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1
Introduction

The “Linked Data” initiative [17, 55] has led to the publication and interlinking of billions of

pieces of data, transforming the traditional Web of Documents into the Web of Linked Data. In the

Web of Linked Data ideal, data consumers, i.e., users, developers and their applications, make use

of links between pieces of data to discover related data stored in remote servers, augmenting their

added-value and enriching user experience.

The principles of the Linked Data initiative are the following [55]:

1. Use URIs as names for things. This can be seen as extending the scope of the Web from online

resources to encompass any object or concept in the world.

2. Use HTTP URIs, so they can be looked up. This principle enables the dereferencing of these

URIs over the HTTP protocol into a description of the identified object or concept.

3. When someone looks up a URI, provide useful information, using the RDF and SPARQL

standards. The purpose of advocating a standardized format is to ease the interoperability and

contribute to the scalability, as with HTML in the Web of Documents.

4. Include links to other URIs, so that users can discover more data. This principle follows from

the idea of hyperlinking documents in the traditional Web. The main difference is that in

Linked Data, links are typed, e.g, two persons can be linked with a hyperlink of type friend or

5



6 CHAPTER 1. INTRODUCTION

relative.

This thesis focuses on solving the following two problems:

Problem 1. How to integrate format-heterogeneous data sources to the Web of Linked Data? How

to query semantic-heterogeneous data sources in the Web of Linked Data?

Problem 1 means to take data represented in different formats and query it in RDF and SPARQL

and to be able to perform queries on data already in RDF but expressed using different vocabularies

or ontologies in an effective way.

Subsequently, we focus on the problem of the writability of the Web of Linked Data:

Problem 2. How to allow Linked Data consumers and publishers to write each other’s data and turn

the Linked Data into Read/Write?. Which consistency criteria are suitable for a Read/Write Linked

Data? How to maintain them respecting the autonomy of the participants and without compromising

their availability and scaling in large number of consumers and publishers and in large quantity of

data?

Read/Write support would allow participants to enhance the general quality of the Web of Linked

Data in a collaborative way.

1.1 Contributions

We have four major contributions, two for Problem 1 and two for Problem 2. Concerning Prob-

lem 1, we define it as a Local-as-View data integration problem. LAV mediators rely on views

to define semantic mappings between a uniform interface defined at the mediator level, and local

schemas or views that describe the integrated data source. LAV mediators use a query rewriter to

translate a query posed to the mediator to a union of queries against the local views. However,

the query rewriting problem in LAV mediators has been shown to be NP-Complete [79]: millions of

rewritings could be generated when using SPARQL conjunctive queries, consequently, the execution

of millions of rewritings may not produce results in a timely manner.

Our contributions to ease the rewriting explosion issue are (i) 1. The formulation of the Result-

Maximal k-Execution problem (Re-MakE) as the maximization of the query results obtained from

the execution of only k rewritings 2. The proposal of a novel rewriting execution strategy called
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Figure 1.1: Linking Open Data Cloud and Read/Write Linked Data as social networks

Graph-Union (GUN) to solve Re-MakE [84]. Our experimental evaluation demonstrates that GUN

outperforms traditional techniques in terms of efficiency and effectiveness. (i)

Concerning Problem 2, we model the Read/Write Linked Data as a social network of update

exchange that overlays the current Linking Data Cloud, as illustrated in Figure 1.1. On the left side

of the Figure, a fragment of Linking Data Cloud, where relationships among datasets are defined by

the presence of links to the URIs prefixed by the domain name of others. On the right side of the

Figure, our vision of the Read/Write Linked Data: the relationship is defined by what actors in the

social network copy from others. Copied data can be updated, and such updates may, directly or

indirectly, be consumed back by the original data producer.

Assuming the model described above, we make two contributions. First, the use of Strong Even-

tual Consistency (SEC) [110] as consistency criterion. SEC means that, assuming that all updates

made at all participants are eventually delivered to all participants, then, when participants stop

updating and all updates have been delivered, all participants have an equivalent state. A recent
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formalism called Conflict-Free Replicated Data Type (CRDT) [110] provides the means to achieve

SEC while respecting the autonomy of participants and scaling to a large number of participants.

We designed SU-Set [61], a CRDT for the RDF-Graph type operated with SPARQL 1.1 Update and

showed it has a low overhead in time, space and communication.

Second, we develop Fragment Consistency (FC), a criterion stronger than SEC that allows the

assertion of guarantees on fragments of data instead of on full states. Each participant copies

fragments, i.e., subsets of data of their interest defined as SPARQL CONSTRUCT queries, from

other participants, receiving the updates that concern such fragments from the sources, and pushing

the updates they have made on their copies to the participants that have copied fragments from

them.

FC means that when the system is idle, every fragment copied at a participant T from a partici-

pant S equals to the evaluation of the fragment at S after applying the updates locally executed by

T Contrary to SEC, with FC there is no assumption that all updates reach all participants, allowing

participants full flexibility when establishing their connections to copy data.

We propose a coordination-free protocol to reach FC and analyze its worst case complexity,

showing that it is similar to the one of SU-Set except in the case of a very connected network [62].

We argue that the act of copying fragments is driven by social rules, and conducted an empirical

experimental study showing that performance is better for synthetically generated social networks

than for random ones.

1.2 Outline

This dissertation is comprised of two parts. Part I treats Problem 1 and part II treats Problem 2.

Chapter 2 details the RDF data model and the SPARQL 1.1 query and update languages, central

concepts common to both parts.

1.2.1 Part 1

– Chapter 3 serves as introduction and gives the outline of Part 1.

– Chapter 4 details the state of the art in Data Integration and Query Execution on the Web of

Linked Data.

– Chapter 5 describes the ReMaKe problem and its solution: Graph Union.
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1.2.2 Part 2

– Chapter 6 serves as introduction and details the outline of Part 2.

– Chapter 7 details the State of the Art in consistency criteria and algorithms to maintain it in

different research communities.

– Chapter 8 presents SU-Set a Conflict-Free Replicated Data type for the Web of Linked Data.

– Chapter 9 presents the Fragment Consistency criterion and Col-Graph, a protocol to maintain

it based on annotated RDF-Graphs and updates.

1.2.3 Part 3

Chapter 10 summarizes overall conclusions and outlines the perspectives.

1.3 Publications list

This work led to the following publications, listed in chronological order:

1. Luis-Daniel Ibáñez, Hala Skaf-Molli, Pascal Molli, and Olivier Corby. Synchronizing semantic

stores with commutative replicated data types. In Alain Mille, Fabien L. Gandon, Jacques

Misselis, Michael Rabinovich, and Steffen Staab, editors, WWW (Companion Volume), pages

1091–1096. ACM, 2012

2. Gabriela Montoya, Luis-Daniel Ibáñez, Hala Skaf-Molli, Pascal Molli, and Maria-Esther Vi-

dal. Gun: An efficient execution strategy for querying the web of data. In 24th International

Conference on Database and Expert Systems Applications, DEXA, pages 180–194, 2013

3. Luis-Daniel Ibáñez, Hala Skaf-Molli, Pascal Molli, and Olivier Corby. Live linked data: Syn-

chronizing semantic stores with commutative replicated data types. International Journal of

Metadata, Semantics and Ontologies, 8(2):119–133, 2013

4. Luis-Daniel Ibáñez, Hala Skaf-Molli, Pascal Molli, and Olivier Corby. Col-graph: Towards

writable and scalable linked open data. In 13th International Semantic Web Conference, ISWC,

2014

I also collaborated in two other papers that are not detailed in this dissertation:
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– Gabriela Montoya, Luis-Daniel Ibáñez, Hala Skaf-Molli, Pascal Molli, and Maria-Esther Vi-

dal. Semlav: Local-as-view mediation for sparql queries. T. Large-Scale Data-and Knowledge-

Centered Systems, 13:33–58, 2014. This is a follow-up of the work started in [84].

– Maria-Esther Vidal, Jean Carlo Rivera, Luis-Daniel Ibáñez, Louiqa Raschid, Guillermo Palma,

Héctor Rodríguez-Drummond, and Edna Ruckhaus. An authority-flow based ranking approach

to discover potential novel associations between linked data. Semantic Web, 5(1), 2014. This

paper is the culmination of a several years project coordinated by Prof. Dr. María-Esther Vidal

at Universidad Simón Bolívar in which I actively participated as an undergraduate student and

kept collaborating in parallel with my other works.



2
Background

The Web of Linked Data makes available a large amount of data distributed across many partic-

ipants. Participants make available their data for others to query. A user that asks a query on the

Web of Linked Data is asking a query on a federation of organizations that publish their data follow-

ing the Linked Data principles. In this chapter we give background on the W3C recommendations

to store, query and update Linked Data: the Resource Description Framework (RDF) data model

and the SPARQL 1.1 query and update languages. We will build upon these recommendations to

solve the problems described in Chapter 1: to integrate format-heterogeneous data sources in the

Web of Linked Data (Problem 1). For the writability problem (Problem 2), we will enable the use

of SPARQL Update expressions on data that is not originally stored by the participant issuing the

update, therefore, enabling the collaborative enhancing of the general quality of the Linked Data.

The Resource Description Framework (RDF) [127] is the W3C recommendation to represent

information in the Web. The core structure of the data model is the RDF triple, comprised of a

subject, a predicate, and an object. An RDF triple represents some relationship, indicated by the

predicate, holding between the resources denoted by a subject and an object. An alternative way to

represent it is as a directed graph, where the subject and object nodes are connected by a labeled

directed edge (the predicate).
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SPARQL 1.1 [125] is the query language for RDF recommended by the W3C. We recall some

definitions of the semantics of SPARQL and RDF from [96]:

Definition 2.0.1. The Sets I (IRI Identifiers), B (Blank Nodes), L (Literals) and Υ (Variables)

are four infinite and pairwise disjoint sets. We also define T = I ∪B ∪ L.

Definition 2.0.2. An RDF-Triple is 3-tuple (s, p, o) ∈ (I ∪B)× I × T .

Definition 2.0.3. An RDF-Graph is a set of RDF-Triples.

Definition 2.0.4. A mapping µ from Υ to T is a partial function µ : Υ → T . The domain of µ,

dom(µ), is the subset of Υ where µ is defined.

Definition 2.0.5. A triple pattern is a tuple t ∈ (I ∪Υ∪L)× (I ∪Υ)× (I ∪Υ∪L). A Basic Graph

Pattern (BGP) is a finite set of triple patterns. Given a triple pattern t, var(t) is the set of variables

occurring in t, analogously, given a basic graph pattern B, var(B) = ∪t∈Bvar(t). Given two basic

graph patterns B1 and B2, the expression B1 AND B2 is a graph pattern.

Definition 2.0.6. Given a triple pattern t and a mapping µ such that, var(t) ⊆ dom(µ), µ(t) is the

triple obtained by replacing the variables in t according to µ. Given a basic graph pattern B and a

mapping µ such that var(B) ⊆ dom(µ), then µ(B) = ∪t∈Bµ(t).

Definition 2.0.7. Two mappings µ1, µ2 are compatible (we denote µ1 q µ2) iff for all variable

?X ∈ (dom(µ1) ∩ dom(µ2)), then µ1(?X) = µ2(?X). This is equivalent to say that µ1 ∪ µ2 is also a

mapping.

Definition 2.0.8. Let Ω1,Ω2 two sets of mappings.

– The join between Ω1 and Ω2 is defined as: Ω1 on Ω2 = {µ1 ∪ µ2 |µ1 ∈ Ω1 ∧ µ2 ∈ Ω2 ∧ µ1 q µ2}

– The union between Ω1 and Ω2 is defined as: Ω1 ∪ Ω2 = {µ |µ ∈ Ω1 ∨ µ ∈ Ω2}

– The difference between Ω1 and Ω2 is defined as: Ω1 \ Ω2 = {µ ∈ Ω1 | (∀µ′ ∈ Ω2 : ¬µ q µ′)}

– The left outer join between Ω1 and Ω2 is defined as: Ω1 a Ω2 = (Ω1 on Ω2) ∪ (Ω1 \ Ω2)

Definition 2.0.9. Given an RDF-Graph G, the evaluation of a graph pattern P over G is defined

recursively as follows:

1. if P is a triple pattern t, then [[t]]G = {µ | dom(µ) = var(t) ∧ µ(t) ∈ G}.

2. if P is (P1 AND P2), then [[P ]]G = [[P1]]G on [[P2]]G.
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3. if P is (P1 OPT P2), then [[P ]]G = [[P1]]G a [[P2]]G.

4. if P is (P1 UNION P2), then [[P ]]G = [[P1]]G ∪ [[P2]]G.

5. given a boolean condition R, the filter expression (P FILTER R) is evaluated as [[P FILTER R]]G =

{µ ∈ [[P ]]G |µ satisfies R}

In short, each mapping yielded by the evaluation of a BGP gives one way in which selected

variables can be bound so that the pattern matches the data in the RDF-Graph. BGPs represent

the basic building blocks of SPARQL queries, from them, the following extra features are provided:

1. Optional values: queries that allow information to be added to the solution where the infor-

mation is available, but do not reject the solution because some part of the query pattern does

not match. Optional matching provides this facility: if the optional part does not match, it

creates no bindings but does not eliminate the solution.

2. Filtering: a restriction on solutions according on a Boolean condition. For example, restrict

the value of a variable to be less than 10.

3. Union: the mappings that match one pattern or the other.

SPARQL queries can have four forms:

1. SELECT: returns variables and their bindings. One can select variables to project out.

2. CONSTRUCT: returns a single RDF graph specified by a graph template. The result is an

RDF graph formed by taking each query solution in the solution sequence, substituting for

the variables in the graph template, and combining the triples into a single RDF graph by set

union.

3. ASK: tests whether or not a query pattern has a solution. No information is returned about

the possible query solutions, just whether or not a solution exists.

4. DESCRIBE: returns a single result RDF graph containing RDF data about resources

The RDF data model represents information as graphs consisting of triples with subject, predicate

and object. Many RDF data stores hold multiple RDF graphs and record information about each

graph, allowing an application to make queries that involve information from more than one graph.

This notion is captured in the RDF Dataset definition.

Definition 2.0.10 (Named Graph). A named graph is a pair (name,G) where name ∈ I and G is

an RDF-Graph.
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Definition 2.0.11 (RDF Dataset). An RDF Dataset is a set of named graphs which contains at

least a pair (′′, G), i.e., a graph associated to an empty name, called the Default Graph.

The GRAPH keyword can be used to evaluate a query or a portion of it in one or several named

graphs. We overload the notation of definition 2.0.9 and write [[Q]]G to denote the evaluation of any

form of SPARQL query on an RDF-Graph or in an RDF-Dataset.

Data providers can make datasets available in two ways: one, in one of the many serialization

formats available so consumers can download it, load it and query it; two, providing a server that

implements the SPARQL 1.1 Protocol [124] so clients can make http requests on it. Such servers are

known as SPARQL endpoints, or simply, endpoints.

To allow federated query processing, i.e., to invoke a portion of a SPARQL query against a remote

endpoint, SPARQL provides an extension through the SERVICE keyword [123]. For example, the

following query finds the names of the persons stored in the dataset at http://people.example.

org that John knows, as stored in the local RDF-Graph.

PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
SELECT ?name
FROM <http :// example . org /myfoaf . rdf>
WHERE
{

<http :// example . org /myfoaf /John> f o a f : knows ? person .
SERVICE <http :// people . example . org / sparq l> {

? person f o a f : name ?name . }
}

SPARQL 1.1 Update [126] is the W3C recommendation to update RDF-Graphs. It also introduces

the concept of RDF-Graph Store. An RDF-Graph Store is a mutable RDF Dataset, i.e., one where

one can add and delete named graphs. SPARQL 1.1 Update defines two types of operations: Graph

Management operations to create and delete RDF-Graphs in a Graph Store; and Graph Update

operations to update RDF-Graphs. To illustrate its usage, we use the examples of the Graph Update

operations from the recommendation.

– Insert(T): Performs the set union between an RDF-Graph and a set of triples T defined inline

by the user. Example:

PREFIX dc : <http :// pur l . org /dc/ e lements /1.1/>
INSERT DATA {
<http :// expl /book1> dc : t i t l e ‘A new book ’ ;

dc : c r e a t o r ‘A.N. Other ’ .
}

http://people.example.org
http://people.example.org
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will insert the triples

<http :// expl /book1> dc : t i t l e ‘A new book ’ .
<http :// expl /book1> dc : c r e a t o r ‘A.N. Other ’ .

into the RDF-Graph.

– Delete(T): Performs the set difference between an RDF-Graph and a set of triples T defined

inline by the user. Considering an RDF-Graph with the following triples:

<http :// expl /book2> ns : p r i c e 42 .
<http :// expl /book2> dc : t i t l e ‘ Copper f i e ld ’ .
<http :// expl /book2> dc : c r e a t o r ‘Edmund Wells ’ .

the operation

PREFIX dc : <http :// pur l . org /dc/ e lements /1.1/>
DELETE DATA
{
<http :// example/book2> dc : t i t l e ‘ Copper f i e ld ’ ;

dc : c r e a t o r ‘Edmund Wells ’ .
}

will leave the RDF-Graph with:

<http :// expl /book2> ns : p r i c e 42 .

– Delete-Insert(delTemplate,insTemplate,whrPat): This operation takes N steps, executed atom-

ically:

1. Compute the mappings (solutions) corresponding to the evaluation of the whrPat in the current

RDF-Graph as a select SPARQL query.

2. For each mapping, delete from the current RDF-Graph the triples of the delTemplate, where

variables are replaced by their value in the mapping.

3. For each mapping, insert in the current RDF-Graph the triples of the insTemplate where

variables are replaced by their value in the mapping.

If delTemplate is null, step 2 will not be executed. If insTemplate is null, step 3 will not be executed.

At least one of them must not be null. For example, if to an RDF-Graph containing:

<http :// expl / pres25> f o a f : givenName ‘ B i l l ’ .
<http :// expl / pres25> f o a f : familyName ‘McKinley ’ .
<http :// expl / pres27> f o a f : givenName ‘ B i l l ’ .
<http :// expl / pres27> f o a f : familyName ‘ Taft ’ .
<http :// expl / pres42> f o a f : givenName ‘ B i l l ’ .
<http :// expl / pres42> f o a f : familyName ‘ Clinton ’ .
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we apply the operation:

DELETE { ? person f o a f : givenName ‘ B i l l ’ }
INSERT { ? person f o a f : givenName ‘William ’ }
WHERE

{ ? person f o a f : givenName ‘ B i l l ’
}

the final result is:

<http :// expl / pres25> f o a f : givenName ‘William ’ .
<http :// expl / pres25> f o a f : familyName ‘McKinley ’ .
<http :// expl / pres27> f o a f : givenName ‘William ’ .
<http :// expl / pres27> f o a f : familyName ‘ Taft ’ .
<http :// expl / pres42> f o a f : givenName ‘William ’ .
<http :// expl / pres42> f o a f : familyName ‘ Clinton ’ .

– Load(IRI): Loads into the current RDF-Graph all the triples available in the document. Load

is similar to an insertion of triples given inline.

– Clear(): Deletes all the triples in the current RDF-Graph, can be considered as the following

delete-insert operation:

DELETE { ? s ?p ?o }
WHERE { ? s ?p ?o }

Note that all SPARQL-Update 1.1 operations can be seen as set operations. If S is the RDF-

Graph, we have:

– Insert(T) equals S ∪ T

– Delete(T) equals S \ T

– Delete-Insert(delTemplate,insTemplate,whrPat), if D is the set of triples to delete and I the

set of triples to insert, both calculated as explained above, then is equal to (S \D) ∪ I.

There are two basic Graph Management: Create that takes an IRI id and adds a pair (id, ∅) to

a Graph Store, and Drop that takes an IRI id an deletes the pair with name equal to id from the

Graph Store. Three keywords provide shortcuts for special combinations of graph management and

graph update operations:

– COPY: inserts all data from an input graph into a destination graph. Data from the input

graph is not affected, but data from the destination graph, if any, is removed before insertion.

– MOVE: moves all data from an input graph into a destination graph. The input graph is

removed after insertion and data from the destination graph, if any, is removed before insertion.
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– ADD: inserts all data from an input graph into a destination graph. Data from the input graph

is not affected, and initial data from the destination graph, if any, is kept intact.
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3
Introduction

In this part of the dissertation we focus on Problem 1: how to integrate several format-heterogeneous

and semantic-heterogeneous data sources in the Web of Linked Data so they could be queried with

SPARQL.

The advent of the World Wide Web led to the publication of an enormous amount of data. The

Linked Data principles state that data should be published following the standards and recommenda-

tions (RDF), such that its querying could be simplified. Unfortunately, a large amount of currently

published data is not in RDF. Figure 3.1 compares the number of datasets published in RDF with

respect to other popular formats on the sum of the datasets available in four of the main Open Data

portals: the Data Hub 1, and the official open data portals of the United States 2, United Kingdom 3

and European Union 4. Only a little more than 3% of the datasets is in RDF. Moreover, there is a

great variety in the publication formats. Note that the ZIP format could include any other format

inside. Moreover, data available in RDF is not always available through a SPARQL endpoint, making

impossible the execution of federated queries.

Therefore, we need a way to integrate all these datasets in different formats to query them with

1. http://datahub.io
2. http://data.gov
3. http://data.gov.uk
4. http://open-data.europa.eu

21

http://datahub.io
http://data.gov
http://data.gov.uk
http://open-data.europa.eu


22 CHAPTER 3. INTRODUCTION

RDF	  
3%	   XML	  

9%	  

JSON	  
4%	  

HTML	  
18%	  

CSV	  
7%	  

Spreadsheets	  
5%	  

PDF	  
5%	  

ZIP	  
14%	  

Other/Not	  
Available	  
35%	  

Figure 3.1: Distribution formats of datasets published on the main Open Data portals. Retrieved
25/08/2014.

SPARQL. This integration needs to take in account the dynamics of the Web of Linked Data, i.e.,

the possible appearance and disappearance of data sources.

We formulate the problem as a Local-as-View (LAV) mediation problem. LAV is a well-known

and flexible approach to perform data integration over heterogeneous and autonomous data sources.

A LAV mediator relies on views to define semantic mappings between a uniform interface defined

at the mediator level, and local schemas or views that describe the integrated data sources. A LAV

mediator relies on a query rewriter to translate a mediator query into a union of queris against the

local views. LAV is suitable for environments where data sources frequently change, and entities of

different types are defined in a single source. Furthermore, LAV can naturally integrate sources from

the Web of data [2]. However, LAV mediation has well known severe bottlenecks [50]:

1. The query rewriting problem is NP-Complete for conjunctive queries.

2. The number of rewritings may be exponential.



3.1. OUTLINE OF THIS PART 23

SPARQL queries exacerbate LAV limitations, even in the case of conjunctions of triple patterns.

For example, in relational database systems, a LAV mediator with 140 conjunctive views can generate

10,000 rewritings for a conjunctive query with 8 goals [72]. In contrast, the number of rewritings

for a SPARQL query can be in the order of millions. To explain, SPARQL queries are commonly

comprised of a large number of triple patterns and some may be bound to general predicates of the

RDFS or OWL vocabularies, e.g., rdf:type, owl:sameAs or rdfs:label, which are usually published by

the majority of the data sources. Additionally, these triple patterns can be grouped into chained

connected, star-shaped sub-queries [122]. Finally, a large number of variables can be projected

out. All these properties impact on the complexity of the query rewriting problem and lead to the

explosion of the number of query rewritings.

If the number of rewritings is very high, its execution may take a significant amount of time,

undermining the ability of the system to produce timely and complete results. Our contribution

is Graph Union (GUN), an efficient rewriting execution strategy that outperforms traditional tech-

niques. GUN profits from the relatively low cost of the RDF-Graph Union operation to construct

an aggregation of the data retrieved from the views and execute the original mediator query, thus,

obtaining more results at the cost of a higher memory consumption.

3.1 Outline of this part

In chapter 4 we detail the State of the Art on querying the Web of Data and in Data Integra-

tion, justifying our selection of the Local-as-View (LAV) paradigm as the most appropriate for the

dynamics of the Web of Linked Data.

In chapter 5 we present Graph-Union (GUN), an execution strategy for LAV mediation systems

that increases the chance of obtaining results faster from a set of query rewritings in exchange of a

higher memory consumption. Our experiments suggest that GUN outperforms traditional execution

strategies. Results reported in this part were published in [84]





4
State of the Art

In this chapter, we detail the State of the Art in querying on the Web of Data and in Data

Integration.

4.1 Querying the Web of Data

In recent years, several approaches have been proposed for querying the Web of Data. Link

Traversal [54] conceives the Web of Data as a set of initially unknown data sources that are discovered

by following data links at query execution time. The main idea is that, under the assumption that

every source includes a set of RDF triples that describe a given entity, the local dataset where

the query is executed is progressively augmented with the descriptions collected from intermediate

results.

SIH-Join [74] is a non-blocking, pushed-based, stream-based, join operator that is able to process

both remote and local linked data. SIH-Join is specially tailored to Exploration Based approaches

where sources are incomplete like Link Traversal.

ANAPSID [4] is an adaptive query processing engine for SPARQL endpoints. ANAPSID stores

information about the available endpoints and the ontologies used to describe the data, to decompose

queries into sub-queries that can be executed by the selected endpoints. FedX [107] aims the same
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goal on federations of endpoints.

All of these approaches assume that queries are expressed in terms of RDF vocabularies used to

describe the data in the RDF sources; their main challenge is to effectively select the sources, and

efficiently execute the queries on the data retrieved from the selected sources. Data integration is

not considered, as all sources are assumed to be available through SPARQL endpoints and following

a global ontology.

4.2 Data Integration

Two main paradigms have been proposed to define the data sources in integration systems. The

LAV approach is commonly used because it permits the scalability of the system as new data sources

become available [118]. Under LAV, the appearance of a new source only causes the addition of

a new mapping describing the source in terms of the concepts in the RDF global vocabulary. On

the other hand, in the Global-As-View (GAV) approach, entities in the RDF global vocabulary are

semantically described using views in terms of the data sources. Thus, the extension or modification

of the global vocabulary is an easy task in GAV as it only involves the addition or local modification

of few descriptions [118]. Therefore, the LAV approach is best suited for applications with a stable

RDF global vocabulary but with changing data sources whereas the GAV approach is best suited for

applications with stable data sources and a changing vocabulary.

Given the nature of the Semantic Web, we rely on the LAV approach to describe the data sources

in terms of a global and unified RDF vocabulary, and assume that the global vocabulary of concepts

used by the mediator is stable while data sources may constantly pop up or disappear from the Web.

Figure 4.1 illustrates a LAV mediation scenario. At the top left of the Figure there is a global

ontology describes recipes, ingredients and their associations. Using wrappers, we can define LAV-

Mappings or views on the heterogeneous data sources. Wrappers take the data expressed in the local

ontology or format of the source and translate it to the global ontology. For example, the source

Taaable is a semantic wiki where data is mostly in text and in relational format and expressed in

an ontology defined by Taaable’s administrators. The mediator uses a wrapper on Taaable that

translates parts of such data in terms of the global ontology. In the case of Figure 4.1, the wrapper

implements a view that returns recipes with banana as ingredient.

A client wanting to query the data sources simply formulates a conjunctive query in terms of
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Figure 4.1: Example of Local-As-View Mediation

the global ontology. In the Figure, the client asks for a main dish and a dessert containing a fruit

as ingredient. This query is received by a component of the mediator called Query Rewriter that

generates a set of queries on the LAV mappings contained in the user’s query called rewritings. In

Figure 4.1, the rewriter identifies that a recipe in the RaisinRecipe view also in the ChickenMain

view is a main dish containing fruit, and a recipe in ChocoDessert also in RaisinRecipe is a dessert

containing a fruit, therefore, it produces a rewriting equal to the combination of these two joins.

An Execution Engine (bottom right of the Figure) receives the rewritings and executes them to

collect the results. The union of all these results is the answer returned to the user.

However, LAV-Mediation has a fundamental bottleneck: the query rewriting problem was shown

to be NP-complete, and the number of rewritings can be exponential even if mediated queries and

local views are conjunctive queries [1, 7]. For example, a LAV mediator with 140 conjunctive views

can generate 10,000 rewritings for a conjunctive query with 8 goals [72]. Complexity can be exac-

erbated by the usage of mediator queries and local views defined as SPARQL conjunctive queries.

SPARQL queries are commonly comprised of a large number of triple patterns and many of them

are defined on general predicates that can be answered by the majority of the data sources, i.e.,
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rdf:type or rdfs:seeAlso. Additionally, these triple patterns can be grouped into chained

connected star-shaped sub-queries [122]. Finally, a large number of variables can be projected out.

The conjunction of all these properties impacts on the complexity of the query rewriting problem

and leads to the explosion of the number of query rewritings.

4.2.1 Query Rewriting

The problem of rewriting a query expressed in terms of a global schema into queries on data

sources under local schemas is a relevant problem in integration systems [78], and several approaches

have been defined to efficiently enumerate the query rewritings and to scale when a large number of

views exists.

The bucket algorithm [78] was the first rewriting algorithm, it is based in three very simple steps:

first, from the set of views, select the ones that are relevant for the query to rewrite; second, to

generate candidate rewritings by combining the relevant views and third, check if the rewritings are

valid, i.e., if they are contained in the original query. MiniCon [98] optimizes the bucket algorithm by

using a more complex algorithm to select relevant views such that all generated candidate rewritings

are valid.

MCDSAT [7] casts the query rewriting problem into a propositional theory such that the models

of the theory represent the solutions that can be solved using off-the-shelf AI techniques. They show

that the casting is more efficient than MiniCon. Finally, GQR [72] uses a graph representation of

queries and views to identify common subexpressions, allowing faster discard of invalid rewritings

than with previous algorithms.

Concerning the use of rewritings in Semantic Web, [75] propose a solution to identify and combine

GAV SPARQL views that rewrite SPARQL queries against a global vocabulary, and Izquierdo et

al [65] extends the MCDSAT with preferences to identify the combination of semantic services that

rewrite a user request.

A great effort has been made to provide solutions able to produce query rewritings in the least

time possible, however, to the best of our knowledge, the problem we tackle, executing the query

rewritings against the selected sources, still remains open. Tackling rewriting execution is important,

as in many cases the number of generated rewritings is very high due to the exponential complexity

on the number of subgoals. For example, when the following query with 7 subgoals on the ontology
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of the Berlin Benchmark [19]

SELECT ?X1 ?X2 ?X3 ?X4 ?X5 ?X6 ?X7 ?X8
WHERE {
?X1 rd f s : l a b e l ?X2 .
?X1 rd f s : comment ?X3 .
?X1 bsbm : productPropertyTextual1 ?X4 .
?X1 bsbm : productPropertyTextual2 ?X5 .
?X1 bsbm : productPropertyTextual3 ?X6 .
?X1 bsbm : productPropertyNumeric1 ?X7 .
?X1 bsbm : productPropertyNumeric2 ?X8 .
}

is input to MCDSAT with 224 sources, 1, 127e + 10 rewritings are produced. Too many to be

sequentially executed.

4.2.2 Transformation to RDF

In the Semantic Web community, the semi-automatic transformation of format heterogeneous

data sources to RDF in order to publish them as Linked Data has been already studied. The D2RQ

system 1 allows the read-write access to relational databases as a virtual RDF-Graph. The Karma 2

system [71, 53] eases the transformation of structured data into an RDF Graph or a database following

an input ontology. Both systems can be used to implement the wrappers of the LAV mediation.

R2RML 3 isa language for expressing customized mappings from relational databases to RDF

datasets. Such mappings provide the ability to view existing relational data in the RDF data model,

expressed in a structure and target vocabulary of the mapping author’s choice. Some systems have

been developed to semi-automatically and interactively create and edit R2RML mappings, for ex-

ample [91, 108]. Recent research [34] has focused on extending R2RML to make it source-agnostic,

in order to use it as part of a Global-as-View integration approach.

4.3 Summary

Our study of the State of the Art can be summarized as follows: Even with the clear benefits that

LAV can bring to the Semantic Web, this approach has not been fully adopted, mainly because it

is not realistic to generate or execute the huge number of rewritings produced by query rewriters. In

1. http://d2rq.org
2. http://www.isi.edu/integration/karma/
3. http://www.w3.org/TR/r2rml/

http://d2rq.org
http://www.isi.edu/integration/karma/
http://www.w3.org/TR/r2rml/
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Chapter 5, we aim at providing an efficient solution to this issue by maximizing the results obtained

from k rewritings, where k corresponds to the first k rewritings produced by a LAV query rewriter.



5
Graph-Union (GUN)

In this chapter we describe an efficient strategy for querying the Web of Data under the LAV data

integration paradigm. We solve the issue of the evaluation of the large number of query rewritings

produced by query rewriters by maximizing the results obtained from the first k.

We devise the Result-Maximal k-Execution Problem (ReMakE) as an extension of the Query-

Rewriting-Problem (QRP) as follows: given a subset Rk of size k of a solution R of a QRP for a

query Q, the ReMakE problem is to evaluate a set of rewritings R′ containing Rk and contained

in Q such that R′ is result-maximal. Furthermore, we propose the Graph-Union execution strategy

(GUN) as a solution to the ReMakE problem.

Unlike traditional techniques, GUN relies on wrappers to populate an RDF graph that is locally

managed by the execution engine. This approach takes advantage of the relatively low cost of

the RDF-Graph union operation to construct an aggregation of the data retrieved from the views.

This approach attempts to execute the original mediator query directly on the graph union and

consequently, it may find results hidden to the k first rewritings. For a given set of rewritings, GUN

always gathers at least all the answers collected by a traditional engine by executing the rewritings

independently. If all relevant views identified by the rewriter are in Rk, GUN guarantees to return

the complete answer without further processing of rewritings. Thus, the execution time of GUN

31



32 CHAPTER 5. GRAPH-UNION (GUN)

depends on the number of the relevant views that comprise the rewritings in Rk, which is usually

considerably lower than the total number of rewritings.

We compare GUN against traditional strategies in an experiment on synthetic data generated

with the Berlin SPARQL benchmark tool [19] and views proposed by Castillo-Espinola [24]. We

measure execution time and answer completeness for a benchmark of queries. In the experiments, we

can observe that GUN retrieves much more results in less time than existing engines. The amount

of main memory required to maintain a GUN graph is in general higher than the one required to

execute traditional approaches; however, improvements in execution time and results are substantial

enough to consider it a good trade-off.

5.1 Preliminaries

Formally, we define an RDF LAV system as follows:

Definition 5.1.1. An RDF LAV integration system is a tuple RLAV = (MS,S, V ) where MS is a

mediator schema or vocabulary, S is a set of data sources and V = {v1, · · · , vn} is a set of views on

the sources in S. Views are defined as SPARQL queries over MS. D is a virtual RDF dataset on

the mediator schema MS.

A conjunctive query Q over a database or mediator schema D has the form

Q(X̄) :- P1(X̄1), . . . , Pn(X̄n)

where Q, P1, . . ., Pn are predicates name of some finite arity, and X̄, X̄1, . . ., X̄n are tuples of

variables. These predicates constitute the global schema. We define the body of the query as

body(Q) = {P1(X̄1), . . . , Pn(X̄n)}

Any non-empty subset of body(Q) is called a subgoal of Q, singleton subgoals are called atomic

subgoals. Predicates in the body stand for relations of D, while the head Q represents the answer

relation of the query over D. We consider queries that are safe, i.e., X̄ ⊆ ⋃ni=1 X̄i, and call Q(D) the

result of executing Q over D.

We take three definitions from the work in [72]: (i) a view v as a safe query over D. (ii) We
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establish the difference between the available data through the implementation of the view, or the

extension of v, denoted ext(v), and its evaluation over the database D, v(D). (iii) We assume that

ext(v) ⊆ v(D) in order to state two important hypothesis: (i) there may be data belonging to the

database that is not available to the extensions. (ii) The extensions never hold data that is not in

the database D.

A rewriting of a query Q over a database D with a set of views V is a conjunctive query

r(x̄) :- v1(x̄1), . . . , vm(x̄m).vi ∈ V

A query rewriting is contained in Q, if for all database D and set of views V over D, the result

of executing r in V is contained in the result of executing Q on D, i.e., r(V ) ⊆ Q(D). The scientific

problem is to find a set of rewritings of Q on V such that their evaluation is the closest to the

evaluation of Q on D, classical database literature identifies this problem as the Query Rewriting

Problem or QRP:

Maximally Contained Query Rewriting Problem (QRP). Given a conjunctive query Q and

a set of views V = { v1, . . . , vn } over a dataset D, QRP is to find a set of rewritings R, called the

solution of the QRP, such that:

– For all extensions of the views in the bodies of all rewritings in R, the union of the results of

executing each query rewriting in the views V is contained in the result of executing Q in D,

i.e., ⋃r∈R r(ext(v1), . . . , ext(vn)) ⊆ Q(D)

– R is maximal, i.e., there is no other set R′, such that:

⋃
r∈R

r(ext(v1), . . . , ext(vn)) ⊂
⋃
r′∈R′

r′(ext(v1), . . . , ext(vn)) ⊆ Q(D)

For a set R of rewritings, we define the set of relevant views Λ(R) = {v | v ∈ body(r) ∧ r ∈ R} as

the set of views in the rewritings in R, and its execution R(D) = ⋃
r∈R r(D). We also call ext(Λ(R)),

the extension of the elements in Λ(R).
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5.2 Problem Statement: Result-Maximal k-Execution (Re-

MakE)

The main drawback of existing query rewriting problem solutions for LAV [79, 72, 7, 50] is that the

size of the set or rewritings R can be exponential in the number of query subgoals [2, 50]. Therefore,

instead of generating and executing a very large number of rewritings, we consider more realistic to

generate and execute only k rewritings but maximizing the results we can obtain from them.

Result-Maximal k-Execution Problem (ReMakE) 1. Given a subset Rk of size k of a solution

R of a QRP comprised of a query Q and a set of views V over a database D, ReMakE is to find a

set of rewritings R′ over the set of relevant views Λ(Rk), such that:

⋃
rk∈Rk

rk(ext(Λ(Rk))) ⊆
⋃
r′∈R′

r′(ext(Λ(Rk))) ⊆ Q(D)

and that is result-maximal, i.e., that there is no another set R′′ such that:

⋃
r′∈R′

r′(ext(Λ(Rk))) ⊂
⋃

r′′∈R′′
r′′(ext(Λ(Rk))) ⊆ Q(D)

We define this problem over the extensions of the views, as they are the real datasets where the

query will be evaluated. It is important to note that the ReMakE problem only uses the query rewrit-

ings as an input and they could be obtained using any query rewriter, therefore, it is independent of

the approach used to solve QRP. We also highlight that ReMakE is independent of the format of the

data inside the extensions of the views, the wrappers would transform any format to the mediator

schema.

To illustrate ReMakE, consider the generic set of rewritings in Figure 5.1. Suppose the execution

engine has only enough time to execute the first five query rewritings. It is possible that the execution

engine misses a rewriting comprised of some combination of views that were gathered for evaluating

these five rewritings but that is not in the first five rewritings. ReMakE aims to consider all the

rewritings that could be obtained from the already materialized views, hence in Figure 5.1 answers

for rewriting rn would also be obtained.
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r1 (x̄) :- v1 (w̄) , v2 (ȳ) , v3 (z̄)
r2 (x̄) :- v1 (w̄) , v4 (ā) , v3 (z̄)

r3 (x̄) :- v1 (w̄) , v5
(
b̄
)
, v6 (c̄)

r4 (x̄) :- v1 (w̄) , v7
(
d̄
)
, v8 (ē)

r5 (x̄) :- v1 (w̄) , v8 (ē) , v7
(
f̄
)
k = 5

... ... ... ...
rn (x̄) :- v1 (w̄) , v4 (ā) , v6 (c̄)

Figure 5.1: Illustration of the Result-Maximal k-Execution problem. Some combinations of views
materialized during the execution of a subset of rewritings (Rk) could correspond to valid rewritings
that do not belong to Rk.

5.3 Graph-Union (GUN), a solution to the ReMakE prob-

lem

The main idea behind our solution is to take advantage of the relative low cost of the RDF-Graph

union operation to store the content of all the views in the bodies of the processed rewritings in one

RDF-Graph, that we call Graph-Union (GUN). We translate data coming from the LAV Mappings

to RDF by the means of the wrappers, translate the user query to SPARQL and execute it on the

GUN.

A conjunctive query over a general database is analogous to the following SPARQL query:

SELECT ?x
WHERE {

F (p1(x̄1)).
. . .
F (pn(x̄n)).

}

where F is a translation function from predicates to triple patterns. For example, in [10], a

natural translation is proposed as following:

1. A unary predicate Pred is assigned an URI and represented as http://assigned-uri.org/Pred

rdf:type rdf:Class.

2. Variables in unary predicates are mapped to variables in SPARQL, creating Basic Graph Pat-

terns, for example, Pred(X) is represented as the BGP ?X rdf:type http://assigned-uri.org/Pred
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3. A binary predicateBinPred is assigned an URI and represented as http://assigned-uri.org/BinPred

rdf:type rdf:Property.

4. Variables in binary predicates are mapped to variables in SPARQL, creating Basic Graph Pat-

terns, for example, BinPred(X, Y ) is represented as the BGP ?X http://assigned-uri.org/BinPred

?Y.

5. N-ary predicates are decomposed in binary predicates before transforming them to RDF.

The definitions of variables, head and body are the same. As the definitions of views and rewritings

are based on the definition of query, they remain equivalent, together with the definitions of QRP

and ReMakE. We define the evaluation of a rewriting [[r(x)]]G as:

[[r(x)]]G = [[v1(x̄1), . . . , vm(x̄m)]]G = ([[pa(x̄a)]]ext(v1) on . . . on [[pz(x̄z)]]ext(v1))

on . . . on ([[pα(x̄α)]]ext(vm) on . . . on [[pβ(x̄β)]]ext(vm))

where pa . . . pz ∈ body(v1) and pα . . . pβ ∈ body(vm). Note that this definition captures the practical

implementation of the execution engine, where we materialize each call to a view (or more precisely,

to its extension) and then, perform the joins between the sub-results. Traditionally, plans like Left

Linear, Right Linear or Bushy Trees [25] are used to evaluate the rewritings over the extension of

the views present in each rewriting; but to solve the ReMakE problem, we should ensure that any

relevant combinations of obtained views are not missed, even if these combinations are not part of

the rewritings in Rk.

Consider the following example, inspired by the well-known Berlin SPARQL Benchmark [19]:

assume the mediator has a namespace prefixed mediator and the ontology described in table 5.1.

Predicate Meaning BGP translation
type(prod,t) Product prod has type t ?prod rdf:type ?t

product(offer,prod) Offer offer applies for product prod ?offer mediator:product ?prod
vendor(offer,vend) Offer offer is offered by vendor vend ?offer mediator:Vendor ?vend
validity(offer,dat) Offer offer has date of validity dat ?offer mediator:valid ?dat
country(vend,c) Vendor vend is based in country c ?vend mediator:country ?c
review(rev,prod) Review rev is about product prod ?rev mediator:review ?prod
rating(rev,rat) Review rev has rating rat ?rev mediator:rating ?rat

author(rev,reviewer) Review rev was made by reviewer ?rev mediator:reviewer ?reviewer
price(offer,p) Offer offer has price p ?prod mediator:price ?p

feature(prod,feat) Product prod has feature feat ?prod mediator:feature ?feat

Table 5.1: Example ontology and its translation to RDF triple patterns
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Wrappers have been implemented on top of heterogeneous data sources, implementing the fol-

lowing views:

– origin(prod,t,produc,feat) :- type(prod,t), producer(prod,produc), feature(prod,feat). Type, pro-

ducer, and features of products.

– market(prod,offer,p,vend) :- product(offer,prod), vendor(offer,vend), price(offer,p). Products’

offers with their vendors and prices.

– offers(offer,vend,c,dat) :- vendor(offer,vend), country(vend,c), validity(offer,dat). Products’

offers with their prices and the base countries of the vendors.

– opinions(prod,rev,rat,reviewer) :- review(rev,prod), rating(rev,rat), author(rev,reviewer).. Prod-

ucts’ reviews with their authors and ratings.

Suppose a user wants to retrieve the products of type t that are sold by vendors based in Germany

and their ratings, i.e.:

Q(Product, Vendor, Rating) :- type(Product, t), product(Offer, Product), vendor(Offer, Vendor),

country(Vendor, de), review(Review, Product), rating(Review, Rating).

Translated to SPARQL following table 5.1:

SELECT ?product ? vendor ? r a t i ng
WHERE {

? product rd f : type ? t .
? o f f e r mediator : product ? product .
? o f f e r mediator : vendor ? vendor .
? vendor mediator : country ’DE’ .
? rev iew mediator : rev iew ? product .
? rev iew mediator : r a t i ng ? r a t i ng .

}

A rewriting of Q in the set of views is:

r(Product,Vendor,Rating) :- origin(Product,t,_0,_1), opinions(Review,Product,_5,Rating), mar-

ket(Offer, Product,_2,_3), offers(Offer,Vendor,DE,_4).

Assuming for simplicity that each view is reachable through an alias of its name, the SPARQL

translation of the rewriting is:

SELECT ?product ? vendor ? r a t i ng
WHERE {

SERVICE <or i g i n >{
? product rd f : type ? t .

}
SERVICE <opin ions >{
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? review mediator : rev iew ? product .
? rev iew mediator : r a t i ng ? r a t i ng .

}
SERVICE <market>{

? o f f e r mediator : product ? product .
}
SERVICE <o f f e r s >{

? o f f e r mediator : vendor ? vendor .
? vendor mediator : country ’DE’ .

}
}

Figure 5.2 shows the execution of this rewriting following a left linear execution plan using the

RDF Graphs retrieved from the sources through the wrappers. The execution is comprised of the

following steps:

1. The join by products of type t is done between the origin and opinions views. The join yields

an intermediate result with prod1, rev1, and rat1.

2. The intermediate result is joined by product with the market view. This yields another inter-

mediate result, the same as before plus data concerning offer off1.

3. The second intermediate result is joined with offers in the view offers whose vendor is based

on Germany. Unfortunately, this join does not succeed, as the offer off1 is not present in the

offers view, therefore, the final result of the execution is empty.

Note that the rewriting:

r(Product,Vendor,Rating) :- origin(Product,t,_0,_1), opinions(Review,Product,_5,Rating), mar-

ket(Offer, Product,_2,_3), offers(_5,Vendor,DE,_4).

i.e., the same excepting that the join with the offers view is made only by Vendor will produce

results. However, recall that we do not have means to rank the rewritings before executing them, as

in highly dynamic sources it is very hard to estimate which joins will lead to more results. Rewritings

that produce results may be executed only if the execution engine is lucky enough to have them at

the top of the list it receives from the rewriter.

Executing rewritings that do not produce any results represents a practical problem: time runs

and the user could decide that too much time has passed without results and abort the query. Notice

that in the case depicted in Figure 5.2, the mediator had enough data to produce an answer: the

offers view has the information that ven1 is based in Germany that could have been joined with

information about off1 in the market view.
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Empty	  
Final	  Result	  

Intermediate	  
Result	  

Intermediate	  
Result	  

offers(Offer,Vendor,de,_4)	  

market(Offer,Vendor,_2,_3)	  

opinions(Review,Product,_5,RaDng)	  origin(Product,t,_0,_1)	  

SELECT	  ?product	  ?vendor	  ?raDng	  
WHERE{	  
SERVICE	  <origin>{	  
?product	  rdf:type	  ?t	  .	  
}	  
SERVICE	  <opinions>{	  
?review	  mediator:review	  ?product	  .	  	  
?review	  mediator:raDng	  ?raDng	  
}	  
SERVICE	  <market>{	  
	  ?offer	  mediator:product	  ?product	  .	  
}	  
SERVICE	  <offers>{	  
?offer	  mediator:vendor	  ?vendor	  .	  	  
?vendor	  mediator:country	  ‘DE’	  
}	  }	  

off2	  vendor	  ven1	  .	  
ven1	  country	  DE	  .	  
off2	  valid	  d1	  .	  

prod1	  type	  t	  .	  prod1	  feature	  f1	  .	  
rev1	  review	  prod1	  .	  
rev1	  reviewer	  reviewer1.	  
rev1	  raDng	  rat1	  .	  off1	  product	  prod1	  .	  
off1	  price	  p1	  .	  off1	  vendor	  ven1	  .	  

off1	  product	  prod1	  .	  
off1	  price	  p1	  .	  
off1	  vendor	  ven1	  .	  

prod1	  type	  t	  .	  
prod1	  producer	  p1	  .	  
prod1	  feature	  f1	  .	  
rev1	  review	  prod1	  .	  
rev1	  reviewer	  reviewer1	  .	  
rev1	  raDng	  rat1	  .	  

rev1	  review	  prod1	  .	  
rev1	  reviewer	  reviewer1	  .	  
rev1	  raDng	  rat1	  .	  

prod1	  type	  t	  .	  
prod1	  producer	  p1	  .	  
prod1	  feature	  f1	  .	  

Figure 5.2: Left Linear execution of the rewriting r of query Q. Views origin, opinions, market
and offers are loaded, but it is not possible to produce any results since the join for Offer is empty.
Prefixes are omitted to improve legibility.
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Our solution to the ReMakE problem takes advantage of these retrieved data to increase the

chances of producing results.

Graph Union (GUN) 1. Given Rk a subset of a set of rewritings R of a query Q over a set of

views V , apply Q to the union of the extensions of the views in the bodies of the elements of Rk:

GUN(Rk) = [[Q]]⋃ ext(Λ(Rk))

prod1	  type	  t	  .	  
prod1	  producer	  p1	  .	  
prod1	  productFeature	  f1	  .	  

rev1	  review	  prod1.	  
rev1	  reviewer	  reviewer1	  .	  
rev1	  ra3ng	  rat1	  .	  

off1	  product	  prod1	  .	  
off1	  price	  p1	  .	  
off1	  vendor	  ven1	  .	  

off2	  vendor	  ven1	  .	  
ven1	  country	  DE	  .	  
off2	  valid	  d1	  .	  

prod1	  type	  t	  .	  
prod1	  producer	  p1	  .	  
Prod1	  feature	  f1	  .	  

rev1	  review	  prod1.	  
rev1	  reviewer	  reviewer1	  .	  
rev1	  ra3ng	  rat1	  .	  

off1	  product	  prod1	  .	  
off1	  price	  p1	  .	  
off1	  vendor	  ven1	  .	  

off2	  vendor	  ven1	  .	  
ven1	  country	  DE	  .	  
off2	  valid	  d1	  .	  

Graph	  Union	  

Results	  

Execu3on	  of	  original	  query	  
(prod1,ven1,rat1)	  

Origin(_0,_1,_2,_3)	   Opinions(_4,_5,_6,_7)	   Market(_8,_9,_10,_11)	   Offers(_12,_13,_14,_15)	  

Relevant	  views	  indicated	  by	  the	  rewri3ng	  

SELECT	  ?product	  ?vendor	  ?ra3ng	  
WHERE{	  
?product	  rdf:type	  ?t	  .	  
?review	  mediator:review	  ?product	  .	  	  
?review	  mediator:ra3ng	  ?ra3ng	  
?offer	  mediator:product	  ?product	  .	  
?offer	  mediator:vendor	  ?vendor	  .	  	  
?vendor	  mediator:country	  ‘DE’	  .	  
}	  	  

Figure 5.3: GUN execution of the rewriting r of query Q. Results are produced, at the cost of building
and querying over an aggregated graph. Prefixes are omitted to improve legibility.

Figure 5.3 shows the execution with GUN of the rewriting of query Q analyzed in Figure 5.2.

The execution can be described in two steps:

1. For each view in the rewriting, we retrieve all its answers and store them into an aggregate

RDF-Graph.

2. As we are using the Local-As-View approach, data in the views are expressed in terms of the

global schema, therefore, we execute the original query Q.
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GUN takes advantage of all retrieved data to produce an answer for the user. It can execute joins

that are not considered in the rewritings, like the one between market and offers that allows it to

return off1 as result. GUN is affordable in the context of the Semantic Web thanks to the simplicity

of the RDF data model. Implementing the same idea in relational databases would require to create

the universal relation, which may have a prohibitive cost.

Theorem 5.3.1. Graph Union is a solution to the ReMakE problem, i.e.,

⋃
r∈Rk

[[r]]ext(Λ(Rk)) ⊆ [[Q]]⋃ ext(Λ(Rk)) (5.1)

[[Q]]⋃ ext(Λ(Rk)) ⊆ [[Q]]G (5.2)

And is result-maximal.

Proof. As by construction of the views and their extensions ⋃v∈V [[v]]G ⊆ G, then ⋃ ext(Λ(Rk)) ⊆ G,

making straightforward to see that (5.2) holds. For (5.1) note that the set Λ(Rk) can be considered

as a set of views over the graph ⋃Λ(Rk), then by the containment property, each member of Rk is

contained in Q. As we are applying the original query Q, it is clear that there is no rewriting that

can return more results than Q, meaning that GUN is maximal.

5.3.1 Graph-Union’s properties

In this section we formalize some properties of the GUN execution strategy. For the following,

assume a query Q and a set of views V on a database D and let VR be the set of relevant views, R

the set of rewritings of Q over V , and Rk a subset of R.

Theorem 5.3.2 (Answer Completeness). If GUN is executed on an Rk such that all relevant views

are present, then, such execution will produce the complete query answer, i.e.:

Λ(Rk) = Λ(R)⇒ GUN(Rk) = Q(D)

Proof. By definition of QRP, only the relevant views contribute to the answer, therefore, if GUN’s

aggregation graph contains all the relevant views, it follows that executing Q on it yields the complete

answer.
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Theorem 5.3.3 (Execution time independence of k). GUN’s execution time does not depend on the

number of rewritings executed (k).

Proof. Follows from GUN’s definition.

Theorem 5.3.4 (Memory needed). GUN solves the ReMaKe problem if all data in the relevant views

in Rk fit in memory.

Proof. Follows from GUN’s definition.

Theorem 5.3.4 is not an equivalence because we can construct a case where we let out a triple of

one of the views that does not contribute to the result, e.g., in Figure 5.2 the triple off1 price p1 in

the market view is not used. However, in the general case results will be missed if data from relevant

views is excluded from the aggregation graph. Formally:

Theorem 5.3.5 (Separation inequality). Suppose G = ⋃
ext(Λ(Rk)) does not fit in the available

memory, and let H and I be two disjoint proper subsets of G such that H ∪ I = G and each of them

fits in memory, then:

[[Q]]H ∪ [[Q]]I ⊆ [[Q]]G

Proof. Clearly, each of [[Q]]H and [[Q]]I are subset of [[Q]]G. To see why is not an equality, consider

Figure 5.3 if H is equal to the views Origin and Market and I is equal to the views Opinions and

Offers, both [[Q]]H and [[Q]]I are empty.

Nevertheless, although the separation breaks the maximality property making GUN a partial

solution to ReMaKe in the case of not having enough memory, it grants GUN the property of Non-

Blocking, i.e., GUN can continue working and having a chance of producing results even if memory

is not enough for all the relevant views, or if one of the views has a slow response time.

5.4 Experimental Study

The goal of the experimental study is to compare GUN against sequential rewriting execution

using the left linear plan used by default by the Jena SPARQL engine, answering the following

questions:

1. Does GUN produce the complete answer faster?
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Query Answer Size # rewritings # of RV
Q1 3.33E+07 1.61E+09 260
Q2 2.99E+05 6.37E+21 260
Q3 2.03E+05 3.52E+24 280
Q4 1.42E+02 6.02E+03 240
Q5 2.82E+05 1.30E+07 240
Q6 9.84E+04 1.22E+05 100
Q7 1.12E+05 1.15E+12 180
Q8 2.82E+05 4.08E+04 100
Q9 1.41E+04 2.00E+01 20
Q10 1.49E+06 9.76E+05 260
Q11 1.49E+06 3.24E+03 80
Q12 2.99E+05 2.37E+08 260
Q13 2.99E+05 2.41E+04 260
Q14 2.82E+05 8.08E+05 180
Q15 1.41E+05 4.64E+09 280
Q16 1.41E+05 8.36E+04 100
Q17 9.84E+04 2.02E+03 100
Q18 2.82E+05 3.12E+08 240

(a) Query information

Views Size
V1-V20 147,327
V21-V40 133,992
V41-V60 41,463
V61-V80 22,410
V81-V100 4,515
V101-V120 53,131
V121-V140 32,511
V141-V160 90,873
V161-V180 21,138
V181-V200 9,836
V201-V220 4,515
V221-V240 4,515
V241-V260 67,364
V261-V280 81,313
V281-V300 840,470

Total 1,555,373

(b) Views size

Table 5.2: Queries and their answer size, number of rewritings, number of relevant views (RV) and
views size.

2. Does GUN produce more answers?

3. Is GUN’s execution faster? How much?

4. Is GUN’s memory consumption higher? How much?

5.4.1 Experimental Setup

We used the Berlin SPARQL Benchmark tool (BSBM) [19] to generate a dataset of 5,000,251

triples, using a scale factor of 14,091 products. We used the 18 queries and the 10 views proposed

in [24], detailed in Appendix A. These queries are very challenging for a query rewriter since their

triple patterns can be grouped into chained connected star-shaped sub-queries, that have between 1

and 13 subgoals, with only distinguished variables.

We defined 5 additional views to cover all the predicates in the queries. From these 15 views, we

produced 300 views by horizontally partitioning each original view into 20 parts, such that each part

produces 1/20 of the answers given by the original view. Table 5.2a details the following information

about queries: (i) The size, in number of triples, of the complete answer. This was computed

by loading all the views into the persistent RDF-Store Jena-TDB and executing the queries on it.

(ii) The number of rewritings of the query against the views. This was obtained through the model

counting feature of the SSDSAT rewriter. (iii) The number of relevant views for the query, also

obtained as part of the SSDSAT output. Table 5.2b details the size, in number of triples, of the

views.
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Notice that the number of rewritings may be very large, making unfeasible their full execution.

Furthermore, the time to generate the rewritings is not negligible: in some cases (Q2, Q3 and

Q7) SSDSAT could not generate any after 72 hours, so we do not report results about them. We

chose to compute 500 rewritings, as this was the best compromise we could find between number

of rewritings and generation time, i.e., 500 is the larger number of rewritings (multiple of 50) that

could be produced for all queries (but Q2, Q3 and Q7) in less than 15 hours. Additionally, we do

not have any statistics about the sources to select the best rewritings or to shrink the set of relevant

views. Q1 was also left out of the evaluation because its execution to collect the complete answer

did not finish after 48 hours.

Some general predicates like rdfs:label are present in most of the views; therefore, the queries

that have a triple pattern with these predicates will have a large number of relevant views, but not

all of these views will contribute to the answer. The size of a view corresponds to the number of

triples that can be accessed through that view. The definition of queries and views can be found in

Appendix A.

As the experimental datasets are already in RDF and aligned with the ontology of the mediator,

wrappers are implemented as simple file readers. For executing rewritings with a traditional strategy,

we loaded each view in a named graph, and let Jena evaluate the rewriting on them. Jena uses Left

Linear Plans for this task. For example, for the rewriting described in Figure 5.2, we would create a

dataset with four named graphs, one for each of the views: Origin, Opinion, Market and Offers and

execute the following SPARQL query:

SELECT ?product ? vendor ? r a t i ng
WHERE {

GRAPH <Origin> {? product rd f : type t }
GRAPH <Opinions> {

? review mediator : rev iew ? product .
? review mediator : r a t i ng ? r a t i ng .

}
GRAPH <Market> {? o f f e r mediator : vendor ? vendor}
GRAPH <Offer s> {

? o f f e r mediator : vendor ? vendor .
? vendor mediator : country DE .

}
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Q4 Q5 Q6 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18
CA GUN 281 45 >500 381 20 21 29 36 21 >500 20 21 21 56

Jena 281 >500 >500 383 20 141 119 >500 320 >500 >500 >500 40 >500
GUN’s k=80 0 1 0.0016 0 1 1 1 1 0.0476 1 1 0 1

Effectiveness k=160 0 1 0.0002 0 0 0 1 1 0.0451 1 1 0 1
k=320 0 1 0.0018 0 0 0 1 0 0.0406 1 1 0 1
k=500 0 1 0.0024 0 0 0 1 0 0.0382 1 1 0 1

Table 5.3: Values of k for obtaining the Complete Answers (CA) for queries Q4-Q6, Q8-Q18; using
GUN and Jena. GUN’s Effectiveness (equation 5.3) for different values of k. Effectiveness for Q9 is
not reported here since it only has 20 rewritings.

5.4.2 Experimental Results

To study which strategy produces quicker the complete answer, we executed the GUN and Jena

strategies over Rk rewritings and counted the number of rewritings needed to obtain the complete

answer or until all k rewritings have been processed. Table 5.3 shows the results, from which we can

make the following observations:

1. GUN is able to produce the complete answer for 12 queries whereas Jena is able to do so only

for 7 queries.

2. 3 of the 7 queries where Jena found the complete answer (Q10,Q11,Q13) required more than four

times more rewritings than GUN, and one (Q17) required almost two times more rewritings.

3. For queries Q9, Q11, Q13 and Q17, GUN produced complete answers because at the reported

k, Λ(Rk) = Λ(R). For the rest of the queries where GUN produced the complete answer, the

non aggregated relevant views did not contribute to produce more results.

Details about the ratio of relevant views for each Rk are provided in table 5.4. Note that, except

for Q8 and Q13, the ratio grow after k = 160 is marginal, or even, inexistent. This means that the

rewritings analyzed for these queries are mostly variations in the join variables of the same relevant

views.

To compare the number of answers produced by both strategies, we define GUN’s effectiveness

as follows:

GUNEffect(Rk) = |GUN (Rk)| − |
⋃
rk∈Rk

rk(ext(Λ(Rk)))|
|Q(D)| − |⋃rk∈Rk

rk(ext(Λ(Rk)))|
(5.3)

Intuitively, GUN is more effective than the regular sequential execution of rewritings if it can

find more answers. If |Q(D)| − |⋃rk∈Rk
rk(ext(Λ(Rk)))| = 0, i.e., the execution of Rk finds all the

answers, then, GUN effectiveness is defined to be 0. GUN’s effectiveness equals to 1 when it founds

all possible answers and the traditional executional finds nothing.
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Query Ratio |Λ(Rk)|/|Λ(R)|
k = 20 k = 40 k = 80 k = 160 k = 320 k = 500

Q4 0.0875 0.0917 0.0958 0.1042 0.1292 0.1583
Q5 0.0833 0.1667 0.3333 0.4167 0.4167 0.4167
Q6 0.2100 0.4100 0.6200 0.6300 0.6600 0.6900
Q8 0.2100 0.2200 0.2400 0.2800 0.3600 0.4000
Q9 1
Q10 0.0731 0.1500 0.3038 0.3077 0.3077 0.3077
Q11 0.2375 0.4875 0.9875 1 1 1
Q12 0.0769 0.1538 0.3077 0.3077 0.3077 0.3077
Q13 0.0731 0.1346 0.2346 0.4731 0.9231 1
Q14 0.1167 0.2278 0.4500 0.5611 0.5611 0.5611
Q15 0.0714 0.1429 0.2143 0.2143 0.2143 0.2143
Q16 0.1900 0.2000 0.4000 0.4000 0.4000 0.4000
Q17 0.1900 0.2000 0.4100 1 1 1
Q18 0.0833 0.1667 0.3333 0.4167 0.4167 0.4167

Table 5.4: Ratio of the number of relevant views in Rk over the number of relevant views in R

We executed the GUN and Jena strategies on Rk with k ∈ {80, 160, 320, 500} and counted the

number of answers and computed the effectiveness. Table 5.3 shows that GUN has effectiveness 1 for

k = 80 for half of the queries, moreover, in 5 of these 7 queries, the maximum effectiveness remains

even after Jena executes 500 rewritings. In 4 cases, GUN is not effective because Jena already found

the complete answer for this value of k. Finally, in Q6 and Q14, GUN found more results than Jena.

Effectiveness values are not monotonic, since they can increase when considering a rewriting that

contains a view that contributes to produce results in GUN and not in Jena. However, they can

decrease after executing a rewriting that does not add new views to GUN, but produces results for

Jena.

Regarding the execution time, we want to: 1) compare GUN’s execution time against Jena’s,

and 2) verify experimentally property 5.3.3. We measured total execution time as the sum of the

following partial times:

– For both strategies, the time to generate Rk rewritings.

– For both strategies, the time taken by the wrappers to return the requested data.

– For GUN, the time to create the aggregation graph.

– For Jena, the time to load the named graphs to execute the query. (check this, I forgot it)

– For GUN, the time to execute the query on the aggregation graph.

– For Jena, the time to execute all rewritings in Rk.



5.4. EXPERIMENTAL STUDY 47

Query Execution Time (s)
K=80 K=160 K=320 K=500

Q4 GUN 39 39 63 73
Jena 167 293 48,943 49,721

Q5 GUN 377 400 400 400
Jena 1,155 2,302 3,848 5,935

Q6 GUN 336 337 338 339
Jena 398 798 1,610 2,516

Q8 GUN 41 47 58 64
Jena 190 377 751 1,278

Q10 GUN 132 132 132 132
Jena 2,214 5,941 119,137 251,641

Q11 GUN 121 121 121 121
Jena 1,906 3,707 9,985 16,939

Q12 GUN 28 28 28 28
Jena 79 146 288 475

Q13 GUN 71 203 478 522
Jena 146 352 734 2,034

Q14 GUN 328 395 395 395
Jena 439 842 1,657 2,485

Q15 GUN 358 358 358 358
Jena 1,207 3,000 5,812 9,160

Q16 GUN 35 35 35 35
Jena 119 283 596 972

Q17 GUN 69 345 345 345
Jena 168 965 2,450 4,029

Q18 GUN 324 414 415 415
Jena 1,149 2,413 4,355 6,808

(a) Execution Time for GUN and Jena

Query ET and # of RV
k=80 k=160 k=320 k=500

Q4 GUN 39 39 63 73
# RV 23 25 31 38

Q5 GUN 377 400 400 400
# RV 80 100 100 100

Q6 GUN 336 337 338 339
# RV 62 63 66 69

Q8 GUN 41 47 58 64
# RV 24 28 36 40

Q10 GUN 132 132 132 132
# RV 79 80 80 80

Q11 GUN 121 121 121 121
# RV 79 80 80 80

Q12 GUN 28 28 28 28
# RV 80 80 80 80

Q13 GUN 71 203 478 522
# RV 61 123 240 260

Q14 GUN 328 395 395 395
# RV 81 101 101 101

Q15 GUN 358 358 358 358
# RV 60 60 60 60

Q16 GUN 35 35 35 35
# RV 40 40 40 40

Q17 GUN 69 345 345 345
# RV 41 100 100 100

Q18 GUN 324 414 415 415
# RV 80 100 100 100

(b) Execution Time and Number of Relevant
Views for GUN

Table 5.5: Execution Time (ET) for GUN and Jena. Impact of Number of Relevant Views (RV) over
Execution Time in GUN.

Table 5.5a shows the total execution time in seconds for GUN and Jena. Partial execution times

are detailed in Tables 5.6 and 5.7. For all queries, GUN has better execution time, and for all but

Q6 with k = 80, is more than twice faster. When k = 500, the difference is dramatic, varying from

almost 4 times faster (Q13) to 680 times faster (Q4).

Table 5.5b shows total execution time and number of loaded views for GUN. Execution time

grows linearly in |Λ(Rk)|, this is particularly visible in Q4 and Q13.

If we compare the times detailed in Section 5.3.1, we notice that the wrapper execution time

dominates. GUN loads views into the aggregated graph only once, whereas Jena reloads them for

each executed rewriting. Note that if we try to cache the views in Jena to avoid reloading, it would

consume more memory and could consume even more memory than GUN if the views have overlapped

information, as it is the case in our setup.

Finally, we compare the memory usage of both strategies. For GUN, we count the number of

triples of the aggregated graph. For Jena, we report an upper bound, that is, the maximum number

of triples loaded for executing a rewriting in Rk. Table 5.8 summarizes the results. Neither GUN nor

Jena consumes all the available memory (8GB). GUN needs to load more triples than Jena, varying
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Query # Relevant Execution Time # Answers Maximal Graph Size
Views WT GCT PET

GUN Jena GUN Jena GUN Jena GUN Jena GUN Jena
Q4 21 30 44 7 0 0 9 0 0 1,169,684 148,739
Q5 20 86 110 18 1 2 181 197,274 13,471 1,567,231 907,905
Q6 21 90 86 18 0 0 8 4,784 4,784 1,427,018 850,337
Q8 21 28 41 8 0 0 8 14,091 14,091 1,437,413 148,717
Q9 20 3 3 0 0 0 0 14,091 14,091 84,835 4,517
Q10 19 45 87 7 0 6 777 1,487,995 1,415,733 382,145 294,678
Q11 19 41 93 7 0 5 638 1,491,990 1,420,411 382,944 294,701
Q12 20 13 25 3 0 1 9 253,935 14,937 290,858 83,260
Q13 19 9 25 2 0 1 13 283,810 14,938 294,312 44,854
Q14 21 80 131 16 0 0 2 13,291 717 1,491,658 912,378
Q15 20 13 34 3 0 2 5 140,910 7,046 443,882 97,453
Q16 19 14 32 3 1 3 3 133,865 7,045 401,595 42,273
Q17 19 6 10 1 0 0 2 93,433 4,918 186,866 19,672
Q18 20 62 97 14 0 3 134 270,401 14,091 1,564,496 907,873

(a) k=20

Query # Relevant Execution Time # Answers Maximal Graph Size
Views WT GCT PET

GUN Jena GUN Jena GUN Jena GUN Jena GUN Jena
Q4 22 31 88 8 0 0 18 0 0 1,197,866 148,739
Q5 40 164 213 30 1 2 371 267,729 13,901 1,686,212 907,905
Q6 41 180 173 31 0 0 17 4,909 4,909 1,521,434 850,376
Q8 22 29 80 9 0 0 16 28,182 28,182 1,451,504 148,725
Q10 39 85 182 13 0 6 1,570 1,493,735 1,421,473 383,293 294,678
Q11 39 78 190 13 0 5 1,318 1,493,735 1,422,152 383,293 294,701
Q12 40 17 40 3 0 1 11 298,747 14,937 373,726 83,260
Q13 35 33 67 9 1 1 20 298,747 14,938 1457,918 862,831
Q14 41 154 246 28 0 0 3 14,037 717 1,690,296 912,395
Q15 40 178 235 29 0 2 426 140,910 7,046 1,559,682 905,423
Q16 20 14 57 3 1 3 5 140,910 7,045 422,730 42,273
Q17 20 6 14 1 0 0 3 98,350 98,350 196,700 19,672
Q18 40 161 261 30 1 3 438 280,465 14,091 1,784,756 907,908

(b) k=40

Query # Relevant Execution Time # Answers Maximal Graph Size
Views WT GCT PET

GUN Jena GUN Jena GUN Jena GUN Jena GUN Jena
Q4 23 31 147 8 0 0 20 0 0 1,201,671 148,739
Q5 80 319 414 56 1 2 740 281,820 14,051 1,993,617 907,905
Q6 62 289 363 47 0 0 35 9,836 9,691 1,578,294 850,376
Q8 24 32 159 9 0 0 31 56,364 56,364 1,479,686 148,725
Q10 79 109 316 17 1 6 1,897 1,493,735 1,421,473 422,269 294,678
Q11 79 99 309 17 0 5 1,597 1,493,735 1,422,152 422,268 294,701
Q12 80 23 67 4 0 1 12 298,747 14,937 439,946 83,260
Q13 61 57 112 13 1 1 33 298,747 14,938 1,713,056 862,917
Q14 81 278 432 50 1 0 6 14,086 717 2,095,418 912,422
Q15 60 309 426 47 0 2 781 140,910 7,046 1,568,458 905,450
Q16 40 26 107 6 1 3 11 140,910 7,045 584,792 53,678
Q17 41 55 76 14 0 0 92 98,350 98,350 1,496,262 850,331
Q18 80 271 438 50 1 3 710 281,820 14,091 2,175,448 907,916

(c) k=80

Table 5.6: Execution time, answer size and maximal graph size, for execution of queries Q4-Q6 and
Q8-Q18, with GUN and Jena. For k in {20, 40, 80}. The execution time is discriminated as Wrapper
Execution Time (WT), Graph Creation Time (GCT) and Plan Execution Time (PET). The number
of answers corresponds to the number of mappings obtained. Maximal Graph Size corresponds to
the maximal number of triples required to store at any time.
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Query # Relevant Execution Time # Answers Maximal Graph Size
Views WT GCT PET

GUN Jena GUN Jena GUN Jena GUN Jena GUN Jena
Q4 25 31 271 8 0 0 22 0 0 1,208,714 148,739
Q5 100 338 816 60 2 2 1,484 281,820 28,101 2,275,437 907,923
Q6 63 289 728 48 0 0 70 14,754 14,741 1,583,212 850,376
Q8 28 36 315 10 0 1 62 112,728 112,728 1,536,050 148,745
Q10 80 109 704 17 1 6 5,236 1,493,735 1,493,735 422,269 294,678
Q11 80 99 602 17 0 5 3,105 1,493,735 1,493,735 422,269 294,701
Q12 80 23 124 4 0 1 22 298,747 29,875 439,946 83,260
Q13 123 169 292 33 1 1 59 298,747 14,938 2,277,638 862,962
Q14 101 334 829 61 1 0 12 14,086 1,438 2,279,248 926,356
Q15 60 309 985 47 0 2 2,015 140,910 7,046 1,568,458 905,529
Q16 40 26 260 6 1 3 22 140,910 7,045 584,792 63,411
Q17 100 295 366 50 0 0 599 98,350 98,350 1,807,718 850,376
Q18 100 347 887 64 1 3 1,525 281,820 28,182 2,275,437 921,840

(a) k=160

Query # Relevant Execution Time # Answers Maximal Graph Size
Views WT GCT PET

GUN Jena GUN Jena GUN Jena GUN Jena GUN Jena
Q4 31 50 880 13 0 0 48,063 142 142 1,753,969 907,775
Q5 100 338 1,432 60 2 2 2,414 281,820 55,634 2,275,437 907,923
Q6 66 290 1,470 48 0 0 140 29,506 29,379 1,597,964 850,376
Q8 36 44 628 12 0 2 123 225,456 225,456 1,648,778 148,745
Q10 80 109 1,690 17 1 6 117,446 1,493,735 1,493,735 422,269 442,052
Q11 80 99 1,377 17 0 5 8,608 1,493,735 1,493,735 422,269 294,748
Q12 80 23 245 4 0 1 43 298,747 59,750 439,946 83,260
Q13 240 400 623 77 1 1 110 298,747 298,747 2,923,233 862,962
Q14 101 334 1,622 61 1 0 34 14,086 2,751 2,279,248 935,825
Q15 60 309 1,890 47 1 2 3,921 140,910 7,046 1,568,458 905,529
Q16 40 26 557 6 1 3 38 140,910 7,045 584,792 63,411
Q17 100 295 913 50 0 0 1,537 98,350 98,350 1,807,718 850,376
Q18 100 347 1,623 64 1 4 2,731 281,820 56,364 2,275,437 921,840

(b) k=320

Query # Relevant Execution Time # Answers Maximal Graph Size
Views WT GCT PET

GUN Jena GUN Jena GUN Jena GUN Jena GUN Jena
Q4 38 58 1,268 15 0 0 48,453 142 142 1,878,666 907,775
Q5 100 338 2,210 60 2 2 3,723 281,820 70,268 2,275,437 907,923
Q6 69 291 2,298 48 0 0 218 44,258 44,128 1,612,716 850,376
Q8 40 48 1,078 13 0 3 200 281,820 281,820 1,705,142 230,045
Q10 80 109 2,757 17 1 6 249,212 1,493,735 1,493,735 422,269 442,052
Q11 80 99 2,222 17 0 5 14,717 1,493,735 1,493,735 422,269 294,748
Q12 80 23 400 4 1 1 74 298,747 104,562 439,946 83,276
Q13 260 438 935 83 1 1 1,098 298,747 298,747 2,923,233 862,962
Q14 101 334 2,438 61 1 0 46 14,086 3,438 2,279,248 935,825
Q15 60 309 2,948 47 1 2 6,211 140,910 7,046 1,568,458 905,529
Q16 40 26 912 6 1 3 59 140,910 7,045 584,792 74,802
Q17 100 295 1,491 50 0 0 2,538 98,350 98,350 1,807,718 850,376
Q18 100 347 2,515 64 1 4 4,292 281,820 70,455 2,275,437 921,859

(c) k=500

Table 5.7: Execution time, answer size and maximal graph size, for execution of queries Q4-Q6 and
Q8-Q18, with GUN and Jena. For k in {160, 320, 500}. The execution time is discriminated as
Wrapper Execution Time (WT), Graph Creation Time (GCT) and Plan Execution Time (PET).
The number of answers corresponds to the number of mappings obtained. Maximal Graph Size
corresponds to the maximal number of triples required to store at any time.
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Query Maximal Graph Size Maximal Graph Size Maximal Graph Size Maximal Graph Size
k=80 k=160 k=320 k=500

GUN Jena GUN Jena GUN Jena GUN Jena
Q4 1,201,671 148,739 1,208,714 148,739 1,753,969 907,775 1,878,666 907,775
Q5 1,993,617 907,905 2,275,437 907,923 2,275,437 907,923 2,275,437 907,923
Q6 1,578,294 850,376 1,583,212 850,376 1,597,964 850,376 1,612,716 850,376
Q8 1,479,686 148,725 1,536,050 148,745 1,648,778 148,745 1,705,142 230,045
Q10 422,269 294,678 422,269 294,678 422,269 442,052 422,269 442,052
Q11 422,268 294,701 422,269 294,701 422,269 294,748 422,269 294,748
Q12 439,946 83,260 439,946 83,260 439,946 83,260 439,946 83,276
Q13 1,713,056 862,917 2,277,638 862,962 2,923,233 862,962 2,923,233 862,962
Q14 2,095,418 912,422 2,279,248 926,356 2,279,248 935,825 2,279,248 935,825
Q15 1,568,458 905,450 1,568,458 905,529 1,568,458 905,529 1,568,458 905,529
Q16 584,792 53,678 584,792 63,411 584,792 63,411 584,792 74,802
Q17 1,496,262 850,331 1,807,718 850,376 1,807,718 850,376 1,807,718 850,376
Q18 2,175,448 907,916 2,275,437 921,840 2,275,437 921,840 2,275,437 921,859

Table 5.8: Maximum number of triples loaded by a rewriting in Rk in Jena. The number of triples
of the aggregated graph of GUN.

from less than twice to 12 times more, in all cases except for Q10 with k ≥ 320. GUN’s aggregation

is in general larger than the sum of the named graphs of the most memory-consuming rewriting in

Rk.

In summary, GUN finds the same or more answers than traditional executions, with better exe-

cution time at the cost of higher memory consumption. In our experimentation GUN never exhausts

the available memory in spite of the challenging setup. This makes it a very appealing solution for

the ReMakE problem.

5.5 Conclusion

The execution of complex queries on multiple data sources in the Web of Data raises the issue of

format and semantic heterogeneity. Local-As-View mediation is one of the main approaches to solve

this data integration problem. LAV is particularly well suited for the dynamics of the Web of Data,

as it allows easy add and remove of data sources. However, a high number of query rewritings may

need to be executed to obtain results, representing a severe bottleneck. In this chapter, we defined

the ReMakE problem as the maximisation of the results obtained by considering only a subset of

rewritings of size k and proposed GUN as a solution.

GUN uses the RDF data model and takes advantage of the low cost of the graph union operation to

construct an aggregate graph with the data from the relevant views used in the rewritings and execute

the user’s query on it. Compared to state-of-the-art approaches, GUN provides an alternative way

to improve performance at the execution engine level rather than at the rewriter level. This makes
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GUN usable with any LAV rewriter guaranteeing to achieve greater or equal answer completeness

for the same Rk.

Our experiments demonstrate that GUN gain is real, i.e., it returns all the answers when tradi-

tional execution returns none for 57% of the queries for values of k of at most 80, and for 38% of the

queries for values of k of at most 500.

Furthermore, GUN consumes considerably less execution time than Jena in all the cases; the

difference in execution time is tremendous, ranging from 2,5 to 681 times. However, this improvement

in effectiveness and execution time is at the cost of an additional memory consumption of up to 12

times.

5.6 Perspectives

This work opens new perspectives for the practical implementation of LAV mediation in the

context of the Web of Data. The main line of work is to avoid the rewriting phase and directly load

a subset of relevant views such that maximise the chance of obtaining more results faster. Another

interesting side-effect of not using rewriters is that a broader class of queries can be supported. This

idea is already in development by fellow Ph.D. students at the GDD team, the interested reader is

referred to [85, 42].

Other future works include:

– Study the effectiveness decrease in low-memory scenarios and the development of strategies to

mitigate it, e.g., to select the subset of data to load such that maximise the chances to obtain

results.

– Study the execution time when queries require inference tasks and the development of strategies

specially tailored to this case.
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6
Introduction

In this part we focus on solving Problem 2:

How to allow Linked Data participants to write each other’s data and turn the Linked Data

into Read/Write?. Which consistency criteria are suitable for a Read/Write Linked Data? How

to maintain them respecting the autonomy of the participants and without compromising their

availability and scaling in large number of participants and large quantity of data?

In this chapter we formalize the vision of the Read/Write Linked Data as a social network of

update exchange. In chapter 7 we review the state of the art of different research communities

concerning consistency criteria. In chapter 8 we propose to use Strong Eventual Consistency (SEC),

a criterion from Optimistic Replication, for the Read/Write Linked Data, and detail SU-Set, a

Conflict-Free Replicated Data Type to achieve it. In chapter 9, we develop Fragment Consistency a

criterion stronger than SEC that takes in account the existence of fragments of data copied between

participants, and detail Col-Graph, a protocol to achieve it.

In part 1 we tackled the problem of querying heterogeneous data sources in the Web of Linked

Data. Once data can be queried, data consumers can start taking action on its quality, for example,

the elimination of duplicate data, the addition of more links and/or the correction of links. However,

the current Web of Linked Data is Read-Only, meaning that when consumers detect inconsistencies,

55
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Web	  1.0	  (Read	  Only)	  

Web	  of	  Documents	  
HTML	  
Keyword	  Searching	  

Web	  2.0	  (Read/Write)	  

Social	  Web	  
Blogs,	  Wikis,	  folksonomies	  
CollaboraJve	  document	  
construcJon	  
	  
	  

Web	  of	  Data	  
RDF	  &	  SPARQL	  
SemanJc	  Search	  

Web	  3.0	  (Read	  Only)	   Web	  4.0	  (Read/Write)	  

Social	  Web	  of	  Data	  
RDF	  &	  SPARQL	  Update	  
CollaboraJve	  knowledge	  
construcJon	  	  

Figure 6.1: From Read-only to Read/Write in the web of documents and Linked Data.

they cannot fix them in place. To be able to do so, the Web of Linked Data needs to evolve from

Read-Only to Read/Write [13]. If participants of the Web of Linked Data could write, data could be

cleaned and evolve with the collaborative intervention of human and machine agents. The knowledge

stored in different communities or even by different individuals or applications could co-evolve [37].

The paradigm shift from Read-Only to Read/Write would have a similar impact on the Web

of Linked Data than the one of the advent of the Social Web had to the Web of Documents, as

illustrated in Figure 6.1. The shift from the Web 1.0 to 2.0 allowed the collaborative edition of

documents. The Web of Data could draw the same benefits to allow the collaborative construction

of knowledge.

As a side effect of the co-evolution process, the availability of public Linked Data, which is

currently an issue [22], could be improved. Data consumers copy data from different sources in

order to perform intensive querying, keeping themselves up-to-date through live update feeds or

notification protocols. While querying, mistakes can be identified and repaired. These updates can

be integrated by the sources or exchanged between data consumers through copying or through pull

requests, in the spirit of Distributed Version Control Systems (DVCS). Federated Query Engines
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…	  

…	  

DBpedia	  	   DrugBank	   MusicBrainz	  	  

Consumer_1	   Consumer_2	  

Consumer_3	  

…	  

Live	  Feed	  Update,	  
Sparql	  Push	  

Query	  Engine	  
contact	  

Pull	  
Request	  

Pull	  
Request	  

Replicated	  
Fragment	  

ApplicaJons	  that	  consume	  Linked	  Data	  

Figure 6.2: Federation of Read/Write Linked Data

could opportunistically exploit the generated replication scheme to balance the query load [104, 62].

Figure 6.2 [62] illustrates this vision. The top three boxes represent three major Linked Data

publishers, DBpedia 1, DrugBank 2 and MusicBrainz 3. Consumer_1 copies fragments from DBPedia

and DrugBank, Consumer_2 copies fragments from DBPedia and MusicBrainz and Consumer_3

copies fragments from Consumer_1 and Consumer_2. Applications that consume Linked Data can

request data from consumers besides that from the original data publishers.

However, if this update exchange is not properly managed, data may diverge uncontrollably,

or in a non-deterministic way, making impossible the assertion of guarantees on the results of the

queries and updates and severely undermining the interaction between participants [119]. Therefore,

to realize this vision of a Read/Write Web of Linked Data, a suitable consistency criterion and an

efficient algorithm to maintain it is needed.

The Web of Linked Data has the following characteristics that need to be taken in account when

designing consistency criteria and algorithms to maintain them:

1. http://dbpedia.org
2. www.drugbank.ca
3. http://musicbrainz.org

http://dbpedia.org
www.drugbank.ca
http://musicbrainz.org
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1. A steadily growing and potentially very large number of participants. The advent of the “Web

of Things” [47], where every-day use devices also start to publish data is expected to accelerate

the growing.

2. A very large and steadily growing volume of data distributed among its participants, in the

order of billions of pieces of data.

3. Published data are format-heterogeneous. Not all the data comply with the Linked Data

principles, and instead of using RDF, one can find XML, JSON, CSV, spreadsheets or PDFs

among many others.

4. Published data may use different vocabularies or ontologies to refer to the same facts about

the same entities, i.e. they are semantic-heterogeneous.

5. Participants are autonomous, i.e., there is no central control nor a priori coordination between

them, further than the permission to read.

The Web of Linked Data is about individuals and organizations publishing and interlinking data.

Each of these individuals and organizations may have different points of view on the same data [16],

giving a social dimension to the Web of Linked Data. On the other hand, this organizations or

individuals may share their data with each other: an individual may give access to its information,

stored in a personal device, to several applications that she/he uses to connect with friends or

professional contacts; organizations may share their data to collaborate in cleaning it or to discover

new links. These use cases lead to the idea that the Web of Linked Data is strongly driven by social

interactions. As such, we model it as a social network [128].

Results in this part were published in two research articles: those presented in chapter 8 in [61, 60]

and those in chapter 9 in [62].

6.1 Motivating example

Suppose a medical laboratory wants to study the chemical structure of the drugs used for the

treatment with drugs for T-Cell Lymphoma. For that purpose, they use the LinkedCT dataset,

which has information about interventions on diseases and links to the DrugBank dataset on chemical

structure of the drugs via the rdfs:seeAlso property. As they plan to do intensive querying, they need

to have a local copy of the data. They copy the data they are interested into, for example, in the
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Lct:interven*on1	  Lct:type	  Drug	  

Lct:interven*on1	  rdfs:label	  “Alemtuzumab”	  
Lct:interven*on1	  rdfs:seeAlso	  
wiwiss-‐berlin:DB00087	  	  

wiwiss-‐berlin.de:DB00087	  rdf:type	  	  
drugbank:drug	  
wifo5-‐mannheim:DB00087	  rdf:type	  
drugbank:drug	  

DrugBank	  LinkedCT	  

Lct:interven*on1	  rdfs:seeAlso	  
wiwiss-‐berlin:DB00087	  	  
wifo5-‐mannheim:DB00087	  rdf:type	  
drugbank:drug	  

SELECT	  *	  WHERE{	  
?x	  rdfs:seeAlso	  ?y	  
?y	  rdf:type	  drugbank:drug	  
}	  }	  

NO	  RESULTS!	  

SELECT	  *	  WHERE{	  
SERVICE	  <LinkedCT>{	  
?x	  Lct:type	  Drug	  .	  
?x	  rdfs:seeAlso	  ?y}	  
SERVICE	  <DrugBank>{	  
?y	  rdf:type	  drugbank:drug}	  
}	   NO	  RESULTS!	  

MyOrg	  
	  

CONSTRUCT	  WHERE{	  
SERVICE	  <LinkedCT>{	  
?x	  rdfs:seeAlso	  ?y	  
}	  }	  

CONSTRUCT	  WHERE{	  
SERVICE	  <DrugBank>{	  
?x	  rdf:type	  drugbank:drug	  
}	  }	  

Figure 6.3: Data Quality issues prevent queries on Linked Data to return results.

Figure, the interventions of type drug linked to the T-Cell Lymphoma condition and the rdfs:seeAlso

links to DrugBank from LinkedCT, and the labels and the chemical structure of the drugs from

DrugBank.

However, when querying, they realize that DrugBank have recently changed of maintainer; all

IRI’s have been changed to reflect the new namespace, but the rdf:seeAlso links in LinkedCT link to

triples with the old one, therefore, queries using these links do not return any result. Note that the

same query evaluated in a federated way against the LinkedCT and DrugBank endpoints will suffer

the same lack of results. Figure 6.3 illustrates the situation.

As LinkedCT updates happen each three months and they cannot wait, they decide to fix this

other issues locally updating the rdf:seeAlso links. To help other researchers and to collect data on

queries performed on their data, they publish their new derived dataset through a SPARQL endpoint.

This has two positive side effects illustrated in Figure 6.4: first, local queries executed on the new

endpoint work; second, external entities performing other queries targeting LinkedCT and DrugBank

on the federation can profit of the fix to obtain results by evaluating the rdfs:seeAlso links on the

new dataset, the updates made by the medical laboratory do not fix the query only for itself, but for

the whole Linked Data Federation.

We believe that a system to support a Read/Write Linked Data needs to comply with the following
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requirements:

1. Copying data and exchanging updates on it follows social rules. Updates will be exchanged

and accepted only if they come from trusted participants, therefore, the system must support

social organisation.

2. Sources may modify data, making copies outdated. Queries made on outdated copies do not

return the same result in the sources. Therefore, the system requires a way to synchronize

copies with sources while giving consistency guarantees. When copies are updated with curation

purposes, sources may want to integrate them, therefore, synchronization of sources with copied

is also required.

3. Synchronization can be performed in a naive way by re-executing the query that defines the

copied data. However popular sources, i.e., the ones where many copies have been taken, may

become flooded with constant querying, therefore, Self-Maintenance of copies is needed, i.e.,

synchronization must be achieved only by the means of the access of an update log or the sole

reception of updates.

4. We assume that participants in the Linked Data network are autonomous and we project their

number to be in the order of the several thousands. As such, a central coordinator cannot be

used to synchronize, i.e., we require a coordination-free protocol.

5. For the same autonomy of participants, synchronization must be non-blocking, i.e., do not

impede the querying and update of sources and copies by any means.do not impede the querying

and update of sources and copies by any means.

6.2 Definitions

In this section, we model the Read/Write Linked Data as a social network, first we give the

definition of a social network as in [128].

Definition 6.2.1. Actors are discrete individual, corporate or collective social units. We will also

refer to actors as Participants.

Definition 6.2.2. A tie is a link between a pair of actors, e.g. social interaction, like “friendship”,

or behavioural interaction, like “message sending”. Formally, a tie is an ordered pair (a, b)T ie−Name

meaning “actor a has a Tie−Name tie with actor b.
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Lct:interven*on1	  Lct:type	  Drug	  
Lct:interven*on1	  rdfs:label	  “Alemtuzumab”	  

Lct:interven*on1	  rdfs:seeAlso	  
wiwiss-‐berlin:DB00087	  	  

wiwiss-‐berlin.de:DB00087	  rdf:type	  	  
drugbank:drug	  
wifo5-‐mannheim:DB00087	  rdf:type	  
drugbank:drug	  

DrugBank	  LinkedCT	  

Lct:interven*on1	  rdfs:seeAlso	  
wiwiss-‐berlin:DB00087	  	  
wifo5-‐mannheim:DB00087	  rdf:type	  
drugbank:drug	  
Lct:interven*on1	  rdfs:seeAlso	  wifo5-‐
mannheim:DB00087	  	  

Patch	  Proposal	  or	  
fragment	  take	  

Lct:interven*on1	  rdfs:seeAlso	  wifo5-‐
mannheim:DB00087	  	  

SELECT	  *	  WHERE{	  
?x	  rdfs:seeAlso	  ?y	  
?y	  rdf:type	  drugbank:drug	  
}	  }	  

Has	  Results!	  

SELECT	  *	  WHERE{	  
SERVICE	  <LinkedCT>{	  
?x	  Lct:type	  Drug	  }	  
SERVICE	  <MyOrg>{	  
?x	  rdfs:seeAlso	  ?y}	  
SERVICE	  <DrugBank>{	  
?y	  rdf:type	  drugbank:drug}	  
}	  }	  

MyOrg	  

Has	  Results!	  

CONSTRUCT	  WHERE{	  
SERVICE	  <LinkedCT>{	  
?x	  rdfs:seeAlso	  ?y	  
}	  }	  

CONSTRUCT	  WHERE{	  
SERVICE	  <DrugBank>{	  
?x	  rdf:type	  drugbank:drug	  
}	  }	  

Figure 6.4: When a data consumer resolves ambiguities for its own use and publishes the updated
dataset, other consumers can take advantage to correct queries and data publishers can take advan-
tage to correct their own data.

Definition 6.2.3. A group is a finite set of actors on which ties are to be measured.

Definition 6.2.4. A relation is a set of ties of a specific kind among members of a group.

Definition 6.2.5. A Social Network is a directed graph (N,L) where N is a group and L is a relation

on the members of N .

In the Web of Linked Data, actors can be individuals that store their information in a personal

device (e.g. a rented server or plug), organizations that publish data (Government Open Data,

DBpedia, etc.), or even real-world things connected to the web (sensors, infrastructure).

To align with the standards, we consider that of all these entities store their data in RDF-

GraphStores. Therefore, we consider the group of the Web of Linked Data is a finite set of RDF-

GraphStores.

The tie that defines the current Read-Only Web of Linked Data is links to, i.e., the existence of

triples in one actor that link to triples prefixed by the namespace of other. For a Read/Write Linked

Data, we define the tie Consume Updates

Definition 6.2.6. Let A an RDF-GraphStore that executes SPARQL 1.1 Update operations, we say



62 CHAPTER 6. INTRODUCTION
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Linked Data as a Social Network with the tie 
links-to: an arrow from A to B means that A has 
RDF-Triples whose subject or object URIs are 
prefixed by the namespace of B.

Read/Write Linked Data as a Social Network 
with the tie consumes updates: Circle-ended 
lines represent the publishing of a stream of 
changes, arc-ended lines represent the 
consumption of the corresponding stream.

Figure 6.5: Comparison between the “links-to” and “consumes updates” ties. Actors are extracted
from the Linking Open Data Cloud diagram [30].

that an RDF-GraphStore B Consumes Updates of A if a subset of such updates arrive to B and B

executes them.

Definition 6.2.7. Read/Write Linked Data The Read/Write Linked Data is a Social Network with

(A, T ) where A is a set of RDF-GraphStores and T is a set of ties Consume Updates.

Figure 6.5 compares the networks generated by the links-to and consumes updates ties. When

actors consume updates from each other, consistency issues arise. The presence of cycles, as de-

picted in Figure 6.6, where an update executed at the iServer node follows the path of consumption

highlighted with the dashed line all the way back to itself may produce duplicate data or an infinite

propagation of the operations in the network.

Concurrency issues are illustrated in figure 6.7. Imagine two nodes starting from the same state,

one of them deletes a certain triple T and immediately inserts it again, at the same time a second site

deletes the same triple but without inserting it back. After the mutual exchange and re-execution of
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Figure 6.6: Cycles in a Read/Write Linked Data network can introduce consistency problems like
receiving your own updates.

updates, the Graph Stores diverge, meaning that queries will not return the same results.

Therefore, the Read/Write Linked Data requires the update exchange to be driven by algorithms

ensuring a consistency criterion, in order to give guarantees to the participants that even when they

integrate concurrent updates; the final state will be the same independently of the order on which

such updates are integrated. Furthermore, such algorithms need to scale in the characteristics of

Linked Data enumerated in chapter 1, i.e., a large number of autonomous participants that hold

together a high volume of data.

We assume that participants may crash or go off-line for an undetermined period of time, and

when they recover or go back on-line they do it with their memory intact.

Before going further, we define what an update means in the Read/Write Linked Data. The

representation format for updates in the Semantic Web was first openly discussed in [12], where an

ontology for semantic diff patches was discussed. [92] proposed to consider changes at the structural

level, like in version control systems. In their model, the RDF-Triple is the minimal change unit,

RDF-Triples cannot be changed, only added or removed, and the two basic update operations are the

add or removal of an RDF-Triple. The SPARQL 1.1 Update specification (presented in chapter 2)

follows this model. [9] extends this model to incorporate the concept of a logical connection between

atomic changes and to support ontology evolution.
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site 1
{ . . . T . . . }

site 2
{ . . . T . . . }

op1 = del(T )

$$

op3 = del(T )

~~

{. . . . . .} {. . . . . .}

op2 = ins(T )

''

{. . . T . . .} {. . . . . .}

{. . . . . .} {. . . T . . .}

Figure 6.7: Example of inconsistency when exchanging updates on the same data

Recent efforts revive the idea of a patch as a piece of knowledge, implementing it following

Distributed Version Control Patterns: [23] uses the Darcs’ theory of patches, while [105] express

them as a Git commit. Both approaches share the notion of representing a logically connected set

of basic operations as an add-set and a del-set together with some provenance related to the change.

Following their spirit, we define an Update as follows:

Definition 6.2.8. An update is a pair (Q,GS) where Q is a SPARQL 1.1 Update query and GS

an RDF-GraphStore comprised of three named graphs:

– The del-graph, comprised of all triples deleted by the effect of Q.

– The add-graph, comprised of all triples inserted by the effect of Q.

– The metadata graph, comprised of all other data about the update, ( e.g., provenance).

Updates are uniquely identifiable, e.g. with an IRI minted from the id of the actor that created it.

This information is stored in the metadata graph.

This model allows each actor to decompose its updates at discretion: each insertion or deletion

of a triple separately, or logically connected sequences of operations in the same update. At the

implementation level, it also allows to query updates with SPARQL. Figure 6.8 shows an example

of an update.

We abstract from the particular implementation of communication channel used to propagate

updates (Publish-Subscribe, pull from a log, etc.), we will precise and cost-analyze required conditions

on the communication channel , i.e., if an order needs to be imposed or if additional metadata is

needed, when studying each of our proposed consistency criterion.
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Delete	  {	  :Alice	  foaf:knows	  :Rob}	  
Insert	  {	  :Alice	  foaf:knows	  :Bob	  }	  
Where	  {	  :Alice	  foaf:knows	  :Bob}	  
	  
Insert	  {	  :Alice	  foaf:Knows	  Eve	  }	  

:Alice	  foaf:knows	  :Rob	  
:Alice	  foaf:knows	  :Bob	  

:Alice	  foaf:knows	  :Eve	  

:Alice	  foaf:knows	  :Bob	  

:Alice	  foaf:knows	  :Eve	  

h=p://an-‐actor.org/	  

h=p://an-‐actor.org/upd/	  
an-‐unique-‐id/delGraph/	  	  

h=p://an-‐actor.org/upd/	  
an-‐unique-‐id/addGraph/	  	  

h=p://an-‐actor.org/upd/	  
an-‐unique-‐id/metadata/	  	  

h=p://an-‐actor.org/	  
an-‐unique-‐id	  
prov:wasGeneratedBy	  
:Joe	  

Applied	  SPARQL	  1.1	  Update	  OperaQons	  

Generated	  
Update	  

Figure 6.8: An Update represented as an RDF-GraphStore with named graphs for the deleted triples,
the inserted triples and the metadata.

We consider Blank nodes to be skolemized, i.e., uniquely identified by an IRI. This feature is

detailed as optional for systems needing it in the RDF specification [127]. Non-skolemized blank

nodes have local scope and pose problems when exchanging updates concerning them. For more

information on the subject, the reader is referred to [81].

6.3 Problem Statement

Given the Read/Write Linked Data (definition 6.2.7), we look for a consistency criterion C and

an algorithm A to execute update exchange that ensures C such that:

1. A is at most linear in space, time and communication (message size and number of message

exchange).

2. A does not require coordination.

3. A is not blocking, i.e., it allows participants to keep receiving queries from users and not depend

on consensus.
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State of the Art

In this chapter we describe the efforts made in several research communities in data consistency.

In Computer-Supported Cooperative Work (CSCW), data consistency is studied in the context of

cooperative edition, while in Distributed Systems, Databases, and Semantic Web, data consistency

often appears when studying the general replication problem: A set of replicas on which operations

are issued by clients (human or agents) and exchanged through messages [130]. When all messages

are exchanged, the system must comply with a set of assertions: the consistency criterion. In the

following sections, we will detail the efforts of each of them.

7.1 Consistency in Computer-Supported Cooperative Work

In CSCW, consistency appears in the context of cooperative edition: A certain number of users

need to collaboratively work in a document, e.g., source code, plain text or a complex CAD file. If

users update simultaneously, consistency problems consistency appear, as the intended effects of the

executed updates may conflict.

The most simple and intuitive way of dealing with this problem is to lock the document while

someone is working on it and release it when he/she is done. Clearly, this has the problem of blocking

the other users of doing something useful and the need of deciding an order on which users will edit

67
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the document. If there are many users, or if users need a medium to high amount of time to update

the document, locking is not the good strategy.

To avoid the problems of locking, Dourish proposed the Copy-Modify-Merge model [35]. Each

user has his/her own working copy of the document, on which he/she can update at will. At some

point, users merge their copies, resolve the conflicts that updates could have generated and continue

updating. The most successful implementations of Copy-Modify-Merge are Version Control Systems

(VCS). VCS can be (i) Centralized, i.e., a central server holds the last version of the document. Users

copy from it and merge with it. The server has the ability to detect conflicts between its current

version and the version of an user that has not merged in a while, that is, other users have merged

with the server during this time. Practical examples include Subversion and CVS. (ii) Distributed,

i.e., no central server, users merge with other users at will, each working copy has the ability to

detect conflicts. Practical examples include Git and Darcs.

In the context of Real-Time editing systems, Sun et al. proposed the Convergence-Causality-

Intention (CCI) criterion [113]:

Definition 7.1.1. CCI

– Convergence: When the same set of operations have been executed at all sites, all copies of the

shared document are identical.

– Causality preservation: For any pair of operations Oa and Ob, if Oa happens before Ob, then

Oa is executed before Ob at all sites.

– Intention: The intention of an operation O is the execution effect which can be achieved by

applying O on the document state from which O was generated.

– Intention preservation: For any operation O, the effects of executing O at all sites are the same

as the intention of O, and the effect of executing O does not change the effects of independent

operations

Essentially, convergence states that all copies have the same state, causality that all operations

were executed in the same order they were executed and transmitted, and intention that post-

conditions of independent operations do not interfere with each other. In practice, intention preser-

vation ensures that convergence is not guaranteed in a naive way, e.g., if each participant ignores

every arriving operation, all sites will be equal to the empty state, giving a correct, but practically

useless guarantee of convergence.
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VCS guarantee convergence and causality preservation. Intention preservation is difficult to

formalise and prove. To the best of our knowledge, the most recent effort is [14].

The CCI model has been applied to Semantic Wikis [101, 111, 129], notably through the Oper-

ational Transformation (OT) approach [36]. The basic idea of OT is the transformation of updates

operation according to the effects of previously executed concurrent updates so that the transformed

update achieves the correct effect and maintain document consistency. The main drawback of OT is

its limited scalability.

7.2 Replication and Consistency in Distributed Systems

Replication algorithms and consistency criteria in Distributed Systems can be divided in two main

families [103, 70]. The first one is the Pessimistic category, the goal is to attain Strong consistency,

i.e., clients will have the illusion that there is only one replica, fully protected from the effects of

failures and concurrent updates. However, the fundamental CAP Theorem [21] states than in the

presence of partitions, whether it be by communication disconnection or by off-line operations, is it

not possible to have strong consistency without sacrificing high availability. Indeed, the protocols to

guarantee strong consistency need to block the system, therefore, the family of Optimistic replication

algorithms [103] was developed.

Optimistic protocols focus on weak consistency criteria, where replicas are allowed to diverge

during some time (the time of the partition) but remain available, causing the output of some reads

(queries) to be different at different replicas during this time window. The main criterion studied in

this family is Eventual Consistency [103]

Definition 7.2.1. Eventual Consistency

– Eventual Delivery: An update delivered at some replica is eventually delivered to all replicas.

– Termination: All methods execution terminates.

– Convergence: Replicas that have delivered the same updates eventually reach equivalent state.

Note that Version Control Systems described in section 7.1 comply with Eventual Consistency.

Other systems that implement eventual consistency are Bayou [97] and IceCube [99]. Both consider

the concept of tentative writes that are susceptible of being rolled back in case of conflict. However,

roll-back procedures depend on the application semantics and are in general complex to develop.
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This procedures require, either a central coordinator that decides an operation schedule to apply, or

a consensus between actors. Both solutions undermine the autonomy of actors and the scalability of

the system.

An alternative is the use of Conflict-Free Replicated Data Types (CRDTs) [110, 109]. A CRDT is

a data type whose operations, when concurrent, yield the same result regardless the execution order.

Two operations are concurrent if they occur at different nodes and we cannot determine which one

happened before the other. Common data types are in general not CRDTs, for example, the set data

type is not a CRDT, because concurrent insertion and deletion does not commute.

CRDTs satisfy a stronger version of Eventual Consistency called Strong Eventual Consistency

(SEC). SEC differs from Eventual Consistency in the replacement of the Convergence property by

Strong Convergence:

Definition 7.2.2. Strong Convergence([110]) Replicas that have delivered the same updates have

equivalent state.

A CRDT has a payload, the internal structure that holds the state of the object, a lookup function

that queries the payload and returns data element and an update function for handling operations

such as add and remove. These operations could have some pre and post conditions.

An update operation is prepared at the generator site and sent to all nodes, including the generator

one. (i) prepare, the arguments for sending the operation to the other nodes are prepared, if the

preconditions of the operation does not hold, the operation is ignored; and (ii) effect, the operation,

with the previously prepared arguments, is sent to all nodes including the generating one. When

the operation is received, it will be executed if its preconditions are evaluated to true, else it will be

delayed until they do so.

Many CRDTs have been developed to mimic basic data types (for example, sequences for coop-

erative text editing [89]). We will focus on the ones developed for the Set type as they are closer to

RDF-Graphs.

B-Set [132] relies on the storage of “tombstones”, i.e., the removed elements are just hidden from

the user via the lookup operation. The use of tombstones is not appropriate for big sets like the ones

we can find in the Web of Data, as their space complexity is high. C-Set [8] uses a counter associated

to each element to keep track of how many times it has been added and deleted. An element is

considered member of the C-Set if its counter is greater than zero.
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site 1
{ }

site 2
{ }

op1 = ins(x)
ins(x,id1)

%%

op3 = ins(x)
ins(x,id2)

}}

{(x, id1)} {(x, id2)}

op2 = del(x)

del(x,id1) ((

{} {(x, id2), (x, id1)}

{(x, id2)} {(x, id2)}

Figure 7.1: Execution of concurrent insertion and deletion of the same element in OR-Set

In the Observed-Removed Set (OR-Set) [110], detailed in Specification 7.1, each time an element is

inserted (lines 5-11), is tagged with a globally unique id. These unique ids can be generated by means

of a UUID [76] implementation, or by a combination of an unique site id and a monotonic counter.

An element is considered member of the set if there is at least one pair of the form (element,id) in

the payload (lines 3-4). When deleting an element, one can only remove the pairs (element,id) that

are present in the set at the instant of the deletion (lines 10-17). Note that for applying an incoming

delete, a causal delivery precondition (line 15-16) is required, i.e., the operation that inserted the

specific pair (element,id) being deleted must have been received and applied before applying the

deletion.

or by a mechanism for ordering events in a distributed system such as vector clocks [82]. Figure

7.1 shows an execution of OR-Set in the case of a concurrent insertion.

Further improvements of OR-Set were developed in [88] and [15] to optimize its complexity, and

in [33] to add sharding in order to optimize scalability.

7.3 Consistency and Update Exchange in Databases

The Thomas Write Rule [66] is a classical rule to manage duplicated databases, it allows multiple

database copies to be synchronized over an unreliable communication channel connecting a fixed

number of processes. From the point of view of the CCI consistency model, it guarantees only

convergence, but it requires extra storage. In addition to the element identifier, it needs to store the
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1 payload s e t S
2 i n i t i a l ∅
3 query lookup ( element e) : boolean b
4 l et b = (∃u | : (e, u) ∈ S)
5 update add ( element e)
6 prepare(e)
7 l et α = unique()
8 effect(e, α)
9 S := S ∪ {(e, α)}
10 update remove ( element e)
11 prepare(e)
12 pre lookup(e)
13 l et R = {(e, u) | (∃u : (e, u) ∈ S)}
14 effect(R)
15 // Causal Reception precond i t i on
16 pre ∀(e, u) ∈ R : add(e, u) de l i v e r e d
17 S := S \R

Specification 7.1: OR-Set

timestamp of creation, the timestamp of modification and a flag of deletion called “tombstone". All

of this implies that an element cannot be really deleted unless its timestamp is older than the oldest

timestamp of the whole system, which requires a protocol not suitable for the autonomy constraints,

or when we consider that they are old enough, which is unsafe. Also, at the semantic web scale, the

maintenance of tombstones is impractical.

In Distributed Databases [93], the Linked Data scenario falls into the distributed (ormulti-master)

family, as the execution of updates is allowed at every participant, and into the Lazy propagated

category, as local updates are immediately committed and only eventually propagated and committed

at the followers.

In this area, two types of consistency are studied: Transaction Consistency, that refers to the

maintenance of integrity constraints when concurrent updates or transactions occur, and Mutual

Consistency, that refers to the data items having identical values at all replicas. Mutual Consistency

can be strong, i.e., all instances of a data item must have the same value at the end of an update, or

weak, i.e., when the update its locally executed but the values at the replicas are allowed to temporally

diverge. Weak Mutual Consistency is the same as the Eventual Consistency notion presented in

section 7.2.

Distributed Lazy propagated systems have been developed in the context of clustered databases [29,

94], however, they rely on the fast and highly reliable network that connects cluster systems to avoid
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blocking, an assumption we do not have in our context.

Recently, [6] introduced Webdamlog, a datalog-style language for managing distributed data and

knowledge. Webdamlog extends Datalog adding delegation, i.e., the ability to exchange rules be-

sides facts among peers, and the possibility to use variables to denote peers and relations. However,

Webdamlog is aimed towards sharing data(e.g., Facebook pictures, selected tweets) instead of col-

laborating. As such, data received from one peer cannot be modified and sent back to its origin.

7.3.1 Materialized Views: Maintenance and Update

Another related research area is Materialized Views [28]. The main context is as follows: a

snapshot of the result of a query targeting a set of databases is stored in a separate location in order

to have faster access and/or decrease the load of the source databases. This raises two issues:

1. When data is updated in the source databases, changes need to be reflected in the snapshot

in an efficient way, i.e. avoiding when possible the re-evaluation of the query. This problem is

known as View Maintenance.

2. If data is updated on the snapshot, how to reflect such changes in the source databases?. This

problem is known as View Update.

The consistency criterion for the system comprised by the snapshot and the sources is that the

snapshot must be equal to the evaluation of the query that defines the view on the sources.

Many solutions for the View Maintenance problem for the relational context were developed

during the late 90s and early 2000s [135, 80, 86, 133, 26, 27], and more recently, for Very Large

Scale Distributed (VLSD) data storage systems [5], Social Networking applications [83] and Social

Semantic Web [100]. In the RDF and Graph context, foundations were laid in [134, 3]. Further

development includes [59, 40].

Concerning View Update, foundations were first described in [11] and [32]. The recent book by

Date [31] thoroughly covers the relational case. A formalism based on the mathematical theory of

Bi-directional transformations or lenses that enhances the classical treatment was developed in the

series [20, 43, 57].
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7.3.2 Peer Data Management

In Peer Data Management (PDM), participants act like peer-to-peer (P2P) networks : they make

their own data accessible to others, but retaining full control on it and using their own schema.

Participants might act as data providers offering query answering services or as mediators providing

an integrated view on the data of multiple other nodes. Participants are interconnected by “semantic”

links representing schema correspondences (called mappings), which are used for query rewriting and

routing.

The consistency criteria used in PDM is that all rules defined by the schema mappings must hold,

which is in general expensive to maintain. Each time an update occurs in one peer and is propagated

forward, the mappings need to be checked and repaired if needed. The main procedure for this task

is called chase, and was formalized in [39]. However, the chase is in general expensive and to be

decidable requires some restrictions in the topology induced by the mappings.

Surveys about PDM systems can be found in [102, 58], we focus here on the systems that provide

Update Exchange capabilities as they are closer to our vision of a Read/Write Linked Data. In Update

Exchange, each participant controls a local database instance, including his data and data imported

from others. Declarative schema mappings specify relationships between participants. Each peer

updates their data locally occasionally exchanging updates with others, i.e., propagating updates

to make its database consistent with the others according to the schema mappings and local trust

policies. The update exchange process is bidirectional and involves publishing any updates made

locally by the participant, then importing new updates from other participants. Consistency criteria

for Update Exchange able systems are weaker than other PDM systems.

Youtopia [73] challenges the idea that all schema mapping violations must be repaired ipso facto

when updates occur. The main idea is to make the chase stop if it finds an inconsistency to ask for

user input. The consistency criterion is derived from the Distributed Systems notion of Final-State

Serializability. However, current Youtopia is tailored to a single database comprised of multiple

relational tables that is updated by several users concurrently.

Orchestra [114, 63, 69] implements the vision of Collaborative Data Sharing Systems (CDSS) [64],

based on Update Exchange. As Youtopia, CDSS rejects the idea that when peers with databases

with heterogeneous schemas collaborate, they need to all align to a global schema and converge to the

same final state, in other words, to tolerate disagreement between peers. They propose to establish
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Figure 7.2: Flow of data in the update translation and exchange of Orchestra, taken from [69]

connections between peers via GLAV mappings, a generalisation of the GAV and LAV mappings

detailed in chapter 4. Data and updates are annotated with elements of Provenance Semirings [68, 45]

that allow the identification of which peer made it, and the introduction of trust expressions to solve

conflicts. The consistency criterion is based on the chase procedure. The specification of a criterion

independent of the chase is an open research topic [63].

Update exchange in Orchestra is illustrated in Figure 7.2, each peer updates its instance locally.

Updates are recorded in a local edit log. Periodically, peers request that the CDSS performs an

update exchange operation. The peer’s local edit log becomes globally available and the CDSS

translates the effect of updates published by other peers to the schema of the peer that requested

the update exchange. The CDSS has an epoch number that advances after each batch of updates

published by a peer, when an update exchange is triggered, the peer receives all state published up

to that epoch and nothing more until its next update exchange. The need of this epoch number

makes the system depending on a central coordinator and makes also impossible two simultaneous

update exchange requests.

In summary, PDM systems are tailored towards supporting the most expressive mappings possible

between peers and strong consistency guarantees at the expense of scalability and in some cases,

availability. None of the systems described in this section scale above low hundreds of peers.

7.4 Consistency and Update Exchange in Semantic Web

The work of [12] identified the relationship between synchronization and updating of semantic

data stores. They proposed an ontology to handle the synchronization by exchanging diff files, but

without explaining how to achieve consistency.
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[23] and [105] adapt to RDF the Distributed Version Control Systems DARCS and Git respec-

tively. Both guarantee Eventual Consistency. The main goal of both works is to support version

control and historical queries, as such, they store an important amount of meta-data that may be

difficult to handle in highly dynamic environments.

Edutella [90] is intended to be a standardized query exchange mechanism for RDF metadata

stored in distributed RDF repositories and is meant to serve as both query interface for individual

RDF repositories located at single Edutella peers as well as query interface for distributed queries

spanning multiple RDF repositories. Edutella is an hybrid P2P network based on the concept of

super peers that allow faster query routing. As such, the network is self-organized, not social, and

there is not a formal consistency criterion.

Other P2P based idea is ViP2P [67, 136]. Peers materialize views of XML data they are interested

in the network. View definitions are indexed in a DHT so that each time a query is posed on a peer,

it is answered by rewriting it on the views published in it.

Piazza [52, 51] was the first Peer Data Management System tailored to the Semantic Web. It

proposes a language to guarantee schema mapping between XML and RDF sources and an algorithm

to query on such a system. As the rest of PDM systems described in section 7.3.2, Piazza’s main

drawback is its limited scalability.

RDFSync [116] is an algorithm to synchronize two RDF graphs inspired by the file synchroniza-

tion tool rsync. It is based on the decomposition in Minimal Self-Contained graphs (MSGs), that

are hashed and stored in an ordered list. By calculating the difference between this hashes’ list,

and transmitting only the relevant MSGs, RDFSync greatly reduces the communication complexity

compared to a pure rsync executed over a string representation of the graphs. However, it does not

consider concurrent synchronizations between many participants.

RDFGrowth [117] is an algorithm for semantic P2P applications, designed for the particular

scenario where peers want to increment their knowledge of certain topics with the knowledge of

the other peers. It only considers the grow of the knowledge base (i.e. add operations), based

on the monotonicity of the RDF Semantics. RDFGrowth considers that non-monotonic operations

should not affect the shared knowledge and therefore, should be locally kept. RDFGrowth requires

a bounded complexity of queries to scale over an unreliable network. A collaborative platform based

on these ideas is presented in [115].
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Schandl [106] proposes a partial replication of RDF graph for mobile devices using the same

principles of SVN with a limited lifetime of local replica checkout-commit cycle. Therefore, it is not

possible to ensure synchronization of partial copies with the source since a data consumer has to

checkout a new partial graph after committing changing to the data provider.

Linked Data Fragments (LDF) proposes data fragmentation and replication as an alternative

to pure SPARQL endpoints to improve availability. Instead of answering complex queries itself, the

server publishes a set of fragments that corresponds to specific triple patterns in the query, offloading

to the clients the task of deriving results from them and enabling the use of http caches. However,

the problem of writability is not considered[120].

7.4.1 Update Propagation in the Semantic Web

Some works have considered the problem of how to propagate updates in the context of semantic

web. SparqlPush [95] implements the well-known Publish-Subscribe model through the Pubsub-

hubbub protocol in SPARQL. A server performs continuous querying on the data publishers of the

queries demanded by subscribers, and sends them the changes it detects.

Halaschek-Wiener and Kolovski [49] formalize an OWL-based syndication framework that uses

description logic reasoning to match published information with subscription requests. They use

the concept of incremental view maintenance in response to changes in the published data. The

connection between consumers and publishers is handled by special actors called syndication brokers

that, as the SparqlPush server, are in charge of delivering the changes.

DBpedia Live [87] is a framework to extract and transform in real time the text and info-boxes

data in Wikipedia into DBpedia [18]. One of the components of the system is a synchronization tool

to keep DBpedia mirrors up-to-date. Updates are published as pairs of plain text files, one with the

insertions and the other with deletions that happen in a timeframe of a few seconds. The names of

the files include a timestamp that totally orders them, allowing the mirrors to be consistent with the

master.

The three systems described above have the limitation that consumers are passive, i.e., they do

not make updates on the data they consume.

Data-Fu [112] is a declarative rule-based execution language with a state transition system as

formal grounding that enables the development of datadriven applications that facilitate the RESTful



78 CHAPTER 7. STATE OF THE ART

manipulation of read/write Linked Data resources. No consistency criteria is considered.

7.5 Summary

In conclusion, the Distributed Systems, Database, Semantic Web and CSCW research commu-

nities agree on the result of the CAP theorem: there is a trade-off between the consistency level

and the overhead impacting the availability and scalability of the system, Strong consistency is not

attainable in a scalable way. For applications where availability and scalability are a must, only

Weak Consistency guarantees can be assured, usually, Eventual Consistency and Strong Eventual

Consistency are the criteria of choice.

As the Read/Write Linked Data requires availability and scalability, we will focus on criteria and

protocols for weak consistency. In chapter 8 we show how to achieve Strong Eventual Consistency

in the Read/Write Linked Data using SU-Set, a CRDT for RDF-Graphs and SPARQL 1.1 Update

operations.

SU-Set requires that all updates are delivered to all participants, i.e., forcing the Read/Write

Linked Data to be connected and that participants copy all data from sources. In chapter 9, we

present Fragment Maintenance, a stronger criterion than SEC, and Col-Graph, a protocol to achieve

it in the Read/Write Linked Data, that eliminates SU-Set restrictions.



8
SU-Set: Strong Eventual Consistency

In this chapter, we present SU-Set, a CRDT for the RDF-Graph type with SPARQL 1.1 Update

operations that solves problem 6.3 using Strong Eventual Consistency as consistency criterion.

In the CRDT model detailed in section 7.2, operations are assumed to be transmitted through a

fully connected communication graph without loss, granting the Eventual Delivery condition of SEC.

Therefore, we introduce on the Read/Write Web of Linked Data the assumption that the update

exchange network is strongly connected, all updates eventually arrive to their destination, and the

following definition of the consume-updates tie:

Definition 8.0.1 (Consumes Updates). Let A be an RDF-GraphStore that executes SPARQL 1.1

Update operations in the Read-Write Linked Data (definition 6.2.7), we say that an RDF-GraphStore

B Consumes Updates of A if all such updates arrive to B and B executes them.

8.1 SU-Set

As pointed out in chapter 2, all SPARQL 1.1 Update graph update operations can be expressed

as set union and difference on RDF-Graphs. Therefore, one can adapt the existing CRDTs for the

set type. Our proposal, dubbed SU-Set, extends OR-Set’s (Specification 7.1) single-element insertion

79
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1 payload s e t S
2 i n i t i a l ∅
3 query lookup ( element e) : boolean b
4 l et b = (∃u : (t, u) ∈ S)
5 update insert ( set<element> T )
6 prepare(T )
7 l et R = ∅
8 foreach t in T:
9 l et α = unique()
10 R := R ∪ {(t, α)}
11 effect(R)
12 S := S ∪R

Specification 8.1: Union extension to OR-Set

and deletion to union and difference. Specification 8.1, shows how to do it for the insert. Figure 8.1

shows a SU-Set execution, SPARQL 1.1 Update operations executed at Graph Stores are rewritten

to SU-Set operations over pairs (triple,id) in a transparent way for the user, and sent downstream,

where they are re-executed upon reception.

SU-Set inherits from OR-Set a precondition concerning the delivery of updates: It must be granted

that deletions of unique pairs are always delivered after the insertions that generated them. We will

use the same strategy used in OR-Set to make the pre-condition hold: a causal delivery of updates,

implemented with Vector Clocks [82]. Each Graph Store holds a monotonically increasing counter

(the clock) that ticks each time an update is made, and an array whose keys are the identifiers of

all other Graph Stores and whose values are the last received clock values from the corresponding

Graph Store. Updates are piggybacked with the full vector at execution time. By comparing the

vectors, one can determine the partial order of update executions in all the network to ensure that

a deletion always happens after its corresponding insertion.

This first SU-Set version has two important overheads to consider: first, in the delete-insert

operations, computing the triples affected locally and sending them downstream instead of sending

the patterns directly greatly increases the traffic; second, if each element needs to be sent with its

globally unique id, the size of the packets sent will grow.

To test this in a real case, we analyzed the publishing method of DBpedia Live. The core of the

system is a set of extractors that computes the triples affected each time there is an edition in a

Wikipedia page or in the mappings that define the relation between info boxes and triples. After

updating the store, the system writes two files, one with the added RDF-triples, and another with
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site 1
{((Apple, is, Fruit),1)}

site 2
{((Apple, is, Fruit),1)}

INSERT DATA {
Orange is Fruit .
Mango is Fruit .}

DELETE { Apple ?p ?o .}
INSERT { Mango ?p ?o .}
WHERE { Apple ?p ?o }

Ins = {
((Orange, is, Fruit),2),
((Mango, is, Fruit),2) }

##

Del = {((Apple, is, Fruit),1)}
Ins = {((Mango, is, Fruit),6) }

��

Payload ∪ Ins (Payload \ Del) ∪ Ins

{((Apple, is, Fruit),1)
((Orange, is, Fruit),2)
((Mango, is, Fruit),2)}

{((Mango, is, Fruit),6)}

DELETE DATA {
Mango is Fruit .}

Payload ∪ Ins

Del = {
((Mango, is, Fruit),2)}

++

{((Mango, is, Fruit),2)
((Orange, is, Fruit),2)
((Mango, is, Fruit),6)}

{((Apple, is, Fruit),1)
((Orange, is, Fruit),2)} Payload \ Del

(Payload \ Del) ∪ Ins ((Orange, is, Fruit),2)
((Mango, is, Fruit),6)}

((Orange, is, Fruit),2)
((Mango, is, Fruit),6)}

Figure 8.1: SU-Set execution



82 CHAPTER 8. SU-SET: STRONG EVENTUAL CONSISTENCY

the deleted ones. These files do not have a fixed size, as this depends on the number and nature of

the editions at a given time. DBpedia Live publishing can be considered as SPARQL Update Insert

Data and Delete Data operations with the triples defined by the change set files. This means that for

the DBpedia Live case, the overhead of computing and sending the affected triples for each operation

is already considered and SU-Set do not adds any further cost.

To evaluate the impact of using globally unique ids, we consider its implementation with two

UUIDs [76] of 16 bytes each, one to identify the generator site, and another to hold a big enough

monotonic counter that increases with each insert. We downloaded the N3 files published by DBpedia

Live from march 10th to march 16th 2012, totalizing 3,403 Megabytes, and appended to each triple

the base64 representation of the two UUIDs. Finally, we measured the new file size with the UNIX

command wc -c. The difference between the version with ids and the version without ids was 2,04

GB, and the percentage of increase, 54,47%.

However, we can greatly reduce this overhead if the receivers can afford to spend some time in

constructing the IDs from a resume. The strategy varies depending on the strategy chosen to achieve

the delivery condition. When vector clocks are used, we showed in [60] that the same id can be

shared by the triples inserted in the same operation, as the uniqueness of the element comprised by

the triple and its id is maintained. Therefore, one can send only one id per insert operation and let

the receiver reconstruct the pairs.

In DBpedia Live, this would mean that only one id is needed for each file containing added triples.

We recomputed the overhead in our case of study using this strategy and we obtained a negligible

2,5 Megabytes for the insertions and a 4,68% file size increase overall. Note that, as the average

triple size is greater than the id size, deletion with the first version of SU-Set is less expensive than

without using any ids.Table 8.1 compares the differences in communication overhead of insertions

and deletions between the two versions of SU-Set and the current publication method without ids.

Note that in both solutions, it is possible to further optimize the deletion by sending only the id (as

it is unique), however, in the case that we would like to analyze the deletes, an extra computation

effort needs to be done to search the triples. As such, we report the overhead of sending only the ids

and, in parentheses, the overhead of sending full pairs.

Note only that sending ids for deletion is less expensive than sending the serialized n3 triples.

Further optimisations like compression are out of the scope of our work, the interested reader is
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referred to [41].

Table 8.1: Comparison of communication overhead between SU-Set, its optimized version and the
use of no ids (nothing). The data used are the triples published by DBpedia Live from the 10th to
the 16th march 2012.

Size (MB)
Operation # Triples Nothing SU-Set Optim.
Insert 21762190 3294,08 5334,29 3296,6
Delete 1755888 265,78 164,61 (430,4) 164,61 (430,4)
Total 23518078 3559,86 5498,9 (5794.69) 3461,21 (3727)

Overhead 54,47% (64,77%) -2,77% (4,68%)

8.2 Proof of correctness

To prove that SU-Set is a CRDT, i.e., the execution of concurrent downstream operations a, b on

a SU-Set S commutes: S◦a◦b = S◦b◦a. We proceed with a case-based analysis for each combination

of insert, delete and delete/insert for the optimized version. The proof for the non-optimized version

is the same. Let T1, T2 sets of RDF-Triples and S the payload of an arbitrary SU-Set.

– Two inserts: We need to show that S ◦ insert(T1, α1) ◦ insert(T2, α2) = S ◦ insert(T2, α2) ◦

insert(T1, α1). Applying the definition of the downstream insert from specification 8.2, let

R1 = {(t, α1) : t ∈ T1} and R2 = {(t, α2) : t ∈ T2}, therefore, we need to verify that

(S∪R1)∪R2 = (S∪R2)∪R1, which is straightforward by the associativity and commutativity

of the set union.

– Two deletes: We need to show that S ◦ delete(R1) ◦ delete(R2) = S ◦ delete(R2) ◦ delete(R1).

Applying the definition of the downstream insert from specification 8.2, we need to verify that

(S \ R1) \ R2 = (S \ R2) \ R1. We start from the left hand of the equation and we arrive to

the right hand by basic set theory theorems [46], particularly the set difference definition as

the intersection with the complement. In the following, we will use the proof style of Gries

and Schneider [46], each step of the proof is followed by the axiom or theorem that justifies the

logical symbol (equality, equivalence, implication) that leads to the next step.

(S \R1) \R2

= <A \B = A ∩B{>

(S \R1) ∩R{
2
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1 payload s e t S
2 i n i t i a l ∅
3 query lookup ( t r i p l e t) : boolean b
4 l et b = (∃u : (t, u) ∈ S)
5 update insert ( set<t r i p l e > T )
6 prepare(T )
7 l et α = unique()
8 effect(T, α)
9 l et R = {(t, α) : t ∈ T}
10 S := S ∪R
11 update delete ( set<t r i p l e > T )
12 prepare(T )
13 l et R = ∅
14 foreach t in T:
15 l et Q = {(t, u) | (∃u : | (t, u) ∈ S)}
16 R := R ∪Q
17 effect(R)
18 // Causal Reception
19 pre Al l add ( t , u ) d e l i v e r e d
20 S := S \R
21 update delete− insert(whrPat, delPat, insPat)
22 // match (m, pa t t e rn ) : t r i p l e s matching
23 // pa t t e rn wi th in mapping m.
24 prepare(whrPat, delPat, insPat)
25 l et S ′ = {t | (∃u | : (t, u) ∈ S)}
26 // M i s a Mu l t i s e t o f mappings
27 l et M = eva l ( S e l e c t ∗
28 from S ′ where whrPat )
29 l et D′ = ∅
30 foreach m in M :
31 D′ = D′ ∪match(m, delPat)
32 l et D = {(t, u) : t ∈ D′ ∧ (t, u) ∈ S}
33 l et I ′ = ∅
34 foreach m in M :
35 l et I ′ = I ′ ∪match(m, insPat)
36 l et α = unique()
37 effect(D, I ′, α)
38 // Causal Reception
39 pre Al l add ( f , u ) ∈ D de l i v e r e d
40 l et I = {(i, α) : i ∈ I ′}
41 S := (S \D) ∪ I

Specification 8.2: Optimized SU-Set
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= <A \B = A ∩B{>

(S ∩R{
1) ∩R{

2

= <As s o c i a t i v i t y o f ∩>

S ∩ (R{
1 ∩R{

2)

= <Commutativity o f ∩>

S ∩ (R{
2 ∩R{

1)

= <As s o c i a t i v i t y o f ∩>

(S ∩R{
2) ∩R{

1

= <A \B = A ∩B{>

(S \R2) ∩R{
1

= <A \B = A ∩B{>

(S \R2) \R1

We will make use of this result in subsequent demonstrations under the name of Lemma 1 : for

sets A,B,C, it holds that (A \B) \ C = (A \ C) \B.

– One insert and one delete: We need to show that S ◦ insert(T1, α1) ◦ delete(R2) =

S ◦ delete(R2) ◦ insert(T1, α1). Applying the definition of the downstream insert and delete

operations, let R1 = {(t, α1) : t ∈ T1}, we need to verify that (S ∪ R1) \ R2 = (S \ R2) ∪ R1.

We consider first the case where R1 ∩R2 = ∅:

(S ∪R1) \R2

= <A \B = A ∩B{>

(S ∪R1) ∩R{
2

= <D i s t r i b u t i v i t y o f ∩ over ∪>

(S ∩R{
2) ∪ (R1 ∩R{

2)

= <A ∪ ∅ = A >

(S ∩R{
2) ∪ ((R1 ∩R{

2) ∪ ∅)

= <Assumption R1 ∩R2 = ∅>

(S ∩R{
2) ∪ ((R1 ∩R{

2) ∪ (R1 ∩R2))

= <D i s t r i b u t i v i t y o f ∩ over ∪>

(S ∩R{
2) ∪ (R1 ∩ (R2 ∪R{

2))

= <R2 ∪R{
2 = U>
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(S ∩R{
2) ∪ (R1 ∩ U)

= <Iden t i t y element o f ∩ >

(S ∩R{
2) ∪R1

= <A \B = A ∩B{>

(S \R2) ∪R1

We will make use of this result in subsequent demonstrations under the name of Lemma 2 : for

sets A,B,C, it holds that B ∩ C = ∅ ⇒ (A ∪B) \ C = (A \ C) ∪B.

Note that if R1∩R2 6= ∅, we know that there is a causal relation between these two operations,

as a consequence of the uniqueness of the pairs (triple, id). Therefore, the causality condition

of the network will guarantee that the insert will be delivered and applied before the delete at

every other SU-Set.

– One insert and one delete-insert: We need to show that S ◦ insert(T1, α1) ◦ delete −

insert(D, I ′, α2) = S ◦ delete− insert(D, I ′, α2) ◦ insert(T1, α1). Applying the specification of

downstream insert and delete operation, let R1 = {(t, α1) : t ∈ T1}, and I = {(t, α1) : t ∈ I ′},

thus, we need to verify that ((S ∪ R1) \D) ∪ I = ((S \D) ∪ I) ∪ R1. We start with the case

where R1 ∩D = ∅:

((S ∪R1) \D) ∪ I

= <R1 ∩D = ∅∧ Lemma 2>

((S \D) ∪R1) ∪ I

= <As s o c i a t i v i t y o f ∪>

(S \D) ∪ (R1 ∪ I )

= <Commutativity o f ∪>

(S \D) ∪ (I ∪R1 )

= <As s o c i a t i v i t y o f ∪>

((S \D) ∪ I) ∪R1 )

As in the case of one insert and one delete, if R1 ∩ D 6= ∅, there is a causal relation between

both operations and the network will guarantee that they are delivered in the right order.

– One delete and one delete-insert: We need to show that S ◦ delete(R1) ◦ delete −

insert(D, I ′, α1) = S ◦ delete − insert(D, I ′, α1) ◦ delete(R1). Applying the definition of

the downstream delete and delete-insert operations, let I = {(t, α1) : t ∈ I ′} , thus, we need
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to verify that ((S \R1) \D)∪ I = ((S \D)∪ I) \R1. We start with the case where R1 ∩ I = ∅:

((S \D) ∪ I) \R1

= <R1 ∩ I = ∅∧ Lemma 2>

((S \D) \R1) ∪ I

= <Lemma 1>

((S \R1) \D) ∪ I

As in the previous two cases, if R1 ∩ I 6= ∅, there is a causal relation between both operations

(the delete-insert occurred before the delete) and the network will guarantee that they are

delivered in the right order.

– Two delete-insert: We need to show that S◦delete−insert(D1, I
′
1, α1)◦delete−insert(D2, I

′
2, α2) =

S ◦ delete − insert(D2, I
′
2, α2) ◦ delete − insert(D1, I

′
1, α1). Applying the specification of the

downstream delete-insert operation, let I1 = {(t, α1) : t ∈ I ′1} and I2 = {(t, α2) : t ∈ I ′2} We

need to verify that (((S \D1) ∪ I1) \D2) ∪ I2 = (((S \D2) ∪ I2) \D1) ∪ I1. We start with the

case where I1 ∩D2 = ∅ ∧ I2 ∩D1 = ∅:

(((S \D1) ∪ I1) \D2) ∪ I2

= <I1 ∩D2 = ∅∧ Lemma 2>

(((S \D1) \D2) ∪ I1) ∪ I2

= <Lemma 1>

(((S \D2) \D1) ∪ I1) ∪ I2

= <As s o c i a t i v i t y o f ∪>

((S \D2) \D1) ∪ (I1 ∪ I2)

= <Commutativity o f ∪>

((S \D2) \D1) ∪ (I2 ∪ I1)

= <As s o c i a t i v i t y o f ∪>

(((S \D2) \D1) ∪ I2) ∪ I1

= <I2 ∩D1 = ∅∧ Lemma 2>

(((S \D2) ∪ I2) \D1) ∪ I1

As with the previous cases, we observe that if I1 ∩ D2 6= ∅ or I2 ∩ D1 6= ∅, there is a causal

relation between both operations, and the network will guarantee their delivery in the right

order.
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8.3 Complexity Analysis

In this section we analyze the complexity of the optimized SU-Set, in order to evaluate the over-

head of its implementation on a semantic store. We use as reference case the DBpedia Live system.

So far, we have seen that CRDTs’ properties allow convergence without the need for reconciling algo-

rithms, which is very efficient in terms of time and messages sent. However, the overhead introduced

in space and communication can be high.

We will use the following notation:

– RWLD for the Read/Write Linked Data.

– N , for the number of online participants in RWLD.

– Nmax, for the number of online and offline participants in RWLD

– Tp, for the number of triples stored by participant p.

– TN , for the number of triples in the whole network.

– TU , for the number of affected triples (inserted and deleted) of an operation U .

– sizeOf(X), for the size in memory of an object X.

8.3.1 Complexity in number of rounds

We measured this dimension as the number of rounds of messages needed to exchange between

participants to achieve consistency. One round of communication is a sequence of production-sending-

reception-execution of operations between the participants. For DBpedia Live the production of the

operation is the writing of the change-set file, sending and receiving is the consumption of the file

from the site of interest; when re-executed, we arrive to the final state. With SU-Set or its optimized

version, there is no difference in the prepare phase of the operation except for the size of the change-set

file, which will be bigger. The final state is achieved after only one round of communication, which

is optimal, and means that independently of the update rate in the system, the time to achieve

consistency is only affected by the speed of the network connecting the Semantic Stores.

Notice that in the case of OR-Set, the number of rounds would be equal to the number of triples

being operated, as we need to send one message for each one. Duplicate triples do not affect round

complexity, they are treated as normal insertions.

Vector Clocks do not introduce any extra number of rounds. Table 8.3.2 summarizes best and

worst case complexities.
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Vector Clocks
Best Case O(1)
Worst Case O(1)

Table 8.2: SU-Set’s best and worst case round complexity.

8.3.2 Space Complexity

This dimension refers to the disk space used by each strategy. We measured it in terms of extra

Gigabytes with respect to a plain RDF-GraphStore.

We assume ids are comprised of two 16 bytes parts, a UUID for unambiguously identify the

generating participant and the other to uniquely identify the triple 1, whether it be with another

UUID in the case of using vector clocks, or with a monotonically increasing number in the case of

interval vectors. If we add 32 extra bytes to each of the 1 billion triples in DBpedia, we will have 29.8

GigaBytes more, which is an acceptable overhead considering that servers currently hosting DBpedia

have 3 disks of one Terabyte each.

When many participants insert the same triple at the same “time”, i.e., concurrently, a different id

will be generated for each insertion, yielding many pairs with the same RDF-triple as first coordinate.

We define this as “duplicated” RDF-triples.

Definition 8.3.1. Given a SU-Set with payload S and an RDF-triple t such that S.lookup(t) is true,

the Duplicates of t in S, noted Dups(t, S), are:

Dups(t, S) = {(t, i) | (t, i) ∈ S}

Ideally, each RDF-triple stored in the SU-Set will have only one “duplicate”. Given the size of an

id, we can quantify the overhead with respect to this ideal with the following simple equation.

(|S| − |{t |S.lookup(t)}|) ∗ sizeId

Fortunately, our approach allows an easy and safe way to minimize this overhead, as described in

Figure 8.2: If site 2 considers that it has too many “duplicates” it deletes the duplicated pairs and

inserts a new one, as if the user had executed a Delete-Insert operation deleting and re-inserting the

“troublesome” triple. The question of how many duplicates is too many can be answered by each

1. To be more compliant with the Linked Data principles, URIs could be minted using those UUID
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site 1
{ }

site 2
{ }

site 3
{ }

INSERT DATA
{ s p o }

INSERT DATA
{ s p o }

INSERT DATA
{ s p o }

Ins = {((s,p,o),1)}

%%

Ins = {((s,p,o),2)}

yy %%

Ins = {((s,p,o),3)}

yy

{((s,p,o),1)} {((s,p,o),2)} {((s,p,o),3)}

{((s,p,o),1)}
{((s,p,o),2)}

{((s,p,o),2)}
{((s,p,o),1)}
{((s,p,o),3)}

xx &&

{((s,p,o),3)}
{((s,p,o),2)}

{((s,p,o),1)}
{((s,p,o),2)}
{((s,p,o),3)}

Del = {((s,p,o),1)
((s,p,o),2)
((s,p,o),3})}

Ins = {((s,p,o),9)}

vv ((

{((s,p,o),3)}
{((s,p,o),2)}
{((s,p,o),1)}

{((s,p,o),9)} {((s,p,o),9)} {((s,p,o),9)}

Figure 8.2: Generation and garbage collection of pairs referring to the same triple

participant. A simple implementation when the update rate is not too high is to compute Dups(t, S)

each time an RDF-triple is inserted. An alternative when the update rate is too high is to set a disk

usage threshold and compute the duplicate sets larger than a fixed value whenever the disk usage

threshold is trespassed.

In the worst case, where all participants always add concurrently the same triples, the overhead

is O(N ∗ TN). Based on the probability and frequency of this kind of additions, the frequency of the

garbage collection needs to be adjusted. Note also that garbage collecting too often augments the

traffic on the network. The use of Vector Clocks introduces an overhead of O(Nmax), each participant

needs to store a vector clock, and as the network is strongly connected, every participant will have

a vector with one entry for each other participant.

Best Case O(Tp) +O(Nmax)
Worst Case O(N ∗ Tp) +O(Nmax)

Table 8.3: SU-Set’s best and worst case space complexity.
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8.3.3 Time Complexity

This dimension refers to the overhead in execution time introduced by SU-Set. It has two aspects

to consider: first, the extra cost of the CRDT usage, which is O(Tu). In SU-Set, this is done by

the participant generating the insertion, while in the optimized version, each receiving node is in

charge of constructing the pairs from the received id and the triples. Considering that the cost of an

insertion of a set of triples is also linear, we are not adding too much overhead.

The second aspect is the possibility of many pairs having the same triple as the first coordinate

to add an overhead to query and update operations. For the querying, there is no extra cost, because

it is defined as the existence of a pair with the looked-up triple; for the selection, there is the cost

of filtering the extra pairs from the final answer; for the deletion, we could need to delete many

pairs instead of only one triple. All these overheads are linear in the number of extra pairs, but as

explained in section 8.3.2, we have a way to keep their number under control.

For each processed update, the complexity of checking the delivery condition is linear on the size

of the vector, i.e., O(Nmax), then, linear on the number of triples updated. Table 8.4 shows the best

and worst casse time complexities for SU-Set.

Best Case O(Nmax) +O(Tu)
Worst Case O(Nmax) +O(Tu)

Table 8.4: SU-Set’s best and worst case time complexity

8.3.4 Communication Complexity

This dimension refers to the size of the messages exchanged. In the Delete and Insert/Delete

operations, the number of pairs (triple, id) sent is n+ d where n is the number of triples affected by

the operation and d is the number of “extra" pairs for a triple. The number of extra pairs for a given

triple t is |{(t, id) : (t, id) ∈ Payload}| − 1. Figure 8.3 describes this situation with a Delete-Insert

operation.

As shown in subsection 8.3.2, there is a safe way to keep the number of extra pairs for a given

triple controlled, by deleting them all and adding a new one with a fresh id, as if a user had deleted

it and immediately inserted it again. This will generate |{(t, id) : (t, id) ∈ Payload}| + 1 pairs for

sending. The maximum number of extra pairs for a triple is the same as the number of participants

in the network.
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Figure 8.3: Overhead of highly selective pattern operations

As explained in section 8.1, the overhead of sending the ids in the change sets can be greatly

reduced by sending only one id per message and letting the receiver construct the pairs. With

causal delivery, the same id can be shared by the triples inserted in the same operation [60], as the

uniqueness of the element comprised by the triple and its id is maintained.

This means that the saving also depends on how many triples per operation are streamed, in

DBpedia Live case, different end being logged in the same change file, or, in SPARQL Update terms,

updated with the same DELETE/INSERT operation. For a given time period, the non optimized

SU-Set adds an overhead of:

(#triplesInserted+ #pairsDeleted) ∗ sizeOf(id)

while the optimized version adds:

(#insertOperations+ #pairsDeleted) ∗ sizeOf(id)
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Notice that in the deletions we talk about the number of pairs instead of the number of RDF

triples, to take into account duplicate triples (cf. Section 8.3.2). Also, if the number of inserts is

the same as the number of triples being inserted (one triple inserted at a time), both overheads are

equal. Therefore, the “chunk size", or how many affected triples are packed in the same message

to send, is relevant to our approach. However, if we pack all triples affected in one day in one big

message, message size will be optimized but freshness will be lost.

Figure 8.4 compares the overhead between SU-Set and its optimized version in the DBpedia Live

context. The update rate of DBpedia is very high, giving us a good insight of what we can expect

under stressed conditions. Considering that for every change file of addition there is one of deletion,

we computed the average number of files for each day of the week analyzed in table 8.1, then, we

computed the average size of such files per day, for the following cases: before adding the ids (the

baseline), after adding the ids to each triple (SU-Set) and after adding only one id per addition file

(Optimized SU-Set).
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This difference is due to the fact that in DBpedia Live, the number of triples inserted is more

than 12 times the deleted ones, so our optimization is really saving a lot of ids. In other datasets,

we could expect many more editions than insertions, and as an edition is a deletion followed by an

insertion, the number of triples added and deleted would be roughly the same. In this case, the

overhead will depend on the difference between the average triple size and id size, and the chunk

size.

Notice that in Figure 8.4 we did not considered the presence of “extra" pairs, which impact the

communication complexity of deletions. For the DBpedia Live case, assuming an average of three

“extra" pairs per triple would mean that the overhead of optimized SU-Set would go from 5% to 15%.

Further studies are needed to confirm if there are enough concurrent insertions (the source of extra

pairs) to have a negative impact on performance, or if we would need to set our garbage collection

strategy more often.

Concerning the delivery precondition, vector clocks require to piggyback each message with the

full vector clock of the participant that made it, yielding a complexity of O(Nmax) per message.

Table 8.5 summarizes the best and worst case communication complexities of optimized SU-

Set. Note that a relevant factor is how many triples are affected by each operation, the more

triples updated at once, the less messages requiring a piggybacked vector clock will be exchanged.

Therefore, in the case of highly dynamic participants, it is possible to pack many updates in one to

save bandwidth in exchange of data freshness at the receivers.

Best Case O(TU) +O(Nmax)
Worst Case O(TU) +O(Nmax)

Table 8.5: SU-Set ’s best and worst case communication complexity

8.4 Discussion

The use of SU-Set on the Read/Write Linked Data allows to guarantee Strong Eventual Con-

sistency. However, two of the required assumptions: the connectivity of the network and the need

to exchange all updates are rather strong, and not aligned with the proposed social vision of the

Read/Write Linked Data. For example, if many data consumers copy data from DBpedia, we do not

expect neither that DBpedia will consume back all updates from them, nor all data consumers will

exchange all update between them.
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Nevertheless, if the network is not connected and/or participants are exchanging only subsets of

updates, the Strong Convergence part of SEC (def. 7.2.2) property still holds, i.e., the participants

that have received and applied the same updates have equivalent state. More formally, if we substitute

the Eventual Delivery condition in definition 7.2.1 by the following:

Definition 8.4.1 (Network reliability). All messages eventually arrive to their intended receiver.

Strong Convergence still holds.

However, to only have the guarantee of full equivalence for participants that have applied the

same updates is too weak, as only in very few cases two participants will consume and apply the same

updates. In chapter 9, we develop a consistency criterion stronger than SEC, focused on guaranteeing

the consistency of the fragments of data copied from other participants.

8.5 Conclusion and perspectives

In this chapter we presented SU-Set, a CRDT for RDF-Graphs operated with SPARQL 1.1 Update

operations. SU-Set solves the consistency problem for the Read/Write Linked Data, guaranteeing

Strong Eventual Consistency when the network is connected and all stores consume all updates,

otherwise, it assures Strong Convergence: stores that have received the same updates have equivalent

state.

Complying with the requirements of the problem stated in definition 6.3, SU-Set does not require

consensus, does not introduce any single point of failure and has linear complexity in time, space

and communication. SU-Set’s highest price to pay is in space, the worst case being when all N

participants insert concurrently the same triple, generating N duplicates of the triple. Nevertheless,

we provide an algorithm to erase duplicates in exchange of augmenting the amount of traffic in the

network.

SU-Set has been implemented into the SPARQL engine Corese 2 and is freely available at https:

//code.google.com/p/live-linked-data/.

Perspectives include:

– The study of improvements that minimize the needed causality tracking information, perhaps

using probabilistic methods that miss a causal relationship with a negligible probability.

2. http://wimmics.inria.fr/corese

https://code.google.com/p/live-linked-data/
https://code.google.com/p/live-linked-data/
http://wimmics.inria.fr/corese
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– An experimental study on a grid platform or a simulation of the performance of SU-Set under

different dynamics conditions to estimate the average case complexity.

– The development of a protocol that allows to discover the subset of participants that have

equivalent state in the network.

– Look for a stronger criterion that takes in account the particular fragments of data being copied.

We develop this idea in chapter 9.



9
Fragment Consistency and Col-Graph

In this chapter, we give a second solution to the problem of consistency in Read/Write Linked

Data. We propose a criterion stronger than SEC to be able to assert some guarantees in the case

of participants receiving only subsets of updates, and an update exchange algorithm to maintain it

named Col-Graph. We show that Col-Graph’s complexity is the same than the solution described

in chapter 8 except in space, where is much higher in the worst case but only slightly higher in the

best and average cases. Nevertheless, experiments suggest that in the case of synthetically generated

social networks, the overhead is much less than in randomly generated ones.

The main limitation of the solution presented in chapter 8 is that, despite its low complexity,

SEC may be too weak for the Read/Write Linked Data. Imagine a participant that wants to perform

data cleansing on a subset of DBpedia, e.g., the triples having as subject the entity DBpedia:France.

Copying the entire DBpedia is a waste of resources, thus, the participant copies only the fragment

of data he is interested to, and receives only the updates from DBpedia that concern such fragment.

With SU-Set, there is nothing we can assert on the consistency of such fragment, because both

participants have not applied the same updates. In order to support this use case, we propose

Fragment Consistency, a criterion focused on the consistency of the fragments of data copied instead

of on the state equivalence of all participants

97
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9.1 Fragment Consistency

Definition 9.1.1 (Fragment). Let S be a SPARQL endpoint of a participant, a fragment of the

RDF-Graph made accessible by S, F [S], is a SPARQL CONSTRUCT federated query [123] where all

graph patterns are contained in a single SERVICE block with S as the remote endpoint. We denote

as eval(F [S]) the RDF-Graph result of the evaluation of F [S].

We specialize the Consume Updates tie of the Read/Write Linked Data (Definition 6.2.6) to use

definition 9.1.1.

Definition 9.1.2 (Concerns). Let U be an update and GP a Graph Pattern. The subset of U that

concerns GP , Concern(U,GP ), is an update constructed as follows:

1. Its del-graph is the subset of triples in U ’s del-graph that match GP .

2. Its add-graph is the subset of triples in U ’s add-graph that match GP .

3. Its metadata graph is the same as U ’s, plus the fact that this is a subset of another update.

Definition 9.1.3. Let S be an RDF-GraphStore, we say that an RDF-GraphStore T Materializes a

Fragment of S, if T evaluates F [S] and unions the result with its own data. The subset of updates

made by S delivered to T are the ones that concern F [S]. We call S the source of the fragment and

T its target.

Figure 9.1 illustrates how updates are propagated on Read/Write Linked Data using fragments.

P1 starts with data about the nationality and KnownFor properties of M_Perey (prefixes are

omitted for readability). P2 materializes from P1 all triples with the knownFor property. With this

information and its current data, P2 inserts the fact that M_Perey discovered Francium. On the

other hand, P3 materializes from P1 all triples with the nationality property. P3 detects a mistake

(nationality should be French, not French_People) and promptly corrects it. P4 constructed a

dataset materializing from P2 the fragment of triples with the property discoverer the fragment of

triples with the property nationality from P3. P1 trusts P4 about data related to M_Perey, so she

materializes the relevant fragment, indirectly consuming updates done by P2 and P3.

Triples updated on materialized fragments are not necessarily integrated by the source, e.g, the

deletion done by P3 did not reach P1, therefore, equivalence between source and materialized frag-

ment cannot be used as consistency criterion. Intuitively, each materialized fragment must be equal
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P1:
+ (M_Perey, nationality, French_People)

+ (M_Perey,knownFor,Francium)
(M_Perey,discoverer,Francium)
(M_Perey,nationality,French)

CONSTRUCT
WHERE {

SERVICE <P1> {
?x knownFor ?y }}
{{

CONSTRUCT
WHERE {

SERVICE <P1> {
?x nationality ?y} }

##
P2:

(M_Perey,knownFor,Francium)
+ (Francium,subject,Chemical_Element)

+ (M_Perey,discoverer,Francium)

CONSTRUCT
WHERE {

SERVICE <P2> {
?x discoverer ?y}}

$$

P3:
(M_Perey,nationality,French_People)

+ (M_Perey,birthPlace,France)
+ (M_Perey, nationality,French)

CONSTRUCT
WHERE {

SERVICE <P3> {
?x ?y French}}
zz

P4:
(M_Perey, discoverer, Francium)
(M_Perey, nationality, French)

CONSTRUCT
WHERE {

SERVICE <P4> {
M_Perey ?x ?y}}

OO

Figure 9.1: Read/Write Linked Data with Fragments. Underlined triples are the ones coming from
fragments, triples preceded by a ’+’ are the ones locally inserted, struck-through triples are the ones
locally deleted.

to the evaluation of the fragment at the source after applying local updates, i.e., the ones executed

by the participant itself and the ones executed during synchronization with other fragments.

Definition 9.1.4 (Fragment Consistency). Let RWLD = (P,E) be the Read/Write Linked Data.

Assume each Pi ∈ P maintains a sequence of uniquely identified updates ∆Pi
with its local updates

and the updates it has consumed from the sources of the fragments F [Pj]@Pi it materializes. Given

a ∆P , let ∆F [S]
P be the ordered subset of ∆P such that all updates concern F [S], i.e., that match the

graph pattern in F [S]. Let apply(Pi,∆) be a function that applies a sequence of updates ∆ on Pi.

RWLD is consistent iff when the system is idle, i.e., no participant executes local updates or

fragment synchronization, then:

(∀Pi, Pj ∈ P : F [Pi]@Pj = apply(eval(F [Pi]),∆F [Pi]
Pj
\∆Pi

)

The ∆F [Pi]
Pj
\∆Pi

term formalises the intuition that we need to consider only local updates when

evaluating the consistency of each fragment, i.e., from the updates concerning the fragment, remove

the ones coming from the source.

Unfortunately, applying remote operations as they come does not always comply with Defini-

tion 9.1.4 as shown in Figure 9.2a: P3 synchronizes with P1, applying the updates identified as

P1#1 and P1#2, then with P2, applying the updates identified as P2#1 and P2#2, however, the

fragment materialized from P2 is not consistent. Notice that, had P3 synchronized with P2 before
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P1:
(s,p,o)
(s,q,o)

P2:
(s,p,o)

P1#1 Ins(s,p,o)
P1#2 Ins(s,q,o)

∗
��

P2#1 Ins(s,p,o)
P2#2 Del(s,p,o)

∗

wwP3:
(s,p,o)
(s,q,o)

P1#1 Ins(s,p,o)
P1#2 Ins(s,q,o)
P2#1 Ins(s,p,o)
P2#2 Del(s,p,o)

F [P1]@P3 =
apply({(s, p, o), (s, q, o)},

(P2#1 Ins(s, p, o),
P2#2Del(s, p, o)))

F [P2]@P3 6=
apply(∅,

(P1#1 Ins(s, p, o)))
P1#2 Ins(s, q, o)))

(a) Applying updates as they come does not
comply with the correction criterion.

P1:
(s,p,o) ↪→ 1
(s,q,o) ↪→ 1

P2:
(s,p,o) ↪→ 1

P1#1 (s,p,o) ↪→ 1
P1#2 (s,q,o) ↪→ 1

∗
��

P2#1 (s,p,o) ↪→ 1
P2#2 (s,p,o) ↪→ −1

∗

wwP3:
(s,p,o) ↪→ 1
(s,q,o) ↪→ 1

P1#1 (s,p,o) ↪→ 1
P1#2 (s,q,o) ↪→ 1
P2#1 (s,p,o) ↪→ 1
P2#2 (s,p,o) ↪→ −1

F [P1]@P3 =
apply({(s, p, o) ↪→ 1,

(s, q, o) ↪→ 1},
(P2#1 (s, p, o) ↪→ 1

(P2#2 (s, p, o) ↪→ −1))

F [P2]@P3 =
apply(∅,

(P1#1 (s, p, o) ↪→ 1,
P1#2 (s, q, o) ↪→ 1))

(b) The Annotated RDF-Graph enables a
consistent Collaboration Network

Figure 9.2: Illustration of Fragment Consistency. Plain boxes represent RDF-Graphs, shaded boxes
simplified sequences of updates. ∗ represents a full fragment.

than with P1, its final state would be different ((s, p, o) would exist) and the fragment materialized

from P1 would not be consistent.

SU-Set, the algorithm described in section 8.1 also cannot achieve Fragment Consistency due to

its requirement of causal delivery of updates. Suppose a fragment of P1 materialized at P2 F [P1]@P2,

and suppose that P1 performs two updates, u1 not concerning F and u2 concerning F . In our model,

u1 will not be delivered to P2, meaning that when u2 is delivered, it will be considered as not causally

ready to be executed and put on hold indefinitely.

9.2 Col-Graph: A Protocol for Synchronization of Basic

Fragments

To achieve Fragment Consistency, we propose, in the spirit of [44], to count the number of

insertions and deletions of a triple, i.e., we annotate each RDF-triple with positive or negative

integers, positive values indicate insertions and negative values deletions. This allows for a uniform

representation of data and updates, yielding a simple way to synchronize fragments.

Incrementally synchronizing a materialized fragment using only the updates published by a data

source and the locally materialized fragment without issuing another query on the data source requires

to exclude join conditions from fragments [48], therefore, to not compromise the availability of sources,

we restrict to basic fragments [120], i.e., fragments where the query is comprised by only one triple
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pattern.

Definition 9.2.1 (Annotated RDF-triple, Graph and Update). 1. Let t be an RDF-triple and

z ∈ Z∗. t ↪→ z is an annotated RDF-triple, t is called the triple and z the annotation.

2. An annotated RDF-Graph GA is a set of annotated RDF-triples such that (∀t, z|t ↪→ z ∈ GA :

z > 0)

3. An annotated update uA is represented by an annotated RDF-triple. More precisely, t ↪→ 1 for

insertion of t and t ↪→ −1 for deletion of t.

Annotations in RDF-Graphs count the number of derivations of a triple in the RWLD.

Definition 9.2.2 (Derivation). Let t be a triple stored in a participant RWLD P0, a derivation of t

is a simple path from the participant that inserted t, P1, and P0, such that the insertion of t concerns

each edge of the path.

An annotation value higher than 1 indicates that the triple exists in more than one source or

there are several simple paths in RWLD leading from the participant that inserted the triple to

the participant. Annotations in updates indicate, if positive, that z derivations of t were inserted;

if negative, that z derivations of t were deleted. For example, an annotated RDF-triple t1 ↪→ 2

means that either t1 has been inserted by two different sources or the same insert arrived through

two different paths in RWLD. The annotated update t2 ↪→ −1 means that t2 was deleted at one

source or by some participant in the path between the source and the target; t3 ↪→ −2 means that

either t3 was deleted by two sources or by some participant in the path between two sources and the

target.

To apply annotated updates to annotated RDF-Graphs, we define an Update Integration function:

Definition 9.2.3 (Update Integration). Let A be the set of all annotated RDF-Graphs and B the

set of all annotated updates. Assume updates arrive and are executed from source to target in FIFO

order. The Update Integration function ] : A × B → A takes an annotated RDF-Graph GA ∈ A

and an annotated update t ↪→ z ∈ B:

GA ] t ↪→ z =



GA ∪ {t ↪→ z} if (@w : t ↪→ w ∈ GA)

GA \ {t ↪→ w} if t ↪→ w ∈ GA ∧ w + z ≤ 0

(GA \ {t ↪→ w}) ∪ {t ↪→ w + z} if t ↪→ w ∈ GA ∧ w + z > 0
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The first piece of the Update Integration function handles incoming updates of triples that are

not in the current state. As we are assuming FIFO in the update propagation from source to target,

insertions always arrive before corresponding deletions, therefore, this case only handles insertions.

The second piece handles deletions: only if the incoming deletion makes the annotation zero the

triple is deleted from the current state. The third piece handles deletions that do not make the

annotation zero and insertions of already existing triples by simply updating the annotation value.

We now consider each participant has an annotated RDF-Graph GA and an sequence of annotated

updates UA. SPARQL queries are evaluated on the RDF-Graph {t | t ↪→ z ∈ GA}. SPARQL Updates

are also evaluated this way, but their effect is translated to annotated RDF-Graphs as follows: the

insertion of t to the insertion of t ↪→ 1 and the deletion of t to the deletion of the annotated

triple having t as first coordinate. Specification 9.1 details the methods to insert/delete triples and

synchronize materialized fragments. To avoid the infinite forwarding of updates, each time an update

is processed, the protocol checks if it has walked a cycle, if so, it is ignored. Figure 9.2b shows the

fragment synchronization algorithm in action.

To materialize fragments for the first time, a SPARQL extension that allows to query the an-

notated RDF-Graph and return the triples and their annotations is needed, for example the one

implemented in [131]. To check when an update has cycled, we propose to add a second annota-

tion to updates, containing a set of participant identifiers φu representing the participants that have

already received and applied the update. When an update u is created, φu is set to the singleton

containing the ID of the author, when u is pushed downstream, the receiving participant checks if

his ID is in φu, if yes, u has already been received and is ignored, else, it is integrated, and before

pushing it downstream it adds its ID to φu. Of course, there is a price to pay in traffic, as the use of

φ increases the size of the update. The length of φu is bounded by the length of the longest simple

path in the Collaboration-Network, which in turn is bounded by the number of participants.

After the publication of [62], we found that the check for cycling introduces a limitation in the

topologies that our algorithm can handle: Only network graphs where for each strongly connected

component, the number of paths between each pair of nodes belonging to the component is the same,

i.e., simple cycles and complete subgraphs. The problem is that deletions performed by a node that

is not the author of the triple may be ignored when they need to be applied. Figure 9.3 illustrates
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P1:
(s, p, o) ↪→ 1

zz ''

P1#1 Ins(s, p, o) ↪→ 1
P2#1 Ins(s, p, o) ↪→ −1

P1#1 Ins(s, p, o) ↪→ 1
P2#1 Ins(s, p, o) ↪→ −1

P2:
(s, p, o) ↪→ 1

##

P3:
(s, p, o) ↪→ 1

xx

P1#1 Ins(s, p, o) ↪→ 1
P2#1 Ins(s, p, o) ↪→ −1

P4:
(s, p, o) ↪→ 2
(s, p, o) ↪→ 1

OO

P1#1 Ins(s, p, o) ↪→ 1
P1#1 Ins(s, p, o) ↪→ 1
P2#1 Ins(s, p, o) ↪→ −1

F [P4]@P1 6=
apply({(s, p, o)},

∅)

Figure 9.3: In certain Read/Write Linked Data topologies, deletions may be incorrently ignored

the issue: P1 inserts (s, p, o) and P2 deletes it, the deletion walks through P4, P1, P3 and is ignored

because a cycle was detected. In this case, the deletion must have been applied and the fragment

F [P4]@P1 is not consistent.

Fortunately, the issue described in the previous section can be solved if we make the deletions

stop when they do not affect the current state instead of when cycles are detected, in a similar way

to the fixpoint semantics of datalog. Specification 9.3 shows the modified version of the algorithm.

Figure 9.4 illustrates how this versions fixes the problem. The core of the fix lies on the sync

procedure, the check for cyclic updates is only done for insertions (line 17). For deletions the stop

condition is that the triple is not anymore there.

9.2.1 Provenance for Conflict Resolution

In section 9.2 we solved the problem of consistent synchronization of basic fragments. However,

Fragment Consistency is based on the mere existence of triples, instead of on the possible conflicts

between triples coming from different fragments and the ones locally inserted. Col-Graph’s strategy

in this case is that each participant is responsible for checking the semantic correctness of its dataset,

as criteria often varies and what is semantically wrong for one participant, could be right for another.

Participants can delete/insert triples to fix what they consider wrong. Participants that receive these

updates can edit in turn if they do not agree with them.

In the event that a participant wants to choose between two triples, the main criteria to choose

which one of them delete is their provenance. With this information, the decision can be made based

on the trust on their authors. As in [69], we propose to substitute the integer annotations of the
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1 Annotated Graph GA ,
2 Sequence ∆PID
3
4 void insert(t) :
5 pre : t /∈ {t′|t ↪→ x ∈ GA}
6 GA := GA ∪ t ↪→ 1
7 Append(∆PID, t ↪→ 1)
8
9 void delete(t) :
10 pre : t ∈ {t′|t′ ↪→ x ∈ GA}
11 GA := GA ] t ↪→ −z
12 Append(∆PID, t ↪→ −z)
13
14 void sync(F [Px],∆Px) :
15 f o r t ↪→ z ∈ ∆Px :
16 i f t ↪→ z has not cyc l ed :
17 GA := GA ] t ↪→ z
18 Append(∆PID, t ↪→ z)

Specification 9.1: Class Participant when
triples are annotated with elements of Z.

1 IRI PID ,
2 Annotated Graph GA ,
3 Sequence ∆PID
4
5 void insert(t) :
6 pre : t /∈ {t′|t ↪→ x ∈ GA}
7 GA := GA ∪ t ↪→ PID
8 Append(∆PID, t ↪→ PID)
9
10 void delete(t) :
11 pre : t ∈ {t′|t′ ↪→ x ∈ GA}
12 GA := GA ] t ↪→ −m
13 Append(∆PID, t ↪→ −m)
14
15 void sync(F [Px],∆Px) :
16 f o r t ↪→ m ∈ ∆Px :
17 i f t ↪→ m has not cyc l ed :
18 GA := GA ] t ↪→ m
19 Append(∆PID, t ↪→ m)

Specification 9.2: Class Participant when
triples are annotated with elements of the
monoid M.

triple by an element of a commutative monoid that embeds (Z,+, 0).

Definition 9.2.4 (Commutative Monoid). A Commutative Monoid is is an algebraic structure com-

prised by a set K, a binary, associative, commutative operation ⊕ and an identity element 0K ∈ K

such that

(∀k ∈ K | k ⊕ 0K = k)

Definition 9.2.5 (Embedding). A monoidM = (K,⊕, 0K) embeds another monoidM ′ = (K ′,�, 0K′)

iff there is a map f : K → K ′ called homomorphism such that f(0K) = f(0K′) and (∀a, b ∈ K :

f(a⊕ b) = f(a)� f(b)).

If we annotate with elements of a monoid that embeds (Z,+, 0), all the properties of our synchro-

nization algorithm maintain. Formally, the semantics of the querying commutes with the application

of the homomorphism, a fundamental theorem proved in [45] for the more general case of rings in-

stead of monoids. The use of symbolic expressions that can be morphed to the basic (Z,+, 0) allows

the encoding of useful information, for instance, the provenance of triples.

Definition 9.2.6. Assume each participant in the RWLD has an unique ID, and let X be the set

of all IDs. Let M = (Z[X],⊕, 0) be a monoid with:
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1 Annotated Graph GA ,
2 Sequence ∆PID
3
4 void insert(t) :
5 pre : t /∈ {t′|t ↪→ x ∈ GA}
6 GA := GA ∪ t ↪→ 1
7 Append(∆PID, t ↪→ 1)
8
9 void delete(t) :
10 pre : t ∈ {t′|t′ ↪→ x ∈ GA}
11 GA := GA ] t ↪→ −z
12 Append(∆PID, t ↪→ −z)
13
14 void sync(F [Px],∆Px) :
15 f o r t ↪→ z ∈ ∆Px :
16 i f z > 0 :
17 i f t ↪→ z has not cyc l ed :
18 GA := GA ] t ↪→ z
19 Append(∆PID, t ↪→ z)
20 i f z < 0 :
21 i f GA ] t ↪→ z 6= GA :
22 GA := GA ] t ↪→ z
23 Append(∆PID, t ↪→ z)

Specification 9.3: Class Participant with Z an-
notations modified for all topologies

1 IRI PID ,
2 Annotated Graph GA ,
3 Sequence ∆PID
4
5 void insert(t) :
6 pre : t /∈ {t′|t ↪→ x ∈ GA}
7 GA := GA ∪ t ↪→ PID
8 Append(∆PID, t ↪→ PID)
9
10 void delete(t) :
11 pre : t ∈ {t′|t′ ↪→ x ∈ GA}
12 GA := GA ] t ↪→ −m
13 Append(∆PID, t ↪→ −m)
14
15 void sync(F [Px],∆Px) :
16 f o r t ↪→ m ∈ ∆Px :
17 i f m > 0 :
18 i f t ↪→ m has not cyc l ed :
19 GA := GA ] t ↪→ m
20 Append(∆PID, t ↪→ m)
21 i f m < 0 :
22 i f GA ] t ↪→ m 6= GA :
23 GA := GA ] t ↪→ m
24 Append(∆PID, t ↪→ m)

Specification 9.4: Class participant with M an-
notations modified for all topologies

1. The identity 0.

2. The set Z[X] of polynomials with coefficients in Z and variable in X.

3. The polynomial sum ⊕, for each monomial with the same indeterminate: aX ⊕ bX = (a+ b)X

4. M embeds (Z,+, 0) through the function f(a1X1 ⊕ · · · ⊕ anXn) =
n∑
1
ai

Each time a participant inserts a triple, she annotates it with its ID with coefficient 1. The

only change in definition 9.2.3 is the use of ⊕ instead of +. Specifications 9.2 and 9.4 describes the

algorithm to insert/delete triples and synchronize fragments with triples annotated with elements of

M .

When annotating with Z, the only information encoded in triples is their number of derivations.

M adds (i) Which participant is the author of the triple. A triple stored by a participant P with an

annotation comprised of the sum of n monomials indicates that the triple was inserted concurrently

by n participants from which there is a path in CN to P . (ii) The number of simple paths in the

Collaboration Network in which all edges concern the triple, starting from the author(s) of the triple
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P1:
(s, p, o) ↪→ 1

{{ &&

P1#1 Ins(s, p, o) ↪→ 1
P2#1 Ins(s, p, o) ↪→ −1

P1#1 Ins(s, p, o) ↪→ 1
P2#1 Ins(s, p, o) ↪→ −1

P2:
(s, p, o) ↪→ 1

!!

P3:
(s, p, o) ↪→ 1

zz

P1#1 Ins(s, p, o) ↪→ 1
P2#1 Ins(s, p, o) ↪→ −1

P4:
(s, p, o) ↪→ 2
(s, p, o) ↪→ 1

OO

P1#1 Ins(s, p, o) ↪→ 1
P1#1 Ins(s, p, o) ↪→ 1
P2#1 Ins(s, p, o) ↪→ −1
P2#1 Ins(s, p, o) ↪→ −1

F [P4]@P1 =
apply({},
∅)

Figure 9.4: Iterating deletions until no effect allows support for any network topology

P1:
(s,p,o) ↪→ 1

�� ##
P4:

(s,p,r) ↪→ 1

""

P3:
(s,p,o) ↪→ 2

��

P2:
(s,p,o) ↪→ 1
(s,p,v) ↪→ 1

��
Which (s,p,x)? :

(s,p,o) or
(s,p,r) or
(s,p,v)

P5:
(s,p,o) ↪→ 3
(s,p,r) ↪→ 1
(s,p,v) ↪→ 2

(a) Without provenance, P5 only infor-
mation is the number of derivations. She
does not know the author of the facts.

P1:
(s,p,o) ↪→ P1

�� &&
P4:

(s,p,r) ↪→ P4

%%

P3:
(s,p,o) ↪→ P1 + P3

��

P2:
(s,p,o) ↪→ P1
(s,p,v) ↪→ P2

zz
Which (s,p,x)?:

from P1 and P2 or
from P4 or

Mine and from P2

P5:
(s,p,o) ↪→ 2P1 + P3

(s,p,r) ↪→ P4
(s,p,v) ↪→ P5 + P2

(b) With provenance, P5 also knows who inserted
what and if it was concurrent, enabling trust based
decisions to solve conflicts.

Figure 9.5: Difference between annotating with Z (9.5a) versus annotating with M (9.5b).

to this participant, indicated by the coefficient of the author’s ID.

Figure 9.5 compares annotations with Z versus annotations withM . In the depicted collaboration

network, the fact (s,p,o) is inserted concurrently by P1 and P3, (s,p,v) is inserted concurrently by P2

and P5 and (s,p,r) inserted only by P4. When the synchronization is finished, P5 notices that it has

three triples with s and p as subject and predicate but different object values. If P5 wants to keep

only one of such triples based on trust, the Z annotations (9.5a) do not give enough information,

while the M annotations (9.5b) give more information for P5 to take the right decision. She can

know that the triple (s, p, o) was inserted by two participants P1 and P3, while (s, p, r) was only

inserted by P4 and that (s, p, v) was inserted by P2 and P5.
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9.3 Complexity Analysis

In this section, we analyze the complexity in time, space and traffic of Col-Graph on RDF-Graphs

annotated with Z and M to answer the question: how much does it cost to guarantee Fragment

Consistency on the Read/Write Linked Data?.

We will use the following notation:

– RWLD for the Read/Write Linked Data.

– N , for the number of participants currently online in RWLD.

– Nmax, for the number of participants in RWLD.

– Tp, for the number of triples stored in a participant p.

– TN , for the number of triples stored in all the RWLD.

– TU , for the number of triples updated (inserted or deleted) by an update operation U .

– sizeOf(X), for the size in memory of an annotation X.

9.3.1 Time Complexity

From specifications 9.1 and 9.2, we can see that time complexity for the insert and delete methods

is constant. For the synchronization of a fragment F [Px]@Py, the complexity is TU ∗ (x1 + x2) where

x1 is the complexity of checking if an update is in the log ∆Py (which can be considered linear on

the size of the log) and x2 the complexity of the ] function. For Z annotations, ] is constant, for M

is linear on the size of the longest polynomial. As with SU-Set, the amount of concurrent insertions

impacts the approach, in this case, the maximum number of terms a polynomial can have is Nmax,

when all participants inserted concurrently the same triple, there is a path from all participants to

one participant such that the insertion of the triple concerns all fragments.

Table 9.1 summarizes Col-Graph’s best and worst case complexities for Z and M annotations.

Z annotations M annotations
Best Case O(TU) +O(TU) O(TU) +O(TU)
Worst Case O(TU) +O(TU) O(TU) +O(TU ∗Nmax)

Table 9.1: Best and worst case time complexities for Col-Graph for Z and M annotations.
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9.3.2 Space Complexity

Concerning space complexity, the overhead is the size of the annotations. For an annotated

triple t at a participant P , the relevant factors are: (i) the set of participants that concurrently

inserted t from which there is a path to P such that all edges concern t, that we will denote βt

(ii) the number of simple paths to P in the collaboration network from the participants P1 . . . Pn

that concurrently inserted t such that all edges concern t. For a participant Pi, we denote this

number as ρt←Pi
. Assume that the cost of storing ids is a constant ω. Then, for t ↪→ z, z ∈ Z[x] we

have sizeOf(z) = |βt|ω+ ∑
Pi∈βt

sizeOf(ρt←Pi
). Therefore, for each triple we need to keep a hash map

from ids to integers of size |βt|. The worst case for |βt| is when the network is strongly connected and

all participants insert t concurrently, yielding an array of size Nmax. The worst case for ρt←Pi
is a

complete network, as the number of different simple paths is maximal and in the order of Nmax!

Table 9.2 summarizes the best and worst case space complexities for Z and M annotations. We

add the following observations about the worst cases: (i) In the case of Z, as the counter equals to

the sum of the number of paths and the number of concurrent insertions, the factorial grows faster

(by a polynomial) than in the case of M . (ii) In both Z and M the factorial term of the complexity

represents the storage of a number or of an array of numbers that can attain values in the order of

Nmax!, as such, the practical impact on storage can be limited by using BigInt arithmetics.

Z annotations M annotations
Best Case O(Tp) O(Tp)
Worst Case O(Tp ∗ sizeOf(Nmax!)) O(Tp ∗Nmax ∗ sizeOf(Nmax!))

Table 9.2: Best and worst case space complexities for Col-Graph for Z and M annotations.

9.3.3 Communication and traffic complexity

In terms of the number of messages exchanged Col-Graph is optimal, only the messages with the

update from each source are required to guarantee fragment consistency, without any extra round of

communication.

In terms of message size, there are some differences between Z and M annotations and between

insertions an deletions. For both Z andM the best case (besides a completely disconnected network)

is when no concurrent insertions occur and there are few paths between participants. The worst case

is a network forming a Complete Graph where all participants insert concurrently the same triples.
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– In the case of Z annotations, in the best case the annotation can be considered having the

constant value of storing an integer number. In the worst case, the annotation can attain a

factorial value that will need to be transmitted in the case of deletion. Note that for insertions,

the transmitted value is constant and equal to 1.

– In the case of M annotations, the best case is the same as with Z. In the worst case, what we

have is for each triple an array of size Nmax with values in the order of factorial. Note that

due to the connection between Z and M through the morphism defined in definition 9.2.6, the

sum of the values in the array of an M annotation equals to the value of the Z annotation.

This means that the value of the Z annotation grows faster than each of the individual values

of the array of the M annotation.

– Note that in both cases, the factorial is attained by a value or an array of values, therefore,

the real impact on space is lowered. For instance, a C++ signed long long of 64 bytes can hold

values up to 9223372036854775807, i.e., up to that amount of paths between the author of a

triple and a participant.

A O(Nmax) factor needs to be added to account for the cost of the cycle check in the worst case:

when the network has a hamiltonian circuit. Concerning the maintenance of a point-to-point FIFO

channel between sources and targets, there is only need for a sequence number, i.e., a constant factor.

Table 9.3 summarizes Col-Graph’s best and worst case communication complexities for Z and M

annotations.
Z annotations M annotations

Best Case O(TU) O(TU)
Worst Case O(TU ∗Nmax!) +O(Nmax) O(TU ∗Nmax ∗Nmax!) +O(Nmax)

Table 9.3: Best and worst case communication complexities for Col-Graph for Z andM annotations.

9.3.4 Summary

To summarize, Col-Graph’s performance is mainly affected by the following properties of the

RWLD:

– The probability of concurrent insertion of the same data by many participants. The higher this

probability, the number of terms of the polynomials is potentially higher.

– Its connectivity. The more connected, the more paths between the participants and the poten-

tial values of ρ are higher. If the network is poorly connected, few updates will be consumed
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and the effects of concurrent insertion are minimized.

– The overlapping between fragments. If all fragments copy all data, all incoming updates will be

integrated by every participant, maximizing the effects of connectivity and concurrent insertion.

If all fragments are disjoint, then all updates will be integrated only once and the effects of

connectivity and concurrent insertion will be neutralized.

Table 9.4 compares the complexities of the SU-Set version with Interval Vectors and Col-Graph

with M annotations. Col-Graph is less expensive in terms of communication but potentially more

expensive in space with a rather high factorial worst case complexity.

SU-Set best case SU-Set worst case Col-Graph best case Col-Graph worst case
Rounds 1 1 1 1
Communication O(#messages) O(TU) O(TU) +O(Nmax) O(TU ∗Nmax ∗Nmax!)
Time O(TU) O(TU) O(TU ∗ |∆Py|)

+O(TU)
O(TU ∗ |∆Py|)+
O(TU ∗Nmax)

Space O(Tp) +O(Nmax) O(Nmax ∗ Tp)+
O(Nmax ∗ Tp)

O(Tp) O(Tp ∗N{max}
+N{max}!)

Table 9.4: Comparison of SU-Set and Col-Graph complexities

9.4 Experimentations

In this section, we make an empirical evaluation of Col-Graph with the goal of experimentally

confirm the theoretical complexities and to estimate the complexity in the average case. The main

objective is to know if the potential factorial complexity in space is a concern for average cases.

We implemented specification 9.2 on top of the SPARQL engine Corese 1 v3.1.1. The update

log was implemented as a list of updates stored in the file system. We also implemented the φ

annotation described in section 9.3 to check for double reception. We constructed a test dataset of

49999 triples by querying the DBpedia 3.9 public endpoint for all triples having as object the resource

http://dbpedia.org/resource/France. Implementation, test dataset, and instructions to

reproduce the experiments are freely available 2.

Our first experiment studies the execution time of our synchronization algorithm. The goal is to

confirm the linear complexity derived in section 9.3 and to check its cost w.r.t fragment re-evaluation.

We defined a basic fragment with the triple pattern ?x :ontology/birthPlace ?z (7972 triples 15% of

1. http://wimmics.inria.fr/corese
2. https://code.google.com/p/live-linked-data/wiki/ColGraphExperiments

http://dbpedia.org/resource/France
http://wimmics.inria.fr/corese
https://code.google.com/p/live-linked-data/wiki/ColGraphExperiments
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Figure 9.6: Comparison of execution time (ms) between synchronization and fragment reevaluation.
Error bars show the error at 95%.

the test dataset’s size). We loaded the test dataset in a source, materialized the fragment in a target

and measured the execution time when inserting and when deleting 1, 5, 10, 20, 30, 40 and 50% of

triples concerning the fragment. As baseline, we set up the same datasets on two RDF-Graphs and

measured the time of clearing the target and the re-evaluation of the query that defines the fragment

on the source. Both source and target were hosted on the same machine to abstract from latency.

We used the Java MicroBenchmark Harness 3 v. 0.5.5 to measure the average time of 50 executions

across 10 JVM forks with 50 warm-up rounds, for a total of 500 samples. Experiments were run on

a server with 20 hyperthreaded cores with 128Gb of ram an Linux Debian Wheezy. Figure 9.6 shows

a linear behaviour, consistent with the analysis in section 9.3. Synchronization is less expensive

than re-evaluation up to approx. 30% of updates. We believe that a better implementation that

takes full advantage of streaming, as Corese does by processing data in RDF/XML, could improve

performance. Fragments comprised of only one triple pattern are also very fast to evaluate, we expect

than in future work, when we can support a broader class of fragments, making our protocol faster

in most cases.

Our second experiment compares the impact on annotation’s size produced by two of the fac-

tors analyzed in section 9.3: concurrent insertions and collaboration network connectivity, in order to

determine which is more significant. We loaded the test dataset in: (i) An RDF-Graph. (ii) An anno-

tated RDF-Graph, simulating n concurrent insertions of all triples, at n annotated RDF-Graphs with

id http://participant.topdomain.org/$i$, with i ∈ [0, n] (iii) An annotated RDF-Graph,

simulating the insertion of all triples in an RDF-Graph with id “http://www.example.org/participant”,

arriving through m different simple paths, and measured their size in memory on a Macbook Pro

3. http://openjdk.java.net/projects/code-tools/jmh/

http://participant.topdomain.org/$i$
http://openjdk.java.net/projects/code-tools/jmh/
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Figure 9.7: Space Overhead of the Annotated Graph w.r.t a plain graph (PG). Both Concurrency
and Connectivity represent approx. 6% of overhead each.

running MacOS Lion with java 1.7.0_10-ea-b13 and Java HotSpot(TM) 64-Bit Server VM (build

23.6-b04, mixed mode).

Figure 9.7 shows the results. Both cases represent nearly the same overhead, between 5 and 6

percent of size. Concurrency makes annotation’s size grow sub-linearly. With respect to path num-

ber, annotation’s size grows even slower , however, after 10 × 1017 paths, the long type used in our

implementation overflows, meaning that in scenarios with this level of connectivity, the implementa-

tion must use BigInt arithmetics. In conclusion, after paying the initial cost of putting annotations in

place, Col-Graph can tolerate a high number of concurrent inserts and a high network connectivity.

The goal of our final experiment is to study the effect of network’s topology on Col-Graph’s

annotation’s size. We argue that the act of materializing fragments and sharing updates is socially-

driven, therefore, we are interested in analyzing the behaviour of Col-Graph on social networks.

We generated two sets of 40 networks with 50 participants each, all edges defining full fragments,

one following the random Ërdos-Renyi model [38] and other following the social-network oriented

Forest Fire model [77]. Each set of networks is comprised of 4 subsets of 10 networks with densities

{0.025, 0.05, 0.075, 0.1}. Table 9.5 shows the average of the average node connectivity of each network

set. Social networks in the experiment are less connected than random ones, thus, we expect to have

better performance, as we found network connectivity an impact factor in section 9.3.2.

We loaded the networks on the Grid5000 platform (https://www.grid5000.fr/) and made

each participant insert the same triple to introduce full concurrency, thus, fixing the overlapping

and concurrency parameter in their worst case. Then, we let them synchronize repeatedly until

quiescence with a 1 hour timeout. To detect termination, we implemented the most naive algorithm:

https://www.grid5000.fr/
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density=0.025 density=0.05 density=0.075 density=0.1
Forest Fire 0.0863 0.2147 0.3887 0.5543
Ërdos-Renyi 0.293 1.3808 2.5723 3.7378

Table 9.5: Average node connectivities of the experimental network sets as a function of their density.
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Figure 9.8: Performance of the synchronization algorithm when applied on networks generated with
the Forest Fire model

a central overlord controls the execution of the whole network . We measured the maximum and

average coefficient values and the maximum and average number of terms of annotations.

Figure 9.8 shows the results for Forest Fire networks. The gap between the average and maximum

values indicates that topology has an important effect: only few triples hit high values. From the

Ërdos-Renyi dataset, only networks with density 0.025 finished before timeout. The difference with

respect to the networks in the ForestFire dataset with the same density was not significant. These

results suggest that high connectivity affects the time the network takes to converge, and, as the

number of rounds to converge is much higher, the coefficient values should also be much higher.

We leave the study of convergence time and the implementation of a better termination detection

strategy for future work.

9.5 Conclusion and Perspectives

We defined Fragment Consistency (FC), a criterion strictly stronger than Strong Eventual Con-

sistency. Participants copy subsets of data or fragments, defined by SPARQL CONSTRUCT queries,

from each others. FC means that the evaluation of the query that defines the fragments at the source

plus the updates locally made by the copying participant equals the state of the copying participant.

We presented Col-Graph, a coordination-free protocol based on annotated RDF-Graphs and

updates to achieve FC. We analyzed the complexity of our algorithm in time, space and traffic, and
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determined that the main factors that affect performance are the probability of concurrent insertion,

the connectivity of the collaboration network and the fragment overlapping.

We evaluated experimentally the incurred overhead using a 50k real dataset on our open source

implementation, finding that space, concurrency and connectivity represent approximately 6% of

overhead each, with a sublinear grow.; in time, our algorithm is faster than the reevaluation of the

fragment up to 30% of updated triples without taking in account latency. We also found that our

algorithm performs better in socially generated networks than in random ones.

Compared to SU-Set (cf chapter 8), Col-Graph has the same complexities except in two cases:

first, when the network is complete and fragments are full the coefficient of the annotations will

reach O(N !); second, the number of messages transmitted in the whole network before quiescence is

higher.

Perspectives include:

– Estimate the average complexity of Col-Graph with a large scale evaluation focused on the

effect of fragment overlapping and with different dataset dynamics. Compare this with the

same evaluation for SU-Set (cf section 8.5).

– Investigate the number of messages needed to reach quiescence and compare them with the

ones needed by SU-SET.

– Benchmark replication-aware federated query engines on collaboration networks using Col-

Graph to quantify the gain in availability.

– Extend Col-Graph to handle dynamics in the fragment definitions themselves, i.e., what hap-

pens if a participants wants to change the fragment he is copying from other participant.

– Study strategies to augment the expressiveness of the fragments that can be materialized, i.e.,

allow more general SPARQL queries in their definitions. A possible research direction is the

decomposition of a complex query in self-maintainable fragments.
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10
Conclusions and perspectives.

In this thesis we answer the following research questions:

– How to integrate format-heterogeneous data sources to the Web of Linked Data? How to query

semantic-heterogeneous data sources in the Web of Linked Data?

– How to allow Linked Data participants to write each other’s data and turn the Linked Data

into Read/Write?. Which consistency criteria are suitable for a Read/Write Linked Data? How

to maintain them respecting the autonomy of the participants and without compromising their

availability and scaling in large number of participants and large datasets?

For the first research question, we casted the problem to a Local-as-View Data Integration problem

and identified the rewriting explosion issue as a bottleneck to obtain results: the execution of a

large number of rewritings may take a large amount of time. We developed GraphUnion (GUN), a

rewriting execution strategy for the LAV paradigm that takes advantage of RDF graph data model to

improve the number of answers produced and the execution time with respect to traditional execution

techniques, at the cost of higher memory usage. GUN opens the door to feasible implementations of

the LAV paradigm for the Web of Linked Data.

Concerning the second question, we modeled the Read/Write Linked Data as a social network of

RDF Graph Stores tied by the relationship Consume Updates, i.e., participants copy all or some of the

117
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data from others and subscribe to their updates to keep in sync. On their local copies, participants

make updates; other participants, including the original data sources can in turn consume these

updates if they consider them correct. However, if this update exchange is not correctly managed, data

and knowledge may diverge, even in non-deterministic ways. The absence of consistency guarantees

for queries and updates severely undermines the interaction between participants.

Under the proposed social network model we formulated the problem of finding a criterion and

an update exchange protocol to maintain it such that the scalability, availability and autonomy

restrictions imposed by the Web of Linked Data conditions get respected. We proposed two solutions:

SU-Set, that guarantees Strong Eventual Consistency, and Col-Graph, that guarantees a criterion

developed by us called Fragment Consistency.

SU-Set’s guarantees can be summarized in the sentence: Participants that have received the same

updates, have the same state. SU-Set has linear complexity in time and space independently of the

topology, and optimal cost in communication. However, when the copies are partial or fragments

of data, there is nothing that can be assured on the consistency of fragments with respect to their

sources.

To overcome SU-Set’s limitation, we proposed Fragment Consistency as criterion and Col-Graph

as algorithm to maintain it. Each participant can copy or materialize from other participants a

fragment of data defined by a SPARQL CONSTRUCT Federated query and receives the updates

that concern the fragment. Col-Graph’s guarantee can be summarized as follows: each materialized

fragment is equal to the evaluation of the fragment at its source modulo the locally made updates.

Col-Graph’s complexity is the same as SU-Set’s except in two aspects: (i) In space, where it depends

on the connectivity of the network with a worst case of factorial (complete graph). (ii) In number of

total messages exchanged in the network to converge. Nevertheless, our experiments suggest that for

social networks, the performance is much better than for random networks, meaning that Col-Graph

is applicable for the Read/Write Linked Data.

One interesting conclusion of our work is the very close relation between the solutions used for two

very different visions of consistency: Conflict-Free Replicated Data Types (CRDTs) in distributed

systems and Collaborative Data Sharing Systems (CDSSs) in databases. Both resort to annotate data

with elements of an algebraic structure, lattices in the case of CRDTs, and commutative semirings

in the case of CDSSs. The main difference is the idempotency of lattices and the non-idempotency
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of semi-rings. Idempotency is required in replication scenarios to tolerate network disorder, on the

other hand, semi-rings are required to support relational algebra operators but this feature requires

coordination in the update exchange. We showed that for the special case of fragments, we can use

semi-rings and still have the coordination freeness of idempotent solutions.

Finally, the connection between provenance and consistency maintenance is also worth to high-

light. The data annotations used to model concurrency in CRDTs equal to one of the basic types of

provenance semi-rings, therefore, if provenance information about triples is maintained in a semi-ring

transformable format, then the consistency criteria proposed in this thesis can be attained.

10.1 Perspectives

In this section we detail the perspectives of our work

10.1.1 Querying Heterogeneous Data Sources on the Web of Data

GraphUnion (Chapter 5) uses query rewritings as input to create an aggregate graph of the views

used in those rewritings and execute the original query. An interesting improvement is to avoid the

rewriting phase and use only the component that selects relevant views to create the aggregated

graph. This idea has been developed in [85].

Another perspective is to extend Graph-Union to be able to execute SPARQL Updates on the

format heterogeneous sources. This is interesting if the original data format is used as input for other

processes.

10.1.2 Consistency Criteria for the Web of Linked Data

The first perspective is a large scale experimentation with different topologies to better char-

acterize Col-Graph’s average case. Very large social networks tend to densify, i.e., to form highly

connected communities [77] maybe challenging Col-Graph’s performance. We would also like to

analyze the complexity in terms of total messages exchanged in the network.

The submission of the annotated RDF-Graph to the W3C as a standardization proposal is closely

related to the current provenance standardization efforts. The main idea is that a fourth attribute of

an RDF-triple could store provenance in semi-ring format and be used for consistency maintenance
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in a less expensive way than reification.

An important step would be to support fragments beyond single Basic Graph Patterns. This is

equivalent to explore stronger consistency criteria than Fragment Consistency, for example, union of

fragments or joins between fragments. The more expressive fragments, the closer to a CDSSs setup

we will be. An interesting direction is to determine what is the maximum fragment expressiveness

achievable without coordination.

Finally, we would like to extend our study to consistency criteria that take account entailment

and/or the preservation of links across different datasets.



A
Queries, Views and detailed results of

Graph Union

A.1 Queries

The queries are taken from [24]:

Query 1
PREFIX rd f :<http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX rd f s :<http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
SELECT ∗
WHERE {

?Product r d f s : l a b e l ? Label .
?Product rd f : type ?ProductType .
?Product bsbm : productFeature ?ProductFeature1 .
?Product bsbm : productFeature ?ProductFeature2 .
?Product bsbm : productPropertyNumeric1 ?Value1 .

}

Query 2
PREFIX rd f :<http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX rd f s :<http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
PREFIX dc:<http :// pur l . org /dc/ e lements /1.1/>

121
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SELECT ∗
WHERE {

?Product r d f s : l a b e l ? Label .
?Product r d f s : comment ?Comment .
?Product bsbm : producer ?P .
?P rd f s : l a b e l ?Producer .
?Product dc : pub l i s h e r ?P .
?Product bsbm : productFeature ?F .
?F rd f s : l a b e l ?ProductFeature .
?Product bsbm : productPropertyTextual1 ?PropertyTextual1 .
?Product bsbm : productPropertyTextual2 ?PropertyTextual2 .
?Product bsbm : productPropertyTextual3 ?PropertyTextual3 .
?Product bsbm : productPropertyNumeric1 ?PropertyNumeric1 .
?Product bsbm : productPropertyNumeric2 ?PropertyNumeric2 .

}

Query 3
PREFIX rd f s :<http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
PREFIX dc:<http :// pur l . org /dc/ e lements /1.1/>
PREFIX rev :<http :// pur l . org / s t u f f / rev#>
PREFIX f o a f :<http :// xmlns . com/ f o a f /0.1/>
SELECT ∗
WHERE {

?Product r d f s : l a b e l ?ProductLabel .
? Of f e r bsbm : product ?Product .
? Of f e r bsbm : p r i c e ? Pr i ce .
? Of f e r bsbm : vendor ?Vendor .
?Vendor r d f s : l a b e l ?VendorTit le .
?Vendor bsbm : country <http :// downlode . org / rd f / i so −3166/ coun t r i e s#DE> .
? Of f e r dc : pub l i s h e r ?Vendor .
? Of f e r bsbm : val idTo ?Date .
?Review bsbm : reviewFor ?Product .
?Review rev : r ev i ewer ?Reviewer .
?Reviewer f o a f : name ?RevName .
?Review dc : t i t l e ?RevTit le .
?Review bsbm : ra t ing1 ?Rating1 .

}

Query 4
PREFIX rd f s :<http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX f o a f :<http :// xmlns . com/ f o a f /0.1/>
SELECT ∗
WHERE {

?VendorURI rd f s : l a b e l ?Vendorname .
?VendorURI f o a f : homepage ?Vendorhomepage .

}

Query 5
PREFIX rd f s :<http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX f o a f :<http :// xmlns . com/ f o a f /0.1/>
PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
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SELECT ∗
WHERE {

?Of f e r bsbm : vendor ?VendorURI .
? Of f e r bsbm : offerWebpage ?OfferURL .
?VendorURI rd f s : l a b e l ?Vendorname .
?VendorURI f o a f : homepage ?Vendorhomepage .

}

Query 6
PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
PREFIX rev :<http :// pur l . org / s t u f f / rev#>
SELECT ∗
WHERE {

?Review bsbm : reviewFor ?Product .
?Review rev : r ev i ewer ?Reviewer .
?Review bsbm : ra t ing1 ?Rating1 .

}

Query 7
PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
PREFIX dc:<http :// pur l . org /dc/ e lements /1.1/>
SELECT ∗
WHERE {

?Of f e r bsbm : product ?Product .
? Of f e r bsbm : vendor ?Vendor .
? Of f e r dc : pub l i s h e r ?Vendor .
?Vendor bsbm : country <http :// downlode . org / rd f / i so −3166/ coun t r i e s#US> .
? Of f e r bsbm : de l iveryDays ?Del iveryDays .
? Of f e r bsbm : p r i c e ? Pr i ce .
? Of f e r bsbm : val idTo ?Date .

}

Query 8
PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
SELECT ∗
WHERE {

?Of fe r2 bsbm : offerWebpage ?OfferURL2 .
? Of f e r2 bsbm : p r i c e ? Pr i ce .
? Of f e r2 bsbm : de l iveryDays ?Del iveryDays .

}

Query 9
PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
SELECT ∗
WHERE {

?Product bsbm : productPropertyNumeric1 ?Value1 .
}

Query 10
PREFIX rd f :<http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
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PREFIX rd f s :<http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
SELECT ∗
WHERE {

?Product r d f s : l a b e l ? Label .
?Product rd f : type ?ProductType .
?Product bsbm : productFeature ?ProductFeature1 .

}

Query 11
PREFIX rd f :<http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
SELECT ∗
WHERE {

?Product rd f : type ?ProductType .
?Product bsbm : productFeature ?ProductFeature1 .

}

Query 12
PREFIX rd f s :<http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
PREFIX dc:<http :// pur l . org /dc/ e lements /1.1/>
SELECT ∗
WHERE {

?Product bsbm : producer ?P .
?P rd f s : l a b e l ?Producer .
?Product dc : pub l i s h e r ?P .
?Product bsbm : productFeature ?F .

}

Query 13
PREFIX rd f s :<http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
SELECT ∗
WHERE {

?Product bsbm : productFeature ?F .
?F rd f s : l a b e l ?ProductFeature .

}

Query 14
PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
SELECT ∗
WHERE {

?Product bsbm : producer ?P .
? Of f e r bsbm : product ?Product .
? Of f e r bsbm : vendor ?VendorURI .

}

Query 15
PREFIX rd f s :<http ://www.w3 . org /2000/01/ rdf−schema#>
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PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
PREFIX dc:<http :// pur l . org /dc/ e lements /1.1/>
PREFIX rev :<http :// pur l . org / s t u f f / rev#>
PREFIX f o a f :<http :// xmlns . com/ f o a f /0.1/>
SELECT ∗
WHERE {

?Product r d f s : l a b e l ?ProductLabel .
?Review bsbm : reviewFor ?Product .
?Review rev : r ev i ewer ?Reviewer .
?Reviewer f o a f : name ?RevName .
?Review dc : t i t l e ?RevTit le .

}

Query 16
PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
PREFIX dc:<http :// pur l . org /dc/ e lements /1.1/>
PREFIX rev :<http :// pur l . org / s t u f f / rev#>
SELECT ∗
WHERE {

?Review bsbm : reviewFor ?Product .
?Review dc : t i t l e ? T i t l e .
?Review rev : t ex t ?Text .

}

Query 17
PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
SELECT ∗
WHERE {

?Review bsbm : reviewFor ?Product .
?Review bsbm : ra t ing1 ?Rating1 .

}

Query 18
PREFIX rd f s :<http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
SELECT ∗
WHERE {

?Of f e r bsbm : product ?ProductURI .
?ProductURI rd f s : l a b e l ? Product labe l .
? Of f e r bsbm : vendor ?VendorURI .
? Of f e r bsbm : p r i c e ? Pr i ce .

}

A.2 Views
We took 10 views from [24]

View 1
PREFIX rd f :<http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX rd f s :<http ://www.w3 . org /2000/01/ rdf−schema#>
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PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
SELECT ∗ WHERE {

?Product r d f s : l a b e l ? Label .
?Product rd f : type ?ProductType .
?Product bsbm : productFeature ?ProductFeature1 .

}

View 2
PREFIX rd f :<http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
SELECT ∗
WHERE {

?Product rd f : type ?ProductType .
?Product bsbm : productFeature ?ProductFeature1 .

}

View 3
PREFIX rd f s :<http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
PREFIX dc:<http :// pur l . org /dc/ e lements /1.1/>
SELECT ∗
WHERE {

?Product bsbm : producer ?P .
?P rd f s : l a b e l ?Producer .
?Product dc : pub l i s h e r ?P .
?Product bsbm : productFeature ?F .

}

View 4
PREFIX rd f s :<http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
SELECT ∗
WHERE {

?Product bsbm : productFeature ?F .
?F rd f s : l a b e l ?ProductFeature .

}

View 5
PREFIX rd f s :<http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
PREFIX dc:<http :// pur l . org /dc/ e lements /1.1/>
SELECT ∗
WHERE {

?Product r d f s : l a b e l ? Label .
?Product r d f s : comment ?Comment .
?Product bsbm : producer ?P .
?P rd f s : l a b e l ?Producer .
?Product dc : pub l i s h e r ?P .
?Product bsbm : productPropertyTextual1 ?PropertyTextual1 .
?Product bsbm : productPropertyNumeric1 ?PropertyNumeric1 .

}
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View 6
PREFIX rd f s :<http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
SELECT ∗
WHERE {

?Product r d f s : l a b e l ?ProductLabel .
? Of f e r bsbm : product ?Product .
? Of f e r bsbm : p r i c e ? Pr i ce .
? Of f e r bsbm : vendor ?Vendor .

}

View 7
PREFIX rd f s :<http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
PREFIX dc:<http :// pur l . org /dc/ e lements /1.1/>
PREFIX rev :<http :// pur l . org / s t u f f / rev#>
PREFIX f o a f :<http :// xmlns . com/ f o a f /0.1/>
SELECT ∗
WHERE {

?Product r d f s : l a b e l ?ProductLabel .
?Review bsbm : reviewFor ?Product .
?Review rev : r ev i ewer ?Reviewer .
?Reviewer f o a f : name ?RevName .
?Review dc : t i t l e ?RevTit le .

}

View 8
PREFIX rd f s :<http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
PREFIX dc:<http :// pur l . org /dc/ e lements /1.1/>
PREFIX rev :<http :// pur l . org / s t u f f / rev#>
PREFIX f o a f :<http :// xmlns . com/ f o a f /0.1/>
SELECT ∗
WHERE {

?Of f e r bsbm : product ?Product .
? Of f e r bsbm : p r i c e ? Pr i ce .
? Of f e r bsbm : vendor ?Vendor .
?Vendor r d f s : l a b e l ?VendorTit le .
?Vendor bsbm : country <http :// downlode . org / rd f / i so −3166/ coun t r i e s#DE> .
? Of f e r dc : pub l i s h e r ?Vendor .
?Review bsbm : reviewFor ?Product .
?Review rev : r ev i ewer ?Reviewer .
?Reviewer f o a f : name ?RevName .

}

View 9
PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
PREFIX dc:<http :// pur l . org /dc/ e lements /1.1/>
PREFIX rev :<http :// pur l . org / s t u f f / rev#>
SELECT ∗
WHERE {

?Review bsbm : reviewFor ?Product .
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?Review dc : t i t l e ? T i t l e .
?Review rev : t ex t ?Text .

}

View 10
PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
SELECT ∗
WHERE {

?Review bsbm : reviewFor ?Product .
?Review bsbm : ra t ing1 ?Rating1 .

}

We defined 5 additional views to cover all predicates in the queries:

View 11
PREFIX rd f s :<http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
PREFIX dc:<http :// pur l . org /dc/ e lements /1.1/>
SELECT ∗
WHERE {

?Product r d f s : l a b e l ? Label .
?Product r d f s : comment ?Comment .
?Product bsbm : producer ?P .
?P rd f s : l a b e l ?Producer .
?Product dc : pub l i s h e r ?P .
?Product bsbm : productPropertyTextual2 ?PropertyTextual2 .
?Product bsbm : productPropertyNumeric2 ?PropertyNumeric2 .

}

View 12
PREFIX rd f s :<http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
PREFIX dc:<http :// pur l . org /dc/ e lements /1.1/>
SELECT ∗
WHERE {

?Product r d f s : l a b e l ? Label .
?Product r d f s : comment ?Comment .
?Product bsbm : producer ?P .
?P rd f s : l a b e l ?Producer .
?Product dc : pub l i s h e r ?P .
?Product bsbm : productPropertyTextual3 ?PropertyTextual3 .
?Product bsbm : productPropertyNumeric3 ?PropertyNumeric3 .

}

View 13
PREFIX rd f s :<http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
PREFIX f o a f :<http :// xmlns . com/ f o a f /0.1/>
SELECT ∗
WHERE {

?Product r d f s : l a b e l ?ProductLabel .
? Of f e r bsbm : product ?Product .
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? Of f e r bsbm : p r i c e ? Pr i ce .
? Of f e r bsbm : vendor ?Vendor .
? Of f e r bsbm : offerWebpage ?OfferURL .
?Vendor f o a f : homepage ?Vendorhomepage .

}

View 14
PREFIX rd f s :<http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
SELECT ∗
WHERE {

?Product r d f s : l a b e l ?ProductLabel .
? Of f e r bsbm : product ?Product .
? Of f e r bsbm : p r i c e ? Pr i ce .
? Of f e r bsbm : vendor ?Vendor .
? Of f e r bsbm : de l iveryDays ?Del iveryDays .
? Of f e r bsbm : val idTo ?Date .

}

View 15
PREFIX rd f s :<http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX bsbm:<http ://www4. wiwiss . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vocabulary/>
PREFIX dc:<http :// pur l . org /dc/ e lements /1.1/>
PREFIX rev :<http :// pur l . org / s t u f f / rev#>
PREFIX f o a f :<http :// xmlns . com/ f o a f /0.1/>
SELECT ∗
WHERE {

?Of f e r bsbm : product ?Product .
? Of f e r bsbm : p r i c e ? Pr i ce .
? Of f e r bsbm : vendor ?Vendor .
?Vendor r d f s : l a b e l ?VendorTit le .
?Vendor bsbm : country ?Country .
? Of f e r dc : pub l i s h e r ?Vendor .
?Review bsbm : reviewFor ?Product .
?Review rev : r ev i ewer ?Reviewer .
?Reviewer f o a f : name ?RevName .

}
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Vers une Web des Donnèes en Lecture-Écriture

Towards a Read/Write Web of Linked Data

Résumé
L’initiative «Web des données» a mis en disponibilité des millions
des données pour leur interrogation par une fédération de
participants autonomes. Néanmoins, le Web des Données a des
problèmes de hétérogénéité et qualité. Nous considérons le
problème de hétérogèneité comme une médiation «Local-as-View»
(LAV). Malheureusement, LAV peut avoir besoin d’exécuter un
certain nombre de « reformulations » exponentiel dans le nombre
de sous-objectifs d’une requête. Nous proposons l’algorithme
«Graph-Union» (GUN) pour maximiser les résultats obtenus á partir
d’un sous-ensemble de reformulations. GUN réduit le temps
d’exécution et maximise les résultats en échange d’une utilisation
de la mémoire plus élevée. Pour permettre aux participants
d’améliorer la qualité des données, il est nécessaire de faire évoluer
le Web des Données vers Lecture-Écriture, par contre, l’écriture
mutuelle des données entre participants autonomes pose des
problèmes de cohérence. Nous modélisons le Web des Données en
Lecture -Écriture comme un réseau social où les acteurs copient les
données que leur intéressent, les corrigent et publient les mises à
jour pour les échanger. Nous proposons deux algorithmes pour
supporter cet échange : SU-Set, qui garantit la Cohérence
Inéluctable Forte (CIF), et Col-Graph, qui garantit la Cohérence des
Fragments, plus forte que CIF. Nous étudions les complexités des
deux algorithmes et nous estimons expérimentalement le cas
moyen de Col-Graph, les résultats suggèrant qu’il est faisable pour
des topologies sociales.

Abstract
The Linked Data initiative has made available millions of pieces of
data for querying through a federation of autonomous participants.
However, the Web of Linked data suffers of problems of data
heterogeneity and quality. We cast the problem of integrating
heterogeneous data sources as a Local-as-View mediation (LAV)
problem, unfortunately, LAV may require the execution of a number
of “rewritings” exponential on the number of query subgoals. We
propose the Graph-Union (GUN) strategy to maximise the results
obtained from a subset of rewritings. Compared to traditional
rewriting execution strategies, GUN improves execution time and
number of results obtained in exchange of higher memory
consumption. Once data can be queried data consumers can detect
quality issues, but to resolve them they need to write on the data of
the sources, i.e., to evolve Linked Data from Read/Only to
Read-Write. However, writing among autonomous participants
raises consistency issues. We model the Read-Write Linked Data
as a social network where actors copy the data they are interested
into, update it and publish updates to exchange with others. We
propose two algorithms for update exchange: SU-Set, that achieves
Strong Eventual Consistency (SEC) and Col-Graph, that achieves
Fragment Consistency, stronger than SEC. We analyze the worst
and best case complexities of both algorithms and estimate
experimentally the average complexity of Col-Graph, results
suggest that is feasible for social network topologies.

Mots clés
Web des Données, Integration de Données, Cohérence des

Données
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Linked Data, Data Integration, Data Consistency.
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