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CHAPTER 1

Abstract

This dissertation studies the multiple players nonzero-sum stochastic differential games (NZSDG) in
the Markovian framework and their connection with multiple dimensional backward stochastic differential
equations (BSDEs). There are three problems that we are focused on. Firstly, we consider a NZSDG where
the drift coefficient is not bound but is of linear growth. Some particular case with the unbounded diffusion
process is also considered. The existence of Nash equilibrium point is proved under the generalized Isaacs
condition via the existence of the associated BSDE. The novelty is that the generator of the BSDE is of
stochastic linear growth with respect to the volatility process. The second problem is a risk-sensitive case
with the exponential type of payoff where the coefficients are unbounded. The associated BSDE is of multi-
dimension whose generator is quadratic on the volatility. We show the existence of Nash equilibria. The last
problem that we treat, is a bang-bang game where the payoff is not continuous. In this case, Nash equilibria
exists and is of bang-bang type which is not continuous and the value of the control will jump between the
border of the domain with respect to the sign of the derivative of the value function. The BSDE in this case

is a coupled multi-dimensional system, whose generator is discontinuous on the volatility process.

Key Words: Nonzero-sum Stochastic Differential Games; Backward Stochastic Differential Equation;

Nash Equilibrium Point.






CHAPTER 2

Résumeé

Cette these traite les jeux différentiels stochastiques de somme non nulle (JDSNN) dans le cadre de
Markovien et de leurs liens avec les équations différentielles stochastiques rétrogrades (EDSR) multidi-
mensionnelles. Nous étudions trois problemes différents. Tout d’abord, nous considérons un JDSNN ou le
coefficient de dérive n’est pas borné, mais supposé uniquement a croissance linéaire. Ensuite certains cas
particuliers de coefficients de diffusion non bornés sont aussi considérés. Nous montrons que le jeu admet
un point d’équilibre de Nash via la preuve de 1’existence de la solution de 'EDSR associée et lorsque la
condition d’Isaacs généralisée est satisfaite. La nouveauté est que le générateur de 'EDSR, qui est multi-
dimensionnelle, est de croissance linéaire stochastique par rapport au processus de volatilité. Le deuxieéme
probleme est aussi relatif au JDSNN mais les payoffs ont des fonctions d’utilité exponentielles. Les EDSRs
associées a ce jeu sont de type multidimensionnelles et quadratiques en la volatilité. Nous montrons de
nouveau I’existence d’un équilibre de Nash. Le dernier probléme que nous traitons, est un jeu bang-bang
qui conduit a des hamiltoniens discontinus. Dans ce cas, nous reformulons le théoréeme de vérification et
nous montrons I’existence d’un équilibre de Nash qui est du type bang-bang, i.e., prenant ses valeurs sur
le bord du domaine en fonction du signe de la dérivée de la fonction valeur ou du processus de volatilité.
L’EDSR dans ce cas est un systeme multidimensionnel couplé, dont le générateur est discontinu par rapport
au processus de volatilité.

Mots Clés: Jeux Différentiels Stochastiques de Somme Non Nulle; Equations Différentielles Stochastiques
Rétrogrades; Point d’équilibre de Nash.






CHAPTER 3

Introduction

3.1 Background of stochastic differential games

Differential game theory deals with the conflict or cooperate problems in a system which is influenced
by different players. Each player imposes his own control to this system in order to gain some utilities or
sometimes they should pay costs. We seek, in a game problem, the controls for all players such that each of
them achieves his own goal, precisely speaking, those controls either maximum or minimum the concerned

utility for the players.

3.1.1 Some classical examples

We would like to introduce the differential game theory by some classical examples in this subsection.
We will not go deeply into the mathematical formulation for an intuitive understanding. Through Example
B.1.1] we expect to give a preliminary impression of basic elements in game theory, such as system, control
and utility. Further on, Example shows two different types, cooperative type and uncooperative type,
of differential game.

Example 3.1.1. The lion and the man. This game is introduced as follows.

A lion and a man encounter in a closed circular arena

with the same maximum speeds. Can the lion catch the man?

This problem proposed by R. Rado (unpublished, see the historical record by Littlewood [76], p135 and
Hajek’s monograph [51]]) in 1930s, attracts many researchers’ attention.

For ease of discussion, both the lion and the man will be viewed as single points. From the game’s
perspective, apparently, the lion aims at minimizing the distance to the man, while, the man prefer to
maximizing the distance between the two.

If we assume that the man stays on the boundary of the circle, then, it is not difficult to check that the
lion does have a winning strategy. A candidate way is that the lion runs at the top speed directly towards
the man, at the same time, he always stays on the radius vector from the center to the man. After a finite

time, the man will be captured. This case can be demonstrated by Figure 3.1}

11



12 CHAPTER 3. INTRODUCTION

M the man;

L: the lion.

Path: (L, M)— (L', M’).

Strategies: the man stays on the bound-
ary of the circle; the lion runs directly
towards the man and keep staying on
the radius vector from center to the man.
Result: the man will be captured finally.

Figure 3.1: A bad strategy for the man

However, it is shown by A.S.Besicovitch in 1952 (see [76],p136 and [51]] that it is not wise for the
man to stay at the boundary of the domain. There exists a winning strategy for the man that he will not be
captured forever. But, the distance of the lion and the man can be arbitrary small. In another word, the lion

could get arbitrary close to the man but failed to catch him. The strategy for each player is as follows:

¢ For the lion: If we assume that he starts from the center of the circle. He follows the curve of pursuit,
namely that the lion always running towards the man directly and keep his position in the same radius

vector from the center to the man;

 For the man: He is assumed to stand initially in the interior of the circle. Then he is going to spiral
up to the boundary. More precise, We split time into a sequence of intervals. For the first interval of
time, the man runs in a straight line that is perpendicular to his radius vector at the start of the step.
Meanwhile, he chooses the direction into the half plane such that it does not contain the lion (if the
lion is on the radius then either direction will do). The man then repeats the same strategy in the next

step until getting close to the boundary.

It will be clear if we illustrate Besicovitch’s strategy by Figure[3.2]

M the man,;

L: the lion.

Path: (L, M)— (L', M")—(L", M").
Strategies: the man runs in a straight
line that is perpendicular to his radius
vector; the lion runs directly towards

the man and keep staying on the radius
vector from center to the man.

Result: the lion could get arbitrary close
to the man but failed to catch him.

Figure 3.2: A winning strategy for the man

We skip the proof of the result. Finally, it can be shown that the lion is failed to catch the man but
can get close to the man as much as possible in this way. Interested readers are referred to the note by
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P. Cardaliaguet ([89]], pp.5-8) for the proof. There are some additional discussions on cases when the
maximum speeds of the lion and the man are not the same. For this general problem, we also refer article
[46].

Some further questions about this classical example are listed as follows:

(i) Is there exists a strategy such that at least one of the lion and the man will win?

(ii)) What about the domain is not a closed disc, for example, replaced by a different metric space?

(iii)) What would happen if those two players take turns to move?

(iv) The positions of players and directions which they plan to choose are heavily depend on the op-
ponent’s position. Therefore, a natural question arises, namely, will the time delay of each one’s reaction
influence the problem?

About the above generalized problems and even some open problems about this subject, see a recent

work [13]] and the references therein for more information.
Example 3.1.2. The rope pulling game.

A point object (with identity mass) can move in a plane which is endowed with the standard (x, y)-
coordinate system. Initially, at £ = 0, the object is at the origin point. Two unit forces act on the point
object with appropriate directions, where one is chosen by Player 1, the other by Player 2. The directions
of these forces, measured by angles which are counter-clockwise with respect to the positive x-axis, are

denoted by u; and us respectively. Therefore, this system can be described by the following differential

equations:
{jj = cos(u1) + cos(ug), ©(0) = z(0) = 0;
§ = sin(uq) + sin(ug), y(0) =y(0) =0.
Y
Player 1 Player 2

i '

Figure 3.3: Rope pulling game

Case 1: Uncooperative case. At time ¢t = 1, Player 1 wants to pull the object as far in the negative x-
direction as possible, i.e., he wants to minimize 2 (1), whereas Player 2 would like to pull it as far in the
positive z-direction as possible, i.e., he wants to maximize x(1).

The solution to this uncooperative game follows immediately. Each player pulls in his own favorite
direction. The choice of their controls are apparently (uq,u2) = (m,0). Besides, the object remains at

the origin point which is equivalent to say, the sum of the utility of each player is actually 0. Such a

IThis example is borrowed from the book by T. Basar and G.J. Olsder (see [6]], pp.3-5).
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uncooperative game is called a zero-sum differential game and the solution is known as the saddle point.

Later we will give the exact definition and explanation about those terms.

Case 2: Cooperative case. Let us now modify the problem slightly. The aim of Player 2, in the present
time, is to pull the object as far as possible in the negative direction of y-axis. In another word, he prefer to
minimize y(1). Player 1 will maintain his original objective, to maximize z(1).

In this case, the two players are not of relationship of conflict, alternatively, they are of cooperative rela-
tionship. The solution, which helps both of them win, is obvious the following one, (u1,us) = (7, —7/2).
Such kind of game is usually called Nonzero-sum differential game. This kind of equilibrium behavior,
where one player cannot improve his utility by altering his decision unilaterally, is called a Nash equilib-

rium point in game theory. O

In the previous part, we have an intuitive grasp of the concept of game by some simple examples. We
also refer the reader to early works by Isaacs [65]], Friedman [47] for the formulation and presentation of

differential game theory.

3.1.2 Zero-sum stochastic differential game

As we observed in the examples presented in the previous part, the game associated is of deterministic
type without any stochastic uncertainty elements in the system. In the following two subsection, we will
introduce the stochastic differential game including the zero-sum case and the nonzero-sum case where the
dynamic of the system contains some randomnesses. Let us now describe the stochastic differential game
(SDG) in the Markovian framework.

In a zero-sum stochastic differential game (ZSDG), there are two players P, and P, who intervene in
a system with opposing aims. Each player carries out an admissible control (or called feasible control)
towards the system, namely (w;)¢<r, (v¢)i<7 for P; and P» respectively which is an adapted stochastic
process. The set of (u,v) is denoted by M. What we formulated here is a finite time game, i.e. T > 0
will be a fixed constant time. The dynamic of the controlled system is a process (z;)¢<7, solution of the

following standard stochastic differential equation (SDE),
dxy = f(t, ze, us, vr)dt + o(t,2)dBy fort < T and 29 = z. (3.1)

The process B := (B;);<r is a Brownian motion. The control actions are not free and generate a payoff
(or reward, utility) for P;, contrarily, a cost (or lost) from the perspective of P, which denoted by J(u, v).
Certainly, there are several popular forms of payoff function, among which, we take the following payoff
for example,

J(u,v) = E[g(zr) + fOT h(s, s, us,vs)ds].

The function h and g represent the instantaneous (or running) payoff and the terminal payoff respec-
tively. The ZSDG is a problem that the first player P, looks for maximize the payoff J(u,v), while, Py
aims at minimize the cost .J (u, v). We are concerned about the existent of the so-called saddle point, which
is a joined control pair such that each of the player reaches their objective with this saddle point and no one

can win more by unilaterally changing his now control. The definition of saddle point is given as follows,

Definition 3.1.1 (Saddle point). An admissible control (u*,v*) in the control set is called a saddle point
for a ZSDG if it satisfies:

J(u*,v) > J(u*,v*) > J(u,v*), forany (u,v) € M.

Problem 3.1.1 (ZSDG). Find a saddle point for the zero-sum stochastic differential game over M.
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Remark 3.1.1. The reason why this type of SDG is called zero-sum is that, the sum of the payoff of the

players is 0 or equivalently, a constant. Since the payoff of one player is somehow the cost to his opponent.

The zero-sum differential game is well documented in several works and from several points of view.
See for example [11], [22], [41], [40], [45], [47], [60], [57], [65] etc. and the references inside. A detailed
review on the literature and the methods to solve the differential games, we refer readers to Subsection
3.1.6

3.1.3 Nonzero-sum stochastic differential game

For realistic applications to other fields, such as biology or economics, it is usually necessary to study
games which are not zero-sum and which involve more than two players. Therefore, in this subsection we
mainly discuss the formulation of nonzero-sum stochastic differential game (NZSDG). Hereafter, we will
put our main emphasis on this subject.

Assume one has N players Py, ..., Py which intervene on (or control) a system. Each one with the help
of an admissible control which is an adapted stochastic process u’ := (ui);<r for P;,i = 1,..., N. The
set of the admissible control u := (u!,...,u’") is denoted by M = M; x My x ... x My. When the N
players make use of a control u, the dynamics of the controlled system is a process ()<, solution of
the following standard SDE:

de? = f(t,z%,ul,...,uN)dt + o(t,z")dB; fort <T and 29 = x; (3.2)

The process B := (B,)i<r is a Brownian motion. The control actions are not free and generate for each
player P;, i =1, ..., N, a payoff which amounts to

Ji(uty ooy uN) = Elg'(a) + [y hils,z%, us)ds |-

As we presented in the zero-sum case, the payoff is given by the accumulate of the instantaneous payoff h;
over time interval [0, T'] and the terminal payoff g* for P;. The unique difference is that the players will not
share the same payoff, instead, each of them has his own payoff. All of the players have the same objective,
to minimize (or maximize) their own payoff. A Nash equilibrium point (NEP for short) for the players is
a strategy u* := (u'*,...,u™N"*) of control of the system which has the feature that each player P; who
takes unilaterally the decision to deviate from u**, is penalized. The definition of NEP is given from the

mathematical point of view as follows.

Definition 3.1.2 (Nash equilibrium point). For all i = 1,..., N, for all control u! of player P;, a Nash

equilibrium point is a joint control u* := (u'*, ..., u™>*), such that,

Ji(u®) < Ji([u™ " |u'])

where [u® " |u] := (ub*, ... uiT b b it V).

Problem 3.1.2 (NZSDG). A nonzero-sum stochastic differential game is a problem which concerns the

existence of the Nash equilibrium point over M.

Remark 3.1.2. The sum of the payoffs for all players is not zero any more, therefore this kind of SDG is

called a nonzero-sum case.

Remark 3.1.3. In the main text of this thesis, we mainly formulated and discuss NZSDG in the framework of

two-player for simplicity. However, all the results in this thesis hold for the multiple players case naturally.
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In this thesis, all the problem are built up based on this control against control framework. However,
we should point out that the control against control type is not the unique mode considered in a NZSDG.
Some of the literature consider strategies, such as memory strategy or feedback one, as control actions for
the players (see [21]], [75]], [91]]). A memory (or a nonanticipative) strategy is a strategy where this player
takes into account the past controls applied by the other players, while, a feedback type is a strategy which
only consider the present state of the system. We refer readers the survey paper by R.Buckdahn et al in
2004 [20] (pp.76-77 Sections 2.1 and 2.2) and the reference therein for more information. In the following,

we give the definition of different strategies as an illustration.

Definition 3.1.3 (Nonanticipative strategy). This definition is borrowed from [21] (Definition 2.3, p.4). If
the set of admissible controls for player Py (resp. Ps) on [t,T) is denoted by M (t) (resp. Ms(t)), then,
a nonanticipative strategy for Player Py on [t,T] is a mapping « : Ma(t) — M (t) such that, for any
s € [t,T] and for any v1, vy € Ma(t), if v1 = v2 on [t, s], then a(v1) = a(v2) on [t, s]. Nonanticipative
strategies for Player Py are defined symmetrically.

There are also more strict definition of nonanticipative strategy with delay. Take the work [21] as a
reference. Those works usually formulate the SDG problem in two-player structure. For ease of generating
to the multiple players case, we prefer the feedback type Nash equilibrium point as extensively explained
in the later part of this thesis, which means that each player chooses at each time ¢ its control as a function

of ¢ and of the current position of the system. The definition of feedback strategy is introduced as follows,

Definition 3.1.4 (Feedback strategy). Assume the control processes u and v for the two players take values
Sfrom two compact sets U and V' respectively. A feedback strategy for Py (resp. Ps)is amap u* = u* (¢, x¢) :
[0,T] x R™ — U (resp.v* = v*(t,x¢) : [0,T] x R™ — V) where m is the dimension of the state process

Z.

Comparative to the zero-sum differential game, the nonzero-sum case is so far less considered even
though there are some works on the subject, including [21]], [48], [58], [59], 154], (531, 73], [75], 791,
[91]], etc.). In these works, the objectives are various and so are the approaches, usually based on partial
differential equations (PDEs) ([48l [79]) or backward SDEs ([58, 54, 153\ [75, [73]]). On the other hand,
it should be pointed out that the frameworks in those papers are not the same. Some of them consider
strategies as control actions for the players (e.g. [21], [75]], [91]]) while others deal with the control against
control setting (e.g. [S9], [158}154,153]). The first ones, formulated usually in the framework of two players,
allow to study the case where the diffusion coefficient o is controlled. In the latter ones, o does not depend
on the controls. However those papers do not reach the same objective. Note that for the control against
control zero-sum game, Pham and Zhang [88]] and M.Sirbu [92] have overcome this restriction related to
the independence of ¢ on the controls.

A comprehensive review of literature is arranged in Subsection [3.1.6]

3.1.4 Risk-sensitive nonzero-sum stochastic differential game

In the field of NZSDG, there is a typical type, named risk-sensitive one. In this subsection, we introduce
the framework of risk-sensitive NZSDG.

Assume that we have a system which is controlled by two players. Each one impose an admissible
control which is an adapted stochastic process denoted by u = (u);<7 (resp. v = (vy)i<7) for player Py
(resp. player P»). The state of the system is described by a process (x;);<r which is the solution of the

following SDE in the same spirit of the previous subsetions:

dxy = f(t, x¢, up, vp)dt + o(t,2)dBy for t < T and 29 = . (3.3)
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The above process B is a Brownian motion. We establish this game model in a two-player framework for
an intuitive comprehension. The results in this thesis related to the risk-sensitive NZSDG are applicable
to the multiple players case. Naturally, the control action is not free and has some risks. A risk-sensitive
nonzero-sum stochastic differential game is a game model which takes into account the attitudes of the
players toward risk. More precisely speaking, for player ¢ = 1, 2, the utility (cost or payoff) is given by the
following exponential form

Ji(u,v) = E[e(’{foT hi(S,Xs,us,vs)ds-i-gi(XT)}]. (3.4)

The parameter 6 represents the attitude of the player with respect to risk. What we are concerned here
is a NZSDG which means that the two players are of cooperate relationship. Both of them would like
to minimize the cost and no one can cut more by unilaterally changing his own control. Therefore, the
objective of the game problem is to find a NEP (u*, v*) such that,

JHu*, v*) < JHu,v*) and J? (u*,0*) < T3 (u,v),

for any admissible control (u, v).

Let us illustrate now, why 6, in the cost function, can reflect the risk attitude of the controller. From
the economic point of view, we denote by th,u = fOT hi(s, Xs,us,vs)ds + g*(X7) the wealth of each
controller and for a smooth function F'(z), let F(GY, ,) be the cost might be brought from the wealth.
The two participates would like to minimize the expected cost E[F(Gluv)] A notation risk sensitivity is

proposed as follows:

It is a reasonable function to reflect the trend, more precise, the curvature of cost F' with respect to the
wealth G*. See W.H. Fleming’s work [42] for more details. In the present thesis, we choose a utility
function F(z) as an exponential form F'(z) = ¢%*. Both theory and practical experience have shown that it
is often appropriate to use an exponential form of utility function. Therefore, the risk sensitivity v is exactly
the parameter 6.

We can also explain this specific case v = 6 in the following way. The expected utility J(u,v) =

E[e?Cu.] is certainty equivalent to
gg(u, v):=60""n E[eaG;w].

By certainty equivalent, we refer to the minimum premium we are willing to pay to insure us against some
risk (alternately in a payoff case, the maximum amount of money we are willing to pay for some gamble).
Then, ¢j(u,v) ~ E[G!, ] + §Var(G, ) provided that §Var(G!, ) is small (Var(.) is variance ). Hence,
minimizing J*(u, v) is equivalent to minimize gf(u,v). The variance Var(GY, ,) of wealth reflects the risk
of decision to a certain extent. Therefore, it is obvious that when 8 > 0, the less risk the better. Such
a decision maker in economic market will have a risk-averse attitude. On the contrary, when 6§ < 0, the
optimizer is called risk-seeking. Finally, if § = 0, this situation corresponds to the risk-neutral controller.
See Figure [3.4] for an illustration of the three risk attitudes. For ease of presentation, we consider in the
main text the risk-averse case only, the risk-seeking case is treated similarly.

About the risk-sensitive stochastic differential game problem, including nonzero-sum, zero-sum and
mean-field cases, there are some previous works. Readers are referred to [[7} 136} 43, 144, (66, 93| for further
acquaintance and Subsection [3.1.6for details about the method.
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income of income of income of

money money money

Figure 3.4: Risk sensitivity

3.1.5 Summarize and generalizations

Introductions and discussions in the previous sections yield an observation that, for ZSDG, the objec-
tives of the players are opposite to each other, which is different with the NZSDG involving two players
with cooperative relationship. However, on the other hand, a ZSDG can be viewed as a special case of
NZSDG, since for example, for player P», to minimize J(u, v) is actually to maximize —J(u,v) which
will be reduced to the Nonzero-sum case. The risk-sensitive NZSDG is associated with the exponential
type of payoffs which may reflect the attitudes of the players toward risks. We summarize the properties of

these different stochastic differential games by the following table.

Payoff Payoff . L . ok
for Py of Py Describe of payoffs Objective optimal control (u*, v*)
. saddle point
Zero-sum Two players share Py :maximize J(u, v) N . N
SDG J(w,v) J(w,v) the same payoff Py :minimize J(u, v) T, v) 2 J”,v7) > J(u, v7)

for any admissible control (u, v)

equilibrium point

The payoffs L
Nonzero-sum . Py :minimize Jq (u,v) Ji(u*,v*) < Ji(u,v*)
SDG Ji(wv) | Ja(u,v) | forthe twoplayers | L s g G v) Ja(u*,v*) < Ja(u*,v)
are different . L
for any admissible control (u, v)
. . The payofts equilibrium point
1:12111(1_:2:31: T v) | J2(w,0) for the two players Py :minimize J? (u, v) JH(u*, v*) < JYH(u, v*)
’ ’ are different; P3:minimize J? (u,v) T2 (u*,v*) < J2(u*,v)
SDG . .
Exponential type (3.4) for any admissible control (u, v)

Table 3.1: Compare of ZSDG, NZSDG and Risk-sensitive NZSDG

For a NZSDG, Nash equilibrium point, as we demonstrated in Definition @], is not the unique cri-
teria. It can be slightly relaxed into the e-equilibrium (or near-Nash) point which is a optimal control that
approximately satisfies the condition of Nash equilibrium. In a Nash equilibrium, no player can benefit
from modifying his own behavior while the other players keep theirs unchanged. In an e-Nash equilibrium,
this requirement is weakened to allow the possibility that a player may have a small hope to behave differ-
ently. This may still be considered an adequate solution concept under some appropriate assumptions. The

definition about the e-Nash equilibrium is given as follows,

Definition 3.1.5 (¢-Nash equilibrium). For players Py and P, for all admissible pair of controls (u,v), an

e-Nash equilibrium point is a joint control (u*,v*), such that,
Ji(u*,v*) < Jy(u,v*) + e and Jo(u*,v*) < Ja(u*,v) + €.

(Or alternatively, with the maximum-payoff objective,
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Jy(u*,v*) > Ji(u,v*) — e and Jo(u*,v*) > Ja(u*,v) —€. )

We refer readers the works by R. Buckdahn et al [21] for this kind of construction. The mind of the
concept of Nash equilibrium payoff in the above article is in the same spirit as here.

Problems in the field of stochastic differential games are various and are of different types. other
interesting problems include the mean-field type with large population of small interacting individuals,
Dykin type which concerning the optimal stopping and so on. See the survey by R. Buckdahn et al [20] for
the literature introduction and some open problems.

As an applications to economics, S. Hamadene analysis the American game options in [55] (2006).
More game application examples to economics are given in the book by S. Jgrgensen, M. Quincampoix and
T.L. Vincent [69] (2007, Part V).

3.1.6 Two approaches to stochastic differential game

There are various studies concerned in the domain of stochastic differential game. Generally speaking,
a stochastic differential game is a competitive or cooperative game played by two or multiple players who
intervene in a system. The state of the system is usually described by a diffusion process. Each player
will choose their own control, or in some settings they may simultaneously choose a time to quite the
game. The players will obtain some profits from dominating the system, or on the contrary, will pay some
costs as a consequence of their controls. Their payoffs (or costs) will be represented by an expectation of
their running payoff accumulated in the sustained duration of the game and ordinarily guaranteed a terminal
payoff. The game is not necessarily terminated at a fixed time, in some circumstances, it will last for infinite
time. The payoff criteria is manifold according to diversiform settings of games. In general, the objective
of a stochastic differential game finally is to find an equilibrium point, which can be an optimal control
or an optimal stopping time to quite, such that each of the players will behavior in a profitable way. We
refer readers the survey paper by R. Buckdahn, P. Cardaliaguet and M. Quincampoix (2011) [20]] for a full
review of the development of differential game theory. Different types of settings for differential games and
approaches respectively can be found there. Below, we will focus on zero-sum, nonzero-sum and typically
risk-sensitive type of differential games.

There are typically, not restricted to, two popular approaches to solve a stochastic differential game:
backward stochastic differential equation and partial differential equation.

Backward SDE is a young but efficient tool in optimal control field, specially for stochastic differential
games (see Section [3.2] for the background of BSDE). It has been proved in many works that there is an
equivalent relationship of a stochastic differential game problem and a corresponding BSDE system with
Hamiltonian as its driver. The payoff associated in a game problem can be characterized by the initial value
of the solution to the specific BSDE. In such a way, the existence of Nash equilibrium point is reduced
to the existence of solutions for a BSDE system. This connection is observed by S. Hamadéne and J.P.
Lepeltier (1995) [S7] [60] in a zero-sum case, followed by S. Hamadene, J.P. Lepeltier and S. Peng (1997)
[58] in a nonzero-sum case. The latter solved the existence of Nash equilibrium point assuming that the
dynamic coefficient of the forward state process is bounded and mainly by the L?-domination technique.
The restriction of the boundness of coefficients is relaxed by Hamadeéne and Mu in [63] (2014). More
complicate case, such as mixed zero-sum stochastic differential game combining the control and stopping
together, are investigated in [61] and [S5]. Their main tool is the double barrier reflected backward SDE.
The work [[75] (2012) by Q. Lin investigated the Nash equilibrium payoffs (about Nash equilibrium payoffs,
see works by Buckdahn and his coauthors [21]] for more details) for nonzero-sum stochastic differential
games where the cost function is nonlinear and not necessarily deterministic, with help of doubly controlled
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backward stochastic differential equations. [[75] extends the earlier result by R. Buckdahn et al (2004) [21]]
where the cost function is deterministic.

In addition, there are also several special examples about stochastic differential games with various
settings: not in a general form but with interesting features. A special case of linear-quadratic NZSDG is
considered in [53]54] by BSDE approach. A multiple players nonzero-sum stochastic differential game is
solved under non-Markovian framework by BSDEs theory combined with Malliavin calculus techniques
in [73] by J.P. Lepeltier et al (2009), where the associated BSDE has a coefficient which is of quadratic
growth in the volatility process.

Differing from a traditional stochastic differential game, a risk-sensitive case involves an exponential
type payoff. This kind of game is shown in several works that, it links with a backward SDE where the
driver involves a quadratic term of the volatility process z. Under regular hypotheses, N. El-Karoui and S.
Hamadene proved in [36]] (2003) that the existence of saddle point for risk-sensitive zero-sum stochastic
differential game and the equilibria for the nonzero-sum case by means of quadratic BSDE. The result for
nonzero-sum case is extended by S. Hamadéne and Mu in Chapter [5] of this memory to the situation when
the dynamic coefficient of the forward equation is unbounded. A generalized mixed zero-sum stochastic
differential game with exponential payoff is considered by S. Hamadeéne et al in [56] which is solved via a
double barrier reflected BSDE with quadratic growth coefficient.

Another efficient tool to deal with stochastic differential game is a system of Hamilton-Jacobi equations
and the related partial differential equation of elliptic or parabolic type. We refer readers to the classical
book by A. Friedman [47] for a general introduction to the link between differential games and Hamilton-
Jacobi equations. See also the early works by R. Isaacs (1965) [65], W.H. Fleming and P.E. Souganidis
(1989) [45]].

Recent literature related to the differential game via PDE technique concerns somehow the solutions of
PDE in sense of viscosity or in sense of sobolev. A classical survey paper about viscosity solution to PDE
is written by Crandall, Ishii and Lions (1992) [31]]. R. Buckdahn and J. Li (2008) [22] studied a zero-sum
stochastic differential game where the control action is allowed to depend on the past events occurring
before the beginning of the game. Finally, the upper and the lower value are then shown to be the unique
viscosity solutions of the upper and the lower Hamilton-Jacobi-Bellman-Isaacs equations, respectively.

The other sense of solution for PDE is the sobolev solution which consider the functions equipped with
a norm that is a combination of L,-norms of the function itself as well as its derivatives in a special sense
up to a given order. For the relationship of classical stochastic control problem and the solutions in sobolev
sense to the associated PDE, we refer readers to the book by A. Bensoussan (1982) [10]. A work about
the application to a special nonzero-sum stochastic differential game is investigated by P. Mannucci (2004)
[[79]]. With the help of existence of solutions in sobolev sense to the Hamilton-Jacobi equations system, [[79]]
shows that a discontinuous Nash equilibria exits in type of Heaviside. However, in [79] the state process is
restricted to a bounded domain. A generalized situation without this limitation is studied by S. Hamadene
and Mu (2014) [62] through BSDEs method. More interesting and meaningful one-dimensional examples
in field of deterministic nonzero-sum differential games can be found in a recent work by P. Cardaliaguet
and P. Slawomir (2003) [24].

3.2 Background of BSDE

3.2.1 Birth of BSDE and classical results

Backward stochastic differential equations (BSDEs) was proposed firstly by J.M.Bismut in 1973 [12]]
in linear case to solve optimal control problems. Later this notion was generalized by Pardoux and Peng
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[84] into the general nonlinear form and the existence and uniqueness results were proved under some
appropriate conditions. In this subsection, we will recall the basic concept of BSDE and some useful
properties without proofs.

A BSDE associated with a driver f(t,w,y, z) and a terminal value £ is presented as below,

T T
}/t = 5 + / f(57w7)/87 Zs)ds - / st387 t < T. (35)
t t

Definition 3.2.1 (Solution to BSDEs). A solution to BSDEs (3.3) is a pair of Fi-adapted processes (Y, Z)
such that E[supg<, <1 |Yy|* + fUT |Z:|2dt] < oo and B.3) holds true a.s.

For simplicity, hereafter, f(s,w,y, z) will be denoted by f(s,y, z). Processes (Y, Z) are named the
value process and the volatility process respectively. The existence and uniqueness of BSDEs followed by

the classical assumptions which are stated as follows,
Assumption 3.2.1 (Lipschitz; Pardoux and Peng [84]).
(i) f(-,0,0) € L* €€ L%

(ii) The function f is uniformly Lipschitz continuous with respect to (y, z). i.e. there exists a constant C
st Yy, 2, 2"), |f(ty,2) — f6y,2) < Cly —v'| + 12 — 2'|), dt @ dP — a.e.

Theorem 3.2.1 (Existence and Uniqueness; Pardoux and Peng [84]). Under Assumption BSDE (33)

has a unique solution.

The existence is proved with the help of fixed point theory. An equivalent proof by Picard iteration is
show by El Karoui et al, 1997 [39]].

By using ito’s formula and some estimates techniques in those literature, we obtain a priori estimate as
follows. This is applied in the same spirit in many later works associated to the generalized solution, such

as LP solution.

Proposition 3.2.1 (Priori estimate). Under Assumption if (Y, Z) is a solution to BSDE (B.5)), then

there exists a constant C, s.t.
T T
Elsupg<,<7 [Yil* + [o |Z:?dt] < CE[|]* + [ |f(t,0,0)[dt].

The following linear example will help us to better understand BSDEs. An explicit solution to this

example is worked out step by step. See more in [39].
Example 3.2.1 (Linear BSDEs).

(i) Assume & € L?, consider BSDE: Y; = £ — ftT Z.dBs.

The solutions to this equation is straightforward by martingale representation Theorem, i.e. there
exists a stochastic process 1; € H=, s.t. £ = E[¢] + fOT 1:dBy. Therefore, the solutions to this BSDE
are defined by:

Y, = E[\F] =B + [y nsdBs,  Zi =

(ii) Assume additionally stochastic process [ € HQT, consider BSDE: Y; = £ + ftT fsds — f tT ZdB,.

The same approach as case (i) show that there exists a unique solution satisfying this BSDE.
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(iii) Let (o, B) be a bounded (R,R™)-valued progressively measurable process, consider BSDE:
Yo =€+ [ Y + By Z, + fods — [ Z,dB,
Let T be the solution to the following SDE: dI'; = T';(a;dt + b:dBy), Ty = 1 where a, b are
progressively measurable process which will be specified later. Applying Itd’s formula, we obtain,
d(T.Yy) =Tif(ay — )Yy + (b — Be) Zy — fu)dt + Ty (b)Y + Zy)dBy.
Set a; := ay, by := B;. Then we have,
Ty = elo BedBst [§(:=1/282)ds gnd q(T,Y;) = —Ty fodt + T4 (BsY: + Z1)dB,.
Let us now denote: Y; := .Y, Z; = Tu(B: Yy + Zy); f = I'r&; ft := I'y fy. Then, the original
BSDE can be rewritten as:
Vi=E&+ ) fuds— [ Z.dB,
which has a solution (Y, Z) according to case (ii). Therefore, the solution to the BSDE considered
in case (iii) is
Y =Ty Z0:=T3" 20— BV
O

Specially in one-dimensional case, there is a well-known comparison result which tells that the value
processes Y’s can be compared once we know the comparison relationship of the associated drivers and
terminal values. This property is introduced by S. Peng [86] (1992) and later generalized by N. El-Karoui
et al [39]] (1997) which is stated as follows:

Theorem 3.2.2 (Comparison Theorem; El-Karoui et al [39]). Let processes (Y, Z) and (Y',Z') be solu-
tions of two BSDEs associated with generators (f,£) and (f',£") which satisfy Assumption Assume
further that £ > &' P-a.s. and forV(t,y, z), f(t,y,z) > f'(t,y, 2) P-a.s., then,

Y, >Y/, Vte|0,T] P-as.

A converse comparison result was investigated by P. Briand et al. [[16] (2000) which reads, for each ter-

minal value, if we can compare the initial values of BSDEs, then we can compare the associated generators.

3.2.2 Markovian framework and deterministic characterization

As we presented in Section [3.1] There is a state process associates to a stochastic differential game
which is a diffusion process. In order to make apply of BSDE tool to stochastic differential games theory, we
introduce in this subsection the Markovian framework of BSDE which is stated by the following decoupled
forward BSDE (FBSDE):

dX5" =b(s, XL%)ds + o (s, X0")dBs, t<s<T; X\ =2z 0<s<t
—dY, = f(s, X, Ys, Z)Lozeds = Z,dBy; Yr = g(X7").

For the general coupled FBSDE where the forward equation involving (Y, Z) as well, a four-step
scheme is studied by J. Ma et al. in [77] (1994). Readers are also referred to the book by J. Ma and J.
Yong [78]] for a system presentation on this subject. Problems in FBSDE theory are introduced in a series
of works by F. Delarue, for example, [32} 133} 28] [26] 30]].

We impose some proper hypotheses on coefficients b and o of the forward equation in order to guarantee

the existence of solution X and a good estimate of it which we need in what followed. One of the popular
hypotheses is the following one.

Assumption 3.2.2. The applications b and o are uniformly Lipschitz continuous with respect to x, besides,
b(s,z)| +

they are of linear growth with respect to x, i.e. there exists a constant C, s.t. for any (s, ),
(s, )| < C(1+ |z)).
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Except the classical Lipschitz condition on coefficients of BSDE, we assume additionally the poly-
nomial growth condition to characterize the solutions of the Markovian BSDEs by some deterministic
functions of s and X%*.

Assumption 3.2.3. Let { be an integer and let us consider f (resp. §) a Borel measurable function from
[0, 7] x R (resp. R™) into R (resp. RY) such that:

(a) For any fixed (t,x) € [0,T] x R™, the mapping (y,z) € RAHExmM f(t,x,y, 2) is uniformly
Lipschitz ;

(b) There exist real constants C and p > 0 such that

|t 2,9, 2) + 1g(x)] < C(+ |2[P), V(t,2,y,2) € [0,T] x R™HH™,

Then we have the following result by El Karoui et al. [39] related to representation of solutions of

BSDEs through deterministic functions in the Markovian framework of randomness.

Proposition 3.2.2 (Deterministic characterization; El Karoui et al [39]). Assume that Assumptions [3.2.2]
and are fulfilled. Let (t,x) € [0,T] x R™ be fixed, then the markovian BSDE has solutions
(Y, Zs)i<s<T € SETJ X H?,T,wa besides, there exists a pair of measurable and deterministic appli-
cations w: [0,T] x R™ — R® and v: [0,T] x R™ — R*** such that,

P—as Vt<s<T, Y,=uw(s,X\")and Zs = v(s, X7").

Moreover,

(i) V(t, ) € [0,T] x R™, w(t,x) = E[f," F(r, X1, Y, Z,)dr + g(X5"));

(ii) For any other (t1,x1) € [0,T] x R™, the process (wo(s, X!:*1), v(s, X!1"1))y, <s<r is the unique
solution in thTj X /HtQhT,éxm of the BSDE associated with the coefficients (f(s, X101, y, 2), g(X2"))

in the time interval [t1,T).

3.2.3 History of BSDEs

Backward stochastic differential equations (BSDEs) was proposed firstly by J.M. Bismut (1973) in [[12]
in linear case to solve the optimal control problems. Later this notion was generalized by E. Pardoux
and S. Peng (1990) in [84] into the general nonlinear form and the existence and uniqueness results (see
Theorem[3.2.1)) were proved under the classical Lipschitz condition. A class of BSDE is also introduced by
D. Duffie and L.G. Epstein (1992) [35] in point of view of recursive utility in economics. During the past
twenty years, BSDEs theory attracts many researchers’ interests and has been fully developed into various
directions. Among the abundant literature, we refer readers the florilegium book edited by N. El-Karoui
and L. Mazliark (1997) [38]] for the early works before 1996. Surveys on BSDEs theory also includes [37]]
which is written by N. El-Karoui, S. Hamadeéne and A. Matoussi collected in book [25] (2009) (see Chapter
8) and the book by J. Yong and X. Zhou (1999) [94] (see Chapter 7). Some applications on optimization
problems can be found in [37]]. About Other applications such as in field of economics, we refer N. El-
Kaoui, S. Peng and M.C. Quenez [39] (1997). Recently, a complete review on BSDEs theory as well as
some new results on nonlinear expectation are introduced in a survey paper by S. Peng (2010) [87]. Below,
we focus on the classical BSDE setting in one or multiple dimensions and review the main results including
the quadratic case. About the other important results, such as BSDEs with reflections or barriers, numerical
analysis, application in economics, we refer the books and articles mentioned above and the references
therein.

One possible extension to the pioneer work of [84] is to relax as much as possible the uniform Lipschitz
condition on the coefficient. A weaker hypothesis is presented by X. Mao (1995) [80] which we translate
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as follows according to the notion of BSDE (3.5). Mao’s condition reads: for all y, ¥, 2,z and t € [0,T],
If(t,y,2) — f(t,7,2)]? < kly — 9|?> + c|ly — §|? a.s. where ¢ > 0 and & is a concave non-decreasing
function from R™ to R* such that #(0) = 0, x(u) > 0 foru > 0 and [, 1/k(u)du = co. An existence
and uniqueness result is proved under such condition in [80]. S. Hamadéne introduced in [52] (1996) a
one-dimensional BSDE with locale Lipschitz generator. Later J.P. Lepeltier and J. San Martin provided
an existence result of minimum solution in [[72] (1997) of one dimensional BSDE where function f
is continuous and of linear growth in terms of (y, z). When f is uniformly continuous in z with respect
to (w,t) and independent of y, a uniqueness result was obtained by G. Jia [68]. BSDEs with polynomial
growth generator is studied by Ph. Briand in [14]]. The case of 1-dimensional BSDEs with coefficient which
is monotonic in Y and non-Lipschitz on Z is shown in work [19].

There are plenty works on one-dimensional BSDE. However, limited results have been obtained about
the multi-dimension case. We refer S. Hamadene, J-P. Lepeltier and Peng [58]] for an existence result on
BSDEs system of Markovian case where the driver is of linear growth on (y, z) and of polynomial growth
on the state process. See K. Bahlali [4] [S] for high-dimension BSDE with local Lipschitz coefficient.

About the BSDE with continuous and quadratic growth driver, a classical research should be the one by
M. Kobylanski [71]] (2000) which investigated a one-dimensional BSDE with driver |f(¢,y,2) < C(1 +
ly|+]2|?) and bounded terminal value. This result was generated by P. Briand and Y. Hu into the unbounded
terminal value case in [[18] (2006).

In literature, the various approaches of BSDEs are more or less depend on the continuity, uniformly or
in weak sense, of the generators. There are also works which related to the discontinuous generator. See
G. Jia [67]] (2008) for the case of one-dimensional BSDE with driver f: f(¢, -, z) is left-continuous and
f(t,y,-) is continuous. Recent works include also S. Hamadeéne and R. Mu [62] (2014) which presented
an example of multi-dimensional BSDE whose driver is independent of y and discontinuous on z.

The other direction of the generalization of BSDE:s is to consider solutions in LP(p > 1) space. See N.
El-Karoui et al [39] (1997) and P. Briand et al [[17] (2003) for examples.

3.2.4 Connection with NZSDG

In accordance with NZSDG built as in subsections [3.1.3] and 3.1.4] we still discuss in the Markovian
framework. In this subsection, we will introduce the connection of BSDEs with NZSDG including the
risk-sensitive case specially.

Before approaching, let us introduce the Hamiltonian system for a NZSDG. We consider a two-player
NZSDG where the controls applied by the players are denoted by (u, v) take values from U and V' respec-
tively. Process ()< is the solution to SDE (3.2) in two players case. For the other notations, we keep the
ones in subsection Then, for any admissible pair of controls (u,v), the Hamiltonians of the NZSDG
is given by functions Hj, for player i = 1,2, from [0, 7] x R*™ x U x V into R associate:

Hz(ta z,p,u,v) = pgil(ta z)f(t,x,u,v) =+ hi(tvxvua U)a

and we introduce the following assumption called the generalized Isaacs condition which has been already
considered by A. Friedman in [47] for the same purpose as the ones in this thesis. But the treatment of the
problem he used is the PDE approach. This assumption is well-posed due to the Benes’ measure selection
theorem, see [9]] for details.

Assumption 3.2.4 (Generalized Isaacs condition). There exist two Borelian applications u*, v* defined on
[0, T] xR*™, with values in U and V, respectively, such that for any (t, z, p, q,u,v) € [0, T|xR*™ xU xV,
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we have:

{ Hi(t,@,p,q) = Hi(t, 2, p,u"(t,2,p,q),v"(t,2,p,q)) < Hi(t, @, p,u, v*(t,2,p,q));
Hg(t7$7p7 Q) = HQ(tax7Q7U*(ta‘r7p7 (J)ﬂ}*(tﬂfapa Q)) S HQ(t7x7QaU*(t7x7p7 CI)7U)~

We now give two examples when the generalized Isaacs condition is fulfilled.

Example 3.2.2. Usually, the Hamiltonian (Hy, H}) with optimal control are assumed to be continuous
w.rt. (p,q). But the Borelian applications u* and v* are not necessarily continuous. For example, in one
dimensional case, we assume o = 1 and the value sets of controls (u,v) are respectively U = [—1,1]
and V. = [0,1]. if we take function f = wand h; = u, i = 1,2, then, Hy(t,z,p,u,v) = pu + u.
Obviously, u*(p,€) = lips_1} — lp<—1} + €qp=—1y for arbitrary ¢ € U is an application satisfying
the generalized Isaacs condition and is not continuous. However, in this case, the Hamiltonian function

Hi(t,z,p) = (p+ 1)1lgp>_1y + (—=p — 1)1{p<_1y is continuous on p.

Example 3.2.3. There are also examples which satisfy the generalized Isaacs condition with discontinuous
Hamiltonian functions. For instance, in one dimensional case, the diffusion process o = 1 and the value
sets for the controls w and v are U = [0,1] and V' = [—1,1]. The dynamic function f takes form of
f(t,z,u,v) = w + v and h; = 0. Now the Hamiltonian functions are H1(t,x,p,u,v) = p(u + v) and
Hsy(t,z,q,u,v) = q(u + v). Therefore, we can check that u*(p, €) = 1,50y + €lp=0} + 0 1{p<0y and
v*(q,€) = Lig>0y T€lyg=0y — l{g<0y With arbitrary e € U and € € V are a pair of discontinuous controls
which satisfy the generalized Isaacs conditon. Besides, note that the Hamiltonian is not continuous any

more. This example has been solved in [162]].

Under the continuous assumption on Hamiltonians, we then have the following result which is given by
Hamadeéne et al. [58] related to the existence of a NEP for the NZSDG.

Theorem 3.2.3 (Existence of NEP; Hamadene et al.1997 [58]]). Assume that Assumption holds and
applications f,h; and g* are bounded. The diffusion coefficient o is non-degenerate, uniformly Lipschitz
and in linear growth with respect to x. Besides, assume that the mapping (p,q) € R*™ — (H},H3) € R

is continuous for any fixed (t, ). Then, there exists a pair of processes (Y;"*, ZZ’*)tST s.t.

Y1* and Y?* are bounded, E[fOT |Z*a(s,24)| + | Z2*0 (s, x4)|2ds] < o0;

—dY," = Hi(t, 2, Z0%, (ub o) (b 2y, 207, 207 )dt — 207 dBy,  Yp* = gY(Xr); (3.6
2
=g

—dY* = Ho(t, x4, Z", (w5 0*) (824, Z07, Z0%)dt — Z77dBy, Y3~ = g*(Xr).
In ad-
dition, J;(u*,v*) = Y3*, i = 1,2 and the pair of controls (u*,v*) = ((u*,v*)(t, ¢, 21", 20" )<t
is a NEP for the NZSDG. U

The above Theorem tells us that under the Isaacs condition and other appropriate hypothesis, the payoffs
for players can be characterized by the initial values of a associated coupled BSDE involving a driver which
is of Hamiltonian type. This BSDE finally provides a NEP for the NZSDG. Notice that the continuous
property of Hamiltonian plays an crucial role for this result.

In particular, the risk-sensitive NZSDG (see Subsection [3.1.4) can be treated in the same way by a
multiple-dimension BSDE. The difference is that the driver for this BSDE is of quadratic growth with
respect to the volatility process Z. For more detail, readers are referred to paper by El Karoui and Hamadeéne
[36] which includes additionally the cases of risk-sensitive control and ZSDG. The main result related to
the duality of risk-sensitive NZSDG and BSDE and the existence of NEP is stated as follows.
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Theorem 3.2.4 (NEP for Risk-sensitive case; El Karoui et al.2003[36l). Under the same hypotheses of
Theorem there exists a process (Y, Y2, Z*, Z?) solutions of the following BSDE:

Y and Y? are bounded, Z', Z* € M3 ,,;
7dY;61 = {Hl(tawtvztlv (u*,v*)(t,xt,Ztl, th)) + 1/2|Ztl|2}dt - ZtldBta t < T; Y% = gl(xT);
—d}/g = {Hg(t,,ft,ZtQ, (u*,v*)(t,xt,Ztl, th)) + 1/2|Zt2|2}dt — ZthBt, t S T, ng = gQ(ZL’T)-

(3.7)
In addition, the exponential type payoff functional (B.4) coincides with the exponent of initial value
of the above BSDE, ie. — J'(u*,v*) = e¥o and J2(urv*) = e¥s.  Besides, (u*,v*) =

((u*,v*)(t, 2, Z}, Z2)) <1 is a NEP for the risk-sensitive NZSDG.

3.3 Main results

In this thesis, there are mainly three results, all related to NZSDG problem. We summarize, in this

section briefly, those three different frameworks and their main results .

3.3.1 Nonzero-sum Stochastic Differential Games with Unbounded Coefficients

Chapter [din this thesis is a published cowork with Hamadene (ref.[63]]).

In Chapter ] we study the nonzero-sum stochastic differential game of type control against control
with the diffusion process ¢ independent of controls, in the same line as in the paper by Hamadene et
al. [58]] in Markovian framework. The general formulation about NZSDG on multiple players framework
is introduced in Subsection [3.1.3] We summarize the setting of this problem here in two-player case for
simplicity. Notice that all those results and techniques in this Chapter can be generalized into the multiple
players without any difficulties. Let us now recall the following:

Setting for a NZSDG:

State process: dzh® = o(s,25%)dBs for s € [t,T] and z%* = x for s € [0, t];
Girsanov L
) Let P“ be a new measure whose density is
transformation:
dP"" [dP = (r(o ™ (-, a) f (-, 257, u.,0))
where Cy(n) := efo 1dBr=1/2 J§'In-I*dr for any adapted process 7.
P“? is a new probability under appropriate assumptions. Then,
B" = (B, = [§ o7 (r,ab®) f(r,ak® vy, vp)dr)s<r isa
Brownian motion under probability P*";
Weak formulation: — dz® = f(s, 257, us, vs)ds + o (s, zt®)dBY?, for s € [t, T

and 28" =z for s < t;

Payoffs: Ji(u,v) = E”’”[fOT hi(s, 297 ug, ve)ds + g (x5")] for player i = 1,2
and a fixed point (0, ) where E*""is expectation under P*"";
Objective: to find a NEP (u*,v*) s.t. Jy(u*,v*) < Jy(u,v*), Jo(u*,v*) < Jo(u*,v)
for any admissible control (u, v);
Hamiltonian: Hi(t,z,p,u,v) = po—1(t,x)f(t,x,u,v) + h;(t,x,u,v) for playeri = 1, 2.
(3.8)

As shown by Theorem in [58]], the setting in literature concerns only the case when the coefficients f
and o of the diffusion in the weak formulation (3-8) are bounded. According to our knowledge the setting
where those coefficients are not bounded and of linear growth is not considered yet. Therefore the main
objective of Chapter []is to relax as much as possible the boundedness of the coefficients f (mainly) and o
(which is not bounded as stated in the final extension in Chapter [4).
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The specific hypotheses that we impose are stated as follows.
Assumption 3.3.1.

Diffusion o is uniformly Lipschitz, invertible, bounded and its inverse is bounded;

Drift function f is of linear growth w.r.t. x;

Running payoff h; is of polynomial growth w.r.t x;

Terminal payoff g* is of polynomial growth w.r.t x;

Isaacs condition: there exist applications u*, v* s.t. for any (t,x,p, q, u,v),
Hi(t,x,p,q) = Hi(t, 2, p,ui(t,z,p, q), u5(t, z,p,q)) < Hi(t, 2, p,u, us(t, z,p,q)),
H3(t, 2, p,q) = Ha(t, 2, ¢, ui(t,z,p,q), us(t, z,p,q)) < Ha(t, 2, ¢, ui(t, z,p, q), v);

Continuity: the mapping (p,q) — (Hy, H3)(t, z,p, q) is continuous for any fixed (t,x).

The novelty of the results in Chapter [ is that we show the existence of a Nash equilibrium point for
the NZSDG when f is no longer bounded but only satisfies the linear growth condition. The formulation is
analogous as in Hamadene, Lepeltier and Peng (1997) [58]]. But in the framework of [58], the coefficient f
is bounded. Since the work depends heavily on Girsanov’s probability transformation: one has to deal with
Doléans-Dade exponential of o~! f. When the coefficients ! and f are bounded, obviously, Doléans-
Dade exponential is a probability density. However, when f is of linear growth, this conclusion is not so
straightforward, meanwhile, some good estimates and properties of solutions to the corresponding BSDE
will be invalid. This is the main difficulty in our work.

An efficient tool that we applied to overcome this difficulty is a result by Haussmann (1986) (see Theo-
rem[d.2.T|which related to the integrability of Doléans-Dade exponential with f in linear growth. Following
from this assertion, we know that Doléans-Dade exponential corresponding to o~ f belongs to L” space
with some constant p located between 1 and 2, even f is of linear growth. With this integrability property in
hand, Girsanov’s transformation can be carried out smoothly. Besides, a good link between the expectation
under original probability and the one under the new probability is provided due to Haussmann’s result.
This plays an important role in latter techniques for our scheme.

As in [58] our approach is based on backward SDEs. As shown by Proposition .21} the payoffs for

players are coincide with the initial values of solutions for the following BSDEs whose integrability is not
standard.
(

Ytl,u,v _ gl
Yo =g
Then we are able to show that a NEP exists (see Theorem [.2.1)) with the help of BSDE (3.9) and the fol-

lowing BSDE (3.10) where the Hamiltonian type driver depend on Borel feedback controls . The proof is
built by a localization scheme. Once we show that, there exist processes with proper integrabilities satis-

(j)gx) + ftT H1(57x27m’ Zsl’“’”,us,vs)ds _ ftT Zsl,u,vst;

3.9
8" 4+ [ Ho(s, 207, 220 ug,v5)ds — [ 22"V dB. 69

T
€T

fying BSDE (3.10), then we can conclude that a NEP exists, which is exactly the pair of control processes
((u*, v*)(t, 20", ZL, Z2)) i<, for this NZSDG. Therefore, basically the problem turns into studying the
following BSDE:

Y =g (ay) 4 f) Hi(s. a7 20w (5,007, 21 22),0" (5,007, 21, Z2))ds — [, Z1dBy;
{ g2 (x5") + ftT Hy(s,2%0% 72 u* (s, 2%, 21, Z2), v*(s,2%%, ZL, Z2))ds — ftT Z2%dB;.
(3.10)
This specific BSDE is multiple dimensional and each dimension is coupled mutually by terms of volatility
processes. The main difficulty to solve this BSDE consists in the fact that its driver involve the term
Lot x) f(t,x, (u*,v*)(t,x, 2L, 22)), i = 1,2, where f is not bounded but of linear growth in z. As
a consequence of that, in Markovian framework, the driver of BSDE (3.10) is actually of linear growth in
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volatility term w by w. Alternatively, we may refer the driver is of stochastic linear growth or of stochastic
Lipschitz (see [8]]). In addition, the Hamiltonian with the feedback type controls, which plays a driver’s role
for this BSDE, is continuous in (2!, 2?). Results of BSDEs with stochastic Lipschitz condition includes the
one by Briand [15]] for case of BSDE with irregular generator involving BMO martingale.

We finally show that this specific BSDE has a solution which then provides a NEP for the NZSDG when
the generalized Isaacs condition is fulfilled and the laws of the dynamics of the non-controlled system sat-
isfy the so-called L?-domination condition. This latter is especially satisfied when the diffusion coefficient
o satisfies the well-known uniform ellipticity condition.

Our method is based on: (i) the introduction of an approximating scheme of BSDEs which is well-posed
since the coefficients are Lipschitz. In this markovian framework of randomness, the solutions (Y™, Z™),
n > 1, of this scheme can be represented via deterministic functions (w”,v™), n > 1, and the Markov
process as well ; (ii) sharp estimates for (Y, Z™) and (w™, v™) and the L9-domination condition enable
us to obtain the strong convergence of a subsequence (w,, ),>1 from a weak convergence in an appropriate
space. This yields the strong convergence of the corresponding subsequences (Y™#);>1 and (Z"%)>1 3
(iii) we finally show that the limit of (Y"*, Z™* ), >1 is a solution for the BSDE associated with the NZSDG.

To summarize, there are three main points that we require in our approach:

(i) Haussmann'’s result: there exists a p € (1, 2) such that for any admissible control (u, v),
E[(¢r(o™ (-, 2®) f(-, 257, u ,v.)))P] < oo where (r is defined as in (3:8);

(i1) The L?-domination property or its adaptation ;

(iii) The generalized Isaacs condition.

At the end of this chapter we provide an example which illustrates our result. We also discuss possible
extensions of our findings to the case when both the drift f and diffusion coefficient o of the state process

are not bounded.

3.3.2 Risk-sensitive Nonzero-sum Stochastic Differential Game with Unbounded

Coefficients

Chapter[5]is a joint work with S. Hamadene.

Chapter [5] deals with the risk-sensitive NZSDG, as presented in Subsection which is a game
problem taking into account the attitudes of the players. For the details about the three different cases
including risk averse, risk seeking and risk neutral, readers are referred to Subsection [3.1.4] In Chapter [5}
we focus on the risk averse situation below. Besides, for notation’s simplicity, we discuss under two-player
framework. However, the generalization to multiple players case is formal and can be carried out in the
same spirit.

The setting is analogous to the one for a standard NZSDG, see for details. We also start with a
state process which is a diffusion. We later set up our problem on the weak formulation, i.e. transform
the original probability P into the new one P*“¥ by Girsanov’s transformation. Then the law of this state
diffusion process under probability P maintains the same as the one under P*'*. The weak formulation of

state process is given by:
da® = f(s, 25", ug, vs)ds + o(s, 25")dB™", for s € [t,T] and 2°* = x for s < t.

The unique distinguish is that the payoffs are more complicated and are of exponential types which are
natural and popular especially in the economic field. The payoffs for a risk-sensitive NZSDG is stated as

follows: for player ¢ = 1,2 and for each pair of admissible controls (u, v), the payoffs are

Ji (u7 ’U) _ Eu,v[efoT h,-(s,acg’w,us,vs)ds—&-gi(acgim)].
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The objective of the risk-sensitive NZSDG is to find a NEP, which is a pair of admissible controls (u*, v*),
such that J*(u*,v*) < J(u,v*) and J?(u*,v*) < J2(u*,v).

We emphasis that, all the assumptions under Chapter [5is the same as Assumption [3.3.1} (i) diffusion
o is uniformly Lipschitz, invertible, bounded and its inverse is bounded. It follows from above that such a
o satisfies uniform ellipticity condition; (ii) drift function f is of linear growth in x; (iii) both the running
payoff h; and the terminal payoff ¢¢ are of polynomial growth in x for i = 1,2; (iv) Isaacs condition is
fulfilled; (v) the Hamiltonians with the feedback type controls are continuous.

About the risk-sensitive stochastic differential game problem, including nonzero-sum, zero-sum and
mean-field cases, there are some previous works. Readers are referred to [7, 36} 43| 144} 166, 193] for further
acquaintance. Among those results, a particular popular approach is partial differential equation, such as
[7, 143} 44, 166, (93] with various objectives. Another method is through backward stochastic differential
equation (BSDE) theory, see [36]. In ChapterE], we also deal with this risk-sensitive game through BSDE
tools in the same line as article by El-Karoui and Hamadene (2003) [36].

However in [36]], the setting of game problem concerns only the case when the drift coefficient f in
diffusion dynamic is bounded. This constrain is too strict to some extent. Therefore, our motivation is
to relax as much as possible the boundedness of the coefficient f. We assume, like Subsection (see
Assumption [3.3.T) that f is not bounded any more but instead, it has a linear growth condition. It is the
main novelty of this work. To our knowledge, this general case has not been studied in the literature for a
risk-sensitive NZSDG.

As illustrated in the previous part for a standard NZSDG, the payoff is related to the initial value of a
corresponding BSDE. For a risk-sensitive case, this fact is still true which tells us that the payoff coincides
with the exponential of the initial value of some specific BSDE. The equivalence is proved in Chapter [5]in
the main text (see Proposition @ Therefore, to find a NEP for the risk-sensitive NZSDG is reduced to
study the existence of solutions for the following BSDE:

Y =g ay) [ Hi(s,al", 2w (5,20, 21, 22) 0 (5,00, 21, 22)) + 1/21 23 ds
— J, ztdB;
Yt2 = QQ(x%w) + ftT H2(Sa mg’wv Z§7 U*(87 x(s)’x7 Z51’ Z§)> ’U*(S’ mg’wv Z;7 ZSQ)) + 1/2|Z§|2d3
— [ 724B,.
(3.11)

This BSDE is multiple-dimensional with continuous generator involving both linear and quadratic terms
of z. The difficulties to solve this BSDE rely on two perspectives:

(1) The first difficulty is the quadratic term of z which is involved in the driver. In compare with the
standard NZSDG as Subsection [3.3.1] we need to carry out some techniques to deal with this quadratic
term specially.

(i) The second one is the following: since the driver has two components, one is a linear part of the
volatility process which is Hamiltonian including the feedback type controls, the other one is a quadratic
term of the volatility process. It takes the form of
Hi(s,z, 2% (u*, v*)(t, o, 24, 22)) + 1/2|2Y)? = 2 f (s, 2, 21, 22) + hi(s,x, 21, 22) + 1/2|24|% fori = 1,2
where f is of linear growth in . Similar as in Subsection[3.3.1] the first linear term of z is of linear growth
w by w in Markovian framework due to the linear growth of f. The case when f is bounded has been dealt
by [36].

Respect to these two difficulties, our strategies to overcome them are the following:

(i)’ To deal with the quadratic term of z, we apply the classical exponential transform (see M.kobylanski
et al (2000) [71]): Y¢ = ¢¥'; Z! = YiZ! for i = 1,2. By this technique, the quadratic term can be
eliminated. However, as a cost, the value process get involved into the driver.
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(i)’ The difficulty, specially in making apply the Girsanov’s transformation, brought by the linear
growth of f is overcome by a Haussmann’s result. As illustrated in Subsection the Doléans-Dade
exponential local martingale on o1 f is integrable in LP with some p € (1,2). This result enable us to
carry out Girsanov’s transformation in order to move out the volatility term from the driver, which then
provide us an access to obtain the integrability of the value process.

Under the generalized Isaacs hypothesis and domination property related to the law of diffusion process,
which holds when the uniform ellipticity condition on o is satisfied, we finally show that the associated
BSDE (3.11)) has a solution which then provides the NEP for this risk-sensitive NZSDG.

The method is summarized as follows: (i) We firstly take an exponential transformation to eliminate
the quadratic term of volatility process. The original BSDE is replaced by a new one which is multiple
dimensional with a driver involving both parts of Y and Z, being of linear growth w by w in these two
components; (ii) We then introduce an approximate scheme which smooth the generator of BSDEs by
the mollifier technique. The new sequence of BSDEs is well-posed since the coefficients are Lipschitz.
Besides, under Markovian framework of randomness, the solutions (Y™, Z™), n > 1 of this scheme can
be represented by deterministic functions (¢”,3™), n > 1. An exponential type growth property of ¢™ is
provided which then yields the sharp estimates of (Y™, Z™). (iii) We may subtract a subsequence (s"*)x>1
which is proved to be a strong convergent sequence from a weak convergence in an appropriate space. This
yields the strong convergence of the corresponding subsequences (Y, Z™*);~1; (iv) We finally show that
the limit of subsequence (Y™*, Z"™*);>1 is a solution for the transformed BSDE. By taking the inverse
exponential transform, the solution for BSDE (3.T1]) exists.

3.3.3 Bang-Bang Type Equilibrium Point for Nonzero-sum Stochastic Differential Game

Chaptelﬁ] in this dissertation is a published work with Hamadene (ref. [62]).

The motivation of this work is the following. Notice that in the previous results about NZSDG, such as
[1581 154} 153L [75]], the authors concern only about the smooth feedback controls as well as the Hamiltonian
functions. The same as our results in Chapter[4]and[5] The proofs rely heavily on the continuous assump-
tion on Hamiltonian (see Assumption [3.3.T} Continuity). The case of discontinuous controls is not fully
explored. Indeed, the discontinuous controls are naturally exist and reasonable, especially in economic and
engineering fields.

Therefore, the main goal of this chapter is to study a special type of NZSDG in Markovian framework.
We show the existence of Nash equilibrium point which is discontinuous and of bang-bang type under
natural conditions. The main tool is the notion of BSDEs which, in our case, are multidimensional with
discontinuous generator with respect to the volatility process z.

We now briefly introduce the game model in two players and one dimensional case for simplicity. The
general multiple players and high dimensional situation is a straightforward adaption. The dynamic of
this game system is given by a stochastic differential equation (SDE for short) as follows, for any fixed
(t,xz) € [0,T] xR,

Vs < T, X' =2+ (Byyt — By). (3.12)

Each player has his own control. Let us denote by U and V' two bounded subsets on R and M (resp.M32)
be the set of admissible controls which is the set of P-measurable process u = (u; )< (tesp. v = (v¢)i<T)
on [0, 7] x Q with value on U (resp. V). M = My x My. LetD : (t,z,u,v) € [0,T]xRxUxV — Rbe
the dynamic function for the game problem. The precise assumptions on the coefficients are stated below.
For any admissible pair of controls (u.,v.) € M, let P*"* be the positive measure on (€2, F) as follows,
dP = (r(T(, X.5%, u.,v.))dP with ((0) := 1+ fot ©:(sdBs, t < T for any measurable F;-adapted
process © := (0;);<r. Under appropriate assumptions on I', it follows that Pff is a probability on
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(Q, F). Then, the process B“" = (B, — [ T'(r, X1*, uy, v,)dr)s<r is a (F,,P"")-Brownian motion
and (X5")s<7 satisfies the following SDE,

dXP® =T (s, X1" ug,vs)ds + dB™", Vs € [t,T] and X>* = x, s € [0,1]. (3.13)

We denote the terminal payoff function by g; : * € R — R for player+ = 1,2
For fixed (0, x), Let us define the payoffs for players as following, for (u,v) € M,

Ji(u,v) := B [g (X2™)] and Ja(u,v) := E*Y[ga(X%")],

where E*" is the expectation under probability P** for fixed (0, ). We concern about the existence of

Nash equilibrium point, i.e. a couple of controls (u*,v*) € M satisfying, for all (u,v) € M,
Ji(u*,v*) > Ji(u,v*) and Jo(u*,v*) > Ja(u*,v).
Our assumptions are listed below:

Assumption 3.3.2. (i) The value sets for the admissible controls (u,v) are two bounded subsets U and V
on R associate U = [0,1] and V = [-1,1];

(ii) The dynamic function T is an affine combination of controls which has form T'(t, x,u,v) = f(¢, z)+
u—+v where f: (t,x) € [0,T] x R — R be a Borelian function. The function f is of linear growth w.rt. x,
Therefore, T is also of linear growth on x uniformly w.r.t (u,v) € U X V.

(iii) The terminal values g;, © = 1,2 are of polynomial growth on x.

There are several properties in the setting of this NZSDG that we would like to emphasis: (i) The
dynamic function I is not bounded as the previous results related to NZSDG (see [58, 154,153} [75]]), instead,
it is of linear growth with respect to x. As illustrated in Subsection [3.3.T]and [3.3.2] the difficulty brought
by the linear growth property of I" can be overcome by a result of Haussmann (see Lemma [6.1.1)) which
related to the integrability of Doléans-Dade exponential. Indeed, the Girsanov’s transformation can be
carried out smoothly which yields the weak formulation of the state process (3.13). (ii) The value sets U
and V for the admissible controls are two specific bounded subsets on R. Besides, the dynamic I is also
of specific affine form. In additional, there are only terminal values getting involved in the payoffs .J; and
J2, however, without the instantaneous payoffs. Therefore, Nash equilibrium point, if exists, should be in
general bang-bang type.

The notion of bang-bang type control comes from the classical stochastic control theory. Consider
in our case, when I'" does not depend on v, the stochastic differential game problem will be reduced to a
stochastic control problem. By bang-bang control, we refer to a discontinuous control which will jump
at a certain point between the border of the domain depending on the sign of the gradient of the value
function. A common form is expressed by Heaviside function as presented in our work. Let us explain in
the following, the exact form of bang-bang type candidate Nash equilibrium point for this NZSDG.

Since the dynamic coefficient I' is known as a specific function of v and v clearly, therefore, the can-
didate optimal control for us can be worked out directly by the generalized Isaacs’ condition. Let H; and
H; be the Hamiltonian functions of this game, i.e, the functions which are not depend on w defined from
[0,T] x Rx Rx U x V into R by:

Hiltopou,v) = pD(t20,v) = p(F(t ) +u + )
q(f(t,z) + u+v).

Hy(t,z,q,u,v) = ql(t, z,u,v)
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Now, the controls & and v which defined on R x U and R x V, valued on U and V respectively, as
follows: Vp,q € R, e e U, e € V,

L, p>0, 1, ¢>0,
a(p’ 6) = € p=0, and @(Qﬂg) = g, q=0, (3.14)
0, p<O, —-1,¢<0

will exactly satisfy the generalized Isaacs’ condition as follows: For all (¢, 2, p, g, u,v) € [0,T] x R x R x
U x Vand (e,e) € U x V, we have,

Hi(t,x,p,q,e) = Hi(t,z,p,u(p,€),v(q,€)) > Hi(t,x,p,u,0(q,¢)),
H;(t,l‘,p,q,G) = HQ(t,.T,Q,’[L(]), e)a@(QME)) 2 HQ(taxaqaa(p7 6)7U>' (315)

We should point out that, the function H; (resp.HJ) does not depend on € (resp.€), since, pii(p,€) =
p V0 (resp. q¥(q,e) = |g|) does not depend on e (resp. ¢). Besides, the Hamiltonian function here
is discontinuous w.r.t. (p,q). It follows from (3.14) that, the pair of control (,7) is of bang-bang type.
However, it is not a feedback one since it is also depend on some constants. Similar nonzero-sum differential
game of unsmooth type has been studied by G.J. Olsder [83] in the deterministic case. Recent works on this
subject, also in deterministic case, include papers by P. Cardaliaguet and S. Plaskacz [24], P. Cardaliaguet
[23]] which show that there exists a unique Nash equilibrium payoff of feedback form. But this equilibrium
payoff depend in a very unstable way on the terminal data. Besides, it is not obvious to generalize the result
in [24] to higher dimensions. The stochastic case has been analyzed by P. Mannucci [[79] with the help of
a system of Hamilton-Jacobi equations and related parabolic PDE techniques. Notice that the state process
in [79]] belongs to a bounded domain. However, some techniques of PDE in the global domain are not so
straightforward.

The main novelty of Chapter [6]is that we show the existence of Nash equilibrium point of bang-bang
type to a nonzero-sum stochastic differential game in a global domain. Moreover, the results and the
techniques can be generalized to the multiple dimensions directly. However, the existence of NEP of
feedback form is still an open problem.

As in [58]], we apply the BSDE approach. This game problem finally reduces to solving a multiple-
dimensional BSDE with a discontinuous generator with respect to z component and of linear growth in z
w by w. Under the generalized Isaacs’ hypothesis, we show that the associated BSDE has a solution which

then provides a bang-bang type NEP for the NZSDG. The main result is summarized as follows:

Theorem 3.3.1 (Existence of bang-bang type NEP). Let us suppose Assumption and generalized
Isaacs’ condition (3.19) are fulfilled. Then, there exists n', n?, (Y1, ZY), (Y2, Z?%) and 0, U such that:
(i) n* and n? are two deterministic measurable functions with polynomial growth from [0, T] x R to R;
(i) (Y, Z") and (Y2, Z?) are two couples of P-measurable processes with values on R**;
(iii) 0 (resp. V) is a P-measurable process valued on U (resp. V'),
and satisfy:
(a) P-as., Vs <T,Y}=n'(s, X)) and Z'(w) := (Z!(w))s<T is ds-square integrable;
(b) Forall s <T,

{ —dY} = Hj(s,X%% 7}, 72,9,)ds — Z dB,, Y} = g1(X3"); 516

—dY2 = Hj (s, X%% 7}, 72,0,)ds — Z2dB,, Y = ga(X3").

Besides, Y§ = J;(u,0), i = 1,2 and the pair of controls (u(Z},05),v(Z%,9,))s<r is a bang-bang

type Nash equilibrium point of the nonzero-sum stochastic differential game.
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The link between NZSDG and BSDE:s is obtained in a standard way as Subsection [3.3.1] which tells
us that the initial value of the associated BSDE is coincide with the payoff for the game problem. In
additional, once we show that BSDE (3.16) has solutions with appropriate properties, then, the existence
of NEP naturally holds true which obtained by comparing the solutions of BSDEs after change probability
and in using the fact that (@, ¥) verifies the generalized Isaacs’ condition (3.13). Therefore, the main task
of this work is thus dedicated to the proof of the solvability of the system of BSDE which is multiple
dimensional with a discontinuous generator with respect to the volatility z. Apparently, the discontinuity is
a main difficulty of this work.

The way we solve BSDE (3.16)) is the following: (i) We first construct an approximation scheme by
smoothing the discontinuous functions (1, ¥) via Lipschitz continuous applications (z", ™), n > 1. The
sequence of BSDE:s is well-posed since the generators are uniformly Lipschitz which followed by the ex-
istence of solutions. Besides, the solutions (Y™, Z™) can be expressed by deterministic functions (1™, ¢™).
(ii) Sharp estimates on those solutions are provided in appropriated spaces, as well as the polynomial growth
property of functions n". (iii) Sequence n" is proved as a Cauchy sequence following from a result of weak
convergence. This yields the strong convergence of (Y™, Z™) in some proper spaces. (iv) In order to verify
that the limit process which comes from the strong convergence result is indeed the solution of the original
BSDE, it remains to show that the sequence of the approximate drivers converge. We finally obtain a weak
convergence of the subsequence of the drivers toward Hamiltonian when the arbitrary constants (e, ) are
replaced by some process (0, ¢). The difficulty of the discontinuity for Hamiltonian is overcome in this

step by the weak convergence arguments.






CHAPTER 4

Nonzero-sum Stochastic Differential
Games with Unbounded Coefficients

This chapter is a published joint work with Hamadene (ref.[63l]).

In this work, we analyze a nonzero-sum stochastic differential game (NZSDG for short) which is de-
scribed as follows. Assume one has N players 7y, ..., mxy which intervene on (or control) a system. Each
one with the help of an admissible control which is an adapted stochastic process u® := (ul);<r for m;,
i =1,...,N. When the N players make use of a strategy u := (u',...,u"), the dynamics of the con-
trolled system is a process ()< solution of the following standard stochastic differential equation (SDE
for short):

dal = f(t,xt ub,..,ul )dt + o(t,x)dB; fort <T and x9 = x; 4.1

B := (By)i<r is a Brownian motion. The control actions are not free and generate for each player m;,

i =1,..., N, a payoff which amounts to

Ji(u', . uN) = E[ g (alh) —|—fOT hi(s, 2%, ug)ds |.

1,%
’

A Nash equilibrium point (NEP for short) for the players is a strategy u* := (u'*,...,u™"*) of control of

the system which has the feature that each player m; who takes unilaterally the decision to deviate from

u®*, is penalized: For all i = 1, ..., N, for all control u® of player m;,
Ji(u*) < Ji([u™""|u])

Tl = (ub LTttt ).

In the case when N = 2 and J; + Jy = 0, this game reduces to the well known zero-sum differential

where [u

game which is well documented in several works and from several points of view (see e.g. [L1]], [22], [41]],
[40], [45], [47], [6Q], [S7], [65] etc. and the references inside).

Comparatively, the nonzero-sum differential game is so far less considered even though there are some
works on the subject, including [21], [48], 158], [590, 1541, (53], [731, [75], [79], [91], etc.). In these
works, the objectives are various and so are the approaches, usually based on partial differential equations
(PDEs) ([48 [79]) or backward SDEs (158}, 154, 153} [75,[73]]). On the other hand, it should be pointed out
that the frameworks in those papers are not the same. Some of them consider strategies as control actions
for the players (e.g. [211], [73], [91]]) while others deal with the control against control setting (e.g. [59]],
[58L 154} 153]]). The first ones, formulated usually in the framework of two players, allow to study the case
where the diffusion coefficient o is controlled. In the latter ones, o does not depend on the controls.
However those papers do not reach the same objective. Note that for the control against control zero-sum

35
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game, Pham and Zhang [88]] and M.Sirbu [92] have overcome this restriction related to the independence
of o on the controls.

In the present article, we study the nonzero-sum game of type control against control with the diffusion
process o independent of controls, in the same line as in the paper by Hamadeéne et al. [58]. But in
[58]], the setting concerns only the case when the coefficients f and o of the diffusion @I) are bounded.
According to our knowledge the setting where those coefficients are not bounded and of linear growth is not
considered yet. Therefore the main objective of this work is to relax as much as possible the boundedness
of the coefficients f (mainly) and o(which is not bounded as stated in the final extension). The novelty of
the paper is that we show the existence of a Nash equilibrium point for the NZSDG when f is no longer
bounded but only satisfies the linear growth condition. As in [S8] our approach is based on backward SDEs
and basically the problem turns into studying its associated multi-dimensional BSDE which is of linear
growth w by w. Under the generalized Isaacs hypothesis and the domination condition of laws of solutions
of (@.I), which is satisfied when the uniform ellipticity condition on o is satisfied, we show that the latter
BSDE has a solution which then provides a NEP for the NZSDG.

The paper is organized as follows:

In Section 2 we fix the setting of the problem and recall some results which play an important role in our
study. The formulation we adopt is of weak type. On the other hand for the sake of simplicity we have made
the presentation for N = 2. The generalization to the situation where N > 3 is formal and can be carried
out in the same spirit. Section 3 is devoted to the link between the game and BSDEs. We first express the
payoffs of the game in using solutions of BSDEs whose integrability is not standard. Then we show that the
existence of a NEP for the game turns into the existence of a solution of a specific BSDE which is of multi-
dimensional type and linear growth w by w. It plays a role of a verification theorem for the NZSDG. In
Section 4 we show that this specific BSDE has a solution when the generalized Isaacs condition is fulfilled
and the laws of the dynamics of the non-controlled system satisfy the so-called L?-domination condition.
This latter is especially satisfied when the diffusion coefficient o satisfies the well known uniform ellipticity
condition. Our method is based on: (i) the introduction of an approximating scheme of BSDEs which is
well-posed since the coefficients are Lipschitz. In this markovian framework of randomness, the solutions
(Y™ Z™), n > 1, of this scheme can be represented via deterministic functions (™, v™), n > 1, and the
Markov process as well ; (ii) sharp estimates for (Y, Z™) and (c™, v™) and the L?-domination condition
enable us to obtain the strong convergence of a subsequence (w,, )r>1 from a weak convergence in an
appropriate space. This yields the strong convergence of the corresponding subsequences (Y"*);>1 and
(Z™)g>1 ; (iil) we finally show that the limit of (Y%, Z™* ), >4 is a solution for the BSDE associated with
the NZSDG. At the end of this section we provide an example which illustrates our result. We also discuss
possible extensions of our findings to the case when both the drift f and diffusion coefficient o of are
not bounded. O

4.1 Setting of the problem

Let T > 0 and let (2, F,P) be a probability space on which is defined an m-dimensional Brownian
motion B := (By)o<i<r. For t < T, let us denote by (F; := o(By,u < t));<r the natural filtration of B
and (F;);<7 the completion of (F} )< with the P-null sets of 7, which then satisfies the usual conditions.
Let P be the o-algebra on [0, T] x Q of F;-progressively measurable sets. Let p > 1 be a real constant and
t € [0,T] fixed. We then define the following spaces:

o LL.(R™) = {{ : Fr-measurable and R™ -valued random variable s.t. E[|£|P] < oo};
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* S/ p(R™) = {¢ = (¢s)i<s<r : P -measurable and R™ -valued s.t. E[supi<s<7|ps|?] < oo} ;

Sp r(R™) is simply denoted by S7.(R™);
* H)p(R™) = {Z = (Zs)t<s<r : P -measurable and R™ -valued s.t. E[(ftT |Z,|2ds)P/?] < oo} ;

Hp p(R™) is simply denoted by H7.(R™).

Next let o be a matrix function defined as:

o:[0,T] x R" — R™*™

(t,x) — o(t, z)
and which satisfies the following assumptions:

Assumptions (A1)
(i) o is uniformly Lipschitz w.r.t x. i.e. there exists a constant C; such that,
vt €[0,T],Vz,2" € R", |o(t,x) —o(t,z")| < Cy|z — 2|
(ii) o is invertible and bounded and its inverse is bounded, i.e., there exits a constant C, such that

V(t,a) € [0,T] x R™, |o(t,2)| + [0~ (t.2)| < Cy.

Remark 4.1.1. Uniform ellipticity.
Under (Al), there exists a real constant Y > 0 such that for any (t,x) € [0,T] x R™,

YI<o(tz)o' (t,z)<YT LI (4.2)
where I is the identity matrix of dimension m. O

Next let (¢, ) € [0,T] x R™. Under the Assumptions (A1), (i)-(ii), we know that there exists a process
(X5")s<r that satisfies the following stochastic differential equation (see e.g. Karatzas and Shreve, pp.289,
1991 [[70]):

S
Xbr =g +/ o(r,XE*)dB,, Vs € [t,T]and X" = x for s € [0,1].
¢

Hereafter for sake of simplicity we will deal with the setting of two players. However the generalization
to the case of N (> 3) players is formal and just a question of writing (see the comment of Remark .
Also let us denote by U; and Us two compact metric spaces and let M; (resp. M) be the set of P-
measurable processes u = (u; )< (resp. v = (vy)i<7) With values in U; (resp. Uz). We denote by M the
set M; x My and call it the set of admissible controls for the players.

Let f be a Borelian function from [0,7] x R™ x U; x Us, into R™ and for i = 1,2 let h; and g* be
Borelian functions from [0, 7] x R™ x Uy x U; (resp. R™) into R which satisfy:

Assumptions (A2)

(i) fis of linear growth w.r.t z, i.e. there exists a constant C'y such that | f (¢, z, u,v)| < C¢(1+ |z]), for
any (¢, z,u,v) € [0,T] x R™ x Uy x Us.

(i) for i = 1,2 h; is of polynomial growth w.r.t z, i.e., there exists a constant C', and v > 0 such that
|hi(t, z,u,v)| < CR(1+ |z|7) for any (¢, 2, u,v) € [0,T] x R™ x Uy x Us.
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(iii) fori = 1,2, g* is of polynomial growth with respect to z, i.e. there exist constants C;; and v > 0
such that |¢*(z)| < Cy(1 + |z|7),Vz € R™.0

For (u,v) € M, let PE" v)) be the measure on (€2, F) whose density function is defined as follows:

dP(u v)

C;;’w _CT( ("XF’I)f("XF’I7u'7U'))’ (4.3)

where for any measurable F;-adapted process 1 := (15 )s<7 We define,
Co() o= efo mdBr=3 [SInelPdr vy < 4.4)

Thanks to the Assumptions (A1) and (A2)-(i) on o and f, we can infer that PEZ’;)) is a probability on
(Q, F) (see Appendix A of N. El-Karoui and S. Hamadéne [36]] or Karatzas-Shreve [70], pp.200). Then by
Girsanov’s theorem (Girsanov, [50]), the process B(%*) := (Bs—foS o (r, XE7) f(r, XE7 up, v )dr) s<r
is a (Fs, PEZ’;)))—Brownian motion and (X%*),<r satisfies the following stochastic differential equation,

dX5® = f(s, XU% ug,vg)ds + o(s, X1®)dB™Y) | for s € [t,T] and X* = x for s < t. 4.5)

In general, the process (X%*)s<r is not adapted with respect to the filtration generated by the Brownian
motion (B{"")) <1, therefore (X% <7 is called a weak solution for the SDE ll

Next let us fix (¢, x) to (0, o) and for ¢ = 1, 2, let us define the payoffs of the players by:

T
J (u,v) = EES :z) /0 hi(s, X0 g, v,)ds + gi(X%‘”O)], (4.6)
where EEO ))( ) is the expectatlon under the probability PE“ ”)) Hereafter EEO () (resp. p(u v))) will be

simply denoted by E(“*)(.) (resp. P(*")).

Our problem is to find an admissible control (u*, v*) such that
JHu*,v*) < JHu,v*) and J2(u*,0*) < J?(u,v) forany (u,v) € M.

The control (u*,v*) is called a Nash equilibrium point for the nonzero-sum stochastic differential game.

Next we define the Hamiltonian functions H;, ¢ = 1,2, of the game from [0, 7] x R?>™ x U; x Uy into
R by:
Hi(ta z,p,u, U) = pgil(ta x)f(t7 Z,u, U) + h’l(t7 €, u, U)a

and we introduce the following assumption (A3) called the generalized Isaacs condition.
Assumption (A3): Generalized Isaacs condition.

(i) There exist two Borelian applications u], u5 defined on [O7 T} X Rgm, with values in U; and Us, respec-
tively, such that for any (¢, z, p, ¢, u,v) € [0,T] x R*™ x Uy x Uy, we have:

Hik(taxap7 q) = Hl(tv'xap7 ui(txapaqxu;(mxvpv q)) S Hl(t7x7p7uau§(t7x7p7 q))

and
H3(t,z,p,q) = Hy(t,x,q,ui(t,x,p,q),us(t,x,p,q)) < Hao(t,x,q,ui(t,z,p,q),v).

(ii) the mapping (p, q) € R*™ — (H{, H3)(t,z,p,q) € Ris continuous for any fixed (, z). O
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Remark 4.1.2. This condition has been already considered by A. Friedman in [47] for the same purpose
as ours in this paper. But the treatment of the problem he used is the PDE approach. O

In order to show that the game has a Nash equilibrium point, it is enough to show that its associated
BSDE, which is multi-dimensional and with a continuous generator (see Theorem {f.2.1 below) has a so-
lution. Therefore the main objective of the next section is to study the connection between NZSDGs and
BSDE:s.

4.2 Nonzero-sum differential game problem and BSDEs.

Let (t,z) € [0,7] x R™ and (6%%) <7 be the solution of the following forward stochastic differential

S

equation:

dfs = b(s,05)ds + o(s,0s)dBs, selt,T];
{ (5.6,)ds + o(5.0.) t.7] )

0s =z, s € [0,1]

where o : [0, T] x R™ — R™*™ satisfies the Assumptions (A1) and b: [0, 7] x R™ — R is a measurable

function which satisfies the following assumption:

Assumption (A4): The function b is uniformly Lipschitz w.r.t x and of linear growth, i.e., there exist

constants Cy and C}, such that:
Vvt €[0,T], Vz,2' € R™, |b(t,x) — b(t,z")| < Cao|lz — 2’| and |b(t, z)| < Cp(1 + |z|).

It is well-known that, under (A1) and (A4), the stochastic process (6%%) <7 satisfies the following

S

estimate, see for example (Karatzas, 1. 1991 [[70] pp.306):

Vg€l 0), E{( st<1;; |9§’m|)2q} < C(1 + |z]?9). (4.8)

As a particular case we have a similar estimate for the process X 6T je.,

Vqel o), E[(sup |X§=z|)2"} < O(1+ || (4.9)
s<T

Finally note that we have also a similar estimate for weak solutions of SDEs of types (4.3)), i.e., if (u,v)
belongs to M then

u,v z1\2
Vaeloo)  EET|(supl X)) < OO+ [a). .10)

Next let us recall the following result by U.G.Haussmann [64] related to integrability of the exponential
local martingale defined in (4.4).

Lemma 4.2.1. Assume (Al)-(i),(ii) and (A4) and let (04")s<r be the solution of . Let p be a P ®
B(R™)-measurable application from [0, T] x Q x R™ to R™ which is uniformly of linear growth, that is,
P-as., V(s,x) € [0,T] x R™,

(s,w,2)| < Co(1 +Ja]).
Then, there exists p € (1,2) and a constant C, where p depends only on C, Cy, Cy,, m while the constant
C, depends only on m and p, but not on @, such that:

E [|¢re(s, 057))] < C,

where the process ((p(s,0%7)) is the density function defined in .
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Proof. See Appendix [A] Theorem[A.0.1] O

As a by-product we have:

Corollary 4.2.1. Let (u,v) be an admissible control for the players and (t,z) € [0,T] x R™. Then there
exists p > 1 such that

E [|Cr(o(s, X0") 7 f(s, X0 ug,0,)) 7] < C. 4.11)

Next we give a preliminary result which characterizes J(u, v) of (4.6)) from its associated BSDE. This
result generalizes the one by S. Hamadeéne, and J. P. Lepeltier, 1995b [57] (Theorem 1.3). The main im-
provement is that the drift of the diffusion, weak solution of (@), is not bounded anymore but is instead of

linear growth.

Proposition 4.2.1. Assume that Assumptions (Al), and (A2) on f, hs, ¢', i = 1,2, are fulfilled. Then for
any pair (u,v) € M, there exists a pair of P-measurable processes (WH(%v)| (W) i = 1.2 with

values in R x R™ such that:

(i) Forany q > 1 andi = 1,2, we have,

T
E(u,U)|: sup ‘Wi,(u,v)|tI+ (/ |Z};(u,v)‘2ds)%i| < 00. (412)
0<s<T 0

(ii) Fort <T,

W) = g (X7:%0) + / Hi(s, X0, 20 g, v5)ds — / Z:dB,. (4.13)
t t

The solution of BSDE - is unique, moreover, W) = Ji(u,v) fori =1,2.

Proof. We will give the proof for ¢ = 1 and of course it is similar for : = 2. So for (u,v) € M, the process
(X0:0) < is a weak solution of the following stochastic differential equation:

dX %% = f(s, X270 w, v,)ds + U(S,XS’IO)ngu’v)’ s < T and Xg’mo = xy,
where B(**) is a Brownian motion under P(“"*) Let us define the process (th’(u’v))tST as follows:
T
vt < T, whw) 2 gl [gl(X%“) + / ha (s, X070 ug, vs)ds | ft] (4.14)
t
Since the functions g'(z) and h1 (s, z, u, v) are of polynomial growth w.r.t ¥, we have, for any r > 1,
T
B g0 + [ (s, X070 ) s
0

< E®) [C’(l + sup |X2’“’° |27T)}
s<T

< C(1 4+ |zo2M). (4.15)

The last inequality is due to estimate |i Then li implies that the process (th,(um))th is well
defined.
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< T, we denote by (;

Next for notation simplicity for any ¢
(s, X270) f(s, X" ug,vy)). Therefore
T
L(x%mo) +/ hi(s, X0 u,, vs)ds) |]-‘t}
t
(4.16)

W = () E[¢r - (g
() 'E[¢r- (g X“°+/OT

hi(s X0 T ug, v )ds) |]:t}

/ hi(s, X O g, vs)ds.
0

l

By Corollary there exists some 1 < po < 2, such that (7 € LPo(R). Therefore, from Young’s
inequality, we obtain, for any 1 < ¢ < po,
X0 o) / hi(s, X 0o us,vs)ds)‘

E[|cr- (9
LE o) + TR |9 (Xg™) + / (s, X070 1, v,)ds | 707
Po 0
7> 2. Therefore, by the polynomial growth assumptions of g* and h; w.r.t

Since p“ < 2, its conjugate =
T (Assumptlon (A2)- (11),(111)) and the estimate (]E[) we have
| 1(X0m°)+/ hi(s, X0%0 g v,)ds|T 7o~ Q} < o0
0

0 wug,vs)ds) € L7

Then,
G (g (X070) + / ha(s, X
0
Therefore thanks to the representation theorem, there exists a P-measurable and R™-valued process

E[(/OTye‘sfds)%} <

(0s) s<T which satisfies

such that for any ¢t < T,

T

W1 () _ =(¢) ! {E[CT ( (X%IO)—l—/ hi(s, X9%0 ug, v,) ds / 0,dB.}
0

t
/ hl (vagvzoa Ug, Us)d

t
/ hl(SanJOvusts)dS
0
t_
/esst, t<T

2(G)'R

T
[CT (QI(X%IO)-F/ hl(s X Us, Vs
0

where
(5, X270) (s, XO%0 g, v,)dB

d¢s = Cs0~

But forany s < T
( X0 xo)f(s,Xg’mo,us,vs) dBs—

~)™ |
o~

Then by It6’s formula we have

d(Cs)71 = L. 0'71
(5, X270) f (5, X270 ug, v,) | ds} s<T
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Therefore, Vs < T,

AW L) = —(¢) 7 o (s, X0 (5, X0, uy, 0,)d B
— o (s, X070 £ (5, X070, g, v,) Pds | Ry

+ (¢) 7 '0,dB; + ( — (C‘g)flofl(s,Xg’m")f(s,XE’“"“,us, Us))ﬂsds
- hl(san)zovusts)ds'

Next let us define

Zhwo) & f(gs)*l{Rsafl(s,XQ’IO)f(s,XEJO,us, vs) — és}, s<T. 4.17)

Then it is easy to check that the pair of processes (Wsl’(u’v), Zsl’(u’v))ng of lHi satisfies the

backward equation @.13).
We now focus on the estimates for the processes (Wsl’("’v), Z§7(u’v))s§T. From (4.14), for any s < T

andq > 1,

T
sup |Wt17(u,v)|q = sup |E(u,v) [gl(X%mo) _|_/ hy (S,XS’ZO,qus) ds’]:t} k&
0<t<T 0<t<T t

Then by conditional Jensen’s inequality we have,

T
sup |Wt1’("’v)|q < E(“’”)[ sup |g'(X%) +/ hy (s, X070 ug, v,) ds|?
0<t<T 0<t<T t

7).
Therefore, since g' and h; are of polynomial growth, we have

T
E(u,v)[ sup |Wt1’(“7”)|‘1} SE(“’”){ sup \gl(X%m") -|-/ hy (SaXS’xovusavs) dsﬂ
0<t<T 0<t<T t

SCE(“’”)[ sup (1+ |Xt°’“"°|7‘1)} < O(1 + |zo|") < o0 (4.18)
0<t<T

Next for each integer k, let us define:

T, = inf{s > O,/ | Z5W))2ds > kY AT,
0

The sequence (73 ) > 0 is of stationary type and converges to 7'. By using Itd’s formula with (th/\(;;’”)ﬁ
we obtain: Vt < T,

Tk
WR [ |zhe s
tATEL
Tk

W h) (s, X020 g vg)ds—2 / whiw) zlwe)gpluv),

tATE

Tk
:|WT1,;(“7”)|2+2/

tATE

Thus, for ¢ > 1, taking the expectation of the power 4 of the above equation on both sides and applying

Young’s inequality, we see that there exists a constant C such that,

g

B0 [([T1zeopa) ] < efeen [wreo e[ [ )]
B[ (s, X070 ) Ps)
0

Tk q
+E(u,v) |:‘ / Wsl,(u,v)Zsl,(TL,q))ngu,1)) ’ §:| } (419)
0
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Next taking into account the Assumptions (A2)-(ii) and estimate (@) one can show that,
Tk q
B [ pe] 4 B0 [( /0 W) Pas)

Tk q
+E(u,v)[(/ |h1(8,Xg’$°,us,vs)|2ds)2}
0

S C’{E(u’v) |: sup |W81,(u,v)‘q:| + E(u,v) |: sup (1 + |X2710|2’)’)%j| }

OSSSTk OSSSTk
< O{E("’”) [ sup |Wsl,(u,v)|q} + {E(u,v)[ sup (1 + |Xg,mo|2'yq) } }%} < 0.
0<s<T 0<s<T

Meanwhile, it follows from the Burkholder-Davis-Gundy (BDG for short) that there exists a constant C',
depending on ¢, such that

E(u,'u) [| ‘/7—’c Wsly(u,v)ZSl,(u,v)ngu,v) ’ %}
0
Tk q
< CE®) [(/ Whs) 2|10 25) ]
0

< CECD[( sup (WEeI ([0 Ras) ]
0

0<s<Tg
C2C 1 T 4
< LEw,v)[( sup IWS’(“’“)I)Q} +7E<u,v>[(/ |Z31’(“’”)|2ds)g},
2 0<s<T 2C 0

where C is the one of (4.19). Going back now to (#.19) and using Fatou’s Lemma, we conclude that for any
q>1,

T aq
EC( / Z20)ds)?] < oo, (4.20)
0

Estimates (.18) and (#.20) yield to the conclusion {.12).
Finally note that, taking ¢ = 0 in 1i we obtain WO1 ) - g L(u,v) since Fy contains only P and

P(“%) null sets since those probabilities are equivalent. O

Theorem 4.2.1. Let us assume that:
(i) The Assumptions (Al), (A2) and (A3) are fulfilled ;
(ii) There exist two deterministic functions @' (t,z), i = 1,2, with polynomial growth and two pairs of
P-measurable processes (W', Z%), i = 1,2, with values in RY™™ such that: Fori=1,2,
(a) P-a.s., Vs < T, Wi = wi(s, XO%) and Z(w) := (Z}(w))i<r is dt-square integrable ;
(b) Forany s <T,

{ —dW! = H; (s, X0, Zt u* (s, XO*, ZY, Z2),v* (s, X", 21, 22)) ds — ZLdB,, @21

Wi = g'(X7").

Then the control (u*(s, X%, Z1 Z2),v*(s, X%®, ZL, Z2))s<r is admissible and a Nash equilibrium
point for the NZSDG.

Proof. Fors < T, letus setu’ = u*(s, X%% Z1 Z2) and v} = v*(s, X0% Z1 Z2), then (u*,v*) € M.
On the other hand we obviously have, thanks to Proposition Wa = JH(u*, v*).

Next let u be an arbitrary element of M; and let us show that W' < W (") which yields W] =
JHu*, v*) < Wol’(u’v*) = JY(u,v*).
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The control (u,v*) is admissible and thanks to Proposition there exists a pair of P-measurable
processes (W1 (:v") 7Z1,(4.v")) quch that for any ¢ > 1,

ey W [ 1] <o
0st<T 0 (4.22)

T
W g (0 4 /Hlsxorzuuv)us, D)ds / 2y dB,, vt < T
t

Afterwards, we aim to compare W' and W (*%")_ So let us denote by
AW =Wt - Wwhv) and AZ = 7zt — z8 ),
For k > 0, we define the stopping time 7, as follows:
= inf{s > 0,|AW,| + / |AZ,|?dr >k} AT.
0

The sequence of stopping times (73 ) >0 is of stationary type and converges to T'. Next applying It6-Meyer
formula to [(AW) |9 (¢ > 1) (see Theorem 71, P.Protter, [90], pp.221), between ¢ A 7, and 73, we obtain:
vt <T,

Tk

(AWinr )| + () / (AW, 71 aw, 50| AZ,[2ds
tATE
Tk

— | &Wo) 1 [

tATE

|(AW5)+|q_11AWS>0(H1(S XOx Z1 ’LL v )

s 87 7s

Tk

Hy(s, X0, z{wv >,us,v;‘)>ds - Q/ (AW T 1 aw, »0AZ,d B,
tATE

Tk

(AW, )] +q/

tATE

(AW aw, >0 (Ha(s, X7, 21 u, 02) -
Hi(s,X%% Z  ugvf)+Hy(s, X0, Z ug, v¥)—Hy (s, X0, Z{wv") us,vZ))ds

Tk
—q/ (AW T M aw.>0AZ,dBs,
t

ATk

(

where ¢(q) = %_1). Considering now the generalized Isaacs’ Assumption (A3), we have that,

Hy(s, X%% 71wl vf) — Hy(s, X%% Z} g, vl) <0,¥s < T.

s7 s

Therefore,

Tk

(AWinn) | + clg) / (AW 121 prw, 50| AZs[2ds
tATE
Tk

< ‘(AWT;C)JF‘(]'FQ/ |(AWS)+|q_11AW5>OAZsU_1(SaXg,x>f(S7Xg,x7us>’U:)d8

tATE

Tk
B q/ |(AW€)+|q711AWs>OAstBs
t

ATk
Tk

— (AW 1~ g / (AW L aw 50b Zd B,
tATE

where B(®*") = fo 5, X0) f (s, X0, v¥)ds)<r is an (FO,P(“*"))-Brownian motion.

Then for any ¢t < T,

Tk

(AWirr)F|? < (AW, )7 — ¢ / (AW M aw, 0 AZd BT, (4.23)

tATE
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By definition of the stopping time 73, we have

Tk
E(%v >[/ (AW 9 A, w0 AZd B >} =0.
t

ATk

Then taking expectation on both sides of (4.23) we obtain:
B [[(AWinr, )17 < BO [|(W — wheyrpa). (424

Next taking into account (4.22) and the fact that W1 has a representation through w® which is deterministic
and of polynomial growth and finally (.10}, we deduce that

E®v) [sup(|Wsl’(“’”*)| + ‘Wleq} < 00. (4.25)
s<T

As the sequence (W} — Wlev(u,v*))Jr)k converges to 0 as k — oo, P(“"")-as., then it converges also to 0
in L' (dP(“’”*)) since it is uniformly integrable thanks to 1i Taking now the limit w.r.t. k£ on both sides
of (4.24) and finally by Fatou’s Lemma we deduce that:

E®vY) [AWtJr] =0, Vt<T,
which implies that Wl < Wwhwv) Poas.. since the probabilities P(“?") and P are equivalent. Thus
Wi = It 07) < W™ = (v,
In the same way one can show that if v is an arbitrary element of My then W& = J?(u*,v*) <

W) = J2(u* v). Henceforth (u*,v*) is a Nash equilibrium point for the NZSDG. O

Now, the main emphasis is placed on the existence of a solution for the BSDE (.21)) with its properties.

4.3 Existence of solutions for markovian BSDEs related to differential games

4.3.1 Deterministic representation

Let / be an integer and let us consider f (resp. ) a Borel measurable function from [0, 7] x R™H¢+6xm
(resp. R™) into R* (resp. RY) such that:

(a) For any fixed (t,z) € [0,T] x R™, the mapping (y,z) € RT>™ s f(t,x,y, z) is uniformly
Lipschitz ;

(b) There exist real constants C' and p > 0 such that

[t 2,y,2)] + 1g(x)] < C(+ [2fP), V(t,2,y,2) € [0,T] x R,

Then we have the following result by El Karoui et al. [39] related to representation of solutions of BSDEs

through deterministic functions in the Markovian framework of randomness.

Proposition 4.3.1. Assume that (Al), (i)-(ii) and (A4) are fulfilled. Let (t,x) € [0,T] x R™ be fixed and
(057)i<s<r be the solution of SDE [{.7). Let (y4*, 24" )i<s<1 be the solution of the following BSDE:

Yt e S?,T(Rz)v e HtQ,T(szm);
—dyt* = f(s, oL yb® 28T)ds — 287dB,, s € [t,T);

yr = 9(9?)

Then there exists a pair of measurable and deterministic applications w: [0,T] x R™ — R’ and v:
[0,T] x R™ — R**? such that,

Poas, Wt <s ST, yb =w(s,00%) and 2% = u(s, 01%).
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Moreover,

(i)¥(t,7) € [0,T) x R™, w(t,x) = E[f, f(r,04%,yt%, 2L%)dr + g(05"));

(ii) For any other (t1,z1) € [0,T] X R™, the process (w (s, 01:°1), v(s, 0571))s, <s<7 is the unique solu-
tion in thT(Re) X ’Hth(Rexm) of the BSDE associated with the coefficients (f(s, 01"y, 2), g(057"™"))
in the time interval [t1,T].0

We next recall the notion of domination which is important in order to show that equation (#.21) has a

solution.

Definition 4.3.1. : L9-Domination condition

Let q €)1, 0o be fixed. For a giventy € [0, T), afamily of probability measures {v(s,dx), s € [t1,T]} de-
fined on R™ is said to be L1- dominated by another family of probability measures {vo(s,dz), s € [t1,T]},
if forany 6 € (0,T — t1), there exists an application ¢}, : [t + 6, T] x R™ — R such that:

(i) v1(s, dx)ds= (;Sfl (s, x)vo(s, dx)ds on [t1 + 0, T]x R™.
(ii) Vk > 1, (bfl(s,a:) € LI([ty + 0, T] x [—k, k]™; vo(s,dx)ds).0

‘We then have:

Lemma 4.3.1. Assume (Al) and (A4) fulfilled and the drift term b(t,x) of SDE is bounded. Let
q €]1, 00| be fixed, (to,z0) € [0,T] x R™ and let (610:%), <s<1 be the solution of SDE . Then
for any s € (tg,T), the law [i(to, xo; s, dz) of 1% has a density function py, +,(s,x), w.rt. Lebesgue

measure dx, which satisfies the following estimate: ¥(s,x) € (to,T] X R™,

Alz — a|?

Al = ol* (4.26)
S —to ’

:| S Pto,xzo (va) S QZ(S - t())_%&’tp |:_ S ¢
—lo

01(s — to)_%ea@p [—

where 01, 02, A, X are real constants such that 0 < o1 < g9 and 0 < X\ < A. Additionally for any (t1,21) €
[to, T] x R™, the family of laws {fi(t1, z1; s,dx), s € [t1,T]} is LY-dominated by [i(to, xo; s, dz).

Proof: Since o satisfies (4.2) and b is bounded, then by Aronson’s result (see [1]]), the law fi(g, zo; s, dx)
of fo:*0 s €ty, T, has a density function p, ., (s, z) which satisfies estimate (4.26).

Let us focus on the second claim of the lemma. Let (¢1,x1) € [to, 7] x R™ and s € (¢1,7]. Then,

Pti,zq (871‘) = [ptla-'l;l (Sam)pt_o}xo (87Z)]pt07l‘0 (S’x) = djthwl (va)ptm%‘o (va)

with
¢t1,11 (Sv‘r) = [ptl,m (87x)p;)%x0(8’$)] 7(871‘) € (tlvT] x R™.

For any 6 € (0,T — 1], ¢¢, 4, is defined on [t; + 0, T]. Moreover for any (s,z) € [t1 +6,T] x R™ it
holds,
a(ty, z1;s,dr)ds = pyy g (8, 2)dxds
= Ot1,01 (5, %) pto 0 (8, ) dads
= 1, a1 (8, ) (to, xo; 5, dx)ds.

Next by (4.26), for any (s, x) € [t1 +0,T] x R™,

02(s —t1)
01(s —to)

El Az — 20?2 Mo —aq)?
0< ¢t1,m1 (Sam) < o -

=Dy, 4, (s, 2).

S—to S—tl
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It follows that for any k& > 0, the function ®4, 4, (s, z) is bounded on [t1 + J,T] x [—k, k]™ by a constant
# which depends on tg, t1, §, A, A, k and z(. Next let ¢ € (1, 00), then,

T _ T _
ft1+6 f[_ka Dy, o, (8,2) i(to, To; s, dx)ds < KY ft%” f[—k,k]’" i(to, o; s,dx)ds
= qu -];1+6 dSE[l[,k,k]nz (020’10)] S HqT.

Thus ® and then ¢ belong to L1([ty + 4§, T] X [—k, k]™; vo(s, dz)ds). It follows that the family of measures
{A(t1, x1;8,dx), s € [t1,T]} is L9-dominated by fi(to, zo; s, dz). O

As a by-product we have:
Corollary 4.3.1. Letzo € R™, (t,z) € [0,T] x R™, s € (t,T] and u(t, x; s, dy) the law of X4, i.e.,
VA € B(R™), u(t,z;s,A) = P(XL" € A).
Under (Al) on o, for any q € (1,00), the family of laws {u(t,x; s,dy),s € [t,T)} is LI-dominated by
{(0, z0; s,dy), s € [t,T]}.0
4.3.2 The main result

We are now ready to provide a solution for BSDE (.21)) which satisfies the representation property via

deterministic functions with polynomial growth.

Theorem 4.3.1. Let vg € R™ be fixed. Then under the Assumptions (Al), (A2) and (A3), there exist:
(i) Two pairs of P-measurable processes (W', Z!)s<r, i = 1,2, such that: Vi € {1,2},

P—a.s., Z'(w) = (Z(w))s<r is dt — square integrable ;
—dW!=H; (s, X0, Z! uf(s, X", Z}, Z2), us (s, X", Z}, Z2)) ds — Z.dBj,
Vs <T;

(4.27)
Wi = g (X3).

(ii) Two measurable deterministic functions w', i = 1,2 with polynomial growth defined from
[0,T] x R™ into R such that:

Vi=1,2, W!=w'(s, X2"), Vs € [0,T].

Proof. 1t will be divided into five steps. We first construct an approximating sequence of BSDEs which
have solutions according to Proposition we then provide a priori estimates of the solutions of those
BSDEs. Finally we prove that those solutions are convergent (at least for a subsequence) and the limit is a
solution for the BSDE (@.27).

Step 1: Construction of the approximating sequence (W< () Z;;n;(t7x))sST, n>1,4i=1,2.
Let ¢ be an element of C> (R*™, R) with compact support and satisfying
fR2’” &(y, z)dydz = 1.
Forn >1,i=1,2and (t,z, 2%, 2?) € [0, T] x R*", we set
H} (¢, z, 21 (uh,ub) (t,z, 2L, 22))

= /R2d n2H; (t, on (), y, (ul, ud) (t, on(2),y,2)) & (n (zl — y) N (z2 — z)) dydz,
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where for any z = (2;)1<j<m € R™, on(z) := ((x; V (—n)) An)i<j<m.
We next define 1) € C>(R*™, R) satisfying

Lif  y? +|2* <1,

V(y,2) =9 . N,

0if  |y|* + |2]* > 4.

Then, for 7 = 1, 2, the measurable functions H;*, n > 1, defined as follows:

2t 22

H! (t,x,zl,z2) =1 (n’ n)H? (t,x,zl, (uy, u3) (t,x,zl,z2)) ,
(t,z,2',2%) € [0,T] x R*™,
satisfy the following properties:
(a) H! is uniformly Lipschitz w.r.t (21, 22) ;
) [HP (t,,2",2%) | < C(1+ |pa(2)]) |27 + C (1 + |pn(2)]7).
(©) [H (t,z, 2", 2%) | < cp, forany (¢, z, 2", 22).

(d) Forany (t,z) € [0,T] x R™ and K a compact subset of R*™,

sup |H! (t,:c,zl,ZQ)in (t,x,zl, (ul, u3) (t,x,zl,ZQ)) | —0,as n — oco.
(21,22)eK

Let us notice that (b) is valid since u] and u3 take their values in compact sets.

The constant 7y, which we can choose greater than 1, is the one of polynomial growth of h;, ¢ = 1, 2.
Therefore, from points (a) and (c) and Proposition[d.3.1] foreachn > 1,i = 1,2 and (¢, z) € [0,T] x R™,
there exist solutions (W2 (") Zm(he)y i S (R) x Hi (R™) such that for any s € [t, T},

T T
W) =g (e + [ X 2, e - [ zmenap, @

S

Then, by Proposition for i = 1,2, there exists a sequence of measurable deterministic functions "
[0,7] x R™ — Rand v'™: [0,T] x R™ — R™ such that

Vs e [t,T), Winito) — in(s, X4®) and  ZimBe) = in (s X5, (4.29)

Moreover, fori = 1,2 and n > 1, @' satisfies
w(t,x) = E{gz(X;’z) +/ Fm(s,Xﬁ"'”)ds}, Y(t,x) € [0,T] x R™,
¢

with
F"(t,z) = H (t,x,vln(t,z),v%(t,z)) , (t,z) € [0,T] x R™.

Step 2: The deterministic functions w'" are of polynomial growth uniformly w.r.t. n, i.e., there exist two
constants C' and A such that foranyn > 1,7 = 1,2,

Y(t,z) € [0,T] x R™, |@™(t,z)| < C(1+ |z|*). (4.30)

We will deal with the case of index ¢ = 1, the case of ¢ = 2 can be treated in the same way. For each
n > 1, let us consider the following BSDE: Vs € [¢, T],

(4.31)

(W,Z) € S{p(R) x H p(R™);
g (XE)+ [ CO+ lon(XET)DIZI+C (L + [on(XE7))dr— [ Z}mdB,.

1/ 1n
s
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For any z € R™ and n > 1, the function

2L e R™ — C(1+ |pn(XE®))|2Y + C(1 + |pn(XL®)|7) is Lipschitz continuous. Then the solution
(W1n Z'") exists and is unique. Moreover through an adaptation of the result given in (El Karoui and
al.,1997,[39]), we can infer the existence of deterministic measurable function !'”: [0,7] x R™ — R
such that, for any s € [t, T,

Wi = g(s, XL). (4.32)
Next let us consider the process

B¢ =B, - / Lo,y (r)C (1 + |on (X77)|)sign(Z;")dr, 0 < s < T,
0

which is, thanks to Girsanov’s Theorem, a Brownian motion under the probability P on (9, F) whose

density with respect to P is
Gr{C+ [en (X7 )sign(Z3") 11,11 (5)}

where for any z = (2%);21,. 4 € R™, sign(z) = (1[|zi|¢0]27:‘)i:17.“,d and (r(-) is defined by 1) Then

|z
(@3T)) becomes

T T
Wit =g (Xp) 4 [ COt e Mar - [ ZiaBy, 0<s<.

S

Therefore, taking into account of (#.32), we deduce,
. T
(k) =B [ (X + [ O (L pn (X)) dsl 7.
t

where E” is the expectation under probability P™. Taking the expectation on both sides under the probability

P" and considering & !'"(t, z) is deterministic, one obtains,

T
B"(t2) = B¢ (X") + / C (14 lpn(XE7)[7) ds]
t
Then by the Assumption (A2)-(iii) we have: V(t,z) € [0,7] x R™,

(&1 (0 2)| < CE"| sup_ (14 |X2]7) |
0<s<T

= C’E[( sup (1+[X5"

0<s<T

) (¢r(C (1+ |n (XE7)]) sien(Z2)) ) .
By Lemma[d.2.1] there exists some 1 < py < 2 (which does not depend on (¢, z)), such that,
E[(Gr(C (14 [on (X27)]) sign(Z;")))po] < o0. (4.33)
Then thanks to Young’s inequality, we obtain,
@' (t, @)

< C{E[OZJET (L4 1XE) T ] E[(Gr(C (14 [ion (XE7)]) sign(Z27)))™] 1

Finally estimates (#.33) and (#.8) yield that,
@' (t @) < C(L+|a]),

where A = % > 2. Next taking into account point (b) and using comparison of solutions of BSDEs

(391, pp-23) we obtain for any s € [¢, T,

Wi = (s, X57) > WMD) = gln(s, X0%), Vs € [1, ],
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and then, choosing s = ¢, we get that w!" (¢, x) < C(1 + |z|*), (t,z) € [0, T] x R™. But in a similar way
one can show that for any (¢, z) € [0,7] x R™,

In¢ x) > —C(1 + |x|*). Therefore '™ is of polynomial growth w.r.t. (¢,) uniformly in n, i.e., it
satisfies (@.30).0
Step 3: There exists a constant C' independent of n and ¢, z such that for any ¢t < T, fori = 1, 2,

T .
E[ / |Zim(62)|24s] < O (4.34)
t

Actually, we obtain from estimates (.30) and (£.9) that forany o > 1,7 = 1,2,

E[ sup [W{m(0|7] < ©
t<s<T

Going back to equation (4.28) and making use of Itd’s formula with (WS1 n;(t’x))2, we obtain, in a standard
way, the result (#.34). The proof is omitted for conciseness.]

Step 4: There exists a subsequence of ((W.fn;(o’”),Zﬁ”;(o’mo))se[O,T])nzl, i = 1,2, which converges
respectively to (W2, Zt)o<s<r, i = 1,2, solution of the BSDE (4.27).

Actually for i = 1,2 and n > 1, by #:29) we know that
Wim020)  gin(s, X00) 4 < T
where the deterministic functions w'" verifies:
T
Y(t,x) € [0,T] x R™, w™(t,z) = E [gi(Xé%’z) + / Fin(s, Xﬁ’””)ds] (4.35)
t
Let us now fix ¢ € (1, 2). Taking account of point (b), we have:
T . .
E[/ [F™ (s, X0"0) |qu} :/ |F*" (s, 9)|?u(0, zo; s, dy)ds
0 [0,T]xR™
T .
< CE[ [ Zim 0t (14 X001 + (14 X0 10) d].
0
By Holder and Young’s inequalities, one can show that,
T .
E{/ [Fi™ (s, X00) [9ds]
0
1 T 2—-gq
SCE[(/ ‘Zzn,(Owo 2d$ 2 / 1+|X0m0|)2 qu) 2 ]
0
T
—|—CE{/ (1 + |Xx0%0|79) ds}
0
< C{E[/ | Zini (O, Z°)|2d5} + E[l + sup | X0 }]} (4.36)

0<s<T

for constant § = (vq) V 2(1 which is greater than 2 with 1 < ¢ < 2 and v > 1. Taking now into account
the estimates (#-34) and @ we deduce that,

T
E{/ |[E™ (s, X0"0) \qu} :/ |F™(s,9)| (0, 205 5, dy)ds < C.
0 [0,T]xR™

As a result, there exists a subsequence {n} (for notational simplification, we still denote it by {n}) and
two B([0,T]) ® B(R™)-measurable deterministic functions F*(s, x), i = 1,2, such that,

F™ 5 F" weaklyin L([0,T] x R™; (0, zo; 5, dx)ds). (4.37)
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Next we aim to prove that (' (¢, x)),>1 is a Cauchy sequence for each (¢,z) € [0,7] x R™, i=1,2.
So let (¢, x) be fixed, § > 0, k, n and m > 1 be integers. From (4.35)), we have,

T
@ (b)) = [E] [ (s, X0~ s, X)) ]|
tt+6 ) )
< ‘E[/ [Fin(s, X)) — Fim (s, X1)] ds”
t T . .
+ ‘E[/t (Fin(s, Xt=) — Fim(s, X)) .1{‘X.§,m‘gk}ds} ‘

+6

T
+ ‘E[/ (P (s, X47) = F™ (5, X)) 1 oy ] |
t+46 :

On the right side, according to (#.36)), we have,
t+6 )
E[/ [P (s, X17) — Fi™ (5, X17)|ds
t

g—1 T ) ) 1

<5 {E[/ |Fin(s, Xb) — Flm(s,Xﬁ’”)Pds] } ’

t
<Cs'T

At the same time, thanks to Corollary associated to L 77 -domination implies that:

T
|E[/t+§ (B (5, X57) = F™7 (5, X3)) A ceoe <y s

T
~| / / (P (5.1 = P s0)-1 (35, dn)s
mJit

T
= | / / (P (5.0 = P 50)-1 k) )0, s,
mJit

Since ¢ . (s,m) € Lq%l([t+5, T x [—k, k]™; 11(0, zo; s, dn)ds), for k > 1, it follows from (4.37) that for
each (t,z) € [0,7] x R™, we have,

T
E[/ (F™(s, X0") = F'™ (s, X17)) 1{|X;,m|<k}ds} — 0asn,m — oo.
t+48 -

Finally,

T
!E[/t (F™ (s, X27) = F'™ (8, X07)) Ay e 55y 48] |

+5
< C{E[/,; i poa 45 }i {E[/:& P X0 = P (s X as]
<Ck %

Therefore, ('™ (t,z)),>1 is a Cauchy sequence for each (¢,x) € [0,7] x R™ and then there exists a
measurable application ww® on [0, 7] x R™, i = 1,2, such that for each (¢,z) € [0,T] x R™,i=1,2,
lim @™ (t,z) = @'(t, x).

n—oo

Additionally we obtain from estimate (4.30) that w" is of polynomial growth, i.e.,

Y(t,z) € [0,T] x R™, |&'(t,z)| < C(1 + |=|*). (4.38)
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Therefore for any ¢ > 0.

lim WO (@) = @ (1, XD (), (WO (w)] < O+ XD (W)Y), P —aus.

n—roo

By Lebesgue’s dominated convergence theorem, ((Wti";(O’IO))tST)nzl converges to W' =
(@' (t, X)) i< in H(R) for any & > 1, that is, fori = 1,2,

T
E[/ (Wim0e0) _yijngs| 0, asn — oco. (4.39)
0

We next show that (TW#(%:20)), - is convergent in S2(R), i = 1,2, as well. But first let us show that
fori = 1,2, the sequence (Z(0:70) = (v (t, X{"*));<1)n>1 has a limit in H2,(R™). As usual, we only
deal with the case ¢ = 1. For n,m > 1 and s < T, using It6’s formula with (Wsln — V[/Slm)2 (we omit the

subscript (0, zo) for convenience) and considering point (b), we get,
) T
wir—win s [z -zt ar
- S
=2 / (Wi — W™y (HY (r, X%, 27, Z2%) — Hi" (r, X270, ZY™, Z2™)) dr
T
2 [ i wimyzr -z,
7
<O [ W (12 (14 X0+ (X))
S
T
2 [ Wi wimz - 2B,

But for any z,y, 2 € R, |zyz| < %\x|p + %|y\q + 1|2|" with Il] + % + 1 = 1. Then for any € > 0 we have,

(win —wim 4 [T zin — Zim 2dr
4
<c{s [Juzin+1zim)2r + 5 [ (L x0m0) drt gbs [T Wi - Wi tdre (4.40)

Sl Wi = Wi (1| X0 ) dr | — 2 [T (Wi — Wi (Z1n — Zim)dB,.

Taking now s = 0, expectation on both sides and the limit w.r.t. n and m we deduce that,

€2

T 4
limsupE[/ |z — Z ™2 dr] §C’{5+€Z}
0

n,m—co

due to estimates (4.34), (4.9) and the convergence of (4.39). As € is arbitrary then the sequence (Z'"),,>¢
is convergent in H%(R™) to a process Z1.

Next once more going back to inequality (#.40), taking the supremum and using BDG’s inequality we
deduce that,

T
E[ sup |[W)" - Ws1m|2 —|—/ \Zkm — Zk™ | 2dr]
0<s<T 0

< CE{i T(|Z1”|+\Zlm\)2d s ' (1+]x0%0))" @ + L T|W1”7W1m|4d
— 2 T T T 4 r r 468 T T T
0 0 0

T
b [ I W (L X0 ) ds) o+ B sup W - wim
0 4 To<s<T

T
+ 4E[/ \Zk — ZEm 2 dr).
0
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which implies that,

limsup E[ sup ‘ng - ngm|2} =0

n,m—oo  0<s<T

since e is arbitrary. Thus the sequence of processes (W!™),>1 converges in S%(R) to W' which is a

continuous process.

Finally note that we can do the same for i = 2, i.e., we have also the convergence of (Z2"),,>¢ (resp.
(W?2"),50) in HZ(R™) (resp. S2(R)) to Z2 (resp. (W7 = w?(t, X;"™))i<r). O

Step 5: The limit processes (W¢, Z%)s<r, i = 1,2, are solutions of BSDE (4.27). Indeed, we need to prove
that (for case i = 1),

FYHt, X[)70) = Hi(t, X", Z}, (uf,ub) (8, X", 22, Z2))  dt @ dP — a.s. (4.41)
For k > 1, we have,
T
B [ 12 (s, X0%0, 210, 22%) - Hs, X070, 21, (7 ) (5, X970, 21, 22)) |
0
T
= E[/ |H] (s, X070, Z1", Z2")
0
—Hy(s, X0"0, Z2™, (uf, ub) (s, XP0, Z1", Z2™))| - 1{‘Z§n‘+|zgn|<k}ds}
T
- E[/ |Hp (s, X0, 71", 727
0
—H; (s, XS’IO, Zsln, (uj,u3) (s, Xg’wo, Zsln, Z?n))| . 1{‘Z§7L‘+|Z§n|2k}ds:|

T
B[ [ X002 () (. X000, 210, 220)
0

—Ha(s, X070, 2L, (ui, u3) (s, X000, 22, 22))|ds]
(4.42)

The first term converges to 0. Indeed, on one hand, for n. > 1, point (b) implies that,

|Hfl(8’Xg’m07Zsln7Z§n)_H1 (57X27m0’2;n7(u1<7u§) (SvXé)’mO’Zsln,ZsQn'))"1{|Z§"|+|Z§"|<k}
<C+ XDk + C(1 + | XD=o|7).

On the other hand, considering point (d), we obtain that,

[HY (5, X0. 2" Z3") = Hy (5, X070, 2" (ui, u3) (5, X070, 2" Z27) ) |- 1y zam 4 220 <)

n 0,z 1 .2
S sup |H1 (SaXs Ovzsazs)
{(28,22), |28 |+122]<k}

— Hy (5, X2, 2}, (u},ub) (s, X0, 22,22)) | = 0asn — oc.

s EREad]

Then thanks to Lebesgue’s dominated convergence theorem, the first term in (#.42) converges to 0 in

HAL(R).

The second term is bounded by kz(q%l)/q with ¢ € (1, 2). Actually, from point (b) and Markov’s inequality,
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for 1 < ¢ < 2 we have,

T
B [ |y (s, x0, 21 22)
0

~Hy (5, X070, 200, 3) (5, X070, 2%, Z2)) [ gz iy ]

< C{E{/T(HXS’“I)qIZJ”I“(HX?’If)l”)qu}};{E[/Tl{lzi"H23"Zk}ds}}%l
0 . o 0
< C{E[/O 1{|z;”|+\2371\zk}d8}} '
c
S Ean

q

The second inequality is obtained by Young’s inequality and estimates (#.34) and (@.9).

The third term in @.42) also converges to 0, at least for a subsequence. Actually, since the sequence
(Z'™),,>1 converges to Z! in H2.(R™), there exists a subsequence (Z™*);~q which converges to Z!, dt®
dP-a.e and such that sup; > |Z}™ (w)| belongs to H2(R). Therefore, taking the continuity Assumption
(A3)-(ii) of Hy(t, x, p, (uf,ud)(t,x,p,q)) w.rt (p,q), we obtain that,

Hiy (s, X0, 2% 0 5) (5, X050, 7270, 720
— koo H1 (S,ngxo’ Zsl7 (u}"uz) (37‘)(;),900,2517 ZSQ)) dt®dP — a.c.

and the process

sup |Hq (s,XS’IO, Zme (uy,ub) (s,Xg’””O, Zsln’*',Zszn"')) | € HA.(R).
k>0

Then once more by the dominated convergence theorem, we obtain,

Hy (s, X070, Z1™ (uf,uj) (s, X%, Z, Z2))
— koo Hi (8, X270, Z), (uf,u3) (s, X2"°, Z}, Z2)) in HL(R),

which yields to the convergence of the third term in (4.42).

It follows that the sequence ((H7 (s, X2:%0, ZI" Z2™) 1)n>1 converges to
(Hi(s, X%, Z1, (uh,u3)(s, X0, Z1, Z2)))s<r in L1([0, T] x 2, dt ® dP) and then

Fl(s, X%%0) = Hy(s, X% 71 (u},u})(s, XO%, ZL, Z?)), dt @ dP — a.e.
In the same way we have,
F2(s, X9%0) = Hy(s, X0 72 (u},u})(s, XO%, ZL, Z?)), dt @ dP — a.s.

Thus the processes (W¢, Z%), i = 1,2, is solution of the backward equation (4.27). Finally taking into
account of estimate (4.38) and the fact that Z%, i = 1,2, belong to H%(R™) complete the proof. O

As a result of Theorems [4.2.1]and £.3.| we obtain the main result of this paper.

Theorem 4.3.2. Assume that (Al), (A2) and (A3) are in force. Then the nonzero-sum differential game
defined by {#.5) and [#.6) has a Nash equilibrium point. O
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Example: The linear quadratic case.

Let us take 7o, = 1 and for ¢ € [0,T], X" = xo + By. Let f(t,z,u,v) = ax + bu + cv and fori = 1,2,
hi(t,z,u,v) = 0;zPi + yu? + p;v?, U = [~1,1] and V = [0, 1] where a, b, ¢, p;, p; 7; are real constants
such that p; > 0, 73 > 0 and py > 0. Finally let g%, i = 1,2, be two Borel measurable functions with
polynomial growth. The Hamiltonian functions H; of the nonzero-sum differential game associated with
X0 f h; g;,i=1,2,and U, V are:

Hi(taxazhuav) = Zif(tvxauav) + hi(taxauav)a i = 172
Next for n € R let ¢ and ¢ be functions from R to R defined by:

Y(n) := —lpe—1) + Nl_1<n<a] + Lp>1y and ¢(n) == LA 7T

Thus the functions u* (¢, x, 21, z2) 1= ¢(—g%) and v* (¢, z, 21, 29) := ‘b(_%) (which are continuous in
(21, 22)) verify the generalized Isaacs condition (A3). Therefore, according to Theorem [4.3.2] this game

has a Nash equilibrium point (u* (¢, X{"", Zy(t), Zo(t)), v* (t, X0, Z1 (), Zo(£)))e<r-

Remark 4.3.1. For sake of simplicity we have dealt with the case of two players. However the method
still work if we have more than two players. We just need a minor adaptation of the generalized Isaacs
condition of (A3). Actually assume there are N players Py,...,Pn (N > 3) and fori = 1,...,N, let U;
be the compact set where the controls of player P; take their values. Let (H;);=1,... n be the Hamiltonian
Sunctions of the nonzero-sum differential game associated with f(t,xz,uq,...,un), hi(t,z,u1,...,un) and
g, ie.,

Hi(t7xa 2, UL, 7UN) = Zio-il(t? 'r)f(taxa Ui, auN) + hi(t7x7u17 7UN)

We assume that, uniformly w.r.t. x, f is of linear growth and h;, ¢*, i = 1, ..., N, are of polynomial growth.

Next assume that generalized Isaacs condition, which reads as below, is satisfied:

(i) There exist N Borel functions uf, ..., wk defined on [0, T] x RWNHD™ alued respectively in Uy, ..., Uy,
such that forany i =1,...,N, (t,x, z1, ..., 2n) € [0,T] x RWHD™ v have:

H;(t,z, zi, (uf, ..., ui)(t, @, 21, .0, 2N))
<SHi(t,w, 2z, (Ul ooy wi ) (6 @, 215 oy 28) Ui (U g s U ) (B 2, 215 0y 28)) Yy € Uy

(ii) For any fixed (t, x) the mapping
(21, ey 2n) — Hi(t, @, 2, (U], oo uy) (6,2, 21, .0 2N))

is continuous.

Then, if o(t,x) verifies the Assumption (Al), the differential game associated with the drift
f(t,x,u1,...,un), the instantaneous payoffs h;(t,z,uy,...,uy) and the terminal payoffs g*(z), i =

1,..., N, has a Nash equilibrium point.

Extension: In this study the main points we required are:

(i) the existence of p > 1 such that for any pair (u,v) € M, E[({r(u,v))P] < oo where (r(u,v) is
defined as in @3) ;

(i1) the L9-domination property or its adaptation ;

(iii) the generalized Isaacs condition.
As far as those points are in force, one can expect that the NZSDG has a NEP and, e.g., one can let drop the
uniform ellipticity condition (.2) on o. Actually let us consider the following example where the matrix
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o is non longer bounded and does satisfy (4.2). Assume that m = 1 and for (¢,z) € [0,T] x R, X»? is
solution of:
dXb* = Xb*dB,, s € [t,T]and X"* =z > 0 for s € [0,].

Note that
Vs <T, Xﬁ"” > 0. 4.43)

Next let
f(syzyu,v) = a(us +vs), s <T,U=[-1,1], V =1[0,1]

and assume that h; and hg are as in the previous example. Therefore the generalized Isaacs condition is
satisfied with
Wt @,z 2) = (- o) and 0 (a2, 20) = (- o),
2m 2p2
where ¢ and ¢ are the functions defined above.
Obviously for any (u,v) € M, (r((us + vs)) belongs to LP(P) for any p > 1 since U and V are

bounded sets. Next for any s € [t, T, we have:
t,x 1
X% =zexp{Bs — By — 5(8 —t)}.

Thus for s €]t, T, the law of X’** has a density p(t, z; s, y) given by

1 1 y. 1 )
t,x;s,y) = ———exp{l———|In(Z) + =(s—1¢ 1 , y€R.
plt739,0) = s ol () £ 5o = 0 0,
Soletxg > 0,9 > 0(5+t < T)and ® defined by:
p(t,x;5,9)

(s, y) = (s,y) €[t+6,T] xR.

p(Oa Lo; S, y) ’
Therefore for any > 0, ® belongs to LI([t + 6,T] x [+, x],p(0, zo; s, y)dsdy) which is the adaptation
of property (ii) of Definition .3.Ton L?-domination, in taking into account (#.43). Now as the following

estimate holds true: -

E[ {xee oy + 1[x§vz>ﬁ]}d3} < o(k),

t+3
where the function  is such that p(x) — 0 as K — oco. Then one can conclude that the NZSDG defined
with those specific data o, U, V, f, g;, h;, ¢ = 1,2, has a Nash equilibrium point. The proof can be

established in the same way as we did in the previous sections. O



CHAPTER 5

Risk-sensitive Nonzero-sum Stochastic
Differential Games with Unbounded
Coefficients

We consider, in this article, a risk-sensitive nonzero-sum stochastic differential game model. Assume
that we have a system which is controlled by two players. Each one imposes a so-called admissible control
which is an adapted stochastic process denoted by u = (u;);<7 (resp. v = (v;)¢<7) for player 1 (resp.
player 2). The state of the system is described by a process (x¢);<7 which is the solution of the following

stochastic differential equation:
dxy = f(t, x¢, us, v¢)dt + o(t,2¢)dBy for t < T and 29 = . (5.1)

The above process B is a Brownian motion. We establish this game model in a two-player framework for
an intuitive comprehension. All results in this article are applicable to the multiple players case. Naturally,
the control action is not free and has some risks. A risk-sensitive nonzero-sum stochastic differential game
is a game model which takes into account the attitudes of the players toward risk. More precisely speaking,

for player ¢+ = 1, 2, the utility (cost or payoff) is given by the following exponential form

Ji(u’ ’U) = E[ee{foT h’i(SvXSVUSWS)dS‘ng(XT)}]'

The parameter 6 represents the attitude of the player with respect to risk. What we are concerned here is a
nonzero-sum stochastic differential game which means that the two players are of cooperate relationship.
Both of them would like to minimize the cost and no one can cut more by unilaterally changing his own

control. Therefore, the objective of the game problem is to find a Nash equilibrium point (u*, v*) such that,
JHu*,v*) < TP (u,v*) and J2 (u*,0%) < TP (u*,v),

for any admissible control (u,v).

Let us illustrate now, why 6, in the cost function, can reflect the risk attitude of the controller. From
the economic point of view, we denote by G, , = fOT hi(s, Xs,us,vs)ds + g'(X7) the wealth of each
controller and for a smooth function F'(z), let F(GY, ,) be the cost might be brought from the wealth.
The two participates would like to minimize the expected cost E[F(wa)] A notion of risk sensitivity is
proposed as follows:

F(@)
T FEY
It is a reasonable function to reflect the trend, more precise, the curvature of cost F' with respect to the
wealth G*. See W.H. Fleming’s work [42]] for more details. In the present paper, we choose utility function

57
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F(z) as an exponential form F'(z) = ¢%2. Both theory and practical experience have shown that it is often
appropriate to use an exponential form of utility function. Therefore, the risk sensitivity « is exactly the
parameter 6.

We explain this specific case v = 6 in the following way. The expected utility J*(u,v) = E[eeciw] is
certainty equivalent to

04 (u,v) ;=601 1n E[eeciwv].

By certainty equivalent, we refer to the minimum premium we are willing to pay to insure us against some
risk (alternately in a payoff case, the maximum amount of money we are willing to pay for some gamble).
Then, of)(u,v) ~ E[GL ] + gVar(GfL_yv) provided that §Var(GY, ) is small (Var(.) is variance ). Hence,
minimizing J*(u, v) is equivalent to minimize gf(u,v). The variance Var(GY, ,) of wealth reflects the risk
of decision to a certain extent. Therefore, it is obvious that when 6 > 0, the less risk the better. Such
a decision maker in economic market will have a risk-averse attitude. On the contrary, when ¢ < 0, the
optimizer is called risk-seeking. Finally, if # = 0, this situation corresponds to the risk-neutral controller.
For ease of presentation, we consider in the main text the risk-averse case only, the risk-seeking case is
treated similarly.

About the risk-sensitive stochastic differential game problem, including nonzero-sum, zero-sum and
mean-field cases, there are some previous works. Readers are referred to [[7, 136, 43, 144, 66, 193] for further
acquaintance. Among those results, a particular popular approach is partial differential equation, such as
[7, 143. 1441 166l 193] with various objectives. Another method is through backward stochastic differential
equation (BSDE) theory, see [36]. The nonlinear BSDE is introduced by Pardoux and Peng [84] and
developed rapidly in the past two decades. The notion of BSDE is proofed as an efficient tool to deal with
stochastic differential game. It has been used in the risk neutral case, see [58,53]]. About Other applications
such as in field of mathematic finance, we refer the work by El-Kaoui et al. [39] (1997). A complete review
on BSDEs theory as well as some new results on nonlinear expectation are introduced in a survey paper by
Peng (2010) [87].

In the present paper, we study the risk-sensitive nonzero-sum stochastic differential game problem
through BSDE in the same line as article by El-Karoui and Hamadéne [36]. However in [36], the setting of
game problem concerns only the case when the drift coefficient f in diffusion (3.1)) is bounded. This con-
strain is too strict to some extent. Therefore, our motivation is to relax as much as possible the boundedness
of the coefficient f. We assume that f is not bounded any more but instead, it has a linear growth condition.
It is the main novelty of this work. To our knowledge, this general case has not been studied in the litera-
ture. Finally, we show the existence of Nash equilibrium point for this game. We provide a link between the
game which we constructed and BSDE. The existence of the NEP is equivalent to the existence of solutions
for a related BSDE, where this BSDE is multiple-dimensional with continuous generator involving both
linear and quadratic terms of z. The difference with [36]] is that the linear term of z is of linear growth w
by w due to the linear growth of f. Under the generalized Isaacs hypothesis and domination property of
solutions for (5.I), which holds when the uniform ellipticity condition on o is satisfied, we finally show
that the associated BSDE has a solution which then provides the NEP for our game.

The paper is organized as follows:

In Section 2, we present the precise model of risk-sensitive nonzero-sum stochastic differential game
and necessary hypothesis on related coefficients. In Section 3, we firstly state some useful lemmas among
which Lemma [5.2.2] and Corollary [5.2.1] which corresponding to integrability of the Doléan-Dade expo-
nential local martingale, play a crucial role to overcome the difficulty that function f is not bounded. Then,
the link beween game and BSDE is demonstrated by Proposition The utility function is character-
ized by the initial value of a BSDE. Then, it turns out by Theorem @] that the existence of the NEP for
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game problem is equivalent to the existence of some specific BSDE which is multiple dimensional, with
continuous generator involving a quadratic term and a linear term of Z which is of linear growth w by w.
Finally, we show, in Section 4, the solutions for this specific BSDE do exist when the generalized Isaacs
condition is fulfilled and the law of the dynamics of the system satisfy the L?-domination condition. The
latter condition is naturally holds if the diffusion coefficient o satisfies the well-known uniform ellipticity
condition. Our method to deal with this BSDE with non-regular quadratic generator is that we firstly can-
cel the quadratic term by applying the exponential transform, then, smooth the new generator by mollifier
technique in order to obtain the approximate solutions processes. Besides, in the Markovian framework,
those approximate processes can be expressed via some deterministic functions. We then provide some
good uniform estimates of the processes, as well as the growth properties of the corresponding determin-
istic functions. Then it followed by the convergence result which then gives a limit process finally proved
as the solution of the BSDE after exponential transform. At the end, by taking the inverse transform, the

proof for existence is finished.

5.1 Statement of the risk-sensitive game

In this section, we will give some basic notations, the preliminary assumptions throughout this paper,
as well as the statement of the risk-sensitive nonzero-sum stochastic differential game. Let (2, F,P) be
a probability space on which we define a d-dimensional Brownian motion B = (B;)o<;<7 With integer
d > 1and fixed T > 0. Let us denote by F = {F;,0 < t < T'}, the natural filtration generated by process
B and augmented by Np the P-null sets, i.e. F; = 0{Bs, s <t} V Np.

Let P be the o-algebra on [0,7] x  of F;-progressively measurable sets. Let p € [1,00) be real
constant and ¢ € [0, T'] be fixed. We then define the following spaces:

o LP ={¢: F;-measurable and R™-valued random variable such that E[|£|P] < co};

SPA(R™) = {¢ = (ps)i<s<r: P-measurable, continuous and R™-valued such that
E[ sup |ps[P] < oo};
s€t,T]

* H) 7 (R™) = {¢ = (ps)t<s<r : P-measurable and R™-valued such that E[(ftT lps|?ds) 3] < oo};

* DY+ (R™) = {¢ = (ps)i<s<r : P-measurable and R"-valued such that E[ sup eP¥:] < oo}.
’ - s€t,T)

Hereafter, 5§ (R™), g +(R™), Df (R™) are simply denoted by S7.(R™), H7.(R™), D7.(R™). The
following assumptions are in force throughout this paper. Let ¢ be the function defined as:

o:[0,T] xR" — R™*™
(t.x) — o(t, )

which satisfies the following assumptions:

Assumptions (A1)

(i) o is uniformly Lipschitz w.r.t x. i.e. there exists a constant C; such that,

vVt e [0, T,V z,2’ € R™, |o(t,z) —o(t,z)| < Cylx — 2’|
(ii) o is invertible and bounded and its inverse is bounded, i.e., there exits a constant C', such that

Y(t,z) € [0,T] x R™, |o(t,z)|+ |0~ (t,z)| < Cy.
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Remark 5.1.1. Uniform ellipticity condition.
Under Assumptions (Al), we can verify that, there exists a real constant ¢ > 0 such that for any (t,z) €
[0,T] x R™,

el < a(t,w).aT(t, ) <e LI (5.2)

where I is the identity matrix of dimension m.

We consider, in this article the 2-player case. The general multiple players game is a straightforward
adaption.
For (t,x) € [0,T] x R™, let X = (X%*);<r be the solution of the following stochastic differential

S

equation:

Xbt =g —|—/ o(u, X5")dBy, s € [t,T);
t (5.3)

X" =gz, s €0,

Under Assumptions (A1) above, we know such X exists and is unique (see Karatzas and Shreve, pp.289,
1991[70]]). Let us now denote by U; and U, two compact metric spaces and let M (resp. M) be the set
of P-measurable processes u = (u;)i<7 (resp. v = (v¢)¢<7) With values in Uy (resp. Us). We denote by
M the set M7 x My, hereafter M is called the set of admissible controls. We then introduce two Borelian
functions

f:[0,T] x R™ x Uy x Up — R™,

h; (resp. g%) : [0, T] x R™ x Uy x Uy (resp. R™) — R, i = 1,2,

which satisfy:

Assumptions (A2)

@) forany (¢,x) € [0,T] x R™, (u,v) — f(t,z,u,v) is continuous on Uy x Us. Moreover f is of linear
growth w.r.t z, i.e. there exists a constant C such that |f (¢, z,u,v)| < Cr(1 + |z|),V(¢, x,u,v) €
[0,T] x R™ x Uy X Us.

(ii) for any (¢,z) € [0,T] x R™, (u,v) — h;(t,x,u,v) is continuous on Uy x Us, ¢ = 1,2. Moreover, for
i = 1,2, h; is of sub-quadratic growth w.r.t z, i.e., there exist constants C, and 1 < v < 2 such that
|hi(t, z,u,0)| < CR(1+ |2|7), Y(t, 2, u,v) € [0,T] x R™ x Uy x Us.

(iii) the functions g’ are of sub-quadratic growth with respect to z, i.e. there exist constants Cy and 1 <
v < 2 such that |¢°(z)| < Cy(1 + |z|7),Vz € R™, fori=1, 2.

For (u,v) € M, let P;; be the measure on (2, F) defined as follows:

dP} = (r( / (s, XI) f 5, X7 ug, vs)dBy)dP, (5.4)
0

where for any (F;, P)-continuous local martingale M = (M;)¢<7,

1

(M) = (exp{Mt — §<M>t})t§T’ (5.5)

where (). denotes the quadratic variation process. We could deduce from Assumptions (A1), (A2)-(i) on o
and f that P;‘; is a probability on (£2, F) (see Appendix A, [36] or [70] pp.200). By Girsanov’s theorem

(Girsanov, 1960 [50], pp.285-301), the process B%" := (B, — fos o (r, X5T) f(r, X5 up, v )dr) s<r is
a (Fs, P}, )-Brownian motion and (X*),<r satisfies the following stochastic differential equation:
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{ dXP® = f(s, X" ug,vs)ds + o (s, X0")dB™", s € [t,T]; 56

X" =gz, s €0,
As a matter of fact, the process (X%*)s<r is not adapted with respect to the filtration generated by the
Brownian motion (B%"),<7 any more, therefore (X%*) <7 is called a weak solution for the SDE (5.6).
Now the system is controlled by player 1 (resp. Player 2) with u (resp. v).
Now, let us fix (¢,2) to (0,¢), i.e., (t,2) = (0,z0). For a general risk preference coefficient 6, we

define the costs (or payoffs) of the players for (u,v) € M by:

T (u,v) = Bo [0 m(s,xsmyus,vs)dwgi(X%%)}} i=1,2 (5.7)
) ,LQ ) ) .

where E(’; (.) is the expectation under the probability Py, . Hereafter Eg’; (resp. Py’ ) will be simply
denoted by E*""(resp. P""V). The functions h; and g' (resp. hy and g?) are, respectively, the instantaneous
and terminal costs for player 1 (resp. player 2). The player is called risk-averse (resp. risk-seeking) if § > 0
(resp. 8 < 0). Since the resolution of the problem is the same in all cases (f > 0, 8 < 0 or § = 0), without
loss of generality, we assume 6 = 1 in for simplicity below.

In this article, the quantity J(u, v) is the cost that player i (i = 1, 2) has to pay for his control on the
system. The problem is to find a pair of admissible controls (u*, v*) such that:

JHu*,v*) < JMu,v*) and J2(u*,0*) < T (u*,0), Y(u,v) € M.

The control (u*,v*) is called a Nash equilibrium point for the risk-sensitive nonzero-sum stochastic dif-
ferential game which means that each player chooses his best control, while, an equilibrium is a pair of
controls, such that, when applied, no player will lower his/her cost by unilaterally changing his/her own

control.

Let us introduce now the Hamiltonian functions for this game, for i = 1,2, by H; : [0,T] x R*™ x
U; x Uy — R, associate:

H;(t,z,p,u,v) = po(t,x) f(t, z,u,v) + hi(t, z,u,v). (5.8)
Besides, we introduce the following assumptions which will play an important role in the proof of existence
of equilibrium point.

Assumptions (A3)

(i) Generalized Isaacs condition: There exist two borelian applications u, u} defined on [0, 7] x R>™,
with values in U; and U, respectively, such that for any (t, x, p, ¢,u,v) € [0,T] x R*" x U x U, we
have:

Hi(t,z,p,q) = Hi(t, z,p,ui(t, z,p, q), uz(t, x,p, q)) < Hi(t, 2, p, u, u5(t, @,p, q))
and
H;(t,x,p, q) = Ha(t, x,q, ui(t, z,p, q), us(t, 2,p,q)) < Ha(t,z, q,ui(t, z,p,q),v).
(ii) The mapping (p, q) € R*™ — (Hj, H})(t,x,p,q) € Ris continuous for any fixed (¢, x) € [0, 7] x
R™. O
To solve this risk-sensitive stochastic differential game, we adopt the BSDE approach. Precisely speak-
ing, to show the game has a Nash equilibrium point, it is enough to show that its associated BSDE, which
is multi-dimensional and with a generator not standard, has a solution (see Theorem@] below). There-

fore the main objective of the next section is to study the connection between the risk-sensitive stochastic
differential game and BSDE:s.
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5.2 Risk-sensitive nonzero-sum stochastic differential game and BSDEs

Let (t,z) € [0,7] x R™ and (6%") <7 be the solution of the following forward stochastic differential

S

equation:

dfs = b(s,0s)ds + o(s,0,)dBs, selt,T];
{ (5,6.)ds + 0(5,6.) t.1] 5o

eszx’ SG[O,ﬂ,
where o : [0,7] x R™ — R™*™ satisfies Assumptions (A1)(i)-(ii) and b: [0,7] x R™ — R™ is a

measurable function which verifies the following assumption:

Assumption (A4): The function b is uniformly Lipschitz and bounded, i.e., there exist constants C and Cj,
such that:

vt €[0,T], Va,2' € R™, |b(t,x) — b(t,z")] < Co|lz — 2’| and |b(t, z)| < Cy.
Before proceeding further, let us give some useful properties of stochastic process (65%)s<r.

Lemma 5.2.1. Under Assumptions (Al) and (A4), we have
(i) the stochastic process (7)< has moment of any order, i.e. there exists a constant C, € R such that:
P-a.s.

Vg€ [1,00), E[(sg}; 021)7] < Gyt + [0 (5.10)

(ii) additionally, it satisfies the following estimate: there exists a constant C ; € R, such that P-a.s.

A sup |9;’$|l

Vi€ [1,2), A € (0,00), E[e a<T } < eCrali+lal), G.11)
Apart from q, X and , the constants Cyq and C ; in (5. 10)(.11) depend also on Cy, and Cy and T.

Proof. We refer readers [70]] (pp.306) for the result (i). In the following, we only provide the proof of
(ii). We denote b(s, 0*) and o (s, 6%") simply by b, and o,. Considering (bs)s<r is bounded and E[f] =
J5° P{f > u}du for all positive function f, we obtain,
E[e?stPssr IGE'“IZ]
— E[BA Sup < |z [ brds+ [ aTdBr|l]

< ecl,/\Tb,T'(1+|$IZ)E[GCZ,)\'Sups§T [ o O-T'dB'V"L:I
1 > s !
_ ecly/\vva.(1+|a:| )/ P{ecl,/\'suPnglfd ordB,| > ’LL}d'LL
0

o0
— eCz,A,b,T'(1+|$|l) (1 +/ P{ecl,xsupng|fos ordB,|! > eCz,A'ul}decl,xul>
1

— Crawr (1+[z]) (1 +/ P{sup |
0 s<T Jo

S

0,.dBy| > u}eC”A'“lCl’)\lul_ldu> .

u2
Apply Theorem 2 in [34] (pp.247), P{sup,<7 | [; 0+dB,| > u} < e 27 . Therefore,

E[e/\SUPng |92T|l]

o0 2
! ——u l
< Crapr (1+]z]) (1 +/ e 270Z Ciau C’Mlul_ldu>
0

< ecl»\,b,T,a'(l'Hx‘l).

The above inequality is finite since 1 <[ < 2 and v < e" for any v > 0. O
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Next let us recall the following result by Hausmann ([64]], pp.14) related to integrability of the Doléan-
Dade exponential local martingale defined by (5.3)).

Lemma 5.2.2. Assume (Al)-(i)(ii) and (A4), let (0%%)s<r be the solution of@) and o be a P @ B(R™)-
measurable application from [0,T] x  x R™ to R™ which is of linear growth, that is, P -a.s., ¥(s,x) €
[0,T] x R™,

lp(s,w, z)] < C3(1 + |z]).

Then, there exists some p € (1,2) and a constant C, where p depends only on C,, Cs, Cy, C3, m while the

constant C, depends only on m and p, but not on , such that:
' p
E UCT(/ so(svﬁ?"”)st)’ ] <C, (5.12)
0

where the process (( [, (s, 04" )dBs) is the density function defined in .
It follows from Lemma[5.2.2] that,

Corollary 5.2.1. For an admissible control (u,v) € M and (t,x) € [0,T] x R™, there exists some
po € (1,2) and a constant C, such that

E “CT(/ U(S,X:,’I)*lf(s,X:,’””,us,vs)st)
0

Po
] <C. (5.13)

Remark 5.2.1. Corollary[5.2.1)is needed for us in the proofs of Proposition[5.2.1|and Theorem[5.2.1|which
is the main result of this work. Notice that the function f is no longer bounded as in the literature but is of

linear growth in x.

As a by-product of Lemma [5.2.T]and Lemma [5.2.2] we also have the similar estimates for the process
X,

Lemma 5.2.3. (i) There exist two constants C_'q, C_',\,l € R, such that P-a.s.

Vg€ [1,00), E|(sup |XL7)%] < Cy(1+ [2f), (5.14)
s<T
and
A sup \Xi’\l _ .
Vi€ [1,2), A e (0,00), E{e = } < Ol (5.15)

(ii) Moreover, for solutions of the weak formulation of SDEs (5.6), we have the similar results. Precisely

U, v

speaking, for (u,v) € M, E;’, is the expectation under the probability PZ’;, then there exist constants
éq,éu € R, such that P-a.s.

2q -
Ve 1,00), B[ (sup XE71) ] < G0+ ), (5.16)
s<T
and L
A sup |X§’z\ ~
Vi€ [1,2), A€ (0,00), E& [e s<t ] < Oralitlel), (5.17)

Proof. We only prove (5.17). Since,

wo A sup \X:’I\l A sup \XE’I\L
[ e
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where (r represents (r( [, o (s, X") 7! f(s, X", ug, v5)dBy). As aresult of Corollary 5.2.1} there exists
some pg € (1,2), such that, {7 € LP°. Therefore, by Young’s inequality and (5.13), we obtain that,

A sup |X:’I|l p%{l sup |X;'I|l
E/ |e =7 <E | o=T
5T —

< eéA,L,po(l-‘rml) +C

m,po

+ E[|¢r ]

< eék,l,7rL,p0(1+‘a:|l)'

O

The next proposition characterizes the payoff function .J?(u, v) for i = 1,2 with form (5.7) by means
of BSDEs. It turns out that the payoffs J%(u, v) can be expressed as the exponential of the initial value for

a related BSDE. It is multidimensional, with a continuous generator involving a quadratic term of Z.

Proposition 5.2.1. Under Assumptions (Al) and (A2), for any admissible control (u,v) € M, there exists
a pair of adapted processes (Y'>(“V) | 7)) i = 1,2, with values on R x R™ such that:

(i) Foranyp > 1,

E“" [ sup ethi’(u’v)]

T .
< ocoand P — a.s./ |z 20t < oo (5.18)
0<t<T 0

(ii) Fort <T,
. ) T ) 1 .
Y GO0 [ X0, 250 g v,) 4 3|20 s
t

T .
- / ZHw B, (5.19)

t

The solution is unique for fixed xo € R™. Moreover, J*(u,v) = Yo,

Proof. Part I : Existence and uniqueness. We take the case of ¢ = 1 for example, and of course the
case of ¢ = 2 can be solved in a similar way. The main method here is to define a reasonable form
of the solution directly. We first eliminate the quadratic term in the generator by applying the classical
exponential exchange. Then, the definition of Y component is closely related to Girsanov’s transformation,
and the process Z is given by the martingale representation theorem. Afterwards, we shall verify by Itd’s

formula that what we defined above is exactly the solution of the original BSDE.

As we stated in the previous section, the process (X:%0) < satisfies SDE (5.6)) by substituting (0, z)
for (t,x).

In order to remove the quadratic part in the generator of BSDE (5.19), we first take the classical expo-

nential exchange as follows: V¢ < T, let

_ 1, (u,v
)/;1»("7'0) — eYt ( ).

)

ZtL(u,v) _ thl,(u,v)Ztl,(u,v).

Therefore, the processes (Ytl’(u’”), Ztl’(u’v))tST solve the following BSDE:

0,zq

T
Y = o' (Xr )+/ ZPW g (s, XP70) f(5, X7, ug, vs)
t

T
+ (YN T (s, X070 ug, v)ds — / Z8 B, t < T. (5.20)
t
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Applying Girsanov’s transformation as indicated by (5.4)-(3.3)), the BSDE (5.20) then reduces to
— 1 0,z T — T —
Y;l’(u’v) — o9 (X7T0) +/ (Ysl*(“’”)ﬁh(s,XS’””O,uS,vs)ds ,/ Zsl,(u,v)dB;t,v’ t<T.
t t
Let us now define the process Y (%) explicitly by:
B T
70— B exp { g1 (X370) + / M(s, X0 ugv)ds R < T (52D)
t

Considering the sub-quadratic growth Assumptions (A2)-(ii)(iii) on h; and g' and the estimate ( , We
obtain,

T
E" [exp{g" (X™) + / ha (s, X070, v,)ds |
0

<E“" {exp {C’ sup (1+4]X2"|7) H < o0,
0<s<T
with constant C = Cy V (T'C},). Therefore, we claim that the process (Ytl’("’v))tST in G.21) is well-
defined.

We will give now the definition of process (Z 1’(u’”))KT In the following, for notation convenience,
we denote by ( the following process ¢ := (()i<r = (¢ fo 5, X9%0) f (s, X2%0 ug, v5)dBs))i<r-
Then the definition (3.21)) can be rewritten as:

T
7 = [ exp {gM(X70) + / (s, X070, g, v,)ds |
t

}'t}7 t<T. (5.22)

Thanks to Corollary|[5.2.1} there exists some pg € (1, 2), such that E[|¢7[*°] < oo. Therefore, from Young’s
inequality, we get that for any constant ¢ € (1,pp),

EHCT~eXp{g1(X%IO)+/ ha (s, X020 g, v )ds}

0

|

T
q o1 L P04 P 1,000 0
E[|¢r|P°] + 7]90 E[eXp{pT Y (" (X7 )+/0 hi(s, X" ug,vs)ds) }]

_ T
Po qE[eXp {ﬂ . (gl(X%wo) —|—/ hl(s,Xg’xO,uS,vs)ds)H < oo
Po Po—4q 0

Then, we deduce that,
T
Cr - exp {gl(X%”“'o) —|—/ hi(s, X0 g, vs)ds} € L(dP).
0

It follows from @) and the representation theorem that, there exists a P-measurable process (0_5)5§T IS
HL(R™), such that for any ¢ < T,

t
AR c;lexp{—/ ha(s, X0 ug, vs)ds}x
0

T t
X {E [CT exp {gl(X%IO) +/ hl(Sng’ZO,US7Us)d5}:| +/ éSst}
0

0
Let us denote by:

Rt::E[QTeXp{ (XOM /hlsX’Uus,vs ds /QdBS, t<T.
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Taking account of d¢; = Coo (£, X ™) f(t, X", uy, vy )dBy for t < T, then by Ito’s formula, we
have d¢; " = —¢ oM (8, X0 F(4, X0 g, v)d By — o (4, X)) F(t, X0 ug, ) [2dt ), t < T

Moreover,
d[{t_l exp{— /Ot hl(s,Xg’xo,us,vs)ds}]
= (¢ texp{— /Ot hl(s,Xg’xo’“s’”s)ds}{U_l(t,Xto’zo)f(t,X,?’wo,ut,vt)dBt
[ o XD £ XD g, 0) [ B, XD g, )] di f, £ < T
Hence, fort < T,
Ay = — ¢ exp{— /Ot ha (s, XS’””%us7vs)ds}{a_l(t,Xf*”O)f(t, X0 ug,v,)dBy
[l XD F XD g, 0) 2 (XD e, v0)]d Ry
+ ¢ exp{— /Ot hi(s, X0%0 g, v,)ds}0,d By
— ¢ texp{— /Ot hi(s, X0 g v )dsyo ™ (t, XD70) f (£, X0 g, ve)Opdl,

which allows us to define the process Z:(%*) as the volatility coefficient of the above equation, i.e., for
t<T,

t
20 = 7 exp{— / (5, X070 g, v )ds} {0 (8 XP™) £ (8 XD g, ve) By
0
— ét}. (5.23)

Then, it is not difficult to verify that the process (¥;""“"*), Z;"“*)), .1, as we defined by (5.21) (5.23)
satisfies the BSDE (5.20). Moreover, it can be seen obviously from 1i that }7;1’(“’“) > Qforallt €
[0, T. Therefore, we define the pair of processes (Y1:(%:?) Z1.(%:v)) ag follows:

Yrtl,(u,v) —In ﬁl,(u,v);

Z00)

Ztlv(uxv) = — , t < T.
Y, ()

which completes the proof of existence.

The uniqueness is natural by the above construction itself for fixed 2o € R™. Since, the solution of
BSDE (5.20), if exists, will be of the form (5.21)) and (3.23).

Part II : Norm estimates. Finally, let us focus on the estimate of (Y;l’(u’v))tST which is needed in

the next theorem. First, as a consequence of the definition (5.21)) that for any p > 1,

Eu,v“ sup Y;l,(u,v)‘p}
t€[0,T]
T ) (5.24)

sup {E“’”[exp{gl(X%mo)+/ |h1(s,Xg’””0,us,vs)|ds}|}'t}}‘ }
0

§ Eu,v |:
t€(0,T]

Noticing that the process E* [exp{g" (X2™°) + [ [h1(s, X2, us, vs)|ds)}|F] is a Fy-martingale, then
Doob’s maximal inequality(see [[70] pp.14) implies that,

£l TP
’ r ) (5.25)
< (Z%)pE“” [ E"Y [exp{gl(X%wo) + /0 |h1 (s, X" ug, v,)|ds} Fr] ‘ }
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Then, considering the Jensen’s inequality and Assumption (A2)(ii)-(iii) on ¢! and h1, it turns out that,

Eu,v“ sup }7t17(u,'v)‘l7]
t€[0,T]

T
< P PE [explpg (X57) +p [ (s, X0 ws0ldsl] (520
- 0
0,z |~
p u,v t i C(1+|Xt ‘ )
S(p—1)pE [erclom ] <oo,

which is given by the estimate (5.17) with constant C' depending on p, C,, C}, and T'. Therefore,

E“[ sup V"] < o0, (5.27)
t€[0,T]
which gives,
1,(u,v)

E“’”[ sup ePYr ] < 00, Vp > 1.

t€[0,T]
. . . . 1 (w0 (uw) .
At last, note that in taking ¢ = 0 in || we obtain J'(u,v) = Y01’< W) = Yo since J contains
only P and P*" null sets. O

We are now ready to demonstrate the existence of Nash equilibrium point which is the main result of

this article.

Theorem 5.2.1. Let us assume that:
(i) Assumptions (Al), (A2) and (A3) are fulfilled ;

(ii) There exist two pairs of P-measurable processes (Y, Z%) with values in RT™
p 4

, 1 = 1,2, and two
deterministic functions w'(t,x) which are of subquadratic growth, i.e. |w'(t,z)] < C(1 + |z|7) with
1 <~v <2 t=1,2such that:

P-a.s. Yt <T,Y} = w'(t,X;"") and Z'is dt-square integrable P-a.s.;
T
. . . 1
}/tz :gl(X%x)—i_/ {HZ(S7X27$7Z‘25(U*7U*)(57X271azg723))+§|Z;|2}d8 (5.28)
t
T .
—/ ZidB,, Vit <T.
t

Then the pair of control (u*(s, X%®, Z1, Z2),v* (s, XO%, Z}, Z2))s<r is admissible and a Nash equilib-

rium point for the game.

Proof. Fors < T,letussetu’ = u*(s, X>% Z! Z2) and v* = v*(s, X0% ZL Z2). Then (u*,v*) € M.
On the other hand, we obviously have J! (u*, v*) = e¥o by Proposition Next for an arbitrary element

wot L (o

u € My, let us show that ¢¥ < ¥, which yields e¥0 = J! (u*,v*) < Jt(u,v*) = eYo ' We
focus on this point below. For the admissible control (u, v*), thanks to Proposition[5.2.1} there exists a pair
of P-measurable processes (Y, (")), 1 for i = 1,2, which satisfies: for any p > 1,

yiv) e (R, dP“""), Z4(V7) is dt-square integrable P-as.
T
() _ i 0 (5, X0 Ziswo) gy o L i)
VIO < )+ [ X020 ) £ SIZER (s )
T . *
7/ Zow B, vt < T.
t

Letus set: Vi < T,

D;L*av* — eYtl Dzhv* — eyvtl,(u,v*).

)
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Thus It6-Meyer formula yields, for any ¢t < T,
—d(Dg*’v* . D;M)* )+ + dLg (Du* ot Du,v*)

- [Df*’”*Hl(zg X0 78 g vp) — D HL (8 X, 20 g, o >} dt

Lpy e —ppe 0y

u* " w,v* 1, (u,v*
—(Dy " Zy = DY Z, e ))1{Df*v“*—D§‘*”*>o}dBt

- {Df*’”*Hl(t,X?’”, Zhuivf) — DYV H (6 X0 ZE g, o))
+ DY (XD, ZE ) = DR H (XD, 20, o)1 gyt

u* " w,v* 1, (u,v*
— (D} Ztl - DM 7, (u,v ))1{Dy*v“*—Df*”*>0}dBt

= |:D;L*7U* (Hl(t7X1?71aZt17u:7’U:) _Hl(taX?7m7Z7:17ut7U:))
+ (D?*w* _D?U*)—‘rhl(taX?,xvut’U:)

+ (D ZE = D 2 o XD F (1 XD )1 dt

{py " =D >0}

_ (D?*’U*Ztl . D?}y* Ztl,(u,’U ))]‘{D;L*’v*—D;"v* >0}dBt7 (530)

where LY = LY(D**" — D“"") is the local time of the continuous semimartingale D" %" — D"
at time 0. Next for t < T, let us give Bj"" = (B, — [0 (5, X0%) f(5, X0, ug, v7)ds) i<t
which is an F;-Brownian motion under the probability P*¥ , whose density w.r.t. P is defined by
Cr o= Cr(fy o7 (8, X2) f (5, X", ug, v})dBy) as defined in . On the other hand, let us denote:

t
r!:.= (D} " — D" )+exp{/0 hi(s, X0 ug, vl)ds), t<T.

Taking into account of (5.30), we then conclude by 1t6’s formula and Girsanov’s transformation that, for
t<T,

t
dI‘t1 = —exp{/ hl(s,Xg’z,us,v;k)ds}x
0
> [D?*’U*A%dt - (D?*’U*Ztl o Df’U*Ztl’(u’v*))dBf’v* o dL? ’ (5.31)
where
A} = Hy(t, X, 28 uf o) — Hy (6, X0, ZE ug,vf) <0,

which is obtained by the generalized Isaacs’ Assumption (A3)-(i). Next, let us define the stopping time 7,
as follows:

t
r =inf{t 2 0,|DF |+ D |+ [ (2L + 22 OR)ds 2 m) AT,
0
The sequence of stopping times (7,,)n>0 is of stationary type and converges to T as n — oo. We then
: ATy s z * u* " w,w* 7l (u,0” TR
claim that, [, exp{ [ h1(r, X U, UE)AT L pus e puo oy (DY Z1—pwv zh ) put i
a JF;-martingale under the probability PV as the following expectation

Tn

* s 0,z * - * *

E“v |:/ e2f0 hi(r, X, ,uT,vT)dr(Dg v Zsl D";L,’U Zsl,(u,v ))2d8:|
0

Tn
* s N 0,z * . * ok *
<E™ [/ €2 Ji P (X% up 0] (2|Df: PIZe P + 21Dy
0

2|Z81,(u,1;*)|2) ds}
Tn
<E"" [ sup {2620h(1+‘xg'zm|D§*’v*|2}'/ |Zsl|2} +

0<s<7p 0

E“’”*[ sup {2620h<1+|X3>“m|Dg’v*|2}./ |Z;,(u,v*>2} (5.32)
0

0<s<7p
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is finite which is the consequence of the definition of 7,, and the estimate . Considering that L? is
an increasing process, therefore, f;(‘m exp{ [y h1(r, X2% u,,v})dr}dLY is positive. Now returning to
equation , then taking integral on interval (¢ A 7,,, 7,,) and conditional expectation w.r.t. Fys,, under
the probability P“"", yield that,

1 o 1
Mo, < B [0 [7in ).

ie.,
E"' T}, <E“'T!. (5.33)

Indeed, forany p > 1,1 < ¢ < p, and given 1 < v < 2, we have,

e [ 0]

0<t<T

t
=E“" { sup {|Df v — DY \qexp{q/ hl(s,Xg’m,us,v:)ds}H
0<t<T 0

* 1 1, (u,0™)
< C{E™" [ sup e’Ye + sup ePV ]

0<t<T 0<t<T
LR [ sup 6q~ﬁch<1+|x?’“m] 1. (5.34)
0<t<T

Indeed, for any p > 1, Y' € DE(R,dP"“""), since we assume Y;! = w' (¢, X\"") where w’ is deter-
ministic and of subquadratic growth and finally (5.17). Meanwhile, Y'1:(*") € DE (R, dP""") by (5.29).
Therefore, (3.34) is finite. As the sequence (I'L ),>1 converges to I'}, = 0 as n — oo, P“" -as., it then
also converges to 0 in £!(dP*"") since it is uniformly integral.

Next, by passing n to the limit on both sides of (5.33) and using the Fatou’s lemma, we are able to
show E“V" [T'}] = 0, V¢ < T, which implies ¥l < ¥ Poas.. since the probabilities P“*" and P

: DA S (e Yl’(u‘"*) _ 71 *
are equivalent. Thus, e'o = J'(u*,v*) < e’o = J'(u,v*). In the same way, we can show that for
. 2,(u* v) S
arbitrary element v € Mo, then, ¥ = J2 (u*,v*) < e¥o = J?(u*,v), which indicate that, (u*,v*)
is an equilibrium point of the game. O

5.3 Existence of solutions for markovian BSDE

In Section [5.2] we provide the existence of the Nash equilibrium point under appropriate conditions.
It remains to show that the BSDEs (5.28) have solutions as desired in Theorem [5.2.1} Therefore, in this

section, we focus on this objective.

We firstly recall the notion of domination.

5.3.1 Measure domination

Definition 5.3.1. : L£9-Domination condition

Let g €]1, 00 be fixed. For a giventy € [0,T), a family of probability measures {v (s, dz), s € [t1, T} de-
fined on R™ is said to be L- dominated by another family of probability measures {vo(s,dx),s € [t1,T]},
if forany § € (0,T — t1], there exists an application gbfl [ty 4+ 6,T) x R™ — R such that:

(i) vi(s, dx)ds= (bfl(s, xX)vo(s, dx)ds on [t1 + 6, T]x R™.
(i) Vk > 1, ¢ (s,2) € LI([t1 4+ 0,T) x [k, k]™; vo(s, dz)ds). O

We then have:
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Lemma 5.3.1. Let q €]1, 00| be fixed, (to, o) € [0,T) X R™ and let (00:"°),, < s<1 be the solution of SDE
(B.9). If the diffusion coefficient function o satisfies (5.2)), then for any s € (to, T}, the law [i(to, zo; s, dz)
of 01°% has a density function pi, 1, (s,x), w.rt. Lebesgue measure dx, which satisfies the following

estimate: ¥(s,x) € (to,T] x R™,

_m AN —=x 2
< Pro,ao(8,7) < 02(s — o)™ 2 exp [—'S_tooq (5.35)

01(s — to)_%exp [—

where 01, 02, A, \ are real constants such that 91 < 99 and A > ). Moreover for any (t1,x1) €
[to, T] x R™, the family of laws {[i(t1, x1; s, dx), s € [t1,T|} is LI-dominated by fi(to, xo; s, dx).

Proof. Since o satisfies (5.2)) and b is bounded, then by Aronson’s result (see [1]]), the law (to, zo; s, dz)
of §%0%0, s €]ty, T, has a density function py, ., (s, ) which satisfies estimate (5.35).

Let us focus on the second claim of the lemma. Let (¢1,21) € [to, 7] x R™ and s € (¢1,7]. Then

Ptr.as (5,2) = [ty.01 (8,0) iy (8, )]t 00 (5, 2) = 1, (5,2) Pt 0 (5, )
with
Oty (S, 2) = [ptl)xl(s,m)p;jxo(s,x)] ,(s,2) € (t1,T] x R™.
Forany ¢ € (0,T — t1], ¢, 2, is defined on [t; + ¢, T|. Moreover for any (s, z) € [t1 + J,T] it holds
At x1; s, dx)ds = pyy 5, (s, x)dzds

= ¢t1,961 (Sa x)pto,ro (Sa x)dl'ds
= ¢, 1 (8, ) (to, zo; 5, dx)ds.

Next by (5.33), for any (s, z) € [t1 + 6,7] x R™,

n

02(s —t1)" % Az — z0|? 3 Az — 2q]?

0 S ¢t1,x1 (Sv'r) S m = (I)t1,3:1 (S,,I).

01(s —tg) 2 s—tg s—t1

It follows that for any k > 0, the function ®y, ,, (s, ) is bounded on [t; + §,T] x [—k, k]™ by a constant
x which depends on ¢4, d, A, A and k. Next let ¢ € (1, 00), then

T _ T )
Joivs Jiipgm (s, 2) At o3 5, dx)ds < K1 ft%ﬂs Sk sgm Alto, o s, dw)ds
= K1 ft1+6 dsE[1_ gm (0070)] < KIT.

Thus ® and then ¢ belong to L9([t1 + 0, T x [—k, k]™; v (s, dz)ds). It follows that the family of measures
{a(t1,z1;s,dx), s € [t1,T]} is L9-dominated by [i(to, xo; s, dx). O
As a by-product we have:
Corollary 5.3.1. Let x € R™ be fixed, t € [0,T), s € (t,T] and u(t, x; s, dy) the law of X'%, i.e.,
VA € B(R™), u(t,xz;s,A) = P(X" € A).

If o satifies , then for any q € (1,00), the family of laws {u(t, z; s, dy), s € [t,T|} is L1-dominated
by {pu(0, 25, dy), s € [t, T]}. O



5.3. EXISTENCE OF SOLUTIONS FOR MARKOVIAN BSDE 71

5.3.2 Existence of solutions for BSDE (5.28)
Now, we are well-prepared to provide the existence of solution for BSDE (5.28).

Theorem 5.3.1. Let x € R™ be fixed. Then under Assumptions (Al)-(A3), there exist two pairs of P-
measurable processes (Y, Z') with values in R*™, i = 1,2, and two deterministic functions @' (t, z)
which are of subquadratic growth, i.e. |@'(t,z)| < C(1 + |z|) with 1 < v < 2, i = 1,2 such that,

P-as. Nt <T,Y} = w'(t, X"") and Z'is dt-square integrable P-a.s.;
T
. - T 3 * * x 1 i
V=g ) + [ X0 2 0 ), X0 ZL ) 4 12 (s
¢

T .
—/ ZldB,, Vt<T.
t

Proof. We shall divide the proof into several steps. Our plan is the following. We apply the exponential
exchange (see e.g. [[71]]) to eliminate the quadratic term in the generator. The pair of the solution processes
(resp. the generator) is denoted by (Y, Z) (resp. G). We then approximate the new generator G' by the
Lipschitz continuous ones, which we denoted by G™, such that the classical results about BSDE can be
applied. It follows that, for each n, the BSDE with generator G being replaced by G™, has a solution
(Y™, Z™). After that, we give the uniform estimates of the solutions, as well as the convergence property.
In the convergence step, the measure domination property Corollary [5.3.1] plays a crucial role in passing
from the weak limit to a strong sense one . Finally, we verify that the limits of the sequences are exactly
the solutions of the BSDE.

Step 1. Exponential exchange and approximation.

Fort € [0,T], and i = 1, 2, let us denote by:

V=t (5.37)
% -z '
Then, BSDE (5.30) reads, for ¢ € [0,7] and i = 1,2,
. i(x0 T R o o o 21 22
V= e O [ g {2 X X0 (0 07) . X0, T 5))
_ VAN A T _
Vil X0%, (0, 0%) (5, X0%, 22 22 s —/ ZidB,. (5.38)
s S t

Let us deal with the case ¢+ = 1 for example and the case ¢ = 2 follows in the same way. Inspiring by the
mollify technique in [58]], we first denote here the generator of (5.38) by G' : [0, T] x R™ x R™* x RT* x
R?™ — R (by R™, we refer to R\ {0} ), i.e.
Gyl y? 227 = Tyiso{el o (s,0) f (s, (", 07) (5,0, 57, 52)
+y1h(s7 x’ (u*’ ’U*)(S’ ‘T, ;717 ZT))}
which is still continuous w.r.t (y*, y2, 2!, 22) considering the Assumption (A3)-(ii) and the transformation
(5.37). Let & be an element of C°(R™* x R™* x R*™ R) with compact support and satisfying:

/ &yt yP 2t 2P)dytdyPdztd? = 1.
Rt*xRt* xR2™
For (t,z,y',y2, 21, 22) € [0,T] x R™ x Rt* x R** x R>™", we set,
éln (t7 Z, yla y27 Zla 22) = / ’I’L4G1(S, gan(a;‘)7p1,p2, ql7 q2).
RT* xRt* xR2™

E(n(y' —p").n(y? = p?),n(z" — ¢"),n(z* — ¢%)) dp'dp®dq*dg?,
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where o, (z) = ((&; V (—n)) A n)j=12, . .m, for = (2;)j=12,...m € R”. We next define ) €

C>=(R*™™ R) by,

yens

Loy P+ 2P+ 2P+ 127 <1,

Uy, y?, 2t ) =
R 0, [0+ 22 +["] + |22 > 4.

Then, we define the measurable function sequence (G'™),,>1 as follows: V(¢, z, y', y?, 21, 22) € [0,T] x
R™ x R x R x R*™,

—

1Z2

y* 2 Aln 1 2y 1 .2
azviai)G (tvwin(y )7"/}n(y )aZ y 2 )7

G (t,x,y 2, 21, 2%) = -

3

where for each n, ¥, (y) is a continuous function for y € R, and ¢,,(y) = 1/nify < 0; ¢, (y) = y if
y > 1/n. We have the following properties:

a) G'™ is uniformly lipschitz w.r.t (y', 42, 21, 2?);
b) |G (t, 2,y 9%, 21, 22)] < CpCo (L4 [pn(@) )|z + Cr(1 + lon(2)[") (y")F;

‘ 1
o) |G (t,z,yt y?, 21, 22)| < ¢y, forany (t,z,y', 42, 21, 22); (5.39)

(
(0)
(¢)
(d) For any (t,x) € [0,T] x R™, & > 0 and K a compact subset of [¢, 1]? x R?™,

sup |G (t, 2, gt 92, 2, 22%) — Gt 2, vt y2, 21, 2%) | — 0, asn — oc.
(y17y27z1722)€K

The same technique provides the sequence (G*"),,>1, which is indeed, the approximation of function
G?. Foreachn > 1and (¢,z) € [0,T] x R™, itis a direct result of (5.39)-(a) that (see [84])), there exist two
pairs of processes (Vo ™07 Zim(he)y, . (y2mhe) zznlbey, o e S77(R) x Hi (R™), which

satisty, for s € [t, T7,

T
}75177,;(25,1) _ egl(X;’z) +/ Gln(’l“, Xﬁ,m7)7rln;(t,x)’KQn;(t,m%Z&n;(t,z)’ an;(t,z))dr
T
_/ Zﬁ’“(t’x)dBr;
t I (5.40)
}752n;(t,x) _ eg2(XT'Z) +/ GQn(’I‘, Xﬁ,m7}7r1n;(t,x)’KQn;(t,m%Z&n;(t,z)’ an;(t,z))dr

S

T
— / Z2mt2)gp,.

S

Meanwhile, the properties (5.39)-(a),(c) and the result of El karoui et al. (ref. [39]) yield that, there

exist two sequences of deterministic measurable applications ¢*"(resp. ¢>*) : [0,7] x R™ — R and

31" (resp. 32) : [0, T] x R™ — R™ such that for any s € [t, T],
Famee) = (s, XE%) (resp. T2m00) = (s, X17)) (541

and
Zym 0D = 510 (s, X0T) (resp. Z3W0T) = 57 (s, X07)).

Besides, we have the following deterministic expression: for¢ = 1,2, and n > 1,

) t,x T .
S (t, ) :E{egl(XT' ) 4+ / F”L(s,Xﬁ’””)ds}, Y(t,x) € [0,T] x R™, (5.42)
t

where,
Fin (s,z) = Gm(s, z, " (s, ), gzn(s, x), 31"(5, x), 52”(5, x)).
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Step 2. Uniform integrability of (Y1 (:2)),,~, for fixed (t,x) € [0,T] x R™.

In this step, we will deal with the case of ¢« = 1, the case of ¢ = 2 can be treated in a similar way. For
each n > 1, let us consider BSDE as follows, for s € [¢, T,

T
7 = e 05 4 [ EsCo U [on(XEIDIZE + ChlL+ on(KEDNT)} dr
S

T ~
- / Z"aB,. (5.43)

S

Obviously, for any z € R™ and integer n > 1, the application which to (y,z) € R'™™ associates
CrCyr(1+ pp(x))|z] + Cr(1 + n(x))’y™ is Lipchitz continuous. Besides, et (X7%) € £P(dP), Vp > 1
which is the consequence of Assumption (A2)-(iii) and (3.13). Therefore, from the result of Pardoux and
Peng [85], we know that a pair of solutions (Y., ZI");<,<p € SP(R) x HE (R™) exists for any

S

p > 1. Moreover through an adaptation of the result given by El Karoui et al. (1997,]39]), we can infer the

existence of deterministic measurable function ¢*™: [0,7] x R™ — R such that, for any s € [t,T],
vlm="(s, X0"). (5.44)
Next let us consider the process
B! = B, — / L7 (r)CrCo (1 + |n(X17)|)sign(Z2™)dr, 0 < s < T,
0

which is, thanks to Girsanov’s Theorem, a Brownian motion under the probability P on (2, F) whose

density with respect to P is
(r = (r{CrOo (1 + (X 07) sign(Z") 111y (5)},
where for any z = (2%);1,._4 € R™, sign(z) = (1“21-#0]%)1»:1,“,@ and {7 (-) is defined by (5.5). Then

(3-43) becomes

T T
yln = 9 (X77) +/ Cr(1+ |on(XED) (Y, T ar —/ Z"dBr, t<s<T.

S

Therefore, taking into account of (5.44), we deduce,

&n(¢,z) = E [egl(XtT’z)JrftT Ch(1+|wn(X.§’“)|7)dS|]:t} ’

where E" is the expectation under probability P™. Taking the expectation on both sides under the probability

P" and considering ¢! (¢, z) is deterministic, one obtains,
S (t,x) =E" [eg%X%I)Hf ch,<1+|w<xz””>|7>ds] .
Then by the Assumption (A2)-(iii) we have: V(t,z) € [0,T] x R™,
G (t, )] < B" [e€tposeer (HHXE1)]

C . 14| X 5=y
:E{e supg<, <7 (1+|X] ”-CT]

By Lemmal(5.2.2} there exists some 1 < py < 2 (which does not depend on (¢, x)), such that E[|{7|P°] < co.
Applying Young’s inequality, besides, considering (5.19) yield that,

C ,T
(L, 2)| < E[em%olsupogsg(HlXi I”)] +E[|¢r[™]
< OO+,
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Next taking into account point (5.39)-(b) and using comparison Theorem of BSDEs, we obtain for any
set,T],
Y/ln _ fln(S,Xz’z) > ?Sln;(t,m) _ §1n(S,X§’x).

S

Then, by choosing s = ¢, we get that ¢'™(t,x) < e“O+121") (. 2) € [0,T] x R™. But in a similar way
one can show that for any (t,z) € [0,T] x R™, ¢'"(t,z) > e~ ¢(+12I")  Therefore,

e~ COFHM) < In(t g) < COHM) (¢ 1) € [0,T] x R™. (5.45)

By (5.43),(5.41) and (5.13)), we conclude, ylmta) ¢ S/ p(R™) holds, i.e., for any p > 1, we have,

E[ sup ’}751”5(t’$)|p} < 0. (5.46)

t<s<T

Step 3. Uniform integrability of (Z;m(t’w))tgsng

Recalling the equation (5.40) and making use of Itd’s formula with (Ysln;(t’m))Q, we obtain, in a standard

way, the following result.

There exists a constant C' independent of n and ¢, « such that for any t < T, fori = 1,2,
T —
E[ / |zt 245] < C. (5.47)
t
The proof is omitted for conciseness.

Step 4. There exists a subsequence of ((Ysln;(o’z), Z;n;(o’w))ogsgip)nzl which converges respectively to
(Y}, Z1)o<s<T, solution of the BSDE (5.38). Moreover, Y,! > 0, Vs € [0, T], P-a.s.

Let us recall the expression (5.42) for case i = 1,

T
¢ (t, x) zE[egl(sz)+/ F'™(s, Xb%)ds|, Y(t,x) € [0,T] x R™. (5.48)

t

We now apply property (5.39)-(b) in Step 1 combined with the uniform estimates (5.46)), (5.47) and the
Young’s inequality to show that, for 1 < ¢ < 2,

T
E[/ [F17 (s, X00)9ds]
0
T
< CE| / (1+ o (XO) )| ZEODT 1 (14 oy (X0) )97 1001
0
< CE T Zln'(Oz) 2d 2 g 1 X 0.z Ad 2%11
s\ ? 2—q
<cr[( [ 1z 0apas) ([ xoe)Fias) ]

T
+CE[ sup |y im0, / (1+|X§@|)st}
0<s<T 0

(5.49)

T
<CIE[ [ 1Z20=ds] + B[ sup [FmOE] 1)
0 0<s<T

< 00.

Therefore, there exists a sub-sequence {n;} (for notation simplification, we still denote it by {n}) and a
B([0,T]) ® B(R™)-measurable deterministic function F'*(s,y) such that:

F'™ — F' weakly in £2(]0, T] x R™; (0, ; 5, dy)ds). (5.50)
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Next we aim to prove that (¢'"(¢,)),>1 is a Cauchy sequence for each (¢,x) € [0,7] x R™. Now let
(t, ) be fixed, n > 0, k, n and m > 1 be integers. From (5.48)), we have,

T
() — ()] = [ / FI"(s, X0%) — FY™ (s, X07)ds|
t
t+n
<E[ [P X0 - P s X ds)
t

T
4 ‘E{/wn (F'7 (s, X17) — FI™(s, X17)) .]1{|X§,I|§k}ds”

T
+ ‘E|:/ (Fln(s7X§7$) _ Flm(S’X;,,a:)) ]l{lX:,z|>k}ds:| :
t+n

where on the right side, noticing (3.49), we obtain,
t+n
E [/ [FI7 (s, X5) — F1 (s, X1%) ds]
¢

T
< an{E[/ |FY (s, X07) — Flm(s,ngf)\qu}}% <Con'T.
0

At the same time, Corollary associates with the £7°T -domination property implies:

T
‘E[/ (P! (3, X57) = PV (5, X17)) L v g s ‘
t+4n

T
| [ = P ) i, dns|
m t+n
T
| [ @ = ) iz (0,35, ds
e

Since ¢y o (s,1) € LT ([t + 1, T] x [—k, k]™; (0, z; s, dn)ds), for k > 1, it follows from (5.50) that for
each (t,z) € [0,7] x R™, we have,

T
E[ (F'™ (s, Xb%) — '™ (5, X17)) n{IXt,sz}ds} 5 0as n,m — oo.
- belg

Finally,

T
‘E[/t (B! (5, XE7) = FM™ (5, X07) 1y |
+n
T v T l
<O [ gepuds T R[] [ X0 < P Xt ]
t+n t+n

q—

<ok

Therefore, for each (t,x) € [0,T] x R™, (¢'"(t,z)),>1 is a Cauthy sequence and then there exists a

borelian application ¢! on [0, T]xR™, such that for each (¢, ) € [0, T|xR™, lim,,_,~ ¢ (¢, z) = ¢* (¢, x),
which indicates that for ¢t € [0,7T], lim;, 0o Ytln;(o’m) () = ¢'(t, X)), P — a.s. Taking account of

(5.46) and the Lebesgue dominated convergence theorem, we obtain the sequence ((Ytl";(ow))

converges to Y = (¢ (¢, X)) o<s< in LP([0,T] x R™) for any p > 1, that is:

0<t<T)n>1

T
E[/ YO0 Y par] =0, asn - oo, (5.51)
0
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Next, we will show that for any p > 1, Z'(0%) = (31%(¢, X{"*))o<s<T)n>1 has a limit in H2.(R™).
Besides, (Y!7(02)), -, is convergent in SZ(R) as well.

We now focus on the first claim. For n,m > 1and 0 < ¢ < T, using Itd’s formula with (V,!" — Y,!™)2

(we omit the subscript (0, ) for convenience) and considering (5.39)-(b) in Step 1, we get,
ln _ y1m|2 T 7ln _ 71m|2
|V -y + [ |2 - ZmPds
t
T — — — — — —
_ 2/ (szln _ szlm)(Gln(&Xg,w,Y'Sln’an’ Zsln7 Zs2n)_
t
— — — — T — — — —
~ G X0 Y YA 20, 22 s 2 [ (V- Y24 - 237 aB,
t
T — — — — — —
<O [T = T[22+ 1ZE ) X0+ (T4 [T (L4 X0 ] ds
t
T — — — —
S ACEES SRR AT
t

Since for any z,y,z € R, [zyz| < 1[z|* + }|y|* + L|z|¢ with L + 3 + 1 =1, then, for any £ > 0, we

have,
T
‘Ytln _ }’/tlm‘Q +/ |Zbln _ Zélm|2d3
t

e2 (T _ et T 1 [T _
<cfS [0z izimpas + [ xeeyias s g [ - vt
; ; ! (5.52)
e [T o - 1m )2 et 0,xy4 I o 1m |4
# 5 [anme s+ 5[ xe s v [ - i)
2 J, 1), 168 J,
T — — — —
Y ACEES SRR AU
t
Taking now ¢ = 0 in (5.32)), expectation on both sides and the limit w.r.t. n and m, we deduce that,
T B 2 4
lim supE{/ |z — Z;m\%} <C{=+—}, (5.53)
nm—oo  L.Jo 2 4

due to (5.47), (5.14) and the convergence of (5.51). As ¢ is arbitrary, then the sequence (Z'"),>1 is

convergent in %2 (R™) to a process Z'.
Now, returning to inequality (5.52)), taking the supremum over [0, 7’| and using BDG’s inequality, we
obtain that,

T
B[ sup [V ¥ [ 120 - Zim P
0<t<T 0

2 4 1 _ _ T _ _
<05+ 5y + 1B swp (7w +4E[/ |Zin — ZVm 2
2 4 4 Lo<i<T 0

which implies that
lim supE[ sup [V — Ytlmﬂ =0,

n,M—00 0<t<T
since ¢ is arbitrary and (5.53). Thus, the sequence of (Y1"),>1 converges to Y'! in SZ(R) which is a
continuous process.

Next, note that since ¢'™ (s, z) > e~C(1+121") then, Y! > 0,Vs < T, P-a.s.

Finally, repeat the procedure for player i = 2, we have also the convergence of (Z2"),>1 (resp.
(Y2),,>1) in HA(R™) (resp. SZ(R)) to Z2 (resp. Y2 = ¢2(., X%.)).
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Step 5. The limit process (Y}, Z})o<i< (i=1,2) is the solution of BSDE .

Indeed, we need to show that (for case i = 1):
FYt, X" = GMNt, X", Y, Y2, Z), Z2)  dt @ dP — a.s.

For k > 1, we have,

T
E|:/ ‘Gln(sv Xg,o:’}’/sln’YSQn’ Zsln’ Zs2n) - Gl(&Xg@’ }751737527 Zslv 282)|d8
0

T
< El:/ ‘Gln(Sng’ajv}?sln?YsQna Zsln’ Zs2n) - Gl(stgJa Ysln’ ana Zslnv Zs2n)‘
0

' 1{;<n1n+|ys2n|+zg"+zzn<k}d5]
- e -
B[ [ 1 X0 i I 200 73 s X0 I 700 72
LJO
: ]1{?:"+|22"|+Z;"+Z§"zk}ds]
r T
1 1 2 ~1 ~2 1 vl 2 ~1 72

TE / |G n(S7Xg7x’st7st7an’an)_G (S7X27$’stﬂysnvzsnvzsn)|'

0

) IL{Y@17L+|Y3”|+Zi“+Z§7‘<i}d8}
T — — — — — — — —
S| [ 16 6 X0 T2 2 < G X0 VYA 2L 2
0
=1+ I+ I + 17, (5.54)
where the sequence I, n > 1 converges to 0. On one hand, for n > 1, the point (5.39)-(b) in Step 1
implies that,
’Gln(s’Xg,w7}751n7}752n’251n,252n) _ Gl(S,XSO’x,Kln,KQn, Zsln’ Zgn)| .
LG <y v+ 21 41220 <k}
< CpCo(1 4 |X2%)k + Cp(1 + | X2k,

On the other hand, considering the point (5.39)-(d), we obtain that,

1 O yln y2n Zln 72 1 O yin y2n Zln 72
|G n(Sva z7st7}/sn7an,an) -G (S’Xs m7Ysn7st’anstn)|'
L <iwan 720 141220 41220 <k}
1 0@ ,1 2 1 .2 1 0@ ;1 .2 1,2
sup |G (s, X2% yl y2, 28, 22) — GMa, X200yl y2, 2L, 22)| = 0,

1 5 1 5 S S S S
(Y3,Y3,25,22)

F<lyslHlyZ I+l zg [+ 25 <k

IN

as n — oo. Thanks to Lebesgue’s dominated convergence theorem, the sequence I7* of @ converges to
0in HL(R).

The sequence I3 in (5.34) is bounded by %77 with ¢ € (1,2). Actually, from point (5:39)-(b) and
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Markov’s inequality, for ¢ € (1,2), we get,

T 1
B < C{E[ [ (1 X2 (1 XY ds] )
0
g-1

T
x {E[/O 1{|Y;"|+|Y3"|+\Z§n\+|Z§"|zk}d8}} '

< C{E[/OT 22 Pas] +E[/OT(1 +1x0]) i ds]

T B T 2y 1
JrE[/ |Ysln|2ds} +E{/ (1+|Xg,:v )’Y'Eds}}qx
0 0
a—1
(B[ T 1202 4 (¥ 2002 1|22 2 4 |22 2as]
x —
(k)"
C
= 2(¢=D °

q

The last inequality is a straightforward result of the estimates (3.10)(3.46) and (5.47).

The third sequence I% in (3.34) is bounded by C'/k with constant C' independent on k. Indeed, by

(5:39)-(b) and (5.14),

T
< E[/ CrCr(1+ \XS””D% + O (14 X0 7)%d5] < CO/k.
0

The fourth sequence I}, n > 1 in @ also converges to 0, at least for a subsequence. Actually,
since the sequence (Z'"),,>; converges to Z! in H%(R™), then there exists a subsequence (Z'"*);>q
such that it converges to Z', dt ® dP-a.e., and furthermore, sup;> |Z;"™*(w)| € H%(R). On the
other hand, (Ylnk) k>1 converges to Y! > 0, dt ® dP-ae.. Thus, taking the continuity of function

Gl (t,z,yt, 92, 21, 2%) wrt (y!, 52, 21, 22) into account, we obtain that
G (ta X??za ﬁlnk ’ }71527“C ) Ztlnk ’ thnk) —k—o0 Gl(t’ X?mv Y;tla 17;&27 Ztla ZtQ) dt @ dP — a.e.
In addition, considering that

sup |G(t, XP°, Ve YA 2 20| € HA(R) for 1 < g < 2,
k>1

which follows from (5.49). Finally, by the dominated convergence theorem, one can get that,
which yields to the convergence of I7" in (5.54) to 0.

It follows that the sequence (G (t, X", YV;'", Y2, Z1™ | Z2") o<y )n>1 converges to

(GM(t, X" VY2 ZE Z2))o<ier in L1(]0,T] x Q,dt ® dP) and then

FY(t, X2") = GYt, X", Y}, Y2, Z}, Z2),dt ® dP-ae. In the same way, we have, F2(t, X"") =
G2(t, X" Y}, Y2, Z}, Z2), dt ® dP-ae. Thus, the processes (Y, Z%), i = 1,2 are the solutions of
the backward equation (5.38).

Step 6. The solutions (Y}, Z}), i = 1,2 for BSDE (5.36)) exist.

Obviously observed from that Y;! is strict positive which enable us to obtain the solution of the
original BSDE (5.36) by:
}/tl —1In Y/; 1;
Z
= YT“

zZ! t € [0,T).
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The same illustrate about the case i = 2 gives the existence of solution (Y2, Z2) for BSDE (5.36)). Besides,
it follows from the fact ¥ = ¢(¢, X**) and for each (t,z) € [0,T] x R™, e~ CU+lz1") < ¢i(¢, z) <
eC0F121") with 1 < v < 2, that Y also has a representation through a deterministic function @’ (¢, z) =
In (¢, x) which is of subquadratic growth, i.e. |@'(t,z)| < C(1 + |z|7) with 1 < v < 2,i = 1,2. The
proof is completed. O






CHAPTER 6

Bang-Bang Type Nash Equilibrium Point
for Nonzero-sum Stochastic Differential
Game

This chapter is a published joint work with Hamadene (ref. [62]).
In this work, we investigate a nonzero-sum stochastic differential game (NZSDG for short). Our main

result is an existence theorem of the Nash equilibrium point (NEP for short) for this game.

Let us consider a two-player case. Actually, the multiple-player situation is a straightforward adaption.
To be precise, let (u,v) denotes a pair of controls for the two players, B a Brownian motion and X be the

state process of a system controlled by (u, v) as follows,
dX;" =T X" ug, v)dt + o (t, X;"")dBy fort < T, and Xy = x. 6.1)
For player i = 1,2, J;(u, v) are the corresponding payoff (or possible cost) functions which read,
Ji(u,v) = E[g;(X7")]. (6.2)

Observing from (6.2) that, the choice of control for each player will affect the other one’s utility through
the terminal value of the state process. Therefore, a natural question will arise, is there an optimal pair of
controls which give both of the players the maximum payoffs? The objective of this work is to find such
optimal control (u*,v*) which is known as the Nash equilibrium point, i.e. under such NEP, no one can

gain more by alternatively changing this own control. In another word,
Ji(u*,0*) > Ji(u,v*) and Jo(u™,v*) > Ja(u*,v)

for any admissible control (u, v).

As we can see from the objective that, the two players are of cooperative relationship. This kind of
game is well known as the nonzero-sum stochastic differential game. This subject has been studied in the
literature, see eg. [21} 48\ 158 154) 53] [75, [79} 91} 129 [74) 27] , to name a few. There are typically two
approaches. One method is related to the partial differential equation (PDE) theory. Some of the results
show that the payoff function of the game is the unique viscosity solution of a related Bellman-Isaacs
equation (see [74]]) and there are also works which make use of the sobolev theory of PDE (see eg. [79]).
Comparatively, the other popular way to deal with stochastic differential game is the backward stochastic
differential equation (BSDE) approach ([58, 154} 53, 75])), which characterizes the payoff as the solution of
an associated BSDE.

81
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In the present article, we study the NZSDG via the BSDE arguments under the markovian setting.
However, notice that in the previous results, such as [58} 154} 153, [75]], the authors concern only about the
smooth feedback controls as well as the Hamiltonian functions. The case of discontinuous controls is
not fully explored. Indeed, the discontinuous controls are naturally exist and reasonable, especially in the
economic and engineering fields. This is the main reason why we construct, in this article, a special game
model with non-smooth controls by assuming that the dynamic function I" in (6.1)) is an affine combination

of the controls, i.e.

L(t, z,u,v) = f(t,x) + h(u) + 1(v).
The precise condition of functions f, h, [ will be given in the main text section.

Taking account of the fact that the payoffs as shown in (6.2) have no instantaneous payoffs inside.
Therefore, the NEP, if exists, should be of bang-bang form. Generally speaking, by bang-bang control, we
mean it is not smooth and will jump between two bounds. This is the main novelty of this article. Another
feather is that the function I is not bounded as most of the previous works, instead, is of linear growth with
respect to the state process. As in [58]], we apply the BSDE approach. This game problem finally reduces
to solving a multiple-dimensional BSDE with a discontinuous generator with respect to z component and
linear growth w by w. Under the generalized Isaacs’ hypothesis, we show that the associated BSDE has a
solution which then provides a bang-bang type NEP for the NZSDG.

This paper is organized as follows:

In Subsection [6.1.1] we introduce the game problem and some preliminaries. The formulation we
adopt is of weak type. Besides, for intuitive understanding, we work on the framework of one-dimensional
controls. The extension to the multiple-dimensional situation obviously holds following the same idea. The
explicit form of discontinuous controls, namely, bang-bang controls are presented in Subsection[6.1.2]which
heavily rely on the generalized Isaacs’ condition. In Subsection [6.1.3] we give the main result (Theorem
of this work and some other related important results. We first provide a link between the game
problem and Backward SDEs( see Proposition [6.1.1). The payoff of the game turns out to be the initial
value of the solution for an associated BSDE. Then, by Proposition[6.1.2] we prove that the existence of a
NEP for the game is equivalent to the existence of a solution of a BSDE which is of multiple-dimensional
and with discontinuous generator with respect to z. Finally, under some reasonable assumption, we provide
the solution of this special BSDE( see Theorem [6.1.1)). All the proofs are stated in Subsection[6.1.4] The
proofs of Propositions [6.1.1] and [6.1.2] are standard. For Theorem[6.1.1] the method is mainly based on an
approximating scheme. In Section[6.2] we investigate some possible generalizations. The idea is the same

with a bit modification which is given in the final remark.

6.1 Bang-bang type NZSDG and multi-dimensional BSDEs with discontinuous

generators

In this section, we first establish a bang-bang type nonzero-sum stochastic differential game problem in

1-dimensional framework. A more general argument will be given in the next section.

6.1.1 Statement of the problem

For fixed T > 0, let (2, F,P) be a probability space, on which we define a 1-dimensional standard
Brownian motion B := (B,);<y. For t < T, let us denote by (F; = o(By,u < t))<r the natural
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filtration of B and (F;);<7 the completion of (F});<r with the P-null sets of F. Then, let P be the o-
algebra on [0, 7] x € of F;-progressively measurable sets. For a real constant p > 1, we introduce the
following useful spaces:

o LP = {¢: Fp-measurable and R-valued random variable s.t.E[|£|?] < oo};

* SP(R) = {Y = (Yy)scio,r] : P-measurable, continuous and R-valued stochastic process s.t.
Elsup,c(o,r7 1Ys[P] < oo}

s H3(R) = {Z = (Zs)scpor) :  P-measurable and R-valued stochastic process s.t.
E[([) |Z,[2ds)P/?] < o0}

We consider, in this article, the 2-player case. The general multiple players case is a straightforward adap-
tion. The dynamic of this game system is given by a stochastic differential equation (SDE for short) as
follows, for any fixed (¢,z) € [0,T] x R,

Vs < T, Xﬁx =+ (BS\/t — Bt) (63)
Obviously, the solution X %%, which is also called the state process of the game problem, exists.

Remark 6.1.1. We consider a trivial situation for SDE (6.3) with an identity diffusion process, just for
easy understanding. The trick of the technique in this article still valid for general diffusion process with

appropriate properties. We would like to introduce this point in Section[6.2)

Each player ¢ = 1,2 has his own control. Let us denote next by U = [0, 1], V = [—1, 1] two bounded
subset on R and M (resp. M3) be the set of P-measurable process v = (u;)i<7 (resp. v = (v;)i<7) on
[0, T] x © with value on U (resp. V). Hereafter, we call M := M; x M, the set of admissible controls
for the two players.

Let f : (t,z) € [0,T] x R — R be a Borelian function and I" : (¢, z, u, v) be the dynamic function for
the game problem, for any (¢,2,u,v) € [0,7] x R x U x V associated I'(¢, z,u,v) = f(¢,2) + u + v.
The function I here is a kind of affine combination of controls which can be generalized as shown in the

Section[6.2] Next, we impose our hypothesis on function f.

Assumption (A1) The function f is of linear growth w.r.t. z, i.e., for any (¢, ) € [0, 7] X R, there exists a
constant C' such that, | f (¢, z)| < C(1 + |z|).

Therefore, T is also of linear growth on  uniformly w.r.t (u,v) € U x V. For (u.,v.) € M, let P}’ be

the positive measure on (2, F) as follows,
¢
dP}) = (r(D(, X5 u.,v.))dP with (;(©) := 1 +/ Os(sdBs, t < T, (6.4)
0

for any measurable F;-adapted process © := (©;);<. It follows from the uniformly linear growth property
of I' that P?; is a probability on (2, F) (see Appendix A of [36] or [70], pp.200). Then, by Girsanov’s
theorem ([50]), the process B = (B, — [ ['(r, X1®, uy, v, )dr)s<r is a (Fs, P} )-Brownian motion

and (X1") < satisfies the following SDE,
dXP" =T (s, X1" ug,vs)ds +dB™", Vs € [t,T] and X:* = x, s € [0,1]. (6.5)

As a matter of fact, the process X® is not adapted with respect to the filtration generated by the Brownian
motion B“". Thereby, X** is a weak solution for the SDE (6.3). Now the system is controlled by player 1
(resp. player 2) with u (resp. v) and the law of the state process is the same as the one of X% under PZ .
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We introduce first the terminal payoff function ¢; : * € R — R for player ¢+ = 1, 2, which satisfies the
following assumption.
Assumption (A2) The two functions g;,7 = 1,2, are of polynomial growth w.r.t.z, i.e. there exists a
constant C' and a fixed constant v > 0 such that |g1 (z)| + |g2(z)| < C(1 + |z|7), Yz € R.

Now, we are in a position to give the payoffs of the two players. For fixed (0, z), Let us define for
(u,v) € M that,
Ji(u,v) = By lgn (Xp7)];
Ja(u,v) := Eg:;:) [92(X%w)}7 (6.6)
where E;’; is the expectation under probability Py’;, hereafter Eq’; (.) (resp. Py’,) will be simply denoted

by E*?(.) (resp.P™").

As we can see from (6.5) and (6.6) that, the choice of control of each player has influence on the
other one’s payoff through the state process X%%. What we discussed here is a nonzero-sum stochastic
differential game which means the two players are of cooperate relationship. Both of them want to reach
the maximum payoff. Therefore, naturally, we concern about the existence of the Nash equilibrium point,
which is a couple of controls (u*,v*) € M, such that, for all (u,v) € M,

Ji(u*,v*) > Ji(u,v") and Jo(u*,v*) > Ja(u*,v).

6.1.2 Bang-bang type control

As demonstrated in (6.6)), there are no instantaneous payoffs in J; and J5. Therefore, the equilibrium
point of this game, if exists, should be of bang-bang type. That is to say, the optimal control v* (resp.v*)

will jump between the two bounds of the value set U (resp.V’). Let us illustrate it in detail.

Let H; and H» be the Hamiltonian functions of this game, i.e., the functions which are not depend on
w defined from [0, 7] x R x R x U x V into R by:

Hl(ta'rapvuvv) = pr(tvxaua U) = p(f(t7$) +u+ U)7
Holt,z,q,u,0) = qT(t,u,0) = q(f(t @) +u+ ).

Now, we give firstly, the candidate optimal controls @ and v which defined on R x U and R x V, valued

on U and V respectively, as follows: Vp,g € R, ¢ € U, e2 € V,

1, p>0, 1, ¢ >0,
ﬂ(p7€1) = €1, Pp= Oa and 6(q3€2) = €2, 4 = 07 (67)
0, p<O, -1, g <0.

Then, we can verify that such @ and v will exactly satisfy the generalized Isaacs’ condition as follows. For
all (t,x,p,q,u,v) € [0,T] x Rx Rx U x V and (€1,€2) € U x V, we have,

{Hf(tﬂl’,p,ﬁbﬁz) = Hl(t,x,p,ﬂ(p,€1)71_)((],€2)) 2 Hl(t7x,p,u,17(q762)),
H;(t7xap7Q761> = H2(t7'r7q7’a(p761)76(Qa62)) Z HQ(t,.Z',q,ﬂ(p,El),U).

(6.8)

Remark 6.1.2. We should point out that, the function HY (resp.H5 ) does not depend on €, (resp.e€a), since,

pu(p,e1) = pV 0 (resp. qv(q,e2) =
function here is discontinuous w.r.t. (p, q).

q|) does not depend on €1 (resp. €3). Besides, the Hamiltonian

We next give the main results of this article without proofs for intuitive understanding. All the proofs
are given in the subsection [6.1.4]
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6.1.3 Main results

For this particular nonzero-sum stochastic differential game, we still adopt the BSDE approach. We

first state an useful result which characterize the payoffs by a multiple-dimensional BSDE.

Proposition 6.1.1. Assume that the Assumptions (Al) and (A2) are fulfilled. For all (u,v) € M and player

i = 1,2, there exists a couple of P-measurable processes (Y 5, Z%%"), with values on R x R, such that:

(i) For all constant q¢ > 1,

T
E“"| sup |Y5"“Y|7 4 (/ \Zg;“’7’|2ds)%} < 00. (6.9)
s€1[0,T 0
(i) Vi< T,
—dYY = Hy(s, X0, 2590 ug vg)ds — Z5%VdB,, Y3 = gi(X0") (6.10)

(iii) The solution is unique, besides, Yoi;“’v = J;(u,v).
Consequently, the equilibrium points exist, once provided that the BSDEs (6.11)) have solutions. This
result will be summarized as the following proposition.

Proposition 6.1.2. Let us suppose the Assumptions (Al), (A2) are fulfilled. Besides, we suppose that there
exists nt, n?, (Y1, ZY), (Y2, Z%) and 0, 9 such that:
(i) n' and n? are two deterministic measurable functions with polynomial growth from [0,T] x R to R;
(i) (Y, Z") and (Y?, Z2) are two couples of P-measurable processes with values on R***;
(iii) O(resp. 9¥) is a P-measurable process valued on U (resp. V'),
and satisfy:
(@) P-a.s., Vs <T,Y!=n'(s,X0%) and Z'(w) := (Z}(w))s<r is ds-square integrable;
(b) Forall s <T,

{ —dY} = H(s, X%, 72}, 22 9,)ds — ZLdB;, Yi = g1(X%"); 611)

—dY? = Hj (s, X0%, Z}, Z2,0,)ds — Z2dB,, Y2 = go(X2:"). '

Then, the pair of controls (W(Z},05),0(Z%,95))s<r is a bang-bang type Nash equilibrium point of the

nonzero-sum stochastic differential game.

It remains to show that, there exists a solution for BSDE (6.11) which is actually of multidimensional
type. The main difficulty will rely on the discontinuity of the generator H; (resp. Hj) w.r.t. (p,q) which
comes from the discontinuity of v (resp. #) on ¢ = 0 (resp. p = 0). Fortunately, we obtain the positive
result as follows:

Theorem 6.1.1. Under the Assumptions (Al), (A2), there exist nt, n?, (Y'Y, ZY), (Y2, Z%) and 0, ¥ which
satisfy (i)-(iii) and (a),(b) of Proposition[6.1.2]

As a result of Theorem [6.1.1)and Proposition [6.1.2] we obtain the main result of this article.

Theorem 6.1.2. The nonzero-sum stochastic differential game has a bang-bang type Nash equilibrium

point.
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6.1.4 Proofs
Pre-results

We would like to introduce now two results about the state process X as (6.3) which will be used
in the following proofs. The first one is well-known that (see. Karatzas, 1.1991 [70], pp.306), X has
moments of any order, i.e.,

Vg € [1,00), E[(sup | XL
s<T

)% < C(1+ |z*7). (6.12)

Note that under Assumption (A1), we have a similar result with the weak solution for SDE (6.5) which is

stated as follows: for any admissible control (u,v) € M,
Vg € [1,00), E{y [(sup|XL*))*] < C(1+ |z*?). (6.13)
s<T
Besides, we present the next important result by U.G.Haussmann (see Theorem 2.2, pp.14 [64]]) related to
the integrability of the exponential local martingale defined by (6.4).

Lemma 6.1.1. (U.G.Haussmann) Let © be a P ® B(R)-measurable application from [0,T] x Q@ X Rto R
which is of uniformly linear growth, that is, P-a.s. ¥V(s,x) € [0,T] X R, |O(s,w, z)| < Co(1 + |z|). Then,
there exists constants p € (1,2) and C, where p depends only on Cy while the constant C, depends only on

p, but not on ©, such that:

P
E|(r{e6,xt1) | <,
where the process (r(.) is the density function defined by (6.4).

As a by-product we have:

Corollary 6.1.1. For any admissible control (u,v) € M and (t,x) € [0,T] x R, there exists a constant
p € (1,2) such that:
P
E{(CT{F(S,X?Q:,US,’US)}) } <C.

Proof of Proposition|6.1.1

We will prove this Proposition by constructing the candidate solution of BSDE (6.10) directly. Then
we check by It6’s formula that, the process defined is exactly the solution what we anticipate. In this proof,
Corollary [6.1.1] plays an important role. Let us illustrate for player ¢ = 1 and the same with player i = 2.
For simplicity, only in this proof, we use the notation (Y%, Z*%?) instead of (Y iV, Zliw:v),

Let us fix z € R and take ¢ = 0 in (6.3). For any (u,v) € M, let us define the process (Y,;"");<r as

follows:
Ytu,v = E""[g, (X%z)‘f_'tL vt < T. (6.14)

This process is well defined by noticing that, for any constant » > 1, we have E*"[|¢g1 (X%I)PT] <
CE™’[C(1 + sup < | X*[*™)] < oo which is obtained by Assumption (A2) and (6.13). For writing
convenience, we denote by (;, the function ¢;(T'(., X%% u_,v.)) as mentioned in (6.4). Therefore, (6.14)
can be transformed into:

Y = ¢ EGr - i (X9T) | R, VE< T

In the following, we show that (1 - g1 (X%x) € L7 for some ¢ € (1,2). Indeed, according to Corollary
there exists some py € (1,2), such that (7 € LPo(dP). Therefore, for any § € (1,po), Young’s
inequality leads to:
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Po

E[l¢r - 91 (X)) < LE[IGr (7] + BTE |g (X77)|T 7077,

Po

which is obviously finite by the polynomial growth of g; and (6:12). Actually, Y** can be understood as
the solution of BSDE:

—dY"Y = —ZUVdBYY, Vs < T; Y2 = g1 (X%%),

by the result of Briand et al. ([[17]]), since the terminal value g; (X%z) € LP forany p > 1.
Thanks to representation Theorem, there exists a P-measurable and R-valued process (As)ng which
satisfies E[(f)| |As[2ds)?] < co. Additionally,

Y = GHBGr  g1(XpT)) + [y AvdBy} =G Ry, VEST,

with R; := E[CT~91(X%$)]+fOt AydB,, forany t < T. Next, noticing that d¢; = C;-T'(t, X, uy, v;)dBy,

then, by using Itd’s formula, we acquire,
d¢t = —¢7t AT X0 ug, v)d By — [Tt X0F ug, vp)[2dt ), V< T
Therefore,

dY,"" = ¢ T X" ug,v)dBy — |D(t, X ug, v)|2dt ) R+
+¢7 AdBy — I XD ug, v) Agdt,  t < T

It is natural to define process Z*¥ as the diffusion coefficient which is the following:
Z = =GR XD ugvp) — Ay}, t < T (6.15)

Finally, it is easy to check by Itd’s formula that the pair of processes (Y;“"", Z;"")¢<r of (6.14) and (6.13)
satisfies the backward equation (6.10). Obviously, by the construct procedure, for fixed z € R, the solution
is unique. The proof of existence and uniqueness is completed.

We now focus on the uniform estimate (6.9).

We begin from (6.14)), using conditional Jensen’s inequality, we show that, for any ¢ > 1,

sup |V;""| <E"[ sup g2 (X771 F].
te[0,T] te[0,T]

Taking the expectation on both sides under the probability P*** and using once again the polynomial growth

of function g; and (6.13), we give, for any ¢ > 1,

E“"[ sup |Y;“"|7] <E“"[ sup |g1(X%x)\q] < CE""[ sup (1+ |Xt0’x|7q)]
te(0,T] te[0,T] te[0,T)

< 00. (6.16)
Next for each integer k, let us define the following stopping time:
7 =inf{s > 0, [ |Z%V|?ds > k} A T.

The sequence (73 )>0 is of stationary type and converges to T'. By using Ito’s formula with (Y;} )? we
obtain: V¢ < T,

Tk

Yt 2y / iz
t

ATk

Tk
s = [varp -2 [ veezivapye

tATE
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Thus, for ¢ > 1, taking the expectation of the ¢/2 power on both sides and applying Young’s inequality, we

see that there exists a constant C such that,
Tk g Tk q
E“Y [(/ | Z02ds)z ] < C{E™" [|Y; "] +E“’”[|/ Yz dBEY|? . (6.17)
0 0
Next taking into account the estimate (6.16), we deduce that,

Eu,v UYTi,v|q] SEU’U[ sup ‘szu,'u
s€[0,7]

q] < 00.

Meanwhile, it follows from the Burkholder-Davis-Gundy (BDG for short) inequality that there exists a

constant C’q, depending on g, such that
Tk q
Eu,v H / }/SU’UZ:"’UdB:’U| 2]
0

2|Z:’U|2d8)%]

<cE( [ e

<CE[( s [vE( [ Izeepas) ]
0

0<s<7g
C2C 7 a
< SR (sp (V)T o B[ 20 Rds)
0<s<T 193 0

where C is the one of (6.17). Going back now to (6.17) and using Fatou’s Lemma, we conclude that for any
q>1
T a
E“’”[(/ |Z2?ds)?] < oc. (6.18)
0

Estimates (6.16) and (6.18) yield to the conclusion (6.9).

Finally note that, taking ¢ = 0 in (6.14), we obtain Y;"" = J; (u, v) as a result of F; contains only P and
P“? null sets since those probabilities are equivalent. The proof of the Proposition is completed. [J

Proof of Proposition|[6.1.2]

For s < T, let us set iy = u(Z},0s) and vs = v(Z2,9,), then (us,vs) € M. On the other hand,
thanks to Proposition [6.1.1] we obviously have, Y = J; (@, v).

Next let u be an arbitrary element of M; and let us show that Y1 > Y5%% which yields Y =
Ji (@, 0) > Yg™" = JY(u, 0).

The control (u,?) is admissible and thanks to Proposition [6.1.1} there exists a pair of /P-measurable
processes (Y 5w? Z1i4.7) quch that for any ¢ > 1,

T q
Eu,5|: sup |Ytl;u,v|q+ (/ |Z;;u,ﬂ|2d8)§} < o0;
0<t<T ; 0 . (6.19)
Vo (x4 [ e X0, 250w s [ Z00am, <
t t

Afterwards, we aim to compare Y'! in (6.11) and Y 5*? in (6.19). So let us denote by
AY =Y5Y —Yhand AZ = 250 — 71

For k > 0, we define the stopping time 7, as follows:

Tk = inf{s > 0,|AY,| + [ |AZ,|2dr > k} AT.
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The sequence of stopping times (7% ), >0 is of stationary type and converges to T'. Next applying It6-Meyer
formula to [(AY)T|? (¢ > 1) (see Theorem 71, P. Protter, [90], pp.221), between ¢ A 7, and 73, we obtain:
vt <T,

Tk

(Ao )] + e(g) / (AYS) 1oy, 50 AZ[Pds
tATE
Tk

- ‘(AYTk)Jr‘qJFQ/ ‘(AY:?)+‘q711AYq>O[Hl(stg’I’Zsl;u,ﬁauSvT)S)* (6.20)
tATE
Tk

(s, X0, 21w 0)]ds — g | (Y ey, 20 AZ.dB.

tATE

where ¢(q) = q(q — 1)/2. Besides,

0,z 1;u,v -~ 0,z 1 -~ =\ _
Hl(SaXs 7Zs ;uSavs)_Hl(SaXs 7ZsaIU’Sa,US)—
0,z 1;u,v ~ 0,z 1 ~
Hy (s, X", Z5"" us, vs) — Hi(s, X", Z, us, Us)
0,z 1 =~ 0,z 1 - =
+H1(Squ 7Z57u37vs)_H1(87X5 JZ,57uS7vS)

Considering now Isaacs’ condition @), we have that, the distance of the last two terms
Hy(s, X%%, Z1 ug,v5) — Hy(s, X2 Z1 g, 05) <0, Vs <T. Additionally,

Hiy(s, X0®, Z5w0 ug o) — Hy(s, X0, ZY ug,v5) = AZ (s, X0, ug, Us). Thus, equation (6.20) can
be simplified into:

Tk

(AYinn ) '+ c(g) / (AY.)* 121 ay, 0| AZ, Pds
tATE
Tk

<AV, + 4 / (A5 LAy, 20 AZ,T(s, X0, uy, 5,)ds

tATE

Tk
g / (AY,) " L ay. 20\ Z.dB,
t

ATk
Tk

= |(AY,, )7 - q/ [(AY) T Ay, 50AZdBY”,

tATE

where B%? = (B; — fg [(s, X% ug,v5)ds)i< is an (F;, P*")-Brownian motion. Then for any ¢t < T,

Tk

[(AYirr )T |* < [(AY: )T - LI/ (AY) " Ay, >0 AZ,d By

tATE

By definition of the stopping time 73, we have

EVCL [T [(AY) T4 Ay, 500 Z,dBYY] = 0.

tATE

Thus,
E"Y [[(AYirr ) F7] SB[V = Y )T 6.21)

Next taking into account (6.13)) and the fact that Y'* has a representation through n' which is deterministic

and of polynomial growth, we obtain the following uniformly integral result, i.e.

£ [sup((Y2| + [Y257)1] < oo 622
<T

S

As the sequence ((V1*? — Y1 )T)i>0 converges to 0 when k — oo, P*’-a.s., since limy_,o0 Y17 =
limy o0 Y1 = g1(X3") P“"-a.s.. Then it converges also to 0 in L' (dP"") thanks to (6:22). As k — co
on (6.21), it follows from Fatou’s Lemma that:

E“W[AY ] =0, Vi< T,
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which implies that Y1 > Y%? P-as., since the probabilities P*” and P are equivalent. Thus Yy} =
JH@,v) > Yy = J (u, ).

Similarly, we can show that, Y = J2(a,0) > Y™ = J2(4,v) for arbitrary v € M. Henceforth
(u, ) is a Nash equilibrium point for the NZSDG. O

Proof of Theorem

The proof will be split into several steps. Firstly, we construct an approximating sequence of BSDEs
with continuous generators by smoothing the functions % and v. The next thing to do is to introduce some
uniform integral properties of the solutions. Another step is to prove the convergence of the sequences (at
least for a subsequence). Finally, the most challenging part, is to verify the limit processes are indeed the

solutions of the original BSDE.

Step 1: Approximation. At the beginning of this proof, we would like to clarify that the functions p €

R — pi(p,e1) and ¢ € R — q0(q, e2) are uniformly Lipschitz w.r.t. €; and €3, since pi(p,e1) =
pu(p,0) = sup,cp pu and qv(q, €2) = qv(q,0) = sup,cy qu. Hereafter a(p,0) (resp. v(g,0)) will be
simply denoted by u(p) (resp. (q)).

Next for integer n > 1, let 4™ and " be the functions defined as follows:

0if p < —1/n, —1if ¢ < —1/n,
u"(p) = Lif p>0, and 7"(q)={ 1if ¢>1/n,
np+ 1if p € (—1/n,0), ng if ¢ € (=1/n,1/n).

Note that 4™ and v™ are Lipschitz in p and q respectively. Roughly speaking, they are the approximations
of @ and ©. Below, let ®,, be the truncation function x € R — ®,,(z) = (z An) V (—n) € R, which
is bounded by n. Now for n > 1, we establish the following BSDE of dimension two, with the generator
which is Lipschitz. For s < T,

AV (@, (ZET) D (f(r, X)) 4 Dy (ZE S R(Z100) ) 4
@, (21T L)y — ZE B, Y = gy (X4
YR (@, (ZET) D (f(r, X1T)) 4 Dy (Z27 (2200 4
Do (22NN T (1) Y — ZETEAB,, YT = go(X4).
From the Pardoux-Peng’s result ([84]]), this equation has a unique solution
(yimte zinte) e S2(R) x HZ(R) forn > 1 and i = 1,2. Taking account of the result by El-Karoui
et al.([39],pp.46, Theorem 4.1), we obtain that, there exist measurable deterministic functions n*" and ¢»"
of (s,z) € [t,T] x R,i=1,2and n > 1, such that:

(6.23)

Ysi’"‘t’m = ni’"(s,Xﬁ’z) and Z;V”W’ = gi’"(s,Xﬁ""”). (6.24)
Moreover, for n > 1 and i = 1,2, the functions *™ verify: V(t,z) € [0,T] x R,
T
0 ) = Bl (X + [ B X0 625)
t

with, for any (s, z) € [0,7] x R,

H{'(s,2) = (""" (5,2))@n(f(s,2)) + P (¢ (s, 2)u( " (5, 2))) +
+ @, (M (s, 2)) 0" (6P (s, 2));

Hy (s,2) = @ (*"(5,2)) P (f (s, 2
+ @ (P (s, 2))u" (s

(6.26)
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Step 2: Estimates for processes (Y “"te  Zimtr) j— 1 9, In order to show the uniform estimates for
Y™ of BSDE (6.23)), we present the following comparative BSDE, for any s € [t,T] and i = 1,2,

T T
Vi =gi(X7") + / ©, (C(L+ X272 + C| 20" dr — / Zy"dB,, (627

where the constant C' is related to the bound of function f and the bound of sets U and V', which makes that
the generators of (6:23) H[*(s, X5®) satisfy, |H'(s, X®)| < ®,,(C(1+|X5*|))| Zimte |+ C| ZEmte| for
eachn > 1and (¢,z) € [0,7] x R. Observing that the application z € R — ®,,(C(1 + | X *|))|z| + C|z|
is Lipschitz continuous, therefore the solution (Y™, Z%") of the above BSDE indeed exists on space

S2(R) x H2(R) and is unique. Provided that we show the uniform estimate for Y*" w.r.t. n, then,
the estimate for Y" will be a straightforward consequence by the comparison Theorem of BSDEs ([39],

pp.23). Below, we will focus on the property of Y™,

Using again the result by El Karoui et al. ([39], pp.46, Theorem 4.1) yields that, there exist deterministic
measurable functions 77" : [0,7] x R — R such that, for any s € [t, T],

Vi =nht(s, Xb7), i =1,2. (6.28)

S

Next let us consider the process
B = (Bs — [ [®n(C(1 + |X[7)) + Clsign(Z:")dr)i<s<r, @ = 1,2, which is, thanks to Girsanov’s
Theorem, a Brownian motion under the probability P"" on (Q, F) whose density with respect to P is
Cr{[®n(C(1 4 |X5®)) + Clsign(Z%™)} where for any z € R, sign(z) = 1|20y 737 and Cr(.) is defined
by (6.4). Then the BSDE will be simplified into,

T
Y = gi(X57) —/ ZEaABi" s € [t,T), i =1,2.
In view of (6.28), we obtain,

7"t w) = BV g (Xp)| A, i = 1,2,

where E*™ is the expectation under probability P"". By taking the expectation on both sides of the above

equation under the probability P"" and considering 77> (t, x) is deterministic, we arrive at,
77" (t @) = BV [gi(X5)], i = 1,2.

The functions g;(¢ = 1, 2) are of polynomial growth as we stated in Assumption (A2), combining with the
estimate (6.12)) and Lemma|6.1.1] gives that there exists a constant py € (1,2) (which does not depend on
(t,x)) such that:

" (ta)] < CE™[ sup {1+ |X07|")]

s€[s,T]
= CE[( sup }{1 +1X07) (Cr{[@n(C(1 +[X07)) + Clsign(Z:™)}) ]
< CE| st]<1+\Xz’xmpé“*%} +
seft, T
+CE[(Cr{[®@n(C(1 + |XL7))) + Clsign(Z0™)})"™ ]
< C(1+z[),

where constant A = % > 2. It follows from comparison Theorem that, for any s € [¢,T] and i = 1,2,
Yin = gin(s, XHT) > Yin = nin(s, Xb®). Choosing s = t leads to n*"(t,z) < C(1 + |z|*),
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(t,z) € [0,T] x R. In a similar way, we can show that " (t,2) > —C(1 + |z|}), (t,z) € [0,T] x R.
Therefore, ", i = 1,2 are of polynomial growth with respect to (¢, ) uniformly in 7.

To conclude this step, we have the following results. There exists a constant C' independent of n and
t,x such that, for (t,z) € [0,T] x R, i = 1,2,
(@) [n>"(t, )| < C(1 + |z|*), for any A > 2;
(b) by the combination of (a), (6.12) with (6.24), we have, indeed for any « > 1,

E[ sup |Ysi7n;t,a:|a] S C;
s€t,T) (6.29)

T
(c) for any (¢, x), E[/ |Zimt72ds] < C which is a straightforward result by
t

using It6’s formula with process (Y ™%%)2,

Step 3: Convergence of sequence (Y% Zim0e) ~, i =1,2. Let us now fix the initial state to
(0, x), for x € R. We first show that

H(s,y) € LI([0,T] x R; (0, z; s, dy)ds)ﬂfor fixed ¢ € (1,2),7 =1,2. H is defined by (6.26) which
is the generator of BSDE (6.23). Actually,

T
Ev|mwxwww=/‘ HT (5,9) (0, @ 5, dy)ds
0 [0,T]xR
T .
gmUNﬂmwaﬂmwm1
0

T
< C{E[/ 20707 2ds] + B[1 4+ sup |X0F|74]}
s€[0,T]
< 0, (6.30)
which is obtained by the facts that E| fOT |Zm0212ds] < C and the estimate (6.12). As a result, there
exists a subsequence {ny} (still denoted by {n} for simplification) and two B([0, T]) x B(R)-measurable

deterministic functions H;(s,y), ¢ = 1,2, such that,
H]' — H; weakly in LI(][0, T] x R; (0, z; s, dy)ds), fori = 1,2, fixed ¢ € (1,2). (6.31)

Next we focus on passing from the weak convergence to strong sense convergence by proving that
(n“™(t,2))n>1 defined in (6:23) is a Cauchy sequence for each (¢,2) € [0,7] x R, i = 1,2. Let (¢, z) be
fixed, > 0, k,n and m > 1 be integers. From (6.25)), we have,

It (t, ) —n"™(t, ) / H'(s,XL") — H™(s, X1")ds]|

_m/ H (5, X0) — H(5, X! )ds]|
t

T

+[E[[  (H(s,X5%) = H"(5,X7%)) - 1 e <4y 4]
t+6
T

+ |E|[ 6(HZL(S,X§’”C) — H"(5, X)) - 1 xto sy ds] |-
t+

(6.32)

We deal with the first term on the right side of inequality (6.32)) by Young’s inequality, i.e.
B[ H (s, X 07— HM (s, Xo)ds]| <6™F {B[[,'|HP (s, X)) — H™ (s, X17)|*ds]} 4. Tt follows from

For (t,@) € [0,T] X R, s € [t,T], p(t,x;s,dy) is the law of X7, ie., VA € B(R), u(t,z;s, A) = P(XL" € A).
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(6.30) that it is bounded by C'§ “" . The third part of the right side of inequality (6.32) is
T
B[y s (HP (s, X07) = H[" (5, X07)) - 1 xto gy ]|
T a—1 T n z m - 1 . .
< C{E[[51xtesmdslt @ {E[f, s [H (s, X0%) — H™(s, X)|%ds]} e, which is bounded by
g—1
Ck™ @ as a result of Markov inequality and (6.30). The second component of (6.32) is exactly the

following,

l//TW( ) — H"(s,y))1 LS dsdy
i \S$:Y) — 11,5 Y —F——€ 7Y dsay
R Jt+6 Hylék}«/?w(sft)

T Ves—1 _w-o% 1] (y—=x)2
= (H'(s,y) — H"(s,y))1 ) e = dsdyl. (6.33)
’/R/H(s ) Dy — 75 Tors \

In (6:33), notice that \/21%6_ S dy is the law of X%, Besides, the function %6_% is bounded
for any (t,z) € [0,7] x R and (s,y) € (t + §,T] x R. Therefore, by the weak convergence result
(63T), we get that (6.33) converges to 0 as n,m — oo. Generally speaking, (6.32) will converges to
0 as n,m,k — oo and § — 0. Then, we conclude that (n""(t,x)),>1 is a Cauchy sequence for each
(t,z) € [0,T] x R, i = 1,2 and there exists a measurable application 1’ on [0,7] x R, i = 1,2 such that
foreach (t,z) € [0,T] xR, i = 1,2,

lim 7" (t,x) = n'(t, ).

n—o0

Next, we infer from the polynomial growth property of n™" that n’ is of polynomial growth as well, i.e.,
V(t,x) € [0,T] x Rand i = 1,2, |ni(t,x)| < C(1+ |x|*), A > 2. It turns out that, for any ¢ > 0,
lim ¥, (w) = n'(6, X (@), YO ()] < O+ X7 (W), P = aus.

n—r oo

By Lebesgue’s dominated convergence theorem, the sequence ((Y;""***),<1)n>1 converges to Y =
(' (t, X)) <7 in L*([0,T] x R) forany a > 1,7 = 1,2, i.e.,

T
E[/ [Ym0e _yi%ds] — 0, asn— oo foranya >1,i=1,2. (6.34)
0

It remains to show the convergence of sequence ((Z5™%%)<7),,>1 for i = 1,2. Taking It0’s formula
to process (Y#mi0@ — yimi0.2)2 and considering Assumption (A1), we get,

T

|Y;z,n;0,m _ Y;z,m;O,m|2 +/ |Z;',n;0,a: _ Z;',m;O,xIQdS

t
< 2/ CY 0T — YPmOn) (1 + | XN (1200 | + | 2™ 0% )ds
t
_ 2/ (Y'Sz,n;O,x _ Y'Sz,m;O,a:)(Z;,n;O,z _ Z;’m;o’”)st. (635)
t
Since for any z,y, z € R and for any € > 0, |zyz| < %xQ + %y‘l + ﬁz“. Then we have,
T
|)/ti,n;O,z _ }/ti.,m;0,$|2 + / |Z;;,n;0,m _ Zsi,m;(],:v|2ds

t

62 T i,n;0,2 i,m;0,x 64 T T
<o{§ [ uzmoe s izimeepas+ 3 [ xe)tas

1 T

4 E |}/si,n;0,z _ Ysi,m;O,x|4dS}
t

T
_ 2/ (Ysi,n;O,z _ Y'Si,m;o,x)(Z;,n;O,a: _ Z;’m;o’m)st. (636)
t
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Since e is arbitrary, taking now ¢ = 0, expectation on both sides and the limit w.r.t. n, m, combining with

(6:34), (6-12), (6:29)-(c) yields that,

T

lim sup E[ / |Zim0e _ Zim0e2qg]) 0, i=1,2. (6.37)
nm—oo Jo

Consequently, the sequence (Z™0% = (¢t (t, X" ));<1)n>1 is convergent in

L2([0,T] x R) to a process Z, for i = 1,2. Additionally, we shall substract a subsequence {n} (denoted

still by {n}) such that, (Z%"%%),,>; converges to Z?, dt ® dP-a.e. and sup,, >, |Z;""*" (w)| € L*([0, T] x

R) fori=1,2.

Next going back to inequality (6.36), taking the supremum on interval [0, 7’| and using BDG’s inequality,

we deduce that,

T
E[ sup D/tz,n;o,z _ i/tl,m;(),z|2 _|_/ ‘Z;',n;o,z _ Zi,m;0,1|2d8}
0

te[0,7]
T T
< CE i 7im;0,z 7m0,z 24 é 1 0.7y
<CE{ [ (12707 +|20m 07 )% ds + - | (1+]X07]) ds
0 0
1 T 0 i,m;0,z |4
— YL”; s Yz,m; ,T d
* 468/0 Y5 s 3}

1 - . T .
+ *E[ sup D/tun,()@ _ Ytl,m70,m|2} + 2E[/ ‘Z;,n,O,z _ Z;,m,0,1|2d5}’
t€[0,T] 0

which implies,
lim sup E[ sup |Y;1,n;0,x _ )/tl,m,;o,m
n,Mm—>00 te[0,T]

2] :07

since ¢ is arbitrary and the facts of (6.12)), (6.37), (6-34) and (6:29)-(c). Thus the sequence of processes

(Ymi0), < converges in SZ(R) to Y for i = 1,2 which are continuous processes.

To summarize this step, we have the following results: for: = 1, 2,
(@) H'(s, X2") € LY([0,T] x R; (0, z; s, dy)ds) uniformly w.r.t. n;
(b) Yoru9e 5 o Y¥in LY([0,T] x R) for any a > 1, besides,

yim0e o Y'in SA(R);

(¢) Zbm%® - o Z"in L*([0,T] x R), additionally, there exists a (6.38)
subsequence {n} s.t Z6™%® . 7' dt ® dP — a.e. and
sup | Z4™%*| € L*([0,T] x R).
n>1
Step 4: Convergence of (H!")p>1, 1 =1,2. In this step, we verify

that the limit processes (Y, Z!)s<r, i = 1,2 are the solutions of BSDE (6.1T). Briefly speaking, we

need to show there exists P-measurable process 6 (resp. ) valued on U (resp. V), such that, Y, Z¢

(i = 1,2) and 0, 9 verify (i)-(iii) and (a),(b) of Proposition Hereafter, we delete the super script (0, )
for convenience. Let us demonstrate first for player i=1, the case for player i=2 follows in a similar way.

First of all, we give a weak convergence result about the subsequence of H7{', i.e. there exists P-measurable

process ¥ valued on V' such that, for integer k£ > 0,
HY* (5, X,) =koo Hi(s, X5, Z;, Z7,9) weaklyin  HZ.(R). (6.39)
Let us now prove (6.39). Recall (6.26) as following,

Hi(s,X,) = q)n(Z;’")q)n(f(Sva» + (I)n(Z;mﬂ(ZsLn) + (I)n(Z;m)@n(Zs’n)' (6.40)
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Note that,
D, (ZE™) 0, (f(5,Xs)) + @ (ZE"U(ZE™)) —nsoo ZEf(s, Xs) + Zu(ZY)), ds @ dP-ace.
since Z1" —,, o, Z1, ds ® dP-a.e. as stated in (6.38)-(c), for any z € R, ®,,(x) —,,_,o0  and finally by
the continuity of p € R + pii(p). The rest part in (6.40) is
D, (ZY™M)0N(Z27) = @ (Z0™)0(Z2™) (g2 20y + Pn(ZEM) T (23 z2—03,
where
D (Z2M0M(Z2™) (72201 —n—soe ZaV(Z2)1 7220y ds ® dP-ace.

since ¥ is continuous at any point different from 0 and Z2" —, .. Z2 ds ® dP-a.e. by (6.38)-(c).
Let us next define an P-measurable process (Js)s<7 valued on V as the weak limit in %2 (R) of some
subsequence (0% (Z2™ )1 z2_0})k>0. The weak limit exists since (0"* ) ;> is bounded. Then, for s < T,

D, (Z2™ )™ (Z2™ )1 7220y — koo ZoVs1{z2-0} weakly in H7 (R).
Therefore (6.39) holds.

In fact, we still need to show for any stopping time 7,
/ H* (5, X4)ds =100 / Hi(s,X,, Z}, 72 9,)ds weakly in L*(Q, dP). (6.41)
0 0

As explained before, taking account of the expression (6.40), we only need to prove the weak convergence
of the following part,
/ D, (Z3™)0™ (23 ) 1 2220y d5 —rhoo / Z39s1 z2-0yds weakly in L*(€2, dP)
0 0
Obviously, we have,

T

/ q’nk(Zsl’”’C)ﬁnk(Zf”“‘)1{23:0}618=/ (P, (Z37F) = Z1)0™ (227 ) 1 z2—0yds
0 0

+ /T Z;l_)n’“ (Zsz’nk)l{zgzo}ds.
0
On the right side, the first integral converges to 0 by Lebesgue’s dominated convergence theorem since
D, (Z1™) — Z' dt@dP-ace., supysg |Z, ™| € L*([0, T] x R) as shown in B38)-(c), Z* € L2([0,T] x
R) and the sequence (9"*);>¢ is bounded. Below, we will give the weak convergence in L*(Q, dP) of
the integral fo Zome(Z% " )1 z2—0yds to fo Z} Usl{z2—0yds. That is, for any random variable { €
L?(Q, Fr,dP), we need to show,

E[¢ / Z0™ (Z2™) 17220y ds] —k—oo E[¢ / Z3951(z2—0yds]. (6.42)
0 0

Thanks to martingale representation theorem, there exists a process (Ag)s<r € H2(R) such that,
E[¢{|F.] = E[¢] + [; AsdB;. Therefore,

E {f / A (Zf’nk)l{zg=o}d8}
0

E[E 21 m (2271 ga_gyds] ‘]-'}

E

—

E[¢| ;] /Zslz’)”’“(ZSQ’”k)l{Z;zzo}ds}
~E[E[¢ / ZY5"(Z2) 1 73—y ds]

E / AydB, - / Z;@"’“(Zf’"’“)l{zgzo}ds]
0 0 °
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Notice that E[{]E[fOT Z;T;”’“(Zf’”k)l{zgzo}ds] koo E[ﬁ]E[fOT Ziﬁsl{zgzo}ds], since (Z1)s<r €
H7(R) and 0™ (Z3™ )1 72—0} —*k—00 Vs Weakly in H7.(R). Next, by Itd’s formula,

E[/ AsdBS'/ Zsll_’nk(Zf’nk)l{Zgzo}ds]
0 0

- E[/ (/ AydBy) Z30"™ (23" )1 z2—0yds]+
o Jo
+ E[/ (/ Zi@nk (Zz’nk)l{zﬁzo}du)Asst],
o Jo

The later one on the right side is 0, since [; ([ Ziv™* (Z2" )1{z2—0ydu)AsdBy is an F;-martingale which
is followed by (Z1)s<1 € H%(R), (As)s<r € HZ(R) and the boundness of ™. For the former part, let
us denote [ AydB, by ¥ for any s € [0, 7]. Then for any integer x > 0, we have,

B[ w2} (o7 (22™) = 0.) 172y
0
= \E[/ U 23 (07 (Z2) = 0, ) L 2112wy - L(z2=oyds]l+
0

+ IE[/ V2, (@”’“(ZE’”) - ﬁs)l{\wszyzfc} “Lizz—oyds]|.
0

On the right side of the above equation, the first component converges to 0 which is the consequence
of 0™ (Z2")11z2-0} —k—oo Vs Weakly in HZ(R). For the second component, considering both
(0" (Z2"™))s<r and (U5)s<- are bounded, it is smaller than C|E[ [ [)sZ}|1{y.z1|>x}ds]| which ob-
viously converges to 0 as x — oo. Thus (6.42) holds, and so does (6.4T).

Besides, we also have

/ ZE™dBy =k 00 / ZldB, in L*(Q,dP), (6.43)
0 0
which is obtained from the convergence of (Z"*);>q to Z1 in H2(R) and the isometric property, i.e.

Bl( [ Zmean,)) <l [ 1700 pa
0

0
oo E[/T |2} |%ds] = E[(/T Z,dB,)’]
0 0
Then by observing the approximation BSDE (6.23) in a forward way, i.e. for any stopping time 7,
ylme = Yol’"’“ — /T H'* (s, Xs)ds + /T ZL™dBy,
0 0
combining with the convergence of (Y 1'"*);>¢ to Y'! in SZ(R), (6.41) and (6.43), we infer that

P-ass., YT1 = YO1 — / Hi (s, X5, Zsl, Zf,ﬁ‘s)ds +/ Z;dBS for every stopping time 7.
0 0

As 7 is arbitrary then the processes Y.' and Yy — [ Hf (s, X, Z}, Z2,95)ds + [, Z1dB, are indistin-
guishable, i.e., P-a.s.
t t
Vt<T, Y=Y, —/ Hf(s,XS,Z;,Zf,ﬁs)der/ ZldB,.
0 0
On the other hand, Y} = g1 (X7), then,
T T
Pas, YVt<T, Y!=g(Xr) +/ Hi(s, X, ZY,Z2,9,)ds —/ ZldB,.
t

t
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Similarly, for player 7o, there exists a P-measurable process (Qs)ng valued on U, such that,

T T
P-as., Vt<T, Y;Zzgg(XT)+/ H5(57XS,Z;7Z§,95)ds—/ Z2dB,.
t t

The proof is completed. O

6.2 Generalizations

In this Section, we introduce some generalizations of Theorem [6.1.2]in the following three aspects:

(i) For the drift term I" in SDE ({6.3) which reads,
T(t,z,u,v) = f(t,z) +u+v,
one can replace u (resp. v) by h(u) (resp. I(v)) with continuous function:
h(u) : U — U'(resp. l(v) : V = V).

Therefore, the value sets U’ and V" are still bounded which followed by the continuity. Finally, the Nash
equilibrium point (@, ) is still of bang-bang type. The unique difference is that, it will jump between the
bound of set U’ x V” instead of U x V. O

(ii) In the same way one can deal with m-dimensional diffusion processes X% with integer m > 2. O

(iii) As we indicated in Remark[6.1.1] in the high-dimensional framework, the dynamics of the process

X% of (6.3) may contain a diffusion term o (see equation (6.44)) which is a matrix function defined as:
o(t,z): [0,T] x R™ — R™*™,

with the following assumption:
Assumption (A3) The function o (¢, ) is uniformly Lipschitz w.r.t. 2:; The function o (¢, x) is invertible

and bounded and its inverse is bounded.

Under Assumption (A3), we can verify that o satisfies the the uniform ellipticity condition, i.e. there
exists a constant Y > 0 such that for any (¢,z) € [0,7] x R™, YT < o(t,z)oT (t,z) < Y11 with I be
the identity matrix of dimension m. Therefore, under Assumption (A3), the generalized SDE:

Xb* =g —I—/ o(r, X*)dB,, Vs € [t,T] and X" = x for s € [0, 1] (6.44)
t
has solution (see e.g. Karatzas and Shreve, pp.289, [[70]).
In this case, the Hamiltonian function will be defined from [0,7] x R™ x R™ x U x V into R by:

Hi(t,x,p,u,v) =po t(t, )T (t,z,u,v) =po L (t,z)(f(t,x) +u+v);
Hy(t,x,q,u,v) = qo t(t,x)[(t,x,u,v) = go 1 (t,2)(f(t,2) + u +v).
Noticing that 0! is bounded, it follows by the generalized Isaacs’ condition and the same ap-
proach in this article that, the Nash equilibrium point exists and is of bang-bang type. O
Remarks on Generalizations (ii) and (iii):

We should point out that, all the results in this article will hold by the same techniques in the cases of
(ii) and (iii) with some regular adaptions except the second part on the right side of inequality (6.32). For
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the high-dimensional case, we could not deal with it in the same way as (6.33). In the following, we will

treat it under the L9-domination condition.

The objective is to prove: for fixed (¢, ), k, n and m be integers,

T
E[/t+5(H{L(s, X5T) — H (5, X57)) - 1yt <y @3] = nim—so0 0. (6.45)

We first give the result of domination.

Lemma 6.2.1. (L?-Domination) Let (t,x) € [0,T] x R™, s € [t,T| and u(t,z;s,dy) the law of X5
Under Assumption (A3) on o, for any q € (1,00), the family of laws {u(t,x;s,dy), s € [t,T)} is L?-
dominated by {;1(0,x;s,dy), s € [t,T]}, i.e., for any 6 € (0,T —t), there exists an application ¢} ,, :
[t +0,T) x R™ — R™ such that:

oty w5, dy)ds = 63, (s,y)(0, 33 5, dy)ds for any (s,@) € [t +6,T) x R™;
“ k=1, 60, (s,y) € L([t +6,T) x [k, K™ (0,3 5, dy)ds).

Proof. Readers are referred to [38] (Section 28, pp.123) and [63]] (Lemma 4.3 and Corollary 4.4, pp.14-15)

for the proof of this Lemma.

Proof of convergence (6-43): Thanks to Lemma|6.2.1| there exists a function ¢¢ , : [t +6,7] x R™ — R"
such that:
fork > 1, qﬁfw(s,y) € LTZI([t +0,T) x [k, k]™; pu(0,2;s,dy)ds) (6.46)

and
T
K| / (P (s, X5%) — H (5, XI9)) - 1 o <py )]
t+0
T
-y / / (H?(52) = HP(5.9)) - 1y, )|
m t+

T
=[G = B ) - gty 90,55, d s

The constant ¢ in (6.46) is the same one as in (6.39) which makes that H* — H; weakly in L?([0, 7] x
R; 1(0,z;s,dy)ds) fori = 1,2 and a fixed ¢ € (1,2). Then combining the weak convergence result (6.39)

and (6.46)) yields (6.43)). O
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APPENDIX A

Integrability of Doléans-Dade exponential
[Haussmann 1986]

Let (t,z) € [0,7] x R™ and (0%%)s<r be the solution of the following forward stochastic differential

S

equation:

{ dfs = b(s,05)ds + o(s,05)dBs, s € [t,T); Al

0, = x, s €[0,¢].

Process (69%)s<r is simply denoted by (0;)s<r. The coefficients o : [0,7] x R™ — R™ ™ and b:

[0,T] x R™ — R™ are measurable functions which satisfy the following assumption.

Assumption A.0.1. (i) o is uniformly Lipschitz w.r.t x and bounded and its inverse is bounded. i.e. there
exist constants Cy and C, such that, ¥t € [0,T|,V x,2’ € R™, |o(t,z) —o(t,2")] < Ci|z — 2|
and |o(t,x)| + |o~ (¢, x)| < C,.

(ii) The function b is uniformly Lipschitz w.r.t x and of linear growth, i.e., there exist constants Cy and C,
such that: ¥t € [0,T], Vx,2’ € R™, |b(t,z) — b(t,z")| < Colz — 2’| and |b(t, z)| < Cp(1 + |z|).

For any measurable F;-adapted process 1 := (1,)s<7 We define the Doléans-Dade exponential as follows,
Cs(n) == eJo mrdBr—3 fos|77'r~\2dr7 Vs < T. (A.2)
Next, we present a result which related to the integrability of Doléans-Dade exponential.

Theorem A.0.1 (Haussmann (1986) [64], p.14). Assume Assumption is fulfilled and let (65)s<1 be
the solution of stochastic differential equation with fixed initial point (0,x). Let o be a P @ B(R™)-
measurable application from [0,T] x Q x R™ to R™ which is uniformly of linear growth, that is, P-a.s.,
V(s,z) € [0,T] x R™,

6 (s,0,2)] < Cp(1 + [a).
Then, there exists p € (1,2) and a constant C, where p depends only on Cy, Cy, Cy,, m, T while the

constant C, depends only on m and p, but not on , such that:

E [|¢r(p(s.0.))["] < C,

Remark A.0.1. In the same spirit, this theorem holds true with generalized process (05%)s<r for fixed
(t,2) € [0,T] x R™

Before proving this theorem, we state the following lemmas.
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Lemma A.0.2. Assume that Assumption holds and M; = f(f o(s,05)dB;s for each t < T, then for
any p > 1, there exists a constant Cy depending on C,, Cy, T and p, such that,

10:]P < Co(1+ []” + [M[”) a.s.
Proof. The proof follows from the boundness of o, the linear growth of b and Gronwall’s inequality.  [J
The following lemma is a time substitution scheme related to the stochastic integral on random interval.

Lemma A.0.3. If B := (B;)<r is a R""-valued Brownian motion and (o)< is a R™-valued stochastic

T
E[/ |at|2dt] < 0,
0

then I(S(t)) is a standard Brownian motion on [0, R(T')] where

process such that

t t
R(t) = / 0, 2dr < o0; S(t) = inf {s > 0, R(s) = t} and I(¢) — / 0sdB,.
0 0
Proof. See Mckean (1969) [81] p.29. O

Lemma A.04. Let B = (B;)>0 be a standard one dimensional Brownian motion. The law of |B| has
density

If 2\t < 1 for a constant )\, then, E[eMBfF] < o0.

We are now ready to give the proof of Theorem[A.0.1]
Proof of Theorem[A.0.1} Let 7y := inf{t > 0 : |f0tgp(s,98)st| > N or fot lo(s,05)|?ds > N}. For
any p > 1, since
T 2
B[ [ 1m0l e(s.00)lete. 00 P
T/\TN "t 1 rt, 2 2
< E[/ 0S5 po(s.02)dB.—§ [§ p°|ip(5.0.) % ds} |g0(t,0t)‘2dt}
0
< Ne?PN

then process (ftATN Cs(pp(r,0,)) - o(s,05)dBs) i< is a Fy-martingale. Therefore, by 1td’s formula,

0
TATN
E[Crary (p9(5,0,)| = 1+ E| /0 Cinen (PP(5,05)) - pip(t, 60)dBr | = 1.

We now define M; := fg o(s,05)dB;s for each t < T. Then we obtain from the linear growth of ¢ and
Lemmal[A.0.2] that

|Crnmn (2(5,05)) |7 = Crnmn (pip(s,05)) - €302V o "7 lo(o0) Pt

< Crnen (pp(s,05)) . e3P =P C(1+[z*+ Mrary|?) (A3)

where the constant C depends on 7', Cj and C,.

Let process BY = (BN )<z := (B;— [;"™

probability P which satisfies dP" = Cpary (po(s,0;))dP. Let us denote MY := [ o(s,0,)dBY for

pp(s,05)ds)i<r. Hence BY is a Brownian motion under
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each t < T. Then My = M} + [[""" po(s,0s)¢(s,0s)ds and from Assumption the linear growth
of ¢ and Lemma[A.0.2] we know,

|My|* < 2|MN* + Cp*C,C3 /WN (14 16,%) ds
0
<C(IMtN2+1+|:c|2+/0t|Msl2ds)»
where the constant C' depends on Cy, C,y, C, and p. Thanks to Gronwall’s inequality, we have,
|Mp|* < C (14 [z]> + | MJ]?) . (A.4)

Back to (@) and take expectation on both sides, we obtain, there exists a constant which we still denoted
by C depending on Cy, C,, Cy,, p,m, T, such that,

E[[¢rary (o(5,0.)"]

< EN {eé@%mg(lﬂzmw|2)]

IN

o3 —p)C+a?)  gN {eaptp)gw \2} (A.5)

where EV is the expectation under probability PV . If o;(t) is the i row (i = 1,2,...,m) of matrix
o(t, X¢), then by a technique of splitting a stochastic integral into the integrals on random intervals, we get

the following inequality,

m T
P Y] [ any
i=1 /0

where BN () = [ 0,(s)dBY and Si(t) = inf{s > 0: Ry(s) = t} with Ry(s) = [ |o(t)[2dt.

TS |8 (R
=1

It follows from Lemma that 37 is a Brownian motion on the random interval [0, R;(T)]. Now
Holder’s inequality implies for constant A,

EN {e/\IM%VIQ} <EN {HeMﬁ{V(m(T»F]

1
< TE" { (emAW(Ri(T»F) " }

1

- H EN { <6mA|ﬁ<Ri<T>>\2) B }

where £ is a scalar Brownian motion on (Q, F,PY). Since R;(T) < T(C,)?, then by Lemma|A.0.4] if
22mT(C,)? < 1, we have,
EN [QMMW} <EN {emxwmcmﬂ = ey < 0.
Now let A = 1(p* — p)C, the same C as (A33). Considering inequality (A-3), we can conclude that if
(p? —p)C < e = (MT'|Cy|?)~ ! then
E[[cran (o(s, 0] < e3*0+Ped = ¢,

Then Fatou’s lemma yields that there exists p € (1,2) which is sufficiently close to 1 depends on
Cy,Cy,Cyp,p,m, T, such that E [[(r(p(s, 05))|P] < C with constant C' depending only on p, m but not on
Pp. O






APPENDIX B

Bounds for the density of the law of a
diffusion process [Aronson 1967]

Let (t,z) € [0,7] x R™ and (6%") <7 be the solution of the following forward stochastic differential

S

equation:

dfs = b(s,05)ds + o(s,05)dBs, s € [t,T];
{ (5,0.)ds + o(5.0.) 0. .

0s =z, s €[0,¢].

The coefficients o : [0,7] x R™ — R™*™ and b: [0,7] x R™ — R™ are measurable functions which

satisfy the following assumption.

Assumption B.0.2. (i) o isuniformly Lipschitz w.r.t x and bounded and its inverse is bounded. i.e. there
exist constants Cy and C,,; such that, ¥t € [0,T],V z,2’ € R™, |o(t,z) —o(t,z')| < Cy|x — 2|
and |o(t,x)| + |o7 (¢, z)| < C,.

(ii) The function b is uniformly Lipschitz w.r.t x and bounded, i.e., there exist constants Cy and C, such
that: ¥t € [0,T], Vx, 2’ € R™, |b(t,x) — b(t,2")| < Calz — 2’| and |b(t, z)| < Ch.

Remark B.0.2. Under Assumption|[B.0.2}(i), o satisfies the uniform ellipticity condition, i.e., there exists a
real constant © > 0 such that for any (t,z) € [0,T] x R™, wl < o(t,x)oT (t,x) < w11 where I is the

identity matrix of dimension m.

Theorem B.0.2 (Aronson 1967 [1). Under Assumption let ¢ €]1,00| be fixed, (to,xo9) €
[0,7] x R™ and let (0%°°),<s<T be the solution of SDE (B:1). Then for any s € (to,T], the law
i(to, zo; s, dx) of 0107 has a density function py, ,(s,x), w.r.t. Lebesgue measure dx, which satisfies

the following estimate: ¥(s,x) € (to,T] x R™,

m Alx — zo]? m Mz — zo|?
(s = t0) Foxp |- ML) <o) < pals - t0) Fewp |SHEZIE] @)
—to 0

where 01, 02, A, X are real constants such that 0 < o1 < po and 0 < A < A.

The main task of this appendix is to prove this theorem. It can be checked that the density function
of the law of a diffusion process can be interpreted by the fundamental solution of some associated partial
differential equation. Therefore, before approaching, we first give the definition of the fundamental solution

of parabolic type PDE. Refer the book by Fridman [49] (Chapter 9) for more information.

Definition B.0.1 (Fundamental solution). A parabolic PDE system is introduced as follows,

ug —{ai;(t, o) ug, + aj(t, x)uly, —bj(t, x)us; —c(t,x)u=0. 4i,j=1,2,..,m. (B.3)
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By a fundamental solution (or a fundamental matrix) I'(t, z; 7,€) of (B3) we mean an m x m matrix of
functions defined for (t,z) € [r,T] x D, (1,€) € [0,T] x D for any subset D € R™, satisfies (B3) and

lim [ T(t,2;7,8) f(§)d = f(z)

tN\T Q
for all x € D and any continuous function f (&) in D. If D is unbounded, f is further assumed to satisfy
the boundedness condition

f(z) = O{ka? } for some positive constant k.

Therefore, to prove Theorem [B.0.2]is reduced to study the global bound of the fundamental solution of
the following PDE:

g —{aij(t, o) ue, + aj(t, x)uly, — bj(t,x)u,; =0. 4,5 =1,2,...,m.

with a = (a;;) = $00”. The complete result related to the boundedness of the fundamental solution to
the above equation can be found in Aronson (1968) [2]. Bellow, we will briefly introduce the proof in the

same spirit by a simplified form (B.4) according to the paper by Aronson (1967) [1]].
Up — {aij(t,:c)umi}zj =0. (B.4)

We assume that the coefficients of (B.4) are smooth enough, say a;; € C*°([0,T] x R™). Moreover, to
simplify the computations we assume a;; = a;; and there exits a constant v > 1 such that v=|¢|? <
a;j(t,x)¢;¢ < v|¢|* forall (¢,z) € [0,T] x R™ and ¢ € R™. The latter uniform ellipticity condition is
satisfied under Assumption [B.0.2](see Remark [B.0.2)).

Sketch of proof for Theorem|B.0.2|(Aronson 1967 [1]]). Under these conditions the fundamental solution
g(t,z;7,&) to PDE exists and it is known that

/m g(t,x;7,8)dE = - g(t,x;7,&)de = 1. (B.5)
In addition, Nash [82]] has shown that
/m g (t, w7, )dg < k(t—7)7 %, /m gt w7 €)dr < k(t—7)7% (B.6)
and
gt,z;7,8) < k(t—1)7%, (B.7)

where k denotes a positive constant which depends only upon m and v. In point of view of fundamental

solution to PDE, we aim to show the following results:

Colz — &?
gt z;7.8) > Ci(t—7)" 2 exp {—M] (B.8)
-7

and g(t,z;7,8) < kefﬁ(t —7)% exp —ﬂ (B.9)

Y - 64v(t — 1)

for (¢, ), (1,€) € [0,T] x R™ with t > 7 and Cy, Cs, k are constants.

(I) Proof for the lower bound (B.8)) depends on Theorem 7" of [3]] which reads, if

M = inf / g(t,z;7,&)der >0 (B.10)
0<t<T |[z—€2<a(t—T)

for some o > 0, then (B.8) holds true for constant C; depending only on o, M, m, v and C5 depending
only on m, v. Therefore, it suffices to show (B.10)
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Let (7,€) € [0,T] x R™ and t € (7, T] be fixed. Consider the function
v(s,y) = / g(t, 5 s,y)dx
le—&*<a(t—7)

for s < t, where = 16/T. Note that v is a solution of the equation vs + (a;;vy,),, = 0 for (s,) €
R"™ x [0, t) with initial values

otog) = {1, ly = €° < alt—7);
0, ly—¢&P>alt—r)
Set
a;5(S,Y), 5§t7 vis,y), SStv
ai;(s,y) = i(5:9) and 0(s,y) = (5:9)
§ij7 s > t,

Then, v is a non-negative weak solution (in the sense of [3]) of the equation
U5 +{ij(5,Y)0y, }y, =0 (B.11)

in the cylinder {|y — £|? < a(t — 7)} x [0,00). We now apply the Harnack inequality for weak solutions
of (B.T1)) (see Theorem 5 in [3])). Then,

/ g(t,z; 7, €)da = (7, &) > o(t,&)e” C16/aHD) = =C(T+HY
|z—£12<a(t—T)

where C' depends only on m and v.

(IT) To obtain the upper bound (B.9), we shall use the following estimate for a solution of the Cauchy
problem for (B-4) with data whose support lies outside a sphere in R".

Lemma. Let ug(z) be an L>(R™) function such that ug = 0 for |z —y| < o, wherey € R™ and o > 0
are fixed. Suppose that v is a solution of (B4) in R™ x (n,T) with initial values u(n, z) = uo(x). Then if
u € L®((n,s) x R™) for any s which satisfies 0 < s —n < o2, we have

0.2

<k(s—n) Texp|-—— .
o)l < s = )% xp |~ 5 ol e

where k is a positive constant which depends only on n and v.
See Theorem 2 in [1]] for the proof.
In the following, we first prove that if 02 > s — 7 > 0 then

2 . _ —m/2 _ 02
/y_d>ag (s,945m,¢)dC < k(s —n)~™ " exp [ o0(s— ) n)} ; (B.12)

where k£ > 0 is a constant depending only on 7 and v. Set
u(t,z) = / 9(t, @3 x, Q)g(s, y; X, €)dC.
ly—¢l>o

Then w is a nonnegative solution of (B4) for ¢ > 7 with initial values u(n,z) = 0 if |z — y| < o and

u(n,x) = g(s,y;m,z) if |z — y| > o. Moreover, in view of (B-3),(B-6) and (B.7),u(n,z) € L*(R™) and
0 < u(t,z) < k(s —n)~™/2. Thus by the above lemma, we obtain

0<u(87y)=/ " g (s,yim, Q)d¢
y— o
2

—m g . %
< k(s —n)""*exp [_321/(5—77)} {/ly_<>092(5»y777aC)dC}
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and (B:12) follows easily. Note that a similar estimate holds if we integrate with respect to y instead of ¢ in

(B.12).
Let (¢, ), (1, &) be fixed points of [0, T]x R™ with t > 7. Set o = |r—&|/2 and assume that t—7 < o2

By the Kolmogorov identity
g(t,z;7,8) = /m g(t,a; (t+7)/2,Qg((t +7)/2,¢57,€)dC.

Split the integral over R™ into an integral J; over |z — £| > o and an integral J5 over |z — £| < o. By the

Schwarz inequality
VS / gA(t i (t+7)/2,0dc | / Gt +7)/2,Gr0dc )
o—¢|>0 o—¢|>0
Now using (B:12) and (B.6), we obtain

Ji < k(t—71)"™ 2 exp {—M] : (B.13)
64v(t — 1)

where k depends only upon n and v. The estimate (B.13) also holds for .Jo. To show this we note that

|z — (| < o0 = |z —£]|/2 implies that | — (| > o. Thus J; is dominated by the integral over |{ — (| > o.

The assertion now follows by the argument used above with the roles of and interchanged.

Thus we have derived the required upper bound for g in case |z — ]2 > 4(t — 7). If | — £]? < 4(t — 1),

then in view of (B.7), we have

_ |2
gt 257, €) < k(t — 1) < ke V1t — 1) T P exp {_GZ@ f' T)] :

where k depends only on n and v. This completes the proof of upper bound (B:9). O
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Résumé

Cette these traite les jeux différentiels stochastiques de
somme non nulle (JDSNN) dans le cadre de Markovien et
de leurs liens avec les équations différentielles
stochastiques rétrogrades (EDSR) multidimensionnelles.
Nous étudions trois problémes différents. Tout d'abord,
nous considérons un JDSNN ou le coefficient de dérive
n'est pas borné, mais supposé uniquement a croissance
linéaire. Ensuite certains cas particuliers de coefficients de
diffusion non bornés sont aussi considérés. Nous
montrons que le jeu admet un point d'équilibre de Nash
via la preuve de l'existence de la solution de I'EDSR
associée et lorsque la condition d'lsaacs généralisée est
satisfaite. La nouveauté est que le générateur de 'EDSR,
qui est multidimensionnelle, est de croissance linéaire
stochastique par rapport au processus de volatilité. Le
deuxieme probléme est aussi relatif au JDSNN mais les
payoffs ont des fonctions d'utilité exponentielles. Les
EDSRs

multidimensionnelles et quadratiques en la volatilité. Nous

associeces a ce jeu sont de type

montrons de nouveau l'existence d’un équilibre de Nash.
Le dernier probleme que nous traitons, est un jeu bang-
bang qui conduit a des hamiltoniens discontinus. Dans ce
cas, nous reformulons le théoréme de vérification et nous
montrons I'existence d'un équilibre de Nash qui est du
type bang-bang, i.e., prenant ses valeurs sur le bord du
domaine en fonction du signe de la dérivée de la fonction
valeur ou du processus de volatilité. L'EDSR dans ce cas
est un systeme multidimensionnel couplé, dont le
générateur est discontinu par rapport au processus de
volatilité.

Mots Clés: Jeux Différentiels Stochastiques de Somme
Non Nulle; Equations Différentielles Stochastiques
Rétrogrades; Point d'équilibre de Nash.

Abstract

This dissertation studies the multiple players nonzero-sum
stochastic differential games (NZSDG) in the Markovian
framework and their connections with multiple dimensional
backward stochastic differential equations (BSDEs). There are
three problems that we are focused on. Firstly, we consider a
NZSDG where the drift coefficient is not bound but is of linear
growth. Some particular cases of unbounded diffusion coefficient
of the diffusion process are also considered. The existence of
Nash equilibrium point is proved under the generalized Isaacs
condition via the existence of the solution of the associated
BSDE. The novelty is that the generator of the BSDE is multiple
dimensional, continuous and of stochastic linear growth with
respect to the volatility process. The second problem is of risk-
sensitive type, i.e. the payoffs integrate utility exponential
functions, and the drift of the diffusion is unbounded. The
associated BSDE is of multi-dimension whose generator is
quadratic on the volatility. Once again we show the existence of
Nash equilibria via the solution of the BSDE. The last problem
that we treat is a bang-bang game which leads to discontinuous
Hamiltonians. We reformulate the verification theorem and we
show the existence of a Nash point for the game which is of
bang-bang type, i.e., it takes its values in the border of the
domain according to the sign of the derivatives of the value
function. The BSDE in this case is a coupled multi-dimensional
system, whose generator is discontinuous on the volatility

process.

Key Words: Nonzero-sum Stochastic Differential Games;
Backward Stochastic Differential Equation; Nash Equilibrium
Point.
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