
HAL Id: tel-01149701
https://theses.hal.science/tel-01149701

Submitted on 7 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy efficient resource allocation in cloud computing
environments

Chaima Ghribi

To cite this version:
Chaima Ghribi. Energy efficient resource allocation in cloud computing environments. Networking
and Internet Architecture [cs.NI]. Institut National des Télécommunications, 2014. English. �NNT :
2014TELE0035�. �tel-01149701�

https://theses.hal.science/tel-01149701
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT CONJOINT TELECOM SUDPARIS et L’UNIVERSITE PIERRE ET

MARIE CURIE

Ecole doctorale : Informatique, Télécommunications et Electronique de Paris

Présentée par

Chaima Ghribi

Pour obtenir le grade de

DOCTEUR DE TELECOM SUDPARIS

Energy Efficient Resource Allocation in Cloud
Computing Environments

Soutenue le : 22 Décembre 2014

devant le jury composé de :

Prof. Pascal Lorenz

Prof. Samir Tohmé

Prof. Guy Pujolle

Dr. Lila Boukhatem

Dr. José Neto

Prof. Djamal Zeghlache

Rapporteur

Rapporteur

Examinateur

Examinateur

Examinateur

Directeur de thèse

Université de Haute-Alsace

Université de Versailles Saint-Quentin

Université Paris 6

Université Paris-Sud

Télécom SudParis

Télécom SudParis

Thèse no 2014TELE0035

JOINT THESIS BETWEEN TELECOM SUDPARIS AND UNIVERSITY OF PARIS 6 (UPMC)

Doctoral School : Informatique, Télécommunications et Electronique de Paris

Presented by

Chaima Ghribi

For the degree of

DOCTEUR DE TELECOM SUDPARIS

Energy Efficient Resource Allocation in Cloud
Computing Environments

Defense Date : 22 December 2014

Jury Members :

Prof. Pascal Lorenz

Prof. Samir Tohmé

Prof. Guy Pujolle

Dr. Lila Boukhatem

Dr. José Neto

Prof. Djamal Zeghlache

Reporter

Reporter

Examiner

Examiner

Examiner

Director of thesis

University of Haute Alsace

University of Versailles Saint-Quentin

University of Paris 6

Paris-Sud University

Telecom Sud Paris

Telecom Sud Paris

Thesis no 2014TELE0035

Abstract

Cloud computing has rapidly emerged as a successful paradigm for providing IT

infrastructure, resources and services on a pay-per-use basis over the past few

years. As, the wider adoption of Cloud and virtualization technologies has led

to the establishment of large scale data centers that consume excessive energy

and have significant carbon footprints, energy efficiency is becoming increasingly

important for data centers and Cloud. Today data centers energy consumption

represents 3 percent of all global electricity production and is estimated to further

rise in the future.

This thesis presents new models and algorithms for energy efficient resource allo-

cation in Cloud data centers. The first goal of this work is to propose, develop and

evaluate optimization algorithms of resource allocation for traditional Infrastruc-

tutre as a Service (IaaS) architectures. The approach is Virtual Machine (VM)

based and enables on-demand and dynamic resource scheduling while reducing

power consumption of the data center. This initial objective is extended to deal

with the new trends in Cloud services through a new model and optimization algo-

rithms of energy efficient resource allocation for hybrid IaaS-PaaS Cloud providers.

The solution is generic enough to support different type of virtualization technolo-

gies, enables both on-demand and advanced resource provisioning to deal with

dynamic resource scheduling and fill the gap between IaaS and PaaS services and

create a single continuum of services for Cloud users.

Consequently, in the thesis, we first present a survey of the state of the art on

energy efficient resource allocation in cloud environments. Next, we propose a bin

packing based approach for energy efficient resource allocation for classical IaaS.

We formulate the problem of energy efficient resource allocation as a bin-packing

model and propose an exact energy aware algorithm based on integer linear pro-

gram (ILP) for initial resource allocation. To deal with dynamic resource consoli-

dation, an exact ILP algorithm for dynamic VM reallocation is also proposed. This

algorithm is based on VM migration and aims at constantly optimizing energy ef-

ficiency at service departures. A heuristic method based on the best-fit algorithm

iii

has also been adapted to the problem. Finally, we present a graph-coloring based

approach for energy efficient resource allocation in the hybrid IaaS-PaaS providers

context. This approach relies on a new graph coloring based model that supports

both VM and container virtualization and provides on-demand as well as advanced

resource reservation. We propose and develop an exact Pre-coloring algorithm for

initial/static resource allocation while maximizing energy efficiency. A heuristic

Pre-coloring algorithm for initial resource allocation is also proposed to scale with

problem size. To adapt reservations over time and improve further energy effi-

ciency, we introduce two heuristic Re-coloring algorithms for dynamic resource

reallocation. Our solutions are generic, robust and flexible and the experimental

evaluation shows that both proposed approaches lead to significant energy savings

while meeting the users’ requirements.

Contents

Abstract ii

Contents iv

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Research Problem and Objectives 3

1.2 Contributions . 4

1.3 Thesis Organization . 5

2 Cloud Computing and Energy Efficiency 7

2.1 Introduction . 7

2.2 Cloud Computing . 7

2.2.1 What is Cloud Computing? 7

2.2.2 Cloud Computing Actors . 9

2.2.3 Cloud Services Overview . 10

2.2.3.1 Classic Cloud service models 10

2.2.3.2 New hybrid service models 11

2.2.4 Virtualization and Cloud Computing 12

2.2.4.1 Virtualization Forms 13

2.2.4.2 Server virtualization categories 13

2.3 Energy Efficiency in Cloud Data Centers 15

2.3.1 Potential power consuming units in cloud datacenters 15

2.3.2 Major causes of energy waste 16

2.3.3 Power measurement and modeling in Cloud 17

2.3.3.1 Power measurement techniques 17

2.3.3.2 Power and energy estimation models 18

2.3.4 Power saving policies in Cloud 22

2.4 Research orientation and focus . 23

2.5 Conclusions . 23

iv

Contents v

3 Background & Related Work on Energy Efficient Cloud Resources
Allocation 25

3.1 Introduction . 25

3.2 Energy Efficient Resource Allocation in Cloud 26

3.3 On-demand resource allocation vs advanced resource reservation . . 27

3.4 Static vs dynamic Cloud resources allocation 28

3.5 IaaS vs hybrid IaaS/PaaS Cloud providers 31

3.6 Scope and positioning of the thesis 32

3.7 Conclusions . 34

4 Bin packing based Approach for Energy Efficient Resource Allo-
cation 35

4.1 Introduction . 35

4.2 The System Model . 36

4.3 Energy Efficient Static Resource Allocation 38

4.3.1 Exact Allocation Algorithm 38

4.3.2 Modified Best Fit Heuristic Algorithm 41

4.4 Energy Efficient Dynamic Resource Allocation (Re-allocation) . . . 42

4.4.1 Exact Migration Algorithm 42

4.5 Combination of allocation and migration algorithms 46

4.6 Performance evaluation . 48

4.7 Conclusions . 54

5 Graph coloring based Approach for Energy Efficient Resource
Allocation 56

5.1 Introduction . 56

5.2 The System Model . 58

5.2.1 Resource Modeling: Colors 58

5.2.2 End User Request Modeling : Request Subgraph 59

5.2.3 Energy efficiency metric . 62

5.2.4 Graph coloring for Energy Efficient Resource Reservation . . 63

5.3 Energy Efficient Initial Advanced Resource Reservation 66

5.3.1 Exact energy efficient graph precoloring Algorithm 66

5.3.2 Energy efficient graph precoloring heuristic (EEGP) 70

5.4 Energy Efficient Advanced Dynamic Resource Reservation 73

5.4.1 Energy Efficient Graph Recoloring Heuristic (EEGR) 73

5.4.2 Migration-Aware Energy Efficient Graph Recoloring Heuris-
tic (MA-EEGR) . 75

5.5 Performance evaluation . 76

5.5.1 Evaluation Settings . 76

5.5.2 Evaluation results . 77

5.5.2.1 Energy Efficient Initial Advanced Resource Reser-
vation . 77

5.5.2.2 Energy Efficient Advanced Dynamic Resource Reser-
vation . 82

Contents vi

5.6 conclusions . 89

6 Conclusions and Future Research Directions 90

6.1 Conclusions and Discussion . 90

6.2 Future Research Directions . 92

Thesis Publications 94

A VM instance creation in Openstack-nova IaaS providers 95

A.1 OpenStack Nova . 95

A.2 Image creation . 95

A.3 Initial network creation . 96

A.4 Instance launching . 97

B Hybrid IaaS-PaaS service with Docker and OpenStack Heat 99

B.1 OpenStack Heat . 99

B.2 What is Docker? . 99

B.3 OpenStack and Docker . 100

B.4 Deploy Docker containers with OpenStack Heat 101

B.4.1 Install the Docker Plugin . 101

B.4.2 Create the Heat template 102

B.4.3 Deploy the stack . 105

Bibliography 108

List of Figures

1.1 Resource Allocation in Cloud Computing 3

2.1 Cloud Computing . 8

2.2 Classic Cloud service models . 10

2.3 Server Virtualization . 12

2.4 Container based virtualization vs hypervisor based virtualization . . 14

2.5 Typical power draw in a data center Source: Cisco white paper [1] 15

2.6 Server power model based on CPU utilization. A linear model serves
as a good approximation [1]. 19

3.1 Resource Allocation in Cloud Computing 26

4.1 The system model . 37

4.2 Example of VMs’ migration . 43

4.3 A server candidate to a migration should not migrate its own VMs . 44

4.4 A VMk can not be migrated to many servers at the same time . . . 44

4.5 Combination of the migration algorithm with the two allocation
algorithms . 47

4.6 Comparison between the exact and heuristic allocation algorithms . 49

4.7 Performance comparison of the exact allocation algorithm with and
without migration . 50

4.8 Execution time of the Exact Allocation Algorithm 51

4.9 Execution time of the exact migration algorithm (m′ = 5) 51

4.10 Execution time of the exact migration algorithm (m′ = 10) 52

4.11 Execution time of the exact migration algorithm (m′ = 20) 53

4.12 Energy savings . 54

5.1 Request Subgraph Construction . 59

5.2 Graph coloring based model . 60

5.3 Graph Coloring Model . 61

5.4 Lamp application deployment on a VM 61

5.5 Model building in case of a LAMP application deployement 62

5.6 Graph Coloring (first request) . 64

5.7 Graph Coloring (second request) . 65

5.8 Energy Efficient Graph Recoloring 67

5.9 Reservation over time . 74

5.10 Convergence Time . 79

vii

List of Figures viii

5.11 Convergence Time . 79

5.12 Average Performance Per Watt . 80

5.13 Average Performance Per Watt . 80

5.14 Chromatic Number . 81

5.15 Number of used servers . 82

5.16 Average Performance Per Watt(high load conditions) 83

5.17 Average Performance Per Watt (low load conditions) 84

5.18 Number of used servers . 85

5.19 Migration percentage comparison between MA-EEGR and EEGR . 86

5.20 Comparison between MA-EEGR and EEGR in terms of number of
server shutdown . 87

5.21 Comparison between MA-EEGR and EEGR in terms of migration
cost . 87

5.22 Recoloring using EEGR algorithm 88

5.23 Recoloring using MA-EEGR alorithm 88

A.1 VM instance creation in Openstack-nova IaaS providers 98

B.1 Container based virtualization vs hypervisor based virtualization . . 100

B.2 Components interaction to create a stack 101

B.3 Horizon dashboard interface after stack creation 107

B.4 Containers creation . 107

List of Tables

3.1 Related work comparison . 33

4.1 Table of percentage of gained energy when migration is used 53

5.1 Notations . 68

5.2 Gap between EEGP and Exact solutions 78

5.3 convergence Time of EEGP (m=10000) 82

ix

Chapter 1

Introduction

Over the past few years, cloud computing has rapidly emerged as a successful

paradigm for providing IT infrastructure, resources and services on a pay-per-use

basis. The wider adoption of Cloud and virtualization technologies has led to

the establishment of large scale data centers that provide cloud services. This

evolution induces a tremendous rise of electricity consumption, escalating data

center ownership costs and increasing carbon footprints. For these reasons, energy

efficiency is becoming increasingly important for data centers and Cloud.

The fact that electricity consumption is set to rise 76% from 2007 to 2030 [2] with

data centers contributing an important portion of this increase emphasizes the

importance of reducing energy consumption in Clouds. According to the Gartner

report [3], the average data center is estimated to consume as much energy as

25000 households, and according to McKinsey report [4], ”The total estimated

energy bill for data centers in 2010 is 11.5 billion and energy costs in a typical

data center double every five years”. Face to this electronic waste and to these

huge amount of energy used to power data centers, energy efficient data center

solutions have become one of the greatest challenges.

A major cause of energy inefficiency in data centers is the idle power wasted when

resources are under used. In addition, this problem of low resources utilization,

servers are permanently switched on even if they are not used and still consume up

to 70% of their peak power. To address these problems, it is necessary to eliminate

the power waste, to improve efficiency and to change the way resources are used.

This can be done by designing energy efficient resource allocation solutions at

different Cloud levels, which is the focus of this thesis.

1

Chapter 1. Introduction 2

In addition to these challenges, provided solutions should scale in multiple dimen-

sions and Cloud providers must also deal with the users’ requirements which are

being more and more complex. Requested services are more sophisticated and

complete since users need to deploy their own applications with the topology they

choose and with having the control on both infrastructure and programs. This

means combining the flexibility of IaaS and the ease of use of PaaS within a sin-

gle environment. As a result, the classic three layer model is changing and the

convergence of IaaS and PaaS is considered as natural evolutionary step in cloud

computing. Cloud resource allocation solutions should be flexible enough to adapt

to the evolving Cloud landscape and to deal with users requirements. This key

dimension of cloud levels is essential for our research and we address it in depth

in this thesis.

Another important dimension we consider is the type of the virtualization. In

addition to traditional VM based technology, Cloud providers are also adopting

new container-based virtualization technologies like LXC and Docker that enable

the deployment of applications into containers. Hence, this resource variety aspect

should be taken into account when modeling the problem of resource allocation to

scale with the Cloud evolution and with new users requirements.

One last important dimension at which we are interested in this work is the re-

source provisioning plan. Cloud providers could offer two types of resource pro-

visioning: on-demand and advance or long-term reservation. Advance reservation

concept has many advantages especially for the co-allocation for resources. It pro-

vides simple means for resource planning and reservation in the future and offers

an increased expectation that resources can be allocated when demanded. Al-

though advance reservation of resources in cloud is very advantageous, the focus

has been mostly on the on-demand plan.

Solving the problem of resource allocation in Cloud while maximizing energy ef-

ficiency and adopting the previously cited dimensions, is a very challenging issue.

In this thesis, we address the problem with its multiple facets and levels to provide

not only a specific solution, but also a generic and complete approach.

Chapter 1. Introduction 3

1.1 Research Problem and Objectives

Energy efficient Cloud resources allocation consists in identifying and assigning

resources to each incoming user request in such a way, that the user requirements

are met, that the least possible number of resources is used and that data center

energy efficiency is optimized.

Figure 1.1: Resource Allocation in Cloud Computing

Even if Cloud resource allocation problem has been studied in the literature, much

of the interest was focused on the IaaS layer and the dimensions of virtualization

type and of provisioning plan were also not investigated enough. Some heuristic

solutions for IaaS were proposed but there is still a lack of optimal algorithms

to ensure energy efficient resource allocation. New hybrid Cloud solutions that

combine Iaas and PaaS (e.g. openstack Heat) are evolving over time and being

more and more attractive since they enable the joint deployment of infrastructure

and applications. However, these solutions still lack energy efficient resource (VM

or container) scheduling and no attention was paid to solve the problem at this

level.

The main focus of this thesis is on the design and development of models and

algorithms for energy efficient resource allocation in Cloud data centers. The

first goal of this work is to propose, develop and evaluate optimization algorithms

of resource allocation for traditional IaaS architectures that are widely used to

manage clouds. The approach is VM based and it should enable on-demand and

Chapter 1. Introduction 4

dynamic resource scheduling while reducing the power consumption of the data

center. This initial objective is naturally extended to deal with the new trends

in Cloud. We aim to provide a new model and optimization algorithms of energy

efficient resource allocation for IaaS-PaaS cloud providers. The solution should be

generic enough to support different type of virtualization technologies, to enable

both on-demand and advanced resource provisioning plans, to deal with dynamic

resource scheduling and to fill the gap between IaaS and PaaS to create a single

continuum of services for cloud users.

1.2 Contributions

Based on the objectives defined previously, we outline the main contributions of

this thesis:

1. A survey of the state of the art on energy efficient resource allocation in

cloud environments.

2. A bin packing based approach for energy efficient resource allocation:

• We formulate the problem as a bin-packing model. The model is VM

based and provides on-demand resource allocation in IaaS Clouds.

• An exact energy aware algorithm based on integer linear program (ILP)

for initial resource allocation.

• An exact ILP algorithm for dynamic VM reallocation. It is based on

VM migration and aims to optimize constantly the energy efficiency

after service departures.

• Combination of both previous exact algorithms in one algorithm that

runs each of them when convenient.

• A heuristic method based on best-fit algorithm adapted to the problem.

• Evaluation and performance analysis of the proposed algorithms.

3. A graph coloring based approach for energy efficient resource allocation:

• New graph coloring based model for energy efficient resource allocation

in IaaS-PaaS providers. The model supports both VM and container

virtualization and provides on-demand and advanced reservation re-

source provisioning.

Chapter 1. Introduction 5

• An exact Pre-coloring algorithm for initial/static resource allocation

while maximizing energy efficiency.

• A heuristic Pre-coloring algorithm for initial/static resource allocation

is proposed to scale with problem size.

• Two heuristic Re-coloring algorithms for dynamic resource reallocation

are proposed to adapt reservations over time and to improve further

energy efficiency.

• Evaluation and comparison of the exact and heuristic solutions in terms

of energy efficiency, resource usage and convergence time.

1.3 Thesis Organization

This thesis is organized into six chapters. Chapter 2 provides an introduction

to both Cloud computing and energy efficiency trends. We show how cloud is

transforming IT and how sustainability is becoming increasingly important for

Cloud data centers.

Chapter 3 describes the problem of resource allocation in Cloud environments.

We provide background and state of the art solutions for energy efficient resource

allocation. Then, we discuss the related issues and problems, as well as the chal-

lenges.

In Chapter 4, we present a bin-packing based solution for energy efficient resource

allocation in IaaS Clouds. We propose exact and heuristic algorithms to perform

initial resource allocation and dynamic resource reallocation while minimizing en-

ergy consumption and VM migration costs. Simulations are conducted to show the

performance of our exact algorithms and to demonstrate their ability to achieve

significant energy savings while maintaining feasible convergence times when com-

pared with the heuristic solution.

Chapter 5 introduces a new graph coloring based solution for energy efficient re-

source allocation in integrated IaaS-PaaS environments. Both on-demand and

advanced reservation plans are considered. We present exact and heuristic algo-

rithms for initial resource allocation and dynamic resource reallocation while sat-

isfying users’ requirements and maximizing energy efficiency. Experimentations

are conducted to assess the efficiency of our solution.

Chapter 1. Introduction 6

Chapter 6 draws conclusions, summarizes our major contributions and discusses

perspectives, challenges and future work directions.

Chapter 2

Cloud Computing and Energy

Efficiency

2.1 Introduction

Energy efficiency is becoming increasingly important for Cloud data centers. Their

growing scale and their wide use have made a great issue of power consumption.

Before beginning to solve the problem, it is important to study it in depth and to

identify the reasons behind it.

This chapter introduces the concepts of Cloud computing and virtualization that

serves as its enabling technology. We further investigate the problem of energy

efficiency in Cloud data centers by studying the major causes of energy waste,

presenting the different power saving techniques and introducing energy measure-

ment and modeling in Cloud environments. Finally, we highlight the orientation

and the focus of this thesis.

2.2 Cloud Computing

2.2.1 What is Cloud Computing?

Cloud computing has become one of the fastest growing paradigms in computer

science. It is a model for providing IT resources as a service in a cost efficient

7

Chapter 2. Cloud Computing and Energy Efficiency 8

and pay-per-use way. By adopting Cloud services, companies and simple users are

enabled to externalize their hardware resources, services, applications and their

IT functions.

Figure 2.1: Cloud Computing

Although various definitions of cloud appear in the literature, there is no consen-

sus on a clear and complete definition of this paradigm. The most widely accepted

definition of cloud computing is that proposed by the National Institute of Stan-

dards and Technology (NIST). The proposed definition was: ” Cloud computing

is a pay-per-use model for enabling convenient, on-demand network access to a

shared pool of configurable computing resources such as networks, servers, storage,

applications, and services. It can be rapidly provisioned and released with minimal

management effort or service provider interaction”. From this definition we can

identify the following key features of Cloud computing:

• On-demand self-service: automated on-demand resource provisioning.

Chapter 2. Cloud Computing and Energy Efficiency 9

• Broad network access: Resources can be accessed remotely over the network.

• Resource pooling: Resources are pooled and dynamically assigned indepen-

dently from their physical location.

• Rapid elasticity: Capability can scale to cope with demand peaks.

• Measured Service: Resource usage is metered to enable the pay-per-use

model.

An important aspect to consider with the Cloud is the ownership and use of the

Cloud infrastructure. Different approaches can be used to deploy Cloud infras-

tructures:

Private cloud:

Refers to cloud infrastructures owned and managed by a single company, used in

a private network and not available for public use.

Community cloud:

Refers to shared cloud infrastructures for specific communities composed by mul-

tiple users.

Public cloud:

Refers to high-performance and large infrastructures operated by external compa-

nies that provide IT services for many consumers via the Internet.

Hybrid cloud:

As the name already indicates, a hybrid cloud is a combination of both a private

and public cloud. Parts of the service run on the company’s private cloud, and

parts are outsourced to an external public cloud.

2.2.2 Cloud Computing Actors

Cloud computing involves three main actors that have distinct roles and interac-

tions inside the Cloud environment: providers, brokers and users.

Cloud Provider:

The provider possess the Cloud infrastructure on which Cloud services are de-

ployed. This actor is responsible for the management and the control of cloud

resources and for handling users’ requests.

Chapter 2. Cloud Computing and Energy Efficiency 10

Cloud user:

A Cloud user is a person or an organization that consumes Cloud services.

Cloud Broker:

The Broker is an intermediate player between Cloud users and provider. It is

responsible for the distribution incoming requests between the different providers

based on users’ requirements. To make a simple analogy, a Cloud broker is like a

travel agency that acts as an intermediary between clients and service providers.

2.2.3 Cloud Services Overview

Cloud service models describe how services are made available to users. We dis-

tinguish between two different types of models : classic Cloud service models and

new hybrid ones.

2.2.3.1 Classic Cloud service models

Classic Cloud service models can be categorized into three types: Infrastructure

as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS).

Figure 2.2: Classic Cloud service models

Infrastructure as a Service (IaaS):

IaaS is the most straightforward model for delivering cloud services. It refers to the

Chapter 2. Cloud Computing and Energy Efficiency 11

provisioning and the delivery of basic resources such as virtual machines, physical

servers, network and storage. Instead of investing in their own infrastructure,

companies are able to rent resources and use them on demand rather than having

their resources locally. With IaaS, users have direct access to the lowest level in

the stack and are able to build their application environments from scratch. An

example of a popular IaaS Cloud is Amazon EC2[5].

Platform as a Service (PaaS):

PaaS is on a more sophisticated and higher level service compared to IaaS. It

provides application development environments and software platforms to develop,

deploy, and manage Cloud applications while not worrying about the technology

and hiding the low-level details from the user. The most popular cloud platforms

are Microsoft Azure Services[6] and Google App Engine[7].

Software as a Service (SaaS):

SaaS is the highest level of the Cloud service model. In this scenario, complete

applications are provided to users through the internet. SaaS providers manage

infrastructure and have complete control of the application softwares. Users just

access their applications as if they were hosted locally and don’t need to know

anything about the Cloud or even be aware about the technologies details. SaaS

examples are social media plateforms, mails and project management systems and

the most popular SaaS applications are Google Documents[8] and Google Apps[9].

2.2.3.2 New hybrid service models

As Cloud is maturing and as users are requesting more flexibility and more control

since they need to deploy their applications with the topology they choose and with

having the control on both infrastructure and programs, the classic three layer

concept has often been a subject of speculation and discussion. The consolidation

of IaaS and PaaS is one of the key predictions for this year. Lines between Cloud

services are blurring which results in the combination of IaaS and PaaS and to

the appearance of new hybrid Cloud providers that enable users to create a single

continuum of services.

Leading companies like Amazon[5], Microsoft[10] and Google[11] are concurrently

going to blend IaaS and PaaS and don’t want users to think strictly about IaaS or

PaaS when they require Cloud services. An example of this trend of new combined

Chapter 2. Cloud Computing and Energy Efficiency 12

Cloud services is Kubernetes[12]. It is a newly released Google solution that solves

both IaaS and PaaS. Openstack [13] IaaS provider is also gaining PaaS features

and providing combined IaaS-PaaS services by orchestrating Docker [14] containers

via Openstack Heat. Details about this mechanism are given in Appendix B.

451 Research[15], a leading global analyst and data company focused on the busi-

ness of enterprise IT innovation, states that: ” Although it is maturing in tech-

nology and market, PaaS is getting squeezed between consolidation with IaaS and

heavy use of SaaS. PaaS will most likely survive as a category, but not necessarily

as we know it today”.

2.2.4 Virtualization and Cloud Computing

Virtualization technology is the main enabler of Cloud computing. It is based on

physical resources abstraction in a way that several virtual resources are multi-

plexed on a physical one. Virtualization is used to provide isolation, flexibility,

higher resource utilization, easy resource management as well as resource elasticity

and to enable heterogeneous services to co-exist on the same physical hardware.

Figure 2.3: Server Virtualization

Chapter 2. Cloud Computing and Energy Efficiency 13

2.2.4.1 Virtualization Forms

Virtualization refers to a number of different technologies. The main types of

virtualization are server virtualization, storage virtualization and network virtual-

ization. All these types are based on the same idea of physical resource abstraction

and partitioning.

In this thesis, we focus on server virtualization which is the most common re-

source abstraction technique in Cloud computing. This kind of virtualization

allows multiple isolated virtual servers to run on a single one and can be imple-

mented in different ways. Implementation approaches cover full virtualization,

para-virtualization and OS-level virtualization. Both full virtualization and para-

virtualization use a hypervisor to share the underlying hardware but differ on how

the host operating system and the guest operating systems are modified to support

virtualization and also on how they interact with each others. In contrast to full

virtualization and para-virtualization, operating system level virtualization does

not use a hypervisor at all. In this approach, all the virtual servers run the same

host OS that performs all the functions of a fully virtualized hypervisor. Hence,

based on the approach through which the virtualization is achieved, server virtual-

ization can be classified into two main categories: hypervisor based virtualization

and OS or container based virtualization. This classification is further detailed in

the next section.

2.2.4.2 Server virtualization categories

There are two common ways to virtualize resources in Cloud computing: via hosted

virtualization using a hypervisor or via container-based virtualization.

Hypervisor based virtualization:

Hypervisor based virtualization is the traditional way of doing virtualization in the

Cloud. This technology is based on a layer of software, called hypervisor, which

manages the physical server resources. Examples of hypervisors are KVM[16],

VMWare[17], Microsoft Hyper-V[18], Xen[19] and Virtual Box[20]. Guests are

called virtual machines VMs and they run different operating systems such as

Windows and Linux on top of the same physical host. Even if this type of virtu-

alization introduces an additional software layer, it enables resource consolidation

Chapter 2. Cloud Computing and Energy Efficiency 14

Figure 2.4: Container based virtualization vs hypervisor based virtualization

into virtualized servers [21] and also offers live migration feature [22] to move VMs

to other servers without shutting them down.

Container based virtualization:

Container based virtualization is a lightweight alternative to the hypervisors [23][24].

It is an operating system level technology that allows running multiple isolated

virtual environments on the same host. Containers are based on shared operat-

ing systems and unlike traditional VMs, they don’t run different OSes but use a

single operating system (the host’s OS). Figure 2.4 shows the difference between

the two kinds of virtualization. Some examples of container based solutions are:

Docker[14], Linux containers (LXC)[25], Solaris Containers[26], Virtuozzo Con-

tainers [27] and OpenVZ[28].

It’s more appropriate to use hypervisor based virtualization when more security

and flexibly are required and when heterogeneous operating systems are needed

[29]. Container based virtualization is convenient when performance is required.

It provides better manageability with a near-native performance and gives a much

higher consolidation ratio and most efficient resource usage as it supports large

number of instances on a single host. In addition to being lightweight, this solution

provides portability, transport, and process-level isolation across hosts.

Although being different, hypervisor and container based virtualization are not

exclusive but complementary and increasingly used together. As container based

virtualization is commonly used for building lightweight PaaS environments and

Chapter 2. Cloud Computing and Energy Efficiency 15

hypervisors are used for IaaS Cloud services, using both solutions enables the

deployment of complex services that combine both applications and underlying

infrastructures over hybrid IaaS/PaaS cloud providers. Some solutions like Prox-

mox [30] offer both technologies on the same physical server.

2.3 Energy Efficiency in Cloud Data Centers

2.3.1 Potential power consuming units in cloud datacen-

ters

To improve energy efficiency in the Cloud, it is important to study the power

flow in typical data centers and to understand how power is distributed. In fact,

more than half of the electrical power is feeding the IT loads (see Figure 2.5).

According to the EPA’s Report to Congress on Server and Data Center Energy

[31], servers consume 80% of the total IT load and 40% of total data center power

consumption. The rest of power is consumed by other devices like transformers,

distribution wiring, air conditioners, pumps, and lighting.

Figure 2.5: Typical power draw in a data center
Source: Cisco white paper [1]

Chapter 2. Cloud Computing and Energy Efficiency 16

The power consumption of cooling equipments is important but it is proportional

to the IT power consumption. Technologies like free cooling that are used by

big companies (e.g. Google, Facebook, ebay...), are interesting for reducing the

power consumption of cooling. These approaches lower the air temperature in data

centers by using naturally cool air or water instead of mechanical refrigeration. As

a result, the electrical power needed for cooling has enormously decreased. Savings

can even reach 100% in case of zero refrigeration which is possible in many climates.

2.3.2 Major causes of energy waste

As explained in the last section, servers are the main power consumers in Cloud

data centers. The key reasons for this huge consumption are the following:

Low server utilization:

As data centers are growing in size, the number of servers is continuously increas-

ing. Most data center servers are underused. According to the Natural Resources

Defense Council (NRDC) report [32][33], average server utilization remained static

between 12% and 18% from 2006 and 2012, while servers draw between 60% and

90% of peak power.

Consolidating virtual servers on a smaller number of hosts allows running the same

applications with much lower power consumption. By increasing server utilization,

the number of required servers and overall energy use will be greatly reduced.

Idle power waste:

Data center servers sit idly and are not processing useful work about 85-95% of

the time[33]. An idle server consumes about 70% of its peak power even if it is

not used [34]. This waste of idle power is considered as a major cause of energy

inefficiency. Hence, idle servers in data centers could be turned off to reduce energy

consumption.

Lack of a standardized metric of server energy efficiency:

To insure energy efficiency optimizations, it is important to use energy efficiency

metric for servers to sort them according to their energy efficiency and to enable

scheduling algorithms to make decisions and to select the best resources to max-

imize energy efficiency. Even though some metrics focusing on IT efficiency have

appeared in recent years [35], they do not provide a simple benchmark that can

drive the optimization of energy efficiency [33].

Chapter 2. Cloud Computing and Energy Efficiency 17

Energy efficient solutions are still not widely adopted:

As stated in the NRDC report [33], many big Cloud farms do a great job on

energy efficiency, but represent less than 5% of the global data centers’ energy

use. The other 95% small, medium, corporate and multi-tenant operations are

much less efficient on average. Hence, energy efficiency best practices should be

more adopted and used especially for small and medium sized data centers that are

typically very inefficient and consume about half of the amount of power consumed

by all the data centers.

2.3.3 Power measurement and modeling in Cloud

Before dealing with power and energy measurement and modeling, it is important

to understand power and energy relationship and to present their units of measure.

Power consumption indicates the rate at which a machine can perform its work

and can be found by multiplying voltage and current while electrical energy is the

amount of power used over a period of time. The standard metric unit of power

is the watt (W) and the energy unit is watt-hour (Wh). Power and energy can be

defined as shown in 2.1 and 2.2, where P is power consumption, I is current, V is

voltage, E is energy and T is a time interval:

P = IV (2.1)

E = PT (2.2)

To quantify power and energy consumption in Cloud, we distinguish between

measurement techniques and power and energy estimation models. The first

one directly measures actual power consumption via instant monitoring tools.

Power metering models estimate the power consumption of servers and VMs using

hardware-provided or OS-provided metrics.

2.3.3.1 Power measurement techniques

Power direct measurement in Cloud can be achieved in data centers that embed

monitoring capabilities and probes such as smart power distribution units (PDUs).

Chapter 2. Cloud Computing and Energy Efficiency 18

This section introduces several measurement methods to obtain information about

the power consumption of servers and VMs.

Power measurement for servers:

The obvious way to get accurate information about energy consumption of servers

is to directly measure it. However, this requires extra hardware to be installed in

the hosts, need to add intelligent monitoring capabilities in the data center and

to deal with huge amounts of data. Green Open Cloud (GOC) [36] is an example

of energy monitoring and measurement framework that relies on energy sensors

(wattmeters) to monitor the electricity consumed by Cloud resources. It collects

statistics of the power usage in real-time and embeds electrical sensors that provide

dynamic measurements of energy consumption and an energy-data collector.

Power measurement for VMs:

Even if power consumption of servers can be measured in real time, power con-

sumption of VMs cannot be measured by any sensor and cannot be connected to

a hardware measurement device. Some effort was done in [36] to measure VM

power consumption. The virtual machine power consumption is computed by re-

trieving the idle power from the power consumption of the server when it hosts

the VM, which is impractical and not very accurate. Alternative solutions based

on extending a power monitoring adaptor between the server driver modules and

the hypervisor are proposed in [37] and [38]. However, this solutions measure the

total power consumed by the virtualization layer and don’t provide per VM power

usage.

2.3.3.2 Power and energy estimation models

As most servers in modern data center are not equipped with power measurement

devices and as VM power cannot be measured by sensors, models that estimate the

power and energy consumption as well as VM migration power cost are being more

and more attractive for power metering. This section presents a general overview

of power estimation models and tools in Cloud and introduces data center energy

efficiency metrics.

Power and energy modeling for servers:

Power consumption models for servers have been extensively studied in the liter-

ature [39] and vary from complex to simple.

Chapter 2. Cloud Computing and Energy Efficiency 19

As the CPU of a server consumes the most important amount of power and as

the relationship between power and CPU utilization is linear, CPU based linear

models represent a lightweight and a simple way to estimate servers’ power usage

[40]. In [41], [42], [43] and [44] simple utilization based power models for servers

are proposed. They assume that CPU is the only factor in their power models and

present an approximation for total power against CPU utilization (U) as shown in

2.6 and 2.3:

P = Pidle + U ∗ (PPeak − Pidle) (2.3)

P is total power consumption, PPeak is peak power consumption, Pidle is idle power

consumption, and U is CPU utilization (a fraction between 0 and 1).

Figure 2.6: Server power model based on CPU utilization.
A linear model serves as a good approximation [1].

More complex power models enter into further details and present deeper analysis

of power consumption. More parameters like network access rate, hard disk access

rate and memory access rate are considered and implicated. Examples of these

models are presented in [45], [46], [47] and [48].

Chapter 2. Cloud Computing and Energy Efficiency 20

Power modeling for VMs:

Virtual machines power estimating is important to better organize and schedule

them in a way that minimizes the data center energy consumption.

Like the estimation models used for servers, CPU utilization could also be used to

calculate the power consumption of the CPU by a VM [49] [50].

Models relying on information such as the resource utilization (CPU and mem-

ory) or/and on information provided by performance monitoring counters (PMC)

known also as hardware performance counters (HPC) have been proposed in [51],

[52], [53] and [54]. Based on the idea of combining PMC and CPU utilization,

authors in [46] present a VM power metering approach and a software of VM

power estimation called Joulemeter. This latter has the ability to accurately in-

fer the power consumption without adding any additional hardware or software

instrumentation.

Power modeling for VM migration:

Virtual machine live migration consists in moving VM between physical hosts

without service interruption. This mechanism allows VM consolidation to achieve

better energy efficiency however it brings also additional power consumption and

its cost in terms of energy is not negligible [55].

Energy cost of migration have not been almost considered when migrating VMs.

Key points for efficient VM consolidation are how to estimate the energy consump-

tion of each VM migration and how to take migration decisions [56].

Some studies have been performed in [57], [55], [58], [59] and [60] to investigate

the energy cost of VM migration and to model it. The energy overhead of live

migration depends essentially on the amount of memory used by the VM and

on the available network bandwidth. It increases with an increasing VM size

and decreases with an increasing network bandwidth that influences it the most.

Author in [61] proposed a lightweight mathematical model to estimate the energy

cost of VM live migration. The model is derived through linear regression and

the relationship between the energy cost of migration, the network bandwidth and

the VM size is expressed in Eq. 2.4 where s represents VMs size, b represents the

network bandwidth and A, B and C represent constant values.

Emig = A+B ∗ s+ C ∗ b (2.4)

Chapter 2. Cloud Computing and Energy Efficiency 21

Energy efficiency metrics:

In addition to power models, improving energy efficiency in Cloud data centers

requires metrics that reflect data centers and servers’ efficiency and provide the

necessary information for high level management and scheduling decisions.

Some metrics of energy efficiency have been proposed for data centers. The Green

Grid [62] defined two data centers efficiency metrics : Power Usage Effectiveness

(PUE) and Data Center Efficiency (DCE). Power Usage Effectiveness (PUE) is

defined as the total power consumed by the data center divided by the power used

by the IT equipment, as shown in Eq. 2.5:

PUE =
TotalFacilityPower

ITEquipementPower
(2.5)

Data center Efficiency (DCE) is the indicator ratio of IT data center energy effi-

ciency and is defined as the reciprocal of PUE (see Eq. 2.6).

DCE =
1

PUE
=
ITEquipementPower

TotalFacilityPower
(2.6)

These two metrics measures only the proportion of power used by IT equipment

and can be used to compare data center efficiency. Energy efficiency metrics for

servers that could be used to sort them according to their efficiency and to enable

scheduling algorithms to make decisions have not been widely investigated.

Performance per Watt (PPW) has became a popular metric as it can be used

to measure and rank the energy efficiency of servers. It can be defined as the

rate of transactions or computations that can be delivered by a computer for

every watt of power consumed. Formally the PPW is defined by Intel [63] as

: ” The term performance-per-watt is a measure of the energy efficiency of a

computer architecture or a computer hardware. It can be represented as the rate of

transactions or computations or a certain performance score that can be delivered

by a computer for every watt of power consumed”. This metric provides scores

and rank servers no matter their size or structure. The higher the performance

per watt, the more energy efficient the server is.

Chapter 2. Cloud Computing and Energy Efficiency 22

2.3.4 Power saving policies in Cloud

The main power saving strategies in Cloud data centers are dynamic frequency

voltage scaling (DVFS), servers powering down and VM consolidation.

Dynamic frequency and voltage scaling (DVFS):

Dynamic voltage frequency scaling (DVFS) is a power management tool that aims

to reduce the power consumption of servers when the load is low [64]. DVFS,

also known as CPU throttling, scales dynamically the voltage and frequency of

the CPU at run-time. For example, Linux kernel allows for DVFS that can be

activated in different policies: Performance, PowerSave, User-Space,Conservative,

and OnDemand. Each policy has a governor that decides whether the frequency

must be updated or not [65].

As this method decreases the number of instructions the processor executes in

running a program, the program took a longer time and the performance reduce

[66]. DVFS is also too dependent on hardware and is not controllable according to

the changing needs, its resulting power savings are low compared to other methods.

Even if DVFS aims at reducing power consumption, it just acts at server level. As

a completely idle server still consumes up to 70% of power, DVFS power savings

remain narrow. These reasons have led to the appearance of other data center

level solutions that consolidate workloads onto fewer servers and switch off or put

in lower power mode the idle hosts.

Powering down:

Important reduction in energy consumption can be achieved by powering down or

switching off servers when they are not in use. As many servers in the data center

are idle most of the time, they could be powered down or put into sleep mode in

the periods of time when they are not used and then powered up if needed.

This dynamic capacity provisioning or dynamic shutdown problem is challenging

as it requires careful planning to select servers to power down and as different

factor must be considered. On/Off approaches have been proposed in [67], [68],

[69], [70] and [71] to dynamically turn on and off data center servers and thus

minimizing the energy use. Although its complexity, this technique is efficient and

can achieve significant reduction in power consumption.

Chapter 2. Cloud Computing and Energy Efficiency 23

Energy aware consolidation:

A key technique of power saving in Cloud data centers is workload consolida-

tion onto a smaller number of servers. This approach aims to reduce the high

consumption of energy by selecting the most energy efficient servers [21].

Dynamic Optimization and further workload consolidation into an even fewer num-

ber of server can be performed thanks to VM live migration. It is an essential

mechanism that dynamically moves virtual machines to different hosts without

rebooting the operating system inside the VM.

Energy aware consolidation problem for Cloud has been significantly studied in

the literature. A detailed overview will be provided in the next chapter to present

the related works in the area.

2.4 Research orientation and focus

This thesis deals with the problem of energy efficient resource allocation in Cloud

data centers. We aim at reducing the power consumption of data centers by

reducing the power consumption of servers. We focus essentially on energy aware

consolidation techniques and optimization models that minimize the number of

active servers in order to increase the energy efficiency of Cloud data centers. To

quantify power consumption and energy efficiency we rely on power and energy

estimation models as well as energy efficiency metrics.

Both classic Cloud service models and new hybrid models are considered and

targeted. We aim to bring energy efficiency to the commonly used and widespread

IaaS providers and to support also the new trend of hybrid IaaS/PaaS Cloud

providers. On-demand and advanced reservation plans are also important aspects

that we consider when allocating resources to users.

2.5 Conclusions

This chapter introduced the concepts of Cloud computing and virtualization and

investigated the problem of energy efficiency in Cloud. We presented the major

causes of energy waste in Cloud data centers, presented the energy measurement

Chapter 2. Cloud Computing and Energy Efficiency 24

and modeling methodologies and described the power saving techniques in Cloud

data centers. This chapter has also concluded with a discussion of the orientation

and focus of this thesis.

The next chapter explores in more details the problem of resource allocation or

scheduling in Cloud. We provide background and state of the art solutions for en-

ergy efficient resource allocation. Then, we discuss the related issues and problems,

as well as the challenges.

Chapter 3

Background & Related Work on

Energy Efficient Cloud Resources

Allocation

3.1 Introduction

As mentioned earlier in the report, the main objective of this thesis is the design

and development of models and algorithms for energy efficient resource allocation

in Cloud data centers while considering different dimensions of the problem. These

key dimensions are the resource provisioning plan, the dynamicity of the solution,

the type of the virtualization and the Cloud service model.

To provide efficient solutions, to address the issue from different angles and to

handle the constraints of the problem at different levels, existing state of the art

methods and models need to be studied and discussed.

This chapter presents the current state of the art and work of the areas related to

this thesis. We describe in more details the problem of energy efficient resource

allocation in Cloud data centers then we provide an overview on the state of the

art of energy efficient Cloud resource allocation at different dimensions and levels.

The chapter also presents the research objectives and the thesis positioning in

relation to existing research.

25

Chapter 3. Background & Related Work on Energy Efficient Cloud Resources
Allocation 26

3.2 Energy Efficient Resource Allocation in Cloud

Resource allocation or scheduling is one of the most important tasks in cloud

computing. It consists in identifying and assigning resources to each incoming

user request in such a way that the user requirements are met and specific goals

of the cloud provider are satisfied. These goals could be optimizing energy con-

sumption or cost optimizing, etc. Based on the resource information like resource

usage and monitoring, the requests information and the Cloud provider goal, the

resource allocator or scheduler finds out resource allocation solutions, see Figure

3.1. Schedulers could just ensure the initial and static resource allocation after

request arrival or ensure both static and dynamic resource allocation to manage

resources in a continuous way and to further optimize and readjust the old re-

quests.

Figure 3.1: Resource Allocation in Cloud Computing

The wider adoption of cloud computing and virtualization technologies has led

to cluster sizes ranging from hundreds to thousands of nodes for mini and large

data centers respectively. This evolution induces a tremendous rise of electricity

consumption, escalating data center ownership costs and increasing carbon foot-

prints. For these reasons, energy efficiency is becoming increasingly important for

data centers and Clouds.

Chapter 3. Background & Related Work on Energy Efficient Cloud Resources
Allocation 27

Solving the problem of resource allocation in Cloud while maximizing energy effi-

ciency is a very challenging issue. This problem is known as NP-hard and has been

studied in the context of Cloud computing. The objective of this chapter is to re-

view the existing literature regarding energy efficient resource allocation in Cloud.

Different important dimensions will be considered in our literature study. These

dimensions cover the type of the resource provisioning plan, the Cloud service

model and also the static or dynamic aspects of the solutions.

3.3 On-demand resource allocation vs advanced

resource reservation

Cloud providers could offer different kinds of provisioning plans. The most two

important ones are on-demand and reservation plans. The on-demand plan allows

users to access resources at the time when they need. In Reservation plan the

resources could be reserved earlier and the resource availability is ensured in future.

On-demand resource allocation:

Most of the Cloud providers rely on simple policies like on-demand (immediate)

to allocate resources. These solutions allocate the resources if available, otherwise

the requests are not accepted.

In [21], [72],[73] and [74], authors proposed energy-aware heuristic algorithms and

policies in order to save energy by minimizing the number of running servers. The

key idea is to consolidate applications or tasks on a minimum number of servers

to switch off machines in surplus. Another study is presented in [75] where the

authors presented a nature-inspired VM consolidation algorithm influenced by Ant

Colony Optimization. This algorithm aims also at reducing the number of used

physical machines and thus saves energy.

All the above work discusses how to reduce energy consumption of cloud data

centers using on-demand and immediate algorithms for energy efficient resource

allocation. These algorithms are derived for homogeneous data centers that embed

monitoring capabilities and probes (e.g smart power distribution units (PDUs)) or

that embed power consumption estimation tools. Or most of today’s data centers

are considered mega data centers (composed of heterogeneous servers[76]) and still

lack energy monitoring capabilities. More details on on-demand Cloud resources

Chapter 3. Background & Related Work on Energy Efficient Cloud Resources
Allocation 28

allocation algorithms are given in the next section where the solutions are classified

into static and dynamic.

Advanced resource reservation:

Advance resource reservation provides simple means for resource planning in the

future and offers an increased expectation that resources can be allocated when

demanded. Although advance reservation of resources in Cloud is very advan-

tageous, most of the Cloud providers use simple resource allocation policies like

on-demand and best effort that did not incorporate the dimension of time and

support future planning of resource provisioning.

Haizea scheduler [77] is an open source resource lease manager. It supports four

kinds of resource allocation policies: immediate, best-effort, advance reservation

(AR) and deadline sensitive. AR lease is requested by users when they need to use

infrastructure for fixed start and end time of lease. Resource reservation is achieved

by a mapping function that uses a slot table which has two dimensions: the

physical nodes and the duration. This mapping function takes a set of requested

resources and maps them to physical servers based on the availability in the slot

table in a specified time interval. Haizea uses also a greedy algorithm to determine

how VMs are mapped to servers. This latter sorts servers from lower to higher

loaded. Then, it traverses the list of nodes and tries to map as many lease nodes

into each server before moving on to the next. The existing scheduling algorithms

in Haizea are simple, greedy and do not address energy efficiency [78].

Advance resource reservation algorithms for IaaS infrastructure as a Service are

proposed in [79] and [80]. These are queuing models based algorithms that check

whether enough resources are available or not for the requested duration. They

only aim at resource reservation and disregard energy efficiency requirements.

3.4 Static vs dynamic Cloud resources allocation

Two different types of resource allocation are static and dynamic allocation. Static

resource allocation is performed initially when requests arrive. Dynamic resource

allocation is used to manage resources in a continuous way and to further optimize

and readjust the old requests. The dynamic resource allocation or consolidation

Chapter 3. Background & Related Work on Energy Efficient Cloud Resources
Allocation 29

is handled by VM live migration and aims to minimize the number of used or

activated servers.

Energy efficient algorithms for initial Cloud resources allocation:

Currently, resource allocation mechanisms used in Cloud data centres include load

balancing, round robin and greedy algorithms. The existing scheduling algorithms

used by OpenNebula [81], Eucalyptus [82] and OpenStack [13] Cloud managers

are greedy or simple round robin based and do not address energy efficiency.

Authors in [83] propose a simple energy-aware policy incorporating allocation

schemes of virtual servers to achieve the aim of green computing. The consid-

ered allocation schemes are round robin, first fit, etc. This work saves energy by

setting servers to the lower power consumption state when they do not host VMs.

The proposed policy governs servers to a low-energy consuming state when they

are idle and manages them into the operating state of full functionality when they

are used.

The works in [84], [85], [86], [87] and [88] try to save energy by proposing policies

for dynamically powering servers on and off. These policies are based on queu-

ing models and heuristic-based methods are presented. An approach based on

Dynamic Voltage Frequency Scaling (DVFS) is proposed in [89]. This proposed

work focus on scheduling virtual machines to reduce power consumption via the

technique of DVFS.

The energy efficient algorithms proposed in [72] and [90] go further by adopting

consolidation policies that strives to use a minimal number of servers to accommo-

date all requested VMs. Both works have proposed heuristics for the bin packing

problem as algorithms for VMs consolidation.

Authors in [21] consolidate applications or tasks on reduced number of physical

machines to switch off machines in surplus. They propose a heuristic for mul-

tidimensional bin packing and show that using less physical hosts can save en-

ergy consumption. Authors in [91] present also a multi-tiered resource scheduling

scheme that provides on-demand capacities to the hosted services via resources

flowing among VMs. A global resource flowing algorithm was introduced to opti-

mize resource allocation among applications. Both approaches are achieved at the

task level and hence fit better the Platform or Software as a Service (PaaS, SaaS)

Chapter 3. Background & Related Work on Energy Efficient Cloud Resources
Allocation 30

levels. Allocation or placement is also static as opposed to dynamic placement

according to workload where migration is applied to reallocate resources.

Energy efficient algorithms for VMs migration:

In [92], the authors present a power-aware server consolidation framework, called

pMapper that continuously optimize the VM placement to minimize power con-

sumption. It relies on greedy heuristics for bin packing problem and it introduces

the cost of VM migration but without providing information about its calculation.

Another similar framework called Entropy is proposed in [93]. It is a resource

manager for homogeneous clusters that performs dynamic consolidation based on

constraint programming and it takes migration overhead into account.

Reference [72] addresses policies for dynamic VMs reallocation using VMs migra-

tion according to CPU performance requirements. Their most effective policy, a

double threshold policy, is based on the idea of setting upper and lower utiliza-

tion thresholds for hosts and keeping the total utilization of the CPU of all the

VMs between these thresholds. If the CPU utilization of a host exceeds the upper

threshold, some VMs are migrated and if it falls below the lower threshold, all the

hosted VMs should be migrated.

Authors in [94] treat the problem of consolidating VMs in a server by migrating

VMs with steady and stable capacity needs. They proposed an exact formulation

based on a linear program described by a too small number of valid inequalities.

Indeed, this description does not allow solving, in reasonable time and in an op-

timal way, problems involving allocation of a large number of items (or VMs) to

many bins (or Servers). In order to scale and find solutions for large sizes, the

authors resorted to a heuristic using a static and a dynamic consolidation of VMs

to reduce energy consumption of the hosting nodes or servers.

In [73], authors presented a server consolidation (Sercon) algorithm which consists

of minimizing the number of used nodes in a data center and minimizing the

number of migrations at the same time. They compared their algorithm with the

heuristic FFD (First-Fit Decreasing) [95] that solves the Bin-Packing problem and

have shown the efficiency of Sercon to consolidate VMs and minimize migrations.

However, Sercon is a heuristic that can not always reach or find the optimal

solution.

Chapter 3. Background & Related Work on Energy Efficient Cloud Resources
Allocation 31

In [74], authors presented an approach EnaCloud for dynamic live placement tak-

ing into account energy efficiency in a cloud platform. They proposed an energy-

aware heuristic algorithm in order to save energy by minimizing the number of

running servers. Another study relying on dynamic resource allocation is presented

in [75]. The authors presented a nature-inspired VM consolidation algorithm in-

spired from an Ant Colony Optimization. This algorithm aims at reducing the

number of used physical machines and thus saves energy.

Authors in [96] propose two heuristic algorithms for energy-aware virtual machine

scheduling and consolidation. These algorithms are respectively based on a dy-

namic round-robin approach (DRR) and on an hybrid one which combines DRR

and First-Fit. Another VM consolidation method for power saving in data centers

that relies on the bin packing First-Fit heuristic is proposed in [97]. This method

migrates VMs on the basis of server ranks where the rank represents server selec-

tion priority and is uniquely assigned to each server.

3.5 IaaS vs hybrid IaaS/PaaS Cloud providers

Scheduling and energy efficiency have been discussed and investigated in IaaS

Clouds. Almost all of the related works presented in the two last sections are

dedicated for the IaaS level.

As the well known PaaS solutions for service orchestration like Windows Azure [6],

Google App Engine [7], and Heroku [98] are not open source and provide a black-

box solution for the public Cloud, some open-source projects like CloudFoundry

[99] and OpenShift [100] that provide private PaaS are becoming more and more

popular. These PaaS systems can be built on IaaS and conduct to construct PaaS

on IaaS.

In fact, new hybrid Cloud solutions that combine Iaas and PaaS like OpenStack

Heat [13] are evolving over time and being more and more attractive since they

enable the joint deployment of infrastructure and applications. Thanks to this hy-

brid IaaS-PaaS solutions, users can deploy their own applications with the topol-

ogy they choose and with having the control on both infrastructure and programs.

Like classical PaaS solutions, the new hybrid IaaS-PaaS solutions are using LXC

containers [25] and Docker [14] that are radically changing the way applications

are built, shipped, deployed, and instantiated. However, these solutions still lack

Chapter 3. Background & Related Work on Energy Efficient Cloud Resources
Allocation 32

energy efficient resource (VM or container) scheduling and no attention was paid

to solve the problem at this level.

OpenStack Heat is an openstack service that handles the orchestration of complex

deployments on top of OpenStack clouds. Orchestration basically manages the

infrastructure but it supports also the software configuration management. Heat

provides users the ability to define their applications in terms of simple templates.

This component has also enabled OpenStack to provide a combined IaaS-PaaS

service. Orchestrating Docker containers in OpenStack via Heat provides orches-

tration of composite cloud applications and accelerates application delivery by

making it easy to package them along with their dependencies (this mechanism is

described in details in Appendix B). Even if this approach based on Docker in-

tegration into OpenStack is very advantageous and provides users with complete

services and with more control, OpenStack Heat is still based on static assign-

ment and requires VM and container scheduling. The energy efficiency was also

completely disregarded.

A new container as a service solution called Kubernetes [12] was released by Google

to manage containerized applications across multiple hosts and to provide basic

mechanisms for deployment of applications. Kubernetes’s scheduler is currently

very simple and relies on a first-come-first-served (FCFS) algorithm. No attention

was paid to energy efficiency in this solution.

3.6 Scope and positioning of the thesis

Table 3.1 presents a summary of the comparison between relevant related works.

We compare the various research efforts in terms of provisioning plan, Cloud service

level, virtualization category, dynamicity and power saving methods.

Proposed solutions of initial Cloud resource allocation [72], [90] and of VM migra-

tion at IaaS level [92], [97], [96], [75], [74], [73], [94], [72], [93] are heuristic based

and can not reach or find the optimal solution. Another important aspect which

was not always considered when moving VMs is the energy cost of migration. This

cost should be taken into account before making decisions as migration brings ad-

ditional power consumption and its cost in terms of energy is not negligible [55].

Chapter 3. Background & Related Work on Energy Efficient Cloud Resources
Allocation 33

As the comparison table shows, hybrid IaaS/PaaS solutions still lack energy effi-

cient policies that schedule both VMs and containers to provide users with com-

plete services. Cloud resource assignment is static or simple and no attention was

paid to energy efficiency.

Most of the proposed solutions are based on policies for the on-demand plan to

allocate resources. Advance resource reservation has received less attention and

existing solutions [79], [80], [78], [77] are based on simple heuristics and do not

consider energy efficiency. However, this concept has many advantages especially

for the co-allocation for resources. Advance reservation provides simple means for

resource planning and reservation in the future and offers an increased expectation

that resources can be allocated when demanded.

Table 3.1: Related work comparison

Provisioning
Plan

Service
model

Virtualization
Category

Static vs
Dynamic

Power
Saving

[84], [85],
[86], [87],
[88]

On-demand IaaS Hypervisor
based

Static Powering
down

[72], [90] On-demand IaaS Hypervisor
based

Static Consolidation

[21], [91] On-demand PaaS Hypervisor
based

Static Consolidation

[77], [78] On-demand
and ad-
vanced
reservation

IaaS Hypervisor
based

Static No power
saving

[79], [80] advanced
reservation

IaaS Hypervisor
based

Static No power
saving

[92], [97],
[96], [75],
[74], [73],
[94], [72],
[93]

On-demand IaaS Hypervisor
based

Dynamic Dynamic
Consolida-
tion

[12],
[13]+[14]

On-demand IaaS/PaaS Hypervisor
and con-
tainer based

Static No power
saving

This thesis investigates the problem of energy efficient Cloud resources allocation.

We aim at reducing the power consumption of data centers by reducing the power

consumption of servers. We focus essentially on energy aware consolidation tech-

niques and optimization models that minimize the number of active servers in

order to increase the energy efficiency of Cloud data centers. To quantify power

Chapter 3. Background & Related Work on Energy Efficient Cloud Resources
Allocation 34

consumption and energy efficiency we rely on power and energy estimation models

as well as energy efficiency metrics.

The first objective of our work is to propose, develop and evaluate optimization

algorithms of resource allocation for traditional IaaS architectures that are widely

used to manage clouds. The approach is VM based and it should enable on-

demand and dynamic resource scheduling while reducing the power consumption

of the data center. We propose algorithms that are based on exact formulations

of the consolidation problem and of the VM migrations to optimally consolidate

VMs in servers while minimizing the energy cost of migrations.

This initial objective is naturally extended to deal with the new trends in Cloud.

We aim to provide a new model and optimization algorithms of energy efficient

resource allocation for IaaS-PaaS Cloud providers. The solution should be generic

enough to support different type of virtualization technologies, to enable both on-

demand and advanced resource provisioning plans, to deal with dynamic resource

scheduling and to fill the gap between IaaS and PaaS in order to create a single

continuum of services for Cloud users.

3.7 Conclusions

This chapter described the main research efforts in the area of energy efficient

Cloud resource allocation. We mainly focus on the reservation plan dimension to

classify the related work. Dimensions of type of the virtualization type and the

Cloud service model are also considered in the discussion. This chapter presented

also the thesis position in relation to existing work.

The main direction of this thesis is the design and development of models and

algorithms for resource allocation in Cloud data centers while increasing energy

efficiency. The next chapters describe in detail our contributions for this research

direction.

Chapter 4

Bin packing based Approach for

Energy Efficient Resource

Allocation

4.1 Introduction

Cloud data centers are electricity guzzlers especially if resources are permanently

switched on even if they are not used. An idle server consumes about 70% of its

peak power [34]. This waste of idle power is considered as a major cause of energy

inefficiency. An important way to bring energy efficiency to Cloud environments

is to introduce energy aware scheduling and placement algorithms and enhanced

resource management.

This work is a contribution to the reduction of such excessive energy consumption

using energy aware allocation and migration algorithms to have a maximum num-

ber of idle servers to put into sleep mode. Intel’s Cloud Computing 2015 Vision

[63] stresses also the need for such dynamic resource scheduling approaches to im-

prove power efficiency of data centers by shutting down and putting to sleep idles

servers. This work proposes an exact energy aware allocation algorithm using the

formulation of the Bin-Packing problem. The aim of this algorithm is to reduce

the number of used servers or equivalently maximize the number of idle servers

to put in sleep mode. To take into account workloads and service times a lin-

ear integer programming algorithm is used to optimize constantly the number of

35

Chapter 4. Bin packing based Approach for Energy Efficient Resource Allocation36

used servers after service departures. This migration algorithm is combined with

the exact allocation algorithm to reduce overall energy consumption in the data

centers.

The proposed algorithms act as an energy consumption aware VM scheduler and

can be used to enhance current infrastructure managers and schedulers such as

OpenNebula [81] and OpenStack [13]. The power consumption indicators can be

provided by energy consumption estimation tools such as joulemeter [46]. A dedi-

cated simulator is used to assess performance and crosscheck with the performance

results produced by the exact algorithms. Evaluation results show that the exact

allocation algorithm combined with migration reduces considerably the number of

required servers to serve a given load and can thus minimize power consumption

in data centers.

4.2 The System Model

The model considers infrastructure providers allocating physical resources instances

to host users’ and tenants’ applications or, equivalently for this work, VMs. The

physical resources are seen as servers. It is assumed that applications are pack-

aged into virtual machines to be hosted by the infrastructure providers. The cloud

providers save energy and reduce power consumption by packing and consolidating

through migration of VMS to maximize the number of idle servers to put to sleep

mode.

Figure 4.1 depicts the system model composed of the proposed energy efficient

allocation and migration algorithms (contributing to scheduling), an energy con-

sumption estimator and a cloud manager (handling infrastructure resource instan-

tiation and management). Each module is briefly described to set the stage for the

analytical modeling of the energy efficient resource allocation problem in clouds.

• Cloud IaaS manager (e.g. OpenStack [13], OpenNebula [81] and Euca-

lyptus [82]) control and manage cloud resources and handle clients requests,

VM scheduling and fetch and store images in storage spaces.

• Energy estimation module is an intermediate module between the cloud

infrastructure manager and the energy-aware scheduler. The module can rely

Chapter 4. Bin packing based Approach for Energy Efficient Resource Allocation37

Figure 4.1: The system model

for example on an energy estimation tool such as Joulemeter [46] that uses

power models to infer power consumption of VMs or servers from resource

usage.

• Energy-aware VM scheduler responsible for the energy aware VM place-

ment in the data center is the focus of our energy consumption optimization

model. This green scheduler is basically composed of two modules. An al-

location module and a migration module. The role of the allocation module

is to perform the initial VM placement using our exact VM allocation al-

gorithm. The dynamic consolidation of virtual machines is handled by the

migration module that minimizes the number of used or activated servers

thanks to our exact VM migration algorithm. The unused servers are shut

down or put into sleep mode. All the needed information (servers and VMs)

to run the algorithms are retrieved via the Cloud IaaS manager that is also

used to execute the VM deployment and migration actions.

To derive the system model, we consider the size n of client requests in terms of

the number of required VMs and the types of desired VM instances (e.g., small,

Chapter 4. Bin packing based Approach for Energy Efficient Resource Allocation38

medium, large). Each VMi is characterized by a lifetime ti and a maximum

power consumption pi. Each server or hosting node j, from the data center, has

a power consumption limit or power cap noted Pj,Max. This can be fixed by

Cloud administrators. We assume that all servers are homogeneous; extending

the model to heterogeneous servers is trivial but will increase complexity and will

not necessarily provide additional insight.

The approach adopted to achieve energy efficiency in our proposal is to use a

bin packing algorithm for optimal placement of user requests and to follow with

dynamic consolidation once a sufficient number of departures have occurred. The

dynamic consolidation is handled by the migration algorithm which regroups VMs

to free as many servers as possible to put them into sleep mode or to shut them

down.

4.3 Energy Efficient Static Resource Allocation

4.3.1 Exact Allocation Algorithm

The proposed exact VM allocation algorithm is an extended Bin-Packing approach

through the inclusion of valid conditions expressed in the form of constraints or

inequalities. The objective is to pack items (VMs in our case) into a set of bins

(servers or nodes hosting the VMs) characterized by their power consumptions.

In addition to n, the number of requested VMs, we define the number of servers,

m, available in the data center. The servers are assumed to have the same power

consumption limit: Pj,Max, {j = 1, 2, ...,m}. At run-time, each server j hosting a

number of VMs is characterized by its current power consumption: Pj,current.

Since the objective is to minimize the energy consumption of the data centers, we

define as key decision variable ej for each server j that is set to 1 if server j is

selected to host VMs, 0 if it is not selected. In addition, we define the bivalent

variable xij to indicate that VMi has been placed in server j and set xij to 1;

xij = 0 otherwise. The objective function to place all the demands (or VMs) in a

minimum number of servers can be expressed using:

minZ =
m∑
j=1

ej (4.1)

Chapter 4. Bin packing based Approach for Energy Efficient Resource Allocation39

This optimization is subject to a number of linear constraints reflecting the ca-

pacity limits of the servers and obvious facts such as a VM can only be assigned

to one server or a server can only host VMs according to the amount of remaining

resources:

1. Each server has a power limit Pj,Max that cannot be exceeded when serving

or hosting VMs and this occurs according to remaining capacity:

n∑
i=1

pixij ≤ Pj,Maxej − Pj,Current,∀j = 1, . . . ,m (4.2)

2. A cloud provider has to fulfil all requests within a prescribed SLA or quota

and each requested VM will be assigned to one and only one server:

m∑
j=1

xij = 1,∀i = 1, . . . , n (4.3)

3. For servers verifying the condition Pj,Max > Pj,current and Pj,current 6= 0, the

total number of used servers is lower bounded by
⌈∑m

j=1 Pj,current

Pj,Max

⌉
. This adds

he following inequality to the model:

m∑
j=1

ej ≥

⌈∑m
j=1 Pj,current

Pj,Max

⌉
(4.4)

The exact and extended Bin-Packing VM allocation model can be summarized

by lumping the objective function with all the constraints and conditions into the

following set of equations:

minZ =
m∑
j=1

ej (4.5)

Subject To:

n∑
i=1

pixij ≤ Pj,Maxej − Pj,Current,∀j = 1, . . . ,m (4.6)

m∑
j=1

xij = 1,∀i = 1, . . . , n (4.7)

Chapter 4. Bin packing based Approach for Energy Efficient Resource Allocation40

m∑
j=1

ej ≥

⌈∑m
j=1 Pj,current

Pj,Max

⌉
(4.8)

ej =

{
1, if the server j is used;

0, otherwise.
(4.9)

xij =

{
1, if the VMi is placed in server j;

0, otherwise.
(4.10)

All the variables and constants used in the model are listed for easy reference

below:

• n is the size of the request in number of requested VMs.

• m is the number of servers in the data center.

• pi represents the power consumption of VMi.

• xij is a bivalent variable indicating that VMi is assigned to a server j.

• ej is a variable used to indicate whether the server j is used or not.

• Pj,Max represents the maximum power consumption of server j.

• Pj,current represents the current power consumption of server j (Pj,current =

Pj,idle +
∑

k pk with VMk hosted by server j).

• Pj,idle represents the power consumption of server j when it is idle.

Constraints in server CPU, memory and storage are also added to the model to

confine even further the model convex hull:

n∑
i=1

cpuixij ≤ CPUjej (4.11)

where cpui is the requested CPU by VMi. CPUj is the CPU capacity of server j.

m∑
i=1

memixij ≤MEMjej (4.12)

Chapter 4. Bin packing based Approach for Energy Efficient Resource Allocation41

where memi is the requested memory by VMi and MEMj is the memory capacity

of server j.

m∑
i=1

stoixij ≤ STOjej (4.13)

where stoi is the requested storage by VMi and STOj is the storage capacity of

server j.

In this work we assume that these constraints are met and verified and we hence

only need to focus on the energy efficiency constraints through (4.2).

4.3.2 Modified Best Fit Heuristic Algorithm

The exact and extended Bin-Packing is compared to a Best-Fit heuristic adap-

tation of the Best-Fit algorithm [95]. The heuristic proposed to achieve energy

efficient VM placement consists of two steps:

1. sorting the requested VMs in decreasing order of power consumption. This

builds somehow an ordered stack that is used in the second step for packing

VMs in available servers;

2. The sorted VMs are handled starting from the top of the stack and attempt-

ing to place the most power consuming VMs in the server with the smallest

remaining power consumption budget until a VM down the stack fits in this

target server. The process repeats or continues until all VMs in the stack are

placed and packed as much as possible in the most occupied servers. This

will tend to free servers for sleep mode or switching off.

As this Best-Fit heuristic algorithm tries to approximate the Bin-Packing algo-

rithm, it is selected for comparison with our exact VM allocation proposal. The

allocation algorithms are combined with a migration algorithm to minimize over-

all data center power consumption. In our case, the objective is to benchmark

the exact VM allocation and migration algorithms with a heuristic algorithm.

The Best-Fit heuristic was selected since it is known to achieve good suboptimal

performance compared with classical Bin-Packing.

Chapter 4. Bin packing based Approach for Energy Efficient Resource Allocation42

4.4 Energy Efficient Dynamic Resource Alloca-

tion (Re-allocation)

4.4.1 Exact Migration Algorithm

The placed and running VMs in the servers will gradually leave the system as

their related jobs end. These departures are the opportunity to re-optimize the

placement by migrating VMs always in the system for consolidation in a minimum

number of fully packed severs. A migration algorithm based on an integer linear

program (ILP) is presented to achieve the consolidation. This ILP algorithm

consists in introducing a number of valid inequalities to reduce the span of the

convex hull of the migration problem.

The mathematical model for the VM consolidation via migration relies on a linear

integer programming formulation. The objective for the algorithm is to migrate

VMs from nodes selected as source nodes (those the algorithm aims at emptying so

they can be turned off) to other selected destination nodes (those the algorithm

aims at filling so they serve a maximum number of VMs within their capacity

limits).

Ideally, the algorithm should minimize the number of active nodes, maximize

the overall number of VMs handled by the active nodes and hence maximize the

number of unused, empty or idle nodes. The algorithm should also minimize the

power consumption caused by migrations. If the power consumption or cost of VM

migration is uniform or homogeneous across hosting nodes or servers, the objective

reduces to minimizing the number of migrations.

The migration concerns the set of non idle servers m′, m′ < m, whose power

consumptions are lower than Pj,Max with j in m′. Despite the slight reduction

in size m′ < m, the problem remains NP-hard. Hence, we resort to an exact

algorithm based on linear integer programming to address optimal migration for

practical problem sizes or number of instances.

The objective function for the optimal VM migration and consolidation can be

expressed as the maximization of the number of idle servers in the infrastructure:

maxM =
m′∑
i=1

Pi,idleyi −
m′∑
i=1

m′∑
j=1

qi∑
k=1

p′kzijk (4.14)

Chapter 4. Bin packing based Approach for Energy Efficient Resource Allocation43

Figure 4.2: Example of VMs’ migration

where yi = 1 is used to indicate that server i is idle and yi = 0 means that at

least one VM is active in server i. Pi,idle is the power consumed by idle servers, p′k

is the cost in terms of consumed power when migrating VMk.

Variable zijk is the bivalent variable expressing migration of VMk from server i to

server j. Variable qi is the total number of VMs hosted on server i and that are

candidate for migration into destination servers, especially server j in equation

(4.14).

The objective function (4.14) is subject to the migration constraints cited earlier.

These conditions are formally expressed through valid inequalities and constraints

that have to be respected when minimizing overall energy consumption.

1. When migrating VMk from a server i to a server j (see figure 4.3), the

algorithm must prevent backward migrations and can only migrate into one

specific destination node. Stated in an equivalent way: if a VMk is migrated

from a server i (source) to a server j (destination), it can not be migrated to

any other server l (l 6= j). The proposed inequality (4.15) also ensures that

VMs in destination node and VMs migrated to destination nodes are not

migrated as we are aiming at filling these nodes instead of emptying them

obviously. This is reflected by the inequality :

zijk + zjlk′ ≤ 1; (4.15)

2. To strengthen further the previous condition, a valid inequality is added to

ensure that when a VMk is migrated from server i to server j (see figure

4.4), migrations to other nodes l (l 6= j) are prevented or forbidden:

Chapter 4. Bin packing based Approach for Energy Efficient Resource Allocation44

Figure 4.3: A server candidate to a migration should not migrate its own VMs

m′∑
j=1,j 6=i

zijk ≤ 1; (4.16)

Figure 4.4: A VMk can not be migrated to many servers at the same time

3. A server j is limited by its power consumption limit Pj,Max. The inequality

(4.17) allows each server j to host VMs without exceeding its power limit:

m′∑
i=1

qi∑
k=1

pkzijk ≤ (Pj,Max − Pj,Current) (1− yj) (4.17)

Where Pj,Current is the current power consumption of server j.

4. If a non-idle server i is a source of VM migration, then it should migrate

all of its hosted VMs in order to be put to sleep mode or shut down once

completely emptied:

Chapter 4. Bin packing based Approach for Energy Efficient Resource Allocation45

m′∑
j=1

qi∑
k=1

zijk = qiyi,∀i = 1, . . . ,m′, j 6= i (4.18)

5. Another valid inequality is the upper bound in the total number of empty

servers:

m′∑
i=1

yi ≤ m′ −

⌈∑m′

j=1 Pj,Current

Pj,Max

⌉
(4.19)

6. Another important aspect is to avoid migration of VMs whose lifetime or

leftover lifetime tk is shorter than the time needed to make migration deci-

sions T0:

zijk∆tk ≥ T0, (4.20)

where ∆tk = tk −CurrentT ime, where CurrentT ime represents current or

VM migration handling time.

The optimal VM consolidation and migration model and objective function (4.14)

can be summarized for convenience with all the valid conditions as:

maxM =
m′∑
i=1

Pi,idleyi −
m′∑
i=1

m′∑
j=1

qi∑
k=1

p′kzijk (4.21)

Subject To:

zijk + zjlk′ ≤ 1 (4.22)

∀i = 1, . . . ,m′,∀j = 1, . . . ,m′, ∀k = 1, . . . , qi,∀k′ = 1, . . . , qj, j 6= i, and ∀l =

1, . . . ,m′, l 6= j, k 6= k′.

m′∑
j=1,j 6=i

zijk ≤ 1 (4.23)

∀i = 1, . . . ,m′,

∀j = 1, . . . ,m′,∀k = 1, . . . , qi, ∀l = 1, . . . ,m′, l 6= j.

Chapter 4. Bin packing based Approach for Energy Efficient Resource Allocation46

m′∑
i=1

qi∑
k=1

pkzijk ≤ (Pj,Max − Pj,Current) (1− yj) (4.24)

∀j = 1, . . . ,m, j 6= i

m′∑
j=1

qi∑
k=1

zijk = qiyi,∀i = 1, . . . ,m′, j 6= i (4.25)

m′∑
i=1

yi ≤ m′ −

⌈∑m′

j=1 Pj,Current

Pj,Max

⌉
(4.26)

zijk∆tk ≥ T0, (4.27)

zijk =

{
1, if the VMk is migrated from a server i to a server j;

0, otherwise.
(4.28)

yi =

{
1, if the Server i is idle;

0, otherwise.
(4.29)

4.5 Combination of allocation and migration al-

gorithms

Figure 4.5 summarizes how the allocation and migration algorithms are combined

to achieve minimal energy consumption in infrastructure nodes and hence data

centers. Both the exact Bin-Packing extension and the Best-Fit heuristic are used

to ensure optimal and suboptimal placement respectively.

Recall that the two algorithms allow us to cross check their relative performance

and benchmark the modified Best-Fit with the proposed exact allocation solution

since the algorithms exhibit different optimality and convergence time character-

istics.

Chapter 4. Bin packing based Approach for Energy Efficient Resource Allocation47

Figure 4.5: Combination of the migration algorithm with the two allocation
algorithms

Upon arrival of VM placement and resource requests these two algorithms se-

lect the most appropriate nodes to host new VMs in available and active nodes.

Whenever necessary these algorithms may resort to turning new nodes on, when

the set of active nodes are full and cannot host the new arriving VM instances

(small, medium or large). Both algorithms will attempt serving the requests in the

currently active nodes and will of course typically avoid turning any new nodes

on.

The algorithms are combined with the migration algorithm that is launched if a

number of VM jobs terminate since their dedicated resources become available

for opportunistic reuse and for more efficient resource allocation and distribution.

These departures are the opportunity for the consolidation algorithm to rearrange

allocations by moving VMs into the smallest possible set of nodes. All emptied or

freed servers (or nodes) are turned off to minimize energy consumption.

The consolidation is achieved by the exact migration algorithm that moves VMs

from selected source nodes to selected destination nodes. The end result is the

Chapter 4. Bin packing based Approach for Energy Efficient Resource Allocation48

activation and use of the smallest set of nodes in the data centers.

4.6 Performance evaluation

Our proposed algorithms are evaluated through a Java language implementation

and the linear solver CPLEX [101]. A dedicated simulator is developed to conduct

the performance assessments and the comparison. The objective of the numerical

evaluation is to quantify the percentage of energy savings or power consumption

savings that can be expected when combining the exact allocation algorithm and

the consolidation process using our proposed exact migration algorithm. The

answers provided by the numerical analysis concern also the scalability and com-

plexity of the proposed algorithms in the size of the data centers and the arrival

rate of requests for resources to host VMs which is also synonymous to load on

the system. Note, however, that the simulation are conducted for an arrival rate

strictly lower than the rate of VM job departures from the system; thus simu-

lations correspond to cases where the likelihood of finding an optimal or a good

solution is high.

The assessment scenarios correspond to data centers with 100 servers or nodes for

the first five experiments. In the last two experiments 200 servers are considered.

We collect essentially as performance indicators, the percentage of used servers

(which automatically provides the energy consumed or saved by the algorithms)

and the time required for the algorithms to find their best solutions (optimal for

the exact algorithms). All the servers have a power consumption cap Pj,Max set

to 200 watts (the peak power of a typical server is around 250 watts [102]). To

perform per-VM power estimation we referred to a power estimation model pro-

posed in [103]. Three SPECcpu2006 [104] workloads (454.calculix, 482.sphinx

and 435.gromacs) with high, medium and low power consumption were consid-

ered. Their associated power consumption is close to 13 watts, 11 watts and 10

watts respectively. The power estimation model proposed in [46] provided addi-

tional insight. The power consumption of other SPECcpu2006 [104] workloads

(471.omnetpp, 470.lbm and 445.gobmk) were evaluated. Estimated power con-

sumptions were found to be between 25 and 28 watts for these elements. Without

loss of generality and to ease intuitive verification of the results, we refer to these

published consumption to associate to each VM type (small, medium and large)

an energy consumption pi respectively equal to 10 watts (low), 20 watts (medium)

Chapter 4. Bin packing based Approach for Energy Efficient Resource Allocation49

and 30 watts (high) to stay in line with published values. The requests for re-

sources to serve VMs have a constant arrival rate. The requested VM instance

types are discrete uniform in [1, 3] (1 for small, 2 for medium and 3 for large in-

stances). The VM sizes are arbitrarily drawn as uniform in [1, 3] and classified

according to their type. We retained only the random drawings that fulfill the

VM characteristics in size and type.

Figure 4.6: Comparison between the exact and heuristic allocation algorithms

Figure 4.6 depicts results of a comparison between the adapted Best-Fit heuris-

tic and our exact extended Bin-Packing allocation algorithms. The simulations

correspond to 100 servers and resource requests in number of VMs in the [1, 200]

range. The lifetime of the VMs are uniform in [30s, 180s]. That is VM jobs last at

least 30s and will terminate in less than 180s. The exact allocation algorithm as

expected outperforms the Best-Fit heuristic for the 1000s time interval simulated

and reported in Figure 4.6. The Best-Fit heuristic uses more often all available

nodes or servers (100% ordinate value in Figure 4.6) while the exact algorithm

manages to use fewer nodes with 10 to 50% more unused servers that Best-Fit.

Figure 4.7 extends the analysis for the exact and extended Bin-Packing allocation

algorithm by comparing its performance with and without consolidation. When

the exact algorithm is combined with the migration algorithm (that uses migration

to empty some nodes) it can significantly provide additional power savings or

Chapter 4. Bin packing based Approach for Energy Efficient Resource Allocation50

energy consumption reduction. The average gain can be estimated to be 10 to 20%

more servers that could be turned off. The average line for the exact algorithm

is around 80% of servers used while the average for the exact algorithm with

migration is more in the order of 60%.

Figure 4.7: Performance comparison of the exact allocation algorithm with
and without migration

Figure 4.8 pursues the analysis for the exact bin-Packing VM allocation algorithm

by reporting performance as a function of data center sizes and VM requests

induced load. The time before convergence to the optimal placement is reported

as a function of data center size (from 100 to 1000 nodes or servers) for request

sizes ranging from 50 to 500 VMs. Clearly, because the problem is NP-Hard, the

convergence time of the exact algorithm grows exponentially for requests exceeding

300 VMs; especially for number of servers beyond 400. The time needed to find

the optimal solutions remains acceptable and reasonable, within 10 s, for data

center sizes below 500 receiving requests less than 400 VMs. The time needed

for convergence grows unacceptably high outside of this operating range for the

simulated scenarios (tens of seconds to few minutes). This motivated the use of the

Best-Fit algorithm to find solutions faster even if they are bound to be suboptimal

as reported in Figure 4.6.

Figures 4.9, 4.10 and 4.11 address the performance of the consolidation algorithm

via the analysis of the time needed to achieve migrations of VMs from source

nodes to destination nodes in order to free as many servers as possible and gain

Chapter 4. Bin packing based Approach for Energy Efficient Resource Allocation51

Figure 4.8: Execution time of the Exact Allocation Algorithm

the opportunity to shut them down. The assessment is performed consequently

on the active servers, i.e. those currently serving VMs and candidate for consol-

idation. The performance as a function of increasing number of active nodes m′

to consolidate is reported in the three figures for m′ = 5,m′ = 10 and m′ = 20.

For m′ = 5, consolidation after migration from source to destination nodes can

be achieved in the milliseconds time scales (few to 300 ms in Figure 4.9). The

number of hosted VMs to consolidate varies from 5 to 30 for this simulation.

Figure 4.9: Execution time of the exact migration algorithm (m′ = 5)

Chapter 4. Bin packing based Approach for Energy Efficient Resource Allocation52

The time needed for consolidation increases to seconds in Figure 4.10 for m′ = 10.

The curve is reported for up to 60 VMs hosted in the m′ nodes considered or

subject to consolidation/migration. When the number of servers to consolidate

increases further, as shown in Figure 4.11 for m′ = 20, the convergence times move

to orders of tens to hundreds of minutes (for the extreme case, on the curve upper

right corner, this reaches 180 minutes for 120 hosted VMs). These three figures

highlight the limits of the exact migration algorithm with increasing number of

servers to consolidate.

Figure 4.10: Execution time of the exact migration algorithm (m′ = 10)

The next experiments and simulations address the achievable energy savings using

different VM requests inter-arrival times (noted by λ−1) and lifetimes (represented

by µ−1 that also reflects the service rate µ−1) in order to assess the performance

for variable system loads since the ration λ/µ governs performance. The number

of servers has been fixed to 200 hosting nodes for the reported results in Table

5.2. One hundred (100) simulation runs are average for each parameter setting

in the table. Table 5.2 reports the energy savings with the migration algorithm

compared to the allocation algorithm without migration.

Energy savings depend evidently on the service rate or the lifetime of VMs or the

duration of their jobs relative to the load induced by the VM resource requests.

Savings in the simulation can reach as high as 41.89% for inter-arrival times of 25

seconds and job durations of 30 seconds. For less favorable ratios or loads, the

savings for the scenarios tested in the evaluation are less significant but remain

Chapter 4. Bin packing based Approach for Energy Efficient Resource Allocation53

Figure 4.11: Execution time of the exact migration algorithm (m′ = 20)

Table 4.1: Table of percentage of gained energy when migration is used

XXXXXXXXXXXXµ−1(s)
λ−1(s)

5 10 15 20 25 30

10 35,55 36,59 00,00 00,00 00,00 00,00
20 27,29 34,00 35,23 38,50 00,00 00,00
30 17,48 27,39 35,21 40,32 41,89 36,58
40 16,77 18,85 22,02 32,31 39,90 40,50
50 10,86 16,17 19,85 22,30 39,20 36,52
60 08,63 14,29 18,01 22,13 25,15 30,68
70 08,10 14,00 14,86 15,90 22,91 23,20
80 07,01 10,20 10,91 15,34 17,02 21,60
90 06,80 09,52 10,31 14,70 16,97 19,20
100 05,90 07,50 08,40 12,90 16,00 14,97

respectable (5.90% for the highest loads (inter-arrivals time is equal to 5seconds)

and longer job durations (of 100sec).

In order to complete the analysis, the energy savings that can be achieved by the

Best-Fit, the exact allocation and the exact allocation combined with migration are

compared for similar scenarios with a restricted set of parameter settings (λ−1 =

10s). All the servers are initially considered OFF, which means that the energy

saving is initialized to 100%. Figure 4.12 depicts the evolution of the percentage

of energy saved by the three algorithms. The obvious dependence on system load

is reflected by the gradual decrease of energy savings for increasing VM lifetimes

Chapter 4. Bin packing based Approach for Energy Efficient Resource Allocation54

Figure 4.12: Energy savings

(or increasing job durations). For the exact Bin-Packing allocation algorithm, the

energy savings remain quite high at low load; 90% of energy savings for the exact

allocation only and 95% combined with migration. Energy savings achieved by

the Best-Fit heuristic stay below the percentages achieved by the exact allocation

algorithm with or without migration at all different loads.

4.7 Conclusions

In this chapter, we propose a bin packing based approach for energy efficient

resource allocation for classical IaaS clouds. We formulate the problem of energy

efficient resource allocation as a bin-packing model. This model is VM based

and provides on-demand resource allocation. We propose an exact energy aware

algorithm based on integer linear program (ILP) for initial resource allocation. To

deal with dynamic resource consolidation, an exact ILP algorithm for dynamic

VM reallocation was also proposed. It is based on VM migration and aims to

optimize constantly the energy efficiency after service departures. A heuristic

method based on best-fit algorithm was also adapted to the problem. Experimental

results show benefits of combining the allocation and migration algorithms and

Chapter 4. Bin packing based Approach for Energy Efficient Resource Allocation55

demonstrate their ability to achieve significant energy savings while maintaining

feasible runtimes when compared with the best fit heuristic. The next chapter

introduces a graph coloring-based approach to deal with the new trends in Cloud.

Chapter 5

Graph coloring based Approach

for Energy Efficient Resource

Allocation

5.1 Introduction

New hybrid Cloud solutions that combine Iaas and PaaS like OpenStack Heat

[13] are evolving over time and being more and more attractive since they enable

the joint deployment of infrastructure and applications. However, most of the

interest was on the IaaS Clouds. These solutions still lack energy efficient resource

scheduling and no attention was paid to solve the problem at this level.

In IaaS clouds, the focus has been mostly on smart placement and optimal pack-

ing for efficient resource utilization including in some cases an energy efficiency

criterion [72] [105]. The time dimension has received less attention when, in fact,

it is expected that users or consumers will acquire virtual resources from providers

for a specified time interval to take advantage of the cloud flexibility and cost

reduction benefits. Energy efficient advance resource reservation (or scheduling)

combined with optimal placement has not been as thoroughly investigated. The

starting and ending time of user requested cloud services have to be taken into

account and combined with energy consumption minimization criteria in order to

avoid resource reservation conflicts and collisions for concurrent or overlapping

requests.

56

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 57

This is the focus of our work where we take into account advance resource reserva-

tion and time conflicts while simultaneously aiming at improved energy efficiency

and resource utilization for providers. We aim to provide a generic model and op-

timization algorithms of energy efficient resource allocation that could be applied

by IaaS-PaaS cloud providers. Another goal is to dynamically optimize place-

ment while avoiding conflicts when allocating resources to users by preventing the

assignment of resources to concurrent requests.

We propose a new model based on graph coloring to prevent time conflicts com-

bined with energy consumption minimization and resource utilization maximiza-

tion criteria to achieve optimal and conflict free allocations. For the purpose we

cast the advance resource reservation problem into a graph coloring problem and

more specifically make use of graph pre-coloring and re-coloring to handle resource

requests and resources releases. Graph coloring is NP-complete and is defined as

coloring the vertices of a graph with the minimum number of colors without any

two adjacent vertices having the same color. Graph coloring was used in various

research areas of computer science such data mining [106], image segmentation

[107], register allocation [108], timetabling [109], frequency assignment [110] and

aircraft maintenance scheduling [111]. Graph coloring fits well with the problem

of advance resource reservation since it can be made to ensure non conflicting re-

source reservations (when consumers can not use the same resource simultaneously

or share the resource in the same time interval). It fits also on-demand resource

allocation if the start time is immediate the end time is not fixed.

In our proposed model, improvements in energy efficiency are achieved by privi-

leging reservation of more energy efficient resources in priority. To prioritize the

selection of servers we rank them according to their performance per watt PPW, a

measure of the energy efficiency of a computer architecture or a computer hardware

defined in [112]. The higher the performance per watt, the more energy efficient

the computer is. Our model is generic enough to use alternate energy consumption

or energy efficiency metrics and will remain relevant if another metric is adopted.

Starting from the graph coloring technic combined with the energy efficiency met-

ric, this work propose a new generic graph coloring model of energy efficient ad-

vance resource reservation in IaaS-PaaS cloud data centers. The proposed model

provides users with access to a set of resources for a specified time while minimiz-

ing resource usage and maximizing data centers’ energy efficiency. It could also

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 58

deal with on-demand resource allocation if the start time is immediate the end

time is not fixed.

For initial resource reservation (after request arrival), we provide an integer linear

programming formulation which generalizes the graph coloring problem. Then, we

derive an Energy Efficient Graph Pre-coloring EEGP heuristic algorithm to deal

with larger graph instances and to slow computation times. To adapt reservations

when resources are released, we propose two heuristic algorithms called Energy

Efficient Graph Recoloring (EEGR) and Migration Aware Energy Efficient Graph

Recoloring (MA-EEGR) that reassign resources after services end. We compare

our proposed algorithms with the baseline advance reservation algorithm (AR)

used in the Haizea resource manager [77] and show that our heuristics achieve

significantly better results in terms of energy efficiency and resource utilization.

5.2 The System Model

Our proposed model is based on graph coloring [113] which is defined as follows:

given a graph G = (V, E) and an integer k, a proper k-coloring of a graph G is an

assignment of distinct k colors to each vertex such that two adjacent vertices have

not the same color. The least k such that G is k-colorable is called the chromatic

number and denoted by χ(G). To derive our proposed model, we model virtual

resources as colors, we translate VM requests or demands into a graph G and

we relate them to graph coloring and the energy efficiency metric.

5.2.1 Resource Modeling: Colors

We consider a cloud data center with m heterogeneous virtualized servers. We

assume resources are exposed in the form of virtual resource units (VRUs). A

VRU is an abstraction of resources that is characterized by its computational,

memory, and communication capacities and by its availability. VRU could repre-

sent a virtual container for hosting one instance of an application or could simply

represent a compute unit like ECU Amazon EC2 Compute Unit [5]. Each VRU

is modeled as a color cj,id where j corresponds to the server providing this VRU

and id specifies the id of the VRU. Colors belonging to the same server j form a

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 59

cluster of colors Cj. If at least one color of the color cluster Cj is reserved, we

consider that Cj is used, else it is free.

To each Cj, we associate a weight wj which represents PPW (performance per

watt) of server j. As already mentioned, we adopt for the servers power efficiency

metric which can be defined as the rate of transactions or computations that can

be delivered by a computer for every watt of consumed power. This measure is

becoming an increasingly important metric for data centers [114]. Manufacturers

of servers such as Intel, AMD and Original Equipment Manufacturer (OEM) favor

the performance per watt metric over more straightforward performance metrics.

5.2.2 End User Request Modeling : Request Subgraph

The end user request Rk = {VM1, ..., V Mnk
} expresses a demand of nk VMs. Each

VMi requires a specific amount ri of resource units. VMi is logically divided into

ri requested resource units (defined as RRUs). Each RRU will be assigned to a

unique VRU (see Figure 5.2 and Figure 5.3). The selected VRU is reserved for

the associated VMi for the duration of its specified start to stop interval: [ai, bi].

Hence, all RRUs of a specific VM are assigned to the same reservation interval.

Figure 5.1: Request Subgraph Construction

In order to cluster the RRUs of a given VM in the assignment or reservation

process, we define the bivalent variable xu,c, and set its value to 1 to indicate if an

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 60

RRU u is assigned to a VRU or a color c and equal to 0 otherwise. This leads us

to associate to each request Rk a subgraph Gk with vertex set Vk (or set of RRUs)

and a set of edges Ek. The edges connect vertices (RRUs) that have overlapping

reservation time intervals. This will enable conflict free scheduling of resources so

virtual resources are assigned to one and only one request in a end user specified

interval.

An example of request subgraph construction, after arrival of the first request R1,

is shown in Figure 5.1. VM1, VM2 and VM3 requirements in terms of resource

units (RRUs) are respectively 1, 3 and 2. Hence, one RRU v1 is associated to

VM1, three RRUs (v2, v3, v4) are associated to VM2 and two RRUs (v5, v6) are

associated to VM3. Edges or links between the nodes vi (or RRUs) indicate that

these connected nodes should be assigned strictly different colors.

Figure 5.2: Graph coloring based model

To give a description of how to apply our generic graph-coloring based model on

hybrid IaaS-PaaS Clouds, we present a concrete example of model building when

a user wants to deploy a LAMP application on a virtual machine using OpenStack

Heat and Docker (see Appendix B for more details).

A LAMP application is a web application based on the composition of Linux,

Apache, MySQL, and PHP. In this scenario, we consider a user request for build-

ing a LAMP application on an isolated VM that contains a docker container

running Apache with PHP and another one running MySQL database (see Fig-

ure 5.4). The user request is presented as a template that specifies the different

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 61

Figure 5.3: Graph Coloring Model

Figure 5.4: Lamp application deployment on a VM

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 62

resources (VM and containers). This latter is modeled as subgraph where nodes

(RRUs) represent requested applications that will be running on containers and

links indicate overlapping reservation time intervals. Containers represent colors

or VRUs exposed by the provider (see Figure 5.5).

Figure 5.5: Model building in case of a LAMP application deployement

5.2.3 Energy efficiency metric

The performance per watt (PPW) is an increasingly used metric to assess the

energy efficiency of data centers, supercomputers, servers or hardware [114]. Intel,

AMD and Original Equipment Manufacturer (OEM) use the PPW [112] as the

energy efficiency metric to measure and rank the energy efficiency of computers.

It can be defined as the rate of transactions or computations that can be delivered

by a computer for every watt of power consumed. A server PPW tends to vary

with its resources usage or solicitation. Traditionally, a server PPW is established

and measured at full load (e.g. Intel). This is the metric considered in our model.

The PPW metric is used to select in priority the servers that have the highest

reported PPW values. Less efficient servers will be less used or solicited and can

hence be shutdown or put to sleep mode to save energy.

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 63

5.2.4 Graph coloring for Energy Efficient Resource Reser-

vation

Conflicts between all requested resources are derived from an undirected global

dynamic graph G. G = (V,E) is dynamically constructed over time and updated

after request arrivals and departures. Vertex set V represents RRUs belonging to

all requested VMs and E represents the set of all edges in the graph. In case of a

new request arrival (request Rk), new nodes and edges will appear on the graph.

Thus, the global graph (G = G∪Gk) will represent a conjunction of G and Gk. In

case of a request reservation end, Gk will be retrieved and deleted from the global

graph G. This is depicted in the first step of Figure 5.6 and 5.8 illustrating how

graph G is updated at request arrivals and service departures.

Once graph G is constructed, the next step is to color the graph while maximiz-

ing its average power efficiency by privileging the servers with the highest PPW

performance when assigning VRUs:

PPW =

∑|V |
h=1wjxh,cj,id∑|V |
h=1 xh,cj,id

(5.1)

Less efficient servers will be less used and could be shutdown or put to sleep mode

in order to achieve more energy savings.

In addition to finding the chromatic number χ(G), the number of used color clus-

ters (or servers) should be minimized. This will consolidate VRUs assigned to

RRUs in a minimum number of servers. To these objectives, we associate a num-

ber of valid conditions and constraints to speed up convergence towards a viable

solution. The RRUs of the same VM have to be assigned to VRUs (colors) be-

longing to the same server or color cluster.

The reservation of resources at new requests arrivals can be seen as a pre-coloring

extension of the graph coloring problem, a generalization of graph coloring, since

at each new request arrival we have a graph where a subset of the vertices already

have a color and we have to extend this pre-coloring to the whole graph (see

[113]). To handle the new resource reservation requests, we use the EEGP heuristic

based algorithm to pre-color the graph so as to achieve no-conflict scheduling and

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 64

Figure 5.6: Graph Coloring (first request)

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 65

Figure 5.7: Graph Coloring (second request)

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 66

maximization of the average power efficiency or equivalently maximize the achieved

PPW .

To handle service departures, when VM jobs end and the assigned VRUs are

released, we resort to heuristic algorithms, EEGR and MA-EEGR. Service de-

partures are opportunities for reassignments where freed and more power efficient

resources will be substituted for less performing ones. The objective is to reduce

opportunistically the chromatic number χ(G) further. This corresponds to a par-

tial graph recoloring problem [113] where some vertices are recolored to maximize

PPW . Recoloring consists in our case of migrating a VM from a server to another

more power efficient one (see Figure 5.8 and Figure 5.9).

Since the energy efficient VM reservation problem in cloud data centers is known

to be NP-hard, an exact (in our case an ILP-based algorithm) will find the optimal

solutions in acceptable convergence times only for small graphs or problem sizes.

In order to scale and find solutions in reasonable convergence times, we resort to

the EEGP heuristic, that uses the notations and variables listed in Table 5.1. The

exact algorithm is useful to check if the performance of the EEGP algorithm is

close to optimal in terms of number of used colors and energy efficiency and to

assess the performance improvement in convergence time.

5.3 Energy Efficient Initial Advanced Resource

Reservation

5.3.1 Exact energy efficient graph precoloring Algorithm

The proposed exact energy efficient graph precoloring algorithm is an extended

graph coloring approach with valid conditions expressed in the form of constraints

or inequalities. The problem is cast into an ILP whose objective function minimizes

the number of used resources (VRUs or colors) and minimizes simultaneously the

energy consumption of the data centers (or maximizes the energy efficiency by

maximizing PPW).

We define as key decision variable zc for each color c that is set to 1 if color c

is reserved to a RRU, 0 if it is not reserved. In addition, we define the bivalent

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 67

Figure 5.8: Energy Efficient Graph Recoloring

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 68

Table 5.1: Notations

Symbol Meaning
V RU Virtual resource unit : a color.
RRU Abstract representation of VRU at

request level : a graph vertex.
G Global graph of requests.
V Vertex set of G. It represents the

RRUs belonging to all requested
VMs.

E The set of all edges in the graph G.
E ′ The set of intra VM edges
χ(G) The chromatic number of a graph

(the smallest number of colors
needed to color the vertices of G).

Gk Subgraph associated to request Rk.
Vk Vertex set of the graph Gk.
Ek Edge set of the graph Gk.
Rk A request having a single id k.
nk Number of virtual machines of re-

quest Rk.
VMi A virtual machine which logically di-

vided into ri RRUs.
ri Number of VRUs requested by VMi.
[ai, bi] The time during it a VMi is re-

served.
cj,id A virtual resource unit VRU (or a

color), where j is the server to which
it belongs and where id is its associ-
ated id.

Cj Cluster of colors containing colors
that belong to the same server j.

wj The performance per watt (PPW) of
the server j.

Pj,idle Power consumption of server j when
it is idle.

zc A binary variable. zc = 1 if color c
is used and 0 otherwise.

xuc A binary variable. xuc = 1 if RRU u
is reserved to color c and 0 otherwise.

yj A binary variable. yj = 1 if at least
one color belonging to Cj is used and
0 otherwise.

n Total number of nodes in the graph
G.

m Number of virtualized servers of the
data center.

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 69

variable xuc to indicate that RRU u has been reserved to color c and set xuc to 1;

xuc = 0 otherwise.

The objective function to reserve all the demands (or RRUs) to a minimum number

of colors while maximizing energy efficiency can be expressed using:

min
∑
c∈C

zc −
m∑
j=1

n∑
u=1

∑
c∈Cj

wjxuc (5.2)

This optimization is subject to a number of linear constraints and obvious facts

such as a color can only be reserved to one RRU or such as RRUs of the same

VM are reserved to colors belonging to the same color cluster. These conditions

are formally expressed through valid inequalities and constraints that have to be

respected when maximizing overall energy efficiency :

1. Each requested resource unit RRU is associated to one and only one VRU.

The proposed equality (5.3) ensures that each vertex of the graph is colored

with a unique color :

∑
c∈C

xuc = 1,∀u ∈ V (5.3)

2. In graph coloring, any two nodes connected by an edge must have different

colors. The valid inequality (5.4) ensures that two linked RRUs are reserved

to two different VRUs (or colors) :

xuc + xvc ≤ 1, ∀(u, v) ∈ E, c ∈ C (5.4)

3. Another valid inequality ensures that zc is equal to 1 if the color c is assigned

to a RRU u :

xuc ≤ zc, ∀u ∈ V, c ∈ C (5.5)

4. The RRUs of the same virtual machine have to be associated to colors of the

same color cluster (server):

xuc ≤
∑

c,c′∈Cj ,c6=c′

xvc′ , ∀(u, v) ∈ E ′, j = 1, . . . ,m (5.6)

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 70

The exact and extended graph precoloring model can be summarized by lumping

the objective function with all the constraints and conditions into the following

set of equations:

min
∑
c∈C

zc −
m∑
j=1

n∑
u=1

∑
c∈Cj

wjxuc (5.7)

Subject To:

∑
c∈C

xuc = 1,∀u ∈ V (5.8)

xuc + xvc ≤ 1,∀(u, v) ∈ E, c ∈ C (5.9)

xuc ≤ zc,∀u ∈ V, c ∈ C (5.10)

xuc ≤
∑

c,c′∈Cj ,c6=c′

xvc′ ,∀(u, v) ∈ E ′, j = 1, . . . ,m (5.11)

zc =

{
1, if color c is used;

0, otherwise.
(5.12)

xuc =

{
1, if a RRU u is colored with color c;

0, otherwise.
(5.13)

The notations used by the proposed graph coloring model for the energy efficient

resource reservation are listed in Table 5.1 for easy reference.

5.3.2 Energy efficient graph precoloring heuristic (EEGP)

Using the same underlying model illustrated in Figures 5.6 and 5.7, to derive the

exact ILP-based algorithm (through a graph pre-coloring extension), we propose

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 71

the EEGP heuristic as an alternative that converges much faster to near optimal

solutions (found by the exact algorithm).

The proposed EEGP algorithm assigns gradually colors to not yet colored vertices

(RRUs). For each set of vertices (RRUs) belonging to the same VM, the algorithm

uses the steps specified below to achieve coloring which is equivalent to assigning

a VRU to each RRU in the set. The EEGP algorithm uses the following steps to

find a solution:

1. Find the color cluster Cj with the highest PPW and with free VRUs. The

first step of the EEGP algorithm is handled by the function Find-Color-

Cluster(C,VMi) described further in this work.

2. Determine the neighboring RRUs (or graph vertices) directly connected to

VMi RRUs. This step in the EEGP algorithm is handled by the function

List-of-Connected-Nodes(VMi) that constructs the list LVMi
of RRUs

connected to VMi. In Figure 5.7, LVM4 = {v2, v3, v4}.

3. Construct the list of colors ∈ Cj that are not assigned to VMi neighboring

RRUs. This step uses the function List-of-Unused-colors(Cj,LVMi
) to

construct the list colj,V Mi
.

4. Finally, the algorithm can assign to each RRU ∈ VMi a different color from

the list colj,V Mi
.

Algorithm 1 EEGP Algorithm

Input: Graph G and a set of color clusters C
Output: Coloring of G (Not colored nodes)

1: for all (Not colored) VMi ∈ V do
2: Cj = Find-Color-Cluster(C,VMi)
3: LVMi

= List-of-Connected-Nodes(VMi)
4: colj,V Mi

= List-of-Unused-colors(Cj,LVMi
)

5: for all RRU ∈ VMi do
6: color(RRU, colj,V Mi

)
7: end for
8: end for

The function Find-Color-Cluster(C,VMi) selects the color cluster Cj ∈ C (or

server) from which to reserve (partially or totally) VRUs for the VMi RRUs (or

vertices). The selected Cj, is the color cluster with the highest PPW that satisfies

the following two conditions:

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 72

function: Find-Color-Cluster (C,VMi) :
Input: A VMi and a set of color clusters C
Output: A color cluster Cj to color VMi RRUs

1: boolean found = false
2: Sort the list of used color clusters in decreasing order by their highest PPW.
3: for Cj in the list do
4: free-colors(VMi, Cj) = |Cj| - deg(VMi, Cj)
5: if (free-colors(VMi, Cj) ≥ ri) then
6: found = true
7: return Cj

8: end if
9: end for

10: if (found == false) then
11: Sort the list of unused color clusters in decreasing order by their highest

PPW.
12: for Cj in the list do
13: free-colors(VMi, Cj) = |Cj| - deg(VMi, Cj)
14: if free-colors(VMi, Cj) ≥ ri then
15: return Cj

16: end if
17: end for
18: end if

1. Cj has enough free colors to assign to the VMi RRUs. To verify this condi-

tion, we compute free-colors(VMi, Cj) that gives the number of free colors

of Cj needed to color the VMi RRUs. Let deg(VMi, Cj) be the number of

colors associated to the neighbours of the VMi RRUs within server Cj. The

free-colors(VMi, Cj) is obtained by subtracting deg(VMi, Cj) from the

total number of colors of Cj. In the example shown in Figure 5.7, deg(VM4,

C2) is equal to 3, so, free-colors(VM4, C2) is equal to 1 (4− 3). Hence, C2

does not have enough free resources to assign to the two VM4 RRUs (namely,

v7 and v8). This compels the algorithm to pursue the search by checking

the next best PPW server (or color cluster), that is check C3. This server

has enough free colors because deg(VM4, C3) is equal to 0 (no neighbours

are using the resources) and free-colors(VM4, C3) is equal to 10 (10 − 0).

The RRUs, v7 and v8 of VM4, are assigned colors 10 and 11 from C3.

2. Using Cj ensures that the minimum number of colors (VRUs) are used to

color the graph G. For example, if Cj and Ck have the same power weight

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 73

(or PPW) and Cj is used but Ck is not, Cj is chosen because some of its

colors are already used in the graph.

To color a subgraph Gk, the worst complexity of the algorithm is |Vk| * m, where

Vk is the number of nodes of Gk and m is the number of hosts or color clusters.

The cost of updating the global graph G by adding or deleting subgraphs depends

on the data structure used to represent this graph. We adopt the most commonly

used data structure for representing graphs which is the adjacency list representa-

tion implemented with linked lists of adjacent nodes because of its simplicity and

dynamic aspects. This structure stores the adjacency list of each node as a linked

list in a space of O(|V | + |E|), supports optimal and dynamic insertions or dele-

tions of nodes and fast scanning of edges. Inserting or deleting edges and nodes

takes O(1) when using adjacency list. To add subgraph Gk to the global graph G,

nodes Vk and intra VM and inter VM edges Ek should be inserted. The links that

indicate overlapping reservation time intervals (inter VM edges) are determined

after consulting the head nodes list which is sorted according to reservation time.

Hence, the worst complexity of adding a subgraph Gk to G is O(|V |+ |Vk|+ |Ek|).

5.4 Energy Efficient Advanced Dynamic Resource

Reservation

5.4.1 Energy Efficient Graph Recoloring Heuristic (EEGR)

The partial re-coloring heuristic algorithm, EEGR, is triggered at service depar-

tures to find more energy efficient solutions by re-coloring some of the graph G

vertices. This corresponds to the migration of some of the VMs to another more

power efficient server as described:

1. After the departure of a VMi, EEGR builds a list RecolVMi
of candidates for

re-coloring using the function VMsToRecolor(VMi). This returns the list

of VMs connected to VMi that are associated to color clusters (or servers)

whose PPW is lower than that associated to VMi. Since VMi departs and

frees resources from a given server, these resources become candidates for

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 74

hosting VMs following migrations that will improve energy efficiency. Figure

5.8 illustrates these actions. When VM2 (associated to C2) departs (actually

the entire Request R1 departs), VM4 that was connected to VM2 and that

is associated to the less energy efficient color cluster C3 becomes candidate

for migration that is achieved through the action: RecolVM2 = VM4 or

colors/VRUs 6 and 7 of C2 are assigned to VM4 nodes v7 and v8 respectively.

2. For each VMj belonging to list RecolVMi
, color VMj using EEGP.

Algorithm 2 EEGR Algorithm

1: if (End of VMi associated to Ck) then
2: RecolVMi

← VMsToRecolor (VMi)
3: for all VMj ∈ (RecolVMi

) do
4: EEGP(VMj)
5: end for
6: end if

Figure 5.9: Reservation over time

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 75

5.4.2 Migration-Aware Energy Efficient Graph Recoloring

Heuristic (MA-EEGR)

After service departures, we reassign some VMs on different servers for better

optimization results. Note that at this stage, we can use the graph recoloring

algorithm EEGR introduced in the last section. However, even if EEGR algo-

rithm aims to dynamically reallocate (re-reserve) resources to maximize energy

efficiency, it is still based on blind migration and did not take into account the

cost of VM migrations. Therefore, we designed a more sophisticated migration

aware recoloring algorithm MA-EEGR that dynamically re-reserve resources via

VM live migration, while considering the induced energy cost of migrations. A

VM migration correspond to an action of vertices recoloring in graph G. Migration

decisions are energy aware since a server is not emptied (or freed) if the energy

gained by this mechanism, Ej,gain, is lower than the threshold fixed by the ad-

ministrator, Ethreshold (see Eq. 5.14). We define Ej,gain as the energy saved after

emptying a server j. This gain is calculated by retrieving the energy consumed by

VM migrations from server j to a server k (Emig,Cj/Ck
) and the energy consumed to

switch on the server j from the idle energy consumption of server j (Ej,idle) during

the period of its inactivity (tj,inactive). For simplicity reasons, we assume power-

ing on or off a server is negligible and Ej,OFF/ON is equal to zero. The threshold

Ethreshold is set to the lowest possible value which is zero. The energy consumption

of VM migrations Emig,Cj/Ck
is estimated using a lightweight mathematical model

proposed in [61] (see section 2.3.3.2 for more details).


Ej,gain ≥ Ethreshold

Ej,gain = Ej,idle − (Emig,Cj/Ck
+ Ej,OFF/ON)

Ej,idle = Pj,idle ∗ tj,inactive

(5.14)

Algorithm 3 describes the proposed MA-EEGR algorithm. Once a virtual machine

VMi (associated to Ck) ends, we build a list of color clusters candidate to be freed

(line 2). These selected color clusters have colors associated to VMs connected to

VMi and whose PPW is lower than the color cluster associated to VMi. For ex-

ample, in Figure 5.8, VM2 associated to C2 departs. Color cluster C3 is associated

to VM4 that was connected to VM2. As C3 is less energy efficient than C2, C3 is

added to the list of candidate color cluster to be freed (clusterlist = C3).

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 76

For each color cluster Cj in the list (clusterlist), we check first if color cluster

Ck have enough free colors to recolor vertices assigned to colors from Cj and

connected to VMi (if Empty(Cj,Ck) = true). Then, we check if migration decision

will provide power gain (line 5). Once these two conditions are satisfied, the

next step is to build the list of VMs to recolor with colors from Ck. This list,

vmlist, is returned by the function list-vm-to-migrate(VMi, Cj) and contains

VMs connected to VMi and in the same time associated to Cj. The last step is to

recolor each VMj in vmlist following the same steps as our EEGP algorithm, but

without applying the function Find-Color-Cluster (lines 8-11). The selected

color cluster from which to reserve (partially or totally) colors (VRUs) for VMj

vertices (RRUs) is fixed to Ck. The worst complexity of this algorithm is O(v∗m),

where v is the number of nodes to be recolored and m is the number of hosts or

color clusters.

Algorithm 3 MA-EEGR Algorithm

1: if (End of VMi associated to Ck) then
2: clusterlist ← list-clusters-to-empty (VMi)
3: for Cj ∈ clusterlist do
4: if (Empty(Cj,Ck)) then
5: if (Ej,gain >= Ethreshold) then
6: vmlist ← list-vm-to-migrate (VMi, Cj)
7: for all VMj ∈ vmlist do
8: LVMj

= List-of-Connected-Nodes(VMj)
9: colk,V Mj

= List-of-Unused-colors(Ck,LVMj
)

10: for all RRU ∈ VMj do
11: color(RRU, colk,V Mj

)
12: end for
13: end for
14: end if
15: end if
16: end for
17: end if

5.5 Performance evaluation

5.5.1 Evaluation Settings

Heterogeneous data center. To simulate an heterogeneous data center, we refer

to SPECpower ssj2008 benchmark [104] which provides an evaluation of servers

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 77

based on the performance per watt metric. We generate an infrastructure com-

posed of thousands of heterogeneous servers chosen randomly from the benchmark-

ing results. For simplicity reasons, we assume that resource units are equivalent to

ECUs [5] (e.g an Intel Xeon X5550 has 13 ECU and an Intel Xeon E5430 has about

11 ECU). Thus, information on performance per watt wj and on the number of

colors (VRU) |Cj| of each server j are directly retrieved the SPECpower ssj2008

benchmark.

Users’ Requests. User requests arrive following a poisson process with rate of

10 requests per second. To remove the possibility of very short and very long

living VMs, the lifetime of a VM or the interval during which a VMi is reserved

(bi − ai) is uniformly distributed between 200s and 1800s. The number of VMs

per request is uniformly distributed between 1 and 10. The number of RRUs per

VM is uniformly distributed between 1 and 20 (e.g EC2 instance types, namely

small, large, xlarge, high-cpu-medium and high-cpu-xlarge have respectively 1, 4,

8, 5 and 20 EC2 compute units (ECUs)).

5.5.2 Evaluation results

5.5.2.1 Energy Efficient Initial Advanced Resource Reservation

In the experiments below, we assess the performance of the EEGP heuristic in

comparison with the proposed exact solution and also with the advance reserva-

tion (AR) algorithm from the Haizea scheduler. The AR algorithm is a greedy

mapping algorithm based on the idea that free physical hosts are selected in pri-

ority. The assessment scenarios correspond to a data center with 1000 servers and

thousands of virtual resource units VRUs (or colors) for the experiments leading

to the results of Figures 5.12 and 5.13 and correspond to data centers with 100

servers and with 1175 VRUs for the rest of the evaluated scenarios. The effi-

ciency of our heuristic EEGP algorithm is shown in Table 5.2. We evaluate the

gap between the achieved objective functions values by the exact algorithm and

the EEGP heuristic solution. Table 5.2 reports this gap in % between the EEGP

heuristic and the exact solutions for small and medium global graph G sizes. This

gap is computed using:

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 78

gap = (heuristic solution−optimal solution)
optimal solution

× 100

Table 5.2: Gap between EEGP and Exact solutions

Graph size Objective function Z Gap
EEGP Exact

4 -9794.28 -9794.28 0
32 -78371.24 -78370.24 0.0012
69 -165171.61 -165170.61 0.0006
112 -267828.16 -267824.16 0.0014
117 -279474.33 -279470.33 0.0014
162 -380412.61 -380410.61 0.0005
208 -466824.37 -466817.37 0.0014
232 -507047.02 -507042.02 0.0009
262 -575017.54 -575012.54 0.0008
299 -654000.31 -653995.30 0.0007
335 -716852.47 -716844.47 0.0011
365 -769421.88 -769415.88 0.0007
399 -823698.82 -823688.82 0.0012
416 -854652.27 -854641.27 0.0012
437 -889098.53 -889089.53 0.0010

Average gap 0.0010

Table 5.2 indicates that the EEGP achieved objective function values are only

0.001 % from the optimal. We next examine the computation time of the pro-

posed algorithms. It can be seen, in Figure 5.10, that the EEGP heuristic is com-

putationally efficient compared to the exact algorithm. For example, the heuristic

algorithm finds solutions within 0.0005 % of optimal in about 10 ms while the

exact algorithm requires 31 mn to find the optimal solution. In addition to global

graph size G, convergence time depends also on the request subgraph sizes. As

shown in Figure 5.10, convergence time for the exact algorithm is 13 min for

(|V | = 112, |Vk| = 43) and 4.4 s for (|V | = 117, |Vk| = 5). The EEGP heuris-

tic can achieve near optimal performance with significantly reduced computation

time (see Figure 5.11) not exceeding 12 s for graph sizes of 3000 (|V | = 3000).

The AR algorithm is faster than EEGP for large instances since it does not seek

near optimal or optimal solutions. It just needs to find the least loaded servers

to host VMs. Looking jointly at Figures 5.11 and 5.12, the EEGP outperforms

considerably the AR algorithm in terms of average PPW and uses much fewer

servers (a few versus tens of servers or physical hosts). Figure 5.12 shows that the

EEGP algorithm is four times better than the AR algorithm in energy efficiency.

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 79

In Figure 5.13, the EEGP heuristic performance is identical to that of the exact

algorithm in terms of energy efficiency. Both algorithms provide the same average

performance per watt when reserving VRUs and have the same behaviour since

they select the most energy-efficient resources.

Figure 5.10: Convergence Time

Figure 5.11: Convergence Time

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 80

Figure 5.12: Average Performance Per Watt

Figure 5.13: Average Performance Per Watt

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 81

The EEGP heuristic consumes a little bit more VRUs (or colors) than the exact

solution as depicted in Figure 5.14. The chromatic number (number of used col-

ors) is slightly higher when the heuristic algorithm is used. The EEGP heuristic

uses nevertheless as many servers as the exact solution to achieve the resource

reservation as depicted in Figure 5.15. The AR algorithm selecting the less loaded

servers consumes more servers (a factor of 10). The effectiveness of EEGP heuris-

tic is highlighted by the very small (0.0014%) relative gap with the exact solution.

The EEGP heuristic overall performance is quite good in terms of energy, resource

usage and is as remarkable in terms of convergence time that is found close to the

simple and basic AR algorithm.

Figure 5.14: Chromatic Number

Table 5.3 depicts the convergence time of the EEGP algorithm running in a server

with 24GB of RAM and a pair of 2.53GHz Intel Xeon E5540 quad-core processors.

In this experiment, the size of the data center m was fixed to 10000 servers. The

time required for EEGP to converge to a solution was evaluated for requests of

size 30 RRUs per VM and for colored graph, G, sizes of 1000, 2000, 3000, 4000 and

5000. Results show that EEGP solves the problem for large graphs in reasonable

time ; not exceeding a minute for the largest graph size of 5000.

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 82

Figure 5.15: Number of used servers

Table 5.3: convergence Time of EEGP (m=10000)

H
HHH

HHH
HHHH

Request
Size

Graph
Size

1000 2000 3000 4000 5000

30 500(ms) 4(s) 12(s) 35(s) 1(min)

5.5.2.2 Energy Efficient Advanced Dynamic Resource Reservation

In the experiments below, we assess firstly the performance of the EEGP heuris-

tic in comparison with the proposed EEGP+EEGR algorithm that combines the

initial reservation process (EEGP) with the dynamic adaptation process(EEGR).

Recall that EEGR algorithm aims at adapting dynamically the resources place-

ment at service departures using the technique of resources recoloring. Secondly,

we assess the impact of the migration cost on the recoloring algorithms. We com-

pare the gain, in term of energy, obtained when comparing the Energy Efficient

Graph Recoloring and the Migration Aware Energy Efficient Graph Recoloring

algorithms.

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 83

The performance evaluation is conducted for low and high load conditions and for

sustained arrivals of resource reservation requests as well as discontinuous requests

to highlight when the use of EEGR is relevant.

(1) Algorithms’ behaviour when demand is high and continuous:

Figure 5.16 shows the average performance per watt of the data center when ap-

plying AR, EEGP and EEGP+EEGR algorithms. In this experiment, the size of

data center m is set to 1000. Request arrivals follow a poisson process with rate

of 10 requests per second. The average performance per Watt of the data center

improves significantly when the EEGP and EEGP+EEGR algorithms are used.

As expected, the EEGP is more than five times better than AR in terms of av-

erage energy efficiency. For this high load conditions, EEGP and EEGR, achieve

slightly better results (on average) than EEGP alone (two per cent). EEGR finds

no opportunities to improve the overall energy efficiency through migration since

resources are always used. No resources can be freed for long enough to be ex-

ploited for improvements.

Figure 5.16: Average Performance Per Watt(high load conditions)

(2) Algorithms’ behaviour when request arrivals is low:

Figure 5.17 shows the average performance per watt of the data center at low load

for the three algorithms. In this simulation, the size of data center m is set to 1000.

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 84

The load is generated in a an Interrupted Poisson Process arrival pattern. EEGP

is more than twice better than AR in terms of average performance per Watt.

Results achieved by EEGP and EEGR both running together are roughly three

times better than AR and nearly twenty-five percent better than EEGP. The quiet

periods, in the requests arrivals, allow the EEGR algorithm to improve energy ef-

ficiency through migration of active VMs into less power consuming servers. The

use of EEGR is only useful when there are enough and long enough quiet periods

in user demand.

Figure 5.17: Average Performance Per Watt (low load conditions)

(3) Resource utilization:

Figure 5.18, depicts the evolution of the number of used servers by the proposed

heuristics and AR to assess their performance as a function of load. To reveal

the relative performance of the algorithms, we use a specific scenario where we

increase gradually the system load (through additional arrivals) until event 50

(see abcissa) and then uniformly decrease this load at constant rate from event

50 to 300 through service departures. The results show that for high load both

EEGP and EEGP combined with EEGR use the same number of servers (curves

up to event 50 when load reaches its maximum in the simulated scenario) while

AR uses many more. Our heuristic algorithms use only 135 servers (at event 50 or

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 85

peak load) while AR requires 248. After event 50, in the 50 to 300 range, where

the load decreases continuously, EEGP combined with EEGR uses the smallest

number of servers because this heuristic consolidates resources via migration of

VMs, at service departures, and thus can pack virtual resources in fewer physical

servers or resources.

Figure 5.18: Number of used servers

(4) Migration cost impact:

In this subsection, we conduct a comparison between the Energy Efficient Graph

Recoloring EEGR and the Migration Aware Energy Efficient Graph Recoloring

MA-EEGR algorithms. We compare the performance of the proposed recoloring

algorithms in terms of percentage of migrated VMs, the number of shutdown and

the migration cost (energy). The size of data center m is set to 100. Request

arrivals follow a poisson process with rate of 10 requests per second. Figure 5.19

shows that the blind recoloring algorithm EEGR migrates VMs 7 times more than

the migration aware recoloring algorithm. As shown in Figure 5.20, this excessive

VM migration leads to a large number of servers shutdown when using the EEGR

recoloring algorithm. For a colored graph, G, of size 5892, the recoloring algorithm

EEGR shutdown 35 servers while the migration aware recoloring algorithm MA-

EEGR shutdown 7 servers. Figure 5.21 shows that MA-EEGR algorithm reduces

the energy introduced by the migration of VM in comparison with the EEGR

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 86

0 500 1,000 1,500 2,000 2,500 3,000 3,500
0

20

40

60

80

100

Graph size

P
er

ce
n
ta

ge
of

m
ig

ra
te

d
V

M
s

MA-EEGR
EEGR

Figure 5.19: Migration percentage comparison between MA-EEGR and
EEGR

recoloring algorithm. For the colored graph G size (5892), the EEGR algorithm

wastes energy 8 times more than the migration aware recoloring algorithm MA-

EEGR. MA-EEGR is more efficient and mature compared to EEGR as it provides

a trade-off between energy efficiency and stability.

An example of how algorithms MA-EEGR and EEGR perform is presented via

Figure 5.22 and Figure 5.23. In case of applying the EEGR algorithm, after the

departure of VM2 hosted in server 2, VM4 is migrated to server 2 and server

3 is emptied without checking if this decision will bring energy gain or not. If

the energy cost Emig,C3/C2 induced by migrating VM4 to server 2 is expensive or

exceeds E3,idle, the energy gained by shutting down server 3 in two hours (or until

the next VM is hosted, VM6 in the example), the MA-EEGR algorithm do not

take the decision of emptying server 3 and hence do not migrate its hosted VMs

(see Figure 5.23). MA-EEGR is based on useful migration decisions, hence only

efficient and gainful VM migrations are allowed.

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 87

619 859 1164 1431 2999 4613 5892
0

10

20

30

Graph size

N
u
m

b
er

of
sh

u
td

ow
n

MA-EEGR
EEGR

Figure 5.20: Comparison between MA-EEGR and EEGR in terms of number
of server shutdown

619 859 1164 1431 2999 4613 5892
0

1,000

2,000

3,000

4,000

Graph size

M
ig

ra
ti

on
co

st
(w

at
t)

MA-EEGR
EEGR

Figure 5.21: Comparison between MA-EEGR and EEGR in terms of migra-
tion cost

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 88

Figure 5.22: Recoloring using EEGR algorithm

Figure 5.23: Recoloring using MA-EEGR alorithm

Chapter 5. Graph coloring based Approach for Energy Efficient Resource
Allocation 89

5.6 conclusions

This chapter presents a graph-coloring based approach for energy efficient resource

allocation in hybrid IaaS-PaaS providers. This approach relies on a new graph

coloring based model that supports both VM and container virtualization and

provides on-demand and advanced reservation resource provisioning. We propose

and develop an exact Pre-coloring algorithm for initial/static resource allocation

while maximizing energy efficiency. A heuristic Pre-coloring algorithm for ini-

tial/static resource allocation was also proposed to scale with problem size. To

adapt reservations over time and to improve further energy efficiency, we introduce

two heuristic Re-coloring algorithms for dynamic resource reallocation. Evaluation

and comparison of the exact and heuristic solutions in terms of energy efficiency,

resource usage and convergence time are conducted to demonstrate the efficiency

of our proposed algorithms. Our heuristic Pre-coloring algorithm for initial re-

source allocation is shown to perform very close to optimal, to scale well with

problem size and to achieve fast convergence times. Both heuristic Re-coloring

algorithms that dynamically adapt the resource allocations at service departures

gain significantly energy efficiency and exhibit fast convergence.

Chapter 6

Conclusions and Future Research

Directions

This thesis focuses on the design and development of models and algorithms for

energy efficient resource allocation in Cloud data centers. In this final chapter we

present conclusions about the work presented in this thesis and propose future

directions for extending it. The first part summarizes the main contributions and

draws conclusions. Then, we present potential directions for future investigations

in the second part.

6.1 Conclusions and Discussion

Energy efficiency is becoming increasingly important for Cloud data centers. Their

growing scale and their wide use have made a great issue of power consumption.

The overall goal of this work is to design and develop models and algorithms for

energy efficient resource allocation while considering different dimensions of the

problem. These key dimensions are the resource provisioning plan, the dynamicity

of the solution, the type of the virtualization and the Cloud service model.

Solving the problem of resource allocation in Cloud while maximizing energy ef-

ficiency and adopting the previously cited dimensions, is a very challenging issue.

In this thesis, we address the problem with its multiple facets and levels to provide

not only a specific solution, but also a generic and complete approach. The major

contributions which have been made by this thesis are summarized as follows:

90

Chapter 6. Conclusions and Future Research Directions 91

• Chapter 2 introduces the concepts Cloud computing and of virtualization

that serves as its enabling technology. We further investigate the problem of

energy efficiency in Cloud data centers by studying the major causes of en-

ergy waste, presenting the different power saving techniques and introducing

energy measurement and modeling in Cloud environments.

• Chapter 3 presents a survey of the state of the art on energy efficient resource

allocation in cloud environments. We describe in more details the problem of

energy efficient resource allocation in Cloud data centers then we provide an

overview on the state of the art of energy efficient Cloud resource allocation

at different dimensions and levels. Our goal in this survey has been to get

a deeper understanding of the problem, to position the thesis in relation to

existing research and to identify the key challenges and issues.

• In chapter 4, we propose a bin packing based Approach for Energy Efficient

Resource Allocation for Classical IaaS clouds. We formulate the problem of

energy efficient resource allocation as a bin-packing model. This model is

VM based and provides on-demand resource allocation. We propose an exact

energy aware algorithm based on integer linear program (ILP) for initial

resource allocation. To deal with dynamic resource consolidation, an exact

ILP algorithm for dynamic VM reallocation was also proposed. It is based

on VM migration and aims to optimize constantly the energy efficiency after

service departures. A heuristic method based on best-fit algorithm was also

adapted to the problem. Experimental results show benefits of combining

the allocation and migration algorithms and demonstrate their ability to

achieve significant energy savings while maintaining feasible runtimes when

compared with the best fit heuristic.

• Chapter 5 presents a graph-coloring based approach for energy efficient re-

source allocation in hybrid IaaS-PaaS providers. This approach relies on a

new graph coloring based model that supports both VM and container vir-

tualization and provides on-demand and advanced reservation resource pro-

visioning. We propose and develop an exact Pre-coloring algorithm for ini-

tial/static resource allocation while maximizing energy efficiency. A heuristic

Pre-coloring algorithm for initial/static resource allocation was also proposed

to scale with problem size. To adapt reservations over time and to improve

further energy efficiency, we introduce two heuristic Re-coloring algorithms

for dynamic resource reallocation. Evaluation and comparison of the exact

Chapter 6. Conclusions and Future Research Directions 92

and heuristic solutions in terms of energy efficiency, resource usage and con-

vergence time are conducted to demonstrate the efficiency of our proposed

algorithms. Our heuristic Pre-coloring algorithm for initial resource alloca-

tion is shown to perform very close to optimal, to scale well with problem

size and to achieve fast convergence times. Both heuristic Re-coloring algo-

rithms that dynamically adapt the resource allocations at service departures

gain significantly energy efficiency and exhibit fast convergence.

6.2 Future Research Directions

Some issues related to the energy efficient resource allocation problem in Cloud

environments have not been addressed in this thesis, these limitations will be

addressed as future work. The potential future directions of this research include

the following:

• Admission control mechanisms that use different strategies are important to

decide which user requests to accept. In fact, advanced reservation tech-

nique enables users to get guaranteed services in private Clouds where the

capacity is limited since advanced reservation requests have strict starting

and ending time and resources must be available at the specified time. If

the system is extensively flooded with advance reservation requests, this will

lead to starvation of on-demand requests. We aim to integrate an admis-

sion control mechanism with our solution to improve the optimality our of

resource scheduling. This mechanism will be based on a negotiation pro-

cess to propose alternative time slots if advance reservation requests are not

accepted.

• Load prediction techniques play important role to predict the overall load in

the system. As future work, we will enhance our solutions with prediction

algorithms to further improve the stability and performance of our proposed

resource allocation algorithms.

• Most research on resources scheduling in Cloud environments focus on com-

putational resources. Scheduling network and storage with computational

resources is not well investigated. In addition, the network connection be-

tween Cloud data centers is a important aspect to consider when scheduling

Chapter 6. Conclusions and Future Research Directions 93

resources in geographically distributed Cloud environments. Future work

must be done to extend our proposed work in order to deal with the above

mentioned aspects.

• An important goal of this thesis is to integrate our proposed solutions for

energy efficient resource allocation with OpenStack. We aim to provide

the missing scheduling policies and to bring energy efficiency to this Cloud

environment. We are actively progressing in the achievement of this goal

and different manuals and documents were developed and published.

Thesis Publications

International Journal

• C. Ghribi and D. Zeghlache, ”Graph Coloring for Energy Efficient Advance

Resource Reservation in Green Clouds,” Submitted to to the International

Journal of Cloud Computing (IJCC), 2014.

International Conferences

• C. Ghribi, M. Hadji and D. Zeghlache, ”Energy Efficient VM Scheduling for

Cloud Data Centers: Exact Allocation and Migration Algorithms,” Cloud

and Grid Computing (CCGrid), 2013 13th IEEE/ACM International Sym-

posium on Cluster , pp. 671-678, doi:10.1109/CCGrid.2013.89.

• C. Ghribi and D. Zeghlache, ”Exact and Heuristic Graph-Coloring for Energy

Efficient Advance Cloud Resource Reservation,” Cloud Computing (CLOUD),

2014, CLOUD ’14 Proceedings of the 2014 IEEE International Conference

on Cloud Computing, pp. 112-119, doi:10.1109/CLOUD.2014.25.

Posters

• C. Ghribi, M. Hadji and D. Zeghlache, ”Dynamic Virtual Machine schedul-

ing for Energy Efficient Cloud data centers,” The Institut Mines-Télécom

symposium, “Energy Tomorrow”, 2013, http://www.mines-telecom.fr/

wpcontent/uploads/2014/04/201305_Posters_efficacite_energetique.

pdf.

94

http://www.mines-telecom.fr/wpcontent/uploads/2014/04/201305_Posters_efficacite_energetique.pdf
http://www.mines-telecom.fr/wpcontent/uploads/2014/04/201305_Posters_efficacite_energetique.pdf
http://www.mines-telecom.fr/wpcontent/uploads/2014/04/201305_Posters_efficacite_energetique.pdf

Appendix A

VM instance creation in

Openstack-nova IaaS providers

A.1 OpenStack Nova

OpenStack Nova is the OpenStack compute project. It is a compute controller

that pools computing resources like CPU, memory, etc... Nova provides API’s to

control on-demand scheduling of compute instances like virtual machines on mul-

tiple virtualization technologies, bare metal, or container technologies. Nova uses

images to launch instances or VMs. In this chapter, we will provide a description

of the steps followed to create an instance with Nova.

A.2 Image creation

Create a simple credential file:

vi creds

#Paste the following:

export OS_TENANT_NAME=admin

export OS_USERNAME=admin

export OS_PASSWORD=admin_pass

export OS_AUTH_URL ="http ://192.168.100.11:5000/ v2.0/"

Upload the cirros cloud image:

source creds

glance image -create --name "cirros -0.3.2 - x86_64" --is -public true \

95

Appendix A. VM instance creation in Openstack-nova IaaS providers 96

--container -format bare --disk -format qcow2 \

--location http ://cdn.download.cirros -cloud.net /0.3.2/ cirros -0.3.2 - x86_64 -disk.img

List Images:

glance image -list

A.3 Initial network creation

After creating the image, the next step is to create the virtual network infrastruc-

ture to which the instance will connect.

Create an external network:

source creds

#Create the external network:

neutron net -create ext -net --shared --router:external=True

#Create the subnet for the external network:

neutron subnet -create ext -net --name ext -subnet \

--allocation -pool start =192.168.100.101 , end =192.168.100.200 \

--disable -dhcp --gateway 192.168.100.1 192.168.100.0/24

Create an internal (tenant) network:

source creds

#Create the internal network:

neutron net -create int -net

#Create the subnet for the internal network:

neutron subnet -create int -net --name int -subnet \

--dns -nameserver 8.8.8.8 --gateway 172.16.1.1 172.16.1.0/24

Create a router on the internal network and attach it to the external network:

source creds

#Create the router:

neutron router -create router1

#Attach the router to the internal subnet:

neutron router -interface -add router1 int -subnet

#Attach the router to the external network by setting it as the gateway:

neutron router -gateway -set router1 ext -net

Appendix A. VM instance creation in Openstack-nova IaaS providers 97

Verify network connectivity:

#Ping the router gateway:

ping 192.168.100.101

A.4 Instance launching

Generate a key pair:

ssh -keygen

Add the public key:

source creds

nova keypair -add --pub -key ~/.ssh/id_rsa.pub key1

Verify the public key is added:

nova keypair -list

Add rules to the default security group to access your instance remotely:

Permit ICMP (ping):

nova secgroup -add -rule default icmp -1 -1 0.0.0.0/0

Permit secure shell (SSH) access:

nova secgroup -add -rule default tcp 22 22 0.0.0.0/0

Launch your instance:

NET_ID=$(neutron net -list | awk ’/ int -net / { print $2 }’)

nova boot --flavor m1.tiny --image cirros -0.3.2 - x86_64 --nic net -id=$NET_ID \

--security -group default --key -name key1 instance1

Note: To choose the instance parameters these commands could be used:

nova flavor -list : --flavor m1.tiny

nova image -list : --image cirros -0.3.2 - x86_64

neutron net -list : --nic net -id=$NET_ID

nova secgroup -list : --security -group default

nova keypair -list : --key -name key1

Check the status of your instance:

nova list

Appendix A. VM instance creation in Openstack-nova IaaS providers 98

Create a floating IP address on the external network to enable the instance to

access to the internet and also to make it reachable from external networks:

neutron floatingip -create ext -net

Associate the floating IP address with your instance:

nova floating -ip-associate instance1 192.168.100.102

Check the status of your floating IP address:

nova list

Verify network connectivity using ping and ssh:

ping 192.168.100.102

ssh into your vm using its ip address:

ssh cirros@192 .168.100.102

Here is a snapshot of the Horizon dashboard interface after instance launching:

Figure A.1: VM instance creation in Openstack-nova IaaS providers

Appendix B

Hybrid IaaS-PaaS service with

Docker and OpenStack Heat

B.1 OpenStack Heat

OpenStack Heat is an openstack service that handles the orchestration of complex

deployments on top of OpenStack clouds. Orchestration basically manages the

infrastructure but it supports also the software configuration management. Heat

provides users the ability to define their applications in terms of simple templates.

This component has also enabled OpenStack to provide a combined IaaS-PaaS

service. Orchestrating Docker containers in OpenStack is via Heat provides or-

chestration of composite cloud applications and accelerates application delivery by

making it easy to package them along with their dependencies. To deploy a stack,

a Heat template that describes the infrastructure resources (instances, networks,

database, images...) should be written and sent to Heat. It will talk to all the

other OpenStack APIs to deploy the stack.

B.2 What is Docker?

Docker is an open source project to automatically deploy applications into contain-

ers. It commoditizes the well known LXC (Linux Container) solution that provides

operating system level virtualization and allows to run multiple containers on the

same server.

99

Appendix B. Hybrid IaaS-PaaS service with Docker and OpenStack Heat 100

To make a simple analogy, a Docker is like an hypervisor. But unlike traditional

Vms, docker containers are lightweight as they don’t run OSes but share the host’s

operating system (see the Figure B.1).

Figure B.1: Container based virtualization vs hypervisor based virtualization

A docker container is also portable, it hosts the application and its dependencies

and it is able to be deployed or relocated on any Linux server. The Docker element

that manages containers and deploys applications on them is called Docker Engine.

The second component of Docker is Docker Hub. It’s the Docker’s repository of

application that allow users to share their applications with their team members

and they can ship and run it anywhere

B.3 OpenStack and Docker

Openstack can be easily enhanced by docker plugins. Docker can be integrated

into OpenStack Nova as a form of hypervisor (Containers used as VMs). But there

is a better way to use Docker with OpenStack. It to orchestrate containers with

OpenStack Heat.

To be able to create containers and deploy applications on the top of them, the

docker plugin should be installed on Heat. To create a stack, the required resources

should be identified, the template should be edited and deployed on Heat. For

detailed information on Heat and template creation, see our Heat usage guide.

To test Docker with Heat, we recommand to deploy OpenStack using a flat net-

working model (see our guide). One issue we encountered when we considered a

Appendix B. Hybrid IaaS-PaaS service with Docker and OpenStack Heat 101

multi-node architecture with isolated neutron networks is that instances were not

able to signal to Heat. So, stack creation fails because it depends on connectivity

from VMs to the Heat engine.

The Figure B.2 shows the communication between Heat, Nova, Docker and the

instance when creating a stack. In this example we have deployed apache and

mysql on two Docker containers. Stack deployment fails if the signal (3) can not

reach Heat API.

Figure B.2: Components interaction to create a stack

This limitation will be overcome in the next versions to allow users using isolated

neutron networks to deploy and test Docker.

B.4 Deploy Docker containers with OpenStack

Heat

In this section, we will show how to install the Docker plugin, how to write a

template and how to deploy it with Heat.

B.4.1 Install the Docker Plugin

To get the Docker plugin, download the Heat folder available on GitHub:

download heat (the ZIP folder) from here

https :// github.com/openstack/heat/tree/stable/icehouse

Appendix B. Hybrid IaaS-PaaS service with Docker and OpenStack Heat 102

Unzip it:

unzip heat -stable -icehouse.zip

Remove the tests folder to avoid conflicts:

cd heat -stable -icehouse/contrib/

rm -rf docker/docker/tests

Create a new directory under /usr/lib/heat/:

mkdir /usr/lib/heat

mkdir /usr/lib/heat/docker -plugin

Copy the docker plugin under your new directory:

cp -r docker /* /usr/lib/heat/docker -plugin

Now, install the docker plugin:

cd /usr/lib/heat/docker -plugin

apt -get install python -pip

pip install -r requirements.txt

Edit /etc/heat/heat.conf file:

vi /etc/heat/heat.conf

(add)

plugin_dirs =/usr/lib/heat/docker -plugin/docker

Restart services:

service heat -api restart

service heat -api -cfn restart

service heat -engine restart

Check that the DockerInc::Docker::Container resource was successfully added and

appears in your resource list:

heat resource -type -list | grep Docker

B.4.2 Create the Heat template

Before editing the template, let’s discuss about the content and the resources we

will define.

Appendix B. Hybrid IaaS-PaaS service with Docker and OpenStack Heat 103

In this example, we want to dockerize and deploy a lamp application. So, we will

create a docker container running apache with php and another one running mysql

database.

We define an OS::Heat::SoftwareConfig resource that describes the configuration

and an OS::Heat::SoftwareDeployment resource to deploy configs on OS::Nova::Server

(the Virtual machine or the Docker server). We associate a floating IP to the

Docker server to be able to connect to Internet (using OS::Nova::FloatingIP and

OS::Nova::FloatingIPAssociation resources). Then, we create two docker contain-

ers of type DockerInc::Docker::Container on the Docker host.

Note: here we provide a simple template, many other interseting parameters (

port bindings, name, links...) can enhance the template and enable more sophis-

ticated use of Docker. These parameters are not supported by the current Docker

plugin. We will provide more complex templates with the next plugin version.

Create template in the docker-stack.yml file with the following content:

vi docker -stack.yml

heat_template_version: 2013 -05 -23

description: >

Dockerize a multi -node application with OpenStack Heat.

This template defines two docker containers running

apache with php and mysql database.

parameters:

key:

type: string

description: >

Name of a KeyPair to enable SSH access to the instance. Note that the

default user is ec2 -user.

default: key1

flavor:

type: string

description: Instance type for the docker server.

default: m1.medium

image:

type: string

description: >

Name or ID of the image to use for the Docker server. This needs to be

built with os-collect -config tools from a fedora base image.

default: fedora -software -config

public_net:

type: string

Appendix B. Hybrid IaaS-PaaS service with Docker and OpenStack Heat 104

description: name of public network for which floating IP addresses will be allocated.

default: nova

resources:

configuration:

type: OS::Heat:: SoftwareConfig

properties:

group: script

config: |

#!/ bin/bash -v

setenforce 0

yum -y install docker -io

cp /usr/lib/systemd/system/docker.service /etc/systemd/system/

sed -i -e ’/ExecStart/ { s,fd://,tcp ://0.0.0.0:2375 , }’

/etc/systemd/system/docker.service

systemctl start docker.service

docker -H :2375 pull marouen/mysql

docker -H :2375 pull marouen/apache

deployment:

type: OS::Heat:: SoftwareDeployment

properties:

config: {get_resource: configuration}

server: {get_resource: docker_server}

docker_server:

type: OS::Nova:: Server

properties:

key_name: {get_param: key}

image: { get_param: image }

flavor: { get_param: flavor}

user_data_format: SOFTWARE_CONFIG

server_floating_ip:

type: OS::Nova:: FloatingIP

properties:

pool: { get_param: public_net}

associate_floating_ip:

type: OS::Nova:: FloatingIPAssociation

properties:

floating_ip: { get_resource: server_floating_ip}

server_id: { get_resource: docker_server}

mysql:

type: DockerInc :: Docker :: Container

depends_on: [deployment]

properties:

image: marouen/mysql

port_specs:

- 3306

docker_endpoint:

str_replace:

template: http :// host :2375

params:

Appendix B. Hybrid IaaS-PaaS service with Docker and OpenStack Heat 105

host: {get_attr: [docker_server , networks , private , 0]}

apache:

type: DockerInc :: Docker :: Container

depends_on: [mysql]

properties:

image: marouen/apache

port_specs:

- 80

docker_endpoint:

str_replace:

template: http :// host :2375

params:

host: {get_attr: [docker_server , networks , private , 0]}

outputs:

url:

description: Public address of apache

value:

str_replace:

template: http :// host

params:

host: {get_attr: [docker_server , networks , private , 0]}

B.4.3 Deploy the stack

Pre-deployment:

Create a simple credential file:

vi creds

#Paste the following:

export OS_TENANT_NAME=admin

export OS_USERNAME=admin

export OS_PASSWORD=admin_pass

export OS_AUTH_URL ="http :// controller :5000/ v2.0/"

To create a fedora based image, we followed the steps bellow:

git clone https ://git.openstack.org/openstack/diskimage -builder.git

git clone https ://git.openstack.org/openstack/tripleo -image -elements.git

git clone https ://git.openstack.org/openstack/heat -templates.git

export ELEMENTS_PATH=tripleo -image -elements/

elements:heat -templates/hot/software -config/elements

diskimage -builder/bin/disk -image -create vm \

fedora selinux -permissive \

heat -config \

os-collect -config \

os-refresh -config \

Appendix B. Hybrid IaaS-PaaS service with Docker and OpenStack Heat 106

os-apply -config \

heat -config -cfn -init \

heat -config -puppet \

heat -config -salt \

heat -config -script \

-o fedora -software -config.qcow2

glance image -create --disk -format qcow2 --container -format bare

--name fedora -software -config < \

fedora -software -config.qcow2

If the key was not created yet, use these commands:

ssh -keygen

nova keypair -add --pub -key ~/.ssh/id_rsa.pub key1

Add rules to the default security group to enable the access to the docker server:

Permit ICMP (ping):

nova secgroup -add -rule default icmp -1 -1 0.0.0.0/0

Permit secure shell (SSH) access:

nova secgroup -add -rule default tcp 22 22 0.0.0.0/0

Permit 2375 port access (Docker endpoint):

nova secgroup -add -rule default tcp 2375 2375 0.0.0.0/0

If you need to create a new private network, use these commands:

source creds

#Create a private network:

nova network -create private --bridge br100 --multi -host T --dns1 8.8.8.8 \

--gateway 172.16.0.1 --fixed -range -v4 172.16.0.0/24

Create a floating IP pool to connect instances to Internet:

nova -manage floating create --pool=nova --ip_range =192.168.100.100/28

Create the stack:

Create a stack from the template (file available here):

source creds

heat stack -create -f docker -stack.yml docker -stack

Verify that the stack was created:

heat stack -list

Appendix B. Hybrid IaaS-PaaS service with Docker and OpenStack Heat 107

Figure B.3: Horizon dashboard interface after stack creation

Here is a snapshot of the Horizon dashboard interface after stack launching:

To check that the containers are created:

ssh ec2 -user@192 .168.100.97

sudo docker -H :2375 ps

Figure B.4: Containers creation

Bibliography

[1] Power Management in the Cisco Unified Computing Sys-

tem: An Integrated Approach, Cisco Systems, April 2013,

http://www.cisco.com/c/en/us/solutions/collateral/data-center-

virtualization/unified-computing/white paper c11-627731.pdf.

[2] World energy outlook 2009 fact sheet. http://www.iea.org/weo/docs/

weo2009/factsheetsWEO2009.pdf.

[3] . Gartner report, financial times, 2007.

[4] James M. Kaplan, William Forrest, and Noah Kindle. Revolutionizing Data

Center Energy Efficiency. Technical report, McKinsey & Company, July

2008.

[5] Amazon ec2. http://aws.amazon.com/ec2/.

[6] Microsoft azure services. www.azure.microsoft.com/.

[7] Google app engine. https://cloud.google.com/appengine/, .

[8] Google documents. https://docs.google.com/, .

[9] Google apps. http://www.google.com/intx/fr/enterprise/apps/

business/, .

[10] Microsoft. www.microsoft.com/.

[11] Google. www.google.com/.

[12] kubernetes. https://github.com/GoogleCloudPlatform/kubernetes.

[13] Openstack. http://www.openstack.org/.

[14] Docker. https://www.docker.com/, .

108

http://www.iea.org/weo/docs/weo2009/factsheetsWEO2009.pdf
http://www.iea.org/weo/docs/weo2009/factsheetsWEO2009.pdf
http://aws.amazon.com/ec2/
www.azure.microsoft.com/
https://cloud.google.com/appengine/
https://docs.google.com/
http://www.google.com/intx/fr/enterprise/apps/business/
http://www.google.com/intx/fr/enterprise/apps/business/
www.microsoft.com/
www.google.com/
https://github.com/GoogleCloudPlatform/kubernetes
http://www.openstack.org/
https://www.docker.com/

Bibliography 109

[15] Is paas becoming just a feature of iaas?, 451 research group, january 2014.

https://451research.com/report-short?entityId=79800.

[16] Kvm. http://www.linux-kvm.org/.

[17] Vmware. http://www.vmware.com/.

[18] Microsoft hyper-v. http://www.microsoft.com/Hyper-V. Accessed

September 20, 2014.

[19] Xen. http://www.xenproject.org/.

[20] Virtual box. http://www.virtualbox.org/, .

[21] Shekhar Srikantaiah, Aman Kansal, and Feng Zhao. Energy aware con-

solidation for cloud computing. In Proceedings of the 2008 conference on

Power aware computing and systems, HotPower’08, pages 10–10, Berkeley,

CA, USA, 2008. USENIX Association.

[22] Franco Travostino, Paul Daspit, Leon Gommans, Chetan Jog, Cees de Laat,

Joe Mambretti, Inder Monga, Bas van Oudenaarde, Satish Raghunath, and

Phil Yonghui Wang. Seamless live migration of virtual machines over the

man/wan. Future Gener. Comput. Syst., 22(8):901–907, October 2006.

[23] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, and Larry

Peterson. Container-based operating system virtualization: a scalable, high-

performance alternative to hypervisors. In In: Proceedings of EuroSys 2007,

pages 275–288, 2007.

[24] Miguel G. Xavier, Marcelo V. Neves, Fabio D. Rossi, Tiago C. Ferreto, Tim-

oteo Lange, and Cesar A. F. De Rose. Performance evaluation of container-

based virtualization for high performance computing environments. In Pro-

ceedings of the 2013 21st Euromicro International Conference on Paral-

lel, Distributed, and Network-Based Processing, pages 233–240, Washington,

DC, USA, 2013. IEEE Computer Society.

[25] Linux containers. http://www.linuxcontainers.org/.

[26] Solaris containers. http://www.oracle.com/technetwork/

server-storage/solaris/containers-169727.html.

[27] Virtuozzo containers. http://sp.parallels.com/fr/products/pvc/, .

https://451research.com/report-short?entityId=79800
http://www.linux-kvm.org/
http://www.vmware.com/
http://www.microsoft.com/Hyper-V
http://www.xenproject.org/
http://www.virtualbox.org/
http://www.linuxcontainers.org/
http://www.oracle.com/technetwork/server-storage/solaris/containers-169727.html
http://www.oracle.com/technetwork/server-storage/solaris/containers-169727.html
http://sp.parallels.com/fr/products/pvc/

Bibliography 110

[28] Openvz. www.openvz.org/, .

[29] Virtualization and Containerization of Application Infrastructure: A Com-

parison, volume 21, 2014. University of Twente.

[30] Proxmox. http://www.proxmox.com/.

[31] Report to congress on server and data center energy efficiency, environmen-

tal protection agency, 2007. www.energystar.gov/ia/partners/prod_

development/downloads/EPA_Datacenter_Report_Congress_Final1.

pdf.

[32] Natural resources defense council. http://www.nrdc.org/energy, .

[33] Scaling up energy efficiency a cross the data center industry: evaluating key

drivers and barriers, nrdc, august 2014. http://www.nrdc.org/energy/

files/data-center-efficiency-assessment-IP.pdf, .

[34] Erica Naone. Conjuring clouds. Technology Review, 112(4):54–56, 2009.

[35] . The Green Grid. The Green Grid Data Center Compute Efficiency Metric,

DCcE, 2010.

[36] Anne-Cécile Orgerie and Laurent Lefèvre. When Clouds become Green: the

Green Open Cloud Architecture. Parallel Computing, 19:228 – 237, 2010.

[37] Jan Stoess, Christian Lang, and Frank Bellosa. Energy management for

hypervisor-based virtual machines. In 2007 USENIX Annual Technical

Conference on Proceedings of the USENIX Annual Technical Conference,

ATC’07, pages 1:1–1:14, Berkeley, CA, USA, 2007. USENIX Association.

ISBN 999-8888-77-6.

[38] Ludmila Cherkasova and Rob Gardner. Measuring cpu overhead for i/o

processing in the xen virtual machine monitor. In Proceedings of the Annual

Conference on USENIX Annual Technical Conference, ATEC ’05, pages 24–

24, Berkeley, CA, USA, 2005. USENIX Association.

[39] Suzanne Rivoire, Parthasarathy Ranganathan, and Christos Kozyrakis. A

comparison of high-level full-system power models. In Proceedings of the

2008 Conference on Power Aware Computing and Systems, HotPower’08,

pages 3–3, Berkeley, CA, USA, 2008. USENIX Association.

www.openvz.org/
http://www.proxmox.com/
www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf
www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf
www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf
http://www.nrdc.org/energy
http://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf
http://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf

Bibliography 111

[40] Preeti Ranjan Panda, Aviral Shrivastava, B.V.N. Silpa, and Krishnaiah

Gummidipudi. Power-Efficient System Design. Springer, 1st edition edi-

tion, 2010.

[41] Seung-Hwan Lim, B. Sharma, Gunwoo Nam, Eun K. Kim, and C. R. Das.

MDCSim: A multi-tier data center simulation, platform. In Cluster Comput-

ing and Workshops, 2009. CLUSTER ’09. IEEE International Conference

on, pages 1–9. IEEE, August 2009.

[42] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power provi-

sioning for a warehouse-sized computer. In Proceedings of the 34th Annual

International Symposium on Computer Architecture, ISCA ’07, pages 13–23,

New York, NY, USA, 2007. ACM.

[43] Massoud Pedram and Inkwon Hwang. Power and performance modeling in

a virtualized server system. 2012 41st International Conference on Parallel

Processing Workshops, 0:520–526, 2010.

[44] Waltenegus Dargie. A stochastic model for estimating the power consump-

tion of a processor. IEEE Transactions on Computers, 99(PrePrints):1, 2014.

ISSN 0018-9340.

[45] Robert Basmadjian, Nasir Ali, Florian Niedermeier, Hermann de Meer, and

Giovanni Giuliani. A methodology to predict the power consumption of

servers in data centres. In Proceedings of the 2Nd International Conference

on Energy-Efficient Computing and Networking, e-Energy ’11, pages 1–10,

New York, NY, USA, 2011. ACM. ISBN 978-1-4503-1313-1.

[46] Aman Kansal, Feng Zhao, Jie Liu, Nupur Kothari, and Arka A. Bhat-

tacharya. Virtual machine power metering and provisioning. In Proceed-

ings of the 1st ACM symposium on Cloud computing, SoCC ’10, pages

39–50, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0036-0. doi:

10.1145/1807128.1807136.

[47] Dimitris Economou, Suzanne Rivoire, and Christos Kozyrakis. Full-system

power analysis and modeling for server environments. In In Workshop on

Modeling Benchmarking and Simulation (MOBS, 2006.

[48] Taliver Heath, Bruno Diniz, Enrique V. Carrera, Wagner Meira, Jr., and

Ricardo Bianchini. Energy conservation in heterogeneous server clusters.

Bibliography 112

In Proceedings of the Tenth ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, PPoPP ’05, pages 186–195, New York,

NY, USA, 2005. ACM.

[49] Ramya Raghavendra, Parthasarathy Ranganathan, Vanish Talwar, Zhikui

Wang, and Xiaoyun Zhu. No ”power” struggles: Coordinated multi-level

power management for the data center. SIGARCH Comput. Archit. News,

36(1):48–59, March 2008. ISSN 0163-5964.

[50] Anton Beloglazov and Rajkumar Buyya. Adaptive threshold-based approach

for energy-efficient consolidation of virtual machines in cloud data centers.

In Proceedings of the 8th International Workshop on Middleware for Grids,

Clouds and e-Science, MGC ’10, pages 4:1–4:6, New York, NY, USA, 2010.

ACM. ISBN 978-1-4503-0453-5. doi: 10.1145/1890799.1890803.

[51] Gaurav Dhiman, Kresimir Mihic, and Tajana Rosing. A system for online

power prediction in virtualized environments using gaussian mixture models.

In Proceedings of the 47th Design Automation Conference, DAC ’10, pages

807–812, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0002-5.

[52] Ata E. H. Bohra and Vipin Chaudhary. Vmeter: Power modelling for virtu-

alized clouds. In IPDPS Workshops, pages 1–8. IEEE, 2010.

[53] Xiao Peng and Zhao Sai. A low-cost power measuring technique for virtual

machine in cloud environments, 2013.

[54] Bhavani Krishnan, Hrishikesh Amur, Ada Gavrilovska, and Karsten Schwan.

Vm power metering: Feasibility and challenges. SIGMETRICS Perform.

Eval. Rev., 38(3):56–60, January 2011.

[55] Anja Strunk and Waltenegus Dargie. Does live migration of virtual ma-

chines cost energy? In 27th IEEE International Conference on Advanced

Information Networking and Applications, AINA 2013, Barcelona, Spain,

March 25-28, 2013, pages 514–521, 2013.

[56] William Voorsluys, James Broberg, Srikumar Venugopal, and Rajkumar

Buyya. Cost of virtual machine live migration in clouds: A performance eval-

uation. In Proceedings of the 1st International Conference on Cloud Com-

puting, CloudCom ’09, pages 254–265, Berlin, Heidelberg, 2009. Springer-

Verlag. ISBN 978-3-642-10664-4. doi: 10.1007/978-3-642-10665-1 23.

Bibliography 113

[57] Kateryna Rybina, Waltenegus Dargie, Anja Strunk, and Alexander Schill.

Investigation into the energy cost of live migration of virtual machines. In

Sustainable Internet and ICT for Sustainability, SustainIT 2013, Palermo,

Italy, 30-31 October, 2013, Sponsored by the IFIP TC6 WG 6.3 ”Perfor-

mance of Communication Systems”, pages 1–8, 2013.

[58] Wenjin Hu, Andrew Hicks, Long Zhang, Eli M. Dow, Vinay Soni, Hao Jiang,

Ronny Bull, and Jeanna N. Matthews. A quantitative study of virtual ma-

chine live migration. In Proceedings of the 2013 ACM Cloud and Autonomic

Computing Conference, CAC ’13, pages 11:1–11:10, New York, NY, USA,

2013. ACM.

[59] Haikun Liu, Cheng-Zhong Xu, Hai Jin, Jiayu Gong, and Xiaofei Liao. Per-

formance and energy modeling for live migration of virtual machines. In

Proceedings of the 20th International Symposium on High Performance Dis-

tributed Computing, HPDC ’11, pages 171–182, New York, NY, USA, 2011.

ACM. ISBN 978-1-4503-0552-5.

[60] Qiang Huang, Fengqian Gao, Rui Wang, and Zhengwei Qi. Power consump-

tion of virtual machine live migration in clouds. In Proceedings of the 2011

Third International Conference on Communications and Mobile Computing,

CMC ’11, pages 122–125, Washington, DC, USA, 2011. IEEE Computer

Society. ISBN 978-0-7695-4357-4.

[61] Anja Strunk. A lightweight model for estimating energy cost of live migration

of virtual machines. In 2013 IEEE Sixth International Conference on Cloud

Computing, Santa Clara, CA, USA, June 28 - July 3, 2013, pages 510–517,

2013.

[62] The G. Grid. The Green Grid Data Center Power Efficiency Metrics: PUE

and DCiE. Technical report, 2007.

[63] Intel’s cloud computing 2015 vision. http://www.intel.com/Assets/PDF/

whitepaper/cloud_vision.pdf.

[64] Padmanabhan Pillai and Kang G. Shin. Real-time dynamic voltage scaling

for low-power embedded operating systems. pages 89–102, 2001.

[65] Tom Guerout, Thierry Monteil, Georges Da Costa, Rodrigo N. Cal-

heiros, Rajkumar Buyya, and Mihai Alexandru. Energy-aware simula-

tion with dvfs. Simulation Modelling Practice and Theory, 39:76–91, 2013.

http://www.intel.com/Assets/PDF/whitepaper/cloud_vision.pdf
http://www.intel.com/Assets/PDF/whitepaper/cloud_vision.pdf

Bibliography 114

URL http://dblp.uni-trier.de/db/journals/simpra/simpra39.html#

GueroutMCCBA13.

[66] Anton Beloglazov, Rajkumar Buyya, Young Choon Lee, and Albert Y.

Zomaya. A taxonomy and survey of energy-efficient data centers and cloud

computing systems. Advances in Computers, 82:47–111, 2011.

[67] Qi Zhang, Mohamed Faten Zhani, Shuo Zhang, Quanyan Zhu, Raouf

Boutaba, and Joseph L. Hellerstein. Dynamic energy-aware capacity provi-

sioning for cloud computing environments. In Proceedings of the 9th Inter-

national Conference on Autonomic Computing, ICAC ’12, pages 145–154,

New York, NY, USA, 2012. ACM.

[68] Gong Chen, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigas, Lin Xiao,

and Feng Zhao. Energy-aware server provisioning and load dispatching for

connection-intensive internet services. In Proceedings of the 5th USENIX

Symposium on Networked Systems Design and Implementation, NSDI’08,

pages 337–350, Berkeley, CA, USA, 2008. USENIX Association. ISBN

111-999-5555-22-1. URL http://dl.acm.org/citation.cfm?id=1387589.

1387613.

[69] Brian Guenter, Navendu Jain, and Charles Williams. Managing cost, per-

formance, and reliability tradeoffs for energy-aware server provisioning. In

in Proc. of the 30st Annual IEEE Intl. Conf. on Computer Communications

(INFOCOM, pages 1332–1340.

[70] Dara Kusic, Jeffrey O. Kephart, James E. Hanson, Nagarajan Kandasamy,

and Guofei Jiang. Power and performance management of virtualized com-

puting environments via lookahead control. In Proceedings of the 2008 In-

ternational Conference on Autonomic Computing, ICAC ’08, pages 3–12,

Washington, DC, USA, 2008. IEEE Computer Society.

[71] Anne-Cécile Orgerie and Laurent Lefèvre. ERIDIS: Energy-efficient Reserva-

tion Infrastructure for large-scale DIstributed Systems. Parallel Processing

Letters, 21(2):133–154, June 2011.

[72] Anton Beloglazov and Rajkumar Buyya. Energy efficient resource man-

agement in virtualized cloud data centers. In Proceedings of the 2010 10th

http://dblp.uni-trier.de/db/journals/simpra/simpra39.html#GueroutMCCBA13
http://dblp.uni-trier.de/db/journals/simpra/simpra39.html#GueroutMCCBA13
http://dl.acm.org/citation.cfm?id=1387589.1387613
http://dl.acm.org/citation.cfm?id=1387589.1387613

Bibliography 115

IEEE/ACM International Conference on Cluster, Cloud and Grid Comput-

ing, CCGRID ’10, pages 826–831, Washington, DC, USA, 2010. IEEE Com-

puter Society. ISBN 978-0-7695-4039-9. doi: 10.1109/CCGRID.2010.46.

[73] Aziz Murtazaev and Sangyoon Oh. Sercon : Server consolidation algorithm

using live migration of virtual machines for green computing. Iete Technical

Review, 28(3):212–231, 2011.

[74] Bo Li, Jianxin Li, Jinpeng Huai, Tianyu Wo, Qin Li, and Liang Zhong.

Enacloud: An energy-saving application live placement approach for cloud

computing environments. In Proceedings of the 2009 IEEE International

Conference on Cloud Computing, CLOUD ’09, pages 17–24, Washington,

DC, USA, 2009. IEEE Computer Society. ISBN 978-0-7695-3840-2. doi:

10.1109/CLOUD.2009.72.

[75] Lskrao Chimakurthi and Madhu Kumar SD. Power efficient resource allo-

cation for clouds using ant colony framework. CoRR, abs/1102.2608, 2011.

[76] Jonathan G Koomey. Estimating total power consumption by servers in the

u.s. ad the world. Technical report, Lawrence Berkeley National Laboratory

and Consulting Professor, Stanford University, 2007.

[77] Haizea. http://haizea.cs.uchicago.edu/.

[78] Borja Sotomayor, Kate Keahey, and Ian Foster. Combining batch execution

and leasing using virtual machines. In Proceedings of the 17th International

Symposium on High Performance Distributed Computing, HPDC ’08, pages

87–96, 2008. ISBN 978-1-59593-997-5.

[79] Amit Nathani, Sanjay Chaudhary, and Gaurav Somani. Policy based re-

source allocation in iaas cloud. Future Gener. Comput. Syst., 28(1):94–103,

January 2012. ISSN 0167-739X. doi: 10.1016/j.future.2011.05.016.

[80] Shyamala Loganathan and Saswati Mukherjee. Differentiated policy based

job scheduling with queue model and advanced reservation technique in a

private cloud environment. In GPC, pages 32–39, 2013.

[81] Open nebula. http://www.opennebula.org/, .

[82] Eucalyptus. http://open.eucalyptus.com/.

http://haizea.cs.uchicago.edu/
http://www.opennebula.org/
http://open.eucalyptus.com/

Bibliography 116

[83] Tien Van Do. Comparison of allocation schemes for virtual machines in

energy-aware server farms. Comput. J., 54(11):1790–1797, 2011.

[84] Michele Mazzucco, Dmytro Dyachuk, and Ralph Deters. Maximizing cloud

providers’ revenues via energy aware allocation policies. In IEEE Interna-

tional Conference on Cloud Computing, CLOUD 2010, Miami, FL, USA,

5-10 July, 2010, pages 131–138, 2010.

[85] Tien Van Do and Udo R. Krieger. A performance model for maintenance

tasks in an environment of virtualized servers. In NETWORKING 2009, 8th

International IFIP-TC 6 Networking Conference, Aachen, Germany, May

11-15, 2009. Proceedings, pages 931–942, 2009.

[86] Isi Mitrani. Service center trade-offs between customer impatience and power

consumption. Perform. Eval., 68(11):1222–1231, 2011.

[87] Isi Mitrani. Managing performance and power consumption in a server farm.

Annals OR, 202(1):121–134, 2013.

[88] Tien Van Do and Csaba Rotter. Comparison of scheduling schemes for on-

demand iaas requests. Journal of Systems and Software, 85(6):1400–1408,

2012.

[89] Gregor von Laszewski, Lizhe Wang, Andrew J. Younge, and Xi He. Power-

aware scheduling of virtual machines in dvfs-enabled clusters. In Proceedings

of the 2009 IEEE International Conference on Cluster Computing, August

31 - September 4, 2009, New Orleans, Louisiana, USA, pages 1–10, 2009.

[90] Dang Minh Quan, Robert Basmadjian, Hermann de Meer, Ricardo Lent,

Toktam Mahmoodi, Domenico Sannelli, Federico Mezza, Luigi Telesca, and

Corentin Dupont. Energy efficient resource allocation strategy for cloud data

centres. In Computer and Information Sciences II - 26th International Sym-

posium on Computer and Information Sciences, London, UK, 26-28 Septem-

ber 2011, pages 133–141, 2011.

[91] Ying Song, Hui Wang, Yaqiong Li, Binquan Feng, and Yuzhong Sun. Multi-

tiered on-demand resource scheduling for vm-based data center. In 9th

IEEE/ACM International Symposium on Cluster Computing and the Grid,

CCGrid 2009, Shanghai, China, 18-21 May 2009, pages 148–155, 2009.

Bibliography 117

[92] Akshat Verma, Puneet Ahuja, and Anindya Neogi. pmapper: Power and mi-

gration cost aware application placement in virtualized systems. In Proceed-

ings of the 9th ACM/IFIP/USENIX International Conference on Middle-

ware, Middleware ’08, pages 243–264, New York, NY, USA, 2008. Springer-

Verlag New York, Inc. ISBN 3-540-89855-7.

[93] Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, Gilles Muller, and

Julia Lawall. Entropy: A consolidation manager for clusters. In Proceedings

of the 2009 ACM SIGPLAN/SIGOPS International Conference on Virtual

Execution Environments, VEE ’09, pages 41–50, New York, NY, USA, 2009.

ACM. ISBN 978-1-60558-375-4.

[94] Tiago C Ferreto, Marco A S Netto, Rodrigo N Calheiros, and César A F

De Rose. Server consolidation with migration control for virtualized data

centers. Future Generation Computer Systems, 27(8):1027–1034, 2011.

[95] Edward G Coffman, Janos Csirik, and Gerhard Woeginger. Approximate

Solutions to Bin Packing Problems. Oxford University Press, 2002.

[96] Ching-Chi Lin, Pangfeng Liu, and Jan-Jan Wu. Energy-efficient virtual ma-

chine provision algorithms for cloud systems. In IEEE 4th International

Conference on Utility and Cloud Computing, UCC 2011, Melbourne, Aus-

tralia, December 5-8, 2011, pages 81–88, 2011.

[97] Shingo Takeda and Toshinori Takemura. A rank-based vm consolidation

method for power saving in datacenters. Information and Media Technolo-

gies, 5(3):994–1002, 2010.

[98] Cloud application platform. https://www.heroku.com/.

[99] Cloudfoundry. https://www.cloudfoundry.org/.

[100] Openshift. https://www.openshift.com/.

[101] IBM ILOG CPLEX (August 2012). http://www.aimms.com/cplex-solver-

for-linear-programming2?gclid=CLKI-56wrbACFVMetAodGRPLVA.

[102] . Green IT: Making the Business Case, Cognizant Report, January 2011.

[103] Ramon Bertran Yol, Xavier Martorell, Jordi Torres, and Eduard Ayguade.

Technical report upc-dac-rr-cap-18 accurate energy accounting for shared

virtualized environments using pmc-based power modeling techniques.

https://www.heroku.com/
https://www.cloudfoundry.org/
https://www.openshift.com/

Bibliography 118

[104] http://www.spec.org/power_ssj2008/.

[105] Chaima Ghribi, Makhlouf Hadji, and Djamal Zeghlache. Energy efficient

vm scheduling for cloud data centers: Exact allocation and migration algo-

rithms. In CCGRID, pages 671–678. IEEE Computer Society, 2013. ISBN

978-1-4673-6465-2.

[106] Kate Smith-Miles, Brendan Wreford, Leo Lopes, and Nur Insani. Predicting

metaheuristic performance on graph coloring problems using data mining.

In El-Ghazali Talbi, editor, Hybrid Metaheuristics, volume 434 of Studies in

Computational Intelligence, pages 417–432. Springer, 2013.

[107] D. Gómez, J. Montero, J. Yáñez, and C. Poidomani. A graph coloring

approach for image segmentation. Omega, 35(2):173 – 183, 2007.

[108] G. J. Chaitin. Register allocation & spilling via graph coloring. SIGPLAN

Not., 17(6):98–101, June 1982. ISSN 0362-1340. doi: 10.1145/872726.806984.

[109] G. A. Neufeld and J. Tartar. Graph coloring conditions for the existence of

solutions to the timetable problem. Commun. ACM, 17(8):450–453, August

1974. ISSN 0001-0782.

[110] Robert James Waters. Graph colouring and frequency assignment. In Doc-

toral thesis, University of Nottingham, 2005.

[111] Miklos Biro, Mihaly Hujter, and Zsolt Tuza. Cross fertilisation of graph

theory and aircraft maintenance scheduling. In AGIFORS, pages 307–318,

1992.

[112] https://www.sgi.com/pdfs/4301.pdf/.

[113] Douglas B. West. Introduction to Graph Theory. Prentice Hall, 2 edition,

September 2000. ISBN 0130144002.

[114] Lizhe Wang and Samee U. Khan. Review of performance metrics for green

data centers: a taxonomy study. J. Supercomput., 63(3):639–656, March

2013. ISSN 0920-8542. doi: 10.1007/s11227-011-0704-3.

http://www.spec.org/power_ssj2008/
https://www.sgi.com/pdfs/4301.pdf/

	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research Problem and Objectives
	1.2 Contributions
	1.3 Thesis Organization

	2 Cloud Computing and Energy Efficiency
	2.1 Introduction
	2.2 Cloud Computing
	2.2.1 What is Cloud Computing?
	2.2.2 Cloud Computing Actors
	2.2.3 Cloud Services Overview
	2.2.3.1 Classic Cloud service models
	2.2.3.2 New hybrid service models

	2.2.4 Virtualization and Cloud Computing
	2.2.4.1 Virtualization Forms
	2.2.4.2 Server virtualization categories

	2.3 Energy Efficiency in Cloud Data Centers
	2.3.1 Potential power consuming units in cloud datacenters
	2.3.2 Major causes of energy waste
	2.3.3 Power measurement and modeling in Cloud
	2.3.3.1 Power measurement techniques
	2.3.3.2 Power and energy estimation models

	2.3.4 Power saving policies in Cloud

	2.4 Research orientation and focus
	2.5 Conclusions

	3 Background & Related Work on Energy Efficient Cloud Resources Allocation
	3.1 Introduction
	3.2 Energy Efficient Resource Allocation in Cloud
	3.3 On-demand resource allocation vs advanced resource reservation
	3.4 Static vs dynamic Cloud resources allocation
	3.5 IaaS vs hybrid IaaS/PaaS Cloud providers
	3.6 Scope and positioning of the thesis
	3.7 Conclusions

	4 Bin packing based Approach for Energy Efficient Resource Allocation
	4.1 Introduction
	4.2 The System Model
	4.3 Energy Efficient Static Resource Allocation
	4.3.1 Exact Allocation Algorithm
	4.3.2 Modified Best Fit Heuristic Algorithm

	4.4 Energy Efficient Dynamic Resource Allocation (Re-allocation)
	4.4.1 Exact Migration Algorithm

	4.5 Combination of allocation and migration algorithms
	4.6 Performance evaluation
	4.7 Conclusions

	5 Graph coloring based Approach for Energy Efficient Resource Allocation
	5.1 Introduction
	5.2 The System Model
	5.2.1 Resource Modeling: Colors
	5.2.2 End User Request Modeling : Request Subgraph
	5.2.3 Energy efficiency metric
	5.2.4 Graph coloring for Energy Efficient Resource Reservation

	5.3 Energy Efficient Initial Advanced Resource Reservation
	5.3.1 Exact energy efficient graph precoloring Algorithm
	5.3.2 Energy efficient graph precoloring heuristic (EEGP)

	5.4 Energy Efficient Advanced Dynamic Resource Reservation
	5.4.1 Energy Efficient Graph Recoloring Heuristic (EEGR)
	5.4.2 Migration-Aware Energy Efficient Graph Recoloring Heuristic (MA-EEGR)

	5.5 Performance evaluation
	5.5.1 Evaluation Settings
	5.5.2 Evaluation results
	5.5.2.1 Energy Efficient Initial Advanced Resource Reservation
	5.5.2.2 Energy Efficient Advanced Dynamic Resource Reservation

	5.6 conclusions

	6 Conclusions and Future Research Directions
	6.1 Conclusions and Discussion
	6.2 Future Research Directions

	Thesis Publications
	A VM instance creation in Openstack-nova IaaS providers
	A.1 OpenStack Nova
	A.2 Image creation
	A.3 Initial network creation
	A.4 Instance launching

	B Hybrid IaaS-PaaS service with Docker and OpenStack Heat
	B.1 OpenStack Heat
	B.2 What is Docker?
	B.3 OpenStack and Docker
	B.4 Deploy Docker containers with OpenStack Heat
	B.4.1 Install the Docker Plugin
	B.4.2 Create the Heat template
	B.4.3 Deploy the stack

	Bibliography

