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ABSTRACT

Translation is a cyclic process, consisting of four stages: initiation, elongation, termination
and recycling. Recycling is important, as it ensures that ribosomal subunits become available
for new rounds of translation. It is tightly coupled to termination: in eukaryotes termination
factors eRF1 and eRF3 together with ATPase Rlil induce peptide release and subsequent
ribosome dissociation.If during translation elongation a ribosome stalls it will be unable to
terminate and cannot be recycled via the canonical pathway.

The highly conserved factors Dom34 and Hbsl form a complex structurally similar to the
eRF1-eRF3 complex that, together with Rlil, dissociates eukaryotic ribosomes stalled on a
messenger RNA (mRNA) as well as vacant ribosomes in vitro. Dom34 and Hbs1 are also
known to function in RNA quality control pathways that target mRNAs (No-go decay or
NGD) and ribosomal RNAs (Non-functional 18S rRNA decay or 18S NRD) that cause
inefficient translation. NGD and 18S NRD share several characteristics, including the
mechanism that triggers these pathways (ribosomal stalling) and the involvement of Dom34
and Hbsl. It has therefore been proposed that they may reflect one single pathway, in which
ribosomal stalling induces ribosome dissociation and degradation of mRNA and rRNA.

In the first part of my PhD work I tried to obtain more insight into the functional requirements
of Dom34 and Hbs1 for RNA quality control. In addition I studied how NGD and 18S NRD
relate and what other factors play a role in these pathways. I performed, together with our
collaborators, a structure-function analysis of the Dom34-Hbsl complex in the yeast
Saccharomyces cerevisiae. 1 found that the GTPase activity of Hbs1 is required for both NGD
and 18S NRD. However, disruption of Dom34-Hbsl interaction affected the complex’s
function in NGD but not in 18S NRD, showing that the role of Dom34-Hbsl in the two
pathways can be genetically separated. My results could suggest that mRNA and rRNA in a
stalled translational complex may not always be simultaneously degraded upon ribosomal
stalling. To further examine whether mRNAs that cause NGD may induce degradation of
ribosomal RNA or protein, NGD substrates were translated in vitro in S. cerevisiae extract.
No indications of ribosomal RNA or protein degradation were found. To identify factors other
than Dom34 and Hbsl that are involved in NGD and 18S NRD, I developed methods to
specifically purify stalled ribosomes No new interacting partners could be identified.

The second part of my PhD work focused on identifying roles of Dom34-Hbsl mediated

ribosome dissociation beyond RNA quality control. This resulted in finding a role of Dom34-



Hbs1 and Rlil dissociating inactive ribosomes that accumulate, due to a global inhibition of
translation, during glucose starvation stress in S. cerevisiae. By making the ribosomal
subunits of these inactive ribosomes available for initiation, the Dom34-Hbsl complex
stimulates restart of translation upon stress relief. Finally a combination of in vitro and in vivo
data indicated that the role of Dom34-Hbsl to make subunits available from inactive
ribosomes is also required in non-stressed cells to allow optimal translation. These findings
indicate that, upon ribosome recycling after translation termination, ribosomal subunits do not
always immediately engage in a new round of translation. Instead they can form inactive
ribosomes, that need to be dissociated by the Dom34-Hbsl complex and Rlil for their
subunits to become available for translation. This could provide a new level of regulation of

eukaryotic translation initiation.



RESUME

L'expression des genes eucaryotes est un processus complexe se déroulant en plusieurs étapes.
Un transcrit primaire, produit dans le noyau par la transcription de 'ADN, est transformé en
un ARN messager (ARNm) mature par une succession de modifications. Il s'agit notamment
de l'ajout d'une structure de coiffe en 5°, de 1'épissage et de l'ajout d'une queue polyadénine
(poly (A)) en 3’. Apres export dans le cytoplasme, I'ARNm est généralement traduit en une
protéine, avant d’étre dégradé. La plupart de ces étapes sont soumises a des régulations, selon
le type de cellule, le stade de développement et les conditions environnementales. Dans le
cytoplasme, l'expression de la protéine est affectée par régulation de la traduction ainsi que
par la dégradation de I'ARNm.

La dégradation de I'ARNm sert au moins deux fonctions. Tout d'abord, le métabolisme des
ARNm «normaux» permet une régulation quantitative et contribue a la régulation de
I'expression des geénes au niveau post-transcriptionnel. Deuxiemement, les voies de contrdle
qualité des ARN détectent et éliminent les ARNm défectueux, ce qui empéche la production
de protéines aberrantes et potentiellement dangereuses.

La traduction est effectuée par les ribosomes: de grands complexes composés d’ARN et de
protéines assemblées sous la forme de deux sous-unités. La traduction est un processus
cyclique qui se divise en quatre étapes. Dans la phase d'initiation, les ribosomes et d'autres
facteurs nécessaires pour la traduction s’assemblent sur I’ARNm et se localisent sur le site
d'initiation de la traduction (codon d'initiation). La régulation de la traduction se produit
surtout au niveau de cette étape. Au cours de 1'élongation, le ribosome produit une protéine en
liant des acides aminés sous la forme d’un polypeptide. La séquence d'acides aminés est
codée par la séquence des triplets de nucléotides (codons) présent dans 'ARNm. Les étapes
de terminaison et le recyclage sont couplés étroitement. Quand le ribosome rencontre un
codon stop, les facteurs de terminaison eRF1 et eRF3 sont recrutés. En collaboration avec
I'ATPase Rlil, ils induisent la libération de la protéine alors compléte et la dissociation
subséquente du complexe traductionnel. Les sous-unités ribosomiques ainsi libérées
deviennent disponibles pour des nouveaux cycles de traduction.

Si lors de la traduction, le ribosome pause a cause d’une structure secondaire, une séquence
particuliére, ou un défaut de I’ARNm, il ne pourra pas terminer la traduction et étre recyclé
par la voie classique. Un mécanisme de recyclage alternatif a évolué pour dissocier de tels

complexes arrétés. Les facteurs Dom34 et Hbsl1, conservés chez les eucaryotes et, au moins



pour Dom34, chez les archées, forment un complexe structurellement similaire au complexe
formé par les facteurs de terminaison eRF1 et eRF3. Des expériences biochimiques ont
montré que Dom34 et Hbs1 s’insérent dans le site A du ribosome (le méme site auquel eRF1
et eRF3 se lient) et dissocient des ribosomes qui sont bloqués sur un ARNm, quel que soit le
codon sur lequel le ribosome se trouve. En outre, Dom34 et Hbsl dissocient des ribosomes
qui ne sont pas liés a un ARNm. En dehors de la dissociation des ribosomes « pausés »,
Dom34 et Hbsl sont impliqués dans des voies de contrdle qualité des ARN qui ciblent des
ARNm et/ou des ARN ribosomiques (ARNr) engagés dans un complexe de traduction
inefficace. Dans le No-go decay (NGD), un ARNm qui cause une pause traductionnelle lors
de I'¢longation est ciblé vers la dégradation. Ce processus est initi€ par un clivage
endonucléolytique pres du site de pause. L'accumulation des produits de clivage, visibles
quand ils sont stabilisés artificiellement, dépend de Dom34 et Hbsl. Le Non-Functional 18S
rRNA decay (18S NRD) cible les ARNr 18S fonctionnellement défectueux. Les ARNr 18S
sont les ARNr qui composent une grande partie de la petite sous-unité ribosomique. Lorsque
de tels ARNs défectueux sont présents dans des ribosomes conduisant a une traduction
inefficace, ils sont éliminés et leurs dégradations dépendent de Dom34 et Hbs1. Le NGD et le
18S NRD partagent plusieurs caractéristiques, y compris le mécanisme qui initie ces
processus (traduction inefficace), la participation des facteurs Dom34 et Hbsl et leur
localisation. Il a donc été proposé qu'ils pourraient représenter une voie unique, au cours de
laquelle une pause traductionnelle induit la dissociation du ribosome, et la dégradation de
I'ARNm et de ’ARNT.

Dans la premiére partie de mon travail de these, j'ai essayé de définir les caractéristiques
fonctionnelles de Dom34 et Hbs1 requises pour le controle qualité des ARN. De plus, j'ai
étudié la relation entre le NGD et le 18S NRD et j’ai essay¢ d’identifier des nouveaux facteurs
qui jouent un rdle dans ces deux voies. J'ai réalisé, en collaboration avec une équipe de
biologie structurale, une analyse structure-fonction du complexe Dom34-Hbsl de la levure
Saccharomyces cerevisiae. Basé sur un modé¢le structural obtenu par nos collaborateurs, j'ai
construit des mutants qui bloquent liaison du GTP sur la GTPase Hbsl ainsi que des mutants
qui perturbent ’interaction entre Dom34 et Hbsl. En étudiant 1'effet de ces mutations sur le
NGD et le 18S NRD, j'ai observé que l'activité GTPase de Hbs1 est nécessaire pour le NGD et
le 18S NRD. Cependant, la perturbation de I’interaction entre Dom34 et Hbsl empéche la
fonction du complexe dans le NGD mais pas dans le 18S NRD, montrant que les roles de
Dom34-Hbs1 dans ces voies peuvent étre séparés génétiquement. Mes résultats pourraient

suggerer que I’ARNm et ’ARNr dans un complexe de traduction « pausé » ne sont pas



toujours dégradés simultanément. Afin de savoir si, lors du NGD, il y a dégradation de
I'ARNr ou des protéines ribosomiques, des substrats ARNm qui causent le NGD ont été
traduits dans un extrait cellulaire de S. cerevisiae. Aucune indication de dégradation des
ARNT ou des protéines ribosomiques n’a été obtenue.

Pour identifier les facteurs autres que Dom34 et Hbs1 qui sont impliqués dans le NGD et le
18S NRD, j'ai essayé de purifier des ribosomes « pausés» pendant la traduction et les
partenaires associés. J’ai mis au point une méthode pour la purification spécifique de
ribosomes contenant un ARNr 18S défectueux. Cependant, aucun nouveau facteur associé¢ a
ces complexes n’a ¢té identifié.

La deuxiéme partie de mon travail de thése s’est concentrée sur le réle de Dom34-Hbs1 dans
la dissociation des ribosomes en dehors du controle de qualité des ARN. Ces expériences
m’ont permis de mettre en évidence un role de Dom34 et Hbs1 dans la sortie de stress.
Beaucoup de conditions de stress provoquent un arrét global de la traduction. Cela permet aux
cellules d'utiliser économiquement des ressources limitées pour la production de protéines
nécessaires pour s’adapter a l'état de stress. Lorsque le stress est terminé, la traduction
redémarre rapidement. Ceci est possible car pendant le stress, les ribosomes inactifs sont
stockés et peuvent étre remobilisé rapidement. Au cours du stress resultant de la déplétion de
glucose chez la levure, les ribosomes inactifs contiennent la protéine Stml dans une
conformation qui maintient les deux sous-unités ribosomiques associées et empéche le
recrutement d’un ARNm. Le redémarrage rapide de la traduction aprés I’arrét du stress exige
la dissociation des ribosomes inactifs pour rendre leurs sous-unités disponibles pour de
nouveaux cycles d'initiation de la traduction.

Je me suis demandé si Dom34 et Hbsl pouvaient étre responsables de la dissociation des
ribosomes inactifs, stimulant ainsi le redémarrage de la traduction. A cette fin, j'ai analysé le
role du complexe Dom34-Hbsl dans le redémarrage de la traduction aprés déplétion de
glucose chez S. cerevisiae. J’ai observé qu’en absence de Dom34 ou Hbsl, la reprise de la
traduction apres réadition de glucose est beaucoup plus lente que dans les cellules sauvages.
Mes résultats montrent aussi que les ribosomes inactifs qui s’accumulent pendant la déplétion
de glucose sont des substrats de protéines Dom34, Hbs1 et Rlil recombinantes in vitro. De
plus, I’affaiblissement de l'interaction entre les sous-unités ribosomiques par la suppression de
Stm1 réduit le besoin de Dom34 pour la reprise de la traduction. Cela confirme que la
stimulation par Dom34-Hbsl de la reprise de la traduction dépend de leur activit¢ de
dissociation de ribosomes inactifs. Alors que Dom34 et Hbsl, ainsi que l'activité GTPase de

Hbs1, sont nécessaires pour le redémarrage efficace de la traduction, l'interaction entre



Dom34 et Hbs1 ne ’est pas. Ces exigences sont similaires a celles requises pour le 18S NRD.
Finalement, j'ai trouvé que le role du complexe Dom34-Hbsl dans la dissociation des
ribosomes inactifs et la stimulation de la traduction ne se limite pas aux conditions de stress.
En effet, dans les cellules en croissance, des ribosomes inactifs sont produits, quoiqu’a un
niveau moindre que lors d'un stress. J'ai constaté que, en absence de Dom34, ces ribosomes
inactifs s'accumulent dans les cellules en croissance. Aussi, le complexe Dom34-Hbs1 est
capable de stimuler la traduction effectuée par des ribosomes qui n'ont pas été exposés au
stress Ces résultats suggérent que, lors du cycle de traduction, aprés la terminaison, il est
possible que des sous-unités ribosomiques ne s'engagent pas immédiatement dans un nouveau
cycle de traduction. Ces sous-unités peuvent former des ribosomes inactifs qui doivent étre
dissociée par le complexe Dom34-Hbs1, en présence de Rlil pour les rendre disponibles pour
de nouveaux cycles de traduction. Cela pourrait créer un nouveau niveau de régulation de

I'initiation de la traduction.

10



TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... oo e e e e es e e e s eee s e s s s eeeeee s essese e sseseees e esese e seseesees 2
ABSTRACT
RESUME oottt e e e e e e e e s e et e e e e e e eeeeeee e e e e ee e e e e e e et e e e e e e esee e s seee e e eeaeeons

LIST OF FIGURES ... oo eeeee e s e ee e e es e eeeeaes e eeseseeeesesees s eseseeeesseeeseneesese s seene 14
LIST OF TABLES
LIST OF ABBREVIATIONS ...t eeees e e e e eee e aes e eeaeseeseseseeseseseeseee e seseeseseeeeseeeseeeeenseseeens 16

1. INTRODUCTION 17
1.1 Eukaryotic gene expression: life and death of a messenger RNA...........cocoiiiiiniiiiniincceeeee 18
1 Transcription, processing and export
2 TTANSIALION. ..ot
1.1.2.1 The principle actors in translation..............cooveirieireiirieeee e 20
1.1.2.1.1  The messenger RNA
1.1.2.1.2 The transfer RINA ..ottt
1.1.2.1.3 The TTDOSOIMIC ...ttt
1.1.2.2 INIHALION. ¢t
1.1.2.2.1  Cap-independent translation initiation.....
1.1.2.3 ElONGAtION. ...ttt
1.1.2.4 TErmMINAtION ...c.eviiniiciciiieiece ettt
1.1.2.5 RECYCIHNG ..ttt
1.1.3  Messenger RNA degradation..........ccccceeveeeeeeierenennene.
1.1.3.1 The major cytoplasmic RNA decay pathways ...
113101 Deadenylation........c.ccoirieueeiiriereeirineeieenirieies ettt saesesesnenenens
1.1.3.1.2  Decapping and 5’ to 3’ decay..... s
1.1
1.1

1.1
1.1

3.1.3 3’ to 5’ decay by the exosome.... et
314 P-DOIES .o
1.1.3.2 Cytoplasmic RNA quality control ...........cccoeovvineeneniiincnceenn
1.2 Translation inhibition in stress CONAItIONS ......c.covveeueiriiieiririeieirrieeeecees
1.2.1  Mechanisms of general translation inhibition ...............ccccceeveeriennne.
1.2.1.1 The TOR pathway and 4E-BPs........ccccooeiiiiiininiccce
1.2.1.2 elF20 phosphorylation ...........ccoecieereinieieieeeeceeee
1.2.13 Translation dUring StrESS ........coueivereererieinieieeeeeeereee e
1.2.2  Translation inhibition in glucose depletion ............cceereeiierieerieieeiee e
1.2.3  P-bodies and Stress granules ............cooecieuerieirieieenieieieieeee et
1.2.4  RibosOME hibEINAtion ......co.cueuiriiueiiiriiieiiirieiiitctct ettt
D205 SNt
1.2.5.1 Stm1 and translation...........cocoiveiiiriiiiee e
1.2.5.2 Stml and recovery from translation inhibiting conditions..............
1.3 The termination factor-like complex DOm34-HDS 1 .........ccooieuiiiiiiiiiiiiieieieee e
1.3.1  Phenotypical ANalySiS........ccciirieirieieieietieieiete ettt ettt ettt st est et et s et e st esese e st ebeseesseneebeseeneeseneenennan
1.3.1.1 Dom34 and Hbs1 are important in strains with 40S subunit deficiency...
1.3.2  Structural models of Dom34 and HbBS1 .......cccoooiiiiiiiiiiiic e
1.3.2.1 The Dom34-HDBST COMPIEX ...ttt
1.3.2.2 Interaction of the Dom34-Hbs1 complex with the ribosome
1.3.3  The Dom34-Hbs1 complex disSOCIates rIDOSOMES .........c.cerieuirieieririeieieriete ettt eee e
1.3.3.1 In vitro dissociation of stalled and vacant ribOSOMES. .......c..c.eeioiriereerniiecninieictneeeseeeeens
1.33.2 Mechanistic details of Dom34-Hbs1 and Rlil mediated ribosome dissociation....
1.3.33 Dom34-Hbs1 mediated ribosome diSSOCIAtion 72 VIVO .......c.ccevveuerueirienieiniiineneesieeeee s
1.4 Co-translational RNA quality control on inefficiently translating complexes..........cccuverveererinenecinenienns
1.4.1  No-go decay
1.4.1.1 Mechanism Of NO-Z0 AECAY ...c..oviieuiriiiieiiieiirieiei ettt ettt et es e eeens
1.4.1.2 Stall sites that cause NGD .......cc.ceoiririiiriniiiniec ettt
1.4.13 Endonucleolytic cleavage
1.4.2  Non-functional ribosomal RNA deCAY ........cerueiiuirieiiiiiiiieeeiee et
1.4.2.1 Non-functional ribosomal RNA decay on defective 18S rRNAs
1422 Non-functional ribosomal RNA decay on defective 25S rRNAs
143 INON-SEOP AECAY....viietiieiieteiett ettt ettt ettt ettt e s e e st b en e eb e s e st te e eae st eneebeeseseneese e eneeseneesennas
1.4.3.1 INSD SUDSIIALES ...ttt ettt ettt ettt b ettt st b ettt eaenenens

11



1432 Mechanism of non-stop mRNA degradation...........c.coeeeirrieirinnieenniieieeeee e 69

1.44  The fate of stalled ribosomes and their nascent Peptides ...........coueuereirenieirieieeeereeee e 72
1.44.1 Recycling of stalled rDOSOMES ........cc.eieuiriiiiiieieteeie e 72
1.44.2 Nascent peptide degradation ............coeiiiriiirierieie ettt 73

1.4.5  Multiple roles for the Dom34-Hbs1 complex?... ettt 75

1.5 PTOJECT OULIIIE ..ttt ettt bbbt et b bttt eb ettt be e eaenen 77
1.5.1  The Dom34-Hbs1 complex and RNA quality CONIOL .........ccvueueuiririeiiininiereniririeeeneieeeseeeeeeenenens 77
1.5.2  Biological relevance of Dom34-Hbs1 mediated ribosome diSSociation..............ceoveuevueereneeeenecenenns 78

2.  RESULTS 79

2.1 study of The role of Dom34-Hbs1 in RNA quality CONtrol.........ccccociruiiiinieiiinieieicieeieeeeee e 80

2.1.1 A structure-function study of the Dom34-Hbs1 cOmMPIEX.......coceririirieiiinieiiiiieeieecee e 80
2.2 Study of the mechanistical details of RNA quality control on stalled translational complexes................... 83

2.2.1  The functional relationship between No-go decay and Non-functional 18S rRNA decay ................. 91
2.2.2  Search for the No-go decay endOnuCICaSE. .......c.eeueieierierieniiriieietietietete ettt eeeas 93
2.2.3 A method to purify ribosomes with a defective 18S rRNA..... .
2.2.3.1 Tandem affinity PULITICATION .......ceeuirieiiiiieiiieee ettt
2232 Construct production and validation.............ccceceiieiiiieieee e
2233 Optimization of the purification protocol
2.24  Analysis of the role of Ltnl1 in peptide stability and mRNA degradation. ...........ccceceoeoveenncncnnnnne 103
2.2.5  Nuclease requirement for exosome-mediated No-go decay intermediate degradation..................... 105
2.3 Study of the biological importance of Dom34-Hbs1 mediated ribosome dissociation
2.3.1  DOM34-HDS1 OVEIEXPIESSION ....ueutiuietinieiirieietereeteteteseeteeeseaeeeeseneesesseneeseseeseesenseseasensesenseneesesseneanens
2.3.2  Can Dom34-Hbsl complement the absence of eRF1-eRF3? .........coocooiiiiiiiiiiieeecee 109
2.3.3  Dom34-Hbsl mediated dissociation of ribosomes bound to mRNAs that are being degraded........ 110
2.3.3.1 Genetic interaction with factors involved in cytoplasmic degradation..............cccceevvveverennnnn 111
2332 Is dissociation of ribosomes on Nonsense mediated decay targets needed for degradation? . 114
2.3.4  Dom34-Hbs! mediated dissociation of inactive ribOSOMES........c.cvvveueriirieieeriririeereeeeseeeiceene 115
2.4 DOM34-HDST INEETACLION ...evuieitiiieiiieiietee ettt ettt ettt ettt ettt s b e s e e et et eb e s eseeb e te st ebe e eseeneneanens 146

3.  DISCUSSION

3.1 RNA quality control on stalled translational COMPIEXES ...........ccvrveieririerieieieiiieeeieieee et

3.2 Functional importance of Hbs1 GTPase activity and Dom34-Hbs]1 interaction........................

3.3 Dom34-Hbsl stimulates translation by making subunits available from inactive ribosomes

3.4 A new mechanism to regulate translation Tates?..........cccoveirieieirieieeniet et 153

4. MATERIALS AND METHODS
4.1 Strains ANd MIEAIA .o.eouiieeeieiiiit ettt ettt ettt st et et et e st es e b et s e e b ene e b et es e et en e b et e st be e s e eneneebens
4.1.1  Bacterial media..........ccccceevreenene
4.1.2  Bacterial strains and plasmids.....
413  Yeastmedia....ooocoovereeieieeennnen.
4.1.4  Yeast strains and plasmids...
4.1.5  Gene deletion............cc.......

4.1.6  Cloning........cccoeevvueuenene
4.1.6.1 DNA 1801ation......eeveeeieeieeieieieiciesieeieeieeeene
4.1.6.1.1  Isolation of plasmid DNA from E. coli....
4.1.6.1.2 Isolation of yeast genomic DNA...............

4.1.6.2 PCR and digestion..........cccccoeeeenenene.

4.1.6.3 In gel ligation..........
4.1.6.4 Bacterial transformation....
4.1.6.5 Verification..........ccceeuee.
4.1.6.6 Insertion stem loop....
4.1.6.7 Site directed mutagenesis.....
4.1.7  Yeast transformation.......................
4.2 Y @ASE GIOWLN L.ttt ettt s bt h et et h e st b et et et et eh et st bt e st be e s e eeeneebens
4.2.1  Glucose starvation and addition............ecueereiriieieeeee et e
422  Drop assay
423 GIOWEN CUIVE ...ttt ettt sttt ettt e et et e e et e b e eseeseeseeneenaenbensessesseaneensensensessessensesseans
4.3 RINA QNALYSIS 1.tivietietieieieiesie ettt ettt sttt ea e s et e s e beste st esseeseeseestens et ensenseeseessentensensesessenseeseeseens
4.3.1  RINA EXIACTION 1.ututinietiteiietetetit ettt ettt ettt st ee et e e te st et ek e st ebe s es e et e s eseesemeebensese b eneeseebe e esesaeneesenseneeean




432 NOTREIN ANALYSIS ...cuvvieiiiieiiiieiei ettt ettt bbbttt b btttk et sttt ebebenea

4321 Using an agarose-formaldehyde gel...........ooooiiiiiiiiiiiieieeee e
4322 Using a formaldehyde-urea @el...........ccooiieiiiiiineiieee e
4323 Probe labeling.........ccccocevviennnnnee
4.3.3  Determine mRNA half-life......
4.4  Protein analysiS.........c.coceeveeenenn.
4.4.1  Rapid protein extraction...
442  Protein gel ......cccovveennnne.
4421 SDS-PAGE................
4422 Mass spectrometry......
4423 Western analysis.........ccceeevereeenennenenns
4.4.3  Purification of ribosomes by TAP method......
4.4.4  Purification of recombinant factors .................
4441 His-purification ............c.ccco......
4442 Strep purification.......
4.4.5  Yeast two hybrid analysis....
4.5 Studying translation......................
4.5.1  Polysome analysis...........cc........
4.5.2  Invitro ribosome dissociation.....
453  **S-methionine incorporation.....
4.5.4  Invitro translation......................
4.54.1 Preparation yeast extract ...
4542 In vitro transcription.........
4543 In vitro translation .....
4.6 LISt OF DUFTEIS ...ttt
REFERENCES ...ttt 180
5. SUPPLEMENTARY INFORMATION 190

13



LIST OF FIGURES

Figure 1 Transcription and mRNA processing in eukaryotic Cells. .........cocoreiriiiinienieiniciieieeeeee e 19
Figure 2 Translation is a Cyclic, fOUr StAZE PIOCESS. .....coveuirieuiieiieiirieieieiett ettt ettt eae s neenenan 20
Figure 3 The ENELIC COUE. ....oouiiiiiiiiieiiiei ettt ettt ettt et s et es e be b se e b e e ene et et es e be st eseseeneeseneeseanan 21
Figure 4 Messenger RNA. .. w21
Figure 5 Transter RINAL . ..c..oo oottt ettt ettt b ettt ebe b be s 22
Figure 6 Bacterial and eukaryotic TIDOSOMES..........c.couiriiuiriiriiirieietee ettt 23
Figure 7 tRNA binding sites in the ribosome. .. .23
Figure 8 Eukaryotic translation initiation .................ccc..... 25
Figure 9 Classificiation of internal ribosomal entry sites..... 27
Figure 10 Translation lONZAtION .........ccoueiiiriiiriiieerie ettt ettt b ettt ettt e ebe b b 28
Figure 11 Eukaryotic translation termination and reCyCliNg. .........cccccuvereiriiiiniiiieniercee e 30
Figure 12 Structure of Rlil ... 31
Figure 13 Eukaryotic ribOSOME FECYCING ......c.oiuiuiiieiiiiiieiieieie ettt ettt sttt s ettt se s ebeneeneean 32
Figure 14 The major cytoplasmic mRNA decay pathways in Yeast .........ccccceiririeiienieiriiieeeeeeee e 34
Figure 15 Inactive core of the exosome from S. cerevisiae.............cocvveveinioneneiiieneiieeeee ... 36
Figure 16 Cytoplasmic mRNA degradation by the exosome requires Ski7 and the Ski complex.... .37
Figure 17 Mechanisms of inhibition of translation initiation during stress in S. cerevisiae.............. 41

Figure 18 Gend translation dUTing STIESS ......e.eeeirveveriirieieeiirieeeieieteie ettt eesenenes 42
Figure 19 Model of the relationship between stress granules and P-bodies. ... .. 45
Figure 20 Stm1 in a ribosome from glucose starved S. cerevisiae...............ccceuenc... ... 49
Figure 21 Deletion of Dom34 causes growth defect in 40S subunit deficient yeast. ...........ccccoevirerenenninecncnne 52
Figure 22 Dom34 VETSUS ERE L. ...c.ociiieieieiieiece sttt ettt ettt st eae st e st e aesseeseesaensensensenseeseenean 54
Figure 23 The archaeal Pelota-aEF1a complex structurally resembles the bacterial EF-Tu complex .... ... 55
Figure 24 Cryo-EM model of ribosome bound Dom34-HDBS 1. ........cccceviiiiiininiiiiiniccinieceeceeeee e 56
Figure 25 Ribosome recycling by Dom34, Hbs1 and RIIT.........ccocoiiiiiiiiiiiieeeeee e 59
Figure 26 No-go decay model. ........cccooeirineninincicieee .. 63

.. 67

Figure 27 Non-functional 18S rRNA decay model. ... .

Figure 28 NSD SubStrates.........ccccevveveeriereriereseenennens ... 69
Figure 29 Non-stop decay MOAE] ........c.coiiviiiiiiiiiiieieieeeete ettt ettt seese et eaensensesseeseenean 71
Figure 30 Model of RQC mediated degradation of nascent peptides produced by stalled ribosomes................... 75
Figure 31 NO-Z0 AECAY SSAY ...eviuiuiieiiiteietieieteetei ettt ettt sttt ettt e te e et te st eteeese et eneebeneenenseneanens .. 81
Figure 32 Optimization of micrococcal nuclease digestion tiMe. ..........coevreririreineneerieeeee e 91
Figure 33 Optimization of the MRNA CONCENTIATION. ......ecuieieieierieie ettt ee et ebe s 92
Figure 34 The effect of translating a stem loop containing mRNA on ribosomal RNA and protein stability....... 93
Figure 35 Esll and Esl2 are not required for No-go decay endonucleolytic cleavage. ..........cccoevieerereniinieennnnne 94
Figure 36 Tandem affinity purification .. 95
Figure 37 Method to purify a defective rDOSOIME. ........ccoiiieiiiiieiieieieet e 96
Figure 38 Steady state levels of tagged 18S rRNAs and UTA-TAP protein. .........ccoceoeeereinennenenneneceeceeee 97
Figure 39 Sedimentation of 18S wild type and mutant rRNA and UT1A-TAP.... ... 98
Figure 40 Optimization of centrifugation speed and tIMe. .........ccceverereriiieieieieeetee ettt eneas 99
Figure 41 Purification of wild type ribosomes via U1 stem loop and UTA-TAP........cccooveiiiinineiiieneieee 100
Figure 42 Purification of wild type and mutant ribosomes via U1 stem loop and UIA-TAP. .. 102
Figure 43 Effect of LTNI deletion on peptide stability and mRNA cleavage in NGD. .........ccccoceveviiinninecnnne 104
Figure 44 Requirement of exosomal endo- and exonuclease activity for NGD intermediate degradation.......... 106
Figure 45 Effect of Dom34-Hbs1 overexpression on yeast SrowWth. .........cceeevieierienieniinenieieeeieieieseese e 108
Figure 46 Dom34-Hbs1 overexpression does not rescue yeast lacking eRF1-eRF3........cccocoeiviiiinncinnnne. 110
Figure 47 Genetic interaction of Dom34 with Depl and SKi7. ......ooooiiiiiiiiiiiieeeeeeee e 111
Figure 48 Effect of Dom34 on exosome mediated mRNA degradation. ............cccoceveeirineiiennineccee e 113
Figure 49 Effect of Dom34 on the degradation of NMD SUDSIIates. ........cccceoueirieirinieiieieieeesecee e 115
Figure 50 Recovery of translation after glucose starvation in absence of Dom34. ...........c.cccoceeeene 144
Figure 51 Recovery of growth following glucose starvation in presence and absence of Dom34. ..................... 145
Figure52 Model for the Dom34-Hbs1 complex affecting subunit availability in the translation cycle............... 155

14



LIST OF TABLES

Table 1 : List Of E. COli PLASIIAS. ....cueeuiieiieiiieiiieeteet ettt ettt et s e s st b sesbe e s eeeseenens 159
Table 2 Yeast strains. .........cccceeveeee. 160
TabIe 3 Y EASt PLASINIAS. ....cuetiieiietiietiete ettt ettt ettt e st es e b e st ebeebeneese st eseebeneeneeseneebe e eseeseneenens
Table 4 Probes used for NOrthern analysis ...........ccceeiiiiirieiiie et
Table 5 Antibodies used for western analysis...
Table 6 LiSt Of DUFTELS ......cueuiiieiiiiccc e

15



LIST OF ABBREVIATIONS

18S NRD Non-functional 18S ribosomal RNA decay
25S NRD Non-functional 258 ribosomal RNA decay
3’ UTR 3’ untranslated region

5’ UTR 5’ untranslated region

CBP Calmodulin binding protein

GFP Green fluorescent protein

IRES Internal ribosome entry site

ITAF IRES transacting factor

Met-tRNA; Methionine bound initiator tRNA

mRNA Messenger RNA

NGD No-go decay

NRD Non-functional ribosomal RNA decay

NS Non-stop

NSD Non-stop decay

ORF Open reading frame

PAP Peroxidase anti-peroxidase

PCI Phenol:chloroform:isoamyl alcohol 25:24:1
PCR Polymerase chain reaction

rRNA Ribosomal RNA

RQC Ribosome Quality Control complex

Rz Ribozyme

SDS-PAGE SDS polyacylamide gel

SL Stem loop

TAP Tandem affinity purification

tRNA Transfer RNA

uORF Upstream open reading frame

16



1. INTRODUCTION

17



1.1 EUKARYOTIC GENE EXPRESSION: LIFE AND DEATH OF A
MESSENGER RNA

The central dogma of molecular biology resumes gene expression: DNA makes RNA makes
protein. In eukaryotes this sequence of events is complicated by the fact that the transcription
of a DNA sequence into an RNA sequence and the translation of RNA sequence into protein
is spatially separated, the first occurring in the nucleus, the latter in the cytoplasm. Therefore
the RNA needs to be exported from the nucleus into the cytoplasm before it can be translated.
Apart from this, primary transcripts are extensively processed, before a mature messenger
RNA (mRNA) is produced that can be translated.

Gene expression is heavily regulated, which gives cells the opportunity to vary their content
and function according to cell type, developmental stage and environmental conditions.
Regulation occurs at practically all stages of gene expression: at the level of transcription,
processing and export of the resulting RNA as well as localization, translation and stability of
the RNA and localization and activity of the protein.

This thesis focuses on the role of two protein factors in translation dependent detection and
degradation of faulty RNAs and in regulation of translation, studied in the eukaryotic model
system yeast (Saccharomyces cerevisiae). Therefore this first paragraph will, after a brief
introduction of RNA production, processing and export, specifically focus on translation and

RNA degradation in eukaryotes.

1.1.1 Transcription, processing and export

A gene can be defined as a DNA sequence that holds the information to produce a protein or a
functional RNA. Transcription of a gene is mediated by RNA polymerases that incorporate
nucleotides into an RNA molecule using a DNA strand as a template. RNA polymerases are
recruited to the 5° end of a gene, the promoter region. This requires the assembly of various
proteins, the general transcription factors, at the promoter. The promoter contains sequence
elements that influence the rate of transcription of a gene, mostly by binding regulatory
factors. The expression of a gene is also affected by regulatory sequence at a larger distance.
Three different types of RNA polymerases each transcribe different classes of genes. mRNAs
transcribed from protein encoding genes, are produced by RNA polymerase II.

Eukaryotic transcripts are extensively processed (Figure 1). Much of this processing occurs or
initiates while transcription is still ongoing. A cap structure is added to the 5’ end of

transcripts produced by RNA polymerase II. This cap consists of a guanine nucleotide that is



linked to the 5’end of the transcript via a 5’ to 5’ tri-phosphate linkage. The cap protects the
mRNA from degradation and is important for translation (see paragraph 1.1.2.2). The protein
coding sequence on DNA, and therefore also on a primary transcript, is interrupted by
stretches of non-coding sequence, called introns. These are removed during by a large,
dynamic assembly of RNA and proteins in a process called splicing. The use of splice sites
can be regulated, which results in the potential to produce multiple, different mRNAs from a
single gene. At their 3’ end mRNAs are polyadenylated. The site of polyadenylation is
determined by the recognition of a specific sequence, that recruits protein factors responsible
for cleavage of the RNA and subsequent addition of the poly(A) tail.

During transcription and processing the mRNA associates with a variety of proteins. Some of
these proteins serve as signals needed for active export of the mRNA through the nuclear pore
complex, a large multi-protein structure that forms a channel through the nuclear envelope.
Once the mRNA is exported into the cytoplasm, it may be transported to a certain cellular
location and it can be translated (Alberts et al, 2008).
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Figure 1 Transcription and mRNA processing in eukaryotic cells.

1.1.2 Translation
The nucleotide sequence of a mRNA is translated into a chain of amino acids, called a

polypeptide, that will eventually fold into a protein. Translation is mediated by large, highly
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conserved complexes, the ribosomes, that operate in a four stage cyclic process (Figure 2).
During translation initiation a ribosome assembles on a mRNA to form a functional ribosome.
In the elongation stage the ribosome mediates incorporation of amino acids into a growing
polypeptide chain, according to the nucleotide sequence of the mRNA. During the termination
phase, the now completed polypeptide is released. In the ensuing recycling phase the post-
termination ribosome is released from the mRNA, making it available for new rounds of
translation. In the following paragraphs the actors and stages of the translation cycle will be

described in more detail.

Termination

(A)n

/ \ Recycling

(A)n

Elongation \

Initiation

Figure 2 Translation is a cyclic, four stage process.

1.1.2.1 The principle actors in translation

1.1.2.1.1 The messenger RNA

After export from the nucleus into the cytoplasm a mRNA can be translated. The amino acid
sequence of the peptide to be produced derives from the mRNA nucleotide sequence. Each
group of three consecutive nucleotides, which is called a codon, corresponds to a specific
amino acid (see the genetic code in Figure 3). Translation starts at a start codon, which always
consists of an AUG triplet, encoding the amino acid methionine. The codons downstream of

the start codon then dictate the order of the following amino acids to be incorporated in the
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growing polypeptide. The polypeptide is completed when one out of three stop codons (UAA,
UAG or UGA) is encountered.

Riln ] ¢ &I
L1 SLH LTI
A Sk Y ik 1 Wl ANk 1k
P M ] H 1 A i
i A g LY AR Gk A L ST T P ik L P el AL
l L = LTS 1 &} A H. - [ L) LT at ] S s 1 ~i
(Alberts et al, 2008)

Figure 3 The genetic code.
Each nucleotide triplet, or codon, encodes an amino acid.

The sequence between a start codon and the first stop codon found within the same reading
frame is called an open reading frame (ORF). The non-coding sequences up- and downstream
of an ORF, present in the mRNA, are called 5’ and 3’ untranslated regions (UTR) (Figure
4A). mRNAs can circularize through interaction of cap-associated proteins with the poly(A)

binding protein, called Pabl in yeast (Alberts et al, 2008) (Figure 4B).

A B
5'UTR 3'UTR elF4F
@ AUG m— A A ——— AAAAAAAA AUG
cap ORF poly(A) tail
AAU
Figure 4 Messenger RNA.

A: Open reading frame (ORF) and untranslated regions (UTR) in a mRNA.
B: mRNA circularization through the interaction of cap-binding proteins with the poly(A) binding protein Pabl.

1.1.2.1.2 The transfer RNA

Translation of a mRNA nucleotide sequence into a amino acid sequence requires adapter
molecules: the transfer RNAs (tRNA). This adapter function is mediated by two functional
sites of the tRNA. First, it contains an anticodon loop that basepairs specifically with a codon
on the mRNA. Second, it can be charged with a specific amino acid, according to the identity
of the anticodon loop and other features. Sequence complementarity between various regions
in the tRNA molecule results in a cloverleaf-like arrangement, when drawn in 2D. In 3D the

tRNA molecule adopts an L-shaped structure (Alberts et al, 2008) (Figure 5).
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Figure 5 Transfer RNA.
2D (left) and 3D (right) structure an aminoacyl-tRNA molecule.

1.1.2.1.3 The ribosome

The translation of a mRNA into an amino acid sequence is catalyzed by ribosomes. These are
large RNA protein complexes, varying in size from 2.3 MDa in bacteria to 4.3 MDa in higher
eukaryotes (Figure 6). Ribosomes consist of a small and a large subunit, which are often
named after their sedimentation rate (in bacteria: 30S and 50S subunit, in eukaryotes: 40S and
60S subunit respectively). Together the subunits form the 70S (in bacteria) or 80S (in
eukaryotes) ribosome (Alberts et al, 2008). Each subunit contains ribosomal RNA (rRNA) in
complex with an array of ribosomal proteins. In the bacterial small ribosomal subunit a 16S
rRNA is complexed with 21 proteins. In yeast or higher eukaryotes an 18S rRNA is
complexed with 33 proteins. The bacterial large ribosomal subunit is composed of a 23S and a
5S rRNA and 33 proteins. In yeast the large ribosomal subunit contains a 25S, a 5S and a 5.8S
complexed with 46 proteins, whereas higher eukaryotes contain a 28S, a 5S and a 5.8S rRNA
and 47 proteins (Melnikov et al, 2012).

The core of the ribosome is, both in structure and function, highly conserved between all three
domains of life. Since the early 2000s high resolution X-ray structures of bacterial and
archaeal ribosomes have contributed immensely to our functional understanding of ribosomes
from all domains of life (Schmeing & Ramakrishnan, 2009). In recent years X-ray structures
of eukaryotic ribosomes have become available (Ben-Shem et al, 2011; Ben-Shem et al, 2010;
Rabl et al), shedding light on the function related structural differences between ribosomes
from different domains, including the eukaryote-specific expansions that cause eukaryotic

ribosomes to be significantly larger in size (Melnikov et al, 2012).
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Figure 6 Bacterial and eukaryotic ribosomes
Composition of bacterial (E. coli) and eukaryotic (S. cerevisae and H. sapiens) ribosomes, as well as their
conserved core. Ribosomal RNA is indicated in blue, ribosomal proteins in red. RNA and protein conserved in
all domains of life is indicated in light blue and light red respectively.

O Ty, gy e gm s CRair Figure 7 tRNA binding sites in the ribosome.
{ An aminoacyl-tRNA binds to the A-site, the P-
= site contains a peptidyl-tRNA and in the E-site

a deaminoacylated tRNA leaves the ribosome.

(Alberts et al, 2008)

A translating ribosome is bound to a mRNA that threads through the 40S ribosomal subunit.
The ribosome contains three binding sites for tRNAs : the A, P and E site (Figure 7). The
tRNAs binding to these adjacent sites basepair with adjacent codons. The A-site (aminoacyl
site) binds incoming aminoacyl-tRNAs. If their anticodons pair correctly with the A-site

codon, the amino acid will be incorporated into the growing peptide chain. The P-site



(peptidyl site) contains the growing peptide chain associated to a tRNA. The E-site (exit site)
is the site where a tRNA leaves the ribosome (Alberts et al, 2008).

Two important functional sites are the decoding center in the small ribosomal subunit and the
peptidyl transferase center in the large ribosomal subunit. The decoding center monitors
correct codon and anti-codon base pairing in the ribosomal A-site. The highly conserved
nucleotides G530, A1492 and A1493 (E. coli numbering) of the 16S rRNA are important.
They interact directly with the codon-anticodon duplex in the A-site and form a static part of
the decoding center, defining its spatial and stereo chemical properties. By forcing
mismatching codon-anticodon duplexes into a specific, energetically unfavourable geometry,
this is thought to cause their dissociation of the mismatching tRNA from the ribosome
(Demeshkina et al, 2012; Ogle et al, 2001).

The peptidyl transferase center catalyzes the formation of a covalent peptide bond between
the peptide in the P-site and the amino acid in the A-site. No ionizing groups of the ribosome
have been found to directly take part in this reaction. The center catalyzes the reaction by
providing a network of interactions, thereby precisely orienting the two reactants, changing
the transition state and lowering the activation entropy of the reaction (Alberts et al, 2008;

Rodnina).

1.1.2.2 Initiation

All of the steps in eukaryotic translation initiation described below are depicted in Figure 8.
Eukaryotic translation initiation starts with the formation of a 43S pre-initiation complex
(PIC). The methionine bound initiator tRNA (Met-tRNA;), the anticodon of which is
complementary to the AUG start codon, forms a complex with GTP-bound initiation factor
elF2, to form a ternary complex (TC) (1). The ternary complex binds to the P-site of a 40S
ribosomal subunit, which is complexed with initiation factors elF1, e[F1A, elF3, to form the
43S PIC that also contains elF5 (2). elF1, elF1A, elF3 and elF5 all contribute to efficient
binding of the ternary complex to the 40S subunit. Binding of elF1 and eIF1A to the 40S

subunit induce an “open” conformation, which may facilitate ternary complex binding
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(Aitken & Lorsch, 2012)

Figure 8 Eukaryotic translation initiation
For further details see text
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(Aitken & Lorsch, 2012; Hinnebusch & Lorsch, 2012; Jackson et al, 2010). elFs 1, 3, 5 and
the ternary complex can also form a multifactor complex in absence of the ribosome (Asano
et al, 2000), which opens the possibility that they can be recruited to the 40S subunit as one
complex.

The 43S PIC is recruited to the 5’end of a mRNA (3b). This is facilitated by additional
initiation factors bound to the 5 end of the mRNA and the poly(A) tail bound factor Pabl
(3a). At the 5’ end of the mRNA an elF4F complex is bound. This consists of the cap-binding
factor elF4E, elF4G that acts as a scaffold and the helicase e[F4A. Stimulated by eIlF4G and
one of the homologous factors elF4B or elF4H, elF4A unwinds the often structured 5> UTR
of the mRNA. elF4G also binds the poly(A) tail associated Pabl, thereby circularizing the
mRNA, which may couple termination events to subsequent initiation on the same mRNA.
For recruitment of the 43S PIC to the mRNA elF3 appears to play an important stimulatory
role. In higher eukaryotes it may do so by interacting with elF4G. However, in yeast these
two factors do not interact directly. elF5 and elF4B may also play a role in 43S recruitment to
the mRNA. The 43S complex then starts scanning the 5’UTR (4), unwound by elF4A, until it
encounters the start codon. Other helicases, such as the essential Dedl helicase in yeast and
Dhx29 in mammals, were also found to be important for enabling scanning through structured
5> UTRs. The elF1 and elF1A induced open conformation is essential for scanning and start
codon localization.

elF1 functions as a gate keeper in start codon recognition. It is ejected from the scanning 43S
complex upon the encounter of an AUG codon, which subsequently triggers the release of the
inorganic phosphate that results from GTP hydrolysis by elF2, and closing of the PIC. This
results in a 48S complex (5). The ejection of elF1 may be the consequence of the formation of
a codon-anticodon helix between tRNA; and mRNA, which is sterically incompatible with
elF1 binding (Rabl et al, 2011). elF1 release is stimulated by elF5. After AUG recognition
and the resulting conformational changes, GDP bound elF2 and elF5 dissociate. Then the 60S
subunit joins, which is facilitated by the GTPase elF5B (6). Subunit joining causes GTP
hydrolysis by elF5B, which leads to conformational changes in the 80S complex and the
dissociation of eIF5B. Finally eIF1A is the last initiation factor to dissociate before translation
elongation can start (7) (Aitken & Lorsch, 2012; Hinnebusch & Lorsch, 2012; Jackson et al,
2010).

The ribosome then starts translating the sequence of codons downstream the start codons.

Once a ribosome has moved away from the start codon, a new ribosome can initiate. This
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results in one mRNA being translated by multiple ribosomes simultaneously. Together they

form a polysome.

1.1.2.2.1 Cap-independent translation initiation

In several conditions, such as viral infection and stress, cap-dependent initiation is down
regulated. Cap-independent pathways circumvent this down-regulation by using internal
ribosome entry sites (IRES) in the 5’UTR. These IRES were first described in viral mRNAs.
Several endogenous, eukaryotic mRNAs have since been identified to be capable of initiating
translation by both cap-dependent and IRES dependent mechanisms. Viral IRESs are grouped
into different types, depending on initiation factor requirements, the need for additional
factors (IRES transacting factors or ITAFs) and whether the ribosome is recruited directly to

the translation start site or not (Thompson, 2012). Further details for all categories are

described in Figure 9.

Type 3 Type 4

TRENGS in Microtology

Figure 9 Classificiation of internal
ribosomal entry sites

Type 1 and 2 IRESs recruit 43S PICs
using elF4G, elF4A and elF4B. Type 1
IRESs require additional ITAFs, and the
43S complex scans the mRNA from the
IRES in 3’ direction until it encounters a
start codon. Type 3 IRESs can bind to a
40S subunit without additional factors.
To bind Met-tRNAi elF3 and elF2 or a
functional analog (ligatin, eIF2A) are
needed. At type 2 and 3 IRESs 40S
subunits initiate directly at the site to
which they are recruited. Type 4 IRESs
do not require any initiation factors. 40S
subunits initiate directly at the site to
which they are recruited, on a non-AUG
codon positioned in the A-site. Therefore
the initiator Met-tRNA is not required.

(Thompson, 2012)



1.1.2.3 Elongation
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Figure 10 Translation elongation

Following canonical translation initiation, an 80S
ribosome is positioned over the start codon, with the
Met-tRNA; bound in its P-site. Now an aminoacyl-tRNA
can bind, that matches the codon present in the A-site.
The aminoacyl-tRNA is escorted by the GTP bound
elongation factor elF1a. Correct basepairing between the
codon and the anticodon is monitored during several
proofreading steps and involves GTP hydrolysis. Correct
basepairing results in accommodation of the amino acid
bound end of the tRNA in the PTC of the 60S subunit.
The PTC then catalyzes the transfer of the amino acid
(or in later cycles, the peptide) from the P-site tRNA
onto the amino acid bound to the A-site tRNA. This
results in a now one amino acid longer peptidyl-tRNA in
the A-site.

Then a translocation takes place. This starts with the
translocation of the large subunit, leaving the tRNAs in a
so-called hybrid state. Whereas the deaminoacylated
tRNA and the newly formed peptidyl tRNA are still in P
and A-site position on the small subunit, they are now in
E and P-site position in the large ribosomal subunit
respectively.  Subsequently, the small subunit
translocates as well, moving three nucleotide (one
codon) positions on the mRNA. This results in the
deaminoacylated tRNA and the peptidyl tRNA ending
up fully in E and P-site respectively. The E-site tRNA
can then leave the ribosome. Translocation is highly
stimulated by GTP hydrolysis by elongation factor eEF2.
After translocation the A-site is vacant, a new
aminoacyl-tRNA complementary to the new A-site
codon can bind. The described process is repeated for all

codons downstream the start codon, elongating the



peptide in production, until the ribosome reaches a stop codon.

1.1.2.4 Termination

Termination occurs when a stop codon enters the ribosomal A-site. Stop codon recognition by
termination factors results in the hydrolysis of the ester bond between the P-site tRNA and the
now completed polypeptide, the latter being released. There are three stop codons (UAA,
UAG and UGA). A single termination factor, eRF1, recognizes all three of them (Ito et al,
2002; Kervestin et al, 2001) and induces peptidyl-tRNA hydrolysis by the ribosomal peptidyl
transferase center. Although eRF1 can induce peptidyl-tRNA hydrolysis by itself, it acts quite
inefficiently. The GTPase eRF3 greatly stimulates eRF1 mediated peptide release, in a GTP
dependent manner (Alkalaeva et al, 2006).

eRF1 is composed of three domains and structurally resembles a tRNA molecule (Song et al,
2000). It interacts with stop codons in the ribosomal A-site through its N-terminal domain.
Various biochemical and in vivo studies together with bioinformatical analysis (e.g. Chavatte
et al, 2002; Frolova et al, 2002; Liang et al, 2005; Seit-Nebi et al, 2002) have implicated
several (groups of) conserved residues, among which the NIKS motif, in stop codon
recognition. The central domain contains a highly conserved GGQ motif that is essential for
triggering peptidyl-tRNA hydrolysis (Frolova et al, 1999; Song et al, 2000). Based on
homologous bacterial processes, the GGQ motif is thought to locate in the peptidyl transferase
center. This positioning causes rRNA rearrangements, making the ester bond of the peptidyl-
tRNA accessible for nucleophylic attack by a water molecule (Jin et al, 2010).

eRF3 belongs to the same family of GTPase as eEF1a (Atkinson et al, 2008). Members of this
family are highly similar with regard to their C-terminal domains (GTPase or G domain,
domains II and III) , but differ in their N-terminal length and amino acid sequence (Inagaki &
Ford Doolittle, 2000). eRF3 by itself has weak GTPase activity, which is greatly stimulated
by the combined presence of eRF1 and the ribosome (Frolova et al, 1996).

eRF1 and eRF3 stably interact mainly through their C-terminal domains (Cheng et al, 2009;
Ebihara & Nakamura, 1999; Ito et al, 1998; Merkulova et al, 1999). Structural and
biochemical data suggest additional interactions between the central domain of eRF1 and
domains G, II and III of eRF3 (Cheng et al, 2009; Kononenko et al, 2008). Especially the
interaction of eRF1 with the G domain of eRF3 may explain how eRF1 stimulates GTP
binding (Hauryliuk et al, 2006; Mitkevich et al, 2006; Pisareva et al, 2006) and hydrolysis by
eRF3. In yeast GTP binding is required for stable eRF1-eRF3 interaction (Kobayashi et al,
2004).
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Translation termination and subsequent recycling of the post-termination complex are tightly
coupled. The key factor in ribosome recycling, the ATPase Rlil (see next paragraph), was
found to stimulate eRF1-eRF3 mediated peptide release four-fold, in a manner independent of
its ATPase activity (Shoemaker & Green, 2011).

The information above in combination with additional findings have led to a model of
eukaryotic translation termination, which is depicted in Figure 11. It starts with the eRF1-
eRF3-GTP complex binding the stop-codon containing A-site of a ribosome (1). In its GTP
bound form the complex adopts a conformation in which the GGQ motif of eRF1 is far away
from the peptidyl transferase center (Taylor et al, 2012). Upon stop codon recognition by
eRF1 the eRF3 bound GTP will be hydrolyzed (2). In its GDP bound form eRF3 will
dissociate from the ribosome (3). ATP bound Rlil will then bind at a site overlapping the one
recognized by eRF3 (Becker et al, 2012). As a consequence of the last three processes, eRF1
will accommodate, positioning its GGQ motif in the peptidyl transferase center (4). This leads
to peptidyl-tRNA hydrolysis and the peptide being released from the ribosome (5). Rlil
binding may stimulate peptide release by accelerating eRF1 accommodation (Shoemaker &

Green, 2011), perhaps by facilitating eRF3 dissociation.

ey iy
WW =

Factor binding Factor dissociation
m

F
-2- — @ e
A
» .
Accommodation Peptide release Ribosoime recycling
i ] 18

(Shoemaker & Green, 2011)

Figure 11 Eukaryotic translation termination and recycling.
Steps 1 to 6 are discussed in the text.
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1.1.2.5 Recycling

After peptide release, a post-termination complex containing a ribosome, mRNA, P-site
tRNA, eRF1 and probably Rlil needs to be dissociated to make its components available for
new rounds of translation. Biochemical experiments have shown that Rlil, also known as
ABCE]1 in some organisms, mediates recycling of human, yeast and archaeal ribosomal
subunits after translation termination (Barthelme et al, 2011; Pisarev et al, 2010; Shoemaker
& Green, 2011) (step 6 in Figure 11). For convenience, this factor will from here on be
referred to as Rlil.

Susceptibility of post-termination complexes for Rlil induced ribosome recycling does not
depend on peptide release, but appears to require the presence of eRF1 (or a paralog, see
paragraph 1.3.3) in the ribosomal A-site. Following puromycin caused peptide release the
human RIlil homolog cannot induce ribosome recycling. However, in presence of a
catalytically inactive eRF1 mutant Rlil mediated ribosomal subunit dissociation does occur
(Pisarev et al, 2010). Consistently, archaeal Rlil recycles post-termination complexes
cooperatively with the archaeal eRF1 ortholog aRF1 (Barthelme et al, 2011). The affinity of
Rlil for the post-termination complex increases greatly in presence of a non-hydrolysable
ATP analog, indicating that it binds in complex with an ATP molecule (Pisarev et al, 2010).
RlIil is an ABC (ATPase binding cassette) family ATPase, that is highly conserved in
eukaryotes and archaea (Figure 12). Like in other members of its family, two nucleotide
binding domains in a head to tail orientation create two composite nucleotide binding sites.
Rlil also contains a highly conserved iron-sulfur cluster domain containing two [4Fe-4S]*

clusters (Barthelme et al, 2007; Karcher et al, 2008).

II.:‘-\I Figure 12 Structure of Rlil

/ ¢ FeS Structural model of  the Pyrococcus abyssi
ortholog of Rlil, ABCEL. The iron-sulfur domain,
depicted in green, contains two [4Fe-4S]2+ clusters
(Fe in red, S in yellow). The two nucleotide
binding domains NBDI1 (yellow) and NBD2
(orange) are oriented in a head-to-tail orientation,
separated by a hinge domain (light blue). The
NBDs together form two composite nucleotide
binding sites, which here contain ADP molecules.

(Karcher et al, 2008)



The nucleotide binding domain of Rlil is essential for ribosome recycling (Barthelme et al,
2011) and in human and yeast in vitro systems ATP hydrolysis is needed for ribosome
dissociation (Pisarev et al, 2010; Shoemaker & Green, 2011). Although the intrinsic ATPase
activity of Rlil is quite low, it is strongly enhanced by eRF1 bound post-termination
complexes (Pisarev et al, 2010), indicating that ATP hydrolysis is induced in the ribosomal
context.

These findings led to a model for human and yeast Rlil, in which ATP hydrolysis causes
conformational changes that lead to ribosomal subunit dissociation (Figure 13). However,
Rlil mediated ribosome recycling in archaea might be mechanistically different. Here ATP
hydrolysis is not required for Rlil and aRF1 induced splitting of vacant 70S ribosomes.
Instead Rlil dissociation from the ribosome requires ATP hydrolysis. A model has been
proposed in which Rlil binds to post-termination complexes, then acquires ATP which
induces a change in conformation resulting in ribosome splitting. This is followed by ATP
hydrolysis leading to dissociation of Rlil and aRF1 (Barthelme et al, 2011). However, the
different observations in eukaryotic and archaeal systems might be explained by a difference
in experimental set up (the use of post-termination complexes in eukaryotic systems versus

vacant 70S ribosomes in archaeal systems).
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Figure 13 Eukaryotic ribosome recycling
Rlil binds to an eRF1 bound post-termination complex. ATP hydrolysis induces a conformational change that
leads to dissociation of the ribosomal subunits.

The iron-sulfur cluster domain of Rlil is also needed for recycling and its absence impedes
binding of the archaeal Rlil homolog to small ribosomal subunits (Barthelme et al, 2011).
Together with the presence of a conserved positively charged patch on its surface,
hypothetically interacting with negatively charged rRNA (Karcher et al, 2008), this suggests a

role in ribosome binding.



Structural models of yeast and archaeal Rlil in complex with a ribosome and eRF1 paralog
Dom34 (Becker et al, 2012, see paragraph 1.3.3.2) have given additional insight into the
mechanism of ribosome dissociation. Further mechanistical details about how ATP hydrolysis
by Rlil may cause ribosome dissociation will be discussed in paragraph 1.3.3.2.

After human Rlil induced ribosomal subunit dissociation, mRNA and P-site tRNA remain
bound to the 40S subunit. Biochemical experiment using human factors have shown that their
dissociation is mediated by initiation factors elF1, 1A, 3 and the latter’s loosely associated
subunit elF3j (Pisarev et al, 2010). Whereas tRNA dissociation depends mainly on elF1 and
1A, in agreement with their binding close to the P-site (Lomakin et al, 2003; Rabl et al, 2011),
mRNA dissociation requires all factors (Pisarev et al, 2010). The requirement of these factors
binding to a 40S subunit during translation initiation suggests that they may directly connect
ribosome recycling with a new round of translation (Aitken & Lorsch, 2012; Jackson et al,

2010; Nurenberg & Tampe, 2013).

1.1.3 Messenger RNA degradation
Ultimately all mRNAs will be degraded. Cytoplasmic mRNA degradation in eukaryotes

serves several functions. First, “regular” mRNA turnover determines, together with the rate of
production, the level of a certain mRNA in the cell. Continuous mRNA degradation allows
changing rates of transcription to regulate cellular mRNA concentrations. Second, mRNA
turnover itself can be regulated. For example, the binding of certain transacting protein and/or
RNA factors to regulatory elements in the mRNA can induce rapid degradation of a mRNA in
conditions in which this is necessary. Finally, RNA quality control pathways detect and
degrade faulty RNAs that may result from aberrant RNA production of processing.

RNA decay mechanisms have been extensively studied in yeast. Considering the topic of my
PhD work and the model organism used, this paragraph will introduce the major cytoplasmic
degradation pathways with an emphasis on yeast. All data referred to are obtained with yeast
systems, unless mentioned otherwise. In large part, cytoplasmic RNA quality control
pathways make use of these pathways. The quality control pathways I studied during my PhD
will be introduced in further detail in paragraph 1.4.
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1.1.3.1 The major cytoplasmic RNA decay pathways
In yeast cytoplasmic RNA decay occurs via two general pathways: one that degrades mRNAs
in 5’ to 3° direction and one that operates in 3’ to 5° direction (Figure 14). Both pathways start

with a deadenylation step, which is often rate limiting.

@— AUG e— 7 A —— AAAAAAAA
¢ deadenylation by
@ AUG e— A A8 Pan2/Pan3 and Ccr4-Not
Decapping by Dcp1/Dcp2 /\
@— AUG — A — A .—AUG_AAU—A&
¢ exosome
@— Al — A A ——— A
xXrn1
5"to 3'degradation 3'to 5’ degradation

Figure 14 The major cytoplasmic mRNA decay pathways in yeast

1.1.3.1.1 Deadenylation

Two deadenylase complexes mediate this step: the Ccr4-Not complex (Daugeron et al, 2001;
Tucker et al, 2001) and the Pan2/Pan3 complex (Boeck et al, 1996). In both mammalian and
yeast cells, deadenylation appears to be biphasic. First the poly(A) tail is shortened by the
Pan2/Pan3 complex. This can be followed by a more rapid Ccr4-Not mediated deadenylation
step (Brown & Sachs, 1998; Yamashita et al, 2005). Deadenylation in general as well as
deadenylation of specific mRNAs is controlled by several factors. An example is the poly(A)
binding protein Pabl, which stimulates Pan2/Pan3 activity and inhibits Ccr4-Not activity in
vitro (Brown & Sachs, 1998; Tucker et al, 2002). Consistent with Pabl affecting
deadenylation, a mutation in its C-terminus was found to inhibit mRNA decay in vivo,
probably by interfering with Pabl release from the poly(A) tail to be degraded (Simon &
Seraphin, 2007). An example of factors that regulate deadenylation of specific mRNAs is the
proteins of the Puf family, which bind to elements in the 3’UTR of mRNA subsets (Hook et
al, 2007; Olivas & Parker, 2000).

Importantly, in several stress conditions deadenylation of certain mRNAs is inhibited, due to
inhibition of both Pan2/Pan3 and Ccr4-Not action (Hilgers et al, 2006). This may promote the
preservation of these mRNAs during stress, when there is a general shut down of translation

and many mRNAs are degraded (Arribere et al, 2011; see paragraph 1.2).
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1.1.3.1.2 Decapping and 5’ to 3’ decay

The 5’ to 3’ degradation pathway is the predominant pathway in general mRNA turnover.
Following deadenylation, the 5’ cap structure is removed. This is mediated by a complex
formed by the catalytic subunit Dcp2 (van Dijk et al, 2002) and Dcpl, that stimulates Dcp2
activity by promoting an active conformation (She et al, 2008). The resulting 5’-
monophosporylated mRNA is a substrate for rapid and processive degradation by the
exonuclease Xrnl (Hsu & Stevens, 1993). A structural study indicates that Xrnl can unwind
structured RNA, which explains the enzymes high processivity without the requirement of a
helicase (Jinek et al, 2011).

Dcpl/Dep2 needs additional factors for maximum activity. These function to enhance
decapping through different mechanisms. While some factors act by directly stimulating
decapping, others appear to stimulate decapping by inhibiting translation. Several
observations indicate that decapping is in competition with translation initiation. This may
seem easy to understand from the fact that initiation factor elF4E, required for translation
initiation, is bound to the cap and may interfere with accessibility for Dcpl/Dcp2. Indeed the
elFAE cap-binding protein inhibits decapping in vitro (Schwartz & Parker, 2000).
Consistently, mutating initiation factors increases the rate of decapping (Schwartz & Parker,
1999). The factors Dhhl and Patl are examples of enhancers of decapping that act through
repressing translation (Coller & Parker, 2005). The exact mechanism by which this repression
of translation leads to decapping is not known. Other factors enhance decapping by directly
stimulation Dcpl/Dcp2. Patl also stimulates decapping by this mechanism. Similarly to
another factor, Edc3, it acts by directly binding to Dcp2 (Nissan et al, 2010). Patl acts in a
complex with a ring of seven Sm-like proteins, Lsml-7, typically know to bind RNA
(Salgado-Garrido et al, 1999). Edcl and Edc2 stimulate decapping by binding to Dcpl, using
a proline rich motif (Borja et al, 2011).

1.1.3.1.3 3’ to 5’ decay by the exosome

Following deadenylation a mRNA can be further digested by a large exonuclease complex
that degrades in 3’ to 5’ direction: the exosome (Anderson & Parker, 1998). The exosome has
multiple functions. Not only does it degrade mRNAs in the cytoplasm, it is also present in the
nucleus. Here it functions in the maturation of several types of stable RNAs, including
rRNAs, and in the degradation of aberrantly processed RNAs and various types of unstable,

non-coding RNAs. The composition of the exosome as well as the cofactors it uses to be
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recruited to its substrates differs depending on subcellular localization and type of substrate
(Lykke-Andersen et al, 2011).

The exosome is composed of a catalytically inactive core, composed of a ring formed by six
subunits with similarity to bacterial RNase PH, flanked on the top by three RNA binding
domain containing proteins (Figure 15). The inactive core is associated with one or two
catalytically active subunits. In yeast the cytoplasmic exosome is bound to a single catalytic
subunit: Dis3 (Dziembowski et al, 2007; Liu et al, 2006). Dis3 possesses both exo- and
endonucleolytic activity, the first located in its RNB domain, the latter in its PIN domain
(Dziembowski et al, 2007; Lebreton et al, 2008). Regular mRNA turnover depends mainly on
Dis3 exonuclease activity. However, for the degradation of some aberrant RNAs known to be
substrates for RNA quality control either exo- or endonuclease activity is sufficient (Schaeffer
& van Hoof, 2011; see paragraph 1.4.3.2). Although catalytically inactive, the core, which
forms a channel, is important for RNA degradation. Probably the RNA substrate is threaded
through the channel before it reaches the catalytic subunit (Bonneau et al, 2009). Occlusion of
the channel impairs exo- and endonucleolytic function in vitro and in vivo (Drazkowska et al,

2013; Wasmuth & Lima, 2012).
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Figure 15 Inactive core of the exosome from S. cerevisiae.
On the left : top view, showing the three RNA binding domain containing proteins. On the right : bottom view,
showing the six proteins similar to bacterial RNase PH.

Cytoplasmic mRNA decay by the exosome also requires the GTPase Ski7 and the Ski
complex (Anderson & Parker, 1998; van Hoof et al, 2000). The Ski complex (Figure 16)
consists of Ski2, a helicase, Ski3 and two copies of Ski8 (Brown et al, 2000). Ski7 belongs to
the same family of GTPases as elFla, the C-terminal domain being homologous to other
GTPases in this family. The N-terminal domain of Ski7, that lacks sequence similarity within

this family, is sufficient for general RNA turnover. This domain interacts with both the



exosome and the Ski complex (Figure 16) and breaking these interactions inhibits RNA decay
(Araki et al, 2001). Both the N and the C-terminal domain of Ski7 play a role in the
degradation of certain RNAs that lack a stop codon and are substrates for RNA quality control
(van Hoof et al, 2002).

Cytoplasmic
3.5 decay:
mRNA turnover,
NMD, NSD, AMD

(Lebreton & Seraphin, 2008)

Figure 16 Cytoplasmic mRNA degradation by the exosome requires Ski7 and the Ski complex

1.1.3.1.4 P-bodies

In yeast and mammalian cells, factors involved in decapping and downstream 5’ to 3> mRNA
degradation co-localize in cytoplasmic granules, called processing bodies or P-bodies. These
include Ccr4-Not, Dcpl-Dep2, Patl, Lsml-7, Edc3, Dhhl and the exonuclease Xrnl. P-
bodies were found to be sites of active mRNA degradation (Cougot et al, 2004; Sheth &
Parker, 2003; van Dijk et al, 2002). Ribosomal proteins and most translational factors are
absent from P-bodies in yeast (Teixeira et al, 2005). It may therefore seem contradictory that
for some mRNAs polyadenylation and decapping were found to occur on polysomal mRNA
(Hu et al, 2009). However, most factors found in P-bodies are also found diffusely distributed
in the cytoplasm (Eulalio et al, 2007). Some RNA degradation may therefore initiate or occur
entirely outside P-bodies.

Apart from mRNA decay factors, P-bodies also contain factors involved in translational
repression, RNA quality control and, in metazoan cells, factors involved in miRNA mediated
silencing, with silenced mRNAs accumulating in P-bodies (Eulalio et al, 2007). Importantly,
P-bodies increase in number and size during stress (Brengues et al, 2005; Kedersha et al,

2005; Teixeira et al, 2005). This will be discussed further in paragraph 1.2.3.



1.1.3.2 Cytoplasmic RNA quality control

Aberrant mRNAs can be be the result of errors in mRNA production and processing. When
translated they may produce defective, potentially toxic proteins. Cells have mechanisms to
detect and degrade these faulty mRNAs in pathways collectively referred to as RNA quality
control. In several cytoplasmic RNA quality control pathways aberrant mRNAs are detected
during translation. mRNAs containing premature stop codons are detected and degraded in
the Nonsense mediated decay (NMD) pathway, mRNAs without stop codon in Non-stop
decay (NSD) and mRNAs that contain sites causing ribosomes to stall during elongation in
No-go decay (NGD). Related to the latter is a pathway that targets defective rRNAs causing
inefficient translation: Non-functional TRNA decay acting on 18S rRNA substrates (18S
NRD).

RNA degradation in NMD requires the formation of a surveillance complex, which forms as a
consequence of premature termination. This complex includes the helicase Upfl as well as
Upf2 and Upf3. Depending on the organism, a combination of additional factors participates
in premature stop codon recognition and downstream events. In multicellular organisms
proteins of the SMG family are required, whereas in mammalian cells the exon junction
complex plays a role in NMD (Kervestin & Jacobson, 2012). The latter complex is deposited
near many but not all exon-exon junctions during splicing (Le Hir et al, 2000; Sauliere et al,
2010; Sauliere et al, 2012) and is displaced by ribosomes during translation. The presence of
an exon junction complex 3’ of a terminating ribosome plays a role in mammalian NMD
(Kervestin & Jacobson, 2012). In yeast NMD substrates are degraded by the major
cytoplasmic degradation pathways. In Drosophila melanogaster, degradation is initiated by an
endonucleolytic cleavage. In mammalian cells NMD substrates can be degraded by the major
degradation pathways as well as by the endonucleolytic cleavage mechanism (Nicholson &
Miihlemann, 2010). NMD endonucleolytic cleavage was found to be mediated by the SMG
factor SMG6 (Eberle et al, 2009; Huntzinger et al, 2008).

The other RNA quality control pathways will be introduced in detail in paragraph 1.4.

1.2 TRANSLATION INHIBITION IN STRESS CONDITIONS

Cells encounter many stress conditions that require changes in gene expression to adapt to the
change in environment. Exposure to stress induces a variety of adaptive responses, both at the

transcriptional and the post-transcriptional level. During my PhD work I studied a role of the
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Dom34-Hbs1 complex in translation initation, in cells recovering from stress. This paragraph
will therefore focus on stress related changes at the level of translation.

During many types of stress a global shut down of translation occurs. As translation is a
energy consuming process, this has the advantage that the cells save vastly on their energy
expenditure. In addition, it causes a reduction in the levels of proteins that might interfere
with the stress response. At the same time a subset of genes, required for cell survival during

stress, is selectively translated (Holcik & Sonenberg, 2005).

1.2.1 Mechanisms of general translation inhibition

A global shutdown of translation during stress is mostly mediated by a general inhibition of
translation initiation. The mechanistic details of this inhibition differ per type of stress. Many
stress induced translation inhibiting mechanisms involve altered concentrations or activities of
translation initiation factors. Two important mechanisms will be described below. This is by
no means an exhaustive overview of all mechanism of stress related translation inhibition

described in literature (see also Figure 17).

1.2.1.1 The TOR pathway and 4E-BPs

The target of rapamycin (TOR) pathway is the major nutrient sensing pathway in cells. TOR
interacts with other factors to form two distinct complexes. These complexes integrate
information coming from at least five major signaling pathways that indicate energy status,
stress, concentrations of oxygen, amino acids and growth factors. According to these signals
the TOR pathway regulates major cellular processes, including translation. Growth permitting
conditions (nutrient availability, absence of stress etc.) stimulate translation via this pathway.
In mammalian cells the major effector proteins of the TOR pathway that affect translation are
the 4E binding protein 4E-BP1, which prevents elF4E from interacting with eIlF4G, and the
S6 kinases 1 and 2 (S6K1 and 2) (Ma & Blenis, 2009).

Upon stress, inactivation of the TOR pathway results in hypophosphorylation of 4E-BP1,
which then tightly binds and sequesters elF4E, thereby preventing the recruitment of other
initiation factors and the 43S PIC to the caps of mRNAs. Inhibition of the TOR pathways also
results in dephosphorylation and inactivation of S6K1. This results in reduced activity of the
RNA helicase elF4A and also affects elF3 function. Apart from direct effects on translation
initiation factors, S6Ks also control ribosome biogenesis (Ma & Blenis, 2009). An example of

4E-BP mediated translation inhibition in stress is the response to heat shock in mammalian
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cells (Vries et al, 1997). The 4E-BP Eapl may also play a role in heat shock associated
translation inhibition in yeast (Meier et al, 2006). Eapl also plays a role in cadmium and
diamide induced oxidative stress (Mascarenhas et al, 2008). In mammalian cells 4E-BP1was
mediates translation inhibition in response to DNA damage induced by ionizing radation

(Braunstein et al, 2009) or hypoxia (Connolly et al, 2006).

1.2.1.2 elF2a phosphorylation

Many types of stress induce phosphorylation of the o subunit of initiation factor elF2 at serine
51. elF2, in its GTP bound form binds methionyl initiator tRNA to form a ternary complex,
required for translation initiation. During initiation the eIF2 bound GTP is hydrolyzed (see
paragraph 1.1.2.2). The guanine-nucleotide exchange factor eIF2B is responsible for replacing
the resulting GDP with GTP, thereby making elF2 competent for tRNA binding and
participation in translation initiation again. Phosphorylated elF2 acts as an inhibitor of elF2B,
which causes the levels of GTP bound elF2 and ternary complex to drop, resulting in a
reduced rate of translation initiation (Safer, 1983).

Several kinases have been described to phosphorylate elF2a. Amino acid starvation stress
causes an increase in the level of uncharched tRNAs. In yeast and mammalian cells this
causes activation of the kinase Gen2, which targets elF2a (Dever et al, 1992; Harding et al,
2000). Gen2 dependent phosphorylation of elF2a also mediates translation inhibition in yeast
exposed to oxidative stress (Mascarenhas et al, 2008; Shenton et al, 2006) and high NaCl
concentrations (Goossens et al, 2001) and in UV irradiated mammalian cells (Deng et al,
2002). Translation inhibition upon membrane stress in mammalian cells and yeast (De Filippi
et al, 2007) and upon cold shock in mammalian cells (Underhill et al, 2006) also depends on
elF2a phosphorylation. Other kinases that induce translation inhibition by phosphorylating
elF2a include PERK, HRI and PKR. They play a role in translation inhibition due to elevated
levels of reactive oxygen species in hypoxia (Koritzinsky et al, 2007; Liu et al, 2008), hemin

depletion and virus infection respectively (Hinnebusch, 2005), in mammalian cells.
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Figure 17 Mechanisms of inhibition of translation initiation during stress in S. cerevisiae.

1.2.1.3 Translation during stress

Apart from a global repression of translation, the translation of stress-specific subsets of
mRNAs is specifically upregulated. Therefore these mRNAs should evade the generally
targeting inhibitory mechanisms described above. One way to escape translation inhibitory
mechanisms that target cap-dependent translation, is the use of cap-independent mechanisms,
such as IRES. It was shown that in yeast starved of a carbon source, translation of mRNAs
containing IRESs is upregulated (Paz et al, 1999). IRES dependent translation of several
genes is required for invasive growth, important for yeast survival in nutrient deplete
conditions, during starvation (Gilbert et al, 2007). It has been estimated that up to 10% of
cellular mRNAs contain IRESs (Mitchell et al, 2005).

A more specific, well described example of upregulated translation during stress concerns the
yeast mRNA GCN4 (Figure 18). The resulting protein promotes the expression of stress-
related genes. The GCN4 mRNA contains four upstream ORFs (uORFs). The level of ternary
complex regulates whether a uORF or the actual GCN4 OREF is translated. In mammalian
cells translation of the stress response gene ATF4 is regulated in a similar way (Harding et al,

2000).
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Figure 18 Gcen4 translation during stress

The GCN4 mRNA contains 4 upstream ORFs (uORFs). After translating uORF1, the context of termination is
such that a proportion of 40S subunits stays associated to the mRNA, resumes scanning and reinitiates at a
downstream ORF. When ternary complex (TC) is available, it is likely to bind the 40S subunit before it reaches
the AUG of uORF2, 3 or 4. This results in translation of the uORFs, followed by termination and dissociation of
the ribosome. During stress conditions in which TC levels are low, e.g. amino acid starvation, a TC will more
frequently bind to the scanning 40S subunit only after it has passed the other uORFs but before reaching the
AUG of the actual GCN4 ORF. This results in translation of the GCN4 ORF.

1.2.2 Translation inhibition in glucose depletion

Part of the work reported in this thesis describes a role of the factors Dom34 and Hbsl in
restart of translation after glucose starvation stress. Mechanisms controlling the translational
response to this stress are described in more detail in this paragraph.

Glucose depletion causes a strong, rapid inhibition of translation (within 10 minutes), that is
readily reversed upon glucose addition in yeast (Ashe et al, 2000). This rapid inhibition is not
a general reaction to depletion of a carbon source, as translation inhibition does not occur or
occurs after a longer delay upon starvation of cells grown on several other carbon sources
(sucrose, raffinose, maltose, galactose) (Ashe et al, 2000). After ~60 minutes of starvation,
global translation partly recovers. This probably reflects the translation of genes induced by
the glucose starvation stress response, which are required for surviving the glucose depleted

condition (Arribere et al, 2011).
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The mechanism that causes translation inhibition in glucose depleted cells is not completely
understood. In yeast translation inhibition does not depend on phosphorylation of elF2a. In
presence of a non-phosphorylatable el[F2a mutant inhibition of translation still occurs, the
level of phosphorylated elF2a does not increase and GCN4 translation does not increase
(Ashe et al, 2000; Castelli et al). Translation inhibition does not depend on 4E-BPs Eapl and
Caf20 either (Castelli et al). It was observed in S. cerevisiae that during glucose depletion
initiation factor elF4A disappears from ribosomal fractions. At the same time the level of
interaction between elF3 and elF4G increases. This suggests that due to a problem in 5’UTR
scanning because of the absence of the helicase elF4A in the PIC, initiation is blocked and
43S complexes accumulate (Castelli et al).

Glucose depleted yeast is completely or partially resistant to translation inhibition when it
lacks factors involved in decapping and 5’ to 3° mRNA degradation, such as Dcpl, Dcp2, or
Lsml and Patl. These mutant strains are also resistant to translation inhibition caused by
other stresses, including amino acid starvation, addition of lithium, rapamycin (inhibitor of
the TOR pathway) or the fusel alcohol butanol (Holmes et al, 2004). This suggests that
translation inhibition may be affected by the total level of mRNAs available for translation.
Interestingly it was found by genome wide analysis of mRNA abundance that upon glucose
starvation in yeast changes in mRNA abundance in polysomes mirror changes in the total
level of that mRNA, without any large changes in polysome occupancy (the ratio of the level
of a particular mRNA in polysomal fractions and of its total level) (Arribere et al, 2011).
Based on the combination of these results it has been suggested that the rapid inhibition of
translation upon glucose depletion could be caused by rapid degradation of mRNAs (Arribere
etal, 2011).

An alternative explanation suggested that interfering with mRNA degradation could
overcome translation inhibition due to increased mRNA levels. The increased amount of
mRNAs overwhelms the translation control mechanism acting by mass action (Holmes et al,
2004). Supporting this hypothesis it was found that accumulation of other factors needed for
translation initiation (increased levels of free 40S accumulating due to defects in 60S
biogenesis, elF4G overexpression) also suppress glucose depletion induced translation
inhibition (Holmes et al, 2004). However, neither one of the aforementioned hypotheses can
explain why also strains lacking Xrnl, in which decapped and therefore translationally
uncompetent mRNAs accumulate, are resistant to translation inhibition and why strains
defective in deadenylation (ccr4A, pan2Apan3A), in which translation competent mRNAs are

expected to accumulate, are not resistant to translation inhibition (Holmes et al, 2004).
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1.2.3 P-bodies and stress granules

What happens to the large amount of mRNAs that is no longer translated when translation is
inhibited during stress? Several reports indicate that they localize to specific granules that
assemble in the cytoplasm upon stress, where they may be degraded or stored.

In yeast and mammalian cells several stress conditions cause an increase in size and number
of P-bodies (Brengues et al, 2005; Kedersha et al, 2005; Teixeira et al, 2005). It is thought
that during translation inhibition mRNAs can accumulate in P-bodies. This is supported by
the finding that reporter mRNAs localize to P-bodies upon glucose depletion (Brengues et al,
2005). During stress the mRNAs in P-bodies may be degraded or stored in a translationally
repressed condition, to reenter the translation cycle upon stress relief. While the first idea is
supported by the observation that the levels of many mRNAs decrease upon glucose
starvation stress (Arribere et al, 2011),the latter is supported by the finding that upon restoring
non-stressed conditions after glucose starvation reporter mRNAs disappear from P-bodies, but
only if translation initiation can occur (Brengues et al, 2005).

In mammalian cells a second type of cytoplasmic granules accumulates as a consequence of
defective or inhibited translation initiation. These granules are named stress granules. They
contain non-translating mRNAs as well as initiation factors elF4E, elF4G, elF4A, elF3, elF2,
40S ribosomal subunits and Pabl. Stress granules are therefore thought to be places where
mRNAs associated with stalled 48S complexes, which may accumulate as a consequence of
translation inhibition, initially localize during stress (Anderson & Kedersha, 2008). Stress
granules and P bodies have different dynamics, but they share several components and P
bodies can transiently dock on stress granules, suggesting movement of factors and mRNAs
between the two types of granules. Moreover, overexpression of factors that promote mRNA
decay induce fusion of stress granules and P bodies (Kedersha et al, 2005). The highly
dynamic nature and the composition of stress granules together with stress granule and P body
dynamics have led to the idea that in stress granules a process of mRNA triage takes place
(Figure 19). Some mRNAs will bind to factors promoting degradation and move to P bodies
for decay. Others will associate to stabilizing factors and be exported or stored (in or outside
stress granules or P bodies). Alternatively mRNAs can reenter the translation cycle (Anderson
& Kedersha, 2008). In yeast heat shock causes the appearance of granules very similar in

composition to mammalian stress granules (Grousl et al, 2009).
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(Kedersha et al, 2005)

Figure 19 Model of the relationship between stress granules and P-bodies.
Stress granules are thought to be sites of mRNA triage. While some are stabilized and stored, others are targeted
for degradation and directed to P-bodies. A third category reenters the translation cycle.

In glucose starved yeast a third type of granules form, called EGP bodies. They differ in
composition from stress granules: whereas initiation factors elF4E and elF4G, Pabl and
reporter mRNAs accumulate in EGP bodies like in stress granules, e[F4Al and elF3b do not
(Hoyle et al, 2007). Therefore EGP bodies may contain circularized mRNAs but cannot be
viewed as places where mRNAs associated with stalled 48S complexes localize upon stress.
Whereas this may reflect a difference in translation inhibiting mechanism, the EGP bodies
also differ from stress granules in their dynamics. EGP granules only form upon prolonged
glucose starvation (20-25 minutes), long after the appearance of P-bodies (Hoyle et al, 2007)
and mutations inhibiting P-body formation also inhibit EGP body assembly (Buchan et al,
2008). This chronology and dependence suggests that mRNAs first localize to P-bodies, to
then move to EGP bodies which might serve as sites of long term storage of mRNAs during
glucose depletion stress (Lui et al, 2010). Genome wide data indicate that the population of
mRNAs stored during glucose starvation consists mainly of those encoding ribosomal
proteins. These mRNAs reenter the translation cycle when after a brief period of starvation

glucose is added (Arribere et al, 2011).
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1.2.4 Ribosome hibernation

In many translation inhibiting stress conditions ribosomes that can no longer initiate new
rounds of translation accumulate as inactive, “hibernating” ribosomes. Storing ribosomes in
an inactive state may protect them from damage and ensures that upon stress relief translation
can quickly recover without the energy and time consuming need for extensive ribosome
biogenesis. For example in yeast, inactive ribosomes that accumulate during glucose
starvation stress rapidly redistribute into polysomes upon glucose addition (Ashe et al, 2000).
In bacteria hibernating ribosomes have been well studied. In Eschericia coli stress induced
factors bind to ribosomes in a translation inhibiting conformation. One of these factors, RMF,
has been found to be induced in at least ten different stress conditions (Moen et al, 2009).
Binding of RMF to inactive ribosomses causes 70S ribosomes to dimerize into 90S
complexes. The binding of a second factor, HPF, further stabilizes the dimer, and converts it
into a 100S particle (Ueta et al, 2008). Alternatively, a factor, Yfil, may bind and stabilize the
formation of inactive, monomeric 70S ribosomes (Agafonov et al, 1999). Structural studies
have shown that binding of RMF interferes with binding of the small ribosomal subunit to a
mRNA, whereas association of ribosomes with HPF or Yfil is incompatible with mRNA and
tRNA binding (Polikanov et al, 2012). This provides an explanation for the translation
inhibitory effect of these factors.

In eukaryotic cells inactive ribosomes also accumulate during stress. Although in rat cells
inactive ribosome dimers have been observed in amino acid starved conditions, these have not
been observed in any other eukaryotic organism so far (Krokowski et al, 2011). In many cell
types 80S ribosomes accumulate during a wide variety of stress conditions. This was shown
for example to occur in mammalian cells upon serum-depletion (Nielsen et al, 1981), in yeast
and mammalian cells after amino acid shortage (Krokowski et al, 2011; Tzamarias et al,
1989) and in yeast during osmotic stress (Uesono & Toh, 2002), lithium induced stress
(Montero-Lomeli et al, 2002), and after exposure to fusel alcohols (Ashe et al, 2001). The 80S
ribosomes that accumulate in S. cerevisiae during glucose starvation stress (Ashe et al, 2000)
contain the protein Stml in a conformation that is incompatible with translation and that
stabilizes the inactive 80S monomers (Ben-Shem et al, 2011). This factor and its role in

translation inhibiting stress will be discussed in further detail in the paragraphs below.
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1.2.5 Stml

In S. cerevisiae the Stm1 protein was originally identified as a factor binding specific DNA
structural elements: G4 quadruplexes (Frantz & Gilbert, 1995) and purine motif triple helical
DNA (Nelson et al, 2000). It was implicated in several processes including promotion of
apoptosis-like cell death (Kazemzadeh et al, 2012; Ligr et al, 2001) and telomere replication
(Hayashi & Murakami, 2002).

1.2.5.1 Stml and translation

Although, in agreement with a function in telomere replication, a fraction of Stm1 localizes to
the nucleus, a much larger amount is found in the cytoplasm (Van Dyke et al, 2004). Here it
binds to ribosomes (Inada et al, 2002; Van Dyke et al, 2004). Whereas Stm1 was found in
fractions of the cell lysate, obtained from growing yeast, that contain 80S ribosomes or
polysomes, none could be detected in fractions not containing any ribosomes (Van Dyke et al,
2004). In high speed sedimentation complexes Stml is found to be present in similar
quantities as several ribosomal proteins (Van Dyke et al, 2006). Together these findings
suggest that a large majority of Stml is bound to ribosomes, and that nearly all ribosomes,
including the translating ones, are bound to Stm1.

Several effects of deletion or overexpression of Stml have been reported. In S. cerevisiae
deletion of STM1I causes a reduction in overall protein synthesis. Overexpression of Stml
causes a reduction of protein synthesis as well, but only in the first hour of overexpression,
accompanied by an increase in polysome/80S ratio (Van Dyke et al, 2009). The latter suggests
that Stm1 negatively affects elongation, termination or recycling. It should be noted that these
overexpression experiments were performed in yeast in which protein degradation by the
proteasome was inhibited. Stm1 overexpression caused the accumulation of an ubiquitylated
form, whereas the level of unubiquitylated Stml was essentially unaffected (Van Dyke et al,
2009). This suggests that the protein level of Stm1 is tightly controlled and that the effects
observed in these overexpression conditions might be due to the accumulation of
ubiquitylated Stml. On the other hand, in support of the effects being due to Stml
overdosage, in yeast lysate and rabbit reticulocyte lysate addition of Stml also inhibits
translation in a manner independent of the presence of a cap or poly(A) tail on the translated
mRNA. Moreover, in yeast lysate Stm1 addition causes trapping of a reporter mRNA in 80S

ribosomes, in a way that is dependent on translation initiation (Balagopal & Parker, 2011).
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These findings support a negative effect of an excess of Stml on translation by affecting a

step downstream of translation initiation.

1.2.5.2 Stml and recovery from translation inhibiting conditions

Stm1 appears to be important for recovery of growth after certain growth limiting conditions.
Absence of Stml reduces the amount of S. cerevisiae cells recovering from nitrogen
starvation (Van Dyke et al, 2006). S. cerevisiae lacking Stm1 also takes more time to recover
growth upon glucose addition, after spending several days in stationary phase. This coincides
with a strong reduction in the reappearance of polysomes (Van Dyke et al, 2013), indicating
that Stm1 is needed for restart of translation when cells shift from growth inhibiting to growth
permitting conditions. Several observations indicate that the importance of Stm1 for recovery
of growth and translation depends on a role of the protein promoting the preservation of
ribosomes during stress or other situations that reduce the rate of translation in a cell. First of
all it was observed that deletion of Stml leads to a decrease in the 80S ribosome peak in
polysome profiles during stationary phase as well as a reduction in the level of 60S subunit
protein L3 (Van Dyke et al, 2013). Second, Stml was found to be bound to inactive
ribosomes accumulating during glucose starvation stress in S. cerevisiae, in a conformation
that clamps the subunits together. X-ray crystallography studies on ribosomes purified from
glucose starved S. cerevisiae (Ben-Shem et al, 2011) demonstrate that the protein follows the
path of the mRNA from the ribosomal mRNA entry tunnel to the P-site (Figure 20). It
contacts several conserved 40S subunit residues important in mRNA and tRNA binding in
both A and P-site. This conformation of Stm1 therefore prevents mRNA and tRNA binding.
From the P-site it crosses to the 60S subunit, where it contacts 60S rRNA and protein. This
conformation of Stml, interacting with both subunits, clamps them together, preventing
subunit dissociation (Ben-Shem et al, 2011). A similar conformation of Stm1 homologs was
observed recently in human and Drosophila ribosomes (Anger et al, 2013). A function of
Stm1 stabilizing ribosomal subunit association is further supported by the observation that
adding Stm1 to ribosomal subunits in vitro induces subunit joining into an 80S ribosome
(Correia et al, 2004).

The stabilizing, translation inhibiting conformation of Stm1 during stress suggests a function
analogous to RMF, HPF and YfiA in bacteria. A major difference, however, is that Stm1 is
not induced in stress conditions and also binds to polysomal, and therefore translating

ribosomes in non-stress conditions (see above). This suggests that ribosome bound Stm1 can
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adopt at least two conformations: one that is compatible and one that is incompatible with

translation.

(Ben-Shem et al, 2011)

Figure 20 Stm1 in a ribosome from glucose starved S. cerevisiae.
Stm1 interacts with both ribosomal subunits and partly occupies the mRNA tunnel. It interacts with conserved
rRNA residues known to interact with mRNA and tRNA (magenta). Stm1: red, 40S subunit: grey, 60S subunit:
orange.
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1.3 THE TERMINATION FACTOR-LIKE COMPLEX DOM34-HBS1

Central to my PhD work are the factors Dom34 and Hbsl, which form a complex with
ribosome dissociating activity, acting on both RNA bound and RNA free ribosomes. The
complex has been implicated in various RNA quality control pathways that act on stalled
translational complexes. The Dom34-Hbs1 complex will be introduced in this paragraph.
Dom34 (also known as Pelota in many organisms) and Hbs1 are two factors with sequence
similarity to translation termination factors eRF1 and eRF3 respectively. Hbsl is a GTPase
belonging to the family of eEFla-like GTPases, like termination factor eRF3 and elongation
factor eEF1a (Atkinson et al, 2008; Wallrapp et al, 1998). For convenience all Dom34-Pelota
orthologs will be refered to as Dom34 from here on.

Dom34 and Hbs1 have been shown to interact in vivo by yeast two hybrid and GST pull down
experiments (Carr-Schmid et al, 2002), as well as in vitro (Graille et al, 2008). Dom34 and
Hbs1 are conserved proteins. Dom34 has orthologs in eukaryotes and archaea (Eberhart &
Wasserman, 1995; Ragan et al, 1996). Whereas Hbsl has orthologs only in eukaryotes
(Inagaki & Ford Doolittle, 2000; Wallrapp et al, 1998), the function of an archaeal Dom34
GTPase partner appears to be filled by aEF1la. Archaeal Dom34 and aEF1a interact as shown
by yeast two hybrid experiments, co-immunoprecipitation of recombinant proteins, and co-
crystalization experiments (Kobayashi et al, 2010; Saito et al, 2010).

Structural resemblance of the Dom34-Hbs1 complex to the eRF1-eRF3 complex and other
ribosome binding complexes (see 1.3.2.1) suggests that the Dom34-Hbs1 complex can bind
the ribosomal A-site. This was further confirmed by cryo-EM studies on ribosome bound
Dom34-Hbs1 complex (Becker et al, 2011) and biochemical competition experiments, in
which the presence of inactive eRF1 reduced Dom34-Hbs1 activity (Shoemaker et al, 2010).
Interaction with Dom34 increases the affinity of Hbs1 for GTP 5 to 12-fold (Chen et al, 2010;
Graille et al, 2008), whereas GTP binding by Hbs1 increases its affinity for Dom34 9-fold
(Chen et al, 2010). Interaction with both Dom34 and a ribosome stimulates GTP hydrolysis
by Hbs1 maximally (Pisareva et al, 2011; Shoemaker et al, 2010).

Dom34 and Hbs1 are cytoplasmic proteins (Huh et al, 2003; Xi et al, 2005). In Drosophila
Dom34 mRNA is expressed at various stages of development and in adults (Eberhart &
Wasserman, 1995). Hbsl is expressed during early mouse embryonic development and in

various tissues in adult mice (Wallrapp et al, 1998). In subcellular fractionation experiments
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on human Hep2G cells Dom34 co-localizes with actin microfilaments and it is found near the

nuclear envelope, presumably at the endoplasmic reticulum (Burnicka-Turek et al, 2010).

1.3.1 Phenotypical analysis

In the yeast S. cerevisiae deletion of DOM34 was reported to cause slow growth, exhibit a G1
delay and to be defective in meiotic division, sporulation and in pseudohyphal growth (Davis
& Engebrecht, 1998). However, the growth defect might be dependent on the genetic
background of the strain (see also paragraph 1.3.1.1), as it was not reproduced in other reports
(Carr-Schmid et al, 2002), see also result section). In higher eukaryotes absence of Dom34
appears to have a more severe impact. In Drosophila males homozygous for dom34 mutations
are sterile due to a defect in spermatogenesis. The cell cycle arrests early in the first meiotic
division, where no breakdown of the nuclear envelope or spindle formation occurs. In
addition dom34 mutants have eye defects, with the eyes of homozygous mutants being 30 %
smaller than those of heterozygous siblings (Eberhart & Wasserman, 1995). It was also found
that Dom34 controls self-renewal of germline stem cells by repressing differentiation (Xi et
al, 2005). Mouse embryos lacking Dom34 do not develop past day 7.5 of embryogenesis, due
to a defect in proliferation after formation of the three germ layers (Adham et al, 2003). In
human Hep2G cells overexpression of Dom34, which is physically associated with the actin
cytoskeleton, disrupts actin stress fibers and negatively affects cell growth (Burnicka-Turek et
al, 2010).

Hbs1 was identified as a multicopy suppressor of a slow growth phenotype in strains that lack
cytosolic Hsp70 proteins Ssbl and Ssb2 (Nelson et al, 1992). The Ssb proteins are chaperones
that prevent newly produced polypeptides from aggregating, aiding their correct folding
(Willmund et al, 2013). It has been suggested that Hbs1 might function to catalyze stop-codon
independent peptide release from ribosomes stalled due to nascent peptide aggregation
(Inagaki & Ford Doolittle, 2000). Although Hbs1 is similar in structure to termination factor
eRF3 (see paragraph 1.3.2.1), it cannot complement its absence, nor does it interact with the

binding partner of eRF3, eRF1 (Wallrapp et al, 1998).

1.3.1.1 Dom34 and Hbs1 are important in strains with 40S subunit deficiency
In S. cerevisiae deletion of either DOM34 or HBS]I results in synthetic slow growth defects
with deletion of genes encoding a copy of a 40S ribosomal subunit protein. This effect is most

pronounced at low temperatures (Bhattacharya et al, 2010; Carr-Schmid et al, 2002). Because

51



most ribosomal proteins are encoded by two gene copies (e.g. ribosomal protein S28 by
RPS28A4 and RPS28B), these strains have reduced levels of a particular 40S subunit protein,
which results in 40S subunit deficiency (Bhattacharya et al, 2010; Carr-Schmid et al, 2002).
This is accompanied by a reduction in the number of polysomes and protein production,
indicating that the decreased number of 40S subunits available result in reduced translation
initiation (Figure 21). Deletion of DOM34 or HBSI causes an increase in the amount of 80S
ribosomes and, especially at lower temperatures, a slight reduction in the number of
polysomes. The slowly growing double mutants (rpsXAdom34A or rpsXAhbsIA, in which X
can represent various numbers corresponding to different 40S subunit proteins) combine the
40S subunit deficiency with the increase in 80S ribosomes of the two single mutants. The
number of polysomes and protein production are further reduced, most likely explaining the

growth defect (Bhattacharya et al, 2010; Carr-Schmid et al, 2002).
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Figure 21 Deletion of Dom34 causes growth defect in 40S subunit deficient yeast.
Growth curves (A) and polysome profiles (B) of wild type (WT), dom34A, rps6aA and rps6aAdom34A S.
cerevisae. A. Deletion of Dom34 does not affect growth in a wild type strain, but severly slows growth in a
strain lacking one copy of the two genes encoding ribosomal protein S6. B. In absence of Dom34 causes an
increase in 80S ribosomes and a slight reduction in polysomes, both in wild type and in 40S subunit deficient
rps6al yeast.

Further supporting a critical role of Dom34 and Hbsl in conditions where translation
initiation is reduced is the observation that deletion of DOM34 or HBSI causes slow growth
in yeast in which translation is inhibited by constitutive phosporylation, and thereby inhibition

of initiation factor elF2 (Carr-Schmid et al, 2002). Interestingly, the yeast strain in which



single deletion of DOM34 causes a slow growth phenotype has relatively low levels of free
40S subunits and high levels of 60S subunits (Davis & Engebrecht, 1998), suggesting that the
strain has a pre-existing 40S subunit deficiency, making Dom34 and Hbsl important for
growth. In this strain overexpression of RPS304, encoding 40S subunit protein S30, rescues

the dom34A slow growth phenotype (Davis & Engebrecht, 1998).

1.3.2 Structural models of Dom34 and Hbs1

Structural information on Dom34 and Hbs] is available from X-ray crystallography studies on
Dom34 from S. cerevisiae (Graille et al, 2008), its archaeal paralogs from Thermoplasma
acidphilum (Lee et al, 2007), Archaeoglobus fulgidus and Sulfolobus solfataricus (Lee et al,
2010), on Dom34 in complex with Hbs1 from S. pombe (Chen et al, 2010) and on the archaeal
Dom34 in complex with its partner aEF 1o, from Aeropyrum pernix (Kobayashi et al, 2010). In
addition a cryo-EM study on the S. cerevisiae Dom34-Hbs1 complex bound to a ribosome has
been published (Becker et al, 2011).

Dom34 is composed of three domains (Figure 22). The individual domains are highly similar
between structures obtained from different orthologs, but the relative positions of the domains
with respect to each other differ. This indicates flexibility of the linker regions connecting the
domains and suggests that large conformational changes are essential for the function of
Dom34 (Graille et al, 2008; Lee et al, 2010; Lee et al, 2007).

Whereas the central and C-terminal domains of Dom34 are similar in sequence and structure
to those of translation termination factor eRF1, the N-terminal domain is not (Figure 22). It
adopts a highly divergent Sm-fold (Graille et al., 2008; Lee et al., 2007). The Sm-fold is
found in the Lsm family of proteins, which form RNA binding hexa- or heptemers (Khusial et
al, 2005). However the N-terminal domain of Dom34 lacks the Sml and Sm2 motifs
implicated in RNA binding and has structural impairments preventing oligomerization
(Graille et al, 2008). Because of its difference from eRF1, the Dom34 N-terminal domain
lacks conserved residues essential for stop codon recognition in eRF1, such as the NIKS loop
(Frolova et al, 2002).

The central domain of Dom34 is structurally similar to that of eRF1. A major difference
resides in the absence of the GGQ motif and the length of the a-helix following it (Graille et
al, 2008; Lee et al, 2007) (Figure 22). In eRF1 the GGQ motif is essential for triggering
peptidyl-tRNA hydrolysis, thereby releasing the peptide (Frolova et al, 1999). It is therefore
unlikely that Dom34 can induce peptidyl-tRNA hydrolysis.
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Figure 22 Dom34 versus eRF1
Crystal structures of S. cerevisiae Dom34 (Graille et al, 2008) and human eRF1 (Song et al, 2000). The positions
of the highly conserved GGQ and NIKS motifs in eRF1, important for peptidyl-tRNA hydrolysis and stop codon
recognition respectively, are indicated.

Hbsl consists of three structured domains, the domains G, II and III, preceded by an
unstructured N-terminus (Chen et al, 2010). The three structured domains resemble those of
EF-Tu, the related bacterial GTPase responsible for bringing tRNAs to the ribosomal A-site
(Chen et al, 2010). The G domain harbors the GTP binding and hydrolysis activity of Hbs1,
as in other GTPases. G domains have a universal structure and contain several highly
conserved elements important for its activity. These include the P-loop - a phosphate binding
loop — and two switch regions I and II, which change conformation between GTP and GDP

bound state (Vetter & Wittinghofer, 2001).

1.3.2.1 The Dom34-Hbs1 complex

Three sets of structural data are available on Dom34 in complex with a GTPase partner. In
case of archaeal Dom34, this binding partner is not Hbs1 but aEFla (Saito et al, 2010). All
complexes structurally resemble other complexes that bind the ribosomal A-site, such as the

bacterial EF-Tu-tRNA complex (Chen et al, 2010; Kobayashi et al, 2010).
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Figure 23 The archaeal Pelota-aEF1a complex structurally resembles the bacterial EF-Tu complex
Crystal structures of the Aeropyrum pernix Pelota-aEF1a complex (Kobayashi et al, 2010) and the E. coli EF-
Tu-tRNA complex. Domains are depicted in different colours.

A major difference between the Dom34-Hbs1/aEF 1o complexes is found in the orientation of
the G domain. In the S. pombe complex it rotates away from domains II and III and does not
interact with Dom34 (Chen et al, 2010). In the archaeal complex and the ribosome bound S.
cerevisiae complex it rotates towards domains II and III and participates in interaction with
Dom34 (Becker et al, 2011; Kobayashi et al, 2010). Whereas the latter two structures are
obtained from complexes containing GTP and the GTP analog GDPNP respectively, the S.
pombe structure was obtained from a complex not binding any nucleotide (Becker et al, 2011;
Chen et al, 2010; Kobayashi et al, 2010). This might suggest that the orientation of the G
domain depends on whether a GTP molecule is bound or not. However, this is not in line with
the observations of our collaborators Julien Henri and Marc Graille, who found Hbs1, without
nucleotide or bound to GDP, to be in a similar conformation as Hbs1 in the archaeal and the
S. cerevisiae ribosome bound complexes (see result section). Alternatively, the deviating
orientation of the G domain in the S. pombe model could be due to crystal packing. Clearly
the conformation in which the G-domain rotates towards II and III is the one that is adopted
when binding the ribosomal A-site.

The interface between Dom34 and Hbs1 or Dom34 and aEF1a involves multiple domains of
both proteins. In all three models the C-terminal domain of Dom34 interacts with domain I11

of Hbs1 and the central domain of Dom34 interacts with domains II and III of Hbsl. In the
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archaeal and the §. cerevisiae ribosome bound model the central domain of Dom34 also
interact with the G domain of Hbs1. The molecular details of the interactions differ between
the models. Notably a conserved positively charged loop in the central domain of Dom34 is
participating in Dom34-Hbs1/aEF1la interaction in all models: in the S. pombe model it
contacts Hbs1 domain II and III, whereas in the other two models it interacts with switch I in
the G domain. Another highly conserved Dom34 central domain motif, PGF, interacts with

switch I and II of the Hbs1 G domain in the archaeal model.

1.3.2.2 Interaction of the Dom34-Hbs1 complex with the ribosome

The cryo-EM model of S. cerevisiae Dom34 and Hbs1 bound to a ribosome shows that two
loops in the N-terminal domain of Dom34 reach deep into the decoding center of the
ribosomal A-site. Here they interact with rRNA and with ribosomal proteins that contact
residues important in decoding. Binding of Dom34-Hbs1 to a ribosome stalled on an mRNA
causes the densities that represent mRNA in the ribosomal P-site to disappear. This suggests
that Dom34-Hbs1 binding induces destabilization of mRNA-ribosome interaction. The model
identified a structured part of the N-terminus of Hbs1, located at the mRNA entry site of the
ribosome (Figure 24). In the ribosome bound model switch I of Hbs1 is resolved, whereas in
the non-ribosome bound models it was not completely resolved (Becker et al, 2011). This,
and the observation described above that Dom34 directly interacts with the switch regions,
may provide a structural explanation on how interaction with Dom34 and the ribosome
promote GTP binding and/or hydrolysis by Hbsl (Chen et al, 2010; Graille et al, 2008;
Shoemaker et al, 2010).

Figure 24 Cryo-EM model of ribosome
bound Dom34-Hbsl1.

(Becker et al, 2011)



1.3.3 The Dom34-Hbs1 complex dissociates ribosomes
Dom34 and Hbs1 can dissociate the subunits of ribosomes that are stalled on mRNAs as well
as vacant, mRNA-free ribosomes. For efficient dissociation the ATPase Rlil is required as

well.

1.3.3.1 [Invitro dissociation of stalled and vacant ribosomes

The first evidence that the Dom34-Hbs1 complex can dissociate stalled ribosomes came from
biochemical experiments, in which in vitro assembled translational complexes, stalled on
either a sense or a stop codon, were incubated with S. cerevisiae Dom34 and Hbsl. This
resulted in ribosome dissociation and the release of a peptidyl-tRNA, with the rate of
dissociation being independent on the codon type (Shoemaker et al, 2010). In contrast
incubation with termination factors eRF1 and eRF3 causes peptide release only from
ribosomes with a stop codon in their A site. Dom34-Hbs1 mediated peptidyl-tRNA release is
a factor 15 slower than eRF1-eRF3 mediated peptide release. (Shoemaker et al, 2010). Further
biochemical experiments reported that human Dom34 and Hbsl can dissociate not only
ribosomes stalled on a mRNA, but also in vitro assembled 80S ribosomes that are not
associated with mRNA or translation factors. In both cases the human ortholog of Rlil is
required as well (Pisareva et al, 2011). In agreement with this Rlil was also found to stimulate
the rate of yeast Dom34-Hbs1 mediated dissociation of ribosomes stalled on a mRNA more
than ten-fold (Shoemaker & Green, 2011). These biochemical studies, together with structural
studies on Dom34 and Rlil bound to a ribosome have given insight into the mechanistic

details of Dom34-Hbs1 mediated ribosome dissociation.

1.3.3.2 Mechanistic details of Dom34-Hbs1 and Rlil mediated ribosome dissociation

Whereas both Dom34 and Rlil strongly contribute to the rate of ribosome dissociation, Hbs1
is less required. The incubation of vacant or stalled ribosomes with all three human factors for
10 minutes results in complete dissociation. Whereas absence of Rlil blocks dissociation
completely, absence of Hbsl merely leads to a reduction in the fraction of ribosome
dissociated (Pisareva et al, 2011). Kinetic analysis of the contribution of the yeast factors in
dissociating stalled ribosomes indicates that whereas absence of Rlil slowed dissociation
more than 10-fold, absence of Hbs1 reduced the dissociation rate only 2,5-fold (Shoemaker &
Green, 2011). On the other hand, adding Hbs1 but blocking its GTPase activity, either by
addition of the non-hydrolyzable GTP analog GDPNP or by mutating the Hbsl G domain,
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causes a large reduction in dissociation of both vacant and stalled ribosomes (Pisareva et al,
2011; Shoemaker et al, 2010; Shoemaker & Green, 2011). For example, a yeast Hbs1 GTPase
mutant slows dissociation of stalled ribosomes more than 20-fold (Shoemaker & Green,
2011). These observations indicate that Hbs1 is not absolutely required for Dom34 to bind the
ribosomal A-site and induce ribosome dissociation. However, when Hbsl complexes with
Dom34, its GTPase activity is essential for binding of the complex to the ribosome and/or
inducing ribosome dissociation.

Cryo-EM studies of S. cerevisiae Dom34 and Rlil, as well as their archaeal (Pyrococcus
Sfuriosus) orthologs bound to a ribosome stalled on a mRNA in presence of non-hydrolysable
ATP analog ADPNP show that Rlil occupies the same place as Hbs1 in the ribosomal A-site,
where it interacts with the C-terminal domain of Dom34. Therefore Hbs1 and Rlil cannot
bind the ribosome or Dom34 simultaneously and should bind sequentially (Becker et al,
2012). The presence of a non-hydrolysable GTP analog prevents Hbs1 from dissociating from
the ribosome (Shoemaker & Green, 2011). This may explain why the GTPase activity of
Hbsl is important for ribosome dissociation, by allowing Rlil to bind after GTP hydrolysis
dependent Hbs1 release.

Like other members of the ABC protein family, Rlil contains a twin nucleotide binding
domain, in a head to tail orientation (see paragraph 1.1.2.5). These nucleotide binding
domains change from a closed conformation to an open conformation upon ATP hydrolysis.
This causes a tweezer-like power stroke, which causes conformational changes in other
domains of the protein itself as well as associated proteins (Hopfner & Tainer, 2003). Rlil
ATPase activity is essential for inducing ribosome dissociation, as the presence of non-
hydrolysable ADPNP was shown to strongly inhibit yeast Dom34 and Rlil mediated
dissociation of stalled ribosomes (Shoemaker & Green, 2011). It has been proposed, based on
structural models, that the conformational change in Rlil induced by ATP hydrolysis is
transmitted to Dom34, via the interaction between the iron-sulfur domain of Rlil and the C-
terminal domain of Dom34. The change in conformation of Dom34 may then induce
separation of the ribosomal subunits (Becker et al, 2012).

Based on these structural and biochemical observations a model of Dom34, Hbsl and Rlil
mediated ribosome dissociation can be proposed, that is depicted in Figure 26 (Becker et al,
2012; Shoemaker & Green, 2011). Dom34 in complex with GTP bound Hbsl binds to a
ribosome stalled on a mRNA or a vacant ribosome (1). An unknown signal induces GTP
hydrolysis (2), which causes Hbsl to dissociate (3) and makes the complex competent for

recycling. ATP bound Rlil can then bind (4). ATP hydrolysis causes conformational changes
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in Rlil and Dom34, which result in destabilization of ribosomal subunit interaction and, in

case of a stalled ribosome, release of the peptidyl-tRNA (5).

ey sy

Factor hinding GTPase actvation,/hydrolysis Factor dissocation
]

)

Accommodation Ribosome recycling
)

(£ 1]

Adapted from (Shoemaker & Green, 2011)

Figure 25 Ribosome recycling by Dom34, Hbs1 and Rlil.
For further details see text.

It is unclear what happens to the mRNA, in case of mRNA bound ribosomes. Following
dissociation of stalled yeast ribosomes it stays associated to the 40S subunit (Shoemaker et al,
2010), but after dissociation of stalled human ribosomes it was found to be not ribosome
bound (Pisareva et al, 2011). This difference may depend on the length of the part of the
mRNA that is interacting with the ribosome (see below).

Human orthologs of Dom34, Hbs1 and Rlil only dissociate stalled ribosomes efficiently if the
length of the mRNA extending 3° of the ribosomal P-site is shorter than 13 nucleotides
(Pisareva et al, 2011). Yeast Dom34-Hbsl and Rlil dependent dissociation of stalled
ribosomes also exhibits a dependence on the length of the mRNA 3’ of the ribosome,
although to a lesser extent than the human factors. In the yeast system, ribosomes stalled on

mRNAs with a length up to 23 nucleotides downstream the P-site are dissociated with equal
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efficiency. Beyond 23 nucleotides the length of the mRNA downstream of the P-site
negatively correlates with the dissociation rate. In the yeast system the mRNA length
dependence depends on the presence of Hbsl. It has been speculated that the N-terminus of
Hbsl1 is involved in monitoring mRNA length downstream of the ribosome, as it is located
near the mRNA entry site (see paragraph 1.3.2.2) (Shoemaker & Green, 2011). The mRNA
length dependence in vitro suggests that in vivo Dom34-Hbs1 and Rlil mediated dissociation
of ribosomes stalled in the middle of a mRNA might be preceded by a step shortening the
mRNA downstream of the stalled ribosome, e.g. by endonuclease cleavage (see paragraph

1.4.1).

1.3.3.3 Dom34-Hbs1 mediated ribosome dissociation irn vivo

Two reports have been published that describe situations in which Dom34, Hbsl and Rlil
mediated ribosome dissociation may play a role. When mRNAs do not have a termination
codon the ribosomes that translate them cannot terminate and recycle via the canonical route.
This causes stalling of ribosomes at the 3’ end or, in case the mRNA has a poly(A)tail, on the
poly(A)tail of the mRNA. This, as well as the pathway that rapidly degrades these non-stop
mRNAs will be described in further detail in paragraph 1.4.3. The ribosomes stalled on non-
stop mRNAs may block passage of the degradation machinery responsible for rapid decay of
the mRNA. It was found that in absence of Dom34 or Hbs1 non-stop mRNAs are stabilized,
suggesting that these factors are needed for removing the stalled ribosomes. Moreover it was
found that absence of functional Dom34 or Hbs1 caused accumulation of ribosome associated
peptidyl-tRNAs, further supporting this hypothesis (Tsuboi et al, 2012).

Dom34-Hbs1 and Rlil mediated ribosome dissociation may also be important for ribosome
biogenesis. It was shown that during ribosome maturation 60S subunits associate with
immature pre-40S subunits (Lebaron et al, 2012; Strunk et al, 2012). This is thought to serve
as a quality control step. In absence of Dom34, or when Rlil is depleted, ribosome assembly
factors, which normally co-sediment mainly with pre-40S subunits, were found to co-
sediment with 80S ribosomes. This was interpreted as an accumulation of pre-40S — 60S
complexes, indicating that Dom34 and Rlil are involved in their dissociation (Strunk et al,
2012). However, a wild type control strain was missing in these experiments. In another strain
with a wild type-like genotype but grown in other conditions (with galactose as a carbon
source instead of glucose), a similar set of assembly factors was found to co-sediment with
80S ribosomes, making it questionable whether Dom34 and Rlil are really involved in

dissociating immature ribosomes.
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1.4 CO-TRANSLATIONAL RNA QUALITY CONTROL ON
INEFFICIENTLY TRANSLATING COMPLEXES

Stalling of ribosomes during translation elongation makes a cell face two problems. First, an
incomplete peptide is produced that is potentially toxic. Second, depending on the strength
and cause of stalling a ribosome may not be able to terminate and therefore canonical peptide
release and recycling cannot occur. Stalling can lead to queuing of ribosomes upstream of the
primary stalled ribosome resulting in a large reduction in the rate of translation of the affected
mRNA and, if stalling occurs with high frequency, potential sequestration of translation
factors.

Cells have acquired pathways to deal with the causes and results of inefficient translation. In
eukaryotes three pathways have been described that detect and degrade RNAs that cause
ribosome stalling. These are No-go decay (NGD), Non-functional rRNA decay (NRD) and
Non-stop decay (NSD). Although identified as separate pathways that target RNAs, they have
many characteristics in common and are tightly associated with mechanisms that deal with the
consequences of ribosome stalling. The three pathways will be introduced in the following
paragraphs. While I did not study NSD during my PhD, it will be introduced in detail because

of its mechanistic overlap with the other two pathways.

1.4.1 No-go decay

In NGD stalling of a ribosome during elongation causes the degradation of the mRNA on

which it is stalled.

1.4.1.1 Mechanism of No-go decay

NGD was first described by Doma & Parker in the yeast S. cerevisiae. They found that the
insertion of a stem-loop, which was known to block the passage of elongating ribosomes
(Hosoda et al, 2003), causes the destabilization of a PGK1 reporter mRNA. Its half life
decreases two-fold compared to a reporter without stem-loop. This destabilization does not
depend on the major 5’ to 3” or 3° to 5’ cytoplasmic degradation pathways or on NMD as
absence of functional Dcp2, Ski7 or Upfl does not affect the stability of the reporter.
Insertion of a stem-loop in the 3’UTR, blocking ribosome scanning and thereby initiation, or

insertion of a termination codon upstream of the stem loop prevented degradation. This
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supports the idea that translation of the NGD reporter and subsequent ribosome stalling is
required for substrate detection.

In strains in which 5’ to 3’ degradation is blocked (xrn/A) a degradation intermediate
accumulates that corresponds in size to a fragment covering all nucleotides between stem-
loop and 3’ end. When 3’ to 5° degradation is blocked (in absence of functional Ski complex
or Ski7) an intermediate accumulates that corresponds in size to a fragment covering all
nucleotides between 5° end and stem-loop. This indicates that degradation of the mRNA is
initiated by an endonucleolytic cleavage in the vicinity of the ribosome stall site, and that the
resulting decay intermediates are substrates of Xrnl and the cytoplasmic exosome (Doma &
Parker, 2006) (Figure 26). The accumulation of at least the 5 cleavage products was found to
be dependent on the presence of the factors Dom34 and Hbs1 (Doma & Parker, 2006), which
was interpreted as Dom34 and Hbs1 stimulating mRNA cleavage.

When Xml mediated degradation is blocked, a stemloop containing PGK1 mRNA, or a
product containing its 3° end, accumulates in P-bodies. This suggests that NGD 3’ cleavage
products are degraded in P-bodies (Cole et al, 2009). A NGD intermediate resulting from a
stem-loop containing PGK1 reporter mRNA was also shown to accumulate in Drosophila S2
cells (Passos et al, 2009), indicating that the pathway is conserved in higher eukaryotes. This
intermediate accumulation is dependent on the presence of the Dom34 ortholog in

Drosophila.
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Figure 26 No-go decay model.

1.4.1.2 Stall sites that cause NGD

Apart from a stem-loop, other sites that cause ribosomal stalling were shown to induce NGD
in S. cerevisiae. These include pseudoknots, rare codons and premature termination codons,
although NGD efficiency is low when compared to a stem-loop (Doma & Parker, 2006). Also
RNA damage causes mRNA destabilization that may be related to NGD. The Pokeweed
antiviral protein (PAP) is normally expressed in the pokeweed plant (Phytolacca americana)
and is known to depurinate viral RNAs. When the Brome mosaic viral RNA3 is co-expressed
in S. cerevisiae with PAP, causing depurination at specific sites, this leads to destabilization
of the RNA. In analogy with NGD substrates, blocking the major cytoplasmic RNA
degradation pathways caused the Dom34-Hbs1 dependent accumulation of RNA degradation
intermediates (Gandhi et al, 2008). This suggests that depurinated RNA might cause
ribosome stalling and induce NGD. However, the mechanistic characteristics of RNA
degradation differ from NGD as described above. Instead of accumulation of a 5’

intermediate in a strain in which 3’ to 5° degradation was blocked and accumulation of a 3’
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intermediate in a strain in which 5’ to 3’ degradation was blocked, the authors observed the
accumulation of a 3’ intermediate in the first strain and a 5” intermediate in the second strain.
This does not correspond to the results of an NGD endonucleolytic cleavage, but could
instead be the consequence of the depurination site blocking progress of the exonucleases that
might start degrading the RNA from its ends.

An mRNA that contains a sequence encoding multiple consecutive basic amino acids induces
NGD. The production of a stretch of positively charged amino acids causes ribosomes to
pause due to interaction of the positively charged nascent peptide with the negatively charged
ribosomal tunnel in vitro (Lu & Deutsch, 2008; Lu et al, 2007). In vivo positively charged
amino acids have been shown to locally slow down translating ribosomes (Charneski & Hurst,
2013). Similar to stem-loop induced NGD, stretches of 12 arginines (R12) or lysines (K12)
cause the accumulation of a 5 degradation intermediate in a ski2A strain and a 3’ intermediate
in a xrnlA strain, when inserted between GFP and FLAG in a GFP-FLAG-HIS3 reporter
gene, indicating endonucleolytic cleavage. The level of the 5 intermediate is at least partly
dependent on the presence of Dom34 (Kuroha et al, 2010).

A quadruple repeat of the very inefficiently translated arginine codon CGA (Letzring et al,
2010) appeared particularly efficient in triggering NGD. It causes a 5-fold decrease in the half
life of a reporter PGK1 mRNA (Chen et al, 2010). Whereas for other stall sites either
translational stalling or RNA degradation appear thus inefficient that steady state levels of full
length mRNAs are not visibly affected (Kuroha et al, 2010), see results section), a CGA
repeat reduces them by 75%. The CGA repeat causes the accumulation of NGD intermediates
when Xrnl or exosome-mediated degradation is defective. In contrast to other stall sites,
deletion of Dom34 or Hbsl does not lead to reduced accumulation of the intermediates,
indicating that their production and decay are Dom34-Hbs1 independent (Chen et al, 2010).
Finally G-rich nucleotide sequences have been shown to cause the accumulation of expected
NGD intermediates in strains defective for Xrnl or exosome-mediated degradation, when
inserted in a GFP-FLAG-HIS3 reporter mRNA. It was proposed that these G-rich sequences
form a stable quadruplex structure that does not allow ribosomes to pass. The accumulation of
NGD intermediates is Dom34-Hbs1 dependent (Tsuboi et al, 2012).

In summary various stall sites can induce NGD. The efficiency of mRNA degradation and the
Dom34-Hbs1 dependence of NGD intermediate accumulation vary per type of stall site.
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1.4.1.3 Endonucleolytic cleavage

NGD starts with an endonucleolytic cleavage. The identity of the endonuclease has not been
identified so far. The N-terminal domain of Dom34 from S. cerevisiae and an archaeal
paralog has been reported to have ribonuclease activity in in vitro experiments(Lee et al,
2007). However, these observations could not be reproduced with S. cerevisiae Dom34
(Passos et al, 2009). That Dom34 is not the endonuclease is further supported by many in vivo
studies in which reporter mRNAs were still cleaved in absence of Dom34, even though in
most cases with less efficiency (Chen et al, 2010; Kuroha et al, 2010; Passos et al, 2009). It
has also been excluded that the endonuclease activity of the exosome is responsible for NGD
cleavage (Schaeffer & van Hoof, 2011).

Several attempts have been made to map the exact sites of cleavage induced by various stall
sites, using methods like analysis of the resulting fragments on gel or by northern blotting, 5°-
RACE and primer extension experiments. In most cases cleavage sites were identified at one
or multiple locations upstream of the site where a ribosome was expected to stall (Chen et al,
2010; Doma & Parker, 2006; Tsuboi et al, 2012). At least in case of a stem loop, some
cleavage sites were identified downstream of the stall site as well (Doma & Parker, 2006).

If stalling is strong and certainly if stalled ribosomes cannot be released, one would expect
that additional ribosomes queue up upstream of the primarily stalled ribosome. These
secondarily stalled ribosomes may also induce mRNA cleavage. Indeed there is evidence that
multiple cleavages can occur due to queuing of ribosomes (Tsuboi et al, 2012) (see

paragraphs 1.4.4.1 and 1.4.5).

1.4.2 Non-functional ribosomal RNA decay

In NRD rRNAs that are defective in translation are degraded. The pathway was first described
by LaRiviere et al. in 2006 and has only been studied in S. cerevisiae. It was found that
specific mutations in rRNAs that make them functionally defective do not affect their
maturation, but the resulting mature rRNAs are rapidly degraded. This leads to a 5 to 10-fold
decrease in their steady state level. The mutants studied affected either positions G530 or
A1492 (E. coli numbering system) of the 18S rRNA, which are important nucleotides in the
decoding center, and positions A2451 or U2585 of the 25S rRNA, located in the peptidyl

transferase center (LaRiviere et al, 2006).
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1.4.2.1 Non-functional ribosomal RNA decay on defective 18S rRNAs

Mutant 18S rRNAs localize in the cytoplasm, with the same diffuse distribution as wild type
18S rRNAs. Their degradation is inhibited by the translation elongation inhibiting antibiotic
cycloheximide (Cole et al, 2009) and they are found in both 40S and 80S peak of polysome
profiles obtained by sucrose density sedimentation (LaRiviere et al, 2006). This suggests that
40S subunits containing defective 18S rRNAs can associate with 60S subunits, that the
affected 40S subunits participate in (inefficient) translation and that this participation in
translation is required for the detection and degradation of the defective 18S rRNA.

The mechanism of defective 18S rRNA degradation and the machinery involved is not
completely known (Figure 27). Although mutant 18S rRNAs are partly stabilized (2-fold) in
strains defective for recruitment of the cytoplasmic exosome (ski7A), a mutation in the
exosome’s catalytic subunit Dis3 does not affect their stability. In some genetic backgrounds,
but not in others, mutant 18S rRNAs are partly stabilized (3-fold) in strains lacking Xrnl. 18S
NRD targets co-localize with NGD targets in P-bodies when Xrnl mediated degradation is
blocked. Importantly, mutant 18S rRNAs are stabilized 2-fold in absence of Dom34 or Hbsl,
with deletion of Dom34 or Hbsl in combination with deletion of Xrnl or Ski7 resulting in a
dramatic, synergistic stabilization (Cole et al, 2009). Possibly, Dom34-Hbsl mediated
ribosome dissociation is required to make the defective 18S rRNA in the 40S subunit
accessible for the degradation machinery.

The 18S NRD pathway may target 18S rRNAs other than those with defects in the decoding
center. In yeast with reduced activity of the Riol protein, a factor involved in 40S ribosomal
subunit maturation, 40S particles containing 20S precursors of the 18S rRNA were found to
accumulate and 18S rRNA levels were dramatically decreased. These immature 40S subunits
are capable of binding 60S subunits and mRNA. The levels of 18S and 20S rRNAs suggested
that large part of the accumulating 20S rRNAs are rapidly degraded. These findings,
indicating degradation of immature rRNAs, that are part of ribosomes that may initiate
translation but are probably defective in translation elongation, resemble the characteristics of
18S NRD. Moreover it was found that deletion of DOM34 or HBSI causes a restoration of
18S rRNA levels accompanied by a decrease in 20S rRNA levels and it rescues the strain’s
growth defect. The authors’ interpretation suggested that in absence of Dom34 or Hbsl1 less
efficient 20S rRNA degradation causes more pre-40S subunits to be available as substrates for
the partially defective Riol to complete 40S subunit maturation (Soudet et al, 2010).

In summary, 18S NRD is a second pathway in which RNAs that cause inefficient translation

are targeted for degradation and in which the Dom34-Hbs1 complex plays a role.
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Figure 27 Non-functional 18S rRNA decay model.

1.4.2.2 Non-functional ribosomal RNA decay on defective 25S rRNAs

25S NRD differs from 18S NRD in several mechanistical aspects. In contrast to mutant 18S
rRNAs, degradation of mutant 25S rRNAs is not inhibited by cycloheximide and is therefore
not translation dependent. The RNA degradation machinery involved differs as well: no
nucleases destabilizing defective 25S rRNAs have been identified so far. In particular Xrnl
and the exosome or the factors Dom34 or Hbs1 do not affect mutant 25S rRNA stability (Cole
et al, 2009). Although deletion of Xrnl does not affect the rate of degradation of a defective
25S rRNA, it results in the appearance of a shorter fragment (Cole et al, 2009) suggesting that
the exonuclease might be involved in the degradation of decay intermediates produced from
defective 25S rRNAs. Mutant 25S rRNAs localize at different sites than 18S rRNAs. They
have been found in perinuclear foci, contrasting with the diffuse localization of mutant 18S
rRNAs (Cole et al, 2009). 25S NRD was found to depend on several factors involved in
protein degradation. This suggests that degradation of ribosomal proteins or ribosome
associated proteins precedes and is required for the degradation of defective 25S rRNAs. 18S
NRD does not depend on these factors (Fujii et al, 2009; Fujii et al, 2012).
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1.4.3 Non-stop decay

In NSD mRNAs that lack a termination codon are rapidly degraded. Translation of these non-
stop (NS) mRNAs results in stalled ribosomes, as in absence of a stop codon no canonical
termination is possible. The term NSD has been used to describe the rapid decay of two types
of non-stop mRNAs that mechanistically share some characteristics but differ on other points

(Figure 28).

1.4.3.1 NSD substrates

The first type of these NS messages are polyadenylated mRNAs of which the ORF lacks an in
frame termination codon. Poly(A)+ NS messages can result from the use of polyadenylation
signals in an ORF or from point mutations that change a stop codon into a sense codon.
Whereas translation of the first type results in the production of a truncated protein, the
second type produces a longer protein consisting of a translated ORF and 3’UTR. In both
cases the C-terminus of the protein contains a stretch of lysines resulting from translation of
the poly(A) tail. As described in paragraph 1.4.1.2, a stretch of lysines causes ribosomes to
stall. It is therefore not surprising that NSD and NGD share several mechanistic
characteristics.

Genome wide analyses of mutations and SNPs in humans have identified over 100 mutations
that change a stop codon into a sense codon {(Hamby et al, 2011; Yamaguchi-Kabata et al,
2008). Several diseases have been described to be caused by mutations turning stop codons
into sense codons (Klauer & van Hoof, 2012). In some of these cases the affected mRNAs do
not contain stop codons in the 3’UTR, downstream of the mutated stop codon, turning them
into NS mRNAs (e.g.(Seminara et al, 2003; Taniguchi et al, 1998). The pathological effect
of these mutations may result from the low protein levels produced from the NS transcripts.
Therefore, if protein products from the NS mRNAs are not toxic the NSD mechanism
contributes to pathology instead of preventing it.

The biological relevance of the NSD pathway is more likely to result from reducing levels of
proteins produced from mRNAs that are prematurely polyadenylated. Premature
polyadenylation is likely to occur with a certain frequency: many ORFs identified in human
and yeast contain a consensus sequence for 3’ cleavage and polyadenylation in their coding
region (Frischmeyer et al, 2002). Moreover, it was found in HeLa cells that introns frequently

contain cryptic polyadenylation signals (Kaida et al, 2010). Although premature cleavage and
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polyadenylation at these sites is suppressed in a Ul-dependent manner, NSD could provide a
mechanism to prevent protein production from mis-spliced mRNAs.

A second type of NS mRNAs lacks both a stop codon and a poly(A) tail. These poly(A)- NS
mRNAs may result from endonucleolytic cleavage in the ORF of an mRNA, such as occurs
during NGD (Doma & Parker, 2006) or during NMD in some species (Eberle et al, 2009;
Gatfield & Izaurralde, 2004). Translation of poly(A)- mRNAs would result in the production
of a truncated protein. To study the fate of poly(A)- NS mRNAs, constructs have been used
in which a hammerhead ribozyme (Rz) sequence was inserted in an ORF (Kobayashi et al,
2010; Meaux & Van Hoof, 2006; Schaeffer & van Hoof, 2011). The Rz cleaves the mRNA,
and therefore transcription of these genes results in a capped mRNA sequence that lacks stop
codon and poly(A) tail but contains instead an unconventional 2°-3” cyclic phosphate at its 3’

end.

@ — AUC — /| AAAAAAAA  «normal» mRNA

@ — AUC S /A AAAAA  POIY(A)+ NS mRNA, resulting from
mutation stop codon — sense codon

@ —— AUG T— A\ AAAAAA poly(A)+ NS mRNA, resulting from the use
of an alternative polyadenylation signal
Q@ — AUG ——— poly(A)- NS mRNA, resulting from e.q.

endonucleolytic mRNA cleavage

Figure 28 NSD substrates

1.4.3.2 Mechanism of non-stop mRNA degradation

Poly(A)+ NS mRNAs are unstable compared to their stop codon containing counterparts.
This destabilization has been described for various mRNAs in S. cerevisiae, human and
mouse cells (Frischmeyer et al, 2002; Inada & Aiba, 2005; Ito-Harashima et al, 2007; Kong &
Liebhaber, 2007; Saito et al, 2013). The reduction in stability varies between different
mRNAs, ranging from a reduction in half life that is 1.7-fold for a GFP-2A-HIS3-NS mRNA
(Ito-Harashima et al, 2007) to 6.5 fold for a PGK1-NS mRNA (Frischmeyer et al, 2002) in S.
cerevisiae. This indicates that the efficiency of NSD may depend on the type of mRNA or
genetic background. In mammalian cells, variation in NSD efficiency appears even larger,
with some NS mRNAs not being targeted for degradation at all. In HeLa cells the RNA level
of GFP-NS was found to be similar to the mRNA level of its stop codon containing

counterpart (Akimitsu et al, 2007) and in a mitochondrial neurogastrointestinal
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encephalomyopathy patient a TYMP-NS mRNA was present at the same level as wild type
TYMP mRNA (Torres-Torronteras et al, 2011).

Addition of cycloheximide stabilizes PGK1-NS mRNAs in S. cerevisiae and RPS19-NS
mRNAs in human cells (Chatr-Aryamontri et al, 2004; Frischmeyer et al, 2002). In HeLa
cells decay of a Flag-f-globin-NS mRNA was inhibited by cycloheximide and stimulated by
specific translational activation (Saito et al, 2013). These observations indicate that NSD of
poly(A)+ substrates is translation dependent.

Rapid degradation of both poly(A)+ and poly(A)- NS mRNAs is mediated by the cytoplasmic
exosome and requires Ski7 and the Ski complex in S. cerevisiae (Figure 29). Absence of
either one of the latter factors increases PGK1-NS stability to almost the same level as that of
PGKI1. (Frischmeyer et al, 2002; van Hoof et al, 2002). Absence of Ski7 leads to increased
stability of the the poly(A)- NS mRNAs ProteinA-Rz (Meaux & Van Hoof, 2006) and GFP-
Rz (Tsuboi et al, 2012) and Ski2 deletion causes increased levels of GFP-Rz mRNA
(Kobayashi et al, 2010).

NSD of poly(A)+ substrates, of poly(A)- substrates and normal cytoplasmic mRNA turnover
by the exosome differ in at least three aspects. Whereas for normal turnover and poly(A)-
NSD only the N-terminal part of Ski7 is needed, poly(A)+ NSD requires both the N-terminal
and the C-terminal parts of Ski7 (Tsuboi et al, 2012; van Hoof et al, 2002). Together with the
fact that the C-terminal part of Ski7 resembles the C-terminal parts of other translational
GTPases that bind the ribosome (see paragraph 1.1.3.1.3) and the finding that Ski7 physically
interacts with the exosome (Araki et al, 2001; van Hoof et al, 2002), this suggests that Ski7
recruits the exosome to ribosomes stalled on poly(A)+ NS mRNAs. A second difference is
that either the exo- or the endonuclease activity of the exosome’s catalytic subunit Dis3 is
sufficient for both poly(A)+ and poly(A)- NSD, whereas normal turnover is mediated by the
exonuclease activity only (Schaeffer & van Hoof, 2011). Finally, whereas normal mRNA
turnover by the exosome is preceded by a rate-limiting deadenylation step (see paragraph
1.1.3.1.1), in S. cerevisiae as well as mouse MEL/tTA cells the rapid decay of poly(A)+ NS
mRNAs does not involve or depend on deadenylation by the deadenylases that act in regular
RNA decay (Kong & Liebhaber, 2007; van Hoof et al, 2002).

As Ski7 is present only in a subset of Saccharomycete yeasts (Atkinson et al, 2008), NSD in
all other eukaryotic cells should differ in mechanistic details. In HeLa cells it was found that
the rapid degradation of the poly(A)+ Flag-B-globin-NS mRNA requires the two human Ski2
homologs Ski2 and Mtr4 and exosome subunit Dis3. Moreover it was found that also Hbs1,

which is the protein most closely related to Ski7 in mammalian cells, and its partner Dom34
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are required for efficient NSD. As these factors were observed to physically interact with the
exosome and Ski complex, it was suggested that in mammalian cells they might replace Ski7
function and recruit the exosome to ribosomes on a poly(A)+ NS mRNA (Saito et al, 2013).
On the other hand, the requirement of the Dom34-Hbs1 complex for NSD can be explained
by its function to dissociate ribosomes stalled on the NS-mRNA. When not removed these
ribosomes may block passage of the exosome (see paragraph 1.4.4.1).

It has been reported that the 5’ to 3’ degradation pathway also plays a role in poly(A)+ NSD.
A dcpl-2 mutant causes further stabilization of NS mRNAs in a ski7A background (Inada &
Aiba, 2005). However, from the presented data it cannot be excluded that this is only because

the (partly stabilized) NS mRNAs are substrates of “normal” cytoplasmic mRNA turnover.

On poly(A)+ non-stop mRNAs On poly(A)- non-stop mRNAs
stalled ribosome stalled ribosome
polylysine
@—AuG AAAA @—ruG

Dom34-Hbs1 Dom34-Hbs1
endonucleolytic
?
@—AuG AAA cleavage: @—AuG

.—AUG—AAAAAAAA& @ — AUG — gb

exosome exosome

Figure 29 Non-stop decay model
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1.4.4 The fate of stalled ribosomes and their nascent peptides

The detection of NGD, NSD and 18S NRD substrates all depend on translation that results in
stalling of a ribosome at a site where it cannot terminate. Whereas in 18S NRD, a defective
ribosome may not translate far enough into the ORF to produce peptides of biological
significance, in NGD and NSD this may lead to the production of potentially harmful protein
products. Another problem is that translation cannot terminate properly and without
alternative recycling mechanisms peptidyl-tRNA containing ribosomes get stuck on the
mRNA. To deal with these problems, cells have mechanisms to degrade the produced peptide
and to release the ribosomes that cannot terminate. These mechanisms were all studied in S.

cerevisiae.

1.4.4.1 Recycling of stalled ribosomes

Translation of NGD and NSD substrates, or by defective ribosomes result in stalling of
ribosomes on sense codons or without any codon in their A-sites. The latter occurs on
poly(A)- NS mRNA and on NGD substrates after cleavage, which results in a ribosome
associated stop codon-less 5’ fragment similar to a poly(A)- NS mRNA. These ribosomes
cannot terminate or recycle via the canonical pathway. Impaired recycling is expected to
cause queuing of upstream ribosomes and a decreased rate of translation. Indeed a HIS3-NS
mRNA is associated with higher polysome fractions than its stop codon containing
counterpart in S. cerevisiae (Inada & Aiba, 2005) and both in S. cerevisiae and in HeLa cells
initiation-independent repression of translation of poly(A)+ NS mRNAs has been described
(Akimitsu et al, 2007; Ito-Harashima et al, 2007). Dom34, Hbsl and Rlil provide a rescue
mechanism that allows the recycling of stalled ribosomes, independent of the codon in the A-
site.

Together with Rlil, Dom34 and Hbs1 can induce the dissociation of ribosomes stalled on
mRNAs in vitro (Pisareva et al, 2011; Shoemaker et al, 2010; Shoemaker & Green, 2011).
Several lines of in vivo evidence, in S. cerevisiae, support that these factors dissociate
peptidyl-tRNA associated ribosomes stuck on poly(A)+ and poly(A)- NS mRNAs.

First, in absence of Dom34 peptidyl-tRNA produced from the poly(A)- NS mRNA GFP-Rz
remains ribosome bound, which is not the case when Dom34 is present, supporting the idea of
Dom34 dependent dissociation of the stalled complex. Second, deletion of DOM34 stabilizes
GFP-Rz, HIS3-NS and RNAI14-NS mRNAs in wild type or xrnIA but not in skiZA

background. This suggests that in absence of functional Dom34-Hbsl complex, a non-
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dissociated ribosome at the 3’ end of these mRNAs blocks degradation by the exosome
(Tsuboi et al, 2012). On the other hand, it could also be interpreted as Dom34 being needed
for exosome recruitment (Saito et al, 2013). Third, in a ski2A context, in which poly(A)- NS
mRNAs are stabilized, deletion of Dom34 causes a large reduction in the level of protein
produced from a GFP-Rz mRNA (Kobayashi et al, 2010; Tsuboi et al, 2012). This can be
interpreted as inhibited recycling of stalled ribosomes severely reducing translation rates.
Finally, deletion of Dom34 in a ski2A or xrnlA background leads to the appearance of a
ladder of stabilized mRNA fragments resulting from a GFP-Rz mRNA and a HIS3-NS
mRNA, that differ in size by the space a ribosome would occupy on the mRNA (Tsuboi et al,
2012). This was interpreted to reflect queuing of stalled ribosomes on a poly(A)+ NS mRNA
when their dissociation is inhibited, with endonucleolytic cleavages being induced at different
places between stalled ribosomes, reminiscent of the cleavages observed in NGD.

In vitro Dom34-Hbs1-Rlil mediated dissociation of stalled ribosomes was efficient only
when the RNA downstream of the A-site was of small length (Pisareva et al, 2011;
Shoemaker & Green, 2011). This suggests that during NGD mRNA cleavage precedes
ribosome recycling. The fact that the 5° cleavage product is similar to a poly(A)- NS mRNA
suggests that recycling of ribosomes stalled on NGD substrates follows a mechanism similar
to recycling of ribosomes on poly(A)- NS mRNAs. Indeed, deletion of Dom34 in a wild type
background, causes accumulation of 5’ cleavage products from mRNAs containing G-rich
sequences, K12 or a stretch of rare (mostly arginine) codons, suggesting that stalled

ribosomes block passage of the exosome (Tsuboi et al, 2012).

1.4.4.2 Nascent peptide degradation

The peptides produced from mRNAs containing a stall site are actively degraded. This was
first described for truncated proteins produced from a GFP-HIS3-K12 reporter, which were
found to be highly unstable (Ito-Harashima et al, 2007). Incomplete proteins produced from
K12 or R12 containing mRNAs were found to be degraded by the proteasome, a large protein
complex that is responsible for the majority of protein degradation in the eukaryotic cell.
Inhibition of the proteasome leads to the accumulation of a truncated protein product from
GFP-K12-FLAG-HIS3 and GFP-R12-FLAG-HIS3 reporters and from similar reporters
containing insertions of endogenously occurring sequences that encode K/R rich peptides
(Dimitrova et al, 2009). The accumulation of these truncated proteins depends on the presence

of Rackl. Absence of this ribosome associated factor results in increased levels of full length
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proteins and in a slight reduction in NGD efficiency. It is therefore proposed that Rackl is
required for ribosome stalling on stretches of basic amino acids (Kuroha et al, 2010).

Proteins are targeted for proteosomal degradation by polyubiquitination. Two E3 ubiquitin
ligases were found to be responsible for targeting incomplete proteins produced from mRNAs
containing K12 or R12 stall sites for degradation. These factors are Ltnl and Not4. Deletion
of Not4 inhibits the degradation of truncated proteins produced from GFP-K12-FLAG-HIS3
and GFP-R12-FLAG-HIS3 mRNAs (Dimitrova et al, 2009). Ltnl is responsible for
polyubiquitination and degradation of a GFP-FLAG-HIS3-K12 protein product, the stability
of which is not affected by Not4 (Bengtson & Joazeiro, 2010). This suggests that the targets
of Not4 and Ltnl, although both characterized by basic amino acid dependent ribosome
stalling, may not overlap and depend on other factors than the stall site itself. Interestingly no
truncated protein product resulting from a stem loop containing GFP-SL-FLAG-HIS3 mRNA
was detected upon proteasome inhibition (Dimitrova et al, 2009). As stem loop containing
NGD substrates are polyubiquitinated in rabbit reticulocyte lysates (Shao et al, 2013), this
probably reflects the weakness of stem loop induced stalling in yeast.

Proteins produced from poly(A)+ NS mRNAs are also rapidly degraded: in S. cerevisiae their
half lives are reduced compared to those of proteins translated from their stop codon
containing counterparts (Bengtson & Joazeiro, 2010; Ito-Harashima et al, 2007). Similarly to
truncated peptides produced from mRNAs containing a K12 stall site in their ORF, NS-
proteins are degraded by the proteasome (Bengtson & Joazeiro, 2010; Ito-Harashima et al,
2007). Their degradation requires ubiquitination by Ltnl (Bengtson & Joazeiro, 2010; Wilson
et al, 2007). Polyubiquitination of the peptide by Ltnl occurs at least partly while it is still
associated with the ribosome as a peptidyl-tRNA: in a /tnIA strain the poly(A)+ NS protein
accumulates in the 80S fraction (Bengtson & Joazeiro, 2010). The degradation mechanism of
NS proteins strongly resembles that of peptides produced from some mRNAs containing K12
or R12 stall sites. Since the poly(A) tail translates into a stretch of polylysines, it is
conceivable that stalling of a ribosome translating the poly(A) tail plays an important role in
triggering the degradation of the peptide produced.

In rabbit reticulocyte lysate it was found that peptides produced from poly(A)+ NS mRNAs,
poly(A)- NS mRNAs, and mRNAs containing a K12 or stem loop stall site are
polyubiquitinated while still linked to the tRNA and bound to the ribosome. For a poly(A)-
NS protein it was specified further that efficient ubiquitation requires dissociation of the
stalled ribosome (see below) and that it depends on the Ltnl homolog Listerin, which binds

mainly to the ribosomal 60S subunit (Shao et al, 2013). Studies in S. cerevisiae showed that
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ubiquitination of poly(A)+ NS-peptides by Ltnl can start on 80S ribosomes, but that larger
ubiquitin chains are found associated to ribosomes. Together these findings suggest that
ubiquitination may start on 80S ribosomes, but, at least in mammalian systems, requires
ribosomal subunit dissociation to produce larger chains.

Recent studies in S. cerevisiae found Ltnl to be part of a Ribosome Quality Control complex
(RQC) that also comprises the factors Tae2, Rqcl and the hexamer forming protein Cdc48
with its cofactors (Figure 30). The whole RQC associates with 60S ribosomal subunits and its
factors are needed for the degradation of peptides produced from poly(A)+ NS mRNAs and
mRNAs containing an R12 stall site (Brandman et al, 2012; Defenouillere et al, 2013; Verma
et al, 2013). Cdc48 is a force generator that in several of its functions extracts proteins or
peptides from protein complexes or through pores across membranes (Stolz et al, 2011). It
was therefore hypothesized that Cdc48 may extract the peptide from the 60S subunit’s peptide
tunnel and escort it to the proteasome (Brandman et al, 2012; Defenouillere et al, 2013;
Verma et al, 2013).

Together these observations indicate that stalled ribosomes bind the RQC, possibly already
when ribosomal subunits are still associated, but more so after subunit dissociation (see
below). Ltnl in the RQC ubiquitinates the 60S bound peptidyl-tRNA. Then Cdc48 and its

cofactors can extract the peptide and guide it to the proteasome.
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(Brandman et al, 2012)
Figure 30 Model of RQC mediated degradation of nascent peptides produced by stalled ribosomes.

1.4.5 Multiple roles for the Dom34-Hbs1 complex?

The Dom34-Hbs1 complex has been interpreted to play two separate roles in quality control
pathways acting on stalled translational complexes. First, their absence was observed to cause
a reduction in the accumulation of mainly the 5° NGD cleavage product, in strains deficient

for exosome mediated degradation (see paragraph 1.4.1.1). This was interpreted to reflect
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stimulation of the endonucleolytic cleavage by the Dom34-Hbs1 complex (Doma & Parker,
2006; Tsuboi et al, 2012). Second, the complex dissociates stalled ribosomes, which is
thought to make ribosomal subunits and other translational factors available for new rounds of
translation, and promotes the degradation of no-go and non-stop mRNAs (Pisareva et al,
2011; Shoemaker et al, 2010; Shoemaker & Green, 2011; Tsuboi et al, 2012) (see paragraph
1.4.4.1). However, one could argue that the dependence of NGD cleavage product
accumulation on the Dom34-Hbsl complex can be attributed to its ribosome dissociating
activity too.

As described in paragraph 1.4.4.1, absence of Dom34 stabilizes poly(A)- NS mRNAs, which
mimic 5° NGD intermediates, in wild type and xrnlA background, suggesting that non-
recycled ribosomes block passage of the exosome. In contrast, in a ski2A strain, in which the
NS mRNA is stabilized, absence of Dom34 causes destabilization of poly(A)- NS mRNAs.
This was interpreted to be the result of multiple endonucleolytic cleavages induced by the
queue of ribosomes stalled in absence of Dom34-Hbs1 mediated release (Tsuboi et al, 2012).
By the same mechanism absence of functional Dom34-Hbs1 could cause destabilization of 5’
NGD cleavage products, in strains defective for cytoplasmic exosomal degradation.
Following this explanation, the lower level of 5 NMD cleavage products in absence of
Dom34 or Hbsl is not due to Dom34-Hbs1 being required for their production, but because in

absence of Dom34-Hbs1 the fragments are destabilized.
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1.5 PROJECT OUTLINE

In my PhD work I studied the function of the complex formed by Dom34 and Hbs1. In the
first part of my work I focused on RNA quality control pathways the Dom34-Hbs1 complex
functions in. In the second part I studied the biological relevance of Dom34-Hbs1 mediated
ribosome dissociation. This included a search for roles of the complex beyond RNA quality

control.

1.5.1 The Dom34-Hbs1 complex and RNA quality control

NGD, 18S NRD and NSD share several characteristics, including inefficient translation or
ribosomal stalling as a trigger for RNA degradation and the involvement of Dom34 and Hbs]1.
At the moment my work on this project started, the involvement of Dom34 and Hbs1 in NSD
was not yet defined, therefore my work focuses on NGD and 18S NRD. Because of the
similarities between these pathways it has been hypothesized that they may reflect one single
pathway, in which the recruitment of Dom34 and Hbsl to stalled ribosomes induces

degradation of mRNA and 18S rRNA and induces ribosome dissociation (Cole et al, 2009;

Soudet et al, 2010).

During my thesis I tried to obtain more insight into the function Dom34, Hbsl and other

factors in NGD and 18S NRD. Questions I addressed were:

e What are the functional requirements of the Dom34-Hbsl complex in NGD and 18S
NRD? More specifically I addressed the importance of the GTPase activity of Hbs1 and
the interaction between Dom34 and Hbsl.

e How do NGD and 18S NRD relate? Do they represent one single pathway in which
stalled ribosomes induce degradation of both mRNA and 18S RNA, or do they occur
independently?

e What is the endonuclease responsible for mRNA cleavage in NGD?

e Are there other, thus far unidentified factors acting on stalled ribosomes?

To address these questions various approaches were used, using the yeast S. cerevisiae as an
experimental system. These include a structure-function analysis on the Dom34-Hbsl
complex, in collaboration with Dr. Julien Henri and Dr. Marc Graille, in vitro translation
experiments, the development of protocols to specifically purify stalled ribosomes with their
associated factors and the analysis of the effect of several gene deletions on NGD and 18S

NRD.
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1.5.2 Biological relevance of Dom34-Hbs1 mediated ribosome dissociation
So far in vivo experiments have concentrated mainly on the role of the Dom34-Hbs1 complex
in RNA quality control (Tsuboi et al, 2012). Defective RNAs that cause ribosomes to stall are
expected to occur with low frequency and may therefore have relatively small consequences
for the viability of individual cells, cell populations, or an entire organism. This is consistent
with Dom34 being non-essential for viability in yeast, but contrasts with the more severe
phenotypes of DOM34 deletion in higher organisms. For example, in mice Dom34 deficient
zygotes do not develop past a stage several days post-fertilization (Adham et al, 2003). I
therefore tried to identify other situations in which Dom34-Hbsl mediated ribosome
dissociation is required. More specifically I addressed the following questions:

e Can the Dom34-Hbs1 complex dissociate inactive ribosomes, not associated with mRNA
or translation factors, that accumulate during stress conditions, and thereby stimulate
recovery of translation upon stress relief?

e Can the Dom34-Hbsl complex act on post-termination complexes, and thereby replace
eRF1-eRF3?

e Is Dom34-Hbsl mediated removal of ribosomes from mRNAs needed for efficient

degradation by Xrn1 or the exosome in general?

These questions where addressed using S. cerevisiae. The action of Dom34-Hbs1 on inactive
ribosomes was studied in and after glucose depletion stress. Translation was monitored using
polysome profiles obtained on sucrose density gradients and by measuring protein production.
In collaboration with Anthony Schuller and Dr. Rachel Green (Johns Hopkins University,
USA) biochemical ribosome recycling experiments were performed. Other experiments
included the analysis of genetic interactions of Dom34 and Hbs! with termination factors and

RNA degradation factors.
The results of my work will be presented in the next section and include one paper published

in Nature Structural and Molecular Biology in 2010 and one manuscript that is currently

submitted for publication.
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2. RESULTS
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2.1 STUDY OF THE ROLE OF DOM34-HBS1 IN RNA QUALITY

CONTROL
The RNA quality control pathways NGD and 18S NRD have several features in common. In

both pathways the recognition of RNA targets depends on inefficient translation and in both
pathways Dom34 and Hbsl affect RNA degradation. In 18S NRD the factors stimulate the
degradation of defective 18S rRNAs. In NGD, accumulation of at least the 5° degradation
intermediate that results from mRNA cleavage, depends on Dom34 and Hbsl. It has been
hypothesized that NGD and 18S NRD may represent one single pathway, in which ribosomal
stalling causes Dom34-Hbsl recruitment, which leads to ribosome dissociation and
degradation of at least the mRNA and 18S rRNA (Cole et al, 2009; Soudet et al, 2010).
Because Dom34 and Hbsl are central players in both pathways, we performed a structure-
function study on the complex they form. This study resulted in a publication in Nature
Structural and Molecular Biology. A summary of this work together with the published article
will be presented in the next paragraph. Supplementary data of the publication can be found in

the supplementary information of this thesis.

2.1.1 A structure-function study of the Dom34-Hbs1 complex

Our collaborators, Dr. Julien Henri and Dr. Marc Graille, obtained X-ray crystallographic
structures of S. cerevisiae Hbsl, in apo and GDP bound form. They also made a structural
model of the Dom34-Hbsl complex, based on superposition of Hbsl and Dom34 crystal
structures (Graille et al, 2008; Lee et al, 2007) on eRF1-eRF3 interacting domains (Cheng et
al, 2009) and optimization based on comparison of calculated curves with small angle X-ray
scattering data obtained from a yeast Dom34-Hbs1 complex. The Dom34-Hbs1 model overall
resembled the structural models obtained from archaeal Dom34-aEFla (Kobayashi et al,
2010) and ribosome bound Dom34-Hbs1 from S. cerevisiae (Becker et al, 2011) and differed
from the S. pombe Dom34-Hbsl crystallographic structure (Chen et al, 2010) in the
orientation of the Hbs1 G domain (see paragraph 1.3.2.1). Similarly to the first two structures,
this domain packs against domains Il and IIl of Hbsl. This observation invalidates the
hypothesis that the conformation in which the G domain packs against domains II and III is
induced by GTP binding (see paragraph 1.3.2.1). In addition to the contacts between the C-
terminal domain of Dom34 and domain III of Hbsl, similar to the interaction between the
corresponding domains in eRF1-eRF3, the model of the complex predicts a second interface

between the central domain of Dom34 and the G domain of Hbs]1.



Based on these structural data I studied the importance of the GTPase activity of Hbs1 and of
the interaction between Dom34 and Hbsl for Dom34-Hbsl function in S. cerevisiae. 1
produced mutants targeting the GTP binding site of Hbsl as well as Dom34 and Hbsl
mutants that disrupt the interaction between the two factors. The effect of these mutations on
Dom34 and Hbs1 function was studied. NGD was assayed by monitoring the Dom34-Hbs1
dependent accumulation of a degradation intermediate (see Figure 31). The effect of the
Dom34-Hbs1 mutations on 18S NRD was analyzed by monitoring the steady levels of an 18S
rRNA with a defect in the decoding center. In absence of Dom34 or Hbs1 the level of this 18S
rRNA increases due to inefficient NRD. Finally, the effect of the Dom34-Hbs1 mutations on
growth of yeast strains with a 40S subunit deficiency was studied. As described in paragraph

1.3.1.1, in these strains the absence of functional Dom34 or Hbs1 causes growth defects.
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Figure 31 No-go decay assay
In a ski7A strain the 5’ intermediate (in red rectangle) resulting from mRNA cleavage accumulates. This
accumulation is dependent on the presence of functional Dom34 and HbslI.

I found that GTP binding by Hbsl is required for all functions tested. A stable interaction
between Dom34 and Hbsl was also required for their function in NGD. However, Dom34-
Hbsl interaction was not or much less important for the complex’s function in 18S NRD.
Mutations that disrupt Dom34-Hbs!1 interaction had no or hardly any effect on growth in a

strain with 40S subunit deficiency either. Moreover, an asymmetry was observed between the

81



effect of mutating Dom34 and mutating Hbs1 residues involved in the interaction. Whereas
mutating Dom34 residues important for interaction with Hbs1 had a small effect on 18S NRD
and growth in 40S subunit deficient strains, Hbs1 mutations affecting the other side of the
interface had no effect at all.

In the paper these results were interpreted as Dom34 and Hbs1 interaction being required for
efficient NGD endonucleolytic cleavage, but not for efficient 18S NRD or growth in a 40S
subunit deficient strain. The ability to genetically separate these pathways would then indicate
that upon recruitment of Dom34-Hbsl to stalled ribosomes, mRNA and rRNA may not
always be degraded simultaneously. However, as described in paragraph 1.4.5, the Dom34-
Hbsl dependence of NGD intermediate accumulation may not represent Dom34-Hbsl
dependent mRNA cleavage but could instead be caused by destabilization of the 5° NGD
intermediate in absence of Dom34-Hbsl. This hypothesis would need a different
interpretation of these data. This will be addressed further in the discussion section of this

thesis.
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Dissection of Dom34-Hbsl1 reveals independent functions
in two RNA quality control pathways

Antonia M G van den Elzen"?4, Julien Henri**, Noureddine Lazar?, Maria Eugenia Gas'?2

Dominique Durand?, Francois Lacroute?, Magali Nicaise?,

Marc Graille?

Eukaryotic cells have several quality contral pathways that rely on

Herman van Tilbeurgh?, Bertrand Séraphin'? &

translation to detect and degrade defective RNAs, Dom34

and Hbs1 are two proteins that are related to translation termination factors and are involved in no-go decay (NGD) and
nonfunctional 185 ribosomal RNA (rRNA) decay (185 NRD) pathways that eliminate RNAs that cause strong ribosomal stalls.

Here we present the structure of Hbs1 with and without GDP and
complex mimics compl of the elongation factor and transfer Rl

a low-resolution model of the Dom34-Hbs1 complex. This
NA or of the translation termination factors eRF1 and eRF3,

supporting the idea that it binds to the ribosomal A-site. We show that nucleotide binding by Hbs1 is essential for NGD and 185
NRD. Mutations in Hbs1 that disrupted the interaction between Dom34 and Hbs1 strongly impaired NGD but had almost no
efiect on 185 NRD. Hence, NGD and 185 NRD could be genetically uncoupled, suggesting thal mRNA and rRNA in a stalled

translation complex may not always be degraded simultaneously.

The transter of genetic information from DNA to RNA in eukaryotes
requires a multistep combination of transcription and processing.
These processes are sources of errors in which nonfunctional RNAs
can affect the accuracy of gene expression. Such mistakes can lead
to cell death or disease, and so cells have developed several quality
control mechanisms to detect and degrade these nonfunctional
BNAs"., For example, mRNAs containing a premature stop codon
or lacking an in-frame stop codon are degraded by the nonsense-
mediated decay (NMD)** and non-stop decay (NSD)** pathways,
respectively. These targets are recognized and degraded through inter-
actions among the translational apparatus, pathway-specific factors
and mRNA degradation machineries. These processes prevent the
accumulation of aberrant, potentially deleterious proteins while
facilitating ribosome recycling.

Recently, two RNA surveillance pathways that involve identical
factors have been described in Saccharomyces cerevisine. First, an
engineered stable stem-loop that forces the ribosome to pause during
elongation was shown to induce rapid mRNA degradation®. This
was initiated by endonuclease cleavage close to the stem-loop and
was followed by 5'—3" degradation of the 3’ cleavage product by the
exonuclease Xrnl and 33" degradation of the 3° cleavage prod
uct mediated by the exosome, which was recruited by Ski7 and
the Ski complex®. This pathway, named no-go decay, or NGD, also
targets depurinated mENAs, which induce stalling of ribosomes’.
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NGD involves the proteins Dom34 and Hbs 1 (ref. 6), which are related
to the translation termination factors eRF 1 and eRF3, respectively.

Dom34 and Hbs1 have also been implicated in the 185 NRD path-
way™?, which degrades nonfunctional 185 rRNAs that have been
assoclated into ribosomal subunits but cannot support efficient
translation. This pathway also targets some immature ribosomes
that engage in translation'”, Neither Dom34 nor Hbs1 is required
for efficient growth in 5. cerevisine. However, deletion of HBSI or
DOM34 causes severe growth defects in strains that contain a null
allele for one out of several genes that encode proteins of the small
ribosomal subunit (RPS30A, RPS30B, RPS14A)', These strains are
still viable, as pairs of genes encode the corresponding ribosomal
proteins. However, in such strains the remaining gene copy is prob-
ably insufficient to maintain a proper balance of the corresponding
protein, leading to the accumulation of incomplete or unstable small
ribosomal subunits that are predisposed to stalling. Hence, there is
growing evidence that Dom34 and Hbsl are involved in clearing
RMNAs that induce translational stalls from cells.

Studies in yeast, Drosophila and mouse have shown that Dom34
(known as Pelota in higher eukaryotes) is required for correct cell
divisions'*'*. Dom34 is structurally related to the translation termi
nation factor eRF1 except for its N-terminal domain, which adopts an
Sm-fold that is commonly found in RNA recognition or degradation
factorst® 7, This domain has been reported to have an in vifro divalent
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metal ion-dependent endonuclease activity'”, However, this finding
has been challenged'® because the i vifro nuclease activity could not
be reproduced and overexpression of Rps30a was sufficient to restore
some mRNA cleavage in the absence of Dom34.

Dom34 associates with Hbsl, a member of the family of eEF
1A-like GTPases. This family includes the translation elongation
factors eEF- 1A and EF-Tu, which deliver amino acyl-transfer RNAs
(tRNAs) to the ribosomal A-site, eRF3 and Ski7 (refs. 11,16,19,20).
Initially, Hbs | was identified as a suppressor of Hsp70 subfamily B.
In yeast, deletion of both $SB! and 5SE2 (which encode Hsp70
chaperones that interact with nascent polypeptide chains as they
exit the ribosome) results in slower cell growth, a reduced number
oftranslating ribosomes and slower translat ion?!, These phenotypes
are suppressed by overexpression of Hbs1, which suggests that Hbs1
helps to mediate stop codon-independent peptide release from
ribosomes that are stalled by the absence of Hsp70- mediated nascent
polypeptide channeling. This function is related to the one proposed
for Hbsl and Dom34 inboth NGD and 185 NRD®. Hbsl is a GTP-
binding protein whose affinity for GTP but not GDP is enhanced by
Dom34, ina similar way to how eRF1 enhances the ability of eRF3
to bind to GTP1L1622

To gain insight into the mechanisms by which the Dom34- Hbsl
complex takes part in these quality control pathways, we have solved
the crystal structure of S. cerevisiae Hbs | and obtained a low- resolution
model of the Dom34- Hbslcomplex by small-angle X-ray scatter
ing (SAXS). This allowed us to study the precise role of the Hbsl
nucleotide-binding site and its interaction with Dom34 in NGD
and 185 NRD, and this revealed that these two processes can be
genetically uncoupled.

RESULTS

Overall structure

As the N terminus of S. cerevisiae Hbsl Is predicted to be poorly
folded, we purified several Hbs1 fragments starting at different posi
tions and obtained diffracting crystals for the construct that encom-
passed residues 135-610 (hereafter referred to as Hbs1dN134). We
solved the structure of this construct using the single-wavelength
anomalous dispersion (SAD) method (see Supplementary Fig. 1
for experimental electron density maps). The structures of the
apo and GDP-bound forms were further refined to resolutions of
25Aand 295 A, respectively (Table 1), We found that Hbs1dN134
comprised an N-terminal GTPase domain (residues 165-398) and
two six-stranded PB-barrel domains (domain 11, residues 399-498
and domain 111, residues 499-610; Fig. l1a). The GTPase domain
was preceded by along N-terminal loop (residues 140-164) that was
partially folded as an oc-helix (oA ), which packed against domain [1.
The GTPase domain adopted the classical o/} structure that is com
mon to GTPases such as EF-Tu, eRF3 and Ras?*2%, It comprised a
central six-stranded f-sheet (strand order p&, B3, B4, B1, B3 and B2,
which is antiparallel to the others) fllanked by seven ol-helices (a1,
o2, o6 and o7 on one side of the sheet and o35 on the other). This
domain was connected to domain II by a long o-helix (a7; residues
376-398). Domains IT and 111 adopted a fold similar to the corre-
sponding domains from EF-Tuand eRF3 (refs. 24,26). Inall structures
of members of the eEF-1A superfamily, domains IT and 111 are held
in the same relative orientation, but this is not true for the GTPase
domain. In the structure of Schizosaccharomyces pombe ¢eRF3, there
are no contacts between the GTPase domain and domains 11 and
JIIE (Supplementary Fig. 2a). In Hbs1dN1 34, the GTPase domain
packed against domains [T and 111 in a manner reminiscent of the EF
Tu-GDPNP complex. SAXS experiments in solution on Hbs1dN1 34

Table 1 Data collection and refinement statistics

Native Sehdet GDP form
Data collsction
Space group P4z, 2 Pz 2 Pda2,2
Cell dimansiong
a b, cth) 1108, 110.5, 1106, 1106, 110.6, 110.6, 188.1
188.1 188.1
o, 8y (*) a0, 80, 120 90, 50, 120 &0, 90, 120
Resolution (A) 30-25(2.54-2.5) 30-3.2(3.39-3.2) 20-295 (3 13-2.95)
Reyen 0.076 (0.486) 0.087 (0.472) 0.097 (0.481)
tal 26(37) 12.5(2.9) 85(2.2)
Cempleteness (%) (97.3) 99.6(99.1)
Redundancy 35(3.7) 3730
Refinamant
Resolutionth)  30-25 20-2.95
Mo, reflections 39,338 45,371
Fuok! Ryes 0.216/0.271 0.214/0.277
Mo, atoms
Protein 6,887 6,922
Ligandfion 54
Weter 275 65
Bfactors
Protein 46.1 625
Ligandfon - 76.5
Water 456 41
R.m, eviations
Bond lengths (A 0.008 Q011
Bond angles (™)  1.020 1.358
Valugs in heses are for highest-resolution shedl

showed that the conformation observed in our crystal structure fully
agrees with the conformation of the protein in solution and hence
is not induced by crystal packing (see Supplementary Data and
Supplementary Fig. 2).

The nucleotide-binding site

We have solved the structure of Hbs1dN134 in its apo form and in the
presence of GDP. As observed for the archaeal SelB elongation factor
and the eukaryotic release factor eRF3 (refs. 24,27), we saw no large-
scale domain movements between the apo and GDP-bound forms of
Hbs1dN134 (rm.s. deviation of 0.4 A over 430 Cot atoms).

GTPases are characterized by the presence of a P-loop and two
highly flexible and conserved segments called switch regions [ and [1
that are involved in nuclestide binding. These regions adopt radically
different conformations depending on whether GDP or GTP is bound.
The structure of the switch regions is highly variable for the GDP
forms but invariant for the GTP forms?, In the Hbs1dN134 apo form,
switch I (residues 194-234) was mostly disordered {absence of elec
tron density for region 205-228), although its N-terminal part folded
as a helix (o2). When GDP was bound, a portion from this switch
(residues 217-228) folded as a small o-helix (02", residues 217-223)
antiparallel to helix oe2 (Fig. 1b). Switch IT (residues 251-268) formed
an ¢-helix (0c3) that was connected tostrand B3 by a loop. The orien
tation of helix o3 remained constant between the apo and GDP-bound
forms, but the B3-o3 loop (residues 251-258) showed some flexibility
(Fig. 1b). Most of the Hbs1 residues that contacted GDP structur-
ally matched with the corresponding residues in the Escherichia coli
EF-Tu-GDP complex®® (Fig. 1c). The P-loop coordinated the GDP
phosphate groups through the main chain atoms of Val176-Thr182
and side chains from the polar residues Aspl177, Ser181 and Thr182,
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Lys314 and Phe354. In the EF-Tu-GDP complex. switch 1T contacted
the Mg?* ion. ‘This was not the case for the Hbs1dN134-GDP complex
as Mg’* was omitted in our experiments owing to its inhibitory effect
on binding of GDP to Hbsl (data not shown).

Two point mutants of the nucleotide binding region have been
described'': Vall76 is part of the P-loop and is involved in phosphate
binding (see above), whereas His255 of the switch 11 region is not directly
in contact with GDP in the Hbs1dN134-GDP complex but is probably
crucial for GTP binding, hydrolysis or both. To characterize the effect of
these mutations on nucleotide binding, we produced three single-point
mutants (V176G, H255E and K180A in the P-loop). Isothermal titration
calorimetry (ITC) analyses showed that, unlike the wild-type protein, these
mutants did not bind guanine nucleotides (Supplementary Fig. 3ab).
Circular dichroism {data not shown)and differential scanning calorimetry
(DSC) 1ents on these suggested that they were correctly
folded (Supplementary Fig. 3). We conclude that the substitutions that
we introduced completely abolished nucleotide binding.

Low-resolution model of the Dom34-Hbs1 complex

Like eRF3 and eRF1, Hbsl and Dom34 physically interact'!%,
The eRF1-eRF3 interface is located between the eRF1 C-terminal
domain and the domain 111 of eRF3 (ref. 29}, which suggests that the
Hbs1-Dom34 complex might be formed through the corresponding
domains, Superimposition of these Dom34 and Hbsl domains onto
the eRF1-eRF3 structure provided evidence that this process involves
residues from loops connecting strands BA” to BB" and BC’ to D’
of Hbs1 (Fig. 1d). In this model, these loops face residues from the
C-terminal part of helix o7, from cel 1 and from P13 of Dom34. This
possibility was furthersupported by in vitre interaction data that showed
that the Dom34 C-terminal domain, but not its N-terminal or central
domains, was crucial for interaction with Hbs1 (data not shown).
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measurements on the Dom34- Hbs 1dN134 complex (Fig 2a and
Supplementary Fig. 4). From the crystal structures of yeast and
archaeal Dom 34 (comparison of these structures revealed large con-
formational changes), and of veast Hbs1dN134 and the eRF1-eRF3
complex'®!"**, we generated two initial models {veast- and archaea-
like) for the Dom34-Hbs1dN134 complex. We then compared
the corresponding experimental and calculated scattering curves
(see Supplementary Data and Supplementary Fig. 4b.c). The best
agreement with the experimental scattering curve was obtained for the
archaea-like model (Fig. 2a: y-value of 5.9 versus 13.4 for the veast-like
maodel). In addition to the contacts between the Dom34 C-terminal
domain and domain 111 of Hbs1, this model highlights contacts
between the Dom34 central domain and the Hbs1 GTPase domain.
We performed rigid-body modeling with SASREF* to improve
the fit between calculated and experimental curves (Fig. 2ab.
y-values < 1.7: see Suppl tary Data and Suppl tary Fig. 4).
In the resulting Dom34-Hbs1 model, Dom34 adopts a tRNA shape
with its N-terminal and central domains matching the anticodon
and amino acyl acceptor arms of a tRNA molecule, respectively, as
observed in the EF- Tu-tRNA complex™ (Fig. 2b,c). This suggested
that Dom34-Hbs1 binds into the ribosomal A site. While this work
was in progress, the crystal structures ofthe Hbs 1- Dom34 complex
from 8. pombe (in the absence of nucleotide) and the EFlee-Dom34
complex from the archaea Aeropyrum pernyx (in the presence of
GTP and Mg?*) were reported’’ . In both structures, domain 111
from Hbs1 or EF1a interacts with the C-terminal domain of Dom34,
but these complexes differ in the orientation of the GTPase domain
relative to domains I1 and II1. For S. pombe, this domain does not
interact with Dom34, whereas for A. pernyx, this domain rotates
by 180° and contacts the central domain from Dom34 as proposed
in our model of the S cerevisiee Dom34-Hbs1dN134 complex.
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gene in 8. cerevisiae (Fig. 4).

We first constructed a protein A-tagged version of Hbs 1 that allowed
us to follow its expression. The wild-type Hbsl-protein A fusion

Sitmn sk 4nbatd, reponer PGKY.SL b
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mediate to full-length reporter mRNA was reducedto 30% of the ratio
observed in the presence of wild-type Hbsl, 4 level similar to that
detected in the absence of Hbs1 (Fig. 3a (lanes 4-6) and ¢).

The rapid degradation of the 188 NRD
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state levels of degradation intermediates of the NGD substrate PGK1-SLin a

5. carsvisiza strain transformed with Hbsl mutants. The PGK1-SL reporter was expressed from plasmid

pRP1251 and detected with oligonucleotide 0RP132 (ref. 8). (b) Northern blot

state levels of PGK1-SL degradation intermediates in a ski7Adom3dA 5. cerevisize strain transformed
with Dom34 mutants. (e d) Quantification ot a and b, respectively. For each mutant the ratio of
&% intermediate over full length PGK1-SL reporter was calculated and then standardized for the ratios
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Figure 3 Effects of Hbs1 and Dom34 mutations on NGD. (a) Northern blot analysis of the steady-

substrate 185 A1492C depends at least partly
on the presence of both Dom34 and Hbs1
(ref. 9). In the absence of either of these
factors. steady-state levels of 185 A1492C
RNA increased (Fig. 4a; compare lanes 1-3).
We tested whether the Hbs1 mutants that
were unable to bind nucleotide could
restore degradation of 188 A1492C in an
IbsIA steain and found that they could not
(Fig. 4a (lanes 4-6) and ¢), leading to steady-
state levels 3-4-fold higher than in the pre-
sence of wild type Hbsl (lanes 2 and 3) and
similar to the level observed in the ahsence
of Hbs1 (lane 1).

We screened for mutations that generated
a synthetic growth phenotype in a dom344
background and identified mutations in
genes that encoded the Rps28 proteins of the
small ribosomal subunit (data not shown).
This finding is consistent with previous
results obtained with genes that encode other
408 subunit proteins'’. Also consistent with
these data, the V176G and H255E mutants
could not complement the slow growth ofan
1ps28AARBSIA strain (Fig. 4e, compare with
wild-type Hbs1). The K180A mutant was also
inactive in this assay (Fig. 4e).

4 & & 7 0

skifAhBSIA

analysis of the steady

plicates is shown
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domain 111 of Hbs1 (Y300A-E361A, E361R and E361R-Q364A in
Dom34 and R517E, L520R and R557A-H5584A in Hbs1; Fig. 1d) for
thelr effects on NGD, NRD and growth in an 7ps28aA strain.
According to the Dom34- Hbs 1 model that we derived from SAXS
measurements, the Dom 34 central domain also contacts the GTPase
domain of Hbsl. To investigate the functional importance of this
interaction we also mutated this predicted interaction surface. In
the Dom34 central domain, we mutated a conserved loop rich in
basic residues ("KKKR') into alanines (KKKR mutant), which
has been shown to reduce NGD'®. Mutations of similarly positioned
basic residues in eRF1 affect the GTPase activity of eRF3, the inter-
action between eRF1 and eRF3 and their function®. In our model
this loop could contact the y-phosphate of a GTP molecule bound to
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protein (Supplementary Fig. 3). For Dom34, we could not obtain
sufficient quantities of recombinant SPGF mutant to analyze its sta

bility by DSC. All other Dom34 constructs were very similar, with
the Y300A-E361A, E361A-Q364R and E361R mutants being only
slightly less stable than the KKKR mutant and wild-type proteins
(Supplementary Fig. 3d).

All mutations of the interaction surfaces caused a reduction in
NGD (Fig. 3a (lanes 7-10) and b-d). The ratio of degradation inter-
mediate to full-length reporter mRNA was decreased to the same
extent as it was in strains that lacked Hbsl or Dom34 (Fig. 3a.b
(lane 1)). However, none of the Hbsl mutants affected 185 NRD,
as the level of 185 A1492C was identical to that seen in the pres
ence of wild-type Hbs1 (Fig. 4a (lanes 7-10) and ¢). By contrast, all
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Dom34 mutants caused some stabilization of the 185 A1492C NRD
substrate (Fig. 4b,d), although not to the same extent as in the absence
of Dom34. Although we cannot exclude the possibility that stabiliza
tion of the 185 A1492C NRD substrate in Dom34 Y300A-E361A and
E361R-Q364A mutants results from decreased protein in cells, the
effect of the E361R mutant, which is found at similar levels as wild-
type Dom34, suggests that a functional Dom34-Hbs| interaction
surface is required for optimal 185 NRD. All mutations that affected
interaction complemented the slow growth defect in dom34Arps28AA
or iibsiArps28AA strains (Fig, 4¢), although the Hbs| L520R mutant
and all Dom34 mutants except E361R did not restore growth to the
same extent as their wild-type counterparts.

These results indicate that the interaction between Dom34 and
Hbs1 is crucial for efticient NGD but is less essential for ISSNRD and
growth in the context ofa strain lacking a gene encoding a ribosomal
protein of the small subunit.

DISCUSSION

Eukaryotes have developed sophisticated surveillance pathways
to detect nonfunctional or damaged DNA, RNA and proteins,
thereby leading to their repair or rapid degradation. In this study,
we focused on Hbsl and Dom34, two interacting proteins that have
been implicated in two RNA quality control pathways: NGD and
185 NRD7%19, Bath pathways lead to the degradation of mRNAs
or rRNAs that cannot undergo translation elongation, but their
mechanisms remain unclear.

The domain organization of Hbs1dN134 is similar to those of
other members of the eEF- 1A family. As for EF-Tu, the Hbs1 GTPase
domain s tightly packed onto domains [T and 111 (Fig. 1a), by con-
trast with the ‘open’ structure observed for eRF3 (ref. 24). Cur SAXS
data (Supplementary Fig. 2) for Hbs1 as well as mutant analysis of
S, pombe eRF3 (ref. 24) support the existence of a conserved ‘closed’
conformation that corresponds with our crystal structure and is likely
to be necessary for the function of eEF- 1 A family members.

Like other eEF-14A factors, Hbs1 is likely to ¢ycle between GTP-
bound. GDP-bound and free forms. Nucleotide binding was essential
for all the Hbsl functions we tested, namely NGD, 185 NRD and
growth complementation. In eRF3, GTP binding (stimulated by eRF1)
promotes a rearrangement of the termination complex that leads to
GTP hydrolysis followed by rapid hydolysis of peptidyl -t RNA, peptide
release, tRNA liberation and subunit dissociation?*3%7, Similarly,
association of GTP with Hbs1, but not of non-hydrolvzable GDPNP,
promotes ribosome dissociation and the release of peptidyl-tRNA.
Cur mutants of Hbs1 that impaired nuceotide binding and thereby
also prevented GTP hydrolysis are thus likely to impede this process,
suggesting that such rearrangements are a prerequisite for initiating
the degradation of the small ribosomal subunit or bound mRNA.

In our model of the Hbs1- Dom34 complex (Fig. 2), which is most
likely to represent the solution structure, yeast Dom34 adopts the
conformation that has been observed for its archaeal counterpart!”,
rather than the cognate structure'®, Our model is also more similar to
the Dom34-EF 1ot from A. pernyxthan tothe 8 pombe Dom34-Hbs1
structure’ . Our Dom34-Hbs! model is also strongly analogous
to the bacterial EF-Tu-tRNA complex that is involved in translation
elongation”®. Comparison of our Hbsl-Dom34 model and the
EF-Tu-tRNA complex (Fig. 2b.c) shows that Dom34 and the tRNA
have similar shape and localization relative to the GTPase domains
of their respective partners. The N-terminal, central and C-terminal
domains of Dom34 occupy similar positions to the anticodon stem,
amino acyl acceptor arm and T stem of tRNA, respectively. Thus, the
N-terminal domain of Dom34 is likely to bind close to the mRNA

codon in the A-site of the stalled ribosome. This domain is structurally
unrelated to the eRF 1 N-terminal domain and adopts an Sm-fold***,
Two loops (residues 49-53 and 87-92) from this Dom34 domain that
are functionally important for the NGD pathway in yeast'® occupy
approximately the same position as the tRNA anticodonloop in our
madel and hence could directly contact the mRNA codon, probably in
asequence-independent manner. Consistently, functional assays have
shown that Dom34-Hbs! induces ribosome dissociation independent
of the sequence in the ribosome A site*®.

Binding data indicate that the interface between Hbs1 domain [T and
the C-terminal domain of Dom34 is essential for interaction, whereas
contacts between the Hbsl GTPase domain and the Dom34 central
domain probably have regulatory functions (data not shown). Inhumans,
binding of the central domain of eRF1 to eRF3 stimulates GTP binding
and GTPase activity of the latter’ This may involve stabilization of the
eRF3 switch regionby Argl192 of ¢RFI (ref. 29), which explains how eRF1
might stimulate the affinity of e RF3 for GTP233, The association of GTP
with Hbs1 is similasly stimulated by Dom34 (ref. 16). The residues from
8. cerevisiae Hbs1 domain 1T and the C-terminal domainof Dom34 that
were involved in complex formation in our model do interact in the
crystal structures ofthe Hbs1(EF1ot)-Dom34 c(}mp]exes“' 2 However,
the second interaction that was propesed in our study, involving residues
SPGF of Dom34 and 2“RDF?*® of Hbs1, is conserved in the A. pernyx
structure but not inthe S, pombe complex, owing to the 1807 rotation of
the GTPase domain of Hbs1.

Our results indicate that the interaction between Dom34 and Hbs1
is essential for NGD but is less crucial for 185 NRD or growth in an
rps28aA strain. This suggests that a function of Hbsl is required for
NGD that is not essential for 185 NRD. Moreover, the interaction
surface in Dom34 seems to be more essential for 185 NRD than the
interaction surface in Hbs1. As both Dom34 and Hbs1 are essential
for both NGD and 188 NRD, a possible explanation for our results is
that an additional factor stabilizes the Dom34-Hbs1 interaction dur-
ing 185 NRD but not during NGD. Alternatively, NGD may require
a tighter interaction between Dom34 and Hbsl than 185 NRD and
might therefore be more affected by a weakening of the interaction of
Hbs1. It is also possible that Dom34 interacts with another factor that
is specifically required for NGD through the interaction surface that is
used by Hbs1, explaining the asymmetry of our mutant phenotypes.

Although the corresponding mechanistic details remain to be elu-
cidated, our data indicate that NGD and 185 NRD can be genetically
uncoupled. Given that NGD and 185 NRD share several factors (Hbs1,
Dom34 and components of the degradation machinery) and target
substrates with similar characteristics, it has been proposed that these
processes occur in parallel as a consequence of inappropriate stalling
of a ribosome”. However, our results suggest that mRNA and rRNA
in a stalled translation complex may not always be simultaneously
degraded. Notably, the observation that the growth phenotype assayed
in the absence of Rps28a correlates with their effects on 185 NRD,
but not on NGD, indicates that in these cells 185 NRD has become
crucial. The absence of 185 NRD might be quantitatively more detri
mental to cells than defective NGD: in the former, a small fraction of
stalled ribosomes might quickly have a general impact on translation
by sequestering functional ribosomes in dead polysomes, whereas in
the latter, only a few mRNAs and ribosomes would be affected.

Overall, our data show that eukaryotic cells use the Hbs1-Dom34
complex as a tRNA-elongation factor complex mimic to carry out
RNA quality control mechanisms. Entry of the Dom34-Hbs1 com-
plex to the A-site of stalled ribosomes contributes to NGD and
185 NRD, but the rules that govern its specific recruitment are
unknown. However, our data indicate that these two processes can
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be functionally separated. The mechanisms that control the outcome
of binding of Dom34-Hbs1 to a stalled ribosome—degradation of
the substrate mRNA, destruction of the small ribosomal subunit or
both—remain to be deciphered.

METHODS
Methods and any associated references are available in the online
version of the paper at http://www. nature.com/nsmby/.

Accession codes, Protein Data Bank: 3P26 for apo-Hbs1 and 3P27
for Hbs1-GDP.

Note: Supplementary information is available on the Natwre Structural & Molecular
Eiology website.
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ONLINE METHODS
Cloning, exp and purifi of Hbs1 p The wruncated version
of the HBS1 gene (YKRO034c) with the first 134 residues deleted was ampli-
fied by PCR from 8. cerevisiae S288C genomic DNA. An additional His, tag
was introduced downstream of the 3 coding sequence. The PCR products were
cloned inte a modified pETZ8 vector between Eagl and Notl restriction sites.
The protein was expressed and purified as described for the full-length protein'®,
A seleno-methionine (Se-Met) derivative of HbsldN134 was expressed in
Se-Met ! ted minimal medium using the same expression system as
for the native protein. The Se-Met protein was purified with the same method
asfor the native protein.

The full-length mutated versions { V176G, H235E, K180A) of the HES1 gene
{YKR084c) were amplified by PCR from 5. cerevisiae expression plasmids and
inserted in an ampicillin-resistant pET21a vector. An additional His, tag was
introduced downstream of the coding sequencebetween BamHI and Notl restric-
tion sites. The mutants were expressed and purified using the same protocol as the
Hbsl1dN134 protein. See further details in Supplementary Methods.

Yeast strains and plasmids. Yeast strains were constructed by standard methods
and are derivatives of BMAG4 except for Y190 {two hybrid), Strains and plasmids
are listed in Supplementary Table 1.

Drom34 and the upstream flanking sequence were amplified from genomic
DNA and cloned between the Xhol and Xbal sites of pRS415, giving pBS3217.
Hbsl with its flanking sequences was amplified from genomic DNA and cloned
between the Smal and HindllT sites of pRS41 5, generating pBS3611. C-terminal
tags (3HA for Dom34 and protein A for Hbsl) were introduced by fusion

PCR. The Dom34-3HA product digested by HindIIl and Nhel was cloned into
pB53217, generating pB53635. The Hbsl -protein A product digested by Ndel
and HindIlI was cloned into pBS3611, generating pBS3614.

Dom34 and Hbsl point mutations were introduced in pBS3685 or pB33614
respectively by QuickChange mutagenesis, except for the KKKR mutant, which
was produced by fusion PCR, digested by Hindlll and Xhol, and cloned into
pB53685. All constructs were verified by sequencing.

RNA analysis. Yeast cultures were grown in CSM-Len-Ura {(NGD assay) or
CSM-Leu-Tep (185 NRD assay} containing 2% {w/v) galactose at 30 °C until
0Dy 0.6-1.2. Total RNA was obtained by hot phenol extraction, 10 ug RNA
was separated on 1.5% {w/v) agarose- 6.3% (w/v) formaldehyde gel {135 NRD)
or 15 g on 1.25% agarose-6, 7% formaldehyde gel with bridges of Whatman
paper separating gel from running buffer (NGD) and transferred to a Hybond-XL
membrane (GE Healthcare) as described*’, Probe FL125 was 5’ labeled with T4
polynucleotide kinase {Fermentas) and y-32P ATF. For detection of endogenous
scRl and the PGK1-SL reporter, probes were made by a random priming reaction
ona PCR products using the Neblot kit {New England Biolabs) and c- 32P dCTR
Prehybridization and hybridization of the membranes with the labeled probes
were performed in 3 M NaPO,, pH 7.2, 1% (wiv) BSA, 1 mM EDTA, 2.8% SDS
at42 *Cand 40 °C, respectively (NRD), 55°C {scR1) or 65 °C (PGK1-5L). Signals
were visualized with a Typhoon 3600 Varable Mode Imager and quantified using
Imageuant 5.2 software ( Molecular Dynamics).
41 Prouteau, M., Daugeron, M.C. & Seraphin, B. Regulation of ARE transcript 3° end
processing by the yeast Gih2 mRNA decay facter. EMBO J 27, 2966-2976
[2008)
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2.2 STUDY OF THE MECHANISTICAL DETAILS OF RNA QUALITY
CONTROL ON STALLED TRANSLATIONAL COMPLEXES

2.2.1 The functional relationship between No-go decay and Non-functional
18S rRNA decay
The data presented above gave an indication that Dom34-Hbsl dependent 18S rRNA

degradation can occur independently of Dom34-Hbsl dependent alteration in mRNA
stability. I aimed to further study the relationship between NGD and 18S NRD. More
specifically I analyzed whether the translation of a NGD substrate (a stall site containing
mRNA) induces degradation of rRNAs or ribosomal proteins.

To address this question I used an in vitro translation method in S. cerevisiae extract,
developed by Anne-Laure Finoux (Finoux, 2006). A yeast extract was obtained based on a
method published by (Tuite & Plesset, 1986). In this extract, cellular mRNAs were still
present, and needed to be removed to allow optimal translation of in vifro added mRNAs.
Therefore the extract was first treated with micrococcal nuclease (MNase). The digestion time
needed to be optimized: a treatment too short would not remove cellular mRNAs sufficiently,
whereas a treatment too long would cause degradation of rRNA, thereby decreasing
translation efficiency. To determine the optimal digestion time, aliquots of the yeast extract
were incubated with 150 U/ml MNase for varying amounts of time. Then 500 ng mRNA

encoding firefly luciferase (Gallie et al, 1991) was added to 15 pl translation reactions, to be
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Figure 32 Optimization of micrococcal nuclease digestion time.
Translation efficiency, represented by the activity of luciferase produced after one hour of translation, is plotted
against the time yeast extract was treated with MNase.
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translated during one hour. Luciferase activity was determined, as a measure of protein
production. Figure 32 shows that, using this quantity of enzyme, optimal translation occurred
after 4 minutes of MNase treatment.

The yeast extract was used to translate a mRNA encoding a TAP tag, consisting of protein A
and calmodulin binding peptide (CBP) (Rigaut et al, 1999) linked to a triple HA tag and green
fluorescent protein (GFP). This mRNA contained a stem loop stall site (Doma & Parker,
2006) between the 3HA and GFP sequence (TAP-SL-GFP mRNA). A negative control did
not contain the stem loop (TAP-GFP mRNA). The aim was to study whether translation of the
stall site containing mRNA caused destabilization of the rRNA and proteins of the ribosomes
translating it. For such a destabilization to be visible as a reduction in total rRNA or
ribosomal protein level over time, it is important that a large part of the ribosomes present in
the extract engage in translation of the stall site mRNA. The fraction of translating ribosomes
is expected to depend on the concentration of the mRNA that is translated. To optimize the
mRNA concentration, both TAP-SL-GFP and TAP-GFP were added in different amounts to
15 pl translation reactions, followed by translation for one hour. The amount of protein
produced was then determined by western blot (Figure 33). Optimal protein production was

achieved when between 600 and 1200 ng mRNA was added to the extract.

TAR-(FP TAP-5L-GFP
0 150 300 600 1300 2400 4800 150 300 600 1200 2400 4800  amount of mRNA (ngl

S S S P S S S S S S < < TAP GFF or TAR 5GP

protein

Figure 33 Optimization of the mRNA concentration.
Protein produced from the indicated quantities of TAP-GFP and TAP-SL-GFP mRNA after one hour of
translation in yeast extract. Proteins were detected by western blot using peroxidase anti-peroxidase (PAP,
Sigma).

600 ng of the stem loop or control mRNA was translated in 15ul translation reactions that
were stopped at different time points. RNA and protein content were analyzed by northern
blot and western blot respectively.

Figure 34 shows that the levels of 18S and 25S rRNAs do not decrease over time, during
translation of a NGD substrate. Neither does the level of 60S subunit protein Rpll1A or the

ribosome associated protein Stm1 change.
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Figure 34 The effect of translating a stem loop containing mRNA on ribosomal RNA and protein stability.
TAP-GFP and TAP-SL-GFP were translated for the indicated amounts of time in yeast extract. The levels of
rRNAs and ribosomal or ribosome associated proteins were determined at the indicated timepoints. 18S rRNA
and 25S rRNA were detected by northern blot using probes OBS4814 and OBS5408 respectively. Rpl1 A and
Stm1 were detected by western blot using polyclonal rabbit antibodies AbBS6 and AbBS8 respectively. TAP-
GFP or TAP-SL-GFP protein was detected by PAP.

In summary no signs of ribosomal RNA or protein degradation as a consequence of ribosomal
stalling induced by a mRNA stall site are visible. However, it cannot be excluded either. First
of all because it is not clear what fraction of ribosomes in the extract is translating. If only a
small fraction of ribosomes translates and stalls on the stem loop mRNA, their degradation
will not be visible. Second, the stem loop appears to be a very inefficient stall site. The stem
loop mRNA produces full-length protein at a level practically indistinguishable from the level
of protein produced from the control mRNA (Figure 33 and

Figure 34). This indicates that, even if a high proportion of ribosomes may be translating,
only a small fraction will stall and therefore stalling induced ribosome degradation may not be
visible. The use of a stronger stall site, perhaps a CGA repeat (see paragraph 1.4.1.2) should
improve the assay. Finally, the in vitro conditions may not be representative of the in vivo
situation. It should be tested whether the extract contains the machinery necessary for stalling
induced rRNA degradation. To get an indication it could be verified whether a mutant 18S

rRNA is a subjected to NRD in yeast extract.

2.2.2 Search for the No-go decay endonuclease
The endonuclease responsible for endonucleolytic cleavage of the mRNA in NGD has not
been identified so far. In humans and Drosophila, the NMD pathway involves an

endonucleolytic cleavage of the mRNA that is mediated by the protein Smg6 (Eberle et al,



2009; Huntzinger et al, 2008). The yeast proteins Esll and Esl2 show sequence similarity to
human Smg6. Moreover, Esl2 was reported to interact with ribosomes (Fleischer et al, 2006).
I therefore tested whether one of these factors could be responsible for the mRNA cleavage in
NGD. The NGD assay depicted in Figure 31 was used to test whether the absence of Esll or
Esl2 resulted in reduced intermediate production. The reporter mRNA used contained a
sequence encoding CBP linked to a 3HA tag, followed by the same stem loop as used in
(Doma & Parker, 2006) (CBP-3HA-SL). A control reporter did not contain a stem loop (CBP-
3HA). The CBP-3HA-SL reporter efficiently produced a 5° NGD intermediate in a ski7A
background, indicating mRNA cleavage. The absence of Esll or Esl2 did not reduce the
accumulation of this 5 intermediate (Figure 35). This suggests that Esll or Esl2 are not the
endonucleases responsible for mRNA cleavage in NGD. However, it cannot be excluded that
there is redundancy between these factors or between these factors and other unknown

factors. A triple ski7Aesli1AesI2A mutant would elucidate whether the first possibility is true.
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Figure 35 Esll and Esl2 are not required for No-go decay endonucleolytic cleavage.
Northern blot analysis of the steady state levels of a 5* degradation intermediate produced by endonucleolytic
cleavage from the indicated mRNA reporters was used to determine the requirement of Esll and Esl2 for mRNA
cleavage in NGD. mRNA was detected by probe OBS4671.

2.2.3 A method to purify ribosomes with a defective 18S rRNA

Questions remain about what factors are involved in RNA degradation in NGD and 18S
NRD. As already indicated above, the endonuclease responsible for mRNA cleavage in NGD
has not been identified. For 18S NRD, the mechanistic details of rRNA degradation are not
clear. At the time this research was performed, little was known about what happened to the
peptide produced by a stalled ribosome. In an attempt to obtain more insight into the
mechanisms acting on stalled ribosomes, I designed a method to purify defective ribosomes.

The purpose of this method was to specifically purify ribosomes containing a mutation in the
18S rRNA, rendering them non-functional and therefore substrates for 18S NRD. By

comparing the set of proteins that co-purify with mutant ribosomes with the set of proteins



that co-purify with wild type ribosomes, I hoped to identify proteins that specifically interact
with defective ribosomes and that may act in 18S NRD and perhaps also in associated

pathways.

2.2.3.1 Tandem affinity purification

The tandem affinity purification (TAP) method allows the purification of a protein and factors
interacting with this protein under native conditions. When combined with mass
spectrometry, it can be used to identify proteins interacting with a given target protein (Rigaut

et al, 1999).
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Figure 36 Tandem affinity purification.

The target protein is linked to a tag that consists of protein A and CBP, separated by a TEV
protease recognition site. The method consists of two subsequent purification steps (see

Figure 36). In the first step, cell lysate is incubated with IgG beads, to which protein A binds.
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The target protein and associated factors are eluted from the IgG beads by the action of TEV
protease, which cleaves the linkage between protein A and CBP. The eluate is then incubated
with calmodulin beads, which binds the CBP-tagged complex. Elution occurs by the addition

of EGTA, which chelates Ca’" ions needed for CBP-calmodulin interaction.

2.2.3.2 Construct production and validation

Ribosomes in which residue A1492 (E. coli counting), an important residue in the decoding
center, is mutated (A1492C) are known substrates for 18S NRD (Cole et al, 2009). To
specifically purify mutant ribosomes, a human U1l stem loop was inserted in a mutant 18S
A1492C rRNA construct, which was produced in the lab of Dr. Melissa Moore (LaRiviere et
al, 2006). In this construct a rDNA gene is under the control of a promoter that is induced in
presence of galactose but repressed in presence of glucose. This construct contains a tag
inserted in the 18S rRNA sequence that allows its specific detection by probe FL125 in
northern analysis, while it is co-expressed with endogenous rDNA genes.

A loop in helix 39 or helix 44 of the 18S rRNA sequence was replaced with the U1 stem loop.
It had been shown before that yeast strains expressing only 18S rRNAs with tags inserted at
these positions were viable (Petrov & Puglisi, 2010). In the crystal structure of the yeast 80S
ribosome (Ben-Shem et al, 2011) these sites are exposed on the 40S subunit surface. The
tagged mutant 18S rRNA was co-expressed with the RNA binding domain of human protein
UIA, which interacts with the Ul stem loop (Nagai et al, 1995). This UlIA RNA binding
domain was linked to a TAP-tag at its C-terminus, resulting in a U1A-TAP construct. The
TAP-tag allowed the purification of Ul containing mutant ribosomes. 18S rRNA constructs
with a Ul stem loop inserted in antisense direction, which does not bind to U1A, served as a

negative control. An overview of the construct is given in Figure 37.

TAP-tag AAAAA

A1492C
U1 stem loop

)// UTA RNA binding

domain

Figure 37 Method to purify a defective ribosome.
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First, the expression of the tagged 18S rRNA and the UIA-TAP or TAP-U1A proteins was
tested. Insertion of a Ul stem loop, in sense or antisense direction, in helix 39 caused a
reduction in the steady state level of wild type 18S rRNA (Figure 38A). An explanation could
be that the insertion causes the rRNA to be non-functional, making it a substrate for 18S
NRD. Therefore this construct was not further analyzed. Insertion of the Ul stem loop in
helix 44 did not affect the steady state level of either wild type or mutant 18S rRNA (Figure
38A). This indicates that insertion of the tag at this position is less likely to affect ribosome
function and does not interfere with the 18S NRD process. The 18S rRNA with the Ul stem
loop inserted in helix 44 will from here on be referred to as 18S-U1 rRNA. UIA-TAP protein
was expressed equally well in yeast co-expressing tagged 18S rRNA constructs and yeast not

expressing these constructs (Figure 38B).
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Figure 38 Steady state levels of tagged 18S rRNAs and U1A-TAP protein.

A: 18S rRNA (wild type or mutant) with a U1 stem loop (sense or antisense) inserted in helix 39 or helix 44 was
expressed in S. cerevisiae grown in the presence of 2% galactose. 18S rRNA was detected by northern analysis
using probe OBS3118. scR1 RNA was used as a loading control and detected by probes resulting from random
priming of a scR1 PCR product. B: ULA-TAP protein was co-expressed with 18S rRNA (wild type or mutant)
containing a Ul stem loop (sense or antisense) in helix 44 in S. cerevisiae grown in the presence of 2%
galactose. Protein was extracted using a rapid protocol (Kushnirov, 2000) and UIA-TAP was detected by
western analysis using PAP. Stm1 was used as a loading control and was detected by the antibody AbBSS.

I then tested whether U1 A-TAP binds to translating ribosomes. Their sedimentation through
sucrose density gradients was followed and compared with the sedimentation pattern of 18S-

Ul rRNA and with the profile formed by (mainly ribosomal) RNA. First of all, this allowed



us to see whether UL A-TAP binds to ribosomes at all: if not it will be present on the top of the
gradient only. Second, it gives an indication on whether UTA-TAP binds to ribosomes that
participate in translation, depending on whether it co-sediments with polysomes.

Figure 39A shows that UIA-TAP binds translating ribosomes, as it was found in polysomal
fractions when co-expressed with wild type 18S rRNA containing a sense Ul stem loop. As
expected, UIA-TAP did not bind to ribosomes when the Ul stem loop was inserted in
antisense direction (Figure 39B). The A1492C mutation caused 18S rRNAs to shift to lower
density fractions (compare Figure 39C and D to A and B): the mutant 18S rRNA is less
represented in polysomal fractions and more in 80S fractions compared to wild type 18S
rRNA. As expected, the UIA-TAP distribution displays a similar shift to lighter fractions
(compare Figure 39C and A).
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Figure 39 Sedimentation of 18S wild type and mutant rRNA and U1A-TAP.
Sucrose density sedimentation of the lysate obtained from S. cerevisiae co-expressing UIA-TAP and 18S rRNA
(wild type or mutant) with a U1 stem loop (in sense or antisense direction) inserted in helix 44. Yeast was grown
on medium containing 2% galactose. U1 A-TAP was detected by western analysis on samples of equal size taken
from gradient fractions produced by a gradient fractionator, using PAP. 18S rRNA was extracted from equal size
samples taken from fractions produced by a gradient fractionator, and was detected by northern analysis, using
probe OBS3118.



All together, these data show that insertion of the Ul stem loop does not interfere with
ribosome function and that it efficiently binds Ul1A-TAP. In addition, as the antisense Ul
stem loop does not bind UIA-TAP, this construct should be a valid negative control in

ribosome purification experiments.

2.2.3.3 Optimization of the purification protocol

A purification protocol generally consists of a step in which cells are lysed, a step in which
the lysate is cleared, often by high speed centrifugation, and finally the actual purification.
The conditions for all these steps were optimized for purification of ribosomes and factors of
which the binding to ribosomes may be sensitive to high salt concentrations.

First of all, cells were lysed by vortexing in presence of glass beads. This relatively gentle
way of lysing cells has been shown before to be effective in ribosome purification methods
(Ben-Shem et al, 2011; Ben-Shem et al, 2010) and was chosen to minimize the loss of
interaction between ribosomes and associated proteins. It further has the advantage that this
method does not disrupt mitochondria (Lang et al, 1977), which avoids contamination with
mitochondrial ribosomes. Second, lysis and purification buffers were optimized for the
purification of ribosomes and associated proteins. All buffers contained 10 mM Mg%, to
stabilize ribosomal subunit interaction, and relatively low salt concentrations were used (a
maximum of 100 mM NacCl). Third, clearing the lysate in a high speed centrifugation step
may cause ribosomes to sediment and therefore be lost from the cleared lysate, due to their
large size. Therefore the speed and time of centrifugation was optimized to end up with a
maximum quantity of ribosomes in the cleared lysate (see below). Finally, the time between
cell lysis and the final elution was kept as short as possible: cell lysis and purification steps

were all performed in a single day.
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Figure 40 Optimization of centrifugation speed and time.
A: S. cerevisiae lysate was subjected to centrifugation at the indicated relative centrifugal forces (RCF) in a JA-
25.50 (30.9x10” and 48.3x10° x g) or a 50.2 Ti rotor (75.3x10* and 108x10° x g) for 84 minutes. B: S. cerevisiae
lysate was subjected to centrifugation at 30.8 x g for the indicated times in a JA-25.50 rotor. To determine the
presence of ribosomes in pellet (P) and supernatant (SN), samples taken from supernatant and pellet,
resuspended in the same volume as the supernatant, were analyzed by western blot. The ribosomal protein
Rpl1 A was detected using antibody AbBS6.



In search for optimal lysate clearance conditions, yeast lysate was subjected to centrifugation
at four different speeds for 84 minutes. As shown in Figure 41A, the lowest centrifugal force
(30.9x10° x g) resulted in the highest fraction of ribosomal protein in the supernatant. It was
then tested if, at that speed, the centrifugation time affected the fraction of ribosomal protein
in the supernatant. Figure 40B shows that a longer centrifugation time did not result in a
higher fraction of ribosomal protein in the supernatant. Therefore I decided to apply a

centrifugal force of 30.8 x g for 30 minutes in the purification protocol.
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Figure 41 Purification of wild type ribosomes via U1 stem loop and U1A-TAP.
A tandem affinity purification was performed on lysate from yeast expressing 18S-U1 rRNA (sense or antisense)
and U1A-TAP, grown in presence of 2% galactose. A: 3,3 x 107 fractions of each purification step (except for
the elutions which are 75 x more concentrated) were analysed by western blot: the presence of U1 A-TAP (after
TEV cleavage U1A-CBP) was followed using peroxidase anti-peroxidase (Sigma). B: Elution fractions of a
similar purification were analyzed by western blot for the presence or ribosomal protein Rpl1A, using antibody
AbBS6. C: Elution fraction E2 of the purification shown in A was separated on a 15% SDS-PAGE and
visualized by silver staining. The arrows indicate bands that were analyzed by mass spectrometry.




Purifications were then performed, using the optimized TAP method, on yeast co-expressing
wild type 18S-Ul rRNA and U1A-TAP. The presence of UIA-TAP was followed throughout
the purification. Figure 41A shows that, as expected, UIA-TAP was purified from yeast
expressing 18S rRNA with the U1 stem loop inserted in sense direction, as well as from yeast
expressing 18S rRNA with the U1 stem loop inserted in antisense direction. Most of the U1A-
TAP stays bound to the calmodulin beads after elution, it only dissociates from the beads in
presence of 1% SDS. However, when elution fractions were analyzed for the presence of
ribosomal protein Rpll1A, most of this protein eluted in elution fractions E2 and E3 (Figure
41B). Elution fractions E2 were concentrated by lyophilisation and analyzed on a 15 % SDS-
PAGE. Three of the bands that appeared after silver staining were analyzed by mass
spectrometry (indicated by arrows in Fig. 42B). All bands contained a mixture of several 40S
and 60S subunit proteins, confirming that the method I developed purifies ribosomes.

Finally, purifications were performed on yeast co-expressing wild type 18S-Ul rRNA and
UlA-TAP and on yeast co-expressing mutant 18S-Ul rRNA and U1A-TAP. The culture
volume used for purification was twice higher for strains containing mutant ribosome than for
strains containing wild type ribosome, to approximately compensate for the reduced levels of
mutant ribosomes as a consequence of 18S NRD. For each purification, elution fraction E2
was concentrated by lyophilization and analyzed on a 10-20 % gradient SDS-PAGE. To also
compare large size proteins, a second elution fraction was analyzed on a 7% SDS-PAGE. The
pattern of bands obtained from the purification of mutant 18S-U1 sense rRNA was compared
with that obtained from the purification of wild type 18S-U1 sense rRNA (Figure 42). On the
two gels, 11 bands were identified that were present in the elution of the mutant ribosome
purification, but not in the elutions of the wild type ribosome purification. These bands were
cut from the gels and analyzed by mass spectrometry. Bands cut from similar positions in the
wild type elution were used as negative controls.

The low intensity of the bands cut, corresponding to low amounts of proteins, complicated
reliable identification of the proteins they represented. Most proteins identified were
represented by only few peptides. For many bands peptides were identified that corresponded
to a mixture of proteins that were either ribosomal proteins, proteins commonly associated
with translating ribosomes or highly abundant proteins like GAPDH. All of these were
considered to either co-purify non-specifically with mutant ribosomes or to represent proteins
associated with both the mutant and wild-type ribosomes. Also several factors involved in
ribosome biogenesis were identified, such as Noc4, Nob1 (band 1), Krrl, Nop1 (band 3). This

may be a consequence of overrepresentation of mutant 18S rRNA in pre-40S subunits, due to
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their rapid degradation once they are mature. Although it has been excluded before that the
mutation used here causes a problems in 18S rRNA processing (Cole et al, 2009), it is also
possible that 18S A1492C ribosomes stay associated with ribosome assembly factors longer
than their wild type counterparts. Finally, it cannot be excluded that in our strain background,

the A1492C does inhibit pre-40S maturation.
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Figure 42 Purification of wild type and mutant ribosomes via U1 stem loop and U1A-TAP.
A tandem affinity purification was performed on lysate from yeast expressing 18S-Ul rRNA (wild type or
mutant, sense or antisense) and UIA-TAP, grown in presence of 2% galactose. A: Elution fraction E2 was
separated on a 10-20 % gradient SDS-PAGE and visualized by silver staining. The arrows indicate bands that
were analysed by mass spectrometry. B: Elution fraction E3 was separated on a 7 % SDS-PAGE and visualized
by silver staining. The arrows indicate bands that were analysed by mass spectrometry.

In conclusion, a method was developed that allows the specific purification of ribosomes
containing a mutation in their 18S rRNA. However, using this method, no factors that are

candidates for acting on stalled ribosomes were identified.



2.2.4 Analysis of the role of Ltnl in peptide stability and mRNA

degradation.

Ltn1 is responsible for polyubiquitination of peptides produced by ribosomes that stall on a
subset of stall site containing mRNAs. This targets these peptides for degradation by the
proteasome (Bengtson & Joazeiro, 2010). In rabbit reticulocyte lysates it was shown that
Dom34-Hbs1 mediated dissociation of the stalled ribosomes is needed before efficient
ubiquitination by Ltnl can occur (Shao et al, 2013). Biochemical experiments indicate that
ribosomes can only be dissociated by Dom34-Hbs] if their mRNA does not extend too long
downstream of the P-site (Pisareva et al, 2011; Shoemaker & Green, 2011). This suggests that
the mRNA cleavage seen in NGD precedes ribosome dissociation. These observations suggest
that Ltnl acts downstream of mRNA cleavage. Although the majority of Ltnl and its
associated complex RQC is found to be associated to 60S subunits, in yeast some
polyubiquitination was reported to occur on 80S ribosomes, hence before subunit dissociation
(Defenouillere et al, 2013). This opens the possibility that Ltnl and other components of the
RQC may bind to stalled ribosomes before subunit dissociation, and affect mRNA cleavage
and/or subunit splitting. I studied whether the absence of Ltnl has an effect on the efficiency
of mRNA cleavage.

To study this question, first it needed to be validated whether Ltnl was required for peptide
degradation in our yeast strain. A set of reporters was prepared that contained various
ribosomal stall sites (a stem loop (SL) or stretches of basic amino acids (K12, encoded by
AAG codons, and R12)) inserted between a sequence encoding a TAP-3HA sequence and a
sequence encoding GFP (see Figure 43A). Negative control reporters did not contain any stall
site (two types, as the sequence in which a stem loop was inserted differed from the sequence
the other stall sites were inserted in). A second type of negative control, R12FS, contained the
same nucleotide sequence as the R12 stall site, but with a frame shift. This resulted in a
peptide that did not contain 12 consecutive arginines but rather the peptide sequence
PGDDGAAGDDGAA (one amino acid more due to insertion of 3 nucleotides to establish the
frame shift). All reporters were under the control of a galactose inducible promoter. The
presence of the GFP sequence downstream of the stall site allowed a clear distinction, based
on a difference in size, between full length protein (50-54 kDa) and a truncated protein
produced by a stalled ribosome (~24 kDa).

In Figure 43A it is shown that for most reporters, even in absence of a stall site, truncated

proteins were detected in yeast that expresses Ltnl (wild type). These might be protein
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degradation products. For the reporter containing a R12 stall site deletion of L7N/ caused the
appearance of a truncated peptide (red rectangles), suggesting its Ltn1 dependent degradation.
In agreement with previous observations, in which proteasome inhibition did not cause
accumulation of a truncated peptide produced from a stem loop reporter (Dimitrova et al,

2009), no peptide produced from a stem loop reporter accumulated in absence of Ltn1.
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Figure 43 Effect of LTN1 deletion on peptide stability and mRNA cleavage in NGD.

A: Steady state levels of protein produced from the depicted reporter mRNA containing the indicated stall sites.
Protein was extracted from S. cerevisiae grown in presence of 2% galactose using a rapid protocol (Kushnirov,
2000) and was detected by western blot using PAP. B: Steady state levels of the same mRNA reporters used in
A, and their degradation intermediates that accumulate in ski7A strains, in presence and absence of Ltnl. C:
Steady state levels of the depicted reporter mRNA containing the indicated stall sites, and their degradation
intermediates that accumulates in ski7A strains, in presence and absence of Ltnl. All RNA was analyzed by
northern blot, using probe OBS4671 which hybridizes to the 3HA tag.



Surprisingly, and contrasting with previous data, no accumulation of a truncated peptide
produced from a K12 reporter was observed either. Possible explanations why truncated
peptides produced from reporters containing stall sites other than R12 do not accumulate are
that these stall sites are less efficient in inducing stalling, or that a weak accumulation of the
peptide is masked by the truncated protein signals that are also present in wild type strains.

Now that there was an indication that Ltnl dependent degradation of stalled ribosome
produced peptides occurs in our strain, at least in case of an R12 stall site, I tested whether
Ltnl had an effect on mRNA cleavage on the same mRNA reporters. For this purpose the
NGD assay described in Figure 31 was used. Figure 43B shows that the absence of Ltnl did
not cause any visible reduction in the level of 5’ degradation intermediate produced from K12
and R12 reporter mRNAs. Because the 5’ intermediate signal from the TAP-3HA-GFP
reporters was quite low, the experiment was repeated using a reporter in which a stall site was
inserted downstream of a CBP-3HA encoding sequence (Figure 43C), from which the 5’
intermediate accumulated at higher levels. Again Ltnl deletion did not cause any visible
reduction in the level of 5’ intermediate produced from any of the reporter mRNAs. In this
experiment no evidence was found supporting an effect of Ltnl on NGD endonucleolytic

cleavage.

2.2.5 Nuclease requirement for exosome-mediated No-go decay

intermediate degradation
The 5° intermediate that results from mRNA cleavage in NGD is degraded by the cytoplasmic
exosome. Dis3, the catalytic subunit of the cytoplasmic exosome, has both exo- and
endonuclease activity (Dziembowski et al, 2007; Lebreton et al, 2008). General mRNA
turnover depends on the exonuclease activity of Dis3. Meanwhile, for degradation of NSD
substrates, both poly(A)+ and poly(A)-, either endonuclease or exonuclease activity is
sufficient (Schaeffer & van Hoof, 2011). I examined what activity of Dis3 is required for
degradation of a NGD 5’ intermediate.
I tested if mutation of the Dis3 exonuclease catalytic site (D551N), mutation of the Dis3
endonuclease catalytic site (D171N) (Dziembowski et al, 2007; Lebreton et al, 2008), or
mutation of both resulted in stabilization of a 5’ intermediate produced from a stem loop
containing CBP-3HA-SL mRNA. This NGD reporter was expressed in S. cerevisiae in which

the essential chromosomal DIS3 gene was controlled by a doxycycline repressible promoter
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(tet-off). Dis3, wild type or mutant, was expressed from a plasmid. In presence of
doxycycline, degradation by the exosome depended on the plasmid expressed Dis3.

As shown in Figure 44, mutation of endo- or exonuclease activity did not or hardly cause any
stabilization of the 5’ intermediate. However, when Dis3 lacks both activities, the
intermediate accumulates to the same extent as in absence of the protein. These data confirm
that degradation of the 5° NGD intermediate depends on the exosome. They show that either
either the endo- or the exonuclease activity is sufficient for intermediate degradation. The
similarity in requirement of Dis3 activity to that observed for NSD substrates supports the
hypothesis that NGD and NSD are closely related, and that the 5 NGD intermediate may be
functionally similar to a poly(A)- NS mRNA.

The intermediate is stabilized to higher levels a strain lacking Ski7 than in a strain in which

Dis3 is repressed. This might be due to incomplete repression of chromosomal Dis3.
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Figure 44 Requirement of exosomal endo- and exonuclease activity for NGD intermediate degradation.
S. cerevisiae containing DIS3 under the control of a doxycycline repressible promoter and expressing the
indicated Dis3 mutants and a CBP-3HA-SL NGD reporter from a galactose inducible promoter was grown in
presence of 2% galactose and, if indicated, exposed to 20 pg/ml doxycycline during 7 hours. Steady state levels
of the NGD reporter mRNA and a 5* degradation intermediate produced from it were analyzed by northern blot
using probe OBS4671. For each mutant the ratio of 5* intermediate over full length mRNA signal was calculated
and then standardized for the ratio calculated for Dis3 wild type.



2.3 STUDY OF THE BIOLOGICAL IMPORTANCE OF DOM34-HBS1
MEDIATED RIBOSOME DISSOCIATION

The observation that Dom34 and Hbs1 (or alternative Dom34 partner aEF1a) are conserved in
two domains of life suggest that they have an important function in basic cellular processes.
This is supported by the embryonic lethality in mice (Adham et al, 2003) and the sterility
observed in Drosophila lacking Dom34 (Eberhart & Wasserman, 1995). Much of the research
on Dom34 and Hbs1 has focused on their role in RNA quality control. However, one could
question whether Dom34-Hbs1 acting on translational complexes that stall due to accidental
errors in RNA production or processing explains their high level of conservation.

The RNAs that have been used to study NGD, NSD and 18S NRD were all artificial,
overexpressed and not necessarily representative of naturally occurring situations. The natural
occurrence of NGD, NSD or 18S NRD substrates in a cell and the importance of Dom34-
Hbsl for removing them has not been the subject of any study so far and is therefore
unknown. Especially stall sites that have been studied to induce NGD, such as large
secondary structures, stretches of rare codons or of codons encoding basic amino acids, are
not expected to be produced by mutations or aberrant processing with high frequency. Non-
stop mRNAs may be produced more often, especially when produced as a result from the use
of cryptic splice sites in the ORF. Defective ribosomes may result from aberrant rRNA
production, but might also result from chemical damage. Moreover, because of their long life
span, the impact of a defect in a ribosome is likely larger than that of a faulty mRNA.
However, the impact of one or few ribosomes stalled on an equal number of mRNAs in a cell
is not likely to have a deleterious impact. Consistently, overexpression of mRNA reporters for
NSD or NGD or high-level expression of 18S NRD substrates has little impact on cell growth
rate.

I was therefore interested in studying whether Dom34-Hbs1 mediated ribosome dissociation

may play a role beyond RNA quality control.

2.3.1 Dom34-Hbs1 overexpression

Genetic studies in S. cerevisiae have mainly addressed the effect of DOM34 or HBSI
deletion. Although the absence of Dom34 has been reported to cause a reduced growth rate
(Davis & Engebrecht, 1998), this observation was not supported by other reports (Carr-
Schmid et al, 2002), see also Figure 48). Here I studied the effect of Dom34-Hbsl

overexpression on yeast growth.

107



Dom34 and/or Hbs1 were expressed in wild type S. cerevisiae from plasmid, either from their
endogenous promoters or from a galactose inducible promoter. A C-terminal 3HA-tag or
protein A-tag allowed the detection of Dom34 and Hbs1 respectively. It was confirmed that in
presence of galactose Dom34 and Hbsl were expressed from the galactose inducible

promoters at much higher levels than from their endogenous promoters, at 30°C (Figure 45A).
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Figure 45 Effect of Dom34-Hbs1 overexpression on yeast growth.

Dom34 and/or Hbs1 was expressed from their endogenous promoter or a galactose inducible promoter in wild
type S. cerevisiae. A: Hbsl-protein A and Dom34-3HA are overexpressed from galactose inducible GALI and
GAL10 promoters respectively. Protein was extracted from yeast grown at 30°C in CSM-Leu medium containing
2% galactose using a rapid protocol (Kushnirov, 2000). Dom34-3HA and Hbsl-Protein A are detected by
western analysis using anti-HA antibody and PAP respectively. Stml served as a loading control and was
detected by antibody AbBSS8. B: Yeast was grown on CSM-Leu medium containing 2% galactose or 2% glucose
at the indicated temperatures. Two independent clones are represented for each strain grown at 16°C in presence
of 2 % galactose.
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Overexpression of Dom34 and/or Hbs1 from galactose inducible promoters did not have any
effect on yeast growth at 25, 30 or 37°C (Figure 45B). At 16°C reduced growth was observed
in yeast overexpressing Hbsl and to a lesser extent also in yeast overexpressing Dom34
(Figure 45B, clone 2). However, this effect could not be reproduced with another set of
independent clones grown on a second plate (Figure 45B). It was therefore concluded that

Dom34-Hbs1 overexpression may reduce yeast growth only to a small extent, if any.

2.3.2 Can Dom34-Hbs1 complement the absence of eRF1-eRF3?

The eRF1-eRF3 complex and the Dom34-Hbs1 complex have in common that they bind to
the ribosomal A-site and that, together with Rlil, they can induce dissociation of mRNA
bound ribosomes. Whereas eRF1-eRF3 acts specifically on ribosomes with a stop codon in
their A-site, Dom34-Hbs1 dissociates ribosomes with any codon in their A-site, including a
stop codon (Pisareva et al, 2011; Shoemaker et al, 2010; Shoemaker & Green, 2011).

Yeast lacking eRF1 or eRF3 is inviable. The effect of their absence can be studied using
thermosensitive mutants, that are inactive at 37°C. We hypothesized that overexpression of
the Dom34-Hbs1 complex may rescue strains lacking functional eRF1-eRF3 complex, by
releasing ribosomes that cannot terminate. Although they are paralogs, Hbs1 has been shown
not to be able to complement the absence of eRF3. This is not surprising, as Hbsl does not
interact with eRF1 (Wallrapp et al, 1998), and is therefore unlikely to stimulate its activity.
That does not exclude that high levels of the entire Dom34-Hbs1 complex may complement
the absence of eRF1-eRF3 activity, which was tested here.

Dom34 and Hbs1 were overexpressed from galactose inducible promoters (see Figure 45A) in
S. cerevisiae strains with thermosensitive eRF1 (sup45) and eRF3 (sup35) mutants. In Figure
46 it is shown that at 37°C, when there is no functional eRF1-eRF3 complex, overexpression
of Dom34-Hbs1 complex does not rescue yeast growth. This indicates that increased Dom34-
Hbsl availability cannot replace the role of the eRF1-eRF3 complex in translation termination
and recycling in vivo.

There can be several explanations. First, the level of overexpressed Dom34-Hbsl complex
may not be sufficient to replace eRF1-eRF3. Second, the rate of Dom34-Hbsl mediated
dissociation may be lower than that of eRF1-eRF3 induced recycling. Third, Dom34-Hbsl
may not act on ribosomes stalled on stop codons in vivo. Finally, an important explanation
may be found in the fact the Dom34-Hbs1 complex cannot induce peptide release, as Dom34

lacks the GGQ motif required for peptidyl-tRNA hydrolysis (Graille et al, 2008; Lee et al,
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2007). Importantly, peptides produced by ribosomes stalled on NS-mRNAs have later been
shown to be degraded by the RQC (Brandman et al, 2012; Defenouillere et al, 2013; Verma et
al, 2013). Recent reports indicate that this peptide degradation depends on Dom34-Hbsl
mediated dissociation of these stalled ribosomes (Shao et al, 2013). These observations
suggest that, even if Dom34-Hbs1 dissociate ribosomes stalled on stop codons in absence of

eRF1-eRF3, they may not rescue protein synthesis because all peptides are targeted for

degradation.
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Figure 46 Dom34-Hbs1 overexpression does not rescue yeast lacking eRF1-eRF3.
In S. cerervisiae containing temperature sensitive mutants of eRF1 (sup45 ts) and eRF3 (sup 35 ts) Hbs1-protein
A and/or Dom34-3HA were expressed from galactose inducible GAL! and GALI0 promoters respectively.
Yeast, in 10-fold dilution series, was grown on CSM-Leu medium containing 2 % galactose at 25°C (eRF1 and
eRF3 are expressed from their mutant genes), 30°C and the non-permissive temperature 37°C (eRF1 and eRF3
are not expressed from their mutant genes).

2.3.3 Dom34-Hbsl mediated dissociation of ribosomes bound to mRNAs
that are being degraded

It has been reported that the first steps of cytoplasmic mRNA degradation, deadenylation and

decapping, can occur on polysomal mRNAs (Hu et al, 2009). If the exosome and Xrnl also

act on ribosome associated mRNAs, the ribosomes may block their passage. Especially in

case of exosome mediated degradation this would be problematic: at some point the exosome

would digest the stop codon, making it impossible for elongating ribosomes to terminate. A

mechanism would be required to remove these ribosomes, to allow efficient mRNA



degradation. I studied whether the Dom34-Hbs1 complex is needed for efficient cytoplasmic

mRNA degradation.

2.3.3.1 Genetic interaction with factors involved in cytoplasmic degradation

In yeast defective for decapping, 5’ to 3> mRNA decay cannot occur. General turnover is then
dependent on the 3’ to 5’ pathway. The thermosensitive dcpl-2 allele produces functional
Dcpl at 25°C, the permissive temperature. However, at the non-permissive temperature,
37°C, no functional Dcpl is produced and 5’ to 3> mRNA decay cannot occur (Tharun &
Parker, 1999). In yeast lacking Ski7 or a component of the Ski complex, 3’ to 5 mRNA
decay cannot occur and general turnover depends on 5’ to 3° degradation. Strains lacking both
pathways are not viable (Anderson & Parker, 1998). It was examined whether in strains in
which only one of the two mRNA decay pathways occurs, the presence of Dom34 is required
for efficient growth.

Figure 47A shows that dcp /-2 mutant yeast did not grow at all at non-permissive temperature
(37°C). At temperatures at which the mutant strain did grow, it was observed that deletion of
DOM34 negatively affected growth in the mutant background (at 30, 32 and 34°C), but not in
wild type background. A synthetic slow growth phenotype was also observed for SK/7 and
DOM34 deletion, but only at low temperature (16°C) (Figure 47B).
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Figure 47 Genetic interaction of Dom34 with Dcp1 and Ski7.
Ten-fold dilution series of the indicated S. cerevisiae strains, grown on YPDA medium at the indicated
temperatures.



These observations suggests that Dom34 function is needed for efficient 3’ to 5 mRNA
turnover by the exosome, and at low temperatures also for efficient 5’ to 3> mRNA decay by
Xrnl. The synthetic growth phenotype of Dom34 with Ski7 only being observed at low
temperature is in agreement with the effect of DOM34 deletion in 40S subunit deficient
strains also affecting growth most at low temperatures (Bhattacharya et al, 2010; Carr-Schmid
et al, 2002). An explanation may be that some energy demanding processes, e.g. ribosome
dissociation or translation, occur less efficiently at low temperatures, making the need for
Dom34-Hbs1 action higher. In theory, translating ribosomes may slow down Xrnl function
but should not block it completely, as translating ribosomes move in the same direction as
Xrnl and will eventually be released from the mRNA, after termination. If, at low
temperatures, translation elongation, termination or recycling proceeds less efficiently,
Dom34-Hbsl mediated ribosome dissociation may be required for Xrnl to proceed
efficiently.

To test whether the genetic interaction between Dcpl and Dom34 is caused by Dom34 being
required for efficient 3’ to 5° degradation, the stability of reporter mRNAs was determined in
depl-2 and depl-2dom34A yeast. As the reporters used, MFA2 and PGK1, were expressed
from plasmids and under the control of galactose inducible promoters, this experiment
required growing the mutant strains in media different from the ones used in Figure 47. It was
therefore first confirmed that in CSM media containing either 2% galactose or 2% glucose
absence of Dom34 also had a negative effect on growth of dcpl-2 mutant yeast at 34°C
(Figure 48A).

Yeast strains expressing MFA2 or PGK1 reporters were grown at 25°C, at which functional
Dcpl is produced, in presence of 2% galactose. Then they were shifted to 37°C for one hour,
to inhibit Dcpl activity, followed by resuspension in medium containing 4 % glucose at 37°C,
to switch off reporter gene transcription. Reporter gene levels were then followed over time.
As our hypothesis was that in absence of Dom34 translating ribosomes may block passage of
the exosome, one would not expect stabilization of the entire mRNA in the dcpl-2dom34A
strain, but rather of a fragment containing the 3’UTR and large part of the ORF. Such a
fragment should be well separated from full length mRNA in case of the relatively short
MFA2 mRNA, which was separated on a 6 % acrylamide urea gel. However, no truncated
mRNA fragment was detected for either MFA2 or PGK1 (Figure 48B and C).

A truncated mRNA produced from the longer PGK1 reporter may not be well separated from
the full length mRNA on the 1,5 % agarose formaldehyde gel used. Therefore the half life of
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Figure 48 Effect of Dom34 on exosome mediated mRNA degradation.
A: Ten-fold dilution series of the indicated S. cerevisiae strains, grown on CSM medium containing 2% glucose
or galactose at the indicated temperatures. B and C: Chase experiment to determine the stability of a galactose
inducible PGK1 (B) of MFA2 (C) reporter mRNA in the indicated strains. Yeast was grown in CSM-Ura
containing 2% galactose. Upon resuspension in CSM-Ura containing 2% glucose, thereby switching off reporter
mRNA transcription, PGK1 and MFA2 mRNA levels were followed over time. mRNA was detected by
Northern analysis using probes OBS5598 (for PGK1) and OBS1160 (for MFA2).



full length PGK1 was determined for depl-2 and dcpl-2dom34A strains, being 67 minutes
and 61 minutes respectively.

In summary no indications for a need for Dom34 in exosome mediated mRNA turnover were
found. However, this does not exclude the requirement for Dom34 in regular 3’ to 5> mRNA
turnover. mRNAs other than the reporters used may require Dom34-Hbs1 action for efficient
3’ to 5° degradation. Even the reporters used may require the complex. They both contain a
poly(G) tract in their 5’UTR, which is known to partially block exosome progression
(Anderson & Parker, 1998). For the PGK1 mRNA it is possible that a truncated mRNA
stabilized due to the presence of this poly(G) tract was not separated from the full length
mRNA on gel. One explanation why no stabilizing effect of DOM34 deletion was observed
could be that it was masked by the stabilizing effect of the poly(G) tract.

2.3.3.2 Is dissociation of ribosomes on Nonsense mediated decay targets needed for
degradation?

Besides “normal” mRNAs, mRNAs containing a premature stop codon that are therefore
targets of the NMD pathway have also been shown to be decapped while still polysome
associated (Hu et al, 2010). I examined whether efficient mRNA degradation in NMD
requires Dom34-Hbs1 action.

A reporter PGK1 mRNA containing a premature stop codon was expressed from a galactose
inducible promoter. Steady state levels of the full length NMD substrate and degradation
intermediates were compared between wild type and dom34A yeast, by northern analysis
using a probe that hybridizes to a poly(G) sequence in the 3> UTR. No differences were
observed (Figure 49).

Although I did not find any indication of Dom34-Hbs1 facilitating mRNA degradation by the
exosome or Xrnl, this does not mean that it does not occur. Especially if the exosome
degrades ribosome associated mRNAs, digestion of the stop codon may cause ribosomes to
get stuck on the mRNA. However, in S. cerevisiae the major pathway for general mRNA
turnover is the 5’ to 3’ pathway. To find a biologically significant role for the Dom34-Hbs1
complex facilitating mRNA degradation, it would therefore make sense to look more
specifically into mRNAs that are known to depend mainly on the exosome for degradation. In
yeast, the principal cytoplasmic exosome substrates characterized so far are NS mRNAs, with
or without poly(A) tail. As recent evidence strongly indicates that degradation of these
mRNAs is indeed stimuted by Dom34-Hbs1 mediated ribosome dissociation (Tsuboi et al,

2012), this line of research was not further continued.

114



abai boe il
wild type dam 48 wetiled By pee
premature stap oodon: - e = + - =+

ulllength —+ I -

degradation — .
mitermasdiate

{palyiGll

Figure 49 Effect of Dom34 on the degradation of NMD substrates.
Steady state levels of wild type and dom34A S. cerervisiae expressing a reporter PGK1 mRNA with or without
premature stop codon. The PGK1 reporter was expressed from a galactose inducible promoter and yeast was
grown in presence of 2% galactose. Total RNA was extracted and analyzed by northern blot, using probe
OBS1298, hybridizing to the poly(G) tract.

2.3.4 Dom34-Hbs1 mediated dissociation of inactive ribosomes

Many stress conditions cause an inhibition of translation. Ribosomes accumulate in an
inactive 80S form, which protects the ribosomal subunits from degradation and makes sure
that there is a pool of ribosomes available for rapid restart of translation when this is required
(see paragraph 1.2). Glucose depletion is an example of a translation inhibiting stress
condition. The inactive 80S ribosomes that accumulate contain Stm1 in a conformation that is
incompatible with translation and that clamps the ribosomal subunits together (Ben-Shem et
al, 2011). When glucose is added, these inactive ribosomes are rapidly mobilized and
translation restarts quickly. To become available for translation initiation, the subunits of the
inactive 80S ribosomes need to be dissociated. I hypothesized that the Dom34-Hbs1 complex
may dissociate the accumulated 80S ribosomes and thereby stimulate restart of translation
after stress.

The study I performed resulted in a manuscript that was submitted for publication and is

currently under revision. A brief summary of the work will be given here, followed by the
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submitted manuscript. Supplementary data of the manuscript can be found in the
supplementary information of this thesis. Finally, some additional experiments that are not in
the manuscript will be presented.

By analyzing polysome profiles obtained from S. cerevisiae before, during and after glucose
starvation stress, | found that Dom34 and Hbs1 stimulate a rapid restart of translation upon
glucose addition, especially at low temperatures (16°C). This was confirmed at the level of
protein production, by monitoring **S-methionine incorporation. The Stml-bound inactive
ribosomes that accumulate during glucose depletion differ from known Dom34-Hbsl
substrates. To test whether Dom34-Hbs|1 dissociate Stm1-containing ribosomes, I applied for
an EMBO short term fellowship to visit the lab of Dr. Rachel Green (Johns Hopkins
University, USA) who had developed a biochemical ribosome dissociation assay for
translating ribosomes. In collaboration with Anthony Schuller in her lab, we showed that
these inactive ribosomes are indeed substrates of Dom34, Hbs1 and Rlil. That Dom34-Hbs1
and Rlil also dissociate inactive ribosomes in vivo was supported by the finding that deletion
of Stm1, which antagonizes ribosome dissociation, rescues the defect in translational restart
upon glucose addition seen in strains lacking Dom34. Mutational analysis showed that the
GTPase activity of Hbs1 was required for the Dom34-Hbs1function studied here, but that a
stable interaction between the two factors was not. The N-terminal domain of Hbs1, of which
the function is unknown, was not required either.

The pool of inactive ribosomes that accumulates during glucose depletion contains a large
fraction of all ribosomal subunits in the cell. In growing, non-stressed cells, inactive 80S
ribosomes form as well, although to a lesser extent. I hypothesized that they may be substrates
of Dom34-Hbs!1 as well. Supporting this, I found by polysome analysis in presence of high
salt concentrations, that the increased 80S peak observed in dom34A strains is accounted for
by an accumulation of inactive ribosomes. Moreover, I found that the Dom34-Hbs1 complex
stimulates translation in a yeast extract.

In summary I found that the Dom34-Hbs1 complex dissociates inactive ribosomes, thereby
making their subunits available for translation initiation. This is particularly important in cells

recovering from stress, but my data indicate that it also occurs in non-stressed cells.
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Abstract

Following translation termination, ribosomal subunits are dissociated to become available for
subsequent rounds of protein synthesis. In many translation inhibiting stress conditions, e.g.
glucose starvation in yeast, free ribosomal subunits reassociate to form a large pool of non-
translating 80S ribosomes stabilized by the “clamping” Stm1 factor. The subunits of these
inactive ribosomes need to be mobilized for translation restart upon stress relief. The Dom34-
Hbs1 complex, together with the Rlil ATPase, have been shown to split ribosomes that are
stuck on mRNAs in the context of RNA quality control mechanisms. Here, using in vitro and
in vivo methods, we report a new role for the Dom34-Hbs1 complex and Rlil in dissociating
inactive ribosomes, thereby facilitating translation restart in yeast cells recovering from
glucose starvation stress. Interestingly, we found that this new role is not restricted to stress
conditions, indicating that in growing yeast there is a dynamic pool of inactive ribosomes that
needs to be split by Dom34-Hbs1 and Rlil to participate in protein synthesis. We propose that

this could provide a new level of translation regulation.
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Introduction

The production of proteins by ribosomes can be divided into four stages that together form the
translation cycle: initiation, elongation, termination and recycling {Krebs, 2011 #542}.
Eukaryotic translation initiation requires separate 40S and 60S ribosomal subunits, which
assemble on the initiation codons of messenger RNAs (mRNA) to form the actively
translating 80S ribosome. Ribosomal subunits available for initiation result from ribosome
recycling, which occurs after, and is tightly coupled to translation termination. Termination
and recycling are triggered when a translating ribosome encounters a termination codon. At
this point, the termination factors eRF1 and eRF3, together with the ATPase Rlil (also known
as ABCELl), catalyze peptide release and subsequent ribosome dissociation {Pisarev, 2010
#10;Shoemaker, 2011 #21}.

Many stress conditions cause a global shut down of translation, allowing cells to
economically use limited metabolic resources to only produce proteins important for
adaptation to the changing environment. Ribosomal subunits that are released through
recycling may not engage in new rounds of protein synthesis, but instead associate to form a
large pool of non-translating, inactive ribosomes. Formation of these inactive ribosomes may
protect ribosomal subunits from damage and/or degradation. Moreover, upon stress relief,
these inactive ribosomes can be easily and economically mobilized without a requirement for
ribosome biogenesis. Upon prolonged stress, ribosomes may eventually be degraded by
ribophagy to provide cells with energy and nutrients {Kraft, 2008 #395}.

In bacteria, it is well described that stress-induced factors bind to hibernating” ribosomes and
induce the formation of ribosome dimers (70S + 70S). The binding sites of the stress-induced
factors overlap with those of mRNA and transfer RNA (tRNA) thus inhibiting normal
ribosome activities {Polikanov, 2012 #276}.

Eukaryotic hibernating ribosomes may in some organisms also form dimers {Krokowski,
2011 #315}, but mostly accumulate as inactive 80S monomers. This was shown for example
to occur in mammalian cells upon serum-depletion {Nielsen, 1981 #506}, in yeast and
mammalian cells after amino acid shortage {Krokowski, 2011 #315;Tzamarias, 1989 #483}
and in yeast during osmotic stress {Uesono, 2002 #488}, lithium induced stress {Montero-
Lomeli, 2002 #501}, and after exposure to fusel alcohols {Ashe, 2001 #505}. The most
detailed example stems probably from the analysis of glucose starvation in the yeast
Saccharomyces cerevisiae. This condition leads to the accumulation of 80S ribosomes {Ashe,

2000 #168} that contain the protein Stml in a conformation that clamps the ribosomal
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subunits together {Ben-Shem, 2011 #173}. This structure is incompatible with translation as
Stm1 occupies part of the mRNA channel. Consistent with this structural observation, Stm1
was identified as a ribosome-binding factor {Inada, 2002 #317;Van Dyke, 2006 #172} and
has translation inhibiting activity in vitro {Balagopal, 2011 #169}. In addition, Stm1 was
shown to enhance recovery following nutritional stress {Van Dyke, 2006 #172}, having a
positive effect on the number of ribosomes preserved during nutrient deprivation {Van Dyke,
2013 #3203}.

Mobilization of inactive ribosomes, which allows a rapid restart of translation upon stress
relief {Ashe, 2000 #168} requires dissociation, making their subunits available for initiation.
We wondered whether this process, in analogy to ribosome recycling after termination,
depends on recycling factor activity.

In addition to normal termination and recycling factors that are thought to function on stop
codons, recent studies in yeast and mammalian systems identified Dom34 (Pelota in humans)
and the GTPase Hbs1, forming a complex structurally similar to eRF1 and eRF3 {Chen, 2010
#83;Kobayashi, 2010 #85;van den Elzen, 2010 #80}, that together with Rlil similarly
promote subunit dissociation. Interestingly, however, these factors appear to function on
mRNA-bound ribosomes in a codon-independent manner {Shoemaker, 2010 #22;Shoemaker,
2011 #21} or to promote subunit splitting on completely empty ribosomes {Pisareva, 2011
#62}. Current models suggest that the Dom34-Hbs1 complex binds to the ribosomal A site,
followed by GTP hydrolysis, dissociation of Hbsl and accommodation of Dom34 in the
ribosome. Rlil then binds and induces ATP dependent subunit dissociation {Shoemaker, 2011
#21}. CryoEM structures provide clear support for eRF3/eRF1/Rlil and Hbs1/Dom34/Rlil
playing related roles in ribosome recycling {Becker, 2011 #180;Becker, 2012 #19}.

In addition to these biochemical insights, Dom34 and Hbsl were shown in genetic
experiments to be important for RNA quality control in No-Go Decay targeting aberrant
mRNAs {Doma, 2006 #91}) and in 18S NRD targeting defective or incompletely matured
40S ribosomal subunits {Cole, 2009 #117;Soudet, 2010 #540}. In NGD, the Dom34-Hbs1
complex may use its dissociation activity to release ribosomes that are stalled at the 3 end of
mRNAs lacking a termination codon {Tsuboi, 2012 #67}. Recent reports also suggest that the
Dom34-Hbs1 complex and Rlil mediate dissociation of pre-40S and 60S subunits in a quality
control step during ribosome maturation {Lebaron, 2012 #336;Strunk, 2012 #332}. Most of
these processes involve the recognition of ribosomes stalled on an mRNA during translation.
We report here a new function for Dom34-Hbs1. We observe that Dom34-Hbs1 stimulates the

dissociation of non-translating ribosomes that accumulate upon glucose starvation in yeast.
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The biological relevance for this activity is seen in the dependence on these proteins of
translational recovery in yeast cells after glucose deprivation. We further extended these ideas
and show that Dom34-Hbs1 mediated dissociation of non-translating ribosomes can stimulate

translation even in non-stressed conditions.

121



Results

The Dom34-Hbs1 complex stimulates restart of translation after glucose starvation

When the yeast S. cerevisiae is exposed to media lacking glucose for as little as 10 minutes, a
change in the polysome profile occurs that is characteristic of translation inhibition: the
polysome levels drop and ribosomes accumulate in a large 80S peak {Ashe, 2000 #168}.
These 80S ribosomes are known to be inactive, bound by Stml in a conformation
incompatible with translation {Ben-Shem, 2011 #173}. Glucose addition leads to a rapid
recovery of translation, characterized by the reappearance of polysomes and a decrease in the
80S peak {Ashe, 2000 #168}. These observations were reproduced in our hands with strong
translational recovery detectable 5 minutes after glucose addition (Figure 1A).

The process of translation initiation depends on the activities of separate ribosomal subunits.
As such, the restart of translation in yeast recovering from glucose deprivation must depend
on the dissociation of the large pool of inactive, Stml-bound 80S ribosomes. Since human
and yeast Dom34-Hbs1 complex with Rlil can very effectively dissociate ribosomal subunits
assembled with or without an mRNA in vitro {Pisareva, 2011 #62;Shoemaker, 2010
#22;Shoemaker, 2011 #21}, we hypothesized that these factors might also be needed to split
Stm1-bound ribosomes in vivo. To test this possibility, we monitored the polysome profiles of
isogenic wild type, dom34A or hbsIA strains in glucose-depleted conditions and after glucose
addition. In contrast to the wild type strain, we found that in the absence of Dom34 or Hbsl,
the 80S peak did not diminish and the polysomes did not increase after the addition of
glucose. A small delay in recovery of translation was observed in mutant strains at 30°C (data
not shown), but the effect was much more prominent at reduced temperatures (16°C, Figure
1A and B, see also Figure 4A) where ribosomal subunit dissociation is likely to be
energetically more demanding.

To further evaluate the role of Dom34-Hbsl in promoting the restart of translation after
glucose starvation, we monitored overall *>S-Met incorporation as a measure of protein
synthesis in wild type and mutant cells. While in wild type cells, protein synthesis is
equivalent in unstarved cells or cells recovering from starvation (Figure 1C), we see that
protein synthesis was decreased in dom34A cells recovering from glucose starvation
compared to unstarved cells (Figure 1D). These results indicate that the Dom34-Hbsl

complex is involved in the restart of translation in yeast recovering from glucose starvation.

122



Dom34-Hbsl and Rlil dissociate inactive ribosomes that accumulate in glucose-starved
yeast.

Because of its ribosome dissociating activity in vitro {Pisareva, 2011 #62;Shoemaker, 2010
#22;Shoemaker, 2011 #21} it is likely that Dom34-Hbs!1 stimulates restart of translation by
splitting inactive 80S ribosomes that accumulate during glucose starvation. These inactive
ribosomes differ from known Dom34-Hbs1 substrates in that they contain the protein Stml in
a conformation that clamps the subunits together {Ben-Shem, 2011 #173}. We performed
biochemical recycling assays to test whether the Dom34-Hbs1 complex could act on these
Stm1-bound inactive ribosomes.

In in vitro recycling assays, ribosomes are radioactively labeled and then incubated with
various factors (Dom34, Hbsl1, Rlil). The complexes are then analyzed on sucrose gradients
or on native gels to determine the level of “splitting” {Shoemaker, 2010 #22;Shoemaker,
2011 #21}. The protein Tif6, an initiation factor that binds to the subunit interface on the 60S
subunit, is included in all experiments to trap ribosomes that undergo stimulated dissociation.
For the experiments described here, ribosomes were non-specifically radiolabeled using
casein kinase II {Shoemaker, 2010 #22}.

In a first experiment, “inactive” ribosomes isolated from glucose-starved yeast were incubated
with various combinations of Dom34, Hbsl and Rlil (in addition to Tif6) and the samples
were analyzed on a sucrose gradient. We see that after 15 minutes of incubation, all 80S
ribosomes were dissociated into separate subunits when all three factors were added (Figure
2A, red curve). The elimination of either Rlil or Dom34 significantly diminished the amount
of dissociation observed, though not completely (Figure 2A).

In order to more precisely define the efficiencies of these splitting reactions, we used native
gel electrophoresis (Supplementary Figure 1) to analyze equivalent experimental samples
over time to determine relative rate constants. The rates that we measure for
Dom34/Hbs1/Rlil-mediated splitting of Stml-bound ribosome’s is ~1.2 min"' which is
similar to the rate we previously observed (~1.6 min") for elongating ribosomes bound to
mRNA and peptidyl-tRNA {Shoemaker, 2011 #21}. In the absence of Rlil, the rate of
dissociation decreased by 15 fold, close to earlier reports of a ~ 10 fold contribution
{Shoemaker, 2011 #21}. In absence of in vivo data indicating that Rlil is involved in
dissociating inactive ribosomes (RLI// is an essential gene involved in other important
processes) these results strongly support its participation in this process. Similar to the results
of the sucrose gradient analysis (data not shown) and previous studies {Pisareva, 2011

#62;Shoemaker, 2011 #21}, elimination of Hbs1 had little effect on the observed rate of the
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splitting reaction, though blocking Hbsl GTPase activity by the inclusion of a non-
hydrolyzable GTP analog (GDPNP) diminished the rate of splitting by 3 fold (Figure 2B).

Overall, these data demonstrate that Stm1-bound 80S ribosomes from glucose-starved yeast
are good substrates for Dom34/Hbs1/Rlil-mediated subunit splitting in vitro. Indeed, while
these samples were prepared at different times from different yeast cultures, the similarity in
these values with earlier measurements for related but distinct complexes suggests that these
ribosome complexes are equivalent targets for Dom34/Hbs1/Rlil mediated recycling. We
note that because the rates are measured with saturating amounts of Dom34/Hbs1/Rlil, the
measured values are rate constants, thus allowing more readily for longitudinal comparisons

to be made.

Deletion of STM1 suppresses the requirement for Dom34-Hbs1 to restart translation in vivo.
We reasoned that if the Dom34-Hbs1 complex stimulates restart of translation by dissociating
Stm1-bound 80S ribosomes, weakening subunit interactions might reduce the requirement for
the Dom34-Hbs1 complex. We tested this hypothesis by comparing the translation recovery
of strains following glucose starvation and the re-addition of glucose in stm/A and
stmIAdom34A strains. In Figure 3B, we see that deletion of STMI rescued the dom34A
recovery deficient phenotype (Figure 3B). Importantly, deletion of STMI alone had no effect
on translation inhibition or translation recovery (compare Figure 3A and Figure 1A).

The observation that the weakening of ribosomal subunit interactions reduces the requirement
for Dom34 for recovery from starvation supports a model where Dom34/Hbs1/Rlil promotes

the dissociation of ribosomes in vivo.

Functional requirements of Dom34-Hbs 1 for translational reactivation.

Our biochemical assay indicated that Hbs1 was not essential for the dissociation of inactive,
Stm1-bound ribosomes in vitro (Figure 2B). To test the role of Hbsl in vivo, we compared
polysome profiles from a ibsIA mutant strain carrying the wild type HBSI gene on a plasmid
or an empty vector. Analysis of polysomes at different time points during a glucose
starvation/recovery experiment indicated that Hbsl, like Dom34, is required for optimal
translational restart (Figure 4A).

We next explored the requirement of several functional regions of the Dom34-Hbs1 complex
for this process. Hbsl is a GTPase belonging to the eEF-la-like family of GTPases
{Atkinson, 2008 #144;Wallrapp, 1998 #337}, which includes the termination factor eRF3 and

the elongation factor eEF-10. Both of these factors function essentially to deliver their cargo,
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eRF1 and aminoacyl-tRNA, respectively, to the ribosomal A site. We asked whether the
GTPase activity of Hbsl1 is required for efficient restart of translation in vivo and found that
the GTP-binding defective Hbs1 mutant V176G {van den Elzen, 2010 #80} did not promote
effective recovery from glucose starvation (Figure 4A).

We next probed the importance of the interaction between Dom34 and Hbs1 for the recovery
from glucose starvation. The interface of these two proteins is comprised of contacts between
several different regions in multiple domains of each protein {Chen, 2010 #83;Kobayashi,
2010 #85;van den Elzen, 2010 #80} where interaction defective mutants have been previously
characterized {van den Elzen, 2010 #80}. The Hbs1 R517E mutant was shown by two-hybrid
analysis to bind poorly to Dom34 {van den Elzen, 2010 #80}. Interestingly, this mutation did
not affect the restart of translation following glucose starvation, indicating that a stable
Dom34-Hbs]1 interaction is not needed for this function (Figure 4A). In parallel, we used the
Dom34 E361R mutant that similarly blocks formation of the Dom34-Hbs1 complex {van den
Elzen, 2010 #80}, but in this case, the mutation diminished the recovery of cells from glucose
starvation (Figure 4B). This asymmetric requirement for the interaction surfaces of Hbs1 and
Dom34 suggests that Dom34 E361 may be important for other functions in addition to its
interaction with Hbs1 (see discussion).

Members of the family of eEFla-like GTPases are highly similar with regard to their C-
terminal domains, but differ in their N-terminal length and amino acid sequence {Inagaki,
2000 #271}; the function of the N-terminus of Hbsl is not known. Cryo-EM analysis of the
Dom34-Hbs1 complex bound to an 80S ribosome revealed that it is located proximal to the
mRNA entry channel {Becker, 2011 #180}. When this cryoEM structure was aligned with the
high-resolution crystal structure of the ribosome from glucose-depleted yeast {Ben-Shem,
2011 #173}, we found that the N-terminus of Hbs1 would be in close contact with a portion
of Stm1 located in the mRNA channel (Supplementary Figure 2). We therefore asked whether
the N-terminus of Hbsl plays a role in stimulating translation recovery after glucose
depletion. Deletion of N-terminal amino acids 2-149 (mutant Hbs1 AN-ter) did not reduce the

efficiency of translation re-initiation (Figure 4A).

The Dom34-Hbs1 complex stimulates translation in non stress-related conditions.

In non-stressed conditions, the polysome profiles of yeast lacking functional Dom34 or Hbsl
show elevated 80S peaks, which, especially at low temperatures, are combined with reduced
levels of polysomes (Compare the polysome profiles on the left in Figures 1A, B and 4A, B,
see also {Bhattacharya, 2010 #234;Carr-Schmid, 2002 #131}. This observation suggests that
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even in non-stressed conditions, there may be inactive 80S ribosomes that depend on Dom34-
Hbsl and Rlil-mediated dissociation for their subunits to become available for translation
initiation. The higher 80S peak could due to some amount of Stml-bound ribosomes, of
empty ribosomes lacking Stm1, or of mRNA-bound ribosomes that result, for example, from
a Dom34-Hbsl dependent defect in late translation initiation or early elongation. To
distinguish between these possibilities, we analyzed the polysome profiles of wild type and
dom34A strains in high and low salt sucrose gradients. High salt treatment is known to
dissociate non-translating but not mRNA-bound 80S ribosomes {Martin, 1970 #342;Zylber,
1970 #348}. As we see in Figure 5A, in low salt conditions the 80S peak was higher for the
dom34A strain compared to wild type (Figure 5A), while the 80S peaks were small and
equivalent for the wild type and dom34A strains when analyzed in high salt conditions (Figure
5B). These data indicate that in the absence of Dom34, primarily non-mRNA-bound 80S
ribosomes accumulate.

This observation supports a potential role for Dom34-Hbs1 and Rlil in dissociating mRNA-
free 80S ribosomes even in actively growing cells. If this is true, then the Dom34-Hbsl
complex would likely stimulate translation even in non-stressed conditions. To test this
hypothesis, we used an in vitro translation assay where a synthetic mRNA encoding the
firefly luciferase was incubated in cellular extract from a dom34AhbsIA strain, and varying
amounts of recombinant Dom34 and Hbsl were added. Luciferase activity measurements
were used to monitor translation. We see that the addition of increasing concentrations of the
Dom34-Hbs1 complex stimulated the translation of a firefly luciferase reporter mRNA up to
3-fold, whereas addition of Hbs1 alone did not (Figure 5C).

Together these results support the idea that the Dom34-Hbs1 complex generally stimulates
translation in cells, stressed or non-stressed, by facilitating the dissociation of mRNA-free

80S ribosomes into their constituent 40S and 60S subunits.
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Discussion

Currently the Dom34-Hbs1 complex is considered a central player in co-translational quality
control on RNAs that cause inefficient translation {Graille, 2012 #390;Shoemaker, 2012
#352}. Dom34-Hbsl stimulates degradation of such mRNAs and rRNAs {Cole, 2009
#117;Doma, 2006 #91}, most likely by facilitating the removal of stalled ribosomes from
mRNAs {Tsuboi, 2012 #67}. Here we show that the Dom34-Hbs1 complex is a key player in
the quick recovery of cells from stress and also stimulates translation under non-stress
conditions. These observations expand the biochemical and physiological roles of Dom34-
Hbs1 in the cell because every inactive 80S ribosome becomes a potential substrate for this

complex.

Dom34-Hbs1 dissociates inactive ribosomes, promoting recovery after stress.

Our data show that the Dom34-Hbs1 complex is critical for the restart of translation in yeast
recovering from glucose starvation. Two independent lines of evidence provide support for
the idea that this stimulation depends on Dom34-Hbsl dissociating inactive ribosomes,
liberating subunits for new rounds of translation initiation. First, we showed that inactive
ribosomes from glucose-depleted yeast are biochemical substrates of the complex (Figure 2).
Second, deletion of Stml, that stabilizes ribosomal subunit interaction {Ben-Shem, 2011
#173;Correia, 2004 #330} and therefore antagonizes dissociation, abolishes the need for the
Dom34-Hbs1 complex for recovery.

The GTPase activity of Hbsl was previously shown to be important for all of the protein’s
identified functions including RNA quality control {Kobayashi, 2010 #85;van den Elzen,
2010 #80}, complementation of a growth defect in a rps30aAhbsIA or a rps28aAhbsIA strain
{Carr-Schmid, 2002 #131;van den Elzen, 2010 #80} and Dom34-Hbs1-Rlil mediated
dissociation of ribosomes {Pisareva, 2011 #62;Shoemaker, 2010 #22;Shoemaker, 2011 #21}.
Our data here are consistent with these earlier observations. First, GTPase defective Hbs1
variants were unable to function in the recovery of cells from glucose starvation. Second, the
substitution of GDPNP for GTP in the in vitro subunit splitting assays resulted in an overall
inhibition of the reaction. Interestingly, as previously reported for other ribosomal substrates
{Pisareva, 2011 #62;Shoemaker, 2011 #21}, Hbs1 did not increase the rate of splitting in the
in vitro reactions, despite beings required in vivo for translational restart. Since the principle
role of Hbsl is likely to be in the loading of Dom34 into the ribosome, the high

concentrations of Dom34 supplied in the in vitro reactions may minimize the contribution of
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Hbs1. Because the cellular concentrations of Dom34 and Rlil are much lower, the stimulatory
effect of Hbs1 could be more relevant for dissociation of inactive ribosomes in the cell.

We further tested the importance of the interface between Dom34 and Hbsl for promoting
glucose starvation recovery. Here, we were somewhat surprised to see that mutation of the
interface of Hbs1 had little impact on the in vivo phenotype while the Dom34 interface was
critical to its function. Hbsl being required for ribosome dissociation in vivo, these data
suggest that Dom34 and Hbsl could bind the ribosome independently, their mutual
interaction being stabilized by the ribosomal context. The greater importance of the Dom34
interface may be rationalized by the fact that Dom34 must interact with Rlil and changes
conformation while bound to the ribosome {Becker, 2012 #19}. Dom34 E361 may at some
stage during recycling interact with Rlil or the ribosomes. We note that mutation of the
Dom34-Hbs1 interaction surface had a similar asymmetric impact on 18S NRD {van den
Elzen, 2010 #80}. However, we cannot definitively exclude that the mutation on the Hbs1
interface less effectively diminishes interactions with Dom34 than the chosen Dom34

mutation.

A general role of Dom34 —Hbs1 in modulating translation by controlling ribosomal subunit
availability

Beyond its role in stress recovery, we observed that Dom34-Hbs1 mediated dissociation of
inactive ribosomes can more broadly function to stimulate translation initiation. In the
absence of Dom34 and/or Hbsl, polysome profiles generally have elevated 80S peaks
(compare leftmost polysome profiles in Figures 1A, 1B and 4A; see also {Bhattacharya, 2010
#234;Carr-Schmid, 2002 #131}, due to accumulation of inactive ribosomes not bound to
mRNA templates (Figure SA and B). We show here that even in non-stressed conditions,
Dom34-Hbs1 appears to broadly stimulate translation efficiency by making subunits available
for new rounds of protein synthesis (Figure 5). This observation is consistent with the fact that
depletion of orthologs of Rlil - which acts together with Dom34-Hbs1 to dissociate inactive
ribosomes — similarly results in accumulation of 80S ribosomes and decreased levels of
polysomes in yeast, human and Drosophila cells {Andersen, 2007 #257;Chen, 2006
#261;Dong, 2004 #260}. Additionally, in a strain with impaired initiation (inhibition of elF2),
deletion of Dom34 or Hbsl results in a synthetic growth defect {Carr-Schmid, 2002 #131}
that might suggest that these factors work in a common pathway. Finally, both Dom34 and

Hbs1 are important for normal growth of yeast strains with reduced amounts of 40S subunits
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{Bhattacharya, 2010 #234;Carr-Schmid, 2002 #131;van den Elzen, 2010 #80} likely because
these double mutant strains have too few ribosomes available to function.

During glucose deprivation, inactive ribosomes contain Stml in a conformation that inhibits
translation and stabilizes subunit interaction {Ben-Shem, 2011 #173}. It is not clear whether
this mechanism of ribosome inhibition is broadly used in response to stress, or whether it is
used in a wide variety of physiological conditions. Our results show that in non-stressed
conditions, deletion of Stml reduces the elevated 80S peak that forms in the absence of
Dom34 to almost wild type levels (compare leftmost polysome profiles in Figure 1B and
figure 3B). This suggests that the translation inhibiting conformation of Stm1 is present in a
large fraction of inactive 80S ribosomes, even in non-stressed cells. A role for Stml in
antagonizing Dom34-Hbsl mediated dissociation of inactive 80S ribosomes likely explains
why overexpression of Stml in dom34A yeast causes a growth defect {Balagopal, 2011

#169}.

Conclusion

Our work shows that Dom34-Hbs1-mediated subunit dissociation is critical in the recovery of
yeast cells from glucose starvation. Our data further suggest that Dom34-Hbs]1 plays a similar
role in non-stressed cells, dissociating unproductive empty 80S ribosomes so that normal
translation initiation can occur. These observations provide insights into a novel general
mechanism for the control of translation wherein ribosomes are stored in an unproductive
state (either with Stm1 bound or simply not containing an mRNA) that is readily reversed by
the activities of Dom34, Hbs1 and Rlil.

We emphasize that this mechanism is likely widely used by cells to dissociate various
ribosome complexes to maintain an active supply of ribosomal subunits. Indeed, a general
shut down of translation is a hallmark of a cell’s response to many stress conditions including
nutrient depletion, temperature shock, hypoxia and DNA damage {Spriggs, 2010 #152}.
Moreover, Dom34 and Hbs1 are conserved proteins: Dom34 has orthologs in eukaryotes and
archaea {Eberhart, 1995 #537;Ragan, 1996 #338}. And, whereas Hbs1 has orthologs only in
eukaryotes {Inagaki, 2000 #271;Wallrapp, 1998 #337}, the function is filled even in archaea
by the related protein aEF1a {Kobayashi, 2010 #85;Saito, 2010 #112}.
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Material and Methods

Yeast strains, media and plasmids

Yeast strains and plasmids are listed in Supplementary Table 1. Yeast strains, derivatives of
of BMAG64, were constructed by standard methods. The plasmid pBS4415 was constructed by
inverse PCR on a pBS3614 template {van den Elzen, 2010 #80} using oligonucleotides 5’-
ATATCATGAGGTTTCTTTGGTTTCATCTCGATAGTCAATAGTTGTCG-3> and 5°-
CCAAAGAAACCTCATGATATTTCTGCATTTGTTAAATCTGCCTTAC-3 and was

verified by sequencing.

Glucose rich and glucose depleted media were YPDA and YPA (for strains without plasmids)
or CSM-Ura 2% glucose and CSM-Ura without glucose (for strains containing Dom34 or
Hbs1 encoding plasmids) respectively.

Glucose starvation and repletion

Yeast was grown at 30°C at 170 rpm to an ODg of 0.6, then shifted to 16°C for 2 hours. The
culture was then split into multiple 100 ml cultures that were pelleted at 5400 x g for 6 min at
16°C, resuspended in 100 ml of media (precooled at 16°C) without or with 2% glucose and
incubated at 16°C for 10 minutes at 170 rpm. Cells were pelleted, resuspended in 100 ml

media with glucose and incubated at 16°C at 170 rpm for the indicated times.

Polysome analysis

At the indicated times after glucose depletion or glucose addition cycloheximide was added
(100 pg/ml final concentration) and cells were pelleted at 5400 x g for 6 min at 4°C. Cells
were washed and then lysed at 4°C in lysis buffer (10 mM Tris-Cl pH 7.5; 100 mM KCI; 5
mM MgCl; 6 mM B-mercaptoethanol; 100 pg/ml cycloheximide) or in lysis buffer
containing 400 mM KCIl (Figure 4B) containing glass beads by 5 cycles of 1 minute vortexing
followed by 1 minute on ice, in presence of glass beads. 9 ODyg units of lysate were loaded
on a 7-47% sucrose gradient in lysis buffer, or lysis buffer containing 400 mM KCI (Figure
4B). After a 14 h spin at 16.9 krpm in an SW41 rotor (Beckman Coulter), absorbance (254

nm) was measured on a ISCO Teledyne Foxy Jr. fraction collector.

3S-Methionine incorporation
Yeast was grown in CSM-Met containing 2% glucose, shifted to 16°C, split into 8 ml cultures

and resuspended in 8 ml CSM-Met with or without 2% glucose for 10 minutes as described
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above. Then cells were resuspended in 8 ml CSM-Met 2% glucose (16°C) containing 4 pl
33S-Methionine (1175 Ci/mmol, 5 mCi/0,49 ml, Perkin Elmer) and incubated at 16°C. At the
indicated time points 1 ml samples were taken and *°S-Methionine incorporation was

measured as described {Ashe, 2000 #168}.

In vitro ribosome dissociation

80S ribosomes purified from glucose-depleted yeast were kindly provided by S. Melnikov
and Dr. Marat Yusupov. 100 pmol ribosomes were **P-labeled using 500 U casein kinase II
(NEB) and **P y-ATP in the manufacturer’s recommended buffer, then pelleted through a 600
pl 1.1 M sucrose cushion in buffer E (20 mM Tris-Cl pH 7.5, 2.5 mM Mg(OAc),, 100 mM
KOAc pH7.6, 2 mM DTT, 0.25 mM spermidine) at 75000 rpm 1 h 4°C in a MLA-130 rotor
followed by resuspension in buffer E. 6,25 pmol ribosomes were incubated in 25 pl buffer E
containing 1 mM GTP or GDPNP and 1 mM ATP at 26°C for 15 minutes with 50 pmol
Dom34, 50 pmol Hbsl1, 50 pmol Rlil and 625 pmol Tif6 - purified as described previously
{Shoemaker, 2010 #22;Shoemaker, 2011 #21}. Dissociation was analyzed by centrifugation
through a 10-30% sucrose gradient in buffer E at 38500 rpm for 3,5 h at 4°C in a SW41 rotor.
Fractions were counted in Bio Safe II scintillation fluid. Kinetic analysis was performed by
loading 2 pl fractions of the reactions on a 3% acrylamide gel in THEM buffer (34 mM Tris
base, 57 mM Hepes, 0.1 mM EDTA, 2.5 mM MgCl,) {Acker, 2007 #476} at indicated time
points, running the gel in THEM buffer at 12W at 4°C. Gels were dried and quantified using a
Typhoon 9410 phosphoimager and ImageQuantTL (GE Healthcare Life Sciences). The
fraction of dissociated ribosomes was plotted against time and, using KaleidaGraph for curve

fitting, rate constants were determined.

In vitro translation

Translational extracts were prepared from a dom34AhbsiA strain (BSY2550) essentially as
described {Tuite, 1986 #255}. A synthetic firefly luciferase-A(50) mRNA {Gallie, 1991
#273} was incubated in this extract supplemented, or not, with recombinant Dom34-Hbs1
purified as described previously {Collinet, 2011 #331} and luciferase activity was assayed.
Translation conditions have been described by Tharun et al. {Tarun, 1995 #256} (see
Supplementary data for details).
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Figure Legends

Figure 1. Dom34 stimulates restart of translation in yeast recovering from glucose
starvation stress. (A) and (B) Dom34 stimulates the rapid reappearance of polysomes in cells
recovering from glucose starvation stress. Polysome profiles of wild type (A) or dom34A (B)
yeast grown in glucose rich medium (left graph), after 10 minutes of glucose starvation
(second graph) and 5 and 30 minutes after glucose repletion (third and fourth graph) at 16°C.
(C) and (D) Dom34 stimulates protein production in cells recovering from glucose starvation
stress. Wild type (C) and dom34A (D) depleted of glucose or grown in glucose rich medium
for 10 minutes at 16°C was resuspended in glucose rich medium containing **S-Methionine,
followed by incubation at 16°C. *>S-Methionine incorporation was measured at the indicated

time points. Means and SD of 3 independent experiments are shown.

Figure 2. Dom34-Hbsl and RIil participate in the dissociation of inactive, Stml-
containing, 80S ribosomes.

Dom34-Hbs1 and Rlil dissociate ribosomes from glucose-starved yeast in vitro. **P-labeled
80S ribosomes purified from glucose-starved yeast were incubated with the indicated proteins
in presence of ATP and GTP or GDPNP. (A) After 15 minutes of incubation dissociation was
monitored by sucrose density gradient centrifugation and scintillation counting of collected
fractions. (B) Observed rate constants were determined by monitoring the fraction of
dissociated ribosomes over time on a native gel system (see Supplementary Figure 1). Means

and SD of 3 independent experiments are shown.

Figure 3. Weakening ribosome subunit interaction reduces the need for Dom34 during
restart of translation after glucose starvation stress.

Polysome profiles of stmIA (A) and dom34AstmIA (B) yeast grown in glucose rich medium
(left graph) exposed to glucose starvation (second graph) and 5 and 30 minutes after glucose

readdition (third and fourth graphs) at 16°C.

Figure 4. Restart of translation after glucose depletion stress requires Hbsl GTPase
activity but not Dom34-Hbs1 interaction or the Hbs1 N-terminus.

Polysome profiles of 4bsIA (A) or dom34 A (B) yeast transformed with plasmid expressing
the indicated mutants, grown in glucose rich medium (left graph), exposed to glucose

starvation (middle graph) and after glucose readdition (right graph) at 16°C.
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Figure 5. The Dom34-Hbsl complex stimulates translation in non stress-related
conditions.

(A) and (B) Inactive 80S ribosomes accumulate in dom34A yeast. Polysome profiles were
obtained from wild type and dom34A yeast in low (100 mM KCI) (A) and high (400 mM
KCI) (B) salt conditions. Yeast strains were grown at 30°C. (C) Dom34-Hbsl stimulates
translation by ribosomes that were not exposed to starvation stress. A firefly luciferase mRNA
was translated for 1 hour in cell extract obtained from a dom34A hbsIA strain, after which
luciferase activity was measured. Addition of increasing amounts of recombinant Dom34-
Hbs1 complex, but not of Hbs1 alone, stimulated luciferase production. Means and SD of 3

independent experiments are shown.

138



Figure 1

A Wild type
80S
608
A254 | 408 l POIYSomeS W
sedimentation
+ glucose 10’ - glucose 10’ - glucose 10’ - glucose 10’
+ glucose 30’ + glucose 5’ + glucose 30’
B dom34/
+ glucose 10’ - glucose 10’ - glucose 10’ - glucose 10’
+ glucose 30’ + glucose 5’ + glucose 30’
B Wild type + glucose 10°/ + glucose ) B Jom344 + glucose 10° / + glucose
Wild type - glucose 10’/ + glucose dom344 - glucose 10° / + glucose
4,0 ~ 4,0 -
c =
=) 23
e 2 3,0 c2 3,0
S a S a
o o
§ Qg 2,0 é Qg 2,0
£ a Ea
5 < 7 <
=2 =2
” E 1,0 ” E 1,0
(a2 ] (23] -
0,0 r 0,0 1 T T T
0 10 20 30 0 10 20 30
time after glucose readdition (min) time after glucose readdition (min)

139



A 16000 - o
— 14000 - 405
| -y
g i -
8000 - G
6000 -
4000 -
2000 -
1] Y '
] 5 10
Fraction
-&-Tife ~#-Dom34,/Hbs1/Rii1/Tif6
& Hbsl/RIi1/Tif6 -»-Dom34,/Hbs1/Tife

Keat (Mint)

0,5

Dom34 + +
Hbs1 +
RIi1 +
Tif6e  + +
GTP + +
GDPNP

+ + + + +

+ + + +

+

140



Figure 3
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Figure 4
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Figure 5
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In the manuscript it was shown that in S. cerevisiae lacking Dom34 translation did not recover
30 minutes after glucose addition, whereas in wild type strains in the same time window full
recovery was observed, at 16°C. I studied how much time it took for dom34A yeast to reach
full translational recovery after glucose starvation. In Figure 50 it is shown that this took

between two and four hours.
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Figure 50 Recovery of translation after glucose starvation in absence of Dom34.
Translational recovery after glucose starvation takes two to four hours in absence of Dom34. Polysome profiles
of dom34A S. cerevisiae grown in glucose rich medium (YPDA, first graph), after 10 minutes of glucose
starvation in YPA (second graph) and 30, 60, 120 and 240 minutes after glucose addition (resuspension in
YPDA, third to sixth graph) at 16°C. Due to a technical problem with the UV monitor the tip of the 80S peak in
the 240 minute recovery graph is missing.

A failure to efficiently restart translation upon stress relief is expected to translate itself into a
failure to resume cell growth and proliferation. I examined whether yeast lacking Dom34
grew more slowly than wild type strains, after exposure to glucose depletion stress.

Cell density, estimated by ODgg reading, was followed over time in cells that, after a brief
period of glucose starvation, were grown in presence of glucose. Because the experiment was
performed at 16°C, even wild type cells not exposed to stress grew slowly, making

differences between the conditions very small. Consistent with the defect in translational
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recovery, a dom34A strain grew more slowly in the first few hours after glucose starvation

than a wild type strain (Figure 51).
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Figure 51 Recovery of growth following glucose starvation in presence and absence of Dom34.
Cell density (OD600) was monitored in S. cerevisiae, grown in presence of glucose (in YPDA), followed by
glucose starvation or continued growth in glucose rich medium (resuspension in YPA or YPDA respectively) for
10 minutes, and then grown in presence of glucose (resuspension in YPDA) at 16°C. Timepoint 0 minutes
corresponds to the moment of resuspension in YPDA.



2.4 DOM34-HBS1 INTERACTION

Not presented here were data I produced in which I show by co-purification experiments on
recombinant Dom34 and Hbsl from bacteria, that the C-terminal domain of Dom34 is
essential for Dom34-Hbs1 interaction. These data were published (Collinet et al, 2011), the

paper is included in the supplementary information section of this thesis.
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3. DISCUSSION
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In my work I identified a new role for the ribosome dissociating Dom34-Hbs1 complex. It
stimulates translation, by making the subunits of inactive 80S ribosomes available for
initiation. Especially in cells recovering from translation inhibiting stress, this proved to be
important for translational recovery. My work also gives new insights into RNA quality
control mechanisms acting on stalled translational complexes, in which the Dom34-Hbsl

complex also functions, and into how these pathways relate to each other.

3.1 RNA QUALITY CONTROL ON STALLED TRANSLATIONAL
COMPLEXES

The Dom34-Hbsl complex acts in three RNA quality control pathways that have several
characteristics in common. Apart from sharing the involvement of Dom34-Hbs1, NGD, 18S
NRD and NSD all target ribosomes that translate inefficiently or stall on a mRNA. In all three
pathways Dom34-Hbs1 affects the degradation process of the RNAs that cause ribosomal
stalling (Cole et al, 2009; Doma & Parker, 2006; Saito et al, 2013) and in NSD there are
indications that the complex dissociates stalled ribosomes (Tsuboi et al, 2012). A lot of
questions remain on the mechanisms of NGD, 18S NRD and NSD and how these mechanisms

relate.

The endonuclease responsible for cleaving the mRNA in NGD has not been identified so far. |
excluded the factors Esll and Esl2 as candidates. These paralogs have been predicted in the
SMART database to contain a PIN domain (Bleichert et al, 2006), a domain that has been
shown to have endonuclease activity in several other factors (Huntzinger et al, 2008; Lebreton
et al, 2008). Yeast has several other factors that contain a PIN domain. Based on their
localization and the conservation of their active sites, these factors could be tested for
endonuclease activity in NGD. Another question is how the endonuclease is recruited to a
mRNA with one or more stalled ribosomes. If the Dom34-Hbsl acts upstream of the
endonuclease cleavage step, the complex may play a direct role in recruiting the
endonuclease. The discovery of the identity of the endonuclease will help greatly in studying
the mechanism of its recruitment and in studying the sequence of events in NGD.

At the moment it is not clear whether the recruitment of the Dom34-Hbsl complex to a
ribosome stalled on a NGD substrate always causes mRNA cleavage. Biochemical
experiments indicate that Dom34-Hbsl mediated dissociation of stalled ribosomes only

occurs if the mRNA extending downstream of the ribosomal P-site is of limited length
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(Pisareva et al, 2011; Shoemaker & Green, 2011), suggesting that mRNA cleavage precedes
ribosome dissociation. However, in theory it is possible that in vivo ribosome dissociation
may occur without mRNA cleavage. If the identity of the endonuclease were known, in vitro
experiments could give more insight into this. It could then be tested whether the addition of
cell lysate, lacking the endonuclease, to an in vitro assembled translational complex stalled on

a mRNA that extends far beyond the P-site results in ribosome dissociation.

In 18S NRD a defect in an 18S rRNA causes the degradation of the defective 18S rRNA,
which is part of an inefficiently translating ribosome (LaRiviere et al, 2006). At the moment
nothing is known about the fate of other components of the affected ribosomes. Are the
associated 40S subunit proteins also degraded, or can they, or some of them, be recycled?
And what happens to the 60S subunit? For the cell it would be energetically favorable to not
degrade functional 60S subunits. The observation that Dom34-Hbs1 stimulates 18S rRNA
degradation in 18S NRD (Cole et al, 2009) suggests that ribosome dissociation is required for
rRNA degradation, possibly by making it accessible for the RNA degradation machinery. The
60S subunit may thereby be released. As discussed in paragraph 1.4.2.1 it is thought that 18S
NRD is induced by inefficient translation of the affected ribosome. The question is whether
the cell has mechanisms to identify what part of the ribosome causes inefficient translation
and selectively degrade only this component. /n vitro translation experiments in yeast extract,
using only mutant 18S rRNA containing ribosomes, may answer the question whether a

defective 18S rRNA results in destabilization of other ribosome components.

The question above can be further extended. Also NGD substrates are recognized due to an
inefficiently translating ribosome. Does a cell have mechanisms to distinguish between
ribosomal stalling caused by a defective ribosome and stalling caused by a stall site in a
mRNA? In other words, does a stalled ribosome induce degradation of both mRNA and 18S
NRD, or do NGD and 18S NRD occur separately, depending on the cause of stalling? Again,
if stalling is caused by a mRNA it would be energetically favorable for the cell to not degrade
the ribosome, which can be reused.

In my work I found that disrupting the interaction between Dom34-Hbs1 negatively affects
accumulation of a 5> NGD intermediate in yeast deficient for cytoplasmic exosome function,
but has no or much less influence on 18S NRD efficiency. This may give new information on

how NGD and 18S NRD relate. The difficulty, however, is that the conclusions that can be
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drawn from these observations depend on the interpretation of the role of Dom34-Hbsl in
NGD.

In NGD the Dom34-Hbsl complex is needed for accumulation of a 5’ degradation
intermediate produced from some, but not all NGD substrates, in yeast deficient for
cytoplasmic exosome function. Although initially interpreted as Dom34-Hbsl stimulating
mRNA cleavage, and thereby intermediate production, it can also be interpreted as Dom34-
Hbsl acting downstream of mRNA cleavage and its absence reducing intermediate stability
(see paragraph 1.4.5). Comparison of the half-life of a full length NGD reporter mRNA in
presence and absence of Dom34-Hbsl would shed more light on which interpretation is
correct.

The conclusions that can be drawn from my findings depend on which interpretation of the
effect of Dom34-Hbsl on NGD intermediate accumulation is used. If the hypothesis that
NGD cleavage is Dom34-Hbs1 dependent is true, my data would indicate that NGD and 18S
NRD can be genetically separated. It would follow from this that Dom34-Hbs1 recruitment to
stalled ribosomes may not always induce the degradation of both mRNA and 18S rRNA in
parallel, and that 18S rRNA degradation is not dependent on mRNA degradation.

According to the alternative hypothesis, the 5’ intermediate, stabilized in ski7A, is partially
destabilized in absence of functional Dom34-Hbsl, due to stalled ribosomes inducing
multiple mRNA cleavages. In this context, my data would indicate that disrupting Dom34-
Hbs]1 interaction interferes sufficiently with the complex’s function to allow stalled ribosomes
to induce multiple cleavages, destabilizing the 5 mRNA intermediate in NGD. However, the
complex still functions sufficiently to promote 18S NRD. This makes sense as in NGD, there
would be a kinetic competition between Dom34-Hbs1 mediated ribosome dissociation and
ribosome induced endonucleolytic cleavage, which is likely to be sensitive to small changes
in Dom34-Hbs1 activity. On the other hand, in 18S NRD Dom34-Hbsl has a stimulatory
effect on rRNA degradation. Small changes in Dom34-Hbs1 activity will only have small
changes on rRNA degradation.

The relationship between NGD and 18S NRD was further studied. My results did not indicate
that a stall site in a mRNA can cause degradation of rRNA or ribosomal protein, nor did they
exclude it. It would also be interesting to study whether a defect in a ribosome causes
degradation of the mRNA it translates. A first indication may be obtained from in vitro
translation experiments, using a yeast extract containing mutant 18S rRNA ribosomes only.
The half-life of the mRNA that will be added to the extract can then be compared between an

extract containing mutant ribosomes and an extract containing wild type ribosomes.
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Apart from sharing several characteristics with 18S NRD, the NGD pathway also appears to
be closely related to the NSD pathway. When ribosomes translate poly(A)+ NS mRNAs, they
translate the poly(A) tail into a stretch of lysines. As discussed in paragraph 1.4.1.2, a stretch
of lysines can cause a ribosome to stall and induce NGD. It is therefore tempting to speculate
on poly(A)+ NSD being a form of NGD, that starts with an endonucleolytic cleavage in the
poly(A) tail and subsequent degradation of the large 5° fragment (which is a poly(A)- NS
mRNA) by the exosome. However, cleavage in the poly(A) tail appears unlikely, as in yeast
deficient for cytoplasmic exosome activity a PGK1-NS mRNA accumulates that contains a
poly(A) tail with a length similar to that of a control PGK1 mRNA (~70 nucleotides) (van
Hoof et al, 2002).

The 5> mRNA cleavage product produced in NGD may be functionally identical to a poly(A)-
NS mRNA. Both are capped mRNAs that lack a stop codon and a poly(A) tail and that are
associated with translating ribosomes. In addition my data show that their rapid degradation
depends on the same nuclease requirement of the exosome: in both cases Dis3 endo- or
exonuclease activity is sufficient. If poly(A)+ NSD would start with an endonucleolytic
cleavage in the poly(A) tail, the resulting 5’ intermediate would therefore be expected to be
degraded in a manner similar to a poly(A)- NS mRNA. However, poly(A)+ NSD and
poly(A)- NSD differ mechanistically in that degradation of poly(A)+ NS mRNAs requires
Ski7 N- and C-terminus, whereas the degradation of a poly(A)- NS mRNAs requires only the
Ski7 N-terminus (Schaeffer & van Hoof, 2011). If poly(A)+ NSD is a form of NGD, this
would suggest that the C-terminal domain of Ski7 has a function upstream of the processive,

Ski7 N-terminus dependent 3’ to 5° degradation of the major part of the NS mRNA.

Finally, a very important question concerns the biological relevance of NGD, 18S NRD, NSD
and the role Dom34-Hbs1 plays in these pathways. The frequency and impact of accidental
defects in mRNAs or ribosomes that cause ribosomal stalling, or the importance of Dom34-
Hbsl in dealing with them, have not been studied so far. There is the possibility that these
mechanisms exist not only to deal with faulty RNAs, but also as a part of regulatory
mechanisms. An example could be the regulated use of an alternative poly(A) signal,
resulting in a NS mRNA which is consequently degraded. Genome wide data analysis, e.g.
from ribosome profiling experiments, comparing strains with and without functional Dom34-
Hbs1 may give new insights. Analysis of different environmental conditions or, in case of

higher eukaryotes, of different cell types or developmental stages may prove important.
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3.2 FUNCTIONAL IMPORTANCE OF HBS1 GTPASE ACTIVITY AND

DOM34-HBS1 INTERACTION
I studied the importance of GTP binding by Hbsl and the interaction between Dom34 and
Hbs1 for several functions of the Dom34-Hbs1. Similarly to previous reports (Carr-Schmid et
al, 2002; Kobayashi et al, 2010) I found that the binding and hydrolysis of GTP by Hbsl is
important for intermediate accumulation in NGD and for growth in 40S subunit deficient
yeast. It also turned out to be required for efficient 18S NRD and for dissociation of inactive
ribosomes in yeast recovering from stress. The latter finding parallels the requirement of Hbs1
GTPase activity for the in vitro dissociation of ribosomes that are stalled on a mRNA, or
vacant ribosomes (Pisareva et al, 2011; Shoemaker et al, 2010; Shoemaker & Green, 2011).
GTP hydrolysis is required for Hbs1 dissociation from the ribosome and is thought to induce
accommodation of Dom34 in the ribosomal A-site (Shoemaker & Green, 2011), thereby
promoting binding of Rlil and subsequent ribosome dissociation or any other function of

Dom34.

The interaction between Dom34 and Hbs1 is mediated by multiple domains of both proteins.
The precise details of which residues in what domains participate in the interaction differ
between different reports (Chen et al, 2010; Kobayashi et al, 2010). Our structural model of
the Dom34-Hbsl complex indicates that, apart from the interaction between C-terminal
domain of Dom34 with domain III of Hbsl, there is an additional interface between the
central domain of Dom34 and the G domain of Hbs1. Indeed, mutating conserved residues on
both interfaces disrupted Dom34-Hbs1 interaction, as measured by yeast two hybrid analysis.
Interestingly I found that disrupting the interaction by mutating Hbs1 did not affect 18S NRD
efficiency, growth in 40S subunit deficient strains or dissociation of inactive ribosomes in
yeast recovering from stress. On the other hand, the accumulation of a NGD intermediate in
yeast deficient for cytoplasmic exosome function was dependent on Dom34-Hbs1 interaction.
As described above, this may either reflect different functional requirements for Dom34-Hbs1
induced mRNA cleavage, or the kinetic competition between Dom34-Hbsl mediated
ribosome dissociation and mRNA cleavage.

It may seem surprising that both Dom34 and Hbs1 are required but their stable interaction is
not for many of the complex’s functions. There are several explanations. Dom34 and Hbs1

may be recruited to a ribosome independently as efficiently as in a complex. Their interaction
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may then be stabilized in the ribosomal context. This explanation would suggest that the
function of Hbsl is not merely delivering Dom34 to the A-site, otherwise disrupting the
interaction should give the same phenotype as absence of Hbsl. Its presence on the ribosome
may change the conformation of Dom34. Alternatively, a third, unknown factor may stabilize
the interaction between Dom34-Hbs1 outside the ribosome.

Interestingly, disrupting the interaction between Dom34 and Hbsl by mutating Dom34 does
interfere with 18S NRD, growth in a 40S subunit deficient strain and dissociation of inactive
ribosomes. This may be explained from the fact that Dom34 does not only interact with Hbs1,
but also with Rlil. Alternatively, after conformational changes of Dom34 on the ribosome,

some of these residues may interact with the ribosome itself.

3.3 DOM34-HBS1 STIMULATES TRANSLATION BY MAKING
SUBUNITS AVAILABLE FROM INACTIVE RIBOSOMES

Addressing the biological relevance of Dom34-Hbs]1, I identified a new role of the complex.
It was found to dissociate inactive ribosomes that accumulate during translation inhibiting
glucose starvation stress. Making ribosomal subunits available, the complex thereby
stimulates rapid recovery of translation after stress relief. This finding expands the number of
potential substrates of the Dom34-Hbs1 complex from a small fraction of ribosomes, stalled
during translation, to a large fraction of all ribosomes in the cell, which form inactive
ribosomes during stress.

Dom34 and Hbsl, or alternatively aEF1a, are conserved in two domains of life (Eberhart &
Wasserman, 1995; Inagaki & Ford Doolittle, 2000; Ragan et al, 1996; Saito et al, 2010;
Wallrapp et al, 1998). The role of the complex in dissociating inactive ribosomes is therefore
likely to be relevant in a wide range of organisms. Moreover, translation inhibition occurs in a
variety of stress conditions (Spriggs et al, 2010). It would be reasonable to expect that
Dom34-Hbs1 dependent stimulation of translation may be observed in many stress-related
conditions. It will be important to verify these hypotheses, and test whether the Dom34-Hbs1
complex stimulates restart of translation in a variety of cells from different organisms, that

recover from different types of translation inhibiting stress.

3.4 A NEW MECHANISM TO REGULATE TRANSLATION RATES?

My data indicate that the role of Dom34-Hbs1 dissociating inactive ribosomes is not restricted

to cells recovering from stress. In exponentially growing, non-stressed yeast, inactive
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ribosomes are also present, although to a much lesser extent than in stressed cells. In yeast
lacking functional Dom34-Hbs1 complex, inactive ribosomes accumulate, strongly suggesting
that Dom34-Hbs1 are responsible for their dissociation. Moreover, in yeast extract Dom34-
Hbs1 complex stimulates translation. These observations suggest that Dom34-Hbs1 function
may optimize translation efficiency, having a positive effect on ribosomal subunit availability
for translation initiation.

This hypothesis is supported by several earlier reports. Depletion of Rlil, which most
probably acts with Dom34-Hbs1 to dissociate inactive ribosomes, results in accumulation of
80S ribosomes and decreased levels of polysomes in yeast, human and Drosophila cells,
similar to dom34A and hbsiA phenotypes (Andersen & Leevers, 2007; Chen et al, 2006;
Dong et al, 2004), suggesting accumulation of inactive ribosomes. In yeast it was observed
that deletion of DOM34 or HBSI caused growth defects in strains in which translation
initiation was limited by constitutive elF2a phosporylation. This suggests that the absence of
Dom34-Hbs1 may further reduce the rate of translation (Carr-Schmid et al, 2002). The
hypothesis may also explain the growth defect caused by DOM34 or HBSI deletion in 40S
subunit deficient strains (Bhattacharya et al, 2010; Carr-Schmid et al, 2002). In these double
mutant strains 40S subunit availability for translation initiation may decrease further by their
sequestration in inactive 80S ribosomes. This idea is supported by the observation that in the
slowly growing 40S subunit deficient rps6aAdom34A strain, additional deletion RPL4A,
encoding a 60S ribosomal subunit protein, partly restores growth (Bhattacharya et al, 2010).

The decrease in 60S subunits should reduce 40S subunit sequestration.

My data strongly indicate that Stml, in its ribosomal subunit clamping conformation,
antagonizes Dom34-Hbs1 mediated dissociation of inactive ribosomes in stressed cells. Up
till now, there was no information on whether this translation inhibiting conformation of Stml
is specific for ribosomes in stressed cells, or whether it may occur in inactive ribosomes in a
variety of conditions. When comparing Figures 1B and 3B of the manuscript, it can be seen
that in non-stressed cells (leftmost polysome profiles), deletion of STM1 prevents the increase
in 80S ribosomes caused by absence of Dom34. As I showed that this increase in 80S
ribosomes is due to an increase in inactive ribosomes, this suggests that Stml antagonizes
Dom34-Hbs1 mediated dissociation of inactive ribosomes in non-stressed cells as well. In
other words, my data support that the ribosomal subunit clamping and translation inhibiting
conformation of Stml is not specific for stress conditions, but also occurs in inactive

ribosomes in non-stressed cells. This may explain why overexpression of Stml in dom34A
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yeast causes a growth defect (Balagopal & Parker, 2011). Absence of Dom34 and
overexpression of Stm1 both having a stabilizing effect on inactive ribosomes, this condition
may lead to a reduced availability of ribosomal subunits for translation initiation and therefore

suboptimal translation rates.
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Figure52 Model for the Dom34-Hbs1 complex affecting subunit availability in the translation cycle
After termination and recycling, ribosomal subunits do not always engage immediately in a new round of
translation. Instead they can associate to form inactive 80S ribosomes, not associated with a mRNA.
Dissociation of these non-translating ribosomes, which depends on Dom34-Hbs1 and Rlil, is required to make
their subunits available for new rounds of translation. Regulation of this dissociation process may form a new
level of regulating translation initiation.

My findings add a new component to the translation cycle as it is currently viewed
(Figure52). In the recycling stage of the translation cycle, dissociation of terminated
ribosomes results in a 40S subunit still bound to mRNA and tRNA. The release of both RNAs
is mediated by initiation factors elF1, elF1A, elF3 and elF3j (Pisarev et al, 2010). The
requirement of these factors binding to a 40S subunit during translation initiation suggests
that they directly connect ribosome recycling with a new round of translation (Aitken &
Lorsch, 2012; Jackson et al, 2010; Nurenberg & Tampe, 2013). My data emphasize that

instead, ribosomal subunits that result from recycling may associate to form inactive



ribosomes. The Dom34-Hbsl complex, and very probably RIli, are required for their
dissociation, which allows the ribosomal subunits to re-enter the translation cycle
(seeFigure52). This process may provide a new level of regulation of translation, by
controlling ribosomal subunit availability. That such regulation may have an important effect
on translation rates is supported by a recent report, in which it was predicted from a
computational model that protein production in healthy yeast cells is typically limited by the
availability of free ribosomes (Shah et al, 2013).

An important question to address is whether ribosomal subunit availability may be regulated
by changing Dom34-Hbs1 levels or activity. In other words: are Dom34 and Hbs1 regulated?
One may expect that Dom34 and Hbs1 will be upregulated during stress conditions to allow
cells to rapidly recover translation when conditions change for the better. Regulation of
Dom34 and Hbsl expression may occur on the level of mRNA (e.g. by transcriptional
regulation or a change in mRNA stability) or protein abundancy (e.g. by regulation of mRNA
specific translation or protein activity). Alternatively, post-translational modification may
change protein activity.

It will be very interesting to see whether mRNA or protein levels of Dom34 and Hbs1 change
during stress. A search in the Yeastract database (Abdulrehman et al, 2011; Monteiro et al,
2008; Teixeira et al, 2006), which reports direct or indirect regulatory associations between
transcription factors and target genes in S. cerevisiae, implicates several stress related
transcription factors in controlling Dom34 and Hbs1 transcriptional expression. These include
Gend (Moxley et al, 2009), Sfpl which is involved in regulating the response to nutrient
stress (Cipollina et al, 2008), Pho4 which plays a role in phosphate limited conditions, Gatl
which is upregulated during nitrogen starvation, Msn2 and Msn4 which are upregulated
during stress, Rtgl and Rtg3, which are activated during glutamine starvation (Harbison et al,
2004) and Leu3 which acts as an activator during leucine depletion (Tang et al, 2006), These
transcription factors have been found by genome wide experiments to either bind directly to
the DOM34 or HBSI promoter region or indirectly affect their expression.

Post-translational modifications may play a role in the regulation of Dom34-Hbs1 activity.
Large scale mass spectrometric analyses identified S. cerevisae Hbsl to contain a
phosphoserine (Albuquerque et al, 2008; Li et al, 2007). It would also be interesting to
examine whether Dom34 or Hbsl in different organisms have motifs predicting conserved

phosphorylation sites. To get an indication about whether posttranslational modifications play
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a role in regulating Dom34-Hbs1 activity, it could then be tested whether mutating these sites
affects recovery of translation after stress or the levels of inactive ribosomes.

In higher eukaryotes Dom34-Hbs1 mediated regulation of ribosomal subunit availability may
not only play a role in stress conditions, but also in developmental processes. During
embryonic development, as well as in the maturation of certain cell types from stem cells into
differentiated cells in mature organisms, translation rates will need to increase in stages of
rapid proliferation. Strikingly, in higher eukaryotes absence of Dom34 causes defects in
mitotic and meiotic cell division, leading to defective proliferation of the blastocyst inner cell
mass and embryonic lethality in mice (Adham et al, 2003) and defects in spermatogenesis in
Drosophila (Eberhart & Wasserman, 1995). It may be very interesting to examine whether
these defects are accompanied by a failure of ribosomal subunits to redistribute from inactive

80S ribosomes to the translating pool.
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4. MATERIALS AND
METHODS
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4.1 STRAINS AND MEDIA

4.1.1 Bacterial media

E. coli was grown in the following media :

e [B: 10 g/l tryptone, 5 g/l yeast extract, 5 g/l NaCl (Sigma L3022).

e Autoinduction medium: 12 g/l tryptone, 24 g/l yeast extract, 3.3 g/l (NH4)2,SO4, 6.8 g/l
KH,POy4, 7.1 g/l Na,HPOy4, 0.5 g/l glucose, 2.0 g/l a-lactose, 0.15 g/l MgSQO4, 0.03 g/
trace elements (Formedium AIMTB0210).

Depending on the selection marker of the plasmid the bacterial strain was transformed with,

the following antibiotics were added to the medium: ampicillin (50 pg/ml), kanamycin (50

pg/ml), chloramphenicol (25 pg/ml).

4.1.2 Bacterial strains and plasmids

The MHI1 (araD39, lacX744, gal E, gal K, hsr, rpsL) E. coli strain was used for cloning and

plasmid storage. For protein expression the following E. coli strains were used.

e BL21 (DE3) (fhud2 [lon] ompT gal (A DE3) [dcm] AhsdS , A DE3 = A sBamHIo AEcoRI-
Bint::(lacl::PlacUV5::T7 genel) i2l Anin5)

e BL21 CodonPlus-RIL (F— ompT hsdS(tB— mB-) dem+ Tetr gal endA Hte [argU ileY leuW
CamR])

Table 1 lists all plasmids used in E. coli.

Bacteria were grown at 37°C, unless indicated otherwise, and shaken at 170 rpm in liquid

culture.

Table 1 List of E. coli plasmids.

Plasmid Vector Insert Selection marker | Reference / comment
pBS3410 pET28 HBSI1-6HIS KanR gift from M. Graille
pBS3438 pACYC DOM34-STREP cat
LIC+ (chloramphenicol
resistance)
pBS4612 pUCI19 T7-5’UTR (PGK1)-TAP- | AmpR

3HA-GFP-3°UTR
(PGK1)-(4)50

pBS4613 | pUCI9 T7 -5°UTR (PGKI)- | AmpR
TAP-3HA-SL-GFP-
3'UTR (PGK1)-(4)50

pT7-LUC- | pBluescript | 77-LUC-(4)50 AmpR (Gallie et al, 1991)
A50




4.1.3 Yeast media

Yeast was either grown in rich media or in synthetic defined drop out media, lacking one or

several amino acids to select for yeast containing a plasmid with a selection marker that

allows the synthesis of this particular amino acid. Both types of media were used with and

without 2% glucose. Synthetic defined media containing 2% galactose were also used. In the

chase experiment to determine mRNA half-life 4% glucose was used.

Rich media:

e  YPDA (yeast peptone dextrose adenine) (Formedium CCM1010): 10 g/l yeast extract, 30
g/l bacto peptone, 20 g/l glucose, 40 mg/l adenine sulfate.

e YPA (yeast peptone adenine): 10 g/l bacto yeast extract (BD), 30 g/l bacto peptone (BD),
40 mg/l adenine sulfate.

Synthetic defined drop out media:

e Complete supplement mixture (CSM) — amino acid (MP) (quantity defined by the
manufacturer), 6.7 g/l difco yeast nitrogen base without amino acids (BD), 20 g/l (or 40
g/l or 0 g/1) glucose or galactose, 50 ml Sorensen’s phosphate buffer (20x)".

When media were prepared in solid form, they contained 2% bacto agar (BD). Yeast was

grown at 30°C, unless indicated otherwise, and shaken at 170 rpm in liquid culture.

4.1.4 Yeast strains and plasmids

S. cerevisiae strains used in this work are listed in
Table 2. All strains, except Y190, were derived from BMA64 (ade 2-1 his3-11,15 leu2-3,112
trpIA ura3-1 canl-100). Table 3 lists all yeast plasmids used in this work.

Table 2 Yeast strains.

Yeast Genotype Reference / comment
strain

BMAG64 MAT « (Baudin-Baillieu et al, 1997)
BSY 1486 | MAT a eslIA::TAP::KanR constructed by C. Faux
BSY1624 | MAT o.dcpl-2 constructed by C. Faux
BSY1699 | MAT o ski7A::Kan constructed by C. Faux
BSY 1883 | MAT a KanMX:TetOFF-DIS3 (Lebreton et al, 2008)
BSY1970 | MAT o dom34A::HIS3 constructed by D. Lebert
BSY2029 | MAT a dom34A::HIS3 ski7A::Kan R constructed by C. Faux
BSY2051 | MAT a dom34A::HIS3 rps28AA::Kan R constructed by C. Faux
BSY2145 | MAT a hbsiA::KanR constructed by C. Faux

! The compositions of all buffers used are listed in paragraph 4.6.
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BSY2204 | MAT a ski7A::KanR hbs1A::KanR
BSY2218 | MAT a rps28A4A::KanR hbs1A::KanR
BSY2219 | MAT a sup45ts Gift from F. Lacroute
BSY2221 | MAT a sup35ts sup45ts Gift from F. Lacroute
BSY2550 | MAT a dom34A::HIS3 hbsiA::KanR
BSY2553 | MAT o ski7A::Kan eslIA::Kan
BSY2554 | MAT a ltnlA::His3
BSY2555 | MAT a.ski7A::Kan ItnlA::His3
BSY2556 | MAT a esI2A::His3
BSY2557 | MAT o ski7A::Kan esl2A::His3
BSY2625 | MAT a.dcpl-2 dom34 A::His3
BSY2626 | MAT a stmiA::TRP1 dom344::HIS3
N20T20 MAT a stmlA::TRP1 Gift from F. Lacroute and F. Wyers
Y190 MAT a gal4 gal80 his3 trpl-901 ade2-101 | (Bai & Elledge, 1996)
ura3-52 leu2-3, 112 + URA3::GAL-lacZ,
LYS2::GAL(UAS)-HIS3 cyh r
Table 3 Yeast plasmids.
Plasmid | Vector Insert Selection | Reference / comment
marker
pACTII TRPI (Bai & Elledge, 1996)
pAS2 LEU2 (Bai & Elledge, 1996)
pBS2284 | pRS416 GALp-PGKIpG URA3 (Finoux &  Seraphin,
2006)
pBS3161 | pRS416 GALp-PGKIpG-premature  stop | URA3 derived from pBS2284,
codon constructed by D. Rispal
pBS3217 | pRS415 DOM34 + 313 nucleotides | LEU2
upstream
pBS3269 | pFL36 lys2:DIS3-TEV-PROTEIN A LEU2 (Lebreton et al, 2008)
pBS3270 | pFL36 lys2:DIS3 D55IN -TEV-PROTEIN | LEU2 (Lebreton et al, 2008)
A
pBS3277 | pFL36 lys2:DIS3 DI7IN D55IN -TEV-| LEU2 (Lebreton et al, 2008)
PROTEIN 4
pBS3278 | pFL36 lys2:DIS3 DI17IN -TEV-PROTEIN | LEU2 (Lebreton et al, 2008)
A
pBS3611 | pRS415 HBSI + 204 nucleotides upstream | LEU2 constructed by M.E. Gas
and 234 nucleotides downstream Lopez
pBS3614 | pRS415 HBSI-PROTEIN A LEU2 derived from pBS3611,
constructed by M.E. Gas
Lopez
pBS3675 | pRS415 hbsl V176G-PROTEIN A LEU2 derived from pBS3614
pBS3676 | pRS415 hbs1 H255E-PROTEIN A LEU2 derived from pBS3614
pBS3677 | pRS415 hbsl “°RDF**—AAA -PROTEIN | LEU2 derived from pBS3614
A
pBS3678 | pRS415 hbsl R517E-PROTEIN A LEU2 derived from pBS3614
pBS3679 | pRS415 hbsl R5574 H5584-PROTEIN A+ | LEU2 derived from pBS3614
pBS3680 | pRS415 hbs1 L520R-PROTEIN A LEU2 derived from pBS3614
pBS3685 | pRS415 DOM34-3HA LEU2 derived from pBS3217
pBS3699 | pRS415 hbsl K1804-PROTEIN A LEU2 derived from pBS3614
pBS3701 | pRS415 dom34 E361R-3HA LEU2 derived from pBS3685
pBS3702 | pRS415 dom34 E3614 03644-3HA LEU2 derived from pBS3685
pBS3703 | pRS415 dom34 ""KKKR'""—AAAA -3HA | LEU2 derived from pBS3685
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pBS3705 | pRS415 dom34°SPGF’°— AA4AA -3HA | LEU2 derived from pBS3685
pBS3706 | pRS415 dom34 Y3004 E361A4-3HA LEU2 derived from pBS3685
pBS4104 | pRS426 GALI1p-CBP-3HA-SL-3’UTR URA3
(PGK1)
pBS4113 | pRS426 GALI1p-CBP-3HA-3 'UTR (PGK1) | URA3 negative  control  for
pBS4104
pBS4197 | pRS426 GALIp-CBP-3HA-K12-3"UTR URA3
(PGK1)
pBS4199 | pRS426 GAL1p-CBP-3HA-R12-3’UTR URA3
(PGK1)
pBS4201 | pRS426 GALI1p-CBP-3HA-RI12FS-3'UTR | URA3
(PGK1)
pBS4203 | pRS426 GALIp-CBP-3HA-3’UTR (PGKI) | URA3 negative  control  for
pBS4197 and pBS4199
pBS4213 | pRS415 DOM34-3HA (on negative strand)- | LEU2
GALI1-10p-HBS1-PROTEIN A
pBS4214 | pRS415 GALI10p-DOM34-3HA LEU2
pBS4215 | pRS415 GALIp-HBSI1-PROTEIN A LEU2
pBS4290 | 2u GAL7p-358 rDNA :18S Ul | TRPI derived from pWL160-2
stemloop in h39
pBS4291 | 2u GAL7p-35S rDNA :18S Ul | TRP1 derived from pWL160-2
stemloop antisense in h39
pBS4292 | 2pn GAL7p-35S  rDNA :18S Ul | TRP1 derived from pWL160-2
stemloop in h44
pBS4293 | 2pn GAL7p-35S rDNA :18S Ul | TRPI derived from pWL160-2
stemloop antisense in h44
pBS4294 | 2n GAL7p-35S rDNA :18S A1492C, | TRPI derived from pWLI160-
Ul stemloop in h39 A1492C
pBS4295 | 2u GAL7p-35S rDNA :18S A1492C, | TRPI derived from pWLI160-
Ul stemloop antisense in h39 A1492C
pBS4298 | pRS416 TPIp - UIA(1-120) - TAP URA3
pBS4372 | pRS426 GAL1p-TAP-3HA-SL-GFP- URA3
3'UTR(PGK1)
pBS4374 | pRS426 GALIp-TAP-3HA-GFP- URA3 negative  control  for
3'UTR(PGK1) pBS4372
pBS4375 | pRS426 GALIp-TAP-3HA-K12-GFP- URA3
3'UTR(PGK1)
pBS4376 | pRS426 GALIp-TAP-3HA-R12-GFP- URA3
3'UTR(PGK1)
pBS4377 | pRS426 GALI1p-TAP-3HA-RI2FS-GFP- URA3
3'UTR(PGK1)
pBS4378 | pRS426 GALIp-TAP-3HA-GFP- URA3 negative  control  for
3'UTR(PGK1) pBS4375 and pBS4376
pBS4415 | pRS415 hbs1AN-ter (2-149)-PROTEIN A LEU2 derived from pBS3614
pFL36 LEU2 (Bonneaud et al, 1991)
pRP469 GALIp-PGKIpG URA3 (Doma & Parker, 2006)
pRP1251 GALIp-PGKIpG-SL URA3 (Doma & Parker, 2006)
pRS415 (Sikorski & Hieter, 1989)
pRP485 GALI promoter-MFA2pG URA3 (Decker & Parker, 1993)
pWL160- | 2p GAL7p-35S rDNA TRPI (LaRiviere et al, 2006)
2
pWL160- | 2p GAL7p -355 rDNA 18S:41492C TRPI (LaRiviere et al, 2006)
A1492C
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4.1.5 Gene deletion

The selection marker to be used was amplified in a polymerase chain reaction (PCR), using
Taq DNA polymerase and Thermopol buffer (New England Biolabs M0267), following the
manufacturers recommendations and instructions. The primers used contained a 40-60
nucleotides sequence upstream of the sequence used to amplify the cassette, that
corresponded to sequences upstream and downstream of the gene to be deleted
(recombination sites). The PCR product was verified on a TBE agarose 0.1% EtBr gel. The
DNA product was then purified by adding 1 volume of phenol:chloroform:isoamyl alcohol
25:24:1 (PCI), vortexing during 1 minute and centrifugation at 14000 rpm for 5 minutes.
DNA in the upper phase was precipitated by addition of 1/10 volume of 3M NaAc pH 5.2, 2.5
volume of 100% ethanol (-20°C) and 10 pg glycogen, followed by incubation at -20°C.
Following centrifugation at 14000 rpm for 25 minutes at 4°C, the pellet was washed in 70%
ethanol (-20°C) and spun at 14000 rpm for 10 minutes at 4°C. The PCR product was
dissolved in 10 pL. H,O. It was then used to transform the yeast strain of interest, as described
in paragraph 4.1.7.

Some of the resulting colonies DNA were grown in liquid YPDA and their genomic DNA
was extracted as described in paragraph 4.1.6.1.2. Gene deletion was verified by PCRs that
span the 5’ and 3’ recombination sites respectively, using Taq DNA polymerase. PCR
products were analyzed on TBE agarose 0.1% EtBr gel.

4.1.6 Cloning

4.1.6.1 DNA isolation

4.1.6.1.1 Isolation of plasmid DNA from E. coli
Plasmids were purified from E. coli by NucleoSpin Plasmid kit (Macherey Nagel 740588.50)
(miniprep) or NucleoBond Xtra Midi kit (Macherey Nagel 740410.10) (midiprep) following

the manufacturer’s instructions. Plasmids were dissolved in 50 ul HO.

4.1.6.1.2 Isolation of yeast genomic DNA

1 ml of saturated yeast culture was pelleted at 14000 rpm for 5 minutes, resuspended in 100 pl
yeast lysisbuffer and shaken at 1400 rpm for 15 minutes. Addition of 500 ul H,O and 700 ul
PCI to the lysate was followed by vortexing for 1 minute and centrifugation at 14000 rpm for
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5 minutes. The DNA in the upper phase underwent an additional round of PCI extraction
followed by ethanol precipitation as described in paragraph 4.1.5, and was dissolved in H,O.
If DNA was extracted for verification of a gene deletion, DNA was dissolved in a 200 pl H,O
of which 1 pL was used for a 20 pL PCR.

4.1.6.2 PCR and digestion

PCRs for cloning were performed using Phusion High-fidelity DNA polymerase and HF
buffer (Finnzymes F-530) or PfuUltra II fusion HS DNA polymerase and the recommended
buffer (Agilent 600670), following the manufacturer’s recommendations and instructions.
PCR product and 1 pug of the vector in which the PCR product was to be inserted were then
digested in 50 ul reactions by various restriction enzymes (New England Biolabs, Fermentas),

following the manufacturer’s instructions.

4.1.6.3 1In gel ligation

Digested plasmids and PCR products were separated on low melting agarose-TA gels run in
TA buffer at 4°C. For fragments larger than 1 kb SeaPlaque® GTG® agarose (Lonza 50110)
was used, for fragments smaller than 1 kb NuSieve agarose (Lonza 50084) was used. After
staining in 0.5% EtBr in TA, bands were cut, melted at 68°C for 10 minutes and then kept at
42°C. Approximately equal molarities of vector and PCR product were mixed in a 10 pl
volume, then 10 pul T4 DNA ligase 20 U/ul in 2x T4 DNA ligase buffer (New England
Biolabs M0202) was added followed by incubation at 16°C over night. Reactions were melted
at 68°C, then kept at 42°C. 50 pl 50 mM CaCl, was added and the reactions were cooled on

ice.

4.1.6.4 Bacterial transformation

100 ul competent E. coli cells were added to 1-5 pl plasmid or the cooled ligation products as
described above, followed by incubation on ice for 20 minutes. Cells were heat shocked at
42°C for 90 seconds, then put back on ice. After addition of 1 ml LB, cells were incubated at
37°C for 45 minutes. A fraction or the entire transformation (concentrated by a brief
centrifugation step) was plated on solid LB medium, containing the appropriate antibiotic. For

cloning MH1 cells were used.
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4.1.6.5 Verification

A number of the resulting colonies were grown in LB containing the appropriate antibiotic.
Plasmids were purified by miniprep (see paragraph 4.1.6.1.1). Correct insertion of the PCR
product was verified by digestion at sites that differentiate between empty vector (or the
plasmid started from) and final cloning product. Digestion products were analyzed on TBE

agarose 0.1% EtBr gel. Plasmids were sequenced at GATC Biotech.

4.1.6.6 Insertion stem loop

pBS4104 was generated by replacing a sequence inserted in a precursor plasmid between Spel
and Nhel, the digestion of which generates compatible sticky ends, by a stem loop. The result
is a plasmid that differs from pBS4113 only by the presence of the stem loop. The precursor
plasmid (2 pg) was digested with Spel and Nhel (New England Biolabs) in a 100 pl reaction
following the manufacturer’s instructions, followed by dephosphorylation of the resulting
ends by adding 10 U calf intestinal alkaline phosphatase (New England Biolabs M0290) and
incubation at 37°C for 30 minutes. The digested vector was PCI extracted, ethanol
precipitated and dissolved in H,O. Oligonucleotide OBS4533 (CTAGCGATATCCCGTGGA
GGGGCGCGTGGTGGCGGCTGCAGCCGCCACCACGCGCCCCTCCACGGGATATCG)
is complementary to itself and annealing of two copies generates ends that are compatible
with Spel and Nhel generated sticky ends. 7 pg OBS4533 was phosporylated at its 5° end
using T4 polynucleotide kinase and reaction buffer A (Fermentas EK0032) in a 50 pl
reaction, then PCI extracted, ethanol precipitated and resuspended in H,O. 200 ng vector and
47 ng OBS4533 were ligated using T4 DNA ligase at 16°C for 2 hours. This was followed by
addition of 50 pl 50 mM CaCl, and transformation of competent MH1 cells.

4.1.6.7 Site directed mutagenesis

Point mutations were generated by site directed mutagenesis. Primers were designed to anneal
to the exact same sequence in the plasmid on opposite strands. They contained the desired
mutation flanked on each side by 15-25 nucleotides. The plasmid was linearly amplified,
using 40 nM of each primer, 200 ng plasmid, 0.2 mM dNTPs, PfuUltra II fusion HS DNA
polymerase and the corresponding buffer in a 50 pl reaction. The reaction went through 18
cycles of 95°C 50 seconds, 60°C 50 seconds and 68°C for approximately 1.5 x the plasmid
size (kb) in minutes, preceded by a step of 60 seconds at 95°C and followed by a step of 7
minutes at 68°C. Then 20 U Dpnl (New England Biolabs) was added to the reaction followed
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by incubation at 37°C for 1 hour, to remove the original plasmid. The product was PCI

extracted, ethanol precipitated, resuspended in H,O and then used for MH1 transformation.

4.1.7 Yeast transformation

50 ml yeast culture in YPDA at ODggo 0.8-1 was pelleted at 4500 x g, resuspended in 50 ml
10 mM Tris pH 7.5 and immediately pelleted again as above. Yeast was then resuspended in
LiT containing 10 mM DTT, followed by incubation at room temperature for 40 minutes.
Yeast was pelleted as above and resuspended in 750 pl LiT containing 10 mM DTT. 100 ul
competent yeast was then added to 1-5 ul plasmid DNA, 5 pl denatured carrier DNA (10
mg/ml) and 50 pl LiT, followed by incubation at room temperature for 10 minutes. 300 pl
PEG4000 in LiT (1g dissolved in 1 ml LiT) was added to each transformation, followed by 10
more minutes at room temperature and 15 minutes at 42°C. Cells were pelleted at 14000 rpm
for 10 seconds, resuspended in 1 ml YPDA and incubated at 30°C for 1 hour. Temperature
sensitive strains (dcpl-2) were incubated at 25°C. Cells were pelleted at 14000 rpm for 60
seconds, resuspended in 100 pul 10 mM Tris pH 7.5 and plated on the appropriate synthetic

defined drop out medium.
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4.2 YEAST GROWTH

4.2.1 Glucose starvation and addition

Yeast was grown at 30°C to an ODgg of 0.6, then shifted to 16°C for 2 hours. The culture was
then split into multiple 100 ml cultures that were pelleted at 5400 x g for 6 min at 16°C,
resuspended in 100 ml media (precooled at 16°C) without or with 2% glucose and incubated
at 16°C for 10 minutes. Cells were pelleted, resuspended in 100 ml media with glucose and

incubated at 16°C for the indicated times.

4.2.2 Drop assay

Yeast was grown to mid-log phase in YPDA or in the synthetic defined drop out medium
indicated. It was then diluted to ODgg 0.1, then a 10-fold dilution series was made, diluting in
growth medium. 2 pl of each dilution was spotted on the solid medium corresponding to the

liquid medium the yeast was grown in.

4.2.3 Growth curve

Yeast was grown to ODggp 0.6 at 30°C in YPDA, then shifted to 16°C for 2 hours. Yeast then
underwent glucose starvation and glucose addition basically as described in paragraph 4.2.1.
Each culture was split in 2, pelleted at 4500 x g for 10 minutes at 16°C, resuspended in 10 ml
YPA (glucose starvation) or YPDA (no starvation) followed by 10 minutes incubation at
16°C. Cells were pelleted at 4500 x g for 10 minutes at 16°C, resuspended in 10 ml YPDA
and immediately diluted 4-fold to ODggo ~ 0.2 in 10 ml final volume YPDA. This was time
point 0 minutes. The ODgyp was measured immediately and at the indicated time points. Time
point 0 minutes was normalized to ODgy 0.2 for all cultures. All measurements

corresponding to the same culture were corrected with the same factor.
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4.3 RNA ANALYSIS

4.3.1 RNA extraction

For analysis of steady state RNA levels, 10 ml of yeast culture at ODgp ~ 0.8 was pelleted at
4500 x g, resuspended in 750 pl H,0, transferred to an eppendorf and pelleted in a micro spin
centrifuge for 15 minutes. The pellet was frozen in liquid nitrogen and stored at -80°C.

RNA was isolated by hot phenol extraction. After addition of 450 pul phenol (pH 4.5-5) to the
frozen pellet it was shaken at 1400 rpm at 65°C during 30 seconds, then 450 ul TES buffer
was added followed by incubation at 65°C for 30 minutes. These 30 minutes contained 1
minute episodes of shaking at 1400 rpm separated by 5 minute intervals. Incubation at 4°C for
10 minutes was followed by centrifugation at 14000 rpm for 5 minutes at room temperature.
To the upper phase 450 pul phenol was added followed by manual shaking, incubation at 4°C
for 5 minutes and centrifugation at 14000 rpm for 5 minutes. To the upper phase 400 pl
chloroform was added, followed by manual shaking and centrifugation at 14000 rpm for 5
minutes. To 250 ul of the resulting upper phase 625 pl ethanol (-20°C) and 25 ul 3 M NaAc
pH 5.2 were added followed by centrifugation at 14000 rpm for 15 minutes at 4°C. The pellet
was washed with 700 pl 70% ethanol (-20°C) and spun at 14000 rpm for 5 minutes at room
temperature. The pellet was resuspended in 40 pl H,O.

4.3.2 Northern analysis

4.3.2.1 Using an agarose-formaldehyde gel

Northern analysis was performed basically as described in (Sambrook et al, 1989). 10 ug or
15 pg (PGK1-SL) mRNA was mixed with 2 pul RNA loading dye, 2 pl 10x MOPS bufter, 3.5
pl formaldehyde and 10 pl formamide, heated at 65°C for 15 minutes then cooled on ice for
10 minutes, then loaded on an agarose-formaldehyde (6.7%) gel in MOPS buffer. All CBP-
3HA and TAP-3HA-GFP mRNAs were separated on gels containing 2% agarose, PGK1
mRNAs on gels containing 1.25% agarose and all other RNAs on gels containing 1.5%
agarose. 18x18 cm gels were run at 100 V, 10x10 cm gels at 50 V in MOPS buffer. All
mRNAs containing a stem loop were separated on gels with bridges of Whatman paper
separating gel from running buffer. The gel was washed in 10x SSC for 10 minutes
(Invitrogen 15557-036). RNAs were transferred to a Hybond-XL membrane (GE Healthcare,
RPN 203S) in 10x SSC by capillary elution over night. RNAs were cross linked to the
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membrane by exposure to 240 mJ UV light. The membrane was stained in 0.1% methylene
blue 0.5 M NaAc pH 5.2, then washed in H,O.

The membrane was pre-hybridized in Church buffer, followed by hybridization in fresh,
probe-containing Church buffer over night. For hybridization temperatures see Table 4.
Membranes were washed at hybridization temperature in 2x SSC 0.5% SDS (1 quick wash,
2x 15 minutes wash) and 0.1x SSC 0.5% SDS (1x 15 minutes wash). Signals were visualized
with a Typhoon 8600 Variable Mode Imager and quantified using ImageQuant 5.2 software

(Molecular Dynamics).

4.3.2.2 Using a formaldehyde-urea gel

4 pul of RNA was mixed with 5 pl loading dye, heated at 65°C for 15 minutes, then cooled on
ice. A ~ 20 cm x 20 cm 6% polyacrylamide urea gel (for composition see paragraph 4.6) was
pre-run at 3 W for 15 minutes. RNA was loaded and the gel was run in TBE at 15 W. RNA
was transferred to a Hybond-XL membrane in a wet/tank electroblotting system at 200 mA,

1.5 hour at 4°C. Membrane staining and hybridization as in paragraph 4.3.2.1.

4.3.2.3 Probe labeling

All probes used are listed in Table 4. They were labeled by incubating 15 pmol probe with 10
pmol y-**P ATP and 10 U T4 polynucleotide kinase in the enzyme’s buffer A in a 30 pl
reaction for 45 minutes. The reaction was stopped by adding 2 ul 0.5 M EDTA. After addition
of 30 uL H,O the unincorporated nucleotides were removed by passage through a pre-spun

Micro Bio-Spin 6 column (Biorad 732-6221) at 3000 rpm for 1 minute.

Table 4 Probes used for northern analysis

Probe Sequence Hybridization | Reference
temperature

OBS1160 | GGCTTGTGTGGAAGCAGTGGTGATCGG 55°C

OBS1298 | ATTCCCCCCCCCCCCCCCCCCA 55°C

FL125 CGAGGATCCAGGCTTT 40°C (LaRiviere
et al, 2006)

OBS4814 | GTGCGGCCCAGAACGTCT 50°C

OBS5408 | CCGCACTCCTCGCCACAC 50°C

OBS4671 | GCCCGCATAGTCAGGAAC 49°C

0OBS5598 | GATCAATTCGTCGTCGTCGAATAAAGAAGACAAG | 55°C

PGK1-SL and scR1 were detected by probes resulting from random priming of PCR product,
using a-*P dCTP and the NEBlot (New England Biolabs N1500L) , following the

manufacturer’s instructions. PCR products were obtained using Taq DNA polymerase and
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primers OBS1884 (GTGGGATGGGATACGTTGAG) and OBS1885
(ATGGTTCAGGACACACTCCA) on genomic DNA for scR1 and primers OBS4139
(AAGTCCAAATCTTGGACAGAGATCAATTCG) and OBS4164
(CTAATTCGTAGTTTTTCAAGTTCTTAGATGC) on pBS3158 for PGK 1. Hybridization at
55°C (scR1) and 65°C (PGK1).

4.3.3 Determine mRNA half-life

150 ml yeast cultures were grown at 25°C in synthetic defined drop out medium containing
2% galactose, which allowed expression or the galactose inducible reporter mRNA. At ODggo
~ 0.6, the culture was transferred to 37°C for 1 hour, to inhibit Dcpl activity in dcpl-2 strains.
Cells were pelleted at 4500 x g for 10 minutes at 37°C and resuspended in 15 ml of the same
medium that now contained 4% glucose instead of galactose, causing the transcription of the
reporter mRNA to switch off. Yeast was divided into 1 ml aliquots in eppendorf tubes, which
were shaken at 1400 rpm at 37°C. Aliquots were pelleted for 15 seconds in a micro spin
centrifuge and immediately frozen in liquid nitrogen. The time of freezing corresponds to the
time points indicated in the result section. RNA was isolated by hot phenol extraction, as
described in paragraph 4.3.1, and dissolved in 40 pl H,O. 4 ul (MFA2) or Spul (PGK1) of each

sample was analyzed by northern blot.
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4.4 PROTEIN ANALYSIS

4.4.1 Rapid protein extraction

This protocol was based on (Kushnirov, 2000). Yeast was grown to ODggo ~ 1, then 1 ml of
culture was pelleted at 14000 rpm for 1 minute and resuspended in 100 pl H,O. 100 ul 0.2 M
NaOH was added, followed by 5 minutes of incubation at room temperature. After
centrifugation at 14000 rpm for 5 minutes the pellet was resuspended in 50 pl protein loading

dye.

4.4.2 Protein gel

4.4.2.1 SDS-PAGE

Samples to be analyzed on protein gel were mixed with 3x protein loading dye. Before
loading on gel, they were heated at 99°C for 5 minutes, then spun at 14000 rpm for 5 minutes.
For western blot small, 8.5 cm x 6 cm SDS polyacrylamide gels (SDS-PAGE) were used, for
analysis of the elutions of ribosome purifications large 16 cm x 20 cm SDS-PAGE were used.
All gels were run in Laemmli buffer. The composition of the gel is described in paragraph
4.6. Small gels were run at 120 V, large gels at 200 V. Proteins were stained using Coomassie
staining followed by destaining in 20% ethanol 10% acetic acid, or by silver staining using a

SilverQuest kit (Invitrogen LC6070) following the manufacturer’s instructions.

4.4.2.2 Mass spectrometry

Bands cut from the silver stained gels depicted in Figures 41 and 42 were analyzed by mass
spectrometry. Bands were destained by incubating them for 15 minutes in a 1:1 mixture of
solutions A and B from the SilverQuest kit, while shaking at 14000 rpm. The mixture was
removed, then 200 pl H,O was added followed by shaking during 10 minutes. H,O was
removed and the bands were incubed with 200 pl acetonitril while shaking for 20 minutes.

The bands were analyzed by nanoLC-MS/MS at the Proteomics platform at the IGBMC.

4.4.2.3 Western analysis
Proteins were transferred from SDS-PAGE to a Protran nitrocellulose membrane (Whatman
10401180) in a wet/tank electroblotting system in transfer buffer at 100 V during 1 hour at

4°C. The membrane was washed in water and blocked in 5% milk in PBS-Tween. It was then
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incubated with a primary antibody in 5% milk-PBS-Tween for 1 hour at room temperature or
over night at 4 °C. Following 4 washes (1 quick, 3 x 10 minutes) in PBS-Tween the
membrane was incubated with a secondary antibody for 1 hour at room temperature. After 4
additional washes as above, the membrane was incubated with ECL (GE Healthcare),
Luminata Crescendo (Millipore) or SuperSignal West Femto (Thermo Scientific)
chemiluminescent reagent. Signals were visualized using a Image Quant LAS 4000 (GE

Healthcare Life Sciences). All antibodies used are listed in Table 5.

Table 5 Antibodies used for western analysis

Name Against Source Concentration
AbBS6 RpllA Rabbit, polyclonal 1 : 10000
AbBS8 Stml Rabbit, polyclonal 1:2000
HA.11 Clone 16B12 HA-tag Mouse, monoclonal | 1:1000
Monoclonal Antibody, Covance MMS-

Purified 101P

Goat anti-Rabbit 1gG rabbit IgG + IgM polyclonal 1: 10000
(H+L) Secondary secondary antibody Pierce 31460

Antibody, HRP

conjugate

Peroxidase-AffiniPure mouse IgG + [gM Jackson 115-035- 1:5000
Goat Anti-Mouse IgG + | secondary antibody 068

IgM (H+L)

Peroxidase anti- binds to protein A Sigma P1291 3:10000
peroxidase

4.4.3 Purification of ribosomes by TAP method

The protocol that will be described here was used for purification of wild type ribosomes. For
purification of mutant tagged ribosomes all quantities were doubled. Yeast was grown in 2
liter cultures in CSM-Trp-Ura synthetic defined medium containing 2% galactose, to ODgg
0.8-1.0. Cells were pelleted at 4000 x g for 20 minutes at 4°C, resuspended in 20 ml H,O,
transferred to a 50 ml falcon tube and pelleted at 4500 x g for 15 minutes at 4°C. The pellet
was weighed and frozen in liquid nitrogen. All of the following steps were performed at 4°C
unless otherwise indicated. The following day cells were thawed and resuspended in 1.6 ml of
buffer A per gram of cell pellet, then transferred to round bottomed 35 ml tubes containing 3
g glass beads per gram of cell pellet. Cells were lysed by 5 cycles of 1 minute vortexing / 1
minute on ice. Beads were pelleted at 4343 x g for 6 minutes at 4°C and supernatant was
further cleared at 30883 x g for 30 minutes at 4 °C. To the supernatant 50 ul 2 M Tris pH8.0,
200 pl NaCIl 5 M and 100 pl 10% Igepal were added and it was then rotated with 200 pl IgG
Sepharose (GE Healthcare), prewashed with 5 ml buffer IPP100, in a closed 10 ml column for
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2 hours. The column was drained by gravity flow, then washed with 30 ml IPP100 and 10 ml
TEV cleavage buffer. The IgG sepharose was incubated with 100 U TEV enzyme (Invitrogen
12575-015) in 1 ml TEV cleavage buffer for 2 hours at 16°C in a closed column. Eluate was
collected, the dead volume was eluted by another 200 ul TEV cleavage buffer. To the eluate 3
volumes of IPP100 calmodulin binding buffer and 0.0030 volumes of 1 M CaCl, were added.
It was then rotated with 200 pl calmodulin affinity resin (Agilent 214303), prewashed with 5
ml buffer [PP100 calmodulin binding buffer, in a closed 10 ml column for 1 hour. The
column was drained by gravity flow and washed with 30 ml IPP100 calmodulin binding
buffer. Proteins were eluted by adding 200 pl calmodulin elution buffer to the resin, this was
repeated 5 times. To verify if any protein was left bound to the IgG sepharose or calmodulin
affinity resin, additional elutions were performed using 200 ul 1% SDS. Protein loading dye
(3x) was added to samples taken from cleared lysate, resuspended pellet, flow through, both
washes and all elutions. Equal fractions of all stages were analyzed by western blot. The final

elutions were concentrated by lyophilization and analyzed on a large SDS-PAGE.

4.4.4 Purification of recombinant factors

Hbs1 containing a C-terminal 6His-tag was expressed from plasmid pBS3410 in BL21
CodonPlus-RIL. It was also co-expressed with Dom34 containing a C-terminal strep-tag
(expressed from plasmid pBS3438) in BL21 (DE3). Bacteria were grown in 500 ml
autoinduction medium at 37°C to ODgg 0.5, were then transferred to 25°C and grown further
over night. Cells were pelleted at 4000 x g for 10 minutes at 4°C, resuspended in 40 ml H,O,
transferred to a 50 ml falcon tube and pelleted at 4500 x g for 8 minutes at 4°C. All of the

following steps were performed at 4°C or on ice.

4.4.4.1 His-purification

Cells were resuspended in 20 ml lysis buffer H and disrupted in a Cell Disruptor (Constant
Systems) at 1.55 kbar, followed by rinsing with 10 ml buffer W. The resulting 30 ml cell
lysates were cleared at 12000 rpm 30 min 4 °C. The supernatant was passed through a 0.20
um filter and rotated with 400 pl Ni-NTA agarose (Qiagen), prewashed 3x in lysis buffer H,
in a 50 ml falcon tube for 1 hour at 4°C. Then the lysate and agarose were transferred to a 10
ml column which was drained by gravity flow. The column was washed with 10 ml wash
buffer H. The agarose was then incubated for 5 minutes with elution buffer H, then elution

fraction 1 was collected. This was repeated to collect elution fraction 2. The elution fractions

173



were pooled and injected into a Superdex 75 10/300 GL column (GE Healthcare) and eluted
with 1 column volume buffer SE. The resulting 500 pl elution fractions were analyzed by
SDS-PAGE. Fractions containing Hbsl were pooled and further concentrated using an
Amicon Ultra-4 50K centrifugal filter.

4.4.4.2 Strep purification

Strep purification on bacteria co-expressing Dom34 and Hbs1 was performed basically as in
paragraph 4.4.4.1, but with different resin and buffers. The proteins were purified on
streptactin sepharose (IBA 2-1201) on a 10 ml column to which the lysate was gradually
applied, without incubation in a closed column. Cells were lysed and the column was washed
in buffer W (IBA 2-1003) and protein was eluted with buffer E (IBA 2-1000). After further
purification by gel filtration, the protein complex was concentrated using an Amicon Ultra-0.5

ml 50 centrifugal filter.

4.4.5 Yeast two hybrid analysis

Two-hybrid Dom34 and Hbs1 (wild type and mutant) constructs were prepared as described
before (Carr-Schmid et al, 2002), except that Dom34 was cloned into pAS2 and Hbsl1 into
pACTIL Y190 containing these plasmids was grown to mid-log phase, 750 pl was pelleted,
resuspended in 500 pl buffer Z and 200 pl water saturated ether, spun for 1 minute, left to let
ether evaporate for 10 min and incubated at 30°C for 5 minutes. Then 100 ul ONPG (4mg/ml
in buffer Z) was added and the reactions were incubated at 30 °C untill their colour changed
into bright yellow. The reaction was then stopped by addition of 250 pl 1M Na,COs, reactions
were spun for 5 minutes and OD4yy was measured. The following formula was used to
calculate B-galactosidase activity:

Activity = 1000 x OD420 / (OD600 x culture volume x reaction time).
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4.5 STUDYING TRANSLATION

4.5.1 Polysome analysis

100 ml yeast cultures grown to ODgoo ~ 0.8, or yeast exposed to glucose depletion and
readdition (see paragraph 4.2.1) were pelleted at 5400 x g for 6 minutes at 4°C immediately
after cycloheximide addition (100 pg/ml final concentration). At 4°C, cells were washed in 10
ml polysome lysis buffer (PLB), pelleted at 5400 x g for 6 minutes, transferred to 15 ml corex
tubes in 3 ml PLB, pelleted at 4343 x g for 6 minutes and resuspended in 500 pul PLB or PLB
containing 400 mM KCIl (manuscript, Figure 4B). 450 ul cold glass beads were added and
cells were lysed at 4°C by 5 cycles of 1 minute vortexing followed by 1 minute on ice. Glass
beads were pelleted at 4343 x g for 6 minutes at 4°C and the supernatant was transferred to
eppendorfs and cleared in two centrifugation steps at 14000 rpm for 10 minutes at 4°C. ODag0
was measured by nanodrop and 9 ODss units of lysate were loaded on a 7-47% sucrose
gradient in PLB, or PLB containing 400 mM KCI. After a 14 h spin at 16.9 krpm in an SW41
rotor (Beckman Coulter), absorbance (254 nm) was measured and 1 ml fractions were
collected on a ISCO Teledyne Foxy Jr. fraction collector. From each fraction, a 40 ul sample
was taken for protein analysis, to which 20 ul 3x loading dye was added. 5 ul of each fraction
was used for western analysis. From each fraction, a 500 pl sample was taken for RNA
analysis. The sample was stored at -20°C after addition of 1.5 ml ethanol. After pelleting at
14000 rpm for 25 minutes at 4°C, RNA was extracted by two subsequent PCI extractions,
followed by ethanol precipation. RNA was resuspended in 20 pl H,O and 5 pl was used for

northern analysis.

4.5.2 In vitro ribosome dissociation

80S ribosomes purified from glucose-depleted yeast were kindly provided by S. Melnikov
and Dr. Marat Yusupov and were purified as described in (Ben-Shem et al, 2011). 100 pmol
ribosomes were *“P-labeled using 500 U casein kinase II (NEB) and *’P y-ATP in the
manufacturer’s recommended buffer, then pelleted through a 600 ul 1.1 M sucrose cushion in
buffer E at 75000 rpm for 1 hour at 4°C in a MLA-130 rotor followed by resuspension in
buffer E. 6,25 pmol ribosomes were incubated in 25 pl buffer E containing 1 mM GTP or
GDPNP and 1 mM ATP at 26°C for 15 minutes with 50 pmol Dom34, 50 pmol Hbsl, 50
pmol Rlil and 625 pmol Tif6, all purified by C. Shoemaker (Shoemaker et al, 2010;
Shoemaker & Green, 2011). Dissociation was analyzed by centrifugation through a 10-30%
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sucrose gradient in buffer E at 38500 rpm for 3.5 hours at 4°C in a SW41 rotor. Fractions

were counted in Bio Safe II scintillation fluid.

4.5.3 **S-methionine incorporation

Yeast was grown in CSM-Met containing 2% glucoseto ODggo 0.6, shifted to 16°C for 2
hours, split into 8 ml cultures and resuspended in 8 ml CSM-Met with or without 2% glucose
for 10 minutes comparable to what is described in paragraph 4.2.1. Then cells were
resuspended in 8 ml CSM-Met 2% glucose (16°C) containing 4 pl **S-Methionine (1175
Ci/mmol, 5 mCi/0,49 ml, Perkin Elmer) and incubated at 16°C. At the indicated time points 1
ml samples were taken and **S-Methionine incorporation was measured basically as described
(Ashe et al, 2000). The 1 ml sample was added to 1 ml 20% trichloroacetic acid in a 50 ml
falcon tube on ice, incubated at 95°C for 20 minutes and put back on ice. The precipitate was
collected on 2.4 cm glass microfiber filter GF/C (Whatman 1822 024), using a holder for the
filter on top of a vacuum flask. The filters were then washed with 10 ml 10% trichloroacetic
acid and 10 ml ethanol, dried on air and counted in a scintillation counter in Ready Safe

scintillation fluid (Beckman 141349).
4.5.4 In vitro translation

4.5.4.1 Preparation yeast extract

Translational extracts were prepared essentially as described (Tuite & Plesset, 1986). 4 1 of
culture at ODgpp 1 was washed in 200 ml cold water, incubated in 100 ml f-mercaptoethanol
10mM; EDTA 2 mM for 30 minutes at room temperature, washed in 100 ml cold sorbitol 1M
and resuspended in 1M sorbitol at room temperature at a concentration of 10 ml/g cells,
spinning at 2000 x g for 5 minutes at 4°C in between. Zymolyase (Nacalai Tesque 07665-55)
was added at 4 pg/ml final concentration. Spheroplast conversion was followed by comparing
the ODgoo of 15 ul yeast resuspended in 1 ml 1% SDS to that of 15 ul yeast resuspended in 1
ml 1 M sorbitol. The reaction was stopped by pelleting the resulting spheroplast at 1000 x g
for 10 minutes at room temperature when 75% of cells had converted to spheroplasts.
Spheroplasts were washed in 200 ml sorbitol 1.2 M and incubated in 500 ml YPDA-sorbitol
IM at 25°C 40 rpm. Spheroplasts were harvested at 1000 x g for 10 minutes at 4°C and lysed
using glass beads (0.5 ml/g cells) in lysis buffer T (1 ml/g cells) in 5 cycles of shaking

vigorously at 2 Hz for 20 seconds with 1 minute intervals on ice. Lysates were cleared
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spinning at 30 000 x g for 15 minutes at 4°C, then 100 000 x g for 30 minutes at 4°C.

Glycerol was added at 10% final concentration for storage at -80°C.

4.5.4.2 In vitro transcription

Before in vitro transcription, a plasmid was cleaved at a site immediately downstream of the
sequence to be transcribed, to allow termination of transcription. 10 pg pT7-Luc-A50 was
digested by 50 U Dral (New England Biolabs) in a 500 pl reaction in the recommended buffer
at 37°C for 90 minutes. 6.5 pg pBS4612 and pBS4613 were digested by 32.5 U BsmBI (New
England Biolabs) in a 325 pl reaction in the recommended buffer at 55°C for 90 minutes. The
digested plasmids were PCI extracted, ethanol precipitated and dissolved in H,O. In vitro
transcription was performed using the mMessage mMachine T7 kit (Ambion M1344),
following the manufacturer’s instructions, to generate capped mRNAs. DNA was removed
using TURBO DNase, following the kit’s instructions, and mRNAs were PCI extracted,
ethanol precipitated and dissolved in H,O.

4.5.4.3 In vitro translation

In vitro translation was performed basically as described in (Tarun & Sachs, 1995).
Translational extracts were incubated with 1500 gel units/ml (corresponds to approximately
150 Kunitz units/ml) micrococcal nuclease (New England Biolabs M0247) in presence of 480
uM CaCl, for the indicated time at 26°C. The reaction was stopped by adding 2 mM EGTA
on ice. 7.5 pl extract was added to a 7.5 pl mix containing 0,1 pl RNasin (Promega N2515), 1
ul mRNA (500 ng firefly luciferase-A(50) mRNA (Gallie et al, 1991) or other mRNA at the
indicated quantity), 1 ul 4 mg/ml creatine phosphokinase (Roche 10127566001), 5 ul 3x
translation buffer and 0.4 pl H>O. After 1 hour incubation at 26°C, luciferase activity was
measured in 10 second measurements using a Lumat LB 9507 luminometer (Berthold
technologies) adding 1 pl translation reaction to 50 pl luciferine mix. Alternatively, after an
indicated time of translation protein content and RNA content in the translation reactions was
analyzed. Translation reactions of which RNA was analyzed were stopped by addition of 15
ul 2% SDS and transfer on ice. RNA was extracted after diluting the sample in H,O to 500 pl
final volume, by PCI extraction and ethanol precipitation. RNA was dissolved in 40 pl HO, 5
ul of each reaction was analyzed by northern blot. Translation reactions of which protein was
analyzed were stopped by addition of 7.5 ul 3x loading dye. 4ul of each reaction was

analyzed by western blot.
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4.6 LIST OF BUFFERS

Table 6 List of buffers

Buffer Composition

Buffer A (ribosome 10 mM Hepes-KOH pH 7.9; 10 mM KCI; 10 mM MgCl,; 0.5 mM DTT; 0.5

purification) mM PMSF; 2 mM benzamidine; 1 mM leupeptin; 2 mM pepstatin A; 4 mM
chymostatin; 2.6 mM Aprotinin; 0.040 U RNasin

Buffer E 20 mM Tris-Cl pH 7.5; 2.5 mM Mg(OAc),; 100 mM KOAc pH7.6; 2 mM
DTT; 0.25 mM spermidine

Buffer SE 20 mM Tris pH 7.5 ; 200 mM NaCl ; 5 mM B-mercaptoethanol ; 5%
glycerol

Buffer Z 60mM Na,HPO,,; 40 mM NaH,PO,; 10 mM KCI, 1 mM MgCl,; 50 mM B-

mercaptoethanol

Coomassie staining

1 g/l Coomassie R-250; 45% ethanol; 10% acetic acid

Elution buffer H 50 mM Hepes-KOH pH 7.9; 500 mM NacCl; 5 mM p-mercaptoethanol; 300
mM imidazole; 10% glycerol; 2 mM MgCl,

IPP100 10 mM Tris-Cl pH8.0; 100 mM NacCl; 10 mM MgCl,; 0.1% Igepal

IPP100 calmodulin 10 mM B-mercaptoethanol; 10 mM Tris-Cl pHS8.0; 100 mM NaCl; 10 mM

binding buffer MgCl,; 1 mM Mg-acetate; 1 mM imidazole; 2 mM CaCly; 0.1% igepal

IPP100 calmodulin 10 mM B-mercaptoethanol; 10 mM Tris-Cl pHS8.0; 100 mM NaCl; 10 mM

elution buffer

MgCl,; 1 mM Mg-acetate; 1 mM imidazole; 2 mM EGTA; 0.1% igepal

Laemmli buffer

0.10 % SDS; 1.44% glycine; 0.30 % Tris base

LiT

10 mM Tris pH 7.5; 100 mM LiOAc

Luciferine mix

470 uM luciferine; 530 uM ATP; 270 uM coenzyme A; 20 mM Tris-
phosphate pH 7.8; 1.07 mM MgCly; 2.7 mM MgSOy4; 100 uM EDTA; 33.3
mM DTT

Lysis buffer H 75 mM Hepes-KOH pH 7.9; 300 mM NacCl; 5 mM B-mercaptoethanol; 1%
Tween 20; 20 mM imidazole; 10% glycerol; 2 mM MgCl,

Lysis buffer T 20 mM Hepes-KOH pH7.4; 100 mM KOAc; 2 mM Mg(OAC),; 2 mM
DTT; 0.5 mM PMSF; protease inhibitor cocktail

Loading dye 3x 0.05% bromophenol blue; 50 mM Tris pH 6.8; 10% glycerol; 2% SDS

(protein gel)

MOPS buffer 0.10 M MOPS; 40 mM NaAc; 5.0 mM EDTA; pH 7

PBS-Tween PBS; 0.2% Tween 20

Polyacrylamide gel 6.0% polyacrylamide; 8.0 M urea; 1x TBE; 0.060% ammonium persulfate;

(RNA) 0. 10% N,N,N',N'-Tetramethyl-ethylenediamine

Polysome lysis buffer

10 mM Tris-Cl pH 7.5; 100 mM KCI; 5.0 mM MgCl,; 6.0 mM f-
mercaptoethanol; 100 pg/ml cycloheximide

RNA loading dye 0.25% bromophenol blue; 0.25% xylene cyanol; 50% glycerol; 1.0 mM
(agarose gel) EDTA

RNA loading dye bromophenol blue; xylene cyanol; 95% formamide; 18 mM EDTA; 0.025%
(polyacrylamide gel) SDS

SDS-PAGE % acrylamide: bis acrylamide 37,5 :1 as indicated ; 378 mM Tris pH 8.8 ;

0.1% SDS ; 0.1% ammonium persulfate ; 0.1% N,N,N',N'-TetramethyI-
ethylenediamine

Sorensen’s phosphate

0.20 M Na2HPO4; 0.80 M KH2PO4; pH 6.25

buffer (20x)

Stacking gel 5% _acrylamide: bis acrylamide 37,5 :1 ; 126 mM Tris pH 6.8 ; 0.1% SDS ;
0.1% ammonium persulfate ; 0.1% N,N,N',N'-Tetramethyl-ethylenediamine

TA 40 mM Tris base; 1.14% acetic acid

TBE 8.9 mM Tris base; 8.9 mM boric acid; 2.0 mM EDTA

TES buffer 10 mM Tris pH 7.5; 10 mM EDTA; 0.50% SDS
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TEV cleavage buffer

10 mM Tris-CI pH8.0; 100 mM NaCl; 10 mM MgCl,; 0.1% Igepal; 0.5
mM EDTA; 1 mM DTT

Transfer buffer
(western)

3 g/l Tris base; 3 g/l glycine; 0.05% SDS; 20% ethanol

Translation buffer

22 mM Hepes-KOH pH 7.4; 120 mM KOAc; 2 mM MgOAc; 750 uM ATP;
100 uM GTP; 25 mM creatine phosphate; 40 uM amino acid mixture
(Promega [L.4461); 1.7 mM DTT

Wash buffer H 50 mM Hepes-KOH pH 7.9; 500 mM NaCl; 5 mM B-mercaptoethanol; 20
mM imidazole; 10% glycerol; 2 mM MgCl,

Yeast lysis buffer for 10 mM Tris pH 7.5; 1 mM EDTA; 3.0% SDS

DNA purification
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Supplementary Information

Supplementary Material and methods

Crystallization and Structure determination. Crystals of the native protein were grown from a mixture
in a 1:1 ratio of 15mg/mL protein solution in buffer A (20 mM Tris-HCI pH 7.5, 200 mM NaCl, 10
mM f-mercaptoethanol) and crystallization liquor containing 0.1 M Tris pH 8.5, 12% (w/v) PEG 6000
and 0.15 M NaCl, at 18 °C. Crystallization liquor for the Se-Met protein contained 0.1 M Hepes pH
7.0, 15% (w/v) PEG 4000 and 0.1 M MgCl,. The crystals were flash cooled in liquid nitrogen after
addition of 15% and 30% (v/v) of ethyleneglycol as a crytoprotectant. Native and Se-Met crystals of
the apo-protein diffracted respectively to 2.5 A and 3.2 A resolution on beamline Proximal at SOLEIL
synchrotron (Saint-Aubin, France) at 100 K. The crystals belong to space group P4,2,2 with two
molecules in the asymmetric unit (¢ = b = 110.6 A, ¢ = 188.1 A). The Se-Met crystal diffraction data
were collected at the selenium edge (L = 0.9796 A). The structure was determined by the single
wavelength anomalous dispersion (SAD) method using the anomalous signal of selenium atoms. Data
were processed with the XDS package '. The SOLVE/RESOLVE package was used to find selenium
atom sites in the 30-3.2 A resolution range, to calculate experimental electron density maps and to
improve them by NCS averaging, solvent flattening and phase extension using the 2.5 A resolution
native dataset 2. The quality of the experimental phases allowed automatic building of a partial model
with the program RESOLVE (Supplementary Fig. 1). This model was completed by iterative cycles of
manual rebuilding using COOT followed by refinement with PHENIX.REFINE “°. All residues
display main chain dihedral angles that fall within allowed regions of the Ramachandran plot as

defined by the program PROCHECK °.
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In parallel, we have been able to obtain crystals of the HbsdN134 GDP bound form. A 295 A
resolution dataset was recorded from a crystal grown by mixing 0.2 pl of SeMet labelled protein (18
mg ml! and incubated with 1 mM GDP in the absence of Mg2+ ion as this cation affects GDP binding
to Hbsl, data not shown) with an equal volume of the following crystallization condition: 12% (wiv)
PEG 4,000, 20% (v/v) glycerol, 50 mM MOPS pH 7.0, 0.5 M KCl. The crystals were flash cooled in
liquid nitrogen after transfer into a crystallization condition containing 30% glycerol. Data were
collected on beamline Proximal at SOLEIL synchrotron (Saint-Aubin, France) at 100K (h = 0.9796
Ay.

The statistics for data collection and refinement are summarized in Supplementary Table 1. The
atomic coordinates and structure factors have been deposited into the Brookhaven Protein Data Bank

under accezsion number (3P26 and 3P27).

SAXS studies. The Dom34-Hbs1dN134 complex was prepared by mixing equimolar amounts of both
purified Dom34 and HbzldN134 proteinz in buffer A. SAXS experiments on the Hbszl-Dom34
complex were performed using the Nanostar instrument at IBBMC in Orsay. The X-rays were
produced by a rotating anode (Cu Ka, wavelength . = 1.54 A), and the scattered X-rays were collected
using a two-dimenszional position zenzitive detector (Vantec) positioned at 662 mm from the sample.
The scattering vector range waz 0.011 <g < 040 A" where ¢ = 4m=inf/% and 20 is the scattering angle.
Experiments on Hbsl were performed on the beamline SWING, at the Synchrotron S8OLEIL. The
incident beam energy was 12 keV, and the sample to detector (Aviex CCD) distance was zet to 1843
mm. The scaltering vector range was 0.008 < ¢ <0.5 A, Several successive frames (typically 20) of 4
s each were recorded for both zample and pure zolvent. We checked that X rays did not cauze
irradiation damage by comparing the successive frames, before calculating the average intensity and
experimental error. In both cases scattering from the buffer was measured and subtracted from the
corresponding protein zpectra. Intensities were scaled uzing the scattering of water. For each protein, a
range of concentrations was explored. For the Hbs1-Dom34 complex the concentration of the solution
was maintained above 3 g I"! to avoid dissociation. No significant effect of the concentration was
obzerved. Calculations of the molar mass of each protein from the intensity extrapolated to q — 0 gave

values that were within 15% of the theoretical mass.

Scattering patterns from crystal structures were calculated using the program CRYSOL ", The relative
pozition of some domains (see Supplementary Results) was refined using the rigid-body modelling
program SASREF 2, which uses simulated annealing to find an optimal configuration of the domains
by fitting the SAXS curve. An ultimate adjustment was performed using the program CRYSOL. The
goodness of fit was characterized by the following parameter,

1 [ L@) -l (g)]
K=y
N-14 oalq,)
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where N is the number of experimental points, ¢ is a scaling factor, and Z...(g) and ofgy) are the

calculated intensity and the experimental error at the scattering vector ¢;, respectively.

Isothermal titration calorimetry. Isothermal titration microcalorimetry (ITC) was carried out using a
Microcal ITC-200 calorimeter at 20°C, with full length Hbs1 protein solutions prepared as described
previously ° and stored in 20 mM Tris pH7.5, 200 mM NaCl, 10 mM B-mercaptoethanol. The
interaction of wild type and mutants (V176G, K180A and H255E) Hbsl proteins (20 pM) with
GTP/GDP (250 pM) was titrated through a series of 20 injections of 2 pl, at an interval of 3 min. A
theoretical titration curve was fitted to the experimental data using the ORIGIN® software (Microcal).
This software uses the relationship between the heat generated by each injection and AH (enthalpy
change), K. (association binding constant), n (the number of binding sites per monomer), total
GTP/GDP concentration, and the free and total Hbs1 concentrations. The best fit to experimental data
was obtained for a binding curve corresponding to a one binding site model and a stoechiometry of

0.7, consistent with the 1:1 Hbs1:GDP ratio observed in the crystal.

Kd(T) AHca..! AHvHlefeféi’lfial Scanning  Calorimetry.
ACP(T) = [1 F Kd(T)]z RT? Thermal stability was studied by

differential scanning calorimetry (DSC)
on a MicroCal model VP-DSC with Hbsl and Dom34 proteins in 20mM Na-Phosphate pH 7.5;
500mM NaCl, SmM B-mercaptoethanol. Protein concentrations ranged from 11.3 to 32.6 pM for Dom
34 and from 6.4 to 24 pM for Hbs1. Each measurement was preceded by a baseline scan with the
standard buffer. Scans were performed at 1K.min" between 20°C and 80°C. The heat capacity of the

buffer was subtracted from that of the protein sample before analysis.

Yeast two-hybrid interaction assay. Two-hybrid Dom34 and Hbsl (wild type and mutant) constructs

were prepared as described before '

, with the exception that Hbsl was cloned into pACTII and
Dom34 into pAS2. The resulting plasmids were transformed into strain Y190. 750 pl of cultures in
exponential growth phase were spun down, resuspended in 500 pl buffer Z (Na,HPO, 60mM,
NaH,PO; 40 mM, KC1 10 mM, MgCl, 1 mM, p-mercaptoethanol 50 mM) and 200 pl water saturated
ether, spun for 1 minute and left to let ether evaporate for 10 min. After 5 minutes at 30 °C 100 pl
ONPG (4mg ml” in buffer Z) was added. Following incubation at 30 °C the reaction was stopped by
addition of 250 pl Na;CO; 1M, reactions were spun for 5 minutes and OD420 was measured. B-
galactosidase activity was calculated as follow: Activity = 1000 x OD420 / (OD600 x culture volume

X reaction time).
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Supplementary Data
Hbs1 overall structure.

The structure of Hbs1dN134 has been solved by SAD. Hbs1dN134 is composed of three
domains, forming a triangular prism of approximately 50 A side length and 30 A depth. The GTPase
domain adopts the classical o/ structure common to translational GTPases such as EF-Tu and eRF3.
It is composed of a central six-stranded B-sheet (strands order p6, 5, p4, f1, p3 and P2, which is
antiparallel to the others) flanked by 7 a-helices (a1, a2, a6 and o7 on one side of the sheet and a3-5
on the other; Fig. 1a). The GTPase domain is connected to domain II by the long helix o7 (residues
376 to 398) and domain II is linked to domain III by a short extended stretch of peptides. Both
domains II and III adopt a 6-stranded P-barrel fold similar to the corresponding domains from archaeal
clongation factor 1-a (aEF-1A), bacterial elongation factor (EF-Tu) and eukaryotic class II release
factor Although they belong to the same SCOP superfamily, domains II and III adopt radically
different topologies (strands order BA, BB, BE, D, BC and BF for domain II and BA’, D, BC’, BB’,
BE’ and BF’ for domain III).

For both the apo and GDP bound form of Hbs1dN134, the crystal asymmetric unit contains two
molecules organized as a non crystallographic dimer, yielding to 4 sets of coordinates for this Hbs1
monomer. These 4 copies are virtually identical (rmsd =~ 0.4-0.5 A over 430 residues) except for the
switch regions that adopt different conformations. Despite the presence of 2 copies per asymmetric
unit, both size exclusion chromatography coupled online to a triple detection array and small-angle X-
ray scattering (SAXS) indicated that the protein is monomeric in solution. Among these four copies of
Hbs1dN134, the switch II region is disordered in one GDP bound copy and adopts 3 different

conformations in the others.

Hbs1 conformation.

Several structures of GTPases involved in translation have now been solved, revealing important
differences in the orientation of the GTPase domain relative to domains II-III. In the structures of
bacterial EF-Tu, the GTPase domain undergoes a substantial rotation with respect to domains IT-IIT
depending on the bound nucleotide (GDP or the GTP non-hydrolyzable analog GDPNP ''*). On the
opposite, the structures of archacal SelB elongation factor obtained in the absence of nucleotide or in
the presence of GDP or GDPNP by co-crystallization, are virtually the same and correspond to the
conformation adopted by EF-Tu in the presence of GTP . Finally, the conformation observed in the
crystal structure of S. pombe class 11 release factor eRF3 is radically different from that of EF-Tu-GTP
and nucleotide (GDP or GDPNP) binding does not affect its conformation '® (Supplementary Fig. 2a).
Whether this reflects a functional property of eRF3 remains to be determined.

To investigate the conformation adopted by Hbs1dN134 in solution, we have performed small-angle

X-ray scattering analysis on this fragment in the absence of nucleotide. As a first approach, we have
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compared the diffusion curves calculated from two different Hbs1dN134 conformations to the final
experimental scattering pattern. The first conformation corresponds to that observed in the crystal
while the second is based on the conformation of S. pombe ¢RF3. As shown in Supplementary Fig. 2b,
the best fit is observed for the conformation corresponding to the Hbs1 crystal structure (y, value of 2.8
compared to 18.5 for the eRF3 based model). However, there is some discrepancy at q values of 0.15-
0.2 A™ with the final experimental scattering pattern. As in our crystal structure of Hbs1dN134, most
of the switch I region was missing due to intrinsic disorder, we have first modelled this region using
ihe coordinaies of ihe corresponding region of ¢EF1A in the situciure of the ¢EF1A-¢EF1Ba complex
Y The location of this switch I region was further adjusted by superimposing residues 35-73 from
¢EF1 A switch I region onto helices o2 and o2’ from the Hbs1-GDP complex to vield the model used
to calculate the initial diffusion curve. As switch I region from G proteins is known to be highly
flexible in the absence of nucleotide, we decided to move this switch I region (residues 176 to 235) as
a rigid body group using the SASREF program °. Movement of this switch I region by 10 A is
sufficient to obtain a model with an excellent agreement with the SAXS curve (Supplementary Fig.
2b, % value of 1.6).

Altogether, these experiments performed in solution show that the Hbs1dN134 conformation trapped
in the crystal is similar to that in solution and radically different from the conformation observed for

eRF3 15,

Generation of Dom34-Hbs1 models for SAXS.

To obtain more information on the Dom34-Hbs1 complex from S. cerevisiae, we have performed
SAXS measurements on this complex and compared diffusion curves calculated from different models
to the experimental one. To build these models, we used the known crystal structures of isolated yeast
and archacal Dom34 and yeast Hbs1dN134 and of the complex between eRF1 and an eRF3 fragment
lacking the GTPase domain ***. In these models, Dom34 C-terminal domain and Hbs1 domain III
were superimposed onto the corresponding domains from human eRF1 and ¢RF3, respectively '*. Due
to the absence of the eRF3 GTPase domain in the crystal structure of eRF1-eRF3 complex, we
assumed that Hbs1 conformation in the complex is similar to that of the protein alone in the crystal

and in solution. This is further supported by site directed mutagenesis experiments on ¢RF3 that

¢RF3 corresponding to Phe528, Arg591, Arg595, Ala603 and Lys605 from Hbsl, respectively) as
critical for cell growth '°. In the Hbs1 structure, these highly conserved residues are located at the
interface between domain III and the GTPase domain, this strongly suggest that the integrity of this
domain interface is essential for eRF3, and by inference Hbs1, activities. In addition, the substitution
by Ala of two eRF3 residues from domain III (Arg642 and Arg646) results in loss of complementation
of eRF3 deletion in S. pombe and substantially weaker eRF1 binding activity *°. These residues are

located outside eRF1-eRF3 interface '® and would directly interact with the ¢RF3 GTPase domain in a
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so-called eRF3 “close” conformation that would be similar to EF-Tu and Hbs1 structures. This implies
that this “close” conformation is necessary for correct function of eRF3 and by extension to members
of the ¢EF-1A family. We therefore used the coordinates of the Hbs1dN134 fragment previously
determined by combining the Hbs1dN134 crystal structure and modelling of the switch I region with
SASREF. As a consequence, the only difference between these models is the position of Dom34
domains relative to each other. We have previously observed that S. cerevisiae and archaeal Pelota

proteins adopt radically different configuration with rotation by roughly 20° and 70° relative to C-

1 Aol £ N bornalo ol o d o aado
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models based on either yeast Dom34 conformation (yeast-like model, Supplementary Fig. 4a) or
archaeal Pelota conformation (archaeal-like model, Supplementary Fig. 4b).

From the comparison of the scattering curves calculated from both models with the SAXS curve (Fig.
4a), it turned out that the archaeal-like model gave the best agreement and could serve as a starting
point model for further improvement using SASREF. In this archaeal-like model, the conserved and
positively charged loop C from Dom34 (residues 174-176) that has been shown to be important for
NGD in yeast *° is located within the central domain and is in close proximity of the Hbsl GTP
binding site. This loop could hence contact the GTP y-phosphate and be responsible for the higher
affinity of Hbs1 for GTP in the presence of Dom34. During the rigid body refinement process using
SASREF, we therefore decided to move only the N-terminal and central domains from Dom34 as the
comparison of yeast Dom34 and archaeal Pelota crystal structures clearly highlighted intrinsic
flexibility of these domains °. However, as we anticipate that Dom34 loop C may play an active role in
the increase of Hbs1 affinity for GTP in the presence of Dom34, we forced the Ca atom from residues
174-177 of this loop to be within less than 15 A away from the Ca atoms of Val176 and His255 from
Hbsl. We obtain a set of models providing calculated scattering curves compatible with the
experimental curve (x=1.7). All these models have similar conformations differing mainly in the
position of Dom34 N-terminal domain, which can rotate on itself. The SAXS measurements cannot

discriminate the different positions adopted by this domain.
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Supplementary Table 1: Strains and plasmids

Strain or | Description Rererence
plamid name | (genotype for strains; vector/insert/marker for plasmids)

BMA64 MAT @, ura3-1, trp1A, ade2-1, leu2-3,112, his3-11,15 This study

BSY1970 MAT « ura3-1, trplA  ade2-1, leu2-3,112, his3-11,15,| This study
dom34A::HIS3

BSY2029 MAT a, wra3-1, trplA,  ade2-1, leu2-3,112, his3-11,15, | This study
dom34A::HIS3 ski7A:Ken R

BSY2051 MAT a, wra3-1, trplA  ade2-1, leu2-3,112, his3-11,15,| This study
dom34A::HIS3 rps28AA::Kan R

BSY2145 MAT a, wra3-1, trplA ade 2-1, leu2-3,112, his3-11,15, | This study
hbs1A:KanR
BSY2204 MAT a, wra3-1, trplA, ade2-1, leu2-3, 112, his3-11, 15,|Thisstudy

ski7A:KanR, hbs1A::KanR

BSY2218 MAT o, wura3-1, trplA  ade2-1, leu2-3,112, his3-11,15,| This study
rps28AA::KanR, hbs1A:KanR

Y190 MAT a gald gal80 his3 trp1-901 ade2-101 ura3-52 leu2-3,-112 | Baietal, 1996 2*
URA3:GAL-->lacZ, LYS2::GAL(UAS)-->HIS3cyhR

pRP1251 /GAL1-PGK1-SL/URA3 Domaet al., 2006 22

pWL160- JGAL7-rDNA 185:A1492C/TRP1 LaRiviere et al., 2006 23

A1492C

pBS3217 pRS415/DOM34 + promoter/LEU2 This work

pBS3611 pRS415/ HBSI + promoter/LEUZ This work

pBS3614 pRS415/ HBSI-PROTEIN A + promoter/LEU2 This work

pBS3685 pRS415/ DOM34-3HA + promoter/LEU2 This work

pACTII PACTII/two-hybrid vector/LEU2 Baietal, 1996 21

pAS2 pAS2 /two-hybrid vector/TRP1 Baietal, 1996 21
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Supplementary Figure 2: Conformation of Hbs1dN134 in solution.

(a) Stereo view of the superimposition of Hbs1dN134 (grey) onto bacterial EF-Tu (salmon) and S.
pombe eRF3 (green). (b) Comparison of the scattering curves calculated from the coordinates of the
Hbs1 X-ray structure (green), from a conformation based on the eRF3 structure (blue) and from the
model obtained after rigid body movement of the switch I region using the program SASREF (red)
with the experimental SAXS curve obtained in the absence of nucleotide (black). (¢) Distance
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Supplementary Figure 3. Microcalorimetric measurements

(a, b) Guanine nucleotide binding to Hbsl mutants. ITC titration curves (upper part) and binding
isotherms (lower part) for Hbs1 wild type (a) or Hbs1 K180A mutant (b) interaction with GDP at 20
°C. The curves obtained for interaction of Hbsl V176G and H255E with both GDP and GTP were
comparable to right panel, indicating the absence of binding and are not depicted. Kd and n (the
number of binding sites per monomer) are indicated when appropriate. (¢, d) Heat denaturation
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Supplementary Figure 4: Building SAXS models of Dom34-Hbs1

(a) Dom34-Hbs]1 initial models: distance distribution function P(r) derived from the intensity curve
I(q) using the program GNOM **. The curve yields values of Dy, = 130 £ 5 A and 37.3 £ 0.5 A. (b)
Initial model based on yeast Dom34 conformation. Dom34 N-terminal, central and C-terminal
domains are coloured in light green, green and dark green, respectively. Hbsl GTPase, II and III
domains are coloured in light blue, cyan and dark blue, respectively. Loops A, B and C from Dom34
that have been shown to be functionally important in NGD are indicated in red *°. (c¢) Initial model
based on archacal Pelota conformation with colouring as in panel b. (d) Ribbon representation of the
optimized Dom34-Hbs1dN134 model. Colouring as in pancl b except that loops A, B and C from
Dom34 that have been shown to be functionally important in NGD *, are indicated in yellow, orange
and red, respectively. (e) Surface representation of the same model using the same color code and
orientation as panel d. (f) Representation of residue conservation mapped at the surface of this model
(same orientation as panel ¢). Coloring is from blue (highly conserved) to grey (low conservation). (g)
Close-up view of the contact region between Hbsl GTPase domain and Dom34 central domain. The
Dom34 SPGF and Hbsl HRDF motifs as well as GTP molecule are shown as sticks. The same color

code as in panel d is used.
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Supplementary Material and Methods

In vitro translation

Translational extracts {Tuite, 1986 #255} were prepared from a dom34AhbsIA strain
(BSY2550) as follows. 4 L of culture at ODgy = 1 was washed in 200 ml cold water,
incubated in 100 ml p-mercaptoethanol 10mM; EDTA 2 mM for 30 minutes at room
temperature, washed in 100 ml cold sorbitol 1M and resuspended in 1M sorbitol at room
temperature at a concentration of 10 ml/g cells, spinning at 2000 x g for 5 min at 4°C in
between. Zymolyase was added at 4 pg/ml final concentration and the reaction was stopped
by pelleting the resulting spheroplast at 1000 x g for 10 min at room temperature when 75%
of cells had converted to spheroplasts. Spheroplasts were washed in 200 ml sorbitol 1.2 M
and incubated in 500 ml YPDA-sorbitol 1M at 25°C 40 rpm. Spheroplasts were harvested at
1000 x g for 10 min at 4°C and lysed using glass beads (0.5 ml/g cells) in lysis buffer (20 mM
Hepes-KOH pH7.4; 100 mM KOAc; 2 mM Mg(OAC),; 2 mM DTT; 0.5 mM PMSF; protease
inhibitor cocktail) (1 ml/g cells) in 5 cycles of shaking vigorously at 2 Hz for 20 seconds with
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1 minute intervals on ice. Lysates were cleared spinning 30 000 x g for 15 min at 4°C, then
100 000 x g for 30 min at 4°C. Glycerol was added at 10% final concentration for storage at -
80°C.

In vitro translation was performed basically as described in {Tarun, 1995 #256}. Translational
extracts were incubated with 150 U/ml micrococcal nuclease (New England Biolabs) in
presence of 480 uM CaCl, for 5 minutes at 26°C, before adding 2 mM EGTA on ice. 7.5 pl
extract was added to 7.5 pl translation mix containing 0,1 pul RNasin (Promega), 500 ng
firefly luciferase-A(50) mRNA {Gallie, 1991 #273} and 4 pg creatine phosphokinase (Roche)
in 22 mM Hepes-KOH pH 7.4; 120 mM KOAc; 2 mM MgOAc; 750 uM ATP; 100 uM GTP;
25 mM creatine phosphate; 40 puM amino acid mixture (Promega); 1.7 mM DTT. After 1 h
incubation at 26°C luciferase activity was measured in 10 s measurements using a Lumat LB
9507 luminometer (Berthold technologies) adding 1 pl translation reaction to 50 pl luciferine
mix (470 uM luciferine; 530 uM ATP; 270 uM coenzyme A; 20 mM Tris-phosphate pH 7.8;
1.07 mM MgCly; 2.7 mM MgSOy4; 100 pM EDTA; 33.3 mM DTT).

The Dom34-Hbsl complex added to the translation reaction was purified as described in
{Collinet, 2011 #331}. Hbsl alone was purified from BL21 codont cells expressing C-
terminally 6xHis-tagged Hbsl grown in Autoinduction media Terrific Broth Base including
Trace elements (Formedium) over Ni-NTA agarose (Qiagen) after cell lysis in a Cell
Disruptor (Constant Systems) at 1.55 kbar, using lysis buffer (75 mM Hepes pH 7.9, 300 mM
NaCl, 5 mM B-mercaptoethanol, 1% Tween, 20 mM imidazole, 10% glycerol, 2 mM MgCl,),
wash buffer (50 mM Hepes pH 7.9, 500 mM NaCl, 5 mM B-mercaptoethanol, 20 mM
imidazole, 10% glycerol, 2 mM MgCl,) and elution buffer (50 mM Hepes pH 7.9, 500 mM
NaCl, 5 mM B-mercaptoethanol, 300 mM imidazole, 10% glycerol, 2 mM MgCl,). Both Hbs1
and the Dom34-Hbs1 complex were further purified over a Superdex 75 10/300 GL column
(GE Healthcare) in 20mM Tris-Cl pH 7.5, 200mM NaCl, 5SmM B-mercaptoethanol, 5%
glycerol.

Supplementary table 1: Strains and plasmids

Strain or | Description Reference

plasmid name _ ) )
(genotype for strains; vector/insert/marker for plasmids)

BMAG64 MAT a, ura3l, trplA, ade?l, leu23,112, his311,15 {Baudin-
Baillieu, 1997
#4713
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BSY1970 MAT o, ura3l, trplA, ade?l, leu23,112, his311,15, {van den
Elzen, 2010
dom34A4::HIS3 #80}
BSY2145 MAT a, ura3l, trpld, ade 21, leu23,112, his311,15, {van den
Elzen, 2010
hbsiA::KanR #80}
BSY2550 MAT a, ade 2-1 his3-11,15, leu2-3,112, trpldelta ura3-1, | This study
dom34A4::HIS3, hbsiA::KanR
N20T20 MAT a, ura3-1, trplA, ade2-1, leu2-3,112, his3-11,15, | Gift from F.
stmlA::TRPI Lacroute and F.
Wyers
BSY2626 MAT a, ura3-1, trplA, ade2-1, leu2-3,112, his3-11,15, | This study
stmlA::TRPI1, dom34A4::HIS3
pBS3614 pRS415/ HBS1-PROTEIN A + promoter/LEU2 {van den
Elzen, 2010
#80}
pBS3675 pRS415/ hbs1 V176G-PROTEIN A + promoter/LEU?2 {van den
Elzen, 2010
#80}
pBS3685 pRS415/ DOM34-3HA + promoter/LEU?2 {van den
Elzen, 2010
#80}
pBS3701 pRS415/ dom34 E361R-3HA + promoter/LEU?2 {van den
Elzen, 2010
#80}
pBS4415 pRS415/  hbsIAN-ter (2-149)-PROTEIN A + | This study

promoter/LEU2
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Supplementary Figure 1. Kinetic analysis of Dom34, Hbs1 and Rlil mediated dissociation of inactive ribosomes from glucose
starved yeast.

Dom34-Hbs1 and Rlil dissociate ribosomes from glucose-starved yeast in vitro. **P-labeled 80S ribosomes purified from glucose-
starved yeast were incubated with the indicated proteins in presence of ATP and GTP or GDPNP. At the indicated time points fractions
of the reactions were analyzed on a 3% native acrylamide gel {Shoemaker, 2010 #22}. This figure shows one of the gels from which the

rate constants in Figure 2B were determined.



Supplementary Figure 2. Localization of the Dom34-Hbs1 complex and Stm1 in a model
of the 80S ribosome.

Alignment of a high resolution structure of an 80S ribosome from glucose depleted yeast
containing Stml (PDB 3u5b, 3uSc, 3u5d and 3uSe) {Ben-Shem, 2011 #173} and a cryo-EM
structure of the Dom34-Hbs1 complex bound to an 80S ribosome (PDB 31ZQ) {Becker, 2011
#180}.
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Strectural studies of multi-protein complexes, whether by X-ray diffraction, scattering, NMR spectros-
copy or electren micrescopy, require stringent quality control of the component samples. The inability
o produce keystone’ subunits in a soluble and correctly folded form is a serious impediment to the
reconstittion of the complexes. Co-expression of the components offers a valuable alternative to the
expression of single proteins as a reute to ebtain sulficient amounts of the sample of interest. Even in
cases where milligram-scale quantities of purified complex of interest become available, there is still
no guarantee that good quality crystals can be obtained. At this step, protein engineering of one or more
compoenents of the complex is frequently required to improve solubility, yield or the ability to crystallize
the sample. Subsequent characterization of these constructs may be performed by solution techniques
such as Small Angle X-ray Scattering and Nuclear Magnetic Resonance to identify ‘well behaved' com
plexes. Herein, we recount our experiences gained at proiein production and complex assembly during
the European 3D Repertoire project (3DR). The geal of this consortium was to obtain structural informa
tion on multi-protein complexes from yveast by combining crystallography. electron microscopy, NMRE
and in silico modeling methods. We present here representative set case studies of complexes that were
produced and analyzed within the 301 project. Our experience provides useful insight into strategies that
are more generally applicable for structural analysis of protein complexes.

@ 2011 Elsevier Inc. All rights reserved.

1. introduction

Proteins rarely act alone in cells. Instead, they are usually part of
assemblies with other macromolecules, such as proteins and

* Corresponding authors.

E-mail addresses: seraphin@ighme.fr (B Séraphin), Herman Van-Tilbeurghu

psud. It (H. van Tilheurgh).

nucleic acids. The integrity of these complexes is generally essen-
tial for cellular survival {Robinson et al., 2007). Many protein-pro-
tein complexes in particular are ubiquitous and are central to
biological pathways. A variety of biochemical and proteomic tech-
nologies have provided crucial information on the composition of
multi-protein assemblies, especially when performed in an high-
throughput manner (Gavin and Superti-Furga, 2003; Gavin et al,
2002; Krogan et al, 2006). Of these techniques, the now widely
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used Tandem Affinity Purification technology {TAP tagging, {Puig
et al, 2001; Rigaut et al, 1999) has been successfully applied dur-
ing the course of large-scale proteomic studies and has led to the
identification of many protein complexes.

Complexes which can be purified from their host organism in
large quantities are immediately seen to be more tractable than
those which cannot, and impressive results have been obtained
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in certain cases when nature has facilitated the task of protein
production (e.g. globins, proteasomes and ribosomes) (Ban et al,
2000; Clemons et al., 1999; Groll et al., 1987; Perutz et al.. 1960).
However, most multi-prot compl are | at low abun-
dance in cells and therefore it is difficult to obtain the sufficiently
high yields that are needed for structural studies. Hence, the vast
majority of complexes must be produced by recombinant cloning
and expression technologies. Two major strategies are used for
the production of complexes. The first consists of the in vitro recon-
stitution of the complex by mixing of individually purified protein
components, usually followed by additional purification of the
reconstituted complex. The second strategy comprises co-
expression of the various protein components. This can be per-
formed effectively by transforming the expression host with
poly-cistronic vectors that encede all components of the complex.
An alternative approach consists of introducing in the expression
host multiple plasmids encoding the individual subunits and carry-
ing different selection genes.

Structural genomics programs have yielded tremendous ad-
vances in structure determination of single proteins. Vast improve-
ments in protein expression and purification have provided
strategies for the preparation of high quality samples for structural
studies, mainly by NMR spectroscopy and X-ray crystallography.
However, most of the structural genomics programs have concen-
trated on structure determination of single proteins or domains,
the main drive being the discovery of new protein folds and the
completion of protein structure space (Stevens et al, 2001). In
Europe, structural genomics took another turn and targeted pro-
tein complexes. Two European Integrated Research projects have
concentrated on multi-protein complexes. The Spine 2 project
endeavored to perform the structural analysis of complexes in-
volved in human health (hetp:/fwww spineZeu/SPINE2/). In paral-
lel the European Gth framework program 2D Repertoire originated
from a systematic proteomics study that used tandem-affinity
purification { TAP) and mass spectrometry in a large-scale approach
to characterize multiprotein complexes in Saccharomyces cerevisiae
thttp:/jwww 3drepertoire.org/). The main goal of this project was
to solve the structures of all amenable protein complexes from
the budding yeast S. cerevisiae at the best feasible resolution, by
electron microscopy, X-ray crystallography, NMR, small angle X-
ray scattering {SAXS) and in silico methods.

In this manuscript, we present some strategies that were suc-
cessfully applied within the 3D Repertoire project for obtaining
high quantities of multi-protein complexes. We also discuss meth-
odologies for obtaining good quality crystals of complexes.
Although X-ray crystallography remains the method of choice for
the high-resolution structure determination of multi-protein com-
plexes, complementary techniques can be very helpful for provid-
ing crucial structural information. We illustrate here a number of
case studies for which SAXS was decisive in providing testable
structural models for complexes that could not be crystallized
but for which structures of the individual components were
known. NMR spectroscopy is also useful for the optimization of
constructs for structural analysis, as well as for providing informa-
tion on the folding and assembly of a complex, and one case in
point is described herein.

2. Material and methods

2.1. Expression and purification of the KEOPS/EKC complex and
subcomplexes

We introduced a T7 promoter and terminator sequences (similar
to those found in pET-family vectors) respectively at the 5’ and 3’
ends of the polycistronic gene operon. The lac-operator sequence
was placed downstream of the T7 promoter sequence in order to

subdone the polycistronic sequence in an expression vector con-
taining the Lacl gene. We then introduced the sequences of the tar-
get open reading frames { ORFs), each having its own RES {ribosome
hinding site), AUG start codon as well as stop codon sequences, We
also included specific restriction sites allowing cloning of sub-com-
plexes into other expression vectors. The synthetic 3.5 kb gene was
purchased to DNA 2.0 {Menlo Park, USA) and was cloned into a pUC
derivative vector {p]241_KEOPS/EKC-WT). The expression of this
large polycistronic mRNA was by virtue of the T7 RNA polymerase
system. As every ORF hasits own RBS sequence, start and stop codon,
every mENA molecule can be translated by more thanone ribosome.

The co-expression of the five KEOPSJEKC proteins was achieved
by transforming BL21-Al Escherichia coli {Invitrogen, Carlshad USA)
with the vector pJ241_KEOPSJEKC-WT. Cultures were grown at
37 =C until the ODgponm reached 0.4-0.5 and were then shifted to
15°C for at least 45 min and expression was triggered by adding
2 g/l of L-arabinose and 1 mM IFTG and incubating overnight at
15°C. Following centrifugation of the cultures at 6000g for
20 min, bacterial pellets were suspended in 35 mL of lysis buffer
{Tris-HCl 25mM pH 7.5+150mM NaCl+5mM 2-mercap-
toethanol). Bacterial lysates were then centrifuged and the super-
natants applied onto Ni-IDA {Macherey Magel, Diiren, Germany)
resin. Protein complex retained on the resin was eluted using imid-
azole, Fractions containing 10-40 mM imidazole were pooled and
further purified by size exclusion chromatography using a Super-
dex 200 16/60 column {GE Healthcare). KEOPS/EKC complex was
purified by a final step of ion exchange chromatoegraphy (Mono
column equilibrated with lysis buffer devoid of NaCl).

2.2, Expression and purification af the Mig2-Trm112 complex

The construction used to over-express the Mtg2 and Trm112 pro-
teins from E. cuniculi was designed on the same model as for the
KEOPS complex. Briefly, a synthetic DNA sequence containing the
coding sequences for Trm112 {flanked by the Nde [ and Not | restric-
tion sites at the 5" and 3’ ends, respectively) and Mtq2 {flanked by the
Neo Land Xho Trestriction sat the 5 and 3" ends, respectively and
containing an hexa-histidine tag at the C-terminal extremity of the
protein), separated by a RBS sequence {containing an enhancer se-
quence and the Shine-Dalgamo sequence) was purchased {Gen-
Script Corporation, Piscataway, NJ, USA)L This fragment was
further sub-cloned into pET21-a vector between Nde land Xho | sites.
Expression of the His-tagged Mtg2-Trm112 complex was performed
using the E coli strain BL21{DE3) Gold {Novagen). 800 ml of culture
in 2xYT medium {BIO101 Inc.) containing ampicillin at 50 pg/ml
were incubated at 37 *Cuntil an ODG00 of about 0.6-0.8 and induced
with IFTG 0.5 mM final at 28 °C for 4 h. Cell were harvested by cen-
trifugation, suspended in 40 ml of 20 mM Tris-HCl pH 7.5, 200 mM
NacCl, 5 mM 2-mercaptoethanol {buffer A), and stored at -20°C. Cell
lysis was achieved by sonication. His-tagged complex was purified
on a nickel-nitrilotriacetic acid {Ni* ' -NTA) column { Qiagen Inc. ) fol-
lowed by gel filtration on a Superdex 75 (16/60) column ( GE Health-
care) equilibrated in buffer A.

2.3. Mak complex expression

The Mak3 coding sequence was amplified by PCR with oligonu-
cleotides OBS1451 (5 GATTCTAGAT AAGGAGGATA TATATGCATC
ACCATCACCA TCACATGGAA ATAGTGTACA AGCCATT 3') and
0OBS1452 (5 CAATCCGGAT TATGTGGCCA GCCGGCCAT 3') and the
Phusion polymerase (Finnzymes). OBS1451 contained a Ribosome
Binding site and 6His tag coding sequence. The product was di-
gested with Xba I and BspEl and inserted in the pBS2454 expression
vector generating pBS2870. In parallel, the Mak10 and Mak31
coding sequences were amplified by PCR using the Phusion poly-
merase (Finnzymes) and, respectively, oligonucleotides OBS1453
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(5" GTCCGGATCA TAAGCAGGAT ATATATGGAA CTAGACAGTA TAT-
TA 3'), OBS1454 (5" GGTCCGGATT ATTTATAGCG GTCITGCT 37),
0B51455 (5" GTCCCGATCA TAAGGAGGAT ATATATCGAC ATCTTG
AAAC TGTCA 3), OBS1456 (5 GGTCCGGACT AAACAATATT AGCC
ATCAA 2'). PCR fragments were cloned using the Topo Blunt kit
{Invitrogen) generating pB52856 and pBS2851. The absence of un-
wanted mutations was ascertained by sequencing the whole in-
serts. Then, the Mak10 coding sequence was inserted as a BspEl
fragment in pBS2870, generating pBS2880. Finally, the Mak31 cod-
ing sequence was transferred as a BspEl fragment in pB52880, gen-
erating pBS2886. pBS2870, pBS2880 and pBS2Z886 were trans
formed in BLZ1{DEZ?]LysS cells and protein expression induced by
addition of IFTC or growth in auteinducing media. Cells expressing
operon constructs were broken with a Cell Disruptor { Constant sys-
tems). Purifications were performed on Ni*"-NTA in batches in
20mM Tris-Cl pH8.0, 10 mM imidazole, 500 mM NaCl, 2 mM 2-
mercaptoethanol, 0.2% NP40. After several washes, proteins were
eluted with the same buffer adjusted to 200 mM imidazole. Sam-
ples corresponding to the eluted fractions, and in some cases to
soluble proteins isolated from the cell extract, were mixed with
SDS-containing loading buffer before fractionation on denaturing
gels. Proteins were detected by Coomassie staining.

2.4, Hbs1-Dom34 expression and purification

Dom34Adomainl {aminocacids 1-136 deleted), Dom34Ado-
main2 {amino acids 141-275 replaced by {Gly)a) and Dom34Ado-
main3 {aminoacids 276-386 deleted) deletion mutants were
produced by fusion PCR and inserted in yeast expression vector
{AMGvdE and BS, unpublished) generating pB52453, pB52454 and
PBS3455, respectively. The Dom34 domain deletion mutants were
then amplified with the introduction of a C-terminal strep-tag using
0B53440 (5" GGCTCCCATA TGGAGTATAA ATCAGACACC GC 3') and
OBS3171 (5" acaggtacct tattittcga actgeggaty getocacted leaccategt
cticate 37) {Dom24Adomainl ), OBS3170 (5 GGCreccata tgaaggtiat
tagtctgaaa aagg ') and OBS2171 {Dom34Adomain2) or OBS3170
and 0B53443 (5 ACAGCTACCT TATTTTTCGA ACTGCCGGTG
GCTCCAAGTA TCTTGCAGCT TTGAAGC 3') {Dom34Adomain3), di-
gested with Nde 1 and Kpn 1 and cloned into a pACYC-LIC + vector
generating pBS3507, pB53508 and pBS3509, respectively. All con-
structs were verified by sequencing.

BL21{DE3] cells containing C-terminally Strep-tagged Dom34
andfor C-terminally His-tagged Hbsl expressing plasmid were
grown in 200 ml ZYM-5052 (Studier, 2005) containing chloram-
phenicol 25 pgiml andfor kanamycin 50 pgfml at 37 °C for 7 h,
then at 25°C for 14 h. Cells were harvested by spinning at 6000g
10 min 4 “C, washed in 20 ml FBS {4 “C) followed by centrifugation
at 5000 rpm 8 min 4 °C, and then suspended in 10 ml buffer W
(100 mM Tris pH 8; 1 mM EDTA; 150 mM NaCl}. Cells were lysed
by passing them through a Cell Disruptor {Constant Systems) at
1.55 kbar, followed hy rinsing with 5 ml buffer W. The resulting
15ml cell lysates were centrifuged at 12000 rpm 30 min 4°C,
Strep-purification was performed on the supernatant with the
Strep-tag®fStrep-tactin® affinity purification kit {IBA Biotechnol-
ogy), following the manufacturer's instructions and using a
200 pl column volume, Samples from induced culture, supernatant
and pellet after cell lysis and flowthrough {1:40000 of total vol-
ume) and of elution fraction E2 and E4 {1:560 of total elution vol-
ume) were analyzed on 12% SDS-PAGE and wvisualized by
Coomassie staining.

2.5 Sample preparation for NME measurements

Plasmids for the production of recombinant proteins were pre-
pared using standard cloning techniques using pET-derived vectors
{Movagen). Snul7" " Snu1 7", Bud13%™ and Bud13*>me"
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were expressed fused to histidine-tag to facilitate purification with
Ni**~NTA resin {Qiagen). Lysogeny broth {LB) medium was used to
prepare unlabeled samples. For '*Nj'*C and "N isotope-labeled
NMR samples M9 minimal medium with "C-glucose andjor
T5NH,Cl as the sole carbon and nitrogen sources, respectively, were
utilized. Details on the cloning and purification of Bud13 con-
structs were previously described { Brooks et al., 2009). Snul7 pro-
teins were obtained wusing similar procedures. Additionally, a
shorter Bud13%™" was purchased from Peptide Specialty Labora-
tories {Heidelberg, Germany), and extensively dialyzed before
usage. Proteins and peptides were kept in a standard NMR buffer
120 mM sodium phosphate pH 6.9, 150 mM NaCl and 1 mM DTT,
0.02% NaN5).

2.6. NMR

NMR data were acquired on a 600 MHz instrument {Bruker)
equipped with pulse field gradients and with a cryo-cooled probe
head. For the backbone assignment of free Snul7'"'", the follow-
ing standard experiments were recorded at 298 K: "H,'*N HSQC,
HNCA, HNCACB, CBCA{CO)NH and "H,”"N HSQC-NOESY (Sattler
et al., 1999). The recorded data were processed with NMRFipe/
NMRDraw {Delaglio et al., 1995) and visualized aswell as analyzed
in NMRView {v5.0.4) {Johnson and Blevins, 1994). Spectra for fig-
ures were exported directly from Topspin v2.1 {Bruker). For back-
bone assignment and peptide titrations, the NMR buffer was
supplemented with 10% DMSO. Hydrogen/Deuterium-exchange
was recorded after lyophilization of the Snul17'"" with and with-
out Bud13"™™*, and the subsequent addition of *H»0.

2.7. Isothermal titration calorimetry

Isothermal titration calorimetry {ITC) was used to measure the
affinity between Snul7'""* and different Budl3 constructs. Mea-
surements were performed with a VP-ITC (MicroCal Inc.) at 25°C
using proteins in NMR buffer. The concentration of Snul7''"* in
the cell {1440 pl) varied between 30-70 pM, while the syringe
1300 pL) contained the ligands at concentrations ranging from 0.6
to 1.1 mM. Normally 40-80 injections were performed over a per-
iod of 3-4 h. To estimate the heat of dilution, the ligands were also
injected into buffer. The result was then subtracted from the origi-
nal measurement. The analysis of the ITC data was done in Origin
v7, according to the manufacturer's recommendations.

2.8. Thermofluor assay

A thermofluor assay was used to characterize the stability of
Snu17'"" with and without Bud13*-™ {Ericsson et al., 2006).
In brief, the emission spectrum of a fluorophore, which is added
to the sample, is altered upon interaction with hydrophobic resi-
dues that are exposed upon thermal unfolding the hydrophe
core of the protein. This process can be followed with a real-time
PCR machine (Stratagene M = 3005P, Agilent Technologies Inc.).
50 pL reactions contained: 20 pM Snu17'"""?, B0uM Bud 137%™,
5x of SYPRO-orange {5000x stock; Sigma-Aldrich). The samples
were heated with 3 “C/min, starting from 25 “C.

2.9. Analysis of SAXS darta

SAXS data were collected on a commercially available small-an-
gle X-ray camera {Nanostar, Brucker AXS) adapted to a rotating
anode X-ray source {CuKe, i=1.54A). Data analysis confirmed
the presence of a heterodimer in solution for the Trm8-Trm&2
complex and of a heterotrimer for the Trm&-TrmE2-tRNA complex
{Leulliot et al., 2008). Missing parts in the crystal structure, either
because of proteolysis or because of their high mobility, contribute
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to scattering in solution by the intact ternary complex. Their pre-
cise conformation, which is likely not unique, is not a critical issue,
and certainly not when it comes to determining their contribution
te the SAXS pattern, ie at low resolution. They were therefore
moedeled in a conformation exposed to the solvent. Six “docked
models” of the ternary complex were obtained that differed by
the position of the tRNA with respect to the Trm8-Trm&2 complex.
For each “docked model”, the location of the three larger modeled
fragments, namely the 22 N-ter residues of Trm8, the 14 C-ter res-
idues of Trm82 and the 50 residues between blades B1 and B2 of
Trms2 were refined in a final modeling stage using the rigid-body
medeling program SASREF {Petoukhov and Svergun, 2005). The
discrepancy between the calculated and the experimental scatter-
ing curves was minimized while keeping the crystal structures
fixed in the docked position.

3. Results

3.1. The use of multi-cistronic constructs and multi-plasmid strategies
Jor the production of mult-protein complexes

Tweo extreme strategies can be proposed to co-express recombi-
nant complexes in £. coli. First, one can take advantage of the abil-
ity of bacteria to translate mRMAs encoding several distinct
proteins to insert the coding sequences of the various subunits of
the complex of interest into a single plasmid dewnstream of a sin-
gle promoter. The coding sequences are separated by a short non-
coding region containing ribosome binding sites, ensuring efficient
translation of the various polypeptides. In general, a purification
tag is fused to one of the subunits, but multiple tags may easily
be used, to ensure that complexes contaning various subunits
are qurified. Frovided that none of the inseried sequences induce
i rigpdbowial vtallang. 4 dngle mEP will B prohaced sod defer
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ensures, in theory, that equal quantities of RNA sequences encod-
ing the various subunits are present and thus similar levels of each
subunit are expected. Deviation from this ideal situation is not rare
and may result from degradation of the mRNA or unequal transla-
tion or stability of the various polypeptides.

Constructs for co-expression can easily be produced by the suc-
cessive addition of coding sequences of interest. Additionally,
expression experiments using plasmids that encode different com-
binations of subunits and purification of full and partial complexes
may provide information about which subunits are involved in di-
rect interaction and also offer the possibility of testing various
assemblies for structural analyses. This approach is exemplified
in Fig. 1A for the Mak complex. The Mak complex was identified
by TAP purification as a hetero-trimeric assembly containing the
Mak3 subunit, which presents similarities to acetyl transferases,
the large Mak10 subunit, and Mak31, a divergent Sm protein (Ri-
gaut et al., 1999). While these proteins were originally identified
as required for maintenance of killer virus-like structures {hence
their names), they were later shown to constitute one of the yeast
p in M-acetyl transf Inserts encoeding 6His-Mak3, Mak10
and Mak31 were successively inserted between a TV promoter and
a T7 terminator in the expression vector pB52454. Proteins were
purified on Ni**-NTA agarose after expression of the constructs
in BL21{DE2) Codon + cells. All proteins were clearly visible in
the purified fractions (Fig. 1B) and the presence of complexes
was ascertained by further purification of the peak Ni**=NTA frac-
tion hy gel filtration (Fig. 1C). Interestingly, this revealed that 6His-
Mak?2 co-purified Mak10 indicating that these two factors interact
directly. Moreover, Mak10 appeared to be partially degraded, but
the extent of the degradation was reduced in the presence of
Mak31 {Fig. 1B,C), suggesting that Mak31 interacts directly with
Mak10 and hence protects it from attack by E coli proteases.
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in some organisms {Gon7 in 5. cerevisiae) {Kisseleva-Romanova
et al., 2006 ). This complex was originally described to be required
for relomere maintenance { Downey et al, 2006) and regulation of
transcription | Kisseleva-Romanova et al., 2006) but its hiochemical
function remains unclear, which was the reason why we started
structural studies of this complex. Our approach for expressing
the complete yeast KEOPS/EKC complex consisted of designing a
poly-cistronic bacterial expression vectors for the co-expression
of all proteins of the complex {Fig. 24). The results of the gel filtra-
tion step used during the purification process {Fig. 2B) shows that
the five KEOPS/EKC proteins can be efficiently expressed in this
way. As one can see, the strategy of co-expressing five proteins
from one poly-cistronic vector was successful and underlies the
capacity of T7 RNA polymerase to transcribe large {>3.5 kb) DNA
fragments efficiently. The Gon7 protein was tagged at the C-termi-
nus by a 6-His sequence. Using IMAC chromatography, the co-puri-
fication of the complex yielded milligram-scale quantities of
protein {Fig. 2C). Crystallization trials are in progress for the whole
KEOPS/EKC complex produced using this route.

Multi-cistronic constructs have the advantage of necessitating a
single selection marker, thus avoiding the use of media with multi-
ple antibiotics, often detrimental for efficient protein expression.
These vectors are also compatible with a wide range of host cells.
As a drawback, such constructs may become very large when the
size andfor number of subunit increase{s), giving rise to problems
during their construction and manipulation. However, the main
limitation of multi-cistronic constructs probably resides in the
additional labor required when many variants have to be tested,
necessitating a new clone for each new combination of protein
components in the complex. An obvious adaptation when express-
ing multi-protein complexes for instance, exists in permutation of
the arder in which the coding seguences are inserted. as this can
dllein compien vl laa e chesin Lok el smen (ka
o e bk gl Db siian i i of oser o8 feie pelluiibio on

In order to avoid such problems, a diametrically opposed strat-
egy may be used, in which each subunit is inserted into a different
expression vector. This approach requires many vectors with dif-
ferent selection markers and if possible, with different replication
origing to avoid interference. Constructs containing a given subunit
and variants thereof are always introduced into the same vector
backbone. To test expression and purification of a given set of pro-
teins, one can then easily combine the corresponding vectors and
introduce them into E. coli This strategy is illustrated here with
the Dom324 and Hbsl proteins {Doma and Parker, 2006). These
two factors resemhble the translation termination factor, but were
shown to be implicated in the degradation of mRNA and rRNA in
stalled translation complexes. To define which of the three do-
mains of Dom34 are required to interact with Hbsl, we con-
structed plasmids encoding either full-length Dom34 or three
Dom34 variants, in each of which, one of the three domains had
been deleted. Each of the Dom34 derivatives was fused to a Strep
tag. These vectors were introduced into BL21{DE3) cells, together
with a plasmid encoding full-length 6His-tagged Hbs1 {van den El-
zen et al., 2010}, Extracts were prepared after induction of protein
expression and incubated with Streptactin beads. After washing,
proteins bound to the beads were eluted and fractionated on dena-
turing gels and detected by Coomassie staining {Fig. 3). This assay
was perfectly suited to the detection of the interaction of Hbsl
with Dom324, and demonstrated furthermore that the third domain
of Dom34 was essential for an efficient interaction. Deletion of do-
main 2 reduced only slightly the interaction while deletion of do-
main 1 had no effect. These observations are consistent with the
recent X-ray and SAXS analyses of this complex {van den Elzen
et al, 2010).

As exemplified by this complex, the co-expression of different
proteins encoded by different vectors offers the possibility of rapid
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these outcomes may result in protein imbalance and thereby result
in poor yield of complex at the stage of protein production.

3.2, A multi-organism approach for the production of complexes

Structural studies of multi-protein complexes using X-ray crys-
tallography rely on the availability of diffraction quality crystals,
which itsell depends on several factors, such as protein solubility
and stability, the presence of long flexible loops or extremities,
and of surface residue distribution. Although the yeast 5. cerevisine
is the most extensively studied eukaryotic organism, its proteins
are not necessarily the most amenable to crystallogenesis, because
of the comparatively long loops and extremities which are fre-
quently found within its sequences. Hence, to obtain structural
information on a biological system of interest, it is often very use-
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fraction following over-expression in various E coli strains. Co-

P with the protein kinase Bud32, its direct partner within
the KEOPS/EKC complex {Lopreiato et al., 2004), yielded soluble
protein. Because the purified quantities were insufficient for struc-
tural studies, we searched for orthols proteins in archaea and
found two candidates: PAE1159, the Kael ortholog from Pyrococ-
cus abyssii and MJ1120 from Methanococcus jannaschit. Interest-
ingly, the latter is a fusion protein of Kael and Bud32. These two
archaeal proteins could be over-expressed as soluble proteins in
E. coli and purified in milligram-scale quantities. This allowed us
to grow diffracting crystals from both proteins and to solve the
crystal structures of PAB1159 and M]1130 (Hecker et al, 2008;
Hecker et al., 2007). A similar strategy was also used by Mao
et al to obtain a model of the hetero-tetrameric KEOPS/EKC core
complex {Pecl-Kael-Bud32-Cgi121) from the structures of archa-
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eal heterodimeric sub-complexes {Pccl-Kael; Kael-Bud22 and
Bud32-Cgi121) (Mao et al., 2008},

A second example is provided by the §. cerevisiae Trm112 pro-
tein that binds and activates three SAM-dependent methyltrans-
ferases {MTases) modifying translation termination factor eRF1
{Mtq2) or tRNAs {Trm9 and Trm11) {Heurgue-Hamard et al.,
2006; Purushothaman et al., 2005; Studte et al, 2008). Co-expres-
sion of Trm112 with both Mtq2 and Trm9 is necessary (o recover
these two MTases in the soluble fraction of E. coli extracts {Heur-
gue-Hamard et al., 2006; Mazauric et al., 2010). Despite extensive
efforts, we could not obtain crystals of the Mtg2-Trm112 or Trm9-
Trm112 complexes from 5. cerevisiae, human or mouse. We there-
fore searched for orthologs of smaller size and select those encoded
by the genome of the intracellular parasite Encephalitozoon cunic-
uli. The proteins from this organism are on average 25% smaller
than their orthologs from S. cerevisine { Katinka et al., 2001). Using
bi-cistronic vectors and non-optimized synthetic genes, we could
co-express the E  cuniculi complexes formed by Trm112
{NP_597247.1, 125 residues versus 135 in yeast] with Mrq2
{MP_585817.1, 164 residues wvs 221 in yeast) and Trm%
{XP_955703.1, 225 residues vs 279 in yeast). This confirmed that
{i) Trm112 is needed to solubilize Mtq2 and {ii) Mtq2-Trm112
and Trm9-Trm112 interactions are also conserved in this parasite.
This strategy allowed us to solve the 2.1 A resolution crystal struc-
ture of the £, cuniculi Mtq2-Trm112 complex, which was then used
as a model of the yeast complex for further functional experiments
conducted in 5. cerevisine {Liger et al. 2011, Nucleic Acids Res. in
press).

3.3. The use of limited proteolysis for the optimization of crystals of
complexes

It has long been recognized that flexible andfor unstructured re-
gions at the N- or C-termini can hinder the crystallization process.
Therefore, a variety of methods have heen developed to generate
protein constructs corresponding to the minimal structured do-
main, including systematic domain generation coupled to solubil-
ity screening or prediction by bicinformatics. Limited proteolysis
has also been widely used in order to define minimal structured
domains in proteins (Quevillon-Cheruel et al., 2009; Wernimont
and Edwards, 2009). The method involves incubating a purified
protein with one or more of a variety of proteases in order to re-
move unstructured regions. SDS-PAGE, Edman sequencing and
mass spectrometry can then be used to identify the boundaries
of the truncated protein construct, which can then be cloned and
purified. Alternatively, the limited proteolysis conditions can be
scaled up, refined and an extra purification step performed to iso-
late the fragment of interest.

Limited proteolysis can also be used in situ, during the crystal-
lization experiment {Quevillen-Cheruel et al., 2009, an idea which
arose from the fact that many crystal structures present some de-
gree of proteolysis, as confirmed by mass spectroscopy on solubi-
lized protein crystals. In this way, it was observed that partial
protein degradation had occurred naturally over time, and was
probably due to the presence of trace amounts of proteases. This
concept was extended by purposefully adding small amounts of
proteases to samples of the purified proteins of interest. The sam-
ples are then either incubated for a certain amount of time, or used
without any incubation. Either way, the sample is used directly for
setting up crystallization trials, without any further purification
{Wernimont and Edwards, 2009). The idea is that the proteases
should still be active in the crystallization drops, and the protein
will slowly be trimmed of its unstructured regions, sometimes
generating over time a construct compatible with nucleation and
leading to crystal growth. This technique has led to a number of
successes, where all other methods failed to produce diffracting
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quality crystals. An important aspect of the method is that prior
inspection by SD5-PAGE is not necessary, because frequently the
protease will only cut within protein loops, but visualization of
the denatured sample by SDS-PAGE would reveal a smear at low
molecular weight fragments. This may, sometimes, become impor-
tant as long unstructured loops that would otherwise prevent
packing are removed, or provide additional degrees of freedom to
the loop conformation necessary to form crystal contacts {Quevil-
lon-Cheruel et al,, 2009). Using limited proteolysis on protein com-
plexes is a natural extension of this strategy. but requires
additionally that the quaternary structure of the complex be
preserved.

The N7-methylguanosine {m7G) modification in yeast is cata-
lyzed by the heterodimeric complex composed of a catalytic sub-
unit Trm$ and a non-catalytic subunit Trm82. The structure of
the Trm8-Trm&2 complex was solved using a combination of pro-
tein engineering and in situ proteolysis {Leulliot et al., 2008).
Firstly, the Trm8 methylase construct had to be optimized in order
to solve expression and solubility issues. Removal of the first 46
residues, which were not conserved and predicted to be unstruc-
tured, enabled a stable construct to be generated, and the protein
purified and crystallized. The Trm8-Trm82 complex could then
be reconstituted from the separately purified components. Crystal-
lization trials led to polycrystalline material that resisted all opti-
mization attempts (Fig. 4a). Trace amount of proteases {1/100
trypsin, chymotrypsin or pepsin] were then used as “additives”
in the optimization stage, by incubating the complex 30 min at
21°C, before setting up the tray. This enabled small monocrystals
that diffracted to 2.4 A resolution to be obtained (Fig. 4b). Inspec-
tion by mass spectroscopy of the species present in the crystals re-
veal a heterogeneous population, indicating that both proteins
were extensively proteolysed at both N- and C-termini and in var-
ious loops.

3.4. Biophysical approaches for the analysis of protein complexes

3.4.1. Small angle X-ray scattering (SAXS)

X-ray crystallography is the method of choice to obtain detailed
structural information of large macremolecular complexes, as tes-
tified for instance, by the structures of RNA polymerases and bac-
terial ribosomes {Ban et al., 2000; Ben-Shem et al., 2010; Wimberly
et al., 2000; Yusupov et al,, 2001). However, it is not always possi-
ble to grow diffracting crystals of complexes and alternate ap-
proaches can also hring useful information. This is indeed the
case with SAXS and cryo-electron microscopy {in the latter case,
for complexes of molecular weight of =200 kDa). In these cases,
the knowledge of the NMR or crystal structures of isolated compo-
nents of these complexes can be combined with the SAXS or cryo-
EM data in order to propose a model that will need to be validated
experimentally {Hura et al., 2009). SAXS also provides very useful
information on the quality of the sample {aggregate formation,
conformational stability etc.). Unfortunately, the access to SAXS
instruments is limited and light scattering can provide a valuable
alternative for the examination of the aggregation state of the sam-
ple {Senisterra and Finerty, 2009).

‘We have successfully used this approach for the study of both
protein-protein and protein-RNA complexes. The first example
concerns the Dom34-Hbs1 complex from 5. cerevisiae, which is in-
volved in the degradation of RNA, inducing strong translational
stalls of the ribosomes {Doma and Parker, 2006). We have solved
the structures of Dom34 and Hbs1 from yeast and the structure
of a Dom34 archaeal ortholog was described elsewhere {Graille
et al., 2008; Lee et al., 2007; van den Elzen et al., 2010). However,
we could not obtain crystals for the complex. As Dom34 and Hbs1
are structurally related to translation termination factors eRF1 and
eRF3, respectively {Carr-Schmid et al, 2002; Graille et al, 2008;
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Lee et al.. 2007), we used the structures of human and 5. pombe
eRF1-eRF3 complexes {lacking eRF? GTPase domain) to model
the structure of S, cerevisioe Dom34-Hbs1 complex (Chen et al,
2010; Cheng et al, 2009). We have then superimposed the C-ter-
minal domain from Dom?34 structures onto the corresponding do-
main from eRF1 in the human eRF1-eRF3 complex. Similarly, we
have superimposed the C-terminal domain from Hbs1 structure
onto the corresponding domain from eRF3 in the human eRF1-
eRF2 complex. As the crystal structures of Dom34 from yeast and
archaea were dramatically different in respect to the orientation
of the central domain relative to the M and C-terminal domains,
this vielded two different models (“yeast-like” and “archaea-like™).
To discriminate between the two models, we recorded SAXS data
from the Dom34-Hbs1 complex from S. cerevisiage. Comparison of
the scattering curves calculated from both models with the exper-
imental one clearly showed that the “archaea-like” model fits bet-
ter the solution structure of the Dom34-Hbs1 complex than the
“yeast-like” complex. To further improve the “archaea-like” model,
we performed rigid-body movements of two Dom34 domains
against 5AX5 data using the program SASREF {Petoukhov et al.
2000). The final model obtained using this approach displays a
strong analogy to the EF-Tu-tRNA complex that binds to the ribo-
somal A-site during elongation. Unexpectedly, this model pre-
dicted an interface between two highly conserved regions from
Hbs1 GTPase domain {motif RDF) and Dom34 central domain
{the SPGF motif). The importance of these residues for complex for-
mation was validated using site-directed mutagenesis and the
yeast two-hybrid approach {van den Elzen et al., 2010}, Our model
was further validated by the crystal structure of the Dom34-Hbs1-
GTP complex from archeon A. pernyx {rmsd of 2.3 A over 540 Cx
atoms; (Kobayashi et al., 2010)), which revealed that the Hbs1
RDF motif is indeed facing the Dom34 SPCF motif.

We also used SAXS to model the structure of protein-RNA com-
plexes, as exemplified by the structure of the Trm8-TrmS82-tRNA
complex. Modeling RNA protein complexes based on SAXS data is
somewhat problematic, because the density of RNA is twice that
of proteins. Ab initioc modeling of the envelope of the complex
can therefore be challenging due to the two phases contributing
to the scattering curve. In our case, knowledge of the individual
structures of the components of the complex was crucial to the
success of using SAXS to obtain structural information. Indeed,
the structures of Trm8 and of the binary Trm8-Trm82 complex
had successfully been solved by X-ray crystallography {see above).
A stable stoichoimetric trimeric Trm8-Trm82-tRNA™ could be
purified by gel filtration, but did not yield any crystals. The prob-
lem could therefore reduced to docking the tRNA™® structure on
the Trm8-Trm32 using SAXS scattering profile as a target. To our
surprise, modeling the rimeric complex was straightforward for
several reasons. First of all, the Trm8-Trm82 structure lacked sev-
eral regions of the protein, which were either intrinsically un-
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(B} Crystals of in the same cendition with 0,025 mg/ml trypsin added to the protein complex sample.
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folded. or absent in the crystal structure because of the protease
treatment of the sample prior to crystallogenesis (see above). The
missing Trm8 r f deled according to the

were th T
Trm8 crystal structure, the structure of bacterial homologues of
Trm& {TrmB), and by ab initic modeling. This structure was vali-
dated and refined with the SAXS scattering curve obtained from
the Trm8-Trm82 complex. With complete atomic models of both
protein and RNA partners at hand, we attempted macromolecular
docking restrained by the SAXS profile. Analysis of the resulting
muodels revealed that the solutions obtained were incoherent with
the available functional and structural information. The location of
the active site of Trm& was known and confirmed by crystallization
in presence of the adenosyl-methionine methyl donor. A positively
charged surface patch around the active site of the protein
undoubtedly contributes to its RNA binding properties. The base
of the tRNA, which is modified by the Trm8-Trm82 complex, was
already experimentally verified as being G46. We therefore expect
that in the docked models, the guanosine at position 46 in the tRNA
is located in the vicinity of the Trm& active site. Inspection of the
position of the t(RNA™ in the docking results showed that the
LRNA™™ hound at sites distant from the predicted binding site
and positioned the target guanosine too far away from the Trm8
active site. This discrepancy is thought to result from the fact that
docking is performed with unbound structures, and does not ac-
count for structural rearrangements of the structures upon bind-
ing. This is especially true for the RNA moiety because G46 is
involved in tertiary base pairing with the C13-G22 base pair inside
the D stem. The tertiary base pair therefore has to be disrupted and
that the guanine base has to flip out in order to access the small
groove in the Trm8 active site. The combined errors in the model
structures due to modeling of missing regions and conformational
changes were large enough to drive the docking to wrong confor-
matiens, but showing very good fits to the SAXS scattering profile.

To obtain valid models of the complex, we used this knowledge
in order to position the tRNA with respect to the protein. The mod-
els were generated by positioning the structure of the tRNA™ so
that, upon flipping out of the tRNA™" stem, the zuanosine 46
was at a distance compatible with its insertion into the Trm# cat-
alytic site. Next, G46 was chosen as a pivot point and many rota-
tional orientations of the tRNA were manually generated. Three
classes of orientations emerged in which the D- T- or anticodon
arms were bound in the predicted Trm8 RNA binding groove
{Fig. 5). Comparison of the calculated and experimental SAXS scat-
tering curves gave a better agreement with one of the classes
tgoodness-ol-fit indicator % between 1.48 and 2.10) compared o
the others {  berween 2.41 and 3.45).

The final structure was in good agreement with experiments
measuring the methyl acceptance activities of eight truncated or
mutated tRNA transcripts by both Trm8[Trm82 or by bacterial
Aguifex aeolicus TrmB {AeTrmB) { Matsumoto et al, 2007}, However,
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3.4.2. Use of NMR for the biophysical dissection of the RES complex

The RES complex, a splicing factor affecting nuclear pre-mRENA
retention, is composed of 3 subunits, namely Snul7, Bud13 and
Pmi1 {Brooks et al., 2009; Dziembowski et al, 2004; Trowitzsch
et al,, 2009). To obtain insights into its function, we have per-
formed a structural investigation of this factor. Expression experi-
ments for the structural analysis of the RES complex have taken
two directions thus far: expression of the individual subunits and
expression from polycistronic vectors. Single subunit expression
facilitated what we consider to be one of the most important initial
experiments, namely production of the full-length proteins to
determine whether (i) they can be produced in a soluble form sin-
gly and (ii) whether they are folded and resistant to proteases. The
expression level and solubility of the subunits provides a bench-
mark to which yields of truncated constructs may be compared.
The results of these experiments showed that of the three subunits,
Pmll was clearly the most stable and resistant to protease diges-
tion with trypsin and chymotrypsin. On the other hand, treatment
with such proteases degraded Bud132 rapidly, without obvious pro-
tease-resistant domains. Snul7 was of intermediate stability, and
was partially resistant to proteases, yielding a collection of pep-
tides after proteolysis.

Experiments designed o produce RES from a single polycis-
tronic vector were successful, and the complex produced in this
way was stable during gel filtration {Brooks et al., 2009). However,
it proved impossible to crystallize the tertiary compley, or even
either of the two binary complexes. Therefore, we resorted to trun-
cation and mutation analysis in order to delineate the minimal
constructs that form binary complexes stably: attempts to do this
have been published previously {Brooks et al., 2009; Trowitzsch
et al., 2008; Trowitzsch et al, 2009). While the competing group
used traditional cloning for this purpose, our work was based on
the use of the Entranceposon transposition system {Finnzymes)
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the complex, particularly in the case of the Snul7:Bud13 dimer.
Nuclear magnetic resonance spectroscopy is an efficient method
for characterizing biomolecular interactions and structure deter-
mination of protein complexes in solution {Madl et al., 2011; Si-
mon et al, 2010). NMR experiments were therefore used to
define the minimal region of structured polypeptide within the
proteins, We were particularly intrigued by the interaction he-
tween Snul? and Bud13, since the interaction is predicted to be
generally related to the interactions between UHMs {U2AF Homol-
ogy Motifs) and ULMs {UHM Ligand Motifs) { Corsini et al., 2007).

The Snul7'"" construct was compared to full-length Snul7
{Snul 7 1) using "H,'"N 2D HSQC spectroscopy (Fig. GA). The
shorter of these two constructs yielded an improved spectrum,
which looked promising for structural analyses. In contrast, the
full-length construct gave numerous overlapped signals resonating
around 8 ppm, suggesting that many residues of the C-terminus
are structurally disordered and flexible. However, Snul7' """ pre-
cipitated during storage and NMR data acquisition, and therefore
appeared to be unstable. Further evidence for the instability of
Snul? alone was provided by NMR monitored hydrogen/deute-
rium {H/D) exchange experiments {data not shown). These exper-
iments demonstrated the complete exchange of amide protons
within 5 min indicating that amides are not involved in strong
hydrogen-bonds, as would be expected for a folded domain with
stable secondary structure el The situation is improved sig-
nificantly by the addition of a Bud13-peptide {Bud 13"}, which
comprises a conserved tryptophan residue that is also critical for
the molecular recognition of ULMs by UHM domains. In the pres-
ence of this peptide many NMR signals of Snu17'""* remained
protonated and thus protected against H{D exchange after incuha-
tion for 15 min in deuterated water. Thermofluor assays {Ericsson
et al, 2006) corroborated these results, which showed a 5 degree
shift in the melting temperature upon addition of Bud137%™,
compared to the Snul7""" protein alone {data not shown).
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MNMR titrations revealed substantial chemical shift perturba-
tions {CSPs) in 2D "H,'*N HSQC spectra upon addition of Bud13
peptides to "*N-labeled Snu17'~'" (Fig. 6B and C). The next step
was then to perform the NMR backbone resonance assignment,
allowing a more thorough characterization of the effects of various
Bud13 peptides on Snul7 at residue resolution. It became clear

that C5Ps map to the two «-helices in the putative ULM binding
site of a homology model of the Snu17" "™ UHM domain (Brooks
et al.,, 2009). The presence of a 60-mer peptide of Bud12 yielded
an almest identical 'H,'*N HSQC spectrum of Snul7'"" as the
40-mer peptide, but the former induced aggregation of the protein
{data not shown). CSPs elicited by a 22-mer Bud13 peptide were
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rather similar to the 40-mer variant {Fig. 6C). However, while with
both peptides a similar set of residues within helices o1 and o2
were affected, the magnitude of the CSPs with the 22-mer peptide
was lower (Fig. GE and F). The affinity of each peptide was deter-
mined by isothermal titration calorimetry {ITC). While the 22-
mer could be fitted to a single site-binding model, the 40-mer
could be best fitted assuming two binding sites, suggesting a hipar-
tite mode of interaction {data not shown). Thus, the 40-mer or
longer peptides are likely to provide a more complete picture of
the interaction between these two splicing factors. Efforts for
structure determination of this complex should therefore prefera-
bly be performed using these constructs.

In summary, the NMR data support the notion that Snul7 and
Bud13 interact in a similar fashion as found in UHM-ULM com-
plexes, exemplified by the structure of SPF45 in complex with a
ULM peptide derived from SF3b155 {Corsini et al., 2007). Addition-
ally, these results suggest that Bud 13 induces an increased stability
of Snul7, perhaps by induced-fit upon binding, which may also
have functional consequences in vivo. This system provides an
example of how a combination of NMR, thermofluer and ITC can
be used to assist in decision-making with respect to which are
the optimal constructs touse for biophysical and structural studies,
and is applicable to the protein-peptide interaction paradigm in
general.

4. Conclusions

Despite huge progress macde over the last years in the produc-
tion of proteins through technological developments in structural
genomics programs {Alzari et al., 2006; Graslund et al., 2008; Ste-
vens et al, 2001), the structural analysis of multi-protein com-
plexes remains a challenge. Overall, there is no definitive optimal
strategy for complex over-expression. Multi-cistronic constructs
represent simple systems that benefit from improvement in clon-
ing automation while multi-vector strategies facilitate the screen-
ing for optimal constructs. Obviously, these strategies may be
combined. Hence, it is possible to rapidly test numerous variants
of a given subunit by constructing them in a defined vector while
the remaining subunits of the complex are encoded by a compati-
ble polycistronic vector. Independent transcription units may also
be inserted in a single vector to prevent problems resulting from
the expression of a single large polycistronic transcript. Selection
of the strategy should still currently be dictated by available infor-
mation and by estimation of the steps that will be required to
achieve efficient complex expression.

Multi-organism strategies for structural studies are of course
not new and have been applied in many laboratories. What has
changed over the recent years is the availability of a fast growing
number of genome sequences, which tremendously increases the
number of potential orthologs that can be tested for expression
and crystallization. Organisms that survive under harsh conditions
{stable proteins) or that are under selective pressure {such as occur
during parasitism or when rapid replication is required) to restrict
genome size, giving rise to short protein sequences, are valuable
alternatives for cloning orthologous complexes. However, the use
of protein sequences from more exotic organisms was until re-
cently hampered by the difficulties of obtaining sufficient quanti-
ties of genomic or ¢DNA. The improved and cheaper gene
synthesis facilities commercially available nowadays allow select-
ing and obtaining coding sequences for any protein sequence of
interest that are available in the databases. As we demonstrated
in the case of KEOPS/EKC, synthetic polycistronic operons can
now be used for the production of complexes. The combination
of an increasing number of orthologous sequences for any protein
target together with the possibility of cbtaining inexpensive syn-
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thetic genes coding for these orthologs will soon become a strategy
of choice in structural biology and we will see the number of
solved structures from proteins originating from “exotic” organ-
isms increase.

The dominant method for high-resolution structure determina-
tion of complexes remains X-ray crystallography. Single particle
electron microscopy is making steady progress and it can be ex-
pected that this technique will gain in importance, especially for
complexes that are beyond reach of crystallography (Frank,
2009), Finally, complementary techniques such as NMR spectros-
copy and Small Angle Scattering experiments provide important
and often critical information for structural analysis of protein
complexes (Hura et al, 2009; Madl et al, 2011). They have the
advantage that no crystallization is required and that the complex
is studied in solution, ie. in a more native-like environment. If
structures of individual domains are available, the structure of
the complex can be obtained by using either NMR {Gurtler et al,
2010), Small Angle Scattering or a combination of the two tech-
niques {Madl et al., 2011}
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Etude du complexe Dom34-Hbs1 ressemblant aux facteurs
de terminaison: analyse fonctionnelle de ses roles dans le
controle qualité des ARN et dans la stimulation de la

traduction par dissociation des ribosomes inactifs.

Résumé

Aprés un cycle de la production des protéines, les sous-unités des ribosomes terminés sont
dissociés, afin de les rendre disponibles pour de nouveaux cycles de traduction. Si lors de la
traduction le ribosome pause, il ne pourra pas terminer la traduction et étre recyclé par la voie
classique. Un mécanisme de recyclage alternatif a évolué pour dissocier de tels ribosomes arrétés.
Un complexe composé des facteurs Dom34 et Hbs1 induit leur dissociation. Ce complexe est aussi
impliqué dans des voies de contrble qualité qui ciblent des ARN qui causent des arréts
ribosomiques. Dans cette these, l'importance de plusieurs sites fonctionnels du complexe Dom34-
Hbs1 pour ces voies contréle qualité des ARNs est étudiée. De plus, la relation entre ces voies et
leurs détails sont examiné. Finalement, un nouveau réle de Dom34-Hbs1, en dissociant des
ribosomes inactifs ce qui rend leurs sous-unités disponibles pour de nouveaux cycles de la
traduction, est décrit.

Résumé en anglais

Protein production is a cyclic process that consists of four stages: initiation, elongation, termination
and recycling. During recycling the subunits of terminated ribosomes are dissociated, to make them
available for new rounds of translation. If ribosomes stall during translation, ribosomes cannot
terminate properly and canonical recycling cannot occur. Cells have mechanisms to rescue these
stalled ribosomes. A complex formed by the factors Dom34 and Hbs1 induces their dissociation. This
compex in RNA quality control, targeting RNAs that cause ribosomal stalling. In this thesis the
importance of several functional sites of the Dom34-Hbs1 complex for the degradation of these RNA
sis investigated. Details of and the relationship between RNA quality control pathways in which the
complex functions are further investigated. Finally, a new role of this complex, dissociating inactive
ribosomes and thereby making their subunits available to re-enter the translation cycle is described.




