
HAL Id: tel-01148698
https://theses.hal.science/tel-01148698v1

Submitted on 5 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Boolean Parametric Data Flow Modeling - Analyses -
Implementation
Evangelos Bempelis

To cite this version:
Evangelos Bempelis. Boolean Parametric Data Flow Modeling - Analyses - Implementation. Other
[cs.OH]. Université Grenoble Alpes, 2015. English. �NNT : 2015GREAM007�. �tel-01148698�

https://theses.hal.science/tel-01148698v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministérial : 07 août 2006

Présentée par

Evangelos Bempelis

Thèse dirigée par Alain Girault
et codirigée par Pascal Fradet

préparée au sein INRIA
et de École doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique

Modèle de calcul flot de données
avec Paramétrés Entiers et Boolé-
ens
Modélisation ´ Analyses ´ Mise en œuvre

Thèse soutenue publiquement le 26-Fév-15,

devant le jury composé de :

Prof. Marc Geilen
Technical University of Eindhoven, Rapporteur

Dr. Robert De Simone
INRIA Sophia Antipolis, Rapporteur

Prof. Alix Munier
Université de Paris 6, Examinatrice

Prof. Tanguy Risset (Président du jury)
CITI, INSA Lyon, Examinateur

Arthur Stoutchinin
STMicroelectronics, Examinateur

Dr. Alain Girault
INRIA Grenoble, Directeur de thèse

Dr. Pascal Fradet
INRIA Grenoble, Co-Directeur de thèse

As you set out for Ithaka

hope the voyage is a long one,

full of adventure, full of discovery.

— C. P. Cavafy

A C K N O W L E D G M E N T S

When I started my PhD thesis, little did I know what it would be about. The
final destination was vague ideas and distant. However, during the last three
years, this journey got me to visit many interesting places, both physically and
intellectually. From the whole experience, this is what I treasure more. The
compilation of experiences during the last years that changed me and made
me (I hope) a better person.

Looking back at these moments, I need to thank all the people that made my
trip through knowledge a little bit more comfortable, a little bit more enjoyable
and a little bit easier. I will start from Ali-Erdem Ozcan, the man who initiated
the collaboration between STMicroelectronics and INRIA and made my PhD
position a reality. Of course, I want to thank my managers in ST, that is Bruno
Lavigueur for his tireless guidance through all the technical issues I encoun-
tered at ST and Arthur Stoutchninin for helping me during the final steps of
the thesis.

My thesis advisors, Alain Girault and Pascal Fradet have been decisive fac-
tors throughout the PhD. They seemed to complement each other making my
journey much easier. Alain for his insight, for providing a clean perspective of
the work and for his support when things were looking grim. Pascal, for his
strong character that lead to many discussions, sometimes on the verge of fight-
ing, but always constructive enough to push the work further. He has the ability
to always challenge a statement which makes every bit of progress a slow but
verified step.

Moreover, I want to thank all my colleagues. For the very nice working en-
vironment they provided and the endless discussions that have been food for
thought (or not) and a welcomed distraction from all the issues of the work.
Hence, Dmitry, Gideon, Peter, Yoann, Adnan, Sophie, Xavier, Gregor, Jean-
Bernard, thank you very much!

I would also like to thank my family, Ifigeneia, Charilaos and Vasilis for their
support, even remotely, these last years. They always have been on my side and
shared both the good and the nice moments of my journey.

Finally, I want to thank my girlfriend, Stefania. She has bared with me the
last three years and traveled with me this journey. She carried much of the
burden of my PhD being the recipient of much of my complaints and worries.
Thank you very much for your support, without which my journey would be
much more difficult.

Evangelos

iii

C O N T E N T S

1 introduction 3

1.1 Streaming Applications . 3

1.2 Models of Computation . 4

1.3 Streaming Application Development with Data Flow MoCs 5

1.4 Contributions . 7

2 data flow models of computation 9

2.1 Parallel Models of Computation . 9

2.1.1 Petri Nets . 9

2.1.2 Process Networks . 10

2.1.3 Data Flow . 11

2.2 Synchronous Data Flow . 12

2.2.1 Formal Definition . 13

2.2.2 Static Analyses . 14

2.2.3 Special Cases of SDF Graphs . 16

2.3 Extensions of Synchronous Data Flow 18

2.3.1 Static Models . 18

2.3.2 Dynamic Topology Models . 19

2.3.3 Dynamic Rate Models . 20

2.3.4 Model Comparison . 25

2.4 Data Flow Application Implementation 27

2.4.1 Mapping . 27

2.4.2 Scheduling . 28

2.4.3 Scheduling Optimization Criteria 30

2.4.4 Scheduling Synchronous Data Flow 35

2.4.5 Scheduling more Expressive Data Flow Graphs 38

2.5 Summary . 40

3 boolean parametric data flow 43

3.1 Boolean Parametric Data Flow . 43

3.1.1 Parametric rates . 44

3.1.2 Boolean conditions . 44

3.1.3 Formal definition . 44

3.1.4 Example . 46

3.2 Static Analyses . 47

3.2.1 Rate Consistency . 47

3.2.2 Boundedness . 49

3.2.3 Liveness . 54

3.3 Implementation of BPDF Applications 59

3.3.1 Actor Firing . 59

3.3.2 Parameter Communication . 60

3.3.3 Scheduling . 62

3.3.4 BPDF Compositionality . 65

3.4 Model Comparison . 67

3.4.1 Boolean Data Flow . 67

v

vi contents

3.4.2 Schedulable Parametric Data Flow 69

3.4.3 Scenario-Aware Data Flow . 69

3.4.4 Other Models of Computation . 70

3.5 Summary . 70

4 scheduling framework 73

4.1 Underlying Platform . 73

4.1.1 Mapping . 75

4.1.2 Scheduling . 75

4.2 Scheduling Framework . 76

4.3 Ordering Constraints . 77

4.3.1 Application Constraints . 77

4.3.2 User Ordering Constraints . 78

4.3.3 Liveness Analysis . 79

4.3.4 Scheduler . 81

4.3.5 Constraint Simplification . 83

4.4 Resource Constraints . 89

4.4.1 Alternative Scheduler . 90

4.4.2 Framework Extensions . 93

4.5 Scheduling Experiments . 95

4.5.1 Scheduler Overhead Evaluation . 95

4.5.2 Use Case: VC-1 Decoder . 96

4.6 Summary . 101

5 throughput analysis 103

5.1 Throughput Calculation . 104

5.1.1 Definitions . 104

5.1.2 Maximum Throughput Calculation 105

5.1.3 Throughput Calculation Example 110

5.2 Throughput Calculation via Conversion to HSDF 112

5.2.1 Influence and Range . 114

5.3 Minimizing Buffer Sizes for Maximum Throughput 116

5.3.1 Parametric Approximation of Buffer Sizes 116

5.3.2 Exact Calculation of Buffer Sizes . 120

5.4 Summary . 122

6 conclusions 123

6.1 Conclusions . 123

6.2 Future Work . 124

6.2.1 The BPDF Model of Computation . 124

6.2.2 Scheduling Framework . 125

6.2.3 Parametric Throughput Analysis . 126

i appendix 129

a appendix 131

a.1 Schedule streams . 131

a.2 Vector Algebra . 135

bibliography 139

A C R O N Y M S

DAG Directed Acyclic Graph

NoC Network-on-Chip

SWPE Software Processing Element

HWPE Hardware Processing Element

HWPU Hardware Processing Unit

UMA Uniform Memory Access

DMA Direct Memory Access

DSP Digital Signal Processing

FIFO First-In First-Out

HEVC High Efficiency Video Coding

VC-1 Video Codec - 1

DVFS Dynamic Voltage-Frequency Scaling

MoC Model of Computation

FSM Finite State Machine

KPN Kahn Process Network

WEG Weighted Event Graph

SDF Synchronous Data Flow

HSDF Homogeneous Synchronous Data Flow

CSDF Cyclo-Static Data Flow

BDF Boolean Data Flow

IDF Integer Data Flow

PSDF Parameterized Synchronous Data Flow

VRDF Variable Rate Data Flow

SADF Scenario-Aware Data Flow

SPDF Schedulable Parametric Data Flow

SSDF Scalable Synchronous Data Flow

SPDF Synchronous Piggybacked Data Flow

vii

viii acronyms

BDDF Bounded Dynamic Data Flow

CDDF Cyclo-Dynamic Data Flow

HDF Heterochronous Data Flow

MDSDF Multi-Dimensional Synchronous Data Flow

EIDF Enable Invoke Data Flow

CFDF Core Functional Data Flow

PiMM Parameterized and Interfaced Dataflow

FRDF Fractional Rate Data Flow

PEDF Predicated Execution Data Flow

DIF Dataflow Intechange Format

APGAN Acyclic Pairwise Grouping of Adjacent Nodes

RPMC Recursive Partitioning based on Minimum Cuts

DLS Dynamic Level Scheduling

HEFT Heterogeneous Earliest Finish-Time

MH Mapping Heuristic

LMT Levelized-Min Time

TDS Task Duplication based Scheduling

PSGA Problem-Space Genetic Algorithm

DSM Decision State Modeling

GST Generalized Schedule Tree

SST Scalable Schedule Tree

BPDF Boolean Paramatric Data Flow

PSLC Parametric SDF-like Liveness Checking

SMT Satisfiability Modulo Theories

ASAP As Soon As Possible

TNR Temporal Noise Reduction

QoS Quality of Service

GPU Graphical Processing Unit

MdC Modèles de Calcul

R É S U M É E N F R A N Ç A I S

Les applications de gestion de flux sont responsables de la majorité des cal-
culs des systèmes embarqués (vidéo conférence, vision par ordinateur). Leurs
exigences de haute performance rendent leur mise en oeuvre parallèle néces-
saire. Par conséquent, il est de plus en plus courant que les systèmes embar-
qués modernes incluent des processeurs multi-coeurs qui permettent un paral-
lélisme massif.

La mise en oeuvre des applications de gestion de flux sur des multi-coeurs est
difficile à cause de leur complexité, qui tend à augmenter, et de leurs exigences
strictes à la fois qualitatives (robustesse, fiabilité) et quantitatives (débit, con-
sommation d’énergie). Ceci est observé dans l’évolution de codecs vidéo qui ne
cessent d’augmenter en complexité, tandis que leurs exigences de performance
demeurent les mêmes.

Les Modèles de Calcul (MdC) flot de données ont été développés pour fa-
ciliter la conception de ces applications qui sont typiquement composées de
filtres qui échangent des flux de données via des liens de communication. Ces
modèles fournissent une représentation intuitive des applications de gestion de
flux, tout en exposant le parallélisme de tâches de l’application. En outre, ils
fournissent des analyses statiques pour la vivacité et l’exécution en memoire
bornée. Cependant, les applications de gestion de flux modernes comportent
des filtres qui échangent des quantités de données variables, et des liens de
communication qui peuvent être activés / désactivés.

Dans cette thèse, nous présentons un nouveau MdC flot de données, le
Boolean Paramatric Data Flow (BPDF), qui permet le paramétrage de la quan-
tité de données échangées entre les filtres en utilisant des paramètres entiers
et l’activation et la désactivation de liens de communication en utilisant des
paramètres booléens. De cette manière, BPDF est capable de exprimer des appli-
cations plus complexes, comme les décodeurs vidéo modernes.

Malgré l’augmentation de l’expressivité, les applications BPDF restent sta-
tiquement analysables pour la vivacité et l’execution en memoire bornée. Cepen-
dant, l’expressivité accrue complique grandement la mise en oeuvre. Les para-
mètres entiers entraînent des dépendances de données de type paramétrique
et les paramètres booléens peuvent désactiver des liens de communication et
ainsi éliminer des dépendances de données.

Pour cette raison, nous proposons un cadre d’ordonnancement qui produit
des ordonnancements de type “aussi tôt que possible” (ASAP) pour un place-
ment statique donné. Il utilise des contraintes d’ordonnancement, soit issues
de l’application (dépendance de données) ou de l’utilisateur (optimisations
d’ordonnancement). Les contraintes sont analysées pour la vivacité et, si pos-
sible, simplifiées. De cette façon, notre cadre permet une grande variété de
politiques d’ordonnancement, tout en garantissant la vivacité de l’application.

Enfin, le calcul du débit d’une application est important tant avant que pen-
dant l’exécution. Il permet de vérifier que l’application satisfait ses exigences

1

2 résumé en français

de performance et il permet de prendre des décisions d’ordonnancement à
l’exécution qui peuvent améliorer la performance ou la consommation d’énergie.

Nous traitons ce problème en trouvant des expressions paramétriques pour
le débit maximum d’un sous-ensemble de BPDF. Enfin, nous proposons un algo-
rithme qui calcule une taille des buffers suffisante pour que l’application BPDF

ait un débit maximum.

1
I N T R O D U C T I O N

A Musico-Logical Offering,
An Eternal Golden Braid

— D.R.Hofstadter

Multimedia applications are widely used in the modern world. Video con-
ferencing with multiple participants and high quality movie playback, even
on mobile devices, are considered granted for modern users. Apart from our
daily life, multimedia applications have changed our capabilities. Augmented
reality car head-up displays are becoming available, facilitating driving with
low visibility, while remote surgery allows doctors to perform surgeries over
long distances. For example the Lindbergh operation, where a team of French
surgeons operated over a distance of 6.230 km, from New York to Strasbourg.
Hence, it is not surprising that multimedia applications already accounted for
more than 90% of the computing cycles of general purpose processors, back in
1998 [39],[27],[106]. Because of their structure around the notion of “streams”,
multimedia applications are also referred to as streaming applications.

1.1 streaming applications

Streaming applications are characterized by large streams of data that are be-
ing communicated between different computation nodes (often called actors or
filters). An example of a streaming application is shown in Figure 1. The appli-
cation gets as input 3 streams (I1, I2, I3) and outputs 2 streams (O1, O2), the
result of processing of the input streams through 6 filters (F1, F2, F3, F4, F5, F6).
Filter F6 has a backward connection to filter F1 forming an internal loop (feed-
back).

It is evident that the requirements of streaming applications can widely vary.
For applications that run on mobile devices, low power consumption is cru-
cial to preserve battery life. On the contrary, medical applications need to be
reliable and, in the case of remote surgery, with extremely low latency. A com-
mon factor, though, is their high performance requirements, which makes their
parallel implementation a necessity.

The complexity of streaming applications tends to increase, while their strict
requirements remain the same or even increase. An example is HEVC, the newest
video coding standard, which increases the decoding complexity by 60% in
comparison to its predecessor H.264 [119], while performance demands remain
at the same level or even increase: for the same frame rate of 30 frames per
second and assuming their maximum resolution, 4K and 2K respectively (Fig-
ure 2), the HEVC decoder needs to process 4 times the amount of data processed
by H.264 in the same amount of time due to the increase in resolution.

3

4 introduction

I1

I2

I3

O1

O2

F1

F2

F3

F4

F5

F6

Figure 1: Structure of a streaming application.

The need for parallel implementation and the increased complexity makes
the development (i. e., design and implementation) of streaming applications
very challenging.

A major challenge in streaming application design is hardware/software co-
design. In the early development phases, an application often needs to be parti-
tioned into components that will be implemented as specialized hardware and
components that will be run in software. Moreover, it should be decided which
aspects of the hardware components must be flexible enough for future recon-
figuration. These decisions are hard to evaluate at such an early stage and they
may lead to an implementation not meeting the desired specifications. For this
reason, modeling and rapid prototyping of the application is essential in the
design of streaming applications.

General-purpose languages, are not well suited for the implementation of
streaming applications because they do not provide a natural way to represent
streams and filters. The regular communication patterns between the different
computation nodes and their parallel execution cannot be explicitly expressed
in languages like C or Java. In addition, general-purpose languages are de-
signed for the von-Neumann architectures, but highly parallel architectures do
not fit the von-Neumann model as they use multiple instruction streams and
distributed memory.

1.2 models of computation

A Model of Computation (MoC) can be thought of the set of rules that govern
execution [76]. It is the general guidelines within which the developer will
program. A MoC allows the mathematical representation of the program and
helps the verification of many of its properties. Some of these properties may
be inherent to the model (e. g., determinism), while others can be verified with
static analyses (e. g., liveness).

1.3 streaming application development with data flow MoCs 5

DVD

VCD

720p

1080p

4K

2
K

Figure 2: Comparison of different video resolutions. All sizes are scaled to 16:9 ratio.

The need for rapid prototyping and deployment of massively parallel stream-
ing applications has led to the development of several MoCs that facilitate design
and parallel implementation. Such MoCs are meant to represent the application
in an intuitive manner for the programmer while exposing its parallelism.

In contrast with sequential execution, where the von-Neumann model pre-
vailed, in concurrent execution there still has not been a universally accepted
MoC. A plethora of MoCs that focus on parallelism has been developed, includ-
ing Petri Nets [96], Kahn Process Networks [67], and Data Flow [35] and all its
variants.

Parallelism-oriented MoCs are attractive for the prototyping of streaming ap-
plications because they allow static analyses that verify various qualitative (live-
ness, boundedness) and quantitative (throughput, power consumption) proper-
ties of the application early in the design process. They also make parallel im-
plementation easier because they provide an intuitive way to represent filters
and streams and allow the functional partitioning of an application exposing
the available parallelism and allowing modular design.

Data flow MoCs are of particular interest because they are extensively used
in industry. Lustre/Scade has been successfully used to implement flight con-
trol system in Airbus planes [20] and the signaling system of the Hong-Kong
subway [82]. In addition, much of the development of data flow visual program-
ming languages in the 80s was backed by industrial sources [66] resulting in the
development of visual languages, such as LabView [65] which was successfully
deployed in industry, significantly reducing development time [5]. Moreover,
the existence of a plethora of data flow based programming languages like Lu-
cid [120], Lustre [24], Signal [9], Lucid Synchrone [25], StreamIt [117] etc., is
another indication of its widespread use.

1.3 streaming application development with data flow MoCs

Data Flow MoCs are well-suited to program streaming applications on many-
core architectures. Models like Synchronous Data Flow (SDF) [78], have been

6 introduction

Variable
Length

Decoding

Motion
Compenation

Frame
Buffer

Intra
Prediction

Inverse
Quantization

Inverse
Tranform + Loop

Filter

Video In

Video Out

Figure 3: General structure of a video decoder.

widely used to develop Digital Signal Processing (DSP) applications. Yet, many
modern streaming applications, such as high definition video codecs, show a
dynamic behavior that current MoCs cannot express.

Figure 3 shows the structure of a modern video decoder. The encoded video
is first processed by the Variable Length Decoding filter, which, based on the
encoding of the input, will send data to the Intra Prediction filter and to the
Motion Compensation filter. As implied by its name, the amount of data sent
to these filters is data-dependent. The data is processed in parallel in the two
pipelines until the two streams are merged and are processed by the Loop Filter.

To capture this dynamic behavior, parametric dataflow MoCs have been in-
troduced from the early 2000s, including PSDF [11], VRDF [122], SADF [116] and
SPDF [43]. These models allow the amount of data exchanged between the filters
of an application to change at run-time according to the values of the manipu-
lated data. This is achieved by using integer parameters.

However, not all parts of a video are encoded in the same way. For example,
some frames may not use the Motion Compensation filter, or some blocks of the
video may not be coded and may not need the inverse quantization or the
inverse transform. To take advantage of this information, the topology of the
application should be changed at run-time.

For this reason, data flow MoCs that allow the change of the graph topology at
run-time have been developed, including BDF [21] and IDF [22]. However, these
models lack analyzability. Moreover, current parametric data flow MoCs do not
allow the topology of the application to change at run-time. Hence, there is a
need for a new data flow MoC that combines parametric exchange of data with
dynamic topology changes.

Increasing the expressivity of a data flow model greatly complicates its de-
ployment on a parallel architecture. Parametric exchange of data results in para-
metric data dependencies, while dynamic topology changes remove and add
data dependencies at run-time. Many standard implementation techniques are
incompatible with this behaviour and cannot be used. Furthermore, manual
parallel implementations are hard to produce and can be error-prone.

1.4 contributions 7

Finally, static analyses of the application for properties, such as throughput
and power consumption, are crucial to verify that the application meets its re-
quirements. They help making design decisions early in the development pro-
cess. Moreover, because of the dynamic behaviour of the application, quantities
such as throughput or power consumption can greatly vary at run-time. The
ability to efficiently calculate the values of properties like throughput can lead
to better implementations. However, existing approaches cannot be applied due
to the increased expressiveness of the MoC.

1.4 contributions

The main challenge in developing a data flow MoC lies in the trade-off between
analyzability and expressivity of the model. In this thesis, we propose a new
data flow MoC, the Boolean Paramatric Data Flow (BPDF) model [7], that combines
parametric data exchange between filters of the application with the ability of
dynamically changing the topology of the application. A distinguished prop-
erty of BPDF is to provide static analyses for the deadlock-free and bounded
execution of the application, despite the increase in expressivity.

The increased expressivity of BPDF greatly complicates implementation. We
address this problem with the development of a scheduling framework for the
production of parallel schedules for BPDF applications [8]. Our framework facil-
itates the automatic production of complex parallel schedules, which are often
hard to produce and error-prone, while preserving the boundedness and live-
ness properties of the application.

Finally, we approach the problem of throughput calculation for BPDF applica-
tions by finding parametric throughput expressions for the maximum through-
put of a subset of BPDF graphs. An algorithm is proposed to calculate sufficient
buffer sizes for the application to operate at its maximum throughput.

The thesis is structured as follows: In Chapter 2, the current state-of-the-art
data flow MoCs are presented. Moreover, the current methods of their imple-
mentation on many-core architectures are discussed. Our data flow MoC, BPDF,
along with its static analyses are described in Chapter 3. Chapter 4 contains
our scheduling framework and its evaluation with a modern video decoder,
VC-1, expressed using BPDF. In Chapter 5, we propose a parametric throughput
analysis for BPDF. We use the analysis to express parametrically the through-
put of the VC-1 decoder. Finally, the thesis is summarized in Chapter 6, where
contributions and future work perspectives are discussed.

2
D ATA F L O W M O D E L S O F C O M P U TAT I O N

Last night what we talked about
It made so much sense
But now the haze has ascended
It don’t make no sense anymore

— Arctic Monkeys

Modeling is essential during development as it allows the analysis and study
of a system to be done indirectly on a model of the system rather than directly
on the system itself. Computational systems are modeled with Models of Com-
putation (MoCs). These are mathematical formalisms that can be used to express
systems.

A system captured using a MoC can be analyzed and have various properties,
both qualitative (e. g., reliability) and quantitative (e. g., performance) verified.
Then, the model can be used to generate code that preserves these properties
which in turn can be compiled into software or synthesized into hardware.
This way, many aspects of the system can be explored rapidly before the actual
development takes place. Moreover, specifications of the system can be verified
and, as the human factor is limited, the procedure is less error-prone. Hence, a
system can be developed and evaluated faster, cheaper and safer.

2.1 parallel models of computation

There are many MoCs developed over the years, each one focusing on different
aspects of the system under development. For example, Finite State Machines
(FSMs) focus on sequential execution and are widely used to design control
systems while discrete event models focus on timing. In this thesis, our goal is
to facilitate the development of parallel embedded systems, therefore we focus
on MoCs that expose parallelism such as Petri Nets, Process Networks and Data
Flow.

2.1.1 Petri Nets

Petri Nets first appeared in Carl Adam Petri dissertation “Kommunikation mit

Automaten” [Communication with automata] [96] in 1962. Petri focused on for-
malizing the communication of asynchronous components of a computer sys-
tem. His work drew a lot of attention and was further developed by Holt et

al. in the final report of the Information Systems Theory Project [61] in 1968.
Petri Nets have been developed since, a few books summing up the advances
in the field being: Peterson’s “Petri Net Theory and the Modeling of Systems” [95]
in 1981, Brams’ “Réseaux de Petri: Théorie et pratique” [19] in 1983 and Desel and
Esparza’s “Free Choice Petri Nets” [36] in 1995.

9

10 data flow models of computation

p1

p2t1 t2

(a) Initial marking.

p1

p2t1 t2

(b) After t1 fires.

Figure 4: A Petri Net example.

A Petri Net is composed by two components, a net and a marking. The net is
a directed bipartite multi-graph that consists of two types of nodes: places and
transitions. Places are drawn as circles and represent memory, transitions are
drawn as rectangles and represent computation units. Edges connect transitions
with places and vice versa but nodes of the same type cannot be connected. The
marking indicates the data stored currently on each place, shown as black dots
inside the places.

Each transition has a set of incoming edges connecting the transition with a
set of input places. Similarly, each transition is connected with a set of output

edges with its outgoing edges. If all the input places of a transition have enough
data the transition is called enabled. An enabled transition needs to have at least
one data token stored in its input places for each of its incoming edges.

A Petri Net executes by firing enabled transitions. First the transition con-
sumes data tokens from all its input places, on token for each of the connecting
edges. Then, it computes and produces one token for each outgoing edge which
is then stored in the corresponding connected place.

An example of a Petri Net is shown in Figure 4. It is composed by two tran-
sitions (t1, t2) and two places (p1,p2) where p1 has one token initially stored
in it. In the example of Figure 4, transition t1 has enough tokens to fire. After
its firing, place p1 is left with no tokens but place p2 has 2 new tokens, one for
each outgoing edge of t1. Now t2 has enough tokens to fire, and so on.

Petri Net models can be used to prove system properties such as mutual ex-
clusion (e. g., two transitions cannot fire in parallel), liveness (absence of dead-
lock) and safety (that the system cannot reach a particular state). In Figure 4

one can easily show that t1 and t2 are mutually exclusive and that the graph
will not deadlock. However, the execution of a Petri Net is non-deterministic:
when multiple processes are enabled any one may fire.

2.1.2 Process Networks

Process networks, or Kahn Process Networks (KPNs), were introduced by Gilles
Kahn in 1974 [67]. A KPN is composed of a set of processes, interconnected with
communication links (channels) (Figure 5). Communication links are unidirec-
tional and the only way processes communicate with each other. Each process
may either be executing or may be blocked, waiting for data on one of its incom-

2.1 parallel models of computation 11

g

h0 h1

f

T1 T2

X

Y Z

Figure 5: An example of a process network with processes g,h0,h1, f and channels
T1, T2, Y,Z,X. Figure reproduced from [67].

ing communication links. A process cannot check a whether a communication
link is empty or not. Once a process finishes execution, it produces tokens on
one or many of its outgoing communication links. There is no blocking mech-
anism that prohibits a process to write. Each communication link has a type
(e. g., integer, boolean float etc.). The sequence of data elements on a link, called
its history, is a complete partial order.

KPNs can be formulated with a system of equations where processes are func-
tions and communication links are variables. This set is reduced to a single
fixed point equation X = f(X). As the functions are continuous over complete
partial orders, the equation has a unique least fixed point [67]. In this way KPNs

are deterministic: the least fixed point which depends on the histories of the
communication links is unique therefore, the histories produced on each com-
munication link are independent of the execution order of the processes. Using
the fixed point, a KPN can be analyzed for functional verification (e. g., that the
program will produce the desired output). Moreover, a KPN is terminating or
non-terminating depending on whether its fixed point contains finite or infinite
histories.

Although fixed point analysis gives the length of the histories of the com-
munication links, it does not reason on the accumulation of data tokens which
depends on the execution order. A KPN is strictly bounded if the accumulation
of tokens on all its communication links is bounded by b for all possible exe-
cution orders. A KPN can be transformed so that it is strictly bounded. To do
so, feedback links are added for each communication link with b initial tokens.
However, the feedback links may introduce a deadlock transforming a non-
terminating program into a terminating one. Boundedness of KPNs is discussed
in Parks’ thesis [93] and extended in [47].

2.1.3 Data Flow

The Data flow MoC first appeared in 1974, in a paper by Jack B. Dennis [35].
The initial goal of data flow was to lift some limitations of Petri Nets and in-
crease their expressiveness. Dennis’ data flow is expressive enough to express
the source program while exposing the available parallelism.

In Dennis’ data flow, applications are expressed as directed graphs. Nodes,
called actors, are function units and edges are communication links. Actors can
execute or fire once they have enough tokens on their input links, as in Petri

12 data flow models of computation

A B C
3

1

2 1 3

2

actor
edge

port rate

initial tokens

Figure 6: A simple SDF graph.

Nets. However, in contrast with Petri Nets, Dennis’ data flow takes into account
the value of the data on the links. So, more specialized actors are introduced
to express if-then-else structures, boolean operations, splitting and merging
of data and more. Dennis’ data flow model is very expressive though and has
limited analyzability. Hence, subsequent data flow models aimed at limiting ex-
pressiveness and increasing analyzability. The most influential is Synchronous
Data Flow introduced in 1987 by Lee and Messerschmitt [78].

Dennis’ Data flow shares the same conceptual basis with Petri Nets but where
Petri Nets focuses on the modeling part, data flow takes a step further and
allows reasoning on the type and the value of the data communicated as well as
the amount [42], a feature that was abstracted in later data flow MoCs. Moreover,
data flow execution is deterministic whereas Petri Net execution is not.

In comparison with KPNs, a major difference is that processes in KPNs can
be executing by consuming data from just a subset of their inputs. In contrast,
actors in data flow require data on all of their inputs. Moreover, later data flow
MoCs provide analysis for properties like liveness and boundedness matching
the analyzability of Petri Nets.

The deterministic behaviour and analyzability of data flow MoCs makes them
attractive for use in streaming application development. This is also shown by
the industrial success of data flow as discussed in Section 1.2. In this thesis, we
focus on data flow MoCs, which are presented in detail in the next section.

2.2 synchronous data flow

In this section, we present Synchronous Data Flow (SDF) that makes the basis
for most of the later data flow MoCs [78]. SDF was introduced in 1987, for the
implementation of DSP applications on parallel architectures. SDF is well suited
for DSP because of the ease of expression of such applications using the model.

In SDF, as in Dennis’ data flow, a program is expressed as a directed graph,
where nodes (actors) are functional units. Edges are communication links con-
necting actors implemented by First-In First-Out (FIFO) queues. The connection
of an actor with an edge is called a port. Each edge is characterized by a pro-
duction (resp. consumption) rate indicating the amount of data produced (resp.

consumed) on (resp. from) the edge after the firing of the corresponding actor.
As these rates also characterize the respective port, we often refer to them as
port rates.

2.2 synchronous data flow 13

An SDF graph executes by firing its actors. The firing of an SDF actor has three
steps:

a. Consumption of data tokens from all its incoming edges (inputs).
b. Execution of its internal, side-effect free function
c. Production of data tokens to all its outgoing edges (outputs).
The number of tokens consumed or produced on an edge is defined by its

rate. An actor can fire only when all of its input edges have enough tokens
(i. e., at least the number specified by each rate), in this way its execution is in-

dependent of the order the actor reads its ports. Such an actor is called fireable or
eligible to fire. In SDF, all rates are constant integers, therefore known at compile
time.

2.2.1 Formal Definition

Formally, an SDF graph is defined as a 5-tuple (G, lnk, init,prd, cns) where:
• G is a directed connected multigraph (A, E) (i. e., there can be more than

one edge connecting a pair of actors.) with A a set of actors, and E a set
of directed edges.

• lnk : E Ñ A ˆ A associates each edge with the pair of actors that it
connects.

• init : EÑ N associates each edge with a number of initial tokens.
• prd : EÑ N

˚ associates each edge with a production rate.
• cns : EÑ N

˚ associates each edge with a consumption rate.
For example, the simple SDF graph in Figure 6, is composed of three actors,

A = tA, B, Cu and three edges, E = tĎAB, ĎBC, ĚCAu. For convenience through-
out the thesis we use the notation e = ĎXY where X and Y represent the pro-
ducer and consumer of the edge. The lnk function for edge ĎAB is defined as
lnk(ĎAB) = (A,B) and similarly for the rest of the edges. The init function
returns 0 for all edges except for init(ĚCA) = 2. Finally, the prd and cns func-
tions return the production and consumption rates, for example prd(ĎAB) = 3,
cns(ĎAB) = 2, prd(ĎBC) = 1, cns(ĎBC) = 3, prd(ĚCA) = 2 and cns(ĚCA) = 1.

An SDF graph is characterized by its topology matrix (Γ), which is similar to
the incidence matrix from graph theory. The topology matrix has its columns
assigned to the nodes of the graph, and its rows to the edges. Each entry (i, j)
of the matrix corresponds to the amount of data produced on edge i from
node j, i. e., the corresponding port rate. Consumption of data is represented
by a negative value and the absence of a link is represented by 0. If multiple
edges connect two actors, the sum of the production/consumption rates is used
instead. The topology matrix for the graph in Figure 6 is:

A B C

AB 3 -2 0

BC 0 1 -3

CA -1 0 2

The state (S) of an SDF graph is a vector indicating the number of tokens
stored on each edge of the graph at a given instant. Every time an actor fires,

14 data flow models of computation

A

B

C

1

1

1

1

2

1

Figure 7: An inconsistent SDF graph.

it produces and consumes tokens altering the state of the graph. For instance,
the initial state of the SDF graph in Figure 6 is Sinit = [0 0 2]. After actor A fires
once, the state of the graph becomes S 1 = [3 0 1].

2.2.2 Static Analyses

A key property of SDF is that it can be statically analyzed for consistency, bound-

edness and liveness. Analyses of these properties are formally presented in [48].
These properties are crucial for embedded systems. Consistency ensures that

the graph is valid, i. e., there are no incompatible rates on the graph, opening
the way to the analyses of boundedness and liveness. Boundedness ensures that an
application operates within bounded memory. With a known memory bound,
the designer can ensure that the system has sufficient memory and allocate it
statically at the beginning of the execution of the application, greatly improving
performance. Finally, liveness ensures the continuous operation of a system,
which is generally desirable and essential for critical systems.

Consistency

To present rate consistency, we take the example of an inconsistent graph in
Figure 7. As shown in the Figure 7, For each firing of actor A, actor B is enabled
once and can produce 2 tokens on ĎBC. However, actor C is also enabled only
once, and cannot consume both tokens that B produces. As a result, tokens will
accumulate on edge ĎBC and the graph is inconsistent. An SDF graph is consistent

if there is a set of firings that returns the graph back to its initial state. Indeed,
a repetition of such a set never leads to an accumulation of tokens on any edge
and the graph is consistent.

We call such a set of firings an iteration of the graph, that is a non-empty set
of actor firings that return the graph back to its initial state.

An iteration of the graph can be found by solving the so-called system of

balance equations. To return to the initial state the total production of tokens on
each edge should be to equal the corresponding consumption. Formally:

@e = ĎAB P E, D #A, #B, #A ¨ prd(e) = #B ¨ cns(e) (1)

where #A and #B are called solutions of actors A and B, respectively. They indi-
cate the number of times each actor fires during the iteration.

2.2 synchronous data flow 15

We get one such Eq. (1) for each edge of the graph, ending up with a set of
balance equations, which forms a linear system. The system can be expressed
more compactly using the topology matrix:

Γ ¨ r = 0 (2)

where r is the vector with the actor solutions. The minimum non-trivial integer
solution of the system (Eq. (2)) is called the repetition vector and indicates the
minimum number of times each actor needs to fire for the graph to return to its
initial state, the minimum iteration. Although an iteration can be any multiple of
the minimum iteration, from now on we use iteration to denote the minimum
iteration, unless noted otherwise. If the system has no solution, the graph is said
to be inconsistent as it never returns to its initial state. Hence, we can formally
define consistency:

Definition 1 (Consistency). An SDF graph is consistent iff its system of balance

equations has a non-trivial solution.

For the SDF graph in Figure 6, the balance equation for, say, the edge ĎAB is
#A ¨ 3 = #B ¨ 2. The system of balance equations, using Eq. (2) is:

3 ´2 0

0 1 ´3

´1 0 2

¨

#A

#B

#C

= 0

The minimum solution is r = [2 3 1], also written r = [A2 B3 C] for better
readability. The graph in Figure 6 is consistent, that is, there is a set of firings
that returns the graph back to its initial state.

Boundedness

An SDF graph is bounded if it can execute in finite memory. A consistent SDF

graph is inherently bounded. By definition, there is no accumulation of tokens
on any edge of the graph hence, the graph operates in bounded memory. There-
fore, checking an SDF graph for boundedness, amounts to check consistency by
solving the system of balance equations. Formally:

Definition 2 (Boundedness). An SDF graph is bounded iff its system of balance

equations has a non-trivial solution.

An efficient algorithm to compute the repetition vector is presented in [6]
with linear time complexity (Θ(|E|+ |A|)) in the number of actors and the num-
ber of edges. The algorithm first randomly sets the solution of an actor to 1 and,
as the graph is connected, it finds a solution for each actor, if it exists. Then, the
algorithm normalizes the solution to be the minimum integer solution. If the
algorithm successfully returns a repetition vector, the graph is consistent and
bounded.

16 data flow models of computation

Liveness

An SDF graph is live if it can execute an infinite number of time without dead-
locking. Checking the liveness of a graph amounts to finding a sequence of
firings that complete an iteration, a schedule. Finding the schedule for one itera-
tion is sufficient for the liveness of the graph; once the schedule is executed, the
graph returns to its initial state, allowing the schedule to start again and repeat
indefinitely. However, not all schedules are valid. There may be schedules that
cannot finish the iteration because they contain non-eligible firings, i. e., firings
of actors that do not have enough tokens on their input edges. A schedule that
is composed only by eligible firings is called admissible. Hence, formally:

Definition 3 (Liveness). An SDF graph is live iff there exists an admissible schedule.

For the graph in Figure 6, a schedule that completes an iteration is:

A;A;B;B;B;C

It is admissible because all firings can take place, (i. e., the respective actor has
enough tokens on its input edges) and he graph is live. In contrast, a non-
admissible schedule is:

A;C;B;B;B;A

After actor A first fires, actor C cannot fire as there are not enough tokens on
its input edge.

Acyclic graphs and graphs with non-directed cycles are inherently live, as an
admissible schedule can always be found, just from the topological sorting of
the actors. When there are directed cycles, however, each cycle needs to have a
sufficient number of initial tokens for the graph to be live.

Algorithms used to find admissible schedules are called class-S algorithms by
Lee and Messerschmitt in [78]. In [6] a simple class-S algorithm is presented
with time complexity

O(Ififo + |E|) where I =
ÿ

XPA

#X

and fi (resp. fo) the maximum number of incoming (resp. outgoing) edges
among all actors.

2.2.3 Special Cases of SDF Graphs

Some restrictive classes of SDF are worth mentioning as they are used in a
variety of cases. The Homogeneous Synchronous Data Flow (HSDF) graphs are
graphs where all port rates equal to 1. Formally:

Definition 4 (Homogeneous SDF graph). An SDF graph is homogeneous iff

@e P E, prd(e) = cns(e) = 1

Any SDF graph can be converted to an equivalent HSDF graph. There are
many algorithms that convert SDF graphs to HSDF graphs, one widely used can
be found in [111]. The main intuition behind the transformation is to replicate

2.2 synchronous data flow 17

A1

A2

B1

B2

B3

C1

(a) HSDF graph.

A B C

6

3

3

2 2 6

6

(b) Normalized SDF graph.

Figure 8: The HSDF and the normalized SDF graphs of the graph in Figure 6.

each actor as many times as its solution and connect the new actors according
to the rates of the original SDF. The resulting graph may have an exponential
increase in size.

The resulting HSDF graph from the SDF graph in Figure 6 is shown in Fig-
ure 8a. Each actor in HSDF graph corresponds to a firing in the iteration of the
corresponding actor. So, for actor A that needs to be fired twice (r = [A2 B3 C]),
the HSDF has two actors (A1,A2). The edges are produces accordingly: the first
firing of A produces 2 tokens for the first firing of B, hence the two edges be-
tween A1 and B1 in the HSDF, and one token for its second firing, shown with
ĞA1B2.

HSDF representation is useful because it exposes all the available task paral-
lelism. It has been successfully used to produce parallel schedules of SDF graphs
and evaluate its throughput (see Section 2.4.3).

Another convenient class of SDF graphs is uniform or normalized SDF graphs.
An SDF graph is normalized if all the ports of any given actor have the same
rate. Any SDF graphs can be transformed to an equivalent normalized SDF graph.
Two SDF graphs are equivalent if any schedule that is admissible for one is also
admissible for the other.

A simple transformation is the replacement of the rates of the ports of each
actor #A with

lcmNPA#N
#A

The initial tokens should be adjusted accordingly to trigger the same number of
firings of the consumer. The method is presented in detail in [86] for Weighted

18 data flow models of computation

A B
(3,0,0) (1,2)

Figure 9: A CSDF graph.

Event Graphs (WEGs) which are equivalent to SDF graphs [107]. The normalized
SDF of the graph in Figure 6 is shown in Figure 8b.

2.3 extensions of synchronous data flow

This section describes the more prominent of the extensions of SDF, starting
with MoCs that are fully defined at compile-time like Cyclo-Static Data Flow [15]
(Section 2.3.1).

We classify the more expressive models in two categories: the ones that al-
low the graph to change topology at run-time (dynamic topology models, Sec-
tion 2.3.2) and the ones that allow the amount of data exchanged between actors
to change at run-time (dynamic data rate models, Section 2.3.3).

Dynamic topology models like BDF [23] and its natural expansion IDF [22]
introduce specialized actors that can change the topology of the graph at run-
time using boolean or integer parameters, respectively.

Dynamic data rate models use integer parameters to parameterize the amount
of data communicated between the actors of a graph. Some of these models are
PSDF [11], VRDF [122], SADF [116] and SPDF [43].

Many models presented below, allow actors to change their internal function-
ality at run-time. In this thesis, we disregard any dynamic change of the graph
that does not affect its data flow analyses If it does not affect any of the subse-
quent analyses of the model and one can safely ignore it when it comes to the
modeling of the application. In the SDF MoC for example, one can assume that
the internal functionality of the actors change at run-time. If the rates of each
port remain the same the boundedness and liveness analyses remain valid.

2.3.1 Static Models

In this section, we present Cyclo-Static Data Flow (CSDF) that extends the base
SDF model but is still fully defined statically at compile-time. CSDF was intro-
duced in 1995 by Bilsen et al. [15]. It targets applications that have predictable
periodic behaviour, known at compile time. CSDF uses a series of rates that shift
cyclically instead of a single fixed rate as in SDF. This way the production and
consumption rates of an edge may change periodically. A rate can have a zero
value, as long as the sum of the rates in a series is strictly positive.

A sample CSDF graph is shown in Figure 9. The edge ĎAB has two sets of rates
instead of two fixed rates. Each time an actor fires, all its port rates shift to the
next value in the series. For the graph in Figure 9, the first time actor A fires, it
produces 3 tokens and the next two, 0 tokens. On the fourth firing, the rate will
shift cyclically back to 3.

In [15], a consistency analysis for CSDF is given. CSDF graphs can always
be translated in HSDF graphs indicating that CSDF is not more expressive than

2.3 extensions of synchronous data flow 19

SW
IT

C
H

F
T

b

(a) SWITCH actor.

F
T

SE
L

E
C

T

b

(b) SELECT actor.

Figure 10: BDF special actors

SDF. However, such a conversion is not always practical because it requires a
combinatorial explosion of the number of actors in the resulting HSDF.

2.3.2 Dynamic Topology Models

In this section, we present two models that focus on altering the graph topol-
ogy at run-time, Boolean Data Flow (BDF) and Integer Data Flow (IDF). Joseph
T. Buck introduced BDF in his thesis [21] as an extension of SDF that provides
if-then-else functionality. BDF uses two special actors, a SWITCH and a SE-
LECT actor (Figure 10). SWITCH has a single data input and two data outputs,
whereas SELECT is the opposite with two data inputs and one data output.
Both actors have a boolean control input that receives boolean tokens. Depend-
ing on the value of the boolean tokens, SWITCH (resp. SELECT) selects the
output (resp. input) port that is activated.

A BDF graph is analyzed like an SDF graph except for the SWITCH (resp.

SELECT) actors whose output (resp. input) ports use rates depending on the
proportion of true tokens on their input boolean streams which can also be
seen as the probability of a boolean token to be true. A SWITCH actor with a
proportion of p true tokens in its boolean stream, will produce after n firings
n ¨ p tokens on its true output and n ¨ (1´ p) tokens on its false output. A
SELECT actor will consume tokens in a similar manner.

In this way, for each separate boolean stream bi, we get a probabilistic rate pi,
forming a vector ~p. The balance equations of a BDF graph include such proba-
bilistic values. For the graph in Figure 11, with p1 the proportion of true token
for boolean stream b1 and p2 for b2, respectively, we get that a non-trivial so-
lution does not exist, unless p1 = p2. BDF describes the graphs which have
non-trivial solutions for all values of ~p as strongly consistent. On the contrary,
graphs that are consistent only for specific values of ~p are called weakly consis-

tent. Weakly consistent graphs cannot have guarantees (e. g., liveness, bound-
edness) on their execution as it depends on the values of the tokens on the
boolean steams.

BDF greatly increases SDF expressiveness. In fact, it is shown in [21] that BDF

is Turing complete and that the decision of whether a BDF application operates
within bounded memory is undecidable as it equates to the halting problem.

BDF was extended by IDF [22]. IDF replaces BDF boolean streams with integer
streams, allowing SWITCH and SELECT actors to select one port over many,
instead of just two as in BDF.

20 data flow models of computation

A

SW
IT

C
H

F
T

F
T

SE
L

E
C

T

B

C

D

b1 b2

2 1

1

1

1

1

1

1

1

1

1 2

Figure 11: A BDF graph.

2.3.3 Dynamic Rate Models

This section presents models that may change port rates dynamically at run-
time, altering the amount of data exchanged between actors at run-time.

Parametric Synchronous Data Flow

Parameterized Synchronous Data Flow (PSDF) [11] introduces a set of parame-
ters in the actor definition of SDF. These parameters may control the internal
functionality of the actors but may also affect the data flow behaviour of the
graph as they can be used in the definition of port rates.

The PSDF MoC is organized in an hierarchical manner: each PSDF actor, unless
it is primitive, is itself a PSDF graph, a component. Each component consists of
three subgraphs, the main data flow subgraph (body) that implements the main
functionality, and two auxiliary subgraphs (init and subinit), which change the
parameters of the body. The links between the subgraphs of a component and
its parent component can be either standard data flow links or links propagat-
ing parameter values, called initflow.

The subinit subgraph changes parameters affecting only the internal function-
ality of the actors in the body of the component. It can have both data flow in-
puts and initflow inputs. In this way the parameters set by the subinit graph can
be data dependent and change values within the iteration of the component.

The init subgraph changes parameters that also affect data flow behaviour,
such as port rates. The init graph can only have initflow inputs and its execu-
tion is not data-dependent. When the parent component invokes a child, first
the init is fired once to set its parameters and then the iteration of the subinit

and body graphs takes place. PSDF restricts the execution of the init graph like
that, to ensure that the interface between the parent component and the child
remains consistent throughout an iteration of the child. In this way, PSDF re-
stricts changes of parametric port rates between iterations of a component. Both
init and subinit outputs are initflow, carrying parameter values and not part of
the main data flow.

In Figure 12 a PSDF component is shown. The component has two sets of data
flow inputs, one to connected to the subinit graph and one to the body. There is
also an initflow carrying parameter values from the parent component. In this
example, the body has three functions and function f2 is configured with two
parameters g and p. g changes the functionality of f1 while p sets its output rate.

2.3 extensions of synchronous data flow 21

initsubinit

body

init

set p
subinit

set g

f1 f2(g) f3
p

initflow

Figure 12: A PSDF component.

When the component is fired, first the init graph is fired and it sets parameter
p and potentially other parameters. Finally, the rest of the graph executes as in
the SDF model, with subinit fired first to set the value for g. Within the iteration
subinit may fire multiple times to change the value of g but init fires only once.

PSDF is analyzed in the same fashion as SDF, but every possible configuration
of its subgraphs needs to be taken into account. A configuration of a component
is a possible assignment of all its parameters. Once all the parameters have
taken values, the graph is reduced to an SDF graph, and all SDF analyses can be
used.

Each hierarchical component is analyzed separately. A PSDF graph is con-
sistent if of its components are consistent. If all possible configurations of a
component are consistent, then the component is said to be locally synchronous,
if all of them are inconsistent, the component is called locally asynchronous and
in all other cases, partially locally synchronous. The exact methodology of analyz-
ing a PSDF graph is not described in [11], however, an informal set of conditions
is given

a. All PSDF graphs (init,subinit,body) must be locally synchronous.
b. Both init and subinit graphs need to produce exactly one token on each of

their outputs, every time they complete an iteration.
c. The data flow inputs of subinit must not depend on a parameter.
d. Both the inputs and the outputs of the body must not depend on a param-

eter.
PSDF has been successfully used to parameterize existing DSP models. It has

been proposed as a meta-modeling technique to be used on top of various data
flow MoCs besides SDF (e. g., CSDF). However, its practical parametrization of the
SDF model is not formalized enough to provide strong guarantees (bounded-
ness, liveness). Moreover, the addition of the auxiliary graphs (init and subinit)
increases the design complexity and makes it less intuitive. It is not clear, for
instance, when a value of a parameter is set and how often it changes.

22 data flow models of computation

A B C DTG
p p

1[p] 1[p]
q q

1[q] 1[q]
1 1 11

Figure 13: Example of a VRDF task graph.

Variable Rate Data Flow

Variable Rate Data Flow (VRDF) [122] adds parametric rates to the original SDF

model. VRDF focuses on data flow graphs that derive from task graphs, which
are Directed Acyclic Graphs (DAGs). The VRDF graph that results from a task
graph, also models the sizes of the buffers on the edges, resulting in a strongly
connected graph.

VRDF restricts the usage of parametric rates either on a single actor or in
pairs. When in pairs, for each actor with an output port with a parametric rate,
there must be another actor with an input port with a matching parametric rate.
These actor pairs must be well-parenthesized: If there is a pair using parameter
p, then another pair using parameter q can be nested within the actors of the
first pair but cannot interleave (Figure 13).

VRDF allows a parameter to take a zero value, disabling the production (resp.

consumption) of tokens on (resp. from) an edge. This is a similar behaviour
with BDF when a false boolean value deactivates the port of a SWITCH or
SELECT actor. However, VRDF avoid the unboundedness problem that arises in
BDF because of its requirement of parameters used in pairs as described earlier.
This restriction guarantees that a consistent VRDF graph is also bounded. To
check the consistency of a VRDF graph, its system of balance equations of the
graph can be solved symbolically, producing a parameterized repetition vector.
Parameter values propagate through extra edges between the two actors of the
pair. These edges have production and consumption rates of 1 and have zero
initial tokens.

Figure 13 gives an example of a VRDF task graph. Actors A and D use the
parameterized rate p on their output and input ports respectively. Another pair
of actors is nested between them, actors B and C using parameter q. Two edges
(ĚAD, ĎBC) propagate the parametric values with production and consumption
rates of 1. A task graph, TG, is located between the the actors B and C. Solving
the balance equations of the graph, we find that actors A and D have solutions
of 1, actors B and C parametric solution of p while TG has a parametric solution
equal to pq.

VRDF proposes a clean solution to increase the expressiveness of SDF with
parametric rates. However, it imposes many restrictions; task graphs should be
acyclic and the parametric ports come only in matching pairs.

Scenario-Aware Data Flow

Scenario-Aware Data Flow (SADF) [116] is a modification of the original SDF

model inspired by the concept of system scenarios [52]. SADF introduces a spe-
cial type of actors, called detectors, and enables the use of parameters as port

2.3 extensions of synchronous data flow 23

A B C

DD1

10

3

2

2

a

a

b c

2 d

e
p

q

r

Rate s1 s2
a 2 1
b 3 2
c 1 1
d 2 1
e 3 1
p 1 2
q 3 4
r 2 4

Figure 14: An SADF graph with its scenarios.

rates. Detectors, detect the current scenario the application operates in and
change the port rates of the graph accordingly.

Each detector controls a set of actors. These sets do not overlap, that is each
actor is controlled by a single detector. The detectors are connected to each actor
with a control link, a data flow edge which always has a consumption rate of
1. When a detector fires, it consumes tokens from its input edges and selects a
scenario. Based on the detected scenario, the detector sets its output rates that
are parameterized and produces control tokens on all output edges. When an
actor fires, it first reads a token from the control link that configures the values
of its parameters, and then waits to have sufficient tokens on its input edges.

The set of possible scenarios is finite and known at compile time. A scenario
is defined by a set of values, one for each parameterized rate. A production
(resp. consumption) rate of any edge can take a zero value if and only if the
corresponding consumption (resp. production) rate takes also a zero value in
the same scenario configuration.

An example of an SADF graph is given in Figure 14. For better readability
rates of 1 are omitted. The graph is composed by 1 detector and 4 actors. Actors
B, C and D are controlled by the detector via the control links shown with
dashed lines. Actor A is not controlled by any detector which means that it
always operates in the same scenario – all its port rates are static. The possible
scenarios the detector may select are s1 and s2 (see Figure 14). Parametric rates
p,q and r are the production rates of the detector on the control links for each
scenario.

When the graph executes, the detector fires first choosing a scenario, say s1.
The detector will produce one control token to B, three tokens to D and two
tokens to C (because of the values of p,q and r in scenario s1). These tokens set
the parameters for each actor according to the scenario. For example, actor B

will execute with a = 2 and b = 3. When the control tokens are consumed, the
actors wait for the detector to produce new control tokens for the next scenario.

As all scenarios are known at compile time, SADF is analyzed by analyzing all
possible SDF graphs that result from each scenario. SADF requires the solutions
of the detectors to be 1 for all scenario configurations. Hence, the detectors
cannot change parameter values within an iteration. This restriction is true for
the strongly consistent SADF, for which analyses for boundedness and liveness
are provided in [116]. Weakly consistent SADF graphs may support changing of

24 data flow models of computation

A
set p[1]

B
set q[p]

C2p 1 q pq

2 1

↑

↑

↓

↑

1 2p p 1

1

1 2

1 2

1 1 1 1 1 1 1

Figure 15: An SPDF graph with its parameter propagation network.

rates and topology within an iteration, but in general they are not statically ana-
lyzable. When referring to the SADF model, we will always refer to the strongly
consistent version of the model.

SADF resembles CSDF in the sense that it uses a fixed set of possible rates
on each port. However, it does not impose their ordering at compile time. In
contrast with other models that use parametric rates, SADF does not require a
parametric analysis as all configurations can be analyzed separately as in SDF

at compile time but this approach may be costly when the number of scenarios
is large.

Schedulable Parametric Data Flow

Schedulable Parametric Data Flow (SPDF) [43] is a data flow MoC that was devel-
oped to deal with dynamic applications where the rates of an actor may change
within an iteration of the graph.

SPDF uses symbolic rates which can be products of positive integers or sym-
bolic variables (parameters). The variable values are set by actors of the graph
called modifiers. Actors that have parameters on their port rates or at their solu-
tions are called users of the parameter. The parameter values are produced by
the modifiers and propagate towards all the users through an auxiliary network
of upsamplers and downsamplers.

Modifiers and users have writing and reading periods respectively. These indi-
cate the number of times an actor should fire before producing / consuming a
new value for a parametric rate. The writing periods are defined by an annota-
tion under each modifier of the form set param[period]. The reading periods
are calculated by analyzing the graph.

Not all writing periods are acceptable. Some may cause inconsistencies and
SPDF introduces safety criteria and analyses to check whether an SPDF graph
satisfies them. These analyses rely on the notion of regions formed by the users
of each parameter. SPDF demands that for a parameter to have a safe writing
period, the subgraph defined by its region needs to complete its local iteration
before the parameter changes value. The parameter regions may overlap, as
long as all criteria are satisfied. This is called the period safety criterion. There is
also another safety criterion but we will not go into more details here.

2.3 extensions of synchronous data flow 25

model

dynamic rates dynamic topology
static

analyses
between

iterations

within

iteration

between

iterations

within

iteration

sdf ˝ ˝ ˝ ˝ ‚

csdf ˝ ˝ ˝ ˝ ‚

bdf ˝ ˝ ‚ ‚ ˝

idf ˝ ˝ ‚ ‚ ˝

psdf ‚ ‚ ˝ ˝ ‚

vrdf ‚ ˝ ‚ ˝ ‚

sadf ‚ ˝ ‚ ˝ ‚

spdf ‚ ‚ ˝ ˝ ‚

Table 1: Comparison table of expressiveness and analyzability of data flow models

A sample SPDF graph is shown in Figure 15. The graph has two parameters,
p and q. The modifier of p is actor A with writing period 1 and the modifier
of q is actor B with writing period of p. In gray is shown the auxiliary network
for parameter communication that propagate the parameter values. The region
of parameter p is tA, B, Cu and that of q is tB, Cu.

SPDF graphs can be statically analyzed to ensure their boundedness and live-
ness. These analyses rely on the symbolic solution of the balance equations and
the satisfaction of safety criteria mentioned above. Moreover, for liveness, SPDF

checks the liveness of all directed cycles and demands that there is a directed
path from each modifier to all the users.

Compared to other parametric models, SPDF provides the maximum flexibil-
ity as far as the changing of the parameter values are concerned. However, this
increased expressivity makes scheduling SPDF applications very challenging be-
cause the data dependencies are parametric and can change any time during
execution; in contrast with other parametric models where a schedule can be
found at the beginning of an iteration, in SPDF graphs parameters may change
within the iteration, demanding a constant reevaluation of the schedule.

2.3.4 Model Comparison

To sum up, we provide Table 1 comparing the dynamic features of the models
mentioned in the previous sections. The SDF and CSDF MoCs offer no dynamism
at all. Although CSDF seemingly change both rates and topology within its
iteration, its translation to an HSDF graph indicates that it is not more expressive
that SDF.

The BDF and IDF MoCs allow the topology graph to change, however, they do
not allow changes in the rates of the graph. Moreover, they lack static analyses
for boundedness and liveness.

The PSDF MoC, provides dynamic rates that may change within an iteration,
i. e., a child component can change its internal rates many times during the
iteration of the parent. Yet, PSDF does not provide dynamic topology and its
analyses are not well-defined.

26 data flow models of computation

The VRDF MoC as well as the SADF MoC provide both dynamic rates and
dynamic topology, however, only in-between iterations. Both have other lim-
itations not captured by the table, like the restriction of the VRDF model on
dynamic rates coming in matching pairs and the requirement of SADF for all
scenarios to be known and analyzed at compile time.

Finally, the SPDF MoC supports rate changing in-between and within an iter-
ation but not support any topology change. SPDF is analyzable but due to its
complexity it is difficult to schedule efficiently.

Other Dataflow Models

There are many other data flow models of lesser importance. For completeness,
we mention some of the more notable ones:
‚ Scalable Synchronous Data Flow (SSDF) [105] adds a factor n on all the

graph rates, allowing the graph to “scale” each time it starts an iteration. In
this way, SSDF aims to increase the efficiency of SDF by letting actors firing on
larger amounts of data.
‚ Synchronous Piggybacked Data Flow (SPDF) [92] goal is to allow global

state updates without side effects. It introduces global states that allow the
controlled, synchronous update of local states of actors throughout the graph.
‚ Bounded Dynamic Data Flow (BDDF) [85] was inspired by SSDF. BDDF deals

with the limitations of SSDF like the absence of data-dependent rates or rates
that vary in a periodic manner. BDDF allows dynamic rates as long as the
amount of tokens that may accumulate on any edge is guaranteed to be bounded
at compile time.
‚ Cyclo-Dynamic Data Flow (CDDF) [121] extends the set of rates of the orig-

inal CSDF model to have variable lengths and variable rates each time they are
triggered.
‚ DF* [29] extends the basic SDF model with data-dependent control of the

graph and non-deterministic behaviour.
‚Heterochronous Data Flow (HDF) [53] enhances the SDF model by adding an

internal FSM to each actor that allow them to change port rates after each firing.
HDF was developed in an effort to combine different MoCs in a single design.
‚ Multi-Dimensional Synchronous Data Flow (MDSDF) [88] changes SDF rates

to have matrix dimensions, so that instead of producing and consuming tokens,
actors produce and consume matrices of tokens. Such an extension makes the
development of image processing application more intuitive.
‚ Enable Invoke Data Flow (EIDF) [99], [101] adds a set of modes to each actor

that may change non-deterministically each time the actor is invoked. EIDF aims
to facilitate rapid prototyping of applications.
‚ Core Functional Data Flow (CFDF) [99], [101] is a subset of EIDF where the

changing between actor modes is deterministic.
‚ Parameterized and Interfaced Dataflow (PiMM) [37] is a parameterized data

flow model that focuses on hierarchical composition of applications. PiMM ex-
tends the previous work on interface-based hierarchy of the SDF MoC [97]. It can
be seen as an evolution of the PSDF MoC.

2.4 data flow application implementation 27

scheduling

mapping ordering timing

fully dynamic run-time run-time run-time

static-assignment compile-time run-time run-time

self-timed compile-time compile-time run-time

fully static compile-time compile-time compile-time

Table 2: Mapping and scheduling taxonomy

This list of data flow models remains non-exhaustive but the models we have
described in this section illustrate the basic principles and motivation behind
data flow models.

2.4 data flow application implementation

Once a data flow application is developed, it consists of a set of tasks that have
data dependencies and other precedence constraints with each other. It is usu-
ally represented by task graphs. Task graphs are Directed Acyclic Graphs (DAGs)
where each node is a task and each edge a data dependency. The implementa-
tion of such an application consists of two steps: mapping and scheduling. Sche-
duling is further divided into ordering and timing. The terminology for these
steps varies a lot in literature, e. g., sometimes mapping is called assignment.
Also the whole implementation procedure is often referred to as scheduling.

Depending on when each step takes place, we get the scheduling taxonomy
of Lee and Ha in [77] presented in Table 2. The order that these steps take place
is not definitive: Mapping may or may not precede scheduling. In many cases
these steps interleave to achieve optimal results.

2.4.1 Mapping

Mapping is the allocation of tasks in space. It assigns tasks to hardware elements,
like processors or other specialized processing units. Mapping deals with the
optimization of the utilization of the processing elements and their communi-
cation network which includes load balancing of tasks among processing el-
ements, minimization of the interprocessor communication, completion time
optimization, etc...

Load balancing aims at distributing evenly the tasks on the available process-
ing elements. After load balancing takes place, if the processing elements are
not utilized at 100%, the voltage and frequency of the processing elements can
be adjusted to slow their operation and reduce their power consumption. In-

terprocessor communication needs to be taken into account as it may be very ex-
pensive both time-wise and power-wise to move large amounts of data from a
processor to another. Completion time optimization is important when it comes to
heterogeneous architectures as many tasks of an application can be significantly
sped up if they are allocated in the correct processing element.

28 data flow models of computation

Mapping can be seen as a bin packing problem which is known to be NP-

Complete [44]. There are many heuristics in the literature for mapping task
graphs, some of them are First-Fit Decreasing, Next-Fit Decreasing, Best-Fit
Decreasing and Worst-Fit decreasing [60] typically used for tight fit in low pro-
cessor availability, and First-Come First-Serve mainly used when the available
processors are abundant.

In the following, we consider a static mapping where each actor is mapped
to a separate processing element. The motivation behind this decision is that, in
streaming applications with computation intensive actors, it is a usual practice
to implement actors in hardware or use dedicated processors for a single actor.

2.4.2 Scheduling

Scheduling is the allocation of tasks in time. It consists of two steps: ordering and
timing. Ordering defines the execution order of the tasks. Timing assigns an
integer value to each task indicating the exact time at which the task will start
its execution. Scheduling mainly deals with the optimization of the application
performance and memory utilization. It focuses on optimizing the performance
of the application (i. e., maximizing throughput and minimizing latency) as well
as its memory footprint (i. e., minimizing code size and the memory used for
data).

Parametric data flow actors usually have data-dependent execution time and
hence static timing is not an option. Hence, based on the taxonomy of Table 2,
we focus on self-timed scheduling.

Scheduling, just like mapping, is known to be NP-Complete [44]. There are
many scheduling techniques used in task graphs, reused from classical job-
shop scheduling [26]. These techniques can also be used for SDF graphs, once
the graph is converted into a DAG [79].

To convert an SDF graph into a DAG, first the graph is transformed into a
homogeneous SDF graph, so that each firing of an actor is also a task, and
remove the edges with initial tokens. The liveness property of the original graph
ensures that the resulting task graph is acyclic. The technique is described in
detail in [79].

Task Scheduling heuristics

Task scheduling heuristics are classified in various categories such as list sche-
duling algorithms, clustering algorithms, guided random search methods and
task duplication algorithms. Here, we mention some of the heuristics developed
over time.
‚ List Scheduling Heuristics assign priorities to tasks based on which tasks are

ordered in a list. Some representative list scheduling algorithms are Dynamic
Level Scheduling (DLS) [110], Heterogeneous Earliest Finish-Time (HEFT) [118]
Mapping Heuristic (MH) [40] and Levelized-Min Time (LMT) [64].
‚ Clustering Heuristics try to place heavily communicating tasks on the same

processing element, trading-off parallelism with interprocessor communication.
Sample heuristics are presented in [18] and in [17].

2.4 data flow application implementation 29

‚ Task Duplication Heuristics try to utilize processor idle time to duplicate tasks
and reduce the waiting time of the precedent tasks. A representative heuristic
is Task Duplication based Scheduling (TDS) [103].
‚ Guided Random Search Heuristics are mostly genetic algorithms used for task

mapping and scheduling. Examples are Push-Pull [71] and Problem-Space Ge-
netic Algorithm (PSGA) [38].

However, these approaches are not applicable in more expressive data flow
MoCs where the number of firings can be parametric.

Data Flow Scheduling

Throughout this thesis we represent schedules with strings showing the firings
of the actors. We use ‘;’ for sequential execution, ‘}’ for parallel execution, super-
scripts for repetition and parenthesis for nested loops over a smaller schedule.
For instance, the sequential schedule

(A3; B2)4; C2

fires actor A three times followed by actor B two times. This execution is re-
peated four times before actor C is fired twice.

Sequential data flow schedules can be regarded as infinite loops over a series
of firings completing an iteration. They are also referred to as looped schedules.
So, once the previous schedule fires C twice, it starts over and repeats indef-
initely. In the above schedule, each actor appears, lexically, only once. Such a
schedule is called Single Appearance Schedule. Single appearance schedules are
interesting because they minimize the schedule code size (see Section 2.4.3).

Parallel scheduling of data flow graphs, involves the transformation of the
graph into its homogeneous counterpart (HSDF graph) [79]. In this way the
available parallelism is exposed and popular techniques from task scheduling
can be used.

Consider, for example, the simple SDF graph in Figure 6, and a platform of
2 processing elements (P1, P2). The equivalent HSDF graph is shown in Fig-
ure 8a. Let us recall that the repetition vector of the graph is r = [A2 B3 C] and
hence the set of tasks are tA1, A2, B1, B2 ,B3, C1u. For a mapping, where
firings tA1, B1, B2, C1u are mapped on processor P1 and firings tA2, B3u on
P2, we can get a self-timed parallel schedule taking into account precedence
constraints. So, the ordering for processor P1 is (A1, B1, B2, C1) while for
P2 it is (A2, B3). The precedence constraints of tasks in different processors
are B2 ą A2 , C1 ą B3. The mapping and ordering of the tasks is shown in
Figure 16.

The execution on processor P1 proceeds as follows: At time instant t1 the
processor starts execution with A1. Once A1 is finished it continues with B1.
At time instant t3 the execution of B2 starts once both B1 and A2 have finished
execution. Similarly, C1 starts executing at time instant t4. If the timing of each
task was known, a fully static schedule would be possible.

The above schedule fires each actor as soon as it is available and is called
an As Soon As Possible (ASAP) schedule. ASAP schedules are known to provide
maximal throughput [111].

30 data flow models of computation

P2 A2 B3

P1 A1 B1 B2 C1

t1 t2 t3 t4 t5

Figure 16: Mapping and ordering of the graph in Figure 6 on processors P1 and P2.

Generally, the scheduling of a data flow graph focuses on the firings of one
iteration, which is then repeated periodically. Sometimes the repetition vector is
multiplied by a factor u, the unfolding factor. In parallel schedules, this allows
the concurrent execution of firings belonging in different iterations, enabling
the exploitation of pipelining. This gain in parallelism comes at the price of a
more costly in computation and/or larger in code size schedule.

We classify the self-timed schedules of data flow graphs in three categories
depending on the kind of ordering decisions that take place at run-time: static,
quasi-static and dynamic. A schedule is static if all ordering decisions are taken at
compile-time. A schedule is quasi-static if the only decisions taken at run-time
are decisions that depend on parameter values1. A schedule is dynamic if it is
neither static nor quasi-static.

Typically, static schedules consist of series of firings and for-loops with static
boundaries. Quasi-static schedules consist of firings, for-loops with static or
parametric boundaries, and if-then-else structures with conditions on param-
eter values. Dynamic schedules may include computation taking into account
external factors and variables such as power consumption to manipulate the
schedule at run-time.

The term quasi-static has taken various definitions in the literature as is pre-
sented in the following sections. Our definition is compatible with most existing
definitions. The general intuition behind the term, however, remains the same,
it is a distinct class of schedules standing between purely static and dynamic
schedules.

In general, static and quasi-static schedules are preferred as they often offer
better performance due to lower scheduling overhead. However, a dynamic
schedule may prove more flexible and in certain cases more efficient. Finally,
there is a trade-off between the code size of the schedule and its dynamicity; a
static schedule often occupies more memory than a dynamic one as it keeps all
the precomputed information stored, instead of computing it at run-time.

2.4.3 Scheduling Optimization Criteria

Scheduling juggles with the optimization of many different, and often conflict-
ing, criteria. These mainly concern the memory usage (code and buffer size) and
the performance of the application (latency, throughput).

1 In this way, quasi-static schedules make sense only for parameterized data flow MoCs.

2.4 data flow application implementation 31

A B C
3 2 3 1

Figure 17: An SDF graph.

Throughput indicates the performance of an application. It is a very important
factor, mainly in real-time applications that demand a minimum throughput to
be sustained. In some cases maintaining sufficient throughput can be crucial.
Latency is a metric that measures the response time of an application. It is im-
portant in applications like video conferencing, telephony and on-line games
where it needs to be kept to a minimum. Code size refers to the length of the
code implementing the schedule. In embedded systems memory can be sparse
and minimizing the size of the schedule is sometimes crucial. Similarly, memory

used for data needs to be optimized.
These criteria can be analyzed at compile-time for SDF graphs and help take

scheduling decisions. Below we discuss the underlying trades-offs between
these criteria when scheduling data flow graphs.

Code size

Code size affects other criteria as removing part of the schedule code will most
certainly come in conflict with the optimization of some other aspect of the
schedule.

We give below a simple example showing the trade-off between code size
and buffer size of an SDF graph. Consider the graph in Figure 17. The repetition
vector is r = [A2 B3 C9]. One possible schedule is:

A2; B3; C9

This schedule has each actor appearing only once and is called single appearance

schedule. In this way, the code size of the schedule is minimized. However, the
buffer size needed to store data on the graph is 6 tokens on edge ĎAB and
another 9 tokens on edge ĎBC. A different schedule could be

A; B; C3; A; B; C3; B; C3

This schedule needs a buffer size of 4 tokens on edge ĎAB and a size of 3 tokens
on edge ĎBC a total size of 7 tokens, a significant reduction on the 15 tokens
needed by the previous schedule. However, the code size of the schedule is
now 8 actor instances compared to the 3 instances of hte single appearance
schedule. A compromise can be found by factoring out common factors on the
original single appearance schedule. Factoring out 3 from actors B and C yields:

A; (B; C3)3

This schedule needs a buffer size of 6 tokens on edge ĎAB and 3 tokens on ĎBC
while keeping the code size of the schedule the same. This trade-off is explored
in detail by Bhattacharyya and Lee in [12] and [13].

32 data flow models of computation

Buffer Size

The memory usage of the graph needs to be optimized, i. e., the buffers on the
edges of the graph need to be minimized. The minimization of buffer sizes is a
problem that has two different instances, depending on whether the implemen-
tation relies on a single shared memory or individual buffers.

If the edge buffers are implemented as a single shared memory, then the total
memory usage of the graph must be minimized. This is similar to the register
allocation problem. An approach using model-checking is presented in [57].

A B
τrA rB

Figure 18: A generic SDF edge with production rate rA, consumption rate rB and τ

initial tokens.

When it comes to using individual buffer between actors, then the problem
is significantly different. In [6] it is proved that for any schedule, the minimum
buffer size (β) of an edge ĎAB as in Figure 18 is

β =

#
rA + rB ´ g+ τ mod g if 0 ď τ ď rA + rB ´ g

τ otherwise
(3)

where g = gcd(rA, rB), the greatest common divisor of the two rates. If the
buffer size is less, then there is no admissible schedule for the graph and the
graph is not live. The buffer size can be modeled with a backward edge, ĎBA,
with init(ĎBA) = β´ τ as shown in Figure 19.

A B

τ

β−τ

rA rB

rA rB

Figure 19: An SDF edge with a finite buffer of size β.

However, using the minimum buffer size has an impact on throughput as
it prohibits the parallel execution of the two actors sharing the edge with the
minimum buffer. Therefore, there is a trade-off between the buffer size and
throughput as there is a trade-off, between buffer size and code size.

Latency

For data flow graphs, it is defined as the time delay between the beginning
of the first firing of an iteration and the end of the last firing completing the
same iteration as illustrated in Figure 20. Latency is the delay between the
instance an input is taken, that is the start of an iteration of the graph, and the
corresponding output is produced.

A technique that finds schedules minimizing latency for SDF graphs is pre-
sented in [50]. The technique creates a latency graph by adding one source and
one sink actor on the graph. Latency is then computed based on the slowest

2.4 data flow application implementation 33

P3 A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3 · · ·

P2 B1 B1 B1 B1 · · ·

P1 C1 C2 C1 C2 C1 C2

Period

Latency

t

Figure 20: A pipelined schedule on three processors, showing the difference between
latency and period.

path between the two actors. The authors study the trade-off between through-
put and latency showing that minimizing latency does not necessarily maxi-
mize throughput and vice-versa. Moreover, the schedule minimizing latency
may not be a single appearance schedule, suggesting a trade-off between la-
tency and code size.

Throughput

Throughput measures the amount of data produced per time unit. In data flow,
this corresponds to the number of iterations per time unit. At first sight, it seems
that throughput is very similar to latency. However, they are quite different
and often antagonistic. This becomes more apparent in Figure 20 where the
pipelined execution of an SDF graph is considered. Throughput is the rate at
which outputs are produced. So, if we define the period of one iteration to be
the delay between the production of two consecutive outputs, the throughput
of the graph (TG) can be computed with:

TG =
1

period
(4)

When a data flow application is deployed on multiple processors, the through-
put of an iteration can be increased arbitrarily, if the graph has no directed cy-
cles, by replicating actor instances in different processors and executing them
in parallel. When cycles are present, they impose a lower bound on throughput
beyond which there is no gain in performance no matter how many processors
are added.

This bound is called the iteration bound. Such a bound was first explored
in [104] and the term iteration bound for data flow applications was introduced
in [91]. A parallel schedule that achieves an iteration period equal to the itera-
tion bound is said to be rate-optimal. Therefore a rate-optimal schedule operates
at maximum throughput.

In SDF applications, one way to compute throughput is to convert the graph
to the equivalent HSDF graph and to find the cycle with the maximum cycle mean

– the critical cycle [111]. Intuitively, the cycle with the maximum cycle mean is
the one that imposes the cyclic dependency that results in the iteration bound

34 data flow models of computation

of the graph. The cycle mean of a cycle is the sum of the execution times of the
actors on the cycle, over the sum of the initial tokens on the edges of the cycle.

An algorithm calculating the MCM of a graph in O(|A||E|) time, is given
in [69]. Dasdan and Gupta [34] developed two algorithms based on a technique
that unfolds the graph up to |A| number of times. The algorithms compute
the MCM in O(|AU|+ |EU|) and Θ(|A|2 + |EU|) time respectively, where AU

and EU the are actors and the edges of the unfolded graph. However, since
the conversion to HSDF may greatly increase the size of the graph, sometimes
exponentially, this approach is not always practical.

An alternative conversion to HSDF method is proposed by Geilen [45]. The
proposed conversion produces a reduced HSDF graph (i. e., it has less actors
than the one produced with the original algorithm). The new HSDF graph is not
functionally equivalent to the original SDF as the approach does not aim to the
expansion of one actor per instance, but rather to a graph that has the same
throughput and latency as the original graph.

Another throughput calculation is proposed in [49], where the execution state
space of the original graph is explored until a state is visited twice. This cycle
in the state space means that the execution has finished the initial transitional
behaviour, the prologue, and reached a periodic behaviour, the steady-state. The
duration of such a period can be used to calculate throughput.

The method is formulated using (max,+) algebra [46]. A matrix GM keeps
the time delay between the production of a token in the current iteration and
the production of the equivalent token in the next iteration, characterizing the
behaviour of the graph in time. To calculate the values of the matrix, a symbolic
execution of one iteration of the graph takes place. Then, it is shown that the
eigenvalue of the GM matrix corresponds to the MCM of the graph giving the
throughput value.

This new approach performs better than many algorithms that compute the
MCM of HSDF graphs [49]. Another benefit of the (max,+) approach is that
it can deal with graphs demonstrating more dynamism. For instance, the tech-
nique has been applied to SDF graphs with actors with parametric execution
times in [51] and to the more expressive SADF model [32].

Throughput is antagonistic with buffer sizes. As mentioned earlier, buffer
sizes can be modeled as backward edges forming directed cycles. These cycles
may impose a lower iteration bound than the iteration bound of the graph with
unlimited buffer sizes, further restricting throughput. Throughput increases as
buffer sizes increase, up to an upper bound defined by the iteration bound.

Power consumption

When throughput constraints are satisfied, actors that operate faster than needed
can be slowed down to achieve a reduction in power and energy consump-
tion. The most commonly used technique is Dynamic Voltage-Frequency Scal-
ing (DVFS). By scaling the voltage and the frequency of a processing element,
one can increase (resp. decrease) its execution speed while increasing (resp. re-
ducing) its energy and power consumption.

Typically, this scaling happens in discrete pairs of Voltage-Frequency. The ad-
justments of the scale can happen in various ways. They can be regular (interval-

2.4 data flow application implementation 35

based changes), they can be fixed at compile-time or event based. In the last case,
the decisions are taken at run-time. Indicative control parameters that are used
to select a pair on the Voltage-Frequency scale are buffer occupancy (typically
based on cache misses when it comes to processors) and worst-case execution

times (typically calculated at compile-time) [56]. Both metrics are indirect links
to the throughput of the application which is why the efficient calculation of
the throughout of the application at run-time is very beneficial: it allows the
scheduler to make decisions on which Voltage-Frequency pair to use for each
element in order to minimize the energy consumption, while satisfying the
throughput constraints.

Energy-aware task scheduling has been extensively explored ([125], [56], [108],
[81], [84], [74]). The typical procedure for throughput constrained applications,
like real-time applications, starts with the scheduling of the tasks using Earliest
Deadline First and then scaling down Voltage-Frequency on each processor to
reclaim slack, a procedure called SimpleVS.

DVFS is explored for the SADF MoC, in [33]. The authors present a method
to reduce power consumption in SADF graphs. The approach starts by using
minimum frequency at the beginning of each scenario and then iteratively (if
the iteration will not meet the deadline), changes the frequency of the critical
path, until the throughput constraint is met.

Other Criteria

Other criteria have been considered as well. For example, Sriram and Bhat-
tacharyya [111] optimize parallel SDF schedules by minimizing the synchro-
nization points between processors. Also, when it comes to DVFS, lowering the
frequency increases the chances of an error. So, reliability is another “criterion”
that can be optimized as shown in [1] for simple data flow graphs.

2.4.4 Scheduling Synchronous Data Flow

In the above, data flow graphs are first converted into HSDF graphs and then
scheduled reusing standard task graph scheduling techniques. However, con-
verting a data flow application into an HSDF graph is not always practical and
when it comes to more expressive models it is not even feasible.

In the SDF case, the conversion can end up in an exponential growth in the
number of actors. This issue is addressed in [98] with a technique called clus-

tering that prevents actor explosion. The problem becomes even more evident
in CSDF applications. In the original CSDF paper [15], a scheduling technique
that avoids the conversion to HSDF is presented. Another approach [94], uses
clustering to convert the CSDF graph into a SDF graph. In both cases, some of the
potential parallelism expressed in the original CSDF graph cannot be exploited.

Various intermediate representations have been assumed to facilitate the sche-
duling of SDF graphs. In [2], an interprocessor communication graph and a syn-
chronization graph are used to model the self-timed execution of SDF graphs.
These graphs are produced based on the mapping and ordering of the tasks.
Damavandpeyma et al. [31] propose a method called Decision State Model-
ing (DSM). The method models a given mapping and ordering by adding aux-

36 data flow models of computation

A

B

C

D
3

1

2 2

4 2

6

1

(a) Initial SDF graph.

A

B

Z1

3

1

2
2

4
12

(b) After clustering actors C and D into
Z1.

A Z2

3

1

12

4

(c) After clustering actors Z1 and B into
Z2.

Z3

(d) After clustering actors Z2 and A into
Z3.

Figure 21: Clustering technique applied on a simple SDF graph. Eventually, the graph
is clustered into a single actor

iliary actors and edges based on the decision state space of the given schedule
(i. e., a state space modeling all the possible transitions between the states of the
processors based on the given ordering). The resulting graph is significantly
smaller than those resulting from the conversion to HSDF.

Clustering is a standard scheduling technique for SDF graphs. The main prin-
ciple is the replacement of a set of actors with a single actor. When the single
actor is fired, a local schedule executes, firing the clustered actors. Clustering
is usually applied iteratively until the whole graph is clustered into a single
actor. It is easy to produce the schedule of the graph afterwards, by iteratively
replacing the execution of each actor with the execution of its clustered actors.

A simple clustering example is shown in Figure 21. The repetition vector of
the graph is r = [A4 B6 C D2]. Initially, the actors C and D are clustered into Z1.
The consumption rates of the incoming edges of Z1 are adjusted accordingly:

cns(ĚBZ1) = cns(ĚBD)ˆ #D/gcd(#C, #D) = 12

and
cns(ĘAZ1) = cns(ĚAC)ˆ #C/gcd(#C, #D) = 4

The local schedule of the two clustered actors is easy found to be C;D2. Then,
Z1 is clustered with B in actor Z2. Similarly, we find cns(ĘAZ2) = 12 and
cns(ĘAZ2

1
) = 4. The schedule of the clustered actors is B6;Z1. Finally, the two

remaining actors, A and Z2, are clustered into a single actor, Z3. The sched-
ule of the clustered actors is A4;Z2. The schedule of the graph is defined by
replacing iteratively the schedules of the clusters:

Z3 Ñ A4;Z2 Ñ A4;B6;Z1 Ñ A4;B6;C;D2

2.4 data flow application implementation 37

which corresponds to a single appearance schedule.
Not all sets of actors are safe to a cluster. For instance, in the second cluster-

ing step of the previous example, actors A and Z1 cannot be clustered, since
the resulting graph would have a directed cycle that did not exist before (see
Figure 22). This artificial cycle creates a deadlock, prohibiting the construction
of an admissible schedule. The potential creation of directed cycles is the main
weakness of the clustering technique as there are graphs that cannot be clus-
tered.

Z2 B
12

12

4

4

Figure 22: An invalid clustering of the graph in Figure 21a that leads to the creation of
a directed cycle, making it impossible to find an admissible schedule.

Bhattacharyya describes a bottom-up approach in [14] called Acyclic Pairwise

Grouping of Adjacent Nodes (APGAN). APGAN iteratively clusters pairs of adja-
cent actors until the whole graph is clustered into a single actor, similar to the
clustering example we demonstrated earlier. The approach produces single ap-
pearance schedules that are optimal as far as the buffer sizes are concerned,
when the graph contains no initial tokens.

A different, top-down, approach is presented in [89], called Recursive Parti-
tioning based on Minimum Cuts (RPMC). RPMC iteratively partitions the graph
into two subgraphs GL and GR with a schedule S

gL

L ;SgR

R where SL is the sched-
ule of GL and

gL = gcdt#A|A P ALu

The algorithm continues until each subgraph is composed of a single actor.
In [14], it is shown that the two approaches complement each other in the sense
that APGAN performs better with SDF with regular structures and RPMC with
SDF with more irregularities.

Falk et al. [41] assume graphs consisting of both CSDF and SDF actors. Then,
actors are clustered and FSMs are used to express the quasi-static schedule of
each cluster, greatly improving performance over a dynamic implementation.

In [16], a method that produces K-periodic schedules for SDF is presented.
The schedule is called K-periodic as there is a vector K that keeps the period
of execution of each actor. The paper indicates how K-periodic schedules that
achieve maximum throughput can be produced for SDF graphs. The benefit of
K-periodic schedules is that, in contrast with other approaches there is no need
for a prologue in the schedule.

Govindarajan et al. [55] present a method that minimizes the buffer require-
ments while keeping the rate-optimal (i. e., maximum throughput) execution
using linear programming. Stuijk et al. [114] explores the trade-off for CSDF

graphs.

38 data flow models of computation

1

3 q

pA

B C

D

E

F

Figure 23: GST of sequential schedule (A; (B;C)p;D)3;E; Fq.

2.4.5 Scheduling more Expressive Data Flow Graphs

When it comes to graphs of more expressive MoCs, conversion to HSDF is not
available at compile-time and it is too expensive to be used at run-time. That
is either because of the parametric nature of the repetition vector or because
of the dynamic topology changes. For this reason, production of schedules for
more expressive MoCs is of particular interest.

Dynamic Port Rates

Lee and Ha [75][58], introduced scheduling techniques for data-dependent data
flow graphs. More specifically, they coin the term quasi-static to refer to a sched-
ule statically produced at compile-time where the only computations left at
run-time are the absolutely necessary ones, i. e., a loop based on the value of a
parameter unknown at compile-time. This was the prelude to what later would
be the basis for scheduling parameterized graphs; quasi-static scheduling is
used in [10] to schedule PSDF graphs. This time the term is specified as param-

eterized looped schedules, and Bhattacharya describes a clustering technique for
scheduling PSDF graphs.

In [73], Ming-Yung Ko et al. introduce a representation of sequential sched-
ules called Generalized Schedule Tree (GST). These trees have leafs as actor fir-
ings while parent nodes indicate the iteration count of its children. For instance,
the sequential schedule

(A; (B;C)p;D)3;E; Fq

can be expressed with the GST of Figure 23.
Plishker et al. [100] introduces an approach to reuse the APGAN algorithm

in more dynamic data flow graphs, producing schedules represented by GSTs.
Kee et al. [70] apply the generalized schedule trees technique to optimize buffer
sizes of PSDF graphs.

GSTs are expanded into Scalable Schedule Trees (SSTs) in [109]. SSTs allow
nodes to have dynamic iteration count as well as the guarded execution of the
leaves where the actor firing corresponding to the leaf can be skipped if there
are insufficient data on the actor inputs. Finally, SST features arrayed children

nodes where the children of a node are executed based on a pattern. They are

2.4 data flow application implementation 39

A B C
3 1 2 4

(a) SDF graph

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8

A A A

B B B B B B B

C C C C

(b) Slotted ASAP schedule

Figure 24: An SDF graph and its respective ASAP slotted schedule.

used to express parameterized schedules in [124]. However, SSTs as well as GSTs

are limited to sequential schedules.
Apart from code and buffer size, throughput for parameterized MoCs is ex-

plored as well. In [122], minimum buffer sizes for VRDF graphs with throughput
constraints are computed.

Dynamic Topology

When it comes to dynamic topology, Buck [21] explores the generation of
bounded length sequential schedules for BDF graphs. He proposes a cluster-
ing technique that achieves such schedules, However, because of the nature of
BDF, the resulting schedules may not strictly implement one iteration of the
graph and boundedness is not always guaranteed.

Parallel scheduling of BDF graphs is also addressed by Ha and Lee [58]. They
preserve the boundary of each iteration whatever the boolean values, allowing
static timing to be used. This is achieved by adding slack in the relevant parts
of the schedule.

Ko et al. considers graphs with dynamic topology [72], and proposes a method
to produce multiple sequential schedules at compile-time that are then used at
run-time according to the current graph topology. The approach aims at the
reduction of the code size schedule and the buffer sizes considering both single
and multiple appearance schedules.

Slotted Scheduling

A special type of parallel scheduling is blocked or slotted scheduling [58]. Slotted
scheduling is a technique where the schedule is expressed by a sequence of
slots. In each schedule slot, a set of actors fire in parallel. A slot cannot start
its execution before all the actors from the previous slot have completed their
firing.

Slotted scheduling is sometimes preferred, as it makes it easier to express
parallel schedules. Without slots, the synchronization between processors have
to be explicitly expressed. This synchronization heavily depends on the param-
eter values in graphs with parametric rates. Slotted scheduling simplifies the
expression of quasi-static schedules.

40 data flow models of computation

The main drawback of slotted scheduling is that, due to the hard synchro-
nization between slots, slack may be introduced. For this reason, the main goal
of slotted scheduling is to group actor firings with similar durations in the same
slot. Techniques like retiming [83], move the graph initial tokens changing the
graph data dependencies, and loop winding [54], a pipelining technique sim-
ilar to functional pipelining [63], can be used to reduce the introduced slack.
Moreover, the slotted schedule itself can group actors with similar execution
times in the same slot to further reduce the slack.

Throughout the thesis, we present slotted schedules in two ways: as a set of
slot sequences for each actor, or as a single schedule stream.

Slot sequences are sequences of events that indicate whether an actor fires (F)
or remains idle (E) during a slot. The events are separated by the ‘;’ operator
that indicates sequencial execution. Indexes are used to indicate repetition of
the same event. We use parenthesis to group parts of the sequence that may
iterate. For the slotted schedule in Figure 24b, the slot sequences of the actors
are:

A : F2

B : E;F6

C : E3; (F;E)2;F

Schedule streams are produced by merging the slot sequence of each actor to-
gether, executing in parallel the events from each slot sequence in a single slot.
Parallel execution is indicated with the ‘}’ operator. The merging procedure
is described in detail in Appendix A.1. The merging of the schedule streams
above yields:

A; (A}B); (B; (B}C))2;B;C;

Assuming that the timing of the actors is known, e. g., tA = 2, tB = 1 and
tC = 3 time units, we get the slotted schedule shown visually in Figure 24b.
We see that when actors B and C are grouped together, actor B is delayed until
the firing of actor C is completed. For instance, it would be better to trigger the
4th firing of B right after its 3rd firing in the 4th slot instead of firing it in a
separate slot, but this is not allowed by the slotted model. In this way, when
actor B is grouped in the same slot with actor C, it stands idle until the slot is
finished, introducing slack in the schedule.

2.5 summary

In this chapter, the current state-of-the-art of Models of Computation that fo-
cus on parallelism was presented. Two main steps of system design have been
discussed: modeling and implementation.

Data flow modeling has been a natural choice for the development of highly
parallel streaming applications. The intuitive design and the exposure of the un-
derlying parallelism makes data flow a very attractive solution. Moreover, data
flow MoCs provide compile-time analyses for both qualitative and quantitative
properties of the system. In this way, the development procedure becomes faster
and less error-prone, resulting in more reliable and high quality products.

2.5 summary 41

Still, new data flow MoCs are needed as current applications get more com-
plex and demand increased expressiveness. Proper combination of both topo-
logical and data rate dynamism has not yet been achieved in any of the existing
models. These features are desirable in modern streaming applications that pro-
cess encoded data. Based on the encoding, the amount of data as well as the
parts of the application that process it may vary, as discussed in Section 1.3.

Implementation on many-core platforms is very challenging as there are
many different conflicting parameters to take into account. Many task sche-
duling heuristics have been developed, and although they can be reused in less
expressive models like SDF, they quickly become obsolete when more expres-
sive models are employed. New techniques have been developed to schedule
parametric data flow graphs. However, they are limited to sequential schedules.
Parallel scheduling of parametric MoCs is crucial for their efficient implementa-
tion on many-core platforms.

Finally, various optimization criteria were presented. It is evident that through-
put plays a prominent role in the development of an application. Most stream-
ing applications have real-time constraints that are reflected on throughput con-
straints. To satisfy these constraints, appropriate buffer sizes need to be selected
and power consumption needs to be fine tuned.

However, when it comes to parametric MoCs, throughput calculation at compile-
time is not available since it depends on the parameters which are data-dependent.
There have been some efforts to compute the throughput of more expressive
MoCs like SADF but when it comes to parametric MoCs throughput computation
is still lacking.

In the following, we present a new data flow MoC that provides both topo-
logical and data rate dynamism at run-time based on a combination of both
integer and boolean parameters. The aim of the model is to increase the expres-
siveness of previous MoCs, so that streaming applications, like video decoders,
can be modeled more efficiently. The new MoC preserves all the static analyses
that make data flow modeling so attractive. Our new data flow MoC, Boolean
Paramatric Data Flow (BPDF), is presented in Chapter 3.

Furthermore, we propose a scheduling framework that can schedule data
flow MoCs on many-core platforms. The framework relies on scheduling con-
straints that can derive either from the application or the designer. The con-
straints are analyzed parametrically and a schedule is produced at compile-
time when possible. When not, a dynamic scheduler is employed. The frame-
work is presented in detail and applied to BPDF in Chapter 4.

Finally, the thesis addresses the problem of parametric throughput calcula-
tion. A method of calculating throughput for MoCs with parametric rates is
presented in Chapter 5.

3
B O O L E A N PA R A M E T R I C D ATA F L O W

Everything flows

— Heraclitus

Data flow Models of Computation (MoCs) are well-suited to develop stream-
ing applications on many-cores. They allow the parallel development of indi-
vidual parts of an application and their reuse in future applications. Data flow
MoCs expose the task parallelism of the application, which is essential for an effi-
cient deployment on many-core platforms.

Another feature that makes data flow modeling attractive is its static ana-

lyzability. Data flow programs can be analyzed to provide guarantees on their
execution at compile-time. Properties like liveness and bounded execution can
be ensured. It is easy to write deadlocking applications, so liveness is impor-
tant to guarantee continuous execution. Boundedness is crucial for embedded
platforms which often have limited memory available. Knowing the amount of
memory needed by an application at compile-time, allows its static allocation,
leading to more efficient implementations.

Many streaming applications have a dynamic behavior. In order to capture
them efficiently, two main features of the underlying MoC are needed: dynamic

reconfiguration of the application topology and dynamic rates at which the vari-
ous components of the application exchange data when executing.

Still, MoCs that combine both kinds of dynamic behaviour are lacking either
in expressiveness or analyzability. To overcome this shortcoming, we propose a
new MoC, called Boolean Paramatric Data Flow (BPDF), which combines integer
parameters (to express dynamic rates) and boolean parameters (to express the
activation and deactivation of communication channels). Integer parameters
can change between each iteration while boolean parameters can even change
within an iteration.

When expressiveness increases, analyzability is usually compromised. The
major challenge with such dynamic MoCs is to guarantee liveness and bound-
edness. For BPDF, we provide static analyses which ensure statically these prop-
erties.

The chapter is organized as follows: In Section 3.1 we present the syntax and
informal semantics of BPDF. In Section 3.2, the static analyses are described.
Then, in Section 3.3, some implementation details and subtleties raised by the
dynamic features are discussed. Finally, Section 3.4 contains a comparison of
BPDF with other parametric MoCs.

3.1 boolean parametric data flow

BPDF extends SDF by allowing rates to be parametric and edges to be annotated
with boolean conditions. This way BPDF combines dynamic port rates with dy-

43

44 boolean parametric data flow

namic graph topology. Unlike other models, BPDF strictly separates the role of
rates, which are directly linked with the graph iteration, from the role of the
boolean conditions, which are linked with disabling edges and changing the
graph topology. This is achieved by restricting the integer rates of the ports to
non-zero values.

3.1.1 Parametric rates

BPDF port rates are products of positive integers or symbolic variables. They are
defined by the grammar:

R ::= k | p | R1 ¨R2

where k P N
˚ and p P Pi, with Pi denoting the set of symbolic variables

standing for integer parameters.
Although it is not needed for the analysis of the model, a maximal value for

each integer parameter must be specified for implementation purposes (e. g., as-
signing sufficient buffer sizes). We will denote the maximum of a parameter p

as pmax. Therefore, any given parameter p varies in the interval [1..pmax].
Unlike the rates of SDF graphs that are fixed at compile time, the paramet-

ric rates of a BPDF graph can change between iterations. The mechanism that
change the integer values must guarantee that all values are set at the beginning
of each iteration. The choice of such a mechanism is implementation dependent
and does not interact with the analyses or compilation process.

3.1.2 Boolean conditions

Each BPDF edge is annotated by a boolean condition which deactivates the edge
when it evaluates to false. These boolean expressions are defined by the gram-
mar:

B ::= tt | ff | b | B | B1 ^B2 | B1 _B2

where tt is true, ff is false and b belongs to Pb, denoting the set of symbolic
variables standing for boolean parameters.

Each boolean parameter is modified by a single actor called its modifier. In
BPDF, a modifier may change a boolean parameter within a graph iteration,
using the annotation “b@π” where b is the boolean parameter to be set and
π is the period at which the boolean changes value. The period of a boolean
parameter b is the exact (possibly symbolic) number of firings of its modifier
between two successive changes. Once a new value is produced it propagates
to all the actors that need it, as discussed in Section 3.3.2.

3.1.3 Formal definition

Formally, a BPDF graph is defined as a 10-tuple:

(G,Pi,Pb, lnk, init,prd, cns,β,M,πw)

where:

3.1 boolean parametric data flow 45

• G is a directed connected multigraph (A, E) with A a set of actors, and E

a set of directed edges.
• Pi is the set of integer parameters.
• Pb is the set of boolean parameters.
• lnk : E Ñ A ˆ A associates each edge with the pair of actors that it

connects.
• init : EÑ R associates each edge with a number of initial tokens.
• prd : EÑ R associates each edge with its production rate.
• cns : EÑ R associates each edge with its consumption rate.
• β : EÑ B associates each edge with its boolean condition.
• M : Pb Ñ A returns for each boolean parameter its modifier.
• πw : Pb Ñ R returns for each boolean parameter its writing period.

As in SDF, we may refer to port rates instead of edge production/consump-
tion rates.

For each boolean parameter, we define its set of users and its frequency,
which are used in the analysis of the model in later sections. An actor A is
a user of a boolean parameter b if A is connected by an edge whose condition
involves b. The set of all the users of b is therefore defined as:

Definition 5 (Users). The set of users of the boolean parameter b, written Users(b),

is defined as

Users(b) = tA,B | (ĎAB) P E,b P β(ĎAB)u

The modifier, M(b), writes b at period πw, while all the actors in Users(b)

read b at period πr. These are called reading and writing periods, respectively.
The writing periods are defined in the model definition. Then, the reading pe-
riods of all actors can be calculated. Boolean parameter communication must
ensure that the parameters are written and read at the right pace without intro-
ducing deadlocks. The implementation of the boolean parameter communica-
tion is discussed in Section 3.3.2. In addition of periods, there is also the notion
of frequency, which is the number of times a parameter may change within an
iteration. It is equal to the number of firings of its modifier during one iteration,
divided by its writing period.

Definition 6 (Frequency). The frequency of a boolean parameter b , written freq(b),

is defined as

freq(b) =
#M(b)

πw(b)
(5)

Based on the frequency of the parameter, the reading period of each user is
calculated, hence for an actor U P Users(b):

πU
r (b) =

#U
freq(b)

(6)

In this way, all the boolean values that are produced by the modifier within
an iteration are also consumed by the users. Reading and writing periods are
detailed in Section 3.2.2.

BPDF combines parametric rates and frequent topology reconfiguration as no
other dataflow model proposes. Furthermore, as shown in the next section, this
gain in expressiveness does not prohibit effective static analyses.

46 boolean parametric data flow

A B

C

D

E
p

2 2

b

¬b

b

b@2

Figure 25: An example of a BPDF graph with an integer parameter p and boolean pa-
rameter b

3.1.4 Example

Figure 25 shows a simple BPDF graph. Omitted rates and conditions are equal
to 1 and tt respectively. The graph uses one parametric rate (prd(ĎAB) = p)

and a single boolean parameter, b appearing in the conditions of edges ĎBC,
ĚBD and ĎCE. The modifier of b is actor B, (M(b) = B), with writing period of
2, (πw(b) = 2), annotated underneath the actor with b@2. Finally, Users(b) =
tB, C, D, Eu.

The repetition vector is [A2, B2p, Cp, D2p, E2p], which is computed with
a symbolic variant of the classical SDF algorithm (see Section 3.2.1). With the
solution of the modifier (B) known, we can compute the frequency of boolean
parameter b using Eq. (5):

freq(b) = #B/πw(b) = 2p/2 = p

which indicates that parameter b may take p different values within an itera-
tion.

The conditional edges are active only when their condition (here b or b) is
tt. When an actor fires, it first evaluates the condition of its edges. Hence, if
the actor is a modifier it sets all boolean values. Then, it consumes tokens only
from the incoming edges with a boolean condition that evaluates to tt. Then,
the actor executes its internal function and produces tokens on its outgoing
edges that have a boolean condition that evaluates to tt.

This implies that a completely disconnected actor, i. e., whose edges all eval-
uate to ff, still fires but does not read or write on any edge. Such a firing
may be seen as dummy firing. The propagation of boolean values still takes
place through auxiliary ports as described in Section 3.3.2. Hence, the actor can
continue firing without consuming or producing tokens until one of boolean
parameter changes and sets one of the edge conditions to tt.

With that in mind, a sample execution of the graph assuming p is set to 10

is the following: A fires and produces p = 10 tokens on edge ĎAB. Then B fires

3.2 static analyses 47

and sets the value of boolean parameter b. If b is set to tt, B does not produce
tokens on edge ĚBD. The reading period of D is (Eq. (6)):

πD
r (b) =

#D
freqb

=
2p

p
= 2

Hence, D will fire twice without consuming tokens and then will wait for the
next boolean value. B will fire a second time without changing the value of b
enabling C to fire once. Finally, E will consume the tokens produced by C and
D.

If b is set to ff, C is disconnected and it will fire once without producing
or consuming tokens before waiting for the next boolean value (πC

r (b) = 1). D
and E will fire as expected. This continues until each actor has fired a number
of times equal to its repetition count (as in SDF).

In the above, we see that BPDF execution is determinate. The output of the
graph in Figure 25 is independent of the order of execution of the enabled
actors.

3.2 static analyses

Static analyses of an application are very important for embedded systems. It
provides guarantees, and helps the development of efficient and robust appli-
cations. As in SDF and some other data flow models, BPDF can be statically
analyzed. In this section we present how a BPDF application can be checked for
consistency, boundedness and liveness.

3.2.1 Rate Consistency

Like in SDF, rate consistency in BPDF is checked by solving a system of balance
equations. The difficulty in BPDF is that there are parametric rates and therefore,
a unique integer solution cannot be found. For this, the balance equations are
solved symbolically instead, and in general, the resulting repetition vector is
symbolic.

However, a BPDF graph with n boolean parameters may have up to 2n con-
figurations, each one with a different system of equations, leading to multiple
repetition vectors. Furthermore, the configuration of a BPDF graph may change
within an iteration. There is the possibility that the graph changes to a con-
figuration with a different repetition vector than the previous configuration,
making reasoning about an iteration very difficult.

For this reason, when checking BPDF consistency, the boolean parameters are
not taken into account. This enforces the system to be rate consistent for all pos-
sible configurations of the graph. Indeed, if the system is rate consistent when
all edges are present (enabled), then it is also consistent when one or several
edges are removed (disabled). This reflects to the system of balance equations
as well because, when removing edges, the resulting system of equations will
be a subset of the original system of equations of the fully connected graph
(i. e., graph with all edges active regardless the boolean values). The solution of
the superset of equations will also be a solution of all subsets corresponding

48 boolean parametric data flow

to different configurations of the graph. In this way, the graph uses the same
repetition vector for all possible configurations.

The algorithm used to solve the system of balance equations is a general-
ized version of the one used for SDF graphs in [6], using symbolic operations
instead of integer operations. The algorithm randomly chooses one actor, sets
its solution to 1, and recursively solves all other actors, according to the bal-
ance equations. A normalization step is needed to yield the minimum positive
symbolic integer solution.

Checking rate consistency of all edges maybe considered too strict because
it does not take into account the fact that some edges may not be active at
the same time (e. g., two edges annotated by b and b). On the other hand, it
simplifies the understanding and implementation since a graph has a unique
(although parametric) iteration vector.

Assuming the graph in Figure 25, we arbitrarily set #B = 1. Then, due to the
balance equations we find

p ¨ #A = #B

2 ¨ #C = #B

#D = #B

#E = #D

,
////.

////-

ñ

#A = 1
p

#B = 1

#C = 1
2

#D = 1

#E = 1

To normalize we multiply all solutions with the least common multiple of
the denominators, here we get lcm = 2p. The resulting repetition vector is
therefore:

[A2 B2p Cp D2p E2p]

If the undirected version of the BPDF graph is acyclic, a solution to the balance
equations always exists. When the BPDF graph contains an undirected cycle, the
graph may be rate inconsistent. There is, however, a necessary and sufficient
condition for the existence of solutions. Each undirected cycle

X1,X2, . . . ,Xn,X1

should satisfy the following condition:

(Cycle condition) p1 ¨ p2 . . . ¨ pn = q1 ¨ q2 . . . ¨ qn (7)

where pi and qj denote respectively, the production and consumption rates of
edge (Xi,Xj). This condition enforces that the product of “output” rates of a
cycle should be equal to the product of “input” rates of this cycle.

Property 1 (Consistency). A BPDF graph is rate consistent iff all its undirected cycles

satisfy the cycle condition (Eq. (7)).

Proof. To prove Property 1, we consider a cycle

X1
p1 q2

X2
p2

. . .
qn

Xn
pn q1

X1

3.2 static analyses 49

We show that the solutions found for the path obtained by removing the edge
Xn

pn q1X1 are also solutions for the balance equation of the suppressed
edge. The solutions verify the following balance equations:

#Xi ¨ pi = #Xi+1 ¨ qi+1 for i = 1 . . . n´ 1

Multiplying all the lhs and rhs of the n´ 1 equations, yields:

#X1 ¨ . . . ¨ #Xn´1 ¨ p1 . . . ¨ pn´1 = #X2 ¨ . . . ¨ #Xn ¨ q2 . . . ¨ qn

We remove the common factors:

#X1 ¨ p1 ¨ p2 . . . ¨ pn´1 = #Xn ¨ q2 ¨ . . . ¨ qn

By multiplying both sides by q1, we get:

#X1 ¨ q1 ¨ p1 ¨ p2 . . . ¨ pn´1 = #Xn ¨ q1 ¨ q2 . . . ¨ qn

Then, the cycle condition (Eq. (7)) gives:

#X1 ¨ q1 ¨ p1 ¨ p2 . . . ¨ pn´1 = #Xn ¨ p1 ¨ p2 . . . ¨ pn

And, by simplifying by p1 ¨ p2 . . . ¨ pn´1, we finally get:

#X1 ¨ q1 = #Xn ¨ pn

which is the balance equation of the suppressed edge. The cycle condition guar-
antees that the balance equation of any suppressed edge is satisfied. Hence, the
generic solutions satisfy the balance equations for all edges, which guarantees
rate consistency of the graph.

Finding a solution for the system of balance equations suffices for the con-
sistency of a BPDF graph. However, the cycle condition indicates which cycle is
the culprit for the absence of a solution. It may provide useful feedback to the
application developer.

3.2.2 Boundedness

In the case of SDF, a rate consistent graph also guarantees bounded execution
as there exists a series of firings that returns the graph to its initial state, if it
is deadlock free. As far as the integer parameters are concerned, this is true for
BPDF as well; if the BPDF graph returns to its initial state after each iteration,
then all integer parameters can be modified at these points and boundedness
is guaranteed.

However, when boolean parameters are introduced, rate consistency alone is
no longer sufficient to guarantee that the graph will return to its initial state.
Consider for example the graph in Figure 26a. This is the same graph as the
one in Figure 25 except for the writing period of the boolean parameter b which
now is πw(b) = 1. First actor A fires and produces p tokens on ĎAB (Figure 26b).
Then, B sets the value of b to true, and produces one token on ĎBC as shown in
Figure 26c. If actor B changes the value to false (Figure 26d), the token in ĎBC

50 boolean parametric data flow

A B

C

D

E
p

2 2

b

¬b

b

b@1

(a) BPDF graph from Figure 25 with πw(b) = 1.

A B

C

D

E
p

2 2

b

¬b

b

b@1

p

(b) Actor A produces p tokens on ĎAB.

A B

C

D

E
p

2 2

b

¬b

b

b@1

p–1

b = true

(c) Actor B sets b to true and produces 1 token on ĎBC.

A B

C

D

E
p

2 2

b

¬b

b

b@1

p–2

b = false

(d) Actor B sets b to false and produces 1 token on ĚBD.

Figure 26: A sample execution of a BPDF graph with a non-valid writing period. There
is no guarantee that the token stored on ĎBC will be consumed.

3.2 static analyses 51

will not be consumed by actor C and there is no guarantee that b will take a
second true value. With one token stored on ĎBC the graph is unable to return
to its initial state and its iteration is compromised. Boundedness and liveness
are no longer guaranteed.

It is clear that not all periods are safe and their consistency must be checked.
The criterion ensuring that parameter modification periods are safe relies on
the notions of regions and local iterations.

Definition 7 (Region). The region of a boolean parameter b, noted R(b), is defined as:

R(b) = M(b)YUsers(b)

The region of a boolean parameter is the set containing its modifier and all
its users. For example, the region of b in Figure 25 (same as in Figure 26a) is
R(b) = tB, C, D, Eu.

Definition 8 (Local solutions). The local solution of an actor Xi in a subset of actors

L = tX1, . . . ,Xnu, written #LXi, is defined as:

#LXi =
#Xi

gcd(#X1, . . . , #Xn)

The solutions of the system of balance equations are called global solutions

because they define the number of firings for the iteration of the whole graph.
Given a subset of actors in a graph, we can extract a subgraph and accordingly
a new, smaller system of balance equations. By solving this system, a poten-
tially different solution is found for each actor, indicating the number of firings
needed for the subgraph to return to its initial state. These solutions are called
local solutions and they denote a nested iteration. We call the iteration of the sub-
graph a local iteration to differentiate it from the iteration of the graph called
global iteration.

Definition 9 (Period Safety). A BPDF graph is period safe if and only if for each

boolean parameter b P Pb and each actor X P R(b),

Dk P N
˚, #X = k ¨ freq(b)

The factor k is the reading (or writing) period of b for X.

Intuitively, the period safety criterion states that a parameter can be modified
at most once per local iteration of its region. For the graph in Figure 25, b

can be changed after each iteration of the subgraph formed by the actors in
R(b) = tB,C,D,Eu. We find that the iteration of the subgraph is (B2 C D2 E2),
hence b can change after every 2 firings of B. This formalizes why the writing
period of 2 in Figure 25 is safe and why the period of 1 in Figure 26a is not.

Another way to obtain the local iteration of a region is by factorizing the
global solutions of the actors in the region of the boolean parameter by their
greatest common divisor. Here, the global iteration is A2 B2p Cp D2p E2p. The
greatest common divisor of the solutions of the actors in R(b) is p. Factorizing
by p yields A2 (B2 C D2 E2)p, giving us the local iteration in the parenthesis.
Therefore, actor B can write a new boolean value every 2 firings, while actors
C,D,E read a new value after 1, 2, and 2 firings, respectively.

52 boolean parametric data flow

However, local iterations can only be defined when the number of firings of
each actor in the region of a parameter b is a multiple of the frequency of b.
This property is called period safety.

Period safety ensures that, during a local iteration of a region of a given
boolean parameter, the number of tokens produced on any edge of this region
equals the number of tokens consumed from this edge. It is ensured by a simple
syntactic check on BPDF graphs.

In Figure 25, R(b) = tB,C,D,Eu, freq(b) = #M(b)/πw(b) = p, and the rep-
etition vector is [A2 B2p Cp D2p E2p]. Each solution of the actors of R(b) is
a multiple of the frequency p. The annotation b@2 of B is thus period safe. In
contrast, the graph in Figure 26a uses a writing period πw(b) = 1. This gives a
new frequency of freq(b) = #M(b)/πw(b) = 2p. However, the solution of actor
C is not a multiple of freq(b) so, πw(b) = 1 is not a safe period.

Property 2 (Boundedness). A rate consistent and period safe BPDF graph returns to

its initial state at the end of its iteration.

Proof. To prove Property 2, we consider an arbitrary edge (Figure 27), and show
that, during an iteration, X produces the same number of tokens that Y con-
sumes. In this way, the edge returns to its initial state after an iteration. When
all edges return to their initial state, so does the graph.

X Y
x yf(b1,b2, · · · ,bn)

Figure 27: An arbitrary BPDF edge.

The condition f(b1, ¨ ¨ ¨ ,bn) is a boolean condition depending on n boolean
parameters b1,b2, ...,bn. Due to period safety, for each bi P tb1, ¨ ¨ ¨ ,bnu we
have:

Dki, ℓi P N
˚, #X = ki ¨ freq(bi) and #Y = ℓi ¨ freq(bi) (8)

By rate consistency, we also have

#X ¨ x = #Y ¨ y

Therefore, for each bi P tb1, ¨ ¨ ¨ ,bnu:

ki ¨ x = ℓi ¨ y (9)

When actor X (resp. Y) is fired, it produces x (resp. consumes y) tokens if
f(b1, ¨ ¨ ¨ ,bn) and 0 otherwise. We write that X produces prod(b1, ¨ ¨ ¨ ,bn) and
Y consumes cons(b1, ¨ ¨ ¨ ,bn) with

prod(b1, ¨ ¨ ¨ ,bn) = if f(b1, ¨ ¨ ¨ ,bn) then x else 0

cons(b1, ¨ ¨ ¨ ,bn) = if f(b1, ¨ ¨ ¨ ,bn) then y else 0

During an iteration, there will be freq(bi) (potentially different) values of boolean
bi. We note these values as the vector ~bi. Let Ò be the upsampling operator on
vectors defined as

[x1, . . . , xn] Ò k = [x1, ¨ ¨ ¨ , x1loooomoooon
k

, ¨ ¨ ¨ , xn, ¨ ¨ ¨ , xnlooooomooooon
k

]

3.2 static analyses 53

Then, ~bi Ò ki is a vector such that the boolean at rank i represents the value
that is used by X at its ith firing. The total production of tokens on the edge is:

P =

−Ñÿ
(M prod [~b1 Ò k1, . . . , ~bn Ò kn]) (10)

with
−Ñÿ

~a =

−Ñÿ
[a1, . . . ,an] = a1 + . . . + an

and

M f [~a1, . . . , ~an]

= M f [a1,1, . . . ,a1,m] . . . [an,1, . . . ,an,m]

= [f(a1,1, . . . ,an,1), . . . , f(a1,m, . . . ,an,m)]

Equivalently the total token consumption is:

C =

−Ñÿ
(M cons [~b1 Ò l1, . . . , ~bn Ò ln]) (11)

The following properties hold for these vector functions:
(

−Ñÿ
~v

)

Ò k =

−Ñÿ
(~v Ò k) (12)

(M f [~v1 ¨ ¨ ¨ ~vn]) Ò x = M f [~v1 Ò x ¨ ¨ ¨ ~vn Ò x] (13)

(~v Ò x) Ò y = ~v Ò (x ¨ y) (14)

Proofs of these properties are provided in Appendix A.2. By rate consistency:

−Ñÿ
(M prod ~v) x =

−Ñÿ
(M cons ~v) y (15)

Then, starting from Eq. (10):

P =

−Ñÿ (

M prod
[

~b1 Ò k1, . . . , ~bn Ò kn

])

=
1

x
¨ x

(

−Ñÿ (

M prod
[

~b1 Ò k1, . . . , ~bn Ò kn

])

)

by Eq. (12), Eq. (13), Eq. (14) :

=
1

x

(

−Ñÿ (

M prod
[

~b1 Ò (k1 ¨ x), . . . , ~bn Ò (kn ¨ x)
])

)

by Eq. (9) :

=
1

x

(

−Ñÿ (

M prod
[

~b1 Ò (l1 ¨ y), . . . , ~bn Ò (ln ¨ y)
])

)

by Eq. (14), Eq. (13), Eq. (12) :

=
y

x

(

−Ñÿ (

M prod
[

~b1 Ò l1, . . . , ~bn Ò ln

])

)

by Eq. (15), Eq. (11) :

=
y

x
¨
x

y

(

−Ñÿ (

M cons
[

~b1 Ò l1, . . . , ~bn Ò ln

])

)

= C

54 boolean parametric data flow

Therefore, for any edge and any successive boolean values, the number of pro-
duced tokens is equal the number of consumed tokens in an iteration. Hence,
all edges return to their initial state after one iteration and therefore, so does
the graph.

Rate consistency and period safety are crucial to ensure this property. How-
ever, we assume that actors can be fired in the right order to respect dataflow
and parameter communication constraints. This holds only when the graph is
live and the next section shows how liveness is checked.

3.2.3 Liveness

In SDF, checking liveness is performed by finding a schedule for a basic iteration.
Since each actor must be fired a fixed number of times in each iteration, this
can be done by an exhaustive search. A class of algorithms that finds schedules
for SDF is class-S algorithms discussed in Section 2.2.2. The situation is more
complex in BPDF for two reasons:

• First, boolean parameters have to be communicated within the iteration,
from modifiers to users. This introduces new constraints between firings
of modifiers and users which may introduce deadlocks.

• Second, actors may have to be fired a parametric number of times during
an iteration. Finding a schedule may, in general, involve some inductive
reasoning.

Boolean Parameter Communication

Boolean parameter communication is implemented by adding new edges to the
original BPDF graph. For each parameter boolean b, we add between its modifier
M = M(b) and each user U P Users(b), an edge e = ĚMU, with prd(e) = u and
cns(e) = m, with u and m being the local solutions of U and M in the region
of b:

u = #R(b)U and m = #R(b)M

In other words, M and U occur as (. . . Mm . . . Uu . . .) in the local iteration cor-
responding to the region of b. It is easy to see that the solutions of the balance
equations of the original graph are also valid for these new edges. During a
local iteration, M will produce m ¨ u copies of the value of b, which will all be
read by U during this local iteration. The sample BPDF graph from Figure 25

with its additional boolean propagation edges is shown in Figure 28. In Sec-
tion 3.3.2 we present a refinement of this implementation, which sends only
one copy for each new boolean value.

This implementation allows modifiers to change the value of a boolean pa-
rameter even when the previously sent value has not been read. In this context,
the effect of boolean parameters might be better described as disabling ports
instead of edges. Indeed, at a given instant the input and output ports of an
edge may be in a different state (i. e., one enabled and one disabled).

For example, in Figure 28, actor B may fire all 2p firings and produce all
p boolean values for parameter b on the boolean propagation edges, before
actors C,D and E start executing. When these actors execute they will enable

3.2 static analyses 55

A B

C

D

E
p

2 2

b

¬b

b

b@2

2

Figure 28: BPDF graph with its boolean propagation edges (dashed edges).

and disable their input ports depending on the boolean value that they read
from their boolean propagation edges. The safety period criterion guarantees
each actor will use the correct boolean values and the all tokens produced will
also be consumed.

The BPDF MoC ensures that the same number of tokens will be produced and
consumed on each edge during an iteration (see Property 2).

The newly added communication edges may introduce new cycles in the
graph, and subsequently deadlocks. As a consequence, liveness analysis must
be performed on the BPDF graph augmented with all its communication edges.
The augmented graph includes all possible constraints. Therefore, if it is live,
all resulting subgraphs with less edges (and thus less constraints) are live as
well.

Acyclic Graphs and Saturated Edges

Acyclic BPDF graphs are always live. In such case, the topological order of the
DAG defines a single appearance schedule [6]. The graph in Figure 28 is acyclic
and we easily find the schedule

A2;B2p;Cp;D2p;E2p

which shows that the graph is live.
Moreover, graphs where each cycle has at least one saturated edge is live. An

edge is said to be saturated if it contains enough initial tokens for its consumer
X to fire #X times. Since this edge has at least the total number of tokens con-
sumed by X in a complete iteration, it does not introduce any constraints and
can be ignored. If each cycle has a saturated edge, then the graph can be con-
sidered as acyclic (by removing this saturated edge) and therefore live. The
single appearance schedule corresponding to the topological order of the DAG

obtained by removing all the saturated edges is also a schedule for the original
graph.

56 boolean parametric data flow

A B C
2p

p

(a)

A B C
2p

p

(b)

A B C
b

¬bb@1

(c)

Figure 29: Various cases of live BPDF graphs.

Parametric SDF-like Liveness Checking

When there are cycles without any saturated edge, we adapt the approach taken
in SDF. Checking the liveness of cyclic SDF graphs is done by computing an
iteration by abstract execution. Since the total number of firings is fixed, all
possible orderings of firings can be tested. We adapt this approach to BPDF by

• ignoring booleans (all edges are assumed to be always enabled);
• testing only schedules where each s consecutive firings of an actor A

represents an integer fractional of its solution, i. e., Dk P N
˚, #A = k ¨ s

Ignoring boolean conditions is safe since it maximizes constraints. If a sched-
ule is found by assuming that all conditional edges are enabled, it will also be
valid if some of these edges are disabled. In this way, a global schedule is found,
admissible for all possible configurations of the graph.

By considering only occurrences of the form As with #A = k ¨ s, we bound
the number of such occurrences. For instance, if #A = α ¨ p, then at most α

occurrences will be considered in the abstract execution. In other words, if an
actor needs to be fired a parametric number of times, only parametric number
of firings will be considered. With this constraint, the liveness algorithm of
SDF can be reused. We refer to this algorithm as Parametric SDF-like Liveness
Checking (PSLC).

The PSLC algorithm is shown in Alg. 1. It is composed by a while loop over
the firings in the repetition vector and a for loop over the set of actors. Each
time the algorithm checks whether an actor has firings left, if it does, the al-
gorithm tries to fire it. If the firings left are parametric the algorithm tries to
fire the actor a parametric number of times. If the actor can fire the required
number of firings it is added to the schedule and both the graph status and the
repetition vector are updated. The algorithm continues till a repetition vector
worth of firings are scheduled or if no firing was added to the schedule after
the end of the for-loop. This indicates that there is a deadlock.

For instance, the graph in Figure 29a has a repetition vector of [A B2p C2p].
The sole cycle C = tB, Cu of the graph has no saturated edges; to be saturated
the edge ĎCB would need 2p tokens instead of only p tokens. Still, the PSLC

algorithm finds the schedule A; (Bp;Cp)2 and this graph is live.
Yet, there are cycles for which this approach is not sufficient. There are

graphs where actors with parametric solutions need to be considered in non-
parametric occurrences. Consider, for example, the graph of Figure 29b. Its

3.2 static analyses 57

Algorithm 1 Parametric SDF-like Liveness Checking (PSLC) algorithm
procedure PSLC(A, r)

while HasFirings(r) do

progress = false

for @a P A do

firings = GetFirings(a)

if firings == 0 then continue
end if

if IsParam(firings) then

timesÐ GetParam(firings)

else

timesÐ 1

end if

if CanFire(a, times) then

progressÐ true

AddFiring(a, times, schedule)
UpdateGraphStatus(a, times)

UpdateRepVector(a, times, r)
end if

end for

if progress == false then

return(deadlock)

end if

end while

return(schedule)

end procedure

repetition vector is also [A B2p C2p] and it is clearly live with the schedule
A; (B;C)2p. However, the PSLC algorithm cannot find it. In this case, a simple
inductive reasoning would suffice. However, such an inductive approach gets
complex to define for general BPDF graphs. We therefore propose two improve-
ments of the PSLC algorithm.

Cycle Clustering

To deal with such problematic cycles, we use the standard clustering technique
described in [6] and presented in Section 2.4.3. Clustering a subgraph G 1 of a
graph G involves replacing G 1 by a single actor Z. The new actor Z is connected
to the same external ports as G 1 was, but the port rates must be adjusted. The
port rate r of an actor A P G 1 is replaced by r ¨ #A 1A, where #A 1A is the local
solution of A in the set of actors A 1 of G 1.

Formally, given a G = (A,E) clustering replaces a set of actors Ψ Ď A with
actor Z resulting in graph G 1 = (A 1,E 1) where A 1 = A ´ Ψ + tZu and E 1 =

E´ te|lnk(e) = (A,B),A P Ψ_ B P Ψu+ E2 where E2 is a set of new modified
edges connected the new actor Z with the rest of the graph.

58 boolean parametric data flow

So, for each e = ĎAB P E with A P Ψ and B R Ψ we get an edge e 1 = ĎZB with
the same initial tokens and consumption rate but with

prd(e 1) = prd(e)ˆ #A/#ΨA

with #ΨA = #A/gcd(t#X|X P Ψu). Similarly, we get edges with Z as consumer.
for each e = ĎAB P E with A R Ψ and B P Ψ we get an edge e 1 = ĎAZ with the
same initial token and production rate but with

cns(e 1) = cns(e)ˆ #B/#ΨB

In general, clustering arbitrary subgraphs may introduce cycles. Here, by clus-
tering only cycles, we avoid introducing new ones.

For each cycle C = X1, . . . ,Xn, our PSLC algorithm finds a local schedule.
If the fraction of the total number of firings of each actor over its number of
firings in this local schedule is parametric, the cycle is clustered into a new
actor Z. The rate r of each port of an actor Xi connected to the rest of the graph
is replaced by r ¨ #CXi. It follows that a firing of Z corresponds to the firings
Xk1

1 , . . . ,Xkn
n with ki = #CXi.

For instance, the local schedule for the cycle of the graph of Figure 29b is
B;C. The fraction of the total number of firings over the number of firings in
the local schedule is parametric for each actor (2p1 = 2p in both cases). The
cycle is clustered into a new actor Z to get the new graph in Figure 30.

A Z
2p

b@1

Figure 30: Actors B and C from Figure 29b clustered into actor Z.

The PSLC algorithm now finds the schedule A;Z2p which corresponds to
A; (B;C)2p for the original graph, which is therefore correctly found to be live.

False Cycles

A final refinement is needed to take into account false cycles. For instance, the
previous algorithm would fail to find a schedule for the cycle in Figure 29c
since it does not have any initial tokens. However, it is clear that one of its two
edges is always disabled; in other words, this cycle is false. We also deal with
this issue by using clustering.

False cycles are detected using a truth table for all the conditions of the cy-
cle or using an SMT solver. If, for each combination of values of the boolean
parameters, at least one condition is false, then the cycle is false. The subgraph
forming cycle C can be clustered, as for each set of values of the boolean pa-
rameters, a – potentially different – schedule can always be found because in all
cases the subgraph is acyclic (one edge of the cycle is always disabled). Firing
the resulting actor corresponds to executing a different schedule depending on
the boolean conditions. However, in all cases, the local schedule fires the actors
the same number of times (i. e., each actor Xi is fired #CXi times).

3.3 implementation of BPDF applications 59

The false cycle of Figure 29c can be clustered into a new actor Z. A firing of Z
corresponds to the schedule if b = tt B;C else C;B. The global schedule A;Z2p

corresponds to the schedule

A; (if b then B;C else C;B)2p

To summarize, liveness checking proceeds by adding to the graph all the re-
quired boolean parameter communication edges, by suppressing the saturated
edges, by detecting and clustering all false cycles, by clustering all true cycles
whose local schedule does not fire actors a fractional part of their global solu-
tions, and finally by finding a schedule using the PSLC algorithm. If the last step
succeeds, a sequential schedule has been found and the graph is live.

The above analysis is incomplete and there are live BPDF graphs that will be
rejected, but it is sufficient in practice1. Note that the above analysis does not
try to estimate the minimal number of initial tokens for the graph to be live.
The goal of the analysis is only to verify that the graph is live, given an amount
of initial tokens.

3.3 implementation of BPDF applications

In this section, we deal with the subtleties that occur when it comes to the
implementation of a BPDF application. Namely, we deal with the boolean pa-
rameters communication, the detailed firing of the actors and the scheduling of
the application graph.

3.3.1 Actor Firing

In SDF and static MoCs, an actor fires as follows: once all its input edges of an
actor have enough tokens, the actor reads the data, executes an internal function
and then produces tokens on all its output edges.

In BPDF, the execution of an actor is similar but the boolean parameters need
to be taken into account. Some incoming edges may be disabled, enabling the
actor to fire even though those edges have insufficient data. So, before reading
data, an actor needs to evaluate the boolean conditions associated with its in-
coming edges. Similarly, the actor needs to evaluate the boolean conditions of
its outgoing edges to produce data only on the enabled ones.

The propagation of the boolean values and their periodic production/con-
sumption must be handled automatically to guarantee that the implementation
respects the model, eliminating the error-prone human factor. Moreover, in this
way the programmer does not need to take care of such tedious work.

For this reason, each BPDF actor uses a wrapper that deals with the boolean
parameters. This wrapper implements the reading and writing (in the case of
modifiers) of boolean parameters from and to the boolean propagation edges.
Generally, the firing of a BPDF actor consists of the following steps:

a. Set boolean values. (Modifiers only)
b. (Wrapper) Read values from boolean propagation edges.
c. (Wrapper) Read data from active incoming edges.

1 In fact, we have not encountered such a graph yet.

60 boolean parametric data flow

d. Execute internal function.
e. (Wrapper) Produce data on active output edges.
f. (Wrapper) Produce values on boolean propagation edges.

In this implementation, the modifier is unable to produce data dependent
values for its boolean parameters. Instead, the boolean parameters can be data
independent or depend on previous input values of the modifier. This is a sig-
nificant drawback because it is more practical for many applications to use
boolean parameters based on the data of the current firing. An alternative se-
quence (Figure 31) can be used to remedy this problem:

a. (Wrapper) Read values from boolean propagation edges.
b. (Wrapper) Read data from active incoming edges.
c. Execute internal function.
d. Set boolean values. (Modifiers only)
e. (Wrapper) Produce data on active output edges.
f. (Wrapper) Produce values on boolean propagation edges.

For example actor X in Figure 32, is the user of boolean parameter b1 and
the modifier of boolean parameter b2. Every time the actor fires, it first reads a
value for b1. If f(b1) = tt, it reads r tokens from the edge ĎRX. Then, it executes
its internal function and produces a value for the boolean parameter b2. If
g(b1,b2) = tt, it produces w tokens on the edge ĚXM. Finally, it produces #LM
copies of the value of b2 on the boolean propagation edge ĚXM.

With such an implementation, boolean parameters can take values depen-
dent on input data of the current firing. However, a modifier cannot have an
incoming edge with a condition that contains boolean parameters it modifies.
The reason is that the values of the boolean parameters are produced after read-
ing data from the input edges which may lead to the actor reading data from
an edge that would otherwise be disabled.

Both implementations do not affect the analyses of the model and can be
used. In our case, as we aim for data dependent parameters, we assume that
modifiers do not change boolean parameters that appear in the boolean condi-
tions of their input edges.

3.3.2 Parameter Communication

Since integer parameters can change their values only between iterations, their
communication is naturally synchronized by them and can be centralized. Hence,
we focus here on boolean parameter communication, which requires synchro-
nization between the firings of modifiers and users.

In Section 3.2.2, we implemented this synchronization by connecting each
modifier - user (M ´ U) pair with an edge e = ĚMU with prd(e) = u and
cns(e) = m, where u and m are the periods of reading (by U) and writing (by
M) of the boolean parameter.

With this pure data flow implementation, if u ă m, then each user U must
wait for several firings of M before it can read the parameter and fire itself. This
is more constrained than needed because the user could read the new value of
a parameter just after the first firing of its modifier. We therefore propose a less
constrained and more efficient implementation.

3.3 implementation of BPDF applications 61

C
O

R
E

W
R

A
P

P
E

R

/* ************** LEGEND ********************

* br1 - brL: Boolean parameters to read

* bw1 - bwK: Boolean parameters to write

* e_in1 - e_inN: Input edges

* e_out1 - e_outM: Output edges

* count_ <param >: Counter for <param >

* read(<edge >): Reads data from <edge >

* write(<data >,<edge >): Writes <data > on <edge >

* cond(<edge >): Evaluates the condition of the <edge >

** */

// Reading values of boolean parameters

br_1 = read (e_br1);

...

br_L = read (e_br1);

// Reading tokens from enabled incoming edges

if (cond(in1)) then in1 = read(e_in1)

...

if (cond(inN)) then inN = read(e_inN)

// Main function

fire();

// Set up new boolean values

bw1 = newValue_bw1 ();

...

bwK = newValue_bwK ();

// Writing tokens to enabled outgoing edges

if (cond(e_out1)) then write(out1 ,e_out1)

...

if (cond(e_outM)) then write(outM ,e_outM)

// Writing values of boolean parameters to all users

// Write values to all (i) users of bw1

write(bw1 ,e_bw1U1);

...

write(bw1 ,e_bw1Ui);

...

// Write values to all (j) users of bwK

write(bwK ,e_bwKU1);

...

write(bwK ,e_bwKUj);

Figure 31: Generic wrapper for a BPDF modifier that can set boolean parameters based
on the input of its current firing (Alternative solution).

62 boolean parametric data flow

R X M
x r w yf(b1) g(b1,b2)

b1@π1 b2@π2
#X #R

#M #R

#LM #LX

Figure 32: A BPDF graph expanded with its boolean propagation edges.

Consider the graph in Figure 32. Actor X is the modifier of b2 and a user of b1;
it reads and writes tokens to and from conditional edges with a reading period
πr for b1, and a writing period πw for b2. The code in Listing 1 implements
one firing of X.

First, actor X must read the value of parameter b1 every πr = #X/freq(b1)

firings (the period safety ensures that this number is an integer). Counter
count_b1 implements this periodic reading. If the input edge ĎRX is active,
i. e., f(b1) = tt, then X consumes r tokens. Then, the actor executes its inter-
nal function fire().

Actor X is also the modifier of b2, so it must send a new value to each user of
b2 every πw firings. Counter count_b2 keeps track of the writing period. The
edge between X and user M is denoted by e_b2M. Finally, if g(b1,b2) = tt, then
X produces w tokens on edge ĚXW.

Code wrappers implementing this periodic behaviour of reading and writ-
ing boolean parameters can easily be produced automatically as shown in the
generic wrapper in Figure 33. Their role is to synchronize the firings of modi-
fiers and users for parameter communication. A user will be blocked waiting
for the modifier to produce the new boolean value that it needs. Thus, if a com-
pletely disconnected actor can fire without constraint, it will eventually have to
wait in order to read (or write) a new boolean value.

Actually, this implementation can be described in a dataflow-like manner by
adding edges between modifiers and users of the form

M U
1

πw(b)
1

πr(b)

where πr(b) denotes the reading period of b by U and a fractional rate, a
b ,

means “produce/consume a tokens each b firings”. This representation is re-
lated to an extension of SDF: the Fractional Rate Data Flow (FRDF) model [90].

3.3.3 Scheduling

In Section 3.2.3, we described a way to find sequential schedules for BPDF ap-
plications. However, our objective is to use BPDF to implement streaming ap-
plications on many-cores with highly parallel schedules. In such cases, it is

3.3 implementation of BPDF applications 63

C
O

R
E

W
R

A
P

P
E

R
/* ************** LEGEND ********************

* br1 - brL: Boolean parameters to read

* bw1 - bwK: Boolean parameters to write

* e_in1 - e_inN: Input edges

* e_out1 - e_outM: Output edges

* count_ <param >: Counter for <param >

* read(<edge >): Reads data from <edge >

* write(<data >,<edge >): Writes <data > on <edge >

* cond(<edge >): Evaluates the condition of the <edge >

** */

// Reading parameters values at the right periods

if (count_br1 == 0) then br_1 = read(e_br1);

...

if (count_brL == 0) then br_L = read(e_brL);

// Reading tokens from enabled incoming edges

if (cond(in1)) then in1 = read(e_in1)

...

if (cond(inN)) then inN = read(e_inN)

// Main function

fire();

// Set up new boolean values

bw1 = newValue_bw1 ();

...

bwK = newValue_bwK ();

// Writing tokens to enabled outgoing edges

if (cond(e_out1)) then write(out1 ,e_out1)

...

if (cond(e_outM)) then write(outM ,e_outM)

// Writing parameter values at the right periods

if (count_bw1 =0) then {

// Write values to all (i) users of bw1

write_p(bw1 ,e_bw1U1);

...

write_p(bw1 ,e_bw1Ui);

}

...

if (count_bwK =0) then {}

// Write values to all (j) users of bwK

write_p(bk ,e_bwKU1);

...

write_p(bk ,e_bwKUj);

}

/* Increment the counters modulo the

writing and reading periods */

count_bw1 = (count_bw1 +1) % pw_bw1;

...

count_bwK = (count_bwk +1) % pw_bwK;

count_br1 = (count_br1 +1) % (#X / freq(br1));

...

count_brL = (count_brL +1) % (#X / freq(brL));

Figure 33: Generic wrapper for a BPDF actor using periodic reading and writing of
parameters.

64 boolean parametric data flow

Listing 1: Sample code of one firing of actor X of Figure 32

// Read b1 at the right period

if (count_b1 == 0) {b1 = read(e_b1);}

// Read tokens from (e_RX) if enabled

if (f(b1)) {

for (i = 0; i < r;i++) {in[i] = read(e_RX);}

}

// Main function

fire();

// Set value of b2

b2 = newValue_b2();

// Write tokens on (e_XW) if enabled

if (g(b1,b2)) {

for (i = 0; i < w;i++) write(out[i],e_XW);

}

// Write b2 on the propagation edge to M at the right period

if (count_b2 == 0) {write (b2,e_b2M);}

// Increment the counters modulo the writing and reading periods

count_b1=(count_b1+1) % #X / freq(b1);

count_b2=(count_b2+1) % pw_b2;

}

usual to use ASAP scheduling. When it comes to the production of ASAP sched-
ules, complexity increases quickly. BPDF adds to the complexity because of the
boolean parameters and the parametric rates as well. In this section, we discuss
the main difficulties that arise in the production of ASAP parallel schedules for
BPDF applications. We will not go into much details, however, as we present our
scheduling approach in Chapter 4.

Implications due to Integer Parameters

An ASAP schedule needs to fire each actor as soon as its firing constraints are
satisfied. In simpler models like SDF, this means that there are enough data
on all the input edges of an actor and it can be found easily at compile time.
However, this is not as simple in BPDF.

Consider the simple BPDF edge in Figure 34. with production/consumption
rates p and q, boolean guard c, and t initial tokens. In order to find when there
are enough tokens on the edge for actor B to fire, we need to now the values
of the parameters. This means that the scheduling needs to take place at run
time except for some cases when we may deduct a quasi-static expression for
the schedule.

A B
p qc

t

Figure 34: A simple BPDF edge.

3.3 implementation of BPDF applications 65

However, the generation and analysis of a task graph of a given SDF graph
cannot be afforded at run-time. For this reason, in Chapter 4, we introduce a
scheduling framework that handles the generation of such a schedule in an
efficient way.

Implications due to Boolean Parameters

Boolean parameters affect the scheduling procedure in two ways: first, they add
data dependencies due to the parameter communication edges, and secondly
they remove data dependencies at run-time based on the values of the boolean
parameters.

In the case of the parameter communication edges, they can readily be dealt
with as edges of the graph that introduce additional data dependencies. How-
ever, if the refined edges (Section 3.3.2) are used, the constraints need to be
refined as well.

When an edge is deactivated, the scheduler should take it into account as it
may remove a data dependency, thereby allowing the consumer to fire earlier.
Moreover, an actor may get completely disconnected and still fire. A firing with
no input may be totally acceptable by the main functionality of the actor, and
so it fires normally. However, for some actors it may not make sense to execute
without input. In these cases, the actor performs a dummy firing, i. e., a firing
without calling its internal function, just to keep synchronized with the rest of
the BPDF graph. These firings just adjust the internal counters of the actor.

3.3.4 BPDF Compositionality

So far, we have considered BPDF graphs that are flat, i. e., each actor is a primitive
functional unit. However, one of the benefits of data flow models is modular-
ity and the ability of developing complex applications from the composition
of multiple simple ones. Using composites has many benefits in applications
development. It allows the separate development of parts of the application
from different teams, the reusability of previously developed modules, and the
scalability of the applications (by dealing with several smaller ones instead of
a single large application).

In such a setting, a graph may have actors that themselves are graphs. Such
actors are called composites. MoCs like PSDF [11], PiMM [37] and interfaced SDF [97]
focus on such hierarchical compositions of applications.

In this section, we discuss the subtleties that arise when BPDF graphs are used
hierarchically. Each graph in a lower hierarchical level should have an interface
with the higher hierarchical level, i. e., edges that connect the actors of the graph
with the ports of the composite actor. Such an actor is shown in Figure 35. The
composite has two inputs, connected to actors A and B with rates p and 2, and
one output from actor D with rate of 1. We refer to these actors as interface actors

and the edges as interface edges. The rates of the interface of the composite are
computed based on the rates of the interface actors and their solution in the
composite. For an actor A with solution #A and port rate rA, we get the rate
rCA of the composite using:

rCA = #A ¨ rA (16)

66 boolean parametric data flow

A

B

C D
p p

b

¬b

b@1

p

2

1

r = [ABp Cp D]

M
2 · #B

p · #A

#D

Figure 35: A BPDF composite.

In this way, one firing of the composite actor corresponds to the execution of
one iteration of the graph within the composite. In Figure 36a the composite
actor M is used in a BPDF graph. The equivalent flattened version of the graph
is shown in Figure 36b.

An issue that arises in this scheme, is the usage of integer parameters. If
the interface actors have parametric solutions, then parent and child should
share these integer parameters. This limits the child to change these integer
values between iterations of the parent graph. However, if the interface of the
child has only fixed rates, or there are integer parameters that do not appear in
the solutions of the interface actors, then these integer parameters of the child
can change their values between iterations of the child graph, i. e., potentially
multiple times within the iteration of the parent. As a consequence, such an
hierarchical BPDF graph cannot be flattened into a BPDF graph.

Boolean parameters need to be considered too. Boolean parameters modified
by an actor in the parent graph, can be safely used in the edges of the child as
their values will remain fixed during the iteration of the child. In this way, they
will have a frequency of 1 and all reading periods will equal the solution of the
actor, satisfying the safety period. However, the definition of the region of the
boolean parameters needs to be modified to include composite actors whose
graph include users of the boolean parameter.

It is best to prohibit modifiers of boolean parameters of the parent graph to be
actors within a composite. Although the composite may act as a modifier for the
parent, there may be cases that the modifier within the composite changes the
boolean parameter multiple times during an execution of the composite which
raises the question of which value will be used in the parent. For this, boolean
parameters should be limited on one hierarchical level at a time or ensure that
a modifier in a lower level produces unique values. However, propagation of

3.4 model comparison 67

K

L
M N

2p

p

q

q

(a) Composite actor M inside its top-level
BPDF graph.

A

B

C D

K

L N
p p

2

pq q

b

¬b

b@1

M

(b) Equivalent BPDF graph without composites.

Figure 36: An hierarchical BPDF graph and its flattened equivalent.

boolean values across different levels of the hierarchy complicates the design
and should be avoided.

3.4 model comparison

BPDF is a MoC that combines dynamic rates with dynamic topology. There are
other models that have at least one of these two features as well. The main differ-
ence between these MoCs is the trade-off between expressivity and analyzability.
In this section we compare BPDF with models that have similar expressivity.

3.4.1 Boolean Data Flow

We single out the BDF MoC [21] from other MoCs because, despite its lack of
dynamic rates – all rates in BDF are fixed, it is the only model that focuses
directly on dynamic topology. So, we will compare only this aspect with BPDF.

BDF uses two special actors that have as input a stream of boolean values. The
first one is the SWITCH actor which has one data input and two data outputs
as well as a boolean input stream. Depending on the incoming boolean value,
SWITCH activates the appropriate output. The second actor is called SELECT
and has two data inputs and one data output and a boolean input stream. The
boolean value selects which input is active in this case.

BDF is shown to be Turing Complete in [21]. The problem arises in the bound-
edness analysis of BDF. There can be cases where it is undecidable whether a
graph is operating within bounded memory or not. Buck in his thesis [21] de-
tails how a Universal Turing Machine can be built using BDF actors. Here, we
give an intuitive example that illustrates the problem. The graph in Figure 37

68 boolean parametric data flow

A

SW
IT

C
H

F
T

F
T

SE
L

E
C

T

B

C

D

b1 b2

1 1

1

1

1

1

1

1

1

1

1 1

Figure 37: A BDF graph that may operate in unbounded memory.

A

B

C

D
1

1 1

1

1

1 1

1

b1

¬b1

b2

¬b2

b1@1
b2@1

Figure 38: A BPDF graph similar to the BDF graph in Figure 37.

uses two different boolean streams to control the inputs and outputs of the
SWITCH and SELECT actors respectively. Thus, assuming that the stream b1 is
always true, and the stream b2 is always false, it is easy to observe that there
will be an accumulation of tokens on the output of actor B. In order to guar-
antee boundedness, one needs to show the equivalence of the two streams a
problem that Buck shows to be undecidable [21].

In some cases Buck provides a clustering technique to find a bounded sched-
ule but the graph iteration is sacrificed. For example, the graph in Figure 39.
The SWITCH actor provides tokens to actors B and C depending on the values
of the boolean stream b. Actor B needs two tokens to fire. Assuming that b takes
a tt value, allowing SWITCH to produce a token for actor B, and then takes
ff values producing tokens to actor C, there is no guarantee that the boolean
stream will take a second tt value so that the token stored on the input edge of
B will be consumed. This means that there is no guarantee that the graph will
ever return to its initial state.

When it comes to BPDF, both these issues are dealt with thanks to the safety

period criterion and the fact that disconnected actors still fire without producing
or consuming data. Safety period restricts BPDF expressivity so that it remains
analyzable. Let us consider two examples of how BPDF would capture similar
functionality as the two problematic BDF graphs.

In Figure 38 the two different boolean parameters, even if they are stuck at op-
posite values, do not cause unboundedness. This is because actors B and C will
produce tokens regardless of the boolean value (i. e., even when disconnected),
eventually enabling actor D to fire.

Finally, in 3Figure 40, the safety period criterion forces the boolean parameter
to change value every two firings of actor A. This way if there is a tt value, it

3.4 model comparison 69

will last for two firings of A that will produce two tokens for actor B to fire.
As a result, when the boolean parameter changes value, the input edge of B

returns back to its initial state preserving the iteration of the graph.

3.4.2 Schedulable Parametric Data Flow

Just like BDF, SPDF [43] focuses only on one aspect of dynamism, namely the
parametric rates. The model does not support dynamic topology and we com-
pare SPDF with BPDF only as far as the parametric rates are concerned.

SPDF uses the notion of regions, just like in the case of BPDF, to calculate
changing periods of integer parameters within an iteration. Changing integer
parameters within an iteration adds a lot to the expressiveness of the model
but also greatly increases its scheduling complexity. BPDF, on the other hand,
allows integer parameters to change only between iterations. This way all rates
are known at the beginning of an iteration, reducing the scheduling complexity.

SPDF may potentially be combined with BPDF into a single MoC where both in-
teger and boolean parameters change within an iteration. The resulting model
will be very difficult to schedule apart from simple sequential and trivial paral-
lel schedules.

3.4.3 Scenario-Aware Data Flow

Another model that stands out is SADF [116]. SADF uses special actors, called de-
tectors, to change the rates of part of the graph. SADF allows dynamic topology
by allowing production and consumption rates of zero. Each different configu-
ration is called a scenario.

In SADF, the set of possible scenarios that the graph may operate in needs
to be defined. To capture a BPDF graph in SADF, all possible configurations of
the graph need to be expressed and stored at compile time. In many cases this
is impractical, as the number of possible configurations of even a small BPDF

graph using a couple of parameters can be prohibitive.
On the contrary, the enumeration of the scenarios in SADF has some advan-

tages. BPDF demands a graph to be consistent when all of its edges are active.
In many cases, however, there are guards that use opposite boolean values and
the relevant edges are never active simultaneously. BPDF does not support an
alternative analysis where the graph is partially consistent, depending on the

A

SW
IT

C
H

F
T

B

C

b

2 1

1

1

2

1

Figure 39: A BDF graph with problematic iteration.

70 boolean parametric data flow

A

B

C

1

2

1

1

b1

¬b1

b1@2

Figure 40: A BPDF graph similar to the BDF graph in Figure 39. The safety criterion
guarantees that the graph will always return to its initial state.

values of the boolean parameters. The main reason behind this decision is to
keep the analysis of the graph independent of the values of the parameters
which may lead to an explosion of different cases to verify.

SADF, on the other hand, renders such analysis feasible, by taking individual
scenarios. Instead of analyzing the application for all possible values of the
parameters, SADF focuses only in the much smaller subset of the values of the
scenarios. In this sense, there may be SADF graphs that cannot be captured in
BPDF, because they will be found to be inconsistent.

3.4.4 Other Models of Computation

There are other MoCs that combine dynamic rates and topology of lesser im-
portance. As already mentioned in Chapter 2 models like CSDF and VRDF allow
rates to take zero values effectively deactivating the port. However, in the case
of CSDF the sequence of change of the rates – and consecutively the activation
and deactivation of the ports, is determined at compile time. VRDF allows only
parameters that come in matching pairs, that is if there is a parametric produc-
tion rate on a path, there must be the equivalent consumption rate on the same
path. Moreover, VRDF is limited to acyclic graphs only.

3.5 summary

In this chapter, we presented the BPDF MoC. The goal of this MoC is to provide
the increased expressiveness needed for the efficient implementation of mod-
ern streaming applications while still providing static analyses for consistency,
boundedness and liveness.

BPDF accomplishes this by introducing integer and boolean parameters that
allow dynamic production and consumption rates on the edges of the graphs
and dynamic topology changes. Integer parameters are changing once per it-
eration, allowing a symbolic solution of the balance equations to be found
and most of the existing SDF techniques to be adapted to handle parameters.
Boolean parameters are allowed to change periodically within an iteration of
the graph by special actors called modifiers. BPDF introduces a supplementary
criterion, namely the period safety criterion, that ensures bounded and live
operation of the graph regardless of the values of the boolean parameters.

3.5 summary 71

BPDF provides analyses for consistency, boundedness and liveness that are
independent of specific values of both the integer and the boolean parameters.
For this reason, the model imposes additional constraints on the graph that
could be otherwise lifted, like the demand of consistency on the graph when
all its edges are enabled.

We analyzed the subtleties that arise in the implementation of the model. The
implementation choices, however, do not affect its static analyzes. Such choices
are, for example, the actions that compose the firing of a BPDF actor or the exact
implementation of the propagation of the boolean parameters.

Moreover, we saw that, due to the extra expressiveness, BPDF increases the
complexity of the scheduling of the model. Dynamic rates change the number
of times that each actor should fire and dynamic topology may enable actors
earlier. Disconnected actors may fire, at least conceptually, without any inputs
or outputs, to keep track with the advancement of the iteration. All these factors
need to be taken into account by a scheduler to lessen overhead. We detail the
scheduling of BPDF applications in Chapter 4.

Finally, we compared BPDF to other data flow MoCs of similar expressiveness.
Compared to BDF that focuses on the boolean, and SPDF that focuses on the in-
teger parameters, BPDF finds a trade-off between the two, where both types of
parameters are restricted on how often they can change values. This restriction
makes BPDF analyzable and schedulable. A similar model, SADF, provides an
alternative solution useful in specific applications that cannot be captured by
BPDF due to its restrictive consistency criteria. On the other hand, BPDF is prefer-
able to SADF in applications where the large number of parameter combinations
prohibits the use of the latter. One can say that the two models complement
each other.

4
S C H E D U L I N G F R A M E W O R K

It’s who I am and what I feel
My life is automatic
Up in the air, it’s what I breathe
and it is never static

— Amaranthe

The development of more expressive data flow models enables more complex
applications, such as video decoders, to be captured, but considerably increases
the complexity of scheduling. As discussed in Chapter 3, parametric rates and
dynamic topology both add challenges when it comes to parallel scheduling.
Such dynamism prohibits the reuse of existing techniques; a DAG cannot be de-
rived because of the parametric number of firings and the conditional connec-
tions between them. In addition, manual production of such schedules would
be time consuming and error-prone.

This chapter describes a scheduling framework that allows the automatic pro-
duction of parallel schedules for the deployment of BPDF applications on many-
core platforms. The framework relies on the extraction of parametric scheduling
constraints from the application. To allow optimization and manual manipula-
tion of the schedule, the framework also allows the user to add constraints that
affect the ordering and the parallel execution of the actors. These constraints are
analyzed to preserve the boundedness and liveness guarantees of the applica-
tion. The resulting set of scheduling constraints is used to produce the parallel
schedule.

The chapter starts with the overview of the underlying platform along with
its mapping and scheduling assumptions in Section 4.1. Then, the proposed
framework is presented in Section 4.2. Finally, the experimental evaluation of
the framework is presented and discussed in Section 4.5.

4.1 underlying platform

BPDF is designed with streaming applications, like video decoders, in mind.
Such applications are composed of computationally intensive functions and
very often have time restrictions. For example, a video needs to be decoded at
a certain frame rate (i. e., 24 frames per second) to maintain an acceptable QoS.
To meet such requirements, streaming applications are typically developed in
specialized hardware, sometimes with a software layer that allows the partial
configuration of each hardware component.

We target the Sthorm many-core platform [87], formerly known as P2012.
Developed by STMicroelectronics, Sthorm is a representative of a modern
many-core platform.

73

74 scheduling framework

STHORM C L U S T E R

H W P E # 1

H
W

P
U

H
W

P
U

H
W

P
U

· · ·

H W P E # 2

H
W

P
U

H
W

P
U

H
W

P
U

· · · · · · · · · · · · · · ·

H W P E # P

H
W

P
U

H
W

P
U

H
W

P
U

· · ·

C L U S T E R C T R L

D M A C H A N N E L # 0

D M A C H A N N E L # 1

C L U S T E R C T R L

I N T E R C O N N E C T

STXP70

E N C O R E C L U S T E R

M
E

M
O

R
Y

B
A

N
K

#
1

M
E

M
O

R
Y

B
A

N
K

#
2

M
E

M
O

R
Y

B
A

N
K

#
3

· · ·

M
E

M
O

R
Y

B
A

N
K

#
3

2

STXP70
#1

STXP70
#2 · · ·

STXP70
#16

L O C A L I N T E R C O N N E C T (S T R E A M F L O W)
G

L
O

B
A

L
IN

T
E

R
C

O
N

N
E

C
T

IN
T

E
R

F
A

C
E

E
N

C
O

R
E

IN
T

E
R

F
A

C
E

S T R E A M I N G I N T E R F A C E

C O M M C O M M C O M M

L O G A R I T H M I C I N T E R C O N N E C T

Figure 41: Architecture of a cluster of the Sthorm platform.

Sthorm is composed by up to 32 clusters interconnected by a global asyn-
chronous NoC. Each cluster is composed by by a Cluster Controller, a multi-
core computing engine called ENCore, and may optionally have a number of
specialized Hardware Processing Elements (HWPEs).

The Cluster Controller manages the intra- and inter-cluster communication.
It has a Global Interconnect Interface to access the Global NoC, a communication
interface with the ENCore engine and a Streaming Interface with the HWPEs. It
also has a DMA module, allowing efficient communication of the ENCore engine
and the HWPEs with each other and the global interconnect.

The ENCore engine can have up to 16 Software Processing Elements (SWPEs),
which are general-purpose STxP70-V4 32-bit RISC processors. The STxP70-V4

processors use a centralized shared memory (UMA architecture) composed by
multiple banks that allow simultaneous access from all processors.

The HWPEs are further partitioned in Hardware Processing Units (HWPUs)
that share the communication interface of the hosting HWPEs. The architecture
of the Sthorm cluster is shown in Figure 41.

Sthorm includes a native programming model, Predicated Execution Data
Flow (PEDF), that simplifies the parallel implementation of streaming applica-
tions. PEDF uses filters to implement applications. A filter can be:

• A primitive filter is a filter that applies a well defined function to a set of
input data in order to produce a set of output data. It is implemented as
a hardware or software processing element and is the building block of
PEDF model.

4.1 underlying platform 75

• A module is a composite filter. A module can contain one or more prim-
itive filters or modules. Modules allow the development of applications
hierarchically, facilitating the design.

• A controller which schedules the firing of the filters in a module and con-
trols the configuration parameters for each filter. Each module contains its
own controller. If a module is fired, its controller is activated and executes
its internal schedule, which fires the filters of the module.

4.1.1 Mapping

The scheduling framework focuses on the production of parallel schedules
given a static mapping and does not deal with mapping decisions.

In our implementation, a BPDF graph is implemented in PEDF using a single
module, hence the hierarchical composition of modules is not used. This is be-
cause we assume BPDF graphs that do not use hierarchy. We discussed BPDF

compositionality in Section 3.3.4. Such an hierarchical model can take advan-
tage of PEDF modules where each module is a BPDF graph.

The module contains one PEDF primitive filter for each BPDF actor, which
corresponds to a separate (hardware or software) processing element. Integer
parameter and boolean parameters communication takes place through the con-
troller of the module by changing corresponding configuration parameters of
each filter. The controller also controls the execution of the application.

This is a simple yet realistic mapping scheme. Although, in this mapping
scheme, each actor is mapped on a separate processing element, the frame-
work can handle any other kind of static assignment, where actors may share
resources as discussed in Section 4.4.2.

4.1.2 Scheduling

The goal of our scheduling framework is the generation of the controller that
controls the schedule of each BPDF actor. The PEDF model uses slotted scheduling

(Section 2.4.5) to schedule the firing of the filters. At the beginning of a slot,
the controller selects several filters to be fired and their execution takes place
concurrently. When these executions are completed, the next slot may start. The
controller may compute the composition of the next slot while the filters of the
current slot execute, therefore the hardware pipeline is not slowed down.

We produce slotted schedules that can be directly implemented using this
model. Such a framework can also be used by other state-of-the-art many-core
platforms. For instance, modern GPUs support a similar execution model. In
mainstream GPU programming models, such as CUDA [28] and OpenCL [112],
the host processor, equivalent to the controller of Sthorm, creates a task group,
loads it on the GPU, and gets the results when all tasks have finished their
execution. In parallel with the execution of the task group, the host processor
may determine tasks to be executed next.

Although it relies on the Sthorm platform, our scheduling framework can be
easily adapted to produce non-slotted schedules, as discussed in Section 4.4.1.

76 scheduling framework

B P D F

A P P L I C AT I O N

U S E R - D E F I N E D

C O N S T R A I N T S

O R D E R I N G

C O N S T R A I N T S

R E S O U R C E

C O N S T R A I N T S

S I M P L I F I C AT I O N

& L I V E N E S S

E VA L U AT E

O R D E R I N G
F I LT E R I N G

A S A P

S C H E D U L E

Scheduler

Figure 42: Our Scheduling Framework.

4.2 scheduling framework

The goal of our framework is to produce ASAP parallel schedules. ASAP sche-
duling is chosen because it is considered to be the best strategy when timing
information about the execution of the actors is unknown [111]. Unknown tim-
ing is typical for BPDF applications where the execution time of the actors may
vary a lot, based on the values of the integer and boolean parameters.

Our framework also aims to be flexible and expressive in order to support
a multitude of platforms and different optimization criteria. Our framework
uses a fixed scheduling algorithm (here ASAP) and allows the schedule to be
manipulated by adding new scheduling constraints that affect the ordering and
the parallel execution of the actors.

An overview of the framework is shown in Figure 42. The framework receives
the BPDF application along with an optional set of user-defined constraints.
From these, a set of ordering constraints and a set of resource constraints are
produced. The resulting ordering constraints (i. e., those extracted from the BPDF

graph and those added by the user) are checked for liveness and, if possible,
simplified. Then, the ASAP scheduler produces the ASAP parallel schedule meet-
ing the constraints one slot at a time. Each slot is produced in two stages; first
the ordering constraints are evaluated to produce a set of fireable actors, then,
the set of fireable actors is filtered, according to the resource constraints, to pro-
duce a subset of fireable actors that will eventually fire in the slot. The scheduler
continues until the iteration is completed.

Scheduling constraints derive both from the application and express the de-
pendencies of the dataflow graph, or from the user expressing platform speci-
ficities (e. g., resource limitations), or optimizing some criteria (e. g., power con-
sumption, buffer sizes). They can be of two distinct types: Ordering constraints

that restrict individual actor firings, and resource constraints that control parallel
execution (e. g., limiting the level of parallelism). Application constraints can
only be ordering constraints. User constraints can be both resource and order-
ing constraints. They are defined by the programmer for a specific application

4.3 ordering constraints 77

A B
rA rBB

τ

Figure 43: A generic BPDF edge.

or platform. The two types of constraints are presented in detail in Section 4.3
and Section 4.4.

4.3 ordering constraints

An ordering constraint is a relationship between the firings of two actors of the
form:

Ai ą Bf(i)

where Ai denotes the ith firing of actor A and Bf(i) denotes the f(i)th firing of
actor B (where f is any total function from N

˚ to Z). A null or negative value
for f(i) means that the instance Ai does not depend on B.

4.3.1 Application Constraints

Application constraints (or data flow constraints) are automatically derived
from dependencies between actors. These constraints can either be data depen-

dencies that derive from the edges of the graph, or boolean propagation constraints

that derive from the implicit boolean propagation edges.
One data dependency is extracted from each edge of the graph. For an edge

between actors A and B with production/consumption rates rA and rB respec-
tively, initial tokens τ, and boolean guard B, as in Figure 43, the following
ordering constraint is generated:

Bi ą Af(i) where f(i) =

R
rB ¨ i´ τ

rA

V
(17)

Function f(i) expresses the number of times actor A should have fired so that
there are enough tokens on the edge for the ith firing of actor B, noted Bi, to
take place. Bi needs A to have produced rB ¨ i´ τ tokens. To produce that many
tokens, A needs to fire a number just greater than rB¨i´τ

rA
times, that is:

R
rB ¨ i´ τ

rA

V

The data dependency in Eq. (17) does not depend on the boolean guard B. How-
ever, the scheduler takes boolean guards into account by disregarding ordering
constraints of disabled edges at run-time.

Boolean parameters introduce constraints due to the communication of their
values between modifiers and users. A user needs to read a new value accord-
ing to its reading period (πr). The modifier produces a new value according to
its writing period (πw). Therefore, we get the following ordering constraint for
each user (U) and modifier (M) of the same boolean:

78 scheduling framework

Ui ąMf(i) where f(i) = πw ¨

Z
i´ 1

πr

^
+ 1 (18)

Function f(i) expresses the number of times that the modifier should fire
to produce the value of the boolean parameter used by the user on its ith

firing (Ui). Actor U reads a new boolean value every πr firings, so Ui will need
the kth value of the boolean parameter to fire, where k is

k =
X
(i´ 1)/πr

\
+ 1 (19)

The modifier produces a value every πw firings, hence the kth boolean value is
produced on its mth firing, where m is.

m = πw ¨ (k´ 1) + 1 (20)

Therefore, we replace k in Eq. (20) by the required value of Eq. (19), yielding:

πw ¨

(Z
i´ 1

πr

^
+ 1´ 1

)

+ 1 = πw ¨

Z
i´ 1

πr

^
+ 1

which indicates the number of times the modifier needs to have fired to produce
the needed value. The constraint restricts the user to wait for the production
of a boolean value but does not restrict the modifier. Indeed, the modifier may
produce a new boolean value (or all the boolean values) before the user has
finished using the previous one. The user will use the new values later, based
on its reading period, when they are needed.

It is worth to note here that this is the weakest constraint that the boolean
propagation imposes on the user of a parameter. As discussed in Section 3.3.2,
the actual implementation may impose stronger constraints. If the propagation
of the boolean values is implemented with simple data flow edges, as suggested
in Section 3.2.3, then the boolean propagation constraints can be derived as data
dependencies from the additional edges.

Finally, as we consider each actor executing on a single processing element
(hardware or software), we have the implicit self-constraint for each actor X:

Xi ą Xi´1 (21)

which expresses the fact that there can not be multiple instances of an actor ex-
ecuting in parallel and that the firings of the same actor take place in sequence.

The self dependency expressed in Eq. (21) is derived from the given map-
ping decision that requires each actor on a different processing element. In
Section 4.4.2, we demonstrate how alternative static mapping schemes, using
data parallelism, can be expressed.

4.3.2 User Ordering Constraints

Additional user ordering constraints can be used to optimize various criteria
(e. g., power consumption, buffer size). Here we give a few examples of user
constraints that achieve various improvements.

Consider again the generic BPDF graph of Figure 43. For simplicity and with-
out loss of generality, we consider the rates rA and rB to be co-primes. Hence,

4.3 ordering constraints 79

the repetition vector of the graph is [ArB BrA] and A will fire rB times without
any constraints. Since A fires rB times consecutively, if B does not consume
enough tokens, there will be an accumulation of tokens on the FIFO buffer from
A to B.

If the programmer wants to restrict this FIFO buffer to be of a certain size,
say k tokens, the execution of A needs to be regulated so that it fires only when
there is enough space left on the edge buffer. Adding the following backwards
constraint from B to A:

Ai ą Bf(i) where f(i) =

R
rA ¨ i´ k+ τ

rB

V
(22)

enforces the buffer size to be at most k.
Typically, in data flow graphs a buffer constraint of k tokens is modeled by

adding a backward edge from B to A with k´ t initial tokens, so that the total
number of tokens on the AB cycle will be k. Extracting the data dependency
from such an edge, gives the constraint expressed in Eq. (22).

Additional user-defined constraints may introduce a deadlock if they are
not compatible with the data dependency constraints extracted from the BPDF

application. For instance, in the previous example, it should be checked that k
is large enough so that A can trigger all rA firings of B. This verification step is
done using a deadlock detection algorithm presented in Section 4.3.3.

4.3.3 Liveness Analysis

Inconsiderate user-defined constraints must be checked statically for liveness.
A set of ordering constraints may introduce deadlock when they imply (by
transitivity) a constraint of the form:

(Ai ą Aj)^ (i ď j) (23)

which requires that the ith firing of an actor A must take place after the jth
firing where j is the same or a future firing (j ě i). All cyclic constraints from
an actor to itself must be checked. The complexity of liveness analysis is linear
to the number of cyclic constraints. To ensure liveness, it must be shown that
each cycle of the form:

Ai ą Bf1(i) ą . . . ą Cfn(i) ą Afn+1(i)

that is to say
Ai ą Af1(...(fn(fn+1(i)))...)

satisfies
i ą f1(. . . (fn(fn+1(i))) . . .) (24)

We consider all ordering constraints to detect such cycles. Typically, the ex-
pression f1(. . . (fn(fn+1(i))) . . .) contains parameters and ceiling functions. In
general, only an upper bound can be computed. Parameters are replaced by
their maximum or minimum values and ceilings

P
a
b

T
by a

b + 1 or a
b ´ 1 depend-

ing on their sign and position. The expression f1(. . . (fn(fn+1(i))) . . .) is then
simplified to get an upper bound. If the condition in Eq. (24) is true for all cycles,

80 scheduling framework

then the liveness of the schedule is guaranteed. Otherwise, since we have com-
puted an over-approximation, we cannot guarantee that the set of constraints is
not live but we still reject the graph.

Consider, for instance, the simple BPDF graph in Figure 44.

A B
p q

Figure 44: A simple BPDF graph.

The data dependency we obtain from the edge is:

Bi ą Af(i) with f(i) =

R
q ¨ i

p

V

When the user wants to limit the edge buffer to k tokens, she introduces the
following constraint:

Ai ą Bg(i) with g(i) =

R
p ¨ i´ k

q

V

Together they form a cyclic constraint:

Ai ą Af(g(i))

In practice, such a limit (k) as well as the maximum values of parameters (pmax,
qmax) are actual integers. Here, we illustrate the verification process using sym-
bolic values. Based on Eq. (24), to ensure liveness we must verify that:

i ą f(g(i)) ô i ą

R
q¨rp¨i´k

q s
p

V

ð i ą
q¨(p¨i´k

q +1)

p + 1

ô i ą i+ q´k
p + 1

ô k ą p+ q

ð k ą pmax + qmax

So, if the limit placed on the buffer size k is greater than pmax + qmax, a live
schedule is ensured. This is only a sufficient condition, because of the approxi-
mation incurred by removing the ceiling functions.

In general, if there exists a cycle that does not satisfy Eq. (24), then the in-
volved user constraints are rejected. Actually, this cycle condition can be re-
laxed by taking boolean guards into account. The scheduler takes into account
the boolean values, hence if two constraints of a cycle depend on on contradic-
tory boolean guards, then the cycle is live as it cannot be formed.

Consider the simple BPDF graph in Figure 45. The graph contains a false cycle
C = tA,Bu. As discussed already in Section 3.2.3, such cycles do not introduce
a deadlock because they are never formed at run-time. However, the cycle has
two ordering constraints:

Ai ą Bi and Bi ą Ai

4.3 ordering constraints 81

that form the cyclic dependency:

Ai ą Bi ą Ai

which obviously does not satisfy the criterion in Eq. (24).
Checking for false cycles in the cycles formed by scheduling constraints is not

the same as in the liveness analysis because instead of actors we have instances
of actors. Hence, one should take into account the reading periods of the actors,
to make sure that the involved instances use the same boolean value of the
contradicting parameter.

4.3.4 Scheduler

For a set of constraints, the goal is to find the actors that will fire in each slot or,
equivalently, to find the slot at which each firing takes place. The assignment
of a slot to each firing must be a valid solution to the set of constraints.

A function that assigns the firings of an actor to slots is called a firing function.
For the firings of actor A, Ai, we get the firing function Φ(Ai) : F(Ai) Ñ L,
where F(Ai) is the set of firings of actor A and L is the set of the schedule slots.

As we want to get the ASAP schedule meeting the constraints, each firing Ai

should be scheduled at the earliest slot possible, that is the first slot after all the
actor instances Ai depends on, have fired. A firing Ai, with a set of constraints
C(Ai), depends on a set of firings F(Ai) that derive from C(Ai). If C(Ai) is:

C(Ai) =

Ai ą B1f1(i), Ai ą B2f2(i), . . . ,Ai ą Bnfn(i)

(

then we get the set of firings:

F(Ai) =

B1f1(i), B2f2(i), . . . ,Bnfn(i)

(

Therefore, the firing function for Ai is:

Φ(Ai) =

$
&

%

max
kP[1,n]

(

Φ
(

Bkfk(i)

))

+ 1 if i ą 0

0 if i ď 0

(25)

Ordering constraints may be deactivated depending on boolean conditions.
The firing function takes into account these conditions as well. So, if F(Ai)

depends on n boolean conditions (L1,L2, . . . ,Ln) the firing function given in
Eq. (25) becomes:

Φ(Ai) =

$
&

%

max
kP[1,n]

(

Lk ? Φ
(

Bkfk(i)

)

: 0
)

+ 1 if i ą 0

0 if i ď 0

(26)

M A B

b

¬bb@1

Figure 45: A BPDF graph with a false cycle.

82 scheduling framework

where Lk ? Φ
(

Bkfk(i)

)

: 0 means that if condition Lk is true, then the firing
function of Bkfk(i) is considered normally and if it is false 0 is used instead.

For readability, we suppress the 0 part and write: Lk ? Φ
(

Bkfk(i)

)

instead.
Moreover, we will define firing functions using only the part where i ą 0.

As all actors have the implicit self-constraint of Eq. (21) in their set of con-
straints, their previous firing is in the set of firings (Ai´1 P F(Ai)). For this
reason, all firing functions are strictly monotonic, that is:

Φ(Ai) ą Φ(Ai´1) (27)

For example, consider an actor A with ordering constraints

Ai ą Bf(i) and Ai ą Cg(i)

with constraint Ai ą Bf(i) depending on boolean parameter b, and the self-
constraint Ai ą Ai´1, has

F(Ai) = tBf(i),Cg(i),Ai´1u

and will have the firing function:

Φ(Ai) = max
(

Φ
(

b ? Bf(i)

)

, Φ
(

Cg(i)

)

, Φ (Ai´1)
)

+ 1 if i ą 0

A scheduler is used to execute the graph (Alg. 2). It takes as input the repe-
tition vector (R) and the set of actors (A) along with their firing functions (Φ).
Moreover, the scheduler gets the reading and writing periods of the actors (Π).

The scheduler uses a status vector (Vs) that keeps track of the number of
times an actor has fired, a next slot vector (Vn) that indicates the slot number
that the next firing of an actor will take place, and a fire vector (Vf) that indicates
the actors that fire in the current slot. The current slot number is kept in the
variable ℓ.

The scheduler is an infinite loop that schedules one iteration at a time. At the
beginning of an iteration, the Vs vector and the current slot number ℓ are initial-
ized respectively to ~0 and 0. Then, the scheduler reads the current values of the
integer parameters (I) and evaluates the repetition vector, the firing functions,
and the writing and reading periods.

The core of the scheduler is a for-loop over the set of actors, which selects
the eligible actors for the current slot. Before entering the loop, the current slot
number is increased by 1 and Vf is initialized to ~0. The for-loop first updates
the next slot (Vn) value of each actor using its firing function, then checks
whether the actor is eligible to fire in the current slot. If the actor A is eligible
and still has firings left for the current iteration (i. e., Vs[A] ă R[A]), it is marked
to be fired in the firing vector (Vf[A] = 1) and its status Vs[A] value is increased
by 1.

Firing functions depend on their previous values as well as on values of other
firing functions. For this reason, the computed values of each firing function are
kept in memory to avoid re-computation.

If a firing generates a new boolean value, the values of the boolean parame-
ters (B) are updated. These are kept in lists (one list for each parameter) which
are initially empty. The boolean values are needed for the evaluation of the

4.3 ordering constraints 83

Algorithm 2 ASAP Scheduler that uses firing functions
procedure scheduler(R,A, Φ, Π)

while true do

Vs = ~0

ℓ = 0

I = get int values()

R = evaluate(R, I)
Φ = evaluate(Φ, I)
Π = evaluate(Π, I)
while Vs ‰ R do

ℓ = ℓ+ 1

Vf = ~0

for @X P A do

Vn[X] = Φ(X, Vs[X] + 1, B)

if Vn[X] == ℓ^ Vs[X] ă R[X] then

Vf[X] = 1

Vs[X] = Vs[X] + 1

if newbool() then

B = get bool values()

end if

end if

end for

fire(Vf)

end while

end while

end procedure

firing functions. The reading periods are used to get the correct value of the
boolean parameter from the corresponding list. For a firing Ai using boolean b,
with writing period πA

r (b), the kth value of boolean parameter is used, where:

k =

R
i

πA
r (b)

V

Once the for-loop is finished, the firing vector is issued to fire. The for-loop is
nested within a while-loop over the iteration of the graph. The outer loop ends
once the status vector equals the repetition vector of the graph. Liveness anal-
ysis guarantees that at least one firing will take place every time the for-loop

executes and that the while-loop will end.

4.3.5 Constraint Simplification

Once the constraints are verified to preserve liveness, they are simplified. The
simplification step consists of two parts:

• Constraint trimming, where redundant constraints are removed.
• Constraint resolution, where constraints are resolved into slot sequences

at compile time if possible.

84 scheduling framework

Constraint Trimming

Constraint trimming checks the firing functions (Φ) in the max function of
Eq. (25) and removes the firing functions that can be compared at compile time.
For each pair of firings
‚ When the firing functions to be compared are of the same actor, because

of the monotonicity of the firing function (Eq. (27)), we only need to compare
their indexes.

For an actor A with

Φ(Ai) = max
(

Φ(Bf1(i)),Φ(Bf2(i)), . . .
)

+ 1

if f1(i) ą f2(i), then Φ(Bf2(i)) is suppressed.
‚ When the firing functions are of different actors, then comparison may be

possible by transitivity through a third firing function.
For an actor A with

Φ(Ai) = max
(

Φ(Bf(i)),Φ(Cg(i), . . .)
)

+ 1

and a firing function of C depending on B:

Φ(Ci) = Φ(Bk(i)) + 1

ñΦ(Cg(i)) = Φ(Bk(g(i))) + 1

if k(g(i)) ě f(i) then Φ(Bf(i)) is suppressed from Φ(Ai).
When constraint trimming takes place, the boolean parameters should be

taken into account. When a constraint Φ(Bj) suppresses constraint Φ(Ck) in fir-
ing function Φ(Ai), it should be checked whether the constraint Φ(Bj) depends
on a boolean parameter. Trimming can not take place when constraint Φ(Bj)

can be suppressed due to boolean parameters because then constraint Φ(Ck) is
no longer redundant.

Constraint Resolution

In some cases, we can solve the firing functions of each or some of the actors, at
compile time. Solving a firing function means to define it in terms of a simple
non recursive function of its index and other firing functions that are already
solved. Such definitions derive inductively from Eq. (25) when the max function
can be evaluated at compile time. The evaluation of the max function is possible
in many cases. Here, we provide a non-exhaustive list of the more prominent
cases:
‚ For source actors, the max function of the firing function contains only the

previous firing of the actor:

Φ(Ai) = Φ(Ai´1) + 1

It is easy to show that the firing function of such actors is the identity function:

Φ(Ai) = i (28)

‚ When the actor depends on a single firing that has already been defined as
a constant:

Φ(Ai) = max (c,Φ(Ai´1)) + 1

4.3 ordering constraints 85

then the firing function can be simplified into:

Φ(Ai) = i+ c (29)

‚ Another interesting case is the simple data dependency between a consumer
and a producer when the firing function of the producer is already solved.
Consider an edge as the one in Figure 44 (p. 80). The data dependency between
the two actors is Bi ą Af(i), where f(i) =

P
qi
p

T
. Based on Eq. (25), the firing

function of B is:

Φ(Bi) = max
(

Φ
(

Arqi
p s

)

,Φ(Bi´1)
)

+ 1

We show that the firing function in this case is:

Φ(Bi) =

$
’’&

’’%

Φ
(

Arqi
p s

)

+ 1 if q ą p

Φ(A1) + i if q ď p

(30)

Proof. By induction. For the case where q ą p, the expression holds for i = 1:

Φ(B1) = max
(

Φ
(

Arq
p s

)

,Φ(B0)
)

+ 1 = Φ
(

Arq
p s

)

+ 1

Assuming that

Φ(Bn) = Φ
(

Arqn
p s

)

+ 1

we show that

Φ(Bn+1) = Φ

(

AQ
q(n+1)

p

U
)

+ 1

Indeed,

Φ(Bn+1) = max
(

Φ

(

AQ
q(n+1)

p

U
)

,Φ (Bn)

)

+ 1

= max
(

Φ

(

AQ
q(n+1)

p

U
)

,Φ
(

Arqn
p +1s

)

)

+ 1

Furthermore:

q ě p ñ

R
qn+ q

p

V
ě

R
qn+ p

p

V
=

R
qn

p

V
+ 1

and since all firing functions are strictly monotonic (Eq. (27)), this yields:

Φ

(

AQ
q(n+1)

p

U
)

ě Φ
(

Arqn
p s+1

)

Hence,

Φ(Bn+1) = Φ

(

AQ
q(n+1)

p

U
)

+ 1

The case q ď p is proved in a similar way.

86 scheduling framework

With the above simplification cases, we end up with a variety of different
definitions of the firing functions.

In the particular case of SDF, they can be defined using only indexes. In this
case, one can compute the schedule slots for each actor A by evaluating the
firing function for i P [1..#A]. In this way, static slot sequences can be produced
for each actor.

Firing function definitions may also include integer parameters as is the case
of Eq. (30). In this case, we may be able to produce parameterized slot sequences
for each actor and produce a single schedule stream using the procedure in
Appendix A.1.

To illustrate the various cases, we consider again the simple graph in Fig-
ure 44 (p. 80). Actor A is a source actor and its firing function is (Eq. (28)):

Φ(Ai) = i with i P [1,q]

which corresponds to the slot sequence Fq, meaning that A fires for q consec-
utive slots. For actor B we distinguish the following cases:
case q ď p : Using Eq. (30) we get

Φ(Bi) = i + 1 with i P [1 , p]

Hence, the sequence of slots of actor B is EFp meaning that B is idle
during the first slot and then fires at each slot. The execution will proceed
as follows: A fires in the first slot and for each subsequent slot, A will fire
in parallel with B until it has fired a total of #A = q times. This totals
to q´ 1 firings of B so there remains to fire B another p´ (q´ 1) times.
Hence, the two slot sequences can be combined in a slotted schedule (see
Appendix A.1 for an algorithm that merges such expressions):

A; (A}B)q´1;Bp´q+1

case q ą p : Two sub-cases must be considered:
sub-case q = k ¨ p : If q is a multiple of p, using Eq. (30) with q ą p:

Φ(Bi) =

R
qi

p

V
+ 1 =

R
kpi

p

V
+ 1 = ki + 1 with i P [1 , p]

Each firing of B occurs after k firings of A and the corresponding slot
sequence is E(Ek´1F)p. The two slot sequences can be combined in
a slotted schedule:

A; (Ak´1; (B}A))p´1;Ak´1;B

sub-case q = k ¨ p + r with 0 ă r ă p : In this case, Eq. (30) yields:

Φ(Bi) =

R
qi

p

V
+ 1 with i P [1 , p]

The slot sequence of B cannot be expressed as before because the
ceiling in the firing function cannot be resolved and needs to be
computed at run-time.

4.3 ordering constraints 87

A B C2p 3 2

3p
b

b@2

Figure 46: A BPDF graph whose constraints can be solved symbolically.

In the last case, the firing functions could not be expressed as a slotted sched-
ule. Still avoiding the evaluation of the set of constraints at run-time and using a
fixed firing function instead is a large improvement. One can observe that even
when the relation between the parameters is unknown, with a single condition
at runtime we can effectively use simplified results. This makes the schedule
faster, as we reduce the calculations done at run-time, but may increase the
schedule code size. So, we have a trade-off between performance and memory.

The above cases are just a small sample of the possible firing functions that
can be solved at compile time. Other cases and simplifications are presented
in [30].

Simplification Example

Consider the graph in Figure 46, whose iteration is [A B2p C3p] and whose
dataflow constraints are:

Bi ą Ar i
2p s, i P [1, #B]

Cj ą Br 2j
3 s, Cj ą Ar j

3p s, j P [1, #C]

plus the implicit Xi ą Xi´1 for all actors. Moreover, actor C, as a user of the
boolean parameter b, is constrained by (from Eq. (18)):

Cj ą B
2t j´1

3 u+1
ñ Cj ą B

2r j
3 s´1

because of the floor property:

Y n
m

]
=

R
n´m+ 1

m

V
=

R
n+ 1

m

V
´ 1

This transformation is useful because all the constraints involve only ceiling
functions.

We notice that although actor C has two constraints from actor B that seem
redundant, they are not trimmed because, as explained in the previous section,
the prevailing constraint is depending on the boolean parameter b.

Actor A is a source actor and from Eq. (28), we have:

Φ(Ai) = i with i = 1 (#A = 1)

So, we schedule A1 in the first slot (Φ(A1) = 1) and the slot sequence of actor
A is F.

The constraint for actor B becomes Bi ą A1, i P [1, #B], hence:

Φ(Bi) = max (Φ(A1),Φ(Bi´1)) + 1 = max (1,Φ(Bi´1)) + 1

88 scheduling framework

Actor B is depending on a constant firing so, from Eq. (29), we have:

Φ(Bi) = i+ 1, with i P [1, 2p]

and the slot sequence of B is EF2p. Finally, the three constraints on actor C

yield the following firing function:

Φ(Ci) = max
(

Φ(A1),b?Φ
(

Br 2i
3 s

)

,Φ
(

B2r i
3 s´1

)

,Φ(Ci´1)
)

+ 1

= max

(

1,b?
(R

2i

3

V
+ 1

)

, 2
R
i

3

V
,Φ(Ci´1)

)

+ 1, i P [1 . . . 3p]

‚ When b is tt,
P
2i
3

T
+ 1 is not suppressed, and since:

@i,
R
2i

3

V
+ 1 ą 2

R
i

3

V
ą 1

we get:

Φ(Ci) = max

(R
2i

3

V
+ 1,Φ(Ci´1)

)

+ 1, i P [1, 3p]

where we have the case of a firing function depending on single data depen-
dency. Hence, from Eq. (30) we get:

Φ(Ci) =

R
2i+ 3

3

V
+ i = i+ 2, i P [1, 3p]

‚ When b is ff, the firing function becomes:

Φ(Ci) = max

(

2

R
i

3

V
,Φ(Ci´1)

)

+ 1, i P [1, 3p]

Again, we have the form of a single data dependency and, from Eq. (30), we
get:

Φ(Ci) = 2

R
1

3

V
+ i = i+ 2, i P [1, 3p]

We notice that in both cases, the solution for actor C is:

Φ(Ci) = i+ 2, i P [1, 3p]

As a result, the value of the boolean parameter does not influence the solution.
The slot sequence of actor C is E2F3p. Having found the slot sequences of all
actors:

A :F

B :EF2p

C :E2
F

3p

we can merge them into a single schedule stream using the procedure presented
in Appendix A.1:

A;B; (B}C)2p´1;Cp+1

4.4 resource constraints 89

4.4 resource constraints

Resource constraints are used to regulate the parallel execution of actors. Such
constraints can be used to limit the degree of parallelism or to enforce mutual
exclusion between (groups of) actors. They can be seen as filter functions ap-
plied to the set of fireable actors S and returning a subset T of S. Any such
function f must satisfy the two following conditions:

@S, f(S) = T ñ T Ď S (31)

@S, f(S) = T ñ T ‰ H (32)

The condition in Eq. (31) ensures that the function is safe (only firable actors can
be selected), while the condition in Eq. (32) ensures that it preserves liveness
(at least one actor is selected to be fired).

Many languages can be used to express such constraints. Since they are func-
tions over finite domains, one may even consider expressing them exhaustively
as tables. Here, we use rewrite rules on sets inspired from the Gamma formal-
ism [3]. The general form of a resource constraint is:

replace SA by SB if condition (33)

where SA and SB are nonempty sets of enabled actors such that SB Ď SA. It
can be read as “replace SA by SB if condition is true”. When the condition is
always true it can be omitted. For example, the rule

replace A, B by A (34)

can be read as “if the actors A and B are fireable, then replace them by A

(i. e., remove B)”. It prevents actors A and B from being fired in the same slot
and gives priority to A.

Rewrite rules can use pattern variables to match arbitrary actors. For instance,
the rule

replace w, x,y, z by w, x,y (35)

can be read as “select four arbitrary fireable actors and suppress one of them”.
It limits the level of parallelism to 3 actors. Indeed, rewriting rules apply until
no match can be found. Therefore, Rule (35) above applies as long as there are
more than three firable actors.

Rules can also depend on a condition. For instance, assuming that the two
predicates short and long denote whether an actor takes a short or long time to
execute, the rule

replace x, y by x if short(x)^ long(y) (36)

prevents short and long actors from being fired within the same slot (priority
is given to short ones). This rule may improve the overall computation time.
Indeed, if S is a “short” actor while L1 and L2 are two “long” actors such that
S and L1 are fireable at the same slot and firing S enables L2, then it is better to
fire first S alone and then L1 and L2 in parallel. The effect of the constraint in
this case is shown in Figure 47, where Figure 47a is the slotted schedule before
applying Rule (36) and Figure 47b after.

90 scheduling framework

1 2 3 4 5 6 7

L1 L1

L2 L2

S S

(a) Initial schedule.

1 2 3 4 5 6 7

L1 L1

L2 L2

S S

(b) Schedule after rule is applied.

Figure 47: Possible effect of the resource constraint. (Rule (36))

In a similar manner we can limit the power consumption during a slot. As-
suming two predicates that classify actors into high (H) or low (L) power con-
sumers, we can limit power consumption by firing at most one H actor either
alone or along with at most one L actor. The following set of rules implements
such a limitation:

replace x, y by x if H(x)^H(y)

replace x, y, z by x, y if H(x)^ L(y)^ L(z)
(37)

Several rules can also be combined in sequence or in parallel. The semantics
of parallel composition enforces that rules applied in parallel act on disjoint
sets of actors. For example, the sequential combination of Rule (36) followed
by Rule (35) limits the possible parallel firings to one actor, two short actors,
or two long actors. The application of Rule (35) followed by Rule (36) impose
the same limitation but the results will differ as Rule (36) followed by Rule (35)
gives priority to short actors.

It is very easy to check that such rules preserve boundedness and liveness. It
is sufficient to check that each rule obeys the conditions in Eq. (31) and Eq. (32).

Resource constraints have to be applied dynamically. They can either be re-
solved by an iterative application of the rules until no rule can be applied,
or they can be statically compiled, considering all sets of fireable actors, into
constant time selection operations. The two approaches trade-off run-time per-
formance with memory usage.

4.4.1 Alternative Scheduler

When only ordering constraints are used, we can define the firing function of
each actor as described in Section 4.3.4, potentially simplify (Section 4.3.5) them,
and use the scheduler in Alg. 2. However, resource constants dynamically shift
firings in later slots, effectively changing the firing functions of the actors at run-
time. For this reason we propose an alternative scheduler that handles directly
actor constraints.

This alternative scheduler takes as input the repetition vector (R), the set of
actors (A), the ordering and the resource constraints (C,G), and the reading and
writing periods of the actors (Π). It evaluates the constraints and produces a
slotted schedule (Figure 48). The scheduler stops when an iteration is finished
and is reset to begin the next iteration.

4.4 resource constraints 91

CONSTRAINT
FILTERING

EVALUATE
ORDERING FILTERING

C B, Π A,R G

C′,Vs Vf

V ′

f

Figure 48: Scheduler overview of the calculation of the actors in a slot.

Similar to the previous scheduler, the alternative scheduler is an infinite loop
scheduling one iteration at a time. It uses two auxiliary vectors: the firing vector

(Vf) and the status vector (Vs). Vf indicates the fireable actors of each slot. Vs

keeps track of the number of times each actors has fired. It is reset to 0 at the
beginning of each iteration. At the beginning of an iteration, the scheduler gets
the values of the integer parameters (I) and evaluates the repetition vector and
the ordering constraints.

The core of the scheduler is a while-loop over the iteration of the graph. Each
execution of the loop schedules one slot. At the beginning of the loop, the firing
vector is set to 0, and the values of the boolean parameters are updated. The
boolean values are kept in lists, one list for each boolean parameter. Each time
the procedure get bool values is called, the scheduler checks whether there
has been a new boolean value generated by a modifier, and if so, it adds the
value in the corresponding list. These lists are needed because different actors
may be using different values of the same boolean parameter, depending on
their reading periods and the number of times they have been fired within the
iteration.

Once the boolean values are updated, the loop executes three functions: con-
straint filtering that filters ordering constraints based on the current boolean
values, evaluate ordering that evaluates the ordering constraints and pro-
duces a set of firables actors, and finally filtering that filters the set of fireable
actors to a subset based on the resource constraints.

constraint filtering takes as input the set of ordering constraints (C), the
values of the boolean parameters (B) and the reading and writing periods (Π).
For each constraint deriving from an edge of the graph, the function evaluates
the corresponding boolean condition and, if the guard is false, removes the
constraint from the set of ordering constraints. The procedure returns a reduced
set of ordering constraints (C 1). The boolean values used for each constraint are
based on the read and write periods of the constrained actor. For a constraint
Ai ą Bf(i) depending on boolean parameter b, with read period πA

r (b), the kth

value of b will be used, where k is:

k =

R
i

πA
r (b)

V

evaluate ordering takes as input the reduced set of constraints C 1 produced
by constraint filtering, the status vector Vs, the set of actors A, and the
repetition vector R. The procedure returns the fireable vector Vf that flags the
fireable actors for the next slot.

92 scheduling framework

Algorithm 3 ASAP scheduler that handles constraints directly
procedure scheduler(R,A,C,G,Π)

while true do

Vs = ~0

I = get int values()

R = evaluate(R, I)
C = evaluate(C, I)
while Vs ‰ R do

B = get bool values()

C 1 = constraint filtering(C,B,Π)
Vf = evaluate ordering(C 1,Vs,A,R)
Vf = filtering(Vf,G)
Vs = Vs + Vf

fire(Vf)

end while

end while

end procedure

This procedure is shown in Alg. 4. We denote C(X) the set of constraints im-
posed on X (i. e., all constraints of the form Xi ą . . .). The procedure initializes
the firing vector to 0 and iterates over the set of actors. If all the constraints
imposed on an actor are satisfied and the actor has firings left then it is flagged
as eligible to fire in the firing vector.

eval evaluates the constraints of an actor C(X) according to the current status
vector (Vs). More precisely, for each constraint

Xi ą Yf(i)

eval simply checks whether:

f(Vs[X] + 1) ď Vs[Y]

which corresponds to the satisfaction of the data dependency. Indeed, Vs[X] + 1

is the index of the next firing of X and f(Vs[X] + 1) indicates the number of
firings that actor Y should have achieved before the Vs(X) + 1th instance of X
is fireable. If the current number of firings of Y (i. e., Vs[Y]) is greater than the
number of firings of Y needed for the next firing of X (i. e., f(Vs[X] + 1)) then
the constraint

Xi ą Yf(i) with i = Vs[X] + 1

is satisfied. If all the constraints in C(X) are satisfied, then eval returns true and
X is eligible to be fired in the current slot. Otherwise, it returns false and X will
not be fired.

Apart from the ordering constraints, the repetition vector is also checked,
(Vs[X] ă R[X]), to determine whether the actor needs to be fired again in the
current iteration or has finished its execution. If both conditions are satisfied,
Vf[X] is set to 1. After all actors have been considered, the fireable vector is
produced. Since each actor is selected as soon as its constraints are met, the
procedure produces an ASAP schedule w.r.t. the given constraints.

4.4 resource constraints 93

Algorithm 4 Evaluation of ordering constraints
procedure evaluate ordering(R,C,A,Vs)

Vf = ~0

for @X P A do

if eval(C(X),Vs)^ Vs[X] ă R[X] then

Vf[X] = 1

end if

end for

return(Vf)

end procedure

Finally, filtering takes as input the firing vector along with the resource
constraint matrix G. filtering is just a lookup procedure that finds Vf in the
constraint table and returns the entry of the table for that vector, so we do
not provide its pseudo code. The procedure returns the reduced firing vector
containing the actors to be fired in the next slot.

At the end of while-loop, the status vector Vs is updated based on the actors
flagged in the firing vector. Finally, the firing vector is issued to fire. Concurrent
to the execution of the actors, the scheduler computes the firing vector for the
next slot. The scheduler is summarized in Alg. 3.

Liveness analysis of the ordering constraints (Section 4.3.3) and the liveness
condition of resource constraints (Eq. (32)) guarantee that evaluate ordering

and filtering procedures will issue at least one actor to fire in each slot, as
long as the the repetition vector is not reached. Hence, the inner loop always
terminates when the iteration of the graph is complete.

4.4.2 Framework Extensions

The proposed framework imposes constraints on the execution of the applica-
tion, sometimes leading to inefficient implementations. This is because of the
slotted execution, which introduces slack, (see Figure 47a) and the hard syn-
chronization of the application at the completion of each iteration.

In this section we discuss how the framework can be extended with pipelined

and non-slotted execution, to produce more efficient schedules.

Pipelined Execution

One could argue that more parallelism can be achieved if we allowed the sched-
uler to span over multiple iterations. Although this is more efficient, without
the synchronization at the end of an iteration, fast executing producers will
overflow the buffers on the edges if the consumers are slower. In other words,
the dataflow analysis will no longer guarantee the boundedness of the applica-
tion.

For the propagation of the integer parameters, the scheduler would keep
track the value each actor uses and calculate constraints accordingly, in a simi-
lar way that the scheduler takes into account boolean parameters. This would
ensure that each actor uses the correct value of the parameter even if it lags

94 scheduling framework

behind. To ensure boundedness, a buffer constraint for each edge would be
added to prevent any token accumulation on the edges.

Non-Slotted Execution

The slotted scheduling model may introduce a lot of slack in the produced
schedule because of the explicit synchronization after every slot. This is inher-
ent to the model but can be mitigated using constraints to group actors with
similar timings in slots (see Section 4.5.2).

The slotted model was prescribed by our target platform but we should point
out that our framework can also be used to produce non-slotted schedules. In
our context, where each actor is implemented by a separate processing element,
the ASAP non-slotted schedule is optimal w.r.t. to time and constraints.

A non-slotted scheduler needs to fire new actors at the moment they become
available. To do so, the evaluation of ordering constraints and the filtering pro-
cess need to be adjusted.

For the ordering constraints, the scheduler main-loop must update the status
vector each time an actor ends its firing (instead of at the end of each slot). The
scheduler re-evaluates constraints each time an actor ends, finds new enabled
actors and fires them.

Moreover, an extra vector recording the active (i. e., currently executing) ac-
tors is needed. It is used to prevent active actors from being considered during
constraint evaluation. This vector is also used for the evaluation of resource
constraints which now apply on the enabled and the active actors.

This scheduler may introduce extra overhead at run-time depending on the
implementation. However, it is possible to pre-compute the actors to be fired,
so that the overhead is kept to a minimum or is completely overlaid by the
execution of the actors as is the case of the slotted execution.

Alternative Mapping

Our framework does not focus on mapping the actor firing on processing ele-
ments. So far, we have assumed a simple scheme with each actor mapped to a
separate processing element. To take into account the mapping restrictions we
have introduced for each actor an ordering constraint of the form:

Xi ą Xi´1, i P [1, #X]

Our scheduling framework can take into account different static mappings by
adding the corresponding constraints in the framework. For example, an actor
that may have instances executing in parallel on more than one processing
elements can be modeled with a self edge with a number of initial tokens equal
to the number of actor instances that can fire in parallel:

Xn

which in turn introduces the ordering constraint:

Xi ą Xi´n, i P [1, #X]

4.5 scheduling experiments 95

SRC

NOISE

SPAY

tempY

tempUV

MOTION
DETECTION

FADING DST

D

D

D

D

b

c2
c2

c2

c2
c2

c2

c2

c2

c2

c2

c1

c1

c1

c1

c1 c1

b@1
f1@1
f2@1

c1 = ¬b∧ f1

c2 = ¬b∧ f2

Figure 49: BPDF graph for TNR.

When multiple actors share a processing element, then filtering constraints can
be used to express their mutual exclusion. For instance, Rule (34) can be used
when actors A and B share the same processor. Rule (34) gives priority to ac-
tor A. A fairer sharing of the processor could be to use two resource constraints
that alternate the priority with conditions:

replace A, B by A if (VS[A] + VS[B])%2 == 1

replace A, B by B if (VS[A] + VS[B])%2 == 0

where VS[A] is the value of the status vector for actor A indicating the number
of times A has fired. The sum VS[A] + VS[B] is the total number of times both
actors have fired. In this way, the priority between the two actors alternates
after either actor fires.

4.5 scheduling experiments

In this section we evaluate the capabilities of our scheduling framework with
experiments. The first experiment aims at estimating the scheduler overhead
using a Temporal Noise Reduction (TNR) algorithm as a use-case. The second
experiment shows how constraints can be used to manipulate the schedule
using the VC-1 video decoder [68] as a use-case.

4.5.1 Scheduler Overhead Evaluation

TNR is an algorithm applied after the video decoding process to reduce the
noise of each frame. We implemented TNR using the transaction level SystemC
model of the Sthorm platform, which gives accurate performance results. The
application was captured as a BPDF graph and the scheduling framework was
used to schedule it. The BPDF graph of TNR processes one frame per iteration.
STMicroelectronics TLM simulator was used to simulate the execution of the

96 scheduling framework

application on the platform and to measure the performance of each actor and
each different schedule configuration. Table 3 shows the average cycles used by
the processor that schedules the graph to process one frame.

We consider three different cases: the original manual implementation of
the scheduler for TNR in STMicroelectronics (Manual Schedule), our scheduler
without any simplification of constraints (General Scheduler) and our BPDF quasi-
static schedule produced after simplification of constraints (Generated Schedule).
For comparison, column 2 shows the corresponding performance of the fastest
actor of TNR (i. e., the delay actors D).

We can see that the general scheduler is much slower than the original man-
ual schedule (more than three times more costly in cycles). Once the constraints
are simplified though, the scheduler is reduced to a quasi-static schedule com-
parable with the manual schedule.

Even in the case of the general scheduler, however, the scheduler does not in-
troduce overhead, since even the fastest actor of the application is considerably
slower than the scheduler. Since the scheduler runs in parallel with such coarse
grain actors, the application performance remains unaffected. In fact the sched-
uler could afford taking another 1.000.000 cycles before affecting performance.
In that context, a general scheduler is realistic and allows the use of additional
constraints to optimize various criteria.

4.5.2 Use Case: VC-1 Decoder

The VC-1 decoder [68] is a good example of a demanding codec. Its resem-
blance with the more recent and widely used H.264 [80] as well as with future
generation codecs like HEVC [115], makes it especially relevant. The BPDF imple-
mentation of VC-1 is shown in Figure 50.

The decoder is composed of two main pipelines, the inter and the intra. The
inter pipeline is composed of actor MC (Motion Compensation), while the in-
tra pipeline is composed of actors MBB (MacroBlock to Block), INTRA (Intra
prediction), and IQIT (Inverse Quantization and Inverse Transform). These two
paths are combined and produce the final decoded slice in the LOOP (Loop
filter). Actors SMB (Slice to MacroBlock) and MBB (MacroBlock to Block) are
auxiliary actors that are used as modifiers of the boolean parameters. For easier
reference, each actor is assigned a letter (shown in parenthesis).

The inter pipeline reconstructs data based on motion between different frames.
For this, it fetches data from previous or future frames and, based on motion
vectors, compensates the motion for the current macroblock. The intra pipeline
reconstructs the data that depends on macroblocks in the neighborhood of the
decoding macroblock. The intra prediction actor calculates coefficients based

fastest actor

performance

general

scheduler

generated

schedule

manual

schedule

cycles/
frame

2.140.000 1.100.000 360.000 340.000

Table 3: Schedule overhead for different schedules of TNR.

4.5 scheduling experiments 97

IN
TE

R-
PIP

ELIN
E

INTRA-PIPELINE

VLD (A)SMB (B)

MBB (C)MC (D) INTRA (E)

IQIT (F)LOOP (G)

pqq

q

q

q

q

q

q

q

b

b

¬a

a

a

a

b@1

a@q

Figure 50: BPDF graph for VC-1 decoder.

on this information, IQIT applies inverse transformations to complete the de-
coding of the data. Finally, the residues of both pipelines are combined and
smoothed in the loop filter.

The decoder makes use of two integers and two boolean parameters. The
integer parameters are: p, which denotes the slice size in macroblocks, and q,
which denotes the macroblock size in blocks. Each iteration of the graph pro-
cesses a single slice. The boolean parameters capture whether a block is using
intra (a) or inter (b) information. With these two boolean parameters, three
possible modes of operation can be distinguished:

a^ b : Intra only

 a^ b : Inter only

a^ b : Intra and Inter

In the Intra only case, the value of the current block depends only on the
values of the surrounding blocks. The inter pipeline is disabled. In the Inter

only case, the value of the current block depends on the value of another block
from a previous frame, as defined with a motion vector. Only the inter pipeline
is used. Finally, in the Intra and Inter case, both pipelines are used. Note that the
case where both boolean parameters are false is not functionally possible and
it does not make sense as it means that there is no encoding at all. If it happens
though, both pipelines are disabled and the data simply passes through to the
loop filter.

By solving the balance equations, we get the repetition vector:

[A Bp Cpq Dp Epq Fpq Gp]

98 scheduling framework

actor
execution time

(cycles/firing)
asap sequences

vld(a) 7400 F

smb(b) 10 EFp

mbb(c) 10 E2Fpq

mc(d) 1937 E2Fp

intra(e) 288 E3Fpq

iqit(f) 365 E3RF(pq)

loop(g) 4074 E3RG(p)

Table 4: ASAP sequences of VC-1 decoder.

The graph is first scheduled with no additional constraints, as explained in the
previous section.

The resulting schedule cannot be expressed as a single sequence using the
notation introduced in Section 4.4.1. It is possible though to express the sched-
ule using individual execution slot sequences for each actor, as shown in the
third column of Table 4. Each one represents the sequence of slots of the iter-
ation where either the actor is fired (written F) or it remains idle (written E).
The possible idle slots after the last firing of actors are omitted.

In the case of actors IQIT(F) and LOOP(G), the schedule depends on the
boolean value of a and shows an increased dynamicity. To express the sequence
of firings, we use recursive functions. The function RF for F is defined as:

RF(n) = a ? E Fn : Fq RF(n´ q)

The sequence associated to F is E3RF(pq). It means that F remains idle in the
first 3 slots, and then if a is tt, it waits one more slot and fires consecutively
the remaining fires of the iteration. If a is ff, F fires q times in consecutive slots
and then checks again the value of a by calling RF with appropriately reduced
number of firings.

The recursive function RG for G is defined as:

RG(n) = a ? Eq+1F Rtt(n´ 1) : Eq´1F Rff(n´ 1)

with:

Rtt(n) = a ? Eq´1F Rtt(n´ 1) : Eq´3F Rff(n´ 1)

Rff(n) = a ? Eq+1F Rtt(n´ 1) : Eq´1F Rff(n´ 1)

The execution sequence of G is a more complex one, as it depends not only on
the boolean values but also on their sequence. We consider the slot at which
C is fired and sets the first value for boolean parameter a. If a is ff, the intra
pipeline is bypassed and G should only wait q´ 1 firings of C i. e., q´ 1 slots,

4.5 scheduling experiments 99

indicated by the else part of function RG. If a is tt, G needs to wait two more
slots because of the intra pipeline (the then part of RG). For the subsequent
values of a, we have the following cases:
‚ If a keeps the same value, the firings of G are q ´ 1 slots apart, either

waiting for C or for F. This is shown in the then (resp. else) part of function Rtt

(resp. Rff).
‚ a switches from tt to ff: In this case, the G waits two less slots (i. e., q-3)

because of the absence of the intra pipeline dependency (else part of Rtt).
‚ a switches from ff to tt: In this case, the G waits two more slots (i. e., q+1)

because of the addition of the intra pipeline dependency (then part of Rff).
The complete schedule is the parallel combination of all schedule streams of

Table 4. It exhibits a high level of parallelism and a sample execution (produced
manually) starts with:

A;B; (B}C}D); (B}C}D}E); (B}C}D}E}F); . . .

The produced schedule has a maximum span of pq+ 5 slots in the worst case,
where all values of a is tt. It has a minimum span of pq+ 3 slots in the corre-
sponding best case where all values of a is ff.

By adding user-constraints, we can modify the ASAP schedule to improve it
or to satisfy some given criteria. In the following, examples of ordering and
resource constraints that improve performance are given. For our experiments,
we reused the VC-1 performance on Sthorm based on the implementation pre-
sented in [4]. The execution time of each actor firing is shown in the second
column of Table 4 (number of cycles).

To evaluate the performance of each schedule of the decoder, we developed
a simulator in Java that takes as input a BPDF graph as well as a set of user
constraints and simulates the slotted execution of the application based on the
given execution times. When the experiments of VC-1 took place, the Sthorm

platform and its simulation environment were no longer available to have a
more accurate performance evaluation. In the following, the overhead due to
the scheduler is not taken into account as it is considered negligible.

Improving Buffer Size

In the VC-1 implementation, the inter-prediction path processes one macroblock
at a time whereas the intra-prediction path processes one block at a time. Con-
sequently, actors in the intra-prediction are fired a total number of pq times,
whereas D fires only p times. This results into actor D firing in the early slots
and producing a lot of tokens on the edge ĚDG. However, actor G cannot con-
sume these tokens because the intra-prediction pipeline does not keep up and
eventually blocks the actor from firing.

In particular, D will finish its iteration in the first p + 2 slots producing a
total of pq tokens. In the meanwhile, the F actor will fire at most p+ 1 times
enabling G only

Y
p+1
q

]
times, leading to a consumption of at most p+ 1 tokens

from edge ĚDG. Therefore, there is an accumulation of pq´ (p+ 1) tokens on
ĚDG that could be avoided.

We can limit the buffer size of the edge ĚDG and prevent the accumulation of
data in the inter-prediction path by using the buffer size restricting constraint.

100 scheduling framework

In this way, we delay the inter-prediction path by constraining the actor D to
wait until G has consumed q tokens. From Eq. (22) we get:

Di ą Grq¨i´q
q s ñ Di ą Gi´1

This constraint adds idle intervals of q´ 1 slots between any two consecutive
firings of D. This redistribution of the firings of D has the additional benefit
of a more evenly distributed power consumption, and subsequently a smaller
temperature.

Although the schedule span of actor D increases, we observed only a slight
increase of 2% to the total schedule time, so the total schedule span effectively
remains the same. This significant change on the graph schedule is achieved
by adding a single constraint. It demonstrates the flexibility of our scheduling
framework.

Reducing Slack in Slots

When slotted scheduling is used, the goal is to minimize the introduced slack
because of the synchronization after each slot. For this reason, we try to cluster
together the more cycle-demanding actors. In Table 4, we notice that, apart from
actor A that fires only once, the most costly actors are D and G. An obvious
optimization is to fire them in the same slots.

We can use a resource constraint to achieve this goal. By looking at the actor
schedule streams of Table 4, we see that all firings of D, after the first one, are
fired in parallel with E. The following constraint can be used:

replace D, E by E if fireable(G)

This constraint suppresses D when G is not present, effectively clustering the
two actors together. The resource constraint:

replace D, by H if fireable(G)

is a more straightforward way to achieve clustering, but it returns an empty
set and therefore is an invalid constraint because it may cause a deadlock
(e. g., when the only fireable actor is D). The clustering of the two actor leads to
an improvement of 15% in the total schedule time.

The resource constraint examples in Section 4.4 can be used in VC-1 as well.
With precise information about actors (that we do not currently have), total
power consumption could be better controlled, e. g., bounded by a specified
limit. Further experimentation is needed to demonstrate the way VC-1 schedule
can be altered and optimized using these constraints, however the platform is
not available to us yet.

Non-Slotted Execution

In Section 4.4.1, we presented a way to adjust the framework to support non-
slotted execution. A non-slotted schedule is optimal w.r.t. timing in our context.
When VC-1 is scheduled in a non-slotted manner, the total execution time is
reduced by 40% from the slotted schedule without any optimization, which is
a 30% improvement to the optimized slotted schedule of the previous section.

4.6 summary 101

4.6 summary

The complexity of BPDF graphs raises the need for automated ways to produce
efficient parallel schedules. For this reason, we introduce a scheduling frame-
work that shifts the design focus from the production of a functional and correct
schedule to the optimization of the schedule. The framework facilitates the au-
tomatic production of complex schedules that can be as efficient as the manual
ones, which are often hard to produce and error-prone.

The framework specifies and implements bounded, live, and highly paral-
lel schedules for BPDF graphs. Scheduling is made flexible by the use of user
constraints that allow the framework to adapt to new execution platforms, to ex-
press optimizations and to regulate parallel firings. Static checks can ensure that
constraints preserve the existence of bounded and live schedules. Although,
only BPDF was considered, the framework can be adapted to schedule other
data flow models as long as their data flow constraints can be expressed in the
proposed constraint language.

The assumed slotted scheduling model introduces a lot slack in the resulting
schedule. However, it facilitates the expression and production of quasi-static
parallel schedules. In any case, although the framework was designed with
slotted scheduling in mind, it can easily be used for non-slotted scheduling,
thereby producing potentially more efficient schedules.

An aspect that has been ignored is mapping. The framework has been de-
veloped with demanding hardware actors in mind, so each functional actor in
the BPDF application corresponds to a distinct processing element. We show
that the framework can handle different static mapping schemes but still the
approach does not focus on taking mapping decisions.

The scheduling framework focuses on the back-end of the scheduling pro-
cedure. Its main foal is not to produce optimal quasi-static schedules but to
propose a flexible and correct by construction approach that can easily express
different schedules and scheduling strategies. It allows the user to optimize
the schedule at a higher level and avoid dealing with tedious implementation
details of parallel schedules. The framework can then be used to explore the var-
ious scheduling possibilities and to optimize the schedule w.r.t. various criteria
(such as latency, throughput, power consumption etc.).

5
T H R O U G H P U T A N A LY S I S

I’m never gonna let you win
No I will not surrender,
Even if I start to fall
I swear to you I’ll rise again

— Black Veil Brides

In this chapter, we focus on the parametric throughput calculation for the
BPDF MoC. Throughput is a very important property of an application, especially
when it comes to streaming. Many applications have explicit design specifica-
tions that impose strict throughput bounds at which the application must be
capable to operate. Such constraints are needed to achieve real-time behaviour
and an acceptable QoS. Data flow computing makes no exception and hence,
there have been many studies on throughput calculation and optimization, as
discussed in Section 2.4.3.

Previous work on computation of throughput for data flow does not cover
the more expressive models. When it comes to a parametric model like BPDF,
the existing techniques do not suffice neither to calculate nor to optimize the
throughput of an application.

Knowing the throughput of a data flow graph can be beneficial both at com-
pile time and at run-time:
‚ At compile time, the developer of the application can find and optimize the

actors responsible for the bottleneck of the application. Moreover, throughput is
heavily affected by the buffer sizes used and the number of initial tokens placed
on directed cycles. Throughput analysis at compile time allows the developer to
tune both buffer sizes and initial tokens, to meet the application requirements.
‚ At run-time, one can take decisions based on the calculated value. Once

throughput is calculated, existing techniques can be reused to optimize various
criteria of the application. For example, if the execution is slow, more process-
ing elements may be allocated to increase the parallelism, or the frequency
of the processing elements can be adjusted to meet the throughput require-
ments. On the contrary, if the application performance exceeds the throughput
requirements, then power consumption can be lowered by slowing down actors
(e. g., by decreasing their operating voltage and frequency).

The challenge of computing the throughput for BPDF graphs is to find a para-

metric expression of the throughput at compile-time. This expression can then
be evaluated efficiently at run-time. However, finding such an expression is
difficult. Here, we focus on finding an expression for the maximum achievable

throughput of a BPDF graph. Maximum throughput is of particular interest as
it is the throughput the graph operates in when ASAP scheduling is used. We
describe the evaluation of parametric expression of maximum throughput in
Section 5.1.

103

104 throughput analysis

However, the throughput is affected by the buffer sizes of the edges of the
graph. For the graph to achieve maximum throughput, we need to ensure that
the buffer sizes suffice. In Section 5.2 we revisit the throughput calculation
technique for SDF graphs using a conversion of the graph to HSDF and discuss
some properties of the HSDF that results from a directed cycle of two actors. We
use these properties in Section 5.3 to calculate the sufficient buffer sizes that
guarantee that the BPDF graph will not be slowed down and that it will operate
at its maximum throughput.

We limit our approach to acyclic BPDF graphs. The current work is still in
progress. It is the first steps towards a more complete approach for parametric
throughout calculation.

5.1 throughput calculation

To calculate throughput, we assume an ASAP parallel pipelined execution of the
graph. We are interested in the throughput the graph achieves once it enters the
steady state, as the initial phase (typically referred to as the prologue) lasts a very
small amount of time compared to the total operation time of the application.

We assume, as before, that each actor is executed in a different processing
element and that the concurrent execution of different firings of the same actor
is not allowed. We first define the terminology and the notation that is used
throughout the chapter.

5.1.1 Definitions

As already mentioned in Section 2.4.3, throughput indicates the performance
of an application. In data flow, this corresponds to the number of completed
iterations per time unit. It is also interesting to evaluate the throughput of each
individual actor. This way a bottleneck can be found and the application can be
further optimized.

Definition 10 (Actual actor throughput). Actual actor throughput (TA) is defined

as the number of firings the actor completes per time unit in a given execution.

Factors that limit throughput (i. e., throughput constraints) are the execution
time of the actors, the data dependencies between actors, the buffer sizes of the
graph edges and, finally, the directed cycles. As we assume only graphs with-
out cycles, we focus on the first three factors. In the following, we distinguish
throughput values depending on the throughput constraints taken into account
for their calculation.

As actors cannot have multiple instances executing in parallel, for any given
actor, there is an upper bound on the throughput the actor can achieve. This
limit corresponds to the unconstrained execution of the actor, the only limiting
factor being its execution time. It equates to the execution of the actor without
any slack (the actor never stays idle between firings).

Definition 11 (Theoretical throughput upper bound). The theoretical throughput

upper bound (TUA
) of an actor A with execution time tA is the throughput A can

achieve when executing without any constraints. It is defined as:

5.1 throughput calculation 105

A B
τrA rB

(a) Initial edge.

A B

τ

β−τ

rA rB

rA rB

(b) Edge with modeled buffer
of size β.

A B

τ

β−τ

rA rB

rA rB

(c) Edge with self-loops modeling map-
ping dependencies.

Figure 51: Edge ĎAB with the buffer size (β) modeled as a backward edge (51b) and the
mapping dependencies as self loops (51c).

TUA
=

1

tA
(38)

Finally, the maximum achievable throughput (or maximum throughput) of
an actor is the throughput the actor achieves when the graph dependencies are
taken into account. Buffers are considered to have sufficient capacity so that
they do not to impose any constraint on the throughput of the graph.

Definition 12 (Maximum throughput). The maximum throughput (TMA
) of an

actor A is the throughput it achieves when graph dependencies are taken into account.

The calculation of maximum throughput does not need the actual buffer sizes.
If the buffer sizes are not sufficient, then the graph (and its actors) operate at a
throughput strictly lower than the maximum throughput.

5.1.2 Maximum Throughput Calculation

We model finite buffers using backward edges as discussed in Section 2.4.3. For
each edge ĎAB of the graph, we add a backward edge ĎBA, as shown in Figure 51,
with initial tokens:

init(ĎBA) = β´ init(ĎAB)

where β is the buffer size. In this way, the graph with the additional edges is
always strongly connected.

For a strongly connected graph, boundedness means that the rate of data
produced should equal the rate of data consumed on each edge. So, for the
edge in Figure 51, considering that the execution times of actors A and B are
tA and tB respectively, we get the equation:

TA ¨ rA = TB ¨ rB (39)

If data is produced faster than it is consumed, there will be saturation of the
backward edge and the producer will be slowed down to achieve equilibrium.

106 throughput analysis

If data is consumed faster than it is produced, then an empty buffer on the edge
will slow down the consumer to achieve equilibrium. In the steady state, this
equilibrium has taken place and for each edge of the graph we get the balance
equation (Eq. (39)).

The system of equations that results from this equilibrium is the same as the
standard system of balance equations, but the unknown values are the max-
imum throughput values of each actor instead of the repetition counts. This
means that a vector containing the throughput values of the actors of the graph,
is also a solution of the system of balance equations. As a consequence, the ra-
tio between the throughput values of two actors should be equal to the ratio of
their solutions:

TA

TB
=

#A
#B

Moreover, throughput constraints need to be taken into account. For maximum
throughput, throughput constraints are only the upper bounds of each actor
and the data dependencies of the graph. The latter are captured with the bal-
ance equations, the former are expressed as extra constraints on the solution of
the system. For a graph G(A,E) we get the following system to solve:

TA ¨ rA = TB ¨ rB ,@ ĎAB P E

TA ď TUA
,@ A P A

(40)

Unlike the original balance equations that seek the minimum integer solution,
in this case we want the maximum solution that satisfy all constraints. Graph
consistency guarantees that such a solution exists.

Intuitively, the solution of the system will have at least one actor operating at
its upper bound. This actor will be the slowest actor imposing its constraint to
all the others. With this in mind, we solve the system of throughput equations
as follows:

1. Select one of the actors that take the longest time to complete an iteration (i. e., the

slowest actor). For a graph G = (A,E) we get actor X such that:

tX ¨ #X ě tZ ¨ #Z,@ Z P A (41)

where tZ is the execution time of actor Z and #Z its solution.
2. Set throughput of X to its upper bound throughput. Here, we get:

TX = TUX
=

1

tX

When the graph reaches maximum performance, the slowest actor needs
to operate without any slack. If the slowest actor has slack, it can be sped
up and subsequently the whole graph can operate at a higher throughput.

3. Find the throughput values of the rest of the actors, based on the balance equa-

tions. For any two actors X, Y we get:

#X
TX

=
#Y
TY

(42)

because both the repetition vector and the throughput values are solutions
of the same linear system.

5.1 throughput calculation 107

We now show that the solution found with the above steps satisfies the
throughput constraints and that it is indeed the maximum solution that sat-
isfies the constraints (i. e., there is no greater solution).

Constraint satisfaction. For actor X, we get TX = 1
tX

so the solution of X satisfies
its throughput constraint (TX ď TUX

). For any other actor Y with execution time
tY , it is easy to show that:

TY ď TUY
@Y P A´ tXu

where
TY =

1

tX
¨

#Y
#X

and TUY
=

1

tY
(43)

Indeed, from Eq. (41), we get:

tX ¨ #X ě tY ¨ #Y ñ
1

#X ¨ tX
ď

1

#Y ¨ tY
ñ

#Y
#X ¨ tX

ď
1

tY

(by Eq. (43)) ñ TY ď TUY

Maximum solution. By definition, the slowest actor X has the maximum possible
solution, TX = 1

tX
. We need to prove that all other actors also get the maximum

possible solution that satisfies the constraints. For this, we assume that there
exists an actor Y that has a solution T 1

Y ą TY = #Y
tX¨#X .

Any actor K sharing an edge with Y will have a solution of:

T 1
K ¨ rK = T 1

Y ¨ rY (44)

but the previous solution of K, computed with Eq. (42) was:

TK ¨ rK = TY ¨ rY ă T 1
Y ¨ rY = T 1

K ¨ rK ñ

T 1
K ą TK

The above equation shows that an actor K sharing an edge with Y, is such
that T 1

K ą TK. Since the graph is connected, X will also share an edge with an
actor with a bigger solution. But X cannot have a bigger solution because its
solution is already the maximum. So, Y cannot have a solution T 1

Y ą TY .

Parametric Rates

We assume that integer parameters do not change values frequently so that the
graph eventually enters steady-state. Moreover, when parametric rates (simi-
larly parametric times) are considered, comparisons between the tZ ¨ #Z expres-
sions may be parametric. Hence, evaluating the slowest actor is not always
possible. To select one of the actors, we need to assume different cases based on
the values of the parameters. For each quantity that is not comparable with the
others, a different case is assumed. In the worst case, where all actors have in-
comparable expressions, we end up with |A| different cases, each one marking
a different actor as the slowest one.

An algorithm that generates the different cases and their conditions is shown
in Alg. 5. The algorithm takes as input the set of actors (A), along with the

108 throughput analysis

Algorithm 5 Algorithm generating all possible cases of the slowest actor along
with the corresponding conditions for each case.

procedure GenerateCases(A,R, t)
for @X P A do

for @Y P AztXu do

c = compare(t[X] ¨ R[X], t[Y] ¨ R[Y])
if c == ‘incomparable 1 then

continue

else if c == ‘lesser 1 then

A = A´ tXu

break

else if c == ‘greater 1 then

A = A´ tYu

end if

end for

end for

for @X P A do

for @Y P AztXu do

cond[X].add(t[X] ¨ R[X] ě t[Y] ¨ R[Y])

end for

end for

return(cond)
end procedure

repetition vector (R) and the vector of their execution times (t). The algorithm
is consists of two pairs of nested for-loops. In the first pair of loops, all the
comparable actors are removed from the actor set. In the second pair, only
the incomparable actors remain, and for each actor X a set of conditions is
generated such that:

tX ¨ #X ě tY ¨ #Y, @Y P AztXu

Each symbolic expression has a numeric part (N) and a symbolic part (S).
Hence, the previous inequality will be of the form:

N1 ¨ S1 ě N2 ¨ S2

and the generated symbolic condition will be:

S 1
1

S 1
2

ě

R
N2

N1

V

where S 1
1, S 1

2 are S1, S2 without their common factors.

Boolean Parameters

In the above calculation, the boolean values of the BPDF graph are not taken
into account. The throughput calculation is done on the fully connected graph,
leading to a possible underestimation of the actual throughput.

5.1 throughput calculation 109

This is because removing edges from the graph reduces the scheduling con-
straints and may only result in actors executing earlier than in the fully con-
nected graph case. Moreover, in the case an actor gets disconnected and is fired
conceptually so that it keeps track of the boolean values, its execution time
is considerably smaller than its regular execution time. For this reason, when
boolean parameters are taken into account, throughput can only improve.

One can try to calculate throughput more accurately by adding boolean pa-
rameters in the throughput expressions. However, as boolean parameters may
change multiple times inside the iteration, the schedule shape may greatly vary
and it is no longer possible to argue that the graph is in steady-state.

Graph Throughput

The graph throughput, TG, is the number of graph iterations that are completed
per time unit. It can be calculated by selecting any actor, A, and dividing its
throughput by its solution:

TG =
TA

#A
(45)

In this way, we can get up to |A| parametric expressions of the maximum
throughput of the graph.

The maximum throughput is also the actual throughput when the graph ful-
fills the maximum throughput prerequisites. We need to ensure that all buffer
sizes of the graph suffice for maximum throughput (Section 5.3).

Throughput Underestimation

If the integer parameters change values frequently and steady-state execution
cannot be assumed, one can safely underestimate the throughput by assuming
a non-pipelined slotted execution. In this case, the schedule streams computed
in Chapter 4 can be used to find the maximum span (s) of the schedule in slots
(Section 4.5.2). Then a safe underestimation of the execution time of an iteration
is the product of the number of slots times the longest execution time:

ttotal = s ¨max
XPG

tX

This is a gross underestimation, which can be further refined. In the case where
the slot sequences of each actor are known, they can be combined in a single
schedule stream using the method described in Appendix A.1. The period of a
single iteration can then be evaluated by adding the maximum execution time
of each slot times its index k. Hence, the total execution time of one iteration is:

ttotal =
ÿ

ℓPL

k ¨maxXPℓtX

where ℓ is a slot and L is the set of slots. For example, for the slotted schedule:

A2; (A}B)p;Cq;

The total execution time then is:

ttotal = 2 ¨ tA + p ¨max(tA, tB) + q ¨ tC

110 throughput analysis

p q X TA TB TC TD TE TF TG

p = 1
q ą 20 f 1

365¨pq
1

365¨q
1

365
1

365¨q
1

365
1

365
1

365¨q

q ă 21 a 1
7400

p
7400

pq
7400

p
7400

pq
7400

pq
7400

p
7400

p ą 1
q ă 12 g 1

4074¨p
1

4074
q

4074
1

4074
q

4074
q

4074
1

4074

q ą 11 f 1
365¨pq

1
365¨q

1
365

1
365¨q

1
365

1
365

1
365¨q

Table 5: Parametric throughput values for the VC-1 Decoder.

In all cases, the throughput of the application is calculated with:

TG =
1

ttotal

5.1.3 Throughput Calculation Example

Let us demonstrate the approach using the VC-1 decoder from Figure 50. Table 4

gives the execution time of each actor. With a repetition vector of

[A Bp Cpq Dp Epq Fpq Gp]

For each actor, we get the total execution time it needs for one iteration (tN ¨ #N):

tA ¨ #A = 7400 ¨ 1

tB ¨ #B = 10 ¨ p

tC ¨ #C = 10 ¨ pq

tD ¨ #D = 1937 ¨ p

tE ¨ #E = 288 ¨ pq

tF ¨ #F = 365 ¨ pq

tG ¨ #G = 4074 ¨ p

When evaluating the expressions to find the slowest actor X (first part of
algorithm in Alg. 5), we end up with three actors (A, F and G) that cannot be
compared with each other. Actors E,C,D,B are discarded because:

tF ¨ #F ą tE ¨ #E ą tC ¨ #C and tG ¨ #G ą tD ¨ #D ą tB ¨ #B

We obtain three different cases, each one for a separate actor, and a set of con-
ditions on the parameters for each actor (the conditions of each case have been
further simplified for a more readable result):
case X = A if (p = 1 ^ q ă 21) Indeed:

tA ¨ #A ą tG ¨ #G ô 7400 ą 4074 ¨ p ô p ă 1.81 ô p = 1 (46)

tA ¨ #A ą tF ¨ #F ô 7400 ą 365 ¨ pq
(46)
ô q ă 20.3 ô q ă 21

since p,q P N
˚. Then we set TA = 1

7400 , and compute the rest of the actor
throughput values with Eq. (42):

5.1 throughput calculation 111

A-F A-G

G
-F

A
-F

0 1.81 pmax

q

11.1

qmax

p

A

F

G

(a) Continuous throughput regions.

0 1 pmax

q

11

20

qmax

p

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

(b) Discretized throughput regions.

Figure 52: VC-1 throughput regions for different pair of values of parameters p,q.

112 throughput analysis

TB = 1
7400 ¨

p
1 = p

7400

TC = 1
7400 ¨

pq
1 = pq

7400

TD = 1
7400 ¨

p
1 = p

7400

TE = 1
7400 ¨

pq
1 = pq

7400

TF = 1
7400 ¨

pq
1 = pq

7400

TG = 1
7400 ¨

p
1 = p

7400

case X = G if (p ą 1 ^ q ă 12) :

#G ¨ tG ą #A ¨ tA ô 4074 ¨ p ą 7400 ô p ą 1

#G ¨ tG ą #F ¨ tF ô 4074 ¨ p ą 365 ¨ pq ô q ă 11.1 ô q ă 12

since p,q P N
˚. We find the throughput of the graph the graph as before

by setting TG = 1
4074 and the throughput of the rest of the actors using

Eq. (42). The solutions are summarized in Table 5.
case X = F if (p = 1 ^ q ą 20) _ (p ą 1 ^ q ą 11) :

#F ¨ tF ą #G ¨ tG ô 365 ¨ pq ą 4074 ¨ p ô q ą 11

#F ¨ tF ą #A ¨ tA ô 365 ¨ pq ą 7400 ô pq ą 20.2 ô pq ą 20

since p,q P N
˚. Hence, we get:

(p = 1^q ą 20)_ (p ą 1^q ą 11)

We find the throughput of the graph by setting TF = 1
365 and the through-

put of the rest of the actors using Eq. (42). The solutions are summarized
in Table 5.

In this way, the parameter space is partitioned in different regions as shown
in Figure 52a. The figure shows the three boundaries that separate the parame-
ter space into different regions, where the slowest actor differs. The boundaries
are the following:

A´ F tA ¨ #A = tF ¨ #Fô q = 20.3
p

A´G tA ¨ #A = tG ¨ #Gô p = 1.81

G´ F tG ¨ #G = tF ¨ #Fô q = 11.1

The figure also shows the pairs of p ´ q values (black dots). Because the
parameters are integer, the regions are discretized resulting in the Figure 52b.

When the parameters change values at run-time, throughput can be re-evaluated
quickly by finding the region the graph operates in and then solving the corre-
sponding parametric expressions of Table 5.

5.2 throughput calculation via conversion to HSDF

An acyclic BPDF graph achieves maximum throughput only if throughput is not
constrained by the edge buffer sizes. Each time the parameters (both integer
and boolean) of a BPDF graph take new values, they instantiate an SDF graph.

To study the requirements of buffer sizes for maximum throughput, we first
look how throughput is calculated for SDF graphs by converting them to HSDF

5.2 throughput calculation via conversion to HSDF 113

graphs. Then we focus on the HSDF graph of the cycle that models buffer size in
Figure 51. We find the properties the graph should have to achieve maximum
throughput. We use these properties in Section 5.3 to calculate sufficient buffer
sizes for BPDF graphs.

One way to compute throughput is to convert the graph to the equivalent
HSDF graph and find the cycle with the maximum cycle mean (MCM) – the
critical cycle [111]. For a cycle C, with actors tA1,A2, ¨ ¨ ¨ ,Anu and tAi

the exe-
cution time of actor Ai, we get the cycle mean as the ratio of its total execution
time (i. e., the sum of execution times of its actors) over its total delay (i. e., the
sum of the initial tokens on its edges):

CM(C) =
execTime(C)

delay(C)
(47)

where

execTime =

nÿ

i=1

tAi
and delay = init(ĞAnA1) +

n´1ÿ

j=1

init(ĞAjAj+1)

The MCM of a graph G is the MCM of all its cycles. Formally:

MCM(G) = max
CPG

CM(C) (48)

Once the MCM has been found, the graph throughput TG is:

TG =
1

MCM(G)
(49)

There are plenty of algorithms for finding the critical cycle, as discussed in Sec-
tion 2.4.3, but in the case of cycles like the one in Figure 51, the structure of
the resulting HSDF graph is very specific. The resulting generic HSDF graph (Fig-
ure 53) is composed of two main chains of actors: The one on the left consists
of #A instances of actor A, and the one on the right consists of #B instances
of actor B. Each of these chains has a cyclic loop back to its first actor due to
the self loops added in Figure 51c. Self loops have been added to each actor of
the edge to indicate the restriction that multiple instances of the actor cannot
execute concurrently. In the following we assume that tA ¨ #A ě tB ¨ #B, without
loss of generality.

There are edges from the instances of actor A to those of actor B depending
on the rates of the actors. These edges will have tokens on them depending on
the number of initial tokens of the edge (τ). Similarly, there will be backward
edges from instances of B to those of A. Some of these edges may have initial
tokens depending on the buffer size (β).

When the buffer size is increased, more tokens appear on the backward links
from instances of B to instances of A. Finally, maximum throughput is achieved
when the MCM corresponds to the cycle formed by the actors of instances of
A, (A1,A2, . . . ,A#A). Indeed, when the buffer size increases, the cycle mean of
all cycles decrease in value except for the two cycles caused by the self loops.
We assumed that #A ¨ tA ě #B ¨ tB, so when the cycle formed by the instances of
actor A has the MCM, maximum throughput is achieved since the MCM can
no longer decrease by increasing the buffer size.

114 throughput analysis

A1

A2

A#A

B1

B2

B#B

Figure 53: Generic structure of the HSDF graph resulting from the actor pair in Figure 51.

The buffer size beyond which the throughput of the graph remains unaf-
fected is the minimum buffer size needed for the graph to achieve maximum
throughput.

5.2.1 Influence and Range

In the next section, we estimate the minimum buffer sizes using two notions,
namely influence and range, describing the dependencies of actors in the generic
HSDF graph of Figure 53. We introduce these notions here.

To define influence and range we take the dependency graph that derives
from the generic HSDF graph. The dependency graph spans infinitely and has
no directed cycles (Figure 54). This alters the throughput analysis of the HSDF

graph. The MCM corresponds to the cycle that needs the longest sequential
execution between iterations. A cycle from actor Ai back to Ai in the generic
HSDF graph corresponds to a path from Ai to Ai+#A in the dependency graph.
This way, we shift the focus from trying to find cycles to finding the longest

path from an instance of A in the first iteration to the corresponding instance
of A in the next iteration. This path is the critical path of the graph, which also
corresponds to the longest sequential execution between iterations.

The advantage of focusing on paths in the dependency graph instead of cy-
cles in the HSDF graph is that it is easier to express buffer sizes parametrically
as shown in the next section.

The dependency graph has a very distinctive structure of alternating columns
of actor instances. We can represent the graph by two columns, each one corre-
sponding to each actor, interconnected. We introduce two concepts concerning
an actor instance on a particular column: influence and range.

5.2 throughput calculation via conversion to HSDF 115

A1

A2

A#A

B1

B2

B#B

A ′

1

A ′

2

A ′

#A

B ′

1

B ′

2

B ′

#B

Figure 54: Unfolded graph resulting from the HSDF graph in Figure 53, the initial tokens
have been removed.

Definition 13 (Influence). For an instance Ai of actor A preceding actor B, we call

influence of Ai, denoted I(Ai), the earliest instance Bj of actor B, that depends on Ai

(i. e., the edge ĘAiBj in the dependency graph exists but the edge ĞAiBk´1 does not).

The influence of an instance Ai can be computed based on the rates and the
initial tokens of the edge on the original SDF graph:

I(Ai) = Bj with j =

Z
rA(i´ 1) + τ

rB

^
+ 1 (50)

This expression is very similar to the application constraints in Section 4.3.1.
The floor gives the last instance of B that is fireable after Ai´1 fires, that is
the last instance of B that does not depend on Ai. By adding 1 we get the first
instance of B that depends on Ai.

The importance of influence is that, as actor instances are connected vertically,
when jumping between different columns the earliest available instance should
be selected to get the longest path.

Before jumping to the next column however, the longest path within the cur-
rent column must be traversed. To find this distance, the notion of range is
used.

Definition 14. The range of an instance Ai with influence Bk, is the number of con-

secutive instances of A following Ai, that have the same influence.

The range is computed with:

R(Ai) =

S
rB ´

(

rA(i´ 1) + τ
)

mod rB)

rA

W

(51)

Intuitively, the range expresses the number of firings of A needed for Bk to
fire. The modulo in the numerator indicates the tokens provided to Bk by Ai´1.
It is subtracted from rB to give the remaining tokens needed for Bk to fire.

116 throughput analysis

Finally, the ceiling gives the additional firings of A needed to get enough tokens,

including Ai. Because x mod y = x´ y
Y
x
y

]
, we can rewrite Eq. (51) as:

R(Ai) =

»

———

rB ´
(

rA(i´ 1) + τ
)

+ rB

Y
rA(i´1)+τ

rB

]

rA

fi

ffiffiffi
ñ

R(Ai) =

R
rB

rA
´ (i´ 1)´

τ

rA
+

rB

rA
(j´ 1)

V
ñ

R(Ai) =

R
rB

rA
¨ j´

τ

rA

V
´ (i´ 1) (52)

where j is the index from I(Ai) = Bj. We use this expression to find the critical
path that corresponds to the throughput of the graph of actors A and B (Fig-
ure 51b). Starting from the first instance of A and traversing the column of A,
we check if there is a costlier path (i. e., a path with larger cumulative execution
time) through the instances of B. Earlier, we assumed that #A ¨ tA ě #B ¨ tB. If
this is not the case, the approach can be adapted by traversing the instances of
B instead of A.

For an instance Ai with I(Ai) = Bk, the path through the instances of B starts
at Bk with I(Bk) = Am and returns back to A at Am. Hence, the two competing
paths that lead to instance Am are the direct path from Ai to Am which costs:

PA = (m´ i) ¨ tA

and the path through B which costs:

PB = R(Ai) ¨ tA + R(Bk) ¨ tB

For each instance of Ai, a maximum cost from Ai to Ai+#A is found. Finally,
the critical path is the path with the maximum cost among these paths.

In the next section, we use influence and range to find the buffer size needed
so that there is no costlier path going through the instances of actor B and
hence, the graph operates at its maximum throughput.

5.3 minimizing buffer sizes for maximum throughput

For an acyclic BPDF graph to achieve maximum throughput, its edges need to
have sufficient buffer sizes. In this section, we calculate the minimum buffer
sizes that guarantee maximum throughput.

5.3.1 Parametric Approximation of Buffer Sizes

We model the constraints imposed by finite buffer sizes by adding backward
edges with β´ τ initial tokens where β is the size of the corresponding buffer.
So, for an edge ĎAB, we get the cycle shown in Figure 51b. We consider tA and
tB to denote the execution times of actors A and B respectively, and we assume
that:

tA ¨ #A ě tB ¨ #B

5.3 minimizing buffer sizes for maximum throughput 117

An

A(n+R(n)−1)

Am

Bk

B(k+R(k)−1)

Figure 55: The two competing paths in the HSDF graph.

Without loss of generality, we assume that rA and rB are co-primes so that
#A = rB and #B = rA. When they are not, the solutions are divided by the
gcd(rA, rB).

To achieve maximum throughput, we want the critical path found in Sec-
tion 5.2.1 to consist only of instances of actor A, the slowest actor. Hence, we
want all the paths going through B to cost less than the direct path through in-
stances of A. Figure 55 shows the two competing paths. The dotted (blue) path
is the direct path through A, while the dashed (red) path uses instances of B.
The path from An to A(n+R(Ai)´1) is common to both paths, so we can discard
it in the comparison. Note that the index has R(Ai)´ 1 because the range also
counts instance An.

The dashed path is the longest path that uses instances of B to reach Am.
That is because it starts from Bk, the first instance of B accessible from Ai

(I(Ai) = Bk) and ends at the latest instance of B that is connected with Am.
It starts with a firing of A to change to instance Bk, the first instance of B

depending on An, where k (Eq. (50)) is:

k =

Z
rA(n´ 1) + τ

rB

^
+ 1 (53)

Then the path continues with R(Bk) instances of B before reaching instance Am,
the earliest instance of actor A depending on Bk. So, by Eq. (50):

m =

Z
rB(k´ 1) + (β´ τ)

rA

^
+ 1 (54)

where β is the buffer size to find. Therefore, the total cost of the dashed path is
one firing of A and R(Bk) firings of B:

tA + tB ¨ (R(Bk))

118 throughput analysis

The total cost of the dotted path is m´n´R(An) firings of A to reach instance
Am:

tA(m´n´ R(An) + 1)

As we want the dotted path to always be more expensive than the dashed one
we get the following inequality:

tA(m´n´ R(An) + 1) ě tA + tB ¨ (R(Bk)) ô

tA(m´n´ R(An)) ě tB ¨ (R(Bk)) (55)

The inequality should hold for all instances of A, hence @n P [1, #A]. It is difficult
to get an exact value because of the nested floors and ceilings, so we aim at an
over-approximation. Replacing the range using Eq. (52) we get:

(Eq. (55))ô

tA

(

m´n´

(R
rB

rA
¨ k´

τ

rA

V
´ (n´ 1)

))

ě tB

(R
rA

rB
¨m´

β´ τ

rB

V
´ (m´ 1)

)

ô tA

(

m´

R
rB

rA
¨ k´

τ

rA

V
+ 1

)

ě tB

(R
rA

rB
¨m´

β´ τ

rB

V
´m+ 1

)

ô tA ¨m´ tA

R
rB

rA
¨ k´

τ

rA

V
+ tA ě tB

R
rA

rB
¨m´

β´ τ

rB

V
´ tB ¨m+ tB

ô tA ¨m+ tB ¨m´ tB

R
rA

rB
¨m´

β´ τ

rB

V
ě tB + tA

R
rB

rA
¨ k´

τ

rA

V
´ tA (56)

Over-approximating the ceilings (minimizing the left side and maximizing the
right) by rxs ď x+ 1 yields:

(Eq. (56))ð tA ¨m+ tB ¨m´ tB

(

rA

rB
¨m´

β´ τ

rB
+ 1

)

ě tB + tA

(

rB

rA
¨ k´

τ

rA
+ 1

)

´ tA

ô tA ¨m+ tB ¨m´ tB ¨
rA

rB
¨m+ tB ¨

β´ τ

rB
´ tB ě tB + tA ¨

rB

rA
¨ k´ tA ¨

τ

rA

ô (tA + tB ´ tB ¨
rA

rB
) ¨m+ tB ¨

β´ τ

rB
´ tB ě tB + tA ¨

rB

rA
¨ k´ tA ¨

τ

rA
(57)

Minimizing the floor in m (Eq. (54)) using txu ě x´ 1 we get:

mmin =
rB(k´ 1) + (β´ τ)

rA

Replacing m with mmin on the left side of Eq. (57) gives:

(tA + tB ´ tB ¨
rA

rB
) ¨m+ tB ¨

β´ τ

rB
´ tB

= (tA + tB ´ tB ¨
rA

rB
) ¨

rB(k´ 1) + (β´ τ)

rA
+ tB ¨

β´ τ

rB
´ tB

= (tA + tB) ¨
rB(k´ 1) + (β´ τ)

rA
´ tB ¨ (k´ 1)´ tB ¨

β´ τ

rB
+ tB ¨

β´ τ

rB

= (tA + tB) ¨

(

rB(k´ 1)

rA
+

β´ τ

rA

)

´ tB ¨ (k´ 1) (58)

5.3 minimizing buffer sizes for maximum throughput 119

Hence:

(Eq. (57)), (Eq. (58))ñ

(tA + tB) ¨

(

rB(k´ 1)

rA
+

β´ τ

rA

)

´ tB ¨ (k´ 1) ě tB + tA ¨
rB

rA
¨ k´ tA ¨

τ

rA
(59)

Minimizing the floor in k (Eq. (53)) using txu ě x´ 1 and similarly maximizing
using txu ď x gives:

kmin =
rA(n´ 1) + τ

rB
and kmax =

rA(n´ 1) + τ

rB
+ 1

Replacing k in Eq. (59) with kmin and kmax accordingly (i. e., minimizing the
left part and maximizing the right part) gives:

(Eq. (59))ð (tA + tB) ¨

(

rB(kmin ´ 1)

rA
+

β´ τ

rA

)

´ tB ¨ (kmax ´ 1)

ě tB + tA ¨
rB

rA
¨ kmax ´ tA ¨

τ

rA

ô (tA + tB) ¨

(

rB

rA
¨

(

rA(n´ 1) + τ

rB
´ 1

)

+
β´ τ

rA

)

´ tB ¨
rA(n´ 1) + τ

rB

ě tB + tA ¨
rB

rA
¨

(

rA(n´ 1) + τ

rB
+ 1

)

´ tA ¨
τ

rA

ô (tA + tB) ¨

(

n´ 1+
τ

rA
´

rB

rA
+

β

rA
´

τ

rA

)

´ tB ¨
rA(n´ 1) + τ

rB

ě tB + tA ¨ (n´ 1) + tA ¨
τ

rA
+ tA ¨

rB

rA
´ tA ¨

τ

rA

ô tA ¨ (n´ 1)´ tA ¨
rB

rA
+ tA ¨

β

rA
+ tB ¨ (n´ 1)´ tB ¨

rB

rA
+ tB ¨

β

rA

ě tB + tA ¨ (n´ 1) + tA ¨
rB

rA
+ tB ¨

rA(n´ 1) + τ

rB

ô β ¨
tA + tB

rA
ě tB ´ tB ¨ (n´ 1) + tB ¨

rB

rA
+ 2 ¨ tA ¨

rB

rA
+ tB ¨

rA(n´ 1) + τ

rB
(60)

With nmax = #A = rB and nmin = 1 we get:

(Eq. (60))ð β ¨
tA + tB

rA
ě tB ¨ (2´nmax) + tB ¨

rB

rA

+ 2 ¨ tA ¨
rB

rA
+ tB ¨

rA(nmin ´ 1) + τ

rB

ô β ¨
tA + tB

rA
ě 2 ¨ tB ´ tB ¨ rB + (tA + tB) ¨

rB

rA
+ tA ¨

rB

rA
+ tB ¨

τ

rB

ô β ě
2 ¨ tB ¨ rA
tA + tB

´
tB ¨ rA ¨ rB
tA + tB

+ rB +
tA ¨ rB
tA + tB

+
tB ¨ rA ¨ τ

rB ¨ (tA + tB)
(61)

tA ¨ rB is the total time A needs to finish an iteration and similarly tB ¨ rA is the
total time needed by B. To simplify the expression we set:

σX =
tX ¨ #Xř
ZPe tZ

120 throughput analysis

where e is the given edge and we get:

(Eq. (61))ô β ě 2 ¨ σB ´ rB ¨ σB + rB + σA + σB ¨
τ

rB

ô β ě σB

(

2+
τ

rB
´ rB

)

+ rB + σA (62)

Experiments show that doubling the minimum buffer size required for liveness
(Eq. (3)):

βmin =

#
rA + rB ´ g+ τ mod g if 0 ď τ ď rA + rB ´ g

τ otherwise

suffices for maximum throughput. Here, the buffer size is over-approximated
with the benefit that it can be expressed parametrically. The over-approximation
of Eq. (62) can be adapted accordingly when B is the slowest actor. In this case,
the direct path would consist of instances of actor B and the alternative path of
instances of A.

5.3.2 Exact Calculation of Buffer Sizes

Instead of over-approximating, we can calculate the exact buffer size that suf-
fices for maximum throughput. The algorithm in Alg. 6 calculates the exact
buffer size for an edge with fixed rates (SDF). For parametric rates (BPDF), an ex-
haustive search for all possible parametric values of the rates of an edge could
be used to find the worst case and to evaluate the exact buffer size needed.

The algorithm takes as input a pair of actors along with their maximum
throughput from Section 5.1.2. Actors are modeled with a structure that con-
tains four fields: execution time, port rate, remaining time and active. The first two
are the classical fields that define the actor. The last two are auxiliary fields
used by the algorithm:
‚ remaining time keeps the time units left for the current firing to finish.
‚ active is a boolean value indicating whether the actor is currently executing
or not.

For a given edge ĎAB, the algorithm FindMinBuffer initializes the buffer size
of the connecting edge to the middle point between the over-approximation
(Eq. (62)) and the minimum buffer size for liveness (Eq. (3)):

βinit =

R
βover +βmin

2

V

Then it checks whether the slowest actor stays idle while the other actor is active
(i. e., whether there is slack or not) using the HasSlack (Alg. 7) procedure. While
the slack is non-zero, the buffer is increased to the middle value between the
previous value and the over-approximation. When the slack is zero, the buffer
decreases until it reaches a non-zero value, thereby resulting in the minimum
buffer size with zero slack.

HasSlack takes as input a pair of actors and the buffer size of their connect-
ing edge, and simulates the execution of the pair. The buffer size is modeled
with a backward edge as in Figure 51. In the following, actor A is assumed to

5.3 minimizing buffer sizes for maximum throughput 121

Algorithm 6 Algorithm finding the minimum buffer size for maximum
throughput

procedure FindMinBuffer(A,B)

β =
Q
βover+βmin

2

U

while HasSlack(A,B,β) do

β =
Q
βover+β

2

U

end while

while HasSlack(A,B,β) do

β = β´ 1

end while

β = β+ 1

return(β)
end procedure

be the slowest (tA ¨ #A ě tB ¨ #B). HasSlack uses a set of simple functions to
simulate their execution:
HasFinished(X,A) is a function that checks whether actor A has finished X

number of firings. X is a large multiple of the solution of the actor, guar-
anteeing that the simulation lasts until the execution of the graph has
entered steady state.

CanFire(A) checks whether actor A can fire. If the buffer contains enough
tokens and the actor is not active, it returns true.

Fire(A) sets the active field of actor A to true and its remaining time equal
to its execution time. Then it updates the status of its input buffer by
removing the consumed tokens.

IsActive(A) returns the value of the active field of actor A.
AdvanceTime advances time to the next termination of an actor. It decreases

the remaining time of each active actor by the equivalent amount of time.
If the remaining time reaches zero, the actor finishes execution, it pro-
duces tokens on its output edge, and its active field is set to false.

HasSlack simulates until the slowest actor (here A) reaches the desired num-
ber of firings of until A has slack. The simulation advances from the termination
of a firing to the next termination using the AdvanceTime function. Each time
the algorithm checks whether any actor is eligible to fire and sets him to fire.
If the slowest actor is idle while the other actor is active, then the algorithm
returns true because the slowest actor has slack in its execution.

This approach returns the exact buffer size needed for maximum through-
put execution of a single SDF edge. However, the approach does not take into
account the fact that some actors will not operate at their maximum through-
put value based on the given edge because they may be further restricted by
another edge. In other words, the algorithm finds local solutions but not global
solutions for the minimization of the buffers of a whole SDF graph.

Another drawback of the algorithmic solution is that it cannot handle inte-
ger parameters. For BPDF, one should first find the worst combination of rates
between the two actors, an analysis that is beyond the scope of this work.

122 throughput analysis

Algorithm 7 Algorithm finding whether the slowest actor has slack in its oper-
ation

procedure HasSlack(A,B,β)
while HasFinished(A) do

if CanFire(A) then

Fire(A)

end if

if CanFire(B) then

Fire(B)

end if

if IsActive(B)^ IsActive(A) then

return(true)
end if

AdvanceTime()

end while

return(false)
end procedure

5.4 summary

In this chapter, the problem of throughput calculation of parametric data flow
graphs was discussed. Throughput calculation is important as throughput val-
ues can be taken into account to improve the design at compile time and opti-
mize the execution at run-time.

Most throughput calculation techniques are limited to SDF graphs or consider
only the worst case throughput. We focused on calculating throughput para-
metrically, so that it can be easily reevaluated at run-time based on changes of
parameter values.

Finding a parametric expression for throughput is not an easy task. Hence,
our proposal focuses on the parametric expression of the maximum achievable
throughput which is easier to express. However, maximum throughput may
not be achieved due to too small buffers or directed cycles with not enough
tokens.

In Section 5.3, we explored the buffer requirements for maximum throughput.
We proposed two ways to calculate sufficient buffer sizes, one parametric over-
approximation and one algorithmic approach that finds the exact buffer sizes
but cannot be applied to edges with parameters belonging to large intervals.

Our approach is limited to graph without cycles. To extend the approach
to cyclic graphs, the cycle requirements for sufficient initial tokens need to be
defined. This problem is similar to the buffer size problem, as buffer sizes are
modeled as cycles of size 2.

Finally, we do not take into account the impact of the boolean parameters
on throughput. Indeed, boolean parameters can impact the performance of a
graph by disabling parts of it. However, this behaviour greatly complicates
throughput calculation. The fully connected graph gives always a safe under-
estimation of the actual throughput value of any BPDF graph.

6
C O N C L U S I O N S

Aggressively we all defend the role
we play
Regrettably time’s come to send you
on your way

— The Killers

6.1 conclusions

We developed BPDF, a novel parametric data flow Model of Computation (MoC)
that allows changing the port rates and the topology of a graph at run-time. De-
spite the increase in expressiveness, BPDF remains statically analyzable. In this
way, qualitative properties of an application, such as bounded and deadlock-
free execution can be verified at compile-time. We believe that BPDF finds a
balance point between expressiveness, analyzability and schedulability. It is ex-
pressive enough to efficiently capture modern streaming applications, while
providing static analyses and moderate schedulability.

BPDF uses a combination of integer and boolean parameters that makes its
parallel scheduling challenging. In Chapter 4, we developed a scheduling frame-
work that facilitates parallel scheduling of BPDF applications. The framework
takes as input a set of constraints which are then compiled into a parallel sched-
ule or processed by a scheduler at run-time. Constraints are data dependencies
deriving from the topology of the BPDF graph, but can also be user constraints
that are used to restrict the buffer sizes on the graph edges or the level of
parallelism achieved by the application.

We have proposed static analyses to guarantee that the set of constraints
preserve the liveness and boundedness of the application. Constraints can be
used to explore various scheduling possibilities and to optimize the schedule
w.r.t. various criteria. Our framework does not aim at producing an optimal
quasi-static schedule but at providing a flexible and correct-by-construction ap-
proach that can easily express different schedule policies.

Finally, the parametric expression of the throughput of a BPDF graph is impor-
tant, both at compile-time and at run-time, because it helps taking design and
scheduling decisions to optimize an application. In Chapter 5, we focused on
the parametric expression of the maximum throughput for acyclic BPDF graphs
as well as buffer size requirements that guarantee that the graph will operate
at maximum throughput at run-time. Our approach on parametric throughput
calculation is limited to a small subset of BPDF graphs but this is just a first step
towards a more complete calculation procedure.

123

124 conclusions

A B C
p 1 1 p

(a) A BPDF graph with data duplication on
edge ĎBC.

A B C
p 1

1
p 1

(b) Equivalent BPDF graph with fractional
rates to suppress data duplication.

Figure 56: Actor B needs to produce a single token. In Figure 56a, the token is dupli-
cated p times because of consistency.

6.2 future work

The development of the BPDF MoC along with the scheduling framework and
the parametric throughput analysis can be further extended for applications
and implementations that do not fit our current assumptions.

6.2.1 The BPDF Model of Computation

BPDF can be extended in many ways. Allowing integer parameters to change
values within an iteration is a feature that can be used in many applications.
Currently, such functionality can be achieved with composite BPDF actors as
discussed in Section 3.3.4. BPDF can benefit from other models, such as SPDF,
which allows such changes. However, this extension significantly increases the
scheduling complexity, so changing periods should be further restricted in com-
parison with SPDF.

Another extension would allow port rates to be fractional (already used in
parameter propagation edges, see Section 3.3.2) and/or polynomial. Fractional
rates can be used to avoid duplication of the same value, as is the case with the
boolean values of BPDF. Moreover, it provides a more intuitive representation of
some applications. An example is given in Figure 56. Actor B needs to produce
only a single token on edge ĎBC. However, for the graph to be consistent, B fires
p times producing p tokens (Figure 56a). Data duplication can be avoided with
a fractional rate of 1

p (Figure 56b). In this way, B fires p times but produces only
a single token on edge ĎBC.

Polynomial rates are implicitly used in BPDF when a multi-rate graph is used,
as shown in Figure 57a. When the multiple edges are reduced to one (Fig-

A B
2p

2

p

1

(a) A BPDF multi-graph.

A B
(2p+ 2) (p+ 1)

(b) Equivalent BPDF graph with the
multiple edges reduced to one.

A B
1 (p+ 1)

(c) Graph not supported by
BPDF.

Figure 57: BPDF graphs with polynomial rates.

6.2 future work 125

A B C
6

6

2

3

2

3

3

2

b

¬b

b

¬bb@1

Figure 58: A BPDF graph that could be consistent with multiple repetition vectors.

ure 57b), the graph has parametric rates. However, graphs like the on in Fig-
ure 57c are not supported by the model. They are useful though, in many appli-
cations, where the first token contains some configuration information which
is followed by p tokens containing data.

Static analyses of BPDF do not take into account boolean values to avoid the
explosion of different combinations that occur. The model can be adjusted to
support such analyses. In this way, BPDF graphs that would otherwise be re-
jected as inconsistent can be taken into account. Such a graph is shown in
Figure 58. The graph is inconsistent because of the BC cycle. However, if the
boolean parameters are taken into account, one can end up with two different
repetition vectors based on the value of the boolean parameter b:

r =

#
[A B3 C2] b = tt

[A B2 C3] b = ff

Using repetition vectors based on the values of the boolean parameters raises a
lot of problems though. If a repetition vector depends on a boolean parameter
that changes values within an iteration, then the vector can change values in
the middle of an iteration, greatly complicating analyses and scheduling. Such
a functionality can be achieved with the use of sub-repetition vectors that cor-
respond to the boolean periods.

Finally, BPDF has been implemented as a standalone model in Java. Such an
implementation makes comparison with other existing data flow MoCs difficult.
BPDF needs to be integrated in larger frameworks such as Ptolemy [102] and
its extensions PeaCE [59] and Open RVC-CAL [123] as well as SDF3 [113] and
Dataflow Intechange Format (DIF) [62], to make such a comparison possible.

6.2.2 Scheduling Framework

In Section 4.4.2, we mentioned some possible extensions of the scheduling
framework. More precisely, we discussed how to pipeline execution by adding
buffer constraints on all edges and disregarding the repetition vector, and how
non-slotted execution can be achieved by adapting the scheduler to fire actors
every time an actor finishes execution. Moreover, we briefly discussed how al-
ternative static mapping schemes can be taken into account with the addition
of corresponding ordering and resource constraints. However, we were not able
to implement this kind of functionality and to compare the schedules produced
by our framework with schedules produced by different approaches.

The framework can be further extended to allow dynamic addition and re-
moval of constraints at run-time. Dynamic addition of ordering constraints

126 conclusions

should guarantee liveness. If all the possible constraints are known at compile-
time, then our current analysis suffices to guarantee liveness. However, this
may be a gross over-approximation. The analysis can be more precise if only
the possible combinations of constraints are taken into account; the cost of eval-
uating all the possible combinations can be high but since it is done off-line it
hardly matters.

Resource constraints always guarantee liveness by construction but, to avoid
dynamic evaluation, the static compilation of the constraints, discussed in Sec-
tion 4.4, needs to take into account the different possible sets of resource con-
straints that may occur at run-time.

This dynamic behaviour can be used for dynamic mapping: changing map-
ping scheme can take place by removing the constraints of the previous map-
ping scheme and adding the corresponding constraints for the new one. Be-
cause the set of constraints for each mapping do not overlap, using our live-
ness analysis on each different set suffices to guarantee liveness. Resource con-
straints can be optimized in a similar manner, by providing a different lookup
table for each different set of resource constraints. In this way, the framework
can support a wider implementation range that combines both mapping and
scheduling.

6.2.3 Parametric Throughput Analysis

Our parametric throughput analysis in Chapter 5 focuses only on the maxi-
mum achievable throughput for BPDF graphs. However, it needs to be checked
that the graph will operate at its maximum throughput. Hence, we provided a
method to calculate buffer sizes in the case of acyclic graphs.

When it comes to BPDF graphs with directed cycles, it should also be checked
whether there are enough initial tokens on a cycle to achieve maximum through-
put. An approximation can be made though, by clustering the actors of a cycle
until the cycle is composed of 2 actors and our algorithm for computing the
buffer sizes can be used. In general, the number of initial tokens of an applica-
tion cannot be changed because this affects also the functionality of the applica-
tion. Nevertheless, such an analysis can be useful to recognize bottlenecks and
possibly alter the port rates or the timing of the actors in the cycle.

The initial ambition behind our throughput calculation approach was to for-
mulate a set of throughput constraints based on the edges of the graph, which
would then be taken into account to solve the system of balance equations
and to find parametric throughput expressions for the actual throughput of the
graph. For the calculation of maximum throughput, for example, we considered
only the throughput constraints imposed by the timing of the actors.

Another formulation could take into account the limitations on throughput
of an actor due to the buffer sizes of its edges. Experiments show that such
a formulation can be possible for acyclic graphs. In the general case, though,
it may not be possible to find a formulation of throughput constraints that
reduces throughput calculation to a linear system.

Another limitation of our approach is the requirement that the graph en-
ters steady state execution. If the integer parameters change values often, then

6.2 future work 127

our approach may over-approximate the throughput of the application. To deal
with the transient phase, one can under-estimate throughput and gradually
improve the estimation using an unfolding factor u. Every time the integer pa-
rameters change, u is set to 1 and each iteration that the parameters remain
the same, u increases. The throughput value used is the throughput of the non-
pipelined execution of one iteration with an unfolding factor u. Finally, after u

has reached a value high enough to assume steady state execution, our method
can be used.

In Section 5.1.2, we briefly discussed the effect of boolean parameters on
throughput. In our analyses, we consider the BPDF graph with all its edges acti-
vated. A better approximation could be made, if the matrix holding the through-
put values (see Table 5), apart from the conditions on the integer parameters
also has conditions on the boolean values. Care should be taken though, be-
cause the constant change of boolean parameters within the iteration means
that the initial assumption of the graph entering steady state execution no
longer holds.

Moreover, when calculating buffer sizes, we always compute the buffer size
that guarantees maximum throughput for each edge, effectively over-estimating
the buffer size needed. This is because the algorithm we use does not take into
account the fact that most actors (apart from the slowest ones) will not operate
at their theoretical upper bound but rather at a lower value. Calculating the
exact buffer size for BPDF is a challenging problem yet to be solved.

Once a parametric expression for throughput is known, it can be used at run-
time to optimize the power consumption of the application. There are many
ways to reduce power consumption using DVFS as briefly discussed in Sec-
tion 2.4.3. In our approach, the scheduler could lower the Voltage-Frequency
scale of each hardware processing element stopping just before the application
fails to meet its QoS requirements, effectively reducing the power consumption
of each actor.

Data flow MoCs have great potential to shape the way we develop systems.
They enable modular design and static analyses, in the design phase, and code
generation and automation in the implementation phase. The resulting systems
are developed faster and cheaper and at the same time they are more reliable
and maintainable. In this way, not only more complex designs can be conceived
by experienced developers, but also development is made accessible to less
knowledgeable ones. Hence, more ideas are likely to come to fruition.

Part I

A P P E N D I X

A
A P P E N D I X

a.1 schedule streams

The schedule stream of an actor is a sequence of events where the actor is either
idle (E) or firing (F). The events are separated with the ‘;’ operator that indicates
sequential execution. Consecutive events of the same type are clustered together
using indexes. The execution advances from the left to the right of the stream.
For example, stream S1:

S1 = E;F;F;F;E;E;F

is written:
S1 = E;F3;E2;F

For each schedule stream, a vector with its indexes indicates the steps at which
the stream change from E to F and vice-versa. This vector (V) is called the step

vector. For stream S1 this vector is

V1 = [1 3 2 1]

Similarly, an event vector (E) is a vector with just the events of a schedule
stream:

E1 = [E F E F]

The merging of multiple schedule streams into a composite schedule stream pro-
duces also a sequence of events, where an event can be: idle (E), firing of an
actor (X1) or parallel firing of multiple actors, indicated by the ‘}’ operator
(X1}X2} . . . }Xn).

The main intuition behind the merging of multiple actor streams into a com-
posite stream is the traversal of all the streams one step (σ) at a time, and the
addition of the parallel execution of all the events across the multiple streams
as a single event on the composite stream that repeats σ times. The step σ needs
to be the minimum step till the next event change in across all streams:

σ = minVX[1], @X P A

However, integer parameters appear in the step vectors and finding the mini-
mum step is not possible if the indexes are incomparable. In this case, all possi-
ble cases are considered and multiple composite streams are produced, one for
each case.

The algorithm Alg. 9 is a recursive procedure that takes a set of actor step
vectors (V) along with the corresponding set of event vectors (E), a composite
stream (S), a set of conditions (C) and the actor set (A) and produces set of
composite streams (Σ) advancing the given stream by one step. Each different
composite stream is linked with a set of conditions on the integer parameters
(C).

131

132 appendix

Algorithm 8 Algorithm returning the set of actors with incomparable steps
procedure findmin(V ,A,C)

Ar = A

for X P Ar do

for Y P A 1, X ‰ Y do

if VX[1] ě VY [1] then

Ar = Ar ´ tXu

break

end if

if VX[1] ă VY [1] then

Ar = Ar ´ tYu

end if

end for

end for

return(Ar)

end procedure

procedure update vectors(X)
shift left(V 1

X)

shift left(E 1
X)

if V 1
X ==H then

A 1 = A´ tXu

V 1 = V 1 ´ tVXu

E 1 = E 1 ´ tEXu

end if

end procedure

First, Σ is set to H. Then, findmin returns the actor with the minimum step
or a set of incomparable actors. findmin gets the set of step vectors, the actor
set and the set of current conditions on the integer parameters. It is composed
of two nested for-loops which compare the first entry in the step vector of
each actor. The comparable actors with larger steps are removed from the actor
set. In the comparison, the current conditions are taken into account. Finally, the
reduced actor set with the actor with the smaller step or the set of incomparable
actors is returned.

streammerge proceeds with a for-loop over the reduced set of actors (Ar).
For each incomparable actor X, a different step will be used and a different com-
posite stream will be generated. In each case, all sets (V ,E,S,C,A) are copied
to (V 1,E 1,S 1,C 1,A 1) to be altered separately. Then, σ is calculated as VX[1] and
event e, to be placed in the composite stream, is initialized to EX[1].

update vectors is a function that updates the vectors of an actor. In partic-
ular, VX and EX are updated by shifting all values to the left and removing
the first value. If VX become empty, the actor (X) and its corresponding vectors
(VX,EX) are removed from the relevant sets.

A nested for-loop is used to advance the step vectors of all the other actors
and add their corresponding events to event e. Moreover, the set of conditions

A.1 schedule streams 133

Algorithm 9 Algorithm merging a set of actor schedule streams into a compos-
ite schedule streams

procedure stream merge(V ,E,S,C,A)
Σ =H

Ar = findmin(V ,A,C)
for X P Ar do

V 1 = V

E 1 = E

S 1 = S

C 1 = C

A 1 = A

σ = V 1
X[1]

e = E 1
X[1]

update vectors(X)

for Y P A, Y ‰ X do

C 1 = C 1 + (σ ď V 1
Y [1])

V 1
Y [1] = V 1

Y [1]´ σ

e = e}E 1
Y [1]

if V 1
Y [1] == 0 then

update vectors(Y)

end if

end for

e = eσ

S 1 = S 1 + E

if A 1 ‰ H then

Σ = Σ+ stream merge(V 1,E 1,S 1,C 1,A 1)

else

Σ = Σ+ (S 1,C 1)

end if

end for

return(Σ)
end procedure

needed for σ to be the smaller step is generated and added to the set of condi-
tions.

After the loop, e is repeated σ times and added to the composite stream.
If the actor set is not empty, streammerge is called again with the updated
sets (V 1,E 1,S 1,C 1,A 1). Else the current stream is added to the set of composite
streams (Σ) along with its conditions. Finally, the algorithm returns the set of
composite streams, each one related with a set of conditions.

134 appendix

Merging example

Consider the set of schedule streams:

SA = F2;E2;Fp

SB = E5;Fq;

SC = E3;Fp;E;Fp

with

VA = [2 2 p] EA = [F E F]

VB = [5 q] EB = [E F]

VC = [3 p 1 p] EC = [E F E F]

stream merge will start with V = [VA VB VC], E = [EA EB EC], S =H, C =H

and A = [A B C]. In the first run, findmin will return actor A because all the
first entries in V are comparable. The composite stream will be updated with
the parallel execution of all events (here only A fires):

S = F2
A

also written as:
S = A2

and all vectors will be updated:

VA = [2 p] EA = [E F]

VB = [3 q] EB = [E F]

VC = [1 p 1 p] EC = [E F E F]

The procedure will call it self with the updated sets. This time actor C returns
and the step is 1. All actors are idle, hence:

S = A2;E

and

VA = [1 p] EA = [E F]

VB = [2 q] EB = [E F]

VC = [p 1 p] EC = [F E F]

Next, findmin will return both A and C which are incomparable. Actor B is
removed because of A. The algorithm will split the streams in two based on
whether 1 ď p or p ď 1 1. In both cases, the composite stream will be:

S = A2;E;C

but the vectors will differ: for p ą 1 they are:

VA = [p] EA = [F]

VB = [1 q] EB = [E F]

VC = [p´ 1 1 p] EC = [F E F]

1 In the case of equality any stream will do so we do not differentiate.

A.2 vector algebra 135

but for p ď 1 we get:

VA = [p] EA = [F]

VB = [1 q] EB = [E F]

VC = [1 p] EC = [E F]

Both cases will call stream merge with different sets. Assuming the case where
p ď 1, in the next run findmin will return A and stream S will advance as:

S = A2;E;C;A

with vectors:

VA = [] EA = []

VB = [q] EB = [F]

VC = [p] EC = [F]

As VA = H, A is removed. In the next iteration, findmin return both B and
C as incomparable. In the first case, the condition q ď p is generated and the
stream advances as follows:

S = A2;E;C;A; (B}C)q

with vectors:

VB = [] EB = []

VC = [p´ q] EC = [F]

In the opposite case we get the condition p ď q and the streams:

S = A2;E;C;A; (B}C)p

with vectors:

VB = [q´ p] EB = [F]

VC = [] EC = []

Finally, in both cases the last actor with the rest of his firing is added and we
get:

S = A2;E;C;A; (B}C)q;Bq´p p ď q^ p ď 1

S = A2;E;C;A; (B}C)p;Bp´q q ď p^ p ď 1

The algorithm proceeds in a similar manner for the case 1 ď p.

a.2 vector algebra

Consider vector ~b = [x1, x2, . . . , xn] with size |~b| = n. We define the up-sampling
operator Ò as follows:

~b Ò α = [x1, . . . , x1loooomoooon
α

, . . . , xn, . . . , xnlooooomooooon
α

]

136 appendix

Hence, the size of the up-sampled vector is:

|~b Ò α| = |~b| ¨α

Moreover, we define the vector sum
−Ñÿ

, the sum of all the values within a
vector:

−Ñÿ
~b =

|~b|ÿ

i=1

xi

Naturally, as the up-sampling operator duplicates the values of the vector we
get:

−Ñÿ
(~b Ò α) = α ¨

−Ñÿ
~b

Consider a function f(x1, x2, . . . , xm) with m arguments. We define mapping
function M, a function that gets m vectors of size n and calls function f, n times
as follows:

M f
[

~b1, ~b2, . . . , ~bm

]

=
[

f(b1[1],b2[1], . . . ,bm[1]),

f(b1[2],b2[2], . . . ,bm[2]),

. . . ,f(b1[n],b2[n], . . . ,bm[n])
]

Property 3. The mapping of m vectors (~b1, ~b2, . . . , ~bm) of size n, up-sampled by α,

on a function f equals to the mapping of the vectors on f upsampled by α.

M f
[

~b1 Ò α, ~b2 Ò α, . . . , ~bm Ò α
]

=
(

M f
[

~b1, ~b2, . . . , ~bm

])

Ò α (63)

Proof. To prove Property 3, we separately calculate the left hand side and the
right hand side of Eq. (63). For the lhs we get:

M f
[

~b1 Ò α, ~b2 Ò α, . . . , ~bm Ò α
]

= M f
[

b1[1], . . . ,b1[1]loooooooomoooooooon
α

,b1[2], . . . ,b1[2]loooooooomoooooooon
α

, . . . ,b1[n], . . . ,b1[n]looooooooomooooooooon
α

,

. . . ,bm[1], . . . ,bm[1]loooooooooomoooooooooon
α

,bm[2], . . . ,bm[2]loooooooooomoooooooooon
α

, . . . ,bm[n], . . . ,bm[n]loooooooooomoooooooooon
α

]

=
[

f (b1[1],b2[1], . . . bm[1]) , . . . , f (b1[1],b2[1], . . . bm[1])looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon
α

f (b1[2],b2[2], . . . bm[2]) , . . . , f (b1[2],b2[2], . . . bm[2])looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon
α

,

. . . , f (b1[n],b2[n], . . . bm[n]) , . . . , f (b1[n],b2[n], . . . bm[n])looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon
α

]

(64)

A.2 vector algebra 137

Then for the rhs we get:
(

M f
[

~b1, ~b2, . . . , ~bm

])

Ò α

=
[

f (b1[1],b2[1], . . . ,bm[1]) ,

f (b1[2],b2[2], . . . ,bm[2]) ,

. . . ,f (b1[n],b2[n], . . . ,bm[n])
]

Ò α

=
[

f(b1[1],b2[1], . . . bm[1]), . . . , f(b1[1],b2[1], . . . bm[1])loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon
α

,

f(b1[2],b2[2], . . . bm[2]), . . . , f(b1[2],b2[2], . . . bm[2])loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon
α

,

. . . , f(b1[n],b2[n], . . . bm[n]), . . . , f(b1[n],b2[n], . . . bm[n])loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon
α

]

(65)

From Eq. (64) and Eq. (65), we see that the sides of Eq. (63) are equal.

As the two vectors are equal their vector sums are also equal therefore:

−Ñÿ (

M f
[

~b1 Ò α, ~b2 Ò α, . . . , ~bm Ò α
])

=

−Ñÿ (

M f
[

~b1, ~b2, . . . , ~bm

])

Ò α

(66)

Property 4. A vector upsampled by a product equals to the consecutive upsampling of

the vector by each product factor:

~x Ò (a1 ¨ a2 ¨ . . . ¨ an) = (. . . ((~x Ò a1) Ò a2) . . . Ò an) (67)

Proof. By induction. Considering vector ~x = [x1, x2, ¨ ¨ ¨ xm], we first show that
the property holds for n = 2. Then, assuming that the property holds for n´ 1,
we prove that it holds for n. Hemce, for n = 2 we get:

(~x Ò a1) Ò a2 = ~x Ò (a1 ¨ a2) (68)

Proof for n = 2:

~x Ò a1 =
[

x1, x1, . . . , x1looooooomooooooon
a1

, x2, x2, . . . , x2looooooomooooooon
a1

, . . . , xm, xm, . . . , xmlooooooooomooooooooon
a1

]

(~x Ò a1) Ò a2 =
[

x1, x1, . . . , x1looooooomooooooon
a1

, x1, x1, . . . , x1looooooomooooooon
a1

, . . . , x1, x1, . . . , x1looooooomooooooon
a1loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

a2

, . . . ,

xm, xm, . . . , xmlooooooooomooooooooon
a1

, xm, xm, . . . , xmlooooooooomooooooooon
a1

, . . . , xm, xm, . . . , xmlooooooooomooooooooon
a1looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon

a2

]

=
[

x1, x1, . . . , x1looooooomooooooon
a1¨a2

x2, x2, . . . , x2looooooomooooooon
a1¨a2

. . . , xm, xm, . . . , xmlooooooooomooooooooon
a1¨a2

]

= ~x Ò (a1 ¨ a2)

138 appendix

Now, assuming that Eq. (67) holds for n´ 1, that is

~x Ò (a1 ¨ a2 ¨ . . . ¨ an´1) = (. . . ((~x Ò a1) Ò a2) . . . Ò an´1) (69)

we show that it holds for n. Starting from the rhs:

(. . . ((~x Ò a1) Ò a2) . . . Ò an)

= (. . . (((~x Ò a1) Ò a2) . . . Ò an´1) Ò an)

(by Eq. (69)) = (~x Ò (a1 ¨ a2 ¨ . . . ¨ an´1)) Ò an

=
[

x1, x1, . . . , x1looooooomooooooon
a1¨a2¨ ... ¨an´1

, x1, x1, . . . , x1looooooomooooooon
a1¨a2¨ ... ¨an´1

, . . . , x1, x1, . . . , x1looooooomooooooon
a1¨a2¨ ... ¨an´1loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

an

, . . . ,

xm, xm, . . . , xmlooooooooomooooooooon
a1¨a2¨ ... ¨an´1

, xm, xm, . . . , xmlooooooooomooooooooon
a1¨a2¨ ... ¨an´1

, . . . , xm, xm, . . . , xmlooooooooomooooooooon
a1¨a2¨ ... ¨an´1looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon

an

]

=
[

x1, x1, . . . , x1looooooomooooooon
a1¨a2¨ ... ¨an

, x2, x2, . . . , x2looooooomooooooon
a1¨a2¨ ... ¨an

, . . . , xm, xm, . . . , xmlooooooooomooooooooon
a1¨a2¨ ... ¨an

]

= ~x Ò (a1 ¨ a2 ¨ . . . ¨ an) (70)

which proves Property 4.

Finally, as the two vectors are equal, their vector sums are also equal:

−Ñÿ
(

~x Ò (a1 ¨ a2 ¨ ¨ ¨ ¨ ¨ an)
)

=

−Ñÿ
(

(. . . ((~x Ò a1) Ò a2) . . . Ò an)
)

(71)

B I B L I O G R A P H Y

[1] Ismail Assayad, Alain Girault, and Hamoudi Kalla. Tradeoff exploration
between reliability, power consumption, and execution time. In Pro-

ceedings of the 30th International Conference on Computer Safety, Reliability,

and Security (SAFECOMP), pages 437–451, Naples, Italy, 2011. Springer-
Verlag. ISBN 978-3-642-24269-4. URL http://dl.acm.org/citation.cfm?

id=2041619.2041662.

[2] Neal Bambha. Intermediate representations for design automation of
multiprocessor DSP systems. In Design Automation for Embedded Systems,
pages 307–323. Kluwer Academic Publishers, 2002.

[3] Jean-Pierre Banâtre and Daniel Le Métayer. Programming by multiset
transformation. Communications of ACM, 36(1):98–111, 1993.

[4] Massimo Bariani, Paolo Lambruschini, and Marco Raggio. VC-1 de-
coder on STMicroelectronics P2012 architecture. In Proceedings of 8th

Annual Interantional Workshop ‘STreaming Day’, September 2010. doi:
http://stday2010.uniud.it/stday2010/stday_2010.html.

[5] Ed Baroth and Chris Hartsough. Visual object-oriented programming.
chapter Visual Programming in the Real World, pages 21–42. Manning
Publications Co., Greenwich, CT, USA, 1995. ISBN 0-13-172397-9. URL
http://dl.acm.org/citation.cfm?id=213388.213393.

[6] Shuvra S. Battacharyya, Edward A. Lee, and Praveen K. Murthy. Software

Synthesis from Dataflow Graphs. Kluwer Academic Publishers, Norwell,
MA, USA, 1996. ISBN 0792397223.

[7] Vagelis Bebelis, Pascal Fradet, Alain Girault, and Bruno Lavigueur. BPDF:
A statically analyzable dataflow model with integer and boolean param-
eters. In Proceedings of the International Conference on Embedded Software

(EMSOFT), pages 1–10, Sept 2013. doi: 10.1109/EMSOFT.2013.6658581.

[8] Vagelis Bebelis, Pascal Fradet, and Alain Girault. A framework to sched-
ule parametric dataflow applications on many-core platforms. In Proceed-

ings of the 2014 SIGPLAN/SIGBED Conference on Languages, Compilers and

Tools for Embedded Systems, pages 125–134, Edinburgh, United Kingdom,
2014. ACM. ISBN 978-1-4503-2877-7. doi: 10.1145/2597809.2597819. URL
http://doi.acm.org/10.1145/2597809.2597819.

[9] Albert Benveniste, Patricia Bournai, Thierry Gautier, Michel Le Borgne,
Paul Le Guernic, and Hervé Marchand. The SIGNAL declarative syn-
chronous language: controller synthesis and systems/architecture design.
In Proceedings of the 40th IEEE Conference on Decision and Control, volume 4,
pages 3284–3289 vol.4, 2001. doi: 10.1109/.2001.980328.

139

http://dl.acm.org/citation.cfm?id=2041619.2041662
http://dl.acm.org/citation.cfm?id=2041619.2041662
http://dl.acm.org/citation.cfm?id=213388.213393
http://doi.acm.org/10.1145/2597809.2597819

140 bibliography

[10] Bishnupriya Bhattacharya and Shuvra S. Bhattacharyya. Quasi-static
scheduling of reconfigurable dataflow graphs for DSP systems. In Pro-

ceedings of the 11th IEEE International Workshop on Rapid System Prototyping

(RSP), pages 84–, Washington, DC, USA, 2000. IEEE Computer Society.
ISBN 0-7695-0668-2. URL http://dl.acm.org/citation.cfm?id=827261.

828219.

[11] Bishnupriya Bhattacharya and Shuvra S. Bhattacharyya. Parameter-
ized dataflow modeling for DSP systems. IEEE Transactions on Sig-

nal Processing, 49(10):2408–2421, October 2001. ISSN 1053-587X. doi:
10.1109/78.950795. URL http://dx.doi.org/10.1109/78.950795.

[12] Shuvra S. Bhattacharyya and Edward A. Lee. Scheduling synchronous
dataflow graphs for efficient looping. Journal of VLSI Signal Processing

Systems, 6(3):271–288, December 1993. ISSN 0922-5773. doi: 10.1007/
BF01608539. URL http://dx.doi.org/10.1007/BF01608539.

[13] Shuvra S. Bhattacharyya and Edward A. Lee. Looped schedules for
dataflow descriptions of multirate signal processing algorithms. Formal

Methods System Design, 5(3):183–205, December 1994. ISSN 0925-9856. doi:
10.1007/BF01383830. URL http://dx.doi.org/10.1007/BF01383830.

[14] Shuvra S. Bhattacharyya, Praveen K. Murthy, and Edward A. Lee. AP-
GAN and RPMC: Complementary heuristics for translating DSP block
diagrams into efficient software implementations. Design Automation for

Embedded Systems, 2(1):33–60, 1997. ISSN 0929-5585. doi: 10.1023/A:
1008806425898. URL http://dx.doi.org/10.1023/A%3A1008806425898.

[15] Greet Bilsen, Marc Engels, Rudy Lauwereins, and J.A. Peperstraete.
Cyclo-static data flow. In IEEE International Conference on Acoustics, Speech,

and Signal Processing (ICASSP), volume 5, pages 3255–3258 vol.5, May
1995. doi: 10.1109/ICASSP.1995.479579.

[16] Bruno Bodin, Alix Munier Kordon, and Benoît Dupont de Dinechin. K-
periodic schedules for evaluating the maximum throughput of a syn-
chronous dataflow graph. In International Conference on Embedded Com-

puter Systems: Architectures, Modeling, and Simulation (SAMOS), pages 152–
159, 2012.

[17] Cristina Boeres, Jose Viterbo Filho, and Vinod E.F. Rebello. A cluster-
based strategy for scheduling task on heterogeneous processors. In
16th Symposium on Computer Architecture and High Performance Computing

(SBAC-PAD), pages 214–221, October 2004. doi: 10.1109/SBAC-PAD.2004.
1.

[18] Nicholas S. Bowen, Christos N. Nikolaou, and Arif Ghafoor. On the
assignment problem of arbitrary process systems to heterogeneous dis-
tributed computer systems. IEEE Transactions on Computers, 41(3):257–
273, March 1992. ISSN 0018-9340. doi: 10.1109/12.127439. URL http:

//dx.doi.org/10.1109/12.127439.

http://dl.acm.org/citation.cfm?id=827261.828219
http://dl.acm.org/citation.cfm?id=827261.828219
http://dx.doi.org/10.1109/78.950795
http://dx.doi.org/10.1007/BF01608539
http://dx.doi.org/10.1007/BF01383830
http://dx.doi.org/10.1023/A%3A1008806425898
http://dx.doi.org/10.1109/12.127439
http://dx.doi.org/10.1109/12.127439

bibliography 141

[19] G.W. Brams. Réseaux de Petri: Théorie et pratique. Number v.1 in Réseaux
de Petri. Masson, 1983.

[20] D. Brière, D. Ribot, D. Pilaud, and J.-L. Camus. Methods and specifica-
tions tools for Airbus on-board systems. In Avionics Conference and Exhibi-

tion, London, UK, December 1994. ERA Technology.

[21] Joseph T. Buck. Scheduling Dynamic Dataflow Graphs with Bounded Memory

Using the Token Flow Model. PhD thesis, EECS Department, University of
California, Berkeley, 1993. URL http://www.eecs.berkeley.edu/Pubs/

TechRpts/1993/2429.html.

[22] Joseph T. Buck. Static scheduling and code generation from dynamic
dataflow graphs with integer-valued control streams. In Conference Record

of the Twenty-Eighth Asilomar Conference on Signals, Systems and Computers,
volume 1, pages 508–513 vol.1, October 1994. doi: 10.1109/ACSSC.1994.
471505.

[23] Joseph T. Buck and Edward A. Lee. Scheduling dynamic dataflow graphs
with bounded memory using the token flow model. In IEEE International

Conference on Acoustics, Speech, and Signal Processing (ICASSP), volume 1,
pages 429–432 vol.1, April 1993. doi: 10.1109/ICASSP.1993.319147.

[24] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John A. Plaice. Lus-
tre: A declarative language for real-time programming. In Proceedings of

the 14th ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages, pages 178–188, Munich, West Germany, 1987. ACM. ISBN
0-89791-215-2. doi: 10.1145/41625.41641. URL http://doi.acm.org/10.

1145/41625.41641.

[25] Paul Caspi, Grégoire Hamon, and Marc Pouzet. Lucid synchrone: un
langage pour la programmation des systèmes réactifs. In Systèmes temps

réel. Lavoisier, 2007.

[26] Edward G. Coffman. Computer and Job Shop Scheduling Theory. Wiley, New
York, 1976.

[27] Thomas M. Conte, Pradeep K. Dubey, Matthew D. Jennings, Ruby B. Lee,
Alex Peleg, Salliah Rathnam, Mike Schlansker, Peter Song, and Andrew
Wolfe. Challenges to combining general-purpose and multimedia pro-
cessors. Computer, 30(12):33–37, December 1997. ISSN 0018-9162. doi:
10.1109/2.642799. URL http://dx.doi.org/10.1109/2.642799.

[28] NVIDIA Corporation. NVIDIA CUDA C Programming Guide. NVIDIA
Corporation, 4.1 edition, April 2012.

[29] Nathalie Cossement, Rudy Lauwereins, and Francky Catthoor. DF*: An
extension of synchronous dataflow with data - dependency and non-
determinism. In Forum on Design Languages, September 2000.

[30] Khann Huu The Dam. Scheduling of parametric dataflow applications
on many-core systems. Master’s thesis, Université Joseph Fourier, June
2013.

http://www.eecs.berkeley.edu/Pubs/TechRpts/1993/2429.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/1993/2429.html
http://doi.acm.org/10.1145/41625.41641
http://doi.acm.org/10.1145/41625.41641
http://dx.doi.org/10.1109/2.642799

142 bibliography

[31] Morteza Damavandpeyma, Sander Stuijk, Twan Basten, Marc Geilen,
and Henk Corporaal. Modeling static-order schedules in synchronous
dataflow graphs. In Proceedings of the Conference on Design, Automation

Test in Europe (DATE), pages 775–780, 2012.

[32] Morteza Damavandpeyma, Sander Stuijk, Marc Geilen, Twan Basten,
and Henk Corporaal. Parametric throughput analysis of scenario-aware
dataflow graphs. In IEEE International Conference on Computer Design

(ICCD), pages 219–226, 2012.

[33] Morteza Damavandpeyma, Sander Stuijk, Twan Basten, Marc Geilen,
and Henk Corporaal. Throughput-constrained DVFS for scenario-aware
dataflow graphs. In IEEE Real-Time and Embedded Technology and Applica-

tions Symposium, pages 175–184, 2013.

[34] Ali Dasdan and Rajesh K. Gupta. Faster maximum and minimum mean
cycle algorithms for system- performance analysis. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 17(10):889–899,
October 1998. ISSN 0278-0070. doi: 10.1109/43.728912.

[35] Jack B. Dennis. First version of a data flow procedure language. In Pro-

gramming Symposium, Proceedings Colloque Sur La Programmation, pages
362–376, London, UK, UK, 1974. Springer-Verlag. ISBN 3-540-06859-7.
URL http://dl.acm.org/citation.cfm?id=647323.721501.

[36] Jörg Desel and Javier Esparza. Free Choice Petri Nets. Cambridge Univer-
sity Press, New York, NY, USA, 1995. ISBN 0-521-46519-2.

[37] Karol Desnos, Maxime Pelcat, Jean-François Nezan, Shuvra S. Bhat-
tacharyya, and Slaheddine Aridhi. PiMM: parameterized and interfaced
dataflow meta-model for MPSoCs runtime reconfiguration. In Interna-

tional Conference on Embedded Computer Systems: Architectures, Modeling,

and Simulation (SAMOS), pages 41–48, Agios Konstantinos, Samos Is-
land, Greece, July 2013. doi: 10.1109/SAMOS.2013.6621104. URL http:

//dx.doi.org/10.1109/SAMOS.2013.6621104.

[38] Muhammad K. Dhodhi, Imtiaz Ahmad, Anwar Yatama, and Ishfaq Ah-
mad. An integrated technique for task matching and scheduling onto
distributed heterogeneous computing systems. Journal of Parallel Dis-

tributed Computing, 62(9):1338–1361, September 2002. ISSN 0743-7315. doi:
10.1006/jpdc.2002.1850. URL http://dx.doi.org/10.1006/jpdc.2002.

1850.

[39] Keith Diefendorff and Pradeep K. Dubey. How multimedia workloads
will change processor design. Computer, 30(9):43–45, September 1997.
ISSN 0018-9162. doi: 10.1109/2.612247. URL http://dx.doi.org/10.

1109/2.612247.

[40] Hesham El-Rewini and Ted G. Lewis. Scheduling parallel program tasks
onto arbitrary target machines. Journal on Parallel Distributed Comput-

ing, 9(2):138–153, June 1990. ISSN 0743-7315. doi: 10.1016/0743-7315(90)
90042-N. URL http://dx.doi.org/10.1016/0743-7315(90)90042-N.

http://dl.acm.org/citation.cfm?id=647323.721501
http://dx.doi.org/10.1109/SAMOS.2013.6621104
http://dx.doi.org/10.1109/SAMOS.2013.6621104
http://dx.doi.org/10.1006/jpdc.2002.1850
http://dx.doi.org/10.1006/jpdc.2002.1850
http://dx.doi.org/10.1109/2.612247
http://dx.doi.org/10.1109/2.612247
http://dx.doi.org/10.1016/0743-7315(90)90042-N

bibliography 143

[41] Joachim Falk, Joachim Keinert, Christian Haubelt, Jürgen Teich, and Shu-
vra S. Bhattacharyya. A generalized static data flow clustering algorithm
for MPSoC scheduling of multimedia applications. In Proceedings of the

8th ACM International Conference on Embedded Software (EMSOFT), pages
189–198, Atlanta, GA, USA, 2008. ACM. ISBN 978-1-60558-468-3. doi:
10.1145/1450058.1450084. URL http://doi.acm.org/10.1145/1450058.

1450084.

[42] Robert E. Filman and Daniel P. Friedman. Coordinated Computing: Tools

and Techniques for Distributed Software. McGraw-Hill, Inc., New York, NY,
USA, 1984. ISBN 0-07-022439-0.

[43] Pascal Fradet, Alain Girault, and Peter Poplavkoy. SPDF: A schedula-
ble parametric data-flow MoC. In Proceedings of the Conference on Design,

Automation Test in Europe (DATE), pages 769–774, 2012.

[44] Michael R. Garey and David S. Johnson. Computers and Intractability; A

Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1990. ISBN 0716710455.

[45] Marc Geilen. Reduction techniques for synchronous dataflow graphs. In
Design Automation Conference, pages 911–916, 2009.

[46] Marc Geilen. Synchronous dataflow scenarios. ACM Transactions on

Embedded Computing Systems, 10(2):16:1–16:31, January 2011. ISSN 1539-
9087. doi: 10.1145/1880050.1880052. URL http://doi.acm.org/10.1145/

1880050.1880052.

[47] Marc Geilen and Twan Basten. Requirements on the execution of kahn
process networks. In Proceedings of the 12th European Symposium on Pro-

gramming, ESOP, pages 319–334. Springer Verlag, 2003.

[48] Amir Hossein Ghamarian, Marc Geilen, Twan Basten, Bart D. Theelen,
Mohammad Reza Mousavi, and Sander Stuijk. Liveness and bounded-
ness of synchronous data flow graphs. In FMCAD, pages 68–75, 2006.

[49] Amir Hossein Ghamarian, Marc Geilen, Sander Stuijk, Twan Basten,
Bart D. Theelen, Mohammad Reza Mousavi, A.J.M. Moonen, and Marco
Bekooij. Throughput analysis of synchronous data flow graphs. In ACSD,
pages 25–36, 2006.

[50] Amir Hossein Ghamarian, Sander Stuijk, Twan Basten, Marc Geilen, and
Bart D. Theelen. Latency minimization for synchronous data flow graphs.
In Euromicro DSD, pages 189–196, 2007.

[51] Amir Hossein Ghamarian, Marc Geilen, Twan Basten, and Sander Stuijk.
Parametric throughput analysis of synchronous data flow graphs. In Pro-

ceedings of the Conference on Design, Automation and Test in Europe (DATE),
pages 116–121, Munich, Germany, 2008. ACM. ISBN 978-3-9810801-3-
1. doi: 10.1145/1403375.1403407. URL http://doi.acm.org/10.1145/

1403375.1403407.

http://doi.acm.org/10.1145/1450058.1450084
http://doi.acm.org/10.1145/1450058.1450084
http://doi.acm.org/10.1145/1880050.1880052
http://doi.acm.org/10.1145/1880050.1880052
http://doi.acm.org/10.1145/1403375.1403407
http://doi.acm.org/10.1145/1403375.1403407

144 bibliography

[52] Stefan Valentin Gheorghita, Martin Palkovic, Juan Hamers, Arnout Van-
decappelle, Stelios Mamagkakis, Twan Basten, Lieven Eeckhout, Henk
Corporaal, Francky Catthoor, Frederik Vandeputte, and Koen De Boss-
chere. System-scenario-based design of dynamic embedded systems.
ACM Transactions on Design Automation of Electronic Systems, 14(1), 2009.

[53] Alain Girault, Bilung Lee, and Edward A. Lee. Hierarchical finite
state machines with multiple concurrency models. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 18(6):742–760,
1999.

[54] E. Girczyc. Loop winding - a data flow approach to functional pipelining.
In International Symposium of Circuits and Systems, 1987.

[55] Ramaswamy Govindarajan, Guang R. Gao, and Palash Desai. Minimiz-
ing buffer requirements under rate-optimal schedule in regular dataflow
networks. Journal of VLSI Signal Processing Systems, 31(3):207–229, July
2002. ISSN 0922-5773. doi: 10.1023/A:1015452903532. URL http://dx.

doi.org/10.1023/A:1015452903532.

[56] Philippe Grosse, Yves Durand, and Paul Feautrier. Methods for power
optimization in SoC-based data flow systems. ACM Transactions on Design

Automation of Electronic Systems, 14(3), 2009.

[57] Nan Guan, Zonghua Gu, Wang Yi, and Ge Yu. Improving scalability
of model-checking for minimizing buffer requirements of synchronous
dataflow graphs. In Proceedings of the 2009 Asia and South Pacific Design

Automation Conference (ASP-DAC), pages 715–720, Yokohama, Japan, 2009.
IEEE Press. ISBN 978-1-4244-2748-2. URL http://dl.acm.org/citation.

cfm?id=1509633.1509795.

[58] Soonhoi Ha and Edward A. Lee. Compile-time scheduling and assign-
ment of data-flow program graphs with data-dependent iteration. IEEE

Transactions on Computers, 40(11):1225–1238, November 1991. ISSN 0018-
9340. doi: 10.1109/12.102826.

[59] Soonhoi Ha, Sungchan Kim, Choonseung Lee, Youngmin Yi, Seongnam
Kwon, and Young-Pyo Joo. PeaCE: A hardware-software codesign en-
vironment for multimedia embedded systems. ACM Transactions Design

Automation of Electronic Systems, 12(3):24:1–24:25, May 2008. ISSN 1084-
4309. doi: 10.1145/1255456.1255461. URL http://doi.acm.org/10.1145/

1255456.1255461.

[60] Dorit S. Hochbaum, editor. Approximation Algorithms for NP-hard Problems.
PWS Publishing Co., Boston, MA, USA, 1997. ISBN 0-534-94968-1.

[61] Anatol W. Holt, H. Saint, R. Shapiro, and Stephen Warshall. Final report
on the information systems theory project. Technical Report RADC-TR-
68-305, Griffiss Air Force Base, New York, 1968.

[62] Chia-Jui Hsu, Ming-Yung Ko, and Shuvra S. Bhattacharyya. Software
synthesis from the dataflow interchange format. In Proceedings of the

http://dx.doi.org/10.1023/A:1015452903532
http://dx.doi.org/10.1023/A:1015452903532
http://dl.acm.org/citation.cfm?id=1509633.1509795
http://dl.acm.org/citation.cfm?id=1509633.1509795
http://doi.acm.org/10.1145/1255456.1255461
http://doi.acm.org/10.1145/1255456.1255461

bibliography 145

2005 Workshop on Software and Compilers for Embedded Systems, SCOPES ’05,
pages 37–49, Dallas, Texas, 2005. ACM. ISBN 1-59593-207-0. doi: 10.1145/
1140389.1140394. URL http://doi.acm.org/10.1145/1140389.1140394.

[63] Cheng-Tsung Hwang, Yu-Chin Hsu, and Youn-Long Lin. Scheduling
for functional pipelining and loop winding. In Proceedings of the 28th

ACM/IEEE Design Automation Conference (DAC), pages 764–769, San Fran-
cisco, California, USA, 1991. ACM. ISBN 0-89791-395-7. doi: 10.1145/
127601.127766. URL http://doi.acm.org/10.1145/127601.127766.

[64] Michael A. Iverson, Füsun Özgüner, and Gregory J. Follen. Parallelizing
existing applications in a distributed heterogeneous environment. In 4th

Heterogeneous Computing Workshop (HCW), pages 93–100, 1995.

[65] Gary W. Johnson. LabVIEW Graphical Programming. McGraw-Hill, Inc.,
New York, NY, USA, 4th edition, 2006. ISBN 0071451463.

[66] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. Advances
in dataflow programming languages. ACM Computing Surveys, 36(1):1–
34, March 2004. ISSN 0360-0300. doi: 10.1145/1013208.1013209. URL
http://doi.acm.org/10.1145/1013208.1013209.

[67] Gilles Kahn. The semantics of simple language for parallel programming.
In IFIP Congress, pages 471–475, 1974.

[68] Hari Kalva and Jae-Beom Lee. The VC-1 video coding standard. IEEE

MultiMedia, 14(4):88–91, October 2007. ISSN 1070-986X. doi: 10.1109/
MMUL.2007.86. URL http://dx.doi.org/10.1109/MMUL.2007.86.

[69] Richard M. Karp. A characterization of the minimum cycle mean in a
digraph. Discrete Mathematics, 23(3):309 – 311, 1978. ISSN 0012-365X.
doi: http://dx.doi.org/10.1016/0012-365X(78)90011-0. URL http://www.

sciencedirect.com/science/article/pii/0012365X78900110.

[70] Hojin Kee, Chung-Ching Shen, Shuvra S. Bhattacharyya, Ian C. Wong,
Yong Rao, and Jacob Kornerup. Mapping parameterized cyclo-static
dataflow graphs onto configurable hardware. Signal Processing Systems,
66(3):285–301, 2012.

[71] Sang Cheol Kim and Sunggu Lee. Push-pull: guided search DAG sche-
duling for heterogeneous clusters. In International Conference on Parallel

Processing (ICPP), pages 603–610, June 2005. doi: 10.1109/ICPP.2005.66.

[72] Dong-Ik Ko and Shuvra S. Bhattacharyya. Dynamic configuration of
dataflow graph topology for DSP system design. In IEEE International

Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 69–
72, 2005.

[73] Ming-Yung Ko, Claudiu Zissulescu, Sebastian Puthenpurayil, Shuvra S.
Bhattacharyya, Bart Kienhuis, and Ed F. Deprettere. Parameterized
looped schedules for compact representation of execution sequences
in dsp hardware and software implementation. IEEE Transactions on

http://doi.acm.org/10.1145/1140389.1140394
http://doi.acm.org/10.1145/127601.127766
http://doi.acm.org/10.1145/1013208.1013209
http://dx.doi.org/10.1109/MMUL.2007.86
http://www.sciencedirect.com/science/article/pii/0012365X78900110
http://www.sciencedirect.com/science/article/pii/0012365X78900110

146 bibliography

Signal Processing, 55(6):3126–3138, June 2007. ISSN 1053-587X. doi:
10.1109/TSP.2007.893964.

[74] Fanxin Kong, Wang Yi, and Qingxu Deng. Energy-efficient scheduling of
real-time tasks on cluster-based multicores. In Proceedings of the Conference

on Design Automation Test in Europe (DATE), pages 1135–1140, 2011.

[75] Edward A. Lee. Recurrences, iteration, and conditionals in statically
scheduled block diagrams languages. In VLSI Signal Processing III, chap-
ter 31, pages 330–340. IEEE Press, 1988.

[76] Edward A. Lee. Embedded software. In Advances in Computers, volume 56,
London, 2002. Academic Press.

[77] Edward A. Lee and Soonhoi Ha. Scheduling strategies for multipro-
cessor real-time DSP. In IEEE Global Telecommunications Conference and

Exhibition (GLOBECOM), pages 1279–1283 vol.2, November 1989. doi:
10.1109/GLOCOM.1989.64160.

[78] Edward A. Lee and David G. Messerschmitt. Synchronous data flow.
Proceedings of the IEEE, 75(9):1235–1245, September 1987. ISSN 0018-9219.
doi: 10.1109/PROC.1987.13876.

[79] Edward A. Lee and David G. Messerschmitt. Static scheduling of syn-
chronous data flow programs for digital signal processing. IEEE Trans-

actions on Computers, 36(1):24–35, January 1987. ISSN 0018-9340. doi:
10.1109/TC.1987.5009446. URL http://dx.doi.org/10.1109/TC.1987.

5009446.

[80] Jae-Beom Lee and Hari Kalva. The VC-1 and H.264 Video Compression

Standards for Broadband Video Services. Springer, 2008.

[81] Wan Yeon Lee. Energy-saving DVFS scheduling of multiple periodic real-
time tasks on multi-core processors. In Distributed Simulation and Real-

Time Applications (DS-RT), pages 216–223, 2009.

[82] G. LeGoff. Using synchronous languages for interlocking. In International

Conference on Computer Application in Transportation Systems, 1996.

[83] Charles E. Leiserson and James B. Saxe. Retiming synchronous circuitry.
Algorithmica, 6(1):5–35, 1991.

[84] Junyang Lu and Yao Guo. Energy-aware fixed-priority multi-core schedu-
ling for real-time systems. In Real-Time Computing Systems and Applications

(RTCSA), pages 277–281, 2011.

[85] S. Ritz M. Pankert, O. Mauss and Heinrich Meyr. Dynamic data flow
and control flow in high level DSP code synthesis. In IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages II.449–
II.452, Adelaide, South Australia, April 1994. IEEE.

http://dx.doi.org/10.1109/TC.1987.5009446
http://dx.doi.org/10.1109/TC.1987.5009446

bibliography 147

[86] Olivier Marchetti and Alix Munier-Kordon. A sufficient condition for
the liveness of weighted event graphs. European Journal of Operational Re-

search, 197(2):532 – 540, 2009. ISSN 0377-2217. doi: http://dx.doi.org/10.
1016/j.ejor.2008.07.037. URL http://www.sciencedirect.com/science/

article/pii/S0377221708005900.

[87] Diego Melpignano, Luca Benini, Eric Flamand, Bruno Jego, Thierry Lep-
ley, Germain Haugou, Fabien Clermidy, and Denis Dutoit. Platform 2012,
a many-core computing accelerator for embedded SoCs: Performance
evaluation of visual analytics applications. In Proceedings of the 49th An-

nual Design Automation Conference (DAC), pages 1137–1142, San Francisco,
California, 2012. ACM. ISBN 978-1-4503-1199-1. doi: 10.1145/2228360.
2228568. URL http://doi.acm.org/10.1145/2228360.2228568.

[88] Praveen K. Murthy and Edward A. Lee. Multidimensional synchronous
dataflow. IEEE Transactions on Signal Processing, 50(8):2064–2079, August
2002. ISSN 1053-587X. doi: 10.1109/TSP.2002.800830.

[89] Praveen K. Murthy, Shuvra S. Bhattacharyya, and Edward A. Lee. Com-
bined code and data minimization for synchronous dataflow programs.
Memorandum UCB/ERL M94/93, University of California at Berkeley,
Electronics Research Laboratory, November 1994. URL http://ptolemy.

eecs.berkeley.edu/papers/jointCodeDataMinimize/.

[90] Hyunok Oh and Soonhoi Ha. Fractional rate dataflow model and efficient
code synthesis for multimedia applications. In Proceedings of the Joint

Conference on Languages, Compilers and Tools for Embedded Systems (LCTES),
pages 12–17, Berlin, Germany, 2002. ACM. ISBN 1-58113-527-0. doi: 10.
1145/513829.513834. URL http://doi.acm.org/10.1145/513829.513834.

[91] Keshab K. Parhi and David G. Messerschmitt. Rate-optimal fully-static
multiprocessor scheduling of data-flow signal processing programs. In
IEEE International Symposium on Circuits and Systems, pages 1923–1928

vol.3, May 1989. doi: 10.1109/ISCAS.1989.100746.

[92] Chanik Park, Jaewoong Chung, and Soonhoi Ha. Extended synchronous
dataflow for efficient DSP system prototyping. In Proceedings of IEEE

International Workshop on Rapid System Prototyping (RSP), pages 196–201,
July 1999. doi: 10.1109/IWRSP.1999.779053.

[93] Thomas M. Parks. Bounded Scheduling of Process Networks. PhD thesis,
EECS Department, University of California, Berkeley, 1995. URL http:

//www.eecs.berkeley.edu/Pubs/TechRpts/1995/2926.html.

[94] Thomas M. Parks, José Luis Pino, and Edward A. Lee. A comparison of
synchronous and cycle-static dataflow. In Conference Record of the Twenty-

Ninth Asilomar Conference on Signals, Systems and Computers, volume 1,
pages 204–210 vol.1, October 1995. doi: 10.1109/ACSSC.1995.540541.

[95] James Lyle Peterson. Petri Net Theory and the Modeling of Systems. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1981. ISBN 0136619835.

http://www.sciencedirect.com/science/article/pii/S0377221708005900
http://www.sciencedirect.com/science/article/pii/S0377221708005900
http://doi.acm.org/10.1145/2228360.2228568
http://ptolemy.eecs.berkeley.edu/papers/jointCodeDataMinimize/
http://ptolemy.eecs.berkeley.edu/papers/jointCodeDataMinimize/
http://doi.acm.org/10.1145/513829.513834
http://www.eecs.berkeley.edu/Pubs/TechRpts/1995/2926.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/1995/2926.html

148 bibliography

[96] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Universität
Hamburg, 1962.

[97] Jonathan Piat, Shuvra S. Bhattacharyya, and Mickaël Raulet. Interface-
based hierarchy for synchronous data-flow graphs. In Proceedings of

the IEEE Workshop on Signal Processing Systems (SiPS), pages 145–150,
Tampere, Finland, October 2009. doi: 10.1109/SIPS.2009.5336240. URL
http://dx.doi.org/10.1109/SIPS.2009.5336240.

[98] José Luis Pino, Shuvra S. Bhattacharyya, and Edward A. Lee. A hi-
erarchical multiprocessor scheduling system for DSP applications. In
Conference Record of the Twenty-Ninth Asilomar Conference on Signals, Sys-

tems and Computers, volume 1, pages 122–126 vol.1, October 1995. doi:
10.1109/ACSSC.1995.540525.

[99] William Plishker, Nimish Sane, Mary Kiemb, Kapil Anand, and Shuvra S.
Bhattacharyya. Functional DIF for rapid prototyping. In Proceedings of

IEEE International Workshop on Rapid System Prototyping (RPS), pages 17–
23, 2008.

[100] William Plishker, Nimish Sane, and Shuvra S. Bhattacharyya. A general-
ized scheduling approach for dynamic dataflow applications. In Proceed-

ings of the Conference on Design, Automation Test in Europe (DATE), pages
111–116, April 2009. doi: 10.1109/DATE.2009.5090642.

[101] William Plishker, Nimish Sane, Mary Kiemb, and Shuvra S. Bhat-
tacharyya. Heterogeneous design in functional DIF. Transactions on

HiPEAC, 4:391–408, 2011.

[102] Claudius Ptolemaeus. System Design, Modeling, and Simulation using

Ptolemy II. Ptolemy.org, 2014. URL http://ptolemy.org/books/Systems.

[103] Samantha Ranaweera and Dharma P. Agrawal. A task duplication based
scheduling algorithm for heterogeneous systems. In Proceedings of 14th

International Parallel and Distributed Processing Symposium (IPDPS), pages
445–450, Cancun, Mexico, May 2000. doi: 10.1109/IPDPS.2000.846020.

[104] Raymond Reiter. Scheduling parallel computations. Journal of ACM, 15

(4):590–599, October 1968. ISSN 0004-5411. doi: 10.1145/321479.321485.
URL http://doi.acm.org/10.1145/321479.321485.

[105] Sebastian Ritz, Matthias Pankert, and Heinrich Meyr. High level software
synthesis for signal processing systems. In Proceedings of the International

Conference on Application Specific Array Processors, pages 679–693, August
1992. doi: 10.1109/ASAP.1992.218536.

[106] Scott Rixner, William J. Dally, Ujval J. Kapasi, Brucek Khailany, Abelardo
López-Lagunas, Peter R. Mattson, and John D. Owens. A bandwidth-
efficient architecture for media processing. In Proceedings of the 31st An-

nual ACM/IEEE International Symposium on Microarchitecture, pages 3–13,
Dallas, Texas, USA, 1998. IEEE Computer Society Press. ISBN 1-58113-
016-3. URL http://dl.acm.org/citation.cfm?id=290940.290946.

http://dx.doi.org/10.1109/SIPS.2009.5336240
http://ptolemy.org/books/Systems
http://doi.acm.org/10.1145/321479.321485
http://dl.acm.org/citation.cfm?id=290940.290946

bibliography 149

[107] Yves Robert and Frederic Vivien. Introduction to Scheduling. CRC
Press, Inc., Boca Raton, FL, USA, 1st edition, 2009. ISBN 1420072730,
9781420072730.

[108] Euiseong Seo, Jinkyu Jeong, Seon-Yeong Park, and Joonwon Lee. En-
ergy efficient scheduling of real-time tasks on multicore processors. IEEE

Transactions on Parallel Distributed Systems, 19(11):1540–1552, 2008.

[109] Chung-Ching Shen, Shenpei Wu, Nimish Sane, Hsiang-Huang Wu,
William Plishker, and Shuvra S. Bhattacharyya. Design and synthesis
for multimedia systems using the targeted dataflow interchange format.
IEEE Transactions on Multimedia, 14(3-1):630–640, 2012.

[110] Gilbert C. Sih and Edward A. Lee. A compile-time scheduling heuris-
tic for interconnection-constrained heterogeneous processor architectures.
IEEE Transactions on Parallel Distributed Systems, 4(2):175–187, 1993.

[111] Sundararajan Sriram and Shuvra S. Bhattacharyya. Embedded Multiproces-

sors: Scheduling and Synchronization. Marcel Dekker, Inc., New York, NY,
USA, 1st edition, 2000. ISBN 0824793188.

[112] John E. Stone, David Gohara, and Guochun Shi. OpenCL: a parallel pro-
gramming standard for heterogeneous computing systems. IEEE Design

& Test, 12(3):66–73, May 2010. ISSN 0740-7475. doi: 10.1109/MCSE.2010.
69. URL http://dx.doi.org/10.1109/MCSE.2010.69.

[113] Sander Stuijk, Marc Geilen, and Twan Basten. SDF3: SDF for free.
In Sixth International Conference on Application of Concurrency to Sys-

tem Design (ACSD), pages 276–278, Turku, Finland, June 2006. doi:
10.1109/ACSD.2006.23. URL http://doi.ieeecomputersociety.org/10.

1109/ACSD.2006.23.

[114] Sander Stuijk, Marc Geilen, and Twan Basten. Throughput-buffering
trade-off exploration for cyclo-static and synchronous dataflow graphs.
IEEE Transactions on Computers, 57(10):1331–1345, October 2008. ISSN
0018-9340. doi: 10.1109/TC.2008.58. URL http://dx.doi.org/10.1109/

TC.2008.58.

[115] Gary J. Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand.
Overview of the high efficiency video coding (HEVC) standard. IEEE

Transactions on Circuits and Systems for Video Technology, 22(12):1649–1668,
December 2012. ISSN 1051-8215. doi: 10.1109/TCSVT.2012.2221191.

[116] Bart D. Theelen, Marc Geilen, Twan Basten, Jeroen Voeten, Stefan Valentin
Gheorghita, and Sander Stuijk. A scenario-aware data flow model for
combined long-run average and worst-case performance analysis. In
MEMOCODE, pages 185–194, 2006.

[117] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. StreamIt:
a language for streaming applications. In Proceedings of the 11th Inter-

national Conference on Compiler Construction, pages 179–196, London, UK,

http://dx.doi.org/10.1109/MCSE.2010.69
http://doi.ieeecomputersociety.org/10.1109/ACSD.2006.23
http://doi.ieeecomputersociety.org/10.1109/ACSD.2006.23
http://dx.doi.org/10.1109/TC.2008.58
http://dx.doi.org/10.1109/TC.2008.58

150 bibliography

UK, 2002. Springer-Verlag. ISBN 3-540-43369-4. URL http://dl.acm.org/

citation.cfm?id=647478.727935.

[118] Haluk Topcuoglu, Salim Hariri, and Min-You Wu. Performance-effective
and low-complexity task scheduling for heterogeneous computing. IEEE

Transactions Parallel Distributed Systems, 13(3):260–274, 2002.

[119] Marko Viitanen, Jarno Vanne, Timo D. Hamalainen, Moncef Gabbouj, and
Jani Lainema. Complexity analysis of next-generation HEVC decoder. In
IEEE International Symposium on Circuits and Systems (ISCAS), pages 882–
885, May 2012. doi: 10.1109/ISCAS.2012.6272182.

[120] William W. Wadge and Edward A. Ashcroft. LUCID, the Dataflow Program-

ming Language. Academic Press Professional, Inc., San Diego, CA, USA,
1985. ISBN 0-12-729650-6.

[121] Piet Wauters, Marc Engels, Rudy Lauwereins, and J.A. Peperstraete.
Cyclo-dynamic dataflow. In Proceedings of the Fourth Euromicro Workshop

on Parallel and Distributed Processing (PDP), pages 319–326, January 1996.
doi: 10.1109/EMPDP.1996.500603.

[122] Maarten Wiggers, Marco Bekooij, and Gerard J. M. Smit. Buffer capac-
ity computation for throughput constrained streaming applications with
data-dependent inter-task communication. In IEEE Real-Time and Embed-

ded Technology and Applications Symposium, pages 183–194, 2008.

[123] Matthieu Wipliez, Ghislain Roquier, and Jean-François Nezan. Soft-
ware code generation for the RVC-CAL language. Journal of Sig-

nal Processing Systems, 63(2):203–213, May 2011. ISSN 1939-8018.
doi: 10.1007/s11265-009-0390-z. URL http://dx.doi.org/10.1007/

s11265-009-0390-z.

[124] Shenpei Wu, Chung-Ching Shen, Nimish Sane, Kelly Davis, and Shuvra S.
Bhattacharyya. Parameterized scheduling for signal processing systems
using topological patterns. In IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 1561–1564, March 2012. doi:
10.1109/ICASSP.2012.6288190.

[125] Xiaodong Wu, Yuan Lin, Jian-Jun Han, and Jean-Luc Gaudiot. Energy-
efficient scheduling of real-time periodic tasks in multicore systems. In
Network and Parallel Computing (NPC), pages 344–357, 2010.

http://dl.acm.org/citation.cfm?id=647478.727935
http://dl.acm.org/citation.cfm?id=647478.727935
http://dx.doi.org/10.1007/s11265-009-0390-z
http://dx.doi.org/10.1007/s11265-009-0390-z

	Acknowledgments
	Contents
	Acronyms
	Résumé en Français
	1 Introduction
	1.1 Streaming Applications
	1.2 Models of Computation
	1.3 Streaming Application Development with Data Flow MoCs
	1.4 Contributions

	2 Data Flow Models of Computation
	2.1 Parallel Models of Computation
	2.1.1 Petri Nets
	2.1.2 Process Networks
	2.1.3 Data Flow

	2.2 Synchronous Data Flow
	2.2.1 Formal Definition
	2.2.2 Static Analyses
	2.2.3 Special Cases of SDF Graphs

	2.3 Extensions of Synchronous Data Flow
	2.3.1 Static Models
	2.3.2 Dynamic Topology Models
	2.3.3 Dynamic Rate Models
	2.3.4 Model Comparison

	2.4 Data Flow Application Implementation
	2.4.1 Mapping
	2.4.2 Scheduling
	2.4.3 Scheduling Optimization Criteria
	2.4.4 Scheduling Synchronous Data Flow
	2.4.5 Scheduling more Expressive Data Flow Graphs

	2.5 Summary

	3 Boolean Parametric Data Flow
	3.1 Boolean Parametric Data Flow
	3.1.1 Parametric rates
	3.1.2 Boolean conditions
	3.1.3 Formal definition
	3.1.4 Example

	3.2 Static Analyses
	3.2.1 Rate Consistency
	3.2.2 Boundedness
	3.2.3 Liveness

	3.3 Implementation of BPDF Applications
	3.3.1 Actor Firing
	3.3.2 Parameter Communication
	3.3.3 Scheduling
	3.3.4 BPDF Compositionality

	3.4 Model Comparison
	3.4.1 Boolean Data Flow
	3.4.2 Schedulable Parametric Data Flow
	3.4.3 Scenario-Aware Data Flow
	3.4.4 Other Models of Computation

	3.5 Summary

	4 Scheduling Framework
	4.1 Underlying Platform
	4.1.1 Mapping
	4.1.2 Scheduling

	4.2 Scheduling Framework
	4.3 Ordering Constraints
	4.3.1 Application Constraints
	4.3.2 User Ordering Constraints
	4.3.3 Liveness Analysis
	4.3.4 Scheduler
	4.3.5 Constraint Simplification

	4.4 Resource Constraints
	4.4.1 Alternative Scheduler
	4.4.2 Framework Extensions

	4.5 Scheduling Experiments
	4.5.1 Scheduler Overhead Evaluation
	4.5.2 Use Case: VC-1 Decoder

	4.6 Summary

	5 Throughput analysis
	5.1 Throughput Calculation
	5.1.1 Definitions
	5.1.2 Maximum Throughput Calculation
	5.1.3 Throughput Calculation Example

	5.2 Throughput Calculation via Conversion to HSDF
	5.2.1 Influence and Range

	5.3 Minimizing Buffer Sizes for Maximum Throughput
	5.3.1 Parametric Approximation of Buffer Sizes
	5.3.2 Exact Calculation of Buffer Sizes

	5.4 Summary

	6 Conclusions
	6.1 Conclusions
	6.2 Future Work
	6.2.1 The BPDF Model of Computation
	6.2.2 Scheduling Framework
	6.2.3 Parametric Throughput Analysis

	Appendix
	A Appendix
	A.1 Schedule streams
	A.2 Vector Algebra

	Bibliography

