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Introduction and summary

Français

Introduction

Calculateur quantique

Le concept d’utiliser des ordinateurs quantiques pour surpasser les limitations des ordinateurs
classiques a été introduit par Richard Feynman en 1982[1]. Les ordinateurs quantiques
sont différents des ordinateurs classiques basés sur les transistors. Alors que les ordinateurs
numériques requièrent des données encodées en éléments binaires (bits), chacun d’entre eux
étant toujours dans un des deux états prédéfinis (0 ou 1), les ordinateurs quantiques utilisent
des qubits (quantum bits), qui peuvent être dans une superposition d’états. Avec un ordina-
teur classique, l’information est encodée par la présence ou l’absence d’un courant/tension
électrique. Ainsi, l’état d’un transistor est allumé ou éteint. Formellement, un qubit est un
système de mécanique quantique à deux niveaux qui peut être écrit par:

��ψqb

�
= α |g〉+ β |e〉 (1)

ou |α|2 + |β |2 = 1. Un ensemble de n qubit (classique ou quantique) supporte 2n états
différents. Cependant un ordinateur classique peut être seulement dans un état à la fois. La
puissance d’un ordinateur quantique tient dans sa capacité à être dans tous les états à la fois
par superposition de ses n qubits. Une opération quantique est alors effectuée sur l’ensemble
complet des états superposés. Des algorithmes quantique exploitant la particularité des
ordinateurs quantiques existent déjà. Nous pouvons citer l’algorithme de Shor[2] qui permet
la factorisation de grands nombres, l’algorithme de Grover[3] pour la recherche d’éléments
dans une base de données non triée et l’échantillonnage de Métroplis[4] pour simuler des
systèmes quantiques génériques.

Le développement d’un ordinateur quantique est un défi important dût au problème
de décohérence. Une conséquence de la décohérence est le comportement probabiliste ou
classique. En effet, un ordinateur quantique sans cohérence devient similaire à un ordinateur
probabiliste classique. Garder la cohérence d’un système revient souvent à isoler ce système
de son environnement. Cependant, sans mentionner la difficulté expérimentale d’une telle
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tâche, un ordinateur quantique doit aussi être connecté au monde extérieur afin de recevoir
et de transmettre de l’information. DiVincenzo[5,6] lista, dans un ensemble de cinq critères,
les différent prérequis d’un ordinateur quantique:

• Le nombre de qubit est extensible,

• Les qubits peuvent être initialisés dans des états arbitraires,

• Les opérations sur les portes logiques s’effectuent plus rapidement que la décohérence,

• Il est possible d’implémenter un ensemble de portes logiques universelles,

• Les qubits peuvent être lus facilement.

Qubits supraconducteurs

En physique du solide, un candidat prometteur pour réaliser un qubit est le circuit quantique
supraconducteur à base de jonctions Josephson. Les variables conjuguées décrivant la
dynamique électronique d’une jonction Josephson sont le nombre de Paire-de-Cooper et la
différence de phase au travers de la jonction. En choisissant la forme de la jonction, il est
possible de fixer une variable et, par conséquent, d’avoir une grande indétermination sur sa
conjuguée associée. Ainsi, lorsque la charge est bien déterminée, on parle alors de qubit de
« charge » et lorsque la phase est bien déterminée, on parle de qubit de « phase ». Il est aussi
possible de concevoir une jonction dans laquelle l’indétermination sur la charge et la phase
est égale. Ce type de qubit est appelé « charge-phase » qubit.

Nous devons également mentionner le qubit de « flux » qui correspond à une boucle de
métal supraconducteur interrompu habituellement par trois jonctions Josephson[7].

La première observation d’une quantification des niveaux d’énergie a été réalisée par
Michel H. Devoret, John M. Martinis, Daniel Esteve, and John Clarke[8–10] en 1984–1985.
En 1999, Nakamura et al.[11] démontrèrent la première manipulation cohérente d’un état
quantique dans un qubit de charge. Pour ces expériences pionnières, le temps de cohérence
des qubits était en deçà de 2 ns. Cependant, la cohérence des qubits de charge était limitée par
les fluctuations de charge inhérent aux circuits électriques. Les qubits de phase atteignirent
pour leur part des temps de cohérence de plusieurs centaines de nanoseconds[12–14]. Les
qubit de phase souffraient de couplages parasites avec des systèmes à deux niveaux présents
dans l’environnement ou directement dans la couche isolante de la jonction. En effet, la forme
du qubit de phase oblige la fabrication de jonctions ayant une grande aire ce qui augmente la
probabilité de coupler la jonction avec des systèmes à deux niveaux parasites. Le qubit de
charge-phase, avec une petite aire de jonction et sans sensibilité aux fluctuations de charge à
son point de fonctionnement optimal, a atteint des temps de cohérence de 500 ns[15].

En 2004, quatre ans après une proposition théorique[16,17], des expériences en électro-
dynamique de circuits supraconducteurs ont été démontrées en premier sur des qubits de
charge. En 2007, J. Koch et al.[18] proposèrent un forme de qubit original, le transmon.
La particularité du transmon est d’avoir un rapport entre l’énergie de charge et l’énergie
Josephson auquel les premiers niveaux d’énergie sont insensibles aux bruits de charge. De
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plus, ce rapport permet la fabrication de très petites jonctions limitant la probabilité de
couplage avec des systèmes à deux niveaux parasites. Récemment, de tels transmons ont
atteint un T1 = 9.7µs et un temps de cohérence de Ramsey de T ∗2 = 10.3µs en 2012[19],
et un T1 = 53µs et un T ∗2 = 58µs en 2013[20]. Une augmentation du temps de cohérence
du système a été obtenue en remplaçant le résonateur micro-onde bi-dimensionnel avec
une cavité tri-dimensionnelle. De cette façon, le transmon 3D a atteint un T1 = 60µs et un
T ∗2 = 10− 20µs en 2011[21], et un T1 = 70µs et un T ∗2 = 92µs en 2012[22].

Finalement, nous soulignons le travail récent réalisé sur le fluxonium, une forme de qubit
original menant à une insensibilité parfaite aux fluctuations de charge[23–25]. De tels qubits
dans une cavité 3D ont exhibé[26] un temps de relaxation de T1 ≈ 1000µs et un T ∗2 = 14µs.

Mesure dispersive d’un qubit supraconducteur

Avec le circuit supraconducteur utilisant le transmon, la lecture de l’état du qubit dépend du
couplage dispersif entre le qubit et le résonateur micro-onde. À travers ce couplage dispersif,
il est possible de réaliser une mesure quantique non-destructive de l’état du qubit en sondant
la fréquence de résonance du résonateur. En effet, le plus simple Hamiltonien d’un qubit
couplé à un résonateur est donné par [18,27–31]:

H = ~ωrbn
︸︷︷︸

resonator

+
~
2
ωqbbσz

︸ ︷︷ ︸
qubit

+
~
2
χ bσzbn

︸ ︷︷ ︸
dispersive coupling

(2)

avecωr etωqb la fréquence angulaire de résonance du résonateur et du qubit, respectivement.
L’opérateur bn donne le nombre de photons dans le mode de cavité et bσz est la matrice Pauli
de l’état du qubit. La force du couplage dispersive χ = g2/∆ est le rapport entre la force de
couplage g- entre le résonateur et le qubit - et le désaccord de fréquence∆ - entre la fréquence
de résonance de la cavité et la fréquence de résonance du qubit. Il y a alors un compromis
entre la force du couplage g et le désaccord de fréquence ∆: un important couplage dispersif
conduit à un important rapport signal-sur-bruit en augmentant la différence de signal entre
les deux états du qubit. Cependant, un important couplage dispersif implique un important
couplage entre le résonateur et le qubit conduisant à une augmentation de la décohérence
par effet Purcell[32].

La première lecture par couplage dispersif dans les circuits quantiques supraconducteurs
donna une fidélité de lecture d’environ F = 30% pour un temps d’intégration de 7µs[33]. La
faible fidélité de lecture par mesure dispersive était due à un faible rapport signal-sur-bruit.
En effet, la puissance de signal utilisée pour réaliser la lecture de l’état du qubit doit être
suffisamment faible pour ne pas induire des effets indésirables sur l’état du qubit[34]. Le signal
transportant l’information sur l’état du qubit est alors de quelques photons par nano-secondes.
De plus, lorsque le signal est amplifié, le bruit ajouté par un amplificateur paramétrique est
extrêmement important comparé au signal sortant de l’amplificateur.

Une importante amélioration a été atteinte par le développement d’amplificateurs proches
de la limite quantique basés sur l’amplificateur paramétrique Josephson[35]. Grâce à ces
nouveaux amplificateurs, de plus hautes fidélités ont été atteintes. Par exemple, une fidélité
de 98 % a été atteinte pour un temps d’intégration de 240 ns en 2013[36].
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Ce type de lecture, basé sur des qubits couplés dispersivement à un résonateur micro-
onde, semble avoir atteint sa limite. En effet, augmenter le rapport signal-sur-bruit implique
d’augmenter la force de couplage dispersive χ ou le couplage du résonateur à la ligne de
mesure micro-onde ce qui, dans les deux cas, augmentera l’effet Purcell.

Le diagramme d’énergie en V en optique quantique

Le diagramme d’énergie en V, défini en Fig. 1 (a), a été utilisé en optique quantique pour
effectuer la lecture de l’état d’un qubit par fluorescence avec une fidélité exceptionnellement
élevée[37] de l’ordre de 99.99 %. Originellement proposé par Dehmelet al. [38] et démontré
plus tard par Wineland et al. [39], Nagourney et al. [40], Sauter et al. [41], et Bergquist et al.
[42], la lecture consiste à exciter le système à la fréquence de résonance de l’ancillaire tout en
mesurant la fluorescence de la transition de l’ancillaire. Dans la Fig. 1 (b), nous résumons le
protocole de lecture d’un qubit logique via son qubit ancillaire dans une configuration en V.
Le système est sondé avec un signal oscillant en résonance avec la transition de l’ancillaire
à la fréquence ωa/(2π). Lorsque le qubit est dans son état fondamental, il se produit de
la fluorescence et le système est dit « brillant ». Lorsque le qubit est dans son état excité,
il n’y a pas de transition disponible à la fréquence de l’excitation, il ne se produit aucune
fluorescence, et le système est dit « sombre ». De cette manière, il est possible d’effectuer des
mesures de l’état d’un qubit avec une très haute efficacité. Par exemple, nous montrons dans
Fig. 2 l’observation de saut quantique d’un seul ion 138Ba+ par Leibfried et al.[43] en 2003.

(a) (b)
Logical qubit: ground Logical qubit: excited

Fluorescence
No resonance transition availableExcitation of the ancilla

No fluorescence

Excitation

Fluorescence

Figure (1): (a) Un diagramme d’énergie en V. Cela consiste en un qubit |g〉 et |e〉, montrant
de bonnes propriétés de cohérence en parallèle avec un deuxième qubit, |g〉 et |a〉 réalisé par
un deuxième degré de liberté. Le point clef d’un diagramme d’énergie en V est que toutes
résonance depuis le niveau excité du qubit logique |e〉 à un niveau de plus haute énergie
est hors résonance avec la transition de l’ancillaire |g〉 → |a〉. (b) Lecture de l’état du qubit
logique par fluorescence. Un ton de lecture en résonance avec la transition de l’ancilla est
envoyé. Lorsque le qubit logique est dans son état fondamental, de la fluorescence se produit.
Le système est dit « brillant ». À l’inverse lorsque le qubit logique est dans son état excité,
aucune transition en résonance avec le ton de lecture n’est disponible. Aucune fluorescence
se produit, le système est alors dit « sombre ».
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Figure (2): Saut quantique[41,43] d’un ion 138Ba+. Lorsque l’ion réalise la transition vers
l’équivalent de l’état excité du qubit, la fluorescence chute. À l’inverse, lorsque l’ion relaxe
vers l’équivalent de l’état fondamental du qubit, la fluorescence revient à son niveau initial.
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Résumé

La motivation de ma thèse était de concevoir et de réaliser un diagramme d’énergie en V
en utilisant un atome artificiel supraconducteur et d’évaluer son potentiel pour effectuer la
lecture de l’état d’un qubit.

Prédiction d’un diagramme d’énergie en V

Durant ma thèse, j’ai étudié la théorie d’un système quantique original composé de deux
transmons couplés inductivement (voir Fig. 3 (a) et (b)). Lorsque l’inductance de couplage est
de l’ordre de grandeur de l’inductance Josephson, ce circuit possède deux modes d’oscillation
de la différence de phase à travers les jonctions : un premier mode, appelé mode « en-
phase », correspondant à une oscillation en-phase de la différence de phase, et un second
mode, appelé « hors-phase », correspondant à une oscillation hors-phase de la différence de
phase (représentés par des flèches rouges et bleues sur la Fig. 3 (a), respectivement). En
développant l’Hamiltonien du circuit par des séries de Taylor, je démontre l’anharmonicité
de chaque mode ainsi que le couplage existant entre les deux modes. Le mode « en-phase »
est équivalent au mode transmon, il montre une forte non-linéarité due à l’effet Josephson.
Le mode « hors-phase » est principalement relié à l’inductance de couplage, son énergie est
inversement proportionnelle à l’inductance. Il possède une faible anharmonicité. Un de ces
couplages a été utilisé pour réaliser des conversions de fréquences cohérentes entre le premier
état excité du mode « hors-phase » et le deuxième état excité du mode « en-phase »[13]. L’autre
terme de couplage dénoté gzz, est similaire au terme de couplage cross-Kerr : il modifie
l’énergie d’un mode en fonction du nombre d’excitations présents dans l’autre mode. Dans la
limite des faibles excitations, les modes « en-phase » et « hors-phase » peuvent être considérés
comme deux qubits appelés ci-après logique et ancillaire, respectivement. Ils sont décris
par des matrices de Pauli, σqb

z and σa
z . Le couplage cross-Kerr devient alors un couplage

de type σqb
z σ

a
z induisant un déplacement conditionnel de fréquence d’un qubit en fonction

de l’état de l’autre qubit, voir Fig. 3 (d). Dans ce manuscrit, je ferai référence à cet effet
soit comme une anharmonicité croisée soit comme un couplage cross-Kerr. Dans la limite
d’une importante anharmonicité croisée, le diagramme d’énergie du circuit devient celui d’un
diagramme d’énergie en V.

Nous avons considéré un atome artificiel incorporé dans une architecture d’électrodynamique
de circuit quantique en utilisant un résonateur quart-d’onde. En suivant le travail d’Alexander
Blais dans le cas d’un résonateur demi-onde[44], je calcule l’Hamiltonien d’un résonateur
quart-d’onde. En considérant des excitations de basses énergies, seuls les couplages entre
les qubits logique et ancillaire et le mode fondamental du résonateur doivent être pris en
compte. Je montre alors, en utilisant la dépendance spatiale de l’amplitude de la tension
et du courant le long du résonateur, ainsi que la nature différente des modes d’oscillation
donnant lieu au deux qubits, qu’il est possible de coupler seulement un qubit au résonateur,
l’autre restant alors complètement isolé du résonateur. Par exemple, en positionnant l’atome
artificiel du coté du court-circuit d’un résonateur quart-d’onde, seulement le qubit ancillaire
sera couplé au résonateur.
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(a)

(b) (c)

Voltage Current

(d)

Figure (3): (a) Image MEB du circuit supraconducteur avec deux zooms successifs sur le
circuit réalisant l’atome artificiel. (b) Schéma électrique équivalent de deux transmons
couplés inductivement. (c) Schéma électrique équivalent d’un résonateur quart-d’onde avec
une représentation de la dépendance spatiale de l’amplitude de la tension et du courant pour
le mode fondamental. (d) Diagramme d’énergie de l’atome artificiel a φb = 0. Lorsque le
terme cross-Kerr gzz est grand comparé à la largeur de résonance de la cavité, le diagramme
d’énergie du système peut être considéré comme un diagramme d’énergie en V.
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Étude théorique : Mesure quantique extrêmement rapide, de haute fidélité et non de-
structive

Dans ce manuscrit, je propose une méthode de lecture quantique extrêmement rapide, de
haute fidélité et non destructive de l’état d’un qubit en utilisant un atome artificiel, ayant
un diagramme d’énergie en V, couplé à un résonateur quart-d’onde dans une architecture
d’électrodynamique de circuit quantique. Ce travail a été inspiré par un travail antérieur sur
un résonateur demi-onde réalisé conjointement avec Igor Diniz[45]. Le circuit ainsi que la
chaîne de mesure sont schématisés en Fig. 4. N’oublions pas que dû aux différentes natures
des modes d’oscillations et de la position de l’atome artificiel dans le résonateur, seulement le
qubit ancillaire est couplé au résonateur micro-onde. De cette façon, il est possible d’avoir un
fort couplage ga entre le qubit ancillaire et le résonateur tout en gardant le qubit logique isolé
de son environnement. Les qubits ancillaire et logique sont couplés par le terme cross-Kerr
gzz.

Amplification
Measurement chain

Figure (4): Schéma de la chaîne de mesure. Le qubit logique est couplé au qubit ancillaire
par un couplage terme cross-Kerrgzz. Le qubit ancillaire est couplé au résonateur avec une
force de couplage dénotée ga. À l’entrée du système, la puissance est notée p; à la sortie, la
puissance transmise est notée pt. Le résonateur est couplé à une feedline par κ. Les pertes
internes du résonateur sont modelisées par une voie virtuelle ayant un couplage κi. La chaîne
d’amplification est modélisée comme un simple amplificateur ayant une température de bruit
TN et une bande passante B. À la fin de la chaîne de mesure, le signal micro-onde est digitalisé
et l’état du qubit est déduit à partir de l’amplitude du signal.

Afin de calculer la transmission du système, résonateur et atome artificiel, montré en Fig. 4,
nous utilisons la théorie dite « input-output ». Dans la Fig. 5, nous montrons la transmission
du système lorsque le qubit logique est dans son état fondamental, en bleu, et dans son



Introduction and summary 19

état excité, en vert. La transmission d’un tel circuit dépend fortement de l’état du qubit
logique. On note que le déplacement de fréquence entre les deux plus proches pics atteint
ici 110 MHz. Cette valeur est deux ordres de grandeur plus grande que les déplacements
de fréquence usuellement obtenus en utilisant un couplage dispersif χ. Tirant parti de ce
large déplacement de fréquence de la fréquence de résonance du résonateur en fonction de
l’état du qubit, nous augmentons le couplage du résonateur avec la feedline, menant à une
identification de l’état du qubit plus rapide. Encore une fois, l’augmentation du couplage
entre le résonateur et la feedline n’engendre pas d’augmentation de l’effet Purcell puisque le
qubit logique n’est pas couplé au résonateur.
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Figure (5): Transmission du système, résonateur et atome artificiel, en fonction de la fréquence
d’excitation relative. La courbe bleue correspond à la transmission du système lorsque le
qubit logique est dans son état fondamental tandis que la courbe verte correspond à la
transmission du système lorsque le qubit logique est dans son état excité. En pointillés rouge,
nous montrons la fréquence de contraste maximal entre le signal transmis lorsque le qubit
logique est excité ou dans son état fondamental. Nous avons pris gzz/(2π) = 250 MHz,
ga/(2π) = 150MHz et la largeur de résonance κ/(2π) = 40MHz.

Afin d’estimer la fidélité de lecture de l’état du qubit logique, nous avons pris en compte le
bruit ajouté par la chaîne d’amplification, voir Fig. 4. En effet, la principale source de bruit est
habituellement due au premier amplificateur de la chaîne d’amplification. Nous montrons en
Fig. 6 des distributions de photons mesurés à la sortie de la chaîne de mesure. La fidélité est
estimée à travers la superposition entre les deux distributions du nombre de photons obtenus
pour les deux états du qubit. Nous notons que, dans le cas où un amplificateur proche de la
limite quantique est utilisé (TN = 140mK et B = 50 MHz), une fidélité de 99.7 % peut être
théoriquement atteinte avec une durée de mesure de seulement 50 ns. Pour atteindre cette
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lecture optimale, le couplage entre le résonateur et la chaîne de mesure doit être important
avec une largeur de résonance de κ/(2π) = 40MHz. Cela correspond à un facteur de qualité
externe de Qc = 250. Aussi, la puissance de lecture optimale a été estimée à quelques photons
par nano-seconde. À large puissance, une saturation de l’ancillaire se produit menant à une
perte de contraste.
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Figure (6): Évolution de la distribution de photons mesurés F suivant le temps de mesure τ.
Les paramètres sont les mêmes que pour la Fig. 5. Nous avons pris une puissance d’entrée
de p = 1photon.ns−1, une bande passante de B = 50MHz, et une température de bruit
TN = 140 mK. Le temps de mesure minimal utilisé pour le graphique correspond au temps
de corrélation minimal permis par le circuit. Lorsque le temps de mesure augmente, la
superposition des distributions de photons diminue ce qui mène à une plus haute fidélité.
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Développements expérimentaux

Durant ma thèse et en collaboration avec Thomas Weißl, j’ai implémenté , une installation
micro-onde complète capable de mesurer la transmission de nos circuits supraconducteurs.
Nous avons calculé l’atténuation requise sur la ligne d’entrée pour atteindre la limite dite
quantique où ~ω� kBT . À partir de ce calcul, nous avons installé des atténuateurs le long
de la ligne coaxiale à différents étages du frigo à dilution avec une attention particulière sur
la thermalisation. Nous avons estimé le bruit de photon résiduel à environ 1× 10−3 photon
à 7 GHz, la fréquence de résonance de nos résonateurs micro-ondes. La ligne coaxiale de
sortie qui amplifie le signal transmis est composée de deux circulateurs et un amplificateur
cryogénique connectés par un câble coaxial supraconducteur. Pour obtenir plus d’amplification
deux amplificateurs complètent la chaîne à température ambiante. La ligne a été calibré
expérimentalement, nous avons obtenu une température de bruit de TN = 4.5K avec un gain
d’environ 63 dB, en accord avec les données constructeur.

Nous avons implémenté, à température ambiante, une installation micro-onde capable de
mesurer l’amplitude et la phase d’un signal transmis par méthode hétérodyne. De plus, j’ai
codé un environnement Python a été codé afin d’effectuer les mesures avec des scripts Python.
Ce travail inclus l’écriture de pilotes Python utilisant le protocole VISA « Virtual Instrument
Software Architecture » pour plusieurs appareils comme des sources micro-ondes ou de
courant, et l’écriture de divers objets Python. L’installation complète est capable d’effectuer
des mesures de transmission micro-onde par méthode hétérodyne à très basse puissance, de
l’ordre de 1 photon·ns−1 (≈ −110 dBm at 10 GHz).

La fabrication du circuit supraconducteur a été effectué par Alexey Feofanov et Bruno
Küng à la « PTA » et à « Nanofab ». En parallèle de ce travail, j’ai développé un procédé de
fabrication de résonateur micro-onde à partir de couche Rhénium épitaxié par Benjamin
Delsol[46] durant sa thèse. La lithographie et le procédé de gravure a été réalisé à « Nanofab ».

Les résonateurs micro-ondes fabriqués à partir d’Aluminium ou de Rhénium ont été
mesurés en utilisant notre installation expérimentale ou avec un analyseur de réseau vectoriel
(VNA). La détermination des paramètres des cavités, comme les pertes internes et le couplage
externe, est important pour caractériser le circuit quantique. Nous proposons un modèle
analytique permettant l’extraction des paramètres des résonateurs. En particulier, ce modèle
explique la forme asymétrique des figures de résonance mesurées au cours de ma thèse. Un
exemple de forme de résonance est montré en Fig. 7. En pointillés rouges, nous montrons
la forme de résonance théorique prédite par notre modèle. L’ajustement entre les données
expérimentales et le modèle est très bon.

Démonstration expérimentale d’un diagramme énergétique en forme de V avec un
atome artificiel

Le résultat principal de ma thèse est la réalisation et la démonstration expérimentales d’un
atome artificiel avec un diagramme d’énergie en forme de V. Le circuit supraconducteur est
montré en Fig. 3 (a) avec deux zooms successifs sur l’atome artificiel. Nous avons mesuré le
spectre d’énergie de l’atome artificiel en fonction du champ magnétique par des spectroscopies
deux-ton, voir Fig. 8. Ces mesures sont basées sur la lecture dispersive décrite plus tôt. Un
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Figure (7): Résonance d’un résonateur micro-onde réalisé en Aluminium. Le panneau
supérieur présente la transmission en décibel, et le panneau inférieur la différence de phase.
Les pointillés rouges sont l’ajustement calculé à partir du modèle.

ton effectue la lecture de la transmission proche de la fréquence de résonance du résonateur
tandis que le second ton effectue des balayages en fréquence pour sonder le spectre d’énergie
de l’atome artificiel. En analysant la dépendance en flux magnétique des différents niveaux
d’énergies, nous pouvons déduire quel niveau est dû au mode en-phase ou au mode hors-phase.
Dans la Fig. 8, nous observons les deux premiers niveaux excités du mode « en-phase » qui
semblent chuter à zéro à la moitié d’un quantum de flux, et le premier niveau excité du mode
« hors-phase » qui atteint une limite à φb = φ0/2. Ces mesures démontrent l’existence des
deux modes de l’atome artificiel. De plus, nous avons numériquement résolu l’Hamiltonien
du circuit quantique pour ajuster notre modèle théorique afin d’obtenir la dépendance en
champ magnétique des résonances (pointillés rouges dans la Fig. 8). Les courbes théoriques
sont en accord avec les résultats expérimentaux sauf aux abords de φ0/2.
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Figure (8): Spectroscopies deux-ton en fonction du champ magnétique pour l’échantillon
« V-shape-2 ». Les deux premiers niveaux du qubit logique semblent chuter à zéro pour
|φb| ≈ 0.5 tandis que le qubit ancillaire atteint une limite. Pour chaque résonance mesuré,
nous associons un encadré montrant, en diagramme d’énergie, la transition équivalente. En
pointillés rouges, nous montrons la prédiction théorique.
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À φb = 0, le système atteint un point « doux » où les niveaux d’énergie sont protégés au
premier ordre contre le bruit de flux. Considérant seulement le premier niveau excité du
mode en-phase et hors-phase, nous obtenons alors les qubits logique et ancillaire, Fig. 3 (d).
Par des mesures résolues en temps, nous contrôlons l’état des deux qubits et nous extrayons
leurs temps de relaxation et de cohérence. Dans la Fig. 9, nous montrons les oscillations
cohérentes et les mesures de temps de relaxation pour les deux qubits.
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Figure (9): Relaxation et temps de décroissance pour les qubits logique et ancillaire.

Pour démontrer l’anharmonicité croisée, nous avons effectué des spectroscopies trois-ton.
Par exemple, pour mesurer l’effet de l’anharmonicité croisée sur la fréquence de résonance
du qubit logique nous avons réalisé l’expérience suivante. Nous effectuons la spectroscopie
deux-ton précédemment discutée sur le qubit logique mais nous ajoutons un troisième ton
en résonance avec la transition de l’ancillaire ωa/(2π). La mesure est montrée en Fig. 10
(a) par en courbe bleu. Nous observons deux pics, un à la fréquence de résonance du qubit
logique 3.634 GHz et un autre décalé de 110 MHz. Comme référence, nous mesurons la
même courbe mais sans troisième ton pour exciter la transition de l’ancillaire (pointillés verts
dans la Fig. 10 (a)). Nous observons le pic de résonance du qubit logique centré à 3.634 GHz.

Le pic de résonance du qubit correspond à la transition entre |g〉 → |e〉. Nous identifions
le second pic comme la transition entre |a〉 → |p〉. Ce second pic est rendu possible grâce
au troisième ton qui peuple le niveau d’énergie excité de l’ancilla. Le décalage en fréquence
entre ces deux pics correspond alors à l’anharmonicité croisé (2gzz)/(2π) = 110 MHz.

Nous effectuons des mesures complémentaires pour tester la reproductibilité et la con-
sistance de ces résultats. Nous interchangeons le rôle des qubits logique et ancillaire. Dans
la Fig. 10 (b), nous traçons en pointillés verts et courbe bleu, une mesure montrant une
spectroscopie autour de la fréquence de résonance de l’ancillaire tandis que le troisième
ton sur le qubit logique est allumé et éteint, respectivement. Le résultat est parfaitement
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consistant avec ce que nous montrons en Fig. 10 (a), avec une séparation de pic de 110 MHz.



26 Introduction and summary

(c)(a)

(b)

(d)
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Figure (10): (a) Les pointillés verts supérieur correspondent à une spectroscopie deux-ton
de la résonance du qubit, voir le diagramme d’énergie (c). Un ton d’excitation est appliqué
constamment à la fréquence de transition de l’ancilla, tandis que le ton de sonde parcourt
la transition du qubit logique, voir (d). Nous observons l’émergence d’un second pic séparé
du pic de résonance du qubit logique par l’anharmonicité croisée (2gzz)/(2π). (b) Mesure
de contrôle de l’anharmonicité croisée en échangeant le rôle des qubits logique et ancillaire,
c’est à dire que le ton de sonde est balayé autour de la fréquence de résonance de l’ancillaire
à ωa/(2π) comme montré en (e) et (f). Les deux mesures sont consistantes entre-elles avec
une anharmonicité croisée de (2gzz)/(2π) = 110MHz.
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Organisation du manuscrit

Le manuscrit est divisé en cinq chapitres. Une description théorique de l’atome artificiel ainsi
que du circuit quantique est donnée dans le premier chapitre. Dans le second chapitre, nous
présentons l’installation expérimentale utilisée durant nos expériences et mise en place au
début de ma thèse. La fabrication des échantillons est présentée en détail au chapitre trois.
Un projet parallèle a été de fabriquer des résonateurs micro-ondes en Rhénium. Ce travail
est également présenté au chapitre trois. Les chapitres quatre et cinq présentent les résultats
expérimentaux obtenus sur les résonateurs micro-ondes et l’atome artificiel, respectivement.
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English

Introduction

Quantum computing

The concept of using quantum computers to overcome the limitations of classical computers
has been introduced by Richard Feynman in 1982[1]. Quantum computers are different
from classical computers based on transistors. Whereas digital computers require data to
be encoded into binary digits (bits), each of which is always in one of two definite states
(0 or 1), quantum computation uses qubits (quantum bits), which can be in superpositions
of states. With a classical transistor, information is encoded into the presence or absence of
an electrical current/voltage. Thus the transistor states are on or off. Formally, a qubit is a
two-state quantum-mechanical system which can be written as:

��ψqb

�
= α |g〉+ β |e〉 (3)

where |α|2+|β |2 = 1. An ensemble of n bits (classical or quantum) supports 2n different states.
However a classical computer can only be in one state at a time. The power of a quantum
computer lies in its capability to be in all states simultaneously by using superposition of its n
qubits. Furthermore a quantum operation influences the complete superposition of states.
Quantum algorithms exploiting the specificity of a quantum computer already exist. Some
examples include Shor’s algorithm[2] which allows factorisation of large numbers, Grover’s
algorithm[3] for searching an unsorted database and the Metropolis sampling[4] to simulate
generic quantum mechanical systems.

The development of a quantum computer is a great challenge due to the problem of
decoherence. One consequence of decoherence is its classical or probabilistically additive
behaviour. Thus a quantum computer without coherence becomes similar to a probabilistic
classical computer. To keep the coherence of a system often implies to isolate this system from
the environment. However, without mentioning the experimental difficulty of such tasks, a
quantum computer should also be connected to the external world to receive and to transmit
information. DiVincenzo[5,6] listed, in a set of five criteria, the different requirements for a
practical quantum computer:

• Physically scalable to increase the number of qubits,

• Qubits can be initialized to arbitrary values,

• Quantum gates faster than decoherence time,

• Universal gate set,

• Qubits can be read easily.

Superconducting qubit

In solid state physics, one promising candidate to realise a qubit is superconducting quantum
circuits based on Josephson junctions. The conjugate observables describing the electronic
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dynamics of a Josephson junction are the Cooper-pair number and the phase difference
across the junction. By carefully designing the junction, it is possible to fix one variable
and consequently to get a huge indeterminacy on the other. Thus when the charge is well
determined, we talk about “charge” qubit and when the phase is well determined, we talk
about “phase” qubit. It is also possible to design a junction in which the indeterminacy of the
phase and the charge are equal. This type of qubit is called “charge-phase” qubit.

We also have to mention the “flux qubit” which consists of a micrometer sized loop of
superconducting metal interrupted by usually three Josephson junctions[7].

The first observation of quantised energy levels has been realised by Michel H. Devoret,
John M. Martinis, Daniel Esteve, and John Clarke[8–10] in 1984–1985. In 1999, Nakamura
et al.[11] demonstrated the first coherent manipulation of quantum states in a charge qubit.
For this pioneering experiment the coherence time of the qubit was below 2 ns. However the
coherence of the charge qubits was limited by charge fluctuations inherent to electrical circuits.
Phase qubits reached, for their part, coherence times up to hundreds of nanoseconds[12–14].
The phase qubits suffered from coupling to spurious two-level systems present in the en-
vironment or directly in the isolating layer of the junction. Indeed the phase qubit design
involved to fabricate junctions with large area which increases the probability to couple the
junction with parasitic two-level systems. The charge-phase qubit with small junction size
and no charge sensitivity at its optimal working point has reached coherence times as long as
500 ns[15].

In 2004, four years after a theoretical proposal[16,17], circuit quantum electrodynamics
experiments were demonstrated firstly on charge qubit devices. In 2007 J. Koch et al.[18]

proposed an original qubit design, the transmon. The particularity of the transmon is to
operate at a ratio between the charging energy and the Josephson energy at which the first
energy levels are insensitive to charge noise. Moreover this ratio enables the fabrication
of very small junctions limiting the probability of coupling to spurious two-level systems.
Recently such transmons reached a T1 = 9.7µs and a Ramsey coherence time of T ∗2 = 10.3µs
in 2012[19] and T1 = 53µs and T ∗2 = 58µs in 2013[20]. An increase of the coherence time of
the system has been obtained by replacing the 2D microwave resonator by a 3D bulk cavity.
That way, the so-called 3D transmon reached T1 = 60µs and T ∗2 = 10− 20µs in 2011[21]

and T1 = 70µs and T ∗2 = 92µs in 2012[22].

Finally, we highlight the recent work realised on the fluxonium, an original qubit design
leading to a perfect insensitivity to charge offset[23–25]. Such qubits in 3D cavity exhibit[26] a
relaxation time of T1 ≈ 1000µs and T ∗2 = 14µs.

Superconducting dispersive qubit readout

With the transmon design, the qubit readout depends on the dispersive coupling between the
qubit and a microwave resonator. Through the dispersive coupling, it is possible to perform a
quantum non destructive measurement of the qubit state by probing the resonance frequency
of the resonator. Indeed, the simple Hamiltonian of a qubit dispersively coupled to a resonator
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is given by[18,27–31]:

H = ~ωrbn
︸︷︷︸

resonator

+
~
2
ωqbbσz

︸ ︷︷ ︸
qubit

+
~
2
χ bσzbn

︸ ︷︷ ︸
dispersive coupling

(4)

withωr, ωqb the resonance frequency of the resonator and qubit, respectively. The operator bn
gives the photon number in the cavity mode and bσz is the Pauli matrix of the qubit state. The
dispersive coupling strength χ = g2/∆ is a ratio between the coupling strength g — between
the resonator and the qubit — and the detuning∆— between the cavity resonance frequency
and the qubit resonance frequency. There is then a trade-off between the coupling strength
g and the detuning ∆: a large dispersive coupling strength leads to a large signal-to-noise
ratio by increasing the signal difference between the two states of the qubit. However, a large
dispersive coupling implies a large coupling between the resonator and the qubit leading to
an increase of the qubit decoherence by the Purcell effect[32].

The first dispersive readout in circuit quantum electrodynamics experiment gives a fidelity
of the qubit readout of about F = 30% for an integration time of 7µs[33]. The low qubit
readout fidelity was due to a low signal-to-noise ratio. Indeed the signal power used to
perform the qubit readout has to be low enough to not induce undesirable effects on the
qubit state[34]. The signal carrying out the information about the qubit state is then about a
few photons per nanosecond. Moreover, when this signal is amplified, the noise added by a
cryogenic amplifier is very large compared to the signal coming out of the resonator.

An important improvement has been achieved by the development of near quantum
limited amplifiers based on the Josephson parametric amplifier[35]. Through these new
amplifiers higher fidelity has been reached. For instance a fidelity of 98 % was achieved for
an integration time of 240 ns in 2013[36].

This type of readout, based on qubit dispersively coupled to a microwave resonator, seems
to reach its limits. Indeed increasing the signal-to-noise ratio implies increasing the dispersive
coupling strength χ or the coupling of the resonator to the measurement microwave line
which will, in both cases, enhance the Purcell effect.

The V-shape energy diagram in quantum optics

The V-shape energy diagram, defined in Fig. 11 (a), has been used in quantum optics to
perform qubit state readout by fluorescence with an exceptionally high fidelity[37] of about
99.99 %. Originally proposed by Dehmelt et al. [38] and later demonstrated by Wineland et
al. [39], Nagourney et al. [40], Sauter et al. [41], and Bergquist et al. [42], the readout consists
of driving the system at the ancilla resonance frequency while measuring the fluorescence of
the ancilla transition. In Fig. 11 (b) we summarise the readout protocol of a logical qubit via
its ancilla qubit in a V-shape configuration. The system is probed with an oscillating signal in
resonance with the ancilla transition at frequency ωa/(2π). When the qubit is in its ground
state, fluorescence occurs and the system is called “bright”. When the qubit is in its excited
state, there is no available resonance transition with the drive, fluorescence does not occur,
and the system is called “dark”. This way, it is possible to perform the readout of the qubit
state with very high efficiency. For instance, we show in Fig. 12 the observation of quantum
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jump on a single 138Ba+ ions by Leibfried et al.[43] in 2003.

(a) (b)
Logical qubit: ground Logical qubit: excited

Fluorescence
No resonance transition availableExcitation of the ancilla

No fluorescence

Excitation

Fluorescence

Figure (11): (a) V-shape energy diagram. It consists of a qubit, |g〉 and |e〉, exhibiting good
quantum coherence properties in parallel with a second qubit, |g〉 and |a〉 realised by a second
degree of freedom. The key point of a V-shape energy diagram is that any transitions from
the logical qubit excited state |e〉 to a higher energy level are far out of resonance of the
ancilla transition |g〉 → |a〉. (b) Readout of the logical qubit state via fluorescence. A readout
tone is sent at resonance with the ancilla transition. When the logical qubit is in its ground
state, fluorescence occurs. The system is called “Bright”. In contrast when the logical qubit
is in its excited state, no resonance transitions are available at the readout frequency. The
fluorescence does not happen, the system is called “Dark”.
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Figure (12): Quantum jumps of a single 138Ba+ ion[41,43]. When the ion makes the transition
to its equivalent qubit excited state, the fluorescence drops. Inversely, when the ion return to
its equivalent qubit ground state, the fluorescence returns to a higher level.
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Summary

The motivation of my thesis was to conceive and realise a V-shape energy diagram using a
superconducting artificial atom and evaluate its potential to perform qubit state readout.

Prediction of a V-shape energy diagram

During my thesis I theoretically studied an original quantum device composed of two induc-
tively coupled transmons (see Fig. 13 (a) and (b)). When the coupling inductance is of the
order of the Josephson inductances, this circuit has two oscillating modes of phase difference
across the junctions: a first mode, called in-phase mode, corresponding to the in-phase
oscillations of the phase difference and a second mode, called out-of-phase, corresponding
to the out-of-phase oscillations of the phase difference (depicted in red and blue arrows in
Fig. 13 (a), respectively). By expanding the Hamiltonian of the circuit by Taylor expansion, I
demonstrate the anharmoncity of each mode as well as the two couplings existing between
the two modes. The in-phase mode is equivalent to the transmon mode, it exhibits a strong
non-linearity due to the Josephson effect. The out-of-phase mode is mainly related to the
coupling inductance, its energy is inversely proportional to the inductance. It has a weak
anharmoncity. One of these couplings has been used to realise coherent frequency conversion
between the first excited state of the out-of-phase mode and the second excited state of the in-
phase mode[13]. The other coupling term, of strength denoted gzz, is similar to the cross-Kerr
coupling term: it modifies the energy of one mode depending on the number of excitations
present in the other mode. In the limit of low energy excitations, the in-phase and out-of-phase
modes can be considered as two qubits called hereafter logical and ancilla qubit, respectively.
They are described by Pauli matrices, σqb

z and σa
z . The cross-Kerr coupling becomes then a

σ
qb
z σ

a
z coupling inducing a conditional frequency shift of one qubit transition depending of

the state of the other qubit. This effect can be interpreted as a cross-anharmonicity between
the two qubits, see Fig. 13 (d). In this manuscript I will refer to this effect either as a cross-
anharmoncity or as a cross-Kerr. In the limit of large cross-anharmoncity, the energy diagram
of the circuit becomes a V-shape energy diagram.

We have considered an artificial atom embedded in a circuit quantum electrodynamics
architecture using a quarterwave resonator. Following the work of Alexandre Blais in a case
of a halfwave microwave resonator[44], I derive the Hamiltonian of quarterwave resonators.
Considering low-energy excitations, only couplings between the logical and ancilla qubits
and the fundamental mode of the resonator have to be taken into account. I show that,
by using the spatial dependence of the voltage and current amplitude along the resonator
length and the different natures of the oscillating modes giving rise to the two qubits, it is
possible to couple only one qubit to the resonator, the other staying completely isolated from
the resonator. For instance, by positioning the V-shape device at the short-circuit side of a
quarterwave resonator, only the ancilla qubit will be coupled.
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(a)

(b) (c)

Voltage Current

(d)

Figure (13): (a) SEM images of superconducting circuit with two successive zooms on the
V-shape device. (b) Equivalent electrical scheme of two inductively coupled transmons. (c)
Equivalent electrical scheme of a quarterwave resonator with a representation of the voltage
and current amplitude spatial dependence for the fundamental mode. (d) Energy diagram of
the artificial atom at φb = 0. When the cross-Kerr term gzz is large compared to the cavity
linewidth, the energy diagram can be considered as a V-shape energy diagram.
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Theoretical study: Ultra fast and high fidelity quantum non destructive measurement

In this manuscript, I propose an ultra fast and high fidelity quantum non destructive readout
of a qubit state by using the V-shape device in a circuit quantum electrodynamics architecture
with a quarterwave resonator. This work was inspired from our previous study on a halfwave
resonator realised in collaboration with Igor Diniz[45]. The circuit as well as the measurement
chain is schematised in Fig. 14. Let us not forget that due to the different nature of the
oscillating modes and of the position of the V-shape device in the resonator, only the ancilla
is coupled to the microwave resonator. In this way, it is possible to have a strong coupling
ga between the ancilla and the resonator while keeping the logical qubit isolated from the
environment. The ancilla and the logical qubit are coupled via the cross-Kerr coupling gzz.

Amplification
Measurement chain

Figure (14): Scheme of the complete measurement chain. The logical qubit is coupled to
the ancilla via the cross-Kerr coupling gzz. The ancilla is coupled to the resonator with a
coupling strength ga. The input readout power is denoted p, at the output of the resonator
the transmitted power is denoted pt. The resonator is coupled to the feedline via κ1 and
κ2. Internal losses of the resonator are modelled as a virtual channel with coupling κi.
The amplification chain is modelled as a single amplifier with noise temperature TN and a
bandwidth B. At the end of the measurement chain, the microwave signal is digitised and
the qubit state is inferred from the amplitude of the signal.

In order to calculate the transmission of the full circuit, resonator and V-shape device,
shown in Fig. 14, we use the input-output theory. In Fig. 15, we show the transmission of
the system when the logical qubit is in its ground state, in blue, and when it is in its excited
state in green. The transmission of such a quantum circuit depends strongly on the logical
qubit state. We note a frequency shift between the two closest peaks as high as 110 MHz.
This value is two orders of magnitudes higher than usual frequency shifts using a dispersive
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coupling strength χ. Taking advantage of the large frequency shift of the cavity resonance
frequency depending on the logical qubit state, we increase the coupling of the resonator with
the feedline, leading to a faster identification of the logical qubit state. Again, the increase
of the resonator linewidth does not lead to an enhancement of the Purcell effect since the
logical qubit is not coupled to the cavity.
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Figure (15): Transmission of the V-shape embedded in a quarterwave resonator as a function
of the relative drive frequency. The blue line corresponds to the transmission of the system
when the qubit is in its ground state while the green line is when it is in its excited state.
In dashed red line, we show the frequency of maximum contrast between the transmitted
signal when the logical qubit is in its excited or ground state. We took gzz/(2π) = 250MHz,
ga/(2π) = 150 MHz and the cavity linewidth κ/(2π) = 40MHz.

In order to estimate the fidelity of the qubit state readout, we take into account the noise
added by the amplification chain, see Fig. 14. Indeed the main source of noise is usually
due to the first amplifier of the amplification chain. We show in Fig. 16 a typical photon
number distribution measurement at the output of the amplification chain expected with our
V-shape device. The fidelity is estimated through the overlap between the two photon number
distributions obtained for the two logical qubit states. We note that, in the case where a near
quantum limited amplifier is used (TN = 140 mK and B = 50 MHz), a fidelity of 99.7 % can
be theoretically achieved with a measurement duration of only 50 ns. To reach this optimal
readout the coupling of the resonator to the measurement line must be large with a linewidth
of κ/(2π) = 40 MHz. It corresponds to an external quality factor of Qc = 250. Also, the
optimal readout power has been estimated to few photons per nanosecond. At larger power,
a saturation of the ancilla occurs leading to a loss of contrast.
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Figure (16): Evolution of the measured photon number distribution F following the
measurement time τ. Parameters are the same as for Fig. 15. We took an input power
p = 1photon.ns−1, an amplifier bandwidth of B = 50 MHz, and a noise temperature
TN = 140mK. The minimum measurement time used for the plots corresponds to the
minimum correlation time allowed by the circuit. When the measurement time increases, the
overlap of the photon number distributions for ground state (green) and excited state (blue)
decreases, which leads to a higher fidelity.
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Experimental developments

During my thesis, I have installed, in collaboration with Thomas Weißl, a complete microwave
setup able to perform transmission measurements of our superconducting quantum circuits.
We calculated the required attenuation of the input line to reach the so-called quantum limit
~ω� kBT . From this calculation, we installed attenuators along the input coaxial line at
different stages of the dilution fridge with a particular care on thermalisation. We estimated
the residual photon noise to be about 1× 10−3 photons at 7 GHz, the resonance frequency of
our microwave resonators. The output coaxial line which amplifies the transmitted signal
is composed of two circulators and a cryogenic amplifier linked by a superconducting coax
cable. To obtain further amplification, two room temperature amplifiers complete the chain.
This line has been experimentally calibrated, we obtained a noise temperature of TN = 4.5K
with a gain of about 63 dB, in good agreement with the manufacturer datasheet.

We installed, at room temperature, a microwave setup able to measure the amplitude
and the phase difference of a transmitted signal by a heterodyne method. Moreover a
Python environment has been set up in order to perform measurements via modular Python
scripts. This work included the writing of Python drivers using “Virtual Instrument Software
Architecture” (VISA) for several devices as microwave sources and current sources and the
quite consequent writing of Python objects. The complete microwave setup is able to perform
microwave transmission measurements via a heterodyne method at very low power, of about
1 photon·ns−1 (≈ −110 dBm at 10 GHz).
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Figure (17): Resonance of a microwave resonator made from aluminium. The top panel
presents the transmission in decibel and the bottom panel, the phase jump due to the
resonance. The dashed red line is the fit calculated from the model.
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The fabrication of the “V-shape” samples has been carried out by Alexey Feofanov and
Bruno Küng at the “PTA” and “Nanofab” facilities. In parallel to this work, I developed a
process to fabricate microwave resonators from epitaxial layers of rhenium grown by Benjamin
Delsol[46] during his Ph.D. The lithography and etching process has been realised at the
“Nanofab” facility.

Microwave resonators made from aluminium or rhenium were measured using our home-
made heterodyne method or a commercial vector network analyser (VNA). The determination
of cavity parameters as internal losses and external coupling rate, is important to characterise
a quantum circuit. We propose an analytical model allowing the extraction of resonator
parameters. In particular, this model explains the asymmetric shape of the cavity resonance
line shapes measured during my thesis. An example of a cavity resonance line shape is shown
in Fig. 17. In dashed red we show the theoretical line shape predicted by our model which
fits quite well with the experimental data.

Experimental demonstration of a V-shape energy diagram with an artificial atom

The main result of my thesis is the experimental realisation and demonstration of an artificial
atom with a V-shape energy diagram. The superconducting circuit is shown in Fig. 13 (a)
with two successive zooms in the artificial atom. We measured the energy spectrum of the
V-shape device as function of the magnetic field by two-tone spectroscopies, see Fig. 18.
These measurements are based on the dispersive readout described previously. One tone
performs the transmission readout close to the cavity resonance while the second tone is
swept in frequency to probe the energy spectrum of the artificial atom. By analysing the
flux dependence of the different energy levels, we can infer which state is due to the in-
phase or out-of-phase oscillating mode. In Fig. 18 we observe the two first excited levels of
the in-phase oscillating mode, which seem to drop to zero at half a flux quantum, and the
first level of the out-of-phase oscillating mode, which reaches a limit at φb = φ0/2. These
measurements demonstrate the existence of the two modes in the artificial atom. Moreover,
we have numerically solved the Hamiltonian of the quantum circuit to fit the magnetic field
dependence of the resonances (see the red dashed lines in Fig. 18). The theoretical curves
are in very good agreement with experimental results except close to φ0/2.
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Figure (18): Two-tone spectroscopy as function of the magnetic field for sample “V-shape-2”.
The first two levels of the logical qubit seem to drop to zero for |φb| ≈ 0.5 whereas the ancilla
level reaches a limit. For each measured resonance, we associate an inset showing, in an
energy diagram, the equivalent transition. In dashed red, we show the theoretical prediction.
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At φb = 0, the system reaches a “sweet” point where the energy levels are protected at the
first order against flux noise. Considering only the first level of the in-phase and of the out-of-
phase mode, we obtain then the logical and ancilla qubit, see Fig. 13 (d). By time-resolved
experiments, we control the states of the two qubits and we extract their relaxation and their
coherence time. In Fig. 19, we show coherent oscillations and relaxation time measurement
for the two qubits.
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Figure (19): Relaxation and decay time of logical and ancilla qubit.

To demonstrate the cross-anharmonicity, we perform a three-tone spectroscopy. For
instance to measure the effect of the cross-anharmonicity on the logical qubit resonance we
realise the following experiment. We perform the previously discussed two-tone spectroscopy
on the logical qubit but in addition a third tone is applied at a frequency in resonance with
the ancilla transitionωa/(2π). The measurement is shown in Fig. 20 (a) as a solid blue curve.
We observe two peaks, one at the qubit resonance frequency 3.634 GHz and another, shifted
by 110 MHz. As reference, we measure the same curve but with no excitation tone to drive
the ancilla transition (green dashed curve in Fig. 20 (a)). We observe the qubit resonance
peak centered at 3.634 GHz.

The qubit resonance peak corresponds to the transition between |g〉 → |e〉. We identify the
second peak as the transition |a〉 → |p〉. This second peak is made possible because of the third
tone excitation which populates the higher energy level of the ancilla. The frequency shift
between the two peaks corresponds then to the cross-anharmonicity (2gzz)/(2π) = 110 MHz.

We performed further measurement to test the reproducibility and consistency of this
result. We interchanged the role of the qubit and the ancilla. In Fig. 20 (b) we plot in dashed
green and solid blue, a measurement showing a spectroscopy around the ancilla frequency
while the excitation tone on the qubit is turned off and turned on, respectively. The result is
exactly consistent with that in Fig. 20 (a), with a peak separation of about 110 MHz.
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(c)(a)

(b)

(d)

(e)

(f)

Figure (20): (a) Top green dashed curve, two–tone measurement of the qubit resonance,
see energy diagram (c). Bottom blue solid curve, three–tone measurement. An excitation
drives continuously the ancilla transition, while the probe tone scans the qubit transition, see
(d). We observe the emergence of a second peak separated from the qubit resonance peak by
the cross anharmonicity (2gzz)/(2π). (b) Control measurement of the cross-anharmonicity
with inverted roles of logical and ancilla qubit, i.e., the probe tone is swept around the
ancilla resonance frequency, whereas the excitation drive is resonant with the ancilla at
ωa/(2π) as shown in (e) and (f). The two measurements are consistent together with a
cross-anharmonicity of (2gzz)/(2π) = 110MHz.
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Manuscript organisation

The manuscript is divided in five chapters. A theoretical description of the V-shape device as
well as the circuit quantum electrodynamics architecture achieved by coupling the V-shape
device to a quarterwave resonator is given in the first chapter. In the second chapter, we
present the setup used during the experiment and installed at the beginning of my thesis
work. The fabrication of the “V-shape” sample is presented in details in chapter three. A side
project during my thesis has been to fabricate microwave resonators from rhenium. This
work is also presented in chapter three. The chapters four and five show the experimental
results about the microwave resonator and V-shape device, respectively
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1.1 The 2D-SQUID

1.1.1 Josephson junction dynamics

In 1962, Brian David Josephson wrote a paper[47] in which he described: “the calculation
of tunnelling currents between two metals that is sufficiently general to deal with the case
when both metals are superconductors”. Josephson also wrote a second article about the
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subject[48] in order to make some “clarification which has taken place in our ideas on the
nature and behaviour of tunnelling supercurrents”. The idea of Josephson was to consider
a system consisting of two superconductors separated by a barrier in which Cooper-pairs
cannot exist. When the thickness of the barrier is large enough, the two superconductors will
be completely isolated from each other whereas when the thickness is reduced to zero the
system will be properly described as a single superconductor. Between these two extremes,
when the wave functions of each superconductor overlap each other, the supercurrent passes
through the junction by the tunnelling effect while keeping its phase coherence. This effect,
nowadays known as the "Josephson effect" has earned B. D. Josephson a Nobel Prize in 1973.
It can be summarised thanks to two simple equations called "Josephson equations"[49]:

i (t) = Ic sin [ϕ (t)] , (1.1)

v (t) =
�
φ0

2π

�
ϕ̇ (t) , (1.2)

where i (t) and v (t) are the supercurrent through the junction and the voltage drop across the
junction, respectively. The phase difference across the junction is denotedϕ (t) = θl (t)−θr (t),
with θl (t) and θr (t) the superconducting phase on each side of the junction and φ0 the
magnetic flux quantum.

Figure (1.1): Equivalent electrical circuit of a Josephson junction in the CSJ model approxima-
tion The two elements describing a Josephson junction are a capacitor having a capacitance
C in parallel with a pure Josephson element having a critical current Ic. The phase difference
across the Josephson junction is denoted ϕ. The Josephson junction is biased with a DC
current Ib by an ideal current source.

A simple picture of the Josephson junction can be obtained by describing the junction like
an assembly of electrical components. Here we will use the so-called capacitively-shunted-
junction model where a pure Josephson element is placed in parallel with a capacitance, see
Fig. 1.1. The losses induced by the quasi-particle current through the Junction is assumed to
be small enough to be neglected.
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The pure Josephson element describes the passing of the supercurrent through the
junction. It is characterised by a critical current Ic which indicates the maximum value of the
supercurrent that the junction can handle before transiting to its normal state. The Josephson
effect is related to the tunnel effect and shows an exponential dependence on the barrier
thickness.

The capacitor C describes the charge coupling between the two metallic electrodes. A
Josephson junction has an intrinsic capacitance which can be modelled as a parallel-plate
capacitor. This capacitance grows as the ratio A/d[50] where A is the area of the capacitor
plate and d the distance between the two plates. In our sample, Josephson junctions are
shunted by inter-digital capacitors[50].

Lagrangian and Hamiltonian of a current biased Josephson junction

By deriving the different energies of the Josephson junction elements, we will establish the
Hamiltonian of a Josephson junction. First we will calculate the Lagrangian.

The definition of the Lagrangian is given by Eq. (1.3) where T is the kinetic and V the
potential energy of the system, respectively:

L = T − V. (1.3)

We calculate the kinetic energy term T by calculating the electrostatic energy stored in the
capacitor:

T =
1
2

C v2 (t) =
C
2

�
φ0

2π

�2

ϕ̇2. (1.4)

The potential V is the sum of the Josephson energy EJJ and the driven energy, Eb. The
Josephson energy corresponds to the energy stored in the pure Josephson element[51]:

EJJ =

∫
i (t) v (t) dt = −Ic

�
φ0

2π

�
cos (ϕ) . (1.5)

The driven energy is calculated by following the same calculation, the bias current Ib replacing
the critical current Ic

[51]:

Eb = −
∫

Ibv (t)dt = −Ib

�
φ0

2π

�
ϕ. (1.6)

Thus we obtain the Lagrangian from Eq. (1.3) to Eq. (1.6) as:

L (ϕ, ϕ̇) = T (ϕ̇)− V (ϕ) = T − EJJ − Eb (1.7)

=
C
2

�
φ0

2π

�2

ϕ̇2 +
φ0

2π
Ic

�
Ib

Ic
ϕ + cos (ϕ)

�
. (1.8)

The Lagrangian allows us to calculate the conjugate momentum:

p =
∂L
∂ ϕ̇

= C
�
φ0

2π

�2

ϕ̇. (1.9)
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We introduce the charge q = C
�
φ0
2π

�
ϕ̇ and rewrite the momentum as:

p =
�
φ0

2π

�
q. (1.10)

By using the Legendre transformation we derive the Hamiltonian:

H (ϕ, p) = ϕ̇p−L (ϕ, ϕ̇) (1.11)

=
1

2C
q2 − φ0

2π
Ic

�
Ib

Ic
ϕ + cos (ϕ)

�
. (1.12)

We introduce two characteristic energies for a Josephson junction. The Cooper-pair
Coulomb energy EC which represents the energy stored in the capacitor charged by one
Cooper-pair. The Josephson energy EJ which corresponds to the maximum of energy that can
be stored in the pure Josephson element. These quantities are defined in Table 1.1

Denomination Formula

Cooper-pair Coulomb energy EC =
(2e)2

2C

Josephson energy EJ =
φ0
2π Ic

Table (1.1): Definition of the characteristic energies of the system. We draw attention about
the definition of the Cooper-pair Coulomb energy which can be different of what the reader
may be used to. We chose a definition which emphasise the Cooper-pair nature of the charge
carriers.

Finally we introduce the dimensionless quantity m = q
2e which corresponds to the number

of Cooper-Pairs charged in the Josephson junction capacitance. The Hamiltonian can then be
written as:

H (ϕ, m) = ECm2 − EJ

�
Ib

Ic
ϕ + cos (ϕ)

�
. (1.13)

1.1.2 Classical dynamics of a current and flux biased SQUID

The Superconducting QUantum Interference Device (SQUID) has been developed by Robert
Jaklevic, John J. Lambe, James Mercereau, and Arnold Silver in 1964[52]. It consists of two
Josephson junctions embedded in a superconducting loop.

Lagrangian and Hamiltonian of a SQUID

The description of the 2D-SQUID has already be done in the past, for example by Florent
Lecocq[53]. Here we will concentrate our derivation on the most general case where the
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critical currents, the capacitances, and the branch inductances are different from one junction
to the other. Moreover, the SQUID is flux and current biased. The equivalent electrical circuit
of a SQUID is drawn in Fig. 1.2.

Figure (1.2): Equivalent electrical circuit of a SQUID in the CSJ model approximation. Each
Josephson junction is pictured as in Fig. 1.1. The loop inductance of the SQUID is represented
by the two inductors L1 and L2. The bias flux and current are denoted φb and Ib respectively.
We also introduce branch currents I1 and I2.

The kinetic energy of each Josephson junction is equivalent to the one derived in Eq. (1.4):

T1 =
C1

2

�
φ0

2π

�2

ϕ̇2
1 , T2 =

C2

2

�
φ0

2π

�2

ϕ̇2
2 . (1.14)

The Josephson energies are equivalent to the energy in Eq. (1.5):

Ejj1 = −Ic1

�
φ0

2π

�
cos (ϕ1) , Ejj2 = −Ic2

�
φ0

2π

�
cos (ϕ2) . (1.15)

The driven energies are:
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Eb1
= −Ib

�
φ0

2π

�
ϕ1 , Eb2

= −Ib

�
φ0

2π

�
ϕ2. (1.16)

The flux quantization trapped in the superconducting loop requires the following condition
on the Josephson junction phases[49]:

ϕ1 −ϕ2 = 2π
φint

φ0
. (1.17)

The internal flux φint is the sum of the external biased flux φb and the flux created by the
screening current Iscreen (L1 + L2):

φint = φb + Iscreen (L1 + L2) . (1.18)

The screening current is obtained by inserting Eq. (1.18) into Eq. (1.17):

Iscreen =
1

L1 + L2

�
φ0

2π
(ϕ1 −ϕ2)−φb

�
. (1.19)

The currents in the two branches can then be decomposed into two parts, one due to the
bias current and the other due to the screening current,

I1 =
Ib

2
+ Iscreen , I2 =

Ib

2
− Iscreen. (1.20)

The energy stored in the inductors are:

EL1
=

1
2

L1 I2
1 , EL2

=
1
2

L2 I2
2 . (1.21)

According to the definition in Eq. (1.3), the Lagrangian is given by:

L =
2∑

i=1

Ti − Ejji − Ebi
− ELi

. (1.22)

Equation (1.22) gives constant terms which are neglected since an energy is always defined
up to a constant. As we will see later, the dynamics of the system consists of two internal
degrees of freedom coupled through the Josephson effect. One of then correspond to an
in-phase oscillating current through Josephson junctions. This mode of oscillation is also
referred as symmetric oscillations. The second one is an out-of-phase current oscillations
across the junctions, also called anti-symmetric oscillations. This mode corresponds to a
rotating current oscillation in the SQUID loop. We call the symmetric mode the in-phase
current oscillations and the anti-symmetric mode the out-of-phase current oscillations. To
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enhance these two modes, we define new phase coordinates x and y for the in-phase and
out-of-phase mode as:

x =
ϕ1 +ϕ2

2 , y =
ϕ1 −ϕ2

2
. (1.23)

We obtain the SQUID Lagrangian:

L (x , y, ẋ , ẏ) =
�
φ0
2π

�2
Cm

�
ẋ2 + ẏ2 − 2γ ẋ ẏ

�

−2
�
φ0
2π

�
Icm

�
− cos (x) cos (y)−α sin (x) sin (y)

+ b
�

y −πφb
φ0

�2 − s (x +ηy)
i

.

(1.24)

We have introduced the mean values and the relative asymmetry of circuit parameters, see
Table 1.2.

Quantity Mean value Relative asymmetry

Capacitance Cm =
C1+C2

2 γ= C2−C1
2Cm

Critical current Icm
=

Ic1
+Ic2
2 α=

Ic2
−Ic1

2Icm

Inductance Lm =
L1+L2

2 η= L2−L1
2Lm

Table (1.2): New representation of the electrical components of the SQUID. The mean values
are denoted with a subscript "m" while the asymmetries are denoted with Greek letters.

Finally other quantities have been defined, the inductance ratio b = φ0
2πIcm

1
Lm

and the

current ratio s = Ib
2Icm

, respectively.
The conjugate momenta are derived from the Lagrangian:

px =
∂L
∂ ẋ
= 2Cm

�
φ0

2π

�2

( ẋ − γ ẏ) ,

py =
∂L
∂ ẏ
= 2Cm

�
φ0

2π

�2

( ẏ − γ ẋ) . (1.25)

We define the charges qx , qy :

qx =
q1 + q2

2
= 2Cm

φ0

2π
( ẋ − γ ẏ) ,

qy =
q1 − q2

2
= 2Cm

φ0

2π
( ẏ − γ ẋ) . (1.26)



52 CHAPTER 1. THEORY

With Eq. (1.26) we replace ẋ and ẏ by qx and qy in Eq. (1.25). We obtain:

px =
φ0

π
qx ,

py =
φ0

π
qy . (1.27)

Finally the Legendre transformation gives us the Hamiltonian of the circuit:

H �
x , y, qx , qy

�
= 1

Cm

1
1−γ2

�
q2

x + q2
y + 2γqxqy

�

+2φ0
2π Icm

�
− cos (x) cos (y)−α sin (x) sin (y)

+ b
�

y −πφb
φ0

�2 − s (x +ηy)
i

.

(1.28)

We rewrite the Hamiltonian by introducing ECSQUID
and EJSQUID

, the Josephson energy and
Cooper-pair Coulomb energy for a SQUID, these quantities are defined in Table 1.3. From
charge qx and qy , we introduce the dimensionless quantity mx = qx/(2e) and my = qy/(2e).
We obtain:

H �
x , y, mx , my

�
= ECSQUID

�
m2

x +m2
y + 2γmx my

�

+EJSQUID

�
− cos (x) cos (y)−α sin (x) sin (x)

+ b
�

y −πφb
φ0

�2 − s (x +ηy)
i

.

(1.29)

Denomination Formula

SQUID Cooper-pair Coulomb energy ECSQUID
= (2e)2

2

�
1
C1
+ 1

C2

�

SQUID Josephson energy EJSQUID
= φ0

2π

�
Ic1
+ Ic2

�

Table (1.3): Definition of the mean characteristic energies of the system.

The dynamics of the system in Eq. (1.29) have been widely described by Florent Lecocq
in his thesis[53]. He has shown the existence of two particular regimes depending on the
inductance ratio b.

In the limit where the loop inductance is null (b →∞) and where Ic = Ic1
= Ic2

and
C = C1 = C2, the SQUID behaves like a single Josephson junction with a capacitance 2C
and a critical current 2Ic cos (πφb/φ0). This regime is, for example, used for the possibility
to tune in-situ the characteristic energy ratio EJ/EC of the system by applying a magnetic
field[54].
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In the other limit where the loop inductance is infinite (b→ 0), the Josephson junctions are
decoupled from each other. The dynamics has to be described by two degrees of freedom[55].

The theory and the samples presented in this thesis are in an intermediate limit where b
is about some unities.

The SQUID dynamics for C1 = C2 = C , Ic1
= Ic2

= Ic and no current bias

Here after we will consider a 2D-SQUID with the same critical current and capacitance for
both Josephson junction, C1 = C2 = C , Ic1

= Ic2
= Ic. Furthermore we will assume no current

line connected to the SQUID. Without current line, it is meaningless to consider two different
branch inductances. Thus in the following the inductance of the SQUID loop will be denoted
Lloop. The system is shown in Fig. 1.3.

The Hamiltonian of Eq. (1.29) simplifies to:

H �
x , y, mx , my

�
= 2EC

�
m2

x +m2
y

�
+ 2EJ

�
− cos (x) cos (y) + b

�
y −πφb

φ0

�2�
. (1.30)

The two energies of the Hamiltonian are the kinetic energy:

T
�
mx , my

�
= 2EC

�
m2

x +m2
y

�
, (1.31)

and the potential energy:

V (x , y) = 2EJ

�
− cos (x) cos (y) + b

�
y −πφb

φ0

�2�
. (1.32)



54 CHAPTER 1. THEORY

Figure (1.3): SQUID circuit for C1 = C2 = C , Ic1
= Ic2

= Ic and no current bias. The in-phase
and out-of-phase oscillations are depicted in purple and blue arrows, respectively.
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Figure (1.4): Potential of the Hamiltonian in Eq. (1.30) plotted for φb = 0. We emphasise
the fact that the scales in x and y are different, the y-dependence of the potential being
much stronger than its x-dependence.
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Figure (1.5): Normalised potential of the Hamiltonian in Eq. (1.32) plot for φb = 0.45φ0.
We emphasise the fact that the scales in x and y are different, the y-dependence on the
potential being much stronger than in x .
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One example of the potential energy is plotted in Fig. 1.4 for φb = 0.
Along the x direction the potential is 2π-periodic. This periodicity is due to the Josephson

effect.The Josephson effect also limits the well depth along the x direction with a maximum
depth of 4EJ.

Next, along the y direction the potential has two contributions. The first contribution is
due to the Josephson effect which creates a 2π periodicity. The second one is the energy of
the loop inductor which creates a parabolic dependence. In Fig. 1.4 the periodicity along the
y direction is completely masked and only the energy of the inductor dominates the shape of
the potential. Thus in this direction the potential well has an infinite depth.

For the same set of parameters the potential is plotted in Fig. 1.5 for φb = 0.45φ0. The
effect of an external flux is to create a screening current in the 2D-SQUID loop, see Eq. (1.19).
The potential is still periodic along x . However the wells become shallower. We also notice
the appearance of another well at the positions x = π (mod 2π). That is made possible by
the large value of the loop inductance compared to the Josephson junction inductance, the b
parameter. Potential wells can be classified in families, wells having the same position in y
are in the same family. Each family corresponds to a number of flux quanta in the SQUID
loop. These families are called "flux states" and are denoted by the number of flux quanta in
the SQUID loop, [nφ0]. Figure 1.5 shows potential wells belonging to the flux states [0φ0]
and [1φ0]. The interested reader can find a wider description about flux states in Julien
Claudon’s thesis[56]. Hereafter we restrict ourself to the flux state [0φ0].

Well positions

We will now derive the position of the minima of the wells noted (x0, y0). The application of
an external bias flux shifts the bottom of the wells as indicated by the minima (x0, y0) = (0, 0)
and (x0, y0)≈

�
0, 2.5π

6

�
in Figs. 1.4 and 1.5, respectively.

An extremum on the potential surface is characterised by the conditions:
�
∂x V (x , y) = 0 (1.33a)

∂y V (x , y) = 0. (1.33b)

Equation (1.33) does not allow to distinguish between a local minimum, maximum or a
saddle point. We can use the second derivative test[57] to differentiate a local minimum with
the following conditions:

�
∂x x V (x0, y0)∂y y V (x0, y0)− ∂x y V (x0, y0)∂y x V (x0, y0) > 0 (1.34a)

∂x x V (x0, y0) > 0 . (1.34b)

We obtain therefore:




x0 = 0 (1.35a)

sin (y0) + 2b
�

y0 −π
φb

φ0

�
= 0 (1.35b)

cos (y0) > 0 . (1.35c)



58 CHAPTER 1. THEORY

The position in x is given by Eq. (1.35a). We remark that the minimum of energy is
always localised in x0 = 0 independently of the biased flux. Eq. (1.35b) gives us the position
in y . The equation is transcendental and can only be solved numerically. The nonlinear term
of the equation comes from the Josephson effect while the linear one is due to the SQUID
loop inductor. Finally, Eq. (1.35c) informs us about the range of validity of the position in
y. Due to the periodicity of the Josephson effect, the validity domain given by Eq. (1.35c)
are defined modulo 2π. Potential well families correspond to the domains defined by the
equation Eq. (1.35c). Thus the flux state [nφ0] is defined for y0 ∈

�
π
2 (4n− 1) ; π2 (4n+ 1)

�
.

For the flux state [0φ0], y0 ∈
�−π2 ; π2

�
.

Taylor expansion

The analytical derivation of the eigenenergies of the Hamiltonian derived in Eq. (1.30) is
made difficult by the nonlinear terms present in the potential. A simple approach is to make
a Taylor expansion of the potential close to the bottom of the well to catch the main physical
properties of the low-energy dynamics.

The Taylor expansion up to the fourth order gives us:

V (x , y) = EJ cos (y0) x2 − EJ

12
cos (y0) x4

+ EJ [cos (y0) + 2b] y2 − EJ

3
sin (y0) y3 − EJ

12
cos (y0) y4

− EJ sin (y0) x2 y − EJ

2
cos (y0) x2 y2. (1.36)

The first line of Eq. (1.36) contains the expansion along the x direction, the second line
along the y direction and, the last line contains nonlinear coupling terms. We note that along
the x direction the expansion only has even terms which will be useful later on.

In the y direction we see a mixture of even and odd terms. In this direction the potential
shape is determined by the Josephson effect and the inductance of the 2D-SQUID. We notice
that at φb = φ0 the odd terms disappear.

Finally the last line shows us two nonlinear coupling terms. The first term appears at the
third order, it is even in x and odd in y . It is a consequence of the inductor energy and of the
Josephson effect. The second term appears at the fourth order and is even in both directions.
That coupling comes from the intrinsic nonlinearity of the Josephson effect. These coupling
terms are discussed in more detail in Section 1.1.3.

1.1.3 Quantum dynamics of the SQUID

We introduce the quantum description of the Hamiltonian obtained in Eq. (1.30). The first
step is to simplify the Hamiltonian by introducing a new set of canonical variables:
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x̃ =

√√√2EJ cos (y0)
~ωx

x ,

ñx =

√√ 4EC

~ωx
mx ,

,

ỹ =

√√√2EJ [cos (y0) + 2b]
~ωy

y,

ñy =

√√√ 4EC

~ωy
my . (1.37)

The angular frequency ωx and ωy correspond to the plasma frequencies at the bottom of
the well along the x and y direction, respectively. Due to the different curvatures along the
two directions, we have ωx <ωy . They are defined as:

~2

EC
ω2

x = ∂
2
x V (x , y)

����x=x0
y=y0

, ,
~2

EC
ω2

y = ∂
2
y V (x , y)

����x=x0
y=y0

. (1.38)

Applying the standard canonical quantization rules, we replace the classical variables ( x̃ ,
ỹ , ñx , and ñy) by their corresponding quantum operators (bx , by , bnx , and bny). The conjugate
pairs satisfy the following commutation relations:

[bx , bnx] = i, ,
�by , bny

�
= i. (1.39)

Finally we obtain the quantized Hamiltonian:

cH = 1
2
~ωx

�bn2
x + bx2

�− ~ωxδx bx4

+
1
2
~ωy

�
bn2

y + by2
�
− ~ωyσy by3 − ~ωyδy by4

+ ~ω21bx2by + ~ω22bx2by2. (1.40)

The expressions of the different terms are summarised in Table 1.4.
The first line corresponds to the Hamiltonian of an anharmonic oscillator along the x

direction. The anharmonicity is written as a dimensionless factor and is denoted δx . The
correction term comes from the nonlinearity of the Josephson effect. At zero flux, the
Josephson effect is maximum which involves a maximum value for ωx and δx .

The second line corresponds to the Hamiltonian of an anharmonic oscillator along the
y direction. The anharmonicity is described by σy and δy for the third and fourth order,
respectively. The corrections are due to the nonlinearity of the Josephson effect. We remark
that at zero flux σy = 0. The parameters ωy and δy are then maximum.

The last line shows nonlinear couplings between the two oscillators. The coupling
strengths are denoted ωi j where i, j correspond to the Taylor expansion order in x , y
direction. These coupling terms are discussed in more detail in Section 1.1.3.



60 CHAPTER 1. THEORY

Denomination Formula

Plasma frequency

Along the x direction ωx =
1
~
p

2EJEC cos (y0)

Along the y direction ωy =
1
~
p

2EJEC (cos (y0) + 2b)

nonlinear coupling terms

Cross-Kerr ω22 = − EC
4~

r
cos(y0)

cos(y0)+2b

Coherent frequency conversion[13] ω21 = − sin (y0)
4

È
EJE3

C
8~4

1
cos2(y0)(cos(y0)+2b)

Anharmonic correction

Third order along the y direction σy =
1
6

4

È
EC
2EJ

sin4(y0)
(cos(y0)+2b)5

Fourth order along the x direction δx =
1

24

r
EC
2EJ

1
cos(y0)

Fourth order along the y direction δy =
1
24

r
EC
2EJ

cos2(y0)
(cos(y0)+2b)3

Table (1.4): Definition of terms used in the quantized Hamiltonian in Eq. (1.40). The energies
EJ and EC are defined in Table 1.1.

Eigenenergies

The quantized Hamiltonian obtained in Eq. (1.40) is the sum of two nonlinearly coupled
anharmonic oscillators. To solve it and derive the eigenenergies of the system we propose to
follow the "ladder operator" method. We define ladder operators for the two oscillators:

bax =
bx + ibnxp

2
,

ba†
x =

bx − ibnxp
2

,
,

bay =
by + ibnyp

2
,

ba†
y =

by − ibnyp
2

. (1.41)
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The Hamiltonian of Eq. (1.40) becomes:

cH = ~ωx

�
ba†

xbax +
1
2

�
− 1

4
~ωxδx

�bax + ba†
x

�4

+ ~ωy

�
ba†

ybay +
1
2

�
− 1p

23
~ωyσy

�
bay + ba†

y

�3 − 1
4
~ωyδy

�
bay + ba†

y

�4

+
1p
23

~ω21

�bax + ba†
x

�2 �bay + ba†
y

�
+

1
4
~ω22

�bax + ba†
x

�2 �bay + ba†
y

�2
. (1.42)

The eigenenergies of the system can be derived by diagonalizing the Hamiltonian. How-
ever the diagonalization of the Hamiltonian in Eq. (1.42) is difficult. In our problem the
corrections in the form of anharmonic and coupling terms are small compared to the plasma
frequencies, see Table 1.5. We propose then to approximate the solution by using quantum
perturbation theory.

We write the Hamiltonian as:

cH = cH0x
+ cH0y

+ cWx + cWy + cWc. (1.43)

The parts cH0x
and cH0y

contain the harmonic oscillators along the x and y directions.

The parts cWx and cWy contain the anharmonic corrections along the x and y directions,
respectively. Finally, cWc contains corrections due to the nonlinear coupling terms.

We note |ϕnx
〉, |ϕny

〉 the eigenstates of cH0x
, cH0y

and Enx
, Eny

the associated eigenenergies.
From that we build a global base |ϕnx

,ϕny
〉= |ϕnx

〉 ⊗ |ϕny
〉.

At the first order, the corrected eigenenergies and eigenstates are given by[58]:

Enx ,ny
= Enx

+ Eny
+
¬
ϕnx ,ny

��� cWx + cWy + cWc

���ϕnx ,ny

¶
, (1.44)

���ψnx ,ny

¶
=
���ϕnx ,ny

¶
+
∑

px 6=nx
py 6=ny

¬
ϕpx ,py

��� cWx + cWy + cWc

���ϕnx ,ny

¶

E0
nx ,ny

− E0
px ,py

���ϕpx ,py

¶
. (1.45)

After some algebra, we obtain:

Enx ,ny
= ~ωx

�
nx +

1
2

�
− 3

2
~ωxδx

��
nx +

1
2

�2

+
1
4

�

+ ~ωy

�
ny +

1
2

�
− 3

2
~ωyδy

��
ny +

1
2

�2

+
1
4

�

+
1
4
~ω22 (2nx + 1)

�
2ny + 1

�
(1.46)

where nx , ny ∈ N are the quantum numbers describing the quantization of the energy for the
symmetric and anti-symmetric oscillators.

The formula for the eigenestate corrected by the perturbations is written in Appendix D.
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Figure (1.6): Energy levels as a function of magnetic flux. We remark the difference of
flux dependence between levels of the symmetric and anti-symmetric oscillators. Circuit
parameters used for the plot are summarised in Table 1.5.

The lowest energy levels are shown in Fig. 1.6. We observe that energy levels of the
symmetric oscillator exhibit a strong dependence on the flux φb and seem dropping to zero
when φb is about half flux quantum.

Energy levels of the anti-symmetric oscillator have a much weaker flux dependence and
reach a limit at half a flux quantum. These levels are mainly due to the 2D-SQUID loop
inductor. They have a weak flux dependence and do not disappear at half a flux quantum.

Energy levels constituted of excitations in the symmetric and anti-symmetric oscillators
exhibit an intermediate behaviour since they show a flux dependence but do not drop to zero
at half flux quantum.

Anharmonicity

The absolute anharmonicities are defined as:

∆x =
�
E2x ,0y

− E1x ,0y

�
−
�
E1x ,0y

− E0x ,0y

�
= −3~δxωx = −

1
8

EC, (1.47)

∆y =
�
E0x ,2y

− E0x ,1y

�
−
�
E0x ,1y

− E0x ,0y

�
= −3~δyωy = −

1
8

EC
cos (y0) .

cos (y0) + 2b
(1.48)

Equation (1.47) shows that the anharmonicity of the symmetric oscillator depends only on
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the charging energy of a Josephson junction. Moreover ∆x does not depend on the magnetic
flux. In contrast, Eq. (1.48) shows that the anharmonicty of the anti-symmetric oscillator
has a dependence on the magnetic flux through the term cos (y0)/ [cos (y0) + 2b] with a
maximum at φb = 0. This ratio is always smaller than one, leading to a lower anharmonicity
for the anti-symmetric oscillator than for the symmetric one. Table 1.5 presents typical values
for the anharmonicity of the two oscillators.

The nonlinear coupling terms

The Hamiltonian obtained in Eq. (1.40) contains two nonlinear coupling terms. Their coupling
strength are plotted versus magnetic flux in Fig. 1.7.

Figure (1.7): Dependence of the nonlinear coupling terms on a magnetic flux. We mention
the fact that the vertical scale is different for the two curves. Indeed typical values for
ω22/(2π) are some hundreds of megahertz whereas ω21/(2π) are around few gigahertz.
Circuit parameters used for the plot are summarised in Table 1.5.

The nonlinear term, ~ω21bx2by , has been studied by Florent Lecocq[53] in his thesis. It has
been used to realise coherent oscillations between two excitations in the symmetric oscillator
and one in the anti-symmetric one[13]. The coupling strength ω21 can vary from −3 GHz to
3 GHz along one flux quanta. The coupling strength ω21 is an odd function of flux and hence
vanishes at zero flux.

The coupling strength ω22 shows an even parity. It can vary from some ten of megahertz,
in the experiments performed by Florent Lecocq[13], to some hundred of megahertz, in
experiments presented in this thesis.

We note that, in the first-order perturbation theory, there is no effect of the coupling term
ω21 on the eigenenergies. In contrast the coupling term ω22, mainly due to the Josephson
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effect, has a strong effect on the eigenenergies of the system. The effect of the coupling
on the eigenenergy can be seen in Eq. (1.46). The coupling lowers all energy levels by an
amount ~ω22/2. Moreover it induces a conditional energy shift for both modes governed
by ~ω22 nx ny . From now on, we will refer the ω22 term as the cross-Kerr coupling. The
Kerr effect as been discovered in 1875 by John Kerr[59] in optics. It is defined as a change in
the refractive index of a material in response to an applied electric field. In our system the
Kerr effect modifies the energy levels of an oscillator depending on the energy of the other
oscillator. Typical values for the coupling strengths ω21 and ω22 are written Table 1.5. We
observe that in our device we may produce a giant Kerr effect since the cross-Kerr coupling is
between 5 % to 10 % of the oscillator energies. In Section 1.1.4 we will see how we can use
this property to build a readout of a qubit state with very high performance.

Discussion of circuit parameter values

In Table 1.5 we summarise typical values at φb = 0 of circuit parameters defined previously.
We notice that only three parameters, the loop inductance Lloop, the junction capacitance,
and the critical current, are necessary to describe all the physics of the system. Here we
consider equal capacitances and critical currents between the two Josephson junction.
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Symbol S2D V-shape-2

Circuit parameters

Critical current Ic 713 nA 8 nA

Junction capacitance C 510 fF 40 fF

Loop inductance Lloop 0.6298 nH 7.5 nH

Characteristic energies

Josephson energy EJ 354.14 GHz 3.97 GHz

Cooper-pair charging energy EC 0.15 GHz 1.94 GHz

Dimensionless quantities

Inductance ratio b 0.733 5.49

Characteristic energy ratio* EJ/EC 2331* 2*

Characteristic frequencies

Plasma frequency in the x direction ωx/(2π) 10.37 GHz 3.93 GHz

Plasma frequency in the y direction ωy/(2π) 16.29 GHz 13.58 GHz

Cross-Kerr coupling ω22/(2π) −37.98 MHz −140 MHz

Anharmonicity of the x oscillator ∆x −18.99 MHz −320 MHz

Anharmonicity of the y oscillator ∆y −7.70 MHz −20 MHz

Table (1.5): The table presents quantities defined in the chapter and illustrates them by
comparing two sets of parameters coming from a sample measured by Florent Lecocq[53]

during his thesis, the S2D sample and the sample “V-shape-2” presented in Chapter 5. For
flux dependent parameters we have taken φb = 0. The definitions of EC and EJ are written in
Table 1.1.
* Compared to the usual Transmon definition our ratio EJ/EC should be multiplied by 16. To
avoid confusion we will use, in the rest of this manuscript, the notation (EJ/EC)∗ = 16EJ/EC
to compare our characteristic energy ratio with the transmon ratios. We then obtain a ratio
of (EJ/EC)∗ = 37 296 and (EJ/EC)∗ = 33 for the S2D and the “V-shape-2” sample, respectively.
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Validity of the analytical model

The analytical model that we have developed above contains two approximations. The first
one is the Taylor expansion of the potential written in Eq. (1.36). The initial potential of
Eq. (1.32) and its Taylor expansion at different order are compared in Fig. 1.8 for φb = 0. In
our theoretical analysis, we have expanded the potential up to the fourth order, Eq. (1.36).

Taylor expansion:

Energy levels: Energy levels:

Taylor expansion:

Figure (1.8): Cut of the potential in the x and y direction at φb = 0. The potential is
plotted in solid red line while expansions of different order are depicted s dashed lines. The
zero-point energy is shown as thick blue solid line. The first levels frequency are shown
as thick solid green line with respect to the zero-point energy. The wave function of the
harmonic oscillators are plotted as thick solid black curves. Circuit parameters used for the
plot are summarised in Table 1.5.

Along the y direction the potential is well approximated by the Taylor expansion. In this
direction the potential energy is dominated by the loop inductance energy which is quadratic
in y. The anharmonic quartic term δy is very weak at zero flux, δy ≈ 0.008%.

Along the x direction, the approximation deviates noticeably from the potential even up
to the sixth order. In this direction the Josephson effect has the main contribution of the
potential energy with a highly nonlinear anharmonicity, δx ≈ 3%.

In order to quantify the error produced by the description of the potential up to the fourth
order, the relative error of the Taylor expansion with respect to the potential is shown in
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Fig. 1.9 for different order expansion.
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Figure (1.9): Relative error between the initial potential defined in Eq. (1.30) and the
Taylor expansion defined in Eq. (1.36) in percent. Circuit parameters used for the plot are
summarised in Table 1.5.

The error along the y direction is small, with only 0.12 % for the fourth order at y = ±π2 .
In contrast, the error along the x direction grows rapidly and reaches 2 % for the fourth

order at x = ±π2 .
In Fig. 1.8 zero-point energy and eigenenergy of the first level for both oscillators are

shown. The wave functions of the first levels are plotted relatively to the eigenenergy
of that levels. They have been calculated in the limit of a harmonic oscillator by using
the eigenstate at the zeroth order approximation, see Appendix D. The wave functions
illustrate the confinement of the excitations inside the potential well. Thus the excitation is,
approximately, confined between x ∈ �−π2 ; π2

�
and y ∈ �−3π

11 ; 3π
11

�
. Figure 1.9 shows that the

relative error in these domains are below 2 % for the symmetric oscillator and 0.01 % for the
anti-symmetric one.

The second approximation made during the analytical derivation is the use of the quantum
perturbation theory. We compare the analytical result obtained in Eq. (1.46) to a numerical
simulation of eigenenergies of the Hamiltonian written in Eq. (1.30). We have used the QuTiP
python library[60] to simulate our system. The result is shown in Fig. 1.10. The eigenenergy
calculated through the numerical simulation and the eigenenergy given by the analytical
formula have nearly the same values. At zero flux we have a relative error of 0.98 % for the
ν1x ,0y

level, 0.0094 % for the ν0x ,1y
transition and 0.28 % for the ν1x ,1y

level. Moreover they
exhibit the same behaviour as a function of the magnetic field. The error on the ω22 coupling
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Perturbation theory Full potential

Figure (1.10): Three energy levels as a function of magnetic flux. The result of the quantum
perturbation theory is plotted in dashed line while the result of the numerical simulation of
the potential in Eq. (1.30) is in solid line. Circuit parameters used for the plot are summarised
in Table 1.5.

term is of about 3.9 %. When the bias flux is going close to φb = ±φ0/2, the approximation
is less and less correct. We attribute that discrepancy to higher nonlinear coupling which are
not taken into account in our analytical derivation.

1.1.4 A V-shape artificial atom

At φb = 0 the symmetric and anti-symmetric oscillators reach a symmetry point where they
are protected, at the first order, against flux noise. Indeed Fig. 1.6 and Fig. 1.7 show that at
this point the levels and the cross-Kerr coupling reach a sweet point while the coupling term
ω21 is zero. Thus for the rest of the section we will set φb = 0 as our working point. We note
that the eigenenergy formula, Eq. (1.46), is still valid.

In quantum computing, a qubit or quantum bit is a two-state quantum-mechanical system.
Hereafter we will name the qubit formed by the two first levels of the symmetric oscillator
as the "logical qubit" while the second qubit, constituted by the two first levels of the anti-
symmetric oscillator, will be called the "ancilla qubit".

Following the simplification introduced in the previous paragraph, we define ωqb and ωa
the eigenfrequencies of the qubit and the ancilla. The cross-Kerr coupling strength becomes
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gzz. Theses quantities are defined as:

ωqb =ωx (1− 3δx) +ω22 (1.49)

ωa =ωy

�
1− 3δy

�
+ω22 (1.50)

gzz = −
ω22

2
(1.51)

Figure 1.11 illustrates the transformation from one notation to the other.. The ground
state is denoted |g〉 =

��0x , 0y

�
. The level

��1x , 0y

�
becomes the qubit level |e〉. The level��0x , 1y

�
becomes the ancilla level |a〉. The level

��1x , 1y

�
is denoted |p〉.

Figure (1.11): Equivalence of the two notations. The left side shows the system in the two
oscillators notation. The right side presents the system in the two-level system notation.

The Hamiltonian given in Eq. (1.40) becomes:

cH = ~
2
ωqbbσqb

z +
~
2
ωabσa

z +
~
2

gzzbσqb
z bσa

z (1.52)

where the bσz operator is a Pauli matrice.
The qubit and the ancilla are modelled as simple two-level systems. The cross-Kerr term

gzz couples the two qubits through bσz operators.
A readout of the logical qubit can be realised by measuring the resonance frequency of

the ancilla. The Hamiltonian Eq. (1.52) can indeed be rewritten as:

cH = ~
2
ωqbbσqb

z +
~
2

�
ωa + gzzbσqb

z

� bσa
z (1.53)

Through the σqb
z operator, the resonance frequency of the ancilla depends of the qubit

state. Depending on the qubit state the plasma frequency of the ancilla is modified by 2gzz.
In the “V-shape-2” sample, this value has been measured to be 2gzz/(2π) = 110 MHz. For
such large gzz values, the system behave like a V-shape artificial atom, justifying the name of
our samples: the “V-shape” devices.

1.2 Microwave resonator

In this section we will start by a model of a transmission-line. Then we will introduce a λ/4
microwave resonator. Finally we consider the resonator coupled to the two coupled qubits
introduced in the previous section.
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1.2.1 Transmission line

In this part, we will summarise some important results of the electrical transmission line model.
A transmission line is described as an infinite series of two-port elementary components,
each component representing an infinitesimally short segment of the transmission line, see
Fig. 1.12. R`, G`, L` and C` denotes the distributed resistance, conductance, inductance and
capacitance along the line. By using Kirchhoff’s voltage law on the circuit in Fig. 1.12 we get
the so-called "Telegrapher’s equations":





∂ V
∂ z (z, t) = R` I (z, t) + L`

∂ I
∂ t (z, t)

∂ I
∂ z (z, t) = G`V (z, t) + C`

∂ V
∂ t (z, t)

(1.54)

Figure (1.12): Infinitesimally short segment of a transmission line composed of elementary
components, a resistance, an inductance, an conductance, and a capacitance. The current
and voltage at the position z are represented through arrows.

We solve the set of equations by assuming a sinusoidal steady-state solution and the sepa-
ration of variables. The solutions of these equations give the voltage and current distribution
along the transmission line:

¨
V (z) = V+0 e−γz + V−0 eγz

I (z) = I+0 e−γz + I−0 eγz .
(1.55)

The term e−γz and eγz represent waves propagation in +z and −z direction respectively. The
voltage and current amplitudes of the propagating waves in the +z direction are denoted V+0
and I+0 while they are denote V−0 and I−0 is the −z direction. The complex wave vector γ is
given by:

γ=
Æ
(R` + iωL`) (G` + iωC`). (1.56)

We can also write the complex number as γ= α+ iβ , α representing the attenuation of the
TL and β the wave number. These quantities are given by:

α2 =
1
2

�Ç�
R2
`
+ L2

`
ω2
� �

G2
`
+ C2

`
ω2
�
+ R`G` − L`C`ω

2
�

(1.57)

β2 =
1
2

�Ç�
R2
`
+ L2

`
ω2
� �

G2
`
+ C2

`
ω2
�− R`G` + L`C`ω

2
�

. (1.58)
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Finally we introduce the characteristic impedance Z0 of a TL which correspond to the
ratio of voltage and current amplitudes of a propagating wave along the line:

Z0 =
V+0
I+0
= −V−0

I−0
=

√√R` + iωL`
G` + iωC`

. (1.59)

1.2.2 Quarter-wave resonator

In this section we introduce the formal description of a distributed λ/4 resonator. We mainly
follow the calculation of David. M. Pozar[61].

Figure (1.13): Transmission line of length ` with an open circuit at the left and a shunt
impedance Zend at the right.

The impedance of a transmission line of length `, of characteristic impedance Z0, ended
by an impedance Zend is[61]:

Zin =
Zend cosh (γ`) + Z0 sinh (γ`)
Zend sinh (γ`) + Z0 cosh (γ`)

Z0. (1.60)

In a case of a transmission line shorted to ground, Zend→ 0, we get:

Zin = Z0 tanh (γ`) . (1.61)

By expanding the real and imaginary part, we obtain:

Zin =
Z0

1+ tanh2 (α`) tan2 (β`)

�
tanh (α`) sec2 (β`) + i tan (β`) sech2 (α`)

�
. (1.62)

At the resonance, the imaginary part of the impedance goes to infinity[61]. That gives the
following condition from Eq. (1.62):

tan (β`) =∞. (1.63)

The solution of Eq. (1.63) is equivalent to β` = (2n+ 1)π/2 with n ∈ N. We can replace the
wave vector β by 2π/λ which gives that at the resonance, `= (2n+ 1)λ/4. Thus the circuit
resonates when ` = (2n+ 1)λ/4. The lowest resonance occurs when ` = λ/4 which justifies
the name of these kind of resonators.
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Voltage Current

Figure (1.14): Parametrisation of a quarter-wave resonator used to derive current and voltage
operators.

1.2.3 The current and voltage quantum operators

In this section we derive the current and voltage quantum operator of a λ/4 resonator.
Such operators have already be derived by Alexender Blais in a case of a λ/2 resonator[44].
Following the derivation of A. Blais, we will, in a first time, calculate the Lagrangian and
Hamiltonian of a quarter-wave resonator. Next the current and voltage quantum operators
will be derived.

We introduce the branch flux variable[51,62]:

ψ (x , t) =

∫ t

−∞
V (x ,τ) dτ. (1.64)

The Lagrangian is the difference of the electric and magnetic energy stored in the dis-
tributed capacitance and inductance:

L =
∫ 0

−l

�
1
2

C` [∂tψ (x , t)]2 − 1
2

1
L`
[∂xψ (x , t)]2

�
dx . (1.65)

The Euler-Lagrange equantion gives us:

d
dt

�
∂L

∂ [∂tψ (x , t)]

�
+

d
dx

�
∂L

∂ [∂xψ (x , t)]

�
− ∂L
∂ψ (x , t)

= 0. (1.66)

The result is: ∫ 0

−l

�
C`∂t tψ (x , t)− 1

L`
∂x xψ (x , t)

�
dx = 0. (1.67)

To solve the differential equation, we use the separation of variables method. We assume
that the solution can be written as:

ψ (x , t) =
∑
n∈N
φn (t)θn (x) . (1.68)
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The boundary conditions used to obtain the solution corresponding to a λ/4 resonator are:

∂xθ (x)
���
x=−`

= 0 (Zero current at x = −`)

∂x xθ (x)
���
x=0

= 0 (Short circuit at x = 0),

(1.69)

Fig. 1.14 illustrates these conditions. We insert Eq. (1.68) in Eq. (1.66) and by using the
boundary conditions, we obtain:

ψ (x , t) =
∑

ko∈{2n+1:n∈N}
φko
(t) sin

�
koπ

2`
x
�

. (1.70)

The parameter ko represents the different modes which exist in the resonator. Since only odd
modes satisfy boundary conditions of a λ/4 resonator, ko is a positive odd number. Hereafter
the summation will only be denoted by ko for reasons of simplicity.

By introducing the spatial dependence Eq. (1.70) in the Lagrangian Eq. (1.65), we obtain,
after spatial integration, the Lagrangian in the form of a set of harmonic oscillators:

L �φ1,φ3, . . . , φ̇1, φ̇3, . . .
�
=
∑
ko

�
C``
4
φ̇2

ko
(t)− k2

oπ
2

16L``
φ2

ko
(t)

�
. (1.71)

The conjugate momentum is derived from the Lagragian:

πko
(t) =

∂L
∂ φ̇2

ko
(t)
=

C``
2
φ̇ko
(t) . (1.72)

The Hamiltonian is derived by using the Legendre transformation:

H (φ1,φ3, . . . ,π1,π3, . . . ) =
∑
ko

�
1

C``
π2

ko
(t) +

k2
oπ

2

16L``
φ2

ko
(t)

�
. (1.73)

We introduce dimensionless variables:

π̃ko
(t) =

√√√ 2
~ωko

C``
πko
(t) , , φ̃ko

(t) =

√√√ k2
oπ

2

8~ωko
L``
φko
(t) . (1.74)

where ωko
corresponds to the resonance frequency of the resonator and is defined as:

ωko
=

koπ

2`

√√ 1
L`C`

. (1.75)

The reduced Hamiltonian is then:

H �
φ̃1, φ̃3, . . . , π̃1, π̃3, . . .

�
=
∑
ko

~ωko

2

�
π̃2

ko
(t) + φ̃2

ko
(t)
�

. (1.76)
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Applying the standard canonical quantization rules, we replace the classical variables by
their corresponding quantum operators. The conjugate pairs satisfy the following commuta-
tion operations: �Òφko

, bπk′o

�
= iδkok′o . (1.77)

We introduce ladder operators:

bako
(t) =

Òφko
(t) + i bπko

(t)
p

2
, , ba†

ko
(t) =

Òφko
(t)− i bπko

(t)
p

2
. (1.78)

The Hamiltonian operator for a quarter-wave resonator is:

cH =
∑
ko

~ωko

�
ba†

ko
bako
+

1
2

�
. (1.79)

The Hamiltonian shows that the energy of a λ/4 resonator is decomposed in modes ko.
In each mode, the energy scales as in a harmonic oscillator.

The current and voltage can be obtained from:

I (x , t) = ∂xψ (x , t)
1
L`

, (1.80)

V (x , t) = ∂tψ (x , t) . (1.81)

After some algebra we obtain the current and voltage quantum operators for a quarter-
wave resonator:

bI (x , t) =
∑
ko

√√√ 2~
koπ

√√ L`
C`

koπ

2L``
cos

�
koπ

2`
x
��
ba†

ko
(t) + bako

(t)
�

, (1.82)

bV (x , t) = i
∑
ko

√√√ ~koπ

2`2C`

√√ 1
L`C`

sin
�

koπ

2`
x
��
ba†

ko
(t)− bako

(t)
�

. (1.83)

1.3 The V-shape device coupled to a quarter-wave resonator

In this section we introduce the coupling between the 2D-SQUID described in the Section 1.1.2
and the microwave resonator. In a first time, we will show that the two oscillating modes
exhibit different ways of coupling. At the end of the section, we explain how to place the
2D-SQUID in a microwave resonator in order to couple only one mode of the 2D-SQUID to
the resonator.
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Figure (1.15): Model of the coupling between the qubit/ancilla and the resonator. (a): For
the qubit mode, the coupling is due to the electric field inside the resonator. The coupling
is then modelled by a capacitance Cg. (b): For the ancilla mode, the coupling is due to the
magnetic field inside the resonator. The coupling is then modelled by a mutual indutance Mg.

1.3.1 Coupling between the SQUID and the electromagnetic field

Equation (1.29) gives the classical Hamiltonian for a current and flux biased SQUID with
different junction parameters. From this Hamiltonian we derive the coupling of the SQUID
to the electromagnetic field.

To the current and flux bias Ib and φb, we add time dependence excitations δI (t) and
δφ (t). Then we develop the Hamiltonian at the first-order in δI (t) and δφ (t). Following
the quantization method explained in Section 1.1.3, we obtain quantum coupling operators
between the external electromagnetic field and the SQUID. In case of a SQUID with Josephson
junction having the same critical current and the same capacitance, the coupling terms are:

cW δI(t)
x = −φ0

2π

√√ EC

2~ωx

cδI
�ba†

x + bax

�
, (1.84)

cW δφ(t)
y = −φ0

2π

√√√ EC

2~ωy

1
Lloop

Óδφ
�
ba†

y + bay

�
. (1.85)

The symmetric mode is only coupled to current excitation whereas the anti-symmetric
mode is only coupled to flux excitation. A current excitation creates a symmetric oscillation of
the phase difference in each Josephson junction. A flux fluctuation creates a anti-symmetric
oscillation in each junction through a circulating current in the loop1.

Current and flux in the SQUID

We now consider the SQUID coupled to a λ/4 resonator. In a first approximation we can
model the coupling as a linear electric component making the link between the SQUID and the
resonator. In the case of the symmetric oscillator, the coupling comes from the electric field
and it is modelled with a capacitor of capacitance Cg. For the anti-symmetric oscillating mode

1In a case a SQUID with different Josephson junction parameters, other coupling terms arise. The interested
reader can found the derivation of all coupling terms in the thesis of Julien Claudon[56].
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the coupling is due to the magnetic field and a mutual inductance Mg between the SQUID
and the resonator modelled the coupling. The model is illustrated in Fig. 1.15. The operators
describing the flux and current in the SQUID due to the current and voltage evolving inside
the resonator are derived as:

ÒφSQUID (x , t) = MgbI (x , t) , (1.86)

bISQUID (x , t) = Cg∂t bV (x , t) . (1.87)

Coupling between the SQUID and the resonator

The coupling terms between the symmetric and anti-symmetric oscillators and the λ/4
resonator are obtained by inserting Eq. (1.87) in Eq. (1.85):

cW δI(t)
x =

∑
ko

~gx ,ko

�ba† (t) + ba (t)� �ba†
x + bax

�
, (1.88)

cW δφ(t)
y =

∑
ko

~g y,ko

�ba† (t) + ba (t)�
�
ba†

y + bay

�
. (1.89)

with:

gx ,ko
=

1
2e

Cg

C`L`

�
koπ

2`

�2
√√√ EC

k0π

1
ωx

√√ L`
C`

sin
�

koπ

2`
x
�

, (1.90)

g y,ko
= − 1

2e

Mg

Lloop L`

koπ

2`

√√√ EC

k0π

1
ωy

√√ L`
C`

cos
�

koπ

2`
x
�

. (1.91)

1.3.2 Logical and ancilla qubits coupled to the fundamental mode of the res-
onator

Hereafter we will restrain the derivation to the fundamental mode of the resonator. Next
we consider low-energy excitation and so, we replace the symmetric and anti-symmetric
oscillator by the logical and ancilla qubit, see Section 1.1.4. Thus we replace the

�
bax |y , ba†

x |y
�

operators by
�
bσqb|a
+ , bσqb|a

−
�
. Finally we will adopt the rotating-wave approximation thanks

to which we neglect terms that oscillate rapidly. This approximation is valid only when
ωr −ωx ,y �ωr +ωx ,y (where ωr is the fundamental resonance frequency of the resonator).
We obtain:

cW qb = ~gqb

�
babσqb
+ + ba†bσqb

−
�

, (1.92)

cW a = ~ga

�babσa
+ + ba†bσa

−
�

, (1.93)

where gqb and ga correspond to factors gx and g y given in Eq. (1.91) with ko = 1, respectively.
Figure 1.16 shows the position dependence of the coupling between the fundamental

mode of the resonator and the qubit/ancilla mode. We remark that gqb goes from its maximum
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Figure (1.16): Absolute value of the coupling between the ancilla/qubit mode and the
fundamental mode of the resonator. For this plot the coupling constants are Cg = 10 fF and
Mg = 180pH which roughly corresponds to our experimental circuit.

value to zero depending on the position of the SQUID within the resonator whereas ga shows
opposite behaviour. This behaviour is due to the nature of the field coupling which is electric
in the case of gqb and magnetic for ga. The boundary conditions of the microwave resonator,
see Eq. (1.69), impose zero voltage at x = −` and zero current at x = 0. These conditions
lead to a cosine electro-magnetic field distribution along the resonator length, see Eq. (1.83).
The dependence of the g factors along the resonator length follows then the field distribution
inside the cavity.

Figure 1.16 shows that gmax
qb /gmax

a ≈ 2. The parameter used to plot are Cg = 10 fF and
Mg = 180pH which roughly correspond to our experimental circuit parameters.

In varying the position of the SQUID within the resonator, it is possible to control the
coupling ratio gqb/ga. At x = −` the electric field is maximum while the magnetic field is
null. In this case the coupling strength between the logical qubit and the resonator reaches
its maximum value. Additionally, the ancilla qubit will not be coupled to the resonator due to
the absence of z magnetic field. At the other limit of the resonator, x = 0, the situation is
inverted with a logical qubit decoupled from the resonator and the coupling of the ancilla
qubit which reaches its maximum.

1.4 Transmission of the V-shape device coupled to a λ/4 resonator

We obtain the Hamiltonian of the full system by adding the Hamiltonian of the SQUID
Eq. (1.53), of the microwave resonator Eq. (1.79), and of the coupling between the microwave
resonator and the SQUID Eq. (1.93):
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cH = ~
2
ωqbbσqb

z +
~
2

�
ωa + gzzbσqb

z

� bσa
z + ~ωRba†ba

+ ~gqb

�
babσqb
+ + ba†bσqb

−
�
+ ~ga

�babσa
+ + ba†bσa

−
�

. (1.94)

In Section 1.3.1 we have seen that the position of the SQUID whithin the resonator
modifies the coupling strength between the ancilla/qubit mode and the resonator. In the
following we choose an optimal position where gqb = 0 and the ga is maximum, x = 0.
Equation (1.94) becomes:

cH = ~
2
ωqbbσqb

z +
~
2

�
ωa + gzzbσqb

z

� bσa
z + ~ωRba†ba+ ~ga

�bσa
−ba† + bσa

+ba
�

. (1.95)

1.4.1 Input-Output theory of a resonator evanescently coupled

We briefly present here the input-output theory developed by C. W. Gardiner and M. J.
Collett[63] and adapted for evanescently coupled by system B.Peropadre et. al[64]. The
theory offers a simple way to analyse the dynamics of a quantum system described through a
HamiltonianH coupled to an environment via one port whose energy decay rate is denoted
κ. This port links the Hamiltonian to N connections.

The input field is defined as an incoming wave to the resonator while the output field is
defined as an outgoing wave from the resonator:

¨bbi (t) = 1p
2π

∫
e−iω[t−t0]bdi0 (ω) dω,

bb′i (t) = 1p
2π

∫
e−iω[t−t1]bd ′i0 (ω) dω.

(1.96)

bdi0 is the initial condition imposed to the incoming wave for time t0 < t and bd ′i0 is the
final condition imposed for the outgoing wave for time t1 > t.

For each connection we have a relation between the input, the output field, and one of
the several possible operators of the quantum system:

bb′i (t)−bbi (t) =
s
κi

N
bc (t) . (1.97)

The general dynamic equation of these operators is given by:

∂tbc (t) =
�bc (t) , cH �

i~
−
�∑

i

κi

2

�
bc (t) +

∑
i

s
κi

N
bbi (t) . (1.98)

The first term of Eq. (1.98) describes the internal dynamics of the quantum system. The
second term is the damping due to output ports while the last term shows an energy provision
through input ports.
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Figure (1.17): Sketch of the model used to derive the transmission of the system. The logical
and ancilla qubits are depicted as two-level systems. They are coupled together through the
cross-Kerr coupling gzz. Only the ancilla is coupled to the microwave resonator through a
coupling ga. The microwave resonator is evanescently coupled to the environment with one
port through which energy exchange is possible at rate κ. The losses of the resonator are
modelled as a virtual port with energy decay rate κi.

Application of the Input-Ouput theory

The Langevin equation, Eq. (1.98), is the starting point to derive the dynamics of a the SQUID
coupled to a resonator. A sketch of the system is shown in Fig. 1.17.

The qubit and the ancilla are coupled through the cross-Kerr coupling gzz . Only the ancilla
is coupled to the microwave resonator via the coupling ga. As we already mentioned this is
made possible by the position of the SQUID in the microwave resonator.

The microwave resonator is evanescently coupled to the environment with one port. The
decay rate of the port is denoted κ.

The losses of the resonator are modelled by adding an additional virtual port i. The port i
does not bring excitation but allows internal relaxation inside the resonator. The decay rate
κi models all the losses of the resonator.

Finally at the left we have the input and reflected field denoted bi and br. At the right we
have the transmitted field denoted bt and a second input field b′i .

The dynamic of the intra-resonator operator is then given by:

∂tba (t) = −iωRba− i gabσa
− −

κ+ κi

2
ba+

s
κ

2
bbi +

s
κ

2
bb′i . (1.99)

We remark that the dynamics of the intra-resonator operator depends on the ancilla through
the operator bσa

−. By using Heisenberg’s picture we derive the time dependence of the different
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system operators. The full dynamics of the system correspond to the following set of coupled
differential equations:




∂tba (t) = −iωRba− i gabσa
− − κ+κi

2 ba+Æκ
2
bbi +

Æ
κ
2
bb′i

∂t bσa
− (t) = −i

�
ωR +δqb −δa

� bσ−a− i gaabσa
z

∂t bσz (t) = −2i ga

�ba†bσa
− − bσa

+ba
� . (1.100)

The input and the output field are related to the intra-resonator operator through:¨bbi (t)−bbt (t) =
Æ
κ
2 ba (t)

bb′i (t)−bbr (t) =
Æ
κ
2 ba (t)

. (1.101)

We define the transmission in a steady-state regime as:

T =
〈bbt (t)〉
〈bbi (t)〉

. (1.102)

Moreover, we suppose no second input field and so have:

〈bbi′ (t)〉= 0 (1.103)

We then derive the transmission of the overall system in a steady-state regime as:

T (ω) = tλ/4 (ω)

 
1+

κ

κi + i2∆ω
1

1− δω
2g2

a
(2∆ω− i [κ+ κi])

1

1+ p
ps

!
. (1.104)

The expressions of the different terms used in Eq. (1.104) are given in Table 1.6. The
transmission amplitude and phase are plotted in Fig. 1.18 for the two possible qubit states.

The blue and green solid curve shows the transmission of the system when the logical
qubit is in its ground state and excited state, respectively. When the logical qubit is in its
ground state, the ancilla level is in resonance with the bare resonance frequency of the
microwave resonator. Due to the coupling between the ancilla and the resonator, an avoided
crossing occurs. This phenomena is visible in the transmission in the two blue peaks equally
spaced from the the bare resonance frequency of the resonator by ga.

The green curve corresponds to the transmission of the system when the qubit is in its
excited state. Due to the gzz coupling the ancilla level is not anymore in resonance with
the microwave resonator. We have the central peak corresponding to the resonator which is
slightly shifted to higher frequency compared to the bare resonator. The shift of the resonator

is equal to δL = gzz

�q
1+ (ga/gzz)

2 − 1
�

. This regime is the so-called "dispersive limit". The

central peak corresponds to the cavity and the small peak at the left correspond to the ancilla
qubit. Also the peak due to the ancilla resonance is slightly shifted to lower frequency.

1.4.2 Logical-qubit readout

The read-out of the qubit state is realised by probing the system at the frequency ωreadout =
ωR + δL. This special frequency is represented in Fig. 1.18 by a red dashed line. At this
specific frequency the transmission difference of the overall system between grounded and
excited state is maximal.



1.4. TRANSMISSION OF THE V-SHAPE DEVICE COUPLED TO A λ/4 RESONATOR 81

Denomination Formula

The qubit-state-dependent shift δqb = gzz

�
1+σqb

z

�

The resonator–pump detuning ∆ωR = ωR −ω

The ancilla–resonator detuning δa = ωR −ωa

The relative frequency δω= ∆ωR +δqb −δa

The saturation photon flux ps (ω) =
g2

a
2κ

1+
§

1+ δω
g2
a

κ+κi
2

h
1+
�

2∆ω
κ+κi

�2iª2

1+
�

2∆ω
κ+κi

�2

The input photon flux p = |bi|2

The transmission of a λ/4 resonator Tλ/4 (ω) =
κi+i2∆ωR
κ+κi+i2∆ωR

Table (1.6): Definition of terms used in the transmission of the system, see Eq. (1.104).

The frequency shift

The frequency difference between the two closest peaks is here about 150 MHz (Fig. 1.18).
This value is two orders of magnitude higher than the usual dispersive shift obtained with a
transmon coupled to a microwave resonator which is usually about a few megahertz[65,66].

This is made possible thanks to the large value of the cross-Kerr coupling gzz, here about
250 MHz. Thus depending on the qubit state, the shift of the ancilla resonance frequency
will be quite large. This allows the system to reach two different regimes, a resonant regime,
when the qubit is in its ground state or a dispersive regime, when the qubit is in its excited
state.

Resonator correlation time

The linewidth of the resonance dip is mainly given by the external coupling as soon as the
internal quality of the microwave resonator is high enough. Hereafter we will discuss a
limit where the linewidth of the resonator is totally determined by the external coupling.
Furthermore the qubit and ancilla lifetime, T qb

1 and T a
1 respectively, are assumed much longer

than the measurement duration.
The rate of information coming out of the microwave resonator is determined by the

external coupling of the resonator. We define the resonator correlation time, τc =
2
κ , the

mean time takes by the resonator to release uncorrelated information. A small linewidth κ
gives a better contrast but leads to a long correlation time, and conversely, a large linewidth
gives a small constrast but leads to a short correlation time. The trade-off is then to have
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Figure (1.18): Transmission of the SQUID embedded in a microwave resonator as a function
of the relative drive frequency. The blue line corresponds to the transmission of the system
when the qubit is in its ground state while the green line is when it is in its excited state.
In dashed red line, we show the frequency of maximum contrast between the transmitted
signal when the logical qubit is in its excited or ground state. We chose gzz/(2π) = 250 MHz,
ga/(2π) = 150 MHz and κ= 40 MHz.

the largest information rate while keeping a good enough separation of the dips. As we
discuss previously the large value of gzz leads to a large frequency difference between the
two closest dips of about 150 MHz. We can have a large external coupling without loss in
contrast. In Fig. 1.18, κ= 40 MHz, corresponding to an external quality factor of Qc ≈ 250,
and a correlation time of τc = 50ns, does not affect the contrast, yet.

Quantum non-demolition measurement

A quantum non demolition measurement is often described as an ideal quantum measurement[67].
Hereafter we summarise the formal description of a quantum non-demolition system given
by Serge Haroche and Jean-Michel Raimond[68]. The first condition is that the state in which
the system is projected after the measurement is exactly the eigenstate of the measured
observable. Another condition is that this state has to be stable under free evolution of the
system. Thus a QND measurement can be repeated and the result of the measurements will
be the same than the first one.

The Hamiltonian of a quantum system is decomposed as follows:

H =HS +HM +HSM. (1.105)
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The HamiltonianHS describes the quantum system,HM describes the meter andHSM their
mutual coupling.

The conditions that the HamiltonianH must fulfil to allow QND measurement are:

[HSM,OM] 6= 0, (1.106a)

[HSM,OS] = 0, (1.106b)

[HS ,OS] = 0, (1.106c)

where OM and OS are the observables of the meter and of the investigated quantum system,
respectively. The observable OM is a pointer towards the observable OS.

Equation (1.106a) ensures that the system induces an evolution of the meter, which means
that we are able to extract some information about the observable OS via the observable
OM. Equation (1.106b) tells us that the measurement should not affect the eigenstates of OS.
Finally Eq. (1.106c) shows that the eigenstates of OS should not evolve under the action of
the HamiltonianHS. This condition allows to perform repeated measurements.

Our circuit is described in the Hamiltonian Eq. (1.95). We can identify the quantum
system, the meter and their mutual coupling as follow:

cH = ~
2
ωqbbσqb

z +
~
2

�
ωa + gzzbσqb

z

� bσa
z︸ ︷︷ ︸

system

+ ~ωRba†ba
︸ ︷︷ ︸

meter

+ ~ga

�bσa
−ba† + bσa

+ba
�

︸ ︷︷ ︸
mutual coupling

. (1.107)

The qubit and the ancilla, coupled through the cross-Kerr term, correspond to the quantum
system that we want to investigate. The microwave resonator is used as a meter. Finally as
we have seen before (Section 1.3.1) the ancilla is magnetically coupled to the microwave
resonator.

Furhtermore the meter’s observable is OM = ba†ba, the number of photons inside the
microwave resonator. The observable that we want to measure is the qubit state OS = bσqb

z .
We get:

[HSM,OM] = ~ga

�bσa
+ba− bσa

−ba†
�

, (1.108)

[HSM,OS] = 0, (1.109)

[HS ,OS] = 0. (1.110)

Equation (1.110) shows that all conditions of QND measurements are fulfilled in our
circuit. The master key is the cross-Kerr coupling gzz between the qubit and the ancilla.
Thanks to this special coupling we can probe the ancilla’s eigenenergies without interaction
with the logical qubit. The ancilla plays the role of buffer between the qubit and the microwave
cavity.

Moreover the two degrees of freedom offered by the SQUID allow to only have the ancilla
coupled to the microwave resonator while the qubit stays uncoupled.
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Input-power dependences

Figure 1.19 presents the transmitted power of the system for the two qubit states |g〉 or |e〉.
For low input power the transmission dips correspond to what we described in Section 1.4.1.
At high input power, dips collapse and give rise to a single dip at the bare resonator frequency.
Indeed at high power the second term in Eq. (1.104) becomes negligible, we obtain:

lim
p→∞ T (ω) =

κi + i2∆ωR

κ+ κi + i2∆ωR
= Tλ/4 (ω) (1.111)

Thus at high power the overall system behaves like a bare λ/4 microwave resonator indepen-
dent of the qubit state.

A simple explanation of the disappearance of dips can be found by considering the flow
of photons compared to the different coupling strengths. When p� ps, all photons extract
information from the system. We obtain the top panel of Fig. 1.19. In contrast, when p� ps
the number of photons having been coupled to the ancilla are in minority. The bottom panel
of Fig. 1.19 shows that the resonance dips tend to the resonance dip of a λ/4 resonator. When
the p ≈ ps, only a part of the photons will be coupled to the ancilla. We get the intermediate
pictures shown in the middle panels where the dips due to ancilla-resonator anti-level crossing
are still visible and the bare resonator dip emerges. These pictures correspond to a trade-off
between a large input power leading to a large signal-to-noise ratio and a low input power
leading to an important contrast in the transmission between the two logical qubit states.

Read-out fidelity

An important quantity used to define the quality of a qubit state readout is the fidelity F .
The fidelity refers to the degree to which the result of the measurement is close to the real
quantum state. In order to have a correct estimation of the measurement fidelity we have to
take into account the whole measurement chain (Fig. 1.20).

A microwave signal of power p is sent to the sample. The transmitted power can be
derived by using the transmission of the system (Eq. (1.104)) pt = |t (ω)|2 p. The input power
p has to be low enough to avoid ancilla saturation. Thus the transmitted power pt will also
be quite low (some photon.ns−1). In our setup, photons are amplified before being sent to
the digitiser. We model the amplifier through two parameters, its noise temperature TN and
its bandwidth B. The noise temperature describes the white thermal of the amplifier and the
bandwidth the finite frequency domain of the amplifier. At the end of the measurement chain
the microwave signal is digitised and the qubit state is deduced from the signal amplitude.

We note that it is important to take into account the amplification chain because it adds
two constraints on the qubit state readout. First, it modifies the signal-to-noise ratio by
adding some noise to the microwave signal. The total noise power N added by the amplifier
can be calculated from the Johnson-Nyquist noise formula[69]:

N =
kBTN

~ω
B. (1.112)
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Figure (1.19): Transmitted power as a function of the relative frequency. We show four
figures for four different input powers, each of them presents the transmission of the system
for the two qubit states |g〉 or |e〉. Parameters used are the same as in Fig. 1.18.

Second, it involves an additional correlation time τ′c = B−1 due to the internal finite bandwidth
of the amplifier. We note that the optimal bandwidth is a trade-off between a low noise power
(Eq. (1.112)) and a short correlation time.

The estimation of the readout fidelity is based on the conditional photon number distri-
butions P (n| j), where n is the number of photons measured and j is the qubit state. The
derivation of the distribution has been done by Igor Diniz[45]. We used the Glauber-Sudarshan
P representation[70]. In our case, this simply corresponds to the P representation of a thermal
field of temperature TN displaced by a coherent field of amplitude

p
pt ( j). Thus we can

readily calculate the generating function[71] for the photon statistics, from which we extract
the coefficients:

P (n| j) = N nτn

(1+ Nτ)n+1 exp
�−pt ( j) τ

1+ Nτ

�
Ln

� −pt ( j)
N (1+ Nτ)

�
, (1.113)
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Amplification
Measurement chain

Figure (1.20): Scheme of the complete measurement chain. At the output of the resonator
the transmitted power is denoted pt. The amplification chain is modelled as a single amplifier
with noise temperature TN and a bandwidth B. At the end of the measurement chain, the
microwave signal is digitised and the qubit state is inferred from the amplitude of the signal.

where τ is the measurement duration and Ln is the nth-order Laguerre polynomial.
To explain some features of the probability distribution P (n| j), we remind here some

properties of thermal and coherent field. The thermal field is characterised by a decreasing
exponential photon number function whose decay constant is related to the noise power.
When the noise power increases, this can be due to a larger noise temperature or a larger
bandwidth (Eq. (1.112)), the distribution becomes wider and smaller. A coherent field is
mathematically equivalent to a Poisson distribution. Thus a coherent field of power P has
a probability distribution centred at P and a variance P. When the power of the coherent
field increases, the centre of the distribution is shifted to the higher mean power value and it
becomes wider.

The total distributionP (n| j) corresponds to a convolution between a Poisson distribution
due to the input microwave coherent field and a thermal distribution due to the noise coming
from the amplifier. Various distributions are plotted in Fig. 1.21. They clearly show how the
amplification has a large effect on the statistics of the counts associated with each qubit states
|g〉 (large number of measured photons) or |e〉 (small number of measured photons).

The distribution given in Eq. (1.113) is a convolution of these two distributions. Thus
when the noise temperature increases, the distribution becomes wider, flatter and tends
to a smaller number of measured photons. These effects can be easily understood as an
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Figure (1.21): Photon number distribution P (n| j). Parameters used for the circuit are the
same as in Fig. 1.18. For the rest we took: input power p = 1 photon.ns−1 and B = 50MHz.
The panels (a) and (c) show photon distributions for the qubit in its ground state and the
panels (b) and (d) for the qubit in its excited state. Moreover the panels (a) and (b) present
different distributions depending of the measurement time τ. Finally, the panels (c) and (d)
present the evolution of the distributions as a function of the noise temperature TN . The
minimum measurement time used for the plots correspond to the minimum correlation time
allowed by the circuit which is τ=max

�
τc|τ′c

�
= 50 ns.

increase of the weight of the thermal field with respect to the coherent field. In other words,
the signal-to-noise ratio decreases. This fact is shown in panels (c) and (d) in Fig. 1.21.
The panels (a) and (b) present the evolution of the distribution as the measurement time
increases. The position of the distribution is shifted to a larger number of measured photons
and the distribution gets wider. This is a manifestation of the coherent field which becomes
predominant as the signal-to-noise ratio increases.

The fidelity is calculated through the overlap of the two photon number distributions
obtained for the two qubit states[72]:

F = 1− 1
2

∑
n

§
P (n, e)Θ [P (n, g)−P (n, e)] +P (n, g)Θ [P (n, e)−P (n, g)]

ª
,

(1.114)

where Θ denotes the Heaviside step function, and P (n, e)Θ [P (n, g)−P (n, e)],
P (n, g)Θ [P (n, e)−P (n, g)] denotes the error made in the readout when the qubit state
is excited and grounded, respectively.

The two photon distributions are shown for the two qubit states and for different mea-



88 CHAPTER 1. THEORY

surement times in Fig. 1.22.

0.00

0.03

0.06

0.09
F = 0.985

τ= 50.0 ns
|g〉
|e〉

0.00

0.02

0.04

0.06

Ph
ot

on
nu

m
be

r
di

st
ri

bu
ti

on

F = 0.995
τ= 75.0 ns

0 20 40 60 80 100 120 140 160
Measured photon number

0.00

0.02

0.04

0.06

F = 0.998
τ= 115.0 ns

Figure (1.22): Evolution of the measured photon number distribution F following the
measurement time τ. Parameters used the circuit are the same as for Fig. 1.21. We took
an input power p = 1photon.ns−1, an amplifier bandwidth of B = 50 MHz, and a noise
temperature TN = 140mK. The minimum measurement time used for the plots correspond
to the minimum correlation time allowed by the circuit which is τ = max

�
τc|τ′c

�
= 50 ns.

When the measurement time increases, the overlap of the photon number distributions for
ground state (green) and excited state (blue) decreases, which leads to a higher fidelity.

The increase of measurement time leads to a shift of the distribution to higher measured
photon number as well as an increase of the width of the distribution. However, the increase
of measured photon number is faster than the increase of the distribution width leading to
an increase of the signal-to-noise ratio. Nevertheless the distributions obtained for the two
qubit states exhibit different behavior. For the qubit in its ground state, the system should
be practically transparent whereas, when the qubit is in its excited state, almost no photon
should be measured. When the measurement time increases, the distribution obtained when
the qubit is in its excited state is slightly shifted to higher measured photon number. In
contrast, the distribution obtained when the qubit is in its ground state is much more shifted
which leads to a reduction of the overlap between the two distribution and so, a higher
fidelity.

For state of the art quantum limited amplifier[73], the noise temperature can be as
low as TN = 140 mK. A measurement duration of τ = 50ns, the minimum measurement
time allowed by the setup, is enough to reach a fidelity F ≈ 98.5 %. For a commercial
cryogenic amplifier, the noise temperature is about 4 K which leads to a fidelity of 90 % for a
measurement time of 50 ns.
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We compare these predictions to two examples found in literature, the first one based on
the transmon qubit and the second one on the “Xmon” qubit. The first example consists[36] of
a transmon qubit coupled to a compact resonator in series with a quantum-limited amplifier
(Josephson parametric converter). This sample reached a fidelity of 98 % for an integration
time of 240 ns. The second example achieved[74] the fidelity of 99.8 % for an integration time
of 140 ns. The circuit is composed of an “Xmon” qubit coupled to a half-wave resonator and
an on-chip bandpass filter in series with a quantum-limited amplifier (Josephson parametric
amplifier). The bandpass filter allows an increase of the resonator–environment coupling
rate κ without causing an increase of the Purcell effect. We remark that in both cases, the
fidelity obtained by these circuits are lower than the fidelity achievable by our proposal for
the same integration time.
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Figure (2.1): Photography of the experimental room with the blue cryostat. The outside
magnetic shield in MµMeta is visible at the bottom of the cryostat. At the left of the picture,
a rack containing microwave and pulse generators.

2.1 Dilution refrigerator

Figure 2.1 presents the dilution fridge used for our experiments. It has been designed by the
SERAS “Service Etudes et Réalisation d’Appareillages Scientifiques” at the Neel institute in
2008 and mounted by the “Pôle cryogénique” in 2009. During 2009 and 2010, Iulian Matei
installed the cryogenic setup and started cool-down. The base temperature at the mixing
chamber is 30 mK with and 70 mK without roots vacuum pump. The measured cooling power
is about 65µW at a temperature of 100 mK without heating on the still.

2.2 Low temperature microwave setup

One of the mission of my Ph.D has been to install, in collaboration with Thomas Weißl,
a complete microwave setup able to perform quantum measurements. The aim of the
microwave setup is to measure the amplitude and the phase difference of a transmitted signal
through a sample by a heterodyne method at very low power, ≈ 1 photon·ns−1 (≈ −110dBm
at 10 GHz). This work included the installation of cables and various microwave elements
(mixers, filters, amplifiers, ...) in the dilution fridge, the realisation of a microwave circuit
allowing generation and measurement of microwave pulses, and the writing of python drivers
and measurement scripts.



2.2. LOW TEMPERATURE MICROWAVE SETUP 93

2.2.1 Thermalisation
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Figure (2.2): Sketch of the microwave setup inside the inner vacuum chamber. The different
temperature stages are depicted by different colour. Except the superconducting coax cable,
all elements are thermalised at the temperature stage where they are depicted. At the bottom
of the figure, a table summarises information about the difference coax cables.
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The setup at low temperature is shown in Fig. 2.2. The figure displays the interior of the
inner vacuum chamber by enhancing the different temperature stages.

Thermalisation of phonons

The thermalisation of phonons is important to minimise the heat load on the cryostat. To
estimate the heat load due to cables, we can calculate the power brought by a homogeneous
metal cylinder. The differential form of Fourier’s Law of thermal conduction shows that the
local heat flux density, −→q , is equal to the product of thermal conductivity, k, and the negative
local temperature gradient, −−→∇ T . The heat flux density is the amount of energy that flows
through a unit area per unit time.

−→q = −k
−→∇ T (2.1)

where−→q is the local heat flux density in W·m−2, k is the material’s conductivity in W·m−1·K−1,
and
−→∇ T is the temperature gradient in K·m−1. In the limit of a one-dimensional infinitely

long cable we get qx = −k∂x T . At very low temperature, we can assume a linear temperature
dependence of the thermal conductivity, we obtain the heat load as:

P =
k1 KS

L

�
T2

2 − T2
1

�
(2.2)

where S is the cross section of the cable, L its length, and k1 K the thermal conductivity at 1 K.
From room temperature to 4 K, the coax cables are immersed in liquid helium. We chose

coax cable with the inner conductor made in copper-berylium and the outer conductor in
stainless steel. The cables are also bent to reach a length of 1.5 m in order to reduce the heat
load. The thermalisation is realised by the liquid helium in which the cables are immersed.

Inside the inner vacuum chamber, we used coax with stainless steel as inner and outer
conductor because of its very low thermal conduction. The length of cable is about 40 cm. At
1 K the thermal conductivity for the stainless steel is about[75] kSS = 1.5× 10−5 W·m−1·K−1.
By using Eq. (2.2), we get a heat load of pSS = 2nW per cable. To reduce the heat load
at the mixing chamber level, the cables are thermalised at the still. Assuming a perfect
thermalisation at the still level, the heat load at the mixing chamber becomes P ′SS = 86pW.

The coax cables with stainless steel as inner and outer conductor are efficient to avoid
thermal conduction but have the drawback to also have high microwave losses, approximately
13 dB·m−1 at 10 GHz. For this reason we only use this type of cables in the input line. At the
amplification line, where losses become important, we use low loss superconducting coax
cables. The superconducting cable is composed of niobium-titanium as inner and outer con-
ductor. The cable is 30 cm long with an attenuation of 0.3 dB·m−1 at 10 GHz. The transition
temperature is about 8 K. At 1 K, its thermal conductivity is about 3× 10−6 W·m−1·K−1.

Inside the inner vacuum chamber, the thermalisation is realised by using clamps in copper
in order to fasten components. The clamp is coated with grease1 to increase the surface area
of contact. Next a copper wire is screwed to the cryostat and to the clamp to realise the
thermalisation.

1Apiezon N Grease: http://www.apiezon.com/products/vacuum-greases/n-grease

http://www.apiezon.com/products/vacuum-greases/n-grease
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Thermalisation of photons

The thermalisation of the microwave signal is crucial for our experiment. Indeed to be
able to observe quantum phenomena the thermal excitation has to be small compared to
the characteristic energy of the system, (kBT)/(~ω) � 1. We firts derive an equivalent
temperature of the thermal photons at the sample place. In this calculation we model
classically the thermal noise power spectral density through the Johnson–Nyquist formula.
This restriction is correct as long as the frequency of photons are below kB × T30mK/h ≈
600MHz. Despite the fact that typical frequencies of our experiments are of a few gigahertz,
this calculation gives an idea of the photons temperature at the sample stage. In a second
calculation, we take into account the high frequency involved in our experiment by modelling
the thermal photon power spectral density with a Bose–Einstein distribution. We then derive
the thermal population of photons in the microwave resonator and estimate its effect on the
qubit coherence time.

Figure (2.3): Schematic view of a beam splitter of intensity transparency t. ain,out and bin,out
represent the amplitude of the incoming, outgoing electrical field at the two ports of the
beam splitter.

The thermalisation of photons is performed by microwave attenuators thermalised at
different stages of the cryostat. An attenuator can be modelled as a beam splitter with two
different incoming signals. One incoming signal is the microwave signal that we want to
thermalise and the second one is the noise added by the attenuator itself. In our derivation,
we write ain the signal amplitude coming from our microwave sources. The noise signal due
to the attenuator is denoted bin. The outgoing signal is aout and the signal absorbed by the
attenuator is bout.

From the “Quantum optics” book from D. F. Walls and G. J. Milburn[76] we have the
input-output relation2:




aout

bout


=



p

t i
p

1− t

i
p

1− t
p

t







ain

bin


 (2.3)

with t, the intensity transparency. From this equation, we derive the variance of the output

2We suppose a phase shift of π/2 upon reflection
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fields3: 




|aout|2
�
= t


|ain|2
�
+ (1− t)


|bin|2
�


|bout|2
�
= t


|bin|2
�
+ (1− t)


|ain|2
� . (2.4)

The first step of the thermalisation is handled by an attenuator of −20 dB thermalised
at 4 K. At this temperature, the power spectral density is very well approximated by the
Johnson–Nyquist power spectral density[77]:

S (ω) = kBT. (2.5)

By considering an incoming noise signal at 300 K we obtain:

|aout|2

�
4K = tkBT300 K + (1− t) kBT4 K. (2.6)

Numerical calculation leads to

|aout|2

�
4 K /kB = 7K. Thus the noise emitted by the attenuator

at 4 K is equivalent to the Johnson–Nyquist noise emitted by a virtual 50Ω resistor thermalised
at 7 K.

The thermalisation is completed by second step consisting of two −20 dB attenuators
thermalised at 30 mK. At this stage the incoming signals is composed of the attenuated
room temperature noise signal coming from the attenuator at 4 K. As we have seen in the
previous paragraph, this noise can be modelled as a noise coming from a virtual 50Ω resistor
thermalised at 7 K. The noise coming from the two −20 dB attenuators thermalised at 30 mK
is modelled as the noise of a virtual −40 dB attenuator thermalised at 30 mK. The equivalent
noise temperature is then:


|aout|2
�

30mK = tkBT7 K + (1− t) kBT30 mK. (2.7)

We obtain

|aout|2

�
30 mK /kB = 30.7mK. Thus the noise temperature is very close to the base

temperature of the cryostat, ensuring a good thermalisation of photons along the lines.
In order to estimate the influence of the photon noise on the artificial atom, we can

calculate the number of photons inside the cavity due to the noise coming from room
temperature through the coax line. The input-output theory gives the relation between the
electromagnetic field inside a cavity and an incoming field, see Eq. (1.98). Let’s then consider
a high quality microwave resonator4, as in Section 1.4.1, coupled to a feedline, we have:

ȧ =
�
−iωr −

κΣ
2

�
a+

p
κ1ain (2.8)

with κΣ = κ1+κ2 and κ1,2 the decay rate of the cavity to the input and output line, respectively.
Taking the Fourier transform of the above equation, and taking its absolute value squared,
we obtain:

|a (ω)|2 = |S (ω)|2 |ain (ω)|2 (2.9)

3Correct for uncorrelated fields which implies, 〈ab〉= 〈a〉 〈b〉 and 〈a〉= 〈b〉= 0.
4This consideration allows to neglect the internal losses of the resonator: κi→ 0.
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with:

|S (ω)|2 =
4 κ1

κ2
Σ

1+
�
2∆ωr
κΣ

�2 (2.10)

and:

|ain (ω)|2 = ~ω


 t

exp
�

~ω
kBT7K

�
− 1
+

1− t

exp
�

~ω
kBT30mK

�
− 1


 . (2.11)

|ain|2 represents the noise spectral density in [W.Hz−1]. We note that, in order to correctly
take into account the noise at very low temperature ~ω ≈ kBT , the noise spectral density
is corrected by the Bose–Einstein distribution[78]. The noise spectral density has two main
contributions. The first term represents the room temperature noise attenuated by −20 dB
attenuator thermalised at 4 K. As we saw, this noise can be modelled by a virtual 50Ω resistor
thermalised at 7 K. The second term corresponds to the noise of the two −20 dB attenuators
thermalised at 30 mK. This noise is modelled as a virtual 50Ω resistor thermalised at 30 mK.
|S (ω)|2 is the transfer function in [Hz−1] between the the flow of photons in the environment
and the energy inside the cavity. It has a Cauchy-Lorentz shape with a height and a FWHM
given by 4κ1/κ

2
Σ and κΣ, respectively. Typical energy spectral density obtained from Eq. (2.9)

is shown in Fig. 2.4.
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Figure (2.4): Photon spectral density in the microwave resonator due to thermal noise
from room temperature. The peak and the width of the spectral density corresponds to the
resonance frequency and the linewidth of the cavity.

To obtain the residual energy inside the cavity, we integrate over all frequencies:

E =

∫ ∞

0

|S (ω)|2 |ain (ω)|2
dω
2π

. (2.12)
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Equation (2.12) can be simplified by assuming that, only the noise power density close to the
cavity resonance frequency has to be take into account. At this point, we assume that the
power spectral density |ain|2 is constant inside the integral limits. We then remove the power
spectral density from the integral, we obtain5:

E = |ain (ω)|2
∫ ωend

ωstart

|S (ω)|2 dω
2π
=
|ain (ω)|2

2
. (2.13)

The final formula given the noise in unit of mean number of photon at given frequency is
then:

n=
|ain (ω)|2

2~ω
=

1
2


 t

exp
�

~ω
kBT7K

�
− 1
+

1− t

exp
�

~ω
kBT30 mK

�
− 1


 . (2.14)

Thus in the case of the sample “V-shape-1” discussed in Chapter 5, Eq. (2.14) gives an
amplitude of thermal photon of 0.001 photon. This photon noise will induce a dephasing of
the qubit leading to a homogeneous broadening of the resonance peak[79]. We can estimate
the coherence time due to this broadening as T2 = 1/(πδfwhm) = 46µs. The measured
coherence time of our qubit (see Table C.1) being much smaller, we conclude that the thermal
noise due to the input line will not affect our experiment. We note that Eq. (2.14) does
not depend of the linewidth of the cavity. Indeed at the equilibrium, the energy stored in
the cavity due to the noise power in the environment should be independent of the cavity
lifetime.

2.2.2 Amplification chain

The microwave signal transmitted by the sample is about 1 photon·ns−1 (−110 dBm at
10 GHz). To amplify the signal we use several amplifiers in series. The Friis formula[80] gives
the total gain and noise temperature of such a chain:

Gtot = G1 × G2 × · · · × GN, (2.15)

Ttot = T1 +
T2

G1
+ · · ·+ TN

ΠN−1
i=1 Gi

. (2.16)

If the gain of the first amplifier is large enough, the total noise of the chain is then only due to
the noise of the first amplifier. The optimal amplification chain has then to start with a high
quality amplifier having a large amplification and a low noise temperature. In our setup the
first amplifier is a cryogenic high electron mobility transistor (HEMT) amplifier[81] exhibiting
a gain of 39 dB and a noise temperature of 5.5 K6 over a bandwidth from 1 GHz to 12 GHz,
according to the datasheet.

Hereafter we present an experimental measurement of the total gain and total noise
temperature in our setup. The experiment models the whole amplification as a single amplifier

5A discrepancy of only 2 % is found between the simplified analytical formula given in Eq. (2.13) and a
numerical integration using the Eq. (2.12), which valid our assumptions.

6LNF-LNC1_12A
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Figure (2.5): Left and right panels show the setup used for the calibration of the amplification
chain and the model of the equivalent amplifier, respectively. The source of Johnson–Nyquist
noise is a 50Ω resistor whose temperature is well controlled by a heater and a thermometer.
The resistor is thermally decoupled from the amplification chain by a stainless steel, inner
and outer conductor, coax.

with a certain gain and a certain noise temperature, see Fig. 2.5. We use a 50Ω resistor as
Johnson–Nyquist source. The resistor is connected to the amplification chain by a stainless
steel, inner and outer conductor, coax cable of 10 cm. By this way, the resistor is thermally
decoupled to the rest of the chain. Nevertheless the photons emitted by the resistor are free
to flow to the chain.

The power spectral density emitted by the resistor is, at temperature T > ~ω/kB:

SR = kBT. (2.17)

At the output of the chain, the power spectral density becomes:

Sout = (ARSR + SN)Gtot (2.18)

where SN is the power spectral density of the amplification chain defined at the input of the
equivalent amplifier. We also take into account the spurious attenuation AR which occurs
between the resistor and the first amplifier. In our setup the noise temperature is high enough
to have (kBTN)/(~ω)> 1. Equation (2.18) becomes:

Sout = kB (ART + TN)Gtot = kB

�
T +

TN

AR

�
ARGtot. (2.19)
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The experiment consists in measuring the power spectral density as a function of the
temperature and frequency, see Fig. 2.6. This measurement was performed for a resistor
temperature varying between 0.3 K and 4.8 K, the power spectral density was measured
between 21 Hz and 16 GHz with a video bandwidth of 10 kHz. The two bottom panels
present the power spectral density as function of temperature for two different frequencies,
7 GHz and 11 GHz. The power spectral density is proportional to the temperature without a
saturation at low temperature as expected from Eq. (2.19). The slope of the temperature
dependence is proportional to the gain of the amplification chain. The residual power spectral
density at T → 0 is related to the noise temperature.
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Figure (2.6): The colormap presents the power spectral density (PSD) as function of the
temperature of the resistor and of the frequency. The two bottom panels show cuts of the
colormap at two different frequencies, 7 GHz and 11 GHz. The measurement is displayed in
blue and the fit used to extract the gain and the noise temperature (Eq. (2.19)) is shown in
red.
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Figure (2.7): The top and bottom panels show the gain and the noise temperature of the
amplification chain as a function of the frequency, respectively. In the bandwidth going from
7 GHz to 11 GHz the gain and the noise temperature are about 63 dB and 8 K, respectively. A
Savitzky–Golay filter[82,83] has been used during the data treatment.

We use Eq. (2.19) to fit, for all frequencies, the temperature dependence of the power
spectral density. We extract then, for each frequency, the gain and the noise temperature.
Figure 2.7 presents in the top panel, the gain as a function of the frequency, and in the
bottom panel, the noise temperature as a function of frequency. We note that the validity
of Eq. (2.19) becomes questionable about 6 GHz and 300 mK. To ensure the validity of our
results, we performed the same analysis by replacing the Johnson–Nyquist noise spectral
density by the Bose–Einstein distribution. In both cases, we obtain the same values for the
noise temperature and the gain. The gain fluctuates around a mean value of Gexp ≈ 63dB.
The measured noise temperature has a plateau at T exp

N ≈ 8K which is higher than in the
datasheet. An optimal bandwidth from 6.5 GHz to 11.5 GHz is extracted from Fig. 2.7. It
corresponds to the frequency range in which the measured noise temperature is small and
the gain large.

The expected noise temperature is of Tdatasheet
N = 5.5K, 30 % smaller than the measured

one. From the Friis formula (Eq. (2.16)) the noise due to the second amplifier is estimated to
be about

Tmiteq

GLNF
≈ 66.8

104 ≈ 1× 10−2 K. As expected, the second amplifier does not contribute to
the total noise temperature of the amplification chain. The large value of the measured noise
temperature is actually due to spurious attenuation which occurs before the amplification.
Thus the signal-to-noise ratio at the input of the amplifier is lower than at the output of
the resistor. It turns out, in our model (see Eq. (2.19)), an increase of the measured noise
temperature. Between the resistor and the amplifier, several sources of losses can be identified.
The stainless steel decoupling the heater from the rest of the chain is 10 cm long which induces
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an attenuation of 1.3 dB. The insertion loss of the two circulators7 is about 1.2 dB for both.
Finally, a total loss of AR = −2.5dB can be expected between the resistor and the amplifier.
Our model being linear, we obtain at the end a corrected noise temperature about 4.5 K.

The expected amplification is about 69 dB which corresponds to the amplification sum
of the LNF8, 39 dB, and of the Miteq9 amplifier, 30 dB. As we wrote before, an attenuation
of −2.5 dB is expected inside the inner vacuum chamber. A coax cable of 1.5 m length, in
copper-beryllium for the inner conductor and in stainless steel for the outer one, makes
the link between 4 K and room temperature. It causes 7.5 dB of losses. By adding the
expected amplifications and attenuations, we get the expected theoretical total amplification
Gtheo = 59 dB, 60 % smaller than the measured gain.

The measured bandwidth is in accordance with the bandwidth of the circulators (8 GHz
to 12 GHz according to datasheet) which have the narrowest band of the amplification chain.

2.3 Room temperature microwave setup

The setup to generate and measure microwave pulses is shown in Fig. 2.8. On the left side, one
can see the part which creates microwave pulses. Our experiments require three microwave
tones, one to make the readout of the microwave resonator and the two others to excite the
logical and the ancilla qubit. Three microwave sources10 are used to generate microwave
signals. The experiments are performed by using microwave pulses. In that purpose, we used
a pulse generator source11 and microwave mixers12 to generate microwave pulses with a
desired power and duration. The three microwave pulses are sent to the cryostat by the same
input line. Power combiners13 add these pulses to the input line.

The signal coming out from the cryostat is amplified by using three amplifiers14. Next the
cavity readout tone is down–converted to 60 MHz by using a fourth microwave source15 and
a mixer16. At the end, the signal is digitised by an acquisition board17.

In parallel of the microwave signal which is used to perform the readout of the resonator,
we acquire a reference signal. The reference signal is used to extract the phase difference
taken by the signal which is transmitted by the resonator. By mixing the reference signal and
the signal transmitted by the resonator we are able to extract the amplitude and the phase
difference of the transmitted signal.

7Raditek RADC-8-12-Cryo-0.02-77K-S23-1WR-b
8LNF-LNC1_12A
9afs4-08001200-10-CR-4

10R&S SMA 100A, Agilent E8257D and HP 83630A
11Higland T560
12M8-0220-Sa, M8-0326-NS and M8-0420-LS
13ATM P214H and Minicircuit ZX10-2-183-S+
14Miqteq S/N 1211532 and two Minicircuit ZX60-14012L-S+
15R&S SMA 100A
16M8-0220-SA
17Spectrum M3I.4142
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Item Name Attenuation
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Figure (2.8): Sketch of the microwave circuit realised for the experiment. Devices used
to create microwave pulses are surrounded by color rectangles. The different microwave
pulses are sent to the sample by the same main input line in red. The purple line depicts
the reference signal lines. For the sake of simplicity synchronisation between devices is not
shown.
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In the following subsections, we will discuss in more detail the microwave pulse generation
(Section 2.3.1), the synchronisation of the devices (Section 2.3.2), the frequency down–
conversion (Section 2.3.3), and the data acquisition (Section 2.3.4). A comparison between
our microwave setup with a commercial VNA will be shown (Section 2.3.5). Finally, we will
compare the noise of the measured signal Section 2.3.6 with the calibrated noise temperature
of the amplification chain.

2.3.1 Microwave pulse generation

Mixer DC pulse
Intermediate frequency

Microwave signal
Local oscillator

Microwave pulse
Radio frequency

Figure (2.9): Illustration of the fabrication of microwave pulses. The first timeline shows
the square pulses send to the intermediate frequency port. The second timeline presents
the continuous microwave signal arriving to the andlocal oscillator port. The last timeline
depicts the result of the mixing of the two previous signals, microwave pulses coming out the
radio frequency port.

To generate microwave pulses we use two instruments, a microwave source and a pulse
generator. The microwave source is tuned in order to generate a microwave signal with a
desired frequency and power. The generated signal is sent to the local oscillator port of the
mixer. At the intermediate frequency port, we send a square pulse. The square pulse defines
the duration of the microwave pulse. At the radio frequency port, the microwave pulse is
formed. The method is presented in Fig. 2.9.

All the microwave pulses in the experiment are generated in the same way. This method
allows the generation of microwave pulses from 2 GHz to 24 GHz, depending on the mixer.
The maximal power of the pulses are limited by the mixers and reaches typically 5 dBm. The
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temporal resolution of the pulse is given by the quality of the pulse generator18. Specifications
give a rise/fall time of 750 ps and a jitter about 35 ps. The resolution of the pulse length is
10 ps.
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Figure (2.10): LO to RF isolation of the M8-0420-LS mixer. Measurements have been
performed with a commercial VNA, the R&S ZVL13.

One of the main limitations of the method to generate microwave signal is the leakage of
the mixers. The LO-RF isolation gives the ratio between the power at the Local oscillator port
over the power which leaks through the Radio frequency port. We performed measurement of
the LO to RF isolation of all mixers in our setup. A typical measurement is shown in Fig. 2.10.
The other mixers present similar characteristics.

2.3.2 Device synchronisation

All devices are synchronised to avoid dephasing. One of our microwave source has a high
performance 10 MHz reference oscillator with a RMS jitter of 105 fs19. The clock signal of
this source is used as a reference to synchronise all devices of the setup. A homemade clock
distributor20, which consists of an amplifier and a signal divider, splits the 10 MHz of the
clock reference into eight equivalent 10 MHz signals. Theses signals are used by the other
devices as external clock.

Figure 2.11 shows the phase drift as function of time of a 10 MHz signal obtained by
frequency down–conversion from two R&S sources at 10 GHz and 10.01 GHz in respect to
the 10 MHz clock signal. For our experiments, the phase between microwave sources has to

18Highland T560
19One of the R&S microwave source has been purchase with the option "SMB-B1H" for this purpose.
20Pôle service electronique, institut Néel
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Figure (2.11): Unwrapped phase drift of a 10 MHz signal obtained by frequency down–
conversion from two R&S sources at 10 GHz and 10.01 GHz in respect to the 10 MHz clock
signal.

be constant during the acquisition of one data point. Since measurements are repeated, the
phase has to stay the same during all the averaging process. A good criterion is then that
the phase has to be constant during a time N Tperiod < Tlost phase where N is the number of
average, Tperiod is the measurement period, and Tlost phase the phase coherence time. In our
experiments this criterion is well respected since the longest measurement period is about
10µs and the largest repetition about 106 which leads to a needed phase coherence time of
10 s. From Fig. 2.11 we observe that the phase make a 2π rotation in approximately 10 h
which is very long compare to our needed phase coherence time.

Figure 2.12 presents the single side band phase noise for the microwave source having the
best internal clock. Due to the clock distributor, the two R&S sources should exhibit the same
phase noise. In our experiment the R&S are used to perform the readout of the microwave
cavity (about 7 GHz) which corresponds to the purple line. Thus at 10 Hz of the generated
frequency the spurious microwave signal is already attenuated by 70 dB. We measured the
spurious signal for the other microwave sources used, we obtained, at 10 Hz of the generated
frequency, −45 dBc for the HP 83630A and −45 dBc for the Agilent E8257D.

2.3.3 Frequency down–conversion

After amplification the signal is down–converted with a mixer and digitised by an acquisition
board21. The down conversion is realised by using the heterodyne signal processing technique.

In order to explain the heterodyne method, let’s consider that we have a microwave
signal which is transmitted by the sample with a frequency ω1. This signal is sent to the

21Spectrum M3I.4142
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Figure (2.12): Single Side Band phase noise of the microwave source having the best internal
clock. Measurements which used theses microwave sources, R&S SMB 100A, are performed
for frequencies from 6 GHz to 10 GHz.

Radio frequency port of a mixer. At the Local oscillator port we send another microwave
signal at a frequency ω2. The mixer will produce two signals at the Intermediate frequency
port at frequencies ωΣ = ω1 +ω2 and ω∆ = ω1 −ω2. The signal at frequency ω∆ is the
down–converted signal which will be digitised by the board. The high frequency signal is,
experimentally, not produced by the mixer. Indeed the intermediate frequency port of the
mixer acts as a low-pass filter whose cutoff frequency is at 3 GHz. In our experiments, the
high-frequency signal would be about 14 GHz and so, will be strongly attenuated.

2.3.4 Data acquisition

To acquire data we use an acquisition board22 which is connected to our computer via a
PCI-express interface. The board has an acquisition rate of 250 MS·s−1. The Nyquist–Shannon
sampling theorem states that if a function x (t) contains no frequencies higher than ν = νcut,
it is completely determined by giving its ordinates at a series of points spaced 1/ (2νcut). In
accordance with this theorem, we have chosen an intermediate frequency of 60 MHz which
can be well measured with a sampling rate of 250 MS·s−1.

The board has an internal high-pass filter with a cut-off frequency νspectrum
cut = 20kHz. The

22Spectrum M3I.4142
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resolution of the board is 14 bit with 200 mV of acquisition range, so a resolution of about
15µV.

The board has two analog inputs. The first one is used to digitise the microwave signal
transmitted by the sample and the second one to digitised the reference signal. Both are
down–converted to 60 MHz by using mixers as explained before.

The signals acquired by the board let us extract two parameters, namely the amplitude
and the phase. Hereafter we present a numerical method to extract these information from
the digitised signal. Let’s consider that the intermediate frequency can be described by an
oscillating signal with an amplitude A and a phase ϕ:

S (t) = Acos (ω0 t +ϕ) (2.20)

where ω0/(2π) = 60 MHz. Numerically we multiplied S (t) by a cosine and a sine of ampli-
tude 1 and angular frequency ω0:

Sc (t) = Acos (ω0 t +ϕ) cos (ω0 t) , Ss (t) = Acos (ω0 t +ϕ) sin (ω0 t)

Sc (t) =
A
2

�
cos (2ω0 t +ϕ) + cos (ϕ)

�
, Ss (t) =

A
2

�
sin (2ω0 t +ϕ)− sin (ϕ)

�
(2.21)

We integrate over an interger number of periods:

Sc =
1

nT

∫ t+nT

t
Sc (t) ,

Ss =
1

nT

∫ t+nT

t
Ss (t)

Sc =
A
2

cos (ϕ) , Ss =
A
2

sin (ϕ) (2.22)

where n ∈ N is the number of measured periods and T is the duration of one period. From
Sc and Ss we can calculate the amplitude and the phase of the original signal S (t):

A= 2
r

S
2
c + S

2
s

ϕ = arg
�
Sc + iSs

�
(2.23)

From the reference signal we obtain Aref and ϕre f and from the signal transmitted by the
sample, At and ϕt. There is no global reference for the phase. For this reason we measured a
reference signal from which we calculate the phase difference acquired by the transmitted
signal, ∆ϕ = ϕt −ϕref. The phase relation of signals generated by independent sources is
a-priori unknown. By our method we are able to determine the phase relation before the
sample (by reference measurement) and after (by signal measurement). Moreover they are
down–converted by the same microwave generator ensuring no phase difference induced by
the down–conversion between the two signals. The subtraction of the transmitted phase by
phase reference allows to only keep the phase difference due to the different path of the two
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signals. Finally, we extract all the information of the signal transmitted by the sample with
two parameters At and ∆ϕ.

A measurement is generally repeated in order to increase the signal-to-noise ratio. We
obtain then a mean value and an uncertainty for the two parameters. We denote by 〈At〉, σAt

and 〈∆ϕ〉, σ∆ϕ the mean value and the standard deviation of the transmitted amplitude and
phase.

2.3.5 Transmission coefficient measurement

Figure 2.14 presents the measurement of a microwave 7 GHz band-rejection filter (see
Fig. 2.13) performed with a commercial VNA (R&S ZVL13), blue curve, and with our mi-
crowave setup, green curve, described previously. We remark that our microwave setup is
perfectly capable to perform S21 measurement qualitatively comparable to what a commercial
VNA can measure. Furthermore, our microwave setup reaches a better signal-to-noise ratio
for some frequency ranges (between 8 GHz and 9 GHz for example). However, we observe
spurious oscillations around 4 GHz and 10 GHz for instance. These oscillations are due to
standing waves which occur because of slight impedance mismatch between microwave
components.

Figure (2.13): Photography of the microwave 7 GHz band-rejection filter.

2.3.6 Noise of the measured signal

We perform statistical measurement of the amplitude of the transmitted signal at 9.5 GHz.
Figure 2.15 shows probability density function of the measured amplitude. A fit has been
realised by assuming a Gaussian distribution of the following form:

f (x) =
1

σ
p

2π
exp

�
−1

2

� x −µ
σ

�2�
(2.24)

where σ and µ are the standard deviation and the expected value of the distribution, respec-
tively. The fit gives µ= 1.22 mV and σ = 13µV. The gain of the amplification chain for this
measurement was about 79 dB. We then estimate the standard deviation at the input of the
amplification chain dividing by the gain of the chain, we get 13 nV.

We can compare this experimental value to an expected one obtained from different cali-
brated parameters. Assuming that the main noise source is the cold amplifier, see Section 2.2.2,
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Figure (2.14): Measurement of microwave 7 GHz band-rejection filter shown in Fig. 2.13.
The blue curve shown S21 parameter measured with a commercial VNA (R&S ZVL13) and
the green curve with our microwave setup. Both measurements have been performed with a
bandwith of 1 kHz.

we can write the root-mean-square of the voltage as[69]:

VRMS =
Æ

4kBTR∆ν (2.25)

where kB is Boltzmann’s constant, R the resistance of the noise emitter, T the temperature of
the noise emitter, and ∆ν the bandwidth of the measurement chain. The noise temperature
has been calibrated to be about 4.5 K and the bandwidth is given by the integration time of
the board 1/∆t ≈ 3.33MHz. The histogram shown in Fig. 2.15 has been measured with 104

repetitions. In order to take into account this averaging, we divide23 the Eq. (2.25) by
p

N .
We obtain VRMS/

p
N = 2.7 nV.

23This operation is correct under following conditions: signal and noise are uncorrelated, signal strength is
constant in the replicate measurements and noise is random, with a mean of zero and constant variance in the
replicate measurements.
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Figure (2.15): Probability density function of the amplitude measured by heterodyne tech-
nique.
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2.4 Software environment

2.4.1 Python

The experimental environment has been developed at the beginning of my thesis. It was
the occasion to start a new software environment from scratch. The decision to use Python
has been taken by considering all the advantages offered by this choice. The previous
measurement platform used Labview to perform experiment, Matlab to perform numerical
calculation and Maple for symbolic computation.

Python allows to use the same programming language on all the steps of the data treatment
(acquisition, analysis, plot) thanks to the large number of available libraries. The base of
scientific library is composed of Numpy[84] and SciPy[85] which allow, among other things,
fast linear algebra operation Fourier transform, and powerful optimisation algorithms. The
graphics are handled by Matplotlib[86]. Symbolic computations are done with Sympy[87] and
IPython Notebook[88] with direct LATEX output.

Python is platform independent and can work on GNU/Linux, Mac, or Windows. This
aspect is important in our group where the three operating systems are used. The different
scripts can be exchanged, used and updated by anybody in the group without worry about
compatibility.

Python is free and open-source. We never have to pay to get Python and do not have to
be worried about the software licence agreement. Since everything is open-source you can
always have a look on the source code. There is no “black box”.

Python can be used with the object-oriented paradigm. The object-oriented paradigm is
powerful in the case of data acquisition. In our setup a real object like a micro-wave source
is then represented like a python object in the measurement script.

Numpy, through its implementation of universal function (built-in functions implemented
in compiled C code), allows fast treatment of large arrays of numbers. The condition is to
define a data type for the array. The experiments are performed with the numpy.float32 data
type which gives enough precision considering our acquisition setup.

2.4.2 Qtlab

QTLab is an IPython-based measurement environment. It has been written by Reinier Heeres,
Pieter de Groot, and Martijn Schaafsma. We use it as a general framework for our software
environment.

The QTLab framework is based on several classes interacting together. Figure 2.16 shows
an example of such interaction. The different classes of QTLab are described in the following.

Instrument

Instrument is used as a model to control and manage the different instruments handled by
the computer. The class introduces an abstraction layer by defining the notion of “virtual
instrument” in contrast to “physical instrument”. For example, a microwave source and a
pulse generator correspond to the physical instruments “mwsrc” and “dc_pulser”, respectively.
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Acquisition board
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script

Figure (2.16): Sketch of the interaction between the different classes in QTLab. All devices
are represented in python by an object under the generated name physical instrument. Virtual
instruments are composed of various physical instruments. A physical instrument can be used
by several virtual instruments.

Together they form the virtual instrument “mw_pulse” which generates microwave pulses.
When all the instruments of the experiment are correctly integrated in QTLab, the user mainly
drives virtual instruments.

In our experiment, a virtual instrument called “Microwave_pulse” is composed of two
physical instruments, the “Highland pulse generator” and a “R&S SMA 100A” microwave
source. The virtual instrument has four methods (set_frequency, set_power, set_width, and
set_status) which allow to modify the properties of the microwave pulse. We note that, for a
user of the virtual instrument, it is equivalent to tune the frequency or the width of the pulse.
However these two modifications involve two different devices, the microwave source to
change the frequency and the pulse generator to change the width. By the mean of the virtual
instrument abstraction, the complexity of using several real instruments for one purpose is
hidden making the experiment easier to perform.

Data

The class Data is used to organise and save data during measurement, and to retrieve data
from files afterwards. It also handles the directory tree in which data are stored. By default the
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name of one measurement is preceded by the timestamp corresponding to the launch of the
measurement. The stored data classified as one of two types called “coordinate” and “value”.
The coordinates correspond to the physical parameters which are set during a measurement
while the values correspond to the physical parameters which are measured. Units in which
coordinates and values are stored are also saved.

For example, the stored data of a typical S21 transmission measurement save, as “coordi-
nate”, the frequency and, as “value”, the amplitude and phase difference (see Section 2.3.4).

Independently of coordinates and values, all parameters of the instruments managed by
Qtlab are stored in a “snapshot” at the beginning of the measurement.

Plot

In QTLab the graphics are handled by Gnuplot[89] through the class Plot. An object of the
class is instanced by indicating the Data object in which the data to plot are stored. The plot
is then automatically updated while the measurement is progressing. 2D and 3D plots are
available as well as various options to customize plots.

Gnuplot is the only element of the environment which is not in python. To keep the
environment homogeneous, we think to adopt PyQtGraph[90] as graphics library for live
plotting. Indeed Matplotlib is powerful to produce publication quality figure but has the
drawback to be slow.

2.5 Superconducting coil

Figure (2.17): Superconducting coil screwed on the mixing chamber cold plate.

In our experiments, a magnetic field is used to tune the (EJ/EC)∗ ratio of the qubit but
also to tune the resonant frequency of the microwave resonator. We take advantage of the
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Characteristics coil 1 coil 2

Height [mm] 38 38

Layers 12 4

Turns 2325 775

Calculated inductance [mH] 100 25

Calculated current to field ratio [mT·A−1] 77 19

Table (2.1): Characteristics of superconducting coils used during experiments.

superconducting coils which have been installed in the past by Thomas Weißl and Iulian
Matei. Figure 2.17 shows a photograph of one coil mounted in the cryostat. Characteristic
parameters of the coils are summarised in Table 2.1. The coils have been fabricated at the
Neel institute by the “Pôle cryogénie”.

The coil is realised with niobium-titanium wires in copper matrix to improve the thermal-
isation of the coil. From the mixing chamber to the 4 K stage, the wires are superconducting
niobium-titan in copper-nickel matrix. A low contact resistance between the coil wire in
niobium-titan and the superconducting wire in niobium-titan embedded copper-nickel ma-
trix is achieved by soldering the two wires along 25 cm with tin. Between 4 K and room
temperature, the coil is contacted by constantan wires.

2.6 Sample holder

2.6.1 Presentation

Figure 2.18 shows a photograph of the sample holder. The top left picture shows the inside
of the sample holder. At the centre of the sample holder, a chip is visible. The bottom left
image is a zoom in the chip. Coplanar waveguides on the chip are connected to coplanar
waveguides on the PCB (printed circuit board) via aluminium wire bonds.

The PCB circuit was designed in collaboration with Christophe Hoarau from “Pôle service
electronique”. The substrate is in FR-424 with a thickness of 360µm. The metal at the surface
is a pure copper layer of 18µm. The PCB has been fabricated by EURO CIRCUITS25.

For coplanar waveguides on the chip and on the PCB, it is really important to have a
well-defined ground. By well-defined ground we mean a ground at the same potential all
along the lines. The connection of the ground of the PCB backside to the sample holder is

24Flame Resistant 4
25http://www.eurocircuits.com/

http://www.eurocircuits.com/
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Figure (2.18): Photography of the sample holder used for experiments. The top left shows
the inside of the sample holder, the bottom left is a zoom in the chip. The top right picture
is the top of the sample holder when it is closed and the bottom right is the bottom of the
sample holder.

realised with silver epoxy26. Moreover we also covered borders of the PCB with the same
epoxy (this is visible on the photo). The epoxy assure then a good electrical conductivity
between the PCB and the sample holder. Vias are also visible on all area of the PCB. The aim
of these vias is to short-circuit the frontside and the backside of the PCB. By this way the two
sides have the same potential which is the potential of the sample holder. The ground of
the chip is connected to the sample holder and to the PCB by wire bonds. To ensure a good
electrical conductivity, many bondings are used as we can see on the photo.

The thermal conductivity is also primordial for our experiment. The sample holder is
thermalised to the mixing chamber stage via a metal-metal contact realised with three screws.
The silver epoxy ensures a good thermal conduction between the PCB and the sample holder.
The chip is glued to the sample holder with GE varnish27 pressed between the backside

26FERRO laque L-200
27cryospare C5-101
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of the chip and the sample holder. The thermal conductivity of the GE varnish is about
3.2× 10−6 W·m−1·K−1 at 4 K.

Figure (2.19): Photograph of the sample holder inside the magnetic coil. Two BeCu/BeCu
coax cable are connected to the sample holder via SMP connectors. Two microcoax SS-SS
cables are also connected to the sample holder via SMP connectors.
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In Fig. 2.19 the backside of the sample holder is presented. Four SMP connectors28

connect the chip to the electrical setup. We can see, on the left side, two coax cables used
for the transmission of the microwave signal through the sample, and on the right side, two
microcoax cables used to current-bias the sample.

3D view Vertical cut

Copper plate
thermalised at

30 mK

Sample holder

Sample holder's lid

Coil support

Figure (2.20): Schematic view of the sample holder with the coil support.

Figure 2.20 schematises the sample holder and the magnetic coil support. Once the
sample holder is screwed inside the magnetic coil, the chip is positioned at the centre of the
coil where the magnetic field is most homogeneous.

2.6.2 Microwave properties

Figure 2.21 presents the measurement of the S-parameters of the sample holder realised
with a commercial VNA29. We see a linear decrease of the transmission as function of the
frequency. This feature is a typical signature of losses in the dielectric. Moreover, a dip of
about 5 dB occurs in transmission at 15.2 GHz. Hereafter we propose a simple explanation of
the origin of this dip.

The sample holder has a cylindrical internal cavity which contains a PCB and a chip.
However, this cavity can act as a microwave resonator. The derivation of the internal electro-
magnetic mode frequencies which exist in such a cylindrical cavity is a textbook problem and
we will here give the result found in the Pozar[61]:

28Radiall R222.051.000
29Agilent E8362C
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Figure (2.21): S parameters of the sample holder measured with a through connected to
the PCB. Measurements have been realised with a commercial calibrated VNA: the Agilent
E8362C, at room temperature.
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where h and r denote the height and the radius of the cylinder. pn,m denotes the m-th zero
of the n-th Bessel function of the first type, and p′n,m denotes the m-th zero of the derivative
of the n-th Bessel function of the first type. The mode number is denoted l.

Our cavity is 4 mm high with a radius of 7 mm. The mode with the lowest resonant
frequency is the TM010 which occurs at 16.39 GHz when we consider the permittivity of
the vacuum. However, the presence of the PCB changes the effective permittivity, reducing
the resonance frequency of the mode. A simple estimation of the total permittivity gives30

εtot =
hcavityε

vacuum
r εFR-4

r

(hcavity−hPCB)εFR-4
r +hPCBεvacuum

r
= 1.08, reducing the resonance frequency of the TM010 mode

to 15.77 GHz. We then conclude that the dip in transmission visible in Fig. 2.21 is due to the
TM010 mode of the sample holder cavity.

30Manufacturer gives εFR-4
r = 4.8
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2.7 Shielding

Both the microwave resonator and SQUID are highly sensitive to thermal radiation[91] and
spurious magnetic field[92–94]. In this section we present the different shields implemented
to screen as much as possible the electromagnetic field.

2.7.1 Electromagnetic shielding

Electromagnetic field fluctuations are screened inside the cryostat which acts as a Faraday
cage. The sample is placed inside a cylindrical cavity whose first electromagnetic resonance
is about 15.8 GHz, far away from the characteristic frequency of our sample.

Figure (2.22): Photography of the magnetic shield made from Metglas ribbon.

The magnetic shielding is ensured by three different protections. Outside the cryostat
a cylinder shield from MµMetal with a thickness of 2 mm surrounds the cryostat to protect
the inner vacuum chamber against external magnetic field fluctuations. A second magnetic
shield has been realised by wrapping the still temperature shield with one layer of Metglas31

ribbon. Figure 2.22 shows the third magnetic shield which consists of the sample holder
wrapped with several layers of Metglas.

The Metglas has a magnetic permeability which decreases at low temperature but which
does not drop to zero. At room temperature, with annealed material, the relative permeability

31Metglas 2714A Magnetic Alloy
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can reach 1 × 106. Hung P. Quach and Talso C. P. Chui have shown[95] that at 4 K the
permeability of the Metglas goes down to reach a plateau at µr = 1× 104.

We have to notice that the SMP connectors, male and female, used to connect coax cables
to the sample holder, visible on Fig. 2.22, contain beryllium, gold and nickel metal. Nickel is
ferromagnetic and so will create a magnetic field inside our magnetic shield. This is a defect
which has been solved in a new sample holder by moving the connectors further away from
the sample.
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3.1 Introduction

The work realised during my Ph.D can be decomposed in two parts. The main project is the
experimental fabrication of a V-shape level scheme in superconducting quantum circuit. It
required the fabrication of a quite complex, quantum circuit with several Josephson junctions,
a microwave resonator, and various control lines. We first present various considerations
that we have taken into account to design the chip. We next present the fabrication which
has mainly been carried out by Alexey Feofanov and Bruno Küng at the “PTA” and “Nanofab”
facilities. We explain the different steps of the sample fabrication recipe. Finally we discuss
the screening of magnetic field effects which occurs in the case of a quarterwave microwave
resonator and the solution adopted to avoid it.

The second project of my Ph.D was to fabricate microwave resonators from epitaxial layers
of rhenium. The rhenium has been grown by Benjamin Delsol[46] during his Ph.D. In the first
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section, we summarise the key fabrication steps. After growth, the sample was fabricated
by laser lithography. The second section is dedicated to the design of coplanar waveguide
resonators. We summarise equations necessary to design microwave resonators with a precise
resonance frequency. The third section presents the fabrication of the microwave resonators.
We present the process developed in collaboration with “Nanofab” to realise such samples.

3.2 Aluminium quantum circuits

3.2.1 Design considerations

Figure (3.1): SEM image of a chip zoom in one microwave resonator. The feedline is coloured
in green at the left of the picture. The λ/4 resonator is in red at the centre of the image.
Three DC flux bias lines are visible in purple, blue and cyan. The cyan line is used to flux bias
the qubit and the blue line to flux bias the SQUID. The purple line is only used to connect DC
lines of the two microwave resonators (the second one being not visible in the picture). The
yellow line is a microwave capacitive excitation line capacitively coupled to the qubit.

In Chapter 1, we presented an original circuit which exhibits a V-shape energy diagram.
To obtain a V-shape, the quantum device should have two important properties. First, it
should have two internal modes of oscillations that we have called in-phase and out-of-phase
oscillations. This can be achieved by implementing a loop inductance which is of the order
of the Josephson inductance of the junctions Lloop ≈ LJJ. Next the symmetry in the energy
diagram between the two oscillation modes should be broken. The key parameter for this
effect is the coupling gzz. We design our device in order to get a gzz larger than 100 MHz.
Figure 3.1 shows an SEM picture of our quantum device having a V-shape energy diagram.
The quantum device, too small to be visible on the picture, is positioned close to the shorted
end of a quaterwave resonator colored in red. At this position the qubit and the ancilla mode
will be coupled to the fundamental mode of the resonator, see Section 1.3.2. The microwave
resonator is capacitively connected to a feedline, in green, through which transmission
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measurement will be performed. We also see flux bias lines which allow local flux tunability,
in cyan and blue. A microwave line in yellow is capacitively coupled to the qubit mode to
excite directly the qubit without exciting photons in the resonator. Hereafter we discussed in
details the design of each component.

Logical and ancilla qubits

The logical qubit mode is similar to the Transmon mode since it corresponds to the in-
phase current oscillations through the junctions. Then to avoid decoherence due to spurious
charge fluctuation, the ratio (EJ/EC)∗ has to be about 50[18]. Furthermore to avoid thermal
population of the logical qubit levels (the ancilla qubit has always larger eigenfrequencies),
its resonant frequency has to be large compared to the base temperature of the cryostat
(~ω� kBT ). We can estimate the effect of the thermal environment on the qubit by deriving
the average energy of a harmonic oscillator coupled to a bath at a temperature T . This
textbook calculation is written in the “Quantum mechanics” from Cohen-Tannoudji et al.[58]

and the result is:

〈H 〉= ~ω
2
+

~ω

exp
�
~ω
kBT

�
− 1

(3.1)

with ω the eigenfrequency of the oscillator. For a base temperature of 30 mK and a qubit
frequency of 3.6 GHz we obtain 〈H 〉/(~ω/2) = 1.006, which means that the population of
higher state than the fundamental is negligible for our experimental parameters.

It is preferable to have small junctions to not be coupled to spurious two-level systems[96].
In order to fulfil the conditions of a small junction area and a large (EJ/EC)∗ ratio, we add in
parallel of the junction an inter-digital capacitance. Moreover, by this way we can almost
independently choose, by design, the value of the critical current and of the capacitance of
the junction.

We have seen in Section 1.3.2 that, due to the physical nature of the qubit and ancilla
modes, the qubit can only be excited via electric field and the ancilla only via magnetic field.
We also showed that this feature leads to different coupling strength, denoted gqb, ga, between
the qubit, ancilla and the fundamental mode of the resonator. However, this picture is correct
if the spatial extension of the SQUID is small compared to the wavelength of the resonance
frequency. Indeed we supposed so far that the electromagnetic field is homogeneous all along
the SQUID. But we know that, due to boundary conditions of the quarterwave resonator, the
current and voltage distribution vary with a cosine dependence, (see Eq. (1.83)). We can then
imagine a situation where the two Josephson junctions of the SQUID are coupled to a different
electromagnetic field. In this case an electric field can excite the ancilla and a magnetic field
can excite the qubit. To avoid such situation, the spatial extension of the SQUID should be
small compared to the wavelength of the resonance frequency, lSQUID� λresonator = 4lresonator.
For this reason we designed inter-digital capacitances with narrow and deep fingers which
allows to reach large capacitance with short arms length1.

1 This solution leads to an intense electric field between fingers. If spurious elements are in between the arms
of the capacitor, a coupling can occur between them. To minimise this coupling we can dilute the electric field.
One example can be found in [97] where there are almost no fingers in the inter-digital capacitors.
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The loop inductance of the SQUID has to be very large (tens of nano-Henry). We tried
two different implementations to reach such large inductance. The first one was realise
by a very thin and long wire between the two junctions. Indeed when the width of the
wire is thin enough, the kinetic inductance due to Cooper-pairs becomes important[98,99].
Nevertheless the length requires to reach few tens of nano-henry makes necessary to have
very long distance between the two junctions (typically for a wire width of 0.1µm and a
length of 400µm we obtain a kinetic inductance2 of about 15 nH). As we explained before,
it is preferable in our circuit to have a compact SQUID. We so prefer the second design where
a Josephson junction chain produces a super-inductor. We can obtain about 10 nH in only
15µm. The plasma frequency of the junctions chain has to be much higher than the plasma
frequency of the logical and ancilla qubit junctions in order to avoid resonant coupling.

Figure (3.2): SEM image of the SQUID used to implement the logical and ancilla qubits. A part
of the central line of the resonator is visible and coloured in red. The flux DC line is depicted
in cyan and the microwave excitation line is in yellow. The SQUID is coloured in blue. The
inter-digital capacitances are fabricated parallel to the junctions. The SQUID is galvanically
coupled to the microwave resonator. A chain of junctions is used as a super-inductor. A big
capacitor is coloured in green. This capacitor has been designed to avoid a screening effect
between the flux bias line and the SQUID. The screening effect is discussed in more details in
Section 3.2.3.

2This value has been obtained by measuring the DC resistance of the wire with a probe station. Florent Lecocq
derived in his thesis[53] that LK = µ0λ

2
Lξ0RN/k with λL the London penetration depth, ξ0 the coherence length

on the clean limit, RN the resistance in the normal state and, k = ρl∗ a constant of material which is the product
of ρ the conductance and l∗ the mean free path. Experimentally, we use the rule LK/RN = 1.1nH·kΩ−1 which has
been derived by Florent Lecocq for aluminium.
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(a) (b)

Figure (3.3): (a) SEM image of a the SQUID used to implement the logical and ancilla qubits.
This picture is a zoom in the central part of the SQUID shown in Fig. 3.2. The superinductor
is coloured in red, the two Josephson junctions in cyan, and the inter-digital capacitance in
green. (b) SEM image of one Josephson junction of the SQUID. The junction corresponds to
the square shape overlap between the two metallic layers at the center of the picture.

Figure 3.2 presents the SQUID fabricated to implement the logical and the ancilla qubit.
The total length of the device is of 215µm with 2× 87.5µm for the inter-digital capacitors.
The loop area is about 468µm2.

The fingers of the inter-digital capacitors have a length and width of 12.2× 0.6µm2 and
are separated by a constant gap of 0.8µm. It is possible to estimate the capacitance of such
structure with a textbook formula[50]:

C = (εr + 1)` [(N − 3)A1 + A2] (pF) (3.2)

with:

A1 =4.409 tanh

�
0.55

�
h
W

�0.45
�
× 10−6

�
pF·µm−1

�
, (3.3)

A2 =9.92 tanh

�
0.52

�
h
W

�0.5
�
× 10−6

�
pF·µm−1

�
, (3.4)

where εr is the relative permittivity, ` the width of the inter-digital capacitor, N the number of
fingers, h the height of the substrate, and W the width of the metal strip. Equation (3.2) gives
a capacitance of 53 fF. Capacitance extracted from data presented in Chapter 5 is around
40 fF, which is consistent with the design value.
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The Josephson junctions are shown in Fig. 3.3, their size is 125× 125nm2. Their self
capacitance is estimated through a simple model of a parallel plate capacitance C = εA/d
with ε = ε0εr the permittivity (εAl2O3

r ≈ 10.5), A the area of the junction, and d the thickness
of the insulating layer (between 1 and 3 nm). We obtain a self capacitance between 0.5 fF to
1.5 fF3. The critical current depends exponentially of the thickness of the insulated layer and
its value is adjusted empirically by successive fabrications. The fitted critical current from
experimental data discussed in Chapter 5 is Ic = 8.1 nA.

The superinductor is shown in Fig. 3.3. It is composed of twelve identical Josephson
junctions of area 0.3×1.2µm2. The estimated capacitance is between 10 and 35 fF. Since they
are fabricated in the same step as the Josephson junction, they have the same insulate layer
thickness. Thus if we note α = Achain

JJ /Aqubits
JJ = 22.4, the area ratio between the Josephson

junction of the chain and of the SQUID, we have Ichain
c = αIqubits

c = 180 nA. Test junctions
gives, at room temperature, a tunnel resistance ratio of 25, close to the area ratio. The
inductance of the chain is then given by Ltot

chain = N Lchain
JJ = Nφ0/(2πIchain

c ) with N = 12
in our samples. We obtain therefore Ltot

chain = 22nH. In Chapter 5, we extract from data a
loop inductance of 7.5 nH. The resonance frequency of the Josephson junctions of the chain
is estimated to be higher than 25 GHz so, much higher than the typical microwave signal
frequencies in our experiments.

The tunable resonator

The fast qubit readout protocol presented in the first section requires to have the ancilla qubit
in resonance with the microwave resonator. Nevertheless the optimal point for the logical
and the ancilla qubit is at φb = 0. It is then highly preferable to set the magnetic flux in the
SQUID and keep the logical and ancilla qubit at zero flux.

To reach resonant conditions between the resonator and the ancilla qubit we add a SQUID
within the central conductor of the microwave resonator to make the resonance frequency
tunable. Indeed in the simple case of a SQUID composed of identical Josephson junction
without loop inductance, the SQUID acts like a single Josephson junction with a flux tunable
critical current:

IcSQUID
= 2IcJJ

����cos
�
π
φb

φ0

����� (3.5)

where IcJJ
is the critical current of a single Josephson junction. When the resonance frequency

of the SQUID, ωSQUID, is much higher than the resonance frequency of the microwave
resonator, ωr, we can consider the SQUID as an inductor4:

LSQUID =
φ0

2π
1

2IcJJ

1���cos
�
π
φb
φ0

����
. (3.6)

3An empirical rule frequently used consists in assuming a capacitance per area unit of 50 fF·µm−2. By using
this rule we get a capacitance of 0.8 fF which is in consistent with value calculated from parallel plate capacitor
model.

4Another way to understand this assumption it to consider the Josephson junction as a capacitor in parallel with
an inductor. The resonance occurs when Zcapacitor = Zinductor. Far below the resonance frequency Zcapacitor� Zinductor

so, only the inductor has to be take into account.
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(a)

(b)

Figure (3.4): Sketch of a tunable inductor embedded in a distributed microwave resonator in
two different cases. (a) The SQUID can be positioned all along the resonator (xSQUID ∈ [0;`]).
At these positions current and voltage distributions are modified by the presence of the SQUID.
(b) The SQUID is positioned at the grounded end of the resonator (xSQUID = `). At this
specific position, the current is maximum.

Figure 3.4 shows an equivalent electrical circuit of a tunable inductance embedded in a
distributed microwave resonator. In the general case sketched in sub-figure (a), calculating
the frequency shift caused by the SQUID requires the solution of a transcendental equation,
which can be done numerically. Indeed the current and voltage distributions along the
resonator are strongly non-uniform. When a perturbation, like our tunable inductance, occurs
somewhere along the resonator, it is the whole field distribution which is modified. In contrast
when the SQUID is positioned at the end of the resonator, sub-figure (b), the perturbation
modified one boundary condition. This configuration simplifies the analytical derivation.
Hereafter we present the derivation of this simple case which, even if it does not correspond
to the reality of our sample, gives a physical understanding of the resonator tunability. The
input impedance of the circuit shown in Fig. 3.4 (b) is:

Ztot = i

�
ωLSQUID + Zr tan (β`)

−ωLSQUID tan (β`) + Zr
Zr −

1
Ccω

�
. (3.7)

Considering that the perturbation caused by the SQUID to the resonator is small, we can
approximate that, close to the resonance frequency of the resonator, tan(β`)≈ (2ωr)/(π∆ωr).
The total impedance is then:

Ztot = i

 
Zr

ωLSQUID − 2
π
ωr
∆ωr

Zr

Zr +
2
π
ωr
∆ωr

LSQUIDω
− 1

Ccω

!
. (3.8)

The resonance occurs when Im (Ztot) = 0. Assuming that LSQUIDCcω
2
0� 1, we get:

ω0 =
ωr

1+ Cc
`C`
+

LSQUID
`L`

(3.9)

where C` and L` are the capacitance and inductance per unit length of the microwave
resonator.
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Figure (3.5): Shift in frequency of a quarter-wave tunable resonator due to a SQUID located at
the short circuit (see Fig. 3.4 (b)). The different curves correspond to different LSQUID/ (`L`)
ratios.

Figure 3.5 shows the dependence of the microwave resonator frequency as a function
of the magnetic flux. The different curves correspond to different LSQUID/ (`L`) ratios. For
LSQUID/ (`L`) = 0 we obtain a flat curve which shows the frequency shift only due to the
coupling capacitance Cc. Since the capacitance is flux–independent, we obtain a flat curve.
For other LSQUID/ (`L`) ratio, we see a dependence of the resonance frequency with respect to
the flux. For small LSQUID/ (`L`) ratio, the curves show a strong dependence on the magnetic
flux whereas for higher ratio the curves become smoother. At half a quantum of flux, the
inductance tends to be infinite so the resonance frequency drops to zero. Around these points,
the flux dependence of the resonance frequency is too large and experimentally the resonance
will be dominated by flux noise. Thus it is preferable to have smooth dependence since that
allows a larger tunability without being affected by flux noise. For this, the SQUID inductance
should be at least 10 % of the resonator inductance.

Beyond the physical understanding given by the analytical formula in Eq. (3.9), numer-
ical calculation describes the effect of the SQUID position along the microwave resonator.
Figure 3.6 shows the resonance frequency of the resonator as function of magnetic field
for different SQUID positions. The case where the SQUID is positioned at the short circuit
(xSQUID = `) corresponds to the case analytically solved previously. The other curve show
how the flux dependence is modified as function of the SQUID position. When the SQUID
position tends to 0 (which corresponds to the open circuit position), the flux dependence
becomes smaller. This effect can be understood by considering the current distribution along
the resonator. The current is maximum as xSQUID = ` and minimum at xSQUID = 0 with a
cosine dependence between these two extrema (see Eq. (1.83)). Thus the current amplitude
through the inductance depends on the SQUID position. When there is no current, the SQUID
has no effect. In contrast when the current through the inductor is maximum, the resonance



3.2. ALUMINIUM QUANTUM CIRCUITS 131

Figure (3.6): Shift in frequency of a quarter-wave tunable resonator as a function of magnetic
flux. We took LSQUID/ (`L`) = 0.08 for calculation. The different curves correspond to
different position of the SQUID in respect to the resonator (xSQUID = 0 means a SQUID at the
position of the open circuit whereas xSQUID = ` means a SQUID at the short circuit).

shift due to the inductor will also be maximum. The effect of the tunable inductance depends
on the SQUID position.

Figure 3.7 shows the fabrication of a SQUID within the central line of the resonator. The
two Josephson junctions are identical with an area of 2× 3.4µm2. Their self-capacitance is
about 340 fF and from measurement of identical test junctions we estimate a critical current
of about 550 nA. Thus the resonance of such a SQUID should occur at a frequency higher
than 11.0 GHz. The loop area of the SQUID is about 515µm2 which is slightly larger than
the loop of the logical and ancilla qubit device.

Coupling between the resonator and the feedline

The resonator is capacitively coupled to the feedline. Figure 3.8 shows that the implementation
of the coupling has been realised by using the so-called “elbow” geometry. The feedline
width is 150µm with a gap of 83µm and a thickness of 100 nm which ensure a characteristic
impedance of 50Ω. The ground plane in between the feedline and the resonator is 5µm wide.
In the “elbow” geometry only the length of the resonator which is parallel to the feedline
produces a coupling. This feature gives a powerful and easy way to calibrate the coupling
with the design. The design has been realised in order to be in the limit where the length of
the resonator which is effectively coupled to the feedline is small compared to the wavelength
of a resonant signal. In this limit, we can model the coupling as a discrete element, here a
capacitance. In our sample the length which produces a coupling is about 600µm which is
far below the total length of the resonator, about 3 mm and so is far below the wavelength of
the resonant signal which is about 4× 3mm. The complete model of the resonator coupled
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Figure (3.7): SEM image of a the SQUID used to make the resonator tunable. A part of
the central line of the resonator is visible and coloured in red. A flux DC line is depicted in
cyan. A big capacitance is coloured in green. This capacitance has been designed to avoid a
screening effect between the flux bias line and the SQUID. The screening effect is discussed
in more details in Section 3.2.3.

to the feedline is described in Appendix B. By using this model we are able to extract the
equivalent capacitance which is about 7 fF.

3.2.2 Fabrication of the different patterns

The Qubit samples have been fabricated by Bruno Küng in the PTA and Nanofab facilities.
The fabrication consists of three steps. The first one is the fabrication of alignment crosses on
the wafer. The second one is the realisation of coarse patterns like the feedline and the DC
flux bias lines. The last one is the fabrication of the Josephson junctions, of the central line
of the microwave resonator, and of the flux bias line capacitances.

Alignment crosses

Table 3.1 presents the recipe to realise the alignment crosses. The exposure, the development,
the gold evaporation and the lift-off have to be done without waiting time. Indeed the resist
“UV5” is not stable after exposure. Manufactor datasheet gives no guarantee after 2 hours.
To keep a good contrast in the mask, it is preferable to be far below this duration.

5We have used Nanofab or PTA facilities without distinction
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Figure (3.8): SEM image of resonator capacitively coupled to a feedline.

Step Description Equipment used Precision

1 UV5 resist deposition Spinner 1 min at 4000 rpm
2 Baking Hotplate 1.5 min at 130 ◦C
3 E-beam lithography JEOL JBX-6300 FS Acceleration voltage: 100 kV

Aperture: 5 (60µm)
Beam current: 5 nA
Dose: 70µC·cm−2

4 Postbake Hotplate 1 min at 130 ◦C
5 Development AZ326MIF Duration 50 s

Rinse in DIW
N2 blow dry

6 Au evaporation Plassys MEB 550S5 5 nm Ti and 80 nm Au
7 Lift-off Acetone Duration 60 min

Rinse in IPA
N2 blow dry

Table (3.1): Recipe for the alignment crosses in gold.
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Coarse patterns

Step Description Equipment used Precision

1 Native oxide removal 1 % HF Duration 2 min
Rinse in DIW
N2 blow dry

2 Al deposition Plassys MEB 550S 100 nm at 1 nm·s−1

3 UV5 resist coating Spinner 1 min at 4000 rpm
4 Baking Hotplate 1.5 min at 130 ◦C
5 E-beam lithography JEOL JBK-6300 FS Acceleration voltage: 100 kV

Aperture: 5 (60µm)
Beam current: 5 nA
Dose: 40µC·cm−2

6 Postbake Hotplate 1 min at 130 ◦C
7 Development and etching AZ326MIF Duration 50 s

Rinse in DIW
N2 blow dry

8 Lift-off Acetone Duration 60 min
Rinse in IPA
N2 blow dry

Table (3.2): Recipe for the feedline, flux traps, microwave resonator cavities and DC flux bias
lines.

Table 3.2 presents the recipe to realise the coarse patterns of the Qubit sample. We use
silicon wafers6 of 2 inches diameter. The wafers are undoped and show a resistivity higher
than 10000Ω·cm. They are 280µm thick and since they have been in contact with air, a thin
layer of silicon oxide is formed at the surface.

The first step is to remove the native oxide of the wafer with hydrofluoric acid. G. Mende
et al. have shown[100] that silicon oxide grows at a rate of 0.02 nm·min−1 on 〈100〉 oriented
silicon wafer in air at room temperature. They also confirmed the observation of S. I. Raider
et al. who showed[101] that the equilibrium oxide thickness is between 1.1 nm to 1.4 nm.
Thus to avoid formation of silicon oxide the wafer is placed in a evaporator for aluminium
deposition as fast as possible (typically less than 5 min). The total aluminium deposited
thickness is 100 nm. The development of the resist and the etching of the aluminium are
done in one step because of the UV5 resist . The duration given in the recipe is 50 s but in
order to decide when to stop the etching a visual control is preferable than a strict respect of
the instructions.

Figure 3.9 presents two SEM pictures of the sample after the fabrication of the large
patterns. In Fig. 3.9 (a), the feedline is visible at the extreme left. The cavity which will
contain the central conductor of the resonator is the central structure with a crook shape.

6BT electronics: WAFERS SILICIUM FZ DIAMETRE 2".
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Figure (3.9): (a) Global optical image of one sample after the fabrication of the coarse
patterns. The feedline is the vertical line at the left of the picture. Three DC flux bias lines
are visible on the picture as well as the microwave excitation line for the logical qubit. A
cavity which will contain the microwave resonator is at the center of the picture. (b) Zoom
in the place where the qubit will be fabricated. The line coming from the top will be used as
a bias flux line. Coming from the bottom, the line will be used as an excitation line for the
logical qubit.

The DC flux bias lines and the excitation lines are also fabricated here. A lot of holes inserted
inside the ground plane surround the resonator cavity. These holes are made to trap spurious
magnetic flux and therefore to avoid flux jumps. Indeed the resonance frequency of the
resonator depends on the magnetic flux applied to the SQUID. It is crucial for our experiment
to have stable magnetic environment. Figure 3.9 (b) presents a zoom in the future position of
the Josephson quantum circuit which will realise the logical and ancilla qubits. We note that
the top ground of the future quarterwave resonator is interrupted at the position where the
flux bias line is close to the resonator cavity. This has been made in order to avoid circulating
current around the resonator cavity. A more detailed explanation is writtend in the next
section where the fabrication of the junction is done.

Josephson junctions and small patterns

The process to fabricate Josephson Junctions and small patterns is displayed in Table 3.3. The
characteristic of a Josephson Junction are given by two parameters, the intrinsic capacitance
of the junction and its critical current. The capacitance scales as the ratio A/d where A is the
area of the capacitor plate and d the thickness of the barrier. The critical current is related to
the tunnel effect and depends exponentially on the barrier thickness d. The key parameter
during the Josephson junction fabrication is then the control of the insulate layer. The barrier
is typically made by oxidising the aluminium. Moreover the quality of the junction strongly
depends on the quality of the oxide as well as the quality of the metal–oxide interface.
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Step Description Equipment used Precision

1 Resist coating 92 % ARP 617-08 45 s at 2000 rpm
P(MMA-MAA) 2:1

8 % in ethyl lactate
2 Baking Hotplate 10 min at 200 ◦C
3 Resist coating 96 % ARP 679-04 50 s at 6000 rpm

(PMMA 950 k)
4 % in ethyl lactate

4 Baking Hotplate 4 min at 180 ◦C
5 E-beam JEOL JBK-6300 FS Acceleration voltage: 100 kV

lithography Aperture: 4 (25µm)
Beam current: 1 nA
Undercut dose: 400µC·cm−2

Opening dose: 1050µC·cm−2

6 Development 1:3 MIBK:IPA Duration 30 s
Rinse in IPA 35 s
N2 blow dry

7 Cleaning ICP Oxford plasmalab 100 Process: BKNettoyageO2
Pressure 40 mtorr
Duration 20 s
Power 30 W

8 Al deposition Plassys MEB 550S 19 nm at 0.1 nm·s−1 and −45◦

Oxidation 5 min at 3.3 torr
50 nm at 0.1 nm·s−1 and 45◦

9 Lift-off Shipley Remover 1165 Temperature 80 ◦C
Ultrasonic bath (pulses mode)
Rinse in DIW
N2 blow dry

Table (3.3): Recipe for the SQUIDs and the microwave resonators.
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Our fabrication technique involves a vacuum chamber in which metal is deposited by
evaporation. We pump during a whole night the vacuum chamber in order to remove as
much as possible residual gas. At the beginning of the process, a crucible containing solid
pieces of aluminium is placed vertically below the wafer (at 30 cm of distance). The wafer
is tilted in respect to this vertical line to realise an evaporation at oblique angle. At this
point of the process, the wafer is isolated from the crucible with a metal plate to avoid
aluminium deposition during the calibration of the deposition rate. The aluminium is heated
by using an electron beam. The electrons are produced by thermionic emission from a
tungsten filament. They are accelerated by a cathode and deflected with a magnetic field. A
permanent magnet give the main path for the electrons and two small coils allow precise
displacement of the electron beam to only heat aluminium inside the crucible. Due to the
electron beam aluminium evaporates from the crucible in a cone of evaporation. Due to
very low pressure the evaporated atoms of aluminium propagate in straight lines7. A quartz
crystal microbalance gives the rate of the deposition of the evaporated aluminium. Once
the deposition rate reaches the target value, the metal plate isolating the wafer from the
evaporation cone is removed. In order to obtain high film quality, it is better to have high rate
of deposition since this minimises the relative rate of spurious impurity inclusion. However
the deposition rate has to be keeped under a certain threshold to avoid unstable deposition
rate. A feedback allows to keep the same rate of evaporation during all the deposition process.
When the desired thickness is reached, the metal plate is put back and the electron beam
is stopped. The vacuum pumping is stopped by closing a valve between the pump and the
chamber. The oxidation of the aluminium is realised by opening a micro-valve between the
deposition chamber and an oxygen bottle. Once the pressure inside the chamber reaches
the target value, the micro-valve is closed and the oxidation continues during 5 minutes.
When the oxidation time is finished, the valve between the vacuum chamber is reopened to
relaunch the pumping. The pressure decreases rapidly to less than 1× 10−6 mbar. A second
layer of aluminium is deposited with the same process but with a different angle between the
wafer and the vertical line and a different thickness.

The Josephson Junctions are fabricated by using two different techniques, the “Dolan
bridge technique”[106] for small junctions (125× 125 nm2 for the logical and ancilla qubits)
and the “Control undercut technique”[107] for larger one (from 0.3×1.2 µm2 for the Josephson
junction chain to 2× 3.4 µm2 for the SQUID making the microwave resonator tunable).

The Dolan bridge technique is used in a perpendicular configuration to obtain small area
junctions, 100× 100 nm2. Indeed 100× 100 nm2 is the limit of feasibility of the Controlled

7An estimation of the mean free path can be obtained by using the formula[102,103]:

l =
kBTp
2πd2P

(3.10)

where kB is the Boltzmann constant, T is the temperature, P is pressure, and d is the diameter of the gas particles.
The boiling point of aluminium is about 2750 K at standard pressure and drop to[104] 1100 K at the vacuum
chamber pressure P = 2× 10−7 mbar. Atoms diameter are about[105] 125 pF. The estimated mean free path is
about l = 11 000m, much longer than the distance between the crucible and the wafer which is about 30 cm.
More realistic calculations take into account the fact that the evaporated particle diameters are not well defined.
Nevertheless the results obtained from these models give a mean free path of several hundred of meters.
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Figure (3.10): SEM image of a Josephson junction fabricated with the Dolan bridge technique.
The Junction, in parallel with another one, is used to implement the qubit and ancilla
two levels system. The first and second angle evaporation are coloured in green and blue,
respectively.

Undercut Technique. Moreover in the perpendicular configuration, the area of the Jospehson
junction is very well controlled. Figure 3.10 shows such junction. The first and second angle
evaporation are coloured in green and blue, respectively. The junction is then delimited by
the square defined by the overlapping of the two junctions.

The Controlled Undercut Technique has been developed by Florent Lecocq during his Ph.D
thesis at the Neel institute. The technique has the big advantage to give a more robust resist
mask. Moreover we have a direct access to the wafer underneath the junction. It is then easier
to clean the wafer with an oxygen plasma before the metal deposition. The cleaning step is
crucial to obtain good quality Josephson junction. Figure 3.11 shows junctions fabricated
with such technique. Finally, it is simple to combine the “Controlled undercut technique”
with other angle evaporation technique on the same design.
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Figure (3.11): SEM picture of the Josephson junction fabricated with the controlled undercut
technique. The first and second angle evaporation are coloured in green and blue, respectively.
(a) The junction shown, which is in parallel with another one (not shown), form a SQUID
making the resonator tunable with magnetic field. The Josephson junction occurs at the
overlap between the two evaporations at the center of the picture (2× 3.4 µm2). (b) The
chain consist of Josephson junctions of are: 0.3× 1.2 µm2. The junctions are formed by the
overlap of the two evaporations. It is difficult to see, we so have enhance the position of one
of the junction by a dashed red line.
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3.2.3 A fight against the screening effect

The sample has two differents SQUID. One of them is used to make the resonator tunable
while the other is the qubit circuit. Both have their own flux bias line in order to be tuned
independently. Figures 3.2 and 3.7 show the two SQUIDs and their flux bias line. On the two
pictures we also see a big capacitance coloured in light green. The capacitances have been
implemented to avoid superconductor screening between the flux bias line and the SQUID’s.

Indeed in the initial chip design the ground plane around the resonator and the two
SQUIDs was closed. A hole surrounded by a superconductor was then formed. When a
magnetic field is applied to a superconductor, direct screening current appears at the border
of the superconductor due to the Meissner effect. The flux is quantised through each closed
path in the superconductor and therefore through the hole. In this first experiment we were
only able to cover 7 % to 8 % of one flux period of the SQUID. The surface area of the SQUID
loop is about 515µm2 which gives a field amplitude of 0.3µT inside the SQUID loop so, a
mutual inductance of MDC line→SQUID = 26.5φ0·mA−1. This mutual inductance is far too low
since the upper limit of current amplitude in our DC line is about 1 mA.

To reduce the screening effect, we changed our design from Fig. 3.12 (a) to Fig. 3.12 (b).
The first aluminium layer is open between the cavity of the microwave resonator and the flux
bias line (see Fig. 3.9 (b)). Next during the junction fabrication, a capacitor closes the cavity
of the resonator. The thickness of native aluminium oxide is about[108] 4 nm which leads,
with an area of 2000µm2 and a relative permittivity of 10.44, to a capacitance of 46 pF. The
largest estimated kinetic inductance of the narrow wire separating the two plate capacitor
is about 22.5 pH. If we simulate the circuit as two capacitors in series with an inductor, we
obtain that at 10 GHz its impedance is about 1.4Ω, much smaller than the characteristic
impedance of the resonator which is about 72Ω. Thus this big capacitance will act as short
circuit for our microwave signal and as an open circuit for direct screening currents. We are
able to cover one flux period with a current biased from −300µA to 300µA so, a mutual
inductance of MDC line→SQUID = 1.6φ0·mA−1.

3.2.4 Test junctions

In order to estimate the junctions parameters, a batch of so-called “test junctions” are
fabricated together with the sample. The test junctions have the same design as the junction in
the experimental sample and are fabricated at the same time. Consequently the test junctions
should have approximately the same circuit parameters, critical current and self-capacitance,
as the junctions of our sample.

Figure 3.13 shows the design to fabricate the test sample. With a probe station, we
measure the DC resistance of different circuits between the pad A and the other pads. ch-1
and ch-2 corresponds to the Josephson junction of the superinductor, qb-1 and qb-2 of the
logical and ancilla qubits and sq-1 of the SQUID making the resonator tunable. We extract
the junction resistance by subtracting the resistance of lines. All lines are equivalent and their
resistance is measured with circuit “line”. We note that to increase the signal-to-noise ratio
of the SQUID Josephson resistance we put three junctions in series. We use the well-known
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(a) Closed ground plane (b) Capacitively closed
ground plane

Screening current
Ground plane

Figure (3.12): Circulation of the screening current with a closed ground plane (a) and with
the capacitance (b). The top pictures have been obtained from optical microscope and SEM.
They show the SQUID with its flux bias line. The two bottom sketches give an idea of the
modification brought by the opening of the microwave cavity on the direct screening current.
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A
ch-1

ch-2

qb-1 qb-2

sq-1

line

A

ch-1 ch-2 qb-1 qb-2 sq-1 line

Figure (3.13): Design of the test junction chip. On the left, we show a sketch of the whole
design of the test sample and on the right we make a zoom in the Josephson junctions area.
Different paths allow to measure different Josephson junction resistances. From pads “ch-1,2”
to pad “A”, we measure the resistance of junctions of the superinductor. From pads “qb-1,2”
to pad “A”, we measure the resistance of junctions used to make the logical and ancilla qubits.
From pad “sq-1” to pad “A”, we measure the resistance of three junctions identical of SQUID
junctions used to make the resonator tunable. Finally, from pad “line” to pad “A”, we measure
the resistance of the line. By design all measurement lines have the same length which allows
to extract the resistance of Josephson junctions by simple subtraction.
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Ambegaokar-Baratoff formula to calculate the critical current from the resistance[49]:

IcR
4K
n =

π∆

2e
tanh

�
∆

2kBT

�
kBT�∆≈ π∆

2e
, (3.11)

where∆ is the superconducting gap and R4 K
n the normal state resistance of the tunnel junction

at low temperature. The tunnel resistance measured at room temperature is smaller by 30 %
to 50 % compared to the resistance at 4 K. We apply then a correction factor R4K

n = 1.4R300 K
n .

The value of the critical currents measured with test junctions compared to critical currents
extracted from data presented in Chapters 4 and 5 are between 2 and 5 times smaller.

3.3 Rhenium microwave resonators

One aspect on my thesis project was to realise superconducting microwave resonators in
rhenium. Indeed the rhenium material can be deposited on a sapphire wafer by molecular
beam epitaxy. The quality of the rhenium layer obtained as well as the interface between
the sapphire and the rhenium is very high, (see Fig. 3.14 as an example of epitaxial layer of
rhenium). Moreover the rhenium does not oxidise, leading to cleaner interfaces. A microwave
resonator fabricated in such high quality metal layer should exhibit high internal quality
factor. Hereafter we present the process implemented for the realisation of a quarter wave
microwave resonators in epitaxial rhenium layer. We also give the design equation to fabricate
microwave resonators with target physical parameters.
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Figure (3.14): AFM picture in amplitude of a epitaxial layer of rhenium. We note the presence
of large epitaxial areas visible through clear atomic steps. Some holes are visible but they
represent a tiny percent of the total layer surface.
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3.3.1 Epitaxy of rhenium

The epitaxy of the rhenium has been realised by Benjamin Delsol in the team of Bruno Gilles
at the SIMaP “Laboratoire de Science et Ingénierie des Matériaux et Procédés”. I was not
personally involved in the fabrication of the epitaxial layer of rhenium. I propose a summary
of the crucial steps to obtain a high quality sample.

Cleaning of the sapphire substrate

In order to achieve epitaxial deposition of rhenium, it is crucial to have the surface of the
substrate as clean as possible. Indeed it is easy to understand that any defects at the surface
will produce defects in the rhenium layer.
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Figure (3.15): AFM picture in height of a sapphire substrate after cleaning and baking. The
atomic steps are clearly visible.

The substrates for the epitaxy were covered by small beads of ≈ 50nm of diameter. These
objects are surely a residue of the wafer polishing process in which small beads of aluminium
oxide are used as an abrasive. These residues can be removed with peroxysulfuric acid, or
Caro’s acid. In more detail the recipe is to plunge the wafer in the Caro’s acid during 5 min.
Next the wafer is rinsed in DIW, after in ethanol and finally dried with N2. The substrate
is baked at 1400 K during 1 h under controlled atmosphere composed of argon (80 %) and
oxygen (20 %) in order to relax tensions. The result of the process is shown in Fig. 3.15. The
atomic steps are clearly visible and no contaminations are visible.

Tungsten on the backside

In order to realise epitaxial growth of rhenium, it is crucial to ensure a good mobility of
adatoms which are deposited on the substrate. The adatoms need to diffuse to reach their
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position of least energy. The easiest way to reach such a condition is to bring energy to the
adatoms by heating the substrate to about 1000 K. This is usually done by using a current–
biased tungsten wire. By Joule effect, the wire emits thermal radiation. The substrate is
placed close to the tungsten wire in order to be heated by the radiation. However, the sapphire
is mostly transparent to the infrared and so, it is difficult to correctly heat the substrate by
this way at the beginning of the growth (indeed once some rhenium layers are deposited on
the substrate, they absorb thermal radiation and ensure a good mobility for adatoms).

To solve this problem, a layer of tungsten of 300 nm has been deposited by sputtering at
the backside of the wafer. The deposition has been realised by Philippe David at the Neel
institute. By thermal conduction the sapphire is then correctly and homogeneously heated.
The tungsten has been chosen because of its high melting temperature 3422 ◦C.

Rhenium epitaxy

Different sample of epitaxial rhenium have been fabricated by B. Delsol. The conditions of
the growth have been modified from sample to sample in order to find optimal parameters.
Hereafter we restrict ourself to a simple description of the process8.

The rhenium is grown under ultra high vacuum (≈ 1× 10−10 mbar) to avoid pollution of
the rhenium layers (see the deposition chamber in Fig. 3.16). At the typical deposition speed
of 0.1 Å·s−1 , the growth of a sample takes several hours.

Once the growth is finished, the wafer is cut in several chips of roughly 7× 5 mm. The
fabrication of the microwave resonator is realised on such chips.

8The interested reader can find all the detail in the Thesis of B. Delsol[46]
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Figure (3.16): Ultra high vacuum chamber used for the rhenium epitaxy. The deposition
chamber is on the right and the characterisation chamber is on the left.
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3.3.2 Design of coplanar waveguide resonator

The microwave resonators are fabricated in the coplanar waveguide geometry. The typical
mapping as well as the electromagnetic field distribution of such a microwave line is shown
in Fig. 3.17 (a) and (b).

Design equations[109] for CPW geometry can be found in various books as, for instance,
“Microstrip lines and slotlines”[110] from K. C. Gupta. A general approach is to solve the
problem in the quasi-static approximation by using conformal transformation[111]. This
approach consists of transforming the CPW geometry in a simple parallel–plate capacitor, see
Fig. 3.17 (c). In the simplest analysis, the metal thickness is considered negligible and the
substrate height is considered infinite. The capacitance per unit length is the sum of the air
and substrate capacitance. The total capacitance is then:

C` = 4ε0εeff
K (k1)

K
�
k′1
� (3.12)

with εeff = (εr + 1)/2 is the effective permittivity, K (k1) is the complete elliptic integral of
the first kind9, k1 = w/(w+ 2s) and k2

1 + k′21 = 1.
In practice, the substrate height is finite. A preliminary conformal mapping transforms

then the finite thickness of the substrate into an infinite thickness one. Only the effective
permittivity is altered, it becomes:

εeff = 1+
εr − 1

2
K (k2)

K
�
k′2
� K

�
k′1
�

K (k1)
(3.13)

with:

k2 =
sinh

�
πw
4h

�

sinh
�
π(w+2s)

4h

� , (3.14)

k′2 =
q

1− k2
2. (3.15)

The characteristic impedance is given by:

Z =
30πp
εeff

K
�
k′1
�

K (k1)
. (3.16)

9The module “special” of the SciPy library contains the function “ellipk” to easily calculate the complete elliptic
integral of the first kind. One note that the argument of the function is m= k2. Also when m≈ 1, the function
“ellipkm1” should be used instead.
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(a) Coplanar waveguide (CPW) geometry

(b) Electromagnetic field distributions in CPW

Electric field lines
Magnetic field lines

(c) Conformal transformation of CPW half plane

Figure (3.17): Sketch of coplanar waveguide. (a) Coplanar waveguide (CPW) geometry
with εr. the relative permittivity, h the substrate height, t the metal layer thickness, s the
gap width and, w the central line width. (b) Electromagnetic field distributions in CPW. (c)
Conformal transformation of CPW half plane. The point e is suppose to be infinitely far from
the origin.
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The magnetic inductance per unit length follows from the equation for the propagation
speed v = c/

p
εeff = 1/

p
L`C` giving:

L` =
µ0

4

K
�
k′1
�

K (k1)
(3.17)

where µ0 are the vacuum susceptibility. Due to the small width and small thickness of the
central line of our resonators, the kinetic inductance has to be taken into account to correctly
model the inductance per unit length. The kinetic inductance can be written as[112]:

Lk = µ0λeff g coth
�

t
λeff

�
(3.18)

where t is the thickness of the metal layer and λeff the effective penetration depth. The
parameter g allows the calculation of the kinetic inductance for a coplanar waveguide
geometry. It is defined as follow[113,114]:

g =
1

32K2 (k1)
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s (w+ s)

�
2
w
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δ

s
w+ s

�
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��
, (3.19)

with the width δ = t/(4πeπ). A useful expression for calculating the effective penetration
depth from material parameters is:

λeff =

√√ ~ρN

µ0π∆
(3.20)

where ρN is the resistivity of the metal just above the superconducting–normal transition
and ∆ is the superconducting gap. In the case of a λ/4 resonator, a simple derivation gives
the following resonance frequency formula:

νr =
1

4` λ
4

√√ 1
(L` + Lk)C`

(3.21)

where ` λ
4

is the total length of the quaterwave resonator.

3.3.3 Microwave resonator fabrication

Removal of the tungsten backside layer

The first step of the microwave resonator fabrication is to remove the backside layer of
tungsten. The tungsten has been evaporated only to allow a good heating of the sapphire for
the rhenium epitaxy, without consideration about its electrical properties. To avoid losses
due to the tungsten layer, we completely remove it.

Table 3.4 presents the recipe to etch the 300 nm of the tungsten layer. The first step
consists to deposit resist on the rhenium layer to protect it during the etching of the tungsten.
Figure 3.18 shows a sketch of the method. A drop of resist S1818 is deposited on a support
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Step Description Equipment used Precision

1 Resist coating S1818 Deposit a drop of resist on
a surface and drop the
chip on it
(rhenium layer in contact
with the resist)

2 Cleaning Plassys nanofab, Process RES Duration: 30 s
Plasma: O2
Flow: 20 sccm
Pressure: 2× 10−1 mbar
Power: 50 W

3 RIE Plassys nanofab, Process NbT Duration: 20 min
Plasma: SF6
Flow: 20 sccm
Pressure: 2× 10−2 mbar
Power: 20 W

4 Resists removal ethanol Duration 10 min
Rinse in isopropanol
N2 blow dry

Table (3.4): Recipe to remove the tungsten backside layer.

Si wafer. Next the chip of rhenium is turned over and dropped on the resist. With a clamp
we push the chip in the resist to cover the sides of the chip. The idea is to protect the sides of
the rhenium layer to avoid unwanted chemical etching.

In the RIE, the first step is to apply an oxygen plasma of about 30 s to remove residue of
resist on the tungsten.

The tungsten layer thickness is 300 nm. The layer is removed with a plasma of SF6. After
some test, a duration of 20 min seems enough to remove entire the tungsten layer. Typically
we over-etch the tungsten. Indeed the tungsten has been deposited on an unpolished surface
of Sapphire. Due to the high roughness, an over-etching is required to completely etch the
tungsten.

The final step consists of removing the resist. The sample is immersed in ethanol during
10 min. Next it is rinsed with isopropanol and dried with clean nitrogen gas.

Etching of the microwave resonators

Table 3.5 presents the recipe developed for the fabrication of microwave resonators on
rhenium chip. The first step is the deposition of S1805 resist on rhenium layer. Next a baking
of one minute at 115 ◦C allows the fast evaporation of solvent present in the resist.

The laser lithography is realised on a "Heidelberg DWL66FS" machine by Bruno Fernandez.
Due to the small size of the chip (5× 8 mm), we have to find the centre of the chip manually.
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Sample

Resist

Tungsten
Sapphire
Rhenium

Silicium plate
Old and useless piece of wafer

Figure (3.18): Sketch showing the protection of the rhenium layer by the use of resist. We
note that the resist covers the rhenium layer, even at the sides, but not the tungsten.

The focus is adjusted manually. The small size of the chip also induced an excess of resist at
the borders. The design is then adapted to have an exposure only on the flat part of the resist
which corresponds to a surface of 3.5× 6.5 mm.

The development uses a mixture of deionised water and microdev in 1:1 proportion. A
visual control during the development is useful to check the success of the operation. Once
the development is finished, the chip has to be immersed in deionised water to stop the
chemical etching reaction.

The process RES is used to remove residues of resist and the process NbT to etch the
rhenium. An etching speed for rhenium has been calibrated at 11 nm·min−1.

The resist is removed by immersing the chip in acetone during 10 min. Next, we pass the
chip by an isopropanol bath before cleaning it with deionised water. Finally the chip is dried
with clean nitrogen.

Figure 3.19 shows two pictures of the “Re-EJM-186” sample. The left picture presents
four microwave resonators coupled to the same feedline. Resonators are designed in order
that their resonances occur between 7 GHz and 10 GHz which corresponds to the bandwidth
of our microwave measurement line (see Fig. 2.14). Each resonator is detuned to its nearest
neighbour by 130 MHz. Indeed each resonator have a length difference of 80µm. The
readout of each resonator is then performed by using the “Frequency-division multiplexing”
technique. The right picture presents a zoom in one of the microwave resonators. The central
conductor of the resonator measures 5µm and the gap measures 20µm. To obtain a λ/4
resonator the resonator is shorted on one side and open on the other. A capacitive coupling
is obtained by positioning the open side close to the feedline.

10Zeiss Ultra plus
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Step Description Equipment used Precision

1 Resist coating S1805 30 s at 4000 rpm
Ac: 6000 rpm·min−1

2 Baking Hotplate 1 min at 115 ◦C
5 Laser lithography Heidelberg DWL66FS Sample position: 8

Alignment angle <15 mrad
Energy: 65
Find manually chip centre
Make the focus manually

6 Development Microposit Developpeur:DIW Duration 60 s
1:1 Rinse in DIW (keep under)

N2 blow dry
7 RIE Plassys nanofab, process RES Duration 5 s

Plassys nanofab, process Nbt Etch speed: 11 nm·min−1

9 Lift-off Acetone Duration 10 min
Rinse in isopropanol
Rinse in DIW
N2 blow dry

Table (3.5): Recipe for the microwave resonators.

Figure (3.19): At the left, photography of a rhenium chip with four λ/4 resonators and
a feedline. Bondings used for ground and feedline connection are visible. At the right, a
SEM10picture of one resonator. Both pictures show the “Re-EJM-186” sample.
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4.1 Introduction

The characterisation of the microwave resonator is important in order to determine the
regime, under- or over-coupled, of the system. Moreover, as we will see in Chapter 5, the
characterisation of artifical atom parameters requires a good knowledge of the resonator
parameters.

From Section 4.2 to Section 4.4 of the chapter we introduce models and concepts used to
analyse microwave resonance curve measurements. In particular in Section 4.4 we discuss
the asymmetric, or Fano, resonance shape. We will show that this effect can be understood as

153
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an interference between two signals. Moreover, we explain the asymmetry by the inductance
of the bonding wires connecting the sample chip to the rest of the microwave lines. A model
taking into account these bondings is presented and discussed.

In Section 4.5 we present measurements on microwave resonators made from rhenium.
Temperature dependence is shown. In particular we discuss qualitatively the temperature
dependence of the quality factors using a two–fluid model. An extraction of the London
penetration length via cavity resonance frequency measurement is also presented. The section
ends by a discussion about low internal quality factor measured in our experiments.

The Section 4.6 is dedicated to the measurement on a frequency–tunable microwave
resonator made from aluminium. We show a way to calibrate the transmission measurement
by taking advantage of the tunability of the resonator frequency. We present measurements of
resonator parameters as function of applied magnetic flux. We will show how the inductance
of the SQUID leads to a hysteretic behaviour of the cavity resonance frequency as function of
magnetic flux.

4.2 Model of the quarterwave resonator

A simple schematic view of the system is shown in Fig. 4.1. Our resonators used the "elbow"
geometry[99] to be coupled to the feedline. This design allows to couple a small part of the
resonator to the feedline. Moreover the length of the elbow part is small compared to the
length of the resonator and the microwave wavelength at the resonance frequency. Only the
part where the electric field is predominant is coupled to the feedline (see Section 3.2.1). We
can then neglect the inductive coupling. The capacitive coupling is modelled by a discrete
element, a single capacitor Cc (Fig. 4.1). The resonator is modelled as a transmission line
with characteristic impedance Zr which is shorted to ground at one side and opened at the
other side.

4.3 Lumped–element model

Despite the fact that our microwave resonators are implemented by using transmission lines,
it is interesting to describe these distributed resonators as lumped-element resonators. The
transformation is illustrated in Fig. 4.2.

This transformation requires that:

α`� 1 (4.1)
∆ωr

ωr
� 1 (4.2)

with α the attenuation of the transmission line and ωr the resonance frequency of the
resonator. We also introduced ∆ωr =ω−ωr the relative angular frequency where ω is the
applied angular frequency. Equation (4.1) implies low loss in the resonator and Eq. (4.2)
restrains the frequency validity range close to the resonance frequency. When both conditions



4.3. LUMPED–ELEMENT MODEL 155

Feedline

resonator

Elbow coupler

(a) (b)

Figure (4.1): (a) Sketch of a λ/4 microwave resonator coupled to a feedline. The coupling
is realised with an elbow coupling geometry. The superconductor is shown in grey and the
substrate in white. (b) Equivalent electrical circuit. The coupling is modelled as a single
capacitor Cc and the feedline as a transmission line of characteristic impedance Z0. The
resonator is modelled as a transmission line of characteristic impedance Zr which is shorted
to ground at one side and opened at the other. Impedances Xe model impedance mismatch
due to aluminium bondings between the sample chip and the printed circuit board, see
Section 4.4.1.

are fulfilled, the impedance of Eq. (1.60) becomes:

Zin =
Zr

α`+ i π2
∆ωr
ωr

. (4.3)

By comparing Eq. (4.3) and the impedance of a parallel RLC resonator we identify the
equivalent lumped element of a quarterwave resonator, see Table 4.1.

Denomination Equivalence

Capacitance Cλ/4 =
`
2 C`

Inductance Lλ/4 =
8`L`
π2

Losses Rλ/4 =
Zr
α`

Internal quality factor[61] Qi = Rλ/4
r

Cλ/4
Lλ/4
= π

4
1
α`

Table (4.1): Correspondence between electrical components of a lumped-element and a
distributed λL/4 resonator.

We note that the equivalent RLC circuit only has one mode of resonance, in contrast with
the distributed resonator in which harmonic resonances exist. This limitation implies that
the transformation described above is only correct at the vicinity of one resonance frequency.
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Figure (4.2): Illustration of the transformation between a distributed λL/4 resonator to a
lumped RLC element resonator. In both cases, the resonator is opened at one end and shorted
to ground at the other end.

4.4 Transmission of a feedline capacitevely coupled to a quarter-
wave resonator

The derivation of the transmission of the system is detailed in Appendix B. The final result is:

S21 =
1+ 2iQi

∆ω0
ω0

1+ Qi
Qc
+ 2iQi

∆ω0
ω0

(4.4)

Qi is the internal quality factor already defined in Table 4.1 and Qc is the external quality factor
(see Eq. (B.15)). The resonance frequency of the resonator coupled to the feedline is denoted
ω0 and the drive frequency relative to the cavity resonance frequency is ∆ω0 =ω−ω0. To
understand the physical meaning of these terms, we derive the internal loss rate κi =ωr/Qi
and the external coupling rate as κc = ω0/Qc. κi gives the rate at which energy stored in
the resonator cavity is lost to the environment, while κc informs us about the rate at which
energy stored in the cavity goes into the feedline. The decay times are:

T ext
cav =

2Qc

ω0
=

2
κc

, T int
cav =

2Qi

ωr
=

2
κi

. (4.5)

The transmission of the signal amplitude is given by |S21| while |S21|2 corresponds to power
transmission of the signal. |S21|2 as function of the frequency follows a Cauchy–Lorentz
distribution shape:

|S21|2 = 1−
1−

�
Q0
Qi

�2

1+
�
2Q0

∆ω0
ω0

�2 = 1− I

1+
�
2 ∆ω0
δFWHM

�2 (4.6)
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where Q−1
0 = Q−1

i +Q−1
c is the total quality factor. The depth of the resonance dip and the

full width at half maximum are given by I = 1− (Q0/Qi)
2 and δFWHM =ω0/Q0, respectively.
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Figure (4.3): Depth of the dip and full width at half maximum as a function of the Qi/Qc
ratio.

Figure 4.3 shows the depth of the dip and the FWHM as function of the Qi/Qc ratio. For
Qi/Qc ¦ 10 the depth of the dip as well as the FWHM are constant. We call this regime the
undecoupled regime. In this limit the internal losses become negligible and we can consider
that energy entering inside the resonator will not be lost before being sent back to the
feedline. The linewidth of the resonator depends only on its external coupling κc =ω0/Qc.
For Qi/Qc < 10, the overcoupled regime, the dynamics of the resonator depend on the
external coupling but also on the internal losses.

4.4.1 Why certain resonances are asymmetric ?

Measured resonance dips may have an asymmetric shape and not a simple Lorentzian shape.
Such asymmetric shapes can be attributed to an impedance mismatch in the feedline[115,116]

on either side of the resonator as indicated in Fig. 4.1 by the two Xe impedances. Our
interpretation attributes these impedances to wire–bondings between the chip and the printed
circuit board.

To evaluate this effect, a complete derivation of that problem is described in Appendix B.
The transmission formula becomes:

S21 =
Z0

Z0 + iXe

1+ 2iQi
∆ω0
ω0

1+ Qi
QcZ0
(Z0 + iXe) + 2iQi

∆ω0
ω0

(4.7)
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Figure (4.4): |S21 (ν)|2 for different asymmetry value. The left panel presents transmission is
in decibel and the right one in radian.

Figure 4.4 shows the effect of the inductance of the bondings on the resonance shape.
Without inductance of the bondings, the impedance matching is perfect and the resonance is
symmetric. Indeed, Eq. (4.7) simplifies to Eq. (4.4) when the inductance of the bondings
can be neglected. The transmission is described by a Cauchy–Lorentz distribution. As the
inductance of the bondings increases from 0 nH to 2 nH, the transmission power decreases
from 0 dB to −5 dB. An offset also occurs on the phase of the transmitted signal. These effects
come from reflections which arise because of the impedance mismatch. Futhermore, the
resonance becomes more and more asymmetric as the inductance of the bondings increases.
The shape becomes asymmetrical because of constructive and destructive interferences which
occurs on both sides of the resonance. Indeed due to the impedance mismatch caused by
inductance of the bondings, the transmitted signal has a phase delay compared to the same
signal without this additional inductance. Moreover the resonance causes a phase shift, first
negative and next positive, along the frequency sweep. When both effects arise together,
the resulting signal is lowered when the interference is destructive and amplified when the
interference is constructive. This is what we observe at the left and right of the resonance,
respectively. The resonance frequency is also slightly shifted when the asymmetry increases.
This effect is also due to the inductance of the bondings which changes the frequency at which
the imaginary part of the transmitted signal will be zero. Nevertheless this frequency shift is
really small, less than 0.1 MHz (0.001 % of the resonance frequency) for a 2 nH inductance
of the bondings.
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4.5 Rhenium microwave resonator

Several samples of rhenium microwave resonators have been fabricated and characterised
during my thesis. Hereafter we present a series of measurements performed on the same
rhenium sample chip. The rhenium layer, of thickness 25 nm, has been deposited at 970 K. It
exhibits a resistivity at room temperature of 21.2µΩ·cm and a residual resistance ratio of
4.45. The intrinsic coherence length and the mean free path have been extracted by transport
measurements. We obtain ξ0 = 120 nm and `mfp = 45nm, respectively. Figure 4.5 shows the
sample chip connected to the sample holder with four quarterwave resonators made from
rhenium. Figure 4.6 shows the microwave transmission of that sample. We observe three
dips, each of them corresponding to one microwave resonator. An SEM observation showed
us that the longest resonator was shorted to ground, explaining why only three resonances
were visible.

Figure (4.5): Left side, a photography of microwave resonators etched in a rhenium layer.
The chip is connected to the sample holder via tens of microbondings. Right side, a SEM
picture of the microwave resonators.

4.5.1 Extraction of resonator parameters

Figure 4.7 shows a zoom of the lowest frequency resonance at 6.038 GHz. The data are
displayed in blue points and the model of Eq. (4.7) is plotted in dashed red. The model to fit
resonance dips contains four independent parameters, namely the internal quality factor Qi,
the external quality factor Qc, the resonance frequency ν0, and the bonding wire impedance
Xe. These extracted parameters are listed in the caption of Fig. 4.7.
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Figure (4.6): Three resonances measured on the same chip with the frequency division
multiplexing method. Measurement was performed with a commercial VNA “R&S ZVL13”
with a bandwidth of 1 kHz, a power at the output of the VNA of −30 dBm and was averaged
10 times. The base temperature was T = 60 mK.

Inductance of the bondings between feedline and the PCB

As we explained in Section 4.4.1, the asymmetric shape is due to an impedance mismatch
causes by inductance of the bondings. We estimate the value of the inductance of the bondings
at the resonance frequency by calculating Lbonding = |Xe|/ω0. In Fig. 4.7, the asymmetry
is quite pronounced and the estimation gives a inductance of the bondings of 1.9 nH. To
confirm the extracted inductance of the bondings we measure their length, approximately
4 mm. From that, we roughly estimate the inductance of the bondings1 to be about 2 nH.
Discrepancy between our estimation and our fit is about 5 %, only.

Coupling between resonator and feedline

The extraction of the coupling capacitance from the external quality factor requires to estimate
the impedance of the resonator from its geometry. This estimation is performed from design
via equations discussed in Section 3.3.2. The external quality factor is related to the coupling
capacitance between the microwave resonator and the feedline, see Eq. (B.15). In Fig. 4.7
the coupling capacitance is Cc = 4.6 fF.

1The inductance per unit length for bonding wires is Lbondings
`

≈ 1 nH·mm−1.
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Figure (4.7): Zoom in the first resonance shown in Fig. 4.6. The result of the fit using Eq. (4.7)
is plotted in dashed red. Fit parameters are Qi = 5500, Qc = 2200, ν0 = 6.038GHz, and
Lbondings = 1.9nH. Measurement was performed with a commercial VNA “R&S ZVL13” with
a bandwitdh of 1 kHz, a power at the output of the VNA of −30 dBm and was averaged 25
times. The base temperature was T = 60mK.

Resonator parameters

We show in Section 4.3 that a quarterwave resonator can be described as a simple RLC parallel
oscillator. If we assume the system as a RLC resonator coupled through a capacitance to a
feedline, we can demonstrate:

ω0 =

√√√ 1

Lλ/4
�
Cλ/4 + Cc

� . (4.8)

This equation is true only when2 C2
cω

2
0Z2

0/4� 1. From Eq. (4.8) and the definition of the
characteristic impedance Zr =

p
L`/C`, we obtain3:

Cλ/4 =
π

4Zrω0
− Cc

2
(4.9)

By using Eq. (4.9) and Eq. (4.8), we extract Cλ/4 and Lλ/4 from the fit parameters.
From Fig. 4.7 we obtain Cλ/4 = 222 fF and Lλ/4 = 3.1nH. The equivalent capacitance and

2This condition corresponds to the limit of validity for the transformation of a RC series circuit to a parallel
one[117]. It corresponds to the square ratio of the feedline impedance seen by the resonator (so Z0/2) over the
coupling capacitor impedance which should be negligible. Physically it means that the capacitance should be
small enough in order that the open circuit assumption of the quarterwave resonator stays correct.

3The equation is only true for Cc � (2Qi)/(Rλ/4ω0). This condition means that the coupling capacitance
should be small compared to the capacitance of the equivalent RLC resonator. Experimentally this condition is
always fulfilled since Cc is two orders of magnitude smaller than Cλ/4.
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inductance are important since they inform us about the participation ratio of the electric
and magnetic field in the resonator.

4.5.2 Measurement of the resonance frequency as function of temperature

In order to observe the effect of the temperature on the resonance line shape, we perform
a series of resonance line shape measurements for the three resonances shown in Fig. 4.6
for various temperature (from 60 mK to 560 mK with steps of 50 mK). The temperature was
controlled by a “proportional-integral-derivative controller”4.

Figure 4.8 presents the results of the experiment. The three resonance line shapes exhibit
the same behaviour with a shift to smaller frequency and a reduction of the dip depth when
the temperature increases.

From Eq. (4.7), we extract resonator parameters as function of temperature. The quality
factors and the relative frequencies are shown in Fig. 4.9.

Internal and external quality factor

The external quality factor obtained by this analysis is independent of temperature (Fig. 4.9
(a)). The rate at which energy leaves the resonator to go into the feedline is due to the
electrical coupling between the open extremity of the resonator and the feedline. At this
position, the electrical field can be considered as temperature-independent.

The internal quality factors decrease for the three resonators when the temperature
increases. Moreover the resonators exhibit different internal quality factors at T ≈ 0K but
they have the same internal quality factor for high temperature. These two features can be
both explained by the two-fluid model proposed by Gorter and Casimir[118]. They assume
that the quasiparticle density nn follows the empirical temperature dependence for T < Tc:

nn

ne
=
�

T
Tc

�4

(4.10)

with ne the total electron density. At very low temperature the density of quasiparticles is
negligible. The internal quality factor is then limited by other factors (see Section 4.5.3 for a
discussion about the internal quality factor values). When the temperature is high enough,
the density of quasiparticles cause losses which decrease the value of the internal quality
factor. At high temperature, the quasiparticle density becomes the main source of losses and
the three internal quality factor tend to the same value.

4iMACRT from “service électronique du département MCBT”. http://neel.cnrs.fr/spip.php?
article2402&lang=fr

http://neel.cnrs.fr/spip.php?article2402&lang=fr
http://neel.cnrs.fr/spip.php?article2402&lang=fr
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Figure (4.8): Measurement of the resonance line shape of (a) the first, (b) the second and
(c) the third resonance presented in Fig. 4.6 for various mixing chamber temperature. The
three resonance line shapes exhibit the same behaviour with a shift to smaller frequency
and a reduction of the dip depth when the temperature increases. Measurements have been
performed with a commercial VNA “R&S ZVL13” with a bandwitdh of 0.1 kHz, a power at
the output of the VNA of −52 dBm. Data have been averaged 10 times. Curves presented in
this figure have been smoothed with a Savitzky–Golay filter[82,83].
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Figure (4.9): Temperature dependence of resonance parameters for three resonators fabri-
cated on the same chip. Panel (a) presents the temperature dependence of the external quality
factor, panel (b) of the internal quality factor, and panel (c) shows the evolution of the relative
resonance frequency squared ω2

0(T )/ω
2
0(0) in temperature. The dashed black and red curves

are calculated from Eq. (4.14) with αk = 0.8, Tc = 1.9K and αk = 0.4, Tc = 1.6K, respectively.
We remark that in the range of temperature covers by data points, the two theoritical curves
seems equivalent. The inset shows a zoom out of the temperature dependence for theoretical
curves. We observe that the discrepancy between the too curves occurs only for T close to Tc.
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Extraction of the effective penetration depth

The relative resonance frequency for the three resonators presents the same behaviour with
less than 0.04 % of discrepancy between values up to 560 mK. From Eq. (3.21) we calculate
the relative resonance frequency as:

ω2
0(T )

ω2
0(0)

=
L` + Lk (0)
L` + Lk (T )

. (4.11)

where L` and Lk are the magnetic and kinetic inductance per unit length. The kinetic
inductance given in Eq. (3.18) can be linearised when t/λeff� 1 as:

Lk = µ0 g
λ2

eff

t
. (4.12)

From the Gorter Casimir law, the temperature dependence of the penetration depth is given
by:

λ2
eff (T ) =

λ2
eff (0)

1−
�

T
Tc

�4 . (4.13)

Leading to the relative resonance frequency temperature dependence:

ω2
0(T )

ω2
0(0)

=
1−

�
T
Tc

�4

1−
�

T
Tc

�4
(1−αk)

(4.14)

with αk = Lk/(L`+ Lk), the fraction of kinetic inductance. Data shown in Fig. 4.9 (c) are very
well fitted by Eq. (4.14) with Tc and αk as free parameters (see the dashed black and red curves
for the theoretical laws). The extracted parameters are αk = 0.6± 0.2 and Tc = 1.7± 0.2K.
However, due to the small dependence of the resonance frequency in this experiment, the
errors on the fit parameters are important.

As an example, we plot in Fig. 4.9 (c) the theoretical predictions with αk = 0.8 and
Tc = 1.9 K for the black curve, and αk = 0.4 and Tc = 1.6K for the dashed red curve. In the
temperature range of the experiment, i.e. at T � Tc, the two curves do not exhibit a visible
difference. The inset in Fig. 4.9 shows that the two curves deviates only at T → Tc. We
conclude that our measurement does not allow a precise determination of the fit parameters.

By using the extraction of resonator parameters described in Section 4.5.1 we obtain a total
inductance per unit length of 1070 nH·m−1 leading to a magnetic inductance per unit length
of L` = 400±200nH·m−1 and a kinetic inductance per unit length of Lk = 650±200nH·m−1.
From Eq. (4.12) the effective penetration depth is deduced, λeff = 225± 40nm.

Extraction of the London penetration depth

Since the rhenium film is in the so-called dirty limit, the London penetration depth is related
to the effective penetration depth as[119]:

λL = λeff

√√ξeff

ξ0
(4.15)
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with ξ−1
eff = ξ

−1
0 + `

−1
mfp the effective coherence length where, ξ0 and `mfp are the intrinsic

coherence length and the mean free path, respectively. We calculate the London penetration
depth λL = 130± 20 nm for rhenium.

Comparison with other measurements and estimations

The critical temperature can be compared to the critical temperature deduced from resistance
versus temperature measurements, see Fig. 4.10. The transition between superconductor
and normal metal is unusual with a kind of two sub-transitions, the first one at about 1.85 K
and the second one at 2.125 K. The critical temperature extracted through the temperature
dependence of the resonance frequency is lower than the critical temperature suggested by
the two sub-transitions.

The magnetic inductance per unit length can be compared to the estimation from the
geometry of the resonator. Equation (3.17) gives L` = 716nH·m−1 which is twice larger than
the extracted magnetic inductance from temperature measurement.

These discrepancies between extracted values suggest that further measurements are
necessary to conclude about the value of the different parameters. The error on the extracted
parameters can be lifted by measuring the cavity resonances at higher temperature or by
fabricating microwave resonators with higher kinetic inductance ratio. The first solution is
difficult to realise since due to the low quality factor of the resonator at high temperature,
the resonance dip becomes really shallow. The second solution would be easier since by
designing a microwave resonator with a narrower central line, the inductance ratio will
increase. Currently the width w of the central line is 5µm, this can be reduced to 1µm
leading to an inductance ratio twice larger according to Eq. (3.18).
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Figure (4.10): Measurement of the resistance of the same epitaxial layer of rhenium as the
one we used to fabricate our microwave resonator.
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4.5.3 Low internal quality factor

In the previous section, we have extracted an internal quality factor of about 15× 103. These
measurements have been performed on a rhenium layer of thickness 25 nm and deposited
at 970 K. The crystallographic quality of this rhenium layer was not epitaxial and presented
a granular texture. We then performed measurements on another rhenium layer deposited
at 1040 K for a thickness of 100 nm. This rhenium film is a complete epitaxial layer (see
Benjamin Delsol’s thesis in [46]). Figure 4.11 presents resonances for these two different
layers. The internal quality factor of resonators are very close with Qi = 13× 103 and
Qi = 15× 103 for low and high crystallographic quality, respectively. The fact that the two
different quality films present similar internal quality factor suggests that the limiting factor
is not the quality of the rhenium film. Hereafter we propose a list of explanations about the
cause of low internal quality factor and possible solutions.
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Figure (4.11): Two resonances measured on two different rhenium films. The left panel
present the low crystallographic quality layer whereas the right panel the high quality one.
Both of them exhibit approximately the same quality factor with Qi = 13× 103 for the left
panel and Qi = 14× 103 for the right panel. However, due to the quality difference between
the two films, an higher internal quality factor was expected for the right resonance.

Losses in our superconducting resonator may come from high frequencies radiation which
enter by our coax cables and causes quasiparticles excitation. We can then add microwave
filter at the input and output line in order to prevent high frequency radiation to reach the
sample. Such filters are usually made with Eccosorb[120,121] which offers a good trade-off
between low attenuation at some giga-hertz and strong attenuation for high microwave
frequency.

Barends et al. showed the importance of having a multistage shielding to avoid losses
due to infrared light[91]. They add a light-tight box surrounding the sample holder. The
box is designed in order to avoid as much as possible photon leakage from outside to inside.
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Moreover, the inside walls are painted with a black coating[122] to absorb residual photons.
They show that the internal quality factors of a superconducting resonator can be increased by
one order of magnitude by this strategy of a “box-in-a-box” compared to standard approaches.

Residual magnetic field may also cause losses in the superconducting resonator. The
perpendicular magnetic field creates vortices in the superconducting layer. The motion
of these vortices due to the application of a microwave signal to the resonator leads to
energy dissipation. One strategy to prevent such losses is to etch holes in the superconductor
layer[93,94]. These holes will act as pinning centers for Abrikosov vortices. Since the vortices
are then blocked, the energy dissipation due to their motion disappears. In a coplanar
waveguide geometry, holes have to be etched in the central line of the microwave resonator
but also on the edges of the ground plane in order to prevent Abrikosov vortices motion due to
counter-currents. Finally, authors of Ref. [93] showed that holes in the feedline improve the
quality factor of resonator coupled to that feedline. Another approach is to make a resonator
with a small central line (few micro-meters). The magnetic field needed to create a vortex is
approximately equal to[123] φ0/w

2 with φ0 the flux quantum and w the width of the central
line. For our design (w≈ 5µm), the residual magnetic field must be below 13µT, which is
acheivable using magnetic shielding.

4.6 Aluminium resonators

The characterisation of the aluminium microwave resonators presented in Section 3.2 is
complicated due to the various elements coupled to the resonator. Indeed in order to make
the resonator tunable, a SQUID is implemented within the central line of the resonator. It is
placed approximately in the middle of the quarterwave resonator, see Fig. 3.7. There is also
a shared inductor to magnetically couple the ancilla qubit which is close to the grounded
end of the microwave resonator. Each element requires several parameters to be correctly
modelled. This approach will lead to a complex description of the circuit with many adjustable
parameters. In a first subsection we will prefer a description of the resonator as an equivalent
RLC resonator. That way we will extract an equivalent inductance and capacitance of the
circuit which will be useful in the following to determine the inductance of the SQUID. In a
second subsection we will discuss the tunability and the extracted circuit parameters. In the
last subsection, we will study the magnetic-flux dependence of the internal quality factor.

4.6.1 Characterisation of the resonance

By taking advantage of the tunability of the resonance frequency, we can calibrate the
transmission measurement in order to only obtain the response of the microwave resonator.
Indeed to realise the calibration we measure the transmission at a magnetic field close to
φb/φ0 ≈ 0.5. This curve, in blue in Fig. 4.12, will be the reference curve. To obtain the
calibrated transmission, we divide the measured transmission (in green in Fig. 4.12) by the
reference transmission. This method allows to calibrates S21 measurement for any magnetic
field far away from φb/φ0 ≈ 0.5, the magnetic field at which the reference S21 has been
measured.
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Figure (4.12): Measurement of |S21|2 for two different magnetic fields. One measurement,
the blue curve, has been measured with at a magnetic field corresponding to the lowest
resonance frequency of the resonator. This curve will be used as a reference for the calibration.
The second curve, the green one, corresponds to the highest resonance frequency of the
resonator. It is possible to calibrate the second measurement by using the reference curve,
see Fig. 4.13

Figure 4.13 shows the result of the calibration for amplitude, top panel, and phase, bottom
panel. We note that by this way we have corrected the data for the effect of spurious reflections
along the transmission line. Then we fit the result of the calibration with Eq. (4.7). We extract
the following parameters for the resonance: Qi = 2000, Qc = 2000, Lbondings = 0.95nH. With
the method described above, we get the equivalent inductance and capacitance Lλ/4 = 1.9 nH
and Cλ/4 = 220 fF. The coupling capacitance is 9.5 fF.
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Figure (4.13): Relative resonance of a microwave resonator made from aluminium. The top
panel presents the attenuation in decibel and the bottom panel, the phase response of the
resonator. The dashed red line is the fit calculated from the model in Eq. (4.7). The fit gives
the following parameters for the resonance: Qi = 2000, Qc = 2000, Lbondings = 0.95nH.
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4.6.2 A tunable resonance frequency

As we discussed in Section 3.2.1 the resonance frequency of the resonators is made tunable
by the magnetic flux applied to a SQUID positioned along the central line of the resonator.
Figure 4.14 presents transmission measurement as function of frequency and magnetic field.
For these measurements, we use the magnetic coil presented in Section 2.5. The top/bottom
panel were obtained by increasing/decreasing magnetic field. A hysteretic behaviour of the
resonance as function of magnetic field is clearly visible.
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Figure (4.14): Transmission measurement as function of frequency and magnetic field. The
magnetic field is shown via the current sent to the coil, in bottom, or via the estimated
magnetic field, at the top (see Table 2.1). The estimation of the magnetic field does not take
into account the effect of field concentration due to the superconductor ground plane which
surround the SQUID. The top panel shows a sweep in magnetic field from negative to positive
values and the bottom panel shows a sweep from positive to negative values. A hysteretic
behaviour of the resonance dip as function of magnetic field is clearly visible.

Hysteretic behaviour of the resonance under a magnetic field.

We extract the resonance parameter with Eq. (4.7). Figure 4.15 presents the resonance
frequency of the microwave resonator as function of the magnetic field. The sweep from
negative to positive and from positive to negative magnetic field have been superimposed to
enhance the hysteresis.

The model based on a SQUID embedded in a resonator (presented in Section 3.2.1) is
unable to explain the hysteresis of our measurements. In this model we neglect the inductance
of the SQUID which is not correct in this experiment. Taking into account the inductance
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Figure (4.15): The top panel presents the resonance frequency of the microwave resonator
as function of the number of flux quanta. The different arches are depicted in different
colour, each arches corresponding to a defined flux state. The black solid line is the resonance
dependence given by the model. The bottom panel presents the estimated SQUID inductance
as function of the flux quanta.

related to the in-phase oscillations, we derive the SQUID inductance as:

LSQUID (φb) =
φ0

2π
1

2Ic

1
cos [y (φb)]

(4.16)

where y (φb) is defined in Eq. (1.35). When the loop inductance becomes negligible y →
πφb/φ0, we recover the usual inductance of a SQUID derived in Eq. (3.6). When the
loop inductance becomes comparable to the Josephson inductance, the internal flux is
not equal anymore to the applied flux due to the apparition of screening current: φint =
φb + Lloop Iscreening. This effect creates the overlap between arches visible in Fig. 4.15 and the
hysteretic behaviour. The SQUID inductance depends then on the Josephson inductance but
also on the loop inductance.

By using the inductance in Eq. (4.16) to calculate the resonance frequency, we are able to
correctly reproduce its dependence in magnetic flux. We extract from the fit the SQUID loop
inductance, the critical current of SQUID junctions, and the resonator equivalent inductance.
Moreover the fit leads to the calibration of the mutual inductance between the coil and the
SQUID loop (Mcoil→SQUID = 8.44φ0·mA−1).

The fit requires the value of the shared inductor between the resonator and the artificial
atom. This value has been estimated through the geometry to be about 180 pH. The position
of the SQUID and the total length of the resonator are also needed. We took the value defined
by the circuit design.

The extracted SQUID inductance is of LSQUID loop = 351pH and the critical current of
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Ic = 1.8µA. These extracted parameters are consistent with independent estimations. Indeed
an estimation of the loop inductance with the design of the SQUID gives a value of LSQUID loop
about 300 pH (a discrepancy of 15 %). The test junctions have a tunnel resistance at room
temperature of 565Ω which gives an expected critical current of about 0.78µA (about twice
smaller than the extracted value).

Dependence of the internal quality factor on magnetic flux

Figure 4.16 (b) and (c) show the internal and external quality factor as function of magnetic
flux. The two curves show a flat behaviour when the flux is close to an integer number of
flux quanta. Around half of flux quanta, the internal quality factor seems rather to become
larger and the external quality factor smaller.

These results suggest that the internal quality factor of our resonator is not limited by
the flux noise. Indeed a flux noise would induce[124] a growth of the resonance width
proportionally to ∂ ν0/∂ φb. The internal quality factor should then exhibit its highest value
around an integer value of flux quanta and shows a minimum value around half of flux
quanta. This is in contradiction with the experimental results, indicating that the flux noise
is not the limiting factor for the internal quality factor in our experiments.

Moreover, the internal quality factor is not limited by quasiparticles[125]. Indeed the
SQUID can be seen as an inductor in parallel with a resistor. Atφint = 0, the SQUID inductance
is very low so current can freely flow through it. When φint tends to half of flux quanta, the
inductance increases by a factor two. As the inductance is increased, more of the current
will flow in the resistor leading to an increase of the dissipation. The internal quality factor
should exhibit its highest value at zero flux and should show a decrease as the magnetic field
becomes closer to half of flux quanta. Our measurements presenting a flat dependence of the
internal quality factor as function of the magnetic field, the presence of quasiparticles does
not appear to be the limiting factor.
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Figure (4.16): Resonance parameters extracted from data shown in Fig. 4.14. Blue points
correspond to resonance parameters extracted from a magnetic field sweep from negative to
positive values and green points correspond to a sweep from negative to positive values. Panel
(a) shows the resonance frequency and the panel (b), and panel (c) presents the internal and
external quality factor, respectively.
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5.1 Introduction

This chapter is dedicated to the experimental study of the V-shape devices fabricated dur-
ing my thesis. We present measurements performed on two nominally identical samples,
called “V-shape-1” and “V-shape-2”. The two quantum devices are coupled to two spatially
separated microwave resonators. The two resonators are connected to the same feedline
and exhibit a resonance frequency of 7.281 GHz and 7.719 GHz, respectively. This allows
multiplexing measurement of the two V-shape samples during the same cool-down. The
extracted parameters of the two samples are summarised in Appendix C.

In the first section, we will show a spectroscopy of the V-shape devices as function of
the magnetic flux. Through the magnetic flux dependence of the different resonances, we
will identify the logical and ancilla qubit energy level. An extraction of the V-shape circuit
parameters will be realised with the analytical model presented in Chapter 1 and with a
numerical solution of the Hamiltonian by using Kwant[126].

In the second and third section, we will investigate the dynamics of the logical qubit.
We will present coherent oscillations between the two levels of the qubit, the so-called Rabi
oscillations. Relaxation time of half a microsecond is measured and compared to other
transmon qubit relaxation times presented in literature. The coherence of the logical qubit as
function of the microwave field intensity is also presented and discussed.

In a fourth section, we will present coherent oscillations and relaxation time measurement
performed on the ancilla qubit. We will show that the ancilla qubit has a relaxation time
comparable to the logical qubit but a much shorter coherence time. Explanations of this
shorter time will be discussed.

In the fifth section, we will present measurements demonstrating a large cross-anharmonicity
between the logical and ancilla qubit. This feature is crucial to yield a V-shape energy diagram.
The extracted cross-anharmonicity of the two samples will be compared to the theoretical
prediction from the analytical model of the Chapter 1. A good agreement will be found,
validating the circuit model of our experimental quantum device.

In the last section we will discuss the validity of our claim: The experimental realisation
of a V-shape energy diagram. We will summarise the different properties that a quantum
device should have to be a V-shape. We will show that our experimental realisation fulfills
every point of the list allowing us to consider our quantum device as a V-shape quantum
device.

5.2 The V-shape coupled to a resonator

5.2.1 Two-tone spectroscopy

The two-tone measurement allows to perform the spectroscopy of the V-shape via the mi-
crowave resonator. As its name suggests, the two-tone measurement involves two different
microwave signals sent simultaneously. The first tone, called the readout tone, measures the
transmission of the sample at a fixed frequency νreadout which is slightly detuned from the
resonance frequency of the resonator ν0. The readout frequency is adjusted by measuring
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the transmission of the resonator around its resonance frequency. The second tone, called
the probe tone, performs the excitation of the V-shape energy levels. Its frequency νprobe is
swept to probe the resonance frequency of the V-shape levels while we keep measuring the
transmission at νreadout.
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Figure (5.1): (a) Spectroscopy of the microwave resonator. The fit has been realised with
the model in Eq. (4.7). (b) spectroscopy of the qubit resonance frequency. Data are fitted
with a Cauchy–Lorentz distribution. Both measurements were performed at a temperature
T = 78 mK with an internal flux φin ≈ 0 and tone powers Preadout = −30 dBm and Pprobe =
−3 dBm at the output of the microwave sources.

In Fig. 5.1 (a), we show the transmission measurement required to adjust the readout
frequency. In the following, we have fixed the readout frequency to 7.282 GHz at 0.7 MHz
above the cavity resonance frequency, as indicated by a red dot on the curve. For this readout
frequency, the transmission is about −14 dB. In Fig. 5.1 (b), we present the transmission of
the system while the probe frequency is swept around the logical qubit resonance frequency
νqb. When νprobe is far detuned from νqb, the transmission shows a flat dependence indicating
no excitation of the qubit. As νprobe is tuned in resonance with νqb, it may excite the logical
qubit, leading to shift of ν0 and consequently to a change in the transmission at νreadout.

The shift of the resonator frequency as function of the qubit state observed in our two-tone
spectroscopy is due to the so-called “dispersive shift”[18,27]. In the dispersive limit, when the
detuning ∆=ωr −ωqb is large compared to the coupling strength g between the qubit and
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the resonator, the Hamiltonian can be written as:

H =

resonator︷ ︸︸ ︷
~ωrbn +

dispersive coupling︷ ︸︸ ︷
~χ bσzbn +

qubit︷ ︸︸ ︷
~
2
ωqbbσz

= ~ (ωr +χ bσz) bn+ ~
2
ωqbbσz (5.1)

with χ = g2/∆ the dispersive coupling strength. Equation (5.1) indicates that the resonance
frequency of the resonator depends on the qubit state through the dispersive coupling strength
χ. Thus depending on the qubit state, the cavity resonance frequency can change by an
amount of 2χ. It is this frequency shift that is measured via the two-tone spectroscopy in
Fig. 5.1 (b).

5.2.2 Spectroscopy as function of the magnetic field

Magnetic flux dependence of the V-shape is measured via two-tone spectroscopy performed
at different magnetic field. The magnetic field is applied via a magnetic coil surrounding the
sample (coil 2 in Table 2.1). Due to the SQUID embedded in the central line of the resonator,
the readout frequency has to be adjusted at each change of magnetic field. Thus the complete
protocol explained in the previous section is entirely repeated for each magnetic flux. We
note that the readout frequency changes with magnetic flux as well as the transmission
background. In Fig. 5.2, we present the adjusted readout frequency as function of magnetic
field. We observe more than three periods as function of the magnetic flux.

In Fig. 5.3 (a), (b) and (c), we present the magnetic flux dependence of the three
resonances observed in the two-tone spectroscopy. For sake of clarity, we present here results
where the background of each two-tone measurement has been subtracted. We observe two
periods for the V-shape resonances. The two lowest resonances, panels (a) and (b), exhibit
strong flux dependence and seem to drop to zero between two maxima. The third resonance,
panel (c), presents a limiting variation of the resonance frequency.

We will show in the next section that the two lowest resonances correspond to the first
and second transition of the logical qubit and the highest resonance to the first transition of
the ancilla qubit.



5.2. THE V-SHAPE COUPLED TO A RESONATOR 179

−200 −150 −100 −50 0 50 100 150 200

Coil current [µA]

7.16

7.20

7.24

7.28

ν
re

ad
ou

t
[G

H
z]

Figure (5.2): Readout frequency chosen to perform the two-tone spectroscopy as function of
magnetic field. The measurement has been performed on the sample “V-shape-1” with a base
temperature T = 65 mK and a tone powers Preadout = −40dBm and Pprobe = −15dBm. Data
were acquired during Treadout = 99µs and averaged 100 times.
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Figure (5.3): (a), (b) and (c) first, second, and third resonances of the V-shape energy
diagram. We note that the background of each two-tone measurement has been subtracted
for the sake of clarity. The panel (a) and (c) corresponds to the transition of the logical
and ancilla qubit resonance, respectively. The panel (b) shows the second transition of the
logical qubit. The measurement has been performed on the sample “V-shape-1” with a base
temperature T = 65mK and tone powers Preadout = −40dBm and Pprobe = −15 dBm. Data
were acquired during Treadout = 99µs and averaged 100 times.
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5.2.3 Extraction of the V-shape parameters

From Fig. 5.3, we extract the resonance frequencies of the V-shape energy levels. Resonance
frequencies versus flux are plotted in Fig. 5.4. The magnetic-flux dependence of the artificial
atom resonances can be fitted with the analytical model presented in Section 1.1.3. We
remind that, in this model, only three parameters are necessary to fit data namely, the critical
current and the capacitance of junctions, and the loop inductance. With Eq. (1.46) we fit the
magnetic flux dependence of the resonance frequencies (see solid black line in Fig. 5.4), the
extracted parameters are Ic = 6.4 nA, C = 30.5 fF, and Lloop = 11.4 nH.
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Figure (5.4): Data points extracted from resonances shown in Fig. 5.3 (sample “V-shape-1”).
From Eq. (1.46) we obtain the theoretical curves, depicted in solid black line, with the
following parameters Ic = 6.4nA, C = 30.5 fF, and Lloop = 11.4nH.

However such extracted parameters do not validate the assumptions of the analytical
model used for the calculation. Indeed one of the main assumptions made during the deriva-
tion in Chapter 1 was to perform a Taylor expansion of the two-dimensional potential close to
the bottom of one potential well (see Section 1.1.2). This supposes a strong localisation of the
states in one potential. This assumption is correct when the energy barrier between the poten-
tial well and its first neighbouring well is largecompared to the energy of the levels. From the
extracted parameters, we can calculate the barrier height. At φb = 0, ∆U = 4EJ = 12.7GHz
which is only two times larger than the second transition frequency of the logical qubit. When
φb increases and comes closer to 0.5, the ratio∆U/νqb

0→2 decreases down to 0. The analytical
calculation is no more valid and is unable to give correct values of the circuit parameters of
our measured V-shape samples. Therefore we decided to fit data by numerically solving the
Hamiltonian derived in Eq. (1.30).

For this purpose we used the Python library Kwant[126] written by Christoph W. Groth et
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Figure (5.5): (a) cut of the potential along the x direction at φb = 0. The three first energy
levels of the logical qubit mode are depicted by solid red lines in the potential well center
at x = 0. The quantum tunnelling rate is illustrated by dashed grey lines which become
darker when the rate increases. (b) Probability density calculated numerically[126] for the
state (from left to right and top to bottom) |0x , 0y〉, |1x , 0y〉, |2x , 0y〉, and |0x , 1y〉 at φb = 0.
We note that the second excited state of the logical qubit has a nonzero probability density at
the boundary between potential wells at x = ±π.

al.. The numerical calculation consists of a solution of the discretized Schrödinger equation on
a square lattice in the (x , y) plane1. To get an idea about the delocalisation of the eigenstates,
we performed the calculation of the eigenstates of the system, see Fig. 5.5 (b), for the states
|0x , 0y〉, |1x , 0y〉, |2x , 0y〉, and |0x , 1y〉. We observe a very good localisation of the states
|0x , 0y〉, |1x , 0y〉, and |0x , 1y〉 which correspond to the ground, the logical qubit, and the
ancilla qubit state, respectively. In contrast, we note a delocalisation of the |2x , 0y〉 state
(which corresponds to the second transition of the logical qubit) to its neighbouring wells
visible with a purple cloud on the left and right of the plot. This is a proof that our measured

1Along the x direction Kwant used periodic boundary conditions to, virtually, take into account all potential
wells. Along the y direction, the parabola due to the inductor energy creates a well in which the energy is
confined. Numerically the boundary along y limits the system to energy below 100 GHz, well above energy
considered in our problem.
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V-shape resonance frequencies have to be fitted by taking into account the full phase space of
the potential.

With Kwant, we perform numerical calculation of the energy levels spectrum as function
of magnetic flux. By fitting the experimental spectrum with these numerical results in Fig. 5.6
we extract a second set of circuit parameters: Ic = 8nA, C = 40 fF, and Lloop = 7.5 nH.

We observe on Fig. 5.6 that the magnetic flux dependence of V-shape resonances is well
predicted by the numerical calculation. In particular, at φb = 0, the value of the V-shape
resonances are very well predicted by the numerical calculation.

We remark in Fig. 5.6 a small discrepancy between the measured magnetic flux dependence
of the ancilla resonance and the dependence predicted by the numerical integration. The
maximum of difference is reached at φb = 0.5, with a discrepancy of 1.5 %. This discrepancy
is still not fully understood but our main explanation is based on an incorrect modelling of
the super inductor. Indeed the Josephson junctions chain was modeled as an single linear
inductor. We then neglect the capacitance of the Josephson junctions. These capacitances
could modify the magnetic flux dependence of the ancilla resonance frequency.
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Figure (5.6): Two-tone spectroscopy as function of the magnetic field for sample “V-shape-
2”. From the following parameters Ic = 8 nA, C = 40 fF, and Lloop = 7.5nH, we plot
the eigenenergies calculated from Kwant, in dotted red, and the analytical formula, in
dashed green. The measurement has been performed on the sample “V-shape-1” with a base
temperature T = 35mK and tone powers Preadout = −33dBm and Pprobe = −10 dBm. Data
were acquired during Treadout = 2µs and averaged 104 times.
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5.2.4 Estimation of the coupling strength

The dispersive coupling between the resonator and the qubits produces a shift of the resonance
frequency of the microwave resonator of 2χ depending on the qubit state. We present here
a measurement of the χ value for the logical and ancilla qubit. We present the protocol to
realise this experiment for the logical qubit. The same protocol has been used for the ancilla
qubit.

The experiment consists of two microwave pulses sent sequentially, see Fig. 5.7 (a). The
logical qubit is prepared from in the |e〉 state by a calibrated microwave pulse called a π pulse.
The π pulse for the logical qubit has been calibrated through Rabi oscillations. We obtained a
duration of T qb

πpulse = 116ns with a power Pqb
probe = −6dBm. After this first pulse, we suppose

the qubit to be in its excited state. A second microwave pulse is then sent to perform the
readout of the cavity. Since the qubit is excited, the cavity exhibits a new resonance frequency
eωr =ωr − 2χqb.

Figure 5.7 (b) presents such measurements for the logical and ancilla qubit. From these
curves, we extract χqb/(2π) = 1.25 MHz and χa/(2π) = 0.45 MHz.

However, the relaxation time of the logical and ancilla qubit are about half a microsecond
approximately, see Section 5.3.3 and Section 5.5.2, which corresponds to the same duration as
the readout pulse. We then estimate the error made on the dispersive coupling shift extraction
to be about 50 %. In the case of the logical qubit, the measured dispersive shift is lowered
of 0.625 MHz and for the ancilla of 0.225 MHz. By taking into account the relaxation, we
obtain the corrected dispersive shift χqb/(2π) = 1.9 MHz and χa/(2π) = 0.75MHz. From the
detuning between the resonator and the qubits ∆qb, r/(2π) = 3.644GHz and ∆a, r/(2π) =
5.341GHz, we extract the coupling strengths gqb/(2π) = 83 MHz and ga/(2π) = 63MHz.

From sample design, we estimate the value of coupling strength gqb/(2π) = 95MHz
and ga/(2π) = 196MHz (see Eq. (1.90) and Eq. (1.91)). We remark a large discrepancy
between the extracted coupling strength and their estimation from design parameters. This
can be explained by the complexity of Eq. (1.90) and Eq. (1.91). Indeed the estimation
of the coupling strengths requires the knowledge of nine design parameters. Furthermore,
Eq. (1.90) and Eq. (1.91) do not take into account the SQUID of the resonator. Since the
SQUID modifies the electromagnetic field distribution along the microwave resonator, it
influences the strength of the coupling at the position of the V-shape device.

5.3 Logical qubit

5.3.1 Coherent oscillations

The observation of coherent oscillations, also called Rabi oscillations is performed via a
two-tone measurement. It consists of a sequence of two pulses as shown in Fig. 5.8 (a). The
first pulse, called excitation pulse, is sent at the resonance frequency of the qubit νqb during
a variable duration ∆t. During this duration it will drive the qubit and eventually inverse its
population. The second pulse, called readout pulse, is sent just after the first one to perform
the readout of the cavity. Indeed due to the dispersive coupling, the population of the qubit
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(a)

(b)

pulse

readout pulse

Figure (5.7): (a) Scheme of the pulse sequence. (b) Spectroscopy of the microwave resonator
resonance dip. In solid blue we show a spectroscopy of the resonator with no excitation
pulses sent to the qubits. The readout pulse duration was Treadout = 416 ns for a readout
power of Preadout = −25 dBm. The dashed red line shows the same spectroscopy but with a π
pulse, T qb

πpulse = 116 ns and Pqb
probe = −6 dBm, sent to the logical qubit before the measurement

of the cavity. The green dashed-dot curve presents the same measurement with a π pulse,
T a
πpulse = 32ns and Pa

probe = −9 dBm, on the ancilla qubit. The measurement have been
performed at a base temperature T = 65 mK and close to φb = 0 on the sample “V-shape-1”.
Data were averaged 75× 103 times.

excited level will affect the cavity resonance frequency. This modification is measured via a
change in the transmission at the readout frequency νreadout. In order to reach a high enough
signal-to-noise ratio, the measurement is repeated 105 times.

Figure 5.8 shows typical oscillations for the logical qubit. We observe oscillations related
to the population of the qubit levels. The frequency of these oscillation is denoted ΩRabi and
depends on the amplitude of the excitation pulse (see Fig. 5.10). At ∆t = 0, no excitation
pulse is sent and the qubit is in its ground state. At ∆t ≈ 30 ns, the population of the qubit
is inverted with a major part of the population sitting at the excited level. A pulse of this
duration, which inverses the qubit population, is usually called a π pulse.

Figure 5.8 also presents exponential damping of the oscillations. The characteristic Rabi
decay time of the damping is denoted TRabi

2 and it is related to qubit decoherence under a
microwave field. Due to the damping, a π pulse will never fully invert the qubit population.
We will see later that it is possible to estimate the population of the excited state after a π
pulse by taking into account the Rabi decay time.

Julien Claudon discussed the dynamics of an anharmonic oscillator driven by an oscillating
electromagnetic field in his thesis [56]. In the simple case where the anharmonic oscillator
can be considered as a two level system, the population of the excited state and the Rabi



5.3. LOGICAL QUBIT 187

(a)

(b)

Figure (5.8): (a) Scheme of pulses sequence. The excitation pulse at the top (blue) has a
variable duration ∆t. Its frequency corresponds to the resonance frequency of the logical
qubit. The readout pulse at the bottom (red) is sent just after the excitation pulse. It has
a fixed duration, Treadout. (b) Shift of the cavity resonance peak as function of excitation
pulse duration. We observe damped oscillations related to population of the excited level of
the qubit. The damping is a signature of the decoherence of the system under a microwave
field. From Eq. (5.2), we extract a Rabi frequency of ΩRabi/(2π) = 15.41± 0.01MHz and
TRabi

2 = 480±22ns. The measurement has been performed at a base temperature T = 65 mK
with a excitation power Pexcitation = 5 dBm, a readout power Preadout = −25dBm and a
magnetic flux φb = 0 on the sample “V-shape-1”. Data were acquired during Treadout = 192ns
and averaged 105 times.

frequency are given by[58]:

Pe (t) =
1
2

�
1− cos (ΩRabi t)exp

�
− t

TRabi
2

��
, (5.2)

ΩRabi =
r
Ω2

field +
�
ωexcitation −ωqb

�2
, (5.3)

where Ωfield corresponds to the amplitude of the excited field. Figure 5.8 shows the fit
performed using Eq. (5.2). We extract ΩRabi/(2π) = 15.41 MHz and TRabi

2 = 480± 22ns. We
also get the duration of a π pulse, Tπ pulse = 32 ns.

From the Rabi decay time and Rabi frequency, we estimate to 96.7±0.3 % the population
of the qubit excited state after a π pulse.
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5.3.2 Coherent oscillations as function of detuning and power

We performed measurements of Rabi oscillation as function of the excitation frequency. We
follow the same protocol described in the previous section but the frequency of the excitation
tone is now swept around the qubit resonance frequency.

We obtain a 2D plot with the transmission |S21|2 versus excitation frequency and pulse
duration in Fig. 5.9 (a). Each vertical line exhibits Rabi oscillations with different Rabi
frequency. The overall picture exhibits a “chevron” pattern with a Rabi frequency minimum
at the qubit resonance frequency.

We fit Rabi oscillations for all excitation frequencies with Eq. (5.2). We show the extracted
Rabi frequency as function of the excitation frequency in Fig. 5.9 (b). From Eq. (5.3)
we can precisely describe the Rabi frequency versus the detuning (see Fig. 5.9 (c)). We
extract νqb = 3.630 GHz and Ωfield/(2π) = 6.28 MHz, the qubit resonance frequency and the
amplitude of the microwave field, respectively.

The extracted microwave field amplitude is consistent with our experimental setup.
Indeed these measurements were realised with an output power of the microwave source
of −5 dBm. We estimate the attenuation of the line to be about −99 dB. We deduce a
microwave power propagating along the feedline at about Pfeedline = 40 fW. Using Eq. (2.10)
to calculate the intra-cavity energy due to the excitation drive at the qubit frequency, we
obtain Ωestimation

field = |S(ω)|2Pfeedline/h = 6.7MHz. The discrepancy between the estimated
value and the measurement is below 10 % which is reasonable.

In Fig. 5.10 (a), we present coherent oscillations as function of the excitation tone
power. We observe an increase of the Rabi frequency as the excitation power increases.
Using Eq. (5.2), we extract Rabi frequency oscillations versus the excitation tone power (see
Fig. 5.10 (b)).

From Eq. (5.3) we can extract the microwave amplitude of the field Ωfield as function of
the Rabi frequency ΩRabi. This calibration leads to the curve shown in Fig. 5.10 (c) where
the Rabi frequency is plotted as function of the excitation field amplitude. We remark that
the theoretical curve does not drop to zero at zero field amplitude. This is due to a small
detuning between the frequency of the excitation tone and the qubit frequency, here about
1MHz, which leads to a qubit frequency of νqb = 3.637 GHz. The qubit resonance frequency
extracted from the Rabi excitation power dependence is in agreement with the qubit frequency
extracted via the Rabi excitation frequency dependence. We remark a linear dependence
of the Rabi frequency on the amplitude of the driving field. This linear dependence is an
indication of the two-level dynamics of the system. Indeed if higher energy levels were
involved in the dynamics of the Rabi oscillations, the curve would show a deviation from
the linear dependence at high drive power[56], which is not the case here. In Section 5.4
we will show that the logical qubit anharmonicity is about 300 MHz, well above the Rabi
frequencies observed here. This validates the approximation of a two-level system in these
range of microwave amplitude.
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Figure (5.9): (a) Rabi oscillations as function of the excitation frequency. A Savitzky–Golay
low-pass filter[82,83] whose equivalent cutoff frequency is about 0.2 MHz has been used to
filter low frequency noise. (b) and (c) Rabi frequency extracted from (a) as function of
the excitation frequency and detuning, respectively. The green solid line shows fit result
from Eq. (5.3). We extract νqb = 3.6303GHz and Ωfield/(2π) = 6.11 ± 0.08MHz, the
qubit resonance frequency and the amplitude of the microwave field, respectively. The
experiment has been performed at a base temperature T = 65mK with an excitation power
Pexcitation = −5 dBm, a readout power Preadout = −25 dBm and a magnetic flux φb = 0 on the
sample “V-shape-1”. Data were acquired during Treadout = 192ns and averaged 2×105 times.



190 CHAPTER 5. THE V-SHAPE SUPERCONDUCTING ARTIFICIAL ATOM

−25 −20 −15 −10 −5 0 5
Pexcitation [dBm]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ex
ci

ta
ti

on
pu

ls
e

du
ra

ti
on
[µ

s]

(a)

−10 −8 −6 −4 −2 0 2
Pexcitation [dBm]

0

2

4

6

8

10

12

Ω
ra

bi
/(

2π
)
[M

H
z]

(b)

0 2 4 6 8 10 12
νfield [MHz]

0

2

4

6

8

10

12

(c)

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

R
el

at
iv

e
|S 2

1
|2
[d

B
]

Figure (5.10): (a) Rabi oscillations as function of the excitation power. (b) Rabi frequency
extracted from (a) as function of the excitation power at the output of the microwave source.
(c) Rabi frequency as function of the amplitude of the electromagnetic field. The green solid
line shows the fit result from Eq. (5.3). We extract the detuning between the excitation
frequency and the qubit frequency νprobe − νqb = 1.28 MHz leading to a qubit frequency of
νqb = 3.6367GHz. The experiment has been performed at a base temperature T = 65 mK
with a probe frequency νprobe = 3.638GHz , a readout power Preadout = −25 dBm and a
magnetic flux φb = 0 on the sample “V-shape-1”. Data were acquired during Treadout = 384ns
and averaged 4× 105 times.
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5.3.3 Relaxation time

The measurement of the relaxation time T1 is performed via a two-tone measurement. It
consists of a sequence of two pulses as shown in Fig. 5.11 (a). The first pulse, called excitation
pulse, has been calibrated to inverse the population of the qubit from |g〉 → |e〉. After this
first pulse, we send a second pulse, the readout pulse, which perform the readout of the
cavity. We vary the delay between the first and second pulse to observe the energy relaxation
of the qubit. The measurement is averaged 105 times.

(a)

(b)

Figure (5.11): (a) Scheme of pulses sequence. The excitation pulse, in top blue, is calibrated
to inverse the population of the qubit from |g〉 → |e〉. After this first pulse, we wait during
a variable delay before to send a second pulse, the readout pulse in bottom red, which
perform the readout of the cavity. (b) Shift in the transmission at the readout frequency
as function of the waiting time. We observe exponential decay related to the population
of the excited state. By fitting the data with an exponential decay law, we extract the
relaxation time T1 = 600±10ns. The measurement has been performed at a base temperature
T = 65mK with a excitation power Pexcitation = 5 dBm, a readout power Preadout = −25dBm
and a magnetic flux φb = 0 on the sample “V-shape-1”. Data were acquired during about
Treadout = 192ns and averaged 105 times.

Figure 5.11 (b) presents typical relaxation decay for the logical qubit. At ∆t = 0 the
population of the excited state is maximum. When the delay time increases, the population of
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the excited state decreases down to zero. By fitting the experimental data with an exponential
decay law, we extract the relaxation time T1 = 600± 10 ns.

The relaxation time of our logical qubit is comparable with the first generation of transmon
qubit[54]. Thus D. I. Schuster et al.[127] measured a transmon with a relaxation time of 500 ns
((EJ/EC)∗ ≈ 20) and J. Majer et al.[128] a relaxation time of 200 ns ((EJ/EC)∗ ≈ 37) in 2007.
However, A. A. Houck et al.[129] have demonstrated that the measured T1 was due to an
enhancement of the Purcell effect via the microwave resonator. The Purcell decay rate
calculated for our circuit gives Γ−1

purcell = (∆/g)2κ−1 = 230µs. Our measured relaxation time
is three orders of magnitude shorter (half a micro second), indicating the presence of other
relaxation processes.

Dielectric losses can be significant for superconducting qubits[130]. In dielectric material,
the losses are usually modelled through a parameter, tan(δ), corresponding to the ratio (or
angle in a complex plane) of the lossy permittivity to the lossless one[131]. The loss tangent of
silicon and oxidised silicon have been measured at low temperature (T < 100mK) by Aaron
D. O’Connell et al.[132] to be about tan(δ) = 10−6 and 10−4, respectively. These loss tangent
lead to longer relaxation times than the ones measured, suggesting another loss process.

Dielectric losses can also arise from the electric fields coupling spurious two-level systems
to the V-shape device. These two-level system reside predominantly in surface oxides and
interfaces[133]. These losses depend strongly on the electric field intensity[133]. Increasing
the interdigital fingers width should reduce the electrical field intensity and consequently,
decreases the coupling between the V-shape device and the spurious two-level systems. In
the next generation of sample, the design of the interdigital capacitors will be modified in
order to reduce the influence of surface defects.

On the other side, the short relaxation time of the qubit and decay time of the microwave
resonator suggests a common limiting factor. To improve the common environment of our
sample we fabricate a new generation of sample holder with a better radiative and magnetic
shielding based on the work of R. Barends et al.[91].

5.3.4 AC-Stark shift and measurement-induced dephasing

Due to the coupling between the artificial atom and the microwave cavity, any measurement
on one system will have an effect on the other. For instance, the two-tone spectroscopy
presented in a previous section is based on a frequency shift of the microwave resonator as
function of the qubit state. The reverse effect also exists with a modification of the qubit
resonance depending on the photon number in the cavity. We show here a measurement of
the qubit resonance line shape as function of the photon number. The experiment consists of
two-tone spectroscopies of the qubit resonance (as explained in Section 5.2.1) versus readout
power. Typical measurements are presented in Fig. 5.12. When the readout power increases,
we observe a broadening and a shift to smaller frequency of the resonance peak. Each curve
is fitted with a Cauchy–Lorentz formula from which we extract the resonance position of the
peak νqb

0 and its width δFWHM. These two parameters are plotted as function of the readout
power in Fig. 5.13 (a) and (b). Error bars reflect estimated uncertainties in the extracted
parameters from the fit. The lowering of the resonance frequency and the broadening of the
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peak exhibit a linear dependence as function of the readout power.

Figure (5.12): Spectroscopy of the qubit resonance for different readout tone powers. We
observe a broadening and a shift to smaller frequency of the resonance peak when the readout
power increases. In dashed black lines, we show fits applied to each data curve with Cauchy–
Lorentz formula. We extract from the fit the resonance position of the peak νqb

0 and its width
δFWHM. These two parameters are shown in Fig. 5.13 (a) and (b). Measurements have been
performed on sample “V-shape-2” with a probe power of Pprobe = −20dBm and a magnetic
flux φb = 0. Data were acquired during Treadout = 2µs and averaged 105 times.

We attribute the shift of the resonance frequency to the so-called “AC-Stark shift” and the
broadening of the peak to the so-called “measurement-induced dephasing”[27,79,134]. The
AC-Stark shift is proportional to the number of photons at the cavity frequency as:

ωac = 2n
g2

∆
= 2nχqb (5.4)

with χqb and n the dispersive coupling strength and the mean photon number at the cavity
frequency, respectively. Furthermore, the cavity is driven with a coherent field whose photon
distribution is described by a Poissonian distribution. The intrinsic width of the photon
distribution adds an additional dephasing to the qubit. D. I. Schuster, et al.[79] and J.
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Gambetta, et al.[134] demonstrate that the qubit line shape taking into account these both
effects are:
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∞∑
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(5.5)
where κ is the cavity decay rate, and Tφ the pure dephasing time of the qubit. Equation (5.5)
can be understood as a sum of Lorentzian curves. Indeed the readout field has a Poissonian
distribution with a mean photon number and a certain width. The resonance of the qubit can
then be viewed as a sum of resonance peaks, each peak for a precise number of photon in the
cavity.

We use Eq. (5.5) and Eq. (5.4) to fit data shown in Fig. 5.13 (a) and (b), respectively.
The photon decay rate κ/(2π) = 3.80± 0.01MHz has been estimated from an independent
measurement, the spectroscopy of the resonator dip in Section 4.6. The dispersive coupling
χqb/(2π) = 2.5MHz has also be estimated independently from the dispersive measurement.
There is then only two fit parameters, the pure dephasing time Tφ and the proportionality
between the readout power and the number of photons in the cavity. The AC-Stack shift and
the measurement-induced dephasing are fitted together allowing a better estimation of the
fit parameters. From the fit procedure, we extract the pure dephasing rate Tφ = 150±100ns
and a calibration of the mean photon number versus readout power. The result is shown in
Fig. 5.13 (c) and (d). The sub-figure (c) presents T ′2 = 1/(πδFWHM) as function of photon
number.

We can compare the calibration of mean photon number to an estimation obtained via
the input–output theory:

n= A
Prf

~ωrf

2
κ

(5.6)

with A the attenuation along the microwave line2, Prf and ωrf the power and the angular
frequency of the microwave source. A discrepancy of only 20 % is found between a rough
estimation of the mean photon number via Eq. (5.6) and the calibration via the AC-Stark
shift effect (Eq. (5.4)).

2For this measurement the attenuation of the line has been estimated to be −99 dB
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Figure (5.13): (a) and (b) Full width at half maximum and resonance frequencies extracted
from curves in Fig. 5.12 as a function of the readout power. (c) and (d) T ′2 and AC-Stark shift
as function of mean photon number at the cavity frequency. We calculate T ′2 = 1/(πδFWHM)
where the FWHM comes from the line shape given at Eq. (5.5). The theoretical AC-Stark
shift is calculated with Eq. (5.4). Measurements have been performed on sample “V-shape-2”.
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5.3.5 Dependence of the qubit coherence versus probe power

In the previous section, we have considered the effect on the qubit line shape of a microwave
field in resonance with the cavity. Hereafter, we will consider the influence of the probe tone
power on the qubit resonance line shape. The experiment consists of two–tone spectroscopies
of the qubit resonance as explained in Section 5.2.1 performed for different probe power.
Moreover, in order to be in a steady-state regime, the duration of the microwaves pulses will
be long compared to the different characteristic times of the system.

In Fig. 5.14, we present the measured amplitude of qubit resonance line shape as function
of the probe power. We observe a broadening of the peak width and a growth of the peak
height when the probe power increases. Each curve is fitted with a Cauchy–Lorentz formula
from which we extract the peak height Pheight and the resonance linewidth δFWHM. These
two parameters are shown in Fig. 5.15 (a) and (b). Error bars reflect estimated uncertainties
in the extracted parameters from the fit.

Figure (5.14): Spectroscopies of the logical qubit resonance peak for different probe power.
We observe a broadening of the peak width and a growth of the peak height when the probe
power increases. Fitted Lorentzian laws are depicted as dashed black lines. Measurements
have been performed on sample “V-shape-1” with a readout power of Preadout = −35dBm and
a magnetic flux φb = 0. Data were acquired during Treadout = 39µs and averaged 200 times.
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From steady-state solution of Bloch equation[135], D. I. Schuster[79] showed that the qubit
line-shape depends on the probe power, the qubit coherence, and the coupling strength gqb
between the logical qubit and the microwave resonator as:
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1
2

ns

�
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�2
T1T2
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(5.7)

where ns is the mean number of probe tone photons in the resonator, T1 the relaxation time
and T2 the coherence time of the qubit. Equation (5.7) has a Lorentzian shape from which
we derive the full width at half maximum and the height of the peak as:
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Equation (5.8) shows that the width of the peak depends on the lifetime and of the coherence
time of the qubit. It also precises the influence of the power on the peak width. Equation (5.9)
shows the dependence of the peak as function of the power. We note that the population of
the excited state cannot be larger than one half. Indeed at high power the absorption and the
relaxation compensate each other.

We use Eq. (5.8) and Eq. (5.9) to fit data shown in ?? (a) and (b), respectively. The
coupling strength between the qubit and the microwave resonator gqb/(2π) = 83MHz has
been estimated from an independent measurement, the dispersive shift, see Section 5.2.4. The
value the relaxation time T1 = 600±10ns was determined from time-resolved measurements,
see Section 5.3.3. There are then two fit parameters, the pure dephasing time Tφ and the
proportionality between the probe power and the number of photons in the cavity at the
qubit frequency. The growth of the peak height as well as the broadening of the peak are
fitted together allowing a better estimation of the fit parameters. From the fit procedure,
we extract the pure dephasing rate Tφ = 30± 4 ns and a calibration of the mean photon
number versus probe power. The results are shown in Fig. 5.15 (c) and (d). The sub-figure
(c) presents T ′2 = 1/(πδFWHM) as function of photon number.

The pure dephasing time extracted by the mean of the qubit peak broadening and extracted
via the measurement-induced dephasing, see Section 5.3.4, are quite small compared to the
measured dephasing time of the first transmon generation. Indeed D. I. Schuster et al.[127]

measured a transmon with a pure dephasing time of 500 ns ((EJ/EC)∗ ≈ 20) and J. Majer et
al.[128] a pure dephasing time of 500 ns ((EJ/EC)∗ ≈ 37) in 2007. In our circuit, the (EJ/EC)∗

ratio is about 30 so comparable with the Schuster’s transmon. We think that the relatively low
coherence time of our V-shape device may come from the thermal noise of the cold amplifier.
Indeed we see in Fig. 2.2 that there is only one cold isolator at 30 mK. The circulator has,
from datasheet, an isolation of −17 dB. By using Eq. (2.4) we estimate the equivalent noise
temperature to be about 113 mK at the sample stage. From Eq. (2.14) we estimate that the
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number of photons at the cavity frequency due to thermal radiation to be about 0.1 photon so,
hundred times more than if the amplification line was ideally thermalised. This noise induced
dephasing to the qubit[127] and set an upper limit to its coherence time. We estimate the
coherence time limited to 250 ns because of the thermal noise coming from the cold amplifier.
For the future, we will place the two isolators at 30 mK in order to reach a thermalisation
equivalent to that of the input line.

Transmons with longer coherence time need a (EJ/EC)∗ ratio about 50[22]. This is in
agreement with the theoretical prediction of J. Koch et al. for the transmon 1/ f charge noise
dependence[18]. These results may indicate that the (EJ/EC)∗ ratio is too small in our device
and must be increased for next sample generation.
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Figure (5.15): (a) and (b) Full width at half maximum and height of the qubit peak extracted
with a Lorentzian fit from Fig. 5.14. (c) Rabi decay time calculated from the full width at half
maximum as TRabi

2 = 1/(πδFWHM). Data are fitted with Eq. (5.8). (d) Population probability
of the first excited level of the in-phase mode. Data are fitted with Eq. (5.9). Measurements
have been performed on sample “V-shape-1”.
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5.4 Logical qubit anharmonicity measurements

The logical qubit is formed by the two first energy levels of the in-phase mode, see Section 1.1.4.
Indeed when the anharmonicity is large compared to the energy excitation, only the two first
level are involved in the dynamics of the system. Hereafter, we will measure the anharmonicity
of the qubit defined as ∆x/h= ν

qb
2 − 2νqb

1 (see Section 1.1.3). By comparing the measured
anharmonicity to the amplitude of the microwave field calibrated through Rabi oscillation
we will discuss the validity of the two-level system assumption.

5.4.1 Two-photon process

The anharmonicity can be extracted from two–tone spectroscopy performed at high power in
order to realise a two photons transition between the ground and the second excited state of
the in-phase mode. To enhance the emergence of the peak due to the two–photon process,
we measured several two–tone spectroscopies at different probe powers.

(a) (b)

Figure (5.16): (a) Scheme of the two-photon transition between the ground and the second
excited state of the qubit compared to the direct transition between the ground and the first
excited state of the qubit. (b) Spectroscopy of the logical qubit resonance peak for different
probe powers. We observe the appearance of a second peak at smaller frequency. The effect of
the increase of the probe power on the resoance peak of the qubit is discussed in Section 5.3.5.
The measurements have been performed on the sample “V-shape-1” with a base temperature
T = 65mK with a readout power of Preadout = −35dBm. Data were acquired during about
Treadout = 39µs and averaged 200 times.

Figure 5.16 shows the power transmission of the qubit line shape at different probe power.
We observe the qubit resonance peak at about 3.63 GHz for all the measurement curves. In
the high power limit, we note the appearance of a second peak at lower frequency 3.46 GHz.
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The peak which emerges at high power corresponds to a transition from the ground
state to the second excited state via a two–photon process. Thus the resonance frequency of
this peak is equal to half of the resonance frequency of the second excited level. From data
presented in Fig. 5.16, we extract an anharmonicity ∆x/h= 340MHz.

5.4.2 Direct spectroscopy of the second level of the in-phase mode

We present in Fig. 5.17 a zoom in the spectroscopy of the two first excited levels on the
in-phase mode for the samples “V-shape-1”, left panels, and “V-shape-2”, right panels, already
presented in Fig. 5.3 and Fig. 5.6, respectively. We observe the magnetic flux dependence
on the two first excited levels. They have a maximum at φb = 0 and drop towards zero at
|φb| ≈ 0.5.

From Fig. 5.17, we extract the resonance frequency of the first and the second excited
energy levels νqb

1 and νqb
2 , respectively. The anharmonicity is calculated as∆x/h = ν

qb
2 −2νqb

1 .
We obtain 340 MHz for the sample “V-shape-1” and 320 MHz for the sample “V-shape-2”.
This measure is in agreement with the measurement of the second level resonance frequency
shown in the previous section.

So far we have considered the anharmonic oscillator of the in-phase mode as a two-level
system, the logical qubit. In the last two sections, we measured an anharmonicity of 340 MHz,
about 9 % of the qubit resonance frequency. The anharmonicity can be compared[12] to
the microwave field amplitude calibrated in Section 5.3.2. Indeed we saw that for typical
excitation tone amplitude, the amplitude of the microwave field was below 10 MHz. We have
then a ratio of ≈ 30 between the microwave field amplitude and the anharmonicity, ensuring
a dynamics restrained to the two levels of the qubit (see Julien Claudon’s thesis[56]).



202 CHAPTER 5. THE V-SHAPE SUPERCONDUCTING ARTIFICIAL ATOM

5.0

5.5

6.0

6.5

7.0

Pr
ob

e
Fr

eq
ue

nc
y
[G

H
z]

−0.4 −0.2 0.0 0.2 0.4
φb/φ0

2.6

2.8

3.0

3.2

3.4

3.6

Pr
ob

e
Fr

eq
ue

nc
y
[G

H
z]

−0.4 −0.2 0.0 0.2 0.4
φb/φ0

0

1

2

3

4

5

6

7

8

R
el

at
iv

e
|S 2

1
|2
[d

B
]

Figure (5.17): Spectroscopy of the two first level of the in-phase oscillating mode as function
of the magnetic field. The top panels present the second level and the bottom ones, the first
level. Measurements have been performed on sample “V-shape-1” for the left panels and
“V-shape-2” for the right ones.
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5.4.3 A transition forbidden at φb = 0

As we already mentioned, the in-phase mode is equivalent to the oscillating mode which
exists in the transmon. Thus it is quite surprising to be able to measure a resonance peak
corresponding to the second transition of the in-phase directly, see Fig. 5.17. Indeed in the
transmon this transition is forbidden. Moreover, close to zero magnetic field, we observe
in our experiment a disappearance of the peak, see Fig. 5.18. We have then to answer two
questions: why are we able to directly measure the peak of the second level of the in-phase
mode and why the peak vanishes at zero magnetic field.
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Figure (5.18): Spectroscopy of the gap in the second transition of the in-phase mode. A
clear disappearance of the resonance dip is visible at a magnetic field corresponding at a
zero internal flux of the SQUID loop. The measurement has been performed on the sample
“V-shape-2” at a base temperature of T = 65mK with a probe power Pprobe = −10dBm
and a readout power of Preadout = −33dBm at φb = 0. Data were acquired during about
Treadout = 2µs and averaged 104 times.

The probability of transition between the ground state and the second excited state
P0→2 is proportional to | 〈ψ2| cW δI(t)

x + cW δφ(t)
y |ψ0〉 |2 with cW δI(t)

x , cW δφ(t)
y the coupling

between the in-phase, out-of-phase mode and the electrical, magnetic field, respectively
(see Section 1.3.1). When | 〈ψ2| cW δI(t)

x + cW δφ(t)
y |ψ0〉 |2 is zero the transition is so-called

“forbidden”. A simple way to know if a transition is forbidden is to look at the parity of the
initial and final state as well as of the coupling operator. Indeed if the overall function is odd,
the transition is forbidden for symmetry reason. When we consider low energy and resonant
excitation3, the coupling is modelled via the Jaynes–Cummings model. Such an operator has

3Here, low energy excitation means that the Rabi frequency of the probe excitation should be much less than
the transition frequency. In our system the Rabi frequency is tens of megahertz at most and the qubit frequency is
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an odd parity since it transfers one excitation from one system to another. Thus cW δI(t)
x is

odd in x and cW δφ(t)
y is odd in y .

In a first time, we consider our system at φb = 0. At this particular flux, the two modes
become only coupled via a cross-Kerr term. The coupling term cW δφ(t)

y is then unable to
induce transitions between states of the in-phase mode. The ground state and the second
excited state exhibit, both, an even parity. The coupling term cWx being odd, the overall
function is odd making the transition between these two states forbidden. At zero flux, we
then recover the dynamics of the transmon with a forbidden transition between the ground
and the second excited state. This explain the absence of resonance in the direct spectroscopy
in Fig. 5.18 at φb = 0.

When the applied magnetic flux is non zero, φb 6= 0, other coupling terms take part
to the dynamics of the system. The in-phase mode is no more equivalent to the transmon
mode. In first approximation a nonlinear coupling strength[13] ω21 couples the in-phase and
out-of-phase mode (see Section 1.1.3). The presence of this coupling breaks the even parity
of the ground and second excited states. The calculation of the eigenstate of the V-shape is a
hard problem and in our work we only consider the corrected eigenstate at the first-order
by quantum perturbation theory. The general formula given the corrected eigenstate is
given in Appendix D. We observe that the corrected eigenstates become contaminated by
states of higher and lower energy, and more importantly, they mix states of the in-phase and
out-of-phase mode due to non-linear couplings. By using the corrected eigenstate we derive
the matrix element4:

��〈ψ2| cWy |ψ0〉
��2 ≈

����
~
2

ga
ω21

2ωx −ωy

����
2

(5.10)

where ga is the coupling strength between the out-of-phase mode and the resonator, ω21 is
a non-linear coupling strength and ωx ,y is the plasma frequency of the in-phase and out-of-
phase mode, respectively (we remind that all these terms are defined in Table 1.4 and in
Section 1.3.2). Equation (5.10) is non zero at non zero magnetic field. Due to the nonlinear
coupling between the two oscillating modes ω21, the transition from the ground state to the
second excited state is available.

Moreover, through Eq. (5.10), we remark that the transition is induced by the cWy coupling
operator. Indeed we have to keep in mind that at φb 6= 0, the different eigenstates of the
system are a linear combination of in-phase and out-of-phase states.

5.5 Ancilla qubit

5.5.1 Coherent oscillations of the ancilla qubit

The experiment to realise coherent oscillations on the ancilla qubit was the same as for
logical qubit, see Section 5.3.1. The pulse sequence is illustrated in Fig. 5.19 (a) and the

at some gigahertz.
4The result only presents first-order term, the higher-order terms are neglected. However all terms, even

those which are neglected here, present the same behaviour at zero flux, they drop to zero.
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result of the measurement is shown in Fig. 5.19 (b). By fitting data with Eq. (5.2), we
extract the oscillation frequency Ω/(2π) = 86.3± 0.7MHz and the characteristic decay time
τ= 90± 60 ns.

(a)

(b)

Figure (5.19): (a) Scheme of pulse sequence. The excitation pulse at the top (blue) has a
variable duration ∆t. Its frequency corresponds to the resonance frequency of the ancilla
qubit. The readout pulse at the bottom (red) is sent just after the excitation pulse. It has a
fixed duration, Treadout. (b) Transmission variation as function of excitation pulse duration.
We observe damped oscillations related to population of the excited level of the ancilla. From
Eq. (5.2), we extract a Rabi frequency of Ω/(2π) = 86.3± 0.7MHz and τ= 90± 60 ns. The
measurement has been performed at a base temperature T = 65 mK with a probe power
Pprobe = 10dBm, a readout power Preadout = −25dBm and a magnetic flux φb = 0 on the
sample “V-shape-1”. Data were acquired during about Treadout = 192 ns and averaged 104

times.

We remark that the characteristic decay time is short, less than hundred nanoseconds.
Due to the fast decay time of the oscillations, we need a quite high excitation power to observe
a few oscillations. With an oscillations frequency of Ω/(2π) = 86.3 MHz, the amplitude of the
microwave field is well above the anharmonicity of the ancilla qubit theoretically predicted
about ∆y/h= 20 MHz (see Eq. (1.48)). In this microwave amplitude domain, the measured
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oscillations involves more than the two first level of the ancilla qubit[12]. For this reason, the
extracted oscillation frequency is not equivalent to the Rabi frequency.

The characteristic decay time is one order of magnitude shorter than the logical qubit decay
time. We explain this fact by the large number of Josephson junctions involved in the ancilla
mode. Indeed the ancilla qubit consists of the two first levels of the out-of-phase oscillating
mode. This mode presents an oscillating current inside the two Josephson junctions of the
V-shape device but also inside the junction chain (see Section 1.1.2). The twelve junctions of
the chain have, together, a large area leading to a higher probability to be coupled to spurious
two-level systems. Indeed such two-level spurious resonance were observed sometimes in
the ancilla spectroscopy but never in the logical qubit spectroscopy.

5.5.2 Relaxation time of the ancilla qubit

We use the same experimental protocol to measure the relaxation of the ancilla qubit as for
the logical qubit. The pulse sequence is summarised Fig. 5.20 (a) and the relaxation decay
curve is plotted in Fig. 5.20 (b). By fitting data with an exponential decay law, we extract the
relaxation time T ancilla

1 = 630± 30 ns. The relaxation time of the ancilla is comparable to the
relaxation time of the logical qubit. This fact may suggest a common limiting factor for the
relaxation time of the two qubits in our sample.
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(a)

(b)

Figure (5.20): (a) Scheme of pulse sequence. The excitation pulse at the top (blue) is
calibrated to inverse the population of the ancilla qubit from |g〉 → |e〉. After this first pulse,
we wait during a variable delay before sending a second pulse, the readout pulse at the
bottom (red), which performs the readout of the cavity. (b) Shift in the transmission at the
readout frequency as function of the waiting time. We observe exponential decay related to
the population of the excited state. By fitting the data with an exponential decay law, we
extract the relaxation time T ancilla

1 = 630± 30ns. The measurement has been performed
at a base temperature T = 65mK with a probe power Pprobe = −3 dBm, a readout power
Preadout = −25dBm and a magnetic flux φb = 0 on the sample “V-shape-1”. Data were
acquired during about Treadout = 192ns and averaged 2× 105 times.
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5.6 Cross-anharmonicity

A remarkable property of our system is to present a bσqb
z bσa

z coupling high enough to realise a
V-shape spectrum in a superconducting circuit. As we show in Section 1.1.4, the Hamiltonian
of the system at φb = 0 can be written as:

cH = ~
2
ωqbbσqb

z +
~
2
ωabσa

z +
~
2

gzzbσqb
z bσa

z . (5.11)

The coupling gzz modifies the transition energy of one qubit depending on the other qubit
state. Hereafter, we present a demonstration of this coupling and a measurement of its
strength. To realise these experiments, we need therefore a three-tone spectroscopy. The
first tone to excite one qubit, the second tone to excite the other qubit and the third tone to
realise the readout of the cavity.

5.6.1 Measurement via pulse sequence

In order to measure the cross-anharmonicity, we performed sequential pulse three-tone
spectroscopy. The first pulse, at the resonance frequency of the ancilla ωa/(2π), realised the
transition |g〉 → |a〉 from the ground state to the excited state of the ancilla. The second
pulse probe the qubit resonance frequency. The third pulse performs the readout of the cavity
at the frequency ωreadout/(2π). In the measurement shown in Fig. 5.21 (a), the power of the
first tone is gradually increased from top to bottom.

In weak excitation power curve in Fig. 5.21, we observe a single dip corresponding to
the qubit transition |g〉 → |e〉 as shown in the level scheme in Fig. 5.21 (b). Increasing
the microwave excitation of the ancilla qubit, a second dip emerges below the first one.
As indicated in the level scheme in Fig. 5.21 (c), the second dip appears due to the non
zero population of the excited ancilla state |a〉 induced by the first pulse. The transition
|a〉 → |p〉 thus becomes available. This transition is not exactly at the same frequency as the
|g〉 → |e〉 transition. The relative shift of the two peaks is due to the cross-anharmonicity
(see Eq. (5.11)). The frequency difference between the two peaks allows the extraction of
the coupling strength (2gzz)/(2π) = 119MHz. We note that, at large excitation pulse power
Fig. 5.21 (a), a third peaks begins to emerge with a frequency shift of about 258 MHz. This
shift is roughly twice larger than the frequency shift between the |g〉 → |e〉 and |a〉 → |p〉
resonance peaks. We interpret this as an indicator of the population of the second excited
state of the ancilla as indicated in Fig. 5.21 (e).
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(b)

(c)

(a)

(e)

(d)

Figure (5.21): (a) Three-tone measurement of the mode coupling strength gzz based on a
sequence involving a pulse at ωa/(2π) to populate the ancilla, a pulse at ωprobe/(2π) to
scan over the qubit transition, and a readout pulse at ωreadout close to the cavity resonance
frequency, see a pulse sequence scheme in (d). From the topmost to the lowest curve, we
increase the power of the first pulse in steps, causing a peak to emerge below the resonance
peak of the qubit. Their separation is a measure of the cross-anharmonicity extracted here at
(2gzz)/(2π) = 119 MHz. The situation without and with the first pulse are represented in
the diagrams in (b) and (c). The measurement has been performed at a base temperature
T = 35 mK with a probe power Pprobe = 5 dBm, a readout power Preadout = −25dBm and
a magnetic flux φb = 0 on the sample “V-shape-1”. Data were acquired during about
Treadout = 192ns and averaged 3× 105 times.
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5.6.2 Measurement via continuous drive

Another way to measure the cross-anharmonicity is to send continuous microwave instead
of working with pulses sequence. A third tone called the excitation tone is continuously
driven at the ancilla transition at ωa/(2π). Next the probe tone is swept around the qubit
resonance frequency and the readout is performed via the readout tone. The measured curve
is presented in Fig. 5.22 (a) with the blue solid curve. We observe two peaks, one at the qubit
resonance frequency 3.634 GHz and another, shifted by 110 MHz. We also remark that the
two peaks have the same height.

As reference, we measure the same curve but with the excitation tone switched off. The
result is shwon in Fig. 5.22 (a) with the green dashed curve. We observe the qubit resonance
peak centered at 3.634 GHz.

The qubit resonance peak corresponds to the transition between |g〉 → |e〉. We identify the
second peak as the transition |a〉 → |p〉. This second peak is made possible because of the third
tone excitation which populates the higher energy level of the ancilla. The frequency shift
between the two peaks corresponds then to the cross-anharmonicity (2gzz)/(2π) = 110 MHz.

From the circuit parameters extracted with Kwant[126], Ic = 8 nA, C = 40 fF and Lloop =
7.5nH, the theoretical predicted value of the cross-anharmonicity is, at φb = 0, (see Chapter 1
for detail):

(2gzz)/(2π) =
1

2π
EC

8~

√√ 1
1+ 2b

= 140MHz (5.12)

The discrepancy between the two values is about 27 %.
We performed further measurement to test the reproducibility and consistency of this

result. We interchanged the role of the qubit and the ancilla. In Fig. 5.22 (b) we plot in dashed
green and solid blue, a measurement showing a spectroscopy around the ancilla frequency
while the excitation tone on the qubit turned off and turned on, respectively. The result is
exactly consistent with that in Fig. 5.22 (a), with a peak separation of about 110 MHz.

We remark that, when the excitation on the qubit is turned on, the ancilla resonance
peak has a negative Lorentzian shape. This feature is not yet fully understood. We think that
this behaviour is related to the effect of the dispersive shifts of the logical and ancilla qubit
which act simultaneously on the resonance peak of the resonator. It is possible that the two
frequency shift due to the excitation of the ancilla and logical excited state ends up with a
positive frequency shift of the microwave resonator frequency and consequently to a negative
resonance peak in the three–tone measurement.
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(c)(a)

(b)

(d)

(e)

(f)

Figure (5.22): (a) Top green dashed curve, two–tone measurement of the qubit resonance,
see energy diagram (c). Bottom blue solid curve, three–tone measurement. An excitation
tone continuously drives the ancilla transition, while the probe tone scans the qubit transition,
see (d). We observe the emergence of a second peak separated from the qubit resonance peak
by the cross anharmonicity (2gzz)/(2π). (b) Control measurement of the cross-anharmonicity
with inverted roles of logical and ancilla qubit, i.e., the probe tone is swept around the
ancilla resonance frequency, whereas the excitation drive is resonant with the ancilla at
ωa/(2π) as shown in (e) and (f). The two measurements are consistent together with a
cross-anharmonicity of (2gzz)/(2π) = 110 MHz. The measurement has been performed at a
base temperature T = 35 mK and a magnetic flux φb = 0 on the sample “V-shape-2”. For the
panel (a), the probe power was Pqb

probe = −17.5dBm and Pa
probe = −10dBm with a readout

power Preadout = −30 dBm. Data were acquired during about Treadout = 2µs and averaged
103 times. For the panel (b), the probe power was Pqb

probe = −1dBm and Pa
probe = 5 dBm with

a readout power Preadout = −33 dBm. Data were acquired during about Treadout = 192 ns and
averaged 104 times.
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5.7 Experimental realisation of a V-shape energy diagram ?

In this section we discuss about the validity of our claim: the experimental realisation of
a V-shape energy diagram in a superconducting quantum circuit. To deserve the name of
V-shape, an energy diagram must exhibit specific properties. We propose here a list of the
minimal necessary properties:

1. The two qubits have to belong to two different modes.

2. One qubit should exhibit a long coherence time in order to be used as logical qubit.

3. Each qubit transition is addressable independently.

4. Any transitions from the logical qubit excited state to higher energy level are far out of
resonance of the ancilla transition

In our system, the two qubits are formed from the two first transitions of the in-phase and
out-of-phase oscillating mode of our quantum device. At φb = 0, the two oscillating modes
reach a symmetry point at which the two modes become only coupled via a cross-Kerr term.
The two qubits are then perfectly orthogonal and are only coupled via a bσzbσz term.

The qubit formed by the two first level of the in-phase mode is equivalent to the usual
transmon qubit. Since the transmon already was proven to be a “good” qubit (long coherence
time, easy implementation, possibility to couple several transmons), we use this qubit as a
logical qubit. The remaining qubit is then dedicated to the measurement of the logical qubit
and it is used an ancilla qubit.

Due to the nature of the modes leading to the two qubits, the logical qubit can only be
addressed via electric field and the ancilla qubit by magnetic field. Moreover, the two qubits
are detuned by ≈ 10GHz. These two properties ensure an independent addressing of the
two transitions.

Since the system is composed of two coupled qubits, a third excited level arises in
the energy diagram. Physically this level corresponds to having the both qubit excited
simultaneously. However due to the cross-anharmonicity, this level is detuned from the qubit
and ancilla transitions by more than 100 MHz. This remarkable property make this transition
out of resonance of the logical and ancilla qubit tone leading to the achievement of a V-shape
energy diagram.

To conclude, we have demonstrated through a complete set of quantum experiments that
our proposed superconducting quantum circuit exhibits a V-shape diagram. These results
open the way to realise very fast QND qubit readout[45] and cross-Kerr interactions at the
few-photon level[136,137].
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Français

Conclusion

Dans ce manuscrit, j’ai discuté la théorie relative à la réalisation d’un atome artificiel supra-
conducteur avec un diagramme d’énergie en V. Le circuit supraconducteur est basé sur deux
transmons couplés inductivement. J’ai décrit le modèle théorique de l’échantillon ainsi que
son environnement micro-onde (résonateur quart-d’onde et couplage à la feedline). Ce travail
a mené à la prédiction d’un couplage cross-Kerr qui peut atteindre plusieurs centaines de
méga-hertz. En utilisant cette caractéristique, nous proposons un protocole pour effectuer
une lecture de l’état du qubit tout en le gardant non couplé à la cavité.

Afin de réaliser les expériences sur les atomes artificiels fabriqués, j’ai mis en place une
installation micro-onde complète capable d’effectuer des expériences quantiques au niveau
de l’état-de-l’art. Ce travail inclus la mise en place de composants micro-ondes dans un frigo à
dilution, le calcul de la charge calorifique, le calcul du bruit de photon résiduel, la calibration
de la chaîne d’amplification et l’installation d’un bouclier magnétique. Un environnement
Python a aussi été mis en place afin d’effectuer toutes les expériences avec des scripts Python.
Plusieurs pilotes Python ont été écrit afin de gérer les différents instruments utilisés pour les
expériences. Grâce à ce travail, tout l’aspect informatique des mesures en partant des scripts
de mesure jusqu’au traitement des données est désormais effectué en Python.

Un important travail a été réalisé sut la caractérisation des résonateurs micro-ondes. Pre-
mièrement, la forme asymétrique des formes de résonance a été expliquée par l’inductance des
fils de soudure. La réduction de l’inductance de ces fils améliorera l’adaptation d’impédance
et donc le rapport signal-sur-bruit des mesures. Afin d’aller dans cette direction, nous avons
fabriqué un nouveau porte-échantillon, qui sera bientôt installé, dans lequel la longueur des
fils de soudure nécessaire pour connecter la puce au câble coaxial a été drastiquement réduite
pour atteindre moins de 1 millimètre. Secondement, le faible facteur de qualité interne
mesuré sur les résonateurs en Aluminium et Rhénium suggère un facteur limitant commun.
Les explications possibles pourraient être des blindages thermique et magnétique de la puce
pas assez efficasse et une mauvaise thermalisation des photons venant de l’amplificateur
cryogénique. Ainsi, la prochaine génération de porte-échantillon améliorera le blindage
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thermique en adoptant une stratégie de « poupée russe » décrite par R. Barends in [91]. Un
meilleur blindage magnétique a aussi été mis en place dans le nouveau porte échantillon.
De plus, en déplaçant les connecteurs magnétiques loin de la puce-échantillon, le nouveau
porte-échantillon va de nouveau diminuer le champ magnétique au niveau de la puce. Afin
d’avoir la même thermalisation des photons dans les lignes d’entrée et de sortie, les deux
circulateurs micro-onde de la ligne de sortie vont être thermalisés à 35 mK. Finalement, un
filtre micro-onde passe-bas fait à partir d’Eccosorb avec une fréquence de coupure d’environ
30 GHz sera installé afin de filtrer les signaux très hautes fréquences.

Le résonateur micro-onde de l’atome artificiel a été rendu accordable en incorporant un
SQUID dans la ligne centrale du résonateur. Une hystérésis a été observée en étudiant la
dépendance en flux magnétique de la fréquence de résonance de la cavité. Nous montrons
que cette hystérésis vient de l’inductance de la boucle du SQUID qui est comparable à
l’inductance Josephson des jonctions. Une description quantitative de la dépendance en
champ magnétique de la fréquence de résonance de la cavité a été réalisée menant à une très
bonne compréhension du système mesuré.

Des spectroscopies deux-ton ont été utilisés pour mesurer la dépendance en champ
magnétique des deux premiers niveaux excités du mode « en-phase » et du premier niveau
excité du mode hors-phase. Nous avons effectué un calcul numérique avec la bibliothèque
Kwant pour ajuster ces niveaux d’énergie avec notre modèle théorique et nous obtenons un
très bon accord entre la théorie et les données. Le modèle analytique développé au Chapitre
1 a aussi été utilisé pour ajuster les données mais les paramètres extraits ne valident pas les
hypothèses faites pour obtenir ce modèle.

Une propriété intéressante a été mesurée au travers de la dépendance en flux magnétique
de la seconde transition du mode « en-phase ». En effet, nous avons mesuré que cette transition
devient interdite aφb = 0. Nous comprenons cette caractéristique par les différentes symétries
de l’atome artificiel. En effet, à φb = 0, le mode devient seulement couplé par un terme
cross-Kerr. Le mode fondamental et le second niveau excité exhibent alors une symétrie
pair rendant impossible une transition directe entre eux. Lorsque φb 6= 0, des couplages
non-linéaires entre les deux modes apparaissent. La présence de ces couplages casse la
parité pair du niveau fondamental et du second niveau excité. La transition devient alors
possible. Nous avons effectué un calcul analytique des états-propres du système au premier
ordre en utilisant la théorie des perturbations quantique. Nous avons démontré que cette
caractéristique peut être expliquée par le couplage non-linéaire ω21.

Pour mériter le nom de diagramme d’énergie en forme de V, un diagramme d’énergie doit
avoir des propriétés spécifiques:

1. Les deux qubit doivent appartenir à deux modes différents.

2. Un des qubit doit exhiber des temps de cohérence longs afin de pouvoir être utilisé en
tant que qubit logique.

3. Chaque qubit doit être adressable indépendemment.

4. Toutes les transitions partant du niveau excité du qubit logique à des niveaux plus
élevés en énergie doivent être non-résonantes avec la transition de l’ancillaire.
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Nous avons effectué différentes expériences pour vérifier ces propriétés. À partir de
la dépendance en flux magnétique des niveaux d’énergie mesurée par des spectroscopies
deux-ton, nous avons confirmé la nature des modes d’oscillation donnant lieu aux qubits
logique et ancillaire.

À φb = 0, le système peut être vu comme deux qubits couplés uniquement par une
anharmonicité croisée. Un de ces qubits est équivalent au qubit transmon et est utilisé comme
qubit logique. L’autre qubit est alors dédicacé à la mesure du qubit logique et est utilisé
comme qubit ancillaire.

Par des mesures résolues en temps, nous avons mesuré la relaxation et la durée de
décroissance Rabi du qubit logique. Nous avons démontré que le qubit logique et ancillaire
ont le même temps de relaxation comparable avec la première génération de transmon
avec T qb, a

1 ≈ 500 ns. De manière surprenante, le qubit ancillaire exhibe le même temps de
relaxation que le qubit logique. Cela pourrait suggérer un facteur limitant commun aux deux
qubits. Cependant, aucune explication n’a encore été trouvée.

En étudiant la dépendance de la puissance du ton de lecture et du ton de sonde sur le
pic de résonance du qubit logique, nous avons estimé le temps de déphasage entre 30 et
100 ns. Le temps de décroissance de Rabi est d’environ 500 ns. Ces temps caractéristiques
sont courts comparés à ce qu’un qubit transmon peut atteindre et pourraient être expliqués
par le trop faible rapport EJ/EC de notre atome artificiel ((EJ/EC)∗ ≈ 30). Nous attendons
une amélioration de la cohérence du qubit logique en augmentant ce rapport à 50 et en
modifiant la forme de la capacité inter-digitée.

Le temps de cohérence du qubit ancillaire (temps de déphasage et temps de décroissance
Rabi) est plus petit que les temps de cohérence du qubit logique. Nous suspectons que la
cause de cette perte de cohérence est la super-inductance. En effet en augmentant le nombre
de jonctions, nous augmentons la probabilité d’être couplé a un système à deux niveaux
parasite. Cette idée est corroborée par les observations de résonance parasite observées dans
les spectroscopies du qubit ancillaire lors de certaines périodes de mesure. En comparaison,
de telles caractéristiques n’ont jamais été observées dans les spectroscopies du qubit logique
et ce pour toutes les périodes de mesure.

Due à la nature des modes donnant lieu aux deux qubits, le qubit logique peut seulement
être adressé par un champ électrique et le qubit ancillaire par un champ magnétique. De
plus, les deux qubits ont un désaccord de fréquence de résonance de ≈ 10 GHz. Ces deux
propriétés assurent un adressage indépendant des deux transitions.

Puisque le système est composé de deux qubits couplés, un troisième niveau excité
apparaît spontanément dans le diagramme d’énergie. Physiquement, ce niveau correspond à
avoir les deux qubits excités à la fois. Cependant due a l’anharmonicité croisée, la fréquence
de cette transition est en désaccord avec la transition des qubits logique et ancillaire. Par
des spectroscopies trois-ton nous avons confirmé la nature et la force de l’anharmonicité
croisée. Nous avons observé une anharmonicité croisée de 115 MHz, valeur en accord avec
les prédictions théoriques.

En conclusion, l’atome artificiel composé de deux qubits transmons inductivement couplés
vérifie les principales propriétés d’un atome artificiel possédant un diagramme d’énergie en V.
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Perspectives

Lecture QND rapide

La réalisation d’un diagramme d’énergie en V dans un circuit supraconducteur ouvre la voie
pour des lectures QND rapides de l’état du qubit logique. Dans ce but, je propose dans le
Chapitre 1 de ce manuscrit, la possibilité d’effectuer des mesures quantiques non-destructives
extrêmement rapides de l’état du qubit logique en utilisant le diagramme d’énergie en V et
un résonateur micro-onde[45].
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Figure (5.23): Transmission de l’atome artificiel couplé à un résonateur micro-onde en
fonction de la fréquence relative du ton d’excitation. La courbe bleue correspond à la
transmission du système lorsque le qubit est dans son état fondamental tandis que la courbe
verte correspond à la transmission du système lorsque le qubit est dans son état excité.

L’atome artificiel est couplé à un résonateur micro-onde de telle manière que seul le qubit
ancillaire est effectivement couplé. Cet état est facilement atteignable en plaçant l’atome
artificiel à une position où le champ magnétique est maximal et le champ électrique minimal.
Pour un résonateur micro-onde quart-d’onde, cette position correspond simplement au bord
court-circuité du résonateur. On doit également avoir la fréquence de résonance du qubit
ancillaire égale à la fréquence de résonance du résonateur micro-onde. Dans cette situation,
la fréquence de résonance du résonateur va dépendre de l’état du qubit logique, voir Fig. 5.23.
Le décalage en fréquence du résonateur peut atteindre plusieurs centaines de méga-hertz soit
deux ordres de grandeur plus élevés que ce qu’on obtient avec l’habituel décalage dispersif.

La lecture du qubit logique est effectuée par le couplage cross-Kerr, rendant la mesure non
destructive. De plus, dans notre proposition, le qubit logique n’est pas couplé au résonateur
micro-onde supprimant l’effect Purcell. En utilisant un amplificateur proche de la limite
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quantique (TN = 140 mK et B = 50MHz), de tels circuits peuvent atteindre une fidélité de
lecture de l’état du qubit logique de 99.7 % avec un temps de mesure de 50 ns.

Nous sommes actuellement en train de tester une deuxième génération d’échantillon dont
les paramètres pourraient mener à la réalisation de cette proposition.

Transistor à un photon

En tirant parti de la haute adressabilité des deux qubits, nous pouvons envisager d’utiliser
notre atome artificiel comme un transistor à un photon comme récemment proposé par
Neumeier et al.[137].

Control
line

V-shape
device

Figure (5.24): Transistor à un photon réalisé avec notre atome artificiel. Le qubit logique est
couplé capacitivement à une ligne de contrôle tandis que l’ancillaire est couplé inductivement
à une ligne de transmission.

Le circuit est représenté en Fig. 5.24. La ligne de contrôle est seulement couplée au
qubit logique tandis que la ligne de transmission est seulement couplée au qubit ancillaire.
Lorsque le qubit logique est dans son état fondamental, un photon voyageant dans la ligne en
transmission à la fréquence de résonance du qubit ancillaire sera rétrodiffusé. En effet, pour
un signal micro-onde arrivant à la fréquence de résonance du qubit ancillaire, l’atome artificiel
induira une importante désadaptation d’impédance. Cependant, lorsque le qubit logique est
dans son état excité, le signal arrivant sera transmis. En effet, due à l’anharmonicité croisée,
la fréquence de résonance du qubit ancillaire sera décalée vers des fréquence plus basse. Il
n’y aura donc plus de désadaptation d’impédance induite par l’atome artificiel.

En contrôlant l’état du qubit logique, il a été prédit que nous pouvons créer un transistor
à un photon[137,138].



218 Conclusion and perspectives

English

Conclusion

In this manuscript I have theoretically discussed the realisation of a superconducting artificial
atom with a V-shape energy diagram. The superconducting circuit is based on two inductively
coupled transmons. I theoretically described the circuit model of the V-shape sample as well
as its microwave environment (quarterwave resonator and coupling to the feedline). This
work leads to analytical prediction of a cross-Kerr coupling which can be as high as hundreds
of megahertz. By using this feature we propose a protocol to perform the readout of a qubit
state by keeping the logical qubit not coupled to the cavity, see the first perspective for details.

In order to realise experiments on the V-shape samples, I installed a complete microwave
setup capable to perform state-of-the-art quantum experiments. This work includes instal-
lations of microwave components in a dilution fridge, calculation of heat load, calculation
of residual photon noise, calibration of amplification chain, and installation of magnetic
shieldings. A Python environment has also been installed in order to perform all experiments
by Python scripts. Several Python drivers have been written to handle all instruments used
for our measurements. Through this work, all the computer coding aspect from measurement
script to data treatment is from now on performed in Python language.

A lot of work has been done on the characterisation of the microwave resonators. First, the
asymmetric shape of the measured resonance has been explained by wire bonding inductances.
The reduction of the inductance of the bondings will improve the impedance matching and
so, the signal-to-noise ratio of the measurements. In order to move in this direction, we built
a new sample holder, which will be soon installed, in which the length of the wire bondings
needed to connect the chip to the coax cables has been drastically reduced from several
millimeters to less than one millimeter. Second, the low internal quality factors measured
on both aluminium and rhenium microwave resonators suggest a common limiting factor.
Possible explanation could be an inefficient thermal and magnetic shielding of the sample
chip and a bad thermalisation of photons coming from the cryogenic amplifier. Thus the
next generation of sample holder will improve the thermal shielding by adopting the strategy
of “box-in-a-box” described by R. Barends in [91]. A better magnetic shielding has also be
implemented in the new sample holder. Moreover by moving the magnetic connectors further
away from the sample chip the new sample holder will again decrease the magnetic field
at the chip position. In order to have the same thermalisation of photons in the input and
the amplification lines, the two microwave circulators of the amplification line will be both
thermalised at 35 mK. Finally, a microwave low-pass filter made by eccosorb with cut-off
frequency about 30 GHz will be installed in order to filter very high frequency signals.

The microwave resonator of the V-shape sample was made tunable by incorporating a
SQUID in the central line of the resonator. An hysteresis has been observed by studying the
magnetic flux dependence of the cavity frequency. We show that the hysteresis came from
the loop inductance of the SQUID which was comparable to the Josephson inductance of the
junctions. A quantitative description of the magnetic flux dependence of the cavity resonance
has been done leading to a very good understanding of the system.

Two-tone spectroscopy have been used to measure the magnetic flux dependence of the
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first two excited levels of the in-phase mode and the first excited level of the out-of-phase
mode. We performed numerical calculations via Kwant library to fit these levels with a good
agreement between theory and data. The analytical model developed in Chapter 1 has also
been used to fit data but the extracted parameters do not validate the assumptions made to
obtain the model.

An interesting property has been measured through the magnetic flux dependence of the
second transition of the in-phase mode. Indeed we measured that this transition becomes
forbidden at φb = 0. We understand this feature via the different symmetry of the two
modes of the V-shape sample. Indeed at φb = 0, the mode becomes only coupled via a
cross-Kerr term. The ground and second excited state exhibit then both an even symmetry
making impossible direct energy transition between them. When φb 6= 0, non linear couplings
between the two modes appear. The presence of these couplings breaks the even parity of the
ground and second excited states. The transition is then available. We performed a first-order
analytical calculation of the eigenestates of the system through the quantum perturbation
theory. We demonstrated that this feature can be explained via the non linear coupling term
ω21.

To deserve the name of V-shape, an energy diagram must exhibit specific properties:

1. The two qubits have to belong to two different modes.

2. One qubit should exhibit a long coherence time in order to be used as logical qubit.

3. Each qubit transition is addressable independently.

4. Any transitions from the logical qubit excited state to a higher energy level are far out
of resonance of the ancilla transition.

We perform different experiments to verify all these properties. From the magnetic field
dependence of the energy levels measured via two-tone spectroscopies, we confirm the nature
of the oscillating modes giving rise to the logical and ancilla qubit.

At φb = 0, the system can be viewed as two qubits only coupled via a cross anharmonicity.
One of these qubits is equivalent to the usual transmon qubit and is used as a logical qubit.
The other qubit is then dedicated to the measurement of the logical qubit and is the ancilla
qubit.

By time-resolved experiments, we measured the relaxation and the Rabi decay time of
the logical qubit. We have demonstrated that the logical and ancilla qubit have a relaxation
time comparable with the first generation of transmon with T qb, a

1 ≈ 500 ns. Surprisingly
the ancilla qubit exhibits the same relaxation time as the logical qubit. This may suggest a
common limiting factor for the two qubits. However no explanation has been found so far.

By studying readout and probe power dependence of the logical qubit resonance peak,
we estimate its pure dephasing time between 30 to 100 ns. The Rabi oscillation decays over a
characteristic time of about 500 ns. These times are short compared to what transmon qubits
can achieve and could be explained by the too small EJ/EC ratio in our circuit ((EJ/EC)∗ ≈ 30).
We expect an improvement of the logical qubit coherence by increasing this ratio up to 50
and by modifying the design of the inter-digital capacitance.
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The coherence times of the ancilla (Rabi decay time and pure dephasing time) are lower
than the coherence times of the logical qubit. We suspect the superinductor to be the cause of
this loss of coherence. Indeed by increasing the number of Josephson junctions, we increase
the probability to be coupled to spurious two-level systems. This idea is corroborated by the
observation of two-level spurious resonances in the ancilla spectroscopy observed in some
measurements. In comparison, such spurious features have never been observed in the logical
qubit spectroscopy during all our measurements.

Due to the nature of the modes leading to the two qubits, the logical qubit can only be
addressed via electric field and the ancilla qubit by magnetic field. Moreover, the two qubits
are detuned by ≈ 10GHz. These two properties ensure an independent addressing of the
two transitions.

Since the system is composed of two coupled qubits, a third excited level arises in
the energy diagram. Physically this level corresponds to having the two qubits excited
simultaneously. However due to the cross-anharmonicity, this level is detuned from the qubit
and ancilla transitions. By three-tone spectroscopy we confirm the nature and the strength of
the cross-anharmonicity. We observed cross-Kerr anharmonicity of about 115 MHz, value in
agreement with the analytical model of the V-shape sample.

In conclusion the two inductively coupled transmon qubits verify the main properties of a
V-shape artificial atom.

Perspectives

Fast QND readout

The realisation of a V-shape energy diagram in superconducting circuit opens the way for
fast QND readout of the logical qubit state. In this purpose I proposed, in Chapter 1 of
this manuscript, the possibility to perform an ultra fast quantum non destructive readout
of the logical qubit state by using the V-shape device in circuit quantum electrodynamics
architecture with a quarterwave resonator[45].

The V-shape device is coupled to a microwave resonator in such way that only the ancilla
qubit is effectively coupled. This is easily achievable by placing the V-shape device at a position
where the magnetic field is maximum and the electric field minimum. For a quarterwave
microwave resonator this position simply corresponds to the short-circuit side of the resonator.
The last requirement is to set the ancilla resonance frequency equal to the microwave resonator
frequency. In such a situation, the cavity resonance frequency will depend on the logical qubit
state, see Fig. 5.25. The frequency shift of the resonator can be as high as few hundreds of
megahertz so two orders of magnitudes higher than what we can obtain by usual dispersive
shift.

The readout of the logical qubit is performed via the cross-Kerr coupling, making the
measurement non destructive. Moreover, in our proposal, the logical qubit is not coupled to
the microwave resonator suppressing relaxation by Purcell effect. By using a near quantum
limited amplifier (TN = 140mK and B = 50 MHz), such a circuit should reach a logical qubit
readout fidelity of 99.7 % with a measurement duration of 50 ns.
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Figure (5.25): Transmission of the V-shape sample embedded in a microwave resonator as a
function of the relative drive frequency. The blue line corresponds to the transmission of the
system when the qubit is in its ground state while the green line is when it is in its excited
state.

We are currently testing a second generation of samples whose parameters may lead to
this novel readout proposal.

Single photon transistor

Taking advantage of the high selective addressability of the two qubits, we can envision using
our V-shape device as a single photon transitor recently proposed by Neumeier et al.[137].

The circuit is sketched in Fig. 5.26. The control line is only coupled to the logical qubit
while the transmission line is only coupled to the ancilla qubit. When the logical qubit is in
its ground state, a photon travelling in the transmission line at the frequency of the ancilla
transition will be backscattered. Indeed, for an incoming microwave signal at the ancilla
transition frequency, the V-shape device will induce a strong impedance mismatch. However,
when the logical qubit is in its excited state, the incoming signal will be transmitted. Indeed
due to the cross-anharmonicity, the ancilla transition will be downshifted to a lower resonance
frequency. There will be no impedance mismatch induced by the V-shape device.

By controlling the state of the logical qubit it has been predicted that we can manipulate
the flow of photon at the single photon level[137,138].
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Control
line

V-shape
device

Figure (5.26): Single photon transistor realised with our V-shape device. The logical qubit
is coupled capacitively to the control line while the ancilla qubit is coupled inductively to a
transmission line.



AppendixA
Software environment

A basic measurement script is displayed below. The script is adapted from an example
available in the QTLab documentation. Lot of comments are written directly in the code.

1 #Libraries importation
2 import numpy as np
3

4 # you define two vectors of what you want to sweep.
5 # In this case a frequency (f_vec)
6 f_vec = np.arange(0,10,0.01)
7

8 # you indicate that a measurement is about to start and
9 # other processes should stop (like batterycheckers, or

10 # temperature monitors)
11 qt.mstart()
12

13 # Next a new data object is made.
14 # The file will be placed in the folder:
15 # <datadir>/<datestamp>/<timestamp>_testmeasurement/
16 # and will be called:
17 # <timestamp>_testmeasurement.dat
18 # to find out what ’datadir’ is set to,
19 # type: qt.config.get(’datadir’)
20 data = qt.Data(name=’testmeasurement’)
21

22 # Now you provide the information of what data will be
23 # saved in the datafile. A distinction is made between
24 # ’coordinates’, and ’values’.
25 # Coordinates are the parameters that you sweep, values
26 # are the parameters that you readout (the result of an
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27 # experiment).
28 # This information is used later for plotting purposes.
29 # Adding coordinate and value info is optional, but
30 # recommended.
31 # If you don’t supply it, the data class will guess your
32 # data format.
33 data.add_coordinate(’Frequency [GHz]’)
34 data.add_value(’S21 [dB]’)
35

36 # The next command will actually create the dirs and
37 # files, based on the information provided above.
38 # Additionally a settingsfile is created containing the
39 # current settings of all the instruments.
40 data.create_file()
41

42 # Next one plot-objects is created.
43 # First argument is the data object that needs to be
44 # plotted.
45 # To prevent new windows from popping up each measurement
46 # a ’name’ can be provided so that window can be reused.
47 # If the ’name’ doesn’t already exists, a new window with
48 # that name will be created.
49 plot2d = qt.Plot2D(data, name=’measure2D’,
50 coorddim=0,
51 valdim=2,
52 traceofs=10)
53

54 # Preparation is done, now start the measurement.
55 # It is actually a simple loop.
56 for f in f_vec:
57 # set the frequency
58 fake_mw_src.set_freqency(f)
59

60 # readout
61 result = fake_readout_psw.get_data()
62

63 # save the data point to the file, this will
64 # automatically trigger the plot windows to update
65 data.add_data_point(f, result)
66

67 # the next function is necessary to keep the gui
68 # responsive.
69 # It checks for instance if the ’stop’ button is pushed.
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70 # It also checks if the plots need updating.
71 qt.msleep(0.001)
72

73

74 # after the measurement ends, you need to close
75 # the data file.
76 data.close_file()
77 # lastly tell the secondary processes (if any)
78 # that they are allowed to start again.
79 qt.mend()
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AppendixB
Derivation of the quarter-wave
resonator transmission
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The appendix presents the derivation of the a quarter-wave resonator transmission. The
first part describes the transmission of a resonator coupled to a feedline[139]. The result
leads to a power transmission having a Cauchy-Lorentz distribution shape, whose the width
depends of the internal losses and of the coupling to the environment. In the second part,
we develope a model capable to explain asymmetric resonances measured during my thesis.
Measured resonance peaks may have an asymmetric shape and not a simple Lorentzian shape.
Such asymmetric shapes can be attributed to an impedance mismatch in the feedline[115,116]

on either side of the resonator as indicated in Fig. B.2 by the two Xe impedances. Our
interpretation attributes these impedances to wire–bondings between the chip and the printed
circuit board.
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Figure (B.1): Electrical circuit of a λ/4 resonator.

B.1 Symmetric model

The resonator is depicted by a coaxial cable of characteristic impedance Zr with an internal
quality factor Qi. Its resonance frequency is denoted by ωr = 2πνr and the deviation from
this particular frequency ∆ωr =ω−ωr . Finally the resonator is coupled through a capacitor
of impedance ZCc

= − i
ωCc

to a feedline of characteristic impedance Z0.

B.1.1 Calculation of the shift in frequency caused by the coupling capacitor

The impedance of the resonator can be written as (see [61] equation 6.29):

Zresonator =
Zr

π
4

1
Qi
+ iπ2

∆ωr
ωr

. (B.1)

We can rewrite Eq. (B.1) by expanding the real and imaginary part:

Zresonator = Zr
4Qi

π

1− i2Qi
∆ωr
ωr

1+ 4Q2
i

�
∆ωr
ωr

�2 . (B.2)
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The system is composed of the resonator and a capacitor. The total impedance is simply the
sum of the two:

Ztot =Zr
4Qi

π

1− i2Qi
∆ωr
ωr

1+ 4Q2
i

�
∆ωr
ωr

�2 −
i
ωCc

(B.3)
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At the resonance the imaginary part of the total impedance is equal to zero. This leads to:

4Q2
i

ω0CcZr

�
∆ωr

ωr

�2

+
8Q2

i

π

∆ωr

ωr
+

1
ω0CcZr

= 0. (B.5)

The two solutions (∆ωr/ωr)+ and (∆ωr/ωr)− are:

∆ωr

ωr
± =

ω0CcZr

2Qi


−2Qi

π
±
√√√4Q2

i

π2
− 1

ω2
0C2

c Z2
r


 . (B.6)

For the following we will assume1 that (4Q2
i )/π

2 is much greater than 1/(ω2
0C2

c Z2
r ). Equa-

tion (B.6) becomes:
∆ωr

ωr
± =

ω0CcZr

2Qi

�
−2Qi

π
± 2Qi

π

�
. (B.7)

Physically only one solution makes sense, it’s the solution which lower the resonance frequency
since by adding a capacitor in series with a resonator we make the overall capacitance bigger.
In this case the solution is reduce to:

∆ωr

ωr
= −2ω0CcZr

π
. (B.8)

We can now define ω0 the resonance frequency of the coupling capacitor and resonator in
series and ∆ω0 =ω−ω0 the deviation from this particular frequency as:

∆ω0

ω0
=
∆ωr

ωr
+

2ω0CcZr

π
. (B.9)

1By using the definition of the external quality factor Qc given in Eq. (B.15), we can demonstrate that
the assumption (4Q2

i )/π
2 � 1/(ω2

0C2
c Z2

r ) is equivalent to (Q2
c Z0)/(Q2

i Zr)� 1. Thus, for a matched resonator
(Z0 = Zr), the ratio of the external quality factor to the internal quality factor has to be much smaller than one.
Physically, this condition implies to have a resonator in the undercoupled regime. When Zr 6= Z0, the quality
factors ratio is normalized by the ratio of the characteristic impedance of the resonator to the characteristic
impedance of the feedline.
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B.1.2 Calculation of the coupling capacitance Qc

At the resonance frequency the total impedance is equal to:

Ztot = Zr
4Qi

π

π2

π2 + 16Q2
iω

2
0C2

c Z2
r

. (B.10)

We assume2 that π2� 16Q2
iω

2
0C2

c Z2
r which leads to:

Ztot =
π

4Qiω
2
0C2

c Zr
. (B.11)

For our system the transmission coefficient can be calculated as (see [61] table 4.1 and 4.2):

S21 =
2

2+ Z0
Ztot

. (B.12)

If we replace Eq. (B.11) in Eq. (B.12), we get:

S21 =
2π

2π+ 4Qiω
2
0C2

c ZrZ0
. (B.13)

At the resonance frequency a well-known result is that S21 =
Qc

Qi+Qc
(see for example [99]

equation 2.42). If we factorize Eq. (B.13) to this form, we have:

S21 =

π
2ω2

0C2
c ZrZ0

π
2ω2

0C2
c ZrZ0

+Qi
. (B.14)

We found a formula which links the coupling capacitance to the coupling quality factor:

Qc =
π

2ω2
0C2

c ZrZ0
. (B.15)

B.1.3 Calculation of the transmission coefficient S21

We can now calculate the transmission coefficient for all frequency. The first step is to write
the coupling capacitance and the shift in frequency as a function of the coupling quality factor.
We get:

∆ωr

ωr
=
∆ω0

ω0
−
√√ 2Zr

πZ0Qc
(B.16)

ZCc
= −i

√√2Z0ZrQc

π
. (B.17)

2This assumption is, at a factor of 4, the same as done between Eq. (B.6) and Eq. (B.7).
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The total impedance becomes:

Ztot = Zr

4Qi
π

1+ 2iQi

�
∆ω0
ω0
−
r

2Zr
πZ0Qc

� − i

√√2Z0ZrQc

π
(B.18)

=
2Qi
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− i
Ç
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π

1+ 2iQi

�
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−
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2Zr
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� . (B.19)

Using Eq. (B.12), we get:
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4Qi

Ç
2QcZ0Zr
π
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− 2i
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π

4Qi
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Here we assume:

1
2

√√ πZ0

2QcZr
� 2Qi

∆ω0

ω0
(B.22)

Qi

√√ πZ0

2QcZr

∆ω0

ω0
� 1+

Qi

Qc
. (B.23)

Which give us the final equation given S21 as a function of Qi and Qc :

S21 =
1+ 2iQi

∆ω0
ω0

1+ Qi
Qc
+ 2iQi

∆ω0
ω0

(B.24)

B.2 Asymmetric model

To obtain an asymmetry, we have to take into account parasitic modes which can exist in
the feedline. Indeed the feedline is generally bonded at its two extremities with small and
narrow aluminium wires. When the inductance of these wires are not negligible, they create
a halfwave resonator instead of a simple coplanar waveguide. However this complete model
leads to a really complicated equation from which it is difficult to obtain an understandable
analytical expression. Here we will adopt an intermediate point of view where we will
completely neglect the propagation behaviour of the spurious halfwave resonator but we will
take into account the impedance mismatch caused by the bondings, see Fig. B.2.

The only new element is the reactance Xe between the resonator and the coax line. The
external quality factor and the frequency shift stays the same than before (see Eqs. (B.15)
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Figure (B.2): Electrical circuit of a λ/4 resonator with two reactances added on either side
of the resonator.

and (B.16)) since the resonator and the coupling capacitor are not modified. However the
transmission coefficient is modified to take into account the addition of the two environmental
reactances (see [61] table 4.1 and 4.2):

S21 =
2ZtotZ0

2Ztot (Z0 + iXe) + (Z0 + iXe)
2 . (B.25)

We replace Ztot by its expression given in Eq. (B.18), we get:

S21 =
Z0

Z0 + iXe

4Qi

Ç
2QcZ0Zr
π

∆ω0
ω0
− 2i

Ç
2QcZ0Zr
π

4Qi

Ç
2QcZ0Zr
π

∆ω0
ω0
− 2i

Ç
2QcZ0Zr
π +

�
1+ 2iQi

�
∆ω0
ω0
−
r

2Zr
πZ0Qc

��
(Z0 + iXe)

(B.26)
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We assume:

∆ω0
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πZ0Qi
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Qi
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(B.28)
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and:
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QiXe
∆ω0

ω0

√√ πZ0

2QcZr
� QiXe

QcZ0
+ 2Qi

∆ω0

ω0
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We get:

S21 =
Z0

Z0 + iXe

1+ 2iQi
∆ω0
ω0

1+ Qi
QcZ0
(Z0 + iXe) + 2iQi

∆ω0
ω0

(B.32)

B.3 Result

B.3.1 Coupling capacitor

Thanks to our definition of Qc in Eq. (B.15), we are able to extract the equivalent coupling
capacitance of our electrical circuit. The fit shown in Fig. B.3 gives Qc = 50× 103 which
leads to Cc = 2.13 fF. This value is in good agreement with design since the expected value
was around 2 fF.

B.3.2 Spurious inductance

The model explained here is an approximation of a more complicated one where the feedline
is described as a halfwave resonator made unintentional with bondings. The reactance Xe is
a simplification of the imaginary part of the impedance of this resonator. The sign of Xe is
meaningless (physically speaking) since it will be negative when the resonance frequency
of the feedline will be greater than the resonance frequency of the resonator and vice-versa.
Nevertheless we can approximate Xe as the impedance of the bondings at the resonance
frequency ω0. This approximation leads to an inductance of 1.9 nH which is very close to
the inductance found with the complete model which was 1.8 nH. Moreover we estimate
the inductance per unit length for bonding wires is about Lbonding

`
≈ 1nH·m−1. That leads to

a discrepancy between the estimated inductance and the inductance given by the fit about
10 %.
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B.3.3 Approximation verification

During our demonstration we have make some approximations and we can now check if
they are valid or not. Figure B.3 presents two fits of the same resonance calculated with
Eqs. (B.25) and (B.32). We can see that even far away from the resonance dip, the difference
between the final analytical formula Eq. (B.32) and the original formula Eq. (B.25) is very
small.
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Figure (B.3): Resonance of a quarter-wave resonator fitted with Eq. (B.32) in red and
Eq. (B.25) in green.



AppendixC
Samples parameters

Circuit parameters Symbols V-shape-1 V-shape-2

Microwave resonator
Cavity resonance frequency ν0 7.281 GHz 7.719 GHz
Cavity decay rate κ/(2π) 1.94± 0.01 MHz 3.80± 0.01MHz
Internal quality factor Qi 3020± 20 1990± 5
External quality factor Qc 3750± 20 2030± 5
Equivalent circuit parameters
Critical current Ic 8 nA
Capacitance C 40 fF
Loop inductance Lloop 7.5 nH
Characteristic energies
Josephson energy EJ 4.07 GHz
Cooper-pair Coulomb energy EC 1.95 GHz
Dimensionless quantities
Inductance ratio b 5.49
Characteristic energy ratio EJ/EC 2∗

Logical qubit
Qubit dispersive coupling χqb/(2π) 1.9 MHz 2.5 MHz
Qubit relaxation time T qb

1 600± 10 ns
Qubit Rabi decay time TRabi, qb

2 480± 20 ns
Qubit pure dephasing time T qb

φ
30± 4 ns 150± 100 ns

Qubit anharmonicity ∆x/h 340 MHz 320 MHz
Detuning cavity-qubit ∆qb 3.644 GHz 4.119 GHz
Ancilla qubit
Ancilla dispersive coupling χa/(2π) 0.75 MHz
Ancilla relaxation time T a

1 630± 30ns
Continued on next page
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Table C.1 – continued from previous page
Circuit parameters Symbols V-shape-1 V-shape-2
Ancilla characteristic decay time τ 90± 60 ns
Detuning cavity-ancilla ∆a 5.269 GHz 6.086 GHz
V-shape
cross-anharmonicity (2gzz)/(2π) 119 MHz 110 MHz

Table (C.1): Summary of the different parameters extracted on the sample “V-shape-1” and
“V-shape-2”. The uncertainty range is given in ±σ with σ the standard deviation.
* Compared to the usual Transmon definition our ratio EJ/EC should be multiplied by 16. We
then obtain a ratio of 33 for the “V-shape-2” sample.
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Corrected eigenstates

We present here the result of the eigenstates derivation from Eq. (1.45).
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Abstract

This thesis focuses on the experimental realisation of an artificial atom with a V-shape energy level diagram.
Inspired by trapped-ion experiments, we theoretically predict an ultra fast and high fidelity quantum non
destructive readout of qubit state by using the V-shape artificial atom in a circuit quantum electrodynamics
architecture.

To realise this experiment, we have developed an experimental setup to perform transmission measurements
of our superconducting quantum circuits by heterodyne technique at very low temperatures (30 mK) and very
low signal amplitude (fW). We also implemented a hardware and software environment enabling multi-tone
spectroscopies and time-resolved measurements in order to control the quantum state of the artificial atom
and the coherent field in the resonator. In addition, in order to optimise the experiment circuits we have
characterised quarterwave microwave resonators made from aluminium and epitaxial rhenium thin films.

The original quantum device is fabricated by two inductively coupled transmons. When the coupling
inductance is of the order of the Josephson inductance, we observe “in-phase” and “out-of-phase” oscillating
modes of the superconducting phase across the junctions. The energy spectrum of the system, measured by
two-tone spectroscopy, is magnetic flux dependent. It is precisely described by our theoretical model leading
to an accurate determination of the circuit parameters. Because of their anharmonicity, in the low-energy
limit, the two modes can be considered as two-level systems called qubits. At zero magnetic field, it has
been observed that the two qubits become coupled only by a cross-anharmonicity. This has been revealed,
through three-tone spectroscopy, by a conditional frequency shift as large as 115 MHz of one qubit transition
depending on the other qubit state. All these experimental results demonstrate a V-shape energy diagram for
our artificial atom which paves the way to an original and high performance read-out.

Keywords:

Quantum nano-electronic, Superconductor quantum bit, Dc-SQUID, quantum electrodynamics

Résumé

Cette thèse porte sur la réalisation expérimentale d’un atome artificiel possédant un diagramme énergétique
en forme de “V”. Inspirés par les expériences des ions piégés, nous avons théoriquement prédit une lecture
ultra rapide et de haute fidélité de l’état d’un qubit en utilisant un atome artificiel en forme de V dans une
stratégie d’électrodynamique quantique utilisant les circuits supraconducteurs.

Pour réaliser cette expérience, nous avons développé un dispositif expérimental permettant des mesures
de transmissions de nos circuits quantiques supra-conducteurs par une méthode hétérodyne aux très basses
températures (30 mK) et très faible amplitude (fW). Afin de contrôler l’état quantique de l’atome artificiel et
le champ cohérent dans le résonateur, ce dispositif expérimental permet des spectroscopies multi-tons et des
mesures résolues en temps. De plus, afin d’optimiser les circuits supraconducteurs, nous avons caractérisé des
résonateurs micro-ondes quart d’ondes fabriqués à partir d’aluminium et de rhénium épitaxiés.

Le dispositif quantique original est fabriqué en couplant inductivement deux transmons. Lorsque le couplage
inductif est de l’ordre de grandeur de l’inductance Josephson, nous observons des modes d’oscillations “en-
phase” et “hors-phase” de la phase supraconductrice à travers les jonctions. Le spectre d’énergie du système,
mesuré par des spectroscopies deux-tons, est précisément décrit par notre modèle analytique. Dû à leur
anharmonicité, les deux modes peuvent être considérés comme des systèmes à deux niveaux appelés qubits
dans la limite des excitations de petite énergies. À zéro champ magnétique, il a été observé que les deux qubits
deviennent couplés uniquement par une anharmonicité croisée. Cela a été révélé à travers des spectroscopies
trois-tons par un décalage conditionnel de la fréquence de transition de 115 MHz d’un qubit dépendant de
l’état de l’autre qubit. L’ensemble de ces résultats expérimentaux démontrent que le circuit développé présente
un diagramme énergétique en V. Cette nouvelle propriété ouvre la voie pour une expérience originale et de
haute performance pour la lecture de l’état d’un qubit.

Mots-clefs :

Nano-électronique quantique, Bit quantique supraconducteur, SQUID-dc, électrodynamique quantique
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