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Abstract

As systems are becoming larger, it is becoming difficult to optimize them in

a centralized manner due to insufficient backhaul connectivity and dynamical

systems behavior. In this thesis, we tackle the above problem by developing a

distributed strategic learning framework for seeking Nash equilibria under state-

dependent payoff functions. We develop a discrete time stochastic learning using

sinus perturbation with the realistic assumption, that each node only has a nu-

merical realization of the payoff at each time. We examine the convergence of

our discrete time algorithm to a limiting trajectory defined by an ordinary dif-

ferential equation (ODE). Finally, we conduct a stability analysis and apply the

proposed scheme in a generic wireless networks. We also provide the application

of these algorithms to real world resource utilization problems in wireless. Our

proposed algorithm is applied to the following distributed optimization problems

in wireless domain. Power control, beamforming and Bayesian density tracking

in the interference channel.

We also consider resource sharing problems in large scale networks (e.g. cloud

networks) with a generalized fair payoff function. We formulate the problem as

a strategic decision-making problem (i.e. a game). We examine the resource

sharing game with finite and infinite number of players. Exploiting the aggregate

structure of the payoff functions, we show that, the Nash equilibrium is not an

evolutionarily stable strategy in the finite regime. Then, we introduce a myopic

mean-field response where each player implements a mean-field-taking strategy.

We show that such a mean-field-taking strategy is evolutionarily stable in both

finite and infinite regime. We provide closed form expression of the optimal

pricing that gives an efficient resource sharing policy. As the number of active

players grows without bound, we show that the equilibrium strategy converges

to a mean-field equilibrium and the optimal prices for resources converge to the

optimal price of the mean-field game. Then, we address the demand satisfaction
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problem for which a necessary and sufficiency condition for satisfactory solutions

is provided.



Resumé

Dans ce travail, notre contribution est double. Nous développons un cadre

d’apprentissage stochastique distribué pour la recherche des équilibres de Nash

dans le cas de fonctions de paiement dépendantes d’un état. La plupart des

travaux existants supposent qu’une expression analytique de la récompense est

disponible au niveau des nœuds. Nous considérons ici une hypothèse réaliste où

les nœuds ont seulement une réalisation quantifiée de la récompense à chaque

instant et développons un modèle stochastique d’apprentissage à temps discret

utilisant une perturbation en sinus. Nous examinons la convergence de notre

algorithme en temps discret pour une trajectoire limite définie par une équation

différentielle ordinaire (ODE). Ensuite, nous effectuons une analyse de la stabilité

et appliquons le schéma proposé dans un problème de commande de puissance

générique dans les réseaux sans fil. Nous avons également élaboré un cadre

de partage de ressources distribuées pour les réseaux –cloud– en nuage. Nous

étudions la stabilité de l’évolution de l’équilibre de Nash en fonction du nombre

d’utilisateurs. Dans ce scénario, nous considérons également le comportement

des utilisateurs sociaux. Enfin nous avons également examiné un problème de

satisfaction de la demande où chaque utilisateur a une demande propre à lui qui

doit être satisfaite.

Introduction la recherche du Nash

L’optimisation distribuée a bénéficié un intérêt croissant au cours des dernières

années en raison de son application dans des domaines tels que les réseaux sans

fil, l’estimation distribuée, etc. Le problème principal se compose d’un réseau de

n nœuds ou agents en interaction où chacun a une récompense ou une fonction

d’utilité à maximiser. La décision de chaque nœud a un impact sur la fonction

de récompense des autres nœuds, ce qui rend le problème difficile en général.

vi
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Même si le problème d’optimisation distribuée, considéré dans ce travail, et

l’approche développée sont généraux et peuvent être utilisés dans de nombreux

domaines d’application, nous nous limitons au problème de commande de puis-

sance dans les réseaux sans fil afin de mieux illustrer notre contribution. La

généralisation des résultats obtenus à d’autres applications n’est pas difficile en

soi.

Recherche d’extremum

Krstic et.al. au cours des dernières années ont énormément contribué au do-

maine de la recherche d’extremas non-basée sur un modèle. Dans [FKB12a],

les auteurs proposent un algorithme cherchant l’équilibre de Nash pour les jeux

avec des espaces d’action continus. Ils proposent un algorithme d’apprentissage

entièrement distribué qui nécessite seulement une mesure de la valeur numérique

de la récompense. Leur algorithme est fondé sur la perturbation en sinus (pertur-

bation dite déterministe au lieu d’une perturbation stochastique) de la fonction

de paiement en temps continu. Toutefois, le schéma d’apprentissage à temps

discret avec des perturbations en sinus n’est pas examiné dans [FKB12a]. Dans

[SS10], l’algorithme de recherche d’extremas avec perturbations sinusőidales pour

des systèmes non-basés sur des modèles a été étendu et modifié pour le cas de

mesures bruitées i.i.d et de perturbations en sinus évanouissantes, la conver-

gence presque sûre à l’équilibre est prouvée. La recherche d’extremas basée sur

la perturbation en sinus pour des mesure de bruit indépendantes de l’état est

présentée dans [SJS12].

Dans ce travail, nous étendons le travail dans [FKB12b] au cas de fonctions

de paiement textit dépendantes d’un état stochastique, et utilisons des pertur-

bations déterministes pour recherche de l’équilibre de Nash. On peut facilement

voir la différence entre ce travail et les travaux existants [SS10, SJS12]. Dans

ces travaux, le bruit ηj associé à la mesure est additif et i.i.d , ce qui n’est pas

nécessairement vrai dans la pratique notamment dans le domaine de l’ingénierie,

où le bruit est en général corrélé dans le temps. Dans notre cas, nous considérons

une fonction stochastique de gain dépendantz de l’état et notre problème peut

être écrit sous une forme de Robbins-Monro avec un bruit Markov (corrélé)

donné par ηj = rj(S,a) − ES[rj(S,a)] (Cela deviendra plus clair dans les sec-

tions suivantes), c’est à dire que le bruit associé est stochastique dépendant de

l’état et de l’action , ce qui est différent du cas du bruit i.i.d additif supposé dans
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[SS10, SJS12].

Contribution

Dans ce travail, nous proposons un temps discret algorithme d’apprentissage,

en utilisantla perturbation en sinus continue pour des jeux d’action où chaque

noeud ne dispose que d’une réalisation numérique de leur propre récompense

à chaque instant. Nous étendons donc la méthode classique de recherche de

l’équilibre de Nash avec perturbation en sinus [FKB12b] au cas du temps dis-

cret et des fonctions de paiement dépendantes de l’état stochastique. Nous

montrons que notre algorithme converge localement à un état d’équilibre de

Nash indépendant de l’état dans le théorème 1 dans [HTAZ13d] pour un pas

évanouissant et nous bornons l’erreur correspondante dans le théorème 2 dans

[HTAZ13d] pour un pas fixe. Notez que puisuqe les fonction de paiement ne sont

pas nécessairement concaves, trouver un optimum global en un temps raisonnable

peut être difficile en général, même dans le cas déterministe (état fixe) et avec

une expression anamytic de la fonction de gain. Nous montrons aussi le temps

de convergence pour le cadre de sinus dans le corollaire 1 dans [HTAZ13d].

Les publications suivantes ont été soumises ou ont été publiées dans des

revues et / ou conférences.

1. La principale contribution de la recherche d’extremum et notamment les

preuves sont présentés dans [HTAZ13d].

2. Nous avons appliqué cette chnique de recherche d’extremum pour les systèmes

sans fil dans les scénarios suivants.

(a) Apprentissage distribué stochastique pour le contrôle de puissance

continue dans les réseaux sans fil a été présenté dans [HTAZ13a].

(b) Une commande de puissance distribuée dans les cellules femto bas” sur

une poursuite de densité bayésienne a été développée dans [HTAZ12c].

(c) Dans [HTAZ13b], nous avons développé une stratégie de beamforming

d’émission distribuée avec 1 bit de rétroaction pour les canaux LoS-

MISO.
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Définition du problème et algorithme suggéré

Nous considérons le problème du contrôle de puissance dans les réseaux sans fil

qui est composé de paires émetteur-récepteur utilisant tous la même fréquence

et ainsi générant des interférences les uns sur les autres. Chaque paire émetteur

- récepteur possède donc sa propre fonction de récompense / utilité qui dépend

nécessairement de l’interférence exercée par les autres paires / nœuds. Comme

le gain de canal sans fil et l’interférence varient dans le temps, l’objectif est

d’optimiser nécessairement un long terme (par exemple moyenne) des fonctions

de récompense de tous les nœuds. La fonction de récompense de l’utilisateur

i au temps k est notée ri(Sk,ak) où Sk := [hk(i, j)] représente une matrice

n × n contenant les coefficients de canal au temps k, hk(i, j) représente le co-

efficient de canal entre l’émetteur i et le récepteur j (où (i, j) ∈ [1, . . . , n]2) et

ak représente le vecteur contenant la puissance de transmission de n nœuds.

La technique la plus couramment utilisée pour obtenir un maximum local des

fonctions de récompense des nœuds est la méthode de de gradient croissants

/ décroissants.Supposons qu’il y ait n noeuds transmetteurs récepteurs chacun

avec une fonction de récompense représentée par ri(Sk,ak) qui est utilisée pour

formuler les problèmes d’optimisation suivants:

max
ai≥0

ESri(S,a) ∀ i ∈ {1, . . . , n} =: N (1)

où ES désigne l’opérateur espérance par rapport à S.

En supposant que nous avons accès à la récompense à chaque instant k,

mais l’expression analytique de ri(Sk,ak) est inconnue pour l’utilisateur i. une

solution au problème ci-dessus est un équilibre indépendant de l’Etat dans le

sens qu’ aucun émetteur n’a intérêt à changer sa puissance d’émission lorsque

les autres émetteurs conservent leur choix. Il est bien connu que les équilibres

peuvent être différents des optimum global, l’écart entre l’équilibre et le pire

maximum global est capturé par le soi-disant prix de l’anarchisme . Ainsi la

solution obtenue par notre méthode peut être sous-optimale par rapport à la

maximisation de la somme de toutes les récompenses. Nous étudions la stabilité

locale de l’algorithme stochastique.

Puisque la structure des fonctions de paiement est inconnue, les gradients ne

peuvent pas être calculés. Ainsi, chaque réseau n’a pas besoin d’être au courant

de la présence de ces autres réseaux. La seule information dont chaque émetteur
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a besoin est la valeur numérique ri,k Les fonctions de paiement sous-jacentes

ne sont pas supposées être concaves / convexes. Ce genre de système est aussi

appelé système à modèle libre. Nous supposons seulement que les fonctions sont

Lipschitz et qu’un point Nash équilibre existe.

Algorithme d’apprentissage

Supposons que chaque utilisateur i est en mesure d’observer une valeur numérique

ri,k de la fonction ri(Sk,ak) au temps k , où ai,k est la puissance d’émission

de l’émetteur i au temps k. âi,k est une variable intermédiaire. ai , Ωi φi

représentent la fréquence d’amplitude et la phase du signal de perturbation en

sinus, ri,k+1 représente la récompense à l’instant k + 1.

A chaque instant k, chaque émetteur met à jour sa puissance ai,k , en ajoutant

la perturbation en sinus à la variable intermédiaire âi,k en utilisant l’équation

2.31, et reprend la transmission en utilisant ai,k. Ensuite, chaque émetteur reçoit

une réalisation de la récompense ri,k+1 de son récepteur correspondant au temps

k + 1 qui est utilisée pour calculer âi,k+1 en utilisant l’équation 3. La puissance

ai,k+1 est ensuite mise à jour en utilisant l’équation 2.31. Cette procédure est

répétée pour tout au long de la fenêtre de transmission T . L’algorithme est à

temps discret et est donnée par

ai,k = âi,k + ai sin(Ωik̂ + φi) (2)

âi,k+1 = âi,k + λkliai sin(Ωik̂ + φi)ri,k+1 (3)

où k̂ :=
∑k

k′=1 λk′ . Ωi 6= Ωj,Ωj + Ωi 6= Ωj′ et Ωj ∀i devraient être choisis assez

faibles. Par exemple, λk = 1
k+1 . φi ∈ [0, 2π]∀ i, k ∈ Z

Chaque utilisateur i, initialiser âi,0 et transmettre

Répétez

Calcul puissance selon l’équation (2.31)

Observer ri,k

mise à jour âi,k+1 en utilisant l’équation 3

jusqu’à horizon T

Algorithm 1: algorithme d’apprentissage distribué
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Introduction au partage des ressources dans le Cloud

Les solutions de partage de ressources sont très importantes pour les centres de

données comme car il est mis-en œuvre à différents niveaux du réseau de nuage.

Le problème de partage de ressources peut être formulé comme un problème de

décision stratégique entre les clients. Dans une telle situation, mais dans un

contexte différent, Tullock (1980, [Tul80]) a proposé un schéma de la théorie des

jeux à récompense probabiliste it recherche de rente. Il a remarqué plus tôt

que la perte sociale associée à la recherche de rente dépasse un certain seuil.

Du point de vue de la mise en réseau des nuages, ce qui signifie que beaucoup

de ressources peuvent être perdues si l’utilisateur nuage envisage une location

économique. Dans ce travail, nous étudions un modèle stylisé de partage des

ressources de manière distribuée et équitable. Nous allons montrer que l’efficacité

peut être considérablement améliorée pour les grands réseaux de cloud computing

en utilisant une conception appropriée de prix. Nous examinons à la fois la

stabilité et la réaction myope utilisant des stratégies à champ moyen[AFA05].

Les jeux de champ moyen sont connus pour être bien adaptés pour les systèmes

finis (mais grands) et infinis. Contrairement aux autres outils classiques pour

les systèmes à grande échelle, l’approche de champ moyen dynamique intègre

les dynamiques qui permettent la gestion de la demande en ligne (pay-as-you-

use régime). Elle permet l’optimisation, le contrôle et la conception dynamique

de mécanisme lorsque le nombre d’utilisateurs actifs varie et étudie la nature

interactive des réseaux de nuage, conduisant à des problèmes de prise de décisions

stratégiques. Des études récentes dans les réseaux de cloud ont déjà adopté un

régime de champ moyen. Par exemple, dans [PB11b], les auteurs considèrent

cloud public de plus de cent mille serveurs et de nombreux nuages privés en plus

de l’ échelle du réseau traditionnel.

L’une des questions fondamentales est de connâıtre l’écart d’erreur ou erreur

d’approximation du modèle de champ moyen. En d’autres termes, la précision

de l’approximation fournie par le modèle de champ moyen dans un réseau de

nuages avec nombre fini (mais grand ) d’utilisateurs.

Nous fournissons une réponse complète à la question ci-dessus dans ce travail.

Contribution

Bien que nous considérons ici les réseaux de cloud computing, notre analyse qui

en résulte est plus générale et est applicable à des réseaux similairesde partage
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de ressources. Les contributions de ce travail sont listées ci-dessous.

• On considère des jeux de partage des ressources en nuage avec des espaces

d’action continus où chaque utilisateur tente de maximiser son propre gain.

Dans le régime fini (nombre limité d’utilisateurs), nous fournissons les ex-

pressions analytiques de trois importants concepts de solution en théorie

des jeux: équilibre de Nash (NE), réponse de champ moyen à population

finie (F - MFR) et stratégies évolutives stables à population finie (F -

ESS).

• Dans le régime fini, nous fournissons alors un algorithme itératif basé sur

Ishikawa qui converge vers chacun des trois concepts d’équilibre ci-dessus

et discutons ses temps de convergence.

• On considère alors le régime infini, car dans de nombreux réseaux de nu-

ages le nombre d’utilisateurs devrait être très élevé. Nous fournissons

une expression analytique de l’équilibre du champ moyen et montrons que

l’équilibre du champ moyen est une stratégie évolutivement stable, c’est

à dire qu’il ne peut pas être envahi par une petite fraction des déviants.

Nous montrons que l’équilibre du champ moyen est stable évolutif pour

toute fraction de déviants strictement inférieure à 100% ce qui rend notre

résultat encore plus fort. Nous montrons également que l’équilibre de Nash

est stable dans le régime infini.

• Ensuite, nous nous concentrons sur l’algorithme d’apprentissage distribué

pour le régime infini. Nous proposons un système d’apprentissage (mais

toujours avec moins d’informations) basé sur un modèle pour les jeux

avec l’espace de l’action continue et à grand nombre de joueurs. Chaque

joueur va mettre à jour sa stratégie d’apprentissage basée sur une durée

d’agrégation, qui est la moyenne d’une fonction croissante de l’action des

autres joueurs.

• La dernière contribution de ce papier est l’étude de concept de jeu satis-

faisant. Chaque utilisateur du nuage a une demande de capacité qui doit

être satisfaite n’importe quand n’importe où (au lieu d’essayer de max-

imiser un profit). Dans le régime fini, nous fournissons une expression

analytique de la solution satisfaisante et développons un algorithme dis-

tribué qui est capable de l’atteindre.
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Pour plus de détails sur les contributions ci-dessus et des résultats numériques

veuillez vous référer à [HTAZ13c, HTAZ12a].

System Model

Nous considérons le partage des ressources jeu avec un nombre fini (mais arbi-

traire) de clients dans un réseau de nuage. On note un tel jeu par Gn, où n est le

nombre de clients. L’espace d’action de chaque utilisateur est A = R+ qui est un

ensemble convexe, c’est-à- chaque joueur j choisit une action aj qui appartient à

l’ensemble A. l’action peut représenter une certaine demande. Toutes les actions

déterminent ensemble un résultat. Soit pn le prix unitaire de l’utilisation des

ressources de cloud par les clients.

Ensuite, le gain de joueur j est donné par:

rj(a1, . . . , an) = cn
h(aj)∑n
i=1 h(ai)

− pnaj, (4)

si
∑n

i=1 h(ai) > 0 et zéro autrement. La structure de la fonction récompense

RJ(a1, . . . , an) pour l’utilisateur j montre qu’il s’agit d’un pourcentage de la

capacité allouée moins le coût d’utilisation de cette capacité. Ici, cn représente la

valeur des ressources disponibles (qui peuvent être considérées comme la capacité

du nuage), h est une fonction positive et décroissante avec h(0) = 0. Nous fixons

la fonction h être xα where α > 0 dénote un certain indice de rendement.

Conclusion

Nous avons étudié les jeux de partage des ressources dans les réseaux de cloud

computing, mais notre analyse est applicable à d’autres scénarios de partage des

ressources. Pour le cas fini, nous avons prouvé que le point d’équilibre Nash

est instable pour notre fonction de paiement et avons identifié deux stratégies

stables à savoir F - ESS et F - MFR. Nous avons aussi développé des algorithmes

qui sont capables de converger respectivement aux stratégies mentionnées dans

la section précédente. Pour les systèmes à grande échelle, nous avons développé

un schéma de jeu de champ moyen et montré que l’équilibre du champ moyen

est stable. Nous développons ensuite un algorithme itératif distribué qui con-

verge vers l’équilibre du champ moyen avec un ordre de convergence de qua-

tre. En outre, nous avons donné des conditions nécessaires et suffisantes pour

l’existence de solution satisfaisante où chaque utilisateur est satisfait n’importe
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où n’importe quand. Pour plus de détails sur les contributions ci-dessus et les

résultats numériques veuillez vous référer à [HTAZ13c, HTAZ12a].
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Chapter 1

Introduction

In this chapter we present a general description of problems in future networks.

In particular we identify and focus on the technological challenges behind these

problems. Finally we present the main contribution in this thesis. References

are given throughout the work, where interested readers may find detailed infor-

mation if necessary.

1.1 Motivation and Challenges

The main motivation for this thesis comes from the challenges that exists in the

design and development of future networks. Future networks will support an ever

greater number of subscribers and higher data rates per subscriber than existing

networks. At the same time these networks will need to utilize the available

resources more efficiently, but above all they will have to consume low power.

Future network is a blanket term which includes all types of wired and wireless

communications networks, including the concepts of ‘cloud networks’, ‘internet

of things’ and ‘wireless sensor network’. There is a great technological gap that

needs to be bridged in-order to satisfy the performance claims hinted above.

Most of the existing network designs are based on a centralized controller

which is responsible for all resource management and control requests but such

models are non–scalable to higher number of users as it entails a very high

signaling on the backhaul link.

Another limitation even at the small scale is when there are several non

cooperating users, for example in cognitive radio we have primary and secondary

users using the same spectrum at the same time and interfering with one another.

1
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In such cases the system is inherently distributed and hence the problem cannot

be solved in a centralized manner.

To overcome these challenges there is a growing consensus among network

designers to make future networks decentralized where each node is autonomous

and is able to make intelligent decisions about resource utilization. This decision

or action has to be updated at each time as the demand of the network is

constantly changing i.e. dynamic.

This type of approach has certain design challenges which are listed as follows:

• How to implement a distributed optimization when there is only limited

information in feedback?

• How to ensure that the distributed optimization problem converges to a

local maxima?

The answer to both of the above question is dependent on the structure of

the reward function and the available information for updates. There can be

several practical limitation associated with the reward function which are listed

below. In some scenarios, the reward function rj(.) associated with each node

is not known, or one or more dependent variables of the reward functions are

not known. The reward function could be known but non differentiable. The

node may not have the computing power necessary to perform the computation

required for optimization. The state of the system could be time varying. All

these above limitations encourage designers to look at more clever techniques to

deal with such challenges. One way to deal with such limitations is by using a

‘model free’ approach to optimization. We will discuss these approaches later in

this chapter.

1.1.1 Wireless Resource Utilization

The wireless resources are an expensive and limited commodity. There are sev-

eral methods that have been developed over the year to utilize the wireless

resources in a much more efficient ways. For example using efficient multiple

access techniques such as code division multiple access (CDMA) and orthogonal

frequency division multiple access (OFDMA) to divide the spectrum between

a greater number of subscribers, installing multiple antennas per subscriber i.e.

multiple input multiple output (MIMO) systems to improve capacity or perfor-

mance, using more efficient coding techniques to better protect against random-
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ness in the channel. Having faster more robust routing protocols which reduce

latency by choosing the shortest path through the network. As the demand for

data rate is increasing wireless infrastructure is becoming overloaded with more

and more users. This surge in the number of users is putting higher demand on

the backhaul to resolve the interference in intelligent ways. This kind of scaling

is not practical as the backhaul links has a limited bandwidth.

Motivation for decentralized system: One logical progression is to transition

from a centralized to a distributed architecture. In wireless communications

there are several scenarios which are inherently distributed i.e. for example an

ad-hoc network which does not rely on a pre existing infrastructure. Cognitive

radio network is another example where there are primary and secondary users.

The primary users represent the pre-existing infrastructure and operates in a

licences frequency spectrum. The secondary users are allowed to use the spec-

trum only when the primary users are not using it. This type of network is a

distributed network as there is no central controller between the primary and

the secondary users. Another reason for moving towards a decentralized system

is that the delay associated with a centralized system which may cause the in-

formation to become outdated by the time it has been shared and used by the

central controller. Hence there is greater demand to develop fully distributed

techniques which are able to achieve performance similar to a centralized sys-

tems. Distributed optimization has been receiving an increasing interest over

the past years due to its ability of use in many application fields (wireless net-

works, distributed estimation, etc.). The main problem consists in a network of

n interacting nodes or agents where each one has a reward or utility function

to maximize. The decision of each node has an impact of the reward function

of the other nodes, which makes the problem challenging in general. Different

approaches, mainly based on gradient descent/ascent method, have been devel-

oped to achieve a local optimum (or global optimum in some special cases, e.g.

concavity of the reward, etc.) of the distributed optimization problem. But in

practical systems it may not be possible to implement gradient based method

due to lack of knowledge about the reward function.

There are many problem in wireless communication where only a noisy or

quantized numerical value of reward is available in feedback at the transmitter.

In such cases implementing a distributed optimization approach becomes much

more challenging.
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Scenarios that we have considered: Following is a brief description of some of

the problems in distributed wireless resource utilization that we have considered.

• Power Control in Interference Channel: In wireless communications, an

interference channel arises when there are more than one transmitters try-

ing to use the same frequency. The problem is composed of transmitter-

receiver pairs; all of them use the same frequency and thus generate in-

terference onto each other. It is an important scenario, and one ways of

managing the interference is by implementing some type of power con-

trol scheme. We consider a challenging scenario where the transmitters do

not cooperate with one another and only have to do power control based

on their local information. Each transmitter-receiver pair has therefore

its own reward/utility function that depends necessarily on the interfer-

ence exerted by the other pairs/nodes. Since the wireless channel is time

varying as well as the interference, the objective is necessarily to opti-

mize a long-run (e.g. average) of the reward functions of all the nodes.

The reward function of user i at time k is denoted by ri(Hk,pk) where

Hk := [hk(i, j)] represents an n× n matrix containing channel coefficients

at time k, hk(i, j) represents the channel coefficient between transmitter

i and receiver j (where (i, j) ∈ [1, . . . , n]2) and pk represents the vector

containing transmit powers of n transmit receive nodes.

• Beamforming in Interference Channel: In cases when we have multiple

transmitting antennas at each transmitter, it is possible to implement

beamforming instead of power control which is a more advanced method

of steering the signal power toward your respective receiver. This is a

very useful techniques as it helps us in avoiding interfering with the other

receivers and improve our performance by directing our signal in the di-

rection of our respective receiver. But in order to implement beamforming

we need to have some knowledge about the position of the received with

respect to the transmitter. As we assume a case where we only have a

limited information i.e. 1-bit in feedback at each time. We attempt to

do distributed beamforming using only one bit feedback from the receiver,

which is indeed a very limited information for this task. This is what

makes it a challenging problem. We consider the case of line of sight (LoS)

channel to keep things simple. Each transmitter will adapt its direction of

transmission (DoT) using only the 1-bit feedback in such a way that the
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probability of successful transmission is maximized.

• Bayesian Density Tracking: In wireless communication systems, as the

channels are randomly varying, it makes sense to measure the performance

of the channel as the probability of ‘signal strength’ greater than a certain

threshold. The mathematical models behind these probability function can

be complicated and in most cases the dependent variables may be unknown

or randomly varying. We attempt to track the evolution the density of the

signal strength and use this information to maximize the success probabil-

ity using the concepts from Bayesian density tracking. There are scenarios

where the probability of success maximization can be a good way to ana-

lyze and optimize the performance of a randomly varying system. Here we

consider an overlapping femto cell and macro cell operating at the same

frequency. We only consider the downlink scenario where the femto cell

users will receive interference from the macro access point and vice versa.

We construct the reward functions in such a way that the femto access

point take the success probability of the macro cell users and its own users

into consideration when implementing its power control strategies. The

femto and macro cells are two distributed systems and there is not cooper-

ation on the backhaul. Femto has knowledge about the performance of its

own user and the performance of the macro user which the femto is able to

overhear in the feedback control channel as they are both using the same

standard. This is again a distributed scenario with limited information in

feedback.

We mainly concentrated on distributed scenarios with single input single

output (SISO) and multiple input single output (MISO) channels. In all of the

above mentioned scenarios we use our ‘model free’ optimization algorithm that

we will discuss in the next chapter.

1.1.2 Cloud Networks Resource Sharing

Cloud Networking is a relatively new concept which ensures that computing

and storage resources are available to users on demand. Foster et al.(2008) de-

fines the ambiguous cloud as “A large-scale of distributed computing paradigm

that is driven by economies of scale, in which a pool of abstracted virtualized,

dynamically-scalable, managed computing power, storage, platforms, and ser-
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vices are delivered on demand to external customers over the Internet” [FZRL08].

The concept of cloud networking has emerged to satisfy the uneven demand of

users wanting cheap computing resources ranging from storage to processing.

Every aspect of a computer system can essentially be offered as a service to var-

ious users. Thanks to advances in virtualization and scheduling techniques it is

possible to have multiple instances of a software running on the same physical

system. Although there are many types of cloud based resources that can be

shared with other users here we only discuss computing and storage resources.

Computing Resources: Consider a scenario where an entity requires high

computing resources once every month. Now they can rent computing resources

on demand instead of physically owning dedicated computing resources. With

the advent of modern operating systems and advances in networking technolo-

gies and virtual machine technologies it is now possible to host and multiple

instances with limited hardware. Amazon has been among the first companies

to convert this into a viable business with the ‘EC2 service’. ‘Compute Engine

by Google’ and ‘Windows Azure by Microsoft’ are the other major players in

computing resources. These services are mostly used by companies and research

organizations.

Storage Resources: Data storage and backup in the cloud is also an important

business. Several companies are providing data storage in the cloud as their

primary service, and the demand is to have instant and seamless access to the

data over cross platform devices which makes such a service very attractive. As

most of our data is now digital it necessary to have secure backup of personalized

data. These services are used by individuals and companies. Dropbox, Google

Drive, Microsoft SkyDrive are some of the major storage services for users.

The resource sharing structure used by most cloud service providers uses

CPU-hour consumed [Inc08], which may not be the most efficient, as it doesn’t

take into account the complex interactions between the users that are happening

indirectly thought the shared resource. As different users are sharing the same

physical machines, they are interacting with each other through the machines.

The service provider is only interested in maximizing his resource utilization i.e.

all CPU-hour are being utilized, but from the users standpoint this may not

result in best performance if CPU-hours are divided among a large number of

users. The tasks of a single user may take a very long time to finish. Hence

the reward of each user is not fully captured by the CPU-hour resource sharing
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method, the percentage of resources made available to each user should be part of

the reward. We consider such type of reward function where users are interested

in increasing their percentage based reward function.

Scenarios that we have considered: Following is a brief description of some of

the problems in large scale distributed cloud networks that we have considered.

• One of the problems in sharing resources on a large scale is again with the

signaling overhead required to manage a dynamically changing demand by

all the users. We address this distributed problem using the concepts from

game theory and mean field.

• Demand satisfaction is another resource utilization problem, where each

user has a specified demand that needs to be met for the user to be satisfied.

This is inherently a different type of resource sharing problem.

Please refer to chapter 3 for detailed information about these cases.

1.2 Outline and Contributions

A general system overview which is common to all scenarios considered in this

thesis is presented in figure 1.1. Our model assumes a number of nodes inter-

acting with a dynamic environment. The dynamic environment means that the

state of the system is changing. The nodes are non-cooperative and they are

interacting with each other through the dynamic environment. The action of

each node has an impact on the reward of the other nodes and vice versa. This

is the basic system mode that we have considered in our thesis.

1.2.1 Extremum Seeking Algorithm

In chapter 2 we develop the concepts associated with extremum seeking for

‘model free’ scenarios (i.e. where the structure of the reward function is not

known) we have developed a stable extremum seeking algorithm that is able to

converge to Nash equilibrium when initialized in the neighborhood of the Nash

equilibrium point. The algorithm ensures tractability which can is a requirement

in certain engineering applications. Note that, our convergence is in the sense of

Borkar [Bor08] and will be explained later on in the text.

In this work, we propose a discrete time learning algorithm, using sinus per-

turbation, for continuous action games where each node has only a numeri-
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Figure 1.1: Nodes interacting with each other through a dynamic environment

cal realization of own-payoff at each time. We therefore extend the classical

Nash Seeking with sinus perturbation method [FKB12b] to the case of discrete

time and stochastic state-dependent payoff functions. We prove that our algo-

rithm converges locally to a state independent Nash equilibrium in Theorem 1

in [HTAZ13d] for vanishing step size and provide an error bound in Theorem 2

in [HTAZ13d] for fixed step size. Note that since the payoff function may not

necessarily be concave, finding a global optimum in reasonable time can be dif-

ficult in general even in deterministic case (fixed state) and known closed-form

expression of payoff. We also show the convergence time for the sinus framework

in Corollary 1 in [HTAZ13d].

Following publications have been submitted or have appeared in peer re-

viewed journals and/or conferences.

1. The main contribution of extremum seeking framework including proofs

is presented in [HTAZ13d]. A Nash seeking algorithm which is able to

find the local minima using just the numerical value of the stochastic state

dependent payoff function at each discrete time step. We proved the con-

vergence of our algorithm to a limiting ODE. We have provided as well

the error bound for the algorithm and the convergence time to be in a

close neighborhood of the Nash equilibrium. A numerical example for

a generic wireless network is provided for illustration. The convergence

bounds achieved by our method are dependent on the step size and the
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perturbation amplitude. We consider a new class of state dependent pay-

off functions rj(S,a) which are inspired from wireless systems applications.

But these kind of functions are more general and appear in other appli-

cation areas. We present an iterative algorithm which is able to perform

distributed resource sharing (for same and different prices) for a certain

type of reward function. We show the stationary points of our algorithms

converge to Nash equilibrium.

2. We have applied this extremum seeking techniques to wireless systems in

the following scenarios.

(a) Distributed stochastic learning for continuous power control in wire-

less networks was presented in [HTAZ13a].

(b) In [HTAZ13b] we developed a distributed transmit beamforming with

1-bit feedback for LoS-MISO channels.

(c) A distributed power control in femto cells using bayesian density

tracking was developed in [HTAZ12c].

1.2.2 Distributed Resource Sharing

In chapter 3 we describe distributed resource sharing in cloud networks. We

consider a scenarios where the system model is known but the number of users

is very large. In such scenario we analyze the structure of the reward function

and implement iterative algorithms which are able to the equilibrium point.

Although we consider cloud networks, our resulting analysis is more general and

is applicable to similar resources sharing networks.

The contribution of this work is listed below.

• We consider cloud resource sharing games with continuous action spaces

where each user tries to maximize its own payoff. In the finite regime

(finite number of users), we provide closed-form expressions of three im-

portant game-theoretic solution concepts: Nash equilibrium (NE) , finite

population mean-field response (F-MFR) and finite population evolution-

arily stable strategies (F-ESS). The first surprising result is that the Nash

equilibrium is not an evolutionarily stable strategy for finite population.

(see Proposition 2). In fact in cloud networks, the number of users as well

as users’ demands are constantly changing and in this context evolutionary
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stable strategy (i.e. it cannot be invaded by small fraction of deviants) is

crucial. Based on the work of Possajennikov (2003, [Pos03]) we show that

mean-field-taking strategies are evolutionarily stable strategies for a cer-

tain range of return index (i.e. α). We provide the explicit optimal pricing

as a function of the number of active users. Under the optimal pricing no

resource is wasted at the equilibrium. This means that the efficiency loss

tends to zero.

• In the finite regime, we then provide an Ishikawa-based iterative algorithm

that converges to each of the three aforementioned equilibrium concepts

and discuss its convergence time.

• We then consider the infinite regime, because in many cloud networks

the number of users is expected to be very high. We provide closed-form

expression of the mean-field equilibrium and show that the mean-field equi-

librium is an evolutionarily stable strategy, i.e., it cannot be invaded by a

small fraction of deviants. We show that the mean-field equilibrium is evo-

lutionary stable for any fraction of deviants strictly less than 100% which

makes our result even stronger. We also show that Nash equilibrium is

stable in the infinite regime. This is due to the fact that in the limiting

case, the influence of one generic player on the total demand is negligible.

• Then, we focus on distributed learning algorithm for infinite regime. We

propose a model-based (but still with less information) learning scheme

for games with continuous action space and large number of players. Each

player will update its learning strategy based on an aggregative term, which

is the mean of an increasing function of the action of the other players.

Each player will be influenced by the aggregate, and the mean-field be-

havior is formed from the action of each player. Each player will try to

conjecture the aggregative term consisting of the actions of the other play-

ers at each time slot, and will respond to the aggregative term locally. This

drastically simplifies the dimensionality of the mean-field response system

in the asymptotic case. We also discuss the convergence time of the pro-

posed learning algorithm and show that it is faster than the Ishikawa-based

algorithm or standard contraction mapping fixed-point algorithms.

• Finally we study of satisfactory game concept. Each cloud user has a

capacity demand that needs to be satisfied anytime anywhere (instead of
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trying to maximize a payoff). In the finite regime, we provide a closed form

expression of the satisfactory solution and develop a distributed algorithm

which is able to reach it. Contrary to the aforementioned equilibrium

concepts, the extension of the obtained satisfactory solutions to the infinite

regime is straightforward.

In chapter 4 we provide a generalized conclusion of the work that has been

presented along with implications and applications to future networks.

1.2.3 Publication List

Here we list some of the publications related to this thesis.
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Chapter 2

Model Free Nash Seeking

2.1 Introduction

In this work we consider a fully distributed interactive system, which consists

of nodes which can be modeled as a strategic decision making problem. Let us

consider a distributed interactive system with N nodes or agents which inter-

act with one another and each has a payoff/utility/reward to maximize. The

decision or action of each node has an impact on the payoff of the other nodes,

which makes the problem challenging in general. In addition, there is a random

variable (scalar, vector or matrix) that could influence the payoff of each node.

In distributed interactive systems it might not be possible to have a bird’s eye

view of the system as it is too complicated or is constantly changing. For practi-

cal reason in terms of observation and measurements, we work on discrete time

space. We consider interactive systems where each node only has access to a nu-

merical value of its payoff at each time. Let aj,k be the action of node j at time

k and the numerical value of the payoff of this node is given by r̃j,k, which is a

realization of some random variable r̃j,k := rj(Sk,ak)+ηj,k where ηj,k represents

noise, rj : S × R
N
+ −→ R is the payoff function of node j, Sk ∈ S ⊆ C

N×N is

the state (which is stochastic), ak = (a1,k, . . . , aN,k) is the action profile at time

k i.e., the vector containing actions of all nodes at time k. Figure 2.1 shows the

system model where we have N interacting nodes.

The payoffs are interdependent as the nodes interact with one another. Each

of these nodes j has access to the numerical value of their respective payoff r̃j,k

and it needs to implement a scheme to select an action aj,k such that its payoff is

maximized. The above scenario can be interpreted as a strategic decision making

12
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problem, i.e. a game. In this work we explore learning in such games which is

synonymous with designing distributed iterative algorithms that converge to

a solution. One of most known solution concepts in game theory is the so-

called Nash equilibrium. For the clarity of the presentation, we restrict ourselves

to Nash equilibrium seeking, however, the methodology presented here can be

applied to satisfactory solution seeking or correlated equilibrium seeking. Figure

2.1 shows the nodes interacting with one another thought a dynamic environment

where state S is stochastic. One of the main assumptions that we can make here

is the existence of a local solution.
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Figure 2.1: Nodes interacting with each other through a dynamic environment

To solve optimization problems there are various approaches, mainly based

on gradient ascent or descent method [Sny05], have been developed to achieve

a local optimum (or global optimum in some special cases, e.g. concavity of the

payoff, etc.) of the distributed optimization problem. The stochastic gradient

ascent proposes to feedback the numerical value of gradient of payoff function∇rj
of node j (which can be noisy) to itself. This supposes in advance that a noisy

gradient can be computed or is available at each node. Note that if the numerical

value of the gradients of the payoffs (the entire vector) are not known by the

nodes at each step, this scheme cannot be used. In [BJ12] projected stochastic

gradient based algorithm is presented. A distributed asynchronous stochastic

gradient optimization algorithms is presented in [TBA86]. Incremental sub-

gradient Methods for Non-differentiable optimization are discussed in [NB01]. A
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distributed optimization algorithms for sensor networks is presented in [RN04].

Interested readers are referred to a survey by Bertsekas [Ber10] on incremental

gradient, sub-gradient, and proximal methods for convex optimization. In [SS09]

the authors present stochastic extremum seeking with applications to mobile

sensor networks.

Use of the aforementioned gradient based methods requires the knowledge

of:

1. the system state.

2. the actions of others and their states.

3. the mathematical structure (closed form expression) of the payoff function.

4. computational capability of the nodes.

As we can see, it will be difficult for node j to compute the gradient if

the expression for the payoff function rj(.) is unknown and/or if the states and

actions of other nodes are not observed as rj(.) depends on the actions and states

of others.

There are several methods for Nash equilibrium seeking where we only have

access to the numerical value of the function at each time and not its gradient

(e.g. complex functions which cannot be differentiated or unknown functions).

A promising technique for solving the above problem is called extremum seeking.

Extremum Seeking

Krstic et.al. in recent years have contributed greatly to the field of non-model

based extremum seeking. In [FKB12b], the authors propose a Nash seeking

algorithm for games with continuous action spaces. They proposed a fully dis-

tributed learning algorithm which requires only a measurement of the numerical

value of the payoff. Their scheme is based on sinus perturbation (i.e. deter-

ministic perturbation instead of stochastic perturbation) of the payoff function

in continuous time. However, discrete time learning scheme with sinus pertur-

bations is not examined in [FKB12b]. In [SS10] extremum seeking algorithm

with sinusoidal perturbations for non-model based systems has been extended

and modified to the case of i.i.d. noisy measurements and vanishing sinus per-

turbation, almost sure convergence to equilibrium is proved. Sinus perturbation
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based extremum seeking for state independent noisy measurement is presented

in [SJS12].

In [vdWHN12] an extremum-seeking approach for periodic steady-state re-

sponse optimization is presented. A unifying framework for analysis and design

of extremum seeking controllers is presented in [NTM+12]. In [NNTM12] a

shubert algorithm-based global extremum seeking scheme is presented. A mul-

tidimensional global extremum seeking via the DIRECT method is presented in

[KMNT12]. In [LK12] a Newton-based stochastic extremum seeking approach

is presented. A dynamic bandwidth allocation framework for wireless networks

using a Shahshahani gradient based extremum seeking control is presented in

[PQ12a]. A simplex guided extremum seeking control for real-time optimization

is presented in [ZG12]. A Shahshahani Gradient based extremum seeking scheme

is presented in [PQ12b]. Extremum seeking under input constraint for systems

with a time-varying extremum is presented in [YH13]. In [AJG13] an on-line

optimization of cone crushers using Extremum-Seeking Control is considered. In

[NMM13] a framework for extremum seeking control of systems with parameter

uncertainties is considered. A time-varying extremum-seeking control approach

is presented in [GDD13]. Examples of distance-based synchronization: An ex-

tremum seeking approach is presented in [DSJE13]. In [PQ13] a distributed

extremum seeking for real-time resource allocation is presented. An extremum-

seeking control of ABS braking in road vehicles with lateral force improvement

is presented in [DGA14].

In [LK10] Krstic et al. have recently extended Nash seeking scheme to

stochastic non-sinusoidal perturbations and convergence in probability is proved.

Interested readers can also refer to the references therein [LK10] for other per-

turbation method. In [LK10] stochastic averaging theory is developed for ex-

tremum seeking problems and several conditions on the payoff functions like

global Lipschitz condition has been relaxed. Notions of weakly stable, weakly

asymptotically stable and weakly exponentially stable are defined for extremum

seeking. In [LK11], building on the theoretical foundations in [LK10], Krstic et

al. present stochastic perturbations based Nash equilibrium seeking for games

with non linear payoffs and they analyze necessary convergence conditions. Al-

though these stochastic perturbation techniques do estimate the gradient but

they introduce a level of uncertainty because of the stochastic perturbations. To

avoid this, sinus perturbation can be used instead of stochastic perturbation in
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certain applications. Deterministic (sinus) perturbation method is particularly

helpful when one node is trying to track the actions of the other nodes in many

engineering application, one such application is presented here.

In this work we extend the work in [FKB12b] to the case of stochastic state

dependent payoff functions, and use deterministic perturbations for Nash seek-

ing. One can see easily the difference between this work and the existing works

[SS10, SJS12]. In these works, the noise ηj associated with the measurement

is additive i.i.d. which does not necessarily hold in practice especially in engi-

neering application where the noise is in general time correlated. In our case,

we consider a stochastic state dependent payoff function and our problem can

be written in Robbins-Monro form with a Markovian (correlated) noise given by

ηj = rj(S,a) − ES[rj(S,a)] (this will become clearer in the next sections), i.e.

the associated noise is stochastic state-and-action dependent which is different

from the case of additive i.i.d. noise assumed in [SS10, SJS12].

In this work, we propose a discrete time learning algorithm, using sinus per-

turbation, for continuous action games where each node has only a numerical

realization of own-payoff at each time. We therefore extend the classical Nash

Seeking with sinus perturbation method [FKB12b] to the case of discrete time

and stochastic state-dependent payoff functions. We prove that our algorithm

converges locally in the close neighborhood of a state independent Nash equilib-

rium in Theorem 1 for vanishing step size and provide an error bound in Theorem

2 for fixed step size. Note that since the payoff function may not necessarily be

concave, finding a global optimum in reasonable time can be difficult in general

even in deterministic case (fixed state) and known closed-form expression of pay-

off. Also note that, our convergence is in the sense of Borkar [Bor08] and will be

explained later on in the text.We also show the convergence time for the sinus

framework in Corollary 1.

The proof of the theorems are given in Appendix A.

The remainder of this work is organized as follows. Section 2.2 provides the

proposed distributed stochastic learning algorithm. The performance analysis

of the proposed algorithm (convergence to ODE, error bounds) is presented in

Section 2.3. A numerical example with convergence plots is provided in Section

2.4. Appendix A contains the proofs.

We summarize some of the notations in Table 2.1.
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Table 2.1: Summary of Notations

Symbol Meaning

N set of nodes

Aj set of choices of node j,

S state space

rj payoff of node j

aj,k decision of j at time k

a−j,k (aj′,k)j′ 6=j

Sk state at time k

E expectation operator

∇ gradient operator

2.2 Problem Formulation and Proposed Algorithm

Let there be N distributed nodes, each with a payoff function represented by

rj(Sk, aj,k,a−j,k) at time k which is used to formulate the following robust prob-

lems:

sup
aj≥0

ESrj(S, aj ,a−j) j ∈ N (2.1)

where N := {1, . . . , N} is the set of nodes, Aj ⊆ R is the action space of

node j, S is the state space of the whole system, where S ⊆ C
N×N and rj :

S ×∏j′∈N Aj′ −→ R is a smooth function. A solution to the problem (2.1) is

called state-independent equilibrium in a game-theoretic setting. Games with

state uncertainties are often called robust games. Since the state is stochastic,

we get a robust game. It should be mentioned here for clarity that the decisions

are taken in a decentralized fashion by each node.

A solution to 2.1 is a state-independent equilibrium in the sense that no node

has an incentive to change its action when the other nodes keep their choice and

the equilibrium strategy does not depend on the state. It may depend on the

entire distribution of states.

Definition 1 (Nash Equilibrium (state-independent)). The action profile

a∗ = (a∗j ,a
∗
−j) ∈

∏
j′ Aj′ is a (state-independent) Nash equilibrium point if

ESrj(S, a
∗
j ,a

∗
−j) ≥ ESrj(S, a

′
j ,a

∗
−j), (2.2)
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where ∀a′j ∈ Aj , a
′
j 6= a∗j , ES denotes the mathematical expectation over the

state.

It is well-known that equilibria can be different than global optima, the

gap between the worse equilibrium and the global optimum is captured by the

so-called price of anarchy. Thus, solution obtained by our method can be subop-

timal with respect to maximizing the sum of all the payoffs. We study the local

stability of the stochastic algorithm. Here we denote a := (aj ,a−j), assuming

that node j has access to it’s realized payoff at each time k but the closed-form

expression of rj(Sk, aj,k,a−j,k) is unknown to node j.

Definition 2 (Nash Equilibrium (state-dependent)). We define a state-

dependent strategy ǎj of node j as a mapping from S to the action space Ǎj. The

set of state-dependent strategy is PGj : {ǎj : S −→ Ǎj, S 7−→ ǎj(S) ∈ Ǎj}.

ǎ∗ = (ǎ∗j , ǎ
∗
−j) ∈

∏

i

PGi

is a (state-dependent) Nash equilibrium point if

ESrj(S, ǎ
∗
j (S), ǎ

∗
−j(S)) ≥ ESrj(S, ǎ

′
j(S), ǎ

∗
−j(S)), (2.3)

∀ǎ′j ∈ PGj .

Here we will focus on the analysis of the so-called expected robust game i.e.,

(N ,Aj ,ESrj(S, .)). A (state-independent) Nash equilibrium point [Jr.50] of the

above robust game is a strategy profile such that no node can improve its payoff

by unilateral deviation, see Definition 1 and Definition 2.

Since the current state is not observed by the nodes, it will be difficult to

implement state-dependent strategy. Our goal is to design a learning algorithm

for a state-independent equilibrium given in Definition 1. In what follows we

assume that we are in a setting where the above problem has at least one isolated

state-independent equilibrium solution. More details on existence of equilibria

can be found in Theorem 3 in [BTZ93].

2.2.1 Distributed learning algorithm

Suppose that each node j is able to observe a numerical value r̃j,k of the function

rj(Sk,ak) at time k, where ak = (aj,k,a−j,k) is the action of nodes at time k. âj,k

is an intermediary variable. The real numbers bj Ωj φj respectively represent
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the amplitude, frequency and phase of the sinus perturbation signal given by

bj sin(Ωjtk + φj), The learning algorithm is presented in Algorithm 2 and is

explained below. At each time instant k, each node updates its action aj,k, by

adding the sinus perturbation i.e. bj sin(Ωjtk + φj) to the intermediary variable

âj,k using equation (2.4), and makes the action using aj,k. Then, each node gets

a realization of the payoff r̃j,k+1 from the dynamic environment at time k + 1

which is used to compute âj,k+1 using equation (2.5). The action aj,k+1 is then

updated using equation (2.4). This procedure is repeated for the window T .

The algorithm is in discrete time and is given by

aj,k = âj,k + bj sin(Ωjtk + φj) (2.4)

âj,k+1 = âj,k + λkzjbj sin(Ωjtk + φj)r̃j,k+1 (2.5)

where tk :=
∑k

ḱ=1
λḱ, Ωj 6= Ωj′,Ωj′ +Ωj 6= Ωj′′ ∀j, j′, j′′.

For almost sure (a.s.) convergence, it is usual to consider vanishing step-size

or learning rate such as λk = 1
k+1 . However, constant learning rate λk = λ could

be more appropriate in some regime. The parameter φj belongs to [0, 2π]∀ j,

k ∈ Z+

1: Each node j, initialize âj,0

2: Repeat

3: Calculate action aj,k according to Equation (2.4)

4: Perform action aj,k

5: Observe r̃j,k

6: Update âj,k+1 using Equation (2.5)

7: until horizon T

Algorithm 2: Distributed learning algorithm

Remark 1 (Learning Scheme in Discrete Time). As we will prove in sub-

section 2.3, the difference equation (2.5) can be seen as a discretized version

of the learning scheme presented in [FKB12b]. But it is for games with state-

dependent payoff functions i.e., robust games.

It should be mentioned here for clarity that the action aj,k of each node j is

scalar.

2.2.2 Interpretation of the proposed algorithm

In some sense our algorithm is trying to estimate the gradient of the function

rj(.), note that we don’t have access to the function but just its numerical value.
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The following equation clearly illustrated the significance of each variable and

constant in the algorithm.

âj,k+1︸ ︷︷ ︸
New
Value

= âj,k︸︷︷︸
Old
Value

+

Learning
Rate︷︸︸︷
λk zj︸︷︷︸

Growth
Rate

bj︸︷︷︸
Perturbation
Amplitude

sin(

Perturbation
Frequency︷︸︸︷

Ωj tk + φj︸︷︷︸)

New
Reward︷ ︸︸ ︷
r̃j,k+1 (2.6)

The learning rate λk can be constant or variable depending on the require-

ments of the algorithm and system limitations. Perturbation amplitude bj > 0 is

a small number. zj > 0 is also a small value which can be varied for fine tuning.

Rewriting the above equation we get

âj,k+1 − âj,k

λk
= zjbj sin(Ωjtk + φj)r̃j,k+1 (2.7)

For vanishing step size as k −→ ∞ λk −→ 0 and the trajectory of the above

algorithm coincides with the trajectory of an ODE.

For a survey on the above sinus perturbation method see [FKB12b].

2.3 Main results

In this section we present the convergence results as introduced in the contribu-

tion section.

We introduce the following assumptions that will be used step by step1.

Assumption 1 (A1: Vanishing learning rate). λk > 0,
∑

k λk = ∞,
∑

k |λk|2 <∞. There exists C0 > 0 such that P (supk ‖ ak ‖< C0) = 1. λk repre-

sents the step size of the algorithm, The reason for first assumption:
∑

k λk = ∞,

is that we need to traverse over all discrete time. The condition
∑

k |λk|2 < ∞
ensures bound for the cumulative noise error. This last assumption is for a local

stability analysis.

Assumption 2 (A2: Constant learning rate). λt = λ > 0, supt[E‖at‖2]
1
2 <

+∞ and ‖at‖2 is uniformly integrable.

For Lipschitz functions the following two conditions must hold for the exis-

tence of a Nash equilibrium.

1 A1 and A2 are not used simultaneously.
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Assumption 3 (A3: Existence of a local best response). ES
∂rj(S,a

∗)
∂aj

= 0,

ES
∂2rj(S,a

∗)

∂a2j
< 0. These two conditions tell us that a∗j is a local maximizer of

aj −→ ESrj(S, aj ,a
∗
−j) where a∗−j = (a∗1, . . . , a

∗
j−1, a

∗
j+1, . . . , a

∗
N ).

Assumption 4 (A4: Diagonal Dominance). the expected payoff has a Hes-

sian that is diagonally dominant at a∗, i.e.,
∣∣∣ES

(
∂2rj(S,a

∗)

∂a2

j

)∣∣∣−
∑

j′ 6=j

∣∣∣ES

(
∂2rj(S,a

∗)
∂aj∂aj′

)∣∣∣ >
0. Note that A4 implies that the Hessian of the expected payoff is invertible at a∗.

This assumption is weaker compared to the classical extremum seeking algorithm

because the Hessian of rj(S,a
∗) does not need to be invertible for each S.

We assume S 7−→ rj(S,a) is integrable with respect to S so that the expecta-

tion ESrj(S,a) is finite.

Assumption 5 (A5). We assume S 7−→ rj(S,a) is integrable with respect to S

so that the expectation ESrj(S,a) is finite.

Assumption 6 (A6). For any given state S, we assume that rj(S,a) is a

smooth function with respect to a.

Convergence to ODE

First we need to show that our proposed algorithm converges to the respective

ordinary differential equation (ODE) almost surely. We will use a dynamical

system viewpoint and a stochastic approximation method to analyze our learning

algorithm. The idea consists of finding the asymptotic pseudo-trajectory of

the algorithm via ODE. To do so, we use the framework initiated by Robbins-

Monro[RM51] or [KW52]. See [Ben99, Bor08] for recent developments. The

works in [Ben99, Bor08] allows us to find the limiting trajectory of the learning

algorithm.

The scheme can be written as âj,k+1 = âj,k+λkzjbj sin(Ωjtk+φj)r̃j,k+1. Now

we rewrite the above equation in Robbins-Monro [RM51] form as:

âj,k+1 = âj,k + λk [fj(k, âk) +Mk+1] ,

where

fj(k,ak) := zjbj sin(Ωjtk + φj)ESr̂j(S,ak)

r̂j(S, âk) := rj(S, (âj,k + bj sin(Ωjtk + φj))j∈N )

Mk+1 := zjbj sin(Ωjtk + φj) [r̃j,k+1 − ESrj(S,ak)]

f(.) := (fj(.))j∈N



CHAPTER 2. MODEL FREE NASH SEEKING 22

Since the payoff rj is Lebesgue integrable with respect to S, the expectation of

the payoff function ESrj(S,a) is finite. Mk+1 is a Martingale difference sequence.

The following equations (2.8) (2.9) represent the non-autonomous system of

ODEs for Lipschitz functions.

d

dt
âj,t = zjbj sin(Ωjt+ φj)ES[rj(S,at)] (2.8)

aj,t = âj,t + bj sin(Ωjt+ φj) (2.9)

Theorem 1 (Variable Learning Rate). Under Assumptions A1, A5 and A6

the interpolated trajectory of our learning algorithm converges almost surely to

the trajectory of a non-autonomous system given by equation (2.8) and (2.9) in

the following sense,

lim
tk−→∞

sup
t∈[tk ,tk+T ]

‖āt − atkt ‖ = 0 a.s.

Almost sure (a.s.) convergence in our case simply means that the interpolated

trajectory of our proposed algorithm converges to the solution of the ODE almost

surely i.e. convergence with probability 1. Please refer to [Kus03] for more details

on almost sure convergence.

The gap between the interpolated version āt of algorithm and the trajectory

of the ODE given by atk is bounded as

sup
t∈[tk ,tk+T ]

‖āt − atkt ‖ ≤ KT,ke
LT +CT sup

ḱ≥0

λk+ḱ (2.10)

which vanishes, where āt := ak+(ak+1−ak)
(t−tk)

(tk+1−tk)
is the interpolated version

of the algorithm and atkt is the solution of the ODE at time t starting from

tk :=
∑k

ḱ=1
λḱ, where L is the Lipschitz constant for the ODE and T is the time

window. KT,k and CT are specified below.

In order to calculate the bound in equation (2.10) we need to define a few
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terms which are helpful in obtaining a compact form of the bound.

KT,k := CTL
∑

ḱ≥0

λ2
k+ḱ

+ sup
ḱ≥0

‖δk,k+ḱ‖ (2.11)

δk,k+ḱ := ξk+ḱ − ξk (2.12)

ξk :=

k−1∑

ḱ=0

λḱMḱ+1 (2.13)

CT := ‖r0‖+ L(C0 + ‖r0‖T )eLT <∞ (2.14)

L := max
j∈N

ES[Lj,S] (2.15)

rk := [r1,k, . . . , rN,k] (2.16)

To prove that the learning algorithm (the learning algorithm (discrete ODE))

converges to the ODE we need to verify conditions from Borkar [Bor08] Chapter

2 Lemma 1 for non-autonomous case.

This is an important result as it gives us an approximation on the error

between our algorithm and the corresponding ODE. The proof of theorem 1 is

available in the Appendix A.1.

Theorem 2 (Fixed Learning Rate). Under Assumption A2, A5 and A6 the

interpolated trajectory of the learning algorithm converges in distribution when

λ −→ 0, to the solution of a non-autonomous system given by equation (2.8) and

(2.9). Moreover the error gap is in order of λ.

The advantage of Theorem 2 compared to Theorem 1 is the convergence time.

The number of iterations required to reach a fixed time T is less with constant

learning rate than the vanishing learning rate. However, the convergence notion

under constant step size is weaker (it is in distribution) compared to the almost

surely convergence with vanishing learning rate. So there is a sort of tradeoff

between almost sure convergence and convergence time. Please refer to [Kus03]

for more information on convergence in distribution.

Let ∆t := ‖at − a∗‖ be the gap between the trajectory of the ODE at time t

and the isolated equilibrium.

Theorem 3 (Local Exponential Stability). Assume A3-A6. Then, there ex-

ist Ḿ, T́ > 0 and ǭ, b̄j such that, for all ǫ ∈ (0, ǭ) and bj ∈ (0, b̄j), if the initial

gap is ∆0 := ‖a∗ − a0‖ (which is small) then for all time t,

∆t ≤ y1,t (2.17)
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where

y1,t := Ḿe−T́ t∆0 +O(ǫ+max
j
b3j) (2.18)

The proof of this theorem is presented in the appendix A.3.

According to Theorem 3 we have convergence to within a small range of the

equilibrium point i.e. we do not converge to the equilibrium point.

From the above equation it is clear that as time goes to infinity the first term

in y1,t bound vanishes exponentially and the error is bounded by the amplitude of

the sinus perturbation i.e. O(ǫ+maxj b
3
j ). This means that the solution of ODE

converges locally exponentially to the neighborhood of the state-independent

equilibrium action a∗ provided the initial solution is relatively close. The initial

error ∆0 influences the choice of ǭ in Theorem 3.

Definition 3 (ǫ−Nash equilibrium payoff point). An ǫ−Nash equilibrium

payoff point in state-independent strategy is a strategy profile such that no node

can improve its payoff more than ǫ by unilateral deviation.

Definition 4 (ǫ−close strategy Nash equilibrium point). An ǫ−close strat-

egy Nash equilibrium point in a state-independent strategy is a strategy profile

such that the Euclidean distance to a Nash equilibrium is less than ǫ.

A ǫ−close strategy Nash equilibrium point is an approximate Nash point with a

precision at most ǫ.

It is not difficult to see that for Lipschitz continuous payoff functions, an

ǫ−close Nash equilibrium is an Lǫ−Nash equilibrium point where L is the Lips-

chitz constant.

Next corollary shows that one can get an ǫ−close strategy Nash equilibrium

in finite time.

Corollary 1 (Convergence Time). Assume A3-A4 and Remark 6,7 holds.

Then, the ODE reaches a (2ǫ+maxj b
3
j )−close to a Nash equilibrium in at most

T time units where T = 1
T́
log(∆0Ḿ

ǫ )

Sketch of Proof for Corollary 1. The proof follows from the inequality (2.17) in

Theorem 3.

Corollary 2 (Convergence). Under Assumption A1, A3, and A4, the follow-

ing inequality holds almost surely: ‖ āt − a∗ ‖≤ y1,t + y2,t
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where

y2,t := CT (λk+ḱ + L
∑

ḱ≥0

λ2
k+ḱ

) + sup
ḱ≥0

‖δk,k+ḱ‖ (2.19)

and t ∈ [tk, tk + T ]

Proof of Corollary 2. The proof uses the triangle inequality ‖ āt − a∗ ‖≤‖ āt −
at ‖ + ‖ at−a∗ ‖ . By Theorem 1, we get ‖ āt−at ‖≤ y2,t and by Theorem 3, we

have ‖ at − a∗ ‖≤ y1,t Combining together, we arrive at the announced result.

This completes the proof.

The constants in equation (2.18) and (2.19) depends on the number of players

and the dimension of the action space.

2.4 Numerical Example A: Wireless Interference

Even though the distributed optimization problem, considered here, and the de-

veloped approach are general and can be used in many application domains. As

an application of the above framework, we will consider the problem of power

control in wireless networks in order to better illustrate our contribution. Con-

sider an interference channel composed of N transmit receiver pairs as shown

in Figure 2.2. Each transmitter communicates with its corresponding receiver

and incurs an interference on the other receivers. Each receiver feeds back a

numerical value of the payoff γj(H,p) to its corresponding transmitter.

The problem is composed of transmitter-receiver pairs; all of them use the

same frequency and thus generate interference onto each other. Each transmitter-

receiver pair has therefore its own payoff/reward/utility function that depends

necessarily on the interference exerted by the other pairs/nodes. Since the wire-

less channel is time varying as well as the interference, the objective is neces-

sarily to optimize in the long-run (e.g. average) the payoff functions of all the

nodes. The payoff function of node j at time k is denoted by rj(Hk,pk) where

Hk := [hk(i, j)] represents an N × N matrix containing channel coefficients at

time k, hk(i, j) represents the channel coefficient between transmitter i and re-

ceiver j (where (i, j) ∈ N 2) and pk represents the vector containing transmit

powers of N transmit-receive nodes. The most common technique used to obtain

a local maximum of the nodes’ payoff functions is the gradient based descent or

ascent method.
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Table 2.2: Equivalent Notations for Wireless

Remark 2.

General Application Description

r̃j,k γj,k utility/payoff of transmitter j at time k

aj,k pj,k action/power of transmitter j at time k

sjj′,k gjj′,k state/channel gain between transmitter

j and receiver j′ at time k

Rx1Tx1
s11

r̃1

...

sj1

TxN

s N
1

...

Tx1

s1j
...

sjj

r̃j

TxN

sNj

RxN

Tx1
s
1N

...

sjN
TxN

sNN

r̃N

Figure 2.2: Interference Channel Model

In Section 2.3, we proved that our proposed algorithm converges to p∗ for any

type of payoff functions which satisfies the assumptions in Section 2.3. In order to

show numerically that our algorithm converges to p∗, we run our algorithm for a

simple payoff function. In parallel, we obtain analytically the Nash equilibrium

p∗ and compare the convergence point of our algorithm to p∗. We therefore

choose a simple payoff function for which p∗ can be obtained analytically.

The payoff function of node j at time k has then the following form:

γj(Hk,pk) = ω︸︷︷︸
bandwidth

log(1 +

SINRj︷ ︸︸ ︷
pj,kgjj,k

σ2 +
∑

j′ 6=j pj′,kgj′j,k
)

︸ ︷︷ ︸
Rate

− κpj,k︸ ︷︷ ︸
constraint on powers

(2.20)

where ω represents the bandwidth available for transmission. The above payoff

function γj(Hk,pk) consists of log of (1+SINRj) of user j and the unit cost of
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transmission is κ. It is assumed that a user doesn’t know the structure function

γj(.) or the law of the channel state. For the above payoff function to ensure the

assumption A3-A4 and Remark 6,7 we need to satisfy the condition E|hjj|2 ≥
E
∑

j′ 6=j |hj′j |2. Please see appendix A for more details.

The problem here is to maximize the payoff function γj(H,p) which is stated

as follows: find p∗ such that for each user j ∈ N , satisfies

p∗j ∈ argmaxpj≥0 Eγj(H, p
∗
1, . . . , p

∗
j−1, pj , p

∗
j+1, . . . , p

∗
N ). Note that when gjj = 0

then the payoff of user j is negative and the minimum power p∗j = 0 is a solution

to the above problem. For the remaining, we assume that |hjj|2 = gjj > 0.

The channel hjj′ is time varying and is generated using an independent and

identically distributed complex Gaussian channel model with variance σ2jj′ such

that σjj = 1 σjj′ = 0.1, ∀j′ 6= j. The thermal noise is assumed to be a zero

mean Gaussian with variance σ2 such that σ2 = 1.

We consider the following simulation settings with N = 2 for the above

wireless model: k1 = 0.9, k2 = 0.9, φ1 = 0, φ2 = 0,Ω1 = 0.9,Ω2 = 1, b1 =

0.9, b2 = 0.9. The numerical setting could be tuned in order to make the con-

vergence slower or faster with some other tradeoff. Due to space limitations

further discussion on how to select these parameters has been omitted. p1,0

and p2,0 represent the starting points of the algorithm which are initialized as

p1,0 = p∗1+10 and p2,0 = p∗2+10. κ = 2 is the penalty for interference, ω = 10 is

the bandwidth and the variance of noise is normalized. Figure 2.3 represents the

average transmit power trajectories of the algorithm for two nodes. The dotted

line represents p∗. As can be seen from the plots in Fig 2.3 that the system

converges to p∗ where p∗j = 3.9604, j ∈ {1, 2}. Fig 2.4 shows that the reward

also approaches the optimal value.

The example we discussed is only one of the possible types of applications

where our proposed algorithm can be implemented.

Consider for example the following payoffs: q1(.) = goodput(.) and q2(.) =

P(goodput(.) < η) where η is a small value and P(.) stands for probability. Good-

put represents the ratio of correctly received information bits vs the number of

transmitter bits. In wireless communications the channel is constantly changing

due to various physical phenomenon and interference from other sources and

changes in the environment. It is hard to have a closed form expression for q1(.)

due to complexity of the transmitter, receiver and unknown parameters. In prac-

tice, at each time k, the receiver has therefore a numerical value of goodput(.) but
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Figure 2.3: Power evolution (discrete time)

no closed form expression for rate/goodput is available especially for advanced

coding scheme (e.g. turbo code, etc.). q2(.) represents an outage probability for

which also depends on the goodput, the gradient for q2(.) is notoriously hard

to compute without channel and interference statistics knowledge (probability

distribution function) and closed form expression of goodput(.). Our scheme can

be particularly helpful in such scenarios.

The price/design parameter κ inside the reward function can be tuned such

that the solution of the distributed robust extremum coincides with a global

optimizer of the system designer. The κ can be same for all nodes or each node

can have its own κj . Let a
∗
g represent the optimal action or set of actions to be

performed by each node to maximize their respective utilities. It is possible to

set κ such that the following equation is satisfied.a(κ) = a∗g. κ could represent a

scalar or a vector depending on the system size and the application. To be able

to effectively make a(κ) equal to a∗ we need to have enough degrees of freedom

in the system. However this type of tuning is not true in general.
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Figure 2.4: Payoff evolution (discrete time)

The plots in Fig 2.5 compare the performance of the power control interfer-

ence channel when using the the sinus perturbation scenario with the stochastic

perturbation scenario.

2.5 Numerical Example B: Distributed Beamforming

We consider a system model with M transmitter–receiver pairs as shown in Fig

2.6 (where M = 2 for simplicity), where each access point APj is equipped

with Nt transmitting antennas and each user Uj has one receiving antenna.

Furthermore, we assume that the transmitters and receivers are not mobile. Let

aij ∈ C
1×Nt represent the complex channel between transmitter APj and user

Ui ∀i, j ∈ M2, where M := {1, . . . ,M}.
The channel between all transmitter and receivers is assumed to be line

of sight (LoS) and frequency flat. From [KSL07] we know that Vandermonde
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Figure 2.5: Stochastic Perturbation method

channel vectors arise when a uniform linear array (ULA) antenna is used at the

transmitter under far-field, LoS conditions. Hence we can use the Vandermonde

channel model as shown in equation (2.21).

aij :=
[
1, e−iϕij , . . . , e−iϕij(Nt−1)

]
∀i, j ∈ M (2.21)

Let ϕij be defined as ϕij :=
2πd sin(θij)

λ , and i =
√
−1. Where d is the antenna

separation and λ is the wavelength of the carrier frequency f and θii 6= θij ∀i 6=
j ∈ M.

The signal received by each receiver Uj is given as yj,

yj =

Useful
Signal︷ ︸︸ ︷

ajjwjsj +
∑

i6=j

aijwisi

︸ ︷︷ ︸
Interference

Signal

+
Noise︷︸︸︷
nj (2.22)
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Figure 2.6: System Model with M = 2

where wj is the pre-coder associated with the transmitter j, ajjwjsj is the

useful signal for receiver j,
∑

i6=j aijwisi is the interference coming from the

transmitters i 6= j, and nj represents the additive white noise with zero mean

and σ2j variance associated with the receiver j. sj represent the symbol intended

for user j with a symbol power of |sj |2 = 1. The symbols are assumed to

be mutually uncorrelated. Based on the above description it is clear that the

transmitter APj is operating in diversity mode i.e. only one symbol is transmitter

per time slot.

Based on the above knowledge we can write the signal to interference and

noise ratio (SINR) Γj of Uj as

Γj :=
|ajjwj|2

σ2j +
∑

i6=j |aijwi|2
∀i, j ∈ M2 (2.23)

We consider a case with M = 2 transmit–receiver pairs where each trans-

mitter is equipped with Nt = 4 transmit antennas. It is worth noting that

this simple case of M = 2 is considered only for illustration clarity (in fact for

this simple case we can find analytically a closed form expression of the Nash

equilibrium and therefore we can compare the direction of transmission (DoT)

obtained by our algorithm to this equilibrium), but obviously our scheme and
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the analysis done so far in the thesis hold for larger but finite M. The values

of the sinus perturbation parameters associated with equations (2.4) and (2.5)

are given below. We summarize the system and simulation parameters in Table

2.3 and 2.4 respectively. Interested readers are referred to [FKB12b] for more

details on how to select the parameters in Table 2.4.

Table 2.3: Summary of system parameters

d λ
4

Nt 4

M 2

γ 10

ǫk 0.15

θ11 0o

θ22 0o

θ12 −60o

θ21 60o

Table 2.4: Summary of sinus perturbation parameters

user j 1 2

lj 1.688 1.688

Ωj 2π4.5185 2π4.5425

bj 0.5 0.5

φj 0 0

For the above setting, we can show that Nash equilibrium is achieved if each

APj transmits in a direction close to Uj i.e. to say ψj ≈ θjj ∀j ∈ [1, 2]. We

run our algorithm by taking the initial values of ψ0
1 = −60o, ψ0

2 = 60o which is

the worst direction as it incurs strong interference on the receiver of the other

network, and can cause outage. In Fig 2.7 we present the evolution of ψj and

show that the transmitters direct their beams away from each other’s receives and

towards their own receiver which means that ψj −→ θjj ∀j ∈ [1, 2] which is the

Nash equilibrium point. Fig 2.7 shows that ψj convergences to a neighborhood

of Nash since the step size ǫk used in the simulation is fixed (see Theorem 2).
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It is worth mentioning that using fixed step size has the advantage of faster

convergence rate as compared to vanishing step size at the expense of converging

to a neighborhood of Nash (instead of converging to Nash). Comparison between

fixed and vanishing step sizes is omitted due to space limitation.
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Figure 2.7: Evolution of ψ for AP1 and AP2

The scatter plots are presented in Fig 2.8 where the relative position of the

interferers are presented on the left and the final direction of the beams after

convergence are presented on the right.

2.6 Numerical Example C: Nash Bayesian Estima-

tion

As the demand for wireless capacity is increasing, the cell sizes are shrinking to

accommodate greater capacity and higher frequency reuse. Femtocells (FCs) are

used to provide coverage and capacity to more users in a concentrated area us-

ing the shared wireless resources. Typically one or more FCs are deployed in an
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existing macrocell (MC). A typical femtocell (FC) has a radius of 10 - 50 meters

which is much smaller than the MC radius 300 - 2000 meters ([CA09, GKTH97]).

Typically FCs use the same frequency as the macro cell which leads to several

power control problems at the cell edge of the FC which is contained in the MC.

FCs are user deployed and could be located randomly throughout a MC. Open

access FCs allow MC users to access the network through them and closed ac-

cess FCs don’t allow macro users to have access to the network [XCA10]. In this

thesis we will deal with closed access FCs. When a macro user located in the

neighborhood of a FC is operating at the same frequency, it will receive strong

interference from the FC users and femto access point (FAP) which results in

significant degradation in performance. In such cases it is important to imple-

ment distributed power control that achieves a tradeoff between the quality of

service (QoS) (or success probability) of femto users and that of macro users. We

attempt to study such scenarios in this thesis. Some of the recent works deal-

ing with femto-macro power control and interference management are described

hereinafter. In [CA09], the uplink capacity and interference avoidance for two-

tier FC networks are discussed. In [XCA10], Ping et al. compare open and closed

access FCs in the uplink. In [IDME12], Ibrahim et al. present an Adaptive inter-

ference mitigation techniques for femto cells. Various approaches for enhancing

autonomous power control at Femto under co-channel deployment of Macrocell
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and Femtocell are presented in [YZ11]. In [HAT13] a robust distributed H∞

based power control in a dynamic wireless network environment is presented by

Hasssan. A location based autonomous power control for LTE-A heterogeneous

network is presented in [YW11]. Hong et al. in [HYC09] present a decentralized

power control scheme in FC networks based on game theory. A game theoretic

approach for an interference control problem with sub band scheduling is pre-

sented in [Ran10]. In [BHN11], Bendlin et al. develop probabilistic power control

for heterogeneous cellular networks with closed-access FCs. In [WCLP12], Wu

et al. provide a downlink outage probability analysis for co-channel femtocells in

hierarchical 3-sector macrocells. In most of the existing works, the SINR distri-

bution function is obtained (and therefore the outage) using some assumptions

such as infinite number of interferers, poisson point process mobility model, etc.

However, in a realistic scenario where the users mobility cannot be modeled

by a poisson point process and where the environment is dynamic, an accurate

closed form expression of the SINR density is hard to obtain. In addition, the

interference depends on the decision of the other transmitters which makes the

density characterization of the interference and therefore the SINR very chal-

lenging. Besides, in the standard power control framework [Yat95], the iterative

power control (the power at time step k is updated using the SINR at time step

k − 1) can achieve a target SINR under the assumption that the channel stays

constant until the algorithm converges. In the current work, we assume that the

wireless channel changes from one time step to another.

Figure 2.9 shows our system model. It is worth noting that although one

user per femto (respectively per macro) is shown/used, our analysis holds for

any number of macro and femto users and our analysis extension to this case

is straightforward. It should be mentioned here for clarity that we are only

considering the downlink scenario for femto and macro users. Let the macro

access point (MAP) and the macro user (MU) be represented by subscript M , m

respectively and the femto access point (FAP) and its femto user be represented

by the subscript F , f respectively. Let hMm represents the channel between the

MAP and the macro user, hFjfi represents the channel between the FAP j and

the femto user i, and hFjm represents the interference channel between the FAP

j and the macro user. This channel hFjm is typically unknown. hMfi represents

the channel between the MAP and the femto user i. Let gMm , |hMm|2 be

the channel gain between the MAP and the macro user. Similarly, we define



CHAPTER 2. MODEL FREE NASH SEEKING 36

M

m

f1 f2

F1 F2

h F
1
f 1

h
F
2 f

2

h
M

m

hF1
m

h
F
2m

h M
f 1

h
M

f
2

hF1f2
hF2f1

Figure 2.9: Macrocell containing two FCs

gFjfi , |hFjfi |2, gFjfi , |hFjfi |2, gFjm , |hFjm|2 and gMfi , |hMfi |2. Here we

consider a situation where both FAPs and MAP are using the same frequency

in the downlink and generating interference to each other’s users.

The downlink SINR of macro user Γm is defined as

Γm ,
pMgMm

σ2m +
∑2

i=1 pFi
gFim

(2.24)

Where pM is the MAP power allocated to the macro user m. pFi
is the power of

the FAP i, σ2m is the noise variance and
∑2

i=1 pFi
gFim represents the interference

caused by the FAPs 1 and 2 on the macro user.

The downlink SINR of femto user i Γfi is defined as

Γfi ,
pFi

gFifi

σ2fi +
∑

j 6=i pFj
gFjfi + pMgMfi

(2.25)

Where σ2fi is the noise variance,
∑

j 6=i pFj
gFjfi is the inter femto interference

and pMgMfi represents the interference coming from the MAP. In addition, we

assume that the MAP and FAPs have imperfect knowledge of their own users’

SINRs. The observed SINR, respectively for macro and femto users, is therefore

given as,

Γ̂k
m = Γk

m + vkm (2.26)

Γ̂k
fi = Γk

fi + vkfi (2.27)

where vm and vfi represent the respective errors due to feedback delays, channel

estimation errors or quantization errors. To ensure that macro user is given

priority while maintaining a reasonable quality of service (QoS) for the femto
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users we formulate the following problem. Let the objective be to maximize

the rewards Rm and Rfi of macro and femto respectively (given respectively

by equations (2.28) and (2.29)) where the rewards are constructed from the

probabilities of success of femto and macro users. This type of rewards is more

robust and ensures better QoS as compared to some existing works that maximize

the expected SINR of each user.

Rm = αEγm [P(Γm ≥ γm)] (2.28)

Rfi = βEγfi
[P(Γfi ≥ γfi)]

−α (1− Eγm[P(Γm ≥ γm)]) (2.29)

γm and γfi are the target SINRs for respectively macro and femto users. α > 0

and β > 0 are design parameters which can be adjusted to find the desired

balance in performance between the femto and the macros. In the aforemen-

tioned formulation, the MAP tries to maximize the success probability of its

own users without considering the presence of the FC users. It is the re-

sponsibility of the FAP to operate in such a way that it minimizes the inter-

ference to nearby macro users while trying to maintain a reasonable success

probability for its own users. Notice also that the technique/analysis pro-

vided in the sequel still holds when the MAP tries also to obtain a trade-

off between the success probabilities of the macro and femto users, i.e. when

Rm = αEγm [P(Γm ≥ γm)] − β
(
1− Eγfi

[P(Γfi ≥ γfi)]
)
. Obviously, our analy-

sis/framework holds as well when the FAP attempts to maximize the success

probability of its own users without considering the macro users (i.e. Rfi =

βEγfi
[P(Γfi ≥ γfi)]). Furthermore, in the presence of multiple macro users, each

user will have a reward function defined as in (2.28) and the objective of the

macro cell in this case will be to maximize the sum of the rewards of all users

(similar extension can be done in the case of multiple femto users). For clarity of

presentation and ease of notation, we will limit ourselves to one user per femto

(two FCs) and one macro user.

Furthermore, the targets γm and γfi are determined by the network (e.g FAP,

MAP) such that the signals are decoded with small Block Error Rate (BLER)

and a minimum QoS is therefore ensured for users. It is worth noting that the

target SINRs γm and γfi may not be constant over time since the environment

type is dynamic (e.g. the wireless channel type may change during the connection

from an Outdoor Channel to an Indoor Channel and the target SINR must be
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updated in this case). This dynamic adaptation of the target SINR explains the

presence of Eγ [.] in the rewards in equations (2.28) and (2.29) which represents

the expectation over the values of target γm and γfj attributed by the macro and

femto access points (FAPs). In addition, it is evident that our framework holds

when the target SINR is constant. We assume that the target γm is available

to the FAP through a backhaul between MAP and FAP. In the absence of a

backhaul between FAP and MAP, the FAP can listen to the downlink control

channel of the MAP (since both are using the same technology/standard) where

such information is usually sent. One can also assume that γm is broadcasted

by the MAP and that the FAP can listen to the broadcast channel. It should be

mentioned here that these targets γm and γfj change slowly because they depend

on the type of environment, as for example transition from outdoor to indoor or

vice versa happens slowly. Notice that in cellular networks, the base station/AP

updates the target SINR using the outer loop power control (called also slow loop

power control as the update of the target SINR happens slowly) and informs the

users of the updated target SINR using the downlink control channel. The

update algorithm of target SINRs falls out of the scope of this work. Notice that

in the case when the FAP tries to maximize the success probability of its own

users without considering the macro users (i.e. Rfi = βEγfi
[P(Γfi ≥ γfi)]), there

is no need to exchange the target γm between the MAP and the FAP.

Using the reward functions defined in equations (2.28) and (2.29), the dis-

tributed stochastic power control problem can be formulated as follows.

max
pM ,pF1

,pF2

Rx ∀x ∈ {m, f1, f2} (2.30)

The success probabilities P(Γm ≥ γm) and P(Γfi ≥ γfi) are given as,

P(Γfi ≥ γfi) ,

∫ ∞

γfi

Φ(Γfi)dΓfi

P(Γm ≥ γm) ,

∫ ∞

γm

Φ(Γm)dΓm

where Φ(Γm) and Φ(Γfi) are respectively macro and femto SINR densities. It is

well known that Gaussian assumption of SINRs densities is not accurate since

the SINR depends on various random parameters such as users’ mobility, dy-

namic environment, wireless channel conditions as well as dynamic interference

(that depends itself on the decision of other transmitters/users). Therefore the

SINR density does not have an accurate closed form expression which makes
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the distributed stochastic optimization problem in (2.30) very hard. The above

problem cannot be solved using standard optimization techniques because of the

complexity and randomness associated with such rewards. In order to solve the

above problem, we first present a stochastic learning technique based on our

recently developed theory in [HTAZ13e] that uses sinus perturbation and the in-

stantaneous numerical value of the reward of to approach the problems defined

in (2.30). As this techniques required the numerical value of the reward which

is based on the density of SINR, we need to track the density Φ(Γm) and Φ(Γfi)

using the imperfect instantaneous estimated SINR. Since the expression is too

complicated, only numerical values of the rewards in (2.28) and (2.29) can be

obtained/estimated at each time (due to some complicated integral expressions).

Notice that, in order to obtain numerical values of the reward in (2.29), we ex-

ploit the fact that MC and FCs users are using the same standard and the FAP

can listen to the uplink control channel of the macro user. For example, when

the macro user who is at the cell edge of the FC transmits its SINR Γ̂m to its

MAP, the FAP can listen to this Γ̂m. However, we stress that this is necessary

only because of the definition of the reward in (2.29). If instead of maximizing

the reward in (2.29), the FAP tries to maximize the success probabilities of its

own users (i.e. if Rfi = βEγfi
[P(Γfi ≥ γfi)]), the aforementioned assumption is

not needed (i.e. the FAP does not have to listen to Γ̂m).

The problem in (2.30) can be solved using our Nash Seeking theory developed

in [HTAZ13e] as follows. At each time instant k, each transmitter updates its

power pkX (recall that X could be either M or Fi
), by adding the sinus perturbation

to the intermediary variable p̂kX using equation (2.31), and transmits using pkX .

Then, each transmitter (AP) computes a realization of the reward Rk+1
x at time

k + 1 which is used to compute the intermediary variable p̂k+1
X using equation

(2.32). The power pk+1
X is then updated using equation (2.31). This procedure

is repeated for the whole transmission window (connection duration) T > 0.

The update is done in discrete time and is given by,

pkX = p̂kX + aX sin(ΩX k̂ + φX) (2.31)

p̂k+1
X = p̂kX + λklXaX sin(ΩX k̂ + φX)Rk+1

x (2.32)

where the grow rate lX > 0 has a small value and the step size λk (also known

as the learning rate) has also a small value 0 < λk < 1 (e.g. λk = 1
k+1). In

addition, k̂ :=
∑k

k′=1 λk′ , and φX ∈ [0, 2π] ∀ X ∈ {M ,F1 ,F2 }. The condition

ΩX 6= ΩX′′ ,ΩX′′ + ΩX 6= ΩX′ need to be satisfied such that the perturbations
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are orthogonal to ensure convergence of the algorithm. The above framework

is only applicable to functions which are Lipschitz continuous and the existence

of the equilibrium is assumed. One can refer to [HTAZ13e, FKB12b] for more

details.

Bayesian Density Tracking

In order to use the extremum seeking framework provided in section 2.2.1 we

need to estimate a numerical value of the reward which is based on the density

of the SINR. In this section we use Bayesian Theory for SINR density tracking,

we first model the SINR evolution as a dynamic state equation (not necessarily

linear) as follows.

The transmit powers of the MAP and FAPs evolve according to the following

equations.

pk+1
M = pkM + ηkM ,

pk+1
Fi

= pkFi
+ ηkFi

.

Where k represents the discrete time index and ηkM and ηkFi
are the power devi-

ation between times k and k + 1.

We can write the SINR of macro user at time k + 1 as

Γk+1
m =

(pkM + ηkM )gk+1
Mm

σ2m +
∑2

i=1(p
k
Fi

+ ηkFi
)gk+1

Fim

For simplification we define the variable ´́ǫkm

´́ǫkm ,
ηkMg

k+1
Mm

σ2m +
∑2

i=1(p
k
Fi

+ ηkFi
)gk+1

Fim

The channel gain gkMm evolves according to the following dynamic equation,

gk+1
Mm = gkMm + ̺kMm where ̺kMm is an ergodic stochastic process. Putting the

value of ´́ǫkm in the above equation we get.

Γk+1
m =

pkMg
k+1
Mm

σ2m +
∑2

i=1(p
k
Fi

+ ηkFi
)gk+1

Fim

+ ´́ǫkm

Γk+1
m =

pkMg
k+1
Mm(

σ2m +
∑2

i=1 p
k
Fi
gkFim

)
(1 + ǫkm)

+ ´́ǫkm (2.33)
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where

ǫkm ,

∑2
i=1 p

k+1
Fi

̺kFim
+
∑2

i=1 η
k
Fi
gk+1
Fim

σ2m +
∑2

i=1 p
k
Fi
gkFim

In addition, we define ǫ́km as follows,

ǫ́km ,
pkM̺

k
Mm(

σ2m +
∑2

i=1 p
k
Fi
gkFim

)
(1 + ǫkm)

+ ´́ǫkm

Using the above fact, equation (2.33) can be written as

Γk+1
m =

Γk
m

1 + ǫkm
+ ǫ́km

that implies,

Γk+1
m = Γk

m

∞∑

l=0

(−ǫkm)l + ǫ́km (2.34)

It is worth noting that in all iterative power control strategies (also in learning

techniques) the state difference or power deviation between two consecutive iter-

ations has to be small in order to ensure the convergence. Therefore, ǫkm is small

∀ k. Similarly it can be shown that the SINR Γfi can be written as

Γk+1
fi

= Γk
fi

∞∑

l=0

(−ǫkfi)
l + ǫ́kfi (2.35)

where ǫkfi is small ∀ k. Note that ǫ́km and ǫ́kfi can be considered as random

variables.

The SINRs of macro and femto users evolve according to equations (2.34)

and (2.35), hence dynamic state equations and Bayesian theory can be used for

density tracking.

For ease of notation and to conserve space we introduce the following SINR

notation Γk
x , (where index x could be either m or fi and X could be either M or

Fi
). We also use the notation Γk+1

x = fkx (Γ
k
x, ǫ́

k
x) to represent equation (2.34) or

(2.35).

We stress that only an imperfect measurement Γ̂k
x of Γk

x is available at time k.

We use the notation Γ̂k
x = hkx(Γ

k
x, v

k
x) to represent equation (2.26) or (2.27). We

thus define Dk
x as the set of previous imperfect SINR measurements till time k,

i.e. Dk
x = {Γ̂i

x : i = 1, . . . , k}. We also denote by Φ(Γk
x|Dk−1

x ) the SINR density

estimation assuming that the set of measurements Dk−1
x is available.
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Using recursive Bayesian estimation from [GSS93], we can track the SINR

density Φ(Γk
x|Dk

x) as follows. First, we find the density Φ(Γk
x|Dk−1

x ) and then we

estimate the required density Φ(Γk
x|Dk

x).

Φ(Γk
x|Dk−1

x ) can be obtained using the following equation (2.36) from [GSS93],

Φ(Γk
x|Dk−1

x ) =

∫
Φ(Γk

x|Γk−1
x )Φ(Γk−1

x |Dk−1
x )dΓk−1

x (2.36)

where

Φ(Γk
x|Γk−1

x ) =

∫
Φ(Γk

x|Γk−1
x , ǫ́k−1

x )Φ(ǫ́k−1
x |Γk−1

x )dǫ́k−1
x

using the fact that Φ(ǫ́k−1
x |Γk−1

x ) = Φ(ǫ́k−1
x ) we have

Φ(Γk
x|Γk−1

x ) =

∫
δ(Γk

x − fk−1
x (Γk−1

x , ǫ́k−1
x ))Φ(ǫ́k−1

x )dǫ́k−1
x (2.37)

Where δ(.) is a dirac function. The dirac function arises because when Γk−1
x

and ǫ́k−1
x are known, Γk

x is obtained from equation (2.34) or (2.35); i.e. Γk
x =

fk−1
x (Γk−1

x , ǫ́k−1
x ) . Now we are able to estimate the density Φ(Γk

x|Dk−1
x ) by

putting the value of Φ(Γk
x|Γk−1

x ) from equation (2.37) into equation (2.36).

At time step k, the set of measurements Dk
x becomes available. Using the

Bayes’ rule, we can update the SINR density Φ(Γk
x|Dk

x) using the following equa-

tion,

Φ(Γk
x|Dk

x) =
Φ(Γ̂k

x|Γk
x)Φ(Γ

k
x|Dk−1

x )

Φ(Γ̂k
x|Dk−1

x )
(2.38)

where

Φ(Γ̂k
x|Dk−1

x ) =

∫
Φ(Γ̂k

x|Γk
x)Φ(Γ

k
x|Dk−1

x )dΓk
x

Φ(Γ̂k
x|Γk

x) =

∫
δ(Γ̂k

x − hkx(Γ
k
x, v

k
x))Φ(v

k
x)dv

k
x

Φ(Γ1
x|D0

x) ≡ Φ(Γ1
x)

Joint Density Tracking and Power Control Algorithm

By combining the techniques described in section 2.2.1 and 2.6 we get the fol-

lowing density tracking and power control algorithm (see Algorithm 3 below).

First each users initializes Φ(Γ1
x|D0

x) with a distribution Φ(Γ1
x), then each access

point (AP) X initializes its power and transmits. After this the loop begins. At
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time k each AP observes Γ̂k
m and Γ̂k

fi
which are the noisy versions of the SINRs

and updates their previous density according to equation (2.38). Then each AP

estimates its reward Rk
x from equation (2.28) or (2.29), then this reward is used

to calculate the power according to (2.31). This power is used for making the

transmission. This process is repeated until horizon T (which is the connection

duration). In the next section we present the numerical results which show

1: At k = 1 initialize Φ(Γ1
x|D0

x) ≡ Φ(Γ1
x)

2: Each AP X, initialize p0X and transmit

3: Repeat

4: Each AP X at time k , observes Γ̂k
m and Γ̂k

fi

5: Update the previous density according to equation (2.38)

6: Evaluate the reward Rk
x from equation (2.28) or (2.29)

7: Calculate power according Equation (2.31)

8: Update p̂k+1
X using Equation (2.32)

9: until horizon T

Algorithm 3: Recursive Bayesian Power Control Algorithm (Recursive

B-PCA)

that our algorithm performs better than existing methods. We used the follow-

ing settings for simulating the above framework. The macro cell radius is equal

to 500m whereas the radius of each femto is 25m. We consider a frequency selec-

tive Rayleigh fading channel with exponential delay profile. The power spectral

density of noise is -174 dBm/Hz. The path losses are calculated according to

Cost-Hata Model. In addition, we used the following sinus framework param-

eters in the simulations. lf1 = 2.5; lf2 = 3.5; lm = 4.5;φf1 = 0;φf2 = 0;φm =

0;Ωf1 = 1.4;Ωf2 = 1.2;Ωm = 1; bf1 = 0.6; bf2 = 0.3; bm = 0.1;αm = 1;βfi = 3.

Interested readers are referred to [FKB12b] for more details on how to select the

above parameters. In addition, our results were generated using λk = 1
k+1 (since

we proved in [HTAZ13e] the convergence to Nash equilibrium for λk = 1
k+1).

The results for success probability are presented in Figure 2.10 where we com-

pare our scheme to the widely used standard power control scheme from [Yat95].

Figure 2.10 shows that, with our proposed scheme, both femtos and macro cells

are able to maintain a success probability of 65 − 75% which is much better in

comparison to the Yates method [Yat95]. It should be noted here that achieving

a success probability of 65 − 75% for macro and femto users is quite significant
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considering that we are dealing with fully distributed stochastic system with in-

teracting player/APs, using only imperfect SINR. Please also refer to Figure 2.11

which shows the Pareto boundary for our conditions. A Pareto plot is generated

by using all possible transmit power scenarios by all the APs, and it is desirable

to be as close to the boundary as possible as that gives the best performance for

all users. The white circle in Figure 2.11 represents our operating region which

is quite close to the boundary. It is evident that achieving higher success proba-

bility for macro and femto users simultaneously is quite difficult in a stochastic

environment.
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Chapter 3

Resource Sharing with Mean

Field in Cloud Networks

3.1 Introduction

Cloud-based applications transfer more and more data (sometimes even with

real-time requirements). This strong growth and continual changes in the traf-

fic characteristics and usage behavior raises questions on how to share limited

capacity resources fairly and more efficiently. In order to get a certain level of

fairness between users, the payoff function should capture a fair sharing policy.

Foster et al.(2008) defines the ambiguous cloud as “A large-scale of distributed

computing paradigm that is driven by economies of scale, in which a pool of ab-

stracted virtualized, dynamically-scalable, managed computing power, storage,

platforms, and services are delivered on demand to external customers over the

Internet” [FZRL08]. The concept of cloud networking has emerged to satisfy the

uneven demand of users wanting cheap computing resources ranging from stor-

age to processing. Every aspect of a computer system can essentially be offered

as a service to various users. Thanks to advances in virtualization and schedul-

ing techniques it is possible to have multiple instances of a software running on

the same physical system.

Resource sharing solutions are very important for data centers as it is required

and implemented at different layers of the cloud network. The resource sharing

problem can be formulated as a strategic decision-making problem between the

competing players. Cloud computing has been gaining momentum and currently

many big companies such as Amazon, Google and Microsoft are offering various

46
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cloud computing and storage services.

Although there are many types of cloud based resources that can be shared

over the internet, here we only discuss computing resources. Consider a scenario

where an entity requires high computing resources once every month. Now they

can rent computing resources on demand instead of physically owning dedicated

computing resources. With the advent of modern operating systems and ad-

vances in networking technologies and virtual machine (VM) technologies it is

now possible to host multiple instances with limited number of physical hard-

ware. Amazon has been among the first companies to convert this into a viable

business with the ‘EC2 service’. ‘Compute Engine by Google’ and ‘Windows

Azure by Microsoft’ are the other major players in computing resources. These

services are mostly used by companies and research organizations.

There are various cloud computing paradigms which are listed below. “SPI

is an acronym for the most common cloud computing service models, Software

as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service

(IaaS). Software as a Service (SaaS) is a software distribution model in which

applications are hosted by a vendor or service provider and made available to

customers over a network, typically the internet. Platform as a Service (PaaS)

is a paradigm for delivering operating systems and associated services over the

Internet without downloads or installation. Infrastructure as a Service (IaaS)

involves outsourcing the equipment used to support operations, including stor-

age, hardware, servers and networking components. The increasing selection of

services delivered over the Internet is sometimes referred to as XaaS, where XaaS

refers to anything as a service.” [Rou12]. In IaaS cloud computing paradigm a

virtual machine (VM) is offered to paying clients as a service. A virtual machine

as the name implies is a virtual computing terminal hosted over physical servers.

Virtual machines are created on demand and are able to satisfy client demand

for a remotely accessible machine with a give set of hardware specifications.

The VM has certain hardware specifications such as a CPU clock rate RAM

and available storage space, which defines a certain minimum performance cri-

terion. Chip Microprocessor (CMP) architecture is a scalable and cost effective

architecture where a could comprises of a large number of commodity hardware

which is relatively cheap as compared to having specialized hardware. The VM

reside on top of chip microprocessor architecture (CMP) which enables them to

be scalable by using shared resources. There is contention between the VMs as
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they are using these shared physical resources like storage space, CPU processing

power and last level cache (LLC). As all these machines have their respective

services level agreement (SLA) i.e. minimum performance criterion that needs

to be ensured. The resource contention could cause violation of the SLA of indi-

vidual VMs as more virtual machines are hosted by a given number of physical

machines. An example of resource contention at the cache level is the following.

For example a Sun microprocessor with a 3MB Level 2 cache can share this cache

among 32 different threads of execution. These different threads could belong

to instances of 32 different VMs, in which case the resource management needs

to be done in an efficient manner such that the SLA for each individual user

is satisfied. There can be similar examples in the context of storage space and

available CPU processing time for each VM.

So it is very important to manage these various resources in an efficient

manner. This concept of contention in cloud based resources can be modeled

using the concept of game theory. Following are some related works where game

theory has been used in the context of cloud computing. In such a situation,

but in a different context, Tullock (1980, [Tul80]) proposed a game-theoretic

setting with probabilistic reward in rent-seeking. He has noticed earlier that

the social loss associated to rent-seeking behavior exceeds a certain threshold.

From a cloud networking perspective, this means that lot of resources may be

wasted if the VM consider an economic renting. In this chapter, we study a

stylized model of resource sharing in a distributed and fair manner. We will

show that efficiency can be significantly improved for large cloud networks using

a suitable price design. We examine both stability and myopic reaction using

mean-field-taking strategies [AFA05]. Mean field games are known to be well-

adapted for both finite (but large) and infinite systems Please refer to [GLL11]

for an introductory reference on mean field games. In contrast to the other

classical tools for large-scale systems, the mean-field approach incorporates the

dynamics which allows online demand management (pay-as-you-use scheme). It

allows optimization, control and dynamic mechanism design when the number of

active users varies and studies the interactive nature of cloud networking, leading

to strategic decision-making problems. Recent studies on cloud networking have

already adopted a mean-field regime.
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3.1.1 Overview

Game-theoretic approaches to cloud networking

The concept of cloud networking is very old but it has recently become a re-

ality. There are several aspects of cloud networking that still need to be dis-

cussed. Game-theoretic tools for cloud networking have been recently proposed

in [VJ10]. The authors in [VJ10] studied cloud resource allocation games. The

work in [WVZX10] presents a game-theoretic method of fair resource alloca-

tion for cloud services. They proved the existence of a Nash equilibrium under

feasibility condition of the resource allocation problem. [MCL+10] examines a re-

source allocation for VMs using Kelly’s approach. The authors in [KDF+11] has

studied optimal service pricing for cloud cache services. [ABYST12] studied the

framework of Resource-as-a-Service (RaaS). In [KA06] a non-cooperative, semi-

cooperative, and cooperative games-based grid resource allocation are examined.

[RY12] proposed a game-theoretic approach for the provisioning and operation

of the infrastructure under uniform cost models. The authors in [KK12] tried

to answer the question whether or not to utilize the cloud for processing, by

identifying characteristics of potential cloud beneficiaries and advisable actions

to actually gain financial benefits. They proposed a game-theoretic model of

an Infrastructure-as-a-Service (IaaS) cloud market, covering dynamics of pricing

and usage. The work in [APP11] modeled a service provisioning problem in cloud

as an action-coupling constrained game, and proposed an efficient algorithm for

the run time management and allocation of IaaS resources to competing SaaS

(Software as a Service). The authors in [TM10] proposed a Bayesian Nash Equi-

librium Allocation algorithm to solve resource management problem in cloud

networking under heterogeneous distribution of resources and incomplete infor-

mation. The concept of heavy traffic approximation of equilibria in resource

sharing games is studied in [WBJ12].

Our work differs from the above references in three ways. First, the above

reference do not examine the stability of the solution concepts. Second, their

approaches seem not to be adapted to large-scale systems. Third, the references

[RY12, KK12, APP11, TM10, WVZX10, KA06] do not propose simple, memory-

less and easy-to-implement learning algorithms. In this chapter we will address

these three issues.
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Large-scale clouds

Large data and large number of users are frequently met in the context of cloud

networking, such as in Amazon’s Elastic Compute Cloud (Amazon EC2) which

is a web service that provides resizable computing capacity in the cloud. As

systems become large traditional game theoretic analysis result in computation-

ally inefficient frameworks as they take into account effect of each unique action

by every player. Recently, there has been renewed interest in developing large-

scale strategic learning also called mean-field learning. These frameworks are

very efficient at simplifying the system structure giving us few parameters such

as the mean instead of tracking the unique action of each user. This not only

helps in computationally when simulating or analyzing these systems, but it also

drastically simplifies the mathematical analysis giving us the averaged effect of

the interaction of a large number of particles instead of tracking each particle.

[AJ10, AAJW07, Hua12] Thus, mean-field learning is an important framework

for large-scale cloud networks. Such a problem is tackled in [PB11a] using block

splitting for large-scale distributed learning. We refer the reader to Chapter 1

of [Tem12] for a recent survey book on distributed strategic learning.

3.1.2 Contribution

Although here we consider cloud networks, our resulting analysis is more general

and is applicable to similar resources sharing networks. The contribution of

this chapter can be divided into two main parts: i) Equilibrium analysis of two

different resource sharing problems for finite and infinite number of clients and ii)

development of low complexity distributed learning algorithms that can achieve

the equilibrium solutions. The equilibria analysis shows the interest of using

mean field theory in the cloud as on one hand it simplifies hugely the analysis of

the game and allows thus developing low complexity iterative learning solutions

that converge to the equilibrium (see section 3.4.2). Our contributions is this

chapter are listed below:

• We first consider a cloud resource sharing problem with continuous action

spaces where each user tries to maximize its own payoff. The payoff de-

pends on the fraction of resources (e.g. LLC memory, CPU power, etc.)

allocated to the user. This problem can be applied to the cases where each

user tries to get VMs with resources as much high as possible in order
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to reduce for example the computation time of his own tasks. This can

be applied to the case where the cloud does not have enough physical re-

sources to satisfy all the current clients’ demands (especially for very high

number of users). In the finite regime (finite number of users), we provide

closed-form expressions of three important game-theoretic solution con-

cepts: Nash equilibrium (NE), finite myopic mean-field response (F-MFR)

and finite evolutionary stable strategy (F-ESS). The first surprising result

is that the Nash equilibrium is not an evolutionary stable strategy for finite

population (see Proposition 2). In fact in cloud networks, the number of

users as well as users’ demands are constantly changing and in this context

evolutionary stable strategy (i.e. it cannot be invaded by small fraction of

deviants) is crucial. Based on the work of Possajennikov (2003, [Pos03])

we show that mean-field-taking strategies are evolutionary stable strate-

gies for a certain range of return index (i.e. α). We provide the explicit

optimal pricing as a function of the number of active users. Under the

optimal pricing no resource is wasted at the equilibrium. This means that

the efficiency loss tends to zero.

• We then consider the infinite regime, because in many cloud networks

the number of users is expected to be very high. We provide closed-form

expression of the mean-field equilibrium and show how the mean field the-

ory simplifies the analysis in this regime. Furthermore, we show that the

mean-field equilibrium is an evolutionary stable strategy, i.e., it cannot

be invaded by a small fraction of deviants. We show that the mean-field

equilibrium is evolutionary stable for any fraction of deviants strictly less

than 100% which makes our result even stronger. We also show that Nash

equilibrium is stable in the infinite regime. This is due to the fact that in

the limiting case, the influence of one generic player on the total demand

is negligible.

• We then consider another resource sharing problem in the cloud where

each user tries to satisfy anytime anywhere its own request (for example

when enough physical resources are available for all users). The problem is

formulated as a satisfactory game. In the finite regime, we provide a closed

form expression of the satisfactory solution and develop a distributed algo-

rithm which is able to reach it. Contrary to the aforementioned equilibrium

concepts, the extension of the obtained satisfactory solutions to the infinite
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regime is straightforward.

• We then provide distributed iterative learning algorithms that converges

to the equilibrium solutions of the first resource sharing problem discussed

above. for the finite regime, we provide an Ishikawa-based distributed

iterative learning algorithm that converges to each of the three aforemen-

tioned equilibrium concepts and discuss its convergence time. It is worth

mentioning that developing learning algorithms with less information and

having faster convergence time is of high interest. We therefore propose

a model-based (but still with less information) learning scheme for games

with continuous action space and large number of players. Each player

will update its learning strategy based on an aggregative term, which is

the mean of an increasing function of the action of the other players. Each

player will be influenced by the aggregate, and the mean-field behavior

is formed from the action of each player. Each player will try to conjec-

ture the aggregative term consisting of the actions of the other players

at each time slot, and will respond to the aggregative term locally. This

drastically simplifies the dimensionality of the mean-field response system

in the asymptotic case. We also discuss the convergence time of the pro-

posed learning algorithm and show that it is faster than the Ishikawa-based

algorithm or standard contraction mapping fixed-point algorithms.

3.1.3 Structure

The remainder of the paper is organized as follows. In section 3.2 we present

the resource sharing and the demand satisfaction framework. In Section 3.3

we examine both equilibrium and stability properties of the game with finite

number of VMs and asymptotic game with infinite number of VMs. In section

3.4 the algorithms used to approach the equilibria are presented. In section 3.5

numerical results are presented.

3.2 Model

We consider resource (i.e. last level cache (LLC)) sharing between n virtual

machine (VM) instances. These VMs, maximize their performance by increasing

their access to the shared LLC. These VMs are trying to share the total available

cache capacity given by cn among themselves in a fair fashion. It is interesting to
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analyze this type of problem in the context of game theory. As there in contention

between various instances of the VM, each of these VM can be considered a

player in a game competing for the same resources. Notice also that the physical

resources in the cloud are not centralized (i.e. in one machine) which justify the

need for a game framework.

There are several types of problems or scenarios that arise in this context.

We focus here on two resource sharing problems. The first problem corresponds

for example to the case where there are not enough resources of cache available to

satisfy all clients or players. In such scenario we define a reward function which is

based on a resource sharing strategy where each client demands a percentage of

the total available cache capacity cn and pays a price for this access. This ensures

that there is fair sharing of the resources among the clients. The remaining

demand of each client is met by secondary sources which are relatively more

expensive. This first problem can arise also when there are enough resources for

all clients and the clients try to get as much resources as possible in order to

increase the performance of their VMs (e.g. in order to minimize the computation

time of the required tasks). In the next two sections (3.2.1 and 3.2.2) we shall

describe the resource sharing game for the finite and the infinite number of clients

for such a scenario. The second scenario described in section 3.2.3 represents the

case when the total available cache capacity is higher than the total demand

and each client wants to use a given percentage of the total capacity/resources

(satisfaction game).

3.2.1 Resource sharing game Gn with finite number of clients

We consider resource sharing game with finite (but arbitrary) number of clients

in a cloud network. We denote such a game by Gn, where n is the number of

clients. The action space of every client is A = R+ which is a convex set, i.e., each

player j chooses an action aj that belongs to the set A. An action may represent

a certain demand for a resource. In case of cloud computing the demand could be

the CPU access duration or the share of a percentage of total LLC memory. For

example in case of a computation intensive task where several VMs are running

simulation related computation tasks and want to complete their computation

tasks as soon as possible by demanding for as much resources as possible. All the

actions together determine an outcome as the resources are shared. Let pn be

the unit price of cloud resource usage by the clients. Then, the payoff of player
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j is given by

rj(a1, . . . , an) = cn
h(aj)∑n
i=1 h(ai)

− pnaj, (3.1)

if
∑n

i=1 h(ai) > 0 and zero otherwise. The structure of the reward function

rj(a1, . . . , an) for client j shows that it is a percentage of allocated capacity

minus the cost for using that capacity. Here, cn represents the value of the

available resources (which can be seen as the capacity of the cloud), h is a

positive and nondecreasing function with h(0) = 0. We fix the function h to

be xα where α > 0 denotes a certain return index. The function h represents

hence the efficiency of the demand in the access probability to the resource. This

introduction of efficiency can be interpreted by the fact that the clients and the

physical resources are distributed and are connected through internet or virtual

private networks. This class of games have been studied by Tullock in the 1980s

under the name of rent-seeking game. See Tullock (1980, [Tul80]). However

[Tul80] does not examine stability, price design and algorithmic issues. The cloud

game Gn is given by the collection (N ,A, (rj)j∈N ) where N = {1, . . . , n}, n ≥ 2,

is the number of potential players. We say that player j is active if its action

aj > 0. We will see that what is important in our analysis is not the number of

potential players N but the set of active players (those with non-zero demand).

Therefore, we define the following variable:

mn ,

(
1

n

n∑

i=1

aαi

) 1
α

as a weighted α−norm of all the actions. mn will play the role of the mean-

field term in the resource sharing game and will be useful in the development

of iterative algorithm but also in the study of mean-field games. The payoff

function can be rewritten as r̄n(aj ,mn,−j) , rj(a) = cn
n

(
aj
mn

)α
− pnaj, where

the ratio cn
n is the theoretical capacity per client in the cloud and

mα
n,−j ,

1

n− 1

∑

i6=j

aαi =
n

n− 1

(
mα

n −
aαj

n

)

mn,−j represents the mean when the action of user j is not taken into account.

r̄n(aj ,mn,−j) =

(
cna

α
j

mn,−j(n− 1) + aαj

)
− pnaj,

The payoff function of a generic player j depends only on own-action aj and the

mean mn. Note that mα
n,−j does not depend on aj .
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Remark 3. The payoff is discontinuous for
∑

i h(ai) = 0. As we will see in

the next sections the discontinuity of the payoff function (at the origin) can be

handled in the equilibrium analysis.

As mentioned in [MCL+10], the above payoff function has interesting con-

nections with the seminal works of Kelly on capacity sharing problems. However,

the approach presented here has additional features:

(i) our approach is distributed and autonomous decision approach.

(ii) the evolutionary stability of the resulting system depends on the interac-

tive and strategic behavior of each client,

(iii) Our payoff is well adapted even if there is no coordination between the

clients for joint decision-making,

(iv) The mean-field approach and the evolutionary stable strategies of the

finite game presented here complement the previous works.

3.2.2 Resource sharing game G∞ with infinite number of clients

In current cloud network, the number of clients for clusters grows without bound

and it is becoming increasingly important to dynamically share resources be-

tween these large population of clients. When the number of active clients is

very large, we analyze the asymptotic game, denoted by, G∞ = (A, r̄) where the
payoff denoted by r̄ can be obtained easily as follows (using the expressions of

mn and r̄(aj ,mn,−j) defined above in the finite regime and then taking the limit

when n tends to infinity) r̄ : A2 −→ R,

r̄(aj ,m) =





caαj
mα − paj , m > 0

0, m = 0, aj = 0

The numbers c > 0 and p > 0 are scaled asymptotic version of cn
n and pn i.e.

c = limn−→+∞
cn
n and p = limn−→+∞ pn. The term m can be interpreted as a

limit value of mn i.e. m = limn−→+∞mn. Therefore, we can write r̄(aj ,m) =

p ( cp
aαj
mα − aj). As we will see, one of the important terms in the equilibrium

structure will be the ratio c
p which can be interpreted as the inverse of the cost

(price) per capacity.

We will show in the next section that the error gap between the mean-field

game model and the finite game model is the error at which cn
n

1
pn

goes to c
p

together with a convergence rate of O( 1n). This result is interesting because

when the system is large, one can approximate it by a very simple mean-field
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game model for any number of active clients that exceeds nǫ in order to get an

error that is at most ǫ. In addition the mean-field game system has additional

features: it provides

• A stable equilibrium that is resilient to small perturbations.

• The mean-field equilibrium is robust to perturbation by new entrants/exits

in the sense that it remains within ǫ−equilibrium.

• The payoff at mean-field equilibrium is close to the payoff of all the finite

games for any active number of clients above a certain threshold. This

means that mean-field game model is also useful in finite regime (even at

small scale).

3.2.3 Demand satisfaction game Gs

In this subsection we analyze a different type of game where each client is inter-

ested in satisfying a given demand instead of trying to maximize a given reward

function. First we provide the characterization of an equilibrium for finite clients

and then we present a fully distributed algorithm which is able to reach this equi-

librium. It is straight forward to extend the equilibrium characterization to the

infinite case as it is shown at the end of this section. We restrict the set A to

the interval [0, cn].

We now examine learning satisfactory solutions in cloud resource sharing

games with continuous action space. Our motivations for satisfactory solution

seeking are the following: First, we observe that in dynamic interactive system,

most clients constantly make decisions which are simply “good enough” rather

than best response or optimal. Simon (1956, [Sim56]) has adopted the word

“satisficing” for this type of decision. As mentioned by Simon himself in his

paper in page 129, “Evidently, organisms adapt well enough to ’satisfice’; they do

not, in general, ’optimize’. Therefore satisfactory solution offers an alternative

approach and is closely model the way VMs make decisions [Sti03, GSF98, SG99].

Here, a satisfactory strategy is a decision-making strategy that attempts to

meet an acceptability threshold. This is contrasted with optimal decision-making

or best response strategy, an approach that specifically attempts to find the best

option available given the choice of the other clients. Following that idea we

define a satisfaction solution as a situation where every client is satisfied, i.e., its

payoff is above its satisfactory level.
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For each client j, we introduce a satisfaction level s∗j . The collection Gs ,

(N , (A, sj , s∗j )j∈N ) constitutes a one-shot game in satisfaction form.

Definition 5 (Demand Profile). The demand profile (aj)j∈N is a pure satis-

factory solution of the cloud resource sharing game if all the clients are satisfied:

sj(a) =
cnaαj∑n
i=1 a

α
i
≥ s∗j , ∀j ∈ N .

The above inequality implies that the satisfaction sj(a) represents a fraction of

the total capacity allocated to client j which should be greater or equal to s∗j .

3.3 Equilibrium Analysis

In order to study the cloud in a dynamic and constantly changing setting, we

examine the stability concept in a finite game Gn.We first start by characterizing

the Nash equilibrium and then we compare their equilibrium/strategy to the fi-

nite evolutionary stable strategy (F-ESS). We will see that Nash and F-ESS have

two different equilibria (see proposition 2). Which means that Nash equilibrium

is not stable.

We then consider another strategy called finite myopic mean-field response

(F-MFR) and show that this strategy is stable under the system model consid-

ered in this chapter. In the last part of this section, we develop a distributed

iterative algorithm that can converge to each of these three equilibria studied in

this section.

3.3.1 Equilibrium for Gs finite number of clients

Before defining Nash equilibrium, we introduce the so-called reaction set or best

response correspondence. The best response problem (BRj) of player j is

(BRj) : Given a−j , (a1, . . . , aj−1, aj+1, . . . , an),

Find aj ∈ argmax
a′j

rj(a
′
j , a−j)

Which is the best response of client j given the demand of the others.

An interior solution to the problem (BRj) (whenever it exists) is obtained by

setting the first order condition (FOC) to zero and the second order derivative

to be negative.



CHAPTER 3. RESOURCE SHARING IN CLOUD NETWORKS 58

Note that the payoff is differentiable outside the origin and the first derivative

with respect to aj yields

∂aj r̄(aj ,mn) =
cn

n

[
αaα−1

j mα
n − aαj (

α
na

α−1
j )

m2α
n

]
− pn

=
cnαa

α−1
j

n

[
mα

n − aαj
n

m2α
n

]
− pn.

and using the fact that mα
n − aαj

n =
∑

i6=j
aαi
n is independent of aj we get the

second derivative ∂2
a2j
r̄(aj ,mn) as

,
cnα

n
(mα

n −
aαj

n
)

[
(α− 1)aα−2

j m2α
n − aα−1

j
2α
n a

α−1
j mα

n

m4α
n

]

=
cnα

n
(mα

n −
aαj

n
)
aα−2
j

m3α
n

[
(α− 1)mα

n − 2α

n
aαj

]
. (3.2)

Definition 6 (Symmetric Game). A game is symmetric if the action spaces

are identical and the payoff functions are invariant by permutation of clients

action and index.

The next Proposition provides closed-form expression of the Nash equilibrium

for some range of parameter α. It also provides the optimal price p∗n such that

no resource is wasted in equilibrium.

Proposition 1. By direct computation, we have the following results:

(i) The resource sharing game is a symmetric game. All the clients have

symmetric strategies in equilibrium whenever it exists.

(ii) For 0 ≤ α ≤ 1, the payoff rj is concave (outside the origin) with respect to

own-action aj . The best response BRj(a−j) is strictly positive and is given

by the root of

x(α−1)/2(
αcn

npn
G)1/2 − xα

n
−G = 0, G ,

1

n

∑

i6=j

aαi

where x , aj and there is a unique equilibrium (hence a symmetric one)

given by
(
xα−1 αcn

npn
n−1
n xα

) 1
2 − xα

n − n−1
n xα = 0, i.e.,

a∗NE = α
(n − 1)cn
n2pn

.
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It follows that the total demand na∗NE at equilibrium is less than cn
pn

which

means that some resources are wasted.

The equilibrium payoff is r̄n(a
∗
NE) = ajpn

[
G+

aαj
n

αG − 1

]
which is positive for

α ≤ 1.

(iii) For α > 1, the activity (participation) of player j depends mainly of the

aggregate of the others. a∗j > 0 only if G ≤ G∗ and the number of active

clients should be less than α
α−1 . If n >

α
α−1 then BRj = 0.

(iv) With a participation constraint, the payoff at equilibrium (whenever it ex-

ists) is at least 0.

(v) The game is a symmetric aggregative game in the sense of Dubey et al.

1980, [DMCS80].

(vi) By choosing the price p∗n = α
(n−1)

n < α one gets that the total demand

at equilibrium is exactly the available capacity of the cloud. Thus, pricing

design can improve resource sharing efficiency in the cloud. Interestingly,

as n goes to infinity, the optimal pricing converges to α.

(vii) The game is a submodular game with respect to own-action and the mean-

field, i.e., it satisfies a decreasing-difference property: if aj > a′j , then the

difference r̄n(aj ,mn,−j) − r̄n(a
′
j ,mn,−j) is decreasing with mn whenever

nmα
n > aαj .

We say that the cloud renting game is efficient if no resource is wasted, i.e.,

the equilibrium demand is exactly cn. Hence, the efficiency ratio is
na∗

NE

cn
. As

we can see from (ii) of Proposition 1, the efficiency ratio goes to 1 by setting

the price to p∗n. This type of efficiency loss is due to selfishness and have been

widely used in the literature of mechanism design and auction theory. We refer

the reader to [NRTV07] for more recent applications.

Note that the equilibrium demand increases with α, decreases with the charged

price and increases with the capacity per client. The equilibrium payoff is

positive and if α ≤ 1 each player will participate in an equilibrium.

Note that in case of Nash equilibrium the optimal pricing p∗n depends on the

number of active clients in the cloud and value of α. When the active number of

clients varies (for example, due to new entry or exit in the cloud), a new price

needs to be setup which is not convenient.
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Finite evolutionary stable strategy (F-ESS)

The notion of evolutionary stable strategies (ESS) have been studied in the

context of evolutionary games, starting from Volterra 1926 [Vol], Fisher 1931

[FB99], Hamilton 1967 [Ham67] and Maynard Smith & Price in 1973 [MP73].

The original definition was for infinite population in pairwise interaction model.

However, the idea can be used for finite population as well. However, the notion

of ESS in finite population is slightly different than the ESS notion for infinite

population. The reason is that for finite population regime, each generic player

has an influence in the mean-field which may result in a non-negligible effect

on the relative payoff. We start with a simple (and weaker) notion of Finite

evolutionary stable strategy (F-ESS) with one deviant.

Definition 7 (F-ESS). The pure strategy a∗i ∀ i ∈ N is an F-ESS in the cloud

game with finite number of players if

rj(. . . , a
∗
j , . . . , ak, . . . , ) ≥ rj(. . . , aj , . . . , a

∗
k, . . . , )

for all ai ∈ A, and for all k 6= j.

This definition of F-ESS is based on the definition in [Ham67]. This means

that if one player k 6= j is adopting a different strategy than the F-ESS i.e.

ak 6= a∗k, the best strategy for user j is to choose the F-ESS aj = a∗j . The user

j does not have interest to deviate from a∗j . In other words, in a population of

n − 1 F-ESS players and 1 mutant player, we do not expect the mutant to do

better than a typical F-ESS player [Ham67]. Note that this definition of F-ESS

does not necessarily imply (Nash) equilibrium condition. For a more detailed

description of F-ESS strategies please refer to [Sch88].

Proposition 2. For α ≤ 1, the game Gn has a F-ESS given by a∗f−ess = α cn
npn

.

Remark 4. The F-ESS equilibrium a∗f−ess from Proposition 2 is different from

the a∗NE from Proposition 1 (ii) which implies that a∗NE is unstable.

Finite myopic mean-field response (F-MFR)

Here we will provide another strategy which coincides with F-ESS for our reward.

Note that this result is not general and is true only for our system model.

Since the cloud game Gn has an aggregative structure mn, it is interesting

to evaluate the performance of aggregate-taking clients. Each client sees the
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aggregate mn as signal (by ignoring its effect on the signal). A response to the

aggregate of such game is called mean-field response. Since the reaction ignores

the influence of own-action aj in mn, such reaction is called myopic. This leads

to an equilibrium concept, which we call, finite myopic mean-field response (F-

MFR). It corresponds to a mean-field-taking strategy.

Definition 8 (F-MFR). Formally, a pure F-MFR is a strategy a∗ such that

a∗j ∈ arg max
aj∈A

[
cn

n

(
aj

m∗
n

)α

− pnaj

]
,

where m∗
n ,

(
1
n

∑n
i=1(a

∗
i )

α
) 1

α .

This is a fixed-point equation since m∗
n contains the action a∗j .

Proposition 3. For α ≤ 1, the game Gn has a F-MFR given by

a∗f−mfr =
αcn

npn
.

For α > 1 the game has no F-MFR due to inconsistency. Note that a F-MFR is

not a Nash equilibrium of Gn. In the asymptotic regime, a∗f−mfr converges to a

mean-field equilibrium.

Remark 5. The a∗f−mfr and a∗f−ess coincides for α ≤ 1. However, for α > 1

the two notions do not coincide.

3.3.2 Equilibrium for G∞infinite number of clients

In cloud networks as the number of nodes is very large it is useful to analyze the

asymptotic case as it is able to provide simplification and structure to a game

which would otherwise be difficult to find. In this section, we characterize the

Nash equilibrium for the infinite client which is also referred to as the Wardrop

equilibrium [War52], and show that it is a submodular Mean Field (MF) Game.

Then we also define an evoloutionary stable strategy (ESS) and show that our

Nash equilibrium is ESS i.e. it is a stable equilibrium point even for small

perturbations in client demand.

In this infinite game, the notion of F-ESS becomes the classical ESS in the

sense of Maynard Smith & Price (1973, [MP73]) and the notion of F-MFR be-

comes a mean-field Nash equilibrium (see Definition 9).
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Definition 9 (Mean-field (Nash) equilibrium). m∗ is a pure mean-field (Nash)

equilibrium if m∗ ∈ A, and m∗ is consistent and is a best response to itself:

m∗ ∈ argmaxaj r̄(aj ,m
∗)

From the above analysis, we get

Proposition 4. (i) The resource sharing game G∞ is a symmetric game.

(ii) the game G∞ is a submodular mean-field game, i.e., ∂2ajmr̄ ≤ 0 (at the

interior). This means that the incentive to decrease the demand decreases

with the level of the m of the mean-field.

(iii) For α < 1,m > 0 the best response to mean-field is br(m) =
(

αc
pmα

) 1
1−α

and for α > 1 the best response is 0.

(iv) For α ≤ 1, there is a unique mean-field equilibrium (i.e. global solution)

which is given by

m∗ = α
c

p
,

and the optimal pricing is p∗ = α.

(v) Thus, the Nash equilibrium a∗NE from proposition 1 (ii) can be scaled to

converge to the mean-field equilibrium m∗ as n grows.

We are now interested in the stability of the mean-field equilibrium. We

adapt the notion of evolutionary stable strategy (ESS) introduced by Maynard

Smith and Price (1973, [MP73]). The original definition of ESS was for pair-

wise interaction and bilinear payoffs, here we have a non-linear payoff function

(nonlinear in x and non-linear in m).

Definition 10 (ESS). For α ∈ [0, 1], m∗ is an evolutionary stable strategy

(ESS), if it cannot be invaded by a fraction of deviants i.e., for any m 6= m∗

there exists 1 > ǭm > 0 (which may depend on m) such that for any ǫ ∈ (0, ǭm)

one has

r̄(m∗, ǫm+ (1− ǫ)m∗) > r̄(m, ǫm+ (1− ǫ)m∗), m 6= m∗

The parameter ǭm is called invasion barrier.

For a symmetric game, the reward function r̄(m∗, ǫm + (1 − ǫ)m∗) represents

the reward of a user employing the ESS strategy m∗ while an ǫ fraction of
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players are adopting the strategy of m where m 6= m∗ and 1− ǫ fraction of users

are adopting the strategy m∗ which makes the effective mean field response to

be ǫm + (1 − ǫ)m∗ i.e. a convex combination of m and m∗ where m 6= m∗.

Hence the meanfield term in this case is ǫm+(1− ǫ)m∗. The inequality between

r̄(m∗, ǫm+ (1 − ǫ)m∗) and r̄(m, ǫm+ (1 − ǫ)m∗) indicates that the reward of a

player implementing m∗ is higher as long as ǫ is less than the invasion barrier

ǭm.

Definition 11 (Invasion barrier ǭm). Invasion barrier ǭm is the maximum per-

centage of the clients which can deviate from m∗ such that the system still re-

mains stable i.e. it is able to return to m∗.

Next, we show that the mean-field equilibrium is an ESS for α ∈ (0, 1). This

means that in the asymptotic regime, the mean-field equilibrium cannot be in-

vaded by a perturbation of deviant VM demands. Moreover, our proof shows

that the fraction of deviant(s) can be arbitrary high (i.e. ǫ < 1), which gives a

stronger ESS.

Proposition 5. Let α ∈ (0, 1). Then, the mean-field equilibrium m∗ = α c
p is an

evolutionary stable strategy when ǫ 6= 1.

This is a useful result as it states that as long as the number of deviants is not

100% it is possible for the system to return to the m∗.

3.3.3 Equilibrium for Gs Demand Satisfaction

Before going for pure satisfactory solution seeking, we first need to ask if the

problem is well-posed, i.e; the existence of a pure satisfactory solution i.e. the

equilibrium. The feasibility of the satisfaction problem for a given s∗j , j ∈ N ,

is the non-emptiness of the set {a = (a1, . . . , an) ∈ An | sj(a) ≥ s∗j , ∀j}. The
non-emptiness is equivalent to say that there exists a vector (ǫ1, . . . , ǫn), ǫj ≥ 0

such that there is a demand profile a that satisfies ∀j, sj(a) = s∗j + ǫj . Thus, a

necessary condition for existence of a satisfactory solution is that such a vector

s∗ + ǫ belongs to the set s (An) , i.e., the range of the vectorial function s(a) ,

(s1(a), . . . , sn(a)). It is not difficult to see that this is also a sufficient condition.

Proposition 6. Suppose that the satisfaction levels are such that
∑n

i=1 s
∗
i < cn.

Then, the game has a satisfactory solution and the allocation given by

ai = (s∗i )
1
α ,
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satisfies

sj(a) =
cns

∗
i∑n

j=1 s
∗
j

> s∗i

The proof is obvious and has been omitted for brevity.

The condition
∑n

i=1 s
∗
i < cn translates the fact that the total demand should

not exceed the available capacity.

We have proposed a selection algorithm in Section 3.4. The goal of the fully

distributed learning algorithm for satisfactory solutions detailed in Subsection

3.4.3, is to select the most efficient satisfactory solution. By most efficient we

mean that each user gets exactly the required performance without any waste.

Thus, our analysis covers not only the satisfactory solution algorithm but also

the problem of selecting the most efficient satisfactory point.

3.4 Algorithms

In the above sections we were able to analyze the equilibria associated with

various types of games. As these systems are inherently distributed it is not

possible to solve the problem in a centralized fashion. So in this section we

provide the iterative distributed algorithms to approach the equilibria described

in the above section. These algorithms require limited information in feedback

in order to converge to their respective equilibria.

3.4.1 Iterative Learning Algorithm in the Finite Regime

In this subsection we present an iterative learning algorithm which is able to

converge to the respective equilibria of the above subsections. The reason for

using such an algorithm is that in general, the best response function has a

complicated structure (as one can see in section 3.3.1, the equilibrium is a so-

lution of a system of non linear equations.) Therefore, the use of an iterative

algorithm allows us to achieve the equilibrium with less computational complex-

ity. In addition the purposed iterative algorithm in this chapter is distributed in

the sense that each client updates its own action and sends it to the cloud.

We propose to use an Ishikawa algorithm (see [Ish74] for details) which is

represented by the equation as follows

at+1 = f(at)λ+ at(1− λ) (3.3)

where λ > 0 is a step size λ ∈ [0, 1],
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where f(.) is the best response br(.) of the Nash equilibrium. br(.) which is

given below:

br(aj,t−1,mn,t−1) =

[
(
αcn

npn
(mn,t−1 −

aj,t−1

n
))1/2

− (mn,t−1 −
aj,t−1

n
)
]
+

(3.4)

Note that if a∗ is a fixed-point of br i.e, br(a∗) = a∗ then br(at)λ+at(1−λ) =
a∗λ+ a∗(1− λ) = a∗. Then a∗ is a fixed-point of Equation (3.3).

Proposition 7. Convergence of the Algorithm to Nash Equilibrium: For a van-

ishing step size i.e. when
∑

t λt = ∞ and
∑

t λ
2
t < ∞ the Ishikawa algorithm

(Equation(3.3)) converges to the Nash equilibrium a∗.

Proof. The proof follows in two steps,

(1) Convergence to an ODE: First we show that for vanishing step size, our

Ishikawa algorithm (Equation(3.3)) converges to the limiting Ordinary differen-

tial equation (ODE) give by

ȧt = br(at)− at. (3.5)

To prove this we can follow the standard ODE technique described in [Tem12].

(2) Stable point of the ODE: Second we prove that a∗ is a stable point of the

ODE. To prove this we just need to verify that the Jacobian J of the R.H.S of

the equation (3.5) evaluated at a∗ be negative semidefinite i.e. its eigen values

have negative real parts. We can show that the diagonal of J is −1 and the non

diagonal elements are β = 2−n
2n(n−1) . Hence ∀ y ∈ R, yTJy = −(1 + β)(

∑
j yj)

2 −
β(
∑

j y)
2
j ≤ 0, for n > 2, (where n is the number of players) which implies that

J is negative semidefinite which concludes the proof.

For more details please refer to [HTAZ12b] where we have presented a similar

analysis for in more detail for a similar reward function.

Notice that for a fixed step size (sufficiently small), the Ishikawa algorithm

(Equation(3.3)) converges in general for a pseudo contraction mapping [Tem12].

We define the convergence time for a fixed step size (sufficiently small) within a

certain η−neighborhood of a∗ as the first time the trajectory of the algorithm

at enters a range within a distance less than η from a∗ : Tη = inf{t > 0 | ‖
at−a∗ ‖∞≤ η}. The convergence time for η sufficiently small enough, is in order

log( 1η ) [Tem12].
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We can apply our Ishikawa based algorithm from equation (3.3) to any of

the strategies developed in the previous sections by replacing function f(.) with

the respective best response function. This has been omitted due to space limi-

tations.

3.4.2 Iterative Learning Algorithm in the Infinite Regime

Let us develop an algorithm that converges to the stable MF equilibrium by

following the same steps as in finite case.

The mean-field response is aj,t+1 ∈ argmaxa′j r̄(a
′
j ,mt) = br(mt). In general,

this is a multi-valued map (correspondence) as we have seen in the finite number

of client case. However, for infinite number of client case (see proposition 5

(iii)), the correspondence is a single-valued map. In this case of a single valued

map, equation (3.6) is able to converge to its fixed point. Thus, one can use the

following mean-field response learning given by

mt+1 = f(mt), m0 fixed. (3.6)

We denote br(.) by f(.) to simplify the notation where br(.) represents best

response. Note that in Equation (3.6) only the starting point m0 is required

if the player knows the structure of f(.). This means that it is not needed to

feedback the mean of the mean-field at each step. Finding a fixed-point of the

function f(.) is equivalent to finding the root of g(m) , f(m)−m.

There are several algorithms that may obtain the root of g(m). Each has a

different convergence order or time which depends on their construction. We

start by defining the convergence order.

Definition 12. Assume that mt converges to m∗ and let ηt , |ǫt| , |mt −m∗|.
If two positive constants c1, o > 0 exist, and c1 , lim supt−→∞

ηt+1

ηot
,

then the sequence {mt}t is said to converge to m∗ with order of convergence o.

The number c1 is called the asymptotic error constant. The cases o ∈ {1, 2, 3, 4}
are given special consideration.

(i) If o = 1 the convergence of {mt}t is called linear.

(ii) If o = 2 the convergence of {mt}t is called quadratic.

(iii) If o = 3 the convergence of {mt}t is called cubic.

(iv) If o = 4 the convergence of {mt}t is called fourth order.

A classical method that is known to find the root of a single valued map

function (e.g. g(.)) is the Newton method and it has a convergence order of o = 2.
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An important requirement for the implementation of the Newton method is the

availability of the derivative of the best response which might not be available

for some non differentiable functions. Therefore derivative free techniques are

used in general.

An example of the derivative free techniques is the so-called secant method

given by

(1.6∗)
{
mt+1 = mt − g(mt)(mt−mt−1)

g(mt)−g(mt−1)
,

m0 fixed.

which has the form mt = F (mt−1,mt−2), i.e., a two-step memory scheme. The

secant method is known to have a convergence order of o = 1.6 (hence, the

name of the system (1.6*)). The drawback here is that although this method

is derivative free, it is slower than the Newton method in terms of convergence

order.

A faster method than the secant method is called the Steffensen method in

(2∗) which has a second order convergence with only two evaluations per time

slot. Interested readers are referred to [DB74] for more details.

(2∗)
{
mt+1 = mt − g2(mt)

g(mt+g(mt))−g(mt)
,

m0 fixed.

In this chapter we go one step further and construct a faster convergence order

of o = 4. For that we introduce the following notation: ∆g[a, a′] , g(a)−g(a′)
a−a′ , a 6=

a′ and bt , mt + g(mt). The function g(.) will be evaluated at points: mt, ȳt

and bt, where ȳt is the analogue of the secant point given above. Let ν(s) =

α0 + α1(s − mt) + α2(s − mt)
2 be a polynomial of degree 2 with coefficients

α0, α1, α2. We want that ν(s) approximates the Taylor expansion of function

g(.) till order 2. To achieve that, it is sufficient to determine the coefficients

α0, α1, α2 using the following requirement: ν(mt) , g(mt), ν(ȳt) = g(ȳt) and

ν(bt) = g(bt) (for more details one can refer to [DB74]). From these relations,

we deduce the coefficients

• α0 = g(mt)

• α1 =
ȳt∆g[bt,mt]+mt∆g[ȳt,mt]−mt∆g[bt,mt]−bt∆g[ȳt,mt]

ȳt−bt

• α2 =
∆g[bt,mt]−∆g[ȳt,mt]

b̄t−ȳt
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Note that the derivative of ν at the point mt is exactly the coefficient α1. In

other words, α1 approximates the derivative of g(.) at point mt (since ν is a

Taylor approximation of g(.)). Now, if we consider the Newton update method

and replace the derivative of g(.) by coefficient α1 (α1 can be seen as a plausible

derivative-free term of g(.)), we obtain our derivative-free update algorithm given

as follows,

(4∗)





mt+1 = ȳt − (1+wt)(ȳt−bt)g(ȳt)
((ȳt−mt)∆g[bt,mt]−(bt−mt)∆g[ȳt,mt])

where ȳt is the secant point

ȳt , mt − g(mt)
∆g[bt,mt])

,

wt , 2g(ȳt)
g(bt)

Properties 1. The proposed speedup scheme (4*)

• is a derivative-free scheme,

• has three evaluations of the function g(.) per time-slot.

• is memoryless

• is faster than the secant speedup method (superlinear order),

• is faster than Steffensen’s speedup learning method (quadratic order).

Proposition 8. Assume that g(.) has a simple zero in A. Locally, the scheme

(4*) has a convergence order equal to four.

Definition 13 (Convergence time). The convergence time to be within an

η−neighborhood of m∗ is the first time the trajectory enters into this neighbor-

hood, i.e.,

Tη,ǫ0 , inf{t > 0 | |mt −m∗| ≤ η, |m0 −m∗| = ǫ0}

Proposition 9. The convergence time is Tη,ǫ0 = 1 + ⌊max(0, T )⌋ where

T =
1

ln(4)
ln




ln

(
1

ηc
1
3
1

)

ln

(
1

ǫ0c
1
3
1

)




which is in order of O
(
log(log( 1η ))

)
.
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Where c1 is a positive constant as represented in definition 12 and whose value

is given in the proof of Proposition 8. The result of Proposition 9 is very impor-

tant since strictly contraction mapping fixed-point algorithm exhibits a conver-

gence time in order of O(log( 1η )). Notice that the convergence time of Ishikawa

algorithm in finite case is log( 1η )[Tem12]. Here we have a bound in order of

log(log( 1η )) which is a great improvement.

3.4.3 Iterative Learning Algorithm for satisfactory solution

We propose a fully distributed learning algorithm for satisfactory solutions. The

only information assumption required to each client is the numerical realized

value of its satisfaction sj,t and its own-satisfaction level s∗j .

We propose to use the following fixed-point iteration given by

aj,t+1 = projA

[
aj,t

s∗j

sj,t

]
, (3.7)

where projA(x) = min(cn,max(0, x)). projA is the projection operator over the

nonempty and convex set A. The above is Banach Picard algorithm and (see

[Wil70] for details) and it converges to the equilibrium characterized in Propo-

sition 6.

sketch of proof for convergence: . The algorithm (3.7) is fully distributed in the

sense that a client does not need to observe the actions of the others in order to

update its strategy iteratively. The righthand side of (3.7) is denoted by fj. The

function fj is well-defined whenever the ratio
aj
sj
s∗j =

s∗j
cn
a1−α
j (

∑n
i=1 a

α
i ) has a limit

when aj −→ 0 if α ≤ 1. Due to space limit, we omit the proof that the function

in (3.7) is a fixed point equation (for more details see [DB74]). The set of fixed-

point of f is denoted by fix(f) is contained in the set of satisfactory solution.

It is clear that if the algorithm converges to some interior point a∗ then a∗ is a

satisfactory solution. To prove this statement, consider a converging sequence

to a∗. Combining the continuity of the projection map and the continuity of the

payoff function, one gets the continuity of projA

[
aj

s∗j
sj

]
. Taking the limit as t goes

to infinity yields aj = projA

[
aj

s∗j
sj

]
, i.e., the payoff of client j is sj = sj(a

∗) = s∗j

which means that every satisfied client j is in interior steady state.

For the infinite case as n → +∞ with satisfactory level s∗, the algorithm

simplifies to mt+1 =
s∗

c mt+
s∗

c ǫm
1−α
t where ǫ > 0 is very small, which converges

to an interior fixed-point.
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3.5 Numerical Investigation

For the numerical investigation we fix α = 1.

3.5.1 Finite user scenario

In the finite case we numerically show that Nash equilibrium in unstable in

the sense that it is different from the ESS equilibrium. For that, we compare

the performance of the Nash equilibrium and the ESS equilibrium. Figure 3.1

compares the evolution of the demand aj (top) and the reward rj (bottom) for

cn = 1000, n = 10 clients with the same price pn = 11. The horizontal dotted

red line shows the Nash equilibrium and the horizontal solid red line represents

the ESS equilibrium. The dotted and solid blue lines correspondingly converge

to their horizontal red lines, which shows that Nash equilibrium is different from

ESS and hence Nash equilibrium is not a stable point in the finite case.

We then examine the case when different clients are using different strategies.

Figure 3.2 shows the scenario where 1 client is using the ESS strategy and n− 1

clients are using the Nash strategy (where the number of clients n = 10). This

figure shows that ESS dominates Nash in the sense that ESS client represented

by the solid green line gets a higher reward than the other n − 1 clients and

also has a higher demand, while the case when all clients are implementing Nash

strategy are represented by the solid blue lines for reference. It is clear from

the plots that the performance of users in interactive Nash equilibrium strategy

which is represented by dotted blue line as indicated in the legend is even lower

than the solid blue line which represents the pure nash when all users are using

the same Nash strategy. It should be noted that as we have the same price for

all users we only see 3 lines as all the other users have the same demand and the

same reward which would result in the same equilibrium.

3.5.2 Infinite user scenario

Next we numerically illustrate that in the infinite case i.e. for large number of

clients Nash and ESS equilibria converge to the same point. Here we extend the

case of from Figure 3.2 to n = 1000 and present in Figure 3.3 the evolution of the

client demand aj (top) and client reward rj (bottom). Note that the capacity

cn = 100000 and the price is pn = 11 for all clients. It can be clearly seen that

the trajectories of Nash and ESS equilibria converge to the same point which
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means that Nash equilibrium is stable for large number of users i.e. the mean

field case. It should be noted that as we have the same price we only plot one

user of each type for clarity.

3.5.3 Heterogeneous pricing scenario

In this section we numerically extend the analysis to the case of different pricing

(i.e. heterogeneous pricing scenario) and show that our framework works with

different price scenarios. We have included some numerical results to corroborate

our claim. Notice that these results are obtained by considering a modified

reward function where a different price per user is used, then we find the best-

response function for this case and we feed these new best responses in the

Ishikawa based algorithm.

In Figure 3.5 we presents the plot for the evolution of the demand aj (top)

and the reward rj (bottom) for different prices in the finite case with n = 4. The

prices are p1 = 19.4684, p2 = 10.5606, p3 = 18.3646 and p4 = 10.2081. which

are generated randomly. For clarity we only plot the first two users with prices

p1 = 19.4684 and p2 = 10.5606 (represented by color blue and green respectively

in the legend) to demonstrate our point. As the users have different prices it

leads to different Nash equilibria represented in the plots by (o) markers when

all users are employing Nash equilibrium strategy. Then we also illustrate the

curves when all users are employing ESS strategy represented in the plots by

(�) marker. Here we numerically demonstrate two points at once. Firstly, our

framework is applicable to the finite heterogeneous case i.e. for different price

scenario. Secondly the ESS and Nash are different in the heterogeneous finite

scenario.
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Chapter 4

Conclusion and Future Work

Future networks will have to handle higher data rate, offer lower latency and

efficient spectrum and bandwidth utilization in an energy efficient manner. This

will required a paradigm shift in the fundamental architecture of the network,

which will make individual nodes more independent, intelligent, and able to

make decisions about how, when and where to communicate. This distributed

network architecture poses several design challenges. In this thesis we have tried

to address a subset of those challenges such that it could be possible to make

intelligent decisions based on the limited information and still able to converge

to a local maximum equilibrium point.

4.1 Extremum Seeking

In this section we summarize our extremum seeking framework with contribu-

tions and their implications. We consider a distributed systems scenario with

stochastic state dependent reward function, which needs to satisfy Lipschitz con-

tinuity condition. Each node has a numerical value of the reward available in

feedback at each time slot. We have extended the classical Nash Seeking with

sinus perturbation method [FKB12b] to the case of discrete time and stochas-

tic state-dependent payoff functions. Our contribution is the development of a

deterministic perturbation algorithm which is able to converge locally to a state

independent Nash equilibrium according to Theorem 1 in Chapter 2 for vanish-

ing step size and provide an error bound according to Theorem 2 in Chapter

2 for fixed step size. We also provide the convergence time for the extremum

seeking algorithm according to Corollary 1 in Chapter 2. The error bound for

77
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the algorithm and the convergence time to be in a close neighborhood of the

Nash equilibrium..

Algorithm: For ‘model free’ scenarios (i.e. when the model of the reward

function is not known by all the nodes) we have developed a stable extremum

seeking algorithm that is able to converge to the Nash equilibrium when initial-

ized in the neighborhood of the Nash equilibrium point. Our proposed discrete

time learning algorithm uses sinus perturbation, for continuous action games

where each node has only a numerical realization of own-payoff at each time.

This extremum seeking algorithm is able to find the local minima using just the

numerical value of the stochastic state dependent payoff function at each discrete

time sample. Note that since the payoff function may not necessarily be concave,

finding a global optimum in reasonable time can be difficult in general even in

deterministic case (fixed state) and known closed-form expression of payoff. The

algorithm ensures tractability which can be a requirement in certain engineering

applications.

Following is a list of the three distributed wireless system scenarios that we

have considered. Numerical results for each of these cases was also provided for

illustration.

• Distributed power control in femto cells using bayesian density tracking.

• Distributed transmit beamforming with 1-bit feedback for LoS-MISO chan-

nels.

• Distributed stochastic learning for continuous power control in wireless

networks.

For certain applications where the reward function may not satisfy the Lips-

chitz continuity condition, we may still be able to use our extremum seeking algo-

rithm, but may not mathematically be able to proved or ensure the convergence

or stability. This may not be acceptable in some mission critical applications,

and may be acceptable in others.

4.2 Resource Sharing Games in Cloud Networks

In this section we summarize our Resource Sharing Framework with contribu-

tions and their implications.
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Resource Sharing Problem: For resource sharing in cloud networks with finite

number of user, each users has a specific reward which needs to be maximized.

For our specific type of resource sharing reward function, we have proved that

Nash equilibrium point is unstable for our reward function and have identified

two stable strategies namely finite evolutionary stable strategy (F-ESS) and finite

myopic mean field response (F-MFR). We extend this to the asymptotic case,

i.e. when the number of users approaches infinity, then the Nash equilibrium

point becomes evolutionary stable, which means that it cannot be dominated or

invaded by another competing strategy.

Satisfaction Problem: We consider another type of resource utilization prob-

lem where each users has a minimum demand which need to be satisfied. These

type of models, more accurately capture the requirements of the users, where

the maximum requirement of the users is known. We provide necessary and

sufficient conditions for the existence of satisfactory solution where each user is

satisfied anywhere anytime.

Algorithms and Numerical Results: We provide an algorithms which are able

to respectively converge to the equilibria mention above. We develop a faster

iterative distributed algorithm that converges to the mean-field equilibrium with

a convergence order of four. We also develop a distributed iterative algorithm

for large scale systems using Mean Field theory and apply them to finite scale

systems. In large scale systems for the same price we were able to show that the

reward for a social users in better than reward for a selfish user.

The resource sharing problem is a general problem that arises in various

application domains. We are able to derive fundamental results which scale to

large scale systems. We have studied resource sharing games in cloud networks,

however our analysis is applicable to other resources sharing scenarios as well.

The reward function considered here has a very specific structure which is based

on the percentage of resources available to each node. There may be scenarios

where the percentage of resources can be re-interpreted as the access probability

for random access scenarios.

4.3 Future Work

The future work could focus on

• the extension of the extremum seeking framework to non-Lipschitz continu-
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ous reward functions, as Lipschitz continuity is not a very easy condition to

satisfy in most engineering applications. This extension if possible would

enable our framework to be applicable to a wider range of engineering

problems.

• Additionally the extremum seeking framework could be extended to the

case of vectors of action, where each users is able to perform multiple

actions based on multiple rewards. This type of extension could be very

useful in systems where there are multiple inputs to a system.

• So far all of the results achieved are for the local stability, it would be

interesting to extend the analysis to global stability condition for Nash

equilibrium for both deterministic and stochastic payoff functions.

• the resource sharing framework in cloud networks could be extended to

dynamic pricing where the pricing function depends on the user’s demand.

This type of dynamic pricing reward would be more flexible in dealing with

dynamic demand of the users and will be able to incentivise the uniform

distribution of the demand thus discouraging peak load outages.



Appendix A

Proof of convergence in

Extremum Seeking

A.1 Variable Step Size: Proof of Theorem 1

The Theorem 1 states that Under Assumption A1, the learning algorithm con-

verges almost surely to the trajectory of a non-autonomous system given by

d

dt
âj,t = zjbj sin(Ωjt+ φj)ES (rj(S,at))

aj,t = âj,t + bj sin(Ωjt+ φj)

The proof follows in several steps.

• The first step provides conditions for Lipschitz continuity of the expected

payoff which is given in Lemma 1. From Lemma 2 we have that ∀j, t,
fj(t,a) := bjzj sin(Ωjt+ φj)ESrj(S,a), is Lipschitz over the domain A

• Second step: the learning rates are chosen such that they satisfy assump-

tion A1.

• Third step: we check the noise conditions.

Lemma 1. Let

(S,a) 7−→ rj(S,a) ∀ S ∈ S,∃ Lj,S such that

(C1) : ‖rj(S,a)− rj(S,a
′)‖ ≤ Lj,S‖a− a′‖ ∀(a,a′) ∈ A,

a 6= a′

(C2) : ESLj,S < +∞

81
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then the mapping a 7−→ ESrj(S,a) is Lipschitz with Lipschitz constant Lj :=

ESLj,S

Proof of Lemma 1. Suppose that a 7−→ ESrj(S,a) is Lipschitz with Lipschitz

constant Lj,S, then by Jensen’s inequality one has

‖ESrj(S,a)− ESrj(S,a
′)‖ ≤ ES‖rj(S,a)− rj(S,a

′)‖

By condition C2, ESLj,S < +∞. Let Lj be ESLj,S. Then

‖ESrj(S,a)− ESrj(S,a
′)‖ ≤ Lj‖a− a′‖

This completes the proof.

Remark 6. • Note that under C1 and C2 the expected payoff vector r :=

(rj)j∈N is Lipschitz continuous with L := maxj Lj,

• If S is a compact set and S 7−→ Lj,S is continuous then a 7−→ ESrj(S,a)

is Lipschitz [In particular, the condition C2 is not needed]

We shall prove the above remark by Reductio ad absurdum. To prove the second

statement of Remark 6 we use compactness and continuity argument. We start

from Bolzano–Wierstrass theorem which states that: For any k, any continu-

ous map a 7−→ f(k,a) over a compact set A has at least one maximum, i.e.,

sup f(k,a) = maxa∈A f(k,a) < ∞. The proof of this statement can be easily

done by contradiction. Suppose sup f(k,a) = ∞. Then there exists a sequence

(al)l such that al ∈ A but f(k,al) −→ ∞ as l goes to infinity. This is impossible

because A is compact which implies that f(k,A) = {f(k,a) |a ∈ A} is bounded

by continuity.

Since S is compact and S 7−→ LS is continuous, supS∈S LS is also finite.

Remark 7. If rj(S,a) is continuously differentiable with the respect to a then

it is sufficient to check that the expectation of the gradient of rj(S,a) is bounded

(in norm).

if S is in Euclidean Space

• rj(S,a) is differentiable w.r.t a

• rj(S,a), ∇arj(S,a) are continuous in S
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• rj(S,a), ∇arj(S,a) are absolutely integrable in S and ESrj(S,a) is con-

tinuous in a.

then

E[∇arj(S,a)] = ∇aE[rj(S,a)]

which can be written as
∫

S

∇arj(S,a)γ(dS) = ∇a

∫

S

rj(S,a)γ(dS)

where γ is the measure of S state space. For more details on the above conditions

please refer to [SR64].

Since fj(.) is a function of time and the actions of nodes, we need a uniform

Lipschitz condition on fj(.).

We have

|fj(t,a)− fj(t,a
′)| ≤ bjzj | sin(Ωjt+ φ)|

[
‖ESrj(S,a)− ESrj(S,a

′)‖
]

But one has | sin(.)| ≤ 1. Hence,

|fj(t,a)− fj(t,a
′)| ≤ bjzj

[
‖ESrj(S,a)− ESrj(S,a

′)‖
]

by using Lemma 1 we get,

|fj(t,a)− fj(t,a
′)| ≤ bjzjLj‖a− a′‖

This implies that the Lipschitz constant of fj is less than the one of rj times

the factor bjzj .

Finally, we check the noise conditions. The recursion equation is given by

aj,k+1 = aj,k + λk[fj(k,ak) +Mj,k+1]

where Mj,k+1 is a martingale difference sequence. By definition the martin-

gale sequence for the algorithm is given as

Mj,k+1 := zjbj sin(Ωjtk + φj)[r̃j,k+1 − ES[r̃j,k+1(S,ak+1)]]

which satisfied the condition E[Mk+1|Fk] = 0 for k ≥ 0 almost surely (a.s.)

Lemma 2. If ak ∈ A then the martingale is square-integrable with

E[‖Mk+1‖2|Fk] ≤ ć(1 + ‖ak‖2) ∀k
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Proof of Lemma 2. Let r̃j,k+1 be the realization the payoff at time k + 1. The

expected value of this random variable can be bounded above the norm of ak.

Let Mj,k+1 := zjbj sin(Ωjtk + φj)(r̃j,k+1 − ES[r̃j,k+1(S,ak+1)])

‖Mj,k+1‖ ≤ |zj ||bj ||(sin(Ωjtk + φj)|‖r̃j,k+1

−ES[r̃j,k+1(S,ak+1)]‖)
≤ zjbj(‖r̃j,k+1‖+ ‖ES[r̃j,k+1(S,ak+1)]‖)
≤ zjbj(‖r̃j,k+1‖+ ES‖r̃j,k+1(S,ak+1)‖)
≤ zb(‖r̃j,k+1‖+ ES‖r̃j,k+1(S,ak+1)‖)

Where | sin(.)| ≤ 1, z := max |zj |, b := max |bj |, ‖r̃j,k+1‖ is bounded because

of the Lipschitz condition as mentioned in C1, which is shown below.

‖rj(S,ak)− rj(S, 0)‖ ≤ Lj,S‖ak − 0‖ ∀(ak) ∈ A (A.1)

‖rj(S,ak)‖ ≤ ‖rj(S, 0)‖ + Lj,S‖ak‖
≤ β1,S + Lj,S‖ak‖

Where β1,S := ‖rj(S, 0)‖. The above equations A.1 show that ‖rj(S,a)‖ is

bounded by β1,S+Lj,S‖a‖. By taking expectation of the above set of inequalities

we get.

ES‖rj(S,ak)‖ ≤ ES‖rj(S, 0)‖ + ESLj,S‖ak‖ (A.2)

≤ Lj‖ak‖+ ES‖rj(S, 0)‖
≤ Lj‖ak‖+ β2

Where β2 := ES‖rj(S, 0)‖, Lj := ESLj,S. The above set of inequalities A.2 show

that ES‖rj(S,a)‖ is bounded.

Combining the results of inequalities in (A.1) (A.2) we can get

‖Mj,k+1‖2 ≤ z2b2(β1,S + Lj,S‖ak‖+ Lj‖ak‖+ β2)
2

≤ 2z2b2((β1,S + β2)
2 + (Lj,S + Lj)

2‖ak‖2)
≤ 4z2b2(β21,S + β22 + (L2

j,S + L2
j)‖ak‖2)
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Taking ES over the above inequalities we get:

ES‖Mj,k+1‖2 ≤ 4z2b2(ESβ
2
1,S + β22 + (ESL

2
j,S + L2

j)‖ak‖2)
≤ 4z2b2(β + Ĺj‖ak‖2)
≤ ć(1 + ‖ak‖2)

Where Ĺj := ESL
2
j,S + L2

j , β := ESβ
2
1,S + β22 and 4z2b2(β + Ĺj) ≤ ć

This completes the proof.

We now combine the above three steps to derive almost sure convergence to

an ODE. To do so, we interpolate the stochastic process ak (an affine interpo-

lation) in order to get a continuous time process following the lines of Borkar

[Bor08] Chapter 2 Lemma 1 for the case of non-autonomous system. The solution

of the non-autonomous differential equation

d

dt
at = f(t,at)

is a∗t . The gap between the a∗t and interpolated process is given by

lim
tk−→∞

sup
t∈[tk ,tk+T ]

‖āt − a∗t‖ = 0 a.s.

i.e. it vanishes almost surely (a.s.) for asymptotic interval of length T > 0 In

order to calculate the bound we need to define a few terms which are helpful in

obtaining a compact form of the bound.

sup
t∈[tk ,tk+T ]

‖āt − atkt ‖ ≤ KT,ke
LT + CT sup

ḱ≥0

λk+ḱ

= CT (λk+ḱ + L
∑

ḱ≥0

λ2
k+ḱ

)

+ sup
ḱ≥0

‖δk,k+ḱ‖
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where

KT,k := CTL
∑

ḱ≥0

λ2
k+ḱ

+ sup
ḱ≥0

‖δk,k+ḱ‖

δk,k+ḱ := ξk+ḱ − ξk

ξk :=
k−1∑

ḱ=0

λḱMḱ+1

CT := ‖r0‖+ L(C0 + ‖r0‖T )eLT <∞
L := max

j∈N
ES[Lj,S]

rk := [r1,k, . . . , rN,k]

P

(
sup
ḱ

‖aḱ‖ < C0

)
= 1

The above bound is derived following the steps of the proof of Lemma 1 in

chapter 2 of [Bor08]. From the above bound we can conclude that

lim
tk−→∞

sup
t∈[tk ,tk+T ]

‖āt − a∗t‖ = 0 a.s.

A.2 Fixed Step Size: Proof of Theorem 2

Theorem 2 states that under Assumption A2, the learning algorithm converges

in distribution to the trajectory of a non-autonomous system given by

d

dt
âj,t = zjbj sin(Ωjt+ φj)ES (rj(S,at))

aj,t = âj,t + bj sin(Ωjt+ φj)

Proposition 1. Let ¯̂at be the interpolated version the trajectory of our algorithm

at time t and ât is the trajectory of the the ODE at time t. Under assumption

A2 ¯̂at converges to ât as step size λ vanishes i.e. λ −→ 0.

E sup
t∈[0,T ]

[‖¯̂at − ât‖2]
1
2 = C̃T

√
λ

Proposition 1 implies Theorem 2.

Proof of Proposition 1. To prove the above proposition we start with a fixed step

size λ > 0.

• Time Scale. t̃k :=
∑k

ḱ=1
λ = kλ, for k ≥ 0
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• The cumulative noise at iteration k is ξk =
∑k−1

ḱ=0
λMḱ+1 = λ

∑k−1

ḱ=0
Mḱ+1

• Define the (affine) interpolated process from {âḱ}ḱ≥0 rewritten as

âj,k+1 = âj,k + λ(fj(k, âk) +Mk+1).

The advantage of the interpolated process is that it is defined for any

continuous time by concatenation. The affine interpolation writes ¯̂at :=

âk+( t−t̃k
λ )(âk+1− âk) if t ∈ [kλ, (k+1)λ[ which is now in continuous time.

Note that constant learning rate or constant step size λk = λ is suitable for

many practical scenarios. It is used for example in numerical analysis: Euler’s

Scheme (1st Order), Runge Kutta’s scheme (4th Order), etc. Our algorithm

writes

(∗∗)
{
âj,k+1 = âj,k + λbjzj sin(t̃kΩj + φj)r̃j,k+1

aj,k = âj,k + bj sin(t̃kΩj + φj)

where λ is a constant learning rate, our aim is to analyze (∗∗) asymptotically

when λ is very small. In order to prove an asymptotic pseudo-trajectory result

for constant learning rate, we need additional assumptions for the sequence gen-

erated by the powers. The key additional assumption is the uniform integrability

of that process. We need the conditions C1 C2, which translate into

- From Remark 7: gradient of the expectation of payoff is bounded

- From Lemma 2: Square of the martingale is bounded

- Uniform Integrability of rj(S,a)

and ât is the solution of ˙̂at = f(t, ât) starting from â⌊ t
λ
⌋

¯̂at̃k+T
=

T∑

ḱ=1

(¯̂at̃
k+ḱ

− ¯̂at̃
k+ḱ−1

)
︸ ︷︷ ︸

=λ(f(⌊
t̃
k+ḱ−1

λ
⌋,â

⌊
t̃
k+ḱ−1

λ
⌋

)+M
ḱ+1

)

+¯̂at̃k

Using the recursive stochastic equation (¯̂at̃
k+ḱ

−¯̂at̃
k+ḱ−1

) = λ(f(⌊ t̃k+ḱ−1

λ ⌋, â
⌊
t̃
k+ḱ−1

λ
⌋
)+

Mk+ḱ+1) one gets
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¯̂at̃k+T
=

T∑

ḱ=1

(t̃k+ḱ − t̃k+ḱ−1)f(⌊
t̃k+ḱ−1

λ
⌋, â

⌊
t̃
k+ḱ−1

λ
⌋
)

+

T∑

ḱ=1

λMk+ḱ+1 +
¯̂at̃k , (A.3)

By rewriting (t̃k+ḱ− t̃k+ḱ−1) =
∫ t̃

k+ḱ

t̃
k+ḱ−1

ds the last expression can be expanded

as

¯̂at̃k+T
=

T∑

ḱ=1

∫ t̃
k+ḱ

t̃
k+ḱ−1

f(⌊
t̃k+ḱ−1

λ
⌋, â

⌊
t̃
k+ḱ−1

λ
⌋
)ds

+

T∑

ḱ=1

λMk+ḱ+1 +
¯̂at̃k

This implies that

¯̂at̃k+T
=

T∑

ḱ=1

∫ t̃
k+ḱ

t̃
k+ḱ−1

f(⌊
t̃k+ḱ−1

λ
⌋, â

⌊
t̃
k+ḱ−1

λ
⌋
)ds

+(ξk+T − ξk) + ¯̂at̃k

¯̂at̃k+T
=

T∑

ḱ=1

∫ t̃
k+ḱ

t̃
k+ḱ−1

f(⌊ s
λ
⌋, ¯̂a⌊ s

λ
⌋)ds

+(ξk+T − ξk) + ¯̂at̃k

Now we use Burkholder’s inequality which states the following: For an α > 0

there exists two constants c1 > 0 and c2 > 0 such that

c1E[
k∑

ḱ=1

‖âḱ − âḱ−1‖2]α/2 ≤ E[sup
ḱ≤k

‖âḱ‖]α

≤ c2E[
k∑

ḱ=1

‖âḱ − âḱ−1‖2]α/2

A direct application to the process ηk := λ
∑

ḱ≤k ‖Mḱ‖2 gives

c1E[

k∑

ḱ=1

‖ηḱ − ηḱ−1‖2]α/2 ≤ E[sup
ḱ≤k

‖ηḱ‖]α

≤ c2E[

k∑

ḱ=1

‖ηḱ − ηḱ−1‖2]α/2
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We consider the inequality of ηk and we use discrete Gronwall inequality which

states that if

ǫk+1 ≤ C + L

k∑

ḱ=0

λǫḱ

where C,L, ǫk > 0 ∀k ≥ 0 then one gets

ǫk+1 ≤ CeLλk

Taking

ǫk := E[sup
ḱ≤k

‖¯̂at̃
ḱ
− ât̃

ḱ
‖2]1/2

in the above inequality and setting

C := λTK1

√
1 + C2

0 +
√
λK2(1 + C2

0 ),

L := max
j∈N

ES[Lj,S]

for some K1,K2 = c2 with

K1 := max(c1, c2

√
1 + C2

0 ), C0 = E[sup
ḱ≥0

‖¯̂aḱ‖2]1/2

yields to

E[sup
ḱ≤k

‖¯̂at̃
ḱ
− ât̃

ḱ
‖2]1/2 ≤

√
λC̃T

This shows that E[supḱ≤k ‖¯̂at̃ḱ − ât̃
ḱ
‖2]1/2 is bounded and implies Proposition

1. When λ −→ 0 we have a weak convergence of the interpolated process to a

solution of the ODE. The error gap is
√
λC̃T which vanishes as λ −→ 0.

This completes the proof.

A.3 Stability analysis, Proof of Theorem 3

The proof of theorem 3 follows the steps in [FKB12b]. The main steps are

provided here.

We denote the error relative to the Nash equilibrium as ãj,t = âj,t−µj(t)−a∗j
and formulate the error system in the time scale τ = Ωt.

d

dτ
ãj,τ = zjµj(τ)f̄j(ãj,τ + µ(τ) + a∗) (A.4)
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Applying averaging theory to equation (A.4) we can write it as follows, where

â
avg
j,τ represents the average action of node j.

d

dτ
ã
avg
j,τ = ǫZj lim

T−→0

1

T

∫ T

0
zjµj(τ)f̄j(ã

avg + µ(τ) + a∗)dτ (A.5)

The equilibrium ãe = [ãe1, . . . , ã
e
N ] of (A.5) satisfies

0 = lim
T−→∞

1

T

∫ T

0
zjµj(τ)f̄j(ã

e + µ(τ) + a∗)dτ (A.6)

for all j ∈ {1, . . . , N} we postulate that ãej (which is the equilibrium of the

average system) has the form

ãej =
N∑

m=1

αm
j bj +

N∑

m=1

N∑

t≥m

βmn
j bmbt +O(max

j
b3j ) (A.7)

By expanding f̄j about a∗ in (A.6) and substituting (A.7) the unknown

coefficients αm
j and βmn

j can be determined.

The Taylor series expansion of f̄j about a∗ in (A.6) for an N-player game is

f̄j(a
∗ + ν) =

∞∑

t1=1

. . .

∞∑

tN=1

νt11 . . . ν
tN
N

t1! . . . tN !

(
∂t1+...+tN f̄j

∂at11 . . . ∂a
tN
N

)
(a∗) (A.8)

Where νj = ãej + µj(τ)

substituting (A.8) in (A.6) and computing the average of each term gives

0 =
1

T

∫ T

0
zjµj(τ)

∞∑

t1=1

. . .

∞∑

tN=1

νt11 . . . νtNN
t1! . . . tN !

(
∂t1+...+tN f̄j

∂at11 . . . ∂a
tN
N

)
(a∗)dτ (A.9)

=
1

T

∞∑

t1=1

. . .

∞∑

tN=1

∫ T

0
zjµj(τ)

νt11 , . . . , ν
tN
N

t1! . . . tN !

(
∂t1+...+tN f̄j

∂at11 . . . ∂a
tN
N

)
(a∗)dτ (A.10)

=
∞∑

t1=1

. . .

∞∑

tN=1

∫ T

0

µj(τ)(µ1(τ) + ãe1)
t1 , . . . , (µN (τ) + ãeN )tN

t1! . . . tN !

(
∂t1+...+tN f̄j

∂at11 . . . ∂a
tN
N

)
(a∗)

︸ ︷︷ ︸
φ(t1,...,tN )

dτ(A.11)

=

∞∑

t1=1

. . .

∞∑

tN=1

∫ T

0

µj(τ)(µ1(τ) + ãe1)
t1 , . . . , (µN (τ) + ãeN )tN

t1! . . . tN !
φ(t1, . . . , tN )dτ (A.12)

=

∞∑

t1=1

. . .

∞∑

tN=1

φ(t1, . . . , tN )

t1! . . . tN !︸ ︷︷ ︸
Φ(t1,...,tN )

∫ T

0
µj(τ)(µ1(τ) + ãe1)

t1 , . . . , (µN (τ) + ãeN )tNdτ (A.13)

=
∞∑

t1=1

. . .

∞∑

tN=1

Φt1,...,tN

∫ T

0
µj(τ)(µ1(τ) + ãe1)

t1 , . . . , (µN (τ) + ãeN )tNdτ (A.14)
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we are able to exploit the orthogonality of the perturbation frequencies. Now

we expand the terms up to third order.

Before computing the derivatives of these terms we need to present some

simple results, which are based on the conditions Ωj 6= Ωm, Ωj 6= 2Ωm, Ωj 6=
Ωm +Ωt

1

T

∫ T

0
µjdτ = 0 (A.15)

1

T

∫ T

0
µ2jdτ =

b2j

2
(A.16)

1

T

∫ T

0
µ3jdτ = 0 (A.17)

1

T

∫ T

0
µ4jdτ =

3b4j
8

(A.18)

1

T

∫ T

0
µTµjdτ = 0 (A.19)

1

T

∫ T

0
µTµtµjdτ = 0 (A.20)

1

T

∫ T

0
µTµ

2
jdτ = 0 (A.21)

1

T

∫ T

0
µ2Tµ

2
jdτ =

b2mb
2
j

4
(A.22)

1

T

∫ T

0
µTµtµjdτ = 0 (A.23)

By Simplification we get.

0 =
b2j

2


ãej

∂2f̄j

∂a2j
(a∗) +

N∑

m6=j

ãej
∂2f̄j

∂aj∂am
(a∗)

+

(
1

2
(ãej)

2 +
b2j

8

)
∂3f̄j

∂a3j
(a∗) + ãej

N∑

m6=j

ãeT
∂3f̄j

∂a2j∂am
(a∗)

+

N∑

m6=j

(
1

2
(ãej)

2 +
b2j

4

)
∂3f̄j

∂aj∂a2m
(a∗)

+

N∑

m6=j

N∑

t>m
t6=j

ãeT ã
e
t

∂3f̄j

∂aj∂am∂at
(a∗)


+O(max

j
b5j) (A.24)

Here we have noted assumption A3, put in the value of (A.7) and computed

the average of each term.
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Substituting (A.6) in (A.26) and matching the first order powers of bj gives




0
...

0


 = b1Λ




α1
1
...

αN
1


+ . . .+ bNΛ




α1
1
...

αN
N


 (A.25)

which implies that αj
m = 0 for all j,m such since Λ is nonsingular by Assumption

4. Similarly matching the second order terms of bj and substituting αj
m = 0 we

get




0
...

0


 =

N∑

m=1

N∑

t>m

bmbtΛ




β1mn
...

βNmn


+

N∑

m=1

b2m


Λ




β1mm
...

βNmm


+ πm


 (A.26)

[β1mm, . . . , β
T−1
mm , βTmm, β

m+1
mm , . . . , βNmm]T = −Λ−1πm (A.27)

πm =

[
1

4

∂3f̄1

∂a1∂a2m
(a∗), . . . ,

1

4

∂3f̄T−1

∂aT−1∂a2m
(a∗),

1

8

∂3f̄T

∂a3m
(a∗),

1

4

∂3f̄m+1

∂am+1∂a2m
(a∗), . . . ,

1

4

∂3f̄N

∂aN∂a2m
(a∗)

]T
(A.28)

thus βjmn = 0 for all j,m, n when m 6= n and βjmm is given by (A.27). The

equilibrium of the average system is

ãej =

N∑

m=1

βmm
j b2m +O(max

j
b3j ) (A.29)

By again utilizing Taylor series expansion one can show that the Jacobian

Ψave = [ψj,m]N×N of (A.5) at ãej has elements given by

ψj,m = ǫZj lim
T−→0

1

T

∫ T

0
µj(τ)

∂f̄j

∂am
(ãe + µ(τ) + a∗)dτ

=
1

2
ǫZj

∂2f̄j

∂aj∂am
(a∗) +O(ǫmax

j
b3j ) (A.30)

which is Hurwitz by assumption A3 and A4 for sufficiently small bj , which

means that the equation (A.29) of the average system (A.5) is locally exponen-

tially stable, i.e. there exist M,m > 0 such that
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|ãave(τ)− ãe| < Me−tm|ãave(0)− ãe|.
From general averaging theory (Khalil [2002], Fink [1947]) the system (A.5)

retains the stability properties of the average system.

This completes the proof.

A.4 Conditions for Example A

Following are some details about how to obtain a∗ for our application.

gij := |hij |2

ḡij := Eggij = Eg|hij |2

From remark 7 we can write EG
∂γj(G,a∗)

∂aj
= ∂

∂aj
EGγj(G,a

∗) = 0. Solving N

equations we have the following matrix form.

a∗ :=




a∗1

a∗2
...

a∗N



, Ḡ :=




ḡ11 ḡ12 · · · ḡ1N

ḡ21 ḡ22 · · · ḡ2N
...

...
. . .

...

ḡN1 ḡN2 · · · ḡNN



,

b :=




ωḡ11
λ − σ2

ωḡ22
λ − σ2

...
ωḡNN

λ − σ2




The above equation can be written in the compact form as

a∗ = Ḡ−1b

Ḡ should be invertible and all the elements in the vector ā should be strictly

positive as they are a linear combination of power and gains which are positive.

We can also write ωḡjj > λσ2. For this example we can write

EG[gjj] >
∑

j′ 6=j

EG[gjj′] ∀j, j′ 6= j

If this condition is satisfied then Ḡ is invertible.

As G is a matrix of random channel gains it is almost surely invertible. To

show the invertibility of this matrix we just need to show that the det(Ḡ) 6= 0.

The set of invertible matrices G where G ∈ G.



Appendix B

Proofs in Mean Field Resource

Sharing

Proof of Proposition 1:. The proof is in several steps:

(i) The payoff function rj of the cloud game (given in Equation (3.1)) is

obtained by permutation of index of the players and the actions. Moreover, the

action space is common. Hence, the game is symmetric.

There is no asymmetric interior equilibrium. Since the game is reduced to

a subgame between the active players only, all the players will use symmetric

strategies in equilibrium.

(ii) A direct computation of the first order and second order derivatives of rj

shows that α ∈ [0, 1] is a sufficient condition for the concavity of the payoff with

respect to own-action, i.e., xj −→ rj(xj , x−j) is concave. With the participation

constraint, we need to examine only the possible interior equilibria. Since it is

an open set, the derivative should vanish. This means that

x(α−1)/2(
αcn

npn
G)1/2 − xα

n
−G = 0, G ,

1

n

∑

i6=j

aαi

and the unique symmetric interior equilibrium candidate is a∗NE = αn−1
n

cn
n

pn
. Note

that the equilibrium demand increases with α, decreases with the charged price

and increases with the capacity per user. The equilibrium payoff is positive and

if α ≤ 1 each player will participate in equilibrium.

(iii) Using the equilibrium payoff at the equilibrium candidate from (ii), one

gets that G +
aαj
n > αG which means that the aggregative term from the other

players should not exceed a certain quantity G∗ and α < 1 + 1
n−1 , It trivially

limits the number of users to be n < α
α−1 .

94
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(iv) Nonparticipation into the game will result to zero-payoff. Thus, the

equilibrium payoff is positive or zero by dominance.

(v) The game is an aggregative game. A simple of aggregative games is

the one in which the payoff function can be written into the following form :

r̃j(aj, φ(a)), where φ is the aggregative term. Our game belongs to that class

with the aggregative term being mn.

(vi) The total demand in equilibrium is α (n−1)cn
npn

. Thus, by designing the

price pn to be p∗n = αn−1
n the equilibrium demand is to total available resource

cn, i.e., no resource is wasted in equilibrium. The optimal price p∗n −→ α as n

grows.

(vii) A direct differentiation at the interior of the domain shows that ∂2
ajG̃

rj ≤
0 whenever G > aαj where G̃ =

∑
i a

α
i . This completes the proof of Proposi-

tion 1.

Proof of Proposition 2:. The relative payoff is

cn
aαj − (a∗)α

aαj
n + (n− 1)(a∗)α

− pn(aj − a∗)

By differentiating with the respect to aj , a first order condition equivalent

a∗f−ess = α cn
npn

.

The second order condition is satisfied for α ≤ 1.

Proof of Proposition 3:. Simple differentiation of the payoff function (first and

second order) yields to αcn
npn

aα−1 1
mα

n
− 1 = 0 and the second derivative is negative

for α ≤ 1. If α > 1 the mean-field taking strategy leads to unboundedness or

non-participation.

Proof of Proposition 4:. (i) The first item statement can be proved following

similar lines as above.

(ii) the cross derivative ∂2ajmr̄ is given by −α2caα−1
j m−α−1 ≤ 0. Hence the

game is submodular.

(iii) the best response to mean-field is obtained by direct computation.

(iv) The fixed-point is m∗ = αc
p .

(v) the equilibrium converges to m∗ = αc
p whenever cn

n −→ c and pn −→ p

as n goes to infinity.

This completes the proof of Proposition 4.
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Proof of Proposition 5:. Letm 6= m∗ andmǫ , ǫm+(1−ǫ)m∗ = m∗+ǫ(m−m∗)

for ǫ 6= 1. It follows that m∗ −m = m∗−mǫ

ǫ . Let A be the quantity r̄(m∗,mǫ) −
r̄(m,mǫ). Then,

A = p

[
c

p

(
(m∗)α −mα

mα
ǫ

)
− (m∗ −m)

]
(B.1)

=
p

αmα
ǫ

[m∗((m∗)α −mα)− α(m∗ −m)mα
ǫ ] (B.2)

where we have used that the fact that c
p = (m∗)

α . The function x 7−→ xα is

concave in A. Therefore, (m∗)α −mα > α(m∗)α−1 (m∗ −m) . By multiplying by

m∗ both sides, one gets m∗((m∗)α −mα) > α(m∗)α (m∗ −m) . Thus,

A >
p

αmα
ǫ

[α(m∗)α(m∗ −m)− α(m∗ −m)mα
ǫ ] (B.3)

=
p

mα
ǫ

(m∗ −m) [(m∗)α −mα
ǫ ] (B.4)

=
p

mα
ǫ

m∗ −mǫ

ǫ
[(m∗)α −mα

ǫ ] (B.5)

=
p

ǫmα
ǫ

(m∗ −mǫ) [(m
∗)α −mα

ǫ ] > 0 (B.6)

where the last inequality follows because xα is nondecreasing for α > 0 and

m∗ 6= mǫ. We conclude that r̄(m∗, ǫm + (1 − ǫ)m∗) > r̄(m, ǫm + (1 − ǫ)m∗) for

any ǫ ∈ (0, 1) and m 6= m∗. In particular, the result is true for the case of interest

i.e., for ǫ ∈ (0, ǭm). This completes the proof.

Proof. Proof of Proposition 8: If the function g(.) is sufficiently many times

differentiable with simple zero, and m0 is a initial guess that is close enough to

m∗,

Let us define the error ǫt+1 , mt+1 −m∗ and qj = d
(j)g(m∗)

j! where d
(j) is a

jth order differential operator.

We claim that ǫt+1 can be expressed as

ǫt+1 = c2ǫ
4
t +O(ǫ5t )

where c2 ,
(1+q1)q2[(5+3q1)q22−q1(1+q1)q3]

q31

This means that locally, the scheme (4*) has fourth-order convergence rate

(see Definition 12). Note that using the notation from Definition 12, we have

c1 , |c2| and ηt+1 = |ǫt+1|.
Lets now prove the above claim:
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Using equation (4*) we can write equation (B.7)

ǫt+1 = ǫt −
g(mt)

A1
− (1 + wt)

g(ȳt)

A2
(B.7)

where A1 and A2 are respectively given by equation (B.8) (B.9)

A1 , ∆g[bt,mt] (B.8)

A2 ,
(ȳt −mt)∆g[bt,mt]− (bt −mt)∆g[ȳt,mt])

ȳt − bt
(B.9)

Now lets find the expression of ∆g[bt,mt] =
g(bt)−g(mt)

g(mt)
and ∆g[ȳt,mt] =

g(ȳt)−g(mt)
g(mt)

.

We use the relation g(mt) =
∑4

l=1 qlǫ
l
t + O(ǫ5t ) (i.e. a Taylor expansion of

g(mt) around m∗ till order 4). Using Taylor expansion of g(bt) and g(ȳt) and

after several algebraic manipulations we get

g(bt) = g(mt + g(mt))

= 0 + (ǫt + g(mt))q1 + q2(ǫt + g(mt))
2

+q3(ǫt + g(mt))
3 + c4(ǫt + g(mt))

4 +O(.) (B.10)

g(ȳt) = q2(1 + q1)ǫ
2
t +

1

q1
[q1(1 + q1)(2 + q1)q3

−q21q22 − 2q1q
2
2 − 2q22

]
ǫ3t

+
ǫ4t
q21

[
(q31 + 4q21 + 7q1 + 5)q32

−q1q2q3(2q31 + 7q21 + 10q1 + 7)

+q21q4(1 + q1)(q
2
1 + 3q1 + 3)

]
+O(ǫ5t ) (B.11)

Finally, plugging in the values of g(ȳt), g(mt) and g(bt) back in equation (B.7)

and after doing simplification we get

ǫt+1 =
(1 + q1)q2[(5 + 3q1)q

2
2 − q1(1 + q1)q3]

q31
ǫ4t +O(ǫ5t ).

The above equation proves the claim and implies order four convergence.

This completes the proof.

Proof. Proof of Proposition 9: Let t ≥ 2. Using Proposition 8 the algorithm has

a convergence order of 4. From Definition 12 we have c1 = lim supt−→∞
ηt+1

η4t

which implies that ηt+1 ≤ c1η
4
t which can be re written in terms of ηt+1 ≤ c1η

4
t
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We reiterate the recursive equation

ηt ≤ c1η
4
t−1 (B.12)

≤ c1
(
c1η

4
t−2

)4
= c1+4

2 η16t−2 (B.13)

≤ c1+4
1

(
c1η

4
t−3

)16
(B.14)

= c1+4+42

1 η4
3

t−3 (B.15)

≤ c1+4+42+...+4t−1

1 η4
t

0 (B.16)

We remember that for q 6= 1, 1 + q + . . . + qt−1 = qt−1
q−1 . Thus,

ηt ≤ c
4t−1

3
1 η4

t

0 .

This means that the convergence time to be within an η−neighborhood of the

mean-field equilibrium is at most for t satisfying c
4t−1

3
1 η4

t

0 ≤ η where c1 = |c2|
whose value is given in the proof of Proposition 8. Thus,

(η0c
1
3
1 )

4t ≤ ηc
1
3
1 .

By taking the logarithm twice, one gets

T =
1

ln(4)
ln




ln

(
1

ηc
1
3
1

)

ln

(
1

η0c
1
3
1

)



,

which is the announced result.

Proof of Proposition 6:. By assumption, the satisfaction levels s∗i are such that

the condition
∑

i=1 s
∗
i < cn is met. then we compute si(a).

sj(a) =
cna

α
i∑n

j=1 a
α
j

=
cns

∗
i∑n

j=1 s
∗
j

> s∗i

Thus, every user is satisfied.
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