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Résumé
Beaucoup de disciplines scientifiques s’appuient désormais sur l’analyse et la fouille de masses
gigantesques de données pour produire de nouveaux résultats. Ces données brutes sont produites
à des débits toujours plus élevés par divers types d’instruments tels que les séquenceurs d’ADN
en biologie, le Large Hadron Collider (LHC) qui produisait en 2012, 25 pétaoctets par an, ou les
grands télescopes tels que le Large Synoptic Survey Telescope (LSST) qui devrait produire 30
téraoctets par nuit. Les scanners haute résolution en imagerie médicale et l’analyse de réseaux
sociaux produisent également d’énormes volumes de données. Ce déluge de données soulève
de nombreux défis en termes de stockage et de traitement informatique. L’entreprise Google a
proposé en 2004 d’utiliser le modèle de calcul MapReduce afin de distribuer les calculs sur de
nombreuses machines.

Cette thèse s’intéresse essentiellement à améliorer les performances d’un environnement
MapReduce. Pour cela, une conception modulaire et adaptable d’un environnement MapReduce
est nécessaire afin de remplacer aisément les briques logicielles nécessaires à l’amélioration des
performances. C’est pourquoi une approche à base de composants est étudiée pour concevoir
un tel environnement de programmation. Afin d’étudier les performances d’une application
MapReduce, il est nécessaire de modéliser la plate-forme, l’application et leurs performances.
Ces modèles doivent être à la fois suffisamment précis pour que les algorithmes les utilisant
produisent des résultats pertinents, mais aussi suffisamment simple pour être analysés. Un état
de l’art des modèles existants est effectué et un nouveau modèle correspondant aux besoins
d’optimisation est défini. De manière à optimiser un environnement MapReduce la première
approche étudiée est une approche d’optimisation globale qui aboutie à une amélioration du
temps de calcul jusqu’à 47%. La deuxième approche se concentre sur la phase de shuffle de
MapReduce où tous les nœuds envoient potentiellement des données à tous les autres nœuds.
Différents algorithmes sont définis et étudiés dans le cas où le réseau est un goulet d’étranglement
pour les transferts de données. Ces algorithmes sont mis à l’épreuve sur la plate-forme expéri-
mentale Grid’5000 et montrent souvent un comportement proche de la borne inférieure alors
que l’approche naïve en est éloignée.
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Abstract
Nowadays, more and more scientific fields rely on data mining to produce new results. These
raw data are produced at an increasing rate by several tools like DNA sequencers in biology,
the Large Hadron Collider (LHC) in physics that produced 25 petabytes per year as of 2012, or
the Large Synoptic Survey Telescope (LSST) that should produce 30 terabyte of data per night.
High-resolution scanners in medical imaging and social networks also produce huge amounts of
data. This data deluge raise several challenges in terms of storage and computer processing.
The Google company proposed in 2004 to use the MapReduce model in order to distribute the
computation across several computers.

This thesis focus mainly on improving the performance of a MapReduce environment. In
order to easily replace the software parts needed to improve the performance, designing a
modular and adaptable MapReduce environment is necessary. This is why a component based
approach is studied in order to design such a programming environment. In order to study
the performance of a MapReduce application, modeling the platform, the application and their
performance is mandatory. These models should be both precise enough for the algorithms
using them to produce meaningful results, but also simple enough to be analyzed. A state of
the art of the existing models is done and a new model adapted to the needs is defined. On
order to optimise a MapReduce environment, the first studied approach is a global optimization
which result in a computation time reduced by up to 47%. The second approach focus on the
shuffle phase of MapReduce when all the nodes may send some data to every other node. Several
algorithms are defined and studied when the network is the bottleneck of the data transfers.
These algorithms are tested on the Grid’5000 experiment platform and usually show a behavior
close to the lower bound while the trivial approach is far from it.
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Chapter 1

Introduction

Human is constantly seeking for knowledge. Technology development has always helped in that
matter. Today, information technology can, more than ever, help building new knowledge by
allowing to collect store and process more and more data. When processed with the right tool,
the right algorithm, those data can tell a lot of useful information.

In the past decades, the amount of data produced by scientific applications has never stopped
growing. Scientific instruments still make the rate of data production to continuously grow as
well. DNA sequencers in biology, the Large Hadron Collider (LHC), the Large Synoptic Survey
Telescope (LSST) in physics, high-resolution scanners in medical imaging, and digitalisation
of archives in Humanities are few examples of scientific tools producing data at a high rate.
Sensor Networks become quite common, while web indexing and social network analysis is a
hot research topic.

With new orders of magnitude in data production come new challenges related to storage
and computation. Depending on the kind of processing needed for these Big Data, several
approaches can be considered. The users of the LHC are gathered into large international
collaborations to analyze the data and perform long lasting simulation based on these data.
Another approach is to rely on an easily scalable programming model. Google proposed to
use MapReduce [1] for this purpose in order to handle the web indexing problems in its own
data-centers. This paradigm, inspired by functional programming, distributes the computation
on many nodes that can access the whole data through a shared file system. MapReduce system
users usually only write a MapReduce application by providing a map and a reduce function.

1.1 Context
The context of Big Data raises several challenges. The first one is the storage of large amounts
of data. Since large amount of data needs several physical support, they need to be replicated
to face the failure rate that become non-negligible. All those data have to be managed to allow
an easy and consistent usage. The second challenge is about moving the data. Large amount
of data cannot be moved freely across a usual network infrastructure. And third, more data
means that processing them takes more and more time.

Although the challenges raised by those amount of data are very real and practical, the
notion of Big Data is not well defined. META Group (now Gartner)1 defined Big Data [2] as a
three-fold notion summarized in three words: Volume, Variety, and Velocity.

Volume The notion of volume in the context of Big Data is not directly about size of the data, it
is mainly about the value of the data that lie in its size. The larger the data, the more

1Garner Inc. is an American information technology research and advisory company.
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valuable it is.

Variety Unlike large relational databases that has been existing for decades, the data collected
here may not be structured like text files and may be in various formats. This raise new
challenges for the users and software developers.

Velocity The third key point of Big Data is the rate at which the data is produced and processed.

One of the solutions to ease the handling of those challenges and leverage the related op-
portunities is to use a framework like MapReduce to process those data. The MapReduce
programming model is composed of 3 phases, map, shuffle, and reduce where the user provide a
map function to transform one data chunk into another, while the user-provided reduce function
merges several intermediate elements of data into one. Although this programming model only
allow a limited set of computations to be done, it covers most Big Data use-cases, sometimes by
chaining several MapReduce jobs. Additional tools may help create a sequence of MapReduce
jobs for a particular task.

1.2 Challenges

Because of its nice properties, MapReduce has been largely adopted and several implementations
has been designed and developed. However, several questions and challenges remain regarding
the scalability and performance of the frameworks. MapReduce is designed to run on any kind
of hardware and should therefore also run on low cost hardware. This thesis focus particularly
on the performance challenges in the case of low cost network hardware and try to bring an
answer to the following questions.

• How to make the execution of a MapReduce job as short as possible?

• How to deal with network contention?

1.3 Contributions

This thesis present a total of four contributions in Chapters 4 to 7. The first two contributions
are the basis on which rely the following two contributions.

MapReduce with components. The first contribution is the extension of the design of a
MapReduce framework named HoMR based on a software component model designed by Julien
Bigot [3]. There are 3 main goals in the design of this framework. The first one is to build
it mostly from reusable pieces of code. The second one is to make it easy to build another
application with a similar computing structure. And last but not least, the third aim is to make
it easy to change some parts of the framework so that other algorithms can be experimented in
the context of this thesis.

Platform and performance modeling. The second contribution is about modeling the
platform that runs a MapReduce framework, and the MapReduce application and its perfor-
mance in order to be able to predict the time taken by each step. The models proposed in this
thesis intend to be neither too coarse nor too detailed in order to be analytically tractable, but
still accurate enough to be applied to actual applications.
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Global optimization. Third, the problem of optimizing a MapReduce application as a whole
is studied. This thesis proposes both a partitioning algorithm and a transfer scheduling algo-
rithm that improve a previous work of Berlińska and Drozdowski [4] both in terms of compu-
tation time and in resulting schedule length.

Shuffle optimization. Finally, this thesis proposes several algorithms to handle the shuffle
phase in a way that avoids network contention. Of those five algorithms, most show a behavior
better than a naive approach and two of them show a behavior close to the theoretical lower
bound.

1.4 Document Organisation

This document is divided in 6 main chapters. Chapter 2 presents an overview of the existing
computing platforms both on the hardware and software levels and focus on the actual platforms
relevant to this thesis. In Chapter 3, the MapReduce paradigm is presented as well as its
implementations and variations. Then Chapter 4 presents the software component models
used to design HoMR, as well as HoMR itself. Chapter 5 presents some existing work for
modeling some distributed platforms and MapReduce applications with their performance and
a proposition of some alternative models used in the next chapters. In Chapter 6 the problem
of a global optimization is studied, and the focus is given to the shuffle phase in Chapter 7.
Finally, Chapter 8 concludes this document and highlight some perspectives.
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Chapter 2

Platforms

This chapter presents the computing platform most used today and is divided in 4 sections.
Section 2.1 presents the hardware architecture of the computing platforms from the inner par-
allelism of a single node to the node aggregation of several nodes on a wide area network and
to the storage. Section 2.2 presents the usual software tools that help making software exploit
these architectures, while Section 2.3 focus on the management software for distributed systems.
And finally, Section 2.4 concludes the chapter.

2.1 Architecture

2.1.1 Node Hardware

The most basic hardware that can run a program is a single computer. In its simplest form, it
can be modeled as a Von Neumann architecture [11]. In the Von Neumann model, a computer
consists in one Central Processing Unit (CPU), one memory to store the data and the programs,
and some input / output devices attached to the CPU. The CPU is itself composed of a Control
Unit that decides at each step what is the next instruction to execute, and an Arithmetical and
Logical Unit (ALU) that actually performs the instructions.

In reality, a simple computer is very close to this model. The memory used is a Random
Access Memory (RAM). The input and output devices may be any kind of usual peripheral,
including a Hard Disk Drive (HDD) or Solid-State Drive (SSD) for storage.

The common operation of a computer is that the CPU reads its program from the main
memory and executes it. The program may instruct to read or write data from / to the main
memory, or from / to the mass storage device. From this, any computation is possible.

The throughput at which a given hardware can receive or send data vary a lot. As of 2013, a
typical magnetic HDD can achieve a throughput of 100MB/s and exhibits a latency of roughly
ten millisecond. The memory can provide more ten gigabytes per second with a latency in the
order of approximately ten nanoseconds or less. While the processor could process data at a
rate of several tens of gigabytes per second. For this discrepancy not to impair the performance,
several strategies have been developed. There are two main techniques used to try to hide the
slowness of those hardware: multitasking and caching.

Caching consist in using a fast memory put close to the hardware reading the data, that
store a part of the data that are slow to access, so that subsequent accesses can hit1 the cache
and not access the slow storage. Typically, for the HDD access, the operating system allocates

1Successfully finding a data in a cache is said to be a cache hit, while needing to read it from the slow storage
is said to be a cache miss.
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a part of the main memory as a cache. While the processor have a piece of hardware memory
that cache the main memory accesses.

Multitasking is the act of running several tasks during the same period of time. It cannot
speedup the access to data, but it can hide the slowness of the data storage by running another
task while the data is being transfered. To hide the hard disks slowness, the operating system
can chose to execute another task on the processor. To overcome the slowness of the RAM,
some processors can execute another thread if they support simultaneous multithreading (e.g.
Intel’s hyperthreading) or execute the instructions out-of-order. The latter can indeed be seen
as a form of multitasking with a task being an instruction.

2.1.1.1 Multi-Processor

The single simple node processing power is roughly characterized by the frequency of the pro-
cessor. Thus, at a given time, for a fixed state-of-the-art hardware, one way to increase the
computing power is by using several computing units at the same time. Either by using several
full CPUs, or by putting several processing units inside the same processor.

Symmetric Multiprocessing The Symmetric Multiprocessing (SMP) technology consists in
using several processors in the same node. Every processor run independently and may execute
a different program. They do however share all the rest of the computer hardware, especially
the bus connecting the RAM. Since the processors run faster than the RAM, having several
processors reading and writing the same memory only stress this phenomenon. The memory
can indeed serve only one request for reading or writing data at a time. Thus, the more
processors use the memory, the higher the risk of contention2. Moreover, all the processors have
to communicate in order to keep their cache consistent. This limits even more the scalability.
Figure 2.2 shows an architecture example of an SMP system.

CPU0 CPU1 CPU2 CPU3

cache cache cache cache

Memory
controller

Memory

Figure 2.1: Schema of a symmetric multiprocessing architecture with 4 processors.

Non-Uniform Memory Access A way to alleviate the aforementioned memory bottleneck,
is by splitting the main memory into several banks, each processor having one bank faster
to access than the others. This creates what are called NUMA nodes. Figure 2.2 shows an
example of NUMA architecture with 2 NUMA nodes and 4 processors per node. Each node
roughly consists in one memory bank and one or several processors. Each processors inside a
NUMA node can access all the memory of this node with a constant latency. Each node can

2Contention is a conflict for accessing a shared resource.
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be seen as an SMP architecture. In order to communicate, these nodes are interconnected with
a network. A processor can thus access the memory of the other nodes as well as the memory
of its own node. However, accessing a memory location that belongs to another NUMA node
is slower by a factor called NUMA factor.

CPU0 CPU1 CPU2 CPU3

cache cache cache cache Memory
controller

Memory
Bank 0

Node 0

CPU4 CPU5 CPU6 CPU7

cache cache cache cache

Memory
controller

Memory
Bank 1

Interconnection
Network

Node 1

Figure 2.2: Schema of a NUMA architecture with 2 nodes of 4 processors.

Unlike SMP architecture, NUMA architecture need the software to be NUMA-aware in order
not to suffer from the NUMA factor. The optimizations to perform are quite low level since the
software must be aware of the of the location of the memory used.

2.1.1.2 Multicore Processors

Multicore processors are really close to SMP; they notably share the memory bank and the
bus to the memory. The main difference is that instead of having several full processors, the
processing units are located on the same chip. Moreover, they can share one or more levels
of cache. From the operating system point of view, cores act like distinct processors. The
multicore approach is orthogonal to the SMP / NUMA approach and both can exist at the
same time inside a computer: a NUMA system can be made of multicore processors.

One step further into the integration of multiple processors is Simultaneous Multi-Threading
(SMT). With SMT each core is composed of several hardware threads, each one has the minimal
dedicated hardware to allow the execution of several threads at the same time. Thus, when the
threads have to perform instructions that make use of distinct subsets of the elements of the
processors, they can be executed at the same time. SMT also come in use when one execution
thread wait for the memory to provide data, the other thread can continue its execution and
the processor usage remain high. This architecture is also seen from the operating system as
several processors.
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2.1.1.3 GPU and Accelerators

Graphics Processing Units (GPU) are the processors embedded in video boards for accelerating
the graphical rendering. They are massively parallel processors composed of hundreds of cores
that can execute the same instructions at the very same time on distinct piece of data. This
execution model is called SIMD (Single Instruction Multiple Data). As they are massively
manufactured, their price is very low related to the computing power they provide. It is then not
surprising that they are used to perform compute-intensive task outside of graphics rendering.

The new usage of GPUs, called GPGPU for General Purpose Computing on Graphics Pro-
cessing Units has led to hardware modifications from the chip manufacturers. Especially, com-
mon sized integer have been added, as well as support for IEEE 754 [12] floating point numbers.
Moreover, some GPU board are produced for the special purpose of performing non-graphics
computations. Some graphic board do not even include an output port, making them unable
to produce an image. The NVIDIA Tesla K40 boards [94] are one of a kind.

2.1.2 Network

Before connecting several computers together, the network need to be defined. A computer
network is composed of several nodes which all have one or several Network Interface Cards
(NIC) and some routing device connecting them. Over the years, several technologies have been
employed to make the hardware layer of the network. The most common among consumers is
Ethernet which has been improved to reach a theoretic bitrate of 1 Gbps in most new devices.
The equipments supporting the 10 Gbps version of Ethernet are still expensive for the consumer
market but are found in more and more new professional equipments.

On the high-end of network requirement in terms of bitrate and latency, there are some
technologies like InfiniBand that can provide a bitrate higher than 10 Gbps per link and a
latency less than a microsecond. Moreover, InfiniBand allows links to be aggregated, and can
thus provide a bandwidth of several tens to a few hundreds of Gbps. Additionally This kind
of low latency NIC usually support Remote Direct Memory Access (RDMA) meaning that a
process on a node can directly access the memory of another process located on another node
without invoking the operating system on the remote node. This feature makes the whole
system close to a NUMA system.

Node

Switch

Figure 2.3: Star network topology.

The nodes and routing devices in a network form a graph. However, in order to make the
performance predictable and, hopefully, good, the nodes are not randomly interconnected. The
most basic network topology is the star as show in Figure 2.3 where all the compute nodes
are connected to a single routing device. The obvious limitation of this approach is that it
requires the routing device to have as many ports as there are nodes to interconnect. The
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Node

Switch

Figure 2.4: Tree network topology.

Node

Switch

Figure 2.5: Fat tree network topology.

Node

Figure 2.6: 3× 3 grid network topology.
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Node

Figure 2.7: Torus network topology.

classical workaround is to make a tree as shown in Figure 2.4. This allows to interconnect as
many nodes as needed, but the root node may become the bottleneck if several nodes try to
communicate from one end to another of the tree. This issue, in turn, can be worked around
by having links with a larger bandwidth as they are close to the center of the network, which
is called a fat-tree [13]. Figure 2.5 shows an example of a fat tree network. Another solution is
to change completely the network topology. Figure 2.6 show an grid network topology where
each node is connected to its direct neighbors, either in 2D or in 3D. This allows a high global
bandwidth and a is more resilient to failure somewhere in the network. This grid can, be closed
to form a torus topology and thus eliminate the special cases on the sides where nodes have less
than 4 or 6 neighbors and divide by 2 the maximal and average number of hops connecting a
node to another. Figure 2.7 shows an example of network topology forming a 2D torus.

2.1.3 Node Aggregation

Another way to improve the computational performance is to aggregate nodes instead of building
more complex processing units. The interconnected computers can be seen as three main groups:
Clusters, clusters of clusters, and grids.

2.1.3.1 Cluster

In a cluster, all the nodes are usually homogeneous3 and are interconnected within a Local Area
Network (LAN) or a System Area Network and can be viewed as a single system. The nodes of
a cluster are usually located in the same room and managed by the same entity. Increasing the
computing power of a cluster is as simple as adding some nodes to the network. This makes the
cluster a very scalable solution. Clusters can be made from any kind of nodes, from high-end
computers to consumer computers.

The network hardware usually rely on classical Gigabit Ethernet technology. This network
can however coexists with a low-latency high-bandwidth network technology such as InfiniBand
or Myrinet. Fast network usually include features like Remote Direct Memory Access (RDMA).

3Consist of identical hardware.
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RDMA allows a node to access directly the memory of another node. This leads to an easy
implementation of a Distributed Shared Memory system.

The main use of clusters range from service duplication for high availability or load balancing
to High Performance Computing (HPC), including the data-intensive computing. Clusters are
thus found in many organizations. However, despite its easy scalability, the applications running
on a cluster need to be aware of the network topology because the communication between the
nodes is much higher than the communication between the processors of a large single computer.

Regarding hardware, there is not much difference between a cluster and a modern supercom-
puter. Supercomputers are usually composed of several nodes that contains high-end processors
and other elements. Those nodes are interconnected with a high-performance network which
may use proprietary technology. All those nodes act as single computer thanks to the operating
system. This kind of cluster operating system is presented in Section 2.3.1.

2.1.3.2 Cluster of Clusters

Following this logic of aggregating the computing resources, the cluster of clusters comes nat-
urally. In this kind of platforms, several clusters are connected through a fast network. All
those clusters may belong to a single organization like a laboratory or belong to several entities
collaborating.

This kind of platform raise new challenges related to the strong heterogeneity of the com-
puting resources that may exists. The heterogeneity lies on several levels. First on the node
level, where, despite each cluster being usually homogeneous, all clusters may have very different
hardware brought several years apart. Second on the network level. The network interconnect-
ing a single cluster may not have the same latency and bandwidth as the network connecting the
clusters together. Moreover, not all the pairs of clusters have a dedicated link connecting them.
Thus, not all the cluster-to-cluster communication have the same performance characteristics.

2.1.3.3 Data-Centers

Data centers are physical places where computing systems are housed. It usually offers all
the facilities to run safely a large number of servers, including power supplies, cooling, and so
on. Regarding the interconnection of the equipment, although everything is possible, the most
common network topology between the computing nodes is a cluster of clusters. This allows to
easily manage a large scale infrastructure.

The persistent storage can be handled by a SAN (Storage Area Network) or a NAS (Network
Attached Storage). From the computing node’s point of view, in a SAN, the storage device are
accessed at a block level as if they were physically attached to the node. This, even thought
the block storage may be virtual. The network link between the storage and the compute node
accessing the block storage can be based on the Fibre Channel technology for a high throughput
and a low latency. The NAS on the opposite, exposes to the user an interface allowing to retrieve
some files directly. The storage techniques are presented in more details in Section 2.1.4.

2.1.3.4 Clouds

The cloud is a service-oriented infrastructure that hides most of the hardware to the user, thus
allowing the cloud provider some freedom of implementation. As such, the most important
part of the cloud infrastructures is at the software level and is described in more details in
Section 2.3.3.

On the hardware level, depending on the size of the instrastructure, a cloud can be based on
a cluster, a cluster of clusters, or even on several data-centers for the largest clouds. Since the
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details are hidden to the user, virtualization plays an important role in the cloud. Virtualization
is greately helped by the specialized CPU instructions for virtualization in the x86 processors
in terms of performance.

2.1.3.5 Grid

Another kind of node aggregation is the computing Grid and can be seen as an extension of
the cluster of clusters where the clusters are connected through a Wide Area Network (WAN).
The nodes of a Grid can be of any kind, from the desktop computers to high end server.
The computing resources of a Grid usually belong to several organizations or institutions and
are geographically distributed. The WAN usually have a much larger latency and a lower
throughput than a LAN that connects a cluster together. The WAN may even transit through
the internet.

As the computing resources are managed by distinct entities, they need an agreement to
collaborate and offer a consistent service. In order to do this, the organizations owning the
computers are grouped into a Virtual Organization. The virtual organization define some rules
and conditions for resource-sharing. The Virtual Organization is then all the user care about.

The idea of the computing Grid is loosely based on that of the electrical Grid. A user could
benefit from computing power on demand without owning his own resources. And accessing
computing power should be as simple as plugging a device to the mains.

Following this, Ian Foster proposed a three-point checklist to define a computer Grid. A
computer Grid is a system that:

• coordinates resources that are not subject to centralized control

• using standard, open, general-purpose protocols and interfaces

• to deliver nontrivial qualities of services.

A special kind of Grid is one that consists mainly of Desktop computers. The computation
usually only occur when the computer would be otherwise idle. This provide the platform a few
unusual properties. Desktop Grids are extremely heterogeneous and have a high host churn rate
implying a very different management approach. The nodes in the system are also untrusted,
which mean that every computation has to be done several times before a result is trusted.
However, a planetary Desktop Grid may provide a very high performance. The BOINC [14]
infrastructure, for instance, reported 9.2 PFLOPS [95] in March 2013, which would make it the
5th most powerful computer in the Top 500 list [96]. Those special properties of the Desktop
Grids make them apart from the other computing platforms and are thus not addressed in this
document.

2.1.4 Storage

When processing a large amount of data, the input data and the results have to be stored. Even
more, the performance of data intensive applications is usually heavily dependent on both the
hardware and software infrastructures used for storage.

2.1.4.1 Classical Storage

The main and easiest way to store data is with a simple magnetic hard disk drive attached
directly to the node. Although solid-state drives become more and more widespread and allow
a very high bandwidth, their price per gigabyte is still very high. This kind of storage system
is sometimes called Direct-Attached Storage (DAS).
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On those disks, data is stored using a classical hierarchical file system like ext3 or ReiserFS.
This file system is usually implemented by a driver of the operating system as being a sensitive
piece for security, performance, and reliability.

This kind of storage allow fast read and write operations since everything is done locally. It
is also simple to use since it comes with any operating system. However, there is no easy way
to exchange data among several nodes. Thus, in a cluster or a grid, the data should either be
already located on the node they will be processed or the transfers should be handled by the
application itself. In case the application decides to replicate some data, it has to manage itself
the consistency of all the replicas, including the tracking of the replicas that can be evicted or
not.

Although this kind of storage system is limited and has several issues, it is the basic layer
of storage most of the other storage systems rely on.

One way to improve reliability and performance of the storage is the Redundant Arrays of
Inexpensive Disks (RAID). RAIDs aggregate several storage devices and make them appear as
a single one to the operating system. The operating system can then use its usual driver to read
and write to the RAID device without knowing it is composed of several disks. There exists
several levels of RAID which bring either more storage space, reliability or performance or a
both. The most common levels of RAID are RAID 0, RAID 1 and RAID 5.

The RAID 0 setup scatters the blocks of data on all the disks in a Round Robin fashion.
This provide more storage space a better read and write performance while the reliability is
decreased since the failure of one disk make all the data unusable. RAID 1, on the opposite,
copies the blocks of data on all the disks, thus, all the disks contains the exact same data. This
provides better performance for reading the data and a better fault tolerance, but decreases the
write performance and provide no more storage space. RAID 5 is a trade-off between RAID 0
and RAID 1. In a RAID 5 setup every time a block is written, one of the disk receives redundant
data, so that the redundant data can be used to recover from a failed disk.

2.1.4.2 Centralized Network Storage

A second way to store data is with a centralized network storage usually called Network-
Attached Storage (NAS). In this case, a node has one or several disks attached and allow
other nodes to read and write files through a standard interface and serve them through the
network. A widely known implementation of this scheme is the Network File System (NFS).
NFS is mainly a protocol to access files through the network. Although the server is free to
implement any way to access to the real data to provide through the network, most implemen-
tations simply rely on the data being directly accessible on the server.

One of the main advantage of this kind of architecture is that is makes it easy to share data
among several compute nodes. Since the data is stored on one server, it is easily kept consistent.
However, one of the major drawbacks that stems from the centralized nature of this model is
that it does not scale . The concurrent read and write operations have to be supported by only
one server. It also have the disadvantage of not being resilient to failures by itself. If the storage
server crashes, all the data are unavailable. Thought, this last point may be mitigated in some
setups with a fail-over and data replication.

2.1.4.3 Parallel and Distributed Storage

In order to overcome the limitations of a centralized network storage, the data can be distributed
across several storage nodes. Using several nodes allows to access several files at the same time
without contention. It also allow a better throughput for reading the same file when there
are replicas on several nodes. A distributed file system is usually built to scale better than a
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centralized storage. Also, in theory, distributed storage systems can avoid the single point of
failure problem.

The distributed storage system often have a single entry point node that receives all the
requests to read or write data. As its role is central and critical, its job must be kept to
the minimum. This master node usually only allows a global collaboration among all the
nodes involved in the storage system, and may store the meta-data (file name, file size, access
attributes, ...). Thus, when a request for reading or writing a file is received, the client is
redirected to another node that is going to actually process its request. However, if the meta-
data may be stored on the master node, the real data are always stored on some other nodes,
and may be replicated.

The drawback of a distributed storage is that to achieve the best performance, the applica-
tion should take locality into account. Indeed, even thought the default behavior of the storage
system might be quite good, it is usually preferable to read or write data from / to the closest
node of the system storage than from / to a node with a high network cost.

An example of such storage system is the Hadoop Distributed File System (HDFS) [15]
that is developed by Apache in the Hadoop [97] project that implements a MapReduce frame-
work. It is designed to handle data in the order of terabytes. HDFS calls its central node the
NameNode which manages de DataNodes and stores the meta-data. As a single point of failure,
the meta-data stored on the NameNode are periodically replicated on a SecondaryNameNode so
that in case of crash, not all the metadata are lost. The DataNodes of HDFS handle replication
themselves, as well as rebalancing to spread the load across the nodes. As it has been developed
to be used with the rest of the Hadoop project, it is optimized for BigData, which means it offers
good read performance while the writing performance are considered of less importance. It is
also designed to collaborate with the JobTrackers of Hadoop MapReduce so that the scheduler
can take data locality into account.

BlobSeer [16] is another example of distributed storage system. It is not a file system per se
as the notion of file name is missing. BlobSeer can be seen as a versioned storage system designed
to handle data in the order of terabytes. However some basic file systems implementations on
top of BlobSeer exists. As its name suggests, it stores Binary Large OBjects (BLOBs), which
are nothing else than unstructured data. The master node of BlobSeer is called the version
manager which, upon request, provide the id of the lastest version of a blob, or assign a unique
id to a new version of a blob. The data a stored by the metadata providers while the data are
kept by the data providers. BlobSeer is claimed to offer good performance for any combination
of read or write operations under heavy concurrency.

Parallel Virtual File System (PVFS) is another example of distributed file system. The
main difference with the previously presented file systems is that its API is compliant to POSIX,
and thus usable transparently by any program. Its architecture is comparable to that of HDFS.
It has several IO daemons that serve the data on demand, and a manager daemon that handles
the metadata only.

2.2 Software

The hardware as described in Section 2.1.1 and Section 2.1.3 needs, of course, at least an
operating system. It, however, would be a lot of work to write any non-trivial using only
the operating system features. Some higher-level software are needed. That can be runtime
libraries, frameworks, compilers or other tools. However, in the context of big data, those
software frameworks must target performance on a large scale in addition to providing usability.
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2.2.1 Component Models

Software component-based design is not a software per-se, but is still a useful tool to design
applications. The applications to run on distributed platforms tend to be more and more
complex and the components models offer an abstraction to manage the complexity while still
keeping the software easily adaptable to other needs.

In the component models [17], a component is a piece of software that address a specific set
of concerns. They are kind of modules that can, in some models, be composed of submodules.
The components are, of course, connected together to allow them to communicate through
method/procedure calls. In a component model, an application is fully defined as a set of
components and connections. Chapter 4 go more into details about the components models and
especially describe two models L2C [18] and HLCM [19]. Note that all the software solutions
hereafter can be encapsulated in components.

2.2.2 Message Passing Interface

One of the concerns with distributed infrastructures, is the network. If not properly used, it can
become a bottleneck and impair the performance. The Message Passing Interface (MPI) [20]
provide an API for sending and receiving messages from one process to another. Those process
can either be located on the same computer or on the same network. It has been designed for
efficiency, and usually tries to exploit the computing resources the most efficiently. Its more
widespread implementations are MPICH and Open MPI.

MPI can be used either inside a node or across several nodes. Most implementations have
optimizations to not use the network stack when it is not needed. It thus can be efficiently
used in shared memory systems as well as in fast LAN, and WAN networks. The MPI API also
provides some functions to perform collective operations like a all-to-all where every node has
some distinct data to send to every other node, or a reduction where a simple operation has to be
applied to an intermediate result and a data element to produce a new intermediate result. These
collective operations can also benefit from advanced algorithms in an MPI implementation.

However, the performance comes at the cost of a programming effort. Indeed, MPI API is
quite low level and only allow the program to send data. Any higher level feature, like calling
a remote procedure and waiting for the result, has to be reimplemented.

2.2.3 CORBA

Common Object Request Broker Architecture (CORBA) [21] is a standard for inter-process
communication. It provide a standard way to call a method on a remote object, and thus is
an object-oriented platform-independent Remote Procedure Call (RPC) specification. CORBA
specify several levels of the communications, from the network to the programming to some
more general concepts of software architecture.

In the CORBA architecture, the ORB (Object Request Broker) or broker is a software
component that connects the processes together. It handle the marshalling4 and unmarshalling5

as well as all the networking aspects. The ORB also handle the synchronousness of the method
calls, which means that it build the request, send it on the wires and wait (or not) for the result.

On the network part, CORBA defines the General Inter-ORB Protocol (GIOP) which is an
abstract protocol. This protocol is used for every communication between the processes. Its
most common instanciation is Internet Inter-ORB Protocol (IIOP) which is a specification of

4Marshalling is the process of translating an object into a string of bytes while
5unmarshalling is the process of translating a string of bytes into an object.
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GIOP designed to be used on top of TCP/IP6 protocols. These specifications should allow any
ORB implementation to communicate.

In the code, all the programmer has to manipulate are remote object references. The
methods can be called on these references as if the object would be local. The ORB handles
itself the marshalling and unmarshalling process, but it does not know about the classes and
their methods. There is thus a layer of code on top of the ORB that allow the client process to
perform a simple method call that is converted to calls to the ORB. On the server side there is
also a layer of code that convert the methods calls from the ORB to calls to the implementation
object method.

These two additional layers of codes are generated by a CORBA tool from an interface
written with the Interface Description Language (IDL). An interface mostly consists in abstract
data types and methods with their parameters and return type. The IDL language is part of the
CORBA specification, as well as the mapping between the IDL and several languages. Interfaces
written in IDL are thus portable among the CORBA implementations. The IDL compilers read
the interface description and generate two pieces of code: the stub and the skeleton. The stub
contains the code that makes the glue between the ORB API and the user code that perform
a simple method call on a remote object reference. The skeleton is the symmetrical on the
server side, it contains the code that makes the glue between the server-side ORB and the
implementation object.

2.2.4 Processes and Threads

There are two main ways to make use of all the processors and cores inside a compute node:
processes and threads. A process is the dynamic view of a program being executed. It has its
own virtual memory space, its own data and has one or several execution threads. A thread
(also called light-weight process) consists in a sequential code to run and some local memory. All
the threads inside a process share the same memory space and can thus communicate through
explicitly shared memory.

Although the memory isolation of the processes bring some safety, they are heavier to create
and do not intrinsically share memory. Threads are thus usually the preferred way to run a
parallel program on a multiprocessor / multi-core node.

POSIX threads (Pthread) is a standard that defines an API to create and synchronize
execution threads. This specification is implemented by most UNIX-like operating systems,
and some implementations are known for other operating systems like Microsoft Windows.

The Pthread interface is quite low level. All the thread creation and synchronization has
to be explicit. Therefore, some tools try to provide a higher level abstraction of the threads
by providing an interface for the common usage patterns. For instance, OpenMP extends the
C language to include some pragma directives that instruct the compiler what section of code
should be executed in parallel. Its method for parallelizing a code uses the fork-and-join model,
therefore OpenMP is more adapted to the applications that fit into this model.

Another effort in simplifying thread usages is the BOOST threading library. It exposes an
object-oriented API to be used by the programmer. In addition to the classical low-level thread
management features, it provides some higher level abstraction and operations such as thread
groups and Resource Acquisition Is Initialization (RAII) locks.

2.2.5 Graphics Processing Units

Using GPUs to compute something else than computer graphics is called General-Purpose
computing on Graphics Processing Units (GPGPU). The GPUs have a great potential compu-

6Transmission Control Protocol / Internet Protocol
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tational power. But their architecture induce a way to program them that is really different
from a classical processor. GPUs are massively parallel processors counting several hundreds
of cores which usually executes the individual instructions in a lockstep. Meaning that a given
instruction is executed on several data at once. This induces that the code is written specifically
for a GPU and using the GPU to its full potential need some specific low-level optimizations.
Those optimizations can either be supported by a specific library, like BLAS7 [22], which has a
very specialized task, or by a language that includes enough meta-information for the compiler
to generate code optimized for the target GPU.

In the area of GPGPU, the two main manufacturers are NVIDIA and ATI. Both developed
their own solution for GPGPU, CUDA for NVIDIA and ATI Stream for ATI. As expected, both
are incompatible. However, OpenCL is a third approach that can be compiled for NVIDIA or
ATI GPUs as well as for CPUs, Field Programmable Gate Arrays (FPGA) and other kind of
processors. But, even though OpenCL can be compiled to many type of processors, the code
may have to be rewritten to achieve best performance on every platform.

Another orientation of third part languages is to augment C (or Fortran) with some pragma
directives to add the meta-informations needed to compile the code for a GPU. StarSs [23],
HMPP [24] and OpenACC [25] basically take the same approach as OpenMP and adapt it to
target several processing units. For instance, in OpenACC, its directives instruct the compiler
that some portions of the code are to be run on an accelerator, or that a given data have to be
moved to the accelerator’s memory. Even though the compiler could probably transform the
code to obtain good performance on every accelerator, the limit is the cleverness of the compiler
and obtaining good performance on distinct accelerators may require tweaking the code.

2.3 Distributed Infrastructure

All the platforms presented earlier need a software to make them easy to use as a consistent
set of nodes. This can be done either as an operating system or as a higher level management
software.

2.3.1 Cluster

The homogeneous set of nodes that make the cluster can be used in two different ways. One
way is by using a cluster operating system that makes the cluster appear as a single system.
Another way is by using a resource manager that allow to allocate a set of cores or nodes for a
given amount of time.

The simplest way to use a cluster is probably through a Single System Image (SSI). A
SSI is an operating system that act from the user point of view as a single NUMA computer
although it is spread over several nodes. The point to which the nodes act as a single computer
is variable among the systems. However, almost every SSI operating system share a single file
system root. It is also quite common that the operating system allow process to be migrated,
and to communicate through IPC mechanisms like they were on the same node. The goal of
those mechanisms is to allow the programmers to picture the cluster as a distributed shared
memory system. Kerrighed [26] and MOSIX [27] are two examples of such SSI.

Another, and more general, way to use a cluster is through a resource manager like OAR [98]
or TORQUE [28] that allow to reserve a set of nodes for a given amount of time starting at a
given date. Those resource managers hold a description of the available resources and allocate
them to a job on demand. A cluster resource manager may also accept job submission that

7Basic Linear Algebra Subprograms



18 2.3. Distributed Infrastructure

basically do not have a start date. There is thus a scheduler that chose the date at which a job
should start and make the reservation at that date.

Some computing frameworks can also be conceived as a specialized cluster management
systems when they include a runtime environment. The MapReduce Hadoop implementation,
for instance, manages the nodes participating, it can remove a node from the list of active nodes
if it is failing. It can also add some new nodes as they come alive. Finally, Hadoop MapReduce
allow several users to submit their jobs and the framework automatically schedule them at the
most suitable date and on the most suitable nodes.

2.3.2 Grid

Similarly to clusters, Grids can be operated in several ways. The most common way to operate
a Grid is through a resource manager with a job scheduler. But distributed operating system
that work on a Grid is not unheard of.

The task of a distributed operating system that would work on a Grid is much more chal-
lenging than on a simple cluster. It indeed need to handle the heterogeneity of nodes and the
uncertainty of the WAN network links. XtreemOS [29] is a project that goes this way.

The most common way to operate a Grid remains the resource manager teamed with a job
scheduler. This works exactly the same way as for clusters: The system receives a job with
some constraints about the resources needed, it then find a set of resources and time where the
job can run, and schedule it for that date. However, a Grid resource manager has to deal with
the heterogeneity of the resources and the interconnection network. It also should deal with the
changing availability state inherent to the Grid as well as the non-dependability of the network.
And finally, a Grid resource manager has to deal with the resource allocation policies of each
resource owner.

A special case of a Grid management is the Desktop Grid. Their volatility and untrusted
nature make the usual Grid management systems unadapted to them. This kind of Grid is thus
operated in the opposite way. Instead of waiting to receive a compute task, the nodes ask a
server for task to compute, and once the computation is performed, the result is sent back to a
server. Although very interesting, this way of working make the Desktop Grid apart from the
other grids.

Although it is theoretically possible that a MapReduce framework operate on a Grid, there is
no known implementation up to this point. Moreover, it would be arguable that a set of resources
managed by a MapReduce framework would still be a Grid with respect to Ian Foster’s definition.
Especially on the second point of the check-list, the MapReduce programming interface may,
or may not be seen as standard or general-purpose.

2.3.3 Cloud

The Cloud computing [30] as defined by the U.S. National Institute of Standards and Technology
(NIST) is a model is a model where the user no longer has to own the computing resources
but remotely accesses a pool of shared resources. There are five main characteristics that
define Cloud computing. First the resource should be allocated on-demand upon user’s request.
Second it should be accessible through standard network. Third the resources should be pooled
to serve several users at the same time. Fourth, the cloud should be capable to adapt rapidly
to the users’ demand, thus providing the illusion that the computing resources are unlimited.
Finally, it should automatically monitor the resource usage and provide this information to
the user so that she can control her use and the bill in the case of a pay-per-use system. The
Cloud computing is therefore even closer to the ease of use of an electrical grid than the Grid
computing.



Chapter 2. Platforms 19

The kind of service provided by a cloud can be divided in four main categories, each one
has a name ending in -aaS meanning as a Service.

2.3.3.1 SaaS

Software as a Service (SaaS), provides the user with an application ready-to-use running on the
cloud infrastructure. It is usually used through a web browser or through an API that can be
used by a client program. In this kind of service, the user can only use the provided software
and has no direct access to the network, storage system, or operating system. Web-mails or
document managements like Google Docs could be classified as SaaS cloud services.

2.3.3.2 PaaS

Platform as a Service (PaaS) provide a working operating system with tools, libraries, and access
to usual programming languages. The user then has to deploy and configure his software for the
platform. A PaaS platform can be as general-purpose as freshly installed Linux distribution, or
more specialized like a MapReduce framework waiting for jobs to be submitted. The first one
give more freedom to the user, while the later handle load balancing and fault tolerance for the
user. This kind of service is provided by Microsoft Azure [99] or Amazon Elastic MapReduce
(EMR) [100] for instance.

2.3.3.3 IaaS

Infrastructure as a Service (IaaS) platforms allow the user to deploy virtual machines images
and provide a virtual network between them. The user is then able to run any operating system
and any software. A popular example is Amazon EC2 [101].

2.3.3.4 HaaS

Hardware as a Service (HaaS), also called Metal as a Service (MaaS) is one step further into
allowing the user to control the resources. It indeed gives the user a full access to the node
hardware. The user can then deploy an image with no virtualization layer. Grid’5000 [31] is
an French experimental computing platform that provides HaaS.

2.3.3.5 Sky Computing

Sky computing [32] is a quite new computing paradigm that aggregates the resources from
several Cloud providers. It provides single network with an all-to-all connectivity allow to
build a larger virtual infrastructure. When a user requests some computing resources, the sky
management software can allocate the resources from any Cloud provider.

2.4 Conclusion

Whether the applications are compute-intensive or data-intensive, the need for computational
power motivates the creation of large computing platforms. Whatever the level at which it is
applied, aggregation seems to be the key idea to build faster and larger computation platforms.
But this come at the cost of a higher management complexity. Some management software
exists to help leverage these platform by providing some abstraction. However, the classical
management softwares provide a very limited support for recurring applications patterns, like
data partitioning or load-balancing for instance. That’s why some frameworks exists to ease the
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building of distributed applications. And every MapReduce implementations are, by nature,
required to handle and hide the complexity of the underlying platform.
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Chapter 3

MapReduce Paradigm

The classical ways to operate a platform usually offers a low abstraction of the platforms. Thus
some frameworks have been designed to help leveraging the true potential of large platforms.
Several of those frameworks exists, some of them are based on the MapReduce paradigm. This
paradigm has the nice property of being adaptable to a large number of platforms and allow
the framework to perform a lot of optimizations while making the application writing simple.

This chapter first presents in Section 3.1 the abstract concept of MapReduce programming
with its phases and some typical applications. Then Section 3.2 gives some details about
some common implementations of MapReduce, especially the usual target properties and some
extensions. Section 3.3 shows some common variations of the MapReduce model. Section 3.4
talks about a few overlay tools over MapReduce, and Section 3.5 concludes the chapter.

3.1 MapReduce Concepts
MapReduce can be seen as a programming paradigm to write applications that can be decom-
posed in a phase Map and a phase Reduce. This paradigm is intrinsically parallel and based on
the high-order functions1 Map and Reduce.

Although MapReduce could be generalized to any kind of platform, it is mostly used on
highly parallel platforms, and the frameworks are usually designed with big data problematics
in mind. The following section try to be as general as possible about the programming model,
the next sections are more centered around implementations of MapReduce designed to run on
distributed platforms.

3.1.1 Programming Model

MapReduce is a programming model inspired by the high-order functions map and reduce com-
monly found in functional languages. In the context of functional programming, the map
function applies a given function to every element of a given list and return the new list. The
reduce function aggregates all the elements of a list by applying a given function on an element
and a partial result. In MapReduce, those high-order functions are not found as-it-is, however
the concept of those data transformations remains.

While the functions map and reduce were probably invented with functional programming
during the 60’s, their use for processing large data sets has been popularized by Google in 2004.
They published a paper [1] giving an insight about how their MapReduce implementation is
designed and used. This paper also explains how they deal with some common issues for tera-
scale computing such as node failure and minimizing the amount of data transfered.

1A high-order function is a function that can take a function as argument.



22 3.1. MapReduce Concepts

As its name suggests, MapReduce is composed of two main computation phases, the Map
phase and the Reduce phase. There is, however, a lot more than this to make these phase to
happen smoothly.

It all start with some kind data partitioning. Every computing node has to access the data
it process. Depending on the platform, this may be done in several ways: The data may already
be directly accessible to the nodes or may need to be scattered or re-balanced. The data is then
split in key-value pairs. This part is usually not accounted when measuring the performance of
a MapReduce application.

map shuffle reduce

Map

Reduce

Data

Figure 3.1: General workflow of a MapReduce execution.

Figure 3.1 show the global workflow of a MapReduce application. Every key-value pair is
processed by map task to produce 0, 1 or n intermediate key-value pairs. Those pairs are then
grouped by key in a phase called Shuffle to make pairs composed of a key and a list of values.
The reduce function is then called on each key-list pairs to produce a result in the form of a
set of values. For the sake of simplicity, some details are here omitted and are discussed in the
next sections.

From the typing point of view, the component that read the files produces a set of key-
value pairs of type k1, v1 written 〈k1, v1〉. The map function takes a key-value pair 〈k1, v1〉
and produces a list(〈k2, v2〉). The reduce function takes a 〈k2, list(v2)〉 pair and produces a
list(v2).

3.1.2 Distributed Implementation

3.1.2.1 Data Management

From a practical point of view, the user code that produces key-value pairs needs to be storage-
independent, meaning that any piece of data can be processed on any node. This implies that
the MapReduce implementation has to have an I/O component being able to bring the data to
a node if needed. However, it is usually more common and cheaper to process the data where
they are located instead of bringing the data to a node to process them.

If the storage system is centralized, the data management is simple since every computing
node has access to all the data at the same speed. In this case, even the run-time partitioning
is also simple since the transfer cost can be ignored.

However, if the storage system is distributed over several nodes, then the computing nodes
may have access to some part of the data faster than some others. A common case is when
the compute nodes are also the storage nodes and the network has a tree-shaped topology. To
optimize the completion, the MapReduce framework should favor the fastest transfers. For
instance, if the network has two levels of interconnection: a rack-level and a cluster-level, the
framework should first chose to process the data on the node they are, if it is not possible, it
should go to process them on another node in the same rack, and as last resort, another node
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of the cluster may be chosen. There have been some work [33, 34, 35, 36, 37, 38, 39] around
this optimization that showed good results.

This work of partitioning / balancing the data on the compute nodes is done at a block level
which usually have a size of 64MB. The blocks are then transformed into a form usable for the
map phase by splitting them into key-value pairs.

3.1.2.2 Map Phase

The map phase takes place right after the chunks of data have been split into key-value pairs.
The user code is usually a simple function that takes one key-value pair and produces a new
intermediate pair. However, unlike the map function in functional programming, it may here
produce no output or several intermediate pairs, in case, for instance, of data filtering or when
splitting data into chunks.

The set of calls to the map function for a given chunk of data is called a map task. These
tasks are usually processed by a mapper process, but this is implementation-dependent. A
mapper process is usually bound to one processor core. Some implementations of MapReduce
may allow a state to survive across the map tasks in the same mapper process, but this is not
provided by the model.

The intermediate data produced by the map function are usually not stored into the shared
file system and are rather stored locally, in a local storage or in memory. Those intermediate
data are then exchanged among all the computation nodes in preparation for the reduce phase.

3.1.2.3 Shuffle Phase

The goal of the shuffle phase is to group the key-value pairs by key to produce key-list pairs
to be reduced. However there is often a coarser level of grouping: the partitions. A partition
contains a set of key-list pairs and all the pairs inside a partition are usually processed in
ascending key order by a single reducer process. This way, the mapper process only has to
chose the destination node based on the partition id.

A classical way to chose the partition a key-value pair should go into, is by using a hash
function. For instance, with p being the wanted number of reduce partition, hash(key) mod p
should produce statistically quite well-balanced partitions. p should be greater than the number
of available reducers so that every reducer has several partitions to reduce.

During the shuffle phase, all the mapper processes may send some data to all the reducer
processes. Which is theoretically O(m × n) transfers. This may be a problem if the network
bandwidth is limited. This thesis tries to address this problem in Chapter 6 and Chapter 7.

3.1.2.4 Reduce Phase

Once the shuffle phase is done, the reduce phase can start. The reduce function takes as
argument a pair with a key and a list of values and produces one value as result. For instance,
a typical reduce function consists in adding all the values in the list. Similarly to the mappers,
the reduce tasks are processed into a reducer process. One reducer only processes one partition
at time and all the pairs inside this partition are processed in ascending key order.

Note that the reduce function does not need to be associative2 or commutative3 although
this is usually the case. This allows some optimizations. The commutativity allows to not
sort the list of values and the associativity allows to apply the parallel prefix computation

2An associative function is such that f(f(a, b), c) = f(a, f(b, c)) which is valid for operators such as +, × or
concatenation.

3A commutative function is such that f(a, b) = f(b, a) which is true for some operators such as + or ×.
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void map( St r ing key , S t r ing value ) {
for each word w in value {

emit (w, 1 ) ;
}

}

void reduce ( S t r ing word , L i s t<int> va lues ) {
int r e s u l t = 0 ;
for each v in va lue s {

r e s u l t += v ;
}

emit (word , r e s u l t ) ;
}

Figure 3.2: Code example for a MapReduce word count application.

method [40]. If the reduction function is a hashing function like MD5 [41] or SHA-1 [42], then
no optimization can be performed due to their non-associative and non-commutative nature.

Although this is not mandatory, a MapReduce implementation may allow a state to survive
across the reduce function call. This may allow for some custom optimization or more complex
computations.

3.1.2.5 Helpers

Some questions have been intentionally left unanswered in the previous sections because they
are not essential to the global understanding of MapReduce. There are however some points
to be aware of that extend the expressiveness of MapReduce or improve its performance. They
are usually some places where the user can put some custom code.

It is usually useless to transfer all the intermediate keys during the shuffle phase as they
could usually be partially reduced before the transfer. This, however, can only be done when the
reduction function is associative and commutative. This is usually implemented as a Combiner
that acts like a reducer on the output of the mappers and before they are transfered.

Although the partitions on the reducers side are not mandatory to the MapReduce program-
ming model, they are usually supported and come very handy for some applications. However,
this means that the way to chose the partition number from the keys have to be customizable by
the user. This is usually done by allowing the user to provide his own partition choice function
or class.

Another need for customization implied by the existence of the partition is the sorting order.
This is again usually customizable by providing a comparison function.

3.1.3 Applications Examples

To better understand how data processing with MapReduce works, a few typical examples
follow. Each example emphasis one or several specific features of MapReduce.

3.1.3.1 Word Count

The most common example for a MapReduce application is the word count. Figure 3.2 shows an
example code in C++-like syntax for a word count. The goal is to count the global number of
occurrence of each word in a set of documents. The map function takes for instance, a document
id as key, and the document content as value. It then emits one pair 〈word, 1〉 for every word
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void map( St r ing id , S t r ing content ) {
for each l i n e in content {

i f ( l i n e conta in s the searched word ) {
emit ( id , l i n e ) ;

}
}

}

void reduce ( S t r ing id , L i s t<Str ing> l i n e s ) {
for each l i n e in l i n e s {

emit ( id , l i n e ) ;
}

}

Figure 3.3: Code example for a MapReduce grep application

in the document. The shuffle phase produces pairs 〈word, list(1, 1, 1, ...)〉 that are then reduced
into an integer whose value is the number of occurrence of the given word. The same happens
to every word of the intermediate data.

In this application a Combiner can be of great help to reduce the amount of intermediate
data to be shuffled. There is, indeed, a lot of redundancy in the intermediate data since all the
pairs have a value 1 and a word with a lot of occurrence would be repeated many times. Thus
performing a partial reduction would help a lot.

3.1.3.2 Grep

MapReduce can be used as just a bag-of-tasks processing for a large amount of data. The
application grep is an example like this. The goal of this application is to find a given word or
pattern inside a collection of documents and output the text lines where it was found. Figure 3.3
shows an example code for this. The input of the map function can be a pair composed of a
document id and the content of the document. Then the grep job is done and the map function
emits one line of text for each match. And the reduce function does nothing else than repeating
its input.

3.1.3.3 Sort

MapReduce can also be used to sort data. The map function can take data split in record to
be sorted and produce key-value pairs with the key being the data to be compared during the
actual sort. Then, the MapReduce model guaranty that withing a given partition, the reduce
function is called by increasing order of intermediate keys. Thus, if every intermediate pairs are
placed inside a single partition, they are processed in the right order. The reduce function then
just needs to output the value out of the key-list pairs.

Note that the default partitioning function may not be the right choice and need to be
customized in order to place all the intermediate data inside the same partition.

3.1.3.4 Matrix Multiplication

MapReduce is not restricted to data-intensive applications, it can also be applied to CPU-
intensive applications. A matrix multiplication can be implemented in MapReduce as follow.
The input of the map function is a pair of matrix element from each matrix. Every pair has to
be processed by the map function and it just performs a multiplication and produces a pair with
the key being the position of result element the value contribute to. The trick to make this work
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is to define the function that split the data into key – value pairs such that it produces all the
relevant pairs of matrix elements with their coordinate as key. Finally, the reduce function just
sums the elements for every position of the result matrix. In order to optimize the processing and
reduce the overhead of the MapReduce framework, the multiplication can be made block-wise
instead of element-wise.

3.2 MapReduce Implementations

3.2.1 Common Wanted Properties

Since MapReduce is mainly used for processing large amount of data on a distributed platform,
some properties are wished to hold. Scalability and fault tolerance are of course very important
on a distributed platform, especially when it is built with commodity hardware which is unre-
liable as stated by Google [1]. As a special case of fault-tolerance, it happens that some nodes
in a distributed platform takes an unusually long time to compute without completely failing.
These case should be handled to provide best performance. Reducing the network utilization is
also something wanted since it is probably shared with other applications.

3.2.1.1 Scalability

There are two kind of scalability: horizontal and vertical. The horizontal scalability charac-
terizes the behavior of an application when adding more nodes to the platform while vertical
scalability characterizes the behavior of an application when running on faster nodes. If for a
given amount of data, the completion time decreases when nodes are added, the application
is said to strongly scale. If for a given amount of data per node, the completion time of an
application remains the same, the application is said to weakly scale.

In the context of distributed platforms, horizontal scaling is usually the most important
since it is easier to add more nodes to a platform than to upgrade the existing ones. Moreover,
in a MapReduce application, the map tasks usually performs an operation in constant time,
which makes the map phrase run in linear time with respect to the amount of data. And the
reduce tasks usually performs an operation in time linear to the list size. Thus, what may limit
the scalability is the MapReduce framework used.

The framework must handle the partitioning of the initial data in a scalable way. This can
only be done if the underlying storage system scales as well. The storage system scalability is
also important if the final results is large. The shuffle phase also needs to scale since the trivial
implementation performs O(r×m) transfers, with m being the number of mapper process and
r the number of reducer processes, which does not scale very well when m or r grow.

3.2.1.2 Fault Tolerance

With large scale distributed platforms the occurrence of fault is too large to be ignored. An
usual way to provide some reliability on unreliable hardware is by having one master node that
monitors all the worker nodes. As soon as a worker node has been unavailable for some amount
of time, it is considered crashed and is no longer given any work. Additionally, any lost work has
to be recomputed. What is saved and what has to be recomputed is implementation-dependant.

3.2.1.3 Performance

As usual in distributed computing, performance is very important since it motivates the use
of distributed platforms. Beside classical optimization and scalability discussed earlier, a few
points are important to consider, especially, stragglers resilience and locality.
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Stragglers Resilience As the computing platform become larger, the hardware defect rate
increase. This may result in a crashing node, but may also result in a node really slower than it
should be. A slow node may also be caused by software misconfiguration. Those slow nodes are
called stragglers. If these cases are not handled properly, a distributed MapReduce framework
may suffer from the long trail effect, where most of the time is spent waiting for a few tasks to
terminate.

Locality In order to improve performance in a distributed platform, it is essential to avoid
using the network when possible. Thus if a platform has a tree-like network with 3 levels: nodes,
racks, and cluster, it may be preferable to avoid inter-rack transfers and try to favor no transfer
at all when possible. Exploiting locality to reduce the network usage can be done during both
the map phase and the shuffle phase.

3.2.2 Classical Implementation

There are mostly two widely known MapReduce implementations. First is the Google’s imple-
mentation presented in their paper. The second is Hadoop MapReduce.

3.2.2.1 Google’s MapReduce

Although Google did not release the code of their implementation of MapReduce, they give some
insight in their paper about the way they use it and how they resolved the common problems
and wanted properties. Google’s MapReduce target their usual computing environment at the
time (2004): a large cluster of commodity hardware. This cluster runs the Google File System
that bring availability and reliability on top of unreliable hardware.

Overview Google’s MapReduce took the form of a library that a program can use. Every
job is scheduled by a single Master process. The Master has a state idle, in-progress and
completed for every map and reduce task along with a mapper or reducer process identifier if
the task is not idle. It also keep track of the location of the intermediate data on the nodes
running a mapper process.

Scalability The Google File System has replicas on several nodes that may be used to avoid
some data transfers during the initial partitioning. However, there is apparently nothing that
would help the shuffle phase to scale. The Master is also a single point of failure that has
to keep track of all the tasks running and to be run. This theoretically limits the scalability.
However, this has not been reported as a limitation.

Fault Tolerance The Master process pings every mapper and reducer on a regular basis to
make sure they are still alive. After some time without a response, the Master considers that
process as failed. If a running mapper process has been lost, then all tasks processed by this
process are reset to the idle state, including the tasks that were completed. There is indeed
no guaranty that the generated intermediate data could be read again. Moreover, when a map
task has been completed twice because of the failure of a mapper , then, all the reducers are
notified that they should read the data from the second mapper if they were to read some from
the failed one.

If a running reducer process has been lost, then only the in-progress tasks are reset to the
idle state, because the final results are written on the global file system.

Since a common cause of crash is the user code for map or reduce function failing on a
bad input data, Google’s MapReduce implemented a mechanism to deal with this kind of issue.
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Every mapper and reducer process try to catch fatal errors like segmentation faults or bus errors
and try to inform the Master which data was being processed during the crash. If the same data
is seen to cause more than one crash, it is skipped in order to make progress in the MapReduce
job.

It is apparently considered that the failure of the Master process is unlikely enough to be
handled manually. It is however suggested that a master implementation could periodically
write its state on the disk so that a new Master could be started again.

Furthermore, Google’s MapReduce guaranty that if the map and reduce functions produce a
deterministic output based on their input, then the computed result in case of failure is exactly
the same as it would be without failure. This, however, needs the file system to support atomic
file renaming.

Performance Performance is, of course, important for Google. But since their clusters are
often based on commodity hardware, providing reliability on top of unreliable hardware is of
first importance. Moreover, network bandwidth seems to be a scarce resource.

Stragglers Resilience To cope with the occurrence of stragglers, Google proposed a
strategy that consists in running backup tasks at the end of the job. When there is no more
task to run, the available mappers are used to execute the same tasks than those still running.
That way, if one of the lagging task is due to a node-specific problem, the backup task completes
first and the slow task can be killed. On the opposite, if the task was long because of the nature
of the data, the original task completes first and the backup task can be killed. This way,
straggler nodes have a reduced impact on the overall performance.

Locality In their paper, Dean Jeffrey and Ghemawat Sanjay from Google address locality
for the map phase only. In order to exploit data locality, they suggest processing the data on a
node that has a one replica locally. If this is not possible at the moment, they suggests that it
is processed on another node connected to the same switch, or, in last resort, on a completely
different node.

3.2.2.2 Apache Hadoop

ApacheTM Hadoop R© is a project that develops open-source software for reliable, scalable, dis-
tributed computing. It includes a MapReduce implementation that is usually just referred to
by the name Hadoop. This implementation is the most widely used. Facebook and Yahoo! [102]
have been reported to use it.

Most widely known, implements everything above and much more. Most difference are name
changes. (Like Backup tasks = speculative execution.) However, Google’s implementation is
designed as a library a program can use to automatically distribute a computation, while Hadoop
is designed as a daemon the jobs are submitted.

Since October 2013, a new version of Hadoop MapReduce is available [103]. It is a deep
rework of the MapReduce framework which changes some parts of the architecture. Since this
is quite new at the time of writing this document, it mainly focus on version 1.

Overview Unlike Google’s MapReduce, Hadoop took the form of a framework to program
in, and some daemons that run on each node of a cluster. The user then just submits his job
to the master which is then scheduled. Hadoop implements everything that has been presented
before, and most difference are just a matter of names.
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Hadoop relies on a file system it must know about. The most widely used file system is
Hadoop File System (HDFS). In order to run a HDFS, there must be some agents running on
the nodes, named DataNodes which manage the actual data, and one file system master: the
NameNode which handles the file names and other meta-data.

On top of the file system layer is the real MapReduce management. It is composed of a
single JobTracker which is the master that receives the MapReduce jobs to be executed. And
on every node run one or several TaskTrackers which manage a finite and configurable number
of tasks at the same time.

MapReduce 2.x (orMRv2 ) is a complete overhaul of Hadoop MapReduce. The JobTracker is
split between the resource management and execution flow management. The resource manager
called YARN (for Yet Another Resource Negotiator) allocate resources on demand to the jobs.
While every job has its own ApplicationMaster that manage the application life cycle and that
can be run on any node. This new architecture should scale better and be more general since
the execution workflow of Hadoop is no longer limited to MapReduce.

Scalability HDFS is known to scale to at least 3500 nodes [15]. Although it is quite hard
to find some data about Hadoop MapReduce scalability, it is known [104, 105, 106, 107] that
Hadoop finds its scalability limits around 4000 nodes. The reason for this limit is the centralized
nature of the JobTracker.

Since the task management in MRv2 is done by the ApplicationMaster, which can be run
on any node, it should scale better. The only remaining bottleneck when running several jobs
is the ResourceManager.

Fault Tolerance In order to deal with process or node crash, Hadoop MapReduce uses
the overall same technique as Google’s implementation [108]. The TaskTrackers communicate
constantly with the JobTracker which responds with some commands to be run. If one of the
TaskTrackers take too long to check for some commands to execute, it is considered crashed.
The policy for restarting the map and reduce tasks are the same as the Google’s implementation.

Performance

Stragglers resilience Similarly to Google’s MapReduce, Hadoop starts to backup tasks
when it detects that some tasks are slower than expected. This is called speculative execution.
However, where Google’s MapReduce only run this mechanism at the end of the job, Hadoop
has a metric for evaluating the progress of a task.

The progress of map tasks are measured with the percentage of data that has been read.
The progress of reduce tasks is measured with by dividing it in 3 steps: copy, sort, reduce, each
accounting for one third. And progress through each step is again measured by the amount of
data processed. Hadoop decides a task is straggling if it is 20% slower than the average of its
category and has run for more than one minute.

However, this metric only works fine if the platform is homogeneous and every task has
roughly the same size. Moreover, it assumes that the amount of data that is read is propor-
tional to the task progress. Deciding that the 3 steps of a reduce task takes one third of the
progress is also arbitrary. Addressing these issues, the Longest Approximation Time to End
(LATE) [43] scheduler has been introduced. It basically estimates the remaining time to com-
plete a task by doing a linear extrapolation over the time of the amount of data processed.
It then speculatively execute those that are supposed to finish last. Another approach called
MonTool [44] monitors the system calls patterns to detect the stragglers and schedule the spec-
ulative execution. SkewTune [45] and Ussop [46] continuously repartition the unprocessed input
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data in a way similar to work stealing. That way, the straggler nodes gets less and less data
to process until the progress of the stragglers nodes and the work stolen from them meet. The
History-based Auto-Tuning (HAT) [47] uses measured historical informations to replaces the
arbitrary constants of the default method to detect straggler nodes.

Locality The default Hadoop scheduler uses the same techniques for locality optimizations
as Google’s MapReduce presented earlier.

Some studies [35] suggests that adding a small delay before scheduling a task on another
node may improve the locality and the performance. The farther the node to move the task on,
the longer the delay.

During the shuffle phase, exploiting locality can be done running a reducer process on the
node that already has the largest volume of the data of the partition [46]. This can also be
done by having some statistics about the distribution of the intermediate keys with respect to
the input data [36, 48]. That way, the tasks can be scheduled so that most data that belong to
the same partition end on the same node on which the reducer of this partition can be run.

There are many variations and optimizations of Hadoop for specific use-cases. The following
paragraphs presents some of the most common.

Hadoop On Demand Hadoop on demand is a system built on top of Hadoop that allows to
allocate some nodes in a large cluster and starts various Hadoop daemons (especially MapReduce
and HDFS daemons) with the right configuration on the allocated nodes. For this, it uses the
resource manager Torque [28] for the cluster resource management. All the instances of Hadoop
are independent and may even be different versions.

The number of nodes to allocate is computed by the system based on the kind of virtual
machine instance to start on the cloud and on the number of workers required by the user.

Elastic MapReduce Elastic MapReduce [100] is similar to Hadoop On Demand in the way
it dynamically allocates some nodes in the cloud to deploy a Hadoop cluster. The deployed
Hadoop cluster uses the usual HDFS storage system but can also use S3 or most of the storage
systems available on Amazon. Just like Hadoop On Demand, it’s up to the user to tell the
number of nodes to be allocated.

HDInsight Microsoft also allows to allocate a cluster for Hadoop in its cloud Azure, this
service is known as HDInsight [109]. The Hadoop clusters can be deployed with or without
HDFS. Deploying a Hadoop cluster without HDFS is said to be much faster. Instead of HDFS,
users are encouraged to use the Azure Blob storage that is persistent among the clusters creation.

3.2.2.3 Twister

Overview Twister [49] is another MapReduce implementation. It is based on a publish –
subscribe infrastructure and data transfers of type scatter and broadcast. Its main features are
about the support for iterative MapReduce which is discussed later in Section 3.3. However,
despite being relatively known, this is not a de facto standard and has thus not been studied
as extensively as Hadoop.

Scalability It relies on NaradaBrokering as communication layer, which is said to scale well.
The experiments show that having a tree broker network reduces the time to broadcast some
data to all nodes by a significant amount. A factor 4 for 4 leaf brokers with message size of
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20MB where all the brokers serve a total of 624 Twister daemons. Twister has also shown an
efficiency of 79% on 1632 CPU cores for a job that performs an All-pairs computation.

Fault Tolerance Since Twister is designed for iterative MapReduce it has been decided that
the checkpoint granularity is one iteration and not a task unlike Hadoop and Google’s MapRe-
duce. This simplifies the implementation and hopefully, makes it more efficient. In case of
failure, Twister just restarts the map and reduce tasks and schedules them based on data local-
ity. If a data has been lost because of node failure, the job just fails.

Performance Twister does not seem to address the stragglers resilience problem at all. How-
ever, it seems to exploit locality in its scheduler by trying to process the data close to where
one replica lives.

3.2.3 Extensions for Non-Commodity Hardware

Since Google’s paper came out, the MapReduce paradigm has been adapted to many platforms.
Notably, it can run on GPU, on fast-network with MPI or RDMA, or on multicore nodes.

3.2.3.1 MapReduce for Multi-Core

Phoenix [50] (and more recently Phoenix++ [51]) is an implementation of MapReduce designed
to run on multi-core and multiprocessor systems. It is based on Google’s MapReduce API and
it uses threads to spawn its processes. While the distributed implementation of MapReduce
has to take care of locality, it is of less importance for a shared memory implementation like
Phoenix. This implementation demonstrates that by applying careful optimizations on every
step, it is possible to achieve a low overhead on a multi-core implementation of MapReduce.
Phoenix has also been run and optimized for NUMA architectures, thus exploiting the memory
affinity. Phoenix also handles fault tolerance at the processor level and handles both transient
fault and permanent fault. Phoenix++ globally just improves the performance of Phoenix and
makes it more modular.

3.2.3.2 MapReduce for Fast Network

Not all the platforms MapReduce runs on are built around commodity network. In particu-
lar, some are built around fast networks like InfiniBand. Those fast networks not only allow a
throughput of tens of Gbps and a low latency, they also usually offer RDMA4. The idea of lever-
aging the power of this feature to perform an in-memory merge has been studied [52] through
the design of Hadoop-A. Its network-levitated algorithm that performs a merge operation with-
out accessing the disk and design the shuffle + reduce as a single pipeline for the reduce tasks.
The experiments shows that these techniques double the processing throughput of Hadoop and
reduce the CPU utilization by 36% thanks to the RDMA mechanism that bypass the CPUs on
both ends for the transfers and for the serialization / deserialization.

Another approach consists in focusing on a Remote Procedure Call (RPC) approach instead
of the data transfers and implements an RPC interface based on RDMA [53]. This paper first
redesigns the data communications and the buffer management of Hadoop as to eliminate the
bottlenecks that would only appear on fast network. It then proposes a design of RPC over
InfiniBand for Hadoop. The modified version achieves a latency reduction of 42% – 50% on both

4Remote Direct Memory Access
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Ethernet 10G and InfiniBand QDR (32 Gbps with IPoIB5 driver) and a throughput improved
by 82% on Ethernet 10G and by 64% on InfiniBand.

The previous work have only focused on using fast networks inside MapReduce, while all
the input data have to be read from a distributed file system and all the results have to be
written there as well. To circumvent this bottleneck, some work [54] tried using InfiniBand on
HDFS for the write operations. For this a hybrid design RDMA / socket is implemented. This
solution provide a 30% gain in communication time and 15% with respect to the usage of IPoIB.

3.2.3.3 MapReduce on GPU Platforms

GPUs are around 10 times faster than CPUs and are highly parallel architectures. They are thus
naturally suited to run MapReduce. Mars [55] is the reference implementation of MapReduce
on GPU. It supports NVIDIA and AMD/ATI graphic chips. Among its particularities, it can be
noted that Mars allow the user to not run some phases when they are not used. For instance,
the sorting phase can be suppressed if the ordering is not important, and the reduce phase
can be completely omitted instead of running a no-operation function on the data. Given the
architecture of GPUs, Mars runs a tree-like reduction in order to use the intrinsic parallelism of
the GPU during the reduce phase. This constraint the reduce function to be associative. Mars
has also been integrated into Hadoop in order to make it use efficiently the nodes with GPU
and shows a speedup factor up to 2.8.

3.2.4 Extension to Non-Standard Storage

3.2.4.1 BitDew-MapReduce

BitDew [56] is a data management system that allows to aggregate the storage of several plat-
forms and keep track of the location of the data and associate some attributes to them. Its fault
tolerance features make it especially suitable for Desktop Grids. A MapReduce programming
model has been implemented on top of BitDew [57]. The key features of this implementation
are that it is massive fault tolerance, replica management, barrier-free execution, latency-hiding
and result checking.

Basically, almost everything was pre-existing in BitDew to make an easy implementation of
MapReduce. Especially, BitDew always keep a copy of the data in a master node, and it allows
to trigger some computation on the nodes upon data arrival. It however loosen the model of
MapReduce computation by only allowing associative and commutative reduction function and
avoiding the creation of partitions of the intermediate data. This allows to perform the reduction
as soon as some data are available. BitDew-MapReduce actually send the intermediate results
with the same key to a node as soon as it has two of them. This means that the reduction is
performed in a tree-like computation.

3.2.4.2 BlobSeer-Hadoop

BlobSeer [16] is a storage system that has been optimized to provide best performance under
heavy concurrency. It especially provide good performance under heavy concurrency, both for
read and write operations. This has been exploited in a modified version of Hadoop that replaces
HDFS with BlobSeer [58]. BlobSeer shows better raw performance and scalability than HDFS
for read and write operations. When compared to a real data intensive MapReduce job like
Grep, the modified version perform better by approximately 38%.

5IP over InfiniBand
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3.3 MapReduce Model Variations

3.3.1 Iterative MapReduce

Some algorithms, to run in on top of a MapReduce programming model, would need several
iterations of the Map and Reduce phases. This is true for instance for the K-Means or PageRank
algorithms.

Hadoop supports this by allowing the user to write a main function that can submit as many
MapReduce jobs as needed. There is, however, no optimization at all. Using this approach
means that one iteration must be fully completed before the next one can start. To compute
the halting condition during the MapReduce job, Hadoop offers Counters. However, if this is
not sufficient, another full MapReduce job may be necessary to compute the condition.

3.3.1.1 Twister

Twister [49] is a MapReduce implementation designed to be iterative. The way it handles
classical MapReduce jobs has already been discussed earlier. It optimizes the iterative execution
by identifying the static and dynamic data. The static data are needed for the computation but
are not modified. They thus do not need to be updated, while the dynamic data is modified
at each iteration. And facts suggests that most iterative MapReduce jobs show an important
amount of static data. Like K-Means would have the (possibly large) set of points as static
data and would only produce the clusters parameters at each iteration.

Since it is designed to handle iterative jobs it only provides fault tolerance at the iteration
level and not at the task level. The static data also remains in the nodes’ memory thus avoiding
to re-transfer them.

3.3.1.2 HaLoop

HaLoop [59] is a modified version of Hadoop to natively support iterative jobs. In addition to
providing a programming model that handles iterative MapReduce natively, HaLoop provides a
loop-aware task-scheduling, caching for loop-invariant data, caching for fixed-point evaluation.

HaLoop does not provide a general way for deciding whether a new iteration should be
started. Instead, it provides a way to make either a predefined number of iteration or to search
for a fixed-point in the data. For the later case, HaLoop provides an inter-loop caching and
automatically calls a user-defined function to compute a distance between the previous and
current iteration. For the task scheduling, HaLoop tries to place the tasks that uses the same
data on the same nodes, even if the tasks belong to distinct iterations.

On average, HaLoop reduces the job execution time by a factor 1.85% compared to Hadoop
and the amount of data transfered during the shuffle phase is only 4% of what it was.

3.3.1.3 iMapReduce

iMapReduce [60] is very similar to HaLoop. The main difference being that HaLoop does not
identify explicitly the static data from the dynamic data and relies on its scheduler and caching
techniques to avoid moving the data unnecessarily. iMapReduce instead uses long running tasks
whose lifetime is that of the data they are associated to instead of dying just after the processing
is complete. Those persistent tasks sleep when their data is processed and are reactivated when
new data arrives. The loop termination is handled the same way as HaLoop does. iMapReduce
shows a speedup of a to nearly 5 times when compared to the unmodified Hadoop on a Single
Source Shortest Path [61] algorithm.
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3.3.1.4 iHadoop

iHadoop [62], as its name suggest, is another modification of Hadoop to support iterative
MapReduce. The main contributions of this implementation compared to the previous ones
is that it allows asynchronous execution of the loops, and of the iterating condition.

The overlapping of the iterations means that the tasks for the next iteration can start before
all the tasks of the previous ones are terminated. In addition to this, it tries to schedule on
the same node the tasks that shows a producer-consumer pattern to avoid transferring a large
amount of data. The asynchronous computation of the continuation condition imply that the
compute time of the next iteration may be wasted since it already started.

iHadoop has been measured to perform 25% better than the unmodified Hadoop on iterative
jobs. It has also been integrated with HaLoop and shows 35% improvement over Hadoop.

3.3.2 Stream Processing

3.3.2.1 MapReduce Online

The MapReduce model is designed to be used in a batch fashion. Some work extended it to
process streams of data. MapReduce Online [63] is an attempt in this direction. The software
is called MapReduce Online Prototype and is based on Hadoop. It does this by pipelining the
data between the tasksMap and Reduce. This allows more parallelism, but makes the additional
assumptions that the reduction function is associative and commutative. It also prevents some
jobs to run properly since there are no longer partitions where the data are sorted by key.
Another limitation is that it cannot pipe the data between the output of a job and the input
of the next one. This is because the right final result cannot be computed before all the reduce
tasks are done.

On the technical side, this pipeline is implemented by having the mapper send the data
to the right reducer as soon as they are produced, meaning they opened a socket to every
running reducer . This also means that, in the naïve implementation, no combiner (mapper side
reduction) can be performed. However, the intermediate data is still written to disk on the
mapper side to ensure fault tolerance of the reduce tasks. In order to scale better, not all live
mappers open a socket to all live reducers. Some transfers will still happen in a batch fashion.
On the reducer side, the reduction happen on-the-fly.

3.3.2.2 M3

MapReduce Online is a first step toward continuous MapReduce jobs that process a real stream
of data. However, having HDFS as data source forces it to process a finite set of data. This
limitation is addressed by M3 [64] (Main-Memory MapReduce) which aims at providing a real
stream processing on MapReduce.

Since M3 is oriented toward stream processing, it removes all the occurrences of storage in a
file system in the MapReduce workflow. Not only the input is a stream of data, but the output
is also kept in memory, as well as the intermediate data. In order to ensure fault tolerance
without a distributed file system, the input data are replicated in the memory of several nodes
and is kept alive as soon as they are not guaranteed to be processed up to the reduce tasks.
The intermediate data is also kept in memory of the mapper that produced them as long as the
reducer processing those data does not ensure the data is successfully processed.

All the processing in M3 has to be incremental. This means that the reduction function
performs addition, deletion and update on the current final result. While this broaden the
scope of applications that MapReduce applicable to on some aspects, this also restricts its
applicability to the reduction functions that are able to update a partial result.
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Jobs in M3 have a few interesting properties. The load balancing is not based on the amount
of data to process, but rather on the rate at which they arrive. Instead of processing the data
in a new job each time new data come as it would be in a classical MapReduce, there is a single
running job that process all the data already there and all the future data. And finally, M3 is
able to pipeline several jobs.

3.3.3 MapReduce on Desktop Grids

In addition to BitDew-MapReduce presented earlier which targets desktop grids, MOON [65]
took another approach. First, as a modification of Hadoop it does not break the model of
MapReduce and allows the reduce operations to be non-associative and non-commutative and
to rely on the partition sorting. However, like BitDew-MapReduce, it also assumes that a subset
of the nodes are stable to simplify the data loss prevention.

To tune the data management, MOON classifies the data in two categories, those that
cannot be lost (mostly the input data) and those that can be recomputed and place those data
on the right nodes in HDFS. Moreover, given the unstability of the nodes in a desktop grid
the replication factor has to be adapted. Contrary to MapReduce implementations targeting
clusters, here the intermediate data also have to be saved on the distributed file system since it
can rapidly disappear.

The high unavailability rate of such a platform makes the default stragglers resilience and
failure detection of Hadoop not adapted to deal with those. MOON designed a system where a
task can be in state suspended when the node is believed to be temporarily unavailable, or can
be restarted if the node is believed to not return soon. Of course, it also takes advantage of the
stable nodes to run a few tasks, especially the last ones.

3.4 Language Approaches
Despite its apparent simplicity, writing MapReduce programs can be fastidious and error-prone.
Especially when the dataset is very large and each test-run can take several hours. That’s why
several other tools exists, only three of them are presented here. All those are related to Hadoop.

3.4.1 Pig

Pig [66], is a high level language designed to simplify the writing of MapReduce jobs. Its aim
is to provide a language less imperative than Java or C++, but less declarative than SQL. The
language of Pig is called Pig Latin and allows a small number of operators to deal with data.

The language allows to load and parse data into a structured form given by the user to
handle a set of tuples afterwards. There are then several ways of processing the data. They
can be for instance transformed with a construct that generates some new data from every
item of the input data or filtered on some criteria. There are also some SQL-like operators like
GROUP BY, JOIN and UNION working like their SQL counterpart, and more. The functions to be
applied on the data by the operators are not restricted to a predefined set, they can as well be
user-defined.

For instance the word count job could be written as presented in Figure 3.4. The first line
loads the file and parse them line by line into a set of array of characters named inputlines.
These lines are then split into words with the FOREACH construct. The GROUP operator groups
the set of words into a set of pairs containing the grouping key and the set of values (here
several times the same word). The second FOREACH counts the number of word in each group
and returns a set of pairs containing the number of words and the word. And finally, these pairs
are written to the output file.
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i n pu t l i n e s = LOAD ’/path/to/file’ AS ( l i n e : chararray ) ;
words = FOREACH i n pu t l i n e s GENERATE FLATTEN(TOKENIZE( l i n e ) ) AS word ;
wordgroups = GROUP words BY word ;
wordcount = FOREACH wordgroups GENERATE COUNT( words ) AS count , group AS word ;
STORE wordcount INTO ’/path/to/newfile’ ;

Figure 3.4: Word count expressed in Pig Latin.

Pig then compiles this file into a set of Hadoop MapReduce jobs and coordinates their
execution. This tool allows to write complex workflow of MapReduce jobs in a few lines of code
without the burden of the pure declarative style of SQL. Pig handles the creation of the jobs
and can thus perform some optimizations compared to a straightforward translation of what
has been described.

3.4.2 Hive

Hive [67] basic language is HiveQL. It is really just an extension to the standard SQL language.
The queries operate on tables similar to usual relational tables, stored in HDFS. However, in
addition to the pure declarative syntax, some imperative code can be plugged into the queries.
Those queries are then transformed into Hadoop MapReduce jobs.

Since the queries in HiveQL operate on a table, the data either has to be loaded in a table,
or has to be converted on the fly into a virtual table. But this allows more freedom to Hive to
build the execution plan of the queries.

3.5 Conclusion
MapReduce is a nice programming model designed for parallel and distributed computing.
Being adapted and tuned for several platforms from the Desktop Grids to GPU only shows
the versatility of the model. Some work has also been conducted to expand the expressivity
of MapReduce, notably by allowing iterative jobs and by allowing to express MapReduce jobs
with a higher level syntax.

However, there are some optimization approaches that have not been explored yet. Espe-
cially, taking a cost-model approach to try to optimize a MapReduce job as a whole. The shuffle
phase is also one of the bottleneck of the MapReduce jobs but have been largely left out and
deserve some attention. The next chapters lay the basis to study these questions.
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Chapter 4

Designing MapReduce with
Components

The main contributions of this thesis regards performance and scheduling. In order to implement
and test the algorithms, a MapReduce framework is needed. Several of them exist as presented
in Chapter 3. However, most of them are large software that are not easy to modify and tune.
Especially Hadoop, the reference implementation of MapReduce account for almost 300, 000
lines of Java code and, for instance, does not allow easy modifications to control the time at
which each transfer of the shuffle phase occurs.

Another MapReduce framework was needed. The work conducted for this thesis happened
in the context of the ANR project MapReduce for which a MapReduce framework has been
developed. This framework is named HoMR (HOme-made MapReduce) and is based on software
components approach and rely on two components models: L2C and HLCM.

This chapter is divided in five sections. Section 4.1 describes in more details what is the
problem. Section 4.2 introduces components and gives more details about the component models
L2C and HLCM that are used hereafter. The way those models are used to implement a
MapReduce framework is presented in Section 4.3. Section 4.4 discusses the limitations of this
approach and Section 4.5 concludes this chapter.

4.1 Problem Description
What makes apart a MapReduce framework from a simple program performing its computation
in a map-reduce structure is the reusability of most of the code without much effort. In addition
to that, reducing the effort to write a new MapReduce application by reusing some code is
really welcome, as much as making the framework easy to port to another platform. Also the
framework being efficient is not only desirable, it may be mandatory to some applications.

Being adaptable to other needs by making most of the code reusable is a key property of a
framework. In fact, Google’s MapReduce [1] can be used as a library, and Hadoop MapReduce
can be used as a daemon to which the jobs are submitted. Actually all the machinery that
manages the tasks, performs the intermediate data partitioning and the shuffle will rarely need
to be modified. Therefore, a good MapReduce framework should allow the user to provide a
custom map and reduce functions as well as allowing to customize the way the data are split
into chunks, how to read and write the data, and so on. In addition to that, it is desirable that
the MapReduce framework can be easily adapted to several platforms. Thus adding the need
for easy modifications of some parts of the code whose performance is platform-dependant.

Regarding the work of this thesis, some unusual parts of a framework had to be modified,
especially a transfer scheduler had to be added and the instantaneous throughput of the data
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during the shuffle phase had to be regulated. Therefore not only the usual parts have to be
easily modifiable, but all the parts of the application has to be easy to modify. No known
implementation of MapReduce allows to do this. This need of adaptability to others concerns
implies that some clear interfaces have to be defined at every level of the application.

Having everything configurable is only worth it if the pieces of code can be reused. Not every
MapReduce application is completely different from the others. For instance, it is quite common
that the reduce function just performs an addition or a concatenation and most applications
read their data from HDFS. The framework should allow to reuse them.

None of the above-mentioned flexibility should be done at the expense of efficiency. Perfor-
mance is, indeed sometime, a strong requirement for some applications that needs some jobs to
be finished by a given deadline. Performance can also be understood as minimizing the energy
consumption.

4.2 Component Models

A way to meet the aforementioned requirement is through the use of software components,
which, given their property of modularity make it straightforward to adapt an application to
similar needs or to another platform and to reuse code. Efficiency is achievable with component
models that allow some optimizations to be made at the component level.

ps aux | grep foo

Figure 4.1: A shell command that list the process and only keep the lines containing the word
foo.

A rough example to give the intuition of what are components is the shell pipeline as show
in Figure 4.1. In the Unix command line interface every command performs a specific task.
Those commands can then be combined with a pipe symbol | meaning that the standard output
of the command on the left of the pipe is connected to the standard input of the command on
the right. For this system to work properly, several mechanisms need to be defined outside of
the commands. A manager software (the shell) needs to create the pipes by themselves and to
connect the commands that needs to be connected. But also, the protocol for communicating
among the processes has to be defined system-wide. The notion of standard streams is defined
by the Unix standard, and it is common practice to make commands that produce output and
expect input in a line-wise text format.

A component model [17] is a definition of what are software components and how they
interact with each others. Components can be seen as an extension the notion of classes in object
oriented models. Components are not restricted to expose one interface, they may expose several
of them under the notion of port for other components to use. But, in addition to providing
interfaces, components can also require interfaces, thus making the component only depend on
an interface instead of depending directly on a specific implementation of a feature. Those well-
defined interfaces make the component-based software very modular. This modularity makes
very straightforward to achieve the aforementioned requirement of adaptability to similar needs
and platforms as well as code reusability.

One of the key principle of the component approach is the separation of concerns. This
principle dictates that a given aspect of the global program should not be handled by several
components, just like a shell command only performs one task. This emphasizes the need
for a clear separation between the components and a well-defined way to communicate. The
decoupling between the main code addressing a given concern and the features it uses is also
made necessary by this principle. In the remaining of this thesis, two component models are



Chapter 4. Designing MapReduce with Components 39

used, a low-level component models L2C [18] and a higher-level component model HLCM [19]
based on L2C.

4.2.1 L2C

L2C is a component model and its implementation. The model it defines is low level and thus
only deals with primitive components and primitive connections. The only implemented prim-
itive connections are a C++ use – provide, a CORBA use – provide and MPI communicators.
A use – provide connection is defined as a component exposing an interface, and another com-
ponent using this interface. In the Object-Oriented world, this is the equivalence of an object
implementing an interface when another object uses this interface. The implementation of L2C
is based on C++ and every component and every interface is a class.

A B

Figure 4.2: Simple connection between two components.

A

B C

D E

Figure 4.3: Non-trivial assembly between 5 components.

As stated before, the components only communicate through clearly defined interfaces
named port. There are two classical kinds of ports as defined by UML [68]. The use ports
and provide ports. A use port can be connected only to provide ports, and vice-versa. But
this is not the only restriction. Every port has a type, and only ports with matching types can
be connected. Just like the object oriented programming only allows an instance of a subclass
of a type T to be used as an object of type T. The simplest use – provide relation is shown
in Figure 4.2 which uses the UML notation where the shape represent a use port and the

shape represents a provide port. In this figure, the component A can then perform some
method call on those that are exposed by the component B. Figure 4.3 illustrates the case where
a component can export several use and provide ports.

Listing 4.1 shows a concrete example, a simple component Server_HW that provides an in-
terface Hello and Listing 4.2 a component Client_HW that uses this interface. Providing an in-
terface is done by implementing a C++ abstract class and then using the macro L_CPP_PROVIDE
to declare that the class implements the interface. Another syntax exists that allows to provide
several ports with interfaces that would conflict, but it has not been useful in this work. Also
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class Server_HW :
virtual public Hel lo {

public :
virtual void g r e e t ( s t r i n g name) {

cout << "[Server_HW]␣hello␣" << name << "!" << endl ;
}

} ;

LCMP(Server_HW)
L_CPP_PROVIDE( Hel lo , g r e e t e r ) ;

LEND

Listing 4.1: Code of the server Hello component that provides an interface Hello through a
greet port.

class Client_HW {
public :

He l l o ∗ g r e e t s e r v i c e ;

Client_HW ( ) : g r e e t s e r v i c e ( 0 )
{}

} ;

LCMP(Client_HW)
L_CPP_USE( Hel lo , g r e e t s e r v i c e ) ;

LEND

Listing 4.2: Code of the client Hello component that uses an interface Hello through a
greetservice port.

in Listing 4.2, the component Client_HW declares that it has a use port by using the macro
L_CPP_USE that will make the framework set the attribute greetingservice of the instance to
a pointer to the instance of the Server_HW component. L2C can also easily manage use – provide
connections through CORBA by using two macros L_CORBA_USE and L_CORBA_PROVIDE.

C

A B

Figure 4.4: Example of assembly with a several provide for a single use.

An extension of the simple connection is when a single use port can be connected to several
provide ports as shown on Figure 4.4. This is usually implemented by having a list of component
references on the user side. This may be useful when a lot of identical components are created
and have to be treated the same way. The user component then just iterates over the list of
references to call the same function. The multiple use is implemented in L2C using the same
macro L_CORBA_USE but giving it as second argument a method name that is called once per
connected component with the corresponding pointer as argument. A typical implementation
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class Client_HW {
public :

virtual void g r e e t s e r v i c e ( He l lo ∗ s e r v i c e ) {
m_greetserv ice . push_back ( s e r v i c e ) ;

}

Client_HW ( ) : m_greetserv ice ( )
{}

private :
s td : : vector<Hel lo ∗> m_greetserv ice ;

} ;

LCMP(Client_HW)
L_CPP_USE( Hel lo , g r e e t s e r v i c e ) ;

LEND

Figure 4.5: Example code of a component using several provide ports.

saves the pointers in a list. Figure 4.5 shows another client component that could be used with
several instances of the component Server in Listing 4.1.

<lad xmlns="http://avalon.inria.fr/llcmcpp3">
<proce s s>

<!−− i t i s s t a r t e d through i t s " go " por t ( o f type : : l l c m c p p : : G o ) −−>
<start_property in s t anc e="client" property="go"/>
<ins tance id="serv1" type="Server_HW"/>
<ins tance id="serv2" type="Server_HW"/>
<ins tance id="client" type="Client_HW">

<property id="greetservice">
<cppre f instance="serv1" property="greeter"/>
<cppre f instance="serv2" property="greeter"/>

</property>
</in s tance>

</proce s s>
</lad>

Figure 4.6: Example L2C assembly description in LAD for the hello world example with multiple
use.

In L2C, the assembly of components has to be extensively described in a XML dialect called
LAD. This file list all the components and connections between the components. Figure 4.6
shows the assembly of the example code above with multiple use. There is, indeed, in L2C no
notion of component that would be composed of several smaller components. There is no way
of expressing repetition either. These issues are addressed by HLCM.

In addition to being given references to other components, the components in L2C can
be configured with a static value written in the assembly file. This can allow some global
configuration known during the deployment of the application. Listing 4.3 shows how this can
be used with a component that just print a given string when the method hello is called.

4.2.2 HLCM

HLCM (High-Level Component Model) [19], as its name suggest, allows to express higher level
concepts. It uses L2C as a basic level of components and allows to define composite components
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class HelloWorldProp {
public :

void h e l l o ( ) {
cout << "[HelloWorldProp]␣" << v << endl ;

}

s t r i n g v ;
} ;

LCMP( HelloWorld )
L_PROPERTY( s t r i ng , v ) ;

LEND

Listing 4.3: Example L2C assembly description in LAD for the hello world example withmultiple
use.

and composite connectors. Its assembly language allows to express some patterns in the com-
ponent instantiation with the help of looping constructions and genericity similar to the C++
templates.

A

B C

Figure 4.7: Composite component made from 2 components using the use – provide connection
semantics.

In HLCM, the definition of a component is hierarchical. A component is either a primitive
component implemented in L2C, or a composite that contains several components. This allows
to address a higher level concern without worrying about some details of implementation. Fig-
ure 4.7 shows an example of a component A made by assembling two components B and C. The
exposed ports of the composite are, here, the unconnected ports of the subcomponents.

component St r i ngProc e s s i ng
exposes {

in : InputSt r ing ;
out : OutputString ;

}

Listing 4.4: Example of component declaration in HLA.

The language used to describe the components in the HLCM model is named HLA (High-
Level Assembly). In HLA, every component, primitive or composite, have an interface expressed
as in Listing 4.4 which declares that the component StringProcessing that exposes two con-
nections named in and out with the interface InputString and OutputString respectively. It
can be seen that a HLA component only declares its available connections with their names and
types. A composite A implementing that component is shown in Listing 4.5. The subcompo-
nents are declared into the components section. Here, two subcomponents are declared with the
names compB and compC which are instances of component B and C. The section connections
connects the subcomponents together using the merge function. And finally, the exposed con-
nections of the component this composite implements are declared in the exposes section. The
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composite A
implements St r i ngProc e s s i ng {
components :

compB : B;
compC : C;

connections :
merge(compB . out , compC . in ) ;

exposes :
in = compB . in ;
out = compC . out ;

}

Listing 4.5: Example of composite definition in HLA.

//#implements=GoProxy
LCMP(GoProxy )

L_CPP_PROVIDE(Go, go ) ;
L_CPP_USE(Go, proxy f i ed ) ;

LEND

Listing 4.6: Example of l2c file used by HLCM.

names must match those declared in the component. Alternatively, a component in HLCM can
be implemented directly by a primitive component in L2C. For this a l2c file must be provided,
Listing 4.6 shows an example of it. This file is actually both valid C++ code using the macros
provided by L2C and also part of the HLA language. It is thus a common practice to include
the l2c file after the definition of the class implementing a component. The main difference
with the pure L2C component declaration is the presence of a //#implements line that makes
the link between the C++ class and the HLA component name.

CA B

Figure 4.8: Example of simple connection between two components A and B using a connector
C.

The links between components supported by a use and provide ports in L2C are generalized
in an abstract way by HLCM through the notion of connectors. With connectors, there are
no more ports on the component side, they are replaced by connections which, in the HLCM
terminology may be open if at least one role can still be fulfilled, or closed. With the connectors,
there is no use – provide port duality. The connectors can have an arbitrary number of roles,
which, in HLCM have an interface and a protocol. Figure 4.8 shows an example of 2 components
connected with a connector with 2 roles which may have a different interface and a different
protocol of communication.

Each role in a connector has a cardinality. It means that several connections of the com-
ponents can be connected to the same role of a connector. This provides an alternative model
for the multiple use stated earlier. Figure 4.9 shows an example equivalent to the multiple use
using a connector.

Connectors are not forced to be simple primitive connectors implemented directly in the
component framework. Like the components can be made by assembling other components,
connectors can be made from components and connectors, thus allowing more complex behaviors
to happen inside the connectors. For instance a connector could have two roles, one for a C++
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D A

B

C

Figure 4.9: Example of a connection between 3 components equivalent to the multiple use.

use and one for a C++ provide, and internally convert those method calls to CORBA in order
to work over a network connection. A connector could also implement a consensus algorithm
through a single role with a cardinality 1..n and its implementation would apply a consensus
algorithm. Conversely, a connector could implement a mandatory access control to allow (or
not) a method call to succeed, thus exposing a lock role in addition to a use and provide pair
of roles as before. Figure 4.10 shows both cases.

component GoProxyArrays
exposes {

go_provides : MultiProvide<Go>;
go_uses : MultiUse<Go>;

}

composite GoProxyArraysImpl
implements GoProxyArrays
{
components :

goproxy1 : [ each ( i | [ 1 . . 1 0 ] ) { GoProxy } ] ;
goproxy2 : [ each ( i | [ 1 . . 1 0 ] ) { GoProxy } ] ;

connections :
each ( i | [ 1 . . 1 0 ] ) {

merge( goproxy1 [ i ] . go_use , goproxy2 [ i ] . go_provide ) ;
}

exposes :
go_provides = merge({

part_provider = [ each ( i | [ 1 . . 1 0 ] ) {
goproxy1 [ i ] . go_provide . p rov ide r

} ]
} ) ;
go_uses = merge({

part_provider = [ each ( i | [ 1 . . 1 0 ] ) {
goproxy2 [ i ] . go_use . user

} ]
} ) ;

}

Listing 4.7: Example of arrays of component usage in HLA.

HLCM also allow to express arrays of components and arrays of exposed connections.
Listing 4.7 shows an example of a component GoProxyArrays exposing two connections
named go_uses and go_provides. This component is implemented by the composite
GoProxyArraysImpl which in composed of two arrays of components goproxy1 and goproxy2
made of 10 instances of the component GoProxy. The component GoProxy is assumed to expose
two connections named go_use and go_provide. Those arrays are connected together one to
one using the each construct. In the exposes section, the open connections of the compo-
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Consensus

A B C

ConsensusImpl

(a) 3 components connected through a given implementa-
tion of a consensus connector.

Control
X

Y

Z

lock

provide use

A

Sherif

C

(b) 2 components A and C connected through an im-
plementation of a Control connector under the super-
vision of the Sherif component.

Figure 4.10: Example of a connector with more or less than 2 roles.
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nents are merged to build the go_provides and go_uses connections. However, these arrays
of components are more useful when used with the genericity.

composite GoProxyArraysImplGen<In t eg e r len>
implements GoProxyArrays
{
components :

goproxy1 : [ each ( i | [ 1 . . l en ] ) { GoProxy } ] ;
goproxy2 : [ each ( i | [ 1 . . l en ] ) { GoProxy } ] ;

connections :
each ( i | [ 1 . . l en ] ) {

merge( goproxy1 [ i ] . go_use , goproxy2 [ i ] . go_provide ) ;
}

exposes :
go_provides = merge({

part_provider = [ each ( i | [ 1 . . l en ] ) {
goproxy1 [ i ] . go_provide . p rov ide r

} ]
} ) ;
go_uses = merge({

part_provider = [ each ( i | [ 1 . . l en ] ) {
goproxy2 [ i ] . go_use . user

} ]
} ) ;

}

Listing 4.8: Example of arrays of component usage in HLA with length as arugment.

class GoProxyId : virtual public GoId {
public :

GoProxyId ( ) : t h i s i d (−1 ) , p roxy f i ed ( (Go ∗)−1 )
{}
virtual int32_t get_id ( ) const {

return t h i s i d ;
}
virtual void go ( ) {

proxyf i ed−>go ( ) ;
}
int32_t t h i s i d ;
Go ∗ proxy f i ed ;

} ;
#include "goproxyid.l2c"

Listing 4.9: L2C component declaration with a property.

HLCM components can have arguments like the C++ templates. Those arguments can
be values with one the basic types of HLA (integers, strings, ...), or the types themselves, or
other components or connectors. When the argument is a value, it can be used by an HLA
composite as the length of an array of components as seen in Listing 4.8. The value can also
be used directly by a primitive component in L2C through a property port. Listing 4.9 shows a
primitive L2C component and Listing 4.10 shows its l2c declarations using the value genericity
to make the array length more flexible.

When the composite argument is a component, it can be used by a composite to instantiate
some subcomponents. This feature makes it possible to express templates of applications where
not everything is completely defined by a composite. This is simply done by specifying the type
of the argument as component instead of a primitive type. This genericity with components as



Chapter 4. Designing MapReduce with Components 47

//#implements=GoProxyId<t h i s i d >
LCMP(GoProxyId )

L_PROPERTY( int32_t , t h i s i d ) ;
L_CPP_PROVIDE(GoId , go id ) ;
L_CPP_USE(Go, proxy f i ed ) ;

LEND

Listing 4.10: Example of a L2C component using a value provided by the genericity in HLA.

arguments allows to define skeleton of applications, which proves very useful when designing a
MapReduce application.

composite GoProxyIdLocImpl<In t eg e r th i s i d , S t r ing s l >
with {Process ( s l )}
implements GoProxyIdLoc<th i s i d , s l > {
components :

proxy : GoProxyId<th i s i d >;
exposes :

go id = proxy . goid ;
p roxy f i ed = proxy . p roxy f i ed ;

}

Figure 4.11: Example of use of the with construct in HLA.

Additionally, HLCM is able to state in which process a component should be. This allows
to generate an assembly that can be run on a distributed platform. The way this is expressed
in HLA is through a with construct that apply some constraints on the component which can
state that the component should be placed on a process with the given name with the construct
Process. Figure 4.11 shows an usage of this. However, this become useful only when several
components have a distinct process constraint. This feature is however, still experimental and
under research.

4.3 Implementing MapReduce
A MapReduce framework named HoMR (HOmemade MapReduce) has been implemented by
Julien Bigot and Christian Perez in L2C and HLCM. However, it did not exactly fit for the
needs of this thesis. Especially, several transfer scheduler needed to be implemented. Some
of them should control the moment where each of the m × r transfer start. Some should also
control the data rate of this transfer on the mapper side. This section shows the modifications
brought to the software both on L2C and HLCM levels.

4.3.1 HoMR in L2C

4.3.1.1 Overview of the Architecture

Figure 4.12 shows the HoMR component architecture in L2C for two processes. Components
in green are considered part of the MapReduce architecture, those in blue are those always
provided by the user. And those in gray are actually just CORBA bridges that transform a
C++ call to a CORBA on one side, and back to a C++ call on the other side.

There is currently no clean way to make a generic CORBA bridge component since it must
always provide or use a CORBA interface that copies the bridged C++ interface. Thus, all the
bridges component are distinct and have to be written by hand. Moreover, there are always a
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use and provide side. The naming scheme used here of those CORBA bridges is to start with
the name of the interface bridged and end with Provider or User depending if the CORBA
interface is used or provided.

In this assembly, the Master component is responsible for scheduling and orchestration of
the whole job. It configures the InputSplitter component with the name of the input file,
starts all the map, shuffle and reduce through Go interfaces.

The Runner components appear several times in the assembly and its only job is, upon a call
to its Go method, to pull data from a source and push them to a destination. This component
is used to feed the data to the Mapper component, to perform the data transfer that make up
the shuffle phase, and to run feed the data (and hence actually run) the Reducer component.

The way the shuffle phase is handled is that the Splitter component choses the process
that will perform the reduction for a given key, thus effectively splitting the data. This part
is called the partitioner in Google’s MapReduce. The output of the Splitter is connected to
several MergingBuffer which merge all the 〈key, value〉 pairs into a 〈key, listofvalues〉 pair for
an identical key. Some implementations call this the grouping operation. When the Splitter
has decided that some data should be reduced on another node, they will first accumulate in a
local MergingBuffer until the scheduler launches the Runner so it can transfer its data to the
corresponding MergingBuffer on the target process. This second MergingBuffer aggregates
all the data from all the processes that will be processed in that process.

The goal of the Mapper and Reducer components is to iteratively call the user components
WordCountMap and WordCountReduce on every key-value pair to be processed. That way, the
user components only process one pair at time.

The WordReader reads blocks of data and produces words as output. Since the MapReduce
jobs would likely not need to split data in words, this is part of the job-specific components.
The WordCountMap performs the actual map computation. It transforms a word into a pair
〈word, 1〉. The WordCountReduce component performs the actual word counting and transforms
a pair 〈word, [1, 1, ...]〉 into 〈word, count〉. Finally, the WordcountWriter component is also
user-defined in HoMR to allow to write the result data in a useful format.

As a side note, this assembly does not have a combiner to perform a partial reduction on
the mapper side, but this could be easily done by adding an intermediate component between
the output of the MergingBuffer and the Runner.

4.3.1.2 Modifications

There are two main kinds of algorithms presented in Chapter 7. The first kind only controls
which transfer to start. The second kind also controls how much bandwidth this transfer should
take.

Matching the processes In the previous architecture, the Master component is responsible
for starting the all the transfers. Since this task will require some non-trivial computations
and several algorithms will be tried, this task should be split out of the Master component.
This is done by creating a TransferScheduler interface that is used by the modified Master
component (called MasterS, S for scheduler). This interface allows the Master to notify the
transfer scheduler when a computation ended and to run the scheduler to start the transfers
when possible. The idea is to start the transfer scheduler as soon as the map computations are
started and inform it whenever a map computation ended. On a side node, two components
RMBasic and ModelBasic (RM for Resource Model) have been added to ease the handling of
the data regarding respectively the platform and the state the computation is in (e.g. is a node
in its map, shuffle or reduce phase).
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Another issue with the previous assembly is that the Master component has a multiple
use connection between with the Runners that handle the shuffle phase, a multiple use for
the components starting the map computations and a third multiple use for the components
starting the reduce computation. In L2C, in case of multiple use there is no way to tell apart
the components the reference belong to. It is therefore not possible to identify which Runner
to start when a map computation terminates nor which reduce computation to start when a
transfer terminates. To overcome this limitation, a proxy component is added between the
Master or transfer scheduler, and the components starting the computations or the transfers.
The proxy components in front of the mapper and reducer processes exposes a GoId interface
that provides a go method and an id method. The go method, when called, calls the go method
of the mapper or reducer . The code of the component implementing this interface has been
already shown in Listing 4.9 and Listing 4.10. The transfers of the shuffle phase are handled
similarly. The interface is called GoId2 and exposes two methods id1 and id2 returning the id
of the processes this transfer would happen between.

Bandwidth regulation The aforementioned design modifications would be enough to run
all the discrete transfer schedulers that either run a transfer or let it wait. However, some
schedulers also throttle the bandwidth of every transfer in order to avoid contention. This leads
to two modifications in the previous assembly: one to actually throttle the bandwidth allocated
to a transfer, and one to communicate the limit bandwidth from the scheduler to the process.
This is done by implementing a RunnerRegulated component which pushes data at a maximal
fixed rate. This component exposes a GoRegulatedBandwidth that merges a Go interface and
a RegulatedBandwidth interface in order to avoid the burden to the user component to match
those components together as presented earlier. However, since this RunnerRegulated compo-
nent replaces the former Runner, the master component needs to know which between which
process it will run the transfer and thus need a GoRegulatedBandwidthProxyId2 component
as earlier.

Generating fake data In order to control the amount of data generated for the experiments
with the transfer schedulers, the components WordReader that reads the data from the file
system need to be replaced by a WordGenerator. This component is configured with two
properties that indicate the number of unique words and the total number of words that will be
generated. In this situation, the components InputSplitter that partition the input data into
chunk is no longer used. So in order to keep the modification minimal, especially regarding the
interface with the Master or MasterS, a FakeInputSplitter is devised. It does not actually
partition the data, it just start the word generator instead.

4.3.2 HoMR in HLCM

4.3.2.1 Overview of the Architecture

HoMR, as written in L2C, is not easy to use and require an external program that would generate
the LAD for the given number of mapper and reducer and is not easy modify and maintain. So
it has been written in HLA by Christian Perez to use the features of HLCM like the composites,
looping constructs and genericity. The implementation presented here is the one without the
modifications presented in Section 4.3.1.2. Since it only uses C++ and CORBA use – provide
connectors (with multiple use variations), the connectors here are drawn with the formalism
used for L2C components.

Per design of HLCM, the whole MapReduce application is a single component which has
a single open connection that provides a Go interface. This interface is what will be run to
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Figure 4.13: Initial global design of HoMR in HLCM.

start the application once deployed. As show in Figure 4.13, this component is itself com-
posed of 4 subcomponents that instantiate all the components that are unique in the assembly.
Namely, this is the master component and the I/O components. The MapReduce core compo-
nent MRFullMapReduce implements the actual map, shuffle and reduce phases. The components
MRMaster, MRInputSplitter and MRWordcountWriter are directly implemented by the prim-
itive components Master, InputSplitter and WordcountWriter respectively. Their roles are
the same as before and handle the coordination, data reading/splitting and data writing. Those
components are placed on the master node, except for the component MRFullMapReduce which
is distributed on all the compute nodes.

MRFullMapReduce has 5 connections, one to receive the input data from the splitter, one to
send the data to the writer, and 3 multiple provide to start the mappers, shuffle and reducers.
Figure 4.14 shows the assembly that is generated by this component for 2 mappers and 2
reducers. Globally, the components are located on some processes here represented as dashed
boxes. All the connections that have to go out of a box are drawn in thick dark green lines
meaning that it’s a CORBA interface that is used. The lReadMap components are composed
of 3 subcomponents, one that splits a chunk of input data into words, a runner that takes the
words and feeds them into the actual map computation, and the map component that produces
the intermediate key-value pairs as output of this component.

The component MRSplitter plays the role of the partitioner in Hadoop. It choses which
reducer will process every key of intermediate data. The default implementation is based on a
hash function.

There are several instances of the MRMergingBuffer component. Its role is to merge the
key-value pairs with the same key into a key-list of values pair. This component is found just
before sending the data on the network for the shuffle so that all the values for a give key are
send at once. It is also found just after the data has been received from the mappers so that
several lists of values for the same key are merged together. Between them is only a MRRunner
whose only role is to pull the data from one side and push them on the other side.

The lReduce component has nothing more than the actual reducer computation and a
runner to pull the data from the merging buffer and push them to the reducer component.
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Figure 4.14: Initial design of component MRFullMapReduce of HoMR.

4.3.2.2 Modifications

This design has several issues, all of them are about the difficulty of reusing the MapReduce
skeleton as-it-is. The first issue is that it is not easy to adapt the assembly to perform another
computation than a word count since the word count components are hard coded deep into
the assembly. The second issue is that some work of this thesis (presented in Chapter 7) need
to swap the scheduler for another one. Most of those require the GoProxyId and GoProxyId2
components to be used as stated previously.

The components may be grouped in 3 categories. Those changed to perform another com-
putation. Those changed for performance reason or to adapt the application to the platform.
And those that are part of the framework but need to be modified for this thesis.

The simplest thing to do is probably to pass components as arguments of the MapReduce
skeleton to provide a map and a reduce component that will be integrated in the assembly. In
addition to just the map and reduce, the word splitting of text is also very specific to the word
count job. In the previous assembly, these components corresponds approximately to lReadMap
and lReduce. The difference is that the component that splits a chunk of data into words should
not read the block for the file system directly so that the job-specific operations (splitting into
words) would be distinct from the IO operations (reading from the file system).

The components responsible for reading and writing the data from / to the storage system
are specific to the platform and thus should not be part of the MapReduce skeleton itself. In
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the previous design, the actual data reading was done by a subcomponent of lReadMap. This
should be done by an InputReader component. The MRWordcountWriter for writing can be
kept as-is. It is specific to the type of data to be written but it is not a problem since it will be
an argument of the global MapReduce component. The left part of Figure 4.15 shows modified
design of the data input.

Still for performance, but also for this thesis, the scheduler has to be split out of the Master
component. Although a composite aggregating the scheduler and the master without scheduler
could be defined, this does not seems necessary. Some scheduling algorithms require another
transfer runner that would be able to control the actual throughput of the network transfer.
To simplify this, a shuffle component can be defined to that would span from the splitter
that partition the intermediate data up to the merging buffer on the reducer side as shown
in the center of Figure 4.15. The actual component for the splitter should be an argument of
the Shuffle component because it may have some performance implications. This component
would havem×r connections to receive the data,m×r connections to set the wanted throughput
and start the transfers, and r connections for the reducers to read. Note that this component
span over several processes without encompassing them totally, but this is not a problem.

4.4 Discussion

This new design of MapReduce with HLCM components extensively uses the genericity and
always requires several arguments. To ease its use, either the support for default values could
be added in HLCM, or some composite could be defined with less arguments and fix the value
of the others. For instance a component MapReduceNfsCorba<M, R, Map, Reduce> could be
defined that would make the input and output read and write from / to the shared file system
and that uses CORBA as protocol for the shuffle phase. Also, in the proposed design, it may
be surprising that the Shuffle component will be instantiated once and must have m × r
connections while the other components like Map and Reduce have two connections and are
instantiated M or R times. However, this design allow to fully encapsulate the protocol used
for the shuffle phase.

HLCM is a research prototype, both in the model and in the implementation. As such, it
has rough edges and is barely usable without being taught by an expert as the syntax can be
surprising and the error message hard to understand.

During the development of the MapReduce framework with HLCM, some limitations of the
model and implementation have been found and fixed. For instance, the root component to
be instantiated that is given on the command line can now have generic arguments and the
command line syntax allow to state what is the entry point of the application. The placement
of the components into the process is still experimental as it is not yet well understood as how to
express the placement constraints in a generic but not cumbersome way. Also, as a non-trivial
usage of HLCM, the compiler has shown some performance issues. The time to generate the
LAD file for the MapReduce application grows as a polynomial of degree at least 3 with the
number of mappers and reducers. It is estimated that an assembly with 40 mappers and 40
reducers would take a full month to generate. The fix for this issue is a work in progress as
the time of writing. It is thus faster to generate the recurring pattern with another program
once the L2C assembly is defined. Also, some small features are not implemented in HLCM like
the command line argument handling or the arithmetics expressions for the properties of the
components. Thus in the experiments presented in Chapter 7, the LAD file had to be modified.
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4.5 Conclusion
Thanks to a high level component model, a new MapReduce framework has been designed.
This framework makes it easy to change the number of mappers and reducers as well as the
map and reduce operations. Additionally, with the help of a careful parametrization of the
components, the commonly modified components are easily customized while still preserving
the whole application structure into one component. In Chapter 7, several transfer schedulers
are actually put in place of the default one, and some of them require to handle the bandwidth
of the transfers in addition to starting them on demand. This kind of modification is made
really easy with the MapReduce application designed here and would be a lot of work if an
existing MapReduce framework had to be modified.
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Chapter 5

Modeling MapReduce

The contributions in Chapters 6 to 7 try to optimize some parts of the execution of a MapReduce
application. In order to do so and to study seriously the problems, a model of the system is
needed. There are two categories of models that are needed: the platform models that describe
the nodes and the network behavior, and the application models that describe the steps of a
MapReduce job. Since the following chapters are performance-oriented, the models have to
allow to compute the duration of the execution. But they must also keep simple enough to
allow for a solution to be easily computed.

This chapter first review in Section 5.1 the different modeling approach that are known to be
used and explain why they do not completely fit the mentioned requirement. Section 5.2 explains
the global model that is used in the remaining of this document. This model is completed when
needed with some additional properties in the given chapters.

5.1 Related Work

Infrastructure Models Despite the fact that the cloud tries to hide the details of the hard-
ware infrastructure, the performance may depend on it. It thus need to be modeled. A cloud
platform is usually modeled as a 2 or 3 levels tree network [69, 70]. At the lowest level, the
nodes are grouped into racks with a switch for each one. Then the racks are connected together
with another switch to make a cluster. The clusters are connected together forming another
level. Even though the network tree may look like a fat-tree [13, 71], it is common that the
switch to switch links are undersized regarding the actual number of nodes they connect. This
practice is called oversubscription. Those models may, however, need to be simplified to solve
a given problem.

Network Models On a more specific point, some researchers [72] modeled the effect of
contention in an all-to-all operation. Those models are represented by affine functions. In this
thesis, contention will not have to be modeled since these models will be used in Chapters 6
to 7 to actually avoid contention.

Coarse MapReduce Models Based on those cloud models, it is possible to build other
models to try to predict the duration of applications in the cloud. Some work [73] take the
oversubscription into account that may create contention. Others [74] model applications pro-
cessing jobs and ignore the internal network as they assume the usage of high-throughput
low-latency network. Those models are very coarse grain and do not take into account the
specificities of MapReduce.
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Detailed MapReduce Models On the opposite side, some work model the execution of a
MapReduce job in too much details to be easily usable. A research report [75] provide extensive
details in modeling the execution of a job in Hadoop MapReduce. It includes 5 steps on the
mapper side: read, map, collect, spill and merge. The amount of intermediate data produce is
proportional to the amount of input data. On the reducer side there are 4 steps shuffle, merge,
reduce, write. Most of those 9 phases are proportional to the amount of data. Moreover, some
parts of the models are quite Hadoop-specific and could be simplified. It could also be noted
that the network model used doesn’t take contention or latency into account and thus need no
assumption on the network topology.

Simulation-Based Modeling MRPerf [76] and Starfish [77] with its What-If engine [78]
both relies on a simulation to predict the time taken by a MapReduce job. The models im-
plemented in the simulator are very fine grain. They notably take into account the scheduling
policy and the data location which are usually unpractical to manipulate as a model.

Specific Models In ARIA [79] an unusual approach is taken to model a MapReduce when
the map, shuffle and reduce phases are split into several waves of tasks. Its goal is to allocate
the resource to meet a soft deadline as a Service-Level Objective. For each phase, the minimum,
maximum, and average time are used as they may have a different impact on the total duration
of the job. It also make a special case of the first wave of shuffle tasks. The models here also
use the average input size of the map tasks and two constants that model the ratio of data
volume between the input and output of the map phase, and between the input and output of
the reduce phase.

Another approach [80] to model the duration time of the tasks of a MapReduce job is to
use a stochastic model to take into account of the variability of the duration time. It can thus
produce a probability function of the duration of the map and one for the reduce tasks. This
approach is augmented with the date of arrival of the workers and the duration distribution of
the shuffle phase. This approach is most useful to simulate the execution of a MapReduce job
as long as nothing changes the distribution function of the duration of the tasks. This makes
the models hard to use when it comes experiment with new scheduling algorithms.

Some work [81] models the execution of a MapReduce job into the cloud taking into account
the first upload from the permanent storage to the cloud storage. The shuffle phase seems to be
left out, or, at least, not detailed enough. The models use a discrete time interval during which
the computation and / or the data transfers occurs. The models used are all linear or affine
functions. The goal is to be able to use linear programming to determine an optimal scheduling
strategy on several cloud services. However, no follow-up publication actually doing it could be
found.

History-Based Models SkewTune [45] and HAT (History-based Auto-Tuning MapRe-
duce) [47] estimate remaining time of the tasks to find stragglers. To this end, they uses
historical information to estimate the progress of a task to find the slowest tasks and handle
them separately as they probably would slow down the whole jobs execution.

Another interesting approach that uses historical information is to use statistics tools [82].
This work does not actually explicitly models the execution of a MapReduce job. Instead, it
uses a statistical framework [83] based on KCCA (Kernel Canonical Correlation Analysis) [84]
to estimate the time required to execute a give MapReduce job based on previous runs. To do
this, it takes into account two sets of parameters. The job configuration and data characteristics
on one side, and several performance metrics on the other side. The algorithm is trained with
some measures and then tries to predict the performance metrics based on the job configuration
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and data characteristics. This can also be used as a workload generator. The first downside of
this method is that it require several runs before giving out accurate results. The second one is
that this method is complex to implement and manipulate.

Reliability Models On a side note, none of those models take into account the dependability
issue which may occur in large scale platforms or on low cost hardware. Some work explore this
issue on the hardware [85] and virtual machine level [86]. The reliability has also been taken
into account into broader cloud models [87, 88].

5.2 Defined Models

5.2.1 Platform Models

The considered target platform is a cluster connected by a single switch, forming a star-shaped
communication network. Every link connecting a node to the switch has a capacity of C bytes
per second and the switch have a bandwidth of σ bytes per second. The network links are
assumed to be full-duplex1. σ is supposed to be an integer multiple of the link bandwidth.
Thus σ = l×C. This restriction is only important for some algorithms presented in Chapters 6
and 7. Moreover, the overall bandwidth is assumed to be limited. Meaning that if there are n
nodes connected to the switch, then l ≤ n. Above l concurrent transfers, the communications
will suffer from contention, thus degrading the performance.

5.2.2 Application Models

A MapReduce application is represented here by the number of mapper processes m, and the
number of reducer processes r. There is a total volume of data V to process. A mapper process
i receives a total amount of data αi, and since all the data has to be processed once and only
once, V =

∑
αi. The amount of data produced by a mapper process is assumed to be linear

with the amount of input data with a γ factor. Thus, we call ζi the amount of data produced by
the mapper i, ζi = γ×αi. Moreover, every mapper have to send its intermediate data produced
to all reducers depending on the key. ζi,j is the amount of data the mapper i have to send to
the reducer j. Thus, ζi =

∑
ζi,j .

It is also assumed that the intermediate data generated by a given mapper process cannot
start being sent to the reducers before the end of the computation. And a mapper i finishes
its computation Si seconds after the first mapper has finished its computation. For the sake
of simplicity, it is assumed that the mappers are ordered by the date of termination of the
computation. Thus, Si < Si+1 for 1 ≤ i < m and S1 = 0. Figure 5.1 shows the Gantt chart of
a possible execution of a MapReduce application following this model. The computation time
is green, the transfer time is grey and in red is the idle time.

5.2.3 Performance Models

Given the computation structure of MapReduce, the data is split into chunks of similar size
before processing the map phase. Thus the processing time of a chunk of data should only
depend on the computational power of the node. Thus, it is assumed that each compute node
i processes data at a rate of Ai bytes per second. It also assumed that the produced amount of
data is linear in the amount of input data.

1A full-duplex network link can send and receive a frame at the same time.
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Figure 5.1: Gantt chart of a possible execution following the application model.

As the focus is on the throughput, the data are supposed to be large enough and so that
the time to transfer a chunk of data is linear with the size of the chunk. More formally, this
means: time = datasize

bandwidth .
Thus, the model ignores any latency as well as any mechanism of the network stack that

could make the actual bandwidth lower than expected for a short amount of time, such as
the TCP slow-start. This network model also ignores any acknowledgment mechanism of the
underlying network protocols that can consume some bandwidth and any interaction between
CPU usage and bandwidth usage. Therefore, in order to make these assumptions realistic, we
choose to map one mapper or reducer process per physical node when this matters.

5.3 Conclusion
This chapter reviewed the state-of-the-art for modeling a MapReduce application and its per-
formance. A certain degree of precision of the models is needed in order to allow a scheduling
algorithm to take decisions minimize the makespan. This makes the non-MapReduce specific
models not well suited for this. On the opposite, the models need to be simple enough to
allow the computation of some parameters given the others. Thus excluding the stochastic,
history-based, and simulation-based models that are hard to manipulate in a formal way.

In order to circumvent these limitations of the existing models, some are proposed in this
chapter. Given that the performance model are mostly linear, this allows the formulae to be
solved for some parameters, or some metric to be optimized. Moreover, those models still
capture the main components of a MapReduce job as they appear in most of the related work.

The defined platform model is indeed very simplistic and does not capture the reality of the
current cloud infrastructures. However, being able to deal with a simple platform model is a
necessary step before tackling more complex cases. Every time this model is used, an insight is
given as to how extend the work to a multi-level platform model.
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Chapter 6

Global Performance Optimization

This chapter try to find a solution that would optimize the execution time of the whole MapRe-
duce job at once. For this, a problem description is proposed in Section 6.1 followed by a
summary of the existing work around this problem in Section 6.2. Then the platform and
performance models presented in Section 6.3 extend, for the purpose of this contribution, the
models presented in Section 5.2.1, Section 5.2.2, and Section 5.2.3. The approach of Berlińska
and Drozdowski on this problem is then reviewed in Section 6.4 before proposing two improve-
ments in Section 6.5 and Section 6.6. These improvements are evaluated against the work of
Berlińska and Drozdowski in Section 6.7 both in terms of quality of the computed schedule and
in terms of computation duration. Finally, this chapter is concluded in Section 6.8.

6.1 Problem Description

MapReduce is designed to run on all kind of hardware, from low-end to high-end ones. And
actually, Google stated they used it mostly on clusters of commodity hardware. Commodity
network hardware has a higher chance of showing contention. However, in a MapReduce ap-
plication, there are several things that can have an impact on the computing time. Especially,
how the data are partitioned among the nodes and the way the transfers are handled during
the shuffle phase.

Therefore, this chapter proposes to study the proposition of Berlińska and Drozdowski to
find a data partitioning and transfer schedule under bandwidth constraints that minimizes the
makespan1, and then improve their solution by relaxing some constraints.

6.2 Related Work

The problem of optimizing a MapReduce job as a whole has rarely been studied. However, some
work have focused on either partitioning the data among the mappers or reduce the amount of
data to transfer between the mappers and reducers.

The problem of partitioning is linked to the problem of detecting and handling the stragglers,
and thus it is the most studied. Meaning that all the solutions are dynamic and partition data
on-the-fly, taking into account the actual processing speed of the nodes instead of a theoretical
one.

LATE [43] (Longest Approximate Time to End) is not per-se a partitioning algorithm. It
is a scheduler that refines default progress estimation of the map tasks in Hadoop in order to
launch a speculative execution for all the tasks that are estimated to finish the farther in the

1The makespan is the elapsed time between the start and end of a job.
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future. This work is refined by SAMR [89] (Self-Adaptive MapReduce) to take heterogeneity
into account. Moreover, SAMR also classifies the nodes based on their history in order to run
the backup tasks on nodes that should not be slow.

SkewTune [45] is an extension of Hadoop that also aims at avoiding the stragglers during
the map phase. To this end, when some resources are available, it checks for the process with
the further estimated time of termination whether the overhead for repartitioning is less than
the expected time to complete a task. If so, its data are redistributed among the other nodes.

The FAIR [34] scheduler in Hadoop attempts to achieve fairness in a cluster. It does this by
splitting the cluster into subclusters and dedicating them to a given pool (or group of users).
However, if some nodes remain unused, they may be temporarily reassigned to another pool.

Delay Scheduling [35] is a method to improve locality and fairness in a cluster running
Hadoop. It works by delaying the decision of which task should take a free mapper slot if no
unprocessed task can run with the data locally available on that node. The further the data
comes from (rack-local vs. inter-rack access), the greater the delay. This allow for other jobs to
release a slot which may make all data access node-local.

The LEEN [36] (locality-aware and fairness-aware key partitioning) algorithm tries to bal-
ance the duration of the reduce tasks while minimizing the bandwidth usage during the shuffle.
This algorithm relies on statistics about the frequency of occurrences of the intermediate keys
to get to create balanced data partitions. This approach is complementary to that presented
here.

Another complementary approach is the HPMR [48] algorithm. It proposes a pre-shuffling
phase that lead to a reduced amount of transfered data as well as the overall number of transfers.
To achieve this, it tries to predict in which partition the data go into after the map phase and
tries to place this map task on the node that will run the reduce task for this partition.

Conversely, the Ussop [46] runtime, targeting heterogeneous computing grids, adapts the
amount of data to be processed by a node with respect to its processing power. Moreover it
tends to reduce the intermediate amount of intermediate data to transfer by running the reduce
task on the node that hold most of the data to be reduced. This method can also be used
together with our algorithms.

A MapReduce application can be seen as a set of divisible tasks since the data to be processed
can be distributed indifferently on the map tasks. It is then possible to apply the results from
the divisible load theory [90]. This is the approach followed by Berlińska and Drozdowski [4].
The authors assume a runtime environment in which the bandwidth of the network switch is
less than the maximum bandwidth that could be used during the shuffle phase, thus inducing
contention. From those models, they try to fix the data partitioning and the shuffle scheduling
with a linear program. This approach is further detailed in Section 6.4.

6.3 Specific Models

The models used in this chapter are derived from those presented in Chapter 5, which are also
similar to those used by Berlińska and Drozdowski in [4]. To avoid divisions in the linear program
underlying their scheduling algorithm, Berlińska and Drozdowski expressed data processing and
transfer rates in seconds per byte, even though the most common definitions express such rates
in bytes per second. However, for better understanding, those values are converted into bytes
per second in this document, although the resolution of the linear program may need these
values to be inverted.

In this chapter, there are two additions with respect to the models presented in Chapter 5.
First there is a constant delay between the mappers start, and not the mappers end. The
delay between the beginning of a mapper and the next one is S Meaning that the mapper i
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starts Si = S × (i− 1) seconds after the first mapper . Second, the amount of intermediate data
produced by a mapper i is equally scattered among the reducers. Thus ζi,j = ζi

r .
Berlińska and Drozdowski also use a notation tn to denote a given moment during the

schedule. As their transfer scheduler works by intervals, the interval n span from tn to tn+1.

Name Unit Description
σ B/s Switch bandwidth.
C B/s Link bandwidth.
l l = σ/C Ratio between switch and link bandwidth.
m Number of mapper processes.
r Number of reducer processes.
S sec. Delay between two consecutive mapper starts.
αi B Amount of data to be processes by mapper i.
γ Ratio between the input and output amount of data of the mappers.
ζi B ζi = γ × αi Amount of data produced by the mapper i.
V B V =

∑
αi Total amount of data to process.

ζi,j B ζi,j = ζi/r Amount of data to be sent from mapper i to reducer j.
tn n-th denoted time.

Table 6.1: Summary of the variables of the model.

The variables and notations and their meaning are reminded in Table 6.1.

6.4 Approach of Berlińska and Drozdowski
In their paper [4], Berlińska and Drozdowski proposed an optimization of both data partitioning
and scheduling of communications. To control the network bandwidth sharing and to prevent
contention, they decompose the shuffle phase into several steps. During each of these steps, only
l concurrent data transfers are performed. Moreover, the order in which these data transfers are
done is specified by Constraints (6.1) and (6.2) hereafter. In those equations, start(i, j) stands
for the start date of the transfer from mapper i to reducer j, and end(i, j) stands for the end
date of the same transfer.

start(i, j) > end(i, j − 1) ∀i ∈ 1..m, ∀j ∈ 2..r (6.1)
start(i, j) > end(i− 1, j) ∀i ∈ 2..m, ∀j ∈ 1..r (6.2)

Constraint (6.1) means that a transfer from a map task i to a reduce task j has to wait for
the completion of the transfer from this map to the previous reduce task (j−1) before starting,
while Constraint (6.2) means that this same data transfer also has to wait for the reduce task j
to have complete the transfer from the previous map task (i− 1). m and r respectively denote
the total numbers of map and reduce tasks. Figure 6.1 show this ordering as a dependency
graph. Each circle represents a transfer which is annotated with a name i→ j that stands for
transfer from mapper i to reducer j.

Those constraints are made to avoid contention on a link level. Indeed, if the same mapper
had to perform two transfers at the same time, this would decrease the bandwidth usage of
the network links on the reducer side as contention occurs. Symmetrically, if a reducer receives
data from two mappers at the same time, this would impair the bandwidth usage on the mapper
side. Even thought a configuration where every mapper sends to several reducer at the same
time may be interesting to study, it would make the problem more complex.
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C1 1→1 1→2 1→3

C2 2→1 2→2 2→3

C3 3→1 3→2 3→3

C4 4→1 4→2 4→3

C Computation

a → b Transfer

Figure 6.1: Dependency graph between data transfers between 4 mappers and 3 reducers

Table 6.2 illustrates this transfer ordering on a simple example that involves four map tasks
and three reduce tasks. In this example, there is no contention on the network. The only
constraints to respect are those expressed by Constraints (6.1) and (6.2). Six steps are needed
while the number of concurrent data transfers is only limited by the number of reduce tasks.

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6
m1 → r1 m1 → r2 m1 → r3

m2 → r1 m2 → r2 m2 → r3
m3 → r1 m3 → r2 m3 → r3

m4 → r1 m4 → r2 m4 → r3

Table 6.2: Data transfers ordering between four map tasks and three reduce tasks without
contention on the network switch.

The algorithm proposed by Berlińska and Drozdowski has been designed for configurations
in which the network switch becomes a performance bottleneck. The network has capacity of l
concurrent transfers. Although Constraints (6.1) and (6.2) guaranty the absence of contention
on the links, contention may still occur on the switch. Thus, the solution proposed by Berlińska
and Drozdowski is to allow the transfers to start in a round robin fashion. During every step,
the mappers i..(i+ l) perform their transfer. As soon as they all finish, mappers (i+1)..(i+1+ l)
perform their transfers, and so on.

In order to model this, Berlińska and Drozdowski introduced a function itv that computes
for every transfer i→ j the interval number in which it is scheduled. This function is defined in
Equation (6.3) that takes as argument the id of the mapper and reducer involved in the transfer
for which to compute the interval number. This equation also depends on the number of mapper
m, and the maximal number of concurrent transfers l. Note that itv(m, r) corresponds to the
last transfer to be performed.

itv(i, j) =
(⌈

j

l

⌉
− 1

)
m+ i+ (j − 1) mod l ∀i ∈ 1..m, ∀j ∈ 1..r (6.3)

Table 6.3 details the communication phase in a setting similar to that of Table 6.2, but
with l = 2. This means that at most two data transfers can be done concurrently. With this
additional constraint, eight steps are now needed to transfer all the data produced by the map
tasks to the reduce tasks.

Equation (6.4) defines vti as the reciprocal function of itv. For a given step s, it returns the
set of mapper that perform a data transfer during this step.
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Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8
m1 → r1 m1 → r2 m1 → r3

m2 → r1 m2 → r2 m2 → r3
m3 → r1 m3 → r2 m3 → r3

m4 → r1 m4 → r2 m4 → r3

Table 6.3: Data transfer ordering between four map tasks and three reduce tasks with a limit
of two concurrent transfers at a given time step.

vti(s) = {a|itv(a, b) = s, b ∈ 1..r} (6.4)

Defining the order and in which step data transfers between map and reduce tasks have to
be performed is not enough to build a good schedule of the shuffle phase. The initial partition of
the data set among the mappers also has an impact on the shuffle as it defines its start time and
the sizes of the exchanged messages. Berlińska and Drozdowski aims at minimizing the overall
completion time of the shuffle phase, i.e. the end of the last data transfer. This is achieved
using to the following linear program.

Minimize titv(m,r)+1,
under constraints

∀i ∈ 1..m, iS + αi
Ai

= ti

∀i ∈ 1..itv(m, r),∀k ∈ vti(i), αkγ
rC
≤ ti+1 − ti

m∑
i=1

αi = V

(6.5)

The first constraint ensures that a mapper cannot start to send data to a reducer before
the completion of the computations it has to execute. The inequality in the second constraint
indicates that the duration of an interval has to be long enough to allow the completion of all
the transfers scheduled in this step. Finally, the sum in the last constraint ensures that the
whole data set is processed by the mappers. The outputs of this linear program are the amount
of data αi to be processed by each mapper , and the date tk bound of the intervals.

Figure 6.2 shows an example of schedule produced by the algorithm proposed by Berlińska
and Drozdowski for four mapper processes, four reducer processes, and a limit of two concurrent
data transfers. We can see that, due to the start-up time S, the map tasks are launched
sequentially. The first constraint of the linear program leads to schedules in which the first
transfer issued by a map task ends when the next map tasks completes its computations.

The sequential startup time S is shown in white, the computation time of the mappers is
shown in green, the data transfers to every reducer i are shown in gray, and the idle times are
shown in red. The light red is the idle time induced by the limit to l concurrent transfers, while
the dark red is the idle time induced by the per-wave property of the scheduling. The reduce
tasks are not shown there because they do not influence the schedule produced.

This algorithm has two major drawbacks that are addressed in the next two sections. First,
the use of a costly linear program to determine the partitioning of the data in a way to optimize
the length of the shuffle phase becomes intractable as the size of the problem, i.e. the number
of map and reduce tasks, grows. Its complexity is that of the simplex algorithm with O(mr)
constraints. It is exponential in the worst case, but polynomial in many cases. For certain
configurations, this linear program may fail to find a solution at all. Secondly, the scheduling
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P1

P2

P3

P4

Scompute1 2 3 4

Scompute1 2 3 4

Scompute 1 2 3 4

Scompute 1 2 3 4

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Figure 6.2: Schedule produced by the seminal algorithm proposed by Berlińska and Drozdowski.

of data transfers in steps leads to an important amount of idle times on the nodes, as shown in
Figure 6.2.

6.5 Partitioning: From Linear Program to Linear System
One property that can be observed from the results of the schedule produced by the algorithm
of Berlińska and Drozdowski is that the first transfer issued by the mapper i ends when the
mapper i+1 completes its assigned computations. This is a consequence of the order constraints
given by Constraints (6.1) and (6.2). It can be reformulated as follows.

iS + αi
Ai

+ αiγ

rC
= (i+ 1)S + αi+1

Ai+1
(6.6)

It has been observed that this holds as long as αi is less than αi+1. On a homogeneous
cluster, where all the nodes have the same processing power, (i.e. all the Ai have the same
value), Berlińska and Drozdowski have observed αi < αi+1 to be equivalent to:

Srm <
γV

C
(6.7)

Indeed, when Ai = A and αi = α = V
m , then Equation (6.6) imply that αγ

rC = S, which
is equivalent to Srm = γV

C . Starting from this, Berlińska and Drozdowski have observed that
when Srm < γV

C then αi < αi+1 and conversely.
However, the startup time S (in the order of a few seconds) is often less than the time

to transfer all the data (in the order of several terabytes). Thus the condition αi < αi+1 is
commonly filled, which means that Equation (6.6) would also hold. Under these conditions, the
partitioning can be computed by the following linear system which would compute the same
values for αi as the linear program 6.5 provided that αi < αi+1.

iS + αi
Ai

+ αiγ

rC
= (i+ 1)S + αi+1

Ai+1
∀i = 1..m− 1 (6.8)

m∑
i=1

αi = V (6.9)

The complexity of this linear system is in O(m), that is less than the resolution of a linear
program. Moreover, except for roundoff errors, the resolution of the linear system leads to the
same partitions of the computations, i.e. determines the same values of αi. This is illustrated
in Figure 6.3 in which the partition of the data between the mappers is determined by the
proposed linear system, while the effective scheduling of the data transfers is done using the
static strategy proposed by Berlińska and Drozdowski. Note that determining the partition also
sets the start time of the first four steps of the shuffle phase t1 to t4.
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P1

P2

P3

P4

Scompute

Scompute

Scompute

Scompute

1 2

1 2

1 2

1 2

3 4

3 4

3 4

3 4

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Figure 6.3: Schedule produced by the linear system.

C1 1→1 1→2 1→3

C2 2→1 2→2 2→3

C3 3→1 3→2 3→3

C4 4→1 4→2 4→3

C Computation

a → b Transfer

Figure 6.4: Dependency graph between the transfers with diagonals.

6.6 Data transfer Scheduling: From Static to Dynamic

In this section we propose to schedule data transfers dynamically instead of building a static
schedule in several steps as done by Berlińska and Drozdowski. Before introducing this new
scheduling method, recall that network contention can occur not only on the switch of limited
capacity, but also on the links that connect the compute nodes to this switch. That’s why
the algorithm proposed here has been designed to respect the constraints expressed by Con-
straints (6.1) and (6.2) similarly to Berlińska and Drozdowski. These constraints prevent any
compute node to perform more than one transfer at a time either on the sender or receiver side,
and thus avoid contention on the links.

These constraints only force a partial order on the transfers. A scheduler still have to chose
which transfers to start when several transfers are ready. The intuition would say it is better to
keep a maximum number of active transfers at the same time in order to maximize the network
usage and minimize the completion time. However, as suggested in Figure 6.1, Constraints (6.1)
and (6.2) force a delay of one transfer between the sender transfers. That’s why the heuristic
proposed here is to keep the active transfers on a diagonal as shown on Figure 6.4.

More formally, a reverse priority ρ is assigned to every transfer i→ j such that ρi→j = i+j.
The lower the value of ρ, the higher the priority. However this priority only comes into play
when the dependencies of a transfer are met.

Algorithm 1 present the proposed strategy. In this algorithm, node.state hold the represen-
tation of the current activity of the node, and node.target hold the identifier of the reduce to
which node is transferring or will perform its next transfer. When the transfer from a mapper
i to a reducer j ends, then for each idle mapper i′ and its next target reducer j′, the priority
pi′ = i′ + j′ is computed. Then the nodes that minimize pi′ is selected. These nodes are con-
sidered to be the most late and their transfers have to start as soon as possible. This promotes
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Algorithm 1 Transfer scheduling algorithm
1: procedure request_transfer(node)
2: if the network link of the target reducer is busy or the limit of the switch has been reached then
3: node.state← IDLE
4: else
5: node.state← TRANSFER
6: start_transfer(node, node.target)
7: end if
8: end procedure
9: procedure on_compute_end(node)
10: request_transfer(node)
11: end procedure
12: function node_to_wake
13: for all N node in IDLE state do
14: if target reducer ’s network link is busy then
15: continue with next node
16: end if
17: p[N ]← number of N + number of N.cible
18: end for
19: if p is empty then
20: return undefined value
21: else
22: return N for which p[N ] est is the lowest
23: end if
24: end function
25: procedure on_transfer_end(node)
26: n← node_to_wake
27: if n is not undefined then
28: request_transfer(n)
29: end if
30: if node hasn’t done every transfers then
31: node.target← next node
32: request_transfer(node)
33: else
34: node.state← TERMINATED
35: end if
36: end procedure
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maximization of bandwidth usage and allow not to break Constraint (6.2) without stating it
explicitly in the algorithm.

Procedure on_compute_end is called as soon as a map task finishes to process its data.
It calls the procedure request_transfer that will start the requested transfer if that does
not violate the bandwidth constraints. The procedure on_transfer_end is called when a
transfer ends. It start by launching the transfer with higher priority if it exists. Then it starts
the next transfer of the node that has just terminated if that is possible.

This algorithm enforce the constraints on the network usage while using it at its maximum
at any time. Indeed, if the bandwidth of the switch was already fully used, then, the only call
to request_transfer that will actually start a transfer is the one on Line 28. Furthermore,
if the order defined by Constraints (6.1) and (6.2) prevented a transfer to start, then the switch
is not fully used and the termination of one transfer may start 2 new transfers at most. That’s
what the calls to request_transfer on Line 28 and Line 32 do.

6.7 Comparative Evaluation

This section evaluates our algorithm by comparing it to the one proposed by Berlińska and
Drozdowski. For that, a small simulator has been written in Perl that implements both al-
gorithms. The decision has been made not to use an existing simulator because it was easier
and faster to implement the models presented in Chapter 5 and Section 6.3, and to implement
several scheduling policies in a custom tool rather than to struggle with the existing tools to
only keep a minimal part.

This simulator is event-driven. It has a queue of event which is initially filled with the
events of computation termination. And every time an action is taken, new future events may
be generated. For instance, when a transfer finishes, a new transfer may start, in which case,
its termination date is computed, and the future event is added to the list of future events.
The resolution of the linear program is implemented with lp_solve while the resolution of the
linear system is directly implemented in Perl.

These algorithms are compared in two experiments. The first experiment presented in
Section 6.7.1 sets the number of concurrent transfers allowed by the network switch and varies
the number of nodes. The second experiment presented in Section 6.7.2 sets the number of
nodes and varies the number of concurrent transfers supported by the switch.

Table 6.4 lists the parameters related to the platforms and applications that are used in
both following experiments. In these experiments, the platforms are considered homogeneous
with a processing power A = Ai, ∀i. It is also assumed that the total amount of intermediate
data produced is equal to the amount of data processed, hence γ = 1.

Common parameters
A 250 MB per second C 125 MB per second
S 1 second V 10 To

Experiment 1 Experiment 2
l 50 concurrent transfers from 50 to 300 concurrent transfers

m and r from 50 to 300 nodes 300 nodes

Table 6.4: Experiments parameters summary.
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6.7.1 Varying the Number of Nodes

In the first experiment, the maximum number of concurrent transfers that do not induce con-
tention on the switch l, is fixed, and the number of mappers is increased gradually. The number
of mapper is equal to the number of reducers i.e. m = r. Figure 6.5 shows the execution time
in seconds since the launch of the application up to the termination of the last transfer with
respect to the number of mapper processes. Equation (6.7) applied with the chosen parameters
say that above 282 nodes, the condition αi < αi+1 no longer hold. The execution time for less
than 50 nodes is not shown because in this case the bandwidth of the switch is not fully used
and both approaches result in the same makespan.

It can be seen that the approach of Berlińska and Drozdowski results in a completion time
that is globally decreasing by intervals. These discontinuities are due to phase-based algorithms.
Indeed, when the number of transfers to be performed for every node is a multiple of l, then
the bandwidth will be fully used at some point in every phase. On the other hand, if there is
at least one more node, then one more phase is necessary, and this one will under-utilize the
resources. There is no such phenomenon with our algorithm that does not force phase-based
execution while still guaranteeing the congestion avoidance of the switch.

Moreover, the linear program and the phase-based scheduler from Berlińska and Drozdowski
always produces longer schedules than the linear system with our dynamic scheduler. The
maximal gain has been obtained for 151 nodes and is around 47%.

Figure 6.6 shows the time for resolution of the linear program and the time of the linear
system with respect to the configuration presented in Table 6.4. These measurements have
been conducted on a computer with an Intel core i5 processor at 2.40GHz and 3Go RAM. The
resolution of the linear program is done by lp_solve. The resolution of the linear system is
hard-coded into the simulator.

On this figure it can be sees that the resolution time of the linear program increase linearly
until 282 nodes, which means as long as αi < αi+1. Above this limit, the solver takes a lot more
time and does not always finds a solution. On this figure, every resolution that takes more than
10 seconds ended with a failure. The proposed linear system never required more than a few
tenth of seconds to find a partitioning that produce an efficient scheduling of the data transfers.

We tried to push the limits of this experiment until r = m = 1000. However, the failure rate
was above 90% when the number of processes is above 300, which makes the results insignificant.
Nevertheless, the linear system and its dynamic scheduler keep their asymptotic behavior.
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6.7.2 Varying the Number of Concurrent Transfer Limit

In the second experiment, the number of nodes is fixed, and the number of concurrent transfers
that do not induce congestion is increased. Figures 6.7 and 6.8 show respectively the execution
time and the resolution time of the linear program and the linear system.

It can be seen that the execution time induced by the linear program decreases by segments.
These discontinuity are due to the phase-based algorithm that can – sometime – eliminate a
phase when l increase. Our linear system with its dynamic scheduler results in continuously
decreasing makespan. Figure 6.8 shows that the time to resolve the linear program is still larger
and unstable. In a lot of cases exceeding several minutes, the resolution is even impossible. On
the other hand, the resolution time of the linear system is negligible.

6.8 Conclusion
These algorithms focus on optimizing the shuffle phase of a MapReduce application. For this,
a linear system with a dynamic transfer scheduler has been proposed. When compared to the
approach of Berlińska and Drozdowski based on a linear program and a static phase-based
scheduler, our approach shows that it produces shorter schedules, takes less time to compute in
addition to being more stable and with a better scalability.

However, this approach is only tested on simulator and not on a real hardware. And even
if the performance of lp_solve can be questioned with respect to the other linear program
solvers available. It is hardly conceivable that one of them can be faster than a solving a linear
system since solving a linear program is strictly harder than solving a linear system. Moreover,
there is no guaranty of performance comparison to an optimal solution or to a lower bound.
These issues are addressed in the next chapter when studying several alternative algorithms for
scheduling the shuffle phase alone.
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Chapter 7

Shuffle Phase Optimization

7.1 Introduction
Among the 3 phases of MapReduce, the reduce phase usually takes a negligible amount of time
compared to the two others. Most works [34, 35, 43, 45, 89] that try to optimize MapReduce
have mainly focused their efforts on the map phase, improving the data-computation locality,
computation balance between node, or fault tolerance. But, despite being an important phase,
the shuffle has been largely forgotten.

In order to optimize the performance / cost ratio, most MapReduce platforms run on mod-
erately high-end commodity hardware. With today’s technologies (as of 2013), common hard
disk drives can achieve a throughput of more than 170 MB/s on a 7200 rpm HDD. RAID con-
figurations and SSD drives can lead to much higher throughput. The CPU can also achieve a
high data throughput. For instance, a simple md5sum reading from a shell pipe can achieve a
throughput of 372 Mo/s. As most map tasks involve a much simpler computation than a md5,
it can be assumed that the CPU is not the bottleneck of a MapReduce application.

However, the network throughput is usually bound to 1 Gbps (or 125 MB/s) on commodity
hardware. From this, the time taken by the map phase is expected to be more or less or
equivalent to that of the shuffle phase if the map operation is optimized enough and generates
an amount of data of the same order of magnitude as its input data.

Network bandwidth can become a scarce resource on some platforms. Indeed, most non
high-end network equipments cannot guaranty that the overall sustained throughput would
be equal to the sum of the throughput of all its connected ports. Some previous work [72]
showed that when contention occurs in a LAN, the overall throughput drops because of the
delay needed by TCP to detect and retransmit the lost packets. Moreover, the well-known
Cisco System corporation also sells, for instance, 10 Gb Ethernet switches that do not provide
a backplane bandwidth equal to the sum of the bandwidth of all the ports. Thus it is asserted
that, in general, the overall bandwidth is limited.

7.2 Problem Description
In a MapReduce application, it is quite common that the mappers do not process the same
amount of data and that the map processes do not terminate at the same time. Thus, sharing
the bandwidth equally among the mappers (as the network stack would do by default) may lead
to a suboptimal bandwidth usage due to the mappers that finished later and those with more
intermediate data. How should the shuffle phase be managed to make it as quick as possible?

This chapter proposes and compares several algorithms to optimize the shuffle phase. Sec-
tion 7.3 review some works that try to optimize the shuffle phase in MapReduce. The models
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presented in Chapter 5 are analyzed to produce a lower bound on the duration of the shuffle.
Then, 6 algorithms are presented in Section 7.4.2. In Section 7.4.3 an algorithm to regulate the
bandwidth is presented, this part is actually used by 3 of the algorithms. Section 7.6 evaluate
the accuracy of the platform simulation, the regulation algorithms presented before and all the
6 algorithms under various conditions. And finally Section 7.7 conclude this work and propose
some ideas for further research.

7.3 Related Work

The previous work that investigated this problem have already been presented in Section 6.2
and are only briefly reminded here.

The LEEN [36] algorithm and HPMR [48] both try to balance the reduction partition in
order to avoid having one reducer that takes significantly longer than the others. As a result,
the duration of the transfers of the shuffle phase are also balanced. The approach taken is
however different. LEEN tweaks the partition function while HPMR acts on the input of the
map phase. Conversely, the Ussop runtime [46] reduces the amount of data sent during the
shuffle phase by processing the reduction on the node that has already most of the data locally.

And finally, Berlińska and Drozdowski modeled a MapReduce application using the divisible
load theory [90]. This leads to a linear program where the input data partitioning and some
parameters of a static transfer schedule for the shuffle phase can be optimized to reduce the
total time.

7.4 Shuffle Optimization

7.4.1 Model Analysis

Variable Unit Description
σ B/s Switch bandwidth.
C B/s Link bandwidth.
l l = σ/C Ratio between switch and link bandwidth.
m Number of mapper processes.
r Number of reducer processes.
Si s Delay between the start of the first and the i-th mapper .
ζi B Amount of data produced by mapper i.
V B V =

∑
ζi Total amount of data to transfer.

ζi,j B ζi =
∑
ζi,j The amount of data to be sent from mapper i to reducer j.

Table 7.1: Summary of the variables of the model.

From the models given in Chapter 5 some properties can be derived which may prove useful
regarding the optimization of the duration of the shuffle phase. Namely, a sufficient condition
of optimality for a transfer scheduling algorithm can be defined, as well as a lower bound for the
duration of the shuffle phase. As a reminder, Table 7.1 summarizes the notations and variables
of the models used. Please pay attention to the variable V that here refers to the total volume
of data to transfer and not to the amount of data to process as it was the case in Chapters 5
and 6.
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7.4.1.1 Sufficient Conditions of Optimality and Lower Bound

As a metric, what we try to optimize is the time between the start of the first transfer and the
end of the last transfer. Indeed, in the general case, a reduce task cannot start before all the
data are available. Thus, all the reduce tasks starts almost at the same time, which is the end
of the shuffle phase.

Sufficient condition From the chosen models in Chapter 5, we can derive a few properties of
an optimal algorithm. It would be trivial to prove that an algorithm that uses all the available
bandwidth from the beginning to the end of the shuffle phase would be optimal, which means
that all the transfers would have to end at the same time. This is not a necessary condition for
an algorithm to be optimal since, in some cases, these requirement cannot be met. But this is
sufficient to make an algorithm optimal. See Figure 7.1 for a representation of the bandwidth
usage through time of the case that fulfill the sufficient condition.

Lower bound This sufficient condition allows to compute a lower bound of the shuffle dura-
tion. This lower bound is divided in two parts. The first part t1 is when the overall bandwidth
is limited by the number of nodes transferring with a bandwidth C. The second part t2 is the
period when the bandwidth is actually limited by the switch to σ octets per second.

S2

S3

t1 t2
t

Figure 7.1: Lower bound calculation based on the bandwidth usage.

t = t1 + t2

t1 = Sl

t2 =
V − C

l−1∑
i=1

(Sl − Si)

σ

As a special case when Si+1 = Si + ∆S ∀i ∈ [1..l − 1], t2 can be simplified further. This
case is the one we had in the experiments presented in Section 7.6.4 and Section 7.6.6 and the
following formula is the one used as lower bound for comparison.
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t1 = ∆S(l − 1)

t2 =
V − C

l−1∑
i=1

i×∆S

σ

=
V − C ×∆S

l−1∑
i=1

i

σ

= V

σ
− C ×∆S × l(l − 1)

2σ

= V

σ
− C ×∆S × l(l − 1)

2× l × C

= V

σ
− ∆S(l − 1)

2

Then the expression of t simplifies also.

t = t1 + t2

= ∆S(l − 1) + V

σ
− ∆S(l − 1)

2

= V

σ
+ ∆S(l − 1)

2

This lower bound can be interpreted as the optimal time to transfer all the data through the
switch plus a term that represents the non-full usage of the bandwidth during the start of the
shuffle. It should be noted that this lower bound do not depend on the individual intermediate
data size ζi, it only depends on the total amount of intermediate data and on the network
characteristics.

7.4.2 Algorithms

In order to try to maximize bandwidth usage during the shuffle phase, several algorithms are
evaluated. The first one is the simplest algorithm we could imagine, and probably the one
implemented in every framework. It just starts every transfer as soon as the intermediate data
are available. Then two discrete algorithms that are either based on a partial order of the
transfers or on two ordered lists are presented. And eventually, three algorithms based on
bandwidth regulation are presented. They only differ on the way the bandwidth is allocated to
every transfer.

7.4.2.1 Start-ASAP Algorithm

As reference, the simplest algorithm considered is that which consists in starting every transfer
as soon as the intermediate data are available. It thus relies on the operating system to share
the bandwidth between every transfer from a single node. On average, the system shares the
bandwidth equally among the transfers. It also relies on the switch to share the bandwidth
fairly among the nodes it interconnects in case of contention.
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7.4.2.2 Order-Based Algorithms

The second algorithm is the one proposed in Section 6.6. This algorithm was designed to work
with the partitioning algorithm presented in Section 6.5, but this part is left out here and
the transfer scheduling algorithm only is evaluated. As a reminder, this algorithm orders the
transfers in a kind of grid and only start a transfer when the other transfers it depends on are
finished.

7.4.2.3 List-Based Algorithm

In order to overcome the limitations of the order-based algorithm, it has been decided to break
the dependencies defined by Constraints (6.1) and (6.2) between transfers, and allow to reorder
them. However, constraints remain that there must never be two transfers at the same time
from a single mapper (7.1) or toward a single reducer (7.2) as this would create some contention
and degrade the performance.

start(i, j) ≥ end(i, j′) ∨ end(i, j) ≤ end(i, j′) ∀i ∈ [1..m], j, j′ ∈ [1..r], j 6= j′ (7.1)
start(i, j) ≥ end(i′, j) ∨ end(i, j) ≤ end(i′, j) ∀i, i′ ∈ [1..m], j ∈ [1..r], i 6= i′ (7.2)

New transfer

Current transfers (l max.)

M8 M9 M10 M11 Mappers list

M7

R7 R8 R10 Reducers list

R9

M1 R1

M2 R3

M3 R5

M4 R2

M5 R4

M6 R6

Figure 7.2: Overview of the list-based algorithm.

Algorithm In order to fulfill Constraints (7.1) and (7.2) this algorithm handles the reducers
in a list from which a reducer will be taken from and associated to a mapper to form a couple
that represents a transfer. Figure 7.2 show an overview of the way this algorithm work. When
a mapper is ready to run a transfer, the algorithm iterates through the list and take the first
reducer that the current mapper has not transfered its data to, yet. Once found, the reducer is
removed from the list. This reducer will be put back to the end of the list when the transfer is
finished, allowing another mapper to transfer its data to this reducer . Thus, this list of reducers
will be kept ordered by the time their last transfer finished.

It may happen that for a given mapper there is no reducer it has not already transfered its
data. In that case, another mapper may be waiting for a transfer, and it is given a chance to
start a transfer with the same method. Thus the mappers are handled in another list. When
there are less than l transfers running at the same time, the first element of the mappers list is
taken and the algorithms search for a reducer to run a transfer to from this mapper as previously
described. If no reducer can be found, the next mapper in the mapper list is taken, and so on.
When a mapper has been found, it is removed from the list. And when a mapper finished its
transfer, it is put back in the list if it has not finished all its transfers. But, it is inserted in the
list so that the list is ordered by the number of transfers left to be started for every mapper .
The more a mapper has transfers to run, the earliest it is in the list.
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More formally, that means that there are two lists named ml and rl. ml is empty in the
beginning and will contain only the id of the mappers that finished their map computation and
still have some intermediate data to transfer. ml is assumed to be automatically ordered by
the number of remaining transfers, like a priority queue. rl contains the id of every reducer at
the beginning, and is only ordered by the fact that the reducer id will be always be enqueued
at the end. Algorithm 2 defines a function transfer_choice that returns a pair of mapper
and reducer representing the transfer to be started. This procedure makes explicit the way a
transfer is chosen among the remaining transfers.

Algorithm 2 List-based transfer scheduling algorithm.
1: function reducer_choice(i)
2: for all j ∈ rl do
3: if i has some data to transfer to j then
4: rl← rl \ {j}
5: return j
6: end if
7: end for
8: return ∅
9: end function

10: function transfer_choice
11: for all i ∈ ml do
12: j ←reducer_choice(i)
13: if j 6= ∅ then
14: ml← ml \ {i}
15: return (i, j)
16: end if
17: end for
18: return ∅
19: end function
20: procedure start_transfers
21: t←transfer_choice
22: while t 6= ∅ and the number of concurrent transfers ≥ l do
23: start transfer t
24: t←transfer_choice
25: end while
26: end procedure
27: when mapper p finishes its computation
28: ml← ml ∪ {p}
29: start_transfers
30: end when
31: when Transfer p→ q finish
32: if p still have some data to transfer then
33: ml← ml ∪ {p}
34: end if
35: rl← rl ∪ {q}
36: start_transfers
37: end when
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Limitations Although we expect this algorithm to perform better than the order-based algo-
rithm, some corner cases may still remain. Indeed, it may happen a mapper finishes a transfer
and no other transfer can start because all the reducers that have data to receive are already
managing another transfer. Thus leading to a suboptimal usage of the bandwidth. We can
expect that this situation is more common when l is almost as large as r. Indeed, when l is
close to r, most reducers will be involved in a transfer at any given time, thus reducing the
possible choice for a target reducer .

7.4.2.4 Per-Process Bandwidth Regulation

Unlike the previous discrete algorithms, we also propose three algorithms based on the band-
width regulation of every data transfer. The idea behind those comes from the sufficient condi-
tion of an optimal algorithm that either uses all the bandwidth of the switch or all the bandwidth
it can use on the links use and that makes all the transfers finish at the exact same time.

For this, we assume that for a given data transfer, a given bandwidth can be maintained.
We also assume that this bandwidth can be modified dynamically. The way we achieved this
is explained in Section 7.4.3. We first propose an algorithm based on a per-process bandwidth
regulation.

This first algorithm divides the switch bandwidth σ among the mapper processes. The
amount of bandwidth allocated to a given mapper is computed so that its transfer will finish
at the same time as the others.

Model addition For this algorithm, the models described in Chapter 5 and reminded in
Table 7.1 need to be completed. Every mapper is assumed to have the same amount of data to
transfer to every reducer process.

ζi,j = ζi
r
∀j ∈ [1..r] (7.3)

ready(t) is the set of mapper processes that have finished their computations and have not
yet finished to transfer their intermediate data at a date t. βi,j(t) is the bandwidth allocated to
the transfer frommapper i to reducer j at a date t, and βi(t) =

∑
βi,j(t) the bandwidth allocated

to a given mapper process i. And because of assertion (7.3), we also have βi,j(t) = βi(t)/r. Is
also define ζi(t) the amount of intermediate data a ready mapper i still have to transfer to the
reducers at a date t.

Algorithm βi(t) can be computed by solving the following system.

ζi(t)
βi(t)

= T ∀i ∈ ready(t) (7.4)∑
i∈ready(t)

βi(t) = σ (7.5)

The system (7.4) – (7.5) can be reformulated as follows.

ζi(t)
βi(t)

= ζj(t)
βj(t)

∀i ∈ ready(t) ∧ any j ∈ ready(t) ∧ i 6= j∑
i∈ready(t)

βi(t) = σ
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And then as:

ζi(t)βj(t) = ζj(t)βi(t) ∀i ∈ ready(t) ∧ any j ∈ ready(t) ∧ i 6= j (7.6)∑
i∈ready(t)

βi(t) = σ (7.7)

The later is clearly a linear system that can be solved in linear time with the number of mappers
O(m). However, a trivial solution exists to this system. Let’s write V (t) =

∑
i∈ready(t)

ζi(t) as a

shorthand. Then a solution is:

βi(t) = σ
ζi(t)
V (t) ∀i ∈ ready(t)

The verification of this solution is quite simple. The solution for βi(t) can be replaced in
Equation (7.4) and it can be seen that the value doesn’t depend on i.

ζi(t)
βi(t)

= ζi(t)
σ ζi(t)
V (t)

= ζi(t)V (t)
σζi(t)

= V (t)
σ

Similarly, the value for βi(t) can be replaced in the left hand side of Equation (7.5) and it
can be seen that it is equal to σ as expected.

∑
i∈ready(t)

βi(t) =
∑

i∈ready(t)
σ
ζi(t)
V (t)

= σ

V (t)
∑

i∈ready(t)
ζi(t)

= σ

V (t)V (t)

= σ

Solving the linear system (7.6) – (7.7) may lead to a process bandwidth being greater than
the link bandwidth βi(t) > C, which could not be supported by the hardware. It is then possible
to truncate the bandwidth to C and redistribute the remaining bandwidth among the remaining
ready mapper processes. This is more precisely describe in Algorithm 3.

In this algorithm, E, E′, τ , and γi are only used as temporary storage. ready(t) and σ are
the input, and βi(t) is the output. As previously said, every iteration of this algorithm runs
in time O(m). This can be seen in Algorithm 3 on Lines 4 to 7. And since the set E holds
a maximum of m elements in the beginning and is reduced by at least one element on every
iteration, that means that a maximum of m iterations may be needed. Thus this algorithm
have an overall worst-case complexity of O(m2). It should be noted that when the bandwidth
of a mapper process i is reduced to C, it means that this process will not be able to complete
its transfers at the same time of the others. In this case, this algorithm may not be optimal. A
sufficient condition for this algorithm to be optimal can thus be determined.
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Algorithm 3 Per process bandwidth distribution.
1: E ← ready(t)
2: τ ← σ
3: repeat
4: γi ← τ ζi(t)

V (t) ∀i ∈ E
5: E′ ← {i|i ∈ E ∧ γi > C}
6: βi(t)← C ∀i ∈ E′
7: E ← E \ E′
8: τ ← τ − C |E′|
9: until E′ = ∅

10: βi(t)← γi ∀i ∈ E

Sufficient condition of optimality. From the sufficient condition of optimality presented in
Section 7.4.1.1, this algorithm is optimal as long as it can make all the transfers end at the same
time. It will make the transfers end at the same time from the point there is enough contention
for the bandwidth of all the mapper process to be less than C. A necessary condition for this
to happen is that every transfer is long enough to not terminate before the last transfer starts,
which means ζi

C > Sm−Si. And that at the date t = Sm the remaining intermediate data must
be distributed so that no process bandwidth is greater than C.

σ
ζi(Sm)
V (Sm) < C ∀i ∈ [1..m]

Limitations As this algorithm assume that a given mapper process has the same amount of
intermediate data to transfer to every reducer (7.3), the bandwidth computed for every process
is divided evenly among the transfers βi,j = βi/r. However, in reality, assertion (7.3) will rarely
be met, and despite the bandwidth control, the transfers from the same mapper may not all
progress at the same speed, thus introducing more imbalance and degrading the performance.

7.4.2.5 Per-Transfer Bandwidth Regulation

The second algorithm is very similar to the previous one. The main difference is that it tries to
address the limitation of setting the same bandwidth to every transfer from a given process by
computing a bandwidth for every transfer, thus removing Assertion (7.3).

Model addition The model and notation here are mostly the same as the previous algorithm.
ready(t) is the set of couple (i, j), i being a mapper which finished its computation, and j being
a reducer . ζi,j(t) is the amount of intermediate data the ready mapper i has to transfer to the
reducer j at a date t. And βi,j(t) the bandwidth allocated to the transfer from the ready mapper
i to the reducer j at a date t.

Algorithm The bandwidth of transfers βi,j(t) can be computed by solving the following
system.

ζi,j(t)
βi,j(t)

= T ∀(i, j) ∈ ready(t) (7.8)∑
(i,j)∈ready(t)

βi,j(t) = σ (7.9)
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The system (7.8) – (7.9) can be reformulated as follows.

ζi,j(t)βk,l(t) = ζk,l(t)βi,j(t) ∀(i, j) ∈ ready(t) ∧ any (k, l) ∈ ready(t) ∧ (i, j) 6= (k, l)∑
(i,j)∈ready(t)

βi,j(t) = σ

This linear system can be solved in time O(m × r). The trivial solution to the linear
system of the previous algorithm can be adapted to this one. Let’s redefine a shorthand V (t) =∑
(i,j)∈ready(t)

ζi,j(t). Then a solution is:

βi,j(t) = σ
ζi,j(t)
V (t) ∀(i, j) ∈ ready(t)

This direct solution may, again lead to some bandwidth being greater than the link band-
width. It can be truncated in a similar way as previously, as shown is Algorithm 4.

Algorithm 4 Bandwidth calculation of the per-transfer bandwidth regulation algorithm.
1: E ← ready(t)
2: τ ← σ
3: repeat
4: γi,j ← τ

ζi,j(t)
V (t) ∀(i, j) ∈ E

5: E′ ← {(i, j)|(i, j) ∈ E ∧ γi,j > C}
6: βi,j(t)← C ∀(i, j) ∈ E′
7: E ← E \ E′
8: τ ← τ − C |E′|
9: until E′ = ∅

10: βi,j(t)← γi,j ∀i ∈ E

Since E may contain every couple of mapper and reducer , its maximal size is m× r. Thus,
every iteration runs in time O(m× r) because of Lines 4 to 7. And because at least one couple
is removed from E at every iteration, this whole algorithm has a time complexity O(m2r2) in
the worst case.

Limitations This algorithm has two main limitations. The first one is that, although it takes
into account the capacity of the network links, it does not take into account that several transfers
occur at the same time from a given process or toward a given process. Thus, even if every
transfer bandwidth βi,j(t) is less than the capacity of the link C, the sum of the bandwidth
of all the transfers of one process may be greater than C. A consequence of this, is that the
bandwidth of the switch σ may not be reached because the bandwidth throttled by the network
interface cannot be allocated to the other transfers. The second limitation is the scalability of
this algorithm. If m = r, the complexity of this algorithm is O(m4) which is not acceptable.

7.4.2.6 Two Phases Per-Transfer Regulation

A mix of both above regulation-based algorithms should be able to overcome most of the
limitations. The idea of this third algorithm is to compute the bandwidth with the per-process
bandwidth regulation algorithm, and then distribute it according to the amount of intermediate
data of every transfer, instead of allocating it evenly. This algorithm is expected to never allocate
too much bandwidth to a given mapper process and make all the transfers of all the mappers
finish at the same time.
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Model addition Similarly to the previous algorithms ready(t) is the set of mapper processes
that have finished their computation but not the transfer of their intermediate data. βi,j(t) is the
bandwidth allocated to the transfer from mapper i to reducer j at a date t, and βi(t) =

∑
βi,j(t)

the bandwidth allocated to a given mapper process i. ζi(t) is also the amount of intermediate
data a ready mapper i still have to transfer to the reducers at date t. And ζi,j(t) the amount
of data still to be transfered from mapper i to reducer j.

Algorithm The first phase of this algorithm is exactly Algorithm 3 that computes values for
βi(t). The second phase applies a very similar algorithm for every process in order to distribute
the bandwidth among the transfers. Algorithm 5 shows whole algorithm. Lines 1 to 10 come
from the per-process bandwidth regulation algorithm, it computes βi(t) from ζi(t), V (t), σ and
ready(t). The second phase spans across Lines 11 to 13. It takes values for βi(t) as input and
produce values for βi,j(t) as output.

Algorithm 5 Bandwidth calculation of the two-phases bandwidth regulation algorithm.
1: E ← ready(t)
2: τ ← σ
3: repeat
4: γi ← τ ζi(t)

V (t) ∀i ∈ E
5: E′ ← {i|i ∈ E ∧ γi > C}
6: βi(t)← C ∀i ∈ E′
7: E ← E \ E′
8: τ ← τ − C |E′|
9: until E′ = ∅

10: βi(t)← γi ∀i ∈ E
11: for i ∈ ready(t) do
12: βi,j(t)← βi(t) ζi,j(t)

ζi(t) ∀j ∈ E
13: end for

The worst-case complexity of the first phase is O(m2) just like the per-process regulation
algorithm. The complexity of the second phase is O(m× r) because the loop iterates m times,
and every iteration has O(r) operations to perform. The complexity of the full two-phases
algorithm is then O(m2 +m× r). The second phase can be distributed and every mapper can
distribute its allocated bandwidth βi(t) on its own. Thus reducing the worst-case complexity
of the whole algorithm to O(m2 + r).

Limitations Although this algorithm prevents any contention on the switch or on the private
links of the mappers, contention may happen on the reducers side. Indeed, nothing prevents
several mappers from sending some data to the same reducer with a bit rate sum greater than
the bandwidth of its private link.

7.4.3 Point-to-Point Bandwidth Regulation

The regulation-based algorithms assume that it is possible to regulate the bandwidth of every
transfer and to change the target bandwidth at any moment. However, this is not an immediate
task since, in the end, only packets can be sent over the network. Our regulation algorithms
raise two main challenges regarding this issue. The first one is about actually limiting the
average bandwidth to a given value. The second challenge is about dynamically modifying
the bandwidth at any time and any given number of times while still guarantying that the
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average bandwidth is the one requested. Some work exists on the topic [91, 92, 93], however,
most of them focus mainly on only maintaining an average bandwidth. Moreover, it was pretty
straightforward to implement in our own framework.

7.4.3.1 Limiting the Average Bandwidth

The first step is to limit the average bandwidth. The algorithm we used for this is quite simple.
The amount of data that has been sent is accumulated, and after a chunk of data have been
sent, the execution is suspended for a certain duration.

The sleep duration is computed so that the average bandwidth from the beginning of the
transfer to that date is exactly the average bandwidth wanted. So if t0 is the date the whole
transfer started, d is the total amount of data sent, and β is the wanted bandwidth, then, the
execution will be suspended until the date t1 = t0 + d

β . Algorithm 6 shows a pseudo code for
this algorithm. This algorithm is independent from the size of the chunk of data. However, as
it is shown in Section 7.6.2.2 on a real computer, the size of the chunk may have an impact on
the performance.

Algorithm 6 Simple regulation of a point to point bandwidth.
1: t0 ← now()
2: d← 0
3: for chunk ∈ data do
4: send(chunk)
5: d← d+ size(chunk)
6: sleep_until(t0 + d

β )
7: end for

As long as every send happens at a bandwidth greater than β, it is a direct consequence
that this algorithm will guaranty the average bandwidth (from t0 to the end) to be β. However,
it can also proved that between two iterations, the average bandwidth is also β. Indeed, let’s
name ti the date at the end of the i-th iteration and di the value of d at the date ti. Then an
expression for the date ti can be written and the time taken by one iteration can be computed.

ti = t0 + di
β

ti+1 − ti =
(
t0 + di+1

β

)
−
(
t0 + di

β

)
ti+1 − ti = di+1

β
− di
β

ti+1 − ti = di+1 − di
β

Thus, the time taken by the i+ 1-th iteration is exactly the time that would be needed to send
the i+ 1-th chunk of data at a bandwidth of β octet per second.

7.4.3.2 Run Time Setting of the Bandwidth

The second step is to make it work with β being variable through the time, making it a function
of the time β(t). The easiest solution of atomically resetting t0 to now() and d to 0 could
produce undesirable effects. If it is chosen to not interrupt the sleep_unitl, then the average
bandwidth would not be equal the average of β(t) because Algorithm 6 may sleep too long if
the target bandwidth has been suddenly raised. Conversely, interrupting the sleep_until call
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and continuing the execution would always produce another send to happen. Which can may
compromise the regulation if the target bandwidth is changed often.

Another approach is to lie to Algorithm 6 by setting a fake value for t0 named t′0. A value
that would lead it to make the average real bandwidth to be equal to the average value of β(t)
while still guarantying that when β is not modified, the target bandwidth is maintained.

Let’s consider a scenario where from t0 to tx the target bandwidth is β1 and from tx to ty the
target bandwidth is β2. dx bytes are transfered between t0 and tx. And dy bytes are transfered
between t0 and ty. At tx the value of t0 change to be t′0, hence ty = t′0 + dy

β2
. Then, solve for t′0

the equation between the average real bandwidth and the average of the wanted bandwidth.

dy
ty − t0

= β1 (tx − t0) + β2 (ty − tx)
ty − t0

dy = β1 (tx − t0) + β2 (ty − tx)

dy = β1 (tx − t0) + β2

(
t′0 + dy

β2
− tx

)
dy = β1 (tx − t0) + β2t

′
0 + dy − β2tx

t′0 = β1 (tx − t0)− β2tx
−β2

t′0 = tx − (tx − t0) β1
β2

It is really interesting to remark that this value of t′0 does not depend on any di nor on ty.
This means that this new value for t0 can be computed at the date tx when the target bandwidth
is actually changed. Then, the sleep of Algorithm 6 can be interrupted and restarted with the
new values for β and t0.

This result can actually be understood intuitively by picturing a graph of the wanted band-
width through time. Figure 7.3 shows how evolves during the time t, the past and foreseen
bandwidth usage. In dark blue is the past bandwidth usage as pictured by the model, and in
light blue is how the bandwidth should be used if nothing changes in the future. In Figure 7.3(a)
the bandwidth limit is set at β1, while, in Figure 7.3(b) the bandwidth limit is set to β2 at the
date tx. The total blue area (proportional to the amount of data) is the same in both cases.

t
timet0

bandwidth

β1

(a) Before target bandwidth change.

tx t ty
timet0

bandwidth

β1

β2

(b) After target bandwidth change.

Figure 7.3: Schema of bandwidth usage past and foreseen.

When computing a fake value for t0 what really happens is that a fake shape is with the
same surface as before but, with a height (a bandwidth) equal to the new bandwidth. Figure 7.4
shows an example of what could happen. This allows to remove any reference to the previous
bandwidth as well. Given this, it can easily be seen that this technique will work for more than
one bandwidth update.
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t0′ tx t ty
timet0

bandwidth

β1

β2

Figure 7.4: Schema of the calculated t0′ .

7.4.3.3 Precision Improvement

As the three regulation-based algorithms rely on a continuous data transfer while the data
are actually sent by chucks. Providing them with the amount of data really transfered may
lead to wrong bandwidth calculation. Indeed, reporting that a chunk of data has been fully
transfered while a sleep is currently smoothing the consumed bandwidth, break the assumption
that the transfer is continuous. This can lead the regulation-based algorithm to compute a
wrong bandwidth.

That is why the remaining data size reported is interpolated as follow. With tx being the
date when the remaining size is asked, and r the amount of data actually reported.

r = ζi,j − βi,j (tx − t0)

7.5 Implementation Details
All those algorithms are implemented in HoMR. HoMR is our HOme-made MapReduce. It is
written in C++ under the scope of the ANR project MapReduce. It is built from software
components, based on the L2C low-level component model. The low-level component assembly
is generated from a high-level component model HLCM [19]. This allows to easily swap any
component implementation with another variant. This is used to test several shuffle schedulers
and to replace the word reader with a word generator.

The transfer scheduler components are implemented in an even-driver way. Every time
a computation or a transfer finishes, a method of the transfer scheduler is called. In every
such event the three regulation-based schedulers recompute the new bandwidth allocated to the
processes or to the transfers. In a perfect world, there is no need to recompute the bandwidth
allocation out of these events. However, it does not cost anything more than an O(m×r) packets
exchange to recompute the bandwidth allocation when no even have been received during a few
seconds. In our regulation-based transfer schedulers, the bandwidth allocation is recomputed
after 5 seconds of idle.

The bandwidth regulator presented in Section 7.4.3 uses 4 threads to send the data. This
helps improve the maximal bandwidth that can be reached. This number of thread has been
determined by running a few tests by hand, increasing the number of threads until it no longer
improve the maximal bandwidth. The same behavior has been observed with iperf which show
a maximal throughput for 4 client threads.

7.6 Experiments
In order to test these algorithms, a few experiments have been performed on the Grid’5000
experimental testbed, first to ensure the environment behave as expected, and second to compare
the 6 algorithms presented in this document.
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7.6.1 Platform Setup

The model assumes that the platform is a switched star-shaped network with a limited band-
width on the switch. And the whole point of the algorithms is to control the bandwidth used
during the shuffle phase. Thus, in order to evaluate these algorithms in the case of several
switch bandwidth limit configurations, a switch is simulated by the mean of a node dedicated
to routing packets and all other nodes configured to route packets through this node. However,
as all the nodes are physically connected to a real switch, the ICMP redirect mechanism had
to be disabled to ensure that every packet sent over the network really go through the node
designated as the router.

This may not be an optimal simulation of a switched network since the routing mecha-
nism implies a store-and-forward method of forwarding the packets, instead of a cut-through as
most switches do. However, we believe that this does not have a big effect on the measured
throughput. This allow to easily control the overall bandwidth available on that routing node.

As all the packets have to go through the network interface of the router node twice, a fast
network is needed in order to simulate a switch with a throughput greater than 1 Gbps. Thus,
InfiniBand 40G interfaces are used with an IP over InfiniBand driver for the ease of use. The
bandwidth of the router is controlled with the Linux tc tool. The performance behavior and
limit of this setup has been tested and the results are shown in Section 7.6.2.1. As the network
is based on fast network interface controllers (NIC), the bandwidth of the private links is also
limited to 1 Gbps with tc. The tc rules used to limit the bandwidth are the same on the router
and on the compute nodes. They are based on the Hierarchical Token Bucket (HTB) method
to limit the outgoing bandwidth and on the default algorithm to limit the incoming bandwidth.
The operating system of the nodes is Debian wheezy with Linux 2.6.32 as a kernel.

The hardware used is the Edel cluster on Grid’5000. Every node on this cluster has two
quad-core CPUs Intel Xeon E5520 @2.27 GHz. Every node is equipped with 24 GB of memory,
1 Gigabit Ethernet and 1 InfiniBand 40G cards. On this hardware, a latency of 0.170 ms has
been measured on average on a direct point to point ping using the Gigabit Ethernet NIC. A
latency if 0.315 ms is also measured using the above-mentioned routed network setting on the
InfiniBand NIC.

7.6.2 Preliminary Tests

7.6.2.1 tc Regulation on Router

In order to test whether the bandwidth can be limited correctly on the router, a setup with 2
nodes plus a router node is used. Only the router node has a limited bandwidth, and iperf is
run on the two other nodes to measure the actual bandwidth.

The bandwidth limit is set with tc from 100 Mbps up to 12 Gbps by steps of 100 Mbps.
And the actual bandwidth is measured with iperf with 4 parallel clients threads on the client
side. Every measure is run 5 times to estimate the variability.

Figure 7.5 shows the results of this experiment. Globally, it can be seen that the measured
bandwidth follows an almost linear trend which corresponds to roughly 90% to 95% of the
target bandwidth. This trend continues until the maximal bandwidth the system can support
is reached. Also, the measures are quite stable as the difference between the maximal and
minimal measured bandwidth never exceeds 0.28 Gbps or 8% of the average bandwidth.

However, some steps are clearly distinguishable around 5 Gbps and from 6.5 to 8 Gbps.
During these steps, increasing the bandwidth limit with tc does not increase the actual band-
width. As the result is surprising, it has been re-executed on another cluster with InfiniBand
20G network adapters, and we see that the same result happen. We have no real explanation
for that. The experiment has also been tried with a Linux 3.2.0 with a Debian Wheezy, the
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Figure 7.5: Bandwidth limitation on Linux + tc on InfiniBand.

results (not shown here) are completely different and show a greater variability. Thus, we think
that this is a performance bug in Linux.

In order to still get the wanted bandwidth, the data from Figure 7.5 are used to find a setting
bandwidth that would result in an actual bandwidth being close to the target one. For instance,
to get an actual bandwidth of 5 Gbps, the bandwidth limit set with tc is 5.994 Gbps. Since
for the real experiments the bandwidth limit will vary by 1 Gbps steps, the value for only 10
target bandwidth have to be found. Figure 7.6 shows the bandwidth measured with iperf when
using to the corrected setting bandwidth. It can be noted that the average actual bandwidth
is remarkably accurate with respect to the setting bandwidth. The only deviations that can
be noted happen for a target bandwidth of 7, 8 and 10 Gbps. Those points corresponds to
the biggest steps in Figure 7.5 and to the maximal reachable bandwidth. For those points, the
drift could not be completely compensated. Those outliers show a bandwidth still greater than
90% of the target bandwidth. Except from those 3 points, all others show an actual bandwidth
between 96% and 103% of the bandwidth wanted.

7.6.2.2 Bandwidth Regulation

The second base block on which these algorithms rely on is the ability to regulate the bandwidth
at the application level. The method used for this is described in Section 7.4.3.

To check whether this performs correctly, an experiment is set up with only two nodes
interconnected by an InfiniBand 40G network. Then the size of the messages is varied from
4 bytes to 64 MB and the target bandwidth from 1 KB/s to 1 GB/s and the overall average
bandwidth is measured. Each measure is repeated 10 times.

Figure 7.7 shows a 3D plot of the results of this experiment. It shows the actual bandwidth
with respect to the message size and to the desired bandwidth. Some points are missing in
the result because sending a large amount of data at a very low bandwidth would require too
much time. The colors represent the percentage of variability. Figure 7.8 represents the same
information under the form of a contour plot.

The black plan on Figure 7.7 shows that when the required bandwidth is small enough and
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Figure 7.8: Bandwidth regulation test, contour plot.

the block size is big enough, the bandwidth regulation system is able to maintain the desired
bandwidth with a pretty good accuracy. However, when the message size is too small, the
system becomes CPU bound and cannot send enough data to reach the desired bandwidth.
And because this case is CPU bound, a variability of 0.5% to 1% can be seen. Finally, when the
messages are large enough and the required bandwidth is high enough, the system reaches the
limit of the network interface and become IO bound. Thus our bandwidth regulation component
works as intended.

7.6.3 Synchronous Transfer Start

The first experiment with our algorithms is simple and all other experiments are only variations
of this one. The job that is run is a word count. However, for the sake of simplicity and control,
the data are not read from a file, they are generated by a component WordGenerator. This
allows to control the amount of intermediate data produced. In order to control the time at
which the map computations end, an artificial synchronization barrier is added. This allows for
an evaluation of the behavior of the shuffle phase.

For this first experiment all the map computations finish at the exact same time and every
mapper have the same amount of intermediate data. Every mapper process generates 2.56 GB
of intermediate data. The same amount of data has to be sent to every reducer . The router’s
bandwidth is then varied from 1 Gb/s to 10 Gb/s and the time taken from the start of the first
transfer to the end of the last transfer is measured. This duration is then compared to the lower
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bound. This experiment is run with 10 mappers and 10 reducers. Every configuration is run 5
times.
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Figure 7.9: Median time taken by all the 6 algorithms under various bandwidth restrictions
with same amount of data and synchronous start of transfers.

Figure 7.9 shows the result of this experiment in terms of percentage to the lower bound. As
every measure has been made 5 times, the median time is represented on this figure. Figure 7.10
shows the variability of the measures in candle sticks.

The result for the discrete algorithms (Order alg. and Lists alg. on the figure) is close
to what was expected. The result for the order-based algorithm increases on Figure 7.9, not
because it takes more time as the bandwidth of the switch increase, but because it does not
decrease as fast as the lower bound. The time needed before the maximal number of concurrent
transfers can run simultaneously become less and less negligible as the overall allowed number
of concurrent transfers increase. The lists-based algorithm show a behavior close to the optimal.
The only performance degradation occurs for a switch bandwidth of 7 Gb/s and 10 Gb/s. Those
configuration, as of Figure 7.6 are known not to offer the actual bandwidth wanted.

The per-process regulation algorithm, per-transfer regulation algorithm, and the reference
algorithm behave similarly for the same reasons. They create contention at some point, thus
losing some packets creating a latency. The per-process regulation algorithm is not supposed
to generate any contention for this experiment. The cause of this is unknown. However, the
instantaneous egress bandwidth of the switch (not shown here) shows that those 3 algorithms
can reach the bandwidth actually set with tc by running some transfers from several nodes at
the same time. While the tc skew correction has been tested only for several transfers from the
same node with iperf.

The 2 phases regulation algorithm shows an good behavior for a switch bandwidth less or
equal to 8 Gb/s. Above that limit it creates contention and exhibits a behavior as bad as the
reference algorithm. Also, for 7 Gb/s, this algorithm produces a peak of bad performance. This
can be interpreted as a high sensitivity to the setting of the switch bandwidth. If the switch
bandwidth is overestimated, the 2 phases algorithm creates contention which leads to a very
bad performance. While if it is underestimated, the switch would never be used at its maximal
capacity.
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Figure 7.10: Variability of the time taken by all the 6 algorithms under various bandwidth
restrictions with same amount of data and synchronous start of transfers.

7.6.4 1 Second Steps Between Computation End

The second experiment is very similar to the previous one. Only a one-second delay between
the end of every map computation has been added, thus creating a slight imbalance among the
mapper process.

Figure 7.11 shows the result of this experiments in terms of percentage to the lower bound.
The discrete algorithms show a similar behavior as the previous experiment. However,

the order-based algorithm shows a slightly better behavior: its distance to the lower bound
increases slower. This is due to the time taken to gain parallelism among the transfers that
is partially compensated by the 1 second steps between the computation end. The reference
algorithm also shows a better performance. This is due to the fact that in the beginning and
in the end, not all the mappers are transferring data, thus there is less contention and less
performance degradation. The global behavior of the list-based and two-phases algorithms
remain the same. However the two-phases algorithm appear to be super-optimal by up to 5%
for some configurations. The cause is not very clear. It is supposed to be caused by tc that is
not very accurate to limit the bandwidth from several sources.

7.6.5 Synchronous Transfer Start with Heterogeneous Amount of Data

For the third experiment, all the mappers finish their computation at the same time, but all
the mapper do not have the same amount of intermediate data. The amount of intermediate
data for each mapper is 2.56 GiB plus (i− 1)× 64 MiB, i being the id of the mapper process,
ranging from 1 to m. As previously, we expect the smarter algorithms to perform better.

The results of this experiments presented in Figure 7.13 show similar results as the previous
experiment. Variability is shown in Figure 7.14.
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Figure 7.11: Median time taken by all the 6 algorithms under various bandwidth restrictions
with same amount of data and 1 second step between transfer start.
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Figure 7.13: Median time taken by all the 6 algorithms under various bandwidth restrictions
with various amount of data and synchronous start of transfers.
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Figure 7.14: Variability of the time taken by all the 6 algorithms under various bandwidth
restrictions with various amount of data and synchronous start of transfers.
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7.6.6 1 Second Step Between Transfer Start with Heterogeneous Amount of
Data

And finally, the fourth experiment combines the delay before starting the transfers and the
imbalance of the amount of intermediate data.
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Figure 7.15: Median time taken by the 6 algorithms under various bandwidth restrictions, with
an imbalanced amount of intermediate data and non-synchronous transfer start.

The results of this experiments presented in Figure 7.15 in terms of difference to lower bound
normalized to the lower bound itself. The variability of the measures is presented in Figure 7.16
in the form of whiskers boxes.

On the results it can be seen that the discrete algorithms show a quite smooth behavior, the
list-based algorithm being always better than the order-based algorithm. Both show a quite low
variability, except one measure for the order-based algorithm that show an outlier for a router
bandwidth of 5 Gb/s. During this measure, the bandwidth on the router node has dropped
to 0 unexpectedly during 10 seconds. The order-based algorithm show a performance behavior
that gets further and further from the lower bound, as we would expect because of slow start
up and slow stop down as explained in Section 7.4.2.2. The same global behavior is observed
for the lists-based algorithm, this time it is the heuristic for sorting the mappers by priority
that cannot catch up the imbalanced transfer progression brought by the 1 second delay of the
transfer start and the 64 MiB steps of the amount of intermediate data.

The three algorithms ASAP, per-process regulation, and per-transfer regulation show a poor
performance for a small router bandwidth. Indeed, those algorithms generates some contention
either on the router or on the private links. This contention leads to packet loss and retrans-
mission after a timeout. These algorithms also show a performance that is equivalent to that of
the 2 phases regulation and lists-based, for a router bandwidth large enough. The per-process
regulation algorithm show a super-optimal performance for a router bandwidth of 5 Gb/s. This
is actually due to an overshoot of the bandwidth set with tc. Indeed, while the transfers from
a single node to another does not exceed the wanted bandwidth on the router as seen on Fig-
ure 7.6, it appears that when several nodes transfer some data at the same time, the total
bandwidth may exceed a bit the target bandwidth. Globally, the 3 algorithms ASAP, per-
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Figure 7.16: Variability of the time taken by the 6 algorithms under various bandwidth restric-
tions, with an imbalanced amount of intermediate data and non-synchronous transfer start.

process regulation, and per-transfer regulation show a bowl-shaped performance curve centered
around 5 Gb/s. The left part seems to be due to the decrease of the contention ratio, leading
to an increase of the performance. And the right part seems to be due to the imbalance among
the amount of intermediate data to transfer that makes the increase of the bandwidth of the
router have only a slight impact in the actual performance.

The 2 phases regulation algorithm exhibits an optimal behavior for a router bandwidth less
or equal to 6 Gb/s. It may even be slightly super-optimal for the same reason exposed before.
However, as this algorithm regulates the bandwidth so that it never exceeds the bandwidth of
the switch (here simulated by a router) the overshoot can never be very large. As before, the
2 phases regulation algorithm also shows a peak at 7 Gb/s due to the fact that the bandwidth
of the router could not be set to exactly 7 Gb/s. Thus some contention appears and degrades
the performance as it happens to the ASAP algorithm for instance. This behavior can be
interpreted as a high sensitivity to contention thus making the parameter σ of this algorithm
(the switch bandwidth) critical for a good performance.

7.7 Conclusion and Future Works
The shuffle phase has been largely ignored by the academic work despite being a potentially
important bottleneck. In this chapter we show here that although a no-op algorithm performs
well under perfect balance and synchronous conditions without contention, smarter algorithms
are proven to be more efficient in all other cases. Especially the list-based algorithm and the two
phases algorithms. The second one may perform optimally in some cases, but is quite sensitive
to the switch bandwidth parameter while the first one only needs to know how many concurrent
transfers the switch can support. While those two algorithms periodically communicate with
the centralized scheduler, the list-based algorithm induces an idle time between the transfers
while the scheduler make a decision. This does not happen with the regulation algorithms since
they just continue their transfer with the former bandwidth set while the scheduler computes
the new one. The scalability of these algorithms still has to be tested.



Chapter 7. Shuffle Phase Optimization 97

However, we believe that the results could be better if the bandwidth of the router could
be precisely limited with tc. Our attempt at mitigating the aberrations are a good start but
it shows some limitation. A future direction could be to compare the behavior of Linux + tc
with that of a real switch. This work assumed that a switched network with limited bandwidth
could be simulated with a routed network. However, most current switches uses a cut-through
method for forwarding the packets, while a routed network with a Linux system implies a
store-and-forward method. It has not been proven that this difference does not have a sensible
influence on the performance. With more time, we could make some experiments on a real
switch. We could also try to map the mappers and reducers processes on the same nodes and
check whether or not the same behavior is observed. Some parameters have to be known by
the regulation algorithms such as the link bandwidth and the switch bandwidth. It would be a
great improvement for the usability if those parameters could be determined automatically. Or
even better, if they could be adjusted at run time if the bandwidth has to be shared with other
applications. The platform model currently assumes that the network topology is switched
star-shaped with an equivalent bandwidth on every private link. Extending both the models
and algorithms to other network topologies and with less restriction is also interesting. Some
of these algorithms could be extended to start the data transfer of the intermediate data before
the computation is finished. Although extending the algorithms seems easy, their performance
and the influence of the uncertainty about the data not produced yet bring new challenges.
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Chapter 8

Conclusions and Perspectives

The advent of Big Data raises new challenges that need to be addressed in order to be able to
continue to build knowledge out of the collected data. Moreover, with Big Data comes volume
and velocity of the data production, which both make the usage of a distributed platform almost
a requirement.

However, distributed platforms are not so easy to use by themselves and some software are
needed to manage the complexity of the infrastructure as well as to ease the management of
the data and the computations to perform on this platform. MapReduce can manage the com-
putation and is actually widely even thought there is still room for performance improvement.

8.1 Conclusion

In this thesis several improvements for MapReduce have been proposed. The first one is a
component-based MapReduce framework which makes use of the genericity of a high-level com-
ponent model to parametrize the components and make it easily adaptable. The final design of
HoMR is non-trivial because the borders of the process do not always match with the border
of the components, but this is, in the end, more logical and easier to modify.

The second contribution of this work is the MapReduce models that have been developed.
These models are linear which make them analytically tractable. This property has been proved
useful and the models have been proved accurate enough to allow the scheduling algorithms
to provide good results. This shows that a performance model for MapReduce need not be
complicated to be accurate.

The third contribution is a partitioning and scheduling algorithm that tries to reach a
global optimum. Despite there is no longer a guaranty of optimality, the combination of those
algorithms have shown a gain up to 47% in schedule length, and a negligible time to compute
when compared to a previous work on this topic.

And last but not least, this thesis proposed several algorithms to schedule the transfers of
the shuffle phase of a MapReduce application. Among the five proposed algorithms, two show
very good performance. The two-phase regulation algorithm shows under some condition a
behavior equal to the lower bound, but is very sensitive to inaccurate estimations of the switch
bandwidth and to contention on the reducers network links. The list-based scheduling algorithm
is always a bit further from the lower bound than the two-phase algorithm, but is less sensitive
to bad estimations of the available bandwidth. This shows that the network contention during
the shuffle phase may hinder the performance while a careful scheduling of the transfers may
show an improvement of up to 40%.
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8.2 Perspective
Although the MapReduce models presented in Chapter 5 seem sensible, they are inspired by
the existing models and lead to good results in practice, they have not been validated directly
against a real life MapReduce job. This would increase the confidence we can have in these
models and show the limits of their applicability.

Notwithstanding the successful performance optimization, there is still room for improve-
ment. Contrary to what the results may suggest, there is no obvious reason for a trade-off to be
mandatory between performance and reliability of the performance of the transfer scheduling
algorithms. Since the peaks of bad performance are probably partially due to contention on the
reducer side links, maybe the two-phase algorithm could be changed to work on the reducer side
throughput instead of the mapper side throughput. This could help since there are less reducers
than mappers, but contention on the mapper side could still occur. So another algorithm could
be tried based on a linear program that would fix the actual transfer throughput to minimize
the duration of the whole shuffle phase while guarantying that neither the switch bandwidth
nor the links bandwidth would be exceeded.

Since the performance issues of the transfer schedulers are also due to an inaccurate estima-
tion of the switch bandwidth, estimating it on the fly and dynamically would be of great help.
This would also help on real platforms that may be shared with other applications and other
users.

The network contention on the switch has been simulated with the tool tc. There is no
guaranty that the behavior of Linux is similar to that of a real switch reaching its maximal
throughput. Linux offers many options to control the behavior of the network stack, the values
used for the experiments in this document may not be the best ones.

Most work of this thesis are specific to a star shaped network topology. This is a real
fundamental limitation of the applicability to the real world of the work presented here. The
platform model and performance model can be easily adapted to a hierarchical network topology.
The transfer scheduling algorithms are not trivial to adapt, here are a few ideas. The list-based
algorithm may be adapted to a tree-shaped network by counting the number of transfers using
each switch-switch link and each switch as well. So that when a couple mapper – reducer is
selected, the algorithm checks whether the network resources have enough room for this transfer
to happen. If so, it decreases the resource counters and launches the transfers, if not, it selects
the next mapper – reducer couple and try again. Maybe simpler, the two-phase algorithm could
be applied once for the top-level switch viewing the second-level switch as nodes having some
transfers to do that must cross this switch. Then, the same algorithm can be applied for every
second-level switch, taking into account the bandwidth used by the transfers that must go up
one level of the tree. Alternatively, the regulation approach could probably be solved with a
linear program as previously.

The shuffle phase is not the only part of a MapReduce job that is largely forgotten by
academic work. There is a common assumption that the data processed with MapReduce
are already stored on the node that process them. However, this is not always true. Most
cloud providers provide a storage service distinct from the computing nodes with a fairly high
bandwidth between those two type of nodes. So the beginning of a MapReduce job consists in
transfering the data from the storage system to the computing nodes. The work done about
scheduling the shuffle data transfers could therefore be reused. This could also be used to
determine an optimal number of nodes. Indeed, the more compute nodes there are, the less
time is needed to scatter the data and to process the data during the map phase. But the more
compute nodes there are, the more levels of the network tree are needed, and the longer is the
shuffle phase. So there is probably an optimal setting between the extremes.
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