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Abstract

Data privacy is a major problem that has to be considered before releasing datasets

to the public or even to a partner company that would compute statistics or make

a deep analysis of these data. Privacy is insured by performing data anonymization

as required by legislation. In this context, many different anonymization techniques

have been proposed in the literature. These techniques are difficult to use in a general

context where attacks can be of different types, and where measures are not known to

the anonymizer. Generic methods able to adapt to different situations become desirable.

We are addressing the problem of privacy related to graph data which needs, for different

reasons, to be publicly made available. This corresponds to the anonymized graph

data publishing problem. We are placing from the perspective of an anonymizer not

having access to the methods used to analyze the data. A generic methodology is

proposed based on machine learning to obtain directly an anonymization function from

a set of training data so as to optimize a tradeoff between privacy risk and utility loss.

The method thus allows one to get a good anonymization procedure for any kind of

attacks, and any characteristic in a given set. The methodology is instantiated for simple

graphs and complex timestamped graphs. A tool has been developed implementing the

method and has been experimented with success on real anonymized datasets coming

from Twitter, Enron or Amazon. Results are compared with baseline and it is showed

that the proposed method is generic and can automatically adapt itself to different

anonymization contexts.
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Je remercie l’ensemble de mes collègues présents ou passés au Bell Labs. Je remercie

plus particulièrement Alonso Silva Allende pour avoir accepté le travail de relecture des
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Chapter 1

Introduction

1.1 General Context

Privacy is a major problem that has to be considered when releasing data. Datasets

need to be released for different purposes. In the case of outsourcing, companies owning

data are using third parties to develop algorithms which need to be tested on samples

of real data. Datasets analysis is very important also for marketing applications. The

tremendous need of open data available for research communities is another reason to

release those datasets. Today it is difficult and in most of the cases it is impossible for

a data owner to release complex datasets in a completely safe environment without any

risk of individual’s re-identification.

Protection of data is mandatory before any release as required by the legislation (e.g.,

Directive 95/46/EC of the European Parliament [October 1995]), but also to build confi-

dence between data owner and the persons directly concerned by data disclosure. Among

the common approaches to preserve data’s privacy, anonymization is a real trend

which opens several interesting and important challenges. Data anonymization is

the process transforming the original dataset into a dataset not allowing individual’s

re-identification or other sensitive data re-identification.

Since the arrival of Web 2.0, the user has become the important actor on the Internet.

No longer a passive consumer of published information, the Web user is nowadays the

central focus through his relationships and interactions at the forefront. New technolo-

gies give to each user the possibility to produce and publish his own data. The amount of

data available on the Internet increases therefore drastically. Data available for analysis

becomes even more vulnerable than before. In parallel, tools analyzing data extracted

from the Internet become more and more powerful. With the arrival of the multitude

of social data sources and analysis techniques, the risk for the user to be subject of an

1
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infringement to his private data has been considerably multiplied. Many anonymization

processes are not effective when external information (as for example previous knowl-

edge of the adversary or information published on social networks) is combined with the

anonymized information.

Examples of data attacks in the past (Netflix attack or well known AOL data disclo-

sure detailed below) have revealed the necessity to use more sophisticated techniques

than simple identifiers anonymization.

In 2006 AOL shared a search record of around half million users. Journalists from New

York Times (in Barbaro and Zeller [2008]) revealed the identity of the user 4,417,749 as

being a certain Mrs. Thelma Arnold. The link between searches performed by the user

4,417,749 and external information concerning Mrs. Arnold had been obtained by data

analysis. As a consequence, the CTO of the company and the researchers responsible

for sharing data were all fired.

Netflix case is another example of privacy infringement because of insufficient data

anonymization before release. The Netflix prize data is a dataset made available in

the context of the Netflix prize competition. The purpose of this competition was to

choose the best collaborative filtering algorithm to predict user ratings for films based

on previous ratings. The training dataset provided by Netflix contained 100,480,507

ratings of 480,189 users on 17,770 movies. Netflix anonymized data before release to

protect user’s privacy by replacing all personal information of the users as well as their

identifiers and by adding noise into data (by deleting ratings, inserting alternative rat-

ings and dates or modifying rating dates). Based on the strong correlation between

a user’s profile in Internet Movie Database (IMDb) and the Netflix released dataset,

Narayanan and Shmatikov [2006] propose a de-anonymization method capable of mak-

ing the correlation between IMDb and the released anonymized dataset. In 2009 four

Netflix users filed a lawsuit against Netflix, alleging that Netflix had violated U.S. fair

trade laws and the Video Privacy Protection Act concerning wrongful disclosure of video

tape rental or sale records (United States Congress [1988]) by releasing the datasets. In

2010 Netflix announced that the competition will not be pursued as a consequence of

the lawsuit and of the Federal Trade Commission privacy concerns. The result of these

privacy infringements was the serious limitation of the open access to data for research

or any other purposes.

The actor willing to access private information is generally called an “adversary”. Poten-

tial adversaries come from different categories as described in Narayanan and Shmatikov

[2009]:

• Government-level agencies with the purpose of global surveillance (which are among

the strongest adversaries)
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• Commercial enterprises having as goal abusive marketing are interested in this

kind of information

• The de-anonymized information could be helpful for phishing attacks (to perform

those attacks with more personalized and better targeted information) and spam-

ming

• De-anonymization performed on specific individuals by investigators, neighbors or

colleagues is another category of attack

In the Netflix or AOL cases, if the released data were anonymized with stronger al-

gorithms in order to take into account external information access as well as a large

panel of possible attacks, these privacy breaches would not have been possible. The

need for data access and the need for privacy resulted in an increasing importance of

data anonymization process. The added value of data anonymization is that apart from

tackling the sensitive issue of data privacy, it will facilitate information sharing between

involved actors. By inserting perturbations in data, data owners are able to hide sensi-

tive information that would hinder their competitive advantage if revealed to business

opponents. Also, from the perspective of end users, which in their majority are reluc-

tant in sharing personal information, the fact that data will be guaranteed as being

anonymized will give them confidence in sharing their data.

1.2 Graph Data Anonymization Issue

Anonymization techniques have been proposed for different kind of data representations

as described in Zhou et al. [2008] and Wu et al. [2010]. Techniques to anonymize data

for which each record represents a separate entity (as in a relational database) have

been developed and are currently used (e.g., Fung et al. [2010]). However, datasets have

moved from traditional models to more complex ones, like for example graph or hyper-

graph structures.

For example, relational and communication data issued from social networks or telecom-

munication networks can be represented in complex structures. Communication interac-

tions for example, can be represented as a graph with multiple oriented and timestamp

labeled links. Anonymization techniques for tabular data cannot be successfully applied

to these complex models (Aggarwal et al. [2011]).

When data can be represented in the form of a graph, even more information is available

than in tabular data to identify an entity. The more the structure which models data is

complex, the easier will be to identify entities inside it. As a consequence, methods to

anonymize data in an efficient way will be more complex than for tabular data.
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The work of Liu and Terzi [2008] describes the difficulty to anonymize graphs compared

to anonymizing tabular data. Any adversary could use the topology structure of the

graph for de-anonymization. Anonymization strategies will then modify the structure

by adding remaining edges to the initial graph. This is called perturbation of the graphs

structure. In Aggarwal et al. [2011] it is shown that for large sparse graphs it is difficult

to preserve utility after perturbation as it exists in this kind of graphs re-identification

signatures that are very robust to perturbations. To perturb this kind of graphs, the

level of added noise necessary is very high and implies an important loss of the associ-

ated utility.

Depending on the anonymization problem we need to solve, specific evaluation metrics

will be defined. However, developing metrics for quantifying loss of information for a

specific task is a research work on its own. This work is generally complex as the utilities

to be measured on a structure issued from communication data are diversified.

We address in this thesis the problem of privacy related to graph data which needs,

for different reasons, to be made publicly available. This is called the anonymized

graph data publishing problem. The reasons for data publication could be related

to:

• the need to involve a third party in the analysis of data. Most of the time data own-

ers do not have the time or the competences to perform these analyses. Therefore,

an additional actor appears in the person of the data analyzer.

• the exposure of data to third party applications in order to provide new services

based on this data (e.g., crowdsourcing applications, advertisers),

• the need for data publicly available for research reasons or technical challenges

(e.g., medical research),

• testing algorithms developed by an external partner of the data owner, in a real

environment.

We consider here the perspective of an anonymizer not having access to the methods

used to analyze data. We suppose that the anonymizer is a trusted party of the

anonymization process. Some approaches from the state of the art consider also the

data publisher as an untrusted environment (Allard et al. [2011]). We are not tackling

this case and we consider that the untrusted environment starts once data is published.
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Figure 1.1: Effects on privacy and utility of anonymization with different parameters:
black bars represent the privacy of the data smaller bars signifying more privacy; gray

bars represent the utility of the data.

1.3 Contributions

Ohm [2010] describes several examples of datasets having been anonymized which have

been easily de-anonymized and re-identified by scientists. Usually, only the knowledge

on data anonymized without any external enrichment, is not sufficient to perform a

de-anonymization. However, external data is easily available and in some cases makes

the anonymization useless, as described before. A naive anonymization (e.g., replacing

identifiers by a code) is insuring a very low level of anonymity. To protect people pri-

vacy, other techniques for anonymization are needed. Modifying original data could be

necessary in most of the cases. The problem is that data modified looses a part of its

utility.

The anonymization techniques have as main goal to find a compromise between pri-

vacy and utility of data. Figure 1.1 from Ohm [2010] is showing the relation between

privacy protection and utility. Black bars represent the privacy, smaller bars meaning

more privacy. Grey bars represent the utility of data.

By varying different anonymization parameters, privacy is protected with different

degrees. However, the loss of utility is almost proportional to the increase of privacy

protection. In this graphic, the best privacy protection and utility preservation would

be represented by a short black bar (privacy protected) next to a long gray bar (utility
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preserved).

Most of existing anonymization techniques are based on certain aspects of privacy pre-

serving related to a certain utility to preserve. There is no general method for anonymiza-

tion which could be applied to any privacy and utility aspects of data. Recent techniques

based on differential privacy are promising but their privacy guarantees are not univer-

sal and attacks are still possible. Methods currently used to anonymize complex graph

datasets for a third party release are usually using naive anonymization combined with

noise addition or data modification related to a certain type of attack. Techniques pro-

viding differential privacy based guarantees are currently employed and they result most

of the times into good guarantees for privacy. However, the main goal of the anonymiza-

tion is to find a compromise between privacy and utility of the data. Usually, this

balance is set manually. Differential privacy proposes a condition on the data delivery

mechanism insuring good privacy guarantees. We propose a learning methodology for

finding a good anonymization function in a given context. The two approaches are then

complementary.

The main challenge of my thesis is to propose and validate an automatic technique

able to learn the best adapted anonymization function for graph data publication

without direct access to the utility to be preserved on data and to the methods

used by the analyzer of data, by taking into account a large and flexible panel of

possible de-anonymization risks.

My thesis main contributions are:

• Provide a state of the art of the existing methods in the domain of graph data

anonymization.

• Show the vulnerability of graphs in particular when data can be decomposed in

a multitude of subgraphs (e.g, in the case of timestamped graphs) and propose a

system taking into account this vulnerability when performing data anonymization.

• Propose a generic method based on machine learning techniques able to learn

efficient anonymization functions for different contexts. This context has two main

components: (i) the data analyzer, (ii) a panel of risks. Our goal is to learn

anonymization strategies able to adapt themselves to different situations. In our

formulation, both the data analyzer and the risks will be represented as blackboxes.

• Instantiate the proposed methodology and the blackboxes for, in a first step, simple

graphs and in a second step complex timestamped graphs issued from call logs.

• Propose and implement new methods for timestamped graphs de-anonymization

mainly in order to instantiate the analyzer blackbox.
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• Experiment the instantiation of the methodology on real datasets of simple graphs

and call logs graphs with success. The results have been compared with methods

issued from the state of the art.

1.4 Detailed Content

A part of my work (Chapter 2) has been dedicated to the analysis and comprehension

of existing publications in the data anonymization field, and particularly in graph data

anonymization. The first part of this chapter deals with the privacy question regarding

graph data and potential attacks on this type of data. In the second part of the chapter,

the data anonymization issue is described as well as the consequence of anonymization

on the utility of data. Several techniques for specific utility loss evaluation existing in

the literature are also described.

Research works dealing with the anonymization issue for particular representations of

data like hypergraphs or temporal graphs are identified. A section is dedicated to the

differential privacy concept and to its possible applications to data release problem. A

separate section deals with machine learning techniques applied to anonymization. In

many works, machine learning is used for de-anonymization purposes. A case of data

anonymization using machine learning is described. The tradeoff between privacy and

utility of data has been explored by a certain number of papers in the literature.

Chapter 3 is illustrating the vulnerability of graph data when data can be par-

titioned into subgraphs. Methods for anonymization are usually applied on the entire

dataset and are robust for attacks made against the entire graph structure. We show

that local attacks can still be performed in the released dataset by partitioning the

anonymized dataset into subgraphs. A system is then proposed based on a data decom-

poser module performed on data before anonymization. The system described in this

chapter has been filed as a patent (Hacid and Maag [2014]).

A second contribution of my thesis described in Chapter 4 consists in proposing

a new generic methodology to learn, for a given family of data, a given set of privacy

attacks and data analysis process, what are the best parameters for the anonymization

function in order to preserve the balance between utility loss and privacy risk. Existing

algorithms or anonymization tools (described for example in Vinogradov and Pastsyak

[2012]) are dependent of the settings of a certain number of parameters. The choice of

those parameters is an essential step for the anonymization process and is important

when dealing with complex data and with multiple privacy risks or utilities related to
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the anonymized data. The problem of finding the best adapted parameters in a given

context reveals to be a complex issue. We use two optimization methods to approximate

the searched parameters: estimation of distribution algorithms and genetic algorithms.

The proposed methodology has been published in Maag et al. [2014].

Chapter 5 is instantiating the proposed methodology for simple graphs. Panels

of possible privacy risks are described corresponding to the instantiation of the privacy

risks blackbox. The analysis blackbox is instantiated by using utility loss evaluation

methods to simple graphs. Baseline methods used for comparison are also described.

The results of the implemented instantiation for the methodology are evaluated on real

datasets issued from Twitter and Amazon. The method adapts well to a new context

(i.e. to changes performed in the blackboxes) and outperforms baseline methods. Re-

sults from this chapter have been presented and published in an international conference

(Maag et al. [2014]).

The contribution described in Chapter 6 deals with finding anonymization parame-

ters for complex structures anonymization (such as graphs resulting from communication

logs with a temporal component). Most of the work in anonymization dealing with rela-

tional data, tackled simple graphs or bipartite graphs, and the relations are in most cases

single and not oriented. The instantiation of our parameter learning methodology on

such structures has lead to the proposal and implementation of new techniques for pri-

vacy risks detection and utilities measurements.The obtained results are compared with

baseline methods results. The experimentation is performed on datasets issued from

Twitter and Enron corpus. The method behaves well and results are improved when

diversifying the number and the type of learned parameters used for the anonymization

function. This work is currently submitted for publication.

Chapter 7 contains the conclusion and the perspectives of my work. The results

improve with the number of parameters used for learning for simple graphs as well as for

complex graphs. A direction to continue this work would be to explore the behavior of

the system when learning with diverse parameters and eventually time related param-

eters. Another interesting direction consists in studying how to offer guarantees based

on differential privacy when using anonymization functions learned with the proposed

methodology.
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State of the Art

Chapter 2 contains the state of the art regarding existing publications in data

anonymization field. A first part deals with privacy from the perspective of graph data

anonymization and the associated potential attacks. In the following part, data

anonymization techniques are described as well as their consequences on the utility of

data. Techniques usually employed to evaluate utility loss of data are also evocated.

Anonymization approaches when dealing with particular representations of data like

hypergraphs or temporal graphs are described. Last part of the chapter is dedicated to

the differential privacy concept and to its possible applications to anonymized data

release problem. Machine learning techniques applied to anonymization are evocated

from the perspective of data de-anonymization, data anonymization and tradeoff

exploration between privacy and utility.
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2.1 Introduction

Privacy protection is an important research subject as it represents a critical challenge.

A huge amount of research works have been treating this complex issue. We aim to

address here the privacy protection related to data release when data is the result of

people’s interactions. Data containing private information about individuals can be

retrieved and stored, following each country, according to particular legal conditions. In

most of the cases, data release can be performed only if there are guarantees that no

private information about individuals can be extracted. This is done through a process

called “data anonymization” or “data sanitization”. Mainly, there are two models of

data sanitization as described in Dwork et al. [2006]: interactive models and non-

interactive models.

• In the interactive version, a mechanism is provided such as the user can send

queries on data and gets answers or noisy answers.

• For the non-interactive functioning, data owner publishes an anonymized version

of data collected. The techniques applied on the dataset before publication are

called “anonymization” techniques or “de-identification” techniques.

Different anonymization techniques already exist for tabular data and are applied with

success on datasets where tuples are independent one of each other. The problem we are

tackling here is the data anonymization for datasets issued from interactions

between individuals, before data publishing, without a detailed knowledge

of the analysis to be performed on data. This type of data can be represented as

a complex structure (e.g., a multiple oriented timestamped graph). We are dealing with

the case of the non-interactive data sanitization for complex graph data.
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This chapter is organized as following: the first section discusses privacy protection

for graph data and existing de-anonymization techniques. Section 2.3 identifies the ex-

isting anonymization techniques for graphs. Section 2.4 describes techniques used to

evaluate utility loss when anonymizing graph data. Section 2.6 is dedicated to the dif-

ferential privacy issue and its applications to data release problem. Last section provides

description of machine learning techniques used in the context of data anonymization.

2.2 Privacy Protection for Graph Data

2.2.1 What to protect?

The first question we have to answer to is what part of data we need to protect in this

type of complex structure. This section aims to make a synthesis of the answers to the

question “What to protect?” when anonymizing complex data structures issued from

individual’s interactions.

Liu and Terzi [2008] classify data disclosure (i.e. data which should not be re-identified

in the anonymized version of the dataset) to be avoided in graphs of a given network

in three categories. However, other categories appear in the bibliography; we have

to consider also that one type of disclosure can lead to another type of disclosure as

described in Zheleva [2011]. We list hereafter different types of disclosure, this list being

non-exhaustive:

• Identity disclosure: disclosure of the identity of a node (e.g., user present in

a certain disease network). The identity disclosure occurs when the adversary is

able to map a real life identity on a node in the anonymized data.

• Link disclosure: sensitive relationships between two individuals (e.g., a financial

transaction having occurred between two nodes).

• Content disclosure: data associated with the node or a link is disclosed (e.g.,

political opinion of a node).

• Affiliation link disclosure: this kind of disclosure described in Zheleva [2011] is

determining whether a person belongs to a certain group or not.

Others classifications have been made for example in Zhou et al. [2008]. In a social

network represented as a graph, diverse information revealed can be considered as being

an attempt to the user privacy as described in Zhou et al. [2008]:
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• Vertex existence: an individual appearing or not in a certain network (e.g.,

network of millionaires, of a disease infection etc.).

An infection network is a valuable resource to be analyzed in public health research.

However, by making public this resource, the identity of a person present in this

network could be revealed and the privacy of this person could be affected.

• Vertex properties (Hay et al. [2007], Hay et al. [2008], Liu and Terzi

[2008], Ying and Wu [2008]): a related example is the degree of a node in a

financial support network.

In Hay et al. [2007] the structural re-identification of a node is studied. Once a

node is identified in an anonymized graph (by using the degree of that node), the

information is combined with the attributes of that node.

• Sensitive vertex (Campan and Truta [2009], Zhou and Pei [2011], Zhel-

eva and Getoor [2007]) or edge (Campan and Truta [2009], Ying and

Wu [2008]) labels: the disease label in a disease infection network or the labels

of a user in a social network.

The labels of a certain vertex in a graph can be identified if the vertex is uniquely

identified in the graph. Even more, sensitive labels corresponding to a certain ver-

tex can be revealed if the vertex is identified as part of a group having in common

these sensitive labels.

• Link relationship (Cormode et al. [2008]), Edge existence (Zhang and

Zhang [2009]): the link in a finance transaction network signifies that a trans-

action occurred between the two nodes which could be sensitive information.

This same link in a bipartite graph representing the authors and the papers cor-

responding to a conference means that a given author has written a given paper;

when the graph represents data coming from a pharmacy, the adversary could

identify which user bought which medicine. In Cormode et al. [2008] the main

goal is to protect this link by grouping the nodes and the entities in a bipartite

graph. Zhang and Zhang [2009] proposes to swap and delete edges based on degree

information to prevent re-identification.

• Link weight (Liu et al. [2008]): a social network weighted with the communi-

cation frequency between two individuals or a financial transactions network with

the amounts of each transaction.

This second example corresponds to information a company should not disclose. If

another company is able to have this information, then this company could make

an offer just below the price obtained from the financial transaction network. The

paper Liu et al. [2008] is tackling the anonymization of weighted networks trying



Chapter 2. State of the Art 13

to keep unchanged main properties of that network (as e.g., the shortest path) in

order to preserve utility of the data.

• Graph metrics: metrics as betweenness, closeness, path length, centrality or

reachability may be considered private data in certain cases.

Defining what to protect before any tentative of data anonymization is a very impor-

tant step because as mentioned before, there is no anonymization technique capable of

protecting all data components while preserving data’s utility. New techniques based on

differential privacy (described in 2.6) try to guarantee general data protection.

2.2.2 De-anonymization Techniques

The only access to the anonymized data, even if this data would be anonymized with

naive techniques, is usually not enough for being able to re-identify nodes, edges or con-

tent. Additional knowledge is needed for that purpose. With the arrival of user created

content and the arrival of social networks, this additional knowledge is available every-

where on the web. This knowledge could also be personal knowledge of the malicious

user (not coming from the web).

We are going to call the person(s) aiming to de-anonymizing data the “Adversary”. This

person could perform the de-anonymization attack with the explicit objective of access-

ing the private data. However, this person could stumble upon the anonymized data

unintentionally and his previous knowledge could make this data to be de-anonymized,

once again in an unintentional manner.

According to the manner the adversary is de-anonymizing data, the de-anonymization

techniques can be classified in: active attacks and passive attacks.

Figure 2.1: Fingerprint planted in the initial graph: each node represents a user.
Fingerprint obtained by the “seed” subgraph formed by vertices h, 1, 2, 3, 4, 5, 6 can

be uniquely re-identified using the degree-sequence of h.
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• Peng et al. [2012] describes the case of an active attack; the adversary plants a

“seed” into the target social network before its release. The “seed” is the equivalent

of a specially designed subgraph with a particular fingerprint as illustrated in

Figure 2.1. Peng et al. [2012] is tackling the special case of undirected graphs

where the relation between users is mutual. The acquisition of the background

knowledge to be combined with the anonymized data is performed by the adversary

by creating or stealing a few accounts and connecting them with a few others

accounts. The paper considers that the adversary hasn’t complete control over

the connections which is more realistic than the considerations made in previous

works. The purpose of the adversary is to localize the seed after the anonymized

graph being released, then to identify the seed’s neighbors. The case of active

attacks is related to malicious users having the explicit objective to de-anonymize

data. The difficulty to perform an active attack comes from the fact that in most

social networks, to create a new link the acceptation of the link from both of the

terminating nodes is necessary. However, in communication networks or in Twitter

like networks (based on a follower-followed structure) there is no need for mutual

acceptation to create an embedded graph structure. In Narayanan and Shmatikov

[2009] is described the fact that active attacks are easy to detect as real users

never link back to sibyl nodes (new identities created for the attack). The paper

concludes that a large-scale active attack is unlikely to be feasible.

• In the case of passive attacks, the adversary might not have the explicit objective

of de-anonymizing the given data and no new link is created especially for the

attack. However, some existing structures in social networks or communication

graphs present typical patterns and can be sometimes unique so that the structure

could be easily re-identified in the released anonymized network.

De-anonymization attacks on graph data can be grouped according to the exploited

weak point in four main families: structural attacks, rich graphs attacks, dynamic

data based attacks and learning on missing information attacks. Each type of attack is

detailed further.

2.2.2.1 Structural Attacks

Structural attacks are based on the principle that if a certain query based on structural

information of a graph over a dataset has a limited number of answers, this may lead to

target re-identification and to privacy infringement.

Let G be a graph and G′ be the anonymized version of the given graph.
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Structural attack definition (Zou et al. [2009]):

If a query Q over G has a limited number of match vertices in G, then target might be

uniquely identified. If Q is based on structural information about the target in G, this is

called a structural attack.

An example of structural attack is the “friendship attack” described in Tai et al. [2011c].

This kind of attack is using the vertex degrees pair of two individuals and their friendship

relation and is illustrated in Figure 2.2. Information that Bob and Carl are friends as

well as their total number of friends can lead to their re-identification in the anonymized

dataset. The paper introduces the notion of k2-Degree Anonymity, notion defined as

Figure 2.2: Friendship attack: Bob and Carl can be uniquely identified by their vertex
degree pair (2,4).

following:

A graph G is k2-Degree Anonymous if for every vertex with an incident edge of degree

pair (d1, d2), there exist at least k− 1 other vertices such that each of the k− 1 vertices

also has an incident edge of the same degree pair.

The main idea is to not allow a degree pair structure to be distinguished among k − 1

other structures.

Structural attacks have been classified into four main types in Zou et al. [2009]:

• Degree Attack

For example an adversary who knows that Bob has four neighbors. If in the

anonymized graph there is only one vertex having four neighbors, then the node

Bob is de-anonymized.

• Sub-graph attack

This kind of attack consists in a sub-graph which can be uniquely identified in the

global graph. The sub-graph to be identified is called the query graph.

• 1-Neighbor-Graph Attack

It can be considered as a special case of sub-graph attack. The adversary in

this case knows the 1-neighborhood of the vertex and the connections in this

neighborhood. If this structure can be uniquely identified in the global graph,

then the node can also be identified.
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• Hub Fingerprint Attack

This kind of attack considers that the adversary has identified some hub in the

anonymized network. Then, if the adversary knows how the vertex to be de-

anonymized situates relatively with the identified hub, the vertex may then be

identified.

According to the properties the adversary knowledge is related to, the survey Zhou et al.

[2008] classifies in a different manner the possible attacks on a graph:

• Identifying attributes of vertices

Relies on a set of attributes identifying in a unique manner an individual. In

Campan and Truta [2009] not only structural information of data represented as

a graph is taken into account. They assume a much richer data model and pay

special attention to the node attribute data. The attributes related to a node are

then classified in identifiers (e.g., name, id), quasi-identifiers (e.g., zip code) and

confidential or sensitive attributes (e.g., diagnosis or income).

• Vertex degree

The vertices degrees are information easy to collect by adversaries (Hay et al.

[2007], Liu and Terzi [2008], Ying and Wu [2008], Tai et al. [2011a]). In Hay et al.

[2007] the example is given for a user Bob for which the adversary knows that he

has at least three neighbors. This restrains to only a small number the collection

of nodes representing the user Bob.

• Link relationship (Campan and Truta [2009], Cormode et al. [2008],

Zheleva and Getoor [2007])

Channels people use to communicate with each other can be sensitive information

(phone, email, IM). In Cormode et al. [2008] the example is given for private data

related to associations between entities. As an example, for a particular pharmacy,

the list of its clients is not sensitive information. For this same pharmacy, the list

of the medicines sold out is not sensitive information. However, the association be-

tween these two non sensitive information is private information at it may indicate

a health issue for the clients of that pharmacy.

• Neighborhoods (Hay et al. [2007], Ying and Wu [2008], Hay et al. [2008],

Zhou and Pei [2011], Zhou and Pei [2008])

A neighborhood based attack can have as target for example a victim having four

good friends who know each other. In Zhou and Pei [2011] the knowledge of

the adversary is in the 1-neighborhood of the victim. The adversary knows the

relations existent between the neighbors of the victim and based on this knowledge

in some cases it is possible to re-identify in a unique manner the given vertex.
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• Embedded subgraphs (Backstrom et al. [2007])

The attack can be performed by an adversary embedding a specific subgraph into

a social network before the network being released. This is assimilated to an active

attack. The idea in Backstrom et al. [2007] is that the adversary first chooses an

arbitrary set of users to be attacked. Then he creates a small number of accounts

with edges to the targeted users. He also creates a specific pattern of links between

the new created accounts (that could be easily recognized in a global graph). Once

the anonymized data is released, the adversary can easily identify the particular

pattern embedded in the released graph.

• Graph metrics (Hay et al. [2007], Ying and Wu [2008])

Graph metrics (betweenness, closeness, centrality, path length, reachability, etc)

can also be used to breach the privacy. In Hay et al. [2008] an example is given on

how to use a hub for de-anonymization purposes. A hub is a node in the network

with high degree and high betweenness centrality (which is the proportion of the

shortest paths in the network that include the node). A hub is a challenge for

anonymization for being easy to distinguish in a given network.

2.2.2.2 Attacks on Rich Graphs

The possible re-identification methods in a graph are as diversified as the complexity

of the representation of a graph. According to the complexity of the dataset, data to

be anonymized can be represented as a simple graph, as an oriented graph, as a graph

with multiple links, as an hypergraph etc. Recent papers bring examples of how re-

identification can be made by using minimal knowledge on the victims especially when

the anonymized graph structure is rich.

Li and Shen [2011a] introduce an attack based on the property of a hyperedge rank. The

anonymization method related to this attack tackles the hyperedge rank anonymization

problem.

In Li and Shen [2010] the weights present in a graph are used for identity disclosure

(the weights for each adjacent edge to a vertex as well as the sum of those weights). A

weighted graph is introducing much more information than a simple graph making the

anonymization even more difficult than in a simple graph. Li and Shen [2010] propose

a solution for the weight anonymization problem.

2.2.2.3 Dynamic Data Based Attacks

In Bhagat et al. [2010] and Tai et al. [2011b] the special case of dynamic data is evocated.

Indeed, when publishing several times an instance at a time t1 and t2 of a network, the
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adversary holding certain knowledge on the evolution of the network between the two

releases is capable to re-identify nodes in the anonymized graph data.

As an example described in Tai et al. [2011b], Figure 2.3 illustrates two sequential releases

of a network of patients in a certain hospital. By having the knowledge that user Bob

has gone to the hospital for the first time in the period between the two releases, the

adversary is able to re-identify Bob in the anonymized data.

Figure 2.3: Sequential releases of a dynamic social network: Bob can be re-identified
between t1 and t2 as being the only person having visited the hospital for the first time.

Bhagat et al. [2010] is illustrating the need to use a link prediction algorithm in order

to take into account the future evolution of the released network when anonymizing it.

2.2.2.4 Learning Missing Information in Partially Anonymized Graph

This type of attack addresses released networks containing only partial information. In-

deed, in most of the social networks, some profiles are public and some others profiles are

private. The social network could be then released only by hiding those private profiles.

The research study Zheleva and Getoor [2009] describes a method to infer those sensitive

attributes and to disclose hidden group memberships in a partially anonymized network.

This disclosure is mainly performed by using learning methods and classification models

in order to determine the missing labels in the partially anonymized network.

2.3 Anonymization Techniques for Graphs

Three main types of anonymization techniques on graphs can be distinguished:

1. Structural methods based on k-anonymity concept,

2. Randomization techniques,

3. Generalization techniques.

We detail hereafter each one of the family methods.
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2.3.1 Structural Modification Based on k-Anonymity Concept

The first family is related to methods performing structural modifications on the graph

in order to obtain the k-anonymity property (see definition below). This family is mainly

related to the structural attacks that can be performed on a graph and it contains meth-

ods providing the anonymized graph with k-anonymity concerning a panel of properties

(e.g., vertices degrees, neighborhoods). Several approaches to modify a graph for k-

anonymization have been described in the literature.

k-anonymity definition

A certain structure is k-anonymous with respect to a structure query if there exist at

least k − 1 other structures that match the given structure query.

Problem definition for k-anonymity (Liu and Terzi [2008])

Input: a simple graph G(V, C) to be anonymized. V is the set of vertices in G and C is

the set of edges in G.

Use a set of graph-modification operations (e.g., adding or deleting edges) on G to

construct the anonymized graph G′.

Output: Anonymized graph G′(V ′, C′), with V ′ the set of vertices in G′ and C′ the set

of edges in G′ so that:

• G′(V ′, C′) is k-anonymous (in Liu and Terzi [2008] according to the node degree),

• G′ is structurally similar to G.

The cost of anonymization is then defined according to the difference in the similarity

between G and G′. The similarity between G and G′ is considered from a structural

perspective; the cost (which is the similarity delta between G and G′) is proportional

with the modifications performed on the graph G to obtain the graph G′.

In Liu and Terzi [2008] for instance, G is modified by adding new edges to obtain G′ and

the paper focuses on identity disclosure. The problem definition of the graph anonymiza-

tion is stated and a two steps solution is proposed. In a first step a new degree sequence

for the graph to be anonymized is constructed such that this sequence is k-anonymous.

In the second step given the new degree sequence, a graph is constructed (if possible)

maximizing the structural similarity with the initial graph. The cost is in this case

defined as being proportional with the number of edges added to the original graph G.

The problem to be solved is how to minimize this cost.

The k-anonymization problem has always a solution (the worst solution being trans-

forming the graph into a complete graph with all the nodes having the same degree).
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The problem related to the worst solution is that the cost is high and the utility is lost.

Hay et al. [2007] consider the anonymity of a social network by taking into account the

structural similarity between nodes from the corresponding social graph. In Hay et al.

[2007] the queries are related to the degrees of the nodes and its neighbors.

However a graph being k-anonymous according to a structure query does not neces-

sarily protect the privacy of the given nodes. The k-anonymization is usually defined

according to a given structure query. If the structure query changes, even if the graph

is k-anonymized for example according to its nodes degrees, this anonymization will not

be robust according to a neighborhood query structure attack.

Narayanan and Shmatikov [2009] argues on the fact that the auxiliary information the

adversary has is not restricted to the neighborhood of a single node and this information

is a global one which extends the types of possible queries structures.

Additionally, k-anonymity does not protect the nodes from the identification of cer-

tain attributes. The notion of l-diversity has been introduced related to graphs.

L-diversity definition (Zheleva [2011]):

A set of records in an equivalence class C is l-diverse if it contains at least l “well-

represented” values for each sensitive attribute. A set of nodes V satisfies l-diversity if

every equivalence class C ′ ⊆ V is l-diverse.

Even if a given node cannot be uniquely identified, if the k similar nodes have sen-

sitive attributes in common, then their privacy will not be protected.

Structural modification based on k-anonymity concept can be classified in two main

categories: optimization based methods and greedy modification approaches,

methods detailed further.

Optimization Graph Construction Methods

Optimization methods are based on the principle of finding the best solution to the given

anonymization problem. An example of optimization method is given in Liu and Terzi

[2008] in which the k-degree anonymization problem is tackled. In this paper the notion

of k-degree anonymity is defined as mentioned earlier. The solution proposed has two

steps:

• In the first step of the solution, a degree sequence of G is formed in a descend-

ing order. The optimization part consists in finding the optimal degree sequence
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constructed from the original degree sequence and complying with the k-degree

anonymity condition by performing a minimum number of edge addition opera-

tions.

• The second step of the solution constructs a graph with the optimal degree se-

quence resulting from step 1.

Greedy Graph Modification Approaches

Greedy graph modification approaches have as main principle the modification of local

structures with the goal of obtaining results close to the optimal one.

In Zhou and Pei [2008] a greedy algorithm has been used to anonymize a social network

to protect it against neighborhood attacks. There is no addition of fake vertices as this

operation is considered as a change in the global structure of the graph. The algorithm

has two main steps:

• First, all the neighborhoods in the social graph are extracted.

• In the second step of the algorithm, the neighborhoods of the vertices extracted

are organized into groups of similar neighborhoods. They are then modified in

order to respond to the k-anonymity requirement for neighborhoods.

As the distribution of degrees in a graph is following a power law, the most vulnerable

nodes are the ones with high degrees as they neighborhoods are complex. Therefore the

algorithm starts the graph modification with the high degree vertices.

In Zou et al. [2009] the main idea is to protect privacy by creating k homomorphic

(thus indistinguishable) components. The algorithm K-Match (KM) has several steps

Figure 2.4: Graph partition and edge copy: edge between nodes 2 and 4 and crossing
edge between 5 and 9 are added in the anonymized graph.
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(illustrated in Figure 2.4):

1. The input of the algorithm is the original graph G and the parameter k.

2. The original graph is first transformed into G′, a naive anonymized graph by re-

placing real identifiers with numbers.

3. G′ is partitioned into blocks which are clustered into groups of at least k blocks.

This graph partitioning part is very important for reducing the cost of the anonymiza-

tion operation. Finding the optimal graph partitioning is an NP-complete problem.

A greedy algorithm (Kuramochi and Karypis [2005]) is used to partition the graph

G′ based on frequent sub-graph identification.

4. Graph alignment is performed on all the blocks of each group

5. For all crossing edges between blocks, edge-copy is performed (Figure 2.4). New

edges are added in order to obtain synmetric blocks. Original graph G is a subgraph

of anonymized graph G′.

2.3.2 Randomization Techniques

The second family of anonymization techniques for graphs is based on randomization

techniques. The original graph is modified randomly by adding noise either by adding,

deleting, switching edges or vertices and their attributes. Several methods have been

described in Zhou et al. [2008]:

Randomized edge construction methods

Methods consisting in performing m edge deletions followed by n edge insertions (Hay

et al. [2008]) based on a randomized edge construction method.

Randomized spectrum preserving methods

The spectrum of a graph is equivalent to the set of eigenvalues of the adjacency matrix of

the graph; the spectrum is considered to have close relation with graph characteristics.

The approach in Ying and Wu [2008] is similar to Hay et al. [2008] as the method consists

in adding or deleting edges. The additions/deletions are performed on a random base

but the effects on the graph spectrum are taken into account when choosing which edges

to add or remove.
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Randomized weights perturbation methods

This problem is tackled in Liu et al. [2008] and data utilities considered are the lengths

of shortest paths between vertices and the shortest path between vertices in a selected

subset. Two methods are proposed:

• Use of a Gaussian randomization multiplication (with a noise matrix of mean 0

and a given standard deviation) to perturb the weights of the edges.

• Use of a greedy perturbation algorithm with the goal of keeping the shortest path

after perturbation as the original shortest path before the perturbation.

Note that differential privacy (described in 2.6) is considered in many works as a

special case of randomization techniques. Most of the anonymization techniques respect-

ing the differential privacy guarantees are based on adding random noise (e.g., adding

Laplacian noise to the dataset).

2.3.3 Generalization Techniques

These anonymization techniques are based on the idea of clustering vertices and edges

into groups and then form a super-vertex. The inconvenient of the clustering based

methods is that the graph may be shrunk after anonymization and local structures will

be difficult to analyze.

There are four main classes of clustering-based approaches.

Vertex clustering methods

Vertex clustering methods consist in delivering an anonymized graph which is a gener-

alized graph of the original one, with a supernode instead of an original group of nodes.

In Hay et al. [2008] the nodes of the graph are partitioned into disjoint sets. These

nodes are considered as supernodes since they are nodes of a generalized graph. The

partitioning of nodes is performed such that the resulting generalized graph maximizes

utility and preserves privacy.

Edge clustering methods

Edge clustering methods consist in delivering a representation of the original graph

wherein the relational information exist between clusters of vertices. This method con-

sists in leaving the set of edges intact. The edges will only exist between the clusters

of vertices. Figure 2.5 illustrates this approach and is described in Zheleva and Getoor

[2007]:
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Figure 2.5: Edge clustering methods: relational information only between clusters of
vertices.

Vertex and Edge Clustering Methods

Vertex and edge clustering methods consist in partitioning original graph into clusters

then combining nodes into a generalized node and edges between clusters into a single

edge. In Campan and Truta [2009] data of the graph to be anonymized is clustered. For

each cluster, the corresponding subgraph is extracted and the nodes of the subgraph are

collapsed into a single node. The information about the number of nodes in the cluster is

attached to this generalized node as well as the number of edges in the original cluster.

Then the inter-cluster edges will be collapsed into a single edge and the structural

information released will limit to the total number of edges collapsed into a single edge

between the two clusters.

2.4 Utility Loss Evaluation

The new graph obtained after anonymization is compared to the original graph in terms

of utility loss. The utility is a notion very difficult to define and quantify regarding

graphs representing a given network. The utility depends directly of the use to be made

with the anonymized data. Compared to tabular data, when anonymizing graphs it is

very difficult to quantify the loss of utility of data to be protected. A change in a local

area of a graph is modifying properties and behavior for the entire graph.

In Wu et al. [2010] a classification is described of the utility loss evaluations when mod-

ifying graph data. The article is identifying three main types of utility to be evaluated

when modifying data in a graph structure: graph topological properties, graph spectral

properties and network queries aggregation.

2.4.1 Graph Topological Properties

Considering the general graph properties, some papers compare the new graph according

to the properties of this resulting graph compared to the original graph. For example,

important applications of social network data are issued from the analysis of the graph

properties (Zhou et al. [2008]). Properties compared may be as listed above:
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• Degree distribution

In Tai et al. [2011c] the degree distribution is preserved thanks to the first step of

the algorithm where the vertices with similar degrees are clustered.

• Degrees centralities

After anonymization usually the degrees centralities are decreased (Liu and Terzi

[2008], Tai et al. [2011c]) as in an anonymized graph strong leaders and influential

vertices may be de-anonymized.

• Clustering coefficients

The clustering coefficient is decreased in Tai et al. [2011c] as the algorithm may

connect distant vertices and disconnect vertices in the same clique.

• Average path length

The average path length in Tai et al. [2011c] is increased as some vertices in differ-

ent cliques are connected and some vertices in the same cliques are disconnected.

• Number of edge changes from G to G′

In many algorithms, the additions and deletions of edges are almost equal and

they increase linearly to the value of k for the k-anonymity based algorithms.

Song et al. [2011] contains a description of the utility metrics used in graphs. The

utilities described reflect the properties preservation for the social network associated

with the graph and we are listing them hereafter:

• Diameter

The longest path of the graph.

• Radius

The minimum graph eccentricity (the maximum distance between a vertex and

any other vertex in the graph) of any vertex in the graph.

• Density

The ratio of the number of edges to the number of possible edges in a graph.

• Degree centrality

It is related to a vertex v and it represents the number of vertices adjacent to v in

the graph.

• Closeness centrality

It is related to a certain vertex v and it represents the inverse of the average

distance of the vertex to all the other vertices in the graph. It measures how close

a vertex is to all other vertices. The closeness centrality measure is proportional
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with the importance of a node in a graph; the closer a vertex is to other vertices,

the faster the information can be exchanged. Therefore this measure is usually

used in the context of information diffusion or influence calculation level in social

networks.

• Betweenness centrality

This measure is related to a given vertex v and it represents the ratio of the number

of shortest paths in the graph that pass by v to the total number of shortest

paths in the graph. This type of measure is also used for influence calculation or

information diffusion.

• Eigenvector centrality

This measure indicates each vertex importance according to its connections to

important vertices, similar to the concept used in Google’s Pagerank algorithm.

• Global clustering coefficient and local clustering coefficient

The global clustering is defined for the whole graph and depends on the number

of triangles and connected triples in the graph.

The local clustering coefficient is a measure associated to each vertex in the graph.

It is proportional to the number of connected vertices in its neighborhood compared

to all the possible edges of the neighborhood.

• Mean geodesic distance

It represents the average shortest path length of a graph.

• Algebraic connectivity

It is the second smallest eigenvalue of the Laplacian matrix of the graph and it

suggests how well connected a graph is. If the graph is not connected, the value

of this measure is 0.

• Earth movers’s distance

It is used to measure the distance between two distributions and it represents the

amount of work necessary to transform one distribution into another. It can be

used to compare degree distributions of graphs for example.

According to the measures described above, the anonymization cost needs to be quanti-

fied. For example, in a k-anonymization algorithm, this cost can be quantified as being

proportional to the number of edges deleted and inserted in the anonymized graph.

According to the utility needed to be preserved, these measures and the associated cost

are usually defined before anonymization. In Li and Shen [2011b] the utility needed is

the structure of the communities in the hypergraph. The anonymization cost related to
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a hyperedge is defined as the difference between the ranks after and before anonymiza-

tion.

Another example of cost function is the combination between the number of edges

added/deleted, the number of vertices linked with an external neighbor and the pro-

portion of labels generalized in the graph.

2.4.2 Graph Spectral Properties

Another method to quantify the loss in the utility of the data consists in the evaluation

of the changes in the spectrum of the graph. In Ying and Wu [2008] it is shown the

close link between the spectrum of a graph and the graph characteristics.

The spectrum of a graph is defined as being the eigenvalues of the adjacency matrix

or of other related matrix (as the Laplacien). Ying and Wu [2008] is describing an

anonymization method based on add, delete or switch operations on the edges of the

graph, operations guided by the spectrum of the modified graph. The idea is to add,

delete or switch edges by modifying as little as possible the associated spectrum of the

graph.

In Ying and Wu [2009] the main idea is to re-generate a new synthetic graph matching a

certain list of properties associated to the real social network. Among those properties

are those correlated with the spectrum of the graph.

2.4.3 Network Queries Aggregation

In the case of the network queries aggregation, the measure of the utility loss is propor-

tional to the delta between the answer to a set of queries on data of the graph G and

the graph G′.

In Cormode et al. [2008] the evaluation method consists in listing a set of types of

queries (SQL like queries) and compare the answers before and after anonymization on

a bipartite graph. The queries are grouped in 3 categories:

1. Graph structure only queries (if the anonymized graph is isomorphic with the

original graph, the answer to this type of queries will be perfectly accurate).

2. Attribute predicate on one side only consisting in computing the aggregate of nodes

satisfying certain properties.

3. Attributes predicate on both sides consisting in computing the aggregate of nodes

on both sides and their relations satisfying required properties.
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In Zhou and Pei [2008] the utility is evaluated according to the answer to aggregate

queries. An example of aggregate queries is the computing for a label l1 of its nearest

vertex of label l2. The utility loss is calculated by randomly picking 10 labels pairs and

then calculating the average of the error rate when computing the shortest path between

the pairs of labels in the original and anonymized graph.

2.5 Complex Graphs Anonymization

2.5.1 Hypergraphs

A hypergraph is a generalization of a graph in which an edge can connect any number

of vertices. Due to the power of hypergraphs to represent multi-relations among ob-

jects, they are more and more used in publishing data. However, the privacy of data is

not well preserved as a particular structure in a hypergraph can be easily re-identified.

Anonymizing data by simply removing identifiers is not sufficient for a graph and is even

less sufficient for a hypergraph. In a hypergraph, as an edge can connect to more than

one node, the neighborhood of a given vertex has a higher probability to be unique than

in a simple graph.

In a graph, an edge has always the degree equal to two and this degree is not powerful

in a de-anonymization task. In a hypergraph representing a social network, the degrees

of the hyperedges are elements allowing an adversary to re-identify a certain vertex in

the anonymized hypergraph.

For example, in Li and Shen [2011b] a social network is modeled by using a hyper-

graph and the groups a user is part of are the hyperedges of the hypergraph. The main

privacy attack considered in this paper is the identity disclosure. A potential attack on

the anonymized data in a hypergraph is based as mentioned above on the edge rank

property. This paper shows that in a hypergraph representing social network from Face-

book where each member is a vertex and edges are represented by interest groups, naive

data anonymization is not enough to preserve the privacy of a given vertex. The rank

sequence of a vertex is defined as being the set of ranks of the incident edges of that

vertex. Based on the rank sequence, an attack is described by identifying a unique rank

sequence for a given vertex which leads to the identity disclosure for that given node.

Based on this, Li and Shen [2011b] describes a rank-based hypergraph anonymization

(RHA) in two steps:

1. a rank anonymization (RA) which consists in modifying the rank set to insure that

each element cannot be distinguished
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2. a hypergraph construction (HC) consisting in reconstructing a hypergraph with

the same vertex set and the perturbed rank set

The main goal of the operation is to minimize the information loss between the origi-

nal hypergraph and the new anonymized hypergraph and to find a compromise between

utility and efficiency regarding privacy preservation. The RA algorithm described has as

main goal the community preservation when modifying the hypergraph for anonymiza-

tion.

2.5.2 Temporal Graphs

Another representation of datasets as complex graphs is related to temporal graphs.

Datasets issued from communication logs or relational data is often labeled with tempo-

ral information. This information can then be exploited for de-anonymization purposes

by a potential adversary.

Most of the prior works on relational data anonymization propose static privacy ap-

proaches capable of protecting data released at a certain time t. The work described in

Tai et al. [2011b] is an approach for protecting data in a dynamic context when several

releases are performed during a certain time. However, to the best of our knowledge

there is no anonymization model taking into account the analysis in time of graphs with

multiple oriented timestamped edges.

Sherkat et al. [2013] is providing a study concerning the timestamped event sequence

anonymization based on time and event generalization. The paper considers two types

of attacks: sequence identification and event prediction. For the first type of attack,

k-anonymity based privacy evaluation is used. The idea is not to allow the association

of any sequence in the original database of timestamped event sequences with less than

k sequences in the published dataset.

Sharad and Danezis [2013] is tackling the de-anonymization from the perspective of call

detail records publishing. It is showed that call detail records in the case of the dataset

D4D (Data for Development, Orange) released by Orange (French telecom operator) can

still be de-anonymized by using the 1-hop neighborhood of the published nodes.

2.6 Differential Privacy for Graph Data Anonymization

Differential privacy is a quite recent concept aiming at providing certain guarantees for

the privacy of released data. It has been used in a first time for interactive data delivery.

Recently, approaches to provide differential privacy for non-interactive data release have

been described in the literature.
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2.6.1 Principle

Differential privacy is not a condition on the dataset but is a condition on the data

release mechanism. Differential privacy related anonymization techniques could be clas-

sified within the randomization techniques, as the mechanism generates noisy views of

the original dataset.

Differential privacy applied on tabular data is resumed in Dwork et al. [2006] as follow-

ing:

For a database access protocol (corresponding to the delivery mechanism), an adversary

A and a particular database x, the random variable TA is denoted the transcript, corre-

sponding to the output of the delivery mechanism.

A mechanism is ǫ-indistinguishable if for all pairs x, x′ ∈ Dn which differ in only one

entry, for all adversaries A, and for all transcripts t:

∣
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∣

∣

ln
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Pr[TA(x′) = t]

)∣
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∣

∣

≤ ǫ (2.1)

Therefore, when ǫ is small, the definition is equivalent to the requirement for all the

transcripts t being such as:
Pr[TA(x) = t]

Pr[TA(x′) = t]
∈ 1 + ǫ (2.2)

As mentioned in Leoni [2012], the ǫ-differential privacy for a mechanism is such as the

same mechanism executed on two databases differing in one row will probably output

the same result.

To limit the possible linkability attacks, the system has to keep track of the queries sent

to the system and a certain “privacy” credit amount is accorded to the user. One of

the main concerns regarding differential privacy, pointed out by the opinion G29 [April

2014], is the fact that it is mandatory to consider the combination between all possible

queries, an error being to consider each query independently.

This kind of condition works well on tabular data for interactive database interrogation.

When tuples of the database are independent, the differential privacy is a strong condi-

tion and allows hiding participation of any tuple in the database.

The paper Kifer and Machanavajjhala [2011] shows that privacy guarantees of differen-

tial privacy degrade when applied to correlated data. Kifer and Machanavajjhala [2011]

is arguing that it is not possible to guarantee the privacy without a certain number of

assumptions on the data delivery mechanism. The paper is pointing out privacy leaks

when, for example, previous knowledge like deterministic statistics are known on the

database. This kind of statistics could add correlations into data. Adversary knowledge

should be taken into account even in the context of differential privacy.

This same paper points out that for social networks where correlations exist between
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nodes the database excluding a given node has important implications on neighbor nodes.

In the case of social networks, the ǫ-differential privacy would need an extremely small ǫ

corresponding to a very large amount of noise added to any query. This wouldn’t provide

any information about the social network and the utility of data would be completely

lost. In this paper it is also shown that by using only a naive ǫ-differential privacy on the

queries, an attacker could infer the participation of a certain user to the social network.

There are some attempts to provide differential privacy guarantees to graph data. Task

and Clifton [2012] is one of the first approaches to use differential privacy in a graph

context, i.e. in a context where different entries are interacting among each other. In

this paper, the node-privacy is satisfied if the differential privacy is satisfied for all pairs

of neighbor graphs. Neighbor graphs are defined as graphs differing according to one

vertex and the edges adjacent to this vertex. This induces important restrictions on the

queries the system is able to compute on the graph. The paper approach is related to

an interactive differential privacy mechanism (the dataset is not publicly released in this

case). The problem we tackle deals with data publishing. Some attempts where made

to apply the principle of differential privacy to data release, attemps described further.

2.6.2 Differential Privacy for Data Release

In O’Hara [2011] it is claimed that differential privacy is limited to the interactive func-

tioning. In this report on privacy and transparency for the UK government, the differ-

ential privacy approach is seen as a mechanism able to set a tolerable level of privacy

for interactive mechanisms. Both, the privacy and transparency report for the UK gov-

ernment (O’Hara [2011]) and the Opinion 05/2014 on Anonymization Techniques (G29

[April 2014]) are describing and evaluating differential privacy only for the interactive

mechanism.

However, recent work encourages researchers to pursue in the direction of using differ-

ential privacy for non-interactive settings.

Differential privacy for data publishing consists either in releasing a new database com-

posed of synthetic individuals or in releasing a perturbed version of the original dataset.

As mentioned above, the condition on the differential privacy says that the query output

obtained from a database D should be slightly different from the query output produced

when querying a neighbor database D′. For the non-interactive model existing research

considers a unique query on the original graph performed only once and using the entire

privacy budget (Sala et al. [2011]).

In Leoni [2012] the mechanism on which differential privacy is applied is of type M :

D → R, the differential privacy condition applying for example on a count of individuals

filling a certain condition. When considering a mechanism of type M : D → D, privacy
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is more difficult to preserve.

In Sala et al. [2011] a new graph G′ is generated from the original dataset G according

to a desired level of ǫ-differential privacy. Mir et al. [2013] consider anonymization for

call detail records, but the calls are considered as row entries, no interaction information

is kept in the dataset. The algorithm described in this paper, uses distributions (like

commute distance, calls per day) to produce synthetic CDRs for a number of synthetic

users and length of simulated time.

Wang et al. [2013] revisit the definition of the differential privacy, definition which in

classical approaches treats the dataset as a collection of rows, each row corresponding to

an individual record. The definition revisited for graphs aims to ensure that including

or excluding links between individuals makes no statistical difference on the result. In

this context, the neighboring graphs are two graphs differing according to one edge. In

this case, differential privacy ensures that the probability to have a particular output is

almost the same whether having or not a particular edge in the original graph.

In Ahmed et al. [2013] an anonymization method for graph data publishing is proposed,

approach satisfying the differential privacy guarantees.

In most of the existing research papers the impact of differential privacy anonymization

on the utility of data is proved through experimentation.

Differential privacy, just as k-anonymity or l-diversity has its strong parts but also has

identified weaknesses. In Cormode [2010] it is shown that even under differential pri-

vacy, disclosure can take place. In the described attack, instead of learning information

at an individual level, properties of the population are learned. These properties allow

predicting private information about an individual.

Even if differential privacy is a promising direction for anonymization, privacy is not

completely guaranteed against all types of powerful attacks.

In the literature, differential privacy and k-anonymity based techniques have most of the

time been viewed as completely different approaches to ensure data’s privacy. Several

studies (Li et al. [2011], Comas [2013], Soria-Comas et al. [2014]) bring a link between

k-anonymity and differential privacy.

The idea in Li et al. [2011] is to bring differential privacy’s strong guarantees into the

practical k-anonymization methods. Main criticisms brought to the differential privacy

are the important amount of noise to add into the dataset in order to achieve differential

privacy guarantees and the fact that the utility is guaranteed only for a restricted type

of queries. In Soria-Comas et al. [2014] it is shown that the amount of noise necessary

to bring the differential privacy guarantees to the dataset can be reduced by performing

the method on a k-anonymous version of the dataset.
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2.7 Machine Learning in Data Anonymization Process

2.7.1 Machine Learning used for Data De-Anonymization

Machine learning techniques have been used in the past mainly for de-anonymization

purposes. Learning missing information in partially anonymized graphs has been de-

scribed by Zheleva and Getoor [2009]. This data disclosure is performed by using learning

methods and classification models in order to determine the missing labels in partially

anonymized graph.

In the work of Sharad and Danezis [2014], machine learning (decision forest) is used

to evaluate anonymization techniques. The anonymization technique is modeled as a

blackbox and the de-anonymization process is associated to a learning problem. The

paper proposes to replace manual de-anonymization techniques by a generic learning

algorithm. The learning algorithm is provided with examples of nodes being normally

unlinkable. The conclusion of the paper is that good de-anonymization attacks can be

produced even by using an automated algorithm based on machine learning.

2.7.2 Machine Learning used for Data Anonymization

Machine learning techniques have been used in the past also for data anonymization.

In Szarvas et al. [2007] machine learning techniques are used in the context of medical

records anonymization. The main idea is to use machine-learning named entity recog-

nition on semi-structured documents in order to identify personal health information to

be anonymized.

2.7.3 Exploring the Privacy-Utility Tradeoff

Anonymization problem can be modeled as the search of a tradeoff between privacy and

utility. Machine learning techniques have been used in the past for finding or approxi-

mating this tradeoff. Li and Li [2009] propose a framework able to take into consideration

the privacy-utility tradeoff. The concepts used are similar to concepts evaluating risk-

return tradeoff in financial investment. The evaluation of the privacy is considered as an

individual concept and is measured separately for every individual. Utility is considered

as an aggregated concept and its measure is performed accumulatively.

In Vinterbo [2004], the privacy problem for health data is formalized as an optimization

problem balancing privacy and data utility requirements. The problem of minimizing

information loss while satisfying a set of privacy requirements is proved to be NP-hard.

A theoretical analysis is provided of the relationship between data utility for machine
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learning and privacy disclosure control by generalization.

Mivule and Turner [2013] describe the idea to use KNN classification as an indicator for

an optimal balance between privacy and utility.

The idea of finding a tradeoff between privacy and utility in graph data has been de-

scribed in the literature in Song et al. [2011]. In a more recent paper Wainwright et al.

[2012] describes a theoretical method to obtain a precise tradeoff between privacy and

utility of data. The optimal convergence rates are learned by using stochastic gradient

descent procedures. This method supposes a well known tradeoff function.

Optimization algorithms have already been used in the past by Bayardo and Agrawal

[2005] for achieving data privacy through k-anonymization. This paper proposes the

use of optimization algorithms to explore the space of possible anonymizations. K-

anonymity condition can lead to NP-hard problems and to significant computational

challenges. Bayardo and Agrawal [2005] propose the use of optimization techniques in

order to find good k-anonymizations in a reasonable time.

2.8 Conclusion

An important research work has been performed in the past in the graph data anonymiza-

tion field. In most of the approaches described, the privacy risks the datasets is protected

from are known in advance. The idea of finding a balance between privacy protection

and utility loss has been evocated in the past but no generic method to find this com-

promise is described. Most of the works deal with simple graphs and only a limited

number of papers deal with complex graphs.



Chapter 3

Temporal Graphs Anonymization

Issue

This chapter addresses the data anonymization issue from the perspective of graph data

subject to decomposition in a multitude of subgraphs. It has been shown that even if the

dataset respects anonymization constraints, subgraphs resulting from dataset

decomposition can still be de-anonymized. A solution and a framework taking into

account this issue is proposed. The proposed solution has been filed as a patent in

Hacid and Maag [2014].
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3.1 Introduction

We address in this chapter the sensitive issue of data anonymization in the context

of data represented as a graph and subject to data decomposition in a multitude of

subgraphs. Anonymization, in its different forms, is quite powerful in a “centralized”

and “closed” environment, e.g., when data is in one place and cannot be coupled with

other data, i.e. auxiliary information. This mechanism suffers sometimes with the large

amount of data, impacting sampling techniques. Our first main contribution was to

35
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propose an improvement of the anonymization process through local, dynamic, and tem-

poral partitioning of a centralized dataset. This makes its reconstruction more complex

ensuring a higher robustness of the anonymization process. The proposal was mainly

applied on graph data as we focused from the beginning on communication data.

A sensitive case in which data released can be decomposed in a multitude of sequences

relates to data coming from call logs like e.g., phone calls, tweets, messages or e-mails

exchanged between two parties. This data can be represented as a graph with multiple,

oriented and timestamped edges. For phone calls for example, data are recorded in

CDRs. A Call Detail Record (CDR) is a file containing metadata corresponding to a

telecommunication transaction. As described in Petersen [2002], CDRs are used for ac-

counting and administrative purposes and they contain data as for example information

about the caller, the called person, the duration of the call, the starting time of the call,

the location information, the route of the call etc. This type of information is protected

by law as we already mentioned in Chapter 1.

Research work has been accomplished for CDRs anonymization, but the CDR data was

limited to information like for example the initiator of the call and the location data (in

Mir et al. [2013]). The destination of the call was, in Mir et al. [2013], not present in

the CDRs and no graph structure was considered.

D4D (Data for Development) (Orange) was a contest launched by Orange in 2012 which

released four anonymous datasets of CDRs. The CDRs were collected by the Orange

Ivory Coast subsidiary with the goal of bringing benefits for the concerned population.

In Sharad and Danezis [2013] it is shown that the anonymization strategy used for call

logs in the D4D dataset is weak and re-identification based on nodes 1-hop neighborhood

degree distribution is possible.

In the past, it has been shown in well known cases such as Netflix or AOL, that by com-

bining released anonymized information with external data, re-identification becomes

a reality. Relational and communication data issued from social or telecommunication

networks can be represented in very complex structures. Communication interactions

for example, may be represented as a graph with multiple oriented and timestamp la-

beled links. Liu and Terzi [2008] describe the difficulty to anonymize graphs comparing

to anonymizing tabular data. Any adversary could obtain any topology structure of

the graph for de-anonymization. When the graph has multiple timestamped labeled

oriented edges, it is even easier to re-identify an entity than in simple graph data. The

more the structure modeling data is complex the easier it will be to re-identify entities

inside it.

Related to that, targeted methods to anonymize data in an efficient way for a certain

type of attack will be even more complex. It is much harder to perturb a structure

around a given vertex in a complex structure. Additionally, the impact of that pertur-

bation can then spread to the whole graph structure.
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Recently, differential privacy based methods have been applied to simple graph struc-

tures in the interactive mechanism (e.g., Task and Clifton [2012]) or non-interactive

mechanism (e.g., Sala et al. [2011], Ahmed et al. [2013], Wang et al. [2013]).

When adding a temporal component to the simple graph, each edge corresponds to a

period of time. Next sections describe the vulnerability we identified in data subject to

be partitioned in subgraphs as well as one solution we propose.

3.2 Graphs Risk for De-Anonymization based on Subgraphs

Partitioning

The problem when anonymizing the initial data as a whole in a static manner is that

a malicious user could split the anonymized data in subgraphs, and then de-anonymize

each subgraph corresponding to the given timeslot.

Original Graph

Attack subgraph cannot be 

re-identified in the anonymized graph

Attack Subgraph

Figure 3.1: Main problem of existing anonymization techniques w.r.t. the time (i.e.
dynamics) dimension: even if the anonymized graph respects anonymization constraints
(e.g. k-anonymity), when decomposing it in subgraphs, subgraph in timeslot TS4 can

be de-anonymized.

We illustrate this in Figure 3.1. In this example the malicious user (the attacker)

performs an active attack by embedding a particular subgraph in the initial data. The
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malicious user retrieves then the anonymized data, and by using the temporal parti-

tioning in subgraphs, he is capable to localize in a unique manner the embedded attack

subgraph in the anonymized data. In this example, the anonymized graph respects

anonymization constraints but its projection on the timeslot (t4, t5), TS4, does not re-

spect those constraints. An attack inserted in this time interval can be re-identified in

the anonymized data.

The main idea to respond to the identified data’s vulnerability is based on the “divide

and conquer” principle: partition the datasets dynamically, apply the anonymizations

locally, and combine the whole.

As mentioned before, the existing techniques all operate on a centralized and “one-block”

of data which is anonymized as a whole. We propose here to perform the anonymiza-

tion on subsets of the dataset independently of the other subsets and then group the

anonymized subsets all together for harmonization. This implies to have a strategy for

partitioning the initial dataset into several subsets, applying an anonymization on each

dataset, and finally recompose the datasets to form one anonymized dataset. By do-

ing this, we ensure to make harder the de-anonymization process by preventing having

regular/unique patterns in the datasets which are used to de-anonymize data in general.

3.3 Anonymization by Data Partitioning

Our idea for anonymization is then to introduce a dynamic property inside the anonymiza-

tion process to prevent uniform anonymizations. By uniform anonymizations we mean

anonymization performed on a whole dataset considered as the unit of interest.

The dataset is decomposed in a plurality of subsets and then the chosen anonymization

strategy (which could be based on k-anonymization techniques or on ǫ-differential pri-

vacy) is applied to each subset.

The proposed approach is composed of three main steps:

1. Decomposition of the dataset into several subsets;

2. Anonymization of each subset independently;

3. Aggregation of the anonymized subsets.

These three steps are illustrated in Figure 3.2. During the first step, the dataset is

decomposed into several subsets. We propose to operate a non-uniform decomposition

in order to make it more complicated for potential attackers to get insights regarding

the decomposition. Thus, we can consider that the decomposition in itself provides an
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anonymization parameter which can be added to the classical parameters.

We propose the following strategies to decompose the dataset:

• Independent intervals: in this strategy, we target the division of the initial dataset

into n subsets with respect to the density. We defined the density as being the

number of calls in a period of time. The particularity of this division is that each

time interval is independent of the other and each interval must have the same

density in terms of activity. The density includes the amount of users combined

with their amount of interactions, e.g., calls.

• Cross intervals: in this strategy, we consider that intervals intersect between them.

This means that an interval may have a very small portion which is also included

in the next interval. However, it is expected that all the intervals may have the

same, or similar, densities in terms of activity.
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Figure 3.2: Temporal graphs anonymization reinforcement technique, approach in
three main steps: (i) data decomposition in subsets (ii) anonymization of each subset

independently and (iii) aggregation of the anonymized subsets.
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This step produces a set of intervals, which if combined, will reconstruct the whole

initial dataset. Once these intervals built, it is then the time to apply locally on each

subset, an anonymization technique (as illustrated in 3.2). During the anonymization,

any technique can be used to ensure this process. In fact, the idea behind is that an

anonymization applied locally becomes much harder to break down since the anonymiza-

tion works mainly on the available data at a certain time. All state of the art techniques

can be used at this stage to perform this local anonymization (e.g., k-anonymity, l-

diversity, ǫ-differential privacy).

Finally, a recombination step is performed on the anonymized subsets in order to hide

the different decompositions. This recombination is intended to hide the decomposition

parameter, preventing to infer the local anonymization.

3.4 System Architecture

Figure 3.3: General architecture of the dynamic anonymization server (DAS).

We also propose an architecture integrating the described solution the idea being to pro-

pose a framework for anonymization taking into account the complexity of the data and

its possible decompositions. This framework aims to provide good anonymizations for
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complex data in a real environment. We will call this framework “Dynamic Anonymiza-

tion Server” (DAS). The DAS will be responsible for executing the whole anonymization

reinforcement process. From a positioning and exploitation point of view, the framework

can fit as a strategic and crucial partner between data owner and the analysis provider.

The general architecture of the DAS is depicted in Figure 3.3. The whole system com-

municates with other systems through APIs which ensure an ability to read data and

send outputs to other systems. The input of the system is a set of data (in our case,

graph data) and the output is another set of data with the anonymization operated on

it. The resulting data is expected to keep a high analytical quality while hiding sensitive

data regarding individual and/or businesses. The different components of the proposed

system are the following:

1. Data Loaders: these components are responsible for loading data from data owners.

They are composed of adapters able to read data under different formats such

as relational databases, flat files, spreadsheets, XML, etc. The only role this

component ensures then is that of importing data to be anonymized.

2. Features Processor: this component takes as an entry (i) a dataset, (ii) an analyt-

ical objective (i.e. associated features such as betweenness centrality for influence,

density for communities, etc.), and (iii) a set of information to be hidden. As an

output, it provides a value associated to each object in the dataset as a preparation

for further computation.

3. Data Decomposer: this component is responsible for decomposing the dataset

into several subsets depending on the time dimension. It encapsulates both the

strategies described beforehand for the usage of time. As a result, this component

provides several subsets of data decomposed either independently (without any

intersection) or with some intersections.

4. Local Anonymizer: this component applies a specific anonymization strategy on

each subset obtained from the previous component.

5. Anonymization Composer: this component aggregates all the local anonymizations

obtained from the previous component. Basically, this component ensures that

there is not useless information added into the anonymization and ensures that

only one anonymization is provided as an output of the system.

6. Coordinator: this component ensures that the different components communicate

between them correctly and ensures that the anonymization is optimal. Optimal

here means that the resulting anonymization is not expected to decrease the quality

of the expected analysis to be operated on data. It also ensures that no critical

personal information is released in the computed final anonymized dataset.
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7. Data Server: this is a communication server which is responsible of managing the

transmission of data to the analyzer. This is operated through APIs. Intuitively,

this component ensures that the access is made by people who have the right to

access data through right management processes, passwords, etc.

Figure 3.3 illustrates the idea from a vision where the system is used independently.

Intuitively, the system can also be embedded into the data owner actor as a service that

he can operate on data.

However, it cannot be positioned at the analyzer level since the objective behind this

process is to hide sensitive data from the analyzer, who is a potential attacker on the

privacy of data.

Algorithms and analysis embedded in the analyzer part may be very complex. Addi-

tionally, the analyzer may not wish to disclose the analysis he performs on data. In the

case of advertisement agencies for example, the analyzer does not want to disclose the

analysis in order to retain a competitive advantage over a concurrent company.

3.5 Conclusion

Starting from existing anonymization methods, we have concluded that even if the global

dataset cannot be de-anonymized, when splitting this dataset into subsets (by using time

dimension or other kind of characteristics), we are able to re-identify isolated structures

in the resulting subgraphs. An intentional attack inserted in the original dataset on a

time interval, can then be re-identified even if the whole dataset has been anonymized.

Our first approach described in this chapter was to apply existing anonymization tech-

niques to each resulting subgraph and then to re-compose the dataset with the anonymized

subgraphs. In this initial approach, we consider that the DAS contains all the elements

allowing it to perform the anonymization process. However, three main issues were

identified:

• In real systems, the analytical objective of the dataset is outside of the DAS com-

ponent. In many cases, data must be externalized because the analysis to be

performed on it is too complex. Data owner or data anonymizer cannot perform

this analysis. The element “Features processor” able to quantify an analytical

objective of the dataset is an external interface and the anonymizer has no knowl-

edge about its internal functioning. We have modeled in the next chapters this

component as an external blackbox.

• The set of information to be hidden by the “Features Processor” as described

above is a static information. The information revealed by an anonymized dataset
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depends on the given dataset and on the external information an Adversary can

have access to. Therefore, its quantification should be done dynamically by a

module able to evaluate privacy risk for a given dataset. For this reason we have

modeled further this module also as an external blackbox.

• The “Features processor” component has as goal to find a tradeoff between the

analytical objective and the information to be hidden (privacy risk of the dataset).

This component is suitable for machine learning techniques in order to automat-

ically find the tradeoff between utility loss and privacy risk in a given context

(subject treated further in this document).

Starting from the points described above, we have defined and implemented a new

methodology based on machine learning able to learn the best anonymization function

in a given context. This methodology is described in Chapter 4.

My research work had as main challenge the anonymization before data release of call

logs, i.e. multiple timestamped graphs. However I have first implemented and eval-

uated the proposed methodology on simple graphs as described in Chapter 5, mainly

for being able to provide a comparison with existing works. Chapter 6 provides the

implementation of the methodology on timestamped graphs.



Chapter 4

Anonymization Methodology

Based on Machine Learning

This chapter describes a methodology which aims at automatically finding a tradeoff

between utility and privacy in a given context. After a general description of the

approach, the first part of the chapter gives the notations and definitions used in the

document.

In a second part we describe the optimization problem to be solved and the

corresponding optimization methods. The methodology proposed in this chapter has

been published in Maag et al. [2014].
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4.1 Introduction

Most of the anonymization techniques described in the literature have as main goal

to find a compromise between privacy and utility of data as described in Ohm [2010].

When adding perturbation in data, the privacy is better protected but the utility of data

is decreasing. The difficulty of an anonymization algorithm is to optimize the balance

between utility loss and privacy protection of the data. Starting from this requirement,

we propose a novel approach based on machine learning which will consist in automati-

cally finding a good anonymization procedure, given a set of possible attacks, and

a set of characteristics to preserve. The proposed method aims to automatically adapt

to different objectives of utility and potential attacks. This adaptivity is the main differ-

ence with existing anonymization methods. This method determines the anonymization

procedure based on a set of training graphs that will be used to discover how to both

preserve the anonymity given the possible attacks, and to minimize the utility loss i.e.

the loss over the characteristics of the graphs. In this sense, the method is generic, and

can be applied as soon as the attacks and the measures of anonymization quality and

of utility are available during the training phase. In the following we will consider that

they are provided as blackboxes. The blackbox corresponding to the utility measures is

provided by the external analyzer. The hypothesis is realistic as the third party repre-

senting the data analyzer is usually implementing an API allowing the data owner to

retrieve the results of the measures performed on the data. The blackbox corresponding

to the panel of attacks is also considered as being implemented externally and is sup-

posed to combine a large panel of de-anonymization methods as well as external data

retrieved from the Internet as e.g. social networks. This blackbox is implementing dif-

ferent techniques and combines them with data an adversary could have access to in a

de-anonymization attempt.

Figure 4.1 shows a general framework for anonymization. Data owner collects data

about a certain user (1). The user shares data on the Internet, as for example on social

networks (2). Data owner needs for some reason to release data to a third party, to a

data analyzer or in some cases to release open data for research purposes (4). As re-

quired by legislation but also to keep clients confidence, this data has to be anonymized

before release (3). We define an adversary as being a person aiming at re-identifying

anonymized data in the released dataset. The adversary could access external data made

public by the user on the Internet (5). In combination with the anonymized data, the

adversary could then re-identify the identity of the user in the anonymized dataset (6).

In most of the cases for which graph data need to be published, analysis to be per-

formed on the released data is either confidential or is too complex to be implemented

by the data owner or by the anonymization mechanism. We make the hypothesis that

the anonymizer has no access to the analysis algorithms. Only the access to the
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Figure 4.1: Anonymization general framework: private information can be revealed
if the adversary combines external data with anonymized data.

analysis result can be obtained, the analysis methods being inside the blackbox and not

being accessible. This means that the properties to be preserved in the anonymized

graph are unknown to the data anonymizer.

The anonymization problem for data release consists in determining how to modify data

such that re-identification cannot be performed and data is still useful for the purpose for

which it has been released. Based on these considerations, we model the anonymization

problem as an optimization problem with the goal of finding a tradeoff between the loss

of data’s utility and the gain in data’s privacy. Our main idea is to use machine learn-

ing on a small part of a dataset in order to automatically find the best anonymization

procedure for a given context.

The specific context is represented by the analysis to be performed on data (which is

external and not known by the Anonymizer) and the possible attacks, both represented

by blackboxes. This implies an objective function to minimize unknown.

Another hypothesis is that the entire data is not known in advance so that new data

can be anonymized with the function learned on the training data.

4.2 Methodology

With respect to classical approaches to anonymization, we propose a totally different

methodology where the anonymization procedure will be automatically found.

This approach is based on Machine Learning techniques and consists in finding a good

anonymization procedure by using training data – i.e. training graphs here. The under-

lying idea is summarized below:
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1. Instead of defining a specific anonymization function, the user defines a fam-

ily of parameterized functions, the parameters controlling the behavior of the

anonymization procedure (see chapters 5 and 6 for examples of such families).

2. The system is provided with the ability to measure if a graph is well anonymized,

and also a way to compute if the anonymized graph preserves the desired charac-

teristics (utility loss measure). These two measures can usually be computed from

blackboxes as explained in chapters 5 and 6.

3. Given a set of training graphs, the machine learning algorithm will test different

anonymization functions corresponding to different parameter values and will be

able to evaluate both, the quality of the anonymization and the utility loss.

4. The algorithm will be able to find the “best” parameters values, i.e. the values that

correspond to an anonymization procedure that obtains the best balance between

anonymization quality and utility loss.

Instead of defining a specific anonymization function, we define a family of parameterized

functions. Graph dataset to be anonymized is split in a multitude of subgraphs. We use

a part (e.g., 10%) of the projected subgraphs as training set to learn which model fits

better in a certain context. The learned anonymization function is then applied on the

rest of the subgraphs (ex. 90%) corresponding to the testing set.

4.3 Notations and Definitions

Notations described in this chapter mainly focus on graph anonymization problem for

simple graph. Additional notations dealing with complex graphs are introduced in Chap-

ter 6. Table 4.1 contains a synthesis of the notations used in the current document.

Let G = (V, C) be the graph describing the relational data. Let S be the number of

vertices in the graph G and U the number of edges in graph G. The vertices of G are

defined as V = (v1, ..., vS) with each vertex vi representing an interaction entity. We

denote with d the degree of a certain vertex in the graph.

Edges between users represent interactions. The interactions set is C = (c1, ..., cU ) with

ck ∈ C, ck = (o(ck), d(ck)), o(ck) and d(ck) being the vertices connected by the edge ck.

Let G′ = (V ′, C′) be the anonymized graph. The anonymization function receives as

input G and outputs an anonymized graph G′.

We introduce next the anonymization function fθ, the utility loss ∆ and the privacy

risk R used to evaluate the compromise between privacy protection and utility loss.
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Table 4.1: Notations Summary Table

Symbol Significance

G = (V, C) Graph containing the relational data

G = (V, C, T ) Graph containing relational timestamped data

V = (v1, ..., vS) Set of vertices in G

S Number of vertices in G

C = (c1, ..., cU ) Set of edges in G

U Number of edges in G

G′ = (V ′, C′) Anonymized graph

fθ Anonymization function

θ = (θ1, ...., θn) ∈ Rn Parameter vector for function f

n Number of parameters for function f

∆ Utility loss

R Privacy risk

M : G → Rn Measure which applied on a graph G gives a measure result

L(θ,G) Approximation of the utility loss when using fθ on G

L(θ) The total loss evaluating how much information has been
lost by providing G′ anonymized with θ instead of G

A Set of possible attacks on G

a ∈ A Attack

R(G,G′, a) The probability to re-identify original data from G in
anonymized data G′

Q(θ) The global privacy risk for all anonymization results using
fθ among all the possible original graphs

fθ∗ Approximation of the best possible anonymization function

L(θ) Objective function to minimize

m Number of sampled graphs G1, ....,Gm used in the training
set

λ Hyper-parameter used for the balance between privacy risk
and utility loss

Li(θ) The empirical loss for the graph G and for an instantiation
of the function fθ(Gi)

Lemp(θ) The approximation of the empirical loss corresponding to
parameter θ

D Maximum degree of a graph G

k Used for the k anonymity evaluation

N Size of the initial population of θ used for learning

P Percentage of best parameters conserved by the optimization
algorithm

θ∗ Learned parameters vector

T Number of times the empirical loss is computed (for the
Monte-Carlo method)

d Degree of a given node

p Number of groups the vertices are split into for the
anonymization method

T Set of timestamps

Tmin Minimum timestamp in graph G

Tmax Maximum timestamp in graph G

O : G × T × T → (V, C, T ) Operator used to project graph data on a time interval
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4.3.1 Anonymization Function

A data anonymization process will correspond to a stochastic parameterized function

fθ with parameter θ such that fθ defines a distribution P (G′|G, θ) which corresponds

to the probability that the anonymization procedure applied on graph G returns the

anonymized graph G′. Let n be the size of parameter θ. The result of fθ(G) is thus a

graph G′ that is sampled following P (G′|G, θ). When applied several times on the same

graph G, the result G′ returned by the anonymization function parameterized with the

same θ is likely to be different.

4.3.2 Utility Loss

Instead of providing G to the third-party, we will provide an anonymized version G′ of

G. The measures made on the anonymized graph G′ will thus be noisy versions of the

desired measures on G resulting in a loss of information. The utility loss is evaluated

according to the analysis to be made on data (which is not known by the anonymizer).

The utility loss is the gap between the analysis result on the original data G and the

analysis result on the anonymized data G′. The analyzer will perform a set of analysis

on the original graph and the anonymized graph provided by the anonymizer. The loss

of information resulting from the use of G′ instead of G will be accessed by the data

anonymizer through an external API provided by the data analyzer.

We define the analysis to be made on data as being equivalent to a certain measure

M(G) which applied on a graph G gives a measure result represented as a real number

or as a vector. The gap between the measure M(G) obtained on the original data and

the same measure M(G′) obtained on the anonymized data is the loss in the utility of

the data due to the anonymization process and is denoted ∆(M(G),M(G′)) . The total

loss in the utility of data when using the anonymization function parameterized with θ

corresponds to the result of the utility loss measured among all possible anonymizations

as defined bellow:

LM (θ,G) =

∫

G′

P (G′|G, θ)∆(M(G),M(G′))dG′ (4.1)

The total loss among all the graphs to be anonymized is the integral of the loss obtained

when considering for each graph G all possible anonymized graphs G′ :

LM (θ) =

∫

G

∫

G′

P (G)P (G′|G, θ)∆(M(G),M(G′))dG′dG (4.2)
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Evaluating the utility loss over all possible G′ is impossible so that we will make use of

Monte-Carlo methods (Eckhardt [1987]). Monte-Carlo methods are based on repeated

and numerous simulations on random samples according to a given distribution in or-

der to obtain a result close to the one ideally obtained by taking into account all the

possibilities. Rather than evaluating the integral, the utility loss is evaluated at a series

of random points sampled from P (G′|G, θ). Let T be the number of anonymizations

used to evaluate the utility loss for a graph G. The evaluation of the utility loss for an

anonymization function parameterized with θ becomes:

L(θ,G) ≈
1

T

∑

(G′

1
,....G′

T
)

∆(M(G),M(G′k)) (4.3)

The total loss to be evaluated is the utility loss over all the graphs in the dataset is:

L(θ) =

∫

G

P (G)L(θ,G)dG (4.4)

We use once again the Monte-Carlo method to evaluate the sum over a random series of

graphs to be anonymized. Let m be the number of sampled graphs forming the training

set. The total loss of the utility can be approximated to:

L(θ) ≈
1

m

∑

(G1,....Gm)

L(θ,G) (4.5)

The total loss will be approximated by:

L(θ) ≈
1

m

∑

(G1,....Gm)





1

T

∑

(G′

1
,....G′

T
)

∆(M(Gi),M(G′k))



 (4.6)

The total loss is then a function L(θ) ∈ [0,+∞) reflecting how much information has

been lost by providing G′ instead of G.

4.3.3 Privacy Risk

We define an attack a ∈ A as corresponding to an algorithm used to evaluate the privacy

preservation in the anonymized graph G′. This type of algorithms aim at evaluating if

the access to the anonymized graph G′ can lead to a re-identification of certain nodes

or edges. Section 2.2.2 contains a state of the art of possible attacks on graph data.

Usually the algorithm used suppose that the adversary has an external knowledge about

the initial dataset and combines this knowledge with the anonymized dataset in order

to re-identify anonymized data.
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A corresponds to a set of possible attacks on the anonymized graph G′. We define the

privacy risk for graph G, anonymized graph G′ and attack a as being the probability

R(G,G′, a) ∈ [0; 1] to re-identify original data in the anonymized data according to a

given attack. The global privacy risk is the privacy risk considered for all anonymization

results, among all the possible original graphs and with all possible types of attacks as

defined hereafter:

Q(θ) =

∫

G

∫

G′

∫

A

P (G′|G, θ)P (G)P (a)R(G,G′, a)da dG′dG (4.7)

Once again we are going to use the Monte-Carlo methods to evaluate the privacy risk

in a series of random points. The lowest R is, the more G′ is a good anonymization of

graph G. A privacy risk equal to 0 corresponds to a perfect anonymization according to

a given set of considered attacks. R is strictly dependent of the set of considered attacks

A.

4.4 Optimization Problem: Balance between Utility Loss

and Privacy Risk

As explained before, we consider that the anonymizer and data analyzer are not the

same entity. The anonymizer does not implement the analysis to be made on data, but

can access the measure of the gap between the analysis performed by the data analyzer

on graphs G and G′. This analysis component is acting as an external blackbox for

the anonymizer. The privacy risk evaluation is also considered as an external blackbox

capable, for a pair of original graph G and anonymized graph G′, to return the privacy

risk corresponding to a release of G′ instead of G.

Let us consider a particular family of parameterized anonymization functions fθ with

θ = (θ1, ...., θn) ∈ Rn a vector of parameters. Our goal is to find the “best” possible

anonymization function denoted fθ∗ such that:

• fθ∗ is robust against the attacks, i.e the R values over generated anonymized graphs

are low

• fθ∗ preserves the utility measures over anonymized graphs, i.e ∆ values are low

In other words, the best anonymization function fθ∗ must correspond to a balance be-

tween anonymization and utility loss.
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Let us define the objective function L(θ) as:

L(θ) =

∫

G,G′,A

(

∆(M(G),M(G′)) + λR(G,G′, a)
)

P (a)P (G)P (G′|G, θ)da dGdG′ (4.8)

where λ is a hyper-parameter chosen by hand. The term ∆(M(G),M(G′))+λR(G,G′, a)

measures the balance between the utility loss obtained by using G′ instead of G and the

quality of the anonymization, L(θ) is the average over all possible pairs G,G′ and all

possible attacks in A. While L(θ) cannot be evaluated, it can be approximated using

Monte-Carlo sampling on a training set of sampled graphs G1, ....,Gm where m is the

number of graphs used for learning. As explained before, rather than evaluating the

integral, the utility loss is evaluated at a series of random points.

Let Li(θ) be the empirical loss for the graph Gi and for an instantiation of the function

fθ(Gi) :

Li(θ) = ∆(Gi, fθ(Gi)) + λ
1

|A|

∑

ak

R(Gi, fθ(Gi), ak) (4.9)

The integral to be minimized defined in (4.8) can be approximated by the empirical loss

defined as following:

Lemp(θ) =
1

T

T
∑

j=1





1

m

∑

Gi

Li(θ)



 (4.10)

where T corresponds to the number of samples used for the Monte-Carlo method. In

the following we will denote θ∗ the learned estimation for parameter θ. The learning

problem to solve can thus be written as:

θ∗ = argmin
θ
Lemp(θ) (4.11)

Solving this optimization problem corresponds to finding the best anonymization

procedure w.r.t the empirical loss Lemp. This will be done by using optimization

methods described further in section 4.6.

4.5 Summary

All the defined functions are summarized in Figure 4.2. The risk for de-anonymization

R(G,G′) is measured by the blackbox “Panel of Privacy Risks” corresponding to a cat-

alog of possible attacks on the anonymized data. Utility loss ∆(M(G),M(G′))dG′ is

obtained from a second blackbox called “Data Analyzer” containing a panel of measures

for which data is externally needed. Both blackboxes receive as input original data G

and anonymized data G′ the output being the values R(G,G′) and ∆(M(G),M(G′)) used
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by the learning module.

Training Set Anonymization Function

 such that 

Anonymized Training Set

Blackboxes Access

Panel of Privacy Risks

Attack a1 Attack a2 ... Attack ak

Data Analyzer (Third Party)

Measure 1 Measure 2 ... Measure l

Learning Module End

learning

External

knowledge

Figure 4.2: Learning process.

The “Learning Module” aims to learn on a training set models capable to behave

well on unseen data. The dataset is split in subgraphs forming a training set (e.g. 10%

of data) and a testing set (e.g. 90% of data). Training set is formed by m subgraphs

G1, ...Gm. In order to form this training set, for simple graphs we retrieve chronologi-

cally the relations present in the graph. For multiple timestamped graphs, we retrieve

in chronologic order the interactions occurred. Only the training set will be transmitted

to the blackboxes in its original format in the learning phase. The learning module will

dispose of a set of representative graphs Gi for the dataset and of the access to the black-

boxes (and therefore to the values R(Gi,G
′
i) and ∆(Gi,G

′
i) for an anonymized instance

G′i). In practice this access could be materialized by an external API the analyzer ex-

poses to the anonymizer and a set of attacks implemented for learning purpose.

For each anonymization function fθ candidate for the anonymization process, each graph

of the training set G1, ...Gm is anonymized resulting in G′1, ...G
′
m. The learning module

then updates the set of parameters θ in the anonymization function until θ∗ is learned

after a certain number of iterations. A solution to find the function fθ corresponding

to the minimum of the empirical loss could be obtained by computing the value of the

empirical loss in all possible values of the searched parameters θ∗. This could be possi-

ble eventually when only one parameter is used. However, when dealing with a certain
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number of parameters optimization techniques are mandatory to find the anonymization

function minimizing the empirical loss.

The described problem corresponds to a complex multivariante optimization problem.

The anonymization function is a stochastic function. The anonymization function being

stochastic, the loss is also a stochastic function. Additionally, the loss is not known in

advance by the anonymizer, but it is approximated using the access to the blackboxes.

For a known loss, classical minimization techniques based for example on gradient de-

scent could have been used. In our case these techniques are not suitable because the

loss is not known, therefore we use for learning a set of optimization methods described

in the next section.

4.6 Optimization Methods

4.6.1 Estimation of Distribution Algorithm

Figure 4.3: Estimation of distribution algorithm: for each step candidates solutions
are generated. At step 0, population is initialized from a uniform distribution over
admissible solutions (P). The most promising candidates (PS) are selected and a new
population is generated at each step following a normal distribution N with the distri-

bution parameters PDe.
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Estimation of Distribution Algorithms (EDAs), sometimes called probabilistic model-

building genetic algorithms (PMBGAs), are stochastic optimization techniques that ex-

plore the space of potential solutions by building and sampling explicit probabilistic

models of promising candidate solutions. Hauschild and Pelikan [2011] provides a sur-

vey of the different types of EDAs and of their advantages. The principle of a typical

EDA algorithm is illustrated in Figure 4.3 (source: Wikipedia [2013]). EDA is initializ-

ing the population from a uniform distribution over admissible solutions. The algorithm

evaluates the function to optimize f(x). At each step it regenerates new candidates sam-

pling promising candidate solutions from the best candidates selected at the previous

step. As showed in the figure, the algorithm ends when the model generates solutions

close to the optimal solution. We have made the choice to use EDA for solving the

optimization problem for its capacity to converge to a good approximated solution in a

limited amount of time. Convergence for this type of algorithms is discussed in Zhang

and Muhlenbein [2004] or Wright and Pulavarty [2005]. It is showed that the algorithm

is able to find the optimum solution with high probability.

The use of this learning algorithm in our context is detailed further in this document.

The implementation of the solution is described in Algorithm 1. In our specific case,

Algorithm 1: Use of EDA in the Anonymization Context

Data: (G1, ...,Gm), access to external blackboxes ∆, R
Result: θ∗1, ..., θ

∗
n

1 init Model(t0) to N possible solutions, 0 < θi < θmax ;
2 Model(t0) = (θ1, ..., θn)1, ..., (θ1, ..., θn)N ;
3 init T;
4 init endLearning;
5 while endLearning!=0 do
6 foreach G in (G1, ...,Gm) do
7 foreach (θ1, ..., θn)k in Model(t) do
8 for index← 0 to T do
9 G′ = f(G, (θ1, ..., θn)k) ;

10 L(θk) = ∆(G,G′) + λ 1
|A|

∑

ak
R(G,G′, ak);

11 end

12 end

13 end
14 Compute Lemp;
15 BestF itting(θ) = select P% in Model(t) minimizing Lemp;
16 mean = Mean(BestF itting(θ));
17 variance = Variance(BestF itting(θ));
18 Model(t+ 1) = gaussianValues (mean, variance);
19 endLearning −−;

20 end

EDA is initialized to a population of size N of random possible candidate solutions to a

given problem between 0 and θmax (lines 1 and 2 of the algorithm). The population is
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then scored using a function which in our case will correspond to the balance between

utility loss and privacy risks (line 10). For each graph in the training set, we calculate

the ranking function L(θk) T times (lines 8 to 11), each iteration corresponding to a re-

sult of the anonymization function parameterized with θk. L
emp is the mean of all L(θk)

obtained among all the iterations and all the graphs in the training set. The candidate

solutions θk are ranked according to the result obtained for each one of them for Lemp.

From the ranked population a truncation selection is performed with a threshold P (for

example P could be equal to 40% of the population) and parameters corresponding to

the lowest values for Lemp are selected. The algorithm then constructs a probabilistic

model which attempts to estimate the probability distribution of the selected solutions.

We make the hypothesis that each θi in the population is distributed according to a

Gaussian model and we regenerate a new population based on the mean and variance

of the most promising candidates selected among the initial population (lines 16 to 18).

The new solutions are replacing entirely the old population (line 18). The process is

repeated a certain number of times (“endLearning” parameter).

The idea behind this algorithm is to focus, at each step, on the parameter space region

which corresponds to good anonymization functions. This region is determined by the

P best functions found at the iteration. While different choices can be made for the

sampling model M, a classical choice is to consider that M is composed of indepen-

dent Gaussian densities. It means that, at time t, M is defined by a set of Gaussian

distribution N (µt
i, σ

t
i
2
) such that θi ∼ N (µt

i, σ
t
i
2
).

4.6.2 Genetic Algorithms

Another solution to the optimization, close to EDA, is the use of genetic algorithms.

Genetic algorithms (Whitley [1994], Golberg [1989]) are optimization search heuristics.

The model is initialized to a random population N of possible solutions to the problem

between 0 and θmax, similar to the initial model used for EDA and described in section

4.6.1.

Each candidate solution (θ1, ..., θn) has a set of characteristics that can be altered at each

iteration. Each iteration corresponds to a new generation of candidate solutions. The

objective function corresponding to the optimization problem to be solved is evaluated

for each generation. Best candidates are selected and for each individual the genome is

changed to form a new generation. The changes in the genome consist in recombinations

and random mutations. This technique has been used in a differential privacy context

in Zhang et al. [2013].

The algorithm we use is described in Algorithm 2. The first steps of the algorithm are

similar to the EDA algorithm (line 1 to 15). In our case, we use for the generation
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Algorithm 2: Use of a Genetic Algorithm in the Anonymization Context

Data: (G1, ...,Gm), access to external blackboxes ∆, R
Result: θ∗1, ..., θ

∗
n

1 init Model(t0) to N possible solutions, 0 < θi < θmax ;
2 Model(t0) = (θ1, ..., θn)1, ..., (θ1, ..., θn)N ;
3 init T;
4 init endLearning;
5 while endLearning!=0 do
6 foreach G in (G1, ...,Gm) do
7 foreach (θ1, ..., θn)k in Model(t) do
8 for index← 0 to T do
9 G′ = f(G, (θ1, ..., θn)k) ;

10 L(θk) = ∆(G,G′) + λ 1
|A|

∑

ak
R(G,G′, ak);

11 end

12 end

13 end
14 Compute Lemp;
15 BestF itting(θ) = select P% in Model(t) minimizing Lemp;
16 Calculate NoiseRange = 5%∗ range (BestF itting(θ));
17 foreach i = 0; i < N ; i++ do
18 Randomly choose θparent1 and θparent2 from BestF itting(θ);
19 mean = Mean (θparent1 , θparent2);
20 variance = Variance (θparent1 , θparent2);
21 θi = gaussianValues(mean, variance) + randomNoise(NoiseRange);
22 add θi to Model(t+ 1);

23 end
24 endLearning −−;

25 end

of each new child, the combination of two random parents from the best candidates

selected (line 18 of the algorithm). Each new child is generated according to the mean

and the variance of its parents (line 19 to 21). Noise equivalent to 5% of the candidates

scale is added to each new child (line 21). Similar to EDA, the process terminates when

certain conditions are met or after a certain number of generations (iterations).

4.7 Conclusion

We have described in this chapter the general methodology we propose for graph anonymiza-

tion based on machine learning. The robustness and the utility of the anonymized data

has been compared with existing anonymization methods for simple graphs. Chapter

5 contains the description of the results obtained when applying the methodology on

simple graphs. We have then applied the described methodology on call logs represented

as multiple oriented timestamped graphs. The approach as well as the obtained results
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are described in Chapter 6.



Chapter 5

Simple Graphs Anonymization

This chapter deals with the application of the methodology described in Chapter 4 on

simple graphs. First, the optimization method for simple graphs problem is introduced.

The second part contains the experimentation performed on real datasets. In order to

instantiate the methodology on simple graphs, a series of privacy risks and utility loss

evaluations are defined. Experiments are performed on real datasets coming from

Twitter or Amazon and obtained results outperform when compared with baseline.

Results from this chapter have been published in Maag et al. [2014].

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Optimization Problem for Simple Graphs . . . . . . . . . . . 61

5.3 Anonymization Method . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Privacy Risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4.1 k-Degree Anonymity . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4.2 k-Neighborhood Anonymity . . . . . . . . . . . . . . . . . . . . 67

5.5 Utility Loss Evaluation . . . . . . . . . . . . . . . . . . . . . . 67

5.5.1 Clustering Coefficient Based Utility Loss (CC) . . . . . . . . . 68

5.5.2 Page Rank Based Utility Loss (PR) . . . . . . . . . . . . . . . 69

5.5.3 Two-hop neighborhood based utility loss (THN) . . . . . . . . 70

5.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.6.1 Baseline (BL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.6.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

59



Chapter 5. Simple Graphs Anonymization based on Machine Learning 60

5.1 Introduction

Chapter 3 pointed out the weakness of the anonymization when the dataset has a tem-

poral component. In Chapter 4 we have described a new methodology based on machine

learning able to adapt to rich datasets. However, most of the existing research work as

described in Chapter 2 deals with anonymization of simple graphs structures.

In a first step, I have applied the proposed methodology on simple graph data in or-

der to compare to existing anonymization methods. Therefore, this chapter focuses on

the experimentation of the anonymization methodology on non labeled simple graphs

for privacy protection against nodes re-identification. Simple graph data representation

corresponds to most of the published relational data (e.g. friendship relations issued

from social networks).

In the literature, three main types of simple graph anonymization techniques can be

distinguished: (i) structural methods based on the k-anonymity concept, (ii) random-

ization techniques and (iii) generalization techniques. Most of the existing anonymiza-

tion techniques have been proposed for one particular type of attack (e.g. the case of

k-anonymity based structural methods described in Liu and Terzi [2008]) or one partic-

ular set of characteristics to preserve (e.g. randomization methods with graph spectrum

preservation described in Ying and Wu [2008]). They are thus very specific to these

strong choices and cannot be adapted easily to other kinds of attacks and mea-

sures. Concerning the third family of methods based on generalization techniques, the

difficulty to analyze local structures limits their utilization mainly because of the use of

hypernodes and hyperedges in data representation as described in 2.3.3.

The contributions of this chapter are the following:

• We apply the generic approach described in Chapter 4 to simple graphs data.

The methodology is able to discover a good anonymization function, given a set

of possible attacks and characteristics to preserve proper to simple graphs. As

described previously, the methodology is based on modeling the anonymization

problem as an optimization problem that embeds the balance between privacy

risk and utility loss.

• We use a learning algorithm (Estimation of Density Algorithm) to efficiently find

the anonymization function best adapted in a given context.

• We instantiate this algorithm for a generic anonymization procedure based on

adding edges in the graphs to anonymize, the quantity of added edges depending

on the degrees of the nodes.
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• We compare our approach to classical approaches used on simple graphs and

show that our method is generic and can automatically adapt itself to different

anonymization contexts while baseline methods issued from the state of the art

are specific to a particular context.

In the following, section 5.2 contains a brief reminder of the optimization problem from

Chapter 4. Section 5.3 contains a brief description of the anonymization method used

to evaluate the proposed methodology on simple graphs. Experiments and evaluations

are presented in Section 5.6 for two datasets retrieved from Twitter and Amazon.

5.2 Optimization Problem for Simple Graphs

Simple graphs are defined in Berge [1973] as being multigraphs responding to two con-

ditions: (i) they do not have loops and (ii) any two vertices have at most one edge

connecting them.

As described in Section 4.4, the learning problem we have to solve is to find best pa-

rameters θ∗, for a given parameterized anonymization method f , such as:

θ∗ = argmin
θ





1

T

T
∑

j=1





1

m

∑

Gi

∆(Gi, fθ(Gi)) + λ
1

|A|

∑

ak

R(Gi, fθ(Gi), ak)







 (5.1)

Solving this optimization problem corresponds to finding the best anonymization

procedure w.r.t the empirical loss Lemp. The goal is to find the parameters θ∗ cor-

responding to the minimum of the sum between privacy risk and utility loss. If this

function was a known function, classical machine learning techniques like gradient de-

scent based techniques could have been used. This function is a stochastic function and

only its values in certain points can be approximated.

A solution to find its minimum could be obtained by computing the value of the function

in all possible values of the searched parameters θ∗ and then retrieve the minimum. This

could be possible with the cost of time when only one parameter is used. However, when

dealing with a certain number of parameters, optimization techniques are mandatory to

approximate the minimum of this function.

From the techniques described in 4.6, we have chosen to implement Estimation of Distri-

bution Algorithm - EDA to determine the parameters corresponding to the probability

of adding noise in order to minimize the utility loss and to maximize privacy preserving.

This optimization method is described in 4.6.1.
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5.3 Anonymization Method

As explained previously, our technique relies on a specific family of parameterized

anonymization functions. In this chapter, we propose a new generic anonymization

procedure based on adding noise in simple graph data. This method shares some com-

mon points with the ones described in Hay et al. [2008] or Ying and Wu [2008]. We have

made the choice to use a randomization method, as among the three main categories

described in the state of the art (Chapter 2), this category consists in a class of methods

not strictly related to one type of privacy protection (like the structural methods are).

To limit the modifications of the graph, we choose to add noise by only adding edges in

the graph, the vertices remaining the same. Contrarily to classical methods where the

quantity of noise is determined by one hyper-parameter which is chosen manually, we

propose a generic method where the quantity of noise depends on the degree of the ver-

tices. The idea behind this algorithm is to consider that a good anonymization function

will certainly add different level of noise depending on node’s degree.

In our approach, we make the assumption that the best quantity of noise could differ

among the vertices of the graph according to their degrees. Therefore, we split the

vertices into n groups according to their degree and we associate to each group a noise

adding parameter θadddegree .

As denoted previously, S is the number of nodes in the graph and U the number of

edges. For each pair (vi, vj) of non connected vertices (a total of S2−U) we add an edge

connecting them with a probability corresponding to the product θDegreevi
∗ θDegreevj

between the two modification parameters corresponding to the vertices degrees.

The proposed approach makes use of n parameters denoted θ1, ..., θn. Different n values

will be tested in the experimental section to explore the ability of our technique to find

good anonymization procedures1. Each vertex will be associated to one of these n pa-

rameters, given its degree. Let D be the maximum degree of the original graph G. The

parameter θi will be associated to all nodes of degree d such as:

∣
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∣
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∣
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(i− 1) < d ≤

∣

∣

∣

∣

D

n

∣

∣

∣

∣

i (5.2)

except for the parameter θn for which corresponding nodes have d ≤ D. The vertices

with the lowest degree will be associated to θ1, while the vertices with the highest degrees

will be associated to θn, the other vertices being associated to the other θi. Given each

pair (vi, vj) of possible not-already connected vertices, where vi is associated to θi and

vj is associated to θj , the probability of adding an edge between vi and vj will be θi×θj .

1Note that, the goal here is not to propose the “best” possible family of procedures, but to explore the

ability of the machine learning technique to automatically find the best function in a family of possible

methods.
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The resulting anonymization algorithm is given in Algorithm 3. The anonymized graph

Algorithm 3: Anonymization Method: A new edge is inserted between vi and vj in the
anonymized database with a probability corresponding to the product θDegreevi

∗θDegreevj
of the parameters corresponding to each vertex in the pair according to its degree.

Input: G, θ
Result: G′

1 copy data from G to G′;
2 select the vertices from G′;
3 foreach vertex vi in G

′ do
4 assign a unique generated identifier to vi ;
5 end
6 select the vertices from G;
7 foreach vertex vi in G do
8 foreach vertex vj in G do
9 if ∄ edge(vi, vj) then

10 θaddvivj = θDegreevi
∗ θDegreevj

11 if generatedBoolean(θaddvivj ) then

12 insert into G′ edge(vi, vj);
13 end

14 end

15 end

16 end

G′ is initialized to the original dataset (line 1). The first part of the algorithm (lines 3

to 5) consists in a naive anonymization, i.e. the real identifiers are replaced with a new

numerical identifier. If the dataset used for experiments is already naively anonymized,

which is the case of most of the datasets, this part of the algorithm is not useful.

For each possible pair of vertices in the original dataset (two loops “for” at lines 7

and 8 of the algorithm), if the vertices are not already connected (line 9), a boolean is

generated with the probability θDegreevi
∗θDegreevj

. If the generated boolean is true (line

11), then a new edge is created between vi and vj .

Note that, when considering n = 1, the probability of adding an edge does not depend

on the considered vertices, and thus the obtained method is a random anonymization

method with a uniform parameter similar to the one used in Ying and Wu [2008].

In order to evaluate the proposed generic approach, we will compare our method with

baseline models in different configurations. Each configuration will be associated to one

or many possible attacks, and to one or many possible measures to compute on the

graphs. These different configurations will allow us comparing the methods in different

situations that can be met in real applications and aim at showing the genericity of the

proposed algorithm.

In the following, sections 5.4 and section 5.5 describe a catalogue of possible attacks and

utility measures used for evaluation. We then describe the baseline method allowing
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us to compare to the state of the art in section 5.6.1 and detail the used datasets

corresponding to the graphs to anonymize in section 5.6.2. Results are presented and

commented in section 5.6.

5.4 Privacy Risks

We consider for evaluation of the privacy risk R two types of attacks. The first type

of attack (vertex degree attack) is a reference in the simple graph anonymization field.

The second attack (based on the knowledge on one’s neighbors) is associated to social

network data disclosure and to the information a possible adversary has access to.

We propose to focus on the following risks: (i) k-degree anonymity (RD-k) with k = 5

and k = 20. (ii) k-neighborhood degree anonymity based on neighbors degree sequence

(RN-k) with k = 5 and k = 20.

These two types of risk are based on the k-anonymity notion described in Liu and Terzi

[2008]: A certain structure is k-anonymous with respect to a structure query if there

exist at least k − 1 other structures that match the given structure query.

5.4.1 k-Degree Anonymity

We next define a privacy risk estimation method based on one type of attack inspired

from the existing work in anonymization field based on graph structural attacks.

k-anonymity condition is applied when dealing for example with nodes degrees, nodes

neighborhoods or groups degree sequence for nodes. Based on this concept, we evaluate

in a first approach the anonymized graph according to its conformity to the k-anonymity

condition for the nodes degree.

The k-degree anonymity is based on a degree attack described Liu and Terzi [2008] and

evaluates the number of nodes re-identifiable in G′ by their degree. The definition of the

associated risk denoted RRD−k is thus:

RRD−k(Gi,G
′
i) =

∑

vj∈Gi

1

nj
(5.3)

where nj < k and nj = number of vertices in G′i with the same degree as vj , including

vj .

We generate a hashtable for each graph containing as key the degree present in the graph

and as values the list of vertices having the related degree as illustrated in Figure 5.1.

In the given example the graph conforms to the 2-anonymity condition according to the

vertices degree. However, the associated graph would not conform to the 3-anonymity



Chapter 5. Simple Graphs Anonymization based on Machine Learning 65

d1

d2

d3

d4

d5

d6

v16 v2 v13

v1 v5

v10 v7 v9 v11

v15 v6

v15 v16

v3 v8 v12 v14 v4

Figure 5.1: Vertices degree hashtable: it stores for each degree di present in the graph
the corresponding list of vertices of degree di.

condition for the vertices degree. Indeed, for the degrees d2, d4 and d5 there are only 2

vertices with similar degrees.

We have based our privacy evaluation algorithm on these considerations. Algorithm

4 describes how we evaluate the privacy risk. We are using two hashtables objects

as the one illustrated in Figure 5.1 to store the vertices degrees. These hashtables are

initialized at lines 1 and 2 of the algorithm. A threshold k is given as input at the

beginning of the algorithm and it will be used for the k-anonymity based privacy level

obtention.

• For each node in the original dataset (loop “for” at line 4) , we are analyzing its

degree. If the degree does not exist in the hashtable “verticesOriginal”, a new list

of corresponding vertices is created (line 7). Otherwise, the existing vertices list is

retrieved (line 9). The vertices list is updated with the new vertex (line 11) and

the global hashtable is updated with the new structure (line 12).

• In the second step of the algorithm for each degree entry in the degree hashtable

of the original graph (loop “for” at line 14 of the algorithm), we are comparing

(line 19) the vertices list (line 15) with the one corresponding to the same degree

(line 18) in the anonymized degree hashtable. If in the original dataset there are

less than k corresponding vertices to one degree (line 19), we consider that a risk

for privacy infringement exists. If in the anonymized data the corresponding list

for the degree has also less than k elements (line 20), we consider that a privacy

infringement occurred for the common elements between the two lists. For each

element in common (line 22), we increment the value of the global privacy infringe-

ment risk. At this level, we are using the k-anonymity notion when incrementing
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Algorithm 4: k-Degree Based Privacy Risk Estimation

Input: G,G′, k parameter
Output: Privacy risk estimation

1 Hashtable verticesOriginal = null;
2 Hashtable verticesAnonymized = null;
3 initialize privacyRiskSum = 0;
4 foreach vertex vi in V do
5 calculate di;
6 if di is not in verticesOriginal then
7 Hashtable verticesList = null;
8 else
9 verticesList = verticesOriginal.getValue(di);

10 end
11 insert vi in verticesList;
12 insert (di, verticesList) in verticesOriginal ;

13 end
14 foreach di in verticesOriginal do
15 verticesListOGi = verticesOriginal.getValue(di);
16 verticesListAGi = verticesAnonymized.getValue(di);
17 sizeDegreeOGi = size(verticesListOGi);
18 sizeDegreeAGi = size(verticesListAGi);
19 if sizeDegreeOGi < k then
20 if sizeDegreeAGi < k then
21 foreach vj in verticesListOGi do
22 if vj is in verticesListAGi then
23 privacyRiskSum = privacyRiskSum + (1/sizeDegreeOGi)
24 end

25 end

26 end

27 end

28 end

the privacy risk value. We are considering the privacy infringement as being in-

vers proportional to the number of vertices associated to the degree for which the

privacy infringement risk exists.

We are not evaluating the anonymized graph as a standalone graph according to its

k-anonymity. The anonymity is evaluated by comparing the vertex sequences for each

degree between the anonymized graph and the original one. The k-anonymity notion is

used for the evaluation of the privacy risk. Indeed, we are considering that the privacy

risk is increasing when identifying fewer nodes associated with a certain degree.
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5.4.2 k-Neighborhood Anonymity

The evaluation is similar to the k-degree privacy evaluation; the main difference is that

instead of using the node degree for the nodes classification, we are using the neighbors

degree sequence. This kind of attack has been described in Zhou and Pei [2011].

To evaluate the graph privacy according to the neighbor’s degree sequence, we gener-

ate for each vertex the corresponding sequence in a descending order of the degrees. A

hashtable containing all the degrees sequences as keys and an array with the correspond-

ing nodes as values is generated.

The privacy is evaluated similar to the evaluation described in 5.4.1 corresponding to the

k-degree anonymity privacy risk. The privacy is incremented when the same sequence

of vertices corresponding to the same neighbors degree sequence, of size less than k is

found both in the original graph and in the anonymized graph.

Privacy values obtained are normalized with the worst possible values for each graph.

This “worst value” is obtained when calculating the privacy risk for a G′ equal to G.

The k-neighborhood degree anonymity is based on a family of attacks (Hay et al. [2008])

for the particular case where the adversary knowledge is about the neighbors degree se-

quence of a node. The privacy risk corresponds to the number of nodes re-identifiable

in G′ by their neighborhood sequence (the ordered sequence of their neighbors degrees).

The definition of the associated risk denoted RRN−k is:

RRN−k(Gi,G
′
i) =

∑

vj∈Gi

1

nj
(5.4)

where nj < k and nj = number of vertices in G′i with the same neighborhood degree

sequence as vj , including vj .

5.5 Utility Loss Evaluation

A panel of utility metrics used in graphs can be found in Song et al. [2011]. Three mea-

sures are used for this, inspired from the literature to be computed on the anonymized

graphs. The choice of these particular metrics has been guided by their use in influence

analysis which is an important field of social networks mining mainly for marketing pur-

poses. These measures will be used as blackboxes to test if our method is able to adapt

to different utilities, and thus if our automatic anonymization procedure can preserve

important characteristics of the input graphs. The three measures are described below.
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5.5.1 Clustering Coefficient Based Utility Loss (CC)

Clustering Coefficient is a measure used relatively often in the case of social networks

analysis. Connectivity between users forming a group is an important notion which,

depending of the context, should be preserved in the anonymized data. Community

detection is an important component of the social network analysis and is based, among

other measures, on Clustering Coefficient measure on the social graph. We are using

here the local clustering coefficient corresponding to each vertex. This notion has been

introduced by Watts and Strogatz [1998] in the work aiming to determine if a graph is

a small world or is not. Local Clustering Coefficient aims to quantify how close a ver-

tex’s neighbors are to being a clique. It is defined as being the fraction of the existing

edges between the vertex’s neighbors divided by the totality of possible edges between

the vertex’s neighbors. Clustering coefficient notion is described also in Newman [2003],

Barrat and Weigt [2000] or Song et al. [2011].

Figure 5.2 illustrates three graphs.
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Figure 5.2: Example for local clustering coefficient: three graphs used to illustrate
how the clustering coefficient is computed.

The total number of possible edges between the six neighbors of the node 7 is:

Edgesmax =
6(6− 1)

2
= 15 (5.5)

For the graph 1, the local clustering coefficient of node 7 is:

CC(7)Graph1 =
15

15
= 1 (5.6)

and it corresponds to a clique. For the graph 2, the local clustering coefficient of node

7 is:

CC(7)Graph2 =
5

15
≈ 0.3 (5.7)
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For the graph 3, the local clustering coefficient of node 7 is:

CC(7)Graph3 =
0

15
= 0 (5.8)

corresponding to a situation where the neighbors do not know each other, which is rarely

the case when dealing with social networks data.

We aim at modifying the graph for anonymization with a low impact on the clustering

coefficient. The ∆ value corresponding to this measure between the original dataset G

and the anonymized dataset G′ is denoted ∆CC . This value is defined as being the sum

of the absolute difference for each vertex in the original graph and in the anonymized

graph:

∆CC(G,G
′) =

∑

v∈Gi,v′∈G′
i

|CC(v)− CC(v′)| (5.9)

v′ corresponding to the node v in the anonymized graph.

5.5.2 Page Rank Based Utility Loss (PR)

Page Rank is the algorithm used by Google to rank websites when displaying search

results in its search engine. The rank value obtained by the algorithm corresponding

to a page, indicates the importance of that page. In Page Rank applied to WWW, a

graph is created based on the existing links in the web: each page is a vertex and a link

is created between two pages if one page references the other one. A page is considered

as being important if it receives more links from other pages.

Page Rank was originally designed for oriented graphs, but it also can be applied on

undirected graphs, which is our case. Page Rank applied on undirected graphs is close to

the degree distribution of the graph as mentioned in Perra and Fortunato [2008]. Starting

from the hypothesis that a vertex is more influential if it is linked with an influent vertex,

Page Rank algorithm has been used for influence analysis in collaboration networks and

is one of the basic measures used for Social Network Analysis (SNA).

This utility measure described in Brin and Page [1998] is based on the Page Rank values

of the nodes of the graph and it has been recently used to identify influential nodes. The

loss associated with this measure ∆PR corresponds to the sum of the absolute difference

for each vertex between Page Rank score in the original graph and the anonymized

graph:

∆PR(G,G
′) =

∑

v∈Gi,v′∈G′
i

|PR(v)− PR(v
′)| (5.10)
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5.5.3 Two-hop neighborhood based utility loss (THN)

This utility measure evaluates the number of two-hops neighbors that a vertex is capable

to reach. This type of information is necessary when analyzing information diffusion in

an online social network (as for example in Guille and Hacid [2012]). The number of

nodes that can directly be reached by a given vertex after only two hops is one possible

metric used for collaboration networks or social networks analysis. The influence value

computed for a dataset could directly depend on this value.

We consider that a modification in the number of two-hops neighbors could significantly

impact the analysis made on data. Each vertex is assigned with a score corresponding to

the number of two-hops neighbors it is capable to reach. The corresponding loss ∆THN

is the sum of the absolute difference for each vertex between score in the original graph

and the anonymized graph:

∆THN (G,G′) =
∑

v∈Gi,v′∈G′
i

|THN(v)− THN(v′)| (5.11)

In order to give an equal importance to the different measures in the optimization

problem, we will consider normalized versions of these measures - i.e. the measures

have been scaled between 0 and 1. The normalization is done against the worst value

obtained in a given context.

5.6 Experiments

This section describes the experiments and the results obtained when testing the instan-

tiation of the methodology on simple graphs resulting from real datasets. The algorithms

have been developed in Java. In order to evaluate the Clustering Coefficient measure,

we have used the implementation from the library Jung (more information can be found

at JUNG Library). JUNG (the Java Universal Network/Graph Framework) is a Java

library providing tools to model, analyze and visualize graph data. The clustering co-

efficient measure is implemented in the “Metrics” package of the library and it returns

a map between the vertices of the graph and their corresponding clustering coefficients.

Similar to the Clustering Coefficient computation, in the experimentation part we have

used the library Jung (JUNG Library) to compute Page Rank corresponding to each

vertex in the graph.
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5.6.1 Baseline (BL)

As a comparison, we have used a state of the art method for graph anonymization

based on k-degree anonymization and described in Liu and Terzi [2008]. The graph is

k-anonymous with regard to its vertices degrees, if for each vertex degree there are at

least k − 1 others vertices with the same degree.
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Original graph degrees sequence:

8257

8265, 8262, 8261

8266, 8264, 8263, 8260, 8259, 8258, 8256

5549, 5548, 8267

5642, 9021, 5641, 5470, 5551, 8268, 5644, 9022

11380, 5640, 5547, 2602, 5542, 13082, 2885, 14549, 

16608, 11379, 11378, 3513, 11377, 8380, 14570, 8255, 5661, 

1283, 10643, 10642, 14568, 14599, 1186, 14277, 5586, 99, 

5583, 3650, 14204, 9023, 5643
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Figure 5.3: Baseline: original graph and the corresponding vertices degree hashtable;
node 8257 is the most vulnerable in the graph according to its degree.

This anonymization solution works in two steps for the obtention of a k-degree

anonymous graph and is a reference in the literature when anonymizing data according

to the k-degree de-anonymization risk. In a first step a new degree sequence for the

graph to be anonymized is constructed such that this sequence is k-anonymous and such

that the degree anonymization cost is minimized. The anonymization cost is quantified

as the number of edges added in the graph by the algorithm. In a second step, given
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the new degree sequence, a graph is constructed (if possible) maximizing the structural

similarity with the initial graph.

Anonymized graph degrees sequence:

8257, 8265, 8262

8261, 8266, 8264

8263, 8260, 8259, 8258, 8256

5549, 5548, 8267

5642, 9021, 5641, 5470, 5551, 8268, 5644, 9022

11380, 5640, 5547, 2602, 5542, 13082, 2885, 14549, 16608, 

11379, 11378, 3513, 11377, 8380, 14570, 8255, 5661, 1283, 

10643, 10642, 14568, 14599, 1186, 14277, 5586, 99, 5583, 

3650, 14204, 9023, 5643

7

6

5

3

2

1

Figure 5.4: Baseline: anonymized graph according to the k-degree anonymity, exam-
ple for k = 3. Nodes of high degrees have been modified (8265 and 8262) in order to

acquire the same degree as 8257.

Figure 5.3 illustrates the original graph being anonymized according to the k-degree

anonymity for k = 3. The original graph presents vulnerability for the node 8257.

Figure 5.4 illustrates the anonymized graph for k = 3. Nodes of high degrees have been

modified (8265 and 8262) in order to acquire the same degree as 8257. In the resulting

anonymized graph, there are 2 other vertices with the same degree as 8257. Note that

other anonymization techniques could be used, but to the best of our knowledge, most

of the existing methods would also be specific to a particular privacy risk and utility

loss.
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5.6.2 Datasets

We have used for evaluation two naively anonymized datasets: one extracted from

Twitter and the second one extracted from Amazon. Both datasets have also been

anonymized based on the baseline method with k=5 (5-degree anonymization) and k=10

(10-degree anonymization).

5.6.2.1 Twitter Dataset

The Twitter dataset contains around 1,530,000 anonymized messages corresponding to

a period of several months between April 2009 and November 2009.

We consider that users A and B are linked if they exchanged messages containing “@user”

indication. Based on this consideration, we have generated from the anonymized crawled

data the graph constructed from Twitter messages. We have generated 40 graphs of

10000 edges each corresponding to 40 different time sequences. We use a proportion of

10% of the generated graphs for learning. The method is then evaluated on the rest of

the graphs.

5.6.2.2 Amazon Dataset

The second dataset corresponds to an Amazon product co-purchasing network collected

in March 2003 (Leskovec et al. [2007]). The network was collected by crawling Amazon

website. It is based on “Customers Who Bought This Item Also Bought” feature of the

Amazon website. If a product i is frequently co-purchased with product j, the graph

contains an edge from i to j.

5.6.3 Results

We first (Section 5.6.3.1) analyze the results obtained with the simplest possible anonymiza-

tion function with only 1 parameter (n = 1). This first set of experiments allows us to

check that the use of EDA is a good optimization solution. We then explore the quality

of the obtained anonymization functions for different numbers of parameters – Section

5.6.3.2. The genericity of the proposed algorithm and its ability to adapt to different

anonymization contexts – i.e. different privacy risks and utility losses – is evaluated in

Section 5.6.3.3.
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5.6.3.1 Simple Anonymization Algorithm – n = 1

When the number of parameters of the anonymization function is low – n = 1 here –

one possible way to optimize the empirical loss defined in Equation 4.10 is to make an

exhaustive parameter value exploration which consists in testing all the values using a

grid search.

Privacy Risk - Train

Privacy Risk - Test

Utility Loss - Train

Utility Loss - Test

Noise Parameter

Figure 5.5: Privacy risk and utility loss variation: training set and test set means
when performing an exhaustive parameter value exploration.

We pick one measure (CC) and one privacy attack (RN5) among those described in

Sections 5.4 and 5.5 to show in Figure 5.5 the function’s behavior according to the noise

parameter variation. The privacy risk RRN5 and the utility loss ∆CC are illustrated

for different noise level values θ1 on the training and testing sets. This corresponds to

a classical anonymization configuration where one wants to avoid attacks based on 5-

neighborhood anonymity, while being able to compute the Clustering Coefficient on the

resulting anonymized graph. One can see that, the higher the noise level, the lower the

privacy risk is and the higher the utility loss. This is quite intuitive and illustrates the

privacy risk versus utility loss dilemma since it shows that adding a lot of noise tends

to make the anonymization more robust, but greatly damages the utility one wants

to compute. The best anonymization technique corresponds to the minimum of the

Empirical Loss, which is illustrated by the two crosses in Figure 5.6.
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Empirical Loss,

Train

Empirical Loss,

Test

Noise Parameter

Figure 5.6: Empirical loss evolution when adding noise: training set and test set
means when performing an exhaustive parameter value exploration.

The learning technique we propose aims at finding this minimum automatically on

the training set.We evaluated the utility loss and privacy risk on the 5-degree and 10-

degree anonymized graphs. As expected, the k-degree anonymization is providing a

perfect anonymization when dealing with RDk privacy evaluation. For the remaining

two methods (RN5 and RN20) the anonymization is not robust as illustrated in Table 5.1.

Learned value = 0.009

Figure 5.7: EDA behavior with one parameter (n = 1). At the first step of the algo-
rithm the population is initialized to a uniform distribution over admissible solutions.

After 19 iterations the learned value is close to the optimum one.

Figure 5.7 allows us to analyze the behavior of the EDA algorithm when n = 1.

The points illustrate the different candidates that have been generated considering that
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N = 20 and P = 30%. We can see that the algorithm is able to find a parameter value

equal to 0.009 (point R on the figure) – that is close to the parameter corresponding

to the “real” minimum of the empirical loss (represented by the cross of the training

set in Figure 5.6), showing the ability of the algorithm to find a good anonymization

procedure.

When dealing with one parameter, it is possible in a limited time to calculate the

sum behavior in almost all possible values of the parameter as in this example (only 1000

points have to be analyzed). However, when dealing with several parameters or when

the result needs to be obtained in real time, the use of EDA optimization algorithm is

mandatory.

Figure 5.7 shows the EDA behavior corresponding to the same privacy risk, utility loss

and dataset represented in Figure 5.6 (RN5, CC and Amazon dataset). We randomly

initialized the admissible solutions for the add probability between 0 and 0.1 to 20 values.

The algorithm converged here in 18 steps.

The parameter corresponding to the minimum of this empirical loss corresponds to the

best parameter choice. This parameter obtained by using EDA algorithm is equal to

0.009 and is very close to the one obtained when using the exhaustive method.

This result is encouraging for the method application in the case of 2 or more parameters.

5.6.3.2 EDA Learning With Multiple Parameters

Figure 5.8 shows an example of EDA behavior when finding minimum of the empirical

loss when using two parameters (in this example parameters corresponding to add and

delete edges operations). In this example, the utility loss is computed based on cluster-

ing coefficient and the privacy is evaluated by using risk neighborhood method.

Now, we consider the evaluation when using the anonymization method described in

Section 5.3. We then evaluate the learning algorithm for different possible number of

parameters n = 1, 2, 5 and 10. The EDA is used on the training set, and results in

Table 5.1 correspond to the evaluation on the testing graphs that are not used during

training. The privacy risk used for learning is the average of RD − 20, RN − 5 and

RN − 20 risks corresponding to the 2 attacks presented in Section 5.4, and the utility

loss used for learning is the average of the 3 losses presented in Section 5.5. For compari-

son we also illustrate the values for RD5 for which the baseline anonymization is perfect.
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Figure 5.8: EDA behavior with two parameters (n = 2). EDA is initialized to a large
set of possible candidates (red points). After several iterations, EDA converge to the

optimal solution represented by the blue points.

The results correspond to a configuration where one wants to anonymize considering

multiple possible attacks, and to preserve multiple possible characteristics. This is the

case in most of the real cases as the external attacks can be very diverse and the analysis

to be made on data is complex and associates a multitude of measures.

Table 5.1 contains the evaluation of the anonymization method corresponding to

learned 1, 2, 5 or 10 parameters for the two datasets. Parameters are learned on 10% of

the two datasets and the table contains the evaluation of the learned parameters on the

remaining 90% of the datasets.

First, when considering the last column which corresponds to the balance value

between privacy and utility loss, we can see that the higher the number of parameters

we consider, the better the result is. It means that our learning algorithm is able

to learn complex anonymization procedures, and these complex procedures result in

better anonymization results than simpler ones. When comparing the best obtained

methods (n = 10) with the baseline models on the Amazon dataset, we can see that

the learned procedure is able to be as good as BL in term of RD − 5 privacy (for

which BL has been proposed) but it is much better for the other privacy measures

(RD− 20, RN − 5 and RN − 20) that are not considered by BL. This shows the ability

of our algorithm to consider simultaneously different privacy measures. Moreover, the

results corresponding to the Twitter dataset show that the utility losses obtained by
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Method
Utility Loss Privacy Risk Empirical

LossCC PR THN RD5 RD20 RN5 RN20

BL, k=5 Am 0.0005 0.0001 0.0001 0 0.26 0.9706 0.9710 2.2023

BL, k=10 Am 0.0014 0.0003 0.00013 0 0.056 0.945 0.946 1.9489

n=1 Amazon 0.4604 0.4786 0.0224 0.008 0.008 0.178 0.182 1.3294

n=2 Amazon 0.5877 0.4477 0.0620 0 0 0.1079 0.111 1.3163

n=5 Amazon 0.7689 0.3504 0.1250 0 0 0.0101 0.0106 1.2651

n=10 Amazon 0.8142 0.2022 0.0787 0 0 0.0074 0.0081 1.1106

BL, k=5, Tw 0.045 0.012 0.004 0 0.037 0.763 0.765 1.626

BL, k=10 Tw 0.108 0.043 0.008 0 0 0.59 0.595 1.344

n=1 Twitter 0.609 0.890 0.040 0.001 0.001 0.084 0.085 1.709

n=2 Twitter 0.173 0.359 0.005 0.22 0.280 0.310 0.317 1.444

n=5 Twitter 0.111 0.257 0.004 0.16 0.187 0.345 0.352 1.256

n=10 Twitter 0.086 0.184 0.003 0.15 0.167 0.341 0.348 1.129

Table 5.1: Evaluation of proposed anonymization method versus classical structural
k-degree methods: best results minimizing the empirical loss are obtained with our
methodology for the highest number of parameters (n=10) for Amazon as well as for

Twitter.

our approach are comparable to the ones obtained by the baseline, while providing

graphs that are anonymized for different possible attacks showing the genericity of our

technique.

Dataset n Learned [θ1, ...., θn]

Amazon 1 [0.009]

Amazon 2 [0.007 0.06]

Amazon 5 [0.005 0.052 0.032 0.056 0.076]

Amazon 10 [0.001 0.013 0.029 0.035 0.043 0.035 0.029 0.042 0.034 0.042]

Twitter 1 [0.015]

Twitter 2 [0.004 0.015]

Twitter 5 [0.003 0.016 0.015 0.011 0.021]

Twitter 10 [0.003 0.020 0.020 0.013 0.016 0.014 0.007 0.005 0.010 0.021]

Table 5.2: Learned parameters when varying the number of parameters for the two
datasets. Parameters learned corresponding to high degrees are higher than parameters

learned for low degrees.

Table 5.2 represents the parameters learned when varying the number of parameters

n for the two datasets. Parameters are sorted according to the nodes degrees, parameters

on the left correspond to small degrees and parameters on the right correspond to big

degrees. As illustrated in table 5.2 vertices with low degree do not need an important

noise addition for anonymization. High degree vertices need more noise in order to

preserve their privacy. This result is intuitive as by modifying the degree of a node

with many connections, all the connected nodes will change their degree sequence. The

consequence will be a decrease in the privacy risk related to neighbors degree sequence

(RNk used in the learning phase) by performing a limited number of graph modifications.
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5.6.3.3 Adaptation

The last set of experiments aims at showing that our method is not specific to some

particular privacy risks and utility losses and can automatically adapt itself to different

anonymization configurations.

Table 5.3 shows the results obtained when the learning algorithms only consider the

RD− 5 privacy risk instead of the average of all the 4 proposed risks. In that case, one

can see that the obtained results are worse than the results obtained with the baseline

models which is not surprising since the BL model has been developed for this partic-

ular situation. It means that, when knowing which attacks to avoid, the use of specific

methods is certainly the best choice.

Anonymization method
Utility Loss Privacy Risk Empirical

LossCC PR THN RD5

BL, k=5, Amazon 0.0005 0.0001 0.0001 0 0.0007

BL, k=10, Amazon 0.0013 0.0003 0.00001 0 0.00161

n=1, Amazon 0.4249 0.4623 0.0006 0.005 0.8928

n=2, Amazon 0.5106 0.4052 0.0031 0 0.9189

n=5, Amazon 0.5779 0.2304 0.0037 0 0.812

n=10, Amazon 0.5407 0.1996 0.0026 0 0.7429

BL, k=5, Twitter 0.045 0.012 0.004 0 0.186

BL, k=10, Twitter 0.161 0.045 0.095 0 0.301

n=1, Twitter 0.035 0.065 0.008 0.673 0.781

n=2, Twitter 0.043 0.070 0.009 0.519 0.641

n=5, Twitter 0.059 0.096 0.014 0.3 0.469

n=10, Twitter 0.047 0.092 0.016 0.261 0.416

Table 5.3: Results obtained when considering only the RD − 5 privacy risk and the
three different utility losses during learning.

We consider the case when different possible attacks can be encountered, but only one

characteristic has to be preserved – Table 5.4. In this case, our model clearly outperforms

the baseline methods when considering the balance between utility loss and privacy risk

(last column).

5.6.3.4 Learning Convergence

At last, we study how many evaluations we have to make during the training phase. We

have performed different trainings with different values of N and P .
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Anonymization method
Utility
Loss

Privacy Risk Empirical
Loss

THN RD20 RN5 RN20 RD5

BL, k = 5, Amazon 0.0001 0.26 0.9706 0.971 0 2.2017

BL, k = 10, Amazon 0.00013 0.056 0.945 0.946 0 1.947

n = 1, Amazon 0.0084 0 0 0 0 0.0084

n = 2, Amazon 0.0075 0 0.00002 0.00002 0 0.0075

n = 5, Amazon 0.01138 0 0 0 0 0.0114

n = 10, Amazon 0.0083 0 0 0 0 0.0083

BL, k = 5, Twitter 0.004 0.037 0.763 0.765 0 1.569

BL, k = 10, Twitter 0.008 0 0.59 0.595 0 1.193

n = 1, Twitter 0.39 0.004 0.114 0.117 0.005 0.63

n = 2, Twitter 0.396 0.006 0.113 0.115 0.007 0.637

n = 5, Twitter 0.387 0.002 0.115 0.118 0.002 0.624

n = 10, Twitter 0.398 0.008 0.11 0.112 0.006 0.634

Table 5.4: Results obtained when considering the four different privacy risks and only
one utility loss during learning.

Figure 5.9 illustrates the performance obtained with respect to the number of candidates

Figure 5.9: EDA efficiency versus number of calls to the blackboxes.

that have been generated on the Amazon dataset for n=5.

The result shows that for N = 100 a good anonymization procedure is obtained by

computing about 300 candidates which is quite low, allowing our method to be used in

real-world situations.

5.6.3.5 Algorithms Complexity

Novel algorithms proposed in this chapter are related to the anonymization procedure

described in Algorithm 3 and to the method used to evaluate the privacy risk when

releasing an anonymized version of the original data described in Algorithm 4 .
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The anonymization algorithm adds randomly new edges between all non connected ver-

tices, a total of potential S2 − U new edges. The add operation is performed according

to the θi parameter associated to each node. This θi parameter corresponds to a prob-

ability and could take values between 0 and 1. However, values superior to 0.5 for this

parameter correspond to an important modification of the graph and to a loss of its

utility. In our experiments the initial model has been initialized with maximum values

of 0.1 for θ and it converges rapidly to values less than 0.1 However, the theoretical

complexity of this algorithm corresponds to O(S2) but in practice this complexity is

never achieved.

The Algorithm 4 corresponds to the evaluation of the privacy risk for a given anonymized

version of the original data. In a first step an iteration through all the vertices is per-

formed corresponding to a complexity O(S). In the second step of the algorithm for each

original vertex if privacy is infringed, the privacy risk is incremented. This algorithm

corresponds to a O(S2) complexity.

5.7 Conclusion

In this chapter we propose the application of the anonymization method based on ma-

chine learning, on simple graphs. Our methodology aims to find the best compromise

between privacy protection and graph data utility loss in a given context. The advantage

when compared to existing methods is that our proposed methodology is able to find

the best compromise when dealing with a large panel of privacy attacks or analysis to be

made on data. Moreover, the knowledge on how this analysis is performed is not needed

in order to find an anonymization strategy. The tool implementing the methodology has

been developed in Java and tested on real data with successful results. The method-

ology has been tested on simple non-oriented graphs. Results from this chapter have

been presented and published at the 28th IEEE International Conference on Advanced

Information Networking and Applications (Maag et al. [2014]). The next step consists

in exploring the behavior of the method when dealing with complex structures issued

from communication logs having a temporal component and multiple oriented edges.



Chapter 6

Adaptive Temporal Graphs

Anonymization for Data

Publishing

This chapter applies the methodology described in Chapter 4 to the temporal graphs

anonymization problem. Some additional notations and definitions specific to temporal

graphs are first introduced. For the instantiation of the methodology on temporal

graphs, new privacy risks are described as well as a set of utilities specific to call logs.

Experiments performed on real datasets coming from Enron or Twitter outperform

baseline and show that method adapts well to a new environment. Results from this

chapter have been submitted for publication.
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6.1 Introduction

When starting the research work on data anonymization and particularly on Call De-

tail Records anonymization, an increased risk of re-identification has been identified

in this type of data because of its temporal component. Chapter 3 aims at pointing

out these risks. Starting from that identification, we proposed a generic methodology

for anonymization based on machine learning in Chapter 4. Existing research work

being available especially related to simple graphs anonymization, we first apply this

methodology on simple graphs (Chapter 5). Comparison with existing methods let us

believe that the proposed methodology could present a good behavior also on the original

problem, which is the multiple oriented timestamped graphs anonymization. Similar to

simple graphs data, call logs data anonymization should be performed to prevent users

re-identification and at the same time to keep as much as possible of the utility of data.

Call Detail Records (CDR) necessity for anonymization is described in the introduc-

tion of Chapter 3. CDRs are used in a multitude of contexts. In Lin and Wan [2009],

CDRs representing mobile communications are used for clustering users according to

their behavior. Operator’s marketing strategies are then adapted to the customer type.

Call logs contain a huge amount of information about the user’s behavior and can be

successfully used for marketing purposes.

D4D (Data for Development) (Orange) is a contest launched by Orange in 2012 which re-

leased four anonymous datasets, with the objective of bringing a benefit for the concerned

population. The dataset was delivered to the scientific community in an anonymized

format and it contained calls data collected by the Orange Ivory Coast subsidiary. Re-

search projects participating at the contest are diverse and show the multitude of usages

of the delivered data and the positive impact of data sharing. Van den Elzen et al.

[2013] was the winner of the best visualization price accorded by the contest. The visual

analytic tool developed is capable to explore complex patterns (like shown in Figure

6.1). The goal is to be able to determine by analyzing datasets, weather-driven events

(like for example heavy rainfall in important cocoa areas) or social and political events.

Event detection by analyzing static datasets is the first step before implementing tools

able to predict those events. However, access to call logs in real time pose a privacy
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Figure 6.1: Exploration and analysis of massive mobile phone dataset.

problem. Anonymization techniques applied on CDRs as soon as they are created could

be a solution to this issue.

Another application of the dataset analysis has been described in Berlingerio et al.

[2013]. The “AllAboard” platform describes a system able to extract the needs of the

population in terms of mobility. Mobile’s phones location data is used to track users

and to determine the travelers flows in the city. The system proposes a model improving

the existing one and reducing waiting times.

The best scientific prize winner of the D4D contest was the project described in van den

Elzen et al. [2013]. By analyzing the call detail records between individuals, a mapping

of the different existing communities has been obtained. Figure 6.2 shows the communi-

ties corresponding to high volume of calls between individuals. A similar study has been

performed in Belgium by Guigoures and Boullé [2011] and clusters have been obtained

from call detail records corresponding to linguistic communities. In Guigourès et al.

[2013] it is showed how mobile phone call logs can be used in order to study space-time

correlations between calls. The temporal evolution of mobile users behavior can then be

inferred corresponding to each geographic part of the country.

D4D initiative shows how statistics made on anonymous data can be used to improve

the well-being of the population. Projects having used this data had as goal for example

to improve public transportation, to propose new models for disease spreading based on

mobility data or to calculate a “social distance” between users and detect communities.

Even if the release of call logs datasets has undeniable benefits, the privacy infringement

risk is a reality for persons present in the dataset. In Sharad and Danezis [2013] it has

been shown that the released dataset for the D4D challenge, even if anonymized, can be

de-anonymized by using neighborhood knowledge of the users present in the dataset.
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Figure 6.2: Analyze social divisions using cell phone data.

Anonymization techniques have been developed for different kinds of data representa-

tions. Techniques to anonymize data for which each record represents a separate entity

(as in a relational database) have been developed and are currently used, partially with

a successful result. However, datasets have moved from traditional models to complex

models. The anonymization techniques for tabular data cannot be successfully applied to

those complex models. Most of the existing work in anonymization dealing with call log

data, tackled the anonymization for data represented as a simple graph. The proposed

techniques are usually targeting a specific type of attack (e.g., Liu and Terzi [2008]) or

a certain type of utility to preserve (e.g., Ying and Wu [2008]). When releasing complex

timestamped datasets, in practice, noise addition is used in most of the cases to perturb

structures used for re-identification. Existing techniques are not easy to adapt to a

multitude of possible attacks or measures to be preserved on data. In addition, most of

the techniques are based on an analysis of the entire set of data to be anonymized.

For call detail records, in some specific cases new data is continuously created and it

has to be properly anonymized. Moreover, in the case of big datasets, the dataset as a

whole is too important to be entirely analyzed. The contributions in this chapter are

the following:

• We apply the generic approach for call logs anonymization based on machine learn-

ing techniques described in Chapter 4 to call logs.

• The method does not need access to the entire set of data for determining the

anonymization function. It then fits well to dynamic data and newly created data
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is correctly anonymized.

• We define new de-anonymization techniques based on the temporal component of

the graph to be anonymized for privacy evaluation.

• We compare our method with baseline methods and show its effectiveness on real

datasets.

6.2 Machine Learning for Call Detail Records Anonymiza-

tion

6.2.1 Notations and Definitions

We address the problem of call log and interaction data anonymization. Call log data

are modeled as graphs with multiple, oriented and timestamped edges.

Let G = (V, C, T ) be the graph containing the timestamped relational data. Similar to

simple graphs, the vertices of G are defined as V = (v1, ..., vS) with each vertex vi repre-

senting a communication entity. Timestamped communication events having occurred

between two vertices form a set C = (c1, ..., cU ) with ck ∈ C, ck = (o(ck), d(ck), t(ck))

where o(ck) ∈ V is the origin of the call, d(ck) ∈ V is the destination of the call and

t(ck) ∈ T is the timestamp of the call. Graph G has multiple oriented edges with a label

t(ck) for each edge corresponding to the timestamp of the event. Let G′ = (V ′, C′, T ′)

be the anonymized graph. The anonymization function receives in input G and outputs

the anonymized graph G′. The anonymization function fθ, the utility loss ∆ and the

privacy risk R used to evaluate the compromise between privacy protection and utility

loss have been introduced in section 4.3.

6.2.2 Learning Problem

Our methodology described in Chapter 4 consists in learning a parameterized function

on a set of subgraphs extracted from the dataset and then applying the learned function

on the rest of the dataset. In order to form the dataset for training and for testing, we

define the following projection operator:

O : G × T × T → (V, C, T )

used to extract the subgraphs corresponding to time intervals. Figure 6.3 shows the

subgraphs extraction process by using the projection operator from the initial dataset.
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t1 t2 t3 t4 t6t5 t8t7

Figure 6.3: Subgraphs extraction from the original dataset: projection operator O is
operated on each time interval to obtain subgraphs G1, ...G7.

The optimization problem to be solved is the one described in 4.4, the goal being to

find best parameters θ∗, for a given parameterized anonymization method f , such as:

θ∗ = argmin
θ
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Optimization algorithms described in section 4.6 are then used to learn on the subgraphs

forming the learning set, the best parameterized function to be used in the given context

on the rest of the dataset.

6.3 Anonymization Method

We have used an anonymization method based on randomized techniques to perform

data perturbation by adding noise into the original data. The operations performed on

a given graph are: add a new edge, delete an edge, replace calling vertex by a random

vertex and replace called vertex by a random vertex.

The anonymization algorithm is parameterized with parameter vector of size n:

θ = (θAdd, θDelete, θReplace Left, θReplace Right)

where each part of the vector θ corresponds to one of the operations used for anonymiza-

tion as in the following:

θAdd = (θadd1 , ..., θaddp )

θDelete = (θdelete1 , ..., θdeletep )
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θReplace Left = (θreplaceLeft1 , ..., θreplaceLeftp )

θReplace Right = (θreplaceRight
1 , ..., θreplaceRight

p )

We make the hypothesis that the noise to add on a pair of vertices is dependent of

the degree corresponding to each vertex in the pair. Vertices are split into p groups

according to their degrees (n = 4× p). To each operation, p parameters are associated,

one for each group of degrees.

For each vertex v, given its degree, a parameter θoperationi will be associated for each

type of possible operations (add, delete, replace left or replace right). Let D be the

maximum degree of the original graph G. The parameter θoperationi will be associated to

all nodes of degree d such as:

∣
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except for the parameter θoperationp for which corresponding nodes have d ≤ D.

We will denote the parameter θoperationi associated with the vertex v according to the

degree of v with θoperation
gr(v) where operation ∈ {add, delete, replaceLeft, replaceRight}

and gr(v) is the group of vertices corresponding to parameter θoperationi .

The anonymization algorithm is described in Algorithm 5. First, G′ is initialized

with the values of G (line 1). We suppose that the graph G has already been naively

anonymized.

o(ci) d(ci)

vk

t(ci)

t(ci)

Figure 6.4: Replace left operation: origin vertex of the edge is replaced by a random
vertex.

For the replace left operation, for each communication c = (o(c), d(c), t(c)), where

o(c) is associated to θreplaceLeft
gr(o(c)) and d(c) is associated to θreplaceLeft

gr(d(c)) , a boolean is gener-

ated with the probability θreplaceLeft
gr(o(c)) × θreplaceLeft

gr(d(c)) (line 3). If the generated boolean is

true, then a replace left operation is performed in the communication c = (o(c), d(c), t(c))

(lines 4 and 5). The procedure for the replace left operation is illustrated in Figure 6.4.

The origin vertex is replaced with a random vertex in the graph. The procedure is
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Algorithm 5: Anonymization Method

Data: G; θ1, ...,θn
Result: G′

1 G′ ← G ;
2 foreach ci = (o(ci), d(ci), t(ci)) in G

′ do

3 if generatedBoolean
(

θreplaceLeft
gr(o(ci))

× θreplaceLeft
gr(d(ci))

)

then

4 randomly select vertex vk from G′;
5 o(ci) = vk;

6 end

7 if generatedBoolean
(

θreplaceRight

gr(o(ci))
× θreplaceRight

gr(d(ci))

)

then

8 randomly select vertex vk from G′;
9 d(ci) = vk;

10 end

11 if generatedBoolean
(

θdelete
gr(o(ci))

× θdelete
gr(d(ci))

)

then

12 delete ci from G
′;

13 end

14 end
15 foreach vertex vi in G

′ do
16 foreach vertex vj in G′ do

17 if generatedBoolean
(

θadd
gr(vi)

× θadd
gr(vj)

)

then

18 generate random Tk between Tmin, Tmax;
19 insert into G′ c(vi, vj , Tk);

20 end

21 end

22 end

the same for the replace right operation. For each communication c = (o(c), d(c), t(c)),

where o(c) is associated to θreplaceRight

gr(o(c)) and d(c) is associated to θreplaceRight

gr(d(c)) , a boolean

is generated with the probability θreplaceRight

gr(o(c)) × θreplaceRight

gr(d(c)) (line 7). If the generated

boolean is true, then a replace right operation is performed in the communication

c = (o(c), d(c), t(c)) (lines 8 and 9). The procedure for the replace right operation

is illustrated in Figure 6.5. In this case, the destination vertex d(c) is replaced with a

random one.

o(ci) d(ci)

vk

t(ci)

t(ci)

Figure 6.5: Replace right operation: destination vertex of the edge is replaced by a
random vertex.
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For the delete operation, for each communication c = (o(c), d(c), t(c)), where o(c) is

associated to θdelete
gr(o(c)) and d(c) is associated to θdelete

gr(d(c)), a boolean is generated with the

probability θdelete
gr(o(c)) × θdelete

gr(d(c)) (line 11). If the generated boolean is true, a delete opera-

tion is performed as shown in Figure 6.6. The communication c wil not exist anymore

in the anonymized data.

o(ci) d(ci)

t(ci)

Figure 6.6: Delete operation: edge is deleted.

For the add operation, given each pair (vi, vj) of vertices (“for” loop, lines 15 and

16) , where vi is associated to θadd
gr(vi)

and vj is associated to θadd
gr(vj)

, a boolean is generated

with the probability θadd
gr(vi)

× θadd
gr(vj)

(line 17). Tmin is the minimum timestamp of G and

Tmax is the maximum timestamp of G. If the generated boolean is true, a new edge

between vi and vj (lines 18 and 19) is added (Figure 6.7) with a timestamp Tk randomly

generated between Tmin and Tmax.

vi vj

Tk

Figure 6.7: Add operation: new edge is added between vertices.

Note that when considering n = 1 with only add operations, the probability of

adding an edge does not depend on the considered vertices, and thus the obtained

method is a random anonymization method with a uniform parameter similar to the

one used in Ying and Wu [2008].

6.4 Privacy Risks in Call Logs

Once the parameterized anonymization function defined, the blackbox used to evaluate

the anonymized data’s privacy has to be defined.

Note that the privacy risks defined hereafter have as main goal the methodology evalu-

ation in the context of timestamped multiple graphs anonymization. Any other privacy

risk evaluation method could be used, our approach being independent of the content

of the privacy blackbox.

We next define two types of attacks: one proper to call logs that we first describe in this



Chapter 6. Adaptive Temporal Graphs Anonymization for Data Publishing 91

paper and a second one already known in the literature (Sharad and Danezis [2013]).

The first type of attack is strictly related to call logs and shows the sensitivity of this

type of data when exploiting their temporal component. The second type of attack we

have used for evaluation has been recently described in the literature in the case of the

D4D call logs de-anonymization. Both of the algorithms described are based on the re-

identification in the anonymized data of one or more “fingerprints” characterizing users,

known by the adversary and not modified by the anonymization process.

Figure 6.8: Fingerprints identified as potential attacks in a graph.

A “fingerprint” corresponds to a sequence extracted from the dataset capable of

re-identifying a small amount of nodes in the released dataset. Figure 6.8 shows an

example of extracted attacks from a given dataset. These fingerprints generation (and
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related attacks identification) are based on different de-anonymization techniques de-

scribed further in sections 6.4.1 and 6.4.2. To evaluate the global privacy risk we have

Algorithm 6: Privacy Score Evaluation Based on k-Anonymity

Input: FingerprintList for vertices in G
Input: FingerprintList for vertices in G′

Input: k
Input: Attacks - potential attacks in G
Output: privacyRiskLevel for G when releasing G′

1 init privacyRiskLevel=0;
2 init Hashtable privacyUsers;
3 build UsersFingerprint(G), UsersFingerprint(G′) ;
4 foreach fingerprint si in UsersFingerprint(G′) do
5 if Count(UsersF ingerprint(G′).getV alue) < k then
6 foreach vi in (UsersFingerprint(G′).getValue) do
7 privacyRisk=0;
8 if privacyUsers.contains(vi) then
9 privacyRisk =

privacyUsers.get(vi) + 1/(UsersF ingerprint(G′).getV alue);

10 end
11 else
12 privacyRisk = 1/(UsersF ingerprint(G′).getV alue);
13 end
14 privacyUsers.put(vi, privacyRisk) ;

15 end

16 end

17 end
18 foreach vj in privacyUsers do
19 if Attacks.containsValue(vj) then
20 at = Attacks.getKey(vj);
21 if (UsersFingerprint(G).getValue(at).contains(vj)) then
22 privacyRiskLevel = privacyRiskLevel + privacyUsers.get(vj);
23 end

24 end

25 end

used the k-anonymity concept described in Sweeney [2002]. According to the privacy

risks described below, our call graph is considered as being k-anonymous if the generated

fingerprints for a vertex cannot be distinguished from at least k− 1 other vertices in the

anonymized graph.

Algorithm 6 describes how the global privacy evaluation is performed. We first identify

in the original graph fingerprints associated with potential attacks because of their low

occurrence frequency. “Attacks” is a hashtable used as input for the privacy evaluation

algorithm. It contains as key the fingerprints identified as possible attacks and as values

the corresponding users characterized by the fingerprint (Figure 6.9). The algorithm
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takes as input the “FingerprintList” which is a hashtable containing as keys the users

and as values the fingerprints characterizing the users in a given graph.

...

Attacks

...

Figure 6.9: Hashtable containing the identified attacks (fingerprints) in G and the
corresponding vertices.

Fingerprints characterizing the users are generated following algorithms further

described in sections 6.4.1 or 6.4.2. Based on this input data, the algorithm builds

“UsersFingerprint(G)” and “UsersFingerprint(G′)” (line 3), hashtables containing as key

all the fingerprints generated and as values the list of the vertices characterized by the

fingerprint.

... ...

...

...

...

...

...

Figure 6.10: Hashtable containing the fingerprints characterizing each vertex in G′.

Figure 6.11 shows an example of “UsersFingerprint(G′)” for k = 4. In red are

represented the sequences for which the number of corresponding users is less than 4.

... ...

...

...

...

...

...

...

k=4

Figure 6.11: Hashtable containing as key the fingerprints and as value the list of the
vertices characterized by the corresponding fingerprint in G′.
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Hashtable “privacyUsers” (Figure 6.12) is used to store for each sensitive user, its

corresponding privacy level.

...

privacyUsers

...

Figure 6.12: Hashtable storing for each vertex the corresponding privacy level. “pri-
vacyRisk” value is incremented at each time a privacy infringement is detected for the

corresponding vertex.

It contains as key all the users in G′ with a fingerprint present in the dataset char-

acterizing less than k users. For each user the level of the privacy infringement is stored

as value in this hashtable.

The algorithm goes over all the values of “UsersFingerprint(G′)” and for each fingerprint

in the anonymized graph, if the number of corresponding users is less than k (line 5)

we consider that a k-anonymity based privacy infringement occurred with a level equal

to 1/(users with the same fingerprint). The privacy risk is then incremented for the

concerned users (lines 9 and 12) and stored in the hashtable “privacyUsers”.

We took into account for the global risk evaluation the privacy infringement correspond-

ing only to the potential attacks. For each sensitive user in the anonymized data (loop

“for”, line 18), if the user was identified as a potential attack in the original data (line

19) with the same fingerprint (line 21), the global privacyRiskLevel of the dataset is

incremented with the corresponding value from the hashtable “privacyUsers”.

The final value for the privacy risk of an anonymization method, is obtained after several

iterations by calculating the mean on the privacy risk obtained at each iteration.

When the anonymization method is limited to the identifiers replacement, the worse

case for privacy is met. If a lot of noise is added, privacy risk decreases and becomes 0

at the price of losing the utility of data.

We next describe the fingerprints generation corresponding to each de-anonymization

method.

6.4.1 Privacy Attack by Communication Sequence Generation (CSG)

The problem of call logs anonymization is relatively new, the chronologic order of the

communications not being much exploited by the de-anonymization algorithms. We de-

fine a new type of attack based on the order of the communications occurred between a

user and its callers or callees.
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Since each edge is a communication/interaction occurred at a certain time, each sub-

graph of the communication log can be represented as a call sequence. Therefore, data

can be decomposed in a multitude of call sequences. For each user we are able to gen-

erate her call sequences corresponding to a certain period of time. To generate all these

call sequences we use the projection operator O as defined before.

When anonymizing communication data, a first approach used is to simply replace real

identifiers by generated identifiers. However, the order in which a user called his cor-

respondents remains the same. This call order acts like a fingerprint allowing user’s

de-identification in the anonymized data. We suppose the adversary has access to this

type of information or that he embedded this information in the original dataset.

For each user in the dataset, we generate a call sequence as described in the Algorithm 7

of maximum length L. The call sequences of each user act like a fingerprint and are

stored in the hashtable “FingerprintList”used as input for the Algorithm 6 represented

in Figure 6.10.

Algorithm 7: Fingerprints Generation Based on Call Sequences

Input: G
Input: Length L of the sequences
Output: FingerprintList

1 init FingerprintList;
2 foreach vertex vi in V do
3 Select calls c1 .. cCallsV i connected with vi;
4 init VerticesList;
5 insert (vi, “0”) in VerticesList ;
6 init String Sequence;
7 init index=1;
8 foreach call cj ordered by timestamp ASC do
9 if Sequence.length < L then

10 get corresponding call vertex vk;
11 if vk is not in VerticesList then
12 insert (vk, index) in VerticesList ;
13 index++;

14 end
15 correspNodeID=VerticesList.getValue(vk);
16 if cj is outgoing then
17 Sequence = Sequence + “-0–” + correspNodeID + “-”;
18 else
19 Sequence = Sequence + “-” + correspNodeID + “–0-”;
20 end

21 end

22 end
23 insert (vi, Sequence) in FingerprintList;

24 end

To construct a call sequence of size less than L (line 9), we start by assigning to the
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analyzed vertex the value 0 (line 5 of the algorithm). We store the identifier assigned to

each new user in the hashtable “VerticesList”. Then, we allocate to each new vertex an

identifier corresponding to the order it appears in the call sequence. For this purpose,

we initialize an index at 1 (line 7).

For each new communication of the analyzed vertex (loop “for”, line 8), if we encounter

the called or caller vertex for the first time (line 11), we assign it an identifier equal to

the index value (line 12) and we increment the index (line 13).

The generated sequence (“Sequence”) will consist in a concatenation of strings corre-

sponding to the communications of the analyzed vertex in the order the communications

have occurred.

Each string representing a communication contains the identifiers of the called person

and of the caller involved in it in the format “-callerID-calledID”.

If the analyzed communication is an outgoing call, then the generated fingerprint is

concatenated with the origin “-0–” and the value of the corresponding node (line 17).

If the analyzed communication is an incoming call, then the generated fingerprint is

concatenated with the origin node identifier and with “–0-” (line 19).

Figure 6.13 illustrates the sequence generation by a user Bob having called Alice twice,

then having received a call from Jane and having recalled Alice.

Alice
Jane

Bobt0
t2

t1

t3

="-0--1--0--1--2--0--0--1-"

1

0

2

t0

t2
t1

t3

Figure 6.13: Call sequence/fingerprint generation for user Bob.

In this case, the generated fingerprint will be: fi =“-0–1–0–1–2–0–0–1-”.

An important number of call sequences existing in the original data appear only once.

This could be an important indicator of data’s vulnerability. It means that an adver-

sary having the knowledge of a call sequence, when retrieving the anonymized data will
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potentially re-identify the sequence in the anonymized data by generating the call se-

quences as described before.

To determine the risk for de-identification, we perform a selection among the generated

sequences, according to their frequency in the dataset. We consider isolated sequences

as potential external attacks.

The privacy evaluation is performed according to the capacity to de-identify the selected

sequences in the anonymized dataset.

6.4.2 Privacy attack by Neighborhood Degree Distribution (NDD)

Algorithm 8: Fingerprint Generation Based on Neighbor’s Degrees Distribution

Input: G
Output: FingerprintList

1 init FingerprintList;
2 SequencesList.Entries=0;
3 foreach call cj = (vi, vj , tk) in G do
4 if First occurence of interaction (vi, vj) then
5 get Degree(vi);
6 get Degree(vj);
7 if FingerprintList.Contains(vi) then
8 FingerprintListOfVertices = FingerprintList.Get(vi);
9 end

10 else
11 init FingerprintListOfVertices;
12 end
13 FingerprintListOfVertices.put(Degree(vj));
14 FingerprintList.put(vi, FingerprintListOfVertices);
15 if FingerprintList.Contains(vj) then
16 FingerprintListOfVertices = FingerprintList.Get(vj);
17 end
18 else
19 init FingerprintListOfVertices;
20 end
21 FingerprintListOfVertices.put(Degree(vi);
22 FingerprintList.put(vj , FingerprintListOfVertices);

23 end

24 end
25 foreach user vk in FingerprintList do
26 FingerprintListOfVertices = FingerprintList.get(vk);
27 Sort in ASC (FingerprintListOfVertices);

FingerprintList.put(vk,FingerprintListOfVertices);

28 end

This algorithm has already been described in Sharad and Danezis [2013] and it has

been used to study the de-anonymization of the D4D (Data for Development) dataset.



Chapter 6. Adaptive Temporal Graphs Anonymization for Data Publishing 98

This de-anonymization technique uses the 1-hop nodes neighborhood degree distribu-

tion to generate a fingerprint for each node allowing de-identification. A fingerprint is

generated for each vertex based on the degree distribution of the 1-hop neighbor nodes.

As for the previous method, we suppose the adversary has access to this information

from external sources or that he embedded this information in the original data.

...

...

Degree(v73) Degree(v9) ... Degree(v12)Degree(v5)

Degree(v53)

Degree(v31)

Degree(v5)

Degree(v53) Degree(v12)

...

...

...

...

< < < <

< <

< < <

v0

vi

vvertices(    )

Figure 6.14: Fingerprint list using NDD.

Algorithm 8 describes how the fingerprints are generated for each vertex in the graph.

For each call in the dataset (line 3), if the interaction between vertices occurred for the

first time (line 4), the degree of the vertices involved in the communication are extracted

(lines 5 and 6). If the origin vertex is already in the hashtable “FingerprintList” (line 7),

the list of its neighbors degrees is retrieved updated (line 8). Otherwise, the list of its

corresponding neighbors is created (line 11). The list of the corresponding neighbors is

updated with the new neighbor discovered (line 13). The same operations are performed

for the destination vertex. The neighbor list of the destination vertex is updated line

21. At the end of the algorithm, for each node (line 25), the list of its neighbors is

generated and sorted in ascending order of the degrees as shown in Figure 6.14, acting

as a fingerprint. Fingerprints obtained for all vertices in the graph G and G′ will be used

as an input to compute the global level of privacy in Algorithm 6.

6.5 Utility Loss Evaluation

Call detail records are used for a multitude of analysis from marketing to social studies.

An important number of metrics can be employed when evaluating the utility of data.

Lin and Wan [2009] describes a method for mobile customers clustering based on call

detail records, the goal being the use of the results for marketing campaigns. Several

measures are used for this clustering. Call diameter is one of the measures and is defined
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as the number of different mobile customers called by or calling to one mobile customer

in one month. It then indicates the activeness of a mobile user. The ratio of calling

number and called number, the ratio of local calling duration and long distance duration

are other measures used in Lin and Wan [2009] to exploit the utility of the call detail

records.

Hereafter are some examples of analysis relevant for call detail records:

• Number and distribution of the calls emitted/received by one person or a certain

category of people

• Distribution of calls emitted/received by the users in the time interval

• Average distance between two types of nodes

• Detection of frequent calls between two nodes

• Spam detection

• Number of clusters in the communication log

• Sequence degree

• Influence analysis

In our approach the utility is considered as a blackbox and complex data analysis could

be implemented inside of it. However, for evaluation purpose, we consider three main

families of utilities detailed further.

6.5.1 Changes Performed by the Anonymization Algorithm in the

Graph (CHG)

The cost of the anonymization in terms of utility can be defined as being proportional

with the number of changes performed in the graph by the anonymization algorithm.

In Liu and Terzi [2008] this cost is defined as being equal to the number of edges added

by the algorithm in G to obtain G′.

This type of utility loss evaluation has previously been used on simple graphs. We

consider that the loss in the utility of data in a multiple oriented graph is proportional

to the operations modifying the graph for anonymizing it.



Chapter 6. Adaptive Temporal Graphs Anonymization for Data Publishing 100

6.5.2 Query Based Measures: Call Distribution Distance (CDD)

Query based measures consist in measuring the utility as being proportional to the

accuracy of the answer to a set of queries.

As described in the prior art, this evaluation method consists in listing a given set of

queries and then compare the obtained answers before and after anonymization.

Some examples of query based measures applied on call detail records are given hereafter.

Example 1: Total number of call distribution Randomly pick a certain number

of time intervals. Compare the total number of calls per user between G and G′.

Example 2: Distribution of calls in time Compare the distribution of total in-

coming/outgoing calls in time between G and G′.

Example 3: Distribution of total number of callers/callees In most of the given

examples, the measure can be represented as a vector. We evaluate the utility loss as

being the sum of the difference between each element of the obtained vectors. Randomly

pick a certain number of time intervals. Compare the total number of callers/callees in

each time interval between G and G′.

We evaluate the utility loss corresponding to the query related to the calls distribution

in data (Example 2). The query for which we need an accurate answer is the distri-

bution of the total number of calls occurred on several periods of time in the dataset.

We extract for each time interval the total number of calls having occurred in the time

interval. We then evaluate the delta between the responses obtained by using G and G′.

6.5.3 Graph Topological Properties: Vertices In/Out Degrees (DE)

The “In” and “Out” degrees present in a collaboration network is an important measure

used for social networks analysis. Determining the vertex corresponding to an influent

person or to an expert is mandatory for certain datasets. An expert could correspond

to a person replying for example to an important number of messages. Therefore, the

ratio between its “In” degrees and its “Out” degrees should be kept as close as possible

to the original one in the anonymized data.

To evaluate the changes in the In/Out degrees between original and anonymized data,

we evaluate the changes of the distribution of “in” and “out” degrees in the graph be-

fore and after anonymization. In order to do that, we compare vectors representing the
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degrees distribution before and after anonymization.

For instance, for the example showed in figure 6.15, we evaluate the loss in the utility of

data according to the degrees modifications by comparing vector [2, 2, 1, 1, 0, 2, 0] with

vector [2, 2, 1, 1, 0, 1, 1].

Original Graph Modified Graph 

Figure 6.15: Degrees distribution evolution when modifying graph.

The utility losses obtained by the three methods are normalized against the worst

value for each graph in order to obtain a value between 0 and 1, 1 corresponding to the

highest utility loss obtained.

6.6 Experiments

6.6.1 Baseline: Random data perturbation

Graph data anonymization has been performed in the past mainly for simple graphs by

using techniques based for example on k-anonymity.

As described in G29 [April 2014], in practice, when there is a need to deliver anonymized

complex data, randomly adding noise is a commonly used technique. The common



Chapter 6. Adaptive Temporal Graphs Anonymization for Data Publishing 102

mistakes pointed out by the European opinion (G29 [April 2014]) when using randomized

techniques are:

• adding inconsistent noise - in this case added “out-of-scale” noise could be filtered

out

• assuming noise addition is enough - not adding the right level of noise could be a

risk for privacy like e.g., in the Netflix case

We compare our results with results obtained when perturbing data with random noise

generated on a scale between 0 and the maximum value allowed used for our learning

process (we have used a maximum of 0.1 for the add operation and of 0.5 for the rest of

the operations).

6.6.2 Datasets

We have used for the evaluation two anonymized call logs datasets, one from the well

known Enron dataset and the other one from Twitter. We have extracted chronologi-

cally by using the projection operator O, 100 subgraphs corresponding each of them to

a period of time. We have used for learning the first 10 subgraphs extracted. The result

has been evaluated on the following 90 subgraphs representing 90% of the dataset used

in our evaluation.

The advantage of our approach is that we do not need access to the entire dataset to

determine the anonymization strategy. Only the learning set is needed. The method

can then be applied directly to newly created data.

Parameterized anonymization method described in Algorithm 5 is performed T = 10

times for each graph in the learning set (corresponding to the Monte-Carlo method

applied). The obtained utility loss and privacy risk is the mean of the values corre-

sponding to each iteration on the whole dataset. We next describe the two datasets

used for experiments.

6.6.2.1 Enron dataset

The Enron corpus, was made public during the legal investigation concerning the Enron

corporation and it contains a large set of email messages. Enron dataset has been

described in Klimt and Yang [2004] and it contains 619,446 messages. In Enron dataset,

two types of users are represented:

• “core users” for which the entire set of communications is represented in the dataset
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• non “core users” only connected with core users. Only a part of their communi-

cations is present in the dataset

We use for our experiments a cleaned dataset retrieved from Enron Cleaned Dataset

and containing 164,081 communications involving 28,062 users and 156 core users which

occurred between January 2001 and March 2002. The communication dataset used is

cleaned of invalid timestamps or broadcast messages and is represented in a format of

type “unix timestamp; sender; receiver”. The training dataset is formed by projecting

the first 10 subgraphs, each one of them containing 1640 interactions. The testing

dataset constructed contains 90 graphs of 1640 interactions.

6.6.2.2 Twitter dataset

A second dataset crawled from the social platform Twitter has been used for evaluation.

It contains around 1,530,000 anonymized interactions occurred on a period of several

months between April 2009 and November 2009. The dataset is the same as the one

used in Chapter 5 for experimentation of the methodology on simple graphs, except that

we consider each interaction as a new oriented timestamped link.

The dataset is represented in the same format as the Enron dataset: “unix timestamp;

sender; receiver”. We considered that a communication occurred between the sender and

the receiver, if the sender sent a message containing a “@receiver” indication. Based on

this, we have generated from the crawled data an anonymized database containing the

communications extracted from the Twitter messages.

We have constructed the timestamped oriented multiple graphs used for experimentation

by extracting, ordered by timestamp, the first 200,000 interactions and forming 100

graphs. Each extracted graph has 2000 interactions and the training dataset contains

10 graphs. The testing dataset contains the remaining 90 graphs.

6.6.3 Results

6.6.3.1 Learning with one parameter and one operation - p = 1

We have started our evaluation by performing an exhaustive search among a very large

set of possible values for parameter θ when p = 1 and when only add operations are

performed. In this case, the search is possible among all possible values and it allows

us to compare the real minimum of the empirical loss and the one found by using opti-

mization algorithms. It also allows us to compare the behavior of the training set to the

behavior of the testing set. We have used privacy CSG (described in 6.4.1) and utility
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CDD (described in 6.5.2). The parameter k was set at 5 and the length used for the

CSG sequences generation was 5.

 = 0.0486

 = 0.0495

Figure 6.16: Exhaustive search for minimum empirical loss on training dataset and
testing dataset: privacy risk is decreasing while utility loss is increasing. The behavior

of the training set is similar to the behavior of the testing set.

= 0.0518

Figure 6.17: Learning with EDA on the training set: initial population is initialized
to 20 possible values between 0 and 0.1. Parameter learned after 10 iterations is close

to the one obtained with the exhaustive method.)
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Figure 6.16 shows the behavior of the empirical loss according to the quantity of

added noise. The privacy risk is decreasing while the quantity of noise increases. In

the same time, as expected, the loss in the utility of data increases. The behavior is

very close for the training set of graphs and for the testing set of graphs. For the util-

ity variation the two curves are almost superimposed. The argument of the minimum

found when searching among all possible parameters is θ = 0.0486 for the training set

and θ = 0.0495 for the testing set.

Figure 6.17 and Figure 6.18 show the different steps when using optimization algorithms

like EDA (described in 4.6.1) and respectively GA (described in 4.6.2) to find θ∗ by sam-

pling only on a limited number of points the empirical loss. Initial model for parameter

θ has been randomly initialized to 20 values (N = 20) between 0 and 0.1 for EDA as

well as for GA (Iteration 1).

= 0.0523

Figure 6.18: Learning with Genetic Algorithm on the training set: initial population
is initialized to 20 possible values between 0 and 0.1.

The approximation of the parameter found after 10 iterations with EDA is θ∗ =

0.0518 and the one found with GA is θ∗ = 0.0523. For both of them, the corresponding

empirical loss is very close to the one found when performing an exhaustive search. The

parameter found with EDA is closer to the value of the exhaustive search.

When using only one parameter for anonymization, exhaustive search, i.e. in our case

search among all parameters θ with a step of 0.0001 to find the one corresponding

to the minimum of the empirical loss is still possible. However, when a combination
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of multiple parameters is used, optimization techniques are mandatory. Next section

presents experimental results when learning with multiple parameters.

6.6.3.2 Learning with multiple parameters

We have implemented the algorithm for a variable number p of parameters (1, 2, 5 or

10) and for the 4 operations described in 6.3: add, delete, replace left and replace right.

In most of our experiments, after 20 iterations, the parameters are acceptably close to

each other so that we can consider that the algorithm converged. The mean for the

resulting parameters is giving the learned vector, as for example the following vector:

θ = (0.009,0.064,0.117,0.249,0.415,0.332,0.632,0.357)

where each part of the vector θ corresponds to one of the operations used for anonymiza-

tion as in the following:

θAdd = (0.009, 0.064)

θDelete = (0.117, 0.249)

θReplace Left = (0.415, 0.332)

θReplace Right = (0.632, 0.357)

The first two values 0.009, 0.064 correspond to the add new edge probability for each

group of vertices degrees (θadd1 and θadd2 ), 0.009 associated to the vertices with the lowest

degrees and 0.064 associated with the vertices with the highest degrees. The next two

values 0.117, 0.249 correspond to the delete edge probabilities for each group of vertices

degrees (θdelete1 and θdelete2 ) and so on.

Most of the learned parameters have this same format where the noise to be added on

vertices with higher degrees is more important than the noise to be added on vertices

with lower degrees for add and delete operations. This confirms an intuitive result

as vertices with high degrees can be easily de-anonymized because of their complex

structure. Table 6.1 illustrates the obtained results when learning with different sizes of

n and with multiple utilities and privacies. The best model obtained for both datasets

corresponds to the maximum number of parameters learned, in this case 40 parameters

(10 parameters for each of the four operations).

A more granular fitting of the parameters according to the properties of the modified
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Table 6.1: Learning with multiple utilities and privacies - testing set results. Best
values for the empirical loss are obtained when learning with 40 parameters with EDA.

Dataset Anonymization Utility Loss Privacy Risk Emp.
Method CHG CDD DE Global CSG NDD Global Loss

Enron Random method 0.178 0.177 0.330 0.228 0.199 0.012 0.105 0.334
Enron p=1, n=4, EDA 0.122 0.036 0.264 0.141 0.065 0.000 0.033 0.173
Enron p=2, n=8, EDA 0.092 0.007 0.165 0.088 0.079 0.001 0.040 0.128
Enron p=5, n=20, EDA 0.064 0.010 0.116 0.063 0.110 0.003 0.056 0.119
Enron p=10, n=40, EDA 0.070 0.002 0.088 0.054 0.073 0.000 0.037 0.090
Enron p=1, n=4, GA 0.058 0.032 0.179 0.090 0.335 0.007 0.171 0.260
Enron p=2, n=8, GA 0.074 0.044 0.217 0.111 0.276 0.004 0.140 0.252
Enron p=5, n=20, GA 0.072 0.035 0.188 0.098 0.261 0.006 0.133 0.232
Enron p=10, n=40, GA 0.042 0.019 0.102 0.054 0.257 0.005 0.131 0.185
Twitter Random method 0.173 0.173 0.452 0.266 0.097 0.009 0.053 0.319
Twitter p=1, n=4, EDA 0.036 0.032 0.378 0.149 0.126 0.000 0.063 0.212
Twitter p=2, n=8, EDA 0.030 0.022 0.291 0.114 0.054 0.000 0.027 0.141
Twitter p=5, n=20, EDA 0.014 0.008 0.116 0.046 0.120 0.001 0.061 0.107
Twitter p=10, n=40, EDA 0.001 0.000 0.007 0.003 0.131 0.001 0.066 0.069
Twitter p=1, n=4, GA 0.031 0.026 0.334 0.130 0.164 0.001 0.082 0.213
Twitter p=2, n=8, GA 0.015 0.010 0.180 0.069 0.181 0.002 0.091 0.160
Twitter p=5, n=20, GA 0.021 0.017 0.234 0.090 0.124 0.001 0.062 0.153
Twitter p=10, n=40, GA 0.022 0.019 0.210 0.083 0.139 0.001 0.070 0.153

vertices results into a better minimization of the empirical loss.

In our anonymization function, we have made the hypothesis that the quantity of noise

to be added for each type of operation is strictly related to the vertices degrees. This

hypothesis is verified by the results as we obtain better values for the empirical loss

when learning with p = 10 groups (n = 40 parameters) corresponding to the vertices

degrees.

We compared the results obtained with the ones obtained by using a random data

perturbation or GA optimization and model fitting the minimum empirical loss by using

EDA outperforms random perturbation or GA obtained model.

6.6.3.3 Generalization

The described method aims at adapting to different utilities or types of attacks config-

ured in the blackboxes. We have tested the algorithm by learning with only one utility

(DE) and with both privacies (CSG and NDD). Table 6.2 shows the obtained results on

the testing set.

The results show a global improvement of the value of the utility DE when compared

to the results obtained when learning with all utilities and all privacies (in Table 6.1).

The value of the utility DE is also improved when learning with multiple parameters.

The best results are obtained when learning with EDA on the Enron dataset as well as

on the Twitter dataset. The improvement compared with the random baseline or with
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Table 6.2: Learning with one utility and all privacies: adaptability of the method.

Dataset Anonymization Utility Loss Privacy Risk Empirical
Method DE CSG NDD Global Loss

Enron Random method 0.330 0.199 0.012 0.105 0.435
Enron p=1, n=4, EDA 0.109 0.082 0.001 0.042 0.150
Enron p=2, n=8, EDA 0.088 0.129 0.002 0.065 0.153
Enron p=5, n=20, EDA 0.067 0.185 0.005 0.095 0.162
Enron p=10, n=40, EDA 0.062 0.180 0.004 0.092 0.154
Enron p=1, n=4, GA 0.074 0.272 0.007 0.140 0.214
Enron p=2, n=8, GA 0.094 0.303 0.007 0.155 0.249
Enron p=5, n=20, GA 0.082 0.402 0.018 0.210 0.292
Enron p=10, n=40, GA 0.064 0.371 0.017 0.194 0.258
Twitter Random method 0.452 0.097 0.009 0.053 0.505
Twitter p=1, n=4, EDA 0.049 0.172 0.005 0.088 0.138
Twitter p=2, n=8, EDA 0.090 0.130 0.008 0.069 0.159
Twitter p=5, n=20, EDA 0.037 0.213 0.012 0.113 0.150
Twitter p=10, n=40, EDA 0.082 0.255 0.010 0.132 0.214
Twitter p=1, n=4, GA 0.043 0.442 0.046 0.244 0.287
Twitter p=2, n=8, GA 0.121 0.271 0.003 0.137 0.258
Twitter p=5, n=20, GA 0.137 0.244 0.004 0.124 0.261
Twitter p=10, n=40, GA 0.103 0.272 0.010 0.141 0.243

GA baseline is important for the utility DE as well as for the global empirical loss.

This shows that the method adapts well to a new context and gives good results. In

this simulation we have used a parameter θ of dimension 40 (10 parameters for each

operation). We have simultaneously used all the utilities and the privacies described for

learning.

6.6.3.4 Learning Convergence

Figure 6.19 shows the quality and evolution of the result versus the number of calls

sent to the external blackboxes according to the size (N) of the initial population the

parameter θ has been initialized to.

The best value for the empirical loss is obtained for the population N = 200. However,

the number of calls to the blackboxes is very important in this case. A good model

would correspond to a population N = 30. The minimum for the empirical loss in this

case is close to the one obtained with N = 200 after less than 190 external calls.

This shows that the choice of the population size is important and could improve the

efficiency of the algorithm.



Chapter 6. Adaptive Temporal Graphs Anonymization for Data Publishing 109

Figure 6.19: Algorithm efficiency versus external blackboxes calls: best value obtained
for N = 200, best compromise obtained with N = 30.

6.6.3.5 Algorithms Complexity

This chapter introduces several algorithms, and among them the parameterized anonymiza-

tion function for complex graphs described in Algorithm 5. In order to evaluate the

privacy level, two algorithms are described: Algorithm 6 and Algorithm 7.

The anonymization algorithm consists in four operations. The first three operations (re-

place left, replace right and delete) are performed by iterating through all the existing

edges (a total of U edges). The complexity of this operation is O(U). The “add” opera-

tion is performed by iterating through all possible combinations of vertices and leads to

a complexity O(S2). However, for each add iteration a new edge is added in real cases

with a small probability therefore the worst case is never encountered in practice.

The Algorithm 6 is evaluating the privacy score based on the k-Anonymity concept for

a set of fingerprints. It first iterates through all the fingerprints (maximum equal to the

number of vertices S) and increments privacy risk for each user if necessary therefore

it correspond to a complexity O(S2). The second step of the algorithm (lines 18 - 25)

calculates the global privacy risk and in order to do that iterates through all the users

S. The complexity of this algorithm corresponds then to O(S2).

The Algorithm 7 describes the generation of the fingerprints corresponding to each user.

For each vertex (a total of S), the algorithm iterates through each call (a maximum of

U) and generates the corresponding fingerprint(s). The complexity of this algorithm is

then of O(S × U).
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6.7 Conclusion

We have proposed in this chapter a generic method for call logs anonymization based on

machine learning. This type of data can be represented as an oriented multiple times-

tamped graph. Most of the existing anonymization methods on graphs are related to

simple graphs. The idea was to find a parameterized anonymization function correspond-

ing to the best compromise between utility loss and privacy risk. The parameterized

function is learned on a training set, therefore it can apply to new generated data.

We have implemented our algorithm in Java and tested it on two real datasets of call

logs issued from Enron and Twitter. The parameterized function learned on the training

set has been tested on the remaining dataset with successful results and outperforms

baseline methods. The results improve according to the number of parameters used

for the anonymization function. An interesting future direction would be to study this

improvement when diversifying the types of parameters used for learning. As we deal

with timestamped interactions, another direction is to learn an anonymization function

based on time depending parameters. Results from this chapter are currently submitted

for publication.
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7.1 Contributions

The main goal of my thesis was to study data anonymization when dealing with struc-

tures issued from communication interactions. The motivation of this thesis was the

need to externalize data for analysis or other purposes or to publish it. When data is

complex and when it can be modeled as a dynamic graph with multiple oriented links,

external information can be easily combined with anonymized data allowing user’s re-

identification. This vulnerability has been showed in the past and leaded to a limitation

of data publishing for research or other purposes. From the beginning of my thesis,

the idea of finding an anonymization method easily adaptable to new contexts and to

different attacks was a main challenge and motivated my work. The experimentation of

the methods on data issued from telecommunication equipments (like e.g. CDRs) was

another target of my research.

A part of my work has been dedicated to the analysis and comprehension of exist-

ing publications on data anonymization and particularly in graph data anonymization.

Chapter 2 describes the state of the art for data issued from communication interactions

anonymization.
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The main contribution of Chapter 3 is related to data’s vulnerability analysis when

taking into account its temporal component. We showed that existing techniques are

not robust to data decomposition in time intervals. We then proposed to apply existing

methods on each part of data projected on a time interval. A patent have been filed

with results from this chapter (Hacid and Maag [2014]).

One of the main contributions of my thesis is related to the methodology described

in Chapter 4 which aims to model graph data anonymization as an optimization problem

based on machine learning. This optimization problem aims at finding the best parame-

terized anonymization function adapted to a given context in order to find a compromise

between utility loss and privacy protection. The analysis to be made on data and the

families of privacy attacks are modeled as blackboxes. The anonymizer does not have

access to the analysis methods but is able to obtain the output of the analysis measure.

Our idea is to find a parameterized anonymization function corresponding to the best

compromise between utility loss and privacy risk. We learn this parameterized function

on a training set; therefore it can be applied to new generated data.

In Chapter 5 the methodology is applied with success on simple graph data and com-

parison with prior art shows the method adapts much better to new context. Methodol-

ogy is applied on datasets retrieved from Twitter and Amazon with a successful result.

The behavior of data in the testing set is similar to data in the training set. Results

of this chapter have been published at the 28th IEEE International Conference on Ad-

vanced Information Networking and Applications (Maag et al. [2014]).

Chapter 6 is coming back to the original problem which is the anonymization of

data issued from communication interactions. Parameterized anonymization functions

are learned on oriented labeled temporal graphs and they give successful results when

tested on the rest of data. In order to test the learning method in the context of temporal

graphs, we defined new de-anonymization techniques based on the temporal component

of the graph to be anonymized, mainly for implementing the blackboxes used in the

learning phase and in the testing phase. The methodology applied on temporal graphs

has been compared with baseline methods and showed its effectiveness on real datasets

issued from Twitter and Enron. The results from this chapter are currently submitted

for publication.
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7.2 Perspectives

Data anonymization is a complex problem and it is very difficult to guarantee that when

releasing it, individual’s privacy will not be infringed. Today there is no method allow-

ing a complete protection of individuals while providing useful datasets. Privacy risks

still exist for correlated data even when using the promising differential privacy based

guarantees. I hope the work performed during my thesis will motivate further research

in order to try to find a universal method for data anonymization able to provide good

privacy guarantees while preservig data’s utility.

We have proposed an adaptable method for finding the best anonymization function

fitting a certain context and minimizing utility loss while reducing privacy risks. The

results improve according to the number of parameters used for the anonymization

function. An interesting future direction would be to study this improvement while

diversifying the types of parameters used for learning. This could lead to a significant

improvement of the objective function.

Differential privacy guarantees have already been applied in the context of data re-

lease. Most of the differential privacy techniques are based on adding Laplacian noise

to the dataset. In Comas [2013] a synergy between k-anonymity and ǫ-differential pri-

vacy has been described. In this paper, for data publication, utility has been improved

when applying k-anonymity methods before achieving ǫ-differential privacy. It has been

shown that for data publication, the k-anonymity family of models is powerful enough to

achieve ǫ-differential privacy. Another promising direction for my work consists in trying

to find a synergy between the parameterized functions learned with our methodology

and ǫ-differential privacy based guarantees.

The results obtained in my thesis will be used in my future work as a researcher in

Alcatel-Lucent Bell Labs. A certain number of applications are envisaged for the algo-

rithms and methods proposed in this manuscript. My work leaded me to the definition

of new attack methods for instantiating the blackbox containing the potential attacks.

These instantiated attacks were based on a re-identification of a user in a given graph

when holding a previous knowledge about the user’s interactions. This work on pattern

recognition in a given structure will be used in my future work.

Methodology allowing one to find the best adapted anonymization techniques matches

perfectly with industrial projects needs dealing with privacy concerns about data con-

taining users information. Moreover, the work related to oriented multiple timestamped

graphs is close to the needs of information anonymization issued from telecommunication

equipments or needs of data mining algorithms on this type of information.
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Lei Zou, Lei Chen, and M Tamer Özsu. K-automorphism : A general framework for

privacy preserving network publication. Proceedings of the VLDB Endowment, 2(1):

946–957, 2009.


