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ACCORD DE COOPERATION POUR LA MISE EN (BUVRE D'UNE COTUTELLE DE
THESE

L’Universit¢ de Rome “La Sapienza’ ayant son siége & Rome (Italie), Piazzale Aldo Moro §,
représentée par son Recteur Professeur Luigi FRATI agissant en-qualité et en vertu des
pouvoirs qui lui sont conférés d’une part

ET

L'INSA de LYON, représenté par le Professeur Daniel BARBIER, Directeur Adjoint de la Recherche,
agissant en-qualités et en vertu des pouvoirs qui lui sont conférés, d’autre part

Pour la partie italienne :
- Vuela Loin. 210 du 3 juillet 1998 art. 4 — doctorat de recherche ;
- Vule D.M. 224/99 relatif aux normes en mati¢re de doctorat de recherche ;
- Vu le DM. 509/99 relatif aux normes en mati¢re d’autonomie didactique des
Universités ;

- Vule Réglement de I'Université en matiére de doctorat de recherche ;
- Vue la délibération du Sénat Académique du 2 octobre 2003 ;

ET

Vu pour la part frangaise :

- L'arrété du 6 janvier 2005 relatif a la procédure de cotutelle internationale de thése (France);

- L'arrété du 7 aolit 2006 relatif aux études doctorales (France);

- La convention cadre franco-italienne entre la Conférence des Présidents d’Université
(CPU) et la Conferenza dei Rettori delle Universita Italiane (CRUI)} sur la
reconnaissance des diplomes et validation des titres universitaires signée en date 18
janvier 1996,

- La convention cadre franco-italienne entre la Conférence des Présidents d’Université
(CPU) e la Conferenza dei Rettori delle Universita Italiane (CRUI) sur la co-tutelle de
thése signée le 13 février 1998;

désireux (désireuses) de contribuer & I’instauration et/ou au développement de la coopération
scientifique entre équipes de recherche italiennes et étrangéres en favorisant la mobilité des
doctorants

sont convenu(e)s des dispositions suivantes
Titre I — Modalités administratives

Art. 1 — [’Universit¢ de Rome “La Sapienza” et L’INSA de Lyon désignées ci-aprés “les
établissements™, décident dans le respect des lois et des réglements en vigueur dans chacun
des pays et/ou établissements, d’organiser conjointement une cotutelle de thése au bénéfice de
I’étudiant désigné ci-apreés :

Prénom et nom : Davide TONAZZI

spécialité : ingenieur Mecanique — Doctorat en Meccanica Teorica ed Applicata

sujet de these : Analyse du couplage entre dynamique macroscopique des systémes
frottants et dynamique locale au contact.
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Le but de ceite thése est d’analyser {"évolution de la génération et de la propagation d’ondes
dans les contacts frottants (freins, implants articulaires, licisons quasi-statiques, glissement
de terrains, iremblements de terre...) pour en conirdler le fonctionnement (frottement, usure)
et maitriser le comporiement macroscopique (stick-slip, glissement continu, vibrations
induites) a partir de la compréhension des phénoménes locausx.

L'étude des vibrations provoquées par le froltement est un probléme scientifique ancien qui
malgré des attentes industrielles importantes a trés peu progressé du fait de son fort
caractere interdisciplinaire (science des matériaux, tribologie, dynamique ef contréle des
vibrations, mécanique de la rupture.). Par conséquent cette thése fera dialoguer ces
disciplines autour d'un probléme modéle analysé & partir des derniers développements de la
tribologie (science du mouvement) numérique.

Une synthése des méthodologies et des analyses développées jusqu’ici dans les domaines de
la tribologie, de la dynamique des strictures et de la mécanique de la rupture (en sciences de
Dingénieur et sciences de la terre) a été réalisé dans le cadre dun précédente thése en
cotutelle (M. Di Bartolomeo, 2008-2011) & [l'aide des outils numériques actuels. La
génération el la propagation d'ondes au contact ont éié simulées et relides & la fois a

'excitation locale au coniact, qui esi responsable de plusieurs phénoménes d'usure, et &

“Texciiation vibratoire de la structure, qui esi responsable des instabilités dynamiques
engendrées au conlact (crissement, sprag-slip, stick-slip, ...). Le travail proposé dans le cadre
de celle thése concerne la reproduction et investigation expérimentale des résullals
numériques oblenus pendant la thése de M. Di Bartolomeo par une analyse du phénoméne sur
un banc d'essais et l'investigation de l'influence de différents paraméires. Le point innovant
par rappori aux (ravaux présents dans la littérature (Fineberg) est la volonté d'arriver d
mesurer non seulement les valeurs globales (conséquence des phénoménes locaux) mais aussi
a suivre la dynamique de la rupture et la propagation des ondes engendrées au niveau de
l'interface des corps en contact glissant.

Laspect innovant du projet de thése est assuré par la validation et le passage & Uanalyse du
glissement et de I'interaction enire la dynamique locale (échelle du contact) et la dynamique
globale (échelle des corps en contact) du systéme.

Les résultats atiendus durant ce projet sont la compréhension des phénoménes et des facteurs
responsables de la génération et de la propagation des ondes a la surface des contacts
Jrottants. Cela permettra entre auire 'étude des mesures physiques & mettre en place pour
prédire les événements sismiques; la prévention des instabilités dynamiques (ou la diminution
du bruit, des vibrations) dans les applications existantes; le développement de méthodes de
contréle du coefficient de frotiement global & partir d' «envoi d’ondes » dans les surfaces en
contact, qui modifieraient le frotiement local et done le comportement macroscopique du
systéme (stick-slip, glissement continu, vibrations induites, eic.).

Les principes et les modalités administratives et pédagogiques de cette cotutelle sont définis
par le présent accord.

Art. 2 - La durée prévue pour la préparation de la thése en cotutelle est de 3 ans, & partir de
I’année scolaire 2011/2012.

En cas de nécessité, cette durée peut étre prolongée en conformité avec la réglementation en
vigueur dans les deux établissements.

Art. 3 - La préparation de la thése s’effectue par périodes alternées, & peu prés équivalentes,
dans chacun des deux établissements partenaires. La durée de ces périodes sera déterminée de
commun accord par les deux directeurs de thése.
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Art. 4 — 1 étudiant Davide TONAZZ]
est tenu a s’inscrire réguliérement dans les deux établissements. L’étudiant paiera les droits
d’inscriptions & 'Université La Sapienza de Rome et en sera dispensé prés 'INSA de Lyon.

Art. 5 —Pour les périodes d'études effectuées en France et pour la soutenance, le doctorant
bénéficie de l'ensemble des dispositions de 'arrété du 7 aotit 2006 susvisé, et de la charte des
théses de I'INSA de Lyon.

Art.6 —~Lors de son inscription, le doctorant devra fournir les justificatifs relatifs a ses
ressources, a sa couverture sociale ainsi qu’a son assurance relative aux accidents du travail,
dans chacun des pays.

Titre II — Modalités pédagogiques

Art, 1 - Le travail de thése de I’étudiante sera réalisé sous la supervision commune de deux

directeurs de thése :
- Annalisa FREGOLENT (Professeur du Département de Meccanica e Aeronautica),

directeur de these a I'Université “La Sapienza™ ;
- Yves BERTHIER (Professcur au Laboratoire de Mécanique des Contacts et des
Structures), directeur de thése a4 I' INSA de Lyon ;
qui s’engagent & exercer ‘pleinement la fonction de tuteurs de la candidate ainsi qu’a formuler
chacun un avis écrit sur la thése de Doctorat.
L’avis favorable des deux Directeurs de Thése est une condition nécessaire a 1’admission 2
Pexamen final,

Art. 2- La thése donnera lieu 4 une soutenance unique, reconnue par les deux établissements
concernés. La soutenance aura lieu & ['universit¢ de Rome "La Sapienza".Le jury de
soutenance est composé sur la base d'une proportion équilibrée de membres de chaque
¢tablissement désignés conjointement par les établissements contractants et comprend, en
outre, des personnalités extérieures a ces établissements.

Il comprendra au moins quatre membres et au maximum huit membres, dont, sauf dérogation,
les deux directeurs de thése.

Art. 3-La thése sera rédigée et discuté en Anglais. Elle comportera un résumé substantiel
rédigé en frangais.

Art. 4 — En cas de rapport favorable du Jury, chacun des deux établissements s’engage a
conférer le titre de docteur de recherche pour la méme thése.

L’Université de Rome “La Sapicnza” s’engage a conférer le grade de docteur de recherche en
en Meccanica Teorica ¢ Applicata.

L’INSA de Lyon s’engage a conférer le grade de docteur de recherche en Mécanique.

Art. 5-Lorsque le doctorant doit valider des formations complémentaires (scientifiques ou
visant a son insertion professionnelle), les établissements (I'Ecole Doctorale MEGA pour
I'INSA) préciseront les modalités de reconnaissance mutuelle de ces formations, en accord
avec les directeurs de thése et le doctorant.

Titre 111 — Conclusions

Art. 1 - L’¢tudiant est tenu de respecter les réglements et les usages de 1’établissement
d’accueil.
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Art. 2 — Par Pintermédiaire de leurs directeurs de théses respectifs, les établissements
signataires s’engagent a se communiquer toutes les informations et la documentation utiles a
I’organisation de la cotutelle de thése faisant ’objet du présent accord.

Art. 3 — Les modalités de présentation, de dépot et de reproduction de la thése seront établies
dans chaque pays dans le respect de la réglementation en vigueur.

La protection du sujet de theése, ainsi que la publication, I’exploitation et la protection des
résultats issus des travaux de recherche du doctorant dans les deux établissements signataires
seront assujetties a la réglementation en vigueur et assurées conformément aux procédures
spécifiques a chacun des pays impliqués dans la cotutelle.

Sur demande, les dispositions concernant la protection des droits de propriété intellectuelle
pourront faire I’objet de protocoles ou de documents spécifiques.

Art. 4 — Le présent accord entre en vigueur a partir de la date de signature du représentant
Iégal de chaque établissement signataire et le reste jusqu’a la fin de I’année universitaire au
cours de laquelle la thése ou les travaux seront soutenus. Dans le cas ou ’étudiant ne serait

pas inscrit dans ['un et/ou I’autre des établissements signataires, ou bien renoncerait par écrit a
poursuivre, ou bien n’est pas autorisé a poursuivre la préparation de sa thése en vertu de la
décision de I'un au moins des deux directeurs de thése, les deux établissements signataires
mettront fin conjointement et sans délai, aux dispositions du présent accord.

Art. 5 — Le présent accord est rédigé en quatre exemplaires originaux, dont deux en italien et
deux en frangaise, faisant également foi.

Villeurbanne, i (19 JAN. 2012

David DUREISSEIX

e
Co-direttori di tesi Co-directeur (s) de thése
Annalisa FREGOLENT Yves BERTHIER
/
/{/L'WGJWV"\ 51%/&/\/ /V
An ,-l io CULLA Francesco MASSI

WW

Le Doctorant

Davide TONAZZI

W %WW
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CONVENZIONE PER UNA CO-TUTELA DI TESI DI DOTTORATO DI RICERCA

L’ Universita degli Studi di Roma “La Sapienza” con sede in Roma (Italia), Piazzale Aldo
Moro, 5 rappresentata dal Rettore Prof. Luigi FRATI, che opera in virtd dei poteri che gli
sono conferiti, da una parte

e

L’INSA di Lione rappresentata dal Professore Daniel BARBIER, Addetto alla Direzione della
Ricerca, che opera in virtl dei poteri che gli sono conferiti, dall’altra parte

Per la parte italiana:
- VISTA la Legge 210 del 3 luglio 1998 art. 4 — dottorato di ricerca;
- VISTO il D.M. 224/99 recante norme in materia di dottorato di ricerca
- VISTO il D.M. 509/99 recante norme concernenti ’autonomia didattica degli Atenei;
- VISTO il Regolamento di Atenco in materia di dottorato di ricerca;
- VISTA la delibera del Senato Accademico del 2 ottobre 2003;

c

Visti, per la parte francese,

- La delibera del 6 gennaio 2005 relativo alla procedura internazionale per la cotutela di
tesi (Francia),

- Ladelibera del 7 agosto 2006 relativo al dottorato (Francia);

- La convenzione franco-italiana tra la Conférence des Présidents d’Université (CPU) e
la Conferenza dei Rettori delle Universitd Italiane (CRUI) sul riconoscimento dei
diplomi e della validita dei titoli universitari siglata in data 18 gennaio 1996;

- La convenzione franco-italiana tra la Conférence des Présidents d’Université (CPU) e
la Conferenza dei Rettori delle Universita Italiane (CRUI) sulla cotutela di tesi siglata
1i 13 febraio 1998;

nell’intento di contribuire ad instaurare e/o sviluppare la cooperazione scientifica tra équipe di
ricerca italiana ¢ straniere attraverso la mobilita dei dottorandi

convengono e stipulano quanto segue
Parte prima — Modalita amministrative

Art. 1 - L’Universita degli Studi di Roma “La Sapienza” ¢ L’ INSA di Lione denominati qui
di seguito “Istituzioni” concordano, nel rispetto delle leggi e dei regolamenti in vigore in
ciascun Paese e/o Istituzione, di organizzare congiuntamente una co-tutela di tesi di dottorato
a beneficio del dottorando sottoindicato:

nome e cognome: Davide TONAZZI

iscritto al corso di Dottorato di Ricerca in Meccanica Teorica e Applicata presso I'Universita
La Sapienza di Roma e in “Mecanique” presso I’ “ecole doctoral MEGA”.

Soggetto di tesi: Analisi dell'interazione ¢ra dinamica globale e dinamieca locale dei
sistemi in contatto strisciante.

Lo scopo di questa lesi é quello di analizzare la generazione e propagazione delle onde nei
contaiti striscianti (frenl, prolesi articolari, giunti quasi-statici, geofisica, lerremoti ...) per
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controllare il funzionamento (attrito, usura) e il comportamento macroscopico (stick-slip,
scorrimenio continuo, vibrazioni indotte) o partire dalla comprensione dei fenomeni locali,

Lo studio delle vibrazioni provocate da attrito ¢ un problema scientifico non recente e che,
nonostante le importanti applicazioni industriali, & tuttora parzialmente incompreso a causa
della sua natura fortemente interdisciplinare (scienza dei materiali, tribologia, dinamica e
controllo delle vibrazioni, meccanica della frattura ..). Questa tesi cercherda di sinietizzare gli
strumenti di differenti discipline intorno ad un problema modello analizzato wtilizzando gli
wltimi sviluppi della tribologia numerica.

Una sintesi delle metodologie ¢ delle analisi sviluppate fino ad oggi nel campo della
tribologia, della dinamica delle strutture e della meccanica della frattura (in ingegneria e
scienze della terrq) é stala eseguita in una precedente tesi di dottorato in co-tutela (M. Di
Bartolomeo, 2008-2011) utilizzando gii attuali strumenti numerici,

£ stata svolta un’analisi numerica per simulare la generazione e la propagazione di onde
dovute al contatto. Tale fenomeno & legato sia alla dinamica locale al contatto, che @&
responsabile di diversi fenomeni di usura, sia all ’eccitazione vibrazionale della struttura, che
e responsabile dell instabilita dinamica causata dal contatto (squeal, sprag-slip, stick-slip).

Il lavoro proposto in quesia tesi riguarda la riproduzione e l'analisi sperimentale dei risultati

numerici ottemuti durante la tesi del Dr. Di Bartolomeo, tramite la riproduzione del fenomeno
su un set-up sperimentale, per indagare l'influenza dei vari paramerri,

Il punto innovativo in relazione ai lavori presenti in letteratura (Fineberg) & l'obiettivo di
arrivare a misurare non solo i valori globali (conseguenza dei fenomeni locali), ma anche di
monitorare la dinamica della rottura e la propagazione delle onde generate all'interfuccia in
contatlo striscianie.

L'obiettivo del progetto di tesi ¢ rappresentato dalla riproduzione e dall’analisi dello
scorrimento e la comprensione dell’interazione tra la dinamica locale e la dinamica globale
del sistema. [ risultali attesi da questo progetto sono la comprensione dei fenomeni e dei
Jattori responsabili della generazione e propagazione delle onde sulla superficie di contatto.
Questo si focalizza sulle misure fisiche messe in atto per prevedere fenomeni di instabilité
dinamica (o ridurre il rumore, vibraziowi, terremoti) nelle applicazioni esistenti e nello
sviluppo di metodi di controllo del coefficiente di attrito tramite opportuni campi acustici
artificiali inviati sulle superfici di contatto, per "guidare" la dinamica locale al contatio e
quindi modificare il comportamento macroscopico del sistema (stick-slip, scorrimento
continuo, vibrazioni indotte dall'aitrito, ecc.).

[ principi e le modalita amministrative e didattiche di tale co-tutela sono definiti dalla presente
convenzione.

Art2 - La durata per la preparazione della tesi ¢ di 3 anni, a partire dall’anno accademico
2011/2012.

In caso di necessita tale durata potra essere prorogata in conformitd con la regolamentazione
vigente nelle due Istituzioni.

Art.3 - La preparazione della tesi si effettuera in periodi alterni, pressoché equivalenti, in
ciascuna delle due Istituzioni. La durata di tali periodi sara fissata in comune accordo dai due
Direttori di tesi.

Artd4 - 1l dott. Davide TONAZZI sara iscritto in entrambe le Istituzioni. Corrispondera i
regolari diritti di iscrizione all’Universita “La Sapienza” di Roma e ne sard esonerato presso
INSA di Lione.
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Art.S - Per tufto il periodo di preparazione della tesi il dott. Davide TONAZZI beneficera di
quanto disposto dalla delibera del 7 Agosto 2006 e della carta dei tesisti de PINSA de Lyon.

Art6 - Per la durata della sua iscrizione, il dott. Davide TONAZZI dovra fornire
giustificazione relativamente alle sue risorse, alla sua coperta sanitaria cosi come alla sua
assicurazione sugli incidenti di lavoro, in ognuno dei paesi.

Parte seconda — Modalita didattiche

Art.1 — Il dott. preparera la tesi sotto la direzione comune dei professori:
- Annalisa FREGOLENT (Docente presso il dipartimento di Meccanica e Aeronautica),
direttore di tesi a I'Universita di Roma “La Sapienza”
- Yves BERTHIER (Docente presso il Laboratorio di Meccanica dei Contatti e delle
strutture), direttore di tesi all’INSA di Lione
che si impegnano ad esercitare pienamente la funzione di tutori del dottorando e si
impegnano a valutarne, ciascuno con propria relazione scritta, la tesi di Dottorato.
Il giudizio positivo di entrambi i Direttori di Tesi ¢ condizione necessaria per I’ammissione

“all’esame finale.

Art. 2 - La discussione della tesi, unica ¢ riconosciuta dalle due istituzioni, avra luogo presso
I’Universita di Roma “La Sapienza”. La Commissione giudicatrice, nominata dai Rettori
delle due Universita, sard composta da un numero pari di studiost appartenenti alle due
Istituzioni e designati congiuntamente da esse, oltre a membri esterni alle due Istituzioni. Essa
dovra essere composta da un minimo di quattro membri ed un massimo di otto, appartenenti
al settori scientifico-disciplinari del Dottorato, tra cui, a meno di derogazioni, i due direttori di
test.

Art. 3 — La tesi sard redatta ¢ discussa in inglese; un riassunto sostanziale sara redatto in
lingua francese.

Art. 4 — Ognuna delle due Istituzioni si impegna a conferire il titolo di dottore di ricerca per la
stessa tesi, in seguito ad una relazione favorevole della Commissione giudicatrice.
L’Universita degli Studi di Roma “La Sapienza” conferira il titolo di dottore di ricerca in
Meccanica Teorica e Applicata.

L’INSA di Lione conferira il titolo di dottore di ricerca in Meccanica.

Art. 5- In caso il dottorando dovesse convalidare le formazioni complementari (scientifiche o
mirate alla sua inserzione professionale), le Istituzioni (I'Ecole Doctorale MEGA pour 'INSA)
specificheranno le modalita di riconoscimento reciproco di queste formazioni, in accordo con
1 direttori di tesi ed il dottorando.

Parte terza — Conclusione

Art, 1 — I dottorando dovra rispettare i regolamenti ¢ le consuetudini dell’Istituzione
ospitante.

Art. 2 — Le Istituzioni contraenti, atraverso ’intermediazione dei rispettivi direttori di tesi, si
impegnano a comunicarsi rispettivamente tutte le informazioni e la documentazione utile per
Porganizzazione della co-tutela di tesi oggetto della presente convenzione,
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Art. 3 — Le modalita di presentazione, di deposito e riproduzione della tesi saranno effettuati
in ogni paese secondo i regolamenti in vigore.

La protezione dell’oggetto della tesi, cosi come la pubblicazione, lo sfruttamento e la
protezione dei risultati ottenuti con lo studio di ricerca del dottorando nelle Istituzioni
contraenti saranno assoggettati alla normativa in vigore e assicurati conformemente alle
procedure specifiche di ciascun Paese coinvolto nella co-tutela.

Qualora richiesto, le disposizioni relative alla protezione dei diritti di proprieta intellettuale
potranno costituire oggetto di protocolli o documenti specifici.

Art. 4 — La presente convenzione entra in vigore dalla data di firma del rappresentante legale
di ciascuna Istituzione contraente e sara valida fino alla fine dell’anno accademico nel corso
del quale la tesi o lo studio saranno discussi.

Nel caso in cui il dottorando non fosse iscritto in una e/o I’altra delle Istituzioni contraenti,
oppure rinunciasse per iscritto a proseguire, oppure, in virtl della decisione di almeno uno dei
due direttori di tesi, non fosse autorizzato a proseguire la preparazione della tesi in co-tutela,
le Istituzioni contraenti porranno fine, congiuntamente e senza ritardo, alle disposizioni del
presente accordo.

Art. 5 — La presente convenzione ¢ redatta in quattro esemplari originali, di cui due in lingua
italiana e due in lingua francese, aventi valore legale.

Roma, li g, 201 Villeurbanne, 1i __ 19 [AN. 2012
r il Rettore dell’ Universita Per il Direttore dell' INSA de Lyon

a “La Sapienza” Professgre Daniel BARBIER
— td alla-Direzione della Ricerca
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Macroscopic frictional contact scenarios and local contact
dynamics: at the origins of “macroscopic stick-slip”, mode
coupling instabilities and stable continuous sliding

Résumé étendu

Le comportement local d’un contact et son interaction avec la dynamique
globale du systéme qui le contient, sont a I'origine d’innombrables problémes de
contact concernant plusieurs disciplines telles que la tribologie, la géophysique,
la mécanique vibratoire ou la mécanique de la rupture. Une premiére importante
contribution a la compréhension du frottement sec a été réalisée par Léonard de
Vinci (1495); il a été le premier ingénieur a introduire le terme de coefficient de
frottement. Quelques siecles plus tard, Amontons [1] et Coulomb [2] ont amélio-
ré le concept de friction entre les corps solides par rapport aux différents maté-
riaux, la composition de la surface, la lubrification, I'humidité et les effets de la
température. Dans l'histoire, les phénomenes de frottement ont été fondamenta-
lement examinés plutot en comparaison aux aspects mécaniques du contact.

Dans les derniéres décennies, le développement de méthodes de simulations
expérimentales et numériques pour I'étude des phénomenes de frottement, ont
produit une croissance soudaine du nombre d'activités de recherche en tenant
compte non seulement des aspects du contact, mais aussi de la réponse du sys-
téme auquel les surfaces de contact appartiennent. Godet [3] et Berthier [4] ont
introduit le concept de «troisiéme corps» dans 1'étude des phénomenes de frot-
tement menant a la notation du "Triplet Tribologique". Cette approche met en
¢évidence la facon dont le contact entre deux surfaces frottantes est influencé par
le troisiéme corps, qui peut €tre un liquide, un gaz ou un film solide interposé
entre les interfaces de contact et par le mécanisme (dynamique du systéme); par
conséquent l'analyse des problemes de contact implique l'interaction de divers
phénomenes a différentes échelles.

En outre, la compréhension des mécanismes physiques, impliquant le cou-
plage entre le contact (échelle locale) et la dynamique des systémes (échelle de
la structure) pendant le mouvement relatif, est d'une grande importance pour de
nombreuses recherches et applications industrielles. Ces mécanismes, lié¢s a des
échelles soit du contact soit de la structure, peuvent compromettre le bon fonc-
tionnement des systémes ayant des interfaces en contact. Beaucoup de publica-
tions récentes portent sur des questions spécifiques des systémes complexes,
comme le crissement des freins [5-9], l'instabilité des disques d'embrayage [10],
le fretting [11], les failles sismiques [12], la perception tactile [13], ou le cris-
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sement de la prothése de hanche [14, 15]. Leurs objectifs étant de contrdler ou
de prévoir les effets des vibrations dues au frottement pour chaque cas particu-
lier. De nombreux articles dans différents domaines ont été consacrés a 1'étude
des instabilités des systémes excités par les forces de contact liées au frottement.
Par exemple, a la suite des approches centrées sur I'échelle de contact (les ondes
d'interface et des fronts de rupture [16-18], les précurseurs [19, 20], de l'usure et
du troisiéme corps [21]) ou axées sur la réponse globale du systéme (les modes
instables [22], les vibrations induites par le frottement [23], le « stick-slip ma-
croscopique » [24-26]). Cependant, une approche générale permettant de repro-
duire et d'étudier les différents types de comportements de frottement en fonc-
tion des paramétres du systéme, n'a pas encore €té élaborée.

Dans ce contexte, cette thése est dédiée a 1'étude des différents mécanismes a
I'origine de différents scénarios de contact dus au frottement lorsque deux corps
¢lastiques sont en contact frottant, en fonction des paramétres clés du systéme
(conditions aux limites, frottement, matériaux en contact, amortissement, etc).
Ce travail veut fournir des indications sur la fagon dont le couplage entre le
comportement local (contact) et la dynamique globale (systéme) est a 1'origine
des différents scénarios de contact qui se posent dans les systémes de frottement.
Alors que les simulations numériques ont été¢ développées pour 1'étude des phé-
nomenes physiques locaux (I’état du contact, la rupture et les propagations
d’onde, etc), impossibles @ mesurer expérimentalement de facon appropriée, et
le couplage avec la réponse dynamique du systéme, les résultats expérimentaux
ont permis de valider les résultats numériques. Les simulations expérimentales
et numériques ont permis de dessiner des cartes des scenarii de contact, en fonc-
tion des paramétres considérés.

Le travail présenté dans ce manuscrit vise a étudier les phénoménes phy-
siques et a développer les outils numériques et expérimentaux nécessaires a
I'¢tude. Pour cette raison, aprés une premicre vue d'ensemble des outils numé-
riques et expérimentaux utilisés, une analyse numérique et une version expéri-
mentale préliminaire sont décrites pour obtenir les principaux apergus des phé-
nomenes. Puis, une fois le dispositif expérimental et le modeéle numérique mis a
jour pour permettre une analyse plus fine, une comparaison quantitative entre les
expériences et les simulations numériques est présentée. Le travail est organisé
en quatre parties principales.

La premiére partie de la thése présente un apercu des principaux problémes
de dynamique de contact dus au frottement (chapitre 1), les outils numériques
(chapitre 2) et expérimentaux (chapitre 3) utilisés pour réaliser les investigations
de deux milieux élastiques simples en mouvement relatif. Aprés une introduc-
tion générale sur les vibrations induites par frottement, 'attention est concentrée
sur les instabilités qui peuvent survenir entre deux corps en contact frottant.
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Méme s’il est ambitieux de fournir une classification compléte des vibrations
liées au frottement, une significative (pour le présent travail) classification peut
étre formulée, en fonction de la réponse dynamique globale du systéme, comme
suit :

e [l’instabilité du « macroscopique stick-slip » [27-29] induite par le con-
tact frottant dans les systémes ¢élastiques. D’un point de vue macrosco-
pique, le scénario macroscopique du stick-slip est caractéris¢ par la chute
soudaine de la force de frottement (état de glissement), séparée par des
périodes d'accumulation d'énergie ¢lastique (état d’adhérence). De fortes
vibrations du systéme sont induites par des excitations impulsives en rai-
son des chutes de la force tangentielle (glissement macroscopique), due
aux fronts de rupture a l'interface de contact,

e [’instabilit¢ dynamique du systéme. La réponse de la structure est carac-
térisée par des vibrations instables harmoniques du systéme, a une de ses
fréquences propres, excitées par les forces de frottement,

e vibrations stables du systéme en raison de la réponse dynamique du sys-
teme a l'excitation aléatoire provenant de la rugosité a l'interface. Méme
si le systéme est dynamiquement stable, des oscillations de faible ampli-
tude avec un spectre de fréquence large, caractérisent la réponse du sys-
téme au cours de glissement macroscopique. Ces types d'instabilités, gé-
nérées par des forces de frottement, ont principalement été 1’objet de
publications traitant de problémes spécifiques dans différents domaines
tels que le crissement des freins, le crissement des prothéses de hanche,
les vibrations roue-rail, les tremblements de terre, etc.

Dans ce contexte, des analyses expérimentales et numériques ont été ici mis
en place pour comprendre comment le comportement de l'interface locale affecte
la réponse macroscopique du systéme et vice-versa, au cours des scénarios d'ins-
tabilité. Le chapitre 2 présente les outils numériques utilisés pour réaliser 1'étude
des scénarii de frottement pour des systémes de contact en glissement. La pre-
miere partie du chapitre traite de la description de la géométrie du modéele et des
conditions aux limites utilisées pour l'analyse transitoire non-linéaire (Figure I).

iii
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Figure I: Géométrie de base et conditions aux limites utilisées pour le
modele numérique. F est la force de compression appliquée a la limite inférieure
du corps 2, et V est la vitesse horizontale imposée a la méme limite du corps 2 ;
a chaque neeud de l'interface est imposée la loi de contact.

Le mode¢le considéré a permis d'étudier l'interaction entre la dynamique glo-
bale et le comportement local du contact entre corps déformables en mouvement
relatif. Le code aux éléments finis PLASTD utilisé est spécifique a la solution
des problémes de contact transitoire dynamiques. Une description de la modéli-
sation du contact pour simuler le comportement du contact local et les lois de
frottement adoptées est présentée. La deuxieme partie du chapitre décrit 1'ana-
lyse en fréquence linéaire et la formulation liée au probléme aux valeurs propres
complexes pour les systemes de frottement ; un intérét particulier est adressé a
la stabilit¢ dynamique du systéme.

Le chapitre 3 présente les outils expérimentaux utilisés pour étudier les scé-
narii de frottement qui se produisent pendant le mouvement relatif entre deux
corps déformables. Une description du dispositif expérimental (PEDEBA), l'ap-
proche, les matériaux et la méthode utilisée pour effectuer une analyse prélimi-
naire du contact sont d'abord présentés. Ensuite, la deuxiéme partie du chapitre
traite d’une description détaillée du nouveau banc d’essai (TRIBOWAVE) ré-
cemment développé au laboratoire LaMCoS (Figure II). Les ¢léments fondamen-
taux et l'instrumentation, nécessaires pour étudier le comportement du frotte-
ment et la dynamique du systéme pour chaque essai sont décrits en détail. La
rigidité et la dynamique tangentielle du dispositif expérimental sont utilisées
afin de mieux caractériser la réponse dynamique de l'ensemble (banc d'essai et
matériaux en contact). La caractérisation dynamique du banc d’essai a permis de
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mettre a jour le modéle numérique et d’effectuer une comparaison quantitative
entre les résultats expérimentaux et numériques (chapitre 6).
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Figure II: Vue latérale et frontale du nouveau banc d’essai (TRIBOWAVE).

La deuxieme partie (chapitre 4) présente une premiere analyse numérique sur
I'effet de 1'amortissement des matériaux sur la réponse du frottement de deux
corps ¢€lastiques en mouvement relatif séparés par une interface de frottement.
L'approche adoptée dans la mécanique du contact est couplée avec l'analyse dy-
namique du systéeme mécanique. Les simulations transitoires non linéaires, ef-
fectuées et I’analyse aux valeurs propres complexes, ont conduit a reproduire et
a étudier les différents scénarii qui se produisent lorsque les forces de frottement
excitent le systéme. L'analyse numérique a mis en évidence que le méme sys-
teme mécanique peut passer d'instabilité de type « macroscopique stick-slip » au
glissement continu, avec ou sans instabilit¢ dynamique, en fonction des para-
metres d'amortissement. Le mécanisme de sélection entre ces scénarii est une
combinaison de la dynamique locale de contact et son couplage avec la réponse
dynamique macroscopique du systéme mécanique, décrit dans le chapitre 4.

Les simulations transitoires non linéaires et 1'analyse aux valeurs propres
complexes soulignent que les parameétres d'amortissement a et B (C= aM+ BK)
affectent la réponse du systéme d'une maniere différente.
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Le coefficient d'amortissement o, relatif a la matrice de masse :

i) joue un rdle important sur l'amortissement de la réponse du systéme
(vibrations du systéme excité) lorsque le comportement du systéme est
dominé par des phénomenes de type « macroscopique stick-slip » ;

i1) affecte la stabilité des modes a basse fréquence et I'amplitude du cycle
limite lors du glissement continu avec l'instabilité dynamique.

Le coefficient d'amortissement f, relatif a la matrice de rigidité :

i) affecte en amortissant les dynamiques locales (de propagation des
ondes et de la rupture) au contact, le comportement de frottement ma-
croscopique du systéme qui se déplace du stick-slip au glissement
continu,

i1) affecte l'amortissement et 1’instabilité dynamique des modes aux fré-
quences plus élevées.

Une carte numérique des scénarios de frottement a été établie (Figure III).
Les différents scénarios ont €té analysés en attirant l'attention a la fois sur
l'interface du contact (I’état de I’interface, la propagation d’ondes et les rup-
tures) et a la réponse dynamique du systéme (vibrations mécaniques dues au
couplage modale, « macroscopique stick-slip »).
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Figure III: Carte des scenarii d’instabilité en fonction des paramétres
d'amortissement.
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Dans la troisiéme partie (chapitre 5) une analyse expérimentale préliminaire a
¢été effectuée dans le but de faire une premiere comparaison qualitative entre les
résultats expérimentaux et numériques de la réponse globale du systéme. Le
chapitre 5 présente des observations expérimentales des comportements macros-
copiques dus aux frottements, reproduits avec 1’ancien banc d’essai (PEDEBA).

La réponse macroscopique de deux milieux élastiques en mouvement relatif a
été étudiée expérimentalement, en soulignant comment le comportement de con-
tact frottant est affecté par les conditions aux limites imposées. « Macroscopique
stick-slip », instabilit¢ dynamique et transition vers un glissement stable continu
ont été observés.

La premicre partie de ce chapitre montre les résultats obtenus par I'analyse
expérimentale du comportement de deux blocs de polycarbonate en contact frot-
tant. En fonction des conditions aux limites (charge et vitesse tangentielles im-
posées), le méme systéme frottant présente un comportement différent, en pas-
sant de phénomeénes de type « macroscopique stick-slip », a de l'instabilité
modale jusqu’a du glissement stable continu. Différentes réponses structurelles
(I’amplitude des vibrations, les fréquences et les accélérations excitées) du sys-
téme ont été observées en fonction de la réponse due au frottement.

La seconde partie du chapitre présente une comparaison (qualitative) prélimi-
naire entre l'analyse numérique et expérimentale en fonction des mémes para-
métres. Dans la modélisation par ¢léments finis, une loi de contact qui prend en
compte le coefficient de frottement en fonction du temps d'adhérence (sticking),
est représentée, dans le but de simuler le comportement de frottement de poly-
carbonate. Le code explicite aux éléments finis, PLASTD, a été utilisé pour ef-
fectuer 1'analyse transitoire numérique.

L’analyse fréquentielle et temporelle des essais expérimentaux présente un
bon accord qualitatif avec les résultats numériques obtenus par les simulations
transitoires de contact. La transition de « macroscopique stick-slip » a glisse-
ment continu avec ou sans vibrations instables du systéme, a ét¢ mise en évi-
dence expérimentalement et numériquement en fonction des conditions aux li-
mites (force normale de contact et vitesse imposées). Des cartes des scénarii
d'instabilité (Figure IV) ont été établies en fonction des conditions aux limites
tant expérimentalement que numériquement. En ce qui concerne le chapitre pré-
cédent, ou le parametre étudié était le matériau d'amortissement, l'analyse numé-
rique est ici développée en fonction des paramétres qui peuvent varier expéri-
mentalement (force normale de contact et vitesse).
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Figure 1V : Carte expérimentale des scénarii de contact en fonction de la

vitesse imposée et de la pression de contact moyenne.

Dans la derni¢re partie de la thése (chapitre 6) une analyse expérimentale plus
fine a été réalisée pour étudier le couplage entre la dynamique du systéme et la
dynamique de contact et fournir une comparaison quantitative avec les simula-
tions numériques. Le banc d’essai le plus récent (TRIBOWAVE), décrit dans le
chapitre 2, a alors été développé. Ce banc d’essai a permis de reproduire et
d'analyser les différents comportements de frottement macroscopiques et leur
apparition en fonction d'une gamme plus large et plus controlée de conditions
aux limites. La rigidité et la dynamique tangentielle du nouveau banc d’essai ont
€té mesurées et ainsi incluses dans le modéle numérique. En fait, car le passage
entre les différents scénarii de frottement macroscopique est fonction du cou-
plage entre la dynamique de contact et la dynamique du systéme, le banc d'essai
expérimental doit fournir I’accés a la fois a 1'échelle locale (contact) et au com-

portement globale du systéme.

Le développement du banc d’essai TRIBOWAVE et la mise a jour du modele
numérique, comprenant la rigidité¢ et la dynamique du banc d’essai, ont permis
de développer une comparaison quantitative entre les résultats expérimentaux et

numériques (Figure V).
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Figure V: Coefficient de frottement macroscopique expérimentale (a gauche)
et numérique (a droite), en fonction de la vitesse imposée ; pression de contact
moyenne de 5 MPa.

Les résultats numériques peuvent ensuite &étre utilisés pour associer chaque
réponse au frottement macroscopique du systéme au comportement local du con-
tact (propagation d'onde, fronts de rupture au contact, adhérence-glissement-
séparation et évolution de l'interface), qu’il n'est toujours pas possible d’étudier
expérimentalement. En outre, I'accessibilité au contact par instrumentations op-
tiques et acoustiques permet des analyses futures de la rupture et de la propaga-
tion des ondes au contact pour valider les résultats des simulations numériques a
la zone de contact.

Mots-Clés: frottement sec, instabilitees dues au frottement, stick-slip, couplage
modale, dynamique de contact, analyse experimental, simulation numérique du
contact.
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Macroscopic frictional contact scenarios and local contact
dynamics: at the origins of “macroscopic stick-slip”, mode
coupling instabilities and stable continuous sliding

Abstract

Local contact behavior and its interaction with the global dynamics of the
system are at the origin of innumerable contact issues concerning several
different disciplines like tribology, geophysics, vibration mechanics or fracture
mechanics.

When two elastic media are in relative motion with a frictional interface,
friction induced vibrations arise into the system. By a macroscopic point of
view, the “macroscopic stick-slip” scenario occurring during relative motion is
characterized by sudden friction force drops (sliding state) along the time,
separated by periods of elastic energy accumulation (stick state). Instead, the
mode dynamic instability occurs when a vibration mode of the mechanical
system becomes unstable, due to frictional contact forces. This kind of
instabilities, generated by frictional forces, have been mainly object of papers
dealing with specific issues in different domains such as brake squeal, hip
endoprosthesis squeaking, wheel-rail vibrations, earthquakes, etc.

In this context, experimental and numerical analyses have been focused here
on understanding how the local interface behavior affects the macroscopic
frictional response of the system, and, conversely, during instability scenarios.

The macroscopic frictional scenarios (macroscopic stick-slip instability,
mode coupling instability, stable continuous sliding) arising between two simple
elastic media in relative motion have been investigated numerically and
experimentally. A newer experimental setup (TRIBOWAVE) has been
developed and it allowed to reproduce and to investigate the different scenarios
under well-controlled boundary conditions.

The same frictional scenarios have been reproduced by transient numerical
simulations. A dedicated friction law as a function of adherence (sticking) time
has been recovered by means of experimental tests. The obtained friction law
has been implemented in the numerical model, leading to a quantitative
validation of the simulated scenarios by the experiments.

Nonlinear transient simulations, complex eigenvalue analyses and
experimental tests allowed for drawing instability maps as a function of system
key parameters.

The numerical model, validated by the comparison with the experimental
global measurements (forces, accelerations/velocity), allowed for investigating
the coupling between the local contact behavior (contact status distribution,
wave and rupture propagation, precursors) and the system dynamic response
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during macroscopic stick-slip instability, mode coupling instability and stable
continuous sliding.

The understanding of the coupling between contact and system dynamics will
bring to further improvements on the control of contact instabilities and related
wear issues.

Key-words: dry friction, friction instabilities, stick-slip, mode coupling,
contact dynamics, experimental analysis, numerical contact simulation.
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Introduction

Introduction

The frictional contact dynamics is an old and relevant issue in different
disciplines as tribology, earth science, vibrational mechanics or fracture
mechanics. A first important contribution to the understanding of dry friction
was achieved by Leonardo da Vinci (1495); he was the first engineer who
introduced the term of friction coefficient. A few centuries later, Amontons [1]
and Coulomb [2] improved the concept of friction between solid bodies in
relation to contact material pairs, surface composition, lubrication, humidity and
temperature. In history, frictional phenomena were earlier and more
fundamentally examined in comparison to pure contact mechanical aspects.

In the last decades the development of experimental and numerical simulation
methods for investigating frictional processes have produced a sudden growth in
the number of research activities considering not only the contact aspects but
also the response of the system to which the contact surfaces belong. Godet [3]
and Berthier [4] introduced the “third body concept” into the study of frictional
phenomena leading to the notation of the “Triplet Tribologique”. This approach
highlights how the contact between two frictional surfaces is influenced by the
third body, which can be a solid, liquid or gas film interposed between the
contact interfaces during sliding, by the response of the solids in contact and by
the mechanism (dynamics of the system); thus the analysis of contact issues
involves the interaction of various phenomena at different scales.

Furthermore, understanding the physical mechanisms involving the coupling
between local (contact scale) and system dynamics (structure scale) during
frictional relative motion is of great importance to many research and industrial
applications. These mechanisms, related to both the contact and structure scales,
can compromise the correct functioning of systems having interfaces in contact.
Many recent papers dealt with specific issues of complex systems, like brake
squeal [5-9], instability of clutch discs [10], joint fretting [11], earthquake faults
[12], tactile perception [13], or hip endoprosthesis squeaking [14, 15] in order to
control or predict the effects of friction induced vibrations in each particular
case. Many papers in different domains have been dedicated to study the
instabilities of systems excited by frictional contact forces, following
approaches focused at the contact scale (interface waves and rupture fronts [16-
18], precursors [19, 20], wear and third body [21]) or focused on the global
response of the system (unstable modes [22], friction induced vibrations [23],
macroscopic stick-slip [24-26]). However, a general approach, allowing to
reproduce and investigate different kind of frictional behaviours as a function of
the system parameters, has not been still formulated.
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Introduction

In this context this thesis is addressed to the investigation of the different
mechanisms at the origin of different frictional contact scenarios when two
simple elastic media are in relative motion, as a function of key system
parameters (boundary conditions, friction coefficient, materials in contact,
material damping, etc.). This work wants to provide insights on how the
coupling between local (contact) behaviour and global (system) dynamics is at
the origin of the different contact scenarios arising in frictional systems. While
the numerical simulations have been developed for the investigation of the local
physical phenomena (contact status, rupture and wave propagations, etc.),
impossible to be measured appropriately, and the coupling with the system
dynamic response, the experimental results allowed for validating the numerical
findings. Both experimental and numerical simulations allowed for drawing
frictional scenario maps as a function of the accounted parameters.

The work presented in this manuscript was aimed to both investigate the
physical phenomena and develop the numerical and experimental tools
necessary for the investigation. Because of this, after a first overview of the used
numerical and experimental tools, a numerical analysis and a preliminary
experimental one are described to get the main insights of the phenomena. Then,
once the experimental set-up and numerical model have been updated to allow
for a finer analysis, a quantitative comparison between experiments and
simulations is presented. The work is organized in four main parts.

The first part (chapter 1) presents an overview of frictional contact dynamics
issues, focusing the attention to the instabilities that can arise between two
bodies in relative motion. Then (chapters 2 and 3), the numerical and
experimental tools wused to perform the numerical and experimental
investigations of two simple elastic media in relative motion are described; the
numerical model, the experimental set-up, the materials and the methods used to
perform the analyses are presented in detail.

The second part (chapter 4) presents a first numerical analysis dealing with
the effect of the material damping on the frictional response of two elastic
bodies in relative motion separated by a frictional interface. The approach
adopted in contact mechanics is coupled with the structural dynamics analysis of
the mechanical system. Both non-linear transient simulations, performed
considering large transformations, and complex eigenvalues analyses led to
reproduce and investigate the different scenarios occurring when the frictional
forces excite the system. The numerical analysis highlighted as the same
mechanical system can switch from macroscopic stick-slip instability to
continuous sliding with or without mode coupling instability, as a function of
the material damping parameters. A numerical map of the frictional scenarios
has been drawn. The different scenarios have been analysed focusing the
attention both at the contact interface (status of the interface, propagation of
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Introduction

contact ruptures and waves) and at the system dynamic response (mechanical
vibrations due to the mode coupling, macroscopic stick-slip).

In the third part (chapter 5) a preliminary experimental analysis has been
performed in order to carry out a first qualitative comparison between
experimental and numerical results on the global response of the system. The
transition from macroscopic stick-slip up to continuous sliding with or without
unstable vibrations of the system has been highlighted both experimentally and
numerically as a function of the boundary conditions (normal contact force and
driving velocity). The frequency and time analysis of the experimental
measurements exhibits a good agreement with the numerical results obtained by
transient contact simulations.

The last part of the thesis (chapter 6) deals with the experimental campaign
on the newer dedicated setup (TRIBOWAVE), and the respective experimental
and numerical results. A stiffness and dynamic characterization of the newer
setup has been performed by means of preliminary experimental tests (section
3.3.2). Then, the main dynamic characteristics of the setup have been
implemented into the numerical model in order to consider not only the contact
samples but the more complex dynamic of the system. Experimental tests on the
newer setup and numerical simulations with the updated numerical model
allowed for a quantitative comparison between experimental and numerical
results, validating the numerical findings.

Finally, a conclusive section is dedicated to the discussion of the original
contributions and the outlines from the presented work.
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Frictional contact dynamics

1 Frictional contact dynamics

1.1 Generalities on friction induced vibrations

Frictional vibrations are induced in the system when two contact surfaces are
in relative motion to each other. Frictional contact between two elastic media
can give rise to diverse forms (frequency spectrum and amplitude) of system
oscillations, which often lead to have a strong interaction between the local
contact dynamics and the structure response.

The frictional contacts and the frictional response of two materials in contact
is an old [1, 2], tricky and multidisciplinary issue, which involves different
disciplines such as vibration mechanics, contact mechanics, fracture mechanics,
geophysics and tribology.

In [22] Akay presents an overview of friction induced vibrations and related
acoustic phenomena, concerning different frictional systems at different scales,
from the atomic to the structure scale. Moreover friction induced vibrations are
object of research in different domains because of the large amount of involved
phenomena.

Friction leads to energy dissipation and, in different applications, the friction
can be either minimized for saving energy (e.g. joints with bearing) or
maximized for dissipating energy or avoid sliding, such as for example between
the tires and the road or during braking. While a large amount of energy is
dissipated directly at the contact, a part of the energy is returned to the system
into the form of induced vibrations; the system responds through its own
dynamics storing and dissipating energy by vibrations and material damping [24,
30].

Furthermore, understanding the physical mechanisms that drive the onset and
the evolution of sliding between two media is of great importance to many
research and industrial applications such as disk brake squeal [6, 8, 9, 31-33],
hip endoprosthesis vibrations [15, 34], wheel-rail vibrations[35] and noise
emission [5, 36, 37], machining tool vibrations [38], earthquakes [20, 39], tactile
perception [13, 40], etc. A review about friction induced vibrations concerning
several engineering applications is presented in [23].
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Frictional contact dynamics

As a function of the specific issue or discipline, in the literature the behaviour
of bodies in frictional contact are often investigating by either a macroscopic
(nonlinear dynamics) or local (tribology) point of view, as a function of the
applications or the focused phenomena.

For instance some recent papers deal with frictional models characterized by
few degrees of freedom and rigid/deformable contact behaviour [41, 42]. This
kind of modelling is useful to better investigate the global non-linear dynamic
response of the system without accounting for local phenomena (e.g. contact
dynamics, wear [4], plasticity, third body [4, 43], local impact [44]) by means of
specific “macroscopic” contact laws or constitutive interface models [45, 46].

Different numerical approaches are presented in literature, from system with
few degrees of freedom up to continuous systems with rigid/deformable contact
interface; the main aim of these studies is the understanding of the global
response of the system during the frictional motion [42]. In [47] a linear and
non-linear analysis of a multi-degrees of freedom system shows the existence of
limit cycles, quasi-periodic and even chaotic behaviour during steady relative
motion. Minimal and analytical models [48-50] have been proposed for
understanding the role of the system key parameters, such as damping or friction
coefficient, on the time and frequency response.

Recently other works showed as the frictional behaviour is not exclusively a
property of the materials in contact [51] and the system dynamics, but it is a
more complex phenomenon that involves processes at different scales (from
atomic to system scales) [52, 53]. Adams [54-56], considering a continuum
approach, investigated the sliding of two elastic half spaces with imposed
constant friction coefficient at the interface. He found that local ruptures can
propagate along the contact interface. The system is characterized by stick-slip
motion due to the rupture propagations at the interface and allowing the bodies
to slide with an apparent coefficient of friction which is lower than the
coefficient of friction imposed at the interface. He highlighted the difference
between the apparent/remote friction coefficient (ration between remote shear
and normal stress) and the imposed local contact friction, due to the dynamics at
the interface.

A more general approach is needed to account for the coupling between the
local phenomena (e.g. contact dynamics) and the system response.

Baillet et al. [57, 58] showed some first works dealing with the coupling
between local and contact dynamics considering a finite geometry. They
considered a transient non-linear finite element model with constant boundary
conditions, showing as the behaviour at the contact zone (stick, slip, separation,
stress concentration, local velocity, etc) depends by “dynamic effects” due to
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Frictional contact dynamics

friction induced vibrations. More in general the presence of these instabilities
changes drastically the relation between the remote stress applied at the
boundaries of the bodies and the stresses distribution at the interface. In addition
the local stress can reaches extremely larger (or lower) values than the expected
ones. Friction dynamics can modify the local kinematics at the surface and
consequently the distribution of the contact pressure, the shear stress, the local
deformations and the tribological state of the contact zone [57-59].
Consequently the local dynamic processes can cover a key role on the formation
of the STTs (Superficial Tribological Transformations) [4, 60] as well as in the
formation and role of the third body [43, 61].

Even if it would be ambitious to provide a complete classification of friction
induced vibrations, a significant (for the present work) classification can be
formulated, as a function of the global dynamic response of the system, as
follow:

e Macroscopic stick-slip instability [27-29] induced by frictional
contacts in elastic systems. Strong vibrations of the system are
induced by impulsive excitations due to the sudden drops of the
tangential force (macroscopic slip), due to ruptures at the contact
interface.

e Dynamic instability of the system. The structural response is
characterized by harmonic unstable vibrations of the system, at one of
its natural frequencies, excited by the frictional forces.

e Stable vibrations of the system due to the response of the system
dynamics to the random excitation coming from the roughness at the
interface. Even if the system is dynamically stable, oscillations of low
amplitude with a wide frequency spectrum characterize the system
response during the macroscopic sliding motion.

In the next sections a more detailed description of the recent literature on the
over-mentioned classes of friction induced vibrations is presented.

1.2 Macroscopic stick-slip instability

When two elastic media are in sliding motion, contact instability phenomena
can lead, with respect to the system parameters (friction coefficient, material
damping, sliding velocity, contact pressure, material properties, etc.), to strong
system oscillations, discontinuous motion (stick-slip) and fastidious noise.

While lumped systems with sliders have been widely used in nonlinear
dynamics to investigated the nonlinear dynamic response of rigid masses under
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Frictional contact dynamics

frictional contact and the occurring of stick-slip [26, 29, 62] the recent literature
shows an increase of works dealing with distributed or continuous models. Some
works deal with distributed frictional models (dampers-springs-blocks) in order
to simply the system dynamics and understanding the parameters that play a key
role into the system response.

A minimalistic 1D spring-block model has been proposed by Maegawa et al.
[19] to reproduce their experiments about precursors to frictional sliding in the
stick-slip regime. A model with a simple Coulomb friction law, showed that the
length of precursors is modified when the external normal load is made
asymmetric. Amundsen et al. [62] improved the 1D model from Maegawa,
developing an analytical prediction for the length of precursors as a function of
the applied tangential load.

In [63] a 2D spring-block model for the transition from static to kinetic
friction at an elastic slider/rigid substrate interface, obeying a minimalistic
friction law, is presented. By using realistic boundary conditions, a number of
previously unexplained experimental results on precursory micro-slip fronts are
successfully reproduced. From the analysis of the interfacial stresses, they tried
to derive a prediction for the evolution of the precursor length as a function of
the applied loads, as well as an approximate relationship between microscopic
and macroscopic friction coefficients.

In last years the local dynamics (rupture and wave propagation) in frictional
contacts has been the subject of experimental and numerical works [20, 26, 64,
65]. Recent experimental works focused the attention on the effect of the local
dynamics [18] at the contact interface. In [26], Voisin et al. showed
experimental observations of the frictional behaviour of a single crystal salt
slider over a large number of deformation cycles. A continuous change is
observed from stick-slip to stable sliding as slip accumulates under constant
conditions of sliding velocity, normal load and temperature. They also showed
that the roughness of the contact interface evolves from randomly rough to some
striated morphology.
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Figure 1-1: (a) Frictional behaviour of salt/glass friction experiment for
loading velocity of 0.11 um/s and normal load of 0.26 Mpa. For more specific
information see [26].

Zigone et al. [66] showed a systematic correlation between the onset of slip
acceleration and the emission of TLS (tremor like signals) in a laboratory
friction experiment. TLS are generated when the shear stress reaches the peak
static resistance and the interface is close to failure or rupture. The result
provides a comprehensive image of how natural seismic tremors might be
generated and/or triggered by passing seismic waves or even slow slip events.
Typical phenomena of macroscopic stick-slip have been highlighted by the by
salt/glass friction experiments (Figure 1-2).
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Figure [-2: Frictional behaviour of salt/glass friction experiment as a
function of increasing cumulative sliding. (B) Typical phenomena of stick-slip
with sudden tangential force and related acoustic emission. (C)Smooth
oscillations of growing amplitude precede the macro-slip event. (D) Stable
continuous sliding characterized by small variations of frictional force around a
mean value. For more information about the experiment see[66].

In [67] stick-slip has been also observed in articular cartilage under certain
loading and sliding conditions. Using the Surface Forces Apparatus, they
showed that stick-slip can induce permanent morphological changes (a change in
the roughness indicative of wear/damage) in cartilage surfaces, even under mild
loading and sliding conditions. The different load and speed regimes can be
represented by friction maps, separating regimes of smooth and stick-slip
sliding.

Rubinstein et al. in [64] studied the onset of dynamic friction between two
blocks of PMMA (polymethyl-methacrylate) separated by a rough interface.
They measured the real contact area during the propagation of the ruptures
before the overall sliding by means of an experimental apparatus. They observed
that the dynamic rupture is governed by crack-like detachment fronts and after
each detachment front the net contact area is reduced. Two kinds of these fronts
propagate at subsonic and intersonic velocities; a third type of front, which
propagates an order of magnitude more slowly, is the dominant mechanism for
the rupture of the interface. No overall motion (sliding) of the blocks occurs
until either of the slower fronts traverses the entire interface.

In [20], Rubinstein et al. measured the spatial and temporal behaviour of the
true contact area along a rough spatially extended interface between two blocks
in frictional contact. A sequence of cracklike precursors preceded the global
sliding of the contact interface, which are initiated at shear levels that are well
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below the threshold for static friction. These precursors arrest traversing the
entire interface.

In [68] Kammer et al. investigated the evolution of heterogeneous stress
states along frictional interfaces. They used a finite element simulation in order
to model the occurrence of precursory slip sequences on a deformable-
deformable, as well as a deformable-rigid, interface between two solids. In
addition to the linear slip-weakening friction law, the frictional strength is
regularized using a simplified form of the Prakash—Clifton law [16]. The delay
parameter of the frictional strength has been chosen sufficiently small compared
to the typical duration of a slip event [16, 69]. They showed that at the tip of
each arrested rupture (precursor) is created and then it is erased to the passage of
the following rupture. The bulk viscoelasticity is at the origin of this history
effect.

Recently Andrews et al. [70] investigated the frictional dynamics between
two identical elastic-viscoplastic solids. Depending on bulk material properties,
interface properties and loading conditions, frictional slip along the interface can
propagate in a crack-like mode, a pulse-like mode or a train of pulses mode.

Considering the interaction between local contact behaviour and system
dynamics (vibration modes), Di Bartolomeo et al. presented in [17] the results
obtained from a 2D non-linear finite element analysis of the evolution of sliding
between two dissimilar isotropic elastic bodies separated by a frictional
interface. Results from the numerical parameter space study showed how the
system parameters affect the local dynamics. Consequently, the local dynamics
affects the macroscopic frictional behaviour of the system and excites the
system dynamic response. The approach used typically in geophysics to follow
the wave generation and propagation at the contact interface is coupled with the
structural analysis of the bodies in contact. Figure 1-3 shows the complex
processes at the contact interface during the onset of the sliding. Different types
of contact ruptures and at different speeds cross the interface, reaching the
boundaries and then reflecting inside the bodies that respond with their own
dynamics.
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Figure 1-3: (a) Zoom of normalized contact force as a function of time and
(b) seismic horizontal velocity profile for the same interval at the onset of the
sliding (from [17]).

The main numerical results obtained in [17] can be qualitatively compared
with the experimental results presented in [20, 29, 64]. Obviously comparison
between experimental and numerical results needs a critical analysis with
respect to the difference between numerical and experimental models.

1.3 Dynamic instability

In the previous section, the more recent works on macroscopic stick-slip
instability, related to the interface rupture and propagation/generation of contact
waves, have been presented. On the other hand, this section wants to give an
overview of the main works dealing with the dynamic modal instabilities in
frictional contacts and focusing the attention to the macro-scale (system scale)
aspect of the issue. In fact, in most of the cited works, the global system
response is investigated, while the local contact dynamics is not usually focused.

In this context, a relevant number of works has been dedicated to investigate
different possible mechanisms at the origin of dynamic instabilities occurring in
sliding contact: sprag-slip, mode lock-in, negative slope of friction coefficient,
etc. In general, they can be considered as particular cases of friction induced
vibrations, in which the system dynamics results to be unstable and is excited by
the contact forces. These works are aimed to understand the causes and key
factors in order to give a solution for some practical issues such as disc brake
squeal, clutch instabilities, hip endoprothesis squeaking, etc..
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Frictional contact dynamics

In the following, the main features of the mentioned theories are resumed; a
more complete and detailed description can be found in [7].

Negative slope of friction coefficient-sliding velocity

A simple mechanical system where the friction coefficient is a decreasing
function of sliding velocity has been investigated by Mills [71].

N

“Y

m

oN O

Ve

Figure 1-4: Spring-mass-damping system with a moving surface.

Considering a friction coefficient law as a linear function of sliding velocity,
the governing equations of the system in Figure 1-4 can been written as follows:

mx + cx + kx = yyN — p,(v, — x)N
w(vr) = py — povr

Where m is the mass, k is the spring, ¢ the viscous damping and x is the
tangential displacement of the mass around the equilibrium position.

The term of the friction force that is proportional to the velocity of the mass
introduces an additional term to the damping coefficient and brings to an
“apparent” damping value that can result to be negative, bringing to self-excited
vibrations of the unstable system.

Sprag-slip theory

In 1961 Spurr realized that unstable oscillations of the system can be
produced even when the friction coefficient is independent of the sliding
velocity [72].
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Figure 1-5: Schematic diagram of sprag-slip theory [73].

In describing this mechanism, Spurr presented a semi-rigid structure that is
inclined at an angle 6 to a rubbing surface and pushed horizontal to the surface,
as shown in Figure 1-5. Assuming Fr = uFv and considering the equilibrium of
the system, the following equation is derived:

Fo uL Fo- L
I 71 —putan(0)’" "~ 1 — ptan(6)

where u is the coefficient of friction and L is the load. It can be seen that the
friction force (Fy) will approach infinity as u approaches cot(6). When u = cot(6)
the system “sprags” or locks and the surface motion become impossible. In this
simple way Spurr explained the loading cycle that could bring to the limit-cycle
of self-excited vibrations.

Modal coupling: mode lock-in theory

In 1972 North investigated self-excited vibrations considering an eight-
degrees-of-freedom model, where the contact forces are considered as follower
forces and the friction coefficient as a constant value.

The equations of motion of the system can be written as:

MJ'C'+KA5x= 0

with M the mass matrix and Kas the stiffness matrix.

The introduction of the frictional contact forces lead to have an asymmetric
stiffness matrix. When the equilibrium of the system is stable the eigenvalues
consist of complex conjugate purely imaginary pairs (or with negative real part
if damping is introduced in the model). Varying the parameters of the system, it
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is possible that two eigenfrequencies (imaginary part) tend to approach each
other until they reach the same frequency at the lock-in point (Figure 1-6). Then
the real part of the two coupled eigenvalues split, and one of the modes of the
pair can result to have positive real part, i.e. negative damping. On the other
hand in the lock-out point the two eigenfrequencies of the system return at
distinct values assuming again real part equal to zero in the case of nil damping
(Figure 1-6).

-
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w
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w
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34

Damping

Figure 1-6: Complex eigenvalue analysis of 2 dof model of North [74].

Generally, in real frictional systems, the mechanisms explained above can
occur simultaneously, so that an exact separation of these effects is often
difficult.

By the way, among these approaches, the modal coupling theory (mode lock-
in) is one of the most accepted for specific issues like brake squeal and the
complex eigenvalues analysis is a popular numerical tool for dynamic instability
prediction. In the last years a huge amount of numerical and experimental works
related to brake squeal have been presented. In fact the study of self-excited
oscillations, by the mode coupling theory, has its origin in the brake squeal
issues. In order to investigate the origin of the mode coupling and its key factors
investigations on both real brake systems [75] and simplified laboratory systems
[76] have been developed through experimental, numerical and semi-analytical
[50, 77] approaches.

Hoffmann in [48] presented a qualitative and quantitative study of the mode-
coupling instability in the presence of structural damping, which will be
assumed as linear viscous. It is shown that under specific conditions the mode-
coupling instability may be regarded as a viscous instability in the sense that an
increase in structural damping may render a stable system unstable. Thus the
role of damping can be clarified in a two-degree-of-freedom model.

Other researchers studied the effect of damping both in simple minimal
models [49] and in more complex systems [9, 78, 79] . Sinou et al. in [49]
investigated a non-linear-two-degree-of-freedom system, replacing contact
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nonlineaties with contact nonlinear stiffness. The results indicate the existence
of, in some cases, an optimal structural damping ratio between the stable and
unstable modes which decreases the unstable region. The distribution of
damping on the system components and the propensity of the brake to develop
squeal is investigated by Massi et al. [80] (Figure 1-7). The obtained numerical
results are validated by the experimental ones, presented in [81]. The behaviour
of the system eigenvalues highlights that, while a homogenous distribution of
damping stabilizes the system, a non-uniform repartition of damping can
increase the squeal propensity.

Figure 1-7: Experimental setup used to investigate the effect of damping by
Massi et al. [81].

Magnier [50] presented a model defined by a disc and a pad connected via
distributed springs (contact stiffness). A static equilibrium has been solved
before performing the complex eigenvalue analysis. The results demonstrate that
the introduction of heterogeneities can modify the dynamic behaviour of the
system. Moreover, the influence of the size of the heterogeneities has been
studied and the results show the influence of this parameter in the squeal
occurrence.

Friction induced vibrations has also been highlighted in biomechanical
systems, applying the same approach used for brake squeal noise (mode
coupling theory). Researchers [34] analysed self-excited vibrations and
fastidious noise (squeaking) from hip endoprosthesis systems. A combined
experimental and numerical study reveals that certain configurations can become
unstable causing high frequency oscillations with considerable amplitude
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(Figure 1-8). Complex eigenvalue analysis has been performed to individuate
critical parameters and influence factors to help endoprosthesis design.
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Figure 1-8: (a) Hip endoprosthesis system.(b) Experimental results obtained
in vitro on the ceramic ball [34].

1.4 Stable friction induced vibrations

Friction induced vibrations can also arise during sliding when a system
frictional instability (detailed in the previous sections) doesn’t occur. The main
mechanism at the origin of this kind of vibrations is the interaction of asperities
at the interface. The roughness and materials at the frictional interface
characterize the local excitation and thus the interaction with the system
response (system vibrations). In this case a response at the natural frequencies of
the frictional system characterises the friction induced vibrations. This kind of
behaviour produce an acoustic emission referred in literature as roughness noise
[22]. An example of roughness noise involving corrugated surfaces sliding over
each other under normal load, is presented, producing impulsive contact forces
generating an excitation in each direction; the response spectrum is
characterized by a combination of the natural frequencies of the system and the
frequency corrugations.

Several numerical and experimental works [13, 82-84] deal with friction
induce vibrations related to surface roughness, focusing the attention to the
global response of the system and the acoustic emission. By the acoustic point of
view, Othman et al. [83] carried out an experimental investigation of the
roughness noise generated from the sliding of a stylus over a frictional surface,
analysing the sound pressure level for different material surface roughness. The
frequency and sound level has been studied for concentrated contacts (stylus
over a surface). On the other hand Stoimenov et al. [84] clarified the effect of
surface roughness on the frequency of non-squealing frictional sound by means
of experiments on a distributed dry contact (flat—flat sliding contact). The
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structural response (Power spectral density of the sound) highlights as the
frequency peaks increases its amplitude with the increasing of the sliding
velocity and average contact pressure. Of course, the frictional response due to
the surface roughness in such stable frictional system is characterized by relative
low amplitude vibrations along the time and a broad frequency spectrum. For a
more detail review concerning stable friction induced vibrations, which
overcomes the aim of this work, the reader can refer to the over-mentioned
papers.

1.5 Concluding remarks

The literature dealing with frictional contact dynamics is really huge and
differentiated as a function of the different applications, different investigated
phenomena or different disciplinary approaches; this chapter wants to give a
generic, but not exhaustive, bibliographical panorama of the recent literature.
Detailed literature on specific applications or issues can be found in the different
review papers cited in the text.

When dealing with friction induced vibrations, many papers are focused on
specific issues of more or less complex systems, in order to control or predict
the effects of friction induced vibrations in each particular case. Moreover, as a
function of the specific issue and discipline, different time and space scale are
accounted for.

However, a general approach, accounting for the different scales (contact
and system scale) is needed to generalize the approach and show how a same
mechanical system can present the different scenarios of friction induced
vibrations mentioned above (stick-slip instability, mode coupling instability or
stable continuous sliding), as a function of the system parameters.
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2 Numerical tools for contact analysis

2.1 Introduction

This section presents the numerical tools used to carry out the numerical
contact analyses concerning the investigation of frictional dynamic scenarios in
sliding contact systems. The first part of the chapter deals with the description
of the model geometry and the boundary conditions used for the non-linear
transient analysis. The considered model allowed for investigating the
interaction between global dynamics and local contact behaviour between
deformable bodies in relative motion. The used finite element code PLASTD is
specific to resolve transient contact dynamic issues. A description of the contact
modelling to simulate the local contact behaviour and the adopted friction laws
are presented. The second part of the chapter describes the linear frequency
analysis and the related formulation for the complex eigenvalue problem for
frictional systems; particular interest is addressed to the stability of the system
dynamics.

2.2 Transient non-linear contact analysis

2.2.1 Geometry and material properties

The numerical model (2D plane strain deformation) consists of two isotropic
elastic finite media separated by a frictional interface. The contact surface is flat
and no thermal and physicochemical effects are accounted for. The considered
constitutive law associated to the materials is the classical Hooke’s law and the
only nonlinearity accounted for is the frictional contact. Figure 2-1 shows the
basic geometry of the numerical model and the boundary conditions used to
carry out the transient non-linear contact simulations. The two bodies are
pressed together with a compressive global force F, applied on the lower
boundary of body 2. After this first phase of normal (y-direction) pre-loading, a
constant horizontal velocity V is applied along the x-direction at the same
boundary, while the upper boundary of body 1 is maintained fixed. For the
numerical analysis reported in the chapter 4, the dimensions (length L and width
W) of the model has been chosen in order to have affordable computational
time. On the other hand, to carry out a comparison between experimental and
numerical results the dimensions of the model and the material properties have
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been updated considering the materials in contact and the dimensions used in the
experimental analysis (Chapter 5-6). In the following chapters, the used
dimensions and materials are specified.

) L >
L L
Body 1 Fixed Boundary
X Eypu vy
I Frictional Interface

FT V

Figure 2-1: Basic geometry and boundary conditions used for the numerical
model. F is the compressive global force applied at the lower boundary of body
2 and V is the horizontal velocity imposed at the same boundary of body 2. At
each node of the frictional interface is imposed the friction contact law.

2.2.2 Finite element formulation

The explicit finite element code PLASTD [85, 86] is used to perform
transient contact nonlinear simulations in order to analyse the interaction
between the local contact dynamics and the structural response due to the
frictional excitation. This software is designed for large strains, large
displacements, large rotations and non-linear contact behaviour using a forward
Lagrange multiplier method for the contact between deformable bodies. The
bodies are described by a four node quadrilateral elements with 2 x 2 Gauss
quadrature rule and the contact algorithm uses slave nodes and target surfaces.
The elementary target segments are described by two nodes and approximated
by bicubic splines. A forward Lagrange multiplier method is formulated by the
equations of motion at time #,=iA¢ with the displacement conditions imposed on
the slave node at time t;,4:
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Mu, + Cul + Kui + G;r_'_l)\,i = Fi

(1)
Gi1{Xi + Ui —u3 <0

where M and K are, respectively, symmetric and positively defined matrices
of mass and stiffness of the system; C is the Rayleigh proportional damping

matrix where & is the mass damping coefficient and B is the stiffness damping
coefficient:

[C] = a[M] + B[K] (2)

X; is the coordinate vector at time t;. u,u, i are respectively the vectors of
nodal displacements, nodal velocities and accelerations. F; is the vector of
external forces.

Ai = [1, A]" contains respectively the normal and tangential contact forces
acting on the nodes at the contact surface, calculated by means of the contact
algorithm.

GI' = [GF GT] is the global matrix of the displacement conditions ensuring
non-penetration condition and the friction law at the boundaries in contact. The
equations of motion are discretized in time, by using an explicit Newmark
scheme.

The vectors ii; and 1; are expressed at each time step using a time scheme of
type B,, where 5, € [0.5;1]:

. 2 .
iy = —5 (Wiq — u; — Atiy)

1. . 28
=725, [ui+1 +At(1 — Bo)il;—q + = (Wivg — ui)]

(3)

u;

The displacements u;j,; of the nodes situated on the contact surface are
initially computed with A; equal to 0. In order to avoid the introduction of
numerical damping, B, is fixed to 0.5 (central difference method) and the nodal
displacements at time t;,; are obtained as:

Ui g = ACPMY(F; — Ku) + 2u; — w4 4)

A constraint matrix G;,; is formulated for the slave nodes if they have
penetrated through a target segment. Calculations of contact forces A; and nodal
displacements at time t‘*! are then performed:
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— -1 *
{li = (At* Gy, M 1GiT+1) Gi1(Uisq) (5)
Ui = u;f_,_l - (At2M_1Gg+1)'i)

The equations are solved using the Gauss-Seidel method [86].

The explicit Newmark scheme coupled with forward Lagrange multiplier
method (see section 2.2.3) allows to satisfy more precisely the contact
conditions. Furthermore the explicit method allows for better solve problems
involving impact and sliding with friction [86] and fast phenomena such wave
and rupture propagations at the contact.

A 2D plane strain deformation model has been used to perform numerical
contact analyses in order to have reasonable computational time, which is today
the main limit into solving the 3D transient non-linear contact simulations.

2.2.3 Contact algorithm and friction laws

The forward multiplier Lagrange method allows to satisfy the non-penetration
condition avoiding to choose a supplementary coefficient (contrary to the
penalty method) that can affect the local solution; on the other hand the
computational effort into resolving the contact forces is major due to the
introduction of the unknown supplementary terms and to the algorithm
convergence.

The resolution of equation system (1) allows to calculate the displacement
vector u and also the vector of the Lagrange multipliers, that represents the
contact forces acting on the slave nodes:

C — T
Fiine = Ginady

During each iteration the following two contact conditions for each slave
node k are also checked:

D 2k<o (6)

Ak < 0 (contact)
Ak =0 (separation)

if | A¥ < pl|2k]|—> ., =0  (stick)

i
(2] = g 2%] - 2%-v, <0 (stip) O

2] <wlatl - {

Where n and ¢ are the normal and tangential unit vectors defining the contact,
A, and A; are the normal and tangential contact forces at each node £ and u is the
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Numerical tools for contact analysis

friction coefficient. The first condition means that the contact force is a
compression force (without adhesion components), while the second condition is
associated with the use of the defined friction law.

In this work two different friction contact laws have been utilized to carry out
the numerical simulations: the Amontons-Coulomb law and a newer friction law,
where the friction coefficient is a function of local adherence (sticking) time.

Amontons-Coulomb law

When a slave node comes in contact with the respective target segment, the
Amontons-Coulomb law (Figure 2-2) is represented by the equation 7 where p is
the constant friction coefficient and v, is the tangential relative velocity. Figure
2-2 shows a graphic representation of the Amontons-Coulomb law: first the
magnitude of the tangential force cannot exceed the coefficient of friction times
the normal force; second the tangential velocity is zero when the tangential force
is less than the Coulomb limit. Thus the contact node stays in stick state when
M<p|Ay|; otherwise the contact node assumes the sliding state (v,£0) and A=p|\,).
The element size of the numerical model, which has been used to perform
simulations with Amontons-Coulomb law reported in chapter 4, has been chosen
considering the mesh convergence analysis performed in [17].

'y A
A A
Ae = Hn ‘ ‘
Ae = pldy|
Coulomb cone ;Ln zt
Ae = —pt| ]
Ae = —pdy

Figure 2-2: Representation of classical Amontons-Coulomb friction law

Adherence time friction law

Considering the friction law as a function of the adherence time, the friction
coefficient is not assumed to have a constant value (Amontons-Coulomb friction
law). In fact, the experimental frictional analysis, performed on the used
materials (polycarbonate and PMMA), highlighted how the friction coefficient
shows relevant variations as a function of the adherence time between the two
surfaces in contact.

Based on the frictional observations, a more realistic friction model has been
implemented in the code. In particular, the value of the macroscopic friction
coefficient between the two contact bodies has been observed to be a function of
the sticking (adherence) time between the two contact surfaces. It has been
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Numerical tools for contact analysis

possible to recover an analytical expression of the friction coefficient fitting the
experimental data. The new friction model has the following form:

e Before that the contact node switches in sliding state for the first time, the
static friction coefficient is assumed to be a constant value:
1= Ho
e after that the contact node switches in the sliding condition the friction
coefficient follows the analytical expression:
W(tan) = A+ B- (1 — e Ctan) ®)

where the t,,4, represents the adherence time at the contact node;

A+B is the maximum value of the friction coefficient, defined for t,4;, going
to infinite;

A is the dynamic friction coefficient, defined precisely for t 3, = 0;

C is the parameter influencing the increase or decrease of the friction
coefficient in the first part of the friction law shown in Figure 2-3.

L3
Ho
Hmax
) = A+ B (1 - e-Cte)
Hdaynamic -

0 tadn

Figure 2-3: Representation of friction contact law: friction coefficient as a
function of adherence (sticking) time at the contact node.

This kind of friction law is characterized by a constant value of the static
friction coefficient for a long adherence time, corresponding to the limit of the
curve in Figure 2-3. On the other hand, for short adherence times, the friction
coefficient is governed by an exponential law. In this first zone (short adherence
time) the increasing of the friction coefficient is related to the C parameter of
the analytical curve (Eq. 8).

Experimental friction data also highlighted how the global friction coefficient
is influenced by the initial condition of the contact interface before the first
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macro sliding; in the numerical model, the influence of the initial conditions is
accounted for by assuming a constant static friction coefficient po, which is kept
only before the first transition of the contact node from stick to slip status. After
that, the friction law showed in Figure 2-3 is imposed at each contact node.

Reliable parameters (A, B, C, and p,) of the friction law have been obtained
experimentally as a function of contact material pairs. The increase of the
friction coefficient at the interface with the adherence time can be attributed to
the physicochemical surface reactivity of the used materials; the presented
frictional law wants to account for the observed behavior, without modelling
directly the more complex physicochemical phenomena at the interface.

This new frictional model has been developed in order to perform a
quantitative comparison between experimental and numerical results, reported in
the following chapters.

On the other hand a mesh convergence analysis has been performed with the
new friction law, considering the model geometry reported in section 5.4.2.
Figure 2-4 shows the effect of the mesh size on the macroscopic friction
coefficient. Non-linear transient simulations have been performed in the case of
macroscopic stick-slip instability for three different mesh size (see Figure 2-4).
The results from the transient analysis doesn’t change as a function of the mesh
size, showing the same drop amplitude and oscillations of the friction
coefficient. Considering the results of the convergence analysis, the numerical
simulations presented in the chapter 5 and 6 have been carried out with mesh
size equal to 0.1 mm.

—F‘ine mesh=0.650 mm
—Medium mesh=0.075 mm
—Large mesh=0.100 mm

o
&l
T

o o o N
[ o w i
T I I I
1 | | |

Macroscopic friction coefficient
o
]

S
HiN
T
|

[ [ [ [ [ [ [ [
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
Time [s]

Figure 2-4: Representation of macroscopic friction coefficient for three
different mesh size. Parameters of friction contact law: A=0.1, B=0.4, C=150
and ug=0. Imposed boundary conditions: driving velocity of 2 mm/s, average
contact pressure of 3 MPa, integration time step dt=1e-9 s.
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2.3 Complex eigenvalue analysis

The complex eigenvalue analysis is the most commonly used technique to
investigate the mode coupling dynamic instability involving elastic systems with
frictional interfaces.

The commercial finite element software ANSYS is used to perform linear
contact analysis and to calculate its complex eigenvalues and eigenvectors as a
function of the driving parameters. The model geometry and the boundary
conditions shown in Figure 1 have been utilized to carry out the pre-stressed
linear frequency analysis. The contact elements CONTA173 and TARGET170
have been introduced to account for the frictional forces at the contact interface.

Before solving the complex eigenvalues analysis, a static analysis has been
performed with the following loading condition:

e A vertical load distribution (along y direction), with a total force
equal to F, is applied to the lower edge of body 2, bringing the bodies
in contact with an average contact pressure equal to 1 MPa;

e Afterwards, an horizontal (along x direction) displacement has been
applied at the same edge to bring all the contact nodes of the system
in sliding condition.

By solving the preliminary static analysis, the frictional contact forces have
been thus introduced in the system at the contact nodes.

The system is then linearized by replacing the contact forces with equivalent
contact stiffness terms in the system stiffness matrix. The pre-stressed modal
analysis is then performed to account for the system deformation and the contact
state in the stationary sliding condition.

The general equation for the considered system, discretized by finite
elements, is:

(62°M + 8C + Kns)d =0 9)

This equation represents a non-standard eigenvalues problem, where M is the
mass matrix, C is the damping matrix, KNS i1s the non-symmetric stiffness
matrix of the system, 0 is the eigenvalue and ¢ is the associated eigenvector.
When the frictional contact is accounted for, the KNS contains the

supplementary terms due to contact forces at the contact nodes. The lack of
symmetry leads to complex eigenvectors and complex eigenvalues. A general
eigenvalue can be written as & =o+ jw, where the imaginary part is

proportional to the angular frequency of the corresponding system mode and real
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part is proportional to the modal damping factor of the mode. A positive real
part of the eigenvalue means that the mode is unstable (negative apparent modal
damping factor). This kind of linear analysis allows for calculate all the possible
unstable modes of a system with frictional interface; it allows as well to perform
parametrical stability analysis as a function of the system key parameters.
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3 Experimental tools: test bench,
materials and instrumentation

3.1 Introduction

This chapter introduces the experimental tools used to investigate the
frictional scenarios occurring during relative motion between deformable bodies.
A description of the experimental setup (PEDEBA), the approach, the materials
and the method used to carry out a preliminary contact analysis is first
presented.

Then, the second part of the chapter deals with a detailed description of the
newer experimental setup (TRIBOWAVE). The fundamental components and
the instrumentation needed to investigate the frictional and dynamic behaviour
during each performed tests are described.

The tangential stiffness and structural dynamics of the experimental setup is
retrieved in order to better characterize the contact dynamic response of the
whole experimental test-bench. The dynamic characterization of the set-up
allowed for updating the numerical model and carrying out a quantitative
comparison between experimental and numerical results (chapter 6).

3.2 Test bench for preliminary experimental analysis: PEDEBA

A first experimental analysis of two bodies in relative motion has been
performed on a test bench already present at the LaMCoS laboratory.

This set-up, named PEDEBA, has been used in order to reproduce the relative
motion between the two contacting bodies and to investigate the contact
macroscopic frictional behaviour between the two elastic media in relative
motion under well controlled boundary conditions. The experimental analysis
has been realized with the aim of investigating the role of the boundary
conditions in the behaviour of the frictional system. A simplify scheme of the
PEDEBA setup is reported in Figure 2-1. The setup is rigidly linked at a seismic
mass (5000 kg). The lower specimen is bonded along x to the fixed frame and
the normal load (along y direction) is applied through a hydraulic piston,
controlled in force. The upper specimen is fixed to the mobile part of the set-up
that provides the translation displacement (along x direction) through hydraulic
cylinders, controlled in position with a linear encoder. A tri-axial piezoelectric
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force transducer records the tangential and normal force both in the preload
phase and during the relative motion. A piezoelectric accelerometer is
positioned on the support of the lower specimen to measure the tangential
acceleration during tests (see Figure 3-1). In the first phase of each test, the
lower and upper specimens are put in contact applying a compressive normal
force F; afterward a constant velocity is imposed on the upper specimen to bring
the elastic blocks in frictional relative motion. The global signals, tangential
force, normal force, tangential acceleration and imposed displacement have been
recorded with a sample frequency of 50 kHz by an OROS acquisition system.
The translational velocity is imposed to the slider block by a linear hydraulic
displacement system with high resolution in order to avoid artificial stick-slip
phenomena induced by the set-up control system. The set-up allowed for
imposing at the system the opportune (constant) boundary conditions in order to
obtain reproducible results and to perform a comparison with numerical results.

An experimental parametrical analysis, as function of the relative velocity
and the normal load, has been performed. This set-up allowed for observing
different macroscopic frictional behaviours when two simple elastic media are in
relative motion under frictional contact.

Figure 3-1: A general scheme of the experimental set-up PEDEBA: I-
Hydraulic cylinder, 2- Hydraulic piston, 3-Force transducer, 4-Specimens.
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3.3 Description of dedicated setup: TRIBOWAVE

3.3.1 Components, materials and instrumentation

This section presents the experimental tribometer, named TRIBOWAVE,
designed and developed at the LaMCoS laboratory. This setup is dedicated to
reproduce and investigate the system response and the contact behaviour of two
bodies in frictional sliding in a wide range of controlled boundary conditions.

The study of contact instabilities involves difficulties related to the fast and
high frequencies contact phenomena and their interaction with the system
dynamics. The test bench has been designed to guarantee the measurement
reproducibility and to perform measurements limiting the noise and additional
vibrations relative to sliding contact between other parts of the setup. The
developed setup is able to apply an arbitrary chosen relative displacement or
velocity between the two elastic body (constant, sinusoidal, etc.); the real
displacement, the macroscopic frictional forces (tangential and normal) in time
and the system structural response during the relative motion can be measured
accurately. More in general the experimental setup allows for examine the
contact dynamics and the system response for different geometries, contact
surfaces and materials in contact. The set-up has been developed in order to
obtain quantitative comparison between the experimental tests and the numerical
simulations, allowing for reproducing the instability scenarios and to investigate
the interaction between the macroscopic dynamic response of the system and the
local dynamic behaviour at he the contact interface.

Figure 3-2 represents a lateral and frontal view of the newer experimental
setup. The experimental machine has been designed in order to impose boundary
conditions in a large range of the controlled parameters (normal load, imposed
driving velocity, etc.), avoiding artificial contact scenarios due to a bad
controlling of the system. The main functional components of the experimental
setup are:

e The hydraulic cylinder and high pressure pump (ENERPAC) allowing
for bringing the two bodies in contact with a well-defined contact
pressure; a maximum normal force (along z direction) of about 15000
N can be applied. The permitted maximum displacement in the z
direction is of 100 mm. Different specimen geometries and different
materials can been analysed and a wide range, both in terms of normal
force and vertical displacement, can be imposed to perform the
experiments.

e The four linear electromagnetic motors (ETEL of type LMA22-100)
have been assembled in parallel in order to obtain a maximum
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tangential force (x direction) equals to 10000 N with a maximum
allowed tangential displacement of 20 mm. This kind of system allows
for imposing very low driving velocity (down to 1 pm/s). Direct
coupling of the payload to the motor’s moving part eliminates the need
for mechanical transmission elements such as lead-screws, timing belts,
rack and pinion, and worm gear drives. Unlike in classical system,
there is no contact between the moving components in a direct drive
system avoiding vibrations due to the presence of contact parts.

e The linear encoder (HEIDENHAIN of type LIP-200) consists of a scale
tape and a scanning head that operates without mechanical contact. The
scale of an exposed linear encoder is fastened directly to a mounting
surface. The linear encoder is designed for using on machines and
installations that require especially high accuracy of the measured
displacement. The resolution of the considered linear encoder is of
Inm. This resolution allows for applying a well-controlled relative
displacement between the mobile and fixed part of the setup.

e The position controller (ETEL) allows for driving in current the
electromagnetic linear motors. By feeding back the position signal
(linear encoder) into the controller with an high speed communication
through the ETEL real time bus, a desired displacement (velocity) can
be imposed to the mobile part of the setup.

e A precision rail guide (SKF) is the only part of the whole system
characterized by components in rolling contact. The guide is arranged
in pairs and the cage containing the rolling elements is located in
between; an high stiffness and a very load carrying capacity with a
compact design make the guide appropriate for high precision (2 pm/
1000 mm) of position measurements. By the way this component,
allowing for having a relative rigid motion between the fixed part and
the mobile part of the motors, is far away from the contact surface; a
large mass of the mobile part (about 80 Kg) allows for filtering
eventual parasitic noise coming from the rolling contact.

e The 3D component force transducer (KISTLER of type 9067) allows
for measuring the three orthogonal components of dynamic and quasi-
static forces acting between the two contact surfaces. The transducer is
characterized by a high stiffness, high sensibility and fast dynamics,
ensuring to measure vibrations and friction force also in specific
conditions such as impulses or fast force ramps.

e The sample supports have been designed in order to carry out
experimental test with different sample geometry (width, height,
depth). In this manner experimental tests as a function of various
geometry can be easily performed.
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Figure 3-2: Lateral and frontal view of the experimental setup.
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Figure 3-3: Photograph of the experimental setup and zoom related to the
measurement zone.

In order to perform a dynamic and tribological analysis the newer setup has
been designed with the aim of accessing to both the macroscopic dynamic
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response of the system and as close as possible to the contact surface; the aim of
the investigation being the understanding of the interaction between local
contact behaviour and global dynamics. The following measurement
instrumentation has been used to perform the experimental analysis presented in
this thesis:

e A 3D force transducer allows for recording the macroscopic normal
and tangential force time histories and, consequently, the global
response of the frictional system;

e 1D component accelerometers (PCB of type 353B16, 353B15, 352C66)
have been positioned in the direction of the relative motion (x
direction) in order to analyse the structural and dynamics response (up
to 10 kHz) at the main components of the setup: upper (fixed) sample
support, lower (mobile) sample support and the external frame of the
set-up (see Figure 3-2);

e A 3D component accelerometer (PCB of type 339A30) has been used
to analyse the dynamics response of the mobile part of the setup in
order to understand which modes are involved in the global response of
the whole system (samples in contact and auxiliary parts of the setup);

e A laser vibrometer (POLYTECH) allowed for analyse the response at
the contact samples, recording the vibration velocity (up to 1.5 MHz
frequency range) at a single point in the x direction as close as possible
to the contact surface. This kind of measure, very close to the contact
zone and able to recorder the dynamic response on the contact samples,
allowed to better distinguish between the components of the response
due to either the assembly or the sample dynamics. Moreover, the
measurement of the velocity of a point close to the contact allows for
recording signals coming from the rupture propagation at the contact.

3.3.2 Stiffness and dynamic characterization

The interaction between the system structural dynamics and the local contact
behaviour is of crucial importance to analyse the contact scenarios that can arise
when deformable bodies are in relative motion. In order to better control the
imposed boundary conditions, a particular attention during the design phase has
been attributed to the tangential stiffness of the whole setup. The considered
setup is characterized by a high rigidity in the x (tangential) direction in order to
apply well controlled boundary conditions and avoiding that the setup stiffness
controls the contact scenarios during the sliding motion. However, because the
system components cannot be considered as rigid bodies, it is important to
quantify the global stiffness and dynamics.
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Tangential stiffness

In order to perform the subsequent numerical analysis, the experimental
tangential stiffness has been estimated by means of preliminary experimental
measurements.

Experimental tests have been performed by recording the tangential force as a
function of the imposed displacement, for different values of the horizontal
velocity and normal load. Figure 3-4 shows the used approach to estimate the
global tangential stiffness in the case of horizontal velocity of 5 mm/s and
normal contact load of 900 N. The tangential force and the contact normal force
as a function of the imposed horizontal displacement are recorded. In Figure 3-4
the normal load phase is not reported. In order to calculate the global stiffness of
the system the first tangential force ramp, corresponding to the preloading
tangential phase, has been considered; in this phase the whole contact interface
can be considered in sticking state. The slope of the tangential force in Figure
3-4, in the first linear phase, represents the global stiffness related to the
tangential direction (x-direction).

Different tests with different driving velocity and normal loads have been
considered to estimate a mean value of the equivalent (global) tangential
stiffness. Considering the geometry of the system, the rigidity of the system in
the x direction can be mainly dissociated by the contribution of two terms: one
related to the tangential stiffness of the samples in contact; one related to the
tangential stiffness of the force transducer and the mobile part of the setup.
Looking at the configuration of the setup schematized in Figure 3-5, the
tangential stiffness of the assembled system can be modelled by two equivalent
spring in series, accounting for the two contributions mentioned above.

The global stiffness of the whole assembly (set-up and samples) is first
calculated by the measured slope of the tangential force (Figure 3-4); then, the
tangential stiffness related to the deformation of the samples in contact can be
calculated numerically or analytically (assuming the hypothesis of adherence
state between the two bodies); finally, knowing the global stiffness and the
component due to the sample deformation, it was possible to calculate (equation
highlighted in Figure 3-5) the contribution of the tangential stiffness of the set-
up (Ksewp=1.7€7 [N/m]), which is a characteristic of the considered tribometer.
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Figure 3-4: Estimation of equivalent (global) tangential stiffness K., for
imposed driving velocity of 5 mm/s and contact normal load of 900 N (3 MPa).
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Tangential dynamics

On the other hand experimental tests have been performed in order to
investigate the tangential dynamics of the system. This analysis is needed to
understand and account for the main frequencies involved in the experimental
tangential response of the whole system, when excited by the frictional forces.
In particular, the impulsive dynamic excitation due to the macro-slip event,
when macroscopic stick-slip occurs (Tangential force drop in Figure 3-6(c)),
allowed for highlighting the frequency components of the system response, due
to the tangential system dynamics.

Figure 3-6 shows the frictional and dynamics response of the whole system
for the following boundary conditions: normal contact force of 900 N (3 MPa)
and horizontal driving velocity of 5 mm/s. Figure 3-6 shows the acquired signals
after the preload phase, when the normal force has already reached its maximum
value (Figure 3-6(b)) and stays almost constant during the test.

Once the bodies achieved the wished normal contact (Figure 3-6(b)), an
imposed linear displacement (Figure 3-6(a)) is imposed to the mobile part and
the response of the system is recorded by means of the accelerometers (Figure
3-6(d)(e)(f)) and the force transducer (Figure 3-6(b)(c)). Figure 3-6 (d)(e)(f)
shows the accelerations related respectively to the lower (mobile) part, the upper
(fixed) part and the external frame of the setup measured by means of the
accelerometers positioned as shown in Figure 3-2.

The amplitude of the acceleration signals, after the initial sudden drop of the
tangential force (macro-slip event), highlights as the response of the system is
mainly governed by the dynamics of the lower (mobile) part.
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Figure 3-6: Recorded signals for an experimental test performed with an
initial normal force of 900 N and imposed driving velocity of 5 mm/s,
considering PMMA-PC samples. The recorded accelerations are related to the x
(tangential) direction.
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Figure 3-7: Recorded signals for an experimental test performed with an
initial normal force of 900 N and imposed driving velocity of 5 um/s,
considering PMMA-PC samples. The recorded accelerations are related to the
lower (fixed) part of the setup.

To investigate the dynamic response of the mobile part a further experimental
test has been performed with the following boundary conditions: horizontal
driving velocity of 5 pm/s and normal contact force of 900 N, when macroscopic
stick-slip behaviour is obtained. By means of a 3D piezoelectric accelerometer,
fixed to the lower mobile part, the acceleration signals along the 3 directions
have been recorded during each drop of the tangential force (macro-slip). Figure
3-7(a)(b)(c) shows respectively the imposed displacement, contact normal force
and tangential force as a function of time. Figure 3-7(d)(e)(f) shows the lower
part accelerations along the x, y and z direction. The results of the performed
test highlighted as the dynamic response of the mobile part of the system during
each tangential force drop is higher along the x direction.

The spectrum (FFT) of the lower part acceleration along x direction (Figure
3-8), after a force drop (impulsive excitation), showed that the main frequency
associated to the tangential response of the system is at about 1200 Hz. This
peak correspond to the natural frequency of the tangential mode of the mobile
part of the whole assembly, which dominates the tangential response of the
system.
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Figure 3-8: On the left: (a) Acceleration along x direction of lower part and
(b) related spectrum of the signal acceleration for the following boundary
conditions: imposed driving velocity of Sum/s and normal contact force of 900
N. On the right: Estimation of equivalent damping by means of decrement
logarithm method.

The dynamic properties, such as the associated damping and the equivalent
distributed mass, of the system mode have been also estimated in order to
implement the tangential dynamics of the setup in the numerical model.

The damping factor associated to the tangential mode of the setup has been
estimated by means of the decrement logarithmic method Figure 3-8.

On the other hand the equivalent mass has been derived considering the
tangential stiffness of the setup and the mode frequency involved in the
tangential response of the system (1200 Hz). Two assumptions has been used:
first, the total mass of the two samples in contact is negligible with respect to
the equivalent mass of the setup; second the two contact samples stay in
adherence status after the macro-sliding (impulsive excitation). Considering
that, the schematization used to calculate the equivalent mass (needed to
implement the setup dynamics) is reported in Figure 3-9.
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Figure 3-9: Equivalent scheme used to calculate the equivalent mass of the
setup.

In such a way the tangential mode, characterizing the main contribution to the
dynamic response of the system, has been introduced into the numerical model
by means of its equivalent stiffness, mass and damping (see Chapter 6).

The identification of the mean tangential stiffness and the dynamics (mode
frequency, mass and damping) of the setup are of main importance into
simulating the dynamics response of the system (set-up and samples). A
numerical model, which takes in account the dynamics of both the samples in
contact and the whole experimental setup, allowed for realizing a quantitative
comparison between experimental and numerical results shown in the chapter 6.
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4 Frictional scenarios 1n dry contact:
numerical analysis

4.1 Introduction

This chapter presents a numerical analysis of the frictional scenarios that can
arise when two elastic media with a frictional interface are in relative motion.

The performed non-linear transient simulations highlight as the same
mechanical system can switch from macroscopic stick-slip instability up to
continuous sliding behaviour with or without harmonic vibrations (mode
coupling instability) as a function of system key parameters.

The macroscopic stick-slip behaviour is characterized by sudden friction
force drops (sliding state) along the time, separated by periods of elastic energy
accumulation (stick state).

Instead, the mode coupling instability occurs when a vibration mode of the
mechanical system becomes unstable due to the frictional contact forces, leading
to harmonic vibrations. This kind of instability, generated by frictional forces,
has been mainly object of works dealing with a specific issue named brake
squeal and related to brake systems. However this chapter shows how any
mechanical system can generate harmonic acoustic emission comparable to
brake squeal noise during relative motion with frictional contact.

The nonlinear transient simulations and complex eigenvalues analyses
allowed for investigating the different instability scenarios and drawing
qualitative maps as a function of driving parameters. In this chapter the effect of
the Rayleigh damping coefficients is focused and the role of the material
damping on the frictional dynamics has been investigated. The results show the
need on implementing a good estimation of the material damping when
modelling systems with frictional contact, in order to have reliable simulations.

4.2 Description of the model

The 2D model (plane strain deformation) consists of two isotropic elastic
finite media separated by a frictional interface (see Figure 2-1) governed by a
classical Coulomb friction law, described in the section 2.2.3. The material and
geometrical properties of the finite element model are listed in Table 1. The two
bodies are put in contact with a compressive normal force F=10 N/mm; after the
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stabilization of the first normal phase, a constant horizontal velocity V=10 mm/s
is applied at the lower body (slider) to bring the system in sliding state, while
the upper body is maintained fixed.

Nodal displacements, velocities and accelerations of the system nodes, as
well as the values of the contact forces and contact node status (stick, slip and
detachment) are calculated along the simulation time.

Body 1 Body 2

Length L [mm] 10 10
Width W [mm] 3 3
Element number 48000 9048
Contact element size [mm] 0.025 0.0575
Young Modulus E [GPa] 2.5 3.9
Density p [Kg/m’] 1202 1303
Poisson ratio v 0.38 0.33
Damping parameter a [1/s] 40 40
Compressive force F [N/mm] 10 10
Initial averaged normal stress 6=F/L [MPa] 1

Horizontal velocity V [mm/s] 10

Coulomb friction coefficient p 1

Integration time step [s] 0.334e-8

Table 1: Geometry dimensions, material and mesh properties used to perform
the non-linear simulations.

This section presents different macroscopic frictional behaviours during the
relative motion between the bodies in contact, when the damping parameters are
modified.

The material damping is introduced in the model as proportional damping
model and the global damping matrix has the following expression:

C = a[M] + B[K] (10)

Where o is the mass matrix coefficient and B is the stiffness matrix
coefficient.

The o coefficient affects, mainly, the low frequency vibrations, while P
affects the high frequency vibrations of the system. Numerical transient
simulations have been performed changing both the damping parameters. The
first part of the chapter deals with the results obtained varying the stiffness
damping parameter, which affects directly the local dynamics at the contact
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[17], i.e. the wave generation and propagation at the frictional interface and,
consequently, its coupling with the system dynamics [12, 20, 64]. Further
simulations, as a function of the mass damping parameter, have been then
performed and the main results have been presented in the last section of the
chapter.

4.3 Macroscopic stick-slip instability (f = 5e-10 s)

Figure 4-1 shows the results obtained by the transient non-linear contact
simulations when the stiffness damping coefficient § is fixed to 5e-10 s, while
the mass damping coefficient o, measured experimentally [87] on polycarbonate,
is fixed to 40 57
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Figure 4-1: (a) Time evolution of the global (tangential and normal) contact
force with B =5e—10sand a=40s"t (b) Time-varying spectral
representation of the tangential contact force for t € [3e — 4 + 1.1e — 3] s.
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Figure 4-1(a) shows the time evolution of the sum of the tangential and
normal contact forces (approximately x and y direction, because the contact
interface can be considered flat). After a first normal and tangential preloading
phase, the system behaviour is dominated by macro stick-slip phenomena,
characterized by sudden drops of tangential force along the simulation time
(Figure 4-1(a)). The tangential contact force exhibits repetitive fluctuations due
to the macro-slip events at the contact interface. This effect is due to the energy
that is stored by the solid deformation during the force ramps, and that is then
released during the force drops, due to the ruptures propagating at the interface
that switch suddenly the most of the interface in the sliding state, as shown in
[17, 88].

Each force drop, with the consequent energy release, excites the structural
dynamics and generate system vibrations. Figure 4-1(b) shows the natural
frequencies of the system that are excited by the contact forces, while Figure 4-2
shows the velocity distribution of the system, along x direction, at time ¢=
7.668e-4 s, highlighting different velocity oscillations in the system during the
stick phase subsequent to the macro slip event (excitation).

After a first stable tangential preload phase with a linear increasing of the
tangential force, for + = 7e-4 s the macro-slip starts and the first natural
frequencies of the system are excited. The first modes (natural frequencies) of
the system can be detected from the time-varying spectrum of the system
response in Figure 4-1(b) for t€ [3e-4+ 1.1e-3]s. The frictional excitation
(macro-slip) can be considered as a quasi-impulsive excitation due to the sudden
release of the stored elastic energy by means of the rupture propagations at the

contact interface.
CONTACT INTERFACE STATUS
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Figure 4-2: (a) Velocity along x direction and status of the contact interface
at time t=7.668e-4 s for B = 5e — 10 s and a = 40 s~ 1.
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A detailed analysis concerning the rupture propagation during stick-slip
instability and the interactions between the contact dynamics (wave and ruptures
generation and propagation at the contact) and the macroscopic frictional
behaviour is presented in [17, 88].

Figure 4-3 shows the time evolution of the contact forces when the value of
the stiffness matrix damping coefficient is ranged between 5Se-10 s up to le-8 s;
the figure highlights as the macroscopic behaviour of the system changes with
respect to the increase of the f damping parameter. The tangential contact force
shows a reduction of the amplitude of the force drops due to the macro-slip
events, while the period of the force fluctuation decreases. For larger values of
the stiffness damping coefficient (f = le-8 s) the force fluctuations disappear
and the global tangential force reaches the limit value determined by the local
friction law imposed to the contact nodes. In fact, for a large damping factor, the
interface waves decay faster after their nucleation and the energy is dissipated
progressively by the material damping [17]. In this condition, the stick-slip force
drops disappear and the system reaches a “continuous sliding” status along the
whole contact surface. For this reason, the macroscopic friction coefficient
coincide with the local one, imposed by the friction law.

While the force drops disappear, a high frequency vibration of the system can
be recognized by the oscillations of the contact forces (Figure 4-3(f)); this
behaviour, due to mode coupling instability, is analysed in detail in the
following sections.
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Figure 4-3 Time evolution of the global contact force for different values of
stiffness damping coefficient 8. Mass damping coefficient a is fixed to 40 s7'.

4.3.1 Effect of mass damping parameter o

The effect of the o damping parameter, when the frictional response of the
system is dominated by macro stick slip behavoiur, is here investigated. While
the stiffness damping coefficient p has been set to Se-10 s™', the mass damping
parameter has been varied. Figure 4-4 shows the global frictional response
(tangential and normal contact force) while the mass damping parameter has
been varied from 40 to 40000 s”'. The macroscopic behaviour of the system
doesn’t change and the system is always characterized by macroscopic stick-slip
phenomena. By the way, the numerical results highlighted how the mass
damping parameter affects the response of the system after each macro slip
excitation. In fact, while the f damping parameter drives the macroscopic stick-
slip behaviour thanks to its effect on the rupture and wave propagations , the
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increasing of the a damping parameter damps the oscillations of the system
response during each ramp (stick) phase, as shown in Figure 4-4(c).
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Figure 4-4: Time evolution of the global contact force for different values of
mass damping coefficient a. Stiffness damping coefficient p is fixed to 5e-10 s.

4.4 Continuous sliding with mode coupling instability

This section discusses the system behaviour when the system parameters are
set to obtain continuous sliding between the bodies in relative motion. In these
conditions, increasing the stiffness material damping parameter, the system
switch between another unstable behaviour, characterized by mode coupling
instabilities with harmonic vibrations, and stable behaviour without any relevant
system vibration. When affected by mode coupling instability, the system can
switch between different unstable modes at different frequencies, as a function
of the imposed material damping.
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4.4.1 High frequency instability (f = le-8 s)

Figure 4-3(d) shows the time evolution of the global contact forces for f =
le-8 s, and the magnification of the oscillations occurring when the tangential
force reaches the limit value; an increase of the vibration amplitude can be
observed up to a limit cycle (t > 1.1e-3s) that is characteristic of self-excited
vibrations [79, 80]. To analyse in detail the dynamic behaviour of the system
during the relative motion, Figure 4-5 (c) shows the acceleration calculated at
one node of the upper body, for the time interval from 0.7e-3 s to 2.6 e-3 5. Two
consecutive phases are highlighted: in the first phase, the oscillation amplitude
of the acceleration increases exponentially as could be expected by a response of
an unstable linear system; in the second phase, the oscillations stabilize at a
limit cycle and a maximum of the amplitude, due to the contact nonlinearities
[89], is reached. This behaviour is characteristic of mode coupling instabilities
(squeal in brake systems, squeaking in hip endoprosthesis).

The FFT (Fast Fourier Transform) of the acceleration signal, calculated in the
first phase (Figure 4-5(a)), shows an harmonic spectrum with only a
fundamental harmonic at about 406 kHz. On the other hand, the FFT of the
acceleration signal, calculated in the second phase (Figure 4-5(b)), shows both a
main frequency peak, representing the fundamental harmonic at 406 kHz, and
the respective sub-harmonics and super-harmonics of the signal, due to the
contact non-linearities. The high frequency of the vibration is due to the reduced
dimensions of the model (Table 1), which bring to relative high frequencies (the
first mode is at 65 kHz), and are due to the fine mesh needed to have
convergence with a reasonable computational effort.

A linear CEA (Complex Eigenvalues Analysis) has been developed with the
same system parameters used to perform the transient simulation. The stability
analysis of the system under steady sliding has been carried out. The
eigenvalues calculated by the CEA analysis predict an unstable mode (positive
real part of the eigenvalue) at 402 kHz.

The natural frequency of the unstable mode calculated by the CEA matches
with the main harmonic of the system vibrations, calculated by the transient
non-linear analysis. The real part of the unstable eigenvalue has been used in
order to plot the exponential growth of the system vibrations expected by the
linear analysis (bleu curves in Figure 4-5(c)); the figure shows how the plotted
curve matches the growth of the vibrations calculated in the first phase of the
transient simulation (Figure 4-5(c)). Thus, during the first phase (Figure 4-5(c))
the system behaviour corresponds to a modal dynamic instability of the linear
system under sliding state. In the second phase, the non-linearities at the contact
limit the system oscillations and stabilize the system response that reaches a
limit amplitude (limit cycle) of vibration (Figure 4-5(c)). During this phase the
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system response shows sub and super-harmonics of relative large amplitude and

the phase plane (reported in Figure 4-5(d)) suggests the possible appearance of a
chaotic behaviour [90].
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Figure 4-5: (a) FFT of the acceleration signal in the first (linear) phase.(b)
FFT of the acceleration signal in the second (nonlinear) phase.(c) Node
acceleration along y calculated by the non-linear transient analysis for p = le-8
s. The blue curve refers to the exponential vibration growth expected by the
linear CEA. (d) Phase space (displacement-velocity) for a node of the fixed
body.

A further comparison between the results from the linear analysis and the
nonlinear one can be done by the comparison of the modal deformed shape of
the unstable mode calculated by CEA and the vibrational deformation of the
system calculated by the transient analysis. Figure 4-6(a) shows the velocity of
the system along the Y direction at time t = 0.8e-3 s, computed by the transient
simulation; Figure 4-6-b shows directional deformation along Y, calculated by
the CEA. The calculated deformed shapes match each other, confirming that the
calculated unstable mode is effectively the one excited during the transient
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simulation. The slight difference between the two deformed shapes and the
calculated frequency is due the fact that the stability analysis is performed with
a linear approximation at the sliding steady state, while the transient analysis
account for the actual contact conditions (stick, slip, detachment), as described
below.
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Figure 4-6: (a) Velocity of the system along Y at time (t=0.3 e-3 s) with f =
le-8 s (PLASTD). (b) Directional deformation (real part) along Y of the mode at
402 kHz (CEA).

4.4.2 Low frequency instability (f = le-7 s)

Figure 4-7 shows the results obtained from non-linear simulations when a
higher value of the stiffness damping coefficient, f=1e-7 s, is imposed. The
behaviour of the system, after a first tangential preload phase, is still
characterized by a “macroscopic continuous sliding” with harmonic vibrations;
nevertheless the frequency of vibration is lower. The spectrum of the normal
contact force shows a main harmonic at about 63 kHz (Figure 4-7 (b)); the
respective super-harmonics, which are a characteristic of the non-linear contact
behaviour once the limit cycle is reached, are of lower amplitude with respect to
the ones presented in the previous section. Figure 4-7 (c) shows the limit cycle
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of vibration on the phase space calculated for a node belonging to the upper
body, where the limit cycle is distinguished clearly.
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Figure 4-7: (a) Time evolution of the global contact force and a
magnification of the signal with dynamic instability at 63 kHz. Stiffness matrix
damping coefficient f = le-7 s, mass matrix damping coefficient a« = 40 s~*. (b)
Spectrum of the normal contact force signal. (c) Phase space (displacement-
velocity) for a node of the fixed body. Integration time step dt=0.6e-9 s.

The CEA of the system has been performed with the same material damping
used in the transient simulation. The eigenvalue extraction predicts an unstable
mode at about 65 kHz. Figure 4-8(a) shows the velocity distribution of the
system calculated by the transient simulation, while Figure 4-8(b) represents the
directional modal deformed shape calculated by the CEA at 65 kHz. The
agreement of the transient deformation and vibrational frequency, with the
unstable eigenvector and eigenvalue calculated by the CEA analysis, allows for
asserting that the system is still under self-excited vibrations due to a mode
coupling instability [42, 77]. The increasing of the proportional (with respect to
frequency) component of the material damping allowed for stabilizing the modes
at higher frequencies and exciting an unstable mode at lower frequencies. Again,
after a first phase characterized by an exponential growth of the system
vibrations, the oscillation stabilizes up to a limit cycle (Figure 4-8(c)) due to the
contact non-linearities.
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Figure 4-8: (a) Directional modal deformation (real part) along Y of the
mode at 65 kHz (CEA). (b) Velocity of the system at time (t=0.001031 s) with B
= le-7 s (PLASTD).

4.4.3 Effect of mass damping parameter a on limit cycle oscillations

The effect of the o damping parameter when the frictional response of the
system is dominated by mode coupling behavoiur is here investigated. With the
stiffness damping coefficient B set to le-8 s™', the mass damping parameter has
been varied.

Figure 4-9 shows the acceleration along the y direction calculated at one node
of the upper body, for the time interval from 0.7e-3 s to 1.5 e-3 5. The mass
damping parameter has been varied from 40 to 93000 s”'. The macroscopic
behaviour of the system doesn’t change and the system is always characterized
by mode coupling instability. Nevertheless, the numerical results highlighted
how the mass damping parameter affects the vibration amplitude and the
exponential growth of the oscillations during the linear phase. In fact, when
increasing the value of the mass damping parameter, the limit cycle of vibration
is reached more slowly and its amplitude decreases.
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Of course, a further increase of the o damping parameter, combined with a
larger value of the B damping parameter, can bring to stable eigenvalues of the
system and will result in a stable continuous sliding (see section 4.6).
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—a=40000
—a=93000
_8.7 0.8 0.9 1 1.1 1.2 1.3 1.4 15

Time [5] x 107
Figure 4-9: Time evolution of the acceleration along y direction for three
different values of mass damping coefficient a. Stiffness damping coefficient 3
is fixed to le-8§ s.

4.5 Stable continuous sliding (f = Ie-6 s)

Increasing the damping parameter until f=1e-6 s the macroscopic behaviour,
during the relative motion, is stable. In fact, as can be noted in the Figure 4-10 ,
the global tangential force reaches the limit value defined by the friction law and
not significant oscillations of the force (vibrations of the system) are recognized.
In fact the system behaviour during relative motion is not characterized by
instability phenomena (macroscopic stick-slip or mode coupling) and all the
contact nodes stay in sliding state along the time (see Figure 4-11).

Even if in these conditions no “unstable” vibrations characterize the system
response, it should be noticed that low amplitude vibrations are still present and
are due to the response (stable response) of the system to the excitation at the
contact. Nevertheless, when the system is stable, the excitation and response
spectra are affected by the surface roughness that is not accounted for in this
model. Specific analyses are devoted to this specific issue [84, 91].
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Figure 4-10: Time evolution of the global contact force. Stiffness matrix

damping coefficient p = le-6 s, mass matrix damping coefficient ¢ = 40 s~

integration time step dt = 0.1e-9s.
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integration time step dt = 0.1e-9s.
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4.6 Parametrical complex eigenvalue analysis (CEA)

In this section a full parametrical pre-stressed linear CEA is presented to
investigate the role of the damping in the dynamic stability of the system,
calculated in steady state sliding condition. The influence of damping on the
mode coupling instability of the modes at 402 kHz and 65 kHz is presented.
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c
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11 + B=5e-8[9] .
0.5 f=T7e-8[9] |
Tl A B=1e-T 9]
C_)_(, -6 -5 -4 -3 -2 -1 0 1 2
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Figure 4-12: Locus plot in the frequency range 0-450 kHz for 4 different
values of [. The continue lines represent the values of the real parts due
exclusively to the material damping. The points, that split in opposite direction
from continue line, identify the coupled eigenvalue real parts, which value is
due to the global contribute of the material damping with friction conditions.
The eigenvalue at 402 kHz, for the different values, has been highlighted by
circles. The first (in frequency) unstable eigenvalue of the system at 65 kHz
stays unstable (Re[A] > 0) for all damping values.

Figure 4-12 shows the plot of the eigenvalues calculated in the frequency
range between 0 kHz and 450 kHz, for four different values of the damping
coefficient B, ranging between le-8 s and le-7 s. For each value of g it is
possible to identify the contribution to the eigenvalue real parts due to the
structural damping without friction contribution (continuous lines). When the
lock-in between two modes occurs their real parts split from the structural
damping value in opposite directions; one of the two modes can become
unstable if its real part becomes positive. In general the Figure 4-12 shows how
the increasing of £ shifts all the eigenvalue real parts versus the negative half
plane. Nevertheless, being the contribution of S to the modal damping
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proportional with the frequency, the shift of the eigenvalues versus the negative
half plane increases with the increasing of the imaginary part (frequency).

When f is equal to le-7 s, all the modes, except for the 65 kHz eigenvalue
(black circle in Figure 4-12), stay stable. This result explains why the transient
analysis with f equal to le-7 s presents a different frequency of the harmonic
vibrations, corresponding to the sole mode (at lower frequency) that stays
unstable.

When £ is equal to le-8 s several modes are calculated to be unstable by the
real part of the eigenvalues, while the transient nonlinear analysis shows how
only the mode at 402 kHz is at the origin of the unstable vibrations. The
instability over-prediction of the CEA is a known issue [9, 78], and newer
approaches accounting for the energy balance [30] during unstable vibrations are
under investigation to propose more effective instability indexes [92, 93].
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Figure 4-13: (a) Locus plot of the eigenvalues frequency around 402 kHz as
a function of . (b) Locus plot of the real part of eigenvalues around 402 kHz.

Focusing the attention to the mode at the 402 kHz, the representation of the
eigenvalue imaginary parts (natural frequencies), obtained from the CEA as a
function of f varying from 3e-10 s to le-7 s, is presented in Figure 4-13(a). The
two coalescing modes, which are at almost the same frequency (lock-in unstable
condition), split to two different frequencies (lock-out stable condition) with the
increasing of f.

The locus plot reported in Figure 4-13(b) shows how the increase of g
causes a decrease of the positive eigenvalue real parts; for f < 5e-8 s one of the
coupling modes has positive real part, i.e. it is unstable; for f > 5e-8 s the real
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part of both eigenvalues assumes negative value and both the modes are stable.
As predicted by the transient simulations, the mode at 402 kHz results to be
unstable for lower values of .

On the other hand the Figure 4-14 shows the locus plot of the CEA for the
two coupling modes at 65 kHz as a function of f (varying from le-7 s to le-6 s).
Like in the mode lock-in at higher frequency, the two coupled modes split to two
different frequencies when increasing S (Figure 4-14(a)). In particular, looking
at the Figure 4-14(b), for f < 8e-7 s both the real parts of the coupled modes
assume a negative value; therefore, also the lower mode results to be stable, as
recovered by the stable response (stable continuous sliding) of the nonlinear
transient simulation. The non-linear and linear analyses explain why for high
value of damping parameter (f < le-6 s), the global behaviour is characterized
by a stable state with no relevant oscillations during continuous sliding.

These results are in agreement with the mode coupling (lock-in) theory
proposed by North [8] and investigated by several authors [7, 71, 72, 75] for the
brake squeal noise emission.
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Figure 4-14: (a) Locus plot of the eigenvalues frequency around 65 kHz as a
function of B. (b) Locus plot of the real part of eigenvalues around 65 kHz.

4.7 Coupling between local contact behaviour and system
dynamic response

This section focuses the attention to the interaction between the local contact
behaviour and the system response during the different contact scenarios
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described in the previous sections. Because of the difficulties in measuring and
correlating the local contact behaviour (rupture and wave propagation, contact
status distribution and transition, ...) by experimental techniques, the numerical
analysis is here used as a powerful tool to retrieve these information and link it
to the macroscopic response of the system.

4.7.1 Macroscopic stick-slip instability

Figure 4-15 shows the system response and the local behaviour in the case of
macroscopic stick-slip instability for f=5e-10 s (detailed in section 4.3) during
the first macro-slip event. Figure 4-15(a) represents the nodal velocity field
(along x direction) of the system and the contact status distribution at the time
t=7.47e-4 s. The scale of the velocity magnitude is given on the left; the local
contact status can be either stick (bleu), sliding (green) or detached (red). Figure
4-15(b) shows the global response (tangential and normal forces) of the system,
for the considered time interval (rotated zoom of Figure 4-1). Figure 4-15(c)
shows the contact node status along the time for the considered interval. The x-
scale represent the contact line, while the y-scale is the time. Reading the
graphic from the bottom to the top, it is possible to see the evolution of the
contact status (along the whole interface) during the considered time interval.

In a first phase, while the global tangential force increases over the time, a
part of the contact nodes changes its status switching from sticking to sliding
state (Figure 4-15(c)). The sliding onset of the contact node in the left-side of
the interface respect to the centre, is due to the deformation of the samples and
the non-homogeneous initial stress distribution due to the imposed relative
displacement at the boundaries. Different micro-slip front coalesce and grow
giving origin to the so called “slow front” phase. Then, when the tangential
force reaches larger values, rupture propagations occur at the contact interface
leading to detectable drops of the tangential force (precursors). In this second
phase the switching of the nodes in sliding or detachment state, is more rapid
due to the rupture fronts (Figure 4-15(a)). When the rupture fronts have a
sufficient energy to propagate along the whole interface, the waves coming from
the contact interface reach the boundaries (Figure 4-15(a)) and arrive to cause
the macroscopic slip event. The waves originated at the contact are reflected into
the bodies, exciting the system dynamics and influencing again the contact
behaviour recursively. An extensive analysis of the complex dynamics at the
contact interface and the interaction between rupture propagation and system
dynamics during the macroscopic stick-slip behaviour is presented in [17].
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Figure 4-15: (a) X-Velocity distribution of the system and status of the
contact nodes at time t =7.47e-4 s for B = 5e —10's . (b) Time evolution of the
global (tangential and normal) contact forces for t € [7.10e — 4 + 7.51e — 4] s.
(c) Status of the interface contact nodes for the same time interval: green
dots=slip, blue dots=stick, red dots=detachment.

4.7.2 Mode coupling instability

The interaction between local contact behaviour and the dynamic response of
the system in the case of mode coupling instability (B=1e-8 s) is highlighted in
Figure 4-16. The status distribution of the contact interface along the time is
reported in Figure 4-16(b) where a periodic switch of the contact area in sticking
and sliding is reported once the system unstable vibrations grow up; the period
correspond to the fundamental harmonic of the vibration at 406 kHz,
corresponding to the unstable mode of the system. Figure 4-16(a) shows the
nodal velocity field calculated along the x direction at the time t". Looking at the
Figure 4-16(a) and Figure 4-16(c), it can been seen how the actual deformation
of the system is directly related to the local sliding and sticking distribution:
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different amplitude or direction of the local tangential velocities of the two
bodies, at the contact interface, brings the contact nodes in a sliding state; on the
other hand, where the local tangential velocities of the two bodies are the same,
due to the system deformation, the contact nodes stay in sticking state. For this
reason the interface state, during “continuous apparent macroscopic sliding”,
shows a periodic evolution of the local contact status distribution (Figure
4-16(c)) along the time, at the fundamental frequency (406 kHz) of the unstable
mode. The switch in sticking or detachment state of part of the contact surface is
the only nonlinearity accounted for in the transient model, allowing the limit
cycle of the self-excited vibrations. The magnifications reported on the right of
Figure 4-16(c) show the detail of the contact status distribution over the time
during the exponential grow of the vibration (zoom 1) that brings to a
progressive increase of the areas that switch in stick state (at the period of the
unstable mode), and during the nonlinear phase (zoom 2) when the limit cycle is
reached and the amount of sticking zones reach its maximum value.
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Figure 4-16: (a) X-Velocity distribution of the system and status of the
contact nodes at time t'=1.15e-3 s for = le-8 s. (b) Time evolution of the
global (tangential and normal) contact forces for t € [7.5e — 4 + 1.355e — 3].
(c) Status of the interface contact nodes for the same time interval: green
dots=slip, blue dots=stick, red dots=detachment.

Figure 4-17 shows the same global system behaviour explained in the
previous section but this time referred to the mode coupling instability at 63 kHz
(Pp=1e-7 s). As in Figure 4-16 the switching of the contact nodes in sticking and
slipping conditions (Figure 4-17(c)) is due to the deformation of the system
(Figure 4-17(a)) due to the unstable vibration, which guides the local behaviour
at the contact. Comparison between Figure 4-16 (higher frequency instability)
and Figure 4-17 (lower frequency instability) highlights as the system unstable
response influences differently the local contact behaviour during macroscopic
continuous sliding in function of the unstable mode excited by the frictional
contact forces. On the other hand the contact non-linearities (switching of the
contact nodes in stick-slip-detachment status) modifies the system response
during the limit cycle leading to sub/super-harmonics of the main frequency
peak in the system response.
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Figure 4-17: (a) X-Velocity distribution of the system and status of contact
nodes at time t'=1.185e-3 s for f = le-7 s.(b) Time evolution of the global
(tangential and normal) contact forces fort € [0.97e —3 + 1.20e —3]. (¢)
Status of the interface contact nodes for the same time interval: green dots=slip,
blue dots=stick, red dots=detachment.

4.7.3 Stable continuous sliding

When the system is characterized by stable response during continuous
sliding (Figure 4-18(a)), as in the case explained in the section 4.5, the local
contact behaviour is represented by the Figure 4-18(b). While the tangential
force increases reaching the limit imposed by the frictional contact law, the
interface part in sliding increases until the whole contact surface stays in sliding
condition and no relevant oscillations are present in the system response (Figure
4-18(a)). It should be highlighted that these simulations are developed in
absence of surface roughness; its introduction at the contact interface would
cause a further local excitation and local dynamics which induce low amplitude
vibrations due to the response of the system dynamics [83, 84, 91].
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Figure 4-18: (a) Time evolution of the global (tangential and normal) contact
forces fort € [0.7e — 3 + 1.355e — 3] and f = le-6 s. (b) Status of the interface
contact nodes for the same interval time: green dots=slip, blue dots=stick, red
dots=detachment.
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4.8 Discussion of results: contact scenario map

The instability scenarios of a mechanical system under frictional contact have
been numerically investigated. The presented results show how, by varying a
system parameter, the macroscopic frictional dynamics can be characterized by
macro stick-slip phenomena, or harmonic vibrations due to the mode coupling
instability, or stable state in continuous sliding.

The selection mechanism between these scenarios is a combination of the
local contact dynamics, detailed in [17], and its coupling with the macroscopic
dynamic response of the mechanical system.

The non-linear transient simulations and the complex eigenvalue analysis
highlight that the damping parameters o and [ affect the system frictional
response in a different manner, resumed in Figure 4.13.

The mass matrix damping coefficient a:

1) plays a key role on the damping of the system response (excited system
vibrations) when the behaviour of the system is dominated by stick-slip
phenomena (Figure 4-19);

1) affects the stability of low frequency modes and the limit cycle amplitude
during continuous sliding with mode coupling instability (Figure 4-9).

The stiffness matrix damping coefficient B:

1) affects, by damping the local dynamics (wave and rupture propagation) at
the contact, the macroscopic frictional behaviour of the system that shifts
from stick-slip to continuous sliding.

1) affects the damping and mode coupling instability of higher frequency
modes.

The performed non-linear numerical analysis shows the existence of two
zones defined by a critical value B* (equal to le-8 s for the presented model).
e For B <B the behaviour of the whole system is mainly dominated by
macro stick-slip instability;
e forvalue of p< B" >’ the system reaches the status of “continuous slid-

ing” with or without mode coupling instability.

When B > B’both the transient simulations and the CEA showed that
increasing P the oscillations due to unstable modes shift in frequency, passing
from a higher frequency mode to a lower one. This is due to the linear
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contribution (with respect to the frequency) of p to the modal damping, which
has a larger stabilizing effect for the modes at higher frequencies.

For values of B >5e-8 s the time system response exhibits a fundamental
frequency peak at about 65 kHz, which corresponds to the unstable frequency
calculated by the CEA; for smaller values of B the transient simulation exhibits a
fundamental harmonic vibration corresponding to a higher frequency mode (405
kHz), predicted to be unstable by the CEA too.

Finally, increasing both o and B each eigenvalue calculated by CEA with the
linear model is stable and no oscillations during the continuous sliding are
observed in the transient non-linear response of the system (Figure 4-19).

The instability map presented in Figure 4-19 wants to resume the possible
instability scenarios between two elastic media in sliding contact as a function
of the material damping parameters. From both transient nonlinear simulations
and linear CEA, three main regions can be identified:

e stick-slip instability zone, characterized by macroscopic stick-sip fric-
tional behaviour;

e mode coupling instability zone, characterized by continuous sliding
with harmonic self-excited friction induced vibrations, due to an un-
stable mode;

e stability zone, characterized by continuous sliding with no relevant

oscillations in the transient response of the system.

The switch from the macroscopic stick-slip behaviour to continuous sliding is
dominated by the B damping parameter, because affecting the high frequency
phenomena occurring locally (contact rupture and wave propagation) and their
coupling with the system dynamics.

The switch to mode coupling instability is affected by both the o and B
parameters as a function of the frequency of the unstable mode.
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Figure 4-19: Instability scenario map as a function of damping parameters.

No scales are reported in the map axes, presented in Figure 4-19, because the
material damping is just one of the parameters that affect the response of the
frictional system: system geometry, surface roughness, applied boundary
conditions, friction coefficient and contact law, other material properties [94]
like Young modulus or Poisson ratio, etc.

The effects of all these parameters on the selection mechanism of the
instability scenarios are deeply interrelated and the threshold of o and B that
define the zones presented in Figure 4-19 changes in function of the other
system parameters. By the two presented numerical approaches (transient non-
linear simulations and parametrical CEA), qualitative maps of the instability
scenarios can be drawn as a function of several parameters.

Davide Tonazzi /2014
Department of Mechanics and Aerospace Engineering — La Sapienza University of Rome
Contact and Solid Mechanics Laboratory — Institut National des Sciences Appliquées de Lyon 64

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0110/these.pdf
© [D. Tonazzi], [2014], INSA de Lyon, tous droits réservés



Preliminary experimental analysis and qualitative numerical comparison

5 Preliminary experimental analysis
and qualitative numerical comparison

5.1 Introduction

The chapter presents experimental observations of the frictional macroscopic
behaviours reproduced in a laboratory set-up (see section 3.2).

The macroscopic response of two elastic media in relative motion has been
investigated experimentally, highlighting how the contact frictional behaviour is
affected by the imposed boundary conditions. Macroscopic stick-slip, mode
coupling instability and the transition to stable continuous sliding have been
observed.

The first part of the chapter shows the results obtained by the experimental
analysis of two polycarbonate blocks in sliding motion. As a function of the
boundary conditions (load and relative velocity) the same system exhibits
different frictional behaviour switching from macroscopic stick-slip phenomena
to mode coupling instability up to stable continuous sliding. A different
structural response (vibrations amplitude, excited frequencies and accelerations)
of the system has been observed as a function of the frictional response.

The second part of the chapter shows a preliminary (qualitative) comparison
between numerical and experimental analysis as a function of same parameters.
In the finite element model a contact law that considers the coefficient of
friction as a function of the adherence time (see section 2.2.3) is accounted for,
in order to simulate the frictional behaviour of the polycarbonate. The explicit
finite element code PLASTD has been used to perform the numerical transient
analysis.

The frequency and time analysis of the experimental tests exhibits a good
qualitative agreement with the numerical results obtained through the transient
contact simulations. Maps of the instability scenarios have been drawn as a
function of boundary conditions both experimentally and numerically. With
respect to the previous chapter, where the investigated driving parameter was the
material damping, the numerical analysis is here developed as a function of
parameters that can be varied experimentally (load and velocity).
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5.2 Materials and method

The description of the experimental test bench used to provide the relative
motion of two elastic blocks in contact with a defined contact pressure is
presented in the section 3.2.

Two blocks of polycarbonate (see Figure 3-1) have been used to carry out the
experimental tests. The material and geometrical properties of the polycarbonate
blocks are reported in the following table:

Polycarbonate
Length [mm] 30
Width [mm)] 10
Thickness [mm] 5
Density [kg/m?) 1190
Young Modulus [GPa] 2.65
Poisson coefficient 0.4

Table 2: Geometrical and material properties of polycarbonate blocks used
to perform the experimental analysis.

The dimensions of the specimens (Table 2) are set in order to obtain both an
acceptable planarity of the two contact surfaces and a considerable average
contact pressure. The contacting faces of the two blocks have been polished and
each contact face has been cleaned before performing the tests.

In the first phase of each test, the lower and upper specimens are put in
contact applying a compressive normal force F; afterward a constant velocity V
is imposed on the upper specimen to bring the blocks in frictional relative
motion (Figure 3-1). The global signals (tangential force, normal force,
tangential acceleration and imposed displacement) have been recorded with a
sample frequency of 50 kHz by the OROS acquisition system. The translational
velocity is imposed to the slider block with high resolution in order to avoid
artificial stick-slip phenomena induced by the set-up control system.

An experimental parametrical analysis, as function of the driving velocity and
the normal load, has been performed. Four different values of normal force have
been tested, 150 N, 450 N, 750 N, 1000 N, corresponding to an average contact
pressure of 1 MPa, 3 MPa, 5 MPa, 6.6 MPa respectively. For each value of the
normal load, the driving velocity has been ranged between 10 mm/s and 2 um/s
with a maximum total displacement of 5 mm.
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5.3 Frictional observations: role of boundary conditions

This section presents the different macroscopic frictional behaviours
observed experimentally between the two elastic bodies, when the relative
translational velocity is varied. Experimental tests have been performed ranging
the velocity of the upper slider block, while the normal load is fixed to 750 N in
order to obtain an average contact pressure of 5 MPa. At the end of the section,
the effect of normal load and imposed horizontal velocity on the contact
scenarios is resumed in the contact scenario maps.

5.3.1 Macroscopic stick-slip instability

Figure 5-1 shows the system frictional response for an imposed driving
velocity of 1 mm/s. The blue and green curves show respectively the tangential
and normal global forces recorded by the force transducer. The black curve
represents the imposed displacement in order to have constant translational
velocity along the x direction. First, a normal force along the y direction is
applied to the system in order to obtain an initial average normal pressure of 5
MPa. After this preload phase (not reported in Figure 5-1) a constant velocity is
imposed to the lower boundary of the body 2.

After a first ramp due to the tangential loading phase, the curve of the
tangential force (Figure 5-1) exhibits periodic drops and subsequent ramps along
the recorded time. Each increase of the tangential force (increase of elastic
energy stored in the system) is followed by a sudden drop due to the following
macro-slip event (rupture and wave propagations) at the contact surface [17].
The slope of the initial tangential curve is function of the tangential stiffness of
the whole system during the tangential loading phase. During each load phase,
until the tangential force reaches the maximum value, the bodies are mainly in
adherence status while some contact zones can switch in sliding state before the
macro-slip due to the interface rupture propagation (precursors), as shown in
[17, 19, 20].

Then, a sudden macroscopic slip occurs with the consequent drop of the
tangential force. The sliding of the whole interface is due to the rupture and
wave generation and propagation at the contact interface that produces the
release of the elastic energy stored in the system during the loading (sticking)
phase. The detail of the rupture propagation phases before the macro-slip event
is reported in [17].

Davide Tonazzi /2014
Department of Mechanics and Aerospace Engineering — La Sapienza University of Rome
Contact and Solid Mechanics Laboratory — Institut National des Sciences Appliquées de Lyon 67

Cette these est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0110/these.pdf
© [D. Tonazzi], [2014], INSA de Lyon, tous droits réservés



Preliminary experimental analysis and qualitative numerical comparison

E 2X10-3 T T T T T T
g)_ O0 0.1 Of2 O.[3 0[4 0.[5 0[6 0.7 0.8
1000 T T T T T T 200
800 —_—
: MW*/W :
8 600 { N ; L%:
TR
g 400 / é
2 S
200/ 4 F
00 0{1 0[2 0.[3 0.[4 0.[5 0{6 0[7 0.2

Time [s]

Figure 5-1: Imposed displacement (up), normal (y direction) force and
tangential (x direction) force (down). Experimental data obtained with the
following parameters: imposed driving velocity 1 mm/s and normal load 750 N.

The macroscopic slip of the contact interface represents an impulsive
excitation for the system and the generated vibrations, measured by the
piezoelectric accelerometer (see Figure 5-4), are related to the dynamic response
of the whole set-up. The Figure 5-4(b) shows the spectrum of the acceleration
signal for the time interval A;, i.e. a time period between two macro slip,
characterized by the response to the impulsive (force drops) system excitation;
the first natural frequencies (110 Hz, 600 Hz, 900 Hz, 1500 Hz, 2400 Hz) of the
whole system are excited. On the other hand, the spectrum in the Figure 5-4(c) is
referred to a larger time interval A, and shows a superposition of the super-
harmonics of the stick-slip frequency (50 Hz) together with the excited natural
frequencies of the system. Thus, the macroscopic frictional behaviour,
characterized by periodic drops of tangential force and referred in literature as
stick-slip [26], is originated by the local contact rupture propagation that excites
the whole system dynamics. The propagation of the contact waves and the
interaction with the structural dynamics play a key role into defining the
frictional behavior of two elastic media in relative motion. This kind of
frictional instability can occur in any mechanical system with frictional
interfaces and it is also referred as the main mechanism at the origin of
earthquakes [29].

5.3.2 Mode coupling instability

Increasing the driving velocity and maintaining fixed the normal force (750
N), the macroscopic frictional behaviour changes its pattern (Figure 5-2). Figure
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5-2 shows the system behaviour for an imposed driving velocity equals to 5
mm/s. After the preload phase, the translational velocity is imposed and the
tangential force (green curve in Figure 5-2) reaches its maximum value, which is
higher than the mean tangential force at steady sliding state. Then, after the first
macroscopic slip, the system shows large oscillations of the global frictional
force around its mean constant value, increasing up to a maximum amplitude of
oscillation (green curve in Figure 5-2). Furthermore the recorded acceleration
highlights the typical behaviour of mode coupling instability (see Figure 5-4(d)):
a first phase (time interval A; in Figure 5-4(d)) with an initial exponential
increase of the oscillations and an harmonic spectrum at the unstable natural
frequency, followed by a second phase where the response is bounded to a limit
cycle (time interval A, in Figure 5-4(d)). The spectrum of the first phase (Figure
5-4€) shows a main frequency peak, representing the fundamental harmonic at
110 Hz. The relatively low frequency of the vibrations is associated to an
unstable mode of the whole experimental set-up. The spectrum in the second
phase (Figure 5-4(f)) shows the main harmonic at 110 Hz and the respective
super-harmonics of the signal, due to the contact non-linearities that bound the
vibration. The harmonic vibrations in Figure 5-4(f), induced by frictional contact
forces, are typical of mode coupling instability [24, 78]. In fact, when the two
bodies are in relative motion the contact forces can excite an unstable mode of
the system [24] and, after an initial exponential increase of the vibration, a limit
cycle is reached; the acceleration signal in Figure 5-4(d) shows the exponential
increasing until the material damping and contact non-linearities stabilize the
system response. This kind of contact scenario, typically studied in disc brake or
clutch systems, has been experimentally highlighted also here for general
mechanical system under frictional contact. The same contact scenario has been
analysed numerically in [24] where the interaction between local behaviour at
the contact and system dynamics has been analysed as a function of the material
damping.
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Figure 5-2: Imposed displacement (up); normal (v direction) force and
tangential (x direction) force (down). Experimental data obtained with the
following parameters: imposed driving velocity 5 mm/s and normal load 750 N.

5.3.3 Stable continuous sliding

Considering the same mechanical system, Figure 5-3 shows its macroscopic
behaviour during relative motion obtained for a translational velocity of 10
mm/s, while the normal load is fixed to 750 N. First, the tangential force reaches
its maximum value, higher than the tangential force at the steady state;
afterwards the entire system remains in sliding status and the frictional force
stabilizes (decaying oscillations) reaching the steady value. On the other hand,
the acceleration signal in the Figure 5-4(g) shows typical decaying oscillations
excited by the initial drop of the tangential force (Figure 5-3); the spectrum of
the signal in this first phase (Figure 5-4(h)) shows how the decaying oscillations
are related to the excited first natural frequencies of the set-up. Afterwards the
system response is stable and no relevant oscillations can be observed from the
recorded signal and its related spectrum (Figure 5-4(i)).

In this case the relative motion between the two bodies of polycarbonate can
be considered stable and the structural dynamics of the system is not excited
(not relevant oscillations), as it can be observed from the measured tangential
force and acceleration. The extremely low vibrations and relative low spectrum
that can be seen in Figure 5-4(i) are due to “stable” friction induced vibrations
due to the surface roughness and the parasitic noise coming from the set-up.
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Figure 5-3: Imposed displacement (up);, normal (v direction) force and
tangential (x direction) force (down). Experimental data obtained with the
following parameters: imposed driving velocity 10 mm/s and normal load 750 N.

5.3.4 Discussion on experimental frictional scenario map

The experimental results presented above showed how a simple frictional
system can exhibit different macroscopic contact scenarios (macro stick-slip,
mode coupling instability, stable continuous sliding) as a function of the only
boundary conditions. Figure 5-4 shows as the frictional contact forces can excite
the system dynamics differently, when increasing the imposed driving velocity.
The macroscopic behaviour of the system can be characterized by intermittent
interface motion and impulsive excitation of the system (macro stick-slip
instability in Figure 5-4(a)), continuous sliding at the interface with harmonic
vibration of the system (mode coupling instability in Figure 5-4(d)) or
continuous stable sliding state (Figure 5-4(g)). The spectrum of the tangential
acceleration during the macro stick-slip scenario (Figure 5-4(c)) highlights how
the system vibration amplitude is lower with respect to the amplitude of the
acceleration in the limit cycle during mode coupling instability (Figure 5-4(f)).
Furthermore, in the first case the system behaviour is characterized by
intermittent interface motion, while in the second case the system can be
considered in macroscopic continuous sliding state with large periodical
oscillations of the local contact forces, up to reach local changes in the contact
status (local stick slip and detachment) [17, 24].
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The same transition from stable continuous sliding state to macro stick-slip
instability has been also observed experimentally as a function of normal load,
ranging from 150 N (1 MPa) up to 1000 N (6.6 MPa), maintaining fixed the
imposed horizontal velocity (Figure 5-5). The experimental parametrical
analysis, carried out on the two blocks of polycarbonate as a function of the
boundary conditions allowed for drawing a contact scenario map of the system.
Figure 5-5 highlights the role of normal load and imposed velocity into the
switching from macroscopic stick-slip instability and continuous sliding
behaviour with or without mode coupling instability. For low normal load (low
average contact pressure) the system is characterized by stable behavior for the
whole imposed velocity range (between 2 um/s to 10 mm/s). Increasing the
normal load the system starts to exhibit unstable contact behavior for relative
low imposed velocity, as shown in the Figure 5-5. It should be noticed that the
mode coupling instability has been obtained only for an unstable mode at
relative low frequency, 110 Hz, which is a mode of the whole experimental set-
up. In fact, a numerical complex eigenvalue analysis performed on the used
polycarbonate samples alone, didn’t predict unstable modes related to the
sample modes (at several kHz).

Similar maps of the frictional behavior can be drawn numerically for other
system parameters, as shown in [24].
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Figure 5-4: Experimental scenarios for normal load equal to 750 N. (a) (b)
(c)- macro stick-slip instability for V=1 mm/s; (d) (e) (f)- mode coupling
instability for V=5 mm/s; (g) (h) (i)- stable continuous sliding for V=10 mm/s.
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Alongside each contact scenario (acceleration signals) the spectrum related to
different time period A; and A, is shown.
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Figure 5-5: Experimental map of the frictional contact scenarios as a
function of the imposed driving velocity and average contact pressure.

5.4 Qualitative comparison between experimental and
numerical results

This section presents the comparison with numerical results obtained by
transient contact non-linear simulations. While Chapter 4 showed the numerical
investigation of the frictional contact scenarios as a function of the material
damping parameters, in this Chapter the effect of the relative motion and applied
load is investigate for comparison with the experimental results. A good
agreement between numerical and experimental scenarios is presented, showing
comparable behaviours as a function of the boundary conditions.

5.4.1 Numerical model

The 2D model (plane strain deformation) consists of two isotropic elastic
finite media separated by a frictional interface; for the presented analysis, at
each node of the contact interface, the friction law as a function of adherence
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time (explained in section 2.2.3) is imposed. The material and geometrical
properties of the numerical model are listed in Table 3. The reference values of
the material damping parameter have been recovered by means of experimental
tests on Polycarbonate detailed in [95]. A force distribution along the y axis,
giving a global force F, is applied at the bottom of the body 2. After the preload
phase, the global normal force F is maintained constant and a translational
velocity V, along the x direction, is applied at the lower edge of the body 2 to
bring the system in relative motion; the body 1 is maintained fixed at its upper
side.

Body 1 Body2
Length [mm] 30 30
Width [mm] 10 10
Element Number 30000 5590
Contact element size [mm] 0.1 0.23
Young Modulus [GPa] 2.65 2.65
Density [kg/m?] 1190 1190
Poisson ration 0.40 0.40
Material damping: Alpha [1/s] 40
Material damping: Beta [s] le-7
Integration time step [s] 9e-9

Table 3: Geometry dimensions, material and mesh properties used to perform
the non-linear simulations.

5.4.2 Definition of the friction law

In the present numerical analysis the coefficient of friction is not assumed to
be a constant value (Amontons-Coulomb friction law).
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In particular, the value of the friction coefficient between the two surfaces of
polycarbonate has been observed experimentally to be a function of the sticking
(adherence) time between the two surfaces; this behaviour can be probably
attributed to the physicochemical reactivity of the polycarbonate blocks at the
interface, which increases the static friction coefficient (adhesion) with the
increase of the adherence time.

The definition of a reliable law of friction has been derived by the
experimental tests carried out on the polycarbonate blocks.

Figure 5-6 shows the curve fitting of experimental points of the macroscopic
friction coefficient, obtained considering the performed experimental tests for an
average contact pressure of 5 MPa. The experimental data (red triangles in
Figure 5-6) represent the static friction coefficient calculated as the maximum
ratio between tangential force (peaks of the tangential force ramps) and normal
force recorded during the macro stick-slip instability behaviour for a fixed
imposed driving velocity. At each experimental point in Figure 5-6 has been
associated the adherence time calculated by the period of the stick phase (force
ramps of the stick-slip events) for each considered imposed driving velocity.
This assumption has been considered under the hypothesis that between two
following macro slip, observed experimentally, the contact interface stays in
adherence (stick phase).

The point marked by a black dashed circle is the dynamic friction coefficient
experimentally estimated as the ration between the tangential force and normal
load in the case of stable continuous sliding (Figure 5-3), equivalent to a nil
adherence time.

The curve fitting of the experimental results led to obtain an analytical curve
of the friction contact law (equation 8) able to be implemented in the numerical
contact model.

The experimental analysis of the friction coefficient highlighted some
important variations of static coefficient for short adherence times and a
stabilization of friction curve for long time of adherence, as shown in Figure
5-6. This kind of friction law wants, in a simple way, to account for the complex
mechanisms at the contact interface such as adhesion, physical and chemical
actions, and viscoelastic deformations of asperities that occur at the interface.
These mechanisms play a key role into define the local frictional contact
behaviour, but at the same time they are difficult to be implemented in a
numerical model [43, 96]. Nevertheless, the experimental macroscopic
measurements of the contact forces allow for defining reliable parameters of the
friction law to be representative, as much as possible, of the local physics at the
interface.

The same behaviour of the macroscopic friction coefficient, shown in Figure
5-6, has been also observed for the average normal pressure of 3 MPa and 6.6
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MPa; then, a similar friction law has been estimated for each values of the
contact pressure, modifying the parameters A, B, C as a function of the
experimental points (Table 3). The difference on the friction, observed
experimentally, as a function of the average pressure could be due to the effects
of the real contact pressure on the surface phenomena listed above.

It has been also observed numerically that determining the static friction
coefficient from the time evolution of tangential force (peak of the force ramps)
underestimates the real value of the local static friction coefficient [19, 24, 51];
in fact the difference between apparent (macroscopic) and real (local) static
friction coefficient is due to the local contact dynamics at the frictional
interface, which lead to have macro-sliding events (force drops) for a tangential
force lower than the upper limit imposed by the local friction coefficient at the
contact, as explained in the recent literature [17, 58]. After these considerations,
in order to perform the comparison between experimental and numerical results
obtained by the nonlinear transient analysis, the values of static friction
coefficient has been increased of 15 % as showed by the friction law reported in
Figure 5-6 (green curve). In such a way, the imposed local friction coefficient at
the contact nodes is representative to obtain the macroscopic friction coefficient
obtained by the experimental curves.

Average A B C Max Static Dynamic
contact friction friction
pressure coefficient coefficient
[MPa] (A+B) (B)

3 0.14 0.20 30 0.34 0.20

5 0.16 0.135 30 0.295 0.135

6.6 0.14 0.125 35 0.265 0.125

Table 4: Parameters of the local friction law implemented in the numerical
model.

Davide Tonazzi /2014
Department of Mechanics and Aerospace Engineering — La Sapienza University of Rome
Contact and Solid Mechanics Laboratory — Institut National des Sciences Appliquées de Lyon 76

Cette these est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0110/these.pdf
© [D. Tonazzi], [2014], INSA de Lyon, tous droits réservés



Preliminary experimental analysis and qualitative numerical comparison

Average contact pressure = 5 MPa
[ [ [ [ [ [ [ [ [ [

0.3+ E
A A A
A
2 025" ;\ .
= ]J,:A+B'(1-ec.Tadh)
E 0.2 -
o
(@)
S 0.15- |
B Ty
2 bl _Local friction law implemented in the numerical model:
Y01k A=0.160, B=0.135, C=30
Dynamic friction coefficient A Experimental data of macroscopic friction coefficient
0.05r
__ Curve fitting of macroscopic friction coefficient:
A=0.140, B=0.135, C=20
[ [ [ [ [
0 0 1 2 3 5 6 7 8 9 10

4
Adherence Time [s]

Figure 5-6: Curve fitting of friction contact law implemented in the finite
element model for an average contact pressure of 5 MPa.

5.4.3 Effect of the imposed boundary conditions

This section presents a comparison between the experimental tests and the
numerical results carried out by means of the transient non-linear simulations.
The effect of the boundary conditions, imposed driving velocity and normal
force (average contact pressure), has been numerically investigated considering
the 2D plane strain model, for which the contact behaviour is the only non-
linearity accounted for (see section 5.4.2). The black curve in Figure 5-7 shows
the displacement imposed at the lower edge of the model in order to obtain a
relative velocity of 1 mm/s; the blue and the green curve in the figure represents
respectively the recovered normal contact force and the tangential contact force;
like in the experimental tests, before applying the constant translational velocity,
a preload phase has been realized to bring the two blocks in contact with average
normal pressure of 7.6 MPa. The simulation results highlight how the system
behaviour is characterized by stick-slip phenomena (Figure 5-7). After a first
linear growth, the tangential contact force exhibits repetitive fluctuations (ramps
and sudden drops). The release of elastic energy during the drops produces
strong vibrations into the system. The same contact scenario characterized by
macro stick-slip has been revealed experimentally for an imposed velocity of 1
mm/s and average pressure of 6.6 MPa (Figure 5-1).
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Figure 5-7: Imposed displacement at lower edge of body 2 (up), normal force
(along y direction) and tangential force (x direction) measured numerically at
the upper edge of the body 1. Imposed boundary condition: horizontal velocity
V=1 mm/s and average contact pressure 7.6 MPa.

Figure 5-8 shows the effect of the imposed driving velocity, both
experimentally and numerically, on the macroscopic frictional behaviour. The
macroscopic friction coefficient along the time has been calculated as the ratio
between the total tangential force and normal force measured at the boundaries
for both the numerical and experimental tests. Ranging the imposed velocity
from 10 mm/s to 1 mm/s and maintaining fixed the normal force (average
pressure of 7.6 MPa) the behaviour of the numerical system changes its pattern
(Figure 5-8, right) as shown also in the experimental measurements (Figure 5-8,
left). For a driving velocity of 10 mm/s and an average contact pressure of 7.6
MPa the numerical model exhibits a typical stable continuous sliding behaviour
(Figure 5-8(d)) as observed experimentally for the same value of the sliding
velocity and an average pressure of 6.6 MPa (Figure 5-8(a)). The friction
coefficient shows a linear increase until it reaches the maximum value and, after
a sudden drop due to the released of elastic energy, its value stays constant. The
initial drop in the friction coefficient (related to tangential force drop) produces
an excitation that leads to decaying oscillations of the system (Figure 5-8(d)).
After this first phase of transition from adherence to sliding state of the whole
surface, the friction coefficient stabilises itself reaching a steady value of 0.125,
like in the experimental test (Figure 5-8(a)).

Decreasing the imposed driving velocity, both experimentally and
numerically, the macroscopic behaviour changes completely its pattern (Figure
5-8(b) and Figure 5-8(e). The drops of the tangential force along the time
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produce periodic fluctuations in the macroscopic friction curve, as shown in the
Figure 5-8 for an imposed velocity of 1 mm/s. Continuing to decrease the
imposed velocity for values lower than 1 mm/s and maintaining fixed the
average normal pressure, the response of the system doesn’t change its pattern:
the macroscopic contact scenarios is always characterized by macro stick-slip
phenomena (Figure 5-8(c) and Figure 5-8(f)). However the Figure 5-8(c) and
Figure 5-8(f) show that, both numerically and experimentally, the amplitude of
the drops of the macroscopic friction and the time period of stick-slip events
increase when the imposed velocity is reduced.

Experimental results Numerical Results
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Figure 5-8: Comparison between experimental and numerical results on
transition from stable continuous sliding to macroscopic stick-slip instability as
a function of imposed driving velocity V. (a)-(b)-(c) Experimental results
ranging the imposed velocity between 10 mm/s to 0.1 mm/s and average contact
pressure of 6.6 MPa. (d)-(e)-(f) Numerical results ranging the imposed velocity
between 10 mm/s to 0.5 mm/s and average contact pressure of 7.6 MPa.

Figure 5-9 shows the main effect into defining the macroscopic response of
the frictional system when the normal force (average contact pressure) is varied
between 3 MPa to 6.6 MPa for the experimental tests and between 3.5 MPa to
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7.6 MPa for the numerical simulations, while the driving velocity is maintained
fixed. For low contact pressure the system is characterized by a stable
continuous sliding; the friction coefficient increases reaching the constant value
of 0.20 with not relevant oscillations of the system (Figure 5-9(a) and Figure
5-9(d)). On the other hand, increasing the contact pressure, the system
(numerically and experimentally) switches from stable sliding to macro-stick
slip instability, showing subsequent drops in the macroscopic friction coefficient
along the time.

For both experimental and numerical results, when increasing further the
contact pressure, the amplitude of the drops in the friction coefficient increases
reaching a lower limit of macroscopic friction coefficient around 0.05, due to
the important released of elastic energy stored during the tangential (stick) ramp.
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0.25 0.25
[ c
S 2 o02r
Qo Q
s I
S 1 5015 1
= ,g
o i o 01 K
a %)
o
g 5
< 0.05 (a) g 0.05 (d) K
[— o=3MPaand V=1 mms [— o=3MPaand v =08 mms
O0 0.2 0.4 0.6 0.8 O0 0.1 0.2 0.3 0.4 0.5 0.6
Time [s] Time [s]
0.25 0.25 . .
o c
S 02t 2 02 ,
o Qo
i i
S 0.15¢ s 015 g
5 g
o 0.1t o 01 g
a %]
o
g 0.05 g 0.05 :
s % (b) g” (e)
[*G:SMPaandV:lmmls [*0:6MPaandV:0.8mmls
0 r r r T T T T i 0 r 2 T T
0 002 004 006 008 01 012 014 016 0 0.02 0.04 0.06 0.08 0.1
Time [s] Time [s]
0.25 - . : : . . : . 0.25 - : . .
o c
2 02r S 02 |
o Qo
s s
o 015r L 015 |
g 5
S 0.1t o 01 g
a2 0
<] o
§ 0.05- S 005 ]
(C) [*026.6 MPaand V = 1 mm/s = (f) {*027.6 MPaand V = 0.8 mm/s
0 r r r T T T T i O r T T T
0 002 004 006 008 01 012 014 016 0 0.02 0.04 0.06 0.08 0.1
Time [s] Time [s]

Figure 5-9: Comparison between experimental and numerical results on
transition from stable continuous sliding to macroscopic stick-slip instability as
a function of average contact pressure. (a)-(b)-(c) Experimental results ranging
the average contact pressure between 3 MPa and 6.6 MPa and impose velocity
of 1 mm/s. (d)-(e)-(f) Experimental results ranging the average contact pressure
between 3.5 MPa and 7.6 MPa and imposed velocity of 0.8 mm/s
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It should be noticed that the decaying vibrations excited experimentally after
each force drop present low frequency components (mainly at about 110 Hz) due
to the dynamic response of the modes of the whole experimental set-up, as
observed in the section 5.3; in the numerical curves only decaying oscillations at
higher frequencies can be observed and are related to the dynamic response of
the modes of vibration of the two blocks of polycarbonate.

Similarly, the differences in term of amplitude and period of stick-slip events
between experimental and numerical tests are due to the fact that the numerical
model simulates the dynamics of two polycarbonate blocks without accounting
for the tangential stiffness and dynamics of the whole experimental set-up. The
experimental setup is composed by auxiliary parts that can’t allow for defining a
quantitative comparison between experimental and numerical results.

The main differences, due to the lack in modelling of the whole set-up, is the
different tangential stiffness of the numerical and experimental systems, which
brings to a different slope of the tangential force and consequently to different
values of the time period between successive stick-slip events.

Another not negligible difference is the presence of the set-up modes at lower
frequencies that brings to the low frequency oscillations recorded in the
experimental test and not observable in the numerical curves.

Nevertheless, the effect of the imposed boundary conditions recovered by
means of the numerical simulations, exhibits a good qualitative agreement with
the experimental results. The experimental transition from stable continuous
sliding to macroscopic stick-slip for the polycarbonate blocks has been obtained
for the same trend of the boundary conditions.

The performed simulations allowed to draw a numerical map of possible
contact scenarios (Figure 5-10), showing the good qualitative agreement with
the experimental map in Figure 5-5. The missing of the mode coupling
instabilities in the numerical map is due to the missing of the unstable mode of
the whole set-up at 110 Hz. In fact, the complex eigenvalue analysis [24] of the
numerical model of the polycarbonate blocks alone doesn’t predict unstable
system modes. The unstable mode recovered experimentally (see section 3.2) is
a low frequency mode of the set-up, which is not modelled in the numerical
analysis.

The numerical maps of the instability scenarios can give just the trend of the
frictional scenarios as a function of the system parameters; as showed in the
previous Chapter, accounting for the material damping, the effect of all the
system parameters are deeply interdependent and the boundary of these maps,
calculated for a given system configuration, can vary as a function of the other
system parameters.
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Figure 5-10: Numerical map of the frictional contact scenarios as a function
of the imposed driving velocity and average contact pressure.

5.5 Discussion of results

Frictional scenarios of two elastic media in relative displacement have been
investigated both by experimental tests and numerical simulations. The same
system with respect to different boundary conditions, such as imposed velocity
or average contact pressure, switches its macroscopic frictional behaviour from
macroscopic stick-slip instability to mode coupling instability with harmonic
vibrations, up to stable continuous sliding. A frictional scenario map, found
numerically as a function of the material damping in [24], has been here drawn
experimentally and numerically as a function of the applied boundary
conditions.

The mode coupling contact instability, investigated mostly in brake squeal,
has been reproduced here for two general elastic bodies in frictional relative
motion.

From the experimental data obtained by frictional tests on polycarbonate, an
appropriate friction law with adherence time dependence has been defined. Non-
linear transient simulations highlighted the same experimental transition range
from stable sliding to macroscopic stick-slip as a function of the key parameters.

Even if the qualitative comparison is obtained, the set-up stiffness and
dynamics, not included into the numerical model, doesn’t allow for a
quantitative comparison. In the next Chapter the experimental tests have been
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reproduced on the newer dedicated set-up, TRIBOWAVE, and the set-up
tangential stiffness has been included into the model, in order to allow for a
quantitative comparison.
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6 Analysis of macroscopic frictional
scenarios on a dedicated setup

6.1 Introduction

While the preliminary experimental campaign allowed for recovering
qualitatively the different frictional scenarios highlighted numerically, a finer
experimental analysis is needed to investigate the coupling between the system
and contact dynamics and provide a quantitative comparison with the numerical
simulations.

At this aim the newer set-up TRIBOWAVE, described in Chapter 2, has been
developed. This set-up allowed for reproducing and analysing the different
macroscopic frictional behaviours and their occurrence as a function of a larger
and more controlled range of boundary conditions. The stiffness and the
dynamics of the set-up has been measured as well and included into the
numerical model. In fact, because the shift between different macroscopic
frictional scenarios is a function of the coupling between the contact and system
dynamics, the experimental test bench have to provide access to both the local
(contact) and system behaviour.

The development of the TRIBOWAVE set-up and the updating of the
numerical model, including the set-up stiffness and dynamics, allowed to
develop a quantitative comparison between the experimental and numerical
results, as detailed in this chapter.

The numerical results can be then used to associate each macroscopic
frictional response of the system to the local behaviour at the contact (rupture
and contact wave propagation, stick-slip-detachment distribution and evolution
at the interface), which is still not possible to be investigated experimentally.

Moreover, the accessibility to the contact by optical and acoustic
instrumentations will allows for future analyses of the rupture and wave
propagation at the contact to validate the results of the numerical simulations at
the contact region.
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6.2 Experimental observations

6.2.1 Materials and method

Blocks of polycarbonate (PC) and blocks of polymethyl-methacrylate
(PMMA) have been used to carry out the experiments on the setup
TRIBOWAVE. The material and geometrical properties of the specimens, used
in the experimental analysis, are reported in the following table:

Polycarbonate PMMA
Length [mm] 30 30
Width [mm] 10 10
Thickness [mm] 10 10
Density [kg/m?) 1200 1190
Young Modulus [GPa] 2.5 33
Poisson coefficient 0.4 0.37

Table 5: Material and geometrical properties of the samples in contact.

The dimensions of the specimens (Table 5) are relatively small in order to
optimize the planarity of the two contact surfaces and to reach large ranges of
the contact pressure.

To obtain reproducibility of the results, the contact surface of the samples has
been polished and then cleaned before performing each test. The following
procedure has been adopted:

e First, each contact surface has been polished with a SiC paper (size
#1000) for wet grinding of materials, obtaining a random roughness of
contact surface and avoiding preferential direction of the roughness.

e Then the ultrasonic cleaning process is applied to the specimens. The
intention is to remove all traces of contamination tightly adhering or
embedded onto solid surfaces using ultrasounds and an appropriate
cleaning solvent. Distilled water has been used as solvent, avoiding
further contamination of the contact surface of the samples.

e Finally the samples are put in a vacuum dryer machine with
appropriate salt in order to remove the water absorbed superficially.

The explained procedure led to have a contact surface of the sample with
controlled mean roughness properties as shown in Figure 6-1 in the case of a
block of polycarbonate.
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Figure 6-1: Reference properties of the roughness of the contact sample
surface used in the experimental analysis for polycarbonate blocks.

The lower specimen is fixed to the mobile part of the set-up and the
translation displacement is imposed by means of the electromagnetic motors,
controlled in position as explained in the section 3.3. The upper specimen is
bonded to the fixed support of the experimental setup. In order to characterize
the contact frictional behaviour of the two elastic bodies in relative motion, the
tangential force (force along x direction), the normal force (force along y
direction), the imposed displacement, the acceleration of the mobile and fixed
part and the acceleration of the whole assembly have been recorded during each
experiment. The friction and contact forces have been recorded both in the
preload phase and during the relative motion. The imposed displacement has
been measured by the linear encoder, while piezoelectric accelerometers record
the acceleration of the system within a bandwidth of 15 kHz. In order to also
investigate the dynamic response on the samples in contact, the velocity of one
point of the fixed sample has been recorded, as close as possible to the contact
surface, with a sample frequency of 100 kHz. The velocity signal allows for
capturing the local dynamics that come from the contact interface. Figure 6-2
shows the position of the point close to the contact interface, where the velocity
1s measured.
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Figure 6-2: Basic scheme of the measure of the velocity of the one point (4)
of the fixed sample with the vibrometer laser.

Each experimental test has been performed applying in the first phase the
compressive normal force F in order to obtain a desired initial average contact
pressure; then, in the second phase, a constant velocity (linear displacement) is
imposed in the x direction on the lower sample to bring the specimens in
frictional relative motion.

The monitored signals have been recorded with a sampling frequency of 50
kHz by an OROS acquisition system, except for the local velocity signal
(vibrometer laser) that has been recorded with a sample frequency of 100 kHz;
this in order to investigate the dynamics of the samples, which is characterized
by high natural frequencies due to the small dimensions of the considered
specimens.

6.2.2 Frictional scenario maps

The experimental analysis on the dedicated setup (TRIBOWAVE) has been
performed considering contact samples constituted by both similar materials
(PMMA-PMMA) and dissimilar ones (PMMA-PC). For each pair of contact
material a parametrical analysis has been carried out as a function of normal
load and imposed driving velocity. The initial normal load has been varied
between three different values: 900 N, 1500 N and 2000 N; the considered
values of the normal load led to have an initial average pressure at the contact
interface of 3 MPa, 5 MPa and 6.6 MPa respectively. On the other hand the
horizontal driving velocity has been varied from 10 um/s up to 10 mm/s, with a
maximum horizontal displacement of 5 mm.
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The performed tests allowed for drawing for each pair of materials in contact
a frictional scenario map as a function of the boundary conditions. Figure 6-3
shows the frictional scenario map related to PMMA-PC contact samples. In
Figure 6-3 and Figure 6-4 the red crosses represent a frictional system which is
dominated by macroscopic stick-slip instability, the green points a frictional
system characterized by continuous sliding with mode coupling instability and
the blue stars a frictional system in stable continuous sliding. The same
mechanical system exhibits different macroscopic frictional behaviours varying
only the imposed boundary conditions. As a consequence the macroscopic
friction coefficient depends from the imposed boundary conditions too. The
Figure 6-3 and Figure 6-4 highlight that, for the investigated system and
materials, the imposed driving velocity influences mostly the frictional response
of the system.

In the case of PMMA-PC contact materials (Figure 6-3), for low driving
velocity (V < 2 mm/s) the system dynamic is dominated by macroscopic stick-
slip instability; otherwise for higher driving velocity (V> 2 mm/s) the system is
characterized by continuous sliding with or without mode coupling instability.
The variation of the average contact pressure doesn’t influence the switching
from a stable to unstable frictional scenario; in fact increasing the average
contact pressure from 3 MPa up to 6.6 MPa and for low driving velocity (V< 2
mm/s) the system is always characterized by macroscopic stick-slip. The
apparition of the mode coupling instability during continuous sliding is affected
by the applied load; one of the possible explications is the varying of the system
dynamics with the applied load.
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Figure 6-3: Experimental map of the frictional contact scenarios as a
function of the imposed driving velocity and average contact pressure for
PMMA-PC contact samples.
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The Figure 6-4 related to PMMA-PMMA contact samples shows a similar
pattern as the map in Figure 6-3. For low driving velocities macroscopic stick-
slip characterises the system response; otherwise for high driving velocity a
continuous sliding with unstable vibrations due to the mode coupling instability
governs the system response. The comparison of the two maps in Figure 6-3 and
Figure 6-4 highlights a greater propensity to the mode coupling instability for
the PMMA-PMMA respect to PMMA-PC contact materials.
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Figure 6-4: Experimental map of the frictional contact scenarios as a
function of the imposed driving velocity and average contact pressure for
PMMA-PMMA contact samples.

In order to better understand the difference propensity to mode coupling
instability the macroscopic friction coefficient (Figure 6-5) has been recovered
for the two different contact material pairs with the same imposed boundary
conditions. Figure 6-5 shows that the mean value of the macroscopic friction
coefficient in the case of PMMA-PMMA contact samples is higher than PMMA -
PC contact samples. In general, numerical and experimental works [30, 42, 78]
highlighted as a higher friction coefficient certainly plays a key role into the
propensity on the mode coupling instability. However different key factors are
involved simultaneously on the occurring of the mode coupling instability, so
that an exact separation of each effects is often difficult.

A more detailed analysis of frictional instabilities both related to macroscopic
stick-slip and mode coupling instability is presented in the next sections,
focusing the attention to the contact sample dynamics.
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Figure 6-5: Macroscopic friction coefficient (ratio between global tangential
force and global normal force) for different contact material pairs, obtained
with the following boundary conditions: imposed driving velocity 10 mm/s and
initial normal load 900 N (3 MPa).

6.2.3 Frictional instabilities: discussion on the system dynamic
response

This section present the experimental results carried out with PMMA-PC
contact samples. The more relevant cases of the frictional instabilities are
presented: macroscopic stick-slip and mode coupling instability. The frequency
and time analysis is presented focusing the attention to the response of the
sample and the setup dynamics during the frictional instabilities.

Macroscopic stick-slip

A typical macroscopic scenario with stick-slip instability has been
reproduced with PMMA-PC materials in contact. Figure 6-6 shows the system
frictional response for an imposed driving velocity of 10 pm/s and normal
contact force of 1500 N (5 MPa). The black curve represents the imposed
displacement in order to obtain a constant translational velocity along the x
direction. The blue and green curves show respectively the tangential and
normal global forces recorded by the force transducer. The red curve shows the
velocity of a point of the upper sample, as close as possible to the contact
interface, measured by the laser vibrometer along the direction of the relative
motion.

First, a normal force along the y direction is applied to the system in order to
obtain an initial average normal pressure of 5 MPa. After this preload phase (not
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reported in Figure 6-6) the constant velocity is imposed to the lower boundary of

the body 2.
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Figure 6-6: Macroscopic stick-slip instability for PMMA-PC contact samples.
From top to bottom: Imposed displacement;, normal (y direction) force and
tangential (x direction) force; laser velocity. Experimental data obtained with

the following parameters: imposed driving velocity 10 um/s and average normal
load 1500 N (5 MPay).

The tangential force exhibits periodic drops along the time. The period of the
force drops represents the period of the macroscopic stick-slip of the system.
Each force drop excites the system dynamics with oscillations that are then
damped during the ramp (stick) phase. It is interesting to note that the pattern of
the tangential force during the first tangential ramp (5s< ¢ <[0s) is characterized
by repetitive force drops of small amplitude (Figure 6-7) until the tangential
force reaches the maximum value (around 700 N). Figure 6-7 shows the
tangential force and the laser velocity for the time interval A;, allowing for
distinguish the contributions of the whole set-up dynamics and sample dynamics
respectively.

In the time interval A; the tangential force exhibits three force drops with
consequent released of the accumulated elastic energy. The normalized spectrum
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(FFT) of each signal in the time interval Az is reported in the Figure 6-7. Each
force drop represents an impulsive excitation of the whole sample dynamics as
shown from the spectrum of the velocity signal in Figure 6-7. The tangential
force drops before the first macro-slip event represents a sort of “precursors”,
investigated numerically and experimentally in recent works [19, 20, 62]. The
precursors are associated with a rupture propagation at the interface
characterized by an energy content not sufficient to bring the whole surface in
sliding condition. Nevertheless, a small part of the stored elastic energy is
released during each force drop causing an excitation of the global dynamics of
the setup and the sample dynamics. In fact the FFT (Fast Fourier Transform)
calculated in the time interval A; (Figure 6-7) of the tangential force and the
velocity signal shows a main frequency peak at around 1200 Hz related to the
tangential mode of the whole setup. Moreover the FFT of the velocity signal
shows also as the first natural frequencies (21, 32, 34, 41, 43 kHz) of the
samples in contact are excited after the rupture propagation (precursors).
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Figure 6-7: Plot (interval A; of the Figure 6-6) of the tangential force (a) and
laser velocity (b) for the following parameters: imposed driving velocity 10 um/s
and average normal load 1500 N (5 MPa). Normalized FFT of the tangential
and laser velocity (c) computed in the interval A;. The normalization of the FFT
respect to the maximum value for each signal allows for a direct comparison
between the two recorded signals.

After this first ramp due to the tangential loading phase, the curve of the
tangential force (Figure 5-1) exhibits periodic drops and subsequent ramps along
the recorded time. Each increase of the tangential force (increase of elastic
energy stored in the system) is followed by a sudden drop due to the following
macro-slip event (rupture and wave propagations) at the contact surface [17].
Figure 6-8 shows the signal of tangential force and the signal of laser velocity in
the time interval A,. The locus plot (Figure 6-8) shows an impulsive excitation
(velocity signal) with the consequent tangential force drop (1=29.3327s) when
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the macro-slip event is reached. The rupture propagation at the interface,
highlighted by the impulse on the signal of the velocity recorded at the border of
the contact, leads to the consequent macroscopic slip of the frictional system
[17, 88].
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Figure 6-8: Locus plot (interval A, of the Figure 6-6) of the tangential force
and laser velocity for the following parameters: imposed driving velocity 10
um/s and average normal load 1500 N (5 MPa).

After the occurrence of the macro-slip event, the natural frequency of the
contact samples are excited, as shown by the time-varying spectrum of the laser
velocity in Figure 6-9(a); after that, the oscillations related to the sample
dynamics are quickly damped and the oscillations at low frequency (1200 Hz)
characterises the system response, as shown in the time-varying normalized
spectrum in Figure 6-9(b).
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Figure 6-9:Time-varying spectrum (up) of the laser velocity signal for t.
Normalized time-varying spectrum(down) respect to the maximum value at each
time period in order to highlight the main frequencies involved after the macro-
slip event.

Mode coupling instability

Increasing the driving velocity and maintaining fixed the normal force (1500
N), the macroscopic frictional behaviour changes its pattern. Figure 6-10 shows
the system behaviour for an imposed translational velocity of 10 mm/s. After the
preload phase, the translational velocity is imposed and the tangential force
(green curve in Figure 6-10) reaches its maximum value, higher than the mean
tangential force at steady state. Then, after the first macroscopic slip, the system
shows oscillations of the global frictional force around its mean constant value
(green curve in Figure 6-10). Furthermore the recorded tangential force
highlights the typical behaviour of mode coupling instability: a first phase with
an initial exponential increasing of oscillations followed by a second phase
where the response is bounded to a limit cycle. Two different exponential
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increases of the oscillations can be observed successively at 0.05s and 0.3s,
resulting in two limit cycles with a different amplitude.
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Figure 6-10: Mode coupling instability for PMMA-PC contact samples. From
top to bottom: Imposed displacement,; normal (y direction) force and tangential
(x direction) force, laser velocity. Experimental data obtained with the following

parameters. imposed driving velocity 10 mm/s and average normal load 1500 N
(5 MPa).

Looking at the recorded signals in the time interval A; of the Figure 6-11, a
pattern of the signals characteristic of mode coupling instability is observed.
While the tangential force show low amplitude oscillations in time (Figure
6-10), the laser velocity increases the amplitude of oscillations during the time
as shown in Figure 6-11.

The time-varying spectrum and the FFT of the signal velocity in the time
interval A; show as the frequency content of the velocity signal is characterized
by a main harmonic at 22 kHz and the respective super/sub-harmonics, due to
the contact non-linearities. A spectrum characterized by harmonic vibrations as
in Figure 6-11 is characteristic of mode coupling instability induced by the

Davide Tonazzi /2014
Department of Mechanics and Aerospace Engineering — La Sapienza University of Rome
Contact and Solid Mechanics Laboratory — Institut National des Sciences Appliquées de Lyon 96

Cette these est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0110/these.pdf
© [D. Tonazzi], [2014], INSA de Lyon, tous droits réservés



Analysis of macroscopic frictional scenarios on a dedicated setup

frictional contact forces. In this case the high frequency oscillations (22 kHz)
are mainly related to an unstable mode of the contact samples. For this reason
the oscillation of the contact forces, measured away from the contact and
averaging the response due to the deformation of the samples, shows relative
low amplitude of the oscillation.

This kind of frictional instabilities, related to the unstable mode of the contact
samples, has been explained in details in the chapter 4.

The experimental results highlighted as the frictional forces can excite
different unstable modes of the system. Each excited unstable mode (low and
high frequency) characterises differently the local contact behaviour and the
coupling with the vibrational system response.
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Figure 6-11: (Up) Plot (interval A, of the Figure 6-10 ) of the laser velocity
and time-varying spectrum of the velocity;, (Down) FFT of the velocity signal
calculated in the same time interval.

The plot of the tangential force and the laser velocity during the limit cycle
(time interval A;) is shown in Figure 6-12. The recorded tangential force during
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the limit cycle exhibits harmonic oscillation at 1200 Hz (see Figure 6-12 ); the
relatively low frequency of the oscillation is associated to the tangential mode of
the whole experimental setup. In this case the tangential mode can be considered
unstable causing strong vibrations in the system response. The comparison
between the recorded velocity signal and the tangential force during the time
interval A, highlights the interaction between the contact behaviour and the
dynamics of the setup (Figure 6-12). In fact during the limit cycle the low
frequency instability guides the relative oscillation between the contact surfaces
of the samples, influencing thus the contact behaviour. Figure 6-12 shows as the
period of the oscillation of the tangential force (due to the unstable setup
dynamics) is equal to the period of the impulses recorded in the velocity signal
(sample dynamics). Thus, at each period of vibration, at the unstable mode
frequency, a macroscopic slip event occurs between the contact surfaces of the
sample. The time-varying spectrum of the laser velocity in Figure 6-12 shows as
for each period of tangential force vibration, the response to an impulsive
excitation of the contact samples is achieved. A periodic excitation of the
sample dynamics (natural frequencies at several kHz), corresponding to the
period of the unstable set-up frequency, is shown in the time-varying spectrum
in Figure 6-12; in this case the global dynamics of the whole setup guides the
rupture generation and propagation at the contact interface (macroscopic slip
events).
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Figure 6-12: Locus plot (interval A; of the Figure 6-10) of the tangential
force, laser velocity and time-varying spectrum for the following parameters:
imposed driving velocity 10 um/s and average normal load 1500 N (5 MPa).

6.2.4 Effect of roughness on the friction coefficient

In this section a preliminary analysis of the effect of roughness on the
frictional response of the system is presented. An experimental analysis has been
performed considering two different roughness of the contact surfaces. One
experimental campaign has been carried out considering samples of PMMA-PC
with the surface roughness parameters detailed in the section 6.2.1, defined as
the reference. On the other hand a second experimental campaign (same
materials (PMMA-PC)) with a finer surface roughness has been performed. The
properties of the roughness of the contact surfaces used in the experiments are
listed in Figure 6-13.

wn
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Figure 6-13: Properties of the contact surface roughness used to perform the
experimental analysis for polycarbonate blocks.

As in the previous experimental analysis the tests have been performed
applying first the compressive normal load and then the driving velocity along
the x direction, in order to bring the two samples in relative motion. The
imposed velocity has been ranged from 10 pum/s up to 15 mm/s, maintaining the
normal force at the value of 1500 N ( 5 MPa at the contact interface). The global
response of the system has been recorded for the contact samples with a
roughness of type-01 and type-02 (see Figure 6-13) by means of the transducer
force. For each value of the imposed driving velocity, a macroscopic friction
coefficient as a function of time has been calculated, being the ratio between the
recorded global tangential and normal forces. Figure 6-14 shows the
macroscopic friction coefficient for different values of the imposed driving
velocity. Firstly, the system exhibits a typical behaviour characterized by
continuous sliding for V=15 mm/s for each roughness type (see Figure
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6-14(a)(e)). In particular looking at the Figure 6-14(a)(e) an higher macroscopic
dynamic friction coefficient in the case of roughness type-01, respect to
roughness type-02, is highlighted for the same driving velocity (15 mm/s).
Decreasing the driving velocity the system switches from continuous sliding to
macroscopic stick-instability for both the roughness type-01 and type-02. The
switch to stick-slip behaviour is obtained at higher velocities for the roughness
type-01.

Moreover, Figure 6-14(c)-(h) show how the period of the macroscopic stick-
slip is different in the two cases: Typ;=1.5 s and Ty,=8.1 s for driving velocity
equal to 0.01 mm/s. In the case of roughness type-02, when the system is
characterized by macroscopic stick-slip behaviour, the system reaches an higher
value of static friction than in the case of roughness type-01; The same
observation can be done for the initial value of the friction coefficient when
continuous sliding occurs Figure 6-14(a)-(e). Consequently, during stick-slip,
each ramp of the friction coefficient is followed by a larger drop of the friction,
which produces a stronger system excitation. In fact the elastic energy stored in
the system during each ramp is higher, leading to a larger drop of the friction
coefficient as observed in the Figure 6-14(d)(h).
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Figure 6-14: Macroscopic friction coefficient as a function of imposed
driving velocity for a fixed value of contact force of 1500 N. (left) Experimental
results carried out with contact samples of roughness type-01. (right)
Experimental results carried out with contact samples of roughness type-02.
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The different behaviour of the two roughness samples can be attributed to a
higher static friction coefficient and a lower dynamic friction coefficient in the
case of roughness type-02 respect to the case of roughness type-01. In fact the
estimated curves of macroscopic friction coefficient for each type of roughness
(Figure 6-15) shows several differences in term of maximum static friction
coefficient and dynamic friction coefficient. For roughness type-01 the
maximum static friction coefficient is about 0.51 and the dynamic friction
coefficient is about 0.32 (green curve in Figure 6-15); for roughness type-02 the
maximum static friction coefficient is about 0.45 and the dynamic friction
coefficient is about 0.4 (blue curve in Figure 6-15).

Considering some of the more commonly used friction empirical theories, the
friction at the contact interface is often attributed to two mechanisms: adhesion
force and deformation force [97, 98]. The first mechanism is mainly due to the
different chemical-physical effects at the contact interface; in general the
adhesion mechanism is related to the surface energy of the contact materials and
in particular a larger real area of contact increases the adhesion contribution to
the friction force. The real contact area is smaller than the apparent contact area.

The second mechanism related to the local deformation is a function of the
contact asperities of the surfaces. When two roughness surfaces are in contact,
the asperities weld each other and thus the macroscopic tangential force is a
function of the intersecting asperities. As a consequence of these observations a
finer roughness at the contact can increase the static macroscopic friction
coefficient, by increasing the real contact area, justifying the larger static
friction coefficient for the roughness type-02; on the contrary, the increase of
the macroscopic dynamic friction coefficient for the roughness type-01 can be
attributed to a larger contribution of component due to the roughness
deformation.

It’s known that in contact pairs between the polymers the adhesion
mechanism is often dominant. The increase of the contact (adherence) time can
increase the material adhesion due to both the increasing of the time for physic-
chemical activity and the increasing of real contact area under loading
conditions.
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Figure 6-15: Curve fitting of experimental data of macroscopic friction
coefficient for normal contact force of 1500 N (5 MPa).

Then, an interpretation of the difference on the measured macroscopic
friction coefficient, for the two analysed roughness, can be made considering the
nature of friction as explained above. In the case of larger roughness of the
contact surfaces the deformation contribution to the friction is dominant; the
frictional behaviour is characterized by a higher dynamic friction coefficient and
a lower maximum static friction coefficient, which doesn’t increase too much as
a function of adherence time (blue curve in Figure 6-15).

On the other hand in the case of smaller roughness the adhesion component
is dominant; a larger real contact area, combined with a greater propensity of
adhesion mechanism for PMMA-PC contact samples, lead to have a larger
difference between static and dynamic friction coefficient (green curve in Figure
6-15). The lower amount of asperities in contact and the higher chemical-
physical activity of the contact surfaces characterises the contact behaviour
leading to a more likely evidence of macroscopic stick-slip instability (Figure
6-14). In addition to this, it has been shown in [50, 68, 78, 99] how the
roughness and heterogeneities at the interface can influence the rupture
propagation, which is at the origin of macroscopic stick-slip (rupture
propagation within the whole interface).

This preliminary investigation of the effect of roughness shows how the
contact topography is of great importance into defining the frictional and
dynamic response of the system in relative motion.

Davide Tonazzi /2014
Department of Mechanics and Aerospace Engineering — La Sapienza University of Rome
Contact and Solid Mechanics Laboratory — Institut National des Sciences Appliquées de Lyon 102

Cette these est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0110/these.pdf
© [D. Tonazzi], [2014], INSA de Lyon, tous droits réservés



Analysis of macroscopic frictional scenarios on a dedicated setup

6.3 Numerical analysis

6.3.1 Description of the numerical model

The numerical model presented in section 2.2 has been updated in order to
include the set-up stiffness and dynamics, allowing for a quantitative
comparison with the experimental tests. The updated 2D model (plane strain)
consists of the two samples separated by the frictional interface governed by the
friction contact law presented in section 2.2.3 (friction coefficient as a function
of adherence time). Moreover the tangential stiffness and the dynamics of the
setup have been implemented in the numerical model. A series of springs
(Figure 6-16) have been added to the model in the x direction, giving a global
tangential stiffness corresponding to the one estimated in section 3.3.
Furthermore an equivalent distributed mass and viscous damping (C=a3*M) has
been added in the model, at the boundary of the sample connected with the
spring, in order to account for the tangential mode of vibration of the set-up (see
section 3.3), which is the mainly involved mode in the dynamic response of the
set-up. The numerical model allows for investigating the interaction between the
dynamic response of the system and the local contact dynamics during the
sliding motion between the same materials considered in the experimental tests.

(R

Figure 6-16: Updated numerical model and boundary conditions. The
equivalent mass, damping and tangential stiffness are representative of the setup
dynamics.
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The material and geometrical properties of the model are listed in the Table 6.

The parameters of the friction law in the different conditions are reported in
the Table 7. In the first phase the two bodies are put in contact until the
compressive normal force F is reached; afterwards the constant horizontal
velocity V is applied at the lower body to bring the system in relative motion,
while the upper body is maintained fixed along the y direction as in the
experimental performed tests. In the updated model the distributed stiffness
(springs), mass and damping, representing the set-up dynamics, are interposed
between the frame and the upper sample.

Polycarbonate PMMA
Length [mm] 30 30
Width [mm] 10 10
Element number 30000 5590
Contact element size [mm] 0.1 0.23
Density [kg/m®) 1200 1190
Young Modulus [GPa] 2.35 3.3
Poisson coefficient 0.4 0.37
Material damping o [1/s] 40 300
Material damping B [s] le-7 le-7
Simulation time step [s] 9¢-9

Equivalent properties
Density equivalent mass [kg/m?] 583- 106
Setup Tangential stiffness [N/m] 1.7 - 107
Equivalent damping a; [1/s] 100/250

Table 6: Geometry dimensions, material and mesh properties used to perform
the non-linear transient simulations.

A B C o
Roughness type-
01 and 6=3 MPa 0.32 0.29 100 0.76
Roughness type-
02 and 6=5 MPa 0.275 0.135 140 0.53

Table 7: Parameters of the friction contact law implemented in the numerical
model.
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6.3.2 Validation of the numerical model: the macroscopic frictional
and dynamic response

This section presents a comparison between the experimental tests and the
numerical results carried out by means of the transient non-linear simulations.
The effect of the boundary conditions on the macroscopic frictional behaviour
have been numerically investigated considering the 2D plane strain model in
Figure 6-16. The comparison with experiments has been performed considering
the two contact surface roughness, detailed in the section 6.1. For each
roughness and related average contact pressure, the curve of the friction
coefficient has been recovered from experimental tests, allowing for defining
appropriate parameters of the friction law detailed in Table 7.
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Figure 6-17: Experimental (left) and numerical (right) macroscopic friction
coefficient, as a function of relative velocity, for average contact pressure of 5
MPa and sample surface roughness of type-02 (S,=0.115). The parameters of
the friction contact law used in the simulations are reported in the table 7.
Equivalent damping a3=250 [s'].

Figure 6-17 shows the effect of the imposed relative velocity, both
experimentally and numerically, on the macroscopic frictional behaviour in the
case of roughness type-02 and average contact pressure of 5 MPa. The
macroscopic friction coefficient along the time has been calculated as the ratio
between the global tangential force and normal force measured at the boundaries
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for both the numerical and experimental (force transducer) analyses. Ranging
the imposed velocity from 0.1 mm/s to 15 mm/s, maintaining fixed the normal
force, the behaviour of the numerical system changes its pattern (Figure 6-17,
right) accordingly with the experimental measurements (Figure 6-17, left). For
a translational velocity of 15 mm/s the numerical model exhibits a typical stable
continuous sliding behaviour (Figure 6-17(e)) as observed experimentally for the
same value of the sliding velocity and for the same average contact pressure
(Figure 6-17(a)). The friction coefficient shows a linear increasing until it
reaches the maximum value and, after a sudden drop due to the release of the
elastic energy, its value becomes constant at a lower value corresponding to the
dynamic friction coefficient. The initial drop in the friction coefficient (related
to the tangential force drop) produces an excitation that leads to decaying
oscillations of the system. After this first phase of transition from adherence to
sliding state of the whole surface, the friction coefficient stabilizes itself
reaching the steady value of 0.32, like in the experimental test (Figure 6-17(a)).
Decreasing the horizontal imposed velocity, both experimentally and
numerically, the macroscopic frictional behaviour changes completely its pattern
(Figure 6-17(b) and Figure 6-17(f)), in a macroscopic stick-slip behaviour. The
drops of the tangential force along the time produce periodic fluctuations in the
macroscopic friction curve, as shown in the Figure 6-17 for an imposed velocity
of 5, 2 and 0.1 mm/s. Continuing to decrease the imposed velocity for values
lower than 2 mm/s and maintaining fixed the average normal load, the
macroscopic contact scenarios is always characterized by macroscopic stick-slip
phenomena (Figure 6-17(d) and Figure 6-17(h)). Moreover Figure 6-17 shows
that, both numerically and experimentally, the amplitude of the drops of the
macroscopic friction and the time period of stick-slip events increase as the
imposed velocity is reduced.

Davide Tonazzi /2014
Department of Mechanics and Aerospace Engineering — La Sapienza University of Rome
Contact and Solid Mechanics Laboratory — Institut National des Sciences Appliquées de Lyon 106

Cette these est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0110/these.pdf
© [D. Tonazzi], [2014], INSA de Lyon, tous droits réservés



Analysis of macroscopic frictional scenarios on a dedicated setup
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Figure 6-18: Tangential force, tangential acceleration and spectrum of the
acceleration signal in the case of driving velocity of 2 mm/s and average contact
pressure of 5 MPa both experimentally and numerically, obtained between two
macro-slip events.

Figure 6-18 shows the decaying oscillations between two slip events for
driving velocity of 2 mm/s and average contact pressure of 5 MPa, both
numerically and experimentally. Figure 6-18 shows how the system vibrations
excited experimentally and numerically after each force drop, present a
frequency content mainly around 1200 Hz, due to the dynamic response of the
tangential mode of the experimental set-up (Figure 6-18); the differences in term
of the amplitude of the acceleration signals shown in the Figure 6-18 are due to
the fact that the experimental signal is related to the acceleration of the support
of the sample (just under the sample), while the numerical acceleration signal is
related to one point of the upper boundary of the PC block (Figure 6-16). In fact,
it would have been impossible to add an accelerometer on the side of the
samples, because of their small dimensions. Nevertheless, the time and
frequency analysis show a good agreement between numerical and experimental
vibrational response of the system.

The low frequency fluctuations that can be observed in Figure 6-17 and
Figure 6-18, for the experimental signals, are due to a mode of vibration of the
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whole structure supporting the set-up at about 110 Hz. Anyway, this disturbance
is just superposing the system response and is not affecting significantly the
different contact scenarios obtained both experimentally and numerically.

Further experiments have been performed with the support of a laser
vibrometer allowing for a quantitative validation not only the global signals
(force, acceleration of the sample support) but also the vibration response along
the tangential direction (laser velocity) of a point of the samples close to the
contact interface.
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Figure 6-19: Experimental (left) and numerical (right) macroscopic friction
coefficient, as a function of relative velocity, for average contact pressure of 3
MPa and sample surface roughness of type-01 (S,=0.305). The parameters of
the friction contact law used in the simulations are reported in the table 7.
Equivalent damping a3=100 [s'].

Figure 6-19 shows the effect of the imposed horizontal velocity, both
experimentally and numerically, on the macroscopic frictional behaviour in the
case of roughness type-01 and average contact pressure of 3 MPa. The frictional
system switches from continuous sliding to macroscopic stick-slip, when
decreasing the imposed driving velocity, as observed in the previous case (see
Figure 6-17). For the imposed driving velocity of 2 mm/s, the frictional system
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exhibits the transition of the behaviour (Figure 6-19(b) and Figure 6-19(g))
sliding to macroscopic stick-slip instability both
experimentally and numerically. Decreasing the driving velocity, the frictional
response of the system shows an increasing trend of the force drop amplitude
and the period between two subsequent drops. Figure 6-20 shows a zoom of the
frictional response (Figure 6-19(d) and Figure 6-19(i)) during the first tangential
drop (macro-slip event). The frequency and time analyses in Figure 6-20 show a
good quantitative agreement between experimental and numerical results. The
time-varying spectrum of the signal velocity (Figure 6-20) shows as the main
frequency excited after the macro-slip event is around 20 kHz both
experimentally and numerically. After the macro-slip event the system
oscillations due to the contact sample dynamics (several kHz) decrease due to
the material damping both in the numerical model and in the experiments.
Afterwards, only the macroscopic oscillation of the set-up at its tangential mode
frequency (1200 Hz) is appreciable in the time signals. The velocity measured
by the laser vibrometer, close to the sample contact interface, allows for
recovering the full dynamic response; the tangential force, averaged and
measured at the position of the force transducer miss the information about the
dynamic response of the samples in contact. The different amplitude of the force
oscillations into the comparison between experimental and numerical results
could be attributed to a dependence of damping (associated to the tangential
mode of the setup) by various parameters such as contact pressure, amplitude of
oscillations, that are not accounted for in the numerical damping model where
the proportional mass damping is introduced (C=0a3*M).
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Figure 6-20: Experimental (left) and numerical (right) comparison during
macro-slip event for the following boundary condition: imposed driving velocity
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of 0.5 mm/s and average contact pressure of 3 MPa. Sample surface roughness
of type-01 (S,=0.305).

6.4 Concluding remarks

Contact frictional scenarios of similar contact materials (PMMA-PMMA) and
dissimilar ones (PMMA-PC), have been investigated both experimentally and
numerically. The dedicated experimental set-up, TRIBOWAVE, allowed for
reproducing the relative motion under well controlled values of the driving
parameters. The tests performed on the experimental set-up highlight the
complex phenomena arising when two media are in frictional sliding. The same
system with respect to different boundary conditions, such as imposed horizontal
velocity, switches its macroscopic frictional behaviour from macro stick-slip
instability up to stable continuous sliding with or without mode coupling
instability. Maps of the frictional contact scenario have been drawn.

The updated numerical model, including the set-up tangential stiffness and
dynamics, allowed for reproducing a qualitative comparison and obtaining the
same transition ranges from stable sliding to macroscopic stick-slip as a function
of the key parameters. The numerical results show a quantitative agreement both
in frequency and in time domain with the macroscopic frictional behaviours
obtained by the experiments. The comparison, performed on the macroscopic
response of the system (measured forces, acceleration and velocity), allows for
validating the numerical simulations, which are useful for the investigation of
the local contact dynamics (see section 4.7 and [17]) and its coupling with the
system response.
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7 General conclusions

7.1 Original contributions

The present thesis is addressed to the investigation of the mechanisms at the
origin of the different frictional contact scenarios between two elastic media in
relative motion.

The development of the experimental and numerical tools and the dialog
between experiments and simulations of frictional contact dynamics allowed for
investigating the coupling between the local contact behaviour (status of
interfaces, relative interface velocity, wave and rupture propagation) and the
system response (vibrations, unstable modes) as a function of system parameters
(material damping, imposed driving velocity, average contact pressure, surface
roughness, friction coefficient). The main contributions of this work are
considered in the following points:

1) Transient non-linear simulations and complex eigenvalue analysis
performed with a simple frictional elastic model show, as a function of
system parameters, how the same system can be characterized by either
macroscopic stick-slip phenomena, harmonic vibrations due to the
mode coupling instability, or stable state in continuous sliding.

i)  Frictional scenario maps have been drawn as a function of pairs of the
system parameters. One of the main parameters retained for the analysis
is the material damping, because of its key role in both the dissipation
of the energy released locally at the contact (rupture and wave
propagation) and the stabilization effect on the whole system dynamics.

iii)) A newer experimental setup, named TRIBOWAVE, has been developed
to investigate frictional instabilities arising between samples in contact.
A stiffness and dynamic characterization of the setup has been carried
out in order to implement the dynamic characteristics of the whole
system in the numerical model. Preliminary experimental analyses
highlighted and confirmed the macroscopic frictional scenarios
obtained numerically, while non-linear transient simulations highlighted
the same experimental transition range from stable sliding to
macroscopic stick-slip as a function of the same key parameters.

iv)  Frictional scenario maps as a function of imposed boundary conditions
have been drawn experimentally and numerically considering different
contact material pairs and surface roughness.
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v)  The experimental and numerical results on the mode coupling
instability scenario allowed for generalizing the theory of mode lock-in
presented in the literature for specific contact issues (brake squeal, hip
endroprosthesis squeaking, clutch instability). In each elastic system
under frictional contact, with appropriate system parameters and
boundary conditions, the mode coupling instability can occur giving
origin to harmonic vibrations. This result can explain several everyday
noise emissions coming from frictional contacts and not attributable to
stick-slip phenomena because of their harmonic feature.

vi) Experimental tests on different contact material pairs allowed for
defining appropriate friction laws as a function of the adherence time. A
quantitative validation of the updated numerical model has been
realized, with experiments, on the macroscopic frictional response of
the system.

vii) On the other hand, the numerical model allowed for investigating the
local behaviour at the contact interface, which is, for the moment,
difficult to achieve with experimental techniques. In fact nowadays, the
measurement of the local dynamics at the contact is one of the main
challenges.

viii) The numerical results highlighted the coupling between local contact
response and system dynamic response, which is at the origin of the
different macroscopic contact scenarios. While the macroscopic stick-
sip is driven by the local contact phenomena (rupture and wave
propagation), the dynamic system instabilities (mode coupling) can
drive the local contact distribution, and vice-versa.

In a more general manner the results of this thesis highlighted the complexity
of the local (contact) and global (system) phenomena involved during sliding
motion between elastic media. Moreover the present work underlines how a
combined experimental and numerical analysis is needed for understanding the
mechanisms at the origin of the different scenarios of frictional contact
instability.

7.2 Future works

As stated above, the results from the thesis highlighted the complexity of the
phenomena and, consequently, allowed to point out some of the main
perspectives regarding the experimental and numerical investigations. Some of
the major points are reported in the following:
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i) With the updated numerical model, validated experimentally in this
thesis, time and frequency analyses of the local contact dynamics are
needed to characterize the contact behavior during macroscopic
frictional instabilities.

ii) Newer techniques are needed to observe experimentally the fast
phenomena occurring at the contact interface (wave propagations,
local contact distribution). The developed experimental set-up has
been designed to provide full access to the samples and the contact
interface.

iii) Then a comparison of the local contact dynamics with the
measurements of the local dynamics during frictional instabilities is
needed to realize a quantitative validation of the numerical model at
the contact scale.

iv) Several key parameters, like the surface roughness, should be
implemented into the numerical model in order to investigate its effect
on the frictional instabilities and the local behavior.

v) Parametrical analyses on roughness, contact materials and different
geometries are needed, numerically and experimentally, in order to
better understand and control the friction between bodies by
exploiting the “dynamic response” of the surface and the system.

vi) A specific investigation will be performed to analyze the effect of
external wave fields in the frictional behavior in order to control/avoid
frictional instabilities.

vii)It has been shown that a key role, in all the contact scenarios, is
played by the material damping. Further numerical developments are
needed in the defining of the new appropriated damping models, in
order to consider a more realistic trend of the material damping factor
within a larger frequency range; this need is due to the different time
(frequency) scales involved in the phenomena: from some Hz of the
structural scale (system modes) to hundreds of kHz of contact scale
(rupture and wave propagation).

Finally, the understanding and controlling of the coupling between local
contact dynamics and system dynamics could bring to innovative tools and
technics able to avoid/control frictional contact instabilities and related wear and
noise issues.
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RESUME: Le comportement local au contact et son interaction avec la dynamique globale du systéme sont a
'origine d’innombrables problémes de contact concernant plusieurs disciplines telles que la tribologie, la géophy-
sique, la mécanique de vibration ou la mécanique de la rupture. Lorsque deux corps élastiques sont en mouvement
relatif avec une interface de frottement, des vibrations induites se produisent dans le systéme.

Dans un point de vue macroscopique, le scénario macroscopique de stick-slip survenant pendant le mouvement rela-
tif est caractérisé par la chute soudaine de la force de frottement (état de glissement), séparées par des périodes
d'accumulation d'énergie élastique (état d’adhérence). Autrement, une instabilité dynamique se produit quand un
mode de vibration du systéme mécanique devient instable en raison des forces de frottement. Ces types d'instabili-
tés, générées par des forces de frottement, ont été principalement objet de publies traitant de problémes spécifiques
dans différents domaines tels que le crissement des freins, le crissement des prothéses de hanche, les vibrations
roue-rail, les tremblements de terre, etc. Dans ce contexte, des analyses expérimentales et numériques ont été ici
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systéme et vice-versa, au cours de scénarios d'instabilité. Les scénarios macroscopiques (instabilité de « stick-slip
macroscopique », instabilité modale, glissement continu stable), survenant entre deux milieux élastiques simples en
mouvement relatif, ont été étudiés numériquement et expérimentalement. Un dispositif expérimental dédi¢ (TRI-
BOWAVE) a été développé et a permis de reproduire et examiner les différents scénarios de frottement dans des
conditions aux limites bien contrélées. Les mémes scénarios de frottement ont été reproduits par des simulations
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expérimentaux globaux (forces, accélérations / vitesse), le modele numérique a permis d'étudier le couplage entre le
comportement du contact local (distribution de 1'état du contact, propagation des ondes et des ruptures, précurseurs)
et la réponse dynamique du systéme au cours du « stick-slip macroscopique », de 1’instabilité due au couplage mo-
dale et du glissement continu stable. La compréhension du couplage entre le contact et la dynamique des systémes
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