Due to the fact that y ∈ V we get y xx ∈ L 2 (0, 1), and we deduce that y ∈ H 2 (0, 1). Multiplying both sides of the conjugate of equality (1.6) by a φ ∈ V , integrating by parts on (0, 1), and comparing with (1.5) we get

y x (1) = (λI -B) -1 (Cy 1 (1) -Cλy(1) -η 1 ) , C .
Defining η = (λI -B) -1 (η 1 -Cy 1 (1) + Cλy(1)), we get y x (1) = -(η, C) and by choosing z = λyy 1 we deduce the surjectivity of λI -A. Finally, we conclude that λI -A is bijective, for all λ > 0.

Remark 1.2.2 If 0 is not an eigenvalue of B, then A is bijective (see Proposition 1.3.2 below) and A -1 is bounded.

Remark 1.2.3 If ℜ(Bη, η) ≤ 0, then ℜ (izI -B) -1 C, C ≥ 0 . Indeed, ℜ((izI -B) -1 C, C) = ℜ(u, (izI -B)u) = ℜ(u, izu) -ℜ(u, Bu) = ℜ(-iz u 2 ) -ℜ(u, Bu) = -ℜ(u, Bu) ≥ 0.
Since A is m-dissipative, then Lumer-Phillips theorem allows us to state the following corollary.

Corollary 1.2.4 (i) For an initial datum u 0 ∈ H there exists a unique solution

u ∈ C([0, +∞), H) to problem (1.3). Moreover, if u 0 ∈ D(A), then u ∈ C([0, +∞), D(A)) ∩ C 1 ([0, +∞), H).
(ii) For each u 0 ∈ D(A), the energy E(t) of the solution u of problem (1.3), defined by

E(t) = 1 2 u(t) 2 H , satisfies d dt E(t) = ℜ(Bη, η),
therefore the energy is non-increasing.

Proof. (i) is a direct consequence of Lumer-Phillips theorem.

(ii) holds simply since dE(t) dt = ℜ( du(t) dt , u(t)) = ℜ(Au, u).

Asymptotic stability

Since A is m-dissipative and D(A) is compactly embedded in H, then for all λ > 0 the operator (λI -A) -1 is compact. Thus A has a compact resolvent, which implies that the spectrum of σ(A) is equal to its discrete spectrum σ d (A). To show that (T (t)) t>0 generated by A is stable we are going to use the following theorem due to Arendt and Batty (see [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF]).

Theorem 1.3.1 (Arendt-Batty) Let X be a reflexive Banach space. Assume that T is bounded and no eigenvalues of A lies on the imaginary axis. If σ(A) ∩ iR is countable, then T is stable.

Indeed, in our case A has a compact resolvent, which implies that σ(A) is purely formed of eigenvalues and the conditions of Theorem 1.3.1 reduce to σ d (A) ∩ iR = φ.

In order to prove the asymptotic stability of the energy of system (1.1) under some appropriate assumptions, we characterize in the subsequent section the eigenvalues of A.

Characteristic equation

Proposition 1.3.2 A is invertible if and only if B is invertible. Proof. Let   y z η   ∈ D(A) be a solution of A   y z η   =   0 0 0   . That is,   z y xx Bη + Cz(1)   =   0 0 0   ,
which is equivalent to

y xx = 0, z = 0, y(0) = 0, Bη = 0, y x (1) + (η, C) = 0.
We write equivalently

y = cx, z = 0, Bη = 0, c + (η, C) = 0, for some c ∈ C. Suppose 0 ∈ σ(B). Then η = 0, which implies c = 0, hence 0 ∈ σ(A). Suppose 0 ∈ σ(B).
Choose η an eigenvector of B, then (-(η, C)x, 0, η) T is an eigenvector of A associated with 0. Thus 0 ∈ σ(A).

Proposition 1.3.3 A complex number λ is an eigenvalue of A if and only if it satisfies the characteristic equation given by:

C A (λ) = det λI -B -C sinh λ C * M cosh λ = 0.
Proof. Let λ be a non zero eigenvalue of A. Let   y z η   ∈ D(A) be the associated eigenvector.

Then, we have

  y z η   ∈ D(A), A   y z η   = λ   y z η   , equivalently,   y z η   ∈ D(A),   z y xx Bη + Cz(1)   = λ   y z η   . Thus z = λy, y xx = λz, Bη + Cz(1) = λη, y(0) = 0, z(0) = 0, y x (1) + (η, C) = 0.
We get

y xx = λ 2 y, y(0) = 0, z = λy, (λI -B)η -Cλy(1) = 0, C * M η + y x (1) = 0.
(1.7)

Then there exists α ∈ C such that 

y(x) = α sinh(λx), z(x) = αλ sinh(λx), (λI -B)η -Cλ sinh(λ)α = 0, C * M η + λ cosh(λ)α = 0. (1.8) Hence to find λ ∈ σ(A) is equivalent to find a nonzero couple (η, α) solution of λI -B -Cλ sinh λ C * M λ cosh λ η α = 0 0 . Consequently, λ ∈ σ(A) if and only if C A (λ) = det λI -B -C sinh λ C * M cosh λ = 0. Remark that C A (0) = det -B 0 C * M 1 = det(-B).
cosh λ + (λI -B) -1 C, C C n sinh λ = 0, (1.9) 
or equivalently

det(λI -B) cosh λ + (adj(λI -B)C, C) C n sinh λ = 0, (1.10) 
where adj(λI -B) denotes the adjugate matrix of λI -B.

Proof. Let (y, z, η) ⊤ ∈ D(A) be the associated eigenvector. Using equation (1.7) there exists α ∈ C such that y, z and η satisfy (1.8). Since (λI -B) is invertible, then supposing α = 0 implies that (y, z, η) = (0, 0, 0). We deduce that α = 0 and as λ ∈ σ(B) we can write

η = (λI -B) -1 Cαλ sinh λ, thus λ satisfies λ cosh λ + ((λI -B) -1 C, C) C n λ sinh λ = 0.
Hence every nonzero λ ∈ σ(B) satisfies the characteristic equation given by (1.9). Noting that (λI -B) -1 = 1 det(λI-B) adj(λI -B), we may write our characteristic equation satisfied by any nonzero λ ∈ σ(A)\σ(B) as in equation (1.10).

Up to now we obtained the characteristic equation satisfied by all λ ∈ σ(A), and gave a precise characterization of λ ∈ σ(A) in case it is not an eigenvalue of B. The next section is dedicated to the discussion of the conditions that allows to obtain asymptotic stability of the C 0 -semigroup generated by A.

Conditions of stability

Proposition 1.3.5 Let z ∈ R * . Then iz ∈ σ(B) is an eigenvalue of A if and only if ℜ((izI -B) -1 C, C) C n = 0 and cos z -ℑ((izI -B) -1 C, C) C n sin z = 0.
(1.11)

Proof. Indeed, by (1.9), we have

iz ∈ σ(A) \ σ(B) ⇔ cos z + i sin z ℜ (izI -B) -1 C, C C n + iℑ (izI -B) -1 C, C C n = 0, which is equivalent to ℜ((izI -B) -1 C, C) C n sin z = 0, cos z -ℑ (izI -B) -1 C, C C n sin z = 0.
(1.12)

If sin z = 0, then cos z = 0 and system (1.12) has no solution. We deduce that z is a solution of (1.12) if and only if (1.11) holds.

Proposition 1.3.6 For any integer k, ikπ is an eigenvalue of A if and only if ikπ is an eigenvalue of B.

Proof. Being an eigenvalue of A, ikπ satisfies C A (ikπ) = 0, i.e.

± det(ikπI -B) = det ikπI -B 0 C * M (-1) k = 0, that is ikπ ∈ σ(B). Proposition 1.3.7 Let λ ∈ σ(B) such that λ = ikπ for every k ∈ Z. Suppose that all nonzero η ∈ ker(λI -B) are not orthogonal to C. Then C ∈ ker( λI -B * ) ⊥ implies that λ ∈ σ(A).
Proof. Indeed, λ ∈ σ(A) implies the existence of (α, η) = (0, 0) satisfying Proof. The proof follows directly from Proposition 1.3. 

Polynomial stability

Let us first define the conservative system associated with system (1.1) by

       y tt (x, t) -y xx (x, t) = 0, 0 < x < 1, t > 0, y(0, t) = 0, t > 0, y x (1, t) + (η(t), C) C n = 0, t > 0, η t (t) -B 0 η(t) -Cy t (1, t) = 0, t > 0, (1.13)
with the initial conditions given by (1.2). Let A be defined by D(A) = D(A) and

A   y z η   =   z y xx B 0 η + Cz(1)   , ∀   y z η   ∈ D(A).

Non uniform stability of A

We present in the subsequent lemma the tool to be used in proving the non uniformity of the C 0 -semigroup generated by A (See for instance [START_REF] Rao | Stabilization of elastic plates with dynamical boundary control[END_REF]).

Lemma 1.4.1 Let A = -A * be the infinitesimal generator of a C 0 group, and let B be a compact operator in the Hilbert space H. Then the group (T (t)) t>0 , generated by the operator -(A + B), has no uniform energy decay rate for t > 0.

By replacing B by B 0 in the proof of Proposition 1.2.1 we deduce that for λ > 0, λI -A is surjective. Also, using the same method as in the proof of Proposition 1.2.1 we can easily show that λI + A is surjective. Accordingly, the subsequent remark follows.

Remark 1.4.2 Since B 0 is skew-adjoint, it follows that A is skew-symmetric. Now, as λI -A and µI + A are onto for some λ > 0, µ > 0, A is skew-adjoint. According to Stone's theorem (see Theorem 10.8 in Chapter 1 of [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]), A generates a unitary group.

Proposition 1.4.3 The C 0 -semigroup associated with A is not uniformly stable.

Proof. We have (

A -A)   y z η   =   0 0 Rη   , which is compact since it is a finite rank operator.
The required result follows from Lemma 1.4.1.

Next, we discuss the asymptotic behavior of the eigenvalues and eigenvectors of A. Later, we establish some inequalities corresponding to the solutions of system (1.1) and those of the conservative one (1.13) to deduce finally the polynomial stability.

Asymptotic behavior of the spectrum of A

Denote by P : C n → W the projection map from C n onto W , with W = (ker R) ⊥ . We recall that P is linear continuous map satisfying P 2 = P and that any η ∈ C n = ker R ⊕ W can be written in a unique way as η = P η + η, where P η ∈ W and η ∈ ker R. Remark 1.4.4 Clearly, (-Rη, η) 1 2 is a norm on W . As W is a finite dimensional space, it follows from the property of the equivalence of norms on finite dimensional spaces that there exists α > 0 such that (-Rη, η) ≥ α P η 2 2 , for all η ∈ C n , where • 2 is the Euclidean norm.

As ℜ(Au, u) = 0, for all u ∈ D(A), then all the eigenvalues of A are purely imaginary. Denote by λ = iµ the eigenvalues of A, by φ µ = (y µ , z µ , η µ ) the associated eigenvectors. Due to Proposition 1.3.4, an associated eigenvector with λ = iµ, where |µ| > B 0 , is given by

φ µ = 1 N (µ) (i sin(µx), -µ sin(µx), -(iµI -B 0 ) -1 Cµ sin µ),
with N (µ) the factor of normalization given by

N (µ) = µ 2 + (iµI -B 0 ) -1 C 2 C n µ 2 sin 2 (µ) = µ 2 + sin 2 (µ) (I - B 0 iµ ) -1 C 2 C n .
Assume that there exists p ∈ N ∪ {0} such that

P (B p 0 C) = 0. Let m = min{p ∈ N ∪ {0} : P (B p 0 C) = 0}. (1.14)
Proposition 1.4.5 As k → ∞, the asymptotic expansions of µ k (with ℑ(µ k ) ∈ (kπ, (k + 1)π)), N (µ k ) and P η µ k are given by

µ k = kπ + π 2 + C 2 kπ - C 2 2k 2 π + (B 0 C, C) ik 2 π 2 + o 1 k 2 , N (µ k ) = k 2 π 2 + o(k 2 ), P η µ k = (-1) k 1 i m-1 P (B m 0 C) k m+1 π m+1 + o 1 k m+1 .
Moreover, the expansions of µ -k (with ℑ(µ -k ) ∈ (-(k + 1)π, -kπ)) and P η µ -k are

µ -k = -kπ - π 2 - C 2 kπ + C 2 2k 2 π + (B 0 C, C) ik 2 π 2 + o 1 k 2 , P η µ -k = (-1) k-m+1 1 i m-1 P (B m 0 C) k m+1 π m+1 + o 1 k m+1 .
Proof. For µ ∈ C with |µ| large enough, namely |µ| > B 0 and using Proposition 1.3.4 we have that iµ is an eigenvalue of A if and only if µ satisfies

cos µ + (iµI -B 0 ) -1 C, C C n i sin µ = 0, which implies cos µ = -i (iµI -B 0 ) -1 C, C C n sin µ.
For µ = kπ the above expression is not satisfied, so µ = kπ, dividing by sin µ, we obtain:

cot µ = g(µ), with g(µ) = - 1 µ I - B 0 iµ -1 C, C C n . Since |µ| > B 0 , I -B 0 iµ is invertible and I -B 0 iµ -1 = ∞ n=0 B 0 iµ n .
By the continuity of the mapping u → (u, C)(u ∈ C n ), we get

g(µ) = - 1 µ ∞ n=0 B 0 iµ n C, C C n = ∞ n=0 -B 0 n i n µ n+1 C, C C n .
We proceed by studying the variation of g. Indeed, the derivative of g is given by

g ′ (µ) = ∞ n=0 n + 1 µ n+2 (B n 0 C, C) i n .
Now, let us discuss the number of roots of g between kπ and (k + 1)π. For |µ| large enough, we have

g(µ) = -C 2 µ + o 1 µ , and g ′ (µ) = C 2 µ 2 + o 1 µ 2
which implies that g is negative and increasing for such values of µ, thus we deduce that for k large enough there exists a unique µ k between kπ and (k + 1)π solution of g(µ) = cot(µ) . Hence the form of an eigenvalue between ikπ and i(k

+ 1)π, is iµ k with µ k = kπ + π 2 + ε. Since cot(µ k ) = g(µ k ), then π 2 + ε = cot -1 (g(µ k )), but g(µ) → 0 as µ → ∞, so ε = o(1)
. To find the asymptotic expansion of ε, we consider the inverse cotangent of g(µ). Indeed, we have:

cot -1 (g(µ k )) = π 2 - ∞ k=0 (-1) k (g(µ k )) 2k+1 2k + 1 = π 2 -g(µ k ) + o (g(µ k )) 2 .
But,

g(µ k ) = - C 2 µ k - (B 0 C, C) iµ 2 k + o 1 µ 2 k , 1 µ k = 1 kπ - 1 2k 2 π + o 1 k 2 , 1 µ 2 k = 1 k 2 π 2 + o 1 k 2 , thus g(µ k ) = - C 2 kπ + C 2 2k 2 π - (B 0 C, C) ik 2 π 2 + o 1 k 2 .
We finally get the asymptotic expansion of µ k ∈ (kπ, (k + 1)π),

µ k = kπ + π 2 + C 2 kπ - C 2 2k 2 π + (B 0 C, C) ik 2 π 2 + o 1 k 2 .
As sin(µ k ) = sin(kπ

+ π 2 + o(1)) = (-1) k + o(1) and C + ∞ n=1 B 0 n i n µ n k C 2 is bounded, we get N (µ k ) = k 2 π 2 + o(k 2 ).
The expansion of η µ k is given by

η µ k = i sin µ k N (µ k ) I - B 0 iµ k -1 C = (-1) k i 1 kπ + o 1 k ∞ n=0 B n 0 C i n µ n k .
Taking the projection P of η µ k on W , we get

P η µ k = (-1) k 1 i m-1 P (B m 0 C) k m+1 π m+1 + o 1 k m+1 .
We proceed by the same way to prove the existence of a unique µ -k ∈ [-(k + 1)π, -kπ] and obtain its asymptotic expansion.

An a priori estimate

Let u 1 be the solution of the conservative problem, i.e. u 1 satisfies

d dt u 1 (t) = Au 1 (t), t > 0, u 1 (0) = u 0 . (1.15) 
Let u be a solution of the original system associated with the coupled PDE-ODE system

d dt u(t) = Au(t), t > 0, u(0) = u 0 , (1.16) 
where D(A) = D(A) was introduced before.

Setting u 2 = uu 1 , u 2 fulfills the following non homogeneous initial value problem

d dt u 2 (t) = Au 2 (t) + f (t), t > 0, u 2 (0) = 0, (1.17) 
where f = (0, 0, Rη) with η the last component of u.

Definition 1.4.6 The function u 2 ∈ C([0, T ]; H) given by: u 2 (t) = t 0 e A(t-s) f (s)ds is the mild solution of the initial value problem (1.17) on [0, T ].

Back to our problem, we have d dt E(t) = ℜ(Bη, η) = (Rη, η) ≤ 0, then integrating between 0 and any T > 0, we get

E(T ) -E(0) = T 0 (Rη, η)dt.
We claim that there exists c > 0 depending on T such that c T 0 (-Rη, η)dt ≥ T 0 (-Rη 1 , η 1 )dt. To get the polynomial stability, we will impose assumptions to bound T 0 (-Rη 1 , η 1 )dt from below. Proposition 1.4.7 For all T > 0, there exists c > 0 depending on T such that

T 0 (-Rη 1 (t), η 1 (t))dt ≤ c T 0 (-Rη(t), η(t))dt.
(1.18)

Proof. Throughout the proof, we use the notation A B to denote the inequality A ≤ cB for some positive constant c depending on T . Recall that B can be written as B 0 + R where B 0 is skew-adjoint and R is self-adjoint with

(Rη, η) = ℜ(Bη, η) ≤ 0.
Note also that ℜ(Rη, κ) = ℜ(Rκ, η) from which we deduce that,

ℜ(Rη, κ) ≤ (-Rη, η) 1 2 (-Rκ, κ) 1 2 
.

Hence (-Rη, η)

1
2 defines a semi norm on C n . As η 1 = ηη 2 , we get: 

(-Rη 1 , η 1 ) ≤ 2 ((-Rη, η) + (-Rη 2 , η 2 )) . ( 1 
u 2 (t) = t 0 e A(t-s)   0 0 Rη(s)   ds.
As A is skew-adjoint, it follows from Remark 1.4.2 that A generates a group. Moreover, we have

(u 2 (t), u 2 (t)) H = t 0   e A(t-s)   0 0 Rη(s)   ,   y 2 (t) z 2 (t) η 2 (t)     H ds = t 0     0 0 Rη(s)   , e -A(t-s)   y 2 (t) z 2 (t) η 2 (t)     H ds = t 0 Rη(s), p 3 (e -A(t-s) u 2 (t)) C n ds,
where p 3 (u) denotes the projection of u ∈ H on C n . It follows that

t 0 (Rη(s), p 3 (e -A(t-s) u 2 (t)))ds ≤ t 0 (-Rη(s), η(s)) 1 2 (-Rp 3 (e -A(t-s) u 2 (t)), p 3 (e -A(t-s) u 2 (t))) 1 2 ds t 0 (-Rη(s), η(s))ds 1 2 t 0 p 3 (e -A(t-s) u 2 (t)) 2 C n ds 1 2 
.

We then get for t < T ,

u 2 (t) 2 H t 0 (-Rη(s), η(s)) ds 1 2 u 2 (t) H Consequently, η 2 (t) C n ≤ u 2 (t) H T 0 (-Rη(t), η(t)) dt 1 2
, which leads to

T 0 (-Rη 2 (t), η 2 (t)) dt T 0 η 2 (t) 2 C n dt T 0 (-Rη(t), η(t)) dt.
Hence by (1.19), we conclude that (1.18) holds.

In the next section we find a lower bound of T 0 (-Rη 1 (t), η 1 (t)) dt, that allows to deduce a lower bound of T 0 (-Rη(t), η(t)) dt.

An Observability Inequality

First, we present the following lemma which guarantees that P η µ = 0, for all µ with small modulus. The purpose of this lemma is to deal with the terms of low indices in the proposition that follows. As a second consequence, it also implies that under its assumptions A has no eigenvalues on the imaginary axis.

Lemma 1.4.8 Suppose that σ(A) ∩ σ(B 0 ) ⊂ {ikπ : k ∈ Z} and P ν k = 0, where ν k represents the eigenvector of B 0 associated with ikπ ∈ σ(B 0 ). Suppose moreover that

P (iµI -B 0 ) -1 C = 0, ∀iµ ∈ σ(A)\σ(B 0 ), then P η µ = 0, for all iµ ∈ σ(A).
Proof. Let iµ ∈ σ(A). If iµ ∈ σ(B 0 ), then by Proposition 1.3.2 and Proposition 1.3.6, we get iµ = ikπ for all k ∈ Z. Since η µ is given by η µ = -(iµI -B 0 ) -1 Cαµ sin µ for some nonzero α and P (iµI -B 0 ) -1 C = 0, then P (η µ ) = 0. If iµ ∈ σ(B 0 ), then µ = k 0 π for some k 0 ∈ Z. But by Proposition 1.3.2 and by (1.8) of Proposition 1.3.3, η µ the last component of the eigenvector φ µ of A associated with iµ is different from 0 and satisfies B 0 η µ = iµη µ . Hence P η µ = 0. Remark 1.4.9 If C ∈ ker(iµI -B 0 ) ⊥ and (η, C) = 0 for all nonzero η ∈ ker(iµI -B 0 ), for all iµ ∈ σ(B 0 ) with µ = kπ for every k ∈ Z, then by Proposition 1.3.7 we get σ(A) ∩ σ(B 0 ) ⊂ {ikπ : k ∈ Z}. Remark also that if the eigenvalues of B 0 are geometrically simple then the conditions needed to imply σ(A) ∩ σ(B 0 ) ⊂ {ikπ : k ∈ Z} reduce to C ∈ ker(iµI -B 0 ) ⊥ for all iµ ∈ σ(B 0 ) . (1.20)

Taking the inner product of the first identity with η, we find

((iµI -B 0 -R)η, η) + µ sin µα(C, η) = 0.
Taking into account the second identity of (1.20), we get

((iµI -B 0 -R)η, η) + iµ 2 sin µ cos µ|α| 2 = 0.
The real part of this identity is nothing but

-(Rη, η) = 0.
Moreover, if 0 ∈ σ(A) ∩ iR then by Proposition 1.3.2 we deduce that Bη = 0 from which we also deduce that -(Rη, η) = 0, or equivalently η ∈ ker R (or P η = 0). Coming back to (1.20), we see that (η, α) ∈ C n × C is also solution of (iµI -B 0 )η + Cµ sin µα = 0, (η, C) + iµ cos µα = 0, for µ = 0 and B 0 η = 0 for µ = 0. In other words, iµ ∈ σ(A) and by Lemma 1.4.8, P η cannot be zero.

We recall in the subsequent theorem an inequality of Ingham's type (see for instance [START_REF] Baiocchi | Ingham-Beurling type theorems with weakened gap conditions[END_REF]).

Theorem 1.4.11 Let (λ n ) n∈Z be a strictly increasing sequence of real numbers and let U be a separable Hilbert space. Suppose the sequence (λ n ) satisfies the "gap" condition

∃γ > 0, ∀n ∈ Z, λ n+1 -λ n ≥ γ,
then for all sequence (a n ) n∈Z ⊂ U , the function

f (t) = n∈Z a n e iλnt
satisfies the estimate

T 0 f (t) 2 ∼ n∈Z a n 2 U ,
for T > 2πγ.

Now we suppose that

all λ ∈ σ(A) ∩ σ(B 0 ) ⊂ {inπ : n ∈ Z} are simple eigenvalues of B 0 . (1.21)
We already know that the algebraic and the geometric multiplicities of the eigenvalues of A are equal, since A is skew-adjoint. Moreover, we previously showed that the eigenvalues of A which do not belong to σ(B 0 ) are simple. Hence we notice that the algebraic multiplicity of any eigenvalue of A and its geometric multiplicity is equal to 1. As A is a skew-adjoint operator with compact resolvent, the spectrum of A may be represented by a sequence (λ 0,n ) n∈I = (iµ n ) n∈I with (µ n ) n∈I a strictly increasing sequence, where I = Z * if A is invertible and I = Z with

µ 0 = 0 if A is not invertible. Denote by (φ 0,n ) n∈I = (y (n) 1 , z (n) 1 , η (n) 1 ) ⊤ n∈I the corresponding
sequence of eigenvectors associated with (λ 0,n ) n∈I .

Proposition 1.4.12 Assume (1.14) and (1.21) and let u 1 = (y 1 , z 1 , η 1 ) T be the solution of the conservative problem (1.15) with initial datum u 0 ∈ D(A). If the assumptions of Lemma 1.4.8 hold, then there exists T > 0 and c > 0 depending on T such that

T 0 P η 1 (t) 2 dt ≥ c u 0 2 D(A -(m+1) ) . (1.22)
Proof. As (φ 0,n ) n∈I forms a Hilbert basis of H, we may write

u 0 = n∈I u (n) 0 φ 0,n . Moreover, u 1 (t) = n∈I u (n) 0 e iµnt φ 0,n , η 1 (t) = n∈I u (n) 0 e iµnt η (n) 1 , P η 1 (t) = n∈I u (n) 0 e iµnt P η (n) 1 . Note that µ n+1 -µ n ≥ π 2 for |n| large enough, say for |n| ≥ n 0 . Set γ 0 = min π 2 , min{µ n+1 -µ n : |n| < n 0 } . As µ k+1 -µ k ≥ γ 0 > 0,
then using Ingham's inequality there exists T > 2πγ 0 > 0 and a constant c > 0 depending on T such that

T 0 P η 1 (t) 2 dt ≥ c n∈I u (n) 0 P η (n) 1 2 .
For n 0 ∈ N large enough, there exists an integer k n 0 such that for all |n| ≥ n 0 we have

µ n ∈ [k n π, k n+1 π] with k n+1 = k n + 1 and P η (n) 1 = (-1) n 1 i m-1 P (B m 0 C) k m+1 n π m+1 + o 1 k m+1 n , then using the fact that P η (n) 1 2 ∼ 1 k 2(m+1) n π 2(m+1)
, and due to Lemma 1.4.8, we obtain by Ingham's inequality the existence of T > 0 such that

T 0 P η 1 2 dt |n|<n 0 |u (n) 0 | 2 |λ 0,n | -2(m+1) + |n|≥n 0 |u (n) 0 | 2 k 2(m+1) n , (1.23) 
with the notation 0 -2(m+1) = 1. For a non invertible A, define the norm on D(A -(m+1) ) by

u 0 2 D(A -(m+1) ) := |u (0) 0 | 2 + n∈Z * |λ 0,n | -2(m+1) |u (n) 0 | 2 , then estimate (1.23) implies (1.22).

Interpolation inequality

Lemma 1.4.13 For all u 0 ∈ D(A) and all s ∈ N, we have u 0 s+1

H ≤ u 0 D(A -s ) u 0 s D(A) .
Proof. We proceed by proving:

u 0 2 H ≤ u 0 2 s+1 D(A -s ) u 0 2s s+1 D(A) . In fact, we have u 0 2 H = n∈I |u (n) 0 | 2 , where u 0 = n∈I u (n) 0 φ 0,n with I = Z or I = Z * .
Using Cauchy-Schwarz inequality, we get for any γ > 0, β > 0 such that γ + β = 2, and any conjugate exponents p > 0, q > 0 and any α > 0

n∈I |u (n) 0 | 2 = n∈I |u (n) 0 | 2 |λ 0,n | α |λ 0,n | -α = n∈I |u (n) 0 | β |λ 0,n | α |u (n) 0 | γ |λ 0,n | -α ≤ n∈I (|u (n) 0 | β |λ 0,n | α ) p 1 p n∈I (|u (n) 0 | γ |λ 0,n | -α ) q 1 q
, with 0 α = 0 -α = 1 as notation, and u 0 2

D(A r ) := n∈I |u (n) 0 | 2 |λ 0,n | 2r for all r ∈ R.
The result follows from the following choice q

= s + 1, p = q s , α = β = 2 p = 2s q , γ = 2 q .
The next Lemma proved in Lemma 5.2 of [START_REF] Ammari | Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force[END_REF] is required for the proof of stability.

Lemma 1.4.14 Let (ε k ) k be a sequence of positive real numbers satisfying

ε k+1 ≤ ε k -Cε 2+α k+1 , ∀k ≥ 0,
where C > 0 and α > -1. Then there exists a positive constant M (depending on α and C) such that

ε k ≤ M (1 + k) 1 α+1
, ∀k ≥ 0.

The polynomial stability

We are now able to state our polynomial stability result. 

E(t) ≤ M (1 + t) 1 m+1 u 0 2 D(A) , for some M > 0. Proof. Let p = m+1. With T > 0 from Proposition 1.4.12 we have E(T ) ≤ E(0)-K u 0 2 D(A -p ) ,
where K is a positive constant depending on T . Indeed, by Proposition 1.4.12 we have

E(T ) -E(0) = T 0 (Rη, η)dt ≤ 1 c T 0 (Rη 1 , η 1 )dt ≤ -α c T 0 P η 1 (t) 2 2 dt ≤ -K u 0 2 D(A -p ) . Set E 1 (0) = 1 2 u 0 2 H + Au 0 2 H . By Lemma 1.4.13, we have u 0 2 D(A -p ) ≥ u 0 2(p+1) H u 0 2p D(A) ≥ E p+1 (0) E p 1 (0)
. Since the energy is decreasing with time, we obtain

E(T ) ≤ E(0) -K E p+1 (0) E p 1 (0) ≤ E(0) -K E p+1 (T ) E p 1 (0) 
.

We prove similarly that

E((k + 1)T ) ≤ E(kT ) -K E p+1 ((k + 1)T ) E p 1 (kT )
.

Dividing by E 1 (0) and noting that E 1 (0) ≥ E 1 (kT ), we obtain

ε k+1 ≤ ε k -Kε p+1 k+1 , with ε k = E(kT ) E 1 (0) . Applying Lemma 1.4.14, there exists M > 0 depending on T such that ε k ≤ M (1+k) 1 1+α
, where

2 + α = p + 1, which implies that E(t) ≤ M (1 + t) 1 p E 1 (0), since E 1 (0) u 0 2 D(A) .

Optimality of the energy decay rate

Let f (λ) = det(λI -B) cosh λ + (adj(λI -B)C, C) sinh λ, g(λ) = det(λI -B 0 ) cosh λ + (adj(λI -B 0 )C, C) sinh λ.
In order to find a correspondence between the eigenvectors of A and A, we discuss in the subsequent proposition the number of roots of g and f in appropriate regions of the complex plane.

Proposition 1.5.1 The number of eigenvalues of A counted with multiplicities is equal to that of A in the square

C n = [-nπ, nπ] × [-nπ, nπ],
for n large enough.

Proof. Using Rouché's Theorem we prove that f and g have the same number of roots in C n , for n large enough.

Let

h(λ) = cosh λ + ((λI -B) -1 C, C) sinh λ and h 0 (λ) = cosh λ + ((λI -B 0 ) -1 C, C) sinh λ.
Computing h(λ)h 0 (λ) for |λ| large enough, we get:

h(λ) -h 0 (λ) = (λI -B) -1 C, C sinh λ -(λI -B 0 ) -1 C, C sinh λ = sinh λ λ I - B λ -1 C -I - B 0 λ -1 C, C C n = sinh λ λ ∞ n=1 B n -B n 0 λ n C, C C n = (RC, C) λ 2 sinh λ + o 1 λ 2 sinh λ. Consider the ratio of |h(λ) -h 0 (λ)| by |h 0 (λ)| |h(λ) -h 0 (λ)| |h 0 (λ)| = | (RC,C) λ 2 sinh λ + o( 1 λ 2 ) sinh λ| | cosh λ + ((λI -B) -1 C, C) sinh λ| ≤ K |λ 2 cosh λ sinh λ + λ ∞ n=0 (B n C, C) λ n | .
Note that for λ = x + iy, we have | sinh λ| 2 = sin 2 y + sinh 2 x, and

| cosh λ| 2 = cos 2 y + sinh 2 x, thus 1 -1 sinh 2 x ≤ | cosh λ sinh λ | 2 ≤ 1 + 1 sinh 2 x , which implies that for |x| = |ℜ(λ)| → ∞, | cosh λ sinh λ | → 1. We deduce that |h(λ) -h 0 (λ)| |h 0 (λ)| → 0, as |ℜ(λ)| → ∞. Suppose that |ℑ(λ)| = |y| = nπ, then | λ cosh λ sinh λ | 2 = (n 2 π 2 + x 2 ) 1 + 1 sinh 2 x ≥ n 2 π 2 . It follows that for such λ, |h(λ)-h 0 (λ)| |h 0 (λ)| → 0 as n → ∞.
For n chosen large enough, we then have

|h(λ)-h 0 (λ)| |h 0 (λ)| → 0, for all λ ∈ ∂C n . Consider the ratio |f (z)-g(z)| |g(z)| , we may write for |λ| > max{ B , B 0 } |f (λ) -g(λ)| |g(λ)| = | det(λI -B)h(λ) -det(λI -B 0 )h 0 (λ)| | det(λI -B 0 )h 0 (λ)| ≤ | det(λI -B)| | det(λI -B 0 )| |h(λ) -h 0 (λ)| |h 0 (λ)| + | det(λI -B) -det(λI -B 0 )| | det(λI -B 0 )|
Knowing that det(λI -B) is a monic polynomial of degree n we get

| det(λI -B)| | det(λI -B 0 )| → 1, as |λ| → ∞ and | det(λI -B) -det(λI -B 0 )| | det(λI -B 0 )| 1 |λ| → 0, as |λ| → ∞.
We deduce that for λ ∈ ∂C n with |λ| → ∞, we have

|f (λ)-g(λ)| |g(λ)| → 0. Thus for λ ∈ ∂C n and n large enough, |f (λ)-g(λ)| |g(λ)| < 1.
Clearly, f and g are analytic, this together with the above comparison allows to apply Rouché's theorem in C n for n large enough, from which we deduce that f and g have the same number of roots in C n .

Definition 1.5.2 A system {g n } n∈N of elements of H is said to be ω-linearly independent if ∞ n=1 a n g n = 0 implies a n = 0, ∀n ∈ N.
In order to show that the generalized eigenfunctions of A are ω-linearly independent, we use the following Lemma mentioned in [START_REF] Conrad | On the stabilization of a flexible beam with a tip mass[END_REF].

Lemma 1.5.3 Let B be a densely defined closed linear operator in a Hilbert space H. Assume that the spectrum of B consists entirely of, at most countable, isolated points, each of which has a finite algebraic multiplicity. Then the generalized eigenfunctions are ω-linearly independent.

To use Lemma 1.5.3, we show that the algebraic multiplicities of all eigenvalues of A are finite. In fact, the multiple eigenvalues of A must satisfy a polynomial equation, thus they are finite and of finite algebraic multiplicity. Proposition 1.5.4 All the eigenvalues of A have finite algebraic multiplicities. Moreover, the eigenvalues with large enough moduli are algebraically simple.

Proof. Define F by:

F (z) = 2e z f (z) = e 2z P 1 (z) + P 2 (z) where P 1 (z) = det(zI -B) + (adj(zI -B)C, C), and P 2 (z) = det(zI -B) -(adj(zI -B)C, C).
Every non simple eigenvalue z satisfies F (z) = F ′ (z) = 0, and thus satisfies P (z) = 0, where

P (z) = F ′ (z)P 2 (z) -F (z)P ′ 2 (z) e 2z = 2P 1 (z) + P ′ 1 (z) P 2 (z) -P 1 (z)P ′ 2 (z).
Hence a non simple eigenvalue z of A is one of at most 2n roots of P (z) having a multiplicity ≤ 2n, where n is the dimension of C n .

Remark 1.5.5 Assume that

σ(A) ∩ σ(B 0 ) ⊆ {ikπ : k ∈ Z} and σ(A) ∩ σ(B) = φ, (1.24) 
then f and g describe the full spectrum of A and A respectively allowing to get a one-to-one correspondence between the spectra of A and A. In practice, we will check conditions of Remark 1.4.9, C ∈ ker( λI -B * ) ⊥ and (η, C) = 0 for all nonzero η ∈ ker(λI -B) for every λ ∈ σ(B) to show that g represents the characteristic equation satisfied by all eigenvalues of A. Note that the last condition is equivalent to C ∈ ker(λI -B) ⊥ for a geometrically simple eigenvalue λ of B.

In what follows we discuss the asymptotic behavior of the eigenvalues of A and the associated eigenvectors that allows studying some cases in which optimality of the polynomial decay can be obtained.

Proposition 1.5.6 Let λ be an eigenvalue of A with |λ| large enough. Then λ satisfies the following expansion for some k large enough,

λ = i kπ + π 2 + C 2 kπ - C 2 2k 2 π + (B 0 C, C) ik 2 π 2 + (RC, C) k 2 π 2 + o 1 k 2 . (1.25)
Proof. Let λ with |λ| > B be a root of h, since F (λ) = 0, then

e 2λ = -1 - 2 (λI -B) -1 C, C 1 + ((λI -B) -1 C, C) . Setting x = 2 (λI -B) -1 C, C 1 + ((λI -B) -1 C, C) , we have x = 2 λ ∞ n=0 (B n C, C) λ n 1 1 + ∞ n=0 (B n C, C) λ n+1 = 2 C 2 λ + 2 (BC, C) -C 4 λ 2 + o 1 λ 2 ,
and

x 2 = 4 C 4 λ 2 + o 1 λ 2 .
It follows that

ln(1 -x) = - ∞ n=1 x n n = -2 C 2 λ -2 (BC, C) λ 2 + o 1 λ 2 .
As |λ| is large, the imaginary part of λ lies between kπ and (k + 1)π for some k large enough, and

λ = i(kπ + π 2 ) + 1 2 ln(1 -x). As 1 λ = -i kπ + i 2k 2 π + o 1 k 2 and 1 λ 2 = -1 k 2 π 2 + o 1 k 2 , we obtain (1.25) as required.
To show that the system of generalized eigenfunctions of A forms a Riesz basis of H, we use the following well known Bari's theorem.

Theorem 1.5.7 Let I be a countable set. Consider the two systems (ψ k ) k∈I and (φ k ) k∈I of vectors of H such that (φ k ) k∈I is a Riesz basis of H. If (ψ k ) k∈I is a sequence of ω-linearly independent vectors quadratically close to (φ k ) k∈I (i.e.

k∈I ψ k -φ k 2 < +∞), then (ψ k ) k∈I is a Riesz basis of H.
Denote by (λ k ) k∈I the set of eigenvalues of A counted with multiplicities such that

ℑ(λ k ) ≤ ℑ(λ k+1 ), ∀k ∈ I.
We use the notation (λ 0,k ) k∈I introduced before to denote the sequence of eigenvalues of A.

Proposition 1.5.8 If (1.24) holds, then the system of generalized eigenvectors of A forms a Riesz basis of H.

Proof. For k ∈ N large enough, an eigenvector φ k (respectively φ 0,k ) of A associated with the eigenvalue λ k (respectively λ 0,k ) whose imaginary ℑ(λ k ) (respectively ℑ(λ 0,k )) lies between n k π and (n k + 1)π for some integer n k and whose norm φ k ∼ 1, is given by

φ k = 1 λ k sinh(λ k x), λ k sinh(λ k x), λ k sinh λ k (λ k I -B) -1 C . with 1 λ k = 1 in k π + o( 1 n k ) ∼ 1 i N (µ n k ) ∼ 1 λ 0,k .
Now, we examine for k large enough the following difference,

φ k -φ 0,k 2 = 1 0 | λ k,0 i (N (µ n k )) cosh(λ k,0 x) -cosh(λ k x)| 2 dx + 1 0 | λ k,0 i (N (µ n k )) sinh(λ k,0 x) -sinh(λ k x)| 2 dx + 1 0 1 i (N (µ n k )) ∞ n=0 B n 0 λ n k,0 C sinh(λ k,0 ) - 1 λ k ∞ n=0 B n λ n k C sinh(λ k ) 2 C n dx.
Indeed, we have

| λ k,0 i (N (µ n k )) cosh(λ k,0 x) -cosh(λ k x)| 1 n k .
Similarly, we obtain

| λ k,0 i (N (µ n k )) sinh(λ k,0 x) -sinh(λ k x)| 2 1 n 2 k .
Using the fact that ℜ(λ k ) → 0, as k → ∞, then for k large enough, we get

1 i (N (µ n k )) ∞ n=0 B n 0 λ n k,0 C sinh(λ k,0 ) - 1 λ k ∞ n=0 B n λ n k C sinh(λ k ) 2 C n ≤ 1 n 2 k .
We conclude that

k∈I φ k -φ 0,k 2 H < +∞,
which implies that the conditions of Bari's theorem hold because of (1.24) (see Remark 1.5.5).

Definition 1.5.9 For all u 0 ∈ D(A) define ω(u 0 ) by

ω(u 0 ) = sup{α ∈ R : E(t) = 1 2 u(t) 2 1 t α }.
A decay rate is said to be optimal if it is equal to the minimum of ω(u 0 ) over all values of u 0 ∈ D(A). Our aim is thus to find inf

u 0 ∈D(A)
ω(u 0 ). We recall the following Lemma (see [START_REF] Mercier | Polynomial decay rate for a wave equation with weak dynamic boundary feedback laws[END_REF][START_REF] Wehbe | Rational energy decay rate for a wave equation with dynamical control[END_REF]), which will be used in the proof of optimality.

Lemma 1.5.10 Consider a C 0 -semigroup T (t) acting on a (real or complex) Hilbert space H with infinitesimal generator A. Assume the following

(i) For k ∈ N * , the eigenvalue λ k of A is of the form λ k = -σ k + iτ k with σ k ≥ c 1 k δ , where c 1 > 0 and δ > 0 are independent of k. (ii) The eigenvectors φ k , k ≥ 1 associated with the eigenvalue λ k form a Riesz basis of H. (iii) Let u 0 ∈ H be such that u 0 = k≥1 a k φ k , |a k | ≤ c 2 k q , c 2 > 0, q > 1 2 .
Then there exists a constant c > 0 depending on u 0 such that

T (t)u 0 H ≤ c t (q-1 2 )/δ , ∀t > 0. Remark 1.5.11 Note that if σ k ∼ 1 k δ and |a k | ∼ 1 k q then the equivalence T (t)u 0 H ∼ 1 t (q-1 2 )/δ
, ∀t > 0 holds.

Proposition 1.5.12 Let the assumptions of Theorem 1.4.15 together with (1.24) of Remark 1.5.5 be satisfied.

If ℜ(λ k ) ∼ -1 k δ , with δ ≥ 2(m + 1), then inf u 0 ∈D(A) ω(u 0 ) = 1 m + 1 .
Proof. Let ε > 0 be given and let k 0 be large enough so that λ k is algebraically simple for all k ≥ k 0 . Set

u ε 0 = k≥k 0 1 k q φ k , with q = δ 2(m+1) + 1 2 + δε 2 . As 2(q -1) > 1, u ε 0 ∈ D(A) and Au ε 0 2 ∼ k≥k 0 1 k 2(q-1) < +∞.
Moreover, due to Proposition 1.5.8 the system (φ k ) k∈I forms a Riesz basis of H. Using Remark 1.5.11, we get

u(t) ∼ 1 t (q-1 2 ) δ = 1 t 1 2(m+1) + ε 2 .
We deduce that E(t)

∼ 1 t 1 (m+1)
+ε , and therefore

1 m + 1 ≤ inf u 0 ∈D(A) ω(u 0 ) ≤ 1 m + 1 + ε, ∀ε > 0.
Hence inf

u 0 ∈D(A) ω(u 0 ) = 1 m+1 .
Corollary 1.5.13 If m = 0 we obtain optimal polynomial energy decay given by

E(t) ≤ c t Au 0 2 H .
Proof. Using Theorem 1.4.15, the solution of system (1.1) satisfies the energy estimate given by

E(t) ≤ c t Au 0 2 H . Since P C = 0 and (-RC, C) α P C 2 for some α > 0, then ℜ(λ k ) ∼ -1 k 2
and the optimality is thus obtained by applying Proposition 1.5.12 with δ = 2.

We would like now to investigate the optimality of the energy decay in the case m = 1.

Corollary 1.5.14 If m = 1, (RC, C) = 0 and ℑ(B 2 C, C) = 0 then the polynomial energy decay rate is optimal.

Proof. By straightforward computations, we get

λ = i(kπ + π 2 ) - C 2 λ - (BC, C) λ 2 - C 6 3 + (B 2 C, C) λ 3 - C 4 (BC, C) + (B 3 C, C) λ 4 + o 1 λ 4 .
Then by further calculation, as (RC, C) = 0 we obtain

ℜ(λ) = ℑ(B 2 C, C) k 3 π 3 - 3ℑ(B 2 C, C) 2k 4 π 3 - ℜ(B 3 C, C) k 4 π 4 + o 1 k 4 . Moreover, since ℑ(B 2 C, C) = ℑ((RB 0 + B 0 R)C, C) = 0, we get ℜλ = - ℜ(B 3 C, C) k 4 π 4 + o 1 k 4 ,
and the optimality follows.

Remark 1.5.15

In the case m = 1, if B ∈ M n (R), M ∈ M n (R)
and C ∈ R n then the sufficient conditions to obtain optimality reduce to the first condition (RC, C) = 0.

Examples

In this section, we present some examples and applications, in which we obtain polynomial stability and check the optimality of the energy decay rate.

Example 1.

Let us consider the following system (P b 0 ,b 1 ) given by:

       y tt (x, t) -y xx (x, t) = 0, 0 < x < 1, t > 0, y(0, t) = 0, t > 0, y x (1, t) + η t (t) = 0, t > 0, η tt (t) + b 1 η t (t) + b 0 η(t) -y t (1, t) = 0, t > 0,
where y represents the transversal displacement of the vibrating string and η denotes the dynamical control variable. Here b 0 and b 1 are positive constants. This system is nothing but the system considered in [START_REF] Beale | Spectral properties of an acoustic boundary condition[END_REF][START_REF] Muñoz Rivera | Polynomial decay for the energy with an acoustic boundary condition[END_REF] with a scalar variable instead of a vectorial one in R 3 . In [START_REF] Muñoz Rivera | Polynomial decay for the energy with an acoustic boundary condition[END_REF], the authors obtained polynomial stability using a multiplier method but no optimality of the polynomial decay was proven. By our study, the optimal polynomial decay is obtained.

In this case, we have

n = 2, B = 0 1 -b 0 -b 1 and C = 0 1 .
The inner product considered on C 2 is given by

x y , x 1 y 1 C 2 = b 0 xx 1 + y ȳ1 , or M = b 0 0 0 1 ,
and

B * = 0 -1 b 0 -b 1 , B 0 = 0 1 -b 0 0 , R = 0 0 0 -b 1 .
The energy space is

H = V × L 2 (0, 1) × C 2 ,
endowed with the following inner product

((y, z, η, κ), (y 1 , z 1 , η 1 , κ 1 )) = 1 0 y x ȳ1x dx + 1 0 z z1 dx + b 0 η η1 + κκ 1 . Define D(A) = {(y, z, η, κ) ∈ H 2 (0, 1) ∩ V × V × C 2 : y x (1) = -κ}, and 
A     y z η κ     =     z y xx κ z(1) -b 0 η -b 1 κ     . B is Hurwitz, since det(λI -B) = λ 2 + b 1 λ + b 0
has no pure imaginary roots. Moreover, we have

ℜ(Bη, η) ≤ 0 and | det(izI -B)| 2 ℜ (izI -B) -1 C, C = b 1 z 2 > 0, ∀z ∈ R * .
Due to Proposition 1.2.1 and Corollary 1.3.10, we deduce the well-posedness of the system and the asymptotic stability of its energy.

In addition, the conditions of Lemma 1.4.8 are satisfied. In fact, we have

det(λI -B 0 ) = λ 2 + b 0 , σ(B 0 ) = {±i b 0 } and adj(λI -B 0 )C = 1 λ ,
and the spaces ker R and W are given by span 1 0 and span 0 1 respectively, thus

P ((λI -B 0 ) -1 C) = 0, ∀λ ∈ σ(A) \ σ(B 0 ).
To check the rest of the conditions of the lemma, we distinguish two cases:

Case 1. If µ 2 = b 0 = k 2 π 2 for all k ∈ Z, then C ∈ ker(iµI -B 0 ) ⊥ . Indeed, computing 1 iµ , 0 1 = iµ = 0, implies that C ∈ ker(iµI -B 0 ) ⊥ , as we have η ∈ ker(iµI -B 0 ) if and only if η = (1, iµ) ⊤ up to a nonzero constant. So by Remark 1.4.9, σ(A) ∩ σ(B 0 ) ⊂ {±ikπ : k ∈ Z}. In fact, due to Proposition 1.3.6, σ(A) ∩ σ(B 0 ) ⊂ {±ikπ : k ∈ Z} ∩ σ(B 0 ), thus σ(A) ∩ σ(B 0 ) = φ. Case 2. If b 0 = k 2 π 2 for some k ∈ N * , then σ(B 0 ) = {±ikπ}.
Computing the associated eigenvectors we get

η ±kπ = 1 ±ikπ and P (η ±kπ ) = 0 ±ikπ = 0.
As (1.21) holds, then applying Theorem 1.4.15 for m = 0 (since P C = 0), we deduce that the energy of the system satisfies the following polynomial decay

E(t) ≤ 1 1 + t u 0 2 D(A) .
It can be easily checked that C ∈ ker( λI -B * ) ⊥ ∪ ker(λI -B) ⊥ , for all λ ∈ σ(B), which allows us to deduce that condition (1.24) of Remark 1.5.5 is satisfied, as we already checked that C ∈ ker(iµI -B 0 ) ⊥ . Due to Corollary 1.5.13, we conclude the optimality of the energy decay.

1.6.2 Example 2.

Considering the following boundary conditions at x = 1 in system (1.1) Moreover, for all z ∈ R we have

   y x (1, t) + b 0 η(t) = 0, t > 0, η t (t) -κ(t) -y t (1, t) = 0, t > 0, κ t (t) + b 0 η(t) + b 1 κ(t) = 0, t > 0,
| det(izI -B)| 2 ℜ (izI -B) -1 C, C = b 1 b 2 0
> 0, thus using Corollary 1.3.10, we deduce the asymptotic stability of its energy.

In addition, to verify the conditions of Lemma 1.4.8, it is enough to remark that

P (adj(λI -B 0 )C) = P λ -b 0 = 0 -b 0 = 0,
and as the discussion of the case b 0 = k 2 π 2 of the first example remains unchanged, to check that σ(A) ∩ σ(B 0 ) ⊂ {±ikπ : k ∈ Z}, we just remark that

(-iµI + B 0 )C = -iµ -b 0 = 0, and 1 iµ , 1 0 C n = b 0 = 0.
Applying Theorem 1.4.15 for m = 1 (since P C = 0 and P (B 0 C) = 0), we deduce that the energy of the system satisfies the following polynomial decay

E(t) ≤ 1 √ 1 + t u 0 2 D(A) .
Moreover, by the first example condition (1.24) holds, thus the decay is optimal by Remark 1.5.15, since RC = 0.

Example 3.

Consider the following system in which the dynamical boundary control involves a third order differential equation of the dynamical variable η,

       y tt (x, t) -y xx (x, t) = 0, 0 < x < 1, t > 0, y(0, t) = 0, t > 0, y x (1, t) + 2η(t) + 2η t (t) + η tt (t) = 0, t > 0, η ttt (t) + 2η tt (t) + 3η t (t) + η(t) -y t (1, t) = 0, t > 0.
By introducing the following variables η 1 = 2η + 2η t + η tt ,η 2 = -ηη t , η 3 = η, the last two equations can be rewritten in the form

y x (1, t) + (δ(t), C) = 0, t > 0, δ t (t) -Bδ(t) -Cy t (1) = 0, t > 0,
where δ = (η 1 , η 2 , η 3 ) ⊤ , and (•, •) denotes the usual inner product defined on C 3 , and the matrices B and C are given by:

B =   0 1 0 -1 -1 1 0 -1 -1   , C =   1 0 0   . We have ℜ(Bδ, δ) = -|η 2 | 2 -|η 3 | 2 ≤ 0 and det(λI -B) = λ 3 + 2λ 2 + 3λ + 1, thus B has no pure imaginary eigenvalues. We also have | det(izI -B)| 2 ℜ((izI -B) -1 C, C) = z 2 + 2 > 0, for all z ∈ R * . Using Proposition 1.
2.1 and Corollary 1.3.10, the solution of the proposed system exists and unique and its energy is asymptotically stable. We proceed by checking the conditions of Lemma 1.4.8. Computing the characteristic equation of B 0 , we get

det(λI -B 0 ) = λ(λ 2 + 2) and σ(B 0 ) = {0, ±i √ 2}.
For λ = ±i √ 2, we have ker(λI

-B 0 ) = span{(-λ 2 , 1, λ 2 ) ⊤ }, it follows that (C, (-λ 2 , 1, λ 2 ) ⊤ ) = -λ 2 , which is nonzero thus C ∈ ker(λI -B 0 ) ⊥ . Computing W and adj(λI -B 0 )C, we obtain W = span      0 1 0   ,   0 0 1      , adj(λI -B 0 )C =   λ 2 + 1 -λ 1   , then P ((λI -B 0 ) -1 C) = 0 for all λ ∈ σ(A) \ σ(B 0
). The eigenvector of B 0 associated with λ = 0 and its projection on W are given by

η =   1 0 1   , P η =   0 0 1   = 0.
Substituting m by 1 in Theorem 1.4.15 (since P C = 0 and P (B 0 C) = 0), we deduce that the energy of the solution of (1.26) fulfills the following polynomial estimate

E(t) ≤ 1 √ 1 + t Au 0 2 D(A) .
Verifying condition (1.24) and noting that B and C have real components and (RC, C) = 0, we conclude the optimality by Remark 1.5.15.

Example 4.

Consider the following system given by:

       y tt (x, t) -y xx (x, t) = 0, 0 < x < 1, t > 0, y(0, t) = 0, t > 0, y x (1, t) -η(t) -η t (t) -η tt (t) = 0, t > 0, η ttt (t) + η tt (t) + 2η t (t) + η(t) + y t (1, t) = 0, t > 0. Choosing η 1 = -η -η t , η 2 = -η -η t -η tt , η 3 = η,
we get a system in the form of system (1.1) with

B =   0 1 1 -1 0 0 -1 0 -1   , B 0 =   0 1 1 -1 0 0 -1 0 0   , R =   0 0 0 0 0 0 0 0 -1   , C =   0 1 0   .
As det(izI -B) = -iz 3 -z 2 +2iz +1 = 0, ∀z ∈ R and ℜ(Bη, η) ≤ 0, where (•, •) denotes the usual inner product defined on C 3 , we deduce that B is Hurwitz. By a straight forward calculation we have

| det(izI -B)| 2 ℜ((izI -B) -1 C, C) = 1 > 0, ∀z ∈ R
we deduce by Proposition 1.2.1 the existence and uniqueness of the solution of the system and the asymptotic stability of its energy follows from Corollary 1.3.10. We also have

adj(λI -B 0 )C =   λ λ 2 + 1 -1   ,
knowing that the space W is spanned by (0, 0, 1) ⊤ we deduce P ((λI -B 0 ) -1 C) = 0, for every λ ∈ σ(A) \ σ(B 0 ). Moreover, the characteristic equation of B 0 is given by det(λI -B 0 ) = λ(λ 2 + 2), thus the eigenvalues of B 0 are 0, ±i √ 2. The eigenvector associated with zero is given by (0, 1, -1) ⊤ , whose projection on W is nonzero and ker(λI

-B 0 ) is spanned by ( 2 λ , 1, 1) ⊤ for λ = ±i √ 2, then C ∈ ker(λI -B 0 ) ⊥ .
We deduce that the conditions of Lemma 1.4.8 holds and we therefore get the following estimate

E(t) ≤ 1 (1 + t) 1 3 u 0 2 D(A) .
by simply replacing m by 2 in Theorem 1.4.15, as P C = 0, P (B 0 C) = 0, and P (B 2 0 C) = 0. Moreover, computing the asymptotic expansion of λ ∈ σ(A) for a modulus large enough with ℑ(λ) ∈ (kπ, (k + 1)π), we get

λ = i(kπ + π 2 ) - 1 λ + 2 3λ 3 - 6 5λ 5 + 1 λ 6 + o 1 λ 6 , then ℜ(λ) = -1 k 6 π 6 + o 1 k 6 , in addition C ∈ ker( λI -B * ) ⊥ ∪ ker(λI -B) ⊥
, thus the conditions of Proposition 1.5.12 holds and the optimality of the energy decay follows.

Example 5.

Consider the following system given by:

           y tt (x, t) -y xx (x, t) = 0, 0 < x < 1, t > 0, y(0, t) = 0, t > 0, y x (1, t) -b 1 η(t) -η t (t) + κ(t) = 0, t > 0, η tt (t) + b 1 η t (t) + b 0 η(t) + b 0 y t (1, t) = 0, t > 0, κ t (t) + b 2 κ(t) -y t (1, t) = 0, t > 0. with b 0 , b 1 , b 2 positive constants. Choosing η 1 = - η t + b 1 η b 0 , η 2 = η, η 3 = κ,
we get a system in the form of (1.1) with

B =   0 1 0 -b 0 -b 1 0 0 0 -b 2   , C =   1 0 1   .
In addition,

M =   b 0 0 0 0 1 0 0 0 1   , B 0 =   0 1 0 -b 0 0 0 0 0 0   , R =   0 0 0 0 -b 1 0 0 0 -b 2   , adj(λI -B 0 )C =   λ 2 -b 0 λ λ 2 + b 0   .
It is easy to check that ℜ(Bη, η) ≤ 0, and since det(λI

-B) = (λ + b 2 )(λ 2 + b 1 λ + b 0 ), then B is Hurwitz. We also have | det(izI -B)| 2 ℜ (izI -B) -1 C, C = b 2 z 4 + (b 2 0 b 1 + b 2 b 2 1 -2b 0 b 2 )z 2 + b 2 0 b 2 (b 1 b 2 + 1),
which is positive for all z ∈ R, we thus obtain an asymptotically stable system. The space W is given by span{(0, 1, 0) ⊤ , (0, 0, 1) ⊤ }, then

P (adj(λI -B 0 )C) = (0, -b 0 λ, λ 2 + b 0 ) ⊤ = 0, ∀λ ∈ σ(B 0 ).
The spectrum of B 0 is given by σ(B 0 ) = {0, ±i √ b 0 }. The eigenvector of B 0 associated with 0 is equal to (0, 0, 1) ⊤ up to a nonzero constant, thus P (0, 0, 1)

⊤ = 0. For λ = ±iµ = ±i √ b 0 , we have η µ = (1, ±iµ, 0) ⊤ and P η µ = 0.
Moreover, it can be easily checked that C ∈ ker(λI -B 0 ) ⊥ for all λ ∈ σ(B 0 ). Hence Theorem 1.4.15 applied for m = 0 (as P C = 0), gives the following energy decay estimate

E(t) ≤ 1 1 + t Au 0 2 H .
Finally, we may easily verify that for all geometrically simple λ ∈ σ(B) we have 

C ∈ ker( λI - B * ) ⊥ ∪ ker(λI -B) ⊥ .
Γ = Γ 0 ∪ Γ 1 ,
where Γ 0 is assumed to be closed with a nonempty interior and Γ 1 relatively open in Γ which could be possibly empty. We further assume that Γ 0 ∩ Γ1 is of class C 1 in the sense explained later.

For n ∈ N * , we further fix C ∈ C 0,1 (Γ 0 , C n ) and a matrix valued function B ∈ C 0,1 (Γ 0 , M n (C)) and for every x ∈ Γ 0 , an inner product

(•, •) x in C n such that ℜ(B(x)•, •) x ≤ 0. (2.1) 
For every x ∈ Γ 0 , let M (x) ∈ M n (C) be the Hermitian positive-definite matrix associated with this inner product, i.e.

(δ 1 , δ 2 ) x = δ⊺ 2 M (x)δ 1 , ∀δ 1 , δ 2 ∈ C n . From now on we further assume that M is Lipschitz continuous on Γ 0 . For the sake of brevity, if there is no confusion we use the notation (•, •) to denote (•, •) x . The associated norm is denoted by • .

We consider the following evolution problem with a Dirichlet boundary condition on Γ 1 and a dynamical control on Γ 0 , described as follows:

       y tt (x, t) -∆y(x, t) = 0 , x ∈ Ω, t > 0, y(x, t) = 0 , x ∈ Γ 1 , t > 0, ∂y ∂ν (x, t) = (δ(x, t), C) , x ∈ Γ 0 , t > 0, δ t (x, t) = Bδ(x, t) -Cy t (x, t) , x ∈ Γ 0 , t > 0, (2.2)
with the following initial conditions:

y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x), x ∈ Ω, δ(x, 0) = δ 0 (x), x ∈ Γ 0 , (2.3) 
where y is a complex valued function (representing the transverse displacement in the case Ω ⊂ R and the potential velocity in the case Ω ⊂ R d , with d ≥ 2) and δ denotes the dynamical control variable.

In a first step, we try to find sufficient conditions that guarantee the strong stability of the system. Here, as the domain of the associated operator is not compactly embedded into the natural energy space, we may expect that its spectrum is not only made of eigenvalues. We prove such a result in our general setting but since Dirichlet boundary conditions are imposed on a part of the boundary, we were not able to use the single-layer potential technique of [START_REF] Beale | Spectral properties of an acoustic boundary condition[END_REF] and instead we use a Fredholm alternative technique. Finally, similar assumptions on B and C as in the one-dimensional case allow us to show that the associated operator has no eigenvalues on the imaginary axis, hence we obtain the strong stability by using Arendt-Batty theorem (see [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF] and Theorem 1.3.1). In dimension one, using the compact perturbation result of Russell [START_REF] Russell | Decay rates for weakly damped systems in Hilbert space obtained with control-theoretic methods[END_REF], the dissipative system (2.2) is not uniformly stable (see [START_REF] Abbas | Polynomial decay rate for a wave equation with general acoustic boundary feedback laws[END_REF] and [START_REF] Morgül | A dynamic control law for the wave equation[END_REF]Rk 2]). In dimension larger than 2, this argument cannot be used, but nevertheless by using the spectral properties of the Laplace operator with specific Robin boundary conditions on Γ 0 , we will show that the resolvent of the associated operator is not uniformly bounded on the imaginary axis and by the frequency domain approach [START_REF] Gearhart | Spectral theory for contraction semigroups on Hilbert space[END_REF][START_REF] Huang | Characteristic conditions for exponential stability of linear dynamical system in hilbert spaces[END_REF][START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF], we will conclude that our system is not uniformly stable. Hence we are interested in proving a weaker decay of the energy. More precisely, we will give sufficient conditions on Γ 0 , B and C that yield the polynomial decay of the energy of our system (for initial data in the domain of the associated operator). A first approach is to use a multiplier method (as in [START_REF] Muñoz Rivera | Polynomial decay for the energy with an acoustic boundary condition[END_REF][START_REF] Toufayli | Stabilisation polynomiale et contrôlabilité exacte des équations des ondes par des contrôles indirects et dynamiques[END_REF][START_REF] Wehbe | Rational energy decay rate for a wave equation with dynamical control[END_REF]) but this approach requires a quite strong geometrical assumption on Γ 0 . Hence we alternatively use the frequency domain approach from [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF]. In this case, we find an appropriate bound for the resolvent on the imaginary axis by using the exponential or polynomial decay of the wave equation with the standard damping

∂y ∂ν (x, t) = -y t on Γ 0 ,
and an assumption on the behavior of ℜ((isI -B) -1 C, C) for all real number s whose modulus is large enough. This leads to quite weaker geometrical assumption on Γ 0 due to the results from [12, §5] or [START_REF] Lasiecka | Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions[END_REF][START_REF] Lebeau | Stabilisation de l'équation des ondes par le bord[END_REF] for instance. In particular, with this second approach as Γ 1 can be empty, we significantly improve results from [START_REF] Beale | Spectral properties of an acoustic boundary condition[END_REF] and [START_REF] Muñoz Rivera | Polynomial decay for the energy with an acoustic boundary condition[END_REF].

The chapter is organized as follows. The second section deals with the well-posedness of the problem obtained by using semigroup theory. Section 2.3 is devoted to the analysis of the spectrum of the associated operator that is characterized by using a Fredholm alternative technique. The strong stability of the system is studied in section 2.4 by using Arendt-Batty theorem. In section 2.5, we show that the resolvent of the operator is not uniformly bounded on the imaginary axis and deduce that our system is not uniformly stable. Section 2.6 is devoted to the proof of the polynomial decay of our system by using the frequency domain approach, while in section 2.8 we prove a similar polynomial decay by using the multiplier method. We shortly look for the case Γ 1 empty in section 2.7. Finally some particular examples illustrating our general framework are presented in section 2.9.

In the whole chapter, we assume that Γ 1 is nonempty (without any specification), the case Γ 1 empty is only supposed in section 2.7 (and in section 2.9). The case d = 1 was discussed in the first chapter, we assume that d > 1 throughout the remainder of the chapter.

Well-posedness results

As usual, to prove existence result for system (2.2) we use a reduction of order argument. Hence, we define

V = {y ∈ H 1 (Ω) : y = 0 on Γ 1 } = H 1 Γ 1 (Ω)
, that is a Hilbert space endowed with the following inner product (y 1 , y 2 ) V = 1 0 ∇y 1 ∇ȳ 2 dx, and norm y V = (y, y)

1 2
V . The energy space is then

H = V × L 2 (Ω) × (L 2 (Γ 0 )) n ,
endowed with the following inner product,

((y, z, δ), (y 1 , z 1 , δ 1 )) H = Ω ∇y∇ȳ 1 dx + Ω z z1 dx + Γ 0 (δ, δ 1 )dx. (2.4)
We define the unbounded operator associated with the evolution problem by (A, D(A)),

AU =   z ∆y Bδ -Cγ 0 z   , U =   y z δ   ∈ D(A), where D(A) = {U ∈ H : ∆y ∈ L 2 (Ω), z ∈ V, ∂y ∂ν = C ⊺ M δ on Γ 0 }, in the last component γ 0 z
is the trace of z on Γ 0 and the boundary condition

∂y ∂ν = (δ, C) on Γ 0 , (2.5) 
is to be viewed in the following weak sense (see [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF]):

Ω ∆yϕdx + Ω ∇y∇ϕdx = Γ 0 (δ, C)γ 0 ϕds, ∀ϕ ∈ V. (2.6) 
If y and δ are solution of system (2.2) and are sufficiently smooth, we easily check that U = (y, z, δ) ⊤ is solution of the Cauchy problem

U t = AU, U (0) = U 0 (2.7)
with U 0 = (y 0 , y 1 , δ 0 ) ⊤ . The energy of our system (2.2) (or (2.7)) is then naturally defined by

E 0 (t) = 1 2 U (t) 2 H = 1 2 Ω |∇y| 2 dx + Ω |y t | 2 dx + Γ 0 δ 2 ds , (2.8) 
for

U (t) = (y, y t , δ) ∈ V × L 2 (Ω) × (L 2 (Γ 0 )) n solution of (2.7).
Hence, we proceed by proving that A is m-dissipative.

Proposition 2.2.1

The operator A is m-dissipative.

Proof. Let U =   y z δ   ∈ D(A).
Then as z ∈ V , using (2.6) we get:

  A   y z δ   ,   y z δ     H = Ω ∇z∇ȳdx + Ω ∆yzdx + Γ 0 (Bδ -Cγ 0 z, δ) R n ds = Ω ∇z∇ȳdx - Ω ∇y∇zdx + Γ 0 (δ, C)γ 0 zds + Γ 0 (Bδ -Cγ 0 z, δ) R n ds.
Consequently,

ℜ(AU, U ) = Γ 0 ℜ(Bδ, δ) R n ds ≤ 0, (2.9) 
and thus A is dissipative.

We would like to show that there exists λ > 0 such that λI -A is surjective. Let λ > 0 be given. For F = (y 1 , z 1 , δ 1 ) ⊤ ∈ H, we look for U = (y, z, δ) ⊤ ∈ D(A) such that

(λI -A)U = F, or equivalently    λy -z = y 1 , λz -∆y = z 1 , (λI -B)δ + Cγ 0 z = δ 1 . (2.10) 
Assume that such a (y, z, δ) ⊤ ∈ D(A) exists, then z = λyy 1 , and as λ ∈ σ(B), δ is given by δ = (λI -B) -1 (δ 1 + Cγ 0 (y 1λy)) .

(2.11)

Hence, y ∈ V satisfies λ 2 y -∆y = z 1 + λy 1 , (2.12)

and the boundary condition

∂y ∂ν = (δ, C) on Γ 0 .
We first look for an associated weak formulation of this problem on y (and then prove that it admits a unique solution using Lax-Milgram lemma). Multiplying (2.12) by a function ϕ ∈ V , integrating the obtained identity in Ω and by (2.6) (allowed since we assume that y ∈ V exists with the property ∆y ∈ L 2 (Ω)), we find

a λ (y, ϕ) = L F (ϕ), ∀ϕ ∈ V, (2.13) 
where a λ and L F are given by

a λ (y, ϕ) = Ω λ 2 y φdx + Ω ∇y∇ φdx + Γ 0 λ((λI -B) -1 C, C)γ 0 yγ 0 φds, (2.14) 
L F (ϕ) = Ω (z 1 + λy 1 ) φdx + Γ 0 (λI -B) -1 (Cγ 0 y 1 + δ 1 ), C γ 0 φds. (2.15)
Clearly, LF is a linear continuous functional on V , and āλ is a sesquilinear continuous form on V . Finally, a λ is coercive on V , indeed, for any y ∈ V , we have

a λ (y, y) = λ 2 Ω |y| 2 dx + Ω |∇y| 2 dx + Γ 0 ((λI -B) -1 C, C)λ|γ 0 y| 2 ds. But (2.1) implies that ℜ((λI -B) -1 C, C) ≥ 0, since ℜ (λI -B) -1 C, C = ℜ (u, (λI -B)u) = λ u 2 -ℜ(u, Bu) ≥ 0,
with u = (λI -B) -1 C. Hence, ℜa λ (y, y) y 2 V , which implies that a λ is coercive. Applying Lax-Milgram Lemma, there exists a unique solution y ∈ V of (2.13). In particular, taking ϕ ∈ D(Ω) in (2.13), we get

λ 2 y -∆y = z 1 + λy 1 in D ′ (Ω).
(2.16)

We deduce that ∆y ∈ L 2 (Ω). Substitute λ 2 y by ∆y + z 1 + λy 1 in (2.13), we obtain

Ω ∆y φdx + Ω ∇y∇ φdx + Γ 0 (λI -B) -1 Cλγ 0 y, C γ 0 φds = Γ 0 (λI -B) -1 (δ 1 + Cγ 0 y 1 ), C γ 0 φds. Defining δ = (λI -B) -1 (δ 1 + Cγ 0 y 1 -Cλγ 0 y) ∈ (L 2 (Γ 0 )
n , we get ∂y ∂ν = (δ, C). By defining z = λyy 1 , we deduce the surjectivity of λI -A.

Remark 2.2.2 From the previous proof, we see that if 0 is not an eigenvalue of B(x), for all x ∈ Γ 0 , then A is bijective and A -1 is bounded. The converse also holds, see Proposition 2.4.1 below.

Since A is m-dissipative, then Lumer-Phillips theorem implies that A generates a C 0 -semigroup of contractions on H (see for instance [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]), and allows us to state the following results.

Corollary 2.2.3 (i) For an initial datum U 0 ∈ H there exists a unique solution U ∈ C([0, +∞), H) of (1.3). Moreover, if U 0 ∈ D(A), then

U ∈ C([0, +∞), D(A)) ∩ C 1 ([0, +∞), H).
(ii) For each U 0 ∈ D(A), the energy E 0 (t) of the solution U of (1.3) satisfies

d dt E 0 (t) = ℜ Γ 0 (Bδ, δ)ds ≤ 0,
and therefore the energy is non-increasing.

Proof. (i) is a direct consequence of Lumer-Phillips theorem, (ii) holds simply since

dE(t) dt = ℜ( dU (t) dt , U (t)) = ℜ(AU (t), U (t)), for all U ∈ D(A). Remark 2.2.4 If U 0 ∈ D(A m ), then U ∈ C([0, +∞), D(A m )) ∩ C 1 ([0, +∞), D(A m-1 )) ∩ ... ∩ C m ([0, +∞), H).

The spectrum of A

As D(A) is not compactly embedded into H, we can expect that the spectrum of A is not only constituted of eigenvalues. This is indeed the case if Γ 1 is empty and in the setting of example 1 below as shown in [START_REF] Beale | Spectral properties of an acoustic boundary condition[END_REF]. Our aim is to prove such a result in our general setting. Since Dirichlet boundary conditions are imposed on a part of the boundary, we were not able to use the single-layer potential technique of [START_REF] Beale | Spectral properties of an acoustic boundary condition[END_REF] and we instead use a Fredholm alternative technique.

Recall that an operator T from a Hilbert space X into itself is called singular if there exists a sequence u n ∈ D(T ) with no convergent subsequence such that u n X = 1 and T u n → 0 in X, see [START_REF] Wolf | On the essential spectrum of partial differential boundary problems[END_REF]. According to Theorem 1.14 of [START_REF] Wolf | On the essential spectrum of partial differential boundary problems[END_REF] T is singular if and only if its kernel is infinite dimensional or its range is not closed. Now define

Σ := {λ ∈ C : ∃x ∈ Γ 0 : λI -B(x) is not invertible }.
From the continuity of B, Σ is a compact subset of C.

We state in the following theorem some spectral properties of A (compare with Theorem 3.2 of [START_REF] Beale | Spectral properties of an acoustic boundary condition[END_REF]).

Theorem 2.3.1 The following results hold: Denote by {λ 2 k } k∈N * the (discrete) spectrum of -∆ m (repeated according to their multiplicity) and let ϕ k be the corresponding orthonormalized eigenvectors.

1. If λ ∈ Σ, then λ -A is singular, 2. If λ ∈ Σ, then λ -A is a Fredholm operator of index zero.
According to the Fredholm alternative, for any complex number µ we have the two following cases: i) either µ = -λ 2 k , for all k ∈ N * and for an arbitrary F ∈ V ′ , there exists a unique solution of y ∈ V of

Ω (µy w + ∇y • ∇ w) dx = F (w), ∀w ∈ V, (2.17) 
ii) or there exists k 0 ∈ N * such that µ = -λ 2 k 0 and then for any F ∈ V ′ such that

F (ϕ k ) = 0, ∀k ∈ N * : λ 2 k = -µ,
there exists a unique solution of y ∈ V (orthogonal to the ϕ k , for all k ∈ N * : λ 2 k = -µ) of (2.17).

Now we set

U n = (y n , λy n , δ n ), with δ n = η n δ,
where (η n ) n is the sequence associated with x 0 built in Lemma 2.3.3 below and y n ∈ V is the solution of

Ω (λ 2 y n w + ∇y n • ∇ w) dx = F n (w), ∀w ∈ V, (2.18) 
where F n ∈ V ′ is defined by

F n (w) := k∈N * :λ 2 k =-λ 2 α (n) k Ω ϕ k w dx + Γ 0 (δ n , C) w dσ, ∀w ∈ V, with α (n) k = - Γ 0 (δ n , C) φk dσ, ∀k ∈ N * : λ 2 k = -λ 2 , for λ ∈ Σ such that λ 2 ∈ σ d (∆ m ). If λ 2 ∈ σ d (∆ m ), we simply define F n by F n (w) := Γ 0 (δ n , C) w dσ, ∀w ∈ V.
The existence of a unique solution y n of (2.18) in both cases is a consequence of the Fredholm alternative mentioned above.

Let us proceed first with the case λ 2 ∈ σ d (∆ m ). The existence of y n is justified by the fact that F n (ϕ k ) = 0, ∀k ∈ N * : λ 2 k = -λ 2 . Before going further we notice that

α (n) k → 0 as n → ∞, ∀k ∈ N * : λ 2 k = -λ 2 . (2.19)
Indeed, by definition we have

|α (n) k | η n H -1/2 (Γ 0 ) |ϕ k | H 1 (Ω) η n H -1/2 (Γ 0 ) |λ k |,
and by Lemma 2.3.3 below we obtain (2.19). A direct consequence of this property is that

F n V ′ → 0 as n → ∞,
and again by the Fredholm alternative

y n V → 0 as n → ∞. (2.20)
Now applying Green's formula (as in Proposition 1.2.1), we see that y n ∈ V solution of (2.18) satisfies λ 2 y n -∆y n = g n :=

k∈N * :λ 2 k =-λ 2 α (n) k ϕ k in D ′ (Ω). (2.21)
as well as

∂y n ∂ν = (δ n , C), on Γ 0 . (2.22)
Consequently, U n belongs to D(A) and

λU n -AU n = (0, g n , (B(x 0 ) -B)δ n + λCy n ). (2.23) Let us show that λU n -AU n → 0 in H as n → ∞. (2.24)
Indeed, by definition we can write

g n 2 L 2 (Ω) = k∈N * :λ 2 k =-λ 2 |α (n) k | 2
and we directly deduce from (2.19) that

g n L 2 (Ω) → 0 as n → ∞.
For the third component by the triangular inequality and a trace theorem, we have

(B(x 0 ) -B)δ n + λCy n L 2 (Γ 0 ) (B(x 0 ) -B)δ n L 2 (Γ 0 ) + y n V .
Since the second term of this right-hand side tends to zero as n goes to infinity, it remains to estimate the first term: But B being uniformly continuous, we have

∀ε > 0, ∃η ε > 0 : |x -x 0 | < η ε ⇒ B(x 0 ) -B(x) < ε.
But by construction, the support of δ n is included in B(x 0 , ε n ) ∩ Γ 0 with ε n ≤ C n , for some C > 0 (independent of n). Hence, for a fixed ε > 0, and for n > C ηε , we have

B(x 0 ) -B(x) < ε, ∀x ∈ supp δ n ,
and we deduce that

(B(x 0 ) -B)δ n L 2 (Γ 0 ) ≤ ε δ n L 2 (Γ 0 ) = ε δ .
This shows that

(B(x 0 ) -B)δ n L 2 (Γ 0 ) → 0 as n → ∞,
and finishes the proof of (2.24). It remains to check that

U n H ∼ 1. (2.25)
Indeed, by definition, we have

U n 2 H = y n 2 V + |λ| 2 y n 2 L 2 (Ω) + δ n 2 L 2 (Γ 0 ) ,
hence by (2.20), we get (λU n -AU n ) = (0, 0, (B(x 0 ) -B)δ n + λCy n ).

U n 2 H ∼ δ n 2 L 2 (Γ 0 ) = δ 2 > 0. If λ 2 ∈ σ d (∆ m ), then the solution y n ∈ V of (2.18) satisfies λ 2 y n -∆y n = 0, in D ′ (Ω),
Moreover, it clearly satisfies both (2.24) and (2.25).

Note that (2.25) also implies that (U n ) has no convergent subsequence. Indeed, if a subsequence

(U n k ) is such that U n k → U in H, as k → ∞,
then by (2.20), (η n k ) k converges in L 2 (Γ 0 ), which contradicts Lemmas 2.3.3 and 2.3.4.

In conclusion, we have shown that λ -A is singular.

For any λ ∈ C \ Σ, we denote by A λ the linear (and continuous) operator from V into V ′ defined by

A λ u, v V ′ -V := a λ (u, v), ∀u, v ∈ V,
where a λ is defined by (2.14) (well defined because λ ∈ C \ Σ). According to the proof of Proposition 1.2.1, A λ is an isomorphism for all positive real numbers. Hence, if we show that for any λ, µ ∈ C \ Σ, A λ -A µ is a compact operator, then by a standard perturbation result, A λ will be a Fredholm operator of index zero for any λ ∈ C \ Σ. To prove our compactness property, we notice that

(A λ -A µ )u, v V ′ -V = (λ 2 -µ 2 ) Ω uvdx + Γ 0 (λ((λI -B) -1 C, C) -µ((µI -B) -1 C, C)γ 0 uγ 0 vds.
Hence, due to the continuity of B and C, and Cauchy-Schwarz's inequality, we see that

(A λ -A µ )u, v V ′ -V ≤ |λ 2 -µ 2 | u L 2 (Ω) v L 2 (Ω) + C(λ, µ) u L 2 (Γ 0 ) v L 2 (Γ 0 ) ,
where C(λ, µ) is a positive constant depending on λ and µ. Hence, by a trace theorem, we deduce that for any ε ∈ (0, 1 2 )

(A λ -A µ )u, v V ′ -V ≤ |λ 2 -µ 2 | u L 2 (Ω) v L 2 (Ω) + C(λ, µ)C ε u V v H 1 2 +ε (Ω)
, where C ε is a positive constant depending on ε.

In conclusion, for any ε ∈ (0, 1 2 ) if we set

H 1 2 +ε Γ 1 (Ω) = {v ∈ H 1 2 +ε (Ω) : v = 0 on Γ 1 },
that is clearly a Hilbert space equipped with the inner product of H 1 2 +ε (Ω), we have shown that there exists a positive constant C(λ, µ, ε) depending on λ, µ and ε such that

(A λ -A µ )u, v V ′ -V ≤ C(λ, µ, ε) u V v H 1 2 +ε (Ω) , ∀u, v ∈ V.
Equivalently, this means that

sup v∈V,v =0 (A λ -A µ )u, v V ′ -V v H 1 2 +ε (Ω) ≤ C(λ, µ, ε) u V .
Accordingly, as V is dense in

H 1 2 +ε Γ 1 (Ω), we deduce that (A λ -A µ )u belongs to (H 1 2 +ε Γ 1 (Ω)) ′ with (A λ -A µ )u (H 1 2 +ε Γ 1 (Ω)) ′ = sup v∈H 1 2 +ε Γ 1 (Ω),v =0 (A λ -A µ )u, v V ′ -V v H 1 2 +ε (Ω) = sup v∈V,v =0 (A λ -A µ )u, v V ′ -V v H 1 2 +ε (Ω) ≤ C(λ, µ, ε) u V .
As V is compactly and densely embedded into H 1 2 +ε Γ 1 (Ω), by duality, (H

1 2 +ε Γ 1 (Ω)) ′ is also com- pactly embedded into V ′ and therefore A λ -A µ is a compact operator from V into V ′ .
Now we readily check that, for any λ ∈ C \ Σ, we have the equivalence y ∈ ker A λ ⇐⇒ (y, λy, -λ(λI -B) -1 Cγ 0 y) ⊤ ∈ ker(λI -A).

(2.26)

This equivalence implies that for any λ ∈ C \ Σ, ker(λI -A) is always finite-dimensional and has the same dimension as ker A λ . This last property follows from the fact (used below) that the expression

(y, z) λ,V := (y, λy, -λ(λI -B) -1 Cγ 0 y) ⊤ , (z, λz, -λ(λI -B) -1 Cγ 0 z) ⊤ H ,
is an inner product on V whose associated norm is equivalent to the standard one. Denote by {y (i) } N i=1 an orthonormal basis of ker A λ for this new inner product (for shortness the dependence of λ is dropped), i.e.

(y (i) , y (j) ) λ,V = δ ij , ∀i, j = 1, . . . , N.

Finally, for all i = 1, . . . , N , we set

Z (i) = (y (i) , λy (i) , -λ(λI -B) -1 Cγ 0 y (i) ) ⊤ ,
the element of ker(λI -A) associated with y (i) that are orthonormal with respect to the inner product of H.

Let us now show that for all λ ∈ C \ Σ, the range R(λI -A) of λI -A is closed. Indeed, let us consider a sequence

U n = (y n , z n , δ n ) ⊤ ∈ D(A) such that (λI -A)U n = F n = (y 1n , z 1n , δ 1n ) ⊤ → F = (y 1 , z 1 , δ 1 ) ⊤ in H.
(2.27)

Without loss of generality we can assume that

(U n , Z (i) ) H = -α n,i , ∀i = 1, . . . , N. (2.28) 
where α n,i := ((0,

y 1n , -(λI -B) -1 (δ 1n + Cγ 0 y 1n )) ⊤ , Z (i) ) H .
Indeed, if this is not the case, we can consider

Ũn = U n - N i=1 β i Z (i)
that still belongs to D(A) and satisfies

(λI -A) Ũn = F n ,
as well as ( Ũn , Z (i) ) H = -α n,i , ∀i = 1, . . . , N, by setting

β i = (U n , Z (i) ) H + α n,i , ∀i = 1, . . . , N.
Note that the condition (2.28) is equivalent to

(y n , y (i) ) λ,V = 0, ∀i = 1, . . . , N.
In other words,

y n ∈ (ker A λ ) ⊥ λ,V , (2.29) 
where ⊥ λ,V means that the orthogonality is taken with respect to the inner product (•, •) λ,V . Returning to (2.27), the arguments of the proof of Proposition 1.2.1 imply that

A λ y n = L Fn in V ′ ,
where L F was defined by (2.15). But it is easy to check that

L Fn → L F in V ′ .
Moreover, as λ ∈ C \ Σ, A λ is an isomorphism from (ker A λ ) ⊥ λ,V into R(A λ ), hence by (2.29) we deduce that there exists a positive constant C(λ) such that

y n -y m V ≤ C(λ) L Fn -L Fm V ′ , ∀n, m ∈ N.
Hence, (y n ) n is a Cauchy sequence in V , and therefore there exists y ∈ V such that

y n → y in V,
as well as

A λ y = L F in V ′ .
Setting z = λyy 1 and δ = (λI -B) -1 (δ 1 -Cγ 0 z), we deduce that U := (y, z, δ) ⊤ belongs to D(A) and (λI -A)U = F.

In other words, F belongs to R(λI -A). The closedness of R(λI -A) is thus proved. At this stage, for any λ

∈ C \ Σ, we show that codim R(A λ ) = codim R(λI -A), (2.30) 
where codim W is the dimension of the orthogonal of W . Indeed, let us set N = codim R(A λ ), then there exist N elements

ϕ i ∈ V, i = 1, . . . , N such that f ∈ R(A λ ) ⇐⇒ f ∈ V ′ and f, ϕ i V ′ -V = 0, ∀i = 1, . . . , N.
Consequently, for F ∈ H, if L F (that belongs to V ′ ) satisfies

L F (ϕ i ) = 0, ∀i = 1, . . . , N, (2.31) 
there exists a solution y ∈ V of

A λ y = L F in V',
and as usual the arguments of the proof of Proposition 1.2.1 implies that F is in R(λI -A).

Hence, the N conditions on F ∈ H from (2.31) allow to show that it belongs to R(λI -A), and therefore codim R(λI

-A) ≤ N = codim R(A λ ). (2.32) 
This shows that λI -A is a Fredholm operator.

Conversely, set M = codim R(λI -A), then there exist M elements Multiplying this second identity by ϕ ∈ V , integrating in Ω and using Green's formula (2.6), we obtain that

Ψ i = (y i , z i , δ i ) ∈ H, i = 1, . . . , M such that F ∈ R(λI -A) ⇐⇒ F ∈ H and (F, Ψ i ) H = 0, ∀i = 1, . . . , M. Then, for any f ∈ L 2 (Ω), if (f, z i ) L 2 (Ω) = ((0, f, 0) ⊤ , Ψ i ) H = 0, ∀i = 1, . . . , M, (2.33 
a λ (y, ϕ) = Ω f φdx, ∀ϕ ∈ V. This shows that R(A λ ) ⊃ {f ∈ L 2 (Ω) satisfying (2.33)}. Hence, codim R(A λ ) ≤ M = codim R(λI -A).
(2.34)

The inequalities (2.32) and (2.34) imply (2.30).

We conclude the second point by using the fact that A λ is a Fredholm operator of index zero for any λ ∈ C \ Σ, the equivalence (2.26) and the identity (2.30).

Corollary 2.3.2 λ ∈ Σ if and only if λ -A is a Fredholm operator of index zero.

Lemma 2.3.3 For every interior point x 0 of Γ 0 , there exists a sequence

(η n ) n∈N * of functions in L 2 (Γ 0 ) such that η n L 2 (Γ 0 ) = 1, ∀n ∈ N * , (2.35) 
as well as

η n H -1 2 (Γ 0 ) → 0 as n → ∞. (2.36)
Moreover, the support of η n is included in B(x 0 , ε n ) ∩ Γ 0 with ε n ∼ 1 n and therefore the sequence

(η n ) n∈N * has no convergent subsequence in L 2 (Γ 0 ).
Proof. By definition of the regularity of the boundary (see for instance [25, Def 1.2.1.1]), there exist a neighborhood W of x 0 in R d and a local system of cartesian coordinates (y ′ , y d ) and a Lipschitz mapping ϕ from W ′ the projection of W on R d-1 to R such that W is a hypercube and

Ω ∩ W = {(y ′ , y d ) ∈ W : y d < ϕ(y ′ )}, Γ 0 ∩ W = {(y ′ , y d ) ∈ W : y d = ϕ(y ′ )}.
Denote by y ′ 0 the point in W ′ such that

(y ′ 0 , ϕ(y ′ 0 )) = x 0 . Fix a function η ∈ D(R d-1
) with a support in B(0, 1) and such that

η L 2 (R d-1 ) = 1.
Then for n large enough namely such that B(y ′ 0 , 1 n ) ⊂ W ′ , we take

η n (y ′ , ϕ(y ′ )) = n d-1 2 η(n(y ′ -y ′ 0 )), ∀y ′ ∈ W ′
and extended by zero outside Γ 0 ∩ W . We directly check that the support of η n is (in this proof

• 2 means the Euclidean norm of R d-1 or R d ) S n = {(y ′ , ϕ(y ′ )) : y ′ -y ′ 0 2 ≤ 1 n }.
Hence, for (y ′ , ϕ(y ′ )) ∈ S n , we have

(y ′ , ϕ(y ′ )) -(y ′ 0 , ϕ(y ′ 0 )) 2 ∼ y ′ -y ′ 0 2 + |ϕ(y ′ ) -ϕ(y ′ 0 )| ∼ y ′ -y ′ 0 2 ,
and the property on the support of η n follows. Now by a change of variables we see that

η n 2 L 2 (Γ 0 ) ∼ n d-1 W ′ |η(n(y ′ -y ′ 0 ))| 2 dy ′ = R d-1 |η(z)| 2 dz,
and the property (2.35) holds (up to a multiplicative factor equivalent to 1).

To prove (2.36), as L 2 (Γ 0 ) is compactly embedded into H -1 2 (Γ 0 ), by (2.35) there exists a subsequence, still denoted by (η n ), such that

η n → η in H -1 2 (Γ 0 ) as n → ∞,
for some η ∈ H -1 2 (Γ 0 ). But this property implies that

η n → η in D ′ (Γ 0 ) as n → ∞.
As we will show that

η n → 0 in D ′ (Γ 0 ) as n → ∞, (2.37) 
we deduce that η = 0 and (2.36) follows.

In the same manner, if (η n ) would have a convergent subsequence in L 2 (Γ 0 ), then by (2.37), this subsequence would converge to 0 in L 2 (Γ 0 ), which contradicts (2.35).

It then remains to show (2.37). For that purpose, fix ψ ∈ D(Γ 0 ), then by a change of variables, we may write

η n , ψ = Γ 0 η n (x)ψ(x) dσ = n d-1 2 W ′ η(n(y ′ -y ′ 0 ))ψ(y ′ , ϕ(y ′ )) 1 + d-1 i=1 | ∂ϕ ∂y i (y ′ )| 2 dy ′ = n 1-d 2 γ n (ψ),
where

γ n (ψ) = B(0,1) η(z)ψ(y ′ 0 + z n , ϕ(y ′ 0 + z n )) 1 + d-1 i=1 | ∂ϕ ∂y i (y ′ 0 + z n )| 2 dz.
Since ϕ is Lipschitz, we deduce that

|γ n (ψ)| B(0,1) |η(z)| ψ(y ′ 0 + z n , ϕ(y ′ 0 + z n )) dz.
As

B(0,1) |η(z)| ψ(y ′ 0 + z n , ϕ(y ′ 0 + z n )) dz → |ψ(x 0 )| B(0,1) |η(z)| dz as n → ∞,
we have shown that γ n (ψ) remains bounded as n becomes large. Therefore, we deduce that

η n , ψ → 0 as n → ∞,
which proves (2.37).

Lemma 2.3.4 Let x 0 ∈ ∂Γ 0 . Then the statements of Lemma 2.3.3 remain true.

Proof. As in the previous lemma there exist a neighborhood W of x 0 in R d , a local system of cartesian coordinates (y ′ , y d ) and a Lipschitz mapping ϕ from W ′ the projection of W on R d-1 to R such that W is a hypercube and

Ω ∩ W = {(y ′ , y d ) ∈ W : y d < ϕ(y ′ )}, Γ ∩ W = {(y ′ , y d ) ∈ W : y d = ϕ(y ′ )}.
Denote by y ′ 0 the point in W ′ such that

(y ′ 0 , ϕ(y ′ 0 )) = x 0 ,
and set

Φ(y ′ ) = (y ′ , ϕ(y ′ )), ∀y ′ ∈ W ′ ,
that is a bijection from W ′ into Γ ∩ W . Without loss of generality we may suppose that y ′ 0 = 0. Denote by Γ ′ 0 the set Φ -1 (Γ 0 ∩ W ) ⊂ W ′ , and by

I ′ ⊂ W ′ the set I ′ = Φ -1 (Γ 0 ∩ Γ 1 ∩ W ).
Our assumption that Γ 0 ∩ Γ1 is C 1 means that the curve I ′ is a C 1 curve in W ′ , in other words, there exist a local system of Cartesian coordinates (z ′′ , z d-1 ) and a C 1 mapping ψ such that I ′ coincides near 0 with the curve

{(z ′′ , ψ(z ′′ )) : z ′′ ∈ W ′′ }, while Γ ′ 0 coincides near 0 with {(z ′′ , z d-1 ) : z d-1 > ψ(z ′′ ), ∀z ′′ ∈ W ′′ },
where again W ′′ is a hypercube of R d-2 . Again without loss of generality we can assume that (0, ψ(0)) = 0 as well as ∇ψ(0) = 0. Now instead of using the coordinates y ′ , we use the coordinates (z ′′ , z d-1 ) (and replace W ′ by another hypercube W ′′ ) and as before we perform the change of variables

ẑd-1 = nz d-1 , ẑ′′ = nz ′′ .
The difficulty lies in the fact that the curve I ′ becomes now the curve

ẑd-1 = nψ( ẑ′′ n ),
that is tangent to the hyperplane ẑd-1 = 0 but depends on n and similarly the domain Γ ′ 0 becomes the domain

ẑd-1 > nψ( ẑ′′ n ),
that also depends on n.

But the regularity on ψ allows to show that there exists ε > 0 small enough and n 0 large enough such that for all n > n 0

n|ψ( ẑ′′ n )| ≤ ε, ∀ ẑ′′ 2 ≤ 1. (2.38)
Indeed, for ẑ′′ fixed such that ẑ′′ ≤ 1 and by considering the mapping f (t) = ψ( tx ′′ n ), we can write

f (1) = 1 0 ∇ψ tx ′′ n • x′′ n dt,
and deduce,

n ψ ẑ′′ n ≤ sup ŵ′′ 2 ≤1 ∇ψ ŵ′′ n .
This leads to (2.38) because

sup ŵ′′ 2 ≤1 ∇ψ ŵ′′ n = sup w ′′ 2 ≤ 1 n ∇ψ w ′′ ,
that tends to zero as n goes to infinity. Now we mainly proceed as before: we fix a function η ∈ D(R d-1 ) with a support included in {(x ′′ , xd-1 ) ∈ B(0, 1) : xd-1 > 2ε} and such that

η L 2 (R d-1 + ) = 1.
Then for n large enough, we take

η n ((z ′′ , z d-1 ), ϕ(z ′′ , z d-1 )) = n d-1 2 η((nz ′′ , nz d-1 ))), ∀(z ′′ , z d-1 ) ∈ W ′′
and extended by zero outside its support.

We directly check that the support of η n is of size of order 1 n and is included in Γ 0 ∩ W . At this stage the proof is continued as in the previous Lemma.

Strong stability

In [START_REF] Wehbe | Rational energy decay rate for a wave equation with dynamical control[END_REF] and [START_REF] Abbas | Polynomial decay rate for a wave equation with general acoustic boundary feedback laws[END_REF], where the problem is one dimensional in space (i.e. d = 1), the strong stability was proven using Arendt-Batty theorem (see [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF] and Theorem 1.3.1) since the resolvent of the infinitesimal generator considered therein is compact and therefore the study of σ(A) ∩ iR is reduced to the study of purely complex eigenvalues of A. In our case, as D(A) is not compactly embedded in H, this method partially fails to achieve the proof of strong stability. Nevertheless, with similar assumptions on B as those of the one-dimensional case, we are able to obtain the strong stability by using Arendt-Batty theorem (see Theorem 1.3.1).

In view of Theorem 2.3.1, σ(A) is not purely formed of eigenvalues and therefore we have to analyze σ d (A) ∩ iR as well as σ(A) \ σ d (A)) ∩ iR.

We start with the eigenvalues of A on the imaginary axis. 

ker A 0 = {0}.
But in view of the definition of A 0 , y ∈ ker A 0 if and only if y ∈ V is solution of

a 0 (y, ϕ) = Ω ∇y∇ φdx = 0, ∀ϕ ∈ V.
From the coerciveness of a 0 on V , we conclude that y = 0.

For the other eigenvalues on the imaginary axis, we need the positive self-adjoint operator -∆ Dir defined by D(-∆ Dir ) = {y ∈ H 1 0 (Ω) : ∆y ∈ L 2 (Ω)} and -∆ Dir y = -∆y, ∀y ∈ D(-∆ Dir ).

Denote by σ(-∆ Dir ) := {λ 2 Dir,k } k∈N * the (discrete) spectrum of -∆ Dir (repeated according to their multiplicity) and let y Dir,k be the corresponding orthonormalized eigenvectors.

Proposition 2.4.2 Assume that (A 1 ) ∀iz ∈ Σ, z ∈ R * , ∃α z > 0 : ℜ((izI -B(x)) -1 C(x), C(x)) ≥ α z , ∀x ∈ Γ 0 , (A 2 ) Σ ∩ {±iλ Dir,k , k ∈ N * } = ∅, (A 3 ) ∀iz ∈ Σ : C ∈ ker(izI + B * ) ⊥ on Γ 0 , (A 4 ) ∀iz ∈ Σ : ∀M ⊂ Γ 0 : meas M > 0 : ∃x ∈ M : (η, C(x)) x = 0 for all nonzero η ∈ ker(izI -B(x)). Then σ d (A) ∩ iR * = ∅. (2.39)
Proof. Assume that iλ is a non zero eigenvalue of A in iR. Let U = (y, z, δ) ⊤ ∈ D(A), U = 0 be the associated eigenvector. Then, we have

AU = iλU, which implies z = iλy, -λ 2 y -∆y = 0 in Ω,
as well as (iλ -B)δ = -iλCy on Γ 0 .

(2.40)

Now we distinguish two cases: i) if iλ ∈ Σ, then by the proof of Proposition 1.2.1, we deduce that y ∈ V satisfies a iλ (y, ϕ) = 0, ∀ϕ ∈ V.

In particular, taking ϕ = y, we get a iλ (y, y) = 0.

Taking the imaginary part of this identity, we find

-λ Γ 0 ℜ((iλI -B(x)) -1 C(x), C(x))|γ 0 y(x)| 2 dσ = 0.
Since λ is different from zero, we get

Γ 0 ℜ((iλI -B(x)) -1 C(x), C(x))|γ 0 y(x)| 2 dσ = 0,
and by the assumption (A 1 ) we find that y = 0 on Γ 0 .

ii) if (δ k , C) = 0, then (y Dir,k , iλ Dir,k y Dir,k , α k δ k ) belongs to ker(iλ Dir,k I -A) with α k being chosen as

α k = (δ k , C) -1 ∂y Dir,k ∂ν on Γ 0 .
Thirdly, if (A 3 ) does not hold, then there exists iz ∈ Σ such that

C ∈ ker(izI + B * ) ⊥ = R(izI -B). (2.44) 
This means that there exists δ C ∈ C n such that

(izI -B)δ C = C. (2.45)
Consider y ∈ V the solution of (compare with (2.17))

Ω (-z 2 y w + ∇y • ∇ w) dx = Γ 0 hγ 0 w dσ, ∀w ∈ V, (2.46 
)

with h ∈ L 2 (Γ 0 ) arbitrary if z 2 ∈ σ d (-∆ m ). If z 2 ∈ σ d (-∆ m ), then we fix h satisfying Γ 0 hγ 0 φk dσ = 0, ∀k ∈ N * : λ 2 k = z 2 . (2.47)
Hence, the Fredholm alternative (see the proof of Theorem 2.3.1) implies the existence of a solution y of (2.46). Such a h ∈ L 2 (Γ 0 ) always exists. Indeed, assume that there exists k ∈ N * such that λ 2 k = z 2 . Then we notice that the trace of γ 0 ϕ k , k ∈ N * such that λ 2 k = z 2 are linearly independent as element of L 2 (Γ 0 ), indeed if there exists α k ∈ C such that

k∈N * :λ 2 k =z 2 α k γ 0 ϕ k = 0 in L 2 (Γ 0 ), then ϕ := k∈N * :λ 2 k =z 2 α k ϕ k ,
is still an eigenvector of -∆ m (of eigenvalue z 2 ) and satisfies the additional Dirichlet boundary condition:

γ 0 ϕ = 0 in L 2 (Γ 0 ).
Hence, by Homlgren's theorem, ϕ = 0 in Ω and therefore α k = 0 for all k ∈ N * such that

λ 2 k = z 2 . Let {ψ k : k ∈ N * , λ 2 k = z 2 } in L 2 (Γ 0
) be the orthonormal system constructed by the Gram-Schmidt process. Then starting with an arbitrary h 0 ∈ L 2 (Γ 0 ), the function h given by Again we distinguish the case (C, δ 0 ) = 0 or not. i) if (C, δ 0 ) = 0, then we take (0, 0, δ 0 ) and check that it belongs to ker(izI -A).

h = h 0 - k∈N * :λ 2 k =z 2 Γ 0 h 0 γ 0 ψk dσ ψ k , fulfills (2.
ii) if (C, δ 0 ) = 0, then we take (y, izy, δ) ⊤ , where y ∈ V is the unique solution of (2.46) (with a h ∈ L 2 (Γ 0 ) fulfilling (2.47)) and δ given by (2.48) with

α := (δ 0 , C) -1 (h + izy(δ C , C)).
In that way, the triple (y, izy, δ) ⊤ fulfills

∂y ∂ν = (δ, C) on Γ 0 ,
and hence belongs to D(A). Again, easy calculations lead to (izI -A)(y, izy, δ) ⊤ = 0. Finally, if (A 4 ) does not hold, then there exists iz ∈ Σ and a non zero δ ∈ C n such that

(izI -B)δ = 0 with (δ, C) = 0.
In that case, we take (0, 0, δ) and easily check that it belongs to ker(izI -A).

Non uniform stability of A

As before, in [START_REF] Wehbe | Rational energy decay rate for a wave equation with dynamical control[END_REF] and [START_REF] Abbas | Polynomial decay rate for a wave equation with general acoustic boundary feedback laws[END_REF] since the problem is one dimensional in space, a perturbation result (see [START_REF] Rao | Stabilization of elastic plates with dynamical boundary control[END_REF][START_REF] Russell | Decay rates for weakly damped systems in Hilbert space obtained with control-theoretic methods[END_REF]) was used to prove the non uniform stability of the generated C 0 -semigroup generated by A. In our case this cannot be used to prove the non uniform stability. But adapting a method from [START_REF] Toufayli | Stabilisation polynomiale et contrôlabilité exacte des équations des ondes par des contrôles indirects et dynamiques[END_REF] we can prove a non uniform stability result. This method is based on a frequency domain approach, namely we use the following result, called Huang-Prüss Theorem (see [START_REF] Gearhart | Spectral theory for contraction semigroups on Hilbert space[END_REF], [START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF] or [START_REF] Huang | Characteristic conditions for exponential stability of linear dynamical system in hilbert spaces[END_REF]): Lemma 2.5.1 A C 0 -semigroup e tL of contractions on a Hilbert space H is exponentially stable, i.e., satisfies

||e tL U 0 || H ≤ C e -ωt ||U 0 || H , ∀U 0 ∈ H, ∀t ≥ 0,
for some positive constants C and ω if and only if

ρ(L) ⊃ iR, (2.49 
)

and sup β∈R (iβ -L) -1 < ∞, (2.50)
where ρ(L) denotes the resolvent set of the operator L.

Our goal is to check that (2.50) does not hold. For that purpose, we introduce the positive self-adjoint operator -∆ R defined by

D(-∆ R ) = {y ∈ H 2 (Ω) ∩ V : ∂y ∂ν + κy = 0 on Γ 0 }, where κ = (C, C) = C * M C > 0, and 
-∆ R y = -∆y, ∀y ∈ D(-∆ R ).
Denote by {λ 2 R,k } k∈N * the (discrete) spectrum of -∆ R (repeated according to their multiplicity) and let y k be the corresponding orthonormalized eigenvectors. Without loss of generality we can assume that the λ R,k 's are positive. As -∆ R has a compact resolvent, λ R,k goes to +∞ as k goes to +∞.

The index R was chosen because the boundary

∂y ∂ν + κy = 0 on Γ 0 is of Robin type.
Recall also the following trace inequality from [START_REF] Brezis | Analyse fonctionnelle[END_REF] Γ 0

|u| 2 dσ u L 2 (Ω) u V , ∀u ∈ V. (2.51)
Indeed, it suffices to apply the standard trace theorem

v L 1 (Γ 0 ) v W 1,1 (Ω) , ∀v ∈ W 1,1 (Ω), with v = u 2 to find Γ 0 |u| 2 dσ u 2 L 1 (Ω) + ∇u 2 L 1 (Ω) ,
and by Leibniz's rule, Cauchy-Schwarz's inequality and Poincaré's inequality we obtain (2.51).

Proposition 2.5.2 For all k ∈ N * , take µ k = λ R,k . Then there exists a sequence of elements U k ∈ D(A) such that for all k ∈ N * :

U k H ≥ 1, (2.52) 
(iµ k -A)U k H µ -1 2 k . (2.53)
Proof. Fix an arbitrary k ∈ N * , then we define U k as follows:

U k = µ -1 k (y k , iµ k y k , δ k ) ⊤ ,
where

δ k = -Cy k on Γ 0
By this choice we check that U k belongs to D(A) because

(δ k , C) = -(Cy k , C) = -κy k = ∂y k ∂ν on Γ 0 .
First, by definition, we clearly have

U k H ≥ y k L 2 (Ω) = 1,
which proves (2.52). Now by construction, we see that

(iµ k -A)U k = µ -1 k (0, 0, (iµ k -B)δ k + iµ k Cy k ).
(2.54)

Moreover, we have

(iµ k -B)δ k + iµ k Cy k = BCy k .
This identity in (2.54) yields

(iµ k -A)U k 2 H = µ -2 k Γ 0 BCy k 2 M dσ µ -2 k Γ 0 |y k | 2 dσ.
Applying the trace estimate (2.51) we obtain

(iµ k -A)U k 2 H µ -2 k y k V ∼ µ -1 k . This proves (2.

53).

Theorem 2.5.3 The C 0 -semigroup associated with A in H is not exponentially stable.

Proof. The only non trivial case is the case when (2.49) holds for A. In that case we need to show that (2.50) does not hold. Indeed, setting ψ k = (iµ k -A)U k (that cannot be zero because (iµ k -A) is invertible) we then have

(iµ k -A) -1 L(H) = sup Ψ∈H,Ψ =0 (iµ k -A) -1 Ψ H Ψ H ≥ (iµ k -A) -1 Ψ k H Ψ k H ≥ U k H (iµ k -A)U k H .
Hence, by (2.52) and (2.53), we deduce that

(iµ k -A) -1 L(H) √ µ k ,
which implies that (2.50) does not hold and the proof is thus complete.

Polynomial stability: a frequency domain approach

In this section we prove under some conditions the polynomial stability of the energy of the semigroup generated by A.We use the following result from [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF] (see also [START_REF] Bátkai | Polynomial stability of operator semigroups[END_REF][START_REF] Batty | Non-uniform stability for bounded semi-groups on Banach spaces[END_REF]).

Theorem 2.6.1 Let (T (t)) t≥0 be a bounded C 0 -semigroup on a Hilbert space H with generator A such that iR ⊂ ρ(A). Then for a fixed α > 0 the following conditions are equivalent:

(i) R(is, A) = O(|s| α ), s → ∞. (ii) T (t)A -1 = O(t -1/α ), t → ∞. Consider the system    u tt (x, t) -∆u(x, t) = 0 , x ∈ Ω, t > 0, u(x, t) = 0 , x ∈ Γ 1 , t > 0, ∂u ∂ν (x, t) = -u t , x ∈ Γ 0 , t > 0, (2.55) 
Define the operator A corresponding to the system (2.55) by

AU = (v, ∆u) ⊤ , U = (u, v) ⊤ ∈ D(A), (2.56) 
with

D(A) = {U ∈ H : ∆u ∈ L 2 (Ω), v ∈ V, ∂u ∂ν = -v on Γ 0 }, H = V × L 2 (Ω).
In the next two propositions we use the exponential or polynomial stability of system (2.55) to prove a polynomial stability of system (2.2) with a certain decay rate depending on the type of stability of (2.55).

Proposition 2.6.2 Assume that the energy of system (2.55) is exponentially stable and iR ⊂ ρ(A). Suppose moreover that there exist p > 0 and α > 0 such that for s ∈ R with |s| large enough we have

ℜ((isI -B) -1 C, C) ≥ α |s| 2p , (2.57)
then the energy of the solution of (2.2) satisfies the polynomial decay

E(t) 1 t 1/(p+1/2) U 0 2 D(A) , ∀t > 0.
(2.58)

Proof. For s ∈ R and F = (y 1 , z 1 , δ 1 ) ⊤ ∈ H, let U F = (y, z, δ) ⊤ = (isI -A) -1 F .
Then proceeding as in Proposition 2.2.1 but replacing λ by is in the equation (2.13), we obtain

a is (y, ϕ) = L F (ϕ), ∀ϕ ∈ V = {y ∈ H 1 (Ω) : y = 0 on Γ 1 }, (2.59)
where the expressions of a λ and L F are respectively given by the identities (2.14) and (2.15). For ϕ = y, we find

Ω -s 2 y ȳdx + Ω ∇y∇ȳdx + Γ 0 is((isI -B) -1 C, C)γ 0 yγ 0 ȳds (2.60) = Ω (z 1 + isy 1 )ȳdx + Γ 0 (isI -B) -1 (Cγ 0 y 1 + δ 1 ), C γ 0 ȳds.
Taking the imaginary part of (2.60), we get

Γ 0 sℜ((isI-B) -1 C, C)|γ 0 y| 2 ds = ℑ Ω (z 1 + isy 1 )ȳdx + Γ 0 (isI -B) -1 (Cγ 0 y 1 + δ 1 ), C γ 0 ȳds .
(2.61) Taking the modulus of (2.61) and using Cauchy-Schwarz's inequality, we obtain

|s| Γ 0 ℜ((isI -B) -1 C, C)|γ 0 y| 2 ds ≤ Ω |(z 1 + isy 1 )ȳ|dx + Γ 0 (isI -B) -1 (Cγ 0 y 1 + δ 1 ), C γ 0 ȳ ds F H y L 2 (Ω) + |s| F H y L 2 (Ω) + 1 |s| F H y L 2 (Γ 0 ) .
By (2.57) we deduce that for |s| large enough,

|s| Γ 0 1 |s| 2p |γ 0 y| 2 ds |s| F H y L 2 (Ω) + 1 |s| F H y L 2 (Γ 0 ) , thus y 2 L 2 (Γ 0 ) |s| 2p F H y L 2 (Ω) + |s| 2p-2 F H y L 2 (Γ 0 ) , (2.62) 
hence by Young's inequality

y 2 L 2 (Γ 0 ) |s| 2p F H y L 2 (Ω) + |s| 2(2p-2) F 2 H . (2.63)
For every s ∈ R and for every f ∈ L 2 (Ω) let us show that there exists a solution

ϕ f ∈ H 1 (Ω) of the problem    -(s 2 + ∆)ϕ f = f , x ∈ Ω, t > 0, ϕ f (x, t) = 0 , x ∈ Γ 1 , t > 0, ∂ϕ f ∂ν (x, t) = -isϕ f , x ∈ Γ 0 , t > 0,
(2.64) and satisfying

|s| ϕ f L 2 (Ω) + ϕ f H 1 (Ω) f L 2 (Ω) , |s| ϕ f L 2 (Γ 0 ) f L 2 (Ω) .
(2.65) Indeed, by Huang-Prüss Theorem (see [START_REF] Gearhart | Spectral theory for contraction semigroups on Hilbert space[END_REF][START_REF] Huang | Characteristic conditions for exponential stability of linear dynamical system in hilbert spaces[END_REF][START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF]) the exponential stability of system (2.55) implies that there exists M > 0 such that

(isI -A) -1 L(H) ≤ M < +∞, (2.66) 
for all s ∈ R. Due to (2.66) we have

∀f ∈ L 2 (Ω), ∀s ∈ R, ∃!u f = ϕ f ψ f ∈ D(A) s.t. (isI -A)u f = 0 f and such that u f H ≤ M f L 2 (Ω) .
We deduce that

isϕ f -ψ f = 0 isψ f -∆ϕ f = f which gives ψ f = isϕ f and (s 2 + ∆)ϕ f = -f . Moreover, ϕ f H 1 (Ω) + |s| ϕ f L 2 (Ω) f L 2 (Ω) ,
and the first estimate of (2.65) hold. To obtain the third inequality we write

Ω (-s 2 ϕ f -f ) φf dx + Ω |∇ϕ f | 2 dx = Ω ∆ϕ f φf dx + Ω |∇ϕ f | 2 dx = Γ 0 ∂ n ϕ f φf ds, hence Γ 0 ∂ n ϕ f φf ds = Ω (|∇ϕ f | 2 -s 2 |ϕ f | 2 -f φf )dx.
(2.67)

As ψ f = isϕ f and ∂ϕ f ∂ν = -ψ f , then taking the imaginary part of (2.67) we get

|s| Γ 0 |ϕ f | 2 ds = |ℑ Ω f φf dx| ≤ f L 2 (Ω) ϕ f L 2 (Ω) f 2 L 2 (Ω)
|s| , which proves the second estimate of (2.65). We first show that

y L 2 (Ω) + y L 2 (Γ 0 ) |s| 2p F H . (2.68)
By replacing ϕ by ϕ f in the identity (2.13) and integrating by parts we get

Ω -s 2 y φf dx - Ω y∆ φf dx + Γ 0 y ∂ φf ∂ν ds + Γ 0 is (isI -B) -1 C, C γ 0 yγ 0 φf ds. = Ω (z 1 + isy 1 ) φf dx + Γ 0 (isI -B) -1 (Cγ 0 y 1 + δ 1 ), C γ 0 φf ds.
We deduce that

Ω y f dx = Γ 0 isy φf dx + Ω (z 1 + isy 1 ) φf dx + Γ 0 (isI -B) -1 (Cγ 0 y 1 + δ 1 ), C γ 0 φf ds - Γ 0 is (isI -B) -1 C, C γ 0 yγ 0 φf ds(2.

69)

Take f = y in (2.69) to obtain

Ω |y| 2 dx = Γ 0 isy φy dx + Ω (z 1 + isy 1 ) φy dx + Γ 0 (isI -B) -1 (Cγ 0 y 1 + δ 1 ), C γ 0 φy ds - Γ 0 is (isI -B) -1 C, C γ 0 yγ 0 φy ds.
Using Cauchy-Schwarz inequality together with (2.65), we obtain for |s| large enough

Ω |y| 2 dx y L 2 (Γ 0 ) y L 2 (Ω) + F H y L 2 (Ω) .
By Young's inequality, we deduce that

y 2 L 2 (Ω) y 2 L 2 (Γ 0 ) + F 2 H . (2.70)
Using this estimate in (2.63), we get

y 2 L 2 (Γ 0 )) |s| 2p F H ( y L 2 (Γ 0 ) + F H ) + |s| 2(2p-2) F 2 H ,
and again by Young's inequality, we obtain

y 2 L 2 (Γ 0 )) |s| 4p F 2 H .
By (2.70) we deduce that y 2

L 2 (Ω)
|s| 4p F 2 H , which proves (2.68). It follows that

z 2 L 2 (Ω) = isy -y 1 2 L 2 (Ω) ≤ |s| 4p+2 F 2 H .
Moreover, by the expression (2.11) and (2.68), we get

δ (L 2 (Γ 0 )) n 1 |s| ( F H + |s| y L 2 (Γ 0 ) ) |s| 2p F H .
We further have

Ω |∇y| 2 dx |s| 4p+2 F 2 H .
Indeed, by (2.60), we have

Ω |∇y| 2 dx = Ω s 2 |y| 2 dx - Γ 0 is((isI -B) -1 C, C)|γ 0 y| 2 ds + Ω (z 1 + isy 1 )ȳdx + Γ 0 (isI -B) -1 (Cγ 0 y 1 + δ 1 ), C γ 0 ȳds |s| 2 y 2 L 2 (Ω) + y 2 L 2 (Γ 0 ) + |s| F H y L 2 (Ω) + 1 |s| F H y L 2 (Γ 0 ) |s| 4p+2 F 2 H + |s| 4p F 2 H + |s| 2p+1 F 2 H + |s| 2p-1 F 2 H .
Hence we have shown that

U F H |s| 2p+1 F H ,
for |s| large enough. This means that

(is -A) -1 = O(|s| 2p+1 ), s → ∞,
and it follows by Theorem 2.6.1 that

U (t) H 1 t 1/(2p+1) U 0 D(A) ,
which proves (2.58).

Proposition 2.6.3 Suppose as in Proposition 2.6.2 that there exist p > 0 and α > 0 such that for s ∈ R with |s| large enough, (2.57) holds and that iR ⊂ ρ(A). Assume moreover that the energy of system (2.55) is polynomially stable with

e At A -1 = O(t -1/α ), t → ∞,
for some α > 0. Then the energy of the solution of (2.2) satisfies a polynomial decay 

E(t) 1 t 1/(p+ α+1 2 ) U 0 2 D(A) , ∀t > 0. ( 2 
|s| ϕ f L 2 (Ω) + ϕ f H 1 (Ω) |s| α f L 2 (Ω) , |s| ϕ f L 2 (Γ 0 ) |s| α 2 f L 2 (Ω) .
(2.72) Indeed, since the energy of system (2.55) is polynomially stable then using Theorem 2.6.1,

∀f ∈ L 2 (Ω), ∀s ∈ R, ∃!u f = (ϕ f , ψ f ) ⊤ ∈ D(A) s.t. (isI -A)u f = (0, f ) ⊤ with u f H ≤ M |s| α f L 2 (Ω) ,
for some M > 0. As before, we deduce that

y L 2 (Ω) |s| 2p |s| α F H y L 2 (Γ 0 ) |s| 2p |s| α 2 F H (2.73)
Replacing f = y in (2.69) and using the estimates (2.72) together with Young's inequality, we obtain y 2

L 2 (Ω) |s| α y 2 L 2 (Γ 0 ) + |s| α F 2 H . (2.74)
Then by (2.63), we get

y 2 L 2 (Γ 0 ) |s| 4p+α F 2 H . Due to (2.74), y 2 L 2 (Ω) |s| 4p+2α F 2 H , and thus z 2 L 2 (Ω) = isy -y 1 2 L 2 (Ω) ≤ |s| 4p+2α+2 F 2 H
. By the expression (2.11) and (2.73), we get

δ (L 2 (Γ 0 )) n 1 |s| ( F H + |s| y L 2 (Γ 0 ) ) |s| 2p+ α 2 F H .
Using (2.60) and (2.73), we have 

Ω |∇y| 2 dx |s| 4p+2α+2 F 2 H . Henceforth, (is -A) -1 = O(|s| 2p+α+1 ), s → ∞,
•, •) C n , B 0 = B -R and R = B+B * 2 . Moreover, assume that m = min{p ∈ N : P (B p 0 C) = 0} (2.75)
exists, with P the projection from C n into (ker R) ⊥ . Then there exists α > 0 such that for |s| large enough, we have

ℜ((isI -B) -1 C, C) ≥ α |s| 2(m+1) .
Proof. Indeed, we have RB l C = 0 for all l < m and RB m C = RB m 0 C. Then, since R is self-adjoint and RC = RP C, we may write

-(R ∞ j=0 (-i) j+1 B j s j+1 C, ∞ l=0 (-i) l+1 B l s l+1 C) = -((-i) m+1 B m s m+1 C, R(-i) m+1 B m s m+1 C) + O(|s| -(2m+3) ) = -((-i) m+1 P B m 0 s m+1 C, (-i) m+1 R P B m 0 s m+1 C) + O(|s| -(2m+3) ).
As

ℜ((isI -B) -1 C, C) = ℜ((isI -B) -1 C, (isI -B)(isI -B) -1 C) = -(R(isI -B) -1 C, (isI -B) -1 C) = -(R ∞ j=0 (-i) j+1 B j s j+1 C, ∞ l=0 
(-i) l+1 B l s l+1 C),
we get

ℜ((isI -B) -1 C, C) = - (RP (B m 0 C), P (B m 0 C)) s 2(m+1) + O(|s| -(2m+3) ). But -R defines a norm on (kerR) ⊥ , thus -(RP (B m 0 C), P (B m 0 C)) P (B m 0 C) 2 > 0.
Remark 2.6. [START_REF] Alabau | Indirect internal stabilization of weakly coupled evolution equations[END_REF] The semigroup e At is exponentially stable for domains with smooth boundary (of class C ∞ ) satisfying the geometric control condition (G.C.C)(see [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF]), as well as for domains of class C 2 satisfying the vector field assumptions described in [START_REF] Lagnese | Decay of solutions of wave equations in a bounded region with boundary dissipation[END_REF] (see (i),(ii),(iii) of Theorem 1 in [START_REF] Lagnese | Decay of solutions of wave equations in a bounded region with boundary dissipation[END_REF]). Moreover, in Theorem 1.2 of [START_REF] Lasiecka | Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions[END_REF] the authors prove the exponential stability of e At for smooth domains under weaker geometric conditions than in [START_REF] Lagnese | Decay of solutions of wave equations in a bounded region with boundary dissipation[END_REF] (without (ii) of Theorem 1).

Remark 2.6.6 Consider the system (2.55) on the square [0, 1] × [0, 1] and suppose that Γ 0 = {1} × [0, 1]. Then similarly as in [START_REF] Nicaise | Polynomial stabilization of the wave equation with Ventcel's boundary conditions[END_REF] we deduce that e At is polynomially stable with e At U 0 

Dissipation on the whole boundary

Here we assume that Γ 1 = ∅. Thus Γ = Γ 0 = ∂Ω and system (2.2) becomes   

y tt (x, t) -∆y(x, t) = 0 , x ∈ Ω, t > 0, ∂y ∂ν (x, t) = (δ(x, t), C) , x ∈ Γ 0 , t > 0, δ t (x, t) = Bδ(x, t) -Cy t (x, t) , x ∈ Γ 0 , t > 0.
(2.76)

Let V = H 1 (Ω), then H is given by H = V × L 2 (Ω) × (L 2 (Γ 0 )) n ,
and is now endowed with the following inner product

((y, z, δ), (y 1 , z 1 , δ 1 )) H = Ω y ȳ1 dx + Ω ∇y∇ȳ 1 dx + Ω z z1 dx + Γ 0 (δ, δ 1 )dx.
(y, z, δ) ⊤ ∈ H, we get Γ 0 (B -1 C, C)yds = 0 and we conclude that y = 0.

Let us now show that A is surjective from D( A) onto H. Let F = (y 1 , z 1 , δ 1 ) ⊤ ∈ H. Then F satisfies L F (1) = 0 and it follows that for all φ ∈ H 1 (Ω)/C the expression L F ( φ) = L F (ϕ), with ϕ ∈ φ is a well defined linear bounded form on the quotient space H 1 (Ω)/C endowed with the norm φ = ∇ϕ L 2 (Ω) . We also define the form a on H 1 (Ω)/C×H 1 (Ω)/C by a( ẏ, φ) = a 0 (y, ϕ), y ∈ ẏ, ϕ ∈ φ. Moreover, a being coercive on H 1 (Ω)/C, Lax-Milgram lemma then implies the existence of a unique solution ẏ ∈ H

1 (Ω)/C of a( ẏ, φ) = L F ( φ), ∀ φ ∈ H 1 (Ω)/C.
Choose any y ∈ ẏ, then it satisfies

Ω ∇y∇ φdx = Ω z 1 φdx + Γ 0 (-B) -1 (Cy 1 + δ 1 ), C φds, ∀ϕ ∈ H 1 (Ω).
(2.78)

In particular, for ϕ ∈ D(Ω) we get -∆y = z 1 ∈ L 2 (Ω). Moreover, by replacing z 1 by -∆y in (2.78), we deduce that

∂ ν y = ((-B) -1 (Cy 1 + δ 1 ), C). Set δ = B -1 (Cy 1 + δ 1 ), z = y 1 , ỹ = -y + β, with β ∈ C fixed below. Thus B δ -C z = δ 1 and ∆ỹ = -∆y = z 1 in Ω,
and

∂ ỹ ∂ν = - ∂y ∂ν = ( δ, C) on Γ.
Since Γ (B -1 C, C)ds = 0, we may choose

β = 1 Γ (B -1 C, C)ds Ω y 1 dx + Γ B -1 Cy -B -1 (Cy 1 + δ 1 ) , C ds to get Ω zdx + Γ ((-B) -1 (C ỹ + δ), C)ds = 0.
Henceforth, U = (ỹ, z, δ) ⊤ ∈ D( A) and A U = F .

Corollary 2.7.3 0 ∈ σ d (A) with multiplicity 1, its associated eigenvector is (1, 0, 0) ⊤ .

Proof. Clearly A(y, z, δ) ⊤ = (0, 0, 0) ⊤ if and only if y is constant in Ω, z = 0 and δ = 0, hence 0 ∈ σ d (A) with a geometric multiplicity equal to 1. As

L 1 ((1, 0, 0) ⊤ ) = - Γ (B -1 C, C)ds = 0,
(1, 0, 0) ⊤ does not belong to the range of A and the algebraic multiplicity of 0 is also equal to 1.

Let us now show that A is surjective from D( A) onto H. Let F = (y 1 , z 1 , δ 1 ) ⊤ ∈ H. Then F satisfies L F (1) = 0 and as before there exists a solution y ∈ H 1 (Ω) of (2.78). By setting δ = B -1 (Cy 1 + δ 1 ), z = y 1 , ỹ = -y + β, with β ∈ C fixed below, we find that

A(ỹ, z, δ) = F.
Furthermore, the assumption L 2 (F ) = 0 guarantees that L 1 (ỹ, z, δ) = 0, while β is fixed in such a way that

L 2 ((ỹ, z, δ) ⊤ ) = L 2 ((-y, z, δ) ⊤ ) + βL 2 ((1, 0, 0) ⊤ ) = 0.
Corollary 2.7.6 0 ∈ σ d (A) with geometric multiplicity 1 and algebraic multiplicity 2, its associated eigenvector is (1, 0, 0) ⊤ and its generalized eigenvector is (0, 1,

B -1 C) ⊤ .
Proof. The conclusion follows from the fact that

A(0, 1, B -1 C) ⊤ = (1, 0, 0) ⊤ ,
and that

L 1 ((0, 1, B -1 C) ⊤ ) = L 2 ((1, 0, 0) ⊤ ) = 0.
Remark 2.7.7 If (2.80) does not hold, then it equivalently means that L 1 ((0, 1, B -1 C) ⊤ ) = 0, and in that case, we directly deduce that the algebraic multiplicity of 0 is greater than 3. For shortness, we let the remaining analysis to the reader.

General considerations

From now on, we suppose that we are either in the first case or in the second one.

Proposition 2.7.8 Suppose that the assumptions (A 1 ), (A 2 ), (A 3 ) and (A 4 ) of Proposition 2.4.2 hold. Then

σ d (A) ∩ iR * = ∅. Consequently, σ d ( A) ∩ iR * = ∅.
Proof. Same proof as Proposition 2.4.2.

Proposition 2.7.9 If λ ∈ Σ, then λ -A is a Fredholm operator of index zero.

Proof. Same proof as that of point (ii) of Theorem 2.3.1 but replacing V by H 1 (Ω).

Remark 2.7.10 If λ ∈ Σ, then λ -A is singular. Indeed, since λ -A is singular then by Theorem 2.3.1, there exists a sequence

(U n ) n∈N * in D(A) satisfying U n H = 1 and (λI -A)U n → 0, as n → ∞.
In the first case, let α n = L 1 (Un) L 1 ((1,0,0) ⊤ ) , where U n = (y n , z n , δ n ) ⊤ .We now construct the sequence

( U n ) n∈N * by U n = U n -α n   1 0 0   .
In the second case, let

β n = L 1 (U n ) L 1 ((0, 1, B -1 C) ⊤ ) and α n = L 2 (U n ) -β n L 2 ((0, 1, B -1 C) ⊤ ) L 2 ((1, 0, 0) ⊤ ) .
In this case, we introduce the sequence ( U n ) n∈N * defined by

U n = U n -α n   1 0 0   -β n   0 1 B -1 C   .
Then ( U n ) n ⊂ D( A) and α n → 0, β n → 0 as n → ∞ due to Lemma 3.3 and the property (2.9). Consequently, (λI -A) U n → 0 and U n H → 1. Therefore, taking V n = Un Un H , we obtain

(V n ) n ⊂ D( A) satisfying V n H = 1 and (λI -A)V n → 0, as n → ∞.
Proposition 2.7.11 If (A 1 ) to (A 4 ) of Proposition 2.4.2 hold and if Σ ∩ iR is countable, then the C 0 -semigroup associated with A is strongly stable.

Proof. Due to Proposition 2.7.2 and Proposition 2.7.5, we have 0 ∈ ρ( A). Now, let iλ ∈ C \ Σ with λ nonzero, then due to Proposition 2.7.8 we have iλ ∈ σ d (A). We deduce by Proposition 2.7.9 that iλ ∈ ρ(A). Using the same proof of the invertibility of λI -A where λ > 0 of Proposition 2.7.1 we prove the invertibility of iλ -A , and so iλ ∈ ρ( A), hence

C \ Σ ∩ iR * ⊂ ρ( A) ∩ iR * and thus σ( A) ∩ iR * ⊂ Σ ∩ iR * .
The next corollary follows directly from the previous Proposition.

Corollary 2.7.12 Let the assumptions of Proposition 2.4.2 be satisfied. Suppose moreover that

Σ ∩ iR * = ∅. Then iR * ⊂ ρ( A)
We define the operator (A, D(A)) on H := H 1 (Ω)×L 2 (Ω) as in the previous section. Moreover, we define the following subspace Ḣ of H

Ḣ = {U ∈ H : Ω zdx + Γ yds = 0}
endowed with the inner product

((y, z), (y 1 , z 1 )) Ḣ = Ω ∇y∇ȳ 1 dx + Ω z z1 dx,
and the operator ( Ȧ, D( Ȧ)) defined by

D( Ȧ) = Ḣ ∩ D(A), ȦU = AU, ∀U ∈ D( Ȧ).
We further define the following initial value problem on Ḣ

U t = ȦU, U (0) = U 0 . (2.81) 
Proposition 2.7.13 Assume that iR ⊂ ρ( A) and that the energy of system (2.81) is exponentially stable. Suppose moreover that there exist p > 0 and α > 0 such that for s ∈ R with |s| large enough we have

ℜ((isI -B) -1 C, C) ≥ α |s| 2p ,
then the energy of the solution of U t = AU, U (0) = U 0 ∈ D( A), satisfies a polynomial decay

E(t) 1 t 1/(p+1/2) U 0 2 D( A) , ∀t > 0.
(2.82)

Proof. For f ∈ L 2 (Ω), we have -1 |∂Ω| Ω f dx f ∈ Ḣ. Then there exists û0 û1 ∈ D( Ȧ) satisfying (λI -Ȧ) û0 û1 = -1 |∂Ω| Ω f dx f and (û 0 , û1 ) ⊤ Ḣ ≤ (- 1 |∂Ω| Ω f dx, f ) ⊤ Ḣ .
Take

u 0 = û0 + 1 is|∂Ω| Ω f dx, u 1 = û1 . Then (λI -A) u 0 u 1 = 0 f .
Setting ϕ f = u 0 , we get (2.65). Following the same proof of Proposition 2.6.2 we obtain the same estimates on the resolvent in the space H. We conclude by Theorem 2.6.1 as iR ⊂ ρ( A).

Remark 2.7. [START_REF] Bátkai | Polynomial stability of operator semigroups[END_REF] The semigroup e Ȧt is exponentially stable if the boundary Γ is smooth enough as it then satisfies the geometric control condition (G.C.C)(see [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF]), or if Ω is of class C 2 satisfying the vector field assumptions described in [START_REF] Lagnese | Decay of solutions of wave equations in a bounded region with boundary dissipation[END_REF] (more precisely (ii) and (iii) of Theorem 1 in [START_REF] Lagnese | Decay of solutions of wave equations in a bounded region with boundary dissipation[END_REF]).

Proposition 2.7.13 finally allows to obtain the asymptotic behavior of the solution of (2.76). To state properly the result, we again need to distinguish between the first and the second case. Proposition 2.7.15 Let the assumptions of Proposition 2.7.13 be satisfied, then the following statements hold: 1. In the setting of case 1, the solution U = (y, y t , δ) ⊤ of (2.76) with U 0 ∈ D(A) satisfies

U (t) -α(1, 0, 0) ⊤ 2 H 1 t 1/(p+1/2) U 0 2 D(A) , where α = L 1 (U 0 ) L 1 ((1, 0, 0) ⊤ ) .
2. In the setting of case 2, the solution U = (y, y t , δ) ⊤ of (2.76) with U 0 = (y 0 , y 1 , δ 0 ) ⊤ ∈ D(A) satisfies

U (t) -α(1, 0, 0) ⊤ -β(t, 1, B -1 C) ⊤ 2 H 1 t 1/(p+1/2) U 0 2 D(A) , where β = L 1 (U 0 ) L 1 ((0, 1, B -1 C) ⊤ ) and α = L 2 (U 0 ) -βL 2 ((0, 1, B -1 C) ⊤ ) L 2 ((1, 0, 0) ⊤ ) .
Proof. In the first case, given U 0 ∈ D(A) we set

U 0 = U 0 -α(1, 0, 0) ⊤ ,
with α defined above. The choice of α guarantees that U 0 belongs to D( A). Hence applying Proposition 2.7.13, we see that the solution U of

U t = A U , U (0) = U 0 , (2.83) 
satisfies (2.82). The conclusion follows by noticing that

U (t) = U (t) + α(1, 0, 0) ⊤ , is solution of (2.7), U t = AU, U (0) = U 0 .
We proceed similarly in the second case, namely we set

U 0 = U 0 -α(1, 0, 0) ⊤ -β(0, 1, B -1 C) ⊤ ,
α and β being chosen such that L 1 ( U 0 ) = L 2 ( U 0 ) = 0. As before the solution U of (2.83) satisfies (2.82), and the conclusion follows by noticing that

U (t) = U (t) + α(1, 0, 0) ⊤ + β(t, 1, B -1 C) ⊤ ,
is solution of (2.7).

Polynomial stability: the multiplier method and the energy method

In this section we assume that Γ0 ∩ Γ1 = φ, and meas Γ 1 = 0, and that there exists a point x 0 ∈ R n such that

Γ 1 = {x ∈ Γ|(x -x 0 ).ν ≤ 0}, Γ 0 = {x ∈ Γ|(x -x 0 ).ν ≥ a > 0},
for some constant a > 0, where ν = ν(x) denotes the unit outward normal vector at x ∈ Γ. We further suppose that B and C have constant and real entries (for variable entries, see Remark 2.8.10). Under these assumptions we are able to give a better energy decay rate than that given in the previous section once imposing certain algebraic conditions on B and C. Remark also that those geometrical conditions on the boundary exclude simply connected domains. Moreover, we set q(x) = (xx 0 ), for all x ∈ Ω and denote by R 0 = q ∞ = sup x∈Ω q(x) .

We first prove a result from interpolation theory which later will allow us to deduce from the polynomial decay for certain regular initial data a polynomial decay of energy for less regular initial data (see also Proposition 3.1 in [START_REF] Bátkai | Polynomial stability of operator semigroups[END_REF]).

Proposition 2.8.1 Let (A, D(A)) be a m-dissipative generator of a C 0 -semigroup of contractions on H, with A -1 bounded in a Hilbert space H with norm • , let U 0 ∈ D(A) and m be a positive integer. Suppose that e At V 0

2 1 t m j=0 A j V 0 2 for all V 0 ∈ D(A m ), then e At U 0 2 1 t 1 m ( U 0 2 + AU 0 2 ). (2.84) 
Proof. For m = 1, the result is clear. For m > 1, applying Theorem 2.6 of [START_REF] Lunardi | Interpolation theory[END_REF] we get

e At L([H,D(A m )] θ ;H)) ≤ e At 1-θ L(H) e At θ L(D(A m );H)) , ∀θ ∈ (0, 1). 
Due to Corollary 4.30 of [START_REF] Lunardi | Interpolation theory[END_REF], we have

[H, D(A m )] 1 m = D(A).
By the assumptions we have e At L(D(A m );H))

≤ C t 1 2
. Moreover, e At is a family of contractions on H, thus e At L(H) ≤ 1 and hence

e At L(D(A);H) ≤ e At 1 m L(D(A m );H)) ≤ 1 t 1 2m
, which yields (2.84).

For j ∈ N and U 0 ∈ D(A j ), by Remark 2.2.4, for all t ≥ 0, we can define

E j (t) = 1 2 ∂ j t U (t) 2 H . For U 0 ∈ D(A j+1 ), computing its derivative we obtain d dt E j (t) = (A∂ j t U, ∂ j t U ) = Γ 0 (B∂ j t δ, ∂ j t δ)ds = Γ 0 ∂ j t δ ⊺ M B∂ j t δds, (2.85) 
that is non positive. Hence this energy is also non increasing.

Proposition 2.8.2 For (y 0 , z 0 , δ 0 ) ⊺ ∈ D(A), denote by (y, y t , δ) the solution of system (2.2) and define F 0 (t) by

F 0 (t) = Ω y t q • ∇y + d -1 2 yy t dx,
where we recall that q(x) = xx 0 . Then the derivative of F 0 is given by

d dt F 0 (t) = - 1 2 Ω (|y t | 2 + |∇y| 2 )dx - 1 2 Γ 0 q • ν|∇y| 2 ds + Γ 0 C ⊺ M δq • ∇yds + 1 2 Γ 1 q • ν|∇y| 2 ds + 1 2 Γ 0 q • ν|y t | 2 ds + d -1 2 Γ 0 C ⊺ M δyds.
Proof. We have

d dt F 0 (t) = d dt Ω y t q • ∇ydx + d -1 2 d dt Ω yy t dx = Ω y tt q • ∇ydx + Ω y t q • ∇y t dx + d -1 2 Ω yy tt dx + Ω |y t | 2 dx .
As y tt = ∆y, and using Green's formula we get

Ω y tt q • ∇ydx = Ω ∆yq • ∇ydx = Γ ∂y ∂ν ∇y • qds - Ω ∇y • ∇(q • ∇y)dx = Γ 0 ∂y ∂ν ∇y • qds + Γ 1 (∇y • ν)(∇y • q)ds - Ω d i=1 ∂y ∂x i ∂ ∂x i   d j=1 (x j -x j 0 ) ∂y ∂x j   dx = Γ 0 ∂y ∂ν ∇y • qds + Γ 1 |∇y| 2 ν • qds - Ω |∇y| 2 - 1 2 Ω q • ∇|∇y| 2 dx.
Using Green's formula and as y t = 0 on Γ 1 , we get

Ω y t q • ∇y t dx = 1 2 Ω q • ∇|y t | 2 dx = - 1 2 Ω divq|y t | 2 dx + 1 2 Γ 0 q • ν|y t | 2 ds,
similarly substituting divq by d, we obtain

Ω 1 2 q • ∇|∇y| 2 dx = - d 2 Ω |∇y| 2 dx + 1 2 Γ 0 q • ν|∇y| 2 ds + 1 2 Γ 1 q • ν|∇y| 2 ds. (2.86) 
Moreover, as y = 0 on Γ 1 , we have

Ω yy tt dx = Ω y∆ydx = - Ω |∇y| 2 dx + Γ 0 ∂y ∂ν yds.
Finally, by replacing (2.86) in the expression of Ω y tt q • ∇ydx and summing all the above equalities, we obtain

d dt F 0 (t) = d -1 2 - d 2 Ω |y t | 2 dx + d 2 -1 - d -1 2 Ω |∇y| 2 dx - 1 2 Γ 0 q.ν|∇y| 2 ds + Γ 0 ∂y ∂ν q.∇yds + 1 2 Γ 1 q.ν|∇y| 2 ds + 1 2 Γ 0 q.ν|y t | 2 dx + d -1 2 Γ 0 ∂y ∂ν yds.
Just substituting ∂y ∂ν = C ⊺ M δ, we get the required result.

Proposition 2.8.3 Suppose that there exist k > 0, k 1 > 0, a matrix Q ∈ M n (R), and a positive integer m such that RB q C = 0 for all 0 ≤ q ≤ m -2 and

(C ⊺ (Bδ -Cv)) 2 ≤ k   δ 2 - m-1 j=1 RB j δ, B j δ -RB m-1 (Bδ -Cv), B m-1 (Bδ -Cv)   , (2.87) δ ⊺ (B ⊺ Q + QB)δ ≤ k(-Rδ, δ) -k 1 δ 2 , (2.88) 
for all δ v ∈ R n × R, where R = B+B * 2 , B * being the adjoint of B with respect to the defined inner product (note that (Rδ, δ) = (Bδ, δ)). Assume moreover that Q satisfies

(C ⊺ (Q ⊺ + Q)(Bδ -Cv)) 2 ≤ k   - m-1 j=0 RB j δ, B j δ -RB m-1 (Bδ -Cv), B m-1 (Bδ -Cv)   . (2.89) For (y 0 , z 0 , δ 0 ) ⊺ ∈ D(A m+1 ), define G 0 (t; y, δ) = Γ 0 δ ⊺ Qδds + Γ 0 α ⊺ δyds, with α = Q ⊺ C + QC, and the Lyapunov functional L 0 (t) = N 2 m j=0 E j (t) + √ N G 0 (t) + F 0 (t),
with N > 0. Then for N large enough, there exists C > 0 (depending on N ) such that

d dt L 0 (t) ≤ -CE 0 (t). (2.90) 
Proof. Deriving G 0 we obtain

d dt G 0 = Γ 0 (δ t ⊺ Qδ + δ ⊺ Qδ t + α ⊺ δ t y + α ⊺ δy t )ds
As δ t = Bδ -Cy t , we deduce that

d dt G 0 = Γ 0 (δ ⊺ (B ⊺ Q + QB)δ + y t (α ⊺ -C ⊺ Q -C ⊺ Q ⊺ )δ + α ⊺ δ t y)ds As α = Q ⊺ C + QC, we get d dt G 0 = Γ 0 (δ ⊺ (B ⊺ Q + QB)δ + α ⊺ δ t y)ds. (2.91) 
By (2.85), (2.91), and the expression of the derivative of F 0 , we have

d dt L 0 (t) = N 2 Γ 0 (Bδ, δ)ds + N 2 m j=1 Γ 0 (B∂ j t δ, ∂ j t δ)ds + √ N Γ 0 (δ ⊺ (B ⊺ Q + QB)δ + α ⊺ δ t y)ds - 1 2 Ω (|y t | 2 + |∇y| 2 )dx - 1 2 Γ 0 q.ν|∇y| 2 ds + Γ 0 C ⊺ M δq.∇yds + 1 2 Γ 1 q.ν|∇y| 2 ds + 1 2 Γ 0 q.ν|y t | 2 ds + d -1 2 Γ 0 C ⊺ M δyds.
To deal with the term Γ 0 q.ν|y t | 2 ds, we first compute y t using the condition δ t = Bδ -Cy t on Γ 0 , multiplying by C ⊺ we obtain

y t = (C ⊺ C) -1 C ⊺ Bδ -(C ⊺ C) -1 C ⊺ δ t on Γ 0 .
(2.92)

Using a trace theorem, equality (2.92) together with Young's and Poincaré's inequalities we deduce that for all ε 1 > 0, ε 2 > 0, ε 3 > 0 we have

Γ 0 q.ν|y t | 2 ds ≤ Γ 0 q.ν|(C ⊺ C) -1 C ⊺ Bδ -(C ⊺ C) -1 C ⊺ δ t | 2 ds (2.93) ≤ Γ 0 2R 0 (C ⊺ C) -2 (C ⊺ Bδ) 2 + (C ⊺ C) -2 (C ⊺ δ t ) 2 ds, √ N Γ 0 α ⊺ δ t yds ≤ N ε 1 2 Γ 0 (α ⊺ δ t ) 2 ds + C γ 2ε 1 Ω |∇y| 2 dx, (2.94) 
Γ 0 C ⊺ M δq.∇yds ≤ Γ 0 ε 2 2 (C ⊺ M δ) 2 + R 2 0 2aε 2 q.ν|∇y| 2 ds, (2.95) d -1 2 Γ 0 C ⊺ M δyds ≤ d -1 2 
ε 3 2 Γ 0 (C ⊺ M δ) 2 ds + d -1 2 
C γ 2ε 3 Ω |∇y| 2 dx.
(2.96)

Choosing ε 1 , ε 2 , ε 3 so that we get 1 8 Ω |∇y| 2 dx, 1 4 Γ 0 q.ν|∇y| 2 ds, and 1 8 Ω |∇y| 2 dx on the right hand side of the inequalities (2.94), (2.95) and (2.96) respectively, and as 1 2 Γ 1 q.ν|y t | 2 ds ≤ 0 we thus deduce that

d dt L 0 (t) ≤ N 2 Γ 0 (Rδ, δ)ds + N 2 m j=1 Γ 0 (R∂ j t δ, ∂ j t δ)ds + K 1 Γ 0 N (α ⊺ δ t ) 2 ds + √ N Γ 0 (δ ⊺ (B ⊺ Q + QB)δ)ds - 1 4 Ω (|y t | 2 + |∇y| 2 )dx +R 0 (C ⊺ C) -2 Γ 0 (C ⊺ δ t ) 2 ds + R 0 (C ⊺ C) -2 Γ 0 (C ⊺ Bδ) 2 ds + K 2 Γ 0 (C ⊺ M δ) 2 ds,
where K 1 , K 2 are positive constants. But ∂ j t δ = B j δ -j i=1 ∂ i t yB j-i C, thus for all 1 ≤ j ≤ m -1 and for all 1 ≤ i ≤ j we have 0 ≤ ji ≤ j -1 ≤ m -2 and thus RB j-i C = 0, and for all 2 ≤ i ≤ m we get RB m-i C = 0 as mi ≤ m -2. We deduce that for all 1 ≤ j ≤ m -1, (R∂ j t δ, ∂ j t δ) = (RB j δ, B j δ) and (R∂ m t δ, ∂ m t δ) = (RB m δ -RB m-1 Cy t , B m δ -B m-1 Cy t ). Hence, due to assumptions (2.87),(2.88), (2.89) we have,

(C ⊺ δ t ) 2 ≤ k   m j=1 (-R∂ j t δ, ∂ j t δ) + δ 2   , (2.97) δ ⊺ (B ⊺ Q + QB)δ ≤ k(-Rδ, δ) -k 1 δ 2 , (2.98) (C ⊺ (Q ⊺ + Q)δ t ) 2 ≤ -k m j=0
(R∂ j t δ, ∂ j t δ).

(2.99)

Clearly, we have

(C ⊺ Bδ) 2 + (C ⊺ M δ) 2 δ 2 .
Choosing N large enough we deduce that (2.90) holds.

Remark 2.8.4 Substitute δ = 0 R n , v = 1 in (2.87) we deduce that (-RB m-1 C, B m-1 C) > 0. Moreover, (2.88) implies that 0 ∈ σ(B), otherwise there would exist δ = 0 such that Bδ = 0 and thus (2.88) gives 0 ≤ -k 1 δ 2 < 0, which is a contradiction.

Remark 2.8.5 Define

F 1,k = - B ⊺ CC ⊺ B -B ⊺ CC ⊺ C -C ⊺ CC ⊺ B (C ⊺ C) 2 + k    M - m j=1 (B j ) ⊺ M RB j (B m ) ⊺ M RC m C ⊺ m M RB m -C ⊺ m M RC m    , F k = - B ⊺ αα ⊺ B -B ⊺ αα ⊺ C -C ⊺ αα ⊺ B (C ⊺ α) 2 + k    - m j=0 (B j ) ⊺ M RB j (B m ) ⊺ M RC m C ⊺ m M RB m -C ⊺ m M RC m    , F k,k 1 2 = -kM R -k 1 M -(B ⊺ Q + QB),
where C m = B m-1 C. The assumptions of Proposition 2.8.3 can be restated as:

there exist k > 0, k 1 > 0 and Q such that F k , F 1,k , F k,k 1 2
are positive definite matrices.

Proposition 2.8.6 For N large enough, there exist C 0 > 0 and C 1 > 0 such that

C 0 m j=0 E j (t) ≤ L 0 (t) ≤ C 1 m j=0 E j (t). (2.100) 
Proof. With the convention,

m j=2 E j (t) = 0 if m = 1, we have L 0 (t) -N 2 m j=2 E j (t) = N 2 Ω (|∇y| 2 + |y t | 2 + |∇y t | 2 + |y tt | 2 )dx + N 2 Γ 0 ( δ 2 + δ t 2 )ds +N 1 2 Γ 0 (δ ⊺ Qδ + α ⊺ δy)ds + Ω (y t q.∇y + d -1 2 yy t )dx.
Hence, by Cauchy-Schwarz's and Poincaré's inequalities and a trace theorem, we get

L 0 (t) -N 2 m j=2 E j (t) ≤ N 2 Ω (|∇y| 2 + |y t | 2 )dx + Γ 0 δ 2 ds + Ω (|∇y t | 2 + |y tt | 2 )dx + Γ 0 δ t 2 ds +N 1 2 K 3 Γ 0 n max 1≤i,j≤n |q i,j | δ 2 ds + N 1 2 Γ 0 K 3 |α| 2 δ 2 + |y| 2 2 ds + d -1 2 Ω |y t | 2 + |y| 2 2 dx + Ω |y t | 2 + R 2 0 |∇y| 2 dx. L 0 (t) -N 2 m j=2 E j (t) ≥ N 2 Ω (|∇y| 2 + |y t | 2 )dx + Γ 0 δ 2 ds + Ω (|∇y t | 2 + |y tt | 2 )dx + Γ 0 δ t 2 ds -N 1 2 Γ 0 nK 3 max 1≤i,j≤n |q i,j | δ 2 ds -N 1 2 K 3 |α| 2 2 Γ 0 δ 2 ds -N 1 2 C γ 2 Ω |∇y| 2 dx - d -1 2 Ω |y t | 2 + C γ |∇y| 2 2 dx - Ω |y t | 2 + R 2 0 |∇y| 2 dx,
where K 3 is a positive constant independent of N . For N chosen large enough, this right-hand side dominates E 0 (t) + E 1 (t), and the conclusion follows.

Theorem 2.8.7 Let U 0 ∈ D(A m ). Under the assumptions of Proposition 2.8.3, we get

E 0 (t) 1 t m j=0 E j (0). (2.101) Proof. Let U 0 ∈ D(A m+1
). Integrating the inequality (2.90) between 0 and t > 0, we get Proof. Let ε > 0 be given. Due to the density of D(A) in H, there exists

t 0 E 0 (τ )dτ ≤ - t 0 C -1 d dτ L 0 (τ )dτ = C -1 (L 0 (0) -L 0 (t)) ≤ C -1 C 1 m j=0 E j (0)
U ε 0 ∈ D(A) such that U ε 0 -U 0 < ε 2 .
But (e At ) t>0 is a contraction semigroup on H, so e At (U ε 0 -U 0 ) < ε 2 . Since Corollary 2.8.8 yields that e At U ε 0 converges to zero as t tends to infinity, there exists T ε > 0 such that for all t > T ε , we have e At U ε 0 H < ε 2 and hence e At U 0 H < ε 2 + e At U ε 0 H < ε, for all t > T ε .

Remark 2.8.10 If we suppose that B ∈ C 0,1 (Γ 0 , M n (R)) and C ∈ C 0,1 (Γ 0 , R n ) with the assumptions of Proposition 2.8.3 assumed to be valid for all x ∈ Γ 0 (with constants k > 0, k 1 > 0 independent of x) with Q ∈ C 0,1 (Γ 0 , M n (R)), then the results of Propositions 2.8.3, 2.8.7, and 2.8.9 are still valid (proved with the same arguments).

Examples

In this section, we illustrate our general framework by checking the assumptions of the frequency domain approach and that of the multiplier method for some particular examples.

Example 1: Acoustic boundary conditions

Let Ω be a domain of R 3 with a boundary Γ divided as in the introduction. The system considered by Beale [START_REF] Beale | Spectral properties of an acoustic boundary condition[END_REF] (with Γ 1 = ∅) and Rivera-Qin in [START_REF] Muñoz Rivera | Polynomial decay for the energy with an acoustic boundary condition[END_REF] with c = 1 is the following one: We readily check that this system can be rewritten in the form of system (2.2) with δ = (η, η t ) ⊤ and

       y tt (x, t) -∆y(x, t) = 0 , x ∈ Ω, t > 0, y(x, t) = 0 , x ∈ Γ 1 , t > 0, ∂y ∂ν (x, t) = η t (x, t) , x ∈ Γ 0 , t > 0, mη tt (x, t) + dη t (x, t) + kη(x, t) + ρy t (x, t) = 0, , x ∈ Γ 0 , t > 0,
B(x) = 0 1 -k m -d m , M (x) = k ρ 0 0 m ρ , R(x) = 0 0 0 -d m , C(x) = 0 ρ m , x ∈ Γ 0 .
For all x ∈ Γ 0 , the matrix B(x) is Hurwitz and thus Σ ∩ iR = ∅. Hence, the assumptions (A 2 ), (A 3 ) and (A 4 ) of Proposition 2.4.2 hold. Moreover, we can easily check (A 1 ) and we then deduce by the proof of Proposition 2.4.3 that σ(A) ∩ iR = ∅ if Γ 1 is non empty. In addition, the inequality (2.57) of Proposition 2.6.2 is satisfied for p = 1. Therefore, if Γ 1 is non empty and if e At is exponentially stable (see Remark 2.6.5), we deduce by Proposition 2.6.2 that

E(t) 1 t 2/3 U 0 2 D(A) , ∀t > 0.
A similar result holds if e At is only polynomially stable, in particular in the setting of Remark 2.6.6, we will get

E(t) 1 t 2 5 U 0 2 D(A) ∀t > 0.
On the other hand if Γ 1 is empty, since B is invertible and (B -1 C, C) = 0, we are then in the second case of section 2.7 (subsection 2.7.2) as we easily check that the assumptions (2.79) and (2.80) are satisfied. Therefore, if e At is exponentially stable (see Remark 2.6.5), we deduce by Proposition 2.7.15 that

(y, y t , η, η t ) ⊤ -α(1, 0, 0, 0) ⊤ -β(t, 1, - ρ k , 0) ⊤ H 1 t 2/3 U 0 2 D(A) , ∀t > 0,
that are satisfied for all x ∈ Γ 0 . Hence, the assumptions of Proposition 2.8.3 holds with m = 1 independently of x ∈ Γ 0 , thus according to Remark 2.8.10 the energy of the system decays polynomially for initial datum U 0 ∈ D(A) and we thus get the decay rate (2.101) with m = 1 as in [START_REF] Muñoz Rivera | Polynomial decay for the energy with an acoustic boundary condition[END_REF].

Example 2

Consider the following system 

           y tt (x, t) -∆y(x, t) = 0 , x ∈ Ω, t > 0, y(x, t) = 0 , x ∈ Γ 1 , t > 0, ∂y ∂ν (x, t) = b 1 δ(t) + δ t (t) -κ(t) , x ∈ Γ 0 , t > 0, δ tt (x, t) + b 1 δ t (x, t) + b 0 δ(x, t) + b 0 y t (x, t) = 0 , x ∈ Γ 0 , t > 0, κ t (t) + b 2 κ(t) -y t (x, t) = 0 , x ∈ Γ 0 , t > 0, (2.103 
δ 1 = δ t + b 1 δ b 0 , δ 2 = -δ, δ 3 = -κ,
we get a system of the form (2.2) with

M =   b 0 0 0 0 1 0 0 0 1   , B =   0 1 0 -b 0 -b 1 0 0 0 -b 2   , R =   0 0 0 0 -b 1 0 0 0 -b 2   , C =   1 0 1   .
As in the preceding example, if Γ 1 is non empty, it is easy to check that σ(A) ∩ iR = ∅ ((A 1 ) holds and Σ ∩ iR = ∅) as well as (2.57) with p = 1 (by Proposition 2.6.4 as P (C) = 0). Hence if Γ 1 is non empty and if e At is exponentially stable, the energy of the solution of (2.103) satisfies

E(t) 1 t 2/3 U 0 2 D(A) , ∀U 0 ∈ D(A), ∀t > 0.
For this example, if Γ 1 is empty, B is also invertible but (B -1 C, C) = 0. Therefore, we are in the first case of section 2.7 (subsection 2.7.1). Hence, if e At is exponentially stable (see Remark 2.6.5), we deduce by Proposition 2.7.15 that

(y -α, y t , δ 1 , δ 2 , δ 3 ) ⊤ H 1 t 2/3 U 0 2 D(A) , ∀t > 0,
with α a constant depending on U 0 .

Let us now check the assumptions of Proposition 2.8.3 with m = 1 and the choice

Q =   b 1 2 1 2 0 1 2 0 0 0 0 0   .
For any δ = (δ 1 , δ 2 , δ 3 ) ⊺ ∈ R 3 and v ∈ R, simple calculations yield

B ⊺ Q + QB =   -b 0 0 0 0 1 0 0 0 0   , Bδ -Cv =   δ 2 -v -b 0 δ 1 -b 1 δ 2 -b 2 δ 3 -v   , α =   b 1 1 0   and -(R(Bδ -Cv), (Bδ -Cv)) = b 1 (b 0 δ 1 + b 1 δ 2 ) 2 + b 2 (b 2 δ 3 + v) 2 .
Moreover, for any δ = (δ 1 , δ 2 , δ 3 ) ⊺ ∈ R 3 and v ∈ R, we directly check that

(C ⊺ (Bδ -Cv)) 2 = (δ 2 -2(b 2 δ 3 + v) + b 2 δ 3 ) 2 δ 2 2 + δ 2 3 + (b 2 δ 3 + v) 2 ,
and

(α ⊺ (Bδ -Cv)) 2 = (b 1 δ 2 -b 1 (v + b 2 δ 3 ) + b 1 b 2 δ 3 -b 0 δ 1 -b 1 δ 2 ) 2 b 2 1 δ 2 2 + (b 2 b 1 ) 2 δ 2 3 + b 2 1 (v + b 2 δ 3 ) 2 + (b 0 δ 1 + b 1 δ 2 ) 2 .
Thus, we have

(α ⊺ (Bδ -Cv)) 2 + (C ⊺ (Bδ -Cv)) 2 (-Rδ, δ) -(R(Bδ -Cv), (Bδ -Cv)) .
This implies that (2.87) and (2.89) hold. Finally, due to the definition of R and the form of B ⊺ Q + QB, (2.88) is valid with k 1 = b 0 and k large enough. Hence, the polynomial stability follows from Theorem 2.8.7 and the energy of the system (2.103) defined on a domain whose boundary is divided as in section 2.8 satisfies (2.101) with m = 1 .

and

(α ⊺ (Bδ -Cv)) 2 = (b 1 (δ 2 -v) -b 0 δ 1 -b 1 δ 2 ) 2 ≤ 2(b 2 1 (δ 2 -v) 2 + (b 0 δ 1 + b 1 δ 2 ) 2 ) ≤ - 4b 1 b 2 0 (RB(Bδ -Cv), B(Bδ -Cv)) -( 4b 3 1 b 2 0 + 2 b 1 ) (RBδ, Bδ) .
Hence, the assumptions of Proposition 2.8.3 holds with m = 2. According to Corollary 2.8.8, the energy of system (2.104) therefore satisfies the following polynomial estimate

E(t) 1 t 1 2 U 0 2 D(A) .
3 Stabilization of second order evolution equations by unbounded dynamic feedbacks and applications

Introduction

Let X be a complex Hilbert space with norm and inner product denoted respectively by • X and < •, • > X,X . Let A be a linear unbounded positive self-adjoint operator which is the Friedrichs extension of the triple (X, V, a), where a is a closed quadratic form with domain V dense in X. Note that by definition D(A) (the domain of A) is dense in X and D(A) equipped with the graph norm is a Hilbert space and the embedding D(A) ⊂ X is continuous. Further, let U be a complex Hilbert space (which will be identified with its dual space) with norm and inner product respectively denoted by • U and < •, • > U,U , let C be a Linear operator on U and let B ∈ L(U, V ′ ), where V ′ is the dual space of V obtained by means of the inner product in X. Denote by B * ∈ L(V, U ) the adjoint of B. Consider the system

   x ′′ (t) + Ax(t) + Bu(t) = 0, t ∈ [0, +∞) ρu ′ (t) -Cu(t) -B * x ′ (t) = 0, t ∈ [0, +∞) x(0) = x 0 , x ′ (0) = y 0 , u(0) = u 0 , (3.1) 
with ρ a scalar parameter. By replacing ρ by 0 and -C by the identity in system (3.1) we obtain the system whose stability was studied in [START_REF] Ammari | Stabilization of second order evolution equations by a class of unbounded feedbacks[END_REF].

In this chapter we are interested in studying the stability of linear control problems coming from elasticity which can be written as

   x ′′ (t) + Ax(t) + Bu(t) = 0, t ∈ [0, +∞) u ′ (t) -Cu(t) -B * x ′ (t) = 0, t ∈ [0, +∞) x(0) = x 0 , x ′ (0) = y 0 , u(0) = u 0 , (3.2) 
where x : [0, +∞) → X is the state of the system, u ∈ L 2 (0, T ; U ) is the input function and C is a m-dissipative operator on U . We denote the differentiation with respect to time by ′ .

The aim of this chapter is to give sufficient conditions leading to the uniform or non uniform stability of the solutions of the corresponding closed loop system.

The second equation of the considered system describes a dynamical control in some models. Some systems that can be covered by the formulation (3.2) are for example the hybrid systems. This chapter is organized as follows. In the next section we justify the well-posedness of the problem then we write C as a sum of a skew-adjoint operator -C and a self-adjoint operator -DD * . The case where the operator D is bounded is studied in section 3.3. Under a regularity assumption we prove in section 3.4 that the observability properties of the undamped problem, obtained by replacing C in system (3.2) by -C, imply uniform decay estimates for the damped problem (3.2). In section 3.5 we state the results concerning the polynomial stability of the energy. Finally, we present in section 3.6 some examples as applications of the general setting where we obtain using a variety of methods polynomial or exponential energy decay rates.

Well-posedness results

In order to study the system (3.2) we use a reduction order argument. First, we introduce the Hilbert space H = V × X × U equipped with the scalar product

< z, z > H,H = a(x, x)+ < y, ỹ > X,X + < u, ũ > U,U , ∀z, z ∈ H, z = (x, y, u), z = (x, ỹ, ũ).
Then we consider the unbounded dissipative operator, see Proposition 3.2.1 , denoted by A d

A d : D(A d ) -→ H z = (x, y, u) -→ A d z = (y, -Ax -Bu, B * y + Cu), where D(A d ) = {(x, y, u) ∈ V × V × D( C), Ax + Bu ∈ X}. So the system (3.2) is formally equivalent to z ′ (t) = A d z(t), z(0) = z 0 , (3.3) 
where z 0 = (x 0 , y 0 , u 0 ).

Proposition 3.2.1

The operator A d is an m-dissipative operator on H and thus it generates a C 0 -semigroup.

Proof.

< A d z, z > H,H = a(y, x)-< Ax + Bu, y > X,X + < B * y + Cu, u > U,U = a(y, x) -a(x, y)-< Bu, y > V ′ ,V + < B * y, u > U,U + < Cu, u > U,U = a(y, x) -a(x, y)+ < Cu, u > U,U .
Taking the real part of the above identity we get (3.5) since C is dissipative. Hence A d is dissipative.

We would like to show that there exists λ > 0 such that λI -A d is surjective. Let λ > 0 be given. Clearly, we have λ ∈ σ( C). For (f, g, h) ∈ H, we look for (x, y, u) ∈ D(A d ) such that

(λI -A d )   x y u   =   f g h   , i.e. we are searching for x ∈ V, y ∈ V, u ∈ D( C) satisfying λx -y = f λ 2 x + Ax + Bu = g + λf (λI -C)u -B * y = h.
By Lax-Milgram lemma there exists a unique x ∈ V such that

λ 2 + A + λB(λI -C) -1 B * x = g + λf + B(λI -C) -1 (B * f -h) .
In fact, we have λ

2 + A + λB(λI -C) -1 B * ∈ L(V, V ′ ), g + λf + B(λI -C) -1 (B * f -h) ∈ V ′ and ℜ λ 2 + A + λB(λI -C) -1 B * x, x V ′ ,V ≥ Ax, x V ′ ,V , since ℜ B(λI -C) -1 B * x, x V ′ ,V = ℜ u, (λI -C)u U,U = λ u 2 -ℜ u, Cu U,U ≥ 0, with u = (λI -C) -1 B * x, i.e. the coercivity property is satisfied. Define u = (λI -C) -1 (h + B * (λx -f )) ,
by choosing y = λxf we deduce the surjectivity of λI -A. Finally, we conclude that λI -A is bijective, for all λ > 0.

Now, we are able to state the following existence result of problem (3.3).

Proposition 3.2.2 (i) For an initial datum z 0 ∈ H, there exists a unique solution

z ∈ C([0, +∞), H) to system (3.3). Moreover, if z 0 ∈ D(A d ), then z ∈ C([0, +∞), D(A d )) ∩ C 1 ([0, +∞), H). (3.4) 
(ii) For each z 0 ∈ D(A d ), the energy E(t) of the solution z of (3.3), defined by

E(t) = 1 2 z(t) 2 H , satisfies E ′ (t) = ℜ < Cu(t), u(t) >≤ 0, (3.5) 
therefore the energy is non-increasing. Moreover, we have the following estimate

- t 0 ℜ < Cu(s), u(s) > ds = E(0) -E(t) ≤ 1 2 z 0 2 H , ∀t ∈ [0, +∞), ∀z 0 ∈ H. (3.6) 
Proof. (i) is a direct consequence of Lumer-Phillips theorem (see [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]).

(ii) For an initial datum in D(A d ) from (3.4), we know that u is of class C 1 in time, thus we can derive the energy E(t), and using Propostion 3.2.1 we obtain:

E ′ (t) = ℜ < z ′ , z > H,H = ℜ < A d z, z > H,H = ℜ < Cu, u > .
Hence the energy is non-increasing. Finally (3.6) is a direct consequence of (3.5).

Assume that C can be written as C = -C -DD * where C is a skew-adjoint operator on U , D ∈ L(W, (D(C)) ′ ), and W is supposed to be a Hilbert subspace of U identified with its dual, thus D * ∈ L(D(C), W ).

We first introduce the conservative system associated with the initial problem (3.2) as

   x ′′ 1 (t) + Ax 1 (t) + Bu 1 (t) = 0, t ∈ (0, +∞) u ′ 1 (t) + Cu 1 (t) -B * x ′ 1 (t) = 0, t ∈ (0, +∞) x 1 (0) = x 0 , x ′ 1 (0) = y 0 , u 1 (0) = u 0 . (3.7) 
Denote by A c the operator obtained by replacing C by -C in the expression A d . Thus A c is given by

A c z 1 = (y 1 , -Ax 1 -Bu 1 , B * y 1 -Cu 1 ), ∀z 1 = (x 1 , y 1 , u 1 ) ∈ D(A c ), with D(A c ) = {(x 1 , y 1 , u 1 ) ∈ V × V × D(C), Ax 1 + Bu 1 ∈ X}.
The corresponding Cauchy problem can be written as

z ′ 1 (t) = A c z 1 (t), z 1 (0) = z 0 ∈ D(A c ). (3.8) 
We can easily check that A c is closed anti-symmetric, maximal dissipative operator whose opposite -A c is also maximal dissipative, therefore A c is skew-adjoint and generates a unitary group.

Denote by A r the operator

A r : (x, y, u) ∈ H → (0, 0, -DD * u),
it is easy to see that A r is dissipative and A d = A c + A r . Note that the energy satisfies:

E ′ (t) = -D * u(t) 2 W .
(3.9)

Some regularity results

Let T > 0 be fixed and u ∈ L 2 (0, T ; U ) be the last component of the solution z of (3.3). Consider the evolution problem

z ′ 2 (t) = A c z 2 (t) + A r z(t), z 2 (0) = 0, t ∈ [0, T ], (3.10) 
where A r z(t) = -(0, 0, DD * u(t)). 

(t) = (x 2 (t), y 2 (t), u 2 (t)) such that u 2 ∈ L 2 (0, T ; U ),
satisfying the following estimate

D * u 2 L 2 (0,T ;U ) ≤ c D * u L 2 (0,T ;U ) , (3.11) 
where c is a positive constant.

Proof. Clearly A r z(t) = -(0, 0, DD * u(t)) ∈ C 1 (0, T ; H), and since A c generates a unitary group e Ac. on H, then (3.10) admits a unique solution given by

z 2 (t) = t 0 e Ac(t-s) A r z(s)ds = t 0 e Ac(s) A r z(t -s)ds, ∀t ∈ [0, T ].
Moreover D ∈ L(U ) and

u 2 2 L 2 (0,T ;U ) = T 0 u 2 (t) 2 U dt ≤ T 0 z 2 (t) 2 H dt ≤ T 0 t 0 e Acs A r z(t -s)ds 2 H dt ≤ T 0 t 0 e Acs A r z(t -s) H ds 2 dt, thus u 2 2 L 2 (0,T ;U ) ≤ T 0 ( t 0 A r z(s) H ds) 2 dt ≤ T 0 ( T 0 A r z(s) H ds) 2 dt ≤ T 0 ( T 0 DD * u(s) U ds) 2 dt ≤ T 0 ( T 0 1 2 ds)( T 0 DD * u(s) 2 U ds)dt ≤ T 0 T D 2 D * u 2 L 2 (0,T ;U ) dt ≤ T 2 D 2 D * u 2
L 2 (0,T ;U ) . Consequently, as D * u 2 L 2 (0,T ;U ) ≤ D * u 2 L 2 (0,T ;U ) , (3.11) holds with the constant T D D * .

Uniform stability

In this section, we give sufficient and necessary conditions which lead to uniform stability of system (3.3).

Recall that the conservative system (3.8) is obtained by replacing C by -C in system (3.3) and that Proposition 3.2.2 still holds. In order to get uniform stability we will need the following assumptions:

(O) (Observability inequality) There exists a time T > 0 and a constant c(T ) > 0 (which only depends on T ) such that, for all z 0 ∈ D(A c ), the solution z 1 (t) = (x 1 (t), y 1 (t), u 1 (t)) of (3.8) satisfies the following observability estimate: 

T 0 D * u 1 (s) 2 W ds ≥ c(T ) z 0 2 H . (3.12) (H) (Transfer function estimate) Assume that for every λ ∈ C + = {λ ∈ C|ℜλ > 0} C + ∋ λ → H(λ) = -D * (λI + C + λB * (λ 2 + A) -1 B) -1 D ∈ L(W ), is bounded on C β = {λ ∈ C|ℜλ = β},
(iw -A c )z 2 H + 0 0 D * z 2 U ≥ δ z 2 H . (3.14) 
Proof. (of Theorem 3.4.1). Let z(t) = (x(t), y(t), u(t)) be the solution of (3.3) with initial datum z 0 ∈ D(A d ). Consider z 1 (t) = (x 1 (t), y 1 (t), u 1 (t)) the solution of (3.8) with initial datum 

z 0 ∈ D(A d ). Let z 2 (t) = (x 2 (t), y 2 (t), u 2 (t)) be such that z 2 (t) = z(t) -z 1 (t). Then z 2 is solution of (3.
u = u 1 + u 2 , we get z 0 2 H D * u 1 2 L 2 (0,T ;W ) estimate (3.12) D * u 2 L 2 (0,T ;W ) + D * u 2 2 L 2 (0,T ;W ) (triangle inequality) D * u 2 L 2 (0,T ;W ) (estimate (3.11)). Indeed x 2 , u 2 satisfies the system    x ′′ 2 (t) + Ax 2 (t) + Bu 2 (t) = 0, t ∈ (0, +∞) u ′ 2 (t) + Cu 2 (t) -B * x ′ 2 (t) = -DD * u(t), t ∈ (0, +∞) x 2 (0) = 0, x ′ 2 (0) = 0, u 2 (0) = 0. (3.15) 
Extend D * u by zero on R \ [0, T ]. Since the system (3.15) is reversible by time we solve the system on R. We obtain a function z ∈ C(R; V ) ∩ C 1 (R; V ) ∩ L 2 (R; V ) which is null for all t ≤ 0.

Let x 2 (λ) and u 2 (λ), where λ = γ + iη, ℜ(λ) = γ > 0 and η ∈ R, be the respective Laplace transforms of x 2 and u 2 with respect to t. Then x 2 and u 2 satisfy

λ 2 x 2 (λ) + A x 2 (λ) + B u 2 (λ) = 0, λ u 2 (λ) + C u 2 (λ) -B * λ x 2 (λ) = -DD * u(λ). (3.16) 
Since λ 2 + A is invertible (Lax-Milgram lemma), we deduce from the first equation of the system (3.16) that

x 2 = -(λ 2 + A) -1 B u 2 .
Substituting x 2 in the second equation of system (3.16), we get

(λI + C + λB * (λ 2 + A) -1 B) u 2 = -DD * u.
Noting that the invertibility of λI + C + λB * (λ 2 + A) -1 B follows from the invertibility of λI -A c we obtain

D * u 2 = -[D * (λI + C + λB * (λ 2 + A) -1 B) -1 D]D * u
and by section 3.3 or assumption (H) estimate (3.11) holds. Finally, the inequality, z 0 2 H D * u 2 L 2 (0,T ;U ) , implies that there is a constant c 1 (T ) which depends only on T such that

E(0) -E(T ) ≥ c 1 (T )E(0).
But it is well known (see for instance [START_REF] Ammari | Stabilization of second order evolution equations by a class of unbounded feedbacks[END_REF]) that the previous estimate is equivalent to (3.13).

Weaker decay

In the case of non exponential decay in the energy space we give sufficient conditions for weaker decay properties. The statement of our second result requires some notations.

Let H 1 , H 2 be two Banach spaces such that

D(A d ) ⊂ H 1 ⊂ H ⊂ H 2 , where . D(A d ) ∼ . H 1 and [H 1 ; H 2 ] θ = H (3.17) 
for a fixed θ ∈]0; 1[, where [:; :] denotes the interpolation space (see for instance [START_REF] Triebel | Interpolation theory, function spaces, differential operators[END_REF]).

Let G : R + -→ R + be such that G is continuous, invertible, increasing on R + and suppose that the function x -→ 1

x θ 1-θ G(x) is increasing on (0; 1). Theorem 3.5.1 Assume that the function G satisfies the above assumptions and that assumption (H) is satisfied or that D ∈ L(U ). Then the following assertions hold true:

1. If for all non zero z 0 ∈ D(A d ), the solution z 1 (t) = (x 1 (t), y 1 (t), u 1 (t)) of (3.8) satisfies the following observability estimate:

T 0 D * u 1 (s) 2 U ds ≥ c(T ) z 0 2 H G z 0 2 H 2 z 0 2 H , (3.18) 
then we have

E(t) G -1 1 1 + t θ 1-θ z 0 2 D(A d ) . (3.19)
2. If for all non zero z 0 ∈ D(A d ), the solution z 1 (t) = (x 1 (t), y 1 (t), u 1 (t)) of (3.8) satisfies the following observability estimate:

T 0 D * u 1 (s) 2 U ds ≥ c(T ) z 0 2 H 2 , (3.20) 
then we have

E(t) 1 (1 + t) θ 1-θ z 0 2 D(A d ) .
(3.21)

Proof.

1. Using the same arguments as in the proof of Theroem 3.4.1 we get from (3.18)

∀z 0 ∈ D(A d ), T 0 D * u(s) 2 U ds ≥ c(T ) z 0 2 H G z 0 2 H 2 z 0 2 H .
The sequel follows the proof of Theorem 2.4 of [START_REF] Ammari | Stabilization of second order evolution equations by a class of unbounded feedbacks[END_REF], therefore we give the outlines below. Using (3.17) and the interpolation inequality

z 0 H ≤ z 0 1-θ H 1 z 0 θ H 2
we easily check

z 0 2 H 2 z 0 2 H ≥ z 0 2-2θ θ H z 0 2-2θ θ H 1 , ∀z 0 ∈ D(A d ).
Consequently, using (3.9) and the fact that the function t → z(t) H is nonincreasing and G is increasing we obtain the existence of a constant

K 1 > 0 such that z(T ) 2 H ≤ z(0) 2 H -K 1 z(0) 2 H G   z(T ) 2-2θ θ H z(0) 2-2θ θ H 1   .
Applying the same arguments on successive intervals [kT, (k + 1)T ], k = 1, 2, ... we obtain the existence of a constant K 2 such that

z((k + 1)T ) 2 H ≤ z(kT ) 2 H -K 2 z(kT ) 2 H G   z((k + 1)T ) 2-2θ θ H z(0) 2-2θ θ H 1   , ∀z 0 ∈ D(A d ). If we set E k = G   z(kT ) 2-2θ θ H z(0) 2-2θ θ H 1 
 , the previous inequality, the property of G and the fact that t → z(T ) H is nonincreasing then we get

z((k + 1)T ) 2 H z(kT ) 2 H E k E k+1 E k ≤ E k -K 2 E 2 k+1 .
Equivalently, we have

1  z(0) 2-2θ θ H 1   E k+1 ≤ E k -K 2 E 2 k+1 . (3.22) 
where

M =     0 0 1 1 1 1 0 0 -sin( √ µ) sinh( √ µ) -cos( √ µ) cosh( √ µ) -cos( √ µ) cosh( √ µ) sin( √ µ) sinh( √ µ)     , V 0 =     0 0 0 η µ √ µ     .
We first remark that η = 0. Otherwise, since u satisfies u (4) = µ 2 u and the boundary conditions u(1) = u ′′ (1) = u ′′′ (1) = 0, then there exists a constant c ∈ R such that u is given by u

(x) = c(sinh( √ µ(1 -x)) + sin( √ µ(1 -x)).
But cosh( √ µ) + cos( √ µ) > 0, then u ′ (0) = 0 implies that c = 0 and hence U = (u, λu, η) ⊤ = 0 which is a contradiction.

Consequently, each eigenvalue of A c is simple. In fact, suppose to the contrary that there exists µ = 0 such that λ = iµ is not algebraically simple. Then as A c is skew-adjoint, λ = iµ is not geometrically simple. Thus there exists at least two independent eigenvectors

U i = (u i , v i , η i ), i = 1, 2, corresponding to λ, and hence U = η 2 U 1 -η 1 U 2 = (u, v, η) = (u, v, 0) is an eigenvector which is impossible.
Going back to (3.28), we get from the first three equations,

c 2 = -c 1 , c 4 = -c 3 , c 3 = -c 1 sin( √ µ) + sinh( √ µ) cos( √ µ) + cosh( √ µ) .
Therefore the last equation of (3.28) becomes

- 2c 1 (1 + cos( √ µ) cosh( √ µ)) cos( √ µ) + cosh( √ µ) = η µ √ µ .
As η = 0 then the determinant of M which is given by det

( M ) = -2 1 + cos( √ µ) cosh( √ µ)
is nonzero and C is given by

C = M -1 V 0 = η 2µ √ µ(1 + cos( √ µ) cosh( √ µ))     -cos( √ µ) -cosh( √ µ) cos( √ µ) + cosh( √ µ) sin( √ µ) + sinh( √ µ) -sin( √ µ) -sinh( √ µ)     .
Substituting C in the condition u(1) = η, we finally deduce that µ satisfies the charateristic equation (3.25).

Now, we study the asymptotic behavior of the eigenvalues of A c .

Lemma 3.6.2 There exists k 0 ∈ N large enough such that for all k ≥ k 0 there exists one and only one By the second equation of (3.38),

λ k = iµ k eigenvalue of A c with √ µ k ∈ [kπ, (k + 1)π]. Moreover, as k → ∞, we have the following √ µ k = π 2 + kπ + 1 k 3 π 3 + o 1 k 3 . (3.29) Let U 1,k = (u 1,k , λ k u 1,k , η 1,k ) be the associated normalized eigenvector. Then, |η 1,k | 2 = 4 k 4 + o 1 k 4 . ( 3 
θ ′ k (t) + αk 2 π 2 u ′ k (t) = 0, ∀k ∈ N * .
Due to the initial conditions we deduce that θ k (t) = -αk 2 π 2 u k (t) + θ 0 k + αk 2 π 2 u 0 k .

Replacing u and θ in the first equation of (3.38), we deduce that

u ′′ k (t) + k 4 π 4 (1 + α 2 )u k (t) = αk 2 π 2 (θ 0 k + αk 2 π 2 u 0 k ), ∀k ∈ N * , hence u k (t) = α(θ 0 k + αk 2 π 2 u 0 k ) k 2 π 2 (1 + α 2 ) + c 1 cos(k 2 π 2 1 + α 2 t) + c 2 sin(k 2 π 2 1 + α 2 t),
where

c 1 = -αθ 0 k + k 2 π 2 u 0 k k 2 π 2 (1 + α 2 ) , c 2 = u 1 k k 2 π 2 √ 1 + α 2 ,
obtained by the initial conditions u k (0) = u 0 k , u ′ k (0) = u 1 k and θ k (0) = θ 0 k .

Finally, θ k (t) = 1

(1 + α 2 )

3 2

[ 1 + α 2 (θ 0 k + αk 2 π 2 u 0 k ) + α 1 + α 2 (αθ 0 kk 2 π 2 u 0 k ) cos( 1 + α 2 k 2 π 2 t)

-α(1 + α 2 )u 1 k sin( 1 + α 2 k 2 π 2 t)]. Set T = 2 √ 1 + α 2 π . Then, |θ k (t)| 2 = 1 (1 + α 2 ) 5 2 π (2 + α 4 )(θ 0 k ) 2 -2α(-2 + α 2 )k 2 π 2 θ 0 k u 0 k + α 2 (3k 4 π 4 (u 0 k ) 2 + (1 + α 2 )(u 1 k ) 2 ) = α 2 (1 + α 2 )(u 1 k ) 2 (1 + α 2 ) But as det M = 2α 2 π 2 (1 + α 2 ) 3 > 0, trace M = 2 + α 4 + 3α 2 π 4 π(1 + α 2 ) 5 2
> 0, we deduce that λ min ≥ c > 0 (where λ min is the smallest eigenvalue of M ) for some constant c independent of k and hence 

Hybrid example-2D problem

Let Ω be a bounded domain of R 2 whose boundary Γ satisfies Γ = Γ 0 ∪ Γ 1 , Γ0 ∩ Γ1 = φ, and meas Γ 0 = 0.

We assume moreover that there exists a point x 0 ∈ R 2 such that y tt (x, t) -∆y(x, t) = 0, x ∈ Ω, t > 0, y(x, t) = 0,

x ∈ Γ 0 , t > 0, ay tt (x, t) + ∂ ν y(x, t) + η(x, t) = 0, x ∈ Γ 1 , t > 0, η t (x, t)y t (x, t) + bη(x, t) = 0,

x ∈ Γ 1 , t > 0, y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x),

x ∈ Ω, η(x, 0) = η 0 (x)

x ∈ Γ Hence, the previous problem (P b ) is formally equivalent to

u t = A d u, u(0) = u 0 , (3.41) 
where u 0 = (y 0 , ay 0 | Γ 1 , y 1 , ay 1 | Γ 1 , η 0 ). The energy of the system (P b ) is given by The corresponding conservative system is defined by

E(t
(P 0 )               
y tt (x, t) -∆y(x, t) = 0, x ∈ Ω, t > 0, y(x, t) = 0,

x ∈ Γ 0 , t > 0, ay tt (x, t) + ∂ ν y(x, t) + η(x, t) = 0, x ∈ Γ 1 , t > 0, η t (x, t)y t (x, t) = 0,

x ∈ Γ 1 , t > 0, y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x),

x ∈ Ω, η(x, 0) = η 0 (x)

x ∈ Γ 1 .

The initial value problem associated to the conservative system (P 0 ) is given by We deduce that for ǫ > 0 chosen small enough there exists C > 0 such that for some constant K a,α ≥ 0 independent of T .

u t = A c u, u(0) = u 0 , (3.42) 
(T -C 1 ) v 0 2 H - 1 a T 0 Γ 1 |y t | 2 - T 0 Γ 1 |η| 2 ≤ (R + R 2 ω + 1 
Combining the previous inequality with (3.45), we deduce the existence of c 1 > 0 such that

T 0 Γ 1 |η 1 | 2 ds ≥ c 1 (T -C) v 0 2 H -K a,α v 0 2 H .
Finally, choosing T large enough, we obtain 

η 1 = 1 a (-∂ ν y -η) + 2αz + α 2 η,
thus by the two previous steps we get (3.55). Noting that u 0 D(Ac) ∼ v 0 H , we consequently deduce that (3.43) holds for all u 0 ∈ D(A c ).

Theorem 3.6.8 Let u 0 ∈ D(A d ) and let u be the solution of (3.41). Then u satisfies, u(t) 2 1

(1 + t) .

For λ = 1iπ 2 y 2 , we have

| w 3 (ξ, λ)| ≤ 2 π 2   1≤k≤E(y)-1 1 y 2 -k 2 + 2π 2 + E(y)+2≤k 1 k 2 -y 2   . But 1≤k≤E(y)-1 1 y 2 -k 2 ≤ 1≤k≤E(y)-1 E(y) -k E(y) 2 -k 2 = 1≤k≤E(y)-1 1 E(y) + k ≤ 1.
H 1 = span(φ µ ) µ∈σ 0 ∪ span(φ µ ) µ∈σ 1 and H 2 = span(φ µ ) µ∈σ 0 ∪ span(φ µ ) µ∈σ 2 .

Before giving an observability result we introduce the set S of all numbers ρ ∈ (0, π) such that ρ π / ∈ Q and if [0, a 1 , ..., a n , ...] is the expansion of ρ π as a continued fraction, then (a n ) is bounded. Recall that if πξ ∈ S then

| sin(kπξ)| 1 |k| , k ∈ Z * , (3.76) 
(see for instance [START_REF] Ammari | Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force[END_REF]).

Proposition 3.6.13 1. For all ξ ∈ (0, 1) there are no T, C > 0 such that for all U 0 ∈ H we have Note that γ 1 = inf µ,µ ′ ∈σ,µ =µ ′ |µµ ′ | > 0, then using Ingham's inequality there exists T > 2πγ 1 > 0 and a constant c T > 0 depending on T such that

3

 3 Let H be a Hilbert space. An operator (A, D(A)) on H satisfying ℜ(Au, u) ≤ 0, ∀u ∈ D(A),

(Proposition 1 . 3 . 8

 138 λI -B)η = Cλ sinh λα and αλ cosh λ + (η, C) = 0. If α = 0 then 0 = η ∈ ker(λI -B) and (η, C) = 0. Hence C is orthogonal to η. If α = 0 then C ∈ Im(λI -B) = ker( λI -B * ) ⊥ . The following assumptions are sufficient to obtain stability of the C 0semigroup associated with A (A 1 ) ℜ((izI -B) -1 C, C) > 0, ∀iz ∈ σ(B), z ∈ R * . (A 2 ) ikπ ∈ σ(B), ∀k ∈ Z. (A 3 ) ∀iz ∈ σ(B), C ∈ ker(izI + B * ) ⊥ and (η, C) = 0 for all nonzero η ∈ ker(izI -B).

Corollary 1 . 4 . 10

 1410 Under the assumptions of Lemma 1.4.8, we have σ(A) ∩ iR = ∅. Proof. By Proposition 1.3.3 (see (1.8)), iµ = 0 ∈ σ(A) ∩ iR if and only if there exists a non zero (η, α) ∈ C n × C solution of (iµI -B 0 -R)η + Cµ sin µα = 0, (η, C) + iµ cos µα = 0.

Theorem 1 . 4 . 15

 1415 Let u be a solution of the problem (1.3) with initial datum u 0 ∈ D(A). Let the assumptions of Lemma 1.4.8 be satisfied. Assume moreover (1.21) and the existence of m as defined by equation (1.14), then we obtain the following polynomial energy decay:

  we get a system of the form (1.1) which is obtained by replacing C = 0 1 in the first example by C = 1 0 and keeping B, B * , B 0 , and R as before.

Proof.

  To prove the first point, we fix λ ∈ Σ. Then there exists x 0 ∈ Γ 0 and δ ∈ C n , δ = 0 such that (λI -B(x 0 ))δ = 0. Denote by -∆ m the positive self-adjoint operator defined by D(-∆ m ) = {y ∈ V : ∆y ∈ L 2 (Ω) and ∂y ∂ν = 0 on Γ 0 }, and -∆ m y = -∆y, ∀y ∈ D(-∆ m ).

  and∂y n ∂ν = (δ n , C), on Γ 0 , thus U n belongs to D(A) and satisfies (2.25) with g n = 0, i.e.

  ) there exists U = (y, z, δ) ⊤ ∈ D(A) such that (λI -A)U = (0, f, 0), or equivalently (using the definition of A and the invertibility of λI -B) z = λy, λ 2 y -∆y = f, δ = -λ(λI -B) -1 Cγ 0 y.

Proposition 2 . 4 . 1 A

 241 is an isomorphism if and only if 0 ∈ Σ. Proof. By Corollary 2.3.2, 0 ∈ Σ if and only if A is a Fredholm operator of index zero. Hence, the conclusion follows if we show that ker A = {0}, or equivalently, due to the proof of Theorem 2.3.1,

  [START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions[END_REF]. Returning to(2.46), by Green's formula, we see that y ∈ V satisfies -z 2 y -∆y = 0 in Ω, ∂y ∂ν = h on Γ 0 . Now due to iz ∈ Σ and (2.45), we see that δ := -izyδ C + αδ 0 , (2.48) with 0 = δ 0 ∈ ker(izI -B) and any function α ∈ L 2 (Γ 0 ) satisfies (izI -B)δ = -izCy on Γ 0 .
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 222 (A) , for all U 0 ∈ D(A). Then if the assumptions of Proposition 2.6.3 are satisfied, then e (A) , for all U 0 ∈ D(A).

  where ρ is a positive constant and m, d, k are positive and sufficiently smooth functions on Γ 0 . Let us set m 0 = min x∈Γ 0 m(x), m 1 = max x∈Γ 0 m(x), d 0 = min x∈Γ 0 d(x) and d 1 = max x∈Γ 0 d(x).

) with b 0 , b 1 , b 2

 12 positive constants. Choosing

Lemma 3 . 3 . 1

 331 Suppose that D ∈ L(U ). Then problem (3.10) admits a unique solution z 2

  10) and due to Lemma 3.3.1 its last component u 2 satisfies (3.11) if D ∈ L(U ). Otherwise, (3.11) holds true due to assumption (H). Since

. 30 ) 2 and 2 in f (z 2 )z 3 + sin z z 3 . 1 k 2 , with z 0 k = π 2 + 2 + kπ + ǫ k + sin π 2 +

 30222312222 Proof.First step. Let z = √ µ where iµ ∈ σ(A c ) and µ > 0. Then by(3.25), we have f (z 2 ) = z 3 + cosh z(z 3 cos z + sin z)cos z sinh z = 0.Replacing cosh z = e z +e -z sinh z = e z -e -z and dividing by z 3 e z 2 , we deduce that z satisfies f (z) = 0, wheref (z) = cos z + sin zcos z z 3 + 2e -z + e -2z cos z + cos zFor z large enough we havef (z) = cos z + O(1/z 3 ).It can be easily checked that for k large enough, f doesn't admit any root outside the ballB k = B z 0 k , kπ.Then by Rouché's Theorem applied on B k , we deduce that for k large enough there exists a unique rootz k of f in [kπ, (k + 1)π]. Moreover, z k satisfies z k = π 2 + kπ + ǫ k , with ǫ k = o(1). Since z k satisifes f (z k ) = 0, then ǫ k satisfies cos π kπ + ǫ k + o(1) k 3 π 3 + o(k 3 ) + O(e -z k ) = 0. Hence sin(ǫ k ) + cos(ǫ k ) k 3 π 3 + o 1 k 3 = 0,and thus-k 3 ǫ k + o(k 3 ǫ 2 k ) + 1 π 3 + o(k 2 ǫ k ) + o(1) = 0, which gives ǫ k = 1 π 3 k 3 + o(1/k 3 ). Therefore, (3.29) follows for µ k = z 2 k . Second step. Set β k = sin(z k ) + sinh(z k ) cos(z k ) + cosh(z k ). Thenβ k = e z k + 2 sin(z k )e -z k e z k + 2 cos(z k ) + e -z k = 1 + o(e -z k ).(3.31)By the proof of Lemma 3.6.1, the last component η 1 k of U 1 k is nonzero and thusU k = (u k , iz 2 k u k , 1) = 1 η 1,k U 1,kis an associated eigenvector to iz 2 k with u k having the form,u k (x) = c 1k sin(z k x) + c 2k sinh(z k x) + c 3k cos(z k x) + c 4k cosh(z k x),Proof. We arrange the elements of σ(A c ) in increasing order.Let J = {iµ : |µ| < µ k 0 }. Then σ(A c ) = J ∪ {iµ k : |k| ≥ k 0 } and (U µ ) µ∈J ∪ (U 1,k ) |k|≥k 0 forms a Hilbert basis of H. We may write

  k t η 1,k . Note that µ k+1µ k ≥ π 2 for |k| ≥ k 0 . Set γ 0 = min π 2 , min{|µµ ′ | : µ ∈ J, µ ′ ∈ J} . As |µµ ′ | ≥ γ 0 > 0 for all consecutive µ ∈ σ(A c ), µ ′ ∈ σ(A c ).Then using Ingham's inequality there exists T > 2πγ 0 > 0 and a constant c > 0 depending on T such that

Theorem 3 . 6 . 4 0 D * u 1 (s) 2 U ds ≥ c T u 0 2 H 2 .

 36401222 Due to Lemma 3.6.2, we have that |η 1,k | 2 ∼ 1 k 4 . we deduce using Ingham's inequality the existence of T > 0 such that Let U 0 ∈ D(A d ) and let U be the solution of the corresponding dissipative problemU t = A d U, U (0) = U 0 ∈ D(A d ).Then U satisfies, Since the operator D ∈ L(U ), then Lemma 3.3.1 holds true.SetH 1 = D(A c ) and H 2 = D(A -1 c), the dual of D(A c ) obtained by means of the inner product in X. Then H = [H 1 ; H 2 ] 1/2 . By Proposition 3.6.3, we have T By Theorem 3.5.1 applied for θ = 1/2, we therefore obtain(3.36).Proof. Writing (u 0 , u 1 , θ 0 ) ⊤ ∈ D(A c ) with respect to the basis (sin(kπx)) k∈N * of L 2 (0, 1), we haveu 0 = k∈N * u 0 k sin(kπx), u 1 = k∈N * u 1 k sin(kπx), θ 0 = k∈N * θ 0 k sin(kπx).The solution (u, θ) of (3.38) is thus given by u(t) = k∈N * u k (t) sin(kπx) and θ(t) = k∈N * θ k (t) sin(kπx).

T 0 |θ 2 ( 1 + α 2 )(u 1 k ) 2 ( 1 + α 2 ) 5 2 π 1 0 1 0|u t | 2 dx + 1 0|θ| 2

 02122121112 k (t)| 2 dt ≥ T α + λ min (M )(k 4 (u 0 k ) 2 + (θ 0 k )We hence conclude (3.39) by denseness of D(A c ) in H.Recall that the energy of a solution (u, θ) of (3.38) is defined byE(t) = 1 2 |u xx | 2 dx + dx .Theorem 3.6.6 Let U 0 ∈ H. Then there exists ω > 0 such that the energy of the solution (u, θ) of (3.37) satisfies E(t) e -ωt E(0), ∀t ∈ [0, +∞). (3.40) Proof. By Proposition 3.6.5, assumption (O) holds true. Then (3.40) follows by applying Theorem 3.4.1.

Γ 0 =

 0 {x ∈ Γ : m(x).ν ≤ 0}, Γ 1 = {x ∈ Γ : m(x).ν ≥ ω > 0},for some constant ω > 0, where m(x) = xx 0 and ν = ν(x) denotes the unit outward normal vector at x ∈ Γ. Denote by R = m ∞ = sup x∈Ω

1

 1 , with D(A d ) = {u = (y, ζ, z, ξ, η) ∈ H : y ∈ H 2 (0, 1), z ∈ W, ζ = ay| Γ 1 ξ = az| Γ 1 }.

whereA- 2 c 2 H ≤ C 2 T∂

 222 c u = (z, ξ, ∆y, -∂ ν yη, z| Γ 1 ), ∀u = (y, ζ, z, ξ, η) ∈ D(A c ), D(A c ) = D(A d ).As the operators D and D * given by,Dη = D * η = √ bη, η ∈ L 2 (Γ 1 ),are bounded, Lemma 3.3.1 holds true. Thus in order to deduce the polynomial stability of the solution of (3.41), it is sufficient to check that the solution u 1 of (3.42) satisfies the observability inequality (O), ) denotes throughout the example the space (D(A 2 c )) ′ . We first state the following proposition. Lemma 3.6.7 Let u 0 = (y 0 , ζ 0 , z 0 , ξ 0 , η 0 ) ⊤ ∈ H and let u 1 = (y 1 , ζ 1 , z 1 , ξ 1 , η 1 ) ⊤ be the corresponding solution of the problem(3.42). Then there exists c T > 0 such that Proof. First step. Let v 0 ∈ D(A c ) and v = (y, ζ, z, ξ, η) ⊤ be a solution ofv t = A c v, v(0) = v 0 .(3.44)Then there exist two positive constants C i > 0, i = 1, 2 such that(T -C 1 ) v 0 v 0 ∈ D(A c ),we have T 0 Ω y tt (2m • ∇y) =ν)|y t | 2 + Ω y t 2m • ∇y ν y(2m • ∇y).

Finally, multiplying the∂

  wave equation by 2m • ∇y and substracting (3.47) from (3.46) leads to, ν y(2m • ∇y) = 0. Multiplying the wave equation equation by y we obtain τ )(∂ ν y∂ τ y), then taking into consideration the Dirichlet condition on Γ 0 , we get

2 ds ≥ c 2 v 0 2 H , ( 3 . 55 )

 22355 ν yη) + 2αz + α 2 η for some positve constant c 2 depending on T .Last step. Let u 0 ∈ D(A d ) and letu 1 = (y 1 , ζ 1 , z 1 , ξ 1 , η 1 ) ⊤ be the corresponding solution of (3.42), then v = (y, ζ, z, ξ, η) ⊤ = [(A c + αI) 2 ] -1 u,is a solution of(3.44) wherev 0 = [(A c +αI) 2 ] -1 u 0 ∈ D(A c ). Since (A c +αI) 2 = A 2 c +2αA c +α 2 I, the last component η 1 of u 1 is given by

First, we set w 2 = w 3 + w 4 , where λ w 3 -| 1 (k 2 +

 23312 = û2 (1) = 0, ŵ2 (0) = ŵ2 (1) = 0, [∂ x ŵ2 ] ξ = 1, [ ŵ2 ] ξ = 0, and proving the existence ofC β > 0 | ŵ2 (ξ, λ|) ≤ C β , ∀λ = β + iy, y ∈ R. i∂ xx w 3 = -iδ ξ , (3.63) with w 3 (0) = w 3 (1) = 0, [∂ x w 3 ] ξ = 1, [ w 3 ] ξ = 0. (3.64) and λ w 4 -i∂ xx w 4 = λ u 2 . (3.65) with w 4 (0) = w 4 (1) = 0. (3.66)Let β > 0 be fixed. It is required then to prove that| w 3 (ξ, λ)| ≤ C 1β , | w 4 (ξ, λ)| ≤ C 2β , ∀λ = β + iy, y ∈ R.We start by writing the expression of w 3 ,w 3 (x, λ) = -sin(kπξ)| 2 k 2 π 2iλ .For simplicity we consider λ = 1 ± iπ 2 y 2 .| w 3 (ξ, λ)| +∞ k=1 1 |(k 2 ± y 2 )π 2 -i| .We first give an estimate for λ = 1 + iπ 2 y 2 ,| w 3 (ξ, λ)| +∞ k=1 y 2 )π 2 ≤ 1 6

2 . 2 H 2 U

 222 Suppose that ξ ∈ S. Let U 0 ∈ H 1 and U = (u, v, w) be the corresponding solution of the conservative problemU t = A c U, U (0) = U 0 .(3.78)Then there exists T>0 and a constant c T > 0 such thatT 0 |w(ξ, t)| 2 dt ≥ C T U where D(A -3 c ) = (D(A 3 c )) ′ , obtained by means of the inner product in X. For U 0 ∈ H 2 we have T 0 |w(ξ, t)| 2 dt ≥ C T U lim n→+∞ (iµ n,1 -A c ) φ n,1 + 0 0 D * φ n,1 = 0. Which implies according to[START_REF] Miller | Controllability cost of conservative systems: resolvent condition and transmutation[END_REF] Theorem 5.1] that we don't have the exact observability, i.e., the inequality (3.77).2. Let U 0 ∈ H 1 . We may write

  Thus 0 is a root of C A if and only if 0 is an eigenvalue of B, i.e. an eigenvalue of A by Proposition 1.3.2 .

Proposition 1.3.4 Let λ ∈ σ(B) be nonzero. Then λ ∈ σ(A) if and only if λ satisfies

  Consequently, if B has geometrically simple eigenvalues (or equivalently if b 2 2 + b 0 = b 1 b 2 ), then the optimality of the polynomial decay rate can be deduced from Corollary 1.5.13. Denote by Ω a bounded open connected set of R d , d ≥ 1, with a Lipschitz boundary ∂Ω = Γ assumed to be divided into two disjoint parts,

	2 The multidimensional wave equation with
	generalized acoustic boundary conditions
	2.1 Introduction

  .71) Proof. Proceeding as in the proof of Proposition 2.6.2, for F ∈ H and U F ∈ D(A) defined therein we obtain (2.60), (2.61), (2.62), and (2.63). In addition, there exists ϕ f ∈ V satisfying (2.64) and

  and the estimate (2.71) follows from Theorem 2.6.1.Before going on, let us give sufficient conditions on B and C that guarantee that (2.57) holds. Suppose that B, C and M have constant scalar entries. Let B

	Proposition 2.6.4

* be the adjoint of B with respect to (

  Consider the system (2.2) satisfying the assumptions of Proposition 2.8.3. For all U 0 ∈ H, the energy of the solution of the system (2.2) decays asymptotically to zero, i.e.,

								,		
	this last estimate following from (2.100). But d dt (tE 0 (t)) = E 0 (t)+t d dt E 0 (t) ≤ E 0 (t) and therefore
	tE 0 (t) =	0	t	d(τ E 0 (τ )) dτ	dτ ≤	0	t	E 0 (τ )dτ ≤ C -1 C 1	m j=0	E j (0),
	as required.									
	By a density argument we deduce that (2.101) holds for all U 0 ∈ D(A m ).
	Corollary 2.8.8 Let U 0 ∈ D(A). Under the assumptions of Proposition 2.8.3, we have e At U 0 2 H 1 t 1 m U 0 2 D(A) .	(2.102)
								m		
	t Proof. Due to Theorem 2.8.7 we have E(t) ≤ C A has a bounded inverse, thus applying Proposition 2.8.1 the result follows. E j (0). By Remark 2.2.2 and Remark 2.8.4, j=0
	Proposition 2.8.9 E(t) → 0, as t → ∞.		

  where β is a positive constant. Theorem 3.4.1 Assume that assumption (H) is satisfied or that D ∈ L(U ). Then system (3.3) is exponentially stable, which means that the energy of the system satisfies where c and ω are two positive constants independent of the initial data z 0 ∈ D(A d ) if and only if the inequality (3.12) is satisfied. Assume that assumption (H) is satisfied or that D ∈ L(U ). Then system (3.3) is exponentially stable in the energy space if and only if there exists a constant δ > 0 such that for all w ∈ R, z ∈ D(A c ) we have

	E(t) ≤ c e -ωt E(0), ∀t ∈ [0, +∞),	(3.13)
	By using [36, Theorem 5.1] and [7, Proposition 2.1] we have the following characterization of the
	uniform stabily of (3.3) by a frequency criteria (Hautus test).	
	Corollary 3.4.2	

  We have the following expression for|η 1 | 2 on Γ 1 , |η 1 | 2 = 1 a 2 |∂ ν y| 2 + 4α 2 |z| 2 + (aα 2 -1) 2By the boundary condition on Γ 1 , η t = z and ∂ ν y = -ηaη tt , we get|η 1 | 2 = 1 a 2 |∂ ν y| 2 + 4α 2 |z| 2 + (-1 + aα 2 )(1 + aα 2 ) a 2 |η| 2 + 4α 3 ηη t + 4αη t η tt + 2 -1 + aα 2 a ηη tt . |∂ ν y| 2 + (4α 2 -|∂ ν y| 2 + w 2 |z| 2 + w 3 |η| 2 ]ds -K a,α v 0

	Thus									
	0	T	Γ 1	|η 1 | 2 ds =	0	T	Γ 1	[	1 a 2 2(-1 + aα 2 ) a	)|z| 2 +	(-1 + aα 2 )(1 + aα 2 ) a 2	|η| 2 ]ds
							+2α 3	Γ 1	(η(T ) 2 -η(0) 2 )ds + 2α	Γ 1	(η t (T ) 2 -η t (0) 2 )ds +	(3.54)
							2(-1 + aα 2 ) a	Γ 1	η(T )η t (T )ds -	2(-1 + aα 2 ) a	Γ 1	η(0)η t (0))ds.
	Choosing α large enough, we get
		w 1 =	1 a 2 > 0, w 2 = 4α 2 -	2(-1 + aα 2 ) a	=	2(1 + aα 2 ) a	> 0, w 3 =	(-1 + aα 2 )(1 + aα 2 ) a 2	> 0.
	In addition, (3.54) implies that
				0	T	Γ 1	|η 1 | 2 ds ≥	0	T	Γ 1	[w 1 2 H ,
													2ǫ	)	0	T	Γ 1	(∂ ν y) 2 (3.53)
													T
													+
													0	Γ 1
	Second step. Let α > 0 and set
												η 1 = (-∂ a 2 1 a |η| 2 -	4α a	∂ ν yz +	2 a 2 (1 -aα 2 )∂ ν yη +	4α a	(aα 2 -1)zη.

(m • ν)|y t | 2 ,

which leads to the required result

(3.45)

. ν yη) + 2αz + α 2 η

Acknowledgements

Due to (2.40) and since iλ ∈ Σ, we deduce that δ = 0 and then ∂y ∂ν = (δ, C) = 0, thus y satisfies    λ 2 y -∆y = 0 in Ω, y = 0 on Γ,

By Holmgren's theorem we deduce that y = 0, which is impossible (otherwise U would be zero).

ii) if iλ ∈ Σ, then we again distinguish two cases: a) if y = 0 (then δ = 0 on a set M of positive measure) and by (2.40), we find (iλ -B)δ = 0 on Γ 0 .

On the other hand, (2.5) here implies

which is in contradiction with (A 4 ). b) if y = 0, then (2.40) implies that

Hence, by our assumption (A 3 ), we find that y = 0 on Γ 0 .

This implies that y ∈ H 1 0 (Ω) satisfies Ω (-λ 2 y φ + ∇y • ∇ φ) dx = 0, ∀ϕ ∈ H 1 0 (Ω) ⊂ V.

Consequently, y ∈ D(-∆ Dir ) and satisfies -∆ Dir y = λ 2 y.

We have shown that there exists k ∈ N * such that λ 2 = λ 2 Dir,k . Coming back to (2.40), we see that (±iλ Dir,k -B)δ = 0 on Γ 0 .

From our assumption (A 2 ) we deduce that δ = 0 on Γ 0 .

This property and the boundary condition (2.5) then imply ∂y ∂ν = 0 on Γ 0 .

By Holmgren's theorem we deduce that y = 0, which is impossible.

Proposition 2.4.3 If (A 1 ) to (A 4 ) from the previous proposition hold, if 0 ∈ Σ and if Σ ∩ iR is countable, then the C 0 -semigroup associated with A is strongly stable.

Proof. Propositions 2.4.1 and 2.4.2 guarantee that σ d (A) ∩ iR = ∅.

(2.42)

Let us now show that σ(A) ∩ iR ⊂ Σ ∩ iR.

(2.43) Indeed, if iλ ∈ σ(A) ∩ iR, then either iλ is in Σ as required, or iλ is not in Σ, but then by Theorem 2.3.1, iλ belongs to σ d (A) ∩ iR, which is impossible due to (2.42).

The two properties (2.42), (2.43) and the assumption that Σ ∩ iR is countable finally allow to apply the theorem of Arendt-Batty.

To end up this section, in the case when B and C are constant (in that case Σ = σ(B)), let us show that the sufficient conditions from Proposition 2.4.3 are "almost" necessary. Namely we prove the following result. Proposition 2.4.4 Assume that B and C are constant on Γ 0 and that (A 1 ) holds, which in this case reduces to ∀iz ∈ σ(B), z ∈ R * , ℜ((izI -B) -1 C, C) > 0.

Then (A 2 ), (A 3 ), (A 4 ) and 0 ∈ σ(B) hold if and only if the C 0 -semigroup associated with A is strongly stable.

Proof. As Σ ∩ iR = σ(B) ∩ iR is finite, by the previous Proposition, the conditions (A 2 ), (A 3 ), (A 4 ) and 0 ∈ σ(B) are clearly sufficient (since (A 1 ) holds). Hence, it suffices to show that they are also necessary. For that purpose, we show that if (A 2 ), (A 3 ), (A 4 ) or 0 ∈ σ(B) does not hold, then A has an eigenvalue on the imaginary axis (since this condition directly implies that the C 0 -semigroup associated with A is not strongly stable).

Firstly, if we assume that 0 ∈ σ(B), then there exists a nonzero δ ∈ C n such that Bδ = 0.

Hence, we consider y ∈ V solution of ∆y = 0 in Ω, ∂y ∂ν = (δ, C) on Γ 0 . Such a solution exists and is the unique solution y ∈ V of

Since we easily check that (y, 0, δ) belongs to ker A, we deduce that 0 is an eigenvalue of A.

Secondly assume that (A 2 ) does not hold, then this means that there exists k ∈ N * such that

Assume that iλ Dir,k ∈ σ(B) (the other case is treated in the same manner), then there exists a non-zero

Now we distinguish the case (δ k , C) = 0 or not: i) if (δ k , C) = 0, then we take (0, 0, δ k ) that belongs to ker(iλ Dir,k I -A) as easily checked.

We define the operator (A, D(A)) on H as in chapter 1,

where

Remark that A is not dissipative with respect to the norm defined on H. Indeed,

To overcome this difficulty we need further assumptions on B and C. We actually suppose that B is invertible on the whole boundary and consider the following cases:

Before going on, recall that L F defined by (2.15) with λ = 0 is given by

when F = (y, z, δ) ⊤ ∈ H. For shortness, we further set

The first case

Throughout the remainder of this subsection, B is assumed to be invertible on the whole boundary and Γ (B -1 C, C)ds is nonzero. Then we introduce the following subspace H of H:

endowed with the inner product (2.4), and the operator ( A, D( A)) defined by

(2.77) Proposition 2.7.1 The operator A is m-dissipative.

Proof. The dissipativity of A directly follows from the property (2.9). Proceeding as in the proof of Proposition 2.2.1, we apply Lax-Milgram lemma to get the existence of a unique solution y ∈ H 1 (Ω) of (2.13), and deduce the surjectivity of λI -A from D(A) onto H for all λ > 0. Moreover, we can easily check that the preimage U = (y, z, δ

The operator A is one-to-one and onto.

Proof. We first show that 0 ∈ σ d ( A). Suppose that A(y, z, δ) ⊤ = (z, ∆y, Bδ -Cz) ⊤ = 0 for some (y, z, δ) ⊤ ∈ D( A), then z = 0 and as B is invertible δ = 0 thus ∂ n y = 0. But ∆y = 0 in Ω, then multiplying by y and integrating by parts we deduce that y is constant in Ω. Since

The second case

Throughout the remainder of this subsection, B is assumed to be invertible on the whole boundary and Γ 0 (B -1 C, C)ds = 0. For simplicity we further assume that B and C have real entries. In this setting as (B -1 C, C) ≤ 0, we deduce that

(2.79)

Inspired by Example 1 below, we also suppose that

Under these assumptions, we see that L F and L 1 defined before are reduced to

and

for F = (y, z, δ) ∈ H. We also introduce the functional

and that our assumption (2.80) implies that L 2 ((1, 0, 0) ⊤ ) = 0. Now we introduce the following subspace H of H:

still endowed with the inner product (2.4) and the operator ( A, D( A)) defined by (2.77).

Proposition 2.7.4

The operator A is m-dissipative.

Proof. We proceed using the same proof as that of Proposition 2.7.1. Noting in addition that L 2 (F ) = 0 and L 1 (U ) = 0 imply that L 2 (U ) = 0, the proof is thus complete.

Proposition 2.7.5 The operator A is one-to-one and onto.

Proof. Suppose that A(y, z, δ) ⊤ = (z, ∆y, Bδ -Cz) ⊤ = 0 for some (y, z, δ) ⊤ ∈ D( A). Then, as before, we get (y, z, δ) ⊤ = c(1, 0, 0) ⊤ for some constant c. Since (y, z, δ) ⊤ ∈ H, we conclude that c = 0. Therefore, 0 ∈ σ d ( A).

Example 3

Consider the following system

In this example, if Γ 1 is non empty, we have σ(A) ∩ iR = ∅ and (2.57) holds for p = 2 (P (B 0 C) = 0, see Proposition 2.6.4). Hence, if Γ 1 is non empty and if e At is exponentially stable, then by Proposition 2.6.2 we obtain

If Γ 1 is empty, then we are in the first case of section 2.7 (subsection 2.7.1) as B is invertible and (B -1 C, C) = 0. Therefore, if e At is exponentially stable, then we deduce by Proposition 2.7.15 that

In the setting of section 2.8, we first note that (2.89) is not valid with m = 1 and thus the assumptions of Proposition 2.8.3 are not satisfied for m = 1. Let us nevertheless check the assumptions of Proposition 2.8.3 for m = 2. Indeed, choosing

we get

Since RC = 0, we have

and

Indeed,

Combining (3.22) and the fact that the function x -→ 1

We thus deduce the existence of a constant M > 0 such that

and we finally get (3.19).

2. As for 1. the proof is similar to the second assertion of Theorem 2.4 of [START_REF] Ammari | Stabilization of second order evolution equations by a class of unbounded feedbacks[END_REF] which is based on Lemma 5.2 of [START_REF] Ammari | Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force[END_REF] and is left to the reader.

Examples

Beam System

We consider the following beam equation:

In this case

where β is a postive constant.

Note that C is bounded, so we only need to find the observability inequality in order to deduce the type of stability of the system. Since B ∈ L(U, V ′ ) then Bη = η • B1, and since B1 ∈ V ′ and A ∈ L(V, V ′ ) then there exists a unique u 0 ∈ V such that B1 = Au 0 . Indeed, it is easy to check that u 0 (x) = x 2 2 -x 3 6 . Moreover, C = 0 and D = √ β.

Remark that in this case

and

Note that since D(A c ) is compactly injected in H, then A c has a compact resolvent and thus its spectrum is discrete. In addition, since A c is a skew-adjoint real operator, then its spectrum is constituted of pure imaginary conjugate eigenvalues. Now, let λ = iµ ∈ σ(A c ) with U µ an associated eigenvector then λ = -iµ ∈ σ(A c ) with Ūµ an associated eigenvector. Since the eigenvalues are conjugates , it is sufficient then to study µ ≥ 0. Lemma 3.6.1 The eigenvalues of A c are algebraically simple. Moreover, 0 ∈ σ(A c ) and for every λ = iµ ∈ σ(A c ), µ > 0, µ satisfies the following characteristic equation,

Proof. First it is easy to see that 0 is a simple eigenvalue of A c and that an associated eigenvector is

We then deduce that A(u

But as U ∈ D(A c ), then Au + Bη = A(u + ηu 0 ) ∈ L 2 (0, 1), which implies that u + ηu 0 ∈ D(A) and that u ∈ H 4 (0, 1) satisfies

However, A(u 4) , thus we need to solve

with u satisfying (3.27). We deduce that u could be written as

It follows that

(3.32) In order to get the behavior of η k = 1 U k , it is enough to compute the integral

by ūk , integrating by parts and noting that

we obtain

and hence

we deduce that 

Example on uniform stability

Consider the following system,

with α > 0, β > 0. Define the following spaces,

and the following operators,

Remark that C is a bounded operator on L 2 (0, 1). Moreover, B and B * are given by

The norm defined on the energy space H = V ×X ×U is given by

We moreover have

The associated conservative system is given by

(3.38)

In the following proposition we prove that the solution u, θ of (3.38) satisfies the required observability inequality (assumption (O)), which is enough to deduce the exponential stability of (3.37) as D ∈ L(U ).

Proposition 3.6.5 Let U 0 = (u 0 , u 1 , θ 0 ) ⊤ ∈ H. Then the solution (u, θ) of (3.38) satisfies

where a and b are two positive constants. In order to justify that the system could be written in the proposed general form, we introduce a proper functional setting. Let

endowed with the inner product,

and the operator (A, D(A)) by

We can easily check using Lax-Milgram lemma that (A ± iI) are surjective. In addition, since A is symmetric we deduce that A is self-adjoint. The corresponding form ã is given by

In addition, we define for every η ∈ U and (y, ξ) ⊤ ∈ V the operators B and B * by

The operator C = 0 and the operator C is given by Cη = -bη, η ∈ L 2 (Γ 1 ).

Hence the system (P b ) can be written in the form of system (3.2). Accordingly, we define the energy space

endowed with the inner product

where u = (y, ζ, z, ξ, η), ũ = (ỹ, ζ, z, ξ, η) ∈ H, and < ., . > represents the Hermitian product in C. The associated norm will be denoted by • H . Moreover, (A d , D(A d )) is then given by

Proof. Since the operator D ∈ L(U ), Lemma 3.3.1 holds true.

Set

. By Lemma 3.6.7, we have

By Theorem 3.5.1 applied for θ = 1/3, we therefore obtain (3.56).

Remark 3.6.9 Using the same method we get an analogous result for the one dimensional problem. we can also get the observability inequality by a spectrum analysis and that was already done in the paper [START_REF] Mercier | Polynomial decay rate for a wave equation with weak dynamic boundary feedback laws[END_REF], where the authors obtained an optimal decay, thus we expect the decay in the two dimensional case to be optimal as well.

Remark 3.6.10 Consider the following system studied in chapter 1 (see [START_REF] Abbas | Polynomial decay rate for a wave equation with general acoustic boundary feedback laws[END_REF])

where B 0 ∈ M n (C), C 0 ∈ C n are given. System (3.57) can be written in the form (3.1) where V = {y ∈ H 1 (0, 1) : y(0) = 0}, X = L 2 (0, 1) and U = C n . In this case, C = B 0 is a bounded operator and Bη = (η, C 0 )δ 1 for all η ∈ C n . Indeed, since C is bounded then it is enough to verify assumption (O). Assumption (O) was verified in [START_REF] Abbas | Polynomial decay rate for a wave equation with general acoustic boundary feedback laws[END_REF] and the polynomial stability of (3.57) was deduced. In particular, for n = 1 we obtain the system studied in [START_REF] Wehbe | Rational energy decay rate for a wave equation with dynamical control[END_REF], where a polynomial decay is proved using a mutltiplier method. The polynomial decay can be also obtained by proving an observability inequality for the solutions of the corresponding conservative system which is exactly what has been verified in [START_REF] Abbas | Polynomial decay rate for a wave equation with general acoustic boundary feedback laws[END_REF], thus applying the appraoch intoduced in this chapter .

Unbounded example

Consider the following system

where ξ ∈ (0, 1). Define the following spaces and operators:

, and B = B * = I U = I L 2 (0,1) . In addition,

As the operator D is unbounded, we need to verify that the problem satisfies assumption (H) as well as the asumption (O) for conservative problem. In this case we have

In order to verify the assumption (H), we proceed by finding the transfer function, for this purpose we recall that u 2 = uu 1 and w 2 = ww 1 satisfies (3.15) which is in this case

and

Verifying the assumption (H) is equivelant to verifying (see [9, Proposition 3.2] for more details)

For this purpose, we state the following proposition.

Proposition 3.6.11 Let (u 2 , w 2 ) = (uu 1 , ww 1 ) be the solution of (3.59). Then w 2 verifies

Proof. Let λ = 1 + iη and consider û2 , ŵ2 the Laplace transforms of u 2 and w 2 respectively. Then û2 and ŵ2 satisfies (3.16) given by

The problem reduces to studying û2 and ŵ2 solutions of

and

Therefore | w 3 (ξ, λ)| is bounded on the line ℜ(λ) = 1.

It remains to find the estimate satisfied by w 4 (ξ, λ). Indeed, since ( √ 2 sin(kπx)) k∈N * form a Hilbert basis of L 2 (0, 1), then we may write u 2 , w 2 , w 4 as follows

By the first equation of (3.62), we get

Due to (3.65)

We deduce that

For λ = 1 + iy we have In what follows we prove that the observability assumption (O) holds on subspaces of D(A d ) on which we deduce the polynomial stability of the energy. Let us first remark that 0 is not an eigenvalue of A d . Let λ = iµ an eigenvalue of A d and U = (u, v, w) a corresponding eigenvector. We then have,

(3.67) with u(0) = u(1) = w(0) = w(1) = 0.

Multiplying the second equation by w then integrating by parts on (0, 1), we find that w(ξ) = 0. We hence deduce that w = 0. Moreover, multiplying the first equation by u, integrating by parts and considering the imaginary part we deduce that u = 0.

In order to verify the observability assumption (O) we study in what follows the spectrum of A c . Recall that the eigenvalues of A c are of the form λ = iµ, µ ∈ R. Proposition 3.6.12 Let σ(A c ) be the set of eigenvalues of A c . Then (i) Every element of σ(A c ) is simple and σ(A c ) is a disjoint union of three sets:

where σ 0 is a finite set, and there exists k 0 ∈ N * such that σ 1 = {iµ k,1 } k∈Z,|k|≥k 0 , and

(iii) The following estimates hold

Proof. Let λ = iµ be an eigenvalue of A c and U = (u, λu, w) be a corresponding eigenvector of A c . Then u and w satisfies

Replacing w in the second equation, we find that

It is easy to check that µ = 0, µ = 1 and µ = -1 are not eigenvalues of A c .

Let 

Now, we remark that all the eigenvalues of A c are simple. Suppose otherwise that there exists a double eigenvalue, then there exist k

which is impossible since π 2 is a transcendental number. Therefore, u(x) = sin(kπx), w(x) = (µ 2 + X i ) sin(kπx), i = 1 or 2.

Moreover, the eigenvalues of A c are formed of two disjoint families of eigenvalues. The first class of eigenvalues is obtained from X 1 = -k 2 π 2 , the second class is obtained from X 2 = -k 2 π 2 . Now, we firstly study the asymptotic behaviour of the first class:

since In order to use generalized Inghams inequalities we need to estimate inf

Unfortunately it seems to be a difficult task and it remains an open question. Hence, to get an observability result we will take the initial condition U 0 in some subspaces of H. For this purpose we introduce Theorem 3.6.14 1. For any ξ ∈ (0, 1), the system described by (3.58) is not exponentially stable in H.

2. Let U 0 ∈ H 1 ∩ D(A d ), and let U be the solution of the corresponding dissipative problem

Then U satisfies, U (t) 2 1

(1 + t) Then U satisfies,

(3.82)

Proof.

1. This result is a direct consequence of the first assertion of Proposition 3.6.13 and Theorem 3.4.1.