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Abstract

Over the last decade, there has been an increasing use of personal wireless communica-
tions devices, such as mobile phones, wireless-enabled laptops, smartphones and tablets.
With the widespread availability of wireless broadband access, an environment in which
anywhere, any-time access to data and services has been created. These services are sup-
ported by data storage and processing infrastructure (commonly referred to as the cloud)
located in large centralized facilities spread around the globe. Accessing cloud services
over wireless networks has then rapidly emerged as the driving trend. However, such
wireless cloud network consumes a non-negligible amount of energy. Indeed, according to
recent studies, the number of wireless cloud users worldwide has been grown by 69% in
2014 and will have the same carbon footprint as adding another 4.9 million cars onto the
roads by 2015. Consequently, the cloud infrastructure energy consumption and carbon
emission are becoming a major concern in IT industry. In this context, we address, in
this thesis, the problem of reducing energy consumption and carbon footprint, as well as
building green infrastructures in the two di↵erent parts of the wireless cloud: (i) wireless
access networks including wireless mesh and campus networks, and (ii) data centers in a
cloud infrastructure.

In the first part of the thesis, we present an energy-e�cient framework for joint routing
and link scheduling in multihop TDMA-based wireless networks. Our objective is to find
an optimal tradeo↵ between the achieved network throughput and energy consumption.
To do so, we first proposed an optimal approach, called Optimal Green Routing and Link
Scheduling (O-GRLS), by formulating the problem as an Integer Linear Program (ILP).
As this problem is NP-Hard, we then proposed a simple yet e�cient heuristic algorithm
based on Ant Colony, called AC-GRLS. At a later stage, we extended this framework to
cover campus networks using the emerging Software Defined Networking (SDN) paradigm.
Indeed, an online flow-based routing approach that allows dynamic reconfiguration of ex-
isting flows as well as dynamic link rate adaptation is proposed. The formulated objective
function has been then extended to take into account the costs for switching between
sleeping and active modes of nodes, as well as re-routing or consolidating existing flows.
Our proposed approach takes into account users’ demands and mobility, and is compliant
with the SDN paradigm since it can be integrated as an application on top of an SDN
controller that monitors and manages the network and decides on flow routes and link
rates. Results show that our approaches are able to achieve significant gains in terms
of energy consumption, compared to conventional routing solutions, such as the shortest
path routing, the minimum link residual capacity routing metric, and the load-balancing
scheme.

In the second part of this thesis, we address the problem of reducing energy consump-
tion and carbon footprint of cloud infrastructures. Specifically, we proposed optimization
approaches for reducing the energy costs and carbon emissions of a cloud provider own-
ing distributed infrastructures of data centers with variable electricity prices and carbon
emissions from two di↵erent perspectives. First, we propose Greenhead, a holistic manage-
ment framework for embedding Virtual Data Centers (i.e., virtual machines with guaran-
teed bandwidth between them) across geographically distributed data centers connected
through a backbone network. Our objective here is to maximize the cloud provider’s rev-
enue while ensuring that the infrastructure is as environment-friendly as possible. Then,
we investigated how a cloud provider can meet Service Level Agreements (SLAs) with
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green requirements; that is, a cloud customer requires a maximum amount of carbon
emission generated by the resources leased from the cloud provider. We hence propose
Greenslater, a resource management framework that allows cloud providers to provision
resources in the form of VDCs across their geo-distributed infrastructure with the aim
of reducing operational costs and green SLA violation penalties. Results show that the
proposed solutions improve requests’ acceptance ratio and maximize the cloud provider’s
profit, as well as minimize the violation of green SLAs, while ensuring high usage of
renewable energy and minimal carbon footprint.

Key Words

Energy E�ciency, Green, Wireless Mesh Networks, Campus Networks, Cloud, Distributed
Clouds, Virtual Data Center, VDC Embedding, Optimization, Ant Colony, Green SLA
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Résumé de la thèse

1 Introduction

Dans cette thèse, nous nous sommes intéressés à la réduction de la consommation d’énergie
dans les réseaux d’accès sans fil et dans les infrastructures Clouds distribuées. Dans ce chapitre,
nous résumons le contexte et les contributions de cette thèse. Nous commencerons par le con-
texte et les motivations de nos travaux autours de la réduction de la consommation d’énergie
et l’empreinte en carbone des Technologies de l’Information et de la Communication (TIC)
d’aujourd’hui. Puis, nous décrirons les approches qu’on a proposées pour les réseaux sans fil
multi-sauts, les réseaux de campus et les infrastructures Cloud distribuées.

2 Contexte et motivations

Au cours des denières années, le secteur des TIC a vu augmenter sa consommation d’énergie
d’une manière spéctaculaire. A cela s’ajoute une augmentation dans les empreintes en carbone.
En e↵et, le secteur des TIC à lui seul a consommé 3% de l’énergie dans le monde et son empreinte
en carbone était de 2% en 2010. Ce chi↵re est équivalent à celui du secteur de l’aéronautique et au
quart de celui de l’automobile [1]. De plus, selon un récent rapport publié en ligne par le directeur
général du groupe Digital Power Mark Mills [2], l’écosystème des TIC, qui comprend le Cloud
ainsi que les appareils numériques et les réseaux sans fil permettant d’accéder à ses services,
enregistre actuellement une consommation proche de 10 % de la consommation d’électricité
dans le monde entier. De plus, l’analyse mise à jour du rapport SMART 2020 [3] montre
un changement par rapport à l’empreinte énergétique du secteur des TIC des smartphones et
téléphones mobiles vers les data centers et les réseaux. Plus particulièrement, les réseaux et les
data centers compteront chacun d’eux pour 25 % de la consommation énergétique des TIC [3,4].
Cette augmentation de la consommation d’énergie est principalement dûe à la prolifération et
la généralisation de l’accès haut débit sans fil et la migration massive des services vers le Cloud.

En e↵et, d’un côté, les réseaux d’accès sont de plus en plus gourmands en énergie et ex-
trêmement polluants. Plus précisément, au cours de la dernière décennie, il y a eu une utilisation
croissante des équipements de communication personnels sans fil, tels que les téléphones mobiles,
les smartphones, les tablettes et les ordinateurs portables. Avec la généralisation de l’accès haut
débit sans fil, un environnement dans lequel n’importe où, l’accès à tout moment aux données et
aux services a été créé. De ce fait, l’accès à ces services hébergés dans le Cloud moyennant des
réseaux sans fil est ensuite rapidement apparu comme une tendance incontournable. Cependant,
cette association réseau sans fil et could (appelé Cloud sans fil), dont le tra�c augmente de 95%
chaque année [5, 6], consomme une quantité considérable d’énergie. En e↵et, selon des études
récentes, le nombre d’utilisateurs du Cloud sans fil dans le monde entier a progressé de 69 % en
2014, et l’empreinte en carbone qui en résultera serait équivalente à l’ajout de 4,9 millions de

1
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voitures sur les routes d’ici à 2015 [6].
D’autre part, ces services sont hébergés par des infrastructures de stockage de données et de

traitement (communément appelé le Cloud) situés dans les grands data centers répartis dans le
monde. Selon un rapport publié par Greenpeace en 2013 [4], si le Cloud était un pays, il se serait
classé au sixième rang des pays les plus consommateurs en électricité. En outre, la demande
en énergie des data centers à elle seule a augmenté de 40 GW en 2013, soit une augmentation
de 7 % par rapport à 2012 [7]. Ce chi↵re continuera sa hausse de manière significative d’ici
2020 [3]. De plus, cette forte consommation d’énergie est accompagnée d’émissions élevées en
carbone, pour la simple raison que les principaux modes de production d’électricité reposent sur
des sources fossiles et non renouvelables [8, 9].

De ce fait, l’économie d’énergie et la réduction des empreintes en carbone dans les réseaux et
les infrastructures Cloud devient un important axe de recherche au sein de la communauté des
chercheurs et les industriels du secteur. En e↵et, plusieurs études ont montré un mouvement vers
la réduction de la consommation d’énergie et les émissions en carbone des entreprises du secteur
des TIC [10–13]. Le premier objectif de ces entreprises étant de réduire les coûts d’opération
dus au prix de l’électricité qui peut être assez conséquent. De plus, ces entreprises souhaitent
a�cher leurs responsabilités quant à la contribution à la réduction du réchau↵ement climatique.
Dans ce contexte, les infrastructures économes et e�caces en énergie se sont imposées comme
une solution prometteuse pour réduire les coûts opératoires, augmenter la rentabilité et assurer
la durabilité des réseaux d’accès et des infrastructures Cloud.

Dans ce contexte, nous nous sommes intéressés dans cette thèse aux solutions et stratégies
pour des réseaux d’accès et infrastructures Cloud économes en énergie et d’empreinte en carbone
réduite. Plus particulièrement, nous nous sommes focalisés sur les infrastructures Cloud qui vont
des réseaux d’accès aux data centers coeurs. En e↵et, nous nous sommes intéressés d’abord à
la réduction de la consommation d’énergie dans les réseaux d’accès sans fil de types mesh et les
réseaux de campus. Ensuite, avons travaillé sur les infrastructures Cloud. Dans ce cas, avons
présenté des solutions des solutions pour la gestion d’infrastructures Cloud distribuées. Dans ce
qui suit, nous résumons les contributions de cette thèse.

3 Contributions

Dans cette thèse, nous avons abordé deux défis majeurs dans les infrastructures de Cloud mo-
biles. Plus précisément, nous présentons quatre contributions pour les infrastructures é�caces
en énergie et écologiques, dans les réseaux d’accès et dans le Cloud. La première contribu-
tion traite la réduction de l’énergie dans les réseaux sans fil multi-sauts opérant en TDMA. La
deuxième contribution traite l’e�cacité énergétique à l’échelle des réseaux de campus. Puis, les
deux dernières contributions s’intéressent à l’e�cacité énergétique et les infrastructures green
dans les Clouds distribués. Plus précisément, la troisième contribution aborde le problème de
la réduction de la consommation d’énergie, les coûts et l’empreinte en carbone dans les Clouds
distribués. La quatrième contribution s’intéresse au problème de réduction de l’empreinte en
carbone dans le cadre des Green SLA, dans les Clouds distribués moyennant la reconfiguration
dynamique.

3.1 Routage et ordonnancement des liens e�cace en énergie dans les réseaux
multi-sauts de type TDMA

Dans cette première contribution, nous présentons un framework qui permet de réduire la con-
sommation d’énergie et qui traite le problème conjoint de routage et ordonnancement des liens



3. Contributions 3

dans les réseaux sans fil multi-sauts de type TDMA. Notre objectif est de trouver un compromis
optimal entre le débit du réseau et la consommation d’énergie.

Typiquement, un réseau sans fil multi-sauts est constitué d’un certains nombre de rou-
teurs/point d’accès sans fil. Certains de ces routeurs sont connectés à l’Internet. Ces routeurs
sont ainsi appelés gateway ou passerelle. Le reste des routeurs communiquent avec ces routeurs
gateway pour acheminer le trafic depuis/vers l’Internet par le biais d’un routage multi-sauts.
Les utilisateurs se connectent d’abord sur un des routeurs sans fil. Leurs trafic est par la suite
routé par le biais d’un routage multi-sauts pour atteindre une passerelle. La passerelle à son tour
transfère le trafic en direction de l’Internet. Dans le cas des réseaux de type TDMA, le prob-
lème étant de trouver pour le trafic des utilisateurs un chemin depuis le routeur d’attachement
jusqu’à une passerelle qui donne accès à l’Internet. De plus, le modèle TDMA stipule qu’il faut
aussi définir l’ordonnancement des transmissions sur les di↵érents liens sans fil. Ainsi, il faut
prendre en considération le problème de capacité des liens et le problème des interférences. En
e↵et, les liens sans fil se trouvant à proximité les uns des autres ne peuvent pas transmettre
durant le même slot de temps. Ceci est due au fait que le média de transmission est partagé et
que le mélange des signaux envoyés par plusieurs routeurs finit par être non décodable par les
receveurs.

Pour résoudre ce problème de routage et ordonnancement des liens, nous proposons d’abord
une approche optimale, Optimal Green Routing and Link Scheduling (O-GRLS), en formulant le
problème comme un programme linéaire en nombre entiers (ILP). Les variables de décision étant
la definition de quel trafic un lien doit router durant quel slot de temps. Comme ce problème
est NP-Di�cile, son temps de calcul devient prohibitif pour les grands réseaux et/ou à forte
demande de trafic. Pour pallier à ce problème, nous proposons un algorithme heuristique simple
et e�cace basé sur les colonie de fourmis (Ant Colony), appelé AC-GRLS.

AC-GRLS utilise une formulation en liens de l’ILP et utilise les colonies de fourmis pour
accélérer la recherche dans l’espace des solutions. En d’autres termes, chaque flux, parmi les L
flux de trafic à router, a pour source un client mesh. Pour chaque client, on liste K chemins
alternatifs pour son flux de trafic. Ainsi, l’algorithme des colonies de fournis est appliqué pour
trouver la combinaison proche de l’optimale pour les chemins choisis pour les flux. Notons
que l’algorithme des colonies de fourmis est amélioré dans ce cas pour prendre en compte les
interférences et les capacité des liens. Ainsi, l’espace des solutions est réduit à l’espace des
solutions faisables. De plus, nous proposons un algorithme vorace pour l’ordonnancement des
liens. Ainsi, la construction de la solution au fur et à mesure par les fourmis utilise l’algorithme
d’ordonnancement pour calculer le coût en termes d’énergie et le débit du réseau.

A travers des simulations, nous montrons que les deux approches, O-GRLS et AC-GRLS,
peuvent réaliser des gains significatifs en termes de consommation d’énergie, débit du réseau,
taux d’acceptation des requêtes des utilisateurs, par rapport au routage utilisant le plus court
chemin (Shortest Path ou SP) et le routage qui utilise la métrique de la plus petite capacité
résiduelle des liens (Minimum Residual Capacity, MRC). Le routage par le plus court chemin
étant le plus dominant dans les réseaux et le MRC a été proposé pour réduire la consommation
d’énergie des réseaux en regroupant les flux de trafic sur les mêmes chemins. La Figure 1
montrent les résultats obtenus dans le cas d’un grand réseau mesh. En particulier, les résultats
montrent que les mêmes performances que SP ou MRC en termes de débit moyen du réseau
peuvent être atteintes avec des économies d’énergie qui peuvent aller jusqu’à 20%. D’autre part,
avec le même coût en énergie, nos approches améliorent le taux d’acceptation dans le réseaux
d’un facteur allant jusqu’à 35 % en moyenne. De cela résulte une augmentation du débit moyen
du réseau d’environ 50% et 52%, par rapport à SP et MRC, respectivement.

Notons que cette contribution a fait l’objet de deux publications, une publication dans une
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Figure 1: Résultats de simulation de comparaison de AC-GRLS, SP et MRC in dans le cas de
grands réseaux mesh (100 noeuds) avec 95 clients

conférence international (CNSM) [14] et une publication dans le journal Computer Networks [15].

3.2 Gestion des flux de trafic de manière dynamique pour une e�cacité én-
ergétique dans les réseaux de campus

Dans cette deuxième contribution, nous présentons un framework qui permet de réduire la
consommation d’énergie dans les réseaux de campus. Plus particulièrement, nous nous sommes
intéressés au cas où les utilisateurs arrivent et quittent le système de manière imprévisible.
En général, un réseau de campus est composé d’une partie sans fil principalement constitués
de plusieurs points d’accès (AP) et un réseau backbone à base de cuivre (Ethernet) constitué
de couches de switchs. Ces switchs se terminent par des routeurs coeurs qui donnent accès à
l’Internet. Un exemple de topologie d’un réseau de campus est illustré dans la Figure 2. De la
même manière que le cas des réseaux sans fil multi-sauts, le problème étant de trouver un chemin
pour chaque flux émanant d’un utilisateur depuis son point d’accès de rattachement jusqu’à un
des routeurs coeur qui donne accès à Internet.

Plus précisément, nous proposons une approche de routage qui traite les flux de trafic qui
émanent des utilisateurs qui arrivent dans le système de façon dynamique et imprévisible. Elle
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Figure 2: Architecture typique d’un réseau de campus

permet d’acheminer de nouveaux flux entrants (flux de trafic de nouveaux utilisateurs se connec-
tant au réseau) au moment où ils rentrent dans le système. De plus, elle permet la reconfiguration
dynamique des flux existants ainsi que l’adaptation dynamique du débit des liens filaires, tout
en tenant compte des exigences et de la mobilité des utilisateurs. Ainsi, le réseau est remis
dans un état consolidé et non fragmenté, puisque la fragmentation peut résulter du départ de
quelques utilisateurs. En outre, notre approche est compatible avec le paradigme du Software
Defined Networking (SDN). En e↵et, notre proposition peut être intégrée en tant qu’application
qui peut tourner sur un contrôleur SDN.

De manière détaillée, nous avons d’abord formulé le problème comme un programme linéaire
(ILP), dont l’objectif est de réduire la consommation totale d’énergie dans les parties filaires et
sans fil du réseau. De plus, la fonction objective de l’ILP prend en compte les coûts de passage
de l’état de veille (ou éteint) à l’état actif pour un noeud du réseau (points d’accès, switchs et
routeurs gateway), ainsi que les coûts re-routage ou de consolidation de flux existants. Comme
ce problème est connu pour être NP-di�cile [16, 17], nous proposons alors une approche basée
sur les colonies de fourmis (Ant Colony), appelée Ant Colony Online Flow-based Energy e�cient
Routing (AC-OFER) pour résoudre l’ILP.

AC-OFER se base sur trois algorithmes. Le premier est une version modifiée de l’algorithme
du plus court chemin. On utilise cet algorithme pour router chaque nouveau flux qui arrive
dans le système sans changer les chemins des flux déjà existants. La métrique de calcul du
coût d’un chemin n’est pas sa longueur en termes de nombre de sauts mais plutôt son coût en
énergie. Ainsi, chaque flux qui arrive est routé suivant le chemin le moins consommateur en
énergie. Comme la configuration du réseau peut ne pas être adaptée après plusieurs arrivées et
départs d’utilisateurs, nous avons proposé un deuxième algorithme qui reconfigure l’état global
du réseau. L’objectif de la reconfiguration est de re-router les flux existants de sorte à minimiser
la consommation d’énergie dans le réseau. Plus précisément, les flux de trafic sont regroupés
pour suivre les mêmes chemins et utiliser un nombre réduit de noeuds dans le réseau. Pour ce
faire, nous avons proposé un algorithme de reconfiguration qui utilise les colonies de fourmis pour
trouver une solution proche de la solution optimale en un temps de calcul réduit. De plus, nous
proposons un troisième algorithme qui ajuste le débit des liens filaire en fonction du trafic qu’ils
acheminent. En e↵et, la consommation d’énergie d’un lien filaire Ethernet dépend de son débit
de transmission par pallier (10Mbps, 100 Mbps, 1Gbps, 10Gbps). Par exemple, la consommation
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Figure 3: Comparison des valuers moyennes de di↵érentes métriques (100 APs, 27 switchs avec
2 Gateways, taux d’arrivée des client dans le réseau à 70 requêtes/hour)

d’énergie d’un lien négocié à 1Gbps est plus importante que la consommation d’énergie dans le
cas d’un lien négocié à 10Mbps. Notons que cet algorithme d’adaptation des débits des liens
filaires est utilisé par l’algorithme de reconfiguration pour calculer la consommation d’énergie
au moment de la configuration.

Pour évaluer les performances de notre approche, nous l’avons testée à travers des simulations
pour di↵érentes configurations de réseaux et di↵érentes charges de trafic dans le réseau. Grâce à
ces simulations, nous avons montré que notre approche proposée est capable de réaliser des gains
significatifs en termes de consommation d’énergie, par rapport aux solutions de routage classiques
telles que le routage par les plus courts chemins (Shortest Path, SP), le routage qui utilise la
métrique de la plus petite capacité résiduelle des liens (Minimum Residual Capacity, MRC) et
l’équilibrage de charge (Load Balancing, LB). De plus, nous avons comparée notre approche avec
celle basée sur un algorithme heuristique vorace (Greedy-OFER) au lieu des colonies de fourmis
(meta-heuristique). Quelques résultats de simulations sont montrés dans la Figure 3. Plus
précisément, nous montrons que notre approche permet de réduire la consommation d’énergie
jusqu’à 4%, 15%, 43% and 52%, par rapport à Greedy-OFER, MRC, SP et LB, respectivement,
tout en assurant la qualité de service (QoS) requise par les flux utilisateurs.

Notons que cette contribution a fait l’objet de deux publications, une publication dans une
conférence internationale (Globecom) [18] et une publication en cours de soumission dans le
journal IEEE Transactions on Networks and Service Management (TNSM) [19].

3.3 Greenhead: Placement de data center virtuels (Virtual Data Centers)
dans une infrastructure distribuée de data centers

Le Cloud a récemment gagné en popularité comme un modèle rentable pour l’hébergement de
services en ligne à grande échelle dans de grands data centers. Dans un environnement de Cloud
computing, un fournisseur d’infrastructure ou fournisseur Cloud (CP) partitionne les ressources
physiques à l’intérieur de chaque data center en ressources virtuelles (par exemple, les machines
virtuelles (VM)) et les loue aux fournisseurs de services (SP) à la demande. D’autre part, un
fournisseur de services (SP) utilise ces ressources pour déployer ses applications et services, dans
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le but de les fournir à ses utilisateurs finaux à travers l’Internet.
Actuellement, les fournisseurs Cloud comme Amazon EC2 [20] o↵rent principalement ces

ressources en termes de machines virtuelles sans fournir aucune garantie de performances en
termes de bande passante et de délais de propagation entre les di↵érentes machines virtuelles.
L’absence de telles garanties peut a↵ecter de manière significative les performances des services
et applications déployés [21]. Pour remédier à cette limitation, des propositions de recherche [22]
et des o↵res Cloud [23] ont préconisé d’o↵rir des ressources pour les fournisseurs de services sous
la forme de data center virtuels ou Virtual Data Center (VDC). Un VDC est une collection de
machines virtuelles, de switchs et routeurs virtuels reliés entre eux par des liens virtuels. Chaque
lien virtuel est caractérisé par sa capacité en bande passante et son délai de propagation. Par
rapport à des o↵res de type machines virtuelles uniquement sans garanties de bandes passantes
entre ces dernières, les VDCs sont en mesure de fournir une meilleure isolation des ressources
du réseau, et ainsi améliorer les performances des applications et services.

Malgré ses avantages, o↵rir un VDC comme un service présente un nouveau défi pour les
fournisseurs Cloud appelés le problème de VDC embedding (ou placement de VDC), qui vise
à placer les resources virtuelles (par exemple, machines virtuelles, les switchs, les routeurs) sur
l’infrastructure physique. Jusqu’à présent, peu de travaux ont abordé ce problème [21, 24, 25].
Ces travaux ont considéré uniquement le cas où toutes les composantes du VDC sont placées
dans le même data center. Il est à noter que ces o↵res en forme de VDC sont très attractives pour
les fournisseurs de services et les fournisseurs Cloud. En particulier, un fournisseur de services
utilise son VDC pour déployer divers services qui fonctionnent ensemble afin de répondre aux
demandes des utilisateurs finaux. Comme le montre la Figure 4, certains services peuvent exiger
d’être dans la proximité des utilisateurs finaux (par exemple, les serveurs web) alors que d’autres
peuvent ne pas avoir de telles contraintes de localisation et peuvent être placés dans n’importe
quel data center (par exemple, les jobs MapReduce).

D’autre part, les fournisseurs Cloud peuvent également bénéficier du placement de VDC
dans leurs infrastructures distribuées. En particulier, ils peuvent profiter de l’abondance des
ressources disponibles dans leurs data centers et d’atteindre divers objectifs, notamment max-
imiser les revenus, réduire les coûts et réduire l’empreinte en carbone de leurs infrastructures.

Dans cette troisième contribution, nous proposons un framework capable d’orchestrer l’allocation
de ressources aux VDC dans une infrastructure Cloud distribuée. Les principaux objectifs dans
ce cas peuvent être résumés comme suit:

- Maximiser les revenus
Certes, l’objectif ultime d’un fournisseur Cloud est d’augmenter son chi↵re d’a↵aires en max-
imisant la quantité de ressources allouées et le nombre de demandes de VDC satisfaites. Cepen-
dant, le placement des VDC nécessite la satisfaction de plusieurs contraintes, à savoir la capacité
et les contraintes de localisation géographiques. De toute évidence, le placement doit veiller à ce
que la capacité de l’infrastructure physique ne soit jamais dépassée. En outre, il doit satisfaire
des contraintes de localisation des machines virtuelles imposées par les fournisseurs de services.

- Réduire la charge du réseau dans le réseau backbone inter-data centers
Pour faire face à la demande croissante du trafic entre les data centers, les fournisseurs d’infrastructures
ont tendance à construire leur propre réseaux WAN de large échelle pour interconnecter leurs
installations de data centers (par exemple, le réseau G-Scale de Google [26]). Dans ce contexte,
l’un des objectifs clés du placement de VDCs est de minimiser le trafic dans le réseau backbone.
En e↵et, il a été montré récemment que le coût de construction d’un réseau d’interconnexion de
data centers est beaucoup plus élevé que le coût du réseau intra-data center, et il représente 15%
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Figure 4: Exemple de delpoiment d’un VDC dans une infrastructure Cloud distribuée

du coût total de l’infrastructure [27]. En outre, selon plusieurs études [28], le réseau de transport
inter-data center est le principal contributeur aux frais de transport de données. Par conséquent,
il est crucial de réduire le trafic réseau entre les data centers et placer les machines virtuelles qui
ont besoin de communiquer beaucoup entre elles dans le même data center, à chaque fois que
cela est possible.

- Réduire les coûts opérationnels des data centers
Réduire les coûts opérationnels des data centers est un objectif principal de tout fournisseur
Cloud puisque ceci impacte son budget de fonctionnement et sa croissance. Ceci peut être réalisé
en minimisant les coûts de l’énergie, qui constitue une partie importante des dépenses de fonc-
tionnement total. Pour ce faire, deux techniques peuvent être adoptées: (1) mettre davantage de
charge dans les data centers les plus économe en énergie, et (2) profiter de la di↵érence de prix de
l’électricité entre les emplacements des data centers pour utiliser les data centers qui présente un
prix d’électricité minimal. De plus, les data centers économes en énergie se distinguent par leurs
Power Usage E↵ectiveness (PUE), qui donne le surplus d’énergie consommé par le data center
pour refroidissements et d’autres fonctions annexes. Ainsi, les data centers à faible PUE sont
favorisés pour accueillir plus de machines virtuelles. En outre, le fournisseur Cloud peut obtenir
davantage d’économies en tenant compte de la fluctuation des prix de l’électricité au fil du temps
et la di↵érence de prix entre les emplacements des data centers. Par conséquent, les machines
virtuelles peuvent être e�cacement placées de telle sorte que le coût total de l’électricité est
minimisé.
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Figure 5: Placement de VDCs dans une infrastructure Cloud distribuée

- Réduire l’empreinte en carbone
Des recherches récentes ont indiqué qu’en 2012, les émissions en carbone des data centers à
travers le monde ont représenté 0, 25% des émissions en carbone dans le monde entier, ce qui
représente 10 % des émissions du secteur des TIC [29]. Par conséquent, les fournisseurs Cloud
sont confrontés à beaucoup de pression pour utiliser des sources d’énergie renouvelables (telles
que l’électricité générée par les éoliennes ou l’énergie solaire) pour rendre leurs infrastructures
moins polluantes et respectueuses de l’environnement. Partant de ces observations, un place-
ment e�cace des VDCs devrait permettre de maximiser l’utilisation des énergies renouvelables
et de tenir compte de leurs disponibilité, ce qui dépend de l’emplacement géographique du data
center, la période de la journée (par exemple, le jour pour l’énergie solaire) ainsi que les condi-
tions météorologiques (par exemple, le vent, la pression atmosphérique). En outre, chaque fois
que l’électricité du réseau électrique est utilisée, le fournisseur Cloud doit minimiser l’empreinte
en carbone de son infrastructure. Dans ce cas, le placement des machines virtuelles est critique
car l’empreinte en carbone par watt d’électricté consommée varie d’un endroit à un autre.

Dans ce contexte, nous proposons dans cette contribution Greenhead, un framework de
gestion des ressources pour le placement des VDCs dans une infrastructure Cloud distribuée.
Greenhead vise à maximiser les revenus du fournisseur Cloud en minimisant les coûts d’énergie,
tout en s’assurant que l’infrastructure est aussi respectueuse de l’environnement que possible.
Greenhead opère en deux étapes. Nous partitionnons d’abord une requête VDC en plusieurs
partitions telle que la demande en bande passante inter-partition est réduite au minimum et la
bande passante intra-partition est maximisée. L’objectif de ce partitionnement est de mettre les
machines virtuelles qui s’échangent de gros volumes de données dans le même data center. Cela
réduit considérablement le trafic acheminé par le réseaux backbone d’interconnexion entre les
data centers, et améliore ainsi le taux d’acceptation des requêtes. Le partionnement du VDC
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Figure 6: Comparison des valeurs moyennes de di↵érentes métriques

utilise une version modifiée de l’Algorithme de Louvain [30]. Par la suite, nous proposons un
algorithme simple et e�cace pour l’attribution des partitions aux data centers en fonction des
contraintes géograpiques de certaines machines virtuelles, du prix de l’électricité, du PUE de
chaque data center, de la disponibilité des énergies renouvelables et de l’empreinte en carbone
par unité de d’électricité dans les data centers.

De manière plus détaillée, l’architecture de Greenhead est illustré dans la Figure 5. Comme
montré sur la figure, un fournisseur de services envoie sa requête de VDC au fournisseur Cloud,
qui a la responsabilité d’allouer les ressources nécessaires. Naturellement, le fournisseur Cloud
fera usage de son infrastructure distribuée avec l’objectif de maximiser son chi↵re d’a↵aires et
réduire les coûts d’énergie ainsi que l’empreinte en carbone. C’est là que Greenhead entre en
scène. Greenhead est composé de deux types d’entités de gestion: (1) un contrôleur central qui
gère l’ensemble de l’infrastructure et (2) un contrôleur local déployé dans chaque data center
pour gérer les ressources internes du data center.

L’entité centrale comprend cinq modules comme représenté dans la Figure 5:

• Le module de partitionnement est responsable du partitionnement des VDCs de telle sorte
que la bande passante inter-partition est réduite au minimum. L’objectif de ce module est
de réduire le nombre de liens virtuels à allouer entre les data centers. Chaque partition
est censée être entièrement placée dans un data center unique.

• Le module de placement des partitions est responsable du placement des partitions dans
les di↵érents data centers en se basant sur sur des statistiques d’exécution collectées par le
module de monitoring. Il veille à ce que toutes les partitions soient placées tout en réalisant
la rentabilité, l’e�cacité énergétique telle que la réduction des coûts de l’électricité du
réseau électrique et de maximiser l’utilisation des sources d’énergie renouvelables.

• Le module d’allocation de liens virtuels entre les data centers alloue les liens virtuels dans
le réseau backbone qui interconnecte les data centers. Ces liens virtuels interconnectent
les machines virtuelles qui ont été placées dans di↵érents data centers.

• Le module de monitoring est responsable de la collecte des di↵érentes statistiques des
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di↵érents data centers. Les informations collectées incluent les PUE, l’utilisation des
ressources, la température extérieure, le prix de l’électricité et la quantité d’énergie re-
nouvelable disponible.

• La base de données des VDCs contient toutes les informations sur les VDC présents dans
le système, leurs partitions et la cartographie de leur placement dans les data centers et
dans le réseau backbone d’interconnexion des data centers.

Enfin, chaque contrôleur local d’un data center a pour mission d’allouer les resources au
partitions qui lui ont été attribuées par le contrôleur central.

Pour montrer Greenhead en action, nous avons e↵ectué plusieurs simulations dans une in-
frastructure de 4 data centers dans 4 villes américaines, interconnectées par le réseau NSFNet.
Greenhead a été comparé avec l’approche de base qui n’utilise pas de partionnement des VDCs.
Nous avons mesuré di↵érentes metriques de performances telles que le taux d’acceptation des
requêtes VDC, le coût de consommation d’électricité, l’utilisation de l’énergie renouvelable,
l’empreinte en carbone et l’utilisation du réseau backbone inter-data center. Les résultats,
comme présentés dans la Figure 6, montrent que Greenhead peut générer plus de revenue tout
en minimisant les coûts en électricité et les empreintes en carbone.

Notons que cette contribution a fait l’objet d’une publication dans le journal IEEE Transac-
tions on Cloud Computing [31].

3.4 Greenslater: Les Green SLAs dans les infrastructures Cloud distibuées

Dans la contribution précédente, nous nous sommes intéressés au cas du fournisseur Cloud qui
souhaiterait réduire ses coûts opérationnels et ses empreintes en carbone tout en maximisant ses
revenues, mais sans que le fournisseur de services n’intervienne sur les émissions en carbone des
resources allouées à son VDC. Dans cette nouvelle contribution, nous nous intéressons au cas
où les fournisseurs de services qui utilisent les VDCs alloués par le fournisseur Cloud, rajoutent
des contraintes en termes d’emissions en cabone causées par leurs VDCs. Les motivations de ce
travail viennent de plusieurs études et rapports publiés récemment par di↵érents organismes.

En e↵et, avec l’augmentation de la consommation d’énergie et l’impact environnemental des
infrastructures Cloud, le secteur des TIC connait un mouvement ascendant vers l’écologisation
des infrastructures et des services Cloud. Ce movement est propulsé d’un ôté par des considéra-
tions de marketing et de l’autre par plusieurs réglementations gouvernementales. Par exemple,
une étude récente [32] a montré que la valeur des entreprises diminuerait de façon significative
si elles ont une empreinte en carbone élevée. Le même constat est fait, selon la même étude,
pour les entreprises qui refusent de divulguer des informations sur leurs taux d’émission en car-
bone. Par conséquent, de nombreuses entreprises informatiques ont volontairement choisi de
rendre publique leurs émissions en carbone et rendre compte régulièrement de leurs e↵orts pour
le déploiement de solutions et de services respectueux de l’environnement [33].

D’autre part, les gouvernements imposent des taxes sur les émissions en carbone dans l’espoir
de pousser plus loin cette évolution vers l’adoption de sources d’énergie renouvelables et la
réduction des émissions en carbone [34]. Par exemple, le gouvernement britannique exige que les
entreprises consommant plus de 6 GWh d’énergie par année achètent des crédits de carbone [35].
De plus, certains gouvernements ont imposé des taxes sur les émissions en carbone, dont le coût
par tonne de CO2 émise est d’environ 30 Dollars [36]. Par conséquent, ces taxes auront un
impact financier sur les entreprises [34].

Dans le contexte du Cloud, les fournisseurs Cloud sont responsables de l’allocation des
ressources pour les VDCs à travers leurs infrastructures Cloud distribuées dans le but de
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minimiser les coûts d’exploitation et en essayant de respecter l’environnement en augmentant
l’utilisation des énergies renouvelables. Toutefois, récemment, les fournisseurs de services étaient
également tenus de prendre en compte les objectifs environnementaux et veiller à ce que leurs
services soient fournis avec des émissions en carbone réduites. Ainsi, de nombreux conseils
consultatifs et commissions (par exemple, Open Data Center Alliance [37] et le SLA Expert
Subgroup du Cloud Selected Industry Group de la commission européene [38]) poussent vers la
définition des Green SLAs dans lesquels les fournisseurs de services exigent de leurs fournisseurs
Cloud une limite sur les émissions en carbone générées pour héberger leurs services. Ceci s’est
accompagné de propositions et de travaux de recherche. Par exemple, récemment, des travaux
de recherche ont préconisé l’utilisation de ce type de SLA dans les Clouds de type High Per-
formance Computing (HPC) [39–43]. Typiquement, les termes green des Green SLAs spécifient
soit des limites sur les émissions en carbone générées par le fournisseur Cloud pour hébérger les
services des fournisseurs de services [39–42], soit la quantité minimale d’énergie renouvelable à
être consommée par les ressources allouées au fournisseur de services [43]. Toutefois, ces propo-
sitions n’ont par abordé le cas des VDCs, et ne tiennent donc pas compte de l’existence des
demandes de bande passante (liens virtuels) et ne visent qu’à allouer les machines virtuelles au
sein d’un même data center.

Dans ce contexte, nous avons étudié comment un fournisseur Cloud peut satisfaire les Green
SLAs (i.e.; des SLAs avec des exigences green). En particulier, nous avons considéré les Green
SLAs qui spécifient une limite sur les émissions en carbone générées par le VDC de chaque
fournisseur de services. Pour cela, nous avons proposé Greenslater, un framework qui orchestre
l’approvisionnement et l’optimisation des ressources pour les multiples VDC hébergés par le
fournisseur Cloud dans une infrastructure distribuée. Du point de vue du fournisseur Cloud,
l’objectif est de maximiser les revenus tout en minimisant les coûts opérationnels et les potentiels
coûts dus aux violations des termes des Green SLAs. Greenslater profite de la variabilité dans
l’espace et dans le temps des énergies renouvelables disponibles et les prix de l’électricité dans les
di↵érents data centers. De plus, Greenslater utilise la reconfiguration dynamique pour optimiser
dynamiquement l’allocation des ressources au fil du temps, tout en satisfaisant les contraintes
des Green SLAs.

L’architecture de Greenslater est similaire à celle de Greenhead. En e↵et, Greeslater est
composé de deux types d’entités de gestion: (1) un contrôleur central qui gère l’ensemble
de l’infrastructure et (2) un contrôleur local déployé dans chaque data center pour gérer ses
ressources internes. Le contrôleur central dispose en plus d’un module de migration dynamique
de partitions. Le but étant de migrer des parties de VDC depuis les data centers qui n’ont
pas d’énergie renouvelable disponible vers des data centers qui ont de l’énergie renouvelable
disponible. Ainsi, les émissions en carbone sont réduites et les violations des Green SLAs sont
minimisées, voire évitées.

Greenslater utilise le même algorithme pour partitioner les VDCs en partitions dont les de-
mandes en bandes passantes entre di↵érentes partitions sont réduites. Par la suite, un algorithme
heuristique pour placer les di↵érentes partitions dans di↵érents data centers est utilisé. Comme
la disponibilité des énergies renouvelables dans les data centers ainsi que le prix de l’électricité
varient dans le temps, on utilise un algorithme de reconfiguration qui décide de migrer des parties
de VDC vers des data centers qui ont de l’énergie renouvelable disponible.

Pour évaluer les performances de Greenslater, nous avons fait des simulations dans une infras-
tructure distribuée de 4 data centers interconnectés par le biais du réseau NSFNet. Nous l’avons
comparé avec trois autres approches: (i) Greenhead [31], (ii) Greenhead sans partitionnement
(NP) (i.e., chaque machine virtuelle d’un VDC est considérée comme étant une paritition), et
(iii) l’approche Load Balancing (LB) [44]. Nous avons considéré cinq metriques pour l’évaluation:
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Figure 7: Comparaison des valeurs cumulatives de di↵érentes métriques

(i) le profit empoché par le fournisseur Cloud, qui est la di↵érence entre les revenues et la somme
des coûts d’exploitation (c’est-à-dire les coûts de l’énergie, le réseau d’interconnexion des data
centers et les coûts de violation des Green SLAs), (ii) le taux d’acceptation (défini comme le
rapport des requêtes acceptées sur un total des requêtes), (iii) l’empreinte en carbone générée
par l’ensemble de l’infrastructure, (iv) l’utilisation de l’énergie renouvelable et (v) les violations
des Green SLA. Quelques résultats sont donnés par la Figure 7. Ces résultats montrent que
Greenslater permet toujours d’obtenir des profits plus élevés, assure une plus grande utilisation
des énergies renouvelables et moins d’émissions en carbone avec un minimum de violations des
Green SLAs. Par exemple, le gain en termes de profit donné par Greenslater est d’environ
33%, 53% et 120%, par rapport à Greenhead, Greenhead NP et l’approche de Load Balancing,
respectivement.

Notons que cette contribution a fait l’objet d’une publication dans la conférence interna-
tionale CNSM [45].

4 Organisation de la thèse

Le reste de cette thèse est organisé en deux parties. La première partie traite la réduction de la
consommation d’énergie dans les réseaux d’accès sans fil et les réseaux de campus. On commence
dans un premier temps par un état de l’art détaillé des travaux autours de cette thématique.
Puis nous présentons dans les deux chapitres suivants nos contributions dans les réseaux sans
fil multi-saut et les réseaux de campus. La deuxième partie de la thèse traite la réduction
de la consommation d’énergie et les émissions en carbone des infrastructures Cloud. Comme
pour la première partie, nous nous intéressons à l’état de l’art autours de cette thématique.
Puis nous décrivons nos deux contributions dans les deux chapitres suivants qui consistent en
la réduction de la consommation d’énergie, l’exploitation des energies renouvelables disponibles
et la réduction des émissions en carbone dans les infrastructures Cloud distribuées, dans deux
contextes di↵érents: le cas d’un founisseur Cloud qui veut réduire ses coûts et le cas où les
clients du fournisseur Cloud demandent des garanties sur les émissions en carbone de leurs
services hébergés dans le Cloud.



Chapter 1

Introduction

1.1 Context and Motivations

Over the last few years, the Information and Communication Technologies (ICT) became a
considerable power consumer and polluter. In fact, the ICT sector consumes alone 3% of world
wide energy consumption, and its CO2 emission was around 2% in 2010. This is equivalent to
airplanes emission and a quarter of cars emissions [1]. Moreover, according to a recent report
posted online by the CEO of Digital Power Group Mark Mills [2], the ICT ecosystem, which
includes the cloud as well as the digital devices and wireless networks that access its services,
is approaching 10% of the world’s electricity usage. Furthermore, the updated analysis of the
SMART 2020 report [3] shows the relative shift in the energy footprint of the ICT sector from
devices to data center and networks. In fact, networks and data center will account each of them
for 25% of the power ICT consumption [3,4]. This increase in energy consumption is mainly due
to the widespread availability of wireless broadband access and the massive migration towards
the cloud for service provisioning.

Indeed, over the last decade, there has been an increasing use of personal wireless commu-
nications devices, such as smartphones and tablets. This trend is pushing faster and harder the
wireless cloud (i.e., cloud services consumed though wireless devices) [5, 6]. In fact, the tra�c
of wireless cloud is increasing by 95% every year [5, 6]. Consequently, the amount of consumed
power in the access networks is expected to soar as a significant amount of power is consumed by
the transport of data when tra�c is exchanged between a service provider and the end users [46].
Specifically, according to a study published in 2013 [6], the wireless cloud services energy con-
sumption, in which wireless access networks represent 90%, will increase by 460% in 2015 to
reach 43 TWh, up from 9.2 TWh only in 2012. According to this same study, this will result is
an increase in its carbon footprint from 6 megatonnes of CO2 in 2012 to up to 30 megatonnes
in 2015, which represents the equivalent of adding 4.9 million cars to the roads.

These services are supported by data storage and processing infrastructure (commonly re-
ferred to as the cloud) located in large data centers spread around the globe. According to a
report published by Greenpeace in 2013 [4], if the cloud was a country, it would have the sixth
highest power consumption in the world. Furthermore, data centers energy demand alone grew
to an estimated 40GW in 2013, an increase of 7% over 2012 [7]. This number is expected to
increase significantly by 2020 [3]. To make the matter worse, this high power consumption is
accompanied by high carbon emission as the dominant source for power generation rely on non
renewable sources [8, 9].

In light of this, energy e�cient networking and green clouds are becoming an important
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research direction among the research community and ICT industry. In fact, several studies have
shown keenness to reduce energy consumption and carbon emissions from ICT companies [10–13].
The main objective is to reduce operational costs and achieve social corporate responsibility. As
such, energy e�cient infrastructures have emerged as a promising solution to achieve sustainable
and cost e↵ective operations of access networks and cloud infrastructures.

In this context, this thesis addresses the problem of building and running green and energy
e�cient infrastructures. We focus on cloud infrastructures, from access networks to core data
centers. More specifically, we first address the energy reduction in wireless access networks and
campus networks. Then, we present a framework for energy e�cient and green distributed cloud
infrastructure. In what follows, we summarize the di↵erent contributions in Section 1.2. Then,
we present the organization of this thesis in Section 1.3.

1.2 Contributions

In this thesis, we addressed two major challenges in mobile cloud infrastructures. Specifically, we
present four contributions for energy e�cient and green infrastructures, in both access networks
and distributed cloud infrastructures. The first contribution addresses the energy reduction in
TDMA multihop wireless networks. The second contribution extends the energy e�ciency to
the scale of a campus network. Then, the last two contributions addressed the energy e�ciency
and green infrastructures in distributed clouds. More specifically, we first address the problem
of reducing energy consumption, costs and carbon footprint in distributed clouds. Then, we
extend the problem to o↵er Green SLAs, through dynamic reconfiguration. In what follows, we
present in a nutshell these contributions.

1.2.1 Green Routing and Link Scheduling in TDMA-based Multihop Net-
works

As a first contribution, we propose an energy-e�cient framework for joint routing and link
scheduling in multihop TDMA-based wireless networks. Our objective is to find an optimal
tradeo↵ between the achieved network throughput and energy consumption. To do so, we
first propose an Optimal approach, called Optimal Green Routing and Link Scheduling (O-
GRLS), by formulating the problem as an integer linear program (ILP). As this problem is
NP-Hard, we then propose a simple yet e�cient heuristic algorithm based on Ant Colony,
called AC-GRLS. Through extensive simulations, we show that both approaches can achieve
significant gains in terms of energy consumption, flow acceptance ratio and achieved throughput,
compared to the Shortest Path (SP) routing, and the Minimum link Residual Capacity (MRC)
based routing. This contribution is the object of a conference publication in the International
Conference on Network and System Management (CNSM) [14] and a journal publication in
Computer Networks [15].

1.2.2 Online flow-based management for energy e�cient campus networks

As a second contribution, we propose a flow-based management framework to achieve energy
e�ciency in campus networks. Typically, a campus network is composed of a wireless part mainly
Access Points (APs) and a copper based backbone network made up by layers of switches. We
address the problem from the dynamic perspective, in that users come and leave the system in
unpredictable way. This is new compared to the previous contribution where tra�c and users
are assumed to be known and fixed in advance at the planning stage. Specifically, we propose
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an online flow-based routing approach, that allows dynamic reconfiguration of existing flows as
well as dynamic link rate adaptation, while taking into account users’ demands and mobility.
Our approach is compliant with the emerging Software Defined Networking (SDN) paradigm
since it can be integrated as an application on top of an SDN controller.

To achieve this, we first formulate the flow-based routing problem as an integer linear program
(ILP). As this problem is known to be NP-hard, we then propose a simple yet e�cient Ant
Colony-based approach to solve the formulated ILP. Through extensive simulations, we show
that our proposed approach is able to achieve significant gains in terms of energy consumption,
compared to a heuristic solution, conventional routing solutions such as the Shortest Path routing
(SP), the Minimum link Residual Capacity routing metric (MRC) and the load balancing (LB)
scheme. Note that this contribution is the object of a conference publication in the the Global
Communication conference (Globecom) [18] and the forthcoming publication [19].

1.2.3 Greenhead: Virtual Data Center Embedding Across Distributed In-
frastructures

In the second part of our research, we propose Greenhead, a holistic resource management
framework for embedding Virtual Data Centers (VDCs) (i.e., a set of virtual machines and vir-
tual links with guaranteed bandwidth) across geographically distributed data centers connected
through a backbone network. The goal of Greenhead is to maximize the cloud provider’s (CP)
revenue while ensuring that the infrastructure is as environment-friendly as possible. To do so,
we first divide a VDC request into partitions such that the inter-partition bandwidth demand
is minimized. Then, we propose an e�cient algorithm for assigning partitions to data centers
based on energy cost and carbon footprint metrics. To evaluate the e↵ectiveness of our pro-
posal, we conducted extensive simulations of four data centers connected through the NSFNet
topology. Note that this contribution is the object of a journal publication in Transactions on
Cloud Computing (TCC) [31].

1.2.4 Greenslater: Providing green SLA in distributed clouds

In the last part of this dissertation, we provide a solution for how can cloud providers meet
Service Level Agreements (SLAs) with green requirements. In such SLAs, an SP requires from
CPs that carbon emissions generated by the leased resources should not exceed a fixed bound.
To do so, we propose Greenslater, a resource management framework allowing a CP to provision
resources in the form of VDCs across a geo-distributed infrastructure with the aim of reducing
operational costs and green SLA violation penalties. Through extensive simulations, we show
that the proposed solution maximizes the cloud provider’s profit and minimizes the violation
of green SLAs. Note that this contribution is the object of a publication in the International
Conference on Network and Service management (CNSM) [45].

1.3 Outline

This thesis is organized into two parts.
The first part addresses the energy reduction in wireless mesh and campus networks. In

view of this, we first present in Chapter 2 relevant related work dealing with energy reduction in
wired networks, wireless local area networks (WLANs), campus networks, wireless mesh networks
(WMNs), and cellular networks. Then, we present, respectively, in Chapter 3 and Chapter 4, our
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first two contributions, namely, Green Routing and Link Scheduling in TDMA-based Multihop
Wireless Networks, and Online flow-based Routing for Energy E�cient Campus Networks.

In the second part, we address the problem of running green cloud infrastructures. More
specifically, we first present in chapter 5 the state of the art regarding green and energy re-
duction in clouds. Specifically, we start by highlighting the motivations towards greening the
cloud infrastructures. Then, we present relevant work dealing with energy reduction inside a
single data center, across multiple data centers, and virtual network embedding and mapping.
Finally, a presentation of green service level agreements in the Cloud concludes the chapter.
The, we present our two contributions in Chapter 6 and Chapter 7, respectively. Specifically,
Chapter 6 presents Greenhead, our third contribution focusing on reducing the energy costs
and carbon footprints of a distributed cloud infrastructure under a best e↵ort case. Chapter
7 investigates how can Cloud Providers meet Green SLAs by presenting our last contribution
Greenslater, which aims to embed VDCs across distributed cloud infrastructure under explicit
green constraints.

Finally, Chapter 8 concludes this thesis and presents a perspective for future work.



Part I

Energy E�ciency in Access
Networks
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Chapter 2

Energy Reduction in Wireless and
Wired Networks: State of the Art

2.1 Introduction

Energy management has been an active research area in the last few years. A plethora of
works addressed this problem in di↵erent types of networks, at di↵erent scales (small, medium
and large networks) and for di↵erent technologies (wireless, copper and optical networks). The
proposed approaches aim at reducing the network power consumption by using smart on/o↵
techniques. Indeed, access and core networks are designed to handle peak surges of tra�c. As
such, during low tra�c periods, parts of the network are under-utilized, and yet consume a
considerable amount of energy.

In this chapter, we summarize existing works on reducing energy consumption in wireless
and wired networks. For the sake of presentation, we organize these works according to the type
of network under study. We first start by the wireless LANs and campus networks in Section
2.2, followed by Wireless Mesh Networks (WMNs) in Section 2.3. Energy reduction in cellular
networks is presented in section 2.4. Section 2.5 presents relevant works dealing with energy
reduction in wired networks. Section 2.6 discusses these works and positions our contributions
in this research area. Finally, Section 2.7 concludes this chapter.

2.2 Energy Reduction in WLANs and Campus Networks

A WLAN or campus network is typically composed of a set of Access Points (APs) deployed
in an enterprise or university campuses. These APs are connected to layers of switches that
compose the access, aggregation and core enterprise network. The APs serve the mobile users
and use the layers of switches in the network to provide connectivity to the Internet through core
router gateways. These networks drain a considerable amount of power as they are designed to
handle peak tra�c demands. As such, in low tra�c demand, parts of the network are not used
or underutilized, which results in power wastage.

To address this problem, existing works in the literature proposed energy e�cient techniques
to reduce the amount of consumed power. For instance, authors in [47] presented strategies based
on the resource on-demand concept. The idea is to power on/o↵ WLAN APs dynamically, based
on the volume and location of user demand in a high-density WLANs (i.e., redundant coverage
and connectivity in the network). More specifically, authors proposed SEAR (Survey, Evaluate,
Adapt, and Repeat), which uses online measurement of the resource consumption in the network
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and user tra�c estimation to provide the minimum number of nodes in the network to be used
to accommodate the tra�c load. As such, users tra�c is drained with the required QoS and with
a minimum power consumption. SEAR relies on a central controller for information collecting
and decision making. More specifically, it uses a clustering algorithm to group the APs that are
close to each other. Then, through demand estimation of users’ tra�c, a number of APs to be
turned on is selected to match the tra�c demand.

In the same context as [47], authors in [48, 49] proposed an analytical model to assess the
e↵ectiveness of policies that activate APs in dense WLANs, according to users’ demands and QoS
requirements. This model assumes dense WLANs with a centralized controller. A clustering
algorithm groups the APs in close proximity of each other, and the proposed model focuses
on the behavior inside a single cluster. More specifically, they model user association to APs
policies where the number of APs to switch on is defined by the number of associated users
to APs of the same cluster. The number of APs is defined using predefined thresholds. The
authors also propose a tra�c-based policy model, which uses the amount of tra�c received by
the APs instead of the number of associated users.

From a practical implementation point of view, some works evaluated the impact on a pro-
duction network. For instance, authors in [50] evaluated the implementation of the Resource
on Demand policies proposed in [48] in a student study room of Politecnico di Torino (PoliTo).
Their results confirm energy saving in a campus WLAN environment, depending on the times
of the day, the days of the week, and the period of the year.

From the industry perspective, solutions that integrate energy management in WLAN in-
frastructures exist. For instance, cisco EnergyWise solutions [51] propose to set up predefined
profiles for network nodes. The profiles contain periods of operation/sleep of the nodes. As such,
parts of the network are switched o↵ in times of non-utilization such as night times in corporate
buildings, to reduce the energy consumption.

2.3 Energy Reduction in WMNs

In the context of Wireless Mesh Networks (WMNs), classical routing and link scheduling algo-
rithms focus on the performance in terms of network throughput and delay. A survey of some
of the existing works in literature is presented in [52]. However, these works did not address the
energy consumption issue.

Recently, energy consumption in WMNs has gained importance. The most relevant works on
energy e�ciency are reported in [53–59]. Specifically, authors in [53] propose to reduce energy
consumption in wireless-optical broadband access networks (WOBAN) by reducing the number
of used optical and mesh nodes. In WOBAN, end-users receive broadband services through a
WMN, which is connected to an optical backbone network via gateway nodes. Authors formulate
the problem as mixed integer linear program (MILP) model for multi commodity flow and
provide the optimal routing to reduce the number of used nodes. The objective is to reduce the
number of optical nodes to use in the backbone network. The tra�c in the wireless part of the
network (WMN) is routed using the minimum residual capacity as a routing metric, which aims
at consolidating the tra�c into a reduced number of nodes in the network.

In [54], the authors considered the case of WMNs where the clients can choose the AP they
connect to. To do so, they formulate the problem as an ILP, where the objective is to minimize
the number of used nodes (APs and gateways), while the demand is always satisfied. This work
was extended in [55] to include the cost of nodes’ deployment. In the latter work, the objective
is to choose between the energy cost (OpEx) and the deployment cost (CapEx) of a WMN.
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However, in these two works, the authors did not take into account the interference between
APs since directional antennas are assumed. In addition, they focus only on optimizing energy
consumption without addressing the network throughput issue. Another energy management
study in WMNs is provided in [56], where a combination between di↵erent modulation techniques
and power adaptation is presented and column generation is used to solve the problem.

Authors in [58] present an energy and throughput-aware routing protocol in WMNs. The
proposed algorithm admits as many flows as possible while satisfying their throughput demands,
and at the same time uses as few nodes as possible by switching o↵ the unused ones. The
problem was formulated as a multi-commodity flow problem. However, the authors assume a
pre-established channel assignment in WMNs in order to avoid undesired interferences. As such,
the proposed routing protocol targets only 802.11-based networks. Authors in [59] proposed an
approach for video delivery in battery operated WMNs. The context of battery operated WMNs
is similar to Wireless Sensor Networks where the energy supply is limited at each node and is in
constant decrease. However, the di↵erence in WMNs is that users are mobile, which adds more
constraints and challenges. Their proposed approach seeks a balance between the energy saving
and network delivery performance and user perceived quality. More specifically, it consists of a
MAC layer mesh point operation cycle management scheme, which controls the sleep pattern
of APs, and a routing metric that integrates the remaining energy, distance to the destination
and tra�c load of each node along the path. This defined metric is used in an extension of the
OLSR routing protocol [60].

To address the problem of designing and operating green WMNs, authors in [57,61] investi-
gated the possibility of using renewable energy to power WMNs. The objective is to make use
of the available renewable energy to satisfy the QoS of the tra�c carried in the network. As
such, the fundamental design criterion and main performance metric have shifted from energy
e�ciency to energy sustainability. Consequently, the authors’ proposals aimed at ensuring tra�c
routing in the network using the dynamically harvested green power. To this end, authors first
addressed in [57] the placement problem of green access points (i.e., APs powered by sustain-
able energy sources) to meet users’ QoS demand, followed by a resource management scheme
to address the unreliability of renewable energy. Recently, they proposed in [61] a queuing the-
ory model for the energy bu↵er in a WMN, and proposed a resource management scheme that
balances the tra�c in the network based on the available renewable energy at the mesh nodes.
Their proposed approach further includes a distributed admission control at the mesh APs level
to seek a trade-o↵ between resource utilization and quality of service provisioning, which literally
means limiting the number of users in the network to guarantee the QoS under the intermittent
availability of renewable power. In the same context of operating sustainable WMNs, authors
in [62] addressed the problem of green relay nodes deployment (i.e., relay nodes operated by
renewable power) and subcarrier allocation. They first formulated the problem as a non-linear
programming problem and proposed two heuristic algorithms to solve it.

2.4 Energy Reduction in Cellular Networks

Similar to WMNs and WLANs, cellular networks are designed to handle peak tra�c demands,
with cell towers covering significant geographic areas. As such, solutions that aim at reducing
the energy consumption of such networks by shutting down unused cells have been proposed.
Some proposals in this direction are [63, 64]. In view of this, authors in [63] present an ana-
lytical model energy-aware management of cellular access networks, where the objective is to
characterize the potential energy saving by reducing the number of active cells during periods
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of low tra�c. Similarly, authors in [64] investigate energy saving procedures by turning o↵ both
transmission components during signal-free symbols and cells during low tra�c periods. In fact,
such control is more fine-grained compared to the previous approach and results in additional
energy saving in this particular case of cellular networks, where the transmission component
consume a considerable amount of power.

In [65], the authors propose a framework for green communications in wireless heterogeneous
networks. A heterogenous network is mainly composed of small cells and macrocells. This
framework is cognitive in the holistic sense and aims at improving energy e�ciency of the whole
system, rather than one isolated part of the network. In the same context, authors in [66]
investigated the design and the associated tradeo↵s of energy e�cient cellular networks through
the deployment of sleeping strategies (i.e., switching o↵ unused base stations) and use small
cells, which are less power hungry, to o✏oad the macrocells. Moreover, authors in [67] provide a
baseline for the potential of energy saving in cellular networks, by a combination of macro and
femtocells. The objective is to find the set of base stations (BSs) to turn on in order to insure
an entire coverage and minimize the energy. They presented a heuristic that identifies the BSs
that are more likely to have clients and turn them on, and BSs that are more likely not to have
clients and shut them down. Additional works on reducing the energy consumption in cellular
networks are summarized in [68,69].

2.5 Energy Reduction in Wired Networks

Numerous proposals have been presented to reduce energy consumption in wired networks [53,
70–80].These works aim at reducing the energy consumption by mainly switching o↵ unused
nodes in the network, under low tra�c demands, and adapt the links’ rates to adjust to the
network demand.

Orgerie et al. [81] proposed to use bandwidth reservation requests to plan network resources
and reduce the number of used nodes in dedicated networks (e.g., across banks network). Their
proposed solution aims at reducing the number of used nodes in the network, by having an end-to-
end control over the network. The proposed framework exploits the energy consumption profiles
of the nodes in the network, the bandwidth reservation requests, the available bandwidth over
the links in a centralized manner, and schedules the flows through computed paths. Moreover,
authors use rate adaptation in the network to adjust the transmission rate of links to the actual
load, to further achieve energy reduction.

In the context of ISP core networks, authors in [70] proposed an approach to reduce the
number of used nodes and links in a core network. Their proposal tries to shut down nodes
one by one and verify that the network still routes the required tra�c (i.e., the constraints are
not violated). The same authors discussed a specific case study of wired backbone networks
in [71], and presented an overall energy saving in the Internet scale in [72]. Authors in [77]
proposed a solution that is time-driven and relies on the observation that ISP networks exhibit
regular/predictive tra�c patterns during specified time windows. Hence, they first propose a
heuristic that shuts down unnecessary links, and then an algorithm to compute the duration of
the time window. This approach is shown to be able to achieve up to 18% energy saving (in
terms of used links) without significantly impacting the network performance.

In [73], authors investigated a model based on gradient optimization to reduce energy con-
sumption in wired networks. They started from routing paths given by a shortest path routing.
Then, they used a routing policy named Energy-Aware Routing Protocol (EARP) [74], which
switches o↵ some nodes in the network and re-routes the flows that are routed through these
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nodes. Their approach helps to reduce the energy consumption by up to 10% given that the
required QoS is satisfied.

Online flow-based routing also has been used in [75]. In an online approach, flows are
assumed to come and leave the system in a dynamic way. Authors in [75] presented E2-MCRA,
a flow-based routing approach that reduces the number of used nodes in an ISP network, while
satisfying the QoS constraints. The idea is to route incoming flows by choosing among the
possible paths, the one that achieves the best combination between the path length and the
number of additional nodes to turn on. Their path search strategy is based on Depth-Firth
Search. Regarding decency on the physical cabling, authors in [76] target the specific bundled
wired backbone networks. In a bundled backbone network, each link is composed of a set of
aggregated cables. Their solution proposes to reduce the number of used cables in a link, while
assuring the bandwidth demands of the flows using that link. Their approache starts from a
configuration where all the cables are turned on. Then, they use a heuristic to select which cable
to turn o↵ without altering the QoS of routed flows.

2.6 Discussion

In our study, we focus on WMNs and campus networks, two popular networks, providing last few
miles last few hops connectivity. The particularity of these networks is that the tra�c patterns
are dynamic, and the load is variable over time. In this context, we propose a routing and link
scheduling approach for tra�c flows, in a centralized manner, which is suitable for the emerging
SDN paradigm.

We first focus on TDMA-based wireless multihop networks since TDMA-based channel access
facilitates the use of Quality of Service (QoS)-aware link scheduling and routing [82,83]. Indeed,
while the IEEE 802.11 protocol is the de facto standard for multihop wireless networks, its
MAC protocol (Carrier Sense Multiple Access with Collision Avoidance, CSMA/CA) performs
poorly in WMNs and it is almost impossible to guarantee QoS [83, 84]. To guarantee QoS,
packet collisions must be avoided by scheduling interfering links to transmit in non-overlapping
frequency or time intervals [83]. This is why several developments were provided using multihop
MAC protocols based on TDMA, such as the IEEE 802.16 mesh protocol (e.g., WiMAX) [85], the
802.11s mesh deterministic access (MDA) protocol [86], and the software-based 802.11 overlay
TDMA MAC protocol [83].

In this context, novel green and energy e�cient routing and link scheduling strategies are
needed to take into account energy consumption of wireless nodes when powered on. In this
case, important questions arise: how many APs need to be active to route a tra�c within a
WMN and what is the optimal tradeo↵ between the achieved network throughput and energy
consumption?

To answer these questions, we first propose in the next chapter a holistic management frame-
work that provides the WMN administrator with a parameterized objective function to achieve
the desired trade-o↵ between network throughput and energy consumption. Our proposed ap-
proach takes explicitly into account the interference in a wireless environment, as opposed to
existing schemes such as [53–55]. In addition, we focus on reducing the energy consumption by
reducing the used nodes in the network, as opposed to approaches that focus on transmission
power adaptation such as the ones listed in [87].

Moreover, online approaches for flow routing and dynamic reconfiguration have not been well
studied in the literature. To fill this gap, we propose in Chapter 4, a new scheme that takes into
account a dynamic scenario, where tra�c patterns are not stable over time, and users’ arrivals
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and departure are dynamic and unpredictable.
Last but not least, our proposed approaches rely on meta-heuristics to find a near optimal

solution in a reasonable time compared to brute force exhaustive search for the optimal solution.
This makes our schemes more scalable and applicable in practice.

2.7 Conclusion

With the increasing demand for power in access networks, energy e�cient solutions for network
design and management are required based on the used technology, density and network load. In
this chapter, we presented the most relevant works dealing with energy reduction in wireless and
wired networks. In particular, we presented existing approaches related to WLANs, WMNs,
cellular networks and wired networks. We then positioned our contributions in this research
area.

In the following two chapters, we detail our proposed approaches for reducing the energy
consumption in TDMA-based wireless multihop networks and campus networks.



Chapter 3

Energy E�cient TDMA-based
Wireless Mesh Networks

3.1 Introduction

The application of green networking to multihop wireless networks, in particular Wireless Mesh
Networks (WMN), has seldom been reported in the literature. Typically, a WMN [88] comprises
wireless mesh routers, also called access points (APs). Each AP serves multiple mobile users
and connects them through multihop wireless routing to the wired network. The mesh nodes
connected directly to the wired network (i.e., connecting the WMN to the wired network) are
called gateways. They represent, respectively, the sources and sinks of downlink and uplink
tra�c in the WMN. Since such networks are expected to proliferate in the next few years, their
energy consumption will impact the overall energy consumption of the Internet [89].

In this chapter, we focus on TDMA-based wireless multihop networks since TDMA-based
channel access facilitates the use of QoS-aware link scheduling and routing [82, 83]. In this
context, important questions arise: how many APs need to be active to route a tra�c within a
WMN and what is the optimal trade-o↵ between the achieved network throughput and energy
consumption.

To answer these questions, we propose in this chapter a holistic management framework that
provides the WMN administrator with a parameterized objective function to achieve the desired
tradeo↵ between network throughput and energy consumption. Specifically, we propose two
methods: (i) an optimal one, called Optimal Green Routing and Link Scheduling (O-GRLS),
and (ii) an heuristic one, called Ant Colony Green Routing and Link Scheduling (AC-GRLS).

The reminder of this chapter is organized as follows. Section 3.2 presents the system model
and the problem statement. Section 3.3 describes our proposed framework for energy man-
agement through green joint routing and link scheduling. First, we introduce the O-GRLS
method, then we present the AC-GRLS algorithm. Simulation results are presented in Section
3.4. Finally, Section 3.5 concludes this chapter.

3.2 System Model

3.2.1 Network Model

We represent a WMN by a directed graph G(V,E), called a connectivity graph, where V =
{v1, ..., vn} is the set of n nodes and E is the set of possible direct communication links. Each

25
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node vi 2 V represents an AP with a circular transmission range Rt(i) and an interference range
RI(i).

Among the set V of all wireless nodes, some of them are gateways, that provide the con-
nectivity to the Internet. For simplicity, let S = {s1, s2, ..., sm} be the set of m gateway nodes,
where si is the node vn+i�m, for 1  i  m. All other wireless nodes vi (1  i  n�m) 2 V \S
are ordinary mesh nodes. Each ordinary mesh node will receive the tra�c from all its attached
users and then route it to the Internet through some gateway nodes. We assume that each node
vi 2 V has a limited capacity to serve its attached clients, denoted by Ci, whereas the capacity
between any gateway node to the Internet (to forward its incoming tra�c to the Internet) is
su�ciently large.

During the transmission of the node vi 2 V , all the nodes residing in its transmission range,
and thus representing its neighborhood denoted by Ne(i), receive the signal from vi with a power
strength such that correct decoding is possible with high probability. A unidirectional wireless
link exists between vi and every neighbor vj 2 Ne(i) and is represented by the directed edge
(i, j) 2 E. Each link (i, j) contains a certain number of orthogonal channels, denoted by ncij .
The capacity along each channel k (1  k  ncij) is limited and denoted by Cijk.

We represent the connectivity graph G(V,E) by a connectivity matrix, denoted by M . The
connectivity matrix M is a matrix with rows and columns labeled by the graph vertices V , with
a 1 or 0 in position (i, j) according to whether vi and vj are directly connected or not. Having
the same structure, the number of channels in each link is modeled by a channel matrix, denoted
by NC. If there is no direct link between i and j, then ncij = 0, and hence Cijk = 0.

3.2.2 Interference Model

In this chapter, we adopt the protocol interference model [52]. In this model, a node vj is
interfered by the signal from vi whenever ||vi � vj ||  RI(i) and vj is not the intended receiver.
Recall that ||vi�vj || (denoted also by dij for simplicity) refers to the Euclidean distance between
vi and vj .

To schedule two links at the same time slot, we must ensure that the scheduler will avoid
the link interference. In other words, the transmission from vi to vj is viewed successful if
||vk � vj || > RI(k) for every node vk transmitting in the same time slot on the same channel
m (i.e., the receiver is interference free, as in [52]). Recall that the channels are assumed to
be orthogonal. Hence, non-interfering links as well as interfering links operating on di↵erent
channels can transmit in parallel during the same time slot. Note however that no simultaneous
transmission and reception is allowed on the same node.

Given a connectivity graphG(V,E), we use the conflict graph FG to represent the interference
in G. Each vertex of FG corresponds to a directed link (i, j) in the connectivity graph G. There
is a directed edge from vertex (i, j) to vertex (p, q) in FG if and only if the transmission of link
(i, j) on channel m interferes with the reception of the receiving node of link (p, q) on the same
channel. The conflict graph FG is then fully defined by the interference matrix I as follows:

I(i,j),(p,q) =

⇢
1 If (p, q) interferes with (i, j)
0 Otherwise.

3.2.3 AP Energy Consumption Model

In this work, an AP can be in three di↵erent states: Active(i.e., Transmitting/Receiving), Idle
and OFF. Note that in the Idle state, an AP is ON, but is neither transmitting not receiving. As
reported through the experimental measurements in [90], the power consumption of an Active
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AP represents the peak power consumption, and an Idle AP consumes almost 75% of its peak
power consumption. Finally, an OFF AP does not consume any power. As a result, we derive
the following power consumption model for the power consumption Pi of an AP i as follows:

Pi =

8
<

:

100% If AP i is Active
75% If AP i is Idle
0% Otherwise.

3.2.4 Tra�c Model

In our study, we consider a set L of mesh users (also called clients). Each user l 2 L generates a
certain tra�c demand dl (in terms of required bandwidth). To represent the user position within
the WMN, we define a binary variable al,j to indicate whether a user l is within the coverage
area of the AP j or not. Note that a user l can be within the coverage area of multiple APs. Our
aim is to turn o↵ unnecessary APs to save energy, while achieving the required bandwidth of
user l. The tra�c demands of APs can follow a uniform distribution (i.e., each AP has the same
demand) or a random process (e.g., Poisson process). According to [91], this tra�c is assumed
not to change during a given time interval. Indeed, in [91], the characteristics of the tra�c in
wireless access networks have been analyzed and it is shown that the tra�c during the day can
be divided into intervals of equal length. In particular, 8 intervals of 3 hours are defined, as
in [54]. In this chapter, we adopt such characteristics. Without loss of generality, we assume
that the tra�c is uplink. This means that each originated tra�c must be routed towards a
gateway.

3.2.5 Problem Formulation

The general problem we are considering aims at managing mesh nodes in order to save energy
when some of the network resources (i.e., APs including gateways and the links connecting
them) are not necessary and can be switched o↵, while achieving the required user’s bandwidth.
From an operational point of view, this can be easily integrated in network management plat-
forms commonly used for carrier grade WMNs and to the centralized and remote control of all
configured devices.

As we consider a slotted, synchronized WMN, and a static topology and demands (within
one interval of 3 hours, as stated in Subsection 2.4), it is reasonable to assume that the network
is periodic with period T (i.e., each interval of 3 hours is divided into a number of periods
of length T , where the length is measured in time slots). For instance, using WiMAX, the
scheduling period T corresponds to the frame duration which is 5� 20 ms long [92].

As stated earlier, we jointly consider green routing and link scheduling. Recall that a link
scheduling consists in allocating to each link a set of time slots ⇢ {1, .., T} on which it will
transmit. Our objective is to maximize both the total network throughput and energy saving by
switching o↵ unused nodes. The throughput is given by the ratio of successfully routed tra�c
towards the gateways to the number of needed time slots. Hence, maximizing the throughput
boils down to minimizing the total number of used slots within the scheduling period T . The
problem can be thus described mathematically within a WMN, as follows:

GIVEN:

• A physical topology represented by the graph G(V,E), which is described by the connec-
tivity, interference and channel matrices M , I and NC, respectively.
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• A list L of clients, each one with its demand dl.

• The coverage matrix A of APs, defined by the binary variable al,j .

FIND:

• The optimal attachment of each client among L to one of the covering APs and the optimal
routing and link scheduling of its corresponding flow (tra�c) that makes the best tradeo↵
between achieved network throughput and energy consumption.

In what follows, we present our proposed framework to achieve this goal.

3.3 A Framework for Energy E�cient Management in TDMA-
based WMNs

Our framework jointly considers green routing and link scheduling (GRLS) for energy e�cient
management in TDMA-based WMNs. It includes two methods: an Optimal one, called O-GRLS,
that aims at finding the best tradeo↵ between the achieved network throughput and energy
consumption. In this case, we formulate the problem as an integer linear program (ILP). As
this problem is known to be NP-Hard [16,17], we then propose a simple yet e�cient algorithm
based on Ant Colony meta-heuristic, called AC-GRLS, to solve it. A detailed description of
these methods follows.

3.3.1 O-GRLS Method

First, let us consider the binary variable x
(t)
ijk(l) defined by:

x
(t)
ijk(l) =

8
<

:

1 If tra�c of client l is routed from
i to j using channel k on time slot t

0 Otherwise.

and the binary variable wlj that decides whether the client l will be attached to the AP j or not.
To indicate whether an APi 2 V is ON or not, we introduce another binary variable yi defined
by:

yi =

8
<

:
0 If

P
l2L

� TP
t=1

nP
j=1

nc
ijP

k=1
(x(t)ijk(l) + x

(t)
jik(l)) + wli

�
= 0

1 Otherwise.

To indicate whether an APi is active (i.e., transmitting or receiving) during a time slot t, we
introduce the following binary variable zi,t:

zi,t =

8
<

:
0 If

P
l2L

nP
j=1

nc
ijP

k=1
x
(t)
ijk(l) = 0

1 Otherwise.

Consequently, the energy consumption of an APi during a period T is given by Pi as follows:

Pi =
TX

t=1

(zi,t + (1� zi,t)⇥ yi ⇥ 0.75) (3.1)
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To indicate whether a time slot t is used for transmission, we also introduce the following
binary variable zt:

zt =

8
<

:
0 If

nP
i=1

zi,t = 0

1 Otherwise.

Our ILP can be, thus, formulated as follows:

Minimize
⇣
↵

nP
i=1

Pi

n⇥ |T | + (1� ↵)

TP
t=1

zt

|T |

⌘
(3.2)

where |T | is the number of time slots in a period T .

Subject to the following constraints:

X

l2L
x
(t)
ijk(l)⇥ dl  Cijk 8i, j 2 {1, ..., n}, k 2 {1, .., ncij}, 8t 2 {1, .., T} (3.3)

x
(t)
ijk(l)+x

(t)
pqk(l

0)I(i,j),(p,q)  1 8i, j, p, q 2 {1, ..., n}, k 2 {1, .., ncij}, 8t 2 {1, .., T}, 8l, l0 2 L

(3.4)

nX

j=1

X

l2L

nc
ijX

k=1

x
(t)
ijk(l) +

nX

j=1

X

l2L

nc
jiX

k=1

x
(t)
jik(l)  1, 8t 2 {1, .., T}, 8i 2 {1, .., n} (3.5)

x
(t)
ijk(l) = 0 , 8i 2 {n�m+1, ..., n}, j 2 {1, .., n}, k 2 {1, .., ncij}, 8l 2 L, 8t 2 {1, .., T} (3.6)

TX

t=1

nX

j=1

nc
ijX

k=1

x
(t)
ijk(l)  1,

TX

t=1

nX

j=1

nc
jiX

k=1

x
(t)
jik(l)  1, 8i 2 {1, ..., n}, 8l 2 L (3.7)

X

l2L

TX

t=1

nX

j=1

nc
ijX

k=1

x
(t)
ijk(l) =

X

l2L

TX

t=1

nX

j=1

nc
ijX

k=1

x
(t)
jik(l)+

X

l2L
wli

� TX

t=1

nX

j=1

nc
ijX

k=1

x
(t)
ijk(l)

�
, 8i 2 {1, .., n�m}

(3.8)

TX

t=1

nX

i=1

nX

j=n�m+1

nc
ijX

k=1

x
(t)
ijk(l) +

nX

j=n�m+1

wlj = 1, 8l 2 L (3.9)

wij  Aij , 8i, j 2 {1, .., n} (3.10)
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X

l2L
wlj ⇥ dl  Cj , 8j 2 {1, .., n} (3.11)

nX

j=1

wlj = 1, 8l 2 L (3.12)

x
(t)
ijk(l), yi, zt, zi,t, wlj 2 {0, 1}, 8i, j 2 {1, .., n}, 8l 2 L, 8t 2 {1, .., T} (3.13)

Where ↵ 2 [0, 1] is a weighting coe�cient determining the tradeo↵ between the achieved
throughput and the energy saving. For instance, assigning the value of 1 to ↵ results in mini-
mizing only the energy cost without taking into account the achieved throughput. Whereas, a
value of 0 for ↵ aims at focusing only on maximizing the total network throughput. Note that
these two terms are normalized by dividing the first one by the number of APs and the total
number of available time slots; and the second term by the total number of available time slots.

Condition (3.3) ensures not transmitting over a non existing link as well as not exceeding the
capacity of a link. Condition (3.4) implies that interfering links are not scheduled to transmit
in the same time slot. The constraint in (3.5) prevents a node from simultaneous sending and
receiving, or receiving from multiple senders, or sending to multiple receivers during the same
time slot, as in [93]. However, this constraint could be relaxed as in [94] to enable receiving
and sending at the same time on the same channel (Full Duplex), or sending and receiving
on di↵erent orthogonal channels at the same time slot (Frequency Division). Condition (3.6)
ensures that tra�c is not routed in the WMN after reaching a gateway node. This means that
the gateways are assumed to have enough capacity to send all the received tra�c towards the
Internet. Condition (3.7) avoids loops while routing a flow originating from client l.

Condition (3.8) refers to the flow continuity constraint, which ensures the routing path to be
continuous. It ensures that all the incoming flows are routed in addition to the flows originating
from the clients that are attached to the node. That is, the number of flows that come into
an AP (from both its neighboring APs and its attached clients) is equal to what goes out of
this AP (towards its corresponding neighboring APs), except the gateways that route the tra�c
towards the Internet. Condition (3.9) ensures that all the flows are successfully routed to one
of the available gateways within the time period T . Conditions (3.10) and (3.11) guarantee no
attachment to non-covering AP and not exceeding the capacity of an AP, respectively. Condition
(3.12) guarantees that each client is connected to at most one AP. The last condition indicates

that x(t)ijk(l), yi, wlj zi,t and zt are binary variables.
It is worth noting that in this ILP, we do not consider data fragmentation at multiple points

in the network, as splitting tra�c flows can increase jitter due to out of sequence arrival of
packets [95]. However, we note that if a user’s demand dl is higher than the channel capacity,
its corresponding tra�c will be split into di↵erent parts of size p that satisfy the link capacities.
Then, each part will be considered as a separate flow corresponding to a di↵erent “virtual” user.

3.3.2 AC-GRLS Method

The ILP formulation presented in the previous subsection uses link-related variables. Although
this link formulation gives an optimal solution, it takes a long time to solve and thus can only
be used in small-sized networks. To reduce the above ILP resolution time, a path formulation
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Algorithm 1 AC-GRLS algorithm
IN: Set of flows, K alternative paths for each flow
OUT: A routing solution (One path for each flow)
Set Parameters: q0, ↵ANT

, �
ANT

, Q
Initialize pheromone trails
best solution  some initial solution
for nb = 1! N

max

do
Construct Ant Solutions
for all ant in A

max

do
current solution  {}
for l = 1! Number of clients do

p Random(0..1)
if p < q0 then

Choose path j where

j = Argmax
k2Nl

⇣
⌧↵ANT
lk

⇥ ⌘�ANT

lk

⌘

else
Choose path j according to P

lj

probability

P
lj

=
⌧

↵ANT
lj ⌘

�ANT
ljP

k2Nl

⌧

↵ANT
lk ⌘

�ANT
lk

end if
Add the jth path for flow l to current solution

end for
if current solution is better than best solution then

best solution  current solution
end if

end for
Pheromone trail update
for l = 1! Number of flows do

for j = 1! K do
⌧
lj

 (1� ⇢)⌧
lj

if current solution is the best solution for the current iteration And jth path is selected for
client l then

⌧
lj

 ⌧
lj

+�best

lj

end if
end for

end for
end for
Return best solution

is first introduced. Specifically, the output decision variables of the above ILP will be a path
for each flow instead of a link scheduled to route a flow in a given time slot. Note that path
formulation scales better but at the expense of optimality. Using this path formulation, we
propose here a simple yet e�cient meta-heuristic based algorithm, called AC-GRLS.

AC-GRLS is based on the Ant Colony System meta-heuristic [96], which takes inspiration
from the behavior of collective ants in finding the best path between their nest and a food source.
It operates as follows. First, a set of solution components (i.e., paths) needs to be determined for
each flow coming from a client. Next, Amax artificial ants are launched and iteratively explore
the search space until a predetermined number of iterations Nmax is reached. During each
iteration, each ant among Amax incrementally constructs the solution by adding in every step
one solution component (i.e., a path for one client’s flow) to the partial solution constructed so
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Algorithm 2 Greedy Link Scheduling
IN: LS: List of links to schedule, the conflict graph.
OUT: Sc: List of Slots with the corresponding scheduled links in each slot.
Sc {}; i 0 //i is the current slot
while LS 6= ; do

//Extend Sc by one slot
i i+ 1; Sc[i] {}
for all ls 2 LS do

for all k 2 channels(ls) do
if ls

k

does not interfere with any link in Sc[i] then
Sc[i] Sc[i] [ {ls

k

};
Remove ls from LS
Break;
//Move to the next link to schedule

end if
end for

end for
end while
Return Sc
The returned list Sc contains the slots and, for each slot, the links that are scheduled to transmit as
well as the corresponding channels.

far. Note that the solution component to add among the candidates is chosen using a stochastic
local decision policy. More specifically, the decision is based on heuristic information, denoted
by ⌘, and artificial pheromone trails, denoted by ⌧ , which respectively quantify the desirability
of a priori and a posteriori transitions. Indeed, the heuristic represents the attractiveness of the
move, indicating the a priori desirability of that move. On the other hand, the pheromone trails
indicate how proficient it has been in the past (i.e., according to other ants experience) to add
that solution component. Once an ant has built a solution, or while the solution is being built,
the ant evaluates the partial solution and deposits pheromone trails on the components it used.
This pheromone information will direct the search of the future ants.

Once each ant has built its full solution, the best one (i.e., the one that most enhances
the objective function, given in equation (3.2)) among all solutions generated by all ants is
selected. Furthermore, the artificial pheromone slightly evaporates in all the environment. This
helps the ants to discover new trajectories and to avoid a too rapid convergence to local optima.
Nevertheless, the artificial pheromone trail of each solution component is reinforced at the visited
points according to the best trajectory traveled by ants to build the whole solution. This helps
the ants to improve and continually refine the best obtained solution. The process is repeated
during Nmax iterations and the global best solution generated by the Amax ants is considered to
be the output solution. More formally, our AC-GRLS algorithm is described by the pseudo-code
in Algorithm 1.

The fundamental steps of AC-GRLS are: 1) Formation of solution components, 2) Probabilis-
tic selection of the candidate, 3) Selection of the best solution and 4) Updating the pheromone
trails. In the following, we detail these stages.

1) Formation of solution components:

For each client, we consider K alternative paths towards a gateway (any of the m available
gateways). Each path starts from the client, passes through an AP that the client attaches to,
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and then other intermediate APs until reaching a gateway. A solution component will be one of
the predeterminedK paths. As such, the number of possible solutions for the path formulation is
K |L|, where |L| is the number of clients. Hence the proposed meta-heuristic guides the algorithm
to e�ciently explore the graph of solutions.

2) Selection among the candidates for a component:

During each iteration, each ant among Amax builds the solution step by step, by adding in each
step another component (i.e., a path for a flow from client l). The component to add is chosen
according to the attractiveness of the new constructed solution (i.e., the current solution aug-
mented by the selected component) which is called the heuristic, and the amount of pheromone
deposits, which represents how this component is evaluated during the previous iterations by all
ants. The heuristic is given by :

⌘ =
1

Objective Function Value
(3.14)

Note that, to compute the objective function value given in (3.2), a greedy link scheduling
algorithm (presented in Algorithm 2) is used to schedule transmissions along all paths that form
the new constructed solution. Once computed, the choice of the next component to add to
the partial solution constructed so far (i.e., a path j for a client l) is selected according to a
given probability. Note that in Ant Colony System meta-heuristic [96], two strategies can be
used: exploitation and exploration. More specifically, exploitation is used with a probability q0,
whereas exploration is adopted with a probability (1� q0).

Regarding exploration, the knowledge and experience of other ants is stochastically taken
into account. Indeed, the next component is selected according to a probability Plj given by:

Plj =
⌧↵ANT

lj ⌘�ANT

ljP
k2N

l

⌧↵ANT

lk ⌘�ANT

lk

(3.15)

where Nl is the set of all possible paths for the solution component l (i.e., |Nl| = K), ⌘lj and
⌧lj denote, respectively, the heuristic value given in equation (4.14), and the pheromone trail of
the jth path for the flow originating from client l, and ↵ANT and �ANT determine, respectively,
the relative importance of ⌧lj and ⌘lj . Recall that ⌘lj represents the desirability of adding the
solution component j (i.e., path j) to route the flow of client l, whereas ⌧lj represents how
proficient it has been so far to route the flow of client l through path j. As such, ↵ANT and
�ANT parameters have the following influence on the algorithm behavior. If �ANT = 0, the
selection probabilities are portional to the heuristic value ⌘lj , which means that the components
with high heuristic value are more likely to be selected. In this case, AC-GRLS corresponds to
a classical stochastic greedy algorithm. However, if ↵ANT = 0, only pheromone amplification is
at work: the components with high pheromone trail are more likely to be selected, in which case
a rapid convergence to a suboptimal solution may result as all ants are more likely to build the
same solution.

On the other hand, in exploitation, the experience of the other ants is directly used. Indeed,
among the possible components to add, the one with the highest value of ⌧↵ANT

lj ⇥ ⌘�ANT

lj is
selected.
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Table 3.1: AC-GRLS simulation parameters

Parameter Value Parameter Value
↵ANT 0.15 ⇢ 0.2
�ANT 1.2 # of Ants 6
Q |L| # of iterations 10
q0 0.1 T 48 slots

Table 3.2: Computation time (in seconds) for O-GRLS, AC-GRLS, MRC, and SP schemes

Network Size # of clients O-GRLS AC-GRLS MRC SP
25 nodes 5 265.32±24.75 0.42±0.38 0.03±0.02 0.05±0.03
4 gateways 10 532.81±16.59 1.83±2.21 0.45±0.14 0.41±0.15

15 597.14±13.29 3.42±5.22 0.91±0.25 0.86±0.17
100 nodes 25 - 7.22±2.75 0.41±0.15 0.43±0.15
9 gateways 50 - 9.14±3.2 3 1.33±1.23 1.66±1.14

75 - 11.21±4.39 3.63±0.33 3.51±0.29

3) Selection of the best solution:

The criterion to choose the best solution is the objective function given in equation (3.2), which
makes the targeted tradeo↵ between network throughput and energy consumption.

4) Pheromone trail update:

At the end of each iteration, the pheromones (trail values) for each flow l are updated as follows:

⌧lj = (1� ⇢)⌧lj +�best
lj

where ⇢ 2 [0, 1] is the decay coe�cient of the pheromone, �best
lj = Q/⌘best if flow l is routed

through the jth path in the best solution of the current iteration, 0 otherwise, and Q is a
constant called the pheromone update constant. Recall that

⌘best =
1

Objective function value of the best solution

as reported in equation (4.14).

3.4 Performance Evaluation

In this section, we evaluate the e�ciency of our proposed framework. Specifically, we study the
gain that both O-GRLS and AC-GRLS introduce compared to the Shortest Path (SP) routing
and the Minimum link Residual Capacity (MRC) routing metric [53], under various network
load and densities. Note that the aim of MRC is to group the tra�c through same paths in
order to reduce the number of used nodes. We consider di↵erent grid-based WMN topologies:
25 (5 x 5) APs with 4 gateways (located at the 4 corners of the grid), and 100 (10 x 10) APs
with 9 gateways, which are representative of small and large-sized WMNs, respectively. The
nodes are located in an area of 1000m ⇥ 1000m. Based on the transmission range Rt = 250m
of each AP, and the interference range RI = 1.5⇥Rt, both the connectivity and conflict graphs
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(a) 5 clients (b) 10 clients (c) 15 clients

Figure 3.1: Comparison of the objective function values for O-GRLS, AC-GRLS, SP and MRC
in small-sized WMNs

are derived. Then, according to users positions, which are uniformly distributed within the
network, the coverage matrix A is derived. In our simulations, we consider di↵erent numbers
of connected users (2-40 for the 25-node WMN case, and 5� 170 for the 100-node WMN case)
to show the impact of network load on the evaluated metrics. Without loss of generality, we
normalize the channel bandwidth capacities to a value of 1. The clients’ demands are expressed
in percentage of the channel capacities. Note that if a client’s demand is higher than the channel
capacity, its corresponding tra�c will be split into di↵erent parts of size p that satisfy the link
capacities. Then, each part will be considered as a separate flow corresponding to a di↵erent
“virtual”user. In addition, we vary the weighting factor ↵ to determine the best tradeo↵ between
energy consumption and throughput. As in [97], the scheduling period T is set to 5 ms, which
corresponds to 48 time slots.

The performance metrics used in our simulations concern the computation time, the objective
function value given in equation (3.2), the energy consumption which represents the normalized
value of consumed energy given by:

P =

nP
i=1

Pi

n⇥ |T | (3.16)

Where Pi is the power consumption of an AP i as given in equation (3.1), n is the number of
APs and |T | is the number of available time slots within the period T . Moreover, additional
metrics such as the proportion of used nodes (i.e., relay APs as well as used gateways), which
contributes the most to the energy consumption used to forward the required tra�c of L clients,
the flow acceptance ratio and the achieved throughput. Additional metrics such as the average
path length are also investigated.

The reported results are obtained using the solver ILOG CPLEX [98] for O-GRLS and a
Java implementation for AC-GRLS, SP and MRC. Table 3.1 reports the simulation parameters
used for AC-GRLS. Note that there is no optimal rule for setting the values of parameters �ANT ,
↵ANT , ⇢, q0, the number of ants and the number of iterations, as pointed out in [99,100]. Hence,
we experimentally tuned these parameters by running preliminary tests using di↵erent values
of each of them. We then chose the most interesting values that o↵er satisfactory results. Note
that our simulations are run until a narrow 95% confidence interval is achieved. Note also that
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(c) Proportion of used nodes
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Figure 3.2: Simulation results for O-GRLS, AC-GRLS, SP and MRC in small-sized WMNs with
15 clients

to achieve such narrow confidence intervals, simulations need to be run in certain cases over
several hours up to more than one day, notably when the number of APs is large.

The analysis is divided into two parts. First, we present results related to the particular case
of single channel WMNs. Then, we investigate the case of multichannel TDMA-based WMNs,
which is more likely to be the case in real networks.

3.4.1 Single channel WMNs

To get an insight into the convergence of our Ant-Colony approach (i.e., AC-GRLS) to the opti-
mal solution (i.e., O-GRLS), let us first consider here both Table 3.2 and Figure 3.1. Specifically,
Table 3.2 reports the computation time needed by all methods to resolve the GRLS problem.
These measurements are performed on a PC with 3.2 GHz of CPU and 4.00 GB of RAM. The
reported results show that the Ant-Colony approach takes a very short time to solve the prob-
lem (up to 5 seconds in the small-sized WMN case, and up to 12 seconds in the large-sized
one), compared to the optimal one, which can reach 600 seconds. The SP and MRC algorithms,
however, need less than 1 second (in the 25 APs case) since no energy saving is considered.

On the other hand, Figure 3.1 compares the objective function values of the afore-mentioned
strategies, while varying ↵ and under di↵erent network loads for small-sized WMNs. We can
observe that the mean values obtained for O-GRLS fit or are very close to the confidence intervals
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Figure 3.3: Simulation results for AC-GRLS, SP and MRC in large-sized WMNs with 95 clients

of AC-GRLS. This means that the Ant-Colony approach yields a very good approximation to
the optimal solution and within a short time period as reported in Table 3.2. We can also
observe that we succeed to reduce the objective function value by up to 50% using AC-GRLS
compared to the SP and MRC routing strategies. Let us now focus on the comparison between
the di↵erent methods based on the energy cost and the achieved network throughput.

Figure 3.2 shows the achieved throughput, the energy consumption, the proportion of used
nodes, as well as the average path length in small-sized WMNs. We can observe that the
energy cost and the achieved throughput decrease with the increase of ↵ for both O-GRLS and
AC-GRLS, and remain invariant for SP and MRC since these two latter schemes do not take
into account the energy consumption and the achieved throughput in the flow routing process,
respectively. In particular, when ↵ = 1, the consumed energy is set to minimum but at the
expense of low achieved throughput.

The main observation for AC-GRLS here is when ↵ 2 [0.4, 0.7] compared to SP and ↵ 2
[0.5, 0.78] compared to MRC. Indeed, within these ranges of ↵, our proposed framework achieves
better throughput than both SP and MRC strategies [see Figure 3.2(a)], and at the same time
consumes less energy and uses a reduced number of relaying nodes [see Figs. 3.2(b) and 3.2(c)].
The rational behind this is that, from an operator point of view, a good resource planning is
reached when ↵ is parameterized within this range. As such, both the network performance and
the energy saving will be improved. In particular, for ↵ = 0.7, an operator succeeds in achieving
the same performance as SP by consuming less energy. In this case, the energy saving is about
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(a) Achieved throughput (flow/slot) (b) Flow acceptance ratio (c) Energy consumption

Figure 3.4: Achieved throughput, flow acceptance ratio, and proportion of used nodes vs. Num-
ber of mesh clients (100 nodes, 9 gateways, ↵ = 0.45)

14% and 19% for AC-GRLS and O-GRLS, respectively. Whereas, for ↵ = 0.4, the network
consumes the same energy as SP when using AC-GRLS, but at the same time achieves a higher
network throughput. The gain culminates at 50% in this case. The same reasoning holds when
compared to MRC. In fact, on one hand, for ↵ = 0.78, an operator succeeds in achieving the
same performance as MRC by consuming 14% less energy. On the other hand, for ↵ = 0.5, for
the same energy budget, AC-GRLS achieves higher throughput than MRC by about 52%. It is
worth noting that, since AC-GRLS, MRC and SP use a simple greedy link scheduling (reported
in Algorithm 2), the achieved network throughput shown here can be viewed as a lower bound
of the possible achieved one when using other “advanced” link scheduling algorithms.

Another important usage of the above results is the selection of the best value of ↵ to
guarantee a certain network throughput, while reducing the total energy cost. This could be
used by the WMN administrator to seek a desired tradeo↵. For instance, if one wants to achieve,
at least, a throughput of 2 flow/slot, a value of ↵ = 0.58 could be selected when adopting AC-
GRLS.

To show the scalability of our AC-GRLS approach, we carried out additional simulations in
large-sized WMNs with di↵erent number of connected mesh clients. Results for the case of 95
mesh clients are presented in Figure 3.3. Same observations can be made here. Indeed, we can
see that for ↵ = 0.65 and ↵ = 0.62, almost the same throughput as SP and MRC, respectively,
is achieved, while consuming less energy. The energy saving is about 20% and 11% compared to
SP and MRC, respectively. However, with the same energy cost, better throughput is achievable
with AC-GRLS, as shown in Figure 3.3(a). In fact, the throughput gain can attain 47% and
28% compared to SP (for ↵ = 0.4) and MRC (for ↵ = 0.42), respectively. Note that, results
regarding O-GRLS are not provided here due to the inherently high computation time.

Regarding the average path length, depicted in Figure 3.3(d), we can observe that the SP
algorithm obviously selects paths with minimum number of hops towards the gateways. Both
MRC and AC-GRLS, on the other hand, choose longer paths than SP to reduce the number
of used nodes. However, we notice that the paths selected by AC-GRLS have the tendency to
be the same as in MRC, in particular when ↵  0.7. Indeed, as shown in Figure 3.3(d), when
↵ = 0.42 (i.e., same energy cost as MRC), the average path length is better than MRC. This
means that our approach can achieve high network throughput without increasing not only the
energy cost but also the average path length. This will help to achieve e�cient end-to-end delay,
as longer paths might result in high delays due to packet forwarding. Indeed, the delay in WMNs
is a function of the number of communication hops between the source and the gateway), as
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(a) Achieved throughput (flow/slot) (b) Flow acceptance ratio (c) Energy consumption

Figure 3.5: Achieved throughput, flow acceptance ratio, and proportion of used nodes vs. Num-
ber of mesh clients (100 nodes, 9 gateways, ↵ = 0.75)

shown in [101]. Specifically, WMN scales better when the tra�c pattern is Local. That is, each
node sends only to nearby gateways (and not to far away gateways), independent of the network
size. The expected path length clearly remains a few hops away from the gateway as the network
size grows. On the other hand, when ↵ = 0.65 (i.e., in the case of achieving lower energy cost
than both SP and MRC with approximately the same achieved throughput), the average path
length is slightly higher than with MRC. This shows that even though our approach uses slightly
longer paths than the MRC strategy, the energy cost is not a↵ected since the flows are routed
through already active nodes, thus enabling energy saving.

It is worth noting that comparable results have been obtained in the case of arbitrary meshed
topologies of the same sizes. Indeed, compared to SP, MRC achieves energy saving of around
7%. AC-GRLS, on the other hand, reduces the energy cost by about 16% for both small and
large-sized WMNs. However, the achievable network throughput improvement is about 29% and
30% compared to SP and MRC, respectively, in small-sized WMNs. These gains are reduced to
26% and 24%, respectively, in the large-sized WMN case.

Figs. 3.4 and 3.5 further investigate the scalability of our Ant-Colony approach when varying
the network load for the particular cases of ↵ = 0.45 (i.e., same energy cost as MRC) and ↵ = 0.75
(i.e., same achieved throughput as MRC), respectively. Note that to vary the network load, we
vary the number of attached mesh clients. From both figures, we can observe that:

• AC-GRLS persistently outperforms the other methods, with relevant di↵erences at high
network load. Indeed, it shows a throughput increase of approximately 60% compared to
SP and MRC, while using the same energy budget [see Figs. 3.4(a) and 3.4(c)].

• The throughput of all approaches globally increases with the number of users in the network
(i.e., network load) till reaching the full WMN capacity (in terms of attached users) under
AC-GRLS, SP, or MRC and using our greedy link scheduling algorithm. For instance,
this capacity corresponds to 125 users for AC-GRLS, 75 and 85 users for SP and MRC,
respectively, when ↵ = 0.45, as shown in Figure 3.4(b). Beyond these points, the network
starts rejecting incoming flows since the total number of available slots in the network is
fixed (48 time slots in our simulations).

• AC-GRLS enhances the flow acceptance ratio by up to 35% compared to both SP and
MRC [see Figs. 3.4(b) and 3.5(b)].
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Figure 3.6: Impact of number of sub-channels on AC-GRLS in small-sized WMNs with 15 clients

• The energy cost kept increasing with the network load since more and more nodes will
be turned on to forward the tra�c [see Figs. 3.4(c) and 3.5(c)]. However, the energy cost
tends to flatten when the number of clients increases as flows are rejected and no additional
energy is consumed (see Fig 3.5(c), number of clients above 120).

• AC-GRLS achieves similar network throughput in average compared to SP and MRC for
↵ = 0.75, while minimizing the energy cost, especially at medium and high network load
(see Figure 3.5). In this case, the energy saving culminates at 29%.

• At low network load, the gain of AC-GRLS over the other schemes is not significant due
to tra�c scarcity.

3.4.2 Multichannel WMNs

In this subsection, we analyze the impact of using multichannel WMNs on the performance of
our proposed AC-GRLS approach. More precisely, these results aim to show that our approach
is still e↵ective in multichannel networks, in contrary to other approaches such as MRC. In
fact, one issue when minimizing energy is the bottlenecks that might result at the gateways
level. As the interference limits the capacity of the WMN, adding channels may lead to small
improvement in performance, as will be shown hereafter.
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Figure 3.7: Impact of number of sub-channels on AC-GRLS in large-sized WMNs with 95 clients

To do so, we vary the number of sub-channels1 from 1 to 5 using the afore-mentioned simu-
lation topologies and tra�c loads. The results are depicted in Figs. 3.6 and 3.7, for small- and
large-sized WMNs, respectively. We can here appreciate how much the use of multiple channels
contributes in increasing the achieved network throughput, without impacting the energy cost.
In particular, we can observe that:

• For small-sized WMNs, the throughput gain is maintained at 24%, compared to the single
channel WMN case [see Figure 3.6(a)]. On the other hand, this gain is increased by up to
150% and 100% at low/medium and high values of ↵, respectively, in large-sized WMNs
[see Figure 3.7(a)].

• The maximum throughput gain is achieved by using 3 and 4 sub-channels for small- and
large-sized WMNs, respectively. Non-relevant di↵erences are observed beyond these values.
This is explained by the fact that the network performance is near optimal in this case.

• The energy consumption and the proportions of used nodes remain globally the same even
though some di↵erences can be observed in Figs. 3.6(c) and 3.7(c). This is mainly due to
the randomness in our simulations since we use a di↵erent topology for each test.

1
The terms channel and sub-channel are used interchangeably. Both refer to a sub-channel.
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(a) Achieved Throughput (b) Energy consumption

Figure 3.8: Achieved throughput and consumed energy when varying the number of mesh
clients and ↵ (100 nodes, 9 gateways, 4 sub-channels)

• From the path length point of view, no significant changes are observed since the average
path length is almost equal to 3 hops for the small-sized WMNs case and between 2.3 and
2.7 hops for the large-sized one, as shown in Figs. 3.6(d) and 3.7(d).

Finally, Figs. 3.8(a) and 3.8(b) illustrate, respectively, the achieved throughput and the
energy consumption when varying the network load as well as the coe�cient factor ↵, for the
100 node WMN case and using 4 sub-channels. Recall that, with 4 sub-channels, we can reach the
maximum WMN performance under AC-GRLS, as shown in Figure 3.7. Same observation can
be made here. Indeed, when ↵ = 0.55, on average, while the three approaches achieve the same
network throughput, AC-GRLS reduces the energy cost by up to 19% for the di↵erent numbers
of users. On the other hand, when ↵ = 0.4, the Ant-Colony approach enhances the achieved
throughput by up to 30% and 38% compared to SP and MRC, respectively, while incurring
the same energy cost. Note that no significant improvement is observed at low network load
due to tra�c scarcity. On the other hand, at high network load, the improvement in achieved
throughput is bounded by the channel capacity as well as the interference between wireless
links. It is worth noting that, in multichannel WMNs, while AC-GRLS maintains the gains in
terms of achieved throughput and energy consumption compared to SP, MRC performs poorly
in the multichannel case since it achieves similar performance as SP. Note that in single channel
WMNs, MRC performs better than SP. The explanation for this stems from the fact that when
adding channels, the gateways are still a bottleneck. In fact, a gateway cannot receive from
multiple neighbors as depicted by equation (3.5), which limits the utilization of the multiple
channels. As MRC does not take into account this issue in multichannel WMNs, the throughput
degrades which results in performance comparable to SP.



3.5. Conclusion 43

3.5 Conclusion

In this chapter, we investigated energy management e�ciency in multihop TDMA-based wireless
mesh networks (WMNs). Specifically, we have proposed a holistic framework for energy e�cient
communications based on two approaches: an Optimal one, called O-GRLS, and an Ant Colony-
based one, called AC-GRLS. Both approaches allow to find a good tradeo↵ between the achieved
network throughput and energy consumption using a parameterized objective function. The
latter provides network administrators with a means to find the best network throughput for
a given energy budget and vice-versa. Through extensive simulations, we showed how our
framework can achieve significant gains in terms of energy consumption as well as achieved
throughput and flow acceptance ratio, compared to the Shortest Path (SP) routing and Minimum
Residual Capacity (MRC) routing metric. In particular, we showed that in small-sized WMNs,
our proposed framework saves 13% (14%, respectively) of the energy cost, while achieving the
same performance as SP (MRC, respectively). However, if the network consumes the same
energy as SP (MRC, respectively), the achieved throughput can be enhanced by up to 50%
(52%, respectively). On the other hand, in large-sized WMNs, the energy saving is about 20%,
while the achievable throughput improvement is about 47%. In addition, we showed that our
framework enhances the flow acceptance ratio by up to 35% and achieves better performance
even at high network load. However, this improvement is bounded by the channel capacity as
well as the interference between wireless links. Furthermore, we showed that using multiple sub-
channels aims at increasing the achieved network throughput without impacting on the energy
consumption. Finally, we demonstrated that AC-GRLS converges to the optimal solution in
small-sized WMNs and has low computation time in large-sized ones, which makes it a feasible
and e↵ective solution for energy e�cient management in TDMA-based WMNs.



Chapter 4

Online Flow-based Routing for
Energy E�cient Campus Networks

4.1 Introduction

In the previous chapter, we presented O-GRLS and AC-GRLS, two routing and link schedul-
ing solutions for TDMA-based Wireless Mesh Networks (WMNs), where the tra�c pattern is
assumed to be fairly stable over time. In this chapter, we extend this proposal to a dynamic
scenario, where users’ arrivals and departure are dynamic and unpredictable. Moreover, we ad-
dress the energy consumption at a scale of campus networks, which includes both wireless and
wired parts.

Typically, as illustrated in Figure 4.1, a campus network comprises static Access Points
(APs), a set of switches, and gateway routers. Each AP serves multiple mobile users and
connects them directly or through a multi-hop wireless routing to the wired backbone. The
wired backbone itself is composed of a set of switches that form more or less a hierarchy and
converge towards gateway routers. The gateway routers ensure the forwarding of the tra�c
towards the Internet.

According to recent studies [5,6], user tra�c drained by campus networks is expected to soar
in the next few years, which will result in high energy consumption [6,102]. As such, enterprise
businesses that need to upgrade or replace existing telecommunications networks are looking
for ways to improve energy e�ciency and reduce operating expenses [103, 104]. Moreover, they
are looking at energy e�cient planning and management strategies that take into account the
dynamic and unpredictable users’ mobility and tra�c patterns.

On the other hand, Software Defined Networking (SDN) [105] has emerged recently as a
solution facilitating network management. The key idea behind SDN is to move the forwarding
intelligence into a centralized network controller, while keeping the routers or switches simple.
This allows to implement di↵erent forwarding approaches flexibly and achieve global optimiza-
tions easily. In SDN, the controller dictates the forwarding rules of flows to the forwarding
elements using protocols such as OpenFlow [106]. SDN presents an opportunity to improve the
performance and reduce the energy consumption of campus networks [107].

Motivated by the potential of the new SDN paradigm, we propose in this chapter a holis-
tic energy conservation approach that uses online flow-based routing and link rate adaptation
in campus networks. Our objective is to minimize the energy consumption of both APs and
switches, while routing incoming flows subject to QoS constraints (such as bandwidth and delay)
and taking into account the dynamic and unpredictable arrival, departure and users’ mobility.

44
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Figure 4.1: A typical campus network topology

The reminder of this chapter is organized as follows. In Section 4.2, we describe the system
model used in our analysis. Section 4.3 formulates the problem as an Integer Linear Program
(ILP), followed by a presentation of our proposal in Section 4.4. Simulation results are presented
in Section 4.5. Finally, Section 4.6 concludes this chapter.

4.2 System Model

4.2.1 Network Model

We represent a campus network by a directed graph G(V [W,Es [ Ed), called a connectivity
graph, where V is the set of APs, W is the set of switches, Es and Ed are the set of wireless and
wired links, respectively. We denote also by E = Es [ Ed the set of all links. Each node v 2 V
represents an AP. Note that some of these APs can be interconnected to form a Wireless Mesh
Network (WMN). A wireless link e 2 Es between two APs has a number of channels denoted by
nce. The capacity along each channel is limited and denoted by Cek. Moreover, each AP i 2 V
has a limited capacity to serve its attached users denoted by Ci.

Similarly, each wired link e 2 Ed between an AP and a switch or between two switches has
a limited capacity denoted by Cek. In this case, nce = 1, 8e 2 Ed. Moreover, some switches
have ports connected to gateway routers, which guarantee the connection to the Internet. Let
Sd denote this set of switches. One can think of these switches as the gateways towards the
Internet for the wired backbone part of the network. Note that each gateway j 2 Sd router has
a limited capacity for tra�c forwarding towards the Internet denoted by Gj .

4.2.2 AP Energy Consumption Model

First of all, recall that an AP v 2 V has two physical interfaces: one for serving its mesh users
(called AP interface) and one for relaying tra�c in the wireless backbone towards the wired
backbone (called mesh interface). An additional third wired interface exists for APs that are
directly connected to the switches to forward tra�c to/from the wired network.

Given an AP v 2 V , we distinguish between two operating modes: low power consumption
and high power consumption. In the first mode, an AP has no users attached to it and no tra�c
to forward. In this case, it only uses its AP Interface to detect user’s presence. In this mode, the
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energy consumption of the AP can be reduced by setting up a high sleeping period and reducing
the transmission power as presented in [89], or shut down the AP by cutting down the power
supply such as the Power over Ethernet (PoE). In the second mode, the AP has either active
users attached to it or tra�c to forward. Therefore, its power consumption is higher. It is worth
noting that the contrast between low power and high power consumption stems from the study
carried out by Gomez et al. [90]. In fact, according to their study, the power consumption of an
Active AP represents the peak power consumption, and an Idle AP consumes almost 75% of it.

Hence, six power consumption profiles for an AP v 2 V can be defined, and listed in the
following. Note that we denote by mesh router an AP that has tra�c to forward in the wireless
backbone and a mesh gateway if it has tra�c to forward from the wireless backbone towards
the wired network.

• PR: If v is used as a mesh router only. This means that v has tra�c to forward in the
wireless backbone but does not have users attached to it.

• PAR: If v is used as an access point and a mesh router at the same time. This means
that v has active users attached to it and uses its mesh interface to forward tra�c in the
wireless backbone.

• PAG: If v is used as an access point and has tra�c to forward to the wired network at the
same time (i.e., the AP is acting as a mesh gateway and has active users attached to it).

• PRG: If v is used as a mesh router and mesh gateway at the same time but no users are
attached to it.

• PARG: If v is used as an access point, a mesh router and a mesh gateway at the same time.
In this case, v uses simultaneously its three interfaces. This is the most power hungry
profile.

• PS : If v has no active users attached to it, no tra�c to forward and is not used as a
mesh gateway. This is the power saving mode of an AP. Note that PS could be negligible
compared to the other profiles.

Consequently, the power consumption of AP can be expressed as follows:

P = Pprofile ⇤ (0.75 + 0.25⇥ loadAP

total AP capacity
)

where loadAP is the current load of the AP, total AP capacity is the maximum capacity supported
by the AP and Pprofile is the peak power consumption of the corresponding profile.

It is worth noting that in the case of one-hop wireless networks (i.e., all APs are directly
connected to switches such as the topology discussed in [107]), the energy consumption modes
are reduced to PAG and PS .

To reduce the energy consumption of the whole network, one should put as many nodes
as possible into power saving mode and optimize the power consumption over the remaining
nodes. In practice, this can be achieved using technologies such as Wake-on-LAN or Power
over Ethernet (PoE) powered APs as in [102, 104], which are switched o↵ by cutting the power
Ethernet supply.
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4.2.3 Switch Energy Consumption Model

A switch contains a number of interfaces. Each interface has its own Network Interface Card
(NIC) card (a.k.a. line card). Each interface can have one or multiple ports. In this work, we
use the energy consumption model proposed by Mahadevan et al in [108] and reused in other
works such as [109]. In this model, the energy consumption of a switch corresponds to a fixed
amount of power consumed by the chassis, plus a variable amount of power that depends on the
number of active interfaces along with the rate of each interface. It is given as follows:

Pswitch = Pchassis + nlinecards ⇥ Plinecards +
RX

k=1

nports.r ⇥ Pr (4.1)

where Pchassis is related to the power consumed by the switch hardware, Plinecards is the power
consumed by an active network line card, and Pr corresponds to the power consumed by a port
(transceiver) running at rate r 2 {r1, ..., rm}.

Note that in equation (4.1), only the last component appears to be dependent on the link
rate, while other components, such as Pchassis and Plinecards, remain fixed for the whole switch
operation duration.

4.2.4 Tra�c Model

In this work, we model the tra�c as a set of L flows. Each flow originates from a user, who is
located in the coverage area of one or multiple APs. Users’ location is captured by the coverage
matrix A. Each flow l 2 L has a bandwidth demand bl and a delay constraint dl. Note that these
flows are unidirectional. As such, the downlink and uplink are considered to be two di↵erent
flows and are treated di↵erently in terms of allocated path. Moreover, we assume that the tra�c
demand of each flow can be determined by the controller. For instance, this could be achieved by
using the counters per flow in the network forwarding elements, and use estimation techniques
to determine the tra�c rate.

4.3 Problem Formulation

As already mentioned, our objective is to minimize the energy consumption of the network nodes
(i.e., APs and switches) over time, while routing dynamically the arriving and departing flows
subject to QoS constraints (i.e., bandwidth and delay). More specifically, the problem can be
formulated as follows:

GIVEN:

• A physical topology represented by the graph G(V [W,Es [ Ed), which is described by
the connectivity and interference matrices M and I, respectively.

• A set of gateway routers in the wired backbone network.

• A set L of flows originating from users, each one with its bandwidth demand bl and delay
constraint dl.

• The coverage matrix A of APs.

• The current attachment of users and their flows’ routes.
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Table 4.1: Table of notations

Notation Meaning
fe,k,l 0 or 1, whether the channel k of a link e is used to route the flow l

wli 0 or 1, whether the user originating the flow l is attached to AP i

yi 0 or 1, whether an AP is in the active or sleep mode
y+i 0 or 1, whether an AP is turned into the active mode
y�i 0 or 1, whether an AP is turned into the sleep mode
r+il 0 or 1, whether an AP i is added to the path of flow l

r�il 0 or 1, whether an AP i is removed from the path of flow l

nce Number of channels of link e

Cek Capacity of channel k of link e

Ci Capacity of AP i

Gj Capacity of gateway j

wli 0 or 1, whether a the user source of flow l is attached to AP i

re The rate at which link e 2 Ed is et to operate

FIND:

• The optimal attachment of each user to one of the APs and, optimal routing of its flows
that minimizes the network operation and reconfiguration costs, subject to QoS constraints
(i.e., bandwidth and delay), and the link rates of the wired link in the network.

In the following, we formulate the flow-based routing problem as an integer linear program
(ILP). For ease of understanding, table 4.1 summarizes the symbols used in our analysis.

Let t be the epoch starting when one of the following events occurs: user arrival/departure
or user movement between two APs. We denote by t � 1 the epoch before t. For the sake of
presentation, let use the notation y and y0 to designate the state of the variable y at epoch t
and t� 1, respectively.

We introduce the binary variable wli to indicate whether a user originating the flow l is
attached to the AP i 2 V as follows:

wli =

⇢
1 If user l is attached to AP i
0 Otherwise

To represent the link and channel allocation, we define another binary variable fe,k,l, which
takes the value of 1 whenever the flow l uses the channel k on link e on its route.

fe,k,l =

⇢
1 If flow l is routed though link e using channel k
0 Otherwise.

Recall that k = 1, 8e 2 Ed. To define the link rate (i.e., the rate at which the link is set to
operate) of a link e 2 Ed, we use re. Recall that re 2 {r1, ..., rm}.

To indicate whether an AP i 2 V is used or not, we introduce another binary variable yi
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defined by:

yi =

8
>><

>>:

0 If
P
l2L

P
e2E

i2{s(e),d(e)}

nc
eP

k=1
fe,k,l +

P
l2L

wli = 0

1 Otherwise.

where E = Es [Ed, s(e) and d(e), respectively, denote the source and destination of link e 2 E.
Let us consider the variable y+i and y�i that represent, respectively, the decision of switching

an AP i to active mode or sleep mode, at network reconfiguration. They are defined as follows:

y+i =

⇢
1 if y0i = 0 and yi = 1
0 Otherwise.

y�i =

⇢
1 if y0i = 1 and yi = 0
0 Otherwise.

Note that switching a node from a sleep mode to active mode and vice versa generates a cost.
This cost is denoted by cs+i and cs�i , respectively, and could be the time needed to turn on the
node or the energy that is consumed to set up the routing tables (e.g., flow table). In addition,
we need to account for a cost when re-routing a flow over a more favorable route. Hence, let us
consider the variables r+il and r�il representing, respectively, whether a flow l is re-routed through
node i, after network reconfiguration, or removed from being routed through node i. They are
defined as follows:

r+il =

8
>><

>>:

1 If
P
e2E

i2{s(e),d(e)}

nc
eP

k=1
f 0
e,k,l = 0 and

P
e2E

i2{s(e),d(e)}

nc
eP

k=1
fe,k,l � 1

0 Otherwise.

r�il =

8
>><

>>:

1 If
P
e2E

i2{s(e),d(e)}

nc
eP

k=1
f 0
e,k,l � 1 and

P
e2E

i2{s(e),d(e)}

nc
eP

k=1
fe,k,l = 0

0 Otherwise.

The re-routing costs will be thus represented by cr+il and cr�il , respectively.
The power consumption of an AP i 2 V is given by Pi as follows:
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Pi =

8
>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>:

PR If
P

e2E
s

i2{s(e),d(e)}

nc
eP

k=1
fe,k,l � 1 and

P
l2L

wli = 0 and
P

e2E
d

i2{s(e),d(e)}

nc
eP

k=1
fe,k,l = 0

PAR If
P

e2E
s

i2{s(e),d(e)}

nc
eP

k=1
fe,k,l � 1 and

P
l2L

wli � 1 and
P

e2E
d

i2{s(e),d(e)}

nc
eP

k=1
fe,k,l = 0

PAG If
P

e2E
s

i2{s(e),d(e)}

nc
eP

k=1
fe,k,l = 0 and

P
l2L

wli � 1 and
P

e2E
d

i2{s(e),d(e)}

nc
eP

k=1
fe,k,l � 1

PRG If
P

e2E
s

i2{s(e),d(e)}

nc
eP

k=1
fe,k,l � 1 and

P
l2L

wli = 0 and
P

e2E
d

i2{s(e),d(e)}

nc
eP

k=1
fe,k,l � 0

PARG If
P

e2E
s

i2{s(e),d(e)}

nc
eP

k=1
fe,k,l � 1 and

P
l2L

wli � 1 and
P

e2E
d

i2{s(e),d(e)}

nc
eP

k=1
fe,k,l � 0

0 Otherwise.

Recall that the power consumption of a switch i 2W is given by equation (4.1).
We now formulate the problem of routing the new incoming flow and dynamically re-

optimizing the existing flows as an ILP with the following objective function:

Minimize
⇣
↵E

X

i2V [W
Pi+↵S

X

i2V [W
(y+i cs

+
i +y�i cs

�
i )+↵R

X

i2V [W

X

l2L
(r+il cr

+
il +r�il cr

�
il )

⌘
(4.2)

Where, ↵E , ↵S and ↵R respectively represent weight factors to achieve a tradeo↵ between
power consumption, re-routing flows and switching nodes to di↵erent states. They might repre-
sent the cost in USD (e.g., cost of electricity for ↵E). Note that the first term in the objective
function is related to the energy consumption when using a node i. The second term corresponds
to the cost of switching nodes from sleeping/active states after reconfiguration, and the third
term captures the cost of re-routing flows.

The optimization is subject to the following constraints (4.3)-(4.13):

• Not exceeding the capacities of links and channels:
X

l2L
fe,k,l ⇥ bl  Cek, 8e 2 Es [ Ed, 8k 2 {1, .., nce} (4.3)

• Not exceeding gateway routers capacities:

X

l2L

X

e2E

nc
eX

k=1

fe,k,l ⇥ bl +
X

l2L
wli ⇥ bl  Gi, 8e 2 Ed, d(e) = i and i 2 Sd (4.4)

• Not exceeding the APs capacities:
X

l2L
wli ⇥ bl  Ci, 8i 2 V (4.5)

• A user can attach to, at most, one AP that covers its location:
X

i2V
wli  Ali, 8l 2 L (4.6)
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• The delay constraint of a flow l should be satisfied:

X

e2E

nc
eX

k=1

fe,k,l  dl, 8l 2 L (4.7)

• A flow is not routed when it reaches a gateway unless the gateway capacity is exceeded,
in which case the tra�c is forwarded to another gateway:

X

l2L

X

e2E
d

d(e)=i

nc
eX

k=1

fe,k,l ⇥ bl +
X

l2L
wli ⇥ bl  Gi +

X

l2L

X

e2E
d

s(e)=i

nc
eX

k=1

fe,k,l ⇥ bl , 8i 2 Sd (4.8)

• No loops when routing. This means that a flow comes in or goes out from a node at most
once. Hence, we have:

X

e2E
s(e)=i

nc
eX

k=1

fe,k,l  1,
X

e2E
d(e)=i

nc
eX

k=1

fe,k,l  1, 8i 2 V [W, 8l 2 L (4.9)

• Flow conservation constraint, which ensures that the network flow that enters a node plus
the tra�c originating from this node is equal to the outgoing tra�c from this node. It can
be written as follows:

X

l2L

X

e2E
s(e)=i

nc
eX

k=1

fe,k,l⇥ bl =
X

l2L

X

e2E
d(e)=i

nc
eX

k=1

fe,k,l⇥ bl+
X

l2L
wli⇥ bl, 8i 2 (V [W )\Sd (4.10)

• In the wireless part, two links that interfere with each other cannot transmit at the same
time. This means that the sum of their proportion of link usage should not exceed 1.

X

l2L

fe,k,l ⇥ bl
Cek

+
X

l02L

X

e02E
s

fe0,l0,k ⇥ bl0 ⇥ I(e,k),(e0,k)

Ce0k
 1, 8e 2 Es, 8k 2 {1, .., nce} (4.11)

• In the wired part, the link rates should be adjusted to the upper rate ri that satisfies the
used bandwidth in the corresponding links.

re = min
j2{1..m}

rj �
X

l2L
fe,k,l ⇥ bl, 8e 2 Ed (4.12)

• The decision variables are binary

fe,k,l, wli 2 {0, 1} , 8i 2 V, 8e 2 E, 8l 2 L (4.13)

In the following, we present our meta-heuristic approach, called AC-OFER, that solves the above
ILP problem.
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4.4 AC-OFER Proposal

The formulated ILP problem presented in Section 4.3 is assumed to be solved by the network
controller each epoch t (i.e., each incoming flow). Indeed, the time scale of t should be short
enough to capture the dynamic of arrival and departure of clients, as the new flows should be
routed at their arrival. Clearly, such approach is not feasible in practice, since it generates high
overhead due to the frequent updates of the flow tables. In addition, the above ILP problem is
NP-hard [16,17].

To overcome these issues, we propose a two step approach. First, each incoming flow is
injected in the network without incurring any changes on the already established routes of
existing flows by computing an energy e�cient path. This step is referred to as “Network Event
Handling”. Then, a simple yet e�cient meta-heuristic algorithm, called AC-OFER, is executed
at each pre-defined time period T (and not at each flow arrival or departure). This step is
called “Dynamic Network Reconfiguration”. The benefit of doing so is twofold: (i) to reduce the
overhead due to rerouting existing flows and (ii) to decide on flow rerouting that optimizes the
overall energy consumption of the network by taking into account any rerouting costs. In the
following, we detail these two steps.

4.4.1 Network Event Handling

Upon detecting the “user arrival” event, one or multiple served APs start by sending the cor-
responding flow QoS requirements (i.e., bandwidth and delay constraints) to the network con-
troller. Depending on the AP location, we can use either a virtual interface if it is a mesh
node as proposed and validated in [110], where each physical wireless interface can be split into
two virtual interfaces, or the usual secure channel as in OpenFlow-enabled switches if it is a
switch [106]. Since no dynamic reconfiguration is performed at this level, the network controller
chooses, among the possible paths, the one with the minimum score given by the objective
function in (4.2), without incurring any changes to existing flow routes. To do so, we use a
modified version of the Dijkstra’s algorithm presented in Algorithm 3. The algorithm takes as
input the graph of the network (APs and switches) along with the residual capacities of the APs
and links. Going through Algorithm 3, we first modify the graph G(V [W,Es [Ed) by adding
a new node vl with an edge between vl and all the APs that can cover the originating user’s
location, and which has enough residual capacity. Then, we use the same process as in Dijkstra’s
algorithm. Note that the objective function given in (4.2) is used as a distance function. Indeed,
diff power(u, v) in Algorithm 3 refers to the additional score of the objective function if the
node v is added to the path that goes through u for flow l. At the end, the algorithm returns
the path that terminates at a gateway, satisfies the delay of flow l and has the shortest distance
from the source vl. It is worth noting that the complexity of Algorithm 3 is in the order of
O((|V |+ |W |)2), where |V | and |W | are the total number of APs and switches in the network,
respectively.

Once the path is chosen, the rates at the di↵erent links are adapted. In our study, and as
proposed in previous works such as [111] and [112], we assume that the link rate (i.e., switch
port) can be adjusted to one of the following predefined rates: 10 Mbps, 100 Mbps, 1 Gbps and
10 Gbps, denoted by r10, r100, r1000, r10000, respectively. Each one of these rates ri represents one
power consumption profile of the link (and thus of the corresponding switch ports) as used in
equation (4.1). To do so, we propose an intuitive algorithm, presented in Algorithm 4, to set up
link rates according to their utilization. Note that in case of user’s departure, its corresponding
flow will be removed from the network and the used resources will be released.



4.4. AC-OFER Proposal 53

Algorithm 3 New arriving flow route computation
1: IN: Campus Network (G(V [W,E

s

[ E
d

)) with residual capacities in the links and APs, a new l
flow to route

2: OUT: A route for the new flow without changing existing flows
3: - Extend G(V [W,E

s

[ E
d

) by adding a new node v
l

4: - Add a virtual edge between v
l

and the APs that can cover the location of the user l
5: Initialization:
6: for all v in V [W do
7: power[v] 1
8: visited[v] false
9: previous[v] undefined

10: end for
11: dist[l] = 0
12: Q.Enqueue(l)
13: Compute the paths:
14: while not Q.Empty() do
15: u Q.getSmallestDist()
16: // get the node with the smallest distance in Q
17: remove u from Q
18: u.visited = true
19: for all v in neighbors u do
20: if (u, v) satisfies the bandwidth demand of d then
21: temp power[u] + diff power(u, v)
22: //diff power(u, v) gives the additional power if we add the node v to the path that goes

through u for flow l
23: if temp < power[v] then
24: power[v] temp
25: previous[v] u
26: if visited[v] = false then
27: Q.Enqueue(v)
28: end if
29: end if
30: end if
31: end for
32: end while
33: Adapt the link rates using Algorithm 4
34: Return the path with the smallest score in power and that satisfies delay constant of l and terminates

at a gateway

4.4.2 Dynamic network reconfiguration using Ant Colony Online Flow-based
Energy e�cient Routing (AC-OFER)

As stated before, in order to optimize the overall energy consumption and resource utilization,
the network controller needs to reconfigure the flow routes in the network taking into account
the cost of re-routing or consolidating existing flows. This is performed at each predefined
time period T . Note that T is a parameter that is specified by the network administrator, and
can be in the order of minutes or hours. To this end, we propose to approximate the optimal
solution of the above-mentioned ILP problem presented in Section 4.3 using an Ant Colony-based
approach [96], called AC-OFER.

AC-OFER operates as follows. First, a set of solution components (i.e., paths) needs to
be determined for each flow coming from a user. Next, Amax artificial ants are launched and
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Algorithm 4 Discrete Link Rate Adaptation
1: IN: Campus Network (G(V [W,E

s

[ E
d

))
2: OUT: link rates for the di↵erent links
3: for all e in E

d

do
4: if utilization(e)  r10 then
5: rate[e] r10
6: end if
7: if r10 < utilization(e)  r100 then
8: rate[e] r100
9: end if

10: if r100 < utilization(e)  r1000 then
11: rate[e] r1000
12: else
13: rate[e] r10000
14: end if
15: end for

iteratively explore the search space until a predetermined number of iterations Nmax is reached.
During each iteration, each ant among Amax incrementally constructs the solution by adding
in every step one solution component (i.e., a path for one user’s flow) to the partial solution
constructed so far. Note that the solution component to add among the candidates is chosen
using a stochastic local decision policy. More specifically, the decision is based on heuristic
information, denoted by ⌘, and artificial pheromone trails, denoted by ⌧ , which respectively
quantify the desirability of a priori and a posteriori transition. Indeed, the heuristic represents
the attractiveness of the move, indicating the a priori desirability of that move. On the other
hand, the pheromone trails indicate how proficient it has been in the past (i.e., according to
other ants experience) to add that solution component. Once an ant has built a solution, or
while the solution is being built, the ant evaluates the partial solution and deposits pheromone
trails on the components it used. This pheromone information will direct the search of the future
ants.

More formally, our AC-OFER algorithm is described by the pseudo-code in Algorithm 5.
The fundamental steps of AC-OFER are: 1) Formation of solution components, 2) Probabilistic
selection of the candidate, 3) Selection of the best solution and 4) Updating the pheromone
trails. In the following, we detail these stages.

1) Formation of solution components:

For each user, we consider K alternative paths towards a gateway (any of the m available
gateways). Each path starts from the user, passes through an AP that the user attaches to,
and then other intermediate APs then switches until reaching a gateway router. A solution
component will be one of the predetermined K paths. As such, the number of possible solutions
for the path formulation is K |L|, where |L| is the total number of lows, which is equal to the
total number of users since each user is assumed to generate one flow. Hence the proposed
meta-heuristic guides the algorithm to e�ciently explore the graph of solutions.

2) Selection among the candidates for a component:

During each iteration, each ant among Amax builds the solution step by step, by adding in each
step another component (i.e., a path for a flow l). The component to add is chosen according
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Algorithm 5 AC-OFER algorithm
1: IN: Campus Network with routed flows (i.e., previous routes solution)
2: OUT: New routes solution (One path for each flow)
3: Set Parameters: q0, ↵A

, �
A

, Q
4: Initialize pheromone trails and best solution to the previous solution
5: for nb = 1! Number of Iterations do
6: //Construct Ant Solutions
7: for all ant in A

max

do
8: current solution  {}
9: for l = 1! Number of flows do

10: p Random(0..1)
11: if p < q0 then
12: Choose path j among the K paths where

13: j = Argmax
k2Nl

⇣
⌧↵A
lk

⇥ ⌘�A

lk

⌘

14: else
15: Choose path j according to P

lj

given in (4.15)
16: end if
17: Add the jth path for flow l to current solution
18: end for
19: if current solution is better than best solution then
20: best solution  current solution
21: end if
22: end for
23: //Update Pheromones for all flows l
24: ⌧

lj

 (1� ⇢)⌧
lj

//Evaporate all pheromones
25: if current solution is the best solution for the current iteration And jth path is selected for flow

l then
26: ⌧

lj

 ⌧
lj

+�best

lj

27: end if
28: end for
29: Return best solution

to the attractiveness of the new constructed solution (i.e., the current solution augmented by
the selected component) which is called the heuristic, and the amount of pheromone deposits,
which represents how this component is evaluated during the previous iterations by all ants.
The heuristic is given by :

⌘ =
1

Objective Function Value
(4.14)

Once the objective function score computed, the choice of the next component to add to
the partial solution constructed so far (i.e., a path j for flow l) is selected according to a given
probability. Note that in Ant Colony System meta-heuristic [96], two strategies can be used:
exploitation and exploration. More specifically, exploitation is used with a probability q0, whereas
exploration is adopted with a probability (1� q0).

Regarding exploration, the knowledge and experience of other ants is stochastically taken
into account. Indeed, the next component is selected according to a probability Plj given by:

Plj =
⌧↵ANT

lj ⌘�ANT

ljP
k2N

l

⌧↵ANT

lk ⌘�ANT

lk

(4.15)



4.5. Performance Evaluation 56

Where Nl is the set of all possible paths for the solution component l (i.e., |Nl| = K), ⌘lj and
⌧lj denote, respectively, the heuristic value given in equation (4.14), and the pheromone trail of
the jth path for the flow originating from user l, and ↵ANT and �ANT determine, respectively,
the relative importance of ⌧lj and ⌘lj . Recall that ⌘lj represents the desirability of adding
the solution component j (i.e., path j) to route the flow of user l, whereas ⌧lj represents how
proficient it has been so far to route the flow of user l through path j. As such, ↵ANT and �ANT

parameters have the following influence on the algorithm behavior. If �ANT = 0, the selection
probabilities are proportional to the heuristic value ⌘lj , which means that the components with
high heuristic value are more likely to be selected. In this case, AC-OFER corresponds to a
classical stochastic greedy algorithm. However, if ↵ANT = 0, only pheromone amplification is at
work: the components with high pheromone trail are more likely to be selected, in which case
a rapid convergence to a suboptimal solution may result as all ants are more likely to build the
same solution.

On the other hand, in exploitation, the experience of the other ants is directly used. Indeed,
among the possible components to add, the one with the highest value of ⌧↵ANT

lj ⇥ ⌘�ANT

lj is
selected.

3) Selection of the best solution:

The criterion to choose the best solution is the objective function given in equation (4.2), which
takes into account the energy consumption, the on/o↵ switching and re-routing costs.

4) Pheromone trail update:

At the end of each iteration, the pheromones (trail values) for each flow l are updated as follows:

⌧lj = (1� ⇢)⌧lj +�best
lj

where ⇢ 2 [0, 1] is the decay coe�cient of the pheromone, �best
lj = Q/⌘best if flow l is routed

through the jth path in the best solution of the current iteration, 0 otherwise, and Q is a constant
called the pheromone update constant. Recall that, as reported in equation (4.14):

⌘best =
1

Objective function value of the best solution

It is worth noting that when the score of the objective function is computed, we use the link
rate adaptation provided in Algorithm 4.

4.5 Performance Evaluation

In this section, we evaluate the e�ciency of our proposed approach. We first present the baselines
we used for performance comparison as well as and the simulation parameters. Then, we present
detailed analysis of the simulation results.

4.5.1 Baselines

We compare the benefits of our AC-OFER approach with respect to four baselines: the Shortest
Path (SP) routing, the Minimum link Residual Capacity (MRC) routing metric proposed in [53],
the Load Balancing (LB) scheme, and Greedy-OFER. Note that the latter is similar to AC-
OFER in the fact that it uses the same algorithm for routing new incoming flows. However,
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for network reconfiguration, it uses a greedy algorithm to find the solution instead of the Ant
Colony algorithm. In other words, it seeks a feasible and acceptable solution by exploring the
solution space and choosing the next step without iteration to improve the solution. This results
in short computation times. Regarding the MRC baseline approach, the aim is to consolidate
the tra�c through the same paths in order to reduce the number of used nodes. Finally, LB is
used to illustrate the worst case power consumption scenario. To this end, we deFigureveloped
our own discrete event simulator in Java.

4.5.2 Simulation parameters

Our analysis is based on random and tree-like topologies. However, due to space limitation, we
present results only for tree-like campus network topologies. We considered di↵erent campus
network sizes: small (100 APs), medium (100-200 APs) and large (� 200 APs), with 1-4
gateway routers. As depicted in Figure 4.1 and proposed in [107], the switches are divided
into two groups: (i) Edge switches that connect the APs to the second layer composed of (ii)
Aggregation/Core switches, which themselves are connected to the gateways.

In the wireless part, the interference range RI of each AP is set to 1.5 ⇥ Rt, where Rt is
the transmission range. The wireless links capacities are set to 54 Mbps. The users’ arrival is
modeled by a Poisson process with rate �. Each user generates a flow with a uniform throughput
demand between 1 and 10 Mbps in both uplink and downlink directions, a delay bound of 4
hops and an exponential lifetime of mean 1/µ = 90 minutes. Other simulation parameters are
summarized in Table 4.2 and are based on works in [55], [59], [108] and [109]. It is worth noting
that there is no optimal rule for setting the values of parameters �ANT , ↵ANT , ⇢, q0, the number
of ants and the number of iterations, as pointed out in [99,100]. Hence, we experimentally tuned
these parameters by running preliminary tests using di↵erent values for each of them. More
specifically, we vary �ANT , ↵ANT , ⇢, q0 between 0 and 1, by step of 0.05, and compare the
objective function given in equation (4.2). We then pick the values that result in the smallest
objective function presented in equation (4.2) (see Table 4.2). In addition, since we focus on
energy consumption, we set the parameters ↵E to 0.9 and ↵S , ↵R to 0.05 each. Note that, for
each network setup, Q is set to 1

|L|⇥O
init

, where |L| is the number of flows to route and Oinit is
the objective function score produced by any solution given by any other heuristic approach, as
suggested by Dorigo et al. in [100].

The results are obtained over many simulation runs for each scenario, with a margin error
less than 5%, then we calculate the average value of each performance metric. For sake of
presentation, we do not plot confidence intervals.

In what follows, we first present the convergence of AC-OFER compared to the optimal
solution and its computational complexity of AC-OFER. Then, we present the impact of the
arrival rate � and the reconfiguration interval T for the case of small, medium and large-sized
campus networks. Finally, we present results on the scalability of our approach in large-sized
networks.

4.5.3 Convergence to the optimal solution and computation time

First, we show the convergence of our proposed approach towards the optimal solution given
by the ILP presented in section 4.3. To do so, we develop a brute force algorithm that uses
exhaustive search to find the optimal solution. As this problem is NP�Hard, we run these tests
only for small campus network topologies of 16 APs, and small arrival rate � = 4 requests/hour.
We measured the energy consumption of the di↵erent approaches compared to the optimal
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Table 4.2: AC-OFER simulation parameters

Parameter Value Parameter Value Parameter Value
↵A 0.12 Amax 5 Plinecard 2 W
�A 1.1 Nmax 8 Pr10 4 W
q0 0.1 PAG 18 W Pr100 8 W
⇢ 0.2 PS 3 W Pr1000 10 W

Pchassis 80 W Pr10000 15 W

Table 4.3: Energy saving comparison with the optimal solution

Energy Saving Computation time (ms)
Optimal 51% 4.3⇥ 105

AC-OFER 49% 374
Greedy-OFER 41% 174

MRC 35% 0
SP 9% 0
LB 0% 0

Table 4.4: Computation time comparison (in milliseconds)

Small-sized network Medium-sized network Large-sized network
flow routing Reconfig. flow routing Reconfig. flow routing Reconfig.

Optimal 25.3 4.3⇥ 105 - - - -
AC-OFER 24.2 374 50.1 624 64.3 924

Greedy-OFER 25.1 174 50 321 64.1 549
MRC 25.05 0 49.8 0 63.3 0
SP 23.7 0 49.3 0 63.1 0
LB 23.5 0 48.7 0 62.7 0

solution for a simulation duration of 48 hours. The results are reported in Table 4.3. We can
notice that AC-OFER achieves near-optimal solution, with only 2% decrease in energy saving
on average compared to the optimal solution, but with much shorter runtime. On the other
hand, compared to the greedy algorithm, AC-OFER achieves 8% increase in the energy saving
on average, but with higher computation time.

Table 4.4 further investigates the computation time required to find a new route for a new
incoming flow as well as the reconfiguration time for all approaches in small, medium, and large-
sized networks. We can notice that the time required to route a new incoming flow is almost
the same for all approaches (around 24 � 25 ms in the small-size case) since all approaches
make use of the Dijikstra algorithm. However, the reconfiguration time of both Greedy- and
AC-OFER are very short compared to the optimal solution. Indeed, more than 7 minutes are
required for the optimal algorithm, while only 374 ms and 174 ms are required for AC-OFER
and Greedy-OFER, respectively. It is worth noting that, for these two latter schemes (i.e.,
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(c) Energy consumption in Switches
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Figure 4.2: Comparison of energy consumption for variable arrival rates (100 APs, 27 switches
with 2 gateway routers)

Greedy- and AC-OFER), the computation time for each reconfiguration remains low compared
to the reconfiguration period T , which is in the order of minutes (8 minutes and higher in our
simulations). However, the optimal algorithm is clearly not suitable as the reconfiguration time
is almost equal to the reconfiguration interval T .

4.5.4 Impact of arrival rate �

Second, we study the impact of tra�c load on our proposed approach. To do so, we vary the users
arrival rate and measure the power consumption in the network for a simulation duration of 48
hours. Figure 4.2(a), 4.2(b), 4.2(c) and 4.2(d) show, respectively, the total energy consumption
for di↵erent arrival rates, the energy consumed by the APs and switches and the flow acceptance
ratio in the case of medium-sized networks. From these figures, we can notice that:

• AC-OFER reduces the power consumption compared to the other schemes. Indeed, from
Figure 4.2(a), when � 2 [10, 120], the power saving culminates at 10.5, 37, 100 and 120 kWh
compared to Greedy-OFER, MRC, SP and LB, respectively. This corresponds to a power
consumption decrease of approximately 6.5%, 17%, 42% and 45%, compared to Greedy-
OFER, MRC, SP and LB, respectively. These gains are achieved in both the wireless part
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Figure 4.3: Comparison of energy consumption for variable reconfiguration intervals (100 APs,
27 switches with 2 gateway routers, � = 50 requests/hour)

(i.e., APs) and the wired campus backbone, as shown in Figs. 4.2(b) and 4.2(c). Note
that the energy consumption is reduced while the same acceptance ratio is realized for all
schemes [see Figure 4.2(d)].

• For low arrival rates (i.e., � < 10), the power saving is negligible because of the light
tra�c load in the campus backbone. In fact, as there is few tra�c in the network and
spread around the whole network, flow consolidation is not always possible as the users
are located in di↵erent areas and require turning on di↵erent APs and switches.

• For high arrival rates (i.e., � � 125), the energy saving is stable. The reason behind this
is that for high arrival rates, more capacity is needed mainly in the wireless part and flows
can not be consolidated through the same paths due to APs capacity constraints.

4.5.5 Impact of the reconfiguration time T

Second, we study the impact of the reconfiguration interval T on the performance of AC-OFER.
To do so, we fixed � to 50 requests/hour and varied the reconfiguration interval T between 8
minutes and 1 hour. The total energy consumption and the acceptance ratio for the small-sized
network case scenario are shown in Figure 4.3.

We can observe from this figure that our approach outperforms the remaining solutions (i.e.,
Greedy algorithm, SP, MRC, and LB), especially in low values of T since frequent reconfiguration
improves the flow re-routing and consolidation to achieve optimal energy consumption [see Figure
4.3(a)]. Note that in these simulations, the same acceptance ratio is achieved in all approaches,
as shown in Figure 4.3(b).

4.5.6 Power consumption over time

To further show the behavior of our approach over time, we plot in Figure 4.4 the power consump-
tion over time as well as the network utilization of all schemes for medium network loads (i.e.,
� = 80 requests/hour). It is clear from this figure that the trend for AC-OFER is maintained
over time. In fact, the total energy consumption as well as the energy consumption in the wire-
less and wired parts are maintained over time, as illustrated in Figure 4.4(a), 4.4(b) and 4.4(c),
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Figure 4.4: Comparison of power consumption and acceptance ratio over time for � = 80
requests/hour (100 APs, 27 switches with 2 gateway routers)

respectively. Note that at the same time, the acceptance ratio is similar to all approaches, as
shown in Figure 4.4(d). More specifically, AC-OFER maintains the energy saving stable around
7%, 17%, 42% and 48% compared to Greedy-OFER, MRC, SP and LB, respectively.

To have a complete picture of the network performance, we plotted in Figure 4.5 the normal-
ized values of several performance metrics including acceptance ratio, total consumed energy,
consumed energy by APs, consumed energy by switches, proportion of used APs, proportion of
used switches, proportion of used links and average link utilization for used links. From this
figure, we can observe that, AC-OFER accepts as many flows as SP, MRC and LB. However, it
reduces at the same time the energy consumption in both APs and switches. This energy saving
is achieved by reducing the number of used APs and switches. For instance, compared to LB,
the gains are 48% for the total energy consumption, using 52% less APs and 31% less switches,
respectively.

In addition, we can observe that our approach uses a reduced number of links compared
to other schemes. In fact, AC-OFER reduces the proportion of used links by 4%, 15%, 43%
and 52% compared to Greedy-OFER, MRC, SP and LB, respectively. However, this results in
high average link utilization of the used links due to flow consolidation. Indeed AC-OFER uses
existing paths to route incoming flows, and performs the dynamic reconfiguration only at each
time period T .
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Figure 4.5: Comparison of the average values of the di↵erent metrics (100 APs, 27 switches with
2 gateway routers, � = 80 requests/hour)

It is worth noting that MRC performs better than the LB and SP since, in this case, flows are
consolidated according to the residual capacity. However, this scheme is clearly outperformed
by AC-OFER thanks to the dynamic reconfiguration.

4.5.7 Scalability of AC-OFER

To study the scalability of our approach, we run additional simulations in the case of large-sized
networks (i.e., 200 APs, 40 switches, 4 gateway routers). Figure 4.6 presents the final values
(over 48 hours) of di↵erent metrics. Similar performance results are observed here. Indeed, the
energy consumption is reduced by 7%, 35%, 44% and 49% compared to Greedy-OFER, MRC,
SP and LB, respectively, while using a reduced number of APs and switches. In addition, the
number of used links is reduced for AC-OFER compared to the other approaches. However,
these links present higher link utilization.
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Figure 4.6: Comparison of the average values of the di↵erent metrics (250 APs, 40 switches with
4 Gateways, � = 90 requests/hour)

4.6 Conclusion

In this chapter, we investigated the energy e�ciency problem in campus networks. We proposed
an online flow-based approach that takes into account the dynamic arrival and departure of
clients. More specifically, our approach determines the AP to which each user will associate,
along with a complete path in the wireless and wired parts of the network, towards the Internet,
while minimizing the whole energy consumption and satisfying the QoS constraints. In this case,
our proposed solution uses dynamic flow consolidation to reduce the energy consumption in the
network. Moreover, it uses link rate adaptation to further reduce the energy consumption in the
wired part of the network.

To achieve this, we first formulate the problem as an integer linear program (ILP), whose
objective is to reduce the total energy consumption in the wireless and wired parts of the network.
Moreover, The formulated objective function takes into account the costs for switching between
sleeping and active modes of nodes (APs, switches and gateway routers), as well as re-routing
or consolidating existing flows. As this problem is known to be NP-hard, we then propose a
simple yet e�cient algorithm based on Ant Colony, called Ant Colony Online Flow-based Energy
e�cient Routing (AC-OFER) to solve the formulated ILP problem. In this context, Greedy-
OFER, Shortest Path (SP) routing strategy, the Minimum link Residual Capacity routing metric
(MRC) and the Load Balancing (LB) schemes are used to develop baselines to which the AC-
OFER improvements are compared. Through extensive simulations, we show that our proposed
approach can achieve significant gains in terms of energy consumption. Specifically, the gains
can attain 6.5%, 17%, 42% and 45% compared to Greedy-OFER, MRC, SP and LB, respectively,
for medium-sized networks. These gains become 7%, 35%, 44% and 49%, respectively, in large-
sized networks, while achieving the same users’ requests acceptance ratio and QoS satisfaction.
At the same time, AC-OFER guarantees a low time complexity for both route discovery and
network reconfiguration. This approach represents therefore a promising solution for energy
management in campus networks.
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Chapter 5

Green and Energy Reduction in
Clouds: State of the Art

5.1 Introduction

In the previous part, we addressed the energy reduction in access networks as they are an
important part in accessing cloud services. The second part of the ecosystem are the cloud
infrastructures themselves, which are composed of data centers and usually a backbone inter-
data center network. In fact, cloud infrastructures also became a major power consumer and
polluter. As such, we address, in this second part of this thesis, the energy cost and carbon
footprint reduction in cloud infrastructures.

In the current cloud computing model, a Cloud Provider (CP) (a.k.a. Infrastructure Provider)
partitions the physical resources inside each of his data centers into virtual resources (e.g., Vir-
tual Machines (VMs)) and leases them to Service Providers (SPs) in an on-demand manner. The
SP uses these resources to deploy its service applications, with the goal of serving its customers
worldwide. Recent proposals [22] and cloud o↵erings such as Amazon Virtual Private Cloud [23]
are advocating to o↵er these resources in the form of Virtual Data Centers (VDCs), i.e., a set of
VMs and virtual links with guaranteed bandwidth. Typically, CPs allocate VDCs across their
geographically distributed clouds so as to minimize operational costs, take advantage of the
abundant resources available in their data centers, improve service reliability and performance
and maximize the environmental friendliness of the infrastructure [113,114].

Despite its benefits, o↵ering VDCs as a service introduces a new challenge for cloud providers
called the VDC embedding problem, which aims at mapping virtual resources (e.g., virtual ma-
chines, switches, routers) onto the physical infrastructure. Moreover, distributed infrastructures
introduce challenges when it comes to optimizing the whole infrastructure in terms of costs and
carbon emission. In fact, the energy consumption and carbon footprint of cloud infrastructures
is becoming a serious concern for CPs [4, 8], and thus, solutions that minimize the operational
costs and the carbon emissions are more than necessary.

To illustrate the importance of energy e�cient and green cloud infrastructures, we present in
this chapter the motivations for such move through examples and expectation of both academic
and industrial research community. Then, we summarize the related works on reducing energy
consumption and greening cloud infrastructures. It is worth noting that green and energy
e�cient are di↵erent from each other in the context of cloud infrastructures. In fact, a green
data center is a data center that consumes renewable power and has, consequently, a low carbon
footprint. On the other hand, an energy e�cient data center is a data center that consumes lower
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amounts of power. As such, green is related to the source of the consumed power, whereas energy
e�ciency is related to the amount of consumed power. Therefore, we explicitly di↵erentiate these
two terms in the rest of this dissertation.

The reminder of this chapter is organized as follows. We first present, in Section 5.2, the
motivations and driving factors for reducing the energy consumption and greening cloud infras-
tructures. We then present and discuss the proposed solutions in the literature that addressed
this issue, by considering an infrastructure of a single data center in Section 5.3 and multiple
data centers in Section 5.4. Section 5.5 presents related works on Virtual Network Embedding,
followed by a description of existing approaches that use Green SLAs in Section 5.6. Section
5.7 discusses these related works and positions our contributions in this research area. Finally,
Section 5.8 concludes this chapter.

5.2 Greening Cloud Infrastructures: Motivations

In the last few years, energy consumption and carbon emissions of cloud infrastructures gained
tremendous attention among cloud providers. In fact, according to a Greenpeace report pub-
lished in 2013 [4], if the cloud was a country, it would have taken the sixth rank in decreasing
power consumption in the world. Moreover, according to other studies [3, 4, 8, 11], the energy
consumption of data centers is expected to soar in the decades to come. As such, this will result
in a heavy burden operational costs for CPs, as energy costs are significant.

In the journey towards showing transparency and corporate responsibility, the number of
IT companies (e.g., Microsoft, Akamai, Google, Dell) that voluntarily disclose their carbon
emissions along with e↵orts to be environment friendly, is in constant increase every year [10–
13, 33, 115]. These companies pursue green certifications for their buildings and businesses [11]
and impose integral reporting of their environment impact every year [13]. Note that these
e↵orts to reduce the carbon footprint go beyond these companies’ walls as they are working
with supply-chain partners to account for environmental impacts.

In general, these e↵orts towards the disclosure of carbon emissions is mainly driven by
marketing, financial motivations and governmental regulations. From the financial standpoint,
a recent study [32] shows that the firms’ value would decrease significantly if it has high carbon
footprint or even if it withholds information about its carbon emission rates. More specifically,
the study finds that the firm’s value decreases, on average, by US$ 212,000 for every additional
thousand metric tons of carbon emissions produced by the firms. This result translates to a firm-
value penalty of US$ 1.4 billion for firms in the third quartile (in terms of carbon emissions)
compared to firms in the first quartile. From transparency perspective, the study also finds
that the median firm value of firms that disclose their carbon emissions is about US$ 2.3 billion
higher than the median value of non disclosing firms.

On the other hand, governments are issuing regulations that will eventually push further this
shift towards green sources of energy and reductions in carbon emissions. For instance, some
governments issued taxes on carbon emissions, whose cost per ton of CO2 emission is between
25 and 30 US$ [36,116,117]. As a matter of fact, these taxes will have a financial impact on the
companies. In fact, according to a study published in 2009 [34], applying its suggested market
price of US$ 28.24 (which would be similar to Europe) to each ton of carbon emissions by the
S&P 500 firms would lead to over US$ 92.8 billion in annual in costs to be paid by these firms.

In light of this, number of proposals have been made to reduce the energy consumption and
carbon footprint of cloud infrastructures. In what follows, we present the most relevant works
in this research area.
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5.3 Energy reduction inside a single data center

A plethora of works addressed the problem of reducing the energy consumption inside a single
data center. These works addressed the problem of task/job scheduling in a High Performance
Computing (HPC) data centers and the problem of VM placement in virtualized data centers.

In HPC clouds, authors in [118] show the potential of reducing the energy consumption in
a data center by exploiting hardware counters to predict application behavior, and optimiza-
tion to reduce energy consumption by up to 24%. Authors in [119] show also the potential
for reducing energy consumption in HPC infrastructures with or without knowledge of hosted
applications and services. A framework for energy measurement and automatic decision making
for resource allocation in HPC clusters was proposed in [120]. The proposed framework contains
three levels: (i) present real time energy consumption logs in a cluster to a user, (ii) involve the
users in decisions to trade performance for energy savings and (iii) design automatic resource
allocation techniques to seek a tradeo↵ between the applications performance and the infrastruc-
ture energy consumption. Zhang et al. addressed in [121] the problem of capacity provisioning
inside a data center, where the objective is to reduce the energy consumption. This done by
consolidating the workload (tasks) into a reduced number of cluster machines. More specifically,
they formulated the problem as an ILP where the decision variable is the number of physical
machines to use to run the tasks. The objective is to minimize the cost of running the tasks as
well as the power consumption cost. Moreover, the objective includes the costs that are due to
task migration/restart that may lead to service disruption from the user point of view. Authors
in [122,123] addressed the problem of task assignment to clusters of servers inside a data center.
The objective is to minimize the number of used machines in each cluster under di↵erent sce-
narios of homogenous and heterogenous servers in a cluster. The problem is formulated as an
ILP and a heuristic solution has been proposed. More detailed study under di↵erent data cen-
ter server setups (homogeneous, heterogeneous, and hybrid hetero-homogeneous clusters) have
been investigated by the same author in [124]. The results show that the homogeneous model is
lower by orders of magnitude than the heterogeneous model in computational time. They also
propose in [124] two aggregation methods to compute optimal configurations for data center in
real time. Further energy reduction mechanisms such as Dynamic Voltage/Frequency Scaling
(DVFS) capacity are considered by the same authors in [125]. They show that the use of DVFS
results in a significant reduction of energy consumption.

In virtualized data centers, existing works showed the energy saving potential when in-
troducing virtualization in data centers. For instance, Lefevere et al. [126] showed through
measurements on a real testbed the potential of reducing up to 25% of the data center’s energy
consumption by virtualizing and consolidating VMs.

So far, only few works have addressed VDC embedding problem. As opposed to task or
independent VMs assignment, the di↵erent VMs of the VDC require guaranteed bandwidth
between them for communication. For instance, Guo et al. [25] proposed a data center network
virtualization architecture called SecondNet that incorporates a greedy algorithm to allocate
resources to VDCs. Ballani et al. [21] proposed two abstractions for VDCs, namely a virtual
cluster and an oversubscribed virtual cluster. They developed Oktopus, an implementation of
those abstractions that uses a greedy algorithm for mapping virtual resources to a tree-like
physical topology. Zhani et al. [24] presented VDC Planner, a resource management framework
for data centers that leverages dynamic VM migration to improve the acceptance ratio of VDCs,
and thereby increases CP’s revenue. They also proposed a VDC consolidation algorithm to
minimize the number of active physical servers during low-demand periods. Wang et al. [79]
addressed the problem of VM placement and inter-VM tra�c routing in a single data center.



5.4. Energy Reduction Across Multiple Data Centers 68

Their proposed approach separates the VM assignment phase from the flow routing phase. The
VM assignment achieves energy reduction by consolidating the VMs into a reduced number of
servers, and the servers into a reduced number of racks. Furthermore, they used the tra�c
patterns of applications, mainly Map-Reduce, to derive the best VM assignment and tra�c
engineering in the data center. More specifically, they proposed an algorithm that starts by
grouping VMs that communicate a lot into super VMs while making sure that a super VM does
not exceed the capacity of a single server, using a revised version of the k-means algorithm.
Then, tra�c is routed between the VMs in such a way to minimize the number of intermediary
switches to use in the data center.

Note that research works that used thermal-aware algorithms to allocated resources inside
a single data center have also been proposed in the literature [127–129]. The objective is to
consolidate the workload/VMs into a reduced number of servers in close proximity to each other
to lower the cooling cost. Additional works that considered workload delaying to achieve zero-net
data centers (i.e., a data center that uses only renewable power, even if it is not available all the
time), or take advantage of the cooling e�ciency during some periods of the day (e.g., night time)
to schedule more workload, have also been proposed. For instance, authors in [130] propose to
shape the workload to follow the amount of available renewable power. More specifically, their
proposal redistributes the workload and delays the non-critical tasks to be scheduled during
periods where renewable power is available. In [131], authors propose to delay non-critical
workloads to times where the renewable power is available and where the cooling is more e�cient
with the data center.

Unfortunately, the above proposals cannot be directly applied to allocate resources in mul-
tiple data centers due to the large size of the resulting topology. In addition, for a distributed
environment, di↵erent considerations should be taken into account such as the intrinsic proper-
ties of di↵erent data centers (e.g., the Power Usage E↵ectiveness - PUE), the carbon footprint of
the data centers and the variability of electricity prices over time and between di↵erent locations.

5.4 Energy Reduction Across Multiple Data Centers

A plethora of techniques have been also proposed to allocate resources across geographically
distributed data centers. They either aimed at reducing energy costs [132–137], minimize the
infrastructure’s carbon footprint [138–141] or both energy cost and carbon footprint [142,143].

Generally, energy costs are cut down by taking advantage of the variability of electricity prices
between di↵erent data centers and even at the same location over time. The carbon footprint
is reduced by following the renewables available during some periods of the day. For instance,
Zhang et al. [132] used a predictive control framework for service placement in distributed clouds.
Services are dynamically placed in data centers and migrated according to the demand and price
fluctuation of electricity over time, while considering the migration cost and the latency between
services and end-users. To do so, authors formulate the problem as an ILP whose objective is to
reduce the energy cost (i.e., electricity cost) and the reconfiguration cost (i.e., switching on/o↵
servers). This objective is subject to constraints of capacity in the data centers as well as the
delay that an end-user may experience. Authors used control and game theoretic methods to
solve the problem in case of a single cloud provider or multiple providers. Qureshi et al. [134]
addressed the problem of replica placement and request routing in Content Distribution Networks
(CDN). They aimed at reducing electricity costs by dynamically placing data at locations with
low electricity prices and e�cient data centers in terms of Power Usage E↵ectiveness (PUE).
They developed a simple cost-aware request routing policy that preferentially maps requests to
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locations where energy is cheaper, and identify the relevance of electricity price di↵erentials to
large distributed systems and to estimate the cost savings that could result in practice if the
scheme was deployed. In [135], authors addressed the problem of web application hosting in
distributed data centers. The problem consists of defining which data center to use (i.e., define
the number of needed servers in each data center) and the routing of user requests to di↵erent
data centers (load balancing). The objective is to decide on the number of active servers and
on the workload of each data center by taking into account: (i) the spatio-temporal variation of
energy cost, (ii) the data center computing and cooling energy e�ciency, (iii) the live migration
cost, and (iv) any SLA violations due to migration overhead or network delay.

Le et al. [136] proposed a workload assignment framework across multiple data centers that
minimizes the costs of energy consumed by IT and cooling equipment depending on the fluctua-
tions of electricity prices and the variability of the data centers’ PUEs. First, the authors carried
out simulations to derive the PUE of each data center based on its load, the outdoor tempera-
ture and the technology used for cooling (e.g., free-cooling, chiller). Then, they considered the
objective of minimizing the energy cost (both servers and cooling) by assigning workloads to
data centers that have low PUE and low electricity prices. In their proposed approach, the au-
thors considered dynamic reconfiguration over time (i.e., migrating loads between data centers)
in response to fluctuations of electricity price and PUEs over time.

Other works aim to reduce the power from the grid and use available renewable power.
For instance, Liu et al. in [138, 139] proposed a framework for workload assignment and dy-
namic workload migration between data centers that minimizes the latency between end-users
and services, while following renewables and avoiding using power from the electricity grid. A
centralized version of their solution is proposed in [138] and a distribution one in [139]. Their
objective is to migrate workloads to data centers that have renewable power available. Authors
in [141] addressed the problem of workload dispatching in a distributed infrastructure of data
centers, where they aimed to exploit the geographical load balancing and opportunistic schedul-
ing of delay tolerant jobs combined with thermal storage of available renewable power in data
center to reduce the brown power consumption.

In the combined case of reducing the carbon footprint and energy cost, Gao et al. [142]
addressed the same problem of request routing in CDNs. Their objective is to minimize energy
costs, carbon footprint and the delay between end users and the location of the data. To do
so, they formulated the content placement problem with an objective function that includes
the electricity price and the carbon cost. Note that the carbon cost is given by the amount of
generated carbon multiplied by a fixed cost per unit of carbon. Note also that the amount of
carbon emission depends on the source of power, which depends on the supplier and geographical
location of the data center. Then, the authors presented a heuristic approach to solve the
problem, where content is dynamically placed in data centers depending on users demand,
availability of renewables, electricity price and carbon footprint per unit of power in the di↵erent
data centers. The given results showed a possibility to reduce the carbon footprint by up to
10% without incurring additional electricity costs. However, for higher carbon reductions, more
electricity cost is incurred as green power from the grid is more expensive that brown power.

Unfortunately, compared to our context of VDC embedding, these works did not consider
communication patterns between parts of the same workload, which are the virtual links between
VMs of the VDC. As such, this makes them not directly applicable to the case of VDC embedding
as bandwidth guarantees should be o↵ered.
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5.5 Virtual Network Embedding and Mapping

Another body of research relevant to our work addresses virtual network embedding (VNE).
The VNE problem consists of a mapping of virtual machines and virtual links on top of a shared
substrate network owned by an Infrastructure Provider (InP). The problem is challenging as it
is know to be NP-Hard. To alleviate the problem complexity, existing works focused on design-
ing heuristic-based algorithms that separate between the node mapping and the link mapping
phases. Their main objective is to minimize the embedding costs, increase the acceptance ratio
and maximize the revenue. More specifically, the embedding cost is given by the amount of
resources used in the substrate network (e.g., CPU, memory, bandwidth) to accommodate the
VDC requests. The acceptance ratio is given by the number of embedded requests divided by
the total number of received requests. The revenue is a weighted sum of the amount of virtual
resources (e.g., CPU, memory, bandwidth) requested by the VN requests.

Current proposals have addressed the embedding problem either in a single domain (i.e., a
backbone owned and managed by a single InP) or in multiple domains (i.e., multiple networks
managed by di↵erent InPs).

In the single domain case, the InP tries to embed the virtual networks while aiming to achieve
multiple objectives including minimizing the embedding cost, improving the acceptance and/or
revenue, improving network survivability and improving the energy e�ciency. For instance, au-
thors in [144] presented VN embedding algorithms that reduce the embedding cost and achieve
higher profit. They formulated the VN embedding problem as an integer linear program (ILP).
Then, they relax the integer constraints to obtain a mixed integer linear program (MILP) and
devise two online VN embedding algorithms D-ViNE and R-ViNE using deterministic and ran-
domized rounding techniques, respectively. Authors in [145] proposed an approach based on
node ranking, similar to the page rank algorithm used by Google [146], that aims at maximizing
the acceptance ratio of VNs. More specifically, they rank the nodes according to their resources
(o↵ered and needed for substrate and virtual nodes, respectively). Then, they proposed two
algorithms for the embedding. The first is a two-phase algorithm, where the virtual nodes are
mapped first according to the ranking in decreasing order and then the virtual links are mapped
using either shortest path for non-splittable links or multi commodity flow for splittable flows.
The second is an optimal solution to the VN embedding problem that uses backtracking. Other
works in the literature aimed at increasing the acceptance ratio and revenue at the same time by
using meta heuristics. For instance, authors in [147] proposed an Ant Colony based algorithm
for VN embedding that increases the acceptance ratio revenue of the InP.

Some research works addressed the problem of reducing the energy consumption at the
time embedding, such as [148, 149]. For instance, authors in [148] proposed an ILP problem
formulation for the VN embedding, where the objective is to reduce the number of used nodes
and used links in the substrate network. In a more refined model, authors in [149] proposed to
reduce the energy consumption when embedding the VNs by considering a proportional power
consumption model for the servers. In this power consumption model, substrate nodes are
assumed to consume amounts of power proportional to the amount of resources they use, which
is more realistic than the on/o↵ model considered in [148]. In fact, the on/o↵ model considers a
substrate node to consume its maximum power as soon as it is used even for small computational
e↵ort, and it does not consume power when no load is assigned to it.

In the multi-domain case, the VN request is provisioned across multiple domains belonging
to di↵erent InPs. Houidi et al. [150] proposed a centralized approach where the SP first splits
the request using Max-Flow Min-Cut algorithm based on prices o↵ered by di↵erent InPs. Then,
each partition is assigned to one InP based on the price. The links between partitions are
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provisioned either by the InP if the two partitions are assigned to that same InP or between two
InP networks if the partitions are assigned to di↵erent InP. Chowdhury et al. [151] proposed a
distributed embedding solution, called PolyVine. In PolyVine, the VN request is sent to a single
InP, which tries to allocate as much resources as possible in his own network before forwarding
the un-embedded nodes and links to a neighboring InP. The process continues recursively until
the whole request is embedded. Works that addressed the energy consumption problem in
multi-domain embedding have also been proposed. For instance, authors in [152] proposed an
algorithm for VN embedding across multiple domains that belong to the same InP. The objective
is to embed the VN across the domains in such a way to take advantage of the location-varying
and time-varying diversities of the electricity price. The problem is first formulated as an ILP
whose objective is to reduce the power cost of embedding. Then, the authors proposed a heuristic
approach that separates node and link mapping, and uses the electricity price in each location
to find the node mapping.

In the specific case of multiple data centers, VDC embedding problem has been addressed
under the objectives of load balancing. For instance, Xin et al. [44] proposed an algorithm that
uses minimum k-cut to split a request into k predefined number of partitions before assigning
them to di↵erent locations. The number of partitions k is chosen in such a way that it balances
the workload between data centers. However, this work only aimed to balance the workload
through request partitioning without considering other objectives like revenue maximization,
backbone network usage optimization, energy e�ciency and green IT. Furthermore, it does not
consider constraints on the VM placement.

5.6 Green Service Level Agreements in the Cloud

With the increased concern for carbon emissions of cloud infrastructures, a new trend to define
SLAs that include green terms have emerged in the last few years. The idea behind Green SLAs
is to allow SP to limit the amount of carbon generated by the cloud provider on his behalf.
Such limitations allow annual reporting and fair claims about the carbon footprint of the cloud
customer, even though they do not own the infrastructures. As such, Green SLAs stipulate
that SPs are able to require their CPs to guarantee that the leased resources are environment
friendly. In other words, SPs can explicitly specify green constraints such as, for instance, an
upper limit on carbon emissions produced by the resources they lease.

Providing Green SLAs has been originally proposed back in 2010 by Laszewski et al. [39]
and then quickly adopted and supported in several research works [41,43,153–155]. A follow up
of these works was proposed in [153], which further studied in a simple use-case the benefit and
impact of these Green SLAs. The idea in [153] was to explicitly use metrics such as energy used
for the task or resource (in KWh), CO2 per task or resource (in kgCO2), yearly average PUE
(in a range of 1 - 2.5) by the data center provider. Authors then compared three types of SLA:
(i) A standard SLA (Full Power) which did not address energy consumption at all but prioritizes
performance and time; (ii) A variant (i.e., Relaxed SLA) that specifies key indicators not within
tight boundaries but relaxes these by 30%; in addition, energy became a key indicator, and (iii)
an energy-aware SLA (GreenJob) that uses tight energy ranges as a key indicator. Obtained
results showed that smart energy optimization using GreenSLAs for configuration and control
achieves significant savings (between 1.4 J and 4.8 J per service request, depending on the
SLA type) while keeping the number of SLA violation low (QoS: 2.21%-8.96%, Energy 0.57%-
2.33%). However, these results tested at a scale of one server and few smartphone clients using
di↵erent SLAs cannot be generalized. In [154], authors presented an architecture where all
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the stakeholders of a cloud service collaborate to reduce the energy consumption and lower
the carbon footprint. The idea is that the cloud provider (CP) negotiates with the Electricity
provider (EP) to reduce its energy bill and consume green power, and at the same time negotiates
with the IT customer (ITC or SP) to relax the SLA in such a way to achieve energy e�ciency.
One collaboration example could be triggered by the EP, which in case of experiencing shortage
in power production can ask its CP to reduce the energy consumption. The latter, given an
interesting pricing can o✏oad some of its IT load to other data centers if the SLA with the
customers is guaranteed, or negotiate with customer to lower the SLA and o✏oad to the other
data centers.

In the specific context of HPC clouds, Haque et al. [43] considered an SLA that specifies
the proportion of green power that the HPC provider should use to run the SP’s (user’s) job
(e.g., x% of the job should run on green power). The HPC provider has to pay a penalty to SPs
if the green terms of the SLA are not satisfied. Authors derived an algorithm to allocate the
available renewable power in the data center to the jobs that require it to satisfy the Green SLA.
Similarly, Wang et al. [155] proposed an approach where SPs can define in the SLA constraints
for their submitted tasks (a task being an HPC job or part of an HPC job) that limits the
carbon emissions and consumed power. From the CP perspective, the goal of this framework is
to schedule parallel tasks such that the Green SLAs are satisfied. Moreover, their proposed Green
SLA can be renegotiated over time, to leverage the dynamic of renewable power availability and
adapt flexible pricing.

It is worth noting that existing works such as [40, 156] proposed renegotiation of the SLA
terms between the CP and the SP. The idea is that CPs incentivize SPs to relax some of the
QoS constraints to reduce the energy consumption and/or carbon footprint. For instance, SP
can relax the constraint on the execution time of an HPC job or task to allow the CP to run
the job during periods of time where the renewable power is available. More specifically, Wang
et al. presented in [156] a study for energy reduction in an HPC cluster by increasing the task
execution time within a certain limit. However, even though this version of modified SLAs hat
relaxes QoS constraints is referred to as Green SLA in these works, it is not similar to our
definition of this term. In fact, our definition of Green SLA stipulates explicit green terms such
as limits of carbon emission in addition to the traditional SLA terms (e.g., delay, bandwidth,
availability).

5.7 Discussion

Recall that in our study, we addressed the problem of reducing the operational costs and car-
bon emissions in distributed cloud infrastructures. In the context of VDCs, where guaranteed
bandwidth between VMs is required by the SPs, the existing approaches presented above for
VN embedding, VDC embedding in a single data center and workload placement in distributed
infrastructures are not directly applicable.

Indeed, while a virtual network can be made of tens of nodes (mainly routers), a VDC
(expected to be similar to a real data center) may comprise thousands of nodes of di↵erent types
(e.g., VMs, virtual switches and routers). There is, therefore, a definite need for developing new
solutions able to embed large scale VDCs and to consider the diversity of resources. Finally, these
works do not take advantage of the variability of electricity prices between di↵erent locations,
ignore environmental considerations and do not consider the characteristics of the data centers
such as the PUE, which can be variable over time.

In addition, the proposed approaches in a single data center for reducing the energy con-
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sumption cannot be applied in the context of multiple data centers. Indeed, such approaches
do not take into account the di↵erences in power consumption and e�ciency (i.e., PUE) of the
di↵erent data centers. Similarly, the proposed approaches for workload placement in distributed
infrastructures cannot be applied in our case. In fact, the main limitation of these approaches
is that they ignore the communication patterns and the exchanged data between the VMs of
the same workload. This makes such approaches not applicable for embedding VDCs since they
need also to consider bandwidth and delay requirements between the VDC components. Finally,
the proposed approaches for Green SLA in clouds cannot be reused in our context. In fact, these
approaches focus on a single data center case and do not consider distributed infrastructures.
Moreover, these solutions do not consider bandwidth requirements between VMs or tasks of the
same HPC job. Our work considers a more general scenario with multiple data centers and
where the network requirements are explicitly specified in the VDC request.

In summary, our contributions are di↵erent from traditional virtual network and VDC em-
bedding proposals since we consider resource allocation for VDCs across the whole infrastructure
including data centers and the backbone network connecting them. They also di↵er from related
work on workload placement across multiple data centers since we are provisioning all types of
resources including computing, storage and networking (i.e., bandwidth and delay).

To achieve our goal, we propose in the next two chapters two new approaches for VDC embed-
ding in distributed clouds. Specifically, Chapter 6 presents Greenhead, a holistic management
framework for VDC embedding across a distributed infrastructure, which aims at maximizing
the cloud provider’s revenue by minimizing energy costs, while ensuring that the infrastructure
is as environment-friendly as possible. Then, Chapter 7 presents Greenslater, a management
framework for VDC embedding that aims at reducing the energy costs and the carbon footprint,
under explicit green terms in the SLAs.

5.8 Conclusion

With the increase in power consumption and carbon footprint of cloud infrastructures, solutions
that aim at reducing the energy consumption and carbon footprint are appealing to achieve cost
reduction and sustainability. Moreover, the carbon emission of the cloud is becoming an issue.
As such, approaches that reduce the carbon emissions and present guarantees on greenness are
also interesting both from the marketing and financial perspectives.

In this chapter, we presented the related works on reducing the energy consumption and car-
bon footprint inside a single data center, workload placement across multiple data centers, virtual
network embedding and Green SLA in the cloud. Though these approaches are compelling, they
are not directly applicable in our case of VDC embedding in distributed infrastructure.

To fill this gap, we propose two new approaches for VDC embedding in distributed clouds,
namely Greenhead and Greenslater. These two approaches will be detailed in Chapter 6 and
Chapter 7, respectively.



Chapter 6

Greenhead: Virtual Data Center
Embedding Across Distributed
Infrastructures

6.1 Introduction

Cloud computing has recently gained significant popularity as a cost-e↵ective model for hosting
large-scale online services in large data centers. In a cloud computing environment, a Cloud
Provider (CP) partitions the physical resources inside each data center into virtual resources
(e.g., Virtual Machines (VMs)) and leases them to Service Providers (SPs) in an on-demand
manner. On the other hand, a service provider uses those resources to deploy its service appli-
cations, with the goal of serving its customers over the Internet.

Unfortunately, current CPs like Amazon EC2 [20] mainly o↵er resources in terms of virtual
machines without providing any performance guarantees in terms of bandwidth and propagation
delay. The lack of such guarantees a↵ects significantly the performance of the deployed services
and applications [21]. To address this limitation, recent research proposals [22] and cloud o↵er-
ings [23] advocated o↵ering resources to SPs in the form of Virtual Data Centers (VDCs). A
VDC is a collection of virtual machines, switches and routers that are interconnected through
virtual links. Each virtual link is characterized by its bandwidth capacity and its propagation
delay. Compared to traditional VM-only o↵erings, VDCs are able to provide better isolation of
network resources, and thereby improve the performance of service applications.

Despite its benefits, o↵ering VDCs as a service introduces a new challenge for cloud providers
called the VDC embedding problem, which aims at mapping virtual resources (e.g., virtual
machines, switches, routers) onto the physical infrastructure. So far, few works have addressed
this problem [21, 24, 25], but they only considered the case where all the VDC components are
allocated within the same data center. Distributed embedding of VDCs is particularly appealing
for SPs as well as CPs. In particular, a SP uses its VDC to deploy various services that operate
together in order to respond to end users requests. As shown in Figure 6.1, some services may
require to be in the proximity of end-users (e.g., Web servers) whereas others may not have such
location constraints and can be placed in any data center (e.g., MapReduce jobs).

On the other hand, CPs can also benefit from embedding VDCs across their distributed
infrastructure. In particular, they can take advantage of the abundant resources available in
their data centers and achieve various objectives including maximizing revenue, reducing costs
and improving the infrastructure sustainability.

74
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Figure 6.1: Example of VDC deployment over a distributed infrastructure

In this chapter, we propose a management framework able to orchestrate VDC allocation
across a distributed cloud infrastructure. The main objectives of such framework can be sum-
marized as follows.

- Maximize revenue. Certainly, the ultimate objective of an infrastructure provider is to
increase its revenue by maximizing the amount of leased resources and the number of embedded
VDC requests. However, embedding VDCs requires satisfying di↵erent constraints, namely
the capacity and location constraints. Obviously, the embedding scheme must ensure that the
capacity of the infrastructure is never exceeded. In addition, it must satisfy location constraints
imposed by SPs.

- Reduce backbone network workload. To cope with the growing tra�c demand be-
tween data centers, infrastructure providers tend to build their proprietary wide-area backbone
network to interconnect their facilities (e.g., Google G-scale network [26]). In this context, one
key objective when embedding VDCs is to minimize the tra�c within the backbone network.
Indeed, it has been reported recently that the cost of building an inter-data center network is
much higher than the intra-data center network cost and it accounts for 15% of the total in-
frastructure cost [27]. In addition, according to several studies [28], wide area data transport is
bound to be the major contributor to the data transport costs. Hence, it is crucial to reduce
the backbone network tra�c and place high-communicating VMs within the same data center
whenever possible.

- Reduce data center operational costs. Reducing data centers’ operational costs is a
critical objective of any infrastructure provider as it impacts its budget and growth. This can
be achieved through minimizing energy costs, which constitutes a significant portion of the total
operational expenditure. To this end, two key techniques can be adopted: (1) placing more
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workload into the most energy-e�cient data centers, and (2) taking advantage of the di↵erence
in electricity prices between the locations of the infrastructure facilities. In particular, energy-
e�cient data centers can be identified by their Power Usage E↵ectiveness (PUE), and favored
to host more virtual machines.

Furthermore, CPs can achieve more savings by considering the fluctuation of electricity price
over time and the price di↵erence between the locations of the data centers. Hence, VMs can
be e�ciently placed such that the total electricity cost is minimized.

- Reduce the carbon footprint. Recent research has reported that, in 2012, the carbon
footprint of data centers around the world accounted for 0.25% of the worldwide carbon emission,
which constitutes 10% of Information and Communication Technologies (ICT) emissions [29].
As a result, CPs are facing a lot of pressure to operate on renewable sources of energy (e.g., solar
and wind power) to make their infrastructure more green and environment-friendly. Based on
these observations, an e�cient VDC embedding scheme should maximize the usage of renewables
and take into account their availability, which depends on the data center geographical location,
the time of the day (e.g., day and night for solar power) as well as the weather conditions (e.g.,
wind, atmospheric pressure). Furthermore, whenever the power from the electric grid is used,
the VDC embedding scheme has to minimize the infrastructure carbon footprint. In that case,
the placement of the VMs is critical since the carbon footprint per watt of power varies from
location to location.

The remainder of this chapter is organized as follows. Section 6.2 describes the proposed
management framework. The mathematical formulation of the VDC embedding problem across
a distributed infrastructure is given in Section 6.3. Section 6.4 presents a detailed description
of the proposed algorithms for VDC partitioning and embedding. Section 6.5 discusses the
simulation results showing the e↵ectiveness of Greenhead. Finally, Section 6.6 concludes this
chapter.

6.2 System Architecture

In this work, we consider a distributed infrastructure consisting of multiple data centers located
in di↵erent regions and interconnected through a backbone network (see Figure 6.2). The entire
infrastructure (including the backbone network) is assumed to be owned and managed by the
same infrastructure provider. Each data center may operate on on-site renewable energy (e.g.,
wind, solar) and resorts to electricity grid only when its on-site renewable energy becomes
insu�cient. Unfortunately, renewables are not always available as they depend on the data
center location, the time of the day and external weather conditions. While renewable energy
has no carbon footprint, energy from the grid is usually produced by burning coal, oil and gas,
generating high levels of carbon emissions. As a result, whenever electricity is drawn from the
grid, cloud provider has to pay a penalty proportional to the generated carbon emission. The
generated carbon depends on the source of power used by the electric grid supplier, which could
be a renewable source or a conventional one or a mix of both. Furthermore, it is also worth
noting that prices of the grid electricity di↵er between regions and they even vary over time in
countries with deregulated electricity markets.

As shown in Figure 6.2, a SP sends the VDC request specifications to the CP, which has the
responsibility of allocating the required resources. Naturally, the cloud provider will make use of
its distributed infrastructure with the objective of maximizing its revenue and minimizing energy
costs and carbon footprint; this is where our proposed management framework, Greenhead,
comes into play. Greenhead is composed of two types of management entities: (1) a central
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Figure 6.2: VDC embedding across multiple data centers

controller that manages the entire infrastructure and (2) a local controller deployed at each data
center to manage the data center’s internal resources.

The central management entity includes five components as depicted in Figure 6.2:

• The Partitioning Module is responsible for splitting a VDC request into partitions such
that inter-partition bandwidth is minimized. The aim of this module is to reduce the
number of virtual links provisioned between data centers. Each partition is supposed to
be entirely embedded into a single data center. The motivation behind such partitioning
will be explained in Section 6.4.1.

• The Partition Allocation Module is responsible for assigning partitions to data centers
based on run-time statistics collected by the monitoring module. It ensures that all par-
titions are embedded while achieving cost e↵ectiveness, energy e�ciency and green IT
objectives such as reducing energy costs from the power grid and maximizing the use of
renewable sources of energy.

• The Inter-data center Virtual Link Allocation Module allocates virtual links in the back-
bone network. Those virtual links connect VMs that have been assigned to di↵erent data
centers.

• The Monitoring Module is responsible for gathering di↵erent statistics from the data cen-
ters. The collected information includes PUE, resource utilization, outdoor temperature,
electricity price and the amount of available renewable energy.

• The VDC Information Base contains all information about the embedded VDCs including
their partitions and mapping either onto the data centers or the backbone network.

Regarding the local controller at each data center, its main role is to manage the resources
within the data center itself. Specifically, it allocates resources for a partition of a VDC as
requested by the central controller. If the embedding is not possible (for example, due to
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Table 6.1: Table of notations

Notation Meaning
PUEi PUE of data center i
⇣i Electricity price in data center i
⌘i on-site renewable power cost in data center i
N i Residual renewable power in data center i
Ci Carbon footprint per unit of power from the power grid in data

center i
↵i Cost per ton of carbon in data center i

zjik A boolean variable indicating whether data center i satisfies
the location constraint of VM k of VDC j

xjik A boolean variable indicating whether VM k is assigned to data
center i

fe,e0 a boolean variable indicating whether the physical link e 2 E
is used to embed the virtual link e0 2 Ej

Dj
i Cost of embedding the VDC request j in data center i

Pi,IT Amount of power consumed only by IT equipment (i.e., servers
and switches) in data center i

P j
i Total power consumed in data center i

�r Price per unit of resource type r

�b Price per unit of bandwidth
cp Cost per unit of bandwidth in the backbone network

unavailability of resources), the local controller notifies the central controller. Subsequently, the
partition allocation module will attempt to find another data center able to embed the rejected
partition. It is worth noting that di↵erent resource allocation schemes can be deployed locally
at the data centers (e.g., VDC planner [24], SecondNet [25], Oktopus [21]). Finally, each local
controller has to report periodically statistics including PUE, temperature, resource usage and
availability of renewables to the central controller.

6.3 Problem Formulation

In this section, we formally define the VDC embedding problem across multiple data centers as
an Integer Linear Program (ILP). Table 6.1 describes the notations used in our ILP model.

We assume that time is divided into slots [1, .., T ]. The metrics characterizing each data
center (e.g., PUE, electricity price) are measured at the beginning of each time slot and are
considered constant during the corresponding time slot. Thus, for readability, we omit the time
reference in all variables defined in the remainder of this section.

The physical infrastructure is represented by a graph G(V [W,E), where V denotes the set
of data centers and W the set of nodes of the backbone network. The set of edges E represents
the physical links in the backbone network. Each link is characterized by its bandwidth capacity
and propagation delay.

A VDC request j is represented by a graph Gj(V j , Ej). Each vertex v 2 V j corresponds
to a VM, characterized by its CPU, memory and disk requirements. Each edge e 2 Ej is a
virtual link that connects a pair of VMs. It is characterized by its bandwidth demand bw(e) and
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propagation delay d(e). Furthermore, each VDC j has a lifetime Tj . We assume the revenue
generated by VDC j, denoted by Rj , to be proportional to the amount of CPU, memory and
bandwidth required by its VMs and links. Let R denote the di↵erent types of resources o↵ered
by each node (i.e., CPU, memory and disk). The revenue generated by VDC j can be written
as follows:

Rj = (
X

v2V j

X

r2R
Cr
j (v)⇥ �r +

X

e02Ej

bw(e0)⇥ �b) (6.1)

where Cr
j (v) is the capacity of VM v belonging to the VDC j in terms of resource r, and �r and

�b are the selling prices of a unit of resource type r and a unit of bandwidth, respectively.
Furthermore, we assume that each VM v 2 V j may have a location constraint. Therefore,

it can only be embedded in a particular set of data centers. To model this constraint, we define

zjik =

8
<

:

1 If the VM k of the VDC j can be
embedded in data center i

0 Otherwise.

as a binary variable that indicates whether a VM k of to VDC j can be embedded in a data
center i.

The problem of embedding a given VDC j across the infrastructure involves to two steps:

• First, assign each VM k 2 V j to a data center. Hence, we define the decision variable xjik
as:

xjik =

8
<

:

1 If the VM k of the VDC j is
assigned to data center i

0 Otherwise.

• Second, embed every virtual link belonging to Ej either in the backbone network if it con-
nects two VMs assigned to di↵erent data centers or within the same data center, otherwise.
To do so, we define the virtual link allocation variable fe,e0 as:

fe,e0 =

8
<

:

1 If the physical link e 2 E is used to
embed the virtual link e0 2 Ej

0 Otherwise.

Finally, the ultimate objective of the CP when embedding a VDC request is to maximize its
profit defined as the di↵erence between the revenue (denoted by Rj) and the total embedding
cost, which consists of the embedding cost in the data centers (denoted by Dj) plus the embed-
ding cost in the backbone network Pj . Hence, our problem can be formulated as an ILP with
the following objective function:

Maximize Rj � (Dj + Pj) (6.2)

Subject to the following constraints (6.3)-(6.8):

• A VM has to be assigned to a data center that satisfies its location constraints:

xjik  zjik, 8k 2 V j , 8i 2 V (6.3)
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• A VM is assigned to one and only one data center:

X

i2V
xjik = 1, 8k 2 V j (6.4)

• The capacity constraint of the backbone network links should not be exceeded:

X

e02Ej

fe,e0 ⇥ bw(e0)  sbw(e), 8e 2 E (6.5)

where sbw(e) is the residual bandwidth of the backbone network link e.

• The required propagation delay for every virtual link allocated in the backbone should be
satisfied:

X

e2E
fe,e0 ⇥ d(e)  d(e0), 8e0 2 Ej (6.6)

• The flow conservation constraint given by:

fe1,e0 � fe2,e0 = xd(e1)d(e0) � xs(e2)s(e0), 8e1, e2 2 E, d(e1) = s(e2), 8 e0 2 V j (6.7)

where s(e) and d(e) denote the source and destination of link e, respectively.

• Furthermore, the central controller should also ensure that each data center is able to ac-
commodate VMs and virtual links assigned to it. To model this constraint, let Gj

i (V
j
i , E

j
i )

denote a partition from Gj , where V j
i and Ej

i are the set of VMs and virtual links belonging
to VDC j and assigned to data center i. They can be written as

V j
i = {k 2 V j |xjik = 1}

Ej
i = {e0 2 Ej |s(e0) 2 V j

i and d(e0) 2 V j
i }

We define the function

Embedi(G
j
i ) =

8
<

:

1 If data center i can

accommodate V j
i and Ej

i

0 Otherwise.

Hence, to ensure that the data center i can host the assigned VMs and links, we should
satisfy:

xjik  Embedi(G
j
i ), 8k 2 V j , 8i 2 V (6.8)

Let us now focus on the expression of the embedding costs Dj and Pj in the data centers and
the backbone network, respectively. Recall that these costs are part of the objective function.

- The cost of embedding in the data centers

In this work, we evaluate the request embedding cost in the data centers in terms of energy
and carbon footprint costs. To do so, we first evaluate the amount of power required to embed
the partition Gj

i in a data center i denoted by P j
i .
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Let P j
i,IT denote the amount of power consumed only by IT equipment (i.e., servers and

switches) in order to accommodate Gj
i (expressed in kilowatt). This amount of power depends

mainly on the local allocation scheme, the current mapping and the availability of resources at
data center i. The power consumed at the data center i by IT equipment and other supporting
systems (e.g., cooling) to accommodate the partition Gj

i can be computed as

P j
i = P j

i,IT ⇥ PUEi (6.9)

where PUEi is the power usage e↵ectiveness of data center i. The mix of power used in data
center i is given by

P j
i = P j

i,L + P j
i,D (6.10)

where P j
i,L and P j

i,D denote, respectively, the on-site consumed renewable power and the amount
of purchased power from the grid. Note that the amount of on-site consumed power should
not exceed the amount of produced power, which is captured by P j

i,L  RNi, where RNi is the
amount of residual renewable power in data center i expressed in kilowatt.

Hence, the embedding cost (expressed in dollar) of the partition Gj
i in data center i can be

written as

Dj
i = P j

i,L ⇥ ⌘i + P j
i,D ⇥ (⇣i + ↵iCi) (6.11)

where ⌘i is the on-site renewable power cost in data center i expressed in dollars per kilowatt-
hour ($/kWh), ⇣i is the electricity price in data center i expressed in dollars per kilowatt-hour
($/kWh), Ci is the carbon footprint per unit of power used from the grid in data center i
expressed in tons of carbon per kWh (t/kWh) and ↵i is the cost per unit of carbon ($/t). Note
that ⌘i includes the upfront investment, maintenance and operational costs.

Finally, the total embedding cost of request j in all available data centers can be written as
follows :

Dj =
X

i2V
Dj

i (6.12)

- The cost of embedding in the backbone network

Virtual links between the VMs that have been assigned to di↵erent data centers should
be embedded in the backbone network. Let Pj denote the cost incurred by the CP in order
to accommodate those virtual links. We assume that it is proportional to their bandwidth
requirements and the length of physical paths to which they are mapped. It is given by:

Pj =
X

e02Ej

X

e2E
fe,e0 ⇥ bw(e0)⇥ cp (6.13)

where cp is the cost incurred by the CP per unit of bandwidth allocated in the backbone network.
The above embedding problem can be seen as a combination of the bin packing problem

and the multi-commodity flow problem, which are both known to be NP-hard. In addition, in
order to use an ILP solver, one should know the embedding costs of all possible partitions of
the VDC graph in all data centers. This means that each local controller has to provide the
central management framework with the embedding cost of every possible partition. This may
result in a large computational overhead not only at local controllers but also at the central
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Algorithm 6 Location-Aware Louvain Algorithm (LALA)

1: IN: Gj

(V

j

, E

j

): The VDC request to partition

2: repeat
3: Put every edge of G in a single partition

4: Save the initial modularity

5: while Nodes moved between partitions do
6: for all v 2 G

j do
7: Find the partition P such as if we move v from its partition to P :

8: -Get a maximum modularity increase

9: -There will not be two nodes with di↵erent location constraints in P

10: if such a partition P exists then
11: Move v to the partition P

12: end if
13: end for
14: end while
15: if current modularity > initial modularity then
16: End false

17: Change G

j

to be the graph of partitions

18: else
19: End true

20: end if
21: until End

controller since the number of possible partitions can be significant, especially for large-scale
VDC requests. Therefore, a solution that is both e�cient and scalable is required.

In the next section, we present our solution that, first, divides the VDC request into partitions
such that the inter-partition bandwidth is minimized. Note that minimizing the inter-partition
bandwidth aims at reducing the bandwidth usage within the backbone network. Once, the parti-
tioning is completed, we, then, use a greedy algorithm that places the obtained partitions in data
centers based on location constraints and embedding costs that consider energy consumption,
carbon footprint, electricity prices and PUEs of the di↵erent facilities. Finally, the algorithm
optimally connects them through virtual links across the backbone network.

6.4 VDC Partitioning And Embedding

As mentioned earlier, our solution consists of two stages: (1) VDC partitioning, and (2) partition
embedding. In the following, we present these two stages.

6.4.1 VDC Partitioning

Before starting the embedding process, the VDC partitioning module splits the VDC request
into partitions such that the inter-partition bandwidth is minimized. This allows to minimize
the bandwidth usage inside the backbone network.

Our motivation stems from two main observations: (i) the cost of inter-data center network
accounts for 15% of the total cost, which is much higher than the cost of the intra-data center
network [27], (ii) wide-area transit bandwidth is more expensive than building and maintaining
the internal network of a data center [157], and (iii) the inter-data center network might become a
bottleneck, which will eventually reduce the acceptance ratio of VDC requests. Hence, to reduce
the operational costs and avoid inter-data center eventual bottleneck, it is highly recommended
to reduce the inter-data center tra�c [28].
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Algorithm 7 Greedy VDC Embedding Across data centers

1: IN: G(V [W,E), G

j

M

(V

j

M

, E

j

M

)

2: OUT: Assign each partition in V

j

M

to a data center, embed the links between the partitions assigned to

di↵erent data centers in the backbone network

3: for all i 2 V do
4: ToDC[i] {}
5: end for
6: for all v 2 V

j

M

do
7: S

v

 {i 2 V / i satisfies the location constraint}
8: end for
9: for all v 2 V

j

M

do
10: i s 2 S

v

with the smallest cost getCost(s, v), and LinksEmbedPossible(s, v) = true

11: if no data center is found then
12: return FAIL

13: end if
14: ToDC[i] ToDC[i] [ {v}
15: for all k 2 N(v) do
16: if k 2 ToDC[i] then
17: ToDC[i] ToDC[i] [ {e

vk

}
18: else
19: if 9l 6= i 2 V / k 2 ToDC[l] then
20: Embed e

vk

in G using the shortest path

21: end if
22: end if
23: end for
24: end for
25: return ToDC

The VDC partitioning problem reduces to the weighted graph partitioning problem, which is
known to be NP-Hard [158]. Hence, we propose to use the Louvain algorithm [30]. We chose the
Louvain algorithm because it is a heuristic algorithm that determines automatically the number
of partitions and has low time complexity of O(n log(n)). Furthermore, it is shown to provide
good results [30].

The objective of the Louvain algorithm is to maximize the modularity, which is defined
as an index between �1 and 1 that measures the intra-partition density (i.e., the sum of the
links’ weights inside partitions) compared to inter-partition density (sum of the weights of links
between partitions). In fact, graphs with high modularity have dense connections (i.e., high sum
of weights) between the nodes within partitions, but sparse connections across partitions.

In a nutshell, the original Louvain algorithm proceeds as follows. Initially, every node is
considered as a partition. The algorithm then considers each node and tries to move it into the
same partition as one of its neighbors. The neighboring node is chosen such that the gain in
modularity is maximal. Then a new graph is built by considering the partitions found during the
first phase as nodes and by collapsing inter-partitions links into one link (the weight of the new
link is equal to the sum of the original links’ weights). The same process is applied recursively
to the new graph until no improvement in the modularity is possible. For more details on the
original version of the Louvain algorithm, please refer to [30].

However, one should note that this algorithm is not directly applicable to the VDC parti-
tioning problem since it does not take into account location constraints.

Indeed, two VMs with two di↵erent location constraints should not be assigned to the same
data center, and hence they have to belong to di↵erent partitions. However, the Louvain algo-
rithm may not separate them, which results in non-feasible solutions. To address this limitation,
we modified the Louvain algorithm to take into account location constraints in the partitioning
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Figure 6.3: Available renewables, electricity price, carbon footprint per unit of power and cost
per unit of carbon in the data centers

process. The resulting heuristic algorithm, called Location-Aware Louvain Algorithm (LALA)
is described in Algorithm 6. Basically, LALA prevents moving a node from one partition to
another whenever the location constraint could be violated.

Note that, unlike previous approaches in the literature, where the number of partitions is
known [44] or based on star-shaped structures detection [159], LALA determines the number of
partitions as well as the shape and size of the partitions based on the modularity.

Once the VDC partitioning is completed, the second step is to assign the partitions to the
data centers in such a way to minimize the operational costs as well as the carbon footprint,
and provision virtual links across the backbone network to connect them. In what follows, we
describe the partition placement algorithm.

6.4.2 Partition Embedding Problem

Once a request Gj(V j , Ej) is partitioned, the resulting partitions that are connected through
virtual links can be seen as a multigraph Gj

M (V j
M , Ej

M ) where V j
M is the set of nodes (partitions)

and Ej
M is the set of virtual links connecting them. The next step is to embed this multigraph

in the infrastructure.
Note that, at this stage, we can use the ILP formulation introduced in section 6.3 by replacing

the VDC request Gj by its graph of partitions Gj
M . However, even if the VDC partitioning
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process significantly reduces the number of components (partitions rather than VMs) to be
embedded, the above formulated ILP is still NP-hard. Therefore, we propose a simple yet
e�cient heuristic algorithm to solve the ILP problem.

Algorithm 7 describes the proposed partition embedding algorithm. For each partition v 2
V j
M , we build the list of data centers able to host it based on the location constraints (lines

6-8). The idea is to start by assigning the location-constrained partitions first then select the
most cost e↵ective data centers that satisfy these constraints. For each partition v 2 V j

M to
embed, the central management entity queries the Local Controller of each data center s that
satisfies the location constraints to get the embedding cost of v. The cost is returned by the
remote call getCost(s, v), which includes both power and carbon footprint costs as described in
equation (6.11). The next step is to select the data center that will host the partition v (lines
10-14). The selected data center is the one that incurs the lowest embedding cost (provided by
the procedure getCost(s, v)) and where it is possible to embed virtual links between v and all
previously embedded partitions (denoted byN(v)). Hence, the requirements of all virtual links in
terms of bandwidth and delay are satisfied (achieved when LinksEmbedPossible(s, v) = true).
Furthermore, links between the partition v and other partitions assigned to di↵erent data centers
are embedded in the backbone network using the shortest path algorithm (lines 19-21).

If the whole multigraph is successfully embedded, Algorithm 7 provides the mapping of all
the partitions to the data centers as well as the mapping of the virtual links that connect them
in the the backbone network. The complexity of this algorithm is O(|V j

M |⇥ |V |), where |V j
M | is

the number of partitions and |V | is the number of data centers.

6.5 Performance Evaluation

In order to evaluate the performance of Greenhead, we run extensive simulations using realistic
topology and parameters. In the following, we present the setting of the conducted simulations,
the performance metrics that we evaluated as well as the obtained results.

6.5.1 Simulation Settings

- Physical infrastructure:

We consider a physical infrastructure of 4 data centers situated in four di↵erent states:
New York, Illinois, California and Texas. The data centers are connected through the NSFNet
topology as a backbone network [160]. NSFNet includes 14 nodes located at di↵erent cities in
the United States. Each data center is connected to the backbone network through the closest
node to its location. We assume all NSFNet links have the same capacity of 10Gbps [28, 161].
As illustrated in Figure 6.3, the electricity price, the available renewable energy and the carbon
footprint per unit of power drawn from the grid not only depends on the location but are also
subject to change over time.

In our experiments, we simulate two working days (i.e., 48 hours). We use electricity prices
reported by the US Energy Information Administration (EIA) in di↵erent locations [162]. The
amount of power generated during two days are extracted from [163]. In order to evaluate
the carbon footprint generated at each data center, we use the values of carbon footprint per
unit of power provided in [164]. We also use real solar and wind renewable energy traces
collected from di↵erent US states [163], and considered the on-site renewable power cost to be
⌘i = 0.01/kWh, 8i [165,166]. In order to evaluate PUEs of the di↵erent data centers, we adopted
the technique described in [167].
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- VDC requests:

In our simulations, similarly to previous works [24, 144, 145, 147, 150], VDCs are generated
randomly according to a Poisson process with arrival rate �. Their lifetime follows an exponential
distribution with mean 1/µ. This mimics a real cloud environment where VDCs could be
allocated for a particular lapse of time depending on the SP requirements. This is the case for
Amazon EC2, for example, where a SP can dynamically create VMs and use them only for a
specific duration. The number of VMs per VDC is uniformly distributed between 5 and 10 for
small-sized VDCs and 20 and 100 for large-sized VDCs. Two VMs belonging to the same VDC
are directly connected with a probability 0.5 with a bandwidth demand uniformly distributed
between 10 and 50Mbps and a delay uniformly distributed between 10 and 100 milliseconds. In
addition, in each VDC, a fraction of VMs, denoted by Ploc 2 [0, 1], is assumed to have location
constraints.

- The baseline approach:

Since, previous proposals on virtual network embedding and VDC embedding are not directly
applicable to the studied scenario (see chapter 5), we developed a baseline embedding algorithm
that does not consider VDC partitioning. The baseline algorithm maps a VDC to the physical
infrastructure by embedding its VMs and links one by one. In other words, it applies the
Greenhead embedding algorithm, while considering each single VM as a partition.

- The simulator

We developed a C++ discrete event simulator for the central and local controllers, consisting
of about 3000 lines of code. The exchange between the central controller and the local controllers
is implemented using remote procedure calls. The results are obtained over many simulation
instances for each scenario, with a margin of error less than 5%, then we calculate the average
value of performance metrics. We do not plot confidence intervals for the sake of presentation.

- Performance Metrics

In order to compare our approach to the baseline, we evaluate several performance metrics
including the acceptance ratio, the revenue, energy costs, the carbon footprint and the backbone
network utilization. In particular, the acceptance ratio is defined as the ratio of the number of
embedded VDCs to the total number of received VDCs (i.e., including embedded and rejected
VDCs). It is given by:

At =
Ut

Nt
(6.14)

where Ut and Nt are the number of VDC requests that have been embedded and the total
number of received VDCs up to time t, respectively. The instantaneous revenue at a particular
time t is given by:

R(t) =
X

j2Q(t)

Rj (6.15)

where Q(t) is the set of VDC requests embedded in the infrastructure at time t and Rj as defined
in (6.1). The cumulative revenue up to time t, denoted by CR(t), can then be written as:

CR(t) =

Z t

0
R(x) dx. (6.16)
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The instantaneous power, carbon footprint and backbone network cost is given by:

C(t) =
X

j2Q(t)

Dj
t + Pj (6.17)

where Dj
t is defined in (6.12). Note that we add the time slot in the subscript to the definition

of the Dj
t since we are considering the variations between di↵erent time slots. The cumulative

cost up to time t can be written as:

CC(t) =
Z t

0
C(x) dx. (6.18)

Naturally, the instantaneous and cumulative profits are given by the di↵erence between the
instantaneous revenue and cost and the cumulative revenue and cost, respectively.

Finally, in order to compare Greenhead resource allocation scheme to other schemes, we de-
fine the cumulative objective function at time t as the sum of objective function values associated
to the VDCs embedded at that time. It can be written as

B(t) =
X

j2Q(t)

(Rj � (Dj + Pj)) (6.19)

where Rj � (Dj + Pj) is the objective function score of embedding VDC j as defined in
equation (6.2).

6.5.2 Simulation results

Through extensive experiments, we first show the e↵ectiveness of our framework in terms of
time complexity, acceptance ratio, revenue and backbone network utilization. Then, we study
the utilization of available renewable energy in the di↵erent data centers. Finally, we investigate
the carbon footprint and we discuss how to spur development of green infrastructure.

1) Greenhead provides near-optimal solution within a reasonable time frame

First, we compare Greenhead to an optimal solution provided by an ILP solver, as well as
to the baseline in terms of computational time and solution quality (i.e., cumulative objective
function). In our first set of simulations, we fixed the arrival rate � to 8 requests per hour,
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Figure 6.5: Greenhead vs the baseline. (� = 8 requests/hour, 1/µ = 6 hours, Ploc = 0.15,
duration=48 hours)

the average lifetime 1/µ to 6 hours and the fraction of location-constrained VMs Ploc to 0.15.
The experiments were conducted on a machine with a 3.4 GHz dual core processor and 4.00
GB of RAM running Linux Ubuntu. To compute the optimal solution, we developed a C++
implementation of the branch-and-bound algorithm.

Figure 6.4 compares the cumulative objective function (equation (6.19)) of the aforemen-
tioned algorithms for small-sized VDC requests consisting of fully connected 5-10 VMs. We
can observe that the mean values obtained for Greenhead are very close or even overlap with
the values obtained with the ILP solver. This means that the Greenhead approach provides
a solution close to the optimal one. We can also see that Greenhead improves the cumulative
objective function value by up to 25% compared to the baseline.

Table 6.2 reports the average computation time needed to partition and embed a VDC
request. The results show that Greenhead takes a very short time to partition and embed a
VDC request (less than one millisecond for small-sized VDCs and up to 31 millisecond for larger
VDCs). On the other hand, the ILP solver takes more than 13 seconds for small-sized VDCs.
The Baseline, however, needs the least computation time since no partitioning is performed.
Note that the results for the optimal solution in large-sized VDCs were not reported since the
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solver was not able to find the optimal solution due to memory outage.

Table 6.2: Computation time for Greenhead, the baseline and the ILP solver (in milliseconds)

VDC Greenhead Baseline ILP
size PartitioningEmbedding Total Solver

5-10 VMs 0.214 0.061 0.275 0.079 13540
20-100 VMs 31.41 0.28 31.69 2.2 -
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Figure 6.6: Acceptance ratio and revenue for di↵erent arrival rates (Ploc = 0.10)

2) Improve backbone network utilization, acceptance ratio and revenue

In the second set of experiments, we compare Greenhead to the baseline approach in terms
of acceptance ratio, instantaneous revenue and backbone network utilization. To do so, we,
first, fixed the arrival rate � to 8 requests per hour, the average lifetime 1/µ to 6 hours and
the fraction of location-constrained VMs Ploc to 0.15, and we simulated the infrastructure for
48 hours. Results are illustrated in Figure 6.5. From this figure, we can see that Greenhead
achieves, on average, 40% higher acceptance ratio than the baseline (Figure 6.5(a)) and up to
100% more instantaneous profit (Figure 6.5(b)). Although both schemes lead to almost the
same utilization of the backbone network on average (Figure 6.5(c)), they di↵er in the fact that
Greenhead avoids embedding virtual links with high bandwidth demand in the backbone network
thanks to the partitioning algorithm. Hence, it ensures that the embedded requests consume
as less bandwidth as possible inside the backbone network. This is confirmed by Figure 6.5(d),
which compares the average used bandwidth per request inside the backbone network for both
schemes. It is clear that requests embedded by Greenhead use on average 40% less bandwidth
in the backbone network than the baseline algorithm.

Figure 6.6 and 6.7 show the performance results when varying the arrival rate � and Ploc,
respectively.

From Figure 6.6, we can notice that as the arrival rate increases, more requests are embedded,
which results in higher revenue. At the same time, the acceptance ratio goes down since there is
no room to accept all the incoming requests. It is also clear from this figure that the acceptance
ratio as well as the revenue are always higher for Greenhead compared to the baseline.

However, this benefit is reduced when Ploc = 0 as shown in Figure 6.7. In fact, when there are
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Figure 6.7: Impact of the fraction of location-constrained VMs. (� = 8 requests/hour)

no location constraints, the VDCs can be hosted in any data center, and hence, their placement
is only driven by the availability of renewables, the electricity price and the carbon footprint.
In practice, if the data centers are not overloaded, any particular VDC is entirely hosted in the
same data center. This results in low backbone network utilization as shown in Figure 6.7(c).
On the other hand, when Ploc = 1, all the VMs have to be placed as required by the SP. As
a result, the Greenhead is not able to perform any optimization. Finally, when the fraction
of the constrained VMs is between 0 and 1, the Greenhead has more freedom to decide of the
non-constrained VMs placement. In this case, Greenhead is able to optimize VDCs allocation
and significantly improve the acceptance ratio and revenue compared to the baseline.

0 10 20 30 40 50
0

5

10

15
x 10

4

P
o

w
e

r 
(W

)

Time (hours)

 

 
Available renewable power
Consumed renewable power
Total consumed power

(a) Greenhead

0 10 20 30 40 50
0

2

4

6

8

10

12

14
x 10

4

P
o

w
e

r 
(W

)

Time (hours)

 

 
Available renewable power
Consumed renewable power
Total consumed power

(b) The baseline

Figure 6.8: Power consumption across the infrastructure (� = 8 requests/hour, Ploc = 0.20)

3) Maximize renewables’ usage

To illustrate how our proposed framework exploits the renewables in the di↵erent data cen-
ters, we studied the power consumption across the infrastructure and particularly the usage of
renewable energy. Figure 6.8 shows the total power consumption across the infrastructure for
both Greenhead and the baseline approach. It is clear from this figure that Greenhead consumes
much more power than the baseline since it accepts more VDC requests. We can also see that
it uses up to 30% more renewable power than the baseline.
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Figure 6.9: The utilization of the renewables in all data centers for di↵erent fractions of location-
contained nodes Ploc for Greenhead (� = 8 requests/hour)

Figure 6.9 shows the impact of the fraction of location-constrained VMs on the power con-
sumption across the infrastructure. We can notice that, as the fraction of constrained nodes
increases, Greenhead uses more power from the grid. For instance, with Ploc = 0, Greenhead
uses 100% of available renewables. However, when Ploc is getting higher, up to 15% of the avail-
able renewables are not used. This is due to the fact that the VMs with location constraints
can only be embedded in specific data centers, which may not have available renewables. Con-
sequently, more power is drawn from the grid.

4) Reduce energy consumption and carbon footprint per request.

Figure 6.10 compares the obtained results for both schemes for all studied metrics. We
can observe that Greenhead improves up to 40% the acceptance ratio which translates into
48% more profit. Furthermore, Greenhead uses up to 15% more renewables and reduces the
consumed power per request by 15% compared to the baseline approach. In addition, we can
notice that, while Greenhead boosts significantly the profit up to 48%, it generates the same
amount of carbon footprint compared to the baseline approach.

5) Green infrastructure is possible through tuning, at the expense of power cost.
Finally, Figure 6.11 shows the impact of varying the cost per unit of carbon (↵i = ↵, 8i 2 V )

on the carbon footprint in the whole infrastructure as well as the total power cost. In this
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Figure 6.10: Comparison of the average values of the di↵erent metrics
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Figure 6.11: The carbon footprint (normalized values) of the whole infrastructure with variable
cost per ton of carbon

experiment, � is set equal to 8 request/hour and Ploc equal to 0.1. From this figure, we can see
that a tradeo↵ between the carbon footprint and the power cost can be achieved. In addition, we
can notice that an CP can set a carbon footprint target to reach by choosing the corresponding
value of ↵. For instance, one can reduce the carbon footprint by 12% while increasing the power
cost by only 32% by setting ↵ to 80 $/t.

It is worth noting that nowadays, the carbon cost is imposed by governments as a carbon
tax whose cost is between 25 and 30 $ [36,116,117]. According to Figure 6.11, such a cost is not
enough to force CPs to reduce their carbon footprint.

To explain the power cost increase when reducing the carbon footprint, let’s explore Figure
6.12, which presents the power consumption in di↵erent data centers. From this figure, we
can notice that for small values of ↵ (i.e., ↵  160 $), Greenhead uses more the data centers
in Illinois and New York. These two data centers have low electricity prices (see Figure 6.3)
but high carbon footprint (0.0006 ton/Kwh and 0.0005 ton/Kwh, respectively). However, as ↵
increases, Greenhead uses the data center in California since it has the smallest carbon footprint
per unit of power (0.0003 ton/Kwh) but a higher electricity price (on average, 100% higher
compared to New York data center).
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Consequently, we can conclude that: (i) to reduce data centers’ carbon footprint, govern-
ments should consider much higher carbon taxes, and (ii) using Greenhead, a socially-responsible
CP should consider higher carbon costs, even by artificially increasing these costs, to force Green-
head to use environment-friendly data centers to reduce the carbon footprint.
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Figure 6.12: The power from the grid (normalized values) used in di↵erent data centers with
variable cost per ton of carbon ↵

6.6 Conclusion

The last few years witnessed a massive migration of businesses, services and applications to
the cloud. Cloud providers take advantage of the worldwide market to deploy geographically
distributed infrastructures and enlarge their coverage. However, multiple data centers consume
massive amounts of power. Furthermore, their carbon footprint is a rapidly growing fraction
of total emissions. In this chapter, we proposed Greenhead, a holistic resource management
framework for embedding VDCs across a geographically distributed infrastructure. The goal
of Greenhead is to find the best trade-o↵ between maximizing revenue, reducing energy costs
and ensuring the environmental friendliness of the infrastructure. The key idea of the proposed
solution is to conquer the complexity of the problem by partitioning the VDC request based
on the bandwidth requirements between the VMs. More specifically, VMs that require high
bandwidth demand between them are assigned to the same partitions, and are placed in the
same data centers. The partitions and the virtual links connecting them are then dynamically
assigned to the infrastructure data centers and backbone network in order to achieve the desired
objectives.

We conducted extensive simulations for four data centers connected through the NSFNet
topology. The results show that Greenhead provides near-optimal solution within a reasonable
computational time frame and improves requests’ acceptance ratio and CP revenue by up to
40% while ensuring high usage of renewable energy and minimal footprint per request.



Chapter 7

Greenslater: On Providing Green
SLAs in Distributed Clouds

7.1 Introduction

In the previous chapter, we addressed the problem of reducing the energy consumption and
carbon footprint of distributed cloud infrastructures under a best e↵ort scheme from the CP,
which owns the cloud infrastructure. In other words, SPs, which use the resources provided by
the CPs to deploy their services, are not included in the loop as they are not interested in the
carbon emission of the cloud infrastructure.

In this chapter, we present an approach for reducing the carbon emissions from the CPs’
perspective, under explicit green constraints imposed by the SPs. That is, SPs are considered
green aware and require carbon emissions limits of their cloud services hosted by CPs. Note
that this move towards green aware SPs is motivated by number of factors in the last few years.

In fact, with the increase of energy and environmental impact of cloud infrastructures, the
ICT sector is witnessing an upward move towards greening cloud infrastructures and services
driven by several governmental regulations and marketing considerations. For instance, a recent
study [32] showed that the firms’ value would decrease significantly if it has high carbon foot-
print or even if it withholds information about its carbon emission rates. As a result, many IT
companies are voluntarily disclosing their carbon emissions and regularly reporting their e↵orts
towards deploying environmental-friendly solutions and services [33]. At the same time, govern-
ments are imposing taxes on carbon emissions in the hopes of pushing further this shift towards
the adoption of green sources of energy and the reduction of carbon footprint [34].

Typically, CPs are responsible for allocating resources for VDCs across their distributed
clouds with the goal of minimizing operational costs and maximizing the infrastructure environ-
mental friendliness by increasing the usage of green energy. However, recently, SPs were also
required to take into account environmental objectives and ensure that their services are pro-
duced with the smallest carbon footprint. Many advisory boards and commissions (e.g., Open
Data Center Alliance [37] and SLA Expert Subgroup of the Cloud Selected Industry Group of
the European Commission [38]) are pushing towards defining Green SLAs in which SPs require
their CPs to limit the carbon emissions generated on their behalf. Recently, some research works
advocated providing Green SLAs in the context of HPC clouds [39–43].

In general, the green related terms in the Green SLA require either to limit the carbon
emissions generated by SPs services [39–42] or to set a minimum amount of renewable power
to be used by the resources allocated to the SP [43]. However, these proposals do not consider

94
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the allocation of network resources (virtual links) and aim only to allocate VMs within a single
data center.

In this chapter, we investigate how a CP can meet an SLA with green requirements (i.e.,
Green SLAs). In particular, we consider Green SLAs that specify a limit on the carbon emission
generated by each service provider’s VDC. We, hence, propose Greenslater, a holistic framework
that orchestrates the provisioning and the resource optimization for the multiple VDCs deployed
across a distributed infrastructure. From the CP’s point of view, the objective is to maximize
revenue while minimizing operational costs and the potential Green SLA violation penalties.
Greenslater takes advantage of the variability in space and time of the available renewables and
electricity prices in di↵erent data centers. It provisions VDCs and dynamically optimize resource
allocation over time while fulfilling the Green SLA terms.

The remainder of this chapter is organized as follows. Section 7.2 presents the proposed
management framework and defines the Green SLAs. The mathematical formulation of the
VDC embedding problem across distributed infrastructures that considers Green SLAs is then
presented in Section 7.3. Section 7.4 gives a detailed description of the proposed algorithms for
VDC admission control and dynamic resource allocation and optimization. Section 7.5 discusses
simulation setup and results. Finally, we conclude this chapter in Section 7.6.

7.2 System Architecture

In this section, we present the design architecture of the proposed solution and we discuss the
definition of the Green SLA terms and how to enforce them in a distributed environments.

7.2.1 Architecture Overview

As shown in Figure 7.1, we consider a distributed infrastructure consisting of multiple data
centers located in di↵erent regions and interconnected through a backbone network. The entire
infrastructure (including the backbone network) is assumed to be owned and managed by the
same CP. Note that this architecture is conceptually similar to the architecture of Greenhead
presented in the previous chapter.

In fact, Greenslater is composed of the two types of management entities: i) a Central
Controller that manages the entire infrastructure and ii) a Local Controller deployed in each
data center to manage the data center’s internal resources. The central controller contains the
same modules as Greenhead. In addition to these modules, it contains a new Migration Module,
which dynamically relocates VDC partitions in such a way to follow renewables and reduce the
carbon footprint. The Migration Module uses the statistics and data provided by the Monitoring
Module to decide on the partitions to migrate and the data centers to migrate to, based on the
availability of renewables, the resource utilization in the data centers and the backbone network
utilization.

7.2.2 Green SLA Definition

As stated earlier, SPs have not only to specify resource requirements but also constraints on the
carbon emissions generated by the CPs while hosting their VDC. Specifically, green terms in the
SLA specify the limit on carbon emissions that the CP is allowed to generate to accommodate
the VDC request during a period of time called hereafter the reporting period. The reporting
period can be for instance the billing period [37].
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Figure 7.1: Proposed Greenslater framework

To enforce Green SLAs, the CP should compute the carbon footprint of each VDC request.
To do so, we use two metrics: (1) carbon emission per unit of bandwidth (tonCO2/Mbps) and (2)
carbon emission per core (tonCO2/Core). These metrics are chosen because the bandwidth and
the CPU are the major factors that determine the power consumption in data centers and they
are already considered in industry. For instance, Akamai reports annually its carbon emission
in CO2 per gigabyte of data delivered (tonCO2/Gbps), Verizon reports its carbon emissions per
terabyte of transported data across its network.

As the carbon footprint is computed for each VDC, the SLA is enforced at the end of each
reporting period. In case of violation of the green terms (i.e., the carbon footprint for the VDC
is higher than the limit specified in the SLA), the CP is required to pay a penalty (a.k.a. credit).
The penalty can a percentage of the SP’s bill that can go up to 100% for some providers such
as Rackspace [168]. It becomes then critical to design e↵ective VDC embedding algorithms that
minimize this penalty.

7.3 Problem Formulation

In this section, we formally define the VDC embedding problem across multiple data centers as
an Integer Linear Program (ILP). We assume that time is divided into slots. The metrics char-
acterizing each data center (e.g., Power Usage E↵ectiveness (PUE), electricity price, availability
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of renewable power) are measured at the beginning of each time slot and are considered con-
stant during the corresponding time slot. Moreover, we assume that the CP reports its carbon
emissions periodically and every reporting period is T time slots. We denote by T k = [tkb , t

k
e ] the

kth reporting period, where tkb and tke are its beginning and end time slots, respectively.
The physical infrastructure is represented by a graph G(V [W,E), where V denotes the set

of data centers and W the set of nodes of the backbone network. The set of edges E represents
the physical links in the backbone network. Each link is characterized by its bandwidth capacity
bw(e) and propagation delay d(e).

A VDC request j is represented by a graph Gj(V j , Ej), its arrival time denote by tj , and
its lifetime T j . Each vertex v 2 V j corresponds to a VM, characterized by its CPU, memory
and disk requirements. Each edge e 2 Ej is a virtual link that connects a pair of VMs, which
is characterized by its bandwidth demand bw(e) and propagation delay d(e). We assume the
revenue generated by VDC j, denoted by Rj , to be proportional to the amount of CPU and
bandwidth required by its VMs and links. The revenue generated by VDC j per time slot can
be written as follows:

Rj = (
X

v2V j

(Ccpu(v)⇥ �cpu) +
X

e02Ej

bw(e0)⇥ �b) (7.1)

where Ccpu(v) is the CPU demand of VM v belonging to the VDC j, and �cpu and �b are unit
price of CPU and bandwidth, respectively. Moreover, each VDC j may have a constraint on
carbon emissions per reporting period T , which is defined by the variable cj .

Furthermore, a VM v 2 V j may have a location constraint. That is, it can only be embedded
in a particular set of data centers. To model this constraint, we define a binary variable zjik,
indicating whether or not a VM k of VDC j can be embedded in a data center i.

The problem of embedding VDC requests in a distributed infrastructure of data centers
should be solved dynamically over time. In fact, the decision of embedding VMs in di↵erent
data centers is modified at the beginning of every time slot in such a way to follow the renewables.
Thus, for each VDC request j, and during each time slot t 2 [tj , tj + T j ], the central controller
should:

• Assign each VM k 2 V j to a data center. Hence, we define the decision variable xj,tik as:

xj,tik =

8
<

:

1 If the VM k of the VDC j is assigned
to data center i during slot t

0 Otherwise.

• Embed every virtual link either in the backbone network if it connects two VMs assigned
to di↵erent data centers or within the same data center, otherwise. To do so, we define
the virtual link allocation variable f t

e,e0 as:

f t
e,e0 =

8
<

:

1 If the link e 2 E is used to embed
the virtual link e0 2 Ej during slot t

0 Otherwise.

As an CP can reject a request due to shortage in resources or too tight constraints (delay,
location). As such, we define a binary variable Xj , which indicates whether the VDC request j

is accepted for embedding (i.e.,
P

t2Tk

P
i2V

P
k2V j

xj,tik � 1) or not.
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Finally, the ultimate objective of the CP when embedding VDC requests during any reporting
period T k is to maximize its profit defined as the di↵erence between the revenue (denoted by
Rk) and the total embedding cost plus penalty cost, which consists of the embedding cost in
the data centers (denoted by Dk), the migration cost (denoted by Mk) the embedding cost in
the backbone network Bk and the penalty cost Pk. Hence, our problem can be formulated as an
ILP with the following objective function:

Maximize Rk � (Dk + Bk +Mk + Pk) (7.2)

Subject to:

xj,tik  zjik, 8k 2 V j , 8i 2 V, 8t, (7.3)

X

i2V
xj,tik = Xj , 8k 2 V j , 8j 2 Qt, 8t (7.4)

X

e02Ej

f t
e,e0 ⇥ bw(e0)  bw(e), 8e 2 E, 8t (7.5)

X

e2E
f t
e,e0 ⇥ d(e)  d(e0), 8e0 2 Ej , 8t (7.6)

f t
e1,e0�f t

e2,e0 = xtdst(e1)dst(e0)�xtsrc(e2)src(e0), 8e1, e2 2 E, dst(e1) = src(e2), 8 e0 2 V j , 8t (7.7)

where Qt is the set of VDC requests being embedded during time slot t, src(e) and dst(e) denote
the source and destination of link e, respectively. Equation (7.3) guarantees location constraint
satisfaction. Equation (7.4) depicts that a VM is assigned to at most one data center. Equation
(7.5) guarantees that link capacities are not exceeded in the backbone network, whereas (7.6)
guarantees that delay requirements of virtual links are satisfied. Equation (7.7) denotes the flow
continuity constraint.

The revenue for a reporting period T k is given by:

Rk =
X

t2Tk

X

j2Q
t

Rj ⇥Xj (7.8)

Let us now focus on the expression of the embedding costs Dk, Bk, Mk and Pk in the data
centers, the backbone network and penalty, respectively. Recall that these costs are part of the
objective function.

- The cost of embedding in the data centers

In this work, we evaluate the request embedding cost in the data centers in terms of energy
costs.

The total amount of consumed power in data center i is given by:

P t
i = (P t

i,Net + P t
i,Serv)⇥ PUEt

i (7.9)

where P t
i,Serv and P t

i,Net are the power consumed by servers and network elements, respectively,

and PUEt
i is the power usage e↵ectiveness of data center i during time slot t, which is used to
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compute the power consumed by supporting systems such as the cooling system. Note that this
power consumption depends mainly on the local allocation scheme in each data center.

The mix of power used in data center i is given by:

P t
i = P t

i,L + P t
i,D (7.10)

where P t
i,L and P t

i,D denote, respectively, the consumed on-site renewable power and the amount

of purchased power from the grid during time slot t. Note that P t
i,L should not exceed the

amount of produced power, which is captured by P j,t
i,L  RN t

i , where RN t
i is the amount of

onsite renewable power generated in data center i, during time slot t, expressed in kW.
Hence, the total embedding cost in all data centers (expressed in $) can be written as:

Dk =
X

t2Tk

X

i2V
P t
i,L ⇥ ⌘i + P t

i,D ⇥ ⇣ti (7.11)

where ⌘i is the onsite renewable power cost in data center i ($/kWh), ⇣ti is the electricity price
in data center i ($/kWh).

- The cost of embedding in the backbone network

Virtual links between the VMs that have been assigned to di↵erent data centers should be
embedded in the backbone network. We assume that it is proportional to their bandwidth
requirements and the length of physical paths to which they are mapped. It is given by:

Bk =
X

t2Tk

X

e02Ej

X

e2E
f t
e,e0 ⇥ bw(e0)⇥ �p (7.12)

where �p is the cost incurred by the CP per unit of bandwidth allocated in the backbone network.

- The migration cost

Let’s denote by t� the previous time slot of time slot t. The migration cost is given by:

Mk =
X

t2Tk

X

j2(Q
t

�\Q
t

)

X

k2V
j

X

i2V
migtk,i,j ⇥mk,j (7.13)

where mk,j is the cost of migrating VM k of VDC j, which corresponds to the disruption in
service that might occur when migrating the VM, andmigtk,i,j is a binary variable that determines
whether VM k of VDC j have been migrated to data center i from another data center at the
beginning of time slot t, and defined as:

migtk,i,j =

⇢
1 If xj,tik = 1 and xj,t�1

ik = 0
0 Otherwise.

(7.14)

Note that we assume that there is no cost for link migration as no transfer is needed.

- The penalty cost

The penalty is paid by the CP to the SP whenever the specified Green SLA is not met. At
the end of every reporting period T k, the CP reports the carbon emission related to each VDC
request j that has been embedded for the whole time period T k or during a part of it. Since the
carbon emissions are due to the power consumption, we can derive the carbon emission of every
data center i during a time slot t, denoted by Ct

i , as follows:

Ct
i = P t

i,D ⇥ Ci (7.15)
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where P t
i,D denotes the amount of purchased power from the grid by data center i during time

slot t and Ci is the carbon footprint per unit of power used from the grid in data center i
expressed in tons of carbon per kWh (tonsCO2/kWh).

We derive the carbon emissions, in the entire infrastructure, due to the servers (denoted by
Ct
i,Serv) and the network (denoted by Ct

Net), as follows:

Ct
Serv =

1

|V |
X

i2V

Ct
i ⇥ P t

i,Serv

P t
i,Net + P t

i,Serv

(7.16)

Ct
Net =

1

|V |+ 1
⇥ (

X

i2V

Ct
i ⇥ P t

i,Serv

P t
i,Net + P t

i,Serv

+ Ct
Bckb) (7.17)

where Ct
Bckb is the carbon emission due to embedding virtual links in the backbone network.

Without loss of generality, we assume that the carbon footprint per unit of bandwidth in the
backbone network, denoted by Cb, is known. As such, Ct

Bckb is given by:

Ct
Bckb =

X

e02Ej

X

e2E
f t
e,e0 ⇥ bw(e0)⇥ Cb (7.18)

In this case, the average carbon emission rate of the CP per unit of VM during a reporting
period T k is given by:

Ck
CPU =

1

tke � tkb
⇥

X

t2[tk
b

,tk
e

]

Ct
ServP

j2Q
t

P
v2V j

Ccpu(v)
(7.19)

whereQt is the set of VDC requests being embedded during time slot t and Ccpu(v) is the capacity
of VM v in terms of CPU units. Similarly, the carbon emission rate per unit of bandwidth during
a period T k can be given as:

Ck
BW =

1

tke � tkb
⇥

X

t2[tk
b

,tk
e

]

Ct
NetP

j2Q
t

P
e2Ej

bw(e)
(7.20)

As such, the carbon emission related to a VDC request j during the period T k, denoted by
Cj
k, can be given by:

Cj
k = T j

k ⇥ ((
X

v2V j

Ccpu(v)⇥ Ck
CPU ) + (

X

e2Ej

bw(e)⇥ Ck
BW )) (7.21)

where T j
k is the number of time slots of the period T k during which VDC j was embedded.

Finally, a penalty is paid by the CP for an SP j at the end of the period T k if the carbon
emission for VDC j is above the limit specified in the SLA, i.e., Cj

k > cj , where cj is the amount
of carbon emission allowed by the SP for one reporting period T .

In the case where the CP has to pay a penalty, which is a fraction of the total bill during
that period of time. Finally, the total penalty cost for a period T k is given by:

Pk =
X

j2([
t2T

k

Q
t

)

(Rj ⇥ T j
k )⇥ p, if Cj

k > cj (7.22)

where p 2 [0, 1] is the proportion of the SP’s bill to be refunded by the CP in case of SLA
violation.

The problem described above can be seen as a combination of the bin-packing problem and
the multi-commodity flow problem, which are known to be NP-hard. Therefore, we propose a
simple yet e�cient and scalable solution.
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7.4 Green SLA opTimzER (Greenslater)

Since the problem presented in the previous section is NP-hard, we propose a greedy three-step
approach. At the arrival a VDC request, the Central Controller first splits it into partitions such
that the intra-partition bandwidth is maximized and the inter-partition bandwidth is minimized.
It then uses an admission control algorithm that rejects VDCs with negative profit (i.e., the VDC
cost is higher than the generated revenue). If the VDC is accepted, its partitions are embedded
in di↵erent data centers. As the availability of renewables and electricity prices are variable over
time, and the requests dynamically arrive and leave the system, we propose a reconfiguration
algorithm, which migrates partitions from the data centers with no available renewables to those
with available renewables. In the following, we present in details the proposed algorithms. Note
that the partitioning aims at minimizing the backbone networks cost, while the reconfiguration
minimizes the energy cost and limits the SLA violation by following the renewables, while taking
into account the migration costs before migrating.

7.4.1 VDC Partitioning

Once received, the Central Controller divides the VDC request into partitions where the intra-
partition bandwidth is maximized and the inter-partition bandwidth is minimized. Hence, each
entire partition is then embedded in the same data center, which minimizes the inter-data
center bandwidth. As the partitioning problem is NP-hard [158], we use the Location Aware
Louvain Algorithm (LALA), the partitioning algorithm used in Greenhead, presented in the
previous chapter. More specifically, LALA is a modified version of the Louvain Algorithm [30]
that considers location constraints. The objective of the Louvain algorithm is to maximize the
modularity, defined as an index between �1 and 1 that measures intra-partition density (i.e., the
sum of the links’ weights inside partitions) compared to inter-partition density (i.e., sum of the
weights of links between partitions). In fact, graphs with high modularity have dense connections
(i.e., high sum of weights) between the nodes within partitions, but sparse connections across
partitions. Similar to the Louvain algorithm, the complexity of LALA is O(n log(n)) [30].

7.4.2 Admission Control

When a VDC request is received, the Central Controller checks if the request will generate
profit, in which case it is accepted, otherwise it is rejected. In some cases, a request with
tight carbon constraints might result in high SLA violation penalties, which reduces the CP’s
profit. To address this issue, we propose an admission control algorithm (Algorithm 8). The
idea is to estimate the available renewable power in the next prediction window and estimate
carbon emission of the requested VDC. In this chapter, we consider solar panels to generate the
renewable power and we use a prediction model presented in [43].

First, the central controller checks whether it is possible to embed the VDC given the available
resources and constraints of the VMs in the VDC. If the request is embeddable, the central
controller computes an estimation for carbon emission for the request given the current power
consumption and the predicted availability of renewables for the next prediction window. To do
so, we propose to use a simple estimation algorithm, which computes the estimation of carbon
emission per unit of VM and per unit of bandwidth in the next prediction window, and by the
same derives the estimation of carbon emission of the given VDC request. The estimated carbon
of the VDC request is then compared to the limit provided in the SLA of the VDC request.
In case of SLA violation, the Central Controller checks whether profit can still be made even if
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Algorithm 8 Admission Control Algorithm

1: IN: predictionWdW // the prediction window

2: IN: reconfigInterval // the reconfiguration interval

3: IN: vdc // the VDC to embed

4: wdw  min(predictionWdw, reconfigInterval)

5: possible possibleToEmbed(vdc)

6: if possible then
7: carbonRate getEstimationCarbonRate(wdw)

8: carbonLimitRate vdc.carbonLimit/wdw

9: if carbonRate  carbonLimitRate then
10: Accept vdc

11: else
12: //Verify if profit can be made

13: estimatedCost estimatePowerCost(vdc)

14: if revenue(vdc)⇥ (1� refundFactor)� estimatedCost > 0 then
15: Accept vdc

16: else
17: Reject vdc

18: end if
19: end if
20: else
21: Reject vdc

22: end if

there is a penalty to pay. If the profit is positive, the VDC request is accepted, otherwise it is
rejected. It is worth noting that as the prediction window is limited compared to the lifetime of
some of the VDCs (up to weeks for long lived VDCs), the decision of accepting might be biased
as the short term forecasts can show high availability of renewables.

7.4.3 Partitions Embedding

Once a request Gj(V j , Ej) is partitioned, the resulting partitions that are connected through
virtual links can be seen as a multigraph Gj

M (V j
M , Ej

M ) where V j
M is the set of nodes (partitions)

and Ej
M is the set of virtual links connecting them. This multigraph is then embedded into

the infrastructure, partition by partition, using Algorithm 9. For each partition v 2 V j
M , we

first build the list of data centers that satisfy the location constraints of its VMs. The Central
Controller queries the Local Controller of each data center s from the list to get the embedding
cost of v. The cost is returned by the remote call getCost(s, v).

The data center o↵ering the lowest cost (provided by the procedure getCost(s, v)) and able to
embed virtual links between v and all previously embedded partitions (denoted byN(v)) (verified
by the function LinksEmbedPossible(s, v)) is then selected to host the partition. These virtual
links are embedded in the backbone network using the shortest path algorithm.

This procedure is repeated until all partitions and virtual links that connect them are em-
bedded into the distributed infrastructure. The complexity of embedding the whole multigraph
is O(|V j

M |⇥ |V |), where |V j
M | is the number of partitions and |V | is the number of data centers.

7.4.4 Dynamic Partition Relocation

As the the electricity price and the availability of renewables are variable over time, we propose
a dynamic reconfiguration algorithm that optimizes VDC embedding over-time. The aim of
the algorithm is to migrate partitions that have already been embedded in data centers which
may run out of renewables towards data centers with available renewable power. The second
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Algorithm 9 Greedy VDC Partitions Embedding Across Data Centers

1: IN: G(V [W,E), G

j

M

(V

j

M

, E

j

M

)

2: for all i 2 V do
3: ToDC[i] {}
4: end for
5: for all v 2 V

j

M

do
6: S

v

 {i 2 V / i satisfies the location constraint}
7: end for
8: for all v 2 V

j

M

do
9: i s 2 S

v

with the smallest cost getCost(s, v), and LinksEmbedPossible(s, v) = true

10: if no data center is found then
11: return FAIL

12: end if
13: ToDC[i] ToDC[i] [ {v}
14: for all k 2 N(v) do
15: if k 2 ToDC[i] then
16: ToDC[i] ToDC[i] [ {e

vk

}
17: else
18: if 9l 6= i 2 V / k 2 ToDC[l] then
19: Embed e

vk

in G using the shortest path

20: end if
21: end if
22: end for
23: end for
24: return ToDC

criterion to perform a migration is to move partitions to locations where the electricity price is
lower. We, hence, propose a migration algorithm (Algorithm 10) executed every ⌧ hours (i.e.,
reconfiguration interval) by the central controller.

Data centers are first classified into two categories: sources and destinations. A data center
is considered as a source if it has not enough renewable power to support its workload and hence
we will have to resort to power from the grid. In this case, in a source data center, the di↵er-
ence between the estimated available renewable power and the estimated power consumption is
negative (Line 5). Conversely, if a data has renewable power that exceeds its estimated power
consumption, it is considered a destination since there is no need to reduce its workload and
migrate VMs. In this case, a destination data center might be able to host more partitions if it
has enough renewable power.

The idea is that partitions from source data centers should be migrated to destination data
centers. To do so, the list of partitions in each source data center are sorted in increasing order
of their migration cost (Line 7). For each partition, one destination data center that have a
positive di↵erence is chosen. The destination is chosen in a way that minimizes the inter-data
center virtual link embedding cost after migration.

7.5 Performance Evaluation

To evaluate the performance of Greenslater, we conducted several simulations using a realistic
topology and real traces for electricity prices and renewable power availability. In the following,
we first describe the simulation setting and we then present the results.
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Algorithm 10 Greedy Partition Migration Across Data Centers

1: IN: predictionWdW // the prediction window

2: IN: reconfigInterval // the reconfiguration interval

3: wdw  min(predictionWdW, reconfigInterval)

4: for all i 2 V do
5: Diff [i] EstimateRenewables(wdw, i)� FutureConsumption(wdw, i)

6: if Diff [i] < 0 then
7: part[i] list of partitions in i sorted by migration cost

8: end if
9: end for

10: for all i 2 V,Diff [i] < 0 do
11: while 3 k 2 V,Diff [k] > 0 do
12: p part[i].first

13: D  {k 2 V,Diff [k] > 0}
14: done false

15: while !done && D 6= � do
16: //Take the data center with the minimum cost in the backbone network after migration

17: dest minBackboneCost(D)

18: Migrate(p, dest)

19: if successful migration then
20: done true

21: Update Diff [dest] and Diff [i]

22: else
23: D  D\{dest}
24: end if
25: end while
26: end while
27: end for

7.5.1 Simulation Settings

For our simulations, we consider a physical infrastructure of 4 data centers located at four
di↵erent states: New York, Illinois, California and Texas. The data centers are connected
through the NSFNet topology as a backbone network, which includes 14 nodes. Each data center
is connected to the backbone network through the closest node to its location. We assume all
NSFNet links have a capacity of 100Gbps. The traces of electricity prices and availability of
renewable energy are provided by the US Energy Information Administration (EIA) [162]. The
weather forecast is taken from the National Renewable Energy Laboratory [169] and the amount
of power generated per square meter of solar panel from [163]. The carbon footprint per unit of
power is provided by [164].
Similar to previous works [24,31], VDCs are generated randomly according to a Poisson process
with arrival rate � and a lifetime following an exponential distribution with mean 1/µ. The
number of VMs per VDC is uniformly distributed between 10 and 50. A pair of VMs belonging
to the same VDC are directly connected with a probability 0.5 with a bandwidth demand
uniformly distributed between 10 and 50Mbps and a delay uniformly distributed between 10
and 100 milliseconds. Each VM has a number of cores uniformly distributed between 1 and 4.
Moreover, in each VDC, a fraction of VMs, denoted by Ploc 2 [0, 1], is assumed to have location
constraints and thus cannot be migrated, i.e., it can only be embedded in a specific set of data
centers. Each VDC comes with a carbon limit constraint specified in the Green SLA. This limit
is assumed to be uniformly distributed between 5 and 20 kgCO2 per day. Finally, we fixed the
reporting period T to 24 hours. When the Green SLA is not satisfied, the CP refunds 50% of
the SP’s bill for that specific period of time.
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Figure 7.2: Impact of variable arrival rate � (Ploc = 0.05, T = 24 hours, ⌧ = 4 hours)
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Figure 7.3: Impact of variable location probability Ploc (� = 4 requests/hour, T = 24 hours,
⌧ = 4 hours)

To assess the e↵ectiveness of our proposal, we compare Greenslater to three solutions : (i)
Greenhead [31], (ii) Greenhead with No Partitioning (NP) (i.e., each VM is considered as a
single partition), and (iii) the load balancing approach for VDC embedding [44]. We consider
five metrics: (i) the profit of the CP, which is the di↵erence between revenue and the sum
of operational costs (i.e., power cost, backbone network cost) and the Green SLA violation
penalty, (ii) the acceptance ratio (defined as the ratio of embedded requests out of the total
receive requests by the CP), (iii) the carbon footprint generated by the whole infrastructure,
(iv) the green power utilization and (v) the SLA violation penalty.

7.5.2 Simulation Results

In our simulations, we first study the impact of the di↵erent input parameters: the arrival rate
�, the fraction of location constrained VMs Ploc and the reporting period T on the system
performance, using di↵erent values of the reconfiguration interval ⌧ .
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Figure 7.4: Impact of variable reporting period T (� = 4 requests/hour, Ploc = 0.05, ⌧ = 4
hours)

1) Impact of the Arrival Rate �

Figure 7.2 shows the impact of the arrival rate � on both the achieved profit and SLA
violation penalty, when Ploc = 0.05 (i.e., low constrained locations), T = 24 hours, and ⌧ = 2
hours. From this figure, we can notice that Greenslater outperforms other solutions, especially
at high arrival rates (i.e., � � 3). For small arrival rates (i.e., �  2), no considerable gain is
observed as the number of requests being embedded is small. We can also observe that both the
profit and SLA violation increase as the number of accepted requests increases. This is due to
the fact that renewables are not enough to accommodate large numbers of VDCs, which leads
to more power drawn from the electricity grid.

2) Impact of location probability constraint Ploc

Let us now study how location-constrained VMs may impact the results. To do so, we have
varied Ploc between 0 and 0.2, and fixed the values of � = 4 requests/hour, T = 24 hours and
⌧ = 4 hours. We can see in Figure 7.3 that Greenslater outperforms the other solutions for all
the values of Ploc. However, as Ploc increases, the profit drops for all approaches since more VMs
must be located in specific data centers. This limits the possibility of migrating the partitions,
which may run using power from the grid. It is clear that the gain achieved by Greenslater is
higher when less location constraints are considered (i.e., low Ploc).

3) Impact of reporting period T

Figure 7.4 shows the impact of reporting period T on both the achieved profit and the SLA
violation cost. In this scenario, we vary T in {1, 6, 12, 24, 48} hours, for fixed values of � = 4
requests/hour, Ploc = 0.05 and ⌧ = 4 hours. Note that, in this case, the carbon constraint limit
specified in the Green SLA is assumed to be uniformly distributed between 5 and 20 kgCO2 per
day, and is scaled down to the match the reporting period T . Again, Greenslater outperforms
the baselines as it achieves higher profit and reduces the SLA violations costs. However, one can
note that the profit is higher for long reporting periods (i.e., 24 and 48 hours) compared to short
ones (i.e., 1,6 and 12 hours). The rational behind this is that for long reporting periods T , the
CP has more time and more flexibility. In fact, the carbon footprint is computed as an average
value over the whole period T . For small values of T , the CP does not have enough leverage
since, in some data centers, VMs cannot be migrated even though renewables are available. This
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Figure 7.5: Impact of variable reconfiguration interval ⌧ (� = 4 requests/hour, Ploc = 0.05,
T = 24 hours)

results in more frequent violation of the Green SLAs, which results in higher violations costs, as
shown in Figure 7.4(b), and thus lower profit (see Figure 7.4(a)).

4) Impact of reconfiguration interval ⌧

We also study the impact of the reconfiguration interval ⌧ on the profit and SLA violation
penalty. We varied ⌧ between 1 and 12 hours and fixed other variables (� = 4 requests/hour,
Ploc = 0.05 and T = 24 hours). The results are shown in Figure 7.5. From this figure, we can see
that the profit for Greenslater is a concave function of ⌧ , where the maximum profit is obtained
for ⌧opt = 6 hours in our case. In addition, the SLA violation penalty increases with ⌧ , but
remains low compared to the other solutions. In particular, for high values of ⌧ , Greenslater
gains decrease, since in this range of ⌧ , the system configuration is not reoptimized to follow the
renewables. Note that the variation of ⌧ does not a↵ect the performance of the other schemes,
since they do not perform any migrations.
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Figure 7.6: Comparison of the cumulative values of the di↵erent metrics (� = 4 requests/hour,
Ploc = 0.05, T = 24 hours, ⌧ = 4 hours)
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5) Summary of the results

To highlight the benefits of Greenslater over existing solutions, we plotted all the studied
performance metrics (acceptance ratio, cumulative profit, utilization of renewable energy, carbon
footprint and SLA violation cost) in Figure 7.6. It is clear that Greenslater always achieves higher
profit, ensures higher utilization of renewables and lower carbon footprint with minimum SLA
violation. For instance, the gain in terms of profit provided by Greenslater is respectively around
33%, 53% and 120% compared to Greenhead, Greenhead NP and the Load Balancing approach.

7.6 Conclusion

As the environmental impact of cloud infrastructures and services has become increasingly signif-
icant, governments and environmental organizations are urging SPs to require guarantees from
their CPs that the carbon emission generated by the leased resources is limited. Hence, in this
chapter, we addressed the problem of including green constraints in the SLAs in order to cap the
carbon emission of the resources allocated to each SP. We hence proposed Greenslater, a holistic
framework that allows CPs to provision VDCs across a geographically distributed infrastructure
with the goal of minimizing the operational costs and Green SLA violation penalties. To do
so, Greenslater incorporates admission control to wisely select which VDC requests to accept
and a dynamic reconfiguration algorithm to allow the CP to relocate parts of the VDCs in data
centers with available renewable energy. Simulation results showed that Greenslater achieves
high profit by minimizing operational costs and SLA violation penalties, while maximizing the
utilization of the available renewable power. To assess the performance of Greenslater, we run
extensive simulations in a distributed infrastructure of 4 data centers interconnected through
the NSFNet network. We compared Greenslater with Greenhead, Greenhead NP and the Load
Balancing schemes under di↵erent arrival rates of VDC requests. The results show that Greens-
later outperforms the other approaches as it achieves higher profit, reduced energy costs, higher
renewable power utilization and reduced SLA violations costs. For instance, the gain in terms of
profit provided by Greenslater can attain 33%, 53% and 120% compared to Greenhead, Green-
head NP and Load Balancing approaches, respectively. The gains in terms of carbon footprint
culminate at 70%, 42% and 32% compared to Greenhead, Greenhead NP and Load Balanc-
ing approaches, respectively. Moreover, we show that reconfiguring the infrastructure through
migration to follow the renewables achieves the highest profit when it is performed every 6 hours.
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Chapter 8

Conclusion and Future Work

In this chapter, we present the general conclusions of this manuscript and then list a number of
perspectives for future work.

8.1 Conclusions

In the last few years, the ICT sector witnessed an increase in energy consumption and environ-
mental impact. This increase is mainly due to the widespread availability of wireless broadband
access and the massive migration towards the cloud for services. As such, solutions for achiev-
ing green and energy e�cient networks and cloud infrastructures were among the hot topics
recently. In this context, we addressed, in this thesis, this issue for access networks and dis-
tributed cloud infrastructures. After a detailed presentation of state of the art, we describe our
four contributions, which are organized in two parts.

In the first part, we addressed the energy reduction in multiphop wireless networks and
campus networks. Specifically, we start by presenting in Chapter 3 an energy-e�cient framework
for joint routing and link scheduling in multihop TDMA-based wireless networks. Our objective
is to find an optimal tradeo↵ between the achieved network throughput and energy consumption.
To do so, we first proposed an optimal approach, called O-GRLS, designed for small-sized
networks, as well as a meta-heuristic approach based on Ant Colony, called AC-GRLS.

At a later stage, we extended this framework to cover campus networks using the emerging
Software Defined Networking (SDN) paradigm, and by taking into account the dynamic arrival
and departure of users in the network. More specifically, we proposed, in Chapter 4, an online
flow-based routing approach, called Ant Colony Online Flow-based Energy e�cient Routing
(AC-OFER), that allows dynamic reconfiguration of existing flows as well as dynamic link rate
adaptation. Our proposed approach takes into account users’ demands and mobility, and is
compliant with the SDN paradigm since it can be integrated as an application on top of an SDN
controller that monitors and manages the network and decides on flow routes and link rates.
Results showed that our approaches are able to achieve significant gains in terms of energy
consumption, compared to conventional routing solutions, such as the shortest path routing, the
minimum link residual capacity routing metric, and the load-balancing scheme.

In the second part of this thesis, we addressed the problem of reducing energy consumption
and carbon footprint of distributed cloud infrastructures. More specifically, we proposed op-
timization approaches for reducing the energy costs and carbon emissions of a cloud provider
owning distributed infrastructures of data centers with variable electricity prices and carbon
emissions from two di↵erent perspectives. First, we proposed in Chapter 6 Greenhead, a holis-
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tic management framework for embedding VDCs across geographically distributed data centers
connected through a backbone network. Our objective here was to maximize the cloud provider’s
revenue while ensuring that the infrastructure is as environment-friendly as possible. Then, we
investigated in Chapter 7 how a cloud provider can meet Green SLAs, which contain green
requirements. We hence proposed Greenslater, a resource management framework that allows
cloud providers to provision resources in the form of VDCs across their geo-distributed infrastruc-
ture with the aim of reducing operational costs and green SLA violation penalties. Simulation
results showed that our proposed solutions improve requests’ acceptance ratio and maximize
the cloud provider’s profit, as well as minimize the violation of green SLAs, while ensuring high
usage of renewable energy and minimal carbon footprint.

8.2 Future Work

Several future works can be added to this study to investigate the e↵ectiveness of our proposals
in practice. As a first perspective, the implementation of AC-OFER in a real SDN campus
infrastructure can be studied. In fact, AC-OFER simulation results show a potential to achieve
significant reductions in energy consumption. However, considerations in practice might limit
the gains. For instance, one issue is the lack of interface to control the power consumption
in network nodes and links, such as specifying the links rates. As such, richer interfaces to
allow more control over the network, such as specifying the links rates of wired links or the
transmission power of wireless APs, are an interesting point to investigate. Moreover, additional
studies around di↵erent technologies such as Passive Optical Networks (PON) is interesting to
carry out. In fact, PON is becoming a promising solution for enterprise (campus) networks
as they o↵er high capacity at a reduced CapEx and OpEx. In addition, PON is less power
hungry than copper-based infrastructures. Solutions for improving the network configuration
and reconfiguration are of paramount importance in these networks, which are so far static and
need heavy humain intervention for the configuration. As such, implementing our solutions for
dynamic flow management to reduce the OpEx is also one of our future directions.

In the distributed clouds research area, an ongoing deployment of Greenhead and Greens-
later have been achieved under the Smart Applications on Virtual Infrastructure (SAVI) project
testbed. Note that SAVI is a Canadian project that aims to address the design of future ap-
plications platform built on a flexible, versatile, evolvable and distributed infrastructure.In the
short term, we plan to obtain real data about the inter-data center network and data center
performance. Moreover, we plan to investigate the reconfiguration energy cost as parts of the
data centers need to be turned on/o↵, be it servers or supporting components such as cooling
chillers. We will also investigate the costs of reconfiguration and migration in practice, which
depend on the application types and services that run on top of the VDCs, that can a↵ect or
be a↵ected by Greenslater.

Besides the continuity on Greenhead and Greenslater, we consider the Virtual Network
Function placement and chaining an interesting research track. In fact, with the emergence
of Network Function Virtualization (NFV) and the move from Internet Service Providers and
mobile operators towards virtualizing the traditional expensive and rigid appliances. In this
context, the problem of dynamic network function placement and chaining. The new challenges
are the dynamic scale up/out of the functions and the dynamic chaining that might depend on
the context. In addition, the physical infrastructure is highly heterogenous with physical nodes
that can be as small as set-top boxes or as large as a data center.

Another possible research direction is to study the pricing model for the Green SLAs that
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defines prices depending on the Green Vs. traditional SLAs. In fact, a pricing model that
can incentivize both Service Providers (SPs) and Cloud Providers (CPs) through game theory-
based approaches is an interesting point to explore. As such, the cost and carbon footprint of
the whole infrastructure can be reduced though collaborations and attractive pricing for both
SPs and CPs. Moreover, defining violation costs proportional to the extent of the Green SLA
violation is one of our future directions. Ultimately, we are aspiring to have a unified pricing
model that would include both a model for Green Vs. traditional SLAs and violation costs that
are correlated with the extent of the incurred Green SLA violation.
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