
HAL Id: tel-01149034
https://theses.hal.science/tel-01149034v1

Submitted on 6 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Acceleration for statistical model checking
Benoît Barbot

To cite this version:
Benoît Barbot. Acceleration for statistical model checking. Other [cs.OH]. École normale supérieure
de Cachan - ENS Cachan, 2014. English. �NNT : 2014DENS0041�. �tel-01149034�

https://theses.hal.science/tel-01149034v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT
DE L’ÉCOLE NORMALE SUPÉRIEURE DE CACHAN

Présentée par

Monsieur Benôıt BARBOT

Pour obtenir le grade de

DOCTEUR DE L’ÉCOLE NORMALE SUPÉRIEURE DE
CACHAN

Domaine :
Informatique

Sujet de la thèse :

Accélération pour le Model Checking Statistique

Thèse présentée et soutenue à Cachan le 20 novembre 2014 devant le jury
composé de :

Pieter-Tjerk DE BOER Assistant Professor Rapporteur
Serge HADDAD Professeur Co-directeur de thèse
Patrice MOREAUX Professeur Examinateur
David PARKER Lecturer Examinateur
Nihal PEKERGIN Professeur Examinatrice
Claudine PICARONNY Mâıtre de Conférences Co-directrice de thèse
Gerardo RUBINO Professeur Rapporteur

Laboratoire Spécification et Vérification
ENS de Cachan, UMR 8643 du CNRS
61, avenue du Président Wilson
94235 CACHAN Cedex, France

English title : Acceleration for Statistical Model Checking

2

Abstract

In the past decades, the analysis of complex critical systems subject to uncer-
tainty has become more and more important. In particular the quantitative
analysis of these systems is necessary to guarantee that their probability of
failure is very small. As their state space is extremly large and the probability
of interest is very small, typically less than one in a billion, classical methods
do not apply for such systems.

Model Checking algorithms are used for the analysis of probabilistic
systems, they take as input the system and its expected behaviour, and
compute the probability with which the system behaves as expected. These
algorithms have been broadly studied. They can be divided into two main
families: Numerical Model Checking and Statistical Model Checking. The
former computes small probabilities accurately by solving linear equation
systems, but does not scale to very large systems due to the space size
explosion problem. The latter is based on Monte Carlo Simulation and scales
well to big systems, but cannot deal with small probabilities.

The main contribution of this thesis is the design and implementation of
a method combining the two approaches and returning a confidence interval
of the probability of interest. This method applies to systems with both
continuous and discrete time settings for time-bounded and time-unbounded
properties.

All the variants of this method rely on an abstraction of the model, this
abstraction is analysed by a numerical model checker and the result is used to
steer Monte Carlo simulations on the initial model. This abstraction should
be small enough to be analysed by numerical methods and precise enough to
improve the simulation. This abstraction can be build by the modeller, or
alternatively a class of systems can be identified in which an abstraction can
be automatically computed.

This approach has been implemented in the tool Cosmos, and this method
was successfully applied on classical benchmarks and a case study.

3

Résumé

Ces dernières années, l’analyse de systèmes complexes critiques est devenue
de plus en plus importante. En particulier, l’analyse quantitative de tels
systèmes est nécessaire afin de pouvoir garantir que leur probabilité d’échec
est très faible. La difficulté de l’analyse de ces systèmes réside dans le fait
que leur espace d’état est très grand et que la probabilité recherchée est
extrêmement petite, de l’ordre d’une chance sur un milliard, ce qui rend les
méthodes usuelles inopérantes.

Les algorithmes de Model Checking quantitatif sont les algorithmes
classiques pour l’analyse de systèmes probabilistes. Ils prennent en entrée le
système et son comportement attendu et calculent la probabilité avec laquelle
les trajectoires du système correspondent à ce comportement. Ces algorithmes
de Model Checking ont été largement étudiés depuis leurs créations. Deux
familles d’algorithmes existent : le Model Checking numérique réduit le
problème à la résolution d’un système d’équations. Il permet de calculer
précisément des petites probabilités mais souffre du problème d’explosion
combinatoire; le Model Checking statistique est basé sur la méthode de
Monte-Carlo qui se prête bien à l’analyse de très gros systèmes mais qui ne
permet pas de calculer de petites probabilités.

La contribution principale de cette thèse est le développement d’une
méthode combinant les avantages des deux approches et qui renvoie un
résultat sous forme d’intervalles de confiance. Cette méthode s’applique à la
fois aux systèmes discrets et continus pour des propriétés bornées ou non
bornées temporellement.

Cette méthode est basée sur une abstraction du modèle qui est analysée
à l’aide de méthodes numériques, puis le résultat de cette analyse est utilisé
pour guider une simulation du modèle initial. Ce modèle abstrait doit à la
fois être suffisamment petit pour être analysé par des méthodes numériques
et suffisamment précis pour guider efficacement la simulation. Dans le cas
général, cette abstraction doit être construite par le modélisateur. Cependant,
une classe de systèmes probabilistes a été identifiée dans laquelle le modèle
abstrait peut être calculé automatiquement.

Cette approche a été implémentée dans l’outil Cosmos et des expériences
sur des modèles de référence ainsi que sur une étude de cas ont été effectuées,
qui montrent l’efficacité de la méthode.

4

Remerciements

Je remercie mes encadrants de thèse Claudine Picaronny et Serge Haddad
pour leur patience et leur gentillesse, ainsi que pour les conseils et les
encouragements qu’ils m’ont prodigués tout au long de ces trois années. Grâce
à leurs qualités scientifiques et humaines, ils m’ont permis de développer
mon esprit critique et mon autonomie et de découvrir les différentes facettes
du métier d’enseignant-chercheur. Je remercie en particulier Serge pour
m’avoir fait rencontrer un grand nombre de chercheurs de différents horizons
géographiques et scientifiques et pour m’avoir encouragé à travailler avec
eux.

Je tiens également à remercier les deux rapporteurs de cette thèse Pieter-
Tjerk De Boer et Gerardo Rubino qui ont accepté d’évaluer ce manuscrit et
m’ont fait part de remarques très pertinentes pour la suite de mes travaux,
ainsi que Patrice Moreaux, David Parker et Nihal Pekergin pour avoir accepté
de participer à mon jury de thèse.

Je remercie tous les membres du LSV qui m’ont chaleureusement accueilli
et avec qui j’ai pu discuter et échanger sur mes travaux pendant ces trois
ans. Je remercie Paolo Ballarini, Hilal Djafri et Nihal Perkergin, pour
leurs collaborations sur l’outil Cosmos qui m’ont permis de participer à
l’implémentation d’un outil de vérification. Je remercie également Elvio
Amparore, Marco Beccuti, Susanna Donatelli et Giuliana Franceschinis ainsi
que les membres du département informatique de l’université de Turin pour
m’avoir accueilli dans leur laboratoire lors de mon séjour en Italie. Je tiens à
mentionner que participer au projet CosyVerif qui m’a sensibilisé au problème
de la visibilité de la recherche a été une exprérience très enrichissante. Merci
à tous les participants de ce projet de m’avoir intégré dans leur équipe et en
particulier à Maximilien Colange, Clément Desmoulin et Alban Linard avec
qui j’ai le plus étroitement collaboré.

Je tiens à remercier tous les membres du LSV qui ont rendu l’ambiance si
conviviale et en particulier ceux avec qui j’ai collaboré sur des enseignements
Cesar Rodriguez, David Baelde, Claudine Picaronny et Micheèle Sebag.
Un grand merci à l’équipe administrative et technique qui m’a permis de
travailler dans des conditions optimales. Je remercie ceux qui ont partagé
mon bureau : Aiswarya, Benjamin, Patrick, Jérémie, Asalé et Baptiste pour
l’ambiance studieuse et amicale qu’ils y ont instauré. Merci aussi à tous les

5

nageurs du LSV qui m’ont aidé à garder la forme, j’ai en particulier une
pensée pour Alban, Virginie, Paul, Thida, Sophie, Claudine et Francis. Je
remercie tous les doctorants du LSV pour leurs camaraderie. Je tiens à
remercier chaleureusement Aiswarya et Benjamin dont les ‘chamailleries’ ont
animé ma vie au LSV, ainsi que Cesar que je n’ai jamais pu convaincre des
bienfaits de la cuisine maison.

J’aimerai enfin remercier toute ma famille, mes parents pour m’avoir
motivé, soutenu et donné le goût d’apprendre, Paul pour m’avoir le premier
initié à l’informatique et Antoine pour être un si bon conteur. Pour finir
je remercie Elisa pour son aide, son amour et pour m’avoir aidé à garder
confiance en moi.

Benôıt Barbot
Oxford, Novembre 2014

6

Contents

Abstract 3

Résumé 4

Remerciements 5

Contents 7

1 Introduction 11
1.1 Model Checking . 12
1.2 Rare events . 12
1.3 Classical Methods for Probability Estimation 13
1.4 Contributions . 15
1.5 Organization . 16

I Preliminaries 17

2 Technical Background 18
2.1 Introduction . 18
2.2 Models . 18

2.2.1 Discrete Event Dynamic System 18
2.2.2 Discrete Time Markov Chain 21
2.2.3 Continuous Time Markov Chain 30
2.2.4 Higher Level Model 35

2.3 Statistical Methods . 42
2.3.1 Monte Carlo Method 42
2.3.2 Confidence interval . 43
2.3.3 Gaussian Confidence Interval 46
2.3.4 Chernoff-Hoeffding Bounds 48
2.3.5 Confidence Interval for Binomial law 48
2.3.6 Hypothesis testing . 49

2.4 Model Checking . 50
2.4.1 Specification . 50

7

2.4.2 Numerical Model Checking 52
2.4.3 Statistical Model Checking 53
2.4.4 Comparison Between Numerical and Statistical Model

Checking . 53

3 Rare Events 56
3.1 Introduction . 56
3.2 Rare-Event Problem . 56
3.3 Splitting . 59
3.4 Importance Sampling . 63

3.4.1 Definition . 63
3.4.2 Zero Variance Importance Sampling 65
3.4.3 Infinite Variance Importance Sampling 67
3.4.4 Distribution of Ws0 68
3.4.5 Efficiency of Importance sampling 69
3.4.6 State of the Art on Importance Sampling 69

3.5 Conclusion . 73

II Theoretical Contributions 74

4 Guaranteed Variance Reduction 75
4.1 Introduction . 75
4.2 A New Approach for Importance Sampling 76

4.2.1 Principle of the Method 76
4.2.2 Reduced Model . 77
4.2.3 Guaranteed Variance Reduction 79
4.2.4 Structural Guarantee 81

4.3 Reachability Analysis for Markov Chain 87
4.3.1 General Importance Sampling 87
4.3.2 Importance Sampling with Guaranteed Variance . . . 90

4.4 Time-Bounded Reachability for DTMC 93
4.4.1 Challenge . 93
4.4.2 Adapting Reachability Analysis 93
4.4.3 Algorithmic Considerations 97

4.5 Time-Bounded Reachability for CTMC 103
4.5.1 Transient Analysis . 104
4.5.2 Guaranteed Variance for CTMC 106
4.5.3 More on Simulation. 109

4.6 From Model Checking to Reachability 111
4.6.1 From Until Formula to Reachability 111
4.6.2 From Model Checking Against Finite State Automaton

to Reachability . 112
4.7 Conclusion . 113

8

5 Patterns for Stochastic Bounds 114
5.1 Introduction . 114
5.2 Framework . 115

5.2.1 Syntax . 115
5.2.2 Operational Semantic 117

5.3 Symmetries . 124
5.4 Coupling . 128
5.5 Application to Guaranteed Variance Reduction 134
5.6 Conclusion . 137

III Applications 139

6 Cosmos 140
6.1 Introduction . 140
6.2 Description of the Tool . 141

6.2.1 Architecture . 141
6.2.2 The HASL Logic . 144
6.2.3 Statistical Procedures 148

6.3 Integration of Importance Sampling 150
6.3.1 Distribution Parameters 150
6.3.2 State-Space Generation and Numerical Computation . 152
6.3.3 Fox-Glynn Algorithm and Uniformization 153

6.4 CosyVerif . 153
6.4.1 Description . 153
6.4.2 Personal Contributions 154

6.5 Stochastic Symmetric Net for Cosmos 156
6.5.1 Extension of HASL . 157
6.5.2 Implementation of SSN in Cosmos 158
6.5.3 Runtime Comparison of Symmetric Net Simulator vs

Petri net Simulator . 160
6.6 Comparison Between Statistical Model Checkers 162

6.6.1 Expressiveness Comparison 162
6.6.2 Runtime Comparison of Statistical Model Checkers . . 164

6.7 Importance Sampling Benchmark 168
6.7.1 Global overflow in tandem queues 168
6.7.2 Local Overflow in Tandem Queues 172
6.7.3 Bottleneck in Tandem Queues 174
6.7.4 Parallel Random Walk 174
6.7.5 The Dining Philosophers 176

6.8 Conclusion . 177

9

7 Signaling Cascade 179
7.1 Introduction . 179
7.2 Biological Background . 180
7.3 Petri net modeling . 182
7.4 Experiments . 184

7.4.1 Maximal peak of the output signal 185
7.4.2 Conditional maximal signal peak 189
7.4.3 Signal propagation . 190

7.5 Conclusion . 191

8 Conclusion and Perspectives 193
8.1 Conclusion . 193
8.2 Perspectives . 194

List of Publication 195

Bibliography 196

10

Chapter 1

Introduction

When one is interested in the analysis of a given system, the usual approach
consists in building a mathematical model of this system and in performing
the analysis on the model rather than on the initial system. The benefits of
such an approach are multiple and can be seen in many fields:

In engineering, modelling can very useful during the whole lifetime of
a product. For instance, during the design of a system, the model can be
modified to explore several design options or formal analysis and simulation
can be conducted to ensure the correct behavior of the system. As these
tests do not require to build any actual prototype, they are indeed much
cheaper and faster than the traditional ones. During the exploitation of the
system, the model can also be used to help maintenance or understand fault
so that the next generation will be more effective. The use of models has
been successful in several fields of engineering, as for example in mechanical
engineering, electrical or software engineering.

In research,in most scientific fields, models are nowadays used to help with
the comprehension of a system. In particular, models are used to understand
or predict a specific behavior of a system without dealing with its whole
complexity. In fact, the complete analysis could be either too expensive
or too difficult but also unnecessary. The difficulty is then to abstract the
system in a “smart” way in order to build a minimal pertinent mathematical
model of the system for the property of interest.

Although applied in different fields and on different systems, similar
trends can be found among the methods used for system analysis. The most
common ones are simulation where the model is executed as the real system
so that observations can be conducted on the simulated system; verification
where all the states of a modeled system are explored to ensure that no faulty
state can be reached; synthesis where parts of a model constrained by other
parts are automatically build; and evaluation where the efficiency of a model
is estimated.

The study and development of efficient methods for system analysis

11

constitutes therefore the object of an active research in computer science.
Within this thesis, we will focus on one particular method, namely Model
Checking.

1.1 Model Checking

In Model Checking [31], one is interested in checking if a software or hardware
system meets its specification. In this case, the system is modeled as a
transition system while its specification is modeled as a formula in a given
logic. An exhaustive exploration of the state space can then be performed in
order to determine whether or not a faulty state is reached.

This approach has been broadly studied for the last decades, leading to
the development of several effective tools. Historically, model checking has
been first applied to non-probabilistic programs using several specification
languages like LTL [74] or CTL [30]. However, some systems are subject to
unsettled behaviors which may be governed by probabilistic laws. In those
systems, standard model checking is not very helpful as it can return only a
boolean (this state is reached) but gives no information about the frequency
of this event to actually occur. In order to get access to this information,
one then has to use quantitative model checking instead.

Two main sources of randomness can be identified:

• A system can explicitly contain randomness. For example, a network
protocol often includes a randomized algorithm to break symmetry [69].

• Randomness may also be used to model unknown parts of a system. For
instance, one can model the physical part of a system or its interaction
with its environment with probabilities. In the case of a Cyber-physical
system, a deterministic algorithm is then entangled with a physical
part interacting with the environment which is modeled as a stochastic
process [22].

Quantitative model checking stands therefore at the junction between model
checking and performance evaluation. It has been applied to a broad range
of probabilistic systems. However, some particular cases still requires special
attention as for instance rare events.

1.2 Rare events

Rare events are events that appear with a very small probability, like the
simultaneous failure of two redundant components in a critical system or an
overflow in a stable telecommunication system. Indeed human intuition is
far from correct when it comes to the estimation of such small probabilities.
For example, the report on the Challenger space shuttle accident by Richard

12

Feynmann [32] starts with the following sentences “It appears that there are
enormous differences of opinion as to the probability of a failure with loss of
vehicle and of human life. The estimates range from roughly 1 in 100 to 1 in
100,000.”, Richard Feynmann notes that even experts on a system cannot
estimate accurately small probabilities and are prone to underestimation. In
the context of mathematical finance, Nassim Nicholas Taleb developped the
Black Swan theory in [83] claiming that rare events play a crucial role and
that their probability of occurrences are often underestimated to the point
that they are not even considered by experts of the domain. It is therefore
crucial to have reliable methods for computing small probabilities of failure.

1.3 Classical Methods for Probability Estimation

To estimate probabilities, they are two main approaches: numerical analysis
and Monte Carlo simulation. In numerical analysis, the problem of computing
the probability for a model to have a specific behavior may for instance
be transformed into a system of linear equations. This system is then
solved with classical linear algebra techniques. The main drawback of these
methods is that the time and memory consumptions greatly increase when
models become too complex, either because of the size of the state space
which is known as the state space explosion problem, or because it features
complex probability distributions. In Figure 1.1 experiments on a classical
communication system composed of several queues in tandem are reported.
This example is a well-known benchmark for rare event methods and is
formally defined and studied in this manuscript. The state space of the
system greatly increases with the number of queues. The time for estimating a
probability of overflow before returning to an idle state in systems of variable
sizes is plotted. On this figure, the time for numerical computation becomes
intractable for large models. This situation is not specific to this example
and very large system are intractable due to memory or time limitations.

An alternative to numerical computations is Monte Carlo simulation.
In this setting, the system is simulated a large number of times and an
estimation of the probability of interest is computed by counting the number
of trajectories of the system that contains the behavior of interest. In
the model-checking setting, this method is also known as statistical model
checking. In Figure 1.1, a simulation-based method is used to estimate a
probability close to 1 with a constant number of trajectories. This method
takes almost constant time on the tandem queues system with respect to the
size of the models. The simulation time mainly depends on the number of
branchings in the system. It is constant in the tandem queue example and,
most of the time, increases less than logarithmically with the system size.
The simulation time also depends on the length of the trajectories which may
not be directly linked to the size of the system. Moreover, simulation-based

13

0.1

1

10

100

1000

10000

100000

103 104 105 106 107 108 109

T
im

e
(s
ec
on

d
s)

Size of State Space

Numerical Computation

Monte-Carlo Simulation

Figure 1.1: Numerical and simulation based computation time for increasing
state space on a tandem queue example

methods can deal with models featuring complex probability distributions as
long as algorithms to sample these distributions are available.

0.1

1

10

100

1000

10000

100000

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

T
im

e
(s
ec
on

d
s)

Probability

Numerical Computation

Monte-Carlo Simulation

Figure 1.2: Numerical and simulation based computation time for decreasing
probability on a tandem queue example

Unfortunately, simulation-based methods do not handle efficiently the
estimation of rare-event probability. Figure 1.2 shows the time required
for the estimation of a small probability such that the estimation error is a
constant fraction of the probability of interest which can be formalized using
confidence intervals. On this example, when the probability goes to zero, the
simulation time becomes intractable whereas the time required by numerical
method is almost constant.

The limitations of numerical methods and Monte-Carlo simulation have
been heavily studied. In particular, several methods to deal with the rare-
event problem have been developed, the two main ones being splitting and

14

importance sampling. These two methods modify how the simulation is
conducted by making copies of trajectories in the case of splitting or biasing
probability distributions in the case of importance sampling. They have
been successfully applied in various domains like nuclear physic or queuing
network. However two main limitations remain to apply them to model-
checking problems: they require manual setting and they can only provide
asymptotical guarantee on their result, in some particular cases they can
even worsen the problem.

1.4 Contributions

This thesis presents contributions to simulation techniques in three directions:

• A theoretical method to use importance sampling which guarantees
the result by providing a conservative confidence interval not relying
on some asymptotical hypotheses has been developed [IV, V, VI]. This
method relies on an abstraction of the system under study which is
small enough to be analyzed numerically and which is used to build an
efficient importance-sampling algorithm. It combines the advantages
of both numerical and simulation-base methods for the estimation
of probabilities of occurrence of rare events in large systems. This
method can be used by manually defining an abstraction of the model.
A theoretical framework in which the abstraction of the model is
automatically computed is also presented.

• Software developments on the tool Cosmos have been conducted.
Cosmos is a statistical model checker which takes Petri nets as input
for models, and performs quantitative model checking using the HASL
logic. The theoritical methods for handling rare events that we have
developed have been integrated in this tool.

The input language of the tool has been extended to a broader class of
Petri nets, namely Stochastic Symmetric Nets [I].

Recurrent difficulties with verification tools appear when one wants to
exchange data between tools or interact with them in a uniform way.
The CosyVerif platform [II] addresses these issues and provides a
common interface to various tools including Cosmos.

• Several experiments using the rare-event methods have been conducted
as well as one case study on a biological system [III] to assess the
efficiency of the proposed methods.

15

1.5 Organization

In a first part, Chapter 2 recalls the formal notation and statistical results
used throughout this thesis as well as classical algorithms used for numerical
analysis of models. This chapter also recalls some properties of coupling
relations. Chapter 3 presents in more details the rare-event problem for
Monte Carlo simulations as well as classical methods to circumvent it, namely
splitting and importance sampling. In the second part, theoretical results
are presented. Chapter 4 presents a reliable theoretical method to estimate
small probabilities for big systems. This method describes an algorithm
based on an abstraction of the model. The design of this abstraction is a
manual step. In Chapter 5, a framework is described in which abstractions
can automatically be computed. The third part presents more applied results.
Chapter 6 presents software contributions and benchmarks. In this chapter,
the efficiency of the methods presented in Chapter 4 is demonstrated, as well
as the efficiency of the statistical model checker Cosmos. Chapter 7 presents
a biological case study where the methods for rare events previously described
are used. Finally Chapter 8 contains the conclusions and perspectives of this
thesis.

16

Part I

Preliminaries

17

Chapter 2

Technical Background

2.1 Introduction

This chapter presents known results used all along this thesis. They are
presented in three parts:

• In a first part, we present the different stochastic models that we
will consider later. We recall their semantics and some useful related
properties.

• In the second part, we collect classical statistical results for estimating
the expected value of a random variable. In particular, we introduce the
notion of confidence interval and recall different methods to compute
some.

• The last part is devoted to model-checking : we present logics to specify
properties of stochastic systems and algorithms to verify them.

2.2 Models

2.2.1 Discrete Event Dynamic System

A general setting to describe probabilistic system is to suppose that the
state of the system evolves in discrete steps, which implies that, in any time
interval, the number of reached state is countable. This does not allows to
model hybrid systems where the state of the system evolves continuously.

Discrete events system are modeled formally by defining successive states
of a system as sequence of random variables. The time between successive
events is also described by a sequence of random variables.

18

Definition 1 (Discrete Event Dynamic System (DEDS))

A discrete event dynamic system is a tuple: (S, S0, E, (En)
1
0 , (Tn)

1
0)

with:

• S is a discrete set of states,

• S0 is the random variable of the initial state taking value in S,

• E is a set of events,

• δ : S ⇥ E ! S is the transition function.

• (En)
1
0 is a sequence of random variables over the set of events E. A

realization of (En)
1
0 is sequence of events in the system. The sequence

of states is inductively defined as Sn+1 = δ(Sn, En) from the initial
state S0.

• (Tn)
1
0 is a sequence of stopping times which are random variables

taking values in R
+ representing time interval. The variable T0 is the

time before the first event. Variable Tn denotes the time between event
En−1 and En.

Running example. A tandem queues system is used in this section to
illustrate the different model formalisms. This system is shown on Figure 2.1.
It consists in two queues : event λ represents the arrival of a client in the
first queue. Once served in the first queue, the client goes to the second
queue, represented by event ⇢1. Once served in the second queue, the client
leaves the system with event ⇢2. The first event can occur at any time while
the two others require the corresponding queue to contain at least one client.

n1 n2
λ ρ1 ρ2

Figure 2.1: Tandem Queues System

Each of the three events occurs according to a probability distribution.
The first event is distributed according to a Poisson process and the two
services ⇢1 and ⇢2 are distributed with exponential distributions. This system
is described as M/M/1 with two queues in Kendall’s notation.

As the distribution are Markovian at any time the system is fully described
by the number of clients in the two queues. The pair (n1, n2) is thus used to
describe the state of the system where there are n1 clients in the first queue
and n2 clients in the second queue. As the queues are not bounded, the state
space of the system is N⇥ N.

19

Figure 2.2 shows a realization of a DEDS specifying the tandem queues
system. The initial state is (1, 0) and the set of events is {λ, ⇢1, ⇢2}. Its
formal definition is given in next section.

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6

T0

T1

T2

T3

T4

λ

ρ1ρ1

ρ2

ρ2

n1

n2

Figure 2.2: Example of a realization of a DEDS

Remark 1 A DEDS can be defined without the sequence of events but with
the sequence of successive states (Sn)

1
0 .

A Zeno trajectory in DEDS is a realization of a DEDS for which
P1

i=0 Ti

converges. Systems in which the probability of Zeno paths is not null are
more difficult to analyzed and often avoided. The model of Markov chains
which is heavily used in this thesis is not subject to the problem of Zeno
path.

Several analysis can be performed on such a system. Stationary analysis
studies whether the system reaches an equilibrium and in this case the
behavior of the system in this equilibrium.

Definition 2 (Stationary distribution)

Let denoted by
(

⇡(s)
)

s2S the probability distribution of states of the
DEDS after an infinite time. It is defined when it exists as

⇡(s) = lim
n!1

P(Sn = s)

Transient analysis studies the behavior of a system in some fixed bounded
time.

20

Definition 3 (Transient distribution)

Let
(

π⌧ (s)
)

s2S be the distribution of state at time τ . It exists as soon as
the set of Zeno paths has null probability in the system. It is defined as:

π⌧ (s) =
1
X

n=0

P
(

Sn = s | Tn τ < Tn+1

)

P
(

Tn τ < Tn+1

)

As the transient distribution depends of the initial state, π⌧,s, with s 2 S
is defined as the distribution at time τ of a DEDS where the initial state
have been replaced by s.

2.2.2 Discrete Time Markov Chain

A discrete time Markov chain (DTMC) is a stochastic process fulfilling the
discrete Markov property. The discrete Markov property ensures that the
process is memoryless after each event, that is all future stochastic behaviors
only depend of the current state.

Definitions

Definition 4 (Discrete Markov Property for DEDS)

Let D = (S, S0, E, (En)
1
0 , (Tn)

1
0) be a DEDS. The DEDS D has the

discrete Markov property if for all n 2 N:

8s 2 S, P(Sn+1 = s |S0, T0, S1, T1, . . . , Sn, Tn) = P(Sn+1 = s |Sn)

and 8t 2 R
+, P(Tn+1 > t |S0, T0, S1, T1, . . . , Tn, Sn+1) = P(Tn+1 > t |Sn+1)

In DTMC, the passing of time is represented only by the successive states of
the system. The time between events is irrelevant and thus assumed to be
always equal to one time unit. Consequently the state space of a DTMC is
countable. Thus it can be represented as a possibly infinite directed graph
where arcs are labeled by probabilities. This can be defined formally by the
following:

Definition 5 (Discrete Time Markov Chain (DTMC))

A Discrete Time Markov Chain (DTMC) C is a tuple (S, s0,P) with:

• S is a possibly infinite set of states,

21

• s0 2 S is the initial state,

• P =
(

P(s, s0)
)

(s,s0)2S⇥S
is the transition probability matrix, This matrix

P is stochastic which means that all its elements are non negative and
the sum of each line is one, i.e. 8s 2 S,

P

s02S P (s, s0) = 1.

Remark 2 The function P is called a matrix despite the fact that it has
infinite rows and columns when S is infinite.

DTMC takes as semantics a DEDS with the same state space, where the
random variable S0 takes for unique value s0. The sequence of states is
defined as follows:

8n > 0, 8s 2 S, P(Sn = s) =
X

s02S
P(Sn−1 = s0)P(s0, s).

The sequence of times (Tn) is equal to 1 for all n. By definition DTMCs
fulfill the Markov property.

The embedded graph of a Markov chain is defined as a directed graph
whose vertices are the states of the Markov chain and the transitions of this
graph are s ! t where P(s, t) > 0. Furthermore transitions of the graph
may be labeled by their probabilities.

Example 1 Figure 2.3 shows a simple DTMC where the state space is the
set {1, 2, 3}, the initial state is 3 and the transition probability matrix is

P =

0

@

0.3 0.7 0
0 0 1
0.2 0.8 0

1

A .

1 2

3

0.3
0.7

1
0.8

0.2

Figure 2.3: A simple DTMC

Running example. The figure 2.4 represents a DTMC of a tandem
queues system. The number of clients in the first queue is represented on the
horizontal axis and the number of clients in the second one is represented on

22

λ

ρ1
ρ2

λ

ρ1
ρ2

λ

ρ1
ρ2

λ

ρ2

λ

ρ1
ρ2

λ

ρ1
ρ2

λ

ρ1
ρ2

λ

ρ2

λ

ρ1
ρ2

λ

ρ1
ρ2

λ

ρ1
ρ2

λ

ρ2

λ

ρ1
ρ2

λ

ρ1
ρ2

λ

ρ1
ρ2

λ

ρ2

ρ2

ρ2

ρ2

ρ2

ρ1

ρ1

ρ1

ρ1

s0

n10 1 2 3 4

n2

0

1

2

3

Figure 2.4: DTMC for the tandem queues

the vertical axis. In the initial state s0, the two queues are empty. Here this
model is presented as a discrete one and thus the probability distribution of
events is replaced by choices between events. Given a state s = (n1, n2), a
new client comes in the first queue with probability λ, a client leaves the first
queue for the second one with probability ⇢1 and a client leaves the second
queue and exits with probability ⇢2 (λ+ ⇢1 + ⇢2 = 1).

The transition probability matrix is as follows: 8s = (n1, n2) 2 S,

P
(

(n1, n2), (n1 + 1, n2)
)

= λ

if n1 > 0 P
(

(n1, n2), (n1 − 1, n2 + 1)
)

= ⇢1
if n2 > 0 P

(

(n1, n2), (n1, n2 − 1)
)

= ⇢2
if n2 > 0 P

(

(0, n2), (0, n2)
)

= ⇢1
if n1 > 0 P

(

(n1, 0), (n1, 0)
)

= ⇢2
P
(

(0, 0), (0, 0)
)

= ⇢1 + ⇢2
otherwise P

(

(n1, n2), (n
0
1, n

0
2)
)

= 0

For our purpose, we enrich the definition of Markov chains with events.
This definition should not be confused with the more classical definition of
labeled Markov chain. In a labeled Markov chain, a labeling function assigns
labels to states of the Markov chain. Here events are added on the transitions
of the chain. It is possible to define enriched labeled Markov chain as the
two extensions do not interfere one with the other.

Definition 6

An enriched discrete time Markov chain C is defined by:

• a set of states S including an initial state s0;

23

1
ρ2 ρ2 ρ2 ρ2

ρ1

ρ1

ρ1

ρ1

1

s−

s+

s0 λ λ λ

λ

λ λ λ

λλ λ

λ

λ λ

λ

ρ1 ρ1 ρ1 ρ1

ρ1 ρ1 ρ1

ρ1 ρ1

ρ1

ρ2 ρ2 ρ2 ρ2

ρ2 ρ2 ρ2

ρ2 ρ2

ρ2

Figure 2.5: DTMC with absorbing states

• a finite set of events E;

• a successor function δ : S ⇥ E ! S;

• a function p : S ⇥ E ! [0, 1] such that for all s 2 S,
P

e2E p(s, e) = 1.

We define the transition probability matrix P of size S ⇥ S by:

8s, s0 2 S, P(s, s0) =
X

δ(s,e)=s0

p(s, e)

Running example. The tandem queues example has three events: a is
the arrival of a client, e1 is the end of a service in queue 1 and e2 is the
end of a service in queue 2. For each state s, p(s, a) = λ, p(s, e1) = ⇢1 and
p(s, e2) = ⇢2.

In the context of simulation we will use bounded DTMC (BDTMC) as
chain equipped with two special states. The terminology will be explained
later.

Definition 7 (BDTMC)

A bounded DTMC is a tuple (S, s0,P, s−, s+) where:

• (S, s0,P) is a DTMC.

• s− 2 S and s+ 2 S and these two states are absorbing.
i.e. P(s−, s−) = P(s+, s+) = 1.

24

• The only bottom strongly connected components are {s−} and {s+}.

This definition is equivalent to say that states s− and s+ are reached with
probability one and are absorbing. This definition is independent from the
one of enriched DTMC and thus it makes sense to consider enriched bounded
DTMC. The figure 2.5 shows a BDTMC. A BDTMCis ergodic as the only
recurrent states are s+ and s− and there exists p 2 [0, 1], the probability to
reach s+ such that π(s+) = p, π(s−) = 1− p.

Methods

Qualitative analysis Qualitative analysis of a DTMC is done by analyzing
its embedded graph. From the embedded graph of any DTMC, the tree
decomposition in strongly connected components can be computed. A Strongly
Connected Component (SCC) is a subset of the graph for which their exists
a path between all pairs of states and maximal for this property. The tree
decomposition in strongly connected components is computed by taking as
root the SCC containing the initial state. Then inductively a SCC A is the
parent of a SCC B if there exists a path from a state of A to a state of
B. SCC which are not connected to the root does not appear in the tree
decomposition. SCC which are leaves of the tree are called Bottom Strongly
Connected Components (BSCC).

BSCC play a crucial role in qualitative analysis. For any state s in a
BSCC, the probability that s is visited infinitely often by a trajectory of the
Markov chain is strictly greater than zero whereas for any state which is not
in a BSCC this probability is equal to zero.

A state s of a SCC is called aperiodic if the gcd of lengths of all cycles on
s is 1. Finite Markov chains are ergodic if all BSCC are aperiodic. A SCC is
aperodic if it contains an aperiodic state.

Computing reachability probability Let πs denote the stationary dis-
tribution of a DTMC where the initial state has been replaced by s. The
stationary distribution of a DTMC C exists and is unique as soon as C is
ergodic. In the particular case of a BDTMC, πs(s+) is the probability to
reach s+ from a state s and is denoted by µ(s). This stationary distribution
can additionally be defined by the following equation:

Definition 8 (Reachability)

Given a DTMC C and a set of states S+ ⇢ S, we define the vector of
probabilities µ 2 [0, 1]S as the smallest solution of the following system of

25

equations:

µ(s) =

8

>

<

>

:

1 if s 2 S+
X

s02S
P(s, s0)µ(s0) if s /2 S+

This definition allows to computes effectively the value of the stationary
distribution µ by solving a linear system of equations.

Computing time-bounded reachability probability For any delay
u 2 N, we define µu(s) as the probability to reach the state s+ in u time
units starting from state s, that is defined as

µu(s) = P(Su = s+)

with S0 = s. The vector µ whose components are µu(s), for s 2 S is called
the time-bounded reachability vector with time-bound u. Similarly to µ a
more effective definition of µu can be stated:

Definition 9 (Time-Bounded Reachability for DTMC)

Given a DTMC C, a set of states S+ ⇢ S and a positive integer u we
define the vector of probabilities µu 2 [0, 1]S as:

µu(s) =

8

>

>

>

<

>

>

>

:

1 if s 2 S+

0 if u = 0 ^ s /2 S+
X

s02S
P(s, s0)µu−1(s

0) if u > 0 ^ s /2 S+

This definition can be used to compute effectively time-bounded reacha-
bility using matrix-vector multiplications.

Coupling Methods The coupling method [68] is a classical method for
comparing two stochastic processes. It can be applied in various contexts
(establishing ergodicity of a chain, stochastic ordering, bounds, etc.). In this
thesis coupling methods are used to establish an order on the set of states
of a DTMC toward the reachability of a state s+. A coupling between
two Markov chains is also a Markov chain whose state space is a subset of
the product of the two spaces. This subset is called the coupling relation.
A coupling must satisfy that that its projection on any of its components
behaves like the original corresponding chain. This means that the product
chain contains the behaviors of its two components.

26

Depending of the context for which the coupling is used, additional
constraints are imposed. For our needs, we only define the coupling of a
chain with itself and we add a constraint on the set of states to characterize an
order on the DTMC states. Higher states in this order have higher probability
to reach a state s+.

Definition 10

Let C = (S,P) be a Markov chain and s+ 2 S be an absorbing state of
C. A coupling of C with itself is a DTMC C⌦ = (S⌦,P⌦) such that :

• S⌦ ✓ S ⇥ S

• 8s 6= t 2 S , 8(s, s0) 2 S⌦, P (s , t) =
P

t02S P⌦((s, s0), (t, t0)) and
8s0 6= t0 2 S, 8(s, s0) 2 S⌦, P(s0, t0) =

P

s02S P⌦((s, s0), (t, t0))

• 8(s, t) 2 S⌦, s = s+) t = s+

The set S⌦ defines a coupling relation with a reachability goal s+.

The following proposition allows to compare transient and stationary
reachability probabilities without any numerical computation. Recall that
µ(s) denotes the probability to reach the state s+ in C starting from state s.

Theorem 1

Let C⌦ be a coupling of C, with a reachability goal s+ Then, for all
(s, s0) 2 S⌦, we have:

µ(s) µ(s0)

8u > 0, µu(s) µu(s
0)

Proof:
Let σ be a finite random trajectory ending in a bottom strongly connected
component in the coupled chain starting from (s, s0). We define the random
variables 1s+ ,1

0
s+ by:

• 1s+ = 1 if the first component of the ending state of σ is s+.

• 10s+ = 1 if the second component of the ending state of σ is s+.

Let (sf , s
0
f) 2 S⌦ be the final state of σ.

Using that 8(s, t) 2 S⌦, s = s+) t = s+ we have

sf = s+) s0f = s+

Then for all σ:
1s+(σ) 10S+

(σ)

27

By taking expected values, we have:

E(1s+) E(10s+)

Which can be rewritten as: µ(s) µ(s0).
By taking conditional expectation over the length of the path we obtain:

8u > 0, E(1s+
∣

∣ |σ| u) E(10s+
∣

∣ |σ| u)

This can be rewritten as: 8u > 0, µu(s) µu(s
0).

⇤

The following proposition specifies a special kind of coupling adapted
to our needs. We point a local property, at the level of transitions, which
whenever satisfied makes a relation a coupling. Precisely: For any pair of
states (s, s0) in the relation S⌦, for any events e 2 E we require that the pair
(δ(s1, e), δ(s2, e)) is also in the relation, in other words, we require that the
following diagrams holds.

8(s, s0) 2 S, 8e 2 E : s

s0

S⊗

t
e

t0
e

S⊗

When this holds the relation S⌦ is a coupling relation.

Theorem 2

Let C = (S,E, δ, p) be an enriched BDTMC with a reachability goal state
s+. Let S

⌦ ⇢ S ⇥ S be a relation on C such that:

1. 8e 2 E, s1, s2 2 S⌦, p(s1, e) = p(s2, e)

2. 8(s1, s2) 2 S⌦, e 2 E, (t1, t2) 2 S2

(δ(s1, e) = t1 ^ δ(s2, e) = t2)) (t1, t2) 2 S⌦

We define δ⌦((s1, s2), e) = (δ(s1, e), δ(s2, e)) and p⌦((s1, s2), e) = p(s1, e).
Then the DTMC C⌦ = (S⌦, E, δ⌦, p⌦) and S⌦ is a coupling relation on C2.

Proof:
The second hypothesis asserts that the chain is well defined. Furthermore,
for s, t in S such that s 6= t, we have, using Definition 6:

8s0 2 S, (s, s0) 2 S⌦)
X

t02S
P⌦((s, s0), (t, t0)) =

X

e|δ(s,e)=s0

p(s, e) = P (s , t).

28

1

1 λ

ρ1

ρ2

λ

ρ1

ρ2

λ

ρ1

ρ2

λ

ρ1

ρ2

λ

ρ2

ρ1 λ

ρ1

ρ2

λ

ρ1

ρ2

λ

ρ1

ρ2

ρ2 ρ2 ρ2

ρ1

ρ1

ρ1
λ

λ
λ

s•
−

s•+

s•0

Figure 2.6: Reduced DTMC

The other claim of Definition 6 has a similar proof.

⇤

Running example. Let us illustrate a coupling for the Markov chain
represented in figure 2.6 and called C•. This chain is obtained from the
tandem queues example presented in figure 2.5 by lumping together states
which have the same number of clients and at least R clients in the second
queue (in the figure R = 2). Its set of states S• is obtained from

{(n1, n2) | 0 n1 + n2 N ^ n2 R}

by merging all states (n1, n2) such that n1 + n2 = N . s+ corresponds to this
merging and any pair (n1, n2) such that n1 + n2 = N denotes s+. The goal
set contains only s+. s− = (0, 0). Let us define

S⌦ = {((n1, n2), (n
0
1, n

0
2)) | n1 + n2 n0

1 + n0
2 ^ n1 n0

1}

and prove that S⌦ is a coupling relation. The first and the third conditions
of proposition 2 are satisfied by construction. Let us check that for all couples
((n1, n2), (n

0
1, n

0
2)) in the relation, all successors are also in the relation. We

examine the three events of the system:

1. For event a, the successor of ((n1, n2), (n
0
1, n

0
2)) is ((n1 + 1, n2), (n

0
1 +

1, n0
2)) which is inside the relation.

2. For event e1, the successor of ((n1, n2), (n
0
1, n

0
2)) is

((n1 − 1{n1>0^n2<R}, n2 + 1{n1>0^n2<R}),
(n0

1 − 1{n0
1
>0^n0

2
<R}, n

0
2 + 1{n0

1
>0^n0

2
<R}))

the first condition defining S⌦ is satisfied as the sums are unchanged.

• If n1 n0
1 then n1 − 1{n1>0^n2<R} n0

1 − 1{n0
1
>0^n0

2
<R} and the

second condition defining S⌦ is satisfied.

29

• Else n1 = n0
1 and using the first condition we have n2 n0

2; then
n0
1 > 0 ^ n0

2 < R) n1 > 0 ^ n2 < R which implies:
n1 − 1{n1>0^n2<R} n0

1 − 1{n0
1
>0^n0

2
<R}, so the second condition

holds.

3. For event e2, the successor of ((n1, n2), (n
0
1, n

0
2)) is

((n1, n2 − 1{n2>0}), (n
0
1, n

0
2 − 1{n0

2
>0})).

As the first component is unchanged, the second condition holds.

• If n1 + n2 < n0
1 + n0

2 then n1 + n2 − 1{n2>0} n0
1 + n0

2 − 1{n0
2
>0}

• Else n1 + n2 = n0
1 + n0

2 and using the second condition n2 n0
2

then n2 − 1{n2>0} n0
2 − 1{n0

2
>0}, so the first condition holds.

Then S⌦ is a coupling relation.

2.2.3 Continuous Time Markov Chain

Definitions

When the time between events of a Markov chain is not discrete, continuous
distribution of the time are used and the continuous Markov property should
hold between each event.

Definition 11 (Continuous Markov Property for DEDS)

Let D = (S, S0, E, (En)
1
0 , (Tn)

1
0) be a DEDS. The DEDS D has the

continuous Markov property if it has the discrete Markov property and for
all n 2 N:

8t, t0 2 R
+, P(Tn > t+ t0 |Tn > t0) = P(Tn > t)

The discrete Markov property ensures that at each event the system
is memoryless. The continuous Markov property ensures furthermore that
between two events, the waiting time is also memoryless.

The only continuous distribution satisfying the continuous Markov prop-
erty is the negative exponential distribution. Thus continuous time Markov
chains are defined by adding a rate which is a positive real to each state.
The waiting time in each state is distributed exponentially with this rate.

Definition 12 (CTMC)

A Continuous Times Markov Chain is a tuple: (S, s0,P) with:

• S is a set of states,

30

• s0 2 S is the initial state,

• Q = (Q(s, s0))(s,s0)2S⇥S is the infinitesimal generator matrix, all ele-
ments of this matrix are non negative except for the diagonal ones, which
are negative. Moreover the sum of coefficients for each line is equal to
zero, i.e. 8s 2 S,

P

s02S Q(s, s0) = 0 , Q(s, s) = −Ps0 6=s2S Q(s, s0).

Other (equivalent) definitions of Continuous time Markov chain exist.
The infinitesimal generator matrix Q can be replaced by the transition rate
matrix R. For the same CTMC matrices Q and R are equal except on the
diagonal where R can take arbitrary non negative values corresponding to
loops. The infinitesimal generator can be split in two, a probability transition
matrix P and an exit rate function E : S ! R≥0. For two states s, s0 2 S,
the transition rate matrix R(s, s0) is equal to E(s)P(s, s0)

These three representations describe the same stochastic process but with
different points of view. The infinitesimal generator is used in the Kolmogorov
equation describing the behaviors of the chain. The rate transition matrix
R is more used for modeling as the loops are treated like other transitions.
Finally splitting the stochastic behavior in waiting time and probability
transition matrix reveals the discrete behaviors of the system.

A CTMC takes its semantics as a DEDS with the same state space S, a
unique initial state s0,

8n > 0, 8s 2 S, P(Sn = s) =
X

s02S\{s}
Q(s0, s)P(Sn−1 = s0),

8n > 0, P(Tn x) = 1− eQ(Sn,Sn)x.

Similarly to DTMCs, enriched CTMCs can be defined:

Definition 13

An enriched continuous time Markov chain C is a tuple (S, s0, E, δ,λ)
defined by:

• a set of states S including an initial state s0;

• a finite set of events E;

• a successor function δ : S ⇥ E ! S;

• a function λ : S ⇥ E ! R
+

31

We define the infinitesimal generator matrix Q of size S ⇥ S by:

8s 6= s0 2 S, Q(s, s0) =
X

δ(s,e)=s0

λ(s, e)

8s 2 S, Q(s, s) = −
X

δ(s,e) 6=s

λ(s, e)

Methods

Computing reachability probability The embedded DTMC of a CTMC
is defined as: D = (S,E, δ, p) where p is defined as follow:

8s 2 S, e 2 E, p(s, e) =
λ(s, e)

P

s02S λ(s0, e)
.

The distribution of time (Tn) in the DEDS is replaced by a sequence always
equal to 1.

As reachability probabilities do not depend of the waiting time, reacha-
bility probabilities in a CTMC are equal to reachability probabilities in its
embedded DTMC.

Computing time-bounded reachability probability Let µ⌧ the vector
of probabilities to reach s+ in ⌧ time units be defined as µ⌧ (s) = ⇡⌧,s(s+).

Using that the evolution of time is distributed with negative exponential
distribution, the following definition for µ⌧ holds:

Definition 14 (Bounded Reachability for CTMC)

Given a CTMC C, a set of states S+ ⇢ S and a positive real ⌧ we define
the vector of probabilities µ⌧ 2 [0, 1]S as the smallest solution to the following
system of equations:

µ⌧ (s) =

8

>

<

>

:

1 if s 2 S+
Z ⌧

0

X

s02S,s0 6=s

Q(s, s0)eQ(s,s)uµ⌧−u(s
0)du if s /2 S+

While in a CTMC the differential system can be numerically solved, a
more efficient way to obtain these probabilities consists in uniformising the
chain.

A chain is said to be uniform when for each state s, the exit rate λ = λs

is independent from s. When a chain is uniform the following holds.

32

1

5

2

2

3

1

0.3
0.7

1
0.8

0.2

1

10

2

10

3

10

0.65
0.35

0.8

0.2

0.9

0.08
0.02

Figure 2.7: Two equivalent CTMCs: a non uniform one and its uniformisation

Theorem 3 (Transient Distributions of Uniform Markov Chains)

Given a uniform chain, the transient distribution π⌧ is obtained by the
following formula:

π⌧ (s) =
X

n≥0

e−λ⌧ (λ⌧)n

n!
Pn(s0, s)

Indeed using the uniform hypothesis, e−λτ (λ⌧)n

n! is the probability that
n transitions take place in interval [0, ⌧] and Pn(s0, s) is the probability to

be in state s after n transitions. The term e−λτ (λ⌧)n

n! is known as Poisson
probability.

Given a non uniform chain with bounded rates, it is possible to transform
it in a uniform chain with the same distribution ⇡⌧ (see figure 2.7). It consists
in selecting some upper bound of the outgoing rates (say λ), consider λ as
the uniform transition rate and set a transition matrix P(u) defined by:

8s 6= s0 2 S P(u)(s, s0) =
λs

λ
P(u)(s, s0)

P(u)(s, s) = 1−
X

s0 6=s

P(u)(s, s0)

Running example. Observe that uniformization does not require the
CTMC to be finite. For instance, the rates of the infinite CTMC corresponding
to the queuing tandem are bounded by ⇢0+⇢1+⇢2. Assuming that ⇢0+⇢1+⇢2 =
1, Figure 2.4 also represents the embedded DTMC of the uniform version of
the tandem (with uniform rate 1).

With the same argument, when the chain is uniform with rate λ, µ⌧ (s)
fulfills:

µ⌧ (s) =
X

n≥0

e−λ⌧ (λ⌧)n

n!
µn(s)

33

This expression for µ⌧ is useful when it come to numerically compute the
value of µ⌧ as [51] present efficient algorithms for truncating the infinite sum
and computing Poisson probabilities with exact framing of the numerical
errors.

Coupling methods For continuous time Markov chain, we can strengthen
the result on coupling:

Theorem 4

Let C = (S,E, δ,λ) be an enriched CTMC with absorbing state s+. Let
S⌦ ⇢ S ⇥ S be a relation on C such that:

1. 8e 2 E, s, s0 2 S⌦,
λ(s, e) > λ(s0, e)) (δ(s, e), s0) 2 S⌦

and λ(s, e) < λ(s0, e)) (s, δ(s0, e)) 2 S⌦

2. 8(s, s0) 2 S⌦, e 2 E, (t, t0) 2 S2

(δ(s, e) = t ^ δ(s0, e) = t0)) (t, t0) 2 S⌦

3. S⌦ \ (Sf ⇥ S) ⇢ (Sf ⇥ Sf)

We define the product CTMC, C⌦ = (S⌦, E⌦, δ⌦,λ⌦) as follow:

• E⌦ = E] Ẽ, where Ẽ is a copy of E.

• 8(s, s0) 2 S⌦, δ⌦((s, s0), e) = (δ(s, e), δ(s0, e))

and δ⌦((s, s0), ẽ) =

8

>

<

>

:

(δ(s, e), s0) if (δ(s, e), s0) 2 S⌦

(s, δ(s0, e)) if (s, δ(s0, e)) 2 S⌦

(s, s0) otherwise

• 8(s, s0) 2 S⌦, λ⌦((s, s0), e) = min(λ(s, e),λ(s0, e))
and λ⌦((s, s0), ẽ) = |λ(s, e)− λ(s0, e)|

Then the CTMC C⌦ is a coupling over C2 and

8⌧ 2 R
+, µ⌧ (s) µ⌧ (s

0)

Proof:
The second hypothesis asserts that the chain is well defined. Furthermore,
for all s, t in S such that s 6= t, and for all s0 2 S, such that (s, s0) 2 S⌦ we
have, using definition 6:
X

t02S
Q⌦((s, s0), (t, t0)) =

X

e2E⌦|δ⌦((s,s0),e)=(t,t0)

λ⌦((s, s0), e)

We can split the sum over transitions of E and transitions of Ẽ.

=
X

e2E|δ(s,e)=t

λ⌦((s, s0), e) +
X

ẽ2Ẽ|δ(s,e)=t^(δ(s,e),s0)2S⌦

λ⌦((s, s0), ẽ)

34

Rates of transitions of E can be replaced by theirs definitions.

Rates of transitions of Ẽ are null if not in (δ(s, e), s0) 2 S⌦

=
X

e2E|δ(s,e)=t

min(λ(s, e),λ(s0, e)) +
X

ẽ2Ẽ|δ(s,e)=t

max(λ(s, e)− λ(s0, e), 0)

The two sum can be merged together.

=
X

e2E|δ(s,e)=t

min(λ(s, e),λ(s0, e)) +max(λ(s, e)− λ(s0, e), 0)

Finally we obtain.

=
X

e2E|δ(s,e)=t

λ(s, e) = Q (s , t)

The other claim for the coupling is symmetric.
The proof that

8⌧ 2 R
+, µ⌧ (s) µ⌧ (s

0)

is obtain by rewriting the proof of Theorem 1 with conditional expectation
on the time duration of paths.

⇤

2.2.4 Higher Level Model

Markov Chains are well suited for the theoretical analysis of probabilistic
systems but not so well suited for modeling systems. To build a Markov chain
modeling a system, one has to enumerate all states of the system and build
the transition probability matrix. To ease the modeler’s work, higher level
models are used, which allow to express in a compact way complex systems.
From such a compact representation, a Markov chain can be extracted and
give a stochastic semantics to the system. In this thesis, we use stochastic
Petri nets and stochastic symmetric nets as higher level models.

Stochastic Petri Net

Stochastic Petri net is a well known formalism for modeling some stochastic
process. It relies on the usual formalism of Petri net, well adapted to the
modeling of the control flow of concurent system. Let us first recall this
formalism that have been heavily studied (see for example [26])

Definition 15 (Petri net)

A Petri net or Place/Transition net is a tuple N = (P, T,W−,W+,m0)
with P \ T = ; where

• P is a finite set of places,

• T is a finite set of transitions,

35

• W− : P ⇥ T ! N is the pre incidence matrix,

• W+ : P ⇥ T ! N is the post incidence matrix,

• m0 2 N
P is the initial marking.

We call a marking m 2 N
P of a Petri net N a vector assigning an integer

to each place of the net. A transition t 2 T is fireable in a marking m if
8p 2 P, m(p) − W−(p, t) ≥ 0. The firing of a firable transition t from a

marking m leads to marking m0 denoted m
t−! m0, where m0 is defined as 8p 2

P, m0(p) = m(p)−W−(p, t)+W+(p, t). Let σ = σ1 · · ·σn 2 T ⇤ be a sequence
of transitions, σ is fireable from a marking m leading to m0 and denoted by
m

σ−! m0 if there exists a sequence of markings m = m1 · · ·mn+1 = m0 such
that for all 1 k n, mk

σk−! mk+1. We denote by Reach(N ,m0) the set
of reachable marking equals to {m | 9σ 2 T ⇤ s.t. m0

σ−! m}. This set is in
general infinite.

Example 2 Figure 2.8 represents a small Petri net where an action is split
in two parts that evolve independently before synchronizing. The set of places
is {1, 2, 3, 4} and the set of transitions {a, b, c, d}. The initial marking is
(0, 0, 0, 0). The incidence matrices are:

W− =

0

B

B

@

0 0 0 0
1 0 0 0
0 0 1 0
0 1 0 1

1

C

C

A

, W+ =

0

B

B

@

1 0 1 0
0 1 0 0
0 0 0 1
0 0 0 0

1

C

C

A

1 2

3 4
a

b

d

c

Figure 2.8: A simple Petri net

Stochastic behaviors are introduce in Petri net by adding notion of time
to Petri net and by specifying passing of time by probability distribution.
Let us first recall the different way time can be introduce in the behaviors of
Petri net (see for example [13] for a more detailed comparison of Petri nets
equipped with time) Two alternative approaches exist:

1. Time Petri Net [14] add clocks and guards on transitions of the net.

36

2. Timed Petri Net [1] add clocks to tokens and guards on input arcs of
the net.

The first approach is more suitable to model a stochastic system, as it
makes a correspondence between transitions of the net and transitions in
the reachability graph. Thus stochastic Petri nets have been defined with
probability distributions on the transitions.

Several choices remains on how the time is taken into account in transi-
tions, when dealing with time Petri net all the choices are non deterministic:

• In Duration semantics, a transition is chosen among all the fireable
ones, the tokens in the input places are removed and a waiting time
is chosen with respect to the guard of the transition. When this time
has elapsed the token are released in the output places. This semantic
is not commonly used because marking reached by the net before the
end of a transition may not belongs to the set of reachable marking of
the plain Petri net.

• In Delay semantics, as soon as a transition is fireable a time is chosen
and the transition is said to be activated. The transition is fired only
when the sampled time is reached. This semantics preserves concurrence
as several concurrent transitions can be activated at the same time, for
each of them a time is chosen and only the transition with the smallest
time is fired.

The second semantics is the most used one. Even with this semantics choices
remains which are called policy.

• Memory policy determines the behaviors of transitions when a transition
is activated, deactivated by concurrent transitions and activated again.
Using no memory policy a time is chosen each time the transition is
activated. Using age memory policy when a transition is deactivated the
remaining time before firing is stored, when the transition is activated
again, the firing time is set according to the remaining time before
deactivation.

• Server policy determines if a transition for which there are enough
tokens to fire it several times can effectively be activated several time.
In single server policy such a behavior is forbidden. In infinite server
policy the transition is activated as many times that there are enough
tokens in the input places. In multiple server policy the maximal
number of activations is fixed and specified for each transition.

In Stochastic Petri nets all choice of time are replaced by exponential
probabilistic distribution and there is no guard on transitions. Moreover
single server policy is used.

37

Definition 16 (Stochastic Petri Net(SPN))

A Stochastic Petri net is a tuple N = (P, T,W−,W+,m0,Λ) where
(P, T,W−,W+,m0) is a Petri net and Λ : NP ⇥ T ! R is the rate function
which associates a rate to each marking and transition.

Due to the choice of policy, stochastic Petri nets take naturally as se-
mantics an enriched CTMC: From N = (P, T,W−,W+,m0,Λ) a CTMC
C = (S, s0, E, δ,λ) is defined as follow:

• S = Reach(N ,m0)

• s0 = m0

• E = T

• δ(m, e) = m0 s.t. m
e−! m0

• λ(m, e) = Λ(s, e)

Running example. Figure 2.9 shows a SPN representing the tandem
queues system. Two places (Q1, Q2) are used to encode the two queues and
transitions encode events.

Q1 Q2λ ρ1 ρ2

Figure 2.9: A SPN representing the tandem queues system

A common extension of SPN are generalized stochastic Petri nets which
authorized to use immediate transition which follow Dirac distributions with
parameter 0. Weight and/or priority are added to resolve concurrent firing
of immediate transitions. As immediate transitions are memoryless the
semantic of generalized Petri net is still a CTMC. Adding such immediate
transitions is really convenient for modeling stochastic systems and may
reduce the size of the reachable marking [57]. In this setting Zeno paths
are possible if there is a cycle of immediate transitions. Such cycles can be
detected by analyzing the structure of the net.

Stochastic Symmetric Net

When a model contains several instantiations of a same pattern, it can
be expressed in a compact way using Stochastic Symmetric Net (SSN).
Intuitively instead of using indistinguishable tokens as in a Petri net, sets of
colors are used to distinguish them. When the obtained system is unchanged
when color classes are permuted, the lumped embedded Markov chain is

38

much smaller and can be computed directly [19]. Whether color classes can
be permitted or not can be obtained by syntactic analysis of the system.

As the stochastic symmetric net formalism is an extension of the sym-
metric net formalism, we first recall this formalism. Symmetric net where
also named well formed net. Compare to plain Petri nets which model the
control flow of concurrent systems, symmetric nets can be used to model
also data structure by distinguishing between tokens. In Petri net firing a
transition is analogous to calling a function with no argument, in symmetric
net a transition has a set of variables which are instantiated to some color.
When the transition is fired it is analogous to calling a function that takes
as arguments the bindings of colors to variables.

Definition 17 (Symmetric Net)

A symmetric net is a tuple N = (P, T,W−,W+,m0, C,Domain,X)
where

• P and T are set of places and transitions such that P \ T = ;.

• C = {C1, · · · , Ck} is a set of color classes where each Ci are pair-wise
distinct and are finite set of colors. Each Ci can furthermore be strictly
ordered.

• Domain : P ! Ci1 , Ci2 , . . . , Cik where 80 j k, ij is the domain
function on places which assigns a sequence of color classes to each
place.

• Domain : T ! Ci1 , Ci2 , . . . , Cik where 80 j k, ij is the domain
function on transitions which assign a sequence of color classes to each
transition. This function specifies the domain of each color variable.
For each transition a set {xi1 , xi2 , . . . , xik} of variables is defined. Each
xi takes value in Ci.

• W−,W+ are the input and output arc functions, for all p 2 P and
t 2 T , W−(p, t) and W+(p, t) are functions that map valuations of
colored variables in Domain(t) to multisets of elements in Domain(p).

• X is the guard function. It associates to each transition a boolean
function taking as input the valuation of color variables.

Example 3 The symmetric net depicted on Figure 2.10 is an extension of
the plain Petri net of Figure 2.8. Sets of places and transitions are the same
as for the plain Petri net. The set of color classes is the singleton {C1}.
The Domain function maps all places to the color class C1 and, for each
transition, assign variable x to take values in C1. All the guards are always

39

C1 = {1, . . . , d}
x : C1

1 2

3 4

x

x

a
x xb

x

x

d

x xc

Figure 2.10: A simple example of symmetric net

satisfied. Incidence matrices are as follows:

W− =

0

B

B

@

0 0 0 0
x 0 0 0
0 0 x 0
0 x 0 x

1

C

C

A

, W+ =

0

B

B

@

x 0 x 0
0 x 0 0
0 0 0 x
0 0 0 0

1

C

C

A

.

Then stochastic symmetric net are defined by adding a distribution to
each transition of the net which parameters may depends of the binding
color of the transition.

Definition 18 (Stochastic Symmetric Net(SSN))

A stochastic symmetric net is a tuple N =
(P, T,W−,W+,m0, C,Domain,X,Λ) where

• (P, T,W−,W+,m0, C,Domain, x) is a symmetric net

• Λ is the distribution function. It associates to each transition a dis-
tribution of probabilities and takes as input the valuation of color
variables.

Remark 3 In this definition, the function Λ associates to each transition
a distribution which can be arbitrary. Usually SSN are defined with some
restrictions on the available distributions. When one wants the resulting model
to be Markovian only exponential distributions and immediate distributions
are allowed, as generalized stochastic Petri nets.

Running example. Figure 2.11 shows a SSN representing a tandem queues
system with d queues. The unique color class C1 is equal to {1, 2, . . . , d},
there is only one place Q. The domain for the place and transitions is C1.
Color variables are declared globally instead of locally to each transition to
simplify notation, thus there is only one variable x taking value in C1.

In this example the pattern of queues is factorized in one place. It
allows to parametrize the model by the color class C1. This example is not
symmetric by every permutation of colors in the color class, thus for this

40

C1 = {1, . . . , d}
x : C1

Q : C1

<1>
λ

<d>
ρ(d)

<x> <x+1>

ρ(x)
x 6=d

Figure 2.11: SSN representing a tandem queues system with d queues

example one cannot use the symmetric representation to analyze the system
more efficiently.

All

all_active: S

Start

<s>
wait_mutex: S×F

Acquire
<s,f>

<s,f>

modify: S×F

Release
<s,f>

<s,f>

<s>

All mutex: F

<f >

<f >

message: S×F

SendMessage

<s,f>
rec_buf: S×F

<s,f>

All all_passive: S

Update

<s,f>

updating: S×F

EndUpdate

<s,f>

<s,f>

<s>

acknowledge: S×F

SendReply
<s,f>

reply_buf: S×F

<s,f>

Classes:

S = {s1, s2, s3, s4}
F = {f1, f2}

Variables:

s : S
f : F

<All-s,f>

<All-s,f>

wait_ack: S×F

Change

<s,f>

<s,f>

<s,f>

Figure 2.12: SSN representing the distributed database example

Example 4 Figure 2.12 shows an SSN representing a distributed database
example. This example contains two color classes S for site and F for file.
All thin plain transitions are immediate transitions, all other transitions are
distributed exponentially with rate 1. Each site contains a copy of each file.
This model implements a crude protocol to ensure the integrity of files across
different databases using global mutexes for each file. The workflow is as
follows:

1. If a user on site s wants to use a file f it takes transition Start. Then
he waits for the common mutex on this file to be available.

41

2. As soon as the mutex is available it is acquired with transition Acquire.
Then the user can start to edit the file.

3. When modifications to the file are finished, transition Change is fired
and messages are sent to all sites distinct from s.

4. Each message arrives to its site with transition SendMessage.

5. Each site starts to update files according to messages as soon as possible
with transtion Update.

6. When the update is finished each site sends a reply with transition
EndUpdate

7. Each reply arrives to the site that initiates the change of the file with
transition SendReply.

8. As soon as all replies, one from every site, are received the mutex of
the file is released and the site returns to an idle state with transition
Release.

In this SSN any permutation in S and F does not change the behavior
thus this system can be analyzed efficiently using symbolic representation
taking into account these symmetries. Symmetries are syntactically checked:
no arc valuation distinguishes color tokens, the model contains no guard and
the initial state is invariant by all permutations of colors.

2.3 Statistical Methods

2.3.1 Monte Carlo Method

The Monte Carlo method computes an estimation of E(X) when X is a
random variable following an unknown distribution law L, defined as the
result of a computation on a trajectory of a probabilistic system such that
V(X) is finite. If X follows a known distribution up to a parameter, a
Monte Carlo method can be used to estimate this parameter. A Monte Carlo
method contains two distinct parts.

• The first part is a simulator that produces realizations of X. Ideally the
simulator must produce independent realizations of this law. To do this
a simulator requires a source of randomness that produces independent
realizations of a known law. In general such a source of randomness
is approximated by a pseudo random number generator producing
real numbers chosen uniformly in [0; 1] like Mersenne-Twister [70].
The produced samplings are not really randomly chosen and are not
independent because they are produced by a deterministic algorithm

42

but the number of required samplings to distinguish such a sampling
from a random sampling is huge.

The simulator takes as input a description of the system that one wants
to simulate. The system is usually described as a stochastic process.
For each simulated trajectory the algorithm returns a value, usually a
real number, which is a realization of L.

• The second part is a deterministic algorithm which takes as input a
sequence of realizations and produce an estimation of the result that
one wants to compute. This part is the Monte Carlo estimator. As
the goal is to estimate an expectancy, the best estimator is the mean
of all the values. The estimator is itself a random variable. After
N simulations of the system, the estimator posses N independent
identically distributed copies of X noted (Xi)

N
i=1. The estimator is

Z = 1
N

PN
1 Xi. Basic probabilistic property shows that this estimator

is an unbiased estimator of E(X), meaning that its expected value is

equal to E(X). Moreover it’s variance is equal to V(X)
N .

2.3.2 Confidence interval

The goal of a Monte Carlo method is to compute an estimation of E(X) for
some variable X, when the exact value of this expected value can not be
computed, one wants to know how far this approximation is from the actual
value. It is not possible to guarantee that the numerical value we obtain is
at a given distance to the actual value. That is after a number of sample,
with a non-zero probability our simulation may have ignored a parts of the
system. This leads to incorrect value for the estimation.

For example if one wants to check that a dice is well balanced, one can
throw it 60 times; if the dice is indeed well balanced we can expect each face
to show around 10 times. But even if one face never shows up, we can only
suspect that the dice is biased, without certainty.

Intuitively, as the variance of Z tends to 0 when N tends to infinity, for
a fixed N and a fixed real δ > 0, the variance of Z is smaller than that
of X; thus, a realization p̂ of Z will be more likely to be in the interval
[E(X)− δ;E(X) + δ] than a realization of X.

The notion of confidence interval allows to have some probabilistic guar-
antee on a result obtained using random algorithms. This guarantee takes
the form of confidence on the fact that the actual value is close enough to
the realization. In a more general setting a confidence interval is defined as
follows:

43

Definition 19 (Confidence Interval)

Let (Xi)
N
1 be independent random variables following a common distri-

bution including a parameter θ. Let 0 < γ < 1 be a confidence level. Then a
confidence interval for θ with level at least γ is given by two random variables
l(X1, . . . , XN) and u(X1, . . . , XN) such that for all θ:

P [l(X1, . . . , XN) θ u(X1, . . . , XN)] ≥ γ

Theorem 5 (Markov Inequality)

Given a positive random variable Y the following equality holds:

8β > 0, β · P [Y ≥ β] E(Y)

In the context of Monte Carlo method the parameter that one wants to
frame is E(X). An easy way to build a confidence interval without making
any new assumption on the distribution law of X is to use the inequality of
Chebyshev.

Theorem 6 (Chebyshev’s inequality)

Given a random variable X such that E(X) and V(X) are finite. The
following inequality holds:

8α > 0, P
h

|X − E(X)| ≥ α
p

V(X)
i

 1

α2

Using the Chebyshev inequality on the random variable Z using N
samples, one can choose α such that 1− 1

↵2 is equal to the confidence level
1− ε. The inequality now states that for a realization p̂ of Z we have:

P

"

E(X) 2
"

p̂−
r

V(X)

Nε
, p̂+

r

V(X)

Nε

##

≥ 1− ε

which is a confidence interval.
Several remarks can be made on this confidence interval:

• The speed of convergence of the Monte Carlo method with respect to

N is in O
⇣

1p
N

⌘

. This is not a fast convergence but the only hypothesis

that we make is that the variance is finite.

44

• The width of the confidence interval depends highly on the variance
of the distribution law. Classical methods to improve the speed of
convergence of Monte Carlo algorithm are based on the reduction of
this variance.

• The variance of the distribution is unknown. To use this confidence in-
terval, one has to estimate or bound this variance. This fact contributes
greatly to the rare event problem of Monte Carlo methods.

To obtain tighter confidence intervals or to reduce the require number
of simulations, one can make stronger assumptions on the shape of the
distribution of X and use more advanced statistical results to build confidence
intervals.

Functionalities Statistical procedures have different kinds of inputs and
outputs:

• The output can be a boolean corresponding to the comparison between
a probability and a threshold. Corresponding statistical techniques are
called hypothesis testing.

• The input can be an expression involving the expectations of random
variables and the output is an estimation given as a confidence interval
framing the value.

Probabilistic Guarantee As the result is obtained by a statistical esti-
mation, there are two kinds of probabilistic guarantees. Denoting by p the
confidence level,

• The probability that the result is wrong is upper bounded by p. Here
the result is either the comparison of a probability with a threshold or
the framing of a parameter inside a confidence interval.

• The probability that the result is wrong is asymptotically upper
bounded by p. The limit can be taken when the number of sam-
ples goes to infinity or when the width of the confidence interval goes
to 0. In this case only asymptotic confidence intervals are obtained.

Static versus sequential sampling

• A static procedure takes as input or initially computes the number of
simulations before performing these simulations.

• A sequential procedure both performs successive simulations and esti-
mates the stopping criterion which depends on the simulation outputs.

45

Guarantee Assumption on the law Process
; Bounded Normal Bernouilli

Asymptotic Gaussian
C-H Gaussian C-P Static

Exact ;

Asymptotic C-R C-R C-R C-R
Sequential

Exact ; ; ; ;

Table 2.1: Summary of statistical method producing confidence intervals.
C-P stands for Copper-Pearson, C-H stands for Chernoff-Hoeffding and C-R stands

for Chow-Robbins

2.3.3 Gaussian Confidence Interval

In the general case, the classical approach is based on the hypothesis that
the normal law is a good approximation of the simulated law. A discussion
on the validity of this approximation for the estimation of a rare event is
made in Section 3.2.

Thus, given a number of paths N and a confidence level 1−ε, the method
produces a confidence interval.

Theorem 7

If X follows a normal distribution a confidence interval can be computed
for a confidence level of 1 − ε. Let z be such that 2φ(z) − 1 = 1 − ". The
following equation holds:

P

⇣

E(X) 2
h

p̂− z
p

V(X), p̂+ z
p

V(X)
i⌘

= 2φ(z)− 1

Where φ is the error function sometime written erf defined by

φ(x) =
1p
2⇡

Z x

−1
e

−u2

2 du

As the mean of normally distributed random variables still follow a normal
law, this result can be used with N i.i.d. copies of X. We then obtain the
following equality:

P

p 2
"

p̂− z

p

V(X)p
N

, p̂+ z

p

V(X)p
N

#!

= 2φ(z)− 1

To use this theorem one should find a suitable z. Fortunately such a z
only depends on the confidence level. The value z is computed only once
using implementation of the φ−1 function. Indeed, this function is well known

46

and precise approximation exists and are implemented in standard library of
most programming language.

As mentioned for the Chebyshev’s inequality for a fixed distribution of X
and a fixed confidence level, the confidence interval width is still proportional
to 1p

N
. To apply this result one needs to know V(X). Fortunately there

exists an unbiased estimator of V(X).

Theorem 8

Given N i.i.d. random variables (Xi)
N
i=1. Let V be a random variable

equal to

1

N − 1

N
X

i=1

(Xi − Z)2

The random variable V is an unbiased estimator of V(X)

If X does not follow a normal law but the sample is large enough and
both the mean and the variance of X are finite, we can use the central limit
theorem:

Theorem 9 (Central Limit Theorem)

Let (Xi)
N
1 a sequence of i.i.d. random variables of finite expectancy E(X)

and finite variance V(X) then when N tends to the infinity the empirical
mean converges in distribution to a normal law.

p
N

1

N

N
X

i=1

Xi

!

− E(X)

!

d! N (0,V(X))

This method can be used in a static way by simulating N samples and
applying the Gaussian confidence interval method. Or one can use results
from [21] to build a sequential procedure.

Let x1, x2, . . . an infinite sequence of realizations of X. We are interested
in computing a confidence interval of a given width 2d with a confidence
level 1− ε, using the least number of terms in (xi). Let a = φ−1

(

1− "
2

)

Let
N ≥ 1 the number of sample be the smallest integer such that:

1

N

N
X

i=1

(

xi − xN
)

+
1

N
 d2

a2
where xN =

n
X

i=1

xi
N

The following theorem ensure that a Monte Carlo estimator with N samples
produce a confidence interval a width smaller than 2d.

47

Theorem 10 (Chows and Robbin)

If 0 < V(X) < 1 then

1. limd!0
d2N

a2V(X)
= 1 a.s.,

2. limd!0 P (p 2 [xN − d, xN + d]) = 1− ε

3. limd!0
d2E(N)
a2V(X)

= 1

Compare to Gaussian analysis, this theorem allows to sequentially com-
pute a confidence interval of a given width with the additional requirement
that the width of the confidence interval tends to zero.

2.3.4 Chernoff-Hoeffding Bounds

When the distribution of the random variable X has a bounded support,
Chernoff-Hoeffding’s bounds [49] allow to compute a tighter conservative
confidence interval.

Theorem 11 (Chernoff-Hoeffding inequality)

Let X1, . . . , XN be N independent random variables. Assume there exists
(ai)

N
i=1 and (ai)

N
i=1 such that 8i, P(Xi 2 [ai, bi]) = 1 then

P

 ∣

∣

∣

∣

∣

1

N

N
X

i=1

Xi − E(Xi)

∣

∣

∣

∣

∣

≥ z

!

 2 exp

− 2N2z2
PN

i=1(bi − ai)2

!

Which can be written as

P

0

@E(X) 2

2

4p̂− z

s

PN
i=1(bi − ai)2

N
, p̂+ z

s

PN
i=1(bi − ai)2

N

3

5

1

A ≥ 1−2e−2z2

Written like this, the confidence interval can be compared to the Chebyshev
one. The variance have been replaced by

PN
i=1(bi − ai)

2 which is an upper
bound on the variance. The speed of convergence with respect to N is also
1p
N
.

2.3.5 Confidence Interval for Binomial law

In the case where a random variable X follows a binomial law for which
we want to estimate the parameter θ, that is X takes values in {0, 1}
and θ = P(X = 1), a static confidence interval can be computed on the

48

distribution. Let x1, x2, . . . xN be a sequence of N independent realization
of X. Let x =

PN
i=1 xi. A confidence interval for the binomial law with

confidence level 1− ε can be expressed as:
n

θ | P
(

Bin(N, θ) x
)

>
ε

2
^ P
(

Bin(N, θ) ≥ x
)

>
ε

2

o

where Bin(N, θ) denotes a random variable following a binomial distribution
with N trials and a probability of success θ. This confidence interval is
known as Clopper-Pearson confidence interval [23]. It can be expresses using
quantiles of the Beta distribution (denoted B) as:

h

B
⇣ε

2
, x,N + 1− x

⌘

, B
⇣

1− ε

2
, 1 + x,N − x

⌘i

The Beta distribution is a continuous function for which a good approxi-
mation exists. Therefor it is possible to numerically compute this confidence
interval.

2.3.6 Hypothesis testing

When one is not interested in the actual value of a statistic but rather wants
to decide whether this value is above or below a threshold, hypothesis testing
methods can be used.

Let us focus on a binomial distribution of unknown parameter p. Given a
threshold probability p0 we want to know whether p > p0 or p < p0 with high
confidence. It is not possible to decide this when p0 is arbitrary closed to p
thus we define an indifference region:]p0, p1[containing p0 and we defined
two hypothesis:

• H0 is the hypothesis that p p0,

• H1 is the hypothesis that p ≥ p1.

Given two confidence level α and β we want that the probability to accept
hypothesis H1 whereas H0 holds is less than α and the probability to accept
hypothesis H0 whereas H1 holds is less than β. If p lies in the indifference
region both hypothesis are acceptable.

Given α, β, p0 and p1, the Sequential Probability Ratio Test (SPRT) [85]
is an optimal sequential test for deciding whether H0 or H1 holds.

This test is as follows: after N > 0 samples, let x be the number of
successful samples. We define

p1,N
p0,N

=
px1(1− p1)

N−x

px0(1− p0)N−x

There are three cases:

• If
p1,N
p0,N

 β
1−↵ then accept hypothesis H0.

49

• If
p1,N
p0,N

≥ 1−β
↵ then accept hypothesis H1.

• Otherwise 1−β
↵ <

p1,N
p0,N

< β
1−↵ . We cannot conclude without further

simulation.

Remark 4 To avoid effectively computing
p1,N
p0,N

which is likely to be nu-

merically unstable for large value of N , the logarithm of this expression is
computed:

log

✓

p1,N
p0,N

◆

= x log

✓

p1
p0

◆

+ (N − x) log

✓

1− p1
1− p0

◆

and compared to log
⇣

1−β
↵

⌘

and log
⇣

β
1−↵

⌘

.

2.4 Model Checking

Model checking has been widely used since its introduction in [31]. It allows
to formally check that a system satisfies a specification in a fully automated
way. More often, a model checking algorithm checks if the specification
of a system holds by exploring all its possible states. This requires the
construction of the reachability graph. The simplicity of this approach
allows automation whereas other methods of verification often require human
intervention. But for large or infinite systems it is not possible to build and
explore the reachability graph. Several techniques are then used to reduce
the state space. For example it is possible to generate the state space on the
fly or to use symbolic representation of the states space.

For probabilistic system one can be interested in the quantitative model
checking. In this setting the probabilities that a trajectory satisfy a particular
property is computed, or whether this probability is above some threshold.

2.4.1 Specification

There are two main families of specification languages for probabilistic
systems. The first is based on the Linear Temporal Logic (LTL) and specifies
accepted paths in the system. The probability for a path of a system to be
accepted is specified, thus this logic does not allowed nested probabilistic
operator. The other one is based on the Computational Tree Logic (CTL)
where only state formula are considered. In this logic probabilistic operator
and until operator can be nested but have to alternate.

PLTL

The Probabilistic Linear Temporal Logic (PLTL) allows to specify whether
the probability of paths in a system satisfying an LTL formula. A PLTL

50

formula if of the form P./p(φ) where ./2 {<,>}, p 2 [0, 1] and φ is an LTL
formula given by the following grammar:

φ ::= q | ¬φ | φ _ φ | φ ^ φ | φU Iφ | X Iφ

Where q is an atomic proposition of the system, ¬,_ and ^ have there usual
meanings. LTL is a path-based logic, that is the semantics of all operators
is defined on a path of the system. The U and X operator are equipped
with an interval I ⇢ R

+. The until operator means that along a path, the
formula of the left member must hold until a state where the formula of the
right member holds. The X operator means that in the next discrete step
the formula must hold. The formal semantics is as follows: given a non-Zeno
realization of a DEDS σ = ((si)

1
i=0, (ti)

1
i=0) and a time t, let n such that

Pn
i=0 ti t <

Pn+1
i=0 ti

σ, t |= q if sn |= q
σ, t |= ¬φ if σ, t 6|= φ

σ, t |= φ1 ^ φ2 if σ, t |= φ1 and σ, t |= φ2
σ, t |= φ1 _ φ2 if σ, t |= φ1 or σ, t |= φ2

σ, t |= X Iφ if with t0 =
Pn+1

i=0 ti, t
0 − t 2 I and σ, t0 |= φ

σ, t |= φ1U
Iφ2 if there exists t0≥ t s.t. t0 − t 2 I

and 8t00 2 [t, t0[, σ, t00 |= φ1 and σ, t0 |= φ2

Generalization of this logic consists in replacing the LTL formula by some
kind of automaton specifying which are accepting paths.

PCTL

The PCTL logic [43] allows to specify properties using nested probabilistic
operator thus branching properties. The PCTL logic is state based logic but
it contains path based subformula. It is described by the following grammar:

 ::= q | ¬ | _ | ^ | P./p(φ)
φ ::= U I | X I

where denotes a state based formula and φ denotes a path based formula.
A PCTL formula always starts by a state based fromula. LTL operators
have their usual meaning: P./p

(

 1U 2

)

specify whether the probability
for 1U 2 to holds is above or below the threshold p in the initial state.
The semantics of path based operator is the same as in LTL. The formal
semantics of state base operators is as follows, with s 2 S,

s |= q if s |= q
s |= ¬φ if s 6|= φ

s |= φ1 ^ φ2 if s |= φ1 and s |= φ2
s |= φ1 _ φ2 if s |= φ1 or s |= φ2

s |= P./p

(

)

if P
⇣

(

(Si)
1
i=0, (Ti)

1
i=0

)

, 0 |= φ | S0 = s
⌘

./ p

51

A generalization of this logic is the Continuous Stochastic Logic (CSL)
with an extra operator allowing to specify properties of the steady state
probability.

2.4.2 Numerical Model Checking

Numerical models are best suited for PCTL type formula. Considering
the formula as a tree, they are evaluated starting from the leaf. Given
a sub-formula consisting of one probabilistic operator at the root and no
nested probabilistic operator, the evaluation of U and X formulas can
be reduced to time-bounded or time unbounded reachability problems as
sub-formulas are state formulas. These reachability problems are solved
using Definition 9, 14 or Theorem 3. Once the sub-formula is evaluated on
each state it can be replaced by a proposition in the upper sub-formula until
the root is reached. One can refer to the chapter 10 of [7] for details about
model checking of probabilistic systems.

For a linear specification, the formula is translated into an automaton,
the synchronized product of the stochastic system with the automaton is then
built. This product is still a stochastic system, where the model checking
problem reduced to time-unbounded reachability. If the formula is large the
size of the automaton and the size or the product may become problematic.

Most numerical model checking algorithms rely on matrix vector multi-
plication, usually taking advantage of the sparsity of transition probability
matrices. However these computations are difficult to parallelized. The tool
Marcie [46] features a parallel implementation of this method but still a non
negligible part of the computation cannot be performed in parallel. Due to
Amdahl’s law [5], the gain of parallel computing is limited.

Strong probabilistic hypotheses on the stochastic system to be analyzed
are mandatory. The easiest case is to suppose that the system is Markovian
and have a finite state space. Even with theses strong hypotheses the system
of linear equations required by the computation can be huge. In that case,
the computation of solutions becomes difficult and therefore requires iterative
methods. Only on approximated solution of such a system is then obtained.

For a more complex linear specification like one given by a time automaton,
efficient techniques exist only if there is at most one clock in the automaton
see for example [28] and [11].

This approach can be adapted to deal with non determinism [84] and to
tackle model checking problem on Markov decision processes. In this setting
probabilistic transitions are alternated with non deterministic ones.

This approach has been efficiently implemented in several tools with
different types of Markovian systems. For example Prism [64] can deal with
Discrete Time Markov Chains, Continuous Time Markov Chains, probabilistic
automata and Markov decision processes. Uppaal [12] deals with various
models of automata. GreatSPN [20] and Marcie [46] deal with Stochastic

52

Petri nets. Others tools exist: Mrmc [58], . . .

2.4.3 Statistical Model Checking

The alternative to numerical approach when dealing with large systems is
to use statistical methods. The statistical model checking relies on a Monte
Carlo algorithm to estimate the probability of interest. Precisely, on a linear
specification, a random variable X is defined which takes 1 as value on a
trajectory which satisfies the specification and 0 otherwise. Thus this variable
follows a Benouilli law and we compute its expected value E(X).

This method is more adapted to linear specifications. The Monte Carlo
algorithm simulates a large number of trajectories, say N , and counts the
number of those trajectories satisfying the specification. An estimation of the
probability is obtained as the ratio of the number of successful trajectories
on the total number of trajectories. The random variable Z is defined as the
mean of N independent copies of X:

Z =
1

N

N
X

i=1

Xi

Statistical model checking can be parallelize very easily: it suffices to run
several simulators of the system on different processors or different machines
and take the mean result of trajectories of all simulators. Particular attention
is required on the random number generator to ensure that all generated
trajectories are independent one from each others. As the only sequential
operation in this approach is to compute the mean value and possibly a
confidence interval, there is almost no cost in using parallel computing.

Statistical method can be naturally extended to performance evaluation.
Instead of computing a probability, the expected value of a random variable
those values depend on trajectories of the system is computed.

2.4.4 Comparison Between Numerical and Statistical Model

Checking

Statistical methods have several advantages compared to numerical ones.

1. The memory required to simulate one trajectory in the system is usually
very small. Thus the memory requirement of a statistic model checker
is very low. Whereas the memory is often the bottleneck of numerical
methods.

2. As long as we have an operational semantics of a probability distribu-
tion (i.e. we have a probabilistic algorithm whose outputs follow this
distribution law), the statistical method can be used to analyze any
system using this law.

53

3. As all trajectories are independent, it is straightforward to parallelize
the simulation whereas as we already mentioned, it is much more
difficult for numerical computation.

4. Complex linear properties like the one expressed in the Hybrid Au-
tomaton Stochastic Logic (HASL) [9] can be efficiently evaluated.

However, the statistical method has several drawbacks:

1. If precise results are required, which means that we want a tight
confidence interval, the time of computation can become big. In
general the width of the confidence interval decreases according to the
square root of the number of simulations. This means that in order to
divide by two the width of the confidence interval we need to perform
four time more simulations.

2. Difficulties can occur when the simulation is used to compute a sta-
tionary distribution. The difficulties lie in the fact that a stationary
distribution is defined as a limit of distributions of states after an
infinite number of time unit. As simulations are finite, the initial
distribution introduces a bias which can be difficult to correct.

3. Statistical model checking is not well suited to evaluate logic based on
state formula because it requires to perform simulations starting from
each state which is too costly.

4. For properties expressed as nested CSL probabilistic operator, the
difficulty relies on the fact that nested probabilistic operators require
to estimate first the most nested operator and then to evaluate the
formula bottom-up. For each nesting new simulations of the system
is needed. Careful computations of confidence interval are required to
take into account the errors at each level of nesting. Details can be
found in [86].

5. Statistical model checking cannot evaluate unbounded until operator
φU : if there is a bottom strongly connected component in the system
where φ holds, as the simulator only evaluates finite trajectories, it
cannot decide if the formula holds. A workaround is described in [44].
Tools rely on more pragmatic approaches: either the unbounded until is
not available in the specification language (ex Uppaal) or the simulator
does not terminate when simulating a trajectory always satisfying φ
(ex Cosmos).

6. Finally crude Monte Carlo estimator is unsuitable to compute very
small probabilities as for the probability of rare event. This problem is
the subject of the next chapter. Contrary to statistical model checker,
numerical one are not subject to rare events. In some case, reachability

54

of a rare event may lead to computations using ill-conditioned transition
probability matrices. In this case the convergence time of iterative
method may increase.

Numerical Statistical

Result
Exact (up to numerical er-
ror)

Probabilistic framing

Memory
Store transition matrix and
a vector of probability

Store one state of the system

Parallelism Difficult Free (almost)
Models Markovian General distribution

Determinism Handle non-determinism
Requires fully stochastic
models

Logic
PCTL and PLTL (The sec-
ond increase the state space)

PLTL, automata based logic,
no nested operator

Unbounded
until

Supported
Require hypothesis on the
model

Stationary
Distribution

Exact Biased by initial distribution

Rare events Some numerical instability Intractable

Table 2.2: Summary of comparisons between statistical and numerical model
checking.

55

Chapter 3

Rare Events

3.1 Introduction

The main drawback of statistical methods is the rare-event problem. This
problem occurs when the probability that a trajectory satisfies a formula
is very small, say less than 10−9. The satisfaction of such formula is then
called a rare event with respect to the model. In order for statistical methods
to work in this case, a large number of trajectories must be generated to
obtain an accurate estimation of the result. The time required to produce
such a large number of trajectories makes the statistical approach in the
rare-event setting unfit. To enhance Monte Carlo methods, two main families
of algorithms tackling this problem have been developed, namely splitting
and importance sampling.

In Section 3.2, the rare-event problem is studied in details. In Sec-
tion 3.3, splitting methods are presented and importance sampling methods
are discussed in Section 3.4.

3.2 Rare-Event Problem

Let us illustrate the rare-event problem with an example. Assume we want
to estimate the probability of an event occurring with a probability smaller
than 10−15 with a confidence level of 0.99. Suppose we are able to compute
up to a billion trajectories. Let us describe the results of plain Monte Carlo
simulation depending on all possible outcomes.

• With a large probability, approximately 1− 10−6, the rare event does
not occur in any trajectory. In this case, the corresponding confidence
interval is [0, 7 10−9]. This confidence interval contains the value we
are looking for, but the width of this confidence interval is large. The
precision of the result is thus very low.

• With a small probability, smaller than 10−6, the rare event occurs in one

56

trajectory and the corresponding confidence interval is [7 10−10, 2 10−9].
This confidence interval does not contain the expected value.

• With an even smaller probability, the rare event occurs in more than
one trajectory and the confidence interval does not contain the expected
value either.

In all cases, the number of trajectories required to get an accurate estimate of
the probability with the plain Monte Carlo statistical method is intractable.
In this example the result is not satisfactory.

By modeling the occurrence of a rare event by a Bernouilli variable X
with the unknown parameter p, another way to illustrate the rare-event
problem is to look at the variance of the random variable Z associated with
the Monte Carlo estimator of the rare event. This random variable follows
a binomial law whose variance can be computed by the following formula
V(Z) = p(1−p)

N with p = E(X) the probability of the event to occur. When
p is small, the variance can be approximated by p

N as the term in O(p2) is
negligible. A confidence interval may be computed using for instance the
Chebyshev Inequality. The confidence interval width is then proportional
to the standard deviation up to a factor depending of the confidence level.
As the standard deviation is the square root of the variance, the confidence

interval width is proportional to
p
pp
N
. When p is small, the width of the

confidence interval is big compared to p, making the estimation not accurate.
Other more involved methods (like Clopper-Pearson confidence interval)
producing a confidence interval reduce the factor depending of the confidence
level. However the width of the confidence interval remains proportional top

pp
N
.

Experimentally, this can be observed by simulating a parametrized system
where the probability of the event of interest can be made arbitrary small
using a parameter. Then, by estimating the value of this probability with a
confidence interval of fixed relative width (i.e., the ratio of the confidence
interval width on the probability is always below some threshold) with a
sequential method, one observes that the simulation time quickly increases
when the probability tends to zero. Figure 3.1 illustrates this on a tandem
queue system. When the probability becomes tiny, we observe that the
simulation time explodes.

Most methods that compute confidence intervals use the variance, but
this variance is unknown. Only estimations of the variance are available
when one is computing the probability of a rare event. For instance, suppose
that we want to estimate the probability of occurrence of a rare event
with a probability less than 10−6 but not equal to zero. In general two
approximations are usual for the computation of the confidence interval. The
first one assumes that the estimator follows a normal law, its approximation
being justified by the central limit theorem. The second one consists in

57

1

10

100

1000

10000

100000

10−7 10−6 10−5 10−4 10−3 10−2 10−1

T
im

e(
s)

Probability

Simulation Time

Figure 3.1: Simulation time as a function of the probability for fixed relative
width on a tandem queues system.

replacing V(X) by its estimation in the computation of the confidence
interval. This second approximation is not correct when dealing with a
rare event as the estimator for V(X) is also subject to rare event problem.
Suppose we are able to run a thousand simulations: in most cases, the event
will not occur in these thousand simulations. Thus the empirical variance
computed with this estimator is equal to 0. A direct application of Theorem 7
with any confidence level returns a confidence interval equal to the singleton
[0, 0]. This result is a underestimation of the true value. Underestimation
of the value of interest is a characteristic of rare events. It may occur even
when specific methods to deal with rare events are used. Some empirical
rules exist to indicate whether or not one can invoke the convergence to the
normal law. For instance, one rule states that both NE(X) and N(1−E(X))
should be greater than 5. Most of them do not apply to rare events as E(X)
is too small.

Historically, this problem has been first studied in particle transmission
problem [56], where one is interested in computing the probability for a
single particle to get across a material. If the material is thick enough,
the probability is very small but as the initial number of particles can be
large, the number of particles going through can still be significant. In this
context, a small number of particles crossing the material can cause radiation
poisoning so that getting an accurate analysis is critical. This problem has
then been analyzed in a large variety of contexts. In general, estimating a
tiny probability is important when the impact of a single occurrence of the
event is tremendous and/or the process that contains this event is iterated a
large number of times.

• In biology, rare-event probability problems can occur for estimating the
speed of some molecular reactions. As the number of molecules is huge,
even small probabilities of reaction lead to observable consequences.

58

• In telecommunication, probabilities of overflow or loss of packet could
be small but the number of packets handled by a telecommunication
system could be huge.

• In insurance, the probability of a stock market to crash should stay
small to avoid drastic consequences.

• The dependability of a mechanical system could be quantified with
probabilities. For critical system, this probability should be small. The
probability of failure should be small not just for a given short period
of time but for the whole lifetime of a system which may be very long.

3.3 Splitting

A classical method to deal with rare events with Monte Carlo simulation is
the splitting technique [65]. A detailed description can be found in Chapter 3
of [78] or in [37]. According to [56], Dr. Von Neumann proposed the splitting
technique in the late forties. It is usually defined by a sequence of successively
embedded subsets of the state space of a Markov chain γk ⇢ · · · ⇢ γ0, where
γk contains exactly the states satisfying the rare event and γ0 contains all
states of the system except a sink state. The probability of interest p is the
probability to reach a state of γk before returning to the sink state. In more
general settings, this method can be used to estimate the probability to reach
γk before an arbitrary stopping time. Each time a trajectory reaches the
next subset for the first time, this trajectory is split into several independent
trajectories. Each trajectories carry a weight which is also split uniformly
in each subtrajectories. Trajectories which start in the initial state have
a weight of 1. Let ni be the number of trajectories in which a trajectory
reaching γi is split, n0 being the number of trajectory starting from the
initial state. With Hi being the number of trajectories reaching γi (H0 = 1),
the following is an unbiased estimator of p:

Hk

n0n1 · · ·nk−1
.

This can be seen by introducing pi = P(γi|γi−1) the probability that a
trajectory entering for the first time γi−1 reaches a state of γi before reaching

59

the sink state. Then the following equalities hold:

E

✓

Hk

n0n1 · · ·nk−1

◆

=

n0n1...nk
X

i=0

E

✓

Hk

Hk−1nk−1

∣

∣Hk−1

◆

iP(Hk−1 = i)

n0n1 · · ·nk−2

=

n0n1...nk−1
X

i=0

P(γk|γk−1)
iP(Hk−1 = i)

n0n1 · · ·nk−2

= pkE

✓

Hk−1

n0n1 · · ·nk−2

◆

= · · ·
= p1p2 . . . pk = p

These equalities hold since Hi

Hi−1ni−1
is an unbiased estimator of P(γi|γi−1).

As trajectories coming close to the rare event are split, the probability to
have a trajectory reaching the rare event is larger than in a crude Monte-Carlo
simulation.

γ3

γ4

γ2γ1γ0

1

2

1

4

1

8

1

8Split

Split

Splits0
1

1

2

1

4

Sink

Figure 3.2: Evolution of trajectories using splitting

Figure 3.2 illustrates this idea. The sequence of embedded subsets is
γ4 ⇢ γ3 ⇢ · · · ⇢ γ0. Starting from s0, we want to compute the probability to
reach γ4 before hitting the sink state. Each time a trajectory enters a new
subset for the first time, it is split into two trajectories.

Example 5 To illustrate the splitting method, a simple example can be built
from a coin tossing problem. Suppose we want to estimate the probability
for an unbiased coin to return head 25 times consecutively. This probability
is 1

225
⇡ 3 10−8. Using Monte-Carlo simulation, the rare-event problem

arises. This example can be formalized in a BDTMC where the state space

60

is {0, 1, . . . , 25, s−}, the initial state is 0, the accepting state is 25, and s−
is the rejecting state. States 25 and s− are absorbing, each probability to
go from states i to state i + 1 is 0.5 and the probability to go to s− is 0.5.
The probability for a trajectory to reach state 25 is 1

225
which is rare. A

splitting technique can be used here. The embedded subsets are chosen as
γ0 = {0, 1, . . . , 25} γ1 = {5, 6, . . . , 25}, γ2 = {10, 11, . . . , 25},. . . γ5 = {25}.
The number of replications (ni) is constant and equals to 50.

In this setting, the probability p1 = p2 = . . . p5 can be computed and is
equal to 1 − 1

25
⇡ 0.03. The probability of having at least one trajectory

reaching 25 is crudely under-approximated by the probability that there is one
trajectory reaching γi+1 from γi for each 1 i 5 :

(1− (p1)
50)5 ⇡ 0.32

The mean number of trajectories reaching the state 25 is (n0p1)
5 ⇡ 9.3. These

calculations show that using splitting, observing a trajectory reaching the
target state is no longer a rare event and the mean number of trajectories to
be generated is tractable. By comparison in plain Monte-Carlo, to obtain a
probability of 0.32 to observe a trajectory reaching 25, a number of trajectories
around 12 106 is required.

In a simplified setting, a simple expression for the variance of this es-
timator can be obtained. We make the assumption that for any subset of
γi, the probability to reach γi+1 is independent of the state of entry in γi
and is independent of the trajectory history. This is equivalent to say that
there is only one entry state for each subset and this state fully characterizes
the stochastic process. In this setting, for all i k, the random variable Hi

follows a binomial law with parameters ni−1Hi−1 and pi. The variance is
computed as follows:

V (Hk) = E (V (Hk|Hk−1)) + V (E (Hk|Hk−1))

= E (nk−1Hk−1pk(1− pk)) + V (nk−1Hk−1pk)

= n0p1n1p2 . . . nk−1pk(1− pk) + n2
k−1p

2
kV (Hk−1)

= . . .

=
k
X

i=1

n2
i p

2
i+1 . . . n

2
k−1p

2
kn0p1 . . . ni−1pi(1− pi)

= p21 . . . p
2
kn

2
0 . . . n

2
k−1

k
X

i=1

1− pi
n0p1 . . . ni−1pi

.

Thus

V

✓

Hk

n0n1 . . . nk−1

◆

= p2
k
X

i=1

1− pi
n0p1 . . . ni−1pi

(3.1)

61

In the optimal case, for 0 < i < k, ni are chosen such that nipi+1 ⇡ 1, thus
the number of trajectories in each subset is roughly constant, the expression
of the variance becomes: p2

Pk
i=1(1− pi). This function takes its minimal

value for p1 = p2 = pk = k
p
p where it becomes p2k(1− k

p
p), which converges

to − ln(p) when k goes to the infinity.

Example 6 The coin tossing problem fulfills the requirement for using Equa-
tion (3.1). The variance is around 1.53 10−15. The number of trajectories
required by the Monte-Carlo estimator to achieve the same variance is around
19 106.

The main difficulty in the splitting method is to choose the sequence of
subsets. In general, an importance function [36] is defined on the states of
the system and the sequence of subsets is defined as the sequence of sets of
states where the importance function exceeds a threshold.

Another crucial parameter is the number of offsprings at each split. If
it is too small no trajectory reaches the rare event and if it is too large the
number of trajectories may become unmanageable. In an optimal setting, the
number of offspring at each split is inversely proportional to the probability
to reach the next subset. In this setting, the total number of trajectories in
any subset is constant. This optimal setting is theoretical as the probability
to reach the next subset is unknown. Different strategies exist to keep the
number of trajectories large enough but still manageable, which dynamically
compute the number of splits ni. In this case, each trajectory is annotated
by the number of siblings at each split.

Additionally to splitting trajectories on transitions coming closer to the
goal, trajectories taking a transition going away from the goal may be killed,
using a russian roulette, to reduce the number of paths to manage. It
is also possible to get rid of the sequence of subsets and decide for each
transition whether to split or kill the trajectory according to the evolution
of the importance function by this transition. For example, the RESTART
algorithm [37] is a splitting technique that aims at keeping the number of
trajectories manageable and preventing death of all trajectories.

This method requires to deal with numerous parameters: the sequence
of subsets, the number of splittings of the trajectories, etc. The number
of parameters helps the user to find a good parametrization but in return
makes the automation difficult. Moreover, variance reduction is not easy to
guarantee theoretically.

As the system is unmodified by splitting methods, these methods can
be used in a black box setting as long as it is possible to make a copy of
the system. Such techniques are efficient when some expert knowledge on
the system is available. In particular, to design the sequence of embedded
subsets, one needs to know which part of the state space is close to the
rare event. These methods work the best when the probability to reach

62

the rare event is uniformly distributed on the boundary of each set γi, like
in the setting used for the computation of the variance. They have been
successfully used in various settings, for example in the setting of particle
transport (see for instance Chapter 10 of[78]), in chemical physics [4], in
telecommunication [3], in dependability [54], etc.

3.4 Importance Sampling

Importance sampling [40] is based on a different idea. It relies on the
modification of the probability distribution in the system. This modification
introduces a bias which will increase the probability that a rare event occurs.
During the simulation of a trajectory, it is possible to keep track of the
introduced bias with a so called likelihood ratio. By weighting the trajectories
with their likelihood, it produces an unbiased estimator of the probability of
the rare event. The difficulty is then to find a correct bias for the system. It
is easy to prove that there exists an optimal modification of the system which
computes the probability of the rare event with only one simulation, In this
case, the estimator has a zero variance. But an erroneous modification of the
system can, on the contrary, gives an estimator which is “worse” than the
initial one. The efficiency of an importance sampling is often evaluated by
looking at its variance: the smaller the variance is, the faster the convergence
to the expected value will be.

In this thesis, we only consider importance sampling on DTMC. It is
possible to define it for more general settings with arbitrary continuous
distributions. In this case, the likelihood ratio is defined in terms of Radon-
Nikodym derivative dP/dP̃ where P is the initial probability distribution and
P̃ is the biased one.

3.4.1 Definition

Recall that in a BDTMC, all trajectories starting from s0 reach the state
s+ or state s− with probability 1. The problem we are focusing on in the
following is that, “Given a BDTMC, what is the probability to reach s+?”.
Formally, we introduce the random variable Vs0 such that for all trajectories
σ = s0, s1, . . . , sn, s± ending in s+ or s− of a BDTMC,

Vs0 =

⇢

1 if σ ends in state s+
0 if σ ends in state s−.

We are interested in estimating E(Vs0).
The formal definition of importance sampling is as follows:

63

Definition 20 (Importance Sampling)

Given a BDTMC C = (S, s0,P, s−, s+), and a biased transition probability
matrix P0 such that:

8s, t 2 S, P(s, t) > 0 ^ t 6= s−) P0(s, t) > 0 (3.2)

The random variable Ws0 is defined such that for all trajectories σ =
s0, s1, . . . , sn, s± ending in s+ or s− of the biased BDTMC (S, s0,P

0, s−, s+),

Ws0 =

(

P(s0,s1)
P0(s0,s1)

· P(s1,s2)
P0(s1,s2)

· ... · P(sn,s+)
P0(sn,s+)

if σ ends in state s+

0 if σ ends in state s−

A statistical method which estimates Ws0 in order to estimate Vs0 is called
an importance sampling.

The value taken by the random variable Ws0 when it reaches the state
s+ is the likelihood.

Remark 5 Condition 3.2 ensures that the introduced bias cannot remove
transitions that have not s− as target. This is necessary to ensure that all
trajectories in the original model are valid trajectories in the biased model.

This condition allows one to add new transitions in the bias distribution
but trajectories that take such transitions in the bias model have a likelihood of
zero and thus behave as trajectories reaching s− which reduces the probability
to reach s+.

Thus when one is building a biased model, only DTMC with the same
underlying graph should be considered. This is not very restrictive as one
can still choose all the probability transitions in this graph.

The following proposition establishes the correctness of the method.

Theorem 12

Given a BDTMC C = (S, s0,P, s−, s+), and a biased transition probability
matrix P0, such that P0 defines an importance sampling on C with associated
random variable Ws0 then

E(Ws0) = E(Vs0).

Proof:
In all states, the probability to reach s− or s+ is equal to 1. Then thanks
to Equation 8, the expected value of the random variable Vs is the unique

64

solution of the following system of equations:

8

>

>

>

<

>

>

>

:

E(Vs−) = 0

E(Vs+) = 1

8s /2 {s−, s+} E(Vs) =
X

s0 6=s−

P(s, s0)E(Vs0)
(3.3)

We now write the corresponding system for P0 with correction factor:

8

>

>

>

>

<

>

>

>

>

:

E(Ws−) = 0

E(Ws+) = 1

8s /2 {s−, s+} E(Ws) =
X

s0 6=s−^P0(s,s0)>0

P0(s, s0)

✓

P(s, s0)
P0(s, s0)

◆

E(Ws0)

Thanks to the restriction of Equation 3.2, the two systems are equal after
simplification, and we have E(Ws0) = E(Vs0) = p.

⇤

A good choice of P0 should reduce the variance of Ws0 w.r.t. to the
variance of Vs0 .

Running example. As the tandem queue system is parametrized by
the three probabilities λ, ⇢1 and ⇢2 an importance sampling can be built by
changing these parameters to λ0, ⇢01 and ⇢02. In this example we are interested
in estimating the probability to reach a state with at least 5 clients before
reaching the state where the system is empty. This probability is equal to
0.0089. An importance sampling is built by increasing the value of the
probability of an incoming client λ0 and reducing the probability of a client
leaving the system ⇢02. Figure 3.3 shows the evolution of the variance when
λ0 increases.

We observe that starting from λ0 = λ = 0.1, the variance decreases when
λ0 increases until a minimal value is reached, then the variance increases.
This shows the difficulty to find a good importance sampling where the variance
is significantly smaller than in the initial model.

3.4.2 Zero Variance Importance Sampling

The following proposition shows that for any BDTMC, there exists a matrix
P0 which leads to a null variance. We denote the probability to reach s+
starting from s by µ(s).

65

0.001

0.01

0.1

0.1 0.15 0.2 0.25 0.3 0.35

V
ar
ia
n
ce

λ

Variance for λ0 = 0.1

Variance of Ws0

Figure 3.3: Evolution of the variance of Ws0 for the tandem queue system

Theorem 13

Let P0 be defined by:

• For all s such that µ(s) 6= 0, P0(s, s0) = µ(s0)
µ(s) P(s, s0)

• For all s such that µ(s) = 0, P0(s, s0) = P(s, s0)

Then for all s, we have V(Ws) = 0.

Proof:
If µ(s) = 0 then all trajectories starting in s end in s−. Therefore the
variance is null.

If µ(s) 6= 0, thanks to the equation:

µ(s) =
X

s0|µ(s0)>0

P(s, s0)µ(s0)

P0(s,−) is a distribution. A trajectory starting from a state s with µ(s) > 0
only visits states s0 with µ(s0) > 0, so it ends in s+. Denoting by s =
u0, . . . , ul = s+ such a trajectory, the value L is equal to

µ(u0)

µ(u1)

µ(u1)

µ(u2)
. . .

µ(ul−1)

µ(ul)
= µ(s).

⇤

This result has a priori no practical application since it requires the
knowledge of µ for all states, whereas we only want to estimate µ(s0). Several
importance sampling methods including the one presented in this thesis are
based on approximating the vector µ and plugging this approximation into
the zero-variance importance sampling biased matrix.

66

3.4.3 Infinite Variance Importance Sampling

Unfortunately a poor choice of P0 can lead to an importance sampling with
infinite variance. Let us illustrate this on an example.

Let us define a BDTMC C with three states s0, s+ and s−, where s0
is the initial state, s+ is an absorbing state and s− is not reachable from
s0. Let P be its transition probability matrix. P(s0, s0) =

1
2 = P(s0, s+),

P(s+, s+) = 1 and P(s+, s0) = 0. We are interested in the probability to
reach s+, this probability is indeed equal to 1.

s+

1

s0

1
2

1
2

s−

1

Figure 3.4: Markov Chain illustrating the infinite variance importance
sampling

We can use an importance sampling on this Markov chain by defining
a new transition probability matrix P0, P0(s0, s0) = 1

4 , P0(s0, s+) = 3
4 and

P0 = P for other transitions. Let Ws0 be the random variable associated to
this importance sampling. Let Ln be the likelihood of a path reaching s+ in
n steps.

Ln =

n−1
Y

i=1

P(s0, s0)

P0(s0, s0)

!

P(s0, s+)

P0(s0, s+)
=

n−1
Y

i=1

1

2

4

1

!

1

2

4

3
=

2n

3
.

The probability of such a path is p0n

p0n =

n−1
Y

i=1

P0(s0, s0)

!

P0(s0, s+) =

n−1
Y

i=1

1

4

!

3

4
=

3

4n
.

We compute the variance of the random variable Ws0 .

V(Ws0) = E(W 2
s0)− E

2(Ws0) =

0

@

X

n≥1

L2
npn

1

A− 1

V(Ws0) =

0

@

X

n≥1

✓

2n

3

◆2 3

4n

1

A− 1 =

0

@

X

n≥1

1

3

1

A− 1

As this series does not converge the variance of Ws0 is infinite.
This example shows that a poor choice of importance sampling may lead

to an infinite variance estimator. In this case, there is no guarantee that the
estimator converges or even worse it could seem to converge to a value which
is not the probability that we want to compute.

67

3.4.4 Distribution of Ws0

The major drawback of importance sampling is that the random variable
Vs0 which follows a Bernoulli law is replaced by the random variable Ws0

whose distribution is unknown. This is a problem for computing a confidence
interval. Indeed all methods to compute a confidence interval rely either on
the range of values taken by the random variable or on its variance. When
the distribution is unknown there is no bound on the values taken by the
random variable and the variance may be difficult to estimate.

When importance sampling is used, trajectories may use transitions
whose probability is smaller in the biased model than in the initial one.
Such transitions are unlikely but carry a large likelihood. The case of
infinite variance is the worst instance of this phenomenon. It may happen
with high probability that after a consequent number of simulations no
such trajectories have been observed, thus the expected value of Ws0 is
underestimated. Moreover as the variance of Ws0 is also underestimated,
confidence intervals computed to frame E(Ws0) will be wrong. This problem
is well known and frequently happens. Results of an importance sampling
algorithm are usually taken as underestimations of the probability of interest.

Running example. In Figure 3.3, an estimation of the variance of the
random variable Ws0 is plotted, the analysis can be enhanced by plotting the
probability density function of the random variable Ws0 for several values
of λ0. Figure 3.5 shows such a plot for the tandem queue system. For
λ0 = λ, Ws0 = Vs0 and thus it follows a Bernoulli law. For other values of
λ0, the probability density function is continuous and when λ0 increases, the
probability for a trajectory to have a large likelihood drastically increases.

1e-10

1e-08

1e-06

0.0001

0.01

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

λ0 = 0.10
λ0 = 0.11
λ0 = 0.12
λ0 = 0.16

Figure 3.5: PDF of Ws0 for increasing values of λ0

68

3.4.5 Efficiency of Importance sampling

To assert the quality of importance sampling, classical approaches consider
that the model is parametrized by ε and that the probability of the event of
interest converges to 0 as ε goes to 0. Then the behaviors of the importance
sampling for the rare event is studied for value of ε close to zero. One
measure is the relative error :

Definition 21

The relative error of an estimator is half the width of the Gaussian
confidence interval divided by the mean value.

An unbiased estimator Z is said to have Bounded Relative Error (BRE)
if the relative error remains bounded when ε tends to 0. It is equivalent to

say that the ratio E(Z2)
E2(Z)

is bounded. This property is very strong and difficult

to check in practice. A weaker property is the asymptotic optimality. An
unbiased estimator Z is asymptotically optimal with respect to ε if

lim
"!0

logE(Z2)

logE(Z)
= 2.

These two efficiency properties can be strengthened to take into account
higher moments of the estimator [15].

3.4.6 State of the Art on Importance Sampling

There are two main categories of importance sampling: state-dependent and
state-independent importance samplings, depending of the level on which
the definition of the importance sampling takes place.

State-dependent importance sampling

The state-dependent importance sampling is defined at the level of DTMC (or
CTMC in a more general setting). If the DTMC is huge or infinite, it becomes
difficult to manage a representation of the new distribution. Moreover it
is unfeasible to manually define the biased transition probability matrix as
there are as many parameters as transitions in the DTMC. Several works
rely on decomposing transitions of the DTMC into transitions that bring the
system closer to the rare event and those that make the system further from
it. In [82], a threshold γ is chosen, then in each state of the Markov chain,
outgoing transitions are weighted such that, the sum of probabilities of all
transitions that bring the system closer to the rare event is at least 1− γ.
The partition of transitions in the set of transitions that bring the system
closer to the rare event and the set of transitions that bring it further from

69

the rare event is manually defined. By making γ small enough, the event of
interest is no longer a rare event in the biased model.

Approximations of the zero-variance importance sampling by approxi-
mating the probability to reach the target state µ have been extensively
studied for example in [55]. In [66], the zero-variance importance sampling
is approximated by using most typical trajectories to reach the rare event.
This method is extended in [75] to stochastic Petri nets by analyzing the
structure of the underlying Markov chain.

Adaptive methods for learning the vector µ during the simulation to
produce better and better approximations have also been studied [42]. The
algorithm works as follows

1. Choose an initial probability vector µ1. Set i = 1.

2. Build a transition probability matrix Pi from the vector µi using the
optimal importance sampling formula which is normalized to obtain a
stochastic matrix:

Pi(s, s
0) =

1
P

s002S
µi(s00)
µi(s)

P(s, s00)

µi(s
0)

µi(s)
P(s, s0)

3. For each state s, estimate µi+1(s), the probability to reach s+ from s
using the importance sampling induced by Pi.

4. Set i = i+ 1. Go back to step (2) until a stopping criterion is reached.

The process iterates until the obtained importance sampling is efficient
enough. Under some regularity assumptions, it is proven in [61] that the
sequence of vectors (µi) converges exponentially toward µ.

State-independent importance sampling

The state-independent importance sampling is an importance sampling de-
fined on a high-level model using parameters. In high-level models, transitions
of the Markov chain are not defined independently. All transitions of the
Markov chain depend on a small number of parameters. For instance in the
tandem queue example, there are three parameters which are the rate of
arrival and the rate of the services. In the corresponding Markov chain, sev-
eral transitions have the same rate. State-independent importance sampling
consists in modifying the probabilities or rate of transitions at a high level
and not for each state of the Markov chain independently.

Importance sampling where the probability of transition depends on
the states but only relies on a few parameters can also be called state
independent. They have the same properties as a real state-independent
importance sampling. For example, consider a queue with an infinite server
policy, that is the probability of a client to be served increases linearly with

70

the number of waiting clients. This system is only parametrized by the
probability to serve a single client. An importance sampling in this setting
can only change this parameter and modify all transition probabilities in a
different way. However as all transition probabilities depend on the same
parameter, the biasing of transition probabilities does not really depend on
each state.

As the number of parameters is usually small, the associated importance
sampling is also easy to define. Some of these methods are:

• Trying several values of each parameter and searching experimentally
for good values. This is feasible only if the number of parameters is
very small and their values are bound.

• The parameters may have some meaning to the modeler who can use
his knowledge on the system to design the biased transition probability
matrix.

• Optimization methods can be used to find the best parameter values
that minimize the variance. Among optimization methods, the cross-
entropy method is detailed below.

Unfortunately if no values of parameters characterize the optimal importance
sampling which is frequent, there is no guarantee to find an efficient impor-
tance sampling. Indeed, the number of degrees of freedom is equal to the
number of parameters whereas in the case of state-dependent importance
sampling, the number of degree of freedom is the number of transitions in
the Markov chain. The problem of finding an efficient importance sampling
then relies on finding a correct parametrization of the system, and, when
using iterative optimizing methods, on finding suitable initial parameters.

Running example. We illustrate the limit of state-independent importance
sampling in the tandem queue system which has been heavily studied. By
choosing as parameters the three probabilities λ, ⇢1 and ⇢2, the optimal state-
independent importance sampling is obtained by exchanging the value of λ with
the largest value among ⇢1 and ⇢2 [71]. It is referred in the following as PW
importance sampling. This importance sampling is induced by results in large
deviation theory. In this setting, an importance sampling is asymptotically
efficient if the number of simulations required to obtain a given relative error
grows less than exponentially with the overflow level N . In [80], it is shown
that only PW importance sampling may be asymptotically efficient. In [39],
it is proven that for some values of the parameters, PW importance sampling
is not asymptotically efficient and its variance may even be infinite [24].
For some values of the parameters of the importance sampling, there is no
efficient state-independent importance sampling whereas there are efficient
state-dependent ones [29] which can be efficiently computed.

71

Cross-entropy method

Among optimization methods, the cross-entropy method has recently received
a lot of attention [79, 22, 52]. In practice it relies on a parametrization of the
model, even if it is defined at the level of the Markov chain. Among all the
importance samplings defined by changing the value of the parameters, it
computes the one that minimizes the distance to the optimal importance sam-
pling using the cross-entropy distance [62]. Furthermore, this minimization
is done iteratively by successive simulations of the model. An introduction
to the cross-entropy method can be found in [25] where it is shown that this
method can be used to solve also classical optimization problems unrelated
to rare events, like the traveling salesman problem.

More formally in the context of BDTMC with an initial transition proba-
bility matrix P, let call fP the probability density function over paths of the
Markov chain: fP(s0, s1, s2 . . . , sn) = P(s0, s1)P(s1, s2) . . .P(sn−1, sn). Let
Ω be the set of all finite paths ending in s+ or s−. Recall that X(σ) is a
random variable which value is 1 for path ending in s+ and zero otherwise.
The probability density function of the zero-variance importance sampling
is f⇤(σ) = fP(σ)X(σ)

E(X) . Given two probability transition matrices P1 and P2,
the cross-entropy distance is defined as:

CE(fP1
, fP2

) =

Z

σ2Ω
fP1

(σ) log
fP1

(σ)

fP2
(σ)

dσ.

This quantity is not formally a distance but is sufficient for our purposes.
The idea of this method is to find a change of measure that minimizes the
cross-entropy to the zero-variance importance sampling:

CE(f⇤, fP0) =

Z

σ2Ω
f⇤(σ) log

f⇤(σ)
fP0(σ)

dσ

=

Z

σ2Ω
(f⇤(σ) log f⇤(σ)− f⇤(σ)log(fP0(σ)))dσ

=

Z

σ2Ω
f⇤(σ) log f⇤(σ)dσ −

Z

σ2Ω

X(σ)fP(σ)

E(X)
log(fP0(σ))dσ

By keeping only terms depending of P0, minimizing the cross-entropy is
equivalent to maximizing the right term:

max
P0

Z

σ2Ω
X(σ)fP(σ) log(fP0(σ))dσ

which can be rewritten as:

max
P0

Z

σ2Ω
fP0(σ)LP0(σ)X(σ) log(fP0(σ))dσ (3.4)

72

where LP0 = fP
f
P0

is the likelihood corresponding to the change of measure

with transition probability matrix P0.
Using Equation (3.4), one can define an iterative algorithm as follows:

1. Choose an initial transition probability matrix P1. Set i = 1.

2. Simulate ni trajectories of the Markov chain using Pi as transition
probability matrix, yielding a set of trajectories {σk}ni

k=1

3. Compute Pi+1 = maxP0

Pni

k=1 LPi
(σk)X(σk) log(fP0(σk))

4. Set i = i+ 1. Go back to step (2) until a stopping criterion is reached.

Suppose the system is parametrized by ε < 1 and that E(X) goes to 0
as ε goes to 0. Let Pce be the matrix obtained by the last iteration of the
algorithm. Under the additional strong constraint that there exist two finite
constants K1 and K2 such that

K1 CE(f⇤, fPce) K2

for any ε, then the cross-entropy method is asymptotically optimal [77]
In order to implement such a method, a parametrization of the transition

probability matrix is often necessary to make the optimization step tractable.
Remark that in general the result of asymptotical optimality does not hold
with a parametrization. As each intermediate step produces an importance
sampling, the algorithm can be stopped as soon as the produced importance
sampling is efficient enough. The initial transition probability matrix is
crucial as the followings steps require that some trajectories reach s+. Here
the cross-entropy method is described in the setting of DTMC but it is also
used in a more general setting.

3.5 Conclusion

The reliable estimation of a rare-event probability is crucial for the analysis
of some stochastic systems. However Monte-Carlo simulations are ineffective
to deal with this kind of probabilities. Methods that deal with the rare-event
problem in Monte Carlo simulation have been intensively studied, mostly in
some specific domain like computational physics. Recently, a new interest
on statistical model checking stimulates research for methods dealing with
the rare-event problem in more general settings.

The existing methods, mainly importance sampling and splitting, cannot
produce confidence intervals for the value of interest except by using asymp-
totical results whose validity is difficult to assert in practice. Moreover all
these methods are parametrized and often require the modeler to guess these
parameters.

73

Part II

Theoretical Contributions

74

Chapter 4

Guaranteed Variance

Reduction

4.1 Introduction

In a reachability probability problem, one wants to compute the probability
p to reach a final state s+, from the initial state s0 of a given model. When
the size of the model becomes too large for numerical analysis and when
the probability of interest p is too small for direct statistical simulation,
rare event acceleration methods become necessary. A possible approach to
tackle this problem is to build an importance sampling scheme for which a
statistical simulation becomes possible. In order to be useful, this importance
sampling has to be built carefully to ensure a reduction of the variance.

In this chapter, we propose a method to design such efficient importance
sampling. This method relies on the construction of an abstraction of the ini-
tial model, on which the distribution of the importance sampling is computed
by numerical analysis. This abstraction is performed by lumping some states
and possibly modifying distributions in order to obtain a smaller model with
a similar behavior but more manageable for numerical computations. We
call this model the reduced model.

In order to ensure that the variance is reduced within this approach, we
define sufficient conditions on the reduced model in Section 4.2, together
with methods to check that they are satisfied by a given reduced model. In
the three following sections, we use such reduced models to define impor-
tance samplings allowing efficient estimations of either time-unbounded or
time-bounded reachability probabilities. Section 4.3 deals with the case of
unconstrained reachability property. Section 4.4 studies the time-bounded
reachability property of a discrete time model. Section 4.5 analyzes the
time-bounded reachability property of continuous time models by adapting
the results obtained in the time-discrete case. Finally, Section 4.6 describes
how model checking problems can be transformed into reachability problems

75

M Abstraction M•

f Numerical
computation

Simulation with
importance sampling µ•

Confidence interval
generation of µ(s0)

Figure 4.1: Schematic representation of the method

which expands the range of application of this method.

4.2 A New Approach for Importance Sampling

This section formalizes the idea of abstracting a model in a way that allows
one to build an importance sampling with sufficient property to reduce
the variance. We present two kinds of hypotheses on the construction
ensuring importance samplings satisfying different interesting properties.
These hypotheses are the same for models taking as semantics a DTMC
or a CTMC and for time-bounded or unbounded reachability problems. In
the following we consider only DTMCs. Similar definitions are given in
Section 4.5 for CTMCs.

4.2.1 Principle of the Method

In this section, we consider a model M taking as semantics a DTMC with
two absorbing states s+ and s− reached with probability one. Our goal is
to efficiently estimate the probability to reach s+ with statistical methods
whereas this probability is small.

The principle of the method is summarized in Figure 4.1. Roughly
speaking, the computation is split in two parts. A crude approximation of
the probability of interest is computed with a numerical computation, then
using this approximation, a simulation with importance sampling computes
a precise value. The numerical computation is performed on an abstraction
M• of the model M using a function f that maps states of M to states
of M•. As the transition probability matrix P0 of the optimal importance
sampling(see Section 3.4.2) is defined by

P0(s, s0) =
µ(s0)
µ(s)

P(s, s0),

where µ(s) is the probability to reach the state s+ from s, we define in a

76

similar way the matrix by

P0(s, s0) =
µ•(f(s0))
µ•(f(s))

P(s, s0),

where the probability vector µ has been replaced by µ• ◦ f . This vector
µ• is defined as a reachability probabilities vector in an abstraction of the
model M i.e. the reduced model M•. The function f maps states of the
original model to states of the reduced model. Such a function is called
a reduction function. Figure 4.2 illustrates the behavior of the function f .
The aim is that the likelihood under this importance sampling will be close
to µ•(f(s0)), whereas in the optimal case the likelihood is equal to µ(s0).
Moreover µ•(s•) is a reachability probability in a smaller DTMC, it can
be computed numerically. However, some adaptations are required in P0

due to the fact that µ• ◦ f 6= µ, to obtain a transition probability matrix.
These adaptations lead to different important samplings which are defined
in Sections 4.3, 4.4 and 4.5.

Reduced models must achieve three possibly conflicting goals:

1. The size of the reduced model has to be significantly smaller than the
size of the initial one in order to perform a numerical analysis on it.

2. The reachability probabilities of the event of interest with and without
reduction (µ•(f(s0)) and µ(s0)) should be no more different than
about three orders of magnitude. Otherwise, the importance sampling
obtained from the reduced model will be useless because the event of
interest will still be rare.

3. The random variable Ws0 obtained from the importance sampling we
produce should have a small variance. In particular, we want to ensure
that we do not fall in the case described in Section 3.4.3 where the
variance is infinite.

An example of reduction for the example of tandem queues is given in
the next section. Chapter 5 and 6.7 present and discuss several examples of
reduced models.

4.2.2 Reduced Model

Definition 22 (Reduction of Model)

Let C be a BDTMC with two absorbing states s+ and s−. A DTMC C• is
called a reduction of C by a function f that maps S to S•, the state space
of C•, if, denoting s•− = f(s−) and s•+ = f(s+), the following assertions are
satisfied:

77

s+

s
−

C
s0

s•+

s•
−

C•

f(s0)

f

Figure 4.2: Definition of the reduced model

• f−1(s•−) = {s−}

• Let s• 2 S•, and denote by µ•(s•), the probability to reach s•+ starting
from s•, then for all s 2 S,

µ•(f(s)) = 0) µ(s) = 0,

.

The first assertion entails that only the state s− is mapped to s•−. The second
one entails that if a state is mapped to a state that cannot reach s•+, then
it also cannot reach s+. Observe that C• is a BDTMC. These assumptions
ensure that trajectories in the model can be mapped to trajectories in the
reduced model as transitions between state are preserved. This is necessary
for the existence of the objects built in the next section. The efficiency of
the method relies on additional properties of this reduced model.

In the following, everything marked with a “•” like s•+ is related to the
reduced model.

Running example. Let us recall the example of the tandem queues.
Figure 4.3 shows on the upper left part a SPN representing the tandem
queues. The state of the system is represented by the pair (n1, n2) of the
number of tokens in each queue. The property of interest is that a state where
the sum of the number of tokens in the two queues exceeds N is reached
before the initial state where the system is empty. This property will later be
referred as “Global overflow in tandem queues” and can be expressed in LTL

as X (n1 + n2 > 0Un1 + n2 ≥ N).
On the bottom left part of Figure 4.3, the DTMC corresponding to this

model where all states where n1 + n2 ≥ N have been lumped together into an
absorbing state s+ and the state where n1 = n2 = 0 have been made absorbing

78

Q1 Q2λ ρ1 ρ2
f

Q1 Q2

R AQ2

λ ρ1 ρ2

1
ρ2 ρ2 ρ2 ρ2

ρ1

ρ1

ρ1

ρ1

1

s−

s+

s0 λ λ λ

λ

λ λ λ

λλ λ

λ

λ λ

λ

ρ1 ρ1 ρ1 ρ1

ρ1 ρ1 ρ1

ρ1 ρ1

ρ1

ρ2 ρ2 ρ2 ρ2

ρ2 ρ2 ρ2

ρ2 ρ2

ρ2

f

1

1 λ

ρ1

ρ2

λ

ρ1

ρ2

λ

ρ1

ρ2

λ

ρ1

ρ2

λ

ρ2

ρ1 λ

ρ1

ρ2

λ

ρ1

ρ2

λ

ρ1

ρ2

ρ2 ρ2 ρ2

ρ1

ρ1

ρ1
λ

λ
λ

s•
−

s•+

s•0

Figure 4.3: Reduction of the tandem queues as an SPN and as a DTMC.

and rename s−. This DTMC is a BDTMC because the only two BSCCs are
singletons {s−} and {s+}.

The reduced DTMC C• is obtained from the original model by applying
the following function to the state space,

f(n1, n2) =

⇢

(n1, n2) if n2 R
(n1 + n2 −R,R) otherwise

This reduced model is shown on the bottom right of Figure 4.3. We see that
the function f lumps together all states where n1 + n2 is the same when
n2 ≥ R. The intuition behind this reduction is to forbid clients in the first
queue to enter the second one, as soon as there are R clients in the second
queue. This increases the probability of a global overflow. The corresponding
SPN is shown on the upper right of Figure 4.3.

Constraints can be added on the reduced model to bound the random
variable Ws0 . In this case confidence intervals build from Chernoff-Hoeffding
bounds can be computed. Moreover, if the distribution of Ws0 is bounded and
known up to some parameters, tighter confidence intervals can be constructed.
In the next section, we define properties of reduced models that will be used
to produce an important sampling yielding distribution of the likelihood
which are bivaluated.

4.2.3 Guaranteed Variance Reduction

In Section 3.4, it was shown that an importance sampling should increase
the probability of transitions toward the goal. This is reflected by the fact

79

that the function f should ensure that µ(s0) µ•(f(s0)) and more generally
for an arbitrary state that µ(s) µ•(f(s)). This can be used either in a
weak sense, as in most of the states this condition should hold, or in a strong
sense, as in all states this condition should hold.

At the same time, we will see in the next section, that when we use reduced
models to build an importance sampling, the probability to reach the state s+
from s0 under the importance sampling is smaller than µ(s0)/µ

•(f(s0)) thus
µ•(f(s0)) should not be too big compared to µ(s0). These two constraints
highlight difficulties to produce suitable reduced models as the reduced model
should increase the probability to reach the goal but not too much. We study
here the strong case where:

8s, µ(s)µ•(f(s)). (4.1)

We want to substitute to this condition a sufficient structural one in
order to check it by an analysis of the model and not to evaluate it on each
state by numerical computation of µ.

Let us look at a particular case. Suppose that the Markov chain C does
not have any cycle such that it induces a topological order. The condition
holds for the states s+ and s−. An induction over the states of S starting
from s+ and s− following the reverse topological order may be done, the
induction hypothesis is:

µ(s) =
X

s02S
P(s, s0) · µ(s0)

X

s02S
P(s, s0) · µ•(f(s0)).

In order to conclude that µ(s) µ•(f(s)), the additional hypothesis

8s 2 S,
X

s02S
P(s, s0) · µ•(f(s0)) µ•(f(s))

is required
Using the additional hypothesis of this particular case, we define reduction

with guaranteed variance in the general case as follows:

Definition 23 (Reduction with Guaranteed Variance)

Let C be a BDTMC and C• a reduction of C by f . The DTMC C•

is a reduction with guaranteed variance by f if, for all s 2 S such that
µ•(f(s)) > 0, it holds that:

X

s02S
P(s, s0) · µ•(f(s0)) µ•(f(s)). (4.2)

80

s0

s1"

s21− "

s
−

"

1− "

s+

"

1− "
f

s•0 s•12

1

s•
−

1−p
s•+p

Figure 4.4: Example of reduced models

Remark 6 This condition may be difficult to ensure when building a reduced
model. Figure 4.4 illustrates this difficulty. Suppose that ε is a tiny probability
and that in order to build the reduced model we decide to lump together states
s1 and s2 in a new state s•12. We need to choose the probability p to go
from s•12 to s•+. One can check that µ(s0) = 2ε(1 − ε) and µ•(s12) = p.
The definition of reduced models only implies that p > 0. The principle that
the reduced model should increase the probability to reach s+ implies that
p > 2ε(1− ε). Equation (4.2) requires additional constraints on p. If we use
this equation on state s1, we have that

P(s1, s+) · µ•(f(s+)) +P(s1, s−) · µ•(f(s−)) = 1− ε p,

thus µ•(f(s0)) ≥ 1 − ε. If p = 1 − ε, the probability for the simulation to
reach s+ under the importance sampling induced by the reduced model is 2ε.
For a small value of ε, say 10−9, this probability is still a rare event.

This example illustrates that a reduced model should not lump together
states with very different probabilities to reach the state s+. It is straightfor-
ward in this example that states s1 and s2 have very different behaviors but
in more realistic settings, we have to merge a large (or even infinite) number
of states together, and some of them may have different behaviors.

Running example. In the tandem queues example, the reduced model is a
reduction with guaranteed variance. As the proof requires additional tools, we
only provide some intuition here. Aggregated states in the reduced model have
the same behaviors when there are less than R clients in the second queue
(n2 R). In states where n2 ≥ R, the transition ρ1 is replaced by a self-loop
which prevents the system from emptying too fast. This difference between
the two models slows down clients in the reduced model and it increases their
number. Thus µ(s) µ•(f(s)) in all states.

4.2.4 Structural Guarantee

Unfortunately, Equation (4.2) is difficult to check. The numerical verification
that this equation holds is a two-step procedure. The first step is to compute

81

µ• for every state of C•. This step is required later for computing the
importance sampling and is not problematic if the size of C• is sufficiently
small which is already supposed. The second step is to check that for any
state in C, the equation holds. This supposes to enumerate all states of C.
As the size of C can be huge, this is in general unfeasible. Moreover, most
models have scaling parameters (like N or R for the tandem example) and
we want to prove that the property holds for any value of these parameters.

For these reasons, we define a stronger structural requirement for the
reduction which will ensure that Equation (4.2) is satisfied by construction.
This is expressed in the next proposition using enriched BDTMC instead of
BDTMC for the sake of clarity.

Proposition 1

Let C be an enriched BDTMC, C• be a reduction of C by f . Assume
there exists a function g : S ⇥E ! E• such that for all s 2 S, e 7! g(s, e) is
an injection which maps each transition of the model to a transition in the
reduced model, such that if:
8s 2 S, 8e 2 E :

1. p(s, e) = p•
(

f(s), g(s, e)
)

2. p(s, e) > 0) µ•(f(δ(s, e))
)

 µ•(δ•(f(s), g(s, e))
)

then C• is a reduction of C by f with guaranteed variance.

Proof:
For all s 2 S, starting from the left hand side of Equation (4.2):

X

s02S
P(s, s0) · µ•(f(s0))

Using the definition of P in enriched DTMC

=
X

e2E
p(s, e) · µ•(f(δ(s, e)))

Using hypothesis 1

=
X

e2E
p•(f(s), g(s, e)) · µ•(f(δ(s, e)))

Using hypothesis 2

X

e2E
p•(f(s), g(s, e)) · µ•(δ•(f(s), g(s, e)))

Using that g is an injection

X

e•2E•

p•(f(s), e•) · µ•(δ•(f(s), e•)))

Using the definition of µ•

= µ•(f(s))

⇤

82

M M•

s
t1e1

t2
e2

t3
e
3

f(s)
t•1e1

t•2

e2
e3

≤
f
µ•

≤
f
µ•

Figure 4.5: Structural conditions for guaranteed variance.

The hypotheses of Proposition 1 are easier to check than Equation 4.2.4
because they only rely on the structure of the model and the computation of
µ•. Condition 1 is completely structural. Condition 2 is more difficult, as
shown in Figure 4.5. Actually for each state s 2 S, each outgoing transition
is mapped to a transition starting from f(s) in the reduced model (in the
figure, the mapping is done by the identity). The target states are in relation

by the relation f
µ• define by s f

µ• t if µ•(f(s)) µ•(t). This condition can
also be seen as follows:

8s 2 S, 8e 2 E :
s

f(s)

f

δ(s, e)
δe

δ•(f(s), g(s, e))
δ•g(s,e)

f(δ(s, e))

f

µ•

f
µ•

where δe stands for the function s 7! δ(s, e) and s• µ• t• if µ•(s•) µ•(t•).
For any state s, if s is mapped into C• by f and the transition labeled

by g(s, e) is taken (bottom left path of the diagram), it is more probable
to reach s•+ from the obtained state δ•

(

f(s), g(s, e)
)

than from the state
f
(

δ(s, e)
)

which would be reached if the event e is taken first, and its result
is mapped to C• by f (upper right path of the diagram). Thus the reduced
model is going faster to s•+ than the initial one is going to s+.

Most of the time, Condition 2 is proven using a coupling (defined in
Section 2.2.2). We therefore restate Proposition 1 in this context:

Corollary 2

Let C be an enriched BDTMC, C• be a reduction of C by f . Assume
there exists a function g : S ⇥ E ! E• such that 8s 2 S, e 7! g(s, e) is
an injection which maps each transition of the model to a transition in the
reduced model. C is a relation over the states of C• such that if:
8s 2 S, 8e 2 E,

83

1. p(s, e) = p•(f(s), g(s, e));

2. p(s, e) > 0) f(δ(s, e)) C δ•(f(s), g(s, e));

3. C is a coupling relation with target state s+.

Then C• is a reduction of C by f with guaranteed variance.

Running example. For the tandem example, the function g is chosen
to be equal to the identity. Thus Condition 1 of Proposition 2 holds. For
Condition 2, the coupling S⌦ = {((n1, n2), (n

0
1, n

0
2)) | n1+n2 n0

1+n0
2^n1

n0
1} defined at page 29 is used. For any state (n1, n2) 2 C• such that n2 < R,

the function f behaves like the identity and δe and δ•e are identical. Thus the
diagram commutes and the property holds.

We now focus on the a state s = (n1, n2) such that n2 ≥ R:

• For event λ: δλ and δ•λ behave the same, in the sense that they both
increase the first component n1 by one, thus f(δ(s,λ)) = δ•(f(s),λ)
and the property holds.

• For event ⇢1: δ⇢1 and δ•⇢1 perform self-loops and thus the property
holds.

• For event ⇢2: The case where n2 = R is similar to the previous cases.
In the case where n2 > R, the behaviors of δ⇢2 and δ•⇢2 are different:

. f(δ⇢2(n1, n2)) = (n1 + n2 −R− 1, R)

. δ•⇢2(f(n1, n2)) = (n1 + n2 −R,R− 1).

As
(

(n1+n2−R− 1, R), (n1+n2−R,R− 1)
)

2 S⌦ the property holds.

Using Proposition 1, the reduction proposed for the tandem is thus a reduction
with guaranteed variance reduction.

We now weaken Condition 1 in order to enlarge the field of application
of the method.

Proposition 3

Let C be an enriched BDTMC, C• be a reduction of C by f . Assume there
exists a function g : S ⇥ E ! E• such that 8s, e 7! g(s, e) is an injection
which maps each transition of the model to a transition in the reduced model,
such that:

84

1. 8s 2 S, 8e 2 E,

p•
(

f(s), g(s, e)
)

> p(s, e)) µ•(f(s)
)

 µ•
⇣

δ•
(

f(s), g(s, e)
)

⌘

(1.a)

p•
(

f(s), g(s, e)
)

< p(s, e)) µ•(f(s)
)

≥ µ•
⇣

δ•
(

f(s), g(s, e)
)

⌘

(1.b)

2. 8s 2 S, 8e 2 E s.t. p(s, e) > 0,

µ•
⇣

f
(

δ(s, e)
)

⌘

 µ•
⇣

δ•
(

f(s), g(s, e)
)

⌘

then C• is a reduction of C by f with guaranteed variance.

Proof:
Let us give the idea underlying this proof: when a transition has different
probabilities in the reduced and the initial models, it can be split into two
parts by introducing loops. The first part of the transition is the same in
both models and corresponds to the smallest probability. The second part is
the probability difference between the original and reduced models. However,
in the model with the smallest original transition probability, it is introduced
as a self-loop, while in the other one, its target state is left unchanged.

p•
(

f(s), g(s, e)
)

−p(s, e)

s p(s, e) δ(s, e)

f(s)

p(s, e)

p•
(

f(s), g(s, e)
)

−p(s, e)

δ•
(

f(s), g(s, e)
)

p(s, e) < p•
(

f(s), g(s, e)
)

M

M•

p(s, e) > p•
(

f(s), g(s, e)
)

s

p•
(

f(s), g(s, e)
)

p(s, e)− p•
(

f(s), g(s, e)
)

δ(s, e)

p(s, e)−p•
(

f(s), g(s, e)
)

f(s)

p•
(

f(s), g(s, e)
)

δ•
(

f(s), g(s, e)
)

Formally, we define a new enriched DTMC D = (S,E] Ẽ, δ̃, p̃) where

Ẽ is a copy of E. Let h(s) =
P

e2E max
⇣

p(s, e), p•
(

f(s), g(s, e)
)

⌘

. For all

s 2 S:

8e 2 E, δ̃(s, e) = δ(s, e) and p̃(s,e) = 1
h(s) min

⇣

p(s,e), p•
(

f(s), g(s,e)
)

⌘

,

8e 2 Ẽ, if p•
(

f(s), g(f(s), e)
)

> p(s, e) then δ̃(s, e) = s,

if p•
(

f(s), g(f(s), e)
)

 p(s, e) then δ̃(s, e) = δ(s, e),

p̃(s, e) = 1
h(s)

∣

∣p(s, e)− p•
(

f(s), g(s, e)
)∣

∣ .

The chain D is indeed a DTMC. Similarly, we define D• = (S•, E] Ẽ, δ̃•, p̃•)

85

with for all s 2 S:

8e2 E, δ̃•
(

f(s), g(s, e)
)

= δ•
(

f(s), g(s, e)
)

and p̃•
(

f(s), g(s,e)
)

= 1
h(s) min

⇣

p(s,e), p•
(

f(s), g(s,e)
)

⌘

,

8e2 Ẽ, if p•
(

f(s),g(f(s),e)
)

>p(s,e) then δ̃•
(

f(s),g(s,e)
)

=δ•
(

f(s),g(s,e)
)

,

if p•
(

f(s), g(f(s), e)
)

 p(s, e) then δ̃•
(

f(s), g(s, e)
)

= f(s),

p̃•
(

f(s), g(s, e)
)

= 1
h(s)

∣

∣p(s, e)− p•
(

f(s), g(s, e)
)∣

∣ .

The above figure illustrates how transitions are split to create transitions
with equal probabilities. An edge from left to right (respectively right to left)
sends a state on another state with higher(respectively lower) probability to
reach s+.

As µ (respectively µ•) expresses unconstrained time reachability proba-
bilities, its value is identical on C and D (respectively on C• and D•). The
two models differ only by loops and transitions that can be split or not.

We can now prove that D• is a reduction with guaranteed variance of D
by checking that it fulfills the hypotheses of Proposition 3. By construction
the first condition holds. For all s 2 S and e 2 E] Ẽ there are two cases:

1. If e 2 E as δ̃(s, e) = δ(s, e), the condition holds by hypothesis.

2. If e 2 Ẽ, then there are three cases:

(a) p̃(s, e) = 0 : the condition trivially holds.

(b) p̃(s, e) = 1
h(s)

(

p•(f(s), g(s, e)) − p(s, e)
)

: this case is depicted

on the left part of the figure, and we have δ̃(s, e) = s and
δ̃•(f(s), g(s, e)) = δ•(f(s), g(s, e)). Using hypothesis (1.a), we
have:

µ•(f(δ̃(s, e))) = µ•(f(s))

 µ•(δ•(f(s), g(s, e)))

= µ•(δ̃•(f(s), g(s, e))).

(c) p̃(s, e) = 1
h(s)

(

p(s, e)− p•(f(s), g(s, e))
)

: this case is depicted on

the right part of the figure, and we have δ̃(s, e) = δ(s, e) and
δ̃•(f(s), g(s, e)) = f(s). Using hypothesis (1.b) and (2), we have:

µ•(δ̃•(f(s), g(s, e)) = µ•(f(s))

≥ µ•(δ•(f(s), g(s, e)))

≥ µ•(f(δ(s, e)))

= µ•(f(δ̃(s, e))).

⇤

86

Remark 7 In this proposition, the requirement that transitions in relation
by g should have equal probabilities in the two models is replaced by hypotheses
(1.a) and (1.b): their probability can be greater in the reduced model if the
transition leads to a state with higher probability to reach the state s+ and
can be smaller if the transition leads to a state with lower probability to reach
the state s+. These hypotheses can be checked with the coupling relation
required for hypothesis (2).

4.3 Reachability Analysis for Markov Chain

In this section, an importance sampling for unbounded reachability problems
using reduced models is defined. Given a stochastic model M taking as
semantics a DTMC or a CTMC which can be infinite, we are interested in
computing the probability to reach a state s+ before reaching the state s−,
supposing that these two states are reached with probability one, so that the
problem input is a BDTMC.

4.3.1 General Importance Sampling

In the following, efficient important samplings based on reduced models
(Definition 22) are constructed. Due to the fact that µ 6= µ• ◦ f , for s 2 S

such that µ•(f(s)) > 0 the sum h(s) =
P

s02S
µ•(f(s0))
µ•(f(s)) P(s, s0) of the outgoing

probabilities is not necessarily equal to 1. When h(s) > 1, the only reasonable
choice for the construction of the transition probability matrix P0 is to build
an intermediate transition matrix summing to h(s) for state s and then
divide each probability by h(s). When h(s) < 1, there are two possibilities.
Either one normalizes by h(s), or the remaining probability 1− h(s) leads
to the sink state s−. These two importance samplings are described more
precisely in the following definition.

Definition 24 (General Importance Sampling with Normalization)

Let C be a BDTMC and C• a reduction of C by f . For s 2 S, let

h(s) =
P

s02S
µ•(f(s0))
µ•(f(s)) P(s, s0). We define a transition probability matrix

P0 = (P0(s, s0))(s,s0)2S⇥S by the following rules, for all s0 2 S:

• if µ•(f(s)) > 0 then P0(s, s0) = µ•(f(s0))
h(s)µ•(f(s))P(s, s0)

• if µ•(f(s)) = 0 then P0(s, s0) = P(s, s0).

Remark 8 This importance sampling makes the state s− unreachable: the
probability to go to a state s0 is proportional to µ•(f(s0)), the probability to
reach a state where µ•(f(s0)) = 0 is also null. The definition of the reduced

87

model (Definition 22) implies that if µ•(f(s0)) = 0 then µ(s0) = 0 thus s+ is
no longer reachable from s0.

Remark 9 The second case of this definition is required for the completeness
of the definition but is irrelevant as soon as state s+ is reachable from the
initial state. States where µ•(f(s)) = 0 are not reachable and cannot reach
state the s+ thus trajectories visiting such a state always end in s−.

Definition 25 (General Importance Sampling with Sink State)

Let C be a BDTMC and C• a reduction of C by f . For s 2 S, let

h(s) =
P

s02S
µ•(f(s0))
µ•(f(s)) P(s, s0). We define a transition probability matrix

P0 = (P0(s, s0))(s,s0)2S⇥S by the following rules:

• if µ•(f(s)) > 0 and h(s) 1 then for all s0 2 S \ {s−},

P0(s, s0) =
µ•(f(s0))
µ•(f(s))

P(s, s0) and P0(s, s−) = 1− h(s)

• if µ•(f(s)) > 0 and h(s) > 1 then for all s0 2 S,

P0(s, s0) =
µ•(f(s0))

h(s)µ•(f(s))
P(s, s0)

• if µ•(f(s)) = 0 then for all s0 2 S, P0(s, s0) = P(s, s0)

Remark 10 Again the last case is irrelevant and only required for complete-
ness.

By construction, in the two definitions P0 is a transition probability
matrix. It complies to Conditions (3.2). Thus P0 defines an importance
sampling.

We are now in position to describe the whole method for a modelM and
a reachability goal s+. This is a three-step procedure:

1. Specify a modelM• with associated DTMC C•, and a function f such
that C• is a reduction of C by f .

2. Compute function µ• with a numerical model checker applied on the
DTMC C•.

3. Estimate µ(s0) with a statistical model checker applied on C using one
of the importance samplings of Definition 24 and 25.

Steps 2 and 3 are automatic and can be performed by tools. Step 1
requires to manually design the reduced model. Figure 4.1 shows a schematic

88

description of this method. The choice between the two importance sampling
is discussed in Chapter 6.7.

With the importance sampling using normalization (Definition 24), the
random variable Ws0 (Definition 20) can take in general any positive real
value.

In the next proposition we study the set of values taken by the distribution
of the random variable Ws0 induced by the importance sampling with sink
state (Definition 25).

Proposition 4

Let C be a BDTMC and C• its reduction. The importance sampling of
Definition 25 has the following property: for all s such that µ(s) > 0, Ws is
a random variable which takes its values in {0} [[µ•(f(s)),1[.

Proof:
Let σ = (s = u0, u1, . . . , ul = s+) be a trajectory starting in s ending in s+.
As the trajectory avoids s−, its value is

µ•(f(u0)
)

max(h(u0), 1)

µ•(f(u1)
) . . .

µ•(f(ul−1)
)

max(h(ul−1), 1)

µ•(f(ul)
)

= µ•(f(s)
)

0

B

B

@

Y

0i<l,
h(ui)>1

h(ui)

1

C

C

A

≥ µ•(f(s)
)

⇤

Corollary 5

Let C be a BDTMC and C• its reduction.

P(Ws0 > 0) µ(s0)

µ•(f(s0))

Proof:
The probability P(Ws > 0) is the probability for a trajectory to ends up in
state s+ starting from s0, under this importance sampling. The expected
value of Ws0 can be written: E(Ws0) = P(Ws0 > 0) · E(Ws0 |Ws0 > 0). As
E(Ws0) = E(Vs0) = µ(s0) and E(Ws0 |Ws0 > 0) ≥ µ•(f(s0)).

⇤

Even if this proposition gives some clue on the values taken by Ws0 ,
the shape of its distribution is unknown and its variance may be infinite.
Therefore, the shape of this distribution will be experimentally studied in
Chapter 6.7.

89

4.3.2 Importance Sampling with Guaranteed Variance

In Section 4.3.1, a general importance sampling was defined. However, in this
case, the shape of the distribution of the random variable Ws0 was unknown
and its variance possibly infinite.

In this section, the reduced models with guaranteed variance defined in
Section 4.2 are used to construct important sampling for which the shape of
the distribution has bounded support and the reduction of the variance of
Ws0 compare to V0 is guaranteed.

Actually, in the general case, the normalization with h(s) > 1 increases
the likelihood and may induce a large variance of Ws0 . For a reduction
model with guaranteed variance, for any s 2 S, h(s) 1, therefore the
definition of an important sampling with normalization remains unchanged
(cf Definition 24) and Definition 25 of importance sampling with sink state
can be rewritten as:

Definition 26 (Importance Sampling with Guaranteed Variance)

Let C be a BDTMC and C• be a reduction of C by f with guaranteed
variance. Let P0 be a transition matrix on S defined by:
Let s be a state of S,

• if µ•(f(s)
)

= 0 then for all s0 2 S, P0(s, s0) = P(s, s0)

• if µ•(f(s)
)

> 0 then for all s0 2 S \ {s−},

P0(s, s0) =
µ•(f(s0)

)

µ•(f(s)
) P(s, s0) and P0(s, s−) = 1−

X

s02S
P0(s, s0).

The reduction of the variance for such importance samplings is proven
in the following proposition using the conditions defined earlier for reduced
models with guaranteed variance, first for the normalization case, and then
for the sink state case.

Proposition 6

Let C be a BDTMC and C• be a reduction with guaranteed variance by
f . The importance sampling based on the matrix P0 of Definition 24 has
the following properties:

• For all s 2 S such that µ(s) > 0,
Ws is a random variable which has value in [0, µ•(f(s)

)

].

• µ(s) µ•(f(s)
)

and V(Ws) µ(s)µ•(f(s)
)

− µ2(s).

90

• A confidence interval for this importance sampling can be computed
using Chernoff-Hoeffding bounds.

Proof:
Let σ = (s = u0, . . . , ul = s+) be a trajectory starting in s ending in s+.
Its value is:

µ•(f(u0)
)

h(u0)

µ•(f(u1)
) . . .

µ•(f(ul−1)
)

h(ul−1)

µ•(f(ul)
) µ•(f(u0)

)

µ•(f(ul)
) = µ•(f(s)

)

We know that E(Ws) = µ(s), then P

⇣

Ws = µ•(f(s)
)

⌘

= µ(s)

µ•

(

f(s)
) .

This implies that µ(s) µ•(f(s)
)

and V(Ws) = µ(s)µ•(f(s)
)

− µ2(s).
The variance is finite and as Ws0 takes bounded values, Chernoff-Hoeffding
bounds apply and we can compute confidence interval (see 2.3.4).

⇤

Similarly for the importance sampling with sink state the following
proposition holds.

Proposition 7

Let C be a BDTMC and C• be a reduction with guaranteed variance by
f . The importance sampling based on the matrix P0 of Definition 26 has
the following properties:

• For all s such that µ(s) > 0,
Ws is a random variable which has value in {0, µ•(f(s)

)

}.

• µ(s) µ•(f(s)
)

and V(Ws) = µ(s)µ•(f(s)
)

− µ2(s).

• A confidence interval for this importance sampling can be computed
using classical method on Bernouilli distribution.

Proof:
Let σ = (s = u0, . . . , ul = s+) be a trajectory starting in s ending in s+.
As the trajectory avoids s−, its value is:

µ•(f(u0)
)

µ•(f(u1)
) . . .

µ•(f(ul−1)
)

µ•(f(ul)
) =

µ•(f(u0)
)

µ•(f(ul)
) = µ•(f(s)

)

We know that E(Ws) = µ(s), then P

⇣

Ws = µ•(f(s)
)

⌘

= µ(s)

µ•

(

f(s)
) .

This implies that µ(s) µ•(f(s)
)

and V(Ws) = µ(s)µ•(f(s)
)

− µ2(s).
The variance is finite and as Ws0 is a Bernouilli law, it takes only two values
and it is possible to compute a confidence interval (see 2.3.5).

91

⇤

This proposition shows that Inequation (4.2) is a sufficient condition for
obtaining an importance sampling with guaranteed variance reduction.

Remark 11 Since µ(s0) ⌧ 1, V(Vs0) ⇡ µ(s0). If µ(s0) ⌧ µ•(f(s0)), we
obtain V(Ws0) ⇡ µ(s0)µ

•(f(s0)), so the variance is reduced by a factor
µ•(f(s0)). In the case where µ(s0) and µ•(f(s0)) have same order of magni-
tude, the reduction of variance is even bigger.

Running example. We have already seen that the tandem example is a
reduction with guaranteed variance. The importance sampling produced by
the reduced model behaves as follows: for all states s = (n1, n2) such that
n2 < R we can compute

P

s02S
µ•(f(s0))
µ•(f(s)) P(s, s0)

=
P

e2E
µ•(f(δ(s,e)))

µ•(f(s)) p(s, e)

Since n2 R, f(δ(s, e)) = δ•(f(s), e))

=
P

e2E µ•(δ•(f(s),e))p•(f(s),e)

µ•(f(s))

= 1

This shows that when the reduced model behaves like the original one (i.e.
f(δ(s, e)) = δ•(f(s), e))) the probability to take the transition to s− is equal
to 0.

We are now in position to describe the whole method for guaranteed
variance importance sampling for a modelM and an unbounded reachability
problem. It is a four-step procedure:

1. Specify a modelM• with associated DTMC C• and the functions f
and g.

2. Prove using a coupling onM• that Proposition 3 holds.

3. Compute function µ• with a numerical model checker applied on C•.

4. Estimate µ(s0) with a statistical model checker applied on C using
importance samplings of Definition 24 or Definition 26.

As in the general case, the last two steps are done by tools. The first step
is the specification ofM• which requires to manually studyM. The second
step is in also done by hand (see the proofs of correctness in the examples).

92

a

q

a
p

q

a
p

q

a
p

q

b
p

1

Figure 4.6: Rarity triggered by time bound

4.4 Time-Bounded Reachability for DTMC

4.4.1 Challenge

In this section the previous method is generalized, to the setting of bounded
reachability probabilities in discrete time Markov chains.

The main motivation for developing a dedicated method to analyze
bounded reachability probabilities is that an event can be frequent or even
recurrent in a system, even if the time of its first occurrence is very large.
Figure 4.6 shows an example of a DTMC where the probability to reach
a state labeled by b without time constraint is 1. However, if the transi-
tion probability p is sufficiently small and if a time bound is set for the
maximal number of steps, this problem might become a rare event one and
an importance-sampling method is required. The methods presented in
Section 4.3 where designed to estimate time-unbounded probabilities, even
if the simulator is adapted to reject trajectories exceeding the time bound,
the method is not efficient. In fact, in the reduced models built by these
methods, the probability to reach the goal state should be greater than in
the initial one. However, in this case, if the time bound is not taken into
account this probability is already equal to 1 for any state which makes the
importance sampling built by the method useless.

In the unbounded setting, the computation of a reachability property
probability over a continuous time Markov chain is done by looking at the
embedded DTMC. The formalism is the same for the two settings. In the
time-bounded reachability setting, a distinction has to be made between the
discrete and continuous cases: the two formalisms are different and will be
handled separately. This section only focuses on DTMC.

4.4.2 Adapting Reachability Analysis

Given a model M taking as semantics a DTMC, C we are interested in
computing the probability to reach a state s+ in u steps starting from the
initial state s0.

In order to adapt the method from the time-unbounded reachability case,
the cross product between the Markov chain C and a counter is build. The
counter counts the remaining number of transitions in the Markov chain
before reaching the horizon. Trajectories that do not reach the state s+ after
u steps end up in state s−.

93

s+

s
−

· · · · · ·

S|s+⇥{u}

ρ2

λ
S|s+⇥{u−1}

λ
ρ1
ρ2

S|s+⇥{i}

ρ2

λ

(n1, n2)

(0, 1)

(n1, n2)

S|s+⇥{i−1}

λ
ρ1
ρ2

(n1 + 1, n2)

(n1 − 1, n2 + 1)

(n1, n2 − 1)

S|s+⇥{2}

ρ2

λ
S|s+⇥{1}

λ
ρ1
ρ2

Figure 4.7: “Unfolding Cu” for the example of the tandem queues, here S|s+
stands for S\{s+}

Definition 27 (Time bounded Reachability Problem for DTMC)

Given a DTMC C, a reachability goal s+ and a time bound u, we define
the Markov chain Cu =

(

Su, (s0, u),Pu

)

by:

• Su =
(

S\{s+}⇥ [1, u]
)

[{s−, s+}

• Pu(s−, s−) = Pu(s+, s+) = 1 (s−, s+ are absorbing states)

• 8s, s0 2 S\{s+}, 81 < v u

Pu

(

(s, v), (s0, v − 1)
)

= P(s, s0)
Pu

(

(s, v), s+
)

= P(s, s+)

• 8s 2 S\{s+}, Pu((s, 1), s+) = P(s, s+)
Pu((s, 1), s−) = 1−Pu((s, 1), s+)

• Other transition probabilities are null.

Remark 12 Note that by construction Cu is a BDTMC: observe that the
probability to reach s+ or s− from any state is equal to 1. Moreover by
construction, µ(s, v) = µv(s) where µ(s, v) is the probability to reach s+ in
Cu and µv(s) is the probability to reach s+ in C in v steps (see Definition 9).

Running example. Figure 4.4.2 describes the Markov chain Cu associated
with the example. The state space of C is replicated u times. States where
n1 + n2 ≥ N (respectively n1 + n2 = 0) are merged across all the copies into
s+ (respectively s−). The initial state is ((1, 0), u). On the last copy, only
transition λ in the states where n1 + n2 = N − 1 lead to s+, all others lead
to state s−.

From a theoretical point of view, the importance sampling method devel-
oped in the previous section can now be used, on a Markov chain Cu, but

94

as the size of Cu is u times bigger than the one of C, the relation between C
and Cu must be used as much as possible, for the sake of scalability.

As the design of a reduced model relies on the dynamics of the system, we
will define it on C. We define a reduced model C• of C by a reduction function
f . We then define as reduced model for Cu, the BDTMC C•u by applying
Definition 27 to C•. For all 0 v u, the function fu is an extension of f
defined by fu(s, v) = (f(s), v). Moreover Remark 12 applies to distributions
(µ•

v)
u
v=0 where 8s• 2 S•, µ•

v(s
•) = µ•(s•, v), with µ•(s•, v) the probability to

reach s•+ in C•u and µ•
v(s

•) is the probability of reaching s•+ in C• in v steps.
In this context Definition 25 can be reformulated as:

Definition 28 (Time Bounded Importance Sampling for DTMC)

Let C be a DTMC, C• be a reduction of C by f and u a positive integer.
Then P0

u is the transition matrix on Su the state space of Cu. Let s be a
state of S\{s+} and 0 < v u,

let hv(s) =
X

s02S

µ•
v−1(f(s

0))

µ•
v(f(s))

P(s, s0). P0
u is defined by:

1. if µ•
v(f(s)) = 0 then for all s0 2 Su, P

0
u((s, v), s

0) = P(s, s0)

2. if µ•
v(f(s)) > 0 and hv(s) 1 then

- If v > 1 then 8s0 2 S\{s+},
P0

u((s, v), (s
0, v − 1)) =

µ•
v−1

(f(s0))

µ•
v(f(s))

P(s, s0)

- P0
u((s, v), s+) =

P(s,s+)
µ•
v(f(s))

- P0
u((s, v), s−) = 1− hv(s).

3. if µ•
v(f(s)) > 0 and hv(s) > 1 then

- If v > 1 then 8s0 2 S\{s+},
P0

u((s, v), (s
0, v − 1)) =

µ•
v−1

(f(s0))

hv(s)µ•
v(f(s))

P(s, s0)

- P0
u((s, v), s+) =

P(s,s+)
hv(s)µ•

v(f(s))

- P0
u((s, v), s−) = 0.

Remark 13 This importance sampling uses s− as a sink state. The impor-
tance sampling with normalization can be defined similarly to Definition 24

Remark 14 Similarly to the unbounded reachability case, suppose hv(s)
1 holds for all s 2 S and v 2 {1, . . . , u}, which means that Case 3 of
Definition 28 never occurs, C•u is a reduction with guaranteed variance of Cu
by f and an importance sampling with guaranteed variance is obtained.

As the reduction of Cu to C•u is obtained as an unfolding of a reduction of
C to C•, the guaranteed variance reduction property (Definition 23) can be
rewritten for time-bounded properties as

95

Definition 29 (Guaranteed Variance for Bounded Property)

Let C be a DTMC and C• a reduction of C by f . C• is a bounded reduction
with guaranteed variance if for all v > 1, for all s 2 S such that µ•

v(f(s)) > 0
we have :

X

s02S
P(s, s0) · µ•

v−1(f(s
0)) µ•

v(f(s)) (4.4)

Similarly to the time-unbounded case (Proposition 1) structural require-
ments can be define to guarantee the reduction of variance. The first, more
restrictice, case can be rewritten as:

Proposition 8

Let C be an enriched DTMC, C• be a reduction of C by f . Let u be a
positive integer. Assume there exists a function g : S ⇥ E ! E• such that
8s 2 S, e 7! g(s, e) is an injection which maps each transition of the model
to a transition in the reduced model, such that:
81 < v u, 8s 2 S, 8e 2 E :

1. p(s, e) = p•(f(s), g(s, e))

2. p(s, e) > 0) µ•
v(f(δ(s, e))) µ•

v(δ
•(f(s), g(s, e)))

then C•u is a reduction of Cu by f with guaranteed variance.

The second, more general, case (Proposition 3) cannot be adapted to
time-bounded setting. In fact, the proof requires to add self-loops to the
Markov chain which modify its transient behaviors.

However, when a coupling on the states ofM• is available, another proof
of the guaranteed variance reduction can be established. This proof is based
on the same hypotheses as the variance reduction in the unbounded case.

Corollary 9

Let C be an enriched DTMC, C• be a reduction of C by f . Let u be
an integer. Assume there exists a function g : S ⇥ E ! E• such that
8s 2 S, e 7! g(s, e) is an injection which maps each transition of the model
to a transition in the reduced model. C is a relation over the states of C•
such that:
8s 2 S, 8e 2 E :

1. p(s, e) = p•(f(s), g(s, e))

2. p(s, e) > 0) f(δ(s, e)) C δ•(f(s), g(s, e))

96

3. C is a coupling relation with target state s+,

then C•u is a reduction of Cu by f with guaranteed variance.

Proof:
Using that C is a coupling relation with target state s+ implies that
8v > 1, 8(s, s0) 2 S ⇥ S, s C s0) µv(s) µv(s

0), which is the hypothesis
of Proposition 8.

⇤

Remark 15 This corollary has exactly the same hypotheses as Corollary 2.
In this setting, we only need to build one reduced model with guaranteed
reduction for both the time-unbounded and time-bounded reachability settings.

4.4.3 Algorithmic Considerations

As C•u is bigger than C•, computing µ• over C•u may be too expensive. More
precisely, let n be the size of C•. The size of C•u is un. Using Gaussian
elimination to compute µ• requires Θ

(

(un)3
)

operations. Using iterative or
more efficient matrix inversion methods leads to algorithms taking more than
O
(

(un)2
)

operations. Instead we compute µ•
u over C•, which is the probability

to reach s•+ in at most u steps. We use Equation 8 which requires u matrix
vector multiplications. The computation only requires Θ

(

un2
)

operations. If
the transition probability matrix of C• is sparse (which is usually the case) we
can decrease furthermore this complexity. We denote by d the maximum out-
degree of the states of C•. A simulation takes at most u steps going through
states (su, u), . . . , (s1, 1), s± where su = s0 and s± 2 {s+, s−}. In state
(sv, v), the computation of the distribution P 0

u((sv, v),−) (cf. Definition 26)
requires the computation of the values of µ•

v(f(s)) and µ•
v−1(f(s

0)), for each
possible target state s0 from sv, where there are at most d target states.
Therefor, the vectors {µ•

v}0<vu may be computed iteratively one from the
other with complexity Θ(ndu). Let us remark that in typical modelings, d
is very small compared to n. For example d = 3 in the running example.
In most of the examples shown in this thesis, in which the state space size
depend on a parameter, the number d is independent of the parameter.

More precisely, we derive from P• the transition probability matrix of
C, the matrix P•

0, a square (sub stochastic) matrix, indexed by S\{s−} and
defined by 8s, s0 2 S\{s−}:

• P•
0(s, s

0) = P•(s, s0),

• P•
0(s+, s+) = 1,P•

0(s+, s
0) = 0.

Then µ•
v = P•

0 · µ•
v−1 and µ•

0 is null except µ•
0(s+) = 1. For large values of

u, the space complexity to store the vectors µ•
v becomes intractable and the

97

Algorithm 1 Algorithm 2

u 01

µ•
u

k

(P •)uµ•
0

µ•
0µ•

1

k
P •µ•

0

pre-computation

simulation

Store all vectors

u 01

µ•
u

k

(P •)uµ•
0

µ•
0µ•

1

k
P •µ•

0

1l2l3l4l

Store l + u
l vectors

Algorithm 3 Algorithm 4

u 01

µ•
u

k

(P •)uµ•
0

µ•
0µ•

1

k
P •µ•

0

Store log2(u) vectors

u 01

µ•
u

k

(P •)uµ•
0

µ•
0µ•

1

k
P •µ•

0

step-computation

v v−1

Figure 4.8: Different strategies for storing vectors

challenge is to obtain a suitable space-time trade-off. This problem of space
complexity is due to the fact that the computation of vectors µ•

v is performed
iteratively starting from the end (v = 0) whereas the simulation starts from
the initial state (v = u) and decreases v at each step.

We propose four methods to implement this space-time trade-off. The
methods consist of a precomputation stage and a simulation stage. Their dif-
ference lies in the information stored during the first stage and the additional
numerical computations during the second stage. In the precomputation,
the three first methods compute iteratively the u vectors µ•

v = (P •
0)

v(µ•
0) for

v from 1 to u. The fourth one does not have a precomputation stage. An
overview of the four algorithms is shown in Figure 4.8. The respective time
and space complexities of the four algorithms are shown in Table 4.1.

First Algorithm

The first algorithm correspond to the naive implementation. It consists in
storing all the vectors (µ•

v)
u
v=1 during the precomputation stage and then

proceeding to the simulation without any additional numerical computations
as shown in the top left corner of Figure 4.8. The precomputation stage is
described in Algorithm 1 where list L is the only memory requirement, and
takes Θ(nu) memory space. The precomputation requires u matrix vector
multiplications taking Θ(ndu) elementary operations.

98

Algorithm 1:

Precomputation(u, µ•
0, P

•
0)

Result: L
/* List L fulfills L(i) = µ•

i */

1 L(1) µ•
0

2 for i = 2 to u do
3 L(i) P •

0L(i− 1)

Second Algorithm

The second algorithm is described in the top right corner of Figure 4.8. Let
l(< u) be an integer. In the precomputation stage, it only stores the bul c+ 1
vectors µ•

v with v multiple of l in list L and µ•
lbu

l
c+1, . . . , µ

•
u in list K (see

the precomputation stage of Algorithm 2).
During the simulation stage, in a state (s, v), with v = ml, the vector µ•

v−1

is present neither in L nor in K. Therefore the algorithm uses vector µ•
l(m−1)

stored in L to compute iteratively all vectors µ•
l(m−1)+i = P •i(µ•

l(m−1)) for

i from 1 to l − 1 and stores them in K (see the step computation stage of
Algorithm 2). Then it proceeds to l consecutive steps of simulation without
additional computations. The integer l is chosen close to

p
u in order to

minimize the space complexity of the algorithm.

Third Algorithm

The third algorithm is shown in the bottom left corner of Figure 4.8. Let
l = blog2(u)c+ 1. In the precomputation stage, it only stores l + 1 vectors
in L. More precisely,

• initially using the binary decomposition of u (u =
Pl

i=0 au,i2
i), the list

L of l + 1 vectors consists of wi,v = µ•Pl
j=i av,j2

j
, for all 1 i l + 1

(see the precomputation step of algorithm 3).

• During the simulation stage in a state (s, v), with the binary decompo-
sition of v (v =

Pl
i=0 av,i2

i), the list L consists of wi,v = µ•Pk
j=i av,j2

j
,

for all 1 i l + 1. Observe that the first vector w1,v is equal to µ•
v.

We obtain µ•
v−1 by updating L according to v − 1.

Let us describe the updating of the list performed by the stepcomputation
of Algorithm 3. Let i0 be the smallest index such that av,i0 = 1. Then, for
i > i0, av−1,i = av,i and av−1,i0 = 0, and for i < i0, av−1,i = 1. The new list
L is then obtained as follows.

• For i > i0 wi,v−1 = wi,v, wi0,v−1 = wi0−1,v.

99

Algorithm 2:

Precomputation(u, µ•
0, P

•
0)

Data: w, l

Result: L,K
/* List L fulfills L(i) = µ•

i·l */

1 l bpuc; w µ•
0

2 for i from 1 to bul cl do
3 w P •

0w
4 if i mod l = 0 then
5 L(b ilc) w

/* List K contains µ•
bu
l
cl+1, . . . , µ

•
u */

6 for i from bul cl + 1 to u do
7 w P •

0w
8 K(i mod l) w

9 Stepcomputation(v, l, P •
0 ,K, L)

Result: K
/* List K contains µ•

b v
l
cl+1, . . . , µ

•
d v
l
el */

10 if v mod l = 0 then
11 w L(bvl c − 1)
12 for i from (bvl c − 1)l + 1 to v − 1 do
13 w P •

0w
14 K(i mod l) w

100

• For i0 < i, the vectors wi,v−1 are stored along 2i0−1 − 1 iterated
matrix-vector products starting from vector wi0,v−1:

w(j, v − 1) = P •
0
2jw(j + 1, v − 1)

.

The computation associated with v requires 1+2+· · ·+2i0−1, i.e. Θ(nd2i0)
matrix-vector products. Observing that the bit i is reset at most u2−i times,
the complexity of the whole computation is

k
X

i=1

2k−iΘ(nd2i) = Θ(ndu log(u)).

Algorithm 3:

Precomputation(u, µ•
0, P

•
0)

Data: w, l, i0
Result: L

/* L fulfills L(i) = µ•Pl
j=i au,j2

j
*/

1 l blog2(u)c+ 1; w µ•
0; L(l + 1) w

2 for i from l downto 0 do
3 if au,i = 1 then
4 for j from 1 to 2i do
5 w P •

0w

6 L(i) w

7 Stepcomputation(v, P •
0 , L)
/* L is updated accordingly to v − 1 */

8 i0 min(i | av,i = 1); w L(i0 + 1); L(i0) w
9 for i from i0 − 1 downto 0 do

10 for j = 1 to 2i do
11 w P •

0w

12 L(i) w

Fourth Algorithm

The last algorithm is also a naive approach. It does not store any vector and
performs the whole computation at each step as shown in the bottom right
corner of Figure 4.8. This algorithm is not effective as the time complexity is
extremely high. Otherwise stated, it provides a lower bound on the memory
requirement i.e. 2n, the space needed for a matrix-vector multiplication

101

without taking into account the space required to store the matrix. The
space memory of 2n is also the space needed by a numerical model checker
computing µu(s0).

Algorithm 4:

Stepcomputation(v, µ•
0, P

•
0)

Result: w,w’
/* Vector w equals to µ•

v */

w µ•
0

for i = 1 to u do
w’ P •

0w
w w

The four algorithms are numbered according to their decreasing space
complexity. The corresponding space-time trade-off is summarized in Ta-
ble 4.1, where the space requirement only takes into accounts the manipulated
vectors and is expressed as a number of reals. Other memory requirements
are negligible as n and u grow.

More on simulation.

Simulating sequentially trajectories is really inefficient since the additional
computations during the simulation stage are repeated during every simula-
tion. Thus, for Algorithm 2, 3 and 4 we proceed with a bunch of trajectories
simultaneously simulated step by step. This requires additional memory as
each simulation needs space for the state of the system and the event queue.
The impact of the batch size on the simulation time and space requirement
is investigate in more detail in Chapter 6.7.

To summarize the overall method for evaluating time-bounded reachability
in the discrete setting: considering a discrete modelM, having as semantics

Table 4.1: Compared complexities of the four algorithms
Complexity Algo. 1 Algo. 2 Algo. 3 Algo. 4

Space nu 2n
p
u n log u 2n

Time
for the Θ(ndu) Θ(ndu) Θ(ndu) 0
precomputation

Additional time
for the 0 Θ(ndu) Θ(ndu log(u)) Θ(ndu2)
simulation

102

M Abstraction M•

f

Numerical
evaluation

Simulation with
importance sampling {µ•

u}u+

u−

Confidence interval
generation

Figure 4.9: Schematic summary of the method for DTMC

a DTMC C, the probability to reach a target state s+ in u steps can be
estimated as follows:

1. Exhibit a suitable reduced modelM• having as semantics a DTMC C•,
such that C• is a reduction of C by f .

2. (Optional) Prove that this reduction guarantees the variance using a
coupling and Proposition 9.

3. Choose one of the algorithms implementing the time-memory trade-off.
Alternatively, start with Algorithm 1 and if it fails due to memory
requirement, use a less memory consuming algorithm.

4. Perform the pre-computation of the chosen algorithm.

5. Use the distributions µ•
v to perform importance sampling on a batch

of simulations of modelM. At each step for each trajectory, take a
transition, then update the vector µ•

v according to the chosen algorithm.

Steps 4 and 5 are automatic. Step 3 could also be automatized by trying
each algorithm starting from the first one. As for the unbounded case, the
first and second steps require human intervention. Figure 4.9 shows a scheme
of this method.

4.5 Time-Bounded Reachability for CTMC

In this section, our method is extended to compute time-bounded reacha-
bility probabilities in CTMC. This is done by reducing the problem on the
CTMC to a time-bounded reachability problem over its embedded DTMC
(c.f. Definition 13).

The problem studied in this section takes as input a CTMC C and a
positive real τ to compute the probability to reach a state s+ in τ time units
starting from state s0.

103

10−20

10−15

10−10

10−5

100

0 50 100 150 200 250 300

µu(s0)
e−λτ (λ⌧)u

u!
e−λτ (λ⌧)u

u! µu(s0)

Figure 4.10: Repartition of Poisson and µu(s0) Probabilities as a function of
discrete time

4.5.1 Transient Analysis

Recall that for any CTMC with a bound on the outgoing rates of all states,
a uniform CTMC (Definition page 33) can be built such that bounded
reachability probabilities are equals in the two chains.

In a uniform CTMC with outgoing rate λ, the probability to reach state
s+ in τ time units starting from state s is given by µ⌧ (s) (see Definition 14)
which can be expressed as a weighted sum of the probabilities to reach state
s+ starting from s in the embedded DTMC with the following formula:

µ⌧ (s) =
X

u2N

e−λ⌧ (λτ)u

u!
µu(s).

This sum is weighted by Poisson probabilities e−λτ (λ⌧)u

u! , which are plotted
on Figure 4.10 along with the probabilities µu(s0) for the tandem example.

One can see that e−λτ (λ⌧)u

u! tends quickly to 0 when u tends to 0 or to the
infinity.

As this sum is infinite, bound are necessary, in [35], given some rate λτ

and accuracy parameters α, β, a numerical method computes indexes u− and
u+ and coefficients cu such that for u− u u+:

cu(1− α− β) e−λ⌧ (λτ)u

u!
 cu,

X

u<u−

e−λ⌧ (λτ)u

u!
 α,

X

u>u+

e−λ⌧ (λτ)u

u!
 β.

104

M Abstraction M•

f

Structural
Analysis

Λ

⌧ Fox-Glynn
truncation

{cu}u+

u−

u+, u−

Computation of
the embedded DTMC

C•
Λ

Numerical
evaluation

Simulation with
importance sampling {µ•

u}u+

u−

Confidence interval
generation

Figure 4.11: Scheme summarizing the method for bounded CTMC

We are now interested in estimating:

u+

X

u=u−

e−λ⌧ (λ⌧)u

u!
µu(s)

The method described in Section4.4 allows to compute µu(s) in a DTMC,
for all u between u− and u+. Figure 4.11 summarizes how the different
algorithms fit together to build the importance sampling.

Additional analysis is required to bound the errors made by the different
parts of the computation. Each estimation of µu(s) is subject to a statistical
error controlled by a confidence interval Iu and a confidence level "u such
that P

(

µu(s) /2 Iu
)

 "u holds. The error coming from the truncation of the
sum is controlled, for the Poisson probabilities term, by ↵ and β. It remains
to bound µu(s) on N\{u−, . . . , u+}. As µu(s) is increasing with respect to
u, a simple bound is µu−(s) for the lower part and µ1(s) = µ(s) for the
upper part. These two probabilities can be estimated using previous methods
which return confidence intervals whose upper bound are upu− and up1
with confidence level "0u−

and "01 such that P
⇣

supk<u

(

µk(s)
)

> upu

⌘

 "0u.

Finally the sum between 0 and u− is bounded by ↵upu− and the sum after
u+ is bounded by ↵up1

Figure 4.12 is a diagram summarizing the different bounds. The dotted
lines are the boundings of µu(s) on N\{u−, . . . , u+} and the area of the filled
part is bounded by ↵ and β.

By combining all the parts together we obtain a statistical evaluation of

105

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

u− u+

µ(s0)

α

βµu−(s0)

Poisson

µu

Figure 4.12: Bounding Poisson and µu(s0) Probabilities

µ⌧ (s), as follows. The threshold probability is defined by:

u+

X

u=u−

"u + "0u− + "01, (4.5)

and the confidence interval I is defined by:

I =

u+

X

u=u−

[cu(1− ↵− β), cu] · Iu + [0, ↵upu−] + [0, βup1] (4.6)

When µ(s0) is close to 1, the upper bound is not accurate enough. A
workaround is to cut this sum into two parts:

X

u>u+

e−λ⌧ (λ⌧)u

u!
µu(s0)

u++

X

u>u+

e−λ⌧ (λ⌧)u

u!
µu++(s0) +

X

u>u++

e−λ⌧ (λ⌧)u

u!
µ(s0)

Let γ be a bound on the sum of Poisson probabilities from u++ to infinity.

X

u>u+

e−λ⌧ (λ⌧)u

u!
µu(s0) βµu++(s0) + γµ(s0)

Figure 4.13 summarizes the bounding of the upper part of the sum.

4.5.2 Guaranteed Variance for CTMC

To obtain guaranteed variance reduction in the setting of bounded reachability
problem for a CTMC, we could require that the embedded DTMC of the

106

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

µu++(s0)

u++u+

µ(s0)

β

γ

Poisson

µu

Figure 4.13: Bounding upper part of Poisson and µu(s0) Probabilities

Markov chain satisfies Inequality (4.4), but it would be more convenient to
work directly on the CTMC. The next proposition is a version of proposition 3
in the CTMC setting. Note that the hypotheses of this proposition are on
the CTMC only although the conclusion is on the embedded DTMC.

Proposition 10

Let C be an enriched CTMC, C• be a reduction of C by f . Assume there
exists a function g : S⇥E ! E• such that 8s 2 S, e 7! g(s, e) is an injection
which maps each transition of the model to a transition in the reduced model,
such that:

1. 8s 2 S, 8e 2 E, 8u 2 N
⇤

λ•(f(s), g(s, e)
)

> λ(s, e)) µ•
u

(

f(s)
)

 µ•
u

⇣

δ•
(

f(s), g(s, e)
)

⌘

(1.a)

λ•(f(s), g(s, e)
)

< λ(s, e)) µ•
u

(

f(s)
)

≥ µ•
u

⇣

δ•
(

f(s), g(s, e)
)

⌘

(1.b)

2. 8s 2 S, 8e 2 E s.t.

λ(s, e) > 0, µ•
u

⇣

f
(

δ(s, e)
)

⌘

 µ•
u

⇣

δ•
(

f(s), g(s, e)
)

⌘

then the embedded DTMC of C• is a bounded reduction of the embedded
DTMC of C by f with guaranteed variance for bounded property.

Proof:
We mimic the proof of Proposition 3. The same splitting of transitions can
be performed to build two CTMC where all corresponding transitions have
the same rate. As this transformation is done on a CTMC, the additional
loops do not change the transient behaviors of the model. This was not the
case for DTMC where the transient behaviors where affected by loops.

107

We define a new enriched CTMC D = (S,E] Ẽ, δ̃, λ̃) where Ẽ is a copy
of E. For all s 2 S:

8e 2 E, δ̃(s, e) = δ(s, e) and λ̃(s, e) = min(λ(s, e),λ•(f(s), g(s, e)))

8e 2 Ẽ, if λ•(f(s), g(f(s), e)) > λ(s, e) then δ̃(s, e) = s

if λ•(f(s), g(f(s), e)) λ(s, e) then δ̃(s, e) = δ(s, e)

λ̃(s, e) = |λ(s, e)− λ•(f(s), g(s, e))|

Similarly, we define D• = (S•, E] Ẽ, δ̃•, λ̃•) with for all s 2 S:

8e2 E, δ̃•(f(s), g(s, e)) = δ•(f(s), g(s, e))

and λ̃•(f(s), g(s, e)) = min(λ(s, e),λ•(f(s), g(s, e)))

8e2 Ẽ, if λ•(f(s),g(f(s),e))>λ(s,e) then δ̃•(f(s),g(s,e))=δ•(f(s),g(s,e))

if λ•(f(s), g(f(s), e)) λ(s, e) then δ̃•(f(s), g(s, e)) = f(s)

λ̃•(f(s), g(s, e)) = |λ(s, e)− λ•(f(s), g(s, e))|
We can now prove that the embedded DTMC of D• is a reduction with

guaranteed variance of the embedded DTMC of D by checking that it fulfills
hypotheses of Proposition 8. Let Λ(s) be equal to

P

e02E]Ẽ λ̃(s, e0). By
construction, the first condition of Proposition 8 holds. For all u 2 N

⇤, s 2 S
and e 2 E] Ẽ there is two cases:

1. If e 2 E, as δ̃(s, e) = δ(s, e), the condition holds by hypothesis.

2. If e 2 Ẽ, there are three cases:

(a) λ̃(s, e) = 0 and the condition trivially holds.

(b) λ̃(s, e) =
(

λ•(f(s), g(s, e)) − λ(s, e)
)

then δ̃(s, e) = s ,

δ̃•(f(s), g(s, e)) = δ•(f(s), g(s, e)). Using Hypothesis (1.a) we
have:

µ•
u(f(δ̃(s, e))) = µ•

u(f(s))

 µ•
u(δ

•(f(s), g(s, e)))

= µ•
u(δ̃

•(f(s), g(s, e)))

(c) λ̃(s, e) =
(

λ(s, e) − λ•(f(s), g(s, e))
)

then δ̃(s, e) = δ(s, e),

δ̃•(f(s), g(s, e)) = f(s) . Using Hypotheses (1.b) and (2) we
have:

µ•
u(δ̃

•(f(s), g(s, e)) = µ•
u(f(s))

≥ µ•
u(δ

•(f(s), g(s, e)))

≥ µ•
u(f(δ(s, e)))

= µ•
u(f(δ̃(s, e)))

⇤

108

u+ u− 0v

. . . µu+(s0)k

. . . µu+
−1(s0)

. . . µu+
−2(s0)

. . .

. . . µu−(s0)

1

1

Figure 4.14: Parallel simulation of trajectories estimating (µu(s0))
u+

u=u−

4.5.3 More on Simulation.

In the previous section, we describe a theoretical method to produce a
confidence interval framing of µ⌧ (s0). Even if our system is a CTMC, the
distribution required for the importance sampling method comes from the
embedded DTMC analysis.

Estimating µ⌧ (s0) requires to apply (u+ − u−) times the algorithm for a
bounded DTMC. When ⌧λ is big this becomes intractable.

Simultaneous Simulation

Trajectories for all u between u− and u+ are simultaneously simulated step
by step in order to use the same vector of probability µ•

v at each step. This
allows µ•

v to be computed only once and used for all trajectories devoted
to the computation of µu(s0) where u ≥ v. The simulation starts with the
generation of k trajectories devoted to the computation of µu+

(s0). After
one step of simulation of these k trajectories, we generate k new trajectories
devoted to the computation of µu+−1(s0). We resume the simulation with
these 2k trajectories and so on until the generation of the trajectories devoted
to the computation of µu−(s0). Figure 4.14 illustrates this point.

Reuse of Simulation

Further optimization improvement is possible in order to reduce the width
of confidence interval of each µu(s0).

One can use the same simulation to estimate several µu(s0). Given a
trajectory that reaches state s+ or s− in v steps, all estimators of µv0(s0)
with 0 < v0 u can take into account this trajectory. More precisely each
estimator with v0 < v adds a realization with likelihood equal to 0 and each
estimator with v0 ≥ v adds a realization with likelihood equal to Ws0 .

In an ideal setting, one only have to perform the simulation for estimating
µu+(f(s0)) to estimate all (µu(f(s0))

u+

u− . Experimentally this idealistic case
can happen (see Section 7 for an example), but in general there is a difficulty
in the fact that values of µv(s0) for small v compared to u+ can correspond

109

u+ u− 0v

. . . (µu0(s0))
u+

u0=u+
−lk

. . . (µu0(s0))
u+

−l
u0=u+

−2l

. . . (µu0(s0))
u+

−2l
u0=u+

−3l

. . .

. . . (µu0(s0))
u−

+l
u0=u−

l

l

Figure 4.15: Parallel simulation of trajectories estimating (µu(s0))
u+

u=u−
with

reuse of trajectories

to probabilities of rare events and in that case are not accurately estimated
with importance sampling probability distribution computed for µu+ .

Recall that µu(s0) is an increasing function of u. Thus if v is a lot smaller
than u then µv(s0) can be a lot smaller than µu(s0). The likelihood of
a trajectory simulated under an importance sampling built for estimating
µu+(s0) without normalization takes value in 0 [[µ•

u+(f(s0));1[. Thus the
probability for a trajectory to reach s+ knowing it reaches s+ or s− in v steps
is smaller than µv(s0)/µ

•
u+(f(s0)) which can be too small. This mean that

almost all trajectories will not reach s+ in v steps and thus the estimation
of µv(s0) is still subject to the rare event problem.

A more elaborate approach is necessary to prevent this issue. The
set of integers {u−, . . . , u+} can be split into several parts. Let l be an
integer smaller than u+. Instead of simulating k trajectories for each u 2
{u−, u−+1, . . . , u+}, we can perform k · l simulations for each u 2 {u−, u−+
l . . . , u+}. The total number of simulations is unchanged but each µu(s0)
receive contribution from at most k · l trajectories.

Guaranteed Variance Reduction while Reusing Simulation

In the guaranteed reduction setting, some adaptations are required to main-
tain guaranteed variance reduction while reusing simulation. Consider an
importance sampling with sink state build for estimating µu(s0). When one
of its trajectory reaches the state s+ in v steps with v u, the likelihood Ws0

of this trajectory is equal to µ•
u

(

f(s0)
)

instead of µ•
v

(

f(s0)
)

. The distribution
of Ws0 is still bivaluated when simulations are reused and takes value in
{0, µ•

u

(

f(s0)
)

}. Therefore, confidence intervals can still be build.
Similarly, when an importance sampling with normalization build for

estimating µu(s0) is used, the random variable Ws0 of a trajectory reaching
s+ in v takes value in [0;µ•

u

(

f(s0)
)

]. Chernoff-Hoeffding bounds still apply
and confidence intervals can be computed.

110

4.6 From Model Checking to Reachability

Previous sections focus on time-bounded and time-unbounded reachability
problems. In this section, we show how more general model checking problems
can be transformed into such reachability problems. To achieve this goal we
extend the definition of a Markov chain with a set of atomic propositions
AP and a labeling function L : S ! 2AP .

4.6.1 From Until Formula to Reachability

Consider a model checking problem on model M given as a DTMC or a
CTMC against a formula φ = aU ub. Where the constant u can either denote
1 or an integer ifM is a DTMC, or a real ifM is a CTMC. Here we are
interested in transforming this model checking problem to a reachability
problem.

The Markov chainM is transformed by lumping together all states where
b holds (Sb) in a new state that we called s+. All states where ¬a^¬b holds
(Sab) are lumped together in state s−. States s+ and s− are made absorbing.
All remaining states (Sab) are left unchanged. If a state is no longer reachable
from the initial state due to this transformation, it is removed from the
model. In the case u =1, the formula φ can be rewritten as φ = aU b. The
corresponding DTMC Cφ is then given by:

Definition 30 (From Until Formula to Reachability)

Given a DTMC or a CTMC C and a formula φ = aU b, the Markov chain
Cφ is defined by:

• Sφ = Sab [{s−, s+}

• s−, s+ are absorbing states:
Pφ(s−, s−) = Pφ(s+, s+) = 1

• 8s 2 Sab, s
0 2 Sφ, Pφ(s, s

0) =

8

<

:

P(s, s0) if s0 2 Sab
P

s002S
ab
P(s, s00) if s0 = s−

P

s002Sb
P(s, s00) if s0 = s+

This definition applies both to DTMC and CTMC: as states lumped
together are absorbing ones, their exit rate is irrelevant.

When u = 1, in order to use the method described in section 4.3 an
additional hypothesis is required: M |= P=1[Fb] then Cφ is a BDTMC and
the method applies.

When u is an integer or a real (Cφ, u) is an instance of time bounded
reachability problems that can be solved using methods of Sections 4.4
and 4.5.

111

4.6.2 From Model Checking Against Finite State Automaton

to Reachability

We adapt our method to model checking problems expressed by an automaton.
LetM be a model taking as semantics a discrete or continuous time Markov
chain. Let AP be the set of atomic propositions labeling the states ofM
and E the set of events labeling the transitions ofM. Let A be a finite-state
automaton over the alphabet AP ⇥ E. Let u be a time bound taking values
in N [{1}, if M has discrete time semantics, and values in R

+ [{1}
otherwise.

The following definition is a classical definition of automaton.

Definition 31 (Finite State Automaton)

A finite state automaton A is a tuple (Q,Q0,Σ, T, F), where

• Q is a finite set of locations,

• Q0 ⇢ Q is the non empty set of initial locations,

• Σ is a finite alphabet,

• T ⇢ Q⇥ Σ⇥Q is a set of transitions,

• F ⇢ Q is the set of final locations,

and 8q 2 F, a 2 Σ, 9q0 2 F s.t. (q, a, q0) 2 T, i.e., the set of final locations
is absorbing and complete.

We define the synchronized product of the Markov chain underlying model
M and the automaton A as follows: as the automaton is not deterministic
this synchronization build the powerset construction of the automaton,

Definition 32 (Synchronized Product with an Automaton)

Given an enriched DTMC or a CTMC C = (S, s0, E, δ, p), a labeling func-
tion L : S ! 2AP and a finite state automaton A = (Q,Q0, E ⇥ 2AP , T, F),
the enriched synchronized Markov chain CA = (S⌦, s⌦0 , E

⌦, δ⌦, p⌦) is defined
by:

• S⌦ = (S ⇥ 2Q) [{s+, s−}
• s⌦0 = (s0, Q0)

• E⌦ = E

• δ⌦(s−,−) = s−, δ⌦(s+,−) = s+

δ⌦((s,Q1), e) =

8

<

:

s+ if (Q1 ⇥ {(e, L(s))}⇥Qf) \ T 6= ;
s− if (Q1 ⇥ {(e, L(s))}⇥Q) \ T = ;
(δ(s, e), (Q1 ⇥ {(e, L(s))}⇥Q)) otherwise

112

• p⌦((s,Q1), e) = p(s, e)

The probability to reach s+ in the synchronized product CA is equal to
the probability that a trajectory of C is accepted by the automaton.

When u =1, if CA is BDTMC, then the method described in Section 4.3
applies. When u is finite, the corresponding time bonded method applies as
well.

The model checking of Markov chain against such an automaton can
be related to the model checking of asCSL as defined in [6]. In asCSL, one
computes the probability of a path to be accepted by a finite automaton
given as a regular expression, in a given time interval. Compared to asCSL,
the logic we present (1) restricts the interval of the path operator to intervals
containing 0 and (2) disallows the nesting of probabilistic operator. These
restrictions are due to the difficulty to deal with steady state probabilities,
nested operators and infinite paths in statistical model checking.

4.7 Conclusion

In this chapter, we present a theoretical framework allowing to estimate
probabilities of rare events using importance samplings. Using numerical
computations on a reduced model, important samplings are produced which,
with additional hypotheses, ensure the reduction of the variance. This
method applies to discrete and continuous models in time-bounded and
time-unbounded settings and allows to compute reachability properties or
more general probabilistic model checking problems. It is the first method
to ensure the reduction of variance and producing confidence intervals which
do not relies on asymptotic hypotheses.

To this point, the reduced model is build manually which can be tedious.
In the following chapter, an automated method is proposed for some classes
of systems. Moreover, experiments are conducted in Chapter 6.7 to assess
the efficiency of these importance samplings. Finally, in Chapter 7, a case
study is performed on a biological system using this method to estimate the
avancement of a reaction.

113

Chapter 5

Patterns for Stochastic

Bounds

5.1 Introduction

In Chapter 4 we described a method for building an importance sampling
that guarantees a variance reduction and produces a confidence interval. The
main drawback of this method is that it requires a human intervention to
design an abstraction of the studied model. In this chapter, we present a
class of systems for which a stochastically bounding model with smaller state
space can be automatically built and can be used as a reduced model.

Stochastic bound relies on an ordering of the state space of the system to
be studied. In case of a DTMC or a CTMC we assume that the state space S
is equal to {1, . . . , n} where 1 and n are the two absorbing states. We are
interested in computing the probability to reach 1 or n from a non absorbing
state in time bounded or time unbounded setting. Bounding models are
Markov chains where the probability to reach n (respectively 1) is greater
(respectively smaller) than in the initial model from a non absorbing state.
Moreover, these properties are ensured without computing the transient or
steady state distributions. Bounding models satisfy two conditions, stochastic
ordering and stochastic monotony. Stochastic ordering is a property between
the original model and the bounding one, whereas stochastic monotony is an
intrinsic property of the bounding model. Both of them can be checked by
studying the transition probability matrix or the infinitesimal generator of
the Markov chain.

Bounding models are used to analyze systems with large state spaces
when the properties of interest can not be computed either numerically
due the size of the system or statistically due to the rare event problem or
difficulties to estimate steady state probabilities. Bounding models are built
with additional constraints that make the bounding model lumpable, yielding
a smaller state space. Numerical methods are applied on the bounding model

114

to compute an upper or a lower bound of the value of interest.
Bounding models are classically used to analyze a Markov chain with a

large state space. In [2, 33, 41] algorithms computing bounding models from
the transition probability matrix of a Markov chain are presented. These
algorithms take also as input an equivalence relation over the state space,
states in this relation are aggregated in the bounding model. In [73] a stochas-
tic system is defined as a tensor product of several Markov chains yielding
a compact representation for a large Markov chain. These representations
are used (for example in [34]) to build bounding models by analyzing each
component instead of the whole system.

The systems considered in this chapter are instantiations of a same
pattern. All instances share a common structure but can have different
stochastic behaviors. States of the pattern are totally ordered and this
order induces a partial order on states of the global system. A pattern
that stochastically bounds all the instantiations is built yielding a bounding
model for the whole system. The interaction between the instances are
constrained to ensure the monotonicity of the bounding model. Furthermore
this bounding model is a reduced model that can be used to build importance
sampling with guaranteed variance reduction.

In Section 5.2, the class of systems that we consider is defined. In
Section 5.4, a coupling on the state space of systems is defined. In Section 5.5,
this coupling is used to build reduced models with guaranteed variance.

5.2 Framework

Our model is a parallel composition with partial synchronization of a finite
number of copies of one automaton that we call a pattern. This pattern is
divided in a finite numbers of zones. Several processes move each on its own
pattern.

5.2.1 Syntax

We first define the class of automata we shall use for that purpose.

Definition 33 (Pattern)

A pattern A = hTp,Σ, L, Z, V, δ, {!k}k2Tpi is defined by:

• Tp = {1, . . . ,K} is a finite set of process types of cardinal K.

• Σ = Σf] Σb is the set of labels partitioned into two subsets.

• L = {1, . . . , n} is a finite set of local states of cardinal n.

115

• Z = (ti)
⇣+1
i=1 with ⇣ positive integer, (ti)

⇣+1
i=1 an increasing sequence of

states such that t1 = 1 and t⇣+1 = n. This sequence divides the set of
local states in subsets of contiguous states called zones : z2i−1 = {ti}
and z2i = {ti, . . . , ti+1}. We define the boundary of a zone z, denoted
by @z, as @z = z = {ti}, if z = z2i−1 and @z = {ti, ti+1} if z = z2i.
Thus ⇣ is the number of even zones.

• δ : L⇥Σ ! L is the local transition function. It satisfies : 8l 2 L, 8e 2
Σ

1. e 2 Σf) δ(l, e) ≥ l and we say that e labels a forward moves.
e 2 Σb) δ(l, e) l and we say that e labels a backward moves.

2. 81 i ⇣, l 2 z2i \ z2i+1 ^ e 2 Σf) δ(l, e) 2 z2i.
l 2 z2i \ z2i−1 ^ e 2 Σb) δ(l, e) 2 z2i.

• V = (vkl)l2L,k2Tp is a finite set of integer variables.

• 8k 2 Tp !k : L⇥ Σ ! (NV ! R≥0) is a “rate parameter” function. It
associates to a transition a function from variables to non-negative real
numbers.

The pattern defines a dynamic system where several processes are moving,
each on its own automaton. This automaton is depicted as a line whose states
are indexed from the leftmost 1 to the rightmost n and whose transition
function is δ. Transitions with same label go in the same direction (condition
1); if it goes to the right, we call it a forward move and if it goes to the left,
we call it a backward move. This line is divided in ⇣ contiguous zones (the
even ones). Condition 2 ensures that a process in a even zone cannot leave it
without passing by the boundary of this zone, which corresponds to a zone
with odd index.

Condition 2 ensures that a transition keeps a process in its current zone
or moves it to an adjacent one.

z1
t1

z2 z3
t2

z4 z5
t3

z6 z7
t4

1 2 3 4 5 6 7b

a

b

a

b a

b

a

b

a

b

ab
a

Figure 5.1: A pattern

116

The stochastic behavior of the whole system is a continuous time Markov
chain where each process is in concurrence with the others. The stochastic
behavior on each process is defined by the rate function !k which returns
the rate of a transition. This rate depends on several parameters:

1. the type of the process which is local and constant for a process,

2. the location of the pattern and the label of the transition which are
local to the process,

3. The valuation of the set of variables V which is global to the whole
system.

To build the stochastic semantics, the value of a variable vkl in the set V is
set to the number of processes of type k which current location is greater
than l in the whole system. These will formally be defined in Section 5.2.2.

A process interacts with other processes in two ways: First through
synchronization at zone boundaries, second by the means of the set of
variables V . After each transition in the whole system, the value of a
variable vkl 2 V is set to the number of processes of type k which current
location is greater than l. These two interactions will formally be defined in
Section 5.2.2.

Remark 16 For this definition the pattern must be a complete automaton,
i.e. for all l 2 L and all e 2 Σ, δ(l, e) is defined. A model can be completed
by adding self-loops on states where transitions labeled by e are not defined.
The rate of such a self-loop can be arbitrary, for instance the minimal rate
of transitions of same label for the same process (!(l, e) = minl02L(!(l, e))).
This transformation does not affect the stochastic behavior of the system.

Example 7 An example of pattern is depicted on Figure 5.1. Alphabets for
this pattern are: Σf = {a} and Σb = {b}, thus all forward jumps are labeled
by a and all backward jumps are labeled by b. The set of states is {1, 2, . . . , 7}.
Zones are delimited by the sequence Z = {1, 4, 5, 7} and zones are: z1 = {1},
z2 = {1, 2, 3, 4} , z3 = {4}, z5 = {4, 5} , z6 = {5, 6, 7} and z7 = {7}. It
is easy to check that the second condition on transitions holds: for every
transition there is an even zone that contains its source and destination
states.

5.2.2 Operational Semantic

In order to build a fully stochastic model from the pattern defined in the
previous section one needs to add additional information to the model. The
number of processes and their type must be specified. In each even zone
processes are joined together in block, the number of processes per block
and the total number of blocksin each region is specified. On boundaries

117

of zone, processes join to form a block when they enter a zone and they
disjoint when they exit a zone. In an odd zone the size of blocks are always
of 1. Formally this is defined as follows:

Definition 34 (instance)

An instance is a pattern specified with the following list of parameters:

• I = {1, . . . ,m} denotes the set of processes in the system.

• : I ! Tp denotes the mapping from the set of processes to the set of
types of processes. We denote by {mi}1iK the number of processes
with type i, with

P

1iK mi = m the total number of processes.

• {a2i}1i⇣ where a2i is the cardinality of each processes per block in
zone z2i. By convention, for all 0 i ⇣, a2i+1 = 1. For any zone
indexed by i we say that its multiplicity is ai.

• {b2i}1i⇣ where b2i is the maximal number of allowed blocks in zone
z2i. By convention, for all 0 i ⇣, b2i+1 = m.

• f : P(I) ⇥ I ⇥ {1, . . . , ⇣} !
(

P(I) ! [0, 1]
)

is the probabilistic block
assigning function. It ensure that if f = f(E, i, z) , i 2 E, z is an even
number of zone and |E| ≥ az then the sum of all f(F) over F such that
i 2 F and |F | = az is equal to 1. For all F such that i 62 F or |F | 6= az
then f(F) = 0. That is f is a discrete probabilistic distribution over
the possible blocks.

An instance yields an enriched CTMC. The CTMC of an instance is built
as a transition system based on the product of copies of the pattern A, one
for each process in I with additional constraints due to synchronization
between processes. Inside an even zone (let say z2i), a process is associated
with a2i−1 other processes, all in z2i, in some way that we shall explain later.
We call the set of these associated processes a block. Processes in a block
inside zone z2i cannot enter or leave the zone without being synchronised;
this synchronization happens when all processes in the block are located on
the same boundary of the zone. There cannot be more than b2i blocks in
zone z2i, therefore when the zone is full, processes waiting to form a new
block and enter the zone must wait on the boundary.

Definition 35 (Uniform block assigning function)

A block assigning function f is called uniform if for all 0 < g ⇣, E 2
P(I) such that |E| ≥ a2g, i 2 E,F ⇢ E such that i 2 F and |F | = a2g the
following holds:

f(E, i, 2g)(F) =
1

(|E|−1
a2g−1

)

118

That is the probability distribution f(E, i, 2g) is uniform over all valid blocks.

a a a

c

b

b

a b
1 2 4 5 6

t1 t2

z1 z2 z3 z4

3

t4

z5 z7z6
t3

Figure 5.2: pattern for a database example

Example 8 Figure 5.2 is an example of pattern for a distributed database
example with synchronization. The system contains N databases. When a
database receives an update it must synchronize it to all the others. Initially
each database is in an idle state that is location 1, then one database receives
a modification request with label a and moves to location 2. This request may
be denied with transition c. Otherwise the database enters the critical zone
z4 and commits the change in two steps. Finally the database synchronizes
with the others by entering zone z6. Transitions labeled by b in location 1
and 2 are used by a database which did not receive a modification request to
reach the location 4 where they can synchronized together. At the end of the
synchronization databases reach state 6.

There are several database types depending on the frequency at which they
receive modification requests. To simplify we suppose that type 1 database
receive a high amount of modification request while type 2 receive a low
amount of modification. We also suppose that half of the database are of type
1 and half of type 2. The rate parameter function is as follows:

!1(1, a) = 1 !2(1, a) = 0.5
!1/2(, a) = 1 !1/2(1, b) = 10min

(

1, v13 + v23
)

!1/2(2, c) = 0.5− 0.5min
(

1, v13 + v23
)

!1/2(3, b) = 10

!1/2(2, b) = 10min
(

1, v13 + v23
)

The multiplicity of all zones except z4 is 1. The multiplicity of z4 is a4 = N .
The maximal number of allowed blocks is N in each zone except z6 where
b6 = 1.

The block assigning function is the uniform one.

From an instance
(

A, I, , {a2i}1i⇣ , {b2i}1i⇣

)

, the annotated CTMC
M = (S,Σ,∆,Ω, f) is defined as follows:

119

z − 1 z z + 1

Figure 5.3: Example of synchronization. Each horizontal line represents the
state space of a pattern. Bullets represent actual states of each pattern. The
dotted line represents the joint block.

The state space S.

Let Part(I) be the set of partitions of I. The set of global states S is the
subset of (L⇥{1, . . . , 2⇣+1})I⇥Part(I) of tuples s = ((li, zi)i2I , {I1, . . . , Iu})
such that:

• 8i 2 I, li 2 zzi that is zi is the index of a zone containing local state li.

• 81 j u, 8i, i0 2 Ij , zi = zi0 . The subset Ij fulfills |Ij | = azi .
Given i 2 I there is a unique j such that i 2 Ij . The ith process is
synchronized with azi − 1 other processes which are all in the same
zone, these processes being those of Ij\{i}. We denote by pi the block
containing i: we have pi = Ij .

We also use the redundant notation for state s, (li, zi, pi)i2I where pi is
the block containing i. Depending of the context one notation can be more
convenient than the other.

For further use, we introduce two special states.

• s0 = ((1, 1)i2I , {{1}, {2}, . . . , {m}}) so is the initial global state.

• sf = ((n, 2⇣ + 1)i2I , {{1}, {2}, . . . , {m}}) so is the final global state.

The partition {I1, . . . , It} is the set of equivalence classes of the equiva-
lence relation defined by synchronizations.

The set of events E.

Events in our transition system are pairs in Σ⇥ I of an event of the pattern
automaton and the index of the process performing the event.

The successor function ∆.

A transition in such a system proceeds most of the time in an asynchronous
way by applying a local transition of the pattern on a single process. This is
true as long as the moving process remains inside a zone. But boundaries of
zones, which are zones of length zero, force synchronization between some

120

processes: A process cannot enter a zone z of multiplicity µ > 1 without
being associated with µ− 1 other processes in a block, these processes being
all in the same local state in @z. Symmetrically, a process cannot leave this
zone unless all processes in the corresponding block are ready to leave, which
requires that they all are in the same local state in @z.

Due to synchronization at the creation of blocks the successor function
returns a set of states. When there is no creation of block the set is a
singleton, otherwise the set contains a state for each choice of blocks.

The function f : P(I) ⇥ I ⇥ {1, . . . , ⇣} ! P(I) ! [0, 1] specifies how
processes are chosen to build a block. This function takes as first argument
a subset of I corresponding to processes ready for synchronization, as second
argument the index of the process initiating the transition and the index of
the zone in which the new block is created. The function returns a discrete
distribution probability over the set of subsets of the suitable cardinality.

From a global state s = (lj , zj , pj)j2I a global transition with label
e 2 Σ and process i 2 I maps to a set of state ∆(s, (e, i)) by applying
the local transition δ of the pattern on state li with label e if possible and
applying synchronization rules to update the block structure. These rules
are precisely described in table 5.1 for processes lying in an even zone in this
case ∆(s, (e, i)) is a singleton, and in table 5.2 for processes lying in an odd
zone, in this case ∆(s, (e, i)) is set of state. If a transition is not possible
due to synchronization, we say that the corresponding process is blocked
and the transition is replaced by a self-loop. For the sake of conciseness we
use the notation ∆(s, e, i) instead of ∆(s, (e, i)). We denote z the zone zi,
containing l and the global state s+ = ∆(s, e, i) = (l+j , l

+
j , p

+
j)j2I .

The rate function Ω.

The rate function gives the stochastic behavior of the system by specifying
rates for each transition of each process. As the model is a CTMC the waiting
time in each global states follows an exponential distribution whose rate is
equal to the sum of all rates of transitions of each process. The probability to
take a transition is its rate divided by the sum of all rates of other transitions.

When there is a creation of block, several output states are possible
whose probability are defined by f. The Ω function only specifies the rate for
individual processes the final rate matrix is defined latter.

The global rate function is based on the local rate functions !k by
evaluating a valuation for the variables of the pattern on a global state s.
The variables of the pattern are evaluated as follows:

8l 2 L, vtl ((lj , zj , pj)j2I) = #{j 2 I | lj ≥ l ^ (j) = t}

This means that the variable vtl takes for value the number of processes of
type t in a state bigger than l.

121

Disjoining blocks with a forward move
zi is even: zi = 2g of multiplicity a2g, δ(l, e) = tg+1

8j 2 pi \ {i}, lj = tg+1

8j 2 pi, z
+
j = 2g+1

p+j = {j}
l+j = tg+1

2g+12g

δ(l, e)

Disjoining blocks with a backward move
zi is even: zi = 2g of multiplicity a2g, δ(l, e) = tg

8j 2 pi \ {i}, lj = tg

8j 2 E, z+j = 2g−1

p+j = {j}
l+j = tg

2g−1 2g

δ(l, e)

No change of zone, zi is even: z
+
i = zi = 2g

δ(l, e) /2 ∂z2g
or 9j 2 pi / lj 6= δ(l, e)

z+i = 2g
l+i = δ(l, e)
p+i = pi

2g−1 2g 2g+1

δ(l, e)

The move is a self-loop

None of the previous
conditions are satisfied

l+ij = l

Table 5.1: Table of transitions for even zones

For a global state s 2 S, an event e 2 Σ and a process i 2 I,

Ω(s, (e, i)) = w(i)(li, e)(v
1
1(s), v

1
2(s), . . . , v

1
n(s), v

2
1(s), . . . , v

K
n (s)).

Like for the successor function we use also the notation Ω(s, e, i) as
Ω(s, (e, i)).

The transition rate matrix

The transition rate matrix is obtained by combining the Ω function and the
f function. For all s = (lj , lj , pj)j2I 2 S, e 2 Σ, i 2 I and F 2 P(I) the
Ω⇤(s, (e, i, F)) is defined as follows:

122

Joining blocks with a forward move
zi is odd: zi = 2g − 1, li = tg−1, pi = {i}, δ(l, e) 2 z2g of multiplicity a2g

Let E be the subset of indices j /

zj = 2g − 1,
lj = tg
pj = {j}

then i 2 E and |E| > a2g
Let F = {j, zj = 2g}

|F | < b2ga2g

Let F such that
f(E, i, 2g)(F) > 0

8j 2 F, z+j = 2g

l+i = δ(l, e) and
l+j = tg if j 6= i

p+j = F 2g−1 2g

δ(l, e)

Joining blocks with a backward move
zi is odd: zi = 2g + 1, li = tg, pi = {i}, δ(l, e) 2 z2g of multiplicity a2g

Let E be the subset of indices j /

zj = 2g + 1,
lj = tg
pj = {j}

then i 2 E and |E| > a2g
Let F = {j, zj = 2g}

|F | < b2ga2g

Let F such that
f(E, i, 2g)(F) > 0

8j 2 F, z+j = 2g

l+i = δ(l, e) and
l+j = tg if j 6= i

p+j = F 2g+12g

δ(l, e)

The move is a self-loop

None of the previous
conditions are satisfied

l+ij = l

Table 5.2: Table of transitions for odd zones

• If |∆(s, (e, i))| = 0 then Ω⇤(s, (e, i, F)) = 0

• If |∆(s, (e, i))| = 1 then Ω⇤(s, (e, i, F)) = Ω(s, (e, i)).

• Otherwise Ω⇤(s, (e, i, F)) = Ω(s, (e, i))f({j, zj = zi}, i, zi)(F)

Similarly the ∆⇤(s, (e, i, F)) is defined as follows:

• If |∆(s, (e, i))| = 0 or f({j, zj = zi}, i, zi)(F) = 0 then ∆⇤(s, (e, i, F)) =
s

• If |∆(s, (e, i))| = 1 then ∆⇤(s, (e, i, F)) = ∆(s, (e, i))

• Otherwise ∆⇤(s, (e, i, F)) = {(l0j , l0j , p0j)j2I) 2 ∆(s, (e, i)) s.t. p0i = F}

123

Then the rate transition matrix is defines by

R(s, s0) =
X

e2E,i2I,F2P(I)

1{s0=∆⇤(s,(e,i,F))}Ω
⇤(s, (e, i, F))

The following lemma shows some arithmetic property of an instance.

Lemma 1

For a global state s = (li, zi, pi)i2I reachable from the initial state and a
zone indexed by z of multiplicity az, the following holds:

#{i | zi ≥ z} is a multiple of az

Proof:
By induction on the length of a path starting from the initial state:
In the initial state 8z > 1,#{i, zi ≥ z} = 0
and for z = 1, a1 = 1.
Let s be a state satisfying the induction hypothesis. For any z, a transition
from s satisfies:

• A block is created in the zone of multiplicity az by moving a process
forward. In this case the cardinality of {i, zi ≥ z} is increased by az.

• A blocks of multiplicity az disappears by moving a process backward,
then the cardinality of {i, zi ≥ z} is decreased by az.

• Otherwise the cardinality of {i, zi ≥ z} is unchanged.

⇤

Corollary 11

If there exists an execution from the initial state to the final state then
m is a multiple of multiplicity ai for any i 2 I.

5.3 Symmetries

Definition 36 (Symmetric instance)

An instance is symmetric if |(I)| = 1

In this case we omit the type index for the rate functions and variables.
This definition makes sense because if there is only one type of processes

the rate function Ω(s, e, i) is equal to !(li, e)(v1, . . . , vn) and all processes

124

in a same state behave the same way. This will be formalized below by
specifying an equivalence relation over states where two global states are
equivalent if they are identical up to the processes numbering, that is each
local state gets the same number of processes and if there is a one to one
correspondence between the blocks. Then we will show that a symmetric
instance is strongly lumpable on this equivalence relation [59]. Afterward
one builds the quotient of the state space S by the equivalence relation and
thus obtains a smaller system with the same stochastic behavior.

Definition 37 (Equivalence relation)

Let s = ((li, zi, pi)i2I) and s0 = ((l0i, z
0
i, p

0
i)i2I) be two global states. Let σ

be in Sm We say that s ⇠σ s0 if:

8i 2 I , li = l0σ(i) , zi = z0σ(i) , σ(pi) = p0σ(i)

The equivalence relation s ⇠ s0 is defined by 9σ 2 Sm, s ⇠σ s0.

Lemma 2

In a symmetric instance instanceM = (S,Σ,∆,Ω, f) the following holds:
Let s be a global state, e 2 E an event and i 2 I a process then

8s1, s2 2 ∆(s, e, i), s1 ⇠ s2.

Proof:
For all s, s0 2 ∆(s, e, i), let F = {j 2 I, zj = zi}. Let F1, F2 ⇢ F such that
s1 = ∆⇤(s, e, i, F1) and s2 = ∆⇤(s, e, i, F2) let σ 2 Sm such that σ(i) = i,
σ(F1) = F2 and σ|I\F is the identity. Then s1 ⇠σ s2 holds.

⇤

Lemma 3

A symmetric instance M = (S,Σ,∆,Ω, f) satisfies the following: Let
σ 2 Sm and s = ((li, zi)i2I , {I1, . . . , Iu}), s0 =

(

(l0i, z
0
i)i2I , {I 01, . . . , I 0u0}

)

be
two global states such that s ⇠σ s0. Then:

• (v1(s), . . . , vn(s)) = (v1(s
0), . . . , vn(s0))

• For all i 2 I,
Ω(s, e, i) = Ω(s0, e, σ(i)).

125

Proof:
The first claim is obtained from the definition of the variables. By hy-
pothesis there is only one process type in M ; therefore Ω(s, e, i) =
!(li, e)(v1(s), . . . , vn(s)) and Ω(s0, e, σ(i))) = !1(l

0
σ(i), e)(v1(s

0), . . . , vn(s0)).

Thus as li = l0σ(i), Ω(s, e, i) = Ω(s0, e, σ(i)).

⇤

Proposition 12

Let M = (S,Σ,∆,Ω, f) be a symmetric instance then it is strongly
lumpable w.r.t. the relation ⇠.

Proof:
Let s =

(

(lj , zj , pj)j2I
)

= ((li, zi)i2I , {I1, . . . , Iu})
and s0 =

(

(l0j , z
0
j , p

0
j)j2I

)

=
(

(l0i, z
0
i)i2I , {I 01, . . . , I 0u0}

)

, such that s ⇠σ s0.
Let i 2 I be a process and e 2 Σ an event, F 2 P(I) a subset of process and
let i0 be equal to σ(i), let F 0 = σ(F).

Let s+ = ∆⇤(s, (e, i, F)) =
⇣

(l+j , z
+
j , p

+
j)j2I

⌘

and s0+ = ∆⇤(s0, (e, i0, F 0)) =
⇣

(l0+j , z0+j , p0+j)j2I
⌘

.

We have to prove that
P

(e0,i0,F 0)|∆⇤(s,(e0,i0,F 0))⇠s+ Ω⇤(s, (e0, i0, F 0)) =
P

(e0,i0,F 0)|∆⇤(s0,(e0,i0,F 0))⇠s+ Ω⇤(s0, (e0, i0, F 0)). We first prove that s+ ⇠ s0+

For the sake of simplicity we will assume that e labels a forward move. The
proof is symmetric when e labels a backward move.

• If the transition preserves the block structure of the global state s then
we have s+ ⇠ s0+ using the permutation σ.

• If the block containing i is disjoint by the transition, l+i = tzi+1 and
8g 2 pi\{i}, lg = tzi+1. Block pi is disjoint to produce azi blocks of
size 1, namely {g}, with l+g = tzi+1, 8g 2 pi.

Same conditions are fulfilled by the state s0 Therefore s+ ⇠σ s0+.

• If the block containing li is a singleton (pi = {li}), there are at least
azi+1 other blocks of size one at the same position, and the number
of blocks in the target zone z+i is strictly smaller than bzi+1, then the
transition joint azi+1 blocks including pi in one block. Let q be the
union of these azi+1 blocks of size 1. Partition of blocks in state s+ is
equal to: {pj , pj 6⇢ q} [{pj1 [· · · [pjazi+1

} where the new block takes

position t+ 1. As s ⇠σ s0 there exists azi+1 in s0 which are singletons
in position li. The number of blocks in the target zone in s0 is equal
to the one in s thus the maximal number of allowed blocks in s0 is

126

not reached. The set q0 = p0σ(j1) [· · · [p0σ(jazi+1
) thus the partition of

blocks in s0+ is equal to {p0j , p0j 6⇢ q0} [{p0σ(j1) [· · · [p0σ(jazi+1
)}

Finally s+ ⇠σ s0+.

We now compare the two sets {(e0, i0, F 0)|∆⇤(s, (e0, i0, F 0)) ⇠ s+} and
{(e0, i0, F 0)|∆⇤(s0, (e0, i0, F 0)) ⇠ s+}.
Recalls that s ⇠σ s0, for all (e0, i0, F 0) 2 Σ, I,P(I) such that
∆⇤(s, (e0, i0, F 0)) ⇠ s+, it holds that ∆⇤(s0, (e0, σ(i0), σ(F 0))) ⇠ s+ using
s+ ⇠σ s0+. Reciprocally for all (e0, i0, F 0) 2 Σ, I,P(I) it holds that
∆⇤(s0, (e0, i0, F 0)) ⇠ s+ then ∆⇤(s, (e0, i0, F 0)) ⇠ s+ and thus the two sets
are equal. Using lemma 2 we have

X

(e0,i0,F 0)|
∆⇤(s,(e0,i0,F 0))⇠s+

Ω⇤(s, (e0, i0, F 0)) =
X

(e0,i0),9F |
∆⇤(s,(e0,i0,F 0))⇠s+

Ω(s, (e0, i0))

=
X

(e0,i0),9F |
∆⇤(s,(e0,i0,F 0))⇠s+

Ω(s0, (e0, σ(i0)))

=
X

(e0,i0,F 0)|
∆⇤(s0,(e0,i0,F 0))⇠s+

Ω⇤(s0, (e0, i0, F 0))

⇤

To simplify the notation on symmetric instances, as ⇠ is a lumping
relation (Proposition 12) and as when a block is created all the choices of
processes leads to equivalent state (Lemma 2), in the following, we use ∆ in
place of ∆⇤ and Ω in place of Ω⇤.

Every equivalence class of the relation ⇠ contains states with the same
stochastic behavior up to ⇠. The following definition selects some represen-
tatives of the equivalence class which are easier to reason with.

Informally a state is correctly ordered if two conditions are fullfilled :
processes in a same block are adjacently enumerated and the enumeration
respects the partial ordering induced by the linear ordering of zones.

Definition 38 (Correctly Ordered)

We say that a state s = (li, zi, pi)i2I is correctly ordered if

8i, j 2 I, zi > zj) i < j

8i, j 2 I, i 2 pj) 8k 2 {i, . . . , j}, k 2 pj

127

Lemma 4

Let s = (li, zi, pi)i2I be a global state, there exists a correctly ordered
global state s̃ = (l̃i, z̃i, p̃i)i2I such that s ⇠ s̃.

Proof:
We build a permutation iteratively. Let I⇣ = {i, zi = ⇣}. Let c be the
cardinality of I⇣ . If c 6= 0, we build a permutation from {1, . . . c} onto I⇣
such that 8i, j 2 I⇣ , i 2 p̃j) 8k 2 {i, . . . , j}, k 2 p̃j .
Then we proceed the iteration from the ⇣ − 1 zone.

⇤

5.4 Coupling

In this section we define a new relation C on states of a symmetric instance.
Informally, given two states, this relation defines whether one of them is
“closer” to the final state sf than the other. We formalize this idea by showing
that C is a coupling relation and that sf is the maximal element for this
relation. We use this relation only on symmetric instances, therefore for the
sake of simplicity, we restrict the definition to this context in this whole
section.

We need an additionnal constraint on the pattern to build the coupling
relation:

Definition 39 (Symmetric Monotonic Pattern)

A pattern A = (Tp,Σ, L, Z, V, δ, {ω}) is symmetric monotonic if |Tp| = 1
and for all e 2 Σ, for all couple of states l, l0 2 L with l l0, the following
conditions are fulfilled:

(C1). δ(l, e) δ(l0, e).

(C2).

⇢

δ(l, e) > l0) ω(l, e) ω(l0, e)
δ(l0, e) < l) ω(l, e) ≥ ω(l0, e)

(C3). For all pairs of instantiation of variables (vi)
n
i=1, (v

0
i)
n
i=1 such that

8k 2 {1, . . . , n}, vk v0k

the following condition holds:
⇢

e 2 Σf) ω(l, e)(v1, . . . , vn) ω(l, e)(v01, . . . , v
0
n)

e 2 Σb) ω(l, e)(v1, . . . , vn) ≥ ω(l0, e)(v01, . . . , v
0
n)

Condition (C1) on a monotonic pattern ensures that each transition with
the same label, either forward or backward, preserves the order of states.

128

The pattern depicted in figure 5.1 satisfies this constraint. Condition (C2)
ensures that if a process in state l can overtake a process in state l0 ≥ l by
a forward transition e then the rate of e in l is smaller than its rate in l0

(and similarly for a backward transition). Condition (C3) ensures that for
two states containing a process in the same location, the rate of a forward
transition is bigger for the state closer to the final state (and similarly for a
backward transition).

Checking conditions C1,C2 and C3 can be done by enumeration. These
conditions concern the pattern whose number of locations is small compared
to the size of the state space of the instance. Each one of these conditions com-
pares behaviors of two locations. As long as the rate expressions are simple
enough, say piece-wise linear, all the checking can be done automatically.

Remark 17 An instance built from a symmetric monotonic pattern is indeed
symmetric because all processes are of type 1.

Example 9 In the database example, if all the databases are of type 1, the
pattern is symmetric monotonic. Conditions C1, C2 and C3 hold.

Definition 40 (Coupling relation)

LetM = (S,Σ,∆,Ω, f) be an instance, σ be inSm and s = (li, zi, pi), s
0 =

(l0i, z
0
i, p

0
i) be two states. The relation s σ

C s0 is defined by:

8i 2 I,
zi < z0σ(i)

or zi = z0σ(i) ^ σ(pi) = p0σ(i) ^ li l0σ(i)

s C s0 if there exists σ 2 Sm such that s σ
C s0.

For two states s, s0, s C s0 means that s0 is closer to the final state than
s in the sense that there is a one to one mapping which ensures that each
process of s is mapped to a process of s0 closer to n. It also requires that if
a process in s is mapped to a process in the same zone, its whole block is
mapped to a block in s0.

The two next lemmas are technical properties between ⇠ and C . They
are required to prove that the relation we have built is indeed a coupling
relation.

The next lemma shows that the relation ⇠ and C are “compatible”.
More formally, if s C s0 any state in the equivalence class of s is in relation
with any state of the equivalence class of s0.

129

Lemma 5

8s, s0, s̃, s̃0 2 S; (s C s0) ^ (s ⇠ s̃) ^ (s0 ⇠ s̃0)) (s̃ C s̃0)

Proof:
Let s = (li, zi, pi)i2I ; s0 = (l0i, z

0
i, p

0
i)i2I ; s̃ = (l̃i, z̃i, p̃i)i2I and s̃0 =

(l̃0i, z̃
0
i, p̃

0
i)i2I .

Let σ1, σ2 and σ3 be permutations such that s̃ ⇠σ1 s, s σ2

C s0 and s0 ⇠σ3 s̃0.
Let σ be equal to σ3 ◦ σ2 ◦ σ1. Let us prove that s̃ σ

C s̃0. For all i 2 I, let
i1 = σ1(i); i2 = σ2(i1) and i3 = σ3(i2). If zi1 < z0i2 , as z̃i = zi1 and z̃0i3 = z0i2
we have z̃i < z̃0σ(i). Otherwise:

zi1 = z0i2 and due to the first equivalence we have: σ1(p̃i) = pi1 and l̃i = li1 .
Due to the relation C we have: σ2(pi1) = p0i2 and li1 l0i2 .

Due to the second equivalence we have: σ3(p
0
i2
) = p̃0i3 and l0i2 = l̃0i3 .

By combining all these hypothesis we have:

z̃i = zi1 = z0i2 = z̃0i3 = z̃0σ(i)

σ(p̃i) = σ3(σ2(pi1)) = σ3(p
0
i2) = p̃0i3 = p̃0σ(i)

l̃i = li1 l0i2 = l̃0i3 = l̃0σ(i)

⇤

In the following we pick for any pair of states (s, s0) such that s C s0

a fixed permutation σ such that s σ
C s0. This ensures the unicity of the

product CTMC defined below. Due to the previous lemma product CTMC
built with different sets of permutations are equivalent by the relation ⇠ and
thus their respective lumpings coincide.

Lemma 6

8s, s0 2 S; s C s0) 9s̃, s̃0 2 S correcly ordered s.t.

s ⇠ s̃ and s0 ⇠ s̃0 and s̃ Id
C s̃0

Proof:
We assume that s et s0 are correctly ordered. Let s = (li, zi, pi)i2I and
s0 = (l0i, z

0
i, p

0
i)i2I . Let σ such that s σ

C s0.

Let z be the rightest zone reached by s and L = {i, li 2 z} ; we denote
by q its cardinal, which is a multiple of az.

130

Let L0 be the set of processes in s0 in zones on the right of z, that is L0 =
{i, z0i ≥ z}. Let us split L0 in L0

> = {i, z0i > z}, L0
= = {i, z0i = z}. Thanks

to lemma 1, |L0
>|, |L0

=| are multiples of az. As s σ
C s0, L0 contains σ(L),

thus we can also split L0 as the union of σ(L) and M = {i, i /2 L; z0σ(i) > z}.
Remark that |M |, is also a multiple of az.

The permutation σ induces a bijection from M [L onto L0, and thus a
bijection from I \ (M [L) = {i; z0σ(i) < z} onto I \ L0 = {i; z0i < z}.

We are going to construct three permutations µ, µ0 and ⌧ such that : let
s̃ = (l̃i, z̃i, p̃i)i2I and s̃0 = (l̃0i, z̃

0
i, p̃

0
i)i2I such that s̃ ⇠µ s, s̃0 ⇠µ0

s0 s̃ and s̃0

are correctly ordered and s̃ ⌧
C s̃0, with 8i 2 L, ⌧(i) = i. We then conclude

recursively on the number of zones containing processes of s.

Let first suppose that |L| |L0
>|. Then we define ; µ = µ0 = Id, ⌧(i) = i,

for i 2 L [M (in that case, we do not change states s and s0 but just
re-affect the correspondance of processes between local states). The property
l̃i < l̃0i = l0i results from zi = z < z0i, for i 2 L [M .

Suppose now that |L| > |L0
>| ; some of the blocks of s in L correspond

via σ to some blocks of s0 in L. Let q be such that qaz = |L| − |L0
>|. There

are q blocks pi in L such that p0σ(i) is also in L, say E the set of these blocks.
Remark that blocks of s in L are listed from 1 to L, block by block :

{l1, .., laz} that we may call the first block, {laz+1, .., l2az} that we may call the
second block, and so on until {l(r−1)az+1, .., lraz} the last one, with |L| = raz.
We replace s by the equivalent state s̃ such that the q blocks of s in E defined
just above, are at the end of the list of indices in L. This is done using a
permutation µ that fixes all indices in I \ L, thus s̃ is correctly ordered. We
also change the numerotation of the processes of s0 which are in z in the
same way, just permuting the blocks, using the previous numerotation. This
defines a permutation µ0 that only moves the indices in L such that σ(i) 2 L
and replace s0 by the equivalent state s̃0 ⇠µ0

s0. Precisely :
- for i from 1 to |L|−qaz, the property l̃i < l̃0i = l0i results from zi = z < z0i.

- for i from |L| − qaz + 1 to |L|, the property l̃i < l̃0i results from the
choice of the numerotation that ensures p̃i = p̃0i.

⇤

We are now in position to define the coupling Markov chain of a symmetric
instance with itself:

Definition 41 (Product CTMC)

LetM = (S,Σ,∆,Ω, f) be a symmetric instance

131

We define the product CTMC ofM, as the chain C⌦ = (C ,Σ
⌦,∆⌦,Ω⌦)

where:

• Σ⌦ = Σ] Σ̃, where Σ̃ is a copy of Σ.

• 8(s, s0) 2 S2, s σ
C s0, 8i 2 I, 8e 2 Σ

∆⌦((s, s0), e, i) = (∆(s, e, i),∆(s0, e, σ(i)))

and ∆⌦((s, s0), ẽ, i) =

8

>

<

>

:

(∆(s, e, i), s0) if ∆(s, e, i) C s0

(s,∆(s0, e, σ(i)) if s C ∆(s0, e, σ(i))

(s, s0) otherwise

• 8s σ
C s0, Ω⌦((s, s0), e, i) = min(Ω(s, e, i),Ω(s0, e, σ(i)))

and Ω⌦((s, s0), ẽ, i) = |Ω(s, e, i)− Ω(s0, e, σ(i))|

In order to make this definition consistent, we have to prove that the
effect of a transition preserves the coupling relation. This is the purpose of
the next lemma.

Lemma 7

LetM = (S,Σ,∆,Ω, f) be a symmetric instance. Then its product CTMC
is preserved by transitions, that is:

8s σ
C s0, 8e 2 Σ, 8i 2 I, ∆(s, e, i) C ∆(s0, e, σ(i))

Proof:
Let s = (li, zi, pi)i2I and s0 = (l0i, z

0
i, p

0
i)i2I be two states in the relation

s σ
C s0. By lemma 6 we may suppose that s and s0 are correctly ordered and

σ = Id. Let e 2 Σ and let h be the process in I which is moved by transition
e. We denote by s+ = (l+j , z

+
j , p

+
j)j2I (respectively s0+ = (l0+j , z0+j , p0+j)j2I)

the successor of s (respectively s0) by transition (e, h): s+ = ∆(s, e, h)
(respectively s0+ = ∆(s0, e, h)). There are several excluding cases:

• When z+h < z0+h the property trivially holds.

• When zh = z+h = z0h = z0+h , that is, there is no change of zone neither
for s nor for s0 then condition C1 ensures that the property holds.

• When zh < z+h = z0+h , z
+
h is odd and e is a forward move, then z+h =

zh + 1 and the block ph splits and reaches the boundaries of zh. Then
8i 2 ph\{h}, li = l+i = tzh/2+1 l0+i , using C1, l+h = tzh/2+1 l0+h ,
thus the property holds.

132

• When z0h > z0+h = z+h , z
0+
h is odd and e is a backward move, this case

is symmetrical to the previous one by exchanging s and s0.

• When zh < z+h = z0+h , z+h is even and e is a forward move then
z+h = zh + 1, processes in zh joint together to build a new block p+h .
There is at least azh+1 processes in zone zh in s. We can order the
processes in s such that ph contains successive processes in zh: Let
σ 2 Sm such that s̃ ⇠σ s and 8i 2 I, zi 6= zh) σ(i) = i, and there
exists H = {h1, h2, . . . , hazh+1

}, σ(H) = ph, σ(h) = h and h1 is a
multiple of azh+1, this is possible because s is correctly ordered. Let
us consider the set of processes in p+h , there are two cases:

. If z0h = zh + 1 then 8i 2 H, z0i = zh + 1 due to the multiplicity
of zones and because s0 is correctly ordered. Then by using C1,
l+h l0+h and 8i 2 H\{h}, l+i = t zh+1

2

 l0+i and thus s+ σ−1

C s0+.

. If z0h = zh then 8i 2 H, z0i = zh due to the multiplicity of zones
and because s0 is correctly ordered. Then processes join to l0h to
build a new block in s0+. Let σ0 2 Sm such that σ0(H) = p0+h
then s+ σ0◦σ−1

C s0+.

• When z0h > z0+h = z+h , z
0+
h is even and e is a backward move, this case

is symmetrical to the previous one by exchanging s and s0.

⇤

Lemma 8

Let s be a global state and e the label of a forward transition. For i 2 I,
we have s σ

C ∆(s, e, i) with σ the identity.

Proof:
Let s = ((lj , zj , pj)j2I)

and let s+ = ∆(s, e, i) =
⇣

(l+j , z
+
j , p

+
j)j2I

⌘

. Then l+i = ∆(li, e) ≥ li and for

all j 6= i, l+j = lj thus for all j 2 I, l0j ≥ lj and s Id
C s+.

⇤

Lemma 9

Let s be a global state and e the label of a backward transition. For
i 2 I, we have ∆(s, e, i) σ

C s with σ the identity.

Proof:
Similar to the one of the previous lemma.

⇤

133

Lemma 10

LetM = (S,Σ,∆,Ω, f) be an instance built from a symmetric monotonic
pattern. Then for all e 2 Σ, i 2 I and s σ

C s0:

(

if Ω(s, e, i) Ω(s0, e, σ(i)) then s C ∆(s0, e, σ(i))

if Ω(s, e, i) ≥ Ω(s0, e, σ(i)) then ∆(s, e, i) C s0

Proof:
First we assume that Ω(s, e, i) Ω(s0, e, σ(i)). We want to prove that
s C ∆(s0, e, σ(i)). As the pattern is symmetric we have Ω(s, e, i) = !1(l, e)
and Ω(s0, e, σ(i)) = !1(l

0, e) thus !1(l, e) !1(l
0, e). As s σ

C s0 we also have
l l0.
Using the monotonicity of the pattern we know that l δ(l0, e).
There are now several cases depending of e’s transition type.

• e labels a forward move then s C s0 C ∆(s0, e,σ(i)) using lemma 9.

• e labels a backward move which does not change the block structure,
then as li δ(l0σ(i), e) and the others processes do not move we have

s σ
C ∆(s0, e,σ(i)).

• e labels a backward move disjoining a block, then as 8j 6= i, lj l0σ(j)
and li δ(l0σ(i), e), processes coupled with the block disjointed by the

transition i.e. {j 2 I|σ(j) 2 p0σ(i)} are in a zone zi such that zi < z0σ(i),

thus s σ
C ∆(s0, e,σ(i)).

• e labels a backward move joining a blocks. Let s0+ = (l0+j , z0+j , p0+j)j2I
be equal to ∆(s0, e,σ(i)). Then we have: 8j 6= i, lj l0σ(j) and

li δ(l0σ(i), e),then processes coupled with blocks joint by the transition

i.e. {j 2 I|σ(j) 2 p0+σ(i)} are in a zone zi such that zi < z0σ(i), thus

s σ
C ∆(s0, e,σ(i)).

Similarly if we assume Ω(s, e, i) Ω(s0, e,σ(i)) a symmetric proof allows
to have ∆(s, e, i) C s0 using lemma 8.

⇤

Using Proposition 4 the product CTMC ofM is a coupling.

5.5 Application to Guaranteed Variance Reduc-

tion

This framework can be used to prove guaranteed variance reduction in two
ways:

134

1. For a system which is not symmetric one can define its symmetrized
counterpart and define the reduced model as the lumping of the sym-
metric model. In the following a method to compute the symmetrized
version of a system is presented yielding a fully automatic method.

2. When the reduced model can be defined as a symmetric monotonic
instance this framework ensures that C is a coupling relation. Then
using theorem 10 the guaranteed variance reduction can be proved.
One still have to define a reduction function f and the labels function
g.

We now describe the symmetrization of an instance.

Definition 42 (Symmetrization)

LetM = (S,Σ,∆,Ω, f) be an instance. We define the symmetrization of
M denoted by Sym(M) = (S,Σ,∆, Sym(Ω), f) by:
8s 2 S, e 2 Σ, i 2 I,

Sym(Ω)(s, e, i) =

⇢

maxs0⇠sΩ(s
0, e, i) if e is a forward move

mins0⇠sΩ(s
0, e, i) if e is a backward move

The block assigning function is unchanged. By construction the resulting
instance is symmetric.

Example 10 For the database example the symmetrization is obtaied by
replacing databases of type 2 by databases of type 1. Table 5.3 reports the
size of the CTMC obtained from the initial model with N databases and the
size of the CTMC obtain from the symmetric model. A drastic reduction of
the size of the CTMC is observed.

N Initial model Symmetric model

20 8,821 690
40 107,141 2,580
60 492,961 5,670
80 1,484,281 9,960
100 3,519,101 15,450
120 7,155,421 22,140
140 13,071,241 30,030
160 22,064,561 39,120

Table 5.3: Number of states in the database example before and after
symmetrization and lumping.

135

To build a reduced model from a pattern which is not monotonous we
need to replace the pattern by a bounding pattern which is monotonous.
This bounding pattern must fulfill some condition to ensure that we obtain
a reduced model with guaranteed variance. We define an order relation over
the set of patterns as follows:

Definition 43 (Order on pattern)

Let A = (Tp,Σ, L, Z, V, δ, {ω}) and A0 = ({1},Σ, L, Z, V, δ0, {ω0}) two
pattern with the same set of locations, events and zones.
A0 is bounding A if A0 is symmetric monotonic, and for all k 2 Tp, l1, l2 2 L
the following holds:

8e 2 Σf , δ
0(l1, e) δ(l1, e) ^ ω

0
k(l1, e) ω(l1, e)

8e 2 Σb, δ
0(l1, e) ≥ δ(l1, e) ^ ω

0
k(l1, e) ≥ ω(l1, e)

Several algorithms computing bounding models for CTMC exist [2, 33, 41].
they can be applied to patterns to obtain a symmetric monotonic pattern
bounding the initial pattern. The bounding pattern is suitable to build a
reduced model by lumping its equivalent states..

Remark that the symmetrization of an instance M of a monotonous
pattern is a boundingM.

The following proposition proves that a bounding model could be used
as a reduced model in the method described in Chapter 4.

Proposition 13

LetM andM0 be two instances such that the pattern ofM0 is bounding
the pattern ofM andM0 is symmetric monotonic thenM0 is a reduction
with guaranteed variance ofM.

Proof:
We have to prove that the hypothesis of Proposition 10 holds. Let M =
(S,Σ,∆,Ω, f) andM0 = (S,Σ,∆0,Ω0, f).

Recall that the transition function and rate function that we use for the
initial and reduced model must be ∆⇤ and Ω⇤ when applying the proposition.

The reduction function f is defined as the identity. Recall that the set of
event E in the initial model is equal to Σ⇥ I⇥P(I). The family of functions
g : S ⇥ E ! E is defined as the identity on the labels: g(s, e) = e.

For all s 2 S, e 2 Sigma, i 2 I and F 2 P(I), there are two cases to
prove Condition 1:

136

• If e 2 Σf ,

∆
0⇤(f(s), g(s, (e, i, F))) = ∆

0⇤(s, (e, i, F)))

= ∆
0

(s, (e, i))f(s, F)

= !0(li, e)f(s, F)

≥ !(i)(li, e)f(s, F)

= ∆(s, (e, i))f(s, F)

= ∆⇤(s, (e, i, F))

Thus Condition (1.b) holds. Due to Lemma 8, s C ∆(s, (e, i)) and
thus Condition (1.a) holds.

• If e 2 Σb the proof is symmetric.

Condition 2 holds due to:

f(∆⇤(s, (e, i, F))) = ∆⇤(s, (e, i, F))

= ∆⇤(f(s), (e, i, F))

= ∆⇤(f(s), g(s, (e, i, F)))

⇤

Example 11 Proposition 13 applies to the database example. Thus, a
reduced model with guaranteed variance can be built. Using 200 databases,
100 of each type, the size of the CTMC is 53, 075, 700. The size of the
reduced model however is 60, 900 which can be efficiently handled by numerical
methods. We compute the probability that a whole transaction takes place in
3 time units, that is the state where all processes are in location 7 is reached
within 3 time units. The result of the computation using the importance
sampling methods described in Chapter 4 and the tool Cosmos described in
Chapter 6 are that this probability is in the interval [3.09 10−38, 1.17 10−37]
with a confidence level of 0.99. With 300, 000 trajectories the computation
takes 2 hours and uses 4GB of memory.

5.6 Conclusion

In this chapter we have developed a framework for which a bounding model
can be built automatically. Moreover this bounding model is suitable to
be used as a reduced model with guaranteed variance. The framework
structurally sets for such a model the monotonicity of the bounding model.
In a future work, we would like to model more complex systems. In particular,

137

in this framework constraints are given to control the interaction between
several processes moving on a same pattern to ensure monotonicity, it would
be interesting to weaken these constraints. For example it should be possible
to let processes fork in a constant number of processes when entering a zone
and join back into a single process when leaving the zone. An other future
work is to extend this framework to open systems where processes can be
created or destroyed.

The method described in this chapter could be automatized but to make
it completely automatic, it remains to build a tool that implements all steps
of this method. There is no theoretical difficulty to build such a tool but they
could be technical ones as the condition on rate covers expression containing
variables and not only reals.

138

Part III

Applications

139

Chapter 6

Cosmos

6.1 Introduction

In Chapter 4, a rare event acceleration method was proposed. We chose
to implement it in the tool Cosmos which is a statistical model checker of
stochastic Petri nets with general distributions against the hybrid automata
stochastic logic (HASL) and has been initially developed by Paolo Ballarini
and Hilal Djafri [9, 8, 27]. The implementation of rare event handling required
to modify how probability distributions were sampled. In order to evaluate
these modified probability distributions, facilities to compute numerically
steady states and transient distributions were also implemented such that in
total, the rare event handling required around 3600 new lines of C++ code.
We also provided two main improvements for Cosmos:

• We extended the input formalism to Symmetric Stochastic Nets (SSN).
This is a join work with Elvio Amparore, Marco Beccuti, Susanna
Donatelli and Giuliana Franceschinis. This extension required heavy
modifications of the simulator (around 2500 lines of code) to implement
efficient simulation of SSN. We also extended the specification language
of Cosmos to take advantage of the SSN formalism [I].

• We integrated Cosmos in the CosyVerif [II] platform (around 1800
lines of parser in Cosmos and around 1500 lines of Java and XML in
CosyVerif). CosyVerif provides a uniform way to deal with models,
as well as tools to edit and analyze them. Before this integration,
CosyVerif dealt only with Petri nets, symmetric nets and hierarchical
Petri nets. Thus support for stochastic models and automata had to
be added. Contributions to the CosyVerif platform are join work
with Étienne André, Clément Démoulins, Lom Messan Hillah, Francis
Hulin-Hubard, Fabrice Kordon, Alban Linard and Laure Petrucci.

When one wants to analyze a particular model, one needs to choose the
formalism, the method and the tool for the modeling. It is thus important

140

that the performances of the different methods and tools are benchmarked
against one another in order to evaluate tool adequacy and efficiency. In this
chapter, we perform different experiments:

• runtime comparisons between Cosmos and several statistical model
checkers: Plasma [53], Prism [63], Uppaal [17], and Ymer [87],

• several experimentations and benchmarks of our importance sampling
method presented in Chapter 4 against other importance sampling
methods and numerical methods,

• runtime benchmarks for the new SSN simulator of Cosmos compared
to its plain Petri net simulator.

Section 6.2 describes the general architecture of Cosmos. Section 6.3
describes the implementation of the extension of Cosmos which deals with im-
portance sampling. Section 6.4 describes the contribution to the CosyVerif

platform and the integration of Cosmos. Section 6.5 describes the extension
of Cosmos to SSN as well as experiments using this extension. Section 6.6
compares Cosmos with some other statistical model checkers. Section 6.7
presents the experiments conducted on importance sampling. Section 6.8
contains our conclusions.

6.2 Description of the Tool

6.2.1 Architecture

Cosmos is a statistical model checker accepting as input several types of
stochastic Petri nets with general distribution and a HASL formula. A
HASL formula is described by a Linear Hybrid Automaton (LHA). The main
algorithm of this tool randomly simulates the Petri net according to its
stochastic semantics and synchronizes with the execution of the automaton.
During the synchronization, it evaluates HASL expressions. A statistical
procedure decides when to stop the simulation and produces a confidence
interval for a HASL expression.

The tool Cosmos consists of about 17000 lines of C++ code and is freely
available at [10] under the Gnu General Public License version 3 (GPLv3).
The tool relies on code generation to perform efficient simulation. It is
divided into three main parts:

1. The parsing and code generation part reads the input files and the
command line in order to build data structures for the net and the
automaton. Then C++ code simulating both the behaviors of the net
and the automaton is generated. The resulting code is compiled by
a C++ compiler and linked with the simulator library. The resulting
binary is the complete simulator program.

141

2. The simulator part is a library implementing the algorithm synchro-
nizing the net and the automaton. It also implements the stochastic
generation of event using the pseudo random number generator pro-
vided by the BOOST library and handle these events in an event
queue. Rare event algorithms are implemented in the simulator and
modify the way events are produced.

3. The server part launches several copies of the simulator and aggregates
their results. According to statistical parameters, a procedure decides
whether enough trajectories have been simulated and stops all simula-
tors when needed. Then, HASL expressions are evaluated and several
output files are produced according to options. The computation of
confidence intervals uses the BOOST library for the computation of
quantiles of the normal distribution function and binomial distribution.

Figure 6.1 shows a detailed overview of Cosmos internal architecture.
This schematics details all files with which Cosmos interacts. Input files
can be in different formats. File formats .gspn and .lha are the legacy
input languages for Cosmos described in the Chapter 6 of [27]. The file
format .grml is used by the CosyVerif platform. More details on this
format are provided in Section 6.4. The files spn.cpp, markingImpl.cpp
and LHA.cpp contain the generated code implementing the simulator. The
markingImpl.cpp file is used to implement colored tokens when simulating
SSN. The file Result.res contains the result of the computation (a copy of
this file is also displayed on the command line). Several other files can be
generated using some options. For the rare event part, files are generated
to store the vector of probabilities µ• and the transition probability matrix
P•. The file modelUnfold.grml contains an unfolded version of a model
when the input is a SSN. Data files Rawdata.dat and Result.dat store data
produced by the simulator. Depending on several options, they may contain
the result of the simulation over time, the probability density function or
the cumulative density function of an expression, the step-by-step trace of
simulations or a sampled trace of simulations. Their format allows them to be
read by Gnuplotto produce a graph. When using importance sampling for
rare events, the reduction function is implemented in file lumpingfun.cpp.

Several tools interact with Cosmos either by calling it or by being called
by it:

• A C++ compiler is required to build the simulator from the generated
code. Until now, GCC and Clang have been used.

• When the Petri net is Markovian and the automaton has no clock,
Prism can be called by the simulator. In this case a state space
generator is used and the CTMC of the product between the model and
the automaton is given to Prism. The vector of probabilities computed

142

R
a

re
-E

v
e

n
ts

 E
n

g
in

e

S
im

u
la

to
r

S
e

rv
e

r

S
h

a
p

e
 L

e
g

e
n

d C
o

d
e

 G
e

n
e

ra
to

r

C
o

m
m

a
n

d
 L

in
e

P
a

rs
e

r

G
rM

L
 S

P
N

 P
a

rs
e

r

G
S

P
N

 P
a

rs
e

r

G
rM

L
 L

H
A

 P
a

rs
e

r

L
H

A
 P

a
rs

e
r

G
S

P
N

 D
a

ta

L
H

A
 D

a
ta

G
S

P
N

 W
ri
te

r

L
H

A
 W

ri
te

r

s
p

n
.c

p
p

m
a

rk
in

g
Im

p
l.
c
p

p

L
H

A
.c

p
p

P
a

ra
m

e
te

rs
C

o
m

m
a

n
d

 l
in

e

m
o

d
e

l.
g

rm
l

m
o

d
e

l.
g

s
p

n

p
ro

p
e

rt
y.

g
rm

l

p
ro

p
e

rt
y.

lh
a

S
P

N

L
H

A

E
v
e

n
ts

Q
u
e
u
e

B
o

o
s
t

R
a

n
d

o
m

G
e

n
e

ra
to

r

S
im

u
la

to
r

B
a

tc
h

R
e

s
u

lt

S
e

rv
e

r
A

g
re

g
a

te
d

R
e

s
u

lt

S
ta

ti
s
ti
c
a

l

E
v
a

lu
a

ti
o

n
R

e
s
u

lt
.r

e
s

F
u

n
c
ti
o

n
D

a
ta

 s
tr

u
c
tu

re
F

ile

R
e

a
d

/W
ri
te

D
e

p
e

n
d

 o
f

C
o

m
p

ile
 i
n

to

R
a

re
-E

v
e

n
t
T

im
e

U
n

b
o

u
n

d
e

d
 S

im
u

la
to

r

R
a

re
-E

v
e

n
t
D

is
c
re

te
 T

im
e

-

B
o

u
n

d
e

d
 S

im
u

la
to

r

R
a

re
-E

v
e

n
t
C

o
n

ti
n

u
o

u
s

T
im

e
-B

o
u

n
d

e
d

 S
im

u
la

to
r

m
u

F
ile

m
u

M
a

tr
ix

S
ta

te
 S

p
a

c
e

 G
e

n
e

ra
to

r

E
x
te

rn
a

l
to

o
l

G
+

+
 /

C
la

n
g

+
+

P
ri
s
m

A
u

to
m

a
ta

G
e

n

L
T

L
 f
o

rm
u

la

G
n

u
P

lo
t

U
n

fo
ld

e
r

m
o

d
e

lU
n

fo
ld

.g
rm

l

C
o

lo
r

L
e

g
e

n
d

C
o

s
m

o
s
 B

in
a

ry
C

o
s
m

o
s
 L

ib
ra

ry
G

e
n

e
ra

te
d

 fi
le

s
E

x
te

rn

R
e

s
u

lt
.d

a
t

R
a

w
d

a
ta

.d
a

t

H
A

S
L

F
o

rm
u

la

lu
m

p
in

g
fu

n
.c

p
p

Figure 6.1: Overview of Cosmos architecture

143

by Prism on this model is parsed by Cosmos. This allows one to use
Prism to compute transient and steady state probabilities.

• The plotter GnuPlot can be called by Cosmos to produce a graph
from the various output files providing a better visualization of the
results.

• A small OCaml tool called AutomataGen which is part of Cosmos
builds a simple automaton from a LTL style formula. This provides
an easier use of the tool for simple properties where the full expressive
power of HASL is not required.

• Several OCaml scripts shipped with Cosmos perform benchmark,
testing and plotting.

Moreover Cosmos has been integrated into the platform CosyVerif. Alli-
gator, the server part of CosyVerif can call Cosmos and parse its result.
Coloane, the client part of CosyVerif can call Cosmos through Alligator
and displays the result. It can also produce .grml files for the Petri net or
the automaton that can be used through a command line.

6.2.2 The HASL Logic

Cosmos uses the HASL logic as a specification language [9]. In this section,
we describe this logic. A formula in this logic contains two parts, a Linear
Hybrid Automaton (LHA) and a set of HASL expressions. The LHA is
a deterministic automaton. It can be synchronized with a discrete event
stochastic process (DESP), described as a Petri net, in order to select some
of its trajectories. HASL expressions are formulas on the variables of the
LHA, that are evaluated along each accepted trajectory of the system.

The synchronized product between the DESP and the automaton contains
two kinds of transitions: either the transition is initiated by the DESP and
the automaton performs a synchronization transition; or the transition is
initiated by the automaton which performs an autonomous transition which
does not affect the DESP. These two types of transitions are described in
more detailed below. To ensure that the synchronization can efficiently be
computed, some limitations on the synchronized product are required:

• The automaton is deterministic in the sense that for any trajectory of
the DESP, there is at most one run of the automaton.

• For any finite trajectory of a DESP, the run of the automaton is also
finite, that is, the automaton cannot take an infinity of autonomous
transitions which are not synchronized with the DESP.

• In order to deal efficiently with the hybrid part of the automaton,
variables evolve linearly with time in the implementation.

144

More formally, in order for an LHA to synchronize with a Petri net,
several common objects are used in the definition of an LHA.
Given a SPNM:

• The set of events E is a subset of the set of transitions T ofM.

• The set Ind is defined as the set of indicator functions which are real-
valued functions whose values depend only on the marking ofM in a
given state.

• The set Prop is a set of boolean propositions where atoms are equalities
or inequalities of indicator functions in Ind.

The formal definition of a LHA is as follows:

Definition 44 (Linear Hybrid Automaton (LHA))

A Linear Hybrid Automaton is a tuple A =
(

E,L,Λ, L0, Lf , X,flow,!
)

where:

• E is a finite alphabet of events;

• L is a finite set of locations;

• Λ : L! Prop is a location labeling function;

• L0, the set of initial locations is a subset of L, ;

• Lf , the set of final locations is a subset of L;

• X = (x1, ...xn) is a n-tuple of data variables;

• flow : L 7! Indn is a function which associates each location to one
indicator per data variable representing the evolution rate of the vari-
able in this location. flowi denotes the projection of flow on its ith

component.

• The transition relation ! is a subset of L ⇥
(

(2E ⇥ Const)] ({]}⇥ lConst)
)

⇥Up⇥L. This is a set of edges, where:

. The letter] is a special event which labels autonomous transitions
of the automaton.

. Const denotes a set of constraints defined as boolean combinations
of equalities or inequalities over Ind and (xi)

n
i=1,

. lConst denotes a set of left-closed linear constraints which are
boolean combinations of expressions of the form

n
X

i=1

↵ixi on c,

where ↵i, c 2 Ind and on2 {,≥,=}.

145

. Up =
(

Up1, . . . ,Upn
)

denotes the sequence of updates. Each Upi
corresponds to the update of the variable xi and is an expression
over Ind and (xi)

n
i=1.

The notation l
E0,γ,U−−−−! l0 is defined as (l, E0, γ, U, l0) 2!.

Furthermore the LHA A fulfills the following conditions.

• Initial determinism: 8l 6= l0 2 Init , Λ(l) ^ Λ(l0) , false. This
must hold whatever the interpretation of the indicators occurring in
Λ(l) and Λ(l0) is.

• Determinism on events: 8E1, E2 ✓ E s.t . E1\E2 6= ;, 8l, l0, l00 2 L,

if l00
E1,γ,U−−−−! l and l00

E2,γ0,U 0

−−−−−! l0 are two distinct transitions, then either
Λ(l) ^ Λ(l0), false or γ ^ γ0 , false. Again this equivalence must
hold whatever the interpretation of the indicators occurring in Λ(l),
Λ(l0), γ and γ0 is.

• Determinism on]: 8l, l0, l00 2 L, if l00
],γ,U−−−! l and l00

],γ0,U 0

−−−−! l0 are two
distinct transitions, then either Λ(l)^Λ(l0), false or γ^γ0 , false.

• No]-labeled loops: For all sequences

l0
E0,γ0,U0−−−−−! l1

E1,γ1,U1−−−−−! · · · Ep−1,γp−1,Up−1−−−−−−−−−−! lp such that l0 = lp, there
exists i p such that Ei 6=].

Given a Petri netM and an LHA A, a state of the synchronized product
is a tuple (m, l,X, t) where m is a marking ofM, l is a location in L of the
automaton A, X is the valuation of the data variable and t is the current time.
This synchronized product evolves with two different kinds of transitions.
When a transition is fired in the Petri net, the automaton matches this
transition with a transition of its own. The automaton performs autonomous
transition as soon as some timed guards are satisfied. The Petri net has
a fully-stochastic semantics and the automaton is deterministic yielding a
fully-stochastic semantics for the synchronized product. More precisely the
synchronized product evolves as follows:

• Due to its initial determinism, the LHA for the synchronized product
has only one initial state: (m0, l0, (0)

n
i=1, 0) where m0 is the initial

marking of the Petri net and l0 2 Init is the initial location of the
automaton satisfying the initial determinism.

• The Petri netM fires a transition e at time t1 such that m
e,t1−−! m0. If

there exists a synchronized transition in A such that l
e,γ,U−−−! l0 where

m0, X + (t1 − t) · flow(l) |= γ and m0 |= Λ(l0) and there is no valid]

146

transition in the automaton that can occur before e, that is:

8t2 2 [t, t1], 8l2 2 L, γ 2 lConst, U 2 Up,

l
],γ,U−−−! l2)

(

m,X + (t2 − t) · flow(l) 6|= γ
)

,

then a synchronized transition occurs leading to state
(m0, l0,

(

Upi[m
0, X + (t1 − t) · flow(l)]

)n

i=1
, t1) in the synchronized

product.

• There is a valid autonomous transition labeled by] in the automaton,
that is

9t0 ≥ t, l0 2 L, γ 2 lConst, U 2 Up,

l
],γ,U−−−! l0)

(

m,X + (t0 − t) · flow(l) |= γ
)

.

If there is no scheduled transition inM before time t0 and there is no]
transition which can occur before time t0, then a autonomous transition
occurs leading to state

(

m, l0,
(

Upi[m
0, X + (t0 − t) · flow(l)]

)n

i=1
, t1
)

.

• The synchronization fails when the automaton does not reach an
accepting state and one of the following events occurs:

. The systemM is in deadlock and no] transition is available in
the automaton.

. The system takes a transition which cannot be matched with any
transition of the automaton.

In this case the trajectory is rejected.

• As soon as an accepting state of the automaton is reached, the trajectory
is stopped and accepted.

Definition 45 (HASL Expressions)

HASL expressions are given by the term Z in the following grammar:

Z ::= c | P | E[Y] | HYPOTHESIS[c, c]

| Z + Z | Z − Z | Z ⇥ Z | Z/Z
Y ::= c | Last(y) | Min(y) | Max(y) | Int(y) | Mean(y)

| Y + Y | Y − Y | Y ⇥ Y | Y/Y
y ::= c | x | y + y | y ⇥ y | y/y,

where c denotes a real constant, x denotes a variable of the automaton and
the arithmetic operators have their usual meaning. Expressions derived from
y are computed at each simulation step of a trajectory. Expressions derived
from Y are computed at the end of an accepted trajectory, where:

147

• Last(y) denotes the value of y in the last state of the trajectory,

• Min(y) and Max(y) denote the minimal and maximal values taken by
y along a trajectory,

• Int(y) is the integral over time of the value of y along a trajectory,

• Mean(y) is the average value taken by y along a trajectory.

Expressions derived from Z are HASL expressions and are evaluated on a set
of trajectories where:

• P denotes the probability of acceptation of trajectories by the automa-
ton.

• E[Y] is the expected value of Y ,

• HYPOTHESIS[c1, c2] denotes a pair of hypotheses: whether the prob-
ability for a path to be accepted by the automaton is above or below
c1 with indifference zone of width c2.

Expressions derived from Y are efficiently computed using that the
hybrid part of the automaton is piecewise linear. Expressions derived from
Z are evaluated as confidence intervals using statistical methods described
in Section 6.2.3.

Running example. Figure 6.2 depicts a HASL formula whose first
expression Expr1 characterizes the probability of global overflow in the tandem
queues, that is there are more than N clients in the two queues before reaching
a state where the queues are empty. Furthermore Expr2 estimates the mean
time from the initial state to reach a state with more than N clients without
visiting a state with no client.

All the transitions of the automaton are labeled by E,>, {} meaning that
they can synchronize with any transition of the Petri net, the guard is always
true and there is no update. The determinism is ensured by the invariant of
location.

6.2.3 Statistical Procedures

We now detail the different statistical procedures proposed by Cosmos for
evaluating HASL expression depending on several criteria. The statistical
results on which they rely are recalled in Section 2.3.

• Sequential hypothesis testing [85]. This procedure checks whether
a probability is above a threshold. Parameters of this procedure are the

148

t̊=1

E,>, {}

(Q1 +Q2 < N)
& (Q1 +Q2 > 0)

E,>, {}

Q1 +Q2 ≥ N

Q1 +Q2 = 0

E,>, {}

X = {t}

Expr1 : P
Expr2 : E[Last(t)]

Figure 6.2: A HASL formula for the tandem global overflow property

probability of an error for a positive answer and a negative answer and
the width of the indifference region. When the value of the probability is
outside the indifference interval, the probability of an error is bounded
by the parameter corresponding to the answer.

• Chernoff-Hoeffding bounds [49]. This static method requires
three related parameters, each of them can be determined by the two
others. These parameters are the interval width, the confidence level
and the number of samples. It outputs a confidence interval whose
width satisfies the requirement and where the probabilistic guarantee
is exact. It applies to estimate the expectation of a bounded random
variable.

• Chow-Robbins bounds [21]. This sequential method requires two
parameters: the interval width and the confidence level. It outputs
an interval whose width satisfies the requirement and where the prob-
abilistic guarantee is asymptotic w.r.t. the width of the interval. It
applies to estimate the expectation of a random variable, when no
known bound is available.

• Gaussian approximation. This static method requires two param-
eters. The number of samples has to be given. The second parameter
is either the confidence level or the interval width, one of these deter-
mining the other one. It ouputs an interval whose width satisfies the
requirement and where the probabilistic guarantee is asymptotic w.r.t.
the number of samples. It applies to estimate the expectation of a
random variable. It is based on the central limit theorem.

• Clopper-Pearson bound [23] This static method computes con-
fidence intervals for binomial distributions. It takes as input three
parameters, the total number of samples, the confidence level and the
number of successful samples and outputs a confidence interval for the
probability of a sample to be successful.

149

6.3 Integration of Importance Sampling

Here the integration of algorithms presented in Chapter 4 is detailed.

6.3.1 Distribution Parameters

Cosmos is designed to simulate discrete event stochastic systems. To achieve
this, the time of occurrence of each event is sampled according to its distri-
bution. A queue of events stores the times at which each event will occur.
The main loop of the simulation engine takes the first event in this queue,
executes it and if needed adds or removes events from the queue. In this
setting it is easy to simulate CTMCs. At each step of the CTMC simulation,
a time is computed for each transition according to its rate and added to
the queue.

Consequently Cosmos does not simulate directly a DTMC, but a CTMC
whose rates are equal to the probability distribution of the DTMC. This
approach has some impact on the implementation of the importance sampling
algorithm.

In a general case we assume that vectors of probability µ•
u, u 2 N [{1}

required to compute rate of the importance sampling are stored as an array.
The reduction function f is given by the user as a C function. Algorithm 5
is used to compute each simulation step. Starting from a state s 2 S and a
current likelihood L 2 R

+⇤, the algorithm computes the next step t 2 S and
updates the likelihood. Function λ is the rate function of the CTMC. Function
λ0 is the rate function under the importance sampling, it is computed on-
the-fly and is implemented as an array. The two float variables Acc and Acc0

are used to store the sum of the rates. The data structure EQ is the event
queue, it is implemented as a heap to ensure that an insertion can be done in
logarithmic time. The event ? is a special event representing all the events
leading to the state s−.

Algorithm 6 is the plain algorithm used in Cosmos when importance
sampling is not required. In this algorithm the computation of the set
{s0 2 E | λ(t, e0) 6= λ(s, e0)} is done efficiently using the structure of the model.
As Cosmos takes as input a stochastic Petri net, the structure of the net is
analyzed to precompute this set. This set is in general much smaller than
the set E. The event queue must be initialized at the start of the trajectory.

When importance sampling is required, Cosmos uses Algorithm 5 which
is more costly. In this algorithm, the event queue is emptied and filled again
at each step of the simulation. In this case the function µ• is not local while
without importance sampling the firing of a transition of the Petri net is
local and only affects places to which it is connected.

Experiments simulating a fixed number of trajectories show that the
ratio of speed between Algorithm 6 and Algorithm 5 under an importance
sampling where µ• = 1 is around 5.5 slower on the example of tandem queues.

150

Algorithm 5: Simulation Step Under Importance Sampling with Sink
State

SimulationStep(s, µ•
u, µ

•
u+1, λ, L)

Data: λ0, Acc,Acc0, EQ
Result: t, L

1 EQ ;; Acc 0; Acc0 0
2 for e 2 {s0 2 E | δ(s, e) 6= s− ^ λ(s, e) > 0} do

// e loops over firable transitions not leading to s−.

3 λ0(s, e) µ•

u+1
(f(δ(s,e)))

µ•

u(f(s))

4 Acc+= λ(s, e)
5 Acc0+= λ0(s, e)
6 EQ[e] SampleExponential(λ0(s, e))

7 if Acc0 Acc then
// Add a special transition with the remaining

probabilities.

8 λ0(s,?) Acc−Acc0

9 Acc0 Acc
10 EQ[?] SampleExponential(λ0(s,?))

11 e argmine2E(EQ[e])
12 if e = ? then

// If e = ? the system is moved to state s−.
// The likelihood is set to 0.

13 t s−;L 0

14 else
15 t δ(s, e)

16 L ⇤= λ(s,e)
Acc

Acc0

λ0(s,e)

151

Algorithm 6: Simulation Step

SimulationStep(s, EQ, λ)
Result: t, EQ

1 e argmine2E(EQ[e])
2 EQ[e] 1
3 t δ(s, e)
4 for e0 2 {s0 2 E | λ(t, e0) 6= λ(s, e0)} [{e} do

// e0 loops over transitions altered by the last

transition.

5 if δ(t, e0) > 0 then
6 EQ[e0] SampleExponential(λ(s, e0))
7 else
8 EQ[e0] 1

// If e0 is no longer firable its firing time is set

to 1

This is acceptable as in rare event setting Algorithm 6 does not work at all.

6.3.2 State-Space Generation and Numerical Computation

In order to apply the methods described in Chapter 4, the tool has to generate
the state space and the transition probability matrix of the reduced model
and to perform numerical computation on it. As this part of the tool is only
supposed to work with small reduced models, it is not as much optimized as
the simulation part.

The workflow for using the importance sampling of Cosmos is in two
parts:

1. Cosmos is run on the reduced model and if required with a “reduced”
property. The tool generates the state space of the reduced model and
performs the required numerical computation for the time-unbounded
case. Results of this computation and the probability transition matrix
are exported into a file.

2. Cosmos is run on the initial model. It compiles the reduction function
with the model and imports the file containing the results of numerical
analysis or the transition probability matrix to compute the importance
sampling.

The state space generator is built on top of the simulator. From a state
of the system, all possible transitions are fired and the state obtained after
each firing is copied in a stack of states to be explored. Tools dedicated to
state-space generation usually rely on methods based on decision diagrams
and are much more efficient.

152

Transition probability matrices are stored as sparse matrices. Steady
state analysis is done by exporting the transition probability matrix to Prism
and retrieving the result. Prism state space generator is not used because
Cosmos needs to identify states of the reduced model to apply the reduction
function. Moreover it would require the reduced model to be given in the
Prism language whereas the initial model is a Petri net. Transient analysis
is performed by Cosmos using sparse matrix vector multiplication. This
transient analysis is performed using algorithms described in Chapter 4.

6.3.3 Fox-Glynn Algorithm and Uniformization

The computation of Poisson probabilities is performed using the freely avail-
able implementation of Fox-Glynn algorithm described in [51]. The uni-
formization of the original Petri net model is done by adding a special
transition which implements loops on the underlying CTMC. The loop rate
is computed after each firing of a transition.

6.4 CosyVerif

6.4.1 Description

CosyVerif [II] is a software environment for the verification of systems.
The goal is to provide an environment allowing to handle and modify models
given in various formalisms and to interface many verification tools. This
allows a user to build and modify models in an easy-to-use graphical interface
and to then use various tools in the same interface. One may also edit
a model on a personal computer while running verification tools on more
powerful machines using a client-server architecture.

Virtual Machine

Web Client and Interface

Service
Cosmos

Cosmos

Service
Cosmos

Service
1

Service
2

T
o
o
l
2

N
e

tw
o

rk

T
o
o
l
1

Server: Alligator

…

Eclipse Client and
Interface: Coloane

Command Line Client

Figure 6.3: Scheme of CosyVerif architecture

To achieve these goals, CosyVerif relies on a common file format to

153

exchange any kind of graph-based model between its tools. This file format
is structured using the notion of formalism. A formalism is a meta-model for
a formal notation. Tool developers must then describe formalisms accepted
by their tools. When a model is created, one chooses the formalism to which
this model belongs. The platform CosyVerif matches then formalisms of
the models and tools. It provides users with a list of available tools for a
given model. To achieve this, a language for formalism has been developed
and is called Formalism Markup Language (FML). It describes how a model
is structured. All models described by a FML are graph based and are
encoded in the Graph Markup Language (GrML). Both FML and GrML
rely on XML as file format. Figure 6.4 illustrates the relation between FML,
GrML formalisms and models.

FML

User
Formalism

GrML

User
Model

Meta-Meta

Meta

Instance

is an instance of

complies with
is structured by

specialises

is an instance of

Figure 6.4: User formalism and model complying with FML and GrML

To handle various kinds of formalisms, CosyVerif uses a hierarchy of
formalisms sharing common concepts. One part of this hierarchy concerns
automata, the other one Petri nets. In each of these parts, variants of for-
malisms are defined incrementally, favoring the reuse of portions of formalisms.
Figure 6.5 shows the hierarchy as it is implemented in CosyVerif.

6.4.2 Personal Contributions

CosyVerif is the successful result of a collaboration of experts of different
formalisms. It consists of around 20K lines of code for the server and 60K
lines of code for the client. It is mainly written in Java and XML. In this
section, I describe my personal contributions to this platform.

• CosyVerif has been initially built for handling Petri nets and sym-
metric nets. In order to integrate Cosmos in the platform, several
new formalisms had to be built in and lead to the current hierarchy of
formalisms of CosyVerif 6.5:

154

. A formalism for handling general arithmetic and boolean expres-
sions used in all formalisms of the platform. It also handles
parameters in expressions in a uniform way.

. Stochastic extensions of Petri nets defining stochastic nets with
general distributions from Petri nets and symmetric stochastic
nets from symmetric nets.

. Several variants of automata, and in particular linear hybrid
automata which are used by Cosmos.

Abstract formalisms are used in this hierarchy to denote partial im-
plementation of formalisms. For example, abstractPN-Core defines
a notion of Petri nets as a bi-parted graph without marking or val-
uation. This formalism is extended later in P/T Net when markings
and valuations are integers and in Symmetric-Net when markings and
valuations consist of colored tokens.

• The graphical editor of CosyVerif allows one to design models of
each formalism of the hierarchy. This required to implement parser
handling of all expressions appearing in the various formalisms and
producing an AST which is encoded in GrML.

Figure 6.6 shows a screen-shot of the graphical editor Coloane displaying
a trace of a Cosmos simulation through the CosyVerif platform.

• All tools integrated to the CosyVerif platform are launched through
small programs called services which specify the list of parameters
required by a tool and call the tool with those parameters. Tools
allowing different kinds of computation which require different inputs
are integrated with several services, which is the case of Cosmos.

Expressions and

Boolean expressions

Abstract

hybrid automaton

Abstract

timed automaton

abstract PN-

Modules

Abstract parametric

timed automaton

abstractPN-CoreAutomaton

Hierarchical

Place/Transition-Net

P/T Net

Hybrid

Automaton

Linear

Hybrid Automaton

Parametric

Timed Automaton

Timed

Automaton

Symmetric-Net

with-Bags

Symmetric-Net

Stochastic-Net

Stopwatch

Automaton

Parametric Stopwatch

Automaton

Stochastic-

Symmetric-Net

Figure 6.5: Hierarchy of formalism in CosyVerif

155

Figure 6.6: Screen-shoot of Coloane calling the tool Cosmos

6.5 Stochastic Symmetric Net for Cosmos

Stochastic Symmetric Nets (SSN) are a well-known extension of Petri nets
with an exponentially more compact representation. They can also be used
to specify parametrized Petri nets in a compact way. In this section, I present
contributions related to the implementation of the model-checking of SSNs
in Cosmos. This work has been published in [I]. To take full advantage
of the SSN model, the specification logic must be extended in order to
specify properties on colored tokens. There are two possible approaches for
simulating SSNs:

• Direct simulation consists in using a simulator which takes colors into
account and which simulates directly the semantic of SSNs. As rules
for firing transitions become more complex, the simulation time can be
increased by this approach.

• Reduction to stochastic Petri nets consists in unfolding a SSN into
a stochastic Petri net with the same semantics and then using a

156

stochastic Petri net simulator. This approach allows one to use all
the optimizations of the Petri net simulators. However, the size of the
unfolded Petri net may become huge which can be problematic on some
simulators. This approach also requires to “unfold” the specification
formula to a formula about stochastic Petri nets.

The two approaches have been implemented in Cosmos and this section
provides experimental results which compare them.

6.5.1 Extension of HASL

In this section, we present an extension of the HASL logic to SSNs. As SSNs
use colored tokens, the HASL logic had to be extended to be able to deal
with them.

The HASL logic was extended in several ways, mainly by extending the
definition of LHA:

1. Automata variables can now have three different types:

• flow variables take values in R and correspond to the original
variables of HASL. They evolve continuously with a constant rate
with respect to the time between two transitions.

• stable variables take values in R but are only altered by transitions
updates. On a single trajectory they take only a countable number
of values. As they do not vary between transition firings, they
can be used as constants in linear expressions.

• color variables take colors as value and are modified only on
transition updates. A color variable can be seen as a subtype of a
stable variable.

Additionally, these three type of variables can be indexed by a color or
an integer. In this case they behave like an array.

2. An event read by the LHA is now a pair of a transition identifier and a
binding of the SSN color variables. This allows the LHA to synchronize
over specific colors of the net. The value of binding can be compared
to or stored into color variables.

3. An expression involving some marking of the net specifies a filter on
the colors of tokens which can be color variables.

4. Linear expressions of variables are linear combinations of flow variables
where coefficients are expressions that can contain stable variables and
marking expressions.

157

The extension of HASL allows one to specify interesting complex prop-
erties like property D1 given in Figure 6.7. This property applies to the
database model presented in Figure 2.12 on page 41. It computes the CDF
of the time for an update to be performed when the system is in a nominal
state: the number of concurrent updates is small and the communication
speed between the sites is high.

More precisely, the property D1 describes the cumulative distribution
function of the time required for a change request to complete, under the
condition that the time to acquire the mutex on the file to be changed does not
exceed a given threshold and the time to send all messages from the active
site which modified the file to the passive sites is below a given threshold. The
LHA expressing formally D1 starts by waiting in location l0 until T time
units elapse, then waits in location l1 for the transition Start to occur. The
binding of the color variables of the SSN is copied in the LHA color variable.
Using the color variable, the automaton waits for the transition Acquire in
l2 with the same binding as for the Start transition. This waiting time is
bounded by the constant threshold. The automaton continues to synchronize
with the SSN until the transition Release occurs and the final state l6 is
reached. All trajectories in which a time bound is exceeded are rejected.
Other examples of properties using the extension of HASL on different models
are given in [I].

Property D1 has been evaluated with Cosmos providing the graph
depicted in Figure 6.8.

6.5.2 Implementation of SSN in Cosmos

The implementation of SSN in Cosmos has been influenced by the specifica-
tion language of symmetric nets in the CosyVerif platform. In particular,
binding variables are defined globally to the model and not locally for each
transitions.

Let us first describe two possible data structures to store colored tokens:

• Each place marking can be implemented as a dynamic structure con-
taining a list of colored tokens with their number of occurrences. This
data structure is well suited for places such that the number of tokens
for any marking is small but the cardinality of the domain is big. The
memory consumption is linear in the number of tokens. Within this
approach, the time required for checking the presence of a token with
a particular color is linear whereas emptiness of a place can be checked
in constant time.

• Alternatively, each place marking can be implemented as an array of
integers where each possible colored token is assigned to a cell of the
array. This data structure comes with an overhead in the memory
consumption when the number of colors is too big. The time required

158

{Acquire s,f
[s=xs,f=xf]},

tUpd<threshold, ∅

{Start s,f },
True,

{xs←s, xf←f,
tUpd← 0}

ALL\{Release s,f [xs=s, xf=f]},
True, ∅

t' : 1

l n0
l n1

ALL\{Start s,f },
True, ∅

l n6

ALL, True, ∅

#, t=T,
{t ← 0}

l n5
{Release s,f
[xs=s, xf=f]},

True, ∅t' : 1

l n2
tUpd' : 1

ALL\{Acquire s,f [s=xs,f=xf]},
tUpd<threshold, ∅

{Change s,f
[s=xs,f=xf]},

True, {tSend ← 0}

ALL\{Change s,f
[s=xs,f=xf]},True, ∅

ALL\{SendMsg s,f [f=xf]},
tSend<MaxSendT, ∅

l n4
tUpd' : 1
tSend' : 1

l n3
tUpd' : 1

{SendMsg s,f [f=xf]},
tSend<MaxSendT ∧

card(Message<*,f>)>0, ∅

{SendMsg s,f [f=xf]},
tSend<MaxSendT ∧

card(Message<*,f>)=0, ∅

Constants: T, threshold, MaxSendT

Flow variables: t, tUpd, tSend
Color variables: xs ∈ S, xf ∈ F
HASL expression: CDF(tUpd)

Figure 6.7: HASL formula for the property D1

to check the presence of tokens of a particular color is constant whereas
checking for emptiness required a time proportional to the size of the
domain of the place.

The second approach is implemented in Cosmos as it allows faster simulation
when the number of colors is not excessively large, which is usually the case.
This also extends naturally the original implementation of Cosmos for the
marking of uncolored tokens and fits well within the code generation algorithm
of the tool. Specific classes are generated to handle each color domain and
color class. These classes handle color tokens of each domain.

An optimization could be to implement both approaches, and choose
for each place how to implement the marking, based on an analysis of the
net providing the size of the domain and a possible bound on the maximal
number of tokens.

In the SSN implementation of the simulator, events are additionally
labeled by the bindings of the color variables of the SSN. Code is generated
to enumerate fireable bindings for a given pair of a colored marking and a
transition.

The implementation of the extension of HASL in Cosmos is quite straight-

159

Figure 6.8: Result of the estimation of D1 on the distributed database
example

forward, the automaton is synchronized with information on the binding of
variables instead of only synchronizing over transitions.

6.5.3 Runtime Comparison of Symmetric Net Simulator vs

Petri net Simulator

Given a SSN, a Stochastic Petri net can be built such that the set of reachable
markings of both nets are in a one-to-one mapping. This transformation
known as unfolding is implemented in Cosmos. In this section, the time and
memory consumptions of Cosmos on a model and on its unfolded counterpart
are discussed. The comparison of some performance evaluation measures
also asserts the correctness of the SSN simulator.

The number of places and transitions is usually much bigger in the
unfolded Petri net than in the symmetric one. For instance on the database
example, the place wait mutex whose domain is S ⇥ F needs to be replaced
by |S| · |F | places in the unfolded model. Similarly, each transition is replaced
by a transition for each possible binding.

As Cosmos relies on code generation to simulate efficiently Petri nets,
some code is generated for each place and transition of the net. Thus the time
and memory required for the building phase before the simulation depends
on the size of the net. When the number of places and transitions is small,
this building time is negligible. However when this number becomes bigger
than 1000, it may become the bottleneck of the computation.

Figure 6.9 represents a client-server system where each query of a client
requires three independent computations. This model uses colored tokens to
keep track of the different queries. This client-server system is used with the
database example to benchmark the symmetric net simulator.

Figure 6.10 shows the comparison of the time consumption of both the
SSN and SPN simulators on the client server example (on the right) and the

160

C = {c1, . . . , c6} is client.

All

client: C

SendReq

<x>
pre_proc: C

<x>

ForkTasks

<x>

4

max_req

ready_output: C

SendOutput

<x>

<x>

<x>

JoinTasks

<x>

<x>

<x><x>

<x>

<x>

queue2: C ExecTask2
<x>

wait_join2: C
<x>

queue1: C ExecTask1
<x>

wait_join1: C
<x>

queue3: C ExecTask3
<x>

wait_join3: C
<x>

Figure 6.9: SSN representing a client server system

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30

T
im

e

Number of sites and files

Unfolding the Database Example

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100120140160180200

T
im

e

Number of clients

Unfolding the Client Server Example
Colored Sim.
Colored Build

Unfolded Sim.
Unfolded Build

Figure 6.10: Time comparison of SSN and SPT simulators

database example (on the left) as a function of the size of the color class. The
time for building the simulator is also reported. The memory consumption
in the building phase is proportional to the time consumption and thus is
omitted in the graph for the sake of clarity. The memory consumption in the
simulation phase is negligible and thus is also omitted. In both examples,
the mean number of tokens of a specific color in a specific place has been
evaluated (Property C2 for the client-server). The results of all simulations
are consistent, with intersecting confidence intervals on SSN and SPN which
confirms the correctness of the SSN simulator implementation.

The two examples show different behaviors. The client-server example
features simple firing rules for the transitions. In this case, the expressions
on the arcs are simple combinations of the binding variables. Therefore,
these firing rules are simulated efficiently and the simulation time in the
SSN is only slightly bigger than in the SPN. At the same time, as the SPN
size increases drastically with the number of clients, the building time for
the SPN simulator becomes intractable. The construction time on the SSN
is always negligible. Thus on this example, the use of SSN speeds up the

161

overall computation.
On the database example, the firing rules are more complicated. In

particular, arcs labeled by <All − s, f > are naively handled by Cosmos,
yielding a large overhead in the simulation time. Even as the building time
increases for SPN, for properties which require a large number of trajectories,
the additional time required to used SSN is not negligible.

6.6 Comparison Between Statistical Model Check-

ers

In this section, we compare Cosmos to other statistical model checkers with
respect to different criteria:

• Focusing on the inputs of the tools, we compare the expressiveness and
the conciseness of the formalisms for modeling a system.

• Similarly, we discuss the expressiveness and the conciseness of the
language for the specification of a logical property.

• As these tools generate a large number of samples, we compare the
time to generate a (random) trajectory in Section 6.6.2.

• We present the statistical procedures included in each of these tools
and their impact on the whole computation time.

The following comparison is related to the one of [50] where the authors
performed experimental comparisons of numerical and statistical model
checkers. Recently, new tools performing SMC have been released justifying
new comparisons.

6.6.1 Expressiveness Comparison

Numerous tools are available for performing SMC, some of them also perform-
ing numerical model checkers. Here is a non-exhaustive list of tools freely
available for universities: Cosmos, Plasma [53], Prism [63], Uppaal [17],
Apmc [48], Ymer [87], Mrmc [58] and Vesta [81]. We have not found
any updates of Apmc since 2006. Since 2011, Mrmc has not been updated
and the corresponding team seems to use Uppaal. Finally, the link for
downloading Vesta is not valid anymore. So we focus on the following tools:
Ymer, Prism, Uppaal, Plasma and, Cosmos.

Ymer

Ymer is a statistical model checker taking as input CTMCs or generalized
semi-Markov processes, described in the Prism language. Its specification
language is a fragment of CSL (an adaptation of CTL with probabilistic

162

operators replacing path operators and adding bound to time operators)
without the steady-state operator but including the unbounded until.

Prism

Prism performs numerical and statistical model checking on probabilistic
models. The numerical part of Prism is dedicated to discrete and continuous
Markov chains, Markov decision processes and probabilistic timed automata.
The statistical part deals with discrete and continuous Markov chains. The
Prism language defines a probabilistic system as a synchronized product
between modules with finite state space and guarded transitions. Using this
representation, this language describes big systems in a compact way. The
verification procedures of Prism take as input a wide variety of languages
for the specification of properties. Most of them are based on CSL or PCTL
(a formalism close to CSL).

Uppaal

Uppaal is a verification tool including many formalisms: timed automata,
hybrid automata, priced timed automata, etc. It supports automata-based
and game-based verification techniques. Large scale applications have been
analyzed with Uppaal. It has recently been enriched with a statistical
model checker engine. The corresponding formalism is based on probabilistic
timed systems. The probabilistic extension of Uppaal defines distributions
as follows: exponential for transitions having guards without upper time
bound, and uniform otherwise. The specification language is (P)LTL (i.e.
an adaptation of LTL with path operators substituted for quantifiers) with
bounded until.

Plasma

Plasma is a platform dedicated for statistical model checking, designed as
flexible. The plugin system allows a developer to add extensions and can
also be integrated in another software in a library. Prism and languages
dedicated to the modeling of biological systems are supported. Prism
language is extended with more general distributions. The specification
language is a restricted version of PLTL with a single threshold operator.

Discussion

Formalisms are characterized by different features. First, they can be
programming languages oriented like Prism or formal model oriented like
Cosmos. In general, formalisms take advantage of the concurrency present
in the model. Uppaal combines both approaches and allows one to specify

163

timing requirements in the system. Application-based languages are also
proposed (e.g. for biological systems in the case of Plasma).

Property specifications are either defined by some timed probabilistic
temporal logic or by combining hybrid automata with appropriate expres-
sions. Whatever the choice, the main distinctive features are the following
ones: presence of the unbounded until, nesting of probabilistic operators
and expressiveness of time requirements. Beyond boolean properties and
probability computations, Cosmos provides an expressive way to specify
performance indices.

6.6.2 Runtime Comparison of Statistical Model Checkers

In this section, we perform runtime comparisons of several statistical model
checkers. We choose examples taken from classical probabilistic system
benchmarks. These examples are easily modeled in the different formalisms
of tools.

Tandem queues

The first example is a variation of the tandem queue example used as the
running example and is given in Figure 6.11. The Tandem Queues System
(TQS) is a M/Cox2/1 queue composed with a M/M/1 queue, it is available
on the Prism web page [63] (where the Cox distribution is detailed). Please
note that this example is different from the tandem example used in other
sections of this thesis. Here, the two queues are bounded by a constant N .
The specification property, denoted φTQS , is: The two queues are full before
T time units, where T is some time bound. This property is expressible in
all specification languages of the tools. One may be interested either in the
satisfaction probability or only in knowing whether it is above 0.3. For the
experiments, we use N = 5, λ = 20, µ1 = 0.2, µ0

1 = 1.8, µ2 = 2 and = 4 as
in [63].

n1 n2
λ µ1, µ

0
1, µ2

Figure 6.11: Tandem Queues System (TQS)

Dining Philosophers

The Dining Philosopher Model (DPM) is a standard benchmark problem
for discrete event systems. We have adapted it in a probabilistic setting. In
the DPM, N philosophers eat and think around a table. While thinking, a
philosopher decides after some random time to pick its right fork, then after
some more time, he decides to take its left fork and to start to eat. Later on,

164

the philosopher starts thinking again and puts back his two forks. A fork is
shared between two neighbours at the table. In the probabilistic setting, all
the times are exponentially distributed. The property that we study is the
following one: a deadlock occurs before they have been N lunches (possibly by
the same philosopher). The single deadlock occurs when all philosophers have
taken their right fork. The number of states in this system is exponential
with respect to the number of philosophers. This benchmark is thus a typical
case were SMC is the only way to perform analysis of the system due to the
state space explosion problem. For the experiments, we choose 10 for the
(common) rate of the exponential distributions.

Experiment settings

We have set the following statistical parameters: the confidence level is 0.95
and the width of confidence interval is 0.005, the probability of error is 0.005
for the hypothesis testing and the width of the indifference region is 0.001.
These parameters have been chosen in order to obtain a important number
of trajectories. The other parameters have been set to their default value.
Most tools can take advantage of parallelisation but for simplicity we use
only one processor1 for the comparison.

Prism, Uppaal and Plasma support Chernoff-Hoeffding and hypothesis
testing methods. In addition, Prism provides two sequential methods for
confidence intervals where the stopping criterion is unknown to us. Cosmos
provides Chernoff-Hoeffding, Chow-Robbins and Gaussian methods. Ymer

offers the hypothesis testing method.

DPM experiments.

Figure 6.12 refers to the runtime for the DPM as a function of the number
of philosophers. The results are also reported in Table 6.1. Among the
tools using Chernoff-Hoeffding bounds, Cosmos is the fastest. For 100
philosophers, Plasma is 1.95 times slower, Uppaal is 1.5 times slower
and Prism-APMC is 2.5 times slower. Among the tools using sequential
procedure, the two versions of Prism have similar runtime and Cosmos is
up to 1.95 times faster.

TQS experiments with confidence intervals.

Results about the runtime comparison with different time bounds T are
reported in Figure 6.13. The results are also reported in Table 6.2. There
are two kinds of behaviors for tools depending on the applied method. For
the first kind which corresponds to the Chernoff-Hoeffding method, the

1These experiments have been executed on a MacBook Pro, with processor 2.4 GHz
Intel Core 2 Duo.

165

Figure 6.12: Runtime for a Probability Measure of the Philosophers Model

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70 80 90 100

S
im

u
la
ti
on

T
im

e

Number of Philosophers

Cosmos (Chow and Robbins)
Cosmos (Chernoff)

Uppaal
Prism-CI

Prism-ACI
Prism-APMC

Plasma

Philo Cosmos Cosmos Uppaal Prism Prism Prism Plasma
C-H CI ACI APMC

5 5 8 9.4 6 6 13 13
10 10 21 30 19 20 48 43
20 26 79 118 60 64 207 159
50 90 467 827 218 221 1369 1097
100 166 2140 3200 424 323 5450 4181

Table 6.1: Runtime comparison for the DPM

simulation time increases with respect to the time bound T . About 295000
trajectories are required to obtain the specified confidence interval. For the
second kind which corresponds to sequential confidence interval methods,
the required number of samplings decreases when the time bound goes to
infinity. This phenomenon is a consequence of the evolution of the satisfaction
probability of φTQS that goes to 1 when T goes to infinity.

Among the tools using Chernoff-Hoeffding method, Cosmos is again the
fastest. When the time bound is 200, Plasma is 2.58 times slower, Uppaal
is 4.18 times slower and Prism-APMC is 6.47 times slower. Among the tools
using sequential procedure, when the time bound is 40, the two versions of
Prism have similar runtime and Cosmos is up to 2.85 time faster.

166

Figure 6.13: Runtime for a probability measure of the TQS model

0

50

100

150

200

250

0 50 100 150 200

S
im

u
la
ti
on

ti
m
e

Time Bound

Cosmos (Chow and Robbins)
Cosmos (Chernoff)

Uppaal
Prism-CI

Prism-ACI
Prism-APMC

Plasma

Time Cosmos Cosmos Uppaal Prism Prism Prism Plasma
C-H CI ACI APMC

20 9 16 59 40 39 81 14
40 14 24 95 66 72 138 25
80 12 34 133 65.6 64 213 46
200 3 38 159 7 6 246 98

Table 6.2: Runtime comparison for the TQS

TQS experiments with sequential hypothesis testing.

Results on hypothesis testing are reported in Table 6.3. Each value is the
mean of 100 experiments. The threshold value for the hypothesis is always
very close the numerical value in order to increase the number of trajectories
performed by tools. Results confirm that hypothesis testing methods are
faster than confidence interval based methods. All tools generate a similar
number of trajectories. In most cases Cosmos is the fastest, Ymer being
up to 1.8 times slower, Uppaal2.8 times slower, and Prism 6 times slower.

SMC Comparison Conclusion

While the formalisms for modeling the system are quite different and address
specific kinds of applications, specifications of properties are somewhat

167

Figure 6.14: Runtime for a probability measure of the TQS model for
Sequential Testing

0
5
10
15
20
25
30
35
40
45
50

0 20 40 60 80 100 120 140 160 180 200

S
im

u
la
ti
on

ti
m
e

Time Bound

Uppaal Prism-CI Ymer Cosmos

Time NumValue p ≥? Uppaal Prism Ymer Cosmos

10 0.17505 0.17 4.78 12.02 3.29 3.36
20 0.33574 0.33 11.54 23.78 7.48 5.08
40 0.56931 0.564 21.23 46.47 14.00 7.78
80 0.81894 0.814 20.10 43.46 13.01 7.60
200 0.98655 0.981 2.81 8.10 1.92 2.74

Table 6.3: Runtime comparison for the TQS for Sequential Testing

similar. We performed experiments on classical benchmarks using these tools.
They have shown that the choice of the statistical test has a big impact on
the simulation time. Thus tool developers should provide as many tests as
possible to let users choose which one best fits their needs. For the same
statistical procedure, we observed that differences of speed can be as big as
six times faster. What remains to be done is to perform these comparisons on
large scale case studies, contrary to the benchmark we choose here. However
some difficulties may arise for the modeling of such case studies in every
formalism.

6.7 Importance Sampling Benchmark

6.7.1 Global overflow in tandem queues

The first example we study is the running example of the tandem queue
system. Recall that the running example consists of two waiting queues in
tandem (M/M/1), where client arrivals are distributed following a Poisson
distribution of parameter λ. Clients are served in the first queue with rate

168

⇢1 and in the second queue with rate ⇢2. We are interested in computing
the probability of a global overflow, that is the probability to reach a state
where the total number of clients is larger than a threshold N , starting from
a state with one client in the first queue, without reaching a state where the
system is empty. As we are interested in rare-event probability, we suppose
that the system is stable, that is ⇢1 < λ and ⇢2 < λ.

We extend this system to d queues in tandem, the probability of interest
is unchanged and the reduced model is built by bounding all the queues
except the first one by R. Figure 6.15 shows Petri nets modeling the system
and its reduction. The mapping function f iteratively maps the exceeding
clients of each queue to the previous one starting from the last one.

Q1 Q2 Qdλ ρ1
. . .

ρd

f

Q1 Q2

R AQ2

Qd

R AQd

λ ρ1
. . .

ρd

Figure 6.15: Tandem Queues with several queues

This system is a classical benchmark for importance sampling methods
on queuing network. Even if this example is simple to describe, several
issues arise when designing importance sampling for it. In [71], an empirical
state-independent importance sampling is designed. It consists in exchanging
the arrival rate and smallest serving rate. It was proved later in [80] that
this importance sampling is optimal among the state-independent important
samplings. In [24], an exhaustive analysis of state-independent important
sampling shows that some values of λ, ⇢1, ⇢2 in the importance sampling
lead to infinite variance. In [29], a method to build efficient state-dependent
importance sampling is described. This method is asymptotically optimal
when some of its parameters tend to zero.

In Table 6.4, we compare our method to several of these importance
samplings. Experiments have been performed for several values of d and N .
The confidence interval has been computed with a confidence level of 0.95.
The following table shows the parameters used depending of the value of d,
the second column indicates the parameter R used to bound the queues in

169

d N Exp Num. Cosmos DSW PW
Mean C.I Mean C.I Mean

30 10−18 2.634 2.65 [2.63, 2.66] 2.73 [2.37, 3.09] 9.7·10−1

2 40 10−24 1.034 1.04 [1.03, 1.05] 1.05 [0.99, 1.11] 1.4·10−1

50 10−31 3.801 3.79 [3.75, 3.83] 3.75 [3.43, 4.07] 4.4·10−1

20 10−12 2.043 2.04 [2.03, 2.05] 2.05 [1.97, 2.13] 7.2·10−3

4 25 10−16 5.021 5.02 [4.99, 5.05] 5.07 [4.93, 5.21] 8.5·10−3

30 10−19 1.099 1.11 [1.10, 1.12] 1.08 [1.02, 1.14] 1.8·10−3

20 10−14 3.168 3.17 [3.16, 3.18] 2.93 [2.47, 3.39] 7.7·10−6

9 25 10−19 9.397 9.40 [9.36, 9.43] 10.80 [8.20, 13.1] 4.4·10−6

30 10−23 2.154 2.14 [2.13, 2.15] 1.98 [1.38, 2.58] 3.8·10−7

Table 6.4: Comparison of different importance samplings for computing the
overall overflow probability on tandem queues

the reduced model:

d R λ ⇢1 = ⇢2 = · · · = ⇢d Number of trajectories

2 4 0.1 0.45 20, 000
4 3 0.04 0.24 20, 000
9 2 0.01 0.11 100, 000

For the sake of readability, the exponent has been factorized for each line
and is reported in the third column.

• The fourth column reports results computed numerically with the tool
Prism.

• Columns 5 and 6 report the result of our method using the tool Cosmos.

• Columns 7 and 8 report experiments performed in [29] using an asymp-
totically optimal importance sampling.

• The last column reports experiments performed using the importance
sampling described in [71], which is an optimal state-independent
importance sampling.

We observed that in all cases our method provides tighter confidence
intervals than the ones of DSW (at least 5 times tighter and at most 70)
and contains the real value. For PW, we observed a classical caveat of
importance sampling, that is underestimation of the value. As the value is
underestimated, confidence interval computed in this case were not correct
and thus were not reported. This caveat will be discussed in more details on
experiments where guaranteed variance reduction cannot be obtained.

We now analyze the memory consumption of the different variants of our
method compared to numerical computations. The number of states in the
model is bounded by Nd and the number of states in the reduced model is
bounded by N · (R + 1)d−1. Table 6.5 reports results of experiments with

170

d Size of C Prism Reduce Model, Prism Cosmos
Mem. Time Size Time Mem. Time S Time N Mem.

1 51 57 0.052 51 2.0 57 7 8 67
2 1,326 59 0.22 198 1.7 58 11 12 69
3 23,426 68 0.73 768 1.7 60 17 20 70
4 316,251 92 1.4 2,976 1.7 75 27 29 72
5 3,478,761 181 39 11,520 1.7 102 47 51 73
6 32,468,436 747 580 44,544 2.0 187 101 109 74
7 264,385,836 5,174 6,635 172,032 4.1 199 341 372 76
8 1.9 · 109 36,736 75,940 663,552 12 229 1,666 1,773 103
9 12.6 · 109 Out of Mem. 2,555,904 50 279 10,470 11,536 388
10 75.4 · 109 9,830,400 217 313 51,377 51,840 1,491
11 418.1 · 109 37,748,736 964 787 284,726 256,165 6,432

Table 6.5: Time of memory consumption for the computation of global
overflow for the tandem queues

N = 50, R = 3 and with increasing values of d. The number of samples used
by Cosmos is equal to 100, 000. The second column reports the size of the
DTMC. Columns 3 and 4 report the memory (in megabytes) and time (in
seconds) required by Prism to perform the computation. Column 5 reports
the size of the DTMC of the reduced model. Columns 6 and 7 report the time
and memory required by Prism to compute the vector µ•. Finally columns
8, 9 and 10 report the time and memory used by Cosmos to perform the
simulations using either important sampling with sink state (S) or important
sampling with normalization (N). As the memory consumption of these two
importance samplings are equal, it is reported only once.

The size of the DTMC grows exponentially with d as well as the time
and memory required by Prism to perform the computation. For d = 9, the
required memory exceeds the maximum of 42GB available on the computer
used for the experimentation. The size of the reduced model also grows
exponentially with d but at a much slower pace. The computation of µ• is
therefore always tractable. The time required by Cosmos for the simulation
also increases but is much smaller than the time required by Prism when
the model becomes big (d ≥ 6). Times required for the importance sampling
with sink state and with normalization are similar.

Table 6.6 and 6.7 show statistical results. The first column represents the
number of queues. The exponent has been factorized to the second column
to save space. The third column reports numerical results when available.
The fourth column reports the value of µ•(s•0) computed with Prism on
the reduced model. For the two importance samplings, the mean value, the
confidence interval and the confidence interval width are reported. For the
importance sampling with sink state, confidence intervals are computed using
bounds on Bernouilli law. For the importance sampling with normalization,
Chernoff-Hoeffding bounds are used and intervals computed using Gaussian
analysis are also provided.

171

d Exp µ(s0) µ•(s•0) I.S. with Sink State
Mean CI Width

1 10−52 8.519 8.52 8.519 [8.518, 8.519] 0.001
2 10−50 4.251 5.29 4.256 [4.238, 4.273] 0.034
3 10−48 1.082 1.35 1.081 [1.077, 1.086] 0.009
4 10−47 1.871 2.27 1.866 [1.858, 1.873] 0.014
5 10−46 2.474 2.93 2.471 [2.463, 2.480] 0.017
6 10−45 2.667 3.09 2.669 [2.661, 2.678] 0.017
7 10−44 2.440 2.78 2.440 [2.433, 2.448] 0.015
8 10−43 1.948 2.18 1.947 [1.942, 1.953] 0.011
9 10−42 1.53 1.383 [1.379, 1.387] 0.007

10 10−42 9.76 8.904 [8.882, 8.927] 0.045
11 10−41 5.70 5.243 [5.231, 5.256] 0.025

Table 6.6: Numerical and statistical results for the computation of global
overflow for the tandem queues using importance sampling with sink state.

The observed confidence intervals are always very tight around the mean
value and contain the numerical value when it is available. The first line
d = 1 is reported for completeness but is not relevant as the reduced model
is equal to the initial model.

On this model, the importance sampling with normalization with Chernoff-
Hoeffding bounds is less effective than the one with sink state. This is due
to the Chernoff-Hoeffding bounds which are very conservative. Asymptotical
confidence intervals computed using Gaussian analysis are also provided. On
this set of experiments, the Gaussian intervals are tighter than the Chernoff-
Hoeffding and Bernouilli ones, and still contain the numerical value when
available.

6.7.2 Local Overflow in Tandem Queues

We consider the tandem queue system with two queues with a different
property to check: The second queue contains N clients (n2 = N)

before the second queue is empty (n2 = 0). The state space is S =
N⇥ [0..N] with initial state (0, 1). Contrary to the first example, C is now
infinite but C• must be finite in order to apply the numerical model checker.

The reduced model behaves as the original one until the first queue
contains R clients. Then the model behaves as if there was an infinite number
of clients in the first queue. The Petri net is depicted in Figure 6.16(a). The
corresponding reduction function f (whose effect on the original chain is
represented in Figure 6.16(b)) is defined by:

f(n1, n2) =

⇢

(n1, n2) if n1 R
(R,n2) otherwise

172

d Exp µ(s0) µ•(s•0) Mean Chernoff-Hoeffding Gaussian
CI width CI width

1 10−52 8.519 8.52 8.519 [8.478, 8.519] 0.041 [8.518, 8.519] 0.001
2 10−50 4.251 5.29 4.251 [4.226, 4.277] 0.051 [4.244, 4.258] 0.014
3 10−48 1.082 1.35 1.081 [1.075, 1.087] 0.013 [1.080, 1.082] 0.002
4 10−47 1.871 2.27 1.869 [1.859, 1.880] 0.022 [1.867, 1.871] 0.004
5 10−46 2.474 2.93 2.474 [2.460, 2.488] 0.028 [2.472, 2.476] 0.004
6 10−45 2.667 3.09 2.667 [2.652, 2.682] 0.030 [2.665, 2.669] 0.004
7 10−44 2.440 2.78 2.439 [2.426, 2.453] 0.027 [2.438, 2.441] 0.003
8 10−43 1.948 2.18 1.948 [1.938, 1.959] 0.021 [1.947, 1.949] 0.002
9 10−42 1.53 1.385 [1.378, 1.392] 0.015 [1.384, 1.386] 0.001

10 10−42 9.76 8.908 [8.861, 8.955] 0.094 [8.904, 8.911] 0.007
11 10−41 5.70 5.245 [5.218, 5.272] 0.055 [5.243, 5.247] 0.004

Table 6.7: Numerical and statistical results for the computation of global
overflow for the tandem queues using importance sampling with normaliza-
tion.

Table 6.8: Experimental results for the local overflow in tandem queues
N R T(s) Size of Exp µ•(f(s0)) Cosmos

C• C• µ(s0) C.I. T(s) Nb Traj.
25 12 ⇡ 0 338 10−6 11.6 1.48 0.283 2 5000
50 29 ⇡ 0 1530 10−11 29.8 3.81 0.719 13 5000
100 66 1.44 6767 10−20 18.7 4.22 0.734 17 3000
500 370 1770 185871 10−91 10.3 6.63 0.805 37 2000
1000 740 24670 741741 10−179 324 3.95 4.0 180 3000

173

Q1

R
AQ1

Q2λ

ρ01R

ρ1

ρ2

(a) Reduced model

s
−

s+

s0

(b) Reduction chain

Figure 6.16: Petri net for the local overflow in tandem queues (R = 3, N = 5)

We found by running experiments on small values of N and R that for
R ≥ 0.74⇥N we have µ(s0) ≥ µ•(f(s0))/10. This example shows that we
can apply our method on an infinite model subject to the specification of
a finite reduced model. Observe that computation time reductions w.r.t.
standard statistical model checking are still impressive.

6.7.3 Bottleneck in Tandem Queues

We consider the tandem queue system with another property to check: The
second queue is full (n2 = N) before the first one (n1 = N).
The reduced model is obtained by considering that the second queue is
full when it contains N −R clients or in an equivalent way that the second
queue always contains at least R clients. The corresponding Petri net is
depicted in Figure 6.17(a). The reduction function (whose effect on the
original chain is represented in Figure 6.17(b)) is defined by:

f(n1, n2) =

⇢

(n1, R) if n2 R
(n1, n2) otherwise

However, the experimental results are not satisfactory since µ(s0) ⌧
µ•(f(s0)) when R is small compared to N . This shows that designing a
reduced model with relevant computation time reduction is sometimes tricky
(and remains to be done for this example).

6.7.4 Parallel Random Walk

The Petri net depicted in Figure 6.18 models a parallel random walk of
N walkers. A walk is done between position 1 and position L starting in
position L/2 and ends up in the extremal positions. At every round, some
random walker can randomly go in either direction. However when walkers
i and i + 1 are in the same position, walker i can only go toward 1. We

174

Q1

R

Q2λ ρ1

R+ 1

R ρ2

(a) Reduced model

s
−

s+

s0

(b) Reduction function

Figure 6.17: Petri net for the tandem queues (R = 2, N = 5)

Ri,1

Ai,2

Ri,2

...

Ai,j−1

Ri,j−1

Ai,j

Ri,j

Ai,j+1

Ri,j+1

Pi,j

P i,j

Pi,j+1

P i,j+1

...

Ai,L−2

Ri,L−2

Ai,L−1

Pi+1,j

P i+1,j

Pi+1,j+1

P i+1,j+1

Figure 6.18: The Petri net for the parallel random walk

represent on this figure the walker i and its interactions with walker i+ 1.
Transition Ai,j (resp. Ri,j−1) corresponds to a step toward L (resp. 1).

This model is a paradigm of failure tolerant systems in which each walker
represents a process which finishes its job when it reaches position 1. Failures
may occur and drive the process away from its goal. When position L is
reached, the job is aborted. We want to evaluate the probability that a
majority of walkers reaches position L.

This model has LN states. In order to get a reduced model, we remove
all synchronisations between walkers. Behaviors of all walkers are now
independent and thus a state of the reduced system is now defined by the
number of walkers in each position. The size of the reduced system is
(

N+L−1
L−1

)

.
Proposition 3 holds for this reduced model. Intuitively, removing syn-

chronisation between walkers increases the probability to reach position
L.

Table 6.9 shows the experimental results with the following parameters
p = 0.3 , q = 0.7, L = 15. We stop the simulation when the confidence
interval width reaches one tenth of the estimated value. Our method handles

175

Table 6.9: Experimental results for the parrallel random walk
N size of Prism Num. Prism Stat. Cosmos

C Time µ(s0) Time µ(s0) C.I. Nb Traj. T C•(s) T(s) µ(s0) Conf. Int.

1 15 ⇡ 0 0.00113 12 1.15E-3 1E-4 1 ⇡0 ⇡0 0.00113 0
5 7.5 · 105 6 1.88E-9 21 0 # 18000 0.5 13 1.94E-9 1.89E-10
6 1.1 · 107 127 1.14E-12 No Accepted Path. 53000 1 57 1.17E-12 1.17E-13
7 1.7 · 108 2248 2.93E-12 50000 2.8 186 2.92E-12 2.89E-13
8 2.0 · 109 Out of Mem. 145000 7.9 1719 1.86E-15 1.86E-16
9 3.8 · 1010 128000 24 3800 4.7E-15 4.75E-16
10 5.7 · 1011 371000 71 26000 3.12E-18 3.11E-19
11 8.0 · 1012 321000 228 67000 7.90E-18 7.89E-19

Ns

(a) M with N = 4

n
Th Wa Ea

n
Fo

Ns

f1 f2

e

2

(b) the reduce model M•

Figure 6.19: Petri net for the dining philosophers

huge models (with size up to 8 1012) with very small probabilities (8 10−18)
whereas the standard statistical model checking and numerical model checking
fail due to either the low probability or the size of the system.

6.7.5 The Dining Philosophers

The last example is the usual dining philosophers problem which il-
lustrates a problem of concurrency for sharing resources. The tran-
sition rate for a philosopher to take his right fork is λ1, the one to
take its left fork is λ2 and the one to put back both forks on the ta-
ble and start to think again is ⇢. We are interested in the following
property: All the philosophers are blocked because they have all

taken their right fork, before r meals are eaten. The model of
the system is a Petri net depicted in Figure 6.19(a) in the particular case of
four philosophers. The place in the center of the net (Ns) is used to compute
the number of eaten meals (r).

In the reduced model, philosophers are not sitting while they think. When
a philosopher wants to eat, he sits down on the left of another philosopher
and takes his right fork, if no philosopher is already sitting, he sits down
anywhere. Only the leftmost philosopher is then able to take his left fork.
This model is depicted Figure 6.19(b). In this model, the deadlock is more
frequent than in the original one. We define the rate as f1 = m(Th)⇥ λ1,
f2 = min(m(Wa),m(Fo))⇥ λ2 and e = m(Ea)⇥ ⇢ where m is the current
marking. The number of states in the original model is at least 2n ·n whereas

176

Table 6.10: Experimental results for the philosophers
N size of µ(s0) T (s) size of µ•(f(s0)) µ(s0) T (s)

C numerical C• simulation
3 56 5.822 · 10−4 0.007 24 5.822 · 10−4 5.822 · 10−4 0.22
5 492 1.590 · 10−6 0.028 72 9.950 · 10−7 1.604 · 10−6 705
10 7.3 · 104 2.358 · 10−11 3.45 396 1.853 · 10−12 6.006 · 10−12 1400
15 8.8 · 106 3.402 · 10−16 845 1152 3.979 · 10−17 5.868 · 10−19 4150
18 1.4 · 108 1900 1.416 · 10−19 2.212 · 10−22 6400
30 9.4 · 1012 7936 1.566 · 10−27 1.051 · 10−38 16000

the number of states in the reduced model is at most n3. There is an
exponential gap in between the size of the two models which allows one to
easily compute µ• even on big models.

For this example, our method returns good approximations for small
values of N but for larger values the likelihood associated to some rare
trajectories is large as can be seen on Histogram 6.20(b) where the impact
of trajectories are there frequency multiplied by there likelihood. Thus in
this histogram one can observe that a single trajectory with a likelihood of
10−6 contribute more to the observable average value of Ws0 than the 5000
trajectories with a likelihood of 2 · 10−12.

6.8 Conclusion

In this chapter, we provided some implementation details and the results
of some benchmarks and experiments for the tool Cosmos. From these
observations, we can state that Cosmos is well adapted for the analysis of
stochastic Petri nets and higher formalisms as it offers most functionalities
users are interested in. Its performances in terms of simulation speed are
among the best available on typical benchmarks. Thanks to its integration
in the verification platform CosyVerif, it benefits from a graphical user
interface and can be run as a virtual machine over all common operating
systems.

We performed experiments on the importance sampling methods de-
scribed in Chapter 4 and found that they are often more efficient than other
importance samplings methods. For different kinds of models where the state
space is too large to be analyzed with numerical methods, these importance
sampling methods efficiently estimate the rare-event probability of interest.

177

1

10

100

1000

10000

1e-12 1e-11 1e-10 1e-09 1e-08 1e-07 1e-06

Distribution of trajectories value

(a) Value of trajectories

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-12 1e-11 1e-10 1e-09 1e-08 1e-07 1e-06 1e-05

Repartition of trajectories impact

(b) Impact of trajectories

Figure 6.20: Histogram of the value of trajectory for 10 philosophers

178

Chapter 7

Signaling Cascade

7.1 Introduction

In this chapter a case study of biology is presented. This is a join work with
Serge Haddad, Monika Heiner and Claudine Picaronny [III].

The case study we consider in this chapter is an example of biologi-
cal regulatory networks which models how several chemicals species, more
specifically proteins and genes, interact to regulate a biological function.
These network models systems with continuous behaviors but they can be
accurately modeled as discrete systems [76]. As a discrete system they have
been widely studied using computer science techniques [72, 47]

Signaling processes is an example of biological regulatory networks playing
a crucial role for the regulatory behavior of living cells. They mediate input
signals, i.e. the extracellular stimuli received at the cell membrane, to the
cell nucleus, where they enter as output signals the gene regulatory system.
Understanding signaling processes is still a challenge in cell biology. To
approach this research area, biologists design and explore signaling networks,
which are likely to be building blocks of the signaling networks of living
cells. Among them are the Ras/Raf/MEK/ERK pathway which has been
extensively studied (see for example this review [60]). This pathway is
involved in the control of cell proliferation, differentiation and apoptosis.

A signaling cascade is a set of reactions which can be grouped into levels.
At each level a particular enzyme is produced (e.g. by phosphorylation); the
level generally also includes the inverse reactions (e.g., dephosphorylation).
The system constitutes a cascade since the enzyme produced at some level is
the catalyzer for the reactions at the next level. The catalyzer of the first
level is usually considered to be the input signal, while the catalyzer produced
by the last level constitutes the output signal. The transient behavior of
such a system presents a characteristic shape, the quantity of every enzyme
increases to some stationary value. In addition, the increases are temporally
ordered w.r.t. the levels in the signaling cascade. This behavior can be

179

viewed as a signal traveling along the levels, and there are many interesting
properties to be studied like the traveling time of the signal, the relation
between the variation of the enzymes of two consecutive levels, etc.

In [45], it has been shown how such a system can be modeled by a Petri net
which can either be equipped with continuous transition firing rates leading
to a continuous Petri net which determines a set of differential equations or
by stochastic transition firing rates leading to a stochastic Petri net. This
approach emphasizes the importance of Petri nets which, depending on the
chosen semantics, permit to investigate particular properties of the system.
In this paper we wish to explore the influence of stochastic features on the
signaling behavior, and thus we focus on the use of stochastic Petri nets.

Analysis of stochastic Petri nets can be performed either numerically or
statistically. The former approach is much faster than the latter and provides
exact results up to numerical approximations, but its application is limited
by the memory requirements due to the combinatory explosion of the state
space.

In this chapter we consider three families of properties for signaling
cascades that are particularly relevant for the study of their behavior and
that are (depending on a scaling parameter) potentially rare events. From
an algorithmic point of view, this case study raises interesting issues since
the combinatorial explosion of the model quickly forbids the use of numerical
solvers and its intricate (quantitative) behavior requires elaborated and
different abstractions depending on the property to be checked.

Due to these technical difficulties, the signaling cascade analysis has led
us to substantially improve our method and in particular the way we obtain
the final confidence interval. From a biological point of view, experiments
have pointed out interesting dependencies between the scaling parameter of
the model and the probability of satisfying a property.

In Section 7.2 we present the biological background, the signaling cascade
under study and the properties to be studied. Then in Section 7.3, we model
signaling cascades by stochastic Petri Nets (SPN). Then in Section 7.4 we
report and discuss the results of our experiments. Finally in Section 7.5, we
conclude and give some perspectives to this work.

7.2 Biological Background

In technical terms, signaling cascades can be understood as networks of
biochemical reactions transforming input signals into output signals. In this
way, signaling processes determine crucial decisions a cell has to make during
its development, such as cell division, differentiation, or death. Malfunc-
tion of these networks may potentially lead to devastating consequences on
the organism, such as outbreak of diseases or immunological abnormalities.
Therefore, cell biology tries to increase our understanding of how signaling

180

cascades are structured and how they operate. However, signaling networks
are generally hard to observe and often highly interconnected, and thus signal-
ing processes are not easy to follow. For this reason, typical building blocks
are designed instead, which are able to reproduce observed input/output
behaviors.

Raf RafP

MEKP MEKPPMEK

ERKP ERKPPERK

Phosphatase3

Phosphatase1

Phosphatase2

RasGTP

Figure 7.1: The general scheme of the considered three-level signaling cascade;
RasGTP serves as input signal and ERKPP as output signal.

The case study we have chosen for our paper is such a signaling building
block: the mitogen-activated protein kinase (MAPK) cascade [67]. This is the
core of the ubiquitous ERK/MAPK network that can, among others, convey
cell division and differentiation signals from the cell membrane to the nucleus.
The description starts at the RasGTP complex which acts as an enzyme
(kinase) to phosphorylate Raf, which phosphorylates MAPK/ERK Kinase
(MEK), which in turn phosphorylates Extracellular signal Regulated Kinase
(ERK). We consider RasGTP as the input signal and ERKPP (activated ERK)
as the output signal. This cascade (RasGTP ! Raf ! MEK ! ERK) of
protein interactions is known to control cell differentiation, while the strength
of the effect depends on the ERK activity, i.e. concentration of ERKPP.

The scheme in Figure 7.1 describes the typical modular structure for such
a signaling cascade, see [18]. Each layer corresponds to a distinct protein
species. The protein Raf in the first layer is only singly phosphorylated.
The proteins in the two other layers, MEK and ERK respectively, can be
singly as well as doubly phosphorylated. In each layer, forward reactions are
catalysed by kinases and reverse reactions by phosphatases (Phosphatase1,

181

Phosphatase2, Phosphatase3). The kinases in the MEK and ERK layers are
the phosphorylated forms of the proteins in the previous layer. Each phos-
phorylation/dephosphorylation step applies mass action kinetics according to
the pattern A+E ⌦ AE ! B +E. This pattern reflects the mechanism by
which enzymes act: first building a complex with the substrate, which modi-
fies the substrate to allow for forming the product, and then disassociating
the complex to release the product; for details see [16].

Figure 7.2 depicts the evolution of the mean number of proteins with
time. At time zero there is a only hundred RasGTP proteins, then we observe
the transmission of the signal as successively the number of RafP MEKPP
and ERKPP increases.

0.0001

0.001

0.01

0.1

1

10

100

0 10 20 30 40 50 60 70 80 90 100

N
u
m
b
er

of
p
ro
te
in

Time

RasGTP RafP MEKPP ERKPP

Figure 7.2: Transmission of the signal in the signalling cascade

Having the wiring diagram of the signaling cascade, a couple of interesting
questions arise whose answers would shed some additional light on the subject
under investigation. Among them are an assessment of the signal strength
in each level, and specifically of the output signal. We will consider these
properties in Sections 7.4.1 and 7.4.2. The general scheme of the signaling
cascade also suggests a temporal order of the signal propagation in accordance
with the level order. What cannot be derived from the structure is the extent
to which the signals are simultaneously produced; we will discuss this property
in Section 7.4.3.

7.3 Petri net modeling

We now explain how to model our running case study in the Petri
net framework. The signaling cascade is made of several phosphoryla-
tion/dephosphorylation steps, which are built on mass/action kinetics. Each
step follows the pattern A+ E ⌦ AE ! B + E and is modeled by a small

182

N number of states N number of states

1 24,065 (4) 6 769,371,342,640 (11)
2 6,110,643 (6) 7 5,084,605,436,988 (12)
3 315,647,600 (8) 8 27,124,071,792,125 (13)
4 6,920,337,880 (9) 9 122,063,174,018,865 (14)
5 88,125,763,956 (10) 10 478,293,389,221,095 (14)

Table 7.1: Development of the state space for increasing N .

Petri net component depicted in Figure 7.3. The mass action kinetics is
expressed by the rate of the transitions. The marking-dependent rate of each
transition is equal to the product of the number of tokens in all its incom-
ing places up to a multiplicative constant given by the biological behavior
(summing up dependencies on temperature, pressure, volume, etc.).

The whole reaction network based on the general scheme of a three-level
double phosphorylation cascade, as given in Figure 7.1, is modeled by the
Petri net in Figure 7.4. The input signal is the number of tokens in the place
RasGTP, and the output signal is the number of tokens in the place ERKPP.

This signaling cascade model represents a self-contained and closed system.
It is covered with place invariants (see the appendix), specifically each layer in
the cascade forms a P-invariant consisting of all states a protein can undergo;
thus the model is bounded. Assuming an appropriate initial marking, the
model is also live and reversible; see [45] for more details, where this Petri net
has been developed and analyzed in the qualitative, stochastic and continuous
modeling paradigms. In our paper we extend these analysis techniques for
handling properties corresponding to rare events.

We introduce a scaling factor N to parameterize how many tokens are
spent to specify the initial marking. Increasing the scaling parameter can be
interpreted in two different ways: either an increase of the biomass circulating
in the closed system (if the biomass value of one token is kept constant),
or an increase of the resolution (if the biomass value of one token inversely
decreases, called level concept in [45]). The kind of interpretation does not
influence the approach we pursue in this paper.

E

A AE B

k1

k2

k3

Figure 7.3: Petri net pattern for mass action kinetics A+E ⌦ AE ! B+E.

183

N

RasGTP

3N
Phase1

4N Raf

Raf RasGTP

RafP

RafP Phase1

k1
k2

k3

k4

k5k6

2N

Phase2

4NMEK

MEK RafP

MEKP

MEKP Phase2

MEKP RafP

MEKPP

MEKPP Phase2

k7
k8

k9

k16

k17k18

k10
k11

k12

k13

k14k15

3N

Phase3

3NERK

ERK MEKPP

ERKP

ERKP Phase3

ERKP MEKPP

ERKPP

ERKPP Phase3

k19
k20

k21

k28

k29k30

k22
k23

k24

k25

k26k27

Figure 7.4: A Petri net modelling the three-level signaling cascade given
in Figure 7.1; ki are the kinetic constants for mass action kinetics, N the
scaling parameter.

Increasing N means to increase the size of the state space and thus of the
CTMC, as shown in Table 7.1 which has been computed with the symbolic
analysis tool Marcie [46]. As expected, the explosion of the state space
prevents numerical model checking for higher N and thus calls for statistical
model checking.

Furthermore, increasing the number of states means to actually decrease
the probabilities to be in a certain state, as the total probability of 1 is fixed.
With the distribution of the probability mass of 1 over an increasingly huge
number of states, we obtain sooner or later states with very tiny probabilities,
and thus rare events. Neglecting rare events is usually appropriate when
focusing on the averaged behavior. But they become crucial when certain
jump processes such as mutations under rarely occurring conditions are of
interest.

7.4 Experiments

We have analysed three properties, the last two are inspired by [45]. Recall
that the initial marking of the model is parametrized by a scaling factor

184

N . For the first two properties, the reduced model is the same model but
with local smaller scaling factors on the different layers of phosphorylation.
Every state of the initial model is mapped (by f) to a state of the abstract
model which has the “closest” proportion of chemical species. For instance
let N = 4 which corresponds to 16 species of the first layer, a state with 6
tokens in Raf and 10 tokens in RafP is mapped, for a reduced model with
N = 3, to a state with 4 = b6⇥ 3/4c tokens in Raf and 8 = d10⇥ 3/4e tokens
in RafP (see the appendix for a specification of f).

All statistical experiments have been carried out with our tool Cosmos [9].
Cosmos is a statistical model checker for the HASL logic [9]. It takes as input
a Petri net (or a high-level Petri net) with general distributions for transitions.
It performs an efficient statistical evaluation of the stochastic Petri net by
generating a code per model and formula. In the case of importance sampling,
it additionally takes as inputs the reduced model and the mapping function
specified by a C function and returns the different confidence intervals.

All experiments have been performed on a machine with 16 cores running
at 2 GHz and 32 GB of memory both for the statistical evaluation of Cosmos
and the numerical evaluation of Marcie.

7.4.1 Maximal peak of the output signal

The first property is expressed as a time-bounded reachability formula
assessing the strength of the output signal of the last layer: “What is the
probability to reach within 10 time units a state where the total mass of
ERK is doubly phosphorylated?”, associated with probability p1 defined by:

p1 = P(True U10(ERKPP = 3N))

The inner formula is parametrized by N , the scaling factor of the net
(via its initial marking). The reduced model that we design for Cosmos uses
different scaling factors for the three layers in the signaling cascade. The
first two layers of phosphorylation which are based on Raf and MEK always
use a scaling factor of 1, whereas the last layer involving ERK uses a scaling
factor of N . The second column of Table 7.2 shows the ratio between the
number of reachable states of the original and the reduced models.

Experimental Results.

We have performed experiments with both Cosmos and Marcie. The time
and memory consumptions for increasing values ofN are reported in Table 7.2.
For each value of N we generate one million trajectories with Cosmos. We
observe that the time consumption significantly increases between N = 3
and N = 4. This is due to a change of strategy in the space/time trade-off
in order to not exceed the machine memory capacity. Marcie suffers an

185

N Cosmos Marcie

Reduction factor time memory time memory

1 - - - 4 514MB
2 38 20,072 3,811MB 326 801MB
3 558 15,745 15,408MB 43,440 13,776MB
4 4667 40,241 3,593MB Out of Memory: >32GB
5 27353 51,120 19,984MB

Table 7.2: Computational complexity related to the evaluation of p1

N Cosmos Marcie

Gaussian CI Chernoff CI MinMax CI Output

1 2.07·10−12

2 [3.75·10−27,5.88·10−26] [3.75·10−27,4.54·10−25] [3.75·10−27,1.57·10−23] 8.18·10−26

3 [4.34·10−42,1.72·10−39] [4.34·10−42,1.82·10−38] [4.43·10−42,1.87·10−37] 2.56·10−39

4 [1.54·10−57,8.54·10−56] [1.54·10−57,1.98·10−55] [1.78·10−57,7.05·10−55] Out of Memory
5 [3.97·10−73,2.33·10−70] [3.97·10−73,7.30·10−70] [5.44·10−73,2.24·10−69]

Table 7.3: Numerical values associated with p1

exponential increase w.r.t. both time and space resources. When N = 3, it
is slower than Cosmos and it is unable to handle the case N = 4.

Table 7.3 depicts the values returned by the two tools: Marcie returns
a single value, whereas Cosmos returns three confidence intervals (discussed
above) with a confidence level set to 0.99. We observe that confidence
intervals computed by the Gaussian analysis neither contain the result, the
ones computed by Chernoff-Hoeffding do not contain it for N = 3, and the
most conservative ones always contain it (when this result is available). An
analysis of the likelihood Ls0 is detailed in the appendix.

Figure 7.5 illustrates the dependency of p1 with respect to the scaling
factor N . It appears that the probability p1 depends on N in an exponen-
tial way. The constants occurring in the formula could be interpreted by
biologists.

Mapping function.

We describe here formally the reduction function f . The reduction function
must map each marking of the Petri net to a marking of the reduced Petri
net.

First we observe that the signaling cascades SPN contains three places
invariants of interest:

• The total number of tokens in the set of places
{Raf,Raf RasGTP,RafP Phase1,RafP, MEK RafP, MEKP RafP} is
equal to 4N .

186

10−80

10−70

10−60

10−50

10−40

10−30

10−20

10−10

1 2 3 4 5

p
1

N

y = 800(3 · 10−15)x

lower bound for p1
upper bound for p1

Figure 7.5: Highlighting an exponential dependency

10−44

10−42

10−40

10−38

10−36

10−34

10−32

10−30

10−35 10−34 10−33 10−32

Distribution of trajectories impact
Distribution of trajectories

Figure 7.6: Distribution of trajectories and their contribution

187

• The number of tokens in the set of places {MEK, MEK RafP,
MEKP Phase2, MEKP, MEKP RafP, MEKPP Phase2, MEKPP,
ERK MEKPP, ERKP MEKPP} is equal to 2N

• The number of tokens in the set of places {ERK, ERK RafP,
ERKP Phase2, ERKP, ERKP RafP, ERKPP Phase2, ERKPP} is equal to
3N

We also introduce three sequences of places one for each layer of phos-
phorylation.

• S1 = [Raf,Raf RasGTP,RafP Phase1,RafP]

• S2 = [MEK, MEK RafP, MEKP Phase2, MEKP, MEKP RafP,
MEKPP Phase2,MEKPP]

• S3 = [ERK, ERK RafP, ERKP Phase2, ERKP, ERKP RafP,
ERKPP Phase2, ERKPP]

Let us remark that a marking of the SPN N is uniquely determined by its
values on places in S1, S2 and S3.

We define a function g such that: for all positive integer m, positive real
number p and vector of integers of size k, v = (vi)

k
1, g (p,m,v) is the vector

of integers of size k, u = (ui)
k
1, defined by:

8i > 1, ui = min

dvi · pe ,m−
k
X

l=i+1

ul

!

and u1 = m−
k
X

l=2

ul

One can see that the g is properly defined and that the sum of the components
of u are equal to m.

The reduction function f for the two properties is a mapping from the
set of states of SPN N to the set of states of the reduced SPN N •. This
function takes as input the marking of a sequence of places that uniquely
define the state. This sequence can be decompose on the three layers of
phosphorylation, that is S1 for the first layer, S2 for the second layer and S3

for the last layer.
Recall that layers are not independent one from the others because

proteins of one layer are used to activate the following layer; this can be seen
on the P-invariant that contains places of the following layer. The mapping
function that we construct preserve these P-invariants.

Roughly, on each layer Si, this function f applies a function of the form
g(pi,mi,−).

Precisely, given a scaling factor N and a scaling factor for each of the
three layers of the reduced model, respectively N1, N2 and N3, the reduction
function f maps the marking m on the marking m• defined as follow:

• (m•(p))p2S3
= g

(

N3

N , 3N3, (m(p))p2S3

)

188

• (m•(p))p2S2
= g

(

N2

N , 2N2 − m•(ERK MEKPP) − m•(ERKP MEKPP),
(m(p))p2S2

)

• (m•(p))p2S1
= g

(

N1

N , 4N1 − m•(MEK RafP) − m•(MEKP RafP),
(m(p))p2S1

)

One can see that the three P-invariants are preserved in the reduced
model by f . We choose N1 = N2 = 1 and N3 = N .

Experimental analysis of the likelihood.

We describe here some technical details of the simulation done for evaluating
probability p1. Recall the likelihood of a trajectory requires the distribution
of the random variable Ws0 (see subsection 4). Proposition 4 ensures that
Ws0 takes values in {0} [[µ•

n+(f(s)),1[. Values taken by Ls0 are taken by
Ws0 when at the end of a successful trajectory, therefore these values are in
[µ•

n+(f(s)),1[.
We simulate the system for the first formula with N = 2 and a discrete

horizon of 615 (615 is the right truncation point given by Fox-Glynn algo-
rithm). The result of the simulation is represented as an histogram shown
in Figure 7.6. The total number of trajectories is 69000, 49001 of them are
not successful. We observe that most of the successful trajectories end with
a value close to 2.10−35, and that a few trajectories have a value close to
10−32. This is represented by an histogram which is shown as the green part
of Figure 7.6 (with a logarithmic scale for the abscissa). We also represent
the histogram of the contribution of the trajectories for the estimation of the
mean of Ls0 , that is the red part of the figure (with a logarithmic scale for the
ordinate). We observe that the contribution to this mean is almost uniform.
Thus a trajectory ending with a likelihood close to 10−32 have a larger impact
than one ending with a likelihood close to 1034. This means that an estimator
of the mean value of L(s0,u) will underestimate the expectation of L(s0,u). To
produce a framing of the result, one has to use a very conservative method
to avoid underestimating the result.

7.4.2 Conditional maximal signal peak

The network structure of each layer in the signaling cascade presents a cyclic
behavior, i.e. phosphorylated proteins, serving as signal for the next layer,
can also be dephosphorylated again, which corresponds to a decrease of the
signal strength. Thus an interesting property of the signaling cascade is the
probability of a further increase of the signal strength under the condition
that a certain strength has already been reached. We estimate this quantity
for the first layer in the signaling cascade, i.e. RafP, and ask specifically for
the probability to reach its maximal strength, 4N : “What is the probability
of the concentration of RafP to continue its increase and reach 4N , when

189

N L Cosmos Marcie

confidence interval time result time memory

2 2 [2.39·10−13 , 1.07·10−9] 31 5.55·10−10 90 802 MB
2 3 [2.18·10−10 , 6.92·10−8] 110 6.64·10−8 136 816 MB
2 4 [9.33·10−8 , 3.54·10−5] 256 3.01·10−6 276 798 MB
2 5 [1.16·10−5 , 6.08·10−4] 1000 7.16·10−5 759 801 MB
2 6 [5.42·10−4 , 1.21·10−3] 5612 1.27·10−3 3180 804 MB

3 5 [1.82·10−12 , 9.78·10−9] 459 Time > 48 hours
3 6 [3.41·10−10 , 9.66·10−8] 1428
3 7 [1.81·10−8 , 2.23·10−6] 7067
3 8 [8.72·10−7 , 2.71·10−6] 4460
3 9 [1.42·10−6 , 4.59·10−5] 4301
3 10 [2.69·10−4 , 9.34·10−4] 6420

4 10 [5.12·10−9 , 2.75·10−8] 8423 Memory > 32GB
4 11 [8.23·10−8 , 2.97·10−7] 7157
4 12 [9.84·10−7 , 1.86·10−6] 18730

Table 7.4: Numerical values associated with p2

starting in a state where the concentration is for the first time at least L?”.
This is a special use case of the general pattern introduced in [45].

p2 = P⇡((RafP ≥ L) U (RafP ≥ 4N))

where ⇡ is the distribution over states when satisfying for the first time the
state formula RafP ≥ L (previously called a filter).

This formula is parametrized by threshold L and scaling factor N . The
results for increasing N and L are reported in Table 7.4 (confidence intervals
are computed by Chernoff-Hoeffding method). As before, Marcie cannot
handle the case N = 3, the bottleneck being here the execution time.

It is clear that p2 is an increasing function of L. More precisely, experi-
ments point out that p2 increases approximatively exponentially by at least
one magnitude order when L is incremented. However this dependency is
less clear than the one of the first property.

The reduced model is the one used for the first property except for the
values of the following parameters: here we choose N1 = 1, N2 = N and
N3 = 0.

7.4.3 Signal propagation

To demonstrate that the increases of the signals are temporally ordered w.r.t.
the layers in the signaling cascade, and by this way proving the traveling
of the signals along the layers, we explore the following property: “What is
the probability that, given the initial concentrations of RafP, MEKPP and

190

ERKPP being zero, the concentration of RafP rises above some level L while
the concentrations of MEKPP and ERKPP remain at zero, i.e. RafP is the
first species to react?”. While this property has its focus on the beginning
of the signaling cascade, it is obvious how to extend the investigation by
further properties covering the entire signaling cascade.

p3 = P((MEKPP = 0) ^ (ERKPP = 0))U (RafP > L))

This formula is parametrized by L. Due to the lack of space only some
values of L in [0, 4N [are reported. The results for increasing N and L are
given in Table 7.4.3. As can be observed, the probability to satisfy this
property is not a rare event thus no importance sampling is required. Instead
results are obtained by a plain Monte Carlo simulation generating 10 millions
of trajectories. For N > 3 Marcie requires more than 32GB of memory thus
the computation was stopped. On the other hand, the memory requirement
of Cosmos is around 50MB for all experiments.

We also observed that as expected the probability exponentially decreases
with respect to L.

7.5 Conclusion

We have studied rare events in signaling cascades with the help of an improved
importance sampling method implemented in Cosmos. As demonstrated by
means of our scalable case study, our method has been able to cope with
huge models that could not be handled neither by numerical computations
nor by standard simulations. In addition, analysis of the experiments has
pointed out interesting dependencies between the scaling parameter and the
quantitative behavior of the model.

In future work we intend to incorporate other types of quantitative
properties, such as the mean time a signal needs to exceed a certain threshold,
the mean traveling time from the input to the output signal, or the relation
between the variation of the enzymes of two consecutive levels. We also
plan to analyse other biological systems for which the evaluation of tiny
probabilities might be relevant like mutation rates in growing bacterial
colonies [38].

191

N L Cosmos Marcie

confidence interval time result time memory

2 2 [0.8018,0.8024] 4112 0.8021 75 730MB
2 3 [0.4201,0.4209] 7979 0.4205 137 723MB
2 4 [0.1081,0.1086] 10467 0.1084 163 725MB
2 5 [0.0122,0.0124] 11122 0.0123 123 725MB
2 6 [6.20·10−4,6.61·10−4] 11185 6.32·10−4 129 725MB
2 7 [1.02·10−5,1.61·10−5] 11194 1.24·10−5 156 725MB

3 6 [0.0136,0.0138] 14648 0.0137 17420 10.3GB
3 7 [1.45·10−3,1.51·10−3] 14752 1.48·10−3 18155 10.3GB
3 8 [9.99·10−5,1.17·10−4] 14739 1.06·10−4 18433 10.3GB
3 9 [3.53·10−6,7.36·10−6] 14734 4.86·10−6 18353 10.3GB
3 10 [1.03·10−8,9.27·10−7] 14743 1.29·10−7 18355 10.3GB
3 11 [0 ,5.30·10−7] 14766 1.48·10−9 18047 10.3GB

4 8 [1.47·10−3,1.53·10−3] 17669 Out of Memory
4 9 [1.52·10−4,1.73·10−4] 17628
4 10 [9.99·10−6,1.59·10−5] 17656
4 11 [1.54·10−7,1.57·10−6] 17632
4 12 [0 ,5.30·10−7] 17664

5 8 [6.92·10−3,7.06·10−3] 20367
5 9 [1.13·10−3,1.19·10−3] 20421
5 10 [1.46·10−4,1.67·10−4] 20419

Table 7.5: Experiments associated with p3

192

Chapter 8

Conclusion and Perspectives

8.1 Conclusion

In this thesis, a new method to deal with the quantitative model checking
of rare events was presented. This method was thus designed to compute
extremely small probabilities with a conservative confidence interval which
is of particular interest for critical systems. The rare-event problem was
recalled in Chapter 3. To achieve this computation, this method relies
on the combination of two well-know methods: Monte Carlo simulations
and numerical model checking which were both presented in Chapter 2.
This combination is performed by first applying numerical methods over an
abstraction of the model and then using the outcoming results to bias the
Monte Carlo simulation with importance sampling as shown in Chapter 4.
Contrary to other methods using Monte Carlo simulations, the method
presented provides given some hypotheses, a conservative confidence interval.
Additionally, it also guarantees the reduction of the variance with respect
to a plain Monte Carlo simulation so that the width of this conservative
confidence interval is also smaller.

This method can be used directly on any finite discrete or continuous
Markov chain. However, the abstraction of the model has then to be defined
manually which can be extremely tedious as the reader might have noticed. To
circumvent this difficulty, a framework for probabilistic models was provided
in Chapter 5 in which the abstraction is derived automatically.

This method has been implemented in the tool Cosmos. Experiments
and a case study have then been performed to demonstrate its efficiency in
comparison with numerical methods, plain Monte Carlo simulation and other
rare-event methods for Monte Carlo simulation. Details of the implementation
and the results of these analyses can be found in Chapters 6 and 7.

In this thesis, we have conducted the design, implementation and testing
of an alternative method to deal with the rare-event problem. We have
provided a tool which is freely available, and is integrated in the CosyVerif

193

platform and has been thoroughly tested. Indeed, this work is not finished
and many additional features could be introduced. In the following, I provide
a non-exhaustive list of these improvements.

8.2 Perspectives

Several perspectives were presented all along this manuscript either concern-
ing the theoretical developments, the implementation or the experiments.

Concerning the theoretical aspects, the method with guaranteed variance
reduction detailed in Chapter 4 presents several limitations either on its
range of application or on its ease of use:

• In its actual formulation, the model to study can be infinite but its
reduced model must be finite. This restriction was introduced in
order to be able to use numerical model checking algorithms based
on linear algebra on the abstraction. However, there exist methods
to compute reachability probabilities in infinite systems like quasi-
birth-death processes. Using these methods would therefore enable
the handling of infinite reduced models and therefore produce better
importance sampling.

• Moreover, the models are requested to be Markovian while it is often
not the case of real-life systems. As Monte Carlo simulations can deal
with non-Markovian models, it will thus be very useful to extend the
method to this framework. However, one should ensure that although
the initial model is not Markovian, the reduced one is, in order to
take advantage of efficient numerical methods on Markovian models.
Conditions on the reduced model should then be adapted to maintain
the guaranteed variance reduction.

• Finally, from a pragmatic point of view, designing the reduced model
and establishing the proof that it satisfies the guaranteed variance
property is in practice a difficult and tedious task. Methods to help the
construction and/or the proof of such reduced models are thus strongly
needed in order for these methods to be used more widely. One solution
to this issue was presented in Chapter 5.A natural perspective is to
extend the range of this framework by, for instance, letting processes
fork and join when changing zone or by allowing processes to be created
or destroyed as it is the case in open systems.

Concerning the implementation of the method detailed in Chapter 6,
several technical issues still need to be solved. Initially, the tool Cosmos
was designed as a simulator. Numerical model-checking methods have been
introduced afterwards to deal with rare events. However, they use a naive

194

representation of the underlying Markov chain while tools dedicated to nu-
merical model checking like Prism or Marcie rely on more involved symbolic
methods derived from binary decision diagrams and are thus much more
space efficient. For time-unbounded reachability problems, the numerical
and simulation parts of the computation are successive. Therefore, the
numerical part of the computation can be done by a numerical tool and its
results can then be given as input to Cosmos for the simulation part. For
time-bounded reachability problems however, the simulation and numerical
computation must be performed at the same time and cannot be performed
by two different tools. Improving the numerical model checker of Cosmos
or developing its interface with an external numerical model checker is thus
critical in order to be able to efficiently conduct these calculations. However,
both of them will require significant development efforts.

Moreover, experiments presented in Chapter 6 and 7 showed that, even
though the methods described in this manuscript can in principle compute
probabilities of rare events which were out of reach of classical simulation-
based or numerical methods, the design of the reduced model is in practice
challenging in order to ensure the guaranteed variance property. Without
this property, one can only compute asymptotical confidence intervals that
are wider and not conservative. Additional experiments and case studies
should be conducted to establish in which domain the method applies the
best. Moreover, using the framework described in Chapter 5, additional
testing would provide guidelines to decide which kind of generalizations of the
framework would be helpful or required to model different types of systems.

Finally, for these methods to reach their full potential, they should be
used not only by researchers in computer science but also by other scientists
both in academics or in the industry. In order for that to become possible, it
implies that much effort should be put into the automation of the critical
steps and to the development of a user-friendly interface. A first step has
been done in this direction with the development of the CosyVerif platform
but much remains to be done. It will require theoretical efforts to design
new algorithms, their implementation in efficient and well-documented tools,
and also the development of an environment that will help modelers to build
systems.

195

List of Publications

[I] E. G. Amparore, B. Barbot, M. Beccuti, S. Donatelli, and G. Frances-
chinis. Simulation-based verification of hybrid automata stochastic logic
formulas for stochastic symmetric nets. In Proceedings of the 2013
ACM SIGSIM conference on Principles of advanced discrete simulation,
SIGSIM-PADS ’13, pages 253–264, New York, NY, USA, 2013. ACM.

[II] É. André, B. Barbot, C. Démoulins, L. M. Hillah, F. Hulin-Hubard,
F. Kordon, A. Linard, and L. Petrucci. A modular approach for reusing
formalisms in verification tools of concurrent systems. In Proceedings
of the 15th International Conference on Formal Engineering Methods
(ICFEM’13), pages 199–214, 2013.

[III] B. Barbot, S. Haddad, M. Heiner, and C. Picaronny. Rare event
handling in signalling cascades. In A. Arisha and G. Bobashev, editors,
Proceedings of the 6th International Conference on Advances in System
Simulation (SIMUL’14), pages 126–131, Nice, France, Oct. 2014. XPS.

[IV] B. Barbot, S. Haddad, and C. Picaronny. Échantillonnage préférentiel
pour le model checking statistique. In MSR’11, volume 45 of Journal
Européen des Systèmes Automatisés, pages 237–252, Lille, France, 2011.
Hermès.

[V] B. Barbot, S. Haddad, and C. Picaronny. Coupling and importance
sampling for statistical model checking. In Proceedings of Tools and
Algorithm for the Construction and Analysis of Systems (TACAS’12)
Flanagan and König, pages 331–346.

[VI] B. Barbot, S. Haddad, and C. Picaronny. Importance sampling for
model checking of continuous time Markov chains. In P. Dini and
P. Lorenz, editors, Proceedings of the 6th International Conference
on Advances in System Simulation (SIMUL’13), pages 30–35, Lisbon,
Portugal, Novembre 2012. IARIA.

196

Bibliography

[1] P. A. Abdulla and A. Nylén. Timed Petri nets and BQOS. In Applica-
tions and theory of Petri nets 2001, pages 53–70. Springer, 2001.

[2] O. Abu-Amsha and J.-M. Vincent. An algorithm to bound functionals
of Markov chains with large state space. In 4th INFORMS Conference
on Telecommunications, number 3.2, pages 3–2, 1998.

[3] O. Akin and J. Townsend. Efficient simulation of TCP/IP networks char-
acterized by non-rare events using DPR-based splitting. In GLOBECOM.
IEEE, 2001.

[4] R. J. Allen, D. Frenkel, and P. R. Ten Wolde. Simulating rare events
in equilibrium or nonequilibrium stochastic systems. The Journal of
chemical physics, 124:024102, 2006.

[5] G. M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20,
1967, Spring Joint Computer Conference, AFIPS ’67 (Spring), pages
483–485, New York, NY, USA, 1967. ACM.

[6] C. Baier, L. Cloth, B. R. Haverkort, M. Kuntz, and M. Siegle. Model
checking Markov chains with actions and state labels. Software Engi-
neering, IEEE Transactions on, 33(4):209–224, 2007.

[7] C. Baier and J.-P. Katoen. Principles of model checking, volume 950.
MIT press, 2008.

[8] P. Ballarini, H. Djafri, M. Duflot, S. Haddad, and N. Pekergin. Cosmos:
A statistical model checker for the hybrid automata stochastic logic. In
Quantitative Evaluation of Systems (QEST), 2011 Eighth International
Conference on, pages 143–144. IEEE, 2011.

[9] P. Ballarini, H. Djafri, M. Duflot, S. Haddad, and N. Pekergin. HASL:
An expressive language for statistical verification of stochastic models.
In P. H. Samson Lasaulce, Dieter Fiems and L. Vandendorpe, editors,
Proceedings of the 5th International Conference on Performance Eval-
uation Methodologies and Tools (VALUETOOLS’11), pages 306–315,
Cachan, France, May 2011. ICST.

197

[10] B. Barbot, P. Ballarini, and H. Djafri. http://www.lsv.ens-
cachan.fr/Software/cosmos/.

[11] B. Barbot, T. Chen, T. Han, J.-P. Katoen, and A. Mereacre. Efficient
ctmc model checking of linear real-time objectives. In P. A. Abdulla
and K. R. M. Leino, editors, TACAS, volume 6605 of Lecture Notes in
Computer Science, pages 128–142. Springer, 2011.

[12] G. Behrmann, A. David, K. G. Larsen, P. Pettersson, and W. Yi.
Developing uppaal over 15 years. Software: Practice and Experience,
41(2):133–142, 2011.

[13] B. Bérard, F. Cassez, S. Haddad, D. Lime, and O. H. Roux. Comparison
of different semantics for time Petri nets. In Automated Technology for
Verification and Analysis, pages 293–307. Springer, 2005.

[14] B. Berthomieu and M. Diaz. Modeling and verification of time depen-
dent systems using time Petri nets. IEEE Transactions on Software
Engineering, 17(3):259–273, 1991.

[15] J. H. Blanchet, P. W. Glynn, P. Lécuyer, W. Sandmann, and B. Tuf-
fin. Asymptotic robustness of estimators in rare-event simulation.
ACM Transactions on Modeling and Computer Simulation (TOMACS),
20(1):6, 2010.

[16] R. Breitling, D. Gilbert, M. Heiner, and R. Orton. A structured ap-
proach for the engineering of biochemical network models, illustrated
for signalling pathways. Briefings in bioinformatics, 9(5):404–421, 2008.

[17] P. E. Bulychev, A. David, K. G. Larsen, M. Mikucionis, D. B. Poulsen,
A. Legay, and Z. Wang. Uppaal-smc: Statistical model checking for
priced timed automata. In H. Wiklicky and M. Massink, editors, QAPL,
volume 85 of EPTCS, pages 1–16, 2012.

[18] V. Chickarmane, B. N. Kholodenko, and H. M. Sauro. Oscillatory dy-
namics arising from competitive inhibition and multisite phosphorylation.
Journal of Theoretical Biology, 244(1):68–76, 2007.

[19] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic
well-formed colored nets and symmetric modeling applications. IEEE
Transaction Computers, 42(11):1343–1360, 1993.

[20] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. Greatspn
1.7: Graphical editor and analyzer for timed and stochastic Petri nets.
Perform. Eval., 24(1-2):47–68, 1995.

[21] Y. S. Chow and H. Robbins. On the asymptotic theory of fixed-width
sequential confidence intervals for the mean. The Annals of Mathematical
Statistics, pages 457–462, 1965.

198

[22] E. M. Clarke and P. Zuliani. Statistical model checking for cyber-physical
systems. Automated Technology for Verification and Analysis, pages
1–12, 2011.

[23] C. Clopper and E. S. Pearson. The use of confidence or fiducial limits
illustrated in the case of the binomial. Biometrika, pages 404–413, 1934.

[24] P.-T. De Boer. Analysis of state-independent importance-sampling mea-
sures for the two-node tandem queue. ACM Transactions on Modeling
and Computer Simulation (TOMACS), 16(3):225–250, 2006.

[25] P.-T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein. A
tutorial on the cross-entropy method. Annals of operations research,
134(1):19–67, 2005.

[26] M. Diaz. Petri Nets: Fundamental models, verification and applications.
Wiley, 2010.

[27] H. Djafri. Numerical and Statistical Approaches for Model Checking of
Stochastic Processes. PhD thesis, École Normal Supérieur de Cachan,
juin 2012.

[28] S. Donatelli, S. Haddad, and J. Sproston. Model checking timed and
stochastic properties with CSLTA. IEEE Transactions on Software
Engineering, 35(2):224–240, Mar.-Apr. 2009.

[29] P. Dupuis, A. D. Sezer, and H. Wang. Dynamic importance sampling for
queueing networks. The Annals of Applied Probability, 17(4):1306–1346,
2007.

[30] E. A. Emerson. Temporal and modal logic. Handbook of Theoreti-
cal Computer Science, Volume B: Formal Models and Sematics (B),
995:1072, 1990.

[31] E. A. Emerson and E. M. Clarke. Characterizing correctness properties
of parallel programs using fixpoints. In ICALP, LNCS 85, 1980.

[32] R. P. Feynman. Personal observations on the reliability of the shuttle.
Report of the Presidential Commission on the Space Shuttle Challenger
Accident, 2:1–5, 1986.

[33] J. Fourneau, M. Lecoz, and F. Quessette. Algorithms for an irreducible
and lumpable strong stochastic bound. Linear Algebra and its Applica-
tions, 386:167–185, 2004.

[34] J.-M. Fourneau and N. Pekergin. An algorithmic approach to stochastic
bounds. In M. Calzarossa and S. Tucci, editors, Performance Evaluation
of Complex Systems: Techniques and Tools, volume 2459 of Lecture
Notes in Computer Science, pages 64–88. Springer, 2002.

199

[35] B. L. Fox and P. W. Glynn. Computing poisson probabilities. Commun.
ACM, 31(4):440–445, 1988.

[36] M. J. Garvels, J.-K. C. Van Ommeren, and D. P. Kroese. On the
importance function in splitting simulation. European Transactions on
Telecommunications, 13(4):363–371, 2002.

[37] M. J. J. Garvels. The splitting method in rare event simulation. PhD
thesis, Universiteit Twente, 2000.

[38] D. Gilbert, M. Heiner, F. Liu, and N. Saunders. Colouring space-
a coloured framework for spatial modelling in systems biology. In
Application and Theory of Petri Nets and Concurrency, pages 230–249.
Springer, 2013.

[39] P. Glasserman and Y. Wang. Counterexamples in importance sampling
for large deviations probabilities. The Annals of Applied Probability,
7(3):731–746, 1997.

[40] P. W. Glynn and D. L. Iglehart. Importance sampling for stochastic
simulations. Management Science, pages 1367–1392, 1989.

[41] S. Haddad and P. Moreaux. Sub-stochastic matrix analysis for bounds
computation - theoretical results. European Journal of Operational
Research, 176(2):999–1015, 2007.

[42] J. H. Halton. Sequential Monte Carlo. In Mathematical Proceedings of
the Cambridge Philosophical Society, volume 58, pages 57–78. Cambridge
Univ Press, 1962.

[43] H. Hansson and B. Jonsson. A logic for reasoning about time and
reliability. Formal aspects of computing, 6(5):512–535, 1994.

[44] R. He, P. Jennings, S. Basu, A. P. Ghosh, and H. Wu. A bounded
statistical approach for model checking of unbounded until properties. In
C. Pecheur, J. Andrews, and E. D. Nitto, editors, ASE, pages 225–234.
ACM, 2010.

[45] M. Heiner, D. Gilbert, and R. Donaldson. Petri nets for systems and
synthetic biology. In M. Bernardo, P. Degano, and G. Zavattaro, editors,
SFM 2008, volume 5016 of LNCS, pages 215–264. Springer, 2008.

[46] M. Heiner, C. Rohr, and M. Schwarick. MARCIE - Model checking
And Reachability analysis done effiCIEntly. In J. Colom and J. Desel,
editors, Proc. PETRI NETS 2013, volume 7927 of LNCS, pages 389–399.
Springer, June 2013.

200

[47] M. Herajy and M. Heiner. Towards a computational steering and Petri
nets framework for the modelling of biochemical reaction networks. In
CS&P, pages 147–159, 2012.

[48] T. Herault, R. Lassaigne, and S. Peyronnet. Apmc 3.0: Approximate
verification of discrete and continuous time Markov chains. In Quan-
titative Evaluation of Systems, 2006. QEST 2006. Third International
Conference on, pages 129–130. IEEE, 2006.

[49] W. Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American statistical association, 58(301):13–30,
1963.

[50] D. Jansen, J.-P. Katoen, M. Oldenkamp, M. Stoelinga, and I. Zapreev.
How fast and fat is your probabilistic model checker? an experimental
performance comparison. In K. Yorav, editor, Hardware and Software:
Verification and Testing, volume 4899 of Lecture Notes in Computer
Science, pages 69–85. Springer, 2008.

[51] D. N. Jansen. Understanding Fox and Glynn’s “computing poisson
probabilities”. Technical Report ICIS-R11001, Nijmegen: Radboud
Universiteit, 2011.

[52] C. Jégourel, A. Legay, and S. Sedwards. Cross-entropy optimisation of
importance sampling parameters for statistical model checking. CoRR,
abs/1201.5229, 2012.

[53] C. Jégourel, A. Legay, and S. Sedwards. A platform for high performance
statistical model checking - plasma. In C. Flanagan and B. König,
editors, TACAS, volume 7214 of Lecture Notes in Computer Science,
pages 498–503. Springer, 2012.

[54] C. Jegourel, A. Legay, and S. Sedwards. Importance splitting for statis-
tical model checking rare properties. In Computer Aided Verification,
pages 576–591. Springer, 2013.

[55] S. Juneja and P. Shahabuddin. Rare-event simulation techniques: an
introduction and recent advances. Handbooks in operations research and
management science, 13:291–350, 2006.

[56] H. Kahn and T. E. Harris. Estimation of particle transmission by
random sampling. National Bureau of Standards applied mathematics
series, 12:27–30, 1951.

[57] D. Kartson, G. Balbo, S. Donatelli, G. Franceschinis, and G. Conte.
Modelling with generalized stochastic Petri nets. Wiley, 1994.

201

[58] J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N. Jansen.
The ins and outs of the probabilistic model checker MRMC. QEST,
pages 167–176, 2009.

[59] J. Kemeny and J. Snell. Finite Markov chains. Springer, 1960.

[60] W. Kolch. Meaningful relationships: the regulation of the
Ras/Raf/MEK/ERK pathway by protein interactions. Biochem. J,
351:289–305, 2000.

[61] C. Kollman, K. Baggerly, D. Cox, and R. Picard. Adaptive importance
sampling on discrete Markov chains. Annals of Applied Probability,
pages 391–412, 1999.

[62] S. Kullback and R. A. Leibler. On information and sufficiency. The
Annals of Mathematical Statistics, pages 79–86, 1951.

[63] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification
of probabilistic real-time systems. In G. Gopalakrishnan and S. Qadeer,
editors, Proc. 23rd International Conference on Computer Aided Ver-
ification (CAV’11), volume 6806 of LNCS, pages 585–591. Springer,
2011.

[64] M. Z. Kwiatkowska, G. Norman, and D. Parker. Prism: Probabilistic
symbolic model checker. In T. Field, P. G. Harrison, J. T. Bradley,
and U. Harder, editors, Computer Performance Evaluation / TOOLS,
volume 2324 of Lecture Notes in Computer Science, pages 200–204.
Springer, 2002.

[65] P. L’ecuyer, V. Demers, and B. Tuffin. Rare events, splitting, and
quasi-Monte Carlo. ACM Transactions on Modeling and Computer
Simulation (TOMACS), 17(2):9, 2007.

[66] P. L’Ecuyer and B. Tuffin. Approximating zero-variance importance sam-
pling in a reliability setting. Annals of Operations Research, 189(1):277–
297, 2011.

[67] A. Levchenko, J. Bruck, and P. W. Sternberg. Scaffold proteins may
biphasically affect the levels of mitogen-activated protein kinase signaling
and reduce its threshold properties. Proceedings of the National Academy
of Sciences, 97(11):5818–5823, 2000.

[68] T. Lindvall. Lectures on the coupling method. Dover, 2002.

[69] N. A. Lynch. Distributed algorithms. Morgan Kaufmann, 1996.

[70] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-
dimensionally equidistributed uniform pseudo-random number generator.
ACM Trans. Model. Comput. Simul., 8(1):3–30, 1998.

202

[71] S. Parekh and J. Walrand. A quick simulation method for excessive
backlogs in networks of queues. Automatic Control, IEEE Transactions
on, 34(1):54–66, 1989.

[72] L. Paulevé, M. Magnin, and O. Roux. Refining dynamics of gene regu-
latory networks in a stochastic ⇡-calculus framework. In Transactions
on computational systems biology XIII, pages 171–191. Springer, 2011.

[73] B. Plateau. On the stochastic structure of parallelism and synchroniza-
tion models for distributed algorithms. In Proceedings of the 1985 ACM
SIGMETRICS Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS ’85, pages 147–154, New York, NY, USA, 1985.
ACM.

[74] A. Pnueli. The temporal logic of programs. In Foundations of Computer
Science, 1977., 18th Annual Symposium on, pages 46–57. IEEE, 1977.

[75] D. Reijsbergen, P.-T. de Boer, W. Scheinhardt, and B. Haverkort. Au-
tomated rare event simulation for stochastic Petri nets. In Quantitative
Evaluation of Systems, pages 372–388. Springer, 2013.

[76] A. Richard, J.-P. Comet, and G. Bernot. Formal methods for mod-
eling biological regulatory networks. In Modern Formal Methods and
Applications, pages 83–122. Springer, 2006.

[77] A. Ridder. Asymptotic optimality of the cross-entropy method for
Markov chain problems. Procedia Computer Science, 1(1):1571–1578,
2010.

[78] G. Rubino and B. Tuffin. Rare Event Simulation using Monte Carlo
Methods. Wiley, 2009.

[79] R. Y. Rubinstein. Optimization of computer simulation models with
rare events. European Journal of Operational Research, 99(1):89–112,
1997.

[80] J. S. Sadowsky. Large deviations theory and efficient simulation of
excessive backlogs in a GI/GI/m queue. Automatic Control, IEEE
Transactions on, 36(12):1383–1394, 1991.

[81] K. Sen, M. Viswanathan, and G. A. Agha. VESTA: A statistical model-
checker and analyzer for probabilistic systems. In QEST, pages 251–252,
2005.

[82] P. Shahabuddin. Importance sampling for the simulation of highly
reliable Markovian systems. Management Science, 40(3):333–352, 1994.

[83] N. N. Taleb. The Black Swan: The Impact of the Highly Improbable
Fragility. Random House LLC, 2010.

203

[84] M. Y. Vardi. Automatic verification of probabilistic concurrent finite
state programs. In Foundations of Computer Science, 1985., 26th
Annual Symposium on, pages 327–338. IEEE, 1985.

[85] A. Wald. Sequential tests of statistical hypotheses. The Annals of
Mathematical Statistics, 16(2):117–186, 06 1945.

[86] H. Younes and R. Simmons. Statistical probabilistic model checking
with a focus on time-bounded properties. Information and Computation,
204(9):1368–1409, 2006.

[87] H. L. S. Younes. Ymer: A statistical model checker. In K. Etessami
and S. K. Rajamani, editors, CAV, volume 3576 of Lecture Notes in
Computer Science, pages 429–433. Springer, 2005.

204

