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Résumé

Cette thèse s’intéresse aux phénomènes électrostatiques émergents dans les modèles magnétiques

toröıdaux bi-dimensionnels à symétrie XY, fournissant ainsi un support pour de plus amples recherches

dans le domaine de la transition de phase Berezinskii-Kosterlitz-Thouless (BKT).

Dans de nombreux systèmes bi-dimensionnels, dont le modèle bi-dimensionnel XY du magnétisme, la

transition BKT contrôle la dissociation thermique de paires de défauts topologiques liés. Le modèle

XY est analogue au gaz de Coulomb bi-dimensionnel, à ceci près qu’il peut être simulé sans avoir à

modéliser les interactions à longue distance du système Coulombien. Cette thèse élucide ce paradoxe

en démontrant que l’approximation de Villain appliquée au modèle XY est strictement équivalente au

modèle électrostatique de Maggs-Rossetto (MR) appliqué au système Coulombien bi-dimensionnel.

Cette équivalence est utilisée pour sonder la transition BKT par l’application de l’algorithme MR au

gaz de Coulomb bi-dimensionel. En simulant le système Coulombien, il est prouvé que les fluctuations

dans l’organisation des charges autour du tore sont activées à la température de transition BKT. Ces

fluctuations du champ électrique indiquent ainsi la phase de haute température de la transition.

Il est ensuite montré que l’exposant critique effectif de la théorie de Bramwell-Holdsworth (BH) peut

être mesuré dans les films d’hélium 4 superfluide, qui correspondent à des gaz de Coulomb effectifs dans

la limite de systèmes de grandes tailles finies.



Abstract

This thesis addresses the emergent electrostatics of two-dimensional, toroidal magnetic models that

possess XY symmetry, providing a platform for novel investigations into the Berezinskii-Kosterlitz-

Thouless (BKT) phase transition.

The BKT transition drives the thermal dissociation of bound pairs of topological defects in many

two-dimensional systems, including the two-dimensional XY model of magnetism. The XY model is

closely analogous to the two-dimensional Coulomb gas, but can be simulated without computing the

long-range interactions of the Coulombic system. This thesis elucidates this paradox by showing that

Villain’s approximation to the XY model is strictly equivalent to the Maggs-Rossetto (MR) electrostatic

model when applied to the two-dimensional Coulomb gas.

The mapping is used to probe the BKT transition through the application of the MR algorithm to the

two-dimensional Coulomb gas. By simulating the Coulombic system, fluctuations in the winding of

charges around the torus are shown to turn on at the BKT transition temperature. These topological-

sector fluctuations in the electric field therefore signal the high-temperature phase of the transition.

It is then shown that the effective critical exponent of Bramwell-Holdsworth (BH) theory can be mea-

sured in superfluid 4He films, which correspond to effective Coulomb gases in the limit of large but

finite system size. With the Coulombic system taken as the base BKT system, it is inferred that BH

theory is a general property of BKT systems.
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Ēw Winding component of the harmonic mode of the electric field
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Chapter 1

Introduction

The neutral Coulomb gas presents a statistical-mechanical problem in which the effect of dimensionality

is particularly important. In three spatial dimensions, the continuum solution of Poisson’s equation

gives the well-known 1/r interaction potential. This potential is long-ranged, but is not quite sufficient

to confine the positive and negative charges at finite temperature. In two spatial dimensions, however,

the continuum solution of Poisson’s equation gives a confining ln(r) potential. As first noted by Salzberg

and Prager, who found an equation of state for the two-dimensional Coulomb gas [1], this results in a

transition from a high-temperature phase of deconfined charge to a low-temperature phase of bound

charge pairs.

Berezinskii [2], Kosterlitz and Thouless [3] discovered that the classical two-dimensional XY model

of magnetism is, physically, very similar to the two-dimensional Coulomb gas. This mapping has a

long history, fuelled by its remarkable statistical mechanics [2–4] and its relevance to a wide variety of

experimental systems, such as superconducting films and two-dimensional Josephson junction arrays [5–

8], superfluid films [9–12], liquid-crystal and polymer films [13], cold-atom systems [14], thin-film Bose-

Einstein condensates [15, 16], superinsulating films [17, 18], and magnetic films and layers [19–21]. In the

magnetic representation, the charge-binding transition discovered by Salzberg and Prager [1] becomes

the famous Berezinskii-Kosterlitz-Thouless (BKT) transition [2, 3] that involves the unbinding of spin

vortices: as the system passes through the transition temperature from the low-temperature phase,

tightly bound vortex pairs unbind and destroy the quasi-long-range order of the system.

Despite the long history of the analogy between the XY model and the two-dimensional Coulomb gas,

its precise form on a microscopic level is not so simple or transparent, and is not found in the pioneering

work of BKT and others [2–4]. This omission was recognised by Vallat and Beck [22], who provided the

exact mapping between Villain’s approximation to the XY model [23] and the two-dimensional Coulomb

gas in the grand canonical ensemble (GCE). This thesis was inspired by this equivalence between the

magnetic and Coulombic systems. From the outset, our aim was to further understand the mapping,

13
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and to present it in a more modern and transparent representation using the Maggs-Rossetto (MR)

electrostatic model [24]. This led to a new measure of the BKT transition in Chapter 5, and to the

generalization of Bramwell-Holdsworth (BH) theory [19, 20], which applies to magnetic films with XY

symmetry, to all systems that are governed by BKT physics in Chapter 7.

Throughout this thesis, any real or model system that admits a BKT transition is termed a ‘BKT

system’, and all systems will be square and subject to periodic boundary conditions (PBCs), unless

stated otherwise. The PBCs enforce a toroidal topology, but the curvature of a true torus is not

considered.

1.1 Thermodynamics and Phase Transitions

The thermodynamics of a system is the description of the system in its infinite-size limit: the thermody-

namic limit. Any thermodynamic quantity is therefore only strictly defined for systems of infinite size,

which, for most systems, corresponds to its macroscopic description. This definition is a consequence of

the central limit theorem of statistics, which predicts that, for example, fluctuations from the mean of

the internal energy per particle of a gas of N approximately independent particles is of the order N−1/2,

from which it follows that there are no fluctuations in this quantity in the thermodynamic limit. In

general, most macroscopic volumes of matter at equilibrium can be treated as being in the thermody-

namic limit. There are, however, some exceptions, one being the XY model of magnetism: this model

is predicted to have zero magnetization in the thermodynamic limit [25], but the limit is approached so

slowly that a magnetic film the size of the state of Texas for would still have finite magnetization [20].

Finite-size effects are therefore extremely important in the macroscopic description of this system.

Phase transitions are transformations of thermodynamic systems between different states of matter.

Many phase transitions are measured by order parameters, which are zero in one phase and finite in the

other: in a ferromagnetic system, for example, the order parameter is usually the magnetization of the

system. This thesis revolves around the BKT transition, which governs the thermal dissociation of pairs

of topological defects in the variety of different systems outlined above [5–21]. This phase transition is

associated with a topological ordering, a term we will elucidate through the investigation presented in

Chapter 5.

1.2 Monte Carlo Simulations

The majority of model systems are too complex for the analytic calculation of thermodynamic quanti-

ties. Simulations of the model systems are therefore performed in order to approximate the quantities of

interest: throughout this thesis, the Metropolis Monte Carlo sampling procedure is used. This involves
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setting the components of the system in a certain initial configuration and then sampling a series of

new configurations, which are either accepted or rejected on the basis of the Metropolis update scheme.

Any configuration that is of a lower energy than that of the previous configuration is accepted; if,

however, the energy change is not negative, the sampling procedure then accepts the new configuration

if a random number in the set [0, 1) is less than exp (−β∆E), where ∆E is the difference between the

energies of the new and old configurations, β := 1/kBT is the inverse temperature, kB is Boltzmann’s

constant, and T is the temperature of the system. The exponential function effectively introduces a

temperature to the system, by acting as an effective Boltzmann probability for the system changing

from its initial to its final state at the temperature in question. Between a certain number of proposals,

measurements of the system are then taken, from which the user is able to form approximate thermal

averages of the desired quantities.

1.3 Topology and Ergodicity

Topology [26] and ergodicity [27] are two of the most important concepts in physics. In this thesis, it

will be shown that they can both be used to classify the BKT phase transition outlined above.

In general, topology is the study of the properties of objects that are preserved under continuous

deformation: it is the classification of shape. In the context of physics, this corresponds to the shapes

of the fields that describe the systems in question. Divergences in electric fields, for example, cannot be

removed by the continuous deformation (stretching or bending) of the fields: they can only be removed

by operations such as the discrete reversal of field direction. Field configurations that contain a certain

number and value of divergences - or topological defects - are classified as topologically distinct from

field configurations that contain a different number or value of divergences. Topological defects are

ubiquitous in nature, hence the importance of the concept of topology in physics.

The ergodic hypothesis states that a representative fraction of the accessible microstates of a real

system will be visited by the system over a long enough period of time. (Note that, in a real system,

the same thermal averages result from the representative fraction as though all accessible microstates

have been visited.) A system is therefore in an ergodic state if its statistical averages are independent

of the dynamics, provided the dynamics could theoretically explore all accessible microstates. When

first introduced, this seems to be an abstract formalism of the language of physics, but it turns out

to be very useful in classifying the states of certain systems. In this thesis, it will be shown that the

two-dimensional Coulomb gas is classified as non-ergodic in the low-temperature phase of the BKT

transition where charge is confined, but that it is classified as ergodic in the high-temperature phase

where the charges are free to dissociate, or are deconfined. This is because it is valid to allow a global

charge dynamics to complement the required local charge dynamics. The global dynamics amounts to

winding a single charge around the torus, but, physically, confined charge can never wind around the
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torus: when charge is confined, the statistical averages are therefore dependent on the dynamics, and

the system is in a non-ergodic state.

1.4 Aims and Thesis Plan

The aims of this thesis are to clearly present the mapping between the two-dimensional Coulomb gas

and the two-dimensional XY model of magnetism in a modern and transparent representation and

to then use this to both show the topological and ergodicity-breaking nature of the BKT transition,

and to also generalize BH theory to all systems that are governed by BKT physics. To do this, the

Coulomb interaction, the MR electrostatic model, the XY model, the BKT transition, and BH theory

are introduced in Chapter 2. Following this, in Chapter 3, the standard physics of the two-dimensional

lattice Coulomb gas is reformulated in a language suitable for the thesis, and an extension of the MR

electrostatic model to the GCE in a lattice formalism is presented in detail in Chapter 4. The MR

algorithm is then applied to the two-dimensional Coulomb gas in Chapter 5: this allows us to clearly

describe the BKT transition in terms of topology and ergodicity. In Chapter 6, the equivalence between

the MR electrostatic and Villain models in two spatial dimensions is shown, which allows us to define

an emergent electric field for magnetic systems that possess XY symmetry, and to infer the relevance of

Chapter 5 to experiment. Finally, in Chapter 7, the emergent-field representation outlined in Chapter

6 is applied to BH theory to generalize this theory to the general BKT system.



Chapter 2

Theoretical Background

This chapter is a review of the background material required for the thesis.

2.1 Classical Continuum Electrostatics

This project began with an analysis of the mapping between the two-dimensional XY model of mag-

netism and the two-dimensional lattice Coulomb gas. The theory of electrostatics on a lattice will

therefore be analysed before being used to probe both the famous BKT transition [2, 3] and the map-

ping between the Coulomb gas and the ferromagnetic film.

Electrostatics is the theory of the interaction of stationary electric charges. This thesis concentrates

on electrostatics in two spatial dimensions since this is considered to be the base system that admits

BKT physics. Few electric charges are, however, known to behave two-dimensionally, so we begin with a

discussion of three-dimensional continuum electrostatics, from which we will be able to form the axioms

of the two-dimensional system.

2.1.1 Three-dimensional Electrostatics

In this subsection, the electric field is introduced before Gauss’ law and the internal energy of the field

are derived.

2.1.1.1 Gauss’ Law

Three-dimensional electrostatics is governed by Coulomb’s law [28]. This law states that the force

experienced by one point charge q (q will be set as the elementary charge throughout) due to another

17
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point charge qi in a vacuum is given by

Fi(x) =
qqi

4πε0

x− xi
|x− xi|3

∀x 6= xi, (2.1)

where x and xi are the positions of the charges q and qi, respectively, and ε0 is the electric permittivity

of free space. (Note that this force does not account for any harmonic mode.) We generalize this to

the force experienced by q due to a system of n point charges, and add a harmonic mode to the force

F̄, which accounts for dipole-moment and charge-winding forces in general systems:

F(x) =
q

4πε0

n∑
i=1

qi
x− xi
|x− xi|3

+ F̄∀x 6= xi. (2.2)

The electric field experienced by some point charge q at x due to n other point charges is defined to be

E(x) :=
1

q
F(x), (2.3)

hence,

E(x) =
1

4πε0

n∑
i=1

qi
x− xi
|x− xi|3

+ Ē∀x 6= xi, (2.4)

where Ē := F̄/q is the harmonic mode of the electric field. (We refer to a single harmonic mode because

Ē corresponds to the k = 0 mode of the Fourier transform of the electric field, and we refer to this

mode as harmonic because ∇2 Ē = 0, which follows from the standard vector calculus of constant

vector fields.) From this, the superposition principle follows: the non-harmonic modes of the electric

field experienced by a point charge are given by the sum of the non-harmonic modes of the fields due to

each of the other constituent charges of the system. By defining the density of electric charge at some

point x as

ρ(x) :=

n∑
i=1

qiδ
(3)(x− xi), (2.5)

we are able to rewrite Eq. (2.4) as

E(x) =
1

4πε0

∫
Ω
ρ(x′)

x− x′

|x− x′|3d
3x′ + Ē∀x 6= x′. (2.6)

Upon taking the divergence of both sides of Eq. (2.6),

∇ ·E(x) =
1

4πε0

∫
Ω
ρ(x′)∇x ·

(
x− x′

|x− x′|3
)
d3x′

=
1

ε0

∫
Ω
ρ(x′)δ(3)(x− x′)d3x′, (2.7)
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we are left with Gauss’ law:

∇ ·E(x) = ρ(x)/ε0. (2.8)

Note that ∇x in Eq. (2.7) denotes that the divergence is taken with respect to the x variables. Eq.

(2.8) shows that electric charges are topological defects in the electric field E: they puncture the electric

field lines, which changes the topology of the electric field.

2.1.1.2 The Internal Energy

Upon supposing that the internal energy of the electric fields of the electrostatic system is given by

U0 =
ε0
2

∫
Ω
|E(x)|2d3x, (2.9)

it follows, from the variational principle, that the functional

F [E(x)] :=
ε0
2

∫
Ω
|E(x)|2 d3x−

∫
Ω
φ̄(x) (ε0∇ ·E(x)− ρ(x)) d3x, (2.10)

which imposes Gauss’ law, should be minimized with respect to the electric field for an electrostatic

system in equilibrium. Here, {φ̄(x)} acts as an infinite set of Lagrange multipliers introduced to

enforce Gauss’ law, and Ω is the subset of Euclidean space in which the charges exist. The functional

is rearranged to

F [E(x)] =
ε0
2

∫
Ω
|E(x)|2 d3x− ε0

∫
Ω
φ̄(x)∇ ·E(x)d3x+

∫
Ω
φ̄(x)ρ(x)d3x (2.11)

=
ε0
2

∫
Ω
|E(x)|2 d3x− ε0∇ ·

∫
Ω
φ̄(x)E(x)d3x

+ ε0

∫
Ω
∇φ̄(x) ·E(x)d3x+

∫
Ω
φ̄(x)ρ(x)d3x (2.12)

=
ε0
2

∫
Ω
|E(x)|2 d3x− ε0

∮
∂Ω
φ̄(x)E(x) · da(x)

+ ε0

∫
Ω
∇φ̄(x) ·E(x)d3x+

∫
Ω
φ̄(x)ρ(x)d3x, (2.13)

where da is an infinitesimal element of the surface of the system. The functional is varied with respect

to the electric field:

δF [E(x′)]

δE(x)
= ε0

(
E(x) + ∇φ̄(x)

)
, (2.14)

where the boundary term is assumed to be zero (which is the case for PBCs, certain Dirichlet and

Neumann boundary conditions, and the infinite-size system). Hence, for a minimized functional, the
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electric field must be given by

E(x) =−∇φ(x) + C, (2.15)

where

φ̄(x) = φ(x)−C · x. (2.16)

Here, φ is the part of φ̄ that does not depend linearly on position, and C is a constant vector field.

By definition, the harmonic mode of the electric field is given by

Ē :=
1

V

∫
Ω

E(x)d3x. (2.17)

Combining Eqs. (2.15) and (2.17), it follows that C = Ē, because the non-harmonic modes of the

electric field −∇φ sum to zero. It therefore follows that the functional is minimized when the electric

field is given by

E(x) =−∇φ(x) + Ē. (2.18)

Electric fields that describe electrostatics are, by definition, irrotational: rotational components gen-

erate magnetic fields that, in turn, accelerate electric charges. The functional therefore describes the

electrostatics of a neutral charge fluid: Eq. (2.9) is taken to be the internal energy of the electric fields

of the electrostatic system. The scalar field φ is the electric scalar potential that adheres to Poisson’s

equation of electrostatics:

∇2φ(x) = −ρ(x)/ε0. (2.19)

−∇φ and Ē are referred to as the Poisson and harmonic components of the total electric field E,

respectively. The Poisson component is comprised of all k 6= 0 modes of the electrostatic field.

2.1.1.3 The Green’s Function

The internal energy of the electric fields is now rewritten in terms of the Green’s function of the system.

The Green’s function G(x,x′) solves

∇2
xG(x,x′) = −δ(3)(x− x′), (2.20)
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which effectively amounts to stripping the information related to the charge value and the electric

permittivity of free space from Poisson’s equation. The above equation is solved by

G(x,x′) =
1

4π

1

|x− x′| ∀x 6= x′, (2.21)

while the diagonal element of the Green’s function G(x,x) is related to the self-energy of the charges.

To write the internal energy of the electric fields in terms of the Green’s function, the principle of

superposition is applied to Eq. (2.9):

U0 =
ε0
2

∫
Ω
|E(x)|2d3x (2.22)

=
ε0
2

∫
Ω
| −∇φ(x) + Ē|2d3x (2.23)

=
ε0
2

∫
Ω
|∇φ(x)|2d3x− ε0

∫
Ω
∇φ(x) · Ē d3x+

ε0V

2
|Ē|2 (2.24)

=
ε0
2

∫
∂Ω
φ(x)∇φ(x) · da(x)− ε0

2

∫
Ω
φ(x)∇2φ(x)d3x+

ε0V

2
|Ē|2 (2.25)

=− ε0
2

∫
Ω
φ(x)∇2φ(x)d3x+

ε0V

2
|Ē|2 (2.26)

=− ε0
2

∫
Ω

n∑
i=1

φi(x)∇2
n∑
j=1

φj(x)d3x+
ε0V

2
|Ē|2 (2.27)

=− ε0
2

n∑
i,j=1

∫
Ω
φi(x)∇2φj(x)d3x+

ε0V

2
|Ē|2 (2.28)

=
ε0
2

n∑
i,j=1

∫
Ω

qi
ε0
G(x,xi)

1

ε0
qjδ

(3)(x− xj)d
3x+

ε0V

2
|Ē|2 (2.29)

=
1

2ε0

n∑
i,j=1

qiG(xi,xj)qj +
ε0V

2
|Ē|2 (2.30)

=
G(x,x)

2ε0

n∑
i=1

q2
i +

1

2ε0

∑
i6=j

qiG(xi,xj)qj +
ε0V

2
|Ē|2 (2.31)

=
G(0)

2ε0

∑
m∈Z

nmm
2q2 +

1

2ε0

∑
i6=j

qiG(xi,xj)qj +
ε0V

2
|Ē|2 (2.32)

=USelf + UInt. + UHarm., (2.33)

where G(0) := G(x,x), φi is the electric scalar potential due to particle i, da is an infinitesimally small

surface element, nm is the number of charges mq, m(x) ∈ Z is the electric charge at x in units of

q, and USelf :=
∑

m∈Z nmm
2q2G(0)/2ε0, UInt. :=

∑
i6=j qiG(xi,xj)qj/2ε0 and UHarm. := ε0V |Ē|2/2 are,

respectively, the self-energy, Coulombic charge-charge interaction and harmonic-mode components of

the internal energy of the electric fields U0. The coupling between the harmonic and non-harmonic

modes of the electric field in the third line of the above working is zero because the harmonic term

moves outside of the integral and the spatial integral over the non-harmonic (k 6= 0) modes is zero; the
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surface term in the fourth line is zero for systems with PBCs, or for systems in the thermodynamic

limit, in which fields are assumed to vanish at the boundaries. Note that, while UInt. can be negative,

the sum USelf + UInt. is necessarily ≥ 0 as it arises from the term in |∇φ|2.

2.1.1.4 The Chemical Potential

The full chemical potential for the introduction of a charge corresponds to the energy required to

introduce each charge to the system, ignoring the Coulombic charge-charge interaction and harmonic

components of the internal energy of the electric fields. This energy is a combination of the self-energies

of the particles and a set of tuneable core energies. One may restrict to systems of certain charge species

via the addition of the core-energy component of the internal energy:

UCore :=
1

2

∑
m∈Z

nmεc(m)m2q2. (2.34)

Here, εc(m) is the core-energy constant of each charge mq, and εc(m) = εc(−m), since charges are

excited to the vacuum in neutral pairs. We extend the internal energy to include this term:

U := U0 + UCore = USelf + UInt. + UHarm. + UCore. (2.35)

This is the grand-canonical energy of the whole system, whereas U0 is the internal energy of the electric

fields only.

We define the chemical potential

µm := −
[
G(0)

ε0
+ εc(m)

]
m2q2

2
(2.36)

for the introduction of a charge mq, so that the grand-canonical energy U is now given by

U = −
∑
m∈Z

µmnm +
1

2ε0

∑
i6=j

qiG(xi,xj)qj +
ε0V

2
|Ē|2. (2.37)

One may then set infinite core energies for the addition of certain charge species such that the grand

potential Φ := U − TS diverges positively upon their addition, thereby inhibiting the existence of

the species. Note that U ≡ Ũ −∑m∈Z µmnm, where Ũ is the internal energy of electrostatics in the

canonical ensemble.

2.1.2 Two-dimensional Electrostatics

The Green’s function and the axioms of three-dimensional electrostatics are now applied to the two-

dimensional system.
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2.1.2.1 The Internal Energy and Gauss’ Law

The grand-canonical energy of a three-dimensional electrostatic system is given by

U =
ε0
2

∫
Ω
|E(x)|2d3x+ UCore, (2.38)

and the electric fields must adhere to Gauss’ law,

∇ ·E(x) = ρ(x)/ε0. (2.39)

These are the axioms of three-dimensional electrostatics, which we generalize to d-dimensional systems

and consider the d = 2 case, whose grand-canonical energy is given by

U =
ε0
2

∫
Ω
|E(x)|2d2x+ UCore, (2.40)

where the units of the electric field E and the electric permittivity of the vacuum ε0 in two spatial

dimensions are outlined in detail in Appendix A (for the lattice electric fields, but the units are identical

to the continuum system).

The two-dimensional Green’s function adheres to the two-dimensional analogue of Poisson’s equation.

Away from a single point charge positioned at the origin,

1

r

∂

∂r

(
r
∂

∂r
G(r,0)

)
= 0∀r 6= 0, (2.41)

where we have dropped any angular dependence as we have assumed rotational symmetry. This is

solved by

G(x,0) = B ln

∣∣∣∣ xr0

∣∣∣∣ ∀x 6= 0, (2.42)

where B and r0 are integration constants. We set B = −1/2π to satisfy Gauss’ law and generalize to

source charges at position x′:

G(x,x′) = − 1

2π
ln

∣∣∣∣x− x′

r0

∣∣∣∣ ∀x 6= x′. (2.43)

Eq. (2.37) then tells us that the grand-canonical energy for a system of electric charges in a two-

dimensional continuum is given by

U = −
∑
m∈Z

µmnm −
1

4πε0

∑
i6=j

qi ln

∣∣∣∣xi − xj
r0

∣∣∣∣ qj +
ε0A

2
|Ē|2, (2.44)

where A is the area of the two-dimensional system, and the chemical potentials µm and the core-energy

component of the grand-canonical energy UCore are both defined as in the three-dimensional case.
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2.1.2.2 Salzberg-Prager Theory

Two-dimensional electric charges are tightly bound in neutral pairs by their logarithmic interaction

potential: this gives rise to the BKT phase transition. In the context of the two-dimensional Coulomb

gas, this insulator-conductor transition was first discovered by Salzberg and Prager, who derived [1] an

equation of state for a simply connected, square, continuum system of linear size L that predates BKT

theory [2, 3]. Salzberg and Prager proceeded as follows.

From the expression for the grand-canonical energy of the system given by Eq. (2.44), one can transform

to the canonical ensemble (Ũ = U +
∑

m∈Z µmnm) in which charge-species number is fixed and write

the Salzberg-Prager partition function ZSP
Coul. as

ZSP
Coul. :=

∫
Dx eβ

∑
i6=j qiqj ln(|xi−xj |/r0)/4πε0 , (2.45)

where the contribution from the harmonic mode of the electric field is assumed to be vanishingly small.

This is a functional integral over all positions of all constituent charges, where the charge-species number

is fixed, and each charge configuration is assigned the Boltzmann weighting exp
[
−βŨ ({xi}, {nm})

]
(under the assumption of the vanishingly small contribution from the harmonic mode). Here, the

functional integral
∫
Dx is defined as

∫
Dx :=

∏
m∈Z

[
1

nm!

] n∏
i=1

[∫
Ω
d2xi

]
, (2.46)

where ∫
Ω
d2xi :=

∫ L

r0

dxi

∫ L

r0

dyi (2.47)

is the integral of the position of particle i over the area of the system. Here, r0 is the UV cut-off,

representing an effective radius of the particles.

In order to approximately isolate the system-size dependence of the partition function, Salzberg and

Prager defined the coordinate system

x′i := xi/L, (2.48)

and the measure ∫
Ω/L2

d2x′i :=

∫ 1

r0/L
dx′i

∫ 1

r0/L
dy′i, (2.49)
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so that the Salzberg-Prager partition function becomes

ZSP
Coul. =

∏
m∈Z

[
1

nm!

] n∏
i=1

[
L2

∫
Ω/L2

d2x′i

]
eβ

∑
i6=j qiqj ln(L|x′i−x′j |/r0)/4πε0

=L2n

∫
D̄x′eβ

∑
i6=j qiqj(ln(L)+ln(|x′i−x′j |/r0))/4πε0

=L2nLβ
∑
i6=j qiqj/4πε0Z∗Coul., (2.50)

where

Z∗Coul :=

∫
D̄x′eβ

∑
i6=j qiqj ln(|x′i−x′j |/r0))/4πε0 (2.51)

is the normalized Salzberg-Prager partition function, and the measure
∫
D̄x′ is defined via

∫
D̄x′ :=

∏
m∈Z

[
1

nm!

] n∏
i=1

[∫
Ω/L2

d2x′i

]
. (2.52)

The Salzberg-Prager free energy is then given by

F SP =− β−1 ln
(
Z∗Coul.A

n(1−βq2/8πε0)
)

(2.53)

for the neutral Coulomb gas of elementary charges, since
∑

i6=j qiqj = −nq2 in this case.

The pressure that the system exerts on its boundaries is defined by

p := −∂F
SP

∂A
. (2.54)

The normalized component of the partition function Z∗Coul., which contains all charge-screening infor-

mation, has a system-size dependence arising from the lower bound of its functional integral over charge

positions. To proceed, however, Salzberg and Prager assumed that the system-size dependence of Z∗Coul.

is negligible, which is a good approximation for large systems in the limit of low charge density, thereby

ignoring charge screening. The Salzberg-Prager equation of state for the non-screened, two-dimensional

Coulomb gas of elementary charges in the continuum vacuum is therefore given by

p =β−1 n

A

(
1− βq2/8πε0

)
, (2.55)

or

pA =nkBT

(
1− q2

8πε0kBT

)
. (2.56)

The above equation predicts that a two-dimensional Coulomb gas constrained to limitingly low charge
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density experiences a change from positive to negative pressure as it is cooled through the non-screened

BKT transition temperature,

T̄BKT =
q2

8πε0kB
. (2.57)

This is the BKT transition temperature for the Salzberg-Prager system: negative pressure is a charac-

teristic of charge confinement. Charge-screening corrections, however, lower this transition temperature

for the Coulomb gas of many charges. In the GCE, one is at liberty to tune the chemical potentials

by varying the core-energy constant of each charge species, which, in turn, controls the thermal av-

erage of the number of charges in the system. For the harmonic XY (HXY) model [20, 22], q = 2π

and the core-energy constant is intrinsically set to zero (this will be outlined in detail in Chapter 6,

where it will also be stated that non-elementary topological defects are not geometrically possible in

the XY models). The standard core-energy configuration of the Coulomb gas is therefore taken to be

{εc(m = 0,±1) = 0, εc(m 6= 0,±1) = ∞} with the elementary charge set to q = 2π: upon setting

ε0 = kB = 1, charge-screening corrections in this standard system then lower the bare, non-screened

transition temperature T̄BKT = π/2 to TBKT = 1.35 (to three significant figures) [29], which is the

standard BKT transition temperature for the Coulomb gas in the literature. Throughout this thesis,

this transition temperature is taken to be the BKT transition temperature for the Coulomb gas. It is

stressed here that the BKT transition is driven by a competition between confining energy and entropy,

and that its transition temperature is then lowered through charge screening. Note that the transition

temperature of the XY model is lowered further due to the anharmonic terms in the cosine interaction

potential.

Throughout the remainder of this thesis, we set ε0 = kB = 1 and q = 2π, but we may write each

quantity explicitly to help the reader in identifying units.

2.2 The Maggs-Rossetto Electrostatic Model: Background

The MR algorithm [24], formulated by Maggs and co-workers [24, 30–34], simulates the physics of

Coulombic interactions on a lattice via local electric-field updates, avoiding the need to treat com-

putationally intensive long-range interactions. Its corresponding model introduces a freely fluctuating

auxiliary field that is divergence free everywhere. This extends the electrostatic solution of Gauss’

law to the general solution and results in local field updates alone being sufficient for the system to

efficiently explore the Gibbs ensemble of the electrostatic problem. The validity of introducing the

auxiliary field is seen in the context of the separability of the partition function into its Coulombic and

auxiliary components: the auxiliary field contributes to the internal energy of the electric fields, but

is statistically independent of the Coulombic element. A similar lattice-field model was formulated by

Raghu et al. for the two-dimensional system [35].
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MR formulated their model in the three-dimensional continuum. The general solution to Gauss’ law is

given by

E(x) = −∇φ(x) + ∇×Q(x) + Ē, (2.58)

where Q is the auxiliary gauge field (∇×Q is the auxiliary field). Gauss’ law follows:

∇ ·E(x) = ρ(x)/ε0. (2.59)

+ 7−−−−−→ +
Eαβ Eαβ − q/ε0

Figure 2.1: A charge-hop update: The field bond connecting charge sites α and β is updated to mimic
a charge hopping from site α to β such that Gauss’ law is obeyed. This updates all degrees of freedom
of the field. The solid arrow represents the field flux flowing from site α to site β, with the thickness of
the arrow representing its relative magnitude; the curly, dashed arrow represents the charge hopping;
the white circle is an empty charge site; the red circle is a site occupied by a positive charge.

Using a lattice model, Maggs and co-workers initially consider the charge-hop updates depicted in Fig.

2.1. This first update alters the electric field to mimic a charge hopping between two lattice sites. They

suppose site α is initially occupied by a positive charge, and its neighbouring site β is initially an empty

charge site. When considering the new charge configuration in which the charge has moved to site

β, one attempts the electric-field update corresponding to Eαβ 7→ Eαβ − q/ε0 via standard sampling,

where Eαβ denotes the electric flux flowing from site α to site β. Gauss’ law is satisfied by the new

charge configuration, as required.

The charge-hop update alters all degrees of freedom of the field. Electrostatics, however, is described by

field configurations for which the auxiliary field is strictly zero, hence the algorithm explicitly samples

the auxiliary gauge field to improve efficiency. This involves randomly selecting a lattice plaquette and

proposing a rotation of the electric field around the plaquette such that the new field configuration

satisfies Gauss’ law and leaves the charge configuration unchanged, as shown in Fig. 2.2. Sampling a

suitable ratio of the two local field updates described here allows the system to reproduce Coulombic

physics.

The algorithm may also employ a global update of the harmonic mode of the electric field to improve

efficiency.
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1 2

3 4

1 2

3 4

E12

E34

E31 E42 7−−−−→

E12 + ∆

E34 −∆

E31 + ∆ E42 −∆

Figure 2.2: An update of the rotational degrees of freedom of the electric field: The flux is rotated
by an amount ∆ around a randomly-chosen lattice plaquette, leaving Gauss’ law satisfied. The black
arrow represents the flux flowing from site α to site β, with the thickness of the arrow representing its
relative magnitude; the blue arrow represents the direction of flux rotation; the grey circles represent
sites of arbitrary charge.

2.3 The Two-dimensional XY Model of Magnetism

The classical two-dimensional XY model of magnetism remains an area of active interest in condensed-

matter physics due in part to its experimental relevance outlined in Chapter 1 [5–21]. BKT showed [2, 3]

that the system is critical in the low-temperature phase but paramagnetic above the BKT transition

temperature. Villain proposed [23] an analytic approximation to the XY model that separates the roles

of spin vortices and spin waves, the latter of which dominate fluctuations in the critical phase. The

HXY model, a simplification of the Villain model that captures the physics of the BKT transition, was

later independently introduced by Vallat and Beck [22] and BH [20]. In this section, we review these

three models.

2.3.1 Physical Background

Magnetic systems can be modelled using spin models. Spin is a quantum-mechanical phenomenon that

causes certain particles to possess an intrinsic magnetic moment that cannot be explained by its orbital

angular momentum. In general, magnetic particles have both a spin and an orbital contribution to their

magnetic moment, but, for most purposes, the total moment can be represented by an effective spin

operator. For this reason, spin models can be used to describe real magnets, and magnetic moments

are often referred to as spins.

In materials, spins can interact with one another in a variety of different ways. One such interaction

is the exchange interaction, which causes interacting spins to either align or anti-align in the zero-

temperature state of the (non-frustrated) system in which all spins are correlated. A system in which

all the spins are aligned with one another gives rise to a macroscopic magnetization of the system: this
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is ferromagnetism (the ground state of a system whose spins anti-align is an antiferromagnet). As the

temperature of such a system is increased, thermal effects can dominate the exchange effects to destroy

the ferromagnetism, leaving the system in an uncorrelated, paramagnetic state.

At finite temperature, non-frustrated ferromagnetic spin systems that are dominated by exchange-

interaction effects can be modelled as systems of classical spins with a Hamiltonian given by

H = −J
∑
〈x,x′〉

s(x) · s(x′), (2.60)

where J > 0 is the exchange constant, s(x) is the spin vector at site x, and the sum is over nearest-

neighbour spin sites only, since nearest-neighbour effects are assumed to dominate.

The XY model of magnetism uses this Hamiltonian for planar spins on a two-dimensional lattice. Its

normalized spin field is given by

s(x) := (cos(ϕ(x)), sin(ϕ(x))), (2.61)

where ϕ is the phase of each spin, and is referred to as the spin at each lattice point (the spins are

represented by arrows in Fig. 2.3). The Hamiltonian of the XY model becomes

HXY = −J
∑
〈x,x′〉

cos(ϕ(x)− ϕ(x′)). (2.62)

This Hamiltonian is composed of two symmetries: one is the global U(1) symmetry, while the other

is the modular symmetry with respect to the set (−π, π] (with respect to each spin difference). An

XY-type spin model is any two-dimensional ferromagnetic model that possesses these two symmetries.

Fig. 2.3 shows a snapshot of a 20×20 XY model magnet. This particular spin configuration contains a

vortex – antivortex pair. Vortices are topological defects in the spin-difference field and approximately

behave as two-dimensional Coulombic charges. In Chapter 6, we will present an emergent electric field

description of XY-type spin models in which the topological defects are emergent electric charges and

the spin-wave fluctuations are emergent auxiliary-field fluctuations.

2.3.2 Continuum Approximation

To see the basis of the emergent electric charges, the continuum limit of the Taylor expansion of the

Hamiltonian up to second order is considered, ignoring the constant zeroth order term. This system is

described by the continuum, harmonic XY Hamiltonian:

HCont. =
J

2

∫
Ω
d2x |∇θ(x)|2 , (2.63)
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Figure 2.3: An example of an XY spin configuration. This configuration contains one pair of topolog-
ical defects, or vortices. The red circle is the positive vortex; the blue circle is the negative vortex.

where the gradient of the spin field ∇θ is subject to the constraint

∇θ(x) ∈ (−π, π] (2.64)

in order to take account of the modular symmetry of the real (lattice) Hamiltonian.
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The integral of ∇θ around any closed contour ∂Γ is given by 2πp:∮
∂Γ

∇θ(x) · dl(x) = 2πp (2.65)

where p = 0, ±1. Closed contours that return values of p = ±1 contain vortices: in Fig. 2.3, the

right-hand vortex (red circle) has p = 1 and the left-hand vortex (blue circle) has p = −1 (for contours

that only enclose the vortex in question). Ignoring spin-wave fluctuations, it follows that the energy of

an isolated vortex in this continuum formulation is given by

EVort. =
J

2

∫ 2π

0

∫ L

r0

∣∣∣p
r

∣∣∣2 rdrdφ
=πJ

∫ L

r0

dr

r

=πJ ln

(
L

r0

)
, (2.66)

where r0 := ae−γ/2
√

2 is now the UV lattice cut-off, representing an effective radius of the vortices.

This shows that the energy of an isolated vortex diverges logarithmically with the size of the system.

The entropy associated with an isolated vortex, however, is given by

SVort. = kB ln (N) , (2.67)

where N is the number of lattice sites (N will also be the number of charge-lattice sites of the lattice

Coulomb gas). It follows that the free energy associated with an isolated vortex diverges negatively

with the system size at temperatures above [2, 3]

T̄BKT =
πJ

2kB
, (2.68)

the non-screened BKT transition temperature for the system. In the thermodynamic limit, an isolated

vortex is equivalent to a neutral pair of deconfined vortices, from which it follows that the contin-

uum, harmonic XY model also admits a BKT transition. As explained in Section 2.1.2.2, this bare,

non-screened BKT transition temperature for the continuum, harmonic XY model is reduced through

screening corrections. In Chapter 6, we will see that Villain’s approximation to the XY model [23] maps

on to the lattice Coulomb gas with a vacuum permittivity given by the inverse exchange constant, hence

the equivalence of this bare transition temperature and that derived in Section 2.1.2.2.

Throughout the remainder of this thesis, we set J = 1, but we may write this quantity explicitly to

help the reader in identifying units.
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2.3.3 The Villain Model

Villain introduced the Villain model [23] to approximate the XY model with an analytically tractable

partition function. José et al. provide a useful discussion on the validity of the approximation [4]. The

model uses a set of modular variables {s(x,x′) ∈ Z}, which exist between each lattice site, to mimic

the modular symmetry of the XY model. Its partition function is given by

ZVillain =
∑

{s(x,x′)∈Z}

∫
D̄ϕ exp

−βJ
2

∑
〈x,x′〉

|ϕ(x)− ϕ(x′) + 2πs(x,x′)|2
 , (2.69)

where the functional integral
∫
D̄ϕ is defined via∫

D̄ϕ :=
∏

x∈D′

[∫ π

−π
dϕ(x)

]
, (2.70)

and D′ is the set of all spin lattice sites. In this model, the modular s variables are not defined by the

spin variables ϕ: topological defects are therefore not topological defects in the spin-difference field,

in contrast with the XY model. In Chapter 6, however, we will see that the topological defects are

topological defects in the emergent electric field. The Villain model is also used to model the physics

of superfluid films [9–12], where the spin variables ϕ become the phase of the condensate wavefunction:

when the phases at all sites are correlated, the system is in its superfluid state in which it behaves as

one body.

2.3.4 The 2dHXY Model

The harmonic XY (HXY) model is a model of two-dimensional magnetism that is very similar to

the Villain model. Its modular variables, however, are now functions of the spin variables, rather

than an independently sampled set. This offers a closely related but much simplified algorithm. Its

partition function is given by Eq. (2.69) without the sum over the set {s}. In the HXY model,

the s variables are defined via the associated spin difference: s(x,x′) ∈ {0,±1} is chosen such that

ϕ(x) − ϕ(x′) + 2πs(x,x′) ∈ (−π, π]. This instills the modular symmetry required in XY-type spin

models, but the spin variables now define the modular variables. It follows that the topological defects

of this model are topological defects in both the spin-difference and emergent fields. As in the XY

model, we refer to these topological defects as vortices, because they are topological defects in the

spin-difference field of the model.
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2.3.5 Spin-wave Magnetization

In this subsection, the spin-wave analysis of the magnetization of the Villain model [36] is reviewed.

Spin-wave analysis amounts to ignoring the modular term in the partition function of the Villain

model: this removes all topological defects from the system, thereby disallowing the BKT transition.

This analysis will help us to understand the effect of topological defects and the BKT transition on

XY-type spin models. The Villain model with the modular symmetry removed is referred to as the

harmonic model.

2.3.5.1 Instantaneous Magnetization: Definition

To begin, the average instantaneous magnetization direction ϕ̄ is defined by

ϕ̄ :=
1

N

∑
x∈D′

ϕ(x), (2.71)

where the instantaneous magnetization m is defined via

m :=
1

N

∑
x∈D′

cos(ϕ(x)− ϕ̄). (2.72)

The field ψ(x) := ϕ(x)− ϕ̄ is defined to be the deviation from the average instantaneous magnetization

at each spin site. As shown in Appendix B, the magnetization is related to ψ by [37]

〈m〉 = exp

[(
−1

2
〈ψ2(0)〉

)]
. (2.73)

2.3.5.2 Spin-spin Correlation Functions

In order to proceed from the above equation, we must find an expression for the spin-spin correlation

function 〈ϕ(x)ϕ(x′)〉, which describes the correlations between the spins at spin sites x and x′. The

partition function of the harmonic model is given by

ZSW =

∫
D̄ϕ exp (−βHSW) , (2.74)

where

HSW :=
J

2

∑
〈x,x′〉

(ϕ(x)− ϕ(x′))2 (2.75)

is the harmonic (spin-wave) Hamiltonian.
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We define the Fourier-transform pair

ϕ(x) :=
1

N

∑
k∈B

eik·xφ(k); φ(k) :=
∑
x∈D′

e−ik·xϕ(x), (2.76)

and consider

(ϕ(x)− ϕ(x′))2 =
1

N2

∑
k,k′∈B

eik·xeik
′·x(1− e−ik·(x−x′))(1− e−ik′·(x−x′))φ(k)φ(k′), (2.77)

where the sum
∑

k∈B :=
∏
µ∈{x,y}

[∑
kµ∈Bµ

]
, and Bµ := {0,± 2π

Nµa
,±2 2π

Nµa
, · · · ,±(

Nµ
2 − 1) 2π

Nµa
,
Nµ
2

2π
Nµa
}

is the set of k-space values in the µ direction. Note that the sum over nearest neighbours is given by

∑
〈x,x′〉

≡
∑

δ∈NNx

∑
x∈D′

, (2.78)

where the set NNx := {x + aex, x + aey} is the set of the nearest neighbours of x in the positive

directions. It follows that

∑
〈x,x′〉

(ϕ(x)− ϕ(x′))2 =
1

N2

∑
δ∈NNx

∑
k,k′∈B

(1− eik·δ)(1− eik′·δ)
∑
x

ei(k+k′)·xφ(k)φ(k′) (2.79)

=
1

N

∑
δ∈NNx

∑
k∈B

(1− eik·δ)(1− e−ik·δ)φ(k)φ(−k) (2.80)

=
1

N

∑
k∈B

∑
δ

(2− eik·δ − e−ik·δ)|φ(k)|2 (2.81)

=
∑
k∈B

γ̃k|φ(k)|2, (2.82)

where

γ̃k :=
2

N
(2− cos(kxa)− cos(kya)). (2.83)

Hence,

βHSW =
βJ

2

∑
x,x′∈D′

ϕ(x)G̃(x,x′)ϕ(x′), (2.84)

where

G̃(x,x′) :=
∑
k∈B

γ̃ke
−ik·(x−x′) (2.85)

is the spin-wave propagator. This leaves us with a Hamiltonian that goes like a double summation over

the whole lattice, rather than a sum over nearest-neighbour lattice sites.
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For ease of notation, we define the spin column vector ϕ,

ϕ :=


ϕ(x1)

...

ϕ(xN )

 , (2.86)

and the spin-wave propagator matrix A,

A := βJ


G̃(x1,x1) . . . G̃(x1,xN )

...
. . .

...

G̃(xN ,x1) . . . G̃(xN ,xN )

 . (2.87)

The partition function is now given by

ZSW =

∫
Dϕ exp

(
−1

2
ϕTAϕ

)
. (2.88)

We can now write the spin-wave thermal average of some scalar function of the spin variables f(ϕ) as

〈f(ϕ)〉SW :=
1

ZSW

∫
D̄ϕf(ϕ) exp (−βHSW) (2.89)

=
1

ZSW

∫
D̄ϕf(ϕ) exp

(
−1

2
ϕTAϕ

)
(2.90)

=
1

ZSW

∫
D̄ϕf

(
− δ

δb

)
exp

(
−1

2
ϕTAϕ− bTϕ

)∣∣∣∣
b=0

(2.91)

=
1

ZSW
f

(
− δ

δb

)∫
D̄ϕ exp

(
−1

2
ϕTAϕ− bTϕ

)∣∣∣∣
b=0

(2.92)

=
(2π)N/2

ZSW

√
det A

f

(
− δ

δb

)
exp

(
1

2
bTA−1b

)∣∣∣∣
b=0

, (2.93)

which we combine with the definition ∂i := ∂/∂bi to write

〈ϕµϕν〉SW =
(2π)N/2

ZSW

√
det A

∂µ∂ν exp

(
1

2
bαA

−1
αβbβ

)∣∣∣∣
b=0

, (2.94)

where repeated Greek indices are summed over. We compute the derivatives:

∂µ∂ν exp

(
1

2
bαA

−1
αβbβ

)∣∣∣∣
b=0

=
1

2

(
A−1
µν +A−1

νµ

)
exp

(
1

2
bρA

−1
ρσ bσ

)∣∣∣∣
b=0

. (2.95)

It follows that

〈ϕ2(0)〉SW = A−1
00 . (2.96)
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2.3.5.3 The Inverse Propagator

To compute the spin-wave magnetization (the magnetization of the harmonic model), we must now find

an expression for the inverse propagator A−1
ij . We require that

[
A−1A

]
ij

= δij , (2.97)

which is solved by

A−1
ij =

1

βJ

∑
k∈B

γke
ik·(xi−xj), (2.98)

where

γk :=
1

2N(2− cos(kxa)− cos(kya))
, (2.99)

and γk=0 ∈ R which we choose to be zero (this is known to be valid from simulation [19, 20]). We are

left with

A−1
ij =

1

βJ

∑
k6=0

eik·(xi−xj)

2N(2− cos(kxa)− cos(kya))
, (2.100)

and we may now write

〈ϕ2(0)〉SW =
1

K
G(0) (2.101)

where K := βJ is the spin stiffness, G is the Green’s functions of the two-dimensional lattice Coulomb

gas,

G(x,x′) =
1

2N

∑
k6=0

eik·(x−x′)

2− cos(kxa)− cos(kya)
, (2.102)

and

G(x) := G(x,0). (2.103)

2.3.5.4 Instantaneous Magnetization: Final Expression

To convert this working to the expression for the spin-wave magnetization, we must now compute the

quantity

〈ψ(x)ψ(x′)〉 = 〈ϕ(x)ϕ(x′)〉 − 〈ϕ(x)ϕ̄〉 − 〈ϕ(x′)ϕ̄〉+ 〈ϕ̄ϕ̄〉. (2.104)
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As shown in Appendix B, the final three terms of the above expression are zero, hence

〈ψ(x)ψ(x′)〉 = 〈ϕ(x)ϕ(x′)〉. (2.105)

Using the Abel-Plana formula,

G(0) =
1

4π
ln(cN), (2.106)

hence,

〈ψ2(0)〉SW =
1

4πK
ln(cN), (2.107)

and the spin-wave magnetization is therefore given by [37]

〈m〉SW =

(
1

cN

)1/8πK

. (2.108)

Eq. (2.108) describes the magnetization for a planar ferromagnet that comprises of N harmonically

coupled spins: this is known as the spin-wave magnetization of a general planar ferromagnet with XY

symmetry. At finite temperatures (T 6= 0), this object is zero in the thermodynamic limit: XY-type spin

models cannot sustain long-range order in the thermodynamic limit, even in the absence of topological

defects [25]. The magnetization of the finite-size system is, however, known to be both measurable [21]

and extremely important to the critical theory of the system [19, 20]. This is due to Eq. (2.108)

approaching the thermodynamic limit so slowly that a ferromagnetic film the size of the state of Texas

would have a finite-size magnetization [19]. In the above working, c = 1.8456.

Fig. 2.4 shows the magnetization of XY and HXY models of 104 spins with the spin-wave magnetization

curve superimposed. Both data sets show that the finite-size system can sustain long-range order,

and also agree with the spin-wave magnetization at low temperature. The deviation from the spin-

wave magnetization for the HXY model is due to the appearance of topological defects and the BKT

transition: this is unsurprising, since the Villain and HXY models are equivalent when topological

defects are not present. The XY data deviates at a lower temperature at which topological defects are

not present because the anharmonic terms in the cosine potential suppress the magnetization.

2.3.6 Helicity Moduli

In the XY and HXY models, the helicity modulus Υ is proportional to the second derivative of the

free energy F of the system with respect to the longest-wavelength twist possible in either component

of the spin field, with the twist length taken continuously to infinity. The helicity modulus therefore

measures the response of the system in question to the long-wavelength twist being externally applied.
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Figure 2.4: (Ref. [20]) The magnetization of the HXY (filled circles) and XY (empty circles) models
for square lattices of 104 spins. The dashed curve is the spin-wave magnetization of Eq. (2.108). The
deviation from the spin-wave magnetization for the HXY model is due to the appearance of topological
defects: this is unsurprising, since the Villain and HXY models are equivalent when topological defects
are not present. The XY data deviates at a lower temperature where topological defects are not present:
this is due to the anharmonic terms in the cosine potential suppressing the magnetization. The arrows
represent the transition temperature outlined in Section 2.5.2. The solid line represents the BH scaling
of each system, as outlined in Section 2.5.

The twist is equivalent to adding

k0 :=
2πa

L
, (2.109)

to each nearest-neighbour spin difference, where L is the linear system size: taking the twist length to

infinity is therefore equivalent to taking the thermodynamic limit.

The helicity modulus of the Villain model is not measured with a twist, since the modular variables are

not defined by the spin variables. Here, k0 is just added to each ϕ(x)−ϕ(x′) + 2πs(x,x′) in Eq. (2.69).
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In fact, the helicity modulus of each XY-type spin model is equivalent to performing this perturbation,

but the mechanics of the HXY and XY models means that this perturbation is controlled by a twist in

the spin field. This will be outlined in detail in Chapter 6.

Figure 2.5: (Ref. [38]) The finite-size helicity modulus Υ̃ of the two-dimensional XY model as a
function of T for various system sizes. The helicity modulus is clearly tending towards zero in the
high-temperature phase and to a finite value in the low-temperature phase.

For the general XY-type spin model, the helicity modulus is defined by

Υ(T ) :=
1

N

∂2F (A, T, k0)

∂k2
0

∣∣∣∣
k0→0

, (2.110)

where F (A, T, k0) is the free energy of the system under the influence of the perturbation k0. Since

taking the twist length to infinity (in the XY and HXY models) is equivalent to taking the thermo-

dynamic limit, this measure is only truly defined in the thermodynamic limit. The resultant helicity

modulus, however, turns out to be measurable in finite-size systems, so we introduce the finite-size

helicity modulus Υ̃, which is a function of both system size and temperature.
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Following analogous working to that presented in Section 3.4, it follows that the finite-size helicity

modulus of the XY model is given by

Υ̃(N,T ) = 〈e〉 −Nβ〈j2〉, (2.111)

where

e :=
J

N

∑
〈x,x′〉i

cos(ϕ(x)− ϕ(x′)), (2.112)

and

j :=
J

N

∑
〈x,x′〉i

sin(ϕ(x)− ϕ(x′)), (2.113)

with
∑
〈x,x′〉i denoting a sum over nearest-neighbour spins in the i direction.

Similarly, for the HXY and Villain models, the finite-size helicity modulus is given by

Υ̃(N,T ) = J

1− βJ

N
〈

 ∑
〈x,x′〉i

(
ϕ(x)− ϕ(x′) + 2πs(x,x′)

)2

〉

 . (2.114)

Minnhagen and Kim [38] performed extensive Monte Carlo simulations of the XY model and measured

the helicity modulus for systems of linear size L = 4 to 64, as shown in Fig. 2.5. As seen in the figure,

increasing system size shows that this quantity is zero in the high-temperature phase, above the BKT

transition. Note that a phase is only defined in the thermodynamic limit.

In order to model the deviation of an XY-type spin stiffness from harmonic spin-wave behaviour, one

can define the effective partition function:

Zeff.(L, T ) :=

∫
D̄ϕ exp

−K̃eff.(L, T )

2

∑
〈x,x′〉

(
ϕ(x)− ϕ(x′)

)2 . (2.115)

This is the harmonic partition function with the spin stiffness K replaced with the finite-size effective

spin stiffness K̃eff.. Upon identifying the partition function of the XY-type spin model in question with

Zeff., it follows that (K̃eff.(L, T )−K(T )) then has the effect of measuring the deviation of the system in

question from harmonic spin-wave behaviour. K̃eff. therefore takes on the role of the finite-size effective

spin stiffness and it follows that

β

N

∂2F (A, T, k0)

∂2k0

∣∣∣∣
k0→0

= lim
L→∞

[
K̃eff.(L, T )

]
=: Keff.(T ), (2.116)
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Figure 2.6: (Ref. [38]) The finite-size fourth-order cumulant Υ̃4 of the two-dimensional XY model as
a function of T for various system sizes. As system size increases, the centres of the wells of the curves
move closer to T = TBKT (where TBKT is the renormalized BKT transition temperature for the system):
a finite-size scaling of the data (shown in the inset) reveals a well of finite depth in the thermodynamic
limit. A combination of a well of finite depth and a zero-valued helicity modulus Υ at TBKT is reconciled
by a discontinuous jump to zero in the helicity modulus at TBKT.

where Keff. is the thermodynamic limit of the effective spin stiffness, which is the effective spin stiffness

that is standard in the literature (since the majority of the literature on XY-type spin models is in the

thermodynamic limit). Combining Eqs. (2.110) and (2.116), one finds that the effective spin stiffness

is closely related to the helicity modulus in the thermodynamic limit:

Keff.(T ) = βΥ(T ). (2.117)

In the thermodynamic limit, all systems are predicted to experience a universal jump in their effective

spin stiffness (and therefore in their helicity moduli) as they pass through their BKT transition tem-

peratures from below [2–4, 22, 38, 39]: at these transition temperatures, the effective spin stiffness of

each system jumps discontinuously from 2/π to zero [4, 22, 38, 39]. The significance of the value 2/π

will become clear in Section 3.32.
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The universal jump is consistent with the data in Fig. 2.5 that shows that the helicity modulus is

finite in the low-temperature phase of the BKT transition and zero in the high-temperature phase. To

confirm the discontinuous nature of the universal jump, Minnhagen and Kim [38] performed a finite-size

scaling analysis on the higher-order cumulant Υ4, defined by

Υ4(T ) :=
1

N2

∂4F (A, T, k0)

∂4k0

∣∣∣∣
k0→0

(2.118)

in the thermodynamic limit. It is again generalized to the finite-size system by introducing the finite-size

cumulant Υ̃4.

Minnhagen and Kim [38] use the argument that for a system with a finite twist the free energy of the

system can be written as an expansion in small k0:

F (L, T, k0) = Υ̃(L, T )
k2

0

2!
+ Υ̃4(L, T )

k4
0

4!
+ . . . , (2.119)

and that F (L, T, k0 = 0) ≤ F (L, T, k0). This means that Υ ≥ 0 because the lowest-order non-vanishing

derivative of the free energy will always dominate for small enough k0. It also implies that, for the

helicity modulus to be continuous everywhere, the next-order derivative Υ4 has to be ≥ 0 at any T

where Υ(T ) = 0. Their argument was then the observation that Υ cannot continuously tend to zero at

the transition temperature TBKT if Υ4 simultaneously approaches a non-zero negative value at TBKT.

But, since Υ is zero in the high-temperature phase, this means that, if Υ̃4 approaches a negative value

at TBKT in the thermodynamic limit, then the jump has to be discontinuous.

The depth of the well in Fig. 2.6 scales to a finite value in the thermodynamic limit, implying that Υ4

takes a non-zero negative value at T = TBKT, and hence that Υ experiences a discontinuous jump at

the BKT transition temperature TBKT. This discontinuous jump is a signature of BKT physics.

2.4 The Berezinskii-Kosterlitz-Thouless Transition

The destruction of the magnetization of the finite-size XY-type spin models shown in Fig. 2.4 is due

to (the finite-size analogue of) the BKT phase transition. The BKT transition governs the thermal

dissociation of topological-defect pairs that are bound together by a logarithmic interaction potential.

As previously discussed, these pairs correspond to topological defects in the electric field of the two-

dimensional Coulomb gas and to topological defects in the spin fields of the XY and HXY models of

ferromagnetic films, along with defect pairs in many other condensed-matter systems. The background

theory of the transition is provided here because the reader has now been presented with a couple of

basic arguments regarding the existence of the transition.
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BKT introduced the concept of quasi-long-range order and a phase transition in the two-dimensional

XY model [2, 3]. Topological order corresponds to topological defects in the XY model being tightly

bound in neutral pairs in the low-temperature phase of the transition by the diverging, logarithmic

energy barrier presented in Section 2.3.2. As discussed in Section 2.1.2.2 in the context of the two-

dimensional Coulomb gas, the phase transition is a result of entropy reducing the free-energy barrier

to deconfined charge to a finite value.

Kosterlitz [39] and José et al. [4, 40] presented extensive renormalization group (RG) analysis of the two-

dimensional XY model to show that XY-type spin models obey the RG equation for the renormalized

spin stiffness KRG:

K−1
RG = K−1 + 4π2y2

∫ ∞
r0

dr

r0

(
r

r0

)3−2πKRG

(2.120)

in the thermodynamic limit and for KRG > 2/π, where y := 4πKτ2 and τ is the renormalized lattice

spacing.

The above equation diverges as KRG approaches 2/π from the low-temperature phase: this corresponds

to the system reaching the topological-defect critical point, the point at which the spin-spin correlation

length diverges with the system size (when approached from the high-temperature phase), and implies

a universal jump from 2/π to zero.

The universal jump in KRG is the same universal jump that occurs in the effective spin stiffness in the

thermodynamic limit Keff., hence the finite-size scaling analysis of Minnhagen and Kim [38] shows the

RG analysis of Kosterlitz [39] and José et al. [4] to be correct.

Tobochnik and Chester [41] fitted BKT theory to their simulation data of the two-dimensional XY model

to find the topological-defect critical point at TXY
BKT ' 0.89. This was followed by the transfer-matrix

approach of Mattis [42] who found that TXY
BKT ' 0.883. Weber and Minnhagen [43] then performed a

finite-size scaling analysis of the system to find that TXY
BKT = 0.887 up to an error of the order of a

tenth of a percent. This final value is taken to be the renormalized BKT transition temperature of the

two-dimensional XY model and is the value used in the finite-size scaling analysis of Minnhagen and

Kim [38].

A simulation of the Villain model was performed by Janke and Nather [29] to find that the renormalized

BKT transition temperature of the Villain system is TBKT ' 1.35 (to three significant figures). This

is also taken to be the BKT transition temperature for the HXY model due to their similarity at

low topological-defect density. The Villain model allows the excitation of non-elementary topological

defects: these defects, however, do not alter the transition temperature from that of the Villain model

restricted to elementary defects, since the self energies of the non-elementary defects are large enough

that the thermal average of their densities are negligibly low at T = 1.35.
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Lapilli et al. [44] listed three criteria to which systems must adhere in order to be classified as BKT

systems: (i) the universal jump in βΥ in the thermodynamic limit [9]; (ii) an exponentially diverging,

high-temperature spin-spin correlation length: ζ ∼ exp
(
c′/|T − TBKT|1/2

)
(where c′ is a constant) [39];

(iii) exponents η(T ) = 1/2πKeff.(T ) → 1/4 at T = TBKT (from the low-temperature phase) [39] and

β̃ = 3π2/128 at T = TBKT [19] (the latter of which is an effective critical exponent, and is covered in

the next section).

2.5 Bramwell-Holdsworth Theory

The spin-wave magnetization described by Eq. (2.108) approaches zero slowly as the system size ap-

proaches the thermodynamic limit, so that finite-size effects remain extremely important in surprisingly

large systems, where the magnetization is known to be measurable [21]. As shown by Fig. 2.3, the

introduction of topological defects to the system should affect this experimentally measurable finite-size

magnetization.

Bramwell-Holdsworth (BH) theory applies the RG equations derived by Kosterlitz [39] for the XY

model to the finite-size system to find a universal effective critical exponent at the topological-defect

critical point (where the unbinding of topological defects drives the transition) for XY-type spin models.

Clearly, this can only be achieved for systems of finite magnetization: this prediction and measurement

is a key step towards the understanding of the importance of finite-size effects in magnetic films with

XY symmetry. The exponent will be introduced once the basis of the theory has been outlined. We

stress here that the exponent is perfectly well defined in the thermodynamic limit, which is taken once

the finite-size analysis has been performed.

2.5.1 Renormalization Group Equations

Kosterlitz derived [39] the following RG equation for large lattice systems:

af
ai

= exp

[
1√

c′(T − TBKT)

(
tan−1

(√
c′(T − TBKT)

xf

)
− tan−1

(√
c′(T − TBKT)

xi

))]
, (2.121)

where he used the continuum XY Hamiltonian, which is a good approximation to large lattice systems,

and where c′ is a constant, ai and af are the initial and final values of the renormalized lattice spacing

a, and xi and xf are the initial and final values of the renormalized deviation from πKeff. − 2 = 0, x,

defined via

x := πKeff. − 2. (2.122)
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Here, BH use a measuring system in which T is measured in units of J/kB, hence the (T − TBKT) /TBKT

term that Kosterlitz [39] has in his RG equation becomes T − TBKT in Eq. (2.121).

This RG flow is towards the point where x = 0, hence xi > xf . It follows that, for af � ai (topological-

defect critical point),

af
ai
' exp

[
1√

c′(T − TBKT)
tan−1

(√
c′(T − TBKT)

xf

)]
, (2.123)

since the first term of Eq. (2.121) dominates. This corresponds to

xf '
√
c′(T − TBKT)

tan
(√

c′(T − TBKT) ln(af/ai)
) (2.124)

near the topological-defect critical point.

2.5.2 Finite-size Transition Temperatures

In the thermodynamic limit, BKT systems undergo a transition at the BKT transition temperature

TBKT. In finite-size systems, however, the transition occurs over a temperature range of finite width

that is bounded by the two finite-size transition temperatures of the BKT transition. BH defined these

temperatures to be T ∗(L) (lower bound) and TC(L) (upper bound). The three transition temperatures

then satisfy the double inequality,

TBKT ≤ T ∗(L) ≤ TC(L), (2.125)

where both inequalities become equalities in the thermodynamic limit.

The lower of the two finite-size transition temperatures T ∗(L) is the temperature at which the effective

spin stiffness equals 2/π, since this is equivalent to approaching the universal jump [4, 39] in the

thermodynamic limit from below.

The RG equations used in the thermodynamic limit are for x ≥ 0, which is equivalent to approaching the

transition from below. T ∗(L) therefore has to correspond to the topological-defect critical point of the

RG equations, or, equivalently, to the temperature at which xf = 0 in Eq. (2.124). This cannot occur

for a zero-valued numerator in Eq. (2.124) because this possibility has been cut off by the finite-size

system. Hence,

0 '
√
c′(T ∗(L)− TBKT)

tan
(√

c′(T ∗(L)− TBKT) ln(k1L)
) , (2.126)
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where k1 is a constant of order unity (introduced because af/ai ∼ L for the finite-size system), can

only correspond to a divergent denominator, which is satisfied by

π

2
'
√
c′(T ∗(L)− TBKT) ln(k1L), (2.127)

or, equivalently, by

T ∗(L) ' TBKT +
π2

4c′ ln2(k1L)
. (2.128)

The arrows on Fig. 2.4 mark T ∗(L) for the XY and HXY models consisting of 104 spins.

The higher of the two finite-size transition temperatures TC(L) corresponds to the finite-size analogue

of the temperature at which the transition into the high-temperature phase is complete. One would

therefore assume that this corresponds to the lowest temperature at which Keff. = 0. BH, however,

noted that a measure of TC(L) via the correlation length of the system ζ is more suitable, since this

allows the system size to be taken into account. BH therefore set TC(L) to be the temperature at which

the correlation length decreases to the linear system size (when TC(L) is approached from below).

Kosterlitz defined the correlation length of the system ζ to be the smallest value of af/ai at which

there is a significant deviation from fixed-point behaviour in the RG equations. BH used this to set the

correlation length ζ equal to af/ai when the argument of the tangent in Eq. (2.124) is approximately

π. It follows that

ζ ' exp

(
π√

c′(T − TBKT)

)
. (2.129)

BH then noted that the correlation length decreasing to the system size corresponds to ζ ∼ L, or to

ζ = k1L (the constant k1 of T ∗(L) appears here because Eq. (2.124) is used again: it is approximated

to diverge in this case). Hence,

k1L ' exp

(
π√

c′(TC(L)− TBKT)

)
, (2.130)

which results in

TC(L) ' TBKT +
π2

c′ ln2(Lk1)
. (2.131)
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Combining Eqs. (2.128) and (2.131), BH approximated the width of the transition temperature range

to be

TC(L)− T ∗(L) ' 3π2

4c′ ln2(Lk1)
. (2.132)

2.5.3 The Critical Exponent

The effective critical exponent β̃ relates the reduced temperature t := TC(L)−T and the magnetization

of the system near the critical point:

〈m〉 ∼ tβ̃ (2.133)

in the vicinity of T ∗(L). It follows that

β̃ =
∂ ln〈m〉
∂ ln t

(2.134)

in the vicinity of T ∗(L). It is this exponent for which BH found a universal law at T = T ∗(L): the law

occurs away from the temperature from which the temperature T is reduced (TC(L)).

BH then adapt the spin-wave magnetization given by Eq. (2.108) to make the following ansatz:

〈m〉 =

(
1

cN

)1/8πKeff.(T )

(2.135)

for T ≤ T ∗(L). Eq. (2.122) then leads us to

β̃ = ln(cN)
t

8(2 + x)2

∂x

∂t
. (2.136)

Near the topological-defect critical point, it follows that

∂x

∂t
= −1

2

√
c′

T − TBKT

1

tan
(√

c′(T − TBKT) ln(k1L)
)

+
c′

2
ln(k1L)

1 +
1

tan2
(√

c′(T − TBKT) ln(k1L)
)
 . (2.137)

The divergent denominator that leads to Eq. (2.128) also leads to

∂x

∂t

∣∣∣∣
T=T ∗(L)

' c′

2
ln(k1L). (2.138)
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Defining β̃∗ := β̃
∣∣∣
T=T ∗(L)

to be the critical exponent at T = T ∗(L), it follows that

β̃∗ ' ln(cN)
TC(L)− T ∗(L)

8. 22

c′

2
ln(k1L) (2.139)

=
c′

64
(TC(L)− T ∗(L)) ln(cN) ln(k1L) (2.140)

' c
′

64

3π2

4c′ ln2(k1L)
ln(cN) ln(k1L) (2.141)

=
3π2

256

ln(cN)

ln(k1L)
(2.142)

=
3π2

128

ln(k2L)

ln(k1L)
(2.143)

=
3π2

128

1 + ln(k2)/ ln(L)

1 + ln(k1)/ ln(L)
, (2.144)

where Eq. (2.132) is used in the third line, and k2 :=
√
c. In the thermodynamic limit, the effective

critical exponent β̃ therefore takes a universal value at T = TBKT:

β̃∗ =
3π2

128
. (2.145)

The thermodynamic limit taken here is perfectly well defined because the derivative of the finite-size

magnetization is computed before the limit is taken.

The signature of BH theory given by Eq. (2.145) is expected to apply to large but finite-size systems

(since ln(k1), ln(k2) � ln(L) for large L) [19]. BH numerically tested the application of their theory

to finite-size systems: Fig. 2.7 shows log10〈m〉 versus log10(TC(L) − T ) for XY models consisting of

N = 1024 spins (circles) and N = 104 spins (triangles) [19]. Curves corresponding to Eq. (2.133)

with β̃ = 3π2/128 have been superimposed on the data, showing the theory to apply to the system

sizes presented. Here, BH set T ∗(L) to be the temperature at which 〈m〉 = (1/cN)1/16, since this

corresponds to the effective spin stiffness Keff. being 2/π. TC(L) is then set using the relationship that

follows from combining Eqs. (2.128) and (2.131):

4 (T ∗(L)− TBKT) = TC(L)− TBKT. (2.146)

This result has been commonly used by experimentalists to explain the fact that magnetic films and

layers with XY symmetry invariably show a magnetization with an effective critical exponent given

by β̃∗ = 3π2/128. A literature survey was performed by Taroni et al. [21] in which they categorize

the critical exponents of a wide variety of magnetic systems: they find that an extensive number of

layered [45–52] and thin-film [53–57] magnets display this signature of BH theory.
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Figure 2.7: (Ref. [19]) log10〈m〉 versus log10(TC(L)− T ) for XY models consisting of N = 1024 spins
(circles) and N = 104 spins (triangles). The filled points correspond to the theoretical T ∗(L) of each
system size. Curves corresponding to Eq. (2.133) with β̃ = 3π2/128 have been superimposed on the
data.



Chapter 3

Classical Electrostatics on a Lattice

In this chapter, the standard theory of two-dimensional lattice electrostatics is reformulated in a repre-

sentation suitable for the thesis. To do this, the axioms of continuum electrostatics that were derived

in Chapter 2 are rewritten in terms of discrete mathematics. This will be followed with an analysis

of the harmonic mode of the electric field, the lattice partition function, and then the lattice Green’s

function and the chemical potentials.

3.1 Axioms and Notation

All lattice physics will be based upon functions being defined to be the discrete counterparts of smooth

vector fields, any lattice vector field F will be defined [58] component-wise via

F(x) := Fx

(
x +

a

2
ex

)
ex + Fy

(
x +

a

2
ey

)
ey, (3.1)

where x is a lattice point of the lattice D and ex/y is the unit vector in the x/y direction, and the

functional integral
∫
DF of any lattice vector field F will be defined via∫

DF :=
∏
x∈D

[∫
R
dFx(x)

∫
R
dFy(x)

]
. (3.2)

All functions will be redefined as the lattice counterparts of their original continuum formulation, where

applicable.

The grand-canonical energy of the two-dimensional lattice system is given by

U =
ε0a

2

2

∑
x∈D
|E(x)|2 + UCore, (3.3)

50
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where D is the set of all charge lattice sites and a is the lattice spacing: the a2 term gives the base

element of area of the lattice system.

Introducing ∇̃ and ∇̂ as the forwards and backwards finite-difference operators [58], respectively, Gauss’

law on a lattice becomes

∇̂ ·E(x) = ρ(x)/ε0, (3.4)

where ρ(x) := qm(x)/a2 is the charge density at x. In analogy with the functional analysis outlined in

Section 2.1.1.2, it then follows that the electrostatic solution to this equation is given by

E(x) = −∇̃φ(x) + Ē. (3.5)

Upon defining ∇2f(x) := ∇̂ ·∇̃f(x) as the lattice Laplacian [58] acting on some general scalar function

f , Poisson’s equation on a lattice follows:

∇2φ(x) = −ρ(x)/ε0. (3.6)

3.2 Polarization

The harmonic mode of the electric field contains two components: one describes the polarization of

the system, while the other corresponds to the winding of charges around the torus. We note that,

while there are no charge dynamics in electrostatics, certain electrostatic field configurations are the

field configurations that would be left behind if a charge were to wind around the torus with a true

dynamics: sampling electrostatic field configurations using the Gibbs ensemble leads to thermal averages

from which one can infer an effective time average of charge-winding dynamics, hence, we refer to charge

windings throughout. We now analyse the harmonic mode of the electric field by employing Gauss’ law

over subsets of the system.

In order to analyse the harmonic mode, we consider the sum of each component of the electric field over

the entire lattice. We split the sum of the x/y-component into separate sums over all x/y-components

that enter a particular strip of plaquettes of width a that wrap around the torus in the y/x direction.

With this, we express each component of the harmonic mode Ēx/y in terms of the charge enclosed along

each of the strips of plaquettes:

L2Ēx =a2
∑
x∈D

Ex

(
x +

a

2
ex

)
(3.7)

=a

L−2a∑
x=0

(x+ a)

L−a∑
y=0

[
Ex

(
x+

a

2
, y
)
− Ex

(
x+

3a

2
, y

)]
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+ La

L−a∑
y=0

[
Ex

(
L− a

2
, y
)
− Ex

(a
2
, y
)]

+ La
L−a∑
y=0

Ex

(a
2
, y
)

(3.8)

=− a2

ε0

L∑
x=a

x
L∑
y=a

ρ (x) + La
L∑
y=a

Ex

(a
2
, y
)
, (3.9)

which follows from applying Gauss’ law to each strip of plaquettes that wrap around the torus in the

y direction. The same argument holds for the y-component, hence, the harmonic mode is given by

Ē = − 1

ε0
P +

q

Lε0
w0, (3.10)

where P :=
∑

x∈D xρ(x)/N is the origin-dependent polarization vector of the system and w0,x :=

ε0a
∑L

y=aEx(a/2, y)/q is the x-component of the origin-dependent winding field, with the y-component

defined analogously. Here, P and w0 are measured from a specific origin. The above applies to systems

composed of either single- or multi-valued charges.

We have thus shown that Ē, which is origin-independent, is given by the sum of two origin-dependent

terms. One of these is attributed to the polarization of the system, while the other describes the

winding of charges around the torus given that the polarization is measured with respect to the chosen

origin: the harmonic-mode configurations that describe a given charge configuration are multi-valued.

The topological sector of the system changes when a charge pair unbinds and winds around the torus

in opposing directions before assuming its original configuration. This decomposition of Ē therefore

generates an origin-dependent measure of the topological sector of the system because, in certain cases,

shifting the origin can lead to the exchange of quanta of field between the two Ē terms.

Restricting our attention to the gas of elementary charges, we now devise an origin-independent measure

of the topological sector of the system. First, we note that adding ω windings to either component of

the harmonic mode Ē corresponds to

Ēx/y 7→ Ēx/y +
q

Lε0
ω, (3.11)

and that this results in a change in the grand-canonical energy of the system given by

∆U =
Lq

2
ω

(
q

Lε0
ω + 2Ēx/y

)
. (3.12)

Hence, given an arbitrary charge distribution, the lowest-energy harmonic mode that describes the

charge distribution is an element of the set(
− q

2Lε0
,

q

2Lε0

]
. (3.13)
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We therefore define a convention in which the harmonic mode is written as

Ē = Ēp + Ēw (3.14)

where Ēp and Ēw are the origin-independent polarization and winding components of the harmonic

mode, respectively. This convention identifies the polarization component with the lowest-energy har-

monic mode that describes a given charge distribution. The polarization component is found by applying

modular-arithmetic to Ē:

Ēp,x/y ∈
(
− q

2Lε0
,

q

2Lε0

]
. (3.15)

Ēw is then given by

Ēw =
q

Lε0
w, (3.16)

where the integer-valued vector field w (the winding field) is the origin-independent measure of the

topological sector of the system and is chosen such that polarization component Ēp fulfils Eq. (3.15).

The winding field w now defines the topological sector of the system, corresponding to the number of

times charges have wound around the torus in each direction. The lowest-energy electric-field configura-

tion corresponds to w = 0 for all charge configurations, and electric-field configurations corresponding

to w 6= 0 are the electrostatic field configurations that would be left behind if a charge were to wind

around the torus from the w = 0 field configuration with a true dynamics.

Non-zero topological sectors correspond to topological defects in the winding field w. These topological

defects are special in that they are not restricted to exist in plus-minus pairs. Electrostatics on a torus

is therefore associated with two topologies: the local topological defects in the total electric field and

the global topological defects in the winding field.

3.3 The Partition Function

In order to formulate the partition function in its full generality, we return to treat the gas of multi-

valued charges: that is, the charges may be integer multiples of the elementary charge q.

The constraints imposed upon the electric-field representation by the strictly irrotational nature of the

electric field, and by Eqs. (3.4) and (3.10), are combined with the grand-canonical energy of the system

to write the partition function in terms of lattice electric fields. We define the set X := qZ/a2 such that

the partition function for the two-dimensional electrostatic system on a lattice with toroidal topology



Chapter 3. Classical Electrostatics on a Lattice 54

is given by

ZCoul. =
∑

{ρ(x)∈X}

∑
w0∈Z2

∫
DE

∏
x∈D

[
δ
(
∇̂ ·E(x)− ρ(x)/ε0

)
δ
(
∇̃×E(x)

)]

×δ
(
ε0
N

∑
x∈D

E(x) +
(
P− q

L
w0

))
exp

(
−βε0a

2

2

∑
x∈D
|E(x)|2

)
e−βUCore , (3.17)

where
∑
{ρ(x)∈X} :=

∏
x∈D

[∑
ρ(x)∈X

]
is the sum over all possible charge configurations.

The above partition function describes the grand-canonical physics of an irrotational U(1) gauge field

of multi-valued topological defects, where we only sum over {w0} since the polarization is given by

the charge configuration. The delta functions in Eq. (3.17) enforce the constraints imposed upon

the electrostatic system: Gauss’ law; the electric fields describing the unique, low-energy, irrotational

solution to Gauss’ law (a purely rotational field can be added to the total electric field without affecting

Gauss’ law); the form of the harmonic mode of the electric field. Note that charge neutrality does

not need to be enforced with a delta function because electric fields on a torus describe charge-neutral

systems.

In terms of the grand-canonical energy, the harmonic mode decouples from the Poisson part of the

electric field (as shown in detail in Appendix C), hence,

ZCoul. =
∑

{∇2φ(x)∈Y }

exp

(
−βε0a

2

2

∑
x∈D
|∇̃φ(x)|2

) ∑
w0∈Z2

exp

(
− β

2ε0
|LP− qw0|2

)
e−βUCore , (3.18)

with the set Y := qZ/ε0a2. We will show an extension to this transformation in more detail in Section

4.2.3.

3.4 The Effective Electric Permittivity

The effective electric permittivity of the Coulombic system εeff. rescales the electric permittivity of the

vacuum ε0 in the presence of charges: in the GCE, neutral charge pairs can be excited out of the

vacuum, with the thermal averages of each species of charge pair dependent on both the temperature

of the system and the value of the core-energy constant εc of the charge species. The appearance of

these charge pairs means that, on average, the system is no longer a vacuum at finite temperature, and

its electric permittivity must change accordingly.

The effective electric permittivity is an important measure of Coulombic systems: in its two-dimensional

form, it has direct analogues in all of the systems on to which the two-dimensional Coulomb gas maps,

and is an important signature of the BKT transition [4, 22, 39]. It is the product of the electric

permittivity of free space ε0 and the temperature-dependent relative permittivity of the system εrel.,
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which is proportional to the reciprocal of the second partial derivative of the grand potential of the

system with respect to a small, global applied field D, with the applied field taken continuously to zero.

In the following, we consider an applied field restricted to the i direction.

Vallat and Beck showed [22] that the inverse effective electric permittivity ε−1
eff. is given by the response

function

ε−1
eff.(L, T ) :=

1

ε20L
2

∂2Φ(L, T,Di)

∂D2
i

∣∣∣∣
Di→0

, (3.19)

where Di is the non-zero component of the applied field D and Φ(L, T,Di) is the grand potential of

the system at temperature T and under the influence of the applied field.

In the following, the field E is taken to be the electric field due to the charges. The partition function

of the system under the influence of the applied field is then given by

ZCoul.,Di :=

∫
D̃E exp

(
−βε0a

2

2

∑
x∈D
|E(x) + D|2

)
exp (−βUCore) (3.20)

=

∫
D̃E exp

(
−βε0a

2

2

(∑
x∈D
|E(x)|2 + 2

∑
x∈D

E(x) ·D +
∑
x∈D
|D|2

))
× exp (−βUCore) (3.21)

=

∫
D̃E exp

(
−βε0a

2

2

(∑
x∈D
|E(x)|2 + 2D ·

∑
x∈D

E(x) +N |D|2
))

× exp (−βUCore) (3.22)

=

∫
D̃E exp

(
−βε0a

2

2

(∑
x∈D
|E(x)|2 + 2NDiĒi +ND2

i

))
× exp (−βUCore) , (3.23)

where ∫
D̃E :=

∑
{ρ(x)∈X}

∫
DE

∏
x∈D

[
δ (∇ ·E(x)− ρ(x)/ε0) δ

(
∇̃×E(x)

)]
(3.24)

is the constrained functional integral over electrostatic electric-field configurations. Combining this

with the definition,

Φ(L, T,Di) := −β−1 ln (ZCoul.,Di) , (3.25)

the grand potential of the system under the influence of the applied field is given by

Φ(L, T,Di) = −β−1 ln

[∫
D̃E exp

(
−βε0a

2

2

(∑
x∈D
|E(x)|2 + 2NDiĒi +ND2

i

))
e−βUCore

]
. (3.26)
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The first partial derivative of the above equation with respect to the applied field Di is given by

∂Φ(L, T,Di)

∂Di
=

1

βZCoul.,Di

∫
D̃Eβε0L

2
(
Ēi +Di

)
exp (−βUDi) , (3.27)

where UDi is the grand-canonical energy of the system under the influence of the applied field. In

the limit of vanishing applied field, this quantity is the i-component of the harmonic mode of the

electric field due to the charges, which was shown to be proportional to the charge polarization of a

simply connected system (with a winding-field contribution for the toroidal system) in Section 3.2. The

response function given by Eq. (3.19) is therefore the response of the harmonic mode of the electric

field (due to the charges) to a small applied field (in the limit of vanishing applied field). The second

partial derivative that generates this response function is then given by

∂2Φ(L, T,Di)

∂D2
i

=
1

βZ2
Coul.,Di

(∫
D̃Eβε0L

2
(
Ēi +Di

)
exp (−βUDi)

)2

+
1

βZCoul.,Di

∫
D̃Eβε0L

2
(
1− βε0L2(Ēi +Di)

2
)

exp (−βUDi) . (3.28)

Combining this with Eq. (3.19), we find that

ε−1
eff.(L, T ) =ε0

(
1− βε0L2

(
〈Ē2

i 〉 − 〈Ēi〉2
))

(3.29)

=ε0

(
1− 1

2
χĒ(L, T )

)
, (3.30)

where

χĒ(L, T ) := βε0L
2
(
〈Ē2〉 − 〈Ē〉2

)
(3.31)

is the harmonic-mode susceptibility, which measures fluctuations in the harmonic mode of the electric

field due to the presence of charges. Eq. (3.30) follows from taking the average of both components of

the electric field. It follows that the effective electric permittivity is given by

εeff.(L, T ) =
ε0

1− χĒ(L, T )/2
. (3.32)

This is the effective electric permittivity of the system due to the introduction of charges to the vacuum.

Combining Eqs. (3.10) and (3.32), it follows that the effective electric permittivity is intimately related

to the charge-charge correlations, and is therefore a signature of Coulombic physics. It is a function of

the sum,

∑
x,x′∈D

x · x′〈ρ(x)ρ(x′)〉, (3.33)
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which increases dramatically when charge begins to deconfine, so that the effective electric permittivity,

in turn, increases. In a conductor, the charges are able to rearrange to completely cancel the applied

field, which results in a divergent effective electric permittivity.

In the thermodynamic limit, the standard two-dimensional Coulomb gas experiences a discontinuous

universal jump in the effective electric permittivity as it passes through the BKT transition temperature

TBKT from below [4, 22, 39]. Here, kBTεeff. discontinuously diverges from π/2 to infinity [4, 22, 39]

as the system enters its conducting phase. The effective electric permittivity describes a renormalized

vacuum permittivity due to the presence of charges: the value kBTεeff.(L, T ) = π/2 at T = TBKT reflects

precisely the same competition between confining energy and entropy that is seen with respect to the

quantity kBTε0 = π/2 at T = T̄BKT in Eq. (2.57) for the limitingly dilute Salzberg-Prager system,

hence charge is deconfined in the standard two-dimensional Coulomb gas at temperatures above TBKT.

Note that the discontinuous jump is universal in the sense that it is a universal property of all systems

in the XY universality class: the significance of the value Keff.(T ) = 2/π at T = TBKT given in

Section 2.3.6 is due to precisely the same competition as that described here with respect to the value

kBTεeff.(A, T ) = π/2 at T = TBKT.

Fig. 3.1 shows the inverse effective electric permittivity for two-dimensional lattice Coulomb gases (of

elementary charges) of various system sizes as functions of temperature. The data clearly shows a

transition from an insulating (low-temperature) to a conducting (high-temperature) phase: as TBKT is

approached from below, the effective electric permittivity diverges, signalling charge deconfinement and

the high-temperature phase of the BKT transition. We simulated this system using the MR algorithm,

which is outlined in detail in Chapter 4. The lattice spacing a is set to unity: throughout the remainder

of this thesis, we set a = 1, but we may write this quantity explicitly to help the reader in identifying

units.

Finally, the harmonic-mode susceptibility χĒ is not to be confused with the standard susceptibility of

electrostatic theory χ′, which is defined by

χ′(L, T ) := − lim
Di→0

[ 〈Ēi〉
〈Ēi +Di〉

]
. (3.34)

Note that, in a more standard representation, the above becomes

ε0χ
′(L, T ) = lim

Di→0

[ 〈Pi〉
〈−Pi/ε0 +Di〉

]
(3.35)

for a simply connected system (a toroidal topology results in the additional winding-field contribution),

where Pi is the i-component of the charge polarization of the system. The harmonic-mode suscepti-

bility is bounded above by 2, whereas the standard susceptibility diverges for a conductor (since the

constituent charges of a conductor rearrange to cancel the applied field). The standard susceptibility
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Figure 3.1: The inverse effective electric permittivity 1/εeff. for two-dimensional lattice Coulomb gases
composed of elementary charges and of linear size L = 8, 16, 32 and 64 as functions of temperature
T , where the lattice spacing a, the vacuum permittivity ε0 and Boltzmann’s constant kB are set to
unity and the elementary charge q is set to 2π. The data clearly shows a transition from an insulating
(low-temperature) to a conducting (high-temperature) phase. We simulated this system using the MR
algorithm, which is outlined in detail in Chapter 4. Simulation details are outlined in Appendix E.

is related to the effective electric permittivity by

εeff.(L, T ) = ε0
(
1 + χ′(L, T )

)
. (3.36)

3.5 The Lattice Green’s Function

The use of lattice electric fields necessitates a Fourier description of the system in discrete k-space.

The Green’s function that describes the lattice electric field in two spatial dimensions is of a different

form to the logarithmic continuum k-space expression: for large systems, the lattice Green’s function

converges on the continuum expression. To write the partition function in terms of the lattice Green’s
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function, we consider Poisson’s equation on a lattice (Eq. 3.5). This reduces to

∑
xµ∈NNx

[φ(x)− φ(xµ)] =
q

ε0

∑
x′∈D

m(x′) δxx′ , (3.37)

where NNx is the set of the nearest neighbours of x in the positive directions and δxx′ is the Kronecker

delta function.

We apply the principle of superposition such that the scalar potential at x (in terms of the lattice

Green’s function) is given by

φ(x) =
q

ε0

∑
x′∈D

G(x,x′)m(x′), (3.38)

which is combined with Eq. (3.37) to give

δx,x′ =
∑

µ∈{x,y}

[
2G(x,x′)−G(x + aeµ,x

′)−G(x− aeµ,x′)
]
. (3.39)

The system exists on a torus, hence the Green’s function is periodic. We define the k-space Green’s

function via

G̃x′(k) :=
∑
x∈D

e−ik·xG(x,x′), (3.40)

with the inverse Fourier transform given by

G(x,x′) =
1

N

∑
k∈B

eik·xG̃x′(k), (3.41)

where
∑

k∈B :=
∏
µ∈{x,y}

[∑
kµ∈Bµ

]
, the set of k-space values in the µ-direction is given by

Bµ := {0,± 2π

Nµa
,±2

2π

Nµa
, · · · ,±

(
Nµ

2
− 1

)
2π

Nµa
,
Nµ

2

2π

Nµa
}, (3.42)

and Nx = Ny =
√
N .

To proceed, we use the standard result that
∑

k∈B e
ik·(x−x′) = Nδxx′ , and write

∑
k∈B

eik·(x−x′) =N
∑

µ∈{x,y}

[
2G(x,x′)−G(x + aeµ,x

′)−G(x− aeµ,x′)
]

(3.43)

=
∑
k∈B

eik·x
(

4− eikxa − e−ikxa − eikya − e−ikya
)
G̃x′(k) (3.44)

=2
∑
k∈B

eik·x [2− cos(kxa)− cos(kya)]G̃x′(k). (3.45)
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This is solved by

G̃x′(k) =
e−ik·x

′

2 [2−cos(kxa)−cos(kya)]
∀k 6= 0, (3.46)

where the k = 0 part of the lattice Green’s function is set to zero since the harmonic component of E

is attributed to Ē. It follows that

G(x,x′) =
1

2N

∑
k6=0

eik·(x−x′)

2− cos(kxa)− cos(kya)
. (3.47)

The Green’s function is the key difference between lattice and continuum electrostatics in any dimension.

The lattice Green’s function describes electric fields that are constrained to flow along lattice bonds

connecting lattice sites, rather than fields that are free to emanate throughout position space. For

suitably dilute lattice Coulomb gases, the continuum Green’s function is a good approximation to the

lattice physics since the lattice-field lines resemble continuum fields well; as the lattice becomes more

densely populated with charge, the approximation begins to break down. As shown by Spitzer [59], the

lattice Green’s function approximation is given by

lim
L→∞

G(x,x′) ' − 1

2π
ln

∣∣∣∣x− x′

r0

∣∣∣∣ (3.48)

in the thermodynamic limit, and for x 6= x′. Here, r0 := ae−γ/2
√

2 (where γ is Euler’s constant).

Finally, combining Eqs. (3.18), (3.37) and (3.38) with working analogous to that in Section 2.1.1.3, the

partition function of a two-dimensional electrostatic lattice Coulomb gas on a torus is given by

ZCoul. =
∑

{ρ(x)∈X}

δ

(∑
x∈D

ρ(x)

)
exp

−βa4

2ε0

∑
xi,xj∈D

ρ(xi)G(xi,xj)ρ(xj)


×
∑

w0∈Z2

exp

(
− β

2ε0
|LP− qw0|2

)
e−βUCore , (3.49)

with the Green’s function given by Eq. (3.47), and where the delta function is introduced to enforce

charge neutrality.

3.6 The Chemical Potential

The grand-canonical energy of the system is given by

U = USelf + UInt. + UHarm. + UCore, (3.50)
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where USelf := a4G(0)
∑

x∈D ρ(x)2/2ε0, UInt. := a4
∑

xi 6=xj∈D ρ(xi)G(xi,xj)ρ(xj)/2ε0 and UHarm. :=

L2|Ē|2/2ε0 are the self, Coulombic charge-charge interaction and harmonic-mode components of the

grand-canonical energy for the system, respectively, and the core-energy component UCore is given by

Eq. (2.34).

The chemical potentials are defined as in Eq. (2.36), so that, in full, the partition function given by

ZCoul. =
∑

{ρ(x)∈X}

δ

(∑
x∈D

ρ(x)

)
exp

−βa4

2ε0

∑
xi 6=xj

ρ(xi)G(xi,xj)ρ(xj)


×eβ

∑
m∈Z µmnm

∑
w0∈Z2

exp

(
− β

2ε0
|LP− qw0|2

)
(3.51)

describes a grand-canonical, charge-neutral electrostatic system on a two-dimensional lattice with

toroidal topology. In Chapter 4, we will outline the MR electrostatic model in a lattice-field for-

mulation, before using it to probe the BKT transition for the two-dimensional lattice Coulomb gas on

a torus (which we consider to be the base BKT system) in Chapter 5. When probing the transition,

we will control the number of each charge species by tuning each core energy.



Chapter 4

The Maggs-Rossetto Electrostatic

Model

In Chapter 2, Coulombic charges were shown to interact with one another via long-ranged interaction

potentials. This chapter is based around the work of Maggs and co-workers [24, 30–34], who devised

a local model of Coulombic physics on a lattice. Here, we reformulate the MR electrostatic model [24]

using a lattice notation and extend it to the GCE.

The MR electrostatic model [24] is a remarkable feat of statistical mechanics in which the Coulomb

fluid is transformed into a local problem. The resultant algorithm locally simulates the physics of

long-range Coulombic interactions on a lattice via the introduction of a freely fluctuating auxiliary

field: the canonical electric-field description of Coulombic systems is extended to include all degrees

of freedom of the field, utilizing the fact that the partition function of the MR electrostatic model

is completely separable into its irrotational and rotational components. The model is an example of

long-range interactions emerging from purely local physics. In Chapter 6, we will show the equivalence

between the MR electrostatic model and the Villain model [23], thereby demonstrating this emergent

phenomenon appearing in nature: this was the inspiration for the thesis.

The algorithm simulates Coulombic physics on a lattice: in this chapter, it is therefore formulated using

discrete vector calculus. The formulation is also restricted to two spatial dimensions since this thesis is

based on two-dimensional physics, and promotion to three dimensions follows easily.

4.1 Mathematical Background

The MR electrostatic model introduces a freely fluctuating auxiliary field to the Coulombic system.

This field is divergence free everywhere and extends the electrostatic solution of Gauss’ law to the

62
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general solution: its introduction results in local field updates alone being sufficient for the system to

efficiently explore the Gibbs ensemble of the electrostatic problem. We will show that the partition

function for the total field is separable into its Coulombic and auxiliary (or rotational) components:

the auxiliary field contributes to the internal energy of the electric fields, but its partition function is

independent of the Coulombic component.

The construction of the MR electrostatic model begins with a consideration of Gauss’ law on a lattice,

∇̂ ·E(x) = ρ(x)/ε0. (4.1)

From here, it is standard practice to write the solution to Eq. (4.1) in terms of the unique minimum-

energy configuration (MEC) of the electric field given by Eq. (3.5). This is not, however, the general

solution to Gauss’ law: Helmholtz’ theorem of vector calculus allows us to extend this electric-field

description to include the rotational degrees of freedom of the field. The total electric field of the MR

electrostatic model is given by

E(x) = −∇̃φ(x) + Ẽ(x) + Ē, (4.2)

where the auxiliary field Ẽ contains the rotational degrees of freedom of the field and nothing else. This

holds with previous electrostatic discussions, where Ẽ(x) = 0 everywhere. The lattice divergence of

this extra term is zero, leaving us with Poisson’s equation on a lattice:

∇2φ(x) = −ρ(x)/ε0. (4.3)

The units of the electric field and of the electric permittivity are discussed in Appendix A.

Upon inserting the general solution to Gauss’ law (on a lattice) given by Eq. (4.2) into Eq. (3.3), it

follows that the grand-canonical energy of the MR electrostatic model is given by

U = USelf + UInt. + URot. + UHarm. + UCore, (4.4)

where URot. := ε0a
2
∑

x∈D |Ẽ(x)|2/2 is the auxiliary-field component of the grand-canonical energy, and

we have used the fact that all coupling terms sum to zero, as shown in detail in Appendix C. This holds

with the grand-canonical energy of the electrostatic system introduced in Chapter 2, where URot. = 0.

4.2 Microscopic-variable Representation and the Partition Function

We start by defining two sets of microscopic variables that represent the local field updates outlined

in Section 2.2. We will then write the partition function for the system in this microscopic-variable

representation before transforming to the electric-field representation. Rewriting the partition function
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for the system in the electric-field representation will show that the MR electrostatic model reproduces

Coulombic physics. In order to avoid bulky notation, we will use the same notation in the microscopic-

variable representation as that used in the Villain model since the systems will be shown to be equivalent.

4.2.1 Microscopic Variables

A conjugate lattice D′ is defined such that each site exists at the centre of each plaquette of D (D′ is used

because the conjugate lattice will be shown to be equivalent to the spin lattice of XY-type spin models

in Chapter 6). Each site in D′ is associated with a real-valued variable ϕ whose adjustment corresponds

to an update of the auxiliary field (the rotational degrees of freedom of the total electric field), while

each pair of nearest-neighbour sites is associated with an integer-valued variable s whose adjustment

corresponds to a charge-hop update. Both sets of variables are subject to PBCs. Component-wise, we

now define the field

[∆θ]i

(
x +

a

2
ei

)
:=

ϕ(x + aei)− ϕ(x) + qs(x + aei,x)

a
, (4.5)

where ei is the unit vector in the i-direction (i ∈ {x, y}). The field ∆θ should be considered a field in

itself, rather than the change in a scalar field. We identify the lattice electric field E with the following

vector field:

E(x) ≡ 1

ε0


[∆θ]y(x + a

2ex)

−[∆θ]x(x + a
2ey)

 . (4.6)

Note that the sites of the lattice vector-field components of lattices D and D′ coexist.

+
α β

7−−−−→

i

j

α
+

β

i

j

Figure 4.1: A charge-hop update in the positive x direction: The sij variable (red arrow) has its value
decreased by an amount q. The value of the electric field flux Eαβ (black arrow) flowing from site α
to site β then decreases by q/ε0, corresponding to a charge-hop update. Red circles represent positive
charges; white circles represent empty charge sites.
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We now consider the local field updates in terms of these new variables. A charge hop in the positive

x/y direction corresponds to a decrease/increase in the relevant s variable by an amount q, as shown

in Fig. 4.1 (where sij represents the s variable between sites xi and xj of the conjugate lattice).

1 2

3 4

7−−−−−−→

1 2

3 4

Figure 4.2: An update of the rotational degrees of freedom of the electric field: The value of the ϕ
variable at the centre of a randomly chosen lattice plaquette decreases by an amount ∆. This rotates
the electric flux by an amount ∆/ε0 around the plaquette, leaving Gauss’ law satisfied. Red arrows
represent ϕ variables, black arrows represent the electric field, dashed red lines represent the conjugate
lattice D′, the blue arrow represents the direction of the field rotation and grey circles represent sites
of arbitrary charge.

Fig. 4.2 then shows the microscopic-variable representation of an auxiliary-field update, with an al-

teration of a particular ϕ variable rotating the field around its surrounding plaquette: a change in the

ϕ variable by an amount ∆ rotates the electric flux around the surrounding plaquette by an amount

∆/ε0. We represent the ϕ variables with spin-like arrows to emphasize the rotation of the electric field

around the relevant plaquette.

With the grand-canonical energy of the system given by Eq. (3.3) we are able to write the partition

function in the microscopic-variable representation. We consider the GCE, so we allow charge-hop

updates to excite charges out of the vacuum, and we also include the possibility of all integer-valued

multiples of the elementary charge. From Eq. (4.6) it then follows that

Z =
∑

{s(x,x′)∈Z}

∫
Dϕ exp

− β

2ε0

∑
〈x,x′〉

|ϕ(x)− ϕ(x′) + qs(x,x′)|2
 exp (−βUCore) , (4.7)

where the functional integral
∫
Dϕ is defined via

∫
Dϕ :=

∏
x∈D′

[∫ q/2

−q/2
dϕ(x)

]
. (4.8)
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Here, the ϕ variables are restricted to the set (−q/2, q/2] to avoid a multiple counting of electric-field

configurations. In a representation that reflects the mechanics of the MR electrostatic model, this

partition function describes a two-dimensional U(1) lattice vector field permitted to explore all real

values in each of its components. The reader may notice that the partition function given above is that

of the Villain model of two-dimensional magnetism [23] (omitting the UCore term, and with q = 2π).

For sums over nearest-neighbour positions, all positions are on the D′ lattice.

4.2.2 Gauss’ Law

The microscopic variables reproduce Gauss’ law:

∑
x∈∂Γ

∆θ(x) · l(x) = QΓ, (4.9)

where QΓ is the charge enclosed within some subset of the lattice Γ ⊆ D, ∂Γ ⊂ D′ is the boundary

enclosing Γ, and l traces an anticlockwise path along ∂Γ and has dimensions of length. This equation

results from the ϕ variables cancelling and the s variables being integer-valued. Combining Eqs. (4.6)

and (4.9), it follows that

∑
x∈∂Γ

∆θ(x) · l(x) =a2
∑
x∈Γ

ε0∇̂ ·E(x) (4.10)

⇒ ∇̂ ·E(x) =ρ(x)/ε0, (4.11)

recovering Eq. (4.1), as required.

The microscopic-variable representation transforms to the electric-field representation and also repro-

duces Gauss’ law, resulting in the required lattice fields.

4.2.3 The Partition Function in the Electric-field Representation

Now that we have described the model using a representation that mimics the mechanics of the model,

we rewrite the partition function in the electric-field representation to probe the validity of introducing

the auxiliary field. The partition function is given by

Z =
∑

{ρ(x)∈X}

∑
w0∈Z2

∫
DE

∏
x∈D

[
δ
(
∇̂ ·E(x)− ρ(x)/ε0

)]
δ

(∑
x∈D

E(x) +

(
N

ε0
P− Lq

ε0a2
w0

))

× exp

(
−βε0a

2

2

∑
x∈D
|E(x)|2

)
exp (−βUCore) . (4.12)
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Notice that the delta function that enforced the electric fields of the system described by Eq. (3.17) to

be irrotational is no longer included in order to allow the auxiliary field to freely fluctuate.

This partition function is separated into two components by defining the divergence-free field e [30] via

e(x) := E(x) + ∇̃φ(x). (4.13)

Then, since ∇2φ(x) = −ρ(x)/ε0 and Ē = −P/ε0 + qw0/Lε0, it follows that

Z =
∑

{∇2φ(x)∈Y }

exp

(
−βε0a

2

2

∑
x∈D
|∇̃φ(x)|2

) ∑
w0∈Z2

∫
De

∏
x∈D

[
δ
(
∇̂ · e(x)

)]

× δ
(∑

x∈D
e(x) +

(
N

ε0
P− Lq

ε0a2
w0

))
exp

(
−βε0a

2

2

∑
x∈D
|e(x)|2

)
e−βUCore (4.14)

=
∑

{∇2φ(x)∈Y }

exp

(
−βε0a

2

2

∑
x∈D
|∇̃φ(x)|2

) ∑
w0∈Z2

exp

(
− β

2ε0
|LP− qw0|2

)
e−βUCore

×
∫
Dẽ

∏
x∈D

[
δ
(
∇̂ · ẽ(x)

)]
δ

(∑
x∈D

ẽ(x)

)
exp

(
−βε0a

2

2

∑
x∈D
|ẽ(x)|2

)
, (4.15)

where ẽ(x) := e(x)−Ē is a purely rotational field and Y := qZ/ε0a2 is the set of all charge configurations

divided by ε0. We now write the partition function as

Z = ZCoul. ZRot., (4.16)

where

ZCoul. :=
∑

{∇2φ(x)∈Y }

exp

(
−βε0a

2

2

∑
x∈D
|∇̃φ(x)|2

) ∑
w0∈Z2

exp

(
− β

2ε0
|LP− qw0|2

)
e−βUCore (4.17)

and

ZRot. :=

∫
Dẽ

∏
x∈D

[
δ
(
∇̂ · ẽ(x)

)]
δ

(∑
x∈D

ẽ(x)

)
exp

(
−βε0a

2

2

∑
x∈D
|ẽ(x)|2

)
(4.18)

are the Coulombic and auxiliary-field components of the partition function, respectively.

The partition function given by Eq. (4.17) is precisely of the form of the partition function given by

Eq. (3.18). This Coulombic component of the partition function separates from the auxiliary-field

component: the auxiliary field is statistically independent of charge-charge correlations and the MR

electrostatic model reproduces the desired grand-canonical, two-dimensional lattice Coulomb physics.

At this point, it is helpful to emphasize that charge-hop updates alter fields that are described by the

entire partition function (hence the non-zero auxiliary field) while auxiliary-field updates only alter
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fields that are described by the auxiliary-field component of the partition function ZRot.. A local

charge-hop update produces a greater change in the total energy density than the energy change due to

electrostatic-field updates alone. The freely fluctuating auxiliary field solves this problem by allowing

the total fields to relax to field configurations of lower energy.

4.2.4 The Partition Function in Terms of the Lattice Green’s Function

The Coulombic partition function generated by the MR electrostatic model can now be written in terms

of the lattice Green’s function G(xi,xj), as in Section 3.5:

ZCoul. =
∑

{ρ(x)∈X}

δ

(∑
x∈D

ρ(x)

)
exp

−βa4

2ε0

∑
xi,xj∈D

ρ(xi)G(xi,xj)ρ(xj)


×
∑

w0∈Z2

exp

(
− β

2ε0
|LP− qw0|2

)
exp (−βUCore) . (4.19)

With the chemical potentials introduced as in Section 2.1.1.4, the partition function given by

ZCoul. =
∑

{ρ(x)∈X}

δ

(∑
x∈D

ρ(x)

)
exp

−βa4

2ε0

∑
xi 6=xj

ρ(xi)G(xi,xj)ρ(xj)


×eβ

∑
m∈Z µmnm

∑
w0∈Z2

exp

(
− β

2ε0
|LP− qw0|2

)
(4.20)

describes the electrostatics of the MR electrostatic model with tuneable chemical potentials. Again, we

have the ability to control the number of each charge species by tuning each core energy as desired.

4.3 The Coulomb Gas of Elementary Charges

For the remaining analysis, we will restrict our attention to the standard BKT Coulomb gas of elemen-

tary charges by setting the core-energy constants to zero and infinity, as required: εc(m = 0, ±1) = 0

and εc(m 6= 0, ±1) =∞. It follows that the Coulombic partition function for this system is given by

ZCoul. =
∑

{ρ(x)∈{0,±q/a2}}

δ

(∑
x∈D

ρ(x)

)
exp

−βa4

2ε0

∑
xi 6=xj

ρ(xi)G(xi,xj)ρ(xj)


×eβµn

∑
w∈Z2

exp

(
−L

2βε0
2
|Ēp +

q

Lε0
w|2
)
, (4.21)
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where µ := µ±1 is the chemical potential for the introduction of an elementary charge, and we are now

able to employ the origin-independent measures of the polarization Ēp and the winding Ēw components

of the total harmonic mode Ē, as outlined in Section 3.2.

4.4 The Global Update

The winding component of the harmonic mode may also be independently sampled since an infinite

number of winding fields describe the same charge configuration, and it is the charge configurations that

the MR algorithm sets out to sample. For a system of elementary charges, these updates correspond

to proposing a change in the harmonic mode given by

Ēx/y 7→ Ēx/y +
q

Lε0
ω, (4.22)

where ω is some integer, as in Eq. (3.11). This final update is employed in the MR algorithm to improve

efficiency [24].

A suitable ratio of the three updates described in this section therefore successfully samples the charge

configurations of a Coulombic system. In Chapter 5, this model will be used to analyse the BKT tran-

sition by comparing winding-field (or topological-sector) fluctuations in the low- and high-temperature

phases of the transition.



Chapter 5

Topological-sector Fluctuations at the

BKT Transition

In the context of the two-dimensional lattice Coulomb gas on a torus, the BKT transition is a con-

finement – deconfinement phase transition with respect to the neutral charge pairs that make up the

system. In the low-temperature phase, the charge pairs are tightly bound by their logarithmic Green’s

function and can never unbind; in the high-temperature phase, however, the entropic part of the free en-

ergy overcomes the confining energy of the system, resulting in deconfined charge. Eq. (4.21) therefore

shows the relevance of the winding component of the harmonic mode in signalling the BKT transition:

the two phases are characterized by non-fluctuating and fluctuating winding fields in the low- and high-

temperature phases, respectively. As previously discussed, the winding field defines the topological

sector of the system: in this chapter, we simulate the two-dimensional Coulomb gas using the MR

algorithm to show that topological-sector fluctuations signal the high-temperature phase of the BKT

transition.

For the standard BKT Coulomb gas of elementary charges (with the core-energy constant set to zero),

the BKT transition occurs at TBKT = 1.35 (to 3 significant figures) [29] in the thermodynamic limit,

which is scaled to higher temperatures in finite-size systems (see below). Fig. 5.1 shows the evolution

of the (normalized) x-component of the harmonic mode of a system of linear size L = 16, simulated

using local moves only (numerical simulation details are described in Appendix E). For the window of

simulation time shown, zero topological-sector fluctuations are visible just below the BKT transition

temperature TBKT = 1.35, but they become important at temperatures above TBKT.

In the thermodynamic limit, the difference in the behaviour of the harmonic mode seen in Fig. 5.1 is

represented by the final exponent of Eq. (4.21) performing the transformation

−L
2βε0
2
|Ēp|2 7→ −

L2βε0
2
|Ēp +

q

Lε0
w|2, (5.1)
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Figure 5.1: The x-component of the normalized total harmonic mode LĒx/2π (black) and winding
field LĒw,x/2π (blue) versus Monte Carlo time for an L × L system of linear size L = 16 at T = 1.34
(top) and T = 2.0 (bottom). The system was simulated using the MR algorithm with local moves only.
At the lower temperature, harmonic-mode fluctuations are finite but there are no topological-sector
fluctuations, while at the higher temperature the winding-field component becomes finite, indicating
topological-sector fluctuations.
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with w not strictly zero-valued in the high-temperature phase. The Coulombic partition function in

the low-temperature phase is therefore given by

ZT<TBKT
Coul. =

∑
{ρ(x)∈{0,±q/a2}}

δ

(∑
x∈D

ρ(x)

)
exp

−βa4

2ε0

∑
xi 6=xj

ρ(xi)G(xi,xj)ρ(xj)


×eβµn exp

(
−L

2βε0
2
|Ēp|2

)
. (5.2)

5.1 Ergodicity Breaking

A convenient measure of topological-sector fluctuations in the electric field is the winding-field suscep-

tibility χw:

χw(L, T ) := βε0L
2
(
〈Ē2

w〉 − 〈Ēw〉2
)
. (5.3)

As can be seen by combining Eqs. (4.21) and (5.3), limiting the Gibbs ensemble that contributes to

ZCoul. to configurations with zero charge results in Eq. (5.3) reducing to the winding-field susceptibility

due to global moves only:

χglobal
w (T ) = βε0L

2
(
〈Ē2

w〉global − 〈Ēw〉2global

)
(5.4)

= βε0L
2 4q2 exp

(
−βq2/2ε0

)
/ε20L

2 + . . .

1 + 4 exp (−βq2/2ε0) + . . .
(5.5)

' βε0L2 4q2 exp
(
−βq2/2ε0

)
/ε20L

2

1
(5.6)

=
4βq2

ε0
exp

(
−βq2/2ε0

)
, (5.7)

since 〈Ēw〉 = 0, and where this approximation holds for kBT � q2/2ε0. This expression is system-size

independent and shows that an ergodic system would have small but finite topological-sector fluctuations

at all temperatures.

Assuming local charge dynamics, a topological-sector fluctuation requires the separation of a charge

pair over a distance greater than L/2 in either the x or the y direction, as seen in the condition placed

upon the polarization component of the harmonic mode Ēp (Eq. (3.15)). The energy barrier against

such a configuration diverges logarithmically with the linear system size L [1–3]. As discussed in Section

2.1.2.2, entropy and charge screening make the free-energy barrier finite in the high-temperature phase.

This allows charge pairs to unbind and trace closed paths around the torus, giving finite-valued winding

fields, as observed in Fig. 5.1. In contrast, in the low-temperature phase, the probability of separation

is strictly zero (a phase is defined in the thermodynamic limit). This results in an ergodicity breaking

- a change in the phase space explored by the system - which is signalled by the strict suppression
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of topological-sector fluctuations in the electric field at T < TBKT. In the context of the Coulomb

gas on a torus, the system is in an ergodic state if the same statistics are produced whether or not

global dynamics are permitted to supplement the mandatory local dynamics. In order to explore this

ergodicity breaking, we have therefore simulated the two-dimensional Coulomb gas, either with local

field updates only, or with both local and global field updates [24, 30–34].

In the context of simulation, the system is ergodic if the sampling procedure both with the global

update on and with the global update off produce the same statistics. To analyse the ergodicity of the

system, we therefore define the susceptibility quotient χlocal
w /χall

w , where χlocal
w and χall

w are the winding-

field susceptibilities as measured via the employment of local moves only and via the employment of

both local and global moves, respectively. Fig. 5.2 shows the susceptibility quotient as a function of

temperature for systems of linear size L = 32 and L = 64. The susceptibility quotient is zero in the

regions T < 1.075 (L = 32) and T < 1.2 (L = 64), tends to unity in the region T > 1.6, and is a

strongly fluctuating quantity between these temperatures. Simulations details (including the Monte

Carlo timescale of the simulations) are outlined in Appendix E.

Fig. 5.2 clearly shows that ergodicity is broken in the vicinity of the BKT transition. For T > 1.6,

χlocal
w = χall

w , indicating that the free-energy barrier for a topological-sector fluctuation via local charge

dynamics is small. For T < 1.075 (L = 32) and T < 1.2 (L = 64), the quotient is zero, indicating that

the energy barrier prevents topological-sector fluctuations via local dynamics. In between these low- and

high-temperature regions there are strong fluctuations in the quotient because charge deconfinement

via local dynamics represents increasingly rare events, an inevitable precursor to loss of ergodicity. In

Section 5.2, this ergodicity breaking is shown to occur precisely at TBKT in the thermodynamic limit.

Our analysis thus leads to a precise definition of topological order for the two-dimensional Coulomb

gas through the ergodic freezing of the topological sector to its lowest absolute value. Two-dimensional

systems with U(1) symmetry are often associated with an absence of an ordering field at finite tempera-

ture [25]. Here we explicitly show that, in the case of the BKT transition, the ordering of a conventional

order parameter is replaced by topological ordering through an ergodicity breaking between the topo-

logical sectors. The topological order is directly related to the confinement-deconfinement transition of

the charges, the local topological defects of the electric field. This type of ergodicity breaking is distinct

from either the symmetry breaking that characterizes a standard phase transition, or that due to the

rough free-energy landscape that develops at a spin-glass transition [27].

5.2 Finite-size Scaling

In order to explore the approach to the thermodynamic limit, the two-dimensional Coulomb gas was

simulated by the Monte Carlo method as a function of system size, using the MR algorithm. The global
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Figure 5.2: The susceptibility quotient χlocal
w /χall

w versus temperature for an L × L Coulomb gas of
linear size L = 32 (top) and L = 64 (bottom). In the regions T < 1.075 (L = 32) and T < 1.2 (L = 64),
the quotient is zero, while for T > 1.6, the quotient approaches unity. This divergence between the
results of the local-update and the all-updates simulations, accompanied by striking fluctuations in the
intermediate region, signals ergodicity breaking as the system is cooled through the BKT transition. The
line is a guide to the eye. Simulations details (including the Monte Carlo timescale of the simulations)
are outlined in Appendix E.
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Figure 5.3: The winding-field susceptibility χw as a function of temperature for L×L Coulomb gases
of linear size L = 8, 16, 32, and 64 (using local and global MR moves). The curves intersect at low and
high temperature. Inset: An expanded plot of the data in the region of the low-temperature intersections
(with error bars representing two standard deviations). The indicated crossover temperatures are given
by TCross(L = 16) = 1.45, TCross(L = 32) = 1.40 and TCross(L = 64) = 1.37 (to three significant figures),
based on a data fit.

update was employed in order to improve the statistics (numerical simulation details are described in

Appendix E).

Fig. 5.3 shows the simulated winding-field susceptibility χw as a function of temperature for L × L

Coulomb gases of linear sizes between L = 8 and L = 64. There is a marked increase in the winding-field

susceptibility χw as the system passes through the BKT transition temperature TBKT = 1.35 [29] for all

system sizes. Susceptibility curves for successive values of L intersect at temperatures above T = 1.8

and below T = 1.5. Between these two temperatures, the winding-field susceptibility increases for a

given temperature as the linear system size L increases. These results are consistent with the finite-size

scaling of the BKT transition temperature [19, 43]: as the system size decreases the effective transition

temperature T ∗(L) increases.
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Due to the logarithmic interaction potential, in the vicinity of TBKT, the probability of a charge pair

separating over a distance greater than L/2 increases with decreasing system size. This, combined with

the finite-size transition temperature T ∗(L) also increasing with decreasing system size, results in the

winding-field susceptibility curves for successive values of L intersecting in the vicinity of TBKT. The

inset in Fig. 5.3 shows that these low-temperature crossover points of the susceptibility curves are

at T = 1.45, T = 1.40, and T = 1.37 (to three significant figures). The inset clearly shows that the

crossover points tend towards a point of maximum curvature in the thermodynamic-limit susceptibility

curve, from which topological-sector fluctuations increase dramatically. To extrapolate the data shown

in Fig. 5.3 to the thermodynamic limit, we define the crossover temperature TCross(L) to be the lower

temperature at which χw(L) = χw(L/2).
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Figure 5.4: The crossover temperature TCross (black data) and crossover susceptibility χCross
w (red

data) as functions of inverse linear system size 1/L, with error bars representing two standard deviations.
Lines are weighted (with respect to the error bars) linear-regression fits to each data set, from which
the y-intercept (L → ∞) was calculated. TCross(L → ∞) = 1.351(2), equal to the BKT transition
temperature TBKT [29]. The crossover susceptibility χCross

w (L → ∞) ∼ 5 × 10−4 with an estimated
error of the same order: there is no measurable difference between this quantity and the winding-field
susceptibility due to global updates only at T = 1.351.

Fig. 5.4 shows the crossover temperature TCross as a function of inverse system size 1/L, along with a

straight-line fit to the data. The thermodynamic-limit value of TCross corresponds to the y-intercept in

the TCross versus 1/L plot. We find that TCross(L→ ∞) = 1.351(2), that is, it extrapolates to the BKT
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transition temperature [29]:

TCross(L→∞) = TBKT. (5.8)

The point of maximum curvature in the thermodynamic-limit susceptibility curve therefore occurs at

T = TBKT.

Similarly to the Υ̃4 scaling seen in the inset of Fig. 2.6, the scaling of the low-temperature crossover

points TCross with inverse linear system size 1/L seen in Fig. 5.4 is in marked contrast to the scalings

of the finite-size transition temperatures of the BKT transition [19, 43]. As seen in Section 2.5.2, the

finite-size transition temperatures of the system can be fitted to 1/ ln2(L) [19] scaling laws. TCross. is

therefore neither T ∗(L) nor TC(L).

The magnitude of the winding-field susceptibility at the crossover points χCross
w (L → ∞) similarly

extrapolates to ∼ 5×10−4 in the thermodynamic limit, with an estimated error of the same order. This

small number is not measurably different to the winding-field susceptibility due to global moves only,

which, at TBKT, evaluates to approximately 5× 10−5 for all system sizes (see Eq. (5.7)). The inference

is that topological-sector fluctuations due to local moves only turn on precisely at the universal point

TCross(L→∞) = TBKT in the thermodynamic limit. This confirms that topological-sector fluctuations

due to local moves signal charge deconfinement and the high-temperature phase of the BKT transition:

in this phase, it follows that the harmonic-mode of the electric field can no longer be described by the

polarization of the system alone.

This signalling of the high-temperature phase of the transition occurs at the temperature at which

the system experiences the famous universal (and discontinuous) jump in the inverse effective electric

permittivity ε−1
eff. in the thermodynamic limit [4, 22, 38, 39]. This quantity is related to the harmonic-

mode susceptibility by Eq. (3.32), from which it follows that χĒ makes a jump of order unity at TBKT.

As shown in Fig. 5.5, the ratio (χĒ − χp)/χĒ is less than 5× 10−2 for all T ≤ 1.6 for systems of linear

size L = 8 to 64, where

χp(L, T ) := βε0L
2
(
〈Ē2

p〉 − 〈Ēp〉2
)

(5.9)

is the polarization susceptibility, showing that the contribution to the universal jump from topological-

sector fluctuations is small. This is due to the near cancellation of 〈Ē2
w〉 and the coupling term 2〈Ēp·Ēw〉,

which reflects the strong correlations between the polarization and winding components of the harmonic

mode at the transition.

This chapter has shown that topological-sector fluctuations in the two-dimensional Coulomb gas on a

torus due to local dynamics only signal the high-temperature phase of the BKT transition, but that

these fluctuations only make a small contribution to the discontinuous jump in the effective electric
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Figure 5.5: The ratio (χĒ − χp)/χĒ as a function of temperature for systems of linear size L = 8, 16,
32 and 64. We see that the contribution from topological-sector fluctuations to the universal jump in
the harmonic-mode susceptibility χĒ is less than 5× 10−2 for all system sizes at T ≤ 1.6.

permittivity. As the system passes from the high- to the low-temperature phase of the BKT transi-

tion, the phase space of the electric field explored by a system restricted to local dynamics decreases

dramatically, and the system moves into a non-ergodic sector of the phase space of the electric field

precisely at TBKT. This displays the ergodicity-breaking nature of the BKT transition: again, this type

of ergodicity breaking is distinct from either the symmetry breaking that characterizes a standard phase

transition, or that due to the rough free-energy landscape that develops at a spin-glass transition [27].



Chapter 6

Emergent Electrostatics in XY-type

Spin Models

In this chapter, the equivalence between the Villain model and the two-dimensional MR electrostatic

model in the GCE is shown. An emergent-field description of XY-type spin models is introduced. It

is then shown that the auxiliary field of the MR electrostatic model corresponds to the spin-wave field

of the Villain model, and that topological-sector fluctuations in the emergent field correspond to twist

fluctuations in the spin field of the XY models.

6.1 Continuum Formulation

Before moving to the continuum formulation, the lattice vector field ∆θ (the same notation is used as

that in Chapter 4) is defined component-wise to be

[∆θ]i

(
x +

a

2
ei

)
:=

ϕ(x + aei)− ϕ(x) + qs(x + aei,x)

a
, (6.1)

for all XY-type spin models. In the continuum formulation, ∆θ becomes ∇θ.

In order to gain an intuitive understanding of the XY model and its emergent electric field, we return

to the continuum approximation of the model given by Eq. (2.63).

79
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6.1.1 Spin-field Representation

In this subsection, we pause to review the standard analysis of the continuum, harmonic XY model

presented by BKT [2, 3]. As seen in Fig. 2.3, any closed contour must adhere to∮
∂Γ

[∇θ(x)] · dl = 2πp, (6.2)

where p = 0,±1 and ∂Γ is some closed path within the system. Upon transforming to the emergent-field

representation, the above expression will become an emergent Gauss’ law.

The spin-difference field ∇θ splits into two parts: its minimum-energy configuration (MEC) ∇θ̄ and

fluctuations around these MECs ∇ψ such that

∇θ(x) = ∇θ̄(x) + ∇ψ(x). (6.3)

These are called the vortex and spin-wave fields and are governed by the path integrals∮
∂Γ

[
∇θ̄(x)

]
· dl = 2πp (6.4)

and ∮
∂Γ

[∇ψ(x)] · dl = 0. (6.5)

The vortex field will be shown to map on to the irrotational component of the electric field of the MR

electrostatic model, and the spin-wave field to the auxiliary field.

The vortex and spin-wave components of the spin-difference field energetically decouple. This is seen

by considering Eq. (6.4) for a single vortex centred on the origin: this generates

∇θ̄(r, φ) = ∇θHarm. +
2πp

r
eφ (6.6)

for any r > r0 (with r0 a lattice cut-off), and where ∇θHarm. is the harmonic component of the spin-

difference field. We apply the principle of superposition to the above equation and write, for a system

consisting of n vortices,

∇θ̄(x) = ∇θ̄Harm. +
n∑
i=1

2πpi
|x− xi|

eφ,i (6.7)

where eφ,i is the angular unit vector with respect to a coordinate system centred on vortex pi (which

exists at xi). For a single vortex pi the following cross term sums to zero:

Ii :=

∫
Ω

2πpi
|x− xi|

eφi · [∇ψ(x)] d2x
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=

∫ L

r0

∫ 2π

0

2πpi
|x− xi|

[∇ψ(x)]φi ridridφi

= 2πpi

∫ L

r0

1

|x− xi|

[∫ 2π

0
[∇ψ(x)]φi ridφi

]
dri

= 2πpi

∫ L

r0

1

|x− xi|

[∮
γri

[∇ψ(x)] · dl(x)

]
dri (6.8)

= 0, (6.9)

since the spin-wave contour integral vanishes for all paths. This shows that the non-harmonic part of the

vortex field energetically decouples from the spin-wave field. Since the harmonic mode straightforwardly

decouples from the rest of the spin-difference field, the continuum Hamiltonian becomes [2, 3]

HCont. =
J

2

∫
Ω
|∇θ̄(x)|2d2x+

J

2

∫
Ω
|∇ψ(x)|2d2x, (6.10)

where the total vortex field has been recombined.

6.1.2 Emergent-field Representation

The (continuum) emergent electric field of XY-type spin models can now be defined. The field defined

by Binney et al. [60] is extended to include the spin-wave part of the spin-difference field:

E(x) := J [∇θ(x)]× ez. (6.11)

The divergence of this field is given by

∇ ·E(x) = ∇ · [J (∇θ(x))× ez]

= J∂i [εijk(∇θ(x))j(ez)k]

= Jεijk∂i [(∂jθ(x))(ez)k]

= Jεijk(∂i∂jθ(x))(ez)k

= Jεijz∂i∂jθ(x)

= J [∇×∇θ(x)]z . (6.12)

Integrating over a subset Γ of the system then gives∫
Γ
∇ ·E(x)d2x =

∫
Γ
J [∇×∇θ(x)]z d

2x (6.13)

= J

∫
Γ

[∇×∇θ(x)] · da(x) (6.14)

= J

∮
∂Γ

[∇θ(x)] · dl(x) (6.15)
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= JQΓ, (6.16)

where da is an infinitesimal area element pointing in the positive z direction, dl is an infinitesimal

element of the boundary enclosing Γ and QΓ ∈ 2πZ is the emergent charge enclosed within Γ. This

generates the emergent Gauss’ law

∇ ·E(x) = Jρ(x), (6.17)

where ρ is the density of the emergent electric charge. The topological defects in the spin-difference

field have been transformed into topological defects in the emergent field: they are of precisely the same

form as electric charges in the two-dimensional continuum Coulomb gas.

Using Helmholtz’ theorem, any vector field can be split into its divergence-full, rotational and harmonic

components:

E(x) = −∇φ(x) + ∇×Q(x) + Ē, (6.18)

where φ and Q are smooth scalar and vector fields, respectively, and Ē :=
∫

Ω d
2xE(x)/L2 is the

harmonic mode of the emergent electric field. This generates an emergent Poisson’s equation:

∇2φ(x) = −Jρ(x). (6.19)

We have that |E(x)| = |∇θ(x)| · |ez| = |∇θ(x)|, hence

HCont. =
1

2J

∫
Ω
|E(x)|2d2x, (6.20)

the continuum Hamiltonian in the emergent-field representation. Appendix C shows that the irrota-

tional and rotational parts of the above expression decouple (on a lattice, but the continuum analogue

follows easily), hence

HCont. =
1

2J

∫
Ω
| −∇φ(x) + Ē|2d2x+

1

2J

∫
Ω
|∇×Q(x)|2d2x, (6.21)

where the irrotational modes have been recombined to identify

J
[
∇θ̄(x)

]
× ez ≡ −∇φ(x) + Ē (6.22)

and

J [∇ψ(x)]× ez ≡∇×Q(x). (6.23)

This shows the emergent electrostatics of the continuum XY model. Identifying the Hamiltonian in

the emergent-field representation with the internal energy of the electric fields of the two-dimensional
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continuum Coulomb gas amounts to asserting that the exchange coupling is an emergent inverse electric

permittivity of free space: J = 1/ε0.

Figure 6.1: The lattice mapping between the spin configuration shown in Fig. 2.3 and the emergent-
field representation. The red circle represents a positively charged topological defect; the blue circle
represents a negatively charged topological defect

Although the lattice mapping is not of quite the same form as the continuum formulation outlined here,

it is informative to display what will turn out to be the lattice mapping between the spin configuration

shown in Fig. 2.3 and its emergent-field representation. This mapping, illustrated in Fig. 6.1, is

addressed in the next section.

6.2 Lattice Mapping

Based on this intuitive understanding of the emergent physics of the continuum model, the mapping

between the lattice ferromagnetic film and the lattice Coulomb gas is now presented.

6.2.1 The Villain Model

The Villain model explicitly samples modular variables, rather than defining them by the spin variables

to which they couple: the s variables mimic the modular symmetry of the XY model and exist on

the bonds between each lattice site. The partition function is given by Eq. (2.69), which is an almost

identical partition function to that of the two-dimensional MR model of electrostatics in the microscopic-

variable representation (Eq. (4.7)), with the only difference being that the Villain model has its core

energies set to zero for all emergent-charge species: upon setting q = 2π, ε0 = 1/J and εc(m) =
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0∀m ∈ Z, the partition functions are equivalent (for an MR electrostatic model applied to multi-valued,

dimensionless charges in the GCE).

The mapping between the two models is now straightforward. We define the emergent electric field E

on a lattice:

E(x) := J


[∆θ]y(x + a

2ex)

−[∆θ]x(x + a
2ey)

 . (6.24)

With ε0 = 1/J , q = 2π and εc(m) = 0∀m ∈ Z, it follows that the emergent field of the Villain

model is of the same form as the electric field of the two-dimensional MR electrostatic model. These

emergent charges are topological defects in the emergent electric field, but not in the spin-difference

field ϕ(x + aei) − ϕ(x): the ϕ variables do not define the modular variables of the model, hence the

topological defects are not defined by the ϕ variables.

In Chapter 4, the microscopic mechanics of the MR electrostatic model and Gauss’ law in terms of

the microscopic-variable representation were presented. The same arguments hold here, hence the

microscopic mechanics are identical (topological-defect hops are equivalent, and spin-wave updates in

the Villain model are equivalent to auxiliary-field updates in the MR model) and the Villain model

admits an emergent Gauss’ law:

∇̂ ·E(x) = Jρ(x), (6.25)

where ρ(x) := 2πm(x)/a2 is the emergent-charge density, and the integer m(x) denotes the value of

the emergent charge at x in units of 2π. The emergent field E is Helmholtz decomposed into the same

form as Eq. (4.2) by defining emergent analogues of the Poisson, auxiliary and harmonic components

of the electric field of the MR electrostatic model. As in Chapter 4, the partition function then splits

into its Coulombic and auxiliary-field components:

Z = ZCoul. ZRot.. (6.26)

With X̄ := 2πZ/a2, the Coulombic component is given by

ZCoul. :=
∑

{ρ(x)∈X̄}

δ

(∑
x∈D

ρ(x)

)
exp

−a4βJ

2

∑
xi 6=xj

ρ(xi)G(xi,xj)ρ(xj)


×eβ

∑
m∈Z µmnm

∑
w0∈Z2

exp

(
−βJ

2
|LP− 2πw0|2

)
, (6.27)
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where nm is the number of emergent charges 2πm,

µm := −2π2JG(0)m2 (6.28)

is the the chemical potential for the introduction of an emergent charge 2πm (since the emergent

core-energy constants are all zero),

P :=
1

N

∑
x∈D

xρ(x) (6.29)

is the origin-dependent emergent polarization vector for the system, and

w0 :=
a

2πJ

(
L∑
y=a

Ex

(a
2
, y
)
,

L∑
x=a

Ey

(
x,
a

2

))
(6.30)

is the origin-dependent emergent winding field. The auxiliary-field component is given by

ZRot. :=

∫
Dẽ

∏
x∈D

[
δ
(
∇̂ · ẽ(x)

)]
δ

(∑
x∈D

ẽ(x)

)
exp

[
−βa

2

2J

∑
x∈D
|ẽ(x)|2

]
, (6.31)

where the field

ẽ(x) := E(x) + ∇̃φ(x)− Ē (6.32)

is similarly defined.

For all XY-type spin models, we define ∆θ̄ to be the field that describes the MECs of the system, and

the spin-wave field ∆ψ, which describes fluctuations around the MECs, to be the remainder of the total

field ∆θ in the spin-field representation:

∆θ(x) = ∆θ̄(x) + ∆ψ(x). (6.33)

The transformation of the field ∆θ̄ to the emergent-field representation then corresponds to the irrota-

tional components of the emergent field, and the equivalent transformation of the field ∆ψ corresponds

to the rotational components of the emergent field:

−∇̃φ(x) + Ē ≡ J


[∆θ̄]y(x + a

2ex)

−[∆θ̄]x(x + a
2ey)

 , (6.34)
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and

Ẽ(x) ≡ J


[∆ψ]y(x + a

2ex)

−[∆ψ]x(x + a
2ey)

 . (6.35)

We thus confirm the emergence of electric charges described by a U(1) gauge field in the Villain model

by showing the absolute equivalence between this model and the two-dimensional MR electrostatic

model applied to dimensionless charges in the GCE (with all core-energy constants set to zero). Given

the definitions of the helicity moduli Υ of the magnetic systems and the effective electric permittivity

εeff. of the Coulomb gas (Eqs. (2.110) and (3.19)), it follows from the emergent electrostatics of the

Villain model (J = ε−1
0 ) that the finite-size helicity modulus of the Villain model is precisely the inverse

effective electric permittivity of the two-dimensional lattice Coulomb gas [22]:

Υ̃(L, T ) = ε−1
eff.(L, T ). (6.36)

As for the two-dimensional Coulomb gas, a harmonic-mode susceptibility χĒ, which is a function of the

emergent charge-charge correlations, is defined for the emergent field (from Eq. (3.31)), and it follows

that

Υ̃(L, T ) =J (1− χĒ(L, T )/2) = ε−1
0 (1− χĒ(L, T )/2) = ε−1

eff.(L, T ). (6.37)

As analogously discussed in Section 3.32, the helicity modulus of the Villain model is therefore intimately

related to the emergent charge-charge correlations. It is a signature of the emergent MR physics of the

system, so that a zero-valued helicity modulus signals emergent Coulombic conductivity.

6.2.2 The 2dHXY Model

The partition function of the HXY model is given by

ZHXY =

∫
D̄ϕ exp

−βJ
2

∑
〈x,x′〉

|ϕ(x)− ϕ(x′) + 2πs(x,x′)|2
 , (6.38)

where the s variables are now defined via the associated spin difference: s(x,x′) ∈ {0,±1} is chosen such

that ϕ(x) − ϕ(x′) + 2πs(x,x′) ∈ (−π, π]. This enforces the modular periodicity required in XY-type

spin models, but the spin variables now define the modular variables. Topological defects are therefore

defects in the spin-difference field ϕ(x + aei)− ϕ(x) (and in the emergent electric field E).

The emergent electric field is defined as in Eq. (6.24), which produces an emergent Gauss’ law of the

same form as Eq. (6.25). Again, this emergent field is Helmholtz decomposed into the same form as
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Eq. (4.2) so that the Hamiltonian can be written in its emergent-field representation:

HHXY =
a4J

2

∑
xi,xj∈D

ρ(xi)G(xi,xj)ρ(xj) +
a2

2J

∑
x∈D
|Ẽ(x)|2 +

L2

2J
|Ē|2. (6.39)

Geometrically, emergent charges given by m(x) 6= 0,±1 are not permitted for any emergent-charge

lattice site: this enforces a core-energy configuration {εc(m = 0,±1) = 0, εc(m 6= 0,±1) = ∞} that

corresponds to a system of elementary emergent charges. The polarization and winding components

of the harmonic mode of the emergent field of an elementary-charge system can be computed via the

modulo approach outlined in Section 3.2: Ē = Ēp + Ēw, where

Ēp,x/y ∈
(
−πJ
L
,
πJ

L

]
, (6.40)

and

Ēw =
2πJ

L
w. (6.41)

Here, the origin-independent winding field w defines the topological sector of the emergent electric field

and is chosen such that Eq. (6.40) holds. The Hamiltonian given by Eq. (6.39) then becomes

HHXY = −µn+
a4J

2

∑
xi 6=xj

ρ(xi)G(xi,xj)ρ(xj) +
a2

2J

∑
x∈D
|Ẽ(x)|2 +

L2

2J
|Ēp +

2πJ

L
w|2, (6.42)

where µ := µ1 is the chemical potential for the introduction of an elementary emergent charge (defined

in Eq. (6.28)), and n is the number of emergent charges. It follows that the HXY Hamiltonian

corresponds to the internal energy of an emergent electric field:

HHXY = U = USelf + UInt. + URot. + UHarm., (6.43)

where USelf := −µn (since UCore = 0), UInt. := a4J
∑

xi 6=xj
ρ(xi)G(xi,xj)ρ(xj)/2, URot. :=

a2
∑

x∈D |Ẽ(x)|2/2J , and UHarm. := L2|Ēp + 2πJw/L|2/2J .

To confirm that the rotational and irrotational components of the emergent field energetically decouple

as in Eq. (6.39), the normalized difference δ is defined:

δ(T ) :=
〈|ÊQ − ÊLS|〉
〈|ÊQ + ÊLS|〉

, (6.44)

where ÊQ and ÊLS are the irrotational components of the emergent field of the system as found by

quenching the system and by applying a linear solver to the emergent-charge configuration to solve

the Green’s function (and then adding the harmonic component of the internal energy of the field),
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Figure 6.2: The normalized field difference δ (Eq. (6.44)) and the thermal average of the emergent-
charge density ρ as functions of temperature for an HXY system of linear size L = 32. The emergent-
charge density is vanishingly small at low temperature, so that the normalized difference tends to δ(T →
0) = 〈|ÊQ|〉/〈|ÊQ|〉 = 1. At high temperature, however, the emergent-charge density becomes relevant,
and the normalized difference tends to zero, indicating that the linear solver correctly calculates the
emergent field of the quenched system. 10000 quench sweeps were performed before each measurement.

respectively. Fig. 6.2 shows the normalized difference δ and the thermal average of the emergent-

charge density ρ as functions of temperature for an HXY system of linear size L = 32. The emergent-

charge density is vanishingly small at low temperature, so that the normalized difference tends to

δ(T → 0) = 〈|ÊQ|〉/〈|ÊQ|〉 = 1. At high temperature, however, the emergent-charge density becomes

relevant, and the normalized difference tends to zero, indicating that the linear solver correctly calculates

the emergent field of the quenched system.

Further to this, Fig. 6.3 shows the thermal average of the internal energy of the irrotational components

of the emergent field of the HXY model for a system of linear size L = 32 as a function of temperature T

as computed by both measuring the energy of the quenched spin system (blue stars) and by employing

the linear solver (red circles). Fig. 6.3 shows good agreement between the two methods. The results

in Figs. 6.2 and 6.3 confirm the energetic decoupling of the emergent field of the HXY model in Eq.

(6.39).
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Figure 6.3: The thermal average of the internal energy of the irrotational components of the emergent
field of the HXY model for a system of linear size L = 32 as a function of temperature T as computed
by both measuring the energy of the quenched spin system (blue stars) and by employing the linear
solver (red circles) (J = 1). Fig. 6.3 shows good agreement between the two methods. 10000 quench
sweeps were performed before each measurement.

The confirmed field decomposition given by Eq. (6.42) is illustrated in Figs. 6.7 - 6.14, which depict the

Helmholtz decomposition of a snapshot of an HXY simulation: Fig. 6.7 shows a snapshot of a 20× 20

HXY simulation at T = 2 in the spin-field representation; Fig. 6.8 shows Fig. 6.7 transformed to the

emergent-field representation; Figs. 6.9 and 6.10 show the polarization and winding components of the

total emergent field, respectively; Fig. 6.11 shows the Poisson component of the total field as found

via the employment of a linear solver; Fig. 6.12 shows the auxiliary-field component of the total field,

found by taking the fields in Figs. 6.9 - 6.11 from the total field; Fig. 6.13 shows the total irrotational

component of the total field, found by summing the fields shown in Figs. 6.9 - 6.11; Fig. 6.14 shows the

irrotational component, found by quenching the system. The observed agreement between Figs. 6.13

and 6.14 reflects the energetic decoupling of the emergent field of the HXY model for this snapshot.
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In the emergent-field representation, the partition function is given by

ZHXY =

∫
D̄ẽ δ

(∑
x∈D

ρ(x)

)
exp

−a4βJ

2

∑
xi 6=xj

ρ(xi)G(xi,xj)ρ(xj)

 eβµn
× exp

(
−L

2β

2J
|Ēp +

2πJ

L
w|2
) ∏

x∈D

[
δ
(
∇̂ · ẽ(x)

)]
× δ

(∑
x∈D

ẽ(x)

)
exp

[
−a

2β

2J

∑
x∈D
|ẽ(x)|2

]
, (6.45)

which is derived using a similar method to that used for the Villain model. Here, the divergent core-

energy constants enforced by the geometry of the model result in zero contribution to the partition

function from non-elementary emergent charges, and the measure
∫
D̄ẽ is defined via

∫
D̄ẽ :=

∏
x∈D

[∫ π−Êx(x+aex/2)

−π−Êx(x+aex/2)
dẽx(x + aex/2)

∫ π−Êy(x+aey/2)

−π−Êy(x+aey/2)
dẽy(x + aey/2)

]
×

∑
{ρ(x)∈{0,±2π/a2}}

∑
w∈Z2

, (6.46)

where Ê is the irrotational component of the emergent electric field. The exponents related to the

irrotational component of the emergent field cannot be taken outside of the functional integral over the

rotational component of the emergent field: the (−π, π] restriction that constrains the emergent field

results in the available configurations of its rotational component being a function of each emergent-

charge configuration. Hence, while the rotational and irrotational components of the emergent field

energetically decouple, the partition function is not separable into Coulombic and auxiliary compo-

nents: the HXY model is not a precise emergent MR electrostatic model. At lower temperatures, the

partition function approximately decouples because emergent-charge density is low, resulting in approx-

imate emergent MR electrostatics; at higher temperatures, however, increased emergent-charge density

restricts the available auxiliary-field configurations such that approximate emergent MR electrostatics

breaks down. The (−π, π] restriction is lifted in the MR electrostatic and Villain models, since at least

one set of microscopic variables is permitted to explore all possible values, resulting in electrostatic

Coulombic physics at all temperatures.

In the emergent-field representation, the finite-size helicity modulus of the HXY model is given by

Υ̃(L, T ) = J

(
1− 1

2
χĒ(L, T )

)
, (6.47)

as was the case for the Villain model. Again, this expression is intimately related to the emergent

charge-charge correlations. It is therefore a measure of the emergent MR physics of the system, as well

as its emergent Coulombic conductivity: in this case, emergent Coulombic conductivity corresponds to
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Figure 6.4: The finite-size helicity modulus Υ̃ of the HXY model (left) and the inverse effective electric
permitivity ε−1

eff. of the two-dimensional Coulomb gas (right) as functions of temperature for systems of
linear size L = 8, 16, 32 and 64 (ε0 = J = 1). At higher temperatures, the finite-size helicity modulus be-
gins to increase with increasing temperature, thus signalling a breakdown of effective Coulombic physics
above the temperature at which the finite-size helicity modulus stops monotonically decreasing. Below
this breakdown, the HXY model behaves as an effective Coulomb gas with a temperature-dependent
effective electric permittivity. Finally, the finite-size helicity modulus does not reach zero for the system
sizes shown: the emergent effective electric permittivity therefore never diverges (for L = 64 and below)
and the system does not behave as an effective Coulombic conductor at high temperature.

the emergent charges being able to rearrange to completely cancel the effect of an externally applied

global twist in the spin field, which would result in a zero-valued helicity modulus.

Fig. 6.4 shows the helicity modulus Υ̃ of the HXY model (left) and the inverse effective electric

permittivity ε−1
eff. of the two-dimensional Coulomb gas (right) as functions of temperature for systems

of linear size L = 8 to 64. At lower temperatures, the helicity modulus displays the same monotonic

behaviour as the inverse effective electric permittivity; above T = 1.8, however, the helicity modulus

transitions into a monotonically increasing regime, never reaching zero.

The first observation shows that the HXY model statistically behaves as an effective Coulomb gas with

a temperature-dependent effective electric permittivity in the low-temperature region: one can pick a

temperature of the HXY model and compare the helicity modulus of that temperature with the inverse

effective electric permittivity of the Coulombic system to find the effective Coulombic temperature of

the magnetic system. The second observation shows that the effective Coulombic physics breaks down

in the high-temperature region of monotonically increasing behaviour: this confirms the breakdown

of effective emergent MR electrostatics at high temperatures predicted by the non-decoupling of the

partition function given by Eq. (6.45). Finally, a diverging effective electric permittivity is the key

signature of conductivity in Coulombic systems, hence, the observation that the helicity modulus does

not reach zero for the system sizes presented shows that the system does not behave as an effective

emergent Coulombic conductor for systems of linear size L = 64 and below. This is a result of the

emergent charges being constrained by the spin waves in such a way that, statistically, they cannot
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rearrange to completely cancel the effect of an externally applied global twist in the spin field. The

absence of this signature of emergent Coulombic conductance is due to the entropy of the spins being

lower for emergent-charge configurations that are able to cancel the global twists than for those that

cannot.

6.2.3 The 2dXY Model

The partition function of the XY model is given by

ZXY =

∫
D̄ϕ exp

βJ ∑
〈x,x′〉

cos(ϕ(x)− ϕ(x′))

 , (6.48)

whose exponent can be expanded to quadratic order for small spin differences, as shown in Section

2.3.2. Notice that the modular symmetry is enforced via the same mechanism as that of the HXY

model, but implicitly by the cosine function, in this case. Again, the emergent electric field is defined

as in Eq. (6.24), resulting in an emergent Gauss’ law equivalent to Eq. (6.25). The emergent electric

charges of the XY model are topological defects in both the spin-difference field ϕ(x + aei)−ϕ(x) and

the emergent electric field E.

The anharmonic terms in the Hamiltonian of the XY model result in a partition function that is not

separable into emergent Coulombic and auxiliary-field components at any temperature. The XY model

is therefore not a precise emergent MR electrostatic model. The helicity modulus, however, measures

the response of the system to an externally applied global twist in the spin field, and is therefore a

measure of the ability of the emergent charges to cancel the twist. Fig. 6.5 shows the helicity modulus

Υ̃ of the XY model as a function of temperature for systems of linear size L = 8 to 64. The helicity

modulus is a monotonically decreasing function of temperature, reaching zero at higher temperatures.

Although the XY model is not precisely an emergent Coulomb gas, the connection between the two

systems is a very close one [3, 4, 39]. The definitions of the helicity modulus of the XY model (Eq.

(2.110)) and the inverse effective electric permittivity of the Coulomb gas (Eq. (3.19)) are with re-

spect to analogous perturbations in their (emergent) electric-field representations, leading to analogous

monotonic behaviour in the helicity modulus of the XY model as that observed in the inverse effec-

tive electric permittivity of the Coulomb gas. This indicates that the XY model admits emergent

electrostatics to a good approximation, a standard result of the literature [3, 4, 39]. In addition, RG

calculations [4, 9, 39] show that these systems are in the same universality class at the BKT transi-

tion. In the high-temperature phase, the emergent charges of the XY model are able to rearrange to

completely cancel the effect of an externally applied global twist in the spin field, signalling emergent

conductance. Compared to the HXY model, the anharmonic terms in the Hamiltonian reduce the

energy of such emergent-charge configurations so that their reduced spin entropy cannot increase the

free-energy barrier to their formation to prohibitive values.
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Figure 6.5: The finite-size helicity modulus Υ̃ of the XY model as a function of temperature for
systems of linear size L = 8, 16, 32 and 64 (J = 1). The helicity modulus is a monotonically decreasing
function of temperature, reaching zero in the high-temperature phase of the BKT transition. In this
phase, the XY model therefore behaves as an emergent conductor.

6.2.4 Spin-update Mechanics of the XY Models

The mechanics of the spin updates of the XY models (that is, the HXY and XY models) are now

considered. Spin-wave updates are entirely equivalent to spin-wave updates in the Villain model; an

emergent-charge update is, however, a two-step process, and is the result of a particular type of spin

update. As shown in Fig. 6.6, if a spin update results in the difference between the value of the spin

and the value of an adjacent spin leaving the set (−π, π], the consequential modular update causes the

emergent charge to hop across to the relevant adjacent charge site. This two-step process is equivalent

to the superposition of a charge-hop and an auxiliary-field update in the MR electrostatic model, and

is due to the emergent charges being topological defects in the spin-difference field ϕ(x+ aei)− ϕ(x).
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Figure 6.6: A vortex-hop update in the XY models: The spin at the centre of the diagram has its
value decreased by an amount π/2 + δ (where we consider the small, positive δ to ensure that the
relevant spin difference leaves the set (−π, π]). Initially, we observe a spin update of the same form as
that of the Villain model. This is followed by an intrinsic modular-symmetry update: the emergent field
experiences the equivalent of an MR charge-hop update, with E12 +πJ/2+δJ 7→ E12 +πJ/2+δJ−2πJ .

6.2.5 Global Twists in the Spin Representation of the XY Models

As shown in Chapter 5, fluctuations in the winding component of the electric field of the two-dimensional

Coulomb gas signal the high-temperature phase of the BKT transition. In the Villain model, such

fluctuations arise via the same mechanism as that of the MR electrostatic model; in the XY models,

however, the subtle difference with respect to the mechanics of the emergent-charge updates causes

global twists in the spin field to map on to emergent winding fields.

Fig. 6.15 shows an emergent-charge pair, which has been created out of the vacuum but with an

idealized spin configuration, in an HXY or XY system. The pair unbind, wind around the torus in the

x direction, and, finally, annihilate one another in Figs. 6.16 – 6.18. The remnant MEC due to this

sequence of events is shown in Fig. 6.19: this spin configuration is equivalent to a global twist in the y

direction of the spin system. This spin configuration is mapped on to the emergent-field representation

in Fig. 6.20 thus showing the equivalence between global twists in the spin representation and non-trivial

topological sectors in the emergent-field representation.

Since the XY models admit an emergent electric field of the form of the lattice electric fields of the

MR electrostatic model, the twists in the spin representations seen here correspond to the winding of

electrical charges around the torus in the Coulomb gas. The topological-sector fluctuations observed in

the Coulomb gas in the high-temperature phase of the BKT transition (Chapter 5) therefore correspond

to twist fluctuations in the spin field of the XY models. This elucidation of the equivalence between

twist fluctuations in the spin-field representation and topological-sector fluctuations in the emergent-

field representation shows the utility of representing the XY models with the quasi-MR electrostatic

model presented here: the result of Chapter 5 is now seen to have relevance to real magnetic systems.

The topological-sector fluctuations of Chapter 5 could be observable in ultrathin ferromagnetic metallic
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films [61], magnetic Langmuir-Blodgett films [62, 63], or ferromagnetic films with a ‘washer’ geometry

(PBCs in one direction).

6.3 The Harmonic Model

It is instructive to consider the purely harmonic planar-spin model, the Villain and HXY models with

the modular periodicity removed. From this discussion, it is now clear as to why no BKT transition

occurs in this spin model: the lack of modular periodicity results in the model having no update

analogous to the charge-hop updates of the MR electrostatic model, so that the irrotational component

of the emergent electric field returns zero for all field bonds at all temperatures.
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Figure 6.7: The spin representation of a snapshot of a 20 × 20 HXY simulation at T = 2J/kB. Red
circles are positive emergent charges; blue circles are negative emergent charges.
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Figure 6.8: The emergent-field representation of Fig. 6.7. The absolute values of the field lines are
relative within each figure. Red circles are positive emergent charges; blue circles are negative emergent
charges.
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Figure 6.9: The polarization component of Ē of the field configuration in Fig. 6.8, given by Ēp =
−2π(9, 7)/L. The absolute values of the field lines are relative within each figure.
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Figure 6.10: The winding-field component of Ē of the field configuration in Fig. 6.8. The system’s
topological sector is given by w = (1, 0). The absolute values of the field lines are relative within each
figure.
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Figure 6.11: The Poisson component −∇̃φ of the field configuration in Fig. 6.8 as found via the
employment of a linear solver. The absolute values of the field lines are relative within each figure. Red
circles are positive emergent charges; blue circles are negative emergent charges.
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Figure 6.12: The auxiliary-field component Ẽ of the total field configuration in Fig. 6.8. The absolute
values of the field lines are relative within each figure.
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Figure 6.13: The electrostatic component Ē − ∇̃φ of the field configuration in Fig. 6.8, found by
applying the linear solver to the topological-defect configuration in Fig. 6.8 (and adding the harmonic
mode of the emergent field in Figs. 6.9 and 6.10). The absolute values of the field lines are relative
within each figure. Red circles are positive emergent charges; blue circles are negative emergent charges.
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Figure 6.14: The electrostatic component Ē − ∇̃φ of the field configuration in Fig. 6.8, found by
quenching the HXY system. The absolute values of the field lines are relative within each figure. Red
circles are positive emergent charges; blue circles are negative emergent charges.
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- +

Figure 6.15: An emergent-charge pair in the XY models with an idealized spin configuration.
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- +

Figure 6.16: The positive emergent charge has hopped to the right.



Chapter 6. Emergent Electrostatics in XY-type Spin Models 106

- +

Figure 6.17: The emergent charge has hopped to the right again.
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Figure 6.18: The emergent charges have annihilated.



Chapter 6. Emergent Electrostatics in XY-type Spin Models 108

Figure 6.19: The MEC corresponding to Fig. 6.18.
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Figure 6.20: Fig. 6.19 with the emergent field shown in black.



Chapter 7

Bramwell-Holdsworth Theory in

General BKT Systems

This thesis has been based around the emergent electrostatics of XY-type spin models. In this chapter,

a final link between the harmonic-mode susceptibility of the Coulombic system and the magnetization

of the magnetic system is presented. From this, it follows that BH theory applies to the non-magnetic

system, and is in fact measurable in superfluid 4He films.

7.1 Effective Spin Stiffness

To begin, instead of employing the BH ansatz (Eq. (2.135)), the partition function of the XY-type spin

model in question is identified with the effective partition function that was defined in Eq. (2.115). This

makes intuitive sense since the object (K̃eff.(L, T )−K(T )) describes the deviation of the the finite-size

system from harmonic spin-wave behaviour. Following the same method as that in Section 2.3.5, the

magnetization of the system is then given by

〈m〉 =

(
1

cN

)1/8πK̃eff.(L,T )

(7.1)

for all temperatures. The BH ansatz amounts to asserting that replacing K̃eff. with Keff. in the exponent

of the above expression for T ≤ T ∗(L) should be a limitingly good approximation in the thermodynamic

limit; however, numerical and experimental evidence (see Section 2.5) suggests that this is approximately

true at finite system size. We recall that these two objects are related by Eq. (2.116):

Keff.(T ) := lim
L→∞

[
K̃eff.(L, T )

]
. (7.2)

110
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Analysis is restricted to the Villain model, since this system is analytically tractable. Eq. (7.1) results

from performing a spin-wave analysis on the effective partition function Zeff. (Eq. (2.115)), which is

valid since the identification Z ≡ Zeff. is made (throughout, all partition functions and thermal averages

are for the Villain model). A similar analysis is now performed on the left-hand side of the identification

Z ≡ Zeff..

The Hamiltonian of the Villain model is expanded to give

βH =
βJ

2

∑
x,x′

ϕ(x)G̃(x,x′)ϕ(x′) + 2πβJ
∑
x

θ(x)∆s(x) + 2π2βJ
∑
〈x,x′〉

s(x,x′)2, (7.3)

where ∆s(x) :=
∑

i∈{x,y}∆si(x), with ∆si(x) := si(x + aei/2) − si(x − aei/2) and si(x + aei/2) :=

s(x,x′). Following a similar method to that used in Section 2.3.5, the partition function can then be

written as

Z =
∑

{s(x,x′)∈Z}

∫
D̄ϕ exp

(
−1

2
ϕTAϕ− jTϕ

)
exp

−2π2βJ
∑
〈x,x′〉

s(x,x′)2

 , (7.4)

where

j := 2πβJ


∆s(x1)

...

∆s(xN )

 (7.5)

is the modular current. The thermal average of any scalar function f can now be expressed as

〈f(ϕ)〉 :=
1

Z

∑
{s(x,x′)}

∫
D̄ϕf(ϕ) exp (−βH) (7.6)

=
1

Z

∑
{s(x,x′)}

∫
D̄ϕf(ϕ) exp

(
−1

2
ϕTAϕ− jTϕ

)
exp

−2π2βJ
∑
〈x,x′〉

s(x,x′)2

 (7.7)

=
1

Z

∑
{s(x,x′)}

∫
D̄ϕf

(
− δ

δb

)
exp

(
−1

2
ϕTAϕ

)
exp

[
−(jT + bT )ϕ

]

× exp

−2π2βJ
∑
〈x,x′〉

s2
x,x′

∣∣∣∣∣∣
b=0

(7.8)

=
(2π)N/2

Z
√

det A

∑
{s(x,x′)}

f

(
− δ

δb

)
exp

[
1

2
(jT + bT )A−1(j + b)

]

× exp

−2π2βJ
∑
〈x,x′〉

s(x,x′)2

∣∣∣∣∣∣
b=0

. (7.9)
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We define ∂i := ∂/∂bi, and compute

∂µ∂ν exp

[
1

2
(jα + bα)A−1

αβ(jβ + bβ)

]∣∣∣∣
b=0

=
1

2

(
A−1
µν +A−1

νµ

)
exp

(
1

2
jρA

−1
ρσ jσ

)
+

1

4

(
A−1
µα +A−1

αµ

) (
A−1
νβ +A−1

βν

)
jαjβ

× exp

(
1

2
jρA

−1
ρσ jσ

)
, (7.10)

where implicit summations over repeated Greek indices are taken. Hence,

〈ϕµϕν〉 =
1

Z

∑
{s(x,x′)∈Z}

[
1

2

(
A−1
µν +A−1

νµ

)
+

1

4

(
A−1
µα +A−1

αµ

) (
A−1
νβ +A−1

βν

)
jαjβ

]

×
∫
D̄ϕ exp (−βH) , (7.11)

which simplifies to

〈ϕµϕν〉 =
1

2

(
A−1
µν +A−1

νµ

)
+

1

4
〈
(
A−1
µα +A−1

αµ

) (
A−1
νβ +A−1

βν

)
jαjβ〉s, (7.12)

where 〈. . . 〉s denotes a quasi-thermal average over the modular s variables.

To connect with the magnetization of the system, the object

〈ϕ2
0〉 = A−1

00 +
1

4
〈
(
A−1

0α +A−1
α0

) (
A−1

0β +A−1
β0

)
jαjβ〉s, (7.13)

is computed. In Section 2.3.5, it was shown that

A−1
ij =

1

K
G(xi,xj). (7.14)

Combining the above two equations with Eq. (2.73), the magnetization of the system is then given by

〈m〉 =

(
1

cN

)1/8πK

exp

−π2

2
〈
[∑

x∈D′
(G(x) +G(−x)) ∆s(x)

]2

〉s

 (7.15)

(using 〈ϕ2
0〉 = 〈ψ2

0〉, as shown in Appendix B), which, when combined with Eq. (7.1), generates

K̃−1
eff.(L, T ) = K−1 +

4π3

ln(cN)
〈
[∑

x∈D′
(G(x) +G(−x)) ∆s(x)

]2

〉s. (7.16)

This equation describes the deviation of the finite-size effective spin stiffness K̃eff. of the Villain model

from its spin-wave behaviour. As in Section 2.3.5, the Abel-Plana formula was used.

Eq. (7.11) relates the the spin-spin correlation with a quasi-thermal average: this is not a true thermal

average. However, for weak coupling between the spin ϕ and modular s variables, which corresponds
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to low topological-defect density, the total Boltzmann weighting for the coupling between spin and

modular variables is small. In this weak-coupling regime, we can therefore approximate Eq. (7.11) by

moving the expression in the square parentheses back inside the functional integral over spin variables∫
Dϕ:

〈ϕµϕν〉 '
1

Z

∑
{s(x,x′)∈Z}

∫
D̄ϕ

[
1

2

(
A−1
µν +A−1

νµ

)
+

1

4

(
A−1
µα +A−1

αµ

) (
A−1
νβ +A−1

βν

)
jαjβ

]
e−βH . (7.17)

We therefore approximate

〈ϕ2
0〉 ' A−1

00 +
1

4
〈
(
A−1

0α +A−1
α0

) (
A−1

0β +A−1
β0

)
jαjβ〉 (7.18)

for low topological-defect density. Defining

Ḡx/y(x + aex/y/2) :=G(x) +G(−x)−G(x + aex/y)−G(−x− aex/y), (7.19)

this approximation is written in the more compact form:

〈ϕ2
0〉 '

1

K
G(0) + π2〈

[∑
x∈D′

Ḡ(x) · s(x)

]2

〉. (7.20)

The magnetization is then approximated by

〈m〉 '
(

1

cN

)1/8πK

exp

−π2

2
〈
[∑

x∈D′
Ḡ(x) · s(x)

]2

〉

 , (7.21)

for low topological-defect density. This is an approximate correction to the spin-wave expression of

the magnetization of the Villain model for low topological-defect density, but in terms of true thermal

averages.

We are able to simplify the thermal average in the exponent of the above equation by employing the

weak-coupling argument: 〈sx(x + aex/2)sy(x
′ + aey/2)〉, 〈sx(x + aex/2)sx(x′ + aex/2)〉, and 〈sy(x +

aey/2)sy(x
′ + aey/2)〉 are all small compared with 〈s2

x(x + aex/2)〉 and 〈s2
y(x + aey/2)〉 in the weak-

coupling regime, where the second and third expressions are for x 6= x′. It follows that

〈
[∑

x∈D′
Ḡ(x) · s(x)

]2

〉 '
∑
x∈D′

Ḡ2
x(x + aex/2)〈s2

x(x + aex/2)〉

+
∑
x∈D′

Ḡ2
y(x + aey/2)〈s2

y(x + aey/2)〉 (7.22)

=〈s2
x〉
∑
x∈D′

Ḡ2
x(x + aex/2) + 〈s2

y〉
∑
x∈D′

Ḡ2
y(x + aey/2) (7.23)
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for low topological-defect density. This can be further simplified:

∑
x∈D′

Ḡ2
x(x + aex/2) =

∑
x∈D′

∑
k,k′ 6=0

γkγk′e
ix·(k+k′)(1− eiakx)(1− eiak′x)

+
∑
x∈D′

∑
k,k′ 6=0

γkγk′e
ix·(k−k′)(1− eiakx)(1− e−iak′x)

+
∑
x∈D′

∑
k,k′ 6=0

γkγk′e
−ix·(k−k′)(1− e−iakx)(1− eiak′x)

+
∑
x∈D′

∑
k,k′ 6=0

γkγk′e
−ix·(k+k′)(1− e−iakx)(1− e−iak′x)

=2G(0), (7.24)

and similarly in the y-component. Hence,

〈
[∑

x∈D′
Ḡ(x) · s(x)

]2

〉 ' 1

2π
ln(cN)

(
〈s2
x〉+ 〈s2

y〉
)

(7.25)

for low topological-defect density, where we have again used the Abel-Plana formula. The inverse

finite-size effective spin stiffness K̃−1
eff. is then approximated by

K̃−1
eff.(L, T ) ' K−1 + 2π2

(
〈s2
x〉+ 〈s2

y〉
)

(7.26)

for low topological-defect density.

7.2 Connection with José et al.

It is worth pausing here to check the relationship between this result and the RG equations of José et

al. [4]. The factor

∑
x∈D′

x2〈m(0)m(x)〉 (7.27)

in Eq. (4.34) of José et al. [4] can be related to our expression by considering the definition of the m

values in José et al. [4]. They are given by m(x) = ∆s(x) in our notation. Using the same weak-coupling

arguments for the non-〈s2
x〉-like terms, we approximate

∑
x∈D′

x2〈m(0)m(x)〉 ' −a2
(
〈s2
x(aex/2)〉+ 〈s2

y(aey/2)〉+ 〈s2
x(3aex/2)〉+ 〈s2

y(3aey/2)〉
)
. (7.28)

Eq. (4.34) of José et al. [4] then becomes

K−1
eff. ' K−1 + 2π2

(
〈s2
x〉+ 〈s2

y〉
)

(7.29)
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in the weak-coupling regime (a factor of 2 comes from the erratum of José et al. [40]), which is the

same as our expression for K̃−1
eff. . Note that our connection with the finite-size effective spin stiffness

allows for a connection to be made with the finite-size magnetization before the thermodynamic limit

is taken.

7.3 Harmonic-mode Susceptibility

To relate our quantity to the harmonic-mode susceptibility, we switch to the emergent-field representa-

tion. In Chapter 6, we showed that the Villain model admits an emergent electric field E: the effective

spin stiffness can be expressed in terms of the harmonic-mode susceptibility of the emergent field χĒ.

The definition of Ē results in

Ēx =
2πJ

Na

∑
x∈D′

sx(x + aex/2), (7.30)

and similarly in y. Hence,

〈Ē2
x〉 =

4π2J2

N2a2
〈
[∑

x∈D′
sx(x + aex/2)

]2

〉 (7.31)

=
4π2J2

N2a2
〈
∑
x∈D′

s2
x(x + aex/2) +

∑
x6=x′

sx(x + aex/2)sx(x′ + aex/2)〉 (7.32)

'4π2J2

N2a2
N〈s2

x〉 (7.33)

for low topological-defect density, and similarly in the y-component. It then follows that

〈Ē2〉 = 〈Ē2
x + Ē2

y〉 '
4π2J2

N2a2
N〈s2

x + s2
y〉, (7.34)

and hence that

K̃−1
eff.(L, T ) 'K−1(T ) + 2π2 Na2

4π2J2
〈Ē2〉 (7.35)

=K−1(T ) +
L2

2J2
〈Ē2〉 (7.36)

=K−1(T ) +
1

2
K−1(T )

βL2

J
〈Ē2〉 (7.37)

=K−1(T ) +
1

2
K−1(T )χĒ(L, T ) (7.38)

=K−1(T )

(
1 +

1

2
χĒ(L, T )

)
(7.39)
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for low topological-defect density. Combining this with Eq. (7.1), we have that

〈m〉 '
(

1

cN

)(1+χĒ(L,T )/2)/8πK(T )

(7.40)

for low topological-defect density.

7.4 The Helicity Modulus

The connection with the finite-size helicity modulus Υ̃ is made in this section. Eq. (7.39) becomes an

equality in the limit of vanishing χĒ, since all approximations used in this chapter become equalities in

this limit. It follows that the perturbation K−1(T ) 7→ K−1(T ) (1 + χĒ(L, T )/2) describes the change

in the inverse effective spin stiffness due to an infinitesimally small increase in the value of χĒ from

zero. In the following, we apply a Dyson-like self-consistent approach to applying this perturbation an

infinite number of times. It follows that

(
K−1

)′
(L, T ) = K−1(T ) +K−1(T )

1

2
χĒ(L, T ) (7.41)

is the first perturbation of the inverse spin stiffness. On the right-hand side of the above equation,

repeating this perturbation to the inverse spin stiffness that has not already been perturbed (i.e., the

right-hand inverse spin stiffness), it follows that

(
K−1

)′′
(L, T ) =K−1(T ) +

(
K−1

)′
(L, T )

1

2
χĒ(L, T ) (7.42)

=K−1(T )

(
1 +

1

2
χĒ(L, T ) +

1

4
χ2

Ē(L, T )

)
(7.43)

is the second perturbation of the inverse spin stiffness. Repeating this perturbation an infinite number

of times, we find the inverse finite-size effective spin stiffness:

K̃−1
eff.(L, T ) ≡

(
K−1

)∞
(L, T ) (7.44)

=K−1(T )

(
1 +

1

2
χĒ(L, T ) +

1

4
χ2

Ē(L, T ) +
1

8
χ3

Ē(L, T ) + . . .

)
(7.45)

=K−1(T )

(
1− 1

2
χĒ(L, T )

)−1

, (7.46)

where the symbol ∞ denotes an infinite number of perturbations. Taking the reciprocal of the above

equation, it follows that

K̃eff.(L, T ) = K(T )

(
1− 1

2
χĒ(L, T )

)
= βΥ̃(L, T ), (7.47)
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which relates the finite-size effective spin stiffness to the finite-size helicity modulus in the limit of small

χĒ. We expect this expression to be a good approximation at any temperature at which topologi-

cal defects are bound, and to therefore remain a good approximation up to the finite-size transition

temperature T ∗(L), where topological defects begin to unbind.
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Figure 7.1: Eq. (7.48) (analytically continued into the high-temperature regime in which it breaks
down for the modest system sizes shown) as a function of T for two-dimensional Coulomb gases of
elementary charges (with the core-energy constant set to zero). The data sets are for systems of linear
system size L = 32 (red dots), 64 (blue stars), and 128 (green crosses). Dashed / solid vertical grey
lines meet each curve at T = T̃ ∗(L) / T = T̃C(L).

Combining Eqs. (7.1) and (7.47), it follows that

〈m〉 =
(

1

cN

)1/8πβΥ̃(L,T )

(7.48)

in the limit of small χĒ. Again, we expect this expression to remain a good approximation up to the

temperature T = T ∗(L). As the behaviour of the helicity modulus at the BKT transition is universal in

XY-type spin models, it follows that Eqs. (7.47) and (7.48) should apply to all XY-type spin models.

Fig. 7.1 shows Eq. (7.48) analytically continued into the high-temperature regime in which it breaks
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down. The data sets are for elementary-charge Coulomb gases of linear sizes L = 32, 64 and 128, where

we have recalled Eq. (6.36):

ε−1
eff.(L, T ) ≡ Υ̃(L, T ), (7.49)

which is a result of the equivalence between the MR electrostatic and Villain models.

This analysis is seen to be consistent with Eq. (2.117) of BKT theory when the thermodynamic limit

of Eq. (7.47) is taken for T ≤ TBKT:

Keff.(T ) = lim
L→∞

[
K̃eff.(L, T )

]
= β lim

L→∞

[
Υ̃(L, T )

]
= βΥ(T ). (7.50)

7.5 Preliminary Applications

The relationship between the magnetization and the finite-size helicity modulus seen in Eq. (7.48)

suggests that the signature of BH theory - the unique value of the effective critical exponent - outlined

in Section 2.5 should be measurable through the helicity modulus of the XY-type spin model in question.

This section comprises of a preliminary study of the relationship between the helicity modulus and BH

theory.

7.5.1 Finite-size Transition Temperatures: Revision

In finite-size BKT systems, the two transition temperatures are the upper (TC(L)) and lower (T ∗(L))

bounds of the temperature range over which the transition occurs. In BH theory, the effective critical

exponent is measured with respect to the reduced temperature t(L) := TC(L)− T at the lower bound

of the transition. This lower bound is the temperature at which

K̃eff.(L, T ) = 2/π. (7.51)

In the vicinity of this temperature, few topological defects are unbound, hence Eq. (7.48) is a good

approximation. For a measurement of the signature of BH theory via the helicity modulus to be

considered rigorous, the finite-size transition temperatures must be measured through the finite-size

helicity modulus. We define T̃ ∗(L) to be the lower bound of the transition as measured via the finite-

size helicity modulus:

βΥ̃(L, T ) = 2/π (7.52)
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at T = T̃ ∗(L). Since Eq. (7.48) is a good approximation in the vicinity of the lower bound of the

transition, it follows that T̃ ∗(L) ' T ∗(L). The vertical dashed grey lines in Fig. 7.1 meet each curve

at the T̃ ∗(L) of the corresponding system size.

Topological defects deconfine at temperatures above the lower bound so that, for modest system sizes,

Eq. (7.48) completely breaks down: defining an upper bound of the transition with respect to the

finite-size helicity modulus will give a markedly different value to the true TC(L) of BH theory. For

very large systems, however, the βΥ̃ and effective spin-stiffness curves converge, as seen in Eq. (2.117).

The upper bound of the transition as measured through the finite-size helicity modulus will therefore

converge on the true TC(L) in the asymptotic regime of very large system size (as will T̃ ∗(L) on T ∗(L)):

the signature of BH theory is expected to measurable through the helicity modulus in the limit of very

large system size. We test the appearance of this signature on modestly sized Coulombic systems, before

extending into the asymptotic regime in the final subsection, where we apply BH theory to superfluid

4He data, which corresponds to an extremely large Coulombic system. It must be kept in mind that

any signature measured through the finite-size helicity modulus at modest system size is only to be

taken as an indicator of this signature being truly measurable in the asymptotic regime.

To proceed, a pragmatic revision of the upper bound (with respect to the finite-size helicity modulus)

is the temperature at which the analytically continued curve of Eq. (7.48) has decreased to the fourth

power of its value at T = T̃ ∗(L): the upper bound T̃C(L) is therefore defined to be the point at which

βΥ̃(L, T ) = 1/2π. (7.53)

The vertical solid grey lines in Fig. 7.1 meet each curve at the T̃C(L) of the corresponding system size,

which is seen to be a good, pragmatic estimate of the upper bound of the transition. The reduced

temperature with respect to the finite-size helicity modulus t̃(L) is now defined via

t̃(L) := T̃C(L)− T. (7.54)

Considering Eqs. (2.128) and (2.131), these new definitions of the bounds of the finite-size transition

range necessarily result in a floating, system-size dependent T̃BKT(L): this object has no physical

significance at modest system sizes. It does, however, scale like 1/ ln(L) to TBKT = 1.35 (to three

significant figures) in the thermodynamic limit, recovering consistency with the asymptotic regime.
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Figure 7.2: ln (1/cN) /8πβΥ̃(L, T ) versus ln(t̃(L)) for two-dimensional Coulomb gases of elementary
charges (with the core-energy constant set to zero). The data sets are for systems of linear system sizes
L = 32 (red dots), 64 (blue stars), and 128 (green crosses). Straight lines with gradients of 3π2/128 are
superimposed on each data set at t̃(L) = T̃C(L)− T̃ ∗(L), which is represented by the red (L = 32), blue
(L = 64), and green (L = 128) vertical dashed lines.

7.5.2 The Critical Exponent

The connection with BH theory now follows. Combining the approximation of Eq. (7.48) at T = T̃ ∗(L)

with standard BH theory, we predict that

3π2

128
� ln (1/cN)

8π

∂
(
kBT/Υ̃(L, T )

)
∂ ln(t̃(L))

∣∣∣∣∣∣
T=T̃ ∗(L)

. (7.55)

for large but modestly sized Coulomb / Villain systems. We stress again that any agreement with

this prediction should only be taken as an indication of the signature of BH theory being measurable

through the finite-size helicity modulus in the asymptotic regime, where T̃C(L) converges on TC(L) so

that the temperatures of the above equation can be replaced by their non-tilde counterparts.
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Fig. 7.2 shows ln (1/cN) /8πβΥ̃(L, T ) versus ln(t̃(L)) for two-dimensional Coulomb gases of elementary

charges (with the core-energy constant set to zero). The data sets are for systems of linear size L = 32,

64 and 128. Tangents with gradients of 3π2/128 are compared with each data set, and vertical lines

show each T̃ ∗(L). We observe excellent comparisons between the data and the tangents at T = T̃ ∗(L)

for all system sizes, as predicted by Eq. (7.55). This result, combined with the scaling of the floating

T̃BKT(L) to TBKT (as 1/ ln(L)) into the asymptotic regime, indicates that the effective critical exponent

of BH theory should be measurable through the finite-size helicity modulus in the limit of very large

but finite system size. The requirement of an asymptotically large system is not a drawback of the

theory, as the thermodynamic limit of Eq. (2.108) is approached so slowly that any real BKT system

would be asymptotically large but finite [19].

7.5.3 Superfluid Films

Superfluid 4He films are described by the two-dimensional Coulomb gas [9–12] with

Υ̃(L, T ) =
m2

~2
ρs(L, T ), (7.56)

where m is the mass of 4He, ~ is the reduced Planck’s constant, and ρs is the superfluid density. The

data presented in the work of Bishop and Reppy [11, 12] corresponds to a superfluid film of linear size

L = e12, an extremely large but finite effective Coulomb gas for which

K̃eff.(L, T ) ' βΥ̃(L, T ) (7.57)

at T = T̃C(L) ' TC(L). We therefore combine Eqs. (7.48) and (7.56) to transform data digitized from

Bishop and Reppy [11, 12] into an effective magnetization given by

〈m〉 =

(
1

cN

)~2/8πβm2ρs(L,T )

(7.58)

in the asymptotic regime corresponding to the Bishop-Reppy experiment [11, 12], which has been set as

an equality since K̃eff.(L, T ) has effectively converged on βΥ̃(L, T ) at T = T̃C(L) ' TC(L). From this,

we expect to measure an effective critical exponent of β̃ = 3π2/128 at T = T ∗(L), which corresponds

to measuring the signature of BH theory through the finite-size helicity modulus of an asymptotically

large Coulomb gas. Since the system is in the asymptotic regime, we drop the tilde from T̃ ∗(L) and

T̃C(L), as these temperatures have effectively converged on their true counterparts of Section 2.5.

The Bishop-Reppy experiment [11, 12] consists of a 4He film adsorbed on a sheet of Mylar that has been

wrapped into a coil. A sinusoidal driving frequency ω is applied to the Mylar coil in the direction of its

long axis. This generates a frequency-dependent analogue of the electric permittivity of the Coulomb

gas ε(ω, T ) [10]. Bishop and Reppy then measured the reduced shift in the period of oscillation of the
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Mylar coil ∆P/P , as well as the superfluid dissipation Q−1 of the 4He film. This reduced shift in the

period of oscillation is due to the 4He film decoupling from the Mylar coil as its superfluid density

increases at low temperature. By defining

p(ω, T ) :=
2∆P (ω, T )

P (T )
(7.59)

and

q(ω, T ) := Q−1(ω, T ), (7.60)

it follows from Eqs. (A4) and (A5) of Bishop and Reppy [12] that

p(ω, T ) = CRe
[
ε−1(ω, T )

]
(7.61)

and

q(ω, T ) = CIm
[
−ε−1(ω, T )

]
, (7.62)

where C is a constant given in the paper.

Upon setting ε′(ω, T ) and ε′′(ω, T ) to be the real and imaginary parts of ε(ω, T ), respectively, it follows

from Eq. (9) of Ambegaokar et al. (AHNS) [10] that

ε′(ω, T ) = ε(r = L(ω), T ) (7.63)

and

ε′′(ω, T ) =
π

4

∂ε(r, T )

∂ ln r

∣∣∣∣
r=L(ω)

, (7.64)

where the dynamic length scale L(ω) :=
√

14D/a2ω (defined in anticipation that it will correspond to

an effective linear system size of the Coulomb gas) is taken from Bishop and Reppy [12], and, from José

et al. [4], ε(r, T ) is the static, distant-dependent analogue of the permittivity that includes the effect

of screening only from topological-defect pairs whose separation distance d ≤ r (it is standard to use

the same notation for the static and dynamic permittivities). Combining Eqs. (7.61) to (7.64), it then

follows that

ε−1(L(ω), T ) =
p(ω, T )

C

(
1 +

(
q(ω, T )

p(ω, T )

)2
)
, (7.65)
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which,whencombinedwithEqs.(6.36)and(7.56),canberewrittenas

ρs(L(ω),T)=
2J

Cm2
p(ω,T) 1+

q(ω,T)

p(ω,T)

2

. (7.66)

ThisissetasanequalitysinceEq.(7.57)convergesonanequalityatT=TC(L)intheasymptotic

regimeoftheBishop-Reppyexperiment.SubstitutingtheaboveexpressionintoEq.(7.58)providesa

routetotestingtheapplicabilityofBHtheorytothesuperfluidfilm.Althoughnotstatedexplicitly,it

appearsthatBishopandReppysetJ=2T∗(L)/π
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Figure7.3:DigitizedBishop-Reppysuperfluiddatatransformedintoaneffectivefinite-sizemagneti-
zation(left)andonalog-logscale(right),withBHβ̃=3π2/128curvessuperimposedinred.T∗(L)
(left-handredcircle)andTBKT(right-handredcircle)aremarkedontheright-handplot.Intheregion
ofthedashedline,BHtheoryisnotexpectedtodescribethedata.Therearenofittedparameters:all
parametersaretakenfromtheworkofBishopandReppy[11,12].Theblackdataisthetotalsuperfluid
density,asgivenbythefullAHNStheory;thebluedatacorrespondstosettingq(ω,T)=0,whichis
onlypermittednearT=T∗(L)andbelow:thissubtletyisoutlinedinAppendixD.

Fig. 7.3showsthesignatureofBHtheorytobehiddenintheexperimentaldataofBishopand

Reppy[11,12]. WeextractthesuperfluiddensityfromthedigitizeddatausingEq.(7.66)andtransform

thisintotheeffectivemagnetizationgivenbyEq.(7.58). WeplotthisquantityasafunctionofT(left)

andreducedtemperaturet(L):=TC(L)−T(right),wheretheright-handplotisonalog-logscale,and

TinunitsofK.Thedatapresentedhasnofittedparameters:T∗(L)=1.2043K,TC(L)=1.215K,

andL=e12arealltakenasquotedinBishopandReppy[11,12].Inserting̃β=3π2/128atT=T∗(L)

intoEq.(2.133),itfollowsthat

1

cN

1/16

=const.(TC(L)−T
∗(L))3π

2/128. (7.67)
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From this, BH theory then predicts that

〈m〉 =

(
1

cN

)1/16

(TC(L)− T ∗(L))−3π2/128 (TC(L)− T )3π2/128 (7.68)

at T = T ∗(L). We superimpose this curve in red on both plots in Fig. 7.3, again, with no fitted

parameters, showing agreement between the curves and the data at T = T ∗(L): BH theory is shown to

apply to real, thin-film superfluids, and its signature is in fact hidden in the data of the seminal work

of Bishop and Reppy [11, 12].

Further to showing that BH theory applies to the superfluid film, the analysis presented in this subsec-

tion also offered an asymptotically large effective Coulomb gas on which to test the validity of measuring

the signature of BH theory through the effective electric permittivity / helicity modulus of the Coulomb

gas / Villain model. This final subsection has shown that, for sufficiently large systems, the analysis

leading to Eq. (7.55) holds: it is inferred that BH theory applies to general BKT systems, and its

signature can be measured through the finite-size helicity modulus of sufficiently large but finite-size

systems.



Chapter 8

Conclusions

In conclusion, we have investigated two important properties of the BKT transition: the signalling

of the high-temperature phase by topological-sector fluctuations and the applicability of BH theory

to general BKT systems. This was performed in parallel with the helpful mapping between the MR

electrostatic model applied to the two-dimensional Coulomb gas and Villain’s approximation to the XY

model of magnetism.

We simulated the two-dimensional lattice Coulomb gas on a torus using the MR algorithm with both

local and global updates employed to relate topological-sector fluctuations in the electric field to the

BKT phase transition. Topological-sector fluctuations in the electric field switch on precisely at the BKT

transition temperature. Our analysis showed that, in the case of the BKT transition, the ordering of a

conventional order parameter is replaced by topological ordering through an ergodicity breaking between

the topological sectors. The topological order is directly related to the confinement-deconfinement

transition of the charges, the local topological defects of the electric field. This type of ergodicity

breaking is distinct from either the symmetry breaking that characterizes a standard phase transition,

or that due to the rough free-energy landscape that develops at a spin-glass transition [27].

The topological-sector fluctuations are very clearly revealed in the lattice electric field description of the

two-dimensional Coulomb gas, but we expect them to be equally relevant to any system that has a BKT

transition. In suitable systems, the winding-field susceptibility that signals the onset of topological-

sector fluctuations will contribute to experimentally measurable responses of the system. A promising

system on which to measure these topological-sector fluctuations is the one-dimensional quantum lattice

Bose gas. When the system is placed on a ring, its angular momentum is no longer a good quantum

number. The angular momentum can therefore fluctuate quantum mechanically, and the system should

undergo a dramatic increase in these fluctuations as it passes through the superfluid – Mott insulator

quantum phase transition [64, 65]. This dramatic increase in the fluctuations corresponds to finite-

valued global topological defects in the quantum system, and therefore, via the Feynman path-integral
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mapping, to topological-sector fluctuations in the two-dimensional classical lattice Coulomb gas on a

torus. Murray et al. measured the angular momentum of ring-shaped Bose-Einstein condensates via the

vortex-density profile of the system [66]. Our measure of the BKT transition could therefore correspond

to equivalent, experimentally measurable topological-sector fluctuations in the cold-atom system.

We performed a series of simulations of the two-dimensional XY and HXY models in order to confirm

the emergent Coulomb lattice Green’s function of the HXY model and to probe the effective Coulombic

behaviour of the two models. This, combined with analytic work on the MR electrostatic and Villain

models, allowed us to elucidate the emergent Coulombic physics of XY-type spin models and to show

that topological-sector fluctuations in the emergent electric field of the XY models correspond to twist

fluctuations in their spin fields. The signature of the topological-sector fluctuations of Chapter 5 could

therefore be observable in ultrathin ferromagnetic metallic films [61], magnetic Langmuir-Blodgett

films [62, 63], or ferromagnetic films with a ‘washer’ geometry (PBCs in one direction).

The emergent electrostatics shown by the mapping allowed us to use the Villain model to show that

BH theory applies to the general BKT system: the unique value of the effective critical exponent of

BH theory is hidden in the classic experimental data of the superfluid 4He film [11]. This unification of

identical, experimentally measurable signatures in the ferromagnetic and superfluid films is a triumph

of both BH and BKT theory, and provides an incredible example of the power of statistical mechanics

and the renormalization group.



Appendix A

Dimensional Analysis of the

Two-dimensional Coulomb Gas

In the following, [ . . . ] denotes the units of some quantity, L denotes the dimensions of length, d is the

spatial dimensionality of the system, and ε0 is the vacuum permittivity in d-dimensional space.

With Gauss’ law on a lattice,

∇̂ ·E(x) = ρ(x)/ε0, (A.1)

and the dimensions of the electric-charge density in d dimensions,

[ρ(x)] = [q]L−d, (A.2)

it follows that

[E(x)] = [q]L(1−d) [ε0]−1 . (A.3)

The exponent of the Boltzmann probability must be dimensionless, hence,

1 =

[
adβε0

2

∑
x∈D
|E(x)|2

]
(A.4)

=Ld [β] [ε0] [E(x)]2 (A.5)

⇔ [ε0]−1 =Ld [β] [E(x)]2 (A.6)

⇒ [E(x)] =[q]L(1−d)Ld [β] [E(x)]2 (A.7)

⇔ [E(x)] =[q]−1L−1 [β]−1 . (A.8)
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In d = 2, we set the charge to be dimensionless, and it follows that

[E(x)] = [β]−1L−1, (A.9)

and hence that

[ε0] = [β] . (A.10)

The same dimensions follow for the electric fields of the continuum system.



Appendix B

Spin-wave Analysis

B.1 Relationship between ψ and the Magnetization

The magnetization of the harmonic model is related to the quantity ψ by

〈m〉 =〈 1

N

∑
x∈D

cos(ψ(x))〉 (B.1)

=
1

N

∑
x∈D
〈cos(ψ(x))〉 (B.2)

=〈cos(ψ(0))〉 (B.3)

=
∞∑
p=0

(−1)p

p!
〈ψ2p(0)〉 (B.4)

=

∞∑
p=0

(−1)p

p!
(2p− 1)!!〈ψ2(0)〉p (B.5)

=

∞∑
p=0

1

2pp!
〈−ψ2(0)〉p (B.6)

=

∞∑
p=0

1

p!
〈−1

2
ψ2(0)〉p (B.7)

= exp

[(
−1

2
〈ψ2(0)〉

)]
, (B.8)

where Wick’s theorem is used in Eq.(B.5).
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B.2 Relationship between ψ and ϕ

In all XY-type spin models, the quantity

〈ψ(x)ψ(x′)〉 = 〈ϕ(x)ϕ(x′)〉 − 〈ϕ(x)ϕ̄〉 − 〈ϕ(x′)ϕ̄〉+ 〈ϕ̄ϕ̄〉. (B.9)

becomes

〈ψ(x)ψ(x′)〉 = 〈ϕ(x)ϕ(x′)〉 (B.10)

because the final three terms of the above expression are zero:

〈ϕ(x)ϕ̄〉 =〈ϕ(x)
1

N

∑
x′′

ϕ(x′′)〉 (B.11)

=
1

N

∑
x′′

〈ϕ(x)ϕ(x′′)〉 (B.12)

=
1

N

∑
x′′

1

βJ

∑
k6=0

eik·(x−x′′)

2N(2− cos(kxa)− cos(kya))
(B.13)

=
1

βJ

∑
k6=0

eik·x

2N(2− cos(kxa)− cos(kya))

1

N

∑
x′′

e−ik·x
′′

(B.14)

=
1

βJ

∑
k6=0

eik·x

2N(2− cos(kxa)− cos(kya))
δ(2)(k) (B.15)

=0. (B.16)



Appendix C

The Decoupling of the Internal Energy

of the Lattice Electric Field

The internal energy of the general electric field of the two-dimensional lattice system is given by

U0 =
ε0a

2

2

∑
x∈D
|E(x)|2 . (C.1)

This expression generates terms which go like the sum of the squares of each contribution to the total

field along with some cross terms which sum to zero:

U0 =
ε0a

2

2

∑
x∈D

[
| − ∇̃φ(x) + Ẽ(x)|2

]
+
ε0a

2

2

∑
x∈D

{
|Ē|2 + 2 Ē ·

[
−∇̃φ(x) + Ẽ(x)

]}
(C.2)

=
ε0a

2

2

∑
x∈D

[
| − ∇̃φ(x) + Ẽ(x)|2

]
+
L2ε0

2
|Ē|2 + ε0a

2 Ē ·
∑
x∈D

[
−∇̃φ(x) + Ẽ(x)

]
(C.3)

=
ε0a

2

2

∑
x∈D

[
|∇̃φ(x)|2 + |Ẽ(x)|2

]
− ε0a2

∑
x∈D

∇̃φ(x) · Ẽ(x) +
L2ε0

2
|Ē|2 (C.4)

=
ε0a

2

2

∑
x∈D

[
|∇̃φ(x)|2 + |Ẽ(x)|2

]
+
L2ε0

2
|Ē|2

+ ε0a
2
∑
x∈D

φ(x)
[
Ẽx(x +

a

2
ex)− Ẽx(x− a

2
ex) + Ẽy(x +

a

2
ey)− Ẽy(x−

a

2
ey)
]

(C.5)

=
ε0a

2

2

∑
x∈D

[
|∇̃φ(x)|2 + |Ẽ(x)|2

]
+
L2ε0

2
|Ē|2, (C.6)

where the sum in the final term of the second line returns zero since it is a sum over the k 6= 0 modes,

and the sum over the auxiliary-field elements in Eq. (C.5) is zero because it is the sum of the rotational

degrees of freedom of the field leaving site x.
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It follows that

U0 = UPoisson + URot. + UHarm., (C.7)

where UPoisson := ε0a
2
∑

x∈D |∇̃φ(x)|2/2, URot. := ε0a
2
∑

x∈D |Ẽ(x)|2/2, and UHarm. := L2ε0|Ē|2/2.



Appendix D

The Relationship between the BH and

AHNS Theories

Combining Eqs. (6.36), (7.57) and (7.65), it follows that

K̃eff.(L(ω), T ) =
βJ

C
p(ω, T )

(
1 +

(
q(ω, T )

p(ω, T )

)2
)

(D.1)

in spin-stiffness notation (set as an equality as the Bishop-Reppy experiment is in the asymptotic

regime). From the standard manipulation of complex numbers, we have that

q(ω, T )

p(ω, T )
=
ε′′(ω, T )

ε′(ω, T )
. (D.2)

We combine this with Eqs. (7.63) and (7.64) to find that

q(ω, T )

p(ω, T )
=
π

4

∂ ln(ε(r, T ))

∂ ln(r)

∣∣∣∣
r=L(ω)

, (D.3)

from which Eq. (D.1) becomes

K̃eff.(L(ω), T ) =
βJ

C
p(ω, T )

1 +

π
4

∂ ln(K̃−1
eff.(r, T ))

∂ ln(r)

∣∣∣∣∣
r=L(ω)

2 , (D.4)

where K̃−1
eff.(r, T ) is the static, distant-dependent effective spin stiffness that includes the effect of screen-

ing only from topological-defect pairs whose separation distance d ≤ r, as defined by Nelson and

Kosterlitz [9].

The BH ansatz [19] given by Eq. (2.135) amounts to asserting that the Nelson-Kosterlitz effective spin

stiffness is constant across a sample. Hence, in order for the BH [19, 20] and AHNS [10] theories to
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agree, we require that K̃eff.(r, T ) can be replaced with K̃eff.(L, T ) for all r < L, which is certainly true

in the region of the critical point for topological defects (T ∗(L)), where the Nelson-Kosterlitz effective

spin stiffness becomes scale independent. In Fig. 7.3, the black circles (full AHNS theory) and the blue

circles (constant Nelson-Kosterlitz effective spin stiffness) coincide. Outside of this region, where BH

theory is not predicted to apply, we observe a deviation between these two data sets. There is therefore

no contradiction between the two theories, since BH theory is only predicted to apply at T = T ∗(L).



Appendix E

Simulation Details

E.1 The Coulomb Gas

The two-dimensional Coulomb gas was simulated using the MR algorithm on an L×L lattice of lattice

spacing a = 1. One charge-hop sweep corresponded to picking a charge site at random, picking the x or

y direction at random, then proposing a charge hop in the positive or negative direction (at random),

repeating this 2N times (replacing each site / field bond after each proposal). One auxiliary-field sweep

corresponded to picking a charge site at random and proposing a field rotation around the site, repeating

this N times (the range of field rotation was tuned at each temperature to keep the acceptance rates

between 40 and 60%.). One global sweep corresponded to proposing a winding update in the positive

or negative (at random) x and y directions. For all simulations, we performed five auxiliary-field sweeps

per charge-hop sweep, and, for those simulations that also employed the global update, we performed

one global update per charge-hop sweep. One charge-hop sweep corresponds to one Monte Carlo time

step.

All data sets were averaged over multiple runs of 106 charge-hop sweeps per lattice site, with all those

presented outside of Chapter 5 averaged over 16 runs, barring the L = 64 and L = 128 data sets, which

were averaged over 48 runs.

The L = 32 data set in Fig. 5.2 was averaged over 512 runs between T = 1.0 and 1.1375, 992 and

768 runs between T = 1.15 and 1.45 with the global update off and on respectively, and over 256

runs between T = 1.46 and 1.75. The L = 64 data set in Fig. 5.2 was averaged over 608 and 446

runs between T = 1.15 and 1.45 with the global update off and on respectively, over 384 runs between

T = 1.5 and 1.6, and over 256 runs between T = 1.65 and 1.75.

The L = 8 data set in Fig. 5.3 was averaged over 128 runs (T = 0.1−1.1), 256 runs (T = 1.15−1.39;T =

1.41−1.44;T = 1.46−1.49), 768 runs (T = 1.4;T = 1.45;T = 1.5−1.75), and 256 runs (T = 1.8−2.5);

the L = 16 data set was averaged over 128 (T = 0.1−1.1) and 256 runs (T = 1.15−2.5); the L = 32 data
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set was averaged over 128 runs (T = 0.1−1.1), 256 runs (T = 1.15−2.0), and 128 runs (T = 2.0−2.5);

the L = 64 data set was averaged over 128 runs (T = 0.1− 1.1), 448 runs (T = 1.15− 1.45), 384 runs

(T = 1.5− 1.6), 256 runs (T = 1.65− 2.0), and 128 runs (T = 2.05− 2.5).

We also simulated the L = 10, L = 20, and L = 40 systems over small temperature ranges to calculate

additional crossover points for Fig. 5.4: all data sets were averaged over 512 runs.

E.2 The XY Models

The XY and HXY models were simulated using the standard Metropolis update scheme. One sweep

corresponded to picking a spin site at random, then proposing a spin rotation, repeating this N times

(replacing each site after each proposal). The range of spin rotation was tuned at each temperature to

keep the acceptance rates between 40 and 60%.

All non-quench data sets were averaged over 16 runs of 106 sweeps per lattice site, barring the L = 64

data, which was averaged over 32 runs. The quench test performed on the HXY model in Chapter 6

was one run of 105 sweeps per lattice site.



Bibliography

[1] A. M. Salzberg and S. Prager. Equation of State for a Two-Dimensional Electrolyte. J. Chem.

Phys., 38:2587, 1963.

[2] V. L. Berezinskii. Destruction of Long-range Order in One-dimensional and Two-dimensional

Systems having a Continuous Symmetry Group I. Classical Systems. Sov. Phys. JETP, 32:493,

1971.

[3] J. M. Kosterlitz and D. J. Thouless. Ordering, metastability and phase transitions in two-

dimensional systems. J. Phys. C: Solid State Phys., 6:1181, 1973.
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