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Résumé

Les systèmes polynomiaux à plusieurs variables apparaissent naturellement dans
de nombreux domaines scientifiques. Ces systèmes issus d’applications possèdent
une structure algébrique spécifique. Une méthode classique pour résoudre des
systèmes polynomiaux repose sur le calcul d’une base de Gröbner de l’idéal
associé au système. Cette thèse présente de nouveaux outils pour la résolution
de tels systèmes structurés, lorsque la structure est induite par l’action d’un
groupe ou une structure monomiale particulière, qui englobent les systèmes
multi-homogènes ou quasi-homogènes.
D’une part, cette thèse propose de nouveaux algorithmes qui exploitent ces
structures algébriques pour améliorer l’efficacité de la résolution de systèmes
(systèmes invariant sous l’action d’un groupe ou à support dans un ensemble de
monômes particuliers). Ces techniques permettent notamment de résoudre un
problème issu de la physique pour des instances hors de portée jusqu’à présent.
D’autre part, ces outils permettent d’améliorer les bornes de complexité de ré-
solution de plusieurs familles de systèmes polynomiaux structurés (systèmes
globalement invariant sous l’action d’un groupe abélien, individuellement in-
variant sous l’action d’un groupe quelconque, ou ayant leur support dans un
même polytope). Ceci permet en particulier d’étendre des résultats connus sur
les systèmes bilinéaires aux systèmes mutli-homogènes généraux.

Abstract

Multivariate polynomial systems arise naturally in many scientific fields. These
systems coming from applications often carry a specific algebraic structure. A
classical method for solving polynomial systems is based on the computation
of a Gröbner basis of the ideal associated to the system. This thesis presents
new tools for solving such structured systems, where the structure is induced
by the action of a particular group or a monomial structure, which include
multihomogeneous or quasihomogeneous systems.
On the one hand, this thesis proposes new algorithms using these algebraic
structures to improve the efficiency of solving such systems (invariant under
the action of a group or having a support in a particular set of monomials).
These techniques allow to solve a problem arising in physics for instances out
of reach until now.
On the other hand, these tools improve the complexity bounds for solving several
families of structured polynomial systems (systems globally invariant under the
action of an abelian group or with their support in the same polytope). This
allows in particular to extend known results on bilinear systems to general
mutlihomogeneous systems.
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Introduction

Problématique.

La résolution effective de systèmes algébriques est un problème central en calcul formel,
notamment vis à vis de son vaste champ d’applications. De tels systèmes apparaissent par
exemple dans des domaines aussi variés que les sciences physiques et biologiques, la théorie
des jeux, la théorie du contrôle ou la géométrie.

Si les propriétés théoriques des systèmes algébriques ont été étudiées depuis les dix-
huitième et dix-neuvième siècles avec les travaux de Bézout, Hilbert, Noether ou Sylvester,
c’est Macaulay qui le premier donne une méthode pour déterminer effectivement si un sys-
tème algébrique homogène possède une solution non triviale, à l’aide du résultant multivarié.
Il faut attendre les années 1960 pour qu’Hironaka et Buchberger définissent indépendamment
le concept de base de Gröbner. C’est d’ailleurs dans sa thèse [14] que Buchberger donne le
premier algorithme pour calculer une telle base.

Depuis, la théorie des bases de Gröbner a été intensément étudiée, du fait de l’augmen-
tation croissante de la puissance de calcul des ordinateurs. En particulier, Lazard montre
en 1983 [71] les connexions entre le calcul de bases de Gröbner et l’élimination Gaussienne.
Faugère [34] propose en 1999 une version de l’algorithme de Buchberger où les choix de paires
critiques et de polynômes réducteurs sont remplacés par de l’algèbre linéaire. En 2002, il pro-
pose le premier algorithme [35] basé sur la notion de signature. Ces deux algorithmes sont de
nos jours parmi les plus utilisés pour résoudre de manière certifiée un système algébrique.

Du point de vue de la complexité, le problème de la résolution d’un système polynomial
sur un corps fini est NP-difficile : la borne de Bézout établit qu’un système générique de
n polynômes de degrés d1, . . . , dn en n variables possède

�n
i=1 di solutions dans un corps

algébriquement clos. Si aucun des polynômes n’est linéaire, le nombre de solutions est donc
exponentiel en le nombre de variables.

Les systèmes provenant d’applications pratiques sont algébriquement structurés, la struc-
ture étant liée à la formulation du problème originel. On peut alors essayer d’exploiter cette
structure de différentes manières.

— Du point de vue du nombre de solutions, il se peut que celui d’un système structuré
soit plus faible que pour un système générique.

— Du point de vue du degré maximal atteint lors du calcul d’une base de Gröbner pour
un ordre gradué, celui-ci peut-être plus petit que celui-d’un système générique : la
complexité de résoudre un tel système s’en trouve réduite.

— La structure peut permettre d’exprimer le système de façon plus compacte que la
représentation dense en somme de monômes. La manipulation algorithmique des objets
est donc facilitée, ce qui induit un gain en complexité.

Le sujet de cette thèse porte principalement sur l’étude et l’utilisation des structures
induites par l’action d’un groupe fini (systèmes avec symétries), ou possédant une structure
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2 INTRODUCTION

monomiale particulière (principalement lorsque le support des polynômes du système est inclus
dans un même polytope). Ces deux structures ne sont pas indépendantes : on verra qu’on peut
se ramener de polynômes stables sous l’action d’un groupe abélien à des polynômes ayant peu
de monômes. Le but de cette thèse est d’exploiter cette structure pour accélérer le processus
de résolution.

Le problème POSSO.

Il est important de préciser ce que l’on entend par « résoudre un système polynomial ayant
un nombre fini de solutions ».

Résolution d’équations polynomiales en une variable. Le but de cette thèse est de
résoudre des systèmes polynomiaux de manière certifiée. Or, même pour des polynômes en une
seule variable sur le corps K = Q, il n’est pas possible d’exprimer les solutions de l’équation
P (x) = 0 dans C par radicaux (ce n’est pas non plus souhaitable !), si le degré de P excède
4. Par conséquent, si K = R ou C, le recours à l’approximation de racines est inévitable.
Les techniques d’isolation de racines réelles et complexes forment un domaine de recherche
à part entière, pour lesquelles on dispose d’algorithmes efficaces et certifiés. On pourra se
référer par exemple à [82, 83, 84]. Dans le cas d’un polynôme en une variable sur un corps
K fini, il est possible de décomposer le polynôme en facteurs irréductibles sur K à l’aide
d’algorithmes spécifiques (voir par exemple l’algorithme de Cantor-Zassenhaus qu’on pourra
trouver dans [107]), ce qui permet de donner une description des solutions dans K ou K̄.

Que ce soit sur un corps fini, sur R ou sur C, le coût de ces algorithmes est en général
négligeable devant le coût du calcul d’une base de Gröbner. Dans la suite on va se ramener
systématiquement au cas de polynômes en une variable.

Base de Gröbner pour l’ordre lexicographique. Soit I un idéal de dimension zéro
(ayant un nombre fini de solutions) dans une algèbre polynomiale K[X] = K[x1, . . . , xn].
Alors la base de Gröbner réduite de I pour l’ordre lexicographique tel que x1 � · · · � xn a la
forme suivante :

Glex =





P1,1(x1, . . . , xn) � · · · � P1,�1(x1, . . . , xn) �
P2,1(x2, . . . , xn) � · · · � P2,�2(x1, . . . , xn) �
...

Pn−1,1(xn−1, xn) � · · · � Pn−1,�n−1(x1, . . . , xn) �
Pn(xn)





où les polynômes Pi,1 sont des polynômes unitaires (vus comme polynômes de
K[xi+1, . . . , xn][xi]), et le polynôme Pn appartient à K[xn]. En particulier, on s’aperçoit que la
résolution d’un système peut-être obtenue en calculant une base de Gröbner lexicographique
de l’idéal engendré par les polynômes du système, et utiliser ensuite les techniques décrites
pour les polynômes d’une seule variable : on calcule d’abord les solutions du polynôme en la
seule variable Pn, puis on reporte les racines dans les autres polynomes. On procède de même
pour xn−1, et ainsi de suite, de proche en proche.

Cette méthode a l’inconvénient de présenter une ambigüıté, car à chaque étape (excepté
pour Pn), il faut calculer les racines communes à plusieurs polynômes en une seule variable.
Cette ambigüıté peut-être levée en calculant au préalable une décomposition en ensembles
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triangulaires de la base de Gröbner lexicographique. Pour ce faire, on peut utiliser l’algorithme
de décomposition de Lazard [73].

Ainsi, le problème de résolution d’un système polynomial de dimension zéro est essentiel-
lement résolu, dés lors qu’une base de Gröbner lexicographique de l’idéal engendré par les
polynômes du système a été calculée.

Stratégie usuelle de résolution d’un système polynomial par calcul de bases de
Gröbner. En général, le calcul direct d’une base de Gröbner lexicographique d’un idéal
I = �f1, . . . , fs� est difficile alors que le calcul d’une base de Gröbner pour un ordre gradué
(et en particulier l’ordre DRL, ou grevlex, pour « graded reversed lexicographical ordering »)
est beaucoup plus aisé. Puisque c’est une base de Gröbner lexicographique qui permet de
se ramener à des polynômes en une seule variable, un algorithme de changement d’ordre est
intéressant. Plusieurs algorithmes permettent de passer d’une base de Gröbner a une autre
par changement d’ordre, dont l’algorithme Gröbner walk [24] qui peut-être appliqué quel que
soit la dimension de l’idéal considéré. Lorsque l’idéal est de dimension zéro, il est certainement
plus rapide d’utiliser l’algorithme FGLM [39], qui est essentiellement cubique en le nombre
de solutions. La stratégie usuelle de résolution d’un système polynomial ayant un nombre fini
de solutions à l’aide de techniques de bases de Gröbner est résumée en figure 0.1.

Système
Base de
Gröbner
DRL

Base de
Gröbner
LEX

Solutions
F4/F5 FGLM Résolution

univariée

Figure 0.1 – Résolution de systèmes polynomiaux par bases de Gröbner.

Changements linéaires de variables « génériques ». Un idéal I de K[x1, . . . , xn] de
dimension zéro est dit en shape position, si sa base de Gröbner pour l’ordre lexicographique
a la structure suivante :

Glex =





x1 −Q1(xn)

x2 −Q2(xn)
...

xn−1 −Qn−1(xn)

Pn(xn)





où les Qi sont des polynômes de la seule variable xn. L’ensemble des changements linéaires
sur K (correspondant aux matrices de GLn(K)) qui mettent l’idéal en shape position forme un
ouvert de Zariski non vide (on parle de propriété générique). Avant d’appliquer la stratégie
de la figure 0.1, il est ainsi courant de procéder à un changement de variables aléatoire, ayant
pour but de mettre l’idéal en shape position. Sous cette hypothèse, le changement d’ordre peut
se faire en complexité sous-cubique, voir [38]. Beaucoup d’autres algorithmes de résolution de
systèmes polynomiaux comprennent un ou plusieurs changement de variables aléatoires, voir
plus bas.

Dans cette thèse, on s’intéresse aux systèmes structurés, possédant soit une structure
monomiale particulière, soit une invariance sous l’action d’un groupe. Un changement linéaire
de variables aléatoire a tendance à casser les structures monomiales et rendre moins visibles
les symétries, c’est pourquoi on ne procèdera jamais à de tels changements. Pour traiter un
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idéal invariant sous l’action d’un groupe abélien, on verra qu’au contraire, il est judicieux de
procéder à un changement de variables particulier. De plus, si l’on utilise toute la structure
du problème, on se retrouve heuristiquement en « shape position ».

D’autres approches pour résoudre un système polynomial. Dans cette thèse, on dé-
veloppe essentiellement des stratégies pour résoudre un système polynomial avec des bases de
Gröbner. Ce n’est bien sûr pas la seule méthode possible pour résoudre un système. On pré-
sente ici les approches les plus classiques. Chacune possède ses spécificités propres, détaillées
ci-dessous.

Algorithme de résolution géométrique. Soit F = (f1, . . . , fn) une suite régulière
dans un anneau de polynômes K[x1, . . . , xn] avec K de caractéristique 0. Alors il est possible
de calculer une représentation rationnelle des solutions du système en

O
�
n(nL+ n4)(M(dδ))2

�

opérations dans K, où L est la taille maximale d’un programme en ligne directe 1 permettant
d’évaluer les fi, d est une borne sur le degré des fi et δ est le maximum des degrés des idéaux
intermédiaires �f1�, �f1, f2�, . . . , �f1, . . . , fn−1�, et M(�) = � log(�)2 log log(�). Cet algorithme
probabiliste (il utilise des changements de variables génériques) a été présenté dans [53] et
implémenté dans le package Magma Kronecker 2. On peut étendre l’algorithme en rajoutant
la condition g(x1, . . . , xn) �= 0 pour un certain polynôme g.

Résultant multivarié. Historiquement, les premières techniques d’élimination de va-
riables utilisaient intensivement le résultant. Pour deux polynômes unitaires d’une variable
z à coefficient dans un anneau intègre A, on définit le résultant comme le déterminant de la
matrice de Sylvester associée aux deux polynômes. Celui-ci s’annule si et seulement si les po-
lynômes ont une racine commune dans Frac(A). Le résultant multivarié est plus dur à définir
et ne s’obtient pas aussi simplement qu’un déterminant. On réfère à [75, 19, 18, 15] pour
plus de détails. Une variante du résultant pour l’étude de systèmes creux a également été
proposée, voir [17, 31].

Méthodes homotopiques. Ces méthodes font partie de la grande famille des algo-
rithmes symboliques-numériques. Pour calculer les solutions isolées d’un système polynomial
sur C, l’idée est de partir d’un système ayant même nombre de solutions et de le défor-
mer progressivement pour revenir au système de départ. On calcule des solutions approchées
des systèmes intermédiaires, et à la fin du processus on obtient une approximation des so-
lutions cherchées. L’algorithme a été implémenté, voir PHCpack [105] 3 ou plus récemment
Bertini[7] 4. De nombreuses variantes existent, y compris pour traiter les systèmes creux, voir
par exemple [106].

Solutions numériques. Des méthodes générales, comme la méthode de Newton-
Raphston, peuvent s’appliquer en particulier à la résolution de systèmes polynomiaux sur
R ou C. La convergence vers une solution est quadratique, mais n’est que locale, et certaines
solutions peuvent être oubliées...

1. l’auteur s’excuse de ne pas savoir traduire correctement « straight line program »...
2. disponible à l’adresse : http://lecerf.perso.math.cnrs.fr/software/kronecker/distribution.html
3. disponible à l’adresse : http://homepages.math.uic.edu/~jan/
4. disponible à l’adresse : https://bertini.nd.edu/
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Systèmes présentant des symétries.

On commence ici par expliquer pourquoi il est intéressant d’avoir des algorithmes de
résolution de systèmes tenant compte des symétries, et ce que l’on entend exactement par
symétries.

Exemple 0.2.

Commençons par un exemple simple, en petite dimension. On souhaite déterminer les
solutions réelles du système de deux équations en deux variables x et y suivant :

�
f(x, y) = x2 + y2 − 2 = 0

g(x, y) = x3 − 6x2y − 3xy2 + 2y3 + 1 = 0

Ces deux polynômes sont tous deux invariants sous l’action d’une rotation planaire d’angle
2π/3. En effet, en considérant

A =

�
−1/2 −

√
3/2√

3/2 −1/2

�
et

�
x�

y�

�
= A

�
x

y

�

on observe que f(x�, y�) = f(x, y) et g(x�, y�) = g(x, y). Cette symétrie apparâıt également sur
les variétés réelles VR(f) et VR(g) représentées en figure 0.3.

Figure 0.3 – Les variétés réelles associées à f et g.

Notons que la petitesse des degrés de f et g impose une symétrie supplémentaire (les
variétés présentent trois axes de symétries), que nous ignorerons ici. L’ensemble des zéros
communs à f est g est de cardinal 6, ce qui cöıncide d’ailleurs avec la borne de Bézout. Pour
calculer précisément les solutions, on peut éliminer l’une des variables, disons x. Pour ce faire,
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on peut calculer un résultant par rapport à x ou une base de Gröbner lexicographique pour
l’ordre x > y. L’idéal �f, g� ∩ R[y] contient un unique polynome unitaire, à savoir :

h(y) = y6 − 3y4 +
1

5
y3 +

9

4
y2 − 3

10
y − 7

80

On a tracé en figure 0.4 le graphe de la fonction polynomiale associée à h. Si les deux po-

Figure 0.4 – Le graphe de la fonction polynomiale associée à h.

lynômes f et g présentaient une symétrie par rotations, ce n’est plus le cas du polynôme h.
L’idée principale développée dans cette thèse est de conserver les symétries pour diminuer la
complexité des calculs. On explique maintenant précisément ce que l’on entend par symétrie.

Que signifie « présenter des symétries » ? Un sous-groupe de GLn(K) agit naturelle-
ment sur les espaces Kn et Kn

. Il agit également sur K[X] = K[x1, . . . , xn] par l’action

GLn(K) −→ SK[X]

A �−→
�

K[X] → K[X]

f �→ fA

où fA est déduit de f par substitution de AX à X = t(x1, . . . , xn). Notons I = {f1, . . . , fs}
un idéal d’un anneau de polynômes K[X] = K[x1, . . . , xn], et VK(I) la variété associée, sur K.
On note également K la clôture algébrique de K. Enfin, soit G un sous-groupe fini de GLn(K).
Les différents cas de symétries qui peuvent se présenter sont les suivants :

• Variété stable. Le groupe G agit naturellement sur l’espace affine associé à Kn. La
variété VK(I) est dite globalement stable sous l’action de G si

∀x ∈ VK(I) ∀A ∈ G A.x ∈ VK(I)

Puisqu’il n’y a aucune hypothèse algébrique sur l’action de G ici, tenir compte des
symétries pour calculer VK(I) est très difficile. Par contre, si K et algébriquement
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clos (ou si VK(I) est globalement stable sous l’action de G), le théorème des zéros
de Hilbert (Nullstellensatz) prouve que pour tout polynôme f de I et tout élément
A de G, fA appartient à

√
I, dont la variété associée cöıncide avec celle de I. Par

conséquent, le cas d’une variété stable peut se ramener au cas suivant.
• Idéal stable. L’idéal I est dit globalement stable sous l’action de G si

∀f ∈ I ∀A ∈ G fA ∈ I

Du point de vue des applications, ce cas est le plus important car celui qui apparâıt le
plus en pratique. Notons que, puisque G est fini, l’ensemble {fA

i | 1 ≤ i ≤ s et A ∈ G}
est un ensemble fini de générateurs de I globalement stable sous l’action de G. Ainsi,
quite à augmenter artificiellement l’ensemble des générateurs de l’idéal, on pourra
supposer avoir un ensemble stable de générateurs.

• Équations semi-stables. L’idéal I est dit engendré par des équations individuelle-
ment semi-invariantes si

∀i ∈ {1, . . . , s} ∀A ∈ G fA
i = ξifi

où ξi est un scalaire pour tout i. La finitude du groupe G impose que ξi soit une racine
de l’unité. Ce cadre est un cas particulier du précédent.

• Équations stables. L’idéal I est dit engendré par des équations individuellement
invariantes si

∀i ∈ {1, . . . , s} ∀A ∈ G fA
i = fi

Ce cadre est un cas particulier du précédent. Puisque les polynômes sont individuelle-
ment stables sous l’action de G, ils appartiennent à l’algèbre des invariants K[X]G.

Dans l’exemple présenté plus haut, les deux polynômes f et g sont individuellement stables
sous l’action du groupe G d’ordre 3 engendré par A.

On précise maintenant la distinction entre les symétries dans les cas modulaire et non-
modulaire. L’action deG surK[X] est dite modulaire si char(K), la caractéristique deK, divise
le cardinal de G, et non-modulaire dans le cas contraire. De nombreux résultats valables dans
le cas non-modulaires ne subsistent pas dans le cas modulaire. En particulier, la structure de
l’algèbre des invariants K[X]G est beaucoup moins bien comprise dans le cas modulaire. Dans
la suite, on fera explicitement mention des résultats qui subsistent dans le cas modulaires.

Lorsque les équations du systèmes sont individuellement invariantes sous l’action d’un
groupe, il est naturel de travailler dans l’algèbre des invariants du groupe. On pourra par
exemple se reporter à [100, 27] pour une étude de la structure de cette algèbre pour des
groupes finis ou non. Le cas particulier de la reformulation de systèmes invariants à l’aide de
polynômes de Laurent est traité dans [62, 59, 60]. Hubert et Labahn étendent également leur
approche aux groupes abéliens finis [61].

Dans cette thèse, on s’intéresse aux systèmes invariants sous l’action d’un groupe fini.
Dans [23], Colin montre comment on peut reformuler un tel système à l’aide de seulement
n invariants polynomiaux (un ensemble d’invariants primaires) et un seul autre invariant
secondaire, en payant le prix de se placer dans le cadre des fractions rationnelles invariantes
plutôt que dans l’algèbre des polynômes invariants. Une autre approche pour résoudre un
système formé de polynômes individuellement invariants sous l’action d’un sous-groupe du
groupe symétrique a été développée par Faugère et Rahmany dans [41]. L’approche consiste
à remplacer la notion de base de Gröbner d’un idéal par celle de base SAGBI dans l’algèbre
des invariants. L’un des axes de cette thèse est d’étendre leurs résultats.
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Concernant les idéaux globalement invariants sous l’action d’un groupe, Gatermann
montre dans [51], comment la présence de réflexions dans le groupe permet de séparer le
système en deux sous-systèmes. Elle montre également comment le fait de diagonaliser un
groupe abélien fini permet d’accélérer le calcul d’une base de Gröbner d’un idéal invariant
sous l’action du groupe. Cette approche a été reprise par Steidel [96]. Nous en déduirons des
algorithmes dédiés et une estimation de complexité.

Exemple 0.5 (Suite de l’exemple 0.2). Pour l’exemple présenté ci-dessus, la matrice A se
diagonalise de la façon suivante :

A = PDAP
−1 avec DA =

�
 0

0 2

�
et P =

�
1 1

ı −ı

�
où ı2 = 3 = 1.

Appliquer le changement de variables P aux polynômes f et g donne les deux polynômes
fP = 4xy − 2 et gP = (−8ı+ 4)x3 + (8ı+ 4)y3 + 1. Ces deux polynômes sont invariants sous
l’action de la matrice diagonale DA, par conséquent ils ne sont composés que de monômes m
vérifiant mDA = m. Les polynômes intervenant lors du calcul de la base de Gröbner de fP

et gP sont uniquement des polynômes semi-invariants sous l’action du groupe G� = P−1GP ,
ils sont donc très creux. En particulier, les bases de Gröbner pour les ordre DRL et lexicogra-
phique (avec x � y) de l’idéal �fP , gP � sont :

G1 =





y4 − 1
10(3 + 4ı)x2 + 1

20(1− 2ı)y

x3 + 1
5(−3 + 4ı)y3 + 1

20(1 + 2ı)

xy − 1
2

et G2 =





x+ 1
5(−12 + 16ı)y5 + 1

5(1 + 2ı)y2

y6 + 1
20(1− 2ı)y3 − 3

40 + −ı
10

Pour certains systèmes formant un idéal invariant sous l’action d’un groupe formé de
matrices diagonales, le degré maximal atteint lors d’un calcul de base de Gröbner pour l’ordre
DRL peut être plus faible que pour un système quelconque (ce n’est pas le cas dans l’exemple
ci-dessus) : par exemple, un système d’équations quadratiques individuellement invariantes
sous l’action du groupe cyclique est résoluble en temps polynomial en le nombre de variables.
En essayant de déterminer précisément quels étaient ces systèmes, on s’est rendu compte que
cette faiblesse du degré maximal atteint n’était pas dûe à l’action du groupe, mais au fait
que les polynômes de tels systèmes n’ont pas une structure monomiale dense. On a donc été
amené à travailler sur les systèmes ayant leurs monômes dans une sous-algèbre monomiale
de K[X].

Systèmes polynomiaux creux.

On s’intéresse ici aux systèmes ayant leur support dans une sous-algèbre monomiale A,
strictement incluse dans K[X], qu’on appelera des « systèmes creux ». Cette dénomination
regroupe de nombreuses structures ayant déja été étudiées, qu’on présente ici de manière
non-exhaustive.

— Un polynôme f de K[x1, . . . , xn] est dit quasi-homogène pour un système de poids
(w1, . . . , wn) ∈ Nn si f(xw1

1 , . . . , xwn
n ) est homogène. Dans [37], Faugère, Safey el Din

et Verron développent une approche pour estimer la complexité de résolution d’un
système composés de polynômes quasi-homogènes (pour un même système de poids), et
donnent une algorithmique dédiée. Il existe un lien entre l’approche qu’ils proposent et
l’étude de systèmes invariants sous-un groupe abélien, qu’on explicitera ultérieurement.
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— SoitX1, . . . , X� une partition des variables x1, . . . , xn, de taille n1, . . . , n�. Un polynôme
f de K[x1, . . . , xn] est dit multi-homogène de multidegré (d1, . . . , d�) par rapport à la
partition X1, . . . , X�, s’il vérifie

f(λ1X1, . . . ,λ�X�) = λd1
1 · · ·λd�

� f(X1, . . . , X�) pour tous λ1, . . . ,λ� ∈ K

Les systèmes bilinéaires (multi-homogènes de bidegré (1, 1) par rapport à une partition
des variables en deux sous-ensembles) ont été étudiées par Faugère, Safey el Din et
Spaenlehauer dans [36]. Dans cette article, ils montrent qu’un idéal I engendré par
une suite birégulière f1, . . . , fs (voir [36, Définition 8]) de polynômes bilinéaires admet
une bisérie de Hilbert de la forme suivante

HSI(z1, z2) :=
�

(α,β)∈N2

dim(K[X]α,β/Iα,β)z1αz2β =
Ns(z1, z2)

(1− z1)nx+1(1− z2)ny+1

où nx et ny sont les tailles des deux blocs de variables, et Ns est un numérateur
qu’ils donnent explicitement. La composante K[X]α,β (respectivement Iα,β) est celle
des polynômes bihomogènes de bidegré (α,β) (respectivement des polynômes de I de
bidegré (α,β)). Dans [45], les mêmes auteurs étendent leurs résultats aux systèmes
bihomogènes de bidegrés (D, 1), et appliquent leurs résultats à l’étude de systèmes
déterminantiels.

Dans cette thèse, on s’intéressera aux systèmes d’équations polynomiales appartenant à
une sous-algèbre de K[X], avec la contrainte de ne calculer que des polynômes de cette sous-
algèbre.

Exemple 0.6 (Suite de l’exemple 0.5). Les polynômes fP et gP calculés précédemment ap-
partiennent à la sous-algèbre Q[ı][xy, x3, y3] de Q[ı][x, y]. En se restreignant à des calculs dans
cette sous-algèbre, on obtient notamment les deux polynômes :





y6 + 1
20(1− 2ı)y3 − 3

40 − ı
10

xy − 1
2

On obtient les solutions du système fP = gP = 0 en résolvant les deux équations précédentes
(en les inconnues xy et y3), puis en inversant l’application monomiale (x, y) �→ (xy, y3).

Travailler dans la sous-algèbre uniquement permet de donner un cadre unique pour ces
systèmes creux, ainsi que d’autres. Si les polynômes sont à support dans un même polytope,
on donne des bornes de complexité dépendant des propriétés combinatoires du polytope, qui
permettent d’améliorer les complexités connues pour la résolution de systèmes bihomogènes,
et se généralisent notamment à des systèmes multihomogènes.

Contributions.

On présente ici les principaux résultats de cette thèse. On commencera par décrire les
nouveaux algorithmes, puis les résultats de complexité obtenus, et enfin les résultats obtenus
en pratique. Les différents systèmes étudiés dans cette thèse sont résumés dans la figure 0.7.
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Systèmes quasi-
homogènes
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Figure 0.7 – Résumé des systèmes étudiés

Nouveaux algorithmes.

Un algorithme SAGBI-F5 général. Dans cette thèse, on étend les algorithmes usuels
de calcul d’une base de Gröbner dans un anneau de polynômes K[X] = K[x1, . . . , xn] à une
sous algèbre graduée A = ⊕∞

d=0Ad de K[X]. Pour ce faire, la base canonique de K[X]d formée
des monômes de degré total d est remplacée par une base échelonnée (bdi )i de Ad (deux
polynômes de la base n’ont pas même monôme de tête). Réécrire un polynôme f de A dans
la base ∪∞

d=0(b
d
i ) de A permet d’avoir une représentation plus creuse, et effectuer des calculs

uniquement dans A permet de garder cette représentation creuse.

Exemple 0.8. Considérons l’exemple du système suivant, connu sous le nom de problème
Cyclic-n.





f1 = x1 + · · ·+ xn

f2 = x1x2 + x2x3 + · · ·+ xnx1
...

fn−1 = x1x2 · · ·xn−1 + · · ·+ xnx1 · · ·xn−2

fn = x1x2 · · ·xn − 1

invariant sous le groupe G engendré par les matrices de permutation associées au cycle
(1 2 · · · n) et au produit de transposition (1 n)(2 (n − 1)) · · · . Dans le cas non-modulaire,
une base de K[X]Gd est donnée par {�(m) | m monôme de degré d} où � est l’opérateur
de moyenne sous l’action du groupe, défini par �(f) = 1

|G|
�

A∈G fA. Ainsi, le système se
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reformule comme

{fi = �(x1 · · ·xi) pour 1 ≤ i ≤ n− 1 et fn = �(x1 · · ·xn)−�(1)}
Revenons au cas général d’une sous algèbre A. La notion de réduction (par rapport à un

ordre � donné) du terme de tête est alors définie comme suit : f est réductible par p �= 0 si il
existe un élément bdi tel que le terme de tête de f s’écrive λbdi LT�(p), où LT�(p) est le terme
de tête de p. La réduction de f par p est alors le polynôme f − λbdi p. Avec cette définition
de réductibilité, la notion de base de Gröbner d’un idéal dans A est remplacée par celle
de base SAGBI. On propose une variante de l’algorithme Matrix-F5 permettant de calculer
une base SAGBI d’un idéal �f1, . . . , fs�A tronquée en un certain degré passé en paramètre.
Une séquence de polynômes (f1, . . . , fs) est dite régulière dans A si fi ne divise pas 0 dans
l’anneau A/�f1, . . . , fi−1�. L’algorithme SAGBI-F5 ne produit aucune réduction à zéro si la
suite (f1, . . . , fs) est régulière, car le critère F5 s’étend facilement : les matrices construites
sont de rang maximal.

Cet algorithme général peut-être utilisé dans plusieurs contextes, dépendant de l’algèbre
A ambiante. Une spécialisation à A = K[X] permet par exemple de retrouver l’algorithme
Matrix-F5 usuel. Deux autres cas sont étudiés dans cette thèse : A = K[X]G est l’algèbre des
invariants sous l’action d’un groupe fini G, et A = K[S] où S est un semi-groupe de Zn.

Processus de résolution d’un système d’équations individuellement invariantes
sous l’action d’un groupe. Soit {f1, . . . , fs} un ensemble de polynômes appartenant à
K[X]G = K[x1, . . . , xn]

G, où G est un sous-groupe fini de GLn(K). On souhaite résoudre le
système {f1 = · · · = fs = 0} en préservant la symétrie induite par le groupe G. Le calcul
d’une base de Gröbner de l’idéal engendré par les fi dans K[X] détruirait cette symétrie, c’est
pourquoi on calcule une base SAGBI de l’idéal IG = �f1, . . . , fs�K[X]G engendré par les fi
dans l’algèbre des invariants. Contrairement à une base de Gröbner, une base SAGBI n’est
pas nécessairement finie, on ne peut donc obtenir qu’une base tronquée en un certain degré D.
Cette base SAGBI permet de tester l’appartenance de polynômes de K[X]G à �f1, . . . , fs�K[X]G

de degré au plus D. On choisit donc un nombre fini d’invariants : par exemple si G est un
sous-groupe du groupe symétrique (c’est le cas pour le système Cyclic-n présenté ci-dessus)
on peut prendre comme invariants les fonctions symétriques élémentaires des xi.

Notons (h1, . . . , hr) ces invariants. On cherche alors des combinaisons linéaires entre les
produits

�r
i=1 h

αi
i , modulo l’idéal IG, ce qui mène à l’algorithme SAGBI-FGLM, qui est une

variante de l’algorithme FGLM. Si le système a un nombre fini de solutions, on obtient pourvu
que D soit assez grand, un idéal de dimension zéro dans l’algèbre K[H1, . . . , Hr], chaque
Hi symbolisant l’invariant hi. Le degré minimal D qui convient étant inconnu, on applique
successivement deux étapes des algorithmes SAGBI-F5 et SAGBI-FGLM jusqu’à obtenir un
idéal de dimension zéro. Avec des invariants bien choisis, il est possible de remonter facilement
de la variété associée à cet idéal aux solutions du système originel. Cette approche mène à la
stratégie de résolution reproduite en figure 0.9.

Exemple 0.10 (Suite de l’exemple 0.8). On souhaite calculer les solutions du problème
Cyclic-5 présenté plus haut, sur un corps K de caractéristique différente de 5. On prend
comme invariants particuliers les fonctions symétriques élémentaires (σi)1≤i≤5. Pour obte-
nir un idéal de dimension zéro dans K[σ1, . . . ,σ5], il est nécessaire d’avoir calculé une base
SAGBI de IG = �f1, . . . , f5� au moins jusqu’en degré 8 (ce degré est déterminé automatique-
ment lors du processus de résolution 0.9, il était inconnu initialement). L’idéal obtenu dans
K[σ1, . . . ,σ5] est engendré par les polynômes suivants, de bas degrés :

�
σ2

3 + 5σ3
2,σ2

2σ3 − 25σ2,σ2 σ3
2 − 25σ3,σ1,σ4,σ5 − 1

�
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Base de Gb. lex.
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Résolution
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Figure 0.9 – Stratégie de résolution d’un système d’invariants sous l’action d’un groupe fini.

L’application de l’algorithme FGLM classique produit la base de Gröbner pour l’ordre
lexicographique : �

σ5 − 1,σ4,σ
6
3 + 55 σ3, 5

3σ2 + σ4
3,σ1

�

La variété associée à l’idéal précédent ne contient que 6 points. Connaissant les fonc-
tions symétriques des solutions, il est facile de remonter aux solutions elles-mêmes. Parmi les
solutions possibles, seules 70 d’entre elles sont effectivement solutions du problème Cyclic-5.

Processus de résolution d’un système polynomial à support dans des mul-
tiples d’un même ensemble de monômes. Fixons un ensemble de monômes M de
K[x1, . . . , xn], qui s’identifie à un sous-ensemble de Nn. À M on associe deux semi-groupes :
l’un, S, est le semi-groupe engendré par M dans Nn. L’autre, S(h) est généré par {(α, 1) ∈
Nn+1 | α ∈M} dans Nn+1. On a représenté ci-dessous les deux semi-groupes pour n = 2, avec
M = {x, xy}.

x

y

x

y

h

Le semi-groupe S Le semi-groupe S(h)

À un semi-groupe S est associé une sous-algèbre de K[x1, . . . , xn], appelée l’algèbre
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du semi-groupe et notée K[S]. Elle est définie comme l’espace vectoriel des sommes fi-
nies

�
p∈S apX

p. L’algèbre K[Sh] est naturellement graduée par sa dernière composante.

Dans l’exemple 0.6, on avait Q[ı][S] générée par {xy, x3, y3} et Q[ı][S(h)] généré par
{h, xyh, x3h, y3h}.

On note d · M l’ensemble {�d
i=1mi | mi ∈M}, et on considère des polynômes f1, . . . , fs

tel que le support de fi est inclus dans di ·M. On dit que fi est de degré di, et on lui associe
un polynôme de K[Sh] noté f̃i. L’algorithme SAGBI-F5 présenté précedemment permet de

calculer une base SAGBI jusqu’à un degré fixé de l’idéal engendré dans K[Sh] par f̃1, . . . , f̃s.

Exemple 0.11. [Suite de l’exemple 0.6] La base de Gröbner creuse de �fP ,�gP dans Q[ı][S(h)]
obtenue à l’aide de l’algorithme SAGBI-F5 est :

�G =





h3(x6 + 1
100(11− 2ı)y3 + 1

400(−27 + 36ı))

h3(y6 + 1
20(1− 2ı)y3 − 3

40 − ı
10)

h2(x4y + 1
10(−3− 4ı)y3 + 1

40 + ı
20)

h2(xy4 − 1
2y

3)

h2(x3 + 1
5(−3 + 4ı)y3 + 1

20 + ı
10)

h(xy − 1
2)

Une grande différence vis à vis des bases SAGBI dans les algèbres d’invariants est que les
bases SAGBI dans K[Sh] sont finies, et on préfère les appeler bases de Gröbner creuses. De
même, la mise en oeuvre de l’algorithme SAGBI-F5 en pratique est également beaucoup plus
aisée : les produits bdi × bd

�
i� sont beaucoup plus simples à calculer (ce sont des produits de

monômes !), l’implémentation effective s’en trouve simplifiée. On lui donne donc le nom de
Sparse-F5.

La déshomogénéisation (oubli de la dernière composante des monômes de K[Sh]) d’une
base de Gröbner creuse donne une base de Gröbner creuse dans K[S], dans un sens défini
dans le chapitre 5. Cette base de Gröbner permet en particulier de tester l’appartenance d’un
polynôme à l’idéal �f1, . . . , fs�K[S].

La finitude de la base de Gröbner creuse permet de réaliser une variante de l’algorithme
FGLM. Rappelons que pour la résolution d’un système d’invariants par base SAGBI, on fixe
un ensemble d’invariants h1, . . . , hr et on cherche les éléments de K[h1, . . . , hr] appartenant
à l’idéal. On suit la même idée ici en considérant h1, . . . , hr des éléments de M : pour un
système multi-homogène, on peut prendre les variables x1, . . . , xn. Dans l’exemple ci-dessus,
on peut prendre h1 = xy et h2 = y3. L’objet calculé est une base de Gröbner pour l’ordre
lexicographique dans l’algèbre K[H ] = K[H1, . . . , Hr] ; la variété correspondante étant l’image
de V(I) par une application monomiale

φ : Kn −→ Kr

a = (a1, . . . , an) �−→ (hi(a))i=1,...,r

L’algorithme Sparse-FGLM correspondant présente des similitudes avec l’algorithme
SAGBI-FGLM évoqué précédemment par la nature de l’objet calculé, cependant la mise
en oeuvre est beaucoup plus proche de l’algorithme FGLM standard. La variété V(I) étant
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l’image réciproque par l’application φ de la variété dans K[H], le processus se termine par
le calcul de cette variété et inversion de l’application monomiale. Le processus complet est
représenté en figure 0.12.

Système,
calcul du
support
S(h)

Base de
Gröbner
dans

K[S(h)]

Base de
Gröbner
dans K[S]

Base de
Gröbner
dans K[H ]

Solutions
en les Hi

Solutions

Sparse-F5 déshomogénéisation

Sparse-FGLM

Résolution

univariée

Inversion d’une

application monomiale

Figure 0.12 – Résolution de systèmes polynomiaux creux.

Enfin, le processus se généralise aux sous-algèbres de l’algèbre des polynômes de Laurent
K[x±1

1 , . . . , x±1
n ], sous réserve que le semi-groupe S ne contienne pas deux éléments distincts

dont le produit vaut 1.

Versions abéliennes des algorithmes F5 et FGLM. On s’intéresse ici au calcul de
la variété d’un ideal I = �f1, . . . , fs� invariant sous l’action d’un groupe fini G ⊆ GLn(K)
supposé abélien. On suppose de plus que l’action est non-modulaire : la caractéristique de K
ne divise pas le cardinal de G.

Il a déja été remarqué par Gatermann et Steidel [51, 96] que diagonaliser le groupe et
répercuter le changement de variables correspondant sur les polynômes fi constituait une
stratégie efficace, préalablement à un calcul de base de Gröbner. Cependant, ni un algorithme
dédié ni une étude du gain en complexité n’avaient été proposés. Supposons maintenant G
constitué de matrices diagonales. Alors, l’action d’un tel groupe sur K[X] = K[x1, . . . , xn]
induit une gradation plus précise que le seul degré :

K[X] =
+∞�

d=0

K[X]d =
+∞�

d=0

�

g∈X(G)

K[X]d,g =
�

g∈X(G)

K[X]g

où X(G) est un groupe isomorphe à G, et les composantes K[X]g sont engendrés par des
monômes. Un élément de K[X]g est dit de G-degré g.

Exemple 0.13. Reprenons l’exemple 0.5. Après diagonalisation, on obtient des polynômes
invariants sous l’action du groupe engendré par la matrice matrice DA = Diag(, 2). Pour
tout monôme m de K[X], il existe un unique entier tel que mDA = km, cet entier est unique
modulo 3, et donc X(G) = Z/3Z. La base de Gröbner pour l’ordre DRL de �fP , gP � est :

G1 =





f1 = y4 − 1
10(3 + 4ı)x2 + 1

20(1− 2ı)y

f2 = x3 + 1
5(−3 + 4ı)y3 + 1

20(1 + 2ı)

f3 = xy − 1
2

Alors f2 et f3 sont de G-degré 0, et f1 de G-degré 2. De même, les polynômes de la base de
Gröbner lexicographique présentée dans l’exemple 0.5 sont de G-degré 1 et 0.
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On montre tout d’abord le théorème suivant :

Théorème. Si f ∈ I, alors pour tout g dans X(G), la composante de f dans K[X]g appartient
également à I.

Le théorème précédent permet de se ramener du cas d’un ensemble de générateurs stable, à
celui d’un système de générateurs semi-stables : un polynôme f appartenant à une composante
K[X]g vérifie f

A = ξA,gf pour tout A ∈ G, où ξA,g est une racine de l’unité indépendante de f .
Les polynômes de K[X]g sont dits G-homogène de G-degré g. On prouve que les composantes
K[X]g sont engendrées par des monômes, et que si m et m� sont de G-degrés respectivement
g et g�, alors mm� est de G-degré g + g�. Par conséquent, tous les polynômes intervenant
dans un calcul de base de Gröbner d’un système constitué de polynômes G-homogènes sont
eux-mêmes G-homogènes.

Les algorithmes F5 et FGLM reposent sur de l’algèbre linéaire : la structure induite par G
permet donc de découper les matrices intervenant dans ces deux algorithmes en |G| matrices
plus petites (chacune indexée par l’un des G-degrés). De plus, chaque étape de l’algorithme
F5 (passage d’une base de Gröbner en degré D à une base de Gröbner en degré D + 1) peut
être parallélisée car les matrices sont construites et réduites de manière indépendante.

Le processus de résolution est décrit en figure 0.14. Dans cette description, le groupe
abélien G, constitué de matrices non nécessairement diagonales, agit sur I. On répercute
la diagonalisation de G en G� sur I pour obtenir I �. Le calcul de V(I �) est mené de façon
classique, mais en utilisant les variantes abéliennes de nos algorithmes. On retrouve V(I) en
appliquant la matrice de passage P−1 aux éléments de V(I �).

Idéal
G-stable I

Idéal G�-
stable I �

Base de
Gröbner

DRL de I �

Base de
Gröbner
LEX de I �

V(I �)V(I)

Changement de

variables diagonal P

Abelian-F5

Abelian-FGLM

Résolution

univariée

Changement de

variables P−1

Figure 0.14 – Résolution de systèmes polynomiaux invariants sous un groupe abélien.

Système d’équations globalement invariant sous l’action du groupe symétrique.
On a considéré au paragraphe précédent le cas d’un idéal globalement stable sous l’action d’un
groupe abélien. On considère maintenant une situation similaire, mais le groupe qui agit est
le groupe symétrique SN . Celui-ci agit sur une algèbre polynomiale à n = (�+ 1)N variables
à travers la représentation diagonale par blocs :

SN −→ GLn(Z)

σ �−→




Mσ 0

Mσ

. . .

0 Mσ



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où Mσ est la matrice de taille N × N canoniquement associée à σ. Nommons les variables
Z = {z1, . . . , zN} et V = V1 ∪ · · ·∪V�, avec Vi = {xi,1, . . . , xi,N}. Le groupe SN agit donc sur
l’ensemble de variables Z ∪ V par zσi = zσ(i) et x

σ
i,j = xi,σ(j).

On considère un système de N équations polynomiales (Ui)1≤i≤N à coefficients dans K[Z∪
V] tel que Ui = DiPi + Ri avec Di =

�
k �=i(zi − zk), Pi ∈ K[Z ∪ V] et Ri ∈ K[Z], tels que

P σ
i = Pσ(i) et R

σ
i = Rσ(i) pour tout σ dans SN . Les polynômes Ui vérifient alors U

σ
i = Uσ(i)

pour tout σ dans SN . On s’intéresse à un ouvert de la variété associée aux Ui constituée
des points dont les composantes associées aux zi sont toutes distinctes. On a alors le résultat
suivant :

Théorème. Soit d le degré (commun) des polynômes Ui. Il existe N polynômes V1, . . . , VN

de degrés deg(Vi) = d− i+1 individuellement invariants sous l’action de SN , dont la variété
associée cöıncide avec V(�U1, . . . , UN �) sur les points n’ayant pas deux composantes associées
aux zi égales.

Le théorème précédent est effectif, puisqu’il est associé à un algorithme calculant effecti-
vement les polynômes Vi. Les différences divisées sont l’ingrédient principal de l’algorithme.
L’intérêt est double : le degré des équations a diminué et elles sont maintenant individuelle-
ment invariantes sous l’action de SN .

Dans le cas � = 0 (il n’y a alors que les variables zi), on peut maintenant reformuler
les équations Vi à l’aide des fonctions symétriques élémentaires ei des zi. Le système qui en
résulte est bien plus facile à résoudre, puisqu’on a tenu compte de la symétrie des équations
pour ne calculer que les fonctions symétriques des solutions et non les solutions elles-même.

Supposons maintenant � = 1, et notons V = {Z1, . . . , ZN}. On explique maintenant com-
ment éliminer complètement les variables V et obtenir des équations symétriques en les seules
variables zi (qu’on pourra reformuler à l’aide des ei), sous la condition qu’il y ait d’autres
équations d’un type particulier dans le système.

Soit z une nouvelle variable, et M et N deux polynômes de K[z1, . . . , zN , z]. On suppose
que M et N , vus comme polynômes en la seule variable z, ont leur coefficients invariants sous
l’action du groupe SN . Par conséquent, ces coefficients peuvent être reformulés à l’aide des
(ei), les fonctions symétriques élémentaires des (zi). M et N appartiennent donc à l’algèbre
K[e1, . . . , eN , z]. Ajoutons au système {Vi} les polynômes Wi = M(zi)Zi − N(zi). Alors, on
peut éliminer algorithmiquement les variables Zi de façon à construire des équations symé-
triques en les zi, que l’on peut reformuler à l’aide des fonctions symétriques élémentaires.

Application à la résolution symbolique du problème des tourbillons. L’approche
développée pour l’étude des systèmes globalement invariant sous une action du groupe sy-
métrique agissant sur des blocs de variables s’applique en particulier à la détermination des
configurations stables du problème des tourbillons : on s’intéresse aux configurations planaires
de N tourbillons ayant même vorticité, dont la forme géométrique est maintenue au cours du
temps. Les tourbillons se meuvent autour du centre de masse, mais la forme qu’ils déter-
minent reste la même. En d’autres termes, la configuration des N points reste invariante par
similitudes directes au cours du temps.

En supposant le centre de masse des tourbillons à l’origine, déterminer les configurations
stables revient à résoudre le système formé des N équations :

z̄i =
�

j �=i

1

zi − zj
pour tout i entre 1 et N
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où zi est l’affixe complexe du tourbillon numéroté i, z̄i son conjugué et zi �= zj pour i différent
de j. Puisqu’il est impossible de séparer un complexe de son conjugué de façon algébrique, on
introduit de nouvelles variables Zi symbolisant les conjugués des zi. La réduction au même
dénominateur nous ramène aux équations :

Ui = Zi

�

j �=i

(zi − zj)−
�

j �=i

�

k �=i,j

(zi − zk) ∈ Q[z1, . . . , zN , Z1, . . . , ZN ]

On montre également que le problème des tourbillons vérifie les équations : M(zi)Zi =

N(zi) avec M(z) = 2Q�(z), N(z) = Q��(z) et Q est le polynôme
�N

i=1(z − zi). On remarque
que les coefficients de Q sont les fonctions symétriques ei des zi. Par suite, on peut appliquer
la méthodologie décrite ci-dessus pour résoudre le problème des tourbillons.

Les équations Vi obtenues par différences divisées des polynômes Ui admettent
une reformulation très simple à partir d’invariants de l’action du groupe SN sur
Q[z1, . . . , zn, Z1, . . . , Zn]. On montre plus précisément le théorème suivant :

Théorème. En notant, pour tout k ≥ 0, sk =
�N

i=1 z
k
i et rk =

�N
i=1 Ziz

k
i (avec s0 = N), les

solutions du problème des tourbillons vérifient les équations suivantes, pour tout k ≥ 1 :

2 rk =

�
k−1�

i=0

si sk−1−i

�
− k sk−1

En suivant l’approche expliquée précédemment, consistant à reporter les équations
2Q�(zi) = Q��(zi) dans les équations du théorème, on obtient des équations en les fonctions

symétriques (ei) des (zi). À l’aide du package FGb [63], il est possible de résoudre ces équa-
tions et d’obtenir toutes les solutions du problème des tourbillons jusqu’à N = 7. On présente
en figure 0.15 l’ensemble des solutions pour N = 7. Avant cette approche, le problème n’était
résoluble que jusqu’à N = 5.

Résultats de complexité.

Puisqu’ils présentent des similitudes, on a regroupé ici les principaux résultats de com-
plexité présentés dans ce manuscrit. Les opérations dénombrées sont les opérations arithmé-
tiques dans le corps K, et on utilise la notation de Landau O. La lettre ω désigne l’exposant
de l’algèbre linéaire, c’est à dire la borne inféfieure des réels γ tels que la multiplication de
deux matrices de taille N ×N peut se faire en O(Nγ) opérations arithmétiques. La meilleure
borne actuelle est ω < 2.3728639, voir [50].

Résolution d’un système polynomial globalement invariant sous l’action d’un
groupe abélien. Après diagonalisation du groupe (possible dans le cas non-modulaire),
on montre que les matrices contruites dans les variantes abéliennes des algorithmes F5 et
FGLM ont leur nombre de lignes et de colonnes divisées par un facteur correspondant au
cardinal du groupe, comparées à leurs analogues dans les algorithmes F5 et FGLM. On en
déduit les résultats de complexité suivants :

Théorème. Soit G un sous-groupe de GLn(K) constitué de matrices diagonales sans autre
dilatation que l’identité. Soit F = (f1, . . . , fs) ∈ K[X]s une famille de polynômes homogènes
formant un idéal de dimension zéro I globalement invariant sous l’action de G. Alors la
complexité du calcul d’une base de Gröbner pour l’ordre DRL de l’idéal I est bornée par

O
� s

|G|ω
�
n+ dreg(F)

dreg(F)

�ω�
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Figure 0.15 – L’ensemble des solutions pour le cas N = 7.

operations dans K, avec dreg(F) le degré de régularité de F.

En supposant I de dimension 0, on montre en analysant l’analyse de l’algorithme Abelian-
FGLM le résultat suivant :

Théorème. Sous l’hypothèse (vérifiée en pratique) que les monomes de K[X]/I sont bien
répartis entre les différents G-degrés, il est possible d’effectuer le changement d’ordre de l’idéal
I en O

�
n · δ3/|G|2

�
opérations arithmétiques dans K, avec δ = dimK(K[X]/I).

Résolution d’un système d’équations invariantes sous l’action d’un groupe. Dans
cette approche, on donne une complexité en fonction du degré maximal atteint durant le calcul
de la base SAGBI. Ce degré dépend implicitement des invariants choisis pour réexprimer les
solutions.

Théorème. Soit G un sous-groupe de GLn(K) sans autre dilatation que l’identité. Soit F =
(f1, . . . , fs) ∈ (K[X]G)

s
une famille de polynômes invariants sous l’action de G. Alors la

complexité du calcul d’une base SAGBI en degré D pour l’ordre DRL de l’idéal I = �f1, . . . , fs�
est bornée par

O

�
s

|G|ω
�
D + n

D

�ω�

operations dans K, avec ω un exposant faisable pour l’algèbre linéaire.
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Résolution d’un système d’équations à support dans un même polytope. L’ap-
proche creuse expliquée précédemment permet notamment de traiter les cas où les poly-
nômes sont à support dans un même polytope P. Pour ces systèmes, on donne des bornes
de complexité précises, dépendant des propriétés combinatoires du polytope. Le calcul d’une
base de Gröbner creuse par l’algorithme SAGBI-F5 est effectuée dans l’algèbre polytopale

K[P] = K[S
(h)
P ] où S

(h)
P est le semi-groupe engendré par {(α, 1) | α ∈ P}. Un outil essentiel

est la série de Hilbert de cette algèbre polytopale définie par

HSP(z) =
+∞�

d=0

HPP(d)zd où HPP(d) = #(d · P)

Commençons par un cas particulier : celui des systèmes bilinéaires. Considérons une
partition des variables en deux blocs de tailles nx, ny. Le polytope considéré est donc

P = Δnx×Δny , produit de deux simplexes de Nnx et Nny . On a alors HPP(d) =
�
nx+d
nx

��
ny+d
ny

�
.

Dans [36], les auteurs montrent que pour un système de n polynômes biliénaires affines géné-
riques, le degré maximal atteint lors du calcul d’une base de Gröbner pour un ordre gradué
est dwit ≤ min(nx, ny) + 2. Ils en déduisent une complexité de

O

��
nx + ny +min(nx, ny) + 2

min(nx, ny) + 2

�ω�

Avec l’approche creuse, on retrouve la même borne sur le degré maximal atteint dwit, mais
le fait d’effectuer les calcul dans K[P] permet de borner la complexité du calcul d’une base
de Gröbner creuse par

O(nHP(dwit)
ω) = O

�
n

�
nx +min(nx, ny) + 1

min(nx, ny) + 1

�ω�ny +min(nx, ny) + 1

min(nx, ny) + 1

�ω�

Cette formule s’étend facilement au systèmes multilinéaires, ce qui n’était pas connu : si
les variables sont réparties en blocs de tailles n1, . . . , n�, dwit ≤

��
i=1 ni − max(ni) + 1. On

donne de même une borne générale pour les systèmes multi-homogènes. Pour une algèbre
polytopale quelconque, la régularité de Castelnuovo-Mumford (voir définition 3.109) de l’al-
gèbre K[P] intervient dans le résultat suivant, qui suppose que K[P] est Cohen-Macaulay
(voir définition 2.9).

Théorème. La complexité de calculer une base de Gröbner creuse de �f1, . . . fn� ⊂ K[P] en
degré dwit est borné par O (nHPP(dwit)

ω) où dwit ≤ reg(K[P]) + 1 +
�n

j=1(dj − 1).

En supposant également le semi-groupe S engendré par P simplicial (voir définition 3.91),
la complexité de l’algorithme Sparse-FGLM est la suivante. On appelle base de Hilbert un
système de générateurs du semi-groupe S.

Théorème. Soit δ = dimK(K[S]/I) et soit r le cardinal d’une base de Hilbert du semi-groupe
S. Si S est un semi-groupe affine simplicial et K[S] une algèbre Cohen-Macaulay, l’algorithme
Sparse-FGLM calcule la base de Gröbner dans K[H] en au plus O(r · δ3) operations dans K.

Enfin, contrairement à [36], l’approche s’applique également aux systèmes surdéterminés,
ce qui nous permet de proposer une variante de la conjecture de Fröberg (conjecture 2.43),
non détaillée ici, ainsi que d’autres résultats de complexité.
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Implémentation.

Les variantes des algorithmes F5 et FGLM présentées plus haut ont été implémentées en
Magma. Ont également été implémentées dans un langage de bas niveau (C), par Jean-Charles
Faugère :

— une version de l’algorithme F5 pour calculer une base SAGBI d’un idéal invariant sous
l’action du groupe cyclique.

— une version de l’algorithme F4 (parallélisée) pour calculer une base de Gröbner d’un
idéal globalement sous l’action d’un groupe abélien.

— une version matricielle (sp-Matrix F5) de l’algorithme F5 pour calculer une base
de Gröbner creuse d’une algèbre monomiale. Cette version prend un degré maximal
comme paramètre.

Pour terminer, on exhibe trois exemples montrant l’efficacité des nouvelles approches. La
table 0.16 présente les différences de tailles des objets calculés entre l’approche classique et
l’approche par base SAGBI pour résoudre les problèmes Cyclic-5 et Cyclic-6. Pour la base
de Gröbner lexicographique de l’idéal dans K[x1, . . . , xn] (approche classique) ou la base de
Gröbner obtenue dans K[σ1, . . . ,σn] (approche SAGBI) où les σi sont les fonctions symétriques
des variables, on présente le nombre d’éléments dans la base, la taille maximale des polynômes,
et la taille de la variété associée dans une clôture algébrique. Pour tous ces critères, la base
de Gröbner invariante est beaucoup plus petite que la base de Gröbner classique.

G |G| max{|support(g) | g ∈ G} V(�G�)
Base de Gröbner de ID6 17 27 156

Base de Gröbner S6-invariante de ID6 7 4 13

Base de Gröbner de ID7 35 132 924

Base de Gröbner S6-invariante de ID7 7 9 57

Table 0.16 – Tailles des bases de Gröbner classiques et bases de Gröbner invariantes pour le
problème Cyclic-n.

La figure 0.17 montre les différents temps de calcul d’une base de Gröbner DRL du pro-
blème cyclique avec l’algorithme F4 pour différentes valeurs de n. Le problème cyclique est
invariant sous l’action du groupe cyclique. L’idéal I est l’idéal engendré par les polynômes
avant changement de variables et I � est l’idéal après changement de variables. F4 est l’algo-
rithme classique du package FGb et F //

4 est le nouvel algorithme parallélisant construction et
réduction des matrices. C’est la première fois qu’une base de Gröbner du problème Cyclic-11
est calculée avec l’algorithme F4.

En table 0.18, on reporte quelques temps de calculs de systèmes bilinéaires surdéterminés,
d’une part avec une implémentation basique de la nouvelle approche « creuse », et d’autre part
avec l’algorithme F5 du package FGb. On observe une amélioration significative des temps de
calculs.

Pespectives.

On présente ici différentes directions pouvant étendre les résultats de cette thèse.
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Figure 0.17 – Temps de calcul d’une base de Gröbner DRL pour le problème Cyclic-n

(nx, ny,m) sp-Matrix F5 FGb-F5 Speed-up

(2,29,40) 0.12s 5.2s 43

(2,39,53) 0.49s 36.7s 74

(2,49,65) 1.53s 298.5s 195

(2,59,78) 4.63s 852.3s 184

(6,19,52) 1.10s 25.2s 22

(6,21,56) 2.13s 51.5s 24

(6,27,71) 7.07s 236.0s 33

Table 0.18 – Systèmes bilinéaires surdéterminés en (nx, ny) variables et m équations.

Idéaux stables sous l’action diagonale du groupe symétrique. Dans cette thèse, on
étudie notamment un système d’équations de la forme

�
Zi =

P (zi)

Q�(zi)
i = 1..N

�
où Q(z) =

N�

i=1

(z − zi)

Ce système est globalement invariant sous l’action du groupe symétrique SN agissant sur les
variables zi et Zi par σ(zi) = zσ(i) et σ(Zi) = Zσ(i). On explique comment reformuler un
tel système en termes des fonctions symétriques élémentaires des (zi). Ce type de système,
avec action du groupe symétrique sur plusieurs blocs de variables , apparâıt très fréquemment
dans les applications. On donne ici un exemple de problème présentant une telle symétrie,
que l’approche développée dans cette thèse ne permet pas de résoudre et qui constitue une
intéressante perspective : la résolution des équations de Brent [10].

On s’intéresse au système d’équations à 3N2T inconnues et N6 équations suivant :

∀(i, j, k, �,m, n) ∈ {1, . . . , N}
T�

p=1

αijpβklpγmnp = δinδjkδ�m
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où δ est le symbole de Kronecker. Parmi beaucoup d’autres symétries apparâıt une action
diagonale du groupe symétrique ST agissant sur αijp par σ(αijp) = αijσ(p), et de même
sur βklp et γmnp. Ce système intervient dans la multiplication rapide de matrices carrées :
Strassen [98] a exhibé une solution avec T = 7 et N = 2, ce qui a mené à la première
complexité sous-cubique de la multiplication de deux matrices N × N . L’ approche menant
à la meilleure complexité connue actuellement pour ce problème [108, 50] exploite également
ces équations. Pour N = 3, on sait qu’il n’y a pas de solution pour T ≤ 20 et qu’il en existe
une pour T = 23 (voir [69]), mais les cas T = 21 et 22 restent ouverts.

En dimension positive ? Cette thèse se concentre sur la résolution de systèmes n’admet-
tant qu’un nombre fini de solutions. Si les variantes de l’algorithme F5 que l’on a proposées
sont valables en toute dimension, ce n’est pas le cas des variantes de l’algorithme de chan-
gement d’ordre FGLM. Une perspective intéressante est donc l’élimination de variables en
dimension positive.

Base de Gröbner creuses : le cas mixte. L’approche développée dans le dernier chapitre
ne traite, du point de vue théorique comme du point de vue algorithmique, que du cas où les
polynômes du système ont leur support inclus dans un même polytope. Dans l’approche par
résultant, le cas mixte (les polynômes sont à support dans des polytopes différents) est bien
compris. C’est pourquoi une perspective proche est de traiter ce cas mixte.

Complexité de la résolution de systèmes dont le support est constitué de monômes
dispersés. Les algorithmes présentés dans le dernier chapitre s’appliquent dans le cas où les
polynômes ont leur support constitué d’un même ensemble de monômes dispersés, et les tests
effectués sont très prometteurs. Expliquer pourquoi est un travail en cours avec Jean-Charles
Faugère et Pierre-Jean Spaenlehauer.

Idéaux stables sous l’action d’un groupe. L’extension du travail effectué pour les idéaux
stables sous l’action d’un groupe abélien à des groupes non abéliens serait d’un grand intérêt.
La théorie des représentations devrait y jouer un rôle prépondérant, c’est pourquoi elle a été
développée dans ce manuscrit.

Organisation du Manuscrit

Ce manuscrit est divisé en deux parties. La première présente les rappels nécessaires à
la compréhension de cette thèse et comporte trois chapitres. La seconde partie présente les
contributions, elles-mêmes réparties en deux chapitres.

Chapitre 1 : Ce chapitre introduit la notion de base de Gröbner et présente les algorithmes
classiques de calcul de bases de Gröbner que sont F5 et FGLM. Y est également étudié leur
complexité dépendant notamment de deux paramètres que sont le degré maximal atteint
lors du calcul d’une base de Gröbner pour un ordre du degré, ainsi que le degré d’un idéal de
dimension zéro. La fin du chapitre présente une généralisation de l’algorithme F5 pour le calcul
de bases SAGBI jusqu’à un degré fixé, dans le cadre d’algèbres graduées. Cette généralisation
n’apparâıt pas dans la littérature, cependant elle est essentielle car les variantes de l’algorithme
F5 présentées dans la suite en sont des spécialisations.
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Chapitre 2 : Dans ce chapitre, on présente les outils algébriques classiques permettant
d’estimer les deux paramètres dont il est question dans le chapitre précédent. On définit
notamment la série de Hilbert d’un idéal, la propriété d’être Cohen-Macaulay et la notion de
suite régulière.

Chapitre 3 : Ce dernier chapitre préliminaire présente les deux types de structures algé-
briques sur une algèbre de polynômes qui sont étudiées dans cette thèse. Il est tout d’abord
question de l’action des groupes finis sur les algèbres de polynômes. Après avoir présenté l’al-
gèbre des invariants sous l’action d’un groupe fini, on verra comment calculer effectivement
ces invariants ainsi qu’une estimation de la série de Hilbert associée à cette algèbre. La notion
d’invariant est ensuite généralisée à celle d’invariant relatif par la théorie des représentations
linéaires des groupes finis. Il est ensuite question des sous-algèbres générées par un ensemble
fini de monômes. L’outil algébrique sous-jacent est le semi-groupe, et l’on présente la notion
essentielle de semi-groupe normal.

Chapitre 4 : Ce premier chapitre contributif est le plus volumineux de cette thèse. Il se
subdivise en trois sections, qui sont en grande partie indépendantes.

— Dans la première section, il est question de systèmes d’équations polynômiales globa-
lement invariants sous une action du groupe symétrique. L’étude de ce problème est
motivée par la résolution symbolique d’un problème physique : celui de déterminer
les configurations planaires stables d’un ensemble de tourbillons ayant même vorticité.
On montrera comment se ramener à des équations individuellement invariantes à l’aide
de différences divisées, et comment reformuler les équations à l’aide des fonctions sy-
métriques des positions complexes des tourbillons. Les résultats présentés dans cette
partie sont l’objet d’un travail commun avec Jean-Charles Faugère et ont fait l’objet
d’une présentation à la conférence ISSAC 2012 [43].

— La deuxième section porte sur la résolution de systèmes d’équations polynômiales in-
dividuellement invariantes sous l’action d’un groupe fini. Il est question ici d’étendre
l’approche par bases SAGBI dans le cadre de sous-groupes de permutations de l’ar-
ticle [41] de Jean-Charles Faugère et Sajjad Rahmany : cette approche se généralise à
tous les groupes finis, et il est possible d’en estimer la complexité. Se pose également
la question de l’élimination de solutions parasites engendrées par cette approche. Le
résultats présentés ici sont l’objet d’un travail avec Jean-Charles Faugère et Guënael
Renault, qui sera soumis ultérieurement.

— Dans la troisième et dernière section, il est question d’accélérer le calcul de bases de
Gröbner d’idéaux globalement stables sous l’action d’un groupe abélien fini, dans le
cas non-modulaire. On montre qu’il est possible de se ramener au cas d’un groupe
constitué de matrices diagonales, et l’action du groupe se traduit par une structure
additionnelle sur l’algèbre des polynômes. Cette structure permet de découper les ma-
trices intervenant dans les algorithmes classiques de calculs de base de Gröbner par
algèbre linéaire que sont F5 et FGLM. Les résultats présentés ici ont fait l’objet d’une
présentation à la conférence ISSAC 2013 [44]. Cependant, l’accent est mis ici sur le
lien entre les représentations de groupes et la stucture additionnelle, qui n’était pas
présent dans l’article originel.

Chapitre 5 : Ce dernier chapitre, petit par la taille, présente pourtant des résultats qui
sont peut-être les plus significatifs de cette thèse. On étudie ici les systèmes d’équations dont
le support est inclus dans un même sous-ensemble de monômes. Si ce sous-ensemble forme
un polytope, l’utilisation des propriétés combinatoires du polytope permet de donner des
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bornes de complexité précices : on retrouve facilement des résultats connus sur la complexité
de résolution de systèmes bilinéaires et on étend ces résultats aux systèmes multihomogènes.
L’approche présentée ici s’applique également dans le cas où le support est constitué de
monômes dispersés. Ce cadre n’est pas encore couvert par l’approche théorique, mais les
résultats pratiques semblent très prometteurs. Ce travail en collaboration avec Jean-Charles
Faugère et Pierre-Jean Spaenlehauer a été accepté pour publication à la conférence ISSAC
2014 [42].
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Chapter 1

Gröbner Bases

The aim of this chapter is to present the classical algorithms used in order to compute a
Gröbner basis of an ideal. In section 1.1, we recall classical notions and present Buchberger
algorithm. Section 1.2 is devoted to the links between linear algebra and Gröbner bases. In
particular, we present the F5 and FGLM algorithms. Finally, we generalize in section 1.3 the
Gröbner concepts to subalgebras. The aim of this section is to introduce the SAGBI-Matrix
F5 algorithm used in chapter 4 and 5.

1.1 Gröbner Basics 1

The aim of this section is to recall basic material and to fix notations. One main reference
is [25].

1.1.1 Ideals and Varieties

Let K be a field, n be a positive integer and K[x1, . . . , xn] be a polynomial ring with
base-field K and indeterminates x1, . . . , xn that will be abbreviated K[X]. In this subsection,
we fix some notations and recall basic links between ideals and varieties.

Definition 1.1. Throughout this thesis, we define:
— a monomial as a product of indeterminates

�n
i=1 xi

αi with αi ∈ N.
— a term as a product of a monomial with an element of K.
— a polynomial as a linear combination of terms.

Ideals. The basic objects in commutative algebra are ideals and varieties. We now recall
definitions and fundamental theorems.

Definition 1.2. An ideal I of K[X] is a non-empty additive subgroup of K[X] such that:

f ∈ I and g ∈ K[X] =⇒ fg ∈ I
Proposition – Definition 1.3. Let f1, . . . , fs be polynomials in K[X]. Then the subset

�
f ∈ K[X]

�� ∃s ∈ N∗ ∃g1, . . . , gs ∈ K[X], f =
s�

i=1

figi

�

is an ideal of K[X], denoted by �f1, . . . , fs�.
1. I found this wordplay in Sturmfels’ book [102].

27
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The following theorem shows that we can always give such a writing for an ideal:

Theorem 1.4 (Hilbert basis theorem). Let I be an ideal of K[X]. Their exist polynomials
f1, . . . , fs ∈ K[X] such that I = �f1, . . . , fs�.

Affine Varieties. We are now interested in studying the common roots of the polynomials
in an ideal.

Definition 1.5. Let I be an ideal of K[X], and L be a field such that K ⊆ L or L ⊆ K. The
Variety defined by I in L is the set

VL(I) = {(x1, . . . ,xn) ∈ Ln | f(x1, . . . ,xn) = 0 for all f ∈ I}
When L = K is the algebraic closure of K, VL(I) will be simply denoted by V(I).

Conversely, from a set of points in Kn, we can define an ideal:

Proposition – Definition 1.6. Let S ⊆ Kn be a set of points. Then the set

{f ∈ K[X] | f(x) = 0 for all x in S}
is an ideal of K[X] denoted by I(S).

In order to explain the strong links between ideal and varieties, we have to define the
radical of an ideal.

Definition – Proposition 1.7. Let I be an ideal of K[X]. We define
√
I, the radical of I,

by √
I = {f ∈ K[X] | ∃� ∈ N, f � ∈ I}

which is also an ideal of K[X]. An ideal I is said to be radical if I =
√
I.

We are now able to give one of the fundamental theorem in algebraic geometry.

Theorem 1.8 (Nullstellensatz). Let K be an algebraic closed field, and I an ideal of K[X].
Then

I(V(I)) =
√
I

Given two ideals I and J of K[X], we can define many other ideals: I + J, I ∩ J, IJ, (I :
J), (I : J∞), . . . We refer to [25] for the operations on ideals and the geometric meaning of
these operations.

Zariski topology. We continue this subsection with the Zariski topology, that we can define
on Kn.

Definition 1.9. A subset of Kn is said to be a Zariski closed subset if it can be written V(I)
for a suitable ideal I ⊆ K[X].

From the operations on ideals and the links with operations on varieties, it is straightfor-
ward to verify that these subsets are the closed sets of a topology, called the Zariski topology.
If the field K is infinite, the open sets of this topology are “big”, which allows us to set the
following definition:

Definition 1.10. If K is infinite, a property P on Kn is said to be generic if {x ∈ Kn | P(x)}
contains a non-empty Zariski open subset.

For now, we do not know how to answer, among others, the following questions:
— Given (f, f1, . . . , fs) ∈ K[X]s+1, decide whether f lies in �f1, . . . , fs�.
— Given I = �f1, . . . , fs�, decide whether V(I) is empty.

Gröbner bases of ideals are a computational tool which allows to solve those questions, and
will be introduced in the following subsection.
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Zero-dimensional ideals. This thesis mainly focuses on systems generating an ideal said
to be of Krull dimension zero. This notion of dimension will be defined in the next chapter.
These ideals are interesting since the associated variety (in the algebraic closure) is finite.

Proposition – Definition 1.11. [25] An ideal I of K[X] is of Krull dimension zero if and
only if K[X]/I is of finite dimension as a K-vector space. This dimension is called the degree
of I, and is a bound for the number of points in VK(I).

Bounding the number of points in VK(I) by the degree of I is sharp: equality holds for
radical ideals.

1.1.2 Monomial Orderings and Gröbner bases

Degrees and monomial orderings. In order to design algorithms solving symbolically
polynomial systems, we have to put an ordering on polynomial rings: this is necessary to decide
what the greatest monomial in a given polynomial is. Since several monomial orderings use
implicitly the total degree of a monomial, we also have to define some degrees of monomials.

Definition 1.12. A monomial ordering � on K[X] = K[x1, . . . , xn] is a total ordering defined
on the set of monomials of K[X] (which is isomorphic, as a monoid, to Nn), such that:

— For all α,β, γ ∈ Nn, xα � xβ ⇒ xα+γ � xβ+γ

— Every non-empty subset of monomials has a smallest element (� is a well-ordering).

Note that any ordering implies an ordering on the indeterminates x1, . . . , xn. We usually
assume that x1 � · · · � xn. We now give the definitions of the most common orderings used
in practice, namely the lexicographical and the graded reverse lexicographical orderings.

Definition 1.13. The lexicographic ordering, denoted by �Lex, is defined by: xα ≺Lex xβ if
and only if the first non-zero left entry of α− β is negative.

Since weighted orderings will also be used in this thesis, we recall the notion of weighted
degree of a monomial.

Definition 1.14. Let w = (w1, . . . , wn) ∈ Nn. The weigted degree associated to w of a
monomial xα is degw(x

α) =
�

iwiαi. When w = (1, . . . , 1), degw will simply be denoted
by deg.

Definition 1.15. The weighted graded lexicographical ordering (abbreviated w-glex) and
denoted by �wglex is defined by: xα ≺glex xβ if and only if degw(x

α) < degw(x
β) or

degw(x
α) = degw(x

β) and xα ≺Lex xβ. When w = (1, . . . , 1), the ordering will be sim-
ply called the glex ordering.

Definition 1.16. The weighted graded reverse lexicographical ordering (abbreviated w-grevlex
or w-DRL) and denoted by �wdrl, is defined by: xα ≺wdrl xβ if and only if degw(x

α) <
degw(x

β) or degw(x
α) = degw(x

β) and the first non-zero right entry of α − β is positive.
When w = (1, . . . , 1), the ordering will simply be called graded lexicographical and abbreviated
grevlex or DRL.

Definition 1.17. Let w = (w1, . . . , wn) ∈ (N∗)n. A polynomial f ∈ K[X] is said to be
w-homogeneous if all its monomials share the same w-degree. If w = (1, . . . , 1), we simply
say that f is homogeneous.
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Leading Monomial and Reduction. Now that we have defined ordering on monomials,
we are able to define reductions of a polynomial with respect to a list of polynomials.

Definition 1.18. Let � be a monomial ordering on K[X]. For a non-zero polynomial f =�
cαx

α ∈ K[X], we define its leading monomial, leading coefficient and leading term as
follows:

— LM�(f) = max�{xα | cα �= 0}
— LC�(f) = cα with xα = LM�(f)
— LT�(f) = LC�(f)LM�(f).

Note that sometimes, terms are called monomials and conversely.

Notations 1.19. We recall here some notations that will be used throughout this thesis,
although there are not standard: let f ∈ K[X] and � an ordering on K[X]. We denote by
o�(f) (resp. O�(f)) the set of linear combinations of monomials smaller (resp. smaller or
equal) than LM�(f). This notation extends for a set of polynomials F : o�(F ) = ∩f∈F o�(f).

Definition 1.20. Let f, g ∈ K[X]\{0} and � a monomial ordering on K[X]. f is said to be
top-reducible by g (for the ordering �), if LM�(g)|LM�(f). If F is a finite subset of K[X], f
is said to be top-reducible by F , if LM�(g)|LM�(f) for some g ∈ F .

With notations of previous definition, we see that in the case of top-reducibility of f by g, the

polynomial f− LT�(f)
LT�(g)g lies in o�(f). We now describe algorithms 1.21 and 1.22 that compute

reduction and full reduction of a polynomial f with respect to a list of polynomials F .

Algorithm 1.21: Reduction algorithm

Input : f ∈ K[X], F = [f1, . . . , fs] a list of polynomials in K[X], a monomial ordering
�.

Output: A polynomial r such that r is not top-reducible by F and f − r ∈ �F �
h := f ;
i := 0;
while h �= 0 and i < s+ 1 do

i := i+ 1;
if h is top-reducible by fi then

h := h− LT�(h)
LT�(fi)

fi;

i := 0

return h

Note that the result of algorithm 1.21 (and therefore algorithm 1.22) depends on the order
of the sequence F. However, when F is a Gröbner basis, the result is unique.

Gröbner basis. In order to give the definition of a Gröbner basis, we recall first the defi-
nition of the initial ideal of an ideal.

Definition 1.23. Let I be an ideal in K[X] and � be an ordering on K[X]. The initial ideal
in�(I) of I with respect to � is defined by

in�(I) = �{xα | ∃f ∈ I, xα = LM�(f)}�

The initial ideal of an ideal is a monomial ideal, that is, an ideal generated by monomials.
We now define what a Gröbner basis is.
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Algorithm 1.22: Full-Reduction algorithm

Input : f ∈ K[X], F = [f1, . . . , fs] a list of polynomials in K[X], a monomial
ordering �.

Output: A polynomial r such that no monomial of r is top-reducible by F and
f − r ∈ �F �.

r := 0; h := f ;
while h �= 0 do

h := Reduction(h, F );
r := r + LT�(h);
h := h− LT�(h);

return r

Definition 1.24. Let I be an ideal in K[X] and � be an ordering on K[X]. A Gröbner basis
G for the ideal I with respect to � is a subset of I such that

in�(I) = �{LM�(g) | g ∈ G}�

One fundamental property of Gröbner bases, that ensures that the outputs of both al-
gorithms 1.21 and 1.22 do not depend on the order of the sequence F = [f1, . . . , fs] is the
following:

Proposition 1.25. Let I ⊆ K[X] be an ideal and G be a Gröbner basis of I for a monomial
ordering �. Let f ∈ K[X]. Then

f ∈ I ⇐⇒ Reduction(f,G) = 0

A Gröbner basis for a given ordering � of an ideal I is not unique with definition 1.24.
However, uniqueness holds:

Definition 1.26. Let I be an ideal of K[X], and G be a Gröbner basis of I with respect to a
given ordering �. G = {g1, . . . , gs} is said to be reduced if no monomial of gi is (top-)reducible
by G\{gi}.

Proposition 1.27. Let I be an ideal of K[X], and � be a monomial ordering on K[X]. Then
I has a unique reduced Gröbner basis with respect to �.

The next subsection is devoted to the presentation of the first historical algorithm that
computes Gröbner bases.

1.1.3 Buchberger Algorithm

Buchberger algorithm dates back to 1965 and is able to compute a Gröbner basis of an
ideal I for any ordering.

Idea. The input of the algorithm is a set of polynomials F = {f1, . . . , fs} and an ordering
�. The aim is to compute a Gröbner basis of I = �f1, . . . , fs� with respect to �. At the
beginning of the algorithm, the monomial ideal �{LM�(f) | f ∈ F}� is only included in in�(I).
The idea is to increase the family F unless equality holds, according to definition 1.24. The
key object is to consider critical pairs and S-polynomials of elements in F .
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S-polynomials. In order to define S-polynomial, we have to recall the definition of lowest
common multiple and greatest common divisor of two monomials.

Definition 1.28. Let m = xα and m� = xβ be two monomials of K[X]. We define

— the lowest common multiple of m and m� by LCM(m,m�) =
�n

i=1 x
max(αi,βi)
i . It will be

denoted by m ∨m�.
— the greatest common divisor of m and m� by GCD(m,m�) =

�n
i=1 x

min(αi,βi)
i . It will be

denoted by m ∧m�.

Note that the definition 1.28 does not depend on a choice of a monomial ordering on K[X].

Definition 1.29. Let f and g be two non-zero polynomials of K[X] and let � be a monomial
ordering. The S-polynomial of f and g is defined by

Spol(f, g) =
LM�(f) ∨ LM�(g)

LT�(f)
f − LM�(f) ∨ LM�(g)

LT�(g)
g

The S-polynomial can also be defined by GCD’s since
LM�(f)∨LM�(g)

LM�(f) =
LM�(g)

LM�(f)∧LM�(g) .

Buchberger algorithm. We can now describe Buchberger algorithm 1.30. The algorithm
maintains a list of critical pairs, which are no more than pairs of polynomials, and computes S-
polynomials and reduces it with respect to the current family of polynomials. If the remainder
is non-zero, it is added to the family. The algorithm stops when all critical pairs have been
examined.

Algorithm 1.30: Buchberger algorithm

Input : F = {f1, . . . , fs} a finite subset of K[X], and a monomial ordering �.
Output: A Gröbner basis of �f1, . . . , fs� with respect to �.
G := F ;
L := {(fi, fj) | 1 ≤ i < j ≤ s}; //list of critical pairs

while L �= ∅ do
Choose a critical pair P = (f, g) of L and remove P from L;
r := Reduction(Spol(f, g), G);
if r �= 0 then

G := G ∪ {r};
L := L ∪ {(r, f) | f ∈ G}

return G

The proof of algorithm 1.30 relies heavily on the following theorem:

Theorem 1.31 (Buchberger). Let G be a subset of K[X], graded by a monomial ordering �.
Then G is a Gröbner basis of �G� with respect to � if and only if

Reduction(Spol(f, g), G) = 0 for all f �= g in G.

Notations 1.32. When G is a Gröbner basis, the result of Full-Reduction(f,G) does not
depend on the choice of the reductions performed in algorithm 1.21. We call the result the
Normal Form of f with respect to G, which will be denoted in the sequel by NF�(f,G).
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1.1.4 What is Solving ?

In this subsection, we recall what solving means, in the context of Gröbner basis compu-
tation. We first give the shape of a lexicographical Gröbner basis of an ideal.

Proposition 1.33. Let I be a zero dimensional ideal of K[X], and Glex be the reduced Gröbner
basis of I for the lexicographic ordering with x1 � · · · � xn. Then Glex has the following shape:

Glex =





g1,1(x1, . . . , xn) � · · · � g1,�1(x1, . . . , xn)

g2,1(x2, . . . , xn) � · · · � g2,�2(x2, . . . , xn)
...

gn−1,1(xn−1, xn) � · · · � gn−1,�n−1(xn−1, xn)

gn(xn)

with �i ≥ 1 for i ∈ {1, . . . , n− 1}, and LM�(gi,1) is a power of xi for all i ∈ {1, . . . , n}.

Note that the last element of the Gröbner basis is a univariate polynomial.

Solving polynomial systems with computer algebra. A polynomial system is a finite
set of equations f1 = · · · = fs = 0 with fi ∈ K[X]. Solving the system means finding the
common zeros of the polynomials fi in field L containing K. Assuming that the set of solutions
is finite (this is the case if and only if �f1, . . . , fs� is zero dimensional), it could be understood
as “giving the list of the solutions”. Observe first that once a lexicographical Gröbner basis of
�f1, . . . , fs� has been computed, we see that with notations of proposition 1.33, gn is univariate,
and plugging roots of gn in gn−1,1, . . . , gn−1,�n−1 leads to univariate polynomials in xn−1, and
so on. Depending on the field K, and on the field L where we are looking for solutions, several
techniques could apply.

Solving in finite fields. If K = Fq is a finite field with q = pr, we may look for

solutions in Fp, in Fq or in Fp, but in each case it is possible to output the list of exact

solutions: even if Fp is not finite, the solutions lie in a finite extension Fpk since they are in
finite number. Manipulating elements in exact fields (like finite fields) is easy, hence we can
solve the systems by computing roots of univariate polynomials. We refer for example to [107]
for efficient algorithms.

Solving on R. If K = R, dedicated algorithms compute efficiently approximations of the
roots of univariate polynomials, with certificated errors. We refer for example to [83, 84] for
the complexity of isolating real solutions and computing approximations of them. From the
lexicographical Gröbner basis, we cannot apply directly the method of computing successively
approximations of roots of gn(xn), gn−1(xn−1, xn), . . . , since errors would be dramatically
increased. But it is possible to first compute a decomposition into triangular sets, with for
example the Lazard Lex-Triangular algorithm (see [73]), and then isolate the real roots in
this tower of extensions with certificated methods, see for example [99].

Consequently, throughout this thesis, solving a polynomial system means computing the
lexicographical Gröbner basis of the ideal that the system generates. In practice, applying
Buchberger’s algorithm in order to compute a lexicographical Gröbner basis is not satisfac-
tory: most of the critical pairs reduce to zero; therefore this is a waste of time to consider
them. Moreover, it is much faster to compute a Gröbner basis for the DRL ordering than for
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the lexicographical ordering. Nowadays, the common strategy used to solve zero-dimensional
polynomial systems with Gröbner bases is to use an efficient algorithm able to compute a
Gröbner basis for DRL ordering, and then perform a change of ordering to obtain a lexico-
graphical Gröbner basis. This strategy and the associated algorithms are presented in the
next section.

1.2 Gröbner bases and Linear Algebra

The aim of this section is to present an efficient strategy to solve zero-dimensional systems.
The first step is to compute a Gröbner basis for a graded ordering, and the most common
is the DRL ordering. In [71], Lazard showed the link between linear algebra and Gröbner
bases computations. Faugère presented in [34] an efficient algorithm which includes Buch-
berger criterions into linear algebra computations of Gröbner basis. In [35], he presented the
first signature-based algorithm: the advantage of this algorithm is that no useless pairs are
considered if the input is a regular sequence (see chapter 2). The two last algorithms have
been implemented in [63], and are the most efficient algorithms to compute Gröbner bases
for a graded ordering. We focus on the zero-dimensional case: the FGLM algorithm [39]
can be used to compute a Gröbner basis for any ordering of a zero-dimensional ideal, once
a Normal Form is known. This Normal Form is usually available as soon as a first Gröbner
basis of the ideal has been computed. Figure 1.34 summarizes the common strategy to solve
a zero-dimensional system.

System
DRL

Gröbner
basis

LEX
Gröbner
basis

Solutions
F4/F5 FGLM Univariate

Resolution

Figure 1.34 – Strategy to compute solutions of a zero-dimensional system.

In this section, we first present the link between linear algebra and Gröbner basis compu-
tation through the Lazard algorithm 1.40, and then exhibits a simplified version of Matrix-F5

algorithm 1.44. The original one uses rewriting rules to get sparser matrices, and is itself a
simplified version of the original F5 algorithm which does not need a maximal degree to stop
the computations. Since our aim is to propose some variants of this algorithm that handle
algebraic structures, the simplified Matrix-F5 is sufficient, and easier to describe. Then, we
present the FGLM algorithm 1.52.

1.2.1 Lazard’s algorithm and Macaulay’s matrices

The aim of this subsection is to present the Lazard’s algorithm, which computes a Gröb-
ner basis for a graded ordering. In order to simplify notations, we present it only in the
homogeneous case. Before giving the algorithm, we present the so-called Macaulay’s matrix
of a sequence of polynomials in a given degree, and then explain the authorized operations
on it.

Macaulay’s matrix.

Definition 1.35. Let I ⊆ K[X] = K[x1, . . . , xn] be an ideal generated by homogeneous poly-
nomials f1, . . . , fs, and let � be an ordering on K[X]. We say that G is a Gröbner basis up



1.2. GRÖBNER BASES AND LINEAR ALGEBRA 35

to degree D of I, if

∀f ∈ I, deg(f) ≤ D =⇒ ∃g ∈ G, LM�(g)|LM�(f)

An homogeneous ideal has a unique reduced Gröbner basis up to degree D. From the
finitness of reduced Gröbner bases, it is clear that for D big enough, a D-Gröbner basis is
a Gröbner basis. We now present the Macaulay’s matrix of a finite set of polynomials, the
reduction of which gives a D-Gröbner basis by Lazard’s algorithm.

Definition 1.36. Let F = f1, . . . , fs ∈ K[X] be homogeneous polynomials of degrees d1, . . . , ds
and � be an ordering on K[X]. Let D be an integer. The Macaulay’s matrix Mac�,D(F) is a
matrix:

— with
�
n+D−1
n−1

�
columns, indexed by monomials of degree D of K[X], sorted by decreasing

ordering, with respect to �.
— with

�s
i=1

�
n+D−di−1

n−1

�
rows, indexed by pairs (i,m), where i ∈ {1, . . . , s} and m is a

monomial of degree D − di. The index are sorted by increasing i first, and then by
decreasing m.

— such that Mac�,D(F)(i,m),m� is equal to the coefficient of m� in the polynomial fi ×m.

This definition makes sense, since for every index (i,m), the polynomial fim is homo-
geneous of degree D. If D < di, the block corresponding to fi is empty. We now present
algorithm 1.40 which was presented in [71]. With a slight abuse of notations, we identify

a row �M(i,f),. with the polynomial
�

u
�M(i,f),u, where the sum ranges over all monomials of

K[X] of degree D.

Gaussian Elimination in Lazard/Matrix F5 algorithms. Both Lazard and Matrix-F5

algorithms are based on linear algebra. The idea is to build Macaulay’s matrices and perform
operations on them. In this thesis, we will present several variants of Matrix-F5, but the
routines of linear algebra that we use are the same: computing a row-echelon form through
Gaussian Elimination. Since the columns of the matrices are associated to monomials sorted
by decreasing order, operations on the columns are not allowed. All operations on the rows
are allowed: permutations, transpositions, dilatations and cancellation of zero-rows.

Definition 1.37. Let M be a matrix with coefficients in K. M is said to be in row echelon
form if

— all nonzero rows (rows with at least one nonzero element) of M are above any zero row
(all zero rows, if any, belong at the bottom of the matrix).

— the leading coefficient (the first nonzero number from the left) of a nonzero row in M
is always strictly to the right of the leading coefficient of the row above it.

— all entries in a column below a leading entry of M are zeroes.

Here is an example of a 4× 5 matrix in row echelon form:




1 a0 a1 a2 a3

0 0 2 a4 a5

0 0 0 1 a6

0 0 0 0 0




We will see that computing a row echelon form of a Macaulay’s matrix (at a degree big
enough) leads to a non-reduced Gröbner basis. In order to obtain a reduced Gröbner basis
(definition 1.26), we have to compute a reduced row echelon form of the Macaulay’s matrix.
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Definition 1.38. Let M be a matrix in row echelon form. M is said to be reduced if
— all leading coefficients are 1.
— M is full rank: zero-rows have been removed.
— the column of a leading coefficient has only one non-zero entry: this leading coefficient.

Here is an example of a 3× 5 matrix in reduced row echelon form:




1 a0 0 0 a1

0 0 1 0 a2

0 0 0 1 a3




Row echelon and reduced row echelon forms can be computed by Gaussian elimination.
The cost of this computation is well-handled, since the following theorem holds. In this
thesis, ω is the exponent of linear algebra, that is the lower bound of reals γ such that the
multiplication of two N ×N matrices can be performed in O(Nγ) arithmetic operations. The
best known bound is ω < 2.3728639, see [50]. The complexity studies presented in this thesis
only count the number of operations in K, namely additions, subtractions, multiplications
and divisions.

Theorem 1.39. Let M be a matrix with c rows, � rows, rank r and coefficients in K. Then,
a Gaussian Elimination of M can be performed within O(�crω−2) arithmetic operations in K.

Proof. We refer to [97] for a proof.

Lazard’s algorithm. We now present the Lazard’s algorithm 1.40, which computes a
Gröbner basis up to a degree D by computing incrementally reduced row echelon forms
of Macaulay’s matrices.

Algorithm 1.40: Lazard algorithm

Input : A family of homogeneous polynomials F = (f1, . . . , fs) with degrees
d1 ≤ . . . ≤ ds, an ordering �, a maximal degree D

Output: A Gröbner basis of (f1, . . . , fs) up to degree D, with respect to �
G := ∅;
for d = 1 to D do

Compute the Macaulay’s matrix M = Mac�,d(F) in degree d;

Compute �M , the reduced row-echelon form of M ;

Add to G all rows of �M not top-reducible by G.

return G

Theorem 1.41. Algorithm 1.40 terminates and computes a D-Gröbner basis of I =
�f1, . . . , fs�.
Proof. It is straightforward that algorithm 1.40 terminates since the number of loops is finite,
and that the output is in I. Now, let f ∈ I be a polynomial of degree d less than or equal toD.
Since I is generated by homogeneous polynomials, we might assume that f is homogeneous
(this will be proved in a more general context in proposition 1.65). Then f can be written�s

i=1 gifi. Since f is homogeneous, the gi’s can be taken homogeneous of degree d − di. It
follows that f is a linear combination of rows of the matrix M = Mac�,d(F). Then, one row

of �M has the same leading monomial as f . Since we add to G all rows of �M not top-reducible
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by G, LM�(f) is divisible by LT�(g) for some g ∈ G. By definition 1.35, it follows that G is
a D-Gröbner basis of �f1, . . . , fs�.

Lazard’s algorithm based on Macaulay’s matrices allows easy rough complexity study, in
terms of the maximal degree of a polynomial in the reduced Gröbner basis.

Theorem 1.42. One can compute a D-Gröbner basis of an ideal I ⊆ K[X], generated by
homogeneous polynomials f1, . . . , fs of degrees d1, . . . , ds for a given ordering � within

O

�
s

�
n+D

D

�ω�

arithmetic operations in K, using Lazard algorithm 1.40.

Proof. We use the fact that by theorem 1.39, a Gaussian Elimination of a matrix M with �
lines, c columns, rank r and coefficients in K can be computed within O(�crω−2) arithmetic
operations in K. Since r ≤ c, O(�cω−1) is also a bound for this computation. Applying this to
the reduction of the Macaulay’s matrices occuring in algorithm 1.40, we obtain the following
bounds:

D�

d=0

��
s�

i=1

�
n+ d− di − 1

n− 1

���
n+ d− 1

n− 1

�ω−1
�
≤

D�

d=0

s

�
n+ d− 1

n− 1

�ω

≤ s

�
D�

d=0

�
n+ d− 1

n− 1

��ω

since ω > 1

≤ s

�
(D + 1)

�
n+D − 1

n− 1

��ω

D�

d=0

��
s�

i=1

�
n+ d− di − 1

n− 1

���
n+ d− 1

n− 1

�ω−1
�
≤ s

�
n+D

n

�ω

and the theorem is proved.

Corollary 1.43. Let f1, . . . , fs be homogeneous polynomials in K[x1, . . . , xn] = K[X]. If
the maximal degree in a Gröbner basis of (f1, . . . , fs) with respect to a graded ordering � is
lower or equal than D, then one can compute a Gröbner basis of �f1, . . . , fs� within at most

O

�
s

�
n+D

D

�ω�
operations in K.

From previous corollary, we see that bounding the maximal degree in a reduced Gröbner
basis is of crucial importance to estimate costs in Gröbner bases computations. This will be
investigated in the next chapter.

As we have seen, the Lazard algorithm 1.40 allows an easy complexity study. However,
many rows reduce to zero while computing the row-echelon form of the Macaulay’s matrix,
which indicates that some rows are useless. The following subsection presents an algorithm
which removes several useless rows, and all of them if the input sequence is a regular sequence.
This notion will be defined in the next section.
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1.2.2 Matrix-F5 algorithm

Let f1, . . . , fs be a sequence of homogeneous polynomials of degrees d1 ≤ · · · ≤ ds in
K[X], and � be a graded ordering on K[X]. Among the useless rows in the Macaulay’s
matrix Mac�,d(F), some of them are easy to identify: if m is a monomial of degree D − ds,
which is (top-)reducible by the Gröbner basis of f1, . . . , fs−1, then the row indexed by (s,m)
reduces to zero. All we have to do to check this reducibility is to compute a (D−ds)-Gröbner
basis of f1, . . . , fs−1. This can be done easily whith a slight modification of Lazard’s algorithm
and we obtain a very simplified version of Faugère Matrix-F5 algorithm. Note that in practice,
the algorithm is not implemented in a so simple way, since it uses rewriting rules to construct
smaller and sparser matrices, for details. Mixing this approach with critical pairs criterions
(as in Buchberger’s algorithm) leads to the so-called F5-algorithm see [35, 63]. In particular
with the F5-algorithm no input degree D is needed.

Algorithm 1.44: Matrix-F5 algorithm

Input : Homogeneous polynomials f1, . . . , fs of degrees d1, . . . , ds, an ordering �, a
maximal degree D

Output: Gröbner Bases of (f1, . . . , fi) for i = 1, . . . , s up to degree D, with respect
to �

for i = 1 to s do Gi := ∅ ;
for d = d1 to D do

�Md,0 := ∅;
for i = 1 to s do

if d < di then

Md,i := �Md,i−1

else

Md,i := matrix obtained by adding new rows m.fi to �Md,i−1, for all
monomials m of degree d− di that do not appear as leading monomial of a

row of �Md−di,i−1.

Compute �Md,i by Gaussian elimination from Md,i;

Add to Gi all rows of �Md,i not top-reducible by Gi;

return G1, . . . ,Gs

The principle of algorithm 1.44 is simple: for each d, we contruct several matrices instead
of only one like in algorithm 1.40. These matrices can be seen as Macaulay’s matrices in degree
d of f1, . . . , fi for i ∈ {1, . . . , s}, but with useless rows removed and part of the row-echelon
form computation already performed. The correctness of algorithm 1.44 is highly based on
lemma 1.45.

Lemma 1.45 (F5-criterion). With the notations of Algorithm 1.44, if m is the leading mono-

mial of a row in �Md−di,i−1 then the polynomial mfi belongs to the vector space

SpanK(Rows(�Md,i−1) ∪ {ufi | u of degree d− di and u ≺ m})

Proof. The hypothesis is that �Md−di,i−1 contains a row corresponding to a polynomial of the
form h = λm+o�(m), where λ �= 0 and o�(m) is a linear combination of monomials of degree
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d− di lower than m. Since h is contained in �f1, . . . , fi−1�, hfi also. Then the decomposition

mfi = hfi/λ� �� �
∈SpanK(Row(Md,i−1))

+ o�(m)fi� �� �
∈SpanK({ufi | u monomial of degree d−di smaller than m}

ends the proof.

Theorem 1.46. Algorithm 1.44 terminates and outputs D-Gröbner bases of �f1, . . . , fi� for
each i ∈ {1, . . . , s}.
Proof. The termination is clear. Morover, it follows from lemma 1.45 that the row span of
each matrix Md,i is the same as Mac�,d(f1, . . . , fi), and theorem 1.41 ends the proof.

1.2.3 FGLM algorithm

FGLM algorithm [39] was published in 1993 and named by the four names of its au-
thors Faugère, Gianni, Lazard and Mora. From a Gröbner basis G of a zero dimensional I,
FGLM algorithm returns the Gröbner basis for an other ordering �2. The idea is simple and
powerful: since I is zero dimensional, the quotient algebra K[X]/I is of finite dimension δ.
Thus, if we pick monomials m by increasing ordering for �2, the knowledge of G allows us
to compute NF�(m,G). With enough monomials, we obtain linear combinations between the
normal forms, which give a Gröbner basis of I for �2. In order to compute efficiently these
normal forms, the algorithm uses linear algebra: it first computes the matrices Mi of the
maps f �→ xif in K[X]/I for each i ∈ {1, . . . , n}, using algorithm 1.47.

In algorithm 1.47, we assume that I is not equal to K[X], which can be easily checked: in
this case the reduced Gröbner basis G for � of I is equal to {1}. We now define the staircase
and the boundary of G:
Definition 1.48. Let G be the reduced Gröbner basis for � of an ideal I � K[X]. We define:

— the staircase E(G) of G is the basis of K[X]/I given by monomials not top reducible
by G.

— the boundary B(G) of G is the set {xi�k | 1 ≤ i ≤ n and �k ∈ E(G)}\E(G).
Since I is zero-dimensional, the staircase E(G) = {1 = �1 ≺ · · · ≺ �δ} is finite of cardinal

δ = dimK(K[X]/I). In this case, the following proposition characterizes B(G).
Proposition 1.49. [39] Let G be the reduced Gröbner basis for � of a zero-dimensional ideal
I � K[X]. For every m ∈ B(G), one and only one of the following condition holds:

1. For each xi dividing m, m/xi belongs to E(G). This is the case if and only if m is the
leading monomial of an element g ∈ G.

2. m can be written xi �m for some i and some �m ∈ B(G).
Proof. The equivalence in the first point follows directly from the definition of a reduced
Gröbner basis. Assume that there exists xi dividing m such that m/xi does not belong to
E(G). Since m belongs to B(G), m can also be written xj� with � ∈ E(G). It follows that
i �= j and xi divides �. E(G) is obviously closed under division, so �� = �/xi ∈ E(G). Thus
xj�

� ∈ B(G) because xj�
� = m/xi /∈ E(G), and the proposition is proved.

In order to fulfill the matrices Mi, we have to compute all normal forms NF�(xi�k,G) for
1 ≤ i ≤ n and �k ∈ E . To this end, we construct the list L of all xi�k ordered for � and
without duplicates, the elements of which are exactly E(G)∪B(G). For an element u ∈ L, we
have three possible cases:
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Algorithm 1.47: Multi-Mat-building algorithm

Input : A reduced Gröbner basis G of a zero-dimensional ideal I � K[X],
E(G) = {1 = �1 ≺ �2 ≺ · · · ≺ �δ} the basis of K[X]/�G� given by monomials,
that are not (top-)reducible by G.

Output: Multiplication matrices of the maps f �→ xif in K[X]/�G�
for i := 1 to n do

Mi :=Square matrix of size δ × δ filled with zeros; //The rows of Mi are indexed

by [�1 ≺ �2 ≺ · · · ≺ �δ] and the columns by [xi�1 ≺ xi�2 ≺ · · · ≺ xi�δ]

L := [xi�j | 1 ≤ i ≤ n, �j ∈ E(G)], sorted by � and without duplicates;
for u ∈ L do

switch u do
case u in E :

Mi[u/xi, u] := 1 for all i such that xi|u; //the column of Mi indexed by u

has only one non-zero entry corresponding to u/xi.

case u = LM�(g) for some g ∈ G :

g can be written u+
�δ

i=1 αi�i;
Mi[., u] :=

t(−α1, . . . ,−αδ) for all i such that xi|u
otherwise

Find j such that xj |u and v = u/xj ∈ L\E(G);
Find (�, �) such that v = x�� with � ∈ E(G);
V := M�[., v]; //this column of M� contains the expression of NF�(v,G)
in the basis E(G).
W := MjV ; //W is the vector associated to NF�(xjv,G) = NF�(u,G).
Mi[., u] := W for all i such that xi|u;

return M1, . . . ,Mn

— u ∈ E(G): no computation is needed to compute NF�(u,G), since NF�(u,G) = u.
— u is the leading monomial of g ∈ G: in this case, since G is reduced, NF�(u,G) = u− g

and no computation is needed to obtain NF�(u,G).
— otherwhise, by proposition 1.49, u can be written xiv with v ∈ B(G). Since L is treated

incrementally in algorithm 1.47, NF�(v,G) =
�δ

k=1 αk�k has already been computed.
Moreover, if αk �= 0 in the previous writing, the normal form NF�(xi�k,G) has been

computed since xi�k ≺ u. It follows that
�δ

k=1 αkMi[., �k] is exactly NF�(u,G) in
terms of the basis E(G).

From the previous discussion, we can conclude:

Theorem 1.50. Algorithm 1.47 terminates and outputs the matrices Mi of multiplication by
xi in K[X]/I.
We now investigate the complexity of algorithm 1.47.

Theorem 1.51. [39] Let G be the reduced Gröbner basis for an ordering � of a zero-
dimensional ideal I � K[X]. In order to compute the matrices Mi with algorithm 1.47 in
the basis E(G), O(nδ3) arithmetic operations in K are needed, with δ = dimK(K[X]/I).
Proof. The size of the list L is bounded by nδ. Only the third case requires arithmetic
operations, and these operations are a matrix vector product, whose complexity is in O(δ2).
Therefore the total complexity is in O(nδ3).
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Algorithm 1.52: Matrix-FGLM algorithm

Input : Multiplication matrices M1, . . . ,Mn of size δ × δ corresponding to f �→ xif in
K[X]/I in a basis E1, an ordering �2

Output: The Gröbner basis of I for �2

S := [1]; //The staircase E2 for the ordering �2.

L := [(1, n), (1, n− 1), . . . , (1, 1)]; //list of pairs (j, i) symbolizing the monomials

S[j]× xi, ordered by increasing order for �2.

V := [t(1, 0, . . . , 0)]; //V contains the expressions of NF�1
(S[j],G�1

) in E1, each

vector in V has δ components.

G := [ ]; //The Gröbner basis for �2

Q := Iδ; //identity matrix of size δ × δ

while L �= [ ] do
m := L[1]; Remove m from L;
j := m[1]; i := m[2];
v := MiV [j]; //components of NF�1

(xiS[j],G�1
) in E1

s := |S|; //number of elements in S

λ = t(λ1, . . . ,λδ) := Qv;
if λs+1 = · · · = λδ = 0 then

G := G ∪
�
S[j]xi −

s�
j=1

λj · S[j]
�
;

else
S := S ∪ [S[j]× xi];
V := V ∪ [v];
L := Sort (L ∪ [(s+ 1, i) | i = 1, . . . , n] ,�2);
Remove duplicates from L;
Update(Q, s,λ); // Now Qv = t(0, . . . , 0, 1

s+1
, 0, . . . , 0).

Remove from L all multiples of LM�2(G);

return G

We now present the FGLM algorithm 1.52. It takes as input matrices M1, . . . ,Mn of
endomorphisms of multiplication by the variables x1, . . . , xn in K[X]/I. Usually, these endo-
morphisms are given in the basis E1 given by monomials that are not top-reducible by a first
reduced Gröbner basis G�1 for �1. The algorithm also needs a second ordering �2. With the
matrices, normal forms NF�1(xim,G�1) can be computed efficiently by the product Miv, if v

is the vector corresponding to NF�1(m,G�1) =
�δ

i=1 αi�i. The algorithm maintains two lists
S and V . S is the new staircase in construction for �2 and V contains the normal forms of
elements of S with respect to G�1 , as column vectors of size δ. At the beginning, S = [1] and
V contains only the first unit vector e1 since NF�1(1,G�1) = 1. L is the list of monomial that
have to be examined, sorted by increasing order for �2. After that one element m is added to
the staircase S, we add to L all multiples of m by a variable. Since we compute normal forms
by matrix-vector product, the elements of L are pairs (j, i) symbolizing S[j] × xi. G is the
new Gröbner basis in construction and Q is a base-change matrix between the new staircase
and the old one. More precisely, the following invariant is maintained during the execution
of algorithm 1.52.

Lemma 1.53. On the top of the while loop in algorithm 1.52, Q is an invertible matrix with
s = |V | = |S|, and QV [i] = ei for all i between 1 and s.
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Proof. This statement is true when the loop is entered for the first time since s = 1, V = [e1]
and Q is the identity matrix. V , S and Q are modified only in the else case, when λ = Qv lies
in SpanK(e1, . . . , es), which means that v lies in SpanK(V ) since Q is invertible. Lemma 1.55
ends the proof.

Algorithm 1.54: Update Procedure

Input : A square matrix Q of size δ × δ, an integer s, a vector λ.
Output: The matrix Q with Qv = t(0, . . . , 0, 1

s+1
, 0, . . . , 0)

k := min{j ∈ {s+ 1, . . . , δ} | λj �= 0};
if k �= s+ 1 then Q[k, .]↔ Q[s+ 1, .]; λk ↔ λs+1;
Q[s+ 1, .]← Q[s+ 1, .]/λs+1;
for j = 1 to δ do

if j �= s+ 1 then Q[j, .]← Q[j, .]− λjQ[s+ 1, .];

return Q

We now prove that procedure 1.54 is correct.

Lemma 1.55. Let Q ∈ GLδ(K), v1, . . . , vs be s linear independent vectors with 1 ≤ s < δ
such that Qvi is the i-th basis vector ei for each i. Let v be a vector such that λ = Qv /∈
SpanK(e1, . . . , es). Then after the procedure 1.54, the matrix Q remains invertible and verifies
that Qvi = ei for i ∈ {1, . . . , s} and Qv = es+1.

Proof. Assume first that λs+1 �= 0. Then the effect of procedure 1.54 is to left multiply Q by
the matrix T = (ti,j)1≤i,j≤δ ∈Mδ(K) with

ts+1,s+1 = 1/λs+1, ti,s+1 = −λi/λs+1 and ti,i = 1 for i �= s+ 1, ti,j = 0 otherwhise.

Since T is invertible, Q remains invertible after the procedure. Moreover, Tei = ei for
1 ≤ i ≤ s, hence the property Qvi = ei for i ≤ s remains unchanged. The fact that Tλ = es+1

ends the proof. Now, if λs+1 = 0, the procedure looks for the first k > s+1 such that λk �= 0
(which exists since Qv does not belong to SpanK(e1, . . . , es)) and exchanges the k-th and the
(s+ 1)-th rows of Q and λ. All assumptions on Q and λ are kept, but now λs+1 �= 0 and the
first point concludes.

We are now able to prove the correctness of algorithm 1.52

Theorem 1.56. Let G�1 be the reduced Gröbner basis of a zero-dimensional ideal I ⊆ K[X]
for an ordering �1. Let M1, . . . ,Mn be the multiplication matrices by the variables in K[X]/I,
in the basis E1 of monomials that are not top reducible by G�1. If �2 is another monomial
ordering, algorithm 1.52 terminates and outputs the reduced Gröbner basis of I for �2.

Proof. First of all, each polynomial inserted in G belongs to I, because at this point of
the algorithm, NF�1(S[j]xi −

�s
j=1 λj · S[j],G�1) is represented in E1 by the column vector

v −�s
j=1 λjvj , but Q is invertible and Qv =

�s
j=1 λjQvj by definition of λ. Let g be a

polynomial in the reduced basis of I for �2. Observe that monomials removed from L are
only those which are reducible by the leading monomial of a polynomial in G. Therefore,
m = LM�2(g) is entered in the loop as a product S[j]xi. All monomials of g are smaller
than m and belongs to the new staircase, so they have already been treated. It follows that
a linear combination is found and g is entered in G. The termination is clear from the fact
that δ = dimK(K[X]/I) is finite.
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We now investigate the complexity of algorithm 1.52 in terms of n and δ = dimK(K[X]).

Theorem 1.57. The reduced Gröbner basis of I for �2 is computed with algorithm 1.52
within O(nδ3) arithmetic operations in K.

Proof. Let G�2 be the reduced Gröbner basis of I with respect to �2. All monomials m
treated in the while loop belongs either to B(G�2) or to E(G�2). It follows by the definitions
that the number of those monomials is bounded by nδ+δ ∈ O(nδ). The arithmetic operations
needed in the algorithm are matrix-vector products (while computing λ = Qv) and elementary
operations on Q in the procedure 1.54. In both cases, the number of arithmetic operations is
in O(δ2), and the conclusion follows.

1.3 Extension to subalgebras

In this section, we extend the notion of Gröbner basis to ideals of subalgebras of K[X] =
K[x1, . . . , xn], and derive a very general variant of F5-algorithm. The aim of this generalization
is to keep structures. In section 4.3, we will work in the subalgebra of invariant polynomials
under the action of a group, and in chapter 5, we will work in monomial subalgebras of K[X],
that is subalgebras generated by monomials. In order to generalize Gröbner bases in this
context, we introduce the notion of SAGBI bases.

1.3.1 SAGBI bases

In this subsection, we recall the definition of SAGBI bases which is an analogue of Gröbner
bases for ideals in subalgebras [68].

Definition 1.58. [88] Let A be a subalgebra of K[X]. Let � be any monomial ordering on
K[X]. A subset S of A is called a SAGBI basis (SG-basis) for A (relative to �), if LM�(S)
generates LM�(A) as a monoid.

Remark 1.59. It is worth noticing that, in contrast to ordinary Gröbner basis theory, a finite
SAGBI basis does not necessarily exist. For example, the algebra K[xyα | α ≥ 0] has no finite
SAGBI basis for lexicographical ordering with x � y.

Basic properties of SAGBI bases are presented in [88, 79]. Although SAGBI bases are
usually defined for subalgebras of K[X], we are interested in SAGBI bases of ideals in subal-
gebras, the definition of which is very similar to 1.58. In order to give the definition, we first
describe a notion of reduction in this context.

Definition 1.60. Let A be a subalgebra of K[X]. Let f, g, h ∈ A with f, h �= 0 and let P be
a finite subset of A. Then we say that

i) f SG-reduces to g modulo h, if there exists t a term of f , s ∈ A and λ ∈ K such that
λLM�(s)LM�(h) = t and g = f − λsh.

ii) f SG-reduces to g modulo P , if f SG-reduces to g modulo h for some h ∈ P .
From this we obtain straightforwardly the definition of the following concepts: SG-

reducible, SG-top-reducible(in point i), t = LT�(f) and SG-NormalForm. The SG-Normal
Form of a polynomial f with respect to a set of polynomials F will be denoted NFSG

� (f, F ).

Definition 1.61. Let A be a subalgebra of K[X], IA an ideal in A, and let � be any monomial
ordering on K[X]. A subset S of IA is called a SG-basis for IA with respect to � if all
polynomials in IA are SG-top-reducible by S.
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Remark 1.62. If A = K[x1, . . . , xn], we recover the definition of a Gröbner basis.

One fundamental property of SG-basis is the following, similar to the same property for
Gröbner basis.

Proposition 1.63. Let A be a subaglebra of K[X] = K[x1, . . . , xn]. For a subset S of an
ideal (in A) IA ⊆ A the following properties are equivalent :

a) S is a SG-basis for IA with respect to �.
b) For every h ∈ IA, NF SG

� (h,S) = 0.

Corollary 1.64. A SG-basis for IA generates IA as an ideal of A.

We now assume that the algebra A is non-negatively graded and connected, which means
that A can be written (as the direct sum of K-vector spaces) A = ⊕+∞

d=0Ad with AdAd� ⊆ Ad+d�

for all d, d� ≥ 0, and A0 = K. We say that an element of Ad is homogeneous of degree d.
Furthermore, we assume that A is finitely generated: there exists a collection of elements
h1, . . . , hr such that A = K[h1, . . . , hr]. Such an algebra is always Noetherian, which means
that every ideal IA of A is finitely generated and can be written IA = �f1, . . . , fs�A. Before
giving a variant of F5-algorithm adapted to this context, we give the following proposition:

Proposition 1.65. Let f1, . . . , fs be homogeneous polynomials of degrees d1, . . . , ds in A =
⊕+∞

d=0Ad. Let IA = �f1, . . . , fs�A be the ideal generated by f1, . . . , fs in A. Let f ∈ IA and�+∞
d=0 f

(d) be its unique decomposition in homogeneous components, with f (d) ∈ Ad (all f (d)

but a finite number of them are equal to zero). Then, all f (d) belong to IA.

Proof. Since f lies in IA, f can be written f =
�s

i=1 gifi with gi ∈ A. Let g
(d)
i be the

component of gi of degree d (all g
(d)
i but a finite number of them are zero). Then gi =

�∞
d=0 g

(d)
i

and
+∞�

d=0

f (d) = f =

s�

i=1

gifi =

s�

i=1

+∞�

d=0

g
(d)
i fi =

+∞�

d=0


 �

(�,di) such that �+di=d

g
(�)
i fi




then f (d) =
�

�+di=d

g
(�)
i fi is the homogeneous component of f of degree d, which belongs

to IA.

An ideal generated by homogeneous polynomials is called homogeneous. For such an ideal,
the proposition 1.63 above continues to hold if we restrict our discussion to SG-bases up to
some degree D. Hence, only a SG-basis up to degree D of IA is needed to test the membership
in IA for any polynomial f with deg(f) ≤ D.

Assume now that a basis (bdi )d≥0,1≤i≤nd
of the graded algebra A is given, such that two

elements of this basis have distinct leading monomial.

Definition – Proposition 1.66. A element (bdi ) of the basis of A is called standard if
LM�(bdi ) /∈ LM�(IA). A is the direct sum of IA and the vector space spanned by the stan-
dard elements. Hence, the SG-NormalForm of an invariant f is necessarily a unique linear
combination of standard elements (bdi ).
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1.3.2 Matrix SAGBI-F5 algorithm

Now we give a description of the SAGBI-F5 algorithm. We consider a graded subalgebra
A of K[X] = K[x1, . . . , xn], which is connected and finitely generated.

The SAGBI-F5 algorithm is very close to the original F5-algorithm, but it works in
A instead of K[X]. We present here a Matrix SAGBI-F5 algorithm, which uses SAGBI-
Macaulay’s matrices. We use the same notations, f1, . . . , fs are homogeneous polynomi-
als in A of degree d1 ≤ · · · ≤ ds, and � is a graded ordering. We assume that in ev-
ery component Ad, a basis (bdi )1≤i≤nd

of A as a K-vector space has been computed, with
LM�(bd1) � LM�(bd2) � · · · � LM�(bdnd

).

Definition 1.67. Let F = f1, . . . , fs ∈ A be homogeneous polynomials of degrees d1, . . . , ds
and � be an ordering on K[x1, . . . , xn]. Let D be an integer. The SAGBI-Macaulay’s matrix
MacA�,D(F) is a matrix:

— with dimK(AD) columns, indexed by polynomials (bdk)1≤k≤nd
sorted by � with decreas-

ing order.
— with

�s
i=1 dimK(AD−di) rows, indexed by pairs (i, bd−di

j ), where i ∈ {1, . . . , s} and

j ∈ {1, . . . , nd−dj}, so that b
d−dj
k ranges all the basis of Ad−dj . The indexes are sorted

by increasing i first, and then by decreasing bd−di
j .

— such that MacA�,D(F)(i,b�j),bDk
is equal to the coefficient of αk in the writing fib

�
j =

�nD
k=1 αkb

D
k .

Just like the classical Matrix-F5-algorithm 1.44, the SAGBI-F5 algorithm constructs ma-
trices incrementally degree by degree and equation by equation, and remove from the SAGBI-
Macaulay matrix some useless rows. At each degree d the algorithm constructs a SAGBI-
Macaulay’s matrix Md,i and performs row reductions on it, the valid operations being to add
to some row a linear combinations of rows situed above. The incremental step from i− 1 to
i introduces the rows corresponding to bd−di

j fi for all polynomials of (bd−di
j ) in the basis of

Ad−dj , except those having same leading monomial as a row of �Md−di,i−1, where di = deg(fi).
This criterion is a variant of the F5-criterion 1.45 and is explained in lemma 1.69. The
algorithm stops when the current degree is equal to a given bound D.

Lemma 1.69. [SAGBI-F5 criterion] If m = LM�(b
d−di
� ) is the leading monomial of a row in

M̃d−di,i−1 then the polynomial bd−di
� fi belongs to the vector space

SpanK(Row(Md,i−1)) + SpanK({bd−di
j fi | j > �})

Proof. The hypothesis is that M̃d−di,i−1 contains a row corresponding to a polynomial of the

form h = λbd−di
� +o�(b

d−di
� ), where λ �= 0 and o�(b

d−di
� ) is a linear combination of polynomials

in Ad−di of leading monomial lower than LM�(b
d−di
� ). Since h is contained in �f1, . . . , fi−1�A,

hfi also. Then the decomposition

bd−di
� fi = hfi/λ� �� �

∈SpanK(Row(Md,i−1))

+ o�(b
d−di
� )fi� �� �

∈SpanK({b
d−di
j fi | j>�})

ends the proof.

Theorem 1.70. The SAGBI-F5 algorithm computes the elements of degree at most D of the
reduced SG-bases of �f1, . . . , fi�A, for i = 1, . . . , t.
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Algorithm 1.68: Matrix SAGBI-F5

Input : invariant homogeneous polynomials f1, . . . , fs with degrees d1, . . . , ds, a
maximal degree D, bases (bdi )1≤i≤nd

of Ad for 0 ≤ d ≤ D.
Output: SG-bases of �f1, . . . , fi�A for i = 1, . . . , s up to degree D
for i = 1 to s do Si := ∅ ;
for d = d1 to D do

�Md,0 := ∅;
for i = 1 to s do

if d < di then

Md,i := �Md,i−1

else

Md,i := matrix obtained by adding new rows b
d−dj
j .fi to �Md,i−1, for all

polynomials in the basis (bd−di
j ) of Ad−di that do not have same leading

monomial of a row of �Md−di,i−1.

Compute �Md,i by Gaussian elimination from Md,i;

Add to Si all rows of M̃d,i not SG-top reducible by Si;

return S1, . . . ,Ss

Proof. We will use induction on d and i. For d = d1 and i = 1, the result is clear. Assuming the
induction hypothesis, we now simply have to prove that the rows ofMd,i generate �f1, . . . , fi�d.
Then we can deduce that LM�(M̃d,i) generates LM�(�f1, . . . , fi�d) and the conclusion on Si

follows. It is thus sufficient to prove that for any polynomial (bd−di
� ) of the basis of Ad−di ,

the polynomial bd−di
� fi is generated by the rows of Md,i. If m ∈ LM�(M̃d−di,i−1) it is clear

by lemma 1.69 and construction of the matrix Md,i. Otherwise, bd−di
� fi is entered by the

algorithm in Md,i. This completes the proof of the theorem.

This SAGBI-F5 algorithm will be used in the sequel in two contexts: when A is the algebra
of invariants on a finite group G (section 4.3) and when A is a monomial algebra (chapter 5).
Notice that generalizing the Matrix-F5 algorithm in this framework is easy, whereas giving a
generalization of Buchberger algorithm is not: the notion of S-polynomials does not generalize
easily. Even in monomial subalgebras, the notion of lowest common multiple of two monomials
does not hold anymore and has to be replaced by a list of multiples.



Chapter 2

Commutative Algebra.
Applications to Gröbner Bases

In this chapter, we first introduce classical results in commutative algebra. Then, we use
these concepts to study the behavior of the SAGBI-F5 algorithm with respect to regular and
semi-regular sequences. As we have seen in theorem 1.42, it is crucial to bound the maximal
degree reached during a Gröbner basis computation, since it appears in the complexity bound.
In this section, we show how the maximal degree reached in a computation can be estimated.

2.1 Commutative Algebra and Hilbert series

Commutative algebra has been first introduced by Hilbert, in order to study the structure
of the algebra of polynomial invariants under the action of a group that we will wiew in the
next chapter. In this section, we first present basic tools of commutative algebra and then
study gradings on subalgebras of the ring of Laurent polynomials, and introduce the concept
of Hilbert series.

2.1.1 Algebraic tools.

In this subsection, we consider an algebra A which is non-negatively graded, connected
and finitely generated, as in section 1.3. Thus A can be written ⊕∞

d=0Ad with A0 = K and
Ad a K-vector space of finite dimension for all d ≥ 0. The notions introduced here can be
found in several books, see for example Eisenbud [30] or Lang [70].

Krull dimension. Recall that an ideal I of A is said to be homogeneous if it is generated
by homogeneous polynomials. In this case both I and A/I are graded (see proposition 2.14).

I = ⊕∞
d=0Id and A/I = ⊕∞

d=0Ad/Id
Notice that A+ = ⊕∞

d=1Ad is the unique homogeneous maximal ideal of A.
If P is a prime ideal of A, we define the height of P to be the maximal length � such that

their exists a chain P0 � P1 · · · � P� = P of prime ideals of A contained in P. This number
is denoted by height(P) and is extented to any ideal I of A by

height(I) = min{height(P) | I ⊆ P and P is prime}
Finally, the Krull dimension of A is defined by

dimKrull(A) = sup{� | P is a prime ideal of A of height �}

47
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Example 2.1. A polynomial algebra K[x1, . . . , xn] has Krull dimension n. The ring of in-
variants K[x1, . . . , xn]

G under a finite group G (see section 3.1) or a semigroup algebra K[S]
with S a full rank semigroup of Zn (see section 3.2) have also Krull dimension n.

If I is a proper ideal of A, one can consider the Krull dimension of the algebra A/I. This
dimension is called the dimension of I, denoted by dim(I). In several classical books, this
dimension is called the codimension of I, but this is not the common usage in Gröbner area.

Homogeneous Systems of parameters and Regular sequences. We now define what
a homogeneous system of parameters (abbreviated hsop) of the algebra A is.

Definition 2.2. Let n be the Krull dimension of A. A homogeneous system of parameters
of A is a set of n homogeneous elements {h1, . . . , hn} such that A is a a finitely generated
module over the ring K[h1, . . . , hn].

The following result was first introduced by Hilbert, in order to study the algebra of
invariants under the action of a group. Is was named after Emmy Noether proved it in [80].

Theorem 2.3 (Noether Normalization lemma). The algebra A has a homogeneous system of
parameters.

This theorem has useful applications in invariant theory of finite groups, see chapter 3.
We now define regular sequences in A. These sequences are of great importance in Gröbner

bases computations: for homogeneous such sequences in K[X], there are no reduction to zero
in F5-algorithm, and the maximal degree reached during the computation can be efficiently
bounded, as we will see in the sequel.

Definition 2.4. A sequence (f1, . . . , fs) in A is called a regular sequence if �f1, . . . , fs�A � A
and fi does not divide zero in the ring A/�f1, . . . , fi−1�A for all 1 ≤ i ≤ s. For i = 1, this
means that f1 is not a zero-divisor in A, therefore is non-zero if A is a domain.

Example 2.5. In K[x1, . . . , xn], (x1, . . . , xn) is a regular sequence.

Remark 2.6. The property of being regular for a sequence of polynomials strongly depends on
the algebra to which they belong. For exemple, let K[X] = K[x, y] and A the algebra generated
in K[X] by x and xy. It is easy to prove that a monomial xαyβ belongs to A if and only if
β ≤ α. Then the sequence (f1, f2) = (x, xy) is A-regular but not regular:

— Let g1, g2 be such that f1g1 = f2g2. Since f1 and f2 are monomials we can assume
that g1 and g2 also. Then g1 is of the form xαyβ+1 and g2 = xαyβ, with α ≥ β + 1.
Therefore, g2 = f1x

α−1yβ ∈ �f1�A, and g2 = 0 ∈ A/�f1� and f2 does not divide 0 in
A/�f1� so (f1, f2) is A-regular.

— But f2 = 0 ∈ A/�f1� so (f1, f2) is not K[X]-regular.

In the previous definition, the integer s is called the length of the sequence. If A is
Noetherian, the sequence of ideals �f1�A � �f1, f2�A � �f1, . . . , fs�A is striclty increasing and
so cannot be extended infinitely many times. A regular sequence that cannot be extended is
called maximal.

In the definition of regular sequence, it seems that the order of the fi matters. Indeed,
a regular sequence does not necessarily remain regular when permuted, see [64, page 102].
However, this is the case for regular homogeneous sequences. This will be proved in the
particular case A ⊂ K[X±1] in the sequel. We refer to [16, chapter 2] for a general proof.
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Cohen-Macaulay rings. Based on the definition of regular sequences, we now define
Cohen-Macaulay rings. Working in those rings are of great importance since it ensures that
being a maximal regular sequences is a generic property (see definition 1.10): roughly speak-
ing, almost all sequences of length equal to the Krull dimension of the ring are regular.

Proposition – Definition 2.7. Let A =
�

d∈NAd be a graded connected finitely generated
algebra. Let I be an ideal of A. Then all maximal regular sequences lying in I have same
length, called the depth of I and denoted by depth(I). The ideal m =

�
d∈N∗ Ad is a maximal

ideal of A. The depth of A is the maximal length of a regular sequence of A lying in m, denoted
by depth(A).

The following proposition relies the dimension of an ideal with its depth.

Proposition 2.8. With notations of the previous propostion-definition, for any ideal I of A,
depth(I) ≤ dim(I), where dim(I) is the Krull dimension of the algebra A/I.

We are now able to give the definition of a Cohen-Macaulay algebra: equality holds in the
previous proposition.

Definition 2.9. With notations of proposition-definition 2.7, the algebra A is said to be
Cohen-Macaulay if depth(m) = dim(m) for every maximal ideal m of A.

Example 2.10. The algebra K[X] = K[x1, . . . , xn] is Cohen-Macaulay, since (x1, . . . , xn) is
a regular sequence. In the non-modular case, the ring of invariants K[x1, . . . , xn]

G under a
finite group G is Cohen-Macaulay, see section 3.1. Hochster’s theorem (see section 3.2) says
for example that the algebra K[xy, xy2, x2y] is Cohen-Macaulay.

Hilbert Syzygy theorem. We end up this subsection with the Hilbert Syzygy theorem,
which is one of the fundamental theorem in commutative algebra. The grading on K[X] =
K[x1, . . . , xn] is given by the classical total degree.

Theorem 2.11 (Hilbert Syzygy Theorem). [30, theorem 1.13] Let M be any finitely graded
module over a polynomial ring A = K[x1, . . . , xn]. Then, there exists a finite graded resolution
of M by free graded K[X]-modules

0→Mk
ρk−→Mk−1

ρk−1−−−→ · · · ρ1−→M0
ρ0−→M → 0,

that is an exact sequence: ker(ρi) = im(ρi+1) for all i ∈ {0, . . . , k − 1}, ρk injective and ρ0
surjective. The length k of the resolution can be chosen less than or equal to n.

This theorem will we applied in the sequel, a consequence is that the Hilbert series of a
ideal in K[X] is a rational fraction.

2.1.2 Gradings on subalgebras of K[X±1]

In this thesis, we have to consider several algebras. In chapters 3 and 4, we will deal with
K[X]G, the algebra of invariants under the action of a finite group G, which is a subalgebra
of K[X], graded by the total degree on K[X]. We will also have to consider the whole algebra
K[X], but the action of an abelian group, joined to the total degree, gives a grading by the
commutative monoid N×X(G) where X(G) is an abelian finite group. In chapter 5, we will
study polynomial systems in K[S], a subalgebra of the ring of Laurent polynomials K[X±1],
where S is a semigroup of Zn. This subalgebra will be graded by N. Quasi-homogeneous and
multihomogeneous gradings are also classical gradings on K[X], given by N or N�.

In order to give a theoretical framework, which is valid for all these algebras, we fix a
commutative monoid M with neutral e, which can be seen as one of the mentioned monoids.
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Definition 2.12. Let A be a subalgebra of K[X±1]. A grading indexed by M on A is a
decomposition of A into graded components (Ad)d∈M such that:

— Ae = K.
— A =

�
d∈MAd as a K vector space.

— Let d, d� ∈M and (f, h) ∈ Ad ×Ad�. Then fh ∈ Ad+d�.
A polynomial f in a component Ad is said to be M-homogeneous of M-degree d.

We fix such a subalgebra A graded by M and see how this grading can be transfered on
homogeneous ideals of A and associated quotient algebras.

Definition 2.13. An ideal I ⊆ A is said to be M-homogeneous if it is generated by homoge-
neous elements.

Proposition 2.14. Let I be a M-homogeneous ideal of A. Then, both I and A/I have a
decomposition into graded components:

I =
�

d∈M
Id and A/I =

�

d∈M
(A/I)d

Proof. For I, it simply comes from the fact that the homogeneous components of a polynomial
in I belong to I, and the proof is identitical to proposition 1.65. For A/I, we have a surjective
map ϕ : A → ⊕d∈M(Ad/Id). Clearly, ker(ϕ) ⊆ I, and the reverse inclusion comes from the
previous point.

From now on, until the end of the subsection, we consider gradings on the polynomial
ring K[X] = K[x1, . . . , xn]. A very interesting case is when a basis (as a K-vector space) of
each component K[X]d is given by monomials. In this case the computation of Gröbner bases
preserves this grading, in the following sense.

Proposition 2.15. Assume that K[X] is graded by a monoid M as in definition 2.12, and
that K[X]d is generated by monomials for each d. Then for each monomial m of degree dm
and M-homogeneous polynomials f and h of degrees df and dh:

— the polynomial mf is M-homogeneous of degree dm + df .
— Spol(f, g), the S-polynomial (see definition 1.29) of f and g, is M-homogeneous of

same degree as LM�(f) ∨ LM�(g)

Proof. This is obvious with the definition of the M-degree.

We review in the following some classical gradings on K[X], here M is equal to N�, with
� ≥ 1.

Definition 2.16. We define quasi-homogeneous and multi-homogeneous gradings
— Let w = (w1, . . . , wn) ∈ (N∗)n and for all d ∈ N, let

K[X]wd = SpanK({xα monomial | degw(x
α) = d})

This component (which can be reduced to {0}) is said to be the quasi-homogeneous
component of degree d associated to w. A polynomial is said to be quasi-homogeneous
of degree d (with respect to w) if it lies in K[X]wd .

— Let n1, . . . , n� ∈ N∗ such that
�

ni = n, and X = X1 ∪ · · · ∪X� be a partition of the
set of variables X = {x1, . . . , xn}. Then, for all d = (d1, . . . , d�) ∈ N�, let

K[X]d = K[X1]d1 ⊗ · · ·⊗K[X�]d�

This component is said to be the multi-homogeneous component of K[X] of multi-
degree d, with respect to the partition X = X1 ∪ · · · ∪X�
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Note that, with w = (1, . . . , 1) in the first case, or X = X1 and d = (1) in the last case, we
recover the standard homogeneous grading on K[X].

For ideals in K[X], we deduce from proposition 2.14 the following definitions:

Definition 2.17. With notations of definition 2.16, and ideal I ⊂ K[X] is called
— quasi-homogeneous with respect to w ∈ Nn if I = ⊕∞

d=0Iw
d , where Iw

d = K[X]wd ∩ I.
— multi-homogeneous with respect to a partition X = ∪�

i=1Xi if I = ⊕d∈N�Id,
where Id = K[X]d ∩ I.

We are now interested in giving estimations on the dimensions (as K-vector spaces) of the
components that appear in proposition 2.14. To this end, we introduce Hilbert functions and
Hilbert series.

2.1.3 Hilbert Function and Hilbert Series

The Hilbert Series of a graded algebra is a fundamental object in commutative algebra,
since a lot of informations can be read from it. From now on, we assume that the monoid
M is N, although the following notions can be extended to other monoids (in order to handle
various gradings as multi-homogeneous gradings or gradings given by the product N×X(G)
where X(G) is a finite group).

An element is said to be homogeneous if it is homogeneous for the grading given by N.
We start by giving a general definition, and then we give explcitely classical series associated
to the homogeneous and quasi-homogeneous gradings on K[X] = K[x1, . . . , xn].

Definition 2.18. The formal power series ring Z[[z]] is defined as follows.
— Z[[z]] is equal to ZN as a commutative group. The element of Z[[z]] mapping d ∈ N to

ad ∈ Z is denoted
�

d∈N adz
d.

— The product of two elements of Z[[z]] is given by the Cauchy rule:

��

d∈N
adz

d

�
×
��

d∈N
bdz

d

�
=
�

d∈N


 �

(�,��)∈N2, �+��=d

a�b��


 zd

This product is well defined since only a finite number of pairs (�, ��) verify �+ �� = d
which gives to Z[[z]] a commutative ring structure.

The element z0 is a neutral for the multiplication law and will be denoted 1. Notice that for
all d ∈ N∗, the series (1− zd) is invertible, with inverse

�+∞
k=0 z

kd.

In addition with the hypothesis of definition 2.12 (with M = N), we also assume that the
components dimK(Ad) are of finite dimension for all d ≥ 0.

Definition 2.19. Let A be a N-graded algebra, and I a homogeneous ideal of A. The Hilbert
function and the Hilbert series of A/I are defined by

HFA/I(d) = dimK(Ad/Id) and HSA/I(z) =
�

d∈N
HSA/I(d)z

d

As an example, we review here the Hilbert functions and series associated to the classical
gradings on K[X].

Definition 2.20. [30] Let A = K[X].
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— Let I ⊂ K[X] be a homogeneous ideal. The Hilbert function HFK[X]/I : N→ N and the
Hilbert series HSK[X]/I ∈ N[[z]] of the quotient ring K[X]/I are defined by:

HFK[X]/I(d) = dimK(K[X]d/Id) and HSK[X]/I(z) =
∞�

d=0

HFK[X]/I(d)t
d

— Let I ⊂ K[X] be a quasi-homogeneous ideal with respect to w = (w1, . . . , wn).

The weighted Hilbert function HF(w)
K[X]/I : N → N and the weighted Hilbert series

HS(w)
K[X]/I ∈ N[[z]] of the quotient ring K[X]/I are defined by:

HF(w)
K[X]/I(d) = dimK(K[X]

(w)
d /Id) and HS(w)

K[X]/I(z) =
∞�

d=0

HF(w)
K[X]/I(d)t

d

In the case where f does not divide zero in the ring A/I, it is easy to give relations
between the Hilbert series of A/I and A/ (I + �f�).

Proposition 2.21. Let I ⊂ A be a homogeneous ideal of A and f ∈ Ad be a homogeneous
polynomial of degree d ∈ N. If f does not divide 0 in the ring A/I, then

HSA/(I+�f�)(z) = (1− zd)HSA/I(z)

Proof. For every � ∈ N, consider the following sequence of K-vector spaces:

0 −→ A�/I�
×f−−→ A�+d/I�+d

π� A�+d/(I + �f�)�+d −→ 0,

where π is the canonical projection (� is a surjective map). Since f does not divide 0 in
A/I, this sequence is exact. Therefore the alternate sum of the dimensions of these vector
spaces is equal to 0. Consequently, HFA/I(�) − HFA/I(� + d) + HFA/(I+�f�(� + d) = 0, thus

multiplying this relation by z� and summing over � yields to:

zd HSA/I(z)− HSA/I(z) + HSA/(I+�f�)(z) = 0.

Therefore, the Hilbert series of a ring A/ (I + �f�) is very easy to deduce from the Hilbert
series of A/I if f does not divide zero in I. It follows from the definition of a regular
sequence (definition 2.4) that one can compute easily the Hilbert series of an ideal generated
by a regular sequence, knowing the Hilbert series of the algebra A.

Proposition 2.22. Let I ⊂ A be a homogeneous ideal of A generated by a regular sequence
F = (f1, . . . , fs) of homogeneous polynomials of degrees d1, . . . , ds. Then

HSA/I(z) =
s�

i=1

(1− zdi)× HSA(z)

Proof. We just have to apply s− 1 times the proposition 2.21.

From previous proposition, with A = K[X], I a homogeneous or quasi-homogeneous ideal
and f a homogeneous or quasi-homogeneous polynomial, we obtain:
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Corollary 2.23. — If I is a homogeneous ideal generated by a regular sequence
(f1, . . . , fs), then HSK[X]/I(z) =

�s
i=1(1− zdi)× HSK[X](z)

— If I is a quasi-homogeneous ideal with respect to w = (w1, . . . , wn) ∈ Nn, generated by

a regular sequence (f1, . . . , fs), then HS(w)
K[X]/I(z) =

�s
i=1(1− zdi)× HS(w)

K[X](z)

We are now able to give the Hilbert series and weighted Hilbert of K[X].

Proposition 2.24. The Hilbert series and weighted Hilbert series of K[X] are given by

— HSK[X](z) =
1

(1− z)n

— HS(w)
K[X](z) =

1�n
i=1(1− zwi)

Proof. We just have to apply corollary 2.23 to �x1, . . . , xn�. This is possible since (x1, . . . , xn)
is a regular sequence in K[X]. We also need the series associated to K[X]/�x1, . . . , xn�, which
is simply 1. The degrees are given below:

— in the homogeneous case, the degree of each indeterminate xi is 1.
— in the quasi-homogeneous case, with respect to the weights w = (w1, . . . , wn), the

degree of xi is wi.

We now explain why the relation 2.22 fails if the sequence (f1, . . . , fs) is not regular. We
start by giving a more precise result than proposition 2.21.

Proposition 2.25. Let I be a homogeneous ideal of A, and f ∈ Ad a homogeneous polynomial
of degree d. Then,

HSA/(I+�f�)(z) = HSA/I(z)− zd HSA/(I:f)

where (I : f) = {g ∈ A | gf ∈ I} ⊇ I.
Proof. Note that this property is classical in the algebra K[X], see for example [9]. In the
same way we proved proposition 2.21, we introduce an exact sequence for each d, � ∈ N.

0 −→ (I : f)�/I� ι−→ A�/I�
×f−→ A�+d/I�+d

π� A�+d/(I + �f�)�+d −→ 0

To see that this sequence is exact, we have to prove that ker(f) = (I : f)�/I�. Hence, the
kernel of the map A� → A�+d/I�+d is precisely (I : f)�. Quotienting by I� yields the result.
Since this sequence is exact, the alternating sum of the dimensions of these K-vector spaces
is zero. Noticing that dim((I : f)�/I�)− dim(A�/I�) = − dim(A�/(I : f)�), we obtain that

− dim(A�/(I : f)�) + dim(A�+d/I�+d)− dim(A�+d/(I + f)�+d)

and the result by multiplying this equality by z�+d and summing over �.

It follows from the previous result that proposition 2.21 holds in both directions: the
Hilbert series of A/(I + �f�) and A/I are equal if and only if (I : f) = I. No-
tice that otherwise, (I : f) � I and HSA/(I:f)(z) < HSA/I(z), in the following sense:

[zd]HSA/(I:f)(z) ≤ [zd]HSA/I(z) for all d ∈ N, and the equality does not hold at least for one
d. Hence, we have the following corollary:

Corollary 2.26. Let I ⊂ A be a homogeneous ideal of A generated by a sequence F =
(f1, . . . , fs) of homogeneous polynomials of degrees d1, . . . , ds. Then F is regular if and only if

HSA/I(z) =
HSA(z)�s

i=1(1− zdi)
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From corollary 2.26, we can easily deduce the result stated in subsection 2.1.1.

Corollary 2.27. If F is a regular sequence of homogeneous polynomials, then any permutation
of the sequence is also a regular sequence.

Regular sequences and behavior of the SAGBI-F5 algorithm. Regular sequences is
an important family of polynomial systems: in K[X], we will see that they are generic (if
the length of the sequence does not exceed n), and from an algorithmic point of view, the
behavior of the F5-algorithm 1.44 on such a sequence is optimal: there are no reductions to
zero. More precisely, we will see that a reduction to zero occuring in a Gröbner (SAGBI)
basis computation comes from a non-principal syzygy, the definition of which is given below.

Definition 2.28. Let F = (f1, . . . , fs) ∈ As be a sequence of polynomials in a graded algebra,
and let (E1, . . . ,Es) be the canonical basis of the free A-module As. Now consider the following
evaluation morphism:

ϕF : As −→ A

(g1, . . . , gs) �−→
s�

i=1

gifi

The syzygy module of F in A is the submodule Syz(F) = ϕ−1(0). A syzygy is an element of
this kernel, such a syzygy is usually denoted

�s
i=1 giEi.

It is easy to see that with notations of the previous definition, fjEi − fiEj is always a
syzygy. This observation leads to the following definition:

Definition 2.29. With notations of definition 2.28, the submodule of Syz(F) generated by
(fjEi − fiEj)i,j is called the module of principal syzygies and is denoted by PSyz(F).

We now explain the link between definition 2.4 and 2.29.

Proposition 2.30. In A, a sequence F = (f1, . . . , fs) is a regular sequence if and only if
PSyz(F) = Syz(F) in As.

Proof. For both directions, the proof is done by induction on s.
— The case s = 1 is easy: PSyz(f1) = {0} and the following equivalences are clear:

Syz(f1) = {0} ⇐⇒ f1 is non-zero ⇐⇒ (f1) is a regular sequence

— (⇒) : Assume that (f1, . . . , fs) is a regular sequence in A with s ≥ 2, and let S =�s
i=1 giEi be a syzygy. Then,

�s−1
i=1 gifi = −gsfs, which means that gs belongs to

the colon ideal �f1, . . . , fs−1� : (fs). Since fs does not divide zero in �f1, . . . , fs−1�
by definition of a regular sequence, gs ∈ �f1, . . . , fs−1�. Hence, gs can be written�s−1

i=1 hifi. Then,

S =

s�

i=1

giEi

=

s−1�

i=1

giEi +

�
s−1�

i=1

hifi

�
Es

S =
s−1�

i=1

hi(fiEs − fsEi) +
s−1�

i=1

(gi + hifs)Ei
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Consequently, S can be written as a sum of a principal syzygy and a syzygy involving
only the (s− 1) first elements of the canonical basis of As. Since (f1, . . . , fs−1) is also

a regular sequence, by induction
�s−1

i=1 (gi + hifs)Ei belongs to PSyz(f1, . . . , fs−1) ⊂
PSyz(F). We conclude that S also belongs to PSyz(F).

— (⇐) : Assume now that PSyz(F) = Syz(F) with s ≥ 2. By induction, (f1, . . . , fs−1) is
a regular sequence. Now let g be a polynomial in the colon ideal (�f1, . . . , fs−1� : fs).
Then there exist g1, . . . , gs−1 ∈ A such that S =

�s−1
i=1 giEi + gEs is a syzygy. Since

PSyz(F) = Syz(F), S can also be written
�

1≤i<j≤s hi,j(fjEi − fiEj). It follows that

g = −�s−1
i=1 hi,sfi ∈ �f1, . . . , fs−1� and F is a regular sequence.

We now prove that they are no reduction to zero in the SAGBI matrix-F5 algorithm 1.68,
if the input sequence is a regular sequence of homogeneous polynomials in A. This proposition
generalizes the result given by Faugère in [35] on the classical F5 algorithm.

Proposition 2.31. Let F = (f1, . . . , fs) be a regular sequence of homogeneous polynomials in a
graded subalgebra A of K[X]. There are no reductions to zero in the SAGBI-F5 algorithm 1.68
while computing a SAGBI basis of �F �A up to a given degree D. In other words, the matrices
builded in Matrix SAGBI-F5 algorithm are full rank.

Proof. Recall that with notations of algorithm 1.68, (bdi )1≤i≤nd
is the basis of the K-vector

space Ad. A reduction to zero corresponds to a writing bd−di
� fi =

�i−1
j=1 gjfj +

�
k<� ckb

d−di
k fi

where gj ∈ Ad−dj and ck ∈ K. Since the sequence F is A-regular, the sequence Fi = (f1, . . . , fi)

also and
�

k≤� ckb
d−di
k ∈ �f1, . . . , fi−1�A, with c� = −1 �= 0. Let λ = Min{k ≤ � | ck �= 0}.

Then, there is a row in the matrix Md−di,i−1 with leading monomial equal to LM�(b
d−di
λ ).

So by SAGBI-F5 criterion (lemma 1.69), the row corresponding to bd−di
λ fi in Md,i should has

been removed and the writing bd−di
� fi =

�i−1
j=1 gjfj +

�
k<� ckb

d−di
k fi is absurd.

2.2 Applications in K[X]

We now focus on the case where A = K[X], graded with the standard homogeneous
grading. In this section, we explain how to bound in advance the maximal degree, that can be
reached during the computation of a Gröbner basis. In particular, it provides a bound for the
maximal degree D used in the Matrix-F5 algorithm 1.44 and can be used to obtain complexity
bounds for solving a polynomial system, depending on the degrees of the polynomials and
regularity assumptions.

2.2.1 Bounds on the degrees

Proposition 2.32. Let I be a homogeneous ideal of A = K[X]. There exists a polynomial
N(z) ∈ Z(z) such that the Hilbert Series of I can be written

HSK[X]/I(z) =
N(z)

(1− z)n

Proof. By Hilbert Szyzygy theorem 2.11, K[X]/I has a graded free resolution, of length r ≤ n.
Hence, for any d ≥ 0, there exists an exact sequence of K-vector spaces

0→Mk
ρk−→ · · ·Mk−1

ρk−1−−−→ · · · ρ1−→M0
ρ0−→ K[X]/I → 0
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where Mi is a free K[X]-module of finite rank. Since K[X]/I is a graded algebra, we deduce
that for all d ≥ 0, there exists an exact sequence

0→
ir�

j=1

K[X]d−dr,j → · · ·→
i0�

j=1

K[X]d−d0,j → K[X]d/Id → 0

where all integers di,j are less than or equal to d. Since the alternate sums of the dimensions
of vector spaces in an exact sequence is equal to zero, it follows that




r�

i=0

(−1)i
ir�

j=1

dimK(K[X]d−di,j )


− dimK(K[X]d/Id) = 0

Hence, dimK(K[X]d/Id) =
�r

i=0(−1)i
�ir

j=1 dimK(K[X]d−di,j )

=
�r

i=0(−1)i
�ir

j=1[z
d−di,j ]

�
1

1−zn

�

=
�r

i=0(−1)i
�ir

j=1[z
d]
�

zdi,j

1−zn

�

dimK(K[X]d/Id) = [zd]

��r
i=0(−1)i

�ir
j=1 z

di,j

1− zn

�

and the proposition is proved by taking N(z) =
�r

i=0(−1)i
�ir

j=1 z
di,j .

With the previous proposition, we see that the Hilbert function of a homogeneous ideal
matches a polynomial function, except for a finite number of integers:

Corollary 2.33. Let I be a homogeneous ideal of A = K[X]. There exists a polynomial
(denoted HPK[X]/I) and an integer d0 ≥ 0 such that the Hilbert function of K[X]/I, defined
by HFK[X]/I(d) = dimK(K[X]d/Id) coincides with HPK[X]/I for all d ≥ d0.

Proof. From proposition 2.32, the Hilbert series of K[X]/I can be written N(z)/(1 − z)n.
Then, the partial fraction expansion of HSK[X]/I is equal to P (z) +

�n
i=1

ai
(1−z)i

for some

polynomial P and integers (ai)1≤i≤n. Let d0 be the degree of P (we set d0 = −1 if P = 0).
Since for all i ≥ 1,

1

(1− z)i
=

+∞�

d=0

�
d+ i− 1

d

�
zd =

+∞�

d=0

(d+ i− 1)× · · · × (d+ 1)

(i− 1)!� �� �
Pi(d)

zd

where Pi(d) is a polynomial, we have HFK[X]/I(d) = [zd]P (z) +
�n

i=1 aiPi(d) which coincides
with HPK[X]/I(d) =

�n
i=1 aiPi(d) for all d ≥ deg(P ) + 1 = d0.

It turns on that the dimension of the ideal I can be read from the expression deduced in
proposition 2.32, which leads to the following proposition.

Proposition 2.34. let I be a homogeneous proper ideal of K[X], and let N(z)
(1−z)d

be the ex-

pression of the Hilbert series of the quotient algebra K[X]/I, assumed to be reduced (N is not
divisible by z−1). Then the dimension of I is equal to d. Moreover, if d = 0, then the Hilbert
series HSK[X]/I is a polynomial and DEG(I) is equal to HSK[X]/I(1).
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Proof. Rewriting the proof of corollary 2.33 with N(z)
(1−z)d

and N(1) �= 0 leads to an expression

of HPK[X]/I as a polynomial of degree exactly d− 1 since the polynomial Pi has degree i− 1
(with the convention that the zero polynomial has degree −1). It is proved in [25, page 464]
that the degree of the Hilbert polynomial of K[X]/I is equal to the projective dimension of
I, which is dim(I) − 1. Therefore, dim(I) = d. If d = 0, the Hilbert polynomial is equal to
0, and HSK[X]/I(1) =

�+∞
i=0 dimK(K[X]d/Id) = dimK(K[X]/I) = DEG(I).

Definition 2.35. Let I be a homogoneous ideal of K[X]. From proposition 2.33, the Hilbert
series and the Hilbert polynomial of K[X]/I coincide for all d greater than or equal to an
integer d0 ≥ 0. The smallest possible d0 is called the index of regularity of I, denoted
by ireg(I).

If I is a zero-dimensional ideal, the index of regularity is easy to read from the Hilbert
series, since this series is a polynomial. By definition the index of regularity is equal to
deg(HSK[X]/I) + 1. It is worth to notice that this integer bounds the degree reached during a
computation of a Gröbner basis.

Proposition 2.36. Let � be any ordering on K[X], and I ⊆ K[X] a zero-dimensional ho-
mogeneous ideal. Then all polynomials in the reduced Gröbner basis of I have a total degree
less than or equal to ireg(I).

Proof. Let G be the reduced Gröbner basis of I for �. By definition of ireg(I),
dimK(K[X]d/Id) = 0 for all d ≥ ireg(I). Hence, all monomials of degree less than or equal to
ireg(I) are in I and are reducible by a polynomial in G. Therefore, any homogeneous polyno-
mial h of degree greater than d has its leading monomial that can be written LM�(g)×m with
m a monomial different from 1 and g a polynomial in G. Consequently, h does not belong
to G.

A homogeneous regular sequence of length n in K[X] generates a zero-dimensional ideal.
We now give bounds on the index of regularity and degree of such ideal.

Proposition 2.37. Let F = (f1, . . . , fn) be a regular sequence of homogeneous polynomials of
degrees (d1, . . . , dn) in K[X], generating the ideal I. Then:

— the index of regularity of I is equal to 1 +
�n

i=1(di − 1), called the Macaulay bound.
— the degree of I is given by

�n
i=1 di, called the Bézout bound.

Proof. Since F is a regular sequence, by proposition 2.22, the Hilbert series of I is equal to

HSK[X]/I(z) =

�n
i=1(1− zdi)

(1− z)n
=

n�

i=1




di−1�

j=0

zj




It follows that ireg(I) = deg(HSK[X]/I) + 1 = 1 +
�n

i=1(di − 1) and DEG(I) = HSK[X]/I(1) =�n
i=1 di.

2.2.2 Genericity of regular sequences. Semi-regular sequences.

We have seen that regular sequences have a good behavior with Gröbner bases compu-
tations and that Hilbert series of the associated ideals are easy to describe. But do reg-
ular sequences of a given sequence of a degrees necessarily exist ? We have seen that in
K[X] = K[x1, . . . , xn], the length of a regular sequence cannot be greater than n. We now



58 CHAPTER 2. COMMUTATIVE ALGEBRA AND GRÖBNER BASES

see that being a regular sequence is a Zariski open condition for generic sequences of length
s ≤ n, and that the associated Zariski open-subset is non-empty.

We assume that K is an infinite field. Let s be a positive integer, d1, . . . , ds be a sequence
of positive integers and f1, . . . , fs be a sequence of homogeneous polynomials in K[X] having
degrees d1, . . . , ds. Finally, we denote by I the ideal �f1, . . . , fs�. We start with the following
lemma, emphasing the fact that allmost all choices on the coefficients of the sequence lead to
the same Hilbert series HSK[X]/I .

Lemma 2.38. There exists a non-empty Zariski open subset U in K[X]d1 ×· · ·×K[X]ds such
that for all sequences F = (f1, . . . , fs) in U , the number HSK[X]/�f1,...,fs�(d) does not depend
on F for all d ∈ N, and is the smallest among all sequences in K[X]d1 × · · · ×K[X]ds.

Sketch of proof. [85] The proof is classical: assume first that s ≥ n. We are looking for
sequences of length s such that the component Id of I has as large dimension as possible.
Failure arises if and only if some minors of the maps

ϕi,j : K[X]j/�f1, . . . , fi−1�j ×fi−−→ K[X]j+di/�f1, . . . , fi−1�j+di

vanish. Therefore, for a given d, the fact that HSK[X]/�f1,...,fs�(d) is the smallest among all
possible value is an open condition, and is valid for the sequences in a non-empty Zariski
open subset Ud of

�s
i=1K[X]di . An intersection of an infinite number of open subsets is not

necessarily open, but the trick is to see that intersecting only a finite number of these sets
yields the result: if fi = xdii for 1 ≤ i ≤ n, then Id = K[X]d for all d ≥ D = 1+

�n
i=1(di− 1).

Then U = ∩∞
d=0Ud = ∩D

d=0Ud is a non-empty Zariski open subset.
If s < n, f1, . . . , fs is a regular sequence if and only if there exists (n − s) linear

forms (�i)s+1≤i≤n such that (f1, . . . , fs, �s+1, . . . , �n) is a regular sequence, which is true on
a non-empty Zariski open subset U of (

�s
i=1K[X]di) × K[X]n−s

1 . The projection of U on
(
�s

i=1K[X]di) contains also a non-empty Zariski open subset.

In particular, the previous lemma shows that regular sequences are generic. We have seen
that regular sequences of length s > n do not exist. However, a generalization of this notion
is semi-regular sequences and we explain it now.

Notations 2.39. For H =
�∞

d=0 hdz
d a power series in Z[[z]], we denote by [H]+ the series

H truncated at its first negative coefficient. More precisely, [H]+ is defined by:

[zd][H]+ =

�
hd if hi ≥ 0 for 0 ≤ i ≤ d

0 otherwise

The idea behind the following definition of semi-regular sequences is that their behavior
under Gröbner basis algorithms looks like there were regular. We first comme back to the
definitions of syzygies in the case A = K[X].

Definition 2.40. With notations of definition 2.28 and in the case R = K[X], if S =
�

i giEi

is a non-zero syzygy, deg(S) = maxi(deg(gi)+deg(fi)) is called the degree of the syzygy, where
the degree of polynomials in K[X] is the standard total degree.

The following proposition-definition relates the degree of the Hilbert polynomial and syzy-
gies to define semi-regular sequences.

Proposition – Definition 2.41. [4, 5, 6] Let F = (f1, . . . , fs) ∈ K[X]s be a sequence of
homogeneous polynomials generating a zero-dimensional ideal. The two following statements
are equivalent:
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— the Hilbert series of K[X]/�F� is given by

HSK[X]/�F�(z) =




s�

i=1

(1− zdeg(fi))

(1− z)n



+

— every syzygy of F of degree at most deg(HSK[X]/�F�) + 1 is in the module generated by
the trivial syzygies.

A sequence F verifying these properties is called semi-regular.

The definition above shows that, while computing a Gröbner basis of an ideal generated by
a homogeneous semi-regular sequence, no reduction to zero occures, just like regular sequences.
Semi-regular sequences can also be defined in terms of applications as regular sequences, as
shown is the following proposition.

Proposition 2.42. [85] A sequence of homogeneous polynomials (f1, . . . , fs) of degrees
d1, . . . , ds is semi-regular if and only if the maps

K[X]d/�f1, . . . , fi−1�d
×fi−→ K[X]d+di/�f1, . . . , fi−1�d+di

are of maximal rank, i.e either injective or surjective.

Semi-regular sequences are conjectured to be generic, as regular sequences are, since it
seems to be the case in practice. More precisely, Fröberg’s conjecture is expressed in the
following way:

Conjecture 2.43 (Fröberg conjecture). Let d1, . . . , ds be a sequence of integers and K
be an infinite field. Then the K-vector space of homogeneous sequence of polynomials
F = (f1, . . . , fs) of degrees d1, . . . , ds, that are semi-regular, contains a Zariksi-open subset
in its interior.

We refer to [85] for reformulations of this famous conjecture. It has been proved in several
cases, see [4] and references therein for details.

2.2.3 Affine case.

From an algorithmic point of view, it is possible to compute a Gröbner basis for an
ideal generated by inhomogeneous polynomials by applying variants of the Lazard/Matrix-
F5-algorithms seen in chapter 1: the columns of the matrices are indexed by all monomials
of degree less than or equal to the current degree D instead of monomials of degree D only.
The drawback of this method is that we do not take profit of degree falls, which can produce
polynomials of lower degree than D. Hence, the normal strategy [34] for F4/F5 algorithms
is to perform computations at the smallest possible degree: critical pairs are considered by
increasing degree first.

From a complexity point of view, it is not easy to handle these degree falls in a complexity
analysis. We now analyse the strategy of computing a Gröbner basis of the homogenized
system and deshomogeneization.

Assume that we want to compute a Gröbner basis for the DRL ordering of an ideal I
generated by an affine sequence of polynomials F = (f1, . . . , fs) of degrees (d1, . . . , ds) in
K[X]. Let h be a new indeterminate. We denote by:



60 CHAPTER 2. COMMUTATIVE ALGEBRA AND GRÖBNER BASES

— F(h) the sequence (f
(h)
1 , . . . , f

(h)
s ) of polynomials in K[X], such that f

(h)
i is the compo-

nent of degree di of fi.
— �F the sequence (f̃1, . . . , f̃s) of polynomials in K[X,h] = K[x1, . . . , xn, h], such that

f̃i is the homogeneization of fi (obtained by multiplying any monomial m in fi by
hdi−deg(m)).

We denote by � both DRL orderings on K[X] and K[X,h]. The following lemma proves

that a Gröbner basis of F (non-necessarily reduced) can be obtained from �G and deshomo-
geneization. Notice that this lemma is specific to the DRL ordering.

Lemma 2.44. Let G be a homogeneous Gröbner basis for DRL ordering of an ideal I ⊆
K[x1, . . . , xn, h] and λ ∈ K. Then Gλ = {g(x1, . . . , xn,λ) | g ∈ G} is a Gröbner basis for DRL
ordering in K[x1, . . . , xn] of the ideal Iλ = {f(x1, . . . , xn,λ) | f ∈ I}.
Proof. We denote by ϕλ the following morphism.

ϕλ : K[X,h] −→ K[X]

f �−→ f(x1, . . . , xn,λ)

It is clear that the ideal generated by Gλ is Iλ. Then, assume first that λ �= 0 and let
f ∈ I\{0}. Therefore, there exists a polynomial g ∈ G such that LM�(g)|LM�(f). By
property of the DRL ordering, if γ is the power of h in m = LM�(g), all monomials in g are
divisible by hγ , and therefore ϕλ(m) = λγLM�(ϕλ(g)), which divides LM�(ϕλ(f)), and Gλ is
a Gröbner basis. Now if λ = 0, by property of the DRL ordering, a non-zero polynomial in
I is mapped to 0 through ϕλ if and only if its leading monomial is divisible by h. Therefore,
the same proof is still valid, but we only have to consider polynomials f ∈ I that are not
divisible by h.

With the previous lemma, we are able to compare the maximal degree arising in the
reduced Gröbner bases of the system/ the homogenized system. We also compare them with
the maximal degree in the reduced Gröbner basis of the homogeneous parts of higher degree.

Proposition 2.45. Let G,G(h) and �G be the reduced Gröbner bases of F,F(h) and �F for �.
Then

max{deg(g) | g ∈ G} ≤ max{deg(g) | g ∈ G(h)} ≤ max{deg(g) | g ∈ �G}

Proof of proposition 2.45. By previous lemma, ϕ1(�G) and ϕ0(�G) are Gröbner bases of �F� and
�F(h)�. It follows that

�
max{deg(g) | g ∈ G} ≤ max{deg(g) | g ∈ �G} and

max{deg(g) | g ∈ G(h)} ≤ max{deg(g) | g ∈ �G}

Moreover, since �G is reduced, it follows that the non-zero elements of ϕ0(�G) forms the reduced

Gröbner basis of �F(h)�. Now, denote by χ(f) the homogeneization of a polynomial f in K[X].
Let g be a polynomial in G. Then, there exists a relation g =

�s
i=1 fipi with pi ∈ K[X]. Since

χ(gi) =
�s

i=1 χ(fi)χ(pi), χ(g) belongs to ��F� and its leading monomial is divisible by the

leading monomial of a polynomial g̃ in �G. g̃ is not divisible by h, therefore ϕ0(g̃) belongs to
G(h), and has same leading monomial as g. Hence,

max{deg(g) | g ∈ G} ≤ max{deg(g) | g ∈ G(h)}

and the proposition is proved.
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Example 2.46. The inequalities in proposition 2.45 can be strict. For example, let f1 = x2

and f2 = x+ 1 in K[x]. Then,

G = {1}, G(h) = {x} and �G = {x+ h, h2}

From proposition 2.45, we see that while studying the complexity of computing a Gröbner
basis of an affine system, having informations on the sequence of the homogeneous parts of the
polynomials in the system could be useful. Hence, in several papers [4, 5, 6, 93], the authors
define semi-regular sequences of affine polynomials as sequences such that the homogeneous
parts of higher degree is semi-regular. It seems that the following complexity bound can be
obtained (but does not appear in the litterature yet).

Theorem 2.47. Let F = (f1, . . . , fs) ∈ K[X]s be a polynomial family and let F(h) be the family

of homogeneous components of highest degree. If �F(h)� is 0-dimensional, then the complexity
of computing a Gröbner basis of F for the DRL ordering is bounded by

O

�
s

�
n+ ireg(F

(h))

ireg(F
(h))

�ω�
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Chapter 3

Invariant Theory and Monomial
Algebras

The aim of this thesis is to use the struture of an input system, in order to speed up the
computations. Hence, we have to consider some algebras, that are not the whole ring K[X].
In this chapter, we present algebras that will be used in chapters 4 and 5. The first section
is dedicated to the study of the action of a finite group on polynomials, which leads to the
study of the ring of invariants. We also study semi-invariants through the representation of
finite groups.

The second section deals with monomial algebras, namely algebras generated by mono-
mials. We do not only consider monomials of K[x1, . . . , xn] but also monomials of the ring of
Laurent polynomials K[x±1

1 , . . . , x±1
n ].

3.1 Invariant Theory

In this section, X denotes the set of indeterminates {x1, . . . , xn} for a given n ≥ 1, K is a
given field, and K[X] = K[x1, . . . , xn]. We will present the action of groups on polynomials,
and we restrict our discussion to finite groups.

The aim of the section is twofold: on the first hand, explaining the classical strategies
used to solve systems of polynomial equations which are stable under the action of a finite
group. These strategies are related to the invariant theory of finite groups. On the other
hand, we prepare the reader to chapter 4: computations of a basis of all invariants of a given
degree will be needed before applying the SAGBI Matrix-F5 algorithm 1.68 in section 4.3.
In order to design an approach that solves polynomial systems of systems globally invariant
under the action of an abelian group in section 4.2, we present representations and groups and
the gradation on K[X] induced by irreducible chracters. Finally, to give complexity bounds
for these variants, we need to estimate the dimensions of the components occuring in the
previous gradation.

The section is organized as follows: we first present the action of groups on polynomials
and explain how to compute invariants. Then, we present Molien’s theorem which is a formula
giving the Hilbert series of the ring of invariants. The third subsection is devoted to classical
approaches solving systems of invariant equations. Then, we present representations of groups:
the ring of invariants appears to be an isotypic component of K[X] viewed as a representation,
and we give a generalization of Molien’s formula to all components. The final subsection gives
estimates on the dimensions of the isotypic components.

63
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3.1.1 Action of Groups on Polynomials. Computation of Invariants

In this subsection, we define the invariants of a finite groupG, and explain how to compute
them.

Action of Groups on Polynomials. Let V be the vector space spanned by X =
{x1, . . . , xn} on K. The linear group GLn(K) acts linearly on V n: for A = (ai,j)1≤i,j≤n ∈
GLn(K) and L = (�1, . . . �n) ∈ V n, we set

A.L =

�
n�

i=1

ai,j�i

�

1≤j≤n

This action extends to polynomials in K[X] in the following way. For f ∈ K[X] and A ∈
GLn(K), we set fA the polynolmial f(A.X).

Proposition 3.1. The action of GLn(K) on K[X] given by (A, f) �→ fA is a right action of
GLn(K) on K[X].

Proof. For f ∈ K[X] and A,B ∈ GLn(K), we have (fA)B = f(A.(B.X)) = fAB. Moreover,
f In = f .

Remark 3.2. In several classical books [100, 16], the authors choose to make GLn(K) acting
on K[X] by fA = f(A−1X) to ensure a left action. We make another choice here, in order
to keep the relation (fA)B = fAB.

Now G will denote a finite subgroup of GLn(K). The group G acts also on K[X], and we
now define invariants under the action of G.

Definition 3.3. A polynomial f ∈ K[X] is said to be G-invariant, if fA = f for all A in G.

If f ∈ K[X] satisfies fA = f for some A ∈ GLn(K), it is easy to prove that fB = f for all
B in the subgroup generated by A in GLn(K). This result has an obvious generalization, as
says the following proposition:

Proposition 3.4. Let S(G) be a generating set of G. Then f ∈ K[X] belongs to K[X]G if
and only if fA = f for all A in S(G).

Example 3.5. Consider the cyclic matrix group G generated by the matrix A =

�
0 1

−1 0

�

Denote by f the polynomial x21+x22 and by g the polynomial x1x2. Then fA = x22+(−x1)2 = f
and gA = x2(−x1) = −g. Therefore, f is G-invariant, while on a field of characteristic
different from 2, g is not.

The set of all G-invariants will be denoted by K[X]G. It is easy to see that the sum and
product of invariants are also invariants. Moreover, if m is a monomial of degree d in K[X],
and A ∈ GLn(K), the polynomial mA is homogeneous of degree d. Therefore, the following
proposition holds:

Proposition 3.6. The set K[X]G is a graded subalgebra of K[X]. More precisely, we have
the decomposition K[X]G = ⊕+∞

d=0K[X]Gd , where K[X]Gd is the set of invariant homogeneous
polynomials of degree d.
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Computation of Invariants We now answer the question of computing invariants. More
precisely, we want to compute all invariants of a given degree d.

Linear algebra technique. [67] A first, costly technique, is to use linear algebra: all we
have to do is to solve the system {fA = f | ∀A ∈ G} on K[X]d. Proposition 3.4 shows that
this system is equivalent to {fA = f | ∀A ∈ S(G)}, where S(G) is a minimal generating set
of G. The idea is to introduce the following exact sequence

0 −→ K[X]Gd −→ K[X]d
φd−→ �

A∈S(G)K[X]d

f �−→ (fA − f)A∈S(G)

A basis of K[X]Gd can be computed as a basis of the kernel of φd. This leads to the
algorithm 3.7.

Algorithm 3.7: ComputeBasisLinear algorithm

Input : The group G, given by a minimal set of generators S(G), an integer d, an
ordering � and the lists Bd of monomials of degree d, sorted by decreasing
order for �.

Output: A basis of K[X]Gd
M := Matrix with

�
n+d−1

d

�
columns corresponding to the monomials of degree d of

K[X], sorted by � with decreasing order, and |S(G)|
�
n+d−1

d

�
rows;

Fill the matrix M to obtain the matrix of the map φd;
Compute a Gaussian-Reduction of M ; // Row-Echelon Reduction with permutations

of rows and cancellation of zero-lines

Join vertically to M an identity block of size
�
n+d−1

d

�
×
�
n+d−1

d

�
;

Compute a Gaussian-Reduction of M ; // Column-Echelon Reduction of the top block

L := list of polynomials corresponding to a column of M , the first block of which is
zero;
return L

The following proposition can be found in [67], but we give a more precise result, based
on the theorem 1.39.

Proposition 3.8. The complexity of computing a basis of K[X]Gd with algorithm 3.7 can be

done with O
�
|S(G)|

�
n+d−1

d

�ω�
operations in K, with S(G) a set of generators of G and ω

the exponent of linear algebra.

Proof. To fill the matrix M in algorithm 3.7, we have to apply the group generators S(G) to
all monomials of degree d. For each A ∈ S(G) and each monomial m of degree d, we have to
compute the product of d linear forms. This can be done basically by computing the product
of a polynomial of degree i with a linear form for each i between 1 and d− 1, so the cost is:

O

�
n

d−1�

i=1

�
n+ i− 1

n− i

��
= O

�
d

�
n+ d− 1

d

��

This cost is negligible, compared to the cost of computing the Gaussian elimination: we have
a system of

�
n+d−1
n−1

�
unknows and S(G)

�
n+d−1
n−1

�
columns, and rank bounded by the number of

unknows. From theorem 1.39, it is possible to perform the Gaussian elimination on a matrix
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of size �× c and rank r in O(�crω−2) operations in K. Therefore, we need O
�
S(G)

�
n+d−1
n−1

�ω�

operations in K to compute a basis of all invariants of degree d.

The non-modular case. When the characteristic of the field K divides the cardinal of the
group G, we say that we are in the modular case. This case is much more complicated than
the non-modular case. As we will see in the sequel, many results available in the non-modular
case do not extend to the modular case. First, in the non-modular case, it is possible to
average with the action of G:

Definition 3.9. Assume that char(K) � |G|. The Reynolds operator of G is the map

�G : K[X] −→ K[X]

f �−→ 1

|G|
�

A∈G
fA

The indice G will be omitted if it is clear. We recall the following properties of the
Reynolds operator:

Proposition 3.10. [25] Let � be the Reynolds operator of the finite matrix group G.

(i) � is K-linear.

(ii) If f ∈ K[X], then �(f) ∈ K[X]G.

(iii) If f ∈ K[X]G, then �(f) = f . Therefore, � is a projection onto K[X]G.

(iv) Every A in G, viewed as a linear isomorphism on K[X], verifies A ◦ � = � ◦A = �.

Proof. Points (i) and (iii) are obvious. For point (ii), we just have to see that if B ∈ G,
A �→ AB is a bijection on G, Therefore, �(f)B = 1

|G|
�

A∈G fAB = �(f), and �(f) belongs

to K[X]G. For point (iv), A ◦ � = � comes from the fact that the image of � is K[X]G, and
� ◦A = � can be proved with the same argument given for point (ii).

The Reynolds operator allows us to compute a basis of K[X]Gd : all we have to do is to
apply it to all monomials of degree d, and perform a Gaussian elimination on a matrix to
obtain the basis. This leads to algorithm 3.11.

Algorithm 3.11: ComputeBasisNonModular algorithm

Input : The group G and the Reynolds Operator � on G, an integer d, an ordering
� and the list Bd of monomials of degree d, sorted by decreasing order for �.

Output: A basis of K[X]Gd
M :=Square matrix with of size

�
n+d−1

d

�
×
�
n+d−1

d

�
corresponding to the monomials of

degree d of K[x1, . . . , xn], sorted by � with decreasing order;
Fill M with the rows corresponding to �(m) for all monomials m in Bd;
Compute a Gaussian-Reduction of M ; //Row-Echelon Reduction with permutations of

rows and cancellation of zero-lines

L := list of polynomials corresponding to a row of M ;
return L

The arithmetic complexity of algorithm 3.11 is better than those of algorithm 3.7, as shows
the following proposition.



3.1. INVARIANT THEORY 67

Proposition 3.12. To compute a basis of K[X]Gd in the non-modular case with algo-
rithm 3.11, at most

O

�
d|G|

�
n+ d− 1

n− 1

�2

+

�
n+ d− 1

n− 1

�ω
�

arithmetic operations in K are needed.

Proof. The proof is very similar to the proof of proposition 3.10. Since we have to apply all

elements of |G| to a monomial, �(m) can be computed within O
�
d|G|

�
n+d−1
n−1

��
operations

in K. We have to apply it
�
n+d−1
n−1

�
times and the other term in the formula is the cost of

computing the Gaussian elimination on M .

In practice, we do not have to apply the Reynolds Operator to all monomials of degree d,
if we know in advance the dimension of K[X]Gd . This can be computed by Molien’s formula,
see next subsubsection.

Special case: G is a subgroup of the group of generalized permutation matrices.
The group of generalized permutation matrices is the subgroup of GLn(K), the matrices of
which only have one non-zero coefficient per row and column. We recall here the structure of
this group, and we start by the classical permutation matrix group.

Proposition 3.13. The symmetric group Sn can be embedded in GLn(K).

Proof. To the permutation σ we associate the matrix Mσ = (mi,j)1≤i,j≤n, where mi,j = 1 if
σ(j) = i and 0 otherwise.

In the sequel, we will always identify a permutation σ ∈ Sn with the matrix Mσ given by
the proof of proposition 3.13.

Proposition 3.14. The set of all matrices of GLn(K) having one and only one element
non equal to zero in each row and each column is a subgroup equal to the semidirect product
Dn(K∗)�Sn, where Dn(K∗) is the subgroup of diagonal matrices in GLn(K).

Proof. Is is clear that this set of matrices is the direct product of the set Dn(K∗) and the
set Sn, viewed as a set of matrices. Moreover, for each Mσ ∈ Sn and each D ∈ Dn(K∗),
MσDM−1

σ ∈ Dn(K∗), soDn(K∗) is normal in the group generated byDn(K∗) andSn. Finally,
Dn(K∗) ∩Sn = {In} and the proposition is proved.

In the sequel, the notation Dn(K∗)�Sn will always refer to the generalized permutations
matrix group. When G is a finite subgroup of Dn(K∗) � Sn, we do not need to use linear
algebra to compute invariants, since orbit sums of monomials can be used instead, which leads
only to combinatorial tools.

Definition – Proposition 3.15. [16] Let m be a monomial of degree d, we denote by Gm

the stabilizer of m in G, namely the subgroup of G given by {A ∈ G | mA = m}. Then we
choose a fixed set of left coset representatives G/Gm = {A1, . . . , Ar} and computes the orbit
Ωm = {mAi | 1 ≤ i ≤ r}, which is independent of the choice of the set {Ai}. Therefore the
invariant TrGGm

(m) =
�r

i=1m
Ai is independent of the choice of {Ai} and will be called the

orbit sum of m.
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Example 3.16. Let G be the cyclic matrix group of order 4 generated by A =

�
0 1

−1 0

�

on a field of characteristic different from 2 and K[X] = K[x, y]. Then :
— Gx = {I2} so G/Gx = G and {xA | A ∈ G} = {x, y,−x,−y}: the orbit sum of x is

zero.
— Gx3y = {±I2} and we can take G/Gx3y = {I2, A}. The orbit sum of x3y is x3y−xy3.

Remark 3.17. In the non-modular case, the orbit sum is very close to the Reynolds Oper-

ator, since for each monomial m, �(m) = |Gm|
|G| Tr

G
Gm

(m).

We now give a special name to leading monomials of invariants.

Definition 3.18. Let � be an ordering on K[X]. For every finite group G ⊂ GLn(K), if m
is the leading monomial of an invariant in K[X]G, we call m an initial monomial.

Example 3.19. Let G be the alternate group A3 of order 3, acting on R = Q[x, y, z] with
graded lexicographical ordering such that x > y > z. The Reynolds operator is given by
�(f) = (f(x, y, z) + f(y, z, x) + f(z, x, y))/3. Then u = x2y+ y2z+ xz2 ∈ K[X]G is the orbit
sum of x2y, which is an initial monomial while y2z and xz2 are not.

Theorem 3.20. If G is a finite subgroup of Dn(K∗) � Sn, the orbit sums of all initial
monomials of degree d form a basis of K[X]Gd .

Proof. Let m be a monomial of some degree d. Then the orbit Ω(m) = {mAi | 1 ≤ i ≤ r}
consists in terms of the form ξm�, with ξ ∈ K∗ and m� a monomial of same degree d. Let
ξm� be one of these terms. Clearly, Ω(m�) = {ξ−1mAi}, so TrGGm� (m

�) = ξ−1TrGGm
(m). Now,

let f ∈ K[X]Gd \{0} and m = LM�(f). Then TrGGm
(m) �= 0 and f − LC�(f)

LC�(TrGGm
(m))

TrGGm
(m)

belongs to K[X]Gd and has a smaller leading monomial. The proof follows by induction.

From theorem 3.20, we deduce the algorithm 3.21 that computes a basis of K[X]G up to
some degree D.

Algorithm 3.21: ComputeBasisGeneralizedPermutation algorithm

Input : The group G ⊂ Dn(K∗)�Sn, an integer d, an ordering � and the list Bd of
monomials of degree d, sorted by decreasing order for �.

Output: A basis of K[X]Gd
while Bd �= ∅ do

m :=First(Bd);
Compute Ωm, the orbit of m;

if TrGGm
(m) =

�
t∈Ωm

t �= 0 then add TrGGm
(m) to L;

Remove from Bd all monomials that appear in Ωm, up to multiplication by a scalar;

return L

For every monomial m of degree d, at most dn|G| operations in K are needed to compute
Ωm. Therefore, the following theorem holds:

Theorem 3.22. A basis of each component K[X]Gd can be computed in O
�
dn|G|

�
d+n−1

d

��

operations in K, using algorithm 3.21.

Remark 3.23. This approach by orbit sums is classical when G ⊆ Sn (see for example [100,
67]). In this case, the if condition in algorithm 3.21 is automatically satisfied and can be
omitted. Moreover, no arithmetic operations in K are needed.
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3.1.2 Molien’s Theorem

In this subsection, we introduce the Hilbert series of the algebra of invariants K[X]G,
which can be easily computed, at least in the non-modular case. A generalization of this
formula will be seen in subsection 3.1.4. It will be useful to give estimates on the dimension
dimK(K[X]Gd ) of the vector space of invariant polynomials of a given degree d, see 3.1.5.

Definition 3.24. The Hilbert Series (see definition 2.19) of the algebra A = K[X]G, equal

to HSK[X]G(z) =

+∞�

d=0

dimK(K[X]Gd )zd, is called the Molien Series of G.

For A ∈ G, the characteristic polynomial of A given by det(In− zA) is a polynomial with
a non-zero constant coefficient. Therefore, the formal series given by 1/ det(In − zA) is well
defined. The following result of Molien relates these series with the Molien series of G, on a
field of zero characteristic.

Theorem 3.25 (Molien). [100] Let G be a finite subgroup of GLn(K) with K a field of zero
characteristic. Then

HSK[X]G(z) =
1

|G|
�

A∈G

1

det(In − zA)

We follow the proof of Sturmfels [100]. In order to prove theorem 3.25, we first give a
lemma.

Lemma 3.26. Let m ≥ 1 and K be a field of zero characteristic. Let H be a finite subgroup
of GLm(K). We define the invariant subspace of Km under H by

V H = {v ∈ Km | Av = v for all A in H}
Then, dimK(V

H) = 1
|H|
�

A∈H trace(A).

Proof. We introduce the average operator PH on Km, defined by PH = 1
|H|
�

A∈HA. We

claim that this operator is a projection onto V H. This concludes the proof since the rank of
a projection is equal to its trace. It is easy to see that PH is a projector: Again by the fact
that if B ∈ H, A �→ AB is a bijection on H, we see that PH(Km) ⊆ V H, and its clear that
PH(v) = v for all v ∈ V H.

Proof of theorem 3.25. K[X]d is a K vector space of dimension
�
n+d−1
n−1

�
, and every A ∈ G

induces a linear transformation on K[X]d, denoted by A(d). With this notation, K[X]Gd
becomes exactly the invariant subspace of K[X]d under the group H = {A(d) | A ∈ G}. We
are now interested in the values of trace(A(d)). The trace of an operator is invariant under
field extensions, therefore we might assume that K is algebraically closed. Let �A,1, . . . , �A,n

be the eigenvectors of A(1) = A on K[X]1 � Kn, associated to the eigenvalues λA,1, . . . ,λA,n.
Then, {�A,1, . . . , �A,n} is a basis of K[X]1, therefore

�
�α1
A,1 · · · �αn

A,n

�� (α1, . . . ,αn) ∈ Nn and

n�

i=1

αi = d

�

is a basis of K[X]d � K[X]1 ⊗ · · · ⊗ K[X]1. Moreover, these products of linear forms are
eigenvectors of A(d) associated to the eigenvalues λα1

A,1 · · ·λαn
A,n where

�
αi = d. It follows

that
trace(A(d)) =

�

α1+···αn=d

λα1
A,1 · · ·λαn

A,n
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Finally, using lemma 3.26 and the definition of the Molien Series of G, we obtain:

HSK[X]G(z) =
+∞�

d=0

dimK(K[X]Gd )zd

=

∞�

d=0

1

|G|
�

A∈G


 �

α1+···αn=d

λα1
A,1 · · ·λαn

A,n


 zd

HSK[X]G(z) =
1

|G|
�

A∈G

�

(α1,...,αn)∈Nn

λα1
A,1 · · ·λαn

A,n zα1+···+αn

=
1

|G|
�

A∈G

1

(1− zλA,1)× · · · × (1− zλA,n)

HSK[X]G(z) =
1

|G|
�

A∈G

1

det(In − zA)

It is possible to extend Molien’s theorem in several ways. First, observe that lemma 3.26
is still valid if K is a field of finite characteristic, which does not divide |H|, but only modulo
the characteristic of the field char(K). Consequently, the following theorem holds.

Theorem 3.27. Let G be a finite subgroup of GLn(K) with K a field of characteristic p =
char(K) such that p � |G|. Then

HSK[X]G(z)
p
=

1

|G|
�

A∈G

1

det(In − zA)
∈ Fp[[z]]

where HSK[X]G(z)
p
is the reduction of HSK[X]G(z) modulo p through the morphism Z[[z]] →

Fp[[z]].

Then, if char(K) is big enough, it is possible to know enough terms of HSK[X]G(z) to know
it exactly.

Another possible extension is the following: assume that G is a finite subgroup of the
generalized permutations subgroup, with coefficients in a finite field K. Since K is a finite
field, the group K∗ is cyclic, therefore there is an embedding of K∗ into C∗, which gives
an embedding of G into GLn(C). Denote by G̃ the resulting group in GLn(C). Appying
algorithm 3.21 with G or G̃ produces exactly the same result, up to the embedding K∗ �→ C∗.
In particular, the Hilbert series of K[X]G and C[X]G are the same, and the Molien series of
K[X]G can be computed with Molien’s formula. Finally, we will see in subsection 3.1.4 a
generalization of this formula to isotypic components of K[X], K[X]G being one of these
components.

3.1.3 Structure of the algebra of invariants, and classical strategies

In this subsection, we recall classical results on the structure of the algebra of invariants
K[x1, . . . , xn]

G = K[X]G. Then, we explain the classical strategies used to solve a system of
invariant equations.
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Structure of the Algebra of Invariants. We start by giving a famous theorem due to
Hilbert, which states that the ring of invariants is finitely generated.

Theorem 3.28. [55] Let G ⊂ GLn(K). Then, there exist a finite number of invariants
h1, . . . , hr such that K[X]G = K[h1, . . . , hr].

Proof. Hilbert’s proof was restricted to the case char(K) = 0. Emmy Noether proved this
result without assumption on the characteristic in [80].

Definition 3.29. Following notations of previous theorem, such a set of invariants
{h1, . . . , hr} is called a set of fundamental invariants.

It is interesting to give bounds on the degree we have to reach until we find a set of
generators. The bound |G| in characteristic zero has been proved by Noether and advances
on this topic have been made until recently and are summarized in [16]. We recall here the
most interesting to our purpose.

Theorem 3.30. Let K be a field, and G a non-trivial finite subgroup of GLn(K) with n > 1.
— [80, 47, 48] If char(K) does not divide |G|, then K[X]G is generated by invariants of

degree at most |G|.
— [65, 103] If char(K) divides |G| and K is finite, then K[X]G is generated by invariants

of degree at most n(|G|− 1).

Usually, the minimal size r of a set of fundamental invariants can increase dramatically,
compared to n, the rank of K[X]G. Kemper and Steel gave algorithms to find a minimal
set of fundamental invariants in [67]. As an example, we report in table 3.31 the size r of a
minimal set for the cyclic group Cn ⊂ GLn(K) given by the standard representation of the
n-cycle (1, 2, . . . , n), together with the maximal degree of a polynomial in such a set. These
invariants are computed with MAGMA, on two fields for each n: F65521 and a field Fp with
p the smallest prime dividing n. Notice that the computation is much more difficult in the
modular case (the computation has been stopped after 24 hours for boxes with interrogation
marks).

K n 3 4 5 6 7 8 9 10

F65521
Number of Invariants 4 7 15 20 48 65 119 166

Maximal degree of an invariant 3 4 5 6 7 8 9 10

Fp, p|n Number of Invariants 4 8 21 23 ? ? ? ?

Maximal degree of an invariant 3 5 7 6 ? ? ? ?

Table 3.31 – Computation of Fundamental Invariants

A dimension argument shows that r ≥ n. An interesting question is to characterize the
groups where r can be taken equal to n. We now recall some classical results about the well
known symmetric group and symmetric polynomials. The group Sn is viewed as a subgroup
of GLn(K) through the morphism in proposition 3.13.

Definition 3.32. A polynomial f ∈ K[X] is said to be symmetric if it is invariant under the
symmetric group Sn.

The coefficients of the polynomial f(z) = (z+x1) · · · (z+xn) = zn+σ1z
n−1+ · · ·+σn with

respect to the new variable z are the so called elementary symmetric polynomials. From the
elementary symmetric polynomials, we can construct other symmetric polynomials by taking
polynomials in σ1, . . . ,σn. This leads to the well known theorem.
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Theorem 3.33. (Gauss)Every symmetric polynomial in K[X] can be written uniquely as a
polynomial in the elementary symmetric polynomials σ1, . . . ,σn.

An obvious consequence of the above theorem is that K[x1, . . . , xn]
Sn = K[σ1, . . . ,σn].

Therefore, in the case of the symmetric group, the minimal number of fundamental invariants
is n. At least in the non-modular case, this fact can be generalized to reflection groups.

Definition 3.34. A reflection s (sometimes called pseudo-reflection) of GLn(K) is a matrix
such that Ker(s − id) has codimension 1. A finite subgroup G of GLn(K) is said to be a
reflection group if it is generated by reflections.

Example 3.35. The symmetric group Sn is a reflection group in any characteristic, since
it is generated by transpositions: if char(K) �= 2, the element in GLn(K) associated to a
transposition is similar to a diagonal matrix with eigenvalues (1, . . . , 1,−1), whereas it is
similar to a shear matrix if char(K) = 2. In both cases, those matrices are reflections.

The theorem below explains why reflection groups are interesting: the number of fundamental
invariants in the invariant algebra is as low as possible.

Theorem 3.36. Shephard-Todd, Chevalley, Serre,[92, 22, 90] Assume that char(K) does not
divide |G|. Then K[X]G is generated by only n fundamental invariants if and only if G is a
reflection group.

Remark 3.37. Notice that the only if part of previous theorem is actually verified even in
the modular case.

In this case, the polynomials h1, . . . , hn are algebraically independent, and the multiset
{deg(hi)} is unique. Moreover

�
deg(hi) = |G| and there are

�
(deg(hi) − 1) reflections

in G. When dealing with a polynomial system of equations lying in K[X]G with G a reflection
group, it is very interesting to reformulate the equations as polynomials in the polynomial ring
K[h1, . . . , hn]. We have seen in chapter 2 that the complexity of solving a zero-dimensional
system of polynomial equations is related to the sum of the degrees of the polynomials and
the number of solutions of the system. The reformulation here leads to a system with the
same number of variables but both degrees of equations and number of solutions decrease.
Hence, using invariants in the framework of systems of equations individually invariant under
a reflection group is very interesting.

Example 3.38. Let n1, . . . , nk be positive integers such that n = n1+· · ·+nk. Then, the direct
product Sn1 × · · · ×Snk

, which can be viewed as a subgroup of Sn ⊂ GLn(K), is a reflection
group with generators given by the symmetric polynomials in each set of ni variables.

These subgroups are actually the only reflection subgroups of Sn. In subsection 4.3.3, we
will see other reflection groups, which are generalized permutations subgroups. We continue
this subsection by describing primary and secondary invariants of an invariant algebra.

Definition 3.39. Let G be a finite subgroup of GLn(K). A set of n algebraically independent
polynomials in K[X]G is called a set of primary invariants.

Such a set exists by Noether Normalization lemma (theorem 2.3). Denote by θ1, . . . , θn a
set of primary invariants. A dimension argument proves that K[X]G is a finitely generated
module over the algebra K[θ1, . . . , θn]. It is still an open question to give a necessary and
sufficient condition on G for K[X]G to be a free module over K[θ1, . . . , θn] in the modular
case, but the answer is much simpler in the non-modular case and is given in theorem 3.41.
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Theorem 3.40. If char(K) does not divide |G|, K[X]G is a Cohen-Macaulay algebra (see
definition 2.9).

Proof. We refer to [57] for the proof. The main tool is the Reynolds Operator � (definition 3.9)

From the Cohen-Macaulayness of the ring of invariants in the non-modular case, one can
prove that the following decomposition holds.

Theorem 3.41. [100, 16] Assume that char(K) does not divide |G|, and let θ1, . . . , θn be a set
of primary invariants of K[X]G. Then, there exists a set of secondary invariants {η1, . . . , ηt}
such that K[X]G = ⊕t

i=1ηiK[θ1, . . . , θn].

Corollary 3.42. In the case of Cohen-Macaulayness of the ring of invariants, the Hilbert
Series of K[X]G is given by

HSK[X]G(z) =

�t
j=0 z

deg(ηj)

�n
i=1(1− zdeg(θi))

with (θi) and (ηj) the sets of primary and secondary invariants associated to K[X]G.

Many authors gave algorithms to compute such a set of secondary invariants, see for
example [67]. However, the number of secondary invariants can be very huge (it is greather
than or equal to the minimal number of fundamental invariants). Hence, in the sequel we will
try to avoid such a computation.

Classical approach to solve Invariant Systems. We now give classical algorithms to
reformulate a given system in terms of invariants. We also explain the underlying geomet-
ric view. We introduce the definition and the associated notions of Gröbner basis in some
invariant ring. This kind of Gröbner basis is the classical object that we want to compute
while solving a polynomial system with symmetries, see [100, 27, 25]. We recall here the usual
strategy presented by these authors. Let G ⊂ GLn(K) be a finite group. We denote by A(Kn)
the affine space associated to Kn.

Definition – Proposition 3.43. From the action of G on Kn, we deduce an action on the
affine space A(Kn). The orbit of a point a = (a1, . . . , an) ∈ A(Kn) is the set G.a = {g.a | g ∈
G} and is called the G-orbit of a. The set of all G-orbits in A(Kn) is denoted by A(Kn)/G
and is called the orbit space of G.

Definition 3.44. Let F = {f1, . . . , fs} be a set of polynomials. If the variety V(I) associated
to the ideal I = �F � is stable under the action of G on A(Kn), we define the orbit variety
V(I)/G ⊂ A(Kn)/G, whose points are the G-orbits of zeroes of I.

A sufficient condition for V to be a G-stable variety is that all polynomials f1, . . . , fs
belong to K[X]G. Intuitively the idea is to compute a Gröbner basis associated with the
relative orbit variety V(I)/G instead of a Gröbner basis associated to V(I) itself. We now
explain the classical way to compute a Gröbner basis associated to V(I)/G. We have seen
in the previous subsection that Hilbert’s theorem states that K[X]G is finitely generated.
According to this point of view, we can introduce the following definition.
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Definition 3.45. Let h1, . . . , hr be a set of fundamental invariants of K[X]G. Let I be an
ideal generated by G-invariant polynomials. We introduce r new variables H1, . . . , Hr, each
Hi corresponding to a polynomial hi, and we consider in the ring K[x1, . . . , xn, H1, . . . , Hr],
the following ideal:

J̃ = I + �H1 − h1(x1, . . . , xn), . . . , Hr − hr(x1, . . . , xn)�

Then, a Gröbner basis GK[H1,...,Hr](I,�H) of J = J̃ ∩ K[H1, . . . , Hr] with respect to some
ordering �H is said to be an invariant Gröbner basis of I in the invariant ring K[h1, . . . , hr].

Proposition 3.46. The map

Ph : V(I) � V(�GK[H1,...,Hr](I,�H)�)
a = (a1, . . . , an) �→ (h1(a), . . . , hr(a))

is onto. Moreover, given a point a = (a1, . . . , an) ∈ V(I), the set P−1
h (Ph(a)) is exactly G.a.

The global usual strategy to solve systems of polynomials lying in K[X]G proceeds in
two steps [100]. Fist, “preprocess” the group G with algorithm 3.47, and then compute a
relative orbite variety with algorithm 3.48. Proposition 3.46 shows that the variety V(I) can
be easily obtained with the relative orbite variety V(I)/G. In practice, it is possible to use
the Gröbner basis G0 computed by Preprocessing algorithm 3.47: the points in the orbit of
a = (a1, . . . , an) can be computed by substituting the coordinates of h = (h1(a), . . . , hr(a))
in the variables H1, . . . , Hr in G0.

Algorithm 3.47: Preprocessing algorithm

Input : G, a finite subgroup of GLn(K).
Output: A Gröbner basis.
Compute a set of fundamental invariants h1, . . . , hr of G;
Compute G0, a Gröbner basis of the ideal

�H1 − h1(x1, . . . , xn), . . . , Hr − hr(x1, . . . , xn)�

with respect to the block graded reverse lexicographic ordering such that
x1 � · · · � xn � H1 � · · · � Hr;
return G0

Algorithm 3.48: ComputeRelativeOrbiteVariety algorithm

Input : Polynomials F = f1, . . . , fs invariant under G, a finite subgroup of GLn(K).
Output: The relative orbite variety V(�F�)/G
G0 := the Gröbner basis obtained by preprocessing of G with algorithm 3.47;
G1 := the Gröbner basis of G0 ∪ F with respect to the block graded reverse
lexicographic ordering such that x1 � · · · � xn � H1 � · · · � Hr;
return G1 ∩K[H1, . . . , Hr]

In practice, to compute the Gröbner basis G0 in algorithm 3.47, we would choose a weighted
monomial, blockwise-lexicographical ordering in K[x1, . . . , xn, H1, . . . , Hr], with weights 1 on
xi and deg(hi) on Hi, in order to speed up the computations. However, we have seen in the
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previous subsection that the size of a minimal set of fundamental invariants could be huge,
so both detailed steps could be difficult.

In subsection 4.3, we propose an approach to overcome the difficulties explained above, in
order to compute the relative orbit variety.

3.1.4 Representation Theory of finite groups

In this subsection, we briefly recall classical results in representation theory. We will
see that the action of G ⊂ GLn(K) of groups induces for each d a decomposition of K[X]d
into subvector spaces K[X]χ,d called the isotypic components of K[X]d, associated to the
characters of irreducible representations of G. In order to derive the complexity of variants of
the Matrix-F5 algorithm in the next part (sections 4.2 and 4.3), we will be mainly interested
in estimates of the dimensions of K[X]χ,d, when G is an abelian group or when χ is the
trivial character (in this case K[X]χ,d is equal to K[X]Gd ). The theory of representations is
the theoretical framework that encompasses both cases.

Except at the very end of the subsection, the field K is the field of complex numbers C,
and G denotes a finite group. The complex conjugate of an element u will be denoted u.

Irreducible representations. We start by recalling the classical definitions of representa-
tions and irreducible representations.

Definition 3.49. A linear representation of G is a pair (V, ρ), where V �= {0} is a K-vector
space of finite dimension n ≥ 1 and ρ is a group homomorphism G −→ GL(V ). The integer
n is called the degree of the representation.

With a slight abuse of language, we say that V is a representation of G. In the previous
definition, V is assumed to be finite dimensional. However, this is not a huge restriction, since
irreducible representations of finite groups are finite dimensional, as we will see later.

Example 3.50. As an example in this subsection, we will study the representations of the
abstract group S3, which is the smallest non-abelian group. The usual embedding of S3 in
GL3(C) given by σ �→ Mσ (see proposition 3.13) is a representation of degree 3, which will
be denoted ρ3. The signature σ �→ �(σ) ∈ {±1} or the trivial representation σ �→ 1 are two
representations of degree 1.

Proposition – Definition 3.51. Let ρ : G −→ GL(V ) be a representation, and W be a
subvector space of V . We say that W is invariant under G if ρ(g)(W ) ⊆ W for all g ∈ G.
Then, the map

ρW : G −→ GL(W )

g �−→ ρ(g)|W

gives a representation of G in GL(W ). We say that this is a sub-representation of V .

Two representations (ρ, V ) and (ρ, V �) of G are said to be isomorphic, if there exists a
linear isomorphism τ : V → V � such that τ ◦ ρ(g) = ρ�(g) ◦ τ for all g in G. If W � V is a
subrepresentation of G, one can ask if we can find a vector space W � such that W ⊕W � = V
and W � is a also a subrepresentation of G. The answer is yes, according to the following
theorem.

Theorem 3.52 (Maschke). Let ρ : G −→ GL(V ) be a representation, and W be an G-
invariant subvector space of V . Then, there exists W � ⊆ V such that W ⊕W � = V and W � is
also G-invariant.
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Proof. See [91], theorem 1.

In the previous theorem, we say that the representation V is the direct sum of the repre-
sentations W and W �, which leads to the following definition:

Definition 3.53. If a representation V of G cannot be decomposed in the same way as in
theorem 3.52, except with the trivial decomposition V = V ∪{0}, we say that the representation
is irreducible. Otherwise, the representation is reducible.

Example 3.54 (Continuation of example 3.50). The two representations of S3 of degree 1
given in the previous example are obviously irreducible. The representation ρ3 is not, since
the vector subspace W = Span(t(1 1 1)) is invariant under all matrices Mσ. The orthogonal
complement W⊥ of W is the (unique in this case) complement given by theorem 3.52. The
representation σ �→Mσ|W⊥ of degree 2 will be denoted ρ2.

Conversely, from any representations V1, . . . , V� (irreducible or not), it is possible to con-
struct the direct sum of the representations, which is defined by V1 ⊕ · · ·⊕ V�. The following
theorem follows easily by induction from Maschke’s theorem.

Theorem 3.55. [91] Every representation is a direct sum of irreducible representations.

The following lemma is of main interest in the study of irreducible representations.

Proposition 3.56 (Schur’s lemma). Let (ρ, V ) and (ρ�, V �) be two irreducible representations
of G. Let f : V → V � be a linear map such that ρ�(g) ◦ f = f ◦ ρ(g) for all g ∈ G. Then

1. If ρ and ρ� are not isomorphic, then f = 0.

2. If (ρ, V ) = (ρ�, V �), then f is a uniform scaling.

Characters of a representation Although a group might have infinitely many represen-
tations, we will see that only a finite number of non-isomorphic irreducible representations
remains. Moreover, they can be characterized by their characters 1.

Definition 3.57. Let (ρ, V ), be a representation of G. Its character is defined by:

χρ : G −→ C
g �−→ trace(ρ(g))

The character of a representation has the following properties:

Proposition 3.58. [91] If χ is the character of a representation ρ of G of degree n, then:
— χ(1) = n,

— for all g ∈ G, χ(g−1) = χ(g) (the complex conjugate of χ(g)),
— for all g, h ∈ G, χ(hgh−1) = χ(g).

The third point shows that the character takes the same value on a conjugacy class of G.
It is straightforward to see that the character of a direct sum of representations is the sum
of the characters. For any pair (φ,ϕ) of complex functions, the inner product of φ and ϕ is
defined by:

(φ|ϕ) = 1

|G|
�

g∈G
φ(g)ϕ(g)

Using Schur’s lemma (proposition 3.56), we successively prove the items of the following
theorem.

1. This is actually why the word “character” is used!
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Theorem 3.59. [91] Let W be an irreducible representation of G with character χ.

— χ is of norm 1: (χ|χ) = 1,
— if W � is an other irreducible representation of G, with character χ�, non-isomorphic

to W , then χ and χ� are orthogonal: (χ|χ�) = 0,
— if V is a representation of G, with character ϕ and V = ⊕�

i=1Wi is a decomposition
of V into a direct sum of irreducible representations, the number of Wi isomorphic to
W is given by (χ|ϕ).

Example 3.60. The characters of the representations 1, �, ρ2 and ρ3 of S3 are reported in
table 3.61. Since a character χ takes the same value on a conjugacy class, we only indicate
the value on the three conjugacy class of S3 given by {id}, the 3-cycles {(1 2 3), (1 3 2)} and
the transpositions {(1 2), (1 3), (2 3)}.

representation ρ id 3-cycle transposition norm
�

(χρ|χρ)

1 1 1 1 1

� 1 1 −1 1

ρ2 2 −1 0 1

ρ3 3 0 1
√
2

Table 3.61 – Characters of representations of S3

It follows from the previous theorem, that in a decomposition of a representation V into a
direct sum of irreducible representations, the number of representations isomorphic to a given
irreducible representation does not depend on the chosen decomposition. It follows that two
representations are isomorphic if and only if they have same character, and a representation V
of character ϕ is irreducible if and only if (ϕ|ϕ) = 1.

With the previous theorem, we see in particular that the characters of irreducible rep-
resentations of a groupe G form an orthogonal sequence for the inner product. There is a
more precise result: let C(G) denotes the C-vector space of central functions from G to C,
namely the functions f : G → C satisfying f(ghg−1) = f(g) for all g, h in G. We have seen
in proposition 3.58 that characters are central functions. More precisely:

Theorem 3.62. The characters of irreducible representations of G form an orthogonal basis
of the C-vector space C(G).

Corollary 3.63. The number of irreducible representations (up to isomorphism) of a group G
is equal to the number of conjugacy classes of G.

Example 3.64. The group S3 has 3 irreducible representations, 1, � and ρ2. The represen-
tation ρ3 is the direct sum of 1 and ρ2.

It follows from the previous corollary that the number of irreducible representations of G
is less than or equal to the cardinality of G, and that equality holds if and only if G is abelian.
We will that in this case, the set of irreducible representations forms a group isomorphic to
G.
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Canonical decomposition of a representation. We now present a very important prop-
erty for our purpose. We have seen that a representation can be decomposed into a direct sum
of irreducible representations. However, this decomposition is neither unique, nor canonical.
We will define a less precise decomposition, but this one will be unique. Let W1, . . . ,Wk be
the irreducible representations of G (up to isomorphism). Let V = ⊕�

i=1Ui be a decomposi-
tion of a given representation V into irreducible representations. For each i ∈ {1, . . . , k}, let
Vi be the direct sum of each Uj isomorphic to Wi. Clearly, V = V1 ⊕ · · · ⊕ Vk. This is the
canonical decomposition we have in mind:

Theorem 3.65. [91] Let V be a representation of G, we use the previous notations for the
decompositions of V . Then

— the decomposition V = V1⊕ · · ·⊕Vk does not depend on the decomposition V = ⊕�
i=1Ui

initially chosen.
— the projection pi from V to Vi associated to this decomposition is

pi =
ni

|G|
�

g∈G
χi(g)ρg

where ni (resp. χi) is the degree (resp. the character) of the (unique up to isomor-
phism) irreducible representation, that appears in Vi.

The components Vi that appear in the previous theorem are called the isotypic components
of V .

Example 3.66. ρ3 = 1 ⊕ ρ2 is the decomposition of ρ3 into isotypic components. We will
see more complicated examples in the sequel.

The case of abelian groups. We assume here that G is abelian, and we denote by �G
the set of characters of G. We have already seen that | �G| = |G| since | �G| is equal to the

number of conjugacy classes of G. We will see that �G has a group structure, and that �G is
isomorphic to G (but this isomorphism is not canonical).

Lemma 3.67. �G has a structure of group.

Proof. Since all irreducible representations of G have degree 1, they are morphisms from G
to C∗, that can be identified with their characters. Given two such representations ρ1 and ρ2,
the map

G −→ C∗

g �−→ ρ1(g)ρ2(g)

is also a linear representation of G of degree 1, and therefore a character, denoted by ρ1ρ2.
We construct similarly the inverse ρ−1 of a character. It is obvious that with these definitions
�G is a group, with identity given by the trivial character g �→ 1, simply denoted by 1.

The group �G is often called the dual of G. We are now interested in products of groups.

Lemma 3.68. If G1 and G2 are two abelian groups, then �G1×G2 is isomorphic to �G1× �G2.

Proof. Let ρ1 and ρ2 be irreducible representations of G1 and G2. We define:

ρ1 ⊗ ρ2 : (G1,G2) −→ C∗

(g1, g2) �−→ ρ1(g1)ρ2(g2)
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Straightforwardly, the map:

�G1 × �G2 : −→ �G1 ×G2

(ρ1, ρ2) �−→ ρ1 ⊗ ρ2

is a group morphism. Moreover, this morphism is injective since ρ1 ⊗ ρ2 = 1 if and only if

ρ1 = 1 and ρ2 = 1. Since the two groups �G1×G2 and �G1 × �G2 have same cardinality, it is
also an isomorphism.

Notice that it is possible to generalize the construction ρ1⊗ ρ2 for product of groups that
are not necessary abelian. The result is the tensor product of two representations, see [91,
theorem 10] for details and results. We now consider the case of a cyclic group.

Lemma 3.69. Let � ≥ 1. Then �Z/�Z is isomorphic to Z/�Z.

Proof. Let ξ denotes a primitive �-root of 1 in C, for example ξ = e2ıπ/�, where ı2 = −1.
Then the morphisms

ρj : Z/�Z −→ C∗

u �−→ ξju

form a set of � distinct representations of Z/�Z. There are well defined since ξv = ξv
�
if v and

v� are two integers equal modulo �. Hence, we have described all elements of �Z/�Z, which is
clearly generated by ρ1.

Putting all the previous lemmas together, we obtain the following result:

Theorem 3.70. Let G be an abelian group, and �G be the set of characters of G. Then �G
has a group structure, and �G is isomorphic to G.

Proof. From lemma 3.67, �G has a group structure. It follows from the structure of abelian
groups that G is isomorphic to a product Z/p1Z×· · ·×Z/p�Z (we can assume that p1| · · · |p�,
but we do not require this assumption here). By lemma 3.69, �Z/piZ is isomorphic to Z/piZ
for each i ∈ {1, . . . , �}. Applying (�− 1) times lemma 3.68 ends the proof.

We have said that this isomorphism is not canonical. Indeed, the isomorphism between a
cyclic group and its characters in lemma 3.69 is not. Contrariwise, there exists a canonical

isomorphism between an abelian group G and its bidual
��G.

Grading on C[X] given by a representation. We now fix a finite matrix group G ⊂
GLn(C), and see C[X] as a representation of G. We will see that the action of G on C[X]
induces a decomposition of C[X], indexed by the irreducible representations of G. This
decomposition will be a grading when G is abelian.

Notations 3.71. In this paragraph, we denote by X(G) the set of irreducible characters of

G. When G is abelian, this set is denoted by �G, as previously.

If f is a homogeneous polynomial of degree d and A ∈ G, fA is also homogeneous of degree
d. Therefore, G acts also on C[X]d, and C[X]d can be seen as a representation of G. For
χ ∈ X(G), we denote by C[X]d,χ the isotypic component associated to χ. The vector space
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C[X]d,1 is no more than C[X]Gd , the set of homogeneous polynomials of degree d invariant
under G. The usual decomposition of C[X] into graded components extends to:

C[X] =

+∞�

d=0

�

χ∈X(G)

C[X]d,χ =
�

χ∈X(G)

+∞�

d=0

C[X]d,χ =
�

χ∈X(G)

C[X]χ

where C[X]χ =
�+∞

d=0C[X]d,χ is the isotypic component of C[X] associated to χ.

Example 3.72. The abstract group S3 acts on C[X] = C[x1, x2, x3] through the representa-
tion ρ3 associating to σ the matrix Mσ = (mi,j)1≤i,j≤3 defined by mi,j = 1 if σ(j) = i and
0 otherwise. For example, C[X]1,C[X]2 and C[X]3 are representations of S3 of degrees 3, 6
and 10.

One can ask is Molien’s formula given in theorem 3.25 can be generalized to C[X]χ. This
is the case, since the following theorem holds:

Theorem 3.73 (Generalization of Molien’s formula). [94] Let G be a finite subgroup of
GLn(C), and χ be an irreducible character of G. Then

HSC[X]χ(z) =
nχ

|G|
�

A∈G

χ(A)

det(In − zA)

where nχ is the degree of the irreducible character χ.

Proof. The proof can be found for example in [94]. The idea of the proof is very similar to
the proof of Molien’s formula given in theorem 3.25, but uses the projection on C[X]χ instead
of the projection on C[X]1 = C[X]G given by the Reynolds Operator. This projection was
explicitly given in theorem 3.65. Notice that in the case χ = 1, this projection is exactly the
Reynolds Operator.

Example 3.74. The Molien series associated to the characters of the irreducible represen-
tations 1, � and ρ2 of S3 can be easily computed (we use the same name for an irreducible
representation and its character). We also indicate the Hilbert series of the whole ring C[X]
which is the sum of the Hilbert series associated to irreducible characters.

HSC[X]1(z) = 1
6

�
1

(1−z)3
+ 2

1−z3
+ 3

(1−z)(1−z2)

�
= 1

1−z−z2+z4+z5−z6

= 1 + z + 2z2 + 3z3 + 4z4 + 5z5 + 7z6 + 8z7 + 10z8 + 12z9 +O(z10)

HSC[X]�(z) = 1
6

�
1

(1−z)3
+ 2

1−z3
− 3

(1−z)(1−z2)

�
= z3

1−z−z2+z4+z5−z6

= z3 + z4 + 2z5 + 3z6 + 4z7 + 5z8 + 7z9 +O(z10)

HSC[X]ρ2
(z) = 2

6

�
2

(1−z)3
− 2

1−z3

�
= 2z

1−2z+z2−z3+2z4−z5

= 2z + 4z2 + 6z3 + 10z4 + 14z5 + 18z6 + 24z7 + 30z8 + 36z9 +O(z10)

HSC[X](z) = 1
(1−z)3

= HSC[X]1(z) + HSC[X]�(z) + HSC[X]ρ2
(z)

= 1 + 3z + 6z2 + 10z3 + 15z4 + 21z5 + 28z6 + 36z7 + 45z8 + 55z9 +O(z10)

Projections onto isotypic components can be used to compute explicitely bases (as C-
vector space) of isotypic components, leading to a variant of algorithm 3.11 which was able
to compute a basis of K[X]Gd = K[X]d,1 for a given d in the non-modular case, using the
Reynolds Operator.
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Example 3.75. Table 3.76 gives bases of isotypic components of C[x1, x2, x3]d under the
action of S3 (given by the representation ρ3). The second column describes the decomposition
of C[x1, x2, x3]d as a direct sum of irreducible components (isomorphic to 1, � or ρ2). The
last column describes a triangular basis of each isotypic component. Monomials are sorted
by grevlex ordering with x1 � x2 � x3 and two polynomials in the basis have distinct leading
monomial. Since ρ2 has degree 2, for each ρ2 appearing in the decomposition of C[x1, x2, x3]d
in irreducible representations, there are two polynomials in the basis of C[x1, x2, x3]ρ2,d. These
dimensions are coherent with the first terms of the partial fraction expansions of the series
HSC[X]χ given in the previous example.

3.1.5 Estimates of Dimensions of Isotypic Components

In this subsection, we use previous generalization of Molien’s formula to give estimates of
the numbers dim(C[X]χ,d) where G is a finite matrix group and χ is an irreducible character
of G. These estimates will be useful in chapter 4, in order to study the complexity of variants
of the F5-algorithm 1.44. Since we will be interested in the ratios between dim(C[X]χ,d)
and dim(C[X]d) and also between ⊕D

d=0 dim(C[X]χ,d) and ⊕D
d=0 dim(C[X]d), the following

definition will be useful:

Definition 3.77. We define the density of C[X]χ,d in C[X]d and the density of C[X]χ in
C[X] by

Δ(C[X]χ,d) =
dim(C[X]χ,d)

dim(C[X]d)
and Δ(C[X]χ) = lim

D→+∞

�D
d=0 dim(C[X]χ,d)�D
d=0 dim(C[X]d)

Notice that it is yet unclear that the limit is well-defined. This will be proved below.

We are particularly interested in the cases where Δ(C[X]χ,d) has a limit when d grows to
infinity. The following theorem is the most important of this subsection.

Theorem 3.78. Assume that the matrix group G contains no uniform scalings except In.
Then the density Δ(C[X]χ,d) has the limit n2

χ/|G| when d grows up to infinity, where nχ is
the degree of χ.

Proof. The idea is to use the generalized Molien’s formula given in theorem 3.73. The Hilbert
series of C[X]χ can be written:

HSC[X]χ(z) =
nχ

|G|
�

A∈G

χ(A)

det(In − zA)

Since we assumed that there are no uniform scalings inG except In, the previous meromorphic
series has 1 as unique pole of order n, the other poles u are also n-roots of 1, since they satisfies
u|G| − 1 = 0, but have smaller orders. We are interested in an asymptotic estimation of the
coefficient in zd in HSC[X]χ . Following the ideas of [46, Theorem 4.9, p.256], the fraction
expansion of HSC[X]χ can be written as

HSC[X]χ(z) =
nχ χ(In)

|G|(1− z)n
+
�

p∈P

n−1�

r=0

cu,r
(u− z)r
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d Decomposition of C[X]d Bases of C[X]d,χ

0 1 1 1

1 1⊕ ρ2

1 x1 + x2 + x3

ρ2
x1 − x3

x2 − x3

2 2× 1⊕ 2× ρ2

1
x21 + x22 + x23

x1x2 + x1x3 + x2x3

ρ2

x21 − x23
x1x2 − x2x3

x22 − x23
x1x3 − x2x3

3 3× 1⊕ �⊕ 3× ρ2

1

x31 + x32 + x33
x21x2 + x1x

2
2 + x21x3 + x22x3 + x1x

2
3 + x2x

2
3

x1x2x3

� x21x2 − x1x
2
2 − x21x3 + x22x3 + x1x

2
3 − x2x

2
3

ρ2

x31 − x33
x21x2 − x1x

2
3

x1x
2
2 − x2x

2
3

x32 − x33
x21x3 − x2x

2
3

x22x3 − x1x
2
3

4 4× 1⊕ �⊕ 5× ρ2

1

x41 + x42 + x43
x31x2 + x1x

3
2 + x31x3 + x32x3 + x1x

3
3 + x2x

3
3

x21x
2
2 + x21x

2
3 + x22x

2
3

x21x2x3 + x1x
2
2x3 + x1x2x

2
3

� x31x2 − x1x
3
2 − x31x3 + x32x3 + x1x

3
3 − x2x

3
3

ρ2

x41 − x43
x31x2 − x1x

3
3

x21x
2
2 − x22x

2
3

x1x
3
2 − x2x

3
3

x42 − x43
x31x3 − x2x

3
3

x21x2x3 − x1x2x
2
3

x1x
2
2x3 − x1x2x

2
3

x32x3 − x1x
3
3

x21x
2
3 − x22x

2
3

Table 3.76 – Bases of isotypic components of C[x1, x2, x3]d under the action of S3 for d ≤ 4
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where P is the set of poles of HSC[X]χ and cu,r, γ ∈ C. Now let u be a complex of modulus 1
and r ≥ 1. Then

[zd]
1

(u− z)r
= [zd]

ur

(1− zu)r
= ur+d

�
d+ r − 1

r − 1

�
=

d→+∞
ur+ddr−1

(r − 1)!
+ o(dr−1)

Furthemore, χ(In) = nχ, since the representation of In in the irreducible representation
associated to χ is the identity matrix of size nχ × nχ (see proposition 3.58). Hence, the term
of main order of [zd]HSC[X]χ(z) is given by

[zd]
n2
χ

|G|(1− z)n
=

n2
χ d

n−1

|G|(n− 1)!
+ o(dn−1).

Since the Hilbert series of the whole ring C[X] is simply HSC[X](z) = 1/(1 − z)n, it follows
that

Δ(C[X]χ,d) =
dim(C[X]χ,d)

dim(C[X]d)
=

[zd]HSC[X]χ,d
(z)

[zd]HSC[X](z)
−→

d→+∞

n2
χ

|G|

Example 3.79. The representations 1 and � of S3 have degree 1, and ρ2 degree 2. Since there
are no uniform scalings in the representation of S3 (given by ρ3) acting on C[X], theorem 3.78
holds. Figure 3.80 presents the 50 first terms of HSC[X]χ for χ ∈ {1, �, ρ2}. We see that

lim
d→+∞

dimC(C[X]1,d)

dimC(C[X]d)
= lim

d→+∞
dimC(C[X]�,d)

dimC(C[X]d)
=

1

6
� 0.167 and

lim
d→+∞

dimC(C[X]ρ2,d)

dimC(C[X]d)
=

22

6
� 0.667,

according to theorem 3.78.
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Figure 3.80 – Ratios between dimC(C[x1, x2, x3]χ,d) and dimC(C[x1, x2, x3]d) for S3
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Remark 3.81. The previous theorem does not hold if uniform scalings other than In belong
to G: for example, if n = 2 and G is the group of order 4 generated by the diagonal matrices
having diagonal coefficients in {±1}, C[X]1 = C[x2, y2], and HSC[X]1(z) = (1− z2)−2 has all
its odd coefficients equal to zero. But for even d, dim(C[X]1,d) is roughly half of dim(C[X]d),
so in average we recover the factor 1/4 = 1/|G|. This idea leads to proposition 3.83.

It is very interesting to see that the previous theorem allows us to recover a famous result
of representation theory.

Remark 3.82. Since C[X]d = ⊕χ∈X(G)C[X]χ,d, we can derive from the previous theorem

that
�

χ∈X(G) n
2
χ = |G|, at least when there are no uniform scalings in G other than In. This

result can be extended without hypothesis on G, since it depends only on the structure of the
underlying abstract group.

We now prove that the density of C[X]χ in definition 3.77 is well-defined, and give its
value.

Proposition 3.83. With nχ the degree of the character χ, the following relation holds.

Δ(C[X]χ) = lim
D→+∞

�D
d=0 dim(C[X]χ,d)�D
d=0 dim(C[X]d)

=
n2
χ

|G|

Proof. FromG, we construct the group �G ⊂ GLn+1(C), the elements of which are the matrices

�A =

�
A 0

0 1

�

for all A ∈ G. Due to the coefficient 1 in the bottom right corner of each matrix of �G, there
are no uniform scalings in �G except In+1. Moreover, �G acts on the polynomial ring C[X,h] =
C[x1, . . . , xn, h], where h is a new indeterminate. By applying theorem 3.78, we obtain that

Δ(C[X,h]χ,D) has the limit n2
χ/| �G| when D grows up to infinity. For m = Xα =

�
xαi
i a

monomial in x1, . . . , xn and β ≥ 0, it follows by definition of �G that (mhβ)
�A = mAhβ for

all A ∈ G. Thus, the actions of G and �G on C[X] and C[X,h] are compatible with the

isomorphism between G and �G. Hence, C[X,h]χ,D � ⊕D
d=0C[X]χ,d. Therefore,

�D
d=0 dim(C[X]χ,d)�D
d=0 dim(C[X]d)

=
dim(C[X,h]χ,D)

dim(C[X,h]D)
= Δ(C[X,h]χ,D) −→

D→∞

n2
χ

|G|

and the proposition is proved.

We now give applications to particular cases, that will be used later to explain the com-
plexity of variants of the Matrix-F5 algorithm 1.44.

Corollary 3.84. Theorem 3.78 and proposition 3.83 apply in particular in the case where
G is abelian. In this case, X(G) = �G � G and all nχ are equal to 1. Therefore, when
no uniform scalings other than In lie in G, the dimensions of C[X]χ,d tend to be equally
distributed when d grows to infinity. This is also the case without hypothesis on G for the
dimensions of ⊕D

d=0C[X]χ,d. In the same way, for any group G, the trivial character 1 has
degree 1. Therefore, the density Δ(C[X]1,d) = Δ(C[X]Gd ) has the limit 1/|G| when d grows to
infinity if there are no uniform scalings in G, and Δ(C[X]1) = Δ(C[X]G) = 1/|G| without
hypothesis on G.
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All the results presented in this subsection have been stated with K = C. However,
representations and characters can be defined on any field. In section 4.2, we will need the
results on the estimates of dimensions of the isotypic components on any field, assuming that
G is a group of diagonal matrices. For these groups, the linear maps of projections on an
isotypic component (see theorem 3.65) have their eigenvectors given by monomials (this will
be proved in section 4.2). The associated eigenvalues are either roots of 1 or zero. Therefore,
considering a lifting of the group into GLn(C) allows us to extend the generalization of Molien’s
formula 3.73 and the estimates of dimensions of isotypic components 3.78 and proposition 3.83
to the case of diagonal matrix groups.

For other groups, it is not easy to extend the results of linear representations on other
fields than C, see [91].

3.2 Monomial Algebras

In this section, we are interested in describing some properties of subalgebras generated by
monomials, which is the algebraic context of chapter 5. We will allow here subalgebras A of
the algebra of Laurent polynomials K[x±1

1 , . . . , x±1
n ] instead of K[x1, . . . , xn], but with restric-

tive conditions: the monomials lying in the subalgebra form a semigroup with no non-zero
invertible elements. Therefore, the algebra is closer to K[x1, . . . , xn] than to K[x±1

1 , . . . , x±1
n ].

Affine semigroups. The basic underlying algebraic objects corresponding to monomials in
classical polynomial rings are affine semigroups. We always consider them embedded in Zn.

We refer the reader to [78, 26, 49, 13] for a more detailed presentation of this background
material. First, we describe the main notations that will be used throughout chapter 5.

Definition 3.85. An affine semigroup S is a finitely-generated additive subsemigroup of
Zn for some n ∈ N containing 0 ∈ Zn and no nonzero invertible element: for all s, s� ∈
S \ {0}, s+ s� �= 0.

Depending on the articles on this topic, the condition “S contains no invertible element”
is not always included in the definition of an affine semigroup. However, this is a necessary
condition for the algorithms that we will see in chapter 5.

Definition 3.86. Let gp(S) denote the smallest subgroup of Zn containing S. Then S is
called normal if S = {s ∈ gp(S) | ∃c ∈ N, c · s ∈ S}.

We always assume implicitly that gp(S) ⊂ Zn is a full rank lattice (this does not lose any
generality since this case can be reached by embedding S in a lower dimensional Zn�

).
An important feature of normal affine semigroups is that they can be represented by the

intersection of Zn with a pointed rational polyhedral cone (also called strongly convex rational
polyhedral cone [81, Sec 1.1]).

Definition 3.87. A cone C ⊂ Rn is a convex subset of Rn stable by multiplication by R+,
the set of non-negative real numbers. The dimension dim(C ) of a cone C is the dimension of
the linear subspace spanned by C . A cone is called pointed if it does not contain any line. A
pointed cone of dimension 1 is called a ray. A ray is called rational if it contains a point in
Zn. A rational polyhedral cone is the convex hull of a finite number of rational rays. Pointed
rational polyhedral cones will be abbreviated PRPC.

We shall use PRPCs in Section 5.2 to define admissible monomial orderings in semigroup
algebras (see definition 3.93.)
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Proposition – Definition 3.88. Any affine semigroup has a unique minimal set of gener-
ators, called the Hilbert basis of S and denoted by Hilb(S).

Proof. [78, Prop. 7.15] Since S can be represented by the intersection of Zn with a PRPC C ,
we assume that S = C ∩Zn. Then, S can be partially ordered by a ≤ b if b− a ∈ S, and we
denote by Hilb(S) a subset of generators of S, that are minimal in S\{0} with respect to this
partial order. Since C is pointed, there exists w ∈ Zn such that w.a > 0 for all a ∈ S\{0}.
By induction on the quantity w.a, we show that every a ∈ S is a N-linear combination of
elements in Hilb(S). But these elements cannot be written in a nontrivial way as N-linear
combination of elements of S, therefore Hilb(S) is a unique minimal set of generators.

Also, the term “Hilbert basis” is sometimes reserved for affine semigroups of the form
C ∩ Zn where C is a rational cone (see e.g. the discussion after [78, Prop. 7.15]). We now
recall the definition of simplicial affine semigroups, which will play a crucial role in chapter 5,
in order to design a variant of the FGLM algorithm 1.52 for solving systems of polynomials
in monomial algebras.

Definition 3.89. A PRPC C in Rn is said to be simplicial if it is the convex hull of n linearly
independent rays.

Remark 3.90. If n = 2, all PRPCs are simplicial. This is not the case if n ≥ 3: for instance
the convex hull of the rays generated by (1, 0, 0), (0, 1, 0), (0, 0, 1) and (1, 1,−1) is a PRPC
which is not simplicial.

Definition 3.91. An affine semigroup S ⊂ Zn is called simplicial if the convex hull of R+S
is a simplicial PRPC.

Example 3.92. Nn ⊂ Zn is simplicial, while the affine semigroup generated by (1, 0, 0),
(0, 1, 0), (0, 0, 1) and (1, 1,−1) in Z3 is not.

Semigroup algebras. To a semi-group, we can associate a monomial algebra, which is the
subject of the following definition.

Definition 3.93. Let K be a field, and S be a semi-group. We denote by K[S] the associated
semigroup algebra of finite formal sums

�
s∈S asX

s where as ∈ K. An element Xs ∈ K[S] is
called a monomial.

Since S is contained in Zn, the semi-group algebra K[S] is a subalgebra of the algebra
of Laurent polynomials K[x±1

1 , . . . , x±1
n ]. Note that K[Nn] is the classical polynomial ring

K[X] = K[x1, . . . , xn]. Semigroup algebras are integral domains [78, Thm. 7.4] of Krull
dimension n and play an important role in toric geometry: they are precisely the coordinate
rings of affine toric varieties. The normality of the semigroup S is an important property,
which has the following consequence.

Theorem 3.94 (Hochster). If S is normal, then K[S] is a Cohen-Macaulay algebra.

Proof. The proof is long and technical, see [56].

We now contruct from a finite set of points in Zn two semigroups and the associated
monomial algebras.
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Notations 3.95. From now, we use the letter M to denote a finite subset of Zn such that
0 ∈ M and such that the semigroup SM generated by M contains no nonzero invertible
element. To such a set M, we associate another semi-group than SM, namely the affine

semigroup generated by {(α, 1) | α ∈ M} ⊂ Zn+1, denoted by S
(h)
M . The semigroup algebra

K[S
(h)
M ] is N-graded : the degree of a monomial X(s1,...,sn,d) is d ∈ N. The vector space

of homogeneous elements of degree d ∈ N in K[S
(h)
M ], namely the linear combinations of

monomials of degree d, is denoted by K[S
(h)
M ]d.

With this grading, K[S
(h)
M ] is generated by its elements of degree 1: such a graded algebra

is said to be homogeneous.
Another important family of objects are projective toric varieties. Their homogeneous

coordinate rings are associated to a lattice polytope, which we shall assume to be normal
in order to ensure that the coordinate ring is Cohen-Macaulay. As in the classical case,
homogeneity is a central concept to analyze the complexity of Gröbner bases algorithms. All
lattice polytopes will be assumed full dimensional.

Definition 3.96. A lattice polytope P ⊂ Rn is the convex hull of a finite number of points
in Zn. Its normalized volume, i.e. n! times its Euclidean volume, is denoted by vol(P) ∈ N.

Example 3.97. — We let Δn ⊂ Rn denote the standard simplex, namely the convex
hull of 0 and of the points ei ∈ Rn whose entries are zero except for the i-th coefficient
which is equal to 1. The Euclidian volume of Δn is 1

n! , therefore its normalized volume
is 1.

— Let P be the convex hull of the three points (0, 0), (2, 1) and (1, 2) in R2. This triangle
has Euclidian volume (area) 3

2 and therefore its normalized volume is 3.

To a lattice polytope P ⊂ Rn is associated the affine semigroup S
(h)
P∩Zn ⊂ Zn+1 generated

by {(α, 1) | α ∈ P ∩Zn}. The polytope P is called normal if S
(h)
P∩Zn is a normal semigroup.

The associated semigroup algebra is called a polytopal algebra and will be abbreviated K[P].

If P ⊂ Rn is a lattice polytope containing 0 as a vertex, then K[P] = K[S
(h)
P∩Zn ] (nota-

tions 3.95).
Also, note that if P � is a translation of P, then the homogeneous algebras K[P] and

K[P �] are isomorphic. Consequently, we shall assume without loss of generality in the sequel
that one of the vertices of P is the origin, so that M = P ∩ Zn verifies the assumptions of
notations 3.93. We also introduce a few more notations and definitions for lattice polytopes:

Notations 3.98. Let P, P1 and P2 be three lattice polytopes of Rn.
— The number of lattice points in P ( i.e. the cardinality of P ∩Zn) is denoted by #P.
— The Minkowski sum of the lattice polytopes P1,P2 ⊂ Rn is the lattice polytope {p1 +

p2 | p1 ∈ P1, p2 ∈ P2}.
— For all � ∈ N we write � · P for the Minkowski sum P + · · ·+ P with � summands.
— For P1 ⊂ Ri,P2 ⊂ Rj we write P1 ×P2 ⊂ Ri+j for the lattice polytope whose points

are {(p1, p2) | p1 ∈ P1, p2 ∈ P2}.

Example 3.99. — With this definition, #Δn = n+1. For the polytope P defined in the
previous example, namely the convex hull of (0, 0), (1, 2) and (2, 1) we have #P = 4
since P contains the point (1, 1).

— The Minkowski sums 2P and 3P are drawn on figure 3.100.
— The standard simplex Δn can be seen as the product of n copies of Δ1: Δ1 × · · · ×Δ1.
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x

y

Figure 3.100 – P, 2P and 3P.

Ehrhart polynomial. Next, we recall several useful classical properties of polytopal alge-
bras. The main object is the Ehrhart polynomial associated to a lattice polytope, and the
associated power series.

Definition 3.101. Let P ⊂ Rn be a lattice polytope. For d ∈ N, we let HPP ∈ Q[d] denote
the Ehrhart polynomial of P, i.e. HPP(d) = #(d ·P). Also, let HSP(z) ∈ Z[[z]] denote the
generating series

HSP(z) =
∑

d∈N
HPP(d)zd.

Example 3.102. Consider the standard simplex ∆n defined in example 3.97. Then

HP∆n(d) =

(
n+ d

d

)
and HS∆n =

1

(1− z)n+1

Notice that the generating series HSP is equal to the generating series HSK[P](z) =∑+∞
d=0 dim(K[P]d)z

d (notations 3.95). The shape of this series is well known, since the fol-
lowing proposition holds.

Proposition 3.103. Let P be a lattice polytope in Rn. There exists a polynomial Q ∈ Z[z],
of degree less than or equal to n, with non-negative coefficients such that

HSP(z) =
Q(z)

(1− z)n+1

Proof. The fact that the map HPP : d �→ #(d · P) is a polynomial of degree n is a classical
result by Ehrhart [29], which dates back to 1962. It follows that the series HSP(z) has
the desired shape Q(z)/(1 − z)n+1, with Q a polynomial of degree less than or equal to n.
The fact that Q has non-negative integer coefficients is Stanley’s non-negativity theorem [95,
Thm. 2.1].
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Example 3.104. For the polytope P ⊂ R2 defined in example 3.97, it is easy to see that

#0 · P = 1, #1 · P = 4 and #2 · P = 10. Therefore HSP(z) = 1+z+z2

(1−z)3
. We can derive

explictely a formula for the Hilbert polynomial: HPP(d) = 3d2+3d+2
2 . In particular, HPP(3) =

19, according to figure 3.100.

Integer interior points. We have seen how to describe the number of integer points lying
in d ·P, with P a lattice polytope and d ≥ 0. An other interesting combinatorial number is
related to interior points.

Definition 3.105. Let P be a lattice polytope in Rn. An integer interior point of P is a
lattice point of Zn lying in the interior of P, defined by the classical topology of Rn.

Example 3.106. For d ∈ {0, . . . , n}, d ·Δn has no integer interior points, but (n+1)Δn has
(1, . . . , 1) as unique integer interior point.

We denote by HPP◦(d) the number of integer interior points in d · P. Since HPP :
d �→ #(d · P) is a polynomial function, it can be extended to negative integers. MacDonald
reciprocity law [76] is a beautiful formula, which relates HPP and HPP◦ .

Proposition 3.107 (Ehrhart-MacDonald reciprocity). [76] Let P be a lattice polytope in
Rn. Then, for all d > 0,

HPP◦(d) = (−1)n HPP(−d)
Example 3.108. — We have seen that HPΔn(d) =

�
d+n
n

�
, which can be also written

HPΔn(d) =
(d+ 1)(d+ 2) · · · (d+ n)

n!

The Ehrhart-MacDonald reciprocity gives us the following writing for HPΔ◦
n
:

HPΔ◦
n
(d) =

(d− 1)(d− 2) · · · (d− n)

n!
= HPΔn(d− n− 1)

which is not a surprise, since there are no integer interior points in d·Δn for 0 < d ≤ n
and the integer interior points of d·Δn form a simplex equal to (1, . . . , 1)+(d−n−1)·Δn

if d is greater than or equal to n+ 1.

— For the polytope P ⊂ R2, it follows from HPP(z) = 3d2+3d+2
2 that HPP◦(d) =

3d2−3d+2
2 , according to figure 3.100.

Castelnuovo-Mumford regularity. The Castelnuovo-Mumford regularity of a graded
module is an important measure of its “complexity”: it is related to the degrees where its
local cohomology modules vanish. We refer to [12, Ch. 15] for a detailed and general presen-
tation. We define it here only in the case of a polytopal algebra:

Definition 3.109. [12, 30, 13] Let K[Y ] = K[y1, . . . , yr] and

0 −→ Es −→ · · · −→ E1 −→ K[Y ] −→ K[P] −→ 0

be a finite minimal free resolution of K[P] as a graded K[Y ]-module, where Ei are graded
finitely generated K[Y ]-modules. Let bi be the maximum degree of the generators of Ei, for i
in {1, . . . , s}. Then, the Castelnuovo-Mumford regularity of K[P] is the number

reg(K[P]) = max{bi − i | i ∈ {1, . . . , s}}
which does not depend on the chosen minimal finite free resolution.
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The following classical proposition relates the regularity with a combinatorial property of
the polytope P and with the degree of the numerator of HSP :

Proposition 3.110. [13, Sec. 5.4] Let P be a normal lattice polytope. The regularity
reg(K[P]) is equal to n − d + 1, where d is the smallest integer such that d · P contains
an integer point in its interior.

Example 3.111. Since the smallest positive integer d such that d · Δn contains an integer
interior point is n + 1, reg(K[Δn]) = 0. The polytope P ⊂ R2 defined by the convex hull
of (0, 0), (2, 1) and (1, 2) contains (1, 1) as integer interior point, therefore its regularity is
2− 1 + 1 = 2.

Corollary 3.112. With the same notations as in Proposition 3.103, deg(Q) = reg(K[P]).

Proof. From proposition 3.103, we know that HSP(z) = Q(z)
(1−z)n+1 with Q ∈ Z[z] of degree less

than or equal to n. The partial fraction expansion of HSP can be written

HSP(z) =
n+1�

�=n+1−deg(Q)

a�
(1− z)�

with an+1−deg(Q) �= 0

=
n+1�

�=n+1−deg(Q)


 a�
(�− 1)!

+∞�

i=0

�−1�

j=1

(i+ j)zi




Then we obtain the equality HPP(d) =
�n+1

�=n+1−deg(Q)
a�

(�−1)!

��−1
j=1(d + j), and hence d =

n − deg(Q) + 1 is the smallest positive integer such that HPP(−d) �= 0. It follows from
the Ehrhart-MacDonald reciprocity (proposition 3.107) that d = n − deg(Q) + 1 is also the
smallest positive integer such that d ·P contains an integer interior point. Proposition 3.110
concludes the proof.

Example 3.113. We have seen that HSΔn(z) = 1
(1−z)n+1 . The degree of 1 is zero, and is

equal to the regularity of K[Δn], according to the previous corollary. For the polytope P ⊂ R2

seen previously, we have proved that HSP(z) = 1+z+z2

(1−z)3
. Hence the degree of the numerator

matches the regularity of P.
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Chapter 4

Solving systems with symmetries

This chapter is the main chapter of this thesis, and contains all the contributions in-
volving polynomial systems with symmetries. It is divided into three sections, each of these
corresponding to an article already published or that will be submitted separately.

Introduction

In this chapter, we are interested in solving problems with symmetry. The aim is to study
such systems and their applications in the viewpoint of symbolic computations and more
precisely Gröbner bases. The different questions that we want to answer can be summarized
in:

— How can the algebraic structure given by the symmetry be used to obtain algorithmic
improvements ?

— Given one possible symmetry, what is the complexity of solving a generic system having
this symmetry ?

— Which systems can become solvable by taking their symmetry into account ?

What does symmetry mean ?

We focus on problems with symmetry given by the action of a finite group. Let (f1, . . . , fs)
be polynomials in K[X] = K[x1, . . . , xn], and G ⊆ GLn(K) be a finite matrix group. G acts
on the affine space Kn and also on the vector space (Kn)∗ of linear forms on Kn, that can
be identified with SpanK(x1, . . . , xn). For A ∈ G, we denote by fA the polynomial f(A.x),
where x = t(x1, . . . , xn). Let I be the ideal �f1, . . . , fs� and VK(I) be its associated variety
(we refer to chapters 1 and 3 for precisions). The distinct cases of symmetries examined in
this chapter are the following:

Stable Variety: V is said to be stable (or invariant) under the action of G, which means
that:

∀x ∈ VK(I) ∀A ∈ G A.x ∈ VK(I)

It is difficult to take the symmetry into account in this case, since there is no algebraic
hypothesis on the action of G on I. However, if K is algebraically closed, or if VK(I), the
variety of I in the algebraic closure of K is also G-stable, we see with help of Hilbert’s
Nullstellensatz, that for all f ∈ I and for all A ∈ G, fA belongs to

√
I, the radical of I.

Since VK(I) = VK(
√
I), this case can be reduced to the following one.

93
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Stable Ideal: The ideal I is said to be globally stable (or invariant) under the action of G
(G-stable), if

∀f ∈ I ∀A ∈ G fA ∈ I
This case is the most important one, but there is no general strategy to solve a system
generating a stable ideal. Note that, since G is a finite group, the set {fA

i | 1 ≤ i ≤ s et A ∈
G} is a finite set of generators of I, which is stable under the action of G. Hence, up to
increase the number of generators, we can always assume that they form a G-stable set.

Semi-stable equations. The ideal I is said to be generated by semi-invariant equations if

∀i ∈ {1, . . . , s} ∀A ∈ G fA
i = ξifi

where ξi ∈ K for all i. Since the group G is finite, ξi is necessarily a root of 1. This is a
subcase of the previous one.

Stable Equations: One interesting subproblem of the previous case is the following: I =
�f1, . . . , fs� is generated by individually invariant equations under the action of G, which
means that:

∀i ∈ {1, . . . , s} ∀A ∈ G fA
i = fi

In this case, it is possible to work in the ring of invariant polynomials under the action of G,
denoted by K[X]G = K[x1, . . . , xn]

G. The structure of this ring goes back to work of Hilbert
and has been intensively studied, see chapter 3.

We now detail the distinction between modular and non-modular cases. The action of G on
I is said to be modular if the base field K has a positive characteristic which divides the order
of the group G, and non-modular otherwise. The invariant theory of finite groups is much
better understood in the non-modular case. Therefore, when speaking about a problem with
symmetries in the sequel, we will have to distinguish modular and non-modular cases.

Organization of the chapter

We present here briefly the three sections of the chapter.

An action of Sn and application to the Vortex Problem. This section presents
a strategy that takes advantage of the action of the symmetric group SN , acting through a
block-diagonal representation on several sets of N variables, in order to solve a polynomial
system leading to a stable ideal. This action generalizes the classical action of the symmetric
group SN on a set of N variables. This kind of problem is motivated by applications to
physics/biology problems, and we apply our algorithms to the Vortex Problem in the plane:
the goal is to solve in the complex plane the following equations:

z̄i =

n�

j=1,j �=i

1

zi − zj
∀i ∈ {1, . . . , n}

where z̄i denotes the complex conjugate of zi. These equations are related to the central
configurations of vortices. After reformulating the equations to obtain polynomials, we obtain
an ideal in the ring Q[z1, . . . , zn, Z1, . . . , Zn], globally invariant under SN acting on both
sets of variable {zi}, {Zi}. Since we want to obtain the variety in the Zariski-open subset
∩i�=j{zi �= zj} we can obtain individually invariant equations by applying several times divided
differences to the equations. The system satisfies also a rational parametrization assumption,
which allows us to reformulate the system, in order to obtain invariant equations involving
only the first block of variables (zi). In this case, the invariant ring Q[z1, . . . , zn]

Sn is equal
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to Q[e1, . . . , eN ] where ei is the i-th symmetric function of the (zj). Consequently, the next
step is to rewrite the equations in terms of the (ei), and solve the system. Finally, we have
to remove some spurious solutions to recover all the central configurations.

Abelian groups and G-stable ideals. This section presents an approach to compute
Gröbner bases of ideals globally invariant under the action of a matrix group G generated
by diagonal matrices in the non-modular case. This approach can be used to solve systems
invariant under every abelian group after a change of variables. The idea is that the action
of the group G induces a grading on the ring K[X] = K[x1, . . . , xn]. This grading allows us
to obtain semi-stable equations instead of a stable ideal. Then, it can be used to split the
Macaulay matrices arising during the computation of a Gröbner basis by use of linear algebra.
The grading can be also used to split matrices arising in the FGLM algorithm. We suggest
implementations in Magma/C and prove that this approach gives a gain of |G|ω (resp |G|2)
while using our new abelian version of F5 (resp FGLM) algorithm, instead of the classical
versions.

SAGBI bases and invariant equations. In this section, we extend the results of
Faugère and Rahmany in [41]. The aim is to propose new algorithms to solve systems of
equations, which are individually invariant under the action of a group (Stable Equations).
In [41], the authors proposed algorithms when G is a subgroup of the permutation group
Sn. We suggest algorithms that can be applied with every group: all we have to know is a
basis of K[X]Gd , the component of homogeneous invariants of degree d. Moreover, we derive
complexity bounds and give new approachs to remove spurious solutions that can appear
during the computations.
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4.1 Solving polynomial systems globally invariant under an
action of the symmetric group. Application to the Vortex
Problem

Introduction

This work is a common work with Jean-Charles Faugère and whas published in the pro-
ceedings of the ISSAC’ 12 conference.

Problem Statement. In this section, we study the case of a stable ideal under the action
of a finite group. The aim is to propose an efficient method to solve such problems assuming
that the group is the whole symmetric group. To illustrate the algorithm and to demonstrate
its efficiency, we apply the method to a well known physical problem called equilibria positions
of vortices. Here, our problem generalizes the techniques used in the paper [40] dealing with
the membrane inclusions curvature equations in biology, because it involves several groups of
variables.

Vortex Problem. The problem of finding and classifying all relative equilibria of N -point
vortices in the plane is of long-standing interest. In the plane, attacks on the problem date
back to the 1800s with the works of von Helmholtz [54] and later in the works by Thomson [66]
(the later Lord Kelvin). A complete bibliography of papers on the subject can be found in [77]
or [2]. Several families of equilibria have been found [2] and other solutions have been found
numerically, see [28]. More generally, the problem of equilibria on manifolds with different
potentials has been studied by Albouy [1].

In the planar case, the problem is equivalent to solving the following algebraic system (in
the following Z symbolizes the complex conjugate of z):

Zi =

N�

j=1,j �=i

1

zi − zj
.

Main results and organization of the section. In this section we describe a general
algorithm and for each step we apply it to the equilibria of N -point vortices. The proposed
algorithm is a three-step process:

1. We apply many times divided difference operators (see subsection 4.1.2) to the original
system in order to obtain a new system of equations involving only invariant equations.
For instance, the four-vortex problem is equivalent to

r0 = s1 = r1 − 6 = r2 = 2 r3 + 5 s2 = 0

where rk =
�

i Zi z
k
i and sk =

�
i z

k
i is the Newton sum.

2. As explained in subsection 4.1.3, the second step is to eliminate all the variables but the
zi. For that purpose, we require that the algebraic system fulfils the parameterization
assumption (see definition 4.20). We derive a new system of equations involving only
the symmetric functions of a subset of the variables. For instance, for the 4-vortex
problem we obtain the symmetric system

e3(e
2
2 + 12e4)

2 = e2(e
4
2 − 16e22e4 + 9e2e

2
3 + 48e24) = 0.
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3. The last step consists simply in solving the symmetric equations using standard Gröb-
ner bases techniques.

The organization of the section is as follows: we first present the vortex problem, and then
successively explain the three points explained above. At the end of the section, we present
timings that illustrate the efficiency of the approach on the vortex problem.

Applied to the vortex problem, our method has three advantages over previous methods:

1. In theory, it is possible to solve directly the original equations. However, when N = 5,
it takes several days to compute the Gröbner basis and the number of solutions is
2060. By contrast, applying the new algorithm to the same problem gives rise to a
system with 17 solutions that can be solved in less than 0.1 sec. The case N = 7 can
be completely solved in about 20 minutes.

2. We are sure to find all the solutions, so we give a certificate for the previous numerical
solutions. For N ≥ 5, it is completely new.

3. Two distinct solutions could be so close, that 300 digits are needed to be sure that
they are distinct, see [28] for example. With exact computations, the solutions appear
to be distinct without further computations.

Since we are using only exact computations, our algorithm gives computational proofs of
the solutions of the vortex problem.

4.1.1 Vortex Problem

4.1.1.1 Physical equations and first steps

We start with the equations of motion for the N -body problem:

∂2ri(t)

∂t2
=
�

j �=i

mjU
�(sij(t))(ri(t)− rj(t)) for i = 1, . . . , N (4.1)

where mi and ri, are respectively the mass and the position vector (relative to the center
of mass) for the i-th particle, sij = |ri − rj |2 is the square of the distance between particles i
and j and U(s) is the potential function such that U �(s) = sa for some real value a. Without
loss of generality, we can assume that the center of mass is at the origin. Usually the potential
is one of the two well known potentials:

a potential

Newton −3/2 U(r) = r−
1
2

Vortex −1 U(r) = log(r)

We are interested in solutions in the planar case. Moreover, we assume that all the masses
(vortices) are equal (that is to say mi = 1) and that the potential is the logarithmic one.

A central configuration is a configuration of bodies such that the acceleration vector for
each body is a common scalar multiple of its position vector:

∂2ri(t)

∂t2
= λ(t)ri(t) where λ(t) ∈ R (4.2)

Central configurations are of interest for a variety of reasons: to every central configuration
corresponds an homothetic solution, which is a solution that retains its shape for all time,
while expanding, contracting and rotating around the center of mass.
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We identify the real plane R2 with the complex plane C. As we will see, in the planar
case, it is easier to work with complex positions zi = xi + ı yi = ri. Hence si,j = |ri − rj |2 =
(zi− zj) (z̄i− z̄j) where z̄ is the complex conjugate of z. Combining equations (4.1) and (4.2)
we obtain:

λzi =
�

j �=i

(zi − zj)

(zi − zj) (z̄i − z̄j)
=
�

j �=i

1

z̄i − z̄j
(4.3)

Observe that the dependance on t has been removed, since the solutions of (4.3) depend
only on λ. The value of λ is easy to recover from a solution (z1, . . . , zN ), since the following
property holds:

Proposition 4.1. If (z1, . . . , zN ) is a solution of equation (4.3), 2λ
�N

i=1 |zi|2 = N (N − 1).

Proof. Let i ∈ {1, . . . , N}. Then, by equation (4.3),

λ|zi|2 = λziz̄i =
�

j �=i

z̄i
z̄i − z̄j

=
�

j �=i

�
1 +

z̄j
z̄i − z̄j

�
= (N − 1)−

�

j �=i

z̄j
z̄j − z̄i

Hence, by summing over the index i, we obtain

N�

i=1

λ|zi|2 = N(N − 1)−
N�

i=1

�

j �=i

z̄j
z̄j − z̄i

= N(N − 1)−
N�

i=1

λ|zi|2

and the conclusion follows.

By summing over the index i, we see that
�

zi = 0 (the center of mass is at the origin), so
the first symmetric function of the zi is equal to zero. Observe that (z1, . . . , zn) is solution of
equation 4.3 if and only if (z̄1, . . . , z̄n) is. Hence, we have to solve the N following equations

λz̄i =
N�

j=1,j �=i

1

zi − zj
(Ei,λ)

Moreover, since λ > 0 by proposition 4.1, we observe that (Ei,λ) can be rewritten:

√
λz̄i =

N�

j=1,j �=i

1√
λzi −

√
λzj

Hence, the uniform scaling by
√
λ realizes a one-to-one mapping between the solutions of

(Ei,1) and (Ei,λ). Therefore, we can assume that λ = 1 and recover the original solutions

by multiplying the solutions of (Ei) = (Ei,1) by
√
λ. In summary, the central configuration

problem is equivalent to solve the N equations:

z̄i =
N�

j=1,j �=i

1

zi − zj
(Ei)
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4.1.1.2 Symmetry of the solutions

We now examine the symmetry of the solutions. Let z = (z1, . . . , zN ) be a solution of the
equations (Ei).

— Action of SN . The permutation group SN acts on the variables {z1, . . . , zN} with
σ(zi) = zσ(i). With this action, Eσ

i = Eσ(i) for all σ ∈ SN . Therefore, if z is a solution
of the problem, any of the N ! N -tuples obtained by permutation of its coordinates is
also a solution.

— Action of O2(R). The isometry group of R2 can be identified to a transformation
group on C generated by the rotations z �→ az with a a complex of modulus one, and
the symmetry z �→ z̄. These transformations act on CN by z �→ az = (az1, . . . , azN )
and z �→ z̄ = (z̄1, . . . , z̄N ). We have already seen that z̄ is also a solution of the
equations (Ei). It is straighforward to verify that az also is. Therefore, the set of
solutions is invariant under these actions.

Consequently, the set of solutions is invariant under the action of SN ×O2(R). We will first
focus on the action of SN to obtain invariant equations, and finally use the action of O2(R)
to speed up the Gröbner Basis computation (see subsection 4.1.4). Since any permutation of
a solution of the vortex problem (Ei) is also a solution, it is natural to look for the symmetric
functions in the solutions instead of the solutions themselves.

Definition 4.2. Let Q be a univariate polynomial with complex coefficients of degree N , with
no multiple roots. We say that Q is solution of the vortex problem if its roots (z1, . . . , zN are
solutions of the equations (Ei).

The following lemma is useful to express, in a very compact way, that such a polynomial
Q is solution of the vortex problem.

Lemma 4.3. A separable univariate monic polynomial Q in C[z] is solution of the vortex

problem if and only if all roots zi of Q satisfy z̄i =
1
2
Q��(zi)
Q�(zi)

.

Proof. Let Qi(z) =
Q(z)
z−zi

=
�

j �=i(z − zj), then
Q�

i(z)
Qi(z)

=
�

j �=i
1

z−zj
. Hence, according to the

equations (Ei),

Q is solution of the vortex problem ⇐⇒ Q�
i(zi)

Qi(zi)
= z̄i for all roots zi of Q

But we can write Q(z) = (z − zi)Qi(z), and with two derivations, we obtain Q�(z) = Qi(z) +
(z− zi)Q

�
i(z) and Q��(z) = 2Q�

i(z) + (z− zi)Q
��
i (z). Setting z = zi, we get Qi(zi) = Q�(zi) and

Q��(zi) = 2Q�
i(zi). Hence, the lemma is proved.

4.1.1.3 Particular solutions

Several particular solutions are known for this problem. We present only a few of them,
see for example [77] for an overview. We have already said that the uniform scaling of factor√
λ changes solutions of (Ei,1) into solutions of (Ei,λ) It follows from lemma 4.3 that the roots

of a separable monic polynomial Q satisfy equations (Ei,λ) if and only if Q��(zi)
2Q�(zi)

= z̄i
λ for all

roots zi of Q. Given such a polynomial, we just have to test if this relation holds for its roots
and a given λ.

— Regular polygon (N ≥ 2). We want to prove that if {z1, . . . , zN} are the vertices
of a regular N -gone, they are solutions of the vortex problem for some λ. Due to the
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symmetries of the problem, we can assume that the center of the polygon is 0, and that
the distance between the center and a vertex is 1. Due to the invariance by rotations,

we can assume that the vertices are associated to theN -roots of 1. Hence, let zk = e
2ıkπ
N

for k ∈ {1, . . . , N} and Q(z) =
�N

k=1(z − zi) = xN − 1. Then Q�(z) = NzN−1 and

Q��(z) = N(N−1)zN−2, thus Q��(z)
2Q�(z) =

N−1
2z . Consequently, with λ = 2

N−1 ,
z̄k
λ = Q��(zk)

2Q�(zk)
for all k ∈ {1, . . . , N}. Therefore:

zN − 1 is solution of (Eλ) with λ =
2

N − 1

— Regular centered polygon (N ≥ 3). With the same analysis as in the previous

point, we assume that zk = e
2ıkπ
N−1 for k ∈ {1, . . . , N − 1} and zN = 0, therefore

Q(z) = zN − z. It follows that Q�(z) = NzN−1 − 1 and Q��(z) = N(N − 1)zN−2.

Hence, Q��(z)
2Q�(z) =

N(N−1)zN−2

2(NzN−1−1)
. Since zN = 0 and N ≥ 3, we have Q��(zN )

2Q�(zN ) = 0 = z̄N , and

for all k ∈ {1, . . . , N − 1}, Q��(zk)
2Q�(zk)

=
N(N−1)zN−2

k
2(N−1) = Nz̄k

2 .

zN − z is solution of (Eλ) with λ =
2

N

— Aligned points. We are interested in aligned points. Due to the symmetry by
rotations of the problem, we can assume that these points lie on the real axis. Finding
a solution of the vortex problem (with λ = 1) leads to finding a monic separable

polynomial Q such that z̄i = zi =
1
2
Q��(zi)
Q�(zi)

for all roots zi of Q. Hence, polynomials

2NQ and 2zQ�(z)−Q��(z) both vanish on the roots of Q, have same degree N and same
leading coefficient 2N , so they are equal. The differential equation 2NQ− 2zQ� +Q��

has only one polynomial solution for every N , which is the well know N -th Hermite

polynomial, defined by HN (z) = (−1)N exp(x2) dN

dzN
exp(−z2).

4.1.1.4 Algebraic reformulation

For now, the equations (Ei) are rational equations, which mix variables zi and their
complex conjugates z̄i. Algebraically, it is not possible to separate ı and −ı, and therefore
z and z̄. Thus, we introduce N new variables Z1, . . . , ZN , that represent z̄1, . . . , z̄N . The
algebraic relations between these 2N variables are :

Zi =
�

j �=i

1

zi − zj
and zi =

�

j �=i

1

Zi − Zj
(Ei, Ēi)

In order to obtain polynomials, we multiply the equation Ei by Di =
�

j �=i(zi − zj) to
obtain the polynomial equation Ui = 0 where

Ui = Zi

�

j �=i

(zi − zj)−
�

j �=i

�

k �=i,j

(zi − zk) ∈ Q[z1, . . . , zN , Z1, . . . , ZN ]

Observe that permuting zi and Zi for all i transforms the equation (Ei) in (Ēi), because
of complex conjugation. Thus, for every relation in the ideal generated by the 2N equations
(Ei, Ēi) in Q[z1, . . . , zN , Z1, . . . , Zn], there is another one obtained by permuting zi and Zi.
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The ideal generated by the polynomials Ui, Ūi is therefore globally invariant under the action
of the conjugation τ , which acts on the system through the representation

Mτ =

�
IN

IN

�
∈ GL 2N (Q)

where IN is the identity matrix of size N ×N . The ideal is also globally invariant under the
action of the symmetric group SN through the representation given by

σ �−→Mσ,σ =

�
Mσ

Mσ

�
∈ GL 2N (Q)

where Mσ is the N × N matrix associated to σ ∈ SN , as in proposition 3.13. We say that
this action of SN is a diagonal action. Notice that the polynomials Ui, Ūi are also weighted-
homogeneous with weights 1 on variables zi and −1 on Zi.

The goal is to obtain equations depending only on the (ei), the symmetric functions of the
(zi). To this end, it is useful to reintroduce the polynomial Q with indeterminate coefficients,

which are new indeterminates e1, . . . , eN . Hence, Q(z) =
�N

i=1(z − zi) = zN − e1z
N−1 +

· · ·+ (−1)NeN . With help of the polynomial Q, the relations between variables ei and zi and
lemma 4.3, the equation Ui = 0 can be reformulated 2ZiQ

�(zi)−Q��(zi) = 0
In the next subsection we will see how to obtain equations of lower degree individually

invariant under the action of SN .

4.1.2 From invariant system to invariant equations

The algebraic equations obtained from the vortex problem are of a very special kind,
which can be generalized as follows. Let A be an integral domain, Z be the set {z1, . . . , zN}
and V = V1 ∪ · · · ∪ V� is another set of variables, decomposed in � blocks of size N . For
each i ∈ {1, . . . , �}, we set Vi = {xi,1, . . . , xi,N}. We assume that SN acts on Z ∪ V through
the diagonal representation of SN , that is, xσi,j = xi,σ(j) and zσj = zσ(j) for all i, j and
σ ∈ SN . Let (Ui)i∈{1,...,N} be a system of globally invariant polynomials under the action of
SN : for all σ ∈ SN , Uσ

i = Uσ(i). We also assume that Ui can be written DiPi + Ri, where
Di =

�
j �=i(zi−zj), Pi ∈ A[Z∪V] and Ri ∈ A[Z], which also verify P σ

i = Pσ(i) and Rσ
i = Rσ(i)

for all σ ∈ SN . The case of the vortex problem can be recovered by taking A = Q, � = 1,
V = {Z1, . . . , ZN}, Pi = Zi and Ri = −

�
j �=i

�
k �=i,j(zi − zk).

The aim of this subsection is to propose an algorithm that computes individually invariant
equations under the action of SN from the system of globally invariant equations {Ui}. The
main tool is divided differences. We first explain the simplest case, where there is only one
block of variables.

4.1.2.1 Divided differences on one block

Here, we first assume that we only have one block of variables Z = {z1, . . . , zN}, V = ∅
and N equations Ui ∈ A[z1, . . . , zN ] such that σ(Ui) = Uσ(i) for all σ in SN .

Definition 4.4. We define recursively the divided differences of U1, . . . , UN by:
— [Ui] = Ui for i = 1, . . . , N .

— [Ui1 , · · · , Uik ] =
[Ui1 , · · · , Uik−1

]− [Ui1 , · · · , Uik−2
, Uik ]

zik−1
− zik

for any given distinct inte-

gers i1, . . . , ik in {1, . . . , N}.
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Theorem 4.5. The divided difference [Ui1 , · · · , Uik ] is a polynomial in Z and depends only on
the set {i1, . . . , ik}, so for any subset P = {i1, . . . , ik}, we set [U ]P = [Ui1 , . . . , Uik ]. Moreover,
for any subset P of {1, . . . , N}, and for any σ in SN , ([U ]P)σ = [U ]σ(P).

Proof. We first prove by induction on k ∈ {1 . . . , N} that [Ui1 , . . . , Uik ] is a polynomial in Z.
— For k = 1, this is obvious.
— Let k ∈ {2, . . . , N} and assume that [Ui1 , . . . , Uik−1

] is a polynomial for any k − 1
distinct integers in {1, . . . , N}. Let i1, . . . , ik be k distinct integers in {1, . . . , N}.
Since zik−1

− zik is monic as a univariate polynomial in zik−1
, we can perform the

division of
�
Ui1 , · · · , Uik−1

�
−
�
Ui1 , · · · , Uik−2

, Uik

�
by zik−1

− zik . By mapping zik−1
on

zik , we see that the remainder of the division is equal to 0, so
�
Ui1 , · · · , Uik−1

, Uik

�

belongs to A[Z].
— By induction, we conclude that [Ui1 , . . . , Uik ] is a polynomial in A[Z] for all distinct

integers of {1, . . . , N}.
To prove the second part of the statement, we just have to act with SN on the equality
[Ui1 , · · · , Uik ] (zik−1

− zik) =
�
Ui1 , · · · , Uik−1

�
−
�
Ui1 , · · · , Uik−2

, Uik

�
with any permutation σ

and for all k ≥ 1 and distinct integers i1, . . . , ik. The proof follows by induction on N .

When Ui can be written F (zi) for all i ∈ {1, . . . , N}, where F is a univariate polynomial, it
is usual to introduce a special notation.

Notations 4.6. Let F (z) be a univariate polynomial in A[z]. We denote F (z1, . . . , zN ) the
divided difference [F (z1), . . . , F (zN )].

The two following lemmas will be useful later.

Lemma 4.7. For a univariate polynomial F (z) ∈ A[z], the following equality holds:

F (z1, . . . , zN ) =
N�

i=1

F (zi)

Q�(zi)
where Q(z) =

N�

i=1

(z − zi)

Proof. We prove this lemma by induction on N .
— For N = 1, Q(z) = (z − z1) so the assertion is obvious.

— Assume now that the equality holds for N − 1 ≥ 1. Let U(z) =
�N−1

i=1 (z − zi) and

V (z) =
��N−2

i=1 (z − zi)
�
× (z − zN ). Hence, Q(z) = U(z)(z − zN ) = V (z)(z − zN−1),

which implies that Q�(z) = U(z)+U �(z)(z−zN ) = V (z)+V �(z)(z−zN−1). Therefore,
Q�(zi) = U �(zi)(zi− zN ) for all i �= N and Q�(zi) = V �(zi)(zi− zN−1) for all i �= N − 1.
Consequently,

F (z1, . . . , zN ) =
F (z1, . . . , zN−1)− F (z1, . . . , zN−2, zN )

zN−1 − zN

=

�N−1
i=2

�
F (zi)
U �(zi)

− F (zi)
V �(zi)

�

zN−1 − zN
+

F (zN−1)
U �(zN−1)

− F (zN )
V �(zN )

zN−1 − zN
(by induction)

=

�N−1
i=2

F (zi)(zi−zN−zi+zN−1)
Q�(zi)

zN−1 − zN
+

F (zN−1)

Q�(zN−1)
+

F (zN )

Q�(zN )

F (z1, . . . , zN ) =
N�

k=1

F (zk)

Q�(zk)
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— By induction, the lemma is proved for any N ≥ 1.

Definition 4.8. For Z = {z1, . . . , zN}, we define hk the k-th complete symmetric function
as the sum of all monomials of degree k on the variables in Z. By extension, hk = 0 when
k < 0 and h0 = 1.

Lemma 4.9. For any k ≥ 0, if F (z) = zk, then F (z1, . . . , zN ) = hk−N+1.

Proof. We prove this lemma again by induction on N .
— If N = 1, if k ≥ 0, F (z1) = zk1 is the complete symmetric function of degree k in one

variable z1.
— Let N ≥ 2 and assume that the assertion is true for N − 1. Then,

F (z1, . . . , zN ) =
F (z1, . . . , zN−1)− F (z1, . . . , zN−2, zN )

zN−1 − zN

— If k ≤ N − 3, then by induction, both F (z1, . . . , zN−1) and F (z1, . . . , zN−2, zN ) are
equal to 0. Hence, F (z1, . . . , zN ) = 0 = hk−N+1.

— If k = N − 2, then by induction, both F (z1, . . . , zN−1) and F (z1, . . . , zN−2, zN ) are
equal to 1. Hence, F (z1, . . . , zN ) = 0 = hk−N+1.

— If k ≥ N − 1, then by induction

F (z1, . . . , zN−1)− F (z1, . . . , zN−2, zN ) =
�

(zk−N+2−u
N−1 − zk−N+2−u

N )×m

where the sum is over all the monomials m in z1, . . . , zN−2 of degree u ∈ {0, . . . , k−
N + 2}. Writing zk−N+2−u

N−1 − zk−N+2−u
N = (zN−1 − zN )

�
m�, where the sum is

over the monomials m� in zN−1, zN of degree k−N + 1− u, we obtain exactly the
complete symmetric function in z1, . . . , zN of degree k −N + 1.

— By induction, the lemma is proved.

We explain here how to obtain invariant equations from divided differences in the case of
only one block of variables.

Theorem 4.10. Let Vi be
�

P⊂{1,...,N},|P|=i

[U ]P for all i ∈ {1, . . . , N}. Then polynomials Vi

are invariant under the action of SN , and the varieties associated respectively to {Vi} and
{Ui} are the same, except maybe for points with at least two equal components.

Proof. Any σ in SN realizes a permutation of the subsets of {1, . . . , N} with same cardi-
nality, and also a permutation of the [U ]P by theorem 4.5. Therefore, V σ

i = Vi for all i in
{1, . . . , N}. Assume that a = (a1, . . . , aN ) is a common zero of the polynomials Ui, without
equal components. Then, we deduce easily that all the [U ]P(a) are equal to zero, and also the
Vi(a). Conversely, if VN (a) = 0 then all the [U ]P(a) with P of cardinality N − 1 are equal,

because VN can be written as [U ]P−[U ]Q
zk−z�

where P and Q are two distinct subsets of cardinality

N − 1, zk = P\Q and z� = Q\P. But their sum VN−1(a) is equal to zero, so they are equal
to zero. We can repeat it for i = N − 2, N − 3, . . . , 1 to deduce that Ui(a) = 0 for all i.

Using the Reynolds Operator (see definition 3.9), it is possible to compute only a few
divided differences [U ]P in order to obtain the polynomials Vi: we just have to compute all
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Algorithm 4.11: ComputeInvariantSystem algorithm

Input : Variables {z1, . . . , zN} and the polynomials Ui = DiPi +Qi

Output: Invariant Equations Vi

for k = 2 to N do
[U1, . . . , Uk] :=Quo([U1, . . . , Uk−1]− τk−1,k([U1, . . . , Uk−1]), zk−1 − zk)

return { 1
k!(N−k)!

�
σ∈SN

σ([U1, . . . , Uk]), k = 1 . . . N}

divided differences [U1, U2 . . . , Uk] for k in {1, . . . , N}, since Vi =
�
N
i

�
R([U1, . . . , Ui]). We

deduce from this property a simple algorithm 4.11 to compute the set {Vi}. In this algorithm,
τi,j denotes the transposition permuting i and j.

Since K[z1, . . . , zN ]SN = K[e1, . . . , eN ] (see theorem 3.33), we can rewrite the polynomials
Vi in terms of the symmetric functions of the zi. It is not possible to obtain such a nice
writing while handling several blocks of variables (see the number of fundamental invariants
needed for the diagonal action of SN in subsection 4.1.4). However, in the case of the vortex
problem, we will see how to remove variables Z1, . . . , ZN and perform this rewriting.

4.1.2.2 Generalization to several blocks and applications to the Vortex Problem

We come back to the general case where the polynomials Ui involve the set Z =
{z1, . . . , zN} and another set of variables V, and SN acts on Z ∪V . We recall the assumption
that for each i, Ui can be written Di Pi + Ri, where Di =

�
j �=i(zi − zj), Ri is a polynomial

in Z, and for all σ, P σ
i = Pσ(i) and Rσ

i = Rσ(i). The previous case corresponds to the case
Pi = 0, but when Pi �= 0 we can still apply divided differences in the same way, and construct
[Ui1 , . . . , Uik ] for given distinct integers, and obtain a similar theorem:

Theorem 4.12. (i) [Ui1 , . . . , Uik ] is a polynomial in Z and V which depends only on the
set {i1, . . . , ik}. Moreover for any σ and any P, σ([U ]P) = [U ]σ(P).

(ii) Vi =
�

|P|=i [U ]P is invariant under the action of SN and the varieties associated
to respectively Vi and Ui are the same, except maybe for points with two equal Z-
components.

Proof. The proof is very similar to the proofs of theorems 4.5 and 4.10: the divided differences
of (Ui) can be treated in two blocks, corresponding to (Ri) and (DiPi). For the first block, the
situation is the same, and for the second one, the presence of Di ensures that the successive
divisions by zik−1

− zik are possible.

Corollary 4.13. We can still use algorithm 4.11 to compute the Vi.

We now apply this approach to the equations of the vortex problem. Recal that we
obtained the following equations for all i ∈ {1, . . . , N}:

Ui = Zi

�

j �=i

(zi − zj)−
�

j �=i

�

k �=i,j

(zi − zk)

which can be written as Ui = DiPi + Ri, with Pi = Zi and Ri = −�j �=i

�
k �=i,j(zi − zk).

These polynomials verify P σ
i = Pσ(i) and Rσ

i = Rσ(i) for all i and all σ ∈ SN .

Example 4.14. For N = 3, it is easy to compute by hand the invariant polynomials V1, V2, V3,
and we obtain
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



V1 =
�

i

Ziz
2
i −

�

j �=i

Zizizj +
�

{i,j,k}={1,2,3}
Zizjzk

V2 = 2
�

i

Zizi −
�

i�=j

Zizj − 9

V3 =
�

i

Zi

Using V3 = 0 and V̄3 = z1 + z2 + z3 = 0 in V1 and V2, we can rewrite the system as

Ṽ1 = 4
�

i

Ziz
2
i Ṽ2 = 3

�

i

Zizi − 9 V3 = 0

It turns out that the invariant equations of the vortex problem can be reformulated using
a very small number of invariants, which leads to the following definition.

Definition 4.15. From the variables Z = {z1, . . . , zN} and Z̄ = {z̄1, . . . , z̄N}, we introduce
the classical Newton sums:

sk =

N�

i=1

zki and Sk =

N�

i=1

Zk
i

and also new invariants, that we call twisted Newton sums:

rk =
N�

i=1

Ziz
k
i and Rk =

N�

i=1

Zk
i zi

Example 4.16. For N = 4, after reformulation, we obtain the following equations:

r0 = s1 = r1 − 6 = r2 = 2 r3 + 5 s2 = 0

and also the conjugate equations:

R0 = S1 = R1 − 6 = R2 = 2R3 + 5S2 = 0

Surprisingly, we can obtain a general and very simple expression of these equations for
any N .

Theorem 4.17 (Invariant Equations). For any N ≥ 1 and k ≥ 0, the solutions of the vortex
problem satisfy the following invariant equations:

2 rk =

k−1�

i=0

si sk−1−i − k sk−1 with s0 = N. (4.4)

In order to prove the theorem 4.17 we first give a quite technical lemma.

Notations 4.18. For N ∈ N∗ and j ∈ N, let ej, hj and sj be respectively the symmetric
function, the complete symmetric function, and the Newton sum of degree j in the variables
z1, . . . , zN . We use the convention that e0 = h0 = 1, s0 = N and all these functions are equal
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to zero when j < 0. Moreover, ej = 0 for j > N . We denote by E, H and S the generating
series of (ej), (hj) and (sj), which can be written:

E(t) =

+∞�

j=0

ejt
j =

N�

i=1

(1 + t zi)

H(t) =
+∞�

j=0

hjt
j =

N�

i=1

1

1− t zi

S(t) =
+∞�

j=0

sjt
j =

N�

i=1

1

1− t zi

Lemma 4.19. With the previous notations, the following relation holds for all k ≥ 1.

N�

j=0

(−1)j(N − j)(N − j − 1) ej hk−j−1 =

k−1�

j=0

sj sk−1−j − k sk−1

Proof. Let λk−1 =
�N

j=0(−1)j(N−j)(N−j−1)ejhk−j−1 and γk−1 =
�k−1

j=0 sj sk−1−j−k sk−1

be the left and right terms of the equality we want to prove. Since ej = 0 when j > N and
hk−j−1 = 0 when j > k − 1, the sum in λk−1 can be taken from 0 to k − 1. We introduce

Λ(t) =

+∞�

k=0

λkt
k and Γ(t) =

+∞�

k=0

γkt
k

the associated generating series. We just have to prove that Λ and Γ are equal. We first
rewrite Λ and Γ in terms of E,H and S.

First, E(t) =

+∞�

j=0

ejt
j then, E(−t) =

+∞�

j=0

(−1)jejtj .

Moreover, E�(t) =
+∞�

j=1

jejt
j−1 then, tE�(−t) = −

+∞�

j=0

(−1)jjejtj

Finally, E��(t) =
+∞�

j=2

j(j − 1)ejt
j−2 then, t2E��(−t) =

+∞�

j=0

(−1)jj(j − 1)ejt
j .

Observe that (N − j)(N − j − 1) = N2 −N − 2(N − 1)j + j(j − 1), hence

Λ(t) = (N2 −N)E(−t)H(t) + 2(N − 1)tE�(−t)H(t) + t2E��(−t)H(t)

It is easy to give an expression of Γ in terms of S and S�:

Γ(t) = S2(t)− S(t)− tS�(t)

We now rewrite Λ in terms of H and its derivatives: Clearly, E(−t)H(t) = 1. Further-
more, with two differentiations, we obtain −E�(−t)H(t)+E(−t)H �(t) = 0 and E��(−t)H(t)−
2E�(−t)H �(t) + E(−t)H ��(t) = 0. Hence,

E�(−t)H(t) =
H �(t)
H(t)

and E��(−t)H(t) = −H ��(t)
H(t)

+ 2
H �2(t)
H2(t)



4.1. VORTEX PROBLEM 107

Therefore, Λ(t) = (N2 −N) + 2(N − 1)
tH �(t)
H(t)

+ 2
t2H �2(t)
H2(t)

− t2H ��(t)
H(t)

.

Moreover, H �(t) =

N�

i=1


�

j �=i

1

1− tzi


 zi

(1− tzi)2

H �(t) = H(t)

N�

i=1

zi
1− tzi

Hence, tH �(t) = H(t)
N�

i=1

tzi − 1 + 1

1− tzi

Finally, tH �(t) = H(t)(−N + S(t))

It follows that Γ can also be rewritten with H and its derivatives. More precisely, we have

S(t) = N + t
H �(t)
H(t)

, S2(t) = N2 + 2Nt
H �(t)
H(t)

+ t2
H �2(t)
H2(t)

, S�(t) =
H �(t)
H(t)

+ t
H ��(t)
H(t)

− t
H �2(t)
H2(t)

Therefore, Γ(t) = (N2 −N) + 2(N − 1)
tH �(t)
H(t)

+ 2
t2H �2(t)
H2(t)

− t2H ��(t)
H(t)

= Λ(t).

and the lemma is proved.

Proof of theorem 4.17. By lemma 4.3, we have already said that the equations of the vortex
problem can be simply rewritten 2Q�(zi)Zi = Q��(zi). Hence,

rk =

N�

i=1

zki Zi =
� zki Q

��(zi)
2Q�(zi)

=
� F (zi)

Q�(zi)
where F (z) =

zkQ��(z)
2

Writing Q(z) = zN − e1 z
N−1 + e2 z

N−2 + · · ·+ (−1)N eN =
�N

j=0(−1)jejzN−j , we obtain

F (z) =
1

2

N�

j=0

(−1)j(N − j)(N − j − 1) ej z
N−j+k−2.

By lemma 4.7, we know that
� F (zi)

Q�(zi)
= F (z1, . . . , zN ). Using linearity and lemma 4.9, it

follows that 2rk =
�N

j=0(−1)jej(N − j)(N − j − 1)hk−j−1. Using lemma 4.19, we obtain the
theorem 4.17.

4.1.3 From two blocks to symmetric functions in one block

The aim of this subsection is to show how to obtain symmetric polynomials in only one
block of variables from symmetric polynomials in two blocks, invariant under the diagonal
action of SN . This can be done easily under an additional assumption, which states that
the system of equations admits a rational parametrization. Under this assumption, we give a
general algorithm, which takes as input such a symmetric system in the variables {Z, Z̄} and
returns directly polynomials in the symmetric functions {ei} of the first block. In particular,
the algorihm can be applied to the previous invariant equations {Vi} of the vortex problem.
However, in this special case, the approach can be simplified and we propose a dedicated
algorithm which returns equations in {ei} having a lower degree compared to the equations,
that we can obtain with the general algorithm.
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4.1.3.1 General case under the rational parameterization assumption

We return now to the general case of two blocks of variables where each Ui is an equation
in A[Z, Z̄] where Z = {z1, . . . , zN} and Z̄ = {Z1, . . . , ZN}. In addition, we require that the
algebraic system fulfils the following parameterization assumption:

Definition 4.20. We say that the system {Ui = 0} is under parameterization assumption

if for all i, Zi = R(zi) where R(z) = N(z)
M(z) ∈ A(z) with A = Q(e1, e2, . . . , eN ), so R is a

univariate rational function whose coefficients depend on the symmetric functions of the zi.

The vortex problem satisfies this assumption, since from lemma 4.3, we have Zi =
Q��(zi)
2Q�(zi)

,

with Q(z) =
�
(z − zi).

We now describe an algorithm to obtain invariant equations under the action of SN , in
the first block of variables Z. First, we apply the algorithm 4.11 to compute the invariant
equations Vi. Denote again by Q(z) the polynomial

�
i(z−zi) = zN−e1z

N−1+· · ·+(−1)NeN .
With notations of definition 4.20, there exist two polynomials B and C in K[e1, . . . , eN ][z]
such that BQ + CM = RM , where RM is the resultant of Q and M with respect to the
variable z. Since Q(zi) = 0, it follows that:

RM Zi = RM
N(zi)

M(zi)
= N(zi)C(zi).

More generally, the following relation holds for all k ≥ 0:

Rk
MZk

i = (Nk × Ck)(zi) = (Nk × Ck mod Q)(zi).

Notations 4.21. In the following, the polynomial NC mod Q will be denoted PZ .

For each W ∈ {Vi, V̄i}, we substitute 1
Rk

M

P k
Z(zi) to Zk

i in each monomial of W . Up to a multi-

plication by a suitable power of Rk
M to obtain polynomials, we obtain equations involving only

the variables z1, . . . , zN . These polynomials are invariant under SN , and can be reformulated
as polynomials in the symmetric functions ei.

These ideas lead to algorithm 4.22. In this algorithm, we denote by ∂ZP the total degree
of P as polynomial in the variables Z1, . . . , ZN . For any polynomial P in K[z1, . . . , zN ]SN , we
denote by Σ(P ) the expression of P as polynomial in K[e1, . . . , eN ].

4.1.3.2 Application to the Vortex Problem. Dedicated algorithm.

For the vortex problem, we take N = Q��/2 and M = Q�, so the rational fraction R is

equal to Q��
2Q� . Hence, the resultant RM = BQ + CQ� is equal to D, the resultant of Q(z)

with respect to the variable z. We still denote by PZ(z) the polynomial of K[e2, . . . , eN ][z]
equal to NC mod Q = 1

2Q
��C mod Q. We can apply the previous algorithm to invariant

polynomials to compute symmetric equations. From Vk = 2rk −
�k−1

i=0 sisk−1−i + ksk−1, we

obtain always 0, but not from V̄k = 2Rk −
�k−1

i=0 SiSk−1−i + kSk−1. However, for the vortex
problem, instead of using previous algorithm, there is a faster way to compute the equations,
explained hereafter.
We introduce the two K[e2 . . . , eN ]-modules morphisms :

S : K[e2, . . . , eN ][z] → K[e2, . . . , eN ] and H : K[e2, . . . , eN ][z] → K[e2, . . . , eN ]

zk �→ sk zk �→ hk−N+1
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Algorithm 4.22: ComputeSymmetricFunctionsSystem algorithm

Input : The invariant equations Vi, V̄i of variables Z = {z1, . . . , zN} and
Z̄ = {Z1, . . . , ZN}, the polynomial Q =

�
(z − zi), the polynomial PZ and

the resultant RM .
Output: A system of 2N equations of variables ei, the symmetric functions of the zi
m := max{∂ZW | W ∈ {Vi, V̄i}};
L := [P i

Z mod Q | i ∈ {1, . . . ,m}];
for W in {V1, . . . , Vn, V̄1, . . . , V̄n} do

dW := ∂Z(W );
for U monomial of W do

dU := ∂Z(U);
for i := 1 to N do

Zk
i ← L[k](zi) in U ;

U ← RdW−dU
M U in W ;

return {Σ(W )}

Proposition 4.23. For any polynomial P in K[e2, . . . , eN ][z], S (P ) is equal to S (P
mod Q) and H (P ) = H (P mod Q). Moreover

S (P ) =
�N

i=1 P (zi) and H (P ) =
�N

i=1
P (zi)
Q�(zi)

.

In particular, if P =
�N−1

k akz
k, then H (P ) = aN−1.

Proof. Evaluating Q at a zi leads to 0 since Q =
�
(z−zi). The second part of the proposition

comes from the definion of S and H together with lemma 4.9.

From theorem 4.17, we know that 2 rk =
��k−1

i=0 si sk−1−i

�
− k sk−1, therefore the conju-

gate equation holds:

2Rk =

�
k−1�

i=0

Si Sk−1−i

�
− k Sk−1 (4.5)

One way to obtain directly symmetric equations is to compute:

Sk =
N�

i=1

Zk
i =

1

Dk

N�

i=1

P k
Z(zi) =

1

Dk
S (P k

Z(z) mod Q)

Rk =
N�

i=1

ziZ
k
i =

1

Dk

N�

i=1

zi P
k
Z(zi) =

1

Dk
S (z P k

Z(z) mod Q)

Substituting these expressions in (4.5) we obtain the following proposition:

Proposition 4.24. Given the Bézout relation B(z)Q(z) + C(z)Q�(z) = D, for any N and
k, the solution of the vortex problem satisfies the following symmetric equations:

2

D
S (z P k

Z) =

k−1�

i=0

S (P i
Z)S (P k−1−i

Z )− kS (P k−1
Z )

where S (1) = N and PZ = 1
2Q

��C.
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The drawback of the method is that high powers of the discriminant occur in the resultant
equations. Instead of using the polynomial PZ to obtain equations with the ei’s, we will use
another polynomial. Using the following lemma it is possible to compute Rk and Sk with
only half of the powers of the discriminant:

Lemma 4.25. Given the Bézout relation B(z)Q(z) +C(z)Q�(z) = D, the following relation
holds for all k ∈ {1, . . . , n}:

D
Q��

Q�2 (zk) = A(zk)

where A(z) is the polynomial −(B(z) + C �(z)).

Proof. By derivating the relation BQ+ CQ� = D, we obtain B�Q+ (B� + C)Q� + CQ�� = 0.
Therefore, modulo Q, CQ� = D and (B� + C)Q� + CQ�� = 0. Hence, A = −(B� + C) verifies

A = CQ��
Q� = DQ��

Q�2 modulo Q.

Consequently, with one power of A, there are two powers of Q� in the denominator, and
only one power of D in the numerator. Hence, using S when k is even and R when k is odd,
we obtain Rk and Sk in the following way:

Proposition 4.26. The expressions of Si and Ri in terms of the symmetric functions of the
zi’s are given by the following formulas for all k ≥ 0:

DkS2k = 1
22k

S (Q��kAk) DkR2k = 1
22k

S (z Q��kAk)

DkS2k+1 =
1

22k+1 H (Q��k+1Ak) DkR2k+1 =
1

22k+1 H (z Q��k+1Ak)

and all polynomials can be taken modulo Q.

Proof. With Zi =
Q��(zi)
2Q�(zi)

, we have DkS2k = 1
22k

�N
i=1Q

��(zi)k
�
Dk Q��(zi)k

Q�(zi)k

�
= 1

22k
S (Q��kAk).

The formulas in the other cases can be obtained in the same way.

Substituting these expressions in (4.5) we obtain:

Theorem 4.27 (Symmetric Equations). Given the Bézout relation
B(z)Q(z) + C(z)Q�(z) = D, and A(z) − B(z) − C �(z), the solutions of the vortex problem
satisfy the following symmetric equations, for any N and k:

1

2D
S2k+1 =

k−1�

i=0

S2iH2(k−i−1) − 2kH2k−2

H2k+1 =
k�

i=0

S2i S2(k−i) +D
k−1�

i=0

H2iH2(k−i−1) − (2k + 1)S2k

where S2i+δ = S (zδ Q��iAi), H2i+δ = H (zδ Q��i+1Ai) for δ = 0, 1.

Proof. We substitute the expression of R2k, R2k+1, S2k, S2k+1 given by proposition 4.26 into
the equations:

2R2k = 2
�k−1

i=0 S2 i S2 k−1−2 i − 2k S2k−1

2R2k+1 =
�k

i=0 S2i S2k−2i +
�k−1

i=0 S2i+1 S2k−2i−1 − (2k + 1)S2k
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This theorem gives the very efficient algorithm 4.28 to compute a system involving only
the ei, which solutions include all symmetric functions of the vortex problem. To simplify the
description of the algorithm we introduce the following notation αi,k and βk, which depend
only on the parity of i and k:

βk =

�
0 if k is odd

1 if k is even
αi,k =

�
0 if i is even and k odd

1 otherwise

Algorithm 4.28: ComputeSymmetricFunctionsVorticesSystem algorithm

Input : N , the polynomials Q, D and A = −B − C �, where B and C appear in the
Bézout relation BQ+ C Q� = D, and the two functions S and H

Output: Symmetric polynomials in the ei’s

LR := [N(N−1)
2 ]; LS := [0]; P := 1;

for k = 2 to N − 1 do
if IsOdd(k) then

LS := LS ∪ [H (12PQ�� mod Q)];
LR := LR ∪ [H ( z2PQ�� mod Q)];

else

P := PAQ��
4 mod Q;

LS := LS ∪ [S (P )];
LR := LR ∪ [S (z P mod Q)];

return
{2LR[k]−

�k−2
i=1 Dαi,k LS [i]LS [k − 1− i]− (2N − k)Dβk LS [k − 1], k = 2 . . . N − 1}

Remark 4.29. The equation 2R1 = N(N − 1) gives always 0 = 0. We explain this fact in
the next subsection.

Example 4.30. The case N = 4 can be handled by hand. In this case, Q(z) = z4 + e2 z
2 −

e3 z + e4 and A(z) is equal to the polynomial

(−8 e23 + 32 e4 e2 − 36 e3
2)z2 − 8 e3 (12 e4 + e2

2)z − 54 e3
2e2 + 80 e4 e2

2 − 192 e4
2 − 8 e2

4.

From theorem 4.27, the first equation is R2 = 0 = S (z A(z)Q��(z)). Hence we compute

P = zAQ�� mod Q = (640 e4 e2
2 − 16 e2

4 − 2304 e4
2 − 288 e3

2e2)z
3

− 16 e3 (27 e3
2 − 84 e4 e2 + e2

3)z2

+(−204 e32e22 + 256 e4 e2
3 − 768 e4

2e2 − 16e2
5 − 720 e4 e3

2)z

+96e4e3(12e4 + e2
2).

The next step is to replace z3 by s3 = 3e3, z
2 by s2 = −2e2 and z by s1 = 0 so that

0 = S (z AQ��) = −16 e3 (12 e4 + e2
2)2

In the same way, we compute the second equation H ( z Q��2A)− (2N − 3)S (AQ��) = 0. We
obtain the system of two equations:





e3(e
2
2 + 12e4)

2 = 0

e2(e
4
2 − 16e22e4 + 9e2e

2
3 + 48e24) = 0

(4.6)
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4.1.4 Solving the equations with the symmetric functions

The aim of this subsection is to solve explicitly the symmetric equations by exact methods.
To this end, we will use Gröbner bases computation.

The case N = 4. Interestingly enough, we can solve the vortex problem by hand when
N = 4. Hence, we give the complete resolution of the case N = 4 without Gröbner Basis
computation. The symmetric equations are given by the equation (4.6) and, in addition, we
assume that the discriminant

D = 16e42e4 − 4e32e
2
3 − 128e22e

2
4 + 144e2e

2
3e4 − 27e43 + 256e34

is non-zero, to ensure that the zi’s are distinct.

Lemma 4.31. In equations (4.6), if e2 �= 0, then e3 = 0.

Proof. We prove it by reduction to the absurd. If e2 �= 0 and e3 �= 0, the first equation states
that e4 = −e22/12. Replacing e4 by −e22/12 in the second equation leads to 8e32+27e23 = 0, but
replacing it in the discriminant leads to−(8e32 + 27e23)

2/27 �= 0, which is a contradiction.

Then, if e2 �= 0, e3 = 0, and the second equation becomes (e22−12e4)(e
2
2−4e4) = 0, but D

becomes 16e4(e
2
2 − 4e4)

2 �= 0, so e4 =
1
12e

2
2. If e2 = 0 then e3 = 0 or e4 = 0. We can conclude

that:

Proposition 4.32. When N = 4, there are three solutions to the vortex problem :

Q(z) = z4 + e2z
2 +

1

12
e22 Q(x) = z4 − e3z Q(x) = z4 + e4

The indetermination on e2, e3 or e4 will be explained and solved in the next subsection as
shown in the figures 4.36,4.37 and 4.38.

Homogeneity of the equations. It turns out that the equations obtained in the previous
subsection are homogeneous for a graded degree. This homogeneity will be useful to speed
up the computation of the solutions.

Proposition 4.33. The equation we obtained in the previous subsection are homogeneous for
the degree d =

�
k k × ∂ek , where ∂ek is the degree in ek. More precisely, the k-th equation

has degree d = N(N − 1)�k2�+ 1− k.

Proof. We started from 2Rk =
�

SiSk−1−i − kSk−1. With Zi =
�

k �=i
1

zi−zk
, we see that this

equation is homogeneous in the zi of degree 1 − k. The discriminant D =
�

i�=j(zi − zj) is

homogeneous of degree 2
�
N
2

�
. So, the previous equation is homogeneous in the zi with degree

2�k2�
�
N
2

�
+1− k. The symmetric function ek is homogeneous in the zi of degree k, that’s why

we took the degree d.

Recall that we have lost the equation 2r1 = 2R1 = N(N −1), but there is no surprise : we
have seen that the set of solutions (the zi’s) is invariant under multiplication by a complex of
modulus one. This implies that the algebraic variety with variables (e2, . . . , eN ) is invariant
under the operation (e2, . . . , eN ) �→ (γ2e2, . . . , γ

NeN ), with |γ| = 1. But an ideal associated
to such a variety is homogeneous for the previous degree d : let P be a polynomial in this
ideal, and write P =

�
u Pu, with Pu the homogenous part of degree u for the degree d, then

if (e2, . . . , eN ) is a zero of P ; we have
�

u γ
uPu(e2, . . . , eN ) = 0 for all γ of modulus 1. A

non-zero univariate polynomial have only a finite number of roots, so this polynomial (in γ)
is null and Pu(e2, . . . , eN ) = 0 for all u.
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Strategy to compute the solutions Because of the homogeneity, we can assume that
any of the symmetric functions ei is equal to 1 or 0. If it is 0, we have again a homogeneous
system, so we can suppose that another symmetric function ej is equal to 1 or 0, and so on.
We have to add a new equation to ensure that all the zi are distinct : h×D = 1. (We cannot
solve the equations and remove the spurious solutions easily : for example, for N = 5, the
system with e2 = 1 without h×D = 1 is 1-dimensional.)

According to the benchmark, it seems that the fastest way to compute a Gröbner Basis
is to separate the system into two parts, e2 = 1 or e2 = 0 and compute a Gröbner Basis with
DRL order with h > eN > · · · > e3, and then perform a change of ordering from DRL to
the lexicographic order with FGLM (algorithm 1.52). For the component with e2 = 0, we
separate e3 = 1 or e3 = 0, and so on.

Then, we perform a Triangular Decomposition (see [72]) of each component.

Remark 4.34. To compute a Gröbner Basis, we assume that ek = 1 for some k. But with
this assumption, the solutions (z1, . . . , zN ) that we obtain are not solutions of the equations
(Ei) z̄i =

�
j �=i

1
zi−zj

but of λz̄i =
�

j �=i
1

zi−zj
for some λ > 0. Denote by (az1, . . . , azN )

the solutions of (Ei), where a can be supposed to be a positive real. Then 2r1 = 2R1 =

2a2
�

i |zi|2 = N(N−1), and a =
�

N(N−1)
2
� |zi|2 . The true value of ek is

�
a zi1 ×· · ·×a zik = ak.

Example 4.35. With e2, e3 or e4 equal to 1, the solutions (z1, . . . , z4) for N = 4 are drawn
below :

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Figure 4.36 – Q(z) = z4 + z2 + 1
12

−1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

Figure 4.37 – Q(z) = z4 − z

−1 −0.5 0 0.5 1

−0.5

0

0.5

Figure 4.38 – Q(z) = z4 + 1

In the case of the four aligned points,
�

i |zi|2 is equal to 2, so we have to perform a

multiplication by
√
3 to obtain the solutions of (Ei). In the case of the centered equilateral

triangle,
�

i |zi|2 = 3, so a =
√
2 and in the case of the square,

�
i |zi|2 = 4, so a =

�
3
2 .

Removing spurious solutions. We can solve the system to obtain approximations of the
ei and then approximations of the zi, but there are spurious solutions: we have to check that
PZ(zi) = D z̄i for each i to be sure that we have computed a true solution. Another way to
perform it is to introduce two news variables x and z and add to the system the equations
PZ(z) + D z = x and zN + e2z

N−2 + · · · + (−1)NeN , with PZ the polynomial computed
previously, which maps zi to DZi. The next step is to perform a Gröbner elimination with
lexicographical order z > eN > · · · > ek > x to obtain a univariate polynomial P� in
x. Then we isolate the real roots of this polynomial P� using certificated methods, see for
example [83, 84].

Other symmetries. Assume that (e2, . . . , eN ) is a solution with e2 = 1. We have said that
if (e2, . . . , eN ) is a solution, then (λ2e2, . . . ,λ

NeN ) too, for all λ of modulus 1. If λ = −1
(geometrically, we do a symmetry of center O), e2 stays at 1, but e3 is changed into −e3, so
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we can keep only half of the possible e3. The conjugation (e2, . . . , eN ) → (ē2, . . . , ēN ) gives
an other solution, so if e3 is not real, we can suppose e3 with imaginary part non negative. If
e3 is real and e4 not, we can keep only the e4 with imaginary part non negative, and so on.

4.1.5 Benchmarks

In this subsection, we indicate timings that we have obtained, in order to compute the
equations involving only the symmetric functions (ei) of z1, . . . , zN . We also indicate how
difficult it is to solve the problem with naive approach or using invariant theory.

Naive Approach. It is possible to solve directly the original system of 2N equations
(Ei, Ēi) in zi and Zi. Because of invariance by multiplication by a scalar of modulus 1,
we can assume that z1 is real, so we add the equation z1 = Z1. This trick gives an ideal of
dimension 0, if we assume that z1 �= 0. We split the ideal into two parts : in the first one, we
add the equation z1 × α = 1, and in the second one, we add z1 = 0, and we can add z2 = Z2.
In each case, the ideal is zero dimensional, if we add the last equation

�
i<j(zi − zj)β = 1, to

ensure that all the zi are distinct. We report in table 4.39 the following timings with Magma
to compute the corresponding Gröbner basis (∞ means that we stopped the computation
after five days):

3 4 5

Q 0.02s 176.8s ∞
F65521 0.01s 0.2s ∞

Table 4.39 – Direct approach: Gröbner bases of the non symmetric systems with Magma.

Invariant Theory. It is possible to introduce the ring of polynomials invariant under SN

through the diagonal representation, see subsection 4.1.1. We report in table 4.40 the number
of secondary invariants in the Hironaka decomposition or the number of fundamental invari-
ants over Q, and the timings to compute them in Magma. ∞ means that we stopped the
computation after five days.

3 4 5 6 7

Secondary Invariants 6 24 120 ? ?

Timings 0.0s 0.1s 225s ∞ ∞
Fundamental Invariants 9 14 20 27 ?

Timings 0.0s 0.1s 3.0s 400s ∞

Table 4.40 – Invariant Ring : Hironaka Decomposition and Fundamental Invariants with
Magma.

Generating and solving the symmetric system We have implemented the algo-
rithm 4.22 in Maple and Magma to generate the symmetric system. We report in table 4.41
the timings to compute the systems depending only on the symmetric functions ei using this
algorithm with these software (Intel Xeon 2.93 GHz with 128GB Ram).
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4 5 6 7 8

Magma 0.0s 0.0s 0.06s 70.6s 7649.6s

Maple 0.0s 0.2s 0.9s 41.9s 2407.3s

Table 4.41 – Time to generate the symmetric systems with Maple or Magma.

On the same computer, the times to compute a Gröbner Basis using Magma of the sym-
metric system and perform a triangular decomposition of each component (mostly for the
component with e2 = 1) are presented in table 4.42.

4 5 6 7

Q 0.02s 0.10s 296.7s ?

F65521 0.53s 1.58s 3.9s 1680.8s

Table 4.42 – Gröbner bases of the symmetric systems with Magma.

When N = 7 we use FGb [63] to compute the corresponding Gröbner bases: it takes 144
secondes to compute the system over F65521 and about 20 minutes to compute a Gröbner
basis and a triangular decomposition over Q. The complete prime decomposition of the ideal
corresponding to the case N = 7 is presented in figure 4.43. Using all the symmetries the
problem admits 12 solutions. Among them, we recognize the particular cases in presented
in the first subsection: the regular heptagone, the regular centered hexagone and the aligned
points. Other classical solutions that have not been mentioned can be recognized: the pattern
with all points aligned but two of them and the pattern with several triangles and a point in
the middle, which is alone in the component e2 = 0 and e3 �= 0. Notice that this solution
is very close to another one in the component e2 = 1 and e3 �= 0. Even up to symmetries,
these two solutions are not the same, since the property e2 = 0 is maintained by the group
SN × O2(R). Another argument is that the solution close to the regular centered triangles
is expressed with algebraic numbers of degree 82. A web page was created to collect all the
data: http://www-salsa.lip6.fr/~jcf/vortices/
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Figure 4.43 – The set of solutions for N = 7
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4.2 Solving Systems Invariant under the Action of an Abelian
Group in the Non-Modular Case

Introduction

This work is a common work with Jean-Charles Faugère and whas published in the pro-
ceedings of the ISSAC’ 13 conference.

Problem Statement. The underlying algebraic problem studied in this section is to com-
pute the variety V(I) associated to an ideal I ⊆ K[x1, . . . , xn] that is globally stable under
the action a finite matrix group G ⊂ GLn(K), as in the previous section. However, the group
acting in the previous section was the whole symmetric group and in this section we focus on
abelian groups. We will also assume that the action is non-modular : the characteristic of K
does not divide |G|.

Related Work. This problem is not new and has already been studied by some authors.
The common idea is that, since the group G is commutative and the action non-modular, all
matrices of G can be diagonalized with the same base-change matrix. Thus, up to some linear
change of variables, we obtain an ideal ID invariant under a diagonal group GD isomorphic to
G. To our knowledge, the first author who proposed this idea in a Gröbner bases context was
Gatermann in [51]. In this article, she shows why diagonalizing the group G and applying the
linear change of variables on the input polynomials is interesting: some structure is maintained
while computing a Gröbner basis of ID with Buchberger algorithm (see [51, Theorem 7]).
She observed that the polynomials occuring during the execution of Buchberger algorithm
remain sparse. More recently, Steidel [96] proposed to use such a diagonalization, compute a
Gröbner basis of ID, apply the reverse change of variables on this Gröbner basis and compute
a Gröbner basis of I again. The idea of diagonalizing the group G and using the action
of GD on K[X] has already been used in invariant theory, in order to find a decomposition
K[X]G =

�t
i=1 ηiK[θ1, . . . , θn] (see for example [100]) or more recently (after that this work

was published) by Hubert and Labahn to find a decompositionK(x1, . . . , xn)
G = K(θ1, . . . , θn)

in [61]. However, to the best of our knowledge, the impact of the diagonalization on the
complexity of Gröbner bases computations has not been investigated.

Main results. We present efficient algorithms together with complexity analysis to solve
such polynomial systems which are globally invariant under the action of any commutative
group G. The algorithms are based on three main ideas: the first one is the diagonalization
of G into GD. Thus, up to some linear change of variables, we obtain an ideal ID invariant
under a diagonal group GD isomorphic to G.

The second idea is to introduce a grading on K[X] = K[x1, . . . , xn] given by the group GD.
This grading exists for every finite group H and is indexed on X(H), the set of irreducible
linear representations of the group H, and has been presented in chapter 3. In our case, since
GD is diagonal, the setX(GD) is isomorphic toGD and the isotypic components are generated
by monomials. Therefore, we introduce the notion of G-degree of a polynomial: assuming
that GD is generated by diagonal matrices Diag(βi,1, . . . ,βi,n) of order qi with q1|q2| . . . |q� = e
and that β is a primitive e-root of 1, we say that a polynomial f ∈ K[X] is G-homogeneous of

G-degree (d1, . . . , d�) ∈ Zq1 × · · · × Zq� if f(βi,1x1, · · · ,βi,nxn) = β
di

e
qi f(x1, . . . , xn) for all i.

Taking into account that the operation of taking the S-polynomial preserves this grading,
the final idea is to observe that this can be used to speed up the Gröbner basis computation.
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More precisely, Macaulay matrix can be decomposed into |GD| smaller independent matrices,
being roughly the same size. In particular, this allows us to split the matrices arising in
classical Gröbner basis algorithms based on linear algebra like Macaulay/Lazard algorithm
(algorithm 1.40), F4 [34] or F5 (algorithm 1.44). Therefore, the complexity (in time and in
memory) of computing Gröbner bases of such invariant ideals can be decreased in both theory
and practice. In the same way, in the case of a zero-dimensional ideal ID, the canonical basis
of the ring K[X]/ID can also be decomposed in monomials having same G-degree and thus
we are able to split the multiplication matrices arising in FGLM (algorithm 1.52).

In addition, this grading can be used to transform very easily a globally invariant problem
into a problem for which all the equations are G-homogeneous: we show that for each original
equation f we can take the G-homogeneous components of f .

We have implemented, in the computer algebra systemMagma,“abelian”versions of the F5

and FGLM algorithms that run several times faster, compared to the same implementation
of these classical algorithms. For example, applying FGLM on the Cyclic-10 problem (a
system with 34940 solutions), instead of computing 10 multiplication square matrices of size
34940× 34840, our algorithm computes 900 quasi-square matrices of size at most 354.

In order to compare similar implementations, we have implemented an “abelian” version
of F4 [34] in FGb (C language): computing a Gröbner basis of the Cyclic-10 problem is about
410 times faster with the new approach. Moreover, a grevlex Gröbner basis for the Cyclic-11
problem (184756 solutions) can be computed in less than 8 hours. We also demonstrate that
our approach has a significant impact in other fields: NTRU is a well known cryptosystem and
the underlying problem can easily be modeled by quadratic equations which are left globally
invariant by the action of a cyclic group. We observe a factor of 250 in favor of the new
approach for small size problems and more importantly we can solve previously untractable
problems. Surprisingly, during these experiments, the linear algebra parts (that is building
the matrices and the gaussian elimination parts) can sometimes be so accelerated that the
management of the list of critical pairs becomes the most time-consuming part whereas it is
usually negligible.

More generally, the algorithms given in this paper can also be used for other kinds of
structured polynomial systems like quasi-homogeneous or multi-homogeneous polynomials.

Perspectives. Several further developments can be made on the subject: the Abelian-F5

and Abelian-FGLM algorithms have to be implemented in C, and it seems possible to obtain
a parallelized version of the Abelian-FGLM algorithm. We have already identified new classes
of invariant problems which can be solved in polynomial time; for other classes of problems
the degree reached during the Gröbner basis computation is much lower than expected. It
appears that this lower degree is more a consequence of the sparsity of the support of the
polynomials (after change of variables) rather than a consequence of the invariance under the
action of a group. The study of those sparse systems is a work in progress and part of this
work will be presented in chapter 5.

Organization of the section. The organization of the section is as follows: in subsec-
tion 4.2.1, we recall classical notations and explain the relations between the ideals I and ID,
and the matrix groups G and GD. In subsection 4.2.2, we explain the grading induced by
the diagonal matrix group GD, and introduce the notion of G-degree of monomials and poly-
nomials. The vector space generated by all monomials having same G-degree is nothing else
than an isotypic component ([94]) but since the formulation is simpler in the case of a diagonal
group, we introduce the notion of G-degree of monomials and G-homogeneous polynomials.
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Subsections 4.2.3 and 4.2.4 provide variants of the F5 and FGLM algorithms. The complexity
questions are answered in subsection 4.2.5, and benchmarks are made in subsection 4.2.6.

4.2.1 Linear change of variables

From now on we assume that G is a finite abelian subgroup of GLn(K), with K a field
of characteristic 0 or p such that p and |G| are coprime. We first prove that, within a linear
change of variables, we can assume that the group G is a diagonal group, meaning that all
matrices in G are diagonal matrices.

We start by recalling the following theorem, that describes the structure of finite abelian
groups.

Theorem 4.44 (Classification of finite abelian groups). Any finite abelian group is uniquely
isomorphic to a product Z/q1Z× · · · × Z/q�Z with q1| . . . |q�.

Definition – Proposition 4.45. Following the notations of the previous theorem, the integer
e = q� is called the exponent of the group and is the lowest common multiple of the orders of
the elements of the group.

Recall that char(K) does not divide |G|, therefore char(K) does not divide the exponent
of G either. Hence, the polynomial xe − 1 is separable on K. It follows that, over K̄, xe − 1
is separated.

Notations 4.46. We will denote by e the exponent of G and by ξ a primitive e-root of 1 in
barK. We will now consider the field K(ξ).

The following theorem will allow us to assume that the matrix group G is diagonal, since
it turns out that on K(ξ) the matrices of G can be diagonalized, with the same base-change
matrix.

Theorem 4.47. The matrix group G is diagonalizable over K(ξ), meaning that there exists
a matrix P in GLn(K(ξ)), such that the group GD = P−1GP = {P−1AP | A ∈ G} is a
diagonal group.

Although this theorem is very classical, we give the proof. To this end, we first give a
lemma

Lemma 4.48. Let F be a field and E be a F-vector space of finite positive dimension. Let
(fi)i∈I be a commutative family of diagonalizable endomorphisms of E, which means that:

— for all i, j ∈ I, fi ◦ fj = fj ◦ fi.
— for each i, there exists a basis Bi of E such that the matrix of fi in Bi is diagonal.

Then, there exists a basis B of E such that the matrices of all fi in B are diagonal.

Proof. This lemma is so classical, that it is hard to put a reference on it. The proof can be
done by induction on dimF(E), the dimension of E:

— If dimF(E) = 1, then every basis of E concurs.
— Assume now that the lemma has been proved for every dimension between 1 and

dimF(E)− 1 ≥ 1. We distinguish to cases:
— If all (fi) are uniform scalings, then every basis of E concurs and there is nothing

to prove.
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— Otherwise, at least one of the endomorphism fi0 is not a uniform scaling. Since fi0
is diagonalizable, the vector space E admits a decomposition E =

�
λ∈Sp(fi0 )

Eλ

where Sp(fi0) is the spectrum of fi0 , which contains at least two elements of F since
fi0 is not a uniform scaling. Let i ∈ I\{i0} and v ∈ Eλ. Then

λfi(v) = fi(fi0(v)) = fi0(fi(v)) since fi and fi0 commute.

Therefore, fi(v) ∈ Eλ, which proves that every fi stabilizes the eigenspaces (Eλ).
Then, for each λ ∈ Sp(fi0), (fi|Eλ

)i∈I\{i0} is a commutative family of diagonalizable

endomorphisms of Eλ. By induction, there exist a basis Bλ of each eigenspace Eλ,
such that the matrices of (fi|Eλ

)i∈I\{i0} in Bλ are diagonal. Hence B = ∪λBλ is a

basis of E, such that the matrices of (fi)i∈I in B are diagonal.
— By induction, the lemma is proved.

Proof of theorem 4.47. Every matrix A ∈ G satisfies the polynomial Xe − 1, which fully
splits in K(ξ) and has simple roots since char(K) � |G|, so every matrix of G is diagonalizable.
Therefore, by lemma 4.48, the endomorphisms associated to the matrices of G can be diago-
nalized in the same basis of K(ξ)n. This leads to the existence of a matrix P ∈ GLn(K(ξ)) such
that P−1AP is diagonal for every matrix A ∈ G. Hence, GD = P−1GP = {P−1AP | A ∈ G}
is a diagonal group.

Example 4.49. Throughout this section, we will consider often the representation in GLn(K)
of Cn, the subgroup of Sn generated by the n-cycle σ = (12 . . . n). With this representation,
Cn is generated by the following matrix Mσ:

Mσ =




0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

1 0 0 . . . 0




With K a field of characteristic 0 or coprime with n and ξ a primitive n-root of 1 in K̄, the
group Cn is diagonalizable with the base-change matrix P = (ξij)i,j∈{1,...,n}. In particular, the

matrix Mσ associated to the cycle (1 . . . n) becomes the diagonal matrix Dσ = P−1MσP =
Diag(ξ, . . . , ξn−1, 1).

We now study this change of variables on ideals invariant under the action of G.

Proposition 4.50. Let I = �f1, . . . , fs�K[X] be a G-stable ideal in K[X], and let GD and

P be the diagonal group and the base-change matrix obtained in theorem 4.47. Then ID =
�fP

1 , . . . , fP
s �K(ξ)[X] is an ideal of K(ξ)[X] stable under GD.

Proof. Since G is a finite group, the orbit of f ∈ I under G, which is {fA | A ∈ G}, is
finite. Therefore, up to enlarging {f1, . . . , fs}, we can assume that for every i in {1, . . . , s}
and A ∈ G, fA

i is one of the {fj}. Let B in GD. Then, B can be written B = P−1AP with
A ∈ G. It follows that for every i in {1, . . . , s},

(fP
i )B = (fP

i )P
−1AP = fPP−1AP

i = fAP
i = fP

j with fj = fA
i .

Since {fP
1 , . . . , fP

s } is a stable set of polynomials under the action of GD, ID is a G-stable
ideal.
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Example 4.51. To illustrate the definition, we will use the well known Cyclic-n problem.
The ideal I of K[X] is generated by:





h1 = x1 + · · ·+ xn

h2 = x1x2 + x2x3 + · · ·+ xnx1
...

hn−1 = x1x2 . . . xn−1 + x2 . . . xnx1 + · · ·+ xnx1 . . . xn−2

hn = x1x2 . . . xn−1xn − 1

The ideal I is obviously invariant under the cyclic group Cn, since each hi satisfies h
Mσ
i = hi,

with Mσ defined in exemple 4.49. It is also stable under the scalar matrix ξIn with ξ a

primitive n-root of 1, since hξIni = ξihi. Hence, the system is globally invariant under the
group G generated by Mσ and ξIn. With P the matrix given in example 4.49, GD = P−1GP ,
generated by Dσ and ξIn, is a diagonal group isomorphic to Z/nZ× Z/nZ. We denote by fi
the polynomials hPi , which generate ID: for instance, when n = 3, the polynomials fi are:





f1 = 3x3

f2 = −3x1x2 + 3x23
f3 = x31 + x32 + x33 − 3x1x2x3 − 1

Observe that for all n, the polynomial f1 in the Cyclic-n problem is always equal to nxn, since
P × t(1, . . . , 1) = t(0, . . . , 0, n). Hence, for this problem, it is easy to remove one variable after
diagonalization.

4.2.2 Grading induced by a diagonal matrix group

From now on, we assume that G is a diagonal matrix group on a field K, isomorphic to��
i=1 Z/qiZ with q1| . . . |q� = e. It follows that K contains a primitive e-root of 1, which will

be denoted by ξ.

Isotypic components given by monomials. We now show that a basis of each isotypic
component of the representation K[X]d ofG consists in monomials. We define theG-degree of
a monomial m, which is a practical way to identify the isotypic component of m. This G-
degree induces a grading of K[X] given by the isomorphism G � �G ��Z/qiZ.

Since G is isomorphic to
��

i=1 Z/qiZ, let φ be an explicit isomorphism

φ : G −→ Z/q1Z× · · · × Z/q�Z
D �−→ φ(D)

and let Di be the preimage of (0, . . . , 0, 1
i
, 0, . . . , 0), so Di generates a subgroup of G of

cardinality |qi|.

Example 4.52. With G the group arising in the previous example 4.51, we take φ such that
φ(Dσ) = (1, 0) ∈ Z/nZ× Z/nZ and φ(ξIn) = (0, 1).

Proposition 4.53. For every monomial m ∈ M and for each i, there exists a unique µi ∈
{0, . . . , qi − 1} such that mDi = ξ

e
qi
µim.
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Proof. Let m =
�n

j=1 x
αj

j and Di = Diag(β1, . . . ,βn). Since Di has order qi, the coefficients

βj are qi-roots of 1, so can be denoted ξ
�j

e
qi . Then

mDi = (β1x1)
α1 × · · · × (βnxn)

αn =




n�

j=1

β
αj

j


m = ξ

e
qi

�n
j=1 �jαjm

Then we can take µi =
�

�jαj mod qi. Since ξ has order e, ξ
e
qi has order qi and the unicity

of µi is clear.

Instead of considering µi in {0, . . . , qi − 1}, we take µi in Z/qiZ, which makes sense since ξ
e
qi

has order qi.

Definition 4.54. The k-tuple (µ1, . . . , µ�) ∈
��

i=1 Z/qiZ is said to be the G-degree of m and
is denoted degG(m), although it depends on the choice of the matrices Di (more exactly, the
choice of φ). We denote by D(G) =

�
Z/qiZ the set of all G-degrees.

The relation between the G-degrees and the characters of G can be explained easily. From
theorem 3.70, we know that �G is isomorphic to G. An explicit isomorphism is given by the
following application:

ℵ : G −→ �G where χi : G −→ K∗

Di �−→ χi Dj �−→
�

ξe/qi if j = i

1 otherwise.

Proposition 4.55. With previous notations, any monomial m is of G-degree (µ1, . . . , µ�) if

and only if mD = χ(D)m for all D ∈ G, with χ =
��

i=1 χ
µi
i .

Proof. Let m be a monomial, and D ∈ G. From the structure of G, D can be uniquely
written

��
j=1D

αj

j , with αj ∈ Z/qjZ. Then, with χ =
��

i=1 χ
µi
i , we have

χ(D) =

��

i=1

χ




��

j=1

D
αj

j


 =

��

i=1




��

j=1

χi(Dj)
αj



µi

=
��

i=1

ξ
e
qi
αiµi

Assume now that m is of G-degree (µ1, . . . , µ�). Then for each i, mDi = ξ
e
qi
µi , and mD =

χ(D)m. The converse implication is obvious since we just have to set D = Di in the relation
mD = χ(D)m.

Remark 4.56. It follows from proposition 3.83 that every µ ∈ D(G) is the G-degree of some
monomials.

To every monomial, we have associated a G-degree. What is very interesting is that the
set of monomials of a given G-degree forms a basis of the isotypic component of the associated
character, which follows from the following proposition:

Proposition 4.57. For D ∈ G, we denote by ρD the associated linear map on K[X]. For
all polynomial f ∈ K[X], we have ρD(f) = fD. Then, for all monomial m in K[X], and

χ =
��

i=1 χ
µi
i , the following relation holds:

pχ(m) =

�
m if degG(m) = (µ1, . . . , µ�)

0 otherwise.
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where pχ = 1
|G|
�

D∈G χ(D)−1ρD is the projection on the isotypic component associated to χ,

see theorem 3.65.

Proof. Let χm be the character
��

i=1 χ
αi
i , where (α1, . . . ,α�) is the G-degree of m. Then

ρD(m) = χm(D)m for all D ∈ G, by proposition 4.55. It follows that

pχ(m) =
1

|G|
�

D∈G
χ−1(D)χm(D)m = m

�
1

|G|
�

D∈G
(χ−1χm)(D)

�

By theorem 3.59, pχ(m) = m(χ−1χm|1) is equal to m if and only if χ−1χm = 1, and zero
otherwise, which ends the proof.

Proposition 4.58. For all monomials m,m� in K[X], the G-degrees of m and m� satisfy the
relation degG(m) + degG(m�) = degG(mm�).

Proof. Let i ∈ {1, . . . , k} and m,m� be two monomials. Let µi, µ
�
i such that mDi = ξ

e
qi
µim

and m�Di = ξ
e
qi
µ�
im�. Then (mm�)Di = mDim�Di = ξ

e
qi
(µi+µ�

i)mm�. Hence degG(mm�) =
degG(m) + degG(m�).

Note that to compute degG(m) with m =
�

xαi
i , we just have to know degG(xi) since

degG(m) =
�

αidegG(xi). This grading will be used to reduce the sizes of the matrices
in the Diagonal-F5 algorithm.

Remark 4.59. If we denote by Md,g the set of monomials of degree d and G-degree g,

Md,gMd�,g� ⊆Md+d�,g+g� for all d, d�, g, g�. Therefore R =
�

d∈N,g∈D(G)

Vect(Md,g).

Example 4.60. Let G be the matrix group generated by the diagonal matrix Dσ =
Diag(ξ, ξ2, 1) where ξ is a primitive third root of 1. Each xi has G-degree i mod 3, so
m =

�
x
αj

j has G-degree
�

jαj mod 3. Hence, x1x2x3 (resp. x1x
2
2) has G-degree 0 (resp.

2).

Example 4.61. (cont. of example 4.51) The G-degree of xi is (i, 1).

G-homogeneous polynomials. We now define a notion of G-homogeneity, which follows
directly from the grading induced by G on K[X]. The cornerstone of the Abelian-F5 al-
gorithm (subsection 4.2.3) is that the S-polynomial of two G-homogeneous polynomials is
G-homogeneous, which will be proved in theorem 4.64.

Definition 4.62. A polynomial f in K[X] is said to be G-homogeneous if all monomials of f
share the same G-degree (µ1, . . . , µ�) ∈ D(G). In this case, we set degG(f) = degG(LM(f)).

In other words, a polynomial isG-homogeneous if it lies in an isotypic component K[X]χ of
K[X], viewed as a representation ofG. Since a polynomial inK[X] can be written

�
µ∈D(G) fµ,

with fµ a G-homogeneous polynomial of G-degree µ, we call fµ the G-homogeneous compo-
nent of f of G-degree µ.

Proposition 4.63. If f is G-homogeneous and m is a monomial, then mf is G-homogeneous.
Moreover, degG(mf) = degG(m) + degG(f).

Proof. For any monomial m̃ of f , degG(m̃m) = degG(m̃) + degG(m) = degG(f) + degG(m),
so all monomials of mf share the same G-degree degG(f) + degG(m) = degG(mf).
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It follows that the product of two G-homogeneous polynomials is also a G-homogeneous
polynomial. Hence, K[X] is a graded algebra, in the sense of definition 2.12. Moreover,
since each component is generated by monomials, it follows that the S-polynomial of two
G-homogeneous polynomials is also G-homogeneous.

Theorem 4.64. Let f, g be two G-homogeneous polynomials of RK . The S-polynomial
of (f, g) (see definition 1.29) is G-homogeneous of G-degree degG(LM(f) ∨ LM(g)), where
LM(f) ∨ LM(g) denotes the lowest common multiple of LM(f) and LM(g).

Proof. Since LM(f) and LM(g) divide LM(f) ∨ LM(g), both fractions

LM(f) ∨ LM(g)

LM(f)
and

LM(f) ∨ LM(g)

LM(g)

are monomials, therefore by previous proposition,

LM(f) ∨ LM(g)

LM(g)

LC(f)

LC(g)
g and

LM(f) ∨ LM(g)

LM(f)
f

are two G-homogeneous polynomials. Moreover, they share the same leading monomial,
so they have same G-degree, which is the G-degree of S(f, g). We actually proved that
degG(S(f, g)) = degG(LM(f) ∨ LM(g)).

Example 4.65. Following example 4.51, it appears that each fi has G-degree (0, i) ∈ Z/nZ×
Z/nZ under G generated by Dσ and ξIn.

G-homogeneous ideals. We now consider ideals generated by G-homogeneous polynomi-
als. Let I be a G-stable ideal generated by f1, . . . , fs. A Gröbner basis computation preserves
the G-degree, but the polynomials fi are not necessarily G-homogeneous. Our aim here is to
prove that the G-homogeneous components of the fi are in I, and so to compute a Gröbner
basis of I, we take the G-homogeneous components of generators of I as inputs. This oper-
ation has a negligible cost since at each degree d, the abelian-F5 algorithm (presented in the
next subsection) separates Md, the sets of monomials of degree d, into subsets Md,g of same
G-degree g.

Definition 4.66. An ideal J of K[X] is said to be G-homogeneous if it is generated by
G-homogeneous polynomials.

The previous definition follows the general definition of a homogeneous ideal in a graded
algebra given in definition 2.13. An interesting result is that the notion of G-homogeneous
and G-stable ideal are the same.

Theorem 4.67. Let J be an ideal of K[X]. Then, the following properties are equivalent.

(1) J is G-homogeneous.

(2) J is G-stable.

(3) For all f ∈ J , the G-homogeneous components of f also belong to J .

Proof. (1)=⇒(2). Let f ∈ J . Then, f =
�

i hifi with fi a G-homogeneous polynomial.
Hence, for all D ∈ G, fD =

�
i h

D
i f

D
i . Since fi is G-homogeneous, the polynomial fi is equal

to λifi with λi a suitable root of 1. Hence, J is G-stable.
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(2)=⇒(3). For all χ ∈ �G, the projection on the isotypic component associated to χ is given
by pχ(f) =

1
|G|
�

D∈G χ(D)−1fD. If f ∈ J all fD belong to J since J is G-stable. It follows

that all G-homogeneous components of f belong to J .
(3)=⇒(1). If f1, . . . , fs is a generating set of J , it is clear that theG-homogeneous components
of f1, . . . , fs also generate J , and they are G-homogeneous.

Example 4.68. Let G be the diagonal group of order 2 generated by the matrix Diag(−1, 1),
acting on R = k[x1, x2]. Assume that x31x2+x21x

2
2−x1+1 ∈ I, with I a G-stable ideal. Then

since degG(xi) = i mod 2, degG(x31x2) = degG(x1) = 1 and degG(1) = degG(x21x
2
2) = 0, so

x31x2 − x1 and x21x
2
2 + 1 belong to I.

We end up this subsection with a quite obvious but useful property, which will be used in
subsection 4.2.5.

Proposition 4.69. Let G be a diagonal matrix group acting on K[X] = K[x1, . . . , xn]. Then
the G-degrees of the variables x1, . . . , xn span the group of G-degrees D(G).

Proof. If m is a monomial, m can be written
�

xαi
i . Then degG(m) belongs to the subgroup

spanned by the G-degrees of the variables. But from proposition 3.83, it follows that for each
G-degree, there exists a monomial having this G-degree.

4.2.3 Abelian Matrix-F5 algorithm

We are now able to describe a variant of the Matrix-F5 algorithm (algorithm 1.44), which
takes advantage of the action of the diagonal group G. Let I be a G-stable ideal, with
G a diagonal group isomorphic to D(G), the group of G-degrees. Let f1, . . . , fs be G-
homogeneous polynomials generating I (according to theorem 4.67). Any computation of
the reduced Gröbner basis of I would implicitly use the grading K[X] =

�
g∈D(G)K[X]g

since it computes S-polynomials. The key of the Abelian-F5 algorithm is the following :
the polynomials fi are G-homogeneous, and also the polynomials mµfi. Therefore, in one
Macaulay matrix appearing in the classical Matrix-F5 algorithm, the only non-zero coefficients
of the row indexed by mµfi are on columns indexed by monomials having same G-degree.
So, instead of building one Macaulay matrix Md,i, we will construct |G| matrices Md,i,g, for
all g ∈ D(G). This idea leads to algorithm 4.70.

At each degree d, the algorithm builds |G| matrices Md,i,g and performs row reduction on

them, in order to obtain �Md,i,g. The columns of Md,i,g are indexed by all monomials of degree
d and G-degree g, sorted for an ordering (for example the grevlex ordering). The rows contain
the writing of all products m× fj with j ≤ i and m monomials of degree d− di and G-degree
g−gi, except those which have been removed by the F5 criterion. This criterion (lemma 1.45)
applies straightforwardly in this case, the only change is that the monomial m can only be
found in Md−di,i−1,g−gi . Note that all the loops on g ∈ D(G) are independent, so at each
degree d, it is possible to parallelize the computations of row-echelon forms on |G| different
processors to speed up the computations. Assuming that there are no uniform scalings in
G, we will see in the complexity subsection 4.2.5 that this allows a theoretical speed-up
of |G|ω compared to the classial Matrix-F5 algorithm, which appears also in practice, see
subsection 4.2.6. In the affine case, this speed-up appears without restriction on G.

4.2.4 Abelian-FGLM algorithm

In this subsection, we explain how to take advantage of the G-grading to speed up the
change of ordering, using a variant of the classical FGLM algorithm 1.52. We assume that
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Algorithm 4.70: Abelian Matrix-F5 algorithm

Input : The set D(G) of G-degrees, homogeneous and G-homogeneous polynomials
(f1, . . . , fs) with degrees d1 ≤ . . . ≤ ds and G-degrees g1, . . . , gs, a maximal
degree D

Output: Gröbner Bases of (f1, . . . , fi) for i = 1, . . . , s up to degree D
for i = 1 to s do Gi := ∅ ;
for d = d1 to D do

for g ∈ D(G) do
�Md,0,g := ∅;
for i = 1 to s do

if d < di then

Md,i,g := �Md,i−1,g

else

Md,i,g := matrix obtained by adding new rows m.fi to �Md,i−1,g, for all
monomials m of degree d− di and G-degree g − gi that do not appear as

leading monomial of a row of �Md−di,i−1,g−gi .

Compute �Md,i,g by Gaussian elimination from Md,i,g;

Add to Gi all rows of �Md,i,g not top-reducible by Gi;

return G1, . . . ,Gs

the dimension of the G-stable ideal I = �f1, . . . , fs� is equal to zero, and that a Gröbner basis
G�1 for an ordering �1 (for instance the DRL ordering) of I has already been computed, and
we are interested in computing the Gröbner basis of I for an other ordering �2 (for example,
the lexicographical ordering). The idea of the Abelian-FGLM algorithm is exactly the same
as algorithm 1.52: we pick up monomials m in K[X] by increasing order for �2, and look for
linear combinations in K[X]/I between the Normal Forms NF(m,G�1). But the additional
structure given by the grading by G allows us to split the matrices used to compute the
Normal forms and test the linear dependency. Contrary to the original article [44], we make
the choice here to insist on the point of view of representation theory. In proposition 2.14, we
have seen that given an ideal I in a graded algebra A, both I and A/I have a decomposition
into homogeneous components. This proposition applies in our case, with the G-grading.

In the classical FGLM algorithm 1.52, the first step is to compute the matrices of the linear
maps given by multiplication by the variables x1, . . . , xn in K[X]/I. But the decomposition

K[X]/I =
�

g∈D(G)

(K[X]g/Ig)

and the fact that each variable xi is G-homogeneous allow us to decompose these linear maps
into restricted maps

K[X]g/Ig ×xi−→ K[X]g+degG(xi)/Ig+degG(xi)

Example 4.71. Let G be the diagonal group of order 2 generated by the matrix Diag(−1, 1),
acting on K[x1, x2]. The set of G-degrees is equal to Z/2Z, and we have degG(x1) = 1 and
degG(x2) = 0. If I is a G-stable ideal, the linear maps of multiplication used in FGLM or
Abelian-FGLM algorithms are the following:
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(K[X]/I)

(K[X]/I)

x1, x2

(K[X]/I)0
�

(K[X]/I)1

(K[X]/I)0
�

(K[X]/I)1

x2

x1

x2

x1

Multiplication with FGLM Multiplication with Abelian-FGLM

As FGLM can be seen as a change of bases on the vector space of finite dimension
(K[X]/I), Abelian-FGLM performs simultaneous change of bases on the isotypic components
(K[X]/I)g of the representation ofG given by K[X]/I. For g ∈ D(G), we denote by Eg the set
of G-homogeneous monomials of degree g that are not reducible by G�1 , and δg = |Eg| will de-
note the dimension of (K[X]/I)g, as a K-vector space. Therefore, δ = dim(K[X]/I) =�g δg.

The Abelian-FGLM algorithm needs the matrices of multiplication Mi,g of multiplication
by xi from (K[X]/I)g to (K[X]/I)g+degG(xi)

in the bases Eg and Eg+degG(xi). The algo-
rithm 4.72 is used to compute these matrices. The proof of its correctness is exactly the same
as the proof of algorithm 1.47 used to compute the multiplication matrices in the classical
FGLM algorithm.

The Abelian-FGLM algorithm proceeds just like the classical FGLM algorithm: a new
monomial to consider (except 1) is of the form m = xim

�, with m� �2 m. Assume that
degG(m�) = g�, so we already know the expression of NF�1(m

�,G�1) in terms of Eg� , which is
a vector V �. It follows that NF�1(m,G�1) is computed by the product V = Mi,g�V

�. Then
we have to decide if m belongs to the new staircase in construction S or if it is the leading
monomial of a polynomial of the Gröbner basis for �2. To this end, we use base-change
matrices Qg between Eg an Sg, the subsets of the staircases having same G-degree g. If s is
the number of elements of the staircase Sg = {u1 �2 · · · �2 us} at the current point of the
algorithm, and Vi the vectors corresponding to NF�1(ui,G�1), then QgVi is equal to the i-th
vector of the canonical basis. Since the matrix Qg is invertible, if all the components but the
s first ones of QV are zero, then we deduce a new element of the Gröbner basis G�2 , otherwise
m is a new element of Sg and we have to update Qg, to map V on the (i + 1)-th element
of the canonical basis. The Update procedure used in algorithm 4.73 is exactly the Update
procedure 1.54 used in the classical FGLM algorithm.

In the pseudocode of the Abelian-FGLM algorithm, 0̂ means the G-degree (0, . . . , 0). We
assume that the set of variables is ordered with xn �2 xn−1 �2 · · · �2 x1. Note that with
degG(xi) = 0̂ for each i, we recover the standard FGLM algorithm. Abelian-FGLM has been
implented in Magma, a web page has been created to collect the code and some examples 1.

4.2.5 Complexity questions

In this subsection, we discuss the arithmetic complexity of the algorithms presented before.
This complexity will be counted in terms of operations in K. We will assume that this field
contains a e-primitive root of 1, with e the exponent of the group G. We first make some
considerations on the first steps, namely the diagonalization of the group and the change of
variables on the polynomials induced by this diaonalization.

1. http://www-polsys.lip6.fr/~jcf/Software/benchssym.html
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Algorithm 4.72: Abelian-Multi-Mat-building algorithm

Input : A reduced Gröbner basis G of a zero-dimensional G-homogeneous ideal
I � K[x1, . . . , xn], the staircases Eg = {1 = �g1 ≺ �g2 ≺ · · · ≺ �gδg} of monomials

of G-degree g, that are not (top-)reducible by G.
Output: Multiplication matrices of the maps f �→ xif in K[X]g/�G�g
for i := 1 to n and g in D(G) do

Mi,g :=Square matrix of size δg × δg filled with zeros; // The rows of Mi,g are

indexed by [�g1 ≺ �2 ≺ · · · ≺ �gδg ] and the columns by [xi�
g
1 ≺ xi�2 ≺ · · · ≺ xi�

g
δg
]

L := [xi� | 1 ≤ i ≤ n, � ∈ ∪ Eg], sorted by � and without duplicates;
for u ∈ L do

switch u do
case u in ∪ Eg :

g := degG(u);
Mi,g−degG(xi)[u/xi, u] := 1 for all i such that xi|u; //the column of

Mi,g−degG(xi) indexed by u has only one non-zero entry corresponding to

u/xi.

case u = LM�(h) for some h ∈ G:
g := degG(u); //h is G-homogeneous of G-degree g.

h can be written u+
�δg

i=1 αi�
g
i ;

Mi,g−degG(xi)[., u] :=
t(−α1, . . . ,−αδg) for all i such that xi|u;

otherwise
g := degG(u);
Find j such that xj |u and v = u/xj ∈ L\Eg−degG(xj);

Find (�, �) such that v = x�� with � ∈ ∪Eg� ;
g� := degG(�); //g� = g − degG(xi)− degG(x�)

V := M�,g� [., v]; //this column of M�,g� contains the expression of

NF�(v,G) in the basis Eg�+degG(x�) = Eg−degG(xj).

W := Mj,g−degG(xj)V ; //W is associated to NF�(xjv,G) = NF�(u,G) in Eg
Mi,g−degG(xi)[, u] := W for all i such that xi|u;

return {Mi,g | i ∈ {1, . . . , n} and g ∈ D(G)}
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Algorithm 4.73: Abelian-FGLM algorithm

Input : Multiplication matrices Mi,g, the sub-staircases Eg, an ordering �2

Output: The Gröbner basis of I for �2

L := [(1, 0̂, n), (1, 0̂, n− 1), . . . , (1, 0̂, 1)]; //list of 3-uples (j, g, i) symbolizing the

monomials Sg[j]× xi, ordered by increasing order

Sg := [ ] for g ∈ D(G)\{0̂} and S0̂ = [1]; //subsets of the staircase S for the

ordering �2 having same G-degree

Vg := [ ] for g ∈ D(G)\{0̂} and V0̂ = [t(1, 0, . . . , 0)]; //Vg contains the expressions of

NF�1
(Sg[j],G�1

) in Eg, each vector in Vg has δg components

G := [ ]; //The Gröbner basis for �2

Qg := Iδg for all g ∈ D(G);

while L �= [ ] do
m := L[1]; and Remove m from L;
j := m[1]; g� := m[2]; i := m[3]; g := g� + degG(xi);
v := Mi,g�Vg� [j]; //components of NF�1(xiSg[j],G�1) in Eg
s := #Sg; //number of elements in Sg

λ = t(λ1, . . . ,λδg) := Qgv;

if λs+1 = · · · = λδg = 0 then

G := G ∪ [m−
s�

j=1
λj · Sg[j]];

else
Sg := Sg ∪ [Sg� [j]× xi];
Vg := Vg ∪ [v];
L := Sort (L ∪ [(s+ 1, g, i) | i = 1, . . . , n] ,�2);
Remove duplicates from L;
Update(Qg,λ, v); // Now Qgv = t(0, . . . , 0, 1

s+1
, 0, . . . , 0)

Remove from L all multiples of LM�2(G);

return G
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Remark 4.74. [96] When working in a finite field Fp, a very interesting case is when ξ
belongs to k, so Fp(ξ) = Fp. It is easy to see that

ξ ∈ Fp ⇐⇒ Xe − 1 splits on Fp ⇐⇒ Z/eZ ⊆ Z/(p− 1)Z⇐⇒ p ≡ 1[e]

By Dirichlet’s theorem, there are infinitely many such primes and the distribution of such
primes is 1/ϕ(e), where ϕ is the Euler’s totient function. To compute the Gröbner basis of
an ideal over Q, it is more efficient to compute modulo some such primes and use modular
methods to recover the original Gröbner basis.

Now, we give without proof a bound on the cost of the two first linear steps:

Proposition 4.75. The cost of the diagonalization of the matrix group G is bounded by
O((q1 + · · ·+ qk)n

ω), with ω the constant of linear algebra. With m polynomials fi of degree

less than or equal to d, the cost of computing the fP
i is bounded by O(

�
n+d
d

�
ndm log d log log d).

In practice, these costs are widely bounded by the cost of the Abelian-F5 algorithm,
therefore they are negligible.

Hilbert Series of the ideal before and after the diagonalization. Let I = �f1, . . . , fs�
be a homogeneous ideal, let G be a matrix group such that I is G-stable, and assume
that K contains a primitive e-root of 1. Then, the base change matrix P introduced in
subsection 4.2.1 induces a bijective mapping between the components (K[X]/�f1, . . . , fs�)d
and

�
K[X]/�fP

1 , . . . , fP
s �
�
d
. Therefore, both Hilbert series, degree of regularity and degree of

the ideal are the same before and after diagonalization. From now, we assume that I is a
G-stable ideal with G a diagonal matrix group.

Complexity of the Abelian-F5 algorithm. In order to bound the complexity of the
Abelian-F5 algorithm, we bound the complexity of an abelian version of the Lazard algo-
rithm 1.40, consisting in building a row echelon form of Macaulay’s matrices, that are the
same as in Abelian-f5 but without removing rows with the F5-criterion. In the case of an
ideal F invariant under a diagonal group GD, we have seen that such a matrix can be splitted
into |GD| parts, and previous analysis of the dimension of the vector space dim(K[X]χ,d) in
proposition 3.83 proves that, under parallelization on the computations of row echelon form
of the |G| submatrices, the following theorem holds:

Theorem 4.76. Let G be a digonal group with no uniform scalings, and let F = (f1, . . . , fs) ∈
K[X]s be a family of homogeneous polynomials generating a 0-dimensional G-stable ideal I.
The complexity of computing a Gröbner basis for the DRL ordering of the ideal I is bounded
by

O

�
s

|G|ω
�
n+ dreg(F)

dreg(F)

�ω�

operations in K, with ω the constant of linear algebra.

Proof. Once the group G is fixed, we have seen in theorem 3.78 that the dimensions of the
vector spaces K[X]d,g tend to be equally distributed as d grows to inifinity. The matrix
Md,g built by the abelian variant of the Lazard algorithm has dim(K[X]d,g) columns and�s

i=1 dim(K[X]d−di,g−gi) rows if fi is of degree di and G-degree gi for all i. Then, the proof
ends by the same analysis as the complexity of the Lazard algorithm given in theorem 1.42.
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In the affine case, the complexity of the F5-algorithm is unclear, due to the possible fall of
degree. It seems that a bound similar to theorem 1.42 could be obtained (see for example [93,
Theorem 1.73]), assuming that the homogeneous part of greatest degree of each polynomial fi
forms a regular sequence (and also, s = n). Therefore we could obtain a similar improvement
as in theorem 4.77 with this kind of argument. However, we will see in chapter 5 that
theorem 1.42 holds also for affine systems. Hence, the following theorem holds:

Theorem 4.77. Let G be a digonal group and let F = (f1, . . . , fn) ∈ K[X]n be a family of
polynomials of degrees (d1, . . . , dn) generating a 0-dimensional G-stable ideal I. The com-
plexity of computing a Gröbner basis for the DRL ordering of the ideal I is bounded by

O

�
s

|G|ω
�
n+ dwit

dwit

�ω�

operations in K, with ω the constant of linear algebra and dwit ≤ 1 +
�n

i=1 di − 1.

Complexity of the Abelian-FGLM algorithm. We are now interested in giving a com-
plexity bound of the abelian-FGLM algorithm. Let I be a zero-dimensional ideal invariant
under the diagonal group G. We have to consider the two parts of the algorithm to give a
complexity estimation : the construction of the multiplication’s matrices Mi,g and the loop
in FGLM. We denote by δ the degree of the ideal I. Unfortunately, the staircases are not
necessarily evenly distributed over the set of G-degrees:

Example 4.78. Let G be the diagonal matrix group generated by the diagonal matrix Dσ =
Diag(ξ, ξ2, . . . , ξn−1, 1), acting on K[X] = K[x1, . . . , xn], with ξ a primitive n-root of 1. Then
the zero-dimensional ideal I = �x1, . . . , xn−1, x

D
n � has an arbitrary high degree D but E =

E0 = {1, xn, . . . , xD−1
n }, where 0 is the G-degree of the variable xn.

However, this kind of “bad situation” happens only for very particular ideals. In practice,
the sizes of the substaircases Eg are evenly distributed, and |Eg| � |E|/|G|, see subsection 4.2.6.
Moreover, the size of these substaircases can be exactly the same; the following proposition
gives a sufficient condition.

Proposition 4.79. Let I be a G stable zero-dimensional ideal. If all the maps

K[X]/I ×xi−→ K[X]/I

are invertible, then all substaircases have same size.

Proof. It follows from the assumption that |Eg| = |Eg+degG(xi)| for all g ∈ D(G) and i ∈
{1, . . . , n}. Since the group spanned by the G-degrees degG(xi) is the whole group D(G) by
proposition 4.69, the proposition is proved.

In the case |Eg| � |E|/|G|, the following theorem holds.

Theorem 4.80. Under the hypothesis that the monomials of E are evenly distributed over
the staircases Eg (which is verified in practice), it is possible to obtain the reduced Gröbner

basis G�2 from G�1 of I with O
�

n
|G|2 δ

3
�
arithmetic operations in K.
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Proof. The proof is essentially the same as the proof of theorems 1.51 and 1.57, which
bound the complexity of computing the multiplication matrices and applying the usual
FGLM algorithm [39]. In algorithm 4.72, the list L has size O(nδ) and only the“otherwise”
case needs arithmetic operations. In this case, the linear algebra part can be done in

at most O
�
(δ/|G|)2

�
, due to the fact than the matrices Mi,g are assumed to be of size

(|δ|/|G|) × (|δ|/|G|). Therefore, at most O
�

n
|G|2 δ

3
�
are needed to compute the multiplica-

tion matrices in algorithm 4.72. In the same way, the while loop in algorithm 4.73 is entered at
most nδ times, and linear algebra operations are also done in at most O(δ2/|G|2) operations.
Hence, the theorem holds.

Polynomial complexity. Interesting enough, this approach allows us to identify some
problems than can be solved in polynomial time. Assume that g1, . . . , gs are affine polynomials
of K[X] of degree 2, which are individually invariant under the Cyclic-n group. Usually,
computing a Gröbner basis of I = �g1, . . . , gs� is exponential, but we will see that we can
obtain a Gröbner basis of I in polynomial time in n and s. With P = (ξij), and fi = gPi ,
each fi is invariant under Dσ = Diag(ξ, ξ2, . . . , ξn−1, 1) and fi has G-degree 0.

Lemma 4.81. The support of each fi is contained in

{1, xn, x2n} ∪ {xixn−i, | 1 ≤ i ≤ �(n− 1)/2�}

Proof. Each xi has G-degree i mod n, so degG(xixj) = i+ j mod n, and the only monomials
of degree 2 having G-degree 0 are xixn−i. The only monomial of degree 1 and G-degree 0 is
xn, and 1 is also of G-degree 0.

Theorem 4.82. A Gröbner Basis for every monomial ordering of a system of s equations
individually invariant under Dσ = diag(ξ, . . . , ξn−1, 1) can be computed in polynomial time in
n+ s.

Proof. We set yi = xixn−i for each i ∈ {0, . . . , �(n − 1)/2�} to linearize the equations, and
perform a Gaussian elimination on the equations. The result is a Gröbner Basis since the
leading monomials of any pair of the obtained polynomials are coprime. The matrix, that
we have to reduce has s lines and �(n+ 5)/2� columns, and the complexity is polynomial in
n+ s.

Remark 4.83. Similar results can be obtained for other groups and systems. However, the
polynomial timings are rather due to the sparsity of the system after diagonalization than to
the action of the diagonal group. We study sparse systems in chapter 5, and this is also a
work in progress with Jean-Charles Faugère and Pierre-Jean Spaenleheauer.

Application to quasi-homogeneous systems. Let (f1, . . . , fs) be a set of polynomials in
K[X], assumed to be quasi-homogeneous, with respect to the sequence of weights (w1, . . . , wn),
with wi being a positive integer for each i. We can assume that the integers wi are relatively
primes. For f a quasi-homogeneous polynomial with respect to this sequence of weights,
denote by f̃ the polynomial f(xw1

1 , . . . , xws
s ) where xwi

i has been substituted to xi. Then,

each f̃i is individually invariant under the action of the group G generated by the diagonal
matrices Di = Diag(1, . . . , 1, ξj , 1, . . . , 1) where ξj is a wj-primitive root of 1. This group has
size

�n
j=1wj and contains no uniform scalings except In since the weights are relatively prime.
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d/n 2 3 4 5 10 15

2 0.33 0.00 0.20 0.00 0.091 0.00

3 0.00 0.14 0.00 0.09 0.00 0.01

4 0.20 0.00 0.10 0.09 0.02 0.01

5 0.00 0.09 0.00 0.02 0.00 0.00

10 0.09 0.00 0.02 0.00 0.00 0.00

15 0.00 0.09 0.00 0.00 0.00 0.00

Table 4.84 – Repartition of the monomials under G

Hence, theorem 4.76 can be applied, and we conclude that a Gröbner basis of �F̃� = �f̃1, . . . , f̃s�
can be computed within

O

�
s

(
�n

i=1wi)
ω

�
n+ dreg(F̃)

dreg(F̃)

�ω�

if �f̃1, . . . , f̃s� is a zero-dimensional ideal. This approach allows us to recover parts of the
results of [37]. However, some improvements specific to quasi-homogeneous systems are done
in this paper. First of all, if we pay attention to the S-polynomials built during the computa-
tion of a Gröbner basis of F̃, we can see that only polynomials of G-degree 0 occur. Hence,
there is no need to build G Macaulay matrices at each step, only one is needed. Secondly, the
authors of [37] give a precise bound on the degree of regularity of the sequence F̃. Finally, it

it possible to recover the Gröbner basis of �f1, . . . , fs� from the Gröbner basis of �f̃1, . . . , f̃s�.
The FGLM algorithm can be applied with this Gröbner basis, and its complexity is precisely
estimated.

4.2.6 Experiments

In this subsection, we report some experiments that show the improvements given by our
approach on the computation of Gröbner bases of ideals invariant under an abelian matrix
group. We first present the dimensions of K[X]d,g and (K[X]/I)g on some examples, and
then give timings obtained with an implantation of the algorithm Abelian-F4. A web page
has been made for other software and benchmarks 2.

Distribution of dim(K[X]d,g) and dim ((K[X]/I)g). In this paragraph, we assume that G
is the cyclic group generated by the matrix Dσ = P−1MσP = (ξ, ξ2, . . . , ξn−1, 1) presented in
example 4.49. We first compare dim(K[X]d,g) with dim(K[X])d/n, since n is the order of the
group G. To this end we compute the relative standard deviation between these dimensions,
for several n and d. The formula is given by

σd,n =

�
1
n

�
g∈G

�
dim(K[X]d,g)− dim(K[X]d)

n

�2

dim(K[X]d)
n

.

Table 4.84 presents some values of σd,n in the case of this cyclic group. We see that the
monomials are very quickly evenly distributed over g ∈ D(G).

2. http://www-polsys.lip6.fr/~jcf/Software/benchssym.html
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n |E| |G| |E|/|G| max(|Eg|) σE
3 6 9 0.667 2 1

5 70 25 2.800 6 0.286

6 156 36 4.33 6 0.133

7 924 49 18.86 24 0.045

10 34940 100 349.40 354 0.0043

11 184756 121 1526.91 1536 0.00060

Table 4.85 – Cyclic-n: Repartition of the monomials into Eg

In the same way, the stairs Eg that appear in the abelian-FGLM algorithm have roughly
same size. Table 4.85 presents some zero-dimensional ideals together with the sizes of the
groups and the sizes of the substaircases. The examined problem is the Cyclic-n problem,
defined in example 4.51. We recall the resulting ideal is G-stable with G a group of cardinal
n2. Notice that not all integers n between 3 and 11 lie in the table: the other values lead to
an ideal of positive dimension. In the table, we present the size of the (global) staircase, the
average size of a substaircase (equal to |E|/|G|) and the maximal size of a substaircase. This
maximal substaircase is always given by the G-degree of the monomial 1, corresponding to
the trivial character. The final column is the relative standard deviation between |Eg| and
|E|/|G|, the formula of which is given by

σE =

�
1

|G|
�

g∈G
�
|Eg|− |E|

|G|

�2

|E|
|G|

.

It follows that the relative standard deviation tends fast to 0 as n grows, meaning that all
substaircases have roughly same size.

Abelian-F4 implementation. A first implementation of the Abelian-F4 algorithm has
been made. This algorithm is a variant of the classical F4-algorithm [34]. It constructs |G|
matrices at each degree, using the usual strategy of F4. Note that only the construction of the
matrices and the operations of row-reduction on them have been parallelized, the handling of
the list of critical pairs is still sequential. Surprisingly, the linear algebra can sometimes be so
accelerated that this handling can become the most time-consuming part whereas it is usually
negligible. Therefore we report in the following tables two timings or ratios in each column:
the timings are related to FA,n

4 , which is the new abelian algorithm parallelized on n cores,
applied on a G-stable ideal I, wich G a diagonal matrix group. The first one is the total
timing and the second one is only the parallelized part (that is to say, building the matrices
and the linear algebra parts). The other columns contain the ratios between FA

4 , F4 or FM
4

and FA,n
4 . F4 means the standard F4 applied on the original ideal before diagonalization

and FA
4 the standard F4 applied on I. FM

4 is the implementation of the F4 algorithm in
Magma, and there is only the ratio for the total timing. In each case except table 4.90,
the group acting on the ideal before diagonalization is the cyclic group Cn generated by the
matrix Mσ defined in example 4.49, and G is the group generated by the diagonal matrix
Dσ = Diag(ξ, ξ2, . . . , 1) = P−1MσP . Note that we have to reach big-sized problems to have a
significant impact. All computations have been made on a computer with 4 Intel(R) Xeon(R)
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CPU E5-4620 0 @ 2.20GHz with 387 GB of RAM, on a field where X |G|− 1 fully splits (most
of the time F65521), according to remark 4.74.

Equations of degree 3 and G-degree 0. In table 4.86, we consider n randomized
affine equations of degree 3 individually stable under Cn, which give rise to equations of G-
degree 0 in I. Notice that in this case, the substaircases of each G-degree have exactly same
size.

n FA,n
4 FA

4 /FA,n
4 F4/F

A,n
4 FM

4 /FA,n
4

total; // part tot;p.p tot;p.p tot

8 3.46s;2.48s 2.2;2.7 33.0;45.4 22

9 77.04s;64.21s 7.3;8.6 67.8;81.0 50

10 762s;672s 10.0;11.3 160.9;182.1 134

11 22162s;20425s 13.0;14.0 ∞ ∞

Table 4.86 – n cubic equations of G-degree 0

Equations of degree 2 with only two G-degrees. Table 4.87 presents n equations
of degree 2, half of these equations in I are of G-degree 0, and half of G-degree 1. In this
case, the computation on I becomes polynomial in n and the handling of the critical pairs is
the most time-consuming part.

n FA,n
4 FA

4 /FA,n
4 F4/F

A,n
4

total; // part tot;p.p tot;p.p

25 0.25s;0.06s 1.9;4.5 56.60;230.0

30 0.58s;0.11s 1.5;4.6 80.79;415.1

35 0.86s;0.11s 1.9;8.5 228.5;1755

40 1.55s;0.21s 2.0;8.5 300.6;2174

45 2.31s;0.30s 2.4;10.7 664.5;5043

50 3.96s;0.45s 2.6;13.3 753.8;6504

55 6.98s;0.66s 2.5;15.0 1207;12570

60 10.85s;0.96s 2.8;17.2 1294;14330

Table 4.87 – n quadratic equations of G-degree 0 or 1

Application to Cryptography. Table 4.88 presents equations coming from a cryp-
tographic application : the cryptosystem NTRU [58]. The underlying basic problem is the
following:

NTRU problem: Given h =
�n−1

i=0 hix
i ∈ Fp[x], find f in Fp[x] of degree n − 1 and

coefficients in {0, 1} such that g = fh mod xn − 1 has also its coefficients in {0, 1}.
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n FA,n
4 FA

4 /FA,n
4 F4/F

A,n
4

total; // part tot;p.p tot;p.p

20 3.07s;0.78s 3.5;11.3 66.0;257.8

21 4.52s;1.21s 4.0;11.9 90.15;334.0

22 15.01s;2.28s 2.2;11.4 58.4,381.6

23 11.16s;1.87s 3.3;17.2 115.2;686.1

24 128s;14.3s 5.2;36.5 241.1;2149.

25 218s;31.0s 5.8;32.5 ∞
26 365s;59.0s 6.6;32.6 ∞
27 955s;113s 4.9;33.3 ∞
28 1214s;192s 7.1;36.1 ∞
29 3310s;323s 4.7;38.8 ∞

Table 4.88 – NTRU equations

Denote f =
�n−1

i=0 fix
i. Then, the fi’s are the unknowns, which satisfy the equations

f2
i − fi = 0, since we want fi to be in {0, 1}. Let g =

�n−1
i=0 gix

i = fh, then the gi’s are linear

forms in the fi’s satisfying also g2i − gi = 0. More precisely, gi =
�n−1

j=0 fjh[(i−j) mod n]. The

matrix Mσ acts on the variables fi by fMσ
i = f[(i+1) mod n], therefore:

gMσ
i =

n−1�

j=0

f[(j+1) mod n]h[(i−j) mod n] =

n−1�

j=0

fjh[(i−j+1) mod n] = g[(i+1) mod n]

It follows that the system consists of 2n quadratic equations in the polynomials (fi)
generating an ideal globally stable under the action of Cn. The speed-up between F4 and
FA,n
4 is roughly 250 with 24 variables, and the use of FA,n

4 has a significant impact since we
can achieve bigger problems. In this case the handling of the critical pairs is also the most
time-consuming part.

Cyclic-n problem. Table 4.89 presents timings on the Cyclic-n problem. We see that
Cyclic-11 could be solved in less than 8 hours although it is untractable with F4.

n FA,n
4 FA

4 /FA,n
4 F4/F

A,n
4 FM

4 /FA,n
4

total; // part tot;p.p tot;p.p tot

8 0.50s;0.40s 2.5;2.7 7.8;9.3 6.0

9 10.21s;7.71s 4.3;5.4 37.0;48.4 30.5

10 334s;290s 13.2;14.8 411.0;472.3 207

11 27539s;25454s ∞ ∞ ∞

Table 4.89 – The Cyclic-n problem

From the experimental side, applying the F4 algorithm on the cyclic 9 problem we obtain,
in degree 15, a matrix of size 72558 × 93917; applying the abelian-F4 algorithm we obtain 9
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independent matrices of roughly the same size: 8340 × 10703, 8180 × 10544, 8122 × 10484,
7804× 10171, 7993× 10358, 8042× 10404, 7796× 10162, 7967× 10369 and 8314× 10722.

Polynomials of degree 3 invariant under a product of cyclic groups. Table 4.90
is an example of ideals generated by random polynomials of degree 3 invariant under the
group Ck1 ×Ck2 , each subgroup Ck acting on k variables. We see that the algorithm is more
efficient when k1 = k2, which makes sense since the size of the group is k1k2.

k1, k2 FA,k1k2
4 FA

4 /FA,k1k2
4 F4/F

A,k1k2
4 FM

4 /FA,k1k2
4

tot; // p.p tot;p.p tot;p.p tot

4,4 2.0s;1.3s 2.4;3.2 61.8;94.6 37

6,2 2.9s;2.4s 2.2;2.5 76.4;91.4 44

5,5 70s;43s 11.8;16.2 ∞ ∞
6,4 92s;76s 17.7;19.8 ∞ ∞
8,2 107s;100s 12.1;12.3 ∞ ∞

Table 4.90 – n = k1 + k2 cubic equations invariant under Ck1 × Ck2
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4.3 Solving Polynomial Systems of Invariant Equations with
SAGBI bases

Introduction

This section presents a work in common with Jean-Charles Faugère and Guënael Renault
which is still in progress.

Problem Statement. In this section, we assume that G is any finite subgroup of the
general linear group GLn(K), with no assumption on the characteristic of K: the action of
G on K[X] can be modular or non-modular. Let F = (f1, . . . , fs) be a set of individually
G-invariant equations, that is to say each equation is G-invariant: for all i ∈ {1, . . . , s} and
A ∈ G, fi

A = fi. Can we solve the system {f1(X) = · · · = fs(X) = 0} faster than with usual
Gröbner bases algorithms ?

The main idea of the section is to compute in the subalgebra A = K[X]G of G-invariant
polynomials. This allows to reformulate the polynomials (fi) as linear combinations of ele-
ments in a basis of K[X]G. This reformulation is a more compact way to manipulate the
polynomials occuring in the computations, compared to the dense representation as linear
combinations of monomials. Since the concept of Gröbner bases is not available in K[X]G,
we will use SAGBI bases instead, introduced in section 1.3. In this section, we have seen how
the SAGBI-Matrix F5 allows us to compute a SAGBI basis of an ideal generated by a finite
set of polynomials in a subalgebra of K[X], up to some given degree. The knowledge of a
SAGBI basis of the ideal generated by F in A at a sufficient degree will allow us to compute
a finite Gröbner basis in some invariant ring, using a variant of the FGLM algorithm. The
final step is to use this Gröbner basis to recover the solutions of the system.

Previous Work. We present an extension of the results given by Faugère and Rahmany
in [41]. The main ideas of the present section can be found in this earlier version, but the
authors restricted their discussion to the non-modular case, when the group G is a subgroup
of the permutation group Sn and no complexity analysis was provided.

Different approaches have already been proposed to solve such invariant problems. First
of all, since we assume that all equations fi generating the system are invariant under the
action of the group G (fi

A = fi for all A ∈ G), it is possible to use tools from invariant theory
([100, 27]) to rewrite the system: the algebra K[x1, . . . , xn]

G can be written K[h1, . . . , hr] with
{h1, . . . , hr} a suitable set of fundamental invariants of the group G (see definition 3.29).
The idea is to reformulate the polynomials fi in terms of hj to obtain a new system to which
we add the relations between the polynomials hj . The drawback of this method is that,
except for particular families of groups (for example reflection groups in the non-modular
case) the number of requiring fundamental invariants can increase dramatically compared to
n. For example, using this method to solve the Cyclic-5 problem leads to a system with 15
polynomials in 15 unknowns, which is in practice more time-consuming to solve than the
original one (only 5 polynomials in 5 variables).

With the idea of working in the field of G-invariant rational fractions K(x1, . . . , xn)
G,

Colin is able in [23] to reformulate the system into a rational system involving only n + 1
polynomials given by the primary invariants and only one other invariant. However, according
to our experience, the resulting system can be more difficult to solve than the original one.

The idea of bringing together SAGBI basis of ideals and ring of invariants goes back to
a work of Thiéry [104], where he used these objects to compute the secondary invariants
of K[X]G for G a permutation group in any characteristic but assuming that K[X]G is
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Cohen-Macaulay in the modular case. To this end, he proposed a variant of Buchberger’s
algorithm. The fact that with this algorithm, many unnecessary S-pairs remain undetected
by the Buchberger-like criterions was another motivation of the paper [41].

We have already mentionned that the typical example of problem with symmetry is to solve
f1 = · · · = fs = 0 with F = {f1, . . . , fs} a globally G-invariant set of polynomials. Of course,
if we have a method to solve efficiently those systems, we can apply it in the particular case
of a system with G-invariant polynomials. In the previous section, we proposed variants of
F5 and FGLM algorithms to compute a Gröbner basis of a zero-dimensional ideal generated
by a globally G-invariant set of polynomials, assuming that char(K) � |G| and that G is
abelian. It is possible to apply these results here with G�, a maximal abelian subgroup of G.
Under some assumptions, this approach allows us to ensure a gain of |G�|ω in F5 and |G�|2
in FGLM compared to a classical Gröbner basis computation, which remains unsatisfactory
if G is much bigger than G�: a lot of symmetry is not taken into account.

Main results. Let A be a graded subalgebra in K[X], and f1, . . . , fs be polynomials in A
generating the ideal IA in A and I in K[X].

Our main contributions in this section are twofold: algorithms and complexity. First, we
present an algorithm which computes a SAGBI basis of the ideals IA up to some given degree
D. This algorithm SAGBI-F5, is a variant of the F5 algorithm [35], and requires a basis of
Ad for 0 ≤ d ≤ D, where Ad is the graded component of degree d of A. Given these bases
{(bdi )1≤i≤nd

| d = 0, . . . , D}, we have also to know the expressions of bdi × bd
�

i� in terms of

(bd+d�
k )1≤k≤nd+d� . Let h1, . . . , hr be polynomials in A. The aim of the second main algorithm

is to compute a Gröbner basis of the ideal

J = I + �{Hi − hi(x1, . . . , xn) | 1 ≤ i ≤ r}� ∩K[H1, . . . , Hr]

where H1, . . . , Hr are r new unknowns, assuming that I is zero-dimensional, with the help of
the SAGBI-basis up to degree D. For example, if G is a subgroup of the symmetric group Sn

embedded in GLn(K), it is possible to take the symmetric functions σ1, . . . ,σn as polynomials
h1, . . . , hn. This algorithm, called SAGBI-FGLM, is a variant of the FGLM algorithm [39].
In practice, SAGBI-FGLM algorithm computes SAGBI-Normal Forms with respect to the
SAGBI basis of polynomials

�n
i=1 hi

αi of degree less than D, corresponding to monomials in
K[H1, . . . , Hr], taken by increasing order for a weighted DRL ordering (with degHi = deghi).
Since we do not know the degree D that we have to reach until SAGBI-FGLM succeeds, we
apply in practice successively truncated versions of both algorithms at each degree. Then, we
compute the variety V(J ) associated to J , which is exactly the image of the variety V(I)
through the map:

Φ : Kn −→ Kr

y = (y1, . . . , yn) �−→ (h1(y1, . . . , yn), . . . , hr(y1, . . . , yn))

where K is the algebraic closure of K. Roughly speaking, since h1, . . . , hr are invariant under
the action of G, a point in V(J ) is the image of |G| points in V(I), therefore V(J ) is
much smaller than V(I). We finally recover the variety V(I) by computing Φ−1(V(J )), and
removing the points that are not in V(I). In practice, since we stop the computation of a
SAGBI basis as soon as SAGBI-FGLM algorithm gives a zero-dimensional ideal, we can have
more spurious solutions to remove. The whole process can be summarized in the following
diagram:

To remove spurious solutions, we propose several approaches. The first one can be applied
only if G is a generalized permutation group, which is the main interesting case of this section
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System, a degree
D, bases of

(K[X]Gd )0≤d≤D

SAGBI basis
in degree D

Gröbner basis in
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No: D → D + 1
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Figure 4.91 – Strategy for solving a system of invariant equations under the action of a finite
group.

since computations of a basis (bdi )i of each component K[X]Gd and expressions of bdi × bd
�

i� in

terms of (bd+d�
j )j can be done easily. The idea is to apply previous algorithms in order to

know some powers (depending on G) of the symmetric functions of the solutions. Then, one
can introduce a univariate polynomial, the coefficients of which are such symmetric functions
and compute its roots to recover the solutions. The two others are more general but need
some precomputations. They have both in common that they are related to the problem of
computing a lexicographical Gröbner basis of a zero-dimensional ideal �E+T � ⊂ K[y1, . . . , yr],
where E is a given set of polynomials and T = {T1, . . . , Tr} is a triangular set, that is the
leading monomial of each Ti for lexicographical ordering with y1 > · · · > yr is a power of yi.
The second approach is close to the Lazard Lex-Triangular algorithm [73]. The final approach
is univariate, which means that it needs an isomorphism of algebras

ϕ : K[y1, . . . , yr]/�T � → K[u]/Q(u)

y1, . . . , yr �→ S1(u), . . . , Sr(u)

Λ �→ u

where Λ is a suitable linear combination of y1, . . . , yr. This approach uses GCD’s and a variant
of the FGLM algorithm.

We present only one complexity result here, namely the complexity of computing a SAGBI
basis of the ideal generated by the polynomials in F up to some given degree. This is easy to
derive in this context, from the estimations given in chapter 3.

Theorem 4.92. Let f1, . . . , fs ∈ K[X]G be homogeneous polynomials of degree d1, . . . , ds. If
there are no uniform scaling in G except In, the complexity of computing a SAGBI-basis up to

degree D of the ideal �f1, . . . , fs� ⊂ K[x1, . . . , xn]
G is bounded by O

�
t

|G|ω
�
D+n
D

�ω�
arithmetic

operations in K.

Work has to be done, in order to precise other complexity results. As a proof of concept,
we present here the table giving some sizes of the Gröbner bases and the Gröbner bases
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in K[σ1, . . . ,σn] obtained for the Cyclic-6 and Cyclic-7 problem (σi is the i-th symmetric
function of the (xj)). The group that acts on the system is the dihedral group Dn of size 2n,
for n = 6, 7.

G |G| Max length of a polynomial in G V(�G�)
Lex-Gb of ID6 17 27 156

S6-inv Lex-Gb of ID6 7 4 13

Lex-Gb of ID7 35 132 924

S7-inv Lex-Gb of ID7 7 9 57

Table 4.93 – Sizes of the invariant Gröbner bases and the Gröbner bases

Organization of the section. The preliminaries needed to understand this section were
presented in section 1.3 and chapter 3. In section 1.3, we have seen the concept of SAGBI bases
and the Matrix SAGBI-F5 algorithm 1.68 and in chapter 3, we gave some basic definitions of
the invariant ringK[X]G, and explain how to compute a basis of each homogeneous component
K[X]Gd in different cases: modular and non-modular cases, and the special case of pseudo-
reflexion groups. We also analysed the complexity of each computation. Moreover, we have
given estimations of the dimensions of the components K[X]Gd , which can be read from the
Hilbert series of the invariant ring. We also reviewed properties on the structure of the algebra
K[X]G and have defined the notion of Gröbner basis in invariant ring, which is the object we
will compute after applying the FGLM algorithm.

Subsection 4.3.1 presents the Matrix SAGBI F5 algorithm in the context of invariant
rings, with an expanded example. The end of the subsection is devoted to the analysis of the
complexity of algorithm SAGBI-F5.

From the beginning of the subsection 4.3.2 to the end of the section, we assume that I =
�f1, . . . , fs� is zero-dimensional. Thus, subsection 4.3.2 provides a FGLM like algorithm for
converting a SAGBI-basis of an ideal IA in A into a Gröbner basis in some ring K[H1, . . . , Hr].
Since each variable Hi corresponds to a given polynomial hi ∈ A, the result is a Gröbner basis
of the ideal

J = I + �{Hi − hi(x1, . . . , xn) | 1 ≤ i ≤ r}� ∩K[H1, . . . , Hr]

Note that a SAGBI-basis is usually not finite, so we cannot compute a SAGBI basis of IA

with SAGBI-F5 and then use SAGBI-FGLM algorithm. Therefore, we have to apply step-by-
step SAGBI-F5 algorithm: a step corresponds to an increasing degree D and at each step we
compute a SAGBI-basis of IA up to degree D, and then we apply SAGBI-FGLM. In practice,
we stop as soon as we get a subset of polynomials in J generating a zero-dimensional ideal.
The end of the subsection is also devoted to complexity analysis.

We explain in subsection 4.3.3 various methods to recover V(I) from the variety V(J ), or
at set containing V(J ). The first one is restricted to the case A = K[X]G and G a generalized
permutation group. The two others are more general but need some precomputations. We
present first a triangular approach, which can be viewed as a generalization of the Lex-
Triangular algorithm, which converts a Gröbner basis for lexicographic ordering into a union
of triangular sets. The final approach is based on a univariate representation of a triangular
set, and leads to computation of GCDs and a variant of the FGLM algorithm.

The last subsection is devoted to experiments and benchmarks.
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4.3.1 SAGBI-Gröbner bases in invariant rings

In [104], Thiéry gives a variant of the Buchberger’s algorithm to compute SAGBI bases up
to some given degree in invariant rings of permutation groups. Also, he provided a Buchberger-
like criterion to skip the computation of unnecessary S-pairs. Although this criteria avoids
many reductions to zero, still many useless pairs remain undetected. We have seen in chap-
ter 1, a very general algorithm 1.68 that computes a SAGBI basis of an ideal IA in a subalgebra
A up to some given degree. Our aim here is to apply this algorithm in the particular case
where A is a ring of invariant K[X]G = K[x1, . . . , xn]

G. In order to analyze the efficiency
of this algorithm in the case of invariants, all needed material has been presented in chap-
ter 2, and the basic properties of invariant rings have been seen in chapter 3. Therefore, we
present in this subsection only examples, which make the comprehension of the SAGBI tools
in invariant rings easier, and perform a brief analysis of complexity, which follows the results
given in the prerequisites.

Reminders. Depending on the groupG, we have seen in subsection 3.1.1 several algorithms,
that compute a basis of each component Ad, such that two polynomials of the basis have
distinct leading monomials. Then, in every component Ad, a basis (bdi )1≤i≤nd

of A as a K-
vector space has been computed, with LM�(bd1) � LM�(bd2) � · · · � LM�(bdnd

). For example,
if G is a generalized permutation group in the non-modular case, the computation of such a
basis is easy, since it is given by the set {�(m)}, with m describing all initial monomials of
degree d, namely the leading monomials of elements of Ad.

Example 4.94. We consider the same situation as in example 3.19, where G is the repre-
sentation in degree 3 of the alternate group A3, acting on A = Q[x, y, z], ordered with � the
graded lexicographical ordering. Then, bases of A1, A2 and A3 are given by:

x+ y + z

�
x2 + y2 + z2

xy + yz + xz





x3 + y3 + z3

x2y + xz2 + y2z

x2z + xy2 + yz2

xyz

Therefore, the initial monomials of degree less than or equal to 3 are 1, x, x2, xy, x3, x2y, x2z
and xyz. Actually, initial monomials are of the form m∗

αβγ = xαyβzγ with α > β, γ or

α = β ≥ γ. Notice that with the DRL ordering, x2z would not have been an initial monomial,
but xy2 would.

Recall that reductions can be performed between elements of A, see definition 1.60.

Example 4.95. We continue the example 4.94. Let h be x+ y+ z = 3�(x). Then �(x3y) =
h�(x2y)−�(x2y2)−�(x2yz), so 3�(x3y) reduces to −�(x2y2)−�(x2yz) modulo �(x). The
polynomial �(x2y2) is not reducible by �(x) but �(x2yz) = �(x)�(xyz) is. Therefore the
SG-NormalForm of �(x3y) modulo h is −�(x2y2).

Recall that an element of an algebra A whose leading monomial is not a leading monomial
of a polynomial in an ideal IA in A is called a standard element, with respect to the ideal.
In the context of invariant ring, we will rather speak of standard invariants.

Example 4.96. We continue the example 4.95. Let IG be the ideal generated by h = 3�(x) in
A = Q[x, y, z]G. An orbit sum �(m∗

αβγ) is reducible by h if and only if xα−1yβzγ is an initial
monomial, which means that α−1 > β, γ or α−1 = β ≥ γ. Then, all the standard invariants
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are the orbit sums �(m∗
αβγ) with α = β ≥ γ or α − 1 = γ > β. In example 4.95, we have

seen that NF SG
� (�(x3y), p) = −�(x2y2). Actually, �(x3y) = p(�(x2y) − �(xyz)) − �(x2y2)

is the decomposition of �(x3y) into an element of IG and a linear combination of standard
invariants.

The SAGBI-F5 algorithm (algorithm 1.68) is a generalization of the classical F5 algo-
rithm 1.44. In order to apply it in the algebra A = K[X]G, we first have to compute a basis
of K[X]G as a K-vector space.

Let f1, . . . , fs be homogeneous polynomials in A = K[X]G. The SAGBI-F5 algorithm
proceeds by building SAGBI-Macaulay’s matrices (that we will call Invariant-Macaulay’s ma-
trices in this context) of f1, . . . , fi for each i between 1 and s and apply row reductions on
them.

Example 4.97. Assume that G is a generalized permutations subgroup, with char(K) � |G|.
We have seen that a basis of Ad = K[X]Gd can be chosen as {�(md

1) � · · · � �(md
nd
)} with md

i
describing all initial monomials. In this case, the Invariant-Macaulay’s matrix has the form:

Md,i =




�(md
1) �(md

2) . . . �(md
nd
)

�(md−d1
1 ).f1 . . . . . . . . . . . .

... . . . . . . . . . . . .
�(md−dj

µ ).fj . . . . . . . . . . . .
... . . . . . . . . . . . .

�(md−di
nd−di

).fi . . . . . . . . . . . .




Example 4.98. In this example, we continue the example 4.96, but now let IG be �f1, f2�
with f1 = �(x) and f2 = �(x2y)−�(xyz). We want to write the Invariant-Macaulay’s matrix
M3,2. Since there are four initial monomials at degree 3 (namely x3, x2y, x2z and xyz), M3,2

has four columns. Since f1 has degree 1, we need the initial monomials of degree 2, which are
x2 and xy. f2 has already degree 3, and 1 is the only initial monomial of degree 0. Then

9�(x2)f1 = (x2 + y2 + z2)(x+ y + z)

= x3 + y3 + z3 + x2y + xz2 + y2z + x2z + xy2 + yz2

9�(x2)f1 = 3(�(x3) + �(x2y) + �(x2z))

and 9�(xy)f1 = (xy + xz + yz)(x+ y + z)

= x2y + xz2 + y2z + x2z + xy2 + yz2 + 3xyz

9�(xy)f1 = 3(�(x2y) + �(x2z) + �(xyz))
Hence, the Invariant-Macaulay’s matrix M3,2 is

M3,2 =




�(x3) �(x2y) �(x2z) �(xyz)
�(x2).f1 1

3
1
3

1
3 0

�(xy).f1 0 1
3

1
3

1
3

f2 0 1 0 −1




Recall that the SAGBI-F5 algorithm constructs matrices incrementally degree by degree
and equation by equation. At each degree d the algorithm constructs a SAGBI-Macaulay’s
matrix Md,i and performs row reductions on them, the valid operations being to add to some
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row a linear combinations of rows situed above. The incremental step from i−1 to i introduces
the rows corresponding to bd−di

j fi for all polynomials of (bd−di
j ) in the basis of Ad−dj , that do

not have same leading monomial as a row in M̃d−di,i−1, where di = deg(fi). This criterion
is a variant of the F5-criterion and was explained in proposition 1.69. The algorithm stops
when the current degree is equal to a given bound D.

SAGBI-F5 example. We now give a complete example of the execution of the Matrix-
SAGBI F5 algorithm, in the invariant context. In this example, we follow the example 4.98
by using the same group G (the alternating group A3) acting on the variables X = [x, y, z].
The ring Q[X] is ordered with the graded lexicographic ordering �, such that x > y > z. We
recall that I = �f1, f2� with f1 = �(x) and f2 = �(x2y)− �(xyz). In this example, we want
to compute the SG-basis of IG = �f1, f2�Q[X]G up to degree 5.

We start with S1 = S2 = ∅. In order to compute the SG-bases, we proceed degree by
degree. In degree 1, we only have one row indexed by �(1)× f1:

�M1,1 = M1,1 =
��(x)

�(1)f1 1
�

Since f1 is not SG-top-reducible by S1 (which is empty !), we add f1 to S1 and obtain

S1 = {f1}. Since f2 has degree 3, the matrix M1,2 = �M1,2 is equal to M1,1 and we add f1 to
S2. In degree 2, we have a single row indexed by �(x)f1 :

�M2,1 = M2,1 =
��(x

2) �(xy)
�(x)f1 1

3
2
3

�

The polynomial �(x)f1 can be reduced by f1, so we do not add another polynomial to the
SG-basis S1 in degree 2. We will actually never add new polynomials to S1 since all the
rows of matrices Md,1 will be of the form �(m)f1 and will be SG-top-reducible by f1. As in
degree 1, M2,2 = M2,1. In degree 3, we construct the matrix M3,1 whose rows are coefficients
of the following polynomials:

�(x2)f1 = 1
3�(x3) + 1

3�(x2y) + 1
3�(x2z)

�(xy)f1 = 1
3�(x2y) + 1

3�(x2z) + 1
3�(xyz)

Hence,

M3,1 =

��(x
3) �(x2y) �(x2z) �(xyz)

�(x2)f1 1
3

1
3

1
3 0

�(xy)f1 0 1
3

1
3

1
3

�

It is obvious that �M3,1 = M3,1. We obtain M3,2 by adding f2 to �M3,1:

M3,2 =




�(x3) �(x2y) �(x2z) �(xyz)
�(x2)f1 1

3
1
3

1
3 0

�(xy)f1 0 1
3

1
3

1
3

f2 0 1 0 −1




Then, after Gaussian elimination, we obtain:

�M3,2 =




1
3

1
3

1
3 0

0 1
3

1
3

1
3

0 0 −1 −2


 .
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Now we have obtained one new polynomial f3 = �(x2z) + 4�(xyz), which is not SG-top-
reducible by f1, since xz /∈ LM�(K[X]G). Then, we add f3 to S2 and obtain S2 = {f1, f3}.
In degree 4 we construct the matrix M4,1 as above and obtain :

�M4,1 = M4,1 =




�(x4) �(x3y) �(x3z) �(x2y2) �(x2yz)
�(x3)f1 1

3
1
3

1
3 0 0

�(x2y)f1 0 1
3 0 1

3
1
3

�(x2z)f1 0 0 1
3

1
3

1
3

�(xyz)f1 0 0 0 0 1




The unique initial monomial of degree 1 is x, but x is the leading monomial of a row of
�M4−3,2−1 (corresponding to �(1)f1), so by applying the SAGBI-F5 criterion (lemma 1.69),
there is nothing to do anymore in degree 4. In degree 5, we construct the matrix M5,1 whose
rows are the coefficients of the following polynomials:

�(x4)f1 = 1
3�(x5) + 1

3�(x4y) + 1
3�(x4z)

�(x3y)f1 = 1
3�(x4y) + 1

3�(x3y2) + 1
3�(x3yz)

�(x3z)f1 = 1
3�(x4z) + 1

3�(x3z2) + 1
3�(x3yz)

�(x2y2)f1 = 1
3�(x3y2) + 1

3�(x3z2) + 1
3�(x2y2z)

�(x2yz)f1 = 1
3�(x3yz) + 2

3�(x2y2z)

Therefore, M5,1 is equal to the following matrix:




�(x5) �(x4y) �(x4z) �(x3y2) �(x3yz) �(x3z2) �(x2y2z)
�(x4)f1 1

3
1
3

1
3 0 0 0 0

�(x3y)f1 0 1
3 0 1

3
1
3 0 0

�(x3z)f1 0 0 1
3 0 1

3
1
3 0

�(x2y2)f1 0 0 0 1
3 0 1

3
1
3

�(x2yz)f1 0 0 0 0 1
3 0 2

3




Once again, it is easy to see that M5,1 = �M5,1. There are two leading monomials in degree
2, which are x2 and xy. By using the SAGBI-F5 criterion we do not add the row �(x2)f2 to
M5,2, because the single row of M2,1 has x2 as leading monomial. In other words M5,2 is the
following matrix




�(x5) �(x4y) �(x4z) �(x3y2) �(x3yz) �(x3z2) �(x2y2z)
�(x4)f1 1

3
1
3

1
3 0 0 0 0

�(x3y)f1 0 1
3 0 1

3
1
3 0 0

�(x3z)f1 0 0 1
3 0 1

3
1
3 0

�(x2y2)f1 0 0 0 1
3 0 1

3
1
3

�(x2yz)f1 0 0 0 0 1
3 0 2

3

�(xy)f2 0 0 0 1
3

1
3 0 −2

3



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After Gaussian elimination, we finally get:

�M5,2 =




1
3

1
3

1
3 0 0 0 0

0 1
3 0 1

3
1
3 0 0

0 0 1
3 0 1

3
1
3 0

0 0 0 1
3 0 1

3
1
3

0 0 0 0 1
3 0 2

3

0 0 0 0 0 1
3

5
3




and the matrix �M5,2 gives us a new polynomial f4 = �(x3z2) + 5�(x2y2z), not reducible
by any element of S2. Then, the Matrix-SAGBI F5 algorithm stops and returns S1,S2 with
S1 = {f1} and S2 = {f1, f3, f4}.

The complexity analysis of the Matrix-SAGBI F5 algorithm in the case A = K[X]G has
been done almost entirely in chapter 2 and 3. Before giving the end of this analysis, we come
back to the behavior of this algorithm with respect to regular sequences.

Links between K[X]G-regular and K[X] regular sequences. For A = K[X]G with G
a finite group, we can prove that regularity implies A-regularity, at least in the non-modular
case: the Reynolds Operator plays a crucial role in the proof of the following proposition.

Proposition 4.99. Let G ⊂ GLn(K) be a finite group with char(K) � |G|. Let F =
(f1, . . . , fs) ∈ K[X]G be a regular sequence (in K[X]). Then F is K[X]G-regular.

Proof. Let (g1, . . . , gs) be a family of polynomials in K[X]G, such that
�s

i=1 gifi = 0. Since
F is regular, each gi belongs to the ideal generated in K[X] by F\fi, so we can write gi =�

j �=i hjfj . Applying the Reynolds Operator, we obtain gi = �(gi) =
�

j �=i�(hj)fj . Hence,

gi belongs to �F\fi�K[X]G . It follows that F is K[X]G-regular.

Complexity. We now analyze the complexity of algorithm 1.68 in order to compute SAGBI
bases in invariant rings. We assume that the computation of products of the form bdi × bd

�
i�

(see subsection 3.1.1) has been done as far as needed and is not counted here: in particular
this cost is negligible when the algebra A is a ring of invariant K[X]G with G a subgroup of
matrices of generalized permutations. The main complexity result is the following theorem,
which is very similar to the theorem 4.76, which gives a complexity bound on the computation
of a Gröbner basis up to degree D of an ideal invariant under the action of a diagonal matrix
group.

Theorem 4.100. Let G be a matrix group with no uniform scalings, and let F = (f1, . . . , fs)
be a family of invariant homogeneous polynomials in K[X]G. Then the complexity of com-
puting a SAGBI Gröbner basis up to degree D for the DRL ordering of the ideal �F�K[X]G is
bounded by

O

�
s

|G|ω
�
D + n

D

�ω�

operations in K, with ω a feasible exponent of linear algebra.

Proof. Once the groupG is fixed, we have seen in theorem 3.78 that the quotient of dimensions
dim(K[X]Gd )/ dim(K[X]d) tends to 1/|G| as d grows to inifinity. The matrix Md built by a
SAGBI variant of the Lazard algorithm has dim(K[X]Gd ) columns and

�s
i=1 dim(K[X]Gd−di

)
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rows if fi is of degree di. Then, the proof ends by the same analysis than the complexity of
the Lazard algorithm given in theorem 1.42.

The cost of computing Gröbner bases in the affine case is not known as well as for homo-
geneous systems, due to falls of degrees that could appear during the computations, see [93].
The same fact holds during SAGBI bases computations in the affine case, so we do not give
complexity results here. However, proposition 3.83 shows that heuristically the matrices oc-
curing during a SAGBI basis computation in K[X]G up to some given degree have number
of rows and columns divided by a factor |G|, compared to a Gröbner basis computation up
to the same degree. We refer to subsection 4.3.4 for experimental results.

4.3.2 SAGBI-FGLM algorithm and general algorithm to obtain an invari-
ant Gröbner basis

The main goal of this subsection is to show how a SAGBI basis in K[X]G can be used to
compute a Gröbner basis with respect to a fixed set of invariants of G, for example a collection
of invariants of a pseudo-reflexive group H containing G. We will present a more general
algorithm, able to convert a SAGBI basis of any ideal IA = �f1, . . . , fs�A in a subalgebra A ⊆
K[x1, . . . , xn] into a Gröbner basis in some ring K[H ] = K[H1, . . . , Hr]. Each Hi represents
a polynomial hi in A and we assume that the ideal I generated by F = (f1, . . . , fs) in
K[X] = K[x1, . . . , xn] is zero-dimensional. We fix an ordering �H compatible with a weighted
degree on the variables Hi, depending on the degree of the polynomials hi in the variables
(x1, . . . , xn), namely degH(Hi) = deg(hi). Therefore, the weighted degree of a monomial in
these new variables is given by degH(

�
Hαi

i ) =
�

αideg(hi). More precisely, the object we

are interested in computing is GK[H](I,�H), the Gröbner basis of J = J̃ ∩K[H], where

J̃ = I + �H1 − h1(x1, . . . , xn), . . . , Hr − hr(x1, . . . , xn)�

We call this Gröbner basis the K[H]-Gröbner basis of I. Notice that this ideal J and this
kind of Gröbner bases have already been introduced in subsection 3.1.3 in the case of a ring
of invariants, more precisely in definition 3.45. Since I is assumed to be zero-dimensional, J̃ )
and J are also zero-dimensional. We first present the SAGBI-FGLM algorithm and finally
explain how to use both truncated versions of SAGBI-F5 and SAGBI-FGLM algorithms to
obtain a zero-dimensional ideal in the ring K[H].

SAGBI-FGLM algorithm The idea of the following SAGBI-FGLM algorithm is to per-
form the same kind of computations as in the original FGLM algorithm 1.52, but with the
knowledge of a SAGBI basis of IA instead of the Gröbner basis of I. For any monomial
m =

�
Hαi

i , we can compute NFSG
� (mh,S), with S a SAGBI basis of IA and mh the mono-

mial m where hi(x1, . . . , xn) has been substituted to Hi. Since a SAGBI basis is usually not
finite, the computations have to be done with a SAGBI basis up to some degree D. Hence,
we will obtain a K[H]-Gröbner basis of I up to degree D. Therefore, if D is greather or equal
than the maximal weighted degree of the polynomials in GK[H](I,�H), the SAGBI-FGLM al-
gorithm computes it exactly. Hence, this algorithm picks up monomials m in K[H], of degree
less than or equal to D, by increasing term order for �H and looks for linear combinations

NF SG
� (mh,S) +

�

u≺Hm

cuNF
SG
� (uh,S) = 0



148 CHAPTER 4. SOLVING SYSTEMS WITH SYMMETRIES

with the convention that mh (respectively uh) is the result of substituting Hi by hi(x1, . . . , xn)
in m (respectively u). Since we have assumed that degH(m) ≤ D, the result of the Normal-
Form computation is precisely NFSG

� (mh, IA). If there is no such relation then m is a member
of the staircase in construction. Termination is assured by the fact that the number of terms
with total degree less than or equal to D is finite. The SAGBI-FGLM algorithm is presented
as algorithm 4.101.

Algorithm 4.101: SAGBI-FGLM

Input : - a SG-basis S up to degree D of IA with respect to �
- a second monomial ordering �H on K[H1, . . . , Hr], compatible with degH .
- polynomials (h1, . . . , hr) ∈ A

Output: a K[H]-Gröbner basis of IA up to degree D with respect to �H

L := [1]; //list of monomials in K[H1, . . . , Hr]

S := [ ]; //staircase for the ordering �H

V := [ ]; //V = SG-NormalForm(S)

GH
D := [ ]; //The K[H]-Gröbner basis up to degree D in K[H1, . . . , Hr]

while L �= [ ] do
m := L[1]; and Remove m from L;
mh := replace H1, H2, . . . , Hr by h1, h2, . . . , hr in m;

v := NFSG
� (mh,S);

s := #S ;
if v ∈ SpanK (V ) then

we can find (λi) ∈ Ks such that v =
s�

i=1
λi · Vi;

GH
D := GH

D ∪
�
m−

s�
i=1

λi · Si

�
;

else
S := S ∪ [m]; V := V ∪ [v];
L := Sort(L ∪ [Him | i = 1, . . . , r] ,�H);

Remove from L elements of graded degree > D or duplicates elements;

Theorem 4.102. SAGBI-FGLM algorithm computes the reduced K[H ]-Gröbner basis up to
degree D of IA with respect to �H .

Proof. Let GH
D be the output set {g1, . . . , gµ} of polynomials indexed in the order of their

placement into GH
D . Let mi = LM�(gi), which is the value of m when gi is added to GH

D .
Clearly, m1 ≺H . . . ≺H mµ and mj � mk for j < k. For each i, all the monomials of gi except
mi are in the staircaise S, hence gi is in normal form modulo GH

D\{gi}. Therefore, GH
D is

reduced. Clearly, gi(h1, . . . , hr) ∈ IA because the SG-Normal Form of gi(h1, . . . , hr) is equal
to 0. To see that GH

D is a Gröbner Basis up to degree D of the ideal

J = I + �H1 − h1(x1, . . . , xn), . . . , Hr − hr(x1, . . . , xn)� ∩K[H]

assume by contradiction that there exists a polynomial f ∈ K[H] of graded degree less than or
equal to D with f(h1, . . . , hr) ∈ IA, such that the normal form of f modulo GH

D is non-zero.
We can assume that f is reduced modulo GH

D , and that f has the smallest leading monomial
among the polynomials of IA which do not reduce to 0 modulo GH

D . With these assumptions,
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all monomials of f but the leading monomial are in the staircase S. When m = LM�(f) in
the algorithm, the if-condition must detect the linear dependance between mh and SpanKV
because f(h1, . . . , hr) belongs to IA, which is a contradiction and the theorem is proved.

Remark 4.103. Since the K[H]-Gröbner basis GK[H](I,�H) is finite, there exists a D0 such

that GH
D is equal to GK[H](I,�H) for all D ≥ D0. Of course, we do not know in advance the

degree D0 that we have to reach in SAGBI-F5 algorithm. We will explain in the sequel how
to avoid this difficulty.

Example 4.104. Consider the cyclic matrix group G of order 4 generated by A =

�
0 1

−1 0

�

over a field of odd characteristic. It is easy to check that K[x, y]G = K[h1, h2, h3] where
h1 = x2 + y2, h2 = x2y2 and h3 = xy(x2 − y2) (see for instance [25, chapter 7]). Let us
consider the following invariant system:

�
f1 = x4 + y4 − 1 = 2�(x4)−�(1) = 0

f2 = x3y3(x6 − y6)− 2 = 2�(x9y3)− 2�(1) = 0

The SAGBI basis up to degree 12 (for the DRL ordering) of the ideal IG generated by f1, f2
in K[x, y]G is simply S = {f1, f̃2} where f̃2 = 2�(x7y5) + 2�(x5y3) − 2�(1) is the SAGBI-
reduction of f2 by f1. We take {�(m) | m is an initial monomial in K[x, y]G} as a basis of
K[x, y]G. The staircase E (a basis of the vector space of elements of K[x, y]G that are not
(top-) reducible by S) is given by

E =
�
�(m) | m ∈ {1, x2, x2y2, x3y, x4y2, x5y, x4y4, x5y3, x6y4, x7y3, x6y6}

�

The following array contains the current mh, the SG-Normal Form v of mh modulo S,
the staircase in construction for the ordering �H and a boolean testing if v lies in the vector
space generated by the SG-Normal Form of elements of E modulo S.

mh v S v ∈ V ?

1 �(1) ∅ false

h1 2�(x2) [1] false

h3 2�(x3y) [1, H1] false

h2 �(x2y2) [1, H1, H3] false

h21 2�(x2y2) + �(1) [1, H1, H3, H2] true

Since NF SG
� (h21,S) = 2NFSG

� (h2,S)+NF SG
� (1,S), the polynomial g1 = H2

1−2H2−1 belongs
to the invariant Gröbner basis of �f1, f2� in K[h1, h2, h3] up to degree 12. At this step, L is
equal to [H1H3, H1H2, H

2
3 , H3H2, H

2
2 ]. The next steps of the computation are :

h1h3 2�(x5y) [1, H1, H3, H2] false

h1h2 2�(x4y2) [1, H1, H3, H2, H1H3] false

h23 −2�(x4y4) + �(x2y2) [1, H1, H3, H2, H1H3, H1H2] false

h2h3 2�(x5y3) [1, H1, H3, H2, H1H3, H1H2, H
2
3 ] false

h22 �(x4y4) [1, H1, H3, H2, H1H3, H1H2, H
2
3 , H2H3] true
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And the polynomial g2 = H2
2 +H2

3/2 −H2/2 is added to the invariant Gröbner basis. After
removing from L multiples of H2

2 , L is equal to [H1H
2
3 , H1H2H3, H

3
3 , H2H

2
3 ]. The computation

follows in this way:

h1h
2
3 −4�(x6y4) + 2�(x4y2) [1, H1, H3, H2, H1H3, H1H2, H

2
3 , H2H3] false

h1h2h3 2�(x7y3) [1, H1, H3, H2, H1H3, H1H2, H
2
3 , H2H3, H1H

2
3 ] false

h33 6�(x5y3)− 4�(1) [1, H1, H3, H2, H1H3, H1H2, H
2
3 , H2H3, H1H

2
3 ] true

And finally g3 = H3
3 − 3H2H3 + 4 is added to the basis. Since we do not add to L monomials

of weighted degree greather than 12, the only element remaining in L is H2H
2
3 , which does

not give a new element to the basis, so the algorithm stops and returns {g1, g2, g3}.

Since the algorithm F5-invariant is the costliest step, it is interesting to stop as soon as the
polynomials given by the FGLM invariant algorithm form a zero dimensional ideal in K[H ],
even if the K[H]-Gröbner basis is not complete. We now explain this idea.

General Algorithm. We now propose a general strategy, in order to compute a lexico-
graphical Gröbner Basis in a ring K[H] of a system of equations F = (f1, . . . , fs) ∈ As

generating a zero-dimensional ideal I = �F�K[X] in the ring K[X] = K[x1, . . . , xn] containing
the graded algebra A. The idea is to combine truncated versions of both SAGBI-F5 and
SAGBI-FGLM algorithms: since we do not know in advance the degree D needed in SAGBI-
F5 to obtain a SAGBI basis S of IA = �F�A, which gives a zero-dimensional K[H ]-Gröbner
basis with the SAGBI-FGLM algorithm, we proceed incrementally degree by degree. This
idea is reported in algoritm 4.105. Termination is assured by the fact that a finite Gröbner
basis exists in K[H]. Since the first D giving a zero-dimensional ideal in K[H ] is possibly
smaller than the maximal degree of a polynomial in GK[H](I,�H), it could happen that the
obtain polynomials in K[H] do not form a Gröbner basis. Hence we have to add a Gröbner
basis computation in K[H]. Since we are interested in a Gröbner basis for a lexicographic
ordering in K[H], algorithm 4.105 ends with a use of the classical FGLM algorithm 1.52.

Remark 4.106. In practice, it is very easy to check that GH
D generates a zero-dimensional

ideal, we check that for all i ∈ {1, . . . , r} we can find g ∈ GH
�H

such that LT(g) = Hαi
i for

some αi ∈ N. To compute GH
lex, we simply apply the standard FGLM-algorithm to GH

�H
.

Example 4.107. Go back to the example 4.104. At degree 12, the FGLM-invariant algorithm
gives a zero-dimensional Gröbner basis {g1, g2, g3}, which is already a Gröbner basis for �H

since no pair of leading monomials have a common factor. The ideal generated is zero-
dimensional since LM�(gi) = Hαi

i for some αi ∈ N, so we can apply the classical FGLM
algorithm. We get the following lexicographical Gröbner Basis:





6H2
1 +H5

3 + 3H3
3 + 4H2

3 − 12

12H2 +H5
3 + 3H3

3 + 4H2
3 − 6

H6
3 + 3H4

3 + 8H3
3 − 6H3 + 16

We can find the values of h1, h2, h3 by finding the roots of univariate polynomials of degree
at most 6. Since h1 = x2 + y2 and h2 = x2y2, we can find the values of x2 and y2 by finding
the roots of z2−h1z+h2 = 0, and then find x and y by taking square roots. A direct approach
of the system f1 = f2 = 0 gives us the following irreducible polynomial :

P = 6y48 − 24y44 + 69y40 − 125y36 + 156y32 − 138y28 + 70y24 + 12y20 − 39y16 + 15y12 + 16
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Algorithm 4.105: General algorithm

Input : F = (f1, . . . , fs) ∈ As generating a zero-dimensional ideal in K[X], and
h1, . . . , hr homogeneous polynomials in A.

Output: A lexicographical K[H]-Gröbner basis of �FA�K[X] in K[H1, . . . , Hr].

D := mini deg(fi);
Do

S :=Sagbi-Gröbner basis of �FA� up to degree D; //Apply SAGBI-F5

algorithm 1.68, with �=�DRL

GH
D :=Invariant Gröbner basis up to degree D in K[H]; //Apply SAGBI-FGLM

algorithm 4.101, with �H the weighted DRL ordering

GH
�H

:= Compute a Gröbner basis of GH
D in K[H];

if �GH
D� is zero-dimensional in K[H ] then

GH
Lex := Compute a lexicographical Gröbner basis of �GH

D�; //Apply the FGLM

algorithm 1.52

return GH
Lex

else
D := D + 1;

Loop;

Since powers of y in P are multiples of 4, we have to compute the roots of a polynomial of
degree 12.

In practice, we do not use algorithm 4.101 with a set of fundamental invariants of G (see
subsection 3.1.3), but rather with a set of primary invariants of G.

Example 4.108. In this example, we take K = F65521, H � (Z/2Z)4 �S5 ⊂ GL5(K), G �
(Z/2Z)4 �D5 ⊂ H where the subgroup of H isomorphic to (Z/2Z)4 is the group of diagonal
matrices having an even number of −1 on the diagonal, with other diagonal-coefficients equal
to 1 and the subgroup D5 is the dihedral matrix group generated by




0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0




and




0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0




H is a reflexive group (a Coxeter group, actually), with invariants:

h1 = e1(xi
2), h2 = e2(xi

2), h3 = e3(xi
2), h4 = e4(xi

2), h5 = e5(xi)

where ej(xi
2) is the j-th symmetric function in the variable x21, . . . , x

2
5 and e5(xi) is simply

x1x2x3x4x5. Now consider the following set of G-invariant polynomials :

F =





f1 = x21 + x22 + x23 + x24 + x25 − 1 = 5�(x21)−�(1)
f2 = x41 + x42 + x43 + x44 + x45 − 1 = 5�(x41)−�(1)
f3 = x21x

2
2 + x21x

2
5 + x22x

2
3 + x23x

2
4 + x24x

2
5 − 1 = 5�(x21x22)−�(1)

f4 = x1x2x3x4x5 − 1 = �(x1x2x3x4x5)−�(1)
f5 = x61 + x62 + x63 + x64 + x65 − 1 = 5�(x61)−�(1)
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Using algorithm SAGBI-F5 up to degree 24, we get a SG-basis of IG of size 73. Applying
SAGBI-FGLM algorithm, we get the following very simple K[H]-Gröbner basis:

GH
�H

= [H1−1, H2, H3, H
6
4−10488H5

4+5251H4
4−10492H3

4−5271H2
4+28927H4+18242, H5−1]

This K[H]-Gröbner basis gives rise to an ideal whose associated variety has only 6 points.
Notice that |H| = 3200 and |G| = 160, so these 6 points correspond to 6×|G| = 960 elements
associated to the ideal generated by F in K[x1, . . . , xn]. The expressions of (hj)1≤j≤5 in terms
of (xi)1≤i≤5 allow us to recover the possible (xi)1≤i≤5 from a value of (hj)1≤j≤5 very fast but
these possible 5-tuples are 6 × |H| = 19200. We explain in the following subsection how to
remove these spurious solutions.

Remark 4.109. Since we stop as soon as we obtain a zero-dimensional ideal in algo-
rithm 4.105, it could happen that �GH

D � � �GK[H](I,�H)�. This fact would lead to more

spurious solutions, but in practice, on all examples we have computed, the Gröbner basis GH
D

is exactly GK[H](I,�H).

Complexity. We now give an estimation of the complexity of the SAGBI-FGLM algo-
rithm 4.101, assuming that we have computed a SAGBI basis at a degree D equal to the
remaining degree to find a zero-dimensional ideal. The complexity evaluation involves several
quantities, that we define now.

Notations 4.110. Let S be the output of the algoritm 1.68. We denote by:
— E the staircase of S, namely the elements of ∪D

d=0{bdi | 1 ≤ i ≤ nd}, that are not
(top-)reducible by S.

— δH the degree of the ideal, that we obtain in K[H], with algorithm 1.68.

In practice, as in the classic FGLM algorithm 1.52, we compute the SG-NormalForm v
and check the linear dependance between v and V by using linear algebra, but there is a
slight difference with the FGLM algorithm, since we do not compute multiplication matrices
to compute v. However, in order to check the linear dependance between v and V , we use a
matrix of size |E|× |E| and an Update procedure exactly as in the classical FGLM algorithm.

To compute v = NFSG
� (mh,S), we use the knowledge of the matrix �Md,s computed by the

SAGBI-F5 algorithm. This matrix has
�D

d=0 dim(Ad) columns, and smaller or equal number
of rows. Since mh has degree less than or equal to d, we can construct a row-vector giving
the expression of mh in terms of ∪D

d=0{bdi | i = 1 . . . nd} and compute NFSG
� (mh,S) by a

Gaussian elimination in O

���D
d=0 dim(Ad)

�2�
arithmetic operations. In order to compute

the Gröbner basis in K[H ], we have to perform this operation at most O(r ·δH) times (the size
of the staircase and the boundary of the ideal in K[H]) therefore the total cost of computing

the SAGBI Normal forms is bounded by O

�
r · δH

��D
d=0 dim(Ad)

�2�
. Since the cost of

testing the membership of mh and updating the “base change matrix” is identical in the
classical FGLM algorithm, we conclude that

Theorem 4.111. With previous notations, the cost of computing the Gröbner basis in K[H]
at degree D with the SAGBI-FGLM algorithm 4.101 is bounded by

O


rδH

�
D�

d=0

dim(Ad)

�2

+ r|E|3



arithmetic operations in K.
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Heuristically, in the case of a ring of invariant, δH is very small, and |E| � deg(I)/|G|. Work
has to be done to prove it properly, but this cost is in practice very small, compared to the
cost of the SAGBI-F5 algorithm.

4.3.3 Removing spurious solutions

In the previous subsections, we have explained how to compute a K[H]-Gröbner basis
of the zero-dimensional ideal I, which can be supposed to be GK[H](I,�H), according to
remark 4.109. If it is not the case, we would have more spurious solutions to remove, but
the following algorithms would work as well. The aim of this subsection is to remove the
spurious solutions and compute the variety V(I), using the knowledge of polynomials in
GK[H](I,�H). To this end, we propose three approaches. The two first ones deal with
an ideal I = �f1, . . . , fs� generated by polynomials invariant under a group G which is a
subgroup of a reflexive group H. More exactly, in the first one, we assume that H is a direct
product of groups of the form G(µ,π, n) (in the classification of Shephard and Todd [92]),
since their invariants have a simple form and allow an easy reconstrution of the solutions (xi)
by numerical approach. The second and the last ones can be applied in the general case of
an ideal in some graded algebra, but need some precomputation. We finally compare the
complexity of these approaches.

4.3.3.1 First approach: exhaustive search and numerical approximation

In this subsubsection, we assume that H is a product of reflexive subgroups of the form
G(µi,πi, ni) defined hereafter.

Definition – Proposition 4.112. [92] Let µ,π, n ≥ 1 with π|µ, and let ξ be a µ-primitive
root of 1 in K. The matrix group G(µ,π, n) is the subgroup of GLn(K) of matrices with only
one non-zero coefficient per row and column and each coefficient is a µ-root of 1. These non-
zero coefficients are of the form ξα1 , . . . , ξαn, and we assume in addition that

�
αi ≡ 0[π].

This is a subgroup of cardinal µnn!/π of the already seen group of generalized permutations.

It is easy to prove that this kind of group is generated by reflections. In the non-modular
case, according to theorem 3.36, this is a sufficient condition for the ring of invariants to be
a polynomial ring. This is actually true in the modular case, moreover a set of invariants is
very easy to exhibit:

Proposition 4.113. With ej the j-th symmetric function in n variables, the polynomials
defined by:

hj = ej(x
µ
1 , . . . , x

µ
n) for 1 ≤ j ≤ n− 1 and hn = en(x1, . . . , xn)

µ/π

are such that K[x1, . . . , xn]
G(µ,π,n) = K[h1, . . . , hn].

Now assume that H =
��

i=1G(µi,πi, ni) with n1 + · · ·+ n� = n. The groups G(µi,πi, ni)
act on distinct sets of variables {xi,1, . . . , xi,ni}, thus H is a reflexive group: K[X]H = K[xi,j ]

H

can be written K[h1,1, . . . , h1,n1 , h2,1, . . . , h�,n�
], with {hi,1, . . . , hi,ni} the invariants given in

proposition 4.113 for G(µi,πi, ni) acting on {xi,1, . . . , xi,ni}. Let G be a subgroup of H
and f1, . . . , fs be polynomials invariant under G, generating an ideal I in K[xi,j ]. With the
general algorithm presented in the previous subsection, we obtain the lexicographical invariant
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Gröbner basis GK[hi,j ]H(I) of the ideal JH in K[X]H. We denote by V(JH) the corresponding

variety in K. For (bi,j) ∈ Kn
a point in V(JH), we can construct at most

µn1
1 n1!

π1
× · · · × µn�

� n�!

π�

points (ai,j) of Kn
such that the invariants hi,j take the value (bi,j) on these points (ai,j).

Let a = (ai,j) be one of them, then this set {(ai,j)} can be written H.a. All elements of
the orbit H.a are not necessary elements of V(I), because f1, . . . , fs are not assumed to be
invariant under H. The algorithm 4.114 removes spurious solutions: the idea is to check for
all a ∈ V(JH) and A in H if A.a belongs to V(I). Since V(I) is invariant under G, the value
of A.a is the same while A describes a coset in H/G. Hence, we can identify a coset with one
of its element and check only if A.a ∈ V(I) for each A ∈ H/G.

Algorithm 4.114: Removing spurious solutions by exhaustive search

Input : F = [f1, . . . , fs], G, H and the variety V(JH) ⊂ Kn

Output: The variety V(I)
V := { };
for b = (bi,j)1≤i≤�,1≤j≤ni

∈ V(JH) do
for i = 1 to � do

gi(x) := xni − bi,1x
ni−1 + · · ·+ (−1)nibπi

i,ni
;

Compute the multiset {ci,j | j ∈ {1, . . . , ni}} of roots of gi;
Extract µi-roots of each ci,j , denoted by ai,j ;
Compute ξi, a primitive µi-root of 1;

while (
�

j ai,j)
µi/πi �= bi,ni do

ai,1 := ξiai,1;

a := (ai,j)1≤i≤�,1≤j≤ni
;

for A ∈ H/G do
if f1(A.a) = · · · = fs(A.a) = 0 then V := V ∪ {A.a};

return V;

Theorem 4.115. Algorithm 4.114 outputs the variety V(I).

Proof. Since V(I) is G-invariant, it is clear with the last if condition that the output is
contained in V(I). Let v = (vi,j)1≤i≤�,1≤j≤ni

be in V(I), then (bi,j) = (hi,j(v)) belongs to
V(JH). Let c = (ci,j) and a = (ai,j) be as in the algorithm. Clearly, for each i, hi,j(a) =
bi,j for 1 ≤ j ≤ ni − 1 and this equality is maintained during the while loop. Moreover,
hi,ni(a)

πi = bπi
i,ni

so hi,ni(a) and bi,ni are equal, up to multiplication by a πi-root of 1. Since

ξi is a µi-primitive root of 1, at each step in the while loop hi,ni(a) is multiplied by the same
πi-primitive root of 1, so the loop ends with hi,ni(a) = bi,ni . Since the values of hi,j on a and
v are the same, they are in the same orbit under the action of H, so v will be in some set
A.a, which ends the proof.

Example 4.116. We consider the Cyclic-5 problem on Q, see for instance example 4.51 for
the definition. Using the SAGBI F5 algorithm, we compute a SG-basis of the ideal ID5 up to
degree 8; then, thanks to the algorithm SAGBI-FGLM, we first obtain an invariant Gröbner
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basis up to degree 8, with respect to the weighted DRL ordering on the symmetric functions,
given by:

GK[σ1,...,σ5]S5 (I,≺) ⊇
�
σ2

3 + 5σ3
2,σ2

2σ3 − 25σ2,σ2 σ3
3 + 5σ2

2,σ1,σ4,σ5 − 1
�

If we compute a Gröbner basis of the previous set, we obtain the complete invariant Gröbner
basis for the weighted DRL ordering (to obtain it directly, we would have to go to degree 9 in
the SAGBI F5 algorithm)

GK[σ1,...,σ5]S5 (I,≺) =
�
σ2

3 + 5σ3
2,σ2

2σ3 − 25σ2,σ2 σ3
2 − 25σ3,σ3

3 + 5σ2
2,σ1,σ4,σ5 − 1

�

and then by applying again the classical FGLM algorithm we obtain the lexicographical Gröb-
ner basis:

G :=
�
σ5 − 1,σ4,σ

6
3 + 3125σ3, 125σ2 + σ4

3,σ1

�

The ideal generated by this Gröbner Basis is radical, and we obtain easily a prime decompo-
sition given by the three following Gröbner bases :

G1 = [σ1,σ2,σ3,σ4,σ5 − 1] G2 = [σ1,σ2 + 5,σ3 + 5,σ4,σ5 − 1]

and G3 =
�
σ1, 25σ2 + σ3

3 − 5σ2
3 + 25σ3 − 125,σ4

3 − 5σ3
3 + 25σ2

3 − 125σ3 + 625,σ4,σ5 − 1
�

Let U5 be the set of the fifth-root of 1 in C, we are now able to compute VC(G) using this
prime decomposition. This variety has cardinal 6 and can be expressed by radicals:

VC(G) = {(0, 0, 0, 0, 1)} ∪ {(0,−5ω2,−5ω3, 0, 1) | ω ∈ U5}

Then we compute the cosets of S5/D5, which are the cosets of these elements :

{id, (1 2), (1 3), (1 4), (1 5), (2 5), (1 2 4), (1 2 5), (1 3 4), (1 4 2), (1 4 3), (1 2 4 3)}

We now apply algorithm 4.114.
Case 1. b = (0, 0, 0, 0, 1). Then g = x5 − 1. The roots of g are the fifth roots of 1 and we

can take a = (1,α,α2,α3,α4), with α = e
2iπ
5 . We obtain the two subsets of VC(I) : D5.a and

D5.(1 2 4 3).a.
Case 2. For each ω ∈ U5, we have : b = (0,−5ω,−5ω2, 0, 1), then

g = x5−5wx3+5w2x2−1, whose roots are the components of a = (ω,ω,ω, −3−
√
5

2 ω, −3+
√
5

2 ω)
. Because of multiplicities of the roots of g, we obtain several elements of S5/D5 which give
rise to the same orbit. Only one is solution : D5.a.

To summerize, the variety VC(I) has cardinal 70 and is given by

�

ω∈U5

D5.(ω,ω,ω,
−3−

√
5

2
ω,
−3 +

√
5

2
ω)

� �

ω∈{e 2iπ
5 ,e

4iπ
5 }

D5.(1,ω,ω
2,ω3,ω4)

Remark 4.117. Of course, for general problems we have to take numerical approximations
of the roots of points in V(JH) and roots of gi, since the solutions are not given by radicals
in the general case.

In the next subsubsection, we will introduce a new object for removing the spurious
solutions, by working only in the base field.



156 CHAPTER 4. SOLVING SYSTEMS WITH SYMMETRIES

4.3.3.2 Triangular sets, divided differences and triangular approach

In this subsubsection, we introduce the notion of triangular sets of polynomials, which
will be useful to describe the two other methods used to remove spurious solutions. The well
known divided differences of a univariate polynomial (already defined in subsection 4.1.2)
form such a triangular set and are related to the symmetric group Sn. We will see that we
can obtain a triangular set from every group or even in a graded algebra. From now on and
until the end of the subsubsection, � will denote the lexicographical ordering.

Definition 4.118. Let K[Y ] = K[y1, . . . , yr] be a polynomial ring, ordered by lexicographical
ordering such that y1 � · · · � yr. We say that a set of r polynomials T = {P1, . . . , Pr} ∈ K[Y ]
forms a triangular set if LM�(Pi) is a power of yi for all i ∈ {1, . . . , r}. Moreover, we assume
that T is reduced, which means that NF�(Pi, [Pi+1, . . . , Pr]) = Pi for all i.

Proposition 4.119. With the previous definition, it is obvious that a triangular set of poly-
nomials is a reduced Gröbner basis of a zero-dimensional ideal for lexicographic ordering.
Moreover, the degree of such an ideal is

�r
i=1 deg(Pi).

We recall here the definition of the divided differences for a univariate polynomial.

Definition – Proposition 4.120. For a univariate polynomial c(x) of degree n in K[x],
we define n polynomials c1, . . . , cn of K(x1, . . . , xn)[x] by cn(x) = c(x) and ci(x) =
ci+1(x)−ci+1(xi+1)

x−xi+1
for all i in {1, . . . , n − 1}. Since ci ∈ K[xi+1 . . . xn][x] and degx(ci) = i,

the n polynomials c1(x1), . . . , cn(xn) belong to K[x1, . . . , xn] and are called the divided differ-
ences of the polynomial c.

Observe that the computation of divided differences can be down with a monic polynomial
with variables σ1, . . . ,σn as coefficients, instead of elements of K:

Example 4.121. Let c(x) = x3 − σ1x
2 + σ2x− σ3 ∈ K[σ1,σ2,σ3][x]. The divided differences

of c are very easy to compute and are:

c1 = x1+x2+x3−σ1 c2 = x22+x2x3−x2σ1+x23−x3σ1+σ2 c3 = x33−σ1x
2
3+σ2x3−σ3

We can now reformulate our problem of removing spurious solutions with the divided
differences. Assume that I = �f1, . . . , fs� is a zero-dimensional ideal generated by polynomials
fi ∈ K[x1, . . . , xn]

G, with G a subgroup of Sn. We have seen in the previous subsection how
to obtain, a Sn-invariant Gröbner basis of I in K[σ1, . . . ,σn], for lexicographic ordering with
σ1 � · · · � σn. Since this Gröbner basis generates also a zero-dimensional ideal, it contains a
polynomial with leading monomial a power of σi for all i. Extracting this set of polynomials
and adding the divided differences of the polynomial c(x) = xn − σ1x

n−1 + · · · + (−1)nσn
(and performing some reductions), we obtain a triangular set T in K[x1, . . . , xn,σ1, . . . ,σn].
Let E be the set of polynomials {f1, . . . , fs} (reduced with respect to T ), together with the
polynomials in the invariant Gröbner basis not in the triangular set.

Example 4.122. Consider the ideal I generated by the following polynomials in Q[x1, x2, x3]:

f1 = x1 + x2 + x3 f2 = x21x2 + x22x3 + x23x1 f3 = x1x2x3 − 1

The polynomials f1, f2 and f3 are invariant under the action of the alternate group A3.
We find easily the S3-invariant Gröbner basis of the system, which is [σ1,σ

3
2 +9,σ3− 1], and
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is already a triangular set in Q[σ1,σ2,σ3]. Adding to this set the divided differences computed
in example 4.121, and after performing some reductions, we obtain:

T = {x1 + x2 + x3, x
2
2 + x2x3 + x23 + σ2, x

3
3 + σ2x3 − 1,σ1,σ

3
2 + 9,σ3 − 1}

It is clear that the polynomials f1 and f3 reduced to 0 with respect to T , but f2 does not. So,
in this example, the set E consists in a single polynomial:

E = {NF�(f2, T )} = {−3x2x23 − σ2x2 + σ2x3 − 3}

To remove spurious solutions, we are interested in computing V(�T∪E�). Before explaining
how to remove spurious solutions, we explain how to generalize to other groups than Sn:

Proposition 4.123. Let H be a reflexive group, and h1, . . . , hn be n invariants such that
K[X]H = K[h1, . . . , hn]. With new variables H1, . . . , Hn, we can reverse the relations between
x1, . . . , xn and h1, . . . , hn by computing a lexicographical Gröbner basis of the ideal �Hi−hi, i ∈
{1, . . . , n}� with x1 > x2 > · · · > xn > H1 > · · · > Hn. In the case where H = Sn, we obtain
exactly the divided differences.

The difference between this general case and the case of divided differences is that the
Gröbner basis of the previous proposition contains polynomials with leading monomials equal
to a power of xi for all i, but also other polynomials. But we can add these polynomials to
E and the following algorithms will also compute the interesting variety.

Example 4.124. Go back to example 4.122. Removing the useless variables σ1 and σ3,
the set T = {T1, T2, T3, T4} is a triangular set in K[x1, x2, x3,σ2] consisting in four poly-
nomials with leading monomials x1, x

2
2, x

3
3 and σ3

2, The set E has only one polynomial de-
noted by f = −3x2x23 − σ2x2 + σ2x3 − 3. Observe that LCx2(f) = −3x23 − σ2 is invert-
ible in Q[x1, x2, x3,σ2]/�T � with inverse g = (6σ2x

2
3 + 9x3 + 4σ2

2)/9. Then, the polynomial

f̃ = NF�(f × g, T ) = x2 − x23σ2 − x3 − 2
3σ

2
2 ∈ �T ∪ E� is monic in the variable x2, so the

polynomials T1, f̃ , T3, T4 form a triangular set, denoted by T̃ . Since NF�(T2, T̃ ) = 0, we have

exactly �T ∪ E� = �T̃ �: we have removed the spurious solutions because the projection of the
variety associated to T̃ on the three first variables x1, x2, x3 is exactly the variety associated
to I.

We now come to the general approach. Now T denotes a triangular set in some polynomial
ring K[y1, . . . , yr], and E denotes a set of polynomials in K[y1, . . . , yr]. The idea is the same
as in example 4.124, but the output could be more than one triangular set, since we obtain a
triangular decomposition of the ideal �T ∪ E�.

Definition 4.125. Let J be a zero-dimensional ideal of K[y1, . . . , yr]. A triangular decom-
position of J is a list J1, . . . ,J� of triangular ideals in K[y1, . . . , yr], such that V(J ) =
V(J1) ∪ · · · ∪ V(J�)

A triangular decomposition is a nice way of manipulating solutions of a polynomial system,
because the coefficients of the polynomials lie in K and the composition allows to compute
exact or approximate solutions (depending of K) by solving univariate polynomials. Daniel
Lazard [73] gave an algorithm to compute a triangular decomposition of a zero dimensional
ideal from a Gröbner Basis of the ideal for the lexicographic ordering. Here, we want to
compute this decomposition without previously computing a Gröbner basis.

Following the idea of example 4.124, we will pick up a polynomial in E, and try to
invert its leading coefficient (as a univariate polynomial in its main variable) with respect
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to the triangular set T . The aim of inverting polynomials modulo a triangular ideal gives
the following algoritm 4.126, which is recursive. During the execution of the algorithm, one
inversion could fail, which leads to a decomposition of the triangular set T = {T1 � · · · � Tr}
into two triangular sets. More exactly, in this case one polynomial Tk of T is splitted into two
factors T 1

k and T 2
k modulo polynomials in T smaller than Tk, which means that Tk − T 1

kT
2
k ∈

�Tk+1, . . . , T��. Notice that to invert a polynomial P modulo T , we only need polynomials in
T with main variable equal or smaller than the leading variable of P . Thus, the algorithm is
written assuming that the leading variable of P , LV�(P ) is equal to LV�(T1) = y1. At every
recursive step, we had to take only the polynomials of T with smaller or equal leading variable
than the polynomial we want to invert, and if this polynomial P is a scalar, we return 1/P .

Algorithm 4.126: Inversion Algorithm

Input : 0 �= P ∈ K[y1, . . . , yr] and a triangular set T = {T1 � · · · � Tr} such that
P = NF�(P, T ) and LV�(P ) = LV�(T1) = y1.

Output: A decomposition Tk = T 1
kT

2
k mod �Tk+1, . . . , Tr� or the inverse of P mod T ,

that is a polynomial Q such that PQ = 1 mod T .
c := LCy1(P ); // so P = cyα1 + o(cyα1 )

d := Inversion(c, T );
if we obtain a decomposition then

return the decomposition;
else

P̃ := NF�(dP, T ); //since cd = 1 mod T, P̃ = yα1 + o(yα1 ).

Compute a and b such that T1 = a+ bP̃ mod �T2, . . . , Tr�;
//a = NF�(T1, [P̃ , T2, . . . , Tr]), and b is the first cofactor.

if a = 0 then

return T1 = bP̃ mod �T2, . . . , Tr�;
else

u := Inversion(a, T );
if we obtain a decomposition then

return the decomposition;
else

return NF�(−dbu, T );

Example 4.127. We give here two simple examples of the execution of the Inversion algo-
rithm 4.126, the first one succeeds and the second one fails and returns a decomposition of
the triangular set.

— Let T be {x2 − 1, y2 − 1} and P = xy in K[x, y] with x � y. The main variable of P
is x and its leading coefficient is y. The inverse of y modulo T is y himself, so d = y.
Then P̃ = x, and x2 − 1 = −1 + x× x so, a = −1 and b = x. Finally, u = −1 and we
return NF�(−y × x× (−1), T ) = xy. Indeed, NF�(x2y2, T ) = 1× 1 = 1.

— Let T be {x2 − 1, y2 − 1} and P = xy − 1. P cannot be inversible modulo T because
they share the same root (1, 1). If we run the algorithm, d = y and P̃ = x − y. Then
x2−1 = 0+(x+y)P̃ mod �y2−1�, so we return the decomposition x2−1 = (x−y)(x+y)
mod y2 − 1.

Theorem 4.128. Algorithm 4.126 terminates and outputs the inverse of P or a factorization
of an element of T .
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Proof. We prove correctness by induction on the number of variables r and on the degree of
the polynomial P as a monic polynomial in its main variable y1. If r = 0 then P is a scalar
and the algorithm returns 1/P . If r = 1, then T consists in a single polynomial T1 and both
P and T1 are univariate in y1, with deg(P ) < deg(T1). Since P is assumed to be non zero, its
leading coefficient is a scalar c and its inverse is d = 1/c, thus P̃ = P/c is monic. The writing
T1 = a+ bP̃ is exactly the Euclidian division of T1 by P̃ . If a = 0 then the algorithm returns
a decomposition of T1 into two non trivial factors. Else a is a polynomial of degree less than
P , so Inversion(a, T ) outputs a correct decomposition of T or the inverse of a modulo T . In
the second case, the algorithm outputs NF�(−dbu, T ), but the following equalities hold:

−dbu = −bP̃u mod T = −u(T1 − a) mod T = ua mod T = 1 mod T

If r ≥ 2, the proof is the same as in the case r = 1, with moduli with respect to T2, . . . , Tr.
Termination is assured by the decrease in the number of variables or the degree in the main
variable between the recursive calls.

With this Inversion algorithm, we are able to give a solution to the problem of computing
a triangular decomposition of T ∪E in K[y1, . . . , yr]: we just have to add to T elements of E
one by one, using the following Insertion algorithm 4.129. This algorithm is also recursive,
this time we do not assume that P and T1 have same leading variable but when we apply
the inversion algorithm, we suppose again that instead of T , we keep only the polynomials
with smaller (or equal) leading variable than the polynomial we want to insert. The idea is
to try to obtain the inverse of the leading coefficient of P . If we succeed, we can apply the
insertion algorithm with a triangular set with one polynomial having smaller degree, and if
we fail we obtain a decomposition of a polynomial Tk in T into two factors, which leads to a
decomposition of T into two triangular sets T 1 and T 2 such that V(T ) = V(T 1) ∪ V(T 2). In
this case, we apply again the Insertion algorithm twice.

Algorithm 4.129: Insertion Algorithm

Input : P ∈ K[y1, . . . , yr] and T = {T1 � · · · � Tr} such that P = NF�(P, T ).
Output: A triangular decomposition of the ideal �T ∪ {P}�.
if P = 0 then

return T
else

yk := LV(P );
c := LCyk(P ); // c is a polynomial in the variables smaller than yk.

d := Inversion(c, T );
if this inversion fails then

We obtain a decomposition V(T ) = V(T 1) ∪ V(T 2);

return Insertion(NF�(P, T 1), T 1) ∪ Insertion(NF�(P, T 2), T 2);

else

P̃ := NF�(d× P, T ); // P̃ is monic in yk.

T̃ := T ∪ P̃\{Tk}; // where Tk is the polynomial in T with main variable

yk.

return Insertion(NF�(Tk, T̃ ), T̃ );

Example 4.130. This example follows example 4.127. Let T be {x2 − 1, y2 − 1} and P =
xy − x − y + 1 ∈ K[x, y]. We want to compute a triangular decomposition of the ideal
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T ∪ {P}. The main variable of P is x and c = y − 1. Since c is not invertible modulo
y2 − 1, we obtain the decomposition V(T ) = V(T 1) ∪ V(T 2) with T 1 = {x2 − 1, y − 1} and
T 2 = {x2 − 1, y + 1}. Because NF�(P, T 1) = 0, the result of Insertion(NF�(P, T 1), T 1) is T 1

himself. On the other side, NF�(P, T 2) = −2x+ 2. Trying to insert this polynomial into T 2

leads to Insertion(NF�(x2 − 1, T̃ )), T̃ ) with T̃ = {x − 1, y + 1}, and the result is T̃ . Finally,
the algorithm returns {{x2 − 1, y − 1}, {x− 1, y + 1}}.

Example 4.131. Now, we give a complete resolution of the Cyclic-5 problem, on the finite
field K = F65521. The ideal is generated by the polynomials of E :

E =





x1 + x2 + x3 + x4 + x5

x1x2 + x1x5 + x2x3 + x3x4 + x4x5

x1x2x3 + x1x2x5 + x1x4x5 + x2x3x4 + x3x4x5

x1x2x3x4 + x1x2x3x5 + x1x2x4x5 + x1x3x4x5 + x2x3x4x5

x1x2x3x4x5 − 1

which leads to the following Gröbner basis in K[σ1,σ2,σ3,σ4,σ5]:

G = [σ1,σ2 + 3145σ4,σ
6
3 + 3125σ3,σ4,σ5 − 1]

The degree of all these polynomials is one, except for σ6
3 + 3125σ3. So, we work in

K[x1, x2, x3, x4, x5,σ3]. The triangular set given by the divided differences and the invari-
ant Gröbner Basis is :

T =





f1 = x1 + x2 + x3 + x4 + x5

f2 = x22 + x2x3 + x2x4 + x2x5 + x23 + x3x4 + x3x5 + x24 + x4x5 + x25 + 3145σ4
3

f3 = x33 + x23x4 + x23x5 + x3x
2
4 + x3x4x5 + x3x

2
5 + 3145x3σ

4
3 + x34 + x24x5 + x4x

2
5

+3145x4σ
4
3 + x35 + 3145x5σ

4
3 − σ3

f4 = x44 + x34x5 + x24x
2
5 + 3145x24σ

4
3 + x4x

3
5 + 3145x4x5σ

4
3 − x4σ3 + x45

+3145x25σ
4
3 − x5σ3

f5 = x55 + 3145x35σ
4
3 − x25σ3 − 1

f6 = σ6
3 + 3125σ3

We apply the previous algorithm to E and T , and we obtain





x1 + x2 + 18346σ2
3

x22 + 18346x2σ
2
3 − 629σ4

3

x3 + 15725σ2
3

x4 + 15725σ2
3

x5 + 15725σ2
3

σ5
3 + 3125





x1 + 15725σ2
3

x2 + 15725σ2
3

x3 + x4 + 18346σ2
3

x24 + 18346x4σ
2
3 − 629σ4

3

x5 + 15725σ2
3

σ5
3 + 3125





x1 + 15725σ2
3

x2 + x3 + 18346σ2
3

x23 + 18346x3σ
2
3 − 629σ4

3

x4 + 15725σ2
3

x5 + 15725σ2
3

σ5
3 + 3125
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



x1 + 15725σ2
3

x2 + 15725σ2
3

x3 + 15725σ2
3

x4 + x5 + 18346σ2
3

x25 + 18346x5σ
2
3 − 629σ4

3

σ5
3 + 3125





x1 + x34x
3
5 + x24x

4
5 + x4 + x5

x2 − x34x
3
5

x3 − x24x
4
5

x44 + x34x5 + x24x
2
5 + x4x

3
5 + x45

x55 − 1

σ3





x1 + x5 + 18346σ2
3

x2 + 15725σ2
3

x3 + 15725σ2
3

x4 + 15725σ2
3

x25 + 18346x5σ
2
3 − 629σ4

3

σ5
3 + 3125

This triangular decomposition encodes all of the 70 solutions of the Cyclic-5 problem.

Example 4.132. We now come back to the example 4.108, invariant under the subgroup
G = (Z/2Z)4 �D5 of the Coxeter group H = (Z/2Z)4 �S5. We wanted to solve the system





f1 = x21 + x22 + x23 + x24 + x25 − 1 = 5�(x21)−�(1) = 0

f2 = x41 + x42 + x43 + x44 + x45 − 1 = 5�(x41)−�(1) = 0

f3 = x21x
2
2 + x21x

2
5 + x22x

2
3 + x23x

2
4 + x24x

2
5 − 1 = 5�(x21x22)−�(1) = 0

f4 = x1x2x3x4x5 − 1 = �(x1x2x3x4x5)−�(1) = 0

f5 = x61 + x62 + x63 + x64 + x65 − 1 = 5�(x61)−�(1) = 0

and we found with the general algorithm 4.105 the following H-invariant Gröbner basis:

G = [H1−1, H2, H3, H
6
4 −10488H5

4 +5251H4
4 −10492H3

4 −5271H2
4 +28927H4+18242, H5−1]

The set GH obtained in this case consist in ten polynomials whose leading monomials are

x21, x1x2x3x4x5, x1x
5
3x4x5, x1x

7
4x5, x1x

9
5, x1H5, x

4
2, x

6
3, x

8
4, x

10
5

Then we run the inversion-algorithm twice with the set E equal to {f1, . . . , fm} together
with the polynomials starting by x1x2x3x4x5, x1x

5
3x4x5, x1x

7
4x5, x1x

9
5, x1H5 and the set T equal

to the other polynomials in GH together with one of the polynomials starting by H3
4 . In each

case, we obtain a triangular ideal whose associated variety has size 480, so we recover the
960 solutions. Since H5 = 1 in this example, the polynomial with leading monomial equal to
x1H5 is already portable into the triangular set, but we don’t need to do it before running the
algorithm.

Remark 4.133. Let G be a Gröbner Basis for lexicographical ordering of a zero-dimensional
ideal in K[y1, . . . , yr]. If we run insertion algorithm with T = {T1 � · · · � Tr} the elements of
G having their leading monomial which is a power of yi and E = G\T , we recover the Lazard
Lex-Triangular algorithm [73].

4.3.3.3 A univariate approach

In this subsubsection, we give another approach to remove spurious solutions. We use the
same notations as in the previous subsubsection, that is T = {T1 � · · · � Tr} for a triangular
set in K[Y ] = K[y1, . . . , yr] and E another set of polynomials in K[Y ]. The idea here is to
compute a Gröbner basis for lexicographical ordering of �T ∪ E�. The strategy involves a
univariate representation of the algebra K[Y ]/�T � and a variant of the FGLM algorithm.
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Definition 4.134. Let I be a zero-dimensional ideal in K[Y ]. a univariate representation of
the quotient ring K[Y ]/I is an isomorphism

ϕ : K[Y ]/I → K[u]/Q(u)

y1, . . . , yr �→ S1(u), . . . , Sr(u)

Λ �→ u

where Λ is a linear form in y1, . . . , yr, such that K[Y ]/I = K[Λ] (Λ is called primitive), and
Q is the characteristic polynomial of the endomorphism of multiplication by Λ in K[Y ]/I.

In the previous definition, the fact that Λ is primitive is a Zariski open condition on its
coefficients, if the field K is big enough we can choose the coefficients of Λ randomly and we
get a primitive linear form with high probability, see [87] for details. The univariate approach
to remove spurious solutions follows from the following proposition.

Proposition 4.135. Let I be a zero-dimensional ideal in K[Y ] and consider a univariate
representation of K[Y ]/I as in definition 4.134. Let f be in K[Y ]. Then an univaraiate
representation of K[Y ]/(I + �f�) is given by the univariate quotient K[u]/(Q ∧ ϕ(f))(u),
where Q ∧ ϕ(f) is the greatest common divisor of Q and ϕ(f). The variables yi are mapped
on the images of the Si in this univariate ring. The image of Λ remains primitive.

Proof. Consider the following diagram. We need to prove that the kernel of s◦ϕ−1 is �Q∧ϕ(f)�
to prove the existence of the isomorphism φ.

K[Y ]/I K[u]/Q(u)

K[Y ]/(I + �f�) K[u]/(Q ∧ ϕ(f))(u)

ϕ

s s�s ◦ ϕ−1

φ

By Bezout’s relation, Q ∧ ϕ(f) can be written aQ+ bϕ(f), so ϕ−1(Q ∧ ϕ(f)) = φ−1(b)f and
Q ∧ ϕ(f) lies in the kernel of s ◦ ϕ−1. Reciprocally, let P be in Ker(s ◦ ϕ−1). Since ϕ is an
isomorphism, ϕ−1(P ) ∈ �f�, so P can be written aQ+ bϕ(f) and is a multiple of Q ∧ ϕ(f).

Now let T be a triangular set in K[Y ] and Q a univariate polynomial associated to a
univariate representation of K[Y ]/�T �, with same notations as in definition 4.134. Then by
applying previous proposition |E| times, a univariate representation of �T ∪ E� is given by:

ϕ̃ : K[Y ]/�T ∪ E� → K[u]/Q̃(u)

y1, . . . , yr �→ S̃1(u), . . . , S̃r(u)

Λ̃ �→ u

where Q̃ is the greatest common divisor between Q and {ϕ(P ) | P ∈ E}, Λ̃ is the image of
Λ in K[Y ]/�T ∪ E� and S̃1, . . . , S̃r are the images of the previous S1, . . . , Sr, which are well
defined since Q̃ divides Q. To obtain a lexicographical Gröbner basis of the ideal �T ∪E�, we
just apply the following algorithm 4.136, which is a variant of the FGLM algorithm 1.52.
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Algorithm 4.136: Filtering solutions with univariate representation

Input : The polynomial Q̃, the polynomials S̃1, . . . , S̃n, the morphism ϕ̃.
Output: A lexicographical Gröbner basis of the ideal �T ∪ E�.
L := [1]; //list of monomials in K[Y ] sorted by the lexicographic ordering �
S := [ ]; //staircase for �
V := [ ]; //V = ϕ̃(S)

G := [ ];
while L �= [ ] do

m := L[1]; and remove m from L;
v := ϕ̃(m);
s := #S;
if v ∈ SpanK (V ) then

we can find (λi) ∈ Ks such that v =
s�

i=1
λi · Vi;

G := G ∪
�
m−

s�
i=1

λi · Si

�
;

else
S := S ∪ [m]; V := V ∪ [v];
L := Sort(L ∪ [yim | i = 1, . . . , r] ,�);

Remove from L duplicates elements or multiples of LM�(G);

return G

Termination is assured by the fact that T1, . . . , Tr are in the kernel of ϕ̃ so we would find
a linear combination between some power yαi

i and the monomials examined when they are
affected to m. Correctness is obvious since the kernel of ϕ̃ is exactly �E ∪ T �.

Example 4.137. We propose here a different approach of example 4.122. Remember that we
wanted to solve f1 = f2 = f3 = 0 with

f1 = x1 + x2 + x3 f2 = x21x2 + x22x3 + x23x1 f3 = x1x2x3 − 1

Since the S3-invariant Gröbner basis of the system is given by [σ1,σ
3
2 + 9,σ3 − 1], we set

K = Q[ω] with ω a root of the irreducible polynomial x3 + 9, and assume that σ2 = ω.
The divided differences computed in example 4.121 form a triangular set given on K after
reductions by

T = {x1 + x2 + x3, x
2
2 + x2x3 + x23 + ω, x33 + ωx3 − 1}

The linear form Λ = 3x1 + 2x2 + x3 is primitive in K[x1, x2, x3]/�T �, and the characteristic
polynomial of multiplication by Λ in K[x1, x2, x3]/�T � is given by Q(u) = u6+6ωu4+9ω2u2−9,
which gives the following univariate representation:

ϕ : K[Y ]/I = K[x1, x2, x3]/�T � → K[u]/Q(u)

Λ �→ u

x1 �→ S1(u) =
1
18(−u4 − 5ωu2 + 9u− 4ω2)

x2 �→ S2(u) =
1
9(u

4 + 5ωu2 + 4ω2)

x3 �→ S3(u) = − 1
18(u

4 + 5ωu2 + 9u+ 4ω2)
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The images of polynomials in E = {f1, f2, f3} by ϕ are all zero but the image of f2, which
is given by ϕ(f2)(u) =

1
2(u

3+3ωu− 3). Since Q(u) = (u3+3ωu− 3)(u3+3ωu+3), the GCD

between Q and ϕ(f2) is exactly Q̃(u) = 2ϕ(f2)(u) = u3 + 3ωu− 3, so the map ϕ̃ is given by:

ϕ̃ : ˜K[Y ]/I = K[x1, x2, x3]/�T ∪ E� → K[u]/Q̃(u)

Λ̃ �→ u

x1 �→ S̃1(u) = −1
9(ωu

2 − 3u+ 2ω2)

x2 �→ S̃2(u) =
1
9(2ωu

2 + 3u+ 4ω2)

x3 �→ S̃3(u) = −1
9(ωu

2 + 6u+ 2ω2)

We can now apply the previous algorithm. The three first loops add the monomials 1, x3, x
2
3

in the staircase, because their images by ϕ̃ are linearly independent: ϕ̃(1) = 1, 9ϕ̃(x3) =
−ωu2−6u−2ω2 and 9ϕ̃(x23) = 3u2−ω2u. Actually, these elements form a basis of K[u]/Q̃(u),
so any new examined monomial will give an element of the Gröbner basis. The next monomial
in L is x33, which gives g3 = x33 + ωx3 − 1. Then, x2 gives 3g2 = 3x2 − 3ωx23 − 3x3 − 2ω2.
Since we remove from L all multiples of x33 and x2, the next one is x1 which gives 3g1 =
3x1 + 3ωx23 + 6x3 + 2ω2, and the algorithm stops. The lexicographical reduced Gröbner basis
of �T ∪ E� is given by {g1, g2, g3}.
Remark 4.138. We could have taken a univariate representation of K[x1, x2, x3,ω]/T with
T the triangular set given by divided differences together with w3+9 as in example 4.124, and
we would have found the same result. However, from a complexity point of view, it is easier
to compute univariate representations of divided differences only, see the following complexity
subsubsection.

4.3.3.4 Complexity of the approaches

We now briefly examine and compare the complexity of the first and the third approaches.
The second one is very general but its complexity is hard to derive. We have mentionned
that from the H-invariant Gröbner basis, we take a primary decomposition. Since in practice,
those bases are very small, we can suppose that the cost of computing such a decomposition
is negligible. The first approach has the best complexity, but the two others contain ideas
that could give rise to a best approach since we are working only in the field K, and there are
exact methods.

Exhaustive search. In algorithm 4.114, the computation of the variety V(JH) and the
successive b, c and a can be understood in two ways: first, we can perform numerical ap-
proximations if we are looking for solutions over R or C. Otherwise, we can compute in
field extensions if we are looking for exact solutions. In both case the complexity is simply

O(m |H|
|G|
�

b∈V(JH)Cb), where Cb is the complexity of computing an approximation of b and

a corresponding a, or an expression of such n-tuples in a suitable extension of K.

Univariate approach. We use notations of the dedicated subsubsection. Once the compu-
tation of the univariate representation is done, the computations of GCD are very easy, since
they can be done in quasi-polynomial time with respect to the degree of the polynomial Q in
the univariate representation. The FGLM-like algorithm to recover a Gröbner basis for lex-
icographical ordering has complexity O(r(degQ̃3)). Now let discuss about the complexity of
computing a univariate representation of a triangular ideal generated by T = {T1 � · · · � Tr}



4.3. STABLE EQUATIONS AND SAGBI BASES 165

in K[y1, . . . , yr]. We denote again by D(T ) the product
�r

i=1 degyiTi. From [87], it is known

that a univariate representation can be computed in O(D(T )2) operations in K. However,
in several particular case, a univariate representation can be computed faster, even in quasi-
optimal time in the case of divided differences, see [74].

4.3.4 Implementation and Benchmarks

Comparaison between K[X] and K[X]G. We analyse here at a fixed degree the assump-
tion dim(K[X]Gd ) � dim(K[X]d) made to analyse the complexity of SAGBI-F5 algorithm
based on asymptotic results. Since dim(K[X]d) −→

d→+∞
+∞, we present here the relative

deviation

σd =
dim(K[X]Gd )− dim(K[X]d)/|G|

dim(K[X]d)/|G| =
|G| dim(K[X]Gd )

dim(K[X]d)
− 1 −→

d→+∞
0

for several groups. We have already seen the same kind of analysis in section 4.2, for
abelian groups. We denote by Cn the cyclic group of order n generated by the matrix Mσ

(already seen in example 4.49), and by Dn the dihedral group of order 2n generated by Mσ

and Mτ , where τ is the permutation (1 n)(2 n− 1) . . ., which is a product of transpositions.
More precisely:

Mσ =




0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

1 0 0 . . . 0




and Mτ =




0 0 . . . 0 1

0 0 . . . 1 0
...

... . .
. ...

...

0 1 . . . 0 0

1 0 . . . 0 0




Table 4.139 presents relative deviations for the Cyclic and Dihedral groups: the conver-
gence of σd to 0 is fast.

We are now interested in an analysis of the family (Z/2Z)n−1 � Dn of subgroups of the
Coxeter group (seen in example 4.108, in the case n = 5). For a given n, this subgroup
is generated by the matrices Mσ,Mτ , and the diagonal matrices with diagonal coefficients
beeing 1 or −1, with an even number of −1. This group has size 2nn. If n is even, the group
contains the scaling −In, therefore the convergence of the relative standard deviation toward
0 does not hold. Therefore, we only present cases where n is odd. Since the convergence of
the relative deviation towards 1 is slower than for the cyclic or dihedral groups, we present in
table 4.140 the ratio |G| dim(K[X]Gd )/ dim(K[X]d) −→

d→+∞
1. Even if the convergence is slow,

we see that the approximation dim(K[X]Gd )/ dim(K[X]d) � 1/|G| remains very acceptable in
most of the case, since |G| = 2nn.

Comaparaison between Gröbner bases and Invariant Gröbner bases. We compare
here some sizes of Gröbner bases and Invariant Gröbner bases, together with the number of
solutions of the corresponding ideals.

Example 4.141. We deal here with the Cyclic-n problem, for various n. We present the
number of polynomials, the maximal number of monomials and the variety size of the lexico-
graphical Gröbner basis and Sn-invariant Gröbner basis obtained with the Cyclic-n problem,
given by the following ideal in the invariant ring K[x1, . . . , xn]

Dn:

IDn = ��(x1),�(x1x2), . . . ,�(x1x2 · · ·xn)− 1�
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Group \ d 2 3 4 5 10 15

C4 0.20 0.00 0.14 0.00 0.021 0.00

C5 0.00 0.00 0.00 0.032 4.0× 10−3 1.0× 10−3

C6 0.14 0.071 0.048 0.00 7.0× 10−3 0.0007.7

C7 0.00 0.00 0.00 0.00 0.00 0.00

C10 0.091 0.00 0.021 4.0× 10−3 1.5× 10−3 1.2× 10−5

C15 0.00 0.015 0.00 1.0× 10−3 1.2× 10−5 3.9× 10−6

D4 1.4 0.60 0.83 0.43 0.32 0.18

D5 1.0 0.43 0.43 0.27 0.11 0.047

D6 1.3 0.50 0.52 0.24 0.12 0.047

D7 1.0 0.33 0.33 0.15 0.049 0.016

D10 1.2 0.27 0.32 0.11 0.029 6.0× 10−3

D15 1.0 0.19 0.18 0.047 6.0× 10−3 6.7× 10−4

Table 4.139 – The relative deviation between dim(K[X]Gd ) and dim(K[X]d)/|G| for the Cyclic
and Dihedral groups.

n\d 15 20 25 30 35 40 50 80 100

5 0.66 1.7 0.75 1.4 0.79 1.3 1.2 1.1 1.1

7 0.33 2.3 0.46 1.8 0.56 1.6 1.5 1.3 1.2

9 0.11 3.7 0.25 2.6 0.36 2.1 1.9 1.5 1.4

11 0.042 6.4 0.11 4.0 0.21 3.0 2.5 1.8 1.6

13 6.1× 10−3 12. 0.043 6.4 0.11 4.5 3.5 2.3 2.0

15 6.3× 10−3 23. 0.013 11.0 0.048 7.0 5.2 3.1 2.5

Table 4.140 – Ratio |G| dim(K[X]Gd )/ dim(K[X]d) for the Coxeter subgroup (Z/2Z)n−1�Dn.

4.3.4.1 Cyclic group and FGb implementation

As a proof of concept of the efficiency of the method, a implementation of the algo-
rithm 1.68 in the case of the invariant ring K[X]Cn in C as a part of the FGb program 3

has been done. We have a dedicated implementation for rewriting products bdi × bd
�

i� as a

linear combination of bd+d�
j where (bdi )i∈{1,...,nd} is the basis of K[X]Cn given by �(m), with

m describing the set of initial monomials. We report in table 4.143, CPU timings for the
Cyclic-n problem on F65521 (the computer is a laptop Dell E6500, 4Go RAM). For the tests
we compute a SAGBI-basis up to degree D of the invariant ideal, and we choose D big enough
so that we can apply the SAGBI-FGLM algorithm 4.101). The results are very promising
since it takes 1m30s to compute a SAGBI basis for the Cyclic-9 problem. To give an order of
magnitude with the classical approach with Gröbner bases, we have included the CPU time
for computing a Gröbner basis using the F4 algorithm [34], implemented in Magma 2.19, on
a computer with an Intel/Xeon with 20 Go RAM).

3. http://www-polsys.lip6.fr/~jcf/Software/index.html
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G |G| Max length of a polynomial in G V(�G�)
Lex-Gb of ID2 2 2 2

S2-inv Lex-Gb of ID2 2 2 1

Lex-Gb of ID3 3 3 6

S3-inv Lex-Gb of ID3 3 2 1

Lex-Gb of ID4 6 5 dim 1

S4-inv Lex-Gb of ID4 3 2 dim 1

Lex-Gb of ID5 11 15 70

S5-inv Lex-Gb of ID5 5 2 6

Lex-Gb of ID6 17 27 156

S6-inv Lex-Gb of ID6 7 4 13

Lex-Gb of ID7 35 132 924

S7-inv Lex-Gb of ID7 7 9 57

Lex-Gb of ID8 57 2545 dim 1

S8-inv Lex-Gb of ID8 15 548 dim 1

Table 4.142 – Sizes of the invariant Gröbner bases and the Gröbner bases

Problem D D truncated with SAGBI-F5 Gröbner Basis with F4 on Magma

Cyclic-7 12 0.06s 0.2s

Cyclic-8 13 0.5s 3.9s

Cyclic-9 15 92.2s 417.1s

Cyclic-10 16 4788s 24h13m

Table 4.143 – Benchmarks with FGb: SAGBI-F5 for the Cyclic-n problem in F65521

Further work. A Magma implementation of the algorithms has been done, and will be
available soon. Notice that the timings in the FGb implementation seem to be bad, compared
to the timings with the Abelian F4 algorithm, presented in table 4.89, but the timings here
(in the FGb implementation) date back to 2009. Even if the strategy of applying Abelian F4

can be better for systems of equations individually invariant under the action of an abelian
group (like the Cyclic-n problem), the approach with SAGBI bases can be applied in some
cases, where Abelian F4 cannot. Then, other benchmarks have to be performed, in both C
and Magma.



168 CHAPTER 4. SOLVING SYSTEMS WITH SYMMETRIES



Chapter 5

Gröbner Bases in Monomial
Algebras

5.1 Introduction

This work is a common work with Jean-Charles Faugère and Pierre-Jean Spaenlehauer
which has been accepted for presentation at the ISSAC’ 14 conference.

Context and problem statement. Many polynomial systems or systems of Laurent
polynomials arising in applications do not have a dense monomial structure (for instance
multi-homogeneous systems, fewnomials, systems invariant under the action of a diagonal
matrix group,. . . ). The development of toric geometry during the 70s/80s has led to toric (or
sparse) elimination theory [101], a framework designed to study and exploit algorithmically
these monomial structures.

Central objects in toric geometry are semigroup algebras (also called toric rings), already
defined in section 3.2.Semigroup algebras are isomorphic to subalgebras of K[X±1

1 , . . . , X±1
n ]

generated by a finite subset of monomials.

Our motivation is to propose fast algorithms to solve symbolically systems whose support
lie in one of the following classes of semigroups: semigroups constructed from the points with
integer coordinates in a normal lattice polytope P ⊂ Rn (in that case, the algorithms we
propose are well-suited for unmixed systems: the Newton polytopes of the input polynomials
are all equal to P) or semigroups generated by a scattered set of monomials (fewnomial
systems).

Main results. Given a 0-dim. system of Laurent polynomials f1 = · · · = fs = 0 and
a finite subset M ⊂ Zn such that each polynomial belongs to the subalgebra generated by
{Xα1

1 · · ·Xαn
n | α ∈ M}, we associate to M two affine semigroups: SM ⊂ Zn generated by

M and S
(h)
M ⊂ Zn+1 generated by {(α, 1) ∈ Zn+1 | α ∈ M}. Under the assumption that SM

contains zero but no nonzero pairs (s1, s2) ∈ S2
M such that s1 + s2 = 0, our solving strategy

proceeds by combining the SAGBI-F5 algorithm 1.68 (called Sparse-F5 in this context) in

the algebra K[S
(h)
M ] and a sparse variant in K[SM ] of the FGLM algorithm 1.52. We define

a notion of sparse Gröbner basis (definition 5.2) that is computed by the sparse-MatrixF5
algorithm if we know a bound on its maximal degree (this maximal degree is called the witness
degree of the system). An important feature of sparse GBs is that their definition depends
only on the ambient semigroup algebra and not on an embedding in a polynomial algebra.
In this sense, they differ conceptually from SAGBI bases, even though Sparse-F5 is no more
than SAGBI-F5 in this context and Sparse-FGLM has similarities with the SAGBI-FGLM

169
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algorithm proposed in section 4.3 (algorithm 4.101). In the special case SM = Nn, then sparse
Gröbner bases in K[SM ] are classical Gröbner bases, and sparse-FGLM is the usual FGLM.

At the end of the solving process, we obtain a rational parametrisation of the form

Q(T ) = 0 and ∀α ∈M \ {0}, Xα1
1 · · ·Xαn

n −Qα(T ) = 0

where Q ∈ K[T ] is a univariate polynomial, and for all α ∈ M , Qα ∈ K(T ) is a rational
function. Consequently, the solutions of the input sparse system can be expressed in terms of
the roots of the univariate polynomial Q by inverting a monomial map.

The next main result addresses the question of the complexity of this solving process when
M is given as the set P ∩ Zn, where P ⊂ Rn is a lattice polytope of dimension n. It turns
out that the complexities of sparse-MatrixF5 and sparse-FGLM algorithms depend mainly on
the combinatorial properties of P:

— the normalized volume vol(P) ∈ N;
— the Castelnuovo-Mumford regularity reg(K[S

(h)
P∩Zn ]) (definition 3.109), equal to n+1−�

where � is the smallest integer such that the intersection of Zn with the interior of � ·P
is nonempty;

— the Ehrhart polynomial HPP(�) which equals the cardinality of (� ·P)∩Zn for � ∈ N
(definition 3.101)

We use as indicator of the complexity the witness degree which bounds the maximal

“sparse degree” (corresponding to an N-grading on K[S
(h)
P∩Zn ]) in a reduced sparse Gröbner

basis. More precisely, we obtain the following complexity estimates:

Theorem 5.1. Let P ⊂ Rn be a normal lattice polytope of dimension n with one vertex
at 0 ∈ Zn, (d1, . . . , dn) be a sequence of positive integers and (f1, . . . , fn) be a regular se-
quence of Laurent polynomials in K[X±1

1 , . . . , X±1
n ]n, such that the support of fi is included

in {Xs1
1 · · ·Xsn

n | s ∈ (di · P) ∩ Zn}. Then a sparse GB of the ideal �f1, . . . , fn� ⊂ K[SP∩Zn ]
can be computed within

O (nHPP(dwit)
ω)

arithmetic operations in K, where ω < 2.373 is a feasible exponent for the matrix multiplication
and dwit ≤ reg(K[P])+1+

�n
j=1(dj−1). Moreover, if 0 is a simple vertex of P ( i.e. a vertex

which is the intersection of n facets), then the sparse-FGLM algorithm executes at most

O


HPP(1)


vol(P)

n�

j=1

dj




3


arithmetic operations in K.

Direct consequences of these formulas allow us to derive new complexity bounds for solving
regular multi-homogeneous systems. We show that the witness degree of a regular system of n
multi-homogeneous polynomials of multi-degree (d1, . . . , dp) with respect to blocks of variables
of sizes (n1, . . . , np) (with

�
ni = n) is bounded by n+2−maxi∈{1,...,p}(�(ni+1)/di�) (which

generalizes the bound min(n1, n2) + 1 in the bilinear case [36]). We also propose a variant
of Fröberg’s conjecture (conjecture 2.43) for sparse systems and a notion of semi-regularity,
which yield complexity estimates for solving sparse overdetermined systems.

We have implemented in C a prototype of the sparse-MatrixF5 algorithm, that runs several
times faster than the original F5 algorithm in the FGb software. For instance, we report
speed-up ratios greater than 100 for instances of overdetermined bihomogeneous systems.
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The implementation also works well for fewnomial systems (although this case is not covered
by our complexity analysis).

Related works. Computational aspects of toric geometry and Gröbner bases are inves-
tigated in [102]. In particular, [102, Subroutine 11.18] gives an algorithm to compute syzygies
of monomials in toric rings, which is an important routine for critical-pairs based algorithms.

Other approaches have been designed to take advantage of the sparse structure in Gröbner
bases computations. For instance, the Slim Gröbner bases in [11] describes strategies to avoid
increasing the number of monomials during computations. This approach improves practical
computations, but does not lead to new asymptotic complexity bounds for classes of sparse
systems.

The sparse structure and the connection with toric geometry have also been incorporated
to the theory of resultants, and a vast literature has been written on this topic, see e.g.
[33, 32, 21, 20]. One difficulty in the resultant framework is that it requires genericity as-
sumptions on the input polynomials to ensure that the resultant is not zero. Sparse Gröbner
bases are flexible: even if we do not know how to bound the witness degree (i.e. when the
regularity assumptions of Theorem 5.1 do not hold), we can use ad-hoc techniques to ensure
the termination of the sparse-MatrixF5 algorithm. Moreover, the algorithms extend without
any modification to the overdetermined case. However, the computational tools that we pro-
pose do not exploit mixed monomials structures, which are well-understood in the context of
resultants.

Perspectives. Our approach is for the moment limited to unmixed systems: all input
polynomials have to lie in the same semigroup algebra. A possible extension of this work
would be the generalization to mixed systems (where the algorithms would depend on the
Newton polytope of each of the polynomials of the system). Some results seem to indicate
that such a generalization may be possible: for instance, under genericity assumptions, mixed
monomial bases of quotient algebras are explicitly described in [86].

Also, a bound on the witness degree and the complexity analysis is for the moment re-
stricted to the polytopal case. Ensuring termination with a critical pairs approach (such as
[102, algorithm 11.17]) could lead to a complete extension of the classical F5 algorithm to the
sparse case.

Finally, finding complexity bounds which explain the efficiency of the sparse Gröbner bases
approach for fewnomial systems (see Table 5.35) remains an open problem, and is a work in
progress.

Organisation of the chapter. The background material on semigroup algebras and
convex geometry that will be used throughout this chapter have been recalled in section 3.2.
Section 5.2 introduces sparse Gröbner bases and describes a general solving process for sparse
systems. The main algorithms are described in Section 5.3 and their complexities are analyzed
in Section 5.4. Finally, we describe in Section 5.5 some results that are direct consequences
of this new framework and experimental results in Section 5.6.

5.2 Sparse Gröbner bases

One of the idea behind the sparse Gröbner bases framework is to replace the semigroup
Nn (leading to the polynomial ring K[x1, . . . , xn]) by another affine semigroup S (see defini-
tion 3.85). First, we have to put an ordering on the monomials in K[S].

Definition 5.2. Let S be an affine semigroup. A total ordering on the monomials of K[S] is
called admissible if
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— it is compatible with the internal law of S: for any s1, s2, s3 ∈ S, Xs1 ≺ Xs2 ⇒
Xs1+s3 ≺ Xs2+s3;

— for any s ∈ S \ {0}, X0 ≺ Xs.

Example 5.3. In this section, we will take as a small example the affine semigroup gener-
ated in Z2 by the three integer points {(1, 1), (2, 1), (1, 2)}. This semigroup leads to the algebra
K[S] = K[xy, x2y, xy2]. Since K[S] ⊂ K[x, y], a total ordering on K[S] is given by the restric-
tion of a total ordering on K[x, y] to K[S]. We choose the ordering given by the restriction of
the DRL ordering. A picture of the semigroup S is presented in figure 5.4

x

y

Figure 5.4 – The semigroup S

Notations 5.5. For a fixed admissible ordering � and for any element f ∈ K[S], we let
LM�(f) denote its leading monomial. Similarly, for any ideal I ⊂ K[S], LM�(I) denotes
the ideal generated by {LM�(f) | f ∈ I} in K[S]. A finite subset G ⊂ I is called a sparse
Gröbner basis (abbreviated sGB) of I with respect to � if the set {LM�(g) | g ∈ G} generates
LM�(I) in K[S].

Remark 5.6. With this definition, if S ⊆ Nn, a sparse Gröbner basis of I ⊆ K[S] is no more
than a SAGBI Gröbner basis of I in A = K[S], with definition 1.61. But contrary to SAGBI
basis in the general case, in monomial algebras the implication f ∈ A =⇒ LM�(f) ∈ A
holds, which is a great difference and has to be emphasized.

Note that monomial orderings exist for any semigroup algebra: the convex hull of a
semigroup S ⊂ Zn is a PRPC C ⊂ Rn (see definition 3.87): this is a consequence of the fact
that there is no nonconstant invertible monomial in K[S]. Now one can pick n independent
linear forms (�1, . . . , �n) with integer coefficients in the dual cone

C ∗ = {linear forms � : Rn → R | ∀x ∈ C , �(x) ≥ 0}

and set Xs1 ≺ Xs2 if and only if the vector (�1(s1), . . . , �n(s1)) is smaller than
(�1(s2), . . . , �n(s2)) for a classical admissible ordering on Nn.

Note that the assumption that K[S] contains no nonconstant invertible monomial is a
necessary and sufficient condition for the existence of a monomial ordering.
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We describe now an algorithmic framework that we use to solve sparse systems of Laurent
polynomials. Let M ⊂ Zn be a non-empty finit subset of Zn, containing no distinct elements
s and s� such that s + s� = 0 (according to the assumptions of Definition 3.85). From now,
we will identify a element of Zn with the corresponding monomial in the ring of Laurent
polynomial K[X±1] = K[x±1

1 , . . . , x±1
n ]. Let f1, . . . , fs ∈ K[X±1] be Laurent polynomials and

(d1, . . . , ds) be positive integers such that the supports of each fi is included in





di�

j=1

m
�� m ∈M





Note that translating M amounts to multiplying the Laurent polynomials by Laurent mono-
mials: this does not change the set of solutions of the system in the torus

�
k \ {0}

�n
.

Assuming that the system f1 = · · · = fs = 0 has finitely-many solutions in (k \ {0})n, we
proceed as follows:

1. homogenize (f1, . . . , fs) via definition-proposition 5.10, in order to obtain polynomials

(f
(h)
1 , . . . , f

(h)
s );

2. compute a sparse Gröbner basis with respect to a graded ordering of the homogeneous

ideal I = �f (h)
1 , . . . , f

(h)
m � ⊂ K[S

(h)
M ] by using the SAGBI Matrix F5 algorithm 5.16, in

this sparse context.

3. dehomogenize the output to obtain a sGB of the ideal �f1, . . . , fs� ⊂ K[SM] (proposi-
tion 5.14);

4. use a sparse variant of FGLM to obtain a zero-dimensional triangular system (hence
containing a univariate polynomial) whose solutions are the image of the toric solutions
of f1 = · · · = fs = 0 by monomial maps (algorithm 5.19);

5. compute the non-zero roots of the univariate polynomial and invert the monomial map
to get the solutions.

We focus on the four first steps of this process. The fifth step involves computing the
roots of a univariate polynomial, for which dedicated techniques exist and depend on the field
K. It also involves inverting a monomial map, which can be achieved by solving a consistent
linear system of |Hilb(SM)| equations in n unknowns.

In the sequel of this section, we investigate the behavior of sparse Gröbner bases under
homogenization and dehomogeneization (Steps 1 and 3). We refer the reader to [26, Ch. 2]
for geometrical aspects of projective toric varieties and their affine charts. From now on, M
is a set of monomials which verifies the assumptions given in notations 3.95.

Example 5.7. We follow example 5.3. In this case, M = {1, xy, x2y, xy2}, the semigroup

S = SM was drawn in figure 5.4 and the semigroup S(h) = S
(h)
M is drawn in figure 5.8

There is a canonical dehomogenization map from K[S
(h)
M ] to K[SM]:

Definition 5.9. With notations 3.95, the morphism χM, defined by:

χM : K[S
(h)
M ] → K[SM]

X(s,d) �→ Xs

is a dehomogeneization morphism.
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x

y

Figure 5.8 – The semigroup S(h)

Definition – Proposition 5.10. With notations 3.95, for any f ∈ K[SM], we call degree of
f , the number

deg(f) = min{d ∈ N | χ−1
M(f) ∩K[S

(h)
M ]d �= ∅}

Moreover the set χ−1
M(f)∩K[S

(h)
M ]deg(f) contains a unique element, called the homogenization

of f .

Proof. The only statement to prove is that χ−1
M(f) ∩K[S

(h)
M ]deg(f) contains a unique element.

Actually, the restriction of the map χM to K[S
(h)
M ]d is one-to-one: let f (h), f �(h) ∈ χ−1

M(f) ∩
K[S

(h)
M ]deg(f). Then χM(f (h) − f �(h)) = 0, which implies f (h) = f �(h).

Example 5.11 (Continuation of exemple 5.7). Assume now that K is a small finite field,
namely K = F31. Let F = {f1, f2} be the following set of polynomials in K[x, y]:

F =

�
f1 = x2y + 20xy2 + 17xy + 14,

f2 = x4y2 + 4x3y3 + 29x2y4 + 20x3y2 + 5x2y3 + 2x2y2 + 8x2y + 29xy2 + 5xy + 5

�

Actually, these polynomials have been chose as random linear combinations of monomials in
M and M2 = {m×m� | m,m� ∈M} with leading coefficient 1. Therefore, f1 and f2 belong
to K[SM] with f1 of degree 1 and f2 of degree 2. Moreover, the homogeneizations of f1 and
f2 are hf1 and h2f2.

The next step is to prove that dehomogenizing a homogeneous Gröbner basis (with respect
to a graded ordering) gives a Gröbner basis of the dehomogenized ideal.

Definition 5.12. An admissible monomial ordering � on K[S
(h)
M ] is called graded if there

exists an associated ordering (also denoted �) on K[SM] such that

X(s1,d1) ≺ X(s2,d2) ⇐⇒
�

d1 < d2 or

d1 = d2 and Xs1 ≺ Xs2
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Example 5.13 (Continuation of example 5.3). Recall that we put on the monomials of S =
SM the DRL ordering with x � y. Let h be the third variable in S(h). The natural graded
monomial ordering on K[S(h)] associated to the DRL ordering on K[S] is given by

xαyβhγ ≺ xα
�
yβ

�
hγ

� ⇐⇒ γ < γ� or γ = γ� and xαyβ ≺DRL xα
�
yβ

�

Proposition 5.14. Let G be a homogeneous sparse-Gröbner basis of a homogeneous ideal

I ⊂ K[S
(h)
M ] with respect to a graded ordering. Then χM(G) is a sGB of χM(I) with respect

to the associated ordering on K[SM].

Proof. First, notice that χM commutes with leading monomials on homogeneous components

of K[S
(h)
M ]: for any f ∈ K[S

(h)
M ]d, χM(LM�(f)) = LM�(χM(f)). Let f ∈ χM(I) and f (h) ∈ I

be a homogeneous polynomial such that f is equal to χM(f (h)). Consequently, there exists
g ∈ G such that LM�(g) divides LM�(f (h)). Applying χM, we obtain that LM�(χM(g))

divides LM�(χM(f (h))) = LM�(f). Therefore χM(G) is a sGB of χM(I) for the associated
ordering.

5.3 Algorithms

In this section, we describe variants of the classical algorithms Matrix-F5 (algorithm 1.44)
and FGLM (algorithm 1.52) in the context of semigroup algebras. The resulting Sparse-
Matrix F5 algorithm is no more than the already seen SAGBI-Matrix F5 algorithm, used in
a semigroup algebra.

5.3.1 Sparse-MatrixF5 algorithm

In this subsection, we describe an algorithm, which computes a sparse Gröbner basis of a

homogeneous ideal in K[S
(h)
M ], truncated in some given degree. Actually, this algorithm has

already been entirely described in chapter 1, since it is no more than a specialization of the
SAGBI Matrix-F5 algorithm (algorithm 1.68). However, the framework of monomial algebras
is very close to the classical polynomial ring K[x1, . . . , xn] and a critical pairs algorithm could
be derived in the same fashion than the F5-algorithm [35], while it is difficult in a general
algebra. We say a few words on this purpose at the end of the subsection.

Algorithm. Remember that, in the SAGBI Matrix F5-algorithm, we construct SAGBI-
Macaulay matrices for each degree. The columns of the matrix at degree d is indexed by a
basis of Ad, the component of degree d of the ambient algebra A, and the rows by all products
(bd−di

j , fi), bj describing the basis of Ad−di . In this context, the SAGBI-Macaulay matrices

will be called Sparse-Macaulay matrices. Since the algebra A = K[S
(h)
M ] is generated by

monomials in M, we take {�d
i=1mi | mi ∈M} as a basis of K[S

(h)
M ]d. The relation between

the Sparse-Macaulay matrix and a D-sGB is given by:

Definition – Proposition 5.15. Let f1, . . . , fs ∈ K[S
(h)
M ] be homogeneous polynomials, �

a graded monomial ordering, and for d ∈ N, let Gd be the set of polynomials corresponding
to the rows of the reduced row echelon form of the Sparse-Macaulay matrix in degree d of
f1, . . . fs. Then the following facts hold:

— For any D ∈ N, G0 ∪ · · · ∪GD is a D-sGB of I
— χM(G0) ⊂ χM(G1) ⊂ χM(G2) ⊂ · · ·
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The smallest integer � such that χM(G�) is a sGB of the ideal χM(�f1, . . . , fs�) is called the
witness degree and noted dwit.

Proof. The first statement (G0 ∪ · · · ∪ GD is a D-sGB of I) follows from the fact that Gd is

a triangular basis of the vector space K[S
(h)
M ]d. The second statement is deduced from the

inclusions χM(K[S
(h)
M ]0) ⊂ χM(K[S

(h)
M ]1) ⊂ . . . . Let G be a sGB of �f1, . . . , fs�. Then dwit is

bounded above by max{deg(g) | g ∈ G} and is therefore finite.

Algorithm 5.16: Sparse-Matrix F5

Input : Homogeneous f1, . . . , fs ∈ K[S
(h)
M ] of resp. degrees (d1, . . . , ds), a graded

monomial ordering � on K[S
(h)
M ], a positive degree D

Output: a D-Gröbner basis of �f1, . . . , fs� with respect to �
for i = 1 to s do Gi := ∅ ;
for d = 1 to D do

Md,0 := ∅, �Md,0 := ∅;
for i = 1 to s do

if d < di then

Md,i := �Md,i−1

else

Md,i := matrix obtained by adding new rows X(s,d−di)fi to �Md,i−1, for all

monomials X(s,d−di) ∈ K[S
(h)
M ]d−di that are not in �LM�(Gi−1)�.

Compute the row echelon form �Md,i of Md,i;

Add to Gi all rows of �Md,i not top reducible by Gi;

return Gs

In practice, the choice of the parameter D in Algorithm 5.16 is driven by the explicit
bounds on the witness degree that we shall derive in Section 5.4.

Example 5.17.

We explain the behavior of the Sparse-Matrix F5 algorithm 5.16 on a small example which
follows the examples given in the previous section. We set K = F31 and S the semigroup
generated by {xy, x2y, xy2} in K[x, y]. We are interested in computing a sparse Gröbner basis
of the ideal generated by

F =

�
f1 = x2y + 20xy2 + 17xy + 14,

f2 = x4y2 + 4x3y3 + 29x2y4 + 20x3y2 + 5x2y3 + 2x2y2 + 8x2y + 29xy2 + 5xy + 5

�

These two polynomials have degree 1 and 2 and their homogeneizations in K[S(h)] are hf1 and
h2f2. Since algorithm 5.16 works only with homogeneous polynomials, we will not indicate
the homogeneization variable h in the sequel. Theoretical study shows that D can be set to
4, as we will see in the next section.

At step d = 1, only f1 is considered and the algorithm constructs the matrices

�M1,2 = M1,2 = �M1,1 = M1,1 =
�x

2y xy2 xy 1

1× f1 1 20 17 14
�
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After this step, we have G1 = G2 = {f1}.
At step d = 2, the matrix M2,1 is build by writing polynomials {mf1 | m ∈M} in a ma-

trix having its columns indexed by M2 = {x4y2, x3y3, x2y4, x3y2, x2y3, x2y2, x2y, xy2, xy, 1}.
Some reductions can be performed in order to obtain a matrix in row-echelon form, and we

indicate �M2,1 (the labels of the rows correspond to the original ones, but some rows-reductions
have been applied)

�M2,1 =




x4y2 x3y3 x2y4 x3y2 x2y3 x2y2 x2y xy2 xy 1

x2y × f1 1 0 3 0 2 21 0 29 20 21
xy2 × f1 0 1 20 0 17 0 0 14 0 0
xy × f1 0 0 0 1 20 17 0 0 14 0
1× f1 0 0 0 0 0 0 1 20 17 14




Of course, all of these rows are reducible by f1 and no polynomial is added to G1. Adding f2
to this matrix and applying another row-echelon form computation leads to the matrix

�M2,2 =




x4y2 x3y3 x2y4 x3y2 x2y3 x2y2 x2y xy2 xy 1

x2y × f1 1 0 0 0 2 20 0 17 15 7
xy2 × f1 0 1 0 0 17 14 0 27 8 10
xy × f1 0 0 0 1 20 17 0 0 14 0
1× f1 0 0 0 0 0 0 1 20 17 14
1× f2 0 0 1 0 0 21 0 4 12 15




The monomial x2y4 is not reducible by x2y (because y3 /∈ S). Hence, the polynomial

f̃2 = x2y4 + 21x2y2 + 4xy2 + 12xy + 15 is added to G2 which is now equal to {f1, f̃2}.
We skip the construction of the matrix M3,1 and its reduction to �M3,1. In order to build

M3,2, we have to add to �M3,1 the rowsmf2 withm a monomial inM such thatm /∈ LM�(�G1�).
Since x2y appears as leading monomial of a row in �M1,1, it can be removed. Hence, we just
have to add the rows xy2f2, xyf2 and f2. After reduction, we obtain the following full-rank
matrix (the columns indexed by the lowest monomials have been removed):

�M3,2 =




x6y3 x5y4 x4y5 x3y6 x5y3 x4y4 x3y5 x4y3 x3y4 x4y2 x3y3 x2y4 . . .

x4y2 × f1 1 0 0 0 0 0 0 0 0 0 0 0 . . .
x3y3 × f1 0 1 0 0 0 0 0 0 20 0 0 0 . . .
x2y4 × f1 0 0 1 0 0 0 0 0 14 0 0 0 . . .
x3y2 × f1 0 0 0 0 1 0 0 0 2 0 0 0 . . .
x2y3 × f1 0 0 0 0 0 1 0 0 17 0 0 0 . . .
x2y2 × f1 0 0 0 0 0 0 0 1 20 0 0 0 . . .
x2y × f1 0 0 0 0 0 0 0 0 0 1 0 0 . . .
xy2 × f1 0 0 0 0 0 0 0 0 0 0 1 0 . . .
xy × f1 0 0 0 0 0 0 0 0 0 0 0 0 . . .
1× f1 0 0 0 0 0 0 0 0 0 0 0 0 . . .
xy2 × f2 0 0 0 1 0 0 0 0 21 0 0 0 . . .
xy × f2 0 0 0 0 0 0 1 0 0 0 0 0 . . .
1× f2 0 0 0 0 0 0 0 0 0 0 0 1 . . .




The leading monomials of the three new rows (after reduction) are x2y4, x3y5 and x3y6.

All these monomials are reducible by G2 since x2y4 = LM�(f̃2), x3y5 = xyLM�(f̃2) and

x3y6 = xy2LM�(f̃2), with 1, xy, xy2 ∈ S. Hence, no new polynomial is entered in G2 at this

step. We skip the final step (d = D = 4), which leads to the full rank matrix �M4,2 but does

not give a new polynomial in G2. The algorithm stops and return G2 = {f1, f̃2} which is
actually a sGB of �f1, f2�.
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Remark 5.18. Actually, the algorithm would have return the homogeneized polynomials
{hf1, h2f̃2} of K[S(h)]. Applying the deshomogeneization morphism χM gives us the Gröbner

basis {f1, f̃2}.

Further work. In order to translate the Sparse-Matrix F5 algorithm in a F5 fashion [35],
we would have to extend Buchberger’s algorithm in the context of a semigroup algebra. There
is only one step of the algorithm to modify: the construction of the S-polynomials. Actually,
for s1, s2 ∈ S two elements of the semigroup, their LCM is replaced by the intersection of
the ideals �s1� ∩ �s2�. In general, this ideal is not principal. Let s1 ∨ s2 denote the minimal
generators of �s1� ∩ �s2�. Consequently, the S-polynomial of f1, f2 ∈ K[S] is no longer unique
and is actually a set of polynomials defined as

�
Xsf1

LT�(f1)
− Xsf2

LT�(f2)
: s ∈ LM�(f1) ∨ LM�(f2)

�
,

and the set LM�(f1)∨ LM�(f2) can be computed via [102, Subroutine 11.21]. Changing only
this definition of S-polynomials provides a variant of Buchberger’s algorithm in a semigroup
algebra K[S]. In addition, with the SAGBI-F5 criterion 1.69, we get rid of all reductions to
zero if the input is a regular sequence in K[S]. An efficient computation of these critical pairs
has not been implemented yet and would be an interesting step, in order to improve this
approach. For example in the previous algorithm, we would have detected that G2 = {f1, f̃2}
is a sGB and stopped the computation at step d = 2.

5.3.2 Sparse-FGLM algorithm

The variant of the FGLM algorithm presented in this section is closed to the SAGBI-
FGLM (algorithm 4.101) presented in subsection 4.3.2. Indeed, the Normal Form provided
by the sparse Gröbner basis allows us to look for linear combinations of powers of elements
of S in the quotient algebra K[S]/I. However, the context is nicer here, for two reasons:

— the sparse Gröbner basis allows us to test the membership in I for a polynomial of
any degree.

— under the assumption that the semigroup is simplicial, the matrices of multiplication
by some element in the Hilbert basis (see proposition-definition 3.88) of S can be
computed easily.

Let (p1, . . . , pr) be the Hilbert basis of a semigroup S ⊂ Zn. Given new indeterminates
H = {H1, . . . , Hr}, any monomial in K[S] is the image of a monomial in K[H ] via the
morphism

ϕ : K[H1, . . . , Hr] −→ K[S]

Hi �−→ Xpi

Given an admissible monomial ordering �H on the ring K[H1, . . . , Hr], an ideal I ⊂ K[S] and
a normal form relative to I (given for instance by a sparse Gröbner basis of I), Algorithm 5.19
computes a Gröbner basis of ϕ−1(I). Note that

ψ
�
V ar(I) ∩ (K∗

)n
�
= V ar

�
ϕ−1(I)

�
∩ (K∗

)r,

where ψ : Kn → Kr
is the map x �→ (xp1 , . . . ,xpr). Also, we would like to point out that

Algorithm 5.19 does not depend on the support of the input sparse system, but only on the
ambient semigroup SM.
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Algorithm 5.19: Sparse FGLM

Input : - a sparse Gröbner-basis G of I in K[S] with respect to �
-a monomial ordering �H on K[H1, . . . , Hr]
-a monomial map ϕ : K[H1, . . . , Hr]→ K[S]

Output: A Gröbner basis in K[H1, . . . , Hr] with respect to �H

L := [1]; //list of monomials in K[H1, . . . , Hr]

E := [ ]; //staircase for the new ordering �H

V := [ ]; //V = NF�(ϕ(S),G)
G := [ ]; //The Gröbner basis in K[H1, . . . , Hr]

while L �= [ ] do
m := L[1]; and Remove m from L;
v := NF�(ϕ(m),G); (1)

e := #E ;
if v ∈ SpanK (V ) then

∃ (λi) ∈ Ke such that v =
e�

i=1
λi · Vi; (2)

G := G ∪
�
m−

e�
i=1

λi · Ei

�
;

Remove from L the elements top-reducible by G.
else

E := E ∪ [m]; V := V ∪ [v]; (3)

L := Sort(L ∪ [Him | i = 1, . . . , r] ,�H);
Remove from L duplicate elements;

Return G;

The main principle of Algorithm 5.19 is similar to the original FGLM Algorithm [39]: we
consider the monomials in K[H1, . . . , Hr] in increasing order until we obtain sufficiently many
linear relations between their normal forms. The only difference is that the computations
of the normal forms are performed in K[S] (using a previously computed sparse Gröbner
basis) via the morphism ϕ. For solving sparse systems, we choose the lexicographical ordering
for �H .

Theorem 5.20. Algorithm Sparse-FGLM is correct: it computes the reduced Gröbner basis
of the ideal ϕ−1(I) ⊂ K[H1, . . . , Hr] with respect to �H .

Proof. Let G = (g1, . . . , gµ) be the output of algorithm 5.19. Set mi = LM�(gi). First, we
prove thatG ⊂ ϕ−1(I). Notice that each gi is of the formmi−q, where ϕ(q) = NF�(ϕ(mi),G).
Consequently, NF�(ϕ(gi),G) = 0 and hence gi ∈ ϕ−1(I). Next, let h ∈ K[H] be a polyno-
mial such that LM�(h) /∈ �LM�(G)�. Up to reducing its nonleading monomials by G, we
can assume without loss of generality that all its monomials do not belong to �LM�(G)�.
Therefore, the normal forms of the images by ϕ of all the monomials in the support of h are
linearly independent in K[S]/I (otherwise the linear relation would have been detected by
algorithm 5.19), which means that NF�(ϕ(h),G) �= 0 and hence h /∈ ϕ−1(I), which concludes

the proof that G is a Gröbner basis of ϕ−1(I). The proof that G is reduced is similar.

As usual, the steps (1), (2) and (3) are done by linear algebra (at step (3) we use
the Update procedure 1.54) to maintain a link between the staircase in construction E and
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the elements NF�(ϕ(u),G) for u in E). If S is assumed to be simplicial, a complexity of
O(r · dimK(K[S]/I)3) can be ensured, see the next section.

Example 5.21 (Continuation of example 5.17). We end up this section by applying briefly
the algorithm 5.19 to the sparse Gröbner basis G computed in the previous example. The
staircase (monomials of S that are not reducible by G) is of size 6 and is given by E =
{x3y4, x2y3, x2y2, xy2, xy, 1}. The staircase and the other points in S are drawn in figure 5.22.

x

y

Monomials in
the staircase E

Monomials
in LM�(G)

Monomials in
�LM�(G)� and
not in LM�(G)

Figure 5.22 – Staircase and leading monomials of the sGB G.

The Hilbert basis of S is {x2y, xy2, xy}. Hence, we introduce three variables H1, H2 and
H3 and consider the map

ϕ : K[H1, H2, H3] −→ K[S]

H1 �−→ x2y

H2 �−→ xy2

H3 �−→ xy

We put the ordering �H equal to the lexicographical ordering with H1 � H2 � H3 on
K[H1, H2, H3]. The following table indicates the computation of the staircase in the new
variables H1, H2 and H3.

m v E v ∈ SpanK(V )?

H0
3 1 [ ] false

H1
3 xy [1] false

H2
3 x2y2 [1, H3] false

H3
3 14x2y3 + 17x2y2 + 4xy2 + 23xy + 21 [1, H3, H

2
3 ] false

H4
3 14x3y4 + 25x2y3 + 2x2y2 + 6xy2 + 9xy + 16 [1, H3, H

2
3 , H

3
3 ] false

H5
3 15x3y4 + 11x2y3 + 13x2y2 + 13xy2 + 21xy [1, H3, H

2
3 , H

3
3 , H

4
3 ] false

H6
3 18x3y4 + 22x2y3 + 15x2y2 + 2xy2 + 27xy + 11 [1, H3, H

2
3 , H

3
3 , H

4
3 , H

5
3 ] true

Since NF�(H6
3 ,G) is linearly dependent of {NF�(H i

3,G) | 0 ≤ i ≤ 5}, the polynomial given
by this dependence (namely H6

3 + 28H5
3 + 13H4

3 + 13H3
3 + 25H2

3 + 23H3 + 4) is added to the
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Gröbner basis in construction. The next monomials that have to be examinated are H2 and
H1 which also lead to new polynomials. The algorithm stops and returns

GH =





H1 + 7H5
3 + 8H4

3 + 9H3
3 + 19H2

3 + 25H3 + 7

H2 + 26H5
3 + 12H4

3 + 29H3
3 + 13H2

3 + 12H3 + 5

H6
3 + 28H5

3 + 13H4
3 + 13H3

3 + 25H2
3 + 23H3 + 4





In practice, the semigroup S is simplicial, and this computation has been done by first
computing the multiplication matrices in K[S]/�G� by xy, xy2 and x2y, in the same fashion
than the computation of the multiplication matrices in the classical FGLM algorithm 1.52.

5.4 Complexity

This section is devoted to the complexity of Algorithms 5.16 and 5.19 when the input
system is a homogeneous (semi-)regular sequence in a polytopal algebra K[P].

Complexity model. All the complexity bounds count the number of arithmetic oper-
ations {+,×,−,÷} in K; each of them is counted with unit cost. It is not our goal to take
into account operations in the semigroup S.

The next goal is to bound dwit (see definition-proposition 5.15) via the Hilbert series of
K[S]/I. In the case of regular sequences, this Hilbert series can be easily computed by the
classical formula:

Proposition 5.23. Let P be a normal lattice polytope, f1, . . . , fs ∈ K[P] be a homo-
geneous regular sequence of homogeneous polynomials of respective degrees (d1, . . . , ds) and
I = �f1, . . . , fs� ⊂ K[P]. Then

HSK[P]/I(z) = HSP(z) ·
s�

i=1

(1− zdi).

Proof. This is only a specialisation of corollary 2.23 in this context.

Example 5.24 (Continuation of example 5.21). The semigroup algebra K[S(h)] is a polytopal
algebra since M = {1, xy, x2y, xy2} are the integer points of a polytope. The Hilbert series

HSP(z) can be easily computed by hand in this case, and is equal to Q(z)
(1−z)3

with Q(z) =

1+z+z2. Notice that this is coherent with the result stated at the end of the section 3.2 since
Q is a polynomial with positive coefficients of degree n − � + 1, with n = 2 and � = 1 is the
smallest integer such that � · P has an integer interior point. Hence, if (f1, f2) is regular of

degrees (1, 2), HSK[P]/I(z) =
Q(z)(1+z)

1−z .

The next lemma gives an explicit bound for the witness degree of regular sequences in a
polytopal algebra K[P] when P is normal:

Lemma 5.25. Let P ⊂ Rn be a normal lattice polytope and f1, . . . , fn be a homogeneous

regular sequence in K[P] of degrees (d1, . . . , dn). Then any
�
reg(K[P]) + 1 +

�n
j=1(dj − 1)

�
-

sGB of the ideal I = �f1, . . . , fn� is a sGB of I. In other words dwit ≤ reg(K[P]) + 1 +�n
j=1(dj − 1).
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Proof. By proposition 5.23 and with the notations of proposition 3.103, the Hilbert series of
K[P]/I is equal to

HSP(z)
�n

i=1(1− zdi) =
Q(z)

�n
i=1(1− zdi)

(1− z)n+1

=
Q(1)

�n
i=1 di

1− z
+K(z)

where K(z) ∈ Z[z] is a univariate polynomial with deg(K(z)) = reg(K[P])−1+
�p

i=1(di−1).
Now, notice that the Hilbert series of K[P]/I is equal to that of K[P]/LM�(I). Therefore
HPK[P]/LM�(I)(d) is constant for d ≥ deg(K(z)) + 1. Since � < �� implies �P ⊂ ��P, we
obtain

max{d ∈ N | ∃X(s,d) /∈ LM�(I) s.t s ∈ (d·P)∩Zn and s /∈ ((d−1)·P)∩Zn} = deg(K(z))+1.

Consequently, minimal generators of LM�(I) and hence minimal homogeneous Gröbner
bases of I have degree at most deg(K(z)) + 2 = reg(K[P]) + 1 +

�n
j=1(dj − 1).

Example 5.26 (Continuation of example 5.24). With I = �f1, f2�, the Hilbert series of

K[P]/I can also be written HSK[P]/I(z) = 6
1−z − 5 − 3z − z2 =

Q(1)
�n

i=1 di
1−z + K(z) with

d1 = 1, d2 = 2 and K(z) = −5 − 3z − z2. We recover the fact that the maximal degree of a
monomial in the staircase has degree deg(K(z)) + 1 = 3. That is why we took D = 4 in the
Sparse-Matrix F5 algorithm in example 5.17.

Now that we have an upper bound for the witness degree, we can estimate the cost
of computing a sGB by reducing the Macaulay matrix in degree dwit (although the sparse-
Matrix F5 algoritm is a much faster way to compute a sGB in practice, it is not easy to bound
precisely its complexity). Note that reg(K[P]) in the following theorem can be deduced from
Prop. 3.110.

Theorem 5.27. With the same notations as in Lemma 5.25, the complexity of computing
a sGB of χP∩Zn(�f1, . . . fn�) ⊂ K[SP∩Zn ] by reducing the Macaulay matrix in degree dwit is
bounded above by

O (nHPP(dwit)
ω)

where dwit ≤ reg(K[P]) + 1 +
�n

j=1(dj − 1) and ω is a feasible exponent for the matrix
multiplication (ω < 2.373 with [108]).

Proof. Let I ⊂ K[P] be the ideal generated by (f1, . . . , fn). The number of columns and
rows of the Macaulay matrix in degree d are respectively

nbcols = HPP(d),

nbrows =
�n

i=1 HPP(d− deg(fi)) ≤ nHPP(d).

Consequently, the row echelon form of such a matrix can be computed within O(nHPP(d)ω)
field operations [97, Prop. 2.11]. By Proposition 5.14 and Lemma 5.25, for

d = dwit ≤ reg(K[P]) + 1 +
n�

j=1

(dj − 1),

this provides a sGB of χP∩Zn(I).



5.5. DENSE, MULTI-HOMOGENEOUS AND OVERDETERMINED SYSTEMS 183

We now investigate the complexity of Algorithm 5.19 when I ⊂ K[S] is a zero-dimensional
ideal, and use the same notations as in Section 5.3.2. Notice that the map ϕ induces an
isomorphism ψ : K[H]/ϕ−1(I)→ K[S]/I and therefore Algorithm 5.19 may be seen as a way
to change the representation of K[S]/I.

Theorem 5.28. Set δ = dimK(K[S]/I) and let r be the cardinality of the Hilbert basis of S.
If S is a simplicial affine semigroup (see Def. 3.91) and K[S] is Cohen-Macaulay, then given
a sGB of I, algorithm 5.19 computes the Gröbner basis G with at most O(r · δ3) operations
in K.

Proof. Once the r matrices of size δ×δ representing the multiplications by pi in the canonical
monomial basis of K[S]/I are known, Step (1) in Algorithm 5.19 can be achieved in O(δ2)
as in the classical FGLM Algorithm 1.52. Steps (2) and (3) are done by linear algebra as in
FGLM, which leads to a total complexity of O(r ·δ3) since the same analysis holds. It remains
to prove that the multiplication matrices can be constructed in O(r · δ3) operations (this is
a consequence of proposition 1.49 in the classical case). Since K[S] is Cohen-Macaulay and
S is simplicial, we obtain by [89, Thm. 1.1] that for any two distinct pi, pj ∈ Hilb(S) and for
any s ∈ S, if s − pi and s − pj are in S then s − pi − pj ∈ S. With this extra property, the
proof of proposition 1.49 extends to semigroup algebras.

If the input system is a regular sequence of Laurent polynomials, then δ can be bounded
by the mixed volume of their Newton polytopes by Kushnirenko-Bernstein’s Theorem [8].

5.5 Dense, multi-homogeneous and overdetermined systems

In this section, we specialize Theorems 5.27 and 5.28 to several semigroups to obtain
new results on the complexity of solving inhomogeneous systems with classical Gröbner bases
algorithms (P is the standard simplex), multi-homogeneous systems (P is a product of
simplices) and we state a variant of Fröberg’s conjecture for overdetermined sparse systems.

Inhomogeneous dense systems. If P = Δn is the standard simplex in Rn, then
computations of a sparse Gröbner basis in the cone over Δn correspond to classical Gröbner
bases computations using the so-called “sugar strategy” introduced in [52]. Applying directly
Theorems 5.27 and 5.28 with P = Δn gives

Corollary 5.29. Let f1, . . . , fn be a regular sequence of inhomogeneous polynomials of re-
spective degrees (d1, . . . , dn) in K[x1, . . . , xn]. Then the complexity of computing a classical
Gröbner basis of �f1, . . . , fn� with respect to a graded monomial ordering is bounded by

O

�
n

�
n+ dwit

n

�ω�
,

where dwit ≤ 1 +
�n

i=1(di − 1).

This statement was already known under the assumption that the system of the homoge-
neous parts of highest degree f∞

1 , . . . , f∞
n is also regular, see e.g. [3]. However, this condition

is not verified for several systems appearing in applications. Up to our knowlegde, this is the
first time that such complexity results are obtained for inhomogenous systems without any
assumption on f∞

1 , . . . , f∞
n .

Multi-homogeneous systems. Another class of polynomials appearing frequently in
applications are multi-homogeneous systems. A polynomial of multi-degree (d1, . . . , d�) w.r.t.
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a partition of the variables in blocks of sizes (n1, . . . , n�) is a polynomial whose Newton
polytope is included in d1Δn1 ×· · ·×d�Δn�

. In that case, the associated polytope is a product
of simplices, which allows us to state the following complexity theorem:

Theorem 5.30. Let f1, . . . , fn be a regular sequence of polynomials of multi-degree
(d1, . . . , dn) w.r.t. a partition of the variables in blocks of sizes (n1, . . . , n�) (with n1+· · ·+n� =
n). Then the combined complexity of Steps (1) to (4) of the solving process in Section 5.2 is
bounded by

O
�
nHPP(dwit)

ω + n vol(P)3
�

where P = d1Δn1×· · ·×d�Δn�
, dwit is less than or equal to n+2−maxi∈{1,...,�}(�(ni+1)/di�),

the Hilbert polynomial evaluated at dwit is equal to HPP(dwit) =
�
n1+dwit ·d1

n1

�
· · ·
�
n�+dwit ·d�

n�

�

and vol(P) =
�

n
n1,...,n�

���
i=1 d

ni
i .

Proof. Applying Theorems 5.27 and 5.28 with P equal to d1Δn1 × · · · × d�Δn�
yields the

complexity bound in terms of dwit, #Hilb(SP∩Zn) and δ. First, notice that the semigroup
generated by P ∩ Zn is Nn, and hence #Hilb(SP∩Zn) = n. Next, the polytope

β(d1Δn1 × · · · × d�Δn�
)

has an interior lattice point if and only if for all i, βdiΔni has an interior lattice point, that
is if and only if βdi > ni. The smallest β that verifies this condition is

max(�(n1 + 1)/d1�, . . . , �(n� + 1)/d��).

By Prop. 3.110, reg(K[P]) = n + 1 − max(�(n1 + 1)/d1�, . . . , �(n� + 1)/d��). Since the
polynomials f1, . . . , fn have degree 1 in K[P], we get

dwit ≤ reg(K[P]) + 1.

Finally, notice that the unnormalized volume of dΔq ∈ Rq is dq/q!. Consequently, the unnor-

malized volume of P is
��

i=1 d
ni
i /ni!. Normalizing the volume amounts to multiplying this

value by n!, which yields the formula for vol(P) and equals the multi-homogeneous Bézout
number. The number of solutions (counted with multiplicity) is classically bounded by this
value and hence δ ≤ vol(P).

Finally, we state a variant of Fröberg’s conjecture (conjecture 2.43) in the sparse frame-
work, leading to a notion of “sparse semi-regularity”. It provides a bound on the witness
degree of generic overdetermined sparse systems: this conjecture can be used to adjust the
parameter D of Algorithm 5.16.

Conjecture 5.31. Let P ⊂ Rn be a normal lattice polytope, (d1, . . . , ds) ∈ Ns be a sequence
of integers with s > n. If f1, . . . , fs ∈ C[P] are generic homogeneous polynomials of respective
degrees (d1, . . . , ds), then

HSC[P]/�f1,...,fs�(z) =

�
HSP(z)

s�

i=1

(1− zdi)

�

+

,

where [ ]+ means truncating the series expansion at its first nonpositive coefficient. Systems
for which this equality holds are called semi-regular. The witness degree of a semi-regular
sequence is bounded above by the index of the first zero coefficient in the series expansion of
HSC[P]/�f1,...,fs�(z).
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Example 5.32. Let f1, . . . , f7 be a system of inhomogeneous bilinear polynomials in
K[X1, X2, Y1, Y2, Y3] with coefficients chosen at random. The support of each of these poly-
nomials is included in P = Δ2 × Δ3, and therefore we see them as homogeneous elements
of degree 1 in the polytopal algebra K[P]. Note that HPP(d) =

�
d+2
2

��
d+3
3

�
, and it is easy to

check with a computer algebra software that

HSP(z) =
∞�

d=0

HPP(d)zd =
3t2 + 6t+ 1

(1− t)6
.

If Conjecture 5.31 holds, then the ideal I ⊂ K[P] generated by f1, . . . , f7 has Hilbert series

HSK[P]/I(z) =
�
(1− z)(3z2 + 6z + 1)

�
+
=
�
1 + 5z − 3z2 − 3z3

�
+
= 1 + 5z

A computation performed with our Magma implementation of the sparse matrix-F5 algo-
rithm confirms that this is indeed the Hilbert series obtained.

5.6 Experimental results

In this section, we estimate the speed-up that one can expect for solving sparse systems or
systems of Laurent polynomials via sparse Gröbner bases computations, compared to classical
Gröbner bases algorithms. The same linear algebra routines are used in the compared imple-
mentations. Consequently, the speed-up reflects the differences between the characteristics
(size, sparseness,. . . ) of the matrices that have to be reduced.

Workstation. All experiments have been conducted on a 2.6GHz IntelCore i7. We
compare in this section timings of our prototype implementation in C of sparse-MatrixF5
with the implementation of the F5 algorithm in the FGb library. We report more detailed
experimental results on a benchmarks’ webpage 1, together with a preliminary implementation
in Magma. In all these experiments, the base field K is the finite field F65521. All tests are
done with overdetermined systems with one rational solution in Fn

65521. The goal is to recover
this solution. In that case, the Sparse-FGLM algorithm is not necessary since the sparse
Gröbner basis describes explicitly the image of the solution by a monomial map. In several
settings, we report the speed-up obtained with our prototype implementation.

Bilinear systems. In Table 5.33, we focus on overdetermined bilinear systems. For
(nx, ny,m) ∈ N3, we generate a system of m polynomials with support Δnx ×Δny uniformly

at random in the set of such systems which have at least one solution in Fnx+ny

65521 .

Systems of bidegree (2, 1). In Table 5.34, we report the performances on overdeter-
mined systems with support 2Δnx × Δny . Note that we obtain important speed-ups when
nx < ny (more than 19000 for (nx, ny,m) = (3, 10, 24)).

Fewnomial systems. In Table 5.35, we report performances on fewnomial systems. The
complexity analysis in Section 5.4 do not apply to this context because the semigroup algebra
in which we compute is not normal. However, the correctness of the algorithms still holds.
The systems are generated as follows: for (n, t,m) ∈ N3 we pick t monomials of degree 2
in n variables uniformly at random and we generate a system of m polynomials with this
support in F65521[X1, . . . , Xn] with random coefficients such that there is at least one solution
in Fn

65521. The computations are done w.r.t. the semigroup generated by the t monomials.
Note that for some specific instances, the speed-up factor can be as high as 16800 compared
to classical Gröbner basis computations.

1. http://www-polsys.lip6.fr/~jcf/Software/benchssparse.html
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(nx, ny,m) sparse Matrix-F5 F5 (FGb) Speed-up

(2,29,40) 0.12s 5.2s 43

(2,39,53) 0.49s 36.7s 74

(2,49,65) 1.53s 298.5s 195

(2,59,78) 4.63s 852.3s 184

(6,19,52) 1.10s 25.2s 22

(6,21,56) 2.13s 51.5s 24

(6,27,71) 7.07s 236.0s 33

Table 5.33 – Overdetermined bilinear systems in (nx, ny) variables and m equations

(nx, ny,m) sparse Matrix-F5 F5 (FGb) Speed-up

(1,34,36) 0.2s 395.1s 1975

(1,39,41) 0.45s 1641s 3646

(1,44,46) 0.75s 3168.8s 4225

(2,15,25) 0.09s 410.1s 4556

(2,17,27) 0.15s 1894.7s 12631

(2,19,30) 0.4s 5866.1s 14665

(3,10,24) 0.15s 2937.7s 19584

(10,4,50) 23.1s 1687.3s 73

(11,5,66) 155.1s 6265.8s 40

(12,6,86) 872.2s 27093.3s 31

Table 5.34 – Systems in (nx, ny) variables of bidegree (2, 1) and m equations

(n, t,m) sparse Matrix-F5 F5 (FGb) Speed-up

(80,240,221) 0.10s 54.5s 545

(80, 240, 223) 0.08s 16.3s 203

(150, 450, 434) 0.24s 161.2s 671

(300, 900, 881) 4.56s 11301.0s 2478

(120, 240, 233) 0.01s 16.8s 16800

(40, 160, 128) 0.21s 5.93s 28

(60, 240, 211) 0.55s 29.04s 52

Table 5.35 – Fewnomials systems
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tions, and Koszul algebras. J. fur die reine und angewandte Mathematik, 485:123–160,
1997.

[14] B. Buchberger. Bruno buchberger’s phd thesis 1965: An algorithm for finding the basis
elements of the residue class ring of a zero dimensional polynomial ideal. Journal of
Symbolic Computation, 41(3-4):475 – 511, 2006. Logic, Mathematics and Computer
Science: Interactions in honor of Bruno Buchberger (60th birthday).
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[24] Stéphane Collart, Michael Kalkbrener, and Daniel Mall. Converting bases with the
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