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Résumé

Les systemes polynomiaux a plusieurs variables apparaissent naturellement dans
de nombreux domaines scientifiques. Ces systemes issus d’applications possedent
une structure algébrique spécifique. Une méthode classique pour résoudre des
systemes polynomiaux repose sur le calcul d’une base de Grobner de 'idéal
associé au systeme. Cette these présente de nouveaux outils pour la résolution
de tels systemes structurés, lorsque la structure est induite par l'action d’un
groupe ou une structure monomiale particuliere, qui englobent les systemes
multi-homogenes ou quasi-homogenes.

D’une part, cette these propose de nouveaux algorithmes qui exploitent ces
structures algébriques pour améliorer I'efficacité de la résolution de systemes
(systémes invariant sous ’action d’un groupe ou a support dans un ensemble de
monomes particuliers). Ces techniques permettent notamment de résoudre un
probléme issu de la physique pour des instances hors de portée jusqu’a présent.
D’autre part, ces outils permettent d’améliorer les bornes de complexité de ré-
solution de plusieurs familles de systémes polynomiaux structurés (systémes
globalement invariant sous l’action d’un groupe abélien, individuellement in-
variant sous l'action d’un groupe quelconque, ou ayant leur support dans un
méme polytope). Ceci permet en particulier d’étendre des résultats connus sur
les systemes bilinéaires aux systéemes mutli-homogenes généraux.

Abstract

Multivariate polynomial systems arise naturally in many scientific fields. These
systems coming from applications often carry a specific algebraic structure. A
classical method for solving polynomial systems is based on the computation
of a Grobner basis of the ideal associated to the system. This thesis presents
new tools for solving such structured systems, where the structure is induced
by the action of a particular group or a monomial structure, which include
multihomogeneous or quasihomogeneous systems.

On the one hand, this thesis proposes new algorithms using these algebraic
structures to improve the efficiency of solving such systems (invariant under
the action of a group or having a support in a particular set of monomials).
These techniques allow to solve a problem arising in physics for instances out
of reach until now.

On the other hand, these tools improve the complexity bounds for solving several
families of structured polynomial systems (systems globally invariant under the
action of an abelian group or with their support in the same polytope). This
allows in particular to extend known results on bilinear systems to general
mutlihomogeneous systems.
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Introduction

Problématique.

La résolution effective de systémes algébriques est un probléeme central en calcul formel,
notamment vis a vis de son vaste champ d’applications. De tels systemes apparaissent par
exemple dans des domaines aussi variés que les sciences physiques et biologiques, la théorie
des jeux, la théorie du controle ou la géométrie.

Si les propriétés théoriques des systemes algébriques ont été étudiées depuis les dix-
huitieme et dix-neuvieme siecles avec les travaux de Bézout, Hilbert, Noether ou Sylvester,
c’est Macaulay qui le premier donne une méthode pour déterminer effectivement si un sys-
teme algébrique homogene possede une solution non triviale, & ’aide du résultant multivarié.
Il faut attendre les années 1960 pour qu’Hironaka et Buchberger définissent indépendamment
le concept de base de Grobner. C’est d’ailleurs dans sa theése [14] que Buchberger donne le
premier algorithme pour calculer une telle base.

Depuis, la théorie des bases de Grobner a été intensément étudiée, du fait de 'augmen-
tation croissante de la puissance de calcul des ordinateurs. En particulier, Lazard montre
en 1983 [71] les connexions entre le calcul de bases de Grébner et 1'élimination Gaussienne.
Faugere [34] propose en 1999 une version de I’algorithme de Buchberger ou les choix de paires
critiques et de polynémes réducteurs sont remplacés par de I'algebre linéaire. En 2002, il pro-
pose le premier algorithme [35] basé sur la notion de signature. Ces deux algorithmes sont de
nos jours parmi les plus utilisés pour résoudre de maniere certifice un systeme algébrique.

Du point de vue de la complexité, le probleme de la résolution d’un systeme polynomial
sur un corps fini est NP-difficile : la borne de Bézout établit qu'un systeme générique de
n polynoémes de degrés di,...,d, en n variables possede [[;-; d; solutions dans un corps
algébriquement clos. Si aucun des polynémes n’est linéaire, le nombre de solutions est donc
exponentiel en le nombre de variables.

Les systémes provenant d’applications pratiques sont algébriquement structurés, la struc-
ture étant liée a la formulation du probléme originel. On peut alors essayer d’exploiter cette
structure de différentes manieres.

— Du point de vue du nombre de solutions, il se peut que celui d’un systeme structuré

soit plus faible que pour un systéme générique.

— Du point de vue du degré mazimal atteint lors du calcul d’une base de Grébner pour
un ordre gradué, celui-ci peut-étre plus petit que celui-d’un systeme générique : la
complexité de résoudre un tel systeme s’en trouve réduite.

— La structure peut permettre d’exprimer le systeme de fagon plus compacte que la
représentation dense en somme de monoémes. La manipulation algorithmique des objets
est donc facilitée, ce qui induit un gain en complexité.

Le sujet de cette these porte principalement sur I’étude et l'utilisation des structures

induites par 'action d’un groupe fini (systémes avec symétries), ou possédant une structure
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monomiale particuliere (principalement lorsque le support des polynomes du systéme est inclus
dans un méme polytope). Ces deux structures ne sont pas indépendantes : on verra qu’on peut
se ramener de polyndémes stables sous ’action d’un groupe abélien a des polynomes ayant peu
de monomes. Le but de cette these est d’exploiter cette structure pour accélérer le processus
de résolution.

Le probleme POSSO.

Il est important de préciser ce que ’on entend par « résoudre un systeme polynomial ayant
un nombre fini de solutions ».

Résolution d’équations polynomiales en une variable. Le but de cette these est de
résoudre des systemes polynomiaux de maniere certifiée. Or, méme pour des polynémes en une
seule variable sur le corps K = Q, il n’est pas possible d’exprimer les solutions de I’équation
P(z) = 0 dans C par radicaux (ce n’est pas non plus souhaitable!), si le degré de P excede
4. Par conséquent, si K = R ou C, le recours a 'approximation de racines est inévitable.
Les techniques d’isolation de racines réelles et complexes forment un domaine de recherche
a part entiére, pour lesquelles on dispose d’algorithmes efficaces et certifiés. On pourra se
référer par exemple a [82, 83, 84]. Dans le cas d’un polynéme en une variable sur un corps
K fini, il est possible de décomposer le polynéme en facteurs irréductibles sur K a l'aide
d’algorithmes spécifiques (voir par exemple lalgorithme de Cantor-Zassenhaus qu’on pourra
trouver dans [107]), ce qui permet de donner une description des solutions dans K ou K.

Que ce soit sur un corps fini, sur R ou sur C, le cout de ces algorithmes est en général
négligeable devant le cotut du calcul d’'une base de Grobner. Dans la suite on va se ramener
systématiquement au cas de polynomes en une variable.

Base de Griébner pour l’ordre lexicographique. Soit 7 un idéal de dimension zéro
(ayant un nombre fini de solutions) dans une algebre polynomiale K[X] = K[z1,...,x,).
Alors la base de Grobner réduite de Z pour l'ordre lexicographique tel que x1 > -+ > z, a la
forme suivante :

Pii(zy,...,zn) == Prg(x1,...,2pn) >
Pyi(xo,...,xn) == Py, (z1,...,2p) >

Glez = 4 °
P i1(xp—1,2n) > > P10, (T1,...,2n) >
P (zn)

ou les polynémes P;; sont des polynémes unitaires (vus comme polynémes de
K[zit1,- .., xn][zi]), et le polyndéme P, appartient a K[z,]. En particulier, on s’apergoit que la
résolution d’un systeme peut-étre obtenue en calculant une base de Grébner lexicographique
de l'idéal engendré par les polynoémes du systeme, et utiliser ensuite les techniques décrites
pour les polynoémes d’une seule variable : on calcule d’abord les solutions du polynoéme en la
seule variable P,, puis on reporte les racines dans les autres polynomes. On procéde de méme
pour z,_1, et ainsi de suite, de proche en proche.

Cette méthode a 'inconvénient de présenter une ambiguité, car a chaque étape (excepté
pour P,), il faut calculer les racines communes a plusieurs polynémes en une seule variable.
Cette ambiguité peut-étre levée en calculant au préalable une décomposition en ensembles
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triangulaires de la base de Grobner lexicographique. Pour ce faire, on peut utiliser I'algorithme
de décomposition de Lazard [73].

Ainsi, le probléeme de résolution d’un systéme polynomial de dimension zéro est essentiel-
lement résolu, dés lors qu’une base de Grobner lexicographique de 1'idéal engendré par les
polynomes du systeme a été calculée.

Stratégie usuelle de résolution d’un systeme polynomial par calcul de bases de
Grobner. En général, le calcul direct d’'une base de Grébner lexicographique d’un idéal
Z = {f1,...,fs) est difficile alors que le calcul d’'une base de Grébner pour un ordre gradué
(et en particulier 'ordre DRL, ou grevlex, pour « graded reversed lexicographical ordering »)
est beaucoup plus aisé. Puisque c’est une base de Grobner lexicographique qui permet de
se ramener a des polynomes en une seule variable, un algorithme de changement d’ordre est
intéressant. Plusieurs algorithmes permettent de passer d’une base de Grobner a une autre
par changement d’ordre, dont I’algorithme Grébner walk [24] qui peut-étre appliqué quel que
soit la dimension de I’idéal considéré. Lorsque I'idéal est de dimension zéro, il est certainement
plus rapide d’utiliser 'algorithme FGLM [39], qui est essentiellement cubique en le nombre
de solutions. La stratégie usuelle de résolution d’un systéme polynomial ayant un nombre fini
de solutions a 'aide de techniques de bases de Grébner est résumée en figure 0.1.

F,/F5 Base de FCQLM Base de Résoluti
Systeme ]- ----- > Grobner [f------ > Grobner [F-- _es_'o_ 91130 =
DRL LEX univariée

F1GURE 0.1 — Résolution de systemes polynomiaux par bases de Grébner.

Changements linéaires de variables « génériques ». Un idéal Z de K|x1,...,z,] de
dimension zéro est dit en shape position, si sa base de Grobner pour 'ordre lexicographique
a la structure suivante :

z1 — Q1(zn)
o — QZ(-Tn)
gle$ = :

Tn—1 — anl(l‘n)

ou les (); sont des polynomes de la seule variable z,. L’ensemble des changements linéaires
sur K (correspondant aux matrices de G£,,(K)) qui mettent I'idéal en shape position forme un
ouvert de Zariski non vide (on parle de propriété générique). Avant d’appliquer la stratégie
de la figure 0.1, il est ainsi courant de procéder & un changement de variables aléatoire, ayant
pour but de mettre 1'idéal en shape position. Sous cette hypothese, le changement d’ordre peut
se faire en complexité sous-cubique, voir [38]. Beaucoup d’autres algorithmes de résolution de
systemes polynomiaux comprennent un ou plusieurs changement de variables aléatoires, voir
plus bas.

Dans cette these, on s’intéresse aux systémes structurés, possédant soit une structure
monomiale particuliere, soit une invariance sous ’action d’un groupe. Un changement linéaire
de variables aléatoire a tendance a casser les structures monomiales et rendre moins visibles
les symétries, c’est pourquoi on ne procedera jamais a de tels changements. Pour traiter un
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idéal invariant sous l’action d’un groupe abélien, on verra qu’au contraire, il est judicieux de
procéder a un changement de variables particulier. De plus, si ’on utilise toute la structure
du probleme, on se retrouve heuristiquement en « shape position ».

D’autres approches pour résoudre un systeme polynomial. Dans cette these, on dé-
veloppe essentiellement des stratégies pour résoudre un systeme polynomial avec des bases de
Grobner. Ce n’est bien sur pas la seule méthode possible pour résoudre un systeme. On pré-
sente ici les approches les plus classiques. Chacune possede ses spécificités propres, détaillées
ci-dessous.

Algorithme de résolution géométrique. Soit F = (fi,..., f,) une suite réguliere
dans un anneau de polynémes K[z, ..., z,] avec K de caractéristique 0. Alors il est possible
de calculer une représentation rationnelle des solutions du systéeme en

O (n(nL +n*)(M(ds))?)

opérations dans K, ot L est la taille maximale d’un programme en ligne directe ! permettant
d’évaluer les f;, d est une borne sur le degré des f; et § est le maximum des degrés des idéaux
intermédiaires (f1), (f1, f2)s..-, (f1,-- ., fu_1), et M(£) = £log(¢)?loglog(f). Cet algorithme
probabiliste (il utilise des changements de variables génériques) a été présenté dans [53] et
implémenté dans le package Magma Kronecker 2. On peut étendre I’algorithme en rajoutant
la condition g(z1,...,x,) # 0 pour un certain polynoéme g.

Résultant multivarié. Historiquement, les premieres techniques d’élimination de va-
riables utilisaient intensivement le résultant. Pour deux polyndémes unitaires d’une variable
z a coeflicient dans un anneau integre A, on définit le résultant comme le déterminant de la
matrice de Sylvester associée aux deux polynomes. Celui-ci s’annule si et seulement si les po-
lynémes ont une racine commune dans Frac(A). Le résultant multivarié est plus dur & définir
et ne s’obtient pas aussi simplement qu'un déterminant. On réfere a [75, 19, 18, 15] pour
plus de détails. Une variante du résultant pour 1’étude de systemes creux a également été
proposée, voir [17, 31].

Méthodes homotopiques. Ces méthodes font partie de la grande famille des algo-
rithmes symboliques-numériques. Pour calculer les solutions isolées d’un systéme polynomial
sur C, l'idée est de partir d’un systeme ayant méme nombre de solutions et de le défor-
mer progressivement pour revenir au systeme de départ. On calcule des solutions approchées
des systemes intermédiaires, et a la fin du processus on obtient une approximation des so-
lutions cherchées. L’algorithme a été implémenté, voir PHCpack [105]3 ou plus récemment
Bertini[7] 4. De nombreuses variantes existent, y compris pour traiter les systémes creux, voir
par exemple [106].

Solutions numériques. Des méthodes générales, comme la méthode de Newton-
Raphston, peuvent s’appliquer en particulier a la résolution de systemes polynomiaux sur
R ou C. La convergence vers une solution est quadratique, mais n’est que locale, et certaines
solutions peuvent étre oubliées...

. Pauteur s’excuse de ne pas savoir traduire correctement « straight line program »...

. disponible a ’adresse : http://lecerf.perso.math.cnrs.fr/software/kronecker/distribution.html
. disponible & l'adresse : http://homepages.math.uic.edu/"~ jan/

. disponible & l'adresse : https://bertini.nd.edu/

=W N
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Systemes présentant des symétries.

On commence ici par expliquer pourquoi il est intéressant d’avoir des algorithmes de
résolution de systéemes tenant compte des symétries, et ce que l'on entend exactement par
symeétries.

Exemple 0.2.

Commengons par un exemple simple, en petite dimension. On souhaite déterminer les
solutions réelles du systeme de deux équations en deux variables = et y suivant :

flay) = 2?2 +y* -2 =0
g(z,y) = 23 —62%y 32> +23+1 = 0

Ces deux polynomes sont tous deux invariants sous I’action d’une rotation planaire d’angle
27/3. En effet, en considérant

[ =172 —V/3)2 . o\ T
(k) e (0)0)

on observe que f(z',y') = f(z,y) et g(a',y') = g(z,y). Cette symétrie apparait également sur
les variétés réelles Vi (f) et Vr(g) représentées en figure 0.3.

|— f(x,y)=0 — g(x,y)=0|

FIGURE 0.3 — Les variétés réelles associées a f et g.

Notons que la petitesse des degrés de f et g impose une symétrie supplémentaire (les
variétés présentent trois axes de symétries), que nous ignorerons ici. L’ensemble des zéros
communs a f est g est de cardinal 6, ce qui coincide d’ailleurs avec la borne de Bézout. Pour
calculer précisément les solutions, on peut éliminer I’'une des variables, disons x. Pour ce faire,
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on peut calculer un résultant par rapport a x ou une base de Grobner lexicographique pour
lordre x > y. L’idéal (f, g) N R[y] contient un unique polynome unitaire, & savoir :

1 9 3 7
_ .6 4 -3 2 2 v
h(y) =y° — 3y T Y T 0% T 50

On a tracé en figure 0.4 le graphe de la fonction polynomiale associée a h. Si les deux po-

1
—_
n

o
—

1
o
9
(=]

0.5 1 1.5
y

FI1GURE 0.4 — Le graphe de la fonction polynomiale associée a h.
lynémes f et g présentaient une symétrie par rotations, ce n’est plus le cas du polynome h.

L’idée principale développée dans cette these est de conserver les symétries pour diminuer la
complexité des calculs. On explique maintenant précisément ce que l'on entend par symétrie.

Que signifie « présenter des symétries » 7 Un sous-groupe de GL,(K) agit naturelle-

ment sur les espaces K" et K. Il agit également sur K[X] = K[z1,...,z,] par Paction
GL,(K) — Skix]
A R KX] — K[X]
fo= M
ot fA est déduit de f par substitution de AX & X = *(x1,...,x,). Notons T = {f1,..., fs}
un idéal d’un anneau de polynémes K[X] = K[z, ..., z,], et Vk(Z) la variété associée, sur K.

On note également K la cloture algébrique de K. Enfin, soit G- un sous-groupe fini de G£,, (K).
Les différents cas de symétries qui peuvent se présenter sont les suivants :
e Variété stable. Le groupe G agit naturellement sur I’espace affine associé a K™. La
variété Vi (Z) est dite globalement stable sous l'action de G si

Ve e Vkg(Z) VAe G Ax € Vg(Z)

Puisqu’il n’y a aucune hypothese algébrique sur 'action de G ici, tenir compte des
symétries pour calculer Vi (Z) est tres difficile. Par contre, si K et algébriquement
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clos (ou si V(Z) est globalement stable sous 'action de G), le théoréme des zéros
de Hilbert (Nullstellensatz) prouve que pour tout polynéme f de Z et tout élément
A de G, f4 appartient & vZ, dont la variété associée coincide avec celle de Z. Par
conséquent, le cas d’une variété stable peut se ramener au cas suivant.

e Idéal stable. L’idéal Z est dit globalement stable sous l’action de G si

VfeZI YAeG fAezT

Du point de vue des applications, ce cas est le plus important car celui qui apparait le
plus en pratique. Notons que, puisque G est fini, 'ensemble {f1 | 1 <i < set A € G}
est un ensemble fini de générateurs de Z globalement stable sous 'action de G. Ainsi,
quite a augmenter artificiellement l’ensemble des générateurs de l'idéal, on pourra
supposer avoir un ensemble stable de générateurs.

° Equations semi-stables. L’idéal 7 est dit engendré par des équations individuelle-
ment semi-invariantes si

Vie{l,....,s} YAeG fr=¢fi

ou &; est un scalaire pour tout ¢. La finitude du groupe G impose que &; soit une racine
de 'unité. Ce cadre est un cas particulier du précédent.

. Equations stables. L’idéal 7 est dit engendré par des équations individuellement
invariantes si

Vie{l,...,s} YVAeG fi=14

Ce cadre est un cas particulier du précédent. Puisque les polyndémes sont individuelle-
ment stables sous I'action de G, ils appartiennent & I'algebre des invariants K[X]C.

Dans ’exemple présenté plus haut, les deux polynomes f et g sont individuellement stables
sous 'action du groupe G d’ordre 3 engendré par A.

On précise maintenant la distinction entre les symétries dans les cas modulaire et non-
modulaire. L’action de G sur K[X] est dite modulaire si char(K), la caractéristique de K, divise
le cardinal de 3, et non-modulaire dans le cas contraire. De nombreux résultats valables dans
le cas non-modulaires ne subsistent pas dans le cas modulaire. En particulier, la structure de
I’algebre des invariants K[X]® est beaucoup moins bien comprise dans le cas modulaire. Dans
la suite, on fera explicitement mention des résultats qui subsistent dans le cas modulaires.

Lorsque les équations du systéemes sont individuellement invariantes sous ’action d’un
groupe, il est naturel de travailler dans 'algebre des invariants du groupe. On pourra par
exemple se reporter a [100, 27] pour une étude de la structure de cette algebre pour des
groupes finis ou non. Le cas particulier de la reformulation de systéemes invariants a I'aide de
polyndémes de Laurent est traité dans [62, 59, 60]. Hubert et Labahn étendent également leur
approche aux groupes abéliens finis [61].

Dans cette these, on s’intéresse aux systemes invariants sous l’action d’un groupe fini.
Dans [23], Colin montre comment on peut reformuler un tel systéme a l'aide de seulement
n invariants polynomiaux (un ensemble d’invariants primaires) et un seul autre invariant
secondaire, en payant le prix de se placer dans le cadre des fractions rationnelles invariantes
plutét que dans l'algebre des polyndémes invariants. Une autre approche pour résoudre un
systeme formé de polynomes individuellement invariants sous ’action d’un sous-groupe du
groupe symétrique a été développée par Faugere et Rahmany dans [41]. L’approche consiste
a remplacer la notion de base de Grobner d’un idéal par celle de base SAGBI dans ’algebre
des invariants. L’un des axes de cette these est d’étendre leurs résultats.
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Concernant les idéaux globalement invariants sous l'action d’'un groupe, Gatermann
montre dans [51], comment la présence de réflexions dans le groupe permet de séparer le
systeme en deux sous-systemes. Elle montre également comment le fait de diagonaliser un
groupe abélien fini permet d’accélérer le calcul d’une base de Grobner d’un idéal invariant
sous l'action du groupe. Cette approche a été reprise par Steidel [96]. Nous en déduirons des
algorithmes dédiés et une estimation de complexité.

Exemple 0.5 (Suite de 'exemple 0.2). Pour l'ezemple présenté ci-dessus, la matrice A se
diagonalise de la facon suivante :

A=PDyupP! avec DA:(‘7 0) et Pz(l 1) o P=5=1.

Appliquer le changement de variables P aux polynomes f et g donne les deux polynémes
fP=day—2et gl = (~8u+4)23 + (81 +4)y> + 1. Ces deuz polynémes sont invariants sous
laction de la matrice diagonale D 4, par conséquent ils ne sont composés que de monémes m
vérifiant mP4 = m. Les polynomes intervenant lors du calcul de la base de Grobner de f¥
et g* sont uniquement des polynémes semi-invariants sous l’action du groupe G' = PGP,
ils sont donc tres creuzx. En particulier, les bases de Grobner pour les ordre DRL et lexicogra-
phique (avec x = y) de lidéal (f¥, g") sont :

y4—1—10(3—|—42)x2+%(1—2z)y ) )
o T4 (=12 + 160)y° + 2 (1 + 21)y>
1

3+ (=3 + 4P+ 5(1+20) et Go= . . s
) ¥+l —20y° — 55+ 55

Ty — 5

Pour certains systemes formant un idéal invariant sous l’action d’un groupe formé de
matrices diagonales, le degré maximal atteint lors d’un calcul de base de Grobner pour Iordre
DRL peut étre plus faible que pour un systéme quelconque (ce n’est pas le cas dans 'exemple
ci-dessus) : par exemple, un systeme d’équations quadratiques individuellement invariantes
sous 'action du groupe cyclique est résoluble en temps polynomial en le nombre de variables.
En essayant de déterminer précisément quels étaient ces systéemes, on s’est rendu compte que
cette faiblesse du degré maximal atteint n’était pas diie a l'action du groupe, mais au fait
que les polynomes de tels systémes n’ont pas une structure monomiale dense. On a donc été
amené a travailler sur les systeémes ayant leurs monomes dans une sous-algebre monomiale

de K[X].

Systéemes polynomiaux creux.

On s’intéresse ici aux systémes ayant leur support dans une sous-algebre monomiale A,
strictement incluse dans K[X], qu'on appelera des « systémes creux ». Cette dénomination
regroupe de nombreuses structures ayant déja été étudiées, qu’on présente ici de maniere
non-exhaustive.

— Un polynéme f de Klzy,...,z,] est dit quasi-homogene pour un systeme de poids
(wi,...,wy) € N"si f(z]",...,2%) est homogene. Dans [37], Faugere, Safey el Din
et Verron développent une approche pour estimer la complexité de résolution d’un
systeme composés de polynomes quasi-homogenes (pour un méme systeme de poids), et
donnent une algorithmique dédiée. Il existe un lien entre I’approche qu’ils proposent et
I’étude de systemes invariants sous-un groupe abélien, qu’on explicitera ultérieurement.
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— Soit X1, ..., Xy une partition des variables x1, ..., z,, de taille nq, ..., ny. Un polynéme
f de K[z1,...,x,] est dit multi-homogene de multidegré (dy,...,d;) par rapport & la
partition Xi,..., Xy, ¢’il vérifie

FOuXt, o A Xe) = AP A F(Xy, .., X)) pour tous Ap,..., N € K

Les systemes bilinéaires (multi-homogenes de bidegré (1, 1) par rapport a une partition
des variables en deux sous-ensembles) ont été étudiées par Faugere, Safey el Din et
Spaenlehauer dans [36]. Dans cette article, ils montrent qu'un idéal Z engendré par
une suite biréguliere f1,..., fs (voir [36, Définition 8|) de polyndémes bilinéaires admet
une bisérie de Hilbert de la forme suivante

Ny(z1, 22)
(1 — zp)nat1(1 — zp)mwtl

HSz (21, 22) Z dim(K[X]a,8/Zap)21” 2P =
(o,B)EN?

ou ng et n, sont les tailles des deux blocs de variables, et Ny est un numérateur
qu'ils donnent explicitement. La composante K[X], g (respectivement Z, 3) est celle
des polynémes bihomogenes de bidegré (o, 8) (respectivement des polynomes de Z de
bidegré («,3)). Dans [45], les mémes auteurs étendent leurs résultats aux systemes
bihomogenes de bidegrés (D, 1), et appliquent leurs résultats & I’étude de systeémes
déterminantiels.
Dans cette these, on s’intéressera aux systémes d’équations polynomiales appartenant a
une sous-algebre de K[X], avec la contrainte de ne calculer que des polynomes de cette sous-
algebre.

Exemple 0.6 (Suite de 'exemple 0.5). Les polynomes f¥ et g¥ calculés précédemment ap-
partiennent a la sous-algebre Q2] [zy, 23, y3] de Q[i][z,y]. En se restreignant a des calculs dans
cette sous-algebre, on obtient notamment les deuzx polynomes :

Yo+ (1 =20y — & — 15
Ty — 3

On obtient les solutions du systéeme fF = gP =0 en résolvant les deuz équations précédentes
(en les inconnues zy et y3), puis en inversant lapplication monomiale (z,y) — (xy,y>).

Travailler dans la sous-algebre uniquement permet de donner un cadre unique pour ces
systemes creux, ainsi que d’autres. Si les polynomes sont a support dans un méme polytope,
on donne des bornes de complexité dépendant des propriétés combinatoires du polytope, qui
permettent d’améliorer les complexités connues pour la résolution de systemes bihomogenes,
et se généralisent notamment a des systemes multihomogenes.

Contributions.
On présente ici les principaux résultats de cette these. On commencera par décrire les

nouveaux algorithmes, puis les résultats de complexité obtenus, et enfin les résultats obtenus
en pratique. Les différents systemes étudiés dans cette these sont résumés dans la figure 0.7.



10

Tourbillons

Equations
stables sous
un groupe

Equations

Diagonalisation

INTRODUCTION

[ Fewnomials }

Systemes multi-
homogenes

stables sous un
groupe abélien

Idéal stable sous
un groupe abélien

Systemes avec
symeétries

du groupe

stables sous un

( Equations
L groupe diagonal

Systemes quasi-
homogenes

Systemes creux

FIGURE 0.7 — Résumé des systemes étudiés

Nouveaux algorithmes.

Un algorithme SAGBI-F5 général.

Dans cette these, on étend les algorithmes usuels

de calcul d’une base de Grobner dans un anneau de polynoémes K[X] = K[z1,...,z,]| & une
sous algebre graduée A = @52 Ag de K[X]. Pour ce faire, la base canonique de K[X]; formée
des monomes de degré total d est remplacée par une base échelonnée (b¢); de Ay (deux
polynémes de la base n’ont pas méme monome de téte). Réécrire un polynéme f de A dans
la base Ufﬁzo(bf) de A permet d’avoir une représentation plus creuse, et effectuer des calculs

uniquement dans A permet de garder cette représentation creuse.

Exemple 0.8. Considérons l’exemple du systéeme suivant, connu sous le nom de probléme

Cyclic-n.

bt
2

fn—l =
\ fn =

TLF At Ty

T1X2 + Xox3 + -+ + Tpxq

T1To Ty — 1

$1$2"'$n_1+"‘+an$1"'$n_2

mvariant sous le groupe G engendré par les matrices de permutation associées au cycle

12 ---

n) et au produit de transposition (1 n)(2 (n —1))---. Dans le cas non-modulaire,

une base de K[X|§ est donnée par {R(m) | m mondme de degré d} ou R est l'opérateur
de moyenne sous laction du groupe, défini par R(f) = |—C1H doAcG fA. Ainsi, le systéme se
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reformule comme
{fi=R(@1--2;) pourl <i<n—1cetfr, =R(x1--x,) —R(A)}

Revenons au cas général d’une sous algebre A. La notion de réduction (par rapport a un
ordre < donné) du terme de téte est alors définie comme suit : f est réductible par p # 0 si il
existe un élément b¢ tel que le terme de téte de f s'écrive AbILT<(p), ot LT<(p) est le terme
de téte de p. La réduction de f par p est alors le polyndome f — \bdp. Avec cette définition
de réductibilité, la notion de base de Grobner d’un idéal dans A est remplacée par celle
de base SAGBI. On propose une variante de 'algorithme Matrix-F5 permettant de calculer
une base SAGBI d’un idéal (f1,..., fs)a tronquée en un certain degré passé en parametre.
Une séquence de polynomes (fi,..., fs) est dite réguliere dans A si f; ne divise pas 0 dans
lanneau A/(f1,..., fi—1). L’algorithme SAGBI-F5 ne produit aucune réduction a zéro si la
suite (f1,..., fs) est réguliere, car le critére Fy s’étend facilement : les matrices construites
sont de rang maximal.

Cet algorithme général peut-étre utilisé dans plusieurs contextes, dépendant de 'algebre
A ambiante. Une spécialisation a A = K[X] permet par exemple de retrouver I’algorithme
Matrix-F5 usuel. Deux autres cas sont étudiés dans cette these : A = K[X]S est 'algebre des
invariants sous l’action d’un groupe fini G, et A = K[S] ot S est un semi-groupe de Z".

Processus de résolution d’un systeme d’équations individuellement invariantes
sous l’action d’un groupe. Soit {f1,..., fs} un ensemble de polynoémes appartenant a
K[X]C® = K[z1,...,2,]%, ot G est un sous-groupe fini de G£,(K). On souhaite résoudre le
systeme {f; = --- = fs = 0} en préservant la symétrie induite par le groupe G. Le calcul
d’une base de Grobner de 'idéal engendré par les f; dans K[X] détruirait cette symétrie, c’est
pourquoi on calcule une base SAGBI de l'idéal IG = (fy,..., f5>K[X}G engendré par les f;
dans l'algebre des invariants. Contrairement a une base de Grébner, une base SAGBI n’est
pas nécessairement finie, on ne peut donc obtenir qu’une base tronquée en un certain degré D.
Cette base SAGBI permet de tester 'appartenance de polynémes de K[X]G & (f1,..., fs)xix)e
de degré au plus D. On choisit donc un nombre fini d’invariants : par exemple si G est un
sous-groupe du groupe symétrique (c’est le cas pour le systéme Cyclic-n présenté ci-dessus)
on peut prendre comme invariants les fonctions symétriques élémentaires des x;.

Notons (hi,...,h,) ces invariants. On cherche alors des combinaisons linéaires entre les
produits []'_, ~$", modulo I'idéal TS, ce qui mene a l'algorithme SAGBI-FGLM, qui est une
variante de I’algorithme FGLM. Si le systeme a un nombre fini de solutions, on obtient pourvu
que D soit assez grand, un idéal de dimension zéro dans lalgebre K[Hy,..., H,], chaque
H; symbolisant 'invariant h;. Le degré minimal D qui convient étant inconnu, on applique
successivement deux étapes des algorithmes SAGBI-F5 et SAGBI-FGLM jusqu’a obtenir un
idéal de dimension zéro. Avec des invariants bien choisis, il est possible de remonter facilement
de la variété associée a cet idéal aux solutions du systeéme originel. Cette approche mene a la
stratégie de résolution reproduite en figure 0.9.

Exemple 0.10 (Suite de Pexemple 0.8). On souhaite calculer les solutions du probléme
Cyclic-5 présenté plus haut, sur un corps K de caractéristique différente de 5. On prend
comme invariants particuliers les fonctions symétriques élémentaires (0;)1<i<s. Pour obte-
nir un idéal de dimension zéro dans Ko, ..., 03], il est nécessaire d’avoir calculé une base
SAGBI de TG = (f1,..., f5) au moins jusqu’en degré 8 (ce degré est déterminé automatique-
ment lors du processus de résolution 0.9, il était inconnu initialement). L’idéal obtenu dans
Klo1,...,05] est engendré par les polynémes suivants, de bas degrés :

2 2 2
{023+503 ,00°03 — 25 09,0203 —2503,01,04,05—1}
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Systeme, un _
degré D, calcul | SAGBI-F5 (TBase SAGBL | SAGBLFGLM | Base de Grobner
des bases de [~° 77777777 "| endegrép [~"""7TTTTCC > danf,. une algebre
(K[X]$)o<a<D 3 d’invariants
SAGBI-F5 ; \
: L’idéal est-il
[Non :D— D+ 1} de dimen-
sion zéro ?

!

Oui
FGLM !
Y
Filtrage Image des Résolution Base de Gb. lex.
-------------- solutions par [<=----- mmsmmmme dans une algebre
des invariants untvariee d’invariants

FIGURE 0.9 — Stratégie de résolution d’un systeme d’invariants sous ’action d’un groupe fini.

L’application de [’algorithme FGLM classique produit la base de Grobner pour [’ordre
lexicographique :
{05 - 17 g4, O-g + 55 g3, 530-2 + Ug; Jl}

La variété associée a lidéal précédent ne contient que 6 points. Connaissant les fonc-
tions symétriques des solutions, il est facile de remonter aux solutions elles-mémes. Parmi les
solutions possibles, seules 70 d’entre elles sont effectivement solutions du probléme Cyclic-5.

Processus de résolution d’un systéme polynomial & support dans des mul-
tiples d’un méme ensemble de monémes. Fixons un ensemble de monomes M de
K[z1,...,zy], qui s’'identifie & un sous-ensemble de N”. A M on associe deux semi-groupes :
l'un, S, est le semi-groupe engendré par M dans N”. L’autre, S(") est généré par {(a,1) €
Nt | o € M} dans N1, On a représenté ci-dessous les deux semi-groupes pour n = 2, avec

M = {z,zy}.

h
Yy
[ ] L]
° 2
o e °
¢ »
(] [ ]
Y
x
x
Le semi-groupe S Le semi-groupe S

A un semi-groupe S est associé une sous-algebre de K[zy,...,z,], appelée l'algebre
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du semi-groupe et notée K[S]. Elle est définie comme l’espace vectoriel des sommes fi-
nies ZpGS ap,XP. Lalgtbre K[S"] est naturellement graduée par sa derniére composante.

Dans l'exemple 0.6, on avait Q[:][S] générée par {zy,z3 1%} et Q[][S"] généré par
{h, zyh, z3h,y>h}.

On note d - M I'ensemble {Hf:1 m; | m; € M}, et on considere des polynémes f1,..., fs
tel que le support de f; est inclus dans d; - M. On dit que f; est de degré d;, et on lui associe
un polynéme de K[S"] noté f;. L’algorithme SAGBI-Fy présenté précedemment permet de
calculer une base SAGBI jusqu’a un degré fixé de 'idéal engendré dans K[S"] par fiyooo fs

Exemple 0.11. [Suite de ’exzemple 0.6] La base de Gribner creuse de }73,;13 dans Q[z)[S™]
obtenue a l'aide de l’algorithme SAGBI-F5 est :

h3 (2 + a5 (11 — 20)y® + 445(—27 + 362))
R0+ 55(1 = 208° — 45 — 1)

R (zty + (-3 —4)yP + &+ 35)

W
I

W (xy* — 39°)
R2(23 4+ (=3 + )P + 55 + 5)
1

Une grande différence vis a vis des bases SAGBI dans les algebres d’invariants est que les
bases SAGBI dans K[S"] sont finies, et on préfere les appeler bases de Grébner creuses. De
méme, la mise en oeuvre de 'algorithme SAGBI-F5 en pratique est également beaucoup plus
aisée : les produits bgl X bgl,/ sont beaucoup plus simples a calculer (ce sont des produits de
monomes !), 'implémentation effective s’en trouve simplifiée. On lui donne donc le nom de
Sparse-F.

La déshomogénéisation (oubli de la derniére composante des monémes de K[S"]) d'une
base de Grobner creuse donne une base de Grobner creuse dans K[S], dans un sens défini
dans le chapitre 5. Cette base de Grobner permet en particulier de tester I'appartenance d’un
polynéme a I'idéal (f1, ..., fs)ks)-

La finitude de la base de Grobner creuse permet de réaliser une variante de 'algorithme
FGLM. Rappelons que pour la résolution d’un systéme d’invariants par base SAGBI, on fixe
un ensemble d’invariants hy, ..., h, et on cherche les éléments de Klhq, ..., h,] appartenant
a l'idéal. On suit la méme idée ici en considérant hq,...,h, des éléments de M : pour un
systeme multi-homogene, on peut prendre les variables x1,...,x,. Dans ’exemple ci-dessus,
on peut prendre h; = zy et ho = y3. L’objet calculé est une base de Grobner pour I'ordre
lexicographique dans lalgebre K[H] = K[H1, ..., H,|; la variété correspondante étant I'image
de V(Z) par une application monomiale

¢ K" — K
a=(a1,...,an,) +—  (hi(a))i=1,.r

L’algorithme Sparse-FGLM correspondant présente des similitudes avec 1’algorithme
SAGBI-FGLM évoqué précédemment par la nature de I'objet calculé, cependant la mise
en oeuvre est beaucoup plus proche de l'algorithme FGLM standard. La variété V(Z) étant
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I'image réciproque par Uapplication ¢ de la variété dans K[H], le processus se termine par
le calcul de cette variété et inversion de ’application monomiale. Le processus complet est
représenté en figure 0.12.

Systeme, Base de o

calcul du | _ Sparse-Fs | Grobner | déshomogénéisation | ARE S
support dans
S(h) K[S(h)] danS.K[S]
Sparse-FGLM i

: Inversion d’une Solutions Résolution Bafe de
IR LR I EEELE CILOLITEE Grobuer
application monomiale en les H; univariée dans K[H]

FIGURE 0.12 — Résolution de systéemes polynomiaux creux.

Enfin, le processus se généralise aux sous-algebres de 'algebre des polynémes de Laurent
K[mfl, . ,x,jfl], sous réserve que le semi-groupe S ne contienne pas deux éléments distincts

dont le produit vaut 1.

Versions abéliennes des algorithmes F5 et FGLM. On s’intéresse ici au calcul de
la variété d'un ideal Z = (f1,..., fs) invariant sous l'action d’'un groupe fini G C GL,(K)
supposé abélien. On suppose de plus que 'action est non-modulaire : la caractéristique de K
ne divise pas le cardinal de G.

Il a déja été remarqué par Gatermann et Steidel [51, 96] que diagonaliser le groupe et
répercuter le changement de variables correspondant sur les polynémes f; constituait une
stratégie efficace, préalablement a un calcul de base de Grébner. Cependant, ni un algorithme
dédié ni une étude du gain en complexité n’avaient été proposés. Supposons maintenant G
constitué de matrices diagonales. Alors, l'action d’un tel groupe sur K[X] = K[z, ..., z),]
induit une gradation plus précise que le seul degré :

+00 +oo
KX]=PKXl.=P P KXy = K[X],
d=0 d=0 geX(G) geX(G)

ou X(G) est un groupe isomorphe & G, et les composantes K[X], sont engendrés par des
monomes. Un élément de K[X], est dit de G-degré g.

Exemple 0.13. Reprenons l’exemple 0.5. Aprés diagonalisation, on obtient des polynémes
invariants sous l'action du groupe engendré par la matrice matrice D, = Diag(y, j%). Pour
tout monéme m de K[X], il existe un unique entier tel que mP4 = jFm, cet entier est unique
modulo 3, et donc X(G) = Z/37. La base de Grébner pour lordre DRL de (f¥,g") est :

fi=y*— %0(3 + 4)x? + %(1 — )y
Gi=q fo=2+i(-3+4)°+ £5(1+2)
fa=wy— 3

Alors fo et f3 sont de G-degré 0, et f1 de G-degré 2. De méme, les polynomes de la base de
Grébner lexicographique présentée dans l'exemple 0.5 sont de G-degré 1 et 0.
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On montre tout d’abord le théoréme suivant :

Théoréeme. Si f € Z, alors pour tout g dans X(G), la composante de f dans K[ X, appartient
également a T.

Le théoreme précédent permet de se ramener du cas d’un ensemble de générateurs stable, a
celui d’un systeme de générateurs semi-stables : un polynome f appartenant a une composante
K[X]g4 vérifie fA= £a,qf pour tout A € G, o1 {4 4 est une racine de I'unité indépendante de f.
Les polynomes de K[X], sont dits G-homogene de G-degré g. On prouve que les composantes
K[X]g sont engendrées par des mondmes, et que si m et m’ sont de G-degrés respectivement
g et ¢, alors mm’ est de G-degré g + ¢’. Par conséquent, tous les polynomes intervenant
dans un calcul de base de Grobner d’un systeme constitué de polynémes G-homogenes sont
eux-mémes G-homogenes.

Les algorithmes F5 et FGLM reposent sur de 'algebre linéaire : la structure induite par G
permet donc de découper les matrices intervenant dans ces deux algorithmes en |G| matrices
plus petites (chacune indexée par I'un des G-degrés). De plus, chaque étape de I’algorithme
F; (passage d’une base de Grobner en degré D a une base de Grébner en degré D + 1) peut
étre parallélisée car les matrices sont construites et réduites de maniere indépendante.

Le processus de résolution est décrit en figure 0.14. Dans cette description, le groupe
abélien G, constitué de matrices non nécessairement diagonales, agit sur Z. On répercute
la diagonalisation de G en G’ sur Z pour obtenir Z’. Le calcul de V(Z') est mené de fagon
classique, mais en utilisant les variantes abéliennes de nos algorithmes. On retrouve V(Z) en
appliquant la matrice de passage P~! aux éléments de V(Z').

Tdéal Changement de Idéal G- Abelian-Fj S
G-stable Z [ onr oot STt TTeT s > table 7 I~~~ 777 > Grobner
-stable variables diagonal P stable DRL de 7/
Abelian-FGLM !
Y
Changement de 5soluti Base de
V(2) "_"__._g ..... Soeee- V(Z') ______R_e_s..(_)_u_t.}/o_r{ ------- Grobner
variables P univariée LEX de T/

FI1GURE 0.14 — Résolution de systemes polynomiaux invariants sous un groupe abélien.

Systéme d’équations globalement invariant sous I’action du groupe symétrique.
On a considéré au paragraphe précédent le cas d’un idéal globalement stable sous ’action d’un
groupe abélien. On considere maintenant une situation similaire, mais le groupe qui agit est
le groupe symétrique Gy. Celui-ci agit sur une algebre polynomiale & n = (¢ + 1)N variables
a travers la représentation diagonale par blocs :

&y — GL,(Z)
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ol M, est la matrice de taille N x N canoniquement associée a o. Nommons les variables
Z=Az,...,an} et V=V U--- UV, avec V; = {z;1,...,2; n}. Le groupe &y agit donc sur
I'ensemble de variables Z UV par 27 = z,(;) et a7 ; = @; 4(j).-

On considere un systeme de N équations polynomiales (U;)1<i<n & coefficients dans K[ZU
V] tel que U; = D;P; + R; avec D; = Hk#(zi —zk), P, € K[ZUV] et R; € K[Z], tels que
P? = P,;) et R} = Ry(;) pour tout o dans Sy. Les polynomes U; vérifient alors U7 = Uy
pour tout o dans Gpy. On s’intéresse a un ouvert de la variété associée aux U; constituée
des points dont les composantes associées aux z; sont toutes distinctes. On a alors le résultat
suivant :

Théoréme. Soit d le degré (commun) des polynémes U;. Il existe N polynémes Vi, ..., Vy
de degrés deg(V;) = d —i+ 1 individuellement invariants sous l'action de Sy, dont la variété
associée coincide avec V((Uy,...,Un)) sur les points n’ayant pas deur composantes associées
aux z; égales.

Le théoreme précédent est effectif, puisqu’il est associé a un algorithme calculant effecti-
vement les polynomes V;. Les différences divisées sont 'ingrédient principal de I'algorithme.
L’intérét est double : le degré des équations a diminué et elles sont maintenant individuelle-
ment invariantes sous 'action de Gy.

Dans le cas £ = 0 (il n’y a alors que les variables z;), on peut maintenant reformuler
les équations V; a l'aide des fonctions symétriques élémentaires e; des z;. Le systéme qui en
résulte est bien plus facile a résoudre, puisqu’on a tenu compte de la symétrie des équations
pour ne calculer que les fonctions symétriques des solutions et non les solutions elles-méme.

Supposons maintenant ¢ = 1, et notons V = {Z1,..., Zx}. On explique maintenant com-
ment éliminer complétement les variables V et obtenir des équations symétriques en les seules
variables z; (qu’on pourra reformuler a l’aide des e;), sous la condition qu’il y ait d’autres
équations d’un type particulier dans le systeme.

Soit z une nouvelle variable, et M et N deux polynémes de K]z1, ..., 2y, z]. On suppose
que M et N, vus comme polyndmes en la seule variable z, ont leur coefficients invariants sous
I’action du groupe &y. Par conséquent, ces coefficients peuvent étre reformulés a 'aide des
(e;), les fonctions symétriques élémentaires des (z;). M et N appartiennent donc a l’algebre
Kle1,...,en,z]. Ajoutons au systeme {V;} les polynomes W; = M (z;)Z; — N(z;). Alors, on
peut éliminer algorithmiquement les variables Z; de fagon a construire des équations symé-
triques en les z;, que I'on peut reformuler a I’aide des fonctions symétriques élémentaires.

Application a la résolution symbolique du probleme des tourbillons. L’approche
développée pour I'étude des systemes globalement invariant sous une action du groupe sy-
métrique agissant sur des blocs de variables s’applique en particulier a la détermination des
configurations stables du probleme des tourbillons : on s’intéresse aux configurations planaires
de N tourbillons ayant méme vorticité, dont la forme géométrique est maintenue au cours du
temps. Les tourbillons se meuvent autour du centre de masse, mais la forme qu’ils déter-
minent reste la méme. En d’autres termes, la configuration des N points reste invariante par
similitudes directes au cours du temps.

En supposant le centre de masse des tourbillons a ’origine, déterminer les configurations
stables revient & résoudre le systeme formé des N équations :

1
Zi = Z pour tout ¢ entre 1 et N
G T
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ol z; est I'affixe complexe du tourbillon numéroté i, z; son conjugué et z; # z; pour i différent
de j. Puisqu’il est impossible de séparer un complexe de son conjugué de fagon algébrique, on
introduit de nouvelles variables Z; symbolisant les conjugués des z;. La réduction au méme
dénominateur nous ramene aux équations :

U; = ZiH(Zi —zj) — Z H (zi —2) € Qlz1,..., 2N, Z1, ..., ZN]
J# J#1 k#4,j
On montre également que le probleme des tourbillons vérifie les équations : M (z;)Z; =
N(z;) avec M(z) = 2Q'(2), N(z) = Q"(z) et Q est le polynéme Hi]il(z — z;). On remarque
que les coefficients de @) sont les fonctions symétriques e; des z;. Par suite, on peut appliquer
la méthodologie décrite ci-dessus pour résoudre le probleme des tourbillons.

Les équations V; obtenues par différences divisées des polynémes U; admettent
une reformulation tres simple a partir d’invariants de laction du groupe Gy sur
Q[z1,-+y2n, Z1, .., Zp]. On montre plus précisément le théoréme suivant :

Théoréme. En notant, pour tout k >0, sy = SN | 28 et ry = SN | Zi2F (avec so = N), les

solutions du probleme des tourbillons vérifient les équations suivantes, pour tout k > 1 :

k-1
2rp = <Z Si Sk—l—i) —ksgp_1

i=0
En suivant D’approche expliquée précédemment, consistant a reporter les équations
2Q'(z;) = Q"(z;) dans les équations du théoréme, on obtient des équations en les fonctions
symétriques (e;) des (z;). A Paide du package FGb [63], il est possible de résoudre ces équa-
tions et d’obtenir toutes les solutions du probleme des tourbillons jusqu’a N = 7. On présente
en figure 0.15 ’ensemble des solutions pour N = 7. Avant cette approche, le probleme n’était
résoluble que jusqu’'a N = 5.

Résultats de complexité.

Puisqu’ils présentent des similitudes, on a regroupé ici les principaux résultats de com-
plexité présentés dans ce manuscrit. Les opérations dénombrées sont les opérations arithmé-
tiques dans le corps K, et on utilise la notation de Landau O. La lettre w désigne I’exposant
de l'algebre linéaire, c’est a dire la borne inféfieure des réels v tels que la multiplication de
deux matrices de taille N x N peut se faire en O(N7) opérations arithmétiques. La meilleure
borne actuelle est w < 2.3728639, voir [50].

Résolution d’un systéme polynomial globalement invariant sous ’action d’un
groupe abélien. Apres diagonalisation du groupe (possible dans le cas non-modulaire),
on montre que les matrices contruites dans les variantes abéliennes des algorithmes Fj et
FGLM ont leur nombre de lignes et de colonnes divisées par un facteur correspondant au
cardinal du groupe, comparées a leurs analogues dans les algorithmes F5 et FGLM. On en
déduit les résultats de complexité suivants :

Théoréme. Soit G un sous-groupe de GL,(K) constitué de matrices diagonales sans autre
dilatation que lidentité. Soit F = (f1,..., fs) € K[X]® une famille de polynémes homogénes
formant un idéal de dimension zéro I globalement invariant sous l'action de G. Alors la
complexité du calcul d’une base de Grébner pour l'ordre DRL de l’idéal T est bornée par

(e (" ain”))




18 INTRODUCTION

Component 1
e =1

Degree 526

Component 2
ea=10

r‘
@ [ Component 1/2

ey = land ey # 0

Component 22
e =e3=10

Component 1/1
ea=1and ey =0

Component 21
= 0 illll.l{'_; _T'-U

[_:'_: =ej=eg=es=¢eg=10 J

[ ea =gy =gg=eg=e7=0 ]

i endiins \

FI1GURE 0.15 — L’ensemble des solutions pour le cas N = 7.

operations dans K, avec dycq(F) le degré de régularité de F.

En supposant Z de dimension 0, on montre en analysant I’analyse de 1’algorithme Abelian-
FGLM le résultat suivant :

Théoréme. Sous l'hypothése (vérifiée en pratique) que les monomes de K[X]/Z sont bien
répartis entre les différents G-degrés, il est possible d’effectuer le changement d’ordre de l’idéal
Z en O (n-6%/|G|?) opérations arithmétiques dans K, avec § = dimg (K[X]/Z).

Résolution d’un systéme d’équations invariantes sous ’action d’un groupe. Dans
cette approche, on donne une complexité en fonction du degré maximal atteint durant le calcul
de la base SAGBI. Ce degré dépend implicitement des invariants choisis pour réexprimer les
solutions.

Théoréme. Soit G un sous-groupe de GL,(K) sans autre dilatation que lidentité. Soit F =
(fi,---, fs) € (K[X]®)" une famille de polynémes invariants sous Uaction de G. Alors la
complexité du calcul d’une base SAGBI en degré D pour l’ordre DRL de l'idéal T = (fi, ..., fs)

est bornée par
s (D+n\”
(0]
("))

operations dans K, avec w un exposant faisable pour l’algebre lincaire.
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Résolution d’un systéeme d’équations a support dans un méme polytope. L’ap-
proche creuse expliquée précédemment permet notamment de traiter les cas ou les poly-
noémes sont a support dans un méme polytope &2. Pour ces systemes, on donne des bornes
de complexité précises, dépendant des propriétés combinatoires du polytope. Le calcul d’une
base de Grobner creuse par l'algorithme SAGBI-F5 est effectuée dans [l’algébre polytopale
K[Z] = K[Sg)] ou Sg) est le semi-groupe engendré par {(«, 1) | « € £}. Un outil essentiel
est la série de Hilbert de cette algebre polytopale définie par

+oo
HS»(2) =) HP»(d)z?  on HP »(d) = #(d - 2)
d=0

Commengons par un cas particulier : celui des systeémes bilinéaires. Considérons une
partition des variables en deux blocs de tailles ng,n,. Le polytope considéré est donc

P = Ay, xAp,, produit de deux simplexes de N" et N"v. On a alors HP 5 (d) = (””d) (”erd).

Ny Ny
Dans [36], les auteurs montrent que pour un systéme de n polynémes biliénaires affines géné-
riques, le degré maximal atteint lors du calcul d’une base de Grébner pour un ordre gradué
est dwit < min(ng,ny) + 2. Ils en déduisent une complexité de

0 <<n$ + ny + min(ng, ny) + 2> w)

min(ng, ny) + 2

Avec 'approche creuse, on retrouve la méme borne sur le degré maximal atteint dy;it, mais
le fait d’effectuer les calcul dans K[Z?] permet de borner la complexité du calcul d’une base
de Grébner creuse par

O HP (o)) — O <n (nx + min(ng, ny) + 1>“’ <ny + min(ng, ny) + 1)“’)

min(ng, ny) + 1 min(ng, ny) + 1

Cette formule s’étend facilement au systémes multilinéaires, ce qui n’était pas connu : si
les variables sont réparties en blocs de tailles ny,...,ny, dwit < Zle n; — max(n;) + 1. On
donne de méme une borne générale pour les systemes multi-homogenes. Pour une algebre
polytopale quelconque, la régularité de Castelnuovo-Mumford (voir définition 3.109) de 1’al-
gebre K[Z] intervient dans le résultat suivant, qui suppose que K[Z?] est Cohen-Macaulay
(voir définition 2.9).

Théoréme. La complexité de calculer une base de Gréobner creuse de (fi,... fn) C K[Z] en
degré dwie est borné par O (n HP»(dwit)*) 0t dwit < reg(K[Z2]) + 1+ 377 (d;j — 1).

En supposant également le semi-groupe S engendré par & simplicial (voir définition 3.91),
la complexité de 'algorithme Sparse-FGLM est la suivante. On appelle base de Hilbert un
systeme de générateurs du semi-groupe S.

Théoréme. Soit § = dimg (K[S]/Z) et soit r le cardinal d’une base de Hilbert du semi-groupe
S. Si S est un semi-groupe affine simplicial et K[S] une algébre Cohen-Macaulay, ’algorithme
Sparse-FGLM calcule la base de Grébner dans K[H| en au plus O(r - §3) operations dans K.

Enfin, contrairement a [36], 'approche s’applique également aux systémes surdéterminés,
ce qui nous permet de proposer une variante de la conjecture de Froberg (conjecture 2.43),
non détaillée ici, ainsi que d’autres résultats de complexité.
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Implémentation.

Les variantes des algorithmes F5 et FGLM présentées plus haut ont été implémentées en
Magma. Ont également été implémentées dans un langage de bas niveau (C), par Jean-Charles
Faugere :

— une version de 'algorithme F5 pour calculer une base SAGBI d’un idéal invariant sous

I’action du groupe cyclique.

— une version de l'algorithme Fy (parallélisée) pour calculer une base de Grobner d'un

idéal globalement sous ’action d’un groupe abélien.

— une version matricielle (sp-Matrix F5) de lalgorithme F5 pour calculer une base

de Grobner creuse d’une algebre monomiale. Cette version prend un degré maximal
comme parametre.

Pour terminer, on exhibe trois exemples montrant 1’efficacité des nouvelles approches. La
table 0.16 présente les différences de tailles des objets calculés entre 'approche classique et
P’approche par base SAGBI pour résoudre les problemes Cyclic-5 et Cyclic-6. Pour la base
de Grébner lexicographique de 'idéal dans K|z, ...,z,] (approche classique) ou la base de
Grobner obtenue dans K[oy, ..., 0, (approche SAGBI) ot les o; sont les fonctions symétriques
des variables, on présente le nombre d’éléments dans la base, la taille maximale des polynomes,
et la taille de la variété associée dans une cloture algébrique. Pour tous ces criteres, la base
de Grobner invariante est beaucoup plus petite que la base de Grobner classique.

G | 1| | max{|swport(g) | g€ G} | V((G)) |
Base de Grobner de 776 17 27 156
Base de Grobner Gg-invariante de 776 7 4 13
Base de Grébner de ZP7 35 132 924
Base de Grobner Gg-invariante de ZP7 7 9 57

TABLE 0.16 — Tailles des bases de Grobner classiques et bases de Grobner invariantes pour le
probleme Cyclic-n.

La figure 0.17 montre les différents temps de calcul d’une base de Grobner DRL du pro-
bleme cyclique avec ’algorithme Fj; pour différentes valeurs de n. Le probleme cyclique est
invariant sous l'action du groupe cyclique. L’idéal Z est 'idéal engendré par les polynomes
avant changement de variables et 7' est 'idéal apres changement de variables. Fy est 1’algo-
rithme classique du package FGb et F) 4// est le nouvel algorithme parallélisant construction et
réduction des matrices. C’est la premiere fois qu'une base de Grobner du probleme Cyclic-11
est calculée avec l'algorithme Fj.

En table 0.18, on reporte quelques temps de calculs de systemes bilinéaires surdéterminés,
d’une part avec une implémentation basique de la nouvelle approche « creuse », et d’autre part
avec l'algorithme F5 du package FGb. On observe une amélioration significative des temps de
calculs.

Pespectives.

On présente ici différentes directions pouvant étendre les résultats de cette these.
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FIGURE 0.17 — Temps de calcul d’'une base de Grébner DRL pour le probleme Cyclic-n

(2,29,40) 0.12s 5.25 43
(2,39,53) 0.49s 36.7s 74
(2,49,65) 1.53s 298.55 195
(2,59,78) 4.63s 852.35 184
(6,19,52) 1.10s 25.25 22
(6,21,56) 2.13s 51.55 24
(6,27,71) 7.07s 236.0s 33

TABLE 0.18 — Systemes bilinéaires surdéterminés en (n,,n,) variables et m équations.

Idéaux stables sous ’action diagonale du groupe symétrique. Dans cette these, on
étudie notamment un systeme d’équations de la forme

{Zi = g/((z)) i = 1..N} ol Q(z) = iljjl(z — %)

Ce systeme est globalement invariant sous l'action du groupe symétrique & agissant sur les
variables z; et Z; par o(2;) = 2y et 0(Z;) = Zy(;)- On explique comment reformuler un
tel systéme en termes des fonctions symétriques élémentaires des (z;). Ce type de systeme,
avec action du groupe symétrique sur plusieurs blocs de variables , apparait tres fréquemment
dans les applications. On donne ici un exemple de probleme présentant une telle symétrie,
que l'approche développée dans cette theése ne permet pas de résoudre et qui constitue une
intéressante perspective : la résolution des équations de Brent [10].

On s’intéresse au systeme d’équations & 3N27 inconnues et N® équations suivant :

T
V(’L, jv ka £7 m, 7'1,) € {17 ) N} Z aijp/Bklpymnp = 5m5jk6€m
p=1
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ou J est le symbole de Kronecker. Parmi beaucoup d’autres symétries apparait une action
diagonale du groupe symétrique &r agissant sur a;j, par o(®ijp) = Qijo(p), et de méme
sur Brip et Ymnp. Ce systeme intervient dans la multiplication rapide de matrices carrées :
Strassen [98] a exhibé une solution avec T' = 7 et N = 2, ce qui a mené a la premiere
complexité sous-cubique de la multiplication de deux matrices N x N. L’ approche menant
a la meilleure complexité connue actuellement pour ce probleme [108, 50] exploite également
ces équations. Pour N = 3, on sait qu’il n’y a pas de solution pour 7" < 20 et qu’il en existe
une pour 7' = 23 (voir [69]), mais les cas T' = 21 et 22 restent ouverts.

En dimension positive 7 Cette these se concentre sur la résolution de systemes n’admet-
tant qu’un nombre fini de solutions. Si les variantes de l'algorithme F5 que ’on a proposées
sont valables en toute dimension, ce n’est pas le cas des variantes de 1’algorithme de chan-
gement d’ordre FGLM. Une perspective intéressante est donc I’élimination de variables en
dimension positive.

Base de Grébner creuses : le cas mixte. L’approche développée dans le dernier chapitre
ne traite, du point de vue théorique comme du point de vue algorithmique, que du cas ou les
polynomes du systéeme ont leur support inclus dans un méme polytope. Dans ’approche par
résultant, le cas mixte (les polynémes sont & support dans des polytopes différents) est bien
compris. C’est pourquoi une perspective proche est de traiter ce cas mixte.

Complexité de la résolution de systémes dont le support est constitué de monémes
dispersés. Les algorithmes présentés dans le dernier chapitre s’appliquent dans le cas ou les
polynomes ont leur support constitué d’'un méme ensemble de mondmes dispersés, et les tests
effectués sont tres prometteurs. Expliquer pourquoi est un travail en cours avec Jean-Charles
Faugere et Pierre-Jean Spaenlehauer.

Idéaux stables sous ’action d’un groupe. L’extension du travail effectué pour les idéaux
stables sous 'action d’un groupe abélien a des groupes non abéliens serait d’un grand intérét.
La théorie des représentations devrait y jouer un role prépondérant, c’est pourquoi elle a été
développée dans ce manuscrit.

Organisation du Manuscrit

Ce manuscrit est divisé en deux parties. La premiere présente les rappels nécessaires a
la compréhension de cette these et comporte trois chapitres. La seconde partie présente les
contributions, elles-mémes réparties en deux chapitres.

Chapitre 1 : Ce chapitre introduit la notion de base de Grobner et présente les algorithmes
classiques de calcul de bases de Grobner que sont F5 et FGLM. Y est également étudié leur
complexité dépendant notamment de deux parametres que sont le degré maximal atteint
lors du calcul d’une base de Grobner pour un ordre du degré, ainsi que le degré d’un idéal de
dimension zéro. La fin du chapitre présente une généralisation de ’algorithme F5 pour le calcul
de bases SAGBI jusqu’a un degré fixé, dans le cadre d’algebres graduées. Cette généralisation
n’apparait pas dans la littérature, cependant elle est essentielle car les variantes de I’algorithme
F5 présentées dans la suite en sont des spécialisations.
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Chapitre 2 : Dans ce chapitre, on présente les outils algébriques classiques permettant
d’estimer les deux parametres dont il est question dans le chapitre précédent. On définit
notamment la série de Hilbert d’un idéal, la propriété d’étre Cohen-Macaulay et la notion de
suite réguliére.

Chapitre 3 : Ce dernier chapitre préliminaire présente les deux types de structures algé-
briques sur une algebre de polynomes qui sont étudiées dans cette these. Il est tout d’abord
question de I'action des groupes finis sur les algebres de polynémes. Apres avoir présenté [’al-
gebre des invariants sous 'action d’un groupe fini, on verra comment calculer effectivement
ces invariants ainsi qu'une estimation de la série de Hilbert associée a cette algebre. La notion
d’invariant est ensuite généralisée a celle d’invariant relatif par la théorie des représentations
linéaires des groupes finis. Il est ensuite question des sous-algebres générées par un ensemble
fini de monomes. L’outil algébrique sous-jacent est le semi-groupe, et 'on présente la notion
essentielle de semi-groupe normal.

Chapitre 4 : Ce premier chapitre contributif est le plus volumineux de cette these. Il se
subdivise en trois sections, qui sont en grande partie indépendantes.

— Dans la premiere section, il est question de systéemes d’équations polynomiales globa-
lement invariants sous une action du groupe symétrique. L’étude de ce probleme est
motivée par la résolution symbolique d’un probléme physique : celui de déterminer
les configurations planaires stables d’un ensemble de tourbillons ayant méme vorticité.
On montrera comment se ramener & des équations individuellement invariantes a ’aide
de différences divisées, et comment reformuler les équations a ’aide des fonctions sy-
métriques des positions complexes des tourbillons. Les résultats présentés dans cette
partie sont 'objet d’un travail commun avec Jean-Charles Faugere et ont fait 'objet
d’une présentation a la conférence ISSAC 2012 [43].

— La deuxieme section porte sur la résolution de systemes d’équations polynémiales in-
dividuellement invariantes sous l'action d’un groupe fini. Il est question ici d’étendre
Papproche par bases SAGBI dans le cadre de sous-groupes de permutations de ’ar-
ticle [41] de Jean-Charles Faugere et Sajjad Rahmany : cette approche se généralise a
tous les groupes finis, et il est possible d’en estimer la complexité. Se pose également
la question de I’élimination de solutions parasites engendrées par cette approche. Le
résultats présentés ici sont 1’'objet d’un travail avec Jean-Charles Faugere et Guénael
Renault, qui sera soumis ultérieurement.

— Dans la troisieme et derniere section, il est question d’accélérer le calcul de bases de
Grobner d’idéaux globalement stables sous I'action d’un groupe abélien fini, dans le
cas non-modulaire. On montre qu’il est possible de se ramener au cas d’'un groupe
constitué de matrices diagonales, et ’action du groupe se traduit par une structure
additionnelle sur I'algebre des polynomes. Cette structure permet de découper les ma-
trices intervenant dans les algorithmes classiques de calculs de base de Groébner par
algebre linéaire que sont F5 et FGLM. Les résultats présentés ici ont fait ’objet d’une
présentation a la conférence ISSAC 2013 [44]. Cependant, l'accent est mis ici sur le
lien entre les représentations de groupes et la stucture additionnelle, qui n’était pas
présent dans l’article originel.

Chapitre 5 : Ce dernier chapitre, petit par la taille, présente pourtant des résultats qui
sont peut-étre les plus significatifs de cette these. On étudie ici les systemes d’équations dont
le support est inclus dans un méme sous-ensemble de monomes. Si ce sous-ensemble forme
un polytope, l'utilisation des propriétés combinatoires du polytope permet de donner des
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bornes de complexité précices : on retrouve facilement des résultats connus sur la complexité
de résolution de systémes bilinéaires et on étend ces résultats aux systemes multihomogenes.
L’approche présentée ici s’applique également dans le cas ou le support est constitué de
monodmes dispersés. Ce cadre n’est pas encore couvert par ’approche théorique, mais les
résultats pratiques semblent trés prometteurs. Ce travail en collaboration avec Jean-Charles
Faugere et Pierre-Jean Spaenlehauer a été accepté pour publication a la conférence ISSAC
2014 [42].
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Chapter 1

Grobner Bases

The aim of this chapter is to present the classical algorithms used in order to compute a
Grobner basis of an ideal. In section 1.1, we recall classical notions and present Buchberger
algorithm. Section 1.2 is devoted to the links between linear algebra and Groébner bases. In
particular, we present the F5 and FGLM algorithms. Finally, we generalize in section 1.3 the
Grobner concepts to subalgebras. The aim of this section is to introduce the SAGBI-Matrix
F5 algorithm used in chapter 4 and 5.

1.1 Groébner Basics!

The aim of this section is to recall basic material and to fix notations. One main reference
is [25].
1.1.1 Ideals and Varieties

Let K be a field, n be a positive integer and Klz1,...,z,] be a polynomial ring with
base-field K and indeterminates x, ..., x, that will be abbreviated K[X]. In this subsection,
we fix some notations and recall basic links between ideals and varieties.

Definition 1.1. Throughout this thesis, we define:
— a monomial as a product of indeterminates [ [} x;* with a; € N.
— a term as a product of a monomial with an element of K.
— a polynomial as a linear combination of terms.

Ideals. The basic objects in commutative algebra are ideals and varieties. We now recall
definitions and fundamental theorems.

Definition 1.2. An ideal T of K[X] is a non-empty additive subgroup of K[ X] such that:
fez and geK[X] = fgel

Proposition — Definition 1.3. Let f1,..., fs be polynomials in K[X]. Then the subset
{f eK[X]|3seN* 3gi,...,9, € K[X], f:Zfig,}
i=1

is an ideal of K[X], denoted by (f1,..., fs)-

1. I found this wordplay in Sturmfels’ book [102].

27
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The following theorem shows that we can always give such a writing for an ideal:

Theorem 1.4 (Hilbert basis theorem). Let Z be an ideal of K[X]. Their exist polynomials
fisooo fs € K[X] such that T = (f1,..., fs)-

Affine Varieties. We are now interested in studying the common roots of the polynomials
in an ideal.

Definition 1.5. Let Z be an ideal of K[X], and L be a field such that K C L or L C K. The
Variety defined by Z in 1L is the set
Vo) ={(x1,...,%xn) EL" | f(x1,...,%X,) =0 forall feT}
When L. =K is the algebraic closure of K, Vi(Z) will be simply denoted by V(T).
Conversely, from a set of points in K", we can define an ideal:
Proposition — Definition 1.6. Let S C K" be a set of points. Then the set
{f €eK[X] | f(x) =0 for all x in S}
is an ideal of K[X] denoted by I(S).
In order to explain the strong links between ideal and varieties, we have to define the
radical of an ideal.
Definition — Proposition 1.7. Let T be an ideal of K[X]. We define I, the radical of Z,
b
’ VI={feK[X]|3eN,fl eI}
which is also an ideal of K[X]. An ideal T is said to be radical if T = v/T.
We are now able to give one of the fundamental theorem in algebraic geometry.

Theorem 1.8 (Nullstellensatz). Let K be an algebraic closed field, and Z an ideal of K[X].
Then
I(V(T)) =VI
Given two ideals I and J of K[X], we can define many other ideals: [ + J, 1N J,I.J,(I :
J), (I : J*>®),... We refer to [25] for the operations on ideals and the geometric meaning of
these operations.

Zariski topology. We continue this subsection with the Zariski topology, that we can define
on K".

Definition 1.9. A subset of K" is said to be a Zariski closed subset if it can be written V(I)
for a suitable ideal T C K[X].

From the operations on ideals and the links with operations on varieties, it is straightfor-
ward to verify that these subsets are the closed sets of a topology, called the Zariski topology.
If the field K is infinite, the open sets of this topology are “big”, which allows us to set the
following definition:

Definition 1.10. IfK is infinite, a property P on K" is said to be generic if {x € K" | P(x)}
contains a non-empty Zariski open subset.

For now, we do not know how to answer, among others, the following questions:

— Given (f, f1,..., fs) € K[X]*T!, decide whether f lies in (f1,..., fs).

— Given Z = (fi1,..., fs), decide whether V(Z) is empty.
Grobner bases of ideals are a computational tool which allows to solve those questions, and
will be introduced in the following subsection.
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Zero-dimensional ideals. This thesis mainly focuses on systems generating an ideal said
to be of Krull dimension zero. This notion of dimension will be defined in the next chapter.
These ideals are interesting since the associated variety (in the algebraic closure) is finite.

Proposition — Definition 1.11. [25] An ideal T of K[X] is of Krull dimension zero if and
only if K[X]/I is of finite dimension as a K-vector space. This dimension is called the degree
of I, and is a bound for the number of points in V().

Bounding the number of points in V(Z) by the degree of T is sharp: equality holds for
radical ideals.

1.1.2 Monomial Orderings and Grébner bases

Degrees and monomial orderings. In order to design algorithms solving symbolically
polynomial systems, we have to put an ordering on polynomial rings: this is necessary to decide
what the greatest monomial in a given polynomial is. Since several monomial orderings use
implicitly the total degree of a monomial, we also have to define some degrees of monomials.

Definition 1.12. A monomial ordering < on K[ X] = K|x1,...,z,] is a total ordering defined
on the set of monomials of K[X] (which is isomorphic, as a monoid, to N"), such that:

— Forall a, B,y € N, g% < 2P = 207 < 28+

— FEvery non-empty subset of monomials has a smallest element (= is a well-ordering).

Note that any ordering implies an ordering on the indeterminates z1,...,z,. We usually
assume that x; > --- > x,. We now give the definitions of the most common orderings used
in practice, namely the lexicographical and the graded reverse lexicographical orderings.

Definition 1.13. The lezicographic ordering, denoted by =pes, is defined by: £ <pep 2P if
and only if the first non-zero left entry of o — B is negative.

Since weighted orderings will also be used in this thesis, we recall the notion of weighted
degree of a monomial.

Definition 1.14. Let w = (wi,...,wy,) € N". The weigted degree associated to w of a
monomial x® is degy, (%) = >, wia;. When w = (1,...,1), deg,, will simply be denoted
by deg.

Definition 1.15. The weighted graded lezicographical ordering (abbreviated w-glex) and
denoted by Sygiex 15 defined by: % <gieq 2 if and only if deg,(z®) < deg (z?) or
deg, (z®) = deg, (z%) and 2* <1y 2°. When w = (1,...,1), the ordering will be sim-
ply called the glex ordering.

Definition 1.16. The weighted graded reverse lexicographical ordering (abbreviated w-greviex
or w-DRL) and denoted by =uar, is defined by: £ <uau ©° if and only if deg,, (z®) <
degy, (%) or degy, (z®) = degy, (z?) and the first non-zero right entry of o — 3 is positive.
When w = (1,...,1), the ordering will simply be called graded lexicographical and abbreviated
grevlex or DRL.

Definition 1.17. Let w = (wy,...,w,) € (N*)". A polynomial f € K[X] is said to be
w-homogeneous if all its monomials share the same w-degree. If w = (1,...,1), we simply
say that f is homogeneous.



30 CHAPTER 1. GROBNER BASES

Leading Monomial and Reduction. Now that we have defined ordering on monomials,
we are able to define reductions of a polynomial with respect to a list of polynomials.

Definition 1.18. Let < be a monomial ordering on K[X]. For a non-zero polynomial f =
> cqr® € K[X], we define its leading monomial, leading coefficient and leading term as
follows:

— LML(f) = max<{a® | cq # 0}

— LC<(f) = cq with 2% = LM<(f)

— LTL(f) = LC<(LM=()-

Note that sometimes, terms are called monomials and conversely.

Notations 1.19. We recall here some notations that will be used throughout this thesis,
although there are not standard: let f € K[X] and < an ordering on K[X]|. We denote by
o<(f) (resp. O<(f)) the set of linear combinations of monomials smaller (resp. smaller or
equal) than LM<(f). This notation extends for a set of polynomials F': o<(F') = Nsepo=<(f).

Definition 1.20. Let f,g € K[X]\{0} and < a monomial ordering on K[X]. f is said to be
top-reducible by g (for the ordering <), if LM<(g)|LM<(f). If F is a finite subset of K[X], f
is said to be top-reducible by F, if LM<(q)|LM<(f) for some g € F.

With notations of previous definition, we see that in the case of top-reducibility of f by g, the
polynomial f— H.f 8; ; g lies in 0<(f). We now describe algorithms 1.21 and 1.22 that compute

reduction and full reduction of a polynomial f with respect to a list of polynomials F'.

Algorithm 1.21: Reduction algorithm
Input : f € K[X], F=[f1,...,fs] alist of polynomials in K[X], a monomial ordering
<.

Output: A polynomial r such that 7 is not top-reducible by F' and f —r € (F)
h:=f;
1 :=0;
while h #0 and i < s+ 1 do

1i=1+41;

if h is top-reducible by f; then

o
1:=0

return h

Note that the result of algorithm 1.21 (and therefore algorithm 1.22) depends on the order
of the sequence F. However, when F is a Grobner basis, the result is unique.

Grobner basis. In order to give the definition of a Grobner basis, we recall first the defi-
nition of the initial ideal of an ideal.

Definition 1.23. Let Z be an ideal in K[X] and < be an ordering on K[X]. The initial ideal
in<(Z) of T with respect to < is defined by

inx(Z) = {({«* | 3f € T,z = LM<(f)})

The initial ideal of an ideal is a monomial ideal, that is, an ideal generated by monomials.
We now define what a Grobner basis is.
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Algorithm 1.22: Full-Reduction algorithm
Input : f € K[X]|, F=[f1,..., fs] alist of polynomials in K[X], a monomial

ordering <.

Output: A polynomial r such that no monomial of r is top-reducible by F' and
f—re(F).

r:=0; h:=f;

while h # 0 do
h := Reduction(h, F');

r:=r+LT<(h);
h:=h—LT<(h);
return r

Definition 1.24. Let T be an ideal in K[X] and < be an ordering on K[X]. A Grébner basis
G for the ideal T with respect to = is a subset of I such that

in<(Z) = ({LM=(9) | g € G})

One fundamental property of Grobner bases, that ensures that the outputs of both al-
gorithms 1.21 and 1.22 do not depend on the order of the sequence F = [f1,..., fs] is the
following:

Proposition 1.25. Let T C K[X] be an ideal and G be a Grébner basis of T for a monomial
ordering <. Let f € K[X]. Then

fer = Reduction(f,G) =0

A Grobner basis for a given ordering < of an ideal Z is not unique with definition 1.24.
However, uniqueness holds:

Definition 1.26. Let Z be an ideal of K[X], and G be a Grébner basis of T with respect to a
given ordering <. G = {g1,...,9s} is said to be reduced if no monomial of g; is (top-)reducible

by G\{g:}-

Proposition 1.27. Let Z be an ideal of K[X], and < be a monomial ordering on K[X]|. Then
T has a unique reduced Grobner basis with respect to <.

The next subsection is devoted to the presentation of the first historical algorithm that
computes Grobner bases.

1.1.3 Buchberger Algorithm

Buchberger algorithm dates back to 1965 and is able to compute a Grobner basis of an
ideal Z for any ordering.

Idea. The input of the algorithm is a set of polynomials F' = {f1,..., fs} and an ordering
<. The aim is to compute a Grobner basis of Z = (fi,..., fs) with respect to <. At the
beginning of the algorithm, the monomial ideal ({LM<(f) | f € F'}) is only included in in<(Z).
The idea is to increase the family F' unless equality holds, according to definition 1.24. The
key object is to consider critical pairs and S-polynomials of elements in F'.
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S-polynomials. In order to define S-polynomial, we have to recall the definition of lowest
common multiple and greatest common divisor of two monomials.

Definition 1.28. Let m = z® and m' = 2% be two monomials of K[X]. We define

— the lowest common multiple of m and m' by LCM(m,m’) =[]\, xinax(ai’ﬁi). It will be
denoted by m\V m/.

— the greatest common divisor of m and m’ by GCD(m, m’) =[]\, a:zr.nm(ai’ﬁi). It will be
denoted by m A m/.

Note that the definition 1.28 does not depend on a choice of a monomial ordering on K[X].

Definition 1.29. Let f and g be two non-zero polynomials of K[X] and let < be a monomial
ordering. The S-polynomial of f and g is defined by

LM<(f) vV LM<(g) , LM<(f)V LM<(g)

Spol(f,q) =
PN YT W
The S-polynomial can also be defined by GCD’s since LMﬁEQZ'(—fN)'j(g) _ LM<I(_J,>/)I/5\I(.£I7\3I<(9)'

Buchberger algorithm. We can now describe Buchberger algorithm 1.30. The algorithm
maintains a list of critical pairs, which are no more than pairs of polynomials, and computes S-
polynomials and reduces it with respect to the current family of polynomials. If the remainder
is non-zero, it is added to the family. The algorithm stops when all critical pairs have been
examined.

Algorithm 1.30: Buchberger algorithm

Input : F={f1,...,fs} a finite subset of K[X], and a monomial ordering =.
Output: A Grébner basis of (fi,..., fs) with respect to <.
G:.=F;
L:={(fi.fj) | 1 <i<j<s}; //list of critical pairs
while L # () do

Choose a critical pair P = (f, g) of L and remove P from L;

r := Reduction(Spol(f, g), G);

if » # 0 then

L G :=GU{r};

Li=Lu{(nf)| feG}

return GG

The proof of algorithm 1.30 relies heavily on the following theorem:

Theorem 1.31 (Buchberger). Let G be a subset of K[X], graded by a monomial ordering <.
Then G is a Grobner basis of (G) with respect to < if and only if

Reduction(Spol(f,q),G) =0 for all f # g in G.
Notations 1.32. When G is a Grébner basis, the result of Full-Reduction(f,G) does not

depend on the choice of the reductions performed in algorithm 1.21. We call the result the
Normal Form of f with respect to G, which will be denoted in the sequel by NF<(f,G).
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1.1.4 What is Solving ?

In this subsection, we recall what solving means, in the context of Grébner basis compu-
tation. We first give the shape of a lexicographical Grobner basis of an ideal.

Proposition 1.33. Let Z be a zero dimensional ideal of K[X], and G, be the reduced Grobner
basis of L for the lexicographic ordering with x1 > - -- > x,. Then Gjo, has the following shape:

g1z, xn) == gL (T, . )
92.1(T2, .., xn) = = gag (T2, ..., Tp)
Glex = 4

In—1,1(Tn—1,Tn) > - > Gn-1,4,_, (Tn—1,Zn)
L gn(Tn)

with ; > 1 forie {l,...,n—1}, and LM<(g;1) is a power of x; for alli € {1,...,n}.

Note that the last element of the Grobner basis is a univariate polynomial.

Solving polynomial systems with computer algebra. A polynomial system is a finite
set of equations f; = --- = fs = 0 with f; € K[X]. Solving the system means finding the
common zeros of the polynomials f; in field IL containing K. Assuming that the set of solutions
is finite (this is the case if and only if (f1,..., fs) is zero dimensional), it could be understood
as “giving the list of the solutions”. Observe first that once a lexicographical Grébner basis of
(f1,..., fs) has been computed, we see that with notations of proposition 1.33, g, is univariate,
and plugging roots of g, in g,—11,...,9gn—1,4,_, leads to univariate polynomials in x,,_1, and
so on. Depending on the field K, and on the field . where we are looking for solutions, several
techniques could apply.

Solving in finite fields. If K = F, is a finite field with ¢ = p", we may look for
solutions in [F,, in F, or in IFT,, but in each case it is possible to output the list of exact
solutions: even if F, is not finite, the solutions lie in a finite extension F,x since they are in
finite number. Manipulating elements in exact fields (like finite fields) is easy, hence we can
solve the systems by computing roots of univariate polynomials. We refer for example to [107]
for efficient algorithms.

Solving on R. If K = R, dedicated algorithms compute efficiently approximations of the
roots of univariate polynomials, with certificated errors. We refer for example to [83, 84| for
the complexity of isolating real solutions and computing approximations of them. From the
lexicographical Grobner basis, we cannot apply directly the method of computing successively
approximations of roots of gn(zy), gn—1(Tn—1,2y),..., since errors would be dramatically
increased. But it is possible to first compute a decomposition into triangular sets, with for
example the Lazard Lex-Triangular algorithm (see [73]), and then isolate the real roots in
this tower of extensions with certificated methods, see for example [99].

Consequently, throughout this thesis, solving a polynomial system means computing the
lexicographical Grobner basis of the ideal that the system generates. In practice, applying
Buchberger’s algorithm in order to compute a lexicographical Grobner basis is not satisfac-
tory: most of the critical pairs reduce to zero; therefore this is a waste of time to consider
them. Moreover, it is much faster to compute a Grobner basis for the DRL ordering than for
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the lexicographical ordering. Nowadays, the common strategy used to solve zero-dimensional
polynomial systems with Grobner bases is to use an efficient algorithm able to compute a
Grobner basis for DRL ordering, and then perform a change of ordering to obtain a lexico-
graphical Grobner basis. This strategy and the associated algorithms are presented in the
next section.

1.2 Grobner bases and Linear Algebra

The aim of this section is to present an efficient strategy to solve zero-dimensional systems.
The first step is to compute a Grobner basis for a graded ordering, and the most common
is the DRL ordering. In [71], Lazard showed the link between linear algebra and Grobner
bases computations. Faugere presented in [34] an efficient algorithm which includes Buch-
berger criterions into linear algebra computations of Grébner basis. In [35], he presented the
first signature-based algorithm: the advantage of this algorithm is that no useless pairs are
considered if the input is a regular sequence (see chapter 2). The two last algorithms have
been implemented in [63], and are the most efficient algorithms to compute Grobner bases
for a graded ordering. We focus on the zero-dimensional case: the FGLM algorithm [39]
can be used to compute a Grobner basis for any ordering of a zero-dimensional ideal, once
a Normal Form is known. This Normal Form is usually available as soon as a first Grobner
basis of the ideal has been computed. Figure 1.34 summarizes the common strategy to solve
a zero-dimensional system.

F,/F3 DRL FQLM LEX

Univariate
[ System [ - - - - - >  Grobner [F------ > Grobner |r----------

basis basis Resolution

Figure 1.34 — Strategy to compute solutions of a zero-dimensional system.

In this section, we first present the link between linear algebra and Groébner basis compu-
tation through the Lazard algorithm 1.40, and then exhibits a simplified version of Matrix-F5
algorithm 1.44. The original one uses rewriting rules to get sparser matrices, and is itself a
simplified version of the original Fj algorithm which does not need a maximal degree to stop
the computations. Since our aim is to propose some variants of this algorithm that handle
algebraic structures, the simplified Matrix-Fjy is sufficient, and easier to describe. Then, we
present the FGLM algorithm 1.52.

1.2.1 Lazard’s algorithm and Macaulay’s matrices

The aim of this subsection is to present the Lazard’s algorithm, which computes a Grob-
ner basis for a graded ordering. In order to simplify notations, we present it only in the
homogeneous case. Before giving the algorithm, we present the so-called Macaulay’s matrix
of a sequence of polynomials in a given degree, and then explain the authorized operations
on it.

Macaulay’s matrix.

Definition 1.35. Let Z C K[X]| = K[z1,...,xy,] be an ideal generated by homogeneous poly-
nomials f1,..., fs, and let = be an ordering on K[ X]. We say that G is a Grobner basis up
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to degree D of Z, if
VfeZ, deg(f)<D = dge§, LMz(g)|LM<(f)

An homogeneous ideal has a unique reduced Grobner basis up to degree D. From the
finitness of reduced Grobner bases, it is clear that for D big enough, a D-Grobner basis is
a Grobner basis. We now present the Macaulay’s matrix of a finite set of polynomials, the
reduction of which gives a D-Grébner basis by Lazard’s algorithm.

Definition 1.36. Let F= f1,..., fs € K[X] be homogeneous polynomials of degrees dy, ..., ds
and = be an ordering on K[X]. Let D be an integer. The Macaulay’s matriz Mac< p(F) is a
matrix:
— with ("Z? 1 1) columns, indexed by monomials of degree D of K[X], sorted by decreasing
ordering, with respect to <.
— with Y74 ("+Z:‘fi_1) rows, indexed by pairs (i,m), where i € {1,...,s} and m is a
monomial of degree D — d;. The index are sorted by increasing ¢ first, and then by
decreasing m.

— such that MaCj,D(F)(@m),m/ 15 equal to the coefficient of m’ in the polynomial f; x m.

This definition makes sense, since for every index (i,m), the polynomial f;m is homo-
geneous of degree D. If D < d;, the block corresponding to f; is empty. We now present
algorithm 1.40 which was presented in [71]. With a slight abuse of notations, we identify

arow My, with the polynomial ), M(i,f),ua where the sum ranges over all monomials of

5.

K[X] of degree D.

Gaussian Elimination in Lazard/Matrix F; algorithms. Both Lazard and Matrix-F5
algorithms are based on linear algebra. The idea is to build Macaulay’s matrices and perform
operations on them. In this thesis, we will present several variants of Matrix-F5, but the
routines of linear algebra that we use are the same: computing a row-echelon form through
Gaussian Elimination. Since the columns of the matrices are associated to monomials sorted
by decreasing order, operations on the columns are not allowed. All operations on the rows
are allowed: permutations, transpositions, dilatations and cancellation of zero-rows.

Definition 1.37. Let M be a matriz with coefficients in K. M is said to be in row echelon
form if
— all nonzero rows (rows with at least one nonzero element) of M are above any zero row
(all zero rows, if any, belong at the bottom of the matrix).
— the leading coefficient (the first nonzero number from the left) of a nonzero row in M
1s always strictly to the right of the leading coefficient of the row above it.
— all entries in a column below a leading entry of M are zeroes.

Here is an example of a 4 X 5 matrix in row echelon form:

1 ag a1 ao asg
0 0 2 a4 as
0 0 0 1 ag
0 0 0 0 O
We will see that computing a row echelon form of a Macaulay’s matrix (at a degree big

enough) leads to a non-reduced Groébner basis. In order to obtain a reduced Grébner basis
(definition 1.26), we have to compute a reduced row echelon form of the Macaulay’s matrix.
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Definition 1.38. Let M be a matriz in row echelon form. M is said to be reduced if
— all leading coefficients are 1.
— M s full rank: zero-rows have been removed.
— the column of a leading coefficient has only one non-zero entry: this leading coefficient.

Here is an example of a 3 x 5 matrix in reduced row echelon form:

1 aq 0 0 aj
0 0 1 0 a9
0 0 0 1 a3

Row echelon and reduced row echelon forms can be computed by Gaussian elimination.
The cost of this computation is well-handled, since the following theorem holds. In this
thesis, w is the exponent of linear algebra, that is the lower bound of reals v such that the
multiplication of two N x N matrices can be performed in O(N7) arithmetic operations. The
best known bound is w < 2.3728639, see [50]. The complexity studies presented in this thesis
only count the number of operations in K, namely additions, subtractions, multiplications
and divisions.

Theorem 1.39. Let M be a matriz with ¢ rows, £ rows, rank v and coefficients in K. Then,
a Gaussian Elimination of M can be performed within O(fcr*=2) arithmetic operations in K.

Proof. We refer to [97] for a proof. O
Lazard’s algorithm. We now present the Lazard’s algorithm 1.40, which computes a

Grobner basis up to a degree D by computing incrementally reduced row echelon forms
of Macaulay’s matrices.

Algorithm 1.40: Lazard algorithm
Input : A family of homogeneous polynomials F = (f1,..., fs) with degrees
d; <...<ds, an ordering =, a maximal degree D
Output: A Grobner basis of (f1,..., fs) up to degree D, with respect to <
G :=0;
ford=1to D do
Compute the Macaulay’s matrix M = Mac< 4(F) in degree d;

Compute M , the reduced row-echelon form of M;

Add to G all rows of M not top-reducible by G.
return G

Theorem 1.41. Algorithm 1.40 terminates and computes a D-Grobner basis of T =
<f17"'7f8>'

Proof. 1t is straightforward that algorithm 1.40 terminates since the number of loops is finite,
and that the output is in Z. Now, let f € Z be a polynomial of degree d less than or equal to D.
Since 7 is generated by homogeneous polynomials, we might assume that f is homogeneous
(this will be proved in a more general context in proposition 1.65). Then f can be written
> i, gifi- Since f is homogeneous, the g;’s can be taken homogeneous of degree d — d;. It
follows that f is a linear combination of rows of the matrix M = Mac< d(F) Then, one row

of M has the same leading monomial as f. Since we add to G all rows of M not top-reducible
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by G, LM<(f) is divisible by LT<(g) for some g € G. By definition 1.35, it follows that G is
a D-Grobner basis of (f1,..., fs). O

Lazard’s algorithm based on Macaulay’s matrices allows easy rough complexity study, in
terms of the maximal degree of a polynomial in the reduced Grébner basis.

Theorem 1.42. One can compute a D-Grébner basis of an ideal T C K[X], generated by
homogeneous polynomials f1, ..., fs of degrees d1,...,ds for a given ordering < within

n+ D\“
0
(("57))
arithmetic operations in K, using Lazard algorithm 1.40.

Proof. We use the fact that by theorem 1.39, a Gaussian Elimination of a matrix M with ¢
lines, ¢ columns, rank 7 and coefficients in K can be computed within O(fcr“~2) arithmetic
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and the theorem is proved. ]

Corollary 1.43. Let fi,...,fs be homogeneous polynomials in Klzy,...,z,] = K[X]. If
the mazximal degree in a Grobner basis of (fi,..., fs) with respect to a graded ordering =< is
lower or equal than D, then one can compute a Grobner basis of (fi,..., fs) within at most

D w
O <s (n; ) ) operations in K.

From previous corollary, we see that bounding the maximal degree in a reduced Grébner
basis is of crucial importance to estimate costs in Grobner bases computations. This will be
investigated in the next chapter.

As we have seen, the Lazard algorithm 1.40 allows an easy complexity study. However,
many rows reduce to zero while computing the row-echelon form of the Macaulay’s matrix,
which indicates that some rows are useless. The following subsection presents an algorithm
which removes several useless rows, and all of them if the input sequence is a reqular sequence.
This notion will be defined in the next section.
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1.2.2 Matrix-Fj algorithm

Let fi,...,fs be a sequence of homogeneous polynomials of degrees di < --- < ds in
K[X], and < be a graded ordering on K[X]. Among the useless rows in the Macaulay’s
matrix Mac< 4(F), some of them are easy to identify: if m is a monomial of degree D — dj,
which is (top-)reducible by the Grébner basis of fi,. .., fs—1, then the row indexed by (s, m)
reduces to zero. All we have to do to check this reducibility is to compute a (D — d;)-Grébner
basis of fi,..., fs—1. This can be done easily whith a slight modification of Lazard’s algorithm
and we obtain a very simplified version of Faugere Matrix-F5 algorithm. Note that in practice,
the algorithm is not implemented in a so simple way, since it uses rewriting rules to construct
smaller and sparser matrices, for details. Mixing this approach with critical pairs criterions
(as in Buchberger’s algorithm) leads to the so-called Fy-algorithm see [35, 63]. In particular
with the Fys-algorithm no input degree D is needed.

Algorithm 1.44: Matrix-F5 algorithm
Input : Homogeneous polynomials fi,..., fs of degrees d1,...,ds, an ordering =, a
maximal degree D
Output: Grobner Bases of (f1,..., f;) fori=1,... s up to degree D, with respect
to <
fori=1tosdo G;:=0;
for d =d; to D do
Mg = 0;
for i =1 to s do
if d < d; then
‘ Mg, == Mg; 1
else

Mg ; := matrix obtained by adding new rows m.f; to Md,i—la for all
monomials m of degree d — d; that do not appear as leading monomial of a
row of My_gq, ;1.
Compute Md,i by Gaussian elimination from Mg ;;
| Add to G; all rows of My; not top-reducible by Gi;

return G1,...,G;

The principle of algorithm 1.44 is simple: for each d, we contruct several matrices instead
of only one like in algorithm 1.40. These matrices can be seen as Macaulay’s matrices in degree
dof fi,..., fi fori € {1,...,s}, but with useless rows removed and part of the row-echelon
form computation already performed. The correctness of algorithm 1.44 is highly based on
lemma 1.45.

Lemma 1.45 (F5-criterion). With the notations of Algorithm 1.44, if m is the leading mono-
mial of a row in My_q, ;—1 then the polynomial mf; belongs to the vector space

5panK(R0ws(Mdﬂ-_1) U{ufi | u of degree d — d; and u < m})

Proof. The hypothesis is that Md,dm,l contains a row corresponding to a polynomial of the
form h = Am+o0<(m), where XA # 0 and o<(m) is a linear combination of monomials of degree
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d — d; lower than m. Since h is contained in (f1,..., fi—1), hf; also. Then the decomposition
mfi = hfi/A + o<(m)f;
~—— ——

€Spang (Row(Mg;-1)) €Spang({uf; | v monomial of degree d—d; smaller than m}
ends the proof. O

Theorem 1.46. Algorithm 1.44 terminates and outputs D-Grobner bases of (fi1,..., f;) for
each i € {1,...,s}.

Proof. The termination is clear. Morover, it follows from lemma 1.45 that the row span of
each matrix Mgy ; is the same as Mac< 4(f1,..., fi), and theorem 1.41 ends the proof. d

1.2.3 FGLM algorithm

FGLM algorithm [39] was published in 1993 and named by the four names of its au-
thors Faugere, Gianni, Lazard and Mora. From a Grobner basis G of a zero dimensional Z,
FGLM algorithm returns the Grébner basis for an other ordering <s. The idea is simple and
powerful: since Z is zero dimensional, the quotient algebra K[X]/Z is of finite dimension §.
Thus, if we pick monomials m by increasing ordering for <o, the knowledge of G allows us
to compute NF<(m, G). With enough monomials, we obtain linear combinations between the
normal forms, which give a Grobner basis of Z for <5. In order to compute efficiently these
normal forms, the algorithm uses linear algebra: it first computes the matrices M; of the
maps f — x;f in K[X]/Z for each i € {1,...,n}, using algorithm 1.47.

In algorithm 1.47, we assume that Z is not equal to K[X], which can be easily checked: in
this case the reduced Grobner basis G for < of 7 is equal to {1}. We now define the staircase
and the boundary of G:

Definition 1.48. Let G be the reduced Gréibner basis for =< of an ideal T C K[X]. We define:
— the staircase £(G) of G is the basis of K[X]/Z given by monomials not top reducible
by G.
— the boundary B(G) of G is the set {zie, | 1 <i < n and ¢, € E(G)}\E(T).

Since Z is zero-dimensional, the staircase £(G) = {1 = €1 < -+ < ¢} is finite of cardinal
0 = dimg (K[X]/Z). In this case, the following proposition characterizes B(G).

Proposition 1.49. [39] Let G be the reduced Grébner basis for =< of a zero-dimensional ideal
Z C K[X]. For every m € B(G), one and only one of the following condition holds:

1. For each z; dividing m, m/x; belongs to £(G). This is the case if and only if m is the
leading monomial of an element g € G.

2. m can be written xz;m for some i and some m € B(G).

Proof. The equivalence in the first point follows directly from the definition of a reduced
Grobner basis. Assume that there exists x; dividing m such that m/xz; does not belong to
£(G). Since m belongs to B(G), m can also be written zje with e € £(G). It follows that
i # j and x; divides e. £(G) is obviously closed under division, so € = e¢/x; € £(G). Thus
zje’ € B(G) because xzj¢’ =m/z; ¢ £(G), and the proposition is proved. O

In order to fulfill the matrices M;, we have to compute all normal forms NF<(z;ex, G) for
1 <i<nande €& Tothis end, we construct the list L of all x;e; ordered for < and
without duplicates, the elements of which are exactly £(G) UB(G). For an element u € L, we
have three possible cases:
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Algorithm 1.47: Multi-Mat-building algorithm

Input : A reduced Grobner basis G of a zero-dimensional ideal Z C K[X],
E(G)={1=¢€1 < e <+ < e5} the basis of K[X]/(G) given by monomials,
that are not (top-)reducible by G.
Output: Multiplication matrices of the maps f +— z;f in K[X]/(G)
for i :=1 ton do
M; :=Square matrix of size § x 9§ filled with zeros; //The rows of M, are indexed
L by [e1 < €2 < - - < €] and the columns by [z;€; < T €2 < -+ < X;€5]

L :=[zie; | 1 <i<mn,e; € E(G)], sorted by < and without duplicates;
for w € L do
switch u do
case u in & :
M;[u/z;,u] :== 1 for all i such that x;|u; //the column of M; indexed by u
| has only one non-zero entry corresponding to u/x;.

<]

ase u = LM<(g) for some g € G :
g can be written u + E?Zl Q€
| M;[.,u] :==Y(~aq,...,—as) for all i such that z;|u
otherwise
Find j such that z;|u and v = u/x; € L\E(G);
Find (e, ¢) such that v = e with € € £(G);
V := M;[.,v]; //this column of M, contains the expression of NF<(v,G)
in the basis £(G).
W = M;V; //W is the vector associated to NF<(z;v,G) = NF<(u,G).
M;[.,u] := W for all i such that z;|u;

return My,..., M,

— wu € £(G): no computation is needed to compute NF<(u, G), since NF<(u,G) = u.

— w is the leading monomial of g € G: in this case, since G is reduced, NFﬁ(u, G)=u—g
and no computation is needed to obtain NF<(u,G).

— otherwhise, by proposition 1.49, u can be written x;v with v € B(G). Since L is treated
incrementally in algorithm 1.47, NF<(v,G) = 22:1 arexr has already been computed.
Moreover, if oy # 0 in the previous writing, the normal form NF<(z;e;, G) has been
computed since x;e;, < u. It follows that Zizl arM;]., €] is exactly NF<(u,G) in
terms of the basis £(G).

From the previous discussion, we can conclude:

Theorem 1.50. Algorithm 1.47 terminates and outputs the matrices M; of multiplication by
x; in K[X]/Z.

We now investigate the complexity of algorithm 1.47.

Theorem 1.51. [39] Let G be the reduced Grébner basis for an ordering < of a zero-
dimensional ideal T C K[X]. In order to compute the matrices M; with algorithm 1.47 in
the basis £(G), O(né3) arithmetic operations in K are needed, with § = dimg (K[X]/T).

Proof. The size of the list L is bounded by nd. Only the third case requires arithmetic
operations, and these operations are a matrix vector product, whose complexity is in O(5?).
Therefore the total complexity is in O(nd?). O
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Algorithm 1.52: Matrix-FGLM algorithm
Input : Multiplication matrices M, ..., M, of size § X § corresponding to f — x;f in
K[X]/Z in a basis &1, an ordering <2
Output: The Grobner basis of Z for <o
S = [1]; //The staircase & for the ordering =,.
L:=[(1,n),(1,n—1),...,(1,1)]; //1ist of pairs (j,i) symbolizing the monomials
S[j] x x;, ordered by increasing order for =s.
V :=[{(1,0,...,0)]; //V contains the expressions of NF<, (S[j],G<,) in &, each
vector in V has 0 components.
G :=[]; //The Grébner basis for =
Q := I5; //identity matrix of size d X §
while L # [] do
m := L[1]; Remove m from L;
Jr=ml]; i:=m2];
v := M;V[j]; //components of NF, (z;5[j],G<,) in &

s:=|S|; //number of elements in S
A="A1,..., ) = Qu;
if g1 =---= X5 =0 then
G:=GU [S[j]xi — le\j . S[j]];
]:
else
S = SU[S[J] x x;
V=V U[vl;

L:=Sort(LU[(s+1,i) |i=1,...,n],=2);
Remove duplicates from L;
Update(Q, s, \); // Now Qu ="*(0,...,0, Jlrl,O,...,O).

| Remove from L all multiples of LM<, (G);

return G

We now present the FGLM algorithm 1.52. It takes as input matrices My,..., M, of
endomorphisms of multiplication by the variables 1, ..., x, in K[X]/Z. Usually, these endo-
morphisms are given in the basis £ given by monomials that are not top-reducible by a first
reduced Grobner basis G<, for <;. The algorithm also needs a second ordering <o. With the
matrices, normal forms NF<, (z;m, G<,) can be computed efficiently by the product M;v, if v
is the vector corresponding to NF<, (m,G<,) = Zle a;€;. The algorithm maintains two lists
S and V. S is the new staircase in construction for <9 and V contains the normal forms of
elements of S with respect to G<,, as column vectors of size §. At the beginning, S = [1] and
V contains only the first unit vector e; since NF<, (1,G<,) = 1. L is the list of monomial that
have to be examined, sorted by increasing order for <. After that one element m is added to
the staircase S, we add to L all multiples of m by a variable. Since we compute normal forms
by matrix-vector product, the elements of L are pairs (j,i) symbolizing S[j] X z;. G is the
new Grobner basis in construction and @ is a base-change matrix between the new staircase
and the old one. More precisely, the following invariant is maintained during the execution
of algorithm 1.52.

Lemma 1.53. On the top of the while loop in algorithm 1.52, Q is an invertible matrix with
s =|V| =S|, and QV[i] = e; for all i between 1 and s.
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Proof. This statement is true when the loop is entered for the first time since s = 1,V = [e4]
and @ is the identity matrix. V', .S and @) are modified only in the else case, when A = Qu lies
in Spang(eq,...,es), which means that v lies in Spang (V') since @ is invertible. Lemma 1.55
ends the proof. O

Algorithm 1.54: Update Procedure

Input : A square matrix @ of size § x §, an integer s, a vector A.
Output: The matrix Q with Qv =*(0,...,0, L, 0,...,0)
S

k:=min{j e {s+1,...,0} | \; #0};

if kK # s+ 1then Q[k,.] < Qs+ 1,.]; A\ < Ast1;
Qs+1, ]+ Qs+ 1,.]/Ast1;

for j=1to d do

it j#£s+1then QU< QU] — NQls+1,1;
return @)

We now prove that procedure 1.54 is correct.

Lemma 1.55. Let Q € GLs(K), v1,...,vs be s linear independent vectors with 1 < s < §
such that Qu; is the i-th basis vector e; for each i. Let v be a vector such that X = Qu ¢
Spank(ei,...,es). Then after the procedure 1.54, the matriz ) remains invertible and verifies
that Qu; = e; fori e {1,...,s} and Qu = egy1.

Proof. Assume first that A\sy1 # 0. Then the effect of procedure 1.54 is to left multiply @ by
the matrix T = (ti7j)1§i,j§§ € M;s(K) with
ts+175+1 = 1/)\5+1, ti75+1 = —)\i/A5+1 and tm =1 for i ?é s+ 1, tiJ' = 0 otherwhise.

Since T is invertible, ) remains invertible after the procedure. Moreover, Te; = e; for
1 <4 < s, hence the property Qu; = ¢; for ¢ < s remains unchanged. The fact that TA = es41
ends the proof. Now, if A\;;1 = 0, the procedure looks for the first k£ > s+ 1 such that A\ # 0

(which exists since Qv does not belong to Spang(ey, ..., es)) and exchanges the k-th and the
(s 4+ 1)-th rows of @ and A. All assumptions on @ and A are kept, but now A\sy1 # 0 and the
first point concludes. O

We are now able to prove the correctness of algorithm 1.52

Theorem 1.56. Let G<, be the reduced Grébner basis of a zero-dimensional ideal T C K[X]
for an ordering <1. Let My, ..., M, be the multiplication matrices by the variables in K[X]/Z,
in the basis & of monomials that are not top reducible by G<,. If =2 is another monomial
ordering, algorithm 1.52 terminates and outputs the reduced Grébner basis of T for <o.

Proof. First of all, each polynomial inserted in G belongs to Z, because at this point of
the algorithm, NFx, (S[jlz; — >27_; A;j - S[j],G<,) is represented in & by the column vector
v — Y51 Ajvj, but Q is invertible and Qu = 377, A;Qu; by definition of A\. Let g be a
polynomial in the reduced basis of Z for <5. Observe that monomials removed from L are
only those which are reducible by the leading monomial of a polynomial in G. Therefore,
m = LMx,(g) is entered in the loop as a product S[j]z;. All monomials of g are smaller
than m and belongs to the new staircase, so they have already been treated. It follows that
a linear combination is found and g is entered in G. The termination is clear from the fact
that § = dimg (K[X]/Z) is finite. O
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We now investigate the complexity of algorithm 1.52 in terms of n and § = dimg (K[X]).

Theorem 1.57. The reduced Grobner basis of T for <o is computed with algorithm 1.52
within O(nd3) arithmetic operations in K.

Proof. Let G<, be the reduced Grobner basis of 7 with respect to <2. All monomials m
treated in the while loop belongs either to B(G<,) or to £(G<,). It follows by the definitions
that the number of those monomials is bounded by nd+6 € O(nd). The arithmetic operations
needed in the algorithm are matrix-vector products (while computing A = Qv) and elementary
operations on () in the procedure 1.54. In both cases, the number of arithmetic operations is
in O(6%), and the conclusion follows. O

1.3 Extension to subalgebras

In this section, we extend the notion of Grébner basis to ideals of subalgebras of K[X| =
K[z1, ..., x|, and derive a very general variant of F5-algorithm. The aim of this generalization
is to keep structures. In section 4.3, we will work in the subalgebra of invariant polynomials
under the action of a group, and in chapter 5, we will work in monomial subalgebras of K[X],
that is subalgebras generated by monomials. In order to generalize Grobner bases in this
context, we introduce the notion of SAGBI bases.

1.3.1 SAGBI bases

In this subsection, we recall the definition of SAGBI bases which is an analogue of Grébner
bases for ideals in subalgebras [68].

Definition 1.58. [88] Let A be a subalgebra of K[X]. Let < be any monomial ordering on
K[X]. A subset S of A is called a SAGBI basis (SG-basis) for A (relative to <), if LM<(S)
generates LM< (A) as a monoid.

Remark 1.59. [t is worth noticing that, in contrast to ordinary Grébner basis theory, a finite
SAGBI basis does not necessarily exist. For example, the algebra K[zy® | a > 0] has no finite
SAGBI basis for lexicographical ordering with x© > y.

Basic properties of SAGBI bases are presented in [88, 79]. Although SAGBI bases are
usually defined for subalgebras of K[X], we are interested in SAGBI bases of ideals in subal-
gebras, the definition of which is very similar to 1.58. In order to give the definition, we first
describe a notion of reduction in this context.

Definition 1.60. Let A be a subalgebra of K[X]. Let f,g,h € A with f,h # 0 and let P be
a finite subset of A. Then we say that

i) f SG-reduces to g modulo h, if there exists t a term of f, s € A and A € K such that

ALM<(s)LM<(h) =t and g = f — Ash.

1) f SG-reduces to g modulo P, if f SG-reduces to g modulo h for some h € P.

From this we obtain straightforwardly the definition of the following concepts: SG-
reducible, SG-top-reducible(in point i), t = LT<(f) and SG-NormalForm. The SG-Normal
Form of a polynomial f with respect to a set of polynomials F will be denoted N/-_fc(f7 F).

Definition 1.61. Let A be a subalgebra of K[X], T4 an ideal in A, and let < be any monomial
ordering on K[X]. A subset S of T is called a SG-basis for T4 with respect to < if all
polynomials in T are SG-top-reducible by S.
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Remark 1.62. If A =Klzy,...,x,], we recover the definition of a Grébner basis.

One fundamental property of SG-basis is the following, similar to the same property for
Grobner basis.

Proposition 1.63. Let A be a subaglebra of K[X]| = K|x1,...,z,]. For a subset S of an
ideal (in A) T4 C A the following properties are equivalent :

a) S is a SG-basis for T with respect to <.
b) For every h € TA, NFgG(h,S) = 0.

Corollary 1.64. A SG-basis for T* generates T as an ideal of A.

We now assume that the algebra A is non-negatively graded and connected, which means
that A can be written (as the direct sum of K-vector spaces) A = @120 Aq with Agdy C Aga
for all d,d’ > 0, and Ay = K. We say that an element of A4 is homogeneous of degree d.
Furthermore, we assume that A is finitely generated: there exists a collection of elements
hi,...,h, such that A = K[hy,...,h;]. Such an algebra is always Noetherian, which means
that every ideal Z# of A is finitely generated and can be written ZA = (f1,..., fs) 4. Before
giving a variant of F5-algorithm adapted to this context, we give the following proposition:

Proposition 1.65. Let f1,..., fs be homogeneous polynomials of degrees di,...,ds in A =
@jﬁBAd. Let TA = (f1,..., fs)a be the ideal generated by fi,...,fs in A. Let f € T4 and

S0 £ be its unique decomposition in homogeneous components, with @ € Ay (all @
but a finite number of them are equal to zero). Then, all f(9 belong to .

Proof. Since f lies in Z4, f can be written f = i, 9ifi with g; € A. Let gl(d) be the
component of g; of degree d (all ggd) but a finite number of them are zero). Then g; = Y7, gz(d)

and
+o0 S s oo d oo ’
PIFAEFEDWIED SO BLIEDS > a'h
d=0 i=1 i=1 d=0 d=0 \ (¢,d;) such that ¢+d;=d

then f@ = Z gy) fi is the homogeneous component of f of degree d, which belongs
l+d;=d
to Z4. O

An ideal generated by homogeneous polynomials is called homogeneous. For such an ideal,
the proposition 1.63 above continues to hold if we restrict our discussion to SG-bases up to
some degree D. Hence, only a SG-basis up to degree D of T is needed to test the membership
in ZA for any polynomial f with deg(f) < D.

Assume now that a basis (bg)dzo,lgign , of the graded algebra A is given, such that two
elements of this basis have distinct leading monomial.

Definition — Proposition 1.66. A eclement (b¢) of the basis of A is called standard if
LM< (b)) ¢ LM<(TA). A is the direct sum of T and the vector space spanned by the stan-
dard elements. Hence, the SG-NormalForm of an invariant f is necessarily a unique linear
combination of standard elements (b3).
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1.3.2 Matrix SAGBI-F5 algorithm

Now we give a description of the SAGBI-F5 algorithm. We consider a graded subalgebra
A of K[X] = K]z, ..., z,], which is connected and finitely generated.

The SAGBI-F5 algorithm is very close to the original Fs-algorithm, but it works in
A instead of K[X]. We present here a Matrix SAGBI-F5 algorithm, which uses SAGBI-
Macaulay’s matrices. We use the same notations, fi,...,fs are homogeneous polynomi-
als in A of degree d; < --- < dg, and < is a graded ordering. We assume that in ev-
ery component Ay, a basis (b%)1<;<n, of A as a K-vector space has been computed, with
LM< (bf) = LM<(b9) = - -+ = LM< (b2 ).

Definition 1.67. Let F = f1,..., fs € A be homogeneous polynomials of degrees dq,...,ds
and < be an ordering on Klx1,...,z,]. Let D be an integer. The SAGBI-Macaulay’s matriz
I\/IacéD(F) is a matrix:

— with dimg (Ap) columns, indexed by polynomials (bg)lgkgnd sorted by < with decreas-
ing order.

— with Y ;_; dimg(Ap_g4,) rows, indexed by pairs (i,b;lid"), where i € {1,...,s} and
je{l,...,ng_q;}, so that bzfdj ranges all the basis of Aq—q;. The indexes are sorted
by increasing ¢ first, and then by decreasing b;lidi.

— such that MaCéD(F)(i,bg),ka is equal to the coefficient of ay in the writing fibg =

np D
o2 by

Just like the classical Matrix-F5-algorithm 1.44, the SAGBI-Fj5 algorithm constructs ma-
trices incrementally degree by degree and equation by equation, and remove from the SAGBI-
Macaulay matrix some useless rows. At each degree d the algorithm constructs a SAGBI-
Macaulay’s matrix M, ; and performs row reductions on it, the valid operations being to add
to some row a linear combinations of rows situed above. The incremental step from ¢ — 1 to
1 introduces the rows corresponding to b;lidi fi for all polynomials of (b}lid") in the basis of

Ad,dj, except those having same leading monomial as a row of Md,di,i,l, where d; = deg(f;).
This criterion is a variant of the Fx-criterion 1.45 and is explained in lemma 1.69. The
algorithm stops when the current degree is equal to a given bound D.

Lemma 1.69. [SAGBI-F5 criterion] If m = L/\/Ij(bg_d") is the leading monomial of a row in
Md—di,i—l then the polynomial b‘z_di fi belongs to the vector space

Spang (Row(Mg;—1)) + Spang ({b % fi | j > £})

Proof. The hypothesis is that ]\Zfd_di’i_l contains a row corresponding to a polynomial of the
form h = /\bgfd" +05(b?7d"), where A\ # 0 and oj(bgfdi) is a linear combination of polynomials
in A4—_q, of leading monomial lower than LMj(b‘Z_d"). Since h is contained in (f1,..., fi—1)4,
hf; also. Then the decomposition

b, hf/A o+ o< S,
N—— S——
€Spang (Row(Mg ;1)) EspanK({bjidifi | 5>¢})
ends the proof. N

Theorem 1.70. The SAGBI-F5 algorithm computes the elements of degree at most D of the
reduced SG-bases of (f1,..., fi)a, fori=1,... t.
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Algorithm 1.68: Matrix SAGBI-Fj5

Input : invariant homogeneous polynomials fi,..., fs with degrees d1,...,ds, a
maximal degree D, bases (bg)lgignd of Ag for 0 < d < D.

Output: SG-bases of (f1,..., fi)a fori =1,...,s up to degree D
fori=1tosdo S;:=0;
for d=d; to D do

Mg :=0;

for i =1 to s do

if d < d; then
‘ Mg, == Mg; 1

else

M, ; = matrix obtained by adding new rows b;.l_dj fi to Md,iq, for all
polynomials in the basis (b;lidi) of Agq_g4; that do not have same leading
monomial of a row of Md—di,i—l-

Compute Md,i by Gaussian elimination from Mg ;;
| Add to §; all rows of My; not SG-top reducible by S;;

return Sy,...,S;

Proof. We will use induction on d and i. For d = d; and i = 1, the result is clear. Assuming the
induction hypothesis, we now simply have to prove that the rows of My, generate (fi, ..., fi)q-
Then we can deduce that LM< (M,;) generates LM<((fi,..., fi)a) and the conclusion on S;
follows. It is thus sufficient to prove that for any polynomial (bz_di) of the basis of Ag4_g4,,
the polynomial b?fdi fi is generated by the rows of Mgy,;. If m & LMj(Md,dm,l) it is clear
by lemma 1.69 and construction of the matrix My;. Otherwise, bg_di fi is entered by the
algorithm in Mg ;. This completes the proof of the theorem. ]

This SAGBI-F5 algorithm will be used in the sequel in two contexts: when A is the algebra
of invariants on a finite group G (section 4.3) and when A is a monomial algebra (chapter 5).
Notice that generalizing the Matrix-F5 algorithm in this framework is easy, whereas giving a
generalization of Buchberger algorithm is not: the notion of S-polynomials does not generalize
easily. Even in monomial subalgebras, the notion of lowest common multiple of two monomials
does not hold anymore and has to be replaced by a list of multiples.



Chapter 2

Commutative Algebra.
Applications to Grobner Bases

In this chapter, we first introduce classical results in commutative algebra. Then, we use
these concepts to study the behavior of the SAGBI-F5 algorithm with respect to regular and
semi-reqular sequences. As we have seen in theorem 1.42, it is crucial to bound the maximal
degree reached during a Grobner basis computation, since it appears in the complexity bound.
In this section, we show how the maximal degree reached in a computation can be estimated.

2.1 Commutative Algebra and Hilbert series

Commutative algebra has been first introduced by Hilbert, in order to study the structure
of the algebra of polynomial invariants under the action of a group that we will wiew in the
next chapter. In this section, we first present basic tools of commutative algebra and then
study gradings on subalgebras of the ring of Laurent polynomials, and introduce the concept
of Hilbert series.

2.1.1 Algebraic tools.

In this subsection, we consider an algebra A which is non-negatively graded, connected
and finitely generated, as in section 1.3. Thus A can be written ©32 A with Ag = K and
Ay a K-vector space of finite dimension for all d > 0. The notions introduced here can be
found in several books, see for example Eisenbud [30] or Lang [70].

Krull dimension. Recall that an ideal Z of A is said to be homogeneous if it is generated
by homogeneous polynomials. In this case both Z and .A/Z are graded (see proposition 2.14).

7= @giOId and AT = @?[O:().Ad/zd

Notice that A, = @32 ,Aq is the unique homogeneous maximal ideal of A.

If B is a prime ideal of A, we define the height of B to be the maximal length ¢ such that
their exists a chain By C Py -+ - C Py =P of prime ideals of A contained in B. This number
is denoted by height () and is extented to any ideal Z of A by

height(Z) = min{height(B) | Z TP and P is prime}
Finally, the Krull dimension of A is defined by
dimg,u(A) = sup{¢ | P is a prime ideal of A of height ¢}

47
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Example 2.1. A polynomial algebra Klzy,...,z,] has Krull dimension n. The ring of in-
variants K[z1, ..., 2,)¢ under a finite group G (see section 3.1) or a semigroup algebra K[S]
with S a full rank semigroup of Z"™ (see section 3.2) have also Krull dimension n.

If 7 is a proper ideal of A, one can consider the Krull dimension of the algebra A/Z. This
dimension is called the dimension of Z, denoted by dim(Z). In several classical books, this
dimension is called the codimension of Z, but this is not the common usage in Grobner area.

Homogeneous Systems of parameters and Regular sequences. We now define what
a homogeneous system of parameters (abbreviated hsop) of the algebra A is.

Definition 2.2. Let n be the Krull dimension of A. A homogeneous system of parameters
of A is a set of n homogeneous elements {hi,...,hy} such that A is a a finitely generated
module over the ring K[hy, ..., hy].

The following result was first introduced by Hilbert, in order to study the algebra of
invariants under the action of a group. Is was named after Emmy Noether proved it in [80].

Theorem 2.3 (Noether Normalization lemma). The algebra A has a homogeneous system of
parameters.

This theorem has useful applications in invariant theory of finite groups, see chapter 3.

We now define reqular sequences in A. These sequences are of great importance in Grébner
bases computations: for homogeneous such sequences in K[X], there are no reduction to zero
in Fy-algorithm, and the maximal degree reached during the computation can be efficiently
bounded, as we will see in the sequel.

Definition 2.4. A sequence (fi,..., fs) in A is called a regular sequence if (f1,..., fs)a S A
and f; does not divide zero in the ring A/(f1,..., fi—1)a for all 1 < i <s. Fori =1, this
means that f1 is not a zero-divisor in A, therefore is non-zero if A is a domain.

Example 2.5. In K[zy,...,z,], (x1,...,2y) is a reqular sequence.

Remark 2.6. The property of being reqular for a sequence of polynomials strongly depends on
the algebra to which they belong. For exemple, let K[X] = K[z,y| and A the algebra generated
in K[X] by = and xy. It is easy to prove that a monomial x%y® belongs to A if and only if
B < «. Then the sequence (f1, f2) = (x,zy) is A-regular but not regular:

— Let g1,92 be such that fig1 = foga. Since f1 and fo are monomials we can assume
that g1 and go also. Then g1 is of the form z®yP*! and go = x*y®, with o >  + 1.
Therefore, g = f1z* P € (f1)a, and go = 0 € A/(f1) and fo does not divide 0 in
A/(f1) so (f1, f2) is A-regular.

— But fo =0¢€ A/(f1) so (fi, f2) is not K[X]-regular.

In the previous definition, the integer s is called the length of the sequence. If A is
Noetherian, the sequence of ideals (f1) 4 C (f1, fo)4 S (f1,--., fs).4 is striclty increasing and
so cannot be extended infinitely many times. A regular sequence that cannot be extended is
called mazimal.

In the definition of regular sequence, it seems that the order of the f; matters. Indeed,
a regular sequence does not necessarily remain regular when permuted, see [64, page 102].
However, this is the case for regular homogeneous sequences. This will be proved in the
particular case A C K[X*!] in the sequel. We refer to [16, chapter 2] for a general proof.
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Cohen-Macaulay rings. Based on the definition of regular sequences, we now define
Cohen-Macaulay rings. Working in those rings are of great importance since it ensures that
being a maximal regular sequences is a generic property (see definition 1.10): roughly speak-
ing, almost all sequences of length equal to the Krull dimension of the ring are regular.

Proposition — Definition 2.7. Let A = @ . Aa be a graded connected finitely generated
algebra. Let T be an ideal of A. Then all maximal reqular sequences lying in T have same
length, called the depth of T and denoted by depth(Z). The ideal m = @ jop- Aqg is a mazimal
ideal of A. The depth of A is the mazimal length of a reqular sequence of A lying in m, denoted
by depth(A).

The following proposition relies the dimension of an ideal with its depth.

Proposition 2.8. With notations of the previous propostion-definition, for any ideal T of A,
depth(Z) < dim(Z), where dim(Z) is the Krull dimension of the algebra A/T.

We are now able to give the definition of a Cohen-Macaulay algebra: equality holds in the
previous proposition.

Definition 2.9. With notations of proposition-definition 2.7, the algebra A is said to be
Cohen-Macaulay if depth(m) = dim(m) for every maximal ideal m of A.

Example 2.10. The algebra K[X] = Klz1,...,z,] is Cohen-Macaulay, since (z1,...,%y) is
a reqular sequence. In the non-modular case, the ring of invariants K[z1,. .., 2,]* under a
finite group G is Cohen-Macaulay, see section 3.1. Hochster’s theorem (see section 3.2) says
for example that the algebra Klxy, xy?, x%y] is Cohen-Macaulay.

Hilbert Syzygy theorem. We end up this subsection with the Hilbert Syzygy theorem,
which is one of the fundamental theorem in commutative algebra. The grading on K[X] =

K[z1,...,x,] is given by the classical total degree.
Theorem 2.11 (Hilbert Syzygy Theorem). [30, theorem 1.13] Let M be any finitely graded
module over a polynomial ring A = K|x1,...,z,]. Then, there exists a finite graded resolution

of M by free graded K[X]|-modules
0 — My, 25 My 2525 o0 25 My 2% M — 0,

that is an exact sequence: ker(p;) = im(p;y1) for all i € {0,...,k — 1}, pi injective and po
surjective. The length k of the resolution can be chosen less than or equal to n.

This theorem will we applied in the sequel, a consequence is that the Hilbert series of a
ideal in K[X] is a rational fraction.

2.1.2 Gradings on subalgebras of K[X*!]

In this thesis, we have to consider several algebras. In chapters 3 and 4, we will deal with
K[X]©, the algebra of invariants under the action of a finite group G, which is a subalgebra
of K[X], graded by the total degree on K[X]. We will also have to consider the whole algebra
K[X], but the action of an abelian group, joined to the total degree, gives a grading by the
commutative monoid N x X(G) where X(QG) is an abelian finite group. In chapter 5, we will
study polynomial systems in K[S], a subalgebra of the ring of Laurent polynomials K[X*!],
where S is a semigroup of Z™. This subalgebra will be graded by N. Quasi-homogeneous and
multihomogeneous gradings are also classical gradings on K[X], given by N or N’

In order to give a theoretical framework, which is valid for all these algebras, we fix a
commutative monoid M with neutral e, which can be seen as one of the mentioned monoids.
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Definition 2.12. Let A be a subalgebra of K[XT']. A grading indexed by M on A is a
decomposition of A into graded components (Agq)aem such that:

— A. =K.

— A= o Ad as a K vector space.

— Letd,d e M and (f,h) € Ag X Ag. Then fh € Agiaq .
A polynomial f in a component Ay is said to be M-homogeneous of M-degree d.

We fix such a subalgebra A graded by M and see how this grading can be transfered on
homogeneous ideals of A and associated quotient algebras.

Definition 2.13. An ideal T C A is said to be M-homogeneous if it is generated by homoge-
neous elements.

Proposition 2.14. Let Z be a M-homogeneous ideal of A. Then, both T and A/Z have a
decomposition into graded components:

I=P1. awd A=A/

deM deM

Proof. For Z, it simply comes from the fact that the homogeneous components of a polynomial
in Z belong to Z, and the proof is identitical to proposition 1.65. For A/Z, we have a surjective
map ¢ : A — Bgem(Ag/Zq). Clearly, ker(¢) C Z, and the reverse inclusion comes from the
previous point. ]

From now on, until the end of the subsection, we consider gradings on the polynomial
ring K[X] = K[z1,...,x,]. A very interesting case is when a basis (as a K-vector space) of
each component K[X]; is given by monomials. In this case the computation of Grébner bases
preserves this grading, in the following sense.

Proposition 2.15. Assume that K[X]| is graded by a monoid M as in definition 2.12, and
that K[X]4 is generated by monomials for each d. Then for each monomial m of degree d,
and M-homogeneous polynomials f and h of degrees dy and dy:
— the polynomial mf is M-homogeneous of degree d,, + dy.
— Spol(f,g), the S-polynomial (see definition 1.29) of f and g, is M-homogeneous of
same degree as LM<(f) Vv LM<(g)

Proof. This is obvious with the definition of the M-degree. O

We review in the following some classical gradings on K[X], here M is equal to N¢, with
(> 1.

Definition 2.16. We define quasi-homogeneous and multi-homogeneous gradings
— Let w = (wq,...,wy) € (N*)" and for all d € N, let

K[X]Y = Spang ({x® monomial | degy (z®) =d})

This component (which can be reduced to {0}) is said to be the quasi-homogeneous
component of degree d associated to w. A polynomial is said to be quasi-homogeneous
of degree d (with respect to w) if it lies in K[X]Y .

— Let ny,...,ng € N* such that Y. n; =n, and X = X U---U Xy be a partition of the
set of variables X = {x1,...,x,}. Then, for alld = (dy,...,d;) € N, let

K[XJa = K[X1]g, ® - @ K[X(]q,

This component is said to be the multi-homogeneous component of K[X] of multi-
degree d, with respect to the partition X = X1 U---U X}y
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Note that, with w = (1,...,1) in the first case, or X = X1 and d = (1) in the last case, we
recover the standard homogeneous grading on K[X].

For ideals in K[X], we deduce from proposition 2.14 the following definitions:

Definition 2.17. With notations of definition 2.16, and ideal I C K[X] is called
— quasi-homogeneous with respect to w € N if T = @32 IV, where Iy = K[X]Y NT.
— multi-homogeneous with respect to a partition X = UleXi if T = @geneZa,
where Iqg = K[X]q NZ.

We are now interested in giving estimations on the dimensions (as K-vector spaces) of the
components that appear in proposition 2.14. To this end, we introduce Hilbert functions and
Hilbert series.

2.1.3 Hilbert Function and Hilbert Series

The Hilbert Series of a graded algebra is a fundamental object in commutative algebra,
since a lot of informations can be read from it. From now on, we assume that the monoid
M is N, although the following notions can be extended to other monoids (in order to handle
various gradings as multi-homogeneous gradings or gradings given by the product N x X(QG)
where X(QG) is a finite group).

An element is said to be homogeneous if it is homogeneous for the grading given by N.
We start by giving a general definition, and then we give explcitely classical series associated
to the homogeneous and quasi-homogeneous gradings on K[X] = K[z1,...,x,).

Definition 2.18. The formal power series ring Z[[z]] is defined as follows.
— Z[[2]] is equal to ZN as a commutative group. The element of Z[[z]] mapping d € N to
aq € Z is denoted ) ;o agz?.
— The product of two elements of Z[[z]] is given by the Cauchy rule:

(Z adzd> X (Z bdzd> => ST abe | 2

deN deN deN \ (£,0)eN?, (+0'=d

This product is well defined since only a finite number of pairs (£,¢') verify £ + ¢ = d
which gives to Z[[z]] a commutative ring structure.
The element 2° is a neutral for the multiplication law and will be denoted 1. Notice that for
all d € N*, the series (1 — z%) is invertible, with inverse 320 2~

In addition with the hypothesis of definition 2.12 (with Ml = N), we also assume that the
components dimg(A,) are of finite dimension for all d > 0.

Definition 2.19. Let A be a N-graded algebra, and T a homogeneous ideal of A. The Hilbert
function and the Hilbert series of A/Z are defined by
HF 4y7(d) = dimg (Aq/Tq)  and  HSuz(z) = >  HSz(d)z"
deN

As an example, we review here the Hilbert functions and series associated to the classical
gradings on K[X].

Definition 2.20. [30] Let A = K[X].
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— Let T C K[X] be a homogeneous ideal. The Hilbert function HFg|x)/z : N — N and the
Hilbert series HSg(x1/7 € N[[2]] of the quotient ring K[X]/T are defined by:

HFgx)yz(d) = dimg (K[X]q/Zs)  and  HSgpxyyz(2) = > HFgx)z(d)t
=0

— Let T C K[X] be a quasi-homogeneous ideal with respect to w = (wi,...,wy).
The weighted Hilbert function HF(W)K[X]/I : N — N and the weighted Hilbert series

HS(W)K[X]/I € N[[z]] of the quotient ring K[X]/Z are defined by:
HF™ gix)2(d) = dimg(K[X]S7/Z0)  and HS™yix2(2) = > HF™ g5z ()t
d=0

In the case where f does not divide zero in the ring A/Z, it is easy to give relations
between the Hilbert series of A/Z and A/ (Z + (f)).

Proposition 2.21. Let T C A be a homogeneous ideal of A and f € Ag be a homogeneous
polynomial of degree d € N. If f does not divide 0 in the ring A/Z, then

HS ayz+(5))(2) = (1 = 2%) HS 4/2(2)

Proof. For every ¢ € N, consider the following sequence of K-vector spaces:

0— Ay/Ly xJ, Avra/Teva — Avra) T+ (f)era — 0,

where 7 is the canonical projection (— is a surjective map). Since f does not divide 0 in
A/Z, this sequence is exact. Therefore the alternate sum of the dimensions of these vector
spaces is equal to 0. Consequently, HF 4,7(¢) — HF 4/7(¢ + d) + HF 474y (¢ + d) = 0, thus
multiplying this relation by z¢ and summing over ¢ yields to:

24 HSA/I(Z) - HSA/I(Z) + HSA/(I+<f>)(2) =0.
L]

Therefore, the Hilbert series of a ring A/ (Z + (f)) is very easy to deduce from the Hilbert
series of A/Z if f does not divide zero in Z. It follows from the definition of a regular
sequence (definition 2.4) that one can compute easily the Hilbert series of an ideal generated
by a regular sequence, knowing the Hilbert series of the algebra A.

Proposition 2.22. Let T C A be a homogeneous ideal of A generated by a regular sequence
F=(f1,...,fs) of homogeneous polynomials of degrees dy,...,ds. Then

s

HSay2(z) = [J(1 - 2%) x HSa(2)
=1

Proof. We just have to apply s — 1 times the proposition 2.21. O

From previous proposition, with A = K[X], Z a homogeneous or quasi-homogeneous ideal
and f a homogeneous or quasi-homogeneous polynomial, we obtain:
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Corollary 2.23. — If T is a homogeneous ideal generated by a regular sequence
(fi,-- - fs), then HSg(x1/z(2) = TTi—1 (1 — 2%) x HSkx(2)
— If T is a quasi-homogeneous ideal with respect to w = (wy, ..., w,) € N, generated by

a reqular sequence (fi,..., fs), then HS(W)K[X]/I(Z) =1L (- 2%) x HS(W)K[X](Z)
We are now able to give the Hilbert series and weighted Hilbert of K[X].

Proposition 2.24. The Hilbert series and weighted Hilbert series of K[ X] are given by

— HSgx)(2) = (1—12)"

1
— HS(W)K[X] (2) =

[T, (1 —zv)
Proof. We just have to apply corollary 2.23 to (z1,...,zy,). This is possible since (x1,...,xy,)
is a regular sequence in K[X|. We also need the series associated to K[X]/(x1,...,x,), which
is simply 1. The degrees are given below:
— in the homogeneous case, the degree of each indeterminate x; is 1.
— in the quasi-homogeneous case, with respect to the weights w = (wy,...,w,), the
degree of z; is w;.

O]

We now explain why the relation 2.22 fails if the sequence (fi,..., fs) is not regular. We
start by giving a more precise result than proposition 2.21.

Proposition 2.25. Let Z be a homogeneous ideal of A, and f € Aq a homogeneous polynomial
of degree d. Then,

HS A2+ (2) = HSa4y2(2) = 2¢ HS a4 (z.)
where (I: f)={g9€ A|gf €I} 2>T.

Proof. Note that this property is classical in the algebra K[X], see for example [9]. In the
same way we proved proposition 2.21, we introduce an exact sequence for each d, ¢ € N.

0— (T:f))Ty = ATy =, Avva/Zova 5 Aed/(Z+(f))e+a — 0

To see that this sequence is exact, we have to prove that ker(f) = (Z : f)¢/Zs. Hence, the
kernel of the map Ay — Apiq/Zpsq is precisely (Z : f)y. Quotienting by Z, yields the result.
Since this sequence is exact, the alternating sum of the dimensions of these K-vector spaces
is zero. Noticing that dim((Z : f),/Zy) — dim(As/Zy) = —dim(A¢/(Z : f)e), we obtain that

—dim(A¢/(Z : f)e) + dim(Aera/Zeva) — dim(Apra/(Z + f)era)

and the result by multiplying this equality by 2% and summing over . O

It follows from the previous result that proposition 2.21 holds in both directions: the
Hilbert series of A/(Z + (f)) and A/Z are equal if and ounly if (Z : f) = Z. No-
tice that otherwise, (Z : f) 2 T and HS,/1.5)(2) < HS4/z(z), in the following sense:
[2Y)HS 4/(z.5)(2) < [2%]HS 4/7(2) for all d € N, and the equality does not hold at least for one
d. Hence, we have the following corollary:

Corollary 2.26. Let Z C A be a homogeneous ideal of A generated by a sequence F =
(f1,--., fs) of homogeneous polynomials of degrees dy, . ..,ds. Then F is reqular if and only if
HS4(2)

Pt = L 0
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From corollary 2.26, we can easily deduce the result stated in subsection 2.1.1.

Corollary 2.27. If F is a reqular sequence of homogeneous polynomials, then any permutation
of the sequence is also a regular sequence.

Regular sequences and behavior of the SAGBI-F; algorithm. Regular sequences is
an important family of polynomial systems: in K[X], we will see that they are generic (if
the length of the sequence does not exceed n), and from an algorithmic point of view, the
behavior of the F5-algorithm 1.44 on such a sequence is optimal: there are no reductions to
zero. More precisely, we will see that a reduction to zero occuring in a Grébner (SAGBI)
basis computation comes from a non-principal syzygy, the definition of which is given below.

Definition 2.28. Let F= (f1,..., fs) € A® be a sequence of polynomials in a graded algebra,
and let (Eq, ..., Ey) be the canonical basis of the free A-module A°. Now consider the following
evaluation morphism:

QOF : A? — A
S
(g1s--195) — Y gifi
i=1
The syzygy module of F in A is the submodule Syz(F) = ¢~1(0). A syzygy is an element of
this kernel, such a syzygy is usually denoted > ;_| g;E;.

It is easy to see that with notations of the previous definition, f;E; — f;E; is always a
syzygy. This observation leads to the following definition:

Definition 2.29. With notations of definition 2.28, the submodule of Syz(F) generated by
(f;Ei — fiE;):; is called the module of principal syzygies and is denoted by PSyz(F).

We now explain the link between definition 2.4 and 2.29.

Proposition 2.30. In A, a sequence F = (f1,...,fs) is a reqgular sequence if and only if
PSyz(F) = Syz(F) in A°.

Proof. For both directions, the proof is done by induction on s.
— The case s = 1 is easy: PSyz(f1) = {0} and the following equivalences are clear:

Syz(f1) = {0} — f1 is non-zero — (f1) is a regular sequence

— (=) : Assume that (fi,..., fs) is a regular sequence in A with s > 2, and let S =
o7, g:E; be a syzygy. Then, Zf;ll gifi = —¢gsfs, which means that g, belongs to
the colon ideal (f1,...,fs—1) : (fs). Since fs does not divide zero in (fi,..., fs—1)
by definition of a regular sequence, gs € (fi,...,fs—1). Hence, gs can be written
> 5-1 hif;. Then,

S = zs:giEi
iii s—1
= ) 9B+ (Z hifi) E,
i=1 i=1

s—1 s—1
S = > h(fiBs— fE)+ Y (0 + hifs)Ei
=1 =1
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Consequently, S can be written as a sum of a principal syzygy and a syzygy involving
only the (s — 1) first elements of the canonical basis of A®. Since (f1,..., fs—1) is also
a regular sequence, by induction Zf;ll (g9i + hifs)E; belongs to PSyz(f1,..., fs—1) C
PSyz(F). We conclude that S also belongs to PSyz(F).

— («=) : Assume now that PSyz(F) = Syz(F) with s > 2. By induction, (f1,..., fs—1) is
a regular sequence. Now let g be a polynomial in the colon ideal ({fi,..., fs—1) : fs)-
Then there exist ¢g1,...,9s—1 € A such that S = Zf;ll giE; + gE; is a syzygy. Since
PSyz(F) = Syz(F), S can also be written 3, ;<. hij(f;Ei — fiE;). It follows that
g=- Zf:_ll hisfi € (fi,..., fs—1) and F is a regular sequence.

]

We now prove that they are no reduction to zero in the SAGBI matrix-F5 algorithm 1.68,
if the input sequence is a regular sequence of homogeneous polynomials in A. This proposition
generalizes the result given by Faugere in [35] on the classical F5 algorithm.

Proposition 2.31. Let F = (fi,..., fs) be a reqular sequence of homogeneous polynomials in a
graded subalgebra A of K[X]. There are no reductions to zero in the SAGBI-F5 algorithm 1.68
while computing a SAGBI basis of (F). 4 up to a given degree D. In other words, the matrices
builded in Matriz SAGBI-F5 algorithm are full rank.

Proof. Recall that with notations of algorithm 1.68, (b )i<i<n, 18 the basis of the K-vector
space Ag. A reduction to zero corresponds to a writing b? di ifi = zj 195F5+> ket ckbd fi
where g; € Ag_q; and ¢, € K. Since the sequence F is A-regular, the sequence F; = (f1,..., fi)
also and Y, cxb % € (fi,..., fi1)a, With ¢p = =1 # 0. Let A = Min{k < ¢ | ¢4 # 0}.
Then, there is a row in the matrix My_g4, ;—1 with leading monomial equal to LMj(b‘i_di).
So by SAGBI-Fj; criterion (lemma 1.69), the row corresponding to bf\lfd" fi in Mg; should has
been removed and the writing bg_di fi = E 1 93fi D ket ckb i ¢, is absurd. O

2.2 Applications in K[X]

We now focus on the case where A = K[X], graded with the standard homogeneous
grading. In this section, we explain how to bound in advance the maximal degree, that can be
reached during the computation of a Grobner basis. In particular, it provides a bound for the
maximal degree D used in the Matrix-F5 algorithm 1.44 and can be used to obtain complexity
bounds for solving a polynomial system, depending on the degrees of the polynomials and
regularity assumptions.

2.2.1 Bounds on the degrees

Proposition 2.32. Let Z be a homogeneous ideal of A = K[X]. There exists a polynomial
N(z) € Z(z) such that the Hilbert Series of T can be written

N(z)

HSk(x)/z(2) = =

Proof. By Hilbert Szyzygy theorem 2.11, K[ X]/Z has a graded free resolution, of length r < n.
Hence, for any d > 0, there exists an exact sequence of K-vector spaces

Pk—1

0— My 25 o My 25 0 2 My 25 K[X]/Z — 0
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where M, is a free K[X]-module of finite rank. Since K[X]/Z is a graded algebra, we deduce
that for all d > 0, there exists an exact sequence

T 0
0= PKXi-q,, = = PKIXa—g,, = K[X]a/Is 0
7=1 7j=1

where all integers d; ; are less than or equal to d. Since the alternate sums of the dimensions
of vector spaces in an exact sequence is equal to zero, it follows that

r ir

S (=1 dimg (K[X]g—q,,) | — dimg(K[X]q/Zg) =0
i=0 j=1
Hence, dimg (K[X]a/Za) = Yi_o(—1)" 30 dimg (K[X]4—a,,)

=
= Yo' Sl ()
=

. d

Lo Sl (£2)
r ERAYA w2 2dij
dimg (K[ X]a/Za) = [Zd]<2i:0( )iy, )

1—2n

and the proposition is proved by taking N(z) = . ,(—1)" Z;T:l 2%,

O]

With the previous proposition, we see that the Hilbert function of a homogeneous ideal
matches a polynomial function, except for a finite number of integers:

Corollary 2.33. Let Z be a homogeneous ideal of A = K[X]. There exists a polynomial
(denoted HPgx)/z) and an integer do > 0 such that the Hilbert function of K[X]/Z, defined
by HFg(x)/z(d) = dimg (K[X]4/Za) coincides with HPg(x) 7 for all d > do.

Proof. From proposition 2.32, the Hilbert series of K[X]/Z can be written N(z)/(1 — 2)™.
Then, the partial fraction expansion of HSk|xj/z is equal to P(z) + > (lfilz)z for some

polynomial P and integers (a;)i1<i<n. Let dy be the degree of P (we set dg = —1 if P = 0).
Since for all ¢ > 1,

1 4_+m<d+i—1>zd_+§(d+i—1)><~--><(d+1)zd
(I—2) d yard (i—1)!
Pi(d)

where P;(d) is a polynomial, we have HFgx/z(d) = (29 P(2) + Y., a; P;(d) which coincides
with HPK[X]/I(d) = Z?:l aZPl(d) for all d > deg(P) +1= do. [

It turns on that the dimension of the ideal Z can be read from the expression deduced in
proposition 2.32, which leads to the following proposition.

({V_(j))d be the ex-

pression of the Hilbert series of the quotient algebra K[X]/Z, assumed to be reduced (N is not

divisible by z—1). Then the dimension of T is equal to d. Moreover, if d = 0, then the Hilbert
series HSg(x)/z is a polynomial and DEG(Z) is equal to HSg(x)/z(1).

Proposition 2.34. let Z be a homogeneous proper ideal of K[ X], and let
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N(z)
1—2)4
of HPg(x/7 as a polynomial of degree exactly d —(1 si)nce the polynomial P; has degree i — 1
(with the convention that the zero polynomial has degree —1). It is proved in [25, page 464]
that the degree of the Hilbert polynomial of K[X]/Z is equal to the projective dimension of
Z, which is dim(Z) — 1. Therefore, dim(Z) = d. If d = 0, the Hilbert polynomial is equal to
0, and HSgx)/z(1) = Y15 dimg (K[X]a/Za) = dimg(K[X]/Z) = DEG(Z). u

Proof. Rewriting the proof of corollary 2.33 with

and N (1) # 0 leads to an expression

Definition 2.35. Let Z be a homogoneous ideal of K[X]. From proposition 2.33, the Hilbert
series and the Hilbert polynomial of K[X]/Z coincide for all d greater than or equal to an
integer dg > 0. The smallest possible dy is called the index of regularity of Z, denoted

by freg(Z).

If 7 is a zero-dimensional ideal, the index of regularity is easy to read from the Hilbert
series, since this series is a polynomial. By definition the index of regularity is equal to
deg(HSK[ x]/z) + 1. It is worth to notice that this integer bounds the degree reached during a
computation of a Grobner basis.

Proposition 2.36. Let < be any ordering on K[ X], and Z C K[X] a zero-dimensional ho-
mogeneous ideal. Then all polynomials in the reduced Grobner basis of T have a total degree
less than or equal to ireg(Z).

Proof. Let G be the reduced Grobner basis of Z for <. By definition of irg(Z),
dimg (K[X]4/Z4) = 0 for all d > ireg(Z). Hence, all monomials of degree less than or equal to
ireg(Z) are in Z and are reducible by a polynomial in G. Therefore, any homogeneous polyno-
mial h of degree greater than d has its leading monomial that can be written LM< (g) x m with

m a monomial different from 1 and g a polynomial in G. Consequently, h does not belong
to G. O

A homogeneous regular sequence of length n in K[X] generates a zero-dimensional ideal.
We now give bounds on the index of regularity and degree of such ideal.

Proposition 2.37. Let F= (f1,..., fn) be a reqular sequence of homogeneous polynomials of
degrees (dy, . ..,dy) in K[X], generating the ideal Z. Then:
— the index of reqularity of I is equal to 1+ Y ;" (d; — 1), called the Macaulay bound.
— the degree of T is given by [[\_, d;, called the Bézout bound.

Proof. Since F is a regular sequence, by proposition 2.22, the Hilbert series of 7 is equal to

HSk(x)/z(2) = Hzll(_z)n - H Z 2
i=1 \ j=0

It follows that ieg(Z) = deg(HSk(x)/z) +1 =1+ > ;L (d; — 1) and DEG(Z) = HSg[x)/z(1) =
L=y di. O

2.2.2 Genericity of regular sequences. Semi-regular sequences.

We have seen that regular sequences have a good behavior with Grébner bases compu-
tations and that Hilbert series of the associated ideals are easy to describe. But do reg-
ular sequences of a given sequence of a degrees necessarily exist 7 We have seen that in
K[X] = K[z, ..., x,], the length of a regular sequence cannot be greater than n. We now
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see that being a regular sequence is a Zariski open condition for generic sequences of length
s < n, and that the associated Zariski open-subset is non-empty.

We assume that K is an infinite field. Let s be a positive integer, di, ..., ds be a sequence
of positive integers and fi,..., fs be a sequence of homogeneous polynomials in K[X] having
degrees dy, . .., ds. Finally, we denote by Z the ideal (f1,..., fs). We start with the following
lemma, emphasing the fact that allmost all choices on the coefficients of the sequence lead to
the same Hilbert series HSg(x1/z.

Lemma 2.38. There exists a non-empty Zariski open subset U in K[ X]q4, x - - xK[X]q4, such
that for all sequences F = (f1,..., fs) in U, the number HSx(x /(s....,)(d) does not depend
on F for all d € N, and is the smallest among all sequences in K[ X4, x -+ x K[X]4,.

Sketch of proof. [85] The proof is classical: assume first that s > n. We are looking for
sequences of length s such that the component Z; of Z has as large dimension as possible.
Failure arises if and only if some minors of the maps

g KXY/ froeeos fimt)y 25 KX jra/ s s fim)js

vanish. Therefore, for a given d, the fact that HSk(x/(, .. £,)(d) is the smallest among all
possible value is an open condition, and is valid for the sequences in a non-empty Zariski
open subset Uy of []7_; K[X]4,. An intersection of an infinite number of open subsets is not
necessarily open, but the trick is to see that intersecting only a finite number of these sets
yields the result: if f; = xfi for 1 <i<mn,thenZy =K[X]sforalld >D=1+>"(di—1).
Then U = NZ Uy = ﬂdD:OUd is a non-empty Zariski open subset.

If s < n, fi,...,fs is a regular sequence if and only if there exists (n — s) linear
forms (¢;)s+1<i<n such that (fi,..., fs,ls+1,...,¥n) is a regular sequence, which is true on
a non-empty Zariski open subset U of ([]7_; K[X]4) x K[X]7™°. The projection of U on
(IT;-; K[X]4,) contains also a non-empty Zariski open subset. O

In particular, the previous lemma shows that regular sequences are generic. We have seen
that regular sequences of length s > n do not exist. However, a generalization of this notion
is semi-regular sequences and we explain it now.

Notations 2.39. For H =Y 5%, haz? a power series in Z[[2]], we denote by [H|+ the series
H truncated at its first negative coefficient. More precisely, [H]+ is defined by:

[zd}[H]Jr: hg ifh; >0 for0<i<d
0 otherwise

The idea behind the following definition of semi-regular sequences is that their behavior
under Grébner basis algorithms looks like there were regular. We first comme back to the
definitions of syzygies in the case A = K[X].

Definition 2.40. With notations of definition 2.28 and in the case R = K[X], if S =}, ;E;
is a non-zero syzygy, deg(S) = max;(deg(g;)+deg(fi)) is called the degree of the syzygy, where
the degree of polynomials in K[X] is the standard total degree.

The following proposition-definition relates the degree of the Hilbert polynomial and syzy-
gies to define semi-regular sequences.

Proposition — Definition 2.41. [4, 5, 6] Let F = (f1,...,fs) € K[X]® be a sequence of
homogeneous polynomials generating a zero-dimensional ideal. The two following statements
are equivalent:
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— the Hilbert series of K[ X]/(F) is given by

s

H(l — Zdeslfi))

=1
HSaxyym ) = | —q =

+

— every syzygy of F of degree at most deg(HSk(x)/(r) + 1 is in the module generated by
the trivial syzygies.
A sequence F verifying these properties is called semi-regular.

The definition above shows that, while computing a Grobner basis of an ideal generated by
a homogeneous semi-regular sequence, no reduction to zero occures, just like regular sequences.
Semi-regular sequences can also be defined in terms of applications as regular sequences, as
shown is the following proposition.

Proposition 2.42. [85] A sequence of homogeneous polynomials (fi,...,fs) of degrees
di,...,ds is semi-regular if and only if the maps

KX/ (1, s fiot)a 5 K(Xara,/ (frse o fiot)asa,

are of mazximal rank, i.e either injective or surjective.

Semi-regular sequences are conjectured to be generic, as regular sequences are, since it
seems to be the case in practice. More precisely, Froberg’s conjecture is expressed in the
following way:

Conjecture 2.43 (Froberg conjecture). Let dy,...,ds be a sequence of integers and K
be an infinite field. Then the K-vector space of homogeneous sequence of polynomials
F = (f1,...,fs) of degrees di,...,ds, that are semi-reqular, contains a Zariksi-open subset
in its interior.

We refer to [85] for reformulations of this famous conjecture. It has been proved in several
cases, see [4] and references therein for details.

2.2.3 Affine case.

From an algorithmic point of view, it is possible to compute a Groébner basis for an
ideal generated by inhomogeneous polynomials by applying variants of the Lazard/Matrix-
F5s-algorithms seen in chapter 1: the columns of the matrices are indexed by all monomials
of degree less than or equal to the current degree D instead of monomials of degree D only.
The drawback of this method is that we do not take profit of degree falls, which can produce
polynomials of lower degree than D. Hence, the normal strategy[34] for F,/F5 algorithms
is to perform computations at the smallest possible degree: critical pairs are considered by
increasing degree first.

From a complexity point of view, it is not easy to handle these degree falls in a complexity
analysis. We now analyse the strategy of computing a Grobner basis of the homogenized
system and deshomogeneization.

Assume that we want to compute a Grobner basis for the DRL ordering of an ideal 7
generated by an affine sequence of polynomials F = (fi,..., fs) of degrees (di,...,ds) in
K[X]. Let h be a new indeterminate. We denote by:
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— F® the sequence (fl(h), ce fs(h)) of polynomials in K[X], such that fi(h) is the compo-
nent of degree d; of f;.

— F the sequence (fi,..., fs) of polynomials in K[X,h| = K[z1,...,2n,h], such that
fi is the homogeneization of f; (obtained by multiplying any monomial m in f; by
hdi—deg(m))‘

We denote by < both DRL orderings on K[X] and K[X, h]. The following lemma proves

that a Grobner basis of F (non-necessarily reduced) can be obtained from G and deshomo-
geneization. Notice that this lemma is specific to the DRL ordering.

Lemma 2.44. Let G be a homogeneous Griobner basis for DRL ordering of an ideal T C
Klz1,...,2n,h] and A € K. Then G\ = {g(z1,...,2n,\) | g € G} is a Grébner basis for DRL
ordering in Klx1, ..., x,) of the ideal Ty = {f(x1,...,2n,\) | f € T}.

Proof. We denote by @) the following morphism.

ox: K[X,h] — K[X]
f —r f(T1, .m0, A)

It is clear that the ideal generated by Gy is Zy. Then, assume first that A # 0 and let
f € Z\{0}. Therefore, there exists a polynomial g € G such that LM<(g)|[LM<(f). By
property of the DRL ordering, if 7 is the power of h in m = LM<(g), all monomials in g are
divisible by h?, and therefore py(m) = ATLM<(¢x(g)), which divides LM<(px(f)), and Gy is
a Grobner basis. Now if A = 0, by property of the DRL ordering, a non-zero polynomial in
7 is mapped to 0 through ¢, if and only if its leading monomial is divisible by h. Therefore,
the same proof is still valid, but we only have to consider polynomials f € Z that are not
divisible by h. O

With the previous lemma, we are able to compare the maximal degree arising in the
reduced Grobner bases of the system/ the homogenized system. We also compare them with
the maximal degree in the reduced Grébner basis of the homogeneous parts of higher degree.

Proposition 2.45. Let g,g<h> and QV be the reduced Grobner bases of F, F" and T:for <.
Then

max{deg(g) | g € G} < max{deg(g) | g € ¢"} < max{deg(g) | g € G}

Proof of proposition 2.45. By previous lemma, ¢1(G) and ¢o(G) are Grobner bases of (F) and
(F(h)). It follows that

{ max{deg(g) | g € G} < max{deg(g) | g € 5}~ and
max{deg(g) | g € G} < max{deg(g) | g € G}

Moreover, since 5 is reduced, it follows that the non-zero elements of goo(g) forms the reduced
Grobner basis of (F"). Now, denote by x(f) the homogeneization of a polynomial f in K[X].
Let g be a polynomial in G. Then, there exists a relation g = Y ;_; fip; with p; € K[X]. Since
x(9:) = iy x(fi)x(pi), x(g) belongs to (F) and its leading monomial is divisible by the

leading monomial of a polynomial § in G. § is not divisible by h, therefore ¢((g) belongs to
G™ | and has same leading monomial as g. Hence,

max{deg(g) | g € G} < max{deg(g) | g € G}

and the proposition is proved. O



2.2. APPLICATIONS IN K[X] 61

Example 2.46. The inequalities in proposition 2.45 can be strict. For example, let f1 = x>
and fo =z + 1 in K[z]. Then,

G={1}, GW={a} and G={x+nh’}

From proposition 2.45, we see that while studying the complexity of computing a Grébner
basis of an affine system, having informations on the sequence of the homogeneous parts of the
polynomials in the system could be useful. Hence, in several papers [4, 5, 6, 93], the authors
define semi-reqular sequences of affine polynomials as sequences such that the homogeneous
parts of higher degree is semi-regular. It seems that the following complexity bound can be
obtained (but does not appear in the litterature yet).

Theorem 2.47. Let F= (f1,..., fs) € K[X]® be a polynomial family and let F™) be the family
of homogeneous components of highest degree. If <F(h)> is 0-dimensional, then the complexity
of computing a Grébner basis of F for the DRL ordering is bounded by

o[ (L))
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Chapter 3

Invariant Theory and Monomaial
Algebras

The aim of this thesis is to use the struture of an input system, in order to speed up the
computations. Hence, we have to consider some algebras, that are not the whole ring K[X].
In this chapter, we present algebras that will be used in chapters 4 and 5. The first section
is dedicated to the study of the action of a finite group on polynomials, which leads to the
study of the ring of invariants. We also study semi-invariants through the representation of
finite groups.

The second section deals with monomial algebras, namely algebras generated by mono-
mials. We do not only consider monomials of K[z1,...,z,] but also monomials of the ring of
Laurent polynomials K[zT!, ...zt

3.1 Invariant Theory

In this section, X denotes the set of indeterminates {x1,...,2,} for a given n > 1, Kis a
given field, and K[X] = K[z, ...,2z,]. We will present the action of groups on polynomials,
and we restrict our discussion to finite groups.

The aim of the section is twofold: on the first hand, explaining the classical strategies
used to solve systems of polynomial equations which are stable under the action of a finite
group. These strategies are related to the invariant theory of finite groups. On the other
hand, we prepare the reader to chapter 4: computations of a basis of all invariants of a given
degree will be needed before applying the SAGBI Matrix-F5 algorithm 1.68 in section 4.3.
In order to design an approach that solves polynomial systems of systems globally invariant
under the action of an abelian group in section 4.2, we present representations and groups and
the gradation on K[X] induced by irreducible chracters. Finally, to give complexity bounds
for these variants, we need to estimate the dimensions of the components occuring in the
previous gradation.

The section is organized as follows: we first present the action of groups on polynomials
and explain how to compute invariants. Then, we present Molien’s theorem which is a formula
giving the Hilbert series of the ring of invariants. The third subsection is devoted to classical
approaches solving systems of invariant equations. Then, we present representations of groups:
the ring of invariants appears to be an isotypic component of K[X] viewed as a representation,
and we give a generalization of Molien’s formula to all components. The final subsection gives
estimates on the dimensions of the isotypic components.

63
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3.1.1 Action of Groups on Polynomials. Computation of Invariants
In this subsection, we define the invariants of a finite group G, and explain how to compute

them.

Action of Groups on Polynomials. Let V be the vector space spanned by X =
{z1,...,2n} on K. The linear group GL,(K) acts linearly on V": for A = (a;;)1<ij<n €
GL,(K) and L = (¢1,...4,) € V", we set

AL = <i ai,j&)
1=1

This action extends to polynomials in K[X] in the following way. For f € K[X] and A €
GL,(K), we set f4 the polynolmial f(A.X).

1<j<n

Proposition 3.1. The action of GL,(K) on K[X] given by (A, f) — f4 is a right action of
GL,(K) on K[X].

Proof. For f € K[X] and A, B € G£,(K), we have (f4)? = f(A.(B.X)) = f48. Moreover,
flr=Ff. -

Remark 3.2. In several classical books [100, 16], the authors choose to make GL,(K) acting
on K[X] by f4 = f(A™'X) to ensure a left action. We make another choice here, in order
to keep the relation (f4)B = fAB.

Now G will denote a finite subgroup of GL,(K). The group G acts also on K[X], and we
now define invariants under the action of G.

Definition 3.3. A polynomial f € K[X] is said to be G-invariant, if f4* = f for all A in G.

If f € K[X] satisfies f4 = f for some A € GL,(K), it is easy to prove that fB = f for all
B in the subgroup generated by A in GL,(K). This result has an obvious generalization, as
says the following proposition:

Proposition 3.4. Let S(G) be a generating set of G. Then f € K[X] belongs to K[X]E if
and only if f4 = f for all A in S(G).

Example 3.5. Consider the cyclic matriz group G generated by the matriz A = < 0 1 >

-1 0
Denote by f the polynomial x2 +x3 and by g the polynomial x1x9. Then fA = 3+ (—m)?=f
and g4 = xo(—x1) = —g. Therefore, f is G-invariant, while on a field of characteristic
different from 2, g is not.

The set of all G-invariants will be denoted by K[X]G. It is easy to see that the sum and
product of invariants are also invariants. Moreover, if m is a monomial of degree d in K[X],
and A € GL£,(K), the polynomial m* is homogeneous of degree d. Therefore, the following
proposition holds:

Proposition 3.6. The set K[X]® is a graded subalgebra of K[X]. More precisely, we have
the decomposition K[X]¢ = &1°K[X|§, where K[X|F is the set of invariant homogeneous
polynomials of degree d.
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Computation of Invariants We now answer the question of computing invariants. More
precisely, we want to compute all invariants of a given degree d.

Linear algebra technique. [67] A first, costly technique, is to use linear algebra: all we
have to do is to solve the system {f4 = f | YA € G} on K[X],. Proposition 3.4 shows that
this system is equivalent to {f4 = f | VA € S(G)}, where S(G) is a minimal generating set
of G. The idea is to introduce the following exact sequence

¢
0 — KX — KXli = @ucsc) KXl

f = (= Naese

A basis of K[X]§ can be computed as a basis of the kernel of ¢4. This leads to the
algorithm 3.7.

Algorithm 3.7: ComputeBasisLinear algorithm

Input : The group G, given by a minimal set of generators S(G), an integer d, an
ordering < and the lists By of monomials of degree d, sorted by decreasing
order for <.

Output: A basis of ]K[X]g

M = Matrix with ("+j_1) columns corresponding to the monomials of degree d of

K[X], sorted by =< with decreasing order, and |S(G)|(n+gfl) rows;

Fill the matrix M to obtain the matrix of the map ¢g;

Compute a Gaussian-Reduction of M; // Row-Echelon Reduction with permutations

of rows and cancellation of zero-lines

Join vertically to M an identity block of size (”+§_1) X (”+g_1);

Compute a Gaussian-Reduction of M; // Column-Echelon Reduction of the top block

L := list of polynomials corresponding to a column of M, the first block of which is

Z€ro;

return L

The following proposition can be found in [67], but we give a more precise result, based
on the theorem 1.39.

Proposition 3.8. The complexity of computing a basis of K[X]g’ with algorithm 3.7 can be
done with O (|S(G)\(n+g_1)w> operations in K, with S(G) a set of generators of G and w

the exponent of linear algebra.

Proof. To fill the matrix M in algorithm 3.7, we have to apply the group generators S(G) to
all monomials of degree d. For each A € S(G) and each monomial m of degree d, we have to
compute the product of d linear forms. This can be done basically by computing the product
of a polynomial of degree 7 with a linear form for each i between 1 and d — 1, so the cost is:

d—1 .
n+i—1 n+d—1
O pu—
P2 () e i)
=1
This cost is negligible, compared to the cost of computing the Gaussian elimination: we have
a system of ("+d_1) unknows and S(G) (”+d_1) columns, and rank bounded by the number of

n—1 n—1
unknows. From theorem 1.39, it is possible to perform the Gaussian elimination on a matrix
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of size £ x ¢ and rank r in O(¢cr*~2) operations in K. Therefore, we need O (S(G) (”:ﬂ;l)w>
operations in K to compute a basis of all invariants of degree d. O

The non-modular case. When the characteristic of the field K divides the cardinal of the
group G, we say that we are in the modular case. This case is much more complicated than
the non-modular case. As we will see in the sequel, many results available in the non-modular
case do not extend to the modular case. First, in the non-modular case, it is possible to
average with the action of G:

Definition 3.9. Assume that char(K) 1 |G|. The Reynolds operator of G is the map

Re: K[X] —  K[X]
1

AeG

The indice G will be omitted if it is clear. We recall the following properties of the
Reynolds operator:

Proposition 3.10. [25] Let R be the Reynolds operator of the finite matriz group G.
(i) R is K-linear.
(is) If f € K[X], then R(f) € K[X]C.
(i5i) If f € K[X], then R(f) = f. Therefore, R is a projection onto K[X]C.
(iv)  Every A in G, viewed as a linear isomorphism on K[X], verifies AoR=Ro A=R.

Proof. Points (i) and (iii) are obvious. For point (ii), we just have to see that if B € G,
A+ AB is a bijection on G, Therefore, R(f)? = ﬁ S ace fAB = R(f), and R(f) belongs
to K[X]©. For point (iv), A o R = R comes from the fact that the image of R is K[X]%, and
R o A =R can be proved with the same argument given for point (ii). O

The Reynolds operator allows us to compute a basis of K[X ]C(l;: all we have to do is to
apply it to all monomials of degree d, and perform a Gaussian elimination on a matrix to
obtain the basis. This leads to algorithm 3.11.

Algorithm 3.11: ComputeBasisNonModular algorithm

Input : The group G and the Reynolds Operator ® on G, an integer d, an ordering
=< and the list By of monomials of degree d, sorted by decreasing order for <.

Output: A basis of K[X]§

M :=Square matrix with of size (”Jrjfl) X (n+2171) corresponding to the monomials of

degree d of K[z1,...,z,], sorted by < with decreasing order;

Fill M with the rows corresponding to #(m) for all monomials m in Bg;

Compute a Gaussian-Reduction of M; //Row-Echelon Reduction with permutations of

rows and cancellation of zero-lines

L := list of polynomials corresponding to a row of M;

return L

The arithmetic complexity of algorithm 3.11 is better than those of algorithm 3.7, as shows
the following proposition.
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Proposition 3.12. To compute a basis of ]K[X]g' in the non-modular case with algo-

rithm 3.11, at most
—1\? — 1\
O<d|G|<n+d >+<n+d >>
n—1 n—1

arithmetic operations in K are needed.

Proof. The proof is very similar to the proof of proposition 3.10. Since we have to apply all

n+d—1
n

elements of |G| to a monomial, ®(m) can be computed within O (d\G]( “ )) operations

in K. We have to apply it (”:ﬁ;l) times and the other term in the formula is the cost of

computing the Gaussian elimination on M. O

In practice, we do not have to apply the Reynolds Operator to all monomials of degree d,
if we know in advance the dimension of K[X]$. This can be computed by Molien’s formula,
see next subsubsection.

Special case: G is a subgroup of the group of generalized permutation matrices.
The group of generalized permutation matrices is the subgroup of G£, (K), the matrices of
which only have one non-zero coefficient per row and column. We recall here the structure of
this group, and we start by the classical permutation matrix group.

Proposition 3.13. The symmetric group &, can be embedded in GL, (K).

Proof. To the permutation o we associate the matrix M, = (m; ;)i<i j<n, Where m; ; = 1 if
o(7) =i and 0 otherwise. O

In the sequel, we will always identify a permutation o € &,, with the matrix M, given by
the proof of proposition 3.13.

Proposition 3.14. The set of all matrices of GL,(K) having one and only one element
non equal to zero in each row and each column is a subgroup equal to the semidirect product
D, (K*) x &,,, where D,,(K*) is the subgroup of diagonal matrices in GL,(K).

Proof. 1s is clear that this set of matrices is the direct product of the set D, (K*) and the
set &, viewed as a set of matrices. Moreover, for each M, € &,, and each D € D, (K*),
MyDM;*' € D,(K*), so D,,(K*) is normal in the group generated by D,,(K*) and &,,. Finally,
D, (K*) N &,, = {I,} and the proposition is proved. O

In the sequel, the notation D, (K*) x &,, will always refer to the generalized permutations
matrix group. When G is a finite subgroup of D, (K*) x &,,, we do not need to use linear
algebra to compute invariants, since orbit sums of monomials can be used instead, which leads
only to combinatorial tools.

Definition — Proposition 3.15. [16] Let m be a monomial of degree d, we denote by Gy,
the stabilizer of m in G, namely the subgroup of G given by {A € G | mA = m}. Then we
choose a fized set of left coset representatives G/Gy, = {A1,..., Ay} and computes the orbit
Q= {mA | 1 <i <r}, which is independent of the choice of the set {A;}. Therefore the
invariant Tr& (m) = >1_, m#i is independent of the choice of {A;} and will be called the
orbit sum of m.
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Example 3.16. Let G be the cyclic matriz group of order 4 gemerated by A = ( 01 (1) )

on a field of characteristic different from 2 and K[X| = K[z, y]. Then :
— G, = {2} 50 G/G; = G and {z | A € G} = {x,y, —x, —y}: the orbit sum of x is
zero.
— Gy, = {12} and we can take G/Gys, = {I2, A}. The orbit sum of z3y is z3y — xy?.
Remark 3.17. In the non-modular case, the orbit sum is very close to the Reynolds Oper-
ator, since for each monomial m, R(m) = %Trgm (m).

We now give a special name to leading monomials of invariants.

Definition 3.18. Let < be an ordering on K[X]. For every finite group G C GL,(K), if m
is the leading monomial of an invariant in K[X|%, we call m an initial monomial.

Example 3.19. Let G be the alternate group A3 of order 3, acting on R = Q[z,y, z| with
graded lexicographical ordering such that x > y > z. The Reynolds operator is given by
Rf) = (f(x,y,2)+ fy, z,2) + f(z,2,9)) /3. Then u = 2%y + 3?2z + 222 € K[X]E is the orbit
sum of x2y, which is an initial monomial while y?z and x> are not.

Theorem 3.20. If G is a finite subgroup of D, (K*) x &, the orbit sums of all initial

monomials of degree d form a basis of K[X]$.

Proof. Let m be a monomial of some degree d. Then the orbit Q(m) = {m% | 1 < i < r}
consists in terms of the form &m/, with £ € K* and m’ a monomial of same degree d. Let
&m’ be one of these terms. Clearly, Q(m’) = {£tmAi}, so Trg | (m/) = §_1Tr8m (m). Now,

let f € K[X]$\{0} and m = LM<(f). Then Tr§ (m) # 0 and f — o 10§ (m)

<(Trg, (m))

belongs to K[X Lcl; and has a smaller leading monomial. The proof follows by induction. [

From theorem 3.20, we deduce the algorithm 3.21 that computes a basis of K[X ]G up to
some degree D.

Algorithm 3.21: ComputeBasisGeneralizedPermutation algorithm

Input : The group G C D, (K*) x &,,, an integer d, an ordering < and the list By of
monomials of degree d, sorted by decreasing order for <.
Output: A basis of K[X]|§
while By # () do
m :=First(By);
Compute €2,,, the orbit of m;
if Trgm (m) =D cq,, t # 0 then add Trg{m (m) to L;
Remove from By all monomials that appear in €,,, up to multiplication by a scalar;

return L

For every monomial m of degree d, at most dn|G| operations in K are needed to compute
Q. Therefore, the following theorem holds:
Theorem 3.22. A basis of each component K[X]dc' can be computed in O (dn|G|(d+Z_1)>
operations in K, using algorithm 3.21.
Remark 3.23. This approach by orbit sums is classical when G C &,, (see for example [100,

67]). In this case, the if condition in algorithm 3.21 is automatically satisfied and can be
omitted. Moreover, no arithmetic operations in K are needed.
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3.1.2 Molien’s Theorem

In this subsection, we introduce the Hilbert series of the algebra of invariants K[X]©,
which can be easily computed, at least in the non-modular case. A generalization of this
formula will be seen in subsection 3.1.4. It will be useful to give estimates on the dimension
dimg (K[X ]Ccl;) of the vector space of invariant polynomials of a given degree d, see 3.1.5.

Definition 3.24. The Hilbert Series (see definition 2.19) of the algebra A = K[X]|%, equal

+o0o
to HSgixje (2) = ZdimK(K[X]g')zd, is called the Molien Series of G.
d=0

For A € G, the characteristic polynomial of A given by det(I, —zA) is a polynomial with
a non-zero constant coefficient. Therefore, the formal series given by 1/ det(l,, — zA) is well
defined. The following result of Molien relates these series with the Molien series of G, on a
field of zero characteristic.

Theorem 3.25 (Molien). [100] Let G be a finite subgroup of GL,(K) with K a field of zero

characteristic. Then )

1
HSK[X}G(Z) = |G"Az€2; det(]n _ ZA)

We follow the proof of Sturmfels [100]. In order to prove theorem 3.25, we first give a
lemma.

Lemma 3.26. Let m > 1 and K be a field of zero characteristic. Let H be a finite subgroup
of GL,(K). We define the invariant subspace of K™ under H by

VH — (v e K™ | Av = v for all A in H}
Then, dimg (V) = ﬁ > e trace(4).

Proof. We introduce the average operator Pgr on K™, defined by P = ﬁ Yoaca A We

claim that this operator is a projection onto V. This concludes the proof since the rank of
a projection is equal to its trace. It is easy to see that Py is a projector: Again by the fact
that if B € H, A+ AB is a bijection on H, we see that Pg(K™) C VH, and its clear that
Pa(v) =v for allv e VH O

Proof of theorem 3.25. K[X]q is a K vector space of dimension (”ﬁ;l), and every A € G

induces a linear transformation on K[X],, denoted by A@. With this notation, K[X]§
becomes exactly the invariant subspace of K[X]; under the group H = {A@ | A € G}. We
are now interested in the values of trace(A@). The trace of an operator is invariant under
field extensions, therefore we might assume that K is algebraically closed. Let £41,...,04n

be the eigenvectors of A = A on K[X]1 ~ K", associated to the eigenvalues Aa1,..., A4 .
Then, {€a1,...,an} is a basis of K[X];, therefore

n
{E%l . 'Kﬁ’jn | (a1,...,a,) € N* and Zai = d}
i=1
is a basis of K[X]; ~ K[X]; ® --- ® K[X];. Moreover, these products of linear forms are
eigenvectors of A@ associated to the eigenvalues A% AY where Y a; = d. It follows
that
trace(A@) = Z Ady A

ai+-an=d
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Finally, using lemma 3.26 and the definition of the Molien Series of G, we obtain:
HSxixje(z) = Y dimg(K[X]§)2"

=1
= X PORERVIERPY A E
=

0| |AEG a1+an=d
1
HSyxe () = T D D T

al? ,an)GNn

1
- Z 1—2)\A1 - X (1—Z>\A,n)

1
HSK[X]G(Z) - @ fé det([n _ ZA)
O

It is possible to extend Molien’s theorem in several ways. First, observe that lemma 3.26
is still valid if K is a field of finite characteristic, which does not divide |H|, but only modulo
the characteristic of the field char(K). Consequently, the following theorem holds.

Theorem 3.27. Let G be a finite subgroup of GL,(K) with K a field of characteristic p =
char(K) such that p1|G|. Then

1

1
H P _
Sxixe(2) = g g% det(I, — zA)

€ Fp[l2]]

where HSK[X]G(Z)p is the reduction of HSgxja(z) modulo p through the morphism Z[[z]] —
Fp[[z]]-

Then, if char(K) is big enough, it is possible to know enough terms of HSg[xc (2) to know
it exactly.

Another possible extension is the following: assume that G is a finite subgroup of the
generalized permutations subgroup, with coefficients in a finite field K. Since K is a finite
field, the group K* is cyclic, therefore there is an embedding of K* into C*, which gives
an embedding of G into GL,(C). Denote by G the resulting group in GL,(C). Appying
algorithm 3.21 with G or G produces exactly the same result, up to the embedding K* < C*.
In particular, the Hilbert series of K[X]® and C[X]¢ are the same, and the Molien series of
K[X]® can be computed with Molien’s formula. Finally, we will see in subsection 3.1.4 a
generalization of this formula to isotypic components of K[X], K[X]® being one of these
components.

3.1.3 Structure of the algebra of invariants, and classical strategies

In this subsection, we recall classical results on the structure of the algebra of invariants
K[z1,...,2,]% = K[X]®. Then, we explain the classical strategies used to solve a system of
invariant equations.
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Structure of the Algebra of Invariants. We start by giving a famous theorem due to
Hilbert, which states that the ring of invariants is finitely generated.

Theorem 3.28. [55] Let G C GL,(K). Then, there exist a finite number of invariants
Rhi,...,h. such that K[X]® = K[hy,..., h.].

Proof. Hilbert’s proof was restricted to the case char(K) = 0. Emmy Noether proved this
result without assumption on the characteristic in [80]. O

Definition 3.29. Following notations of previous theorem, such a set of invariants
{h1,...,h.} is called a set of fundamental invariants.

It is interesting to give bounds on the degree we have to reach until we find a set of
generators. The bound |G| in characteristic zero has been proved by Noether and advances
on this topic have been made until recently and are summarized in [16]. We recall here the
most interesting to our purpose.

Theorem 3.30. Let K be a field, and G a non-trivial finite subgroup of GL,(K) with n > 1.
— [80, 47, 48] If char(K) does not divide |G|, then K[X]% is generated by invariants of
degree at most |G]|.
— [65, 103] If char(K) divides |G| and K is finite, then K[X] is generated by invariants
of degree at most n(|G| —1).

Usually, the minimal size r of a set of fundamental invariants can increase dramatically,
compared to n, the rank of K[X ]G. Kemper and Steel gave algorithms to find a minimal
set of fundamental invariants in [67]. As an example, we report in table 3.31 the size r of a
minimal set for the cyclic group C, C GL,(K) given by the standard representation of the
n-cycle (1,2,...,n), together with the maximal degree of a polynomial in such a set. These
invariants are computed with MAGMA, on two fields for each n: Fgs521 and a field F), with
p the smallest prime dividing n. Notice that the computation is much more difficult in the
modular case (the computation has been stopped after 24 hours for boxes with interrogation
marks).

K n 314|516 |78 9 10
Fasson Number of Invariants 417115120 |48 | 65| 119 | 166
Maximal degree of an invariant | 3 |4 | 5 | 6 | 7 | 8 9 10
Number of Invariants 418121123 7|7 ? ?
Fpin 3]5

Maximal degree of an invariant 716 |77 ? ?

Table 3.31 — Computation of Fundamental Invariants

A dimension argument shows that » > n. An interesting question is to characterize the
groups where r can be taken equal to n. We now recall some classical results about the well
known symmetric group and symmetric polynomials. The group G,, is viewed as a subgroup
of GL,(K) through the morphism in proposition 3.13.

Definition 3.32. A polynomial f € K[X] is said to be symmetric if it is invariant under the
symmetric group S,,.

The coefficients of the polynomial f(z) = (z+1) -+ (z4zy) = 2" +012" 1 +- - +0, with
respect to the new variable z are the so called elementary symmetric polynomials. From the
elementary symmetric polynomials, we can construct other symmetric polynomials by taking
polynomials in o1, ...,0,. This leads to the well known theorem.
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Theorem 3.33. (Gauss)Every symmetric polynomial in K[X] can be written uniquely as a
polynomial in the elementary symmetric polynomials o1,...,0p.

An obvious consequence of the above theorem is that K[z1,...,2,]%" = K[oy,...,0.)].
Therefore, in the case of the symmetric group, the minimal number of fundamental invariants
is n. At least in the non-modular case, this fact can be generalized to reflection groups.

Definition 3.34. A reflection s (sometimes called pseudo-reflection) of GL,(K) is a matriz
such that Ker(s — id) has codimension 1. A finite subgroup G of GL,(K) is said to be a
reflection group if it is generated by reflections.

Example 3.35. The symmetric group &, is a reflection group in any characteristic, since
it is generated by transpositions: if char(K) # 2, the element in GL,(K) associated to a
transposition is similar to a diagonal matriz with eigenvalues (1,...,1,—1), whereas it is
similar to a shear matriz if char(K) = 2. In both cases, those matrices are reflections.

The theorem below explains why reflection groups are interesting: the number of fundamental
invariants in the invariant algebra is as low as possible.

Theorem 3.36. Shephard-Todd, Chevalley, Serre,[92, 22, 90] Assume that char(K) does not
divide |G|. Then K[X]G is generated by only n fundamental invariants if and only if G is a
reflection group.

Remark 3.37. Notice that the only if part of previous theorem is actually verified even in
the modular case.

In this case, the polynomials Ay, ..., h, are algebraically independent, and the multiset
{deg(h;)} is unique. Moreover [[deg(h;) = |G| and there are > (deg(h;) — 1) reflections
in G. When dealing with a polynomial system of equations lying in K[X]% with G a reflection
group, it is very interesting to reformulate the equations as polynomials in the polynomial ring
K[hi,...,hy]. We have seen in chapter 2 that the complexity of solving a zero-dimensional
system of polynomial equations is related to the sum of the degrees of the polynomials and
the number of solutions of the system. The reformulation here leads to a system with the
same number of variables but both degrees of equations and number of solutions decrease.
Hence, using invariants in the framework of systems of equations individually invariant under
a reflection group is very interesting.

Example 3.38. Letnq,...,n; be positive integers such thatn = ni1+- - -+ng. Then, the direct
product &, X -+ x &y, , which can be viewed as a subgroup of &, C GL,(K), is a reflection
group with generators given by the symmetric polynomials in each set of n; variables.

These subgroups are actually the only reflection subgroups of &,,. In subsection 4.3.3, we
will see other reflection groups, which are generalized permutations subgroups. We continue
this subsection by describing primary and secondary invariants of an invariant algebra.

Definition 3.39. Let G be a finite subgroup of GL,(K). A set of n algebraically independent
polynomials in K[X] is called a set of primary invariants.

Such a set exists by Noether Normalization lemma (theorem 2.3). Denote by 61, ...,0, a
set of primary invariants. A dimension argument proves that K[X ]G is a finitely generated
module over the algebra K[fy,...,6,]. It is still an open question to give a necessary and
sufficient condition on G for K[X]% to be a free module over K[fy,...,6,] in the modular
case, but the answer is much simpler in the non-modular case and is given in theorem 3.41.



3.1. INVARIANT THEORY 73

Theorem 3.40. If char(K) does not divide |G|, K[X]® is a Cohen-Macaulay algebra (see
definition 2.9).

Proof. We refer to [57] for the proof. The main tool is the Reynolds Operator R (definition 3.9)
O

From the Cohen-Macaulayness of the ring of invariants in the non-modular case, one can
prove that the following decomposition holds.

Theorem 3.41. [100, 16] Assume that char(K) does not divide |G|, and let 0y, ..., 0, be a set
of primary invariants of K[X]®. Then, there exists a set of secondary invariants {n,...,n:}
such that K[X|¢ = ®l_niK[01,...,0].

Corollary 3.42. In the case of Cohen-Macaulayness of the ring of invariants, the Hilbert
Series of K[X]C is given by

Z§':0 ,deg(n;)
[Tis (1 — zdes(®))

HS]K[X]G (Z) =

with (6;) and (n;) the sets of primary and secondary invariants associated to K[X]©.

Many authors gave algorithms to compute such a set of secondary invariants, see for
example [67]. However, the number of secondary invariants can be very huge (it is greather
than or equal to the minimal number of fundamental invariants). Hence, in the sequel we will
try to avoid such a computation.

Classical approach to solve Invariant Systems. We now give classical algorithms to
reformulate a given system in terms of invariants. We also explain the underlying geomet-
ric view. We introduce the definition and the associated notions of Grobner basis in some
invariant ring. This kind of Grébner basis is the classical object that we want to compute
while solving a polynomial system with symmetries, see [100, 27, 25]. We recall here the usual
strategy presented by these authors. Let G C GL,(K) be a finite group. We denote by A(K"™)
the affine space associated to K".

Definition — Proposition 3.43. From the action of G on K", we deduce an action on the
affine space A(K™). The orbit of a point a = (a1,...,a,) € A(K") is the set G.a={g.a| g€
G} and is called the G-orbit of a. The set of all G-orbits in A(K™) is denoted by A(K")/G
and is called the orbit space of G.

Definition 3.44. Let F = {f1,..., fs} be a set of polynomials. If the variety V(Z) associated
to the ideal T = (F) is stable under the action of G on A(K™), we define the orbit variety
V(Z)/G C A(K")/G, whose points are the G-orbits of zeroes of I.

A sufficient condition for V to be a G-stable variety is that all polynomials fi,..., fs
belong to K[X]®. Intuitively the idea is to compute a Grébner basis associated with the
relative orbit variety V(Z)/G instead of a Grébner basis associated to V(Z) itself. We now
explain the classical way to compute a Grobner basis associated to V(Z)/G. We have seen
in the previous subsection that Hilbert’s theorem states that K[X ]G is finitely generated.
According to this point of view, we can introduce the following definition.
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Definition 3.45. Let hy,...,h, be a set of fundamental invariants of K[X]%. Let T be an
ideal generated by G-invariant polynomials. We introduce r new variables Hy, ..., H,, each
H; corresponding to a polynomial h;, and we consider in the ring K[z1,...,xn, H1,..., Hy],
the following ideal:

T =T+ (H —hi(x1,...,20), ..., Hy — hp(z1,. .., 2,))

1111

ordering =g is said to be an invariant Grobner basis of Z in the invariant ring K[hq, ..., hy].

Proposition 3.46. The map

Py : V(Z) - V((Gxn,,... 1T, 2H)))
a=(ay,...,an) (hi(a),...,h(a))

is onto. Moreover, given a point a = (a1,...,a,) € V(I), the set P, ' (Pn(a)) is evactly G.a.

The global usual strategy to solve systems of polynomials lying in K[X]% proceeds in
two steps [100]. Fist, “preprocess” the group G with algorithm 3.47, and then compute a
relative orbite variety with algorithm 3.48. Proposition 3.46 shows that the variety V(Z) can
be easily obtained with the relative orbite variety V(Z)/G. In practice, it is possible to use
the Grobner basis Gy computed by Preprocessing algorithm 3.47: the points in the orbit of
a = (ay,...,a,) can be computed by substituting the coordinates of h = (hi(a),...,hr(a))
in the variables Hq,..., H, in Gy.

Algorithm 3.47: Preprocessing algorithm

Input : G, a finite subgroup of GL,(K).

Output: A Grébner basis.

Compute a set of fundamental invariants hq, ..., h, of G;
Compute Gy, a Grobner basis of the ideal

(Hy — hi(x1, ..., zpn)y e ooy Hy — hp(21, ..y 2p))

with respect to the block graded reverse lexicographic ordering such that
Ty > = xp = Hy == Hp
return G

Algorithm 3.48: ComputeRelativeOrbiteVariety algorithm

Input : Polynomials F = f1,..., fs invariant under G, a finite subgroup of G£, (K).
Output: The relative orbite variety V((F))/G

Go := the Grobner basis obtained by preprocessing of G with algorithm 3.47;

G1 := the Grobner basis of Gyg U F with respect to the block graded reverse
lexicographic ordering such that x; > --- > x, = Hy > --- = H,;

return Gy NK[Hy,..., H/]

In practice, to compute the Grobner basis Gy in algorithm 3.47, we would choose a weighted
monomial, blockwise-lexicographical ordering in K[z1,...,x,, Hi1, ..., H;], with weights 1 on
x; and deg(h;) on H;, in order to speed up the computations. However, we have seen in the
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previous subsection that the size of a minimal set of fundamental invariants could be huge,
so both detailed steps could be difficult.

In subsection 4.3, we propose an approach to overcome the difficulties explained above, in
order to compute the relative orbit variety.

3.1.4 Representation Theory of finite groups

In this subsection, we briefly recall classical results in representation theory. We will
see that the action of G C GL,(K) of groups induces for each d a decomposition of K[X]4
into subvector spaces K[X], 4 called the isotypic components of K[X]4, associated to the
characters of irreducible representations of G. In order to derive the complexity of variants of
the Matrix-F5 algorithm in the next part (sections 4.2 and 4.3), we will be mainly interested
in estimates of the dimensions of K[X], 4, when G is an abelian group or when x is the
trivial character (in this case K[X], 4 is equal to K[X ]g) The theory of representations is

the theoretical framework that encompasses both cases.

Except at the very end of the subsection, the field K is the field of complex numbers C,
and G denotes a finite group. The complex conjugate of an element u will be denoted w.

Irreducible representations. We start by recalling the classical definitions of representa-
tions and irreducible representations.

Definition 3.49. A linear representation of G is a pair (V,p), where V # {0} is a K-vector
space of finite dimension n > 1 and p is a group homomorphism G — GL(V'). The integer
n is called the degree of the representation.

With a slight abuse of language, we say that V is a representation of G. In the previous
definition, V' is assumed to be finite dimensional. However, this is not a huge restriction, since
irreducible representations of finite groups are finite dimensional, as we will see later.

Example 3.50. As an example in this subsection, we will study the representations of the
abstract group Ss, which is the smallest non-abelian group. The usual embedding of &3 in
GL3(C) given by o — M, (see proposition 3.13) is a representation of degree 3, which will
be denoted p3. The signature o — €(o) € {£1} or the trivial representation o — 1 are two
representations of degree 1.

Proposition — Definition 3.51. Let p : G — GL(V) be a representation, and W be a
subvector space of V.. We say that W is invariant under G if p(g)(W) C W for all g € G.
Then, the map

e G — GL(W)
g — pl@w
gives a representation of G in GL(W'). We say that this is a sub-representation of V.

Two representations (p, V') and (p, V') of G are said to be isomorphic, if there exists a
linear isomorphism 7 : V' — V' such that 7o p(g) = p/(g) o7 forall gin G. f W C V is a
subrepresentation of G, one can ask if we can find a vector space W’ such that W W' =V
and W' is a also a subrepresentation of G. The answer is yes, according to the following
theorem.

Theorem 3.52 (Maschke). Let p : G — GL(V) be a representation, and W be an G-
invariant subvector space of V.. Then, there exists W' C 'V such that W @ W' =V and W' is
also G-invariant.
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Proof. See [91], theorem 1. O

In the previous theorem, we say that the representation V is the direct sum of the repre-
sentations W and W', which leads to the following definition:

Definition 3.53. If a representation V of G cannot be decomposed in the same way as in
theorem 3.52, except with the trivial decomposition V.= VU{0}, we say that the representation
is irreducible. Otherwise, the representation is reducible.

Example 3.54 (Continuation of example 3.50). The two representations of &3 of degree 1
given in the previous example are obviously irreducible. The representation ps is not, since
the vector subspace W = Span(*(1 1 1)) is invariant under all matrices My. The orthogonal
complement W+ of W is the (unique in this case) complement given by theorem 3.52. The
representation o — M|y 1 of degree 2 will be denoted ps.

Conversely, from any representations Vi,...,V; (irreducible or not), it is possible to con-
struct the direct sum of the representations, which is defined by V3 @ --- ® V. The following
theorem follows easily by induction from Maschke’s theorem.

Theorem 3.55. [91] Every representation is a direct sum of irreducible representations.

The following lemma is of main interest in the study of irreducible representations.
Proposition 3.56 (Schur’s lemma). Let (p, V) and (p', V') be two irreducible representations
of G. Let f : V — V' be a linear map such that p'(g) o f = fop(g) for all g € G. Then

1. If p and p’ are not isomorphic, then f = 0.
2. If (p, V) = (p/, V'), then f is a uniform scaling.

Characters of a representation Although a group might have infinitely many represen-
tations, we will see that only a finite number of non-isomorphic irreducible representations
remains. Moreover, they can be characterized by their characters!.

Definition 3.57. Let (p, V'), be a representation of G. Its character is defined by:

Xp: G — C
g trace(p(g))
The character of a representation has the following properties:

Proposition 3.58. [91] If x is the character of a representation p of G of degree n, then:
—x(1) =
— forall g € G, x(971) = x(g9) (the complex conjugate of x(g)),
— for all g.h € G, x(hgh™") = x(9).

The third point shows that the character takes the same value on a conjugacy class of G.
It is straightforward to see that the character of a direct sum of representations is the sum
of the characters. For any pair (¢, ¢) of complex functions, the inner product of ¢ and ¢ is
defined by:

(Blp) = P(g
|G| gez;

Using Schur’s lemma (proposition 3.56), we successively prove the items of the following
theorem.

1. This is actually why the word “character” is used!
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Theorem 3.59. [91] Let W be an irreducible representation of G with character x.
— x is of norm 1: (x|x) =1,
— if W' is an other irreducible representation of G, with character X', non-isomorphic
to W, then x and X' are orthogonal: (x|x') =0,
— if V' is a representation of G, with character ¢ and V = EBf:ﬂ/VZ- is a decomposition
of V into a direct sum of irreducible representations, the number of W; isomorphic to
W is given by (x|¢).

Example 3.60. The characters of the representations 1,¢€,pa and ps of &3 are reported in
table 3.61. Since a character x takes the same value on a conjugacy class, we only indicate
the value on the three conjugacy class of &3 given by {id}, the 3-cycles {(1 2 3),(1 3 2)} and
the transpositions {(1 2),(1 3),(2 3)}.

representation p | id | 3-cycle | transposition | norm \/W
1 1 1 1 1
€ 1 1 -1 1
P2 2 -1 0 1
P3 3 0 1 V2

Table 3.61 — Characters of representations of &3

It follows from the previous theorem, that in a decomposition of a representation V into a
direct sum of irreducible representations, the number of representations isomorphic to a given
irreducible representation does not depend on the chosen decomposition. It follows that two
representations are isomorphic if and only if they have same character, and a representation V'
of character ¢ is irreducible if and only if (¢|p) = 1.

With the previous theorem, we see in particular that the characters of irreducible rep-
resentations of a groupe G form an orthogonal sequence for the inner product. There is a
more precise result: let C(G) denotes the C-vector space of central functions from G to C,
namely the functions f : G — C satisfying f(ghg™!) = f(g) for all g, h in G. We have seen
in proposition 3.58 that characters are central functions. More precisely:

Theorem 3.62. The characters of irreducible representations of G form an orthogonal basis
of the C-vector space C(G).

Corollary 3.63. The number of irreducible representations (up to isomorphism) of a group G
s equal to the number of conjugacy classes of G.

Example 3.64. The group &3 has 3 irreducible representations, 1,€ and pa. The represen-
tation ps is the direct sum of 1 and ps.

It follows from the previous corollary that the number of irreducible representations of G
is less than or equal to the cardinality of G, and that equality holds if and only if G is abelian.

We will that in this case, the set of irreducible representations forms a group isomorphic to
G.



78 CHAPTER 3. INVARIANT THEORY AND MONOMIAL ALGEBRAS

Canonical decomposition of a representation. We now present a very important prop-
erty for our purpose. We have seen that a representation can be decomposed into a direct sum
of irreducible representations. However, this decomposition is neither unique, nor canonical.

We will define a less precise decomposition, but this one will be unique. Let W7y,..., Wy be
the irreducible representations of G (up to isomorphism). Let V = Eszl U; be a decomposi-
tion of a given representation V' into irreducible representations. For each i € {1,...,k}, let

Vi be the direct sum of each U; isomorphic to W;. Clearly, V = V; @ --- @ Vj,. This is the
canonical decomposition we have in mind:

Theorem 3.65. [91] Let V' be a representation of G, we use the previous notations for the
decompositions of V.. Then
— the decomposition V =V, &--- BV}, does not depend on the decomposition V = @leUi
iniatially chosen.
— the projection p; from V to V; associated to this decomposition is

i I
Pi = T~ Xz‘(g)P
|G 2 J

9€G

where n; (resp. x;) is the degree (resp. the character) of the (unique up to isomor-
phism) irreducible representation, that appears in V;.

The components V; that appear in the previous theorem are called the isotypic components
of V.

Example 3.66. p3 = 1 @ p2 is the decomposition of p3 into isotypic components. We will
see more complicated examples in the sequel.

The case of abelian groups. We assume here that G is abelian, and we denote by G
the set of characters of G. We have already seen that |G| = |G| since |G| is equal to the

number of conjugacy classes of G. We will see that G has a group structure, and that G is
isomorphic to G (but this isomorphism is not canonical).

Lemma 3.67. G has a structure of group.

Proof. Since all irreducible representations of G have degree 1, they are morphisms from G
to C*, that can be identified with their characters. Given two such representations p; and pa,
the map

G — Cc*
g +— pi(g)p2(9)

is also a linear representation of G of degree 1, and therefore a character, denoted by pipo.
We construct similarly the inverse p~ ! of a character. It is obvious that with these definitions
G is a group, with identity given by the trivial character g — 1, simply denoted by 1. O

The group G is often called the dual of G. We are now interested in products of groups.
Lemma 3.68. If G and Gy are two abelian groups, then G1/><\G2 1s 1somorphic to (A-}l X ég.
Proof. Let p1 and pa be irreducible representations of G; and G». We define:

pP1 & pa: (Gl,Gg) — C*
(91,92) — p1(g1)p2(92)
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Straightforwardly, the map:

—

éle}g: — G1 X Gg
(p1, p2) — P1 QP2

is a group morphism. Moreover, this morphism is injective since p; ® p2 = 1 if and only if
p1 =1 and ps = 1. Since the two groups G1 x Gg and G X Go have same cardinality, it is
also an isomorphism. O

Notice that it is possible to generalize the construction p; ® ps for product of groups that
are not necessary abelian. The result is the tensor product of two representations, see [91,
theorem 10] for details and results. We now consider the case of a cyclic group.

Lemma 3.69. Let ¢ > 1. Then Z//E\Z is isomorphic to Z/lZ.

2/l where 12 = —1.

Proof. Let £ denotes a primitive ¢-root of 1 in C, for example £ = e
Then the morphisms

u o LI
form a set of ¢ distinct representations of Z/¢Z. There are well defined since £V = ¢V if v and

—

v" are two integers equal modulo ¢. Hence, we have described all elements of Z/¢Z, which is
clearly generated by p;. O

Putting all the previous lemmas together, we obtain the following result:

Theorem 3.70. Let G be an abelian group, and G be the set of characters of G. Then G
has a group structure, and G is isomorphic to G.

Proof. From lemma 3.67, G has a group structure. It follows from the structure of abelian
groups that G is isomorphic to a product Z/p1Z X - - - X Z/peZ (we can assume that p1|-- - |p,

but we do not require this assumption here). By lemma 3.69, Z//\pZZ is isomorphic to Z/p,Z
for each i € {1,...,¢}. Applying (¢ — 1) times lemma 3.68 ends the proof. O

We have said that this isomorphism is not canonical. Indeed, the isomorphism between a
cyclic group and its characters in lemma 3.69 is not. Contrariwise, there exists a canonical

isomorphism between an abelian group G and its bidual G.

Grading on C[X] given by a representation. We now fix a finite matrix group G C
GL,(C), and see C[X] as a representation of G. We will see that the action of G on C[X]
induces a decomposition of C[X], indexed by the irreducible representations of G. This
decomposition will be a grading when G is abelian.

Notations 3.71. In this paragraph, we denote by X(G) the set of irreducible characters of
G. When G is abelian, this set is denoted by G, as previously.

If f is a homogeneous polynomial of degree d and A € G, f* is also homogeneous of degree
d. Therefore, G acts also on C[X]y, and C[X], can be seen as a representation of G. For
X € X(G), we denote by C[X]q, the isotypic component associated to x. The vector space
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C[X]41 is no more than C[X]§ 4+ the set of homogeneous polynomials of degree d invariant
under G. The usual decomposition of C[X] into graded components extends to:

+o0 +o0
=P P CXlixn= P PciXla= P cIx],

d=0 xeX(G) x€X(G) d=0 XEX(G)
where C[X], = @125 C[X]4, is the isotypic component of C[X] associated to x.

Example 3.72. The abstract group S3 acts on C[X] = Clz1, x2, x3] through the representa-
tion p3 associating to o the matrix M, = (m;;)i<ij<3 defined by m;; = 1 if o(j) = i and
0 otherwise. For example, C[X];,C[X]2 and C[X|3 are representations of Sz of degrees 3,6
and 10.

One can ask is Molien’s formula given in theorem 3.25 can be generalized to C[X],. This
is the case, since the following theorem holds:

Theorem 3.73 (Generalization of Molien’s formula). [94] Let G be a finite subgroup of
GL,(C), and x be an irreducible character of G. Then

Hdcpx, ( |Gy Z det( 1 —ZA

where ny is the degree of the irreducible character x.

Proof. The proof can be found for example in [94]. The idea of the proof is very similar to
the proof of Molien’s formula given in theorem 3.25, but uses the projection on C[X], instead
of the projection on C[X]; = C[X]® given by the Reynolds Operator. This projection was
explicitly given in theorem 3.65. Notice that in the case x = 1, this projection is exactly the
Reynolds Operator. O

Example 3.74. The Molien series associated to the characters of the irreducible represen-
tations 1,e and pa of &3 can be easily computed (we use the same name for an irreducible
representation and its character). We also indicate the Hilbert series of the whole ring C[X]
which is the sum of the Hilbert series associated to irreducible characters.

HS¢ix), (2) = % _(1jz)3 + 1Ez3 + (1fz)?1fz2):| = 17z722+1z4+z57z6

= 1424222 432° + 427 +52° + 720 + 827 +102° + 1227 + O(2"7)
HScix) (2) = % _(1jz)3 + 1323 - (17z)?17z2)} = 17z722+zj4+z57z6

= 23_—1— 24 4225 + 320 + 427 4+ 528 + 72° 4+ O(219)
HS(C[X}pg(Z) = % _(1—22)3 - 1—2z3 = 1—2z+z2—2§3+2z4—z5

= 22 +42%2 +623 +102% + 1425 + 1825 4 2427 + 3028 + 362° + O(219)
HScix)(2) = ﬁ = HScx), (2) + HS¢ix), (2) + HScx1,, (2)

= 14324622+ 1023 + 152% + 212° + 2826 + 3627 + 4528 + 5529 + O(210)

Projections onto isotypic components can be used to compute explicitely bases (as C-
vector space) of isotypic components, leading to a variant of algorithm 3.11 which was able
to compute a basis of K[X]¢ = K[X]41 for a given d in the non-modular case, using the
Reynolds Operator.
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Example 3.75. Table 3.76 gives bases of isotypic components of Clx1,x2,x3]q under the
action of S3 (given by the representation ps). The second column describes the decomposition
of Clzy1,z2,x3]q as a direct sum of irreducible components (isomorphic to 1, € or pa). The
last column describes a triangular basis of each isotypic component. Monomials are sorted
by grevlex ordering with x1 > xo > x3 and two polynomials in the basis have distinct leading
monomial. Since pa has degree 2, for each pa appearing in the decomposition of Clx1,x2, x3]4
in irreducible representations, there are two polynomials in the basis of Clx1, x2,x3],,.4. These
dimensions are coherent with the first terms of the partial fraction expansions of the series
HSC[X]X given in the previous example.

3.1.5 Estimates of Dimensions of Isotypic Components

In this subsection, we use previous generalization of Molien’s formula to give estimates of
the numbers dim(C[X], 4) where G is a finite matrix group and x is an irreducible character
of G. These estimates will be useful in chapter 4, in order to study the complexity of variants
of the Fs-algorithm 1.44. Since we will be interested in the ratios between dim(C[X], 4)
and dim(C[X],) and also between ®2_, dim(C[X],4) and ®2_, dim(C[X],), the following
definition will be useful:

Definition 3.77. We define the density of C[X], 4 in C[X|q and the density of C[X], in
C[X] by

. o
A(CX]ya) = CW and  AC[X],) = lim %;o d;?l(éc(c[fixj)
d=0 411

Notice that it is yet unclear that the limit is well-defined. This will be proved below.

We are particularly interested in the cases where A(C[X], 4) has a limit when d grows to
infinity. The following theorem is the most important of this subsection.

Theorem 3.78. Assume that the matriz group G contains no uniform scalings except I,,.
Then the density A(C[X]y,q) has the limit ni/]G| when d grows up to infinity, where n, is
the degree of x.

Proof. The idea is to use the generalized Molien’s formula given in theorem 3.73. The Hilbert
series of C[X], can be written:

H3cpx, ( |G| Z det( I —zA

Since we assumed that there are no uniform scalings in G except I,,, the previous meromorphic
series has 1 as unique pole of order n, the other poles u are also n-roots of 1, since they satisfies
ulGl — 1 = 0, but have smaller orders. We are interested in an asymptotic estimation of the
coefficient in z¢ in HSC[X]X- Following the ideas of [46, Theorem 4.9, p.256], the fraction
expansion of HS¢[x], can be written as

HSc(x), (2) =

C’LL’/'
G o *ZZ u—zy

peEP r= 0
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Decomposition of C[X]4 Bases of C[X]q,
0 1 1 1
T+ x2 + 23

1 13D pa 1 —
P2 ! 3

To — T3
o3+ 2%+ 23

T1X2 + X1T3 + T2x3

3 —x
2 2x1®2 X py "3
T1T — T2T3
P2 9 9
T1T3 — TT3
3+ a3+ a3

1 | 2329 + 2123 + 2323 + 2323 + 1125 + 2223

L1L2T3

€ :r:%xg — xlx% — x%:ps + 9:%1:3 + xla:g — xgxg

3 3
Ty — T3

3 3X1@6@3Xp2
l’%l’g—ﬂ?ll‘%

l’ll‘% — 1‘21‘%
P2 3 3
Ty — T3
l’%l’g - 1’21’%
2 2
:U‘l1 + ;17‘2l + x‘gl

x‘;’xg + xlxg) + :U:{’xg + :L‘g’xg + :clxg + :ngg

a3 + 2323 + 2323

x%xgxg + .%'11‘%.%’3 + a:leac%

€ x?xg — :clxg — :L':ls.Tg + x%xg + xlxg — xgxg

v} — 3
1’:13132 — l’ll‘%
4 4X1@6@5Xp2 x%x%—x%x%
T3 — ﬂ?gl‘%
$4 — ﬂ';4
2 3
P2 3 3

T1T3 — T2T3
2 _ 2
T1X2T3 T1T2T3

.1711‘%1‘3 — 1‘11‘21%

1'31'3 — :leg

2222 — z3a?

Table 3.76 — Bases of isotypic components of C|x1, 2, x3]4 under the action of S3 for d < 4
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where P is the set of poles of HS¢(xj, and ¢y, 7 € C. Now let u be a complex of modulus 1
and r > 1. Then

1 ar d+r—1 a1
d — d — —r+d — d'r—l
= =g =7 ( r—1 >dﬁ+oo o T

Furthemore, x(I,) = n,, since the representation of I, in the irreducible representation
associated to x is the identity matrix of size n, x n, (see proposition 3.58). Hence, the term
of main order of [2¢] HSc(x), (2) is given by

IG[(1—2)" ~ |G|(n—1)!

2 2 gn—1
d] n nxd

[z +o(d" ™).

Since the Hilbert series of the whole ring C[X] is simply HS¢(x)(2) = 1/(1 — 2)", it follows

that
_ dim(C[X)a) 2 HScix, 4 (2) n;
ACXId) = "5 ey) — B9 HScrx) (2) FenalreT

O]

Example 3.79. The representations 1 and € of &3 have degree 1, and ps degree 2. Since there
are no uniform scalings in the representation of &3 (given by ps) acting on C[X|, theorem 3.78
holds. Figure 3.80 presents the 50 first terms of HSC[X]X for x € {1,¢,p2}. We see that
- dime(C[X]yq) . dimg(C[X]cq)
lim ———————"> = lim

1
— o =~ ~(.167 d
d——+oo dim(c((C[X d d—+o00 dim(C((C[X]d) 6 "

dime(C[X],,.q0) 22

~ 0.667
d—1>1—r|—noo dimc (C[X]y) 6 ’
according to theorem 3.78.
! —— X1
—— Xe
09| —— Xpo

0.8 3

W'WQ"O".“Q“.WD
\
0.6 1 |

dimg(Clz1,22,23]y,4)
dimc (Cle1,22,23]a)

Figure 3.80 — Ratios between dimc(Clz1, x2, 23]y,q) and dimc(Clzy, x2, 23]q) for &3
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Remark 3.81. The previous theorem does not hold if uniform scalings other than I, belong
to G: for example, if n =2 and G is the group of order 4 generated by the diagonal matrices
having diagonal coefficients in {£1}, C[X]1 = Clz?,y?], and HS¢x], (2) = (1 — 2%)72 has all
its odd coefficients equal to zero. But for even d, dim(C[X]q 4) is roughly half of dim(C[X]4),
so in average we recover the factor 1/4 = 1/|G|. This idea leads to proposition 3.83.

It is very interesting to see that the previous theorem allows us to recover a famous result
of representation theory.

Remark 3.82. Since C[X]y = ®yex(q)ClX]y,a, we can derive from the previous theorem
that -, ex(c) n} = |G|, at least when there are no uniform scalings in G other than I,,. This
result can be extended without hypothesis on G, since it depends only on the structure of the
underlying abstract group.

We now prove that the density of C[X], in definition 3.77 is well-defined, and give its
value.

Proposition 3.83. With n, the degree of the character x, the following relation holds.

o Yaeedim(CX]a) _ n}
ACEX) = plim Y dim(C[X]s) |G

Proof. From G, we construct the group GC GLy+1(C), the elements of which are the matrices

(1)

for all A € G. Due to the coefficient 1 in the bottom right corner of each matrix of é, there
are no uniform scalings in G except I,,+1. Moreover, G acts on the polynomial ring C[X, h] =

Clx1,...,Tn, h], where h is a new indeterminate. By applying theorem 3.78, we obtain that
A(C[X, h]y,p) has the limit n% /|G| when D grows up to infinity. For m = X =[]z} a
monomial in z1,...,x, and g > 0, it follows by definition of G that (mh)4 = mAhP for

all A € G. Thus, the actions of G and G on C[X] and C[X,h] are compatible with the
isomorphism between G and G. Hence, C[X, k], p ~ &% ,C[X], 4. Therefore,

Yo dim(C[X]ya)  dim(C[X,hlyp) n?
P dm(CX)g)  dmChlp) S n) 522 g

and the proposition is proved.

O]

We now give applications to particular cases, that will be used later to explain the com-
plexity of variants of the Matrix-F5 algorithm 1.44.

Corollary 3.84. Theorem 3.78 and proposition 3.83 apply in particular in the case where
G is abelian. In this case, X(G) = G ~ G and all n, are equal to 1. Therefore, when
no uniform scalings other than I, lie in G, the dimensions of C[X], q tend to be equally
distributed when d grows to infinity. This is also the case without hypothesis on G for the
dimensions of @c?zo(c[X]x,d- In the same way, for any group G, the trivial character 1 has
degree 1. Therefore, the density A(C[X]1.4) = A(C[X]F) has the limit 1/|G| when d grows to
infinity if there are no uniform scalings in G, and A(C[X]1) = A(C[X]®) = 1/|G| without
hypothesis on G.
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All the results presented in this subsection have been stated with K = C. However,
representations and characters can be defined on any field. In section 4.2, we will need the
results on the estimates of dimensions of the isotypic components on any field, assuming that
G is a group of diagonal matrices. For these groups, the linear maps of projections on an
isotypic component (see theorem 3.65) have their eigenvectors given by monomials (this will
be proved in section 4.2). The associated eigenvalues are either roots of 1 or zero. Therefore,
considering a lifting of the group into GL£,,(C) allows us to extend the generalization of Molien’s
formula 3.73 and the estimates of dimensions of isotypic components 3.78 and proposition 3.83
to the case of diagonal matrix groups.

For other groups, it is not easy to extend the results of linear representations on other
fields than C, see [91].

3.2 Monomial Algebras

In this section, we are interested in describing some properties of subalgebras generated by
monomials, which is the algebraic context of chapter 5. We will allow here subalgebras A of
the algebra of Laurent polynomials K[mfl, ..., 1] instead of K[x1, ..., z,], but with restric-
tive conditions: the monomials lying in the subalgebra form a semigroup with no non-zero

invertible elements. Therefore, the algebra is closer to K[z1,...,z,] than to K[xfl, U

Affine semigroups. The basic underlying algebraic objects corresponding to monomials in

classical polynomial rings are affine semigroups. We always consider them embedded in Z™.
We refer the reader to [78, 26, 49, 13] for a more detailed presentation of this background

material. First, we describe the main notations that will be used throughout chapter 5.

Definition 3.85. An affine semigroup S is a finitely-generated additive subsemigroup of
7" for some n € N containing 0 € Z"™ and no nonzero invertible element: for all s,s’ €

S\{0},s+s" #0.

Depending on the articles on this topic, the condition “S contains no invertible element”
is not always included in the definition of an affine semigroup. However, this is a necessary
condition for the algorithms that we will see in chapter 5.

Definition 3.86. Let gp(S) denote the smallest subgroup of Z™ containing S. Then S is
called normal if S = {s € gp(5) | e € N,c-s € S}.

We always assume implicitly that gp(S) C Z" is a full rank lattice (this does not lose any
generality since this case can be reached by embedding S in a lower dimensional Z"/).

An important feature of normal affine semigroups is that they can be represented by the
intersection of Z™ with a pointed rational polyhedral cone (also called strongly convexr rational
polyhedral cone [81, Sec 1.1]).

Definition 3.87. A cone 4 C R" is a convex subset of R"™ stable by multiplication by Ry,
the set of non-negative real numbers. The dimension dim (%) of a cone € is the dimension of
the linear subspace spanned by €. A cone is called pointed if it does not contain any line. A
pointed cone of dimension 1 is called a ray. A ray is called rational if it contains a point in
Z"™. A rational polyhedral cone is the convex hull of a finite number of rational rays. Pointed
rational polyhedral cones will be abbreviated PRPC.

We shall use PRPCs in Section 5.2 to define admissible monomial orderings in semigroup
algebras (see definition 3.93.)
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Proposition — Definition 3.88. Any affine semigroup has a unique minimal set of gener-
ators, called the Hilbert basis of S and denoted by Hilb(S).

Proof. [78, Prop. 7.15] Since S can be represented by the intersection of Z" with a PRPC ¥,
we assume that S = € NZ". Then, S can be partially ordered by a < b if b—a € S, and we
denote by Hilb(.S) a subset of generators of S, that are minimal in S\{0} with respect to this
partial order. Since % is pointed, there exists w € Z" such that w.a > 0 for all a € S\{0}.
By induction on the quantity w.a, we show that every a € S is a N-linear combination of
elements in Hilb(S). But these elements cannot be written in a nontrivial way as N-linear
combination of elements of S, therefore Hilb(.S) is a unique minimal set of generators. ]

Also, the term “Hilbert basis” is sometimes reserved for affine semigroups of the form
¢ NZ" where ¢ is a rational cone (see e.g. the discussion after [78, Prop. 7.15]). We now
recall the definition of simplicial affine semigroups, which will play a crucial role in chapter 5,
in order to design a variant of the FGLM algorithm 1.52 for solving systems of polynomials
in monomial algebras.

Definition 3.89. A PRPC € inR"™ is said to be simplicial if it is the convex hull of n linearly
independent rays.

Remark 3.90. Ifn =2, all PRPCs are simplicial. This is not the case if n > 3: for instance
the convex hull of the rays generated by (1,0,0), (0,1,0), (0,0,1) and (1,1,—1) is a PRPC
which is not simplicial.

Definition 3.91. An affine semigroup S C Z™ is called simplicial if the convex hull of R4S
1s a simplicial PRPC.

Example 3.92. N C Z" is simplicial, while the affine semigroup generated by (1,0,0),
(0,1,0), (0,0,1) and (1,1,—1) in Z3 is not.

Semigroup algebras. To a semi-group, we can associate a monomial algebra, which is the
subject of the following definition.

Definition 3.93. Let K be a field, and S be a semi-group. We denote by K[S] the associated
semigroup algebra of finite formal sums ) o ¢ as X® where as € K. An element X® € K[S] is
called a monomial.

Since S is contained in Z", the semi-group algebra K[S] is a subalgebra of the algebra
of Laurent polynomials K[z7',... '], Note that K[N"] is the classical polynomial ring
K[X] = Klz1,...,2,]. Semigroup algebras are integral domains [78, Thm. 7.4] of Krull
dimension n and play an important role in toric geometry: they are precisely the coordinate
rings of affine toric varieties. The normality of the semigroup S is an important property,

which has the following consequence.
Theorem 3.94 (Hochster). If S is normal, then K[S] is a Cohen-Macaulay algebra.

Proof. The proof is long and technical, see [56]. O

We now contruct from a finite set of points in Z" two semigroups and the associated
monomial algebras.
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Notations 3.95. From now, we use the letter M to denote a finite subset of Z™ such that
0 € M and such that the semigroup Saq generated by M contains no nonzero invertible
element. To such a set M, we associate another semi-group than Snq, namely the affine

semigroup generated by {(a,1) | « € M} C Z"*1, denoted by S’/(\Z). The semigroup algebra
K[S/(\Z)] is N-graded : the degree of a monomial X1 s d € N. The vector space
of homogeneous elements of degree d € N in K[S/(\Z)], namely the linear combinations of

monomials of degree d, is denoted by K[Sfﬁ)]d.

With this grading, K[let)] is generated by its elements of degree 1: such a graded algebra
is said to be homogeneous.

Another important family of objects are projective toric varieties. Their homogeneous
coordinate rings are associated to a lattice polytope, which we shall assume to be normal
in order to ensure that the coordinate ring is Cohen-Macaulay. As in the classical case,
homogeneity is a central concept to analyze the complexity of Grobner bases algorithms. All
lattice polytopes will be assumed full dimensional.

Definition 3.96. A lattice polytope & C R" is the convexr hull of a finite number of points
in Z". Its normalized volume, i.e. n! times its Euclidean volume, is denoted by vol(Z?) € N.

Example 3.97. — We let A, C R™ denote the standard simplex, namely the convex
hull of O and of the points e; € R™ whose entries are zero except for the i-th coefficient
which is equal to 1. The Fuclidian volume of A, is %, therefore its normalized volume
15 1.

— Let & be the convex hull of the three points (0,0),(2,1) and (1,2) in R2. This triangle
has Euclidian volume (area) % and therefore its normalized volume is 3.

To a lattice polytope & C R" is associated the affine semigroup S(O]h) C Z"*! generated

nZ™
by {(a,1) | « € 2 NZ"}. The polytope 2 is called normal if SE}?%Z” is a normal semigroup.
The associated semigroup algebra is called a polytopal algebra and will be abbreviated K[£2].

If & C R" is a lattice polytope containing 0 as a vertex, then K[Z]| = K[S%%Zn} (nota-
tions 3.95).

Also, note that if 9’ is a translation of &2, then the homogeneous algebras K[4?] and
K[Z?'] are isomorphic. Consequently, we shall assume without loss of generality in the sequel
that one of the vertices of & is the origin, so that M = & NZ" verifies the assumptions of
notations 3.93. We also introduce a few more notations and definitions for lattice polytopes:

Notations 3.98. Let &2, &1 and P be three lattice polytopes of R™.
— The number of lattice points in & (i.e. the cardinality of 22 NZ") is denoted by #2.
— The Minkowski sum of the lattice polytopes Py, P5 C R™ is the lattice polytope {p1 +
p2 | p1 € P1,p2 € Po}.
— For all ¥ € N we write £ - P for the Minkowski sum & + --- + P with { summands.
— For &1 C R", Py C RI we write P, x Py C R for the lattice polytope whose points
are {(p1,p2) | p1 € P1,p2 € P}

Example 3.99. — With this definition, #A, = n+1. For the polytope & defined in the
previous example, namely the convex hull of (0,0),(1,2) and (2,1) we have # = 4
since & contains the point (1,1).
— The Minkowski sums 227 and 322 are drawn on figure 3.100.
— The standard simplex A, can be seen as the product of n copies of A1: A1 X -+ X Aq.
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Figure 3.100 — &, 2% and 3.

Ehrhart polynomial. Next, we recall several useful classical properties of polytopal alge-
bras. The main object is the Ehrhart polynomial associated to a lattice polytope, and the
associated power series.

Definition 3.101. Let & C R™ be a lattice polytope. For d € N, we let HP» € Q[d] denote
the Ehrhart polynomial of &, i.e. HP»(d) = #(d - Z?). Also, let HS»(z) € Z[[z]] denote the
generating series
HS(z) =Y HPy(d)z".
deN

Example 3.102. Consider the standard simplex A, defined in example 3.97. Then

1
(1 _ z)nJrl

HPA. (d) = <” ;r d) and  HSa, =

Notice that the generating series HS » is equal to the generating series HSK[(@](z) =

S0 dim(K[2)4)2? (notations 3.95). The shape of this series is well known, since the fol-
lowing proposition holds.

Proposition 3.103. Let & be a lattice polytope in R™. There exists a polynomial Q € Z[z],
of degree less than or equal to n, with non-negative coefficients such that

HSz(z) =

Proof. The fact that the map HP 5 : d — #(d - &) is a polynomial of degree n is a classical
result by Ehrhart [29], which dates back to 1962. It follows that the series HS4(z) has
the desired shape Q(z)/(1 — z)"™!, with @ a polynomial of degree less than or equal to n.
The fact that @ has non-negative integer coefficients is Stanley’s non-negativity theorem [95,

Thm. 2.1]. 0
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Example 3.104. For the polytope &2 C R? defined in example 3.97, it is easy to see that
#0- P =1, #1- P =4 and #2 - P = 10. Therefore HS»(z) = 1(J{fJZr)Z32. We can derive
_ 3d2+3d+2
= 2

explictely a formula for the Hilbert polynomial: HP 2 (d) . In particular, HP%(3) =

19, according to figure 3.100.

Integer interior points. We have seen how to describe the number of integer points lying
ind- 2, with & a lattice polytope and d > 0. An other interesting combinatorial number is
related to interior points.

Definition 3.105. Let & be a lattice polytope in R™. An integer interior point of &2 is a
lattice point of Z™ lying in the interior of &2, defined by the classical topology of R™.

Example 3.106. Ford € {0,...,n}, d-A,, has no integer interior points, but (n+1)A,, has
(1,...,1) as unique integer interior point.

We denote by HP 0 (d) the number of integer interior points in d - &. Since HP» :
d— #(d- ) is a polynomial function, it can be extended to negative integers. MacDonald
reciprocity law [76] is a beautiful formula, which relates HP 5 and HP so.

Proposition 3.107 (Ehrhart-MacDonald reciprocity). [76] Let & be a lattice polytope in
R™. Then, for all d > 0,

HP e (d) = (~1)" HP»(~d)
Example 3.108. — We have seen that HPa, (d) = (d+n), which can be also written

n

(d+1)(d+2)---(d+n)

HPa, (d) = =

The Ehrhart-MacDonald reciprocity gives us the following writing for HPao :
d—1)(d—-2)---(d—

n!

HPs (d) = ( ") ppa (d—n—1)
which is not a surprise, since there are no integer interior points in d-A, for0 <d <n
and the integer interior points of d-A,, form a simplex equal to (1,...,1)+(d—n—1)-A,
if d is greater than or equal to n + 1.

— For the polytope &2 C R2, it follows from HPz(z) = % that HP o (d) =

ML#, according to figure 3.100.

Castelnuovo-Mumford regularity. The Castelnuovo-Mumford regularity of a graded
module is an important measure of its “complexity”: it is related to the degrees where its
local cohomology modules vanish. We refer to [12, Ch. 15] for a detailed and general presen-
tation. We define it here only in the case of a polytopal algebra:

Definition 3.109. [12, 30, 15] Let K[Y] = K[y1, ..., yr] and
00— Es — - — E —K[Y] - K[Z] —0

be a finite minimal free resolution of K[Z] as a graded K[Y|-module, where E; are graded
finitely generated K[Y]-modules. Let b; be the mazimum degree of the generators of E;, for i
in {1,...,s}. Then, the Castelnuovo-Mumford regularity of K[Z?] is the number

reg(K[Z]) = max{b; —i | i € {1,...,s}}

which does not depend on the chosen minimal finite free resolution.
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The following classical proposition relates the regularity with a combinatorial property of
the polytope & and with the degree of the numerator of HS 5:

Proposition 3.110. [13, Sec. 5.4] Let &7 be a normal lattice polytope. The regularity
reg(K[Z]) is equal to n — d + 1, where d is the smallest integer such that d - & contains
an integer point in its interior.

Example 3.111. Since the smallest positive integer d such that d - A, contains an integer
interior point is n + 1, reg(K[A,]) = 0. The polytope & C R? defined by the convex hull
of (0,0),(2,1) and (1,2) contains (1,1) as integer interior point, therefore its reqularity is
2-1+1=2.

Corollary 3.112. With the same notations as in Proposition 3.103, deg(Q) = reg(K[Z)]).
Proof. From proposition 3.103, we know that HS »(z) = % with @ € Z[z] of degree less
than or equal to n. The partial fraction expansion of HS 4 can be written

n+1

Qay .
HS%(z) = Z (1 — Z)g with An+1-deg(Q) #0
l=n+1—deg(Q)
n+1 as 400 £—1 '
— 3 7(6_1)!21'[(“;’)%
{=n+1—deg(Q) =0 j=1
Then we obtain the equality HPs(d) = Y0701 ouo) 4y [1521(d + j), and hence d =

n — deg(Q) + 1 is the smallest positive integer such that HP2»(—d) # 0. It follows from
the Ehrhart-MacDonald reciprocity (proposition 3.107) that d = n — deg(Q) + 1 is also the
smallest positive integer such that d- &2 contains an integer interior point. Proposition 3.110

concludes the proof. O
Example 3.113. We have seen that HSa, (z) = W The degree of 1 is zero, and is
equal to the regularity of K[A,], according to the previous corollary. For the polytope &2 C R?
seen previously, we have proved that HS»(z) = 1&5‘5232. Hence the degree of the numerator

matches the reqularity of 2.
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Chapter 4

Solving systems with symmetries

This chapter is the main chapter of this thesis, and contains all the contributions in-
volving polynomial systems with symmetries. It is divided into three sections, each of these
corresponding to an article already published or that will be submitted separately.

Introduction

In this chapter, we are interested in solving problems with symmetry. The aim is to study
such systems and their applications in the viewpoint of symbolic computations and more
precisely Grobner bases. The different questions that we want to answer can be summarized
in:

— How can the algebraic structure given by the symmetry be used to obtain algorithmic

improvements 7

— Given one possible symmetry, what is the complexity of solving a generic system having

this symmetry ?

— Which systems can become solvable by taking their symmetry into account ?

What does symmetry mean ?

We focus on problems with symmetry given by the action of a finite group. Let (f1,..., fs)
be polynomials in K[X| = Kz, ...,2,), and G C GL,(K) be a finite matrix group. G acts
on the affine space K™ and also on the vector space (K™)* of linear forms on K", that can
be identified with Spang(z1,...,2,). For A € G, we denote by f4 the polynomial f(A.x),
where x = !(z1,...,2,). Let Z be the ideal (fi,..., fs) and Vg(Z) be its associated variety
(we refer to chapters 1 and 3 for precisions). The distinct cases of symmetries examined in
this chapter are the following:

Stable Variety: V is said to be stable (or invariant) under the action of G, which means
that:

Ve e Vg(Z) VAe G Ax e Vg(Z)

It is difficult to take the symmetry into account in this case, since there is no algebraic
hypothesis on the action of G on Z. However, if K is algebraically closed, or if V(Z), the
variety of Z in the algebraic closure of K is also G-stable, we see with help of Hilbert’s
Nullstellensatz, that for all f € Z and for all A € G, f# belongs to v/Z, the radical of Z.
Since Vi (Z) = Vg(V/Z), this case can be reduced to the following one.

93
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Stable Ideal: The ideal Z is said to be globally stable (or invariant) under the action of G
(G-stable), if
VfeI VAeG flez

This case is the most important one, but there is no general strategy to solve a system
generating a stable ideal. Note that, since G is a finite group, the set { flA |1<i<setAc
G} is a finite set of generators of Z, which is stable under the action of G. Hence, up to
increase the number of generators, we can always assume that they form a G-stable set.

Semi-stable equations. The ideal 7 is said to be generated by semi-invariant equations if
Vie{l,...,s} VAeG  fA=¢fi

where & € K for all 4. Since the group G is finite, §; is necessarily a root of 1. This is a
subcase of the previous one.

Stable Equations: One interesting subproblem of the previous case is the following: 7 =
(f1,...,fs) is generated by individually invariant equations under the action of G, which
means that:

Vie{l,...,s} VAeG fr=f

In this case, it is possible to work in the ring of invariant polynomials under the action of G,
denoted by K[X]G = K]y, ..., z,]%. The structure of this ring goes back to work of Hilbert
and has been intensively studied, see chapter 3.

We now detail the distinction between modular and non-modular cases. The action of G on
7 is said to be modular if the base field K has a positive characteristic which divides the order
of the group G, and non-modular otherwise. The invariant theory of finite groups is much
better understood in the non-modular case. Therefore, when speaking about a problem with
symmetries in the sequel, we will have to distinguish modular and non-modular cases.

Organization of the chapter

We present here briefly the three sections of the chapter.

An action of G,, and application to the Vortex Problem. This section presents
a strategy that takes advantage of the action of the symmetric group Gy, acting through a
block-diagonal representation on several sets of N variables, in order to solve a polynomial
system leading to a stable ideal. This action generalizes the classical action of the symmetric
group G on a set of N variables. This kind of problem is motivated by applications to
physics/biology problems, and we apply our algorithms to the Vortex Problem in the plane:
the goal is to solve in the complex plane the following equations:
= 1
= > Vie{l,...,n}

o
j=lg#i

where Z; denotes the complex conjugate of z;. These equations are related to the central
configurations of vortices. After reformulating the equations to obtain polynomials, we obtain
an ideal in the ring Q[z1,...,2n, Z1,..., Zy], globally invariant under Sy acting on both
sets of variable {z;},{Z;}. Since we want to obtain the variety in the Zariski-open subset
Nixj{zi # 2j} we can obtain individually invariant equations by applying several times divided
differences to the equations. The system satisfies also a rational parametrization assumption,
which allows us to reformulate the system, in order to obtain invariant equations involving
only the first block of variables (z;). In this case, the invariant ring Q[z1,. .., 2,]%" is equal
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to Qle1, ..., en] where e; is the i-th symmetric function of the (z;). Consequently, the next
step is to rewrite the equations in terms of the (e;), and solve the system. Finally, we have
to remove some spurious solutions to recover all the central configurations.

Abelian groups and G-stable ideals. This section presents an approach to compute
Grobner bases of ideals globally invariant under the action of a matrix group G generated
by diagonal matrices in the non-modular case. This approach can be used to solve systems
invariant under every abelian group after a change of variables. The idea is that the action
of the group G induces a grading on the ring K[X] = K]z1,...,z,]. This grading allows us
to obtain semi-stable equations instead of a stable ideal. Then, it can be used to split the
Macaulay matrices arising during the computation of a Gréobner basis by use of linear algebra.
The grading can be also used to split matrices arising in the FGLM algorithm. We suggest
implementations in Magma/C and prove that this approach gives a gain of |G| (resp |G|?)
while using our new abelian version of F5 (resp FGLM) algorithm, instead of the classical
versions.

SAGBI bases and invariant equations. In this section, we extend the results of
Faugere and Rahmany in [41]. The aim is to propose new algorithms to solve systems of
equations, which are individually invariant under the action of a group (Stable Equations).
In [41], the authors proposed algorithms when G is a subgroup of the permutation group
G,,. We suggest algorithms that can be applied with every group: all we have to know is a
basis of K[X ]g’, the component of homogeneous invariants of degree d. Moreover, we derive
complexity bounds and give new approachs to remove spurious solutions that can appear
during the computations.
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4.1 Solving polynomial systems globally invariant under an

action of the symmetric group. Application to the Vortex
Problem

Introduction

This work is a common work with Jean-Charles Faugere and whas published in the pro-
ceedings of the ISSAC’ 12 conference.

Problem Statement. In this section, we study the case of a stable ideal under the action
of a finite group. The aim is to propose an efficient method to solve such problems assuming
that the group is the whole symmetric group. To illustrate the algorithm and to demonstrate
its efficiency, we apply the method to a well known physical problem called equilibria positions
of vortices. Here, our problem generalizes the techniques used in the paper [40] dealing with
the membrane inclusions curvature equations in biology, because it involves several groups of
variables.

Vortex Problem. The problem of finding and classifying all relative equilibria of N-point
vortices in the plane is of long-standing interest. In the plane, attacks on the problem date
back to the 1800s with the works of von Helmholtz [54] and later in the works by Thomson [66]
(the later Lord Kelvin). A complete bibliography of papers on the subject can be found in [77]
or [2]. Several families of equilibria have been found [2] and other solutions have been found
numerically, see [28]. More generally, the problem of equilibria on manifolds with different
potentials has been studied by Albouy [1].

In the planar case, the problem is equivalent to solving the following algebraic system (in
the following Z symbolizes the complex conjugate of z):

N
Z; =

Z. J— Z,'
j=lj#i "

Main results and organization of the section. In this section we describe a general
algorithm and for each step we apply it to the equilibria of N-point vortices. The proposed
algorithm is a three-step process:

1. We apply many times divided difference operators (see subsection 4.1.2) to the original
system in order to obtain a new system of equations involving only invariant equations.
For instance, the four-vortex problem is equivalent to

ro=8=1r1—-6=1r0=2r3+5s9 =0

where 1, = >, Z; 2F and s, = 3, 2F is the Newton sum.

2. As explained in subsection 4.1.3, the second step is to eliminate all the variables but the
z;. For that purpose, we require that the algebraic system fulfils the parameterization
assumption (see definition 4.20). We derive a new system of equations involving only
the symmetric functions of a subset of the variables. For instance, for the 4-vortex
problem we obtain the symmetric system

e3(e3 + 12e4)? = eag(ed — 16e3eq + 9eael + 48¢3) = 0.
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3. The last step consists simply in solving the symmetric equations using standard Grob-
ner bases techniques.

The organization of the section is as follows: we first present the vortex problem, and then

successively explain the three points explained above. At the end of the section, we present
timings that illustrate the efficiency of the approach on the vortex problem.

Applied to the vortex problem, our method has three advantages over previous methods:

1. In theory, it is possible to solve directly the original equations. However, when N = 5,
it takes several days to compute the Grobner basis and the number of solutions is
2060. By contrast, applying the new algorithm to the same problem gives rise to a
system with 17 solutions that can be solved in less than 0.1 sec. The case N = 7 can
be completely solved in about 20 minutes.

2. We are sure to find all the solutions, so we give a certificate for the previous numerical
solutions. For N > 5, it is completely new.

3. Two distinct solutions could be so close, that 300 digits are needed to be sure that
they are distinct, see [28] for example. With exact computations, the solutions appear
to be distinct without further computations.

Since we are using only exact computations, our algorithm gives computational proofs of
the solutions of the vortex problem.
4.1.1 Vortex Problem
4.1.1.1 Physical equations and first steps

We start with the equations of motion for the N-body problem:

21.,
8822(15) = mU (sij (1)) (xa(t) — x;(t))  fori=1,...,N (4.1)
i

where m; and r;, are respectively the mass and the position vector (relative to the center
of mass) for the i-th particle, s;; = |r; — r;|? is the square of the distance between particles i
and j and U(s) is the potential function such that U’(s) = s® for some real value a. Without
loss of generality, we can assume that the center of mass is at the origin. Usually the potential
is one of the two well known potentials:

‘ a ‘ potential
Newton | =3/2 | U(r) = rz
Vortex | —1 | U(r) = log(r)

We are interested in solutions in the planar case. Moreover, we assume that all the masses
(vortices) are equal (that is to say m; = 1) and that the potential is the logarithmic one.

A central configuration is a configuration of bodies such that the acceleration vector for
each body is a common scalar multiple of its position vector:

0%r;(t)
ot2
Central configurations are of interest for a variety of reasons: to every central configuration

corresponds an homothetic solution, which is a solution that retains its shape for all time,
while expanding, contracting and rotating around the center of mass.

= A(t)r;(¢) where A\(t) € R (4.2)
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We identify the real plane R? with the complex plane C. As we will see, in the planar
case, it is easier to work with complex positions z; = z; +1y; = r;. Hence s;; = [r; — rj|2 =
(zi — 25) (Z; — Z;) where Z is the complex conjugate of z. Combining equations (4.1) and (4.2)
we obtain:

Az = Z G (Zl — zj) = Z 7 i Z (4.3)

Observe that the dependance on ¢ has been removed, since the solutions of (4.3) depend
only on A. The value of X is easy to recover from a solution (z1,...,zy), since the following
property holds:

Proposition 4.1. If (z1,...,2n) is a solution of equation (4.3), 2\ Zf\;l |zi]2 = N (N —1).
Proof. Let i € {1,...,N}. Then, by equation (4.3),

_Z<1+Z _Z> (N—1)—Zz_j?z_i

J#z J#i J#i

)\|ZZ|2 = A\ziZ =

Hence, by summing over the index i, we obtain

N
ZMZ%'Z ZZZ]Z_JZZ = —1)—;>\|Zi|2

i=1 j#i

and the conclusion follows. O

By summing over the index i, we see that ) z; = 0 (the center of mass is at the origin), so

the first symmetric function of the z; is equal to zero. Observe that (z1,...,2,) is solution of
equation 4.3 if and only if (z1,..., 2z,) is. Hence, we have to solve the N following equations
Yoo
)\Zi = Z — % (EL)\)
J= l,J#Z

Moreover, since A > 0 by proposition 4.1, we observe that (E; ) can be rewritten:

Hence, the uniform scaling by v/A realizes a one-to-one mapping between the solutions of
(Ei1) and (E; ). Therefore, we can assume that A = 1 and recover the original solutions

by multiplying the solutions of (F;) = (E;1) by v/A. In summary, the central configuration
problem is equivalent to solve the N equations:

_ 1
zZi = '_Z % — 2 (Ez)
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4.1.1.2 Symmetry of the solutions

We now examine the symmetry of the solutions. Let z = (21, ..., zn) be a solution of the
equations (Ej;).
— Action of Gy. The permutation group Gy acts on the variables {zj,..., 2y} with

o(z) = Zo(i)- With this action, EY = E,;) for all 0 € &. Therefore, if z is a solution
of the problem, any of the N! N-tuples obtained by permutation of its coordinates is
also a solution.

— Action of O3(R). The isometry group of R? can be identified to a transformation
group on C generated by the rotations z — az with a a complex of modulus one, and
the symmetry z — z. These transformations act on CV by z +— az = (az,...,azy)
and z — z = (Z1,...,2n). We have already seen that z is also a solution of the
equations (E;). It is straighforward to verify that az also is. Therefore, the set of
solutions is invariant under these actions.

Consequently, the set of solutions is invariant under the action of S x O2(R). We will first
focus on the action of Gy to obtain invariant equations, and finally use the action of O2(R)
to speed up the Grobner Basis computation (see subsection 4.1.4). Since any permutation of
a solution of the vortex problem (E;) is also a solution, it is natural to look for the symmetric
functions in the solutions instead of the solutions themselves.

Definition 4.2. Let Q) be a univariate polynomial with complex coefficients of degree N, with
no multiple roots. We say that Q is solution of the vortex problem if its roots (z1,...,2zN are
solutions of the equations (Ej).

The following lemma is useful to express, in a very compact way, that such a polynomial
@ is solution of the vortex problem.

Lemma 4.3. A separable univariate monic polynomial Q in Clz] is solution of the vortex

problem if and only if all roots z; of Q satisfy z; = %g,l((;")).

Proof. Let Qi(z) = 37(2 = [I; (2 — #;), then 858 =D iz i Hence, according to the

equations (E;),

Qi (=)
Qi(z:)
But we can write Q(z2) = (2 — 2;)Q:(2), and with two derivations, we obtain @Q'(z) = Q;(z) +

(2 — 2)Q!(2) and Q"(2) = 2Q(2) + (> - z)Q!(2). Setting = = 2, we get Qi(zs) = Q'(=1) and
Q"(z) = 2Q}(z;). Hence, the lemma is proved. O

Q is solution of the vortex problem = = z; for all roots z; of Q

4.1.1.3 Particular solutions

Several particular solutions are known for this problem. We present only a few of them,
see for example [77] for an overview. We have already said that the uniform scaling of factor
VA changes solutions of (E; 1) into solutions of (E; ) It follows from lemma 4.3 that the roots

of a separable monic polynomial @ satisfy equations (E; ») if and only if 2%/,((2;)) - % for all

roots z; of Q). Given such a polynomial, we just have to test if this relation holds for its roots
and a given A.

— Regular polygon (N > 2). We want to prove that if {z1,...,2nx} are the vertices

of a regular N-gone, they are solutions of the vortex problem for some A. Due to the



100 CHAPTER 4. SOLVING SYSTEMS WITH SYMMETRIES

symmetries of the problem, we can assume that the center of the polygon is 0, and that

the distance between the center and a vertex is 1. Due to the invariance by rotations,
2km
we can assume that the vertices are associated to the N-roots of 1. Hence, let z, = e~

for k € {L,...,N} and Q(=) = [T 1<z ~ ) =¥ = L Thon Q/(2) = N2 and
Q" (z) = (N 1)2N=2, thus QQ,((Z)) = &=L Consequently, with A = 2+, 2 = EQQ,((Z))
for all k € {1,...,N}. Therefore

N . : :
-1 lut f(F th A= ——
is solution of (E)) wi N1

— Regular centered polygon (N > 3). With the same analysis as in the previous

point, we assume that z, = 612\;57; for k € {1,...,N — 1} and zy = 0, therefore

Q(z) = 2N — 2. Tt follows that Q'(z) = NzV~! —1 and Q"(z) = N(N — 1)zN~2
" _ N-2 . " _

Hence, QQQ,(('?) = ];[((JJVVZ,\}EA) . Since zy = 0 and N > 3, we have SQQ,((Z]]VV)) =0 =2y, and

’ N-—-2 _
forall k € {1,...,N — 1}, QQQ/((ZZZ)) = N(]Q\[(Nzl) = N2Zk'

2
2N — 2 is solution of (E)) with A = —

N

— Aligned points. We are interested in aligned points. Due to the symmetry by
rotations of the problem, we can assume that these points lie on the real axis. Finding

a solution of the vortex problem (with A = 1) leads to finding a monic separable

polynomial @ such that z; = z; = %%,(( )) for all roots z; of ). Hence, polynomials

2NQ and 22Q'(z) — Q" (z) both vanish on the roots of @), have same degree N and same
leading coefficient 2N, so they are equal. The differential equation 2NQ — 22Q" + Q"
has only one polynomial solution for every N, which is the well know N-th Hermite

polynomial, defined by Hy(z) = (—1)Nexp(x2)ddz—NN exp(—22).

4.1.1.4 Algebraic reformulation

For now, the equations (F;) are rational equations, which mix variables z; and their
complex conjugates z;. Algebraically, it is not possible to separate + and —i, and therefore
z and z. Thus, we introduce N new variables Zi,..., Zy, that represent zi,...,Zy. The
algebraic relations between these 2 NV variables are :

1 _
Zi:ZZi—Z’ and z; = 7 Z (E;, E;)
J#i J j#i
In order to obtain polynomials, we multiply the equation E; by D; = [];;(2 — 2;) to
obtain the polynomial equation U; = 0 where

UZZZlH(Zl ZH _Zk e@[zlv"'vaazla"'azN]

JF JFt k]

Observe that permuting z; and Z; for all i transforms the equation (E;) in (E;), because
of complex conjugation. Thus, for every relation in the ideal generated by the 2N equations
(Ei, E;) in Q[z1,...,2N,Z1,...,Zy], there is another one obtained by permuting z; and Z;.
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The ideal generated by the polynomials U;, U; is therefore globally invariant under the action
of the conjugation 7, which acts on the system through the representation

AL:<+“>eg@m@
Iy

where Iy is the identity matrix of size N x N. The ideal is also globally invariant under the
action of the symmetric group G through the representation given by

o Myy = ( M, 0 ) € GLon(Q)

where M, is the N x N matrix associated to 0 € Gy, as in proposition 3.13. We say that
this action of &y is a diagonal action. Notice that the polynomials U;, U; are also weighted-
homogeneous with weights 1 on variables z; and —1 on Z;.

The goal is to obtain equations depending only on the (e;), the symmetric functions of the
(z;). To this end, it is useful to reintroduce the polynomial () with indeterminate coefficients,
which are new indeterminates ej,...,ey. Hence, Q(z) = HZ‘JL(Z —z) = 2NV — eV 4

st (—1)N en. With help of the polynomial @, the relations between variables e; and z; and
lemma 4.3, the equation U; = 0 can be reformulated 27Z;Q'(z;) — Q"(z;) =0

In the next subsection we will see how to obtain equations of lower degree individually
invariant under the action of & y.

4.1.2 From invariant system to invariant equations

The algebraic equations obtained from the vortex problem are of a very special kind,
which can be generalized as follows. Let A be an integral domain, Z be the set {z1,...,zn5}
and V = V; U--- UV, is another set of variables, decomposed in ¢ blocks of size N. For
each i € {1,...,¢}, we set V; = {x;1,...,2;nv}. We assume that Sy acts on Z UV through
the diagonal representation of &y, that is, r7i = Tigy) and 27 = Z() for all 7,7 and
o € Gy. Let (Ui)eq,.. Ny be a system of globally invariant polynomials under the action of
Sn: for all 0 € Gy, U7 = U,(;)- We also assume that U; can be written D;P; + R;, where
D; = T1,4i(zi—2j), P, € AlZUV] and R; € A[Z], which also verify P7 = P,(; and R = R, ;)
for all 0 € Gn. The case of the vortex problem can be recovered by taking A = Q, £ =1,
V= {Zl, .o .,ZN}, R = Zz and Rz = _Zj;éi Hk;él,](zl — Zk)

The aim of this subsection is to propose an algorithm that computes individually invariant
equations under the action of Gy from the system of globally invariant equations {U;}. The
main tool is divided differences. We first explain the simplest case, where there is only one
block of variables.

4.1.2.1 Divided differences on one block

Here, we first assume that we only have one block of variables Z = {z1,...,2n5}, V =0
and N equations U; € A[z1, ..., 2n] such that o(U;) = U,(; for all o in &x.

Definition 4.4. We define recursively the divided differences of Uy, ..., Un by:
— [Ui] =U; fori=1,...,N.

U, U — (Ui Ui Ui . o .
— Uiy, Ul = G 2 el 0 b2 Ui for any given distinct inte-
Rig_1 — iy

gers iy, ... i in {1,...,N}.
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Theorem 4.5. The divided difference [U;,,--- ,U;, ] is a polynomial in Z and depends only on
the set {i1,...,ig}, so for any subset P = {iy,... i}, we set [Ulp = [Ui,, ..., U;,]. Moreover,
for any subset P of {1,..., N}, and for any o in &n, ([Ulp)” = [Ulyp)-

Proof. We first prove by induction on k € {1..., N} that [U;,,...,U;,] is a polynomial in Z.
— For k£ =1, this is obvious.
— Let k € {2,...,N} and assume that [U;,,...,U;, ,| is a polynomial for any k — 1
distinct integers in {1,...,N}. Let i1,...,9; be k distinct integers in {1,...,N}.
Since z;, , — z;, is monic as a univariate polynomial in z;, ,, we can perform the
division of [Un, e ’Uik—l}_ [Uil, Uiy s, Uik] by z, , — z;,. By mapping z;, , on
2., we see that the remainder of the division is equal to 0, so [Uil, LUy U }
belongs to A[Z].
— By induction, we conclude that [U;,,...,U;,
integers of {1,...,N}.
To prove the second part of the statement, we just have to act with Gy on the equality
Uiy Ui (zi_y — 2i) = [Uil, e 7Uik—1:|7 [Uil, e ,Uikﬂ,Uik] with any permutation o
and for all kK > 1 and distinct integers i1, ...,4t. The proof follows by induction on N. O

| is a polynomial in A[Z] for all distinct

When U; can be written F(z;) for all ¢ € {1,..., N}, where F is a univariate polynomial, it
is usual to introduce a special notation.

Notations 4.6. Let F(z) be a univariate polynomial in Alz]. We denote F(z1,...,zN) the
divided difference [F(z1),...,F(zn)].

The two following lemmas will be useful later.

Lemma 4.7. For a univariate polynomial F(z) € A[z], the following equality holds:

N F(z) N
F(z1,...,2n) = Z ) where Q(z) = H(z — %)
i=1 ! i=1

Proof. We prove this lemma by induction on N.
— For N =1,Q(z) = (2 — 21) so the assertion is obvious.
— Assume now that the equality holds for N —1 > 1. Let U(z) = [[Y5'(z — %) and

1=1
V(z) = (H?SZ(Z - Zz)) x (2 — zn). Hence, Q(z) = U(2)(z — 2n) = V(2)(z — 2n-1),
which implies that Q'(z) = U(2)+U'(2)(z —2n) = V(2) +V'(2)(z — z2n-1). Therefore,
Q'(zi) =U'(zi)(zi — 2n) for all i # N and Q'(z;) = V'(2i)(zi — z2n—1) for all i # N — 1.

Consequently,
F(z1,...,2nv-1) — F(21,...,2N—-2, %
F(z1,...,25) = (=1 sz_l_(le N-2,2N)
SV ( b 5,(%)) F(zn—1) _ F(zn)
= — () (&) + Ullen-1)  V'znw) (by induction)
ZN-1— 2N ZN-1— 2N
N—1 F(z)(zi—2N—2i+2N—1)
_ i Q’A(]zi) = n F(zn-1) n F(zn)
ZN-1— 2N Q'(z2n-1)  Q'(2n)

B N F(z)
F(z1,...,2n) = ;Q’(Zk)
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— By induction, the lemma is proved for any N > 1.
O

Definition 4.8. For Z = {z1,...,2n}, we define hy the k-th complete symmetric function
as the sum of all monomials of degree k on the variables in Z. By extension, hy = 0 when
k <0 and hg = 1.

Lemma 4.9. For any k > 0, if F(2) = 2*, then F(z1,...,2n) = hp_Ni1.

Proof. We prove this lemma again by induction on N.
— IfN=1,ifk>0, F(z)= z{“ is the complete symmetric function of degree k in one
variable z1.
— Let N > 2 and assume that the assertion is true for N — 1. Then,

F(Zl, ‘e ,ZN,1) — F(Zl, ‘e ,ZN,Q,ZN)

F<217"'7ZN): ZN_1 — ZN

— If kK < N — 3, then by induction, both F'(z1,...,2y-1) and F(z1,...,2N_2,2N) are

equal to 0. Hence, F(z1,...,2n) =0 = hp_n41.
— If k = N — 2, then by induction, both F'(z1,...,2y-1) and F(z1,...,2N—_2,2N) are
equal to 1. Hence, F(z1,...,2n) =0 = hp_ni1.

— If K > N — 1, then by induction
F(zl, . ,ZN_l) — F(Zl, ey EN—2, ZN> = Z(Z?V:J;f—m_u — Z;CV_N—’—Q_u) X m

where the sum is over all the monomials m in z1, ..., zy_9 of degree u € {0,...,k—
N + 2}. Writing zf\,__]\lfﬁ_“ — z]]i,_NH_“ = (zny-1 — zn) Y. m/, where the sum is
over the monomials m’ in zy_1, 2y of degree k — N + 1 — u, we obtain exactly the
complete symmetric function in z1,...,zy of degree k — N + 1.
— By induction, the lemma is proved.
O

We explain here how to obtain invariant equations from divided differences in the case of
only one block of variables.

Theorem 4.10. Let V; be Z [Ulp for all i € {1,...,N}. Then polynomials V;
PC{1,..N},|P|=i

are invariant under the action of &y, and the varieties associated respectively to {V;} and

{Ui} are the same, except maybe for points with at least two equal components.

Proof. Any o in Sy realizes a permutation of the subsets of {1,..., N} with same cardi-
nality, and also a permutation of the [U]p by theorem 4.5. Therefore, V, = V; for all ¢ in
{1,...,N}. Assume that a = (a1,...,ay) is a common zero of the polynomials U;, without
equal components. Then, we deduce easily that all the [U]p(a) are equal to zero, and also the
Vi(a). Conversely, if Viy(a) = 0 then all the [U]p(a) with P of cardinality N — 1 are equal,

because Vi can be written as %

N —1, z;; = P\Q and zy = Q\'P. But their sum Viy_i(a) is equal to zero, so they are equal
to zero. We can repeat it for i = N —2, N —3,...,1 to deduce that U;(a) =0 for all i. [

where P and Q are two distinct subsets of cardinality

Using the Reynolds Operator (see definition 3.9), it is possible to compute only a few
divided differences [U]p in order to obtain the polynomials V;: we just have to compute all
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Algorithm 4.11: ComputelnvariantSystem algorithm
Input : Variables {z1,..., 2y} and the polynomials U; = D; P, + Q;
Output: Invariant Equations V;
for k =2 to N do
L [Uh ERR) Uk] Z:QUO([Ul, SRR Uk—l] - Tk—l,k‘([Uh SRR Uk—l])a Rk—1 — Zk)

return {m Yvesy UL, - Ugl), k=1...N}

divided differences [Uy,Us...,Ux] for k in {1,..., N}, since V; = (];[)SR([Ul,...,Ui]). We
deduce from this property a simple algorithm 4.11 to compute the set {V;}. In this algorithm,
7;,; denotes the transposition permuting ¢ and j.

Since K[z1, ..., 2n]®Y = K]ey, ..., en] (see theorem 3.33), we can rewrite the polynomials
Vi in terms of the symmetric functions of the z;. It is not possible to obtain such a nice
writing while handling several blocks of variables (see the number of fundamental invariants
needed for the diagonal action of &y in subsection 4.1.4). However, in the case of the vortex
problem, we will see how to remove variables Z1,..., Zy and perform this rewriting.

4.1.2.2 Generalization to several blocks and applications to the Vortex Problem

We come back to the general case where the polynomials U; involve the set Z =
{#z1,...,2n} and another set of variables V, and Gy acts on ZUV. We recall the assumption
that for each ¢, U; can be written D; P; + R;, where D; = H#i(zi — z;), R; is a polynomial
in Z, and for all o, P7 = P,;) and R} = R,(;. The previous case corresponds to the case
P; =0, but when P; # 0 we can still apply divided differences in the same way, and construct

Ui, ...,U;] for given distinct integers, and obtain a similar theorem:

Theorem 4.12. (1) Ui, ..., U] is a polynomial in Z and V which depends only on the
set {i1,...,ir}. Moreover for any o and any P, o([U]p) = [Ulxp)-

(it) Vi = 3 ip=; [U]p is invariant under the action of &y and the varieties associated
to respectively V; and U; are the same, except maybe for points with two equal Z-

components.

Proof. The proof is very similar to the proofs of theorems 4.5 and 4.10: the divided differences
of (U;) can be treated in two blocks, corresponding to (R;) and (D;P;). For the first block, the
situation is the same, and for the second one, the presence of D; ensures that the successive
divisions by z;,_, — 2;, are possible. O

Corollary 4.13. We can still use algorithm 4.11 to compute the V;.

We now apply this approach to the equations of the vortex problem. Recal that we
obtained the following equations for all i € {1,..., N}:

Ui = Zz H(Zz — Zj) — Z H (Zi — Zk)
J#i J#i k#i,5
which can be written as U; = D;P; + R;, with P, = Z; and R; = —Z#i Hk#’j(zi — 2k).
These polynomials verify Py = P, (;) and RY = R, ;) for all i and all o € Gx.

Example 4.14. For N = 3, it is easy to compute by hand the invariant polynomials Vi, Va, V3,
and we obtain
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Vi = E ZZ'Z? — Z ZiZZ'Zj + Z ZiZjZk
( J#i {i.g,k}={1,2,3}

Vo=2> Zizi— Y Zizj—9
i i£]
VSZZZi
7

Using V3 =0 and Vi =21 4+ 29+ 23 =0 in Vi and Vo, we can rewrite the system as

Vi=4> Zz} Vo=3» Zizx-9 Vz=0
i i
It turns out that the invariant equations of the vortex problem can be reformulated using
a very small number of invariants, which leads to the following definition.

Definition 4.15. From the variables Z = {z1,...,2x} and Z = {Z,...,2Zx}, we introduce
the classical Newton sums:

N N
S = g 2F and Sk = E zF
i=1 i=1

and also new invariants, that we call twisted Newton sums:

N

=Y ZZF d  Rp=)Y ZFz

’rk — 7"Zi an k — i Z’L
i=1 =1

Example 4.16. For N = 4, after reformulation, we obtain the following equations:
ro=81=1r1—6=19=2r3+559=0
and also the conjugate equations:
Ry=S5S1=R1—6=Ry=2R3+55,=0

Surprisingly, we can obtain a general and very simple expression of these equations for
any V.

Theorem 4.17 (Invariant Equations). For any N > 1 and k > 0, the solutions of the vortex
problem satisfy the following invariant equations:

k—1
2 TE = Z Si Sk—1—i — k‘ Sk—1 with S0 — N. (44)
=0

In order to prove the theorem 4.17 we first give a quite technical lemma.

Notations 4.18. For N € N* and j € N, let e;, h; and s; be respectively the symmetric
function, the complete symmetric function, and the Newton sum of degree j in the variables
21,...,2N. We use the convention that eg = hg = 1, so = N and all these functions are equal
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to zero when j < 0. Moreover, ej = 0 for j > N. We denote by El, H and S the generating
series of (ej), (hj) and (sj), which can be written:

+o00 A N
Et)=> et/ =J(1 +tz)
=0 i=1
+oo N 1
Hit)=) hit! =
(t Z:; 15—

N

+oo
S(t) = Z.sjtj = Z - _1tz,
j=0 '

=1

Lemma 4.19. With the previous notations, the following relation holds for all k > 1.

N k—1
YN =N —j =1 ejhpja=) sjsp1-j— ks
§=0 §=0

Proof. Let A\p_1 = Eéyzo(—l)j(N—j)(N—j—1)ejhk_j_1 and vp_1 = Z?;é Sj Sk—1—j—k sK—1

be the left and right terms of the equality we want to prove. Since e; = 0 when j > N and
hr—j—1 = 0 when j > k — 1, the sum in A\;y_; can be taken from 0 to k — 1. We introduce

+00 +oo
A)=> Nt*  and  T() =) ypth
k=0 k=0

the associated generating series. We just have to prove that A and I' are equal. We first
rewrite A and I in terms of F, H and S.

+00 +oo
First, E(t) = Zejtj then, E(—t) = Z(—l)jejtj.
=0 =0
+00 oo
Moreover, FE'(t) = Zjejtj_l then, tE'(—t) = — Z(—l)jjejtj
j=1 =0
+00 +oo
Finally, — E"(t) =) j(j — Ve’ then, *E"(=t) =Y (~1)j(j — e;t’.
=2 =0

Observe that (N —j)(N —j —1) = N2~ N —2(N —1)j + j(j — 1), hence
A(t) = (N2 — N)E(=t)H(t) + 2(N — \)tE'(—t)H(t) + t*E" (—t)H (t)
It is easy to give an expression of I' in terms of S and S’
D(t) = S%(t) — S(t) — tS'(t)

We now rewrite A in terms of H and its derivatives: Clearly, E(—t)H(t) = 1. Further-
more, with two differentiations, we obtain —FE'(—t)H (t) + E(—t)H'(t) = 0 and E"(—t)H (t) —
2FE'(—t)H'(t) + E(—t)H"(t) = 0. Hence,

H12 (t)

H2(t)

B H//(t)

H(t) +2

and E'(-t)H(t) =
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tH'(t) _t2H™?() t2H"(t)

Therefore,  A(1) = (N? = N) + 2(N = 1) + 250 = s
/ al 1 Zq
Moreover, H'(t) = Z H i | i)
i=1 \ j#i v t
N .
H'(t) = H(t -

(t) ( ); g

N o141

Hence, tH'(t) = H(t)z

i=1
Finally, tH'(t) = H(t)(—N+5(t))

It follows that I" can also be rewritten with H and its derivatives. More precisely, we have

l—tzi

/ / /2 ! " 12
S(t) = N+tl;]](()) S*(t) = N? +2NtH((t)) +t2Z2((t)) S'(t) = Z((t)) +t}é((;)) —tZz((:))
/ 2 12 2 "
Therefore, ['(t) = (N? - N)+2(N — 1)tZI(g) + Ztéi(t(;) - tél(t()t) = A(t).
and the lemma is proved. O

Proof of theorem 4.17. By lemma 4.3, we have already said that the equations of the vortex
problem can be simply rewritten 2Q’(z;)Z; = Q" (z;). Hence,

T = szZ Z 2@/ Z Q’ where F(z) = ZkQ;(Z)

Writing Q(z) = 2N —e1 2N 1+ 02N 2+ + (—=1)Ney = Z;-V:O(—l)jeij_j, we obtain

N
F(z) =23 (~1)I(N = )N —j —1)e; 2N 77Th2,

By lemma 4.7, we know that > 5((2)) = F(z1,...,2zn). Using linearity and lemma 4.9, it

follows that 27y = Zévzo(—l)jej(]\f —Jj)(N —j — 1) hy—j—1. Using lemma 4.19, we obtain the
theorem 4.17. O

4.1.3 From two blocks to symmetric functions in one block

The aim of this subsection is to show how to obtain symmetric polynomials in only one
block of variables from symmetric polynomials in two blocks, invariant under the diagonal
action of &y. This can be done easily under an additional assumption, which states that
the system of equations admits a rational parametrization. Under this assumption, we give a
general algorithm, which takes as input such a symmetric system in the variables {Z, Z} and
returns directly polynomials in the symmetric functions {e;} of the first block. In particular,
the algorihm can be applied to the previous invariant equations {V;} of the vortex problem.
However, in this special case, the approach can be simplified and we propose a dedicated
algorithm which returns equations in {e;} having a lower degree compared to the equations,
that we can obtain with the general algorithm.
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4.1.3.1 General case under the rational parameterization assumption

We return now to the general case of two blocks of variables where each U; is an equation
in A[Z, Z] where Z = {z1,...,2ny} and Z = {Z;,..., Zy}. In addition, we require that the
algebraic system fulfils the following parameterization assumption:

Definition 4.20. We say that the system {U; = 0} is under parameterization assumption
if for all i, Z; = R(z;) where R(z) = A]\;((Zz)) € A(z) with A = Q(ey,e2,...,en), so R is a
univariate rational function whose coefficients depend on the symmetric functions of the z;.

The vortex problem satisfies this assumption, since from lemma 4.3, we have Z; = %/,(éi_)),

with Q(2) =[[(z — ).

We now describe an algorithm to obtain invariant equations under the action of Gy, in
the first block of variables Z. First, we apply the algorithm 4.11 to compute the invariant
equations V;. Denote again by Q(z) the polynomial [[;(z—z;) = 2V —e1 2V 1+ -4 (=1)Vep.
With notations of definition 4.20, there exist two polynomials B and C' in Kley, ..., en][z]
such that BQ + CM = Ry, where R); is the resultant of ) and M with respect to the
variable z. Since Q(z;) = 0, it follows that:

N(z)

RyvZ;=R

More generally, the following relation holds for all k& > 0:
RE,ZF = (N* x C*)(z) = (NF x C*  mod Q)(z).
Notations 4.21. In the following, the polynomial NC' mod Q will be denoted Pz.

For each W € {V;, V;}, we substitute @Pg(zz) to ZF in each monomial of W. Up to a multi-

plication by a suitable power of R]]‘(Z to obtain polynomials, we obtain equations involving only
the variables z1, ..., zy. These polynomials are invariant under &y, and can be reformulated
as polynomials in the symmetric functions e;.

These ideas lead to algorithm 4.22. In this algorithm, we denote by dz P the total degree
of P as polynomial in the variables Zi,. .., Zy. For any polynomial P in K[z, ... ,zN]G’N, we
denote by X(P) the expression of P as polynomial in Kley,...,ex].

4.1.3.2 Application to the Vortex Problem. Dedicated algorithm.

For the vortex problem, we take N = Q"”/2 and M = @', so the rational fraction R is
equal to % Hence, the resultant Ry, = BQ + CQ’ is equal to D, the resultant of Q(2)
with respect to the variable z. We still denote by Pz(z) the polynomial of Kles, ..., en][z]
equal to NC' mod Q = $Q"C mod Q. We can apply the previous algorithm to invariant
polynomials to compute symmetric equations. From Vi, = 2r; — Z;:ol SiSk—1—i + ksg_1, we
obtain always 0, but not from Vj, = 2R;, — Zf:_ol S;Sk_1—; + kSkg_1. However, for the vortex
problem, instead of using previous algorithm, there is a faster way to compute the equations,
explained hereafter.

We introduce the two Kles. .., ex]-modules morphisms :

S Klea,...,en][z] — Klea,...,en] and I : Kles,...,en][z] — Klea,...,en]

Zk — Sk Zk — hk—N—H
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Algorithm 4.22: ComputeSymmetricFunctionsSystem algorithm

Input : The invariant equations V;, V; of variables Z = {z1,...,zy} and
Z=1{Zi,...,Zn}, the polynomial Q = [](z — 2;), the polynomial Pz and
the resultant R;.
Output: A system of 2N equations of variables e;, the symmetric functions of the z;
m = max{0zW | W € {V;, Vi} };
L:=[P. mod Q|i€{l,...,m}];
for W in {V4,...,Va,V4,...,V,} do
dy = 0z(W);
for U monomial of W do
dU = 8Z(U);
for i:=1to N do
| ZF « L[K](2) in U;

U+ RW=y in W,
return {X(W)}

Proposition 4.23. For any polynomial P in Kles,... en][z], L (P) is equal to /(P
mod Q) and S (P) = (P mod Q). Moreover

F(P) =S, P(z) and A#(P) =N, HE

In particular, if P = ZkN_l apz®, then 7 (P) = an_1.

Proof. Evaluating @ at a z; leads to 0 since @ = [[(z—2z;). The second part of the proposition
comes from the definion of ./ and J# together with lemma 4.9. O

From theorem 4.17, we know that 2r; = (Zf:_ol Si sk_l_i) — k s;_1, therefore the conju-
gate equation holds:

=0

k-1
2Ry = (Z Si Sk—l—z‘) —k Skt (4.5)

One way to obtain directly symmetric equations is to compute:

N
skzzzi‘f ZPM— 7(P4(z) mod Q)

Ry = Zlek Ok Z’Zl PE(z) = Y(zPZ( ) mod Q)

Substituting these expressions in (4.5) we obtain the following proposition:

Proposition 4.24. Given the Bézout relation B(z) Q(z) + C(2) Q'(z) = D, for any N and
k, the solution of the vortex problem satisfies the following symmetric equations:

N
—

%y(uag) =Y Py S (P ks (P

~
I
o

where /(1) = N and Pz = 3Q"C.
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The drawback of the method is that high powers of the discriminant occur in the resultant
equations. Instead of using the polynomial P, to obtain equations with the e;’s, we will use
another polynomial. Using the following lemma it is possible to compute Ry and Sy with
only half of the powers of the discriminant:

Lemma 4.25. Given the Bézout relation B(z) Q(z) + C(z) Q'(z) = D, the following relation
holds for all k € {1,...,n}:

1

D @(zk) = A(zk)
where A(z) is the polynomial —(B(z) + C'(2)).

Proof. By derivating the relation BQ + CQ" = D, we obtain B'Q + (B’ + C)Q' + CQ" = 0.
Therefore, modulo @, CQ' = D and (B + C)Q" + CQ" = 0. Hence, A = —(B' + C) verifies

o CQ// o DQ//
A= o = 02 modulo Q. O

Consequently, with one power of A, there are two powers of Q' in the denominator, and
only one power of D in the numerator. Hence, using .# when k is even and % when k is odd,
we obtain Ry and Sy in the following way:

Proposition 4.26. The expressions of S; and R; in terms of the symmetric functions of the
z;’s are given by the following formulas for all k > 0:

DkS2k = Q%y(Q”kAk) DkRQk — 2%5/(2 Q//kAlc)
DFSopt1 = g H(Q"" 1 AF)  DFRypiy = g (2 QFHAR)

and all polynomials can be taken modulo Q).

. "e.. (. k
Proof. With Z; = 26262’((2))’ we have DSy, = 22% Zf\il Q" (z)* <D’“7%,((2))k) = 2%5”(@”’24’“).
The formulas in the other cases can be obtained in the same way.

Substituting these expressions in (4.5) we obtain:

Theorem 4.27 (Symmetric Equations). Given the Bézout relation
B(2)Q(z) + C(2) Q'(2) = D, and A(z) — B(z) — C'(2), the solutions of the vortex problem
satisfy the following symmetric equations, for any N and k:

k-1
1
5D Sok+1 = Z; Soi Ha(k—i—1) — 2k Hop—o
k k—1
Hoj 11 = ) 82iSapeiy + DY HyiHygoi1) — (2k + 1) Sy
i=0 1=0

where Sgiys = .7 (2° Q" A?), Hyjys = H(2° Q" AY) for 6 =0, 1.

Proof. We substitute the expression of Rok, Rog+1, Sor, Sor+1 given by proposition 4.26 into
the equations:

2Ry, =2 Ef:ol S2iS2k—1-2; — 2k Sar—1
2Ropy1 = Zf:o Sa; So—2i + Ef:_gl S9i4+1 Sok—2i—1 — (2k + 1) Sop,
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This theorem gives the very efficient algorithm 4.28 to compute a system involving only
the e;, which solutions include all symmetric functions of the vortex problem. To simplify the
description of the algorithm we introduce the following notation o;j and 3, which depend
only on the parity of ¢ and k:

1 otherwise

0 if k is odd 0 if i is even and k odd
Br = o Qi =
1 if k is even

Algorithm 4.28: ComputeSymmetricFunctionsVorticesSystem algorithm

Input : N, the polynomials Q, D and A = —B — C’, where B and C appear in the
Bézout relation BQ + C Q' = D, and the two functions . and 7

Output: Symmetric polynomials in the e;’s

Lp:= [7]\7(]\2[71)]; Lg:=1[0]; P:=1;

for k=2to N —-1do

if IsOdd(k) then

Lg = Ls U[A(3PQ" mod Q)];

Li = LU (:PQ" mod Q)]

else

P .= PﬁQH mod @Q;
Ls = Ls U[Z(P)];

| Lr=LpU[S (2P mod Q)];

return

(2Lglk] — S22 Do Lgli] L[k — 1 —i] — (2N — k) DP Lg[k — 1], k=2...N — 1}

Remark 4.29. The equation 2Ry = N(N — 1) gives always 0 = 0. We explain this fact in
the next subsection.

Example 4.30. The case N = 4 can be handled by hand. In this case, Q(z) = 2* + ez 2% —
esz +eq and A(z) is equal to the polynomial

(—8ex® +32eqe9 — 36e32)22 —8ez (12e4 + e2?)z — 5dez’en +80ege9” — 1924 — Sex™.
From theorem 4.27, the first equation is Ry = 0= (2 A(2)Q"(z)). Hence we compute
P=2AQ" mod Q = (640e4e22 — 1669 — 2304 42 — 288 e32eq)23
—16e3 (27 e3? — 84 eqeg + 23)22
+ (=204 e32e92 + 256 €4 2% — 768 e4%eg — 16e2° — 720 4 €3%)2
+ 966463(1264 + 622).
The next step is to replace 23 by s3 = 3es, 2> by so = —2eo and z by s; = 0 so that
0=7(2AQ") = —16e5 (124 + €2?)*

In the same way, we compute the second equation 7 (zQ"A)— (2N —3).S(AQ") =0. We
obtain the system of two equations:

2 2
es(es + 12¢e4 = 0
(€2 ) (4.6)
ea(es — 16e3eq + 9ezel +48¢e2) = 0



112 CHAPTER 4. SOLVING SYSTEMS WITH SYMMETRIES

4.1.4 Solving the equations with the symmetric functions

The aim of this subsection is to solve explicitly the symmetric equations by exact methods.
To this end, we will use Grobner bases computation.

The case N = 4. Interestingly enough, we can solve the vortex problem by hand when
N = 4. Hence, we give the complete resolution of the case N = 4 without Grébner Basis
computation. The symmetric equations are given by the equation (4.6) and, in addition, we
assume that the discriminant

D = 16edeq — dedel — 128e3e3 + 144eqedey — 27eh 4 256¢3
is non-zero, to ensure that the z;’s are distinct.
Lemma 4.31. In equations (4.6), if ex # 0, then ez = 0.

Proof. We prove it by reduction to the absurd. If e5 # 0 and e3 # 0, the first equation states
that e, = —e3/12. Replacing e4 by —e2/12 in the second equation leads to 8¢3 +27¢3 = 0, but
replacing it in the discriminant leads to—(8e3 + 27¢2)?/27 # 0, which is a contradiction. [J

Then, if eg # 0, e3 = 0, and the second equation becomes (e3 — 12e4)(e3 —4e4) = 0, but D
becomes 1664(6% — 464)2 #0,80 eq4 = 1—1265. If eo = 0 then e3 = 0 or e4 = 0. We can conclude
that:

Proposition 4.32. When N = 4, there are three solutions to the vortex problem :

1
Q(z) = 21 + €2 + Ee% Q(z) = 2* — e3z Qz) = 2* + ey

The indetermination on eo, eg or e4 will be explained and solved in the next subsection as
shown in the figures 4.36,4.37 and 4.38.

Homogeneity of the equations. It turns out that the equations obtained in the previous
subsection are homogeneous for a graded degree. This homogeneity will be useful to speed
up the computation of the solutions.

Proposition 4.33. The equation we obtained in the previous subsection are homogeneous for
the degree d = Y, k X O, , where O, is the degree in e,. More precisely, the k-th equation
has degree d = N(N — 1) ] + 1 — k.

Proof. We started from 2Ry = > S;Sk_1-; — kSk_1. With Z; = Zk# ﬁ, we see that this
equation is homogeneous in the z; of degree 1 — k. The discriminant D = Hi# (2 — 2j) is

homogeneous of degree 2(];] ) So, the previous equation is homogeneous in the z; with degree

2L§J (g ) +1— k. The symmetric function e is homogeneous in the z; of degree k, that’s why

we took the degree d. O

Recall that we have lost the equation 2r; = 2R; = N (N —1), but there is no surprise : we
have seen that the set of solutions (the z;’s) is invariant under multiplication by a complex of
modulus one. This implies that the algebraic variety with variables (es,...,ey) is invariant
under the operation (es,...,en) + (72ea,...,7Nen), with |y| = 1. But an ideal associated
to such a variety is homogeneous for the previous degree d : let P be a polynomial in this
ideal, and write P =), P,, with P, the homogenous part of degree u for the degree d, then
if (e2,...,en) is a zero of P; we have ) ~v“P,(e2,...,en) = 0 for all v of modulus 1. A
non-zero univariate polynomial have only a finite number of roots, so this polynomial (in )
is null and P,(es,...,en) = 0 for all .
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Strategy to compute the solutions Because of the homogeneity, we can assume that
any of the symmetric functions e; is equal to 1 or 0. If it is 0, we have again a homogeneous
system, so we can suppose that another symmetric function e; is equal to 1 or 0, and so on.
We have to add a new equation to ensure that all the z; are distinct : A x D = 1. (We cannot
solve the equations and remove the spurious solutions easily : for example, for N = 5, the
system with ey = 1 without h x D =1 is 1-dimensional.)

According to the benchmark, it seems that the fastest way to compute a Grobner Basis
is to separate the system into two parts, e = 1 or es = 0 and compute a Grobner Basis with
DRL order with A > ey > --- > e3, and then perform a change of ordering from DRL to
the lexicographic order with FGLM (algorithm 1.52). For the component with e; = 0, we
separate e3 = 1 or eg3 = 0, and so on.

Then, we perform a Triangular Decomposition (see [72]) of each component.

Remark 4.34. To compute a Grobner Basis, we assume that ey, = 1 for some k. But with

this assumption, the solutions (z1,...,znN) that we obtain are not solutions of the equations
(Bi) 2z =24 zl%z but of \z; = Z#izi%zj for some A > 0. Denote by (az,...,azyN)

J
the solutions of (E;), where a can be supposed to be a positive real. Then 2r; = 2Ry =

22|z = N(N—1), anda = % The true value of ey, is Y. az;, X - x az, = aF.
Example 4.35. With eq, e3 or eq equal to 1, the solutions (z1,...,24) for N =4 are drawn
below :

1) L] 1 ] " "

L L L L L L L L L L n L L L |
-1 -0.5 0 0.5 1 -1 —0.5 0 0.5 1 1.5 -1 —0.5 0 0.5 1

Figure 4.36 — Q(2) = 2* + 2% + & Figure 4.37 - Q(z) = 2* — z Figure 4.38 - Q(z) = z* + 1

In the case of the four aligned points, >, |zi|? is equal to 2, so we have to perform a
multiplication by \/3 to obtain the solutions of (E;). In the case of the centered equilateral

triangle, Y, |zi|? = 3, s0o a = V/2 and in the case of the square, Y, |zi|*> = 4, so a = %

Removing spurious solutions. We can solve the system to obtain approximations of the
e; and then approximations of the z;, but there are spurious solutions: we have to check that
Pz(z;) = D z; for each i to be sure that we have computed a true solution. Another way to
perform it is to introduce two news variables x and z and add to the system the equations
Pz(2) + Dz = x and 2V + ez "2 + ... + (=1)Ney, with Pz the polynomial computed
previously, which maps z; to DZ;. The next step is to perform a Grobner elimination with
lexicographical order z > ey > --- > e > x to obtain a univariate polynomial Py in
x. Then we isolate the real roots of this polynomial Py using certificated methods, see for
example [83, 84].

Other symmetries. Assume that (eg,...,ex) is a solution with e; = 1. We have said that
if (e2,...,en) is a solution, then (A\2es,...,ANey) too, for all A of modulus 1. If A = —1
(geometrically, we do a symmetry of center O), ey stays at 1, but e3 is changed into —es, so
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we can keep only half of the possible e3. The conjugation (es,...,en) — (€2,...,€en) gives
an other solution, so if eg is not real, we can suppose e3 with imaginary part non negative. If
e3 is real and e4 not, we can keep only the ey with imaginary part non negative, and so on.

4.1.5 Benchmarks

In this subsection, we indicate timings that we have obtained, in order to compute the
equations involving only the symmetric functions (e;) of z1,...,zy. We also indicate how
difficult it is to solve the problem with naive approach or using invariant theory.

Naive Approach. It is possible to solve directly the original system of 2N equations
(E;, E;) in z; and Z;. Because of invariance by multiplication by a scalar of modulus 1,
we can assume that z; is real, so we add the equation z; = Z;. This trick gives an ideal of
dimension 0, if we assume that z; # 0. We split the ideal into two parts : in the first one, we
add the equation z; X @ = 1, and in the second one, we add z; = 0, and we can add zy = Z>.
In each case, the ideal is zero dimensional, if we add the last equation [, j(zi —2z)f =1, to
ensure that all the z; are distinct. We report in table 4.39 the following timings with Magma
to compute the corresponding Grobner basis (co means that we stopped the computation
after five days):

3 4 )
Q 0.02s | 176.8s | oo
F65521 0.01s 0.2s (0. ¢]

Table 4.39 — Direct approach: Grobner bases of the non symmetric systems with Magma.

Invariant Theory. It is possible to introduce the ring of polynomials invariant under &y
through the diagonal representation, see subsection 4.1.1. We report in table 4.40 the number
of secondary invariants in the Hironaka decomposition or the number of fundamental invari-
ants over Q, and the timings to compute them in Magma. oo means that we stopped the
computation after five days.

3 4 5 6 7

Secondary Invariants 6 24 | 120 ? ?
Timings 0.0s | 0.1s | 2255 | o0 | o0
Fundamental Invariants | 9 14 20 27 | 7
Timings 0.0s | 0.1s | 3.0s | 400s | o0

Table 4.40 — Invariant Ring : Hironaka Decomposition and Fundamental Invariants with
Magma.

Generating and solving the symmetric system  We have implemented the algo-
rithm 4.22 in Maple and Magma to generate the symmetric system. We report in table 4.41
the timings to compute the systems depending only on the symmetric functions e; using this
algorithm with these software (Intel Xeon 2.93 GHz with 128GB Ram).
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4 5 6 7 8
Magma | 0.0s | 0.0s | 0.06s | 70.6s | 7649.6s
Maple | 0.0s|0.2s| 0.9s | 41.9s | 2407.3s

Table 4.41 — Time to generate the symmetric systems with Maple or Magma.

On the same computer, the times to compute a Grobner Basis using Magma of the sym-
metric system and perform a triangular decomposition of each component (mostly for the
component with e; = 1) are presented in table 4.42.

4 ) 6 7
Q 0.02s | 0.10s | 296.7s ?
F65521 0.53s | 1.58s 3.9s 1680.8s

Table 4.42 — Grébner bases of the symmetric systems with Magma.

When N =7 we use FGb [63] to compute the corresponding Grobner bases: it takes 144
secondes to compute the system over Fgss01 and about 20 minutes to compute a Grobner
basis and a triangular decomposition over Q. The complete prime decomposition of the ideal
corresponding to the case N = 7 is presented in figure 4.43. Using all the symmetries the
problem admits 12 solutions. Among them, we recognize the particular cases in presented
in the first subsection: the regular heptagone, the regular centered hexagone and the aligned
points. Other classical solutions that have not been mentioned can be recognized: the pattern
with all points aligned but two of them and the pattern with several triangles and a point in
the middle, which is alone in the component eo = 0 and e3 # 0. Notice that this solution
is very close to another one in the component es = 1 and e3 # 0. Even up to symmetries,
these two solutions are not the same, since the property eo = 0 is maintained by the group
Sy x O2(R). Another argument is that the solution close to the regular centered triangles
is expressed with algebraic numbers of degree 82. A web page was created to collect all the
data: http://www-salsa.lip6.fr/~jcf/vortices/
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Component 1
e =1

Degree 526

Component 2
ea =10

Degree 18

r‘
@ [ Component 1/2

e = land e3 #£ 0

Component 2/2
ea=1land ey =0 Component 2/1 3 —lrj =10

\ ea=0and ey #0 /

[ ea=py=ej=eg=¢e5=0 ]

[(_‘nmpmlent 111

Degree 64

=

[ ea=¢3 =éy=eg=e7=0 ]

Figure 4.43 — The set of solutions for N =7



4.2. IDEALS STABLE UNDER THE ACTION OF AN ABELIAN GROUP 117

4.2 Solving Systems Invariant under the Action of an Abelian
Group in the Non-Modular Case

Introduction

This work is a common work with Jean-Charles Faugere and whas published in the pro-
ceedings of the ISSAC’ 13 conference.

Problem Statement. The underlying algebraic problem studied in this section is to com-
pute the variety V(Z) associated to an ideal Z C Klzy,...,z,] that is globally stable under
the action a finite matrix group G C GL,(K), as in the previous section. However, the group
acting in the previous section was the whole symmetric group and in this section we focus on
abelian groups. We will also assume that the action is non-modular: the characteristic of K
does not divide |G]|.

Related Work. This problem is not new and has already been studied by some authors.
The common idea is that, since the group G is commutative and the action non-modular, all
matrices of G can be diagonalized with the same base-change matrix. Thus, up to some linear
change of variables, we obtain an ideal Z? invariant under a diagonal group G isomorphic to
G. To our knowledge, the first author who proposed this idea in a Grébner bases context was
Gatermann in [51]. In this article, she shows why diagonalizing the group G and applying the
linear change of variables on the input polynomials is interesting: some structure is maintained
while computing a Grébner basis of ZP with Buchberger algorithm (see [51, Theorem 7).
She observed that the polynomials occuring during the execution of Buchberger algorithm
remain sparse. More recently, Steidel [96] proposed to use such a diagonalization, compute a
Grobner basis of ZP, apply the reverse change of variables on this Grobner basis and compute
a Grobner basis of Z again. The idea of diagonalizing the group G and using the action
of GP on K[X] has already been used in invariant theory, in order to find a decomposition
K[X]¢ = @'_, niK[01,...,0,] (see for example [100]) or more recently (after that this work
was published) by Hubert and Labahn to find a decomposition K(z1, ..., 2,)% = K(61,...,6,)
in [61]. However, to the best of our knowledge, the impact of the diagonalization on the
complexity of Grobner bases computations has not been investigated.

Main results. We present efficient algorithms together with complexity analysis to solve
such polynomial systems which are globally invariant under the action of any commutative
group G. The algorithms are based on three main ideas: the first one is the diagonalization
of G into GP. Thus, up to some linear change of variables, we obtain an ideal ZP invariant
under a diagonal group GP isomorphic to G.

The second idea is to introduce a grading on K[X] = K[z, ..., 2,] given by the group GP.
This grading exists for every finite group H and is indexed on X (H), the set of irreducible
linear representations of the group H, and has been presented in chapter 3. In our case, since
GP is diagonal, the set X (GD) is isomorphic to GP and the isotypic components are generated
by monomials. Therefore, we introduce the notion of G-degree of a polynomial: assuming
that GP is generated by diagonal matrices Diag(8; 1, ..., 8in) of order ¢; with qi|qa|...|q =€
and that [ is a primitive e-root of 1, we say that a polynomial f € K[X] is G-homogeneous of

. d; = .

G-degree (di,...,dy) € Zg, X -+ X Ly, it f(Binz1, -+, Binxn) =L "% f(x1,...,2y) for all 7.
Taking into account that the operation of taking the S-polynomial preserves this grading,
the final idea is to observe that this can be used to speed up the Grébner basis computation.
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More precisely, Macaulay matrix can be decomposed into |GP| smaller independent matrices,
being roughly the same size. In particular, this allows us to split the matrices arising in
classical Grobner basis algorithms based on linear algebra like Macaulay/Lazard algorithm
(algorithm 1.40), Fy [34] or Fy (algorithm 1.44). Therefore, the complexity (in time and in
memory) of computing Grébner bases of such invariant ideals can be decreased in both theory
and practice. In the same way, in the case of a zero-dimensional ideal Z?, the canonical basis
of the ring K[X]/ZP can also be decomposed in monomials having same G-degree and thus
we are able to split the multiplication matrices arising in FGLM (algorithm 1.52).

In addition, this grading can be used to transform very easily a globally invariant problem
into a problem for which all the equations are G-homogeneous: we show that for each original
equation f we can take the G-homogeneous components of f.

We have implemented, in the computer algebra system Magma, “abelian” versions of the F5
and FGLM algorithms that run several times faster, compared to the same implementation
of these classical algorithms. For example, applying FGLM on the Cyclic-10 problem (a
system with 34940 solutions), instead of computing 10 multiplication square matrices of size
34940 x 34840, our algorithm computes 900 quasi-square matrices of size at most 354.

In order to compare similar implementations, we have implemented an “abelian” version
of Fy [34] in FGb (C language): computing a Grébner basis of the Cyclic-10 problem is about
410 times faster with the new approach. Moreover, a grevlex Grobner basis for the Cyclic-11
problem (184756 solutions) can be computed in less than 8 hours. We also demonstrate that
our approach has a significant impact in other fields: NTRU is a well known cryptosystem and
the underlying problem can easily be modeled by quadratic equations which are left globally
invariant by the action of a cyclic group. We observe a factor of 250 in favor of the new
approach for small size problems and more importantly we can solve previously untractable
problems. Surprisingly, during these experiments, the linear algebra parts (that is building
the matrices and the gaussian elimination parts) can sometimes be so accelerated that the
management of the list of critical pairs becomes the most time-consuming part whereas it is
usually negligible.

More generally, the algorithms given in this paper can also be used for other kinds of
structured polynomial systems like quasi-homogeneous or multi-homogeneous polynomials.

Perspectives. Several further developments can be made on the subject: the Abelian-Fj
and Abelian-FGLM algorithms have to be implemented in C, and it seems possible to obtain
a parallelized version of the Abelian-FGLM algorithm. We have already identified new classes
of invariant problems which can be solved in polynomial time; for other classes of problems
the degree reached during the Grébner basis computation is much lower than expected. It
appears that this lower degree is more a consequence of the sparsity of the support of the
polynomials (after change of variables) rather than a consequence of the invariance under the
action of a group. The study of those sparse systems is a work in progress and part of this
work will be presented in chapter 5.

Organization of the section. The organization of the section is as follows: in subsec-
tion 4.2.1, we recall classical notations and explain the relations between the ideals I and Z7,
and the matrix groups G and GP. In subsection 4.2.2, we explain the grading induced by
the diagonal matrix group G, and introduce the notion of G-degree of monomials and poly-
nomials. The vector space generated by all monomials having same G-degree is nothing else
than an isotypic component ([94]) but since the formulation is simpler in the case of a diagonal
group, we introduce the notion of G-degree of monomials and G-homogeneous polynomials.
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Subsections 4.2.3 and 4.2.4 provide variants of the F5 and FGLM algorithms. The complexity
questions are answered in subsection 4.2.5, and benchmarks are made in subsection 4.2.6.

4.2.1 Linear change of variables

From now on we assume that G is a finite abelian subgroup of G£,(K), with K a field
of characteristic 0 or p such that p and |G| are coprime. We first prove that, within a linear
change of variables, we can assume that the group G is a diagonal group, meaning that all
matrices in G are diagonal matrices.

We start by recalling the following theorem, that describes the structure of finite abelian
groups.

Theorem 4.44 (Classification of finite abelian groups). Any finite abelian group is uniquely
isomorphic to a product Z)Z X - -+ X L] qZ with q1| ... |qe.

Definition — Proposition 4.45. Following the notations of the previous theorem, the integer
e = q¢ 1s called the exponent of the group and is the lowest common multiple of the orders of
the elements of the group.

Recall that char(KK) does not divide |G|, therefore char(K) does not divide the exponent
of G either. Hence, the polynomial 2¢ — 1 is separable on K. It follows that, over K, z¢ — 1
is separated.

Notations 4.46. We will denote by e the exponent of G and by & a primitive e-root of 1 in
barK. We will now consider the field K(§).

The following theorem will allow us to assume that the matrix group G is diagonal, since
it turns out that on K(£) the matrices of G can be diagonalized, with the same base-change
matrix.

Theorem 4.47. The matriz group G is diagonalizable over K(&), meaning that there exists
a matriz P in GL,(K(€)), such that the group GP = PTIGP = {P7'AP | A € G} is a
diagonal group.

Although this theorem is very classical, we give the proof. To this end, we first give a
lemma

Lemma 4.48. Let F be a field and E be a F-vector space of finite positive dimension. Let
(fi)ier be a commutative family of diagonalizable endomorphisms of E, which means that:
— foralli,j €1, fiofj=fjofi.
— for each i, there exists a basis B; of E such that the matriz of f; in B; is diagonal.
Then, there exists a basis B of 2 such that the matrices of all f; in B are diagonal.

Proof. This lemma is so classical, that it is hard to put a reference on it. The proof can be
done by induction on dimp(F), the dimension of E:
— If dimp(E) = 1, then every basis of E concurs.
— Assume now that the lemma has been proved for every dimension between 1 and
dimp(F) — 1 > 1. We distinguish to cases:
— If all (f;) are uniform scalings, then every basis of E concurs and there is nothing
to prove.
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— Otherwise, at least one of the endomorphism f;, is not a uniform scaling. Since f;,
is diagonalizable, the vector space E admits a decomposition £ = € ESp(fiy) Ey

where Sp(fi,) is the spectrum of f;,, which contains at least two elements of F since
fi, is not a uniform scaling. Let i € I\{ig} and v € E). Then

Afi(w) = fi(fio(v)) = fi,(fi(v)) ~ since f; and f;, commute.

Therefore, f;(v) € E), which proves that every f; stabilizes the eigenspaces (E}).
Then, for each A € Sp(fiy), (fis, Jier\{io} 1S & commutative family of diagonalizable
endomorphisms of ). By induction, there exist a basis By of each eigenspace E},
such that the matrices of ( fi‘ Ek)ie I\{io} in By are diagonal. Hence B = U,B) is a
basis of E, such that the matrices of (f;);c; in B are diagonal.

— By induction, the lemma is proved.
O

Proof of theorem 4.47. Every matrix A € G satisfies the polynomial X¢ — 1, which fully
splits in K(¢) and has simple roots since char(K) 1 |G|, so every matrix of G is diagonalizable.
Therefore, by lemma 4.48, the endomorphisms associated to the matrices of G can be diago-
nalized in the same basis of K(£)™. This leads to the existence of a matrix P € GL,(K(§)) such
that P~1AP is diagonal for every matrix A € G. Hence, GP = P"1GP = {P7!AP | A € G}
is a diagonal group. O

Example 4.49. Throughout this section, we will consider often the representation in GL,(K)
of Cy, the subgroup of &,, generated by the n-cycle o = (12...n). With this representation,
C, is generated by the following matrix M, :

010 ...0
001 ...0

My = R
000 ... 1

00 ... 0

With K a field of characteristic 0 or coprime with n and § a primitive n-root of 1 in K, the
group Cy, is diagonalizable with the base-change matriz P = (§V); jeq1,.. .ny- In particular, the
matriz M, associated to the cycle (1...n) becomes the diagonal matrizx D, = P 'M,P =
Diag(¢,..., &1 1).

We now study this change of variables on ideals invariant under the action of G.

Proposition 4.50. Let I = (f1,..., fs)k[x) be a G-stable ideal in K[X], and let GP and

P be the diagonal group and the base-change matriz obtained in theorem 4.47. Then IP =
(ff,.. .,fSP>K(§)[X] is an ideal of K(€¢)[X] stable under GP.

Proof. Since G is a finite group, the orbit of f € Z under G, which is {f* | A € G}, is
finite. Therefore, up to enlarging {fi,..., fs}, we can assume that for every 7 in {1,...,s}
and A € G, f{ is one of the {f;}. Let B in GP. Then, B can be written B = P~!AP with
A € G. Tt follows that for every 7 in {1,...,s},

(JP)B = (fP)PHAP = pPPTIAP _ pAP _ P i f; = fA

Since {fF,..., fF} is a stable set of polynomials under the action of GP, Z? is a G-stable
ideal. O
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Example 4.51. To illustrate the definition, we will use the well known Cyclic-n problem.
The ideal I of K[X] is generated by:

(hi=21+ -+,
ho = X129 + Tox3 + -+ + Tpx

hpn1=x1Z9...Tp_1+Xo...Tpx1+ -+ TpT1...Tp_9

hn = X1X2...Tpn-1Tp — 1

The ideal I is obviously invariant under the cyclic group Cy, since each h; satisfies hiw" = hy,
with M, defined in exemple 4.49. It is also stable under the scalar matriz &I, with & a
primitive n-root of 1, since hfl" = &'h;. Hence, the system is globally invariant under the
group G generated by M, and £I,,. With P the matriz given in example 4.49, GP = P71GP,
generated by D, and &1, is a diagonal group isomorphic to Z/nZ x Z/nZ. We denote by f;
the polynomials hf), which generate IP: for instance, when n = 3, the polynomials f; are:

f1=3x3
fo=—-3x129 + 333%
fz= xi’ —i—x% —i—:l:% — 3xr1x003 — 1

Observe that for all n, the polynomial f1 in the Cyclic-n problem is always equal to nx,, since
Pxt1,...,1) =%0,...,0,n). Hence, for this problem, it is easy to remove one variable after
diagonalization.

4.2.2 Grading induced by a diagonal matrix group

From now on, we assume that G is a diagonal matrix group on a field K, isomorphic to
Hle Z/q;Z with q1]...|qe = e. It follows that K contains a primitive e-root of 1, which will
be denoted by &.

Isotypic components given by monomials. We now show that a basis of each isotypic
component of the representation K[X]; of G consists in monomials. We define the G-degree of
a monomial m, which is a practical way to identify the isotypic component of m. This G-
degree induces a grading of K[X] given by the isomorphism G ~ G ~ [[Z/¢Z.

Since G is isomorphic to Hle Z]q¢Z, let ¢ be an explicit isomorphism

o: G — Z/@Z X - X L]qZ
D — o(D)
and let D; be the preimage of (0,...,0,1,0,...,0), so D; generates a subgroup of G of
K3
cardinality |g;/|.

Example 4.52. With G the group arising in the previous example 4.51, we take ¢ such that
#(Dy) = (1,0) € Z/nZ x Z/nZ and ¢$(&L,) = (0,1).

Proposition 4.53. For every monomial m € M and for each i, there exists a unique p; €
{0,...,q; — 1} such that mP = ¢a"'m,
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Proof. Let m = H;L:1 :E?j and D; = Diag(pP1, ..., Bn). Since D; has order ¢;, the coefficients

Bj are g;-roots of 1, so can be denoted §Zj 9, Then

n
mPi = (51x1)o‘1 X oo X (ﬁnxn)an — HB;Vj m — fqiz‘ i1 fjozjm

J=1

Then we can take p; = ) ¢ja; mod ¢;. Since £ has order e, £ @ has order ¢; and the unicity
of u; is clear. O

Instead of considering p; in {0,...,q — 1}, we take p; in Z/¢;7Z, which makes sense since £ W
has order g;.

Definition 4.54. The k-tuple (p1,...,pue) € Hle Z/qiZ is said to be the G-degree of m and
is denoted degg(m), although it depends on the choice of the matrices D; (more exactly, the
choice of ¢). We denote by D(G) = [[Z/q:Z the set of all G-degrees.

The relation between the G-degrees and the characters of G can be explained easily. From
theorem 3.70, we know that G is isomorphic to G. An explicit isomorphism is given by the
following application:

X: G — G where y;: G — K*
e/q e
D — X Dj — ¢ itg ‘
1 otherwise.
Proposition 4.55. With previous notations, any monomial m is of G-degree (pu1, ..., ue) if

and only if mP = x(D)m for all D € G, with x = Hle XA

Proof. Let m be a monomial, and D € G. From the structure of G, D can be uniquely
written H§:1 D?J, with oj € Z/q;Z. Then, with x = Hle x4, we have

¢ ‘ ¢ ) i p
X(D) = HX H D]o.‘j — H H Xi(Dj)aj _ ng—‘iami
=tovE i=1

I

i=1 | j=1
Assume now that m is of G-degree (u1,...,us). Then for each i, mP = ¢« and mP =
X(D)m. The converse implication is obvious since we just have to set D = D; in the relation
mP = x(D)m. O

Remark 4.56. It follows from proposition 3.83 that every p € D(QG) is the G-degree of some
monomials.

To every monomial, we have associated a G-degree. What is very interesting is that the
set of monomials of a given (G-degree forms a basis of the isotypic component of the associated
character, which follows from the following proposition:

Proposition 4.57. For D € G, we denote by pp the associated linear map on K[X]. For
all polynomial f € K[X], we have pp(f) = fP. Then, for all monomial m in K[X], and

X = Hle X4, the following relation holds:

m  if degg(m) = ey
px(m) _ f gG( ) (Ml :uf)
0 otherwise.
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where py, = ﬁ > pec x(D)~"tpp is the projection on the isotypic component associated to x,
see theorem 3.65.

Proof. Let x,, be the character Hle X", where (aq,...,ap) is the G-degree of m. Then
pp(m) = xm(D)m for all D € G, by proposition 4.55. It follows that

pr(m) = == > X HD)xm(Dym =m | = > (x xm)(D)

By theorem 3.59, py(m) = m(x 'xm|1) is equal to m if and only if x~'x,, = 1, and zero
otherwise, which ends the proof. ]

Proposition 4.58. For all monomials m,m’ in K[X], the G-degrees of m and m' satisfy the
relation degg(m) + degg(m’) = degg(mm/).

Proof. Let i € {1,...,k} and m,m' be two monomials. Let p;, u; such that mPi = §‘1%M"m
and m'Pi = ¢u'im!. Then (mm/)P: = mPim/Pi = 5‘17(M+“i)mm’. Hence degg(mm/) =
dega(m) + degg (m’). O

Note that to compute degg(m) with m = [[}%, we just have to know degg(z;) since
degg(m) = > ajdegg(z;). This grading will be used to reduce the sizes of the matrices
in the Diagonal-F5 algorithm.

Remark 4.59. If we denote by Mg, the set of monomials of degree d and G-degree g,

MagMa g C Mayar grg for alld,d,g,g'. Therefore R = @ Vect(Magg).
deN,geD(G)

Example 4.60. Let G be the matriz group generated by the diagonal matric D, =
Diag(&,€%,1) where € is a primitive third root of 1. FEach x; has G-degree i mod 3, so
m = Ha:?’ has G-degree > joi; mod 3. Hence, z1x2x3 (resp. w1x3) has G-degree 0 (resp.

Example 4.61. (cont. of example 4.51) The G-degree of x; is (i,1).

G-homogeneous polynomials. We now define a notion of G-homogeneity, which follows
directly from the grading induced by G on K[X]. The cornerstone of the Abelian-F5 al-
gorithm (subsection 4.2.3) is that the S-polynomial of two G-homogeneous polynomials is
G-homogeneous, which will be proved in theorem 4.64.

Definition 4.62. A polynomial f in K[X] is said to be G-homogeneous if all monomials of f
share the same G-degree (p1, ..., ue) € D(G). In this case, we set degg(f) = degg (LM(f)).

In other words, a polynomial is G-homogeneous if it lies in an isotypic component K[X], of
K[X], viewed as a representation of G. Since a polynomial in K[X] can be written > LED(G) fus
with f, a G-homogeneous polynomial of G-degree u, we call f, the G-homogeneous compo-
nent of f of G-degree p.

Proposition 4.63. If f is G-homogeneous and m is a monomial, then mf is G-homogeneous.
Moreover, degg(mf) = degg(m) + dege(f).

Proof. For any monomial m of f, degg(mm) = degg(m) + degg(m) = degg(f) + degg(m),
so all monomials of m f share the same G-degree degg(f) + degg(m) = degg(mf). O
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It follows that the product of two G-homogeneous polynomials is also a G-homogeneous
polynomial. Hence, K[X] is a graded algebra, in the sense of definition 2.12. Moreover,
since each component is generated by monomials, it follows that the S-polynomial of two
G-homogeneous polynomials is also G-homogeneous.

Theorem 4.64. Let f,g be two G-homogeneous polynomials of Rx. The S-polynomial
of (f,g) (see definition 1.29) is G-homogeneous of G-degree degg(LM(f) Vv LM(g)), where
LM(f)V LM(g) denotes the lowest common multiple of LM(f) and LM(g).

Proof. Since LM(f) and LM(g) divide LM(f) vV LM(g), both fractions

LM(f) VLM(g) . LM(f)VLM(g)
LM(f) LM(g)

are monomials, therefore by previous proposition,

LM(f)vLM(g)LC(f)g . LM(f) v LM(g)
LM(g)  LC(g) LM()

are two G-homogeneous polynomials. Moreover, they share the same leading monomial,
so they have same G-degree, which is the G-degree of S(f,g). We actually proved that

degg (S(f,g)) = degg (LM(f) Vv LM(g)). O

Example 4.65. Following example 4.51, it appears that each f; has G-degree (0,1) € Z/nZ x
Z/nZ under G generated by D, and &I,.

f

G-homogeneous ideals. We now consider ideals generated by G-homogeneous polynomi-
als. Let Z be a G-stable ideal generated by f1,..., fs. A Grobner basis computation preserves
the G-degree, but the polynomials f; are not necessarily G-homogeneous. Our aim here is to
prove that the G-homogeneous components of the f; are in Z, and so to compute a Groébner
basis of Z, we take the G-homogeneous components of generators of Z as inputs. This oper-
ation has a negligible cost since at each degree d, the abelian-F5 algorithm (presented in the
next subsection) separates My, the sets of monomials of degree d, into subsets Mg 4 of same
G-degree g.

Definition 4.66. An ideal J of K[X] is said to be G-homogeneous if it is generated by
G-homogeneous polynomials.

The previous definition follows the general definition of a homogeneous ideal in a graded
algebra given in definition 2.13. An interesting result is that the notion of G-homogeneous
and G-stable ideal are the same.

Theorem 4.67. Let J be an ideal of K[X]. Then, the following properties are equivalent.
(1) J is G-homogeneous.
(2) J is G-stable.
(8) For all f € J, the G-homogeneous components of f also belong to J .

Proof. (1)==(2). Let f € J. Then, f = >, hif; with f; a G-homogeneous polynomial.

Hence, for all D € G, fP = > hP fP. Since f; is G-homogeneous, the polynomial f; is equal
to \;f; with A; a suitable root of 1. Hence, J is G-stable.
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(2)=(3). For all x € ér, the projection on the isotypic component associated to y is given
by py(f) = ﬁ Y pec x(D)" fP.If f € T all fP belong to J since J is G-stable. It follows
that all G-homogeneous components of f belong to 7.

(3)=(1). If f1,..., fs is a generating set of 7, it is clear that the G-homogeneous components
of fi,..., fs also generate 7, and they are G-homogeneous. ]

Example 4.68. Let G be the diagonal group of order 2 generated by the matrixz Diag(—1,1),
acting on R = k[z1,z2]. Assume that x3ze + 2323 — 21 +1 € T, with T a G-stable ideal. Then
since degg(w;) = i mod 2, degg(z312) = dege (1) = 1 and degg (1) = degg(z323) = 0, so
2310 — 21 and 2323 + 1 belong to T.

We end up this subsection with a quite obvious but useful property, which will be used in
subsection 4.2.5.

Proposition 4.69. Let G be a diagonal matriz group acting on K[X] = Kl[z1,...,x,]. Then
the G-degrees of the variables x1,...,x, span the group of G-degrees D(G).

Proof. If m is a monomial, m can be written [[ 2. Then degg(m) belongs to the subgroup
spanned by the G-degrees of the variables. But from proposition 3.83, it follows that for each
G-degree, there exists a monomial having this G-degree. O

4.2.3 Abelian Matrix-F; algorithm

We are now able to describe a variant of the Matrix-F5 algorithm (algorithm 1.44), which
takes advantage of the action of the diagonal group G. Let Z be a G-stable ideal, with
G a diagonal group isomorphic to D(G), the group of G-degrees. Let fi,...,fs be G-
homogeneous polynomials generating Z (according to theorem 4.67). Any computation of
the reduced Grobner basis of Z would implicitly use the grading K[X] = @ cpa) K[X],
since it computes S-polynomials. The key of the Abelian-F5 algorithm is the following :
the polynomials f; are G-homogeneous, and also the polynomials m, f;. Therefore, in one
Macaulay matrix appearing in the classical Matrix-F5 algorithm, the only non-zero coefficients
of the row indexed by m, f; are on columns indexed by monomials having same G-degree.
So, instead of building one Macaulay matrix Mg ;, we will construct |G| matrices My ; 4, for
all g € D(G). This idea leads to algorithm 4.70.

At each degree d, the algorithm builds |G| matrices My ; , and performs row reduction on

them, in order to obtain Mdﬂ-’g. The columns of My; 4 are indexed by all monomials of degree
d and G-degree g, sorted for an ordering (for example the grevlex ordering). The rows contain
the writing of all products m x f; with j <4 and m monomials of degree d — d; and G-degree
g — gi, except those which have been removed by the Fj criterion. This criterion (lemma 1.45)
applies straightforwardly in this case, the only change is that the monomial m can only be
found in Mg_g,i—1,g—g,- Note that all the loops on g € D(G) are independent, so at each
degree d, it is possible to parallelize the computations of row-echelon forms on |G| different
processors to speed up the computations. Assuming that there are no uniform scalings in
G, we will see in the complexity subsection 4.2.5 that this allows a theoretical speed-up
of |G|¥ compared to the classial Matrix-F5 algorithm, which appears also in practice, see
subsection 4.2.6. In the affine case, this speed-up appears without restriction on G.

4.2.4 Abelian-FGLM algorithm

In this subsection, we explain how to take advantage of the G-grading to speed up the
change of ordering, using a variant of the classical FGLM algorithm 1.52. We assume that
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Algorithm 4.70: Abelian Matrix-F5 algorithm

Input : The set D(G) of G-degrees, homogeneous and G-homogeneous polynomials
(f1,..., fs) with degrees d; < ... < ds and G-degrees g1, ...,¢s, a maximal
degree D

Output: Grobner Bases of (fi,..., f;) fori=1,... s up to degree D

fori=1tosdo G :=0;

for d = d; to D do

for g € D(G) do

Md,O,g = (D;

for i =1 to s do

if d < d; then

| Mg = M1y
else

M, ; 4 := matrix obtained by adding new rows m.f; to Md,iq,g, for all
monomials m of degree d — d; and G-degree g — g; that do not appear as
leading monomial of a row of My_g; ;—1,g—g,-

Compute Md,i,g by Gaussian elimination from Mg; g;
B Add to G; all rows of M ; 4 not top-reducible by G;;

return Gi,...,G;

the dimension of the G-stable ideal Z = (f1,. .., fs) is equal to zero, and that a Grébner basis
G<, for an ordering < (for instance the DRL ordering) of Z has already been computed, and
we are interested in computing the Grobner basis of Z for an other ordering <y (for example,
the lexicographical ordering). The idea of the Abelian-FGLM algorithm is exactly the same
as algorithm 1.52: we pick up monomials m in K[X] by increasing order for <5, and look for
linear combinations in K[X]/Z between the Normal Forms NF(m,G<,). But the additional
structure given by the grading by G allows us to split the matrices used to compute the
Normal forms and test the linear dependency. Contrary to the original article [44], we make
the choice here to insist on the point of view of representation theory. In proposition 2.14, we
have seen that given an ideal Z in a graded algebra A, both Z and .A4/Z have a decomposition
into homogeneous components. This proposition applies in our case, with the G-grading.

In the classical FGLM algorithm 1.52, the first step is to compute the matrices of the linear
maps given by multiplication by the variables z1,...,z, in K[X]/Z. But the decomposition

KIX]/T = @ (K[X]Q/IQ)

g€D(G)

and the fact that each variable x; is G-homogeneous allow us to decompose these linear maps
into restricted maps

K[X]Q/Ig = K[X]g+degc(ri)/Ig+dege(xi)

Example 4.71. Let G be the diagonal group of order 2 generated by the matrixz Diag(—1,1),
acting on Klx1,xe]. The set of G-degrees is equal to Z/2Z, and we have degg(z1) = 1 and
degg(z2) = 0. If T is a G-stable ideal, the linear maps of multiplication used in FGLM or
Abelian-FGLM algorithms are the following:
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(K[X]/Z) (K[X)/T)y & (K[X]/I),
T1,T2 2 T2
Tl T
(K[X]/Z) (KIX)/T)y D KX]/T),
Multiplication with FGLM Multiplication with Abelian-FGLM

As FGLM can be seen as a change of bases on the vector space of finite dimension
(K[X]/Z), Abelian-FGLM performs simultaneous change of bases on the isotypic components
(K[X]/Z)4 of the representation of G given by K[.X|/Z. For g € D(G), we denote by &, the set
of G-homogeneous monomials of degree g that are not reducible by G<,, and §, = |£,| will de-
note the dimension of (K[X]/Z), as a K-vector space. Therefore, § = dim(K[X]/Z) = >_/ .

The Abelian-FGLM algorithm needs the matrices of multiplication M; , of multiplication
by @i from (K[X]/Z), to (K[X]/Z),, gegq,(s;) in the bases & and & gegy(s;)- The algo-
rithm 4.72 is used to compute these matrices. The proof of its correctness is exactly the same
as the proof of algorithm 1.47 used to compute the multiplication matrices in the classical
FGLM algorithm.

The Abelian-FGLM algorithm proceeds just like the classical FGLM algorithm: a new
monomial to consider (except 1) is of the form m = z;m/, with m’ <5 m. Assume that
degg(m') = ¢', so we already know the expression of NF<, (m/,G<,) in terms of £y, which is
a vector V'. It follows that NF<, (m,G<,) is computed by the product V' = M; »V’. Then
we have to decide if m belongs to the new staircase in construction S or if it is the leading
monomial of a polynomial of the Grébner basis for <s. To this end, we use base-change
matrices @)y between £; an S,, the subsets of the staircases having same G-degree g. If s is
the number of elements of the staircase S; = {u1 <2 --- <2 us} at the current point of the
algorithm, and V; the vectors corresponding to NF<, (u;, G<,), then Q,V; is equal to the i-th
vector of the canonical basis. Since the matrix @), is invertible, if all the components but the
s first ones of QV are zero, then we deduce a new element of the Groébner basis G<,, otherwise
m is a new element of S; and we have to update @4, to map V on the (i + 1)-th element
of the canonical basis. The Update procedure used in algorithm 4.73 is exactly the Update
procedure 1.54 used in the classical FGLM algorithm.

In the pseudocode of the Abelian-FGLM algorithm, 0 means the G-degree (0, . .. ,0). We
assume that the set of variables is ordered with x,, <o ,—1 <2 --- <9 x1. Note that with
deg () = 0 for each i, we recover the standard FGLM algorithm. Abelian-FGLM has been
implented in Magma, a web page has been created to collect the code and some examples '

4.2.5 Complexity questions

In this subsection, we discuss the arithmetic complexity of the algorithms presented before.
This complexity will be counted in terms of operations in K. We will assume that this field
contains a e-primitive root of 1, with e the exponent of the group G. We first make some
considerations on the first steps, namely the diagonalization of the group and the change of
variables on the polynomials induced by this diaonalization.

1. http://wuw-polsys.lip6.fr/~jcf/Software/benchssym.html
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Algorithm 4.72: Abelian-Multi-Mat-building algorithm
Input : A reduced Grobner basis G of a zero-dimensional G-homogeneous ideal
7T C K[z1,..., 3], the staircases £, = {1 =€ <€ <+ < 6§g} of monomials
of G-degree g, that are not (top-)reducible by G.
Output: Multiplication matrices of the maps f +— x;f in K[X]y/(G)g
for i :=1 ton and g in D(G) do
M; 4 :=Square matrix of size d, x d4 filled with zeros; // The rows of M;, are
indexed by [e] <€ < -+ < egg] and the columns by [z;€] < 260 < -+ < :ciegg]

L:=[zie | 1 <i<mn,ecUE, sorted by < and without duplicates;
for v € L do
switch v do
case u in UE, :
g = degg(u);
M; g—degg (2:) [0/ i, u] := 1 for all i such that z;|u; //the column of
Mi,g_deggm) indexed by u has only one non-zero entry corresponding to
| u/m;.
ase u = LM<(h) for some h € G:
g :=degg(u); //h is G-homogeneous of G-degree g.

. g
h can be written u + Y ;% a;el;

| Mg dege (@[l :="(—a1,..., —as,) for all i such that z;|u;

o

otherwise

g := degg(u);

Find j such that zj|u and v = u/x; € L\E;_geg, (;);

Find (e, ¢) such that v = z¢e with € € UEy;

g :=degg(€); //9 = g — degg(x;) — degg (x¢)

V := My y[.,v]; //this column of M,y contains the expression of
NF<(v,G) in the basis €y deg (ws) = Eg—dege(z;) -

W= M; g degg(c;)Vs //W 1is associated to NF<(z;v,G) =NF<(u,G) in &,

M; g—degg (2:); u] := W for all i such that x;|u;

return {M;y|ie{l,...,n} and g € D(G)}
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Algorithm 4.73: Abelian-FGLM algorithm

Input : Multiplication matrices M; 4, the sub-staircases £;, an ordering <
Output: The Grobner basis of Z for <9

L:=](1, 6, n), (1, 0, n—1),...,(1, O, 1)]; //1ist of 3-uples (j,g,i) symbolizing the
monomials Sy[j] X x;, ordered by increasing order

Sy == [] for g € D(G)\{O} and S5 = [1]; //subsets of the staircase S for the
ordering =< having same G-degree

V, =[] for g € D(G)\{0} and Vs =[(1,0,...,0)]; //V, contains the expressions of
NF<, (Sqlj],G<,) in &;, each vector in V, has J, components

G :=[]; //The Grébner basis for =<

Qg = Is, for all g € D(G);

while L # [] do

m := L[1]; and Remove m from L;

ji=m[l]; ¢ :==m[2];i:=m[3]; 9 := ¢ + degg(z:);

v := M; yVy[jl; //components of NF<, (z;S4[j],G<,) in &
5 := #Sy; //number of elements in S

A= t()\l, . )\59) = Qqv;

if Asy1=---= X5, =0 then

G:=GU[m— ;AJ’ - Sgldll;

else
Sg i=5g U [Sg[j] x wil;
Vg = Vy U v);

L:=Sort(LU[(s+1,9,i) |i=1,...,n],=2);
Remove duplicates from L;

Update(Qg, A, v); // Now Qqu ="(0,...,0, 41r1’0""’0)

| Remove from L all multiples of LM<, (G);
return G
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Remark 4.74. [96] When working in a finite field F),, a very interesting case is when &
belongs to k, so Fp(§) =Fp. It is easy to see that

EelF, < X°—1 splitsonFp, <= 7Z/eZ CZ/(p—1)Z <= p = 1]e]

By Dirichlet’s theorem, there are infinitely many such primes and the distribution of such
primes is 1/p(e), where ¢ is the Euler’s totient function. To compute the Grébner basis of
an ideal over Q, it is more efficient to compute modulo some such primes and use modular
methods to recover the original Grobner basis.

Now, we give without proof a bound on the cost of the two first linear steps:

Proposition 4.75. The cost of the diagonalization of the matrix group G is bounded by
O((q1 + -+ + qr)n®), with w the constant of linear algebra. With m polynomials f; of degree
less than or equal to d, the cost of computing the fiP 18 bounded by O((”;d) ndm log dloglog d).

In practice, these costs are widely bounded by the cost of the Abelian-F5 algorithm,
therefore they are negligible.

Hilbert Series of the ideal before and after the diagonalization. LetZ = (f1,..., fs)
be a homogeneous ideal, let G be a matrix group such that Z is G-stable, and assume
that K contains a primitive e-root of 1. Then, the base change matrix P introduced in
subsection 4.2.1 induces a bijective mapping between the components (K[X]/(fi,..., fs))4
and (K[X]/(fF,..., /) ;- Therefore, both Hilbert series, degree of regularity and degree of
the ideal are the same before and after diagonalization. From now, we assume that Z is a
G-stable ideal with G a diagonal matrix group.

Complexity of the Abelian-F5 algorithm. In order to bound the complexity of the
Abelian-F5 algorithm, we bound the complexity of an abelian version of the Lazard algo-
rithm 1.40, consisting in building a row echelon form of Macaulay’s matrices, that are the
same as in Abelian-f5 but without removing rows with the Fs-criterion. In the case of an
ideal F invariant under a diagonal group GP, we have seen that such a matrix can be splitted
into |GP| parts, and previous analysis of the dimension of the vector space dim(K[X]y q4) in
proposition 3.83 proves that, under parallelization on the computations of row echelon form
of the |G| submatrices, the following theorem holds:

Theorem 4.76. Let G be a digonal group with no uniform scalings, and let ¥ = (f1,..., fs) €
K[X]® be a family of homogeneous polynomials generating a 0-dimensional G-stable ideal T.
The complexity of computing a Grébner basis for the DRL ordering of the ideal I is bounded

by
(e (L))
IG[¥\ drey(F)
operations in K, with w the constant of linear algebra.

Proof. Once the group G is fixed, we have seen in theorem 3.78 that the dimensions of the
vector spaces K[X]y, tend to be equally distributed as d grows to inifinity. The matrix
Mg 4 built by the abelian variant of the Lazard algorithm has dim(K[X]gq,) columns and
Yoio dim(K[X]g—q,,g—g,) rows if f; is of degree d; and G-degree g; for all i. Then, the proof
ends by the same analysis as the complexity of the Lazard algorithm given in theorem 1.42.

O
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In the affine case, the complexity of the Fs5-algorithm is unclear, due to the possible fall of
degree. It seems that a bound similar to theorem 1.42 could be obtained (see for example [93,
Theorem 1.73]), assuming that the homogeneous part of greatest degree of each polynomial f;
forms a regular sequence (and also, s = n). Therefore we could obtain a similar improvement
as in theorem 4.77 with this kind of argument. However, we will see in chapter 5 that
theorem 1.42 holds also for affine systems. Hence, the following theorem holds:

Theorem 4.77. Let G be a digonal group and let ¥ = (f1,..., fn) € K[X]" be a family of
polynomials of degrees (di,...,d,) generating a 0-dimensional G-stable ideal Z. The com-
plexity of computing a Grébner basis for the DRL ordering of the ideal T is bounded by

(e (i) )
|G’w dwit
operations in K, with w the constant of linear algebra and dywix < 1+ Z?:l d; — 1.

Complexity of the Abelian-FGLM algorithm. We are now interested in giving a com-
plexity bound of the abelian-FGLM algorithm. Let Z be a zero-dimensional ideal invariant
under the diagonal group G. We have to consider the two parts of the algorithm to give a
complexity estimation : the construction of the multiplication’s matrices M; , and the loop
in FGLM. We denote by § the degree of the ideal Z. Unfortunately, the staircases are not
necessarily evenly distributed over the set of G-degrees:

Example 4.78. Let G be the diagonal matriz group generated by the diagonal matriz D, =
Diag(€,€2,...,6" 1 1), acting on K[X] = K[z1, ..., 2], with & a primitive n-root of 1. Then
the zero-dimensional ideal T = (z1,...,2n_1,22) has an arbitrary high degree D but & =
Eo={1,z,,... ,a:,?_l , where 0 is the G-degree of the variable x,,.

However, this kind of “bad situation” happens only for very particular ideals. In practice,
the sizes of the substaircases £, are evenly distributed, and |£y| ~ |£|/| G/, see subsection 4.2.6.
Moreover, the size of these substaircases can be ezactly the same; the following proposition
gives a sufficient condition.

Proposition 4.79. Let T be a G stable zero-dimensional ideal. If all the maps
K[X]/Z “% K[X]/Z
are invertible, then all substaircases have same size.

Proof. 1t follows from the assumption that [£5| = |€g1degg (2| for all ¢ € D(G) and i €

{1,...,n}. Since the group spanned by the G-degrees degg(z;) is the whole group D(G) by
proposition 4.69, the proposition is proved. O

In the case || ~ |£|/|G|, the following theorem holds.

Theorem 4.80. Under the hypothesis that the monomials of £ are evenly distributed over
the staircases &, (which is verified in practice), it is possible to obtain the reduced Grébner

basis G=, from G=<, of T with O <ﬁ63) arithmetic operations in K.
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Proof. The proof is essentially the same as the proof of theorems 1.51 and 1.57, which
bound the complexity of computing the multiplication matrices and applying the usual
FGLM algorithm [39]. In algorithm 4.72, the list L has size O(nd) and only the“otherwise”
case needs arithmetic operations. In this case, the linear algebra part can be done in

at most O ((5/\G|)2), due to the fact than the matrices M;, are assumed to be of size

(|01/1G|) x (|6]/|G]). Therefore, at most O <ﬁ53> are needed to compute the multiplica-
tion matrices in algorithm 4.72. In the same way, the while loop in algorithm 4.73 is entered at
most nd times, and linear algebra operations are also done in at most O(62/|G|?) operations.

Hence, the theorem holds. ]

Polynomial complexity. Interesting enough, this approach allows us to identify some
problems than can be solved in polynomial time. Assume that g1, ..., gs are affine polynomials
of K[X] of degree 2, which are individually invariant under the Cyclic-n group. Usually,
computing a Grobner basis of I = (g1,...,gs) is exponential, but we will see that we can
obtain a Grébner basis of Z in polynomial time in n and s. With P = (¢¥), and f; = gZP ,
each f; is invariant under D, = Diag(¢,£2,...,£" 1, 1) and f; has G-degree 0.

Lemma 4.81. The support of each f; is contained in
{1, 20,22} U {zizp_y, | 1<i<|[(n—1)/2]}

Proof. Each x; has G-degree i mod n, so degg(z;x;) =i+ j mod n, and the only monomials
of degree 2 having G-degree 0 are z;x,—;. The only monomial of degree 1 and G-degree 0 is

Zn, and 1 is also of G-degree 0. O
Theorem 4.82. A Grébner Basis for every monomial ordering of a system of s equations
individually invariant under D, = diag(¢, ...,E" "1, 1) can be computed in polynomial time in
n+s.

Proof. We set y; = x;x,—; for each ¢ € {0,...,|(n —1)/2]} to linearize the equations, and
perform a Gaussian elimination on the equations. The result is a Grobner Basis since the
leading monomials of any pair of the obtained polynomials are coprime. The matrix, that
we have to reduce has s lines and |(n + 5)/2] columns, and the complexity is polynomial in
n+s. O

Remark 4.83. Similar results can be obtained for other groups and systems. Howewver, the
polynomial timings are rather due to the sparsity of the system after diagonalization than to
the action of the diagonal group. We study sparse systems in chapter 5, and this is also a
work in progress with Jean-Charles Faugére and Pierre-Jean Spaenleheauer.

Application to quasi-homogeneous systems. Let (fi,..., fs) be a set of polynomials in
K[X], assumed to be quasi-homogeneous, with respect to the sequence of weights (w1, ..., wy),
with w; being a positive integer for each i. We can assume that the integers w; are relatively
primes. For f a quasi-homogeneous polynomial with respect to this sequence of weights,

denote by f the polynomial f(x},...,2%s) where ;" has been substituted to x;. Then,

each fz is individually invariant under the action of the group G generated by the diagonal
matrices D; = Diag(1,...,1,¢;,1,...,1) where ; is a wj-primitive root of 1. This group has
size H?Zl w; and contains no uniform scalings except I,, since the weights are relatively prime.
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dn| 2 | 3 | 4 | 5 | 10 | 15
2 10.33]0.00 | 0.20 | 0.00 | 0.091 | 0.00
0.00 | 0.14 | 0.00 | 0.09 | 0.00 | 0.01
0.20 | 0.00 | 0.10 | 0.09 | 0.02 | 0.01
5 10.00|0.09|0.00|0.02]| 000 | 0.00
10 | 0.09 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00
15 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00

Table 4.84 — Repartition of the monomials under G

Hence, theorem 4.76 can be applied, and we conclude that a Grobner basis of <f‘) = fi,.. ., fs>

can be computed within
O S (n + dregi(F>> ¢
(ITy wa)” dreg(F)

if ( fl, ey fs) is a zero-dimensional ideal. This approach allows us to recover parts of the
results of [37]. However, some improvements specific to quasi-homogeneous systems are done
in this paper. First of all, if we pay attention to the S-polynomials built during the computa-
tion of a Grébner basis of F, we can see that only polynomials of G-degree 0 occur. Hence,
there is no need to build G Macaulay matrices at each step, only one is needed. Secondly, the
authors of [37] give a precise bound on the degree of regularity of the sequence F. Finally, it
it possible to recover the Grébner basis of (fi,..., fs) from the Grobner basis of (fi,..., fs).
The FGLM algorithm can be applied with this Grobner basis, and its complexity is precisely
estimated.

4.2.6 Experiments

In this subsection, we report some experiments that show the improvements given by our
approach on the computation of Grébner bases of ideals invariant under an abelian matrix
group. We first present the dimensions of K[X];, and (K[X]/Z), on some examples, and
then give timings obtained with an implantation of the algorithm Abelian-Fy. A web page
has been made for other software and benchmarks 2.

Distribution of dim(K[X]g,) and dim ((K[X]/Z),). In this paragraph, we assume that G
is the cyclic group generated by the matrix D, = P~1M,P = (£,£2,...,6""1 1) presented in
example 4.49. We first compare dim(K[X], ) with dim(K[X])g/n, since n is the order of the
group G. To this end we compute the relative standard deviation between these dimensions,
for several n and d. The formula is given by

i 2
\/711, deG <d1m(K[X]d7g) — w)

Tdn = dim (K[X]g)

Table 4.84 presents some values of o4, in the case of this cyclic group. We see that the
monomials are very quickly evenly distributed over g € D(G).

2. http://www-polsys.lip6.fr/~jcf/Software/benchssym.html
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no| &l G| [E/IG] | max(|&]) | oe

3 6 9 | 0.667 2 1

5| 70 | 25 | 2.800 6 0.286

6 | 156 | 36 | 4.33 6 0.133

7| 924 | 49 | 1886 24 0.045

10 | 34940 | 100 | 349.40 354 0.0043

11 | 184756 | 121 | 1526.91 | 1536 | 0.00060

Table 4.85 — Cyclic-n: Repartition of the monomials into &,

In the same way, the stairs £, that appear in the abelian-FGLM algorithm have roughly
same size. Table 4.85 presents some zero-dimensional ideals together with the sizes of the
groups and the sizes of the substaircases. The examined problem is the Cyclic-n problem,
defined in example 4.51. We recall the resulting ideal is G-stable with G a group of cardinal
n?. Notice that not all integers n between 3 and 11 lie in the table: the other values lead to
an ideal of positive dimension. In the table, we present the size of the (global) staircase, the
average size of a substaircase (equal to |£]/|G|) and the maximal size of a substaircase. This
maximal substaircase is always given by the G-degree of the monomial 1, corresponding to
the trivial character. The final column is the relative standard deviation between |€;| and
I€|/|G]|, the formula of which is given by

1 Sea (16— &)

8

og =

It follows that the relative standard deviation tends fast to 0 as n grows, meaning that all
substaircases have roughly same size.

Abelian-F; implementation. A first implementation of the Abelian-F} algorithm has
been made. This algorithm is a variant of the classical Fj-algorithm [34]. It constructs |G|
matrices at each degree, using the usual strategy of Fy;. Note that only the construction of the
matrices and the operations of row-reduction on them have been parallelized, the handling of
the list of critical pairs is still sequential. Surprisingly, the linear algebra can sometimes be so
accelerated that this handling can become the most time-consuming part whereas it is usually
negligible. Therefore we report in the following tables two timings or ratios in each column:
the timings are related to F "™ which is the new abelian algorithm parallelized on n cores,
applied on a G-stable ideal I wich G a diagonal matrix group. The first one is the total
timing and the second one is only the parallelized part (that is to say, building the matrices
and the linear algebra parts). The other columns contain the ratios between Fi', Fy or FM
and F f ™. F, means the standard Fj applied on the original ideal before diagonalization
and Ff the standard Fy applied on Z. FM is the implementation of the Fy algorithm in
Magma, and there is only the ratio for the total timing. In each case except table 4.90,
the group acting on the ideal before diagonalization is the cyclic group C,, generated by the
matrix M, defined in example 4.49, and G is the group generated by the diagonal matrix
D, = Diag(¢,€2,...,1) = P~1M,P. Note that we have to reach big-sized problems to have a
significant impact. All computations have been made on a computer with 4 Intel(R) Xeon(R)
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CPU E5-4620 0 @ 2.20GHz with 387 GB of RAM, on a field where X !¢l —1 fully splits (most
of the time Fg55921 ), according to remark 4.74.

Equations of degree 3 and G-degree 0. In table 4.86, we consider n randomized
affine equations of degree 3 individually stable under C),, which give rise to equations of G-
degree 0 in Z. Notice that in this case, the substaircases of each G-degree have exactly same
size.

no| o EM [ RYEN ] RJES | RYEYT
total; // part | tot;p.p tot;p.p tot

8 3.46s;2.48s 2.2;2.7 33.0;45.4 22
77.04s;64.21s 7.3;8.6 67.8;81.0 50

10 | 762s:672s | 10.0;11.3 | 160.9:182.1 134

11 | 22162s;20425s | 13.0;14.0 00 00

Table 4.86 — n cubic equations of G-degree 0

Equations of degree 2 with only two G-degrees. Table 4.87 presents n equations
of degree 2, half of these equations in Z are of G-degree 0, and half of G-degree 1. In this
case, the computation on Z becomes polynomial in n and the handling of the critical pairs is
the most time-consuming part.

n P F{/FA | Ry FM

total; // part | tot;p.p tot;p.p

25 | 0.255:0.06s | 1.9:4.5 | 56.60:230.0
30 0.58s;0.11s 1.5;4.6 80.79;415.1
35 0.86s;0.11s 1.9;8.5 228.5;1755
40 1.55s;0.21s 2.0;8.5 300.6;2174
45 2.31s;0.30s 2.4;10.7 | 664.5;5043
50 3.96s;0.45s 2.6;13.3 | 753.8;6504
959 6.98s;0.66s 2.5;15.0 | 1207;12570
60 | 10.85s;0.96s 2.8;17.2 | 1294;14330

Table 4.87 — n quadratic equations of G-degree 0 or 1

Application to Cryptography. Table 4.88 presents equations coming from a cryp-
tographic application : the cryptosystem NTRU [58]. The underlying basic problem is the
following:

NTRU problem: Given h = Y./ hia' € Fplz], find f in F,[z] of degree n — 1 and
coefficients in {0, 1} such that ¢ = fh mod 2™ — 1 has also its coefficients in {0, 1}.
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n Fin F{/FA™ | Fy/FT
total; // part | tot;p.p tot;p.p
20 3.07s;0.78s 3.5;11.3 66.0;257.8
21 4.52s;1.21s 4.0;11.9 | 90.15;334.0
22 | 15.01s;2.28s 2.2;11.4 58.4,381.6
23 | 11.16s;1.87s 3.3;17.2 | 115.2;686.1
24 128s;14.3s 5.2;36.5 | 241.1;2149.
25 218s;31.0s 5.8;32.5 00
26 365s;59.0s 6.6;32.6 00
27 955s;113s 4.9;33.3 o0
00
00

28 1214s;192s 7.1;36.1
29 3310s;323s 4.7;:38.8

Table 4.88 — NTRU equations

Denote f = 2?2—01 ;2'. Then, the f;’s are the unknowns, which satisfy the equations
f?— fi =0, since we want f; to be in {0,1}. Let g = Z?:_Ol gix’" = fh, then the g;’s are linear
forms in the f;’s satisfying also g2 — g; = 0. More precisely, g; = Z;'l:_ol Jil[(i—j) mod n]- The
matrix M, acts on the variables f; by fiM" = J[(i+1) mod n], therefore:

n—1 n—1
Z f[(]+1 mod n]h[(z j) mod n] Z f]h[ (i—j+1) mod n] = Y[(i+1) mod n]
Jj=0 7=0

It follows that the system consists of 2n quadratic equations in the polynomials (f;)
generating an ideal globally stable under the action of C The speed-up between Fy and
F f " is roughly 250 with 24 variables, and the use of F ™ has a significant impact since we
can achieve bigger problems. In this case the handling of the critical pairs is also the most
time-consuming part.

Cyclic-n problem. Table 4.89 presents timings on the Cyclic-n problem. We see that
Cyclic-11 could be solved in less than 8 hours although it is untractable with Fyj.

n Fj FAEM | R/FS | RN/
total; // part | tot;p.p tot;p.p tot
8 0.50s;0.40s 2.5;2.7 7.8;9.3 6.0
10.21s;7.71s 4.3;5.4 37.0;48.4 30.5
10 334s;290s 13.2;14.8 | 411.0;472.3 207
11 | 27539s;25454s o0 o0 00

Table 4.89 — The Cyclic-n problem

From the experimental side, applying the F algorithm on the cyclic 9 problem we obtain,
in degree 15, a matrix of size 72558 x 93917; applying the abelian-Fy algorithm we obtain 9
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independent matrices of roughly the same size: 8340 x 10703,8180 x 10544, 8122 x 10484,
7804 x 10171,7993 x 10358, 8042 x 10404, 7796 x 10162, 7967 x 10369 and 8314 x 10722.

Polynomials of degree 3 invariant under a product of cyclic groups. Table 4.90
is an example of ideals generated by random polynomials of degree 3 invariant under the
group C%, x Cy,, each subgroup C}, acting on k variables. We see that the algorithm is more
efficient when k1 = ko, which makes sense since the size of the group is kiko.

kike | FRRR | R R gy etk | gy p ke
tot; // p-p tot;p.p tot;p.p tot
4.4 2.0s;1.3s 2.4;3.2 61.8;94.6 37
6,2 2.9s;2.4s 2.2;2.5 76.4;91.4 44
55 | 70s:43s 11.8:16.2 0 00
6,4 92s;76s 17.7;19.8 o0 o0
8,2 107s;100s 12.1;12.3 o0 s

Table 4.90 — n = k; + ko cubic equations invariant under Cj, x Ck,
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4.3 Solving Polynomial Systems of Invariant Equations with
SAGBI bases

Introduction

This section presents a work in common with Jean-Charles Faugére and Guénael Renault
which is still in progress.

Problem Statement. In this section, we assume that G is any finite subgroup of the
general linear group GL£,(K), with no assumption on the characteristic of K: the action of
G on K[X] can be modular or non-modular. Let F = (fi1,..., fs) be a set of individually
G-invariant equations, that is to say each equation is G-invariant: for all ¢ € {1,...,s} and
A€ G, fi* = f;. Can we solve the system {fi(X) =--- = f,(X) = 0} faster than with usual
Grobner bases algorithms ?

The main idea of the section is to compute in the subalgebra A = K[X]® of G-invariant
polynomials. This allows to reformulate the polynomials (f;) as linear combinations of ele-
ments in a basis of K[X]®. This reformulation is a more compact way to manipulate the
polynomials occuring in the computations, compared to the dense representation as linear
combinations of monomials. Since the concept of Grobner bases is not available in K[X]S,
we will use SAGBI bases instead, introduced in section 1.3. In this section, we have seen how
the SAGBI-Matrix F5 allows us to compute a SAGBI basis of an ideal generated by a finite
set of polynomials in a subalgebra of K[X], up to some given degree. The knowledge of a
SAGBI basis of the ideal generated by F in A at a sufficient degree will allow us to compute
a finite Grobner basis in some invariant ring, using a variant of the FGLM algorithm. The
final step is to use this Grobner basis to recover the solutions of the system.

Previous Work. We present an extension of the results given by Faugere and Rahmany
in [41]. The main ideas of the present section can be found in this earlier version, but the
authors restricted their discussion to the non-modular case, when the group G is a subgroup
of the permutation group &,, and no complexity analysis was provided.

Different approaches have already been proposed to solve such invariant problems. First
of all, since we assume that all equations f; generating the system are invariant under the
action of the group G ( f;A= fiforall A e G), it is possible to use tools from invariant theory
([100, 27]) to rewrite the system: the algebra K[x1,...,2,]* can be written K[h1, ..., h,] with
{h1,...,h,} a suitable set of fundamental invariants of the group G (see definition 3.29).
The idea is to reformulate the polynomials f; in terms of h; to obtain a new system to which
we add the relations between the polynomials h;. The drawback of this method is that,
except for particular families of groups (for example reflection groups in the non-modular
case) the number of requiring fundamental invariants can increase dramatically compared to
n. For example, using this method to solve the Cyclic-5 problem leads to a system with 15
polynomials in 15 unknowns, which is in practice more time-consuming to solve than the
original one (only 5 polynomials in 5 variables).

With the idea of working in the field of G-invariant rational fractions K(zy,...,z,)%,
Colin is able in [23] to reformulate the system into a rational system involving only n + 1
polynomials given by the primary invariants and only one other invariant. However, according
to our experience, the resulting system can be more difficult to solve than the original one.

The idea of bringing together SAGBI basis of ideals and ring of invariants goes back to
a work of Thiéry [104], where he used these objects to compute the secondary invariants
of K[X]® for G a permutation group in any characteristic but assuming that K[X]& is
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Cohen-Macaulay in the modular case. To this end, he proposed a variant of Buchberger’s
algorithm. The fact that with this algorithm, many unnecessary S-pairs remain undetected
by the Buchberger-like criterions was another motivation of the paper [41].

We have already mentionned that the typical example of problem with symmetry is to solve
fi=-=fs=0with F={f1,..., fs} a globally G-invariant set of polynomials. Of course,
if we have a method to solve efficiently those systems, we can apply it in the particular case
of a system with G-invariant polynomials. In the previous section, we proposed variants of
F5 and FGLM algorithms to compute a Grobner basis of a zero-dimensional ideal generated
by a globally G-invariant set of polynomials, assuming that char(K) 1 |G| and that G is
abelian. It is possible to apply these results here with G’, a maximal abelian subgroup of G.
Under some assumptions, this approach allows us to ensure a gain of |G| in Fj and |G’|?
in FGLM compared to a classical Grobner basis computation, which remains unsatisfactory
if G is much bigger than G’: a lot of symmetry is not taken into account.

Main results. Let A be a graded subalgebra in K[X], and fi,..., fs be polynomials in A
generating the ideal Z# in A and 7 in K[X].

Our main contributions in this section are twofold: algorithms and complexity. First, we
present an algorithm which computes a SAGBI basis of the ideals Z4 up to some given degree
D. This algorithm SAGBI-F5, is a variant of the F5 algorithm [35], and requires a basis of
Ay for 0 < d < D, where A, is the graded component of degree d of A. Given these bases
{(bgl)lggnd | d = 0,...,D}, we have also to know the expressions of b;i X b;.i,, in terms of

U

b, e ,. Let hy,...,h, be polynomials in A. The aim of the second main algorithm
k SKESNG g y g
is to compute a Grobner basis of the ideal

j:I+<{HZ_hl(xla7xn) ’ 1§2§T}>QK[H1,,HT]

where Hy, ..., H, are r new unknowns, assuming that Z is zero-dimensional, with the help of
the SAGBI-basis up to degree D. For example, if G is a subgroup of the symmetric group &,
embedded in G£,(K), it is possible to take the symmetric functions o1, ..., 0, as polynomials
hi,...,hy. This algorithm, called SAGBI-FGLM, is a variant of the FGLM algorithm [39].
In practice, SAGBI-FGLM algorithm computes SAGBI-Normal Forms with respect to the
SAGBI basis of polynomials [[;" | h;* of degree less than D, corresponding to monomials in
K[Hq,..., H,], taken by increasing order for a weighted DRL ordering (with deg H; = degh;).
Since we do not know the degree D that we have to reach until SAGBI-FGLM succeeds, we
apply in practice successively truncated versions of both algorithms at each degree. Then, we
compute the variety V(J) associated to J, which is exactly the image of the variety V(Z)
through the map:

n

P K — K
y= (yla"'vyn) — (hl(yla"'7yn)7"'ah1”(y1ﬂ'"’yn))

r

where K is the algebraic closure of K. Roughly speaking, since h1, ..., h, are invariant under
the action of G, a point in V(7) is the image of |G| points in V(Z), therefore V(7) is
much smaller than V(Z). We finally recover the variety V(Z) by computing ®~1(V(7)), and
removing the points that are not in V(Z). In practice, since we stop the computation of a
SAGBI basis as soon as SAGBI-FGLM algorithm gives a zero-dimensional ideal, we can have
more spurious solutions to remove. The whole process can be summarized in the following
diagram:

To remove spurious solutions, we propose several approaches. The first one can be applied
only if G is a generalized permutation group, which is the main interesting case of this section
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Figure 4.91 — Strategy for solving a system of invariant equations under the action of a finite
group.

since computations of a basis (b%); of each component K[X]|§ and expressions of b x b% in
terms of (b?+d’)j can be done easily. The idea is to apply previous algorithms in order to
know some powers (depending on G) of the symmetric functions of the solutions. Then, one
can introduce a univariate polynomial, the coefficients of which are such symmetric functions
and compute its roots to recover the solutions. The two others are more general but need
some precomputations. They have both in common that they are related to the problem of
computing a lexicographical Grobner basis of a zero-dimensional ideal (E+T) C Ky, ...,y
where E is a given set of polynomials and T' = {T1,...,T,} is a triangular set, that is the
leading monomial of each T; for lexicographical ordering with y; > --- > y, is a power of y;.
The second approach is close to the Lazard Lex-Triangular algorithm [73]. The final approach
is univariate, which means that it needs an isomorphism of algebras

v Kly,ooul/(T) = Ku]/Q(u)

Ylyeo s Yp — Sl(u),...,ST(u)
A — U
where A is a suitable linear combination of y1, . .., y,. This approach uses GCD’s and a variant

of the FGLM algorithm.

We present only one complexity result here, namely the complexity of computing a SAGBI
basis of the ideal generated by the polynomials in F up to some given degree. This is easy to
derive in this context, from the estimations given in chapter 3.

Theorem 4.92. Let f1,...,fs € K[X]G be homogeneous polynomials of degree dy, ..., ds. If
there are no uniform scaling in G except I, the complexity of computing a SAGBI-basis up to

degree D of the ideal (f1,...,fs) C Kz1,...,2,] is bounded by O (\Cf\“ (Dg")w> arithmetic
operations in K.

Work has to be done, in order to precise other complexity results. As a proof of concept,
we present here the table giving some sizes of the Grobner bases and the Grébner bases
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in K[oy,...,0,] obtained for the Cyclic-6 and Cyclic-7 problem (o; is the i-th symmetric
function of the (z;)). The group that acts on the system is the dihedral group D,, of size 2n,
forn =6,7.

’ g ‘ |G| ‘ Max length of a polynomial in G ‘ V((G)) ‘
Lex-Gb of ZPs 17 27 156
Sg-inv Lex-Gb of ZPs 7 4 13
Lex-Gb of ZP7 35 132 924
Sy-inv Lex-Gb of ZP7 | 7 9 57

Table 4.93 — Sizes of the invariant Grobner bases and the Grobner bases

Organization of the section. The preliminaries needed to understand this section were
presented in section 1.3 and chapter 3. In section 1.3, we have seen the concept of SAGBI bases
and the Matrix SAGBI-Fj5 algorithm 1.68 and in chapter 3, we gave some basic definitions of
the invariant ring K[X]¢, and explain how to compute a basis of each homogeneous component
K[X ]g} in different cases: modular and non-modular cases, and the special case of pseudo-
reflexion groups. We also analysed the complexity of each computation. Moreover, we have
given estimations of the dimensions of the components K[X ]g, which can be read from the
Hilbert series of the invariant ring. We also reviewed properties on the structure of the algebra
K[X]® and have defined the notion of Grébner basis in invariant ring, which is the object we
will compute after applying the FGLM algorithm.

Subsection 4.3.1 presents the Matrix SAGBI F5 algorithm in the context of invariant
rings, with an expanded example. The end of the subsection is devoted to the analysis of the
complexity of algorithm SAGBI-F5.

From the beginning of the subsection 4.3.2 to the end of the section, we assume that Z =
(f1,...,fs) is zero-dimensional. Thus, subsection 4.3.2 provides a FGLM like algorithm for
converting a SAGBI-basis of an ideal Z4 in A into a Grobner basis in some ring K[H7, .. ., H,].
Since each variable H; corresponds to a given polynomial h; € A, the result is a Grobner basis
of the ideal

Note that a SAGBI-basis is usually not finite, so we cannot compute a SAGBI basis of Z4
with SAGBI-F5 and then use SAGBI-FGLM algorithm. Therefore, we have to apply step-by-
step SAGBI-F5 algorithm: a step corresponds to an increasing degree D and at each step we
compute a SAGBI-basis of T4 up to degree D, and then we apply SAGBI-FGLM. In practice,
we stop as soon as we get a subset of polynomials in J generating a zero-dimensional ideal.
The end of the subsection is also devoted to complexity analysis.

We explain in subsection 4.3.3 various methods to recover V(Z) from the variety V(7 ), or
at set containing V(7). The first one is restricted to the case A = K[X]% and G a generalized
permutation group. The two others are more general but need some precomputations. We
present first a triangular approach, which can be viewed as a generalization of the Lex-
Triangular algorithm, which converts a Grobner basis for lexicographic ordering into a union
of triangular sets. The final approach is based on a univariate representation of a triangular
set, and leads to computation of GCDs and a variant of the FGLM algorithm.

The last subsection is devoted to experiments and benchmarks.
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4.3.1 SAGBI-Groébner bases in invariant rings

In [104], Thiéry gives a variant of the Buchberger’s algorithm to compute SAGBI bases up
to some given degree in invariant rings of permutation groups. Also, he provided a Buchberger-
like criterion to skip the computation of unnecessary S-pairs. Although this criteria avoids
many reductions to zero, still many useless pairs remain undetected. We have seen in chap-
ter 1, a very general algorithm 1.68 that computes a SAGBI basis of an ideal Z in a subalgebra
A up to some given degree. Our aim here is to apply this algorithm in the particular case
where A is a ring of invariant K[X]¢ = K[z1,...,2,]%. In order to analyze the efficiency
of this algorithm in the case of invariants, all needed material has been presented in chap-
ter 2, and the basic properties of invariant rings have been seen in chapter 3. Therefore, we
present in this subsection only examples, which make the comprehension of the SAGBI tools
in invariant rings easier, and perform a brief analysis of complexity, which follows the results
given in the prerequisites.

Reminders. Depending on the group G, we have seen in subsection 3.1.1 several algorithms,
that compute a basis of each component Ag, such that two polynomials of the basis have
distinct leading monomials. Then, in every component Ay, a basis (b)1<j<n, of A as a K-
vector space has been computed, with LM< (b¢) = LM<(bg) = --- = Ll\/Ij(bﬁd). For example,
if G is a generalized permutation group in the non-modular case, the computation of such a
basis is easy, since it is given by the set {R(m)}, with m describing all initial monomials of
degree d, namely the leading monomials of elements of A,.

Example 4.94. We consider the same situation as in example 3.19, where G is the repre-
sentation in degree 8 of the alternate group s, acting on A = Q|x,y, 2], ordered with < the
graded lexicographical ordering. Then, bases of A1, As and Az are given by:

x3+y3+z3
2 2 2 2 2 2
4yt 2 {:r +y +z x2y+:vz2+y§
Ty +yz+x2 Tz +xy° +yz
TYz

Therefore, the initial monomials of degree less than or equal to 3 are 1,x, 22, xy, 2%, 2%y, 2=
and xyz. Actually, initial monomials are of the form m(’;ﬁ,y = 2%P2Y with o > B, or
a = 8 > . Notice that with the DRL ordering, x>z would not have been an initial monomial,

but zy? would.
Recall that reductions can be performed between elements of A, see definition 1.60.

Example 4.95. We continue the example 4.94. Let h be x +y+ z = 3R(x). Then R(x>y) =
hR(2%y) — R(z2y?) — R(2?yz), so 3R(23y) reduces to —N(x?y?) — R(z>yz) modulo N(x). The
polynomial R(x2y?) is not reducible by R(z) but R(x?yz) = R(z)R(xyz) is. Therefore the
SG-NormalForm of R(x3y) modulo h is —R(xy?).

Recall that an element of an algebra A whose leading monomial is not a leading monomial
of a polynomial in an ideal Z# in A is called a standard element, with respect to the ideal.
In the context of invariant ring, we will rather speak of standard invariants.

Example 4.96. We continue the example 4.95. Let TG be the ideal generated by h = 3R(x) in
A= Q[z,y,2]%. An orbit sum R(m7g,) is reducible by h if and only if Yy is an initial
monomial, which means that « —1 > ,v oraa—1 = > . Then, all the standard invariants
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*

are the orbit sums R(myz ) with oo = > ora—1 =~ > . In example 4.95, we have
seen that NF2C(R(z%y),p) = —R(z2y?). Actually, R(z%y) = p(R(z2y) — R(zyz)) — R(z2y?)
is the decomﬁosition of R(z3y) into an element of TG and a linear combination of standard
muariants.

The SAGBI-F; algorithm (algorithm 1.68) is a generalization of the classical Fj algo-
rithm 1.44. In order to apply it in the algebra A = K[X ]G, we first have to compute a basis
of K[X]© as a K-vector space.

Let fi,..., fs be homogeneous polynomials in A = K[X]%. The SAGBI-F; algorithm
proceeds by building SAGBI-Macaulay’s matrices (that we will call Invariant-Macaulay’s ma-
trices in this context) of fi,..., f; for each ¢ between 1 and s and apply row reductions on
them.

Example 4.97. Assume that G is a generalized permutations subgroup, with char(K) 1 |G|.
We have seen that a basis of Aq = K[X]$ can be chosen as {R(md) = -+ = %(mgd)} with mé
describing all initial monomials. In this case, the Invariant-Macaulay’s matriz has the form:

R(md) R(md) ... R(md)

ng

Example 4.98. In this example, we continue the example 4.96, but now let TG be (f1, f2)
with fi = N(x) and fo = R(x%y) —R(xyz). We want to write the Invariant-Macaulay’s matriz
M3 5. Since there are four initial monomials at degree 3 (namely 23, 2%y, 222 and wyz), M3
has four columns. Since fi has degree 1, we need the initial monomials of degree 2, which are
x2 and zy. fo has already degree 3, and 1 is the only initial monomial of degree 0. Then

IM@2)f1 = @@+ +28) (@ +y+2)
= x3+y3+z3+x2y+x22+y2z+a:22+:cy2—|—yz2
M f1 = 3R(23) + N(2?y) + R(222))

and IM(zy)fi = (zy+axz+yz)(z+y+2)
= a:2y + 22+ yQZ + 2%z + :L"y2 + y22 + 3xyz
May)fi = 3(R(x%y) + R(a?2) + R(zyz))

Hence, the Invariant-Macaulay’s matriz Ms o is

R(23) R(2%y) R(2%2) R(zyz)
R(z%).f1 : 3 3 0
Moo= R 0 111
2 0 1 0 1

Recall that the SAGBI-F5 algorithm constructs matrices incrementally degree by degree
and equation by equation. At each degree d the algorithm constructs a SAGBI-Macaulay’s
matrix My ; and performs row reductions on them, the valid operations being to add to some
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row a linear combinations of rows situed above. The incremental step from 7—1 to ¢ introduces
the rows corresponding to b;-lfdi fi for all polynomials of (b;lidi) in the basis of Aj_q4;, that do

not have same leading monomial as a row in Md_di,i_l, where d; = deg(f;). This criterion
is a variant of the Fs-criterion and was explained in proposition 1.69. The algorithm stops
when the current degree is equal to a given bound D.

SAGBI-F; example. We now give a complete example of the execution of the Matrix-
SAGBI F5 algorithm, in the invariant context. In this example, we follow the example 4.98
by using the same group G (the alternating group As) acting on the variables X = [z, v, z].
The ring Q[X] is ordered with the graded lexicographic ordering =<, such that z >y > z. We
recall that Z = (f1, fo) with f; = R(z) and fo = R(z%y) — R(wy2). In this example, we want
to compute the SG-basis of TG = (fi, f2)grx)e up to degree 5.

We start with S = So = (). In order to compute the SG-bases, we proceed degree by
degree. In degree 1, we only have one row indexed by R(1) x fi:

My, =M =R1)fi ( 1 )

Since f; is not SG-top-reducible by S; (which is empty !), we add f; to S; and obtain
S1 = {f1}. Since f; has degree 3, the matrix M; o = M 2 is equal to M; ; and we add f; to
Sa. In degree 2, we have a single row indexed by R(x)f; :

Myy = Moy =R(z)f1 (% 3 )

The polynomial R(x)f; can be reduced by fi, so we do not add another polynomial to the
SG-basis &1 in degree 2. We will actually never add new polynomials to &1 since all the
rows of matrices Mg will be of the form R(m)f; and will be SG-top-reducible by fi. As in
degree 1, My o = M 1. In degree 3, we construct the matrix Mz ; whose rows are coefficients
of the following polynomials:

R(2?) f1 = $R(2%) + FR(2%y) + FR(2%2)
R(zy)fr = 3R(2%y) + 3R(2%2) + 3R(2yz)
Hence,
R(®) R(a?y) R(a?z) R(ayz)
RAA(E )
Ms 1 = 3 3 3
YU R@A\ 0 g 3 3
It is obvious that M?,,l = M3 1. We obtain M32 by adding f> to M&l:
R(x3) RN(2%y) RN(222) R(zyz)
R(=?) f1 3 3 3 0
Mis= R | 0 1 i 1
f2 0 1 0 ~1
Then, after Gaussian elimination, we obtain:
1
TS
Mso=| 0 5 5 3
0 0 -1 =2
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Now we have obtained one new polynomial f3 = R(2%2) + 4R(zyz), which is not SG-top-
reducible by f1, since zz ¢ LM<(K[X]¥). Then, we add f3 to Sy and obtain Sz = {f1, f3}.
In degree 4 we construct the matrix M, 1 as above and obtain :

Rat) R@’y) R(z) R(*y?) R(a®yz)

R(2?) f1 3 i 3 0 0

~ R(2%y) f1 0 1 0 1 1
My =My = 3 3 3
MUY T w@ia | 0 0 ; 5 5
R(zyz) fi 0 0 0 0 1

The unique initial monomial of degree 1 is z, but x is the leading monomial of a row of
My_32_1 (corresponding to R(1)f1), so by applying the SAGBI-F'5 criterion (lemma 1.69),
there is nothing to do anymore in degree 4. In degree 5, we construct the matrix M5 ; whose
rows are the coefficients of the following polynomials:

R(z*) f1 = R(2P) + 3R(zty) + IR(z*=2)
R(a®y) fr = gR(a'y) + 3R(2%y?) + 3R(2%y2)
R(z%2) f1 = $R(2'2) + R(2®22) + LR(2%y2)
R(a?y?) fr = sR(2%Y?) + gR(2%2%) + gR(2%y%2)
R(z%yz) f1 = R(23yz) + 2R(2?y22)

Therefore, Ms 1 is equal to the following matrix:

R R(zty) R(z'2) Ry R(2dyz) R(@322) R(a?y?2)
R(zh) fi : 3 3 0 0 0 0
R(zy) fr 0 3 0 3 1 0 0
R(22) f1 0 0 3 0 3 3 0
Ry 1| 0 0 0 3 0 3 3
R(xyz) fi 0 0 0 0 3 0 2

Once again, it is easy to see that M5, = M5 1. There are two leading monomials in degree
2, which are 22 and zy. By using the SAGBI-F'5 criterion we do not add the row R(z?)f2 to
Ms5 2, because the single row of M1 has 22 as leading monomial. In other words M5 5 is the
following matrix

R(@®) R(aly) R(z) R@’y?) R@Pyz) R@®2?) Ra?y?z)
R(z*) f : : 1 0 0 0 0
R(zy) fr 0 3 0 : 1 0 0
R(232) f1 0 0 3 0 3 3 0
Ry 1| 0 0 0 3 0 3 3
R(z?yz)fi| 0 0 0 0 1 0 %
R(zy) f2 0 0 0 : : 0 2
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After Gaussian elimination, we finally get:

1 1 1

55 30000

02032 200
— o0 L& o L L1 g
Ms = O S

0003 0 3 3%

0000+ 0 2

000003 2

and the matrix M572 gives us a new polynomial f; = R(z322) + 5R(2%y%2), not reducible
by any element of So. Then, the Matrix-SAGBI F5 algorithm stops and returns Sy, So with
S1={f1} and Sz = { f1, f3, f4}.

The complexity analysis of the Matrix-SAGBI Fs algorithm in the case A = K[X]® has
been done almost entirely in chapter 2 and 3. Before giving the end of this analysis, we come
back to the behavior of this algorithm with respect to regular sequences.

Links between K[X]%-regular and K[X] regular sequences. For A = K[X|® with G
a finite group, we can prove that regularity implies A-regularity, at least in the non-modular
case: the Reynolds Operator plays a crucial role in the proof of the following proposition.

Proposition 4.99. Let G C GL,(K) be a finite group with char(K) 1 |G|. Let F =
(f1,..., fs) € K[X]G be a regular sequence (in K[X]). Then F is K[X]C-regular.

Proof. Let (g1, ..,gs) be a family of polynomials in K[X]¥, such that Y7 | g:fi = 0. Since
F is regular, each g; belongs to the ideal generated in K[X] by F\f;, so we can write g; =
Z#i hjfj. Applying the Reynolds Operator, we obtain g; = R(g;) = Z#i R(h;)f;. Hence,
gi belongs to (F\ fi)kxje. It follows that F is K[X]G-regular. O

Complexity. We now analyze the complexity of algorithm 1.68 in order to compute SAGBI
bases in invariant rings. We assume that the computation of products of the form b? X bf,/
(see subsection 3.1.1) has been done as far as needed and is not counted here: in particular
this cost is negligible when the algebra A is a ring of invariant K[X]* with G a subgroup of
matrices of generalized permutations. The main complexity result is the following theorem,
which is very similar to the theorem 4.76, which gives a complexity bound on the computation
of a Grobner basis up to degree D of an ideal invariant under the action of a diagonal matrix

group.

Theorem 4.100. Let G be a matriz group with no uniform scalings, and let F= (f1,..., fs)
be a family of invariant homogeneous polynomials in K[X]|S. Then the complexity of com-
puting a SAGBI Grébner basis up to degree D for the DRL ordering of the ideal <F>]K[X]G 18

bounded by
s (D+n\"
(= ("5"))

operations in K, with w a feasible exponent of linear algebra.

Proof. Once the group G is fixed, we have seen in theorem 3.78 that the quotient of dimensions
dim(K[X]$)/ dim(K[X],) tends to 1/|G| as d grows to inifinity. The matrix M, built by a
SAGBI variant of the Lazard algorithm has dim(K[X]$) columns and 377, dim(K[X]ngi)
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rows if f; is of degree d;. Then, the proof ends by the same analysis than the complexity of
the Lazard algorithm given in theorem 1.42.
O

The cost of computing Grobner bases in the affine case is not known as well as for homo-
geneous systems, due to falls of degrees that could appear during the computations, see [93].
The same fact holds during SAGBI bases computations in the affine case, so we do not give
complexity results here. However, proposition 3.83 shows that heuristically the matrices oc-
curing during a SAGBI basis computation in K[X]% up to some given degree have number
of rows and columns divided by a factor |G|, compared to a Grobner basis computation up
to the same degree. We refer to subsection 4.3.4 for experimental results.

4.3.2 SAGBI-FGLM algorithm and general algorithm to obtain an invari-
ant Grobner basis

The main goal of this subsection is to show how a SAGBI basis in K[X]% can be used to
compute a Grobner basis with respect to a fixed set of invariants of G, for example a collection
of invariants of a pseudo-reflexive group H containing G. We will present a more general
algorithm, able to convert a SAGBI basis of any ideal Z4 = (f1,..., fs).4 in a subalgebra A C
K[z1,...,2,] into a Grébner basis in some ring K[H| = K[H1, ..., H,]. Each H; represents
a polynomial h; in A and we assume that the ideal Z generated by F = (fi,...,fs) in
K[X] = K[z1, ..., x| is zero-dimensional. We fix an ordering <y compatible with a weighted
degree on the variables H;, depending on the degree of the polynomials h; in the variables
(1,...,zy), namely degy (H;) = deg(h;). Therefore, the weighted degree of a monomial in
these new variables is given by degy ([T H;"") = > cideg(h;). More precisely, the object we
are interested in computing is Gg(g)(Z, <u), the Grobner basis of J = Jn K[H], where

J =T+ (Hy—hy(z1,...,20),..., Hy — he(21,...,2,))

We call this Grobner basis the K[H]-Grobner basis of Z. Notice that this ideal J and this
kind of Grobner bases have already been introduced in subsection 3.1.3 in the case of a ring
of invariants, more precisely in definition 3.45. Since Z is assumed to be zero-dimensional, 7)
and J are also zero-dimensional. We first present the SAGBI-FGLM algorithm and finally
explain how to use both truncated versions of SAGBI-F5 and SAGBI-FGLM algorithms to
obtain a zero-dimensional ideal in the ring K[H].

SAGBI-FGLM algorithm The idea of the following SAGBI-FGLM algorithm is to per-
form the same kind of computations as in the original FGLM algorithm 1.52, but with the
knowledge of a SAGBI basis of Z4 instead of the Grébner basis of Z. For any monomial
m = [[ H;", we can compute NFEG(mh,S), with S a SAGBI basis of Z4 and my, the mono-
mial m where h;(z1,...,2,) has been substituted to H;. Since a SAGBI basis is usually not
finite, the computations have to be done with a SAGBI basis up to some degree D. Hence,
we will obtain a K[H]-Grébner basis of Z up to degree D. Therefore, if D is greather or equal
than the maximal weighted degree of the polynomials in Gg(g)(Z, <), the SAGBI-FGLM al-
gorithm computes it exactly. Hence, this algorithm picks up monomials m in K[H], of degree
less than or equal to D, by increasing term order for <y and looks for linear combinations

NF3C(mp, )+ Y cuNF26(up, ) =0

u<gm
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with the convention that my, (respectively uy,) is the result of substituting H; by h;(z1, ..., xy)
in m (respectively u). Since we have assumed that degy(m) < D, the result of the Normal-
Form computation is precisely NF3® (mp,, TA). If there is no such relation then m is a member
of the staircase in construction. Termination is assured by the fact that the number of terms
with total degree less than or equal to D is finite. The SAGBI-FGLM algorithm is presented
as algorithm 4.101.

Algorithm 4.101: SAGBI-FGLM

Input : - a SG-basis S up to degree D of Z4 with respect to <
- a second monomial ordering <y on K[Hq,..., H,], compatible with deg.
- polynomials (hy,...,h,) € A

Output: a K[H]-Grobner basis of T4 up to degree D with respect to <y

L :=[1]; //1ist of monomials in K[Hq,...,H,]

S :=1[]; //staircase for the ordering =<y
V :=[]; //V = SG-NormalForm(S)
G :=[]; //The K[H]-Grébner basis up to degree D in K[Hi,...,H,]

while L # [] do

m := L[1]; and Remove m from L;

my, := replace Hy, Hy, ..., H, by hy,ho,..., h, in m;
v := NF2%(my,, S);

5= H#S;

if v € Spang (V') then

we can find (\;) € K*® such that v = zs: i+ Vi

=1
GH .— GgU {m— Zl>\ZSZ:|,
else

S:=SU[m]; V:i=VU][v
| L:=Sort(LU[H;m |i=1,...,7],2§);

Remove from L elements of graded degree > D or duplicates elements;

Theorem 4.102. SAGBI-FGLM algorithm computes the reduced K[H|-Grobner basis up to
degree D of T* with respect to <.

Proof. Let GH be the output set {gi,...,g,} of polynomials indexed in the order of their
placement into GE. Let m; = LM<(g;), which is the value of m when g; is added to GZ.
Clearly, m1 <g ... <g m, and mj { my, for j < k. For each ¢, all the monomials of g; except
m; are in the staircaise S, hence g; is in normal form modulo G¥\{g;}. Therefore, G is
reduced. Clearly, g;(h1,...,h;) € ZA because the SG-Normal Form of gi(h1,...,hy) is equal
to 0. To see that Gg is a Grobner Basis up to degree D of the ideal

J =71+ (H; —h1($1,...,$n),...,Hr—hr(.ijl,...,l'n))ﬂK[H]

assume by contradiction that there exists a polynomial f € K[H] of graded degree less than or
equal to D with f(hy,...,h,) € TA, such that the normal form of f modulo Gg is non-zero.
We can assume that f is reduced modulo Gg, and that f has the smallest leading monomial
among the polynomials of Z# which do not reduce to 0 modulo Gg . With these assumptions,
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all monomials of f but the leading monomial are in the staircase S. When m = LM<(f) in
the algorithm, the if-condition must detect the linear dependance between m; and SpangV’
because f(hi,...,h,) belongs to T4, which is a contradiction and the theorem is proved. [

Remark 4.103. Since the K[H]-Grobner basis G| (Z, 2n) is finite, there exists a Do such

that Gg is equal to Gy (Z,=pg) for all D > Dy. Of course, we do not know in advance the
degree Dy that we have to reach in SAGBI-Fy algorithm. We will explain in the sequel how
to avoid this difficulty.

Example 4.104. Consider the cyclic matriz group G of order 4 generated by A = ( 01 (1) )

over a field of odd characteristic. It is easy to check that K[z,y]® = K[hi, ho, h3] where
hy = 22 + y% hy = 2%y? and hy = zy(x® — y*) (see for instance [25, chapter 7]). Let us
consider the following invariant system:

fi=at+yt —1=2R(z*) - R(1) =0
fa = 2%y? (2% — y°) — 2 =2R(2"") — 2R(1) = 0

The SAGBI basis up to degree 12 (for the DRL ordering) of the ideal I generated by fi, fo
in Kz, y|G is simply S = {f1, fo} where fo = 2R(z7y®) + 2R(2%y3) — 2R(1) is the SAGBI-
reduction of fo by fi. We take {R(m) | m is an initial monomial in K[z, y]|%} as a basis of
K[z,y]®. The staircase E (a basis of the vector space of elements of Klx,y|* that are not
(top-) reducible by S) is given by

E={R(m) | m € {1,2%, 222, 2y, 2'y?, 25y, x'y*, 2°9>, 259", 27y, 280} }

The following array contains the current my, the SG-Normal Form v of my modulo S,
the staircase in construction for the ordering < and a boolean testing if v lies in the vector
space generated by the SG-Normal Form of elements of E modulo S.

mp, v S veV?
1 R(1) 0 false
hi 2R (%) 1] false
hs 2R(23y) (1, Hi] false
ho R(z%y?) (1, Hi, Hs] false
h? | 2R(2%y?) + R(1) | [1, Hy, H3, Ho] | true

Since NFgG(h%,S) = 2NF§G(h2,5)—I—NF§G(1,8), the polynomial gy = H? —2H—1 belongs
to the invariant Grébner basis of (fi1, fo) in Klhy, ha, hg] up to degree 12. At this step, L is
equal to [H1H3,H1H2,H§,H3H2,H22]. The next steps of the computation are :

hihs 2R (x5y) (1, Hy, Hs, Ho] false
hiho 2R (zy?) (1, Hy, H3, Hy, Hy H3) false
h: | —2R(z'y?) + R(2%y?) (1, Hy, H3, Ho, Hy H, Hy Ho] false
hohs 2R (z5y3) [1, Hy, H3, Hy, Hy H3, Hy Ho, H3] false
h3 R(xtyt) (1, Hy, H3, Hy, HyH3, HyHo, H2, HoH3) | true
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And the polynomial go = H3 + H3/2 — Ha/2 is added to the invariant Grébner basis. After
removing from L multiples of H3, L is equal to [HyH3, Hy HoHs, Hy, HyH3]. The computation
follows in this way:

hlh%) —4%(1’6y4> —|—2§R(m4y2) [1,Hl,Hg,HQ,Hng,HlHQ,Hg,HQHg] false
hlhghg 2%(.%’7];3) [1,Hl,H3,HQ,Hng,HlHQ,Hg,HgHg,Hng} false
h3 6R(x5y3) — 4R(1) (1, Hy, Hs, Ho, HyH3, HyHo, H3, HoH3, H1 H3] | true

And finally g3 = Hi — 3HoHs + 4 is added to the basis. Since we do not add to L monomials
of weighted degree greather than 12, the only element remaining in L is H2H§, which does
not give a new element to the basis, so the algorithm stops and returns {gi, g2, gs}.

Since the algorithm F5-invariant is the costliest step, it is interesting to stop as soon as the
polynomials given by the FGLM invariant algorithm form a zero dimensional ideal in K[H],
even if the K[H]-Grobner basis is not complete. We now explain this idea.

General Algorithm. We now propose a general strategy, in order to compute a lexico-
graphical Grobner Basis in a ring K[H]| of a system of equations F = (fi,...,fs) € A°
generating a zero-dimensional ideal 7 = (F)g(x) in the ring K[X] = K[z1, ..., z,] containing
the graded algebra A. The idea is to combine truncated versions of both SAGBI-F5 and
SAGBI-FGLM algorithms: since we do not know in advance the degree D needed in SAGBI-
Fs to obtain a SAGBI basis S of T = (F) 4, which gives a zero-dimensional K[H]-Grébner
basis with the SAGBI-FGLM algorithm, we proceed incrementally degree by degree. This
idea is reported in algoritm 4.105. Termination is assured by the fact that a finite Grobner
basis exists in K[H]. Since the first D giving a zero-dimensional ideal in K[H] is possibly
smaller than the maximal degree of a polynomial in Ggy)(Z, 2g), it could happen that the
obtain polynomials in K[H] do not form a Grébner basis. Hence we have to add a Grébner
basis computation in K[H]. Since we are interested in a Grobner basis for a lexicographic
ordering in K[H], algorithm 4.105 ends with a use of the classical FGLM algorithm 1.52.

Remark 4.106. In practice, it is very easy to check that Gg generates a zero-dimensional
ideal, we check that for all i € {1,...,r} we can find g € gé{H such that LT(g) = H;" for

some a; € N. To compute Qﬁlz, we simply apply the standard FGLM-algorithm to ggH.

Example 4.107. Go back to the example 4.104. At degree 12, the FGLM-invariant algorithm
gives a zero-dimensional Grobner basis {g1, 92,93}, which is already a Grébner basis for <p
since no pair of leading monomials have a common factor. The ideal generated is zero-
dimensional since LM<(g;) = H;" for some a; € N, so we can apply the classical FGLM
algorithm. We get the following lexicographical Grébner Basis:

6H? + HS + 3H3 + 4HZ — 12
12Hy + H3 + 3H3 + 4H3 — 6
H$ + 3H{ +8H3 — 6Hs + 16
We can find the values of hy, ha, hs by finding the roots of univariate polynomials of degree
at most 6. Since hy = x> + 4% and hy = 2%y?, we can find the values of 2* and y? by finding

the roots of 22> —h1z+ha = 0, and then find x and y by taking square roots. A direct approach
of the system fi1 = fo = 0 gives us the following irreducible polynomial :

P = 6y™® — 24y™ + 6990 — 125¢° + 15632 — 138y + 70y%* + 12420 — 39y'6 + 15¢y'2 + 16
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Algorithm 4.105: General algorithm
Input : F=(f1,...,fs) € A® generating a zero-dimensional ideal in K[X], and
hi,...,h, homogeneous polynomials in A.
Output: A lexicographical K[H]-Grébner basis of (Fa)x(x] in K[H1, ..., H,].
D := min; deg(f;);
Do

S :=Sagbi-Grobner basis of (F4) up to degree D; //Apply SAGBI-Fj
algorithm 1.68, with <X==pp.
GE :=Invariant Grébner basis up to degree D in K[H]; //Apply SAGBI-FGLM
algorithm 4.101, with =<y the weighted DRL ordering
QjHH := Compute a Grébner basis of GI in K[H];
if (GI) is zero-dimensional in K[H| then
Qﬁx := Compute a lexicographical Grobner basis of (Gg ); //Apply the FGLM
algorithm 1.52
return gfm

else
L D:=D+1;

Loop;

Since powers of y in P are multiples of 4, we have to compute the roots of a polynomial of
degree 12.

In practice, we do not use algorithm 4.101 with a set of fundamental invariants of G (see
subsection 3.1.3), but rather with a set of primary invariants of G.

Example 4.108. In this example, we take K = Fgss01, H ~ (Z/27)* x &5 C GL5(K), G ~
(Z./27)* x D5 C H where the subgroup of H isomorphic to (Z/27)* is the group of diagonal
matrices having an even number of —1 on the diagonal, with other diagonal-coefficients equal
to 1 and the subgroup Ds is the dihedral matriz group generated by

01000 00001
00100 00010
0 00T1PO0 and 00100
0 0001 0100O0
100 00 100 00

H is a reflexive group (a Coxeter group, actually), with invariants:
hi=ei(zi®), ho=exz:?), hy=es(@®), ha=ea(@®), hs=es(x)

where e;(z;?) is the j-th symmetric function in the variable z7,...,2% and es(z;) is simply
r122232425. Now consider the following set of G-invariant polynomials :

fr=at+ad +af+ 2]+ 23 — 1 =5R(aF) — R(1)

fo=at+ a5+ a3+ 2f + 22 — 1 =5R(z}) - R(1)

F=1< f3=a22%+222% + 2323 + 2323 + 2322 — 1 = 5R(2323) — R(1)
fa = x1x0w32475 — 1 = R(21202232425) — R(1)

f5 =28 + 2§ + 2§ + 2§ + 28 — 1 = 5R(2F) — R(1)
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Using algorithm SAGBI-F5 up to degree 24, we get a SG-basis of T of size 73. Applying
SAGBI-FGLM algorithm, we get the following very simple K[H]-Grobner basis:

G4 =[Hi—1, Hy, Hs, H; — 10488 H; +5251 H{ — 10492 H3 — 5271 H} +28927 H, +18242, H5—1]

This K[H]-Grobner basis gives rise to an ideal whose associated variety has only 6 points.
Notice that |H| = 3200 and |G| = 160, so these 6 points correspond to 6 x |G| = 960 elements
associated to the ideal generated by F in K[z1,...,z,]. The expressions of (h;)i<;<s in terms
of (z;)1<i<s allow us to recover the possible (z;)1<i<5 from a value of (h;)i1<j<5 very fast but
these possible 5-tuples are 6 x |H| = 19200. We explain in the following subsection how to
remove these spurious solutions.

Remark 4.109. Since we stop as soon as we obtain a zero-dimensional ideal in algo-
rithm 4.105, it could happen that (GH) C (Gri)(Z,=2m)). This fact would lead to more
spurious solutions, but in practice, on all examples we have computed, the Gribner basis gg
is ezactly Ggm)(Z, 2u)-

Complexity. We now give an estimation of the complexity of the SAGBI-FGLM algo-
rithm 4.101, assuming that we have computed a SAGBI basis at a degree D equal to the
remaining degree to find a zero-dimensional ideal. The complexity evaluation involves several
quantities, that we define now.

Notations 4.110. Let S be the output of the algoritm 1.68. We denote by:
— F the staircase of S, namely the elements of Ufl):o{b? | 1 < i < ng}, that are not
(top-)reducible by S.
— O the degree of the ideal, that we obtain in K[H], with algorithm 1.68.

In practice, as in the classic FGLM algorithm 1.52, we compute the SG-NormalForm v
and check the linear dependance between v and V by using linear algebra, but there is a
slight difference with the FGLM algorithm, since we do not compute multiplication matrices
to compute v. However, in order to check the linear dependance between v and V', we use a
matrix of size |E| x |E| and an Update procedure exactly as in the classical FGLM algorithm.

To compute v = NF§G (mp,S), we use the knowledge of the matrix ]/\Zd,s computed by the

SAGBI-F5 algorithm. This matrix has Zc?zo dim(Ag) columns, and smaller or equal number
of rows. Since my, has degree less than or equal to d, we can construct a row-vector giving
the expression of my in terms of UP_ {b¢ | i = 1...n4} and compute NF§G(mh,8) by a

2
Gaussian elimination in O (( dD:() dim(.Ad)> ) arithmetic operations. In order to compute

the Grébner basis in K[H], we have to perform this operation at most O(r-d0z) times (the size
of the staircase and the boundary of the ideal in K[H]) therefore the total cost of computing

2
the SAGBI Normal forms is bounded by O <r Op (Zc?:() dim(.Ad)> ) Since the cost of

testing the membership of mj; and updating the “base change matrix” is identical in the
classical FGLM algorithm, we conclude that

Theorem 4.111. With previous notations, the cost of computing the Gribner basis in K[H)|
at degree D with the SAGBI-FGLM algorithm 4.101 is bounded by

D 2
O | réy <Zdlm(Ad)> —|—T"E|3

d=0

arithmetic operations in K.
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Heuristically, in the case of a ring of invariant, 0z is very small, and |E| ~ deg(l)/|G|. Work
has to be done to prove it properly, but this cost is in practice very small, compared to the
cost of the SAGBI-Fj algorithm.

4.3.3 Removing spurious solutions

In the previous subsections, we have explained how to compute a K[H|-Grobner basis
of the zero-dimensional ideal Z, which can be supposed to be Gkjg) (Z,=<pg), according to
remark 4.109. If it is not the case, we would have more spurious solutions to remove, but
the following algorithms would work as well. The aim of this subsection is to remove the
spurious solutions and compute the variety V(Z), using the knowledge of polynomials in
Gga)(Z,=pg). To this end, we propose three approaches. The two first ones deal with
an ideal Z = (f1,..., fs) generated by polynomials invariant under a group G which is a
subgroup of a reflexive group H. More exactly, in the first one, we assume that H is a direct
product of groups of the form G(u,m,n) (in the classification of Shephard and Todd [92]),
since their invariants have a simple form and allow an easy reconstrution of the solutions (x;)
by numerical approach. The second and the last ones can be applied in the general case of
an ideal in some graded algebra, but need some precomputation. We finally compare the
complexity of these approaches.

4.3.3.1 First approach: exhaustive search and numerical approximation

In this subsubsection, we assume that H is a product of reflexive subgroups of the form
G(pi, mi, n;) defined hereafter.

Definition — Proposition 4.112. [92] Let p,m,n > 1 with w|u, and let £ be a p-primitive
root of 1 in K. The matriz group G(u,m,n) is the subgroup of GL,(K) of matrices with only
one non-zero coefficient per row and column and each coefficient is a p-root of 1. These non-
zero coefficients are of the form £, ... €%, and we assume in addition that ) a; = 0[n].
This is a subgroup of cardinal p"n!/m of the already seen group of generalized permutations.

It is easy to prove that this kind of group is generated by reflections. In the non-modular
case, according to theorem 3.36, this is a sufficient condition for the ring of invariants to be
a polynomial ring. This is actually true in the modular case, moreover a set of invariants is
very easy to exhibit:

Proposition 4.113. With e; the j-th symmetric function in n variables, the polynomials
defined by:

hi =ej(al,...;att) for 1<j<n-1 and b = en(21, ..., 2n)M"™
are such that K[zy,. .., 2,]"™) = Klhy, ..., hy].

Now assume that H = Hle G(u, i, n;) with ny + - -« +ngy = n. The groups G(u;, mi, n;)
act on distinct sets of variables {z; 1, ..., 2, }, thus H is a reflexive group: K[XH = K]z, ;%
can be written K[h1,1,...,hipn,ho1,. .., hep,), with {hi1,..., hin,} the invariants given in
proposition 4.113 for G(u;, 7, n;) acting on {x;1,...,Zin,}. Let G be a subgroup of H
and fi,..., fs be polynomials invariant under G, generating an ideal Z in Klz; ;]. With the
general algorithm presented in the previous subsection, we obtain the lexicographical invariant
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Grobner basis Gy, ju(Z) of the ideal Ju in K[X 2. We denote by V(Jg) the corresponding

variety in K. For (b; ;) € K" a point in V(Jg), we can construct at most

ni | T |
ni: Ty

Pms oo He e
1 Ty

points (a; ;) of K" such that the invariants h; ; take the value (b; ;) on these points (a; ;).
Let a = (a;;) be one of them, then this set {(a;;)} can be written H.a. All elements of
the orbit H.a are not necessary elements of V(Z), because fi,..., fs are not assumed to be
invariant under H. The algorithm 4.114 removes spurious solutions: the idea is to check for
alla € V(Ju) and A in H if A.a belongs to V(7). Since V(Z) is invariant under G, the value
of A.ais the same while A describes a coset in H/G. Hence, we can identify a coset with one
of its element and check only if A.a € V(Z) for each A € H/G.

Algorithm 4.114: Removing spurious solutions by exhaustive search

Input : F =[f1,...,fs], G, H and the variety V(Jx) Cc K"
Output: The variety V(Z)

Vi={k

for b = (bi;)1<i<e1<j<n; € V(Ju) do

for i =1to ¢/ do

gi(x) == a™ — bjja™ 1 + -+ (—1)”%%&

Compute the multiset {c; ; | 7 € {1,...,n;}} of roots of g;;
Extract p;-roots of each ¢; j, denoted by a; ;;

Compute &;, a primitive p;-root of 1;

while (H] am)“i/”i 7& bi,ni do

L a;1 = §ia;1;

It R i

for Ac H/G do
| if fi(Aa)=--- = fy(A.a) =0then V:=V U{Aa};

return V;

Theorem 4.115. Algorithm 4.114 outputs the variety V(Z).

Proof. Since V(Z) is G-invariant, it is clear with the last if condition that the output is
contained in V(I) Let v = (Ui,j)lgiff,lgjgni be in V(I), then (b@j) = (hi7j(V)) belongs to
V(Ju). Let ¢ = (¢;;) and a = (a;;) be as in the algorithm. Clearly, for each ¢, h; j(a) =
b;j for 1 < j < n; — 1 and this equality is maintained during the while loop. Moreover,
hin, (@)™ = b;“m 0 hjn,(a) and b; ,, are equal, up to multiplication by a m;-root of 1. Since
&i is a p-primitive root of 1, at each step in the while loop h; p,(a) is multiplied by the same
mi-primitive root of 1, so the loop ends with h; ,,(a) = b; . Since the values of h; ; on a and
v are the same, they are in the same orbit under the action of H, so v will be in some set
A.a, which ends the proof. O

Example 4.116. We consider the Cyclic-5 problem on Q, see for instance example 4.51 for
the definition. Using the SAGBI Fy algorithm, we compute a SG-basis of the ideal IP5 up to
degree 8; then, thanks to the algorithm SAGBI-FGLM, we first obtain an invariant Grébner
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basis up to degree 8, with respect to the weighted DRL ordering on the symmetric functions,
given by:

GKoy,....o505 (L, <) 2 (02 + 5037, 02%03 — 2509, 02 03° + 5097, 01, 04,05 — 1]

If we compute a Grobner basis of the previous set, we obtain the complete invariant Grébner
basis for the weighted DRL ordering (to obtain it directly, we would have to go to degree 9 in
the SAGBI F5 algorithm)

GK[al o‘r}GS(I? <) = [023 + 5032, oolos — 25 09,09 o3 — 25 03,033 + 5022,01,04, o5 — 1]

......

and then by applying again the classical FGLM algorithm we obtain the lexicographical Griob-
ner basis:

G:= [ o5 — 1,04,U§ + 3125 03,12505 + 0§,01 ]
The ideal generated by this Grobner Basis is radical, and we obtain easily a prime decompo-
sition given by the three following Grobner bases :

G1 = [01,02,03,04,05 — 1] Go = [01,02 + 5,03 +5,04,05 — 1]

and G3 = [01,2509 + 05 — 505 + 2503 — 125,04 — 503 + 2505 — 12503 + 625, 04,05 — 1]

Let Us be the set of the fifth-root of 1 in C, we are now able to compute Vc(G) using this
prime decomposition. This variety has cardinal 6 and can be expressed by radicals:

VC(g) = {(07 070’0’ 1)} U {(07 _5(")27 _5(*}3’ Oa ]-) | w e U5}
Then we compute the cosets of S5/Ds, which are the cosets of these elements :
fid, (1 2), (1 3),(1 4),(1 5),(2 5),(1 2 4),(1 2 5),(1 3 4),(1 4 2),(1 4 3),(1 2 4 3)}

We now apply algorithm 4.114.

Case 1. b= (0,0,0,0,1). Then g = 2° — 1. The roots of g are the fifth roots of 1 and we
can take a = (1,a, 02, a2, a*), with a = e’ . We obtain the two subsets of Ve(Z) : Ds.a and
Ds.(1 2 4 3)a.

Case 2. For each w € Us, we have : b = (0,-5w,—5w?0,1), then
—3-V5 —3+\/5w)

2 ' T2

g = 2% — 5w +5w?x? — 1, whose roots are the components of a = (w,w, w,
. Because of multiplicities of the roots of g, we obtain several elements of &5/Ds which give
rise to the same orbit. Only one is solution : Ds.a.

To summerize, the variety Ve (Z) has cardinal 70 and is given by

—3—-v5 =3 )
U Ds5.(w,w,w, 5 \[w, _;\[w) U 2U ) Ds.(1,w,w?, w?,wh)
wels wele B M)

Remark 4.117. Of course, for general problems we have to take numerical approzimations
of the roots of points in V(Ju) and roots of g;, since the solutions are not given by radicals
i the general case.

In the next subsubsection, we will introduce a new object for removing the spurious
solutions, by working only in the base field.
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4.3.3.2 Triangular sets, divided differences and triangular approach

In this subsubsection, we introduce the notion of triangular sets of polynomials, which
will be useful to describe the two other methods used to remove spurious solutions. The well
known divided differences of a univariate polynomial (already defined in subsection 4.1.2)
form such a triangular set and are related to the symmetric group &,,. We will see that we
can obtain a triangular set from every group or even in a graded algebra. From now on and
until the end of the subsubsection, < will denote the lexicographical ordering.

Definition 4.118. Let K[Y] = K[y, ..., y,] be a polynomial ring, ordered by lexicographical
ordering such that y; > -+ > y,. We say that a set of r polynomials T = {Py,...,P.} € K[Y]
forms a triangular set if LM<(P;) is a power of y; for alli € {1,...,r}. Moreover, we assume
that T is reduced, which means that NF<(P;, [Pit1,...,P:]) = P; for all i.

Proposition 4.119. With the previous definition, it is obvious that a triangular set of poly-
nomaials is a reduced Griobner basis of a zero-dimensional ideal for lexicographic ordering.
Moreover, the degree of such an ideal is [[;_, deg(P;).

We recall here the definition of the divided differences for a univariate polynomial.

Definition — Proposition 4.120. For a univariate polynomial c(x) of degree n in K[z],

we define n polynomials ci,...,c, of K(z1,...,xn)[x] by cn(z) c(x) and ci(z) =
6”1(2:22111(““) for all i in {1,...,n — 1}. Since ¢; € Klxiq1...2,][x] and deg,(¢;) = 1,
the n polynomials c1(x1), ..., cn(xy) belong to K[z, ..., xy,] and are called the divided differ-

ences of the polynomial c.

Observe that the computation of divided differences can be down with a monic polynomial
with variables o1, ..., 0, as coefficients, instead of elements of K:

Example 4.121. Let ¢(z) = 23 — 012 + 09w — 03 € K[o1, 02, 03][z]. The divided differences
of ¢ are very easy to compute and are:

c1 =x1+T2+xr3—01 co :x§+x2x3—x201+m§—x301+02 c3 :x§—01x§+029§3—03

We can now reformulate our problem of removing spurious solutions with the divided

differences. Assume that Z = (f1,..., fs) is a zero-dimensional ideal generated by polynomials
fi € K[zq,. .. ,a;n]G, with G a subgroup of &,,. We have seen in the previous subsection how
to obtain, a &,,-invariant Grobner basis of Z in Koy, . .., 0y,], for lexicographic ordering with

o1 > +++ = 0p. Since this Grobner basis generates also a zero-dimensional ideal, it contains a
polynomial with leading monomial a power of ¢; for all . Extracting this set of polynomials
and adding the divided differences of the polynomial c¢(z) = 2" — o121 + - + (=1)"0,
(and performing some reductions), we obtain a triangular set T in K[z1,...,2n,01,...,04].
Let E be the set of polynomials {fi,..., fs} (reduced with respect to T'), together with the
polynomials in the invariant Grébner basis not in the triangular set.

Example 4.122. Consider the ideal Z generated by the following polynomials in Q[x1, x2, x3]:
fi=z1+x2+ 23 fo = 2329 + whrs + 237 J3 = x12203 — 1

The polynomials f1, fo and f3 are invariant under the action of the alternate group As.
We find easily the G3-invariant Grobner basis of the system, which is [o1,03 +9,03 — 1], and
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is already a triangular set in Q[oy, 09, 03]. Adding to this set the divided differences computed
i example 4.121, and after performing some reductions, we obtain:

T = {x1 + x2 + 23,23 + 2913 + 23 + 09,25 + 02x3 — 1,01,08 + 9,03 — 1}

It is clear that the polynomials fi1 and fs reduced to 0 with respect to T', but fo does not. So,
in this example, the set E consists in a single polynomial:

E = {NF<(f2,T)} = {—3x023 — 022 + 0923 — 3}

To remove spurious solutions, we are interested in computing V((TUE)). Before explaining
how to remove spurious solutions, we explain how to generalize to other groups than &,,:

Proposition 4.123. Let H be a reflexive group, and hy,...,h, be n invariants such that
K[XH = K[h1,..., hy). With new variables Hy, ..., Hy,, we can reverse the relations between
Ziy...,Tp and hy, ..., hy by computing a lezicographical Grébner basis of the ideal (H;—h;,i €
{1,...,n}) withxy > 29> -+ >z, > H > - > H,. In the case where H = &,,, we obtain
exactly the divided differences.

The difference between this general case and the case of divided differences is that the
Grobner basis of the previous proposition contains polynomials with leading monomials equal
to a power of x; for all ¢, but also other polynomials. But we can add these polynomials to
FE and the following algorithms will also compute the interesting variety.

Example 4.124. Go back to example 4.122. Removing the useless variables o1 and o3,
the set T = {T1,T>, T3, T4} is a triangular set in K[z, xa,x3,09] consisting in four poly-
nomaials with leading monomials xl,x%,xg and Ug’, The set E has only one polynomial de-
noted by f = —31‘256% — o9x9 + o9x3 — 3. Observe that LCy,(f) = —356% — o9 s invert-
ible in Qx1, o, x3,02]/(T) with inverse g = (60213 + 9x3 + 405)/9. Then, the polynomial
f= NF<(f x g,T) = z9 — 2309 — 73 — %0% € (T U E) is monic in the variable xa, so the
polynomaials 11, f, T3, Ty form a triangular set, denoted by T. Since NF< (TQ,T) =0, we have
exactly (T'U E) = (T): we have removed the spurious solutions because the projection of the

variety associated to T on the three first variables x1,x2,x3 is exactly the variety associated
toT.

We now come to the general approach. Now 7' denotes a triangular set in some polynomial
ring K[y1,...,yr], and E denotes a set of polynomials in K[yi,...,y,]. The idea is the same
as in example 4.124, but the output could be more than one triangular set, since we obtain a
triangular decomposition of the ideal (T'U E).

Definition 4.125. Let J be a zero-dimensional ideal of Kly1,...,y.|. A triangular decom-
position of J is a list Jh,..., Ty of triangular ideals in Klyi,...,y,], such that V(J) =
V(TJ)U---UV(T)

A triangular decomposition is a nice way of manipulating solutions of a polynomial system,
because the coefficients of the polynomials lie in K and the composition allows to compute
exact or approximate solutions (depending of K) by solving univariate polynomials. Daniel
Lazard [73] gave an algorithm to compute a triangular decomposition of a zero dimensional
ideal from a Grobner Basis of the ideal for the lexicographic ordering. Here, we want to
compute this decomposition without previously computing a Grébner basis.

Following the idea of example 4.124, we will pick up a polynomial in F, and try to
invert its leading coefficient (as a univariate polynomial in its main variable) with respect
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to the triangular set T. The aim of inverting polynomials modulo a triangular ideal gives
the following algoritm 4.126, which is recursive. During the execution of the algorithm, one
inversion could fail, which leads to a decomposition of the triangular set ' = {T} > --- > T,.}
into two triangular sets. More exactly, in this case one polynomial T} of T is splitted into two
factors Tk} and T,f modulo polynomials in 7" smaller than T}, which means that Ty — T; k}T,f €
(Tk+1,--.,Ty). Notice that to invert a polynomial P modulo T', we only need polynomials in
T with main variable equal or smaller than the leading variable of P. Thus, the algorithm is
written assuming that the leading variable of P, LV<(P) is equal to LV<(T1) = y1. At every
recursive step, we had to take only the polynomials of T" with smaller or equal leading variable
than the polynomial we want to invert, and if this polynomial P is a scalar, we return 1/P.

Algorithm 4.126: Inversion Algorithm
Input :0# P € Klyp,...,yr] and a triangular set 7' = {T} > --- > T,.} such that
P = NFj(P,T) and LVj(P) = LVj(Tl) =Y1.-
Output: A decomposition T}, = Tlek2 mod (Tyy1,...,T}) or the inverse of P mod T,
that is a polynomial @) such that PQQ =1 mod T.
c:=LCy, (P); // so P=cy{+ o(cyy)
d := Inversion(c, T');
if we obtain a decomposition then
‘ return the decomposition;
else
P :=NF<(dP,T); //since cd=1 mod T, P =y® +o(y}).
Compute a and b such that T} = a + bP mod (T, ..., T));
//a =NF<(Ty,[P,Ty,...,T,]), and b is the first cofactor.

if a =0 then
‘ return 77 = bP mod (Ts,...,T},);
else

u := Inversion(a, T);

if we obtain a decomposition then
‘ return the decomposition;

else

| return NF<(—dbu,T);

Example 4.127. We give here two simple examples of the execution of the Inversion algo-
rithm 4.126, the first one succeeds and the second one fails and returns a decomposition of
the triangular set.
— Let T be {2 — 1,4? — 1} and P = xy in K[z, y] with x = y. The main variable of P
is © and its leading coefficient is y. The inverse of y modulo T is y himself, so d = y.
Then P=x, and 2> —1=—1+xzxx s0, a=—1 and b = . Finally, w = —1 and we
return NF<(—y x x x (=1),T) = zy. Indeed, NFz(2*y*,T) =1x1=1.
— Let T be {2?> —1,y®> — 1} and P = xy — 1. P cannot be inversible modulo T because
they share the same root (1,1). If we run the algorithm, d =y and P=ux—y. Then
22—1 = 0+(x+y)P mod (y>—1), so we return the decomposition x> —1 = (z—y)(z+y)
mod 3% — 1.

Theorem 4.128. Algorithm 4.126 terminates and outputs the inverse of P or a factorization
of an element of T.
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Proof. We prove correctness by induction on the number of variables r and on the degree of
the polynomial P as a monic polynomial in its main variable y;. If » = 0 then P is a scalar
and the algorithm returns 1/P. If r = 1, then T consists in a single polynomial 77 and both
P and T are univariate in y;, with deg(P) < deg(77). Since P is assumed to be non zero, its
leading coefficient is a scalar ¢ and its inverse is d = 1/c, thus P = P/c is monic. The writing
Ty = a + bP is exactly the Euclidian division of 77 by P. If a = 0 then the algorithm returns
a decomposition of 77 into two non trivial factors. Else a is a polynomial of degree less than
P, so Inversion(a,T') outputs a correct decomposition of T" or the inverse of @ modulo T'. In
the second case, the algorithm outputs NF<(—dbu,T'), but the following equalities hold:

—dbu = —bPu mod T = —u(T) —a) mod T =wua mod T =1 modT

If r > 2, the proof is the same as in the case r = 1, with moduli with respect to 15, ..., T).
Termination is assured by the decrease in the number of variables or the degree in the main
variable between the recursive calls. O

With this Inversion algorithm, we are able to give a solution to the problem of computing
a triangular decomposition of TU E in K[y, ..., y,]: we just have to add to T elements of F
one by one, using the following Insertion algorithm 4.129. This algorithm is also recursive,
this time we do not assume that P and 77 have same leading variable but when we apply
the inversion algorithm, we suppose again that instead of T', we keep only the polynomials
with smaller (or equal) leading variable than the polynomial we want to insert. The idea is
to try to obtain the inverse of the leading coefficient of P. If we succeed, we can apply the
insertion algorithm with a triangular set with one polynomial having smaller degree, and if
we fail we obtain a decomposition of a polynomial T} in T into two factors, which leads to a
decomposition of T' into two triangular sets 7! and T2 such that V(T) = V(TY) UV(T?). In
this case, we apply again the Insertion algorithm twice.

Algorithm 4.129: Insertion Algorithm
Input : P e Klyi,...,y,] and T = {T} > --- > T,} such that P = NF<(P,T).
Output: A triangular decomposition of the ideal (T'U {P}).
if P =0 then
| return T
else
Yk := LV(P);
c:=LCy, (P); // ¢ is a polynomial in the variables smaller than yj.
d := Inversion(c, T');
if this inversion fails then
We obtain a decomposition V(T') = V(T1) U V(T?);
return Insertion(NF< (P, TY), T) U Insertion(NF<(P, T?), T?);
else
P .= NF<(d x P,T); // P is monic in yj.
T:= TUP\{Tk}; // where T} is the polynomial in 7 with main variable
Y -
return Insertion(NF<(Ty, T),T);

Example 4.130. This exzample follows example 4.127. Let T be {z* —1,y* — 1} and P =
xy —x —y+1 € Klz,y]. We want to compute a triangular decomposition of the ideal
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T U {P}. The main variable of P is x and ¢ = y — 1. Since ¢ is not invertible modulo
y? — 1, we obtain the decomposition V(T) = V(T*) U V(T?) with T* = {2?> — 1,y — 1} and
T? = {2* — 1,y + 1}. Because NF<(P,T") = 0, the result of Insertion(NF<(P,T'), Tt is T!
himself. On the other side, NF<(P,T?) = —2z + 2. Trying to insert this polynomial into T?
leads to Insertion(NF<(z* —1,T)),T) with T = {x — 1,y + 1}, and the result is T. Finally,
the algorithm returns {{z? — 1,y — 1}, {z — 1,y + 1}}.

Example 4.131. Now, we give a complete resolution of the Cyclic-5 problem, on the finite
field K = Fgs5201. The ideal is generated by the polynomials of E :

T1+ a2+ a3+ x4 + 5
T1X2 + X1T5 + Tax3 + L3T4 + T4X5
E= T1X9T3 + T1T2x5 + T1X4T5 + Tox3T4 + T3T4Ts

T1T2T3X4 + T1X2X3T5 + T1T2T4T5 + T1X3L4T5 + T2L3T4T5

T1Tox3x4Ts — 1
which leads to the following Grébner basis in K[o1, 09, 03,04, 05]:
G =lo1,09+ 314504,0§ + 312503, 04,05 — 1]

The degree of all these polynomials is one, except for ag + 312503. So, we work in
K[z1, 9, x3, 24, x5,03]. The triangular set given by the divided differences and the invari-
ant Grobner Basis is :

fi = vi+xotaxs+ay+as

fo = 2%+ mow3 + 127y + ToT5 + T3 + X374 + T3T5 + TF + T475 + TE + 314505

f3 = x% + $§x4 + a:%:z:g) + Igﬁi + T3zax5 + $3$§ + 3145503031 + 93?1 + a:ixg) + a:4x§
T— +31459340§ + l‘g + 3145x50§ — 03

fi = xﬁ + xixg) + xix% + 3145x?10§ + x4x§ + 3145x4x50§ — x403 + x%

+3145220% — 25073
f5s = a2+ 31452305 —ako3 -1
fo = oS+ 312503

We apply the previous algorithm to E and T, and we obtain

Ty + 22 + 18346073 (21 + 15725073 r1 + 1572503

73 + 183467202 — 62905 | x2 + 1572502 T9 + x3 + 1834603

x3 + 1572503 T3 + 24 + 1834603 73 + 183461302 — 62905
x4 + 1572503 z3 + 183463403 — 62905 | x4 + 1572503

x5 + 1572503 x5 + 1572503 x5 + 1572503

o3 + 3125 [ 0§ +3125 o + 3125
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Ty + 157250§ ( T + xix% + xix% + x4 + x5 T+ x5 + 183460§

To + 157250% To — zix% To + 15725032,

T3 + 15725J§ T3 — JEZCC% T3 + 157250%

T4+ x5 + 18346U§ xﬁ + .’Ei:ﬂg) + ximg + :E4:L"§ + fg T4+ 157250%

2} + 183462503 — 62905 | 22— 1 2% + 183461503 — 629074
0§ + 3125 o3 of + 3125

This triangular decomposition encodes all of the 70 solutions of the Cyclic-5 problem.

Example 4.132. We now come back to the example 4.108, invariant under the subgroup
G = (Z/27)* x D5 of the Coxeter group H = (Z/27Z)* x &5. We wanted to solve the system

fi=ad+ a3+ ad+22+ 22 —1=5R=3) —R(1) =
fo=ai+ai+at+al+ 2 —1=5R0=}) -R1) =
f3 = 2223 + 232} + 2323 + 2322 + 232 — 1 = 5R(2323) —R(1) =0
fa = x1xowsxgzrs — 1 = R(z122032425) — R(1) =0
fs=a%+a§+a§+ 2§+ 28 — 1 =5R(%) —R(1) =0

and we found with the general algorithm 4.105 the following H-invariant Grébner basis:

G = [Hy—1, Hy, Hs, HS — 10488 H} + 5251 Hj — 10492 H3 — 5271 H3 + 28927 H, + 18242, Hs — 1]

The set Gy obtained in this case consist in ten polynomials whose leading monomials are

m%,azl:pgxgmxg,,xlxgmxg,,:plea:g),xl:pg,x1H5,x§,xg,x§,x%O

Then we run the inversion-algorithm twice with the set E equal to {f1,..., fm} together
with the polynomials starting by r1Tox32x475, m1x§x4x5, CL‘1£UZJE5, xlxg, x1Hy and the setT equal
to the other polynomials in Gy together with one of the polynomials starting by H3. In each
case, we obtain a triangular ideal whose associated variety has size 480, so we recover the
960 solutions. Since Hs = 1 in this example, the polynomial with leading monomial equal to
x1Hs is already portable into the triangular set, but we don’t need to do it before running the
algorithm.

Remark 4.133. Let G be a Grébner Basis for lexicographical ordering of a zero-dimensional
ideal in Kly1, ..., yr|. If we run insertion algorithm with T = {T} > --- > T, } the elements of
G having their leading monomial which is a power of y; and E = G\T, we recover the Lazard
Lex-Triangular algorithm [73].

4.3.3.3 A univariate approach

In this subsubsection, we give another approach to remove spurious solutions. We use the
same notations as in the previous subsubsection, that is 7' = {17 > --- > T} for a triangular
set in K[Y] = K[y1,...,y,] and E another set of polynomials in K[Y]. The idea here is to
compute a Grobner basis for lexicographical ordering of (I'U E). The strategy involves a
univariate representation of the algebra K[Y]/(T") and a variant of the FGLM algorithm.
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Definition 4.134. Let Z be a zero-dimensional ideal in K[Y]. a univariate representation of
the quotient ring K[Y'|/Z is an isomorphism

e KYJ/IT —  Klul/Q(u)
Yly ey Yr = Si(u), ..., Sr(u)
A > U

where A is a linear form in yi,...,y,, such that K[Y]/Z = K[A] (A is called primitive), and
Q is the characteristic polynomial of the endomorphism of multiplication by A in K[Y]/Z.

In the previous definition, the fact that A is primitive is a Zariski open condition on its
coeflicients, if the field K is big enough we can choose the coefficients of A randomly and we
get a primitive linear form with high probability, see [87] for details. The univariate approach
to remove spurious solutions follows from the following proposition.

Proposition 4.135. Let T be a zero-dimensional ideal in K[Y] and consider a univariate
representation of K[Y|/Z as in definition 4.134. Let f be in K[Y]. Then an univaraiate
representation of K[Y]/(Z + (f)) is given by the univariate quotient K[u]/(Q N o(f))(u),
where Q N o(f) is the greatest common divisor of Q and ¢(f). The variables y; are mapped
on the images of the S; in this univariate ring. The image of A remains primitive.

Proof. Consider the following diagram. We need to prove that the kernel of sop~!is (QAp(f))
to prove the existence of the isomorphism ¢.

K[Y]/Z 4 K[u]/Q(u)
s 5o 90—1 Y
KIYI/T 4+ (1) L Klul/(Q A o))

By Bezout’s relation, Q A ¢(f) can be written a@Q + bp(f), so o 1 (Q A p(f)) = ¢~ (b)f and

Q A @(f) lies in the kernel of s 0 p~!. Reciprocally, let P be in Ker(s o ¢~!). Since ¢ is an

isomorphism, ¢! (P) € (f), so P can be written a@Q + bp(f) and is a multiple of Q A p(f).
O

Now let T be a triangular set in K[Y] and @ a univariate polynomial associated to a
univariate representation of K[Y]/(T), with same notations as in definition 4.134. Then by
applying previous proposition |E| times, a univariate representation of (T'U E) is given by:

5 KYI/TUB) -  Kul/Gw)
Yy oo s Yr = Si(u), ..., Sp(u)

A —> U

where Q is the greatest common divisor between @ and {¢(P) | P € E}, A is the image of
A in K[Y]/(T U E) and Sy, ..., S, are the images of the previous Si,..., S, which are well
defined since @) divides Q. To obtain a lexicographical Grobner basis of the ideal (T'U E), we
just apply the following algorithm 4.136, which is a variant of the FGLM algorithm 1.52.
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Algorithm 4.136: Filtering solutions with univariate representation

Input : The polynomial Q, the polynomials S1,...,Sn, the morphism Q.
Output: A lexicographical Grobner basis of the ideal (T'U E).
L :=[1]; //1ist of monomials in K[Y] sorted by the lexicographic ordering =

S :=[]; //staircase for <
Vi=1]; //V = 3(5)
G =[]

while L # [] do

m := L[1]; and remove m from L;

v = ¢g(m);

s = #5S;

if v € Spang (V') then

we can find (\;) € K® such that v = Y A; - Vi;

=1
G:=GU [m—Z/\ZSZ},
=1

else
S:=SU[m]; V:i=VU][v
| L:=Sort(LU[ym|i=1,...,7],=);

Remove from L duplicates elements or multiples of LM<(G);

rgturn G

Termination is assured by the fact that 17, ..., T, are in the kernel of ¢ so we would find
a linear combination between some power y;" and the monomials examined when they are
affected to m. Correctness is obvious since the kernel of ¢ is exactly (EUT).

Example 4.137. We propose here a different approach of example 4.122. Remember that we
wanted to solve f1 = fo = f3 =0 with

fi=x1+x2+ 23 fo = xiTs + 2333 + 2371 fz3=x12003 — 1

Since the S3-invariant Grobner basis of the system is given by [o1,05 + 9,03 — 1], we set
K = Q[w] with w a root of the irreducible polynomial x> + 9, and assume that oo = w.
The divided differences computed in example 4.121 form a triangular set given on K after
reductions by

T:{331—I—xz+m3,w%+x2w3+x§+w,m§+wx3—1}

The linear form A = 3x1 + 2z + x3 is primitive in K|xy, x9, x3]/(T), and the characteristic
polynomial of multiplication by A in K[z, xa, 23]/ (T) is given by Q(u) = u®+6wut+9wu? -9,
which gives the following univariate representation:

p: K[Y]/IT =Kz, z2,23]/(T) — Klul/Q(u)
A = U
x1 = S1(u) = %(—u4 — bwu? + 9u — 4w?)
x2 = So(u) = §(ut 4 Swu? + 4w?)
x3 = S3(u) = — 1k (u* + bwu? + Yu + 4w?)
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The images of polynomials in E = {f1, fa, f3} by ¢ are all zero but the image of fa, which
is given by ¢(f2)(u) = 3(u® +3wu—3). Since Q(u) = (u® + 3wu — 3)(u? + 3wu+3), the GCD
between Q and p(fs) is exactly Q(u) = 2¢(f2)(u) = u® + 3wu — 3, so the map @ is given by:

¢ K[Y]/ZT =Kz, z2,23]/(TUE) — Klul/Q(u)
A o
x1 = S (u) = —%(wu2 — 3u + 2w?)
T2 —  Sy(u) = $(2wu? + 3u + 4w?)
x3 —  S3(u) = — 5 (wu? + 6u + 2w?)

We can now apply the previous algorithm. The three first loops add the monomials 1, x3, x%
in the staircase, because their images by ¢ are linearly independent: ¢(1) = 1, 9p(x3) =
—wu? —6u—2w? and 9¢(x3) = 3u? —w?u. Actually, these elements form a basis of K[u]/Q(u),
so any new examined monomial will give an element of the Grébner basis. The next monomial
in L is x%, which gives gz = x% 4+ wxz — 1. Then, xo gives 3go = 3xy — 3wa:§ — 33 — 2w?.
Since we remove from L all multiples of x5 and 2, the mext one is x1 which gives 3g; =
3z + wag + 623 + 2w?, and the algorithm stops. The lexicographical reduced Grébner basis

of (T U E) is given by {g1, g, g3}-

Remark 4.138. We could have taken a univariate representation of K|y, x2,xs,w]/T with
T the triangular set given by divided differences together with w®+9 as in example 4.124, and
we would have found the same result. However, from a complexity point of view, it is easier
to compute univariate representations of divided differences only, see the following complexity
subsubsection.

4.3.3.4 Complexity of the approaches

We now briefly examine and compare the complexity of the first and the third approaches.
The second one is very general but its complexity is hard to derive. We have mentionned
that from the H-invariant Grébner basis, we take a primary decomposition. Since in practice,
those bases are very small, we can suppose that the cost of computing such a decomposition
is negligible. The first approach has the best complexity, but the two others contain ideas
that could give rise to a best approach since we are working only in the field K, and there are
exact methods.

Exhaustive search. In algorithm 4.114, the computation of the variety V(Jg) and the
successive b, ¢ and a can be understood in two ways: first, we can perform numerical ap-
proximations if we are looking for solutions over R or C. Otherwise, we can compute in
field extensions if we are looking for exact solutions. In both case the complexity is simply
O(m% ZbeV( i) Chp), where Cy, is the complexity of computing an approximation of b and
a corresponding a, or an expression of such n-tuples in a suitable extension of K.

Univariate approach. We use notations of the dedicated subsubsection. Once the compu-
tation of the univariate representation is done, the computations of GCD are very easy, since
they can be done in quasi-polynomial time with respect to the degree of the polynomial () in
the univariate representation. The FGLM-like algorithm to recover a Grobner basis for lex-
icographical ordering has complexity O(r(deg@Q?)). Now let discuss about the complexity of
computing a univariate representation of a triangular ideal generated by T'= {1} = --- = T}
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in K[y1,...,y]. We denote again by D(T) the product [];_, deg, T;. From [87], it is known
that a univariate representation can be computed in O(D(T)?) operations in K. However,
in several particular case, a univariate representation can be computed faster, even in quasi-
optimal time in the case of divided differences, see [74].

4.3.4 Implementation and Benchmarks

Comparaison between K[X] and K[X]®. We analyse here at a fixed degree the assump-

tion dim(K[X]$) ~ dim(K[X];) made to analyse the complexity of SAGBI-F; algorithm

based on asymptotic results. Since dim(K[X]y) o +00, we present here the relative
—+00

deviation

. dm(K[X]$) — dim(K[X])/|G] _ [G[dm(X[X]S) |
dim(K[X]y)/|G]| dim(K[X]y) d—+o00
for several groups. We have already seen the same kind of analysis in section 4.2, for
abelian groups. We denote by C,, the cyclic group of order n generated by the matrix M,
(already seen in example 4.49), and by D,, the dihedral group of order 2n generated by M,
and M, where 7 is the permutation (1 n)(2 n — 1) ..., which is a product of transpositions.
More precisely:

0 0 0 01

1 ...0 00 10

M, = and M: = oo Do
000 ... 1 01 ... 00
100 ... 0 10 ... 00

Table 4.139 presents relative deviations for the Cyclic and Dihedral groups: the conver-
gence of o4 to 0 is fast.

We are now interested in an analysis of the family (Z/2Z)" " x D,, of subgroups of the
Coxeter group (seen in example 4.108, in the case n = 5). For a given n, this subgroup
is generated by the matrices M,, M,, and the diagonal matrices with diagonal coefficients
beeing 1 or —1, with an even number of —1. This group has size 2"n. If n is even, the group
contains the scaling —I,,, therefore the convergence of the relative standard deviation toward
0 does not hold. Therefore, we only present cases where n is odd. Since the convergence of
the relative deviation towards 1 is slower than for the cyclic or dihedral groups, we present in
table 4.140 the ratio |G| dim(K[X]$)/ dim(K[X]4) d_>—+>oo 1. Even if the convergence is slow,

we see that the approximation dim(K[X]$)/dim(K[X],) ~ 1/|G| remains very acceptable in
most of the case, since |G| = 2"n.

Comaparaison between Grébner bases and Invariant Grébner bases. We compare
here some sizes of Grobner bases and Invariant Grébner bases, together with the number of
solutions of the corresponding ideals.

Example 4.141. We deal here with the Cyclic-n problem, for various n. We present the
number of polynomials, the maximal number of monomials and the variety size of the lexico-
graphical Gréobner basis and Sy -invariant Grobner basis obtained with the Cyclic-n problem,
given by the following ideal in the invariant ring K[z1, ..., z,])P":

ZPn = (R(x1), R(x122), .. ., R(21292 -+ - ) — 1)
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| Growp\d | 2 | 3 | 4 | 5 10 15
Cy 0.20 | 0.00 | 0.14 0.00 0.021 0.00
Cs 0.00 | 0.00 | 0.00 0.032 40x1073 | 1.0 x 1073
Cs 0.14 | 0.071 | 0.048 0.00 7.0x 1073 | 0.0007.7
Cr 0.00 | 0.00 | 0.00 0.00 0.00 0.00
Cho 0.091 | 0.00 [ 0.021 | 40x1073 | 1.5 x 1073 | 1.2 x 107°
Cis 0.00 | 0.015 | 0.00 | 1.0x1073 | 1.2x107° | 3.9 x 1076
Dy 1.4 | 0.60 | 0.83 0.43 0.32 0.18
Ds 1.0 | 043 | 0.43 0.27 0.11 0.047
Ds 1.3 | 050 | 0.52 0.24 0.12 0.047
D; 1.0 | 0.33 | 0.33 0.15 0.049 0.016
Do 1.2 | 0.27 | 0.32 0.11 0.029 6.0 x 1073
D5 1.0 | 0.19 | 0.18 0.047 6.0 x 1073 | 6.7 x 1074

Table 4.139 — The relative deviation between dim(K[X]$) and dim(K[X]4)/|G/| for the Cyclic
and Dihedral groups.

n\d| 15 20 25 [ 30 ] 35 [40] 50|80 100]
5 066 |1.7] 075 | 14079 [13]12]11] 11
7 033 [23] 046 | 1.8 | 056 | 1.6] 15| 1.3] 1.2
9 011 |37] 025 | 26 | 036 |21]19]15] 14
11 0.042 |64 011 | 40 | 021 [30]25]1.8] 1.6
13 | 6.1x103 | 12. [ 0043 ] 64 | 011 | 45]35]23] 20
15 | 63x1073 | 23.]0.013]11.0 | 0.048 | 70 52| 3.1] 25

Table 4.140 — Ratio |G| dim(K[X]$)/ dim(K[X]4) for the Coxeter subgroup (Z/2Z)"~! x D,,.

4.3.4.1 Cyclic group and FGb implementation

As a proof of concept of the efficiency of the method, a implementation of the algo-
rithm 1.68 in the case of the invariant ring K[X]%" in C as a part of the FGb program?*
has been done. We have a dedicated implementation for rewriting products bgl X bf,/ as a
linear combination of b;”d/ where (bf);eq1,. n,y is the basis of K[X]" given by R(m), with
m describing the set of initial monomials. We report in table 4.143, CPU timings for the
Cyclic-n problem on Fgss21 (the computer is a laptop Dell E6500, 4Go RAM). For the tests
we compute a SAGBI-basis up to degree D of the invariant ideal, and we choose D big enough
so that we can apply the SAGBI-FGLM algorithm 4.101). The results are very promising
since it takes 1m30s to compute a SAGBI basis for the Cyclic-9 problem. To give an order of
magnitude with the classical approach with Grébner bases, we have included the CPU time
for computing a Grébner basis using the Fy algorithm [34], implemented in Magma 2.19, on
a computer with an Intel/Xeon with 20 Go RAM).

3. http://www-polsys.lip6.fr/~jcf/Software/index.html
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| G | 16| | Max length of a polynomial in ¢ | V((G)) |
Lex-Gb of 772 2 2 2
Go-inv Lex-Gb of ZP2 | 2 2 1
Lex-Gb of 7D 3 3 6
GS3-inv Lex-Gb of 773 | 3 2 1
Lex-Gb of 7P4 6 5 dim 1
S4-inv Lex-Gb of 7P+ | 3 2 dim 1
Lex-Gb of 775 11 15 70
Ss-inv Lex-Gb of ZP5 | 5 2 6
Lex-Gb of 7Ps 17 27 156
Sg-inv Lex-Gb of ZPs | 7 4 13
Lex-Gb of ZP7 35 132 924
Sy-inv Lex-Gb of ZP7 | 7 9 57
Lex-Gb of 7Ps 57 2545 dim 1
Gg-inv Lex-Gb of ZPs | 15 548 dim 1

Table 4.142 — Sizes of the invariant Grobner bases and the Grobner bases

Problem | D | D truncated with SAGBI-Fjy Grobner Basis with F;, on Magma
Cyclic-7 | 12 0.06s 0.2s

Cyclic-8 | 13 0.5s 3.9s

Cyclic-9 | 15 92.2s 417.1s

Cyclic-10 | 16 4788s 24h13m

Table 4.143 — Benchmarks with FGb: SAGBI-F5 for the Cyclic-n problem in Fgss01
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Further work. A Magma implementation of the algorithms has been done, and will be
available soon. Notice that the timings in the FGb implementation seem to be bad, compared
to the timings with the Abelian Fj algorithm, presented in table 4.89, but the timings here
(in the FGb implementation) date back to 2009. Even if the strategy of applying Abelian Fy
can be better for systems of equations individually invariant under the action of an abelian
group (like the Cyclic-n problem), the approach with SAGBI bases can be applied in some
cases, where Abelian Fy cannot. Then, other benchmarks have to be performed, in both C

and Magma.
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Chapter 5

Grobner Bases in Monomial
Algebras

5.1 Introduction

This work is a common work with Jean-Charles Faugere and Pierre-Jean Spaenlehauer
which has been accepted for presentation at the ISSAC’ 14 conference.

Context and problem statement. Many polynomial systems or systems of Laurent
polynomials arising in applications do not have a dense monomial structure (for instance
multi-homogeneous systems, fewnomials, systems invariant under the action of a diagonal
matrix group,...). The development of toric geometry during the 70s/80s has led to toric (or
sparse) elimination theory [101], a framework designed to study and exploit algorithmically
these monomial structures.

Central objects in toric geometry are semigroup algebras (also called toric rings), already
defined in section 3.2.Semigroup algebras are isomorphic to subalgebras of K[X lil, o, XY
generated by a finite subset of monomials.

Our motivation is to propose fast algorithms to solve symbolically systems whose support
lie in one of the following classes of semigroups: semigroups constructed from the points with
integer coordinates in a normal lattice polytope & C R™ (in that case, the algorithms we
propose are well-suited for unmized systems: the Newton polytopes of the input polynomials
are all equal to &) or semigroups generated by a scattered set of monomials (fewnomial
systems).

Main results. Given a 0-dim. system of Laurent polynomials f; = --- = f;, = 0 and
a finite subset M C Z" such that each polynomial belongs to the subalgebra generated by
{X{*- X | « € M}, we associate to M two affine semigroups: Sy, C Z" generated by

M and S](\il[) C Z"*! generated by {(a,1) € Z""! | a € M}. Under the assumption that Sy,
contains zero but no nonzero pairs (s1,s2) € 5’%/[ such that s; + so = 0, our solving strategy
proceeds by combining the SAGBI-F5 algorithm 1.68 (called Sparse-F5 in this context) in

the algebra K[S](\Z)] and a sparse variant in K[S)/| of the FGLM algorithm 1.52. We define
a notion of sparse Gréobner basis (definition 5.2) that is computed by the sparse-MatrixF5
algorithm if we know a bound on its maximal degree (this maximal degree is called the witness
degree of the system). An important feature of sparse GBs is that their definition depends
only on the ambient semigroup algebra and not on an embedding in a polynomial algebra.
In this sense, they differ conceptually from SAGBI bases, even though Sparse-F5 is no more
than SAGBI-Fj5 in this context and Sparse-FGLM has similarities with the SAGBI-FGLM
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170 CHAPTER 5. GROBNER BASES IN MONOMIAL ALGEBRAS

algorithm proposed in section 4.3 (algorithm 4.101). In the special case S); = N™, then sparse
Grobner bases in K[Sy/] are classical Grobner bases, and sparse-FGLM is the usual FGLM.
At the end of the solving process, we obtain a rational parametrisation of the form

Q(T)=0 and YaeM\{0}, X ... X —Qu(T)=0

where Q € K[T] is a univariate polynomial, and for all « € M, Q, € K(T) is a rational
function. Consequently, the solutions of the input sparse system can be expressed in terms of
the roots of the univariate polynomial ) by inverting a monomial map.

The next main result addresses the question of the complexity of this solving process when
M is given as the set & NZ", where &2 C R" is a lattice polytope of dimension n. It turns
out that the complexities of sparse-MatrixF5 and sparse-FGLM algorithms depend mainly on
the combinatorial properties of &2:

— the normalized volume vol(Z?) € N;

— the Castelnuovo-Mumford regularity reg(K[Sg%Zn]) (definition 3.109), equal to n+1—/¢
where / is the smallest integer such that the intersection of Z™ with the interior of ¢- &
is nonempty;

— the Ehrhart polynomial HP 4 (¢) which equals the cardinality of (¢- ) NZ" for ¢ € N
(definition 3.101)

We use as indicator of the complexity the witness degree which bounds the maximal

“sparse degree” (corresponding to an N-grading on K[Sg,f%zn]) in a reduced sparse Grébner
basis. More precisely, we obtain the following complexity estimates:

Theorem 5.1. Let & C R™ be a normal lattice polytope of dimension n with one vertex
at 0 € Z", (dy,...,d,) be a sequence of positive integers and (fi,..., fn) be a regular se-
quence of Laurent polynomials in K[de, oo, XEY™ such that the support of f; is included
in {X7'--- X5 |se(di- P)NZL"}. Then a sparse GB of the ideal (f1,..., fn) C K[Sznzn]
can be computed within

O (n HP»(duie)*)

arithmetic operations in K, where w < 2.373 is a feasible exponent for the matriz multiplication
and dwiy < reg(K[Z])+ 14377 (dj—1). Moreover, if 0 is a simple vertex of & (i.e. a vertex
which is the intersection of n facets), then the sparse-FGLM algorithm executes at most

3

O [ HP»(1) [ vol(2) [ ] d;
j=1

arithmetic operations in K.

Direct consequences of these formulas allow us to derive new complexity bounds for solving
regular multi-homogeneous systems. We show that the witness degree of a regular system of n
multi-homogeneous polynomials of multi-degree (dy, ..., d,) with respect to blocks of variables
of sizes (n1,...,np) (With Y n; = n) is bounded by n+2 —max;eqq, . py([(n; +1)/d;]) (which
generalizes the bound min(n;,n2) + 1 in the bilinear case [36]). We also propose a variant
of Froberg’s conjecture (conjecture 2.43) for sparse systems and a notion of semi-regularity,
which yield complexity estimates for solving sparse overdetermined systems.

We have implemented in C a prototype of the sparse-MatrixF'5 algorithm, that runs several
times faster than the original Fj5 algorithm in the FGb software. For instance, we report
speed-up ratios greater than 100 for instances of overdetermined bihomogeneous systems.
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The implementation also works well for fewnomial systems (although this case is not covered
by our complexity analysis).

Related works. Computational aspects of toric geometry and Grébner bases are inves-
tigated in [102]. In particular, [102, Subroutine 11.18] gives an algorithm to compute syzygies
of monomials in toric rings, which is an important routine for critical-pairs based algorithms.

Other approaches have been designed to take advantage of the sparse structure in Grébner
bases computations. For instance, the Slim Grébner bases in [11] describes strategies to avoid
increasing the number of monomials during computations. This approach improves practical
computations, but does not lead to new asymptotic complexity bounds for classes of sparse
Systems.

The sparse structure and the connection with toric geometry have also been incorporated
to the theory of resultants, and a vast literature has been written on this topic, see e.g.
(33, 32, 21, 20]. One difficulty in the resultant framework is that it requires genericity as-
sumptions on the input polynomials to ensure that the resultant is not zero. Sparse Grobner
bases are flexible: even if we do not know how to bound the witness degree (i.e. when the
regularity assumptions of Theorem 5.1 do not hold), we can use ad-hoc techniques to ensure
the termination of the sparse-MatrixF5 algorithm. Moreover, the algorithms extend without
any modification to the overdetermined case. However, the computational tools that we pro-
pose do not exploit mixed monomials structures, which are well-understood in the context of
resultants.

Perspectives. Our approach is for the moment limited to unmized systems: all input
polynomials have to lie in the same semigroup algebra. A possible extension of this work
would be the generalization to mixed systems (where the algorithms would depend on the
Newton polytope of each of the polynomials of the system). Some results seem to indicate
that such a generalization may be possible: for instance, under genericity assumptions, mixed
monomial bases of quotient algebras are explicitly described in [86].

Also, a bound on the witness degree and the complexity analysis is for the moment re-
stricted to the polytopal case. Ensuring termination with a critical pairs approach (such as
[102, algorithm 11.17]) could lead to a complete extension of the classical Fy algorithm to the
sparse case.

Finally, finding complexity bounds which explain the efficiency of the sparse Grobner bases
approach for fewnomial systems (see Table 5.35) remains an open problem, and is a work in
progress.

Organisation of the chapter. The background material on semigroup algebras and
convex geometry that will be used throughout this chapter have been recalled in section 3.2.
Section 5.2 introduces sparse Grobner bases and describes a general solving process for sparse
systems. The main algorithms are described in Section 5.3 and their complexities are analyzed
in Section 5.4. Finally, we describe in Section 5.5 some results that are direct consequences
of this new framework and experimental results in Section 5.6.

5.2 Sparse Grobner bases

One of the idea behind the sparse Grobner bases framework is to replace the semigroup
N" (leading to the polynomial ring K|x1,...,z,]) by another affine semigroup S (see defini-
tion 3.85). First, we have to put an ordering on the monomials in K[S].

Definition 5.2. Let S be an affine semigroup. A total ordering on the monomials of K[S] is
called admissible if
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— it is compatible with the internal law of S: for any si,s9,83 € 5, X% < X%2 =
Xs1ts3 st-&-sg}.
— for anys € S\ {0}, X% < X5,

Example 5.3. In this section, we will take as a small example the affine semigroup gener-
ated in Z? by the three integer points {(1,1),(2,1), (1,2)}. This semigroup leads to the algebra
K[S] = K[zy, 2%y, 7y?]. Since K[S] C K[z,y], a total ordering on K[S] is given by the restric-
tion of a total ordering on K[z, y| to K[S]. We choose the ordering given by the restriction of
the DRL ordering. A picture of the semigroup S is presented in figure 5.4

7777777777777777777

—————————

Figure 5.4 — The semigroup S

Notations 5.5. For a fized admissible ordering < and for any element f € K[S], we let
LM<(f) denote its leading monomial. Similarly, for any ideal T C KI[S], LM<(Z) denotes
the ideal generated by {LM<(f) | f € I} in K[S]. A finite subset G C T is called a sparse
Grobner basis (abbreviated sGB) of T with respect to = if the set {LM<(g) | g € G} generates
LM<(T) in K[S).

Remark 5.6. With this definition, if S C N, a sparse Gréibner basis of T C KI[S] is no more
than a SAGBI Grobner basis of T in A = K[S], with definition 1.61. But contrary to SAGBI
basis in the general case, in monomial algebras the implication f € A = LM<(f) e A
holds, which is a great difference and has to be emphasized.

Note that monomial orderings exist for any semigroup algebra: the convex hull of a
semigroup S C Z" is a PRPC & C R™ (see definition 3.87): this is a consequence of the fact
that there is no nonconstant invertible monomial in K[S]. Now one can pick n independent
linear forms (¢1,...,¥¢,) with integer coefficients in the dual cone

¢* = {linear forms £ : R" - R | Vx € ¢, {(x) > 0}

and set X% < X% if and only if the vector (¢i(s1),...,¢n(s1)) is smaller than
(1(s2),...,0n(s2)) for a classical admissible ordering on N™.

Note that the assumption that K[S] contains no nonconstant invertible monomial is a
necessary and sufficient condition for the existence of a monomial ordering.
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We describe now an algorithmic framework that we use to solve sparse systems of Laurent
polynomials. Let M C Z™ be a non-empty finit subset of Z", containing no distinct elements
s and s’ such that s + s’ = 0 (according to the assumptions of Definition 3.85). From now,
we will identify a element of Z"™ with the corresponding monomial in the ring of Laurent
polynomial K[X*'] = K[z, ..., z1]. Let fi,..., fs € K[X*!] be Laurent polynomials and
(di,...,ds) be positive integers such that the supports of each f; is included in

d;
Hm!me./\/l

j=1

Note that translating M amounts to multiplying the Laurent polynomials by Laurent mono-
mials: this does not change the set of solutions of the system in the torus (k\ {0})”

Assuming that the system f; = --- = f, = 0 has finitely-many solutions in (k\ {0})", we
proceed as follows:

1. homogenize (f1,..., fs) via definition-proposition 5.10, in order to obtain polynomials
(fl(h)’ SRR) S(h))§

2. compute a sparse Groébner basis with respect to a graded ordering of the homogeneous
ideal Z = (fl(h), cey f,gf)> - K[lel)] by using the SAGBI Matrix F5 algorithm 5.16, in
this sparse context.

3. dehomogenize the output to obtain a sGB of the ideal (f1,..., fs) C K[S\] (proposi-
tion 5.14);

4. use a sparse variant of FGLM to obtain a zero-dimensional triangular system (hence
containing a univariate polynomial) whose solutions are the image of the toric solutions
of fi =--- = fs =0 by monomial maps (algorithm 5.19);

5. compute the non-zero roots of the univariate polynomial and invert the monomial map
to get the solutions.

We focus on the four first steps of this process. The fifth step involves computing the
roots of a univariate polynomial, for which dedicated techniques exist and depend on the field
K. It also involves inverting a monomial map, which can be achieved by solving a consistent
linear system of | Hilb(Sx)| equations in n unknowns.

In the sequel of this section, we investigate the behavior of sparse Grobner bases under
homogenization and dehomogeneization (Steps 1 and 3). We refer the reader to [26, Ch. 2]
for geometrical aspects of projective toric varieties and their affine charts. From now on, M
is a set of monomials which verifies the assumptions given in notations 3.95.

Example 5.7. We follow example 5.3. In this case, M = {1, zy, 2%y, xy?}, the semigroup
S = Sag was drawn in figure 5.4 and the semigroup S = let) s drawn in figure 5.8

There is a canonical dehomogenization map from K[SS\Z)] to K[Sm|:

Definition 5.9. With notations 3.95, the morphism xam, defined by:

o KISW = KiSu
XEd o X

1s a dehomogeneization morphism.
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X

Figure 5.8 — The semigroup S®

Definition — Proposition 5.10. With notations 3.95, for any f € K[Sr], we call degree of
f, the number

deg(f) = min{d € N | x3{ (/) NK[S}{]a # 0}
Moreover the set Xﬁ(f) ﬂK[Sf\Z)]deg(f) contains a unique element, called the homogenization
of f.
Proof. The only statement to prove is that X]j( n K[S/(&)]deg( #) contains a unique element.
Actually, the restriction of the map yaq to K[S/(\Z)]d is one-to-one: let f(0), f/(h) ¢ X/_V}(f) N
K[S_E\}/L[)]deg(f)' Then xu(f® — /(M) = 0, which implies f(») = f/(?), O

Example 5.11 (Continuation of exemple 5.7). Assume now that K is a small finite field,
namely K = Fs1. Let F= {f1, fo} be the following set of polynomials in K|x,y]:

F_) hi= 22y + 202y? + 172y + 14,
fo = aty? + 4a3y3 + 2922yt + 2023y? + 5223 + 222y? + 822y + 29xy? + Sy + 5
Actually, these polynomials have been chose as random linear combinations of monomials in
M and M? = {m xm/ | m,m’' € M} with leading coefficient 1. Therefore, fi and fo belong

to K[Sam| with f1 of degree 1 and fo of degree 2. Moreover, the homogeneizations of fi and
fo are hfi and h2fs.

The next step is to prove that dehomogenizing a homogeneous Grobner basis (with respect
to a graded ordering) gives a Grobner basis of the dehomogenized ideal.

Definition 5.12. An admissible monomial ordering < on K[Sx?] is called graded if there
exists an associated ordering (also denoted <) on K[Sn] such that

dy < dsy or

XGud) ¢ x(2d) ey
dy = dy and X5 < X*®2
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Example 5.13 (Continuation of example 5.3). Recall that we put on the monomials of S =
Sxq the DRL ordering with x = y. Let h be the third variable in S . The natural graded
monomial ordering on K[S™M] associated to the DRL ordering on K[S)] is given by

2yPRY < 2y Y = v < or v=+" and z°y® <ppy 2®y®

Proposition 5.14. Let G be a homogeneous sparse-Grobner basis of a homogeneous ideal

ZcC K[SS\Z)] with respect to a graded ordering. Then xam(G) is a sGB of xm(Z) with respect
to the associated ordering on K[Spq].

Proof. First, notice that x ¢ commutes with leading monomials on homogeneous components
of K[S§7]: for any f € K[S{]a, xm(LM<(f)) = LM< (xam(f))- Let f € x(Z) and f®) € T
be a homogeneous polynomial such that f is equal to xap(f (h)). Consequently, there exists
g € G such that LM<(g) divides LM<(f®). Applying xa, we obtain that LM<(xam(g))
divides LM< (xaq(f™)) = LM<(f). Therefore xya(G) is a sGB of xu(Z) for the associated
ordering. O

5.3 Algorithms

In this section, we describe variants of the classical algorithms Matrix-F5 (algorithm 1.44)
and FGLM (algorithm 1.52) in the context of semigroup algebras. The resulting Sparse-
Matrix Fy algorithm is no more than the already seen SAGBI-Matrix F5 algorithm, used in
a semigroup algebra.

5.3.1 Sparse-MatrixF'5 algorithm

In this subsection, we describe an algorithm, which computes a sparse Grobner basis of a
homogeneous ideal in K[S’/(\Z)], truncated in some given degree. Actually, this algorithm has
already been entirely described in chapter 1, since it is no more than a specialization of the
SAGBI Matrix-F5 algorithm (algorithm 1.68). However, the framework of monomial algebras
is very close to the classical polynomial ring K[x1, ..., x,] and a critical pairs algorithm could
be derived in the same fashion than the Fy-algorithm [35], while it is difficult in a general
algebra. We say a few words on this purpose at the end of the subsection.

Algorithm. Remember that, in the SAGBI Matrix Fs-algorithm, we construct SAGBI-
Macaulay matrices for each degree. The columns of the matrix at degree d is indexed by a
basis of A, the component of degree d of the ambient algebra A, and the rows by all products
(b;-l*di, fi), bj describing the basis of Ag_g4,. In this context, the SAGBI-Macaulay matrices

will be called Sparse-Macaulay matrices. Since the algebra A = K[S/(\Z)] is generated by

monomials in M, we take {]_[?:1 m; | m; € M} as a basis of K[Sx?]d- The relation between
the Sparse-Macaulay matrix and a D-sGB is given by:

Definition — Proposition 5.15. Let fi,...,fs € K[Sﬁa)] be homogeneous polynomials, <
a graded monomial ordering, and for d € N, let G4 be the set of polynomials corresponding
to the rows of the reduced row echelon form of the Sparse-Macaulay matriz in degree d of
fi,... fs. Then the following facts hold:

— Forany D e N, GoU---UGp is a D-sGB of I

— xm(Go) C xm(G1) C xm(G2) C -
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The smallest integer £ such that x pm(Gy) is a sGB of the ideal x pm({f1,---, fs)) is called the
witness degree and noted dyit-

Proof. The first statement (Go U --- U Gp is a D-sGB of Z) follows from the fact that G is

a triangular basis of the vector space K[Sﬂ)]d. The second statement is deduced from the

inclusions XM(K[SE\Z)]O) C XM(K[S/(\Z)]l) C.... Let G be asGB of (fi,..., fs). Then dy; is
bounded above by max{deg(g) | ¢ € G} and is therefore finite. O

Algorithm 5.16: Sparse-Matrix F5

Input : Homogeneous fi,..., fs € K[Sx?] of resp. degrees (di,...,ds), a graded
monomial ordering < on K[let)]v a positive degree D

Output: a D-Grébner basis of (fy,..., fs) with respect to <

fori=1tosdo G, :=0;

ford=1to D do

Mgp =0, Mg := 0;

for i =1 to s do

if d < d; then

‘ Mg, == Mg; 1

else

L M, ; = matrix obtained by adding new rows X(S’d*di)fi to Mg ;—1, for all

monomials X (54-4:) ¢ K[Sﬁffl}]d_di that are not in (LM<(G;—1)).
Compute the row echelon form Md,i of My ;;
| Add to G; all rows of My; not top reducible by G;

return G,

In practice, the choice of the parameter D in Algorithm 5.16 is driven by the explicit
bounds on the witness degree that we shall derive in Section 5.4.

Example 5.17.

We explain the behavior of the Sparse-Matrix F5 algorithm 5.16 on a small example which
follows the examples given in the previous section. We set K = F3; and S the semigroup
generated by {zy, 2%y, zy?} in K[z, y]. We are interested in computing a sparse Grébner basis
of the ideal generated by

F_ f1 = 2%y + 202y? + 172y + 14,
fo = aty? 4+ 4a3y® + 2922y 4 2023y + 5223 + 222y? + 822y + 29zxy? + 5y + 5
These two polynomials have degree 1 and 2 and their homogeneizations in K[S (h)] are hf; and
h2f,. Since algorithm 5.16 works only with homogeneous polynomials, we will not indicate

the homogeneization variable h in the sequel. Theoretical study shows that D can be set to
4, as we will see in the next section.

At step d =1, only fi is considered and the algorithm constructs the matrices

22y xy? ay 1
Mig=Mpy=M =M =1xf; (1 20 17 14)
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After this step, we have G1 = Go = {f1}.

At step d = 2, the matrix My ; is build by writing polynomials {mf; | m € M} in a ma-
trix having its columns indexed by M? = {z%y?, 233, 22y*, 239?, 2213, 2292, 2%y, xy?, 2y, 1}.
Some reductions can be performed in order to obtain a matrix in row-echelon form, and we
indicate My (the labels of the rows correspond to the original ones, but some rows-reductions
have been applied)

1,4y2 $3y3 x2y4 $3y2 x2y3 $2y2 x2y ny Ty 1

2yxfi [ 1 0 3 0 2 21 0 29 20 21

M, — x| 0 1 20 0 17 0 0 14 0 0
AT ayx i |0 0 0 1 20 17 0 0 14 0
1x fi 0 0 0 0 0 0 1 20 17 14

Of course, all of these rows are reducible by f; and no polynomial is added to G;. Adding fo
to this matrix and applying another row-echelon form computation leads to the matrix

e? 2P 2%t 232 o2 o%? 2%y wo? ay 1
2yx fi [ 1 0 0 0 2 20 0 17 15 7
. xy? X fi 0 1 0 0 17 14 0 27 8 10
Mys=ayxfi | 0 0 0 1 20 17 0 0 14 0
1x fi 0 0 0 0 0 0 1 20 17 14
1 x fo 0 0 1 0 0 21 0 4 12 15

The monomial 22y* is not reducible by x?y (because y* ¢ S). Hence, the polynomial

fo = 22y* + 2122y% + 4zy® + 122y + 15 is added to Go which is now equal to {f1, fg}

We skip the construction of the matrix M3 ; and its reduction to M&l. In order to build
M3 2, we have to add to M3 ; the rows m fo with m a monomial in M such that m ¢ LM<((G1)).

Since z?y appears as leading monomial of a row in M; 1, it can be removed. Hence, we just
e 1)

have to add the rows xy?fa, xyfo and fo. After reduction, we obtain the following full-rank
matrix (the columns indexed by the lowest monomials have been removed):

=]
w
ot
S
S
w
w
(=]
ot
w
S
'
w
ot
S
w

x3y4

) -y 'y ) -y 'y -y 'y 'y Yy 7y

z4y? x f1 1 0 0 0 0 0 0 0 0 0 0 0

23y3 X f1 0 1 0 0 0 0 0 0 20 0 0 0

22yt x f1 0 0 1 0 0 0 0 0 14 0 0 0

392 x f1 0 0 0 0 1 0 0 0 2 0 0 0

22y3 x f1 0 0 0 0 0 1 0 0 17 0 0 0

N 2292 x f1 0 0 0 0 0 0 0 1 20 0 0 0
Mso = 2%y x f1 0 0 0 0 0 0 0 0 0 1 0 0
zy? X f1 0 0 0 0 0 0 0 0 0 0 1 0

zy X f1 0 0 0 0 0 0 0 0 0 0 0 0

1% f1 0 0 0 0 0 0 0 0 0 0 0 0

zy? X fa 0 0 0 1 0 0 0 0 21 0 0 0

Yy X fa 0 0 0 0 0 0 1 0 0 0 0 0

1% fa 0 0 0 0 0 0 0 0 0 0 0 1

The leading monomials of the three new rows (after reduction) are x?y* 23y° and z3yS.
All these monomials are reducible by Gy since z2y* = LM<(f2), #3y° = zyLM<(f2) and
2390 = nyLM.j(fg), with 1, zy, zy?> € S. Hence, no new polynomial is entered in Gy at this
step. We skip the final step (d = D = 4), which leads to the full rank matrix MM but does
not give a new polynomial in Go. The algorithm stops and return Go = {fi, f~2} which is
actually a sGB of (f1, fa).
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Remark 5.18. Actually, the algorithm would have return the homogeneized polynomials
{hf1,h2fa} of K[SM]. Applying the deshomogeneization morphism x s gives us the Grébner

basis { f1, f2}-

Further work. In order to translate the Sparse-Matrix F5 algorithm in a F5 fashion [35],
we would have to extend Buchberger’s algorithm in the context of a semigroup algebra. There
is only one step of the algorithm to modify: the construction of the S-polynomials. Actually,
for s1,89 € S two elements of the semigroup, their LCM is replaced by the intersection of
the ideals (s1) N (s2). In general, this ideal is not principal. Let s; V so denote the minimal
generators of (s1) N (s9). Consequently, the S-polynomial of f1, fo € K[S] is no longer unique
and is actually a set of polynomials defined as

{ Xho X
LT<(f1) LT=(f2)

and the set LM<(f1) VLM<(f2) can be computed via [102, Subroutine 11.21]. Changing only
this definition of S-polynomials provides a variant of Buchberger’s algorithm in a semigroup
algebra K[S]. In addition, with the SAGBI-F5 criterion 1.69, we get rid of all reductions to
zero if the input is a regular sequence in K[S]. An efficient computation of these critical pairs
has not been implemented yet and would be an interesting step, in order to improve this
approach. For example in the previous algorithm, we would have detected that Go = { f1, fa}
is a sGB and stopped the computation at step d = 2.

s e LMs(f1) v LMj(f2>} ,

5.3.2 Sparse-FGLM algorithm

The variant of the FGLM algorithm presented in this section is closed to the SAGBI-
FGLM (algorithm 4.101) presented in subsection 4.3.2. Indeed, the Normal Form provided
by the sparse Grobner basis allows us to look for linear combinations of powers of elements
of S in the quotient algebra K[S]/Z. However, the context is nicer here, for two reasons:

— the sparse Grobner basis allows us to test the membership in Z for a polynomial of

any degree.

— under the assumption that the semigroup is simplicial, the matrices of multiplication

by some element in the Hilbert basis (see proposition-definition 3.88) of S can be
computed easily.

Let (pi1,...,pr) be the Hilbert basis of a semigroup S C Z". Given new indeterminates
H = {Hy,...,H,}, any monomial in K[S] is the image of a monomial in K[H] via the
morphism

o: K[H,...,H] — K[S]
H; —  XPi
Given an admissible monomial ordering <y on the ring K[Hj, ..., H,], an ideal Z C K[S] and

a normal form relative to Z (given for instance by a sparse Grobner basis of Z), Algorithm 5.19
computes a Grébner basis of ¢ ~1(Z). Note that

v (Var@n (®)") = Var (¢7@) N (K'Y,
where ¢ : K' — K is the map x (xPr ..., xPr). Also, we would like to point out that

Algorithm 5.19 does not depend on the support of the input sparse system, but only on the
ambient semigroup Sug.
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Algorithm 5.19: Sparse FGLM

Input : - a sparse Grobner-basis G of Z in K[S] with respect to <
-a monomial ordering <y on K[Hy, ..., H,]
-a monomial map ¢ : K[Hy, ..., H;] = K[S5]

Output: A Grébner basis in K[Hy,. .., H,] with respect to <g

L :=[1]; //1ist of monomials in K[H,..., H,]

E :=[]; //staircase for the new ordering =<py
V :=[]; //V = NF<(¢(5),9)
G :=]; //The Grébner basis in K[H,..., H,]

while L # [] do
m := L[1]; and Remove m from L;

v :=NF<(p(m),G); D)
e:=#E ;
if v € Spang (V) then
J(N;) € K€ such that v = > \; - Vj; (2)
i=1

G:=GU m—Z)\lEl],

Remove from thﬁe elements top-reducible by G.

else

E:=EUm|; V:=V U/v (3
L:=Sort(LUH;m|i=1,...,7],=<n);

Remove from L duplicate elements;

Return G,

The main principle of Algorithm 5.19 is similar to the original FGLM Algorithm [39]: we
consider the monomials in K[H, ..., H,] in increasing order until we obtain sufficiently many
linear relations between their normal forms. The only difference is that the computations
of the normal forms are performed in KI[S] (using a previously computed sparse Grébner
basis) via the morphism . For solving sparse systems, we choose the lezicographical ordering
for = H-

Theorem 5.20. Algorithm Sparse-FGLM is correct: it computes the reduced Grobner basis
of the ideal p~Y(T) C K[Hy, ..., H,] with respect to <py.

Proof. Let G = (g1,...,9,) be the output of algorithm 5.19. Set m; = LM<(g;). First, we
prove that G C ¢~ 1(Z). Notice that each g; is of the form m;—q, where ¢(q) = NF<(p(m;),G).
Consequently, NF<(¢(g;),G) = 0 and hence g; € ¢~ (Z). Next, let h € K[H] be a polyno-
mial such that LM<(h) ¢ (LM<(G)). Up to reducing its nonleading monomials by G, we
can assume without loss of generality that all its monomials do not belong to (LM<(G)).
Therefore, the normal forms of the images by ¢ of all the monomials in the support of h are
linearly independent in K[S]/Z (otherwise the linear relation would have been detected by
algorithm 5.19), which means that NF<(p(h), Gy # 0 and hence h ¢ ¢~ !(Z), which concludes
the proof that G is a Grobner basis of ¢ ~!(Z). The proof that G is reduced is similar. O

As usual, the steps (1), (2) and (3) are done by linear algebra (at step (3) we use
the Update procedure 1.54) to maintain a link between the staircase in construction E and



180 CHAPTER 5. GROBNER BASES IN MONOMIAL ALGEBRAS

the elements NF<(¢(u),G) for w in E). If S is assumed to be simplicial, a complexity of
O(r - dimg (K[S]/Z)3) can be ensured, see the next section.

Example 5.21 (Continuation of example 5.17). We end up this section by applying briefly
the algorithm 5.19 to the sparse Grébner basis G computed in the previous erample. The
staircase (monomials of S that are not reducible by G) is of size 6 and is given by € =
{a3y*, 22y3, 2%y?, 2y?, wy, 1}. The staircase and the other points in S are drawn in figure 5.22.

yA | | | | | |
- -- - - e e e e
} } } } } } Monomials in
-+ e e e o o| (LM<(G)) and
l l 1 1 1 1 not in LM<(G)
.
””1””1”7{1)””(197”{1}7”;” Monomials
y | - | inLM(9)
. e e © © . .
‘ ‘ N Monomials in
f ? 1 1 1 1 ®| the staircase £
+ + - 4 + + ?1:

Figure 5.22 — Staircase and leading monomials of the sGB G.

The Hilbert basis of S is {x%y,xy?, xy}. Hence, we introduce three variables Hy, Hy and
Hs and consider the map

¢: K[Hy,Hs,Hs] — KI5]
H — 2%y
H» — ay?
H; — Yy

We put the ordering <g equal to the lexicographical ordering with Hy > Ho > Hs on
K[H1, Ha, H3). The following table indicates the computation of the staircase in the new
variables Hy, H5 and H3.

m v E v € Spang(V)?
HY 1 (] false
H} xy [1] false
H2 x?y? (1, H3) false
H3 14z2y3 + 172%y% + day? + 232y + 21 (1, H3, H2] false
Hi | 14a3y* + 25223 + 222y2 + 62y + 92y + 16 (1, Hs, HZ, H3] false
H3 1523y* + 112%y3 + 1322y + 132y% + 212y (1, Hs, H2, H3, H3] false
HS | 1823y* + 2222y3 + 1522y? + 22y + 27xy + 11 | [1, H3, H3, H3, H, H3) true

Since NF<(HS,G) is linearly dependent of {NF<(H%,G) | 0 < i < 5}, the polynomial given
by this dependence (namely HS + 28H3 + 13Hj3 + 13H3 + 25H2 + 23H3 + 4) is added to the
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Grobner basis in construction. The next monomials that have to be examinated are Hy and
Hi which also lead to new polynomials. The algorithm stops and returns

Hy + 7TH3 + 8HS + 9H3 + 19H2 + 25H5 + 7
Gu = Hy+26H3 + 12H3 4+ 29H3 + 13H3 + 12H3 + 5
HS + 28HS + 13H3 + 13H3 + 25H3 + 23H; + 4

In practice, the semigroup S is simplicial, and this computation has been done by first
computing the multiplication matrices in K[S]/(G) by zy, xy* and 22y, in the same fashion
than the computation of the multiplication matrices in the classical FGLM algorithm 1.52.

5.4 Complexity

This section is devoted to the complexity of Algorithms 5.16 and 5.19 when the input
system is a homogeneous (semi-)regular sequence in a polytopal algebra K[Z?].

Complexity model. All the complexity bounds count the number of arithmetic oper-
ations {+, X, —, +} in K; each of them is counted with unit cost. It is not our goal to take
into account operations in the semigroup S.

The next goal is to bound dy;; (see definition-proposition 5.15) via the Hilbert series of
K[S]/Z. In the case of regular sequences, this Hilbert series can be easily computed by the
classical formula:

Proposition 5.23. Let & be a normal lattice polytope, fi,...,fs € K[P] be a homo-

geneous regular sequence of homogeneous polynomials of respective degrees (di,...,ds) and
= {f1,...,fs) CK[Z]. Then

S

HSkz)z(2) = HSo(2) - [ [ (1 — 2%).

i=1
Proof. This is only a specialisation of corollary 2.23 in this context. O

Example 5.24 (Continuation of example 5.21). The semigroup algebra K[S™] is a polytopal
algebra since M = {1, zy, 2%y, xy?} are the integer points of a polytope. The Hilbert series
HS%(z) can be easily computed by hand in this case, and is equal to (?_(23 with Q(z) =
14z +2%. Notice that this is coherent with the result stated at the end of the section 3.2 since
Q is a polynomial with positive coefficients of degree n — £+ 1, with n = 2 and £ = 1 is the

smallest integer such that - & has an integer interior point. Hence, if (f1, f2) is reqular of
_ Q(Z1)(1+Z)'

—z

degrees (1,2), HSk(2)/7(2)

The next lemma gives an explicit bound for the witness degree of regular sequences in a
polytopal algebra K[Z?] when & is normal:

Lemma 5.25. Let & C R" be a normal lattice polytope and f1,..., fn be a homogeneous
regular sequence in K[Z?] of degrees (dy,...,dy,). Then any [reg(K[,@]) + 14370 (dj — 1)] -
sGB of the ideal T = (f1,..., fn) is a SGB of Z. In other words dyiy < reg(K[Z]) + 1 +
> j—1(d; = 1).
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Proof. By proposition 5.23 and with the notations of proposition 3.103, the Hilbert series of
K[Z]/T is equal to

2) T, (1 — 2%
HS 5 (2) [Tis, (1 - 2%) = i )({[Z_:;)(i-&-l )

QI b

where K (z) € Z[z] is a univariate polynomial with deg(K (z)) = reg(K[2])—1+_F_,(d;—1).
Now, notice that the Hilbert series of K[.Z?]/Z is equal to that of K[Z?]/LM<(Z). Therefore
HPk[2) /LM (7)(d) is constant for d > deg(K(z)) + 1. Since £ < ¢ implies /& C {'P, we
obtain

max{d € N | IX®Y ¢ LMs(Z) st s € (d-P)NZ" and s ¢ ((d—1)- P)NZ"} = deg(K (z))+1.

Consequently, minimal generators of LM<(Z) and hence minimal homogeneous Grébner
bases of Z have degree at most deg(K(z)) + 2 = reg(K[Z]) + 1+ 377, (d; — 1). O

Example 5.26 (Continuation of example 5.24). With Z = (f1, f2), the Hilbert series of
K[Z]/T can also be written HSk[z)/z(2) = 6 _5-32-2%2= W + K(z) with

1-z
di = 1,dy = 2 and K(z) = —5 — 32 — 22. We recover the fact that the mazimal degree of a
monomial in the staircase has degree deg(K(z)) +1 = 3. That is why we took D = 4 in the
Sparse-Matriz Fs algorithm in example 5.17.

Now that we have an upper bound for the witness degree, we can estimate the cost
of computing a sGB by reducing the Macaulay matrix in degree dyi; (although the sparse-
Matrix F5 algoritm is a much faster way to compute a sGB in practice, it is not easy to bound
precisely its complexity). Note that reg(K[Z?]) in the following theorem can be deduced from
Prop. 3.110.

Theorem 5.27. With the same notations as in Lemma 5.25, the complexity of computing
a sGB of xprzn((f1,--- fn)) C K[Swpnzn] by reducing the Macaulay matriz in degree dyig is
bounded above by

O (n HP o (dyir)*)

where dwiy < reg(K[Z]) + 14370 1(dj — 1) and w is a feasible exponent for the matriz
multiplication (w < 2.373 with [108]).

Proof. Let T C K[Z] be the ideal generated by (fi,..., fn). The number of columns and
rows of the Macaulay matrix in degree d are respectively

nbes = HPg (d)7
> i1 HP 2 (d — deg(fi)) < nHP»(d).

Consequently, the row echelon form of such a matrix can be computed within O(n HP 4(d)*)
field operations [97, Prop. 2.11]. By Proposition 5.14 and Lemma 5.25, for

nbrows

d = dyit < reg(K[2]) + 1+ Z(dj —1),
j=1

this provides a sGB of x »nzn(Z). O
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We now investigate the complexity of Algorithm 5.19 when Z C K[S] is a zero-dimensional
ideal, and use the same notations as in Section 5.3.2. Notice that the map ¢ induces an
isomorphism ¢ : K[H]/¢~}(Z) — K[S]/Z and therefore Algorithm 5.19 may be seen as a way
to change the representation of K[S]/Z.

Theorem 5.28. Set 6 = dimg(K[S]/Z) and let r be the cardinality of the Hilbert basis of S.
If S is a simplicial affine semigroup (see Def. 3.91) and K[S] is Cohen-Macaulay, then given
a sGB of I, algorithm 5.19 computes the Grobner basis G with at most O(r - §%) operations
n K.

Proof. Once the r matrices of size d X § representing the multiplications by p; in the canonical
monomial basis of K[S]/Z are known, Step (1) in Algorithm 5.19 can be achieved in O(§?)
as in the classical FGLM Algorithm 1.52. Steps (2) and (3) are done by linear algebra as in
FGLM, which leads to a total complexity of O(r-§3) since the same analysis holds. It remains
to prove that the multiplication matrices can be constructed in O(r - %) operations (this is
a consequence of proposition 1.49 in the classical case). Since K[S] is Cohen-Macaulay and
S is simplicial, we obtain by [89, Thm. 1.1] that for any two distinct p;, p; € Hilb(S) and for
any s € 9, if s — p; and s — p; are in S then s — p; — p; € S. With this extra property, the
proof of proposition 1.49 extends to semigroup algebras. O

If the input system is a regular sequence of Laurent polynomials, then d can be bounded
by the mixed volume of their Newton polytopes by Kushnirenko-Bernstein’s Theorem [§].

5.5 Dense, multi-homogeneous and overdetermined systems

In this section, we specialize Theorems 5.27 and 5.28 to several semigroups to obtain
new results on the complexity of solving inhomogeneous systems with classical Grébner bases
algorithms (< is the standard simplex), multi-homogeneous systems (& is a product of
simplices) and we state a variant of Froberg’s conjecture for overdetermined sparse systems.

Inhomogeneous dense systems. If & = A, is the standard simplex in R™, then
computations of a sparse Grobner basis in the cone over A,, correspond to classical Grobner
bases computations using the so-called “sugar strategy” introduced in [52]. Applying directly
Theorems 5.27 and 5.28 with & = A,, gives

Corollary 5.29. Let fi,..., [, be a reqular sequence of inhomogeneous polynomials of re-
spective degrees (dy,...,dy) in Klxy,...,z,]. Then the complexity of computing a classical
Grébner basis of (fi,..., fn) with respect to a graded monomial ordering is bounded by

o))

This statement was already known under the assumption that the system of the homoge-
neous parts of highest degree f{°,..., fo° is also regular, see e.g. [3]. However, this condition
is not verified for several systems appearing in applications. Up to our knowlegde, this is the
first time that such complexity results are obtained for inhomogenous systems without any
assumption on f7°,..., f°.

where dyit < 1+ Z?:l(di —-1).

Multi-homogeneous systems. Another class of polynomials appearing frequently in
applications are multi-homogeneous systems. A polynomial of multi-degree (dy,...,dy) w.r.t.
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a partition of the variables in blocks of sizes (ny,...,ny) is a polynomial whose Newton
polytope is included in d1 A, x - -- X d¢A,,. In that case, the associated polytope is a product
of simplices, which allows us to state the following complexity theorem:

Theorem 5.30. Let fi,...,f, be a regular sequence of polynomials of multi-degree
(dy,...,dy) w.r.t. apartition of the variables in blocks of sizes (n1, ..., ng) (withni+---+ny =
n). Then the combined complexity of Steps (1) to (4) of the solving process in Section 5.2 is
bounded by

) (n HP 2 (dwit)” + nvol(@)?’)

where & = d1Ap, X --xdgAy,, dyit s less than or equal to n—|—2—maxie{ly,_wg}([(nﬁ—l)/dﬂ),

m—&-iv;it ’dl) . (”£+<ilvzit 'dz)

the Hilbert polynomial evaluated at dyiy is equal to HP 5 (dwit) = (
and vol(2) = (, " )HZ d.

M yeey Mg 1=1"

Proof. Applying Theorems 5.27 and 5.28 with & equal to diA,, X -+ x d¢A,, yields the
complexity bound in terms of dyit, # Hilb(S»nzn) and §. First, notice that the semigroup
generated by &2 NZ" is N, and hence # Hilb(S~zn) = n. Next, the polytope

B(diAp, X -+ X deAy,)

has an interior lattice point if and only if for all ¢, 3d;A,, has an interior lattice point, that
is if and only if 8d; > n;. The smallest [ that verifies this condition is

max([(n1 +1)/di],...,[(ne+1)/ds]).

By Prop. 3.110, reg(K[#]) = n + 1 — max([(n1 + 1)/d1],...,[(ne + 1)/d¢]). Since the
polynomials fi, ..., f, have degree 1 in K[2?], we get

dwit < reg(K[Z]) + 1.

Finally, notice that the unnormalized volume of dA, € R? is d?/q!. Consequently, the unnor-

malized volume of &2 is Hle d;" /n;!. Normalizing the volume amounts to multiplying this
value by n!, which yields the formula for vol(£?) and equals the multi-homogeneous Bézout
number. The number of solutions (counted with multiplicity) is classically bounded by this

value and hence § < vol(Z?). O

Finally, we state a variant of Froberg’s conjecture (conjecture 2.43) in the sparse frame-
work, leading to a notion of “sparse semi-regularity”. It provides a bound on the witness
degree of generic overdetermined sparse systems: this conjecture can be used to adjust the
parameter D of Algorithm 5.16.

Conjecture 5.31. Let &2 C R"™ be a normal lattice polytope, (dy,...,ds) € N° be a sequence
of integers with s > n. If f1,..., fs € C[Z?] are generic homogeneous polynomials of respective
degrees (di,...,ds), then

HScio1/¢p1,....50 (2) =

HS»(2) [T - zdw] ,
+

=1

where [ |+ means truncating the series expansion at its first nonpositive coefficient. Systems
for which this equality holds are called semi-regular. The witness degree of a semi-reqular
sequence is bounded above by the index of the first zero coefficient in the series exrpansion of

HSci21/¢f1,...£.) ()-
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Example 5.32. Let fi,...,fr be a system of inhomogeneous bilinear polynomials in
K[X1, X2, Y7, Ys, Y3] with coefficients chosen at random. The support of each of these poly-
nomials is included in & = Ag X As, and therefore we see them as homogeneous elements
of degree 1 in the polytopal algebra K[Z?]. Note that HP2(d) = (d§2) (d§3), and it is easy to
check with a computer algebra software that

- 3t2 + 6t + 1
d=0

If Conjecture 5.31 holds, then the ideal T C K[Z] generated by fi,..., fr has Hilbert series
HSki)jz(2) = [(1 = 2) (32 + 62+ 1)], = [1452-32" —32°] =145z

A computation performed with our Magma implementation of the sparse matriz-F5 algo-
rithm confirms that this is indeed the Hilbert series obtained.

5.6 Experimental results

In this section, we estimate the speed-up that one can expect for solving sparse systems or
systems of Laurent polynomials via sparse Grobner bases computations, compared to classical
Grobner bases algorithms. The same linear algebra routines are used in the compared imple-
mentations. Consequently, the speed-up reflects the differences between the characteristics
(size, sparseness,...) of the matrices that have to be reduced.

Workstation. All experiments have been conducted on a 2.6GHz IntelCore i7. We
compare in this section timings of our prototype implementation in C of sparse-MatrixF5
with the implementation of the Fy algorithm in the FGb library. We report more detailed
experimental results on a benchmarks’ webpage !, together with a preliminary implementation
in Magma. In all these experiments, the base field K is the finite field Fgs521. All tests are
done with overdetermined systems with one rational solution in Fg55,,. The goal is to recover
this solution. In that case, the Sparse-FGLM algorithm is not necessary since the sparse
Grobner basis describes explicitly the image of the solution by a monomial map. In several
settings, we report the speed-up obtained with our prototype implementation.

Bilinear systems. In Table 5.33, we focus on overdetermined bilinear systems. For

(Ng, Ny, m) € N3, we generate a system of m polynomials with support A, x Ay, uniformly

at random in the set of such systems which have at least one solution in Fgg;g?y

Systems of bidegree (2,1). In Table 5.34, we report the performances on overdeter-
mined systems with support 2A,, x A, . Note that we obtain important speed-ups when

ng < ny (more than 19000 for (n,,n,, m) = (3,10,24)).

Fewnomial systems. In Table 5.35, we report performances on fewnomial systems. The
complexity analysis in Section 5.4 do not apply to this context because the semigroup algebra
in which we compute is not normal. However, the correctness of the algorithms still holds.
The systems are generated as follows: for (n,t,m) € N? we pick ¢ monomials of degree 2
in n variables uniformly at random and we generate a system of m polynomials with this
support in Fgs501[X1, . .., X,,] with random coefficients such that there is at least one solution
in Fgss9;. The computations are done w.r.t. the semigroup generated by the ¢ monomials.
Note that for some specific instances, the speed-up factor can be as high as 16800 compared
to classical Grobner basis computations.

1. http://wuw-polsys.lip6.fr/~jcf/Software/benchssparse.html
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’ (g, ny,m) H sparse Matrix-F5 ‘ F5 (FGb) H Speed-up

(2,29,40)
(2,39,53)
(2,49,65)
(2,59,78)
(6,19,52)
(6,21,56)
(6,27,71)

0.12s
0.49s
1.53s
4.63s
1.10s
2.13s
7.07s

5.2s
36.7s
298.5s
852.3s
25.2s
51.5s
236.0s

43
74
195
184
22
24
33

Table 5.33 — Overdetermined bilinear systems in (n,,n,) variables and m equations

‘ (g, My, M) H sparse Matrix-F5 ‘ F5 (FGb) ‘ Speed-up

(1,34,36) 0.2s 395.1s 1975
(1,39,41) 0.45s 1641s 3646
(1,44,46) 0.75s 3168.8s 4225
(2,15,25) 0.09s 410.1s 4556
(2,17,27) 0.15s 1894.7s | 12631
(2,19,30) 0.4s 5866.1s | 14665
(3,10,24) 0.15s 2937.7s | 19584
(10,4,50) 23.1s 1687.3s 73

(11,5,66) 155.1s 6265.8s 40

(12,6,36) 872.2s 27093.3s 31

Table 5.34 — Systems in (n,,n,) variables of bidegree (2,1) and m equations

’ (n,t,m)

H sparse Matrix-Fy ‘ F5 (FGb) H Speed-up

(80,240,221)
(80, 240, 223)
(150, 450, 434)
(300, 900, 881)
(120, 240, 233)
(40, 160, 128)
(60, 240, 211)

0.10s
0.08s
0.24s
4.56s
0.01s
0.21s
0.55s

54.5s
16.3s
161.2s
11301.0s
16.8s
5.93s

29.04s

545
203
671
2478
16800
28
02

Table 5.35 — Fewnomials systems
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