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Résumé

La Méditerranée a été reconnue comme particulièrement sensible au changement climatique.

De nombreuses interactions et rétroactions entre l’océan, l’atmosphère et les surfaces con-

tinentales jouent un rôle proéminent dans le climat et les écosystèmes, et qui font de cette

mer semi-fermée un système unique et complexe, où la réponse des écosystèmes marins aux

changements climatiques et anthropiques est plus manifeste que dans l’Océan planétaire.

Cette thèse porte plus particulièrement sur la variabilité de la structure verticale de l’océan

de surface et sur les processus de formation d’eau profonde. Les différents résultats présentés

sont issus de nombreuses plateformes de mesure in-situ : navires, flotteurs-profileurs, «gliders»

(planeurs sous-marins), mouillages et bouée de surface.

Dans une première partie, nous nous sommes intéressé à caractériser la variabilité de la

couche mélangée océanique en Méditerranée. Ceci nous a permis de constituer la première

climatologie en Méditerranée (0.5° latitude x 0.5° longitude x 12 mois) de la pente de la

thermocline et du taux de stockage de chaleur associé, à partir de plus de 190 000 profils

recueillis entre 1969 et 2012. En plus de mettre en évidence des régions à la dynamique

particulière (comme les zones de convection profonde), cette climatologie du taux de stockage

de chaleur dans l’océan de surface a conduit à la construction d’un estimateur indépendant

du cycle saisonnier du flux net de chaleur de surface, en moyenne sur la méditerranée. À

travers ce travail nous avons pu fournir la première climatologie du cycle saisonnier du flux

net de chaleur calculé en moyenne sur la Méditerranée.

Cette climatologie a permis de mettre en évidence en Méditerranée, une grande vari-

abilité temporelle et spatiale de la couche mélangée et de la thermocline saisonnière. En

Méditerranée Nord-Occidentale, le mélange vertical de l’océan de surface peut se faire sur

de très grandes profondeurs, atteignant le fond ( 2300m) lors d’hivers particulièrement froids

et secs. À partir d’un très grand nombre de nouvelles observations multi-plateformes inté-

grées au sein du système d’observation MOOSE (Mediterranean Ocean Observing System

on Environment), ce travail de thèse a permis de caractériser la variabilité saisonnière et

interannuelle du processus de convection profonde, ainsi que les échelles de temps associées

à ce processus, l’évolution du contenu en chaleur et en sel de la colonne d’eau, le rôle de

l’atmosphère, l’évolution des eaux profondes, mais aussi l’activité tourbillonnaire de méso- et

sous méso-échelle très active dans cette zone.
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Abstract

The Mediterranean Sea was recognized as being particularly sensitive to climate change.

Numerous interactions and feedback between ocean-atmosphere-land processes, that play

a prominent role in climate and ecosystems, make the Mediterranean area a unique highly

coupled system, where the response of the marine ecosystems to both climate and anthropic

changes is expected to be much faster than in the rest of the world’s oceans. This thesis

is mainly focused on the variability of the vertical structure of the ocean surface and the

processes of deep water formation. Results are based on many platforms measuring in-situ:

ships, profiling floats, "gliders" (unmanned autonomous underwater vehicle), and surface

buoy moorings.

In the first part, we characterize the variability of the ocean mixed layer in the Mediter-

ranean. We present the first Mediterranean climatology (1°x1°x12 months) of the thermocline

based on a comprehensive collection of temperature profiles of the last 44 years (1969-2012),

including more than 190,000 profiles. This data set is first used to describe the seasonal cycle

of the thermocline depth and averaged temperature on the whole Mediterranean on a monthly

climatological basis. Our analysis discriminates several regions with coherent behaviors, in

particular the deep water formation sites, characterized by significant differences in the winter

mixing intensity. We used our new climatology to calculate the seasonal cycle of the upper

ocean heat rate and we propose a new independent estimate of the seasonal cycle of the Net

surface Heat Flux (NHF). This estimate is calculated on average over the Mediterranean Sea

for the 1969-2012 period.

This climatology highlights the high temporal and spatial variability of the mixed layer and

of the seasonal thermocline in the Mediterranean Sea. In the Northwestern Mediterranean,

the oceanic mixed layer can reach the bottom (2300m depth) in winter, this phenomenon

is known as deep convection. Recently a multi-platforms and integrated monitoring system

in the framework of the Mediterranean Ocean Observing System on Environment (MOOSE)

enables to monitor the deep water formation processes. For the first time, the deep convection

process was monitored in the Northwestern Mediterranean on a pluriannual basis, improving

our understanding of the seasonal and interannual variability of the deep convection process,

together with the timescale associated to this process, the evolution of heat and salt content

of the water column, the influence of surface buoyancy forcing, the thermohaline evolution

of Western Mediterranean Deep Waters, and the meso- / submeso-scale eddy activity in the

deep convection area.
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Introduction

Notre compréhension de l’Océan a constamment évolué grâce au développement de nouvelles

techniques de mesure permettant de mettre en lumière de nouveaux processus physiques.

Les deux guerres mondiales ont considérablement contribué au développement de nouveaux

instruments avec l’apparition des sonars et des chaînes de thermistances. Le développement

des méthodes de détections acoustiques a notamment conduit à la mise en place et au suivi de

mouillages profonds et de flotteurs, permettant de découvrir que dans une grande partie des

océans, l’énergie cinétique est dominée par des tourbillons de méso-échelle, dont les échelles

spatiales sont de l’ordre de plusieurs dizaines de kilomètres et les périodes temporelles de

plusieurs mois. Les chaînes de thermistances ont, quant à elles, permis de mieux comprendre

ces tourbillons, la structure des océans et ses petites variations liées à la propagation d’ondes

internes.

Le développement des satellites d’observation depuis les années 1970 est un autre exemple

de l’impact des nouveaux instruments sur notre compréhension de la dynamique de l’Océan

et de ses propriétés. Ce nouvel outil a permis de réaliser de grandes avancées notamment

dans notre compréhension de la distribution du phytoplancton à la surface des océans, de la

variabilité spatiale et temporelle de la température de surface, de l’amplitude des vagues, des

tourbillons, des courants de surface, et récemment de la salinité de surface.

Dans les années 2000, un nouveau tournant dans l’observation de l’Océan a été pris

à travers l’essor des plateformes autonomes avec le déploiement d’un réseau mondial de

flotteurs profileurs (Argo). Avec plus de 3500 flotteurs actifs, il permet pour la première fois

de connaître en continu la température, la salinité et la vitesse des 2000 premiers mètres

de l’océan, et d’accéder aux données disponibles publiquement dans les heures qui suivent

chaque cycle de mesures. Un des objectifs principaux du réseau Argo est de surveiller l’Océan,

et notamment son évolution liée au changement climatique.

De nos jours, le développement des planeurs sous-marins (ou gliders) constitue la nouvelle

révolution technologique de l’océanographie. Ces petits engins sous-marins autonomes sont

téléguidés et capables d’échantillonner l’Océan à haute résolution généralement jusqu’à une

profondeur de 1000m (voire 6000m) en étant équipés de différents capteurs physiques, biogéo-

chimiques et acoustiques. L’idée de cette nouvelle plateforme d’observation fut déjà évoquée

en 1989 par Henry Stommel, soulignant sa facilité d’utilisation, son coût relativement faible

et son utilité scientifique. La grande utilité des gliders vient du fait qu’ils comblent des vides

laissés par les autres plateformes utilisées dans l’observation de l’océan (satellites, navires,
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mouillages, flotteurs profileurs ou bouées dérivantes). Une des principales futures applica-

tions sera notamment leurs utilisations simultanées sous forme d’une flotte de gliders. Ces

déploiements permettront ainsi des observations multidisciplinaires et en quatre dimensions

de l’intérieur de l’Océan.

Toutefois, à l’échelle du globe, les observations de l’Océan sont dispersées géographique-

ment et temporellement. Elles ne fournissent qu’une description sommaire de l’écoulement

moyen et de nombreux processus sont mal observés. Ces lacunes peuvent être comblées en

combinant les observations à la théorie1 dans des modèles numériques2. La puissance de

calcul qui a grandi exponentiellement ces dernières décennies a permis le développement

considérable de la modélisation numérique. Conjointement les plateformes d’observations se

sont multipliées et diversifiées, ce qui a permis d’améliorer notre compréhension des proces-

sus physiques qui régissent la dynamique océanique et notre capacité à prévoir l’évolution de

l’Océan.

Les océans sont responsables de l’absorption d’environ 1/3 des émissions anthropiques de

dioxyde de carbone (CO2), entraînant leur acidification (IPCC [2013]). Dû à la grande capacité

thermique de l’eau et à l’énorme volume des océans (97% de l’eau présente sur Terre est

salée), le réchauffement océanique constitue l’essentiel de l’augmentation de la quantité

d’énergie emmagasinée au sein du système climatique et représente plus de 90% de l’énergie

accumulée entre 1971 et 2010 (IPCC [2013]). L’absorption de chaleur par les océans a, par

conséquent, réduit les effets associés à ce réchauffement sur l’atmosphère, mais implique

un réchauffement océanique sur le long terme même si le taux des émissions de gaz à effet

de serre était réduit à zéro, car leur temps de résidence dans l’atmosphère est très long (de 4

ans pour le méthane à 5-200 ans pour le CO2, responsable de plus de 50% du réchauffement

anthropique, voire 50 000 ans pour le Perfluorométhane CF4, IPCC [2013]).

Les océans séquestrent la chaleur et la transportent, avec le sel et une multitude d’autres

molécules, au grès des courants océaniques, qui les relâchent ultérieurement en différents

endroits de la planète. Une des grandes questions est de savoir comment la circulation océa-

nique est affectée par le changement climatique. À cause de la grande masse des océans (270

fois celle de l’atmosphère), de leur grande étendue (le globe terrestre est recouvert à 70%

par les océans) et de leur grande capacité thermique, les interactions océan-atmosphère et

les réponses de l’océan à ces interactions impliquent des processus lents agissant à diverses

échelles de temps. Ainsi, dans le cadre des prévisions à long terme du climat, une grande

partie des projections indique une diminution de la capacité des océans à absorber le carbone.

Notre compréhension du rôle de l’Océan dans la variabilité et le changement climatique, et

sa capacité à absorber et stocker le carbone, a évolué au fil de nombreux projets de recherche

comme CLIVAR (CLImate VARiability and predictability), SOLAS (Surface Ocean Lower Atmos-

phere Study), ou encore IMBER (Integrated Marine Biogeochemistry and Ecosystem Research).

1La théorie repose sur la dynamique des fluides géophysiques qui est l’étude des écoulements de moyenne et
grande échelle dans l’océan et l’atmosphère, milieux stratifiés sur une planète en rotation.

2Les modèles numériques sont crés à partir d’équations numériques qui sont des approximations des équations
théoriques. Dans les modèles, l’information n’est connue qu’en certains points de l’espace et du temps.
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La Méditerranée joue un rôle important dans la circulation océanique mondiale. La “lan-

gue” méditerranéenne d’eau salée s’échappe du détroit de Gibraltar et se répand dans tout

l’Océan Atlantique Nord à une profondeur intermédiaire. Ces eaux salées méditerranéennes

sont un des facteurs agissant sur les cellules de convection profonde de l’Atlantique Nord, à la

fois par un transfert direct vers les régions atlantiques polaires et par des processus indirects

de mélange.

De par sa localisation dans des régions relativement tempérées et ses dimensions, la Mé-

diterranée constitue un réel bassin de “laboratoire” pour l’étude des processus qui ont une

importance à l’échelle mondiale. Chacun des bassins Ouest et Est possède sa propre circula-

tion thermohaline. Ces deux bassins sont connectés par la branche supérieure d’une cellule

thermohaline, ayant pour origine l’Atlantique Nord. Les eaux intermédiaires et profondes de la

Méditerranée sont formées en différents sites, qui sont, relativement, “facilement” accessible

et observable, par leur proximité des côtes, comparés aux sites de formation d’eau profonde

des régions polaires.

En plus de sa propre circulation thermohaline à l’échelle du bassin, la Méditerranée est

aussi caractérisée par deux autres échelles de mouvement (une échelle liée aux sous-bassins,

incluant de nombreux gyres, et une activité tourbillonnaire de méso- et de subméso- échelle

énergétique et omniprésente). Ces trois échelles (bassin, sous-bassin et méso/subméso) sont

imbriquées les unes dans les autres et sont responsables de nombreuses interactions que l’ont

peut retrouver dans l’Océan planétaire.

En dépit de sa taille relativement petite (0.82% de la surface des océans), la Méditerranée

concentre de 4 à 18% de la diversité marine, et a été reconnue comme particulièrement sen-

sible au changement climatique (Giorgi [2006]; Somot et al. [2006]). Cette mer semi-fermée est

bordée par des littoraux très urbanisés et par de multiples chaînes de montagne qui donnent

naissance à de nombreux fleuves. Ses plateaux continentaux (larges ou étroits) sont séparés

de l’océan profond par d’abruptes pentes continentales. Tout ceci résulte en de multiples

interactions et rétro-actions entre les processus océan - atmosphère - surface continentale,

qui jouent un rôle prépondérant dans le climat et les écosystèmes, et qui font de la région

Méditerranée un système couplé unique et complexe, où la réponse des écosystèmes marins

aux changements climatiques et anthropiques est attendue comme étant plus manifeste que

dans l’Océan planétaire.

Le travail présenté dans ce manuscrit a été financé en partie par la Direction Générale de

l’Armement et par le projet européen HERMIONE (Hotspot Ecosystem Research and Man’s

Impact On European Seas, http://www.eu-hermione.net/). Il s’inscrit aussi dans le cadre

de deux projets de recherche français : HyMeX (Hydrological cycle in the Mediterranean

Experiment, http://www.hymex.org) et MERMeX (Marine Ecosystems Response in the Medi-

terranean Experiment, http://mermex.pytheas.univ-amu.fr), qui font partie du programme

MISTRALS (Mediterranean Integrated STudies at Regional And Local Scales). Ce programme

est dédié à l’ étude du bassin Méditerranéen avec l’objectif de “mieux comprendre l’impact

des facteurs globaux sur cette région et d’anticiper l’évolution, sur un siècle, de ses conditions
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d’habitabilité”. La majorité des données utilisées dans ce travail de thèse est issue du service

d’observation Mediterranean Ocean Observing System for the Environment (MOOSE), une

initiative qui a mis en place un système d’observation intégré et multi-sites en Méditerranée

Nord-Occidentale, dans le but de surveiller son évolution à long terme dans le contexte du

changement climatique et de fortes pressions anthropiques.

Différentes questions scientifiques relient ce travail de thèse au projet HyMeX :

• Quelle est la variabilité du bilan en eau de la Méditerranée à l’échelle saisonnière,

interannuelle et décennale ?

• Comment des évènements intenses, localisés temporellement ou/et spatialement peuvent

affecter le bilan en eau de la Méditerranée ?

• Comment la Méditerranée répond aux forçages de l’atmosphère ?

Les processus étudiés dans ce travail de thèse constituent aussi des forçages importants

qui influencent l’évolution des écosystèmes méditerranéens, en plus de ceux liés aux activités

humaines. Cette étude est donc aussi inscrite dans différents axes de recherche de MERMeX :

• Comment les changements dans les mécanismes de stratification et déstratification,

ainsi que dans la circulation thermohaline vont modifier la répartition spatio-temporelle

des nutriments et leurs bilans ? Plus précisément, quel est l’influence de la formation

d’eau dense sur la variabilité spatiale et temporelle des éléments biogènes, le déclenche-

ment des “blooms” planctoniques et la séquestration des éléments biogéniques (notam-

ment de carbone) ?

• Est-ce que le fonctionnement des écosystèmes méditerranéens mésopélagiques et pro-

fonds va être fortement affecté par les changements provenant de la production des

écosystèmes de surface et des flux verticaux ou par les changements dans l’hydrodyna-

mique des eaux intermédiaires et profondes ?

Les principaux objectifs de cette thèse sont d’améliorer notre compréhension des pro-

cessus de formation d’eaux denses. En effet, la couche de surface de l’océan est le siège

d’échanges océan-atmosphère nombreux et intenses, en particulier à cause du mélange, du

refroidissement/réchauffement et de l’évaporation/précipitation qui sont liés à de nombreux

phénomènes tels que le vent, l’ensoleillement ou les conditions atmosphériques. Cette couche

de surface homogène, aussi appelée couche de mélange océanique, présente un cycle saison-

nier caractéristique dans les régions tempérées (profonde en hiver, proche de la surface en été).

Dans le Golfe du Lion ce mélange peut atteindre le fond de l’océan ( 2300m), à travers le phéno-

mène de convection profonde. La convection profonde en haute mer, mais aussi les plongées

d’eau dense côtière liées à la convection hivernale qui a lieu sur le plateau continental, sont

des processus clés qui relient l’océan de surface à l’océan profond. Ils peuvent transférer de

la chaleur, du sel, mais également des éléments biogéochimiques à l’océan profond, comme

de l’oxygène et de la matière inorganique et organique. Ces processus contribuent donc à la

4



ventilation et l’ alimentation des écosystèmes pélagiques3 et benthiques4 profonds.

Ce travail est essentiellement basé sur des observations océaniques. J’ai eu l’opportunité de

participer à quatre campagnes de mesures océanographiques où j’ai pris part au déploiement

et à l’acquisition des données de différents instruments (stations CTD, Lower-ADCP, ADCP

de coque, gliders, mouillage profond LION), dont une grande partie est maintenue dans le

cadre du service d’observation MOOSE. Le traitement et l’analyse de ces données ont été faits

conjointement avec les données provenant d’autres plateformes de mesures, comme la bouée

Météo-France Lion, les flotteurs profileurs Argo, les images satellites de couleur de l’océan, ou

les réanalyses des modèles atmosphériques.

Tout au long de ma thèse, j’ai pu rencontrer des personnes de différents domaines (physi-

ciens, biogéochimistes , biologistes ) avec qui j’ai eu souvent l’occasion de travailler. Certains

des résultats découlant de ces collaborations sont présentés au début des principaux chapitres.

Cette thèse est composée de cinq chapitres. La zone d’étude et les processus physiques

intervenant dans l’océan de surface et la formation d’eaux denses sont présentés dans le

premier chapitre. Le deuxième chapitre présente un aperçu des principales données utilisées.

Le troisième chapitre permet de caractériser la variabilité de la couche mélangée océanique

en mer Méditerranée et de mieux comprendre les bilans ‘grande échelle’ associés de chaleur.

L’utilisation de données historiques et récentes acquises sur l’ensemble de la Méditerranée

entre 1969 et 2012 a permis la construction d’une climatologie de la couche de mélange,

de la thermocline et du taux de stockage de chaleur dans la couche de surface. Ce travail a

permis d’établir la première climatologie du cycle saisonnier du flux net de chaleur calculé

en moyenne sur la Méditerranée et basée uniquement sur des données océaniques in-situ,

ce qui a permis de mettre en évidence une grande variabilité temporelle et spatiale de la

couche de mélange et de la thermocline saisonnière. Les chapitres 4 et 5 sont consacrées à

l’étude approfondie d’un chantier particulier (le Golfe du Lion), où la couche de mélange peut

atteindre de très grande profondeur (>2000m) lors d’hivers particulièrement froids et secs. À

partir d’un très grand nombre de nouvelles observations multi-plateformes intégrées au sein

du système d’observation MOOSE (Mediterranean Ocean Observing System on Environment),

ce travail de thèse a permis de caractériser les échelles de temps associées au processus

de convection profonde (chapitre 4), ainsi que sa variabilité saisonnière et interannuelle,

l’évolution du contenu en chaleur et en sel de la colonne d’eau, l’influence des pertes de

flottabilités à la surface, l’évolution des eaux profondes, mais aussi l’activité tourbillonnaire de

méso- et sous méso-échelle très active dans cette zone. De nouvelles observations de plongées

d’eau profonde côtière et les résultats récents issus de l’interaction entre les eaux formées par

ces plongées d’eau dense et par la convection profonde en haute mer durant l’hiver 2012 sont

présentés dans le chapitre 5.

3Relatif au milieu marin loin des côtes, à la haute mer.
4Relatif aux grandes profondeurs, au fond des mers.
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Introduction

Our understanding of the oceans has constantly evolved due to the development of new

measurement techniques that have highlighted new physical processes. The two World Wars

have contributed significantly to the development of new instruments including underwater

sonar and thermistor chain. The development of acoustic methods improved the ability to

track and detect floats or deep moorings , which led to the discovery that in most parts of

the oceans the kinetic energy is dominated by mesoscale eddies with scales of many tens of

kilometers and periods of several months. The development of thermistor chain has led to

much better understanding of these eddies and of the structure of the ocean and its shorter

term variations such as internal waves.

Another example of the impact of new instruments on our understanding of the dynamics

of the ocean and its properties is the development of satellite observations since the 1970s

has radically extended knowledge of the oceans, both of the surface and also of some aspects

of its motion at depth. Major progress has been achieved with this new tool especially in our

understanding of the distribution of plankton in the upper ocean, of the seasonal and area

variations in sea-surface properties, temperature, wave amplitude, mesoscale eddies, surface

currents and recently surface salinity.

In the 2000s, a new milestone in the observation of the oceans has been achieved through

the development of autonomous platforms and the deployment of a global network of profiling

floats (Argo). With more than 3500 active floats, This allows, for the first time, continuous

monitoring of the temperature, salinity, and velocity of the upper ocean, with all data being

relayed and made publicly available within hours after collection. For the first time, the

physical state of the upper ocean is being systematically measured and the data assimilated in

near real-time into computer models.

Nowadays the development of underwater gliders is the new technological revolution in

oceanography. These small autonomous underwater vehicles are unmanned and able to

sample the oceans in high resolution usually to a depth of 1000m (even 6000m ) and can

be equipped with various physical, biogeochemical and acoustic sensors. The idea of this

new platform of measurement was mentioned in 1989 by Henry Stommel, evoking its ease

of use, relatively low cost and its scientific value. The great utility of gliders comes from

the fact that they fill the gaps left by the other platforms presently used for the observation

of the oceans (satellites, ships, moorings, profiling floats, drifting buoys). One of the main

future applications will include in particular the simultaneous use of a fleet of gliders. These
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deployments will enable novel multidisciplinary 3-dimensional surveys of the upper ocean

interior.

However the global observations of the oceans are dispersed spatially and temporally,

they provide only a brief description of the mean flow and many processes are not properly

observed. These gaps can be filled by combining theory and observations in numerical models.

The exponential growth of computing power in recent decades has led to the extensive devel-

opment of numerical modeling, jointly observation platforms have become more numerous

and more diversified, which has allowed to improve our understanding of the physical pro-

cesses that govern the ocean dynamics and our ability to predict the evolution of the oceans.

The oceans absorb approximately one-third of the emitted anthropogenic carbon dioxide,

causing ocean acidification (IPCC [2013]), observed in the oceans globally. As a result of

the high thermal capacity of the water and the huge mass of the oceans, ocean warming

dominates the increase in energy stored in the climate system, accounting for more than 90%

of the energy accumulated between 1971 and 2010 (IPCC [2013]). This has correspondingly

reduced the associated heating effect on the atmosphere, but implies a long-term warming

commitment even if the rate of emission of greenhouse gases were reduced to zero.

The oceans sequesters heat and moves heat, salt, and chemicals through the ocean cur-

rents, releasing them in different places and times. How ocean circulation is affected as the

climate changes is a key issue. Because of the large mass of oceans (270 times the mass of the

atmosphere), their large area (70% of the Earth is covered by oceans), and their high thermal

capacity, ocean-atmosphere interactions and ocean responses involve slow processes that are

predictable over a variety of timescales. In the framework of predictions of future climate on

secular timescales, most future climate projections expect that the capacity of the oceans to

absorb carbon will diminish.

Our understanding of the oceans (role in the climate variability and change, capacity to

absorb and store carbon) has evolved due to activities of several research projects, such as

CLIVAR (CLImate VARiability and predictability), SOLAS (Surface Ocean Lower Atmosphere

Study), and IMBER (Integrated Marine Biogeochemistry and Ecosystem Research).

The Mediterranean Sea plays a significant role in the world ocean circulation. The Mediter-

ranean salty water tongue exits from the Gibraltar strait at intermediate depths and spreads

throughout the Atlantic interior. The salty Mediterranean water preconditions the deep con-

vection cells of the north Atlantic, through direct pathways to the Atlantic polar regions or

through indirect mixing processes.

With its location in relatively temperate regions and its dimensions, the Mediterranean is

a real “laboratory” basin for study processes of global importance. Each of the western and

the eastern basin possess closed thermohaline circulations. These two basins are connected

to each other by a upper thermohaline cell, which has its origin in the north Atlantic. Deep

and intermediate water masses are formed in different sites of the Mediterranean. These

convection cells are relatively more simple to monitor by direct observational surveys and

mooring arrays due to their relatively easily accessible locations, compared to the (sub-) polar
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regions.

In addition to its thermohaline circulation, the Mediterranean circulation is characterized

by two other scales of motion (a sub-basin scale and an energetic meso- and submeso- scale

eddy field). These three scales are therefore superimposed producing numerous kinds of

interactions processes, typical of the ones found in the global ocean.

Despite its relatively small size (0.82% of the world ocean surface), the Mediterranean Sea

concentrates from 4 to 18% of the world marine diversity, and was recognized as being particu-

larly sensitive to climate change (Giorgi [2006]; Somot et al. [2006]). This semi-enclosed sea is

surrounded by very urbanized littorals and mountains from which numerous rivers originate.

The deep sea interiors are separated by steep continental slopes from wide and narrow shelves.

This results in many interactions and feedback between ocean-atmosphere-land processes

that play a prominent role in climate and ecosystems and make the Mediterranean area a

unique highly coupled system, where the response of the marine ecosystems to both climate

and anthropic changes is expected to be much faster than in the rest of the world’s oceans.

The work presented in this PhD thesis has got the financial support from the Direction

Générale de l’Armement and from the European project HERMIONE (Hotspot Ecosystem Re-

search and Man’s Impact On European Seas, http://www.eu-hermione.net/). It was also done

in the framework of two French research projects: HyMeX (Hydrological cycle in the Mediter-

ranean Experiment, http://www.hymex.org) and MERMeX (Marine Ecosystems Response

in the Mediterranean Experiment, http://mermex.pytheas.univ-amu.fr), part of MISTRALS

program (Mediterranean Integrated STudies at Regional And Local Scales). MISTRALS is a

research program dedicated to the study of the Mediterranean basin and its surroundings,

with the aim to "better understand the impact of global factors on this region and to anticipate

changes over a century of living conditions“. A significant number of the data used in this

work, originate from the observing system MOOSE (Mediterranean Ocean Observing System

for the Environment), an initiative for building an efficient integrated observation network in

the Northwestern Mediterranean Sea in order to observe its long-term evolution in the context

of climate change and anthropogenic forcing.

This work is connected to several key scientific questions within the framework of HyMeX:

• What is the variability of the Mediterranean Sea Water Budget at seasonal, interannual

and decadal time-scales?

• How do spatially and/or temporally localized intense events affect the Mediterranean

Sea Water Budget?

• How does the Mediterranean Sea response to the atmosphere?

The processes studied in this work constitute also majors pressures acting on the evolution

of Mediterranean ecosystems, in addition to those related to human activity. This study is also

part of several main research axes of MERMeX:

• How would changes in stratification and destratification mechanisms and in the overall

thermohaline circulation alter the spatio-temporal distribution of nutrients and their
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budgets? More specifically, what is the influence of dense water formation on the spatial

and temporal variability of biogenic elements, the triggering of planktonic blooms, and

the sequestration of biogenic elements, particularly carbon?

• Will the functioning of mesopelagic and deep sea Mediterranean ecosystems be strongly

affected by changes originating from surface ecosystem production and vertical fluxes

or by changes in the hydrodynamics of the intermediate and deep waters?

The main aims of this PhD thesis are to improve our understanding of dense water forma-

tion processes. The surface layer of the ocean is the site of active ocean-atmosphere exchanges,

due to wind mixing and heat and fresh water fluxes across the air–sea interface. This homo-

geneous surface layer, also called the oceanic mixed layer, presents a typical seasonal cycle

in temperate regions (deep in winter, close to the surface in summer). In the Gulf of Lions,

the oceanic mixed layer can reach the bottom ( 2300m depth) in winter, this phenomenon is

known as deep convection. Open-ocean deep convection and dense shelf water cascading

(cascades into the continental shelf canyons of dense water formed by convection on the shelf

in winter) are key processes that connect the surface ocean to the deep ocean. They may

transfer heat, salt, but also biogeochemical components to the deep ocean, like oxygen and

inorganic and organic matter. These processes contribute therefore to the ventilation and the

“feeding” of the deep pelagic and benthic ecosystems.

This work is essentially based on ocean observations. I had the opportunity to participate

in four oceanographic cruises, where I took part in the deployment and the data acquisition of

several instruments (CTD-stations, Lower-ADCP, Vessel-Mount ADCP, gliders, deep mooring),

whose an important part are maintained by the MOOSE project. The processing and the

analysis of these data were made mainly together with data from other measurement platforms,

like the French Lion Buoy, Argo profiling floats, Ocean Color satellite data or atmospheric

reanalysis.

Throughout my thesis I met people of different backgrounds (physicists, biogeochemists,

biologists) with whom I often had the opportunity to collaborate. Some of the results arising

from these studies are presented in the header of the main chapters.

This thesis is composed by 5 chapters. The general background of this work is presented

in the first chapter, where the processes and the region studied are introduced. The second

chapter presents an overview of the principal data used. The third chapter is dedicated to the

seasonal cycle of the upper ocean heat rate, based on historical and recent data (1969-2012),

in the whole Mediterranean. The chapter 4 focuses on the Gulf of Lions to study the seasonal

and the interannual variability of open ocean deep convection, mainly through the deep LION

mooring deployed since 2007 and equipped with numerous sensors. Finally, the chapter 5

describes new observations of dense shelf water cascading, particularly we show recent results

from the interaction of dense shelf water cascading and open-ocean deep convection during

winter 2012.
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1 General Background
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1.1 The Upper Ocean

The upper ocean can be considered as a buffer zone between the deep ocean and the atmo-

sphere. The surface forcing from winds, heat and evaporation (precipitation) have first a

local impact on this layer. Then, heat and fresh water are transferred and sequestered in the

"quiescent" deeper ocean where they are released on longer time- and larger scales.

1.1.1 Vertical Structure

The surface layer includes both an upper mixed layer that is subject to the direct influence

of the atmosphere, and also a highly stratified zone below the mixed layer where vertical

gradients are strong.
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Chapter 1. General Background

The vertical structure of the upper ocean is mainly controlled by the temperature and

salinity, which together determine the density structure of the water column. Within the ocean

surface layer, a number of distinct layers can be distinguished that are formed by different

processes over different timescales: the upper mixed layer, the seasonal pycnocline, and the

main (or permanent) pycnocline (figure 1.1).

Wind Evaporation

Turbulence
Mixed layer

Seasonal
pycnocline

Main
pycnocline

Entrainment

Depth

Solar
radiationRainfall

Figure 1.1: Conceptual diagram of the vertical structure in the surface layer, and the forcing and
physics that govern its existence. The depth of the mixed layer, the seasonal pycnocline, and the main
pycnocline are indicated, from Sprintall and Cronin [2009].

The upper mixed layer is the site of active ocean-atmosphere exchanges, due to wind

mixing and surface buoyancy flux (figure 1.2, left panel). If the wind is one of main drivers of

the ocean circulation at the global scale (Sverdrup showed in 1947 that the circulation in the

upper kilometer or so of the ocean is directly related to the curl of the wind stress), it also has a

direct influence on the vertical structure of the ocean surface layer. Wind forcing results in

vertical turbulence through waves and by entrainment of cooler water through the bottom

of the mixed layer, but also results in advection by upper ocean currents that can change the

vertical structure of the mixed layer.

Surface buoyancy forcing is due to heat and fresh water fluxes across the air–sea interface.

Convective mixing and overturning is induced by cooling and evaporation, whereas heating

and rainfall cause the mixed layer to restratify. If the wind and buoyancy fluxes are strong

enough, they can generate a thick and well-mixed (in temperature, salinity, and density) sur-

face layer.
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Chapter 1. General Background

Figure 1.2: Upper Ocean physical and biogeochemical main processes. Illustration designed by John
Delaney and Mark Stoermer; created by the Center for Environmental Visualization (CEV) for the
NEPTUNE Program, University of Washington, Seattle.

The deep ocean is separated from the upper mixed layer by substantial vertical gradients

in temperature (the thermocline), salinity (the halocline) and density (the pycnocline). The

stability of the water column is maintained by lighter water lying above heavier water, the

pycnocline is a region where density increases rapidly with depth. The thermocline and the

halocline may not always exactly coincide in their depth range, they together determine the

density structure and the the pycnocline. In mid-latitudes mainly during summer, surface

heating from the sun can cause a shallow seasonal thermocline/pycnocline that connect the

upper mixed layer to the deeper more permanent thermocline or “main pycnocline” (figure

1.1).

The turbulence and buoyancy changes within the upper mixed layer induced by the air–sea

exchanges of wind and heat cannot overcome the great stability of the main pycnocline to

penetrate into the deeper ocean. Beneath this depth the water remains isolated from the

surface for a very long time. Therefore the main pycnocline marks the depth limit of the upper

ocean.

Large temporal variation of the thickness of the upper mixed layer can occur on daily and

seasonal timescales due to changes in the solar radiation. Similarly, the mixed layer structure

can exhibit significant horizontal variations between different regions, due to contrasting

atmospheric forcing, large-scale circulation, mesoscale activities and/or topography influence.

In extreme case, the mixed layer can undergo strong deepening, this phenomenon known

as the open-ocean deep convection will be discussed in details at the end of this chapter in

15



Chapter 1. General Background

section 1.3. In that kind of regions, no stable permanent pycnocline exists and dense water are

sinking to great depths. In addition to polar regions as the Labrador (Lazier [1973]; Clarke and

Gascard [1983]) , the Greenland (Schott et al. [1993]), the Weddell and Ross Seas (Killworth

[1983]), open-ocean deep convection takes place in more temperate regions as the East/Japan

Sea (Kim et al. [2008]) and the Mediterranean (Gulf of Lions, Adriatic Sea, Aegean Sea, CIESM

[2009]).

Although the vertical structure is primarily defined by the stratification in the water proper-

ties of temperature, salinity, and density, in some regions dissolved oxygen and nutrients (e.g.,

phosphates, silica, and nitrates), can also vary in structure in the upper ocean. Even if these

properties are considered to be non-conservative, they play an important biogeochemical

role.

1.1.2 Biogeochemical Implications

The upper ocean is also the place where the marine trophic chain begins (mid-panel, figure

1.2). Below the ocean-atmosphere interface, the first chain link is composed by the phytoplank-

ton. Its growth is controlled by light and nutrients (Mann and Lazier [2005]). The seawater

rapidly attenuates the solar light in the visible portion of the spectrum (in the clearest ocean

water, only 10% of the light transmitted below the sea surface reaches a depth of 90m), the

concentration of phytoplankton has the potential to be more elevated at the surface than in
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Figure 1.3: Schematic diagram showing typical vertical structure of the water column in temperate
regions in summer.
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depth. Close to the surface, the nutrient concentration is generally low (Longhurst [1995]) due

to a rapid consumption by phytoplankton. The concentration of nutrients is higher below the

euphotic zone, where excretion and losses accumulate and are remineralized by viruses and

bacteria. In the open ocean, the principal way to inject important nutrients in the surface layer

is by vertical exchanges and mixing of the water column (Williams and Follows [2003]), thus

the mixed layer dynamic play an important role in the availability of nutrients in surface layers.

In temperate regions in summer, the upper layers of the euphotic zone are nutrient-depleted,

the lower levels are light-limited, and a deep chlorophyll maximum occurs within the layer of

density stratification, at the same depth than the nutricline (fig. 1.3). Although in the ocean the

physical conditions of living organisms are very little affected by the biology, the chlorophyll

maximum constitutes one example of how the biological processes can modify the effects

of physical processes. As an example, with a chlorophyll maximum sufficiently strong, the

heat absorbed from the solar downwelling radiation might caused a local heating of the water,

which could increased the vertical mixing and the deepening of the mixed layer.

Phytoplankton account for half of all photosynthetic activity on Earth, thus phytoplankton

are responsible for much of the oxygen present in the Earth’s atmosphere and play a key

role in the biogeochemical cycle that transport carbon from the surface to the deep ocean.

The process by which CO2 fixed in photosynthesis is transferred to the interior of the ocean

resulting in a temporary or permanent sequestration of carbon is named “biological” pump.

The organic carbon is transported primarily by sinking particulate material (dead organisms or

faecal pellets), but some carbon reaches the deep ocean by physical transport processes such

as downwelling. The physico-chemical counterpart of the “biological pump” is the solubility

pump, that transport dissolved inorganic carbon from the surface to the deep ocean.

1.2 The Mediterranean Sea

The Mediterranean Sea extends from 6° W to 36° E and 30° N to 46° N, with an average depth

of 1500m and a maximum depth of 5000m. This semi-enclosed basin is connected with the

Atlantic (the Gibraltar Strait, ≈300m depth) and with the Black Sea (the Dardanelles Strait,

≈100m depth). It is composed of two main basins, so-called the Western Mediterranean

(WMED) and Eastern Mediterranean (EMED) separated by the strait of Sicily (≈400m depth),

and eight sub-basins. The Alboran Sea (ALB), the Algerian Basin (ALG), the Northwestern

Mediterranean Sea (NWMED) and the Tyrrhenian Sea (TY) compose the WMED, while the

Ionian Sea (IO), the Adriatic Sea (AD), the Aegean Sea (AG) and the Levantine Basin (LE)

compose the EMED (figure 1.4).

Besides wind, the main drivers of the Mediterranean Sea circulation and of the water mass

properties evolution are the surface heat and freshwater exchanges between the sea and the

atmosphere. Other fundamental forcings are composed by the river influx, the exchanges

through the Strait of Gibraltar and the exchanges with the Black Sea (see Schroeder et al. [2012]

for a review).
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Figure 1.4: Bathymetry of the Mediterranean Sea, with its main sub-basins: the Alboran Sea (ALB), the
Algerian Basin (ALG), the Northwestern Mediterranean Sea (NWMED), the Tyrrhenian Sea (TY), the
Ionian Sea (IO), the Adriatic Sea (AD), the Aegean Sea (AG) and the Levantine Basin (LE)

The Mediterranean is a concentration basin, it shows an excess of evaporation over fresh-

water inputs and a heat loss through air-sea interaction. The freshwater loss to the atmosphere

by evaporation is larger than the gains by precipitation and runoff from the main rivers and

input from the Black Sea. The total heat budget is negative, that is, the Mediterranean Sea

looses more energy than it gains. These deficits of freshwater and heat are compensated by

exchanges through the Strait of Gibraltar (positive net water and heat transports), where the in-

flow is composed by a relatively warm and fresh (15.4°C, 36.2‰) upper water, and the outflow

to the Atlantic is relatively cooler and saltier (13°C, 38.4‰) (Bryden et al. [1994]; Tsimplis and

Bryden [2000]; Soto-Navarro et al. [2010]; Criado-Aldeanueva et al. [2012]). This circulation of

heat and salt is maintained through deep and intermediate water formation. The well-defined

overturning circulation (Wüst [1961]; Robinson et al. [2001]) has different deep convection

zones (fig. 1.5), which produce distinct intermediate and deep water masses.

1.2.1 The Eastern Basin

The Atlantic Water (AW) that entered by the Strait of Gibraltar is identified by a subsurface

salinity minimum close to 36.2‰. The overturn period of this water, between 20–50 years, is

relatively short. AW is warmer and fresher than the residing waters (for a detailed review of the

horizontal circulation of the water masses in the Mediterranean Sea, see Malanotte-Rizzoli

et al. [1997]; Millot and Taupier-Letage [2005]; Pinardi et al. [2006]).

Being less dense, AW constitutes the surface circulation (fig. 1.5a), which describes a

18



Chapter 1. General Background

cyclonic (counter-clockwise) circuit along the continental slopes through both basins. Having

undergone a lot of evaporation since their entry through the strait of Gibraltar, AW is identified

by a salinity close to 38.9‰ in the Levantine subbasin, where it is transformed into Levantine

Intermediate Water (LIW, ≈15.5°C, ≈39.1‰) mainly close to the Rhodes Gyre (Ovchinnikov

[1984]; Lascaratos [1993]). Some occasional formations were detected in the northwestern

Levantine by cascading along isopycnals from shelf regions (Zodiatis et al. [1998]). Other

studies report that LIW formation is not localized but rather ubiquitous in the whole Levantine

(Nittis and Lascaratos [1998]; Robinson et al. [1992]). The formation of Levantine Deep Water

(LDW) was also observed in that basin during severe winters (Ozsoy et al. [1993]; Gertman

et al. [1994]).

Traditionally, the Aegean Sea was recognized as a source of dense waters (Nielsen [1910]),

but not dense enough to contribute to the Eastern Mediterranean Deep Water (EMDW, Pollak

[1951]; Wüst [1961]; Schlitzer et al. [1991]). The major sites of dense water formation are the

North Aegean shelves (Theocharis et al. [1993]) and the Creatan Sea (Lascaratos [1993]). Dense

waters outflow through the Cretan Straits (Zodiatis [1993]) and periodically form lenses of

Cretan Intermediate Water (CIW), lying below LIW in the eastern basin (Schlitzer et al. [1991];

Theocharis et al. [1993]).

The AW, LIW and CIW flow into the Adriatic (figs. 1.5a,b) where they are involved in the

formation of the Adriatic Deep Water (AdDW). They constitute traditionally the main source

of the EMDW (Pollak [1951]; Wüst [1961]; Schlitzer et al. [1991]). A striking change in the main

Dense Water Formation (DWF) areas occurred at the end of the 80s / beginning of the 90s, with

a shift of the formation of the deep water, from the Adriatic to the Aegean (Klein et al. [1999];

Malanotte-Rizzoli et al. [1999]; Lascaratos et al. [1999]), called the Eastern Mediterranean

Transient (EMT). Between 1987 and 1995 the Cretan Deep Water (CDW) became warmer,

saltier and denser than EMDW, and overflowed above the sills in the Cretan Arc into the

Levantine and the Ionian.

Recently, Gacić et al. [2010] showed a bi-modal oscillation of the upper circulation in the

Ionian Sea. This process can shed light on the decadal variability of the AW and of a number

of physical and chemical properties in the Adriatic-Ionian system.

1.2.2 The Western Basin

The LIW/CIW reaches the Tyrrhenian Sea (fig. 1.5b), where its salinity decreases close to

38.6‰ (Sparnocchia et al. [1999]) due to mixing with resident waters after crossing the Sicily

Channel (≈38.75‰). Recently Millot [2013] suggested that, from the Channel of Sicily down-

stream, LIW should be renamed Eastern Intermediate Water (EIW). Since the traditionally

called LIW in the western basin represents in fact all intermediate waters formed in all zones

of dense water formation in the eastern basin, not only Levantine waters but also in particular

Aegean/Cretan waters. The reader should keep in mind that the use of the LIW acronym in the

WMED throughout this manuscript, refers to all eastern intermediate water flowing through
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Figure 1.5: Circulation of main Mediterranean Waters from The MerMex Group [2011]: (A) surface
water masses, (B) intermediate water masses, and (C) deep water masses. The thin lines represent the
1000-m and 2000-m isobaths.

20



Chapter 1. General Background

the Channel of Sicily to the Tyrrhenian.

In the Northwestern Mediterranean Sea intense winter cooling and evaporation leads

to the mixing of the LIW with the AW (salinities between 38.0‰ and 38.3‰), and Western

Mediterranean Deep Water (WMDW) is formed by deep convection (a more detailed descrip-

tion is made in section 1.3). The WMDW export from the Gulf of Lions might be done by an

incorporation to the boundary Northern Current (Send et al. [1996]) and by submesoscale

coherent eddies (Testor and Gascard [2003, 2006]). The WMDW spreads into the Algerian and

Alboran Basins mainly along the east margin of the Balearic Islands (fig. 1.5c). While a part of

the WMDW mixes with the LIW and composes the Mediterranean outflow (Gascard and Richez

[1985]; Kinder and Parrilla [1987]; Millot [2009]), another part join the north african coast

and recirculate in the WMED (fig. 1.5c). According to Hopkins [1988], a part of this WMDW

enters in the Tyrrhenian by the Sardina-Tunisia Channel and it mixes with LIW, forming the

Tyrrhenian Deep Water (TDW) which circulates cyclonically in the Tyrrhenian Sea before

flowing back in the western basin through the Sardinia-Tunisia Channel below the LIW. Millot

[1999] argues that the mixing might be induce by cascading of the inflow from Sicily channel

composed by LIW and EMDW, while Fuda et al. [2002] suggest that TDW might result from a

dense water formation process occurring within the Tyrrhenian itself, east of the Bonifacio

Strait. Although the formation mechanisms are not clear, this water mass was clearly identified

on chlorofluorocarbon (CFC) measurements (Rhein et al. [1999]).

The main formation zones of dense water in the WMED is the Northwestern Mediterranean.

If the atmospheric forcing is not intense enough or if the ocean stratification is too strong,

the winter convection might not reach the LIW, and then would form Winter Intermediate

Water (WIW, 12 -13°C, 38.0‰-38.3‰; Salat and Font [1987]). Its main formation area is the

Gulf of Lions (Fuda et al. [2000]) and the Ligurian Sea (Sparnocchia et al. [1995]; Gasparini

et al. [1999]), and WIW can be found sporadically everywhere in the WMED (Millot [1999]):

in the Alboran (Gascard and Richez [1985]; Vargas-Yanez et al. [2002]), in the Algerian basin

(Benzohra and Millot [1995]; Allen et al. [2008]) and close to the Sardina and Sicily Straits

(Sammari et al. [1999]). The WIW seems to follow the general circulation of the AW (fig. 1.5a)

from its formation area (Perkins and Pistek [1990]; Benzohra and Millot [1995]), but plays a

role in the dramatic and frequent changes of the circulation around the Balearic Islands in

summer (Monserrat et al. [2008]). The Northern Current may be blocked when reaching the

Channel of Ibiza by anticyclonic channel-size eddies and then recirculates with a cyclonic way

in the Balearic Sea without significant transport of water through the Ibiza Chanel (Castellón

et al. [1990]). These channel-size eddies are composed of cold and relative fresh water (Pinot

et al. [2002]) corresponding to WIW characteristics.
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1.2.3 The Mediterranean Outflow

Mediterranean Waters flow out the Strait of Gibraltar as an overflow of dense saline water

that spread in the North Atlantic, at a neutral buoyancy level of 1000m (Potter [2004]). This

subsurface heat and salt source might play a substantial role in the heat content and dense

water formation processes in the northern Atlantic and hence in the density driven circulation

of the World’s Oceans (Johnson [1997]; Candela [2001]). Moreover the shorter residential time

for Mediterranean Waters (between 20 and 125 years according to the water mass, Robinson

et al. [2001]) compared to the global ocean make the Mediterranean acting as a quick indicative

of local climate anomalies, that might transmit it to the Atlantic (Bethoux et al. [1998]).

The water exiting the Strait of Gibraltar is a mixing of Mediterranean Waters: WMDW,

TDW, WIW and LIW (Millot [2009]). Warming and salinification of the outflowing waters were

detected by Millot et al. [2006] in the early 2000s, while a significant salinity increase of the

inflowing water was reported between 2003 and 2007 by Millot [2007].

Recently Millot and Garcia-Lafuente [2011] highlighted the spatial heterogeneity and

longterm temporal variabilities of outflowing waters entering the strait, that might prevent an

accurate prediction of the characteristics of the Mediterranean outflow into the North Atlantic

Ocean.
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Figure 1.6: Seasonal cycle of the mean mixed layer depth in the Mediterranean from in-situ measure-
ments collected between 1969 to 2012. MLD was calculated from each single profile using a ∆T = 0.2°C
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1.2.4 The Mediterranean Upper Mixed Layer

The Mediterranean Sea is also a region where mesoscale processes (meanders, eddies, fila-

ments) play a key role in determining the characteristics of the large-scale circulation, the

distribution and mixing of water masses, with important consequences on the whole ecosys-

tem functioning (CIESM [2005]). Mesoscale features are set primarily by the internal properties

of the ocean. In the Mediterranean, the internal Rossby radius does not exceed 15 km, about

four times smaller than the typical values found in the world oceans (Chelton et al. [1998]).

The interaction between atmospheric forcings (heat and freshwater flux, wind stress), large-

scale circulation, mesoscale activities and a tortuous basin topography makes the dynamics

of the upper mixed layer in the Mediterranean extremely complex (D’Ortenzio and Prieur

[2012]). However due to the intensive sampling of the Mediterranean during the last decades,

D’Ortenzio et al. [2005] performed a climatological analysis of the seasonal cycle of the upper

mixed layer. The figure 1.6 is an updated version of this climatology and the data used are

presented in chapter 2, section 2.4. A discussion of the differences with the climatology made

by D’Ortenzio et al. [2005] can be found in chapter 3, section 3.3.2.

The Mediterranean Mixed Layer Depth (MLD) climatology presented figure 1.6 shows

similar remarkable features than in D’Ortenzio et al. [2005]:

• A seasonal variability, characterized by a basin scale deepening from November to

February–March and an abrupt restratification in April

• The EMED displays MLD values generally higher than the WMED, with the important

exception of the Northwestern Mediterranean region

• The maximum values of the MLD are observed in February–March in the Gulf of Lions

and in the Southern Adriatic Sea, which are known regions of deep convection.

1.3 Dense Water Formation in the Gulf of Lions

The prevailing winds in the northwestern Mediterranean are the Mistral (north) and Tramon-

tane (north-west). They are channeled by the surrounding topography, namely the Alps, the

Massif Central and the Pyrenees. These winds are particularly strong in winter, bringing cold

and dry polar air over the Gulf of Lions. Heat losses in the Gulf of Lions in winter can then

reach very high values, sometimes exceeding 1000 W.m−2 (Mertens and Schott [1998]). Evapo-

ration and cooling of the surface waters due to the northern wind bursts, are responsible of

dense water formation in the open-ocean during the Open-Ocean Deep Convection (OODC)

process, but also on the continental shelf. The dense water formation on the shelf can also

participate in the formation of intermediate waters (WIW) and even occasionally in the deep

water renewal (fig 1.7b) .
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1.3.1 The Open-Ocean Deep Convection

The northwestern Mediterranean is one of the few regions of the world ocean where deep

convection occured (Marshall and Schott [1999]). The other main areas are in North Atlantic

(Labrador Sea and Irminger), in the subpolar regions of the northern hemisphere (Norway and

Greenland Seas) and in the southern hemisphere (Weddell and Ross Seas). In these regions,

the surface water becomes denser by evaporation and cooling, which causes the vertical

mixing of the water column. This thermohaline circulation plays a key role in the ocean

circulation (see Wunsch [2002] for a discussion on the definition of the thermohaline circula-

tion). Its understanding is therefore an important issue in physical oceanography. The deep

convection processes studied in the Gulf of Lions might improve our knowledge of the physical

phenomenon, but also better understand the deep water circulation in Mediterranean.

The intense and deep vertical mixing of deep convection might also have major impacts

on biology, since the intensity of the spring phytoplankton blooms and their interannual

variability may be largely determined by the amount of nutrients injected from the deep ocean

to the photic zone during winter episodes.

Since the first experiment (MEDOC Group [1970]) took place in 1969, the open-ocean deep

convection can be decomposed in three phases that can overlap (figure 1.8).

The preconditioning phase involves a local weakening of the ocean stratification. In the

Northwestern Mediterranean the global circulation is cyclonic (figs 1.7a and 1.5). The gyre is

Figure 1.7: On the left panel, map of the Northwestern Mediterranean showing the dense water
formation on the shelf (purple dashed line) and in the open-ocean (orange dashed line) with the major
continental winds (blue arrows) and the basin-scale surface circulation (red arrows). The thin dotted
lines correspond to glider Campe sections presented on figure 1.9, the red one corresponds to the
Mistrals T02 deployment in October 2012 and the blue one represents a section of the ASICSMED
deployment. On the right, a schematic diagram showing the dense shelf water cascading and open-
ocean convection processes, with the water masses involved (from Puig et al. [2012])

24



Chapter 1. General Background

bounded on the north by the Northern Current, while a eastward current poorly defined and

marked by the North-Balearic Front seems to define the southern boundary (Millot [1999];

Testor and Gascard [2006]). This global cyclonic circulation produces a doming of isopycnals

(left panel on fig. 1.9) that exposes a lot of weakly stratified water to the atmospheric forcings,

in the central part of the gyre.

The Rhone deep-sea fan may also play a role in setting up a Taylor column. This feature

is due to the Coriolis effect. Rotating fluids that are perturbed by a topographic obstacle will

tend to form columns parallel to the axis of rotation. Thus in the Gulf of Lions, water parcels

will tend to stay longer in the area, and will be more exposed to the atmospheric forcing (Hogg

[1973]; Madec et al. [1996]).

The Gulf of Lions is also characterized by a large mesoscale activity (Gaillard et al. [2000];

Escudier et al. [2013]), especially through instabilities of the Northern Current (Crepon et al.

[1982]; Sammari et al. [1995]; Flexas et al. [2005]). Mesoscale eddies which may present a

weakly stratified subsurface core, can also act as agents of local preconditioning (Killworth

[1979]; Legg and Marshall [1998]; Lherminier et al. [1999]; Straneo and Kawase [1999]; Legg

and McWilliams [2001]; Steffen and D’Asaro [2004]).

Vigorous buoyancy loss during the cooling and evaporation event, such as the strong wind

outburst of continental air, initiates the deep convection of the very weakly stratified water (fig.

Figure 1.8: Schematic diagram of the three phases of ocean deep convection: (a) preconditioning, (b)
deep vertical mixing, (c) lateral exchange leading to spreading and restratification, from Marshall and
Schott [1999]
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1.8b) in the core of the cyclonic gyre. The vertical mixing occurs in plumes of horizontal scale

of O(1km), at vertical speeds up to 10cm.s-1. These small scale features were first observed by

Voorhis and Webb [1970] using isobaric floats, then by Schott and Leaman [1991] and Schott

et al. [1996] using moored ADCPs. More recently, downward vertical velocities measurements

up to 10cm.s-1 were observed using gliders (Merckelbach et al. [2010]). These plumes mix

properties over the preconditioned site, forming a deep “mixed patch” (right panel on fig. 1.9)

ranging in scale from several tens of kilometers to >100 km in diameter. The characteristics

of the newly formed water mass can be linked to the frequency and the intensity of the

surface forcing (Artale et al. [2002]; Grignon [2009]) and to the heat and salt content of the

“preconditioned” state (Schroeder et al. [2010]; Herrmann et al. [2010]).

The density contrast between the mixed patch and the surrounding would establish a rim

current at the edge of the mixed patch which would be baroclinically unstable and shed eddies

of scale O(5-10km). These eddies would be geostrophic considering the low stratification of

the area. The spreading of dense water is made through the action of these eddies (Testor

and Gascard [2003, 2006]; Demirov and Pinardi [2007]; Herrmann et al. [2008]) and by their

incorporation into the northern boundary current (Send et al. [1996]; Herrmann et al. [2008]).

Restratification of the deep convection zone starts as soon as the intense vertical mixing
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Figure 1.9: Temperature (top) and salinity (bottom) sections in the Gulf of Lions from the glider Campe
(courtesy of A. Bosse), in October 2012 (left) and February 2013 (right). The glider sections are indicated
on figure 1.7a.
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stopped. After the end of the deep convection, the restratification of the upper ocean is mainly

due to both the boundary current and the mesoscale structures that advect surface light water

(Leaman and Schott [1991]; Schott et al. [1996]; Herrmann et al. [2008]).

1.3.2 The Dense Shelf Water Cascading

Dense Shelf Water Cascading (DSWC) is a climate-driven oceanographic phenomenon on

high latitude continental margins, but also on mid latitude and tropical margins (Ivanov et al.

[2004]; Durrieu de Madron et al. [2005]). These regions are generally characterized by a shallow

depth and a steep slope separating them from the deep ocean. The dense water is formed by

cooling, evaporation or during the ice formation. The buoyancy driven current in the surface

layer over the continental shelf descends down the continental slope to a greater depth.

The cascades of dense shelf water and the associated strong currents can induce erosion

and resuspension of surface sediments, promoting exchanges between the shelf and the deep

ocean. This process plays therefore a role in the export of particulate and organic matter from

the shelf, contributing to the carbon sequestration in the ocean deep.

Shapiro et al. [2003] distinguish four phases in the process of DSWC. During the precon-

ditioning phase, dense water accumulates on the shelf, which gives rise to a density front.

During the active phase, this density front propagates down the slope. Then, the main phase

is the development of an almost steady flow of dense water along the slope, associated with

a strong downward current. Finally, in the final phase, the dense water reaches it neutral

buoyancy level, stabilizes and then spreads leaving the slope.

The continental slope of the Gulf of Lions is incised by numerous canyons (fig. 1.10).

They are natural corridors for the dense water formed on the shelf during episodes of strong

continental wind bursts, where a part of it escapes towards the open ocean by cascading along

these canyons. Several episodes of DSWC have been observed, in this region characterized by

large continental inputs and high biological productivity, particularly due to the presence of

the Rhone River (Durrieu de Madron et al. [2005]; Heussner et al. [2006]; Canals et al. [2006]).

The dense water cascading down the canyons to the deep ocean carries large masses of

sediment and organic matter affecting the functioning of deep sea ecosystems and the geolog-

ical characteristics of these canyons (Palanques et al. [2006]; Gaudin et al. [2006]; Heussner

et al. [2006]; Canals et al. [2006]; Puig et al. [2008]; Pusceddu et al. [2013]).

1.3.3 The Western Mediterranean Deep Water(s)

The deep layers of the WMED were first considered as relatively constant in temperature and

salinity. However, in certain years, an “occasional bottom water” was also detected in the

northwestern Mediterranean, in addition to the typical water masses (fig. 1.11), especially in
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Figure 1.10: Perspective view from the Gulf of Lions showing the numerous submarine incising canyons,
from Puig et al. [2013] (10 times vertical exaggeration)

.

Figure 1.11: Scheme of the main water masses in the Western Mediterranean and their approximate
location in the water column, from La Violette [1994]

.

1972–1973 and in 1981–1982 (Lacombe et al. [1985]). The mechanism of formation of this new

bottom water has seemed to be likely a result of open ocean convection. Significant changes
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Figure 1.12: Deepest part of θ-S diagrams (≈ 600/800m to the bottom) made in the Northwestern
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.

in deep water θ and S characteristics were also found by Leaman and Schott [1991], which

have detected an increase in deep-water (>2000m) salinities and temperature after the severe

winter 1986/1987.

The interannual variability of convection activity in the Gulf of Lions (Mertens and Schott

[1998]; L’Hévéder et al. [2012]) leads also to an interannual variability in thermohaline char-

acteristics of WMDW. During severe winter, the strong surface buoyancy losses might lead

to an active mixing of the whole water column. The deeper layers of the water column are

subjected to an input of heat and salt coming from the mixing of the upper and intermediate

layer, modulated by the surface heat losses and evaporation responsible for the deepening of

the mixed layer.

Thus, the evolution of WMDW thermohaline characteristics through deep convection

events might explain the long-term warming and salting trends observed in the deep layers

of the WMED by several authors (Bethoux et al. [1990, 1998]; Rohling and Bryden [1992];

Leaman and Schott [1991]; Krahmann and Schott [1998]; Rixen et al. [2005]; Vargas-Yanez

et al. [2010a,b]). Recently, Bethoux et al. [2002] hypothesized the contribution of DSWC in the

formation of WMDW after the observation of a bottom anomaly in 1999, that rapidly spread

throughout the western Mediterranean basin.

Very intense events of dense water formation have been reported since 2005 in the North-

western Mediterranean Sea, in winter 2004/05 as well as in winter 2005/06 (Lopez-Jurado et al.

[2005]; Salat et al. [2006]; Canals et al. [2006]; Schroeder et al. [2006, 2008]; Font et al. [2007];

Smith et al. [2008]), involving both OODC and DSWC. The DSWC event was exceptionally

intense, lasting for more than three months. These dense shelf waters propagated along

and across the continental slope (Font et al. [2007]), reaching depths >2000 m where they

merged with dense waters formed off-shelf, by the OODC process. This intense event was well

monitored (Canals et al. [2006]; Puig et al. [2008]) and modeled (Ulses et al. [2008b]). In winter
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Figure 1.13: Spreading of the newly-formed WMDW (red dots) in 2005 and 2006, from Schroeder et al.
[2008]

2006, another deep DSWC event occurred which could be also traced down to 1900 m depth

by a large network of instrumented moorings deployed in the south-western end of the Gulf of

Lions margin (Sanchez-Vidal et al. [2008]; Palanques et al. [2012]).

There is also new indications of dense water formation in winter 2008/09 (CIESM [2009]).

Since winter 2004/05 the deep waters of the WMED have experienced significant physical

changes (Lopez-Jurado et al. [2005]; Schroeder et al. [2006, 2008]; Smith et al. [2008]), with an

abrupt increase in the deep heat and salt contents, and a change in the deep stratification,

with the appearance of a sharp inversion in the temperature-salinity diagrams (fig. 1.12). This

anomaly has been significantly enhanced by the huge amount of new deep water formed in

winters 2004/05 and 2005/06 (fig. 1.13a), which induced a basin- wide propagation of the new

WMDW and thus of the abrupt increase in deep heat/salt contents (Schroeder et al. [2008]).

From 2004 to 2006, the deep layer of the WMED experienced a warming of about 0.038°C

and a salinity increase of 0.016‰(Schroeder et al. [2012]). These increases are five to seven

times greater than the increasing trends indicated by Bethoux et al. [1998] and about four

times greater than the estimates given by Rixen et al. [2005] for the 1985-2000 period. This

anomaly has also been found at the Camarinal sill and on the Moroccan shelf in the Strait of

Gibraltar, where Millot [2009] reported significant changes of the outflow in spring 2005, no

LIW was recorded in the outflow and WMDW was detected at both locations. Millot [2009]

attributed these observations to the large amount of WMDW formed during winter 2004/05 in

the Northwestern Mediterranean.

Several causes responsible for this intense event of deep convection were discussed. First,

winter 2004-2005 was one of the coldest and driest winter of the last 40 years (Lopez-Jurado

et al. [2005]). Second, Gasparini et al. [2005] showed that the Eastern Mediterranean Transient

(EMT, Malanotte-Rizzoli et al. [1999]; Lascaratos et al. [1999]; Klein et al. [1999]) induced a

remarkable injection of heat and salt in the eastern waters flowing westward through the Sicily

channel to the deep Tyrrhenian sub-basin. The propagation of this θ-S increase from the

Eastern Mediterranean basin could have induced a warming and salting of the intermediate
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layer of the NWMED (Schroeder et al. [2010]). Results from modeling studies (Herrmann et al.

[2010]) assess the role of the EMT, by deepening the heat and salt maxima, in the high volume

of WMDW formed in 2005. Grignon et al. [2010] showed that even a normal winter would have

led to deep convection in 2004/05 due to low pre-winter stratification.

31





2 Measurement platforms

Contents

2.1 LION Mooring Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.2 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.3 Météo-France Meteorological Buoy LION . . . . . . . . . . . . . . . . . 36

2.2 CTD stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Gliders data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Database of Mediterranean Data . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.1 Description of additional measurement platforms . . . . . . . . . . . . 41

2.4.2 Description of the multi-platform database . . . . . . . . . . . . . . . . 43

2.5 Complementary datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.1 Shipboard ADCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.2 Atmospheric reanalyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5.3 Ocean color images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

This thesis is based on a large number of oceanographic data which are presented in

this chapter. The LION mooring line, together with Conductivity-Temperature-Depth (CTD)

stations and autonomous platforms, deployments carried out in the Gulf of Lions since 2007,

compose the core of the dataset used in this thesis.

A database combining all available hydrological data in the Mediterranean was established

during this work in order to achieve a climatology of the mixed layer depth, of the thermocline

and of the upper ocean heat rate. We also present in detail the database (data description,

quality control procedures, user operations).

Finally additional data used in this thesis will be presented: shipboard (or vessel-mount)

Acoustic Doppler Current Profiler (ADCP), ocean color from satellite data and atmospheric

reanalysis.
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2.1 LION Mooring Line

The mooring site was chosen in the center of the convection zone described by MEDOC

Group [1970], Leaman and Schott [1991] and The THETIS Group [1994] at 42◦02.4’N, 4◦41.0’E.

There were six deployments (LION1 to LION6) during which the line was equipped with 8

to 26 instruments between September 2007 and July 2012. Since 2010, the mooring line is

maintained within the observing system MOOSE (Mediterranean Ocean Observing System on

Environment). The evolution of the instrumented line over the years is presented in detail

in table 4.2, in the chapter 4. The configuration of the mooring line deployed during the July

2012 - July 2013 period is showed on figure 2.1.

2.1.1 Description

RBR (temperature recorders), SeaBird Microcat SBE37-SMP (conductivity-temperature-pressure

recorders) were used until June 2011. Since then, the 10 RBR were replaced by SeaBird Tem-

perature Logger SBE56. Nortek Aquadopp were deployed since LION 3 (September 2008) at 5

levels measuring horizontal and vertical currents, while there were only 2 Aanderaa RCM9 at

1000m and 2300m depth during LION1 (Sep. 2007 / Mar. 2008) and 1 Aanderaa RCM9 at 1000m

LION2 (Sep. 2008). During these two first deployments, we get only the horizontal currents.

The vertical sampling was better since LION 3 with 20 temperature records, 10 salinity records

and 5 current records spanning depths from 150 m to the bottom (2300 m). Here we did not

use the Aquadopp temperature data because of the low resolution and accuracy of the sensor

(0.1°), and because for each current meter there was another much more accurate temperature

sensor available nearby (a few meters).

The severe environmental conditions imposed us the use of a subsurface mooring, this

prevent us from recording the upper 150m heat content. This lack of data could be filled by

close glider profiles and by temperature records from the meteorologial surface buoy LION

deployed by Météo-France close to the deep mooring. RBR were set up with a 15 seconds

sampling, while Microcat and current meters had a sampling of respectively 6 minutes and 30

minutes. In order to have a consistent data set, we undersampled RBR and Microcat to get

30-minutes time-series.

In general all the mooring instruments returned good data, except for some periods. During

LION 3, the 500m depth Aquadopp seemed to have encountered writing problems. Due to a

breaking of the base of the line during the recovery (April 2009), we lost the bottom Aquadopp

and no current data were obtained at 2300m for the period from September 2008 to March

2009. During LION 5, there were some battery issues on five Microcat (165m, 1100m, 1300m,

1780m and 200m) which stopped recording in February 2011. A delayed recovery of the

mooring in July 2012 caused battery issues for most of the current meters (the 150m and the

2300m depth current meter stopped on 11 June 2012, while the 250m and the 500m depth

stopped on 14 July 2012.
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2.1.2 Calibration

Since the recovery of LION 4 (in June 2010), inter-calibration of the moored instruments

after and before each deployment are done. Niskin bottles are removed from the shipboard

Rosette, and replaced by Microcat and RBR (or SBE56). We perform an hydrographical cast

with a 20 minutes stop at 1000m depth, thus we can have a relative calibration of the moored

instruments with the CTD probe SBE 19plus. Post- and/or pre- cruise calibrations, together

with in-lab analysis of salinity bottles with a Salinometer (Guideline Autosal) calibrated using

standard water at 38‰ give us an absolute accuracy, for all records used in this study, better

than 0.005‰ for S, and 0.001°C for θ. From September 2007 to April 2009, no inter-calibration

was done. Comparisons with gliders and CTD stations was the only solution to detect some

biases in the conductivity measurements. The conductivity corrections applied to the Microcat

correspond to equivalent salinity corrections ranging from 0.000‰ to 0.012‰.

1002 m Aquadopp 3000m

MOOSE n°9403/ Head 4815

1493 m µcat CEFREM 7929
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Figure 2.1: Detailed plan of the deep LION mooring line deployed in July 2012 in the framework of the
observing system MOOSE.
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2.1.3 Météo-France Meteorological Buoy LION

A useful complementary dataset to the deep LION mooring is the instrumented Météo-France

buoy MF-LION. This meteorological buoy is located at 42.0637◦N 4.6482◦E, 4-4.5 kilometers

from the deep mooring location. In addition to the atmospheric sensors and to the sea surface

temperature sensor, a 250m mooring line was fixed below the surface buoy since November

2009 (table 4.2). This line is currently equipped by 20 temperature sensors NKE SP2T installed

between 5 to 250 meters below the sea surface. An additional SeaBird Microcat SBE37-SMP

was installed at 2m depth in September 2011. Since 2012 maintenance operations, surface

salinity is also available.

2.2 CTD stations

The CTD (Conductivity, Temperature, and Depth) probe is the primary tool that has been

used during the last four decades, for determining essential physical properties of sea water.

This device has supplanted the traditional hydrocast using Nansen bottles and reversing

thermometers that was standard physical oceanographic practice from about 1910 to 1970.

The shipboard CTD is made up of a set of small probes attached to a large metal rosette

wheel which is lowered on a cable down to the seafloor. The CTD and the rosette can also

be a host of other accessories and instruments (fig 2.3a), as the Niskin bottles that collect

water samples at different depths, Acoustic Doppler Current Profilers (ADCP) that measure
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Figure 2.2: Maps of CTD stations carried out from 2007 to 2012 in the NWMED (2007: DOCONUG2007,
2008: DOCONUG2008, 2008: 42N5E, 2010: MOOSE-GE2010, 2011: in blue CASCADE and in orange
MOOSE-GE2011, 2012: in blue DOWEX2012 and in orange MOOSE-GE2012) with the LION mooring
line indicated by the green star
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the horizontal velocity, oxygen or other biogeochemical sensors.

520 CTD profiles were carried out during several oceanographic cruises (DOCONUG2007,

DOCONUG2008, 42N5E, MOOSE-GE2010, CASCADE, MOOSE-GE2011 and MOOSE-GE2012)

in the Northwestern Mediterranean (fig. 2.2).

At least at all stations, pressure, temperature and conductivity were measured with a CTD

Sea-Bird SBE 911+. Water samples were collected and analyzed on a salinometer to calibrate

the conductivity sensor. The accuracy is estimated to be ± 0.004 for salinity and ± 0.001◦ for

temperature.

2.3 Gliders data

Gliders are relatively new oceanographic platforms (Testor et al. [2010]). These autonomous

underwater vehicles are capable of moving to specific locations and depths. The glider can

move vertically by varying its buoyancy using a ballast system. It converts this vertical move-

ment into an horizontal one thanks to a fixed and symmetrical pair of wings. The position

of its center of gravity can move relative to its center of buoyancy by moving internal mass

(battery packs) and this can control the pitch angle of the vehicle. They can dive and ascent

Figure 2.3: Left panel: CTD rosette onboard R/V Atalante in the Northwestern Mediterranean during
the CASCADE cruise in March 2011. The CTD package was the host of a number of other instruments
dedicated to monitor biogeochemical parameters like dissolved oxygen, light attenuation, turbidity,
fluorescence, photo-synthetically active radiation, colored dissolved organic matter, and altimetry
probes. A Lowered ADCP (L-ADCP) system with two (upward and downward looking) ADCPs, together
with an Underwater Video Profiler (UVP) and a Laser In-Situ Scattering and Transmissiometry sensor
were setup on the rosette. The carrousel holds 22 Niskin bottles of 12L.
Right panel: Slocum Glider “Tenuse” off Banyuls just before its recovery on 2010/09/29 by R/V Nereis
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with angles between 15° and 30° relative to the sea surface with a horizontal speed of about

30-40 cm.s−1 and a vertical speed of 10-20 cm.s−1. This propulsion system allows the glider to

collect oceanographic measurements along a sawtooth trajectory between the surface and a

prescribed depth (typically 1000m depth) or the bottom, its onboard altimeter allowing him to

avoid the bottom and to be operated in relatively shallow waters.

Considering the dive/ascent angles and the typical slopes of oceanic variables (shallow

water framework), the profiles can be considered as vertical. The time (spatial) resolution is a

profile every 1-5 hours (1-5 km), depending on the depth of diving. It travels at a speed of 20-25

km per day. With an autonomy of 1.5 to 4 months depending on the onboard instruments, it

can cover a distance comprised between 1100 and 3000 km during a deployment.

The long-range and duration capabilities of gliders make them ideally suited for subsurface

sampling at the regional scale. Carrying a wide variety of sensors, they can be programmed

to patrol for weeks, surfacing to transmit their data to shore while downloading new instruc-

tions at regular intervals. These small, lightweight devices (2m long and about 50kg) can be

launched and recovered from small ships. All these advantages make gliders a useful comple-

mentary measurement platform to the large scale and synoptic basin sampling operated by

surface ships.

Quality control and calibration of gliders profiles (particularly the conductivity sensor)

can be made using other measurement platforms. First, if a glider is passing near the LION

mooring line, its θ-S values will be compared with those measured at different depths by

the mooring instruments. Only the nearer glider profiles are kept (less than 2.5km from the

mooring line). Second, the DYFAMED time-series in the Ligurian Sea, can be used as another

“calibration station”, especially for gliders which would not passed by the LION mooring,

however only two instruments (700db 1000db) can be use to calibrate gliders data. Third, one

can use shipboard CTD measurements acquired in the vicinity of gliders.

Gliders with an unpumped CTD sensors, can be the source of salinity errors when gliders

move through temperature gradients (like the thermocline). Because temperature sensors

are located outside the conductivity cell, the temperature reported by the CTD will be slightly

different from the actual temperature inside the conductivity cell. The thermal inertia and time

responses can be corrected by aligning temperature and conductivity data for the computation

of salinity (Garau et al. [2011]).

Once gliders data have been compared with another correct source of data (like the LION

mooring line), the accuracy on gliders measurements is certainly better than 0.01°C and

0.01‰. Thus permanent mooring lines are very useful for glider calibrations because unlike

shipboard CTD measurements, it is (almost) certain that they will always be in the same

location, whatever the time of year.

Since 2007, gliders were deployed in the NWMED in the framework of several European and

national projects (see Everyone’s Gliding Observatories (EGO), http://www.ego-network.org,

EU FP6 MERSEA, ANR LIVINGSTONE, NERC DOCONUG, SOERE MOOSE, HyMeX/MerMeX).

77 deployments were carried out between 2007 and 2012 (fig. 2.4a) corresponding to a total of
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36513 profiles.

With the development of the observing system MOOSE in 2010, there is almost always an

active glider (fig. 2.4b). Whereas before 2010, glider deployments were not continuous but

instead integrated into large experiments (from the end of January to April in 2007 and in 2008,

for example).

The gliders represents a real step forward in ocean observing. The large number of mea-

surements made by each unit has enabled the observation of small-scale physical processes

that were not necessarily accessible to traditional measurement platforms. Since the use of

gliders, the number of oceanographic profiles has exploded. On figure 2.5, one can clearly

see the evolution of the oceanographic measurement platforms used in the NWMED, with

the apparition of the CTD sensors at the beginning of the 70s, the development of the Argo

profiling floats in the beginning of the 2000s, and the democratization of the gliders since

2006.

Figure 2.4: Top panel: Maps of glider deployments in the NWMED from 2007 to 2012, colors correspond
to different deployments. Bottom panel: Number of active glider deployments week by week in the
NWMED from 2007 to 2012
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Figure 2.5: Top: Number of profiles by platforms in the NWMED from 1965 to 2012. Bottom: Ratio of
profiles for each measurement platforms. Red: BT/XBT, blue: CTD stations, green: Argo, purple: gliders

At the end of 2012, 18.5% of temperature profiles collected since 1965 were carried out

using bathythermograph (BT) and expandable bathythermograph (XBT/XCTD), 16.4% using

shipboard CTD, 3.1% using Argo profiling floats and 62.0% using gliders. While salinity profiles

were collected at 0.1% by XCTD, 19.8% by shipboard CTD, 3.9% by Argo profiling floats and

75.7 % by gliders.

2.4 Database of Mediterranean Data

In order to better quantify the seasonal cycle of surface net heat flux in the Gulf of Lions, we

have wanted to produce a Mediterranean climatology of the thermocline and of the upper-

ocean heat storage rate over an annual cycle and a grid of 0.5° longitude x 0.5° latitude (see

chap. 3). As this climatology could be useful to other areas of the Mediterranean, we have

generalized our study to the whole Mediterranean.

The first source of data for this study was the Medar-MEDATLAS project (MEDAR Group

[2002]). We also used data from the World Ocean Database (Conkright et al. [2002]), from
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additional Italian (D’Ortenzio et al. [2005]) and Spanish cruises (Puig et al. [2012]), from the

CORIOLIS data center (see Coriolis, http://www.coriolis.eu.org) and from the MOOSE data

base.

2.4.1 Description of additional measurement platforms

In addition to CTD stations (section 2.2) and glider data (section 2.3), this database is also

composed by Bathythermograph and expandable Bathythermograph data, and by Argo profil-

ing float data.

Bathythermograph and Expandable Bathythermograph

The (mechanical) Bathythermograph (MBT) was the principal operational naval device

from the 1940s up to the mid-1970s. The MBT was lowered into the water from a vessel, and it

inscribed a temperature-depth trace, with a sharp stylus on a small coated glass slide. The

temperature-sensing element was a xylene-filled copper tube, whose (temperature- depen-

dent) pressure moved the stylus across the slide via a Bourdon tube. Stylus movement along

the slide was determined by a copper bellows, compressed by the increasing water pressure.

Data were read from the trace using an optical projector and scale.

The XBT was originally intended to improve on the (non-expendable) mechanical bathyther-

mograph. It was a major advance, allowing operation while under way and dispensing with

the intricate measurement routine of the MBT, with the need for a deployment/recovery winch

and with the need for calibration. It uses a pre-calibrated thermistor measurement, read

onboard in real time. Inference of its depth uses knowledge of its rate of fall through the water.

Recently Domingues et al. [2008]; Wijffels et al. [2008]; Levitus et al. [2009]; Ishii and Kimoto

[2009]; Gouretski and Reseghetti [2010]; Hamon et al. [2012] have shown that bathythermo-

graphs dominate the upper ocean temperature record since the mid-1960s and both mechani-

cal and expendable bathythermographs seem to be positively biased. XBT biases are mainly

caused by errors in the fall rate equation and have changed with depth and time along the

observational record, with averaged biases ranging between 0.2°C and 0.4°C.

Argo profiling floats

Since 2000, the global network of temperature/salinity floating profilers known as Argo

(Array for real-time geostrophic oceanography) has grown considerably, becoming a major

component of the ocean observing system with more than 3500 active free-drifting profiling

floats. This allows, for the first time, continuous monitoring of the temperature, salinity,

and velocity of the upper ocean. The primary motivation of these floats was for operational

oceanography in addition to altimetry satellites, but they are also a powerful tool for the study

of the ocean and climate, especially thanks to their long lifetime (>3 years).

In the Mediterranean, 113 floats deployments (fig. 2.6) were collected mainly through

MedArgo (http://nettuno.ogs.trieste.it/sire/medargo) from 2001 to 2012. Each float descents

from the surface to a programmed parking depth of 350 m, where it remains for about 4.5
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Figure 2.7: Number of profiles collected by platforms in the MED from 1965 to 2012. Red: BT/XBT, blue:
CTD stations, green: Argo, purple: gliders

days before reaching the profile depth, that is generally 700 m but extends to 2000 m every ten

cycles. At the end of each cycle the float remains for about 5–7 h at the sea surface, where it is

localised by, and transmit the data to satellite system.

Floats are equipped with CTD sensors, and can also be a host of other accessories and

instruments to monitor oxygen, chlorophyll or turbidity, for example.
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2.4.2 Description of the multi-platform database

After removal of duplicates, the merged database is composed by more than 194 000 tempera-

ture profiles (fig. 2.7) from 1965 to 2012 (55.1% of BT and XBT, 14.1% of shipboard CTD, 5.2%

of Argo profiling floats and 25.6% of gliders). This database is also composed of 87 293 salinity

profiles (1.2% of XCTD, 30.7% of CTD, 11.5% of Argo profiling floats data and 56.1% of EGO

gliders data).

The data are aggregated in a grid of 0.5° of longitude x 0.5° of latitude and stored in matlab

files. One can easily access the data through a matlab function that runs through the database

and extract the desired data:

dataDB = DBhisto_loaddata( pathdb , arealimit , timeselect ,minp , instrtyp , qcselec , qlvl )

where pathdb is the path of the database, arealimit is a polygon indicating the selection area,

timeselect is the min and max value for a timeselection, minp is the minimal depth of the

desired profiles (for example minp=1200 will return only profiles going deeper than 1200m,

instrtyp is a string where the user can specify the kind of measurement platforms desired

(exemple: ’ALL’, ’CTD’, ’ARGO’, ’XBT’, ’GLIDER’), qcselec is equal to 1 if quality checked data

are needed otherwise it is 0, qlvl is used if qselec is equal to 1 and corresponds to quality flag

level desired. We keep the same quality flags than CORIOLIS (1: good, 2: probably good, 3:

probably bad, 4: bad, 0: no QC, 7: error in time or position, 8: no data) and we added also

our personal quality flag (10: good raw data, 11: good raw data controlled by the Principal

Investigator, 20: probably good data).

Then the user gets back a matlab structure aggregating all the profiles corresponding to

its criteria selection. The structure includes different fields like the time, the latitude, the

longitude, the ’name’ of the profile, the cruise name, the platform type, the ID of the platform,

the operator name (who has provided the data), the datasource, the depth level of the profile,

the temperature profile, the salinity profile and quality flags on temperature and salinity

profiles.

2.5 Complementary datasets

In this PhD thesis, other complementary data were used and are presented in this section.

2.5.1 Shipboard ADCP

An Acoustic Doppler Current Profiler, is deployed to measure how fast water is moving across

an entire water column. It uses the Doppler frequency shift of an acoustic ping to infer water

velocity. ADCPs can be attached to moorings, lowered on CTD rosette packages, and mounted

on ship hulls. During this thesis, I mainly worked on shipboard ADCP (SACDP, also known as

Vessel-Mounted ADCP, VMADCP).
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Figure 2.8: Shipboard ADCP data from the first leg of the CASCADE oceanographic cruise, that took
place in March 2011 in the Gulf of Lions. Data come from a 38 Khz RDI-Ocean Surveyor, profiling the
upper 700 meters of the water column in 16m-wide cells. Arrows indicate the mean horizontal currents
of the upper 700 meters of the water column. The red line indicate the ship track.

An overview of shipboard ADCP systems was written for the GO_SHIP (Global Ocean

Ship-Based Hydrographic Investigation Program) Repeat Hydrography Manual (http://www.

go-ship.org/HydroMan.html) by Firing and Hummon [2010]. SADCP data are stored and

accessed using a CODAS (Common Ocean Data Access System) database, developed in the

late 1980’s as a portable, self-describing format for ADCP data, by the University of Hawaii

(Firing et al. [1995]). The CODAS processing is composed of a processing software and proce-

dures that were developed around the CODAS format (http://currents.soest.hawaii.edu/docs/

adcp_doc/index.html). Although the processing steps are automated, human judgment is still

required for the final product. The high flexibility of CODAS makes it useful for near real-time

processing at sea, with processed, corrected and edited data available for onboard scientists.

Four processing steps for ADCP data are performed by the CODAS routines:

1. An ocean reference layer is used to remove the speed of the ship from the measured

velocities.

2. A GPS-derived heading source may provide a more accurate heading source than a gyro.
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3. Calibration routines are available to estimate the heading misalignment from either

“bottom track” or “water track” data. Watertrack calibration routines use sudden accel-

erations (such as stopping and starting of the ship when doing station-work) to derive

an estimate if there is a heading misalignment.

4. Bad data can be edited out prior to use (to screen out interference from other instru-

ments or bubbles).

Once the data are averaged and the above steps are applied, it is still often necessary to

further edit the data (for example: remove data when the ship is in harbor or remove velocities

below the bottom). This can be automated but for final processing, a person must visually

inspect all the dataset.

SADCP data were mainly used during the CASCADE cruise (figs. 2.2 and 2.8) that took

place in the Gulf of Lions in March 2011, and are presented in chapter 5. .

2.5.2 Atmospheric reanalyses

During this PhD thesis, atmospheric reanalysis were investigated in order to explain the

influence of atmospheric forcing on the ocean dynamic. We used two different products, the

ERA-Interim reanalysis and a dynamical downscaling of the ERA-Interim reanalysis performed

with the Regional Climate Model (RCM) ALADIN-Climate developed at Météo-France/CNRM.

Era-Interim

The ERA-Interim reanalysis data (http://www.ecmwf.int/research/era/do/get/era-interim)

contains consistent atmosphere and surface analyses for the period from 1979 until real time

based on the European Centre for Medium-Range Weather Forecasts (ECMWF) numerical

weather prediction model. The reanalysis makes use of the ECMWF Integrated Forecast

System at T255 spectral resolution (80 km horizontal resolution) with 91 vertical levels. We

considered in this work the daily fields of the air-sea fluxes (downward and upward short-wave

radiation, downward and upward long-wave radiation, latent heat flux, sensible heat flux,

total precipitation and evaporation) in order to compute the daily net heat flux and the net

freshwater flux out of the ocean.

Era-Interim data were used in different parts of this thesis (chapters 4 and 5).

RCM ALADIN-Climate

A description of ALADIN-Climate, version 5 (dynamics and physics) can be found in Colin

et al. [2010] and Herrmann et al. [2011]. The version 5 is used in the framework of the in-

ternational CORDEX exercise over various domains (Mediterranean, Africa, North America)

and is close to the ARPEGE-Climate version. Different configurations of this model can be

used. They are obtained by varying the spatial resolution, the size and position of the domain,

and the dataset used for the large scale forcing. The model version has 31 vertical levels. The

time step used is 600s. This geographical set- up allows to fully include the Med-CORDEX

(http://www.medcordex.eu) official domain in the model central zone.
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One of the main advantage of using the dynamical downscalling of ERA-Interim reanalysis

with the regional climate model ALADIN, is to obtain a jet-like structure of the most intense

latent heat loss, that better reflects orographic control of the wind (Herrmann et al. [2011]).

This behavior is mostly seen in the Aegean Sea (the Etesian wind or Meltem), in the North-

Western Mediterranean Sea (Mistral, Tramontane), in the Adriatic Sea (Bora area).

From this simulation provided by Samuel Somot (CNRM Toulouse), we extracted the

daily fields of the air-sea fluxes (downward and upward short-wave radiation, downward and

upward long-wave radiation, latent heat flux and sensible heat flux) in order to compute the

monthly mean time series of the neat heat flux for the whole available period (1979 to 2011).

We used this dataset in the chapter 3 of this manuscript.

2.5.3 Ocean color images

Ocean color images are a useful tool to get estimates of geophysical quantities at the sea sur-

face, as the chlorophyll a concentration. These high-resolution spatial measurements can be

studied on regional or global scales for addressing both research and operational requirements

related to marine primary production, ecosystem dynamics, fisheries management, ocean

dynamics, coastal sedimentation and pollution.

The term ‘ocean color’ refers to the spectral composition of the visible light field that

emanates from the ocean, determined by the interactions of incident light with substances or

particles present in the water. The color of the ocean depends on the solar irradiance spectra,

atmospheric conditions, solar and viewing geometries, and the absorption and scattering

properties of water and the substances that are dissolved and suspended in the water column,

for example, phytoplankton and suspended particles.

Clear open-ocean have a ’color’ that peak at blue wavelengths because its reflects the

color of the sky, but also because water absorbs strongly in the near-infrared and scatters blue

light more effectively than at longer wavelengths. As the concentrations of microscopic green

plants (phytoplankton) and suspended materials increase, absorption and scattering change

and the color shifts from blue to green and brown.

Thanks to the analysis of the satellite images that estimate the ’ocean color’ (= the water-

leaving radiance spectra), other geophysical quantities can be derived, in our case we will

focus on the chlorophyll a concentration. In this work we will use the 1-day Level 3 standard

mapped images of MODIS Aqua surface chlorophyll at 9 km resolution, obtained from the

NASA web site (http://oceancolor.gsfc.nasa.gov/) for the 2007-2012 period.
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Chapter 3. Mixed Layer, Seasonal Thermocline and Upper-Ocean Heat Rate in the
Mediterranean Sea

In this chapter, we mainly investigate the seasonal cycle of the upper ocean heat rate in the

Mediterranean Sea. The active turbulence in the upper ocean is responsible for the onset of an

oceanic mixed layer, where the temperature, the salinity and the density are almost vertically

uniform. It is through this buffer zone, that mass, momentum and energy, are transferred

between the atmosphere and the deep ocean. In addition to the important role that the

oceanic mixed layer may play in the physical climate, this layer has also a major influence on

biological and chemical processes.

The upper ocean is also a place where marine trophic chain begins with the first element

of this chain, phytoplankton, finds all the elements required for growth (light and nutrients).

Characterizing the oceanic phytoplankton phenology1 is a necessary step to better understand

functioning of oceanic ecosystems and their possible alterations in response to global or local

changes. The phytoplankton phenology is driven by biotic2 (eg: zooplankton controls of

phytoplankton accumulation) and abiotic3 forcings. The mixed layer depth, considered as the

main physical abiotic factor in influencing phytoplankton dynamics, governs both nutrient

and light availability for phytoplankton growth (Mann and Lazier [2005]).

The database presented in section 2.4 was intended for studies on the upper ocean heat rate

in the Mediterranean Sea. However I also had the opportunity to use it through collaborations

with biogeochemists and physicists in order to study the influence of the mixed layer on the

phenology of phytoplankton. One of the main results of this study is the confirmation of

the coexistence in the Mediterranean Sea of two dominant phenological regimes, named

“Bloom” and “No Bloom”. The “No Bloom” regime is characterized by concomitant MLD

and surface chlorophyll peaks, whereas, in the “Bloom” regime, MLD peaks precede surface

chlorophyll peaks by about 30 days. Moreover for the “No Bloom” regime, observations

indicate that phytoplankton would never be limited by light, whatever the MLD, and would

even grow during the winter period thanks to small nutrient inputs. For the “Bloom” regime,

the important supplies of nutrients in surface waters by deep mixing and the low uptake

rate by phytoplankton (episodically limited by a deficit of light), lead to the hypothesis that

the nutrients accumulate in surface waters during winter, which could explain the 30 days

time-lag between MLD and surface chlorophyll peaks, characteristic of the “Bloom” regime.

My contribution to this study was done mainly through the MLD database and the dis-

cussion related to dynamics of deep water formation regions. This study is available in the

appendix B, and is published in Journal of Geophysical Research: Oceans under the reference :

Lavigne H. , F. D Ortenzio, C. Migon, H. Claustre, P. Testor, M. Ribera D Alcalà, R. Lavezza,

L. Houpert, L. Prieur (2013): Enhancing the comprehension of mixed layer depth control on

the Mediterranean phytoplankton phenology, Journal of Geophysical Research: Oceans, doi:

10.1002/jgrc.20251

1The relationship between a periodic biological phenomenon and climatic conditions
2Any living component that affects another organism
3Non-living chemical and physical factors in the environment, which affect ecosystems
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In the following, we present an article in revision in Progress in Oceanography, in which

we have constructed the first Mediterranean climatology of the seasonal thermocline based

on a comprehensive collection of temperature profiles of the last 44 years (1969-2012), using

the database presented in section 2.4. This climatology of the seasonal thermocline together

with the climatology of the upper mixed layer depth have led to the calculation of the upper-

ocean heat storage rate. In addition to discriminate particular dynamical regions in the

Mediterranean, this climatology of the upper ocean heat rate has led to the construction of an

independent estimate of the seasonal cycle of the surface Net Heat Flux (NHF) on average over

the Mediterranean, based only on oceanic in-situ measurements. Although there is a good

agreement between our estimation of NHF from observations with NHF from atmosphere-

ocean regional climate models, some differences may be noticed during specific periods. A

part of these differences may be explained by the high temporal and spatial variability of the

mixed layer and of the seasonal thermocline, responsible for very localized heat transfer in the

ocean. The reference of the article in revision is:

Houpert L., P. Testor, X. Durrieu de Madron, S. Somot, F. D Ortenzio, C. Estournel, H. Lavigne

(2013): Observations of the Mixed Layer, the Seasonal Thermocline and the upper-ocean Heat

Storage Rate to estimate the seasonal cycle of the Net Heat Flux over the Mediterranean Sea,

Progress in Oceanography, SI: North Atlantic and Arctic Oceans’ State and Variability.

Abstract

We present a Mediterranean climatology (1°x1°x12 months) of the mixed layer and of the sea-

sonal thermocline, based on a comprehensive collection of temperature profiles spanning 44

years (1969-2012). The database includes more than 190,000 profiles, merging CTD, MBT/XBT,

profiling floats, and gliders observations. This data set is first used to describe the seasonal

cycle of the mixed layer depth and temperature, together with the seasonal thermocline depth

and averaged temperature, on the whole Mediterranean on a monthly climatological basis.

Our analysis discriminates several regions with coherent behaviors, in particular the deep

water formation sites, characterized by significant differences in the winter mixing intensity.

Heat Storage Rate (HSR) is calculated as the time rate of change of the heat content due to

variations in the temperature integrated from the surface down to the base of the seasonal

thermocline. We propose a new independent estimate of the seasonal cycle of the mean Net

surface Heat Flux (NHF), calculated on average over the Mediterranean Sea for the 1969-2012

period, based only on in-situ observations. We use our new climatologies of HSR, combined

to existing climatology of the horizontal net heat flux at Gibraltar Strait. NHF is calculated

from ocean observations has an annual mean value of -4.7±4.4 W.m-2 over the Mediterranean

Sea, and presents a clear seasonal signal with minimal and maximal values being about -

169.3±4.7W.m-2 in December and +125.2±3.9W.m-2 in June respectively. Although there is a

good agreement between the seasonal cycle of NHF estimated from observations with the

NHF from Regional Climate Model ALADIN, some differences may be noticed in summer
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and fall/winter, certainly due to an overestimation of the latent heat flux and the short-wave

radiation in the model. The spatial and temporal variability of the HSR in the Mediterranean

Sea and its link with dynamic structures like oceanic gyres are also discussed.

3.1 Introduction

The Mediterranean Sea is a semi-enclosed basin connected with the Atlantic (the Gibraltar

Strait, ˜300m depth) and with the Black Sea (the Dardanelles Strait, ˜100m depth). It is

composed of two main basins, the Western and the Eastern Mediterranean (WMED and

EMED) separated by the strait of Sicily (˜ 400m depth), and eight sub-basins. The Alboran Sea,

the Algerian Basin , the Northwestern Mediterranean (delimited to the South by the Balearic

Islands and the Sardinia) and the Tyrrhenian Sea compose the WMED, while the Ionian Sea ,

the Adriatic Sea , the Aegean Sea and the Levantine Basin compose the EMED (figure 3.1).

In particular the Mediterranean Sea has different deep convection zones (in the West and in

the East) and a well-defined overturning circulation (Wüst [1961]; Robinson et al. [2001] with

distinct intermediate and deep water masses. The total Mediterranean heat and freshwater

surface budgets over a long multi-year period are negative. These deficits of freshwater and

heat are compensated by exchanges through the Strait of Gibraltar (positive net water and

heat transports), where the inflow is composed by a relatively warm and fresh (15.4°C, 36.2

psu) upper water, and the outflow to the Atlantic is relatively cooler and saltier (13°C, 38.4

psu) (Bryden et al. [1994]; Tsimplis and Bryden [2000]; Soto-Navarro et al. [2010]; Criado-

Aldeanueva et al. [2012]).

Recently new estimates of the Net Heat Flux (NHF) due to surface air-sea exchanges were

proposed: -3 ± 8 W.m-2 using in-situ and satellite-derived datasets (see HB3 in table 5 in
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Sanchez-Gomez et al. [2011]), -7 W.m-2 using empirical corrections of the ERA40 atmospheric

parameters plus bulk formula (Pettenuzzo et al. [2010]) and a range of [-6.4 ; -1.7] W.m-2 using

the historical runs of 5 fully-coupled Atmosphere-Ocean Regional Climate Models (AORCMs)

in Dubois et al. [2011]. These recent studies show that NHF estimates are in agreement with

the Gibraltar transport measurements, between 3 and 10 W.m-2 (Bethoux [1979]; Bunker et al.

[1982]; Macdonald et al. [1994]. It is worth to note however that atmosphere-only Regional

Climate Models (RCMs) evaluated in Sanchez-Gomez et al. [2011] show a wide spread range of

values for the Mediterranean NHF (from -40 to +21 W.m-2 with an ensemble mean equal to

-9 W.m-2) using 12 state-of-the-art 25km RCMs driven by the ERA40 reanalysis showing the

key role of atmosphere model physics and air-sea coupling in simulating the Mediterranean

NHF. Those studies also highlight the need for better knowledge of the heat fluxes between

ocean and atmosphere and the usefulness of independent approaches to estimate the NHF, to

improve model accuracy and to better understand air-sea interactions. In the current study,

we propose an indirect and independent estimate of the NHF based on ocean heat rate study.

Several past studies analyzed the climatological structure of the salinity and temperature

fields of the Mediterranean Sea from observations, based on a variational inverse model

(Brankart and Brasseur [1998]), or on inverse methods (Tziperman and Malanotte-Rizzoli

[1991]), and even fewer studies estimated the heat content changes in the Mediterranean

(Krahmann et al. [2000]; Matsoukas et al. [2005]). In this work we estimate the heat content

changes only in the upper layer of the Mediterranean, because the number of observational

data is very large compared to deeper layers. We define the upper-ocean layer as a combina-

tion of an upper mixed layer, where temperature is almost vertically uniform, and a seasonal

thermocline. The depth of the seasonal thermocline is determined as the depth of the tem-

perature minimum on temperature profiles, except in cases of no distinguishable seasonal

thermocline (in winter) where we use the mixed layer depth. The temperature minimum

associated to the seasonal thermocline can be viewed as the mixed layer temperature during

deep winter ventilation of the water column. We choose to calculate heat storage rates down

to the seasonal thermocline in order to not miss heat stored below the mixed layer depth.

For the first time, climatologies of the seasonal thermocline depth and averaged temper-

ature, together with climatology of the upper-ocean heat storage rate, are provided for the

Mediterranean Sea. In addition, 8 supplementary years of data (corresponding to more than

60 000 profiles, thanks to massive Argo profiling floats and gliders deployments) are available

since the computation of the last MLD climatology for the Mediterranean by D’Ortenzio et al.

[2005], thus this work provides also an updated version of the seasonal cycle of the mixed

layer depth and temperature for the 1969-2012 period. As in D’Ortenzio et al. [2005], we

choose to use simple averaging method to stay close to the raw dataset, in order to compare to

previous studies and to identify basics statistics. It represents an intermediate step between

the raw dataset of individual profiles and a final analysis using advanced statistics methods,

like objective analysis or variational analysis (Troupin et al. [2010]).

The paper is organized as follows. First we describe the data sets and the method in section

3.2. Then we present our results in the section 3.3, such as climatologies of the mixed layer

depth and temperature, together with climatologies of the seasonal thermocline depth and
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averaged temperature, on the whole Mediterranean on a monthly climatological basis. We

also propose a new independent estimate of the seasonal cycle of the mean Net surface Heat

Flux (NHF), calculated on average over the Mediterranean Sea for the 1969-2012 period, based

only on in-situ observations. Finally we discuss the spatial and temporal variability of the HSR

in the Mediterranean Sea. Conclusions and perspectives are given in section 3.4.

3.2 Data sets and methods

3.2.1 Profile Database

The first source of data for this study is the Medar-MEDATLASproject (MEDAR Group [2002]).

We also use data from the World Ocean Database (Conkright et al. [2002]), from additional

Italian (D’Ortenzio et al. [2005], http://www.mediterranean-marinedata.eu/moong/home.

htm) and Spanish cruises (Puig et al. [2012]), from the CORIOLIS data center (see Coriolis,

http://www.coriolis.eu.org) and from deployments of gliders, which are relatively new oceano-

graphic platforms (Testor et al. [2010]) carried out in the framework of several European and

national projects (see EGO, http://www.ego-network.org). Gliders profiles are considered as

vertical and are checked with the same quality control than Argo data.

After removal of duplicates and application of quality control procedures (elimination

of profiles without data above 10m below the surface, with constant temperature values, or

with excessive temperature gradients; see details in De Boyer Montégut et al. [2004]), 140 083

profiles from 1969 to 2012 were kept out of the 190 000 initial ones. This database is composed

by 45.8% of mechanical bathythermograph (MBT) and expandable bathythermograph (XBT/X-

CTD), 25.8% of conductivity-temperature-depth data (CTD from Research vessels cruises),

4.8% of ARGO profiling floats data and 23.6% of EGO gliders data. This database is also com-

posed of 74 934 salinity profiles (0.5% of XCTD, 47.2% of CTD, 8.9% of ARGO profiling floats

data and 43.4% of EGO gliders data). This represents more than 50 000 additional salinity

profiles compared to the mixed layer climatology made by D’Ortenzio et al. [2005]. This is

mainly due to the increasing number of glider deployments (43 since 2006). However the

spatial distribution of these salinity profiles (often distributed along repeat-sections) is still

not yet sufficient to have a horizontal description of a pycnocline climatology. The 110 000

supplementary temperature profiles, compared to the salinity profiles, is one of the main

reason why we chose to work on the thermocline base, rather than on the pycnocline base.

Because XBT and MBT data compose almost 50% of our database and are known to

be biased in temperature, we pay a special attention in the correction of these data. The

manufacturer’s technical sheet specify a depth accuracy of >1% of sample depth and a

temperature accuracy of 0.1°C for MBT, and a depth accuracy of 5m (0-250m) or 2% below

250m and a temperature accuracy of 0.2°C for XBT. The MBT are characterized by smaller and

less time-variable biases compared to the XBT. Recently Gouretski and Koltermann [2007]

discovered the existence of a globally time-dependent and systemic warm bias in XBT profiles,

caused by depth error calculation and thermistor error. Since that time, several authors have

deduced a time-variable bias, modeling the bias as a depth error only (Wijffels et al. [2008];
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Ishii and Kimoto [2009]), a temperature bias Levitus et al. [2009], or a combination (Gouretski

and Reseghetti [2010]; Cheng et al. [2011]; Hamon et al. [2012]; Cowley et al. [2013]).

In this work we correct the depth calculation and temperature biases in Bathythermograph

data. The mechanical bathythermograph (MBT) data are corrected using the updated cor-

rection from Gouretski and Koltermann [2007] (http://www.nodc.noaa.gov/OC5/mbt-bias/

gouretski_new.html), while the expendable bathythermograph (XBT) data are corrected using

Cowley et al. [2013]. The large database of over 4100 side-by-side deployments of XBTs and

CTD data used in Cowley et al. [2013] allowed them to separate out the pure temperature bias

from depth error in a way that was not previously possible. The correction steps apply on our

XBT data can be summarized by: 1) an identification of the appropriate correction depending

of the probe type. If there is no information about XBT types (74500 of the 86000 profiles),

the terminal depth is used to determine the probe type for data carried out before 1996. XBT

data from 1996 to the present with no depth equation information (2000 profiles) are not

included in the climatology calculation, since we do not know which depth equation was used

(manufacturer or Hanawa fall rates equation, Hanawa et al. [1995]); 2) Convert to Hanawa fall

rates if required; 3) Apply Cowley thermal gradient corrections. A more detailed description of

the correction steps can be read on http://www.nodc.noaa.gov/OC5/XBT_BIAS/cowley.html.

3.2.2 Mediterranean Heat Budget Calculation

Following, the formalism of Moisan and Niiler [1998], which derived the heat storage rate

equation based on the conservation of mass equation and the conservation of heat equation

(without thermal conductivity term). We can express the heat conservation equation inte-

grated from the surface down to a chosen time- and space-dependent depth h= f(x,y,t) as

follows:

h
∂Ta

∂t
= − hva ·∇Ta − ∇·

(∫ 0

−h
v̂T̂ d z

)
− (Ta −T−h)×

(
∂h

∂t
+v−h ·∇h +w−h

)
+ N HF −q−h

ρcp

(Eq. 3–1)

Here h is the depth level above which the depth-averaged temperature Ta and the depth-

averaged horizontal velocity va are calculated, ∇ is the horizontal gradient operator, ∇. is

the horizontal divergence operator, v̂ is the deviation from the vertically averaged horizontal

velocity (v = va + v̂), T̂ is the deviation from the vertically averaged temperature (T = Ta + T̂ ),

T−h and w−h are the temperature and the vertical speed at the depth level h, NHF is the net

heat flux across the ocean surface, q−h is the flux of heat at h, and ρ and cp are the mean

density and specific heat of seawater.

The Heat Storage Rate (HSR, left term in Eq. 3–1 can be expressed in terms of horizontal

heat advection, vertical temperature/velocity covariance, entrainment processes at the depth h

(deepening or shoaling of the h interface, horizontal advection through the sloping h interface,

and vertical velocity at the base of the h interface), net surface heat flux adjusted for the
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amount of short wave radiation that penetrate the depth h.

In their study, Moisan and Niiler [1998] defined the integration depth h as the depth of the

isotherm whose temperature is one degree less than the annual coldest surface temperature

in each region. This cannot be applied in the Mediterranean because most of the time,

temperature can be colder in winter, at the surface than at any other depth. We chose an

integration depth h corresponding to the bottom of the seasonal thermocline, therefore the

flux of heat through the bottom q−h can be considered as negligible and vertical gradients are

much weaker.

Monthly values of HSR are calculated using monthly median value of h and Ta for the

Mediterranean Sea at a spatial resolution of 1°x1° and a time period spanning 1969 to 2012. The

monthly climatology of HSR is used to propose a new independent estimate of the monthly

mean NHF over the Mediterranean Sea. Equation Eq. 3–2 represents the mean heat budget of

the Mediterranean integrated from the surface to the bottom of the seasonal thermocline:

HSR = Qmedi n + N HF + E HF (Eq. 3–2)

Here Qmedi n is the inflow of heat from the Atlantic Ocean to the Mediterranean Sea passing

through the Strait of Gibraltar, and EHF is the term corresponding to the heat flux due to

entrainment processes at the base of the seasonal thermocline. The advected heat flux through

the Black Sea is less than 1 W.m-2 each (Garrett et al. [1993]) and is considered negligible.

The basin-mean value of HSR can be calculated by summing spatially the monthly gridded

climatology. By using the mean heat budget integrated from the seasonal thermocline to the

bottom of the Mediterranean (Eq. 3–3), one can express NHF as the sum of an upper-ocean

heat storage rate term (HSR), a heat storage rate term for the deep ocean (DHSR) and the net

inflow of heat from the Atlantic Ocean to the Mediterranean (Eq. 3–4).

D HSR = −Qmedout − E HF (Eq. 3–3)

N HF = HSR + D HSR − (Qmedi n − Qmedout ) (Eq. 3–4)

where Qmedout is the outflow of heat from the Mediterranean to the Atlantic Ocean.

3.2.3 Determination of the integration depth and the mixed layer depth

In order to calculate HSR down to the base of the thermocline, we need to define first the

thermocline in our profiles. We choose the integration depth as the depth where there is

a local temperature minimum in the first 200 meters. This temperature minimum can be

viewed as the mixed layer temperature during deep winter ventilation of the water column.

In winter, the strong surface buoyancy losses increase the mixed layer depth (MLD) and
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the seasonal thermocline cannot be distinguishable on temperature profiles (figure 3.2 a).

The Atlantic Water (AW) locally cooled during cold wind events becomes denser, and will be

overlaid by warmer and less dense AW coming from the surroundings. The cooled AW would

be prevented from any interactions with the atmosphere. Such a temperature minimum can

be encountered in several other places in the Western Mediterranean and is recognized as the

Western Mediterranean Intermediate Water (WIW, previously named as Winter Intermediate

Water). The coldest WIW is found in the Northwestern Mediterranean, and it is expected to

follow mainly the path of AW (Millot [1999]). The transformation processes of AW into WIW

are roughly similar to those occurring in the Eastern Mediterranean Sea, where a saltier AW is

transformed into Levantine Intermediate Water (LIW) in the Levantine Basin (Lascaratos et al.

[1993]).

A double criterion is chosen to calculate the integration depth h. For each individual profile,

we calculate the MLD (using a ∆T=0.1°C criterion and a reference level at 10m depth) and

the seasonal thermocline base (corresponding to the depth where a temperature minimum

occurred in the upper 200m). If the MLD is deeper than the seasonal thermocline base

(determined using a temperature minimum criterion), the integration depth is chosen to be

the base of the MLD, and otherwise the integration depth h is chosen to be the depth of the

seasonal thermocline.

Unlike D’Ortenzio et al. [2005] who used a ∆T=0.2°C criterion, we choose a ∆T=0.1°C
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criterion to define the MLD on our profiles, because a finest temperature criterion reduces the

difference between a MLD calculated with a temperature criterion and a MLD calculated on

temperature-salinity profiles with a density criterion. Maps of the monthly mean differences

between MLD calculate with a temperature criterion and MLD calculated with a density

criterion are shown on figure 3.3. We use all available temperature-salinity profiles and we

calculated for two ∆T criterion (0.2°C and 0.1°), the MLD based on a temperature criterion

and a density criterion. The density criterion is determined, following De Boyer Montégut

et al. [2004], as a threshold value ∆σT = σT (T10 + ∆T, S10, P0) - σT (T10, S10, P0), where T10, S10

are the temperature and salinity values at the reference depth Z=10m, and P0 the pressure at

the ocean surface to compute the surface potential density.

Results from December to April are shown on figure 3.3 for ∆T=0.2°C (on the left) and for

∆T=0.1°C (on the right). One can see that the differences are smaller for a ∆T=0.1°C criterion

than a∆T=0.2°C criterion, indicating that in the Mediterranean Sea a∆T=0.1°C should be used

preferably to a ∆T=0.2°C criterion if one does not want to overestimated the MLD. However

even with a ∆T=0.1°C there are still differences between a temperature based estimations and

a density based criteria particularly in the dense water formation areas (in the Gulf of Lions in

March or in Rhodes Gyre in January).

In the Mediterranean, mixing occurs along the pathway of surface water, caused by the

strong air-sea interactions or by straits constraint. The differences in the MLD estimates may

be explained by the decoupling of the temperature and salinity fields due to mixing processes.

In the WMED, surface waters are strongly vertically thermally homogeneous, the temperature-

based MLD estimations often result in deeper estimations than the density based criteria.

The higher differences are found in the Gulf of Lions, in March (figure 3.3). These differences

might be explained by the restratification process that occurs at the end of the deep ocean

convection, when the surface net heat flux starts to become positive (Houpert et al. [2014]),

and saltier waters (LIW) are advected in the open-ocean deep convection area. At that time,

these waters might have a temperature relatively close to the one of the upper-layer but they

are saltier. This can explain the decoupling between the temperature and the salinity fields,

and the important variations between the temperature-based MLD estimation and the density

based criterion.

There are also cases of shallower temperature based MLD estimations, particularly in the

Gulf of Lions and in the Rhodes Gyres in January. That time corresponds to the period of deep-

ening of the mixed layer, and the difference in the temperature and density based estimations

are related to an isothermal layer shallower than the isopycnal one. Vertical compensation oc-

curs between salinity and temperature, creating a compensated layer beneath the well-mixed

layer (De Boyer Montégut et al. [2004]). In January in the Gulf of Lions, the surface layer is

colder and fresher than the intermediate layer composed by the warmer and saltier LIW, so the

isothermal layer is decoupled from the isopycnal layer explaining the overestimation of the

MLD with a density criterion (figure 3.3). The same process explains the difference observed

in January in the Rhodes Gyre, but in this case the surface layer is warmer and saltier than the

intermediate layer (Lascaratos et al. [1993]).
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3.2.4 Climatologies of h and Ta

h and Ta were calculated from each single profile for the period 1969-2012 and are binned

into a 1° latitude by 1° longitude grid. Median are calculated for each box and for each month

of each year. In the following we will refer to the median estimates as hb,y,m and T b,y,m
a , where

b correspond to the box index over the horizontal grid, y indicates the year between 1969 and

2012 and m loop over the month (from 1 to 12).

We smooth out short spatial fluctuations in our estimations of hb,y,m and T b,y,m
a , by taking

slightly displaced binned data and then taking the average value on the 0.5°x0.5° overlapping

grid. So with 4 different 1°x1° grids we reconstruct estimation of hb,y,m and T b,y,m
a , and the

standard deviation σ(hb,y,m) and σ(T b,y,m
a ) on a 0.5°x0.5° grid.

Finally, mean seasonal cycles are obtained in all b boxes by calculating the mean hb,m , T b,m
a ,

and the standard deviation σ(hb,m), σ(T b,m
a ), of hb,y,m and T b,y,m

a over the years. Calculations

are done only in boxes that contain at least 3 values for each climatological month m. In

59



Chapter 3. Mixed Layer, Seasonal Thermocline and Upper-Ocean Heat Rate in the
Mediterranean Sea

our climatology definition, we chose to give the same weights for all years to avoid effects

of oversampling during some specific years and to obtain a climatology less biased by the

non-uniform sampling density in time. For example due to massive glider deployments like in

2007 and 2008 in the Northwestern Mediterranean, or due to the fact that glider data, largely

deployed only since 2004 in the Mediterranean, may represent 80% of the available profiles in

some boxes.

The processing steps are summarized on a flowchart, figure 3.4.

Database 1
(MEDATLAS)

Database 2
(WOCE2001)

Database 3
(D'Ortenzio etal. 2005)

Database 13
(EGO).....

Merged in a common database +
QC process (De BoyerMontegutetal. [2004])

Sorting into 4-d boxes
(1° x 1° x 44years x 12months)

Monthly mean and std dev calculation of
hand T

a
for each box

Spatial filteringTime averaging
over the years

h and Ta climatologies
(1°x 1°x 12months)

HSR and HER
climatologies

Figure 3.4: Flowchart describing the computational steps for the climatology calculation

Errors in the estimation of the seasonal cycle of the mixed layer depth and temperature

may be due to different sources. First, the spatial averaging in the griding procedure, for

each month of each year, can introduce a significant amount of error, particularly when

observations are sparse. To reduce theses errors, for each month of each year, individual

values of temperature are compared to the mean and standard deviation calculated from all

temperature profiles made in the same box for the same month (defined by a monthly mean

value of temperature T 0 b,m
a and a standard deviation

(
T 0 b,m

a

)
). Individual values are rejected

in the calculation of T b,y,m
a if their deviation from T 0 b,m

a is 3 times superior to σ(T 0 b,m
a ).

Another source of error is the effect of potential instrumental bias, but assuming this error

is random for each year due to changes in the instruments and in the platform tracks (which

ensure on average a relatively homogeneous spatio-temporal coverage), it should be restricted

to individual monthly data set and should not affect the seasonal climatology. In addition,

since the 70s (date chosen for the beginning of our climatologies), the temperature sensors do

not show strong bias (maximum value of 0.1-0.2 °C), compared with conductivity sensors that

are more prone to drift over time.

MBT and XBT represent 45% of the database and their corrections do not affect the basin-

mean seasonal cycle of h, Ta and HSR, since they are two order lower than the amplitude of

their seasonal variations. The basin-mean differences between climatologies with XBT/MBT

corrections and climatologies calculated without corrections are comprised between: 1) 0.1m

and 2.3m for h, and 2) -0.04°C and -0.02°C for Ta and 3) -2.1 W.m-2 and 2.0 W.m-2 for HSR.
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3.2.5 Climatology of HSR

The calculation of HSR is done only in boxes that contain a full 12-month time series of the

hb,m and T b,m
a with at least 3 values for each month. The heat storage rate HSRb,m is calculated

using centered derivative for each month m and each grid point b:

HSRb,m = ρcp
T b,m+1

a −T b,m−1
a

∆t
hb,m (Eq. 3–5)

T b,m
a is the temperature averaged from the surface to the depth h for each month m and each

box b, ∆t is the number of seconds between the center of the month m+1 and the center of

the month m-1. For m equal to the first month (resp. the last month) of the year, m-1 (resp.

m+1) corresponds to the last month (resp. the first month) of the year.

To estimate the uncertainties on HSR, we compute a Monte Carlo test (Krahmann et al.

[2000]) at each grid point b and for each month m. A Kolmogorov-Smirnov test (Gille [2004]) is

performed for each box b and for each month m to compare the inter-annual values of the

monthly averaged T b,m,y
a (resp. hb,m,y ) to a normal distribution with mean T b,m

a (respectively

hb,m) and standard deviation σ(T b,m
a ) (respectively σ(hb,m)). The null hypothesis is that

T b,m,y
a (resp. hb,m,y ) came from a normal distribution. We obtain as results that in the two

cases, we can not reject this hypothesis at a 5% significant level. This test justifies why we

choose random numbers from normal distributions in the Monte Carlo tests.

Ten thousand estimations HSRb,m
i are calculated, wherein each estimation Xi (respectively

Yi and Zi ) come from random number chosen from normal distribution with mean T b,m+1
a

(respectively T b,m−1
a and hb,m) and standard deviation σ(T b,m+1

a ) (respectively σ(T b,m−1
a ) and

σ(hb,m)). The mean heat storage rate < HSRb,m > for these 10 000 realizations is calculated by

the formula:

< HSRb,m > = 1

N

N∑
i=1

HSRb,m
i = 1

N

N∑
i=1

ρcp
Xi −Yi

2∆t
Zi (Eq. 3–6)

where N is the number of realizations. The standard deviation is calculated as:

σ(HSRb,m) =
√√√√ 1

N −1

N∑
i=1

(
HSRb,m

i − < HSRb,m >
)2

(Eq. 3–7)

This Monte Carlo approach, compared to a classical calculation of error propagation,

specifies our estimation of the standard deviation of HSR, σ(HSRb,m). On average, the results

from the Monte Carlo test reduce the standard deviation on HSRb,m by 100W.m-2 compared to

the error propagation method. In some places, like in the Ierapetra Gyre (South East of Crete),

the standard deviation on HSRb,m
i is reduced by 500W.m-2 using the Monte Carlo method.
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This may be explained by the important standard deviation value for Ta that increases the

value of the standard deviation obtained by the error propagation method, particularly in the

temperature derivative calculation.

Even if the estimates of< HSRb,m > are close to the estimates of HSRb,m (the basin-average

difference is less than 0.1W.m-2), there are some discrepancies, up to 10W.m-2 in January in the

Gulf of Lions. They may be explained by the non-linearity of the HSR term. This area is a well-

known place where deep ocean convection and dense shelf water cascading occurs (CIESM

[2009]; Durrieu de Madron et al. [2013]). So, the high inter-annual variability associated with

these DWF process is reflected in the high standard deviation of h, which is superior to 200m

from December to March. A maximum value of 670m for the standard deviation is found in

January in the Gulf of Lions with 13 years of data available in January (figure 3.5). Boxes with

differences between < HSRb,m > and HSRb,m also correspond to boxes were the standard

deviation of HSRb,m was significantly reduced when using the Monte Carlo method. In the

following, HSR will be used to refer to < HSRb,m >.

Number of years of available data

Figure 3.5: Number of years in which measurements were available for the climatology
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3.2.6 Complementary data sets

3.2.6.1 Atmospheric net heat flux

In order to complete the Mediterranean heat budget, we also need a gridded estimate of the

surface NHF. For the purpose of the current study, we need a long-term, temporally homoge-

neous, unbiased and high-resolution data set. Operational weather forecast models are not

homogeneous over a long period of time, reanalysis have also shown their limitations for the

representation of the Mediterranean heat budget and wind field (lack of resolution, Herrmann

et al. [2008, 2011], strong biases, e.g. Sanchez-Gomez et al. [2011]; Dubois et al. [2010]). Even if

RCMs have also shown some limits (Sanchez-Gomez et al. [2011]), we prefer here to rely on a

recent homogeneous, long-term (1979-2011), very- high resolution (12-km) dynamical down-

scaling of the ERA-Interim reanalysis performed with the RCM ALADIN-Climate developed at

Météo-France/CNRM and specifically adapted to the study of the Mediterranean climate and

sea (Herrmann et al. [2011]).

A description of ALADIN-Climate, version 5 (dynamics and physics) can be found in Colin

et al. [2010] and Herrmann et al. [2011]. The version 5 is used in the framework of the interna-

tional CORDEX exercise over various domains (Mediterranean, Africa, North America) and is

close to the ARPEGE-Climate version used in the CMIP5 exercise. Different configurations

of this model can be used. They are obtained by varying the spatial resolution, the size and

position of the domain, and the dataset used for the large scale forcing. More complex and un-

usual options are also available as the use of spectral nudging and interactive air-sea coupling

techniques (see Herrmann et al. [2011]). Those options are not used in the current study. We

use here a configuration with a Lambert conformal projection for pan-Mediterranean domain

at horizontal resolutions of 12 km centered at 14°E, 43°N with 432 grid points in x and 288

grid points in y including the bi-periodization (11) and the relaxation zone (2 x 8). The model

version has 31 vertical levels. The time step used is 600s. This geographical set- up allows to

fully include the Med-CORDEX official domain in the model central zone.

A description of ALADIN-Climate, version 5 (dynamics and physics) can be found in Colin

et al. [2010] and Herrmann et al. [2011]. The version 5 is used in the framework of the interna-

tional CORDEX exercise over various domains (Mediterranean, Africa, North America) and is

close to the ARPEGE-Climate version used in the CMIP5 exercise. We use here a configuration

with a Lambert conformal projection for pan-Mediterranean domain at horizontal resolutions

of 12 km centered at 14°E, 43°N with 432 grid points in x and 288 grid points in y including the

bi-periodization (11) and the relaxation zone (2 x 8). The model version has 31 vertical levels.

The time step used is 600s. This geographical set-up allows to fully include the Med-CORDEX

official domain in the model central zone.

After a 2-year spin-up, ALADIN-Climate is driven by the ERA-Interim reanalysis (80-km at

its full resolution) at its lateral boundary conditions. If we rely on the ALADIN model physics,

this downscaling exercise may give the best model assessment of the Mediterranean regional

climate and is sometimes called “poor-man” regional reanalysis. Indeed, the large-scale

pattern are driven by our best knowledge of the 4D dynamics of the atmosphere (a global
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reanalysis) and the associated small-scale are free to develop inside the 12-km RCM. To our

knowledge, this 12-km dynamical downscaling of ERA-Interim is the higher-resolution simula-

tions ever produced to study the past Mediterranean climate variability over a multi-decadal

period (data are available through the Med-CORDEX database, http://www.medcordex.eu).

With respect to the ERA40-driven 25km-resolution RCMs (1958-2001) evaluated in (Sanchez-

Gomez et al. [2011]), the ERA-Interim-driven 12km-resolution ALADIN simulation (1979-2011)

is as good as the 2 best models among 12 in terms of NHF (UCLM: -5 W.m-2, KNMI: - 10 W.m-2).

We are however aware that the choice of the driving reanalysis (ERA- Interim) and the choice

of the RCM (ALADIN-Climate) may introduce uncertainty in the results.

From this simulation, we extracted the daily fields of the air-sea fluxes (downward and

upward short-wave radiation, downward and upward long-wave radiation, latent heat flux

and sensible heat flux) in order to compute the monthly mean time series of the neat heat

flux (NHF) for each mesh, for each month of each year for the whole available period (1979

to 2011). Then the mean and the variance were calculated on the 33 year long time series for

each climatological month and for each mesh.

3.2.6.2 Gibraltar heat fluxes estimates

To close the heat budget on the Mediterranean, we have to take into account the heat flux

through the Gibraltar Strait. Recent studies estimated seasonal cycle of the inflow and the

outflow in the Gibraltar Strait from in situ measurements. Using the climatological monthly

averaged value (from 2004 to 2009)

To estimate the basin-mean seasonal cycle of the surface Net Heat Flux from in-situ

observations over the Mediterranean, we take into account the heat flux through the Gibraltar

Strait. Recent studies estimated seasonal cycle of the inflow and the outflow in the Gibraltar

Strait from in situ measurements. Using the climatological monthly averaged value (from

2004 to 2009) of the inflow (Soto-Navarro et al. [2010]) and outflow (Sánchez-Román et al.

[2009]) and their associated temperature Criado-Aldeanueva et al. [2012]), the heat flux from

the Atlantic Ocean to the Mediterranean can be estimated. These data sets are used in the

section 3.3.3, where we will show our results averaged over the Mediterranean.

3.3 Results and Discussion

3.3.1 Seasonal cycle of the mixed layer, the integration depth h and the depth-
averaged temperature Ta

3.3.1.1 Mixed layer depth and integration depth

After the processing stages described in the section 3.2.4, we get the seasonal climatologies

of h and Ta . The depth of the seasonal thermocline (figure 3.6) shows mainly two seasons:

the vertically mixed season (no seasonal thermocline) and the presence of a T minimum in

the May to November seasons to be associated to the Atlantic Water layer deepening during
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Figure 3.6: Mediterranean climatology of the upper-ocean layer h, determined by the depth of the
seasonal thermocline, except in cases of no distinguishable seasonal thermocline (in winter) where the
mixed layer depth was used.
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the winter ventilation of the water column. From January to March, h shows higher values

due to the winter deepening of the mixed layer (figure 3.7), like in the previous median-MLD

climatology of D’Ortenzio et al. [2005]. Maxima are found in wintertime in known places

of DWF regions (Lascaratos et al. [1999]) like the Gulf of Lions (≈ 42°N 5°E, MEDOC Group

[1970]), the Southern Adriatic Sea (≈ 42°N 18°E, Pollak [1951]), the Rhodes Gyre (≈ 36°N 29°E,

Ovchinnikov [1984]) and the Aegean Sea (≈ 37°N 25°E, Pollak [1951]). In February, maximal

monthly mean values of 425m depth and 300m depth are found respectively in the Gulf of

Lions and in the Southern Adriatic Sea. There are others regions that present a local maximum

of mixed layer depth (figure 3.7) and these regions are associated to anticyclonic circulation:

the Southwest of Greece (≈ 36°N 22°E in February/March, Malanotte-Rizzoli et al. [1997]) and

the region in the South of Cyprus (≈ 34°N 33°E from January to March, Zodiatis et al. [2005]).

Although the region south-east from Crete (≈ 34°N 27°E) does not show a clear maximum

in the monthly MLD climatology (figure 3.7), it is associated with higher standard deviation

values (figure 3.8) certainly related to the presence of the anticyclonic Ierapetra Gyre (Menna

et al. [2012]). The presence of anticyclonic or cyclonic gyres is more evident on the climatology

of the depth-averaged temperature, discussed later in this section. One can also distinguish a

local MLD maximum in the North Ionian Sea, in a place where the upper-ocean circulation

shows a decadal variability, known as the Bimodal Oscillating System (BiOS, Gacić et al. [2010]).

Our monthly MLD climatology presents similarities with the one made by D’Ortenzio et al.

[2005], we find the same kind of seasonal variations for the whole basin and we also find zones

of deep winter ventilation. The difference of the MLT (Mixed Layer Temperature) between the

2 climatologies is on average less than 0.1°C, but in some very specific locations (coastal areas),

the difference reach 0.8°C. Concerning the MLD, the main differences are found in winter (≈
20m), except in the Gulf of Lions where the difference between the two MLD climatologies

can be up to 250m, particularly the maximum deepening of the mixed layer is not reached the

same month (in February in our climatology). There are several sources of explanation for

these differences:

1. the ∆T=0.1°C criterion used in this work compared to the ∆T=0.2°C of D’Ortenzio et al.

[2005], that gives us shallower estimations of the MLD, particularly in March, which is

more in agreement with an isopycnal definition of the MLD,

2. the grid and the estimator chosen for the climatology calculation (in this work we chose

to maximizing the number of profiles in each box by making monthly-average over the

year in 1°x1° boxes, while D’Ortenzio et al. [2005] preferred to use median values on

0.5°x0.5°boxes),

3. the 8 additional years of measurements (from 2004 to 2012) used in our climatology,

since 2004 the number of measurements increased in the whole Mediterranean, espe-

cially thanks to the numerous Argo and glider deployments made in addition to the

“classical” XBT/CTD monitoring. Another difference from previous climatologies is the

event of DWF in 2005-2006, which changed the stratification of the water column, and

thus the mixed layer structure of the Gulf of Lions in the years to follow (Smith et al.

[2008]; Schroeder et al. [2008]; Herrmann et al. [2010]).
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Figure 3.7: Mediterranean climatology of the MLD, based on a temperature difference criterion of
∆T=0.1°C applied to individual profiles.
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Standard deviations values of the mixed layer depth are generally below 30m for most

of the basin from September to December (figure 3.8). In winter and in April, the standard

deviation values increase strongly throughout the whole basin, reaching the maximum values

in the Gulf of Lions area (550m). The irregular intensity and occurrence of the DWF processes

(Mertens and Schott [1998]) are mainly responsible for these important standard deviation

values. As an example, in the Gulf of Lions, deep convection can reach the bottom some years

like in 2009, 2010, 2011 and 2012, while other years the winter mixing do no reach greater

depths than 200m like in 2007 or 1000m like in 2008. Moreover, recent measurements show

that from one year to another the deepening of the mixed layer did not start exactly at the

same time and the time lag, for the mixed layer to pass the Levantine Intermediate Water

(LIW) located at 200-400m depth, can be up to 1 month and a half (Houpert et al. [2014]).

The standard deviation of h (σ(hb,m)) can be seen on figure 3.9. σ(hb,m) is inferior to 10

m from May to December in the east of the EMED, comprised between 10 and 50m in the

east Alboran Sea, Algerian Basin and Ionian Sea, and higher values comprised between 30 and

50m are found in the Tyrrhenian Sea and in the Northwestern Med. From January to April,

the standard deviation is important in the regions of DWF and, as for the MLD, is due to the

irregular intensity and occurrence of the DWF processes. For most of the Mediterranean, areas

of high standard deviation values are the results of variable h intra box estimations due to the

mesoscale activity associated with fronts, or DWF processes.

3.3.1.2 Mixed layer temperature and the upper-ocean depth averaged temperature

The depth averaged temperature Ta is presented on figure 3.10. On average over the whole

Mediterranean, the depth averaged temperature in the upper-ocean is going from 14.6°C

to 16.8°C in September). One can clearly notice the contrast between the Western and the

Eastern Mediterranean, with a colder basin-mean depth averaged temperature in the WMED

(from 13.7°C in March to 15.9°C in September) than in the EMED (from 15.3°C in March to

17.5°C in September). Another striking fact is the strong temperature anomalies along the

Cretan Arc (at the junction of the Aegean Sea with the Ionian and Levantine basins, figure 3.1),

from July to January, corresponding to known anticyclonic (warm anomaly) and cyclonic (cold

anomaly) gyres (from West to East: the anticyclonic Pelops Gyre (PG), the cyclonic West Cretan

Gyre (WCG), the anticyclonic Ierapetra Gyre (IG), the cyclonic Rhodes Gyre (RG)). The seasonal

cycle of Ta in the center of RG is comprised between 15.2°C in March to 16.2°C in September,

while in the WCG the same seasonal extrema are reached one month later respectively in April

and October. The seasonal cycle of the upper-ocean temperature in the anticyclonic IG is

more pronounced, with a minimal value of 15.8°C reached in March and a maximal value of

18.8 reached in October.

The standard deviation of Ta is comprised between 0.46°C and 0.75°C on average on the

whole Mediterranean. Maximum values (up to 2°C) can be found in the east of the IG in

October (figure A.1). These higher standard deviations may be explained by the inter-annual

variability of the position and the dimension of the gyres, already pointed out by Marullo et al.

[1999].
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Figure 3.8: Maps of the standard deviation associated to the mesh box averages of the MLD shown on
figure 3.7.
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Figure 3.9: Maps of standard deviation associated to the mesh box averages of the upper-ocean layer
shown on figure 3.6.
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Figure 3.10: Mediterranean climatology of the upper-ocean temperature Ta, determined by the depth
averaged temperature from the surface to the depth h.
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Unlike the depth-averaged temperature Ta , the mixed layer temperature presents a more

pronounced seasonal cycle (figure 3.11), with minimal values below 13°C found in February

in the Adriatic Sea and in the Gulf of Lions, and maximal values reaching 28.0°C are found in

August in the east of the Levantine Basin. The basin-mean of the mixed layer temperature

is going from 14.8°C in February to 24.9°C in August for the Mediterranean Sea, from 14.0°C

in Feb. to 24.2°C in Aug. for the WMED, and from 15.4°C in Mar. to 25.5°C in Aug. for the

EMED. The seasonal variability of the surface layer, strongly impacted by the solar heat flux,

masks the upper-ocean temperature anomaly associated with the presence of the anticyclonic

and cyclonic gyres in the EMED. They are more easily distinguishable by their depth average

temperature Ta (figure 3.10). The standard deviation of the mixed layer temperature (figure

A.2) presents more variability than the standard deviation of the depth integrated temperature

Ta , particularly in summer when the mixed layer is shallow and thus is more sensitive to the

temporal and spatial variability of air-sea exchanges.

3.3.2 Seasonal cycle of the thermocline

Once the climatology of the depth of the seasonal thermocline base is done, one can easily

produce a climatology of the seasonal thermocline slope. We define the seasonal thermocline

slope as T−h−MLT
h−MLD , where T−h is the temperature at the base of the thermocline, MLT is the

temperature at the base of the mixed layer, h is the depth of the thermocline and MLD is the

mixed layer depth.

The monthly variability of the seasonal thermocline slope (figure 3.12) is characterized

by a global decrease of the slope from September to February and an increase from April to

August. This seasonal cycle is in good agreement with the seasonal cycle of the mixed layer

(figure 3.7). Maxima are found in August, essentially in the Tyrrhenian Sea (0.08-0.1°C.m-1)

and around the Balearic Islands (0.07-0.08°C.m-1). One can also notice that some regions like

the DWF zones in the Northwestern Mediterranean, in the Adriatic Sea, in the Aegean Sea or

the Rhodes Gyre, present a less pronounced seasonal thermocline than the other parts of the

basin. Some regions like the DWF zones in the Northwestern Mediterranean, in the Adriatic

Sea, in the Aegean Sea or the Rhodes Gyre, present a less pronounced seasonal thermocline

than the other parts of the basin. These results are expected as t hose areas are known as the

main zones of intermediate and deep water formation in the Mediterranean Sea (Schroeder

et al. [2012]). As the water column is well mixed almost every year in those areas, the local

stratification and consequently the thermocline is weaker locally as illustrated for example in

Herrmann et al. [2010].
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Figure 3.11: Mediterranean climatology of the mixed layer temperature.
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Figure 3.12: Mediterranean climatology of the thermocline slope
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3.3.3 Estimation of the seasonal cycle of the surface Net Heat Flux from in-situ
observations on average over the Mediterranean

3.3.3.1 Annual value of the basin-mean of NHF

For the whole Mediterranean, the annual value of the basin-mean of HSR is estimated at

-1.9±4.0 W.m-2 for the 1969-2012 period. This does not establish a clear warming trend in the

upper-ocean in contrast to Rixen et al. [2005] who showed a warming of the surface layer since

the 1980s, but is not in contradiction with their results due to our uncertainties on HSR. Rixen

et al. [2005] found also a warming of the 150m-bottom layer equal to [10-20] x 1020 J for the

1980–2000 period, corresponding to a trend of [0.004-0.008] °C/year and to a heat storage rate

DHSR=0.8-1.6 W.m-2.

Using the climatological monthly averaged value of the Atlantic inflow (Soto-Navarro et al.

[2010]) and outflow (Sánchez-Román et al. [2009]) and their associated temperature Criado-

Aldeanueva et al. [2012]), the net heat flux through the Strait of Gibraltar can be estimated:

Qmedin - Qmedut = Qmednet = 4±1.7 W.m-2.

The sum of the annual mean values of HSR, DHSR and Qmednet conducts to an estimation

of the annual value of NHF of -4.7±4.4 W.m-2 (Eq. 3–4). This value is close to recent estimates

of NHF using in situ and satellite-derived data sets (-3 +/- 8 W.m-2, Sanchez-Gomez et al.

[2011]), using empirical corrections of the ERA40 atmospheric parameters plus bulk formula

(-7 W.m-2, Pettenuzzo et al. [2010]) and using the historical runs of 5 fully-coupled AORCMs

([-6.4 ; -1.7] W.m-2, Dubois et al. [2011]). Results from ALADIN simulations gave us an annual

NHF of -5.0±3.9 W.m-2 for our study area.

Uncertainties on the basin estimates of HSR are calculated using a Monte Carlo test,

following the same method used in the section 3.2.4. The test produces 1000 estimates of the

basin mean of HSR, then uncertainties are calculated as the standard deviation of these 1000

realizations. Each estimation of the basin mean is calculated as the sum of the climatology

box estimates. For each box, HSR values are randomly chosen from a normal distribution

characterized by the climatological mean and standard deviation calculated for this box. This

approach covers mainly uncertainty due to inter-annual variability of Ta and h. For periods of

strong deepening of the mixed layer, as it is frequent in winter particularly in the DWF zones,

the uncertainties from others sources like sampling errors, are indistinguishable from the inter-

annual variability and are thus included. As an example, for a specific month, our calculations

may over- or under- estimated monthly mean values due to the high temporal variability of the

mixed layer deepening in a month. However, we believe that our approach covers most of the

uncertainty of our method. Concerning uncertainties on the net heat flux through Gibraltar

Strait, we use the one given by Soto-Navarro et al. [2010] and Criado-Aldeanueva et al. [2012].

3.3.3.2 Monthly climatological cycle of the basin-mean of NHF

Figure 3.13 displays the basin-mean climatological annual cycle for NHF estimated (NHFobs)

from ocean observations (in blue), NHF from Aladin RCM (NHFmod, in green) and the differ-
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ence between the two (in magenta), over the Mediterranean. One can see that the climato-

logical annual cycle for NHFobs has a clear seasonal signal with minimal and maximal values

being about -169.3±4.7W.m-2 in December, and +125.2±3.9W.m-2 in June. NHFmod is varying

from -178.3±5.5W.m-2 in December to +158.0±2.3W.m-2 in June. One can observe on figure 13

that even if there is a good agreement in the shapes of NHFobs and NHFmod, there are some

discrepancies, particularly in summer and fall/winter. The same differences are found using

the seasonal cycle of NHFobs calculated over the same time period that ALADIN simulations

(1979-2011).

A possible explanation for these differences is the overestimation of the latent heat flux

and the short-wave radiation in the ALADIN model, which do not occur necessarily at the

same period. These errors can offset each other on an annual basis and thus the average

annual value of NHF remains in the range of acceptable values. One has to keep in mind

that the seasonal cycle of the NHF is mostly imposed by short-wave seasonal cycle, but the

spatial pattern and local extremes are mostly driven by the latent heat flux. According to

the 5 fully-coupled Atmosphere-Ocean Regional Climate Models (AORCMs) and the different

observations data sets used by Dubois et al. [2011], the maximum of the short-wave radiation is

in June/July, while in 4 of the 5 AORCMs and in the observations, the latent heat flux maximum
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Figure 3.13: Seasonal cycle of the basin-mean Net Heat Flux for the Mediterranean Sea estimated from
oceanic observations (blue) and from ALADIN RCM (green). Differences between the two estimates are
indicated by the magenta line.
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occurred in November/December.

Over the Mediterranean Sea for the 1979-2011 period, ALADIN simulates a NHF equal to -4

W.m-2 with 204 W.m-2 for the net shortwave radiation flux, -85 W.m-2 for the net long-wave

radiation, -113 W.m-2 for the latent heat flux and -10 W.m-2 for the sensible heat flux. The

net heat flux, the long-wave radiation flux and the sensible heat flux are in good agreement

with Pettenuzzo et al. [2010] and Sanchez-Gomez et al. [2011] estimates whereas both the

short-wave radiation flux and latent heat loss are overestimated by about 20 W.m-2.

3.3.4 Discussion on Local Heat Storage Rates

The seasonal cycle of the HSR is presented in figure 3.14. The basin variability of the upper-

ocean heat content changes is dominated by a seasonal cycle oscillating between minimal

value found in December, and maximal value in June (figure 3.13 and section 3.3.3). Zero

values are reached in February/March and in September/October, due to extrema in the

seasonal cycle of the depth-averaged temperature. The standard deviation of HSR, shown on

figure 3.15, is highly variable: from 25-50W.m-2 in March in the Tyrrhenian Sea to more than

300W.m-2 in January in the Gulf of Lions, in fall in Ierapetra Gyre. Location of high standard

deviation values for HSR are related to high standard deviation of h (e.g. in winter in DWF

zones, figure 3.9) and of Ta (e.g. in summer/fall, especially in the Ierapetra Gyre, figure A.1).

Figure 3.16 represents the seasonal cycle of the monthly HSR anomalies from the basin

mean (HSRano). This figure shows region that are gaining or losing heat more or less quickly

than the whole basin. HSRano presents significant local variations, some as high as 200W.m-

2. A positive HSRano associated with a positive basin-mean (respectively a negative HSRano

associated with a negative basin-mean) indicates regions gaining (resp. losing) heat more

quickly than the whole basin. In contrast, a positive HSRano associated with a negative basin-

mean (or the opposite) indicate region losing heat less quickly than the whole basin. These

local modulations of HSR can be due to different forcings: 1) surface net heat flux, 2) horizontal

heat advection, and 3) entrainment mixing at the interface depth, that cannot be calculated

with our dataset. Local variations of HSRano seem to be related to specific dynamic structures,

like oceanic gyres.

3.3.4.1 The Alboran Sea

Coherent patterns can be distinguished from the map of monthly HSR anomalies (figure

3.16). From October to January in the Alboran Sea, anomalies are between 75 and 100 W.m-2

higher than the basin mean which is negative (-53.0, -112.3, -166.7 and -155.5 W.m-2), while in

summer anomalies are between 50 and 100W.m-2 lower than the basin mean which is positive

(from +126.6 W.m-2 in May to +15.3 W.m-2 in September). The proximity of this sub-basin to

the Gibraltar Strait and thus to the inflow of heat coming from the Atlantic Ocean, may explain

why seasonal variations of HSR are reduced compared to the rest of the Mediterranean Sea.
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Figure 3.14: Mediterranean climatology of the Heat Storage Rate HSR
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Figure 3.15: Maps of the standard deviation associated to the mesh box averages of HSR shown on
figure 3.14
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3.3.4.2 The Balearic Islands

High HSR values can be seen along the 40° parallel in the WMED between the Spain mainland

and Sardinia, and through the Balearic Islands, from June to August (figure 3.14), with larger

HSR values (up to 260 W.m-2) than in the rest of the WMED. These high values for HSR are

also found by looking HSRano (figure 3.16) which presents positive values (between -50 and

-100 W.m-2). These positive anomalies indicate that this region is gaining heat quickly than

the rest of the basin. At that time of the year, this might be due to a more pronounced heat

convergence in the upper-ocean.

This region has the particularity to be a place where a strong thermal front in winter

separates warm Atlantic surface water from the South to cold Mediterranean surface water

from the North (Lacombe and Tchernia [1972]). The regional circulation around the Balearic

Islands is linked to the Northern Current which carries down surface water from the Gulf of

Lions along the continental slope of the Iberian Peninsula into the Balearic subbasin (Font

et al. [1988]). In the South, the cyclonic recirculation of anticyclonic eddies in the Algerian

Basin carries Atlantic Water from the Algerian boundary Current to the South of the Balearic

Islands (Taupier-Letage and Millot [1988]; Puillat et al. [2002]).

Two hypotheses may explain the persistence of the positive HSR anomaly during the sum-

mer around the Balearic Islands. First this region is under the influence of the WIW, this mode

water is formed in winter in the whole northwestern Mediterranean Sea and spreads south-

wards following the general circulation (Millot [1999]; Fuda et al. [2000]). The accumulation of

these cold and fresh lenses of WIW in the Balearic Sea may explain why HSR are higher in that

region, in particular because of the horizontal heat fluxes from relative warm surrounding

water to these cold water.

The other hypothesis may have its source in the dramatic and frequent changes of the

circulation around the Balearic Islands in summer (Monserrat et al. [2008]). The Northern

Current may be blocked when reaching the Ibiza Channel by anticyclonic channel-size eddies

and then recirculates with a cyclonic way in the Balearic Sea without significant transport

of water through the Ibiza Channel (Castellón et al. [1990]). These channel-size eddies are

composed of cold and relative fresh water (Pinot et al. [2002]), corresponding to WIW charac-

teristics. In the North of the Balearic Islands, the recirculation of the Northern Current joins

the eastward Balearic Current, while in the South, the flow due to recirculation of eddies into

the Algerian Basin is westward (Testor et al. [2005]). So, this summer anticyclonic circulation

around the Balearic Islands might keep isolated relative cold subsurface water (WIW) from

the surrounding warm water and induced a horizontal heat transfer. These two hypothesis

may explain why we have positive HSR anomalies in summer around the Balearic Islands.

3.3.4.3 The Cyclonic and Anticyclonic Gyres of the Cretan Arc

In the EMED, strong negative HSR anomalies from November to February and positive anoma-

lies from June to September are located in places of known anticyclonic gyres (the PG and

the IG, discussed section 3.3.1). Unlike anticyclonic gyres, cyclonic gyres (the WCG and the
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RG, section 3.3.1) present positive HSR anomalies from December to February and negative

anomalies in July and August.

The two anticyclonic gyres have a more permanent signature on the seasonal climatology

of HSR (particularly the IG) than cyclonic gyres in winter and summer. This may be explained

by the structure of gyres: in anticyclonic gyres the thermocline is pushed down, unlike cyclonic

ones where the thermocline is pushed up. So, anticyclonic gyres tend to expand the layer

that exchanges heat with the atmosphere. The “warm core” structure of anticyclonic gyres is

responsible for temperature difference between the gyre core and the relative colder surround-

ing waters, which may induce a heat transport, particularly in winter when this horizontal

temperature gradient is more pronounced.

3.4 Conclusions

We present here a new climatology of the mixed layer depth and temperature, and of the

thermocline depth on a 1°x1° grid, based on recent data collected between 1969 and 2012

containing more than 190 000 profiles. The depth and the temperature of the mixed layer and

the thermocline, together with the thermocline slope, revealed well known Mediterranean

circulation features.

This work is the first quantification of heat storage rate in the upper-ocean for the whole

Mediterranean based only on in situ oceanographic data, thereby providing a new benchmark

in particular for the development of ocean models. In particular, we propose a new indepen-

dent estimate of the seasonal cycle of the basin-mean surface Net Heat Flux, by combining

our HSR climatology to existing climatology of the horizontal net heat flux from the Atlantic

Ocean to the Mediterranean Sea at Gibraltar Strait. The annual mean value of NHF calculated

from ocean observations is -4.7±4.4 W.m-2. NHF presents a clear seasonal signal with minimal

and maximal values being about -169.3±4.7W.m-2 in December and +125.2±3.9W.m-2 in June

respectively. This is in agreement with the NHF from Regional Climate Model ALADIN, but

some differences may be noticed in summer and fall/winter, certainly due to an overestima-

tion of the latent heat flux and the short-wave radiation in the model. Future comparisons

between this climatology of HSR and other heat fluxes climatologies may be useful to test

heat fluxes parametrization and thus improve the accuracy of the models, particularly in the

context of long term climate simulations that require, among others, a good modeling of the

thermohaline circulation.

This work also highlights the implication of known Mediterranean circulation patterns (like

the anticyclonic and cyclonic gyres in the Eastern Mediterranean, or the circulation around

the Balearic Islands) in the spatial and temporal variability of the heat storage rate. Local

modulations of HSR can be due to different forcings (surface net heat flux, horizontal heat

advection, and entrainment mixing at the interface depth) that cannot be calculated with

our dataset. So future works would also be to use complementary datasets, such as other

climatologies deduced from surface geostrophic currents estimates (Rio et al. [2007]; Poulain

et al. [2012]), or from surface flux datasets (OAFlux, HOAPS, NOC) to estimate other terms in

the heat budget equation, like the horizontal heat advection term, or the NHF term.
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Finally, the limitations of our studies (period covered, uncertainties) stress the need of

sustained observing systems (like repeated cruises, Argo profiling floats, mooring lines and

gliders), if we want to better estimate the seasonal cycle of heat fluxes in key regions like

the Gibraltar Strait, the Alboran Sea, the Deep Water Formation areas, the anticyclonic and

cyclonic gyres in the Ionian and Levantine Basin. This sustained effort of observation will

also allow us to distinguish and/or confirm any long-term trend, as the reduction of the

Mediterranean thermohaline circulation.
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Open-Ocean Deep Convection (OODC) is a key process that connects the surface ocean

to the deep ocean. In addition to heat and salt, OODC may transfer also biogeochemical

components to the deep water like oxygen and inorganic and organic matter, contributing

to the ventilation and the “feeding” of the deep pelagic and benthic ecosystems. During this

thesis, I had also the opportunity to collaborate on two studies related to the impacts of OODC

on the deep pelagic and benthic ecosystems.

I worked on a study based on the impact of OODC on particle fluxes and sediment dy-

namics. The time period covered by this study runs from September 2007 to Avril 2009. This

work points out the influence of OODC on bottom sediment resuspension, especially through

results from sediment traps deployed at 1000 and 2300m depth. This significant remobilization

of sediments, in the basin of the Gulf of Lions after a OODC event, has been likely to induce a

subsequent alteration of the seabed and to impact the functioning of the deep-sea ecosystem.

My contribution to this study was done through data processing and analyzing of deep

LION mooring line, the provision of ECMWF atmospheric heat fluxes, the detailed physical

descriptions of OODC events and of changes in the structure of deep waters, the discussion on

the variability of the open-ocean convection and its impacts on deep particle fluxes and ben-

thic ecosystems. This paper is available in the appendix C, and is published in Biogeosciences

under the reference :

Stabholz, M., X. Durrieu de Madron, M. Canals, A. Khripounoff, I. Taupier-Letage, P. Testor,

S. Heussner, P. Kerhervé, N. Delsaut, L. Houpert, G. Lastras, and B. Dennielou. 2013. Impact of

open-ocean convection on particle fluxes and sediment dynamics in the deep margin of the Gulf

of Lions. Biogeosciences 10: 1097–1116., doi:10.5194/bg-10-1097-2013

I also collaborated in another study on enhancement of deep-sea biological activity by

dense water formation. It is based on a 2.5-year long record of light emission by deep-sea

pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater

neutrino telescope in the deep Northwestern Mediterranean Sea, together with synchronous

hydrological records. This work highlights the importance of dense water formation events

and newly-formed deep water in activating deep-sea pelagic ecosystem by fueling it through

the supply of relative “fresh” organic matter, and thus stimulating bioluminescence activity.

During this work, I was responsible of the data processing and analyzing of the deep LION

mooring line and I also contributed to the discussion on the variability of deep ocean convec-

tion and newly-formed deep water, and their link with bioluminescence blooms. This article

is presented in appendix D, and is published in PLoS ONE under the reference :

Tamburini, C., M. Canals, X. Durrieu de Madron, L. Houpert, D. Lefèvre, et al. 2013. Deep-

Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface. PLoS ONE

8(7): e67523., doi:10.1371/journal.pone.0067523
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In the following of this chapter, we present an article in preparation entitled “High Resolu-

tion Monitoring of Open-Ocean Deep Convection in the Gulf of Lions over the recent period

(2007-2012)”. 5 consecutive years of deep ocean convection, monitored by a deep mooring

line in the Gulf of Lions have been investigated. We point out essentially the temporal scales

of the different deep convection phases, the numerous eddy occurrences and the implication

of deep convection in the evolution of deep water thermohaline characteristics.

Abstract

A mooring line was setup since 2007 in the Gulf of Lions (42°N-4.6°E) to monitor the deep

convection process. This observation system is composed by 20 potential temperature sen-

sors, 10 salinity sensors and 5 current meters between 150m depth and the bottom (2330m

depth). Theses recent measurements reveal the temporal evolution of the physical processes

interfering in the phases of deep convection (deepening of the mixed layer depth, violent

vertical mixing and restratification).

Some remarkable features point out from the analysis of four deep convection events

observed between 2009 and 2012. The time for the mixed layer deepening is comprised

between 1 and 2 months. Due to the strong heat loss and evaporation, the mixed layer reached

the bottom, and the violent vertical mixing of the whole homogeneous water column is in the

range of 9-12 days.

Horizontal currents were strongly equivalent barotropic during each deployment between

150m and 2300m depth. The first EOF dominate the variability, containing 85% to 95% of

the variance, while the second mode contains 5% to 10%. Strong currents were also recorded

during the different events of deep ocean convection: high frequencies vertical velocities

exceeded 15 cm.s−1 during the violent vertical mixing phase and strong mesoscale horizontal

currents reached 40cm.s−1 during the restratification phase. Using a eddy-detection method

based on a kinematic model, 37 eddies crossing the mooring line were detected between

November 2009 and July 2012, 19 cyclones and 18 anticyclones. The radii (velocities) ranging

from 0.7 km to 20.0 km (0.9 cm.s−1 to 25.1 cm.s−1). The main mode of the distribution of

eddies radii is centered at 4km for the cyclones and 5km for the anticyclones.

The apparition of newly-formed deep waters was detected in winter 2009, 2010, 2011 and

2012. In winter 2010, two newly-formed deep waters were detected after the deep convection

event, both present a different potential temperature but a similar salinity, suggesting that

both might be formed in the cyclonic gyre, but in different locations. In 2012, two new deep

waters were detected at the mooring location, one was identified as a result of open-ocean

deep convection, while the other seems to be the result of a dense shelf water cascading event

that occurred in winter 2012.

Each of these deep water formation events modified the deep stratification by producing

a new deep water. The thermohaline changes of the bottom water between 2007 and 2012

corresponds to a potential density (σ) increase of 0.015 kg.m-3 in 4 years, linked to a salinity (S)

increase of 0.03‰ and a potential temperature (θ) increase of 0.03°C. These stepwise increases
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in bottom water characteristics are marked by positive jumps in θ , S and σ, and correspond to

the mixed layer reaching the bottom in February. We interpret the 0.02°C decrease in potential

temperature after each jump, as the primarily effect of the persistent net heat loss after that

the MLD reached the bottom, since no significant salinity variation was recorded at the same

time.

4.1 Introduction

Open-ocean deep convection is a key process that transfers the heat and salt contents from

the surface to the deep ocean and takes place in a few regions of the world. In addition to

polar regions as the Labrador (Lazier [1973]; Clarke and Gascard [1983]), the Greenland (Schott

et al. [1993]), the Weddell and Ross Seas (Killworth [1983]), open-ocean deep convection

takes place in more temperate regions as the East/Japan Sea (Kim et al. [2008]) and the

Mediterranean (Gulf of Lions, Adriatic Sea, Aegean Sea, CIESM [2009]). High surface buoyancy

loss associated to northern winds (Mistral, Tramontane) leads to deep mixing that forms the

Western Mediterranean Deep Water (WMDW). The first experiment (MEDOC Group [1970]),

took place in 1969 and identified the three phases of convection.

The preconditioning phase involves a weakening of the ocean stratification. This isopycnal

doming is mainly caused by the global cyclonic circulation in the NW basin (MEDOC Group

[1970]; Millot [1999]), but other topographic (Hogg [1973]; Madec et al. [1996]) or mesoscale

(Killworth [1979]; Legg and Marshall [1998]; Lherminier et al. [1999]; Legg and McWilliams

[2001]; Steffen and D’Asaro [2004]) features can also contribute to this preconditioning phase.

Vigorous buoyancy losses during the cooling and evaporation event, such as the strong

wind outburst of continental air, initiates the deep convection of the very weakly stratified

water in the core of the cyclonic gyre. The vertical mixing occurs in plumes of horizontal scale

of O(1km), at vertical speeds up to 10cm.s-1. These small scale features were first observed by

Voorhis and Webb [1970] using isobaric floats, then by Schott and Leaman [1991] and Schott

et al. [1996] using moored ADCPs. More recently, downward vertical velocities measurements

up to 10cm.s-1 were observed using gliders (Merckelbach et al. [2010]). Theses plumes mix

properties over the preconditioned site, forming a deep “mixed patch” ranging in scale from

several tens of kilometers to >100 km in diameter. The characteristics of the newly formed

water mass can be linked to the frequency and the intensity of the surface forcing (Artale

et al. [2002]; Grignon [2009]) and to the heat and salt content of the “preconditioned” state

(Schroeder et al. [2010]; Herrmann et al. [2010]).

The density contrast between the mixed patch and the surrounding would establish a rim

current at the edge of the mixed patch which would be baroclinically unstable and shed eddies

of scale O(5-10km) which could be considered as geostrophic given the low stratification of

the area. The spreading of dense water is made through the action of these eddies (Testor

and Gascard [2003, 2006]; Demirov and Pinardi [2007]; Herrmann et al. [2008]). Half of the

newly-formed deep waters would be incorporated in the boundary circulation (Send et al.

[1996]; Herrmann et al. [2008]) and the other half would propagate throughout the whole

western Mediterranean Sea in the core of such eddies that can be long-lived features (1> year).
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The 3 phases can overlap but restratification processes dominate as soon as the atmospheric

forcing does not trigger active mixing anymore. After the end of the deep convection, the re-

stratification of the upper ocean is mainly due to both the boundary current and the mesoscale

structures that advect surface light water on top of the mixed patch Leaman and Schott [1991];

Schott et al. [1996]; Herrmann et al. [2008]).

The significant interannual variability of convection activity in the Gulf of Lions (Mertens

and Schott [1998]; L’Hévéder et al. [2012]) leads also to an interannual variability in thermoha-

line characteristics of WMDW. The evolution of WMDW thermohaline characteristics through

deep convection events might explain the long-term warming and salting trends observed

in the deep layers of the WMED by several authors (Bethoux et al. [1990, 1998]; Rohling and

Bryden [1992]; Leaman and Schott [1991]; Krahmann and Schott [1998]; Rixen et al. [2005];

Vargas-Yanez et al. [2010a,b]).

Abrupt changes in WMDW characteristics and stratification occurred during winter 2004-

2005 and 2005-2006 (Lopez-Jurado et al. [2005]; Schroeder et al. [2006, 2008]; Font et al. [2007];

Smith et al. [2008]). Salat et al. [2006]; Puig et al. [2012] highlight the contribution of major

cascading events (export through the canyons of dense water formed by convection on the

shelf), especially in 2005, to changes in the WMDW stratification.

Three phenomena responsible for these intense deep convection events were identified.

First, winter 2004-2005 was one of the coldest and driest winter of the last 40 years (Lopez-

Jurado et al. [2005]). Second, Gasparini et al. [2005] showed that the Eastern Mediterranean

Transient (EMT, Malanotte-Rizzoli et al. [1999]; Lascaratos et al. [1999]; Klein et al. [1999])

induced a remarkable injection of heat and salt in the eastern waters flowing westward through

the Sicily channel to the deep Tyrrhenian subbasin. The propagation of this T-S increase from

the Eastern Mediterranean basin could have induced a warming and salting of the intermedi-

ate layer of the NWMED (Schroeder et al. [2010]). Results from modeling studies (Herrmann

et al. [2010]) assess the role of the EMT, by deepening the heat and salt maxima, in the high

volume of WMDW formed in 2005, but also highlight the fact that a number of weak deep

convection events before the winter 2005 could have induced a more pronounced Levantine

Intermediate Water (LIW) layer as well as enhanced heat and salt contents at intermediate

depths. Grignon et al. [2010] showed that even a normal winter would have led to deep con-

vection in 2004/2005 due to low pre-winter stratification. Moreover the high interannual and

decadal variability of the temperature and the salinity of Atlantic surface water in the Gulf of

Lions (Vargas-Yanez et al. [2010b]) may also influence the intensity of deep convection (Rixen

et al. [2005]).

There is a lot of efforts in modeling but very few observational evidences of open-ocean

deep convection. It is the first time since the MEDOC experiment (MEDOC Group [1970]) that

deep convection is monitored from year to year, in the framework of MOOSE (Mediterranean

Ocean Observing System on Environment).

In this paper, we present recent measurements made in the deep convection area especially

through results of the LION mooring line. In section 4.2 and 4.3, we describe the data and
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methods used in our analysis. In section 4.4, we analyze 5 winters in order to precise the

temporal scales associated to the different phases of the deep convection and the subsequent

thermohaline changes of deep waters. Then, in section 4.3, we discuss the horizontal extent

of the deep convection area using ocean color images. In section 4.6, we study the seasonal

variations of the vertical structure of horizontal currents, while in section 4.7 we focus on the

(sub) mesoscale dynamics that take place in the deep convection area, especially through

a census of eddies using a wavelet-based detection method of isolated horizontal velocity

anomalies. Finally, in section 4.8, we discuss the effects of surface buoyancy losses and the

water column stratification on the interannual variability of the open-ocean deep convection.

4.2 Meteorological and Oceanographic Data

4.2.1 LION Mooring

The mooring site was chosen in the center of the convection zone described by MEDOC Group

[1970], Leaman and Schott [1991] and The THETIS Group [1994] at 42◦02.4’N, 4◦41.0’E. There

were six deployments (LION1 to LION6) during which the line was equipped with 8 to 26

instruments between September 2007 and July 2012. The evolution of the instrumented line

over the years is presented in Table 4.2.

RBR (temperature recorders), SeaBird Microcat SBE37 (conductivity-temperature-pressure

recorders) were used until June 2011. Since then, the 10 RBR were replaced by SeaBird Tem-

perature Logger SBE56. Nortek Aquadopp were deployed since LION3 (September 2008) at

5 levels mesuring horizontal and vertical currents, while there were only 2 Aanderaa RCM 9

at 1000m and 2300m depth during LION1 (Sep. 2007 / Mar. 2008) and 1 Aanderaa RCM 9 at

1000m LION2 (Sep. 2008). During these two first deployments, we get only the horizontal

currents. The vertical sampling was better since LION3 with 20 temperature records, 10 salinity

records and 5 current records spanning depths from 150 m to the bottom (2300 m). Here we

did not use the Aquadopp temperature data because of the low resolution and accuracy of

the sensor (0.1°), and because for each current meter there was another much more accurate

temperature sensor available nearby (a few meters).

The severe environmental conditions imposed us the use of a subsurface mooring, this

prevent us from recording the upper 150m heat content. This lack of data could be filled by

close glider profiles (<40km) and by temperature records of the French buoy Lion (<4.5km,

detailed in the section 4.2.2). RBR were set up with a 15 seconds sampling, while Microcat and

current meters had a sampling of respectively 6 minutes and 30 minutes. In order to have a

consistent data set, we undersampled RBR and Microcat to get 30-minutes time-series.

In general all the mooring instruments returned good data, except for some periods. During

LION3, the 500m depth Aquadopp seemed to have encountered writing problems. Due to a

breaking at the base of the line during the recovery (April 2009), we lost the bottom Aquadopp

and no current data were obtained at 2300m for the period from September 2008 to March

2009. During LION5, there were some battery issues on five Microcat (165m, 1100m, 1300m,

1780m and 200m) which stopped recording in February 2011. A delayed recovery of the
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mooring in July 2012 caused battery issues for most of the current meters: the 150m and the

2300m depth current meter have stopped from recording the 11 June 2012, while the 250m

and the 500m depth have stopped the 14 July.

Since the recovery of LION4 (in June 2010), intercalibration of the moored instruments after

and before each deployment are done. Niskin bottles are removed from the shipboard Rosette,

then Microcat and RBR (or SBE56) are attached instead. We perform an hydrographical cast

with a 20 minutes stop at 1000m depth, thus we can have a relative calibration of the moored

instruments with the CTD probe SBE 19plus. Post- and/or pre- cruise calibrations, together

with in-lab analysis of salinity bottles with a Salinometer (Guideline Autosal) calibrated using

standard water at 38‰ give us an absolute accuracy, for all records used in this study, better

than 0.005‰ for S, and 0.001°C for θ. From September 2007 to April 2009, no intercalibration

was done. Comparisons with gliders and CTD stations was the only solution to detect some

biases in the conductivity measurements. The conductivity corrections applied to the Microcat

correspond to equivalent salinity corrections ranging from 0.000‰ to 0.005‰.

4.2.2 Météo-France Meteorological Buoy

A useful complementary dataset to the deep LION mooring is the instrumented Météo-France

meteorological buoy MF-LION. This meteorological buoy is located at 42.0637◦N 4.6482◦E,

4-4.5 kilometers from the deep mooring location. In addition to the atmospheric sensors and

to the sea surface temperature sensor, a 250m mooring line was fixed below the surface buoy

since November 2009 (table 4.2). This line is currently equipped by 20 temperature sensors

NKE SP2T which extend from 5 to 250 meters below the sea surface. An additional SeaBird

Microcat SBE37 was installed at 2m depth in September 2011. Since that time, we also have

surface salinity.

4.2.3 Profile Data

CTD

The CTD profiles were carried out from several oceanographic cruises (DOCONUG2007,

DOCONUG2008, 42N5E, MOOSE-GE2010, CASCADE, MOOSE-GE2011 and MOOSE-GE2012)

that took place in the NWMED. 230 CTD stations were carried out in the Gulf of Lions (between

41°N/44°N and 3°E/7°E) and more precisely 46 CTD stations are located at less than 30 km

from the location of the LION mooring.

At all stations, pressure, temperature and conductivity were measured with a CTD Sea-Bird

SBE 911+. Water samples were collected and analyzed on a Guideline Autosal salinometer to

calibrate the conductivity sensor. The accuracy is estimated to be ± 0.004‰ for salinity and ±
0.001◦ for temperature.

Gliders

Another source of data came from gliders which are relatively new oceanographic platforms

(Testor et al. [2010]) carried out in the framework of several European and national projects
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(see Everyone’s Gliding Observatories (EGO), http://www.ego-network.org, EU FP6 MERSEA,

ANR LIVINGSTONE, NERC DOCONUG, SOERE MOOSE, HyMeX/MerMeX). Gliders profiles

were considered as vertical and were checked with quality control procedures. Repeated

surveys over the Northwestern Mediterranean were conducted between 2007 and 2012, with

77 deployments between January 2007 and August 2012 corresponding to 36513 profiles (2844

profiles corresponding to 28 deployments were made at less than 30km around the LION

mooring).

4.2.4 Atmospheric reanalysis Era-Interim

The ERA-Interim reanalysis data set contains consistent atmosphere and surface analyses

for the period from 1979 until real time, based on the ECMWF numerical weather prediction

model.The reanalysis makes use of the ECMWF Integrated Forecast System at T255 spectral

resolution (80 km horizontal resolution) with 91 vertical levels. We considered here the

daily fields of the air-sea fluxes (downward and upward short-wave radiation, downward

and upward long-wave radiation, latent heat flux, sensible heat flux, total precipitation and

evaporation) in order to compute the daily net heat flux (Qnet ) and the net freshwater flux out

of the ocean.

4.2.5 Ocean Color

The 1-day Level 3 standard mapped images of MODIS Aqua surface chlorophyll at 9 km

resolution were obtained from the NASA web site (http://oceancolor.gsfc.nasa.gov/) for the

2007-2012 period.

4.3 Methods

4.3.1 Mixed layer depth calculation

As the buoy oceanographic sensors and the deep mooring instruments are not the same, the

resolution and the accuracy of the different sensors are also different. In this work we use

a double criterion to estimate the mixed layer depth. After merging the deep mooring line

with the buoy sensors, we make a linear interpolation on the potential temperature. Then we

choose a first criterion ∆T1 large enough to overcome the low accuracy of the buoy sensors.

From November 2009 to July 2012 we chose ∆T1 = 0.1°C and a reference level at 10m. Since

there was no instrument below the LION surface buoy before November 2009, we can use only

the sea surface temperature sensor at 1m depth for the winter 2007-2008 and 2008-2009. Due

to the low accuracy of this sensor, we fix ∆T1 = 0.6°C for calculations going from September

2007 to November 2009. A Mixed Layer Depth (MLD) is then calculated for the first 300m of

the upper water column.

The second criterion is fixed to define a more precise MLD on our mooring data. We

define ∆T2 = 0.01°C with a reference level at 310m. If the mixed layer calculated with the ∆T1
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criterion goes deeper than 300m depth then we use the second criterion ∆T2 to define the

MLD, otherwise we keep the MLD calculated with the ∆T1 criterion. We chose to not use the

head of the mooring line (170m) as the reference level, since strong horizontal barotropic

currents during the restratification phase (up to 40 cm s−1) caused the mooring to tow by more

than 100m on numerous occasions (at the extreme by 700m).

4.3.2 Eddy-detection from mooring data

The significant current variability in this area of peculiar dynamic motivated us to apply an

eddy-detection method on our horizontal current time series. Lilly and Rhines [2002] showed

that the presence of an eddy event moving past a mooring produces a hodograph with peculiar

shapes. D-shaped curves, closed circles, or straight lines, all result from a closed vortex’s

turning velocities.

As in Lilly et al. [2003], we used a wavelet analysis on our horizontal current time series.

One of the advantage of this analysis compared to traditional Fourier analysis is that the

analysis is performed on many temporal scales which enables us to separate eddy events from

the background variability. Furthermore, the complex wavelet transform, applied on complex

current time series U + iV , takes into account the two-dimensionality of the eddy currents

that can not be done with the Fourier transform. Following the recommendations of Lilly and

Olhede [2012], we choose a wavelet amongst the generalized Morse wavelets, characterized by

two parameters γ and β, where γ determines the lowest-order departure of the wavelet from

a Gaussian form, and β determines the Fourier-domain bandwidth. The most symmetric,

most nearly Gaussian, and generally most time-frequency concentrated wavelet of this family

occurs for γ= 3. The choice of the β parameter is made following Lilly et al. [2003]. Choosing

β= 3 yields to wavelet of which the real (imaginary) part of the wavelet is roughly similar to

the velocity component of an eddy-like event parallel (normal) to the advection flow. The

centers and durations of eddy-like events are identified through the location of local maxima

on the wavelet transform “topography” (detailed in section 4.7).

Even if the wavelet-based detector presented here is not fully objective, it allows a precise

definition of what is not an eddy, permitting a final subjective decision to be based on a

relatively small set of events. However the interpretation of currents from a single point is

difficult, and a positive diagnosis of an advected eddy requires an assessment of it vertical

θ-S and current structure. Events are examined in details and “apparent eddies” are labeled

by examining the currents and water mass structures. To judge an event as an eddy, it must

have a velocity hodograph that is qualitatively similar to those generated by simple models

of isolated or mutually advecting eddies (details in Lilly and Rhines [2002]). Furthermore, a

well-defined θ-S core is necessary in order to confidently label an event as an eddy.

However the form of actual physical eddies may be distorted during its recording by the

mooring. An eddy will yield a recognizable velocity structure in a mooring time series only if

the advecting flow varies relatively slowly over the eddy duration. So the analysis present here

is expected to reject some “true eddies” (due to highly variable currents for example) but to
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accept very few non-eddies.

Following Lilly and Rhines [2002], refined values for apparent eddy’s center t0 and half

duration ∆T are calculated, maximizing the relation :

Ṽn0 = |ξ(t0 − ∆T ) − ξ(t0 + ∆T )| (Eq. 4–1)

where ξ is the complex velocity U + iV . For a constant background flow advecting an az-

imuthally symmetric eddy, Ṽn0 corresponds to the velocity component perpendicular to

the advecting flow. A more generalized measure of the eddy velocity can be carried out by

substracting an estimate of the advecting flow:

Ṽmax = 1

2

∣∣∣ξ(t0 − ∆T ) − Ũae i Θ̃a

∣∣∣ − 1

2

∣∣∣ξ(t0 + ∆T ) − Ũae i Θ̃a

∣∣∣ (Eq. 4–2)

where the advection flow Ũae i Θ̃a is estimated by low-passing the velocity time series ξ=U+iV

at the eddy center t0. The filter is a Hamming window whose width is four times the width

of the eddy core. In equation Eq. 4–2, Vmax corresponds to the mean of the 2 maxima of the

eddy velocity when the eddy core Rmax crosses the mooring (at t0 −∆T and t0 +∆T ).

Since the eddies will be generally sliced off-center, the apparent eddy size as observed

from the mooring X =Ua∆T will tend to be smaller than the actual radius Rmax . As in Fan

et al. [2013], we use a kinematic model to estimate the eddy radius Rmax of eddies crossing

the LION mooring line. This model, known as the Rankine vortex model, assumes the eddy is

a vortex in solid body rotation within a core (r < R) and 1/r decay elsewhere. The azimuthal

velocity V (r ) can be expressed as:

V (r ) =


Vmax

r

Rmax
, r < Rmax

Vmax
Rmax

r
, r > Rmax

(Eq. 4–3)

Projecting this solid body model in a rotated frame, with x the direction of the advection

and y the direction perpendicular to this, we obtain the following equations:


uedd y = Vmax

y0

Rmax
+Ua

vedd y = −Vmax
X

Rmax

(Eq. 4–4)

where X =U (t − t0), t is the time and y0 is the offset of the eddy-center in the y-direction. We

can obtain Vmax /Rmax (respectively y0) with a linear (resp. constant) fit on the plot of the

observed velocities vedd y (resp. uedd y −Ua) depending on X (resp. t). In this work, we will
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Figure 4.1: Examples of progressive vector diagrams obtained from a virtual mooring located at the
west (black asterisk) or at the east (stars) of a cyclonic (b) or anticyclonic eddy (e). Four cases were
considered: cyclonic eddy advected by a westward flow (a), cyclonic eddy advected by a eastward flow
(c), anticyclonic eddy advected by a westward flow (d) and anticyclonic eddy advected by a eastward
flow (f). In all case we considered a Rankine vortex (see eq Eq. 4–3) defined by a radius of 10km and a
maximal azimuthal velocity of 15 cm s−1, and the magnitude of the constant advective flow is fixed at 5
cm s−1.

keep only events that have a perpendicular velocity component (vedd y ) matching the Rankine

model, for at least one depth level (R2 > 0.90).

Case studies of simple cyclonic and anticyclonic eddies crossing a mooring line

Thanks to the method of eddies census described in this section, the direction of rotation of an

eddy can be determined using the advection direction of the mean flow. The magnitude and

the direction of the mean flow advection can be estimated by low passing the complex velocity

time serie. Once this is done, the eddy velocity can be obtained by projecting the horizontal

current recorded by the mooring line onto the advection direction. The velocity component

perpendicular to the advection gives us the eddy velocity.

Data from current meters installed on a mooring are Eulerian information. As the water

flows past the instrument, the current is recorded at the instrument’s location as a function

of time. The Lagrangian method is based on observations of the trajectory of a water parcel,

such as obtained from a drifting buoy or float. As the float moves with the flow, its position is

recorded as a function of time. However, the Lagrangian way of following the movement of

water parcels is often more illuminating than looking at records of current speed and direction,

or at current components. So the progressive vector diagram was devised to simulate a La-
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grangian display from Eulerian measurements. The progressive vector diagram is constructed

by drawing the first current vector in a Cartesian co-ordinate grid. The second vector is than

added to the first vector, its tail sitting on the head of the first vector, and so on.

On figure 4.1, 4 families of progressive vector diagrams are drawn according to the eddy

rotation and the advection direction:

• a cyclonic eddy advected by a westward flow (fig. 4.1a),

• a cyclonic eddy advected by a eastward flow (fig. 4.1c),

• an anticyclonic eddy advected by a westward flow (fig. 4.1d),

• an anticyclonic eddy advected by a eastward flow (fig. 4.1f).

The progressive vector diagrams are computed from horizontal currents recorded by

each “virtual” current meter (indicated by an asterisk or a star, figs. 4.1b,e). The color of the

progressive vector diagrams depend of the position of the “virtual” mooring relative to the

eddy center.

Whatever the direction of the advection (eastward or westward), the deviation of the

progressive vector diagram perpendicular to the advection direction is always to the left for

cyclonic eddies (figs. 4.1a,c) and to the right for anticyclonic eddies (figs. 4.1d,f), in the

northern hemisphere. Here the figure 4.1 illustrates a “simple” case where the eddy can be

easily distinguishable from the advecting flow. In reality it is more complicated, especially

because advection is usually not constant in the mooring area. Thus in summer/fall, it is

difficult to clearly observe an eddy because advection is very small and mostly is not constant

in direction. If in summer/fall the diagram looks like a plate of spaghetti (fig: 4.2), where

the direction of advection is difficult to determine, in winter/spring the progressive vector

diagram is more stretched (fig: 4.2) because advection is stronger, and thus the eddies are

easily distinguishable from the advection. However the higher the advection speed (compared

to the eddy velocity) is, the more the progressive vector diagram will be flattened, approaching

the progressive vector diagram of a constant flow.

4.4 Water Column Variability and Transients in the Deep Convec-

tion Area

The LION mooring is monitoring the water column since September 2007 and is still in place.

We present in details the processes that occur during the Winter 2010 in section 4.4.1, then

we extend our analysis to others winters in 4.4.2. In section 4.4.3 we analyze the evolution

of the heat and salt contents of the water column. Finally, we discuss the evolution of the

deep waters relative to the 5 consecutive open-ocean deep convection events that occurred

between September 2007 and July 2012 in section 4.4.4 and 4.4.5.

97



Chapter 4. Open-Ocean Deep Convection in the Gulf of Lions

4.4.1 The case study of the November 2009 – December 2010 period

Deep convection events can be seen as a succession of phases (MEDOC Group [1970]; Mar-

shall and Schott [1999]) that may overlap. In winter 2010, deep convection occurred in the

Gulf of Lions, this can be seen in the time series of potential temperature and salinity (figs.

4.3a and 4.3b), where the water column is completely homogenized (less than 0.01°C and

0.005‰ between all the sensors) during the month of February. At the same time, huge

vertical currents were recorded (fig. 4.4c) with vertical speed exceeding 15cm.s−1, comparable

to measurements conducted in 1991 by Leaman and Schott [1991].

The deepening of the mixed layer

In September, the monthly mean value of Qnet is close to 0 W.m−2. The strong heat losses

begin in October and November (fig. 4.4d), corresponding to a monthly value between -150

and -200 W.m−2 for Qnet . They gradually cool the surface layers and lead to the formation of

Winter Intermediate Water (WIW), characterized by a lower potential temperature and a lower

salinity (S < 38.42‰). The upper sensor (at 170m) recorded potential temperature (salinity)

close to 13.05°C (38.4‰) at the end of December / beginning of January (dark blue line on

figs. 4.3a and 4.3b). This different water mass can be seen more clearly on a θ-S, where it has a

very distinct signature (fig. 4.5b1) compared to the “classical” Atlantic Water (AW) that usually

occupies this layer (fig. 4.5a1). Moreover the eddy-detection analysis (see section 4.3.2 for

details) identified a large anticyclonic eddy passing through the mooring location at the same

time, with a center detected the 29/12/2009, an eddy radius Rmax = 19.1 km and a maximal
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azimuthal velocity Vmax = 4.6 cm.s−1 (table 4.4).

After this period of strong cooling (the 170m depth Microcat recorded a drop of ≈0.3°C),

the mixing goes deeper with vertical current detected at 250m (≈15 cm.s−1) and 500m depth

(≈5 cm.s−1) from January 9 from January 12 (fig. 4.4c), associated to strong daily heat losses

(>-800 W.m−2, fig. 4.4d) . The warm and salty Levantine Intermediate Water (LIW) is therefore

entrained by the vertical mixing. This results in a decrease in potential temperature and

salinity at 300m and 500m depth (see blue and cyan lines on figs. 4.3a,b). At the same time, the

heat and salt content of the LIW is vertically homogenized with the upper-ocean that induces

a warming and an increase in salinity of the upper-ocean (dark blue line on figs. 4.3a,b).

Another interesting point is the possible formation of a cyclonic eddy that could become a

Submesoscale Coherent Vortice (SCV), forthwith after the end of the vertical mixing, January

13 (table 4.4). The eddy is characterized by a core centered at 500m depth, an eddy radius

Rmax = 1.9 km and maximal velocity Vmax = 7.0 cm.s−1.

From January 15 to January 23, the weakness of atmospheric forcing makes stop the vertical

mixing and the increase of potential density in the upper-ocean layer (fig. 4.4a). Between

January 23 and January 26, there is a sharp increase in potential temperature (0.2°C) and

salinity (0.1‰) at 170m depth, indicating the entrainment of the LIW in the mixed layer. At
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Figure 4.4: Potential density (a) records at Seabird Microcat depth from 170m (dark blue) to 2330m
(dark red) between November 2009 and July 2010, with horizontal (b) and vertical (c) currents recorded
by the 250m (blue), 500m (green), 1000m (orange) and 2330m (dark red) Aquadopp, and daily net
heat flux Qnet (d) estimated by Era-Interim at the mooring location. Red and blue triangles on (a)
correspond to the center of cyclones, respectively anticyclones, detected by the method presented in
the part 4.3.2, the horizontal line indicating the estimated time period of the event.

that time the MLD reaches 800m (fig. 4.6). This increase in the MLD is not linked to an increase

of atmospheric heat loss or to an increase in the vertical velocity. This would indicate to us

that this homogeneous water column was advected into the area rather than formed by a

vertical mixing.

From January 27 to January 29, the mixed layer deepens for more than 500m. This event is

associated with an increase in surface heat losses and vertical velocities (more than 5 cm.s−1

at 250, 500 and 1000m depth). The vertical mixing increases until the MLD reaches 2000m the

February 1 (fig. 4.6)). Vertical mixing stops in February 3, at the same time that atmospheric

heat losses. However in February 5, the dramatic increase in potential temperature (0.04°) and

salinity (0.01‰) recorded at 2300m depth (figs. 4.3c,d) is characteristic of the deep salty and

warm mixed layer, indicating that deep convection seems to have already reached the bottom.

When the mixed layer reaches the deep layer, the colder and fresher old deep water undergoes

a heat and salt input. At that time the violent mixing did not seem to reach bottom as shown by

the current meter at 1000m depth indicating a relative quiet period without particular signal

on the vertical velocity record. Deep convection certainly reached the bottom first nearby and

then the newly-formed deep waters are advected at the mooring location by the anticyclonic

100



Chapter 4. Open-Ocean Deep Convection in the Gulf of Lions

38.4 38.5 38.6
12.8

12.9

13

13.1

13.2

13.3

13.4

01-11-2009

38.4 38.5 38.6
12.8

12.9

13

13.1

13.2

13.3

13.4

29-12-2009

38.47 38.48 38.49 38.5

12.88

12.9

12.92

12.94
01-11-2009

38.47 38.48 38.49 38.5

12.88

12.9

12.92

12.94
29-12-2009

38.47 38.48 38.49 38.5

12.88

12.9

12.92

12.94
10-02-2010

38.47 38.48 38.49 38.5

12.88

12.9

12.92

12.94
13-02-2010

38.47 38.48 38.49 38.5

12.88

12.9

12.92

12.94
04-03-2010

38.47 38.48 38.49 38.5

12.88

12.9

12.92

12.94
12-03-2010

38.4 38.5 38.6
12.8

12.9

13

13.1

13.2

13.3

13.4

17-03-2010

38.47 38.48 38.49 38.5

12.88

12.9

12.92

12.94

38.4 38.5 38.6
12.8

12.9

13

13.1

13.2

13.3

13.4

08-05-2010

38.47 38.48 38.49 38.5

12.88

12.9

12.92

12.94

38.4 38.5 38.6
12.8

12.9

13

13.1

13.2

13.3

13.4

21-10-2010

38.47 38.48 38.49 38.5

12.88

12.9

12.92

12.94

38.4 38.5 38.6
12.8

12.9

13

13.1

13.2

13.3

13.4

01-11-2010

38.47 38.48 38.49 38.5

12.88

12.9

12.92

12.94

a1. b1.a2. b2.

c. d. e. f.

g1.

g2. h2.

h1. i1.

i2.

j1.

j2.

Figure 4.5: θ-S plots of particular stages in the evolution of the water column from December 2009 to
November 2010. The top, middle and bottom panel correspond show periods corresponding to before,
during and after the vertical mixing. In the top and bottom panel, two different zooms are considered.
The nominal depth of the different Microcat is indicated by the color marks (from 170m to 2300m),
while gray marks correspond to the data of the past month. The slanting black lines are σθ contours.

eddy detected (Rmax = 5.7 km and Vmax = 11.2 cm.s−1).

Deep convection down to the bottom

The intensification of atmospheric forcing on February 10 led to very strong heat losses

(daily values exceed -600W.m−2) and to the resuming of the vertical mixing, with the strongest

vertical currents recorded during this winter at 250m, 500m and 1000m depth (figs. 4.4c,d).
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Figure 4.6: 5 years of net atmospheric heat flux from Era-Interim reanalysis and potential temperature
with mixed layer depth, contoured over instruments of the deep LION mooring and the LION surface
buoy, from December to May. Black dotted lines show the pressure at the instruments depth. Yellow
thick line indicates the mixed layer depth estimated (see the text for a description of criterion chosen)

Vertical speed can sporadically exceed +10cm.s−1 and -15cm.s−1.

From February 10 to February 13, potential temperature of the whole water column de-
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creased of more than 0.02° (figs. 4.5c,d), related to the strong heat losses and the fact that

the deepening of the mixed layer is limited by the bottom. At the same time, salinity did not

present any detectable change. The winter buoyancy fluxes are largely dominated by the heat

fluxes (Grignon et al. [2010]), so the salinity of the newly-formed deep water is mostly set by

the salt content of the water column before convection, while its potential temperature results

from a combination of the initial heat content and the surface heat fluxes.

The February 16, one day from the end of the violent vertical mixing phase, horizontal

speed become stronger (30-38 cm.s−1 until 1000m, 20cm.s−1 at 2300m, see 4.4b). This current

intensification caused a 150m deepening of the mooring’s head. The deepening of the moor-

ing’s head occurred several times from February to April. Each time, it was associated to strong

horizontal currents (more than 30cm.s−1 for the 250m, 500m and 1000m current meters).

Second event of deep vertical mixing

From February 18 to March 8, total atmospheric heat flux is close to zero, even positive,

and vertical mixing stopped. High horizontal currents start to advect more stratified water

in the mooring area (figs. 4.4a and 4.5e). The last strong winter cooling event occurred from

March 9 to March 12, associated to an increase in vertical currents until 1000m depth. Based

on θ-S diagram, the homogeneous water column reached 1750m depth,4.5f), also seen on

daily MLD time series (fig. 4.6).

End of the deep convection, horizontal homogenization

After the last event of vertical mixing, the water column progressively restratified. The

surface heat gain and the surface advection of light water (Leaman and Schott [1991]; Schott

et al. [1996]; Herrmann et al. [2008]), increase the vertical gradient of potential temperature,

salinity and density inside the water column. Using the eddy-detection methods, several

eddies which are involved in the input of surrounding waters in the area of deep water for-

mation, were identified the March 17, March 30, April 13, April 24 and May 8 (table 4.4). The

vertical distribution of water masses for these cyclonic or anticyclonic eddies present similar

characteristics.

First, they are characterized by a salty and warm water mass in subsurface (between 150m

and 400/500m depth), which indicates the presence of LIW in that region. The less pronounced

θ/S characteristics and low stratification of this sub-surface water mass (compared to the

period before the deep convection, figs. 4.5g1,h1) might be related to the winter mixing

that occurred in January. At that time the mixing homogenize the first 700m of the water

column. Second, lower potential temperature and salinity are found in the 750/1200m layer

(figs. 4.5g2,h2), corresponding to the “old” WMDW θ/S characteristics.

Then the last 1000m of the water column is mainly composed of newly-formed deep water,

which are saltier and denser than the “old” deep water. As the potential temperature of the

newly-formed deep water is strongly related to the intensity of the winter atmospheric forcing,

the warming of the deep water can be reduced by strong heat losses occurring during the

intense vertical mixing phase, once the mixed layer has reached the bottom. For example,
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Figure 4.7: Salinity, potential temperature, eddy currents, and progressive vector diagram of the eddy
crossing the mooring line the 21 October 2010. Black and white horizontal thin lines on salinity and
potential temperature graphs, correspond to isopycnals. Vertical black lines correspond to the eddy
center and black dotted vertical lines correspond to the eddy rim. On the progressive vector diagram,
the color line corresponds to the horizontal current recorded by the 1000m current meter with a
colormap corresponding to the potential temperature recorded by the 300m microcat instrument, while
the black line corresponds to the estimated advection. Green cross and circles indicate respectively
the center and the rim of the eddy. The projection of the horizontal velocity recorded by the current
meter onto the advection direction gives us the observed velocity perpendicular to the advection,
corresponding to the eddy velocity (bottom left panel).

during winter 2010 the potential temperature at 2300m depth increased by 0.03°C once the

mixed layer has reached the bottom but the consecutive ten days of strong heat loss have made

decrease the mixed layer potential temperature by 0.02°C. While at the same time the salinity
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has varied only slightly compared to the potential temperature, indicating that evaporation

does not play a significant role in setting the salinity on the new deep water, at least during

the 9-12 days period of intense vertical mixing corresponding to the period when the deep

convection has reached the bottom.

Concerning the 5 eddy-events bringing relatively salty and warm intermediate water, 4 of

these events are associated with newly-formed deep water (higher salinity than before the

OODC [fig. 4.3d] and changes in the deep stratification [fig. 4.5h2] that will stay until next

winter [fig. 4.5j2]), while the March 18 eddy presents a potential temperature and salinity at

2300m depth (figs. 4.3c,d) and a deep stratification (figs. 4.5a2,g2) corresponding to the ones

before the OODC.

Occasionally, cyclonic eddies with a deep core can also cross the mooring line several

months after the deep convection, like the one on October 21, 2010 (fig. 4.7). This eddy is

characterized by a current strengthening detected at 1000m depth, an eddy radius Rmax = 4.8

km and a maximal azimuthal velocity of Vmax = 5.5 cm.s−1. The first 1000m of the water

column is characterized by a sinking of the isopycnals, like surface anticyclonic eddy. The big

difference is in the deeper part of the water column, between 1600 and 2300m, where there is

a doming of the isopycnals. The flat isopycnals at 1700m indicate the location of the eddy core,

what we can not see using the data from current meters, because there are no measurements

at this depth (the current meters are only at 1000m and 2300m depths).

The absence of the usual deep stratification (fig. 4.5i2) and the θ/S characteristics at 1750m,

2000m and 2300m depth, makes us infer that this eddy might have been formed during the

past deep convection event. The lifetime for this cyclonic eddy is at least estimated at 5 months.

These deep θ/S characteristics are very close to the one recorded the 4 March 2010 (fig. 4.5e),

just before the second vertical mixing event and the huge horizontal currents (> 40cm.s−1)

appearing to homogenize the mixed patch with the surrounding water masses. Instabilities of

the rim current (bordering the DWF zone) may be the cause of the generation of this kind of

eddy.

The stratification of the water column will continue to increase until the surface buoyancy

flux become negative (usually in September), then the buoyancy losses will “erode” progres-

sively the surface stratification. If the forcing is intense enough and if the water column is not

too stratified, the vertical mixing can go deep (below the LIW). This scenario occurred every

winter since the winter 2007-2008. If the vertical mixing seems to stop at 700m depth in winter

2007-2008, in winters 2008-2009, 2009-2010, 2010-2011 and 2011-2012 it reached the bottom

(fig. 4.6).

4.4.2 Similarities and Differences between five Deep Convection Events

Characteristics of the different winters of OODC are summarized in the table 4.3. The chronol-

ogy of the different events is not exactly the same, mainly due to the interannual variability of

the heat losses and the stability of the water column (discussed in section 4.8.2). For example
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2008 2009 2010 2011 2012

Mixed layer deepens below 150m 17/12/07 15/12/08 17/12/09 15/12/10 08/01/12

WIW detected (S<38.42) 21/12/07 30/12/08 09/01/10 16/12/10 03/02/12

LIW mixed 02/04/08 08/01/09 23/01/10 19/12/10 07/02/12

Bottom reached no (700m) 12/02/09 10/02/10 27/01/11 10/02/12

Bottom pot. temperature increase x 0.040° 0.030° 0.022° 0.042°

Bottom salinity increase x 0.009 0.007 0.006 0.012

End vertical mixing (until 1000m) x 26/02/09 20/02/10 05/02/11 23/02/12

Temperature decrease of the MLD
at the end of the vertical mixing

x 0.024° 0.019° 0.012° 0.032°

Bottom potential density increase
at the end of the mixing (kg.m−3)

x 0.0044 0.0062 0.0030 0.0090

Number of events of deepening of
mooring’s head > 100m

0 5 9 10 10

Max. deepening of mooring head 0 450m 700m 550m 600m

Second vertical mixing event

Time period x 6/03/09-
08/03/09

9/03/10-
12/03/10

01/03/11-
04/03/11

07/03/12-
11/03/12

Max. depth on W x >1000m >1000m >500m
<1000m

>1000m

Max. depth on MLD x 2000m 1500m 1700m 2300m

End of the vertical mixing / Onset
of restratification

04/04/08 09/03/09 13/03/10 05/03/11 11/03/12

Area of low surface chlorophyll
(<0.12mg.m−3) in km2

113 9446 10276 14020 13092

Area of low surface chlorophyll
(<0.20mg.m−3) in km2

2649 21752 25331 23523 27624

Table 4.3: Characteristics of deep convection events from LION data

in 2011 the vertical mixing penetrated below the LIW, one month earlier than in 2009, 2010

or 2012. The December 26, 2010, the MLD reaches 1200m (fig. 4.6), homogenizing the water

column (decrease in potential temperature and salinity on figs. 4.8a,b and increase in poten-

tial density on fig. 4.9a on the 170m-, 300m- and 700m-Microcat), while significant vertical

velocity superior at 15cm.s−1 were recorded at 150, 250 and 500m depth, fig. 4.9c.

During winter 2011-2012, the mixed layer quickly reaches the bottom, it takes approxima-

tively 1 month from the mixing to go from 150m depth to the bottom (table 4.3, fig. 4.6), while

it takes between 1.5 or 2 months for the 2009, 2010 or 2011 winter. For these winters it takes

between 2.5 weeks and 1 month for the mixed layer to go from the LIW to the bottom, while

in 2012 it takes only 5 days. According to Visbeck et al. [1996], the maximum depth of the

convection is reached when lateral buoyancy flux offsets the buoyancy loss at the surface. The

strong heat (buoyancy) losses that occurred during 4 months in 2012, might partly explain the

fast deepening of the MLD.

Some common features point out from the analysis of the four last events of deep convec-

tion observed between 2009 and 2012. The time for the mixed layer deepening is comprised

between 1 and 2 months. Once the mixed layer has reached the bottom, the violent vertical

mixing phase of the whole water column is in the range of 9-12 days, leading to a potential
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Figure 4.8: Daily potential temperature (a) and salinity (b) records at Seabird Microcat depth from
170m (dark blue) to 2330m (dark red) between October 2007 and July 2012. The daily near-bottom
potential temperature (c) and salinity (d) are also presented with a separate vertical scale. Red and
blue triangles correspond to the center of cyclones, respectively anticyclones, detected by the method
presented in the part 4.3.2.

temperature decrease of the whole water column between 0.015° and 0.03°. Since there are no

significant changes in salinity at that time, we suggest that evaporation during this 10-days

period, did not play a role in setting the salinity of the newly-formed deep water, unlike the

influence of heat losses on potential temperature.

Winters from 2009 to 2012 present all a second vertical mixing period that generally occurs

in March after the main event of deep ocean convection. This short event (2-4 days) happens

when the restratification begins. The water column is weakly stratified at that time and a 3-6

days period of heat losses (like winter storm) can easily destabilize the water column, leading

to vertical mixing.

4.4.3 Evolution of Heat and Salt Contents of Water Column

One of the interest of the LION mooring line is heat or salt budget calculation for specific water

masses. To take into account the upper ocean layer (0-150m), we merged the MF-LION surface

buoy to the deep LION mooring line, this give us 5 to 17 additional potential temperature

levels in the first 150m since 2009 and 1 additional salinity level at 2m depth since 2011.

Even if the vertical resolution of the mooring line has a good coverage of the water column,

107



Chapter 4. Open-Ocean Deep Convection in the Gulf of Lions

29

29.025

29.05

29.075

29.1

29.125

P
ot

.D
en

s.
(k

g.
m

-3
)

H
or

iz
.S

pe
ed

(c
m

.s
-1

)
V

er
t.

S
pe

ed
(c

m
.s

-1
)

0

10

20

30

40

11/07 03/08 07/08 11/08 03/09 07/09 11/09 03/10 07/10 11/10 03/11 07/11 11/11 03/12 07/12

0

20

40

60

80

170m

300m

706m

1514m

2315m

150m

500m

250m

1000m

2300m

Figure 4.9: Daily potential density (a) records at Seabird Microcat depth from 170m (dark blue) to
2330m (dark red) between October 2007 and July 2012, with daily horizontal (b) and bi-hourly vertical
(c) currents recorded by the 250m, 500m, 1000m and 2330m Aquadopp. Red and blue triangles on (a)
correspond to the center of cyclones, respectively anticyclones, detected by the method presented in
the part 4.3.2.

especially since 2009 with 20 potential temperature levels and 10 salinity levels, there is still

sometimes large gaps between the instruments. To make budget calculation, we make a

linear interpolation of potential temperature and salinity over the depth, and we obtain 1m

resolution profiles from 2m to 2300m every 30 minutes.

In order to quantify the error in heat or salt budget in specific layer due to this linear

interpolation, we used the 1m-binned CTD and glider profiles made close to the mooring (in

a 30km radius circle). We choose a distance of 30km, following (Houpert [2010]), where the

spatial covariance function was modeled using numerous temperature and salinity profiles

carried out close to the mooring location. Although the covariance decreases quickly with the

distance (77% of the variance at 4km, 40% at 10km), at 30 km the covariance is still equal to 30

% of the variance. This indicates that profiles made 30km from the mooring location are not

completely uncorrelated with measurements from the mooring line.

We estimate the error due to the vertical interpolation for each different mooring and

buoy configurations. By taking into account problems faced by the different instruments

(unexpected shutdown due to low battery, air bubbles in the near-surface sensors), we get

31 different configurations of the merged mooring-buoy line between September 2007 and

July 2012 for the daily data and 160 different configurations when we look for the bi-hourly

data. The greater number of configurations for 30 minutes data is explained by the fact that
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the buoy surface temperature sensor can be out of the water several times a day when the

sea is too rough. The error is estimated for each layer, using the CTD and gliders profiles. We

calculate it as the difference between the mean (potential temperature, salinity or density) of

the 1m-binned original profile and the mean calculated with the same profile undersampled

and linearly interpolated.

Figures 4.10, 4.11 and 4.12 show the mean potential temperature, salinity and potential

density for the main water masses of the WMED: the modified Atlantic Water (0-200m), the

Levantine Intermediate Water (200-600m) and the deep water (600-2300m). A distinction is

made for the deep waters comprised between 600 and 1500m and between 1500 and 2300m,

as θ-S diagrams show since 2005 different deep waters for these levels (Lopez-Jurado et al.

[2005]; Salat et al. [2006]; Schroeder et al. [2006], figure 4.13).

The daily mean of the mooring line data are represented by the dark line, while data from

profiles (CTD stations, gliders) are indicated by the red dots. We also compute errors due to the

discrete vertical levels of the mooring instruments (cyan lines). As explain this section, we use

hydrological profiles to calculate errors due to the linear interpolation from the discrete levels

of the mooring line and surface buoy LION. For each new configuration of the mooring line

and surface buoy, we select the available profiles comprised in a 2-months period around the

new configuration date at which the error is estimated. For each profile, we calculate the error,

associated to the vertical discretization, in the estimation of the mean potential temperature,

salinity or potential density for each layer. Then we estimate the error on the time series as the

mean of the errors calculated on all these hydrological profiles plus or minus three standard

deviations.

We can clearly distinguish a seasonal cycle in the mean potential temperature of the surface

layer (0-200m) varying from 13±0.2 °C in winter to 17 ±2 °C in summer. The higher error

during summertime is mainly due to the undersampling of the strong surface gradient in

potential temperature associated to the summer thermocline, while in winter the surface layer

is homogeneous in potential temperature and salinity so there are smaller errors associated to

the linear interpolation at that time.

Since conductivity sensor was installed on the surface buoy LION in September 2011, no

salinity and density data are available for the September 2007 - September 2011 period. In

addition, the low level of sampling (2 levels in the first 200m) since September leads to a

significant error in the estimation of the mean salinity and density for the surface water.

If we can clearly distinguish a seasonal cycle in the surface water with a potential tempera-

ture maximum in summer, the variability of the heat and salt content of the intermediate layer

(200-600m) at the location of the LION mooring line is mainly driven by the deep convection

events, with a ≈0.3°C decrease in potential temperature (fig. 4.10) and ≈0.05‰ decrease in

salinity (4.11) when deep convection reaches the bottom. Again the low number of conductiv-

ity sensors (see table 4.2) can explain why the error on the mean salinity is such important

compared to the error in the mean potential temperature estimate.
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Figure 4.11: Same as figure 4.10 except for mean salinity.
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No clear signal of warming of the 200-600m layer appears for the 2007-2012 period, even if

the potential temperature at the beginning of winter seems to be higher (+0.1°C) in 2009/2010,

2010/11, 2011/2012 than in 2007/08 and 2008/09. This might indicate a “slowdown“ of the

accumulation of LIW in the mooring location and/or an increase of the temperature and

salinity of the LIW for the 2009-2012 period.

Since error on potential density is not negligible, the restratification time of this layer

after a deep convection event may be expressed as the time needed by this layer to recover

50% of its heat content lost during deep convection. Using the mean potential temperature

for the 200-600m layer for year 2010, 2011 and 2012, we determine the time for this layer to

compensate a half of the heat lost during the deep convection event, as being 2.5 months (in

2011 and 2012) and 4.3 months (in 2010). If the ”restratification time” inferred from potential

temperature did not seem to be the same for all years, it did not seem to be related to the

intensity of deep convection (see the end of the section 4.5 for discussion about the intensity

of a deep convection event) because winter 2011 is the event that seems to have produced the

“less” deep waters, and winter 2012, the event that seems to have produced the more, but they

have both the same restratification time.

If the warming of the deep layer (600-2300m) is not obvious for the 2008-2012 period (fig.

4.10), it seems to become saltier (fig. 4.11), especially since October 2008 when the error

linked to the vertical resolution was considerably reduced due to additional instruments.

Salinity for the 600m-2300m layer increase by 0.015‰ for the October 2008 - July 2012 period

(≈0.01‰ for the 600-1500m layer and ≈0.02‰ for the 1500-2300m layer).

The spreading of the newly-formed deep water may be seen on the figure 4.12. At the

end of the intense vertical mixing, the potential density reaches a local maximum. Once the

atmospheric forcing has stopped, the potential density begins to decrease, indicating the

spreading of the newly-formed deep water.

Looking at the 600-2300m layer, it takes approximatively between 1.5 months (in 2011) and

3 months (in 2010) for the deep layer to dissipate 50% of the potential density increase due to

the formation of new deep water. 75% of this potential density increase is dissipated after a

period going from 3 (in 2011) to 6 (in 2010) months, indicating the spreading and the mixing

of the newly-formed deep water with the ambient deep water.

The long restratification and spreading time that can be observed after each winter of

deep convection indicate that the restratification/spreading phase did not seem finished

when the deep convection event begins during the following winter. This highlights again

the overlapping of the 3 “phases” of deep convection, and implies an essential role of the

modeling of the eddies throughout the year if one wants correctly simulate the phenomenon

of deep water formation.
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4.4.4 Seasonal Variability and Transients in the Bottom Layer

The stepwise increases in bottom water characteristics occurring for four consecutive years

(2009-2012) are marked by positive jumps in θ and S (figs. 4.8c,d, table 4.3). These changes in

the characteristics of the bottom water are related to the deep convection which reached the

bottom in February.

If salinity remains relatively constant after each jump, potential temperature may undergo

a significant decrease (figs. 4.5c,d), ranging from 0.012° in 2011 to 0.032° in 2012 (table 4.3).

These potential temperature decreases induce an increase in potential density between 0.003

kg m−3 to 0.009 kg m−3 for the 4 winters of deep convection studied here.

We interpret these decreases in potential temperature of the mixed layer, already seen by

Schroeder et al. [2013], as the effect of the persistent net heat losses after that the MLD reached

the bottom. The absence of increase in the salinity of the bottom water can be explained by

the domination of the winter buoyancy fluxes by the heat fluxes (Grignon et al. [2010]). The

salinity of the newly-formed deep water is mostly set by the salt content of the water column

before convection, while its potential temperature results from a combination of the initial

heat content and the surface heat fluxes.

The figure 4.4c shows an interesting feature after the end of the deep convection of winter

2010. By the end of March a sharp decrease in the bottom water potential temperature

occurs (≈0.02°C) without any link with the atmospheric forcing (fig. 4.4d), then the potential

temperature progressively increases until reaching an equilibrium state in August (fig. 4.8c).

No similar signal was recorded by conductivity sensors. The range of salinity since the end

February 2010 was never recorded before at that depth level. This may suggest that this

different bottom water mass appearing at the end of March, should have been formed this

year.

We suggest that this colder potential temperature (and higher potential density), appearing

at the end of March, is related to formation of deep water at another location. The hypothesis

of different deep water masses formations occurring in different locations inside the cyclonic

gyre, was already suggested by Lacombe et al. [1985]. This place may be the location where

gliders have recorded an homogeneous mixed layer until 1000 m in 2008, also the area with

the lowest surface chlorophyll concentration detected by MODIS in 2008 (see section 4.5).

Assuming that the buoyancy flux are the same in the two locations, a lower stratification in this

area could induce a faster deepening of the mixed layer. A shallower bottom could also make

the MLD to reach the bottom depth faster and so, the whole homogeneous water column

would be exposed to longer heat loss, which would lead to a stronger potential temperature

decrease and to the formation of colder deep water. However it seems that this formation

mode is a minority. From the end of March 2010 to August 2010, the potential temperature

of the bottom water will continue to rise, until it reaches a level close to the one reached just

after the end of the deep convection (figs. 4.3c and 4.8c). This slow increase in the bottom

potential temperature may be seen as the effect of the horizontal mixing of these two different

water masses.
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Another remarkable signal occurs between March 2012 and May 2012 characterized by a

sharp and noisy diminution of the bottom potential temperature and salinity, while at the

same time, potential density did not present high frequency fluctuations (fig. 4.9a). The

origin of the bottom waters characterized by a lower potential temperature and salinity, was

identified as a result of dense shelf water cascading (Durrieu de Madron et al. [2013]). The

peculiar atmospheric conditions of winter 2012 triggered a massive formation of dense water

over the continental shelf that overflowed the shelf edge and cascade down to the bottom (see

chapter 5 for details).

The strongest θ and S signal occurs the 10 April 2012 when a cyclonic eddy crossed the

mooring (see section 5.2 for more details), with a strong decrease in θ (-0.1°C) and S (-0.03‰)

associated to the core of the eddy. Its core radius was estimated to be 12.0 km with a peak

observed azimutal speed of 15.7 cm.s-1.

4.4.5 Fate of the Deep Water Masses

Although deep ocean convection is the main mechanism for the renewal of the WMDW, the

influence of dense shelf water cascading on WMDW has been first suggested by Bethoux et al.

[2002]. Puig et al. [2012] highlight the persistence in the deep waters since winter 2005 of a θ-S

anomaly link to dense shelf water water cascading. The coexistence of deep waters formed by

deep convection and by dense shelf water cascading can be clearly seen on θ-S diagram, where

it takes a V-shape structure. Several authors report this shift in deep water characteristics since

2005 (Lopez-Jurado et al. [2005]; Schroeder et al. [2006, 2008]; Canals et al. [2006]; Smith et al.

[2008]; CIESM [2009]).

In 2007, CTD stations made in the Gulf of Lions clearly show 3 different deep water masses

(fig. 4.13), indicated by the V-shape structure below the Levantine Intermediate Water (>600m).

One can clearly see the stacking of three different water masses (indicated by a θ-S extremum),

with the “old” WMDW (oWMDW, between 800 and 1400m), the “new” WMDW formed by

deep convection in winters 2004/2005 and 2005/2006 (nWMDW(2007)
2005/06−OC , between 1400 and

1900m) and the “new” WMDW formed in winter 2004/2005 by dense shelf water cascading

(nWMDW(2007)
2005−C S), between 2000m and the bottom). In the naming of the different deep water

masses, we use the superscript in order to precise the year when the deep water was observed.

The characteristics of these transient new deep waters may change from year to year due

the permanent turbulent mixing, which tends to homogenize the deep layer. As an example,

in 2005 the θ-S characteristics of the bottom water (nWMDW2005−C S) recorded in the Gulf

of Lions by Schroeder et al. [2006] was close to θ = 12.76 and S = 38.46‰, while two years

later the observed θ-S characteristics of this water mass are less pronounced (θ = 12.87 and

S = 38.48‰). The year to year evolution of a specific deep water mass can be tracked on θ-S

diagrams, particularly during years withtout deep convection.

In 2008, CTDs stations revealed a mitigation of deep water characteristics, especially for the

deep water mass between 1400m and 1900m. The temperature of the nWMDW(2007)
2005/06−OC has

decreased by 0.02°C in one year, while for salinity the decrease is about 0.005‰. However one
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Figure 4.13: θ-S diagrams of WMDW from CTD stations close to the LION mooring (<40km) with
pressure represented in color (2007: DOCONUG2007; 2008: DOCONUG2008; 2009: 42N5E; 2010:
MOOSE_GE_2010; 2011: MOOSE_GE_2011; 2012: MOOSE_GE_2012). Dark gray dots indicate the θ-S
properties recorded by the 2300m Microcat at the end of the vertical mixing phase, light gray dots
correspond to the 1500m Microcat

has to interpret this salinity increase with caution because it is of the same order of magnitude

than our confidence in the value of salinity measured during both cruises.

In July 2009, CTD stations reveal an homogenization of the deep waters, with a less pro-

nounced V-shape structure. This year a new thermohaline anomaly appears on θ-S diagram.

On the last 200m of the water column, a relative warmer and saltier water mass was detected

(fig. 4.13). As presented earlier in this work, 2009 was a year of deep convection (figs. 4.9c and

4.6), where an increase in potential temperature and salinity of the bottom water was noticed

after the deep convection event (figs. 4.8c,d).

The range of salinity and potential temperature recorded by the 2300m Microcat just at the

end of the vertical mixing is showed by the dark blue rectangle on figure 4.13. These potential

temperature and salinity correspond to the characteristics of the newly-formed deep water of

2009 (nWMDW2009) exactly when it was formed, while CTD casts made in July have revealed

an “attenuated” bottom water, which has already started to mix with “older” deep water. If

the detection of a newly-formed deep water on a θ-S diagram is relatively straightforward in
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the months following the deep convection period (apparition of a new extremum in the θ-S

diagram), the identification of older deep water masses is more difficult in profiles carried out

in a region which has undergone a significant vertical mixing. However, the local maximum

between 1200 and 1500m depth that can be noticed on the θ-S diagram in 2009 and 2010

suggests the presence of a water mass with θ-S characteristics close to the nWMDW(2008)
2005/06−OC .

In June 2010, CTD stations still show the V-shape structure between 800 and 1800m, but

a new thermohaline structure appears below 1800m. This structure also presents a V-shape.

One can relate this second V-shape with the characteristics of the newly-formed deep water

of 2010 (nWMDW2010). As we suggested it earlier, 2010 may be a year where two different

deep water masses were formed, which could explain the small positive gradient of θ in the

θ-S diagram tail. Salinity and potential temperature recorded by the 2300m instrument of

the mooring line at the end of the vertical mixing period are represented on the θ-S diagram

(dark gray dots, with the two extrema indicated by green rectangles on fig. 4.13). These 2

extrema detected in March 2010 are in good agreement with the deep stratification measured

by the CTD stations in June 2010, even if the gradient of θ is smaller in June than in March. A

possible explanation to this mitigation is again the permanent turbulent mixing, which tends

to homogenize the deep waters.

Winter 2011 was also a winter of deep convection (figs. 4.9c and 4.6) where a new warmer

and saltier deep water was produced (see nWMDW2011 on fig. 4.13). This new bottom water

was also observed on CTD stations performed in June 2011.

2012 was the first winter of deep convection and dense shelf water cascading since 2006

(Durrieu de Madron et al. [2013]). In addition to the mooring data, where a significant drop of

potential temperature and salinity has occured in April 2012, this can be clearly seen on CTD

stations performed in July 2012 (fig. 4.13). A new V-shape structure has appeared on the θ-S

diagram tail, below 1600m. This thermohaline anomaly extends over more than 600m on CTD

stations made close to the mooring location. The shape of the anomaly can be related to the

new deep water formed in winter 2012 by deep convection (nWMDW2012−OC ) and by dense

shelf water (nWMDW2012−C S) indicated in dark grey on figure 4.13. The extremum in θ and S

of the dense shelf water monitored by the mooring line is θ=12.8°C and S=38.479‰.

Although the observations of the long-term persistence of several deep waters in the

WMED could be partly related to the large number of observations collected during the last

decade, this new insight on the deep water dynamics is a major element in our understanding

of the thermohaline circulation in the Mediterranean. Traditionally it was commonly believed

that there was only a major deep water in the WMED, which could be ventilated every year,

undergoing minor changes in temperature and salinity, the distinction between new and old

deep water disappearing quickly. The 6-year evolution of the θ-S diagrams made in the deep

convection area clearly shows the apparition of new deep water masses after each deep water

formation event that reached the bottom. After each event, the newly-formed deep water
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spreads into the whole basin and progressively mixes with the former deep waters, explaining

the “attenuated” characteristics of deep waters recorded during the summer CTD-surveys,

comparing to winter extrema recorded by the deep mooring line. The long-term persistence

of several deep waters in the WMED since 2005 might be related to a deep mixing less intense

than previously thought, or to an increase in the volume of newly formed deep water these

last years.
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4.5 Horizontal Extent of the Deep Convection Area

Ocean color satellite can provide estimates of sea surface chlorophyll a (chl-a). In the Gulf

of Lions, it is a useful tool to get a first idea of the maximum extension of the deep water

formation. During wintertime, the Gulf of Lions is often characterized by a region of low

surface chl-a (fig. 4.14). This low chl-a patch indicates that the phytoplankton has no time to

grow in the euphotic layer, which can be explained by an active vertical mixing at that time.

However we cannot know the depth of the vertical mixing, we can just consider that a low

surface chl-a indicates a vertical mixing going deeper than the euphotic zone (100-200m).

Although there are many gaps during wintertime in the daily data, mainly due to the cloud

coverage, there are some good daily images that can be used to estimate the extension the

maximum extension of the deep water formation area. There is no real coincidence that some

cloudless images are available during periods of vertical mixing (fig. 4.14 and table 4.3). When

the Mistrals cold and dry wind blows over the convection area, the sky is usually clear.
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Figure 4.14: Daily surface chlorophyll images from MODIS for winter 2007 to 2012.
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Since there are still gaps in selected images, we just performed a basic 2d-linear interpola-

tion to have an idea of the area of low surface chlorophyll. We choose two different criteria

(<0.12 mg.m−3 and <0.2 mg.m−3) to calculate the area inside the Gulf of Lions (right boundary

at 6.5°E). We decide to calculate this area only for the Gulf of Lions because the generalization

of our results on the LION mooring line may be valid only in the Gulf of Lions, and this place is

the major site of deep ocean convection in the NWMED (no deep convection was observed at

DYFAMED in the Ligurian Sea for the 2008-2012 period, Laurent Coppola pers. com.). Results

for the 2 criteria are indicated in table 4.3, while the black line on figure 4.14 indicated the

0.2 mg.m−3 contour. The choice of a too restrictive criterion, for calculating the maximum

extension of the deep convection with only one image of the area, might be a contradiction,

so the 0.2 mg.m−3 criterion was chosen instead of the 0.12 mg.m−3 to propose a superior limit

of the extension of the deep convection area.

The occurrence and the relative intensity of deep convection can be seen on satellite

images. In 2007, the area of deep convection estimated with a 0.2 mg.m−3 criterion is null

(fig. 4.14. This absence of deep convection was confirmed also by glider data. 5 of the 8

gliders deployed during EGO2007 were in the Gulf of Lions from January 2007 to May 2007

and recorded a maximal mixed layer near 400m depth (Testor et al. [2007]).

In 2008, another big experiment took place in the Gulf of Lions (EGO2008), with 6 of the 9

gliders deployed sampling the water column from January to April. That year a MLD reaching

1000m depth was sporadically recorded mid-March by gliders 50 km westward of the LION

mooring location (near 42.1°N 4.1°E), while the MLD was not superior to 700m depth at the

mooring location. This seems in good agreement with the satellite image of the 5 February

2008, where the low chl-a patch extends westward of the mooring location. This might suggest

that the most favorable site of deep open-ocean convection in the Gulf of Lions may be further

west than the LION mooring and close to 42.1°N 4.1°E.

Strong deep convection occurs in the Gulf of Lions the other 4 years (table 4.3, fig. 4.9c).

This can also be seen on satellite images, where the surface estimated of deep convection in

the Gulf of Lions is comprised between 21 000 and 27 000 km2, 9 or 10 times greater that the

surface estimated in 2008 (fig. 4.14, table 4.3).

If we can clearly distinguish winters with or without deep convection on satellite images,

it is more complicated to compare the intensity of the deep convection based only on its

maximum extension determined on instantaneous satellite images.

Due to the very close estimations of area of the deep convection zone in estimations made

from winter 2009 to winter 2012, one criteria can be used to distinguish the intensity of deep

convection for these winters, as the increase in potential density recorded at the bottom

due to arrival of newly-formed deep water (table 4.3), if we assume that the water column

stratification did not change a lot between the different winters. According to this criterion,

the deep convection produced more deep water in 2012, with a 0.009 kg.m−3 increase of

near bottom potential density after the event. Then we estimate by decreasing intensity the

winter 2010 (0.0062 kg.m−3 increase), 2009 (0.0044 kg.m−3 increase) and 2011 (0.0030 kg.m−3
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increase).
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Figure 4.15: Stick diagram of currents at the 5 (4 for 2009-2010) depths measured by Aquadopp and the
first three EOFs. The original time series are decimated to one point per twenty-four hours, and are
offset by -50 cm s−1 for display purpose.

121



Chapter 4. Open-Ocean Deep Convection in the Gulf of Lions

4.6 Seasonal Variations of the Vertical Structure of Horizontal Cur-

rents

Strong currents were also recorded during the different events of deep ocean convection: high

frequency vertical velocities exceeded 15 cm.s−1 during the violent vertical mixing phase and

strong mesoscale horizontal currents reached 40cm.s−1 during the restratification phase (figs.

4.9b,c).

The seasonal variation in the current magnitude and structure can be investigated using

empirical orthogonal functions (EOFs). We used the bi-hourly complex time series (u + i v)

filtered with a 48-h Hanning filter for each year (from the 1st November to the 31 October)

and for each month. For this part of the study, we did not use data for winter 2007-2008 or

2008-2009, since the vertical resolution was not optimal.

The time series of the first EOF from the current meters are presented on figure 4.15 for

each year. For the 2009-2010 period (respectively 2010-2011 and 2011-2012), EOF 1 accounts

for 94.3% (resp. 94.7% and 96.1%) of the variance, while EOF 2 contains 4.1% (resp. 3.6% and

2.7%). The third mode contains a few percent of the variance. Calculations for the 2011-2012

period were carried out only on the 7 months of available data (2 current meters have stopped

in June and the mooring line was recovered in July), this may explain why the EOF 1 is higher

for this time period.

The structures of the modes is generally similar in all cases. The first EOF is globally in

phase at all depths, while the second EOF is nearly linear over the whole water column and

bottom intensified (fig. 4.16). This suggests an interpretation of these two EOFs as the equiva-

lent barotropic mode (since we have not the surface current) and the first baroclinic mode. By

studying the monthly variation, we clearly see that the first EOFs dominated the variability,

containing 75% to 98% of the variance, while the second mode contains 1% to 18%. Horizontal

currents are mainly barotropic between 150 and 2300m depth, as the stick vector diagrams

clearly show us (fig. 4.15).

The ‘less equivalent barotropic“ states coincide with the deep convection period (from

November to February). The vertical structure of the first EOF (solid line, fig. 4.16), presents

a seasonal cycle in the surface intensification, with a strengthening of the projection at the

beginning of the deepening of convection (cyan star at 150m and 250m depth for winter 2010

and winter 2012, and dark blue square for winter 2011). This period of ”baroclinization“ of the

first EOFs correspond also to the deepening of deep convection (fig. 4.6), which would show a

decoupling between the currents in the mixed layer and below..

In December 2010, the vertical structures of the first EOF are different from the one of

January 2010 or January 2012. In December 2010, the first-mode projection is nearly uniform

for the 2 subsurface current meters (150m and 250m depth), then it presents a jump between

250m and 1000m and a uniform projection for the 1000m and 2300m instruments. This jump

may be linked to the presence of the deep pycnocline, as we can see it on fig. 4.6, considering

that the mixed layer is similar to the pycnocline during the deepening of the deep convection.
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In January 2012, the mixed layer did not reach the 250m current meter, that may explain

the absence of a uniform projection of the first EOF onto the 150m and 250m instruments,

as in December 2010. On the other side, it is nearly linear between 150m and 500m depth,

reflecting a more ”baroclinic state“ of the first EOF than in December 2010. It is more or less

the same situation for January 2010 (at that time the 150m instrument did not work), but the

mixed layer reaches 1500m at the end of January. This abrupt deepening at the end of January

may explain why we do not have the same uniform situation between 500m depth and 2300m

depth than in January 2012.

In January 2010 and January 2012, the shape of the second EOF is very different from the

”usual“ linear trend over the whole water column and bottom intensified. They are the only

months where the 2nd EOF is surface intensified, with a linear increase from 1000m depth in

2010 (500m depth 2012) and a nearly uniform projection from 1000m depth (500m depth in

2012) to the bottom. This change in the vertical structure of the 2nd EOF for this two months

is synchronous with the changes in the vertical structure of the 1st EOF. This ”baroclinic state“

of the water column seems to be in good agreement with the deepening of the mixed layer or

pycnocline). Although the structure for spring (AMJ) and summer(JAS) seem similar, currents

during these time periods differ dramatically in magnitude, with JAS currents being about an

half of AMJ currents (fig. 4.9b).The kinetic energy is then higher in spring but lower in summer.

As in Lilly et al. [1999], the energy cycle combined with the EOF variations can be used to

characterize the seasonal variations of currents.

In our case, we can distinguish four dynamical periods for layer comprised between 150

and 2300m depth:

◦ a baroclinic and quiet period (ND),

◦ a baroclinic and energetic period (JF),

◦ a equivalent barotropic and energetic period (MAMJ),

◦ a equivalent barotropic and quiet period (JASO)

In the late fall baroclinic flows are excited, and intensified during the wintertime, then

they evolve into barotropic flows in spring. The currents decay during late summer / early fall

but retain their barotropic character. This annual cycle is close to the one describe by Lilly

et al. [1999]from mooring observations in the Labrador sea, and we support the same cause of

wintertime current excitation: the thermodynamic forcing of the region by surface buoyancy

flux. Mesoscale currents become stronger with the deep convection activity and the transfer of

the potential energy of the ”mixed patch“ into kinetic energy, increasing the ”baroclinization“

of the water column. When the atmospheric forcing stops, the baroclinic flow field will tend to

evolve into a barotropic one, as a result of the geostrophic turbulence cascade to large scales

(Rhines [1979]; Venaille et al. [2012]).
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4.7 Census of Eddies in the Deep Convection Area from Nov. 2009

to Jul. 2012

The wavelet transform of the complex time series of horizontal currents (U + iV ) maps out

rich details of the horizontal currents across the time-frequency plane (fig. 4.17a). First, the

inertial wave band shows up as a horizontal stripe of enhanced transform amplitude for a

period comprised between 0.5 and 1 day. The actual inertial period for a point located at 42°

North is close to 17.9h.

Eddy-like events were identified (white squares on fig. 4.17c) as local maxima of the wavelet

transform topography. Maxima of the wavelet transform topography indicate a localized

organization of the currents at a given scale. As in the Labrador Sea (Lilly et al. [2003]), there

is a clear seasonal variability, with an increase in the transform amplitude at small scales

(especially smaller than 3 days) that tend to occur during February and March. At that time,

vertical mixing is very intense at 1000m depth (fig. 4.17b) and isolated eddies seem to blend

into a background of high frequencies activity.

The small amplitude of the wavelet transform for February/ March 2008 at 1000m depth

clearly distinguishes this year from the other winters of very intense deep convection.

The wavelet transform of the horizontal currents at 1000m gives us a representation of

eddy-rich time series and reveals localized structures with their temporal variations. Once

a first guess of eddy-like events was obtained, we improve the definition of the center and

the duration of the eddy, then we used a kinematic model to estimate eddy characteristics, as

explained in section 4.3.2.

From the 95 eddy-like events detected on the wavelet topography between October 2009

and July 2012, 37 have a perpendicular velocity component matching the Rankine model,

for at least one depth level (R2 > 0.90). Characteristics of eddies detected for this period are

summarized in table 4.4. The 18 anticyclones detected have a radius ranging from 0.7 km to

19.1 km, while the 19 cyclones have a radius comprised between 1.8 km and 20.0 km and (fig.

4.18c). The maximal azimuthal speed for anticyclones ranges from 0.9 cm s−1 to 16.4 cm s−1,

(fig. 4.18b), while for cyclones, Vmax ranges from 2.5 cm s−1 to 25.1 cm s−1. The radii and the

speed of the detected eddies do not seem to follow a normal distribution. However one can

distinguish two modes on the distribution of the cyclones radii (fig. 4.18a), the center of the

first mode seems to be at 4 km, while the second mode seems to be centered 12km. This first

analysis of the eddies radii distribution might suggest that there is two different families of

cyclones which could be related to different sites/processes of formation. The distribution of

anticyclones radii present a mode centered at 5km, but we cannot observe a second mode

in our data. One has to keep in mind that we can detect only part of the eddies that crossed

the mooring, so the event detected here are certainly not exhaustive. We may have missed a

significant number of eddies in summer / early fall, when the advection in the mooring area

seems relatively weak in magnitude and highly variable in direction (see the end of the section

4.3.2).

125



Chapter 4. Open-Ocean Deep Convection in the Gulf of Lions

−40

−20

0

20

40

−20

−10

0

10

2020

2008 2008.5 2009 2009.5 2010 2010.5 2011 2011.5 2012

1/2

1

3

10

30

Year time

P
er

io
d

in
D

ay
s

5

4

3

2

1

0

S
q
rt

 T
o
ta

l 
tr

a
n
sf

o
rm

b. Vertical current (cm.s-1)

a. U, V components (cm.s-1)

c.

Figure 4.17: Horizontal (top) and vertical currents (mid) observed during the 5 years of measurements
at the LION mooring location at 1000m depth and square root of the total wavelet transform (bot.)
made on complex time series of horizontal currents at 1000m depth. Small squares mark the location
of events identified by the the method described in Lilly et al. [2003], see section 4.3.2 for more details

The eddy current strength Vmax and its radius Rmax can be used to form a Rossby number:

Ro = 2|Vmax |
Rmax f

Rossby numbers of the mooring cyclones ranged from 0.1 to 0.76 (table 4.4), while Ro for

anticyclones ranged from 0.05 to 0.56. These Rossby numbers suggest that the two kinds of

eddies are not completely dominated by the geostrophy, especially the cyclones which present

higher maximal and minima in their Ro distribution.

Due to the low number of eddy occurrences and the relatively small period of available

observations (only 2 summers and 3 winters), we did not try to describe these seasonal

variations on a monthly basis, therefore we choose to bin the eddy-events into three periods

of time. We define each period as being related to one of the ”dynamical phases“ of deep

convection. (the preconditioning, the violent mixing and the spreading/restratification phase,

MEDOC Group [1970]; Marshall and Schott [1999]). Although these phases overlap, we use

them to describe the ”main dynamic regime“ of the region during the detection of different
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eddies.

Each eddy detected was binned into one of the three following time-periods:

• We first define the vertical mixing phase as the phase during which significant vertical

velocities (>5 cm s−1) were recorded by the current meters.

• Then, the second phase corresponds to the spreading/restratification of the deep convec-

tion area. It begins at the end of the vertical mixing and stops when horizontal kinetic

energy strongly decreases (late spring / early summer).

• The last phase, described as the preconditioning phase, corresponds to a quiet energetic

period in which the ocean gradually restratifies. It extends from early summer to the

beginning of the next deep convection event.

On the 13 eddies detected during the vertical mixing phase, 70 % are cyclones. During the

spreading/restratification 16 eddies were detected, with more or less as many cyclones (56 %)

than anticyclones (44 %). Less eddies were detected during the preconditioning phase (8), but

anticyclones seem to dominate the flow (88 %).

The relative absence of cyclones during the preconditioning phase (1 occurrence, 10% of

the total of eddies, fig. 4.18c), compared to the vertical mixing phase (9 occurrences, 70% of the
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Figure 4.18: Results from eddy-detection at the LION mooring. (a.) Number of cyclones and anticy-
clones found at a given radius scale (Rmax in km). (b.) Number of cyclones and anticyclones for each
”dynamical phase“ (see text for more details). (c.) Maximum azimuthal velocities (cm s−1) encountered
for each cyclone and anticyclone, plotted against radius. for each ”dynamical phase“ (see text for more
details)

127



Chapter 4. Open-Ocean Deep Convection in the Gulf of Lions

total of eddies) might indicate that this latter time period is more favorable to the formation

of cyclones than anticyclones. This hypothesis is supported by results from laboratory basin

experiments of Rhines [1998] and numerical experiments Akitomo [2010], where convection

into an initially unstratified water column tends to favor cyclones.

During the restratification/spreading phase, 16 eddies were detected with almost as many

cyclones (9) than anticyclones (7). The increasing number of anticyclonic eddies compared

to the vertical mixing phase (almost twice more), might be partly explained by the baroclinic

instability of the rim current that grows once the surface forcing abates.

Finally, the preconditioning period (defined as the period before significant vertical mix-

ing were detected at 150m depth) is the longest period (from early/mid July to the end of

December) and the quietest in terms of horizontal kinetic energy (see figs. 4.9b and 4.18d).

As explain earlier, this quiet period is also the most complicated to detect eddies with our

method, since the flow seems relatively weak in magnitude and without a constant direction

(see the end of the section 4.3.2). In addition, only 2 "full preconditioning periods" were used

in this work (2010 and 2011), since the deployment of the mooring line took place at the end of

October 2009, and the last recovery was at the end of July 2012. By making the assumption that

the ratio of the eddies detected (12% of cyclones and 88% of anticyclones) is representative

of this time period, one might see the decay of cyclones (relative to anticyclones), as being a

consequence of their age.

As we saw it earlier, cyclones seem to be mainly formed during the deepening of the mixed

layer and the intense vertical mixing phase. The ”age“ of cyclones might explain why they are

less numerous than anticyclones during the preconditioning phase. This phase takes place 5

to 10 months after the estimated formation date of cyclones, while anticyclones are mainly

detected during the restratification/spreading phase.

These results are only a first non-exhaustive analysis of the eddies crossing the LION

mooring. Many aspects need to be further improved like :

• our estimation of the advecting flow. Other estimates of the advection velocity may

be determined, by finding the depth-independent offset that makes the observed

shear and observed total currents parallel to each other, or by using the momentum

equation and assuming a cyclogeostrophic balance between the velocity observations

and the density observations (Lilly et al. [2003])

• check, and adapt if necessary, the eddy-center calculation in order to not reject self-

advecting dipoles (or ”hetons“), due to a bad estimation of the advecting flow

• the distinction of the eddies through their origins and the θ-S characteristics of their

cores (eddy of newly-formed deep water or LIW).
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4.8 Water Column Stratification and Deep Convection Intensity

4.8.1 Atmospheric Forcing

Mertens and Schott [1998] already showed the significant interannual variability of deep

convection and the impact of the local heat flux in driving deep convection. The heat fluxes

composition for the winter 2008 to winter 2012 are presented on fig. 4.19. Mean heat fluxes are

Table 4.4: Eddy events detected at the LION mooring

Date Time Period Typ. Rmax Vmax Ro Advection y0

(days) (km) (cm/s) Vel. (cm/s) Dir. (°) (km)

23-11-2009 00:30 3,35 A 7,22 -5,94 0,17 2,83 173,51 1,88

29-12-2009 02:30 9 A 19,12 -4,35 0,05 2,48 168,62 3,17

13-01-2010 14:30 1,25 C 1,87 6,95 0,76 2,31 172,55 0,13

28-01-2010 13:15 0,45 A 4,07 -0,97 0,05 1,19 37,88 3,34

05-02-2010 12:00 3,5 A 5,7 -11,22 0,4 2,49 177,01 1,03

13-02-2010 19:30 0,81 A 5,43 -4,45 0,17 4,62 -175,23 4,48

19-02-2010 13:00 0,58 C 3,33 7,26 0,45 9,3 163,8 2,07

02-03-2010 16:30 1,31 A 4,5 -9,96 0,45 4,77 44,89 1,34

18-03-2010 10:00 1,77 A 7,23 -8,26 0,23 4,92 147,12 0,4

13-04-2010 16:45 1,45 C 6,15 8,27 0,28 5,61 -35,15 5,72

08-05-2010 04:45 3,45 C 19,84 16,06 0,17 6,66 25,8 7,52

19-05-2010 19:00 0,56 C 4,56 2,58 0,12 8,75 49,18 1,13

09-08-2010 02:00 6,06 A 4,49 -4,75 0,22 1,16 133,66 1,51

21-10-2010 07:00 1,48 C 4,78 5,5 0,24 3,97 166,85 0,2

21-01-2011 20:30 1,02 C 2,74 8,89 0,66 3,79 -150,92 0,41

25-01-2011 05:00 0,83 C 5,32 4,55 0,18 6,88 177,49 4,82

30-01-2011 09:00 1,46 C 11,43 17,95 0,32 10,72 163,36 4,83

22-02-2011 19:15 1,84 C 13 12,5 0,2 9,26 -34,98 10,14

03-03-2011 05:14 2,47 C 11,61 16,9 0,3 5,58 -64,91 0,11

12-03-2011 08:59 1,48 A 3,45 -9,4 0,56 2,28 -82,12 3,29

27-03-2011 00:00 3 C 15,14 12,36 0,17 5,14 91,85 1,28

06-04-2011 00:00 3,5 A 17,65 -8,14 0,09 5,01 84,35 5,77

14-04-2011 16:00 0,6 C 2,71 5,19 0,39 4,23 53,9 1,15

21-05-2011 18:30 3,63 A 5,99 -12,95 0,44 1,23 -54,76 1,22

01-07-2011 18:30 2,56 C 4,82 3,98 0,17 2,39 38,05 1,13

27-07-2011 00:00 4,5 A 4,06 -3,05 0,15 1,03 73,03 0,1

12-08-2011 17:00 3,77 A 2,18 -1,85 0,17 0,73 151,16 1,52

25-08-2011 05:45 1,43 A 0,64 0,76 0,24 0,21 -132,63 0,09

25-10-2011 00:00 5 A 5,13 -4,52 0,18 0,87 -92,78 1

08-02-2012 21:36 1,2 C 4,19 8,58 0,42 5,04 -145,79 0,39

04-03-2012 07:00 1,67 C 8,32 25,14 0,62 6,23 -82,97 4,9

10-04-2012 01:30 0,9 C 12,01 15,67 0,27 19,96 -19,48 5,83

17-04-2012 14:30 1,77 A 14,94 -16,44 0,23 12,33 -9,73 0,32

22-05-2012 19:00 2,02 A 7,15 -6,29 0,18 5,22 -161,14 0,9

10-06-2012 03:30 2,62 A 3,1 -6,53 0,43 1,32 -16,03 1,59

09-07-2012 08:45 1,41 C 2,96 3,97 0,28 2,99 177,42 0,97
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calculated from the 1st November to the end of February. The more intense winter in terms

of heat and integrated buoyancy losses is Winter 2012 (196 W.m−2, 1.35 m2.s−3) , while the

less is winter 2008 (135 W.m−2, 0.94 m2.s−3). The net heat flux during wintertime is mainly

dominated by the latent heat flux, between 75% (2010) and 86% (2008) of the net heat flux,

while the sensible heat flux represents 17% (2008) to 24% (2010) of the total heat flux. The

radiative heat flux is close to zero (between 1% and 3%).

On figure 4.20, we can clearly see that the surface buoyancy flux is strongly related to

the surface heat flux, as it was showed by Grignon et al. [2010]. One could try to explain the

intensity of deep convection by the strength of the winter heat (or buoyancy) losses. The winter

2012 was the 5th coldest winter of the 1980-2012 period according to Era-Interim Reanalysis

(fig. 4.20); 2009, 2010 and 2012 were three of the nine coldest winter of the 1980-2012 period.

However that might not be the only reason, as example, the winter 2004 present a heat loss

superior to 2011, but deep convection or newly-formed water masses were not detected on

CTDs stations (Lopez-Jurado et al. [2005]). The 4-months mean of surface heat or buoyancy

losses might not be sufficient to explain the occurrence of deep convection, strong wind bursts

of a few days duration might play also a role (Leaman and Schott [1991]). But another crucial

parameter is the hydrographic preconditioning of the water column, that can be as important

as the winter buoyancy fluxes (Grignon et al. [2010]).

4.8.2 Surface Buoyancy Flux and Buoyancy Content of the Water Column

Following Marshall and Schott [1999], we can express the surface buoyancy flux, which de-

pends on the heat and freshwater fluxes at the sea surface, as:

B = g

ρ0

(
αθ

cw
Qnet + ρ0βSS(E −P )

)
(Eq. 4–5)

where g = 9.81 m s−2 is the acceleration due to gravity, ρ0=1000 kg m−3 is the density reference,

αθ = 2x10−4 K−1 and βS = 7.6x10−4 are the thermal expansion and haline contraction coeffi-

cients, cw = 4000 J Kg−1 K−1 is the heat capacity of water, Qnet is the surface heat loss, S is the

sea surface salinity and E −P represents the net freshwater flux.

The influence of the stratification of the water column on the deep convection occurrence

can be studied using a 1D approach, where only the surface buoyancy flux is being used to

deepen the mixed layer. This approach was also used in Grignon et al. [2010] and L’Hévéder

et al. [2012].

The buoyancy content BC of the water column is defined as:

BC (t ) = g

ρ0

∫
ρ(z, t )dz (Eq. 4–6)

and the conservation of buoyancy content BC , undergoing a buoyancy flux B between t and
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t +d t :

BC (t +d t ) − BC (t ) =
∫

B dt (Eq. 4–7)

Following Turner’s formalism (Turner [1973]) and hypothesis (the mixed layer h is non

penetrative: the density of the mixed layer is the same one than the one observed at the mixed

layer depth before the deepening), we obtain the equation:

h∂h

∂t
= B(t )

N 2(h)
(Eq. 4–8)

where N is the buoyancy frequency in s−1
(
N 2 =− g

ρ0

∂ρ
∂z

)
, and B the surface buoyancy flux

defined in section 4.8.2 (Eq. 4–5).

Integrating Eq. 4–8 gives:

I S(Z ) =
∫ Z

0
N 2(h)h dh =

∫ t

t0

B(t )dt (Eq. 4–9)

where I S(Z ) represents an index of stratification of the water column (Herrmann et al. [2010]).

In this approach the lateral flux of buoyancy is neglected. We will define Z as equal to 1000m,

t0 as the 1st November and t the end of February.

We calculated I S(Z ) using our mooring data. As describe in section 4.4.3, first we inter-

polated the mooring and buoy data from the surface to 2300m depth. Since there was no

conductivity sensor at the sea surface before November 2011, we did not know the stratification

due to the salinity in the first 200m. We chose to calculate anyway a stratification for the first

200m of the water column using a fixed salinity (the salinity at 170m depth) and we compute

the error due to this calculation. To do that, we used our profile database. We compute I S

for each available profile, then we compute I SS f i x in which salinity was fixed. The difference

give us a good estimation on the error made in I S calculation with a fixed salinity. In this

calculation, we also take into account the error due to the low vertical resolution. We compute

I SS f i x without using the full potential temperature profile, but we used a “undersampled”

potential temperature profile. As in section 4.4.3, we used only the depth levels corresponding

at each mooring instruments depth, then we interpolated linearly the potential temperature

every meter. We used this interpolated profile in the calculation of I SS f i x . For depth greater

than the first conductivity sensor, we did not have to fix the salinity but still we calculated the

error due to the low vertical resolution of the mooring.

Another kind of error can occur in the derivative calculation of N 2, this error is linked to the

intercalibration of the different instruments. As we estimated the accuracy on the potential

density at 0.005 kg m−3, we propagated this error in the calculation of I S. For an integration

to 1000m depth (I S1000), the error due to the accuracy of the conductivity sensor, represents

between 13% and 34% of the profile total error (fixed salinity + vertical discretization + intercal-

ibration), while for an integration down to 2300m (I S2300) the error due to the intercalibration

is comprised between 76% to 92%. This profile total error is indicated by the red vertical lines
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on figs. 4.19 and 4.20.

Finally, the last kind of error considered here, is the error related to the time-representativity

of the mooring profile used for the calculation of I S. To illustrate this, we calculated the mean

and the standard deviation of the distribution of I S, comprising the different I S calculated for

each hourly profile on a 6 days window centered on the 1st November. Then we define this

time-representativity error as three standard deviations. The profile total error is indicated by

a red line on figures 4.19 and 4.20, while the green line corresponded to the sum of the profile

total error with the time-representativity error.

Calculation of I S(1000) from 2008 to 2012 is showed on fig. 4.20 (red circle), with the

profile total error represented by the vertical red lines. The higher is I S(1000), the greater the

integrated buoyancy losses have to be to enable the deep convection to reach 1000m depth. If
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Figure 4.19: Era-Interim surface heat fluxes composition (top) and integrated surface buoyancy loss
(mid) for winter 2007-2008 to winter 2011-2012 from Era-Interim. Red circle indicated (mid) the
integrated buoyancy content of the first 1000m of the water column estimated the 1st November of
each year, using the deep mooring line and the LION surface buoy. The red and green vertical lines
indicate the associated error (see the text for more details).
The bottom panel represent the temporal series of the integrated buoyancy content of the first 1000m
(I S(1000) in red), with the associated error (dotted blue line). The black dots correspond to I S(1000)
calculated on vertical profiles close to the mooring (<40km)

.
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in November, I S(1000) > ∫ Feb.
Nov. B(t )dt , the deep convection will no reach 1000m depth. For

all winter, I S(1000) is below the integrated surface buoyancy losses from the 1st November to

the end of February, indicating that the deep convection could deepen up to 1000m. Another

point is that 2011 seems to be the winter during which the water column was the less stratified

in November. This may explain why 2011 was a “deep-convective” year, while heat losses were

comparable to 2004 (a year without deep convection).

4.9 Conclusion

We have presented here new results from a temporal high resolution survey in the center of

open-ocean deep convection zone, in the Northwestern Mediterranean. Through these 5 year

long timeseries, 5 consecutive winters of deep convection were presented, especially 1 winter

where deep convection has reached 1000m depth (2008) and 4 winters where deep convection

has reached the bottom (2300m depth). In winter 2012, dense shelf water cascading was also

observed on the deep LION mooring.

The time for the mixed layer deepening is comprised between 1 and 2 months. Once the

mixed layer has reached the bottom (usually at the end of January / beginning of February),

there is a violent vertical mixing phase of the whole water column (with a duration of 9-12

days). Winters from 2009 to 2012 present all a second vertical mixing period that generally
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Figure 4.20: Era-Interim mean surface net heat flux (up) and mean surface integrated buoyancy loss
(down) calculated on the 1980-2012 period, from the 1st November to the end of February. Red circle
indicated the integrated buoyancy content of the first 1000m of the water column estimated the 1st
November of each year, using the deep mooring line and the LION surface buoy. The red and green
vertical lines indicate the associated error (see the text for more details).
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occurs in March after the main event of deep ocean convection. This short event (2-4 days)

happens just after the restratification of the area has begun. The water column is not much

stratified at that time and a 3-6 days period of buoyancy loss (due to Mistral/Tramontane

events that are intense and frequent in winter) can easily destabilize the water column, leading

to vertical mixing. We define a “restratification time” of the intermediate layer (200-600m) as

the time needed by this layer to recover 50% of its heat content lost during deep convection.

Using the mean potential temperature for the 200-600m layer for year 2010, 2011 and 2012,

we determine the time for this layer to compensate a half of the heat lost during the deep

convection event, as being comprised between 2.5 and 4.5 months. Finally, we calculate a

“spreading time” of the newly-formed deep water, as the time needed to the water column

to dissipate 50% (respectively 75%) of the potential density increase in the 600-2300m layer,

at the end of the strong vertical mixing phase. The dissipation of 50% (75%) of the potential

density increase in the deep layers due to OODC, takes approximatively 1.5 to 3 months (3 to 6

months), reflecting the spreading and the mixing of the newly-formed deep water with the

ambient deep water.

The long restratification and spreading times that can be observed after each winter of

deep convection show that the restratification/spreading phase is still active at the beginning

of the next deep convection event, indicating a “memory effect” of the water column and a

overlapping of the 3 “phases” of deep convection. This also highlights the crucial need of a cor-

rect modeling of eddies throughout the year if one wants correctly simulate the phenomenon

of deep water formation.

For the first time in the Gulf of Lions, we were able to highlight the seasonal variations of

the vertical structure of horizontal currents between 150m and 2300m depth. 85% to 95% of

the variance of the horizontal currents (between 150m and 2300m depth) can be explained

by the 1st EOF (interpreted as the equivalent barotropic mode, since we did not know the

surface/sub-surface currents), while the second mode (interpreted as the 1st baroclinic mode)

contains 5% to 10% of the variance. Theses new results indicated that the vertical structure

of horizontal currents from 150m to 2300m is mainly barotropic, and seasonal variations in

currents seem to be running as a 4-phase cycle:

◦ a baroclinic and quiet period in late fall,

◦ a baroclinic and energetic period in winter,

◦ a equivalent barotropic and energetic period in spring / early summer,

◦ a equivalent barotropic and quiet period in late summer / early fall

This wintertime excitation of currents may have been generated by the thermodynamic

forcing of the region by surface buoyancy flux. Mesoscale currents become stronger with the

deep convection activity due to the transfer of the potential energy of the ”mixed patch“ into

kinetic energy, and this seems to lead to the ”baroclinization“ of the water column. The evolu-

tion of the baroclinic flow field into a barotropic one might be the result of the geostrophic

turbulence cascade to large scales (Rhines [1979]; Venaille et al. [2012]).

134



Chapter 4. Open-Ocean Deep Convection in the Gulf of Lions

37 eddies were detected between October 2009 and July 2012 (18 anticyclones and 19

cyclones), with radii (velocities) ranging from 0.7 km to 20.0 km (0.9 cm.s−1 to 25.1 cm.s−1).

The main mode of the distribution of eddies radii is centered at 4km for the cyclones and 5km

for the anticyclones. Cyclones might have been mainly formed during the intense vertical

mixing phase, when the very weak stratification leads to a small Rossby radius of deformation,

while anticyclones are detected mainly from the spreading / restratification phase.

The deep LION mooring line is also a useful tool to monitor the formation and the char-

acteristics of new deep water. The newly-formed deep water undergoes, first, a significant

increase of potential temperature (between 0.02 and 0.04°C), due to the deepening of the

mixed layer down to the bottom. Then the intense vertical mixing and strong buoyancy loss

period (9-12 days) produce a decrease of the potential temperature of the mixed layer, and

hence the potential temperature of the newly-formed deep water, ranging from 0.01 to 0.03°C.

Unlike the potential temperature, the salinity of the newly-formed deep water does not shown

significant variations after the deepening of the mixed layer down to the bottom. The salinity

of the new deep water seems to be fixed by the salinity of the mixed layer once it reaches

the bottom, corresponding to an increase between 0.006‰ and 0.012‰, for the 2007-2012

period.

The apparition of newly-formed deep waters was detected after every winter of deep

convection from 2009 to 2012. In winter 2010, two newly-formed deep waters were detected

after the deep convection event. They present a different potential temperature but a similar

salinity, suggesting that both might be formed in the cyclonic gyre, but in different locations.

In 2012, two new deep waters were detected at the mooring location, one was identified as a

result of open-ocean deep convection, while the other seems to be the result of a dense shelf

water cascading event that occurred in winter 2012.

If the long-term increase in salinity of the deep layer seems to be strongly related to the

formation of new salty deep waters, the long-term warming trend of WMDW might be reduced

during very strong event of deep convection, since the strong buoyancy loss during the intense

vertical mixing of the whole water column may decrease the potential temperature of the

mixed layer by several hundredths of degrees and therefore the potential temperature of the

newly-formed deep water.

If the skies are fairly merciful, ocean color images can be a very useful qualitative tool to

assess whether a deep convection event occurred or not. However, alone, they do not enable

us to analyze several events of deep convection quantitatively.

Finally, a comparison between the buoyancy content of the water column before win-

tertime and the surface buoyancy losses integrated on the November-February period was

done. Although the factors responsible of these 5 consecutive deep convection events were

highlighted, this comparison also points out the needs of additional conductivity sensors in

the first 200m of the water column for accurate calculations. In order to minimize the error on

the calculation of the buoyancy content of the water column before the deep convection (an

135



Chapter 4. Open-Ocean Deep Convection in the Gulf of Lions

indication of the “preconditioning state” of the ocean), it would be best to have full profiles

created with a single instrument (like a profiler or a CTD cast) at the end of October / beginning

of November. The repeated surveys that are carried out by gliders in the framework of MOOSE

in the Gulf of Lions may be useful to get 1000m-depth profiles close to the LION mooring.

Further works have to be done to better understand the origin and the fate of the different

eddies detected in this study. Numerical experiments might be a good tool to study the eddy

generation and decay, but numerical grids are certainly too large to describe precisely these

small scale eddies. Thus the combined use of a real-time mooring and gliders would be

a useful tool to easily trigger sampling cruises and followed the evolution of these kind of

eddies. Moreover the recent development of biogeochemical sensors can also be useful to

have additional informations on the "biogeochemical signature" of these eddies and their

potential impacts on triggering phytoplankton blooms in the Northwestern Mediterranean,

since they can carry in their cores complete ecosystems, relatively isolated from the outside.

Another outlook will be to track the spreading of the newly-formed deep water outside

the NWMED (with deep mooring deployed at key locations, together with basin-scale surveys

using gliders and ships, for example), to quantify transports of heat and salt, and the diffusion

linked to the mixing of these new deep waters with the surrounding waters. This heat and

salt diffusion is throughout the spreading of the new deep waters in the Western Basin and in

the Strait of Gibraltar, where some of them are part of the outflow, and therefore part of the

Mediterranean Waters which spread at 1000m depth into the North Atlantic and thus join the

global circulation.
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The Gulf of Lions (GoL) is a micro-tidal, river-dominated continental margin, subject to an

energetic meteorological regime, mainly during Winter (Millot [1990]). The GoL is dominated

by a westward circulation, that promotes a convergence of water and entrained particles

at the southwestern end of the GoL. This trend is greatly enhanced under marine storms

(East-SouthEast), which intensify the cyclonic circulation on the GoL shelf and produce a sea

level rise next to the coast, promoting downwelling conditions that facilitated export of shelf

water (Ulses et al. [2008a]).

The second major mechanism controlling shelf-slope exchanges is Dense Shelf Water

Cascading (DSWC). In winter cold and dry winds (Mistral and Tramontane) may induce strong

buoyancy losses of surface shelf waters through cooling and evaporation. During some years,

this shelf convection may lead to a downslope sinking of surfaces waters into the continental
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shelf canyons, known as DSWC (Durrieu de Madron et al. [2005]). During my PhD thesis I had

the opportunity to collaborate in two studies based on these phenomena, mainly through my

participation to the CASCADE (CAscading, Storm, Convection, Advection and Downwelling

Events) oceanographic cruise in the GoL in March 2011.

The first one was devoted to the study of an episode of sediment transport along the

southern flank of the Cap de Creus Canyon during several moderate eastern storms (in mid-

March 2011). My contribution to this work was mainly done through my participation to the

CASCADE cruise, the acquisition, the data processing and the interpretation of hydrological

data (CTD stations, Shipboard-ADCP). I also contributed to the discussion on the setting up

of the event (its temporal and spatial variability). Results, available in the appendix E, were

published in Biogeosciences under the reference:

Martín, J., X. Durrieu de Madron, P. Puig, F. Bourrin, A. Palanques, L. Houpert, M. Higueras,

A. Sanchez-Vidal, a. M. Calafat, M. Canals, S. Heussner, N. Delsaut, and C. Sotin. 2013. Sedi-

ment transport along the Cap de Creus Canyon flank during a mild, wet winter. Biogeosciences

10: 3221–3239, doi:10.5194/bg-10-3221-2013

I also have the opportunity to collaborate on a paper dedicated to the influence of deep

dense shelf water cascading on the generation of thick bottom nepheloid layers (BNL). This

study is mainly based on oceanographic surveys that took place in the NWMED from 1998 to

2011. It point out the formation of a thick BNL after deep DSWC events off the Gulf of Lions

and Catalan margins, and the link between the thickness, the spreading and the persistence of

the BNL with the volume of newly-formed deep waters after DWSC and OODC events.

My implication in this work was mainly done in the data processing and interpretation of

several oceanographic cruises (DEEP, 42N5E, and CASCADE in which I also participated to the

data acquisition). I also participate to the discussion on the variability and the persistence

of the BNL, especially through the implications OODC events and newly-formed deep water.

The article is available in the appendix F, and was published in Progress in Oceanography

under the reference:

Puig, P., X. D. De Madron, J. Salat, K. Schroeder, J. Martín, A. P. Karageorgis, A. Palanques,

F. Roullier, J. L. Lopez-Jurado, M. Emelianov, T. Moutin, and L. Houpert. 2012. Thick bottom

nepheloid layers in the western Mediterranean generated by deep dense shelf water cascading.

Progress in Oceanography 111: 1–23, doi:10.1016/j.pocean.2012.10.003

In the following of this chapter we present recent results from simultaneous deep DSWC

and OODC events during the Winter 2012. Some results from the mooring line were already

introduced in the previous chapter (chapter 4), but in the following we will stress on a “basin

view” of the events. The first section of this chapter corresponds to a recent work published

in Geophysical Research Letters, in which I participated in the deployment of the different

instruments (CTD, mooring lines), I was responsible for the calibration and the analyze of the
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data and I wrote a part of the paper. The second section of this chapter presents complemen-

tary analysis on the role of eddies on the propagation of newly-formed deep waters. The work

presented in the first section of this chapter is available in the appendix G and was published

in Geophysical Research Letters in April 2013, under the reference:

Durrieu de Madron, X., L. Houpert, P Puig, A. Sanchez-Vidal, P. Testor, A. Bosse, C. Estournel,

S. Somot, F. Bourrin, M. N. Bouin, M. Beauverger, L. Beguery, A. Calafat, M. Canals, C. Cassou,

L. Coppola, D. Dausse, F. D’Ortenzio, J. Font, S. Heussner, S. Kunesch, D. Lefevre, H. Le Goff,

J. Martín, L. Mortier, A. Palanques, and P. Raimbault, 2013. Interaction of dense shelf water

cascading and open-sea convection in the northwestern Mediterranean during winter 2012.

Geophysical Research Letters, 40(7):1379–1385. doi: 10.1002/grl.50331.

5.1 Interaction of Dense Shelf Water Cascading and Open-Ocean

Convection in the Northwestern Mediterranean during Winter

2012

Abstract

The winter of 2012 experienced peculiar atmospheric conditions that triggered a massive

formation of dense water on the continental shelf and in the deep basin of the Gulf of Lions.

Multi-platforms observations enabled a synoptic view of dense water formation and spreading

at basin scale. Five months after its formation, the dense water of coastal origin created a

distinct bottom layer up to a few hundreds of meters thick over the central part of the NW

Mediterranean basin, which was overlaid by a layer of newly formed deep water produced by

open-sea convection. These new observations highlight the role of intense episodes of both

dense shelf water cascading and open-sea convection to the progressive modification of the

NW Mediterranean deep waters.

5.1.1 Introduction

Dense shelf water cascading and open-sea convection coexist in a few regions around the

world such as the Mediterranean (Gulf of Lions, Adriatic Sea, Aegean Sea, CIESM [2009]),

the East/Japan Sea (Kim et al. [2008]), and Greenland Sea (Quadfasel et al. [1988]). However,

interplay between both types of processes on the deep water mass characteristics is still poorly

documented.

In the Gulf of Lions (GoL), dense water formation shows a high interannual variability. It

is mostly produced by surface cooling and evaporation due to cold and dry northern winds,

and preconditioning of the water column. Dense shelf water overflowing the shelf edge

occasionally cascades down to more than 2000 m, resulting in the apparition of fresher and

colder bottom water in the basin (Canals et al. [2006]; Font et al. [2007]). Open-sea convection

involves a progressive deepening of the upper ocean mixed layer, which first reaches the
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warmer and saltier underlying Levantine Intermediate Water and eventually extends all the

way down to the bottom, should the atmospheric forcing be intense enough (L’Hévéder et al.

[2012]).

Although open-sea convection is the main mechanism for the renewal of the WMDW, the

influence of dense shelf water cascading has been suggested by several studies. Analysis of

historical temperature-salinity profiles from the late 1960s suggested mixing of deep cascading

and convection dense waters, with a subdecadal recurrence (Bethoux et al. [2002]), the winters

2005 and 2006 being the last major events (Puig et al. [2012]).
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Figure 5.1: (a) Position of the moorings in the Planier (PLC), Lacaze-Duthiers (LDC), Cap de Creus (CCC)
canyons, on the Catalan continental slope (HC, FOFA), and in the basin (LION), and of the surface
buoys (POEM, MF-LION). Pale color patterns represent the surface Chlorophyll-a concentrations on 22
February 2012 derived from MODIS satellite image. The solid blue line on the shelf shows the offshore
extension of the coldest surface water (<11° C) extracted from satellite-derived sea surface temperature
on 22 February 2012. The V-shaped track represents the glider section performed between 19 February
and 9 March 2012, and colors correspond to the potential temperature at 450 m depth. (b) Section of
potential temperature (color) between the surface and 1000 m depth (or the bottom) along the glider
section. The 29 kg m–3 isopycnal (white line) is superimposed. The horizontal dashed line indicates 450
m depth. Black triangles correspond to the reference points along the section.

142



Chapter 5. Dense Shelf Water Formation in the Gulf of Lions

Here we present a comprehensive set of hydrological and hydrodynamical observations

collected during the winter and summer 2012 that provide new insights on the propagation

and mixing of both type of the dense shelf waters, and their influence on the modification of

the WMDW, as a new step in the Western Mediterranean Transition that started in 2005 CIESM

[2009].

5.1.2 Data and Methods

Six mooring lines and two surface buoys constituted the observational design (Figure 5.1a).

Three moorings were located at 1000 m depth in canyons at the NE (Planier, PLC) and SW

ends (Lacaze-Duthiers, LDC; Cap de Creus, CCC) of the GoL margin, and three others between

1900–2500 m depth on the Catalan continental slope (HC, FOFA) and GoL basin (LION). Two

meteorological buoys were located on the GoL inner shelf of the (POEM), and in the basin

(MF-LION).

All the lines were equipped with current meters between 20 and 45 m above bottom, and

the deepest ones also had a conductivity-temperature-depth (CTD) sensor. The line on the

GoL basin, which extended from the seafloor to 150 m below sea surface, included 5 current

meters, 11 CTD sensors regularly spaced along the line, and 10 supplemental temperature

sensors above 650 m depth. Both buoys had a CTD sensor just below the surface, and the

offshore buoy had also a thermistor string with 20 sensors between 2 and 200 m depth. The

recording period lasted from December 2011 to June 2012.

Winter CTD data were collected between the surface and 1000 m deep with a Sea Glider

deployed along a repeat-section in the GoL (Figure 5.1). A cruise (MOOSE 2012) was conducted

in late July 2012 to perform an extensive CTD survey of the NW Mediterranean basin.

ERA-Interim reanalysis of atmospheric heat fluxes were collected from the European Centre

for Medium-Range Weather Forecasts. We considered the modeled net heat fluxes from one

grid point on the shelf and the closest grid point to the offshore buoy (see X marks in Figure

5.1a).

Merged product of Moderate Resolution Imaging Spectroradiometer (MODIS) and Op-

erational Sea surface Temperature and sea-Ice Analysis (OSTIA) sea surface temperature

was provided by ACRI-ST (http://www.acri-st.fr). MODIS ocean color observations of the

surface chlorophyll-a (OC5 Chl-a products) were provided by the MyOcean project (http:

//www.myocean.eu/).

5.1.3 Results and Discussion

5.1.3.1 Atmospheric Conditions

The winds measured at the offshore buoy from mid- December 2011 to mid-March 2012

showed frequent NNW wind storms with speed ≥ 20 m.s–1 (Figure 5.2a). Several episodes of

strong net heat loss both on the shelf and in the basin occurred in late December 2011 to early

January 2012, and during the first two weeks of February 2012 (Figure 5.2b).
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Figure 5.2: Time series of wind speed, net heat fluxes, potential temperature, and currents between 1
December 2011 and 1 June 2012. (a) Wind speed in the basin, (b) net heat fluxes on the shelf and in
the basin, (c) near-surface temperature on the shelf and in the basin, (d) near-bottom temperature at
1000 m depth in the canyons of the GoL, (e) near-bottom horizontal current speed at 1000 m depth in
the canyons of the GoL, (f) near-bottom temperature on the deep slope, (g) near-bottom horizontal
current speed in the basin, (h) temperature at different depths in the basin, (i) vertical current speeds
at different depths in the basin, and (j) horizontal current speed at different depths in the basin. Grey
bands show the periods of AR weather regime.
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Winter 2012 (i.e., December 2011 to February 2012) can be considered as exceptional over

the North Atlantic and Europe region. Following Cassou et al. [2010], the daily atmospheric

synoptic circulation for this region can be described by four main weather regimes (fig. 5.3) :

the negative (NAO–) and positive (NAO+) phases of the North Atlantic Oscillation, the Blockage

(BL), and the Atlantic Ridge (AR). During a normal winter (DJF), the duration for each weather

regime is respectively 20, 26, 23, and 22 days. However, during winter 2012, no day of NAO–

was observed, whereas 44 days (+100%) of AR occurred. NAO+ and BL were closer to normal

statistics. The AR regime is characterized by an anticyclonic anomaly in the North Atlantic and

a cyclonic anomaly over the Baltic Sea, which is particularly favorable to strong, cold, and dry

northerly winds over the GoL enhancing air-sea heat fluxes. During winter 2012, six periods

could be identified with at least four consecutive days of AR conditions: 17–20 December, 4–14

January, 19–26 January, 2–5 February, 10–20 February, and 23–26 February. These episodes

match well with the strong wind and intense heat loss events over the GoL (Figures 5.2a and

5.2b). It is worth to note that the AR pattern (based on daily weather regimes obtained by

k-means objective classification) looks very similar to the negative phase of the East Atlantic
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Figure 5.3: Centroids of the four weather regimes obtained from daily anomalous geopotential height
at the 500-hPa altitude from the National Center for Environmental Prediction/National Center for
Atmospheric Research (NCEP/NCAR) Reanalysis, adapted from Cassou [2008]
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pattern identified by Josey et al. [2011] (based on monthly-mean climate pattern obtained by

EOF techniques). Since 1958, the winters (DJF) with large positive anomalies of the number of

AR days (at least +25%) and large negative anomalies of the number of NAO– days (at least

-25%) were: 1966–1967, 1972–1973, 1975–1976, 1980–1981, 1998–1999, 1999–2000, 2004– 2005,

and 2011–2012. Most of these winters correspond to years when thermo-haline anomalies

indicative of intense shelf and open-sea convections were observed in the basin Bethoux et al.

[2002]; Puig et al. [2012].

5.1.3.2 Formation of Dense Water on the Shelf and Cascading Along the Continental Slope

The winter heat loss induced a significant cooling of surface water (Figure 5.2c), especially on

the inner and mid-shelf (Figure 5.1a). Temperature on the inner shelf was below 10°C during

most of February, and fell to a minimum of 8°C on 13 February 2012 (Figure 5.2c). With this

temperature and a salinity of 38.10, the potential density anomaly of the dense shelf water

reached 29.710 kg m–3, which exceeded the maximum density of the deep basin prior to the

winter 2012 (29.126 kg m–3).

The signature of dense water cascading in the GoL canyons was clearly visible through the

temperature drop associated with strong downcanyon currents. While the eastern PLC did

not exhibit significant changes, the southwestern LDC and CCC showed from 5 February 2012

to mid-March 2012 several episodes of dense shelf water cascading beyond 1000 m deep with

a sharp temperature drop of 1 to 3°C (Figure 5.2d) and currents up to 125 cm.s–1 (Figure 5.2e).

The cascading started earlier and was stronger in the CCC. The main cascading episode on 11

February 2012 was concomitant with the appearance of the coldest and densest water on the

shelf (Figure 5.2c). A bottom plume of cold dense water about 200 m thick was visible in early

March on the western end of the glider section along the LDC (Figure 5.1b).

The first anomaly reached the deep slope about 5 days after the main episode of dense

water cascading off the GoL shelf. At 1900 m depth on the Catalan slope, a brief temperature

drop of 0.15°C, indicating the passage of dense coastal waters was observed on 18 February

2012, while at ≈2500 m depth, the appearance of dense coastal waters was stronger (drop

of 0.45°C) and earlier (16 February 2012) (Figure 5.2f). For both sites the temperature drops

lasted until the beginning of April 2012.

Farther northeast in the basin, the signal of dense shelf water reached (≈2350 m depth) on

28 February 2012 (Figure 5.2h), and was delineated by potential temperature ≤ 12.905°C and

density anomaly ≥ 29.13 kg m–3 corresponding to the horizontal cusp on the Theta-S curves

(Figure 5.4). The temperature drops (up to 0.1°C) were primarily perceived near the bottom

(last few hundred meters above the seabed). However, on some occasions, the negative

thermal anomaly reached shallower levels of the water column, indicating the passage of

plumes of dense shelf water of variable thickness. On 2–3 March 2012, and on 9–10 April 2012,

remarkable anomalies were visible between the bottom and 1000 m depth (Figure 5.4). The

maximum density of the new bottom water at the basin site reached 29.135 kg m–3.
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Figure 5.4: (a) Surface plot of temperature and salinity in the basin site (LION) between 1 December
2011 and 1 June 2012. The horizontal dashed-dotted lines indicated the depth of the sensors. The thick
dashed line depicts the upper limit of water denser than 29.126 kg m–3, and the thick solid the upper
limit of bottom water denser than 29.13 kg m–3 and colder than 12.905°C. Theta-S plots (b) prior to
the deep water formation, (c) at the time of arrival of the mixing layer at the bottom, (d) at the end
of the strong mixing period, (e) during the apparition of colder and fresher bottom water, (f) during
the spreading period. The colors correspond to the CTD measurements during a 12 h interval at the
different levels (from the shallowest one in blue to the deepest one in dark red). The grey patterns
represent the measurements during the month preceding the date of each diagram.
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5.1.3.3 Formation of Dense Water in the Open Sea

The winter heat losses in the basin cooled the surface layer down to 12.6°C (Figure 5.2c). At the

basin site, strong vertical mixing was evidenced by high frequency vertical velocities of about

±10 cm.s–1 (Figure 5.2i). The thickening of the mixed layer started in December 2011, reaching

the Levantine Intermediate Water layer (characterized by a relative maximum temperature and

salinity between 200 and 700 m depth, Figure 5.4) around mid-January 2012 and deepened

rapidly to reach the seabed at 2350 m on 10 February 2012, provoking an increase of the

near-bottom temperature and salinity (Figures 5.2h and 5.4). Between 10 and 17 February

2012, the sustained surface heat loss produced a supplementary cooling of the mixed water

column of 0.04°C with no significant change of salinity. Hence, with a potential temperature

of 12.905°C and a salinity of 38.508, the maximum density of the new deep water formed by

open-sea convection at the basin site reached 29.134 kg m–3 (Figure 5.4). It eventually formed

a deep layer, whose upper limit was identified with the isopycnal 29.126 kg m–3 (maximum

bottom density encountered at the three deep sites prior to the convection period), overlying

the bottom water layer (Figure 5.4).

The surface signature of the convection zone was recognized by a minimum surface

chlorophyll concentration (< 0.1 µg L–1, Figure 5.1a). The temperature and density distribution

along the glider section across the northern half of the GoL basin confirmed the extension

of the convection area down to 1000 m deep (Figure 5.1b). These observations suggest that

the region of intense vertical mixing extended over a large (≈70 km radius) area, with the

basin site being in the central part, and the deep slope sites being on the periphery. The open-

ocean convection signal was sensed at the 1900 m site as a slight increase of near-bottom

temperature preceding the arrival of cold dense shelf water, but it barely reached the 2500 m

site. (Figure 5.2f).

5.1.3.4 Propagation of Newly Formed Deep and Bottom Water in the Deep Basin

Horizontal currents at the basin site were mostly barotropic and isotropic. Current speeds in-

creased at the onset of newly deep waters advent, reaching maximum of 30 to 40 cm.s–1 during

March and April, and decreasing afterward (Figure 5.2j). At the deep slope site, the period of

strongest current speed was shorter (from mid-February to mid- March) and coincided with

the cascading period (Figure 5.2g). At both sites, the currents presented large fluctuations

around 2–15 days due to strong eddies contributing to the spreading of the newly-formed

deep water, as shown by Testor and Gascard [2006].

The progressive spreading of the newly formed water by open-sea convection during

the restratification period generated a ≈300 m thick layer, overlying bottom dense waters of

coastal origin, ≈150 m thick (Figure 5.4). The extent and thickness of the newly formed deep

and bottom waters remaining in the GoL and Ligurian basins in summer showed that the

combination of the two layers formed a dome-shaped lens, with a maximum total thickness of

520 m (average 206 m) embracing the winter convection region (Figure 5.5a). The new deep

water layer’s thickness averaged 110 m, whereas the layer of new bottom water was thinner
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and averaged 96 m. However, the summer survey evidenced the presence of two isolated

stations on the western part of the lens with anomalous bottom water extending 1100 m above

the seafloor (points d and e in Figure 5.5), likely indicative of eddies.

56 55

54
53

52

51

50
20

47
46
43
45

44

Figure 5.5: CTD stations performed during the summer cruise MOOSE (24 July to 8 August 2012), and
cumulative thickness of the deep and bottom layers denser than 29.126 kg m–3. The blue line indicates
the hydrological section and the blue number indicated the CTD station discussed in the section 5.2
(a). Theta-S diagrams showing pre-2012 deep waters (square, b) and newly-formed ones (circle, c).
Theta-S diagrams of the two peculiar stations (stars, d and e) showing a bottom anomaly extending
about 1100 m above the seabed (not used in the mapping of thickness of the deep and bottom layers).
The numbers indicate depths of the upper limit of the deep and bottom layers, and of the seabed.
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5.1.3.5 Volume Estimates

The estimated volume of dense (≥ 29.126 kg m–3) water formed by open-sea convection

during the winter 2012, considering thickness of the mixed patch ≈2.2 km and a surface of

≈15,500 km2 (horizontal extent with chl-a concentration ≤0.1 µg L–1, Figure 5.1a), amounted

to about 34,100 km3, which corresponds to an annual mean flux of ≈1.1×106 m3 s–1. This

flux is close to the mean production rate for the two winters 2005 and 2006 (≈2.4×106 m3 s–1)

estimated by Schroeder et al. [2008]. The flux of dense shelf water cascading down the CCC,

which concentrates about half the total volume of dense shelf water exported beyond 1000 m

depth according to Ulses et al. [2008a], was approximated using the observed current speed

associated with water colder that ambient water (i.e., θ ≤ 12.92°C), and a plume cross-section

of 200 m thick (inferred from Figure 5.1b) and 4 km wide (local canyon width). The cascading

period accounted 43 days with a mean downcanyon speed of 36.6 cm s–1, and the volume of

dense shelf water exported beyond 1000 m depth in the CCC amounted to ≈1,100 km3, which

was comparable to the volume estimated by Ulses et al. [2008a] for the winter 2005. Assuming

that the CCC exports half the total volume of dense shelf water, the mean flux to the basin

corresponds to 0.07×106 m3 s–1, which is one order of magnitude less than the production of

dense water by open-sea convection.

The volumes of newly formed deep (σθ ≥ 29.126 kg m–3) and bottom (σθ ≥ 29.13 kg m–3

and θ ≤ 12.905°C) waters that have not yet been advected or diffused out of the central part

of the NW Mediterranean in summer 2012 (Figure 5.5a) were estimated at 14,000 and 7,600

km3, respectively. Albeit these values underestimated the actual volumes because the cruise

did not cover the entire deep basin, the large in- crease of the volume of bottom water, with

respect to that of the dense water exported from the shelf, implied a large entrain- ment of

ambient waters during its propagation down the slope and in the basin, including newly-

formed deep water. Finally, these volumes were large enough to markedly alter the thermo-

haline characteristics of the deep basin even more, hence contributing to amplify the Western

Mediterranean Transition CIESM [2009].

5.1.4 Concluding Remarks

Coastal and open-ocean deep convections are phenomena that ventilate the deep waters of

the NW Mediterranean, and are potentially key processes for the climate variability. These

observations allow to definitively conclude on the origin of the thermohaline anomalies that

were repeatedly observed over the last 40 years in the GoL. Although the preconditioning

is certainly a key factor, we showed that the combined formation of deep water of coastal

and open-sea origin is likely related to peculiar large-scale atmospheric circulation patterns.

This study provides a first quantitative benchmark and, in particular, useful estimates of

spatial and temporal scales associated with these ventilation mechanisms. This reference case

can contribute to improve the capacity of the numerical ocean models that do not yet well

reproduce deep convections for thorough analyses of their impact on the long-term variability

of the WMDW.
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5.2 Complementary Results on Newly-Formed Deep Water Spread-

ing in 2012

5.2.1 Eddy of newly-formed deep water flowed off Minorca

Additional results from the MOOSE-GE 2012 oceanographic cruise are presented on figure 5.6.

In addition to the potential temperature and salinity section, we presented also the voltage

signal of the Underwater Vision Profiler (UVP). This optical instrument, coupled to the CTD-

Rosette package (Picheral et al. [2010]), acquires focus images in a virtual volume of water

delimited by a light sheet issued from red light-emitting diodes (LEDs) of 625 nm wavelength

at a frequency up to 6 Hz. The smaller size limit is fixed by optical resolution, whereas the

larger size limit is determined by the volume of water illuminated per image. Recorded images

can be automatically digitized, classified and analyzed, and the results can be expressed

as abundance and/or size distributions. It enables to quantify the vertical distribution of

macroscopic particles and zooplankton between 60 µm and 26 mm in size.

One can clearly see a strong dooming of the deep isopycnal at the station 54 (fig. 5.6, also

corresponding to the cast “e” in the 5.5). The 750m elevation of the 29.128 kg.m−3 isopycnal at

the station 54, together with the salinity anomaly from 200m to 2000m (fig. 5.6) may indicate

the presence of a cyclonic eddy with a deep core composed from newly-formed deep water

(S >38.5). Below this salty core, salinity and temperature decrease, and the potential density

anomaly exceeds 29.132 kg.m−3. The density of the bottom water is denser that the one

observed during previous winters (chapter 4, figure 4.9) and this water mass is colder and

fresher compared to the rest of the cross-basin hydrological section (fig. 5.6), indicating that

this bottom water mass may have its origin in the 2012-DSWC event (see previous section).
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Figure 5.6: Potential temperature, salinity and a proxy of the particulate suspended matter (bottom)
measured during the MOOSE-GE 2012 campaign. White and black contour line represent the potential
density anomaly (kg m−3). Locations of CTD stations are indicated on figure 5.5. The colormap is
saturated in light brown for temperature above 13.4, salinity above 38.51 and signal of UVP exceeding 2.
The same applies to salinity lower than 38.2 with a colormap saturated in light pink.

The relative cold and fresh θ/S anomalies of the bottom water mass observed during the

CTD-station 54, is 500m thick, and is also related to a 500m elevation of the 29.132 kg.m−3

isopycnal. Moreover a clear signal on the UVP voltage channel was recorded when the CTD-

Rosette has penetrated the bottom water mass (fig. 5.6). Another bottom turbidity anomaly

was detected in the middle of the basin, near 42°N, 5°E at the CTD station 20 (see figure 5.5 for a

more accurate location). Even if this turbidity anomaly is twice thinner than the one observed

during the CTD cast 54, it is still 400m thick. In this case as well, the increased turbidity is also
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related to an increase of the bottom potential anomaly density. These observations support

results of the study made by Puig et al. [2012], where the formation, the spreading and the

persistence of thick bottom nepheloid layer in the Gulf of Lions were related to dense water

formation events (by DSWC and OODC).

Finally this eddy was detected off Minorca, in a region of strong f /h gradients. As the

displacement of water masses is highly constrained by the f /h contours. This region might

be view as a channel for the exportation of newly-formed water masses. This idea supports

results from Send et al. [1996], who have estimated that 50% of the newly-formed water could

be incorporated into the boundary current and thus into the general circulation.
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Figure 5.7: (Continued on the following page.)
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Figure 5.7: Salinity, temperature, eddy current, and progressive vector diagram of the eddy crossing
the mooring line the 10 April 2012. White horizontal thin lines on salinity and temperature graph,
correspond to isopycnals. Vertical black lines correspond to the eddy center and black dotted vertical
lines correspond to the eddy rim. On the progressive vector diagram, the color line corresponds to
total velocity recorded by the 1000m current meter with a colormap corresponding to the temperature
recorded by the 300m microcat instrument, while the black line corresponds to the estimated advection.
Green cross and circles indicate respectively the center and the rim of the eddy. The projection of the
horizontal velocity recorded by the current meter onto the advection direction gives us the observed
velocity perpendicular to the advection, corresponding to the eddy velocity (bottom left panel).

5.2.2 Eddy of DSWC observed at the deep mooring line LION

As presented in the chapter 4, figure 4.9 and in this chapter, figure 5.4, a remarkable signal

occurred the 10 April 2012 after that the MLD has reached the bottom, corresponding to a

strong decrease in θ (-0.1°C) and S (-0.03) that indicates the arrival of dense shelf water to the

mooring location. Using the eddy detection method (see section 4.3.2), this strong signal was

identified as a cyclonic eddy crossing the mooring (figure 5.7). Its core radius was estimated to

be 12.0 km with a peak observed azimutal speed of 15.7 cm.s-1.

Even if the mooring line has sunk of 300m due to intense horizontal velocity >35 cm.s-1

(maximal value of 15.7 cm.s-1 for the eddy velocity plus an advection estimated at 20.0 cm.s-1,

table 4.4), one can cleary see on the figure 5.7, the 1000m elevation of the 29.132 kg.m−3

isopycnal corresponding to the eddy center detection. The maximal elevation of the 29.132

kg.m−3 was also associated to a 400m-thick bottom thermohaline anomaly with low values for

θ and S that supports the hypothesis of a “coastal” origin for this deep water mass. The cyclonic

direction of rotation for this eddy can also be found through the progressive vector diagram of

the figure 5.7, and using the simple case studies presented in the chapter 4, section 4.3.2. As

the progressive vector diagram of the observed current is deviating to the left compared to the

perpendicular to the direction of the advection, this eddy has to be a cyclonic eddy.
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Seasonality of the Upper Layer Stratification in the Mediterranean

A new climatology of the thermocline slope was produced for the Mediterranean, on a 0.5° lat-

itude x 0.5° longitude x 12 months grid based on more than 140 000 profiles collected between

1969 and 2012. The distribution of the depth of the thermocline, together with the thermocline

slope and the upper-ocean temperature revealed well known features of the Mediterranean

circulation like the deep water formation zones or the anticyclonic and cyclonic gyres of the

Cretan Arc. By pushing forward the analysis we were able to build the first climatology of

the upper-ocean heat rate in the Mediterranean, based only on in-situ oceanographic data.

This constitutes a new benchmark in particular for the development of ocean and/or coupled

models. We highlight the implication of known Mediterranean circulation patterns in the

heat storage and horizontal redistribution at a sub-basin scale. The seasonal cycle of the

basin-mean upper ocean heat storage rate is estimated as varying from -162.5 ± 5.2 W m−2 in

December to +129.8 ± 3.4 W m−2 in June, and its annual value is estimated at -2.6 ± 4.1 W m−2.

On an annual basis, the decrease of the upper ocean heat storage rate is partly compensated

by an increase in the upper ocean heat entrainment rate estimated as +2.2 ± 2.0 W m−2. Since

the uncertainties on our results are superiors to the total upper ocean heat rate (the sum of

storage and entrainment terms: - 0.4 ± 4.6 W m−2), we cannot establish a significant long-term

trend in the warming or cooling of the upper Mediterranean layer. The limitations of our

studies (period covered, uncertainties) stress the need of sustained synoptic and long-term

observing systems (repeated cruises, Argo profiling floats, network of gliders).

In addition to the important role that the oceanic mixed layer may play in the physical

climate, particularly in the heat storage, this layer has also a major influence on chemical and

biological processes (including the phytoplankton which is the first element of the marine

trophic chain). The mixed layer depth control on the phenology of phytoplankton in the

Mediterranean was also investigated through a collaboration with biogeochemists. If the

MLD and the surface chlorophyll peaks are concomitant in the “no bloom” regime, MLD peak

precedes surface chlorophyll peak by about 30 days in the ’bloom“ regime. Moreover for the

“No Bloom” regime, observations indicate that phytoplankton would never be limited by light,

whatever the MLD, and would even grow during the winter period thanks to small nutrient

157



Conclusions (English)

inputs. For the “Bloom” regime, the important supplies of nutrients in surface waters by deep

mixing and the low uptake rate by phytoplankton (episodically limited by a deficit of light),

lead to the hypothesis that the nutrients accumulate in surface waters during winter, which

could explain the 30 days time-lag between MLD and surface chlorophyll peak, characteristic

of the “Bloom” regime.

Interannual Variability of Dense Water Formations in the Northwest-

ern Mediterranean

Open-Ocean Deep Convection and Dense Shelf Water Cascading in the Gulf of Li-
ons

The LION mooring line, together with CTD stations and glider deployments carried out in the

Gulf of Lions since 2007, compose one of the major dataset used in this thesis. The deep LION

mooring was set up in the Gulf of Lions in 2007 and is still maintained in the framework of

the observing system MOOSE. The line was equipped with 8 to 26 instruments with currently

20 temperature sensors, 10 conductivity sensors and 5 current meters spanning between

150m and 2300m depth. Through these 5 year long timeseries, 5 consecutive winters of deep

convection were monitored, especially 4 winters where deep convection has reached the

bottom (2300m depth).

Several temporal scales associated to the deep convection process have been precised for

the first time:

• The time for the mixed layer deepening is comprised between 1 and 2 months

• If the mixed layer has reached the bottom (usually at the end of January / beginning of

February), there is a violent vertical mixing phase of the whole water column (with a

duration of 9-12 days)

• The 4 severe winters (from 2009 to 2012) present a second vertical mixing period that

generally occurs in March after the main event of deep ocean convection. This short event

(2-4 days) happens when the water column is not fully stratified and a 3-6 days period

of buoyancy loss (like winter storm) can easily destabilize the water column, leading to

vertical mixing

• We define a ”restratification time“ of the intermediate layer (200-600m) as the time

needed by this layer to recover 50% of its heat content lost during deep convection. For

the years 2010, 2011 and 2012, the ”restratification time” is ranging between 2.5 and 4.5

months.

• A “spreading time” of the newly-formed deep water was defined as the time needed to

the water column to dissipate 50% (respectively 75%) of the potential density increase

in the 600-2300m layer that occurred at the end of the strong vertical mixing phase. It

takes approximatively 1.5 to 3 months (resp. 3 to 6 months), reflecting the spreading and

mixing of the newly-formed deep water with the ambient deep water.
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The long restratification and spreading time that can be observed after each winter of

deep convection show that the restratification/spreading phase is still active at the beginning

of the next deep convection event, indicating a “memory effect” of the water column and

a overlapping of the 3 “phases” of deep convection. This also highlights the crucial need

of a correct modelization of eddies throughout the year if one wants correctly simulate the

phenomenon of deep water formation.

For the first time in the Gulf of Lions, we were able to highlight the seasonal variations of

the vertical structure of horizontal currents between 150m and 2300m depth. 85% to 95% of

the variance of the horizontal currents (between 150m and 2300m depth) can be explained

by the 1st EOF (interpreted as the equivalent barotropic mode, since we did not know the

surface/sub-surface currents), while the second mode (interpreted as the 1st baroclinic mode)

contains 5% to 10% of the variance. Theses new results indicated that the vertical structure

of horizontal currents from 150m to 2300m is mainly barotropic, and seasonal variations in

currents seem to be running as a 4-phase cycle:

◦ a baroclinic and quiet period in late fall,

◦ a baroclinic and energetic period in winter,

◦ a equivalent barotropic and energetic period in spring / early summer,

◦ a equivalent barotropic and quiet period in late summer / early fall

This wintertime excitation of currents may have been generated by the thermodynamic

forcing of the region by surface buoyancy flux. Mesoscale currents become stronger with the

deep convection activity and the transfer of the potential energy of the ”mixed patch“ into

kinetic energy, increasing the ”baroclinization“ of the water column. The evolution of the

baroclinic flow field into a barotropic one might be the result of the geostrophic turbulence

cascade to large scales Rhines [1979]; Venaille et al. [2012].

Using a wavelet-based detection method of isolated horizontal velocity anomalies, 37

eddies were detected between October 2009 and July 2012 (18 anticyclones and 19 cyclones).

The radii (velocities) ranging from 0.7 km to 20.0 km (0.9 cm.s−1 to 25.1 cm.s−1). The main

mode of the distribution of eddies radii is centered at 4 km for the cyclones and 5 km for the

anticyclones. Cyclones might have been mainly formed during the intense vertical mixing

phase, when the very weak stratification leads to a small Rossby radius of deformation, while

anticyclones are detected mainly from the spreading / restratification phase.

The high temporal resolution of the mooring line enable a fine survey of the formation of

new deep water and the evolution of their potential temperature and salinity characteristics.

For the winters with an open-ocean convection that has reached the bottom, there is first a

significant increase of potential temperature (between 0.02 and 0.04°C) in the bottom layer,

due to the deepening of the mixed layer down to the bottom. Then the intense vertical mixing

and strong buoyancy loss period (9-12 days) produce a decrease in the potential temperature
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of the mixed layer, and hence the potential temperature of the newly-formed deep water,

ranging from 0.01 to 0.03°C. Unlike the potential temperature, the salinity of the newly-formed

deep water does not shown significant variations after the deepening of the mixed layer down

to the bottom. The salinity of the newly-formed deep water seems to be fixed by the salinity of

the mixed layer once it reaches the bottom, corresponding to an increase between 0.006‰ and

0.012‰, for the 2007-2012 period.

The apparition of newly-formed deep waters was detected in winter 2009, 2010, 2011 and

2012. In winter 2010, two newly-formed deep waters were detected after the deep convection

event, both present a different potential temperature but a similar salinity, suggesting that

both might be formed in the cyclonic gyre, but in different locations. In 2012, two new deep

waters were detected at the mooring location, one was identified as a result of open-ocean

deep convection, while the other seems to be the result of a dense shelf water cascading event

that occurred in winter 2012.

For all winters we found that the integrated surface buoyancy losses from the 1st November

to the end of February, based on Era-Interim reanalysis, are higher than the buoyancy content

of the water column before each event of deep convection. This indicates that the water

column is not enough stratified at the beginning of November to prevent the deepening of

the convection, assuming than the horizontal advection of buoyancy content is relatively low

at that time. On the 5 winters studied, 2011 seems to be the winter during which the water

column was the less stratified in early November. This may explain why 2011 was a “deep-

convective” year, while heat losses were comparable to 2004 (a year without deep convection).

For the winter 2011/2012, five additional mooring lines were used to monitor the forma-

tion and the propagation of an intense event of dense shelf water cascading that spread into

the deep basin. The arrival of dense shelf water to the location of the LION mooring line

has caused a strong decrease in θ (-0.1°C) and S (-0.03). This strong signal was identified as

associated to a cyclonic eddy with a core radius estimated to be 12.0 km and a peak observed

azimutal speed of 15.7 cm.s-1. The detected eddy center was also related to a 1000m-elevation

of the 29.132 kg.m−3 isopycnal and to a 400m-thick bottom thermohaline anomaly with low

values for θ and S that supports the hypothesis of a “coastal” origin for this deep water mass.

Impacts on Particle Fluxes and Deep Ecosystems Activity

Open-Ocean Deep Convection and Dense Shelf Water Cascading are key processes that con-

nect the surface ocean to the deep ocean. In addition to heat and salt, dense water formations

may transfer also biogeochemical components to the deep water, like oxygen and inorganic

and organic matter, contributing to the ventilation and the “feeding” of the deep pelagic and

benthic ecosystems.

Trough collaborations with biogeochemists and sedimentologists, the influence of dense

water formations on bottom sediment resuspension, and therefore on the thickness, the
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spreading and the persistence of the bottom nepheloid layer were investigated. The significant

remobilization of sediments, in the basin of the Gulf of Lions after dense water formation

events, has been also likely to induce a subsequent alteration of the seabed and to impact the

functioning of the deep-sea ecosystem. Dense water formation events and the spreading of

newly-formed deep water were also revealed as an important factor in the activity of deep-sea

pelagic ecosystem by fueling it through the supply of relative “fresh” organic matter, and thus

by stimulating bioluminescence activity.

Research Perspectives

Future comparisons between the Mediterranean climatology of the upper ocean heat rate

and other heat fluxes climatologies may be useful to test heat fluxes parameterization and

thus improve the accuracy of Atmosphere-Ocean Global Circulation Models, particularly in

the context of long term climate simulations that require, among others, a good modeling of

the thermohaline circulation. Future works would also be to compare our estimated monthly

climatology of horizontal advection of heat in the upper ocean to other estimates, like oceanic

simulations and/or other climatologies deduced from surface geostrophic currents estimates.

In this study, a comparison between the buoyancy content of the water column before

wintertime and the surface buoyancy losses integrated on the November-February period was

done. Although the factors responsible of these 5 consecutive deep convection events were

highlighted, this comparison also points out the needs of additional conductivity sensors in

the first 200m of the water column for accurate calculations. In order to minimize the error

on the calculation of the buoyancy content of the water column before the deep convection

(an indication of the “preconditioning state” of the ocean), full profiles created with a single

platform of measurements at the end of October / beginning of November might be useful.

Thus, the repeated surveys that are carried out by gliders in the framework of the observing

system MOOSE in the Gulf of Lions are valuable to get 1000m-depth profiles close to the LION

mooring.

Further works have to be done to better understand the origin and the fate of the different

sort of eddies detected in this study. Numerical experiments might be a good tool to study

the eddy generation and decay, but numerical grids might be to large to describe precisely

these small scale eddies (more than 50% of cyclones and anticyclones detected have a radius

inferior to 6 km). Thus the combined use of a real-time mooring and gliders would be a useful

tool to easily trigger sampling cruises and follow the evolution of these kinds of eddies. More-

over the recent development of biogeochemical sensors can also be useful to get additional

informations on the "biogeochemical signature" of these eddies and to study their potential

impacts on triggering phytoplankton blooms in the Northwestern Mediterranean, since they

can carry in their cores complete ecosystems, relatively isolated from the outside.

Another perspective will be to track the spreading of the newly-formed deep water outside

the NWMED (with a network of deep moorings deployed off Minorca and between Minorca
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and Sardinia, for example), to quantify transports of heat and salt. The heat and salt diffusion

is made throughout the spreading of the new deep waters in the Western Basin and in the

Strait of Gibraltar, where some of them are part of the outflow, and therefore part of the

Mediterranean Waters which spread at 1000m depth into the North Atlantic and thus join

the global circulation. Different subbasin-scale surveys using gliders and ships could be very

valuable to monitor the mixing of the newly-formed deep waters with the surrounding waters

in different subbasin (Alboran Sea, Algerian Basin, Tyrrhenian Sea).
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Cycle saisonnier de la stratification de la couche de surface en Médi-

terranée.

Une nouvelle climatologie de la pente de la thermocline a été produite pour la Méditerranée,

sur une grille de 0.5° de latitude x 0.5° de longitude x 12 mois, construite à partir de plus de 140

000 profils recueillis entre 1969 et 2012. La distribution de la profondeur de la thermocline,

ainsi que la pente thermocline et la température supérieure de l’océan révèlent des traits

bien connus de la circulation océanique en Méditerranée, comme les zones de formation

d’eaux profondes, ou les tourbillons cycloniques et anticycloniques qui bordent la Grèce.

En développant notre analyse, nous avons pu construire la première climatologie du taux

de chaleur dans la couche de surface de la Méditerranée, basée uniquement sur des don-

nées océanographiques in situ. Cela constitue une nouvelle référence, en particulier pour

le développement des modèles océaniques et/ou couplés. Nous soulignons dans ce travail

l’implication de composantes, connues dans la circulation méditerranéenne, dans le stockage

de la chaleur et sa redistribution horizontale à l’échelle des sous-bassins. En moyenne sur

l’ensemble de la Méditerranée, le cycle saisonnier du taux de stockage de chaleur dans l’océan

de surface varie de -162,5±5,2 W m −2 en Décembre à 129,8±3,4 W m −2 en Juin. Sa valeur

annuelle est estimée à -2,6±4,1 W m −2 en moyenne. Sur une base annuelle, la baisse du

taux de stockage chaleur dans la partie supérieure de l’océan, est en partie compensée par

une augmentation du taux de chaleur lié à l’entrainement des couches inférieures et estimé

à +2,2±2,0 W m −2. Étant donné que les incertitudes sur nos résultats sont supérieures à la

valeur moyenne du taux de chaleur (la somme des termes de stockage et d’entraînement est

de -0,4±4,6 W m −2), nous ne pouvons pas établir clairement de tendance significative à long

terme dans le réchauffement ou le refroidissement de la couche supérieure de la Méditerranée.

Les limitations de cette étude (période couverte, incertitudes dans nos calculs) soulignent

l’importance de maintenir sur le long-terme des systèmes d’observation synoptiques (répéter

des campagnes océanographiques à l’échelle du bassin et des sous-bassins, maintenir et

développer les flotteurs profileurs Argo ainsi que des réseaux de gliders), afin d’améliorer

notre compréhension des processus mais aussi de réduire les incertitudes sur nos calculs.
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En plus de jouer un rôle important dans la physique du climat (transport de chaleur), la

couche de mélange a une influence majeure sur les processus chimiques et biologiques de

surface (notamment sur le phytoplancton, premier maillon de la chaîne alimentaire marine).

Le contrôle de la couche de mélange océanique sur la phénologie du phytoplancton en

Méditerranée a également été étudié à travers une collaboration avec des biogéochimistes. Si

la couche de mélange et les pics de chlorophylle en surface sont concomitants dans le régime

“Non-Bloom”, le pic de couche de mélange précède le pic de chlorophylle de surface d’environ

30 jours dans le régime “Bloom”. Par ailleurs, pour le régime ”Non-Bloom“, les observations

indiquent que le phytoplancton ne serait jamais limité par la lumière, quelque soit la couche

de mélange, et qu’il pourrait même croître au cours de la période hivernale grâce à de faibles

apports de nutriments. Pour le régime ”Bloom”, les apports importants de nutriments dans les

eaux de surface par le mélange profond et le faible taux d’absorption par le phytoplancton

(épisodiquement limité par un déficit de la lumière), conduit à l’hypothèse que les nutriments

s’accumulent dans les eaux de surface pendant l’hiver, ce qui pourrait expliquer le décalage

de 30 jours entre la couche de mélange et le pic de chlorophylle de surface, caractéristique du

régime “Bloom”.

Variabilité interannuelle des formations d’eaux denses en Méditerra-

née Nord Occidentale

La convection profonde en haute mer et les plongées d’eau dense côtière dans le
Golfe du Lion.

La ligne de mouillage LION, ainsi que les stations CTDs et les déploiements de gliders, réalisés

dans le Golfe du Lion depuis 2007, constituent la majeure partie du jeu de données utilisé

pendant cette thèse. Le mouillage profond LION a été mis en place dans le Golfe du Lion en

septembre 2007 et reste maintenu dans le cadre du service d’observation MOOSE. La ligne

a été équipée progressivement de 8 à 26 instruments. Actuellement elle compte 20 capteurs

de température, 10 capteurs de conductivité et 5 courantomètres, s’étalant de 150m à 2300m

de profondeur. Au cours de ces cinq années de suivi, cinq hivers consécutifs de convection

profonde ont été enregistrés, dont les quatre derniers où la convection est allée jusqu’au fond

(2300 m).

Différentes échelles temporelles associées au processus de convection profonde ont pu

être précisées pour la première fois :

• La durée que met la couche de mélange pour s’approfondir est comprise entre 1 et 2

mois.

• Si la couche de mélange a atteint le fond ( généralement à la fin de Janvier / début

Février ), il y a toujours ensuite une phase de mélange vertical violente de toute la

colonne d’eau (entre 9 à 12 jours)

• Les 4 hivers rigoureux (2009-2012) présentent une seconde période de mélange verti-
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cal qui se produit généralement en Mars après l’événement principal de convection

profonde. Cet événement de courte durée (2-4jours) se produit lorsque la colonne

d’eau est très peu stratifiée. Une période de 3 à 6 jours de pertes de flottabilité peut fa-

cilement déstabiliser la colonne d’eau, ce qui conduit à un nouvel épisode de mélange

vertical.

• Nous définissons le temps de restratification de la couche intermédiaire (200-600m)

comme le temps requis par cette couche pour récupérer 50 % de sa teneur en chaleur

perdue lors de la convection profonde. En utilisant la température potentielle moyenne

de la couche 200-600m pour l’année 2010, 2011 et 2012, nous déterminons le temps

nécessaire à cette masse d’eau pour compenser la moitié de ses pertes de chaleur dues

à l’événement de convection profonde, comme étant compris entre 2,5 et 4,5 mois.

• Le temps de propagation des eaux profondes nouvellement formées a été défini

comme le temps nécessaire à la colonne d’eau pour dissiper 50 % (respectivement

75%) de l’augmentation de densité potentielle dans la couche 600-2300m, qui s’est

produit à la fin de la phase de fort mélange vertical. Il faut approximativement 1,5 à

3 mois (resp. 3 à 6 mois), ce qui reflète bien le temps nécessaire à la dispersion et au

mélange de l’eau profonde nouvellement formée avec les eaux environnantes.

La longue période de restratification et de dispersion des nouvelles eaux, qui peut être

observée après chaque hiver de convection profonde, indique que la phase de restratification/-

dispersion est toujours en cours au début de l’hiver suivant, lors du début de l’évènement de

convection profonde. Ceci illustre bien le chevauchement des trois “phases” de la convection

profonde, ainsi que le possible “effet mémoire” de la colonne d’eau lors du déclenchement

d’évènements de convection profonde consécutifs. Il est donc crucial de modéliser correc-

tement les tourbillons tout au long de l’année, si l’on veut pouvoir simuler correctement le

phénomène de convection profonde.

Cette étude met en lumière, pour la première fois dans le Golfe du Lion, la forte saisonnalité

de la structure verticale des courants horizontaux entre 150m et 2300m de profondeur. 85% à

95% de leur variance peut être expliqué par le 1er EOF (interprété comme le mode barotrope

équivalent, car nous ne connaissons pas les courants de surface), alors que le second mode

(interprété comme le premier mode de barocline ) contient 5 % à 10 % de la variance. Ces

nouveaux résultats semblent indiquer que la structure verticale des courants horizontaux

de 150m à 2300m est principalement barotropique, et présente des variations saisonnières

proche d’un cycle comportant 4 phases :

◦ une période barocline et calme en fin d’automne,

◦ une période barocline et énergétique en hiver,

◦ une période barotrope équivalente et énergétique au printemps / début de l’été,

◦ une période barotrope équivalente et calme en été / début de l’automne.

L’excitation des courants en hiver peut être générée par le forçage thermodynamique de la

région lié à d’importants flux de flottabilité de surface. Les courants horizontaux deviennent
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de plus en plus forts au cours de la période de convection profonde, notamment en raison

de la conversion de l’énergie potentielle de la zone (liée à la formation d’eaux plus denses)

en énergie cinétique, ce qui semble conduire à une “baroclinisation” de la colonne d’eau.

L’évolution du champ d’écoulement barocline en un champ barotropique pourrait être le

résultat de la cascade d’énergie de la turbulence géostrophique à grandes échelles (Rhines

[1979]; Venaille et al. [2012]).

.

En utilisant une méthode basée sur l’analyse en ondelettes pour isoler les anomalies de

vitesses horizontales sur les données du mouillage, 37 tourbillons ont été détectés entre Oc-

tobre 2009 et Juillet 2012 (18 anticyclones et 19 cyclones). Les rayons de ces tourbillons sont

compris entre 0.7 km et 20.0 km, et leurs vitesses de rotation varient entre 0.9 cm.s−1 et 25.1

cm.s−1. Le principal mode de la distribution des rayons des cyclones est de 4 km, alors qu’il

est de 5 km pour les anticyclones. Les cyclones sembleraient principalement formés pendant

la phase de mélange vertical intense, lorsque la très faible stratification conduit à un petit

rayon de déformation de Rossby, alors que les anticyclones sont détectés principalement à

partir de la phase de restratification/dispersion.

La haute résolution temporelle des mesures acquises par les instruments de la ligne de

mouillage permet une étude fine de l’évolution de la température potentielle et de la salinité

des eaux profondes. Pour les hivers avec une convection en haute mer qui a atteint le fond, on

observe d’abord une augmentation significative de la température potentielle (entre 0,02 et

0,04 °C) dans la couche de fond, en raison de l’approfondissement de la couche de mélange

jusqu’au fond. Ensuite, la période d’intense mélange vertical et de fortes pertes de flottabilité

(9-12 jours) fait baisser la température potentielle de la couche de mélange, et donc la tempéra-

ture potentielle de l’eau profonde nouvellement formée (entre 0,01 et 0,03 °C). Contrairement

à la température potentielle, la salinité de l’eau profonde nouvellement formée n’a pas montré

de variations importantes après que l’approfondissement de la couche de mélange ait atteint

le fond. La salinité de l’eau profonde nouvellement formée est fixée principalement par la

salinité de la couche de mélange une fois que celle-ci atteint le fond, ce qui correspond à

une augmentation entre 0,006‰ et 0,012‰, pour la période 2007-2012. L’apparition d’eaux

profondes nouvellement formées a été détectée au cours des hivers 2009, 2010, 2011 et 2012.

Au cours de l’hiver 2010, deux différentes nouvelles eaux profondes ont été détectées après

l’épisode de convection profonde. Elles présentent une température potentielle différente

mais une salinité similaire, ce qui suggère que ces deux nouvelles eaux profondes auraient

pu être formées dans la zone de convection mais en des endroits différents. En 2012, deux

différentes nouvelles eaux profondes ont aussi été détectées au niveau du mouillage LION. Par

contre, cette année-ci, les eaux profondes nouvellement formées semblent avoir des origines

différentes (convection profonde au large et plongées d’eau dense côtière).

Pour tous les hivers, nous avons constaté que les pertes intégrées de flottabilité à la surface,

entre le 1er Novembre et la fin de Février, à partir des réanalyses ERA-Interim, sont plus élevées

que le contenu en flottabilité de la colonne d’eau avant chaque événement de convection.
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Cela indique que la colonne d’eau n’est pas assez stratifiée au début du mois de Novembre

pour empêcher l’approfondissement de la convection, en supposant toutefois que l’advection

horizontale de flottabilité reste négligeable. Sur les cinq hivers étudiés, 2011 semble être l’hiver

au cours duquel la colonne d’eau était la moins stratifiée au début du mois de Novembre, ce

qui pourrait expliquer pourquoi 2011 a été une année de convection profonde, alors que les

pertes de flottabilité sont comparables à 2004 (une année sans convection profonde observée).

Pour l’hiver 2011/2012 , cinq lignes de mouillage supplémentaires ont été utilisées pour

surveiller la formation et la propagation d’un événement intense de plongée d’eau dense

côtière vers le bassin profond. L’arrivée d’eau dense, formée sur le plateau, à l’emplacement

du mouillage LION correspond à une forte diminution de θ (-0,1 °C) et S ( -0.03). Ce fort

signal a été identifié comme étant associé à un tourbillon cyclonique dont le rayon du cœur

est estimé à 12.0 km, avec un maximum de vitesse azimutale de 15.7 cm.s-1. Le centre du

tourbillon détecté est également lié à une élévation de 1000m de l’isopycnal 29,132 kg.m−3,

et à une anomalie thermohaline de fond s’étendant sur 400m d’épaisseur et présentant de

faibles valeurs pour θ et S qui supportent l’hypothèse d’une origine côtière pour cette masse

d’eau profonde.

Impacts sur les flux de particules et sur l’activité des écosystèmes profonds

La convection profonde en haute mer et les plongées d’eau dense côtière sont des proces-

sus clés qui relient l’océan de surface à l’océan profond. En plus de la chaleur et du sel,

les formations d’eaux denses peuvent transférer aussi des composants biogéochimiques à

l’océan profond, comme l’oxygène et la matière organique/inorganique, contribuant ainsi à la

ventilation et l’alimentation des écosystèmes pélagiques et benthiques profonds.

À travers des collaborations avec des biogéochimistes et des sédimentologues, nous avons

pu étudier l’influence des formations d’eau dense sur la remise en suspension de sédiments

profonds, et donc sur l’épaisseur, la propagation et la persistance de la couche néphéloïde

de fond. L’importante remobilisation de sédiments dans le bassin du Golfe du Lion, après les

événements de formation d’eaux denses, sont également susceptibles d’induire une altération

subséquente des fonds marins et d’influencer le fonctionnement des écosystèmes sous-marins.

Les événements de formations d’eaux denses et la diffusion des eaux profondes nouvellement

formées se sont révélées également comme étant un facteur important dans l’activité des

écosystèmes pélagiques profonds en les alimentant par des apports de matière organique

“fraîche”, et ainsi en stimulant l’activité bioluminescente.

Perpsectives

Des comparaisons futures entre la climatologie du taux de chaleur dans la couche de surface

de la Méditerranée, avec d’autres climatologies de flux de chaleur pourraient être utiles, pour

tester la paramétrisation des flux de chaleur à l’interface air-mer, et ainsi améliorer la pré-
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cision des modèles climatiques couplés océan-atmosphère, en particulier dans le cadre de

simulations climatiques à long terme qui exigent, entre autres, une bonne modélisation de la

circulation thermohaline. D’autres possibles travaux à venir seraient de comparer notre clima-

tologie mensuelle de l’advection horizontale de chaleur estimée dans la couche de surface, à

d’autres estimations, obtenues par des simulations océaniques et/ou d’autres climatologies

déduites des estimations des courants géostrophiques de surface.

Dans cette étude, nous avons aussi réalisé une comparaison entre le contenu en flotta-

bilité de la colonne d’eau avant l’hiver et les pertes de surface en flottabilité intégrées sur

la période Novembre-Février. Bien que les facteurs responsables de ces cinq événements

de convection profonde consécutifs ont été mis en évidence, cette comparaison souligne

également les besoins de capteurs de conductivité supplémentaires dans les premiers 200m

de la colonne d’eau afin de préciser les calculs. Dans le but de minimiser l’erreur sur le calcul

du contenu en flottabilité de la colonne d’eau avant la convection profonde (une indication

de l’état de “préconditonnement” de l’océan), des profils complets créés avec un instrument

unique (comme un profileur ou à partir d’une station CTD) à la fin Octobre / début Novembre

serait très utiles. Ainsi les déploiements répétés de gliders dans le cadre du service d’obser-

vation MOOSE, passant à proximité du mouillage LION, sont une précieuse source de données.

D’autres travaux doivent être effectués afin de mieux comprendre l’origine et le destin

des différentes sortes de tourbillons détectées dans cette étude. Des expériences numériques

pourrait être un bon outil pour étudier la genèse et la fin de vie de ces tourbillons, mais la

résolution des mailles numériques peut être trop grande pour décrire précisément ces petits

tourbillons (plus 50% des cyclones et anticyclones détectés ont un rayon inférieur à 6 km). Une

des solutions pourrait venir de l’utilisation combinée d’un mouillage temps-réel et de gliders.

Ce serait un outil utile pour déclencher facilement des campagnes de mesures et suivre ainsi

l’évolution de ces tourbillons. De plus, le développement récent de capteurs biogéochimiques

peut également être utile pour obtenir des informations supplémentaires sur la signature

biogéochimique" de ces tourbillons et leurs impacts potentiels sur le déclenchement des

blooms de phytoplancton dans la Méditerranée nord-occidentale, car ils peuvent transporter

dans leurs cœurs des écosystèmes complets, relativement isolés du reste de l’océan.

Une autre perspective serait de suivre la propagation de l’eau profonde nouvellement

formée en dehors de la Méditerranée nord-occidentale (avec des mouillages profonds déployés

au large de Minorque, et entre Minorque et la Sardaigne, par exemple), afin notamment de

quantifier les transports de chaleur et de sel liés à la propagation des eaux profondes. Tout au

long de leur propagation dans le bassin occidental, les eaux profondes nouvellement formées

vont se mélanger avec les eaux environnantes. Une partie d’entre elles quittent la Méditerranée

par le Détroit de Gibraltar, où elles forment une “langue d’eau salée” méditerranéenne qui se

propage dans tout l’Atlantique Nord et rejoint la circulation globale. L’utilisation conjointe de

gliders et de campagnes océanographiques dans les différents sous-bassins de la Méditerranée

Occidentale (Mer d’Alboran, Bassin Algérien, Mer Tyrrhénienne) permettrait notamment de
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mieux quantifier le transport et la diffusion de chaleur et de sel liés à la propagation de ces

nouvelles masses d’eau.
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G. P. Gasparini, M. Herrmann, P. Lionello, W. Ludwig, C. Millot, E. Özsoy, G. Pisacane,

J. C. Sánchez-Garrido, G. Sannino, R. Santoleri, S. Somot, M. Struglia, E. Stanev, I. Taupier-

Letage, M. N. Tsimplis, M. Vargas-Yáñez, V. Zervakis, and G. Zodiatis, 2012. Circulation of the

Mediterranean Sea and its variability. In P. Lionello, editor, The Climate of the Mediterranean

Region: from the past to the future, pages 187–256. Elsevier. doi: 10.1016/B978-0-12-416042-

2.00003-3.

Schroeder, K., G. P. Gasparini, M. Tangherlini, and M. Astraldi, 2006. Deep and intermediate

water in the western Mediterranean under the influence of the Eastern Mediterranean

Transient. Geophysical Research Letters, 33(21):L21607. doi: 10.1029/2006GL027121.

Schroeder, K., S. A. Josey, M. Herrmann, L. Grignon, G. P. Gasparini, and H. L. Bryden, 2010.

Abrupt warming and salting of the Western Mediterranean Deep Water after 2005: Atmo-

spheric forcings and lateral advection. Journal of Geophysical Research, 115(C8):1–18. doi:

10.1029/2009JC005749.

Schroeder, K., C. Millot, L. Bengara, S. Ben Ismail, M. Bensi, M. Borghini, G. Budillon, V. Cardin,

L. Coppola, C. Curtil, A. Drago, B. El Moumni, J. Font, J. L. Fuda, J. García-Lafuente, G. P.

Gasparini, H. Kontoyiannis, D. Lefevre, P. Puig, P. Raimbault, G. Rougier, J. Salat, C. Sam-

mari, J. C. Sánchez Garrido, A. Sanchez-Roman, S. Sparnocchia, C. Tamburini, I. Taupier-

Letage, A. Theocharis, M. Vargas-Yáñez, and A. Vetrano, 2013. Long-term monitoring

programme of the hydrological variability in the Mediterranean Sea: a first overview of the

HYDROCHANGES network. Ocean Science, 9(2):301–324. doi: 10.5194/os-9-301-2013.

Schroeder, K., A. Ribotti, M. Borghini, R. Sorgente, A. Perilli, and G. P. Gasparini, 2008. An

extensive western Mediterranean deep water renewal between 2004 and 2006. Geophysical

Research Letters, 35(18):L18605. doi: 10.1029/2008GL035146.

Send, U., C. Mertens, and J. Font, 1996. Recent observation indicates convection’ role in

deep water circulation. Eos, Transactions American Geophysical Union, 77(7):61. doi:

10.1029/96EO00040.

Shapiro, G., J. Huthnance, and V. Ivanov, 2003. Dense water cascading off the continental shelf.

Journal of Geophysical Research, 108(C12):3390. doi: 10.1029/2002JC001610.

Smith, R. O., H. L. Bryden, and K. Stansfield, 2008. Observations of new western Mediterranean

deep water formation using Argo floats 2004–2006. Ocean Science, 4(2):133–149. doi:

10.5194/os-4-133-2008.

Somot, S., F. Sevault, and M. Déqué, 2006. Transient climate change scenario simulation of the

Mediterranean Sea for the twenty-first century using a high-resolution ocean circulation

model. Climate Dynamics, 27(7-8):851–879. doi: 10.1007/s00382-006-0167-z.

187

http://dx.doi.org/10.1175/1520-0485(1996)026<0505:OODCIT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1996)026<0505:OODCIT>2.0.CO;2
http://dx.doi.org/10.1016/B978-0-12-416042-2.00003-3
http://dx.doi.org/10.1016/B978-0-12-416042-2.00003-3
http://dx.doi.org/10.1029/2006GL027121
http://dx.doi.org/10.1029/2009JC005749
http://dx.doi.org/10.1029/2009JC005749
http://dx.doi.org/10.5194/os-9-301-2013
http://dx.doi.org/10.1029/2008GL035146
http://dx.doi.org/10.1029/96EO00040
http://dx.doi.org/10.1029/96EO00040
http://dx.doi.org/10.1029/2002JC001610
http://dx.doi.org/10.5194/os-4-133-2008
http://dx.doi.org/10.5194/os-4-133-2008
http://dx.doi.org/10.1007/s00382-006-0167-z


Bibliography

Soto-Navarro, J., F. Criado-Aldeanueva, J. García-Lafuente, and A. Sánchez-Román, 2010.

Estimation of the Atlantic inflow through the Strait of Gibraltar from climatological and in

situ data. Journal of Geophysical Research, 115(C10):C10023. doi: 10.1029/2010JC006302.

Sparnocchia, S., G. Gasparini, M. Astraldi, M. Borghini, and P. Pistek, 1999. Dynamics and

mixing of the Eastern Mediterranean outflow in the Tyrrhenian basin. Journal of Marine

Systems, 20(1-4):301–317. doi: 10.1016/S0924-7963(98)00088-8.

Sparnocchia, S., P. Picco, G. M. Manzella, A. Ribotti, S. Copello, and P. Brasey, 1995. Intermedi-

ate water formation in the Ligurian Sea. Oceanologica Acta, 18(2):151–162.

Sprintall, J. and M. F. Cronin, 2009. Upper ocean vertical structure. In J. Steele, S. Thorpe, and

K. Turekian, editors, Elements of Physical Oceanography: A derivative of the Encyclopedia of

Ocean Sciences, pages 229–236. London UK, academic p edition.

Steffen, E. L. and E. a. D’Asaro, 2004. Meso- and Submesoscale Structure of a Con-

vecting Field. Journal of Physical Oceanography, 34(1):44–60. doi: 10.1175/1520-

0485(2004)034<0044:MASSOA>2.0.CO;2.

Straneo, F. and M. Kawase, 1999. Comparisons of Localized Convection due to Localized

Forcing and to Preconditioning. Journal of Physical Oceanography, 29(1):55–68. doi:

10.1175/1520-0485(1999)029<0055:COLCDT>2.0.CO;2.

Taupier-Letage, I. and C. Millot, 1988. Surface circulation in the Algerian Basin during 1984.

Oceanol. Acta, 9:119–131.

Testor, P. and J.-C. Gascard, 2003. Large-Scale Spreading of Deep Waters in the Western

Mediterranean Sea by Submesoscale Coherent Eddies. Journal of Physical Oceanography,

33(1):75–87. doi: 10.1175/1520-0485(2003)033<0075:LSSODW>2.0.CO;2.

Testor, P. and J.-C. Gascard, 2006. Post-convection spreading phase in the Northwestern

Mediterranean Sea. Deep Sea Research Part I: Oceanographic Research Papers, 53(5):869–893.

doi: 10.1016/j.dsr.2006.02.004.

Testor, P., G. Meyers, C. Pattiaratchi, R. Bachmayer, D. Hayes, S. Pouliquen, L. P. de la Villeon,

T. Carval, A. Ganachaud, L. Gourdeau, L. Mortier, H. Claustre, V. Taillandier, P. Lherminier,

T. Terre, M. Visbeck, J. Karstensen, G. Krahmann, A. Alvarez, M. Rixen, P. Poulain, S. Osterhus,

J. Tintore, S. Ruiz, B. Garau, D. Smeed, G. Griffiths, L. Merckelbach, T. Sherwin, C. Schmid,

J. Barth, O. Schofield, S. Glenn, J. Kohut, M. Perry, C. Eriksen, U. Send, R. Davis, D. Rudnick,

J. Sherman, C. Jones, D. Webb, C. Lee, and B. Owens, 2010. Gliders as a Component of Future

Observing Systems. In J. Hall, D. E. Harrison, and D. Stammer, editors, Proceedings of the

"OceanObs’09: Sustained Ocean Observations and Information for Society", volume 2 of ESA

Publication. OceanObs’09, Venice, Italy.

Testor, P., L. Mortier, U. Send, R. Davis, D. Smeed, L. Merckelbach, A. Alvarez, J. Tintore,

P. Lherminier, T. Terre, and Others, 2007. European Gliding Observatories (EGO). Coriolis

Newsletter, 4:11–12.

188

http://dx.doi.org/10.1029/2010JC006302
http://dx.doi.org/10.1016/S0924-7963(98)00088-8
http://dx.doi.org/10.1175/1520-0485(2004)034<0044:MASSOA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(2004)034<0044:MASSOA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1999)029<0055:COLCDT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1999)029<0055:COLCDT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(2003)033<0075:LSSODW>2.0.CO;2
http://dx.doi.org/10.1016/j.dsr.2006.02.004


Bibliography

Testor, P., U. Send, J.-C. Gascard, C. Millot, I. Taupier-Letage, and K. Béranger, 2005. The mean

circulation of the southwestern Mediterranean Sea: Algerian Gyres. Journal of Geophysical

Research, 110(C11):C11017. doi: 10.1029/2004JC002861.

The MerMex Group, 2011. Marine ecosystems’ responses to climatic and anthro-

pogenic forcings in the Mediterranean. Progress in Oceanography, 91(2):97–166. doi:

10.1016/j.pocean.2011.02.003.

The THETIS Group, 1994. Open-ocean deep convection explored in the Mediterranean. Eos,

Transactions American Geophysical Union, 75(19):217. doi: 10.1029/94EO00893.

Theocharis, A., D. Georgopoulos, A. Lascaratos, and K. Nittis, 1993. Water masses and circula-

tion in the central region of the Eastern Mediterranean: Eastern Ionian, South Aegean and

Northwest Levantine, 1986–1987. Deep Sea Research Part II: Topical Studies in Oceanography,

40(6):1121–1142. doi: 10.1016/0967-0645(93)90064-T.

Troupin, C., F. Machín, M. Ouberdous, D. Sirjacobs, a. Barth, and J.-M. Beckers, 2010. High-

resolution climatology of the northeast Atlantic using Data-Interpolating Variational Analy-

sis (Diva). Journal of Geophysical Research, 115(C8):C08005. doi: 10.1029/2009JC005512.

Tsimplis, M. and H. Bryden, 2000. Estimation of the transports through the Strait of Gibral-

tar. Deep Sea Research Part I: Oceanographic Research Papers, 47(12):2219–2242. doi:

10.1016/S0967-0637(00)00024-8.

Turner, J., 1973. Buoyancy effects in fluids. New York, cambridge edition.

Tziperman, E. and P. Malanotte-Rizzoli, 1991. The climatological seasonal circula-

tion of the Mediterranean Sea. Journal of Marine Research, 49(3):411–434. doi:

10.1357/002224091784995783.

Ulses, C., C. Estournel, J. Bonnin, X. Durrieu de Madron, and P. Marsaleix, 2008a. Impact

of storms and dense water cascading on shelf-slope exchanges in the Gulf of Lion (NW

Mediterranean). Journal of Geophysical Research, 113(C2):1–18. doi: 10.1029/2006JC003795.

Ulses, C., C. Estournel, P. Puig, X. Durrieu de Madron, and P. Marsaleix, 2008b. Dense shelf

water cascading in the northwestern Mediterranean during the cold winter 2005: Quantifi-

cation of the export through the Gulf of Lion and the Catalan margin. Geophysical Research

Letters, 35(7):n/a–n/a. doi: 10.1029/2008GL033257.

Vargas-Yanez, M., F. Moya, M. García-Martínez, E. Tel, P. Zunino, F. Plaza, J. Salat, J. Pascual,

J. Lopez-Jurado, and M. Serra, 2010a. Climate change in the Western Mediterranean Sea

1900–2008. Journal of Marine Systems, 82(3):171–176. doi: 10.1016/j.jmarsys.2010.04.013.

Vargas-Yanez, M., T. Ramirez, D. Cortes, M. Sebastian, and F. Plaza, 2002. Warming trends in

the continental shelf of Málaga Bay (Alborán Sea). Geophysical Research . . . , 29(22):2082.

doi: 10.1029/2002GL015306.

189

http://dx.doi.org/10.1029/2004JC002861
http://dx.doi.org/10.1016/j.pocean.2011.02.003
http://dx.doi.org/10.1016/j.pocean.2011.02.003
http://dx.doi.org/10.1029/94EO00893
http://dx.doi.org/10.1016/0967-0645(93)90064-T
http://dx.doi.org/10.1029/2009JC005512
http://dx.doi.org/10.1016/S0967-0637(00)00024-8
http://dx.doi.org/10.1016/S0967-0637(00)00024-8
http://dx.doi.org/10.1357/002224091784995783
http://dx.doi.org/10.1357/002224091784995783
http://dx.doi.org/10.1029/2006JC003795
http://dx.doi.org/10.1029/2008GL033257
http://dx.doi.org/10.1016/j.jmarsys.2010.04.013
http://dx.doi.org/10.1029/2002GL015306


Bibliography

Vargas-Yanez, M., P. Zunino, A. Benali, M. Delpy, F. Pastre, F. Moya, M. D. C. García-Martínez,

and E. Tel, 2010b. How much is the western Mediterranean really warming and salting?

Journal of Geophysical Research, 115(C4):C04001. doi: 10.1029/2009JC005816.

Venaille, A., G. K. Vallis, and S. M. Griffies, 2012. The catalytic role of the beta effect

in barotropization processes. Journal of Fluid Mechanics, 709(2001):490–515. doi:

10.1017/jfm.2012.344.

Visbeck, M., J. Marshall, and H. Jones, 1996. Dynamics of Isolated Convective Regions

in the Ocean. Journal of Physical Oceanography, 26(9):1721–1734. doi: 10.1175/1520-

0485(1996)026<1721:DOICRI>2.0.CO;2.

Voorhis, A. D. and D. C. Webb, 1970. Large Vertical Currents Observed in a Winter Sinking

Region of the Northwestern Mediterranean. Cahiers Oceanographiques, XXII(6):571–580.

Wijffels, S. E., J. Willis, C. M. Domingues, P. Barker, N. J. White, A. Gronell, K. Ridgway, and

J. a. Church, 2008. Changing Expendable Bathythermograph Fall Rates and Their Impact

on Estimates of Thermosteric Sea Level Rise. Journal of Climate, 21(21):5657–5672. doi:

10.1175/2008JCLI2290.1.

Williams, R. and M. Follows, 2003. Physical transport of nutrients and the maintenance of

biological production. In M. J. R. Fasham, editor, Ocean Biogeochemistry: The Role of the

Ocean Carbon Cycle in Global Change, pages 19–51. Springer Berlin Heidelberg, Berlin,

Heidelberg. doi: 10.1007/978-3-642-55844-3.

Wunsch, C., 2002. Oceanography. What is the thermohaline circulation? Science,

298(5596):1179–81. doi: 10.1126/science.1079329.

Wüst, G., 1961. On the vertical circulation of the Mediterranean Sea. Journal of Geophysical

Research, 66(10):3261. doi: 10.1029/JZ066i010p03261.

Zodiatis, G., 1993. Circulation of the cretan sea-water masses (eastern mediterranean-sea).

Oceanologica acta, 16:107–114.

Zodiatis, G., P. Drakopoulos, S. Brenner, and S. Groom, 2005. Variability of the Cyprus warm

core Eddy during the CYCLOPS project. Deep Sea Research Part II: Topical Studies in

Oceanography, 52(22-23):2897–2910. doi: 10.1016/j.dsr2.2005.08.020.

Zodiatis, G., A. Theodorou, and A. Demetropoulos, 1998. Hydrography and circulation south

of Cyprus in late summer 1995 and in spring 1996. Oceanologica Acta, 21(3):447–458. doi:

10.1016/S0399-1784(98)80029-7.

190

http://dx.doi.org/10.1029/2009JC005816
http://dx.doi.org/10.1017/jfm.2012.344
http://dx.doi.org/10.1017/jfm.2012.344
http://dx.doi.org/10.1175/1520-0485(1996)026<1721:DOICRI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1996)026<1721:DOICRI>2.0.CO;2
http://dx.doi.org/10.1175/2008JCLI2290.1
http://dx.doi.org/10.1175/2008JCLI2290.1
http://dx.doi.org/10.1007/978-3-642-55844-3
http://dx.doi.org/10.1126/science.1079329
http://dx.doi.org/10.1029/JZ066i010p03261
http://dx.doi.org/10.1016/j.dsr2.2005.08.020
http://dx.doi.org/10.1016/S0399-1784(98)80029-7
http://dx.doi.org/10.1016/S0399-1784(98)80029-7






Appendices

193





A Supplementary Figures for Chapter 3

195



A. Supplementary Figures for Chapter 3

Jan
30

35

40

45

Mar
30

35

40

45

May
30

35

40

45

Jul
30

35

40

45

Sep
30

35

40

45

Nov
−5 0 5 10 15 20 25 30 35

30

35

40

45

Feb

Apr

Jun

Aug

Oct

Dec
−5 0 5 10 15 20 25 30 35

Ta
 s

ta
nd

ar
d 

de
vi

at
io

n 
(°

C
)

0

0.5

1

1.5

2

Figure A.1: Maps of the standard deviation associated to the mesh box averages of the upper-ocean
temperature Ta shown on figure 3.10.
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Figure A.2: Maps of the standard deviation associated to the mesh box averages of the mixed layer
temperature shown on figure 3.11.
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[1] Phytoplankton phenology is primarily affected by physical forcing. However, its
quantification is far from being completely understood. Among the physical forcing factors,
the mixed layer depth (MLD) is considered to have the strongest impact on phytoplankton
dynamics, and consequently, on their phenology. The role of MLD variations in shaping the
phytoplankton phenology was explored in the Mediterranean Sea, a basin displaying
contrasting phenological regimes. A database of MLD estimations was merged with ocean
color chlorophyll concentrations ([Chl]SAT) to generate concomitant annual MLD and
[Chl]SAT cycles. Several indices were calculated to quantitatively analyze these cycles. The
relevance of indices summarizing the temporal difference between main characteristics of
MLD and [Chl]SAT cycles was emphasized. As previously observed, two dominant
phenological regimes coexist in the Mediterranean Sea. The first is marked by a typical
spring bloom, as in temperate regions. The second displays a low seasonality and an
absence of an intense [Chl]SAT peak as in subtropical areas. The MLD is shown to play a
key role in determining the dominant phenological regime in a given area. Results also
show that regions having low seasonality display concomitant MLD and [Chl]SAT maxima,
whereas [Chl]SAT peaks are generally observed 30 days after MLD peaks in regions with
strongest seasonality. Over the whole basin, [Chl]SAT increase starts 1 month after the
initiation of MLD deepening. Finally, after examining the impact of MLD on light and
nutrient availability for phytoplankton, mechanisms were proposed to explain the time lags
between MLD and [Chl]SAT increase and MLD and [Chl]SAT maxima.

Citation: Lavigne, H., F. D’Ortenzio, C. Migon, H. Claustre, P. Testor, M. Ribera d’Alcal�a, R. Lavezza, L. Houpert, and L. Prieur
(2013), Enhancing the comprehension of mixed layer depth control on the Mediterranean phytoplankton phenology, J. Geophys. Res.
Oceans, 118, doi:10.1002/jgrc.20251.

1. Introduction

[2] Characterizing the oceanic phytoplankton phenology
is a critical step to identify major alterations in the func-

tioning of oceanic ecosystems and to further connect these
alterations to global or local environmental changes. As
indicated in a recent review [Ji et al., 2010], the description
of the oceanic phytoplankton phenology implies the identi-
fication (in terms of date, duration, and magnitude) of the
main steps in the temporal evolution of key parameters of
an ocean ecosystem (i.e., chlorophyll-a, phytoplankton spe-
cies compositions, zooplankton abundances, etc.). Linking
these key episodes to environmental conditions could
strongly improve our capability to identify future trends in
marine ecosystem dynamics.

[3] However, until recently, the lack of data hinders a
broad and global analysis of phytoplankton ocean phenol-
ogy, except on some areas (i.e., Hawaii Ocean Time series
(HOT) and Bermuda Atlantic Time Series (BATS)) where
data are available. Satellite ocean color remote sensing,
generating global and repeated observations of the ocean
surface chlorophyll concentration (a proxy for phytoplank-
ton biomass) induced a fresh impetus in the study of phyto-
plankton phenology. Indeed, despite the limits of the ocean
color data (i.e., cloud coverage, surface observation, algo-
rithmic issues, variation in carbon to chlorophyll ratio)
numerous analyses used satellite observations of surface

Additional supporting information may be found in the online version of
this article.
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Abstract. The deep outer margin of the Gulf of Lions and the
adjacent basin, in the western Mediterranean Sea, are regu-
larly impacted by open-ocean convection, a major hydrody-
namic event responsible for the ventilation of the deep water
in the western Mediterranean Basin. However, the impact of
open-ocean convection on the flux and transport of particu-
late matter remains poorly understood. The variability of wa-
ter mass properties (i.e., temperature and salinity), currents,
and particle fluxes were monitored between September 2007
and April 2009 at five instrumented mooring lines deployed
between 2050 and 2350-m depth in the deepest continental
margin and adjacent basin. Four of the lines followed a NW–
SE transect, while the fifth one was located on a sediment
wave field to the west. The results of the main, central line
SC2350 (“LION”) located at 42◦02.5′ N, 4◦41′ E, at 2350-
m depth, show that open-ocean convection reached mid-
water depth (≈ 1000-m depth) during winter 2007–2008, and
reached the seabed (≈ 2350-m depth) during winter 2008–
2009. Horizontal currents were unusually strong with speeds
up to 39 cm s−1 during winter 2008–2009. The measure-
ments at all 5 different locations indicate that mid-depth and
near-bottom currents and particle fluxes gave relatively con-
sistent values of similar magnitude across the study area
except during winter 2008–2009, when near-bottom fluxes
abruptly increased by one to two orders of magnitude. Partic-

ulate organic carbon contents, which generally vary between
3 and 5 %, were abnormally low (≤ 1 %) during winter 2008–
2009 and approached those observed in surface sediments (≈

0.6 %). Turbidity profiles made in the region demonstrated
the existence of a bottom nepheloid layer, several hundred
meters thick, and related to the resuspension of bottom sedi-
ments. These observations support the view that open-ocean
deep convection events in the Gulf of Lions can cause sig-
nificant remobilization of sediments in the deep outer mar-
gin and the basin, with a subsequent alteration of the seabed
likely impacting the functioning of the deep-sea ecosystem.

1 Introduction

Albeit the deep-sea is the largest ecosystem on Earth, not
much is known about how it is affected by changes in envi-
ronmental conditions controlling the cycling of biogeochem-
ical compounds, the distribution of deep-sea habitats or the
functioning of ecosystems. Dense water convection repre-
sents, among physical processes influencing circulation in
the deep-sea, one of the few linking the surface ocean to
the deep ocean and, ultimately, to the seabed. Dense wa-
ter formation, which can occur in both coastal areas and
open sea regions, and the subsequent export of newly formed

Published by Copernicus Publications on behalf of the European Geosciences Union.
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Patrice Payre8, Jelena Petrovic15, Paolo Piattelli27, Nicolas Picot-Clemente8, Vlad Popa40,

Thierry Pradier41, Eleonora Presani15, Chantal Racca9, Corey Reed15, Giorgio Riccobene27,

Carsten Richardt12, Roland Richter12, Colas Rivière8, Kathrin Roensch12, Andrei Rostovtsev42,

Joaquin Ruiz-Rivas7, Marius Rujoiu40, Valerio G. Russo36,37, Francisco Salesa7, Augustin Sánchez-Losa7,
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LOCEAN UMR 7159, Paris, France, 7 IFIC – Instituto de Fı́sica Corpuscular, Edificios Investigación de Paterna, CSIC – Universitat de València, Apdo. de Correos, Valencia,
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Abstract

The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are
able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea
pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the
deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of
deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with
light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties
of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in
the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as ‘‘open-sea
convection’’. It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep
ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms.
Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic
biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline
under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental
sentinels for the monitoring and understanding of deep-sea ecosystem shifts.
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Introduction

The deep-sea ecosystem is unique because of its permanent

darkness, coldness, high pressure and scarcity of carbon and

energy to sustain life. Most of its biological activity relies on the

arrival of carbon in the form of organic matter from surface

waters. Ninety percent of the numerous pelagic organisms that

inhabit the deep ocean are capable of emitting light [1] through

the chemical process of bioluminescence, which appears to be the

most common form of communication in this remote realm

[1,2,3]. Deep-sea bioluminescence is also viewed as an expression

of abundance and adaptation of organisms to their environment

[4]. Marine bioluminescent organisms include a variety of distinct

taxa [4]. When stimulated mechanically or electrically, eukaryotic

bioluminescent organisms emit erratic luminous flashes, and also

spontaneous flashes to attract prey and mates for recognition of

congeners or for defence purposes [1,3,4]. In contrast, luminescent

bacteria are unaffected by mechanical stimulation and can glow

continuously for many days under specific growth conditions [5,6].

Bioluminescent bacteria occur in marine waters as free-living

forms, symbionts in luminous organs of fishes and crustaceans and

attached to marine snow aggregates sinking through the water

column [5,7]. During micro-algae blooms, strong bioluminescence

produced by colonies of bacteria could even lead to spectacular

marine phenomena such as ‘‘milky seas’’ in surface waters [6].

Bioluminescence sources have been observed and quantified

over the last three decades using a variety of observational

platforms and instruments such as manned submersibles [1] and

autonomous underwater vehicles [8], in situ high sensitivity

cameras [9,10], underwater photometers [7,11,12], and remote

satellite imagery [6]. In most cases, deep–sea bioluminescence is

triggered and observed after external mechanical stimulation

using, for instance, pumped flows through turbulence-generating

grids [13] or downward moving grids that collide with the
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Abstract. Cap de Creus Canyon (CCC) is known as a prefer-
ential conduit for particulate matter leaving the Gulf of Lion
continental shelf towards the slope and the basin, particu-
larly in winter when storms and dense shelf water cascad-
ing coalesce to enhance the seaward export of shelf waters.
During the CASCADE (CAscading, Storm, Convection, Ad-
vection and Downwelling Events) cruise in March 2011, de-
ployments of recording instruments within the canyon and
vertical profiling of the water column properties were con-
ducted to study with high spatial-temporal resolution the im-
pact of such processes on particulate matter fluxes. In the
context of the mild and wet 2010–2011 winter, no remark-
able dense shelf water formation was observed. On the other
hand, the experimental setup allowed for the study of the
impact of E-SE storms on the hydrographical structure and
the particulate matter fluxes in the CCC. The most remark-
able feature in terms of sediment transport was a period of
dominant E-SE winds from 12 to 16 March, including two
moderate storms (maximum significant wave heights = 4.1–
4.6 m). During this period, a plume of freshened, relatively
cold and turbid water flowed at high speeds along the south-
ern flank of the CCC in an approximate depth range of 150–
350 m. The density of this water mass was lighter than the
ambient water in the canyon, indicating that it did not cas-
cade off-shelf and that it merely downwelled into the canyon
forced by the strong cyclonic circulation induced over the
shelf during the storms and by the subsequent accumula-
tion of seawater along the coast. Suspended sediment load
in this turbid intrusion recorded along the southern canyon

flank oscillated between 10 and 50 mg L−1, and maximum
currents speeds reached values up to 90 cm s−1. A rough es-
timation of 105 tons of sediment was transported through the
canyon along its southern wall during a 3-day-long period
of storm-induced downwelling. Following the veering of the
wind direction (from SE to NW) on 16 March, downwelling
ceased, currents inside the canyon reversed from down- to
up-canyon, and the turbid shelf plume was evacuated from
the canyon, most probably flowing along the southern canyon
flank and being entrained by the general SW circulation after
leaving the canyon confinement. This study highlights that
remarkable sediment transport occurs in the CCC, and par-
ticularly along its southern flank, even during mild and wet
winters, in absence of cascading and under limited exter-
nal forcing. The sediment transport associated with eastern
storms like the ones described in this paper tends to enter
the canyon by its downstream flank, partially affecting the
canyon head region. Sediment transport during these events
is not constrained near the seafloor but distributed in a depth
range of 200–300 m above the bottom. Our paper broadens
the understanding of the complex set of atmosphere-driven
sediment transport processes acting in this highly dynamic
area of the northwestern Mediterranean Sea.

1 Introduction

Continental margins are transitional areas between the land
masses and the open sea where inputs of particulate matter

Published by Copernicus Publications on behalf of the European Geosciences Union.
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a b s t r a c t

The analysis of a compilation of deep CTD casts conducted in the western Mediterranean from 1998 to
2011 has documented the role that dense water formation, and particularly deep dense shelf water cas-
cading off the Gulf of Lions, plays in transporting suspended particulate matter from the coastal regions
down to the basin. Deep CTD casts reveal that after the 1999 and 2005–2006 deep cascading events the
Western Mediterranean Deep Water (WMDW) was characterized by the presence of a thick bottom
nepheloid layer (BNL) that corresponded in thickness with a thermohaline anomaly generated by the
mixture of dense waters formed by deep convection in the open sea and by deep cascading. This BNL
can be hundreds of meters thick and in the central part of the basin usually exhibits suspended sediment
concentrations of <0.1 mg/l above background levels, reaching higher concentrations close to the conti-
nental rise, with near-bottom peaks >1 mg/l. After winter 1999 the BNL spread from the Gulf of Lions and
the Catalan margin over the northwestern Mediterranean basin, reaching west of the Balearic Islands and
the Ligurian Sea, while after winters 2005–2006 the BNL covered the entire western Mediterranean basin.
Thickness and concentration of the BNL tend to diminish with time but this trend is highly dependent on
the volume of dense water generated, both by convection and cascading. After winter 1999 the BNL signal
vanished in one year, but after winters 2005–2006 it lasted for longer and the turbidity signal can still be
distinguished at present (2011). Particle size distribution in the BNL reveals the presence of large aggre-
gates up to 1 mm in size formed by a mixture of single particles with the same bimodal grain size distri-
bution as the surface sediments found in the northwestern Mediterranean slope and basin. Results
presented in this paper highlight the fact that the WMDW can be periodically affected by the arrival of
new dense waters loaded with suspended particles mainly introduced by resuspension processes during
major cascading events, being a key process that could ultimately affect deep-sea biogeochemical cycles
in the western Mediterranean.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Suspended particles in the oceans play a key role as extractors
from, transporters through and sources to the water column of
many major and minor elements, being responsible for maintain-
ing most oceanic chemical concentrations (Biscaye and Eittreim,
1977; Eisma, 1993). Particles are introduced into the ocean by bio-
logical production, rivers, glaciers, wind and bottom sediments
resuspension. Biological, chemical and gravitational processes then

act to remove particles from the water column. These removal
mechanisms, however, occur on much shorter time scales than
the formation, movement or mixing of oceanic water masses, and
therefore, particles do not act as pure conservative tracers of water
masses, but their presence and concentration can indicate the loca-
tion and intensity of oceanographic processes, particularly those
involving the resuspension of sediments due to strong bottom cur-
rents, and can be used as tracers of water motions (McCave, 1986;
Gardner et al., 1990). The redistribution of particulate matter has
important implications for understanding and quantitatively mod-
eling biogeochemical processes in the oceans. In the open ocean,
surface production is generally the most significant source of

0079-6611/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
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[1] The winter of 2012 experienced peculiar atmospheric
conditions that triggered a massive formation of dense
water on the continental shelf and in the deep basin of the
Gulf of Lions. Multiplatforms observations enabled a
synoptic view of dense water formation and spreading at
basin scale. Five months after its formation, the dense
water of coastal origin created a distinct bottom layer up
to a few hundreds of meters thick over the central part
of the NW Mediterranean basin, which was overlaid by a
layer of newly formed deep water produced by open-sea
convection. These new observations highlight the role of
intense episodes of both dense shelf water cascading and
open-sea convection to the progressive modification of the
NW Mediterranean deep waters. Citation: Durrieu de
Madron, X., et al. (2013), Interaction of dense shelf water
cascading and open-sea convection in the northwestern
Mediterranean during winter 2012, Geophys. Res. Lett., 40,
doi:10.1002/grl.50331.

1. Introduction

[2] Dense shelf water cascading and open-sea convection
coexist in a few regions around the world such as the
Mediterranean (Gulf of Lions, Adriatic Sea, Aegean Sea)

[CIESM, 2009], the East/Japan Sea [Kim et al., 2008], and
Greenland Sea [Quadfasel et al., 1988]. However, interplay
between both types of processes on the deep water mass
characteristics is still poorly documented.
[3] In the Gulf of Lions (GoL), dense water formation

shows a high interannual variability. It is mostly produced
by surface cooling and evaporation due to cold and dry
northern winds, and preconditioning of the water column.
Dense shelf water overflowing the shelf edge occasionally
cascades down to more than 2000 m, resulting in the
apparition of fresher and colder bottom water in the basin
[Canals et al., 2006; Font et al., 2007]. Open-sea convection
involves a progressive deepening of the upper ocean mixed
layer, which first reaches the warmer and saltier underlying
Levantine Intermediate Water and eventually extends all
the way down to the bottom, should the atmospheric forcing
be intense enough [L’Heveder et al., 2012].
[4] Although open-sea convection is the main mechanism

for the renewal of the Western Mediterranean Deep Water
(WMDW), the influence of dense shelf water cascading
has been suggested by several studies. Analysis of historical
temperature-salinity profiles from the late 1960s suggested
mixing of deep cascading and convection dense waters,
with a subdecadal recurrence [Béthoux et al., 2002], the
winters 2005 and 2006 being the last major events [Puig
et al., 2013].
[5] Here we present a comprehensive set of hydrological

and hydrodynamical observations collected during the
winter and summer 2012 that provide new insights on the
propagation and mixing of both type of the dense shelf
waters, and their influence on the modification of theWMDW,
as a new step in the Western Mediterranean Transition that
started in 2005 [CIESM, 2009].

2. Data and Methods

[6] Six mooring lines and two surface buoys constituted
the observational design (Figure 1a). Three moorings were
located at 1000 m depth in canyons at the NE (Planier, PLC)
and SW ends (Lacaze-Duthiers, LDC; Cap de Creus, CCC)
of the GoL margin, and three others between 1900–2500 m
depth on the Catalan continental slope (HC, FOFA)
and GoL basin (LION). Two meteorological buoys were
located on the GoL inner shelf of the (POEM), and in
the basin (MF-LION).
[7] All the lines were equipped with current meters

between 20 and 45 m above bottom, and the deepest ones
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