
HAL Id: tel-01150584
https://theses.hal.science/tel-01150584

Submitted on 11 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Survavibility in Multilayer Networks : models and
Polyhedra
Raouia Taktak

To cite this version:
Raouia Taktak. Survavibility in Multilayer Networks : models and Polyhedra. Other [cs.OH]. Univer-
sité Paris Dauphine - Paris IX, 2013. English. �NNT : 2013PA090076�. �tel-01150584�

https://theses.hal.science/tel-01150584
https://hal.archives-ouvertes.fr

N◦ attribué par la bibliothèque

Université Paris-Dauphine

ÉCOLE DOCTORALE DE DAUPHINE

THÈSE

présentée par

Raouia TAKTAK

pour obtenir le grade de

Docteur de l’université Paris-Dauphine
Spécialité : Informatique

Survivability in Multilayer Networks:

Models and Polyhedra.

Soutenue publiquement le 04 juillet 2013 devant le jury :

A.R. Mahjoub Directeur de thèse Université Paris-Dauphine, France

V. Gabrel Co-encadrant Université Paris-Dauphine, France

L. Gouveia Rapporteur Universidade de Lisboa, Portugal

A. Quilliot Rapporteur Université Blaise Pascale, Clermont II, France

S. Borne Examinateur Université Paris 13, France

E. Gourdin Examinateur Orange Labs, Issy-les-moulineaux, France

S.Th. McCormick Examinateur University of British Columbia, Canada

E. Uchoa Examinateur Universidade Federal Fluminense, Brasil

L’université n’entend donner aucune approbation ni improbation aux opinions émises

dans les thèses : ces opinions doivent être considérées comme propres à leurs auteurs.

Abstract

With the explosive growth of data traffic, telecommunication networks have evolved

toward a model of high-speed IP routers interconnected by intelligent optical core net-

works. Moreover, as telecommunication networks play a crucial role for the transfer of

important data, they must present a minimum degree of survivability against acciden-

tal breakdowns. One of the most useful strategies to ensure a network’s survivability,

is to satisfy some connectivity requirements, that is to guarantee a certain number of

disjoint paths between some pairs of the nodes in the network.

This thesis deals with a problem related to survivability issues in multilayer IP-

over-WDM networks. Given a set of traffic demands for which we know a survivable

logical routing in the IP layer, our purpose is to determine the corresponding survivable

topology in the WDM layer. More precisely, suppose we are given an IP-over-WDM

network with weights on the WDM layer, a set of demands and two-disjoint paths

for each demand. The problem is to determine in the WDM layer a minimum weight

subgraph containing two routing paths for each demand. These paths must be node-

disjoint and go in the same order through the optical switches corresponding to the

routers visited in the paths of the IP layer.

We show that in addition to its importance in the telecommunication context, the

problem is very interesting from a theoretical point of view. We then prove that,

under some conditions, the problem is NP-hard even for a single demand. Moreover,

we propose four integer linear programming formulations for the problem. The first

one, called cut formulation, is induced by the so-called cut inequalities which are in

an exponential number. We carry out a polyhedral investigation of the convex hull of

its feasible solutions. We identify several families of valid inequalities and discuss their

facial aspect. We then devise separation routines for these inequalities and develop

a Branch-and-Cut algorithm. The second formulation is a path formulation which

uses the paths between the origin-destination of the demands’ sections. Based on this

formulation, we devise a Branch-and-Price algorithm for the problem. In addition, we

present a third formulation which only uses the design variables. This formulation is

iv Abstract

given in the case when we only have 3 terminals. For 4 terminals and more, such a

formulation seems to be a hard problem. Finally, the last formulation is a compact

formulation which, in addition to the design variables, uses a further family of variables.

We show that this formulation performs well and gives a tighter bound for the problem.

Key words : IP-over-WDM networks, survivability, complexity, polytope, facet,

Branch-and-Cut algorithm, Branch-and-Price algorithm, extended formulation.

Résumé

Paralèllement à l’augmentation significative du volume des informations échangées,

à la multiplication des services et à la diversification des données, les réseaux de

télécommunications évoluent vers une structure multicouche qui s’avère la plus adaptée

à tous ces changements. L’architecture IP-sur-WDM, exploitant la technologie de la

fibre optique, présente en particulier une infrastructure prometteuse pour les réseaux

futurs. De plus, étant impliqué dans le transport de données importantes, ces réseaux

doivent être dotés d’un niveau de fiabilité suffisant, leur permettant de rétablir les

connexions en cas de panne de l’un des équipements dans le réseau.

Dans cette thèse, nous nous intéressons à un problème de fiabilité dans les réseaux

multicouches IP-sur-WDM. Etant donné un ensemble de demandes pour lesquelles

on connâıt une topologie fiable dans la couche IP, le problème consiste à sécuriser la

couche optique WDM en y cherchant une topologie fiable. Plus précisément, on suppose

données un réseau IP-sur-WDM avec des poids sur la couche WDM, un ensemble de

demandes et deux chemins sommet-disjoint routant chaque demande dans la couche IP.

Le problème est de déterminer dans la couche WDM un sous-graphe de poids minimum

contenant pour chaque demande deux chemins de routage. Ces chemins doivent être

sommet-disjoints et doivent visiter les brasseurs de la couche WDM correspondant aux

routeurs visités dans les chemins de la couche IP, tout en gardant le même ordre de

passage.

Nous montrons que le problème est d’une importance cruciale non seulement d’un

point de vue pratique mais aussi sur le plan théorique. Nous montrons que le problème

est NP-complet même dans le cas d’une seule demande. Ensuite, nous proposons quatre

formulations en termes de programmes linéaires en nombres entiers pour le problème.

La première, dite formulation coupes, est induite par des inégalités dites de coupes

et contient un nombre exponentiel de contraintes. Nous menons une investigation

approfondie du polyèdre associé à cette formulation. Nous identifions de nouvelles

familles de contraintes valides et étudions leur aspect facial. Nous décrivons également

des procédures de séparation pour ces inégalités et développons un algorithme de coupes

vi Résumé

et branchements pour le problème. Une deuxième formulation, basée sur les chemins

et utilisant plutôt un nombre exponentiel de variables, est considérée dans un second

temps. Nous proposons un algorithme de branchements et génération de colonnes pour

cette formulation. Par la suite, nous discutons d’une troisième formulation qui utilise

uniquement les variables naturelles du problème. Nous montrons que cette formulation

est valide dans le cas de 3 terminaux par demande. Nous discutons aussi du cas de 4

terminaux et plus. Enfin, nous présentons une formulation étendue compacte qui, en

plus des variables naturelles, utilise une autre famille de variables. Nous montrons que

cette formulation fournit une bonne borne inférieure et permet de résoudre efficacement

le problème.

Mots clés : Réseaux de télécommunications IP-sur-WDM, sécurisation, complexité,

polytope, facette, algorithme de coupes et branchements, algorithme de branchements

et génération de colonnes, formulation étendue.

Contents

Table of Contents x

Introduction 1

1 Preliminary notions 5

1.1 Combinatorial optimization . 6

1.2 Algorithmic and complexity theory . 7

1.3 Polyhedral approach and Branch-and-Cut 8

1.3.1 Elements of the polyhedral theory 8

1.3.2 Cutting plane method . 11

1.3.3 Branch-and-Cut algorithm . 13

1.4 Column generation and Branch-and-Price 15

1.4.1 Column generation method . 15

1.4.2 Branch-and-Price algorithm . 16

1.4.3 Primal heuristics . 17

1.5 Extended Formulations . 18

1.6 Graph theory: definitions and notations 20

2 Multilayer telecommunication networks 23

2.1 Telecommunication networks: toward a multilayer structure 24

2.1.1 Evolution of networks’ architecture 24

2.1.2 The IP layer . 26

2.1.3 The WDM layer . 31

2.1.4 Interactions between the IP and WDM layers 34

2.2 Survivability concepts in multilayer networks 36

2.2.1 Restoration . 36

2.2.2 Protection . 37

viii CONTENTS

2.2.3 Survivability in multilayer networks 37

2.3 Multilayer network design and survivability 38

2.3.1 The general survivable network design problem 38

2.3.2 Multilayer survivable network design 42

3 MSOND Problem: context and complexity 45

3.1 The MSOND problem . 46

3.1.1 Problem presentation . 46

3.1.2 Notations and examples . 47

3.1.3 Sections’ disjunction . 51

3.2 Theoretical context . 53

3.2.1 Shortest Path Problem with Specified Nodes 53

3.2.2 Travelling Salesman Problem and its variants 53

3.2.3 The k-Vertex Disjoint Paths Problem 55

3.3 Complexity results . 56

3.3.1 Single commodity MSOND problem 56

3.3.2 Multi-commodity MSOND problem 61

3.3.3 Summary table . 63

3.4 Concluding remarks . 63

4 Cut formulation and polyhedra 65

4.1 Cut formulation . 66

4.2 Associated polytope . 68

4.2.1 Dimension . 68

4.2.2 Facial investigation . 74

4.3 Valid inequalities and facets . 96

4.3.1 Steiner cut inequalities . 97

4.3.2 Steiner non-successive terminals inequalities 104

4.3.3 Steiner F-partition inequalities 112

4.3.4 Generalized Steiner partition inequalities 125

4.3.5 Generalized disjunction inequalities 129

4.3.6 Steiner comb inequalities . 130

4.4 Concluding remarks . 132

5 Branch-and-Cut algorithm 135

5.1 Branch-and-Cut algorithm . 136

CONTENTS ix

5.1.1 Description . 136

5.1.2 Test of feasibility . 138

5.1.3 Separation of cut inequalities 138

5.1.4 Separation of Steiner cut inequalities 139

5.1.5 Separation of Steiner non-successive terminals inequalities . . . 139

5.1.6 Separation of Steiner F-partition inequalities 144

5.1.7 Implementation’s features . 144

5.1.8 Branching strategy . 145

5.2 Computational study . 146

5.2.1 Computations’ context . 146

5.2.2 Description of instances . 146

5.2.3 Experimental results . 148

5.2.4 A French instance . 153

5.3 Concluding remarks . 154

6 Path formulation and Branch-and-Price algorithm 159

6.1 Path formulation . 160

6.1.1 Section formulation . 160

6.1.2 Dantzig-Wolf decomposition . 161

6.1.3 Path formulation . 162

6.2 Cut versus path formulation . 164

6.2.1 Relation between variables . 164

6.2.2 Relation between linear relaxations 165

6.3 Branch-and-Price algorithm . 168

6.3.1 Initial solution . 168

6.3.2 Pricing algorithm . 170

6.3.3 Branching scheme . 172

6.3.4 Primal heuristic . 174

6.4 Computational results . 175

6.5 Concluding remarks . 182

7 Natural and Extended Formulations 185

7.1 Natural formulation . 186

7.1.1 Natural formulation and difficulty 186

7.1.2 Case of three terminals . 191

x CONTENTS

7.1.3 Case of four terminals and more 195

7.2 Extended formulation . 196

7.2.1 The MSOND problem: a view in layers 196

7.2.2 Extended compact formulation 199

7.2.3 Experimental results . 201

7.2.4 Fractional solutions and valid inequalities 203

7.3 Concluding remarks . 211

Conclusion 217

Bibliography 229

Introduction

In the few past years, telecommunication networks have witnessed an explosive growth

of data traffic and a multiplication of various applications and services. This rapid

evolution has implied a need for a new promising architecture that enables an efficient

management of huge amount of diverse data. Telecommunication networks have hence

evolved toward a multilayer architecture consisting of a stack of subnetworks, called

layers, each characterized with appropriate protocols and technologies. In fact, thanks

to the recent technologies, and mainly the advances in the optical systems, the net-

works’ structure have steadily progressed to an IP1-over-WDM2 model. This two-layer

model is particularly considered as an important opportunity for telecommunication

carriers who want to vary services and add more multimedia applications. Moreover,

recent IP-over-WDM networks are managed by protocols like GMPLS3 which play a

crucial role to ensure the interoperability between the IP and WDM levels.

The migration to a multilayer architecture has engendered new challenges for telecom-

munication operators since network design has to fit to the best to the multilevel model.

Moreover, as telecommunication networks are involved in several domains and regu-

larly conducting huge amounts of important information, they must prove a minimum

degree of robustness and survivability. In reality, the performance of a network does

not only depend on its capability to transfer data, but also on its ability to maintain

services in the event of accidental failures. In order to ensure a continuous routing

of information even in the case of a breakdown of some components of the network,

a possible strategy consists in providing protection paths. More formally, this can

be translated by some connectivity requirements in the network, that is to ensure a

minimum number of disjoint paths between all or some pairs of nodes of the network.

Survivability issues become more and more important in the context of IP-over-WDM

networks because of the strong interaction between the different layers. In this sense,

1Internet Protocol
2Wavelength Division Multiplexing
3Generalized MultiProtocol Label Switching

2 Introduction

it is necessary to establish recovery strategies at the two layers so as to define the

protection responsibilities of each one and coordinate them to avoid confused actions

against the same failure.

The multilayer survivable network design problem has been widely studied in the

literature. Different variants of the problem have been considered and solved using

several approaches of resolution such as the polyhedral methods. These methods have

proved to be a powerful tool to efficiently tackle hard combinatorial problems. Initi-

ated by Edmonds in the context of the matching problem [45], this technique consists

in reducing the resolution of a combinatorial problem to that of one or more linear

programs. This is in particular based on giving a complete (or a partial) description of

the polytope of solutions with a system of linear inequalities. The polyhedral approach

has been proved to be very efficient when applied to many combinatorial optimization

problems such as the Travelling Salesman Problem, the Network Design Problem and

the Max-Cut Problem.

In this thesis, we use the above-mentioned technique, as well as other exact methods,

to study a survivability problem in the multilayer IP-over-WDM networks, called the

Multilayer Survivable Optical Network Design problem (MSOND problem). Consider

an IP-over-WDM network consisting of a logical IP layer over an optical WDM layer.

The IP layer is composed of IP routers interconnected by logical links and the WDM

layer consists of optical switches interconnected by optical fibres. We suppose given

a set of demands between the IP routers such that for each demand we know two

node-disjoint paths routing it in the logical IP layer. The MSOND problem consist

in finding, for each demand, two optical paths routing it in the WDM layer. These

paths must be node-disjoint and go in the same order through the optical switches

corresponding to the routers visited in the logical paths of the IP layer.

We propose several integer linear programming formulations for the problem and

devise efficient exact cutting planes based algorithms.

This thesis is organized as follows.

In Chapter 1, we present basic notions of combinatorial optimization and the notation

that will be used throughout the manuscript.

Chapter 2 introduces the practical context of the problem. Different notions related

to the multilayer telecommunication networks are presented. In particular, we focus on

the multilayer IP-over-WDM networks and present possible strategies to ensure their

survivability. A state-of-the-art on the survivable network design problem as well as

its application in the multilayer context is also given.

Introduction 3

In Chapter 3, we introduce the Multilayer Survivable Optical Network Design prob-

lem (MSOND problem). We show that this problem is closely related to the Steiner

Travelling Salesman problem. Moreover, we prove that it is an NP-hard problem even

for the simple cases. Chapters 4 to 7 present various integer linear programming for-

mulations as well as efficient exact algorithms used to model and solve the MSOND

problem, respectively.

In Chapter 4, we propose a formulation based on the so-called cut inequalities. We

discuss the associated polytope and present several classes of valid inequalities. We

also investigate the facial structure of these inequalities. Based on these results, we

devise, in Chapter 5, a Branch-and-Cut algorithm. We describe the separation routines

and present substantial computational results.

In Chapter 6, we propose a path formulation for the MSOND problem, using a

polynomial number of inequalities, yet an exponential number of variables. We propose

a Branch-and-Price algorithm for this formulation. We discuss the associated pricing

problem and prove that it reduces to a classical Shortest Path Problem. We also

describe an appropriate branching rule and propose a primal heuristic.

Finally, in Chapter 7, we discuss two further formulations. The first one, called natu-

ral formulation, is given in terms of the design variables. We show that the formulation

is valid in the case when there are only 3 terminals. The second formulation, called ex-

tended formulation, is given using an extra family of variables in addition to the design

variables. We present experimental results which show that this formulation provide a

tighter bound and performs very well for the resolution of the MSOND problem.

Chapter 1

Preliminary notions

Contents

1.1 Combinatorial optimization 6

1.2 Algorithmic and complexity theory 7

1.3 Polyhedral approach and Branch-and-Cut 8

1.3.1 Elements of the polyhedral theory 8

1.3.2 Cutting plane method . 11

1.3.3 Branch-and-Cut algorithm . 13

1.4 Column generation and Branch-and-Price 15

1.4.1 Column generation method 15

1.4.2 Branch-and-Price algorithm 16

1.4.3 Primal heuristics . 17

1.5 Extended Formulations . 18

1.6 Graph theory: definitions and notations 20

This chapter is devoted to give some preliminary notions about combinatorial opti-

mization, complexity theory, polyhedral approaches and exact methods of resolution. In

particular, we explain the principles of cutting planes and branch-and-cut method, as

well as column generation and branch-and-price method. We then present extended for-

mulations and briefly discuss their importance in combinatorial optimization. Finally,

we give some basic definitions and notations related to graph theory that will be used

throughout the manuscript.

6 Preliminary notions

1.1 Combinatorial optimization

Combinatorial Optimization is a branch of operations research related to the computer

science and applied mathematics. It aims to study optimization problems where the set

of feasible solutions is discrete or can be reduced to a discrete one. Combinatorial opti-

mization deals with problems that can be formulated as follows. Let E = {e1, . . . , en}

be a finite set called basic set, where with each element ei is associated a weight c(ei).

Let F be a family of subsets of E. If F ∈ F, then c(F) =
∑

ei∈F
c(ei) is the weight of

F . The problem consists in finding an element F ∗ of F whose weight is minimum or

maximum. The set F represents the set of feasible solutions of the problem.

The term optimization means that we are looking for the best feasible solution among

the elements of F. The term combinatorial refers to the discrete structure of F. In

general, this structure is related to a discrete underlying one, which is, most of the

time a graph.

It is also worth to mention that, in general, the number of feasible solutions |F| is

exponential, which makes it difficult or even impossible to solve the associated com-

binatorial optimization problem with an enumerative procedure. Such a problem is

hence considered as a hard problem.

Effective methods have therefore been developed to formulate and solve this type

of problems. In the literature, we find various methods to solve combinatorial opti-

mization problems such as graph theory, linear and non-linear programming, integer

programming, etc. In particular, polyhedral approaches have proved to be powerful

for optimally solving these problems. This will be detailed in further sections of the

chapter.

During the last decades, combinatorial optimization has developed considerably from

both theoretical and practical points of view. Indeed, many real-world problems from

areas as diverse as transport, telecommunications, biology, VLSI circuit and statistical

physics have been formulated and solved using efficient combinatorial optimization

techniques.

These techniques have been proved to be effective from a complexity point of view.

And this shows that combinatorial optimization is closely related to other fundamental

theories, especially algorithmic and complexity theories, issues that will be discussed

in the next section.

1.2 Algorithmic and complexity theory 7

1.2 Algorithmic and complexity theory

The interest to computational theory and complexity began with the works of Cook [30],

Edmonds [44] and Karp [83]. Algorithmic and complexity theory is a branch of com-

puter science whose objective is to classify problems according to their inherent diffi-

culty. In particular, problems of combinatorial optimization are considered as either

”easy” or ”difficult” problems. For more details on this topic, the reader is referred

to [56].

A problem is a question to which we wish to find an answer. This question usually

depends on some input parameters. A problem is posed by giving a list of these

parameters as well as the properties that these parameters must satisfy. An instance

of a problem is obtained by giving specific values to all its input parameters. An

algorithm is a sequence of elementary operations that, when given an instance of a

problem as input, gives the solution of this problem as output. The number of input

parameters necessary to describe an instance of a problem is called the size of that

problem.

An algorithm is said to be in O(f(n)) if there exists c > 0 and n0 ∈ N such that the

number of elementary operations that are necessary to solve an instance of size n is at

most c.f(n) for all n ≥ n0. If f is a polynomial function, then the algorithm is said to

be polynomial. A problem belongs to the class P if, for each instance of the problem,

there exists an algorithm that is polynomial in the size of the instance, allowing the

resolution of the problem. Problems belonging to class P are said to be easy.

A decision problem is a question concerning the existence, for a given instance, of

a configuration such that this configuration satisfies some properties. In other words,

the solution to a decision problem can be one of the answers: yes or no. Let P be a

decision problem and I the corresponding instances whose answer is yes. P belongs to

the class NP (Non-deterministic Polynomial) if there exists a polynomial algorithm

allowing to check if the answer of each instance of I is yes. It is clear that the class P

is contained in the class NP (see Figure 1.1). And, in reality, the difference between P

and NP has never been proved, however the conjecture is considered highly probable.

Among the problems that belong to the class NP , some problems are classified in a

class called NP -complete. The NP -completeness is based on the notion of polynomial

reduction. A decision problem P1 is polynomially reduced to a decision problem P2 if

there exists a polynomial function f , such that for each instance I of P1, the answer

is yes if and only if the answer of f(I) for P2 is yes as well. This will be denoted by

P1αP2. A problem P is said to be NP -complete, if it belongs to the class NP and if

8 Preliminary notions

P

NP−Complete

NP

Figure 1.1: Relations between P, NP and NP-Complete

there exists a problem Q, known to be NP -complete, such that QαP . In practice, this

theory was first used by Cook [30] who proves that SAT (the Satisfiability Problem) is

NP -complete.

With every optimization problem is associated a decision problem. Moreover, every

optimization problem whose associated decision problem is NP -complete is called NP -

hard. Note that most of the combinatorial optimization problems are NP-hard.

Among the methods used to solve them, the polyhedral approach has been shown

very efficient. This method is discussed in the following section.

1.3 Polyhedral approach and Branch-and-Cut

1.3.1 Elements of the polyhedral theory

Pioneered by the work of Jack Edmonds [45] for the matching problem, polyhedral

approaches have shown to be powerful techniques for formulating, analysing and solv-

ing hard combinatorial optimization problems. These techniques consist in reducing

the resolution of a combinatorial optimization problem to the resolution of a linear

program, and this by describing (completely or partially) the convex hull of its solu-

tions using a linear system of inequalities. This may often lead to polynomial time

algorithms providing exact or approximate solutions, help efficiently solve hard com-

binatorial problems and provide nice structural min-max relations.

In this section, we present only the basic notions for polyhedral theory. For a deeper

study of this approach, the reader is referred to the works of Grötschel et al. [67],

Schrijver [123] and Mahjoub [97].

1.3 Polyhedral approach and Branch-and-Cut 9

Let n ∈ N be a positive integer and x ∈ Rn. We say that x is a linear combination of

x1, . . . , xk ∈ Rn, if there exist k scalar λ1, λ2, . . . , λk such that x =
k
∑

i=1

λixi. If
k
∑

i=1

λi = 1,

then x is said to be an affine combination of x1, . . . , xk. Moreover, if λi ≥ 0 for all

i ∈ {1, . . . , k} with
k
∑

i=1

λi = 1, we say that x is a convex combination of x1, . . . , xk.

Given a set S = {x1, . . . , xk} ∈ Rn×k, the convex hull of S is the set of points x ∈ Rn

which are convex combination of x1, . . . , xk (see Figure 1.2), that is

conv(S) = {x ∈ Rn|x is a convex combination of x1, . . . , xk}.

Conv(S)

elements of S

Figure 1.2: A convex hull

The points x1, . . . , xk ∈ R are linearly independent if the unique solution of the

system x =
k
∑

i=1

λixi = 0 is λi = 0, i = 1, . . . , k.

They are affinely independent if the unique solution of the system

x =

k
∑

i=1

λixi = 0,

k
∑

i=1

λi = 1,

is λi = 0, i = 1, . . . , k.

A polyhedron P is the set of solutions of a linear system Ax ≤ b, that is P = {x ∈

Rn|Ax ≤ b}, where A is an m-row n-columns matrix and b ∈ Rm. A polytope is a

bounded polyhedron. A point x of P will be also called a solution of P .

A polyhedron P ⊆ Rn is said of dimension p if the maximum number of solutions

of P that are affinely independent is p + 1. We denote by dim(P) = p. We also have

that dim(P) = p− rank(A=) where A= is the submatrix of inequalities of A that are

10 Preliminary notions

satisfied with equality by all the solutions of P (implicit equalities). The polyhedron

P is said to be full dimensional if dim(P) = n.

An inequality ax ≤ α is valid for a polyhedron P ⊆ Rn if for every solution x ∈ P ,

ax ≤ α. This inequality is said to be tight for a solution x ∈ P if ax = α. The

inequality ax ≤ α is violated by x ∈ P if ax > α. Let ax ≤ α be a valid inequality for

the polyhedron P . F = {x ∈ P |ax = α} is called a face of P . We also say that F is a

face induced by ax ≤ α. If F 6= ∅ and F 6= P , we say that F is a proper face of P . If

F is a proper face and dim(F) = dim(P)− 1 , then F is called a facet of P . We also

say that ax ≤ α induces a facet of P or is a facet defining inequality.

If P is full dimensional, then ax ≤ α is a facet of P if and only if F is a proper

face and there exists a facet of P induced by bx ≤ β and a scalar ρ 6= 0 such that

F ⊆ {x ∈ P |bx = β} and b = ρa.

If P is not full dimensional, then ax ≤ α is a facet of P if and only if F is a proper

face and there exists a facet of P induced by bx ≤ β, a scalar ρ 6= 0 and λ ∈ Rq×n

(where q is the number of lines of matrix A=) such that F ⊆ {x ∈ P |bx = β} and

b = ρa+ λA=.

An inequality ax ≤ α is essential if it defines a facet of P . It is redundant if the

system A′x ≤ b′} obtained by removing this inequality from Ax ≤ b defines the same

polyhedron P . This is the case when ax ≤ α can be written as a linear combination

of inequalities of the system A′x ≤ b′. A complete minimal linear description of a

polyhedron consists of the system given by its facet defining inequalities and its implicit

equalities.

A solution is an extreme point of a polyhedron P if and only if it cannot be written

as the convex combination of two different solutions of P . It is equivalent to say that x

induces a face of dimension 0. The polyhedron P can also be described by its extreme

points. In fact, every solution of P can be written as a convex combination of some

extreme points of P .

Figure 1.3 illustrates the main definitions given is this section.

Consider a combinatorial optimization problem P. Let E be its basic set, c(.) the

weight function associated with its variables and S the set of its feasible solutions.

Suppose that P consists in finding an element of S whose weight is maximum. The

problem P can be hence written as max{cx|x ∈ S}. If F ⊆ E, then the 0-1 vector

xF ∈ RE such that xF (e) = 1 if e ∈ F and xF (e) = 0 otherwise, is called the incidence

vector of F . The polyhedron P (S) = conv{xS|S ∈ S} is called the polyhedron of

1.3 Polyhedral approach and Branch-and-Cut 11

extreme points

proper face
facet

valid
proper face

valid

non-valid

valid

P

but not facet

Figure 1.3: Valid inequality, facet and extreme points

the solutions of P or polyhedron associated with P. P is thus equivalent to the linear

program max{cx|x ∈ P (S)}. Notice that the polyhedron P (S) can be described by a

set of a facet defining inequalities. And when all the inequalities of this set are known,

then solving P is equivalent to the resolution of a linear program.

Recall that the objective of the polyhedral approach for combinatorial optimization

problems is to reduce the resolution of P to that of a linear program. Generally, it

is difficult to characterize a polyhedron of a combinatorial optimization problem by a

system of linear inequalities. In particular, when the problem is NP-hard there is a

very little hope to find such a characterization. In addition, the number of inequalities

describing this polyhedron is in general exponential. Therefore, even if we know the

complete description of that polyhedron, its resolution remains in practice a hard task

because of the large number of inequalities.

Fortunately, a technique called the cutting plane method can be used to overcome

this difficulty. This method is described in what follows.

1.3.2 Cutting plane method

The cutting plane method is based on a crucial result in combinatorial optimization

saying that only a partial description of the polyhedron can be sufficient to solve the

problem optimally.

This result comes thanks to the work of Grötschel et al. [67] (1981) who show that

12 Preliminary notions

the difficulty of solving a linear program does not depend on the number of inequalities

of that program, but on the separation problem associated with the inequality system

of the program. Consider a polyhedron P in Rn and let Ax ≤ b be its system of

inequalities. The separation problem associated with P consists in checking if the

point x ∈ Rn satisfies all the inequalities Ax ≤ b and, if not, to find an inequality

ax ≤ α of Ax ≤ b violated by x (see Figure 1.4).

Grötschel, Lovász and Schrijver [67] prove that an optimization problem (for instance

max{cx, Ax ≤ b}) can be solved in polynomial time if and only if the separation

problem associated with Ax ≤ b is polynomial as well. This equivalence has permitted

an important development of the polyhedral methods in general and the cutting plane

method in particular.

x∗
P

ax ≥ α

Figure 1.4: A hyperplan separating x∗ and P

More precisely, the cutting plane method consists in solving successive linear pro-

grams, with possibly a large number of inequalities, by using the following steps. Let

LP = max{cx, Ax ≤ b} be a linear program and LP ′ a linear program obtained by

considering a small number of inequalities among Ax ≤ b. Let x∗ be the optimal so-

lution of the latter. We solve the separation problem associated with Ax ≤ b and x∗.

This phase is called the separation phase. If every inequality of Ax ≤ b is satisfied by

x∗, then x∗ is also optimal for LP . If not, let ax ≤ α be an inequality violated by x∗.

Then we add ax ≤ α to LP ′ and repeat this process until an optimal solution is found.

Algorithm 1 summarizes the different cutting plane steps.

Note that at the end, a cutting-plane algorithm may not succeed in providing an

optimal solution for the underlying combinatorial optimization problem. In this case

a Branch-and-Bound algorithm can be used to achieve the resolution of the problem,

yielding to the so-called Branch-and-Cut algorithm.

1.3 Polyhedral approach and Branch-and-Cut 13

Algorithm 1: A cutting plane algorithm

Data: A linear program LP and its system of inequalities Ax ≤ b

Result: Optimal solution x∗ of LP

Consider a linear program LP ′ with a small number of inequalities of LP ;1

Solve LP ′ and let x∗ be an optimal solution;2

Solve the separation problem associated with Ax ≤ b and x∗;3

if an inequality ax ≤ α of LP is violated by x∗ then4

Add ax ≤ α to LP ′;5

Repeat step 2 ;6

else7

x∗ is optimal for LP ;8

return x∗;9

1.3.3 Branch-and-Cut algorithm

The Branch-and-Cut method, is a combination of the Branch-and-Bound and cutting-

plane methods. The basic idea of branch-and-cut is simple. In each iteration, one

solves a linear relaxation of the problem using a cutting plane algorithm. New valid

inequalities are then added at each iteration to the current linear program. This

permits to obtain increasingly better upper bounds on the value of the optimal solution

of the combinatorial optimization problem. Branching occurs only when no violated

inequalities are found to cut off infeasible solutions.

Consider again the combinatorial problem P defined above and assume now that

its variables are binary. The polyhedron P (S) is often not completely known because

P may be NP -hard. In this case, it would not be possible to solve P as a linear

program and in general, the solution obtained from the linear relaxation of P (S) is

fractional. The resolution of P can then be done by combining the cutting plane method

with a Branch-and-Bound algorithm. Such an algorithm is called a Branch-and-Cut

algorithm. Each node of the Branch-and-Bound tree (also called Branch-and-Cut tree)

corresponds to a linear program solved by the cutting plane method.

Suppose that P is equivalent to max{cx|Ax ≤ b, x ∈ {0, 1}n} and that Ax ≤ b has a

large number of inequalities. A Branch-and-Cut algorithm starts by creating a Branch-

and-Bound tree whose root node corresponds to a linear program LP0 = max{cx|A0x ≤

b0, x ∈ Rn}, where A0x ≤ b0 is subsystem of Ax ≤ b with a small number of inequalities.

Then, we solve the linear relaxation of P that is LR = max{cx|Ax ≤ b, x ∈ Rn}, using

a cutting plane algorithm starting from the program LP0. Let x∗
0 = (x1

0, x
2
0, . . . , x

k
0)

14 Preliminary notions

be the optimal solution of LP0 and A′
0x ≤ b′0 the set of inequalities added to LP0 at

the end of the cutting plane phase. If x∗
0 is integral, then it is optimal for P. If x∗

0 is

fractional, then we start the branching phase. This consists in choosing a variable, say

x1
0, having a fractional value and adding two nodes P1 and P2 in the Branch-and-cut

tree. The nodes P1 and P2 correspond to the linear programs LP1 = max{cx|A0x ≤

b0, A
′
0x ≤ b′0, x

1
0 = 0, x ∈ Rn} and LP2 = max{cx|A0x ≤ b0, A

′
0x ≤ b′0, x

1
0 = 1, x ∈ Rn},

respectively. We solve the linear program LR1 = max{cx|Ax ≤ b, x1
0 = 0, x ∈ Rn}

(resp. LR2 = max{cx|Ax ≤ b, x1
0 = 1, x ∈ Rn}) by a cutting plane method starting

from LP1 (LP2). If the optimal solution of LR1 (resp. LR2) is integral then, it is

feasible for P. Its value is thus a lower bound of the optimal solution of P and the node

P1 (resp. P2) becomes a leaf of the Branch-and-Cut tree. If this solution is fractional,

then we select a variable with a fractional value and add two children to node P1 (resp.

P2), and so on.

Remark that at some node of the Branch-and-Cut tree, the addition of a constraint

xi = 0 or xi = 1 may make the associated linear program infeasible. Also, even if the

corresponding linear program is feasible, its optimal solution may be worse than the

best known lower bound of the tree. In both cases, we proceed the pruning phase and

that node is cut off from the Branch-and-Cut tree. The algorithm ends when all the

nodes have been explored and all the leaves of the tree are pruned. At the end of the

algorithm, the optimal solution of P is the best feasible solution among the solutions

obtained along the Branch-and-Bound tree.

Figure 1.5 illustrates a Branch-and-Cut tree. That is a Branch-and-Bound tree where

in each node Pi, i = 1, . . . , 4, a cutting plane method is used to solve the linear relax-

ation of node Pi.

The polyhedral approach and in particular the Branch-and-Cut method have been

successfully applied to several combinatorial optimization problem that are considered

difficult to solve, such as the Travelling Salesman Problem [8], the Max-Cut prob-

lem [21] and the Survivable Network Design Problem [86]. The efficiency of this

approach depends on two important theoretical and practical issues. The first one

consists in determining a good partial description of the convex hull of the solutions

of the problem in terms of linear inequalities. The second issue is to devise efficient

separation algorithms (exact or heuristic) for the identified classes of inequalities.

Note that the cutting plane method is effective when the number of variables is

polynomial. However, when the number of variables is huge (for example exponential),

one should resort to other appropriate methods such as the column generation method

that we describe briefly in the following section.

1.4 Column generation and Branch-and-Price 15

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

P1

P3

x1

0
= 0 x1

0
= 1

x1

1
= 0 x1

1
= 1

component x1

0
is fractional

x0 is fractional

x3 is fractional

may improve the

best lower bound

component x1

1
is fractional

x1 is fractional x2 is integral

best lower bound

x0 is fractional

worse than the best lower bound

the node is pruned

P0

P2

P4

Figure 1.5: A Branch-and-Cut tree

1.4 Column generation and Branch-and-Price

There are several reasons that motivate the MIP formulations using a huge number of

variables. Indeed, generally a compact formulation of a MIP have a weak LP relaxation,

which can be tightened by a reformulation that involves a huge number of variables.

Moreover, in some cases, a compact formulation of a MIP may have a symmetric

structure which causes a poor performance of the branch-and-bound since the problem

barely changes after branching. Consequently, a reformulation with a huge number of

variables can eliminate this symmetry.

To solve such large-scale problems, the technique widely applied is the one called

column generation method.

1.4.1 Column generation method

This method is used to efficiently solve linear programs with an exponential number

of variables by considering only a small number of them. The method appears in the

1960’s to solve problems related to huge data that could not be stored in the computers

at this time. Dantzig and Wolfe [36] were the first to introduce this technique in their

decomposition method. The Dantzig-Wolfe decomposition is a reformulation approach

16 Preliminary notions

that is based on is a special form of variable redefinition. It can be represented using

the concept of generating sets: for each sub-system on which the decomposition is

based, one defines a finite set of generators from which each subproblem solution can

be generated. The variables of the reformulation shall be the weights of the elements

of these generating sets (more details concerning the Dantzig-Wolfe decomposition can

be found in [132]). The column generation technique can be also used to deal with

problems having a large number of variables. In this optic, Gilmore and Gomory [58, 59]

used this approach for the cutting stock problem.

The general idea is that optimal solutions to large LP’s can be obtained without

explicitly including all columns in the constraint matrix. In fact, only a subset of

all columns will be in the optimal solution and all other (non-basic) columns can be

ignored. The idea of a column generation algorithm is to solve a sequence of linear

programs having a reasonable number of variables (also called columns). The algorithm

starts by solving a linear program having a small number of variables and which forms

a feasible basis for the original program. At each iteration of the algorithm, we solve

the so-called pricing problem whose objective is to determine the variables which must

enter the current basis. These variables are those having a negative reduced cost

(for a ”minimize” objective function). The reduced cost associated with a variable

is computed using the dual variables. We then solve the linear program obtained by

adding these variables and repeat the procedure. The algorithm stops when the pricing

algorithm does not generate new columns to add to the current basis. In this case, the

solution obtained from the last restricted program is optimal for the original one. When

the pricing problem is NP-hard, one can use some appropriate heuristic procedure to

solve it. However, at the last iteration, it must be solved by an exact method to

prove the optimality of the solution. Notice that the column generation method can be

seen as the dual of the cutting plane method as it adds columns (variables) instead of

rows (inequalities) in the linear program. For more details on the column generation

method, the reader is referred to [94, 130, 38].

1.4.2 Branch-and-Price algorithm

In order to solve integer linear programs, the column generation method can be com-

bined with a Branch-and-Bound algorithm. The obtained algorithm is called a Branch-

and-Price algorithm. The principle of branch-and-price is similar to that of branch-

and-cut except that the procedure focuses on column generation rather than row gener-

ation. Similarly to the Branch-and-Cut algorithm, the branching phase happens when

no columns price out to enter the basis and the solution given by the linear program

1.4 Column generation and Branch-and-Price 17

Algorithm 2: A column generation algorithm

Data: A linear program MP (Master Problem) with a huge number of variables

Result: Optimal solution x∗ of MP

Consider a linear program RMP (Restricted Master Problem) including only a1

small subset of variables of the MP ;

Solve RMP and let x∗ be an optimal solution;2

Solve the pricing problem associated with the dual variables obtained by the3

resolution of the RMP;

Denote C = {x| reduced cost (x) < 0}, the set of variables (columns) with a4

negative reduced cost;

if C 6= ∅ then5

Add the variables of C to RMP ;6

Repeat step 2 ;7

else8

x∗ is optimal for LP ;9

return x∗;10

is yet fractional.

In the literature, the Branch-and-Price algorithm has been extensively used to solve

large scale problems such that the cutting stock problem [6], the integer multi-commodity

flow problem [18], the crew scheduling problem [129], etc...

Moreover, it is possible to combine both column and row generation. This combina-

tion is very interesting since it can yield very strong LP relaxations. However, dealing

with the two generation processes is not trivial. The main difficulty is, after additional

rows are added, the structure of the pricing problem can be destroyed and its resolution

becomes much harder.

Despite these difficulties, there have been some successful applications of combined

row and column generation (see for example [17]).

1.4.3 Primal heuristics

The Branch-and-Price (resp. Branch-and-Cut) algorithm can be improved by deriving

good primal feasible solutions to the combinatorial optimization problem. This can

be achieved using the so-called primal heuristics, which compute good lower bounds

18 Preliminary notions

that can be used to prune suboptimal branches of the Branch-and-Price tree (resp.

Branch-and-Cut tree).

Primal heuristics can be used at the root to find early a first feasible solution. They

also may be used at a given node of the tree mainly to round fractional solutions and try

to get a better bound. As a consequence, they help reducing considerably the number

of generated nodes of the tree as well as the CPU time. Moreover, this guarantees

to have an approximation of the optimal solution of the problem for example when a

CPU time limit has been reached.

1.5 Extended Formulations

To formulate a Combinatorial Optimization Problem P, the natural way is to define

an integer variable xe for each e ∈ E and find a suitable set of constraints to represent

F. Recall that E represents the basic set of P and F is a family of subsets of E. A

formulation using only variables xe is called natural formulation, and can be written

as follows.

Min
∑

e∈E

c(e)xe

s.t. Ax ≥ b (1.1)

xe integer for all e ∈ E. (1.2)

Although a natural formulation is a direct formulation using generally a reasonable

number of variables, it can present some drawbacks. In fact, without adding valid

inequalities, natural formulations usually have a loose linear relaxation. As a con-

sequence, to improve natural formulations one should resort to new classes of valid

inequalities defining in preference facets. This may imply separation procedures that

can be heavy to compute, mainly when the associated separation problem is NP-hard.

Moreover, natural formulations often have a number of constraints that is exponential

in the size of the problem.

An attractive alternative to overcome these drawbacks is to introduce additional

variables, and thus work in a higher dimensional space. The resulting formulation is

called extended formulation. In what follows, we give some preliminary notions about

extended formulations. For more details, the reader is referred to [128, 29].

We distinguish exact and compact extended formulation. By exact, we mean that the

projection onto the original space of variables gives the convex hull of the solutions in

1.5 Extended Formulations 19

this space. This implies that the value of the dual bound is equivalent to that obtained

when carrying out separation over the convex hull of the solutions. Also by compact,

we mean that the number of variables and constraints of the extended formulation is

polynomial in the size of the problem. Hence, theoretically, adding a priori such an

extended formulation to tighten a mixed-integer model provides an alternative to the

separation.

An extended formulation can be defined with respect to a given original formulation

(a natural formulation or an already extended one) as follows. Suppose that there are

n original variables x and p extended variables y. Suppose there are m constraints,

that may involve only x variables, only y variables, or both sets of variables. We

also assume that the cost function and the integrality requirements are only on the x

variables, which is reasonable, because the original formulation could do that.

Min
∑

e∈E

c(e)xe

s.t. Ax+By ≥ b (1.3)

x integer. (1.4)

An extended formulation can be compared with a formulation on the original vari-

ables by projecting its associated polyhedra onto the x space. Let Q = {(x, y) ∈ RnRp :

Ax+ By >= b}. The projection of Q onto x is defined as projx(Q) = {x ∈ Rn : ∃y ∈

Rp, Ax+By >= b}.

The use of extended formulations have many potential advantages. In fact, as

mentioned above, extended formulations have the potential for providing high-quality

bounds on some combinatorial optimization problems where the natural formulations

perform poorly. In addition, some very complex families of facet-defining inequalities

on the natural variables can be obtained by the projection of quite simple inequalities

on the extended variables. Moreover, an inequality on the natural variables, even when

facet-defining, can generally be lifted when expressed in the extended space of variables.

Furthermore, when the separation of a certain family of inequalities in the original vari-

ables is NP-hard, a superfamily of valid inequalities obtained by a projection from an

extended formulation can be separated in polynomial time.

However, extended formulations may present some drawbacks. First, because for

some combinatorial optimization problems, stronger extended formulations are signif-

icantly huge as using a large number of variables. Moreover, sometimes the linear

programs of large extended formulations can be highly degenerate, mainly when using

the simplex algorithm to solve the linear relaxation.

20 Preliminary notions

1.6 Graph theory: definitions and notations

In this section, we present some basic definitions and notations of graph theory that

will be necessary for the subsequent chapters. For more details, the reader is referred

to [123].

The graphs we consider are either directed or undirected, finite, loopless and without

multiple edge or arcs.

An undirected graph is denoted by G = (V,E) where V is the set of nodes and E is

the set of edges. If e ∈ E is an edge with endnodes u and v, we also write uv to denote

e. Given W and W ′, two disjoint subsets of V , [W,W ′] denotes the set of edges of G

having one endnode in W and the other in w′. If W ′ = W , then [W,W] is called a cut

of G denoted by δ(W) (see Figure 1.6). For a node subset W ⊆ V and a node v ∈ V ,

we write [v,W ′] for [{v},W ′] and we denote by W the node set V \W .

W V \W

δ(W)

Figure 1.6: A cut δ(W)

If Π = (V1, . . . , Vp), p ≥ 2, is a partition of V , then we denote ∆ = δ(Π) the set

of edges having their endnodes in different sets. We may also write δ(V1, . . . , Vp) for

δ(Π). Note that for W ⊂ V , δ(W) = δ(W,W). If s and t are two nodes of G such that

s ∈ W and t ∈ W , then δ(W) is called st-cut of G.

A directed graph is denoted by D = (V,A) where V is the node set and A the arc

set. An arc a with origin u and destination v is denotes by (u, v). Given two node

subsets W and W ′ of V , [W,W ′] denotes the set of arcs whose origins are in W and

destinations in W ′. As before, we write [u,W ′] for [{u},W ′] and W denotes the node

set U \W . The set of arcs having their origins in W and destinations in W is called a

directed cut or dicut of D. This arc set is denoted either by δ+(W) or δ−(W). We also

write δ+(u) for δ+({u}) and δ−(u) for δ−({u}) with u ∈ U . If s and t are two nodes of

D such that s ∈ W and t ∈ W , then δ+(W) and δ−(W) are called st-dicuts of H .

1.6 Graph theory: definitions and notations 21

Let G′ = (V ′, E ′) (resp. D′ = (V ′, A′)) with V ′ ⊆ V and E ′ ⊆ E (resp. V ′ ⊆ V and

A′ ⊆ A) be a subgraph of G (resp. D). If c(.) is a weight function which associates

with an edge (resp. arc) e ∈ E (resp. a ∈ A) the weight c(e) (resp. c(a)), then the

total weight of G′ (resp. D′) is c(E ′) =
∑

e∈E′

c(e) (resp. c(A′) =
∑

a∈A′

c(a)).

In the notations, we will specify the graph as a subscript (that is, we will write δG(W),

δG(Π), δG(V1, . . . , Vp), δ
+
D(W), δ−D(W), [W,W ′]G, [W,W ′]D) whenever the considered

graphs may not be clearly deduced from the context.

Given an undirected graph G = (V,E), for all F ⊆ E, V (F) will denote the set of

nodes incident to the edges of F . For W ⊂ V , we denote by E(W) the set of edges

of G having both endnodes in W and G[W] the subgraph induced by W , that is the

graph (W,E(W)). Given an edge e = uv ∈ E, contracting e consists in deleting e,

identifying the nodes u and v and in preserving all adjacencies. Contracting a node

subset W consists in identifying all the nodes of W and preserving the adjacencies.

Given a partition Π = (V1, . . . , Vp), p ≥ 2, we will denote by GΠ the subgraph induced

by Π, that is, the graph obtained from G by contracting the sets Vi, for i = 1, . . . , p.

Note that the edge set of GΠ is the set δ(V1, . . . , Vp).

A path P of an undirected graph G is an alternate sequence of nodes and edges

(u1, e1, u2, . . . , ul−1, el, ul) where ei = [ui, ui+1] for i = 1, . . . , l − 1. We will denote a

path P either by its node sequence (u1, . . . , ul) or its edge sequence (e1, . . . , el−1). The

nodes u1 and ul are called the endnodes of P , while its other nodes are said to be

internal. A path is simple if it does not contain the same node twice. In the sequel,

we will always consider that the paths are simple. By opposition, a non-simple path is

called a walk. A path whose endnodes are s and t will be called an st-path. A cycle in

G is a path whose endnodes coincide, that is u1 = ul. Also, a cycle is simple if it does

not contain twice the same node, excepted u1. We call a chord an edge between two

non-adjacent nodes of a path.

Similarly, we call a dipath P a path in a directed graph, that is an alternate sequence

of arcs (u1, a1, u2, . . . , ul−1, al, ul) with ai = [ui, ui+1] for i = 1, . . . , l − 1. A dipath is

denoted either by its node sequence (u1, . . . , ul) or its arc sequence (a1, . . . , al−1), and

the nodes u1, ul are called the endnodes of that dipath. A dipath whose endnodes

coincide (u1 = ul) is called a circuit. If u1 = s and ul = t then P is called an st-dipath.

A dipath is simple if it does not contain twice the same node.

An undirected (resp. directed) graph is said connected if for every pair of nodes (u, v)

there exists at least one path (resp. dipath) between u and v. A connected graph which

have no cycle (resp. circuit) is called tree. A connected component of a graph G (resp.

22 Preliminary notions

D) which is maximal, that is adding a node or an edge (resp. arc) to that subgraph

gives a non-connected graph.

Given an undirected (resp. directed) graph G = (V,E) (resp. D = (V,A)), two

st-paths (resp. st-dipaths) are said to be edge-disjoint (resp. arc-disjoint) if they have

no edge (resp. arc) in common. They are node-disjoint if they have no internal node in

common. A graph is said to be k-edge-connected (resp. k-arc-connected) if it contains

at least k edge-disjoint (resp. arc-disjoint) st-paths (resp. st-dipaths) for all pair of

node {s, t} ∈ V × V (resp. {s, t} ∈ V × V).

Given an undirected graph G = (V,E), a demand set K ⊆ V ×V is a subset of pairs

of nodes, called demands. For a demand {O,D} ∈ K, O is the origin and D is the

destination of that demand. A node involved in a path P routing a demand k will be

called a terminal for that demand, while the other nodes are rather Steiner nodes for

the considered demand.

A complete graph is a graph in which there is an edge between each pair of nodes. A

complete graph with n nodes is denoted by Kn.

An undirected graph is outerplanar when it can be drawn in the plane as a cycle

with non crossing cords.

A graph is series-parallel if it can be obtained from a single edge by iterative appli-

cation of the two operations: addition of a parallel edge, subdivision of an edge.

Observe that a graph if series-parallel if and only if it is not contractible to K4.

Similarly, a graph is outerplanar if and only if it is not contractible to K4 and K3,2.

Therefore, an outerplanar graph is also series-parallel.

A graph G is said to be Halin graph if G = (C ∪ T,E) where the subgraph of G

induced by T is a tree whose leaves forms the cycle C in G.

Chapter 2

Multilayer telecommunication

networks

Contents

2.1 Telecommunication networks: toward a multilayer structure 24

2.1.1 Evolution of networks’ architecture 24

2.1.2 The IP layer . 26

2.1.3 The WDM layer . 31

2.1.4 Interactions between the IP and WDM layers 34

2.2 Survivability concepts in multilayer networks 36

2.2.1 Restoration . 36

2.2.2 Protection . 37

2.2.3 Survivability in multilayer networks 37

2.3 Multilayer network design and survivability 38

2.3.1 The general survivable network design problem 38

2.3.2 Multilayer survivable network design 42

Nowadays, telecommunication networks provide a large variety of services enabling

the transport of different kind of data such as vocal messages, photos, videos, etc. In

addition to this variety, exchanged data have witnessed an explosive growth due mainly

to the fast development of Internet. As a consequence, telecommunication networks

have been evolving towards a multilayer architecture, which has proved to be the most

powerful and the most adapted to all these changes and improvements. Moreover, as

24 Multilayer telecommunication networks

these networks are involved in the transportation of important data for companies, ad-

ministrations and governments, they ought to be sufficiently survivable, so that network

services can be restored in the event of a catastrophic failure.

In this chapter, we give a brief idea about the functionalities of multilayer networks.

We first present the multilayer structure in telecommunication networks and focus es-

pecially on the IP-over-WDM model. More precisely, we present the particularities of

the IP and WDM layers and discuss the technologies corresponding to each one. Then,

we show the different ways of interaction between the two layers and present in particu-

lar the GMPLS technology. We further introduce some concepts related to survivability

in general and to its application in the multilayer context. We finish the chapter by a

quick survey on multilayer network design problems and in particular the ones dealing

with survivability issues.

2.1 Telecommunication networks: toward a multi-

layer structure

2.1.1 Evolution of networks’ architecture

Figure 2.1: Reference Model OSI

For historical reasons, telecommunication networks have been represented as the

superposition of several technological layers. Using the bottom technology, each layer

has a specific functionality that provides a service for the layer above. Moreover, each

layer is characterized by appropriate protocols. A protocol can be defined as a formal

2.1 Telecommunication networks: toward a multilayer structure 25

description of the conventions and rules that are used by a layer to manage data traffic

and govern the interactions with the other layers. In order to classify the different

protocols, the ISO (International Standardization Organization) proposed a seven-layer

model known as the OSI (Open Systems Interconnection) model (see Figure 2.1).

Although the OSI model constitutes a reference that helped to well understand the

multilayer network process, it remains significant only from a theoretical point of view.

In reality, one should expect to have less than seven layers such that each layer can

ensure several functions at a time.

In a further classification, the network has been represented using IP routers over

ATM switches over SDH network components. The IP (Internet Protocol) layer is used

as a platform for users’ applications, ATM (Asynchronous Transfer Mode) for traffic

engineering, flow control and QoS (Quality of Service) support, and SDH (Synchronous

Digital Hierarchy) for the transportation of ATM flows over WDM optical network

(Wavelength Division Multiplexing) [57] (see Figure 2.2).

Figure 2.2: Evolution towards the IP-over-WDM model

Again, the resulting architecture creates more complications rather that simplifying

the network. Due to the number of layers involved, this architecture stacks redundant

functionalities and presents many operational complexities. In fact, when delivering

data, each layer adds heavy control information (for encapsulation), yielding to an

over-cost bandwidth and a very complex data processing over the nodes. Furthermore,

this four-layer architecture shows a great lack of flexibility that impedes it to cope with

the continuous increase of data traffic [93]. Moving towards a more flexible, dynamic

and cost-effective architecture was consequently necessary.

The most straightforward alternative was to bypass all intermediate layer technologies

and implement the IP directly over WDM, hence resulting in a simple two layer model,

referred to as IP-over-WDM [93, 124].

26 Multilayer telecommunication networks

The IP-over-WDM model presents many advantages. In fact, WDM technology can

manage the continuous growth of traffic using the already existing infrastructure. This

is thanks to the huge capacities of optical fibres which may ensure the transportation of

many terabits per second. Moreover, since telecommunication operators choose to put

all the different types of traffic (voice, data and video) on a single physical medium,

the majority of traffic has become of type IP.

Nevertheless, the implementation of this new two layer model has been a bit challeng-

ing. In fact, the deleted intermediate layers provide important functionalities, such as

traffic engineering in ATM or multiplexing and fast protection in SDH. Moving to the

two layers IP-over-WDM model, these functionalities had to be continuously ensured

by moving them either down to the optical layer, or up to the IP layer.

To overcome this difficulty, telecommunication operators had the idea of using the

control protocols such as the MPLS (Multi-Protocol Label Switching) and the GMPLS

(Generalized-MPLS) [115, 100]. These protocols permit the implementation of the

traffic engineering in the IP layer (at the packet level) and in the optical layer (at the

wavelength level), and hence the ATM can be removed from the network. Similarly,

many functions of the SDH can be moved down to the optical layer, enhanced with

optical switching capabilities and supported by advanced control mechanisms, now

referred to as the OTN (Optical Transport Network) [134].

2.1.2 The IP layer

The role of the Internet layer is to ensure the interoperability and interconnection

between the different AS (Autonomous System) subnetworks constituting it, allowing

thus data to be routed through these networks until destination. To this end, it uses

the IP protocol which is responsible of data routing.

2.1.2.1 IP Protocol

To be routed in the network, the data is divided into IP packets. An IP packet is

composed of two parts: a header having information for various transport, in particular

the destination IP address, and a data portion. The Internet Protocol (IP) [48, 81,

108] manages the transmission of these packets called datagrams through a set of

interconnected networks from a source to a destination. The source and destination

are host machines (terminals) identified by fixed length addresses called IP address.

Many other protocols such as the TCP (Transmission Control Protocol) are used to

2.1 Telecommunication networks: toward a multilayer structure 27

complete the packet headers in order to ensure a correct packets’ routing and a rapid

detection of errors [109].

2.1.2.2 Traffic routing

Traffic routing is one of the main functions of the Internet layer. The routing consists

in determining a path in order to connect two distant terminals. Determining a path

is a complex task that is performed in large networks using dedicated protocols. The

role of these protocols is to discover the network topology and derive the best route.

There are several routing protocols that differs in the criteria of choosing routes and

the accuracy of the topology discovery. We distinguish for example, the RIP (Routing

Information Protocol) that allows each router to know the distance separating the other

routers from the IP network in term of hops. There is also the OSPF (Open Shortest

Path First) protocol, which, being more efficient than RIP, has gradually replaced it.

In fact, unlike RIP, the OSPF sends to all the adjacent routers the number of hops that

separates them from the IP networks. Then, each router transmits to all the routers

in the network the status of each of its links. A third protocol is the so-called IS-IS

(Intermediate System to Intermediate System). The IS-IS is a link-state protocol that

enables routers to have maintain a common view of network’s topology. Each router

makes its own topological database and then shared among the remaining routers.

Packets are then transmitted via the shortest path. Finally, we can mention the BGP

(Border Gateway Protocol) that is used to convey large volumes of data through the

network.

The majority of routing protocols rely on traditional algorithms calculating shortest

paths in the network. However, they do not generally take into account other crite-

ria such as delays or congestion, which can degrade seriously the performance of the

network. In this optic, telecommunication operators have been always seeking a good

and optimal way to manage their networks. In particular, in order to ensure a better

routing procedure, they thought of the introduction of the MPLS system, that will be

presented in the next section.

2.1.2.3 MPLS technology

In traditional IP networks, packets’ routing is performed using the destination address

contained in the header of the IP layer’s packet. To decide which is the next hop, each

router of the IP layer consults its routing table and determines the outgoing interface

to which the packet will be sent. Generally, the mechanism of research in the routing

28 Multilayer telecommunication networks

table is time consuming. Moreover, with the growth of the networks’ size in the recent

years, the routing tables’ size has been steadily increasing, making it necessary to find a

more efficient method to route packets. Telecommunication operators have then opted

for the MPLS (Multi Protocol Label Switching) technology.

MPLS is a multilayer switching system that was inspired from Tag Switching tech-

nologies of Cisco and also from the ARIS (Aggregate Route-Based IP Switching) tech-

nology of IBM. MPLS was designed to improve the efficiency of routers in packet

processing. Indeed, instead of being analysed at each router, the packets are analysed

only once at the entrance of the network, and then routed along a path thanks to

a system of labels. As its name indicates, MPLS is based on the technique of label

switching. Figure 2.3 illustrates this mechanism. For example, an IP packet entering

to the router R3 through the interface 5, with the label 31 will after be sent to the

router R5 using interface 7 and the outgoing packet will be labeled 14 instead of 31.

Note here that the forwarding table of labels has far fewer entries than the usual IP

routing table. The switching procedure is hence done by routers that do not need to

consult the IP address or the routing table. These routers are called LSR (Label Switch

Routers).

Figure 2.3: An example of label switching

The LSR use the labels to switch packets inside the MPLS network (see Figure 2.4).

MPLS routers at the periphery of the network are called Edge LSR. These routers

have both traditional and IP interfaces connected to the MPLS network, and are re-

2.1 Telecommunication networks: toward a multilayer structure 29

sponsible for imposing or removing labels on IP packets that pass through them. In

particular, the Edge LSR can be divided into two classes: the Ingress LSR (ingress

routers) responsible for imposing labels to IP packets that pass through to enter the

MPLS backbone, and the Egress LSR (egress routers) that remove the added labels.

Figure 2.4: LSR

When the packets enter the the MPLS network, Ingress LSR classify them into

different classes called FEC (Forwarding Equivalent Classes). These classes can be

formed according to several criteria such as the same prefix as the destination address

for the IP routing, packets of the same application, packets from the same source

address prefix, the quality of service required, etc. Hoewever, in general FEC are

defined in terms of IP prefixes that are given by the IGP (Interior Gateway Protocol),

and the information related to the quality of service insured by the so-called TE (Traffic

Engineering). After the classification step, packets belonging to the same FEC will

follow the same path and will be managed by the same method of forwarding. In fact,

once inside the MPLS network, the packets can never be reclassified. The succession

of LSR that have been used by an FEC constitutes the so-called LSP (Label Switched

Path), also said the labels’ switching path. This path is always unidirectional and

unique for each FEC.

Originally, MPLS was developed for fast packet switching, but it has quickly allowed

the implementation of higher level solutions such as VPN (Virtual Private Networks).

This will be explained in details in the next section.

30 Multilayer telecommunication networks

2.1.2.4 Virtual Private Network

A virtual private network (VPN) can be seen as an extension of an organisation private

network in order to connect remote users over shared or public network. A private

network is one where all data paths are secret to a certain extent, yet open to a limited

group of persons. A VPN allows, for example, to interconnect networks of the same

company in multiple locations.

VPNs are IP-based networks that use encryption and tunnelling to achieve the fol-

lowing goals:

• connect users securely to their own corporate network (remote access),

• link branch offices to an enterprise network (intranet),

• extend organizations’ existing computing infrastructure to include partners, sup-

pliers and customers (extranet).

VPNs often use the MPLS technology to connect sites belonging to one or more VPN

since the MPLS LSP tunnels provide a good medium for the encapsulation of VPN

traffic. These networks are called MPLS-VPN.

Figure 2.5: Different types of routers in an MPLS-VPN

In an MPLS-VPN, we distinguish several types of routers (see Figure 2.5):

2.1 Telecommunication networks: toward a multilayer structure 31

• P (Provider): located Inside the MPLS network, they send the data by switching

labels,

• PE (Provider Edge): located at the border of the MPLS network, they have

interfaces that are connected to the costumers’ routers,

• CE (Customer Edge): are traditional IP routers with no knowledge of MPLS.

The aim is to ensure the transmission of IP packets between CE routers belonging to

the same VPN or to different VPNs.

Nowadays, companies are increasingly using private IP addressing, which allows them

to use the same IP address ranges. MPLS-VPN help manage recovery plans addressing

and can differentiate two identical addresses belonging to two different VPN. It hence

enables traffic isolation between customer sites not belonging to the same VPN. The

PEs have multiple interfaces each corresponding to a particular VPN. Each interface

includes a VRF (VPN Routing and Forwarding) protocol that allows PE to manage

multiple routing tables (one per interface). A VRF consists of a routing table, a FIB

(Forwarding Information Base) and a CEF table, that is independent of other VRFs’

tables and of the global routing table. When a PE router gets a packet on an interface

IP, it checks the routing table of the VRF corresponding to this interface without even

accessing to its global routing table. This ability to use multiple independent routing

tables allows to manage an addressing plan for each site, even in case of recovery

addresses between different VPN. To build their VRF tables, the PE must exchange

routes corresponding to different VPN. To this end, they use the label distribution

protocol MP-BGP (MultiProtocol BGP). The EC share their IP routes with their PE

using standard routing protocols (for example eBGP, RIPv2 or OSPF).

2.1.3 The WDM layer

2.1.3.1 Optical fibres

An optical fibre is a flexible transparent fibre made of glass (silica) or plastic. It

functions as a wave-guide, or light pipe, to transmit light between the two ends of the

fibre. To this end, optical fibres exploit the properties of refracting light. Indeed, when

a light beam strikes the surface at an angle between two environments that are more or

less transparent, it splits in two. The first part is reflected while the other is refracted,

that is to say, transmitted in the second medium when changing direction. Reflection

is the principle used to guide the light into the optical fibre.

32 Multilayer telecommunication networks

Figure 2.6: Signals’ reflection

Optical fibres typically include a transparent core surrounded by a transparent cladding

material with a lower index of refraction. Light is kept in the core by total internal

reflection. This causes the fibre to act as a wave-guide. Fibres that support many

propagation paths or transverse modes are called Multi-Mode Fibres (MMF), while

those that only support a single mode are called Single-Mode Fibres (SMF).

Figure 2.7: Optical fibre

Optical fibres are widely used in fibre-optic communications and this is due to many

reasons. First, because they permit transmission over long distances with a low rate

of attenuation. Also, compared to other medium of communication, they guarantee

higher bandwidth, lower weight, smaller size and more flexibility. Moreover, from

an electromagnetic point of view, optical fibre are quite immune to interference. As a

consequence, they constitutes a very good choice for high-speed transmissions. Another

advantage of the optical fibre is its safety aspect. Indeed, it is very difficult to connect

a listening cable to an optical fibre and such an operation results in a significant drop

of signal, whose cause can be easily localized. For all these advantages and in spite of

a price remaining still high, the optical fibre is used in the field of telecommunications

for the implementation of broadband networks. It is also used in a variety of other

2.1 Telecommunication networks: toward a multilayer structure 33

applications such as illumination, broadcasting, medical imaging, sensors, fibre lasers,

etc.

2.1.3.2 Optical switches

The nodes of an optical network act like referral centers that allow the orientation

of the different wavelengths carried on a fibre to their destination fibres, respectively.

These nodes use a multiplexing technology that mix signals from different fibres. This

technology allows also to extract or insert one or more signals before sending them to

another optical fibre. In current networks, the number of transmitted wavelengths on a

single fibre has been significantly increasing. Therefore, optical nodes have to be more

efficient to be able to handle a large number of wavelengths. There are several kinds of

optical nodes such as the OXCs (Optical Cross-Connect), which are divided into two

types, opaque OXCs that use electronic switching matrices and transparent ones using

the mirrors’ reflection principle.

2.1.3.3 WDM technology

One of the crucial services that are provided by the transport layer is that of appli-

cation’s multiplexing and demultiplexing. This feature allows multiple applications

to use simultaneously the physical network, and ensure that the transport layer can

differentiate the data it receives according to the applications or processes to which

the data belong. This is ensured thanks to the data packets’ headers at the physi-

cal layer which is provided with a set of fields allowing to determine the process to

which the data packets are to be delivered. At the receiver, these fields are examined

to determine the process to which the data segment belongs, and the packet is then

directed to that process. The receiver’s functionality that consists in delivering the

data it receives to the correct application process, is called demultiplexing. In parallel,

the sender’s functionality consists in incorporating the information it receives in the

packet’s header, and this is called multiplexing. There are several types of technolo-

gies ensuring multiplexing and demultiplexing such as PDH (Plesiochronous Digital

Hierarchy), SDH (Synchronous Digital Hierarchy), WDM (Wavelength Division Mul-

tiplexing) and DWDM (Dense WDM). Here, we are interested to WDM technology.

34 Multilayer telecommunication networks

2.1.4 Interactions between the IP and WDM layers

As it has been mentioned in the beginning of the chapter, a network consists of a number

of interconnected layers such that each one is characterized by its own features. In

particular, in the following we will be interested to IP-over-WDM networks consisted of

a transport layer (or optical) that is responsible of the transfer of information between

customers and a client layer (or IP) that manages the network command. In this

section, we will be interested to the description of the strong relationship that may exist

between these two layers. We introduce the three existing models of interconnection

between the layers and then present the GMPLS control plane which is necessary for

the implementation of two of these interconnection models.

2.1.4.1 Interconnection Model

The two-layer model which is currently advocated for tighter integration between the

IP and the optical layers offers a series of advantages over an existing multilayer archi-

tecture model. We distinguish three models of interconnection between the two layers.

For more details, the reader is referred to [7].

1) Overlay model

Under the overlay model, the IP domain acts as a client to the optical domain.

IP/MPLS routing and signaling protocols are independent of the routing and

signaling protocols of the optical layer. The topology distribution, path compu-

tation, and signaling protocols would have to be defined for the optical domain.

The client networks are provided with no knowledge of the optical network topo-

logy or resources.

2) Peer model

Under the peer model, the IP/MPLS act as peers of the optical transport network

(IP/MPLS routers and OXCs act as peers). A single routing protocol instance

runs over both IP/MPLS and optical layers. A common IGP and OSPF or IS-IS

may be used to exchange topology information. A consequence of the peer model

is that all the optical switches and routers have a common addressing scheme.

3) Augmented model

This model combines the best of the peer and overlay interconnection models.

Under the augmented model, there are actually separate routing instances in the

IP and optical domains, but the information from one routing instance is passed

2.1 Telecommunication networks: toward a multilayer structure 35

through the other routing instance. For example, external IP addresses could be

carried within the optical routing protocols to allow reachability information to

be passed to IP clients.

Over the peer and augmented models, to integrate structures between IP and optical

layers, the control plane must use protocols that can well manage the interaction bet-

ween the two layers, such as MPLS and GMPLS. In the following section, we discuss

GMPLS.

2.1.4.2 GMPLS

There is now a general consensus on the fact that the control plane of optical networks

should use the protocols and mechanisms developed for IP to automatically provide

optical paths and ensure dynamic recovery. Mechanisms of signalling and routing ap-

plications developed for IP Traffic Engineering may indeed be reused in the WDM

layer, taking into account the specificities of optical networks. One of these mecha-

nisms is GMPLS. GMPLS (Generalized Multi-Protocol Label Switching) has additional

features over MPLS:

• Neighbor Discovery: In order to manage the network, all devices must be known:

switches, multiplexers and routers. GMPLS uses a new protocol called Link Man-

agement Protocol (LMP) to explore the equipment and negotiate functionality.

• Propagation of link states: The goal is not only to know the condition of equip-

ment but also the link state. To propagate this information, a routing protocol

should be used. For MPLS, OSPF or IS-IS have been modified to support these

functions.

• Management of the link state: Routing protocols such as OSPF and IS-IS can be

used to monitor and manage the topology of the link state.

• Control and management of roads: MPLS can use RSVP (Resource Reservation

Protocol) to establish a link from end to end. However, if the data MPLS cross-

ings telecom networks, other protocols must be implemented, such as UNI (User

Network Interface) and PNNI (Private Network-to-Network Interface). Road

management is a challenge because many standardization organization are con-

cerned. The IETF (Internet Engineering Task Force) is currently working on

extensions of LDP (Label Distribution Protocol) and RSVP protocols to enable

the management and control of roads.

36 Multilayer telecommunication networks

• Management of relationships: In MPLS, LSP (Label Switch Path) is used to

establish, release and aggregating links. In GMPLS, the ability to establish and

aggregating the optical channels is required. LMP (Link Management Protocol)

extends MPLS functions in the optical plane to build relationships, improving

scalability.

The introduction of new protocols in telecommunications like GMPLS gives a new

trend for multilayer data networks. This new system provides a common signalling

and routing framework between the different layers, and it does not restrict the way

these layers work together. This evolution along with the explosive growth of traffic

are yielding new survivability issues in multilayer networks, which we discuss in the

next section.

2.2 Survivability concepts in multilayer networks

Network survivability implementation applies a mechanism for fault detection and lo-

calization together with a set of recovery techniques to reroute traffic around the failed

point. Recovery techniques can be implemented based on two general approaches,

protection and restoration.

2.2.1 Restoration

The restoration is a recovery strategy that allows to dynamically reroute connections

when a failure occurs in the network. In a restoration approach, we must calculate, at

the time of the crash, a new routing path using the available resources of the network.

Here, the network must use the so-called online algorithms, since the failure is not a

static problem neither a problem that is known in advance.

According to the failure nature and context, we can distinguish two types of restora-

tion:

• Path restoration: In a path restoration, the source and destination nodes of each

connection traversing the failed link participate in a distributed algorithm to

dynamically discover a backup route.

• Link restoration: In a link restoration, the end nodes of the failed link participate

in a distributed algorithm to dynamically discover a route around the link.

2.2 Survivability concepts in multilayer networks 37

If in both cases no backup route is found, then the failed connection is blocked. For

more details about restoration in WDM networks, the reader is referred to [112].

2.2.2 Protection

The principle of protection is to provide in advance all cases of failures that may occur in

the network in order to set up emergency solutions that ensure the continuity of traffic.

These solutions propose protection paths on which the traffic can be continuously

routed when the main path is affected by a failure. The path used by default for

routing is called working path or primary path . However, the path used to replace the

working path in case of failure is called protection path. Several modes of protection

can considered:

• Dedicated backup: the resources of the network are here dedicated for the backup

path and are not shared with other backup paths.

• Shared backup: network’s resources can be shared by many backup paths.

Both modes can be used either for end-to-end path protection or for link protection.

For more details about protection in WDM networks, the reader is referred to [112].

Figure 2.8 taken from [113] summarizes the previously mentioned restoration and pro-

tection mechanisms. In particular, in this thesis, we will be interested by shared backup

path protection (as it will be detailed in the presentation of the problem, Chapter 3).

Hence, in case of links (or nodes) breakdowns, it is important to avoid the interruption

of the network traffic, using one of the mechanism mentioned above. This implies

the importance of survivability in networks. Survivability issues become more and

more important in the context of many-layer networks, mainly because of the strong

interaction between the different layers. In fact, generally a simple link failure in one

layer directly impacts the other layers.

2.2.3 Survivability in multilayer networks

Recently, multi-layer protection in IP-over-WDM networks has received much atten-

tion, mainly because several issues that did not exist for single layer networks arise in

the context of multilayer ones. Many questions have hence appeared:

38 Multilayer telecommunication networks

Fault−Management Schemes

Restoration

Pre−configured backup route Dynamic discovery of backup route

Protection

Link RestorationPath RestorationShared backupDedicated backup

Path Protection Link Protection Path Protection Link Protection

Figure 2.8: Different schemes for surviving link failures [113]

• How to identify the original failure ?

• How to handle protection responsibilities between optical and client layer ?

• How recovery strategies at the two layers can be coordinated to avoid confused

actions against the same failure ?

As it will be detailed in Chapter 3, in the scope of this thesis, as a matter of coordi-

nation between the two layers, we will suppose that the IP layer is the one which first

deals with failures. The impact is then determined in the optical layer.

2.3 Multilayer network design and survivability

2.3.1 The general survivable network design problem

In this section, we discuss several problems related to the conception of survivable net-

works, which in general originates from the telecommunications networks survivability

issues. First, we present the general survivable network design problem and propose

an integer linear programming formulation for it. Several variants of this model have

been treated in the literature and will be presented in this section.

A network can be represented by a graph, directed or undirected, where each node

of the network corresponds to a node of the graph and a link between two nodes of the

2.3 Multilayer network design and survivability 39

network is represented by an edge or an arc of the graph. Consider a graph G = (V,E)

representing a telecommunication network. G is an undirected finite graph where V is

the set of nodes (or telecommunication centres), and E the possible links between these

nodes. With every edge e ∈ E is associated a cost c(e) corresponding to its cost of

installation. Remind that the total cost of a subgraph H = (U, F) of G, where U ⊆ V

and F ⊆ E, is c(F) =
∑

e∈F

c(e).

With each node v ∈ V is associated a positive integer r(v) called the connectivity

type of node v, which can be seen as the minimum number of edges connecting v to

the other nodes of the network. The vector (r(v)|v ∈ V) is the connectivity type

vector associated with the nodes of G. The concept of type of connectivity has been

introduced by Grötschel and Monma [68].

We say that a subgraph H = (U, F) of G satisfy the edge connectivity (resp. node

connectivity) requirement, if for every pair of nodes u, v ∈ V , there exists at least

r(u, v) = min{r(u), r(v)}

edge-disjoint (resp. node-disjoint) paths between u and v. These conditions ensure a

certain survivability in the network. Remark that when at most r(u, v) − 1 links in

case of edge-connectivity (resp. nodes in case of node-connectivity) break down in the

path between u and v, the traffic between the two nodes continues always to be routed.

Consider an undirected graph G = (V,E). Let (r(v)|v ∈ V) be a connectivity type

vector and c : E → R a cost function. We suppose, without loss of generality, that

there exist at least two nodes having a degree equal to k, where k = max{r(v)|v ∈ V }.

Initiated by Winter [135] and after by Grötschel, Monma and Stoer [69], the general

survivable network design problem consists in finding a minimum cost subgraph of G

which satisfies the connectivity requirement. We will denote this problem by kECON

(resp. kNCON) for edge connectivity (resp. node connectivity) requirement.

Remark that in the special case of r(v) ∈ {0, 1} for all v ∈ V , the kECON (resp.

kNCON) is nothing but the Steiner tree problem. Since the Steiner tree problem is NP-

hard [56], we deduce that the kECON (resp. kNCON) is NP-hard as well. However,

under certain conditions, the problem can be solved in polynomial time. In fact, when

r(v) = 1 for all v ∈ V , the problem is equivalent to the minimum weight spanning

tree problem. Therefore, the kECON (resp. kNCON) can be solved in polynomial

time using Kruskal [89] or Prim [110] algorithms. In addition, when r(s) = r(t) = 1

for two nodes s, t ∈ V and r(v) = 0 for all v ∈ V \ {s, t}, the problem coincides

with the shortest st-path problem which is solvable in polynomial time using either the

algorithm of Dijkstra [41] or the one of Bellman-Ford [19].

40 Multilayer telecommunication networks

All the properties of connectivity mentioned above are in close relationship with the

cuts. In [102], Menger state a fundamental relation between the number of edge-disjoint

paths and the cardinality of cuts in the graph G. This relation is given in the following

theorem.

Theorem 2.1 [102] Let G = (V,E) be an undirected graph and s and t two nodes of

G. Then, there is at least k edge-disjoint paths between s and t if and only if every

st-cut of G contains at least k edges.

From Theorem 2.1, we can deduce an integer linear programming formulation of the

kECON. To this end, let us first introduce some notations.

r(W) = max {r(u) — u ∈ W} ∀W ⊆ V,

con(W) = max {r(u, v) — u ∈ W, v ∈ V \W}

= min {r(W), r(V \W)} ∀W ⊆ V, ∅ 6= W 6= V.

Consequently, the kECON is equivalent to the following integer linear program.

min
∑

e∈E

c(e)x(e)

x(δ(W)) ≥ con(W) for all W ⊆ V, ∅ 6= W 6= V, (2.1)

x(e) ≥ 0 for all e ∈ E, (2.2)

x(e) ≤ 1 for all e ∈ E, (2.3)

x(e) ∈ {0, 1}, (2.4)

where x(δ(W)) =
∑

e∈δ(W) x(e).

Inequalities (2.1) are called the cut inequalities, inequalities (2.2) and (2.3) are the

trivial inequalities and inequalities (2.4) are the integrality constraints. Inequali-

ties (2.1) ensure that each solution of the problem intersect the cut δ(W) in at least

con(W) edges.

Consider now a node subset Z ⊆ V . If W ⊆ V \ Z, then we set conG\Z(W) =

min{r(W), r(V \ (Z ∪W))}. It is not hard to see that inequalities

x(δG\Z(W)) ≥ conG\Z(W)− |Z| for all Z ⊆ V, ∅ 6= Z 6= V and W ⊆ V \ Z, (2.5)

are valid for the polytope kNCON(G).

2.3 Multilayer network design and survivability 41

By adding inequalities (2.5) to the integer linear program given above, we have a

formulation for the kNCON problem. Inequalities (2.5) will be also called node-cut

inequalities.

The polytope of solutions of the kECON (resp. kNCON) is the polyhedron given by

kECON(G) = conv{x ∈ RE|x satisfies (2.1)− (2.4)}

(resp. kNCON(G) = conv{x ∈ RE|x satisfies (2.1)− (2.5)}).

Notice that kNCON(G) ⊆ kECON(G).

In [68], Grötschel and Monma investigate the polyhedral aspect of the convex hull of

the solutions to the model given by inequalities (2.1)- (2.4). They discuss the dimension

of the associated polytope and study the facial aspect of the basic inequalities. In a

further work, Grötschel et al [70] go deeper into the polyhedral properties of that

model. They also devise cutting planes algorithms and give computational results.

One of the crucial problems related to survivable network design is the k-edge con-

nected spanning subgraph problem abbreviated kECSP.

Definition 2.2 A graph G = (V,E) is said to be k-edge connected (resp. k-node

connected) if between every pair of nodes in V , there exist at least k edge-disjoint paths

(resp. node-disjoint paths).

Consider an undirected graph G and assume the nodes of V have the same type

of connectivity. In particular, if r(v) = k for all v ∈ V , we have the so-called k-

edge connected spanning subgraph problem (kECSP). The kECSP consist in finding a

minimum cost k-edge connected subgraph that covers all the nodes of V . The kECSP

has been widely studied in the literature. In particular, in the case of low connectivity

requirement k = 2, the problem received in particular attention. In [96], Mahjoub give

a complete characterization of the 2ECSP polytope when the graph G is series parallel.

He also introduced a new class of valid inequalities called the F-partition inequalities.

In [15], Barahona and Mahjoub prove that the F -partition inequalities together with

the cut inequalities and the trivial ones are sufficient to give a complete description of

the 2ECSP polytope for halin graphs. They also show that in this case, the F -partition

are facet defining. Another variant of the 2ECSP problem, adding hop constraints, has

been also studied. These constraints have been added to limit the length either of cycle

or of paths [35, 52, 75]. Barahona and Mahjoub [15] also studied the node version of

the problem, the 2-node connected spanning problem (TNCSP). The TNCSP consists

42 Multilayer telecommunication networks

in finding a minimum-cost 2-node connected subgraph that covers the nodes of V . The

problem has been also studied in [98] and with a hop constraint in [39]. Moreover, as

in practice it is often possible to impose stronger connectivity conditions, that is to

look for types of connectivity greater than 2, many works in the literature have been

interested to this problem [25, 40].

2.3.2 Multilayer survivable network design

The multilayer network design problem consists in choosing the suitable equipments

and capacities to place respectively on the nodes and links of the network in order

to route the requirements of the traffic matrix. In an IP-over WDM network, the

design and dimensioning of the logical (IP) layer is obtained by the routing of the

traffic matrix. The logical capacities of the IP layer define then a traffic matrix for

the WDM layer. This new traffic matrix is, to its turn, routed in the optical layer.

Decisions about equipments and capacities to install on the nodes and links are hence

to be made for the optical layer. Moreover, if along with the dimensioning and routing,

restoration or protection mechanisms are used to avoid failures, the multilayer network

is said to be survivable.

Optimization over multilayer networks has interested many researchers and telecom-

munication operators. The problem of designing layered networks has been first intro-

duced by Dahl et al in [34]. Many variants of multilayer routing, dimensioning and

survivability problems have been after studied and several methods of resolution have

been since devised.

On one hand, heuristic approaches have been proposed. In [63], Gouveia et al study

the design of MPLS-over-WDM networks. They address the dimensioning subject to

some path constraints in the WDM layer and hop constraints in the MPLS layer. They

give an integer programming formulation and devise a heuristic technique based on that

formulation. In [120], Ricciato et al. consider the problem of off-line configuration of

MPLS-over-WDM networks under time-varying offered traffic. They present a mixed

integer programming formulation for the problem and discuss heuristic approaches.

On the other hand, exact methods have been proved to be efficient for solving to

optimality large-scale problems in the multilayer context. In [34], the authors studied

the problem of designing virtual links (called pipes in the paper) over physical capaci-

ties. The problem is formulated as an integer linear program. The associated polytope

is studied and different classes of facets are described resulting in a cutting-plane al-

gorithm. In [32], Cruz et al have been interested in the design of multi-level networks

2.3 Multilayer network design and survivability 43

including discrete facility location, topological network design and dimensioning. A

Mixed Integer Program is proposed and solved using a branch-and-bound algorithm

combined with a lagrangian relaxation. Belotti et al propose in [20], a path-based

Mixed Integer Program for the design of two-layer networks taking into account the

impact of statistical multiplexing in the MPLS layer. A column generation approach

coordinated with a lagrangian relaxation has been introduced to solve the model. Gou-

veia et al [62] studied a hop-constrained node survivable network design problem in the

context of MPLS-over-WDM networks. The problem is considered within two different

survivability mechanisms: path diversity and path protection. An Integer Linear Pro-

gramming model is proposed for both mechanisms and a cost analysis of the design

solutions is handeled on the NSFNet and EON real world networks results. Fortz et

Poss [53] gave a brief survey on some multi-layer network design works. They pro-

posed a reformulation of the multi-layer network design using Benders decomposition.

A branch-and-cut algorithm was devised and strengthened with metric inequalities im-

proving hence the results obtained previously by Knippel and Lardeux in [87]. Orlowski

et al [106] studied the problem of planning multilayer SDH/WDM networks. The goal

was to find a minimum cost installation of link and node hardware for both layers, sub-

ject to many practical constraints as well as constraints related to survivability against

failures. A mixed-integer programming formulation is proposed and solved using an

efficient branch-and-cut algorithm. The algorithm is based on a problem-specific pre-

processing, MIP-based heuristics, and cutting planes approach, which was useful to

solve to optimality realistic two-layer instances. In [111], the authors studied the prob-

lem of designing logical and physical layers in multi-layer networks with non-bifurcated

traffic flows. Unlike classical works dealing with the two layers independently or in a

sequential fashion, the author proposed to design simultaneously the two layers of the

graph. A branch-and-price procedure that simultaneously solves the logical topology

design and the traffic routing in the optical layer is considered. In [105], Orlowski et

Pióro proposed a survey of different mechanisms of survivability in telecommunica-

tion networks. The authors were particularly interested to non-compact formulations.

Several path-based survivability mechanisms are considered and the complexity of the

corresponding pricing problems is studied.

In this thesis, we propose to study a problem within the context of survivable multi-

layer networks. However, unlike the previously mentioned works, we will be interested

only in the network topology design, that is to say we will not deal with dimensioning

issues. Moreover, we will suppose that the protection strategy is accomplished in the

IP layer and try to find the corresponding protection strategy in the lower layer. The

problem that we study is detailed in the following chapter.

Chapter 3

MSOND Problem: context and

complexity

Contents

3.1 The MSOND problem . 46

3.1.1 Problem presentation . 46

3.1.2 Notations and examples . 47

3.1.3 Sections’ disjunction . 51

3.2 Theoretical context . 53

3.2.1 Shortest Path Problem with Specified Nodes 53

3.2.2 Travelling Salesman Problem and its variants 53

3.2.3 The k-Vertex Disjoint Paths Problem 55

3.3 Complexity results . 56

3.3.1 Single commodity MSOND problem 56

3.3.2 Multi-commodity MSOND problem 61

3.3.3 Summary table . 63

3.4 Concluding remarks . 63

As it was shown in Chapter 2, the problem of reliability in the multilayer telecommu-

nication networks is of a crucial importance, mainly because of the strong interaction

between the different layers. In this chapter, we consider a problem of survivability in

IP-over-WDM networks that consists in determining a secure topology for the optical

layer given a survivable one in the logical layer. First, we state the problem and model

46 MSOND Problem: context and complexity

it in terms of graph. We also give some notations and examples. In addition to its

importance in telecommunications, our problem is very interesting from a theoretical

point of view. We show indeed that it is in a close relationship with many interest-

ing classical problems such that the Steiner Travelling Salesman Problem. Finally, we

study the complexity of the problem and prove that it is NP-hard even in the simple

cases.

3.1 The MSOND problem

3.1.1 Problem presentation

Consider an IP-over-WDM network consisting of an IP layer over a WDM layer. The

IP layer is called physical or also virtual layer. The WDM layer is called optical or

physical layer as well. The IP layer is composed of IP routers which are interconnected

by virtual links and the WDM layer consists of a number of Optical Cross Connects

OXC (optical switches) interconnected by physical links. Since the two layers are

communicating with an interface called UNI interface, to each router in the IP layer

corresponds an optical switch in the WDM layer.

Figure 3.1 shows a bilayer network. The logical layer contains four routers denoted by

R1, R2, R3 and R4. The optical layer holds seven optical switch denoted S1, S2, . . . , S7.

The Optical switches S1, S2, S3, S4 correspond respectively to routers R1, R2, R3, R4.

The edges (R1, R2), (R2, R3) and (R1, R3) represent virtual links in the logical layer.

These links are in reality ensured by physical paths in the optical layer. In fact,

(R1, R2) is physically routed by (S1, S4, S5, S2), (R2, R3) by (S2, S7, S3) and (R1, R3)

by (S1, S7, S3).

Due to the multilayer aspect of the network, each failure in one layer may bring

about a breakdown in the other layer. Remark that in the example of Figure 3.1, if

node S7 of the optical layer breaks down, the physical paths from S1 to S3 and from

S2 to S3 are interrupted. Consequently, the virtual links (R1, R3) and (R2, R3) in the

logical layer will break down.

In the sequel, we present a problem related to multilayer survivability in IP-over-

WDM networks. Given a secure topology for the logical layer (protection by shared

back-up paths, c.f. Chapter 2), we look for a survivable corresponding topology in the

optical layer. Consequently, logical layer will constitute the data layer and optical layer

is the layer to optimize.

3.1 The MSOND problem 47

layer

Logical

Optical

layer

Virtual links

IP routers

UNI Interface Optical Switchs

Optical fibers

R1 R2

R3R4

S1

S4 S3

S2

S6

S7

S5

Figure 3.1: Example of multilayer network

Consider a bilayer IP-over-WDM network and a set of demands between routers

such that for each demand two node-disjoint paths routing it in the virtual layer are

given. We suppose that every installation in the optical layer is possible and with each

physical link we associate a cost corresponding to its installation’s cost.

The Multilayer Survivable Optical Network Design (MSOND) problem consists in

finding, for each demand, two node-disjoint physical paths routing it in the optical

layer. These paths must go in order through the optical switches corresponding to the

routers visited in the logical paths and the total cost of installation must be minimum.

In the case of just one demand, the problem will be called Single Commodity MSOND

problem or for short SC-MSOND problem. And in the case of more than one demand,

the problem is called Multi-Commodity MSOND problem and is abbreviated MSOND

problem.

3.1.2 Notations and examples

The problem can be modeled in terms of graph. We associate with the optical layer

an undirected graph G = (V,E) where the nodes of V correspond to the optical

switches and the edges of E to the possible physical links between these optical switches.

Similarly, we associate with the logical layer an undirected graph G′ = (V ′, E ′) where

48 MSOND Problem: context and complexity

the nodes of V ′ correspond to routers and the edges of E ′ to possible links between

these routers. To every router vi ∈ V ′ corresponds an optical switch wi ∈ V . We

assume that there exist traffic demands between nodes of G′. Let us denote by K

the set of these demands. Denote by (O′
k, D

′
k) the pair of routers origin-destination

for demand k ∈ K and by Ok et Dk the corresponding optical switches in the optical

layer.

Let L′
k,1 = (vk,11 , ..., vk,1j , ..., vk,1lk,1

) and L′
k,2 = (vk,21 , ..., vk,2j , ..., vk,2lk,2

) be the two paths

routing demand k ∈ K in graph G′ and denote by Lk,1 and Lk,2 the corresponding

physical paths that we are looking for in G. L′
k,1 and L′

k,2 go through routers vk,ij , k ∈

K, j = 1, ..., lk,i, i ∈ {1, 2}, k designates the demand, i the path and j the rank of the

node in the corresponding path. To each of this router corresponds an optical switch

wk,i
j , k ∈ K, j = 1, ..., lk,i and i ∈ {1, 2}. These particular optical switches must be

obligatory visited and they are hence called terminal nodes or terminals of the demand.

We denote by Tk the set of terminals of demand k ∈ K. The remaining nodes, V \Tk,

are called Steiner nodes or steiners for demand k ∈ K and are denoted Sk. Notice that

terminals can be different from one demand to another and that a terminal node for one

demand could be a Steiner node for another. For the SC-MSOND problem, we simply

denote by T the set of terminals of the demand and by S the set of its Steiner nodes.

The paths routing the different demands can be also seen as a sequence of sections.

Each section is defined by two successive terminals of the demand. Let us denote

by Tk,1 = {qk,1j = (wk,1
j , wk,1

j+1), j = 1, ..., lk,1 − 1} the sections of the first path, and by

Tk,2 = {q
k,2
j = (wk,2

j , wk,2
j+1), j = 1, ..., lk,2−1} the sections of the second path, for k ∈ K.

Let Tk = Tk,1 ∪ Tk,2, k ∈ K. Tk represents the set of all sections of demand k ∈ K and

can also be defined as follows Tk = {qkj , j = 1, ..., |Tk|, k ∈ K}, where qkj = (wk
j , w

k
j+1),

j = 1, ..., |Tk|, k ∈ K}. For convenience, a section qkj , j = 1, ..., |Tk|, k ∈ K} may also

be denoted q for short. For each section q ∈ Tk, we denote by L
k
q ⊂ (Lk,1 ∪ Lk,2)

the sub-path routing the section q in G. Consider a section q = (wk
j , w

k
j+1) ∈ Tk.

We denote by Gk,j the reduced graph obtained from G by deleting all terminals Tk of

the demand k excepted the terminals extremities of section q, namely wk
j and wk

j+1.

Moreover, as a matter of simplification, in Chapter 6, we opt for Gk,q to designate the

same reduced graph. Finally, Graph G is assumed to have infinite capacities on its

edges. The installation of a physical edge e in the optical layer has a cost denoted by

c(e) > 0.

In order to understand better the problem, in what follows we propose some examples

of illustration.

3.1 The MSOND problem 49

3.1.2.1 Single commodity MSOND problem

When k = 1, we deal with the SC-MSOND problem. Figure 3.2 depicts an example of a

solution for the SC-MSOND problem. It reproduces the graphs G′ andG corresponding

to the multilayer network of Figure 3.1. G′ corresponds to the logical layer and its nodes

are V ′ = {v1, v2, v3, v4}. G represents the optical layer and its nodes are V = {wi, i =

1, ..., 7}. To each node vi ∈ V ′, i = 1, ..., 4, corresponds a node wi ∈ V, i = 1, ..., 4.

Nodes w5, w6 and w7 of G do not have corresponding nodes in G′.

L′
1

L′
2

L1

L2

v1 v2

v4 v3

G

G′

w2w1

w3w4

w5 w7w6

Figure 3.2: Feasible solution for the SC-MSOND problem

The graph G′ represents data for the problem. G′ shows a demand between nodes

v1 and v3. This demand is routed by the two node-disjoint paths L′
1 = (v1, v3) and

L′
2 = (v1, v4, v3). In G, a feasible solution for the problem is given. The first path is

routed by L1 = (w1, w7, w3). The second path is routed by L2 = (w1, w4, w5, w3). Note

that, unlike the other nodes, nodes w1, w4 and w3 are represented by filled squares.

These nodes corresponds to v1, v4 and v3 that represents the nodes visited in L′
1 and

L′
2 in G′. Nodes w1, w4 and w3, called also terminals, must be visited in the same order

of visiting the corresponding nodes in G′. All the other nodes in V \ {w1, w3, w4} are

nodes that may be used to route the demand. They are called Steiner nodes or steiners.

First, note that paths L1 and L2 of G are node-disjoint. In fact, apart from the origin

w1 and the destination w3, L1 and L2 do not have any other node in common. Remark

also that L1 and L2 are respecting the order of passing through the nodes in L′
1 and L′

2.

In fact, L2 is visiting node w4 corresponding to v4 before arriving to w3 corresponding

50 MSOND Problem: context and complexity

to v3. Also note that, since the graph is undirected, looking for the two paths L1 and

L2 for the demand is no more than seeking an elementary cycle going in a specific order

through the terminals w1, w4 and w3.

Consider now a second example for the SC-MSOND problem (see Figure 3.3). Con-

sider the same demand between nodes v1 and v3. The demand is now routed by

L′
1 = (v1, v5, v2, v3) and L′

2 = (v1, v4, v3). Figure 3.3 shows two solutions suggested for

the given paths. The first solution is represented by (a) and the second by (b). Note

that solution (a) is infeasible because the order constraint is violated. In fact, in the

path L1 = (w1, w2, w5, w3), the terminal node w2 is visited before the terminal node

w5 and this does not correspond to the order in the path L′
1 = (v1, v5, v2, v3), where

v5 is visited before v2. The solution given by (b) is not feasible as well. In fact, this

solution gives two node-disjoint paths respecting the order constraint. However, the

first path L1 = (w1, w5, w8, w7, w2, w8, w3) defines rather a walk as it goes twice through

the Steiner node w8.

L′
1

L′
2

G
w2w1

w3w4

w5 w7w6

(b)

w8

G
w2w1

w3w4

w5 w7w6

(a)

w8

L1

L2

v1 v2

v4 v3

G′
v5

Figure 3.3: Infeasible solutions for the SC-MSOND problem

3.1.2.2 Multi-commodity MSOND

Suppose now that k > 1, which means that we are given at least two demands to

route. Figure 3.4 shows an instance composed of two demands. The first demand is

3.1 The MSOND problem 51

between v1 and v3 routed on paths (v1, v4, v3) and (v1, v6, v3). The second demand

is between v5 and v4 routed on paths (v5, v4) and (v5, v1, v2, v4). Note that the two

demands have different sets of terminals and steiners. In fact for the first demand,

the terminals’ set is T1 = {w1, w3, w4, w6} and the steiners’ set is S1 = {w2, w5, w7}.

However, for the second demand the terminals’ set is T2 = {w1, w2, w4, w5} and the

steiners’ set is S2 = {w3, w6, w7}. Here, node w7 does not have a corresponding node

in the graph G and it is thus a Steiner node for both demands. Figure 3.4 illustrates

two feasible solutions shown in (a) and (b). Solution (a) shows that the first demand

is routed on (w1, w4, w3) and (w1, w6, w3) and that the second demand is routed on

(w5, w4) and (w5, w1, w2, w4). However, in solution (b), the first demand is routed on

(w1, w5, w4, w3) and (w1, w2, w6, w3) and the second demand is routed on (w5, w4) and

(w5, w1, w2, w6, w3, w4). Note that both solutions are feasible for the MSOND problem.

Assuming that the costs correspond to euclidean distances, solution (b) seems to be

more interesting since it is less expensive than solution (a). In fact, in solution (b) we

make profit from the same edges to route the two demands.

(a) (b)

w6

G′

v6v5

v1 v2

v3v4

L′
1,2

L′
2,1

L′
2,2

L′
1,1

L1,2

L2,1

L2,2

L1,1

G
w1

w4 w3

w2

w7

G

w6

w1

w4 w3

w2

v7w5 w5

Figure 3.4: Feasible solutions for the MSOND problem

3.1.3 Sections’ disjunction

First, we give the definition of disjunction between sections.

52 MSOND Problem: context and complexity

Definition 3.1 Consider a demand k ∈ K and two sections of the demand qi, qj ∈ Tk.

qi and qj are said to be node-disjoint if the sub-paths Lk
qi

and Lk
qj

routing respectively

qi and qj are node-disjoint.

We have the following result.

Proposition 3.2 Consider a demand k ∈ K. Paths Lk,1 and Lk,2 are node-disjoint if

and only if the sections of demand k are pairwise node-disjoint.

Proof Consider a demand k ∈ K and two node-disjoint paths Lk,1 and Lk,2 routing

it in G. Suppose that there exist two sections qi ∈ Tk and qj ∈ Tk that are not node-

disjoint. This means that the sub-paths Lk
qi

and Lk
qj

routing qi and qj have at least

one node in common. Let us denote by w this node. Here, two cases have to been

distinguished.

1) qi and qj are sections of the first path L′
k,1 (respectively second path L′

k,2). w is a

common node between Lk
qi
and Lk

qj
means that the path Lk,1 (respectively Lk,2)

passes at least twice by w which implies that Lk,1 (respectively Lk,2) is a walk

(not elementary), contradiction.

2) qi and qj do not belong to the same path. Suppose that qi ∈ L′
k,1 and qj ∈ L′

k,2.

qi and qj are not node-disjoint means that Lk
qi

and Lqj ,k have a common node

w. Consequently w is a common node between Lk,1 and Lk,2 and hence the two

paths are not node-disjoint, contradiction.

Conversely, suppose that all the sections of demand k are pairwise node-disjoint, and

that the two paths Lk,1 and Lk,2 are not node-disjoint. This implies that Lk,1 and Lk,2

share at least one node, say w. Thus there exist at least two sections qi and qj sharing

w and so they are not node-disjoint, contradiction. �

The MSOND problem is of a crucial importance in telecommunication since it pro-

vides a secure topology for the optical layer in IP-over-optical networks. The problem

is also quite interesting from a theoretical point of view. In fact, it is in a close re-

lationship with many important known problems as it will be detailed in the next

session.

3.2 Theoretical context 53

3.2 Theoretical context

Apart from its importance in the telecommunication context, the MSOND problem is

very interesting from a theoretical point of view and raised from challenging classical

problems. In fact, for a single demand, the SC-MSOND problem can be seen as an

elementary cycle that must go in order through some terminal nodes. The cycle can

also visits other nodes called Steiner nodes. This is in a close relationship with some

classical problems and in particular some variants of the Travelling Salesman Problem

(TSP) [8]. In particular, the SC-MSOND problem can be seen as a Steiner TSP with

an order constraint on its terminals.

In the following, we describe some classical problems known in the literature that

are closely related to the MSOND problem.

3.2.1 Shortest Path Problem with Specified Nodes

The Shortest Path Problem with Specified Nodes (SPPSN) consists in finding a short-

est path between an origin and a destination passing necessarily through a set of

specified nodes called also terminals. Consider a weighted graph with N nodes and

distances associated with its edges. The SPPSN is to find the shortest path between

nodes 1 and N that goes through k terminals (different from nodes 1 and N). This

problem was first introduced by Kalaba when describing some communication network

problems [82]. A polynomial algorithm was given by Saksena and Kumar in [118] but

was later proved to be erroneous by Dreyfus [42]. Different variants of the problem was

then studied in [13],[77], [90] and [133].

The SPPSN is close to the SC-MSOND problem since the later can be seen as a

shortest path problem between the origin of the demand and itself and going through

some specific nodes that are the terminals of the demand. However, another constraint

must be taken into account for the SC-MSOND problem, which is the order between

the different terminals.

3.2.2 Travelling Salesman Problem and its variants

Given a set of cities along with the cost of travel between each pair of them, the

Travelling Salesman Problem, or TSP for short, is to find the cheapest way of visiting

all the cities and returning to the starting point [8]. More formally, this can be modelled

54 MSOND Problem: context and complexity

as weighted graph G = (V,E) in which we look for a minimum-cost tour. The TSP

is a very well-known problem in combinatorial optimization and operations research

in general. Since its appearance in the 1930’s, it has interested many researchers and

has been one of the most intensively studied problems in optimization. Moreover, as

it has several applications in various fields, many variants of the problem have since

appeared. In the following, we describe two variants of the TSP that are closely related

to the SC-MSOND problem.

3.2.2.1 Steiner TSP

Consider a graph G = (V,E) with a cost ce > 0 associated with each e ∈ E, and a

set of terminal nodes W . The Steiner TSP consists in finding a minimum-cost tour

going through the terminals W . The problem was first introduced by Cornuéjols et

al. [31] in 1985. The authors study the problem in the graphical case and investigate

its polyhedron in series-parallel graphs. Later, in 2002, Mahjoub and Bäıou give a

complete polyhedral description of the STSP in series-parallel graphs [12]. In 2003,

Salazar-González proposes a formulation in terms of Integer Linear Programs for the

problem [119]. He gives some polyhedral results and shows a lifting method to used to

deduce valid inequalities from the TSP’s inequalities. In 2009, Steinová proposes some

approximation results for the problem [125]. In 2012, Letchford et al. introduce in [91]

compact formulations deduced from the ones known for the TSP.

The Steiner TSP is very near to the SC-MSOND problem. The only difference is that

in the SC-MSOND problem, we have one more constraint which is the order between

the diffrent terminals. Which means that the SC-MSOND problem is no more than a

Steiner TSP with an order constraint between the different terminals.

3.2.2.2 TSP with precedence constraints

Given a graph G = (V,E) and a set of nodes W ⊂ V , the Travelling Salesman Prob-

lem with Precedence Constraints can be defined as a TSP subject to some precedence

constraints between the nodes W . This problem was widely studied in the litterature.

In [14] and [9], the authors study the polytope of the Asymmetric TSP with prece-

dence constraints. In [9], Ascheuer et al. propose a Branch-and-Cut algorithm for the

problem. In [64], Gouveia and Pesneau give extended formulations to the Asymmetric

TSP with precedence constraints and described also a Branch-and-Cut algorithm for

the problem.

3.2 Theoretical context 55

Some of the works viewed the precedence constraint as a pick-up/delivery constraint.

In fact, when a precedence constraint exists between two nodes v1 and v2, the problem

can be treated as if v1 was a pick-up node and v2 a delivery node. In this context,

in [116] and [43], the authors propose different formulations to the Pick-up/Delivery

TSP. Given a set of pick-up nodes and a set of delivery nodes, the pick-up/delivery

TSP consists in calculating a Hamiltonian tour such that each pick-up node precedes

the corresponding delivery node. Several classes of valid inequalities are proposed and

Branch-and-Cut algorithms are developed to solve the problem for both works.

The TSP with precedence constraint has close links with the SC-MSOND problem.

However, there are some particularities for the SC-MSOND problem. First, for the

SC-MSOND problem, not all the nodes must be visited, only terminals are mandatory.

Also, unlike the TSP with precedence constraint, the precedence constraint for the

SC-MSOND problem is defined between all the terminals which leads to a total order

between them.

3.2.3 The k-Vertex Disjoint Paths Problem

Given a graph G = (V,E) and a collection of vertex pairs {(s1, t1), ..., (sk, tk)}, the

k Vertex Disjoint Paths Problem (k-VDPP) is to find k pairwise node-disjoint paths

P1, ..., Pk where Pi is a path from si to ti for each i = 1, ..., k.

In the corresponding weighted problem, the paths Pi, i = 1, ..., k have to be chosen

such that a given objective function is minimized. Here, two possible objectives can be

considered: minimizing the total path length (min-sum) and minimizing the length of

the longest path (min-max). Another optimization version is to maximize the number

of paths calculated in the graph such that they are vertex-disjoint.

The k vertex disjoint paths problem has been widely studied mainly in terms of

complexity. In Table 3.1, some important complexity results for different variants of

the problem are given.

The relationship between the k-VDPP and the SC-MSOND will be treated in details

in the next sections.

Theorem 3.3 The k-VDPP is :

(i) NP-hard when k is input [84].

56 MSOND Problem: context and complexity

”k” Vertex Disjoint Paths Problem

Unweighted Version Weighted Versions

Conditions Complexity Conditions Complexity

undirected, fixed k P [114, 85] directed/undirected, k input, min-sum NP-hard [46]

undirected, k input NP-hard [84] undirected, k = 2, min-sum pol.alg [46]

directed, k ≥ 2 NP-hard [51] directed, k = 2, min-sum NP-hard [88]

graph special cases pol.alg [72]-[127] directed/undirected, fixed k ≥ 3, min-sum NP-hard [136]

directed planar graph, min-sum pol.alg, k = 2, 3 [37, 88]

directed, k = 2, min-max NP-hard [92]

Table 3.1: Complexity of variants of the k-VDPP

(ii) Polynomial when k is fixed (algorithms in O(n3) [114] and O(n2) [85]).

In the next section, we will show that the SC-MSOND problem is NP-hard, except

for some cases, using a reduction from the k-VDPP.

3.3 Complexity results

In this section, we propose to study the complexity of the MSOND problem. To

achieve this, we will distinguish the case of single commodity SC-MSOND and the

case of multi-commodity MSOND. For both SC-MSOND and MSOND, we distinguish

different cases depending on the number of Steiner nodes |S| (resp. terminal nodes

|T |), whether it is fixed or a part of the input.

3.3.1 Single commodity MSOND problem

Consider the case of the SC-MSOND problem. We first study the case of a fixed

number of Steiner nodes.

3.3.1.1 Case of fixed number of Steiner nodes (|S| fixed)

Let us denote by T = {t1, t2, ..., tq} the set of terminal nodes and S = {s1, s2, ..., sp}

the set of Steiner nodes for the demand.

3.3 Complexity results 57

When the number of Steiner nodes is fixed, it is possible to enumerate in a polynomial

time the solutions of SC-MSOND. Algorithm 3 illustrates this enumeration. Let us

denote by SOL the possible solutions for SC-MSOND and by S0(T) the solution given

by all the edges between successive terminals of T .

Algorithm 3: SC-MSOND: solutions’ enumeration

SOL← S0(T);1

forall s ∈ S do2

forall Sol ∈ SOL do3

forall (tj , tj+1) successive terminals of Sol do4

T ′ = {t1, ..., ti, s, tj, ..., tq};5

/* s will be after considered as a terminal */

SOL ′ ← SOL ′ ∪ S0(T
′);6

SOL← SOL ∪ SOL ′;7

SOL ′ ← ∅;8

return SOL;9

The idea of Algorithm 3 is the following. We start from the trivial initial solution

S0(T). Then, we consider a Steiner node denoted in the algorithm by s. In the first iter-

ation, this coincides with s1, the first Steiner node to be inserted in the solution. Since

inserting Steiner nodes between two successive terminals instead of the edge between

these terminals gives always feasible solutions, the Steiner node s1 will be inserted be-

tween all the sections of the demand. Recall that a section is defined by two successive

terminals of a demand. This means that the Steiner node s1 will be considered like

a ”terminal” with different possible positions between the initial terminals T of the

demand. Indeed, since the terminals are considered in a predefined order, the Steiner

”terminal” node s1 can be placed between the initial terminals t1 and t2 or t2 and t3,

etc... yielding to |T | feasible solutions. At the second iteration, the same reasoning

will be applied considering all the previous solutions and inserting this time the Steiner

node s2. And so on, until considering all the possible solutions inserting the different

Steiner nodes.

From a complexity point of view, the algorithm can be inspected as follows. In the

first level, we have only one solution using 0 Steiner nodes. In the second level, we

consider the Steiner node s1 and depending on its position, we get |T | more solutions.

We then get in total |T |+1 feasible solutions. In the third level, we will apply the same

process inserting s2 for the |T |+1 previous solutions, yielding hence to (|T |+1)∗(|T |+2)

feasible solutions. Repeating the same procedure for all the Steiner nodes, at the last

58 MSOND Problem: context and complexity

level, we will have 1∗(|T |+1)∗(|T |+2)∗(|T |+3)∗....∗(|T |+|S|) possible solutions which

is dominated by 1∗(|T |+|S|)∗(|T |+|S|)∗(|T |+|S|)∗....∗(|T |+|S|) = (|T |+|S|)|S| = n|S|

and this is polynomial since we suppose that |S| is fixed.

Consequently, we conclude that Algorithm 3 is polynomial and it has a complexity

O(n|S|).

Remark 3.4 When the number of terminals |T | is fixed, n = |T | + |S| is also fixed

and hence O(n|S|) is constant.

Based on the developments given above, we have the following result.

Theorem 3.5 When the number of Steiner nodes is fixed, it is possible to enumerate

in O(n|S|) all the solutions of the SC-MSOND problem.

In the next section, we prove that if |S| is input the SC-MSOND problem become

NP-hard.

3.3.1.2 Case of non-fixed number of Steiner nodes (|S| input)

In this section, we study the complexity of the SC-MSOND problem when the number

of Steiner |S| is a part of the input.

The SC-MSOND problem can be defined as follows:

Input: an undirected graph G′ = (V ′, E ′), a cost w′
e ≥ 0 associated to each e′ ∈ E ′

and T ′ = {v1, ..., vl} terminals.

Output: A simple cycle going in order through the terminals T ′ and such that the

total cost is minimum.

The corresponding decision problem is to find if there exists an elementary cycle

going in order through the terminals T ′ and that the total cost is at most equal to

a positive integer U . Recall that T ′ constitutes the terminals corresponding actually

to the source, the destination and intermediary nodes used in the two paths between

the source and the destination. Since the two given paths are vertex disjoint, we have

always |T ′| ≥ 3.

Now, consider the problem called Weighted Min-Sum Vertex Disjoint Paths Problem

(WMSVDPP). This problem can be defined as follows:

3.3 Complexity results 59

Input: an undirected graph G = (V,E), a cost we ≥ 0 associated to each e ∈ E, a

parameter k ≥ 3 and T = {(si, ti) ∈ V, i = 1, ..., k} pairs of origin-destination.

Output: k vertex disjoint paths P1, ..., Pk, where Pi is a path from si to ti, i = 1, ..., k

such that the total cost is minimum.

Theorem 3.6 SC-MSOND problem is equivalent to the minimum sum WMSVDPP.

Proof We prove in the following that the decision problem associated with the SC-

MSOND problem is equivalent to the decision problem associated with the WMSVDPP.

The decision problem associated with WMSVDPP is to find if there exists k vertex

disjoint paths P1, ..., Pk, where Pi is a path from si to ti, i = 1, ..., k such that the total

cost is at most equal to a positive integer U .

We first propose a polynomial reduction from the WMSVDPP to the SC-MSOND

problem.

Consider an instance I of the WMSVDPP formed by an undirected graphG = (V,E),

a cost we ≥ 0 for each e ∈ E and T = {(si, ti) ∈ V 2, i = 1, . . . , k}. We construct an

instance I ′ of the SC-MSOND problem formed by an undirected graph G′ = (V ′, E ′),

w′
e ≥ 0 for each e ∈ E ′ and T ′ as follows (see Figure 3.5). We add to a copy of the

graph G, k vertices u1, ..., uk and 2k edges tiui, ui and si+1, i = 1, ..., k with sk+1 = s1.

Denote Eu the added edges. Let w′
e = we if e ∈ E and 0 otherwise. Finally we set

T ′ = {s1, t1, u1, s2, ..., sj, tj, uj..., sk, tk, uk, s1} the terminals.

t2s2t1s1

sk
tk

s3

t3

s2t1s1

sk
tk

t3

uk

u3uk−1

t2

s3

0

0

0

u1

u2

0

0

0

0

0

Figure 3.5: Reduction from the WMSVDP to the SC-MSOND problem

In the following we show that there exist k vertex disjoint paths between the pairs

of T in G such that the total cost is at most equal to U if and only if there exists in

60 MSOND Problem: context and complexity

G′ an elementary cycle going in order through the terminals T ′ and such that the total

cost is at most equal to U .

Consider first a solution of the WMSVDPP in G with a total cost C ≤ U . The solution

consists of k vertex disjoint paths between the pairs (si, ti), i = 1, ..., k. These paths

plus the set of edges Eu constitute by construction an elementary cycle in G′ going in

order through the terminals of T ′. And since the weights of all edges in Eu is equal to

0, the cost of the cycle is equal to C which is at most equal to U .

Consider now an elementary cycle in G′ going in order through the terminals T ′ with

a total cost C ′ ≤ U . Consider the sections between the terminals (si, ti), i = 1, ..., k.

Since the cycle is elementary, these sections are vertex disjoint. Moreover, as the

weights of all edges in Eu are 0, the total weight of the sub-paths between (si, ti), i =

1, ..., k is exactly equal to C ′ which at most equal to U .

Now, we present a polynomial reduction from the SC-MSOND problem to theWMSVDPP.

In a similar way, consider an instance I ′ of the SC-MSOND problem formed by a

graph G′ = (V ′, E ′), a cost w′
e ≥ for each e ∈ E ′ and T ′ = {t1, t2, . . . , tk} We construct

an instance of WMSVDPP formed by a graph G = (V,E), a cost we ≥ for each e ∈ E

and T = {(si, ti) ∈ V, i = 1, ..., k} as follows (see Figure 3.6). We duplicate all the

terminals T ′ = {t1, t2, ..., tk} by creating S = {s2, s3, ..., sk, s1} such that with terminal

tj we associate a copy sj+1 for j = 1, ..., k − 1 and with tk is associated s1. We also

make a copy of all the incident edges to terminals tj , j = 1, ..., k as follows. For each

v ∈ δ(tj) we create an edge (sj+1, v) ∈ E ′, j = 1, ..., k − 1 and with each v ∈ δ(tk)

we associate an edge (s1, v) ∈ E ′. We also add edges between the terminals of T ′ and

their corresponding vertices in S. Denote Es the added edges. Let we = w′
e if e ∈ E ′.

If e = (tj, sj+1), j = 1, ..., k − 1 or e = (tk, s1), that is e is an edge between a terminal

of T ′ and its corresponding in S, then we = 0. Else, for each e = (sj+1, v) with v ∈ V ′

and j = 1, ..., k − 1, we = w′
tjv

and ws1v = w′
tkv

for each v ∈ δ(tk). We set T = T ′ ∪ S.

In the following we show that there exists in G′ an elementary cycle going in order

through the terminals T ′ such that the total cost is at most equal to U if and only if

there exist k vertex disjoint paths between the pairs (si, ti) ∈ T, i = 1, ..., k such that

the total cost is at most equal to U .

Consider first a solution of the SC-MSOND problem in G′ with a total cost C ′ ≤ U .

The solution consists of an elementary cycle in G′ going in order through the terminals

of T ′. By construction, we can deduce an equivalent cycle going in order through

the terminals T = {t1, s2, t2, s3, ..., tk−1, sk, tk, s1}. This guarantees paths between the

different pairs (si, ti), i = 1, ..., k. These paths are disjoint since the cycle joining the

nodes in T is elementary. Moreover, the total weight of these paths is exactly equal to

3.3 Complexity results 61

t3t2t1

tj

tk

t4 t2t1

tj

tk

s1
0

0

sj+1

0

t4

s5

t3

s4s3s2
0

0

0

Figure 3.6: Reduction from the MSOND problem to the WMSVDP

the cost of the elementary cycle C ′ which is at most equal to U . �

Using the reduction developed above, we can state the following result.

Theorem 3.7 When |S| is input, the SC-MSOND is :

(i) NP hard if |T | is part of the input.

(ii) polynomial if |T | is fixed.

Proof Deduced from Theorem 3.3 and Theorem 3.6. �

In the next section, we propose to study the case of many demands.

3.3.2 Multi-commodity MSOND problem

Consider now the case of multi-commodity MSOND problem (k > 1). Two cases are

to be discerned, the case when the number of demands |K| is fixed and the case when

|K| is input.

62 MSOND Problem: context and complexity

3.3.2.1 Case of fixed |K|

In this case, we have the following results

Theorem 3.8 When the number of demands |K| is fixed, the MSOND problem is

NP-hard if and only if for each demand k ∈ K, the number of Steiner nodes |Sk| is

input.

Proof First, suppose that |Sk| is fixed for each k ∈ K. From Theorem 3.5, we know

that it is possible to enumerate all the solutions for a single demand k ∈ K in O(n|Sk |).

Having |K| fixed, this implies that we can enumerate all the possible solutions of the

MSOND problem in O(n|S|×|K|) (where S = max
k∈K
|Sk|). But this means that in this

case, the MSOND problem can be solved in polynomial time. Thus if the MSOND

problem is NP-hard then |Sk|, k ∈ K is input.

Conversely, suppose that |Sk| is input for each demand k ∈ K. In what follows,

we will prove that the MSOND problem is in this case NP-hard. To this end, we

distinguish two sub-cases.

• First, suppose that |Tk| is input. As it has been shown in Theorem ??, we know

that the SC-MSOND problem is NP-hard. Since the SC-MSOND problem is a

particular case of the MSOND problem, we deduce that the MSOND problem is

also NP-hard.

• Now, we will deal with the case of |Tk| fixed. Clearly, if we take the simple case

where for each k ∈ K, |Tk| = 3, the problem equivalent to the Steiner TSP (since

there is no order constraint between the different terminal). As the Steiner TSP

is NP-hard and constitutes a particular case of our problem, we then deduce that

the MSOND problem is NP-hard as well.

Thus if |Sk|, k ∈ K is input then the MSOND problem is NP-hard. �

3.3.2.2 Case of |K| input

In this case, we have the following result

Theorem 3.9 The MSOND problem is NP-hard when the number of demands |K| is

inputand the number of Steiner node |Sk|, k ∈ K is input, .

3.4 Concluding remarks 63

Proof The result follows from Theorem 3.7 as the latter is a particular case of the

one described in this theorem. �

Remark 3.10 1) When |Sk| and |Tk| for k ∈ K are fixed, and |K| is input, it is

clear that we can apply Algorithm 3 and get a complexity of O(n|S||K|). This

is polynomial since |Sk| and |Tk| are fixed for k ∈ K, and |K| can not exceed

n(n− 1)/2 (which corresponds to all the possible demands in the graph).

2) When |S| is fixed and |T | and |K| are input, we conjecture that the MSOND

problem is NP-hard.

3.3.3 Summary table

In this section, we propose a recapitulation of the different cases of complexity of the

MSOND problem in the case of single and multiple demands. Table 3.3.3 reports the

different complexity results for the MSOND problem depending on the cardinality of

Steiner nodes |S|, terminal nodes |T | and demands |K|, whether they are fixed or input.

3.4 Concluding remarks

In this chapter, we have presented a problem related to survivability multilayer IP-over-

Optical networks, called the Multilayer Survivable Optical Network Design Problem

(MSOND problem). We have shown that the problem is very close to the classical

Travelling Salesman Problem with its variants, Steiner TSP and TSP with precedence

constraints. Our problem is also closed to the well known k-Vertex Disjoint Paths

Problem. By a reduction of this problem, we have proved that the SC-MSOND problem

is NP-hard when the number of terminals and Steiner nodes of the demand are input.

For a fixed number of Steiner nodes, we have given a polynomial time algorithm to

enumerate all the possible solutions of the problem. In the following chapters, we

propose several integer linear programming formulations for the MSOND problem and

develop efficient exact algorithms to solve random and realistic instances. We also

carry on a polyhedral study of the polytope of one of these formulations, called the cut

formulation, that will be present in the next Chapter.

6
4

M
S
O
N
D

P
r
o
b
le
m
:
c
o
n
te
x
t
a
n
d

c
o
m
p
le
x
it
y

|T| fixed |T| input

|S| fixed |S| input |S| fixed |S| input

Single Commodity Constant Polynomial Polynomial NP-hard

Algorithm 3 Robertson and Seymour [114] Algorithm 3 Karp [84]

O(n|S|) Kawarabayashi [85] O(n|S|)

Section 3.3.1.1 Section 3.3.1.2 Section 3.3.1.1 Section 3.3.1.2

Many Commodities Constant NP-hard Polynomial NP-hard

Algorithm 3 Steiner TSP Algorithm 3 generalization

|K| fixed O(n|S||K|) O(n|S||K|)

Section 3.3.2.1 Section 3.3.2.1 Section 3.3.2.1 Section 3.3.2.1

Many Commodities Polynomial NP-hard NP-hard NP-hard

Algorithm 3 generalization generalization

|K| input O(n|S||K|)

Section 3.3.2.2 Section 3.3.2.2 Section 3.3.2.2 Section 3.3.2.2

Table 3.2: Summary table of the complexity results for the SC-MSOND and MSOND problems

Chapter 4

Cut formulation and polyhedra

Contents

4.1 Cut formulation . 66

4.2 Associated polytope . 68

4.2.1 Dimension . 68

4.2.2 Facial investigation . 74

4.3 Valid inequalities and facets 96

4.3.1 Steiner cut inequalities . 97

4.3.2 Steiner non-successive terminals inequalities 104

4.3.3 Steiner F-partition inequalities 112

4.3.4 Generalized Steiner partition inequalities 125

4.3.5 Generalized disjunction inequalities 129

4.3.6 Steiner comb inequalities . 130

4.4 Concluding remarks . 132

In this chapter, we consider the MSOND problem from a polyhedral point of view. We

first propose an integer programming formulation for the problem. This uses two types

of decision variables, design variables and demand variables. It is based on an expo-

nential number of cut inequalities and is thus called cut formulation. In a second step,

we study the polytope associated to this formulation. We characterize its dimension

and study the facial aspect of its basic constraints. We then introduce further classes of

valid inequalities and describe necessary and sufficient conditions for these inequalities

to be facet defining. This investigation will give a good base for the algorithmic study

that will be presented in chapter 5.

66 Cut formulation and polyhedra

4.1 Cut formulation

In this section, we present an integer programming formulation for the MSOND prob-

lem using two sets of variables. The first set of variables, called demand variables,

represent the edges used to route the two paths of each demand. The second set rep-

resents the edges that are considered in the solution and that can be used to route one

or more demands. These are called design variables.

Let x ∈ Rm|K| such that for each demand k ∈ K and each arc e ∈ E

xk
e =

{

1 if demand k is routed using edge e,

0 otherwise,

and let y ∈ Rm such that for each e ∈ E,

ye =

{

1 if edge e is installed,

0 otherwise.

An instance of the MSOND problem corresponds to the triplet (G,K, T). Let S(G,K, T)

define the set of the feasible solutions of the MSOND problem associated with the graph

G, the demand setK and the set of the terminals of the different demands T =
⋃

k∈K Tk.

A vector (x, y) induced by a solution of S(G,K, T) satisfies the following constraints:

∑

e∈δ
Gk,j (W)

xk
e ≥ 1

for all k ∈ K, qkj = (wk
j , w

k
j+1) ∈ Tk,

W ⊂ V k,j : wk
j ∈ W andwk

j+1 ∈ W,
(4.1)

∑

e∈δ(w)

xk
e ≤ 2 for allw ∈ V, k ∈ K, (4.2)

xk
e ≤ ye for all e ∈ E, k ∈ K, (4.3)

0 ≤ xk
e for all e ∈ E, k ∈ K, (4.4)

ye ≤ 1 for all e ∈ E. (4.5)

Inequalities (4.1) are called section cut inequalities. They ensure for each section

qkj = (wk
j , w

k
j+1) of a demand k a path in the reduced graph Gk,j. Recall that the

reduced graph Gk,j is obtained by deleting all the terminals Tk of the demand except

the extremities wk
j and wk

j+1 of section qkj . Hence, this guarantees for each demand

two paths routing it and going in order through its terminals. Inequalities (4.2) are

called disjunction inequalities. They ensure that the different sections of a demand k

are disjoint and hence that the associated paths are node-disjoint. Inequalities (4.3)

are the linking inequalities which express the fact that if an edge e ∈ E is not installed,

4.1 Cut formulation 67

that is ye = 0, then it can not be used to route any demand k ∈ K. Finally, inequalities

(4.4) and (4.5) are the trivial inequalities.

Theorem 4.1 The set {(x, y) ∈ {0, 1}m(|K|+1) : (x, y) satisfies (4.1) − (4.5)} corre-

sponds to the set S(G,K, T) of the feasible solutions of the MSOND problem.

Proof It is clear that the incidence vector of any solution of the MSOND problem

satisfies inequalities (4.1)-(4.5).

Let (x, y) be a vector in {0, 1}m(|K|+1) that does not induce a feasible solution of the

MSOND problem. Suppose that (x, y) satisfies inequalities (4.1) and (4.3). In what

follows, we show that there is at least one inequality of type (4.2) that is violated by

(x, y). Consider a demand k ∈ K. By inequalities (4.1), we know that for each section

qkj = (wk
j , w

k
j+1) ∈ Tk, there exists a sub-path between its extremities wk

j and wk
j+1. This

means that, for demand k, there are two paths going through its terminals. Moreover,

since the sub-paths of each section of demand k are considered in the reduced graphs,

the two paths routing demand k satisfy the order of the terminals of Tk. AS (x, y)

is not feasible for the MSOND problem, there are at least two sections of demand k

that are not node-disjoint, say qkj and qki . Hence, qkj and qki share at least one Steiner

node of Sk. As qkj and qki have different terminals, one of the shared nodes, say s,

must be of degree at least three in the subgraph induced by qkj and qki . Consequently,

inequality (4.2), corresponding to s, is violated and the result follows. �

An immediate consequence of Theorem 4.1 is the following.

Corollary 4.2 The MSOND problem is equivalent to the following integer program

min{cy | (x, y) ∈ {0, 1}m(|K|+1) : (x, y) satisfies (4.1)− (4.5)} (4.6)

Problem 4.6 will be called the cut formulation.

Theorem 4.3 The linear relaxation of (4.6) can be solved in polynomial time.

Proof Since there is a polynomial number of constraints (4.2)-(4.5), the complexity

of the linear relaxation of (4.6) depends only on the one of the separation problem of

inequalities (4.1). Let us denote by (x̄, ȳ) the solution to be separated. The separation

of constraints (4.1) can be reduced to the calculation of
∑

k∈K |Tk| minimum cuts in

graphs with weights x̄k ≥ 0, k ∈ K. This can be done in polynomial time. �

68 Cut formulation and polyhedra

4.2 Associated polytope

In this section, we study the convex hull of the solutions of the MSOND problem. We

characterize its dimension and discuss necessary and sufficient conditions for inequali-

ties (4.1)- (4.5) to be facet defining.

Recall that an instance of the MSOND problem corresponds to the triplet (G,K, T),

where G is a graph, K a set of demands, each demand has a set Tk of terminals and

T =
⋃

k∈K Tk. Each solution in S(G,K, T) is represented by the pair (U, I) where I ⊆ E

is the set of installed edges and U = (U1, U2, ..., U|K|) ⊂ E|K| such that Uj, j = 1, ..., |K|,

is the set of used edges for demand j. Given a solution (U, I) ∈ S(G,K, T), we define

(xU , yI) its incidence vector. Note that xU = (xU1, xU2 , ..., xUK).

Now, we present a solution for the MSOND problem that will be used throughout

this chapter.

Remark 4.4 Assume that G is a complete graph. Let U0 = (U0
1 , U

0
2 , ..., U

0
|K|) be

the set of edges between the successive terminals of all the demands, that is U0
j =

{wj
iw

j
i+1, j ∈ K, i = 1, ..., |Tj|}. And denote I0 =

⋃

j∈K U0
j . The pair (U0, I0) is a

solution of the MSOND problem.

We denote by MSOND(G,K, T) the polytope associated with the MSOND problem,

that is the convex hull of the solutions of formulation (4.6) corresponding to K and T

in G, i.e.

MSOND(G,K, T) = conv{cTy | (x, y) ∈ {0, 1}m(|K|+1) : (x, y) satisfies (4.1)− (4.5)}.

In the following sections, we study the dimension of MSOND(G,K, T) and the facial

aspect of the constraint (4.1)-(4.5).

4.2.1 Dimension

In this section, we characterize the dimension of the polytope MSOND(G,K, T). We

first begin by giving some definitions and setting some assumptions which are necessary

for the sequel of the section.

Consider a demand k ∈ K and suppose that k does not have Steiner nodes. This

means that Tk = V and Sk = ∅. Note that in this case, the only alternative to route

4.2 Associated polytope 69

demand k is to route each section qkj = (wk
j , w

k
j+1) ∈ Tk using the edge wk

jw
k
j+1. Here,

every solution of the MSOND problem will use the edges wk
jw

k
j+1, j = 1, ..., |Tk|, which

implies that these edges are essential for demand k.

More generally, consider an edge e ∈ E and a section qkj = (wk
j , w

k
j+1) ∈ Tk of demand

k. Assume that every wk
jw

k
j+1-cut of G

k,j, separating the terminals wk
j and wk

j+1 reduces

to edge e. That is to say the wk
jw

k
j+1-cut is of a cardinality 1. Hence, edge e is an

essential edge for demand k.

In the following, we summarize these cases and give a general characterization of

essential edges for a demand k ∈ K.

Definition 4.5 An edge e ∈ E is said to be essential if there exists a section qkj =

(wk
j , w

k
j+1) ∈ Tk, j = 1, ..., |Tk| of a demand k ∈ K, and a wk

jw
k
j+1-cut of G

k,j consisting

of e.

We will denote by E∗ the set of essential edges in graph G.

Note that if G = (V,E) is complete and for each demand k ∈ K Tk 6= V , then E∗ = ∅.

Throughout the manuscript, we will restrict ourselves to that case. These assumptions

are not restrictive. First, because if the graph is not complete, one can consider a

complete graph by associating very hight costs to the non-existent edges. Moreover,

if there exist a demand k ∈ K such that Sk = ∅, then the solution is unique for

this demand. In this case, the problem reduces to solving the MSOND problem for

the K \ {k} remaining demands. From a practical point of view, the terminals of a

demand k ∈ K could never coincide with all the vertices V of the graph. Furthermore,

for convenience, we will suppose that each demand k ∈ K has at least 2 Steiner nodes

in Sk. This will enable to considerably simplify some facets proofs.

Under these hypotheses, we give in the following a characterization of the dimension

of MSOND(G,K, T). To this end, we first identify the system of equation of the

MSOND(G,K, T) polytope. We then prove that every equation of MSOND(G,K, T)

is a linear combination of this system.

Proposition 4.6 Consider a demand k ∈ K and let wk
j ∈ Tk be a terminal of demand

k. Then wk
j has a degree equal to 2 in any solution.

∑

e∈δ(wk
j)

xk
e = 2 for all wk

j ∈ Tk, k = 1, ..., K. (4.7)

70 Cut formulation and polyhedra

Proof Consider a solution (x, y) of the MSOND problem. Consider a demand k and

let wk
j ∈ Tk be one of its terminals. By constraints (4.1), there is a path between wk

j−1

and wk
j and a path between wk

j and wk
j+1. Moreover, by constraints (4.2), these paths

are node-disjoint. Hence,
∑

e∈δ(wk
j)
xk
e ≥ 2 The result follows by constraints (4.2).

�

Remark 4.7 Since equalities (4.7) are written for each terminal wk
j ∈ Tk, there are

|Tk| equations for each demand k ∈ K.

Proposition 4.8 Consider a demand k ∈ K and let wk
i , w

k
j ∈ Tk be two non-successive

terminals of k. Then edge e = wk
i w

k
j does not belong to any solution of the MSOND

problem. That is

xk
e = 0 for all e = wk

i w
k
j , w

k
i , w

k
j ∈ Tk : j > i, k = 1, ..., K. (4.8)

Proof By constraints (4.1), there is a path between wk
i−1 and wk

i and a path between

wk
i and wk

i+1. Moreover, by equation (4.6), the terminal wk
i has a degree equal exactly

to 2. This implies that edge e could not be used in any solution of the problem. �

Remark 4.9 Let G(Tk) be the graph induced by the terminals Tk of demand k. Notice

that, since G is complete, G(Tk) is complete and contains |Tk|(|Tk|−1)
2

edges. In this

graph, there are exactly |Tk| edges between the successive terminals. All the remaining

edges are between non-successive terminals and in consequence their number is exactly

equal to |Tk|(|Tk|−1)
2

− |Tk| =
|Tk|(|Tk|−3)

2
. Consequently, constraints (4.8) imply |Tk|(|Tk|−3)

2

equations for demand k. In the sequel, we shall denote by pk the number of edges

between non-successive terminals for demand k, that is pk =
|Tk|(|Tk|−3)

2
.

Proposition 4.10 Consider an equation ax+ by = α of MSOND(G,K, T). Then:

1) b = 0,

2) ax = α is a linear combination of equations (4.7) and (4.8).

Proof Let ax+ by = α be an equation of MSOND(G,K, T) where (x, y) is a solution

of the MSOND problem such that x = (x1, x2, .., x|K|) ∈ {0, 1}mK, y ∈ {0, 1}m and

(a, b) are vectors such that a = (a1, a2, ..., a|K|) ∈ RmK and b ∈ Rm.

4.2 Associated polytope 71

We first show that b = 0, which means that all the possible equations of the polytope

MSOND(G,K, T) are expressed only in terms of the x variables.

Consider the feasible solution (U0, I0) given by Remark ??. Recall that U0
j , j =

1, ..., K gives the paths routed on the edges linking the successive terminals of Tj of

demand j ∈ K; I0 =
⋃

j∈K U0
j . Let e ∈ E \ I0 be an arbitrary edge. The solution

(U1, I1) such that I1 = I0 ∪ {e} and U1 = U0 also induces a feasible solution of

MSOND(G,K, T). This implies that the incidence vectors of these solutions satisfy

equation ax + by = α. Consequently, axU0

+ byI
0

= axU1

+ byI
1

= axU0

+ byI
0

+ be,

implying that be = 0. Since e is arbitrarily chosen in E \ I0, we have

be = 0 for all e ∈ E \ I0. (4.9)

In a similar way, let us consider the solution (U2, I2) obtained as follows. Consider

first a demand k ∈ K and let e = titi+1 be an edge between two successive terminals

ti and ti+1 of Tk. Let U2
k = (U0

k \ {e}) ∪ {tis, sti+1} where s ∈ Sk is a Steiner node

of demand k. In addition, let U2
j = U0

j , j = 1, ..., K, j 6= k, and I2 =
⋃

j∈K U2
j . Now,

let us define the solution (U3, I3) given by U3 = U2 and I3 = I2 ∪ {e}. Both are

feasible solutions for the MSOND problem and hence satisfy equation ax+ by = α. As

a consequence, we have axU2

+ byI
2

= axU3

+ byI
3

= axU2

+ byI
2

+ be, which implies

that be = 0. Recall that I0 is the set of edges between the consecutive terminals of all

the demands. As e is arbitrary in I0, this yields

be = 0 for all e ∈ I0. (4.10)

By (4.9) and (4.10) we then have

be = 0 for all e ∈ E. (4.11)

Therefore all the equations of MSOND(G,K, T) are given only in terms of the demand

variables x.

Let ak be the restriction of a on demand k ∈ K. Let Mk =

(

Mk
1

Mk
2

)

be the sub-

matrix of equations (4.7) and (4.8) involving variables xk
e ,e ∈ E, such that Mk

1 is the

sub-matrix corresponding to equation (4.7) and Mk
2 the one corresponding to (4.8). To

prove that ax = α is a linear combination of equations (4.7) and (4.8), it is sufficient to

prove that for each k ∈ K, there exit λk
1 and λk

2 such that ak = λk
1M

k
1 + λk

2M
k
2 where,

λk
1 ∈ R|Tk| and λk

2 ∈ Rpk (recall that pk is the number of edges between non-successive

terminals of Tk).

First, we show that for every edge ss′ between two Steiner nodes s, s′ ∈ Sk, a
k
ss′ = 0.

Consider again the solution (U0, I0) and let (U4, I4) be the solution given by U4
k =

72 Cut formulation and polyhedra

U0
k ∪{ss

′}, U4
j = U0

j for all j ∈ {1, ..., K}\k and I4 =
⋃

j∈K U4
j . Obviously, (U4, I4) is a

solution of the MSOND problem. Since solutions (U0, I0) and (U4, I4) are both feasible

for the MSOND problem and by (4.11) b = 0, we have axU0

= axU4

= axU0

+ akex
k
e .

Hence ake = 0, implying that

akss′ = 0 for all s, s′ ∈ Sk, k ∈ K. (4.12)

Consider now an edge f = titi+1 between two successive terminals ti and ti+1 of

Tk. Let s be a Steiner node of Sk. Consider the solution (U5, I5) given by U5
k =

(U0
k \ {f}) ∪ {tis, sti+1}, U

5
j = U0

j , for each j ∈ {1, ..., K} \ k, and I5 =
⋃

j∈K U5
j . As

(U5, I5) is feasible for the MSOND problem, it follows that axU0

= axU5

= axU0

−

aktiti+1
+ aktis + aksti+1

, implying that aktiti+1
= aktis + aksti+1

. Therefore, as nodes s, ti and

ti+1 are all arbitrary, we have

aktiti+1
= aktis + aksti+1

for all ti, ti+1 ∈ Tk, s ∈ Sk, k ∈ K. (4.13)

Now, we will prove that all the edges linking a terminal to Steiner nodes of Sk have

the same coefficient ake . Consider (U6, I6) obtained from (U5, I5) as follows: U6
k =

(U5
k \{sti})∪{ss

′, s′ti}, U
6
j = U5

j for each j ∈ {1, ..., K}\k and I6 =
⋃

j∈K U6
j , where s

and s′ are Steiner nodes of Sk. Since (U
5, I5) and (U6, I6) satisfy equation ax+by = α,

this implies axU5

= axU6

= axU5

− aksti + akss′ + ak
s′tki

, and hence aksti = akss′ + aks′ti .

By (4.12), it follows that

aksti = aks′ti = λk
1(ti)

for all ti ∈ Tk, s, s
′ ∈ Sk, k ∈ K,

for someλk
1(ti) ∈ R.

(4.14)

Now, let λk = (λk
1, λ

k
2), k ∈ K such that λk

1 = (λk
1(ti), ti ∈ Tk) where λ

k
1(ti) is as given

by (4.14) and λk
2 = (λk

2(uv), u, v ∈ Tk, uv /∈ U0
k) such that λk

2(uv) = akuv−λ
k
1(u)−λ

k
1(v),

k ∈ K. By (4.13), we have aktiti+1
= λk

1(ti) + λk
1(ti+1) for each two successive terminals

ti and ti+1 of Tk.

The vectors λk
1 and λk

2 can be then given so that:

akuv =

λk
1(u) + λk

1(v) if uv = titi+1, ti, ti+1 ∈ Tk,

λk
1(u) if u ∈ Tk, v ∈ Sk,

λk
2(uv) + λk

1(u) + λk
1(v) if uv = titj , ti, tj ∈ Tk : j > i,

0 if uv = sisj, si, sj ∈ Sk : j 6= i,

yielding

ak = λk
1M

k
1 + λk

2M
k
2 for all k ∈ K,

as desired. �

4.2 Associated polytope 73

By Proposition 4.10, we know that the only equations of MSOND(G,K, T) are equa-

tions (4.7) and (4.8). The matrix M of equations of MSOND(G,K, T) can hence be

written as

M =

M1

M2

. . .

MK

where Mk is the matrix of the equations system (4.7) and (4.8) involving variables xk
e

for demand k ∈ K. Each matrix Mk, k = 1, ..., K, consists of two sub-matrices. The

first is an incidence matrix terminal-edge and the second is a restriction of the identity

matrix for the edges between non-successive terminals. More precisely, each matrix

Mk can be organized as in Figure 4.1. The first m1 columns correspond to the edges

between successive terminals (m1 = |Tk|). The next m2 columns correspond to the

edges between non-successive terminals (m2 = pk). The last m3 columns correspond

to the edges between a terminal of Tk and a Steiner node of Sk. Here, the first columns

are related to the Steiner node s1, the second to s2 and so on. The first |Tk| rows of Mk

are associated with the terminals of Tk, and the last ones are associated with the edges

between non-successive terminals. Note that the first |Tk| rows of Mk correspond to

equations (4.7) and the last pk ones correspond to equations (4.8). The sub-matrices

I1, ..., I|Sk| are identity matrices and are related to the steiner nodes s1, ..., s|Sk| of Sk,

respectively.

����
����
����
����

����
����
����
����

���
���
���

���
���
���

Mk =

pk

Tk

I

I|Sk|I1

0

m2 m3m1

0

Mincidence

Figure 4.1: Matrix of equations for demand k

Observe that Mk contains two blocks consisting of two idendity matrices, namely I1
and I (hatched matrices). Moreover, these matrices cover the rows of Mk. Hence Mk

is of full rank equal to |Tk|+ pk =
|Tk|(|Tk|−1)

2
.

AsM is a diagonal matrix where each block is a matrixMk, it follows that rank(M) =
∑

k∈K

rank(Mk) =
∑

k∈K

|Tk|(|Tk|−1)
2

.

74 Cut formulation and polyhedra

As a consequence, we have the following result.

Theorem 4.11

dim(MSOND(G,K, T)) = (|K|+ 1)|E| −
∑

k∈K

|Tk|(|Tk| − 1)

2
.

4.2.2 Facial investigation

In this section, we study the facial structure of the polytope MSOND(G,K, T). In

particular, we give necessary and sufficient conditions for inequalities of formulation

(4.6) to be facet defining.

4.2.2.1 Trivial inequalities

First, we will be interested in the non-negativity inequality xk
e ≥ 0. For convenience,

we will suppose that each demand has at least 3 Steiner nodes. The following theorem

gives a necessary and sufficient condition under which inequality xk
e ≥ 0 defines a facet

of MSOND(G,K, T).

Theorem 4.12 Inequality xk
e ≥ 0 defines a facet of MSOND(G,K, T) if and only if e

is not between non-successive terminals of Tk.

Proof Denote by F k
e the face induced by inequality xk

e ≥ 0, that is

F k
e = {(x, y) ∈ MSOND(G,K, T) : xk

e = 0}.

The necessity condition is a consequence of Proposition 4.8.

In what follows, we suppose that e is not an edge between non-successive terminals

of T k.

Denote inequality xk
e ≥ 0 by ax + by ≤ α and let rx + qy ≤ β be a valid inequality

defining a facet F of MSOND(G,K, T). Assume that F k
e ⊆ F . To prove that F k

e

is a facet of MSOND(G,K, T), it suffices to show that there exist ρ ∈ R and λ =

(λj, j ∈ K), λj ∈ R|Tj |+pj for j ∈ K, such that q = ρb and r = ρa + λM (where

r = (r1, r2, ..., r|K|) with rj ∈ Rm, j = 1, ..., |K| and M is the matrix of equations

4.2 Associated polytope 75

defined above). Note here that a = (a1, a2, ..., a|K|) is such that ai ∈ Rm, i = 1, ..., |K|

with ai = 0 for i ∈ {1, ..., |K|} \ {k}, ake = 1 and ake′ = 0 for e 6= e′. Note also that

b = 0.

Case 1. e = s1s2, where s1 and s2 are Steiner nodes of Sk.

First, we prove that q = 0.

Consider the solution (U0, I0) given in Remark 4.4 and let e ∈ E \ I0. The solution

(U1, I1) such that I1 = I0 ∪ {e} and U1 = U0 also induces a feasible solution of

MSOND(G,K, T). Moreover, the incidence vectors of these solutions are in F k
e and

hence in F . This implies that these vectors satisfy equation rx+qy = β. Consequently,

rxU0

+qyI
0

= rxU1

+qyI
1

= qxU0

+qyI
0

+qe, implying that qe = 0. Since e is arbitrarily

chosen in E \ I0, we have

qe = 0 for all e ∈ E \ I0. (4.15)

Now, consider the solution (U2, I2) obtained as follows. Consider a demand l ∈ K

and let e = titi+1 be an edge between two successive terminals ti and ti+1 of Sl. Let

U2
l = (U0

l \ {e}) ∪ {tis, sti+1} where s ∈ Sl is a Steiner node of demand l. In addition,

let U2
j = U0

j , j = 1, ..., K, j 6= l, and I2 =
⋃

j∈K U2
j . Now, let us define the solution

(U3, I3) given by U3 = U2 and I3 = I2 ∪ {e}. Both are feasible solutions for the

MSOND problem and are in F k
e . Hence, they satisfy equation rx + qy = β. As a

consequence, we have rxU2

+ qyI
2

= rxU3

+ qyI
3

= rxU2

+ qyI
2

+ qe, which implies that

qe = 0. As e is arbitrary in I0, this yields

qe = 0 for all e ∈ I0. (4.16)

By (4.15) and (4.16), we then have

qe = 0 for all e ∈ E. (4.17)

We now show that ajss′ for all s, s′ ∈ Sj such that either j = k and ss′ 6= e or

j ∈ K \ {k}.

Consider an edge ss′ between two Steiner nodes s and s′ of Sk different from e.

Let (U4, I4) be the solution defined as follows: U4
k = U0

k ∪ {ss
′}, U4

j = U0
j for all j ∈

{1, ..., K}\{k} and I4 =
⋃

j∈K U4
j . As ss

′ /∈ U0
k and ss′ /∈ U4

k , (x
U0

, yI
0

), (xU4

, yI
4

) ∈ F k
e

and consequently (xU0

, yI
0

), (xU4

, yI
4

) ∈ F . Hence, by (4.17), it follows that rxU0

=

rxU4

. This implies that rxU0

= rxU0

+ rkss′, yielding to rkss′ = 0. As s and s′ are

arbitrary in Sk, we then obtain that

rkss′ = 0 for all ss′ ∈ Sk, ss
′ 6= e. (4.18)

76 Cut formulation and polyhedra

Consider now a demand l ∈ K \ {k} and suppose that s and s′ are here Steiner nodes

of Sl. In a similar way, let (U5, I5) be the solution obtained from (U0, I0) as follows,

U5
l = U0

l ∪{ss
′}, U5

j = U0
j for all j ∈ {1, ..., K} \ {l} and I5 =

⋃

j∈K U5
j . It is clear that

(xU5

, yI
5

) ∈ F k
e and hence (xU5

, yI
5

) ∈ F . We then have rxU0

= rxU5

= rxU0

+ rlss′

implying that rlss′ = 0. As s and s′ are arbitrary in Sl, this yields

rlss′ = 0 for all ss′ ∈ Sl, l ∈ K \ {k}. (4.19)

Now, we will consider edges between successive terminals.

Consider a demand l ∈ K and let titi+1 be an edge between two successive terminals

ti and ti+1 of Tl. Consider a Steiner node s of Sl and let (U6, I6) be the solution

given by U6
l = (U0

l \ {titi+1}) ∪ {tis, sti+1}, U
6
j = U0

j for each j ∈ {1, ..., K} \ {l}

and I6 =
⋃

j∈K U6
j . As (xU6

, yI
6

) is in F k
e and hence in F , by (4.17) we have rxU0

=

rxU0

− rltiti+1
+ rltis + rlsti+1

, and consequently, rltiti+1
= rltis + rlsti+1

. As l, ti, ti+1 and s

are chosen arbitrarily, we have

rltiti+1
= rltis + rlsti+1

for all ti, ti+1 ∈ Tl, s ∈ Sl, l ∈ K. (4.20)

Now, we will prove that all the edges linking a terminal to Steiner nodes have the

same coefficient.

Consider a demand l ∈ K \{k} and two Steiner nodes s and s′ in Sl. Denote (U7, I7)

the solution given by U7
l = (U6

l \{sti})∪{ss
′, s′ti}, U

7
j = U6

j for each j ∈ {1, ..., K}\{l}

and I6 =
⋃

j∈K U6
j . Clearly, (xU7

, yI
7

) is in F k
e and thus in F . The incidence vectors

of (U6, I6) and (U7, I7) satisfy equation rx + qy = β. As q = 0, this implies rxU6

=

rxU7

= rxU6

− rlsti + rlss′ + rls′ti . This leads to rlsti = rlss′ + rls′ti . By (4.19), we obtain

rlsti+1
= rls′ti+1

. As demand l, and nodes s, s′ and ti+1 are arbitrary, we then have

rlsti = rls′ti for all ti ∈ Tl, s, s
′ ∈ Sl, l ∈ K \ {k}.

In a similar way, we can show that

rksti = rks′ti for all ti ∈ Tk, s, s
′ ∈ Sk, ss

′ 6= e.

The previous relation can be generalized even for {s, s′} = {s1, s2}. In fact, if we

suppose that there is s ∈ Sk \ {s1, s2}, we know that for every terminal ti of Tk,

rktis1 = rktis and rktis2 = rktis. As a consequence, we have rktis1 = rktis2 .

Overall, we obtain that

rlsti = rls′ti = λl
1(ti)

for all ti ∈ Tl, s, s
′ ∈ Sl, l ∈ K,

for some λl
1(ti) ∈ R.

(4.21)

4.2 Associated polytope 77

Now, let ρ = rks1s2 and λl = (λl
1, λ

l
2), l ∈ K such that λl

1 = (λl
1(ti), ti ∈ Tk) where

λl
1(ti) is as given by (4.21) and λl

2 = (λl
2(uv), u, v ∈ Tk, uv /∈ U0

l) such that λl
2(uv) =

rluv − λl
1(u)− λl

1(v), l ∈ K.

The coefficients rluv for all uv ∈ E and l ∈ K can then be expressed in terms of ρ, λl
1

and λl
2 as follows

rluv =

λl
1(u) + λl

1(v) if uv = titi+1, ti, ti+1 ∈ Tl,

λl
1(u) if u ∈ Tl, v ∈ Sl,

λl
2(uv) + λl

1(u) + λl
1(v) if uv = titj , ti, tj ∈ Tl, j > i,

0 if l 6= k and uv = sisj , si, sj ∈ Sl, j 6= i,

0 if l = k and uv = sisj , si, sj ∈ Sk, j 6= i, sisj 6= s1s2,

ρ if l = k and uv = s1s2.

Clearly, rl = ρal + λl
1M

l
1 + λl

2M
l
2, for all l ∈ K. As a consequence, r = ρa + λM .

Case 2. e = s1t1 where s1 is a Steiner node of Sk and t1 a terminal of T k.

First, similarly to Case 1., we can prove that

qe = 0 for all e ∈ E. (4.22)

Now, we will find some relations linking the components of vector r.

First, we will consider the edges between Steiner nodes.

Consider a demand l ∈ K and let ss′ be an edge between two Steiner nodes s and s′

of Sl. Consider the solutions (U0, I0) and (U5, I5) introduced above. Clearly, (xU0

, yI
0

)

and (xU5

, yI
5

) are in F k
e and thus in F . As a consequence, we have rxU0

= rxU5

=

rxU0

+ rlss′ and hence rlss′ = 0. As s and s′ are arbitrarily in Sl, we have

rlss′ = 0 for all s, s′ ∈ Sl, l ∈ K. (4.23)

Now, consider the edges between successive terminals.

Suppose now that demand l 6= k. Consider an edge titi+1 between two successive

terminals ti and ti+1 of Tl and let s be a Steiner node of Sl. Consider again the

solution (U6, I6) defined as follows: U6
l = (U0

l \ {titi+1}) ∪ {tis, sti+1}, U
6
j = U0

j for

each j ∈ {1, ..., K} \ l and I6 =
⋃

j∈K U6
j . As (xU0

, yI
0

) and (xU6

, yI
6

) are in F k
e

and hence in F , we have rxU0

= rxU6

= rxU0

− rltiti+1
+ rltis + rlsti+1

. This yields

78 Cut formulation and polyhedra

rltiti+1
= rltis + rlsti+1

. Remind that demand l and nodes ti, ti+1 and s are all arbitrary.

Therefore we have

rltiti+1
= rltis + rlsti+1

for all ti, ti+1 ∈ Tl, s ∈ Sl, l ∈ K \ {k}. (4.24)

Consider now demand k. Consider an edge titi+1 between two successive terminals

ti and ti+1 of Tk and let s be a Steiner node of Sk such that tis 6= e and sti+1 6= e.

Similarly, let (U8, I8) be the solution defined as follows U8
k = (U0

k \{titi+1})∪{tis, sti+1},

U8
j = U0

j for each j ∈ {1, ..., K} \ {k} and I8 =
⋃

j∈K U8
j . As (xU0

, yI
0

) and (xU8

, yI
8

)

are in F k
e and hence in F , we have we have rxU0

= rxU8

= rxU0

− rktiti+1
+ rktis + rksti+1

,

implying that rktiti+1
= rktis + rksti+1

. As nodes ti, ti+1 and s are all arbitrary for demand

k, we obtain

rktiti+1
= rktis + rksti+1

for all ti, ti+1 ∈ Tk, s ∈ Sk, tis 6= e 6= sti+1. (4.25)

In what follows, we will prove that all the edges linking a terminal to Steiner nodes

have the same coefficient.

Consider again an arbitrary demand l ∈ K \ {k}. Consider two Steiner nodes s and

s′ of Sl and two successive terminals ti, ti+1 ∈ Tl. Let (U7, I7) be the solution defined

above. Obvisouly, (xU6

, yI
6

) and (xU7

, yI
7

) are in F k
e and consequently in F . This,

together with (4.23), allow us to write rlsti = rls′ti . As demand l and nodes s, s′ and ti
are arbitrary, it follows that

rlsti = rls′ti = λl
1(ti)

for all ti ∈ Tl, s, s
′ ∈ Sl, l ∈ K \ {k},

for some λl
1(ti) ∈ R.

(4.26)

Consider now demand k, the Steiner nodes s, s′ ∈ Sk and two successive terminals

ti, ti+1 ∈ Tk such that tis 6= e and s′ti+1 6= e. Along the same line, we can show that

rksti = rks′ti = λk
1(ti)

for all ti ∈ Tk, s, s
′ ∈ Sk, tis 6= e 6= s′ti,

for someλk
1(ti) ∈ R.

(4.27)

Now, let ρ = rks1t1 − λl
1(t1) and λl = (λl

1, λ
l
2), l ∈ K such that λl

1 = (λl
1(ti), ti ∈ Tl)

where λl
1(ti) is as given by (4.26) and (4.27) and λl

2 = (λl
2(uv), u, v ∈ Tk, uv /∈ U0

l)

such that λl
2(uv) = rluv − λl

1(u)− λl
1(v), l ∈ K.

Overall, the coefficients rluv for all uv ∈ E and l ∈ K can be expressed in terms of ρ,

4.2 Associated polytope 79

λl
1 and λl

2 as follows

rluv =

λl
1(u) + λl

1(v) if uv = titi+1, ti, ti+1 ∈ Tl,

λl
1(u) if l 6= k and u ∈ Tl, v ∈ Sl,

λl
1(u) if l = k and u ∈ Tk, v ∈ Sk, uv 6= s1t1,

ρ+ λl
1(u) if l = k and u ∈ Tk, v ∈ Sk, uv = s1t1,

λl
2(uv) + λl

1(u) + λl
1(v) if uv = titj , ti, tj ∈ Tl, j > i,

0 if uv = sisj, si, sj ∈ Tl, j 6= i.

Clearly, we have r = ρa + λM .

Case 3. e = t1t2, where s1 and s2 are terminals of Tk.

Along the same line of the previous cases, we can show that

qe = 0 for all e ∈ E. (4.28)

By constraints (4.1), there must exist a path between the terminals t1 and t2. Hence

any solution of F k
e must necessarily use a subset of Steiner nodes of Sk. For the solutions

that will be used in the sequel of the proof, we suppose that section (t1, t2) is routed

by the path (t1s1, s1t2), where s1 is a Steiner node of Sk.

Now, we establish some relations linking the components of vector r.

First, we consider the edges between Steiner nodes.

Consider a demand l ∈ K \ {k} and let ss′ be an edge between two Steiner nodes s

and s′ of Sl. Let (U
9, I9) be the solution defined by: U9

k = (U0
k \ {t1t2}) ∪ {t1s1, s1t2},

U9
j = U0

j for each j ∈ {1, ..., K} \ k and I9 =
⋃

j∈K U9
j . Now,let us define the solution

(U10, I10) as follows: U10
l = U9

l ∪ {ss
′}, U10

j = U9
j for each j ∈ {1, ..., K} \ l and

I10 =
⋃

j∈K U10
j . As (xU9

, yI
9

) and (xU10

, yI
10

) are in F k
e and hence in F , they satisfy

equation rx+ qy = β. Since q = 0, it follows that rxU9

= rxU10

= rxU9

+ rlss′, yielding

rlss′ = 0. As demand l and nodes s and s′ are all aribtrary, we have

rlss′ = 0 for all s, s′ ∈ Sl, l ∈ K \ {k}. (4.29)

Now, we suppose that s and s′ are Steiner nodes of Sk \ {s1}. In a similar way, we

prove that

rkss′ = 0 for all s, s′ ∈ Sk \ s1.

80 Cut formulation and polyhedra

Since s1 is arbitrarily in Sk, we can construct further solutions by inserting other

Steiner nodes between t1 and t2. This implies that

rkss′ = 0 for all s, s′ ∈ Sk. (4.30)

Now, we will consider edges between terminals.

Consider an edge titi+1 between two successive terminals ti and ti+1 of Tk such that

titi+1 6= t1t2 and let s be a Steiner node in Sk\{s1}. Consider again the solution (U9, I9)

and let (U11, I11) be the solution defined as follows U11
k = (U11

k \ {titi+1})∪{tis, sti+1},

U11
j = U9

j for each j ∈ {1, ..., K}\{k} and I11 =
⋃

j∈K U11
j . As (xU9

, yI
9

) and (xU11

, yI
11

)

are in F k
e and hence in F , and s1 is chosen arbitrarily in Sk, we have rxU9

= rxU11

=

rxU9

− rktiti+1
+ rktis + rksti+1

. This implies that rktiti+1
= rktis + rksti+1

. And since nodes ti,

ti+1 and s are all arbitrary, we obtain

rktiti+1
= rktis + rksti+1

for all s ∈ Sk,

for all ti, ti+1 ∈ Tk, titi+1 6= t1t2.
(4.31)

Along the same line, we can prove that

rltiti+1
= rltis + rlsti+1

for all ti, ti+1 ∈ Tl, s ∈ Sl, l ∈ K \ {k}. (4.32)

In the sequel, we consider edges between terminals and Steiner nodes.

Consider two Steiner nodes s and s′ in Sk\{s1}. Let (U
12, I12) be the solution given as

follows U12
k = (U11

k \ {sti+1})∪{ss
′, s′ti+1}, U

12
j = U11

j for each j ∈ {1, ..., K} \ {k} and

I12 =
⋃

j∈K U12
j . (xU11

, yI
11

) and (xU12

, yI
12

) are in F k
e , they are consequently in F . This

implies that (xU11

, yI
11

) and (xU12

, yI
12

) satisfy equation rx+qy = β. Consequently, we

can write rxU11

= rxU12

= rxU11

− rksti + rkss′ + rks′ti yielding rksti = rkss′ + rks′ti . By (4.30)

and as s1 is chosen arbitrarily in Sk, we have

rksti = rks′ti for all ti ∈ Tk, s, s
′ ∈ Sk.

Similarly, we can show that

rlsti = rls′ti for all ti ∈ Tl, s, s
′ ∈ Sl, l ∈ K \ {k}.

Overall, and as nodes ti, s and s′ as well as demand l are all arbitrary, we obtain

that

rlsti = rls′ti = λl
1(ti)

for all ti ∈ Tl, s, s
′ ∈ Sl, l ∈ K,

for some λl
1(ti) ∈ R.

(4.33)

4.2 Associated polytope 81

Now, let ρ = rkt1t2−λ
l
1(t1)−λ

l
1(t2) and λl = (λl

1, λ
l
2), l ∈ K such that λl

1 = (λl
1(ti), ti ∈

Tk) where λl
1(ti) is as given by (4.33) and λl

2 = (λl
2(uv), u, v ∈ Tk, uv /∈ U0

l) such that

λl
2(uv) = rluv − λl

1(u)− λl
1(v), l ∈ K.

The coefficients rluv for all uv ∈ E and l ∈ K can be expressed in terms of ρ, λl
1 and

λl
2 as follows

rluv =

λl
1(u) + λl

1(v) if l 6= k and uv = titi+1, ti, ti+1 ∈ Tl,

λl
1(u) + λl

1(v) if l = k and uv = titi+1, ti, ti+1 ∈ Tk, uv 6= t1t2
ρ+ λl

1(u) + λl
1(v) if l = k and uv = t1t2,

λl
1(u) if u ∈ Tl, v ∈ Sl,

λl
2(uv) + λl

1(u) + λl
1(v) if uv = titj , ti, tj ∈ Tl, j > i,

0 if uv = sisj, si, sj ∈ Tl, j 6= i.

Clearly, we have r = ρa + λM , which ends the proof.

�

Now, we study the facial structure of the trivial constraints ye ≤ 1, e ∈ E.

Theorem 4.13 Inequality ye ≤ 1 defines a facet of MSOND(G,K, T).

Proof Let Fe be the corresponding induced face, that is

Fe = {(x, y) ∈ MSOND(G,K, T) : ye = 1}.

Denote inequality ye ≤ 1 by ax + by ≤ α. Let rx + qy ≤ β be a valid inequality

defining a facet F of MSOND(G,K, T). Assume that Fe ⊆ F . We prove that there

exist ρ ∈ R and λ = (λj , j ∈ K), λj ∈ R|Tj |+pj for j ∈ K, such that q = ρb and

r = ρa + λM (where r = (r1, r2, ..., r|K|) with ri ∈ Rm, i = 1, ..., |K| and M is the

matrix of equations defined above). Note here that be′ = 0 for all e′ ∈ E \ {e}.

Moreover, a = (a1, a2, ..., a|K|) is such that ai ∈ Rm with ai = 0, i = 1, ..., |K|.

In the sequel, we will distinguish two cases.

Case 1. e ∈ I0.

Suppose e = t1t2 is an edge between two successive terminals t1 and t2 of a demand

k ∈ K. We first show that every edge f in E \ I0 has a coefficient qf equal to 0.

82 Cut formulation and polyhedra

Consider the solution (U0, I0) and let (U1, I1) be the solution defined by U1 = U0

and I1 = I0 ∪ {f}. It is clear that (xU0

, yI
0

) and (xU1

, yI
1

) are in Fe and hence in F .

Therefore, rxU0

+ qyU
0

= rxU1

+ qyU
1

= rxU0

+ qyU
0

+ qf and thus qf = 0. As f is

arbitrary in E \ I0, this implies that

qf = 0 for all f ∈ E \ I0. (4.34)

Now, consider a demand l ∈ K, and let titi+1 ∈ I0 be an edge of I0 such that

titi+1 6= e. Consider a Steiner node s of Sl and let (U2, I2) be the solution given by

U2
l = (U0

l \ {titi+1}) ∪ {tis, sti+1}, U
2
j = U0

j , j ∈ {1, ..., |K|} \ {l} and I2 =
⋃

j∈K U2
j .

And let (U3, I3) be the solution defined by U3 = U2 and I3 = I2 ∪ {titi+1}. As

(xU2

, yI
2

) and (xU3

, yI
3

) are in Fe and thus in F , we have rxU2

+ qyI
2

= rxU3

+ qyI
3

=

rxU2

+ qyI
2

+ qtiti+1
, which implies that qtiti+1

= 0. As ti and ti+1 are arbitrary in Tl,

and l is arbitrary in K, we obtain

qf = 0 for all f ∈ I0 \ {e}. (4.35)

Next, we will establish some relations between the components of vector r.

Consider a demand l ∈ K and let s and s′ be two Steiner nodes of Sl. Consider again

the solution (U0, I0) and let (U4, I4) be the solution defined as follows: U4
l = U0

l ∪{ss
′},

U4
j = U0

j for j ∈ {1, ..., |K|} \ {l} and I4 =
⋃

j∈K U4
j . It is clear that (xU0

, yI
0

) and

(xU4

, yI
4

) are both in Fe and hence in F . Consequently, rxU0

+ qyU
0

= rxU4

+ qyU
4

=

rxU0

+ qyU
0

+ rlss′ + qss′. By (4.34), we have qss′ = 0, implying that rlss′. And therefore,

rlss′ = 0 for all s, s′ ∈ Sl. (4.36)

Now, consider l ∈ K, l 6= k and let ti and ti+1 be two successive terminals of Tl and s

a Steiner node of Sl. Let (U
5, I5) be given as follows U5

l = (U0
l \ {titi+1})∪{tis, sti+1},

U5
j = U0

j for j ∈ {1, ..., |K|}\{l} and I5 =
⋃

j∈K U5
j . Obviously (xU0

, yI
0

) and (xU5

, yI
5

)

are in Fe and then in F . This means that rxU0

+ qyI
0

= rxU5

+ qyI
5

= rxU0

+ qyI
0

−

rltiti+1
+ rltis + rlsti+1

− qtiti+1
+ qtis + qsti+1

. By (4.34), qtis = qsti+1
= 0. Moreover, as

l 6= k, by (4.35), qtiti+1
= 0. This yields rltiti+1

= rltis + rlsti+1
. As demand l and nodes

s, ti, ti+1 are arbitrary, we obtain that

rltiti+1
= rltis + rlsti+1

for all ti, ti+1 ∈ Tl, s ∈ Sl, l ∈ K \ {k}. (4.37)

In a similar way, we also obtain that

rktiti+1
= rktis + rksti+1

for all ti, ti+1 ∈ Tk, s ∈ Sk, titi+1 6= e. (4.38)

4.2 Associated polytope 83

Now, we will prove that the previous relation remains valid even when titi+1 = e.

Consider a Steiner node s of Sk and let (U6, I6) be the solution defined by U6
k =

(U0
k \{titi+1})∪{tis, sti+1}, U

6
j = U0

j for j ∈ {1, ..., |K|}\{k} and I6 = (
⋃

j∈K U6
j)∪{e}.

Clearly (xU0

, yI
0

) and (xU6

, yI
6

) are in Fe and thus in F . This implies that rxU0

+qyI
0

=

rxU6

+ qyI
6

= rxU0

+ qyI
0

− rktiti+1
+ rktis + rksti+1

− qtiti+1
+ qtis + qsti+1

+ qtiti+1
(recall

that e = titi+1). By equation (4.34), it follows that qtis = qsti+1
= 0, implying that

rktiti+1
= rktis + rksti+1

. And hence,

rktiti+1
= rktis + rksti+1

for all s ∈ Sk, titi+1 = e. (4.39)

From (4.38) and (4.39), we get

rktiti+1
= rktis + rksti+1

for all ti, ti+1 ∈ Tk, s ∈ Sk. (4.40)

In what follows, we will prove that all the edges linking a terminal to Steiner nodes

of a demand l have the same coefficient in rl.

First suppose that l 6= k and consider two Steiner nodes s and s′ in Sl. consider

again the solution (U5, I5) given previously and denote by (U7, I7) the solution given

as follows U7
l = (U5

l \ {sti}) ∪ {ss
′, s′ti}, U

7
j = U5

j for each j ∈ {1, ..., K} \ l and

I7 =
⋃

j∈K U7
j . It is clear (xU7

, yI
7

) is in Fe and thus in F . The incidence vectors of

(U5, I5) and (U7, I7) satisfy equation rx+qy = β. This, together with equations (4.34),

allow to write rxU5

= rxU7

= rxU5

− rlsti + rlss′ + rls′ti . This leads to rlsti = rlss′ + rls′ti .

By (4.36), we obtain that rlsti+1
= rls′ti

Similarly, we can show that, if l = k, rksti = rks′ti .

Thus, we get

rlsti = rls′ti = λl
1(ti)

for all ti ∈ Tl, s, s
′ ∈ Sl, l ∈ K,

for some λl
1(ti) ∈ R.

(4.41)

Now, let ρ = qe and λl = (λl
1, λ

l
2), l ∈ K such that λl

1 = (λl
1(ti), ti ∈ Tk) where

λl
1(ti) is as given by (4.41) and λl

2 = (λl
2(uv), u, v ∈ Tk, uv /∈ U0

l) such that λl
2(uv) =

rluv − λl
1(u)− λl

1(v), l ∈ K.

The coefficients rluv for all uv ∈ E and l ∈ K can then be expressed in terms of λl
1

and λl
2 as follows

rluv =

λl
1(u) + λl

1(v) if uv = titi+1, ti, ti+1 ∈ Tl,

λl
1(u) if u ∈ Tl, v ∈ Sl,

λl
2(uv) + λl

1(u) + λl
1(v) if uv = titj, ti, tj ∈ Tl : j > i,

0 if uv = sisj , si, sj ∈ Sl : j 6= i,

84 Cut formulation and polyhedra

yielding rl = λl
1M

l
1 + λl

2M
l
2 for all l ∈ K as desired. Consequently, we have q = ρb

and r = ρa+ λM .

Case 2. e ∈ E \ I0. Here, we distinguish 3 subcases.

Case 2.1. e is an edge between a terminal and a Steiner node.

Suppose that e = s1t1 where t1 ∈ Tk and s1 ∈ Sk for some k ∈ K.

We prove first that all the coefficient qf , f 6= e are equal to 0.

First, we suppose that f /∈ I0. Consider demand k ∈ K and let t1 and t2 be

two successive terminals of Tk. Consider the solution (U8, I8) defined by U8
k = (U0

k \

{t1t2}) ∪ {t1s1, s1t2}, U
8
j = U0

j for j ∈ {1, ..., |K|} \ {k} and I8 =
⋃

j∈K U8
j . Suppose

that f ∈ E \ {s1t1, s1t2}, and let (U9, I9) be the the solution given by U9 = U8

and I9 = I8 ∪ {f}. As (xU8

, yI
8

) and (xU9

, yI
9

) are in Fe and hence in F , we have

rxU8

+ qyI
8

= rxU9

+ qyI
9

= rxU8

+ qyI
8

+ qf , implying that qf = 0.

Now, let t0 ∈ Tk be the terminal predecessor of t1 in demand k. Let (U10, I10) be the

solution given by U10
k = (U0

k \ {t1t2}) ∪ {t0s1, s1t1}, U
10
j = U0

j for j ∈ {1, ..., |K|} \ {k}

and I10 = (
⋃

j∈K U10
j). Consider also the solution (U11, I11) = (U10, I10 ∪ {s1t2}).

As (xU10

, yI
10

) and (xU11

, yI
11

) are in Fe and hence in F , we have rxU10

+ qyI
10

=

rxU11

+ qyI
11

= rxU10

+ qyI
10

+ qs1t2 , which implies that qs1t2 = 0. Consequently, we

have

qf = 0 for all f ∈ E \ (I0 ∪ {e}). (4.42)

Now, we suppose that f ∈ I0. Suppose first that f = t1t2. Consider the solution

(U8, I8) previously defined and let (U12, I12) be the solution given by U12 = U8 and

I12 = I8 ∪ {t1t2}. As (xU8

, yI
8

) and (xU12

, yI
12

) are in Fe and hence in F , we have

rxU8

+ qyI
8

= rxU12

+ qyI
12

= rxU8

+ qyI
8

+ qt1t2 yielding qt1t2 = 0.

Now, consider a demand l ∈ K and suppose that f = titi+1 6= t1t2, where ti and ti+1

are two successive terminals of Tl. Consider s a Steiner node of Sl and let (U13, I13) be

the solution given by U13
k = (U8

k \ {titi+1})∪{tis, sti+1}, U
13
j = U8

j for j ∈ {1, ..., |K|} \

{l} and I13 =
⋃

j∈K U13
j . In addition, we define the solution (U14, I14) given by U14 =

U13 and I14 = I13∪{titi+1}. It is obvious that (x
U13

, yI
13

) and (xU14

, yI
14

) are in Fe and

hence in F . As a consequence, rxU13

+ qyI
13

= rxU14

+ qyI
14

= rxU13

+ qyI
13

+ qtiti+1
,

implying that qtiti+1
= 0.

Consequently, we have

qf = 0 for all f ∈ I0. (4.43)

4.2 Associated polytope 85

In what follows, we will show that vector r = ρa+ λM .

First we show that for every edge ss′ between two Steiner nodes s, s′ ∈ Sl, r
l
ss′ = 0

where l ∈ K. Consider again the solution (U0, I0) and define the solution (U15, I15)

given as follows U15 = U0 and I15 = I0 ∪ {e}. In addition, let (U16, I16) be the

solution defined by U16
l = U0

l ∪ {ss
′}, U16

j = U0
j for all j ∈ {1, ..., K} \ {l} and

I16 = (
⋃

j∈K U16
j) ∪ {e}. As (xU15

, yI
15

) and (xU16

, yI
16

) are in Fe and hence in F , we

have rxU15

+qyI
15

= rxU16

+qyI
16

= rxU15

+qyI
15

+rlss′+qss′ . This, together with (4.42),

implies that rlss′ = 0. Since l and ss′ are chosen arbitrarily, we obtain

rlss′ = 0 for all s, s′ ∈ Sl, l ∈ K. (4.44)

Consider now an edge titi+1 between two successive terminals ti and ti+1 of Tl, where

l ∈ K. Let s be a Steiner node of Sl. Consider the solution (U17, I17) given by

U17
l = (U0

l \ {titi+1}) ∪ {tis, sti+1}, U17
j = U0

j , for each j ∈ {1, ..., K} \ l and let

I17 = (
⋃

j∈K U17
j) ∪ {e}. As (xU15

, yI
15

) and (xU17

, yI
17

) are in Fe and hence in F ,

they satisfy equation rx + qy = β. As a consequence, we have rxU15

= rxU17

=

rxU15

− rltiti+1
+ rltis + rlsti+1

, implying that rltiti+1
= rltis + rlsti+1

. Therefore

rltiti+1
= rltis + rlsti+1

for all ti, ti+1 ∈ Tl, for all s ∈ Sl, l ∈ K. (4.45)

Now, we will prove that all the edges linking a terminal of Tl to Steiner nodes of

Sl have the same coefficient rl, where l ∈ K. Consider s and s′ two Steiner nodes

of Sl. Consider (U18, I18) obtained from (U17, I17) as follows U18
l = (U17

l \ {sti+1}) ∪

{ss′, s′ti+1}, U
18
j = U17

j for each j ∈ {1, ..., K} \ l and I18 = (
⋃

j∈K U18
j) ∪ {e}. Since

(xU15

, yI
15

) and (xU18

, yI
18

) are in Fe and hence in F , they satisfy equation rx+qy = β,

this implies rxU15

= rxU18

= rxU15

− rlsti+1
+ rlss′ + rls′ti+1

, By (4.44), it follows that

rlsti+1
= rls′ti+1

. Therefore,

rlsti = rls′ti = λl
1(ti)

for all ti ∈ Tl, s, s
′ ∈ Sl, l ∈ K,

for someλl
1(ti) ∈ R.

(4.46)

Now, let ρ = qe and λl = (λl
1, λ

l
2), l ∈ K such that λl

1 = (λl
1(ti), ti ∈ Tk) where

λl
1(ti) is as given by (4.46) and λl

2 = (λl
2(uv), u, v ∈ Tk, uv /∈ U0

l) such that λl
2(uv) =

rluv − λl
1(u)− λl

1(v), l ∈ K.

The coefficients rluv for all uv ∈ E and l ∈ K can then be expressed in terms of λl
1

86 Cut formulation and polyhedra

and λl
2 as follows

rluv =

λl
1(u) + λl

1(v) if uv = titi+1, ti, ti+1 ∈ Tl

λl
1(u) if u ∈ Tl, v ∈ Sl

λl
2(uv) + λl

1(u) + λl
1(v) if uv = titj, ti, tj ∈ Tl : j > i

0 if uv = sisj , si, sj ∈ Sl : j 6= i,

implying that rl = λl
1M

l
1 + λl

2M
l
2 for all l ∈ K.

We then obtain q = ρb and r = ρa+ λM and the result follows.

Case 2.2 e is an edge between two Steiner nodes of a demand k ∈ K.

Suppose that e = s1s2 where s1 and s2 are Steiner nodes of Sk.

First, we prove that all the coefficient qf , f 6= e are equal to 0. In a first step, we

suppose that f /∈ (I0 ∪ {e}). Consider the following solutions: (U19, I19) given by

U19 = U0 and I19 = I0 ∪ {e} and (U20, I20) such that U20 = U19 and I20 = I19 ∪ {f}.

As (xU19

, yI
19

) and (xU20

, yI
20

) are in Fe and hence in F , we have rxU19

+ qyI
19

=

rxU20

+ qyI
20

= rxU19

+ qyI
19

+ qf , which yields qf = 0. Since f is arbitrarily in

E \ (I0 ∪ {e}), this implies

qf = 0 for all f ∈ E \ (I0 ∪ {e}). (4.47)

Now, consider a demand l ∈ K and let ti and ti+1 be two successive terminals

of Tl. Consider a Steiner node s of Sl and let (U21, I21) be the solution obtained

as follows U21
l = (U0

l \ {titi+1}) ∪ {tis, sti+1}, U
21
j = U0

j , j ∈ {1, ..., |K|} \ {l} and

I21 = (
⋃

j∈K U21
j) ∪ {e}. Let us also define the solution (U22, I22) such that U22 = U21

and I22 = I21 ∪ {titi+1}. As (xU21

, yI
21

) and (xU22

, yI
22

) are in Fe and thus in F , we

have rxU21

+ qyI
21

= rxU22

+ qyI
22

= rxU21

+ qyI
21

+ qtiti+1
, which implies qtiti+1

= 0.

As ti and ti+1 are arbitrary in Tl and l is arbitrary in K, we obtain

qf = 0 ∀f ∈ I0. (4.48)

Next, we will establish some relations linking the components of vector r.

Consider a demand l ∈ K, l 6= k and let s and s′ be two Steiner nodes of Sl. Consider

the solution (xU23

, yI
23

) given by xU23

= x0 and yI
23

= y0∪{s1s2}. Let also (xU24

, yI
24

)

be the solution defined as follows xU24

= xU23

and yI
24

= yI
24

∪ {ss′}. As (xU23

, yI
23

)

and (xU24

, yI
24

) are in Fe and thus in F , we have rxU23

+ qyI
23

= rxU24

+ qyI
24

=

4.2 Associated polytope 87

rxU23

+ qyI
23

+ rlss′ + qss′. This, together with (4.47), implies that rlss′ = 0. Since

demand l and nodes s and s′ are arbitrarily, we then have

rlss′ = 0 for all s, s′ ∈ Sl, l ∈ K \ {k}. (4.49)

Suppose now that l = k and that s and s′ are two Steiner nodes of Sk such that

ss′ 6= s1s2. In a similar way, we can show that rkss′ = 0. As s and s′ are arbitrary in

Sk, we have

rkss′ = 0 for all s, s′ ∈ Sk, ss
′ 6= s1s2. (4.50)

Now, consider a demand l ∈ K and let ti and ti+1 be two successive terminals of Tl.

Consider the solution (xU25

, yI
25

) given by U25
l = (U0

l \{titi+1})∪{tis, sti+1}, U
25
j = U0

j ,

for each j ∈ {1, ..., K}\ l and let I25 = (
⋃

j∈K U25
j)∪{e}. As (xU23

, yI
23

) and (xU25

, yI
25

)

are in Fe and hence in F , they satisfy equation rx + qy = β. As a consequence, we

have rxU23

= rxU25

= rxU23

− rltiti+1
+ rltis + rlsti+1

, implying that rltiti+1
= rltis + rlsti+1

.

As demand l is arbitray and nodes s, ti, ti+1 are arbitrary as well, we have

rltiti+1
= rltis + rlsti+1

for all ti, ti+1 ∈ Tl, for all s ∈ Sl, l ∈ K. (4.51)

Now, we will prove that all the edges linking a terminal of Tl to Steiner nodes of

Sl have the same coefficient rl, where l ∈ K. Consider s and s′ two Steiner nodes

of Sl. Consider (U26, I26) obtained from (U25, I25) as follows U26
l = (U25

l \ {sti+1}) ∪

{ss′, s′ti+1}, U
26
j = U25

j for each j ∈ {1, ..., K} \ l and I26 = (
⋃

j∈K U26
j) ∪ {e}. Since

(xU23

, yI
23

) and (xU26

, yI
26

) are in Fe and hence in F , they satisfy equation rx+qy = β,

this implies rxU23

= rxU26

= rxU26

− rlsti+1
+ rlss′ + rls′ti+1

, By (4.50), it follows that

rlsti+1
= rls′ti+1

. As a consequence,

rlsti = rls′ti = λl
1(ti)

for all ti ∈ Tl, s, s
′ ∈ Sl, l ∈ K,

for someλl
1(ti) ∈ R.

(4.52)

Now, let ρ = qe and λl = (λl
1, λ

l
2), l ∈ K such that λl

1 = (λl
1(ti), ti ∈ Tk) where

λl
1(ti) is as given by (4.52) and λl

2 = (λl
2(uv), u, v ∈ Tk, uv /∈ U0

l) such that λl
2(uv) =

rluv − λl
1(u)− λl

1(v), l ∈ K.

The coefficients rluv for all uv ∈ E and l ∈ K can then be expressed in terms of λl
1

and λl
2 as follows

rluv =

λl
1(u) + λl

1(v) if uv = titi+1, ti, ti+1 ∈ Tl

λl
1(u) if u ∈ Tl, v ∈ Sl

λl
2(uv) + λl

1(u) + λl
1(v) if uv = titj, ti, tj ∈ Tl : j > i

0 if uv = sisj , si, sj ∈ Sl : j 6= i.

88 Cut formulation and polyhedra

This implies that

rl = λl
1M

l
1 + λl

2M
l
2 for all l ∈ K.

As a consequence, q = ρb and r = ρa + λM and the result follows.

Case 2.3. e is an edge between two non-successive terminals of a demand k ∈ K.

Suppose that e = tmtn where tm and tn are two non-successive terminals of Tk.

First, we prove that all the coefficient qf , f 6= e are equal to 0. First, assume that

f /∈ (I0 ∪ {e}). Consider the following solutions: (U27, I27) given by U27 = U0 and

I27 = I0 ∪ {e} and (U28, I28) such that U28 = U17 and I28 = I17 ∪ {f}. As (xU27

, yI
27

)

and (xU20

, yI
20

) are in Fe and hence in F , we have rxU27

+ qyI
27

= rxU28

+ qyI
28

=

rxU27

+ qyI
27

+ qf , which yields qf = 0. Since f is arbitrarily in E \ (I0 ∪ {e}), this

implies

qf = 0 for all f ∈ E \ (I0 ∪ {e}). (4.53)

Now, consider a demand l ∈ K and let ti and ti+1 be two successive terminals

of Tl. Consider a Steiner node s of Sl and let (U29, I29) be the solution obtained

as follows U29
l = (U0

l \ {titi+1}) ∪ {tis, sti+1}, U
29
j = U0

j , j ∈ {1, ..., |K|} \ {l} and

I29 = (
⋃

j∈K U29
j) ∪ {e}. Let us also define the solution (U30, I30) such that U30 = U29

and I30 = I29 ∪ {titi+1}. As (xU29

, yI
29

) and (xU30

, yI
30

) are in Fe and thus in F , we

have rxU29

+ qyI
29

= rxU30

+ qyI
30

= rxU29

+ qyI
29

+ qtiti+1
, which implies qtiti+1

= 0.

As ti and ti+1 are arbitrary in Tl and l is arbitrary in K, we obtain

qf = 0 ∀f ∈ I0. (4.54)

Next, we will establish some relations linking the components of vector r.

Consider a demand l ∈ K and let s and s′ be two Steiner nodes of Sl. Consider

the solution (xU31

, yI
31

) given by xU31

= x0 and yI
31

= y0 ∪ {e}. Let also (xU32

, yI
32

)

be the solution defined as follows xU32

= xU31

and yI
32

= yI
31

∪ {ss′}. As (xU31

, yI
31

)

and (xU32

, yI
32

) are in Fe and thus in F , we have rxU31

+ qyI
31

= rxU32

+ qyI
32

=

rxU31

+ qyI
31

+ rlss′ + qss′. This, together with (4.53), implies that rlss′ = 0. Since

demand l and nodes s and s′ are arbitrarily, we then have

rlss′ = 0 for all s, s′ ∈ Sl, l ∈ K. (4.55)

Consider now ti and ti+1 two successive terminals of Tl. Consider the solution

(xU33

, yI
33

) given by U33
l = (U0

l \ {titi+1}) ∪ {tis, sti+1}, U33
j = U0

j , for each j ∈

4.2 Associated polytope 89

{1, ..., K} \ l and let I33 = (
⋃

j∈K U25
j) ∪ {e}. As (xU31

, yI
31

) and (xU33

, yI
33

) are in

Fe and hence in F , they satisfy equation rx + qy = β. As a consequence, we have

rxU31

= rxU33

= rxU31

− rltiti+1
+ rltis + rlsti+1

, yielding rltiti+1
= rltis + rlsti+1

. As demand

l is arbitray and nodes s, ti, ti+1 are arbitrary, we have

rltiti+1
= rltis + rlsti+1

for all ti, ti+1 ∈ Tl, for all s ∈ Sl, l ∈ K. (4.56)

Now, we will prove that all the edges linking a terminal of Tl to Steiner nodes of

Sl have the same coefficient rl, where l ∈ K. Consider s and s′ two Steiner nodes

of Sl. Consider (U34, I34) obtained from (U33, I33) as follows U34
l = (U33

l \ {sti+1}) ∪

{ss′, s′ti+1}, U
34
j = U33

j for each j ∈ {1, ..., K} \ l and I34 = (
⋃

j∈K U34
j) ∪ {e}. Since

(xU31

, yI
31

) and (xU34

, yI
34

) are in Fe and hence in F , they satisfy equation rx+qy = β,

this implies rxU31

= rxU34

= rxU31

− rlsti+1
+ rlss′ + rls′ti+1

, By (4.55), it follows that

rlsti+1
= rls′ti+1

. As a consequence,

rlsti = rls′ti = λl
1(ti)

for all ti ∈ Tl, s, s
′ ∈ Sl, l ∈ K,

for someλl
1(ti) ∈ R.

(4.57)

Now, let ρ = qe and λl = (λl
1, λ

l
2), l ∈ K such that λl

1 = (λl
1(ti), ti ∈ Tk) where

λl
1(ti) is as given by (4.57) and λl

2 = (λl
2(uv), u, v ∈ Tk, uv /∈ U0

l) such that λl
2(uv) =

rluv − λl
1(u)− λl

1(v), l ∈ K.

The coefficients rluv for all uv ∈ E and l ∈ K can then be expressed in terms of λl
1

and λl
2 as follows

rluv =

λl
1(u) + λl

1(v) if uv = titi+1, ti, ti+1 ∈ Tl

λl
1(u) if u ∈ Tl, v ∈ Sl

λl
2(uv) + λl

1(u) + λl
1(v) if uv = titj, ti, tj ∈ Tl : j > i

0 if uv = sisj , si, sj ∈ Sl : j 6= i.

This yields rl = λl
1M

l
1 + λl

2M
l
2 for all l ∈ K. Thus, q = ρb and r = ρa + λM . �

4.2.2.2 Section cut inequalities

In this section, we study the facial structure of the section cut inequalities (4.1). Con-

sider a demand k ∈ K and a section qkj = (tj , tj+1) ∈ Tq. Consider W a subset of nodes

of V k,j such that tj ∈ W and tj+1 ∈ W .

In the following theorem we give necessary and sufficient conditions under which

inequalities (4.1) define facets of MSOND(G,K, T).

90 Cut formulation and polyhedra

Theorem 4.14 Inequality (4.1) defines a facet of MSOND(G,K, T) if and only if

W ∩ Sk 6= ∅ 6= W ∩ Sk.

Proof Let F k,j
W be the face induced by the section cut inequalities (4.1) corresponding

to k, j and W , that is

F k,j
W = {(x, y) ∈ MSOND(G,K, T) :

∑

e∈δ
Gk,j (W)

xk
e = 1}.

Neccessity.

Assume for instance that W ∩ Sk = ∅. Thus, W is reduced to a single node, namely

the terminal tj. Consider a solution (U, I) of MSOND with U = (U1, U2, ..., U|K|) the

edge sets corresponding to the demands 1, ..., |K|. Let Uk,j be the restriction of Uk on

Gk,j. By constraints (4.6), Uk must have two edges incident to tj . Hence, Uk,j must

have exactly one edge incident to tj . As W ∩ Sk = ∅, the cut δGk,j(W) is reduced to

that edge. And therefore, the incidence vector of (U, I), (xU , yI) belong to F k,j
W . But,

this implies that the face induced by inequality (4.1) is equal to MSOND(G,K, T), and

hence it can be facet defining.

The case where W ∩ Sk = ∅ is similar.

Sufficiency.

Throughout the proof, we will suppose that W and W contain each at least one

Steiner node of Sk.

Denote inequality (4.1) corresponding to k, j and W by ax+ by ≤ α and let F k,j
W =

{(x, y) ∈ MSOND(G,K, T) : ax + by = α}. Let rx + qy ≤ β be a valid inequality

defining a facet F of MSOND(G,K, T) such that F k,j
W ⊆ F . In the following, we prove

that there exist ρ ∈ R and λ = (λl, l ∈ K), λl ∈ R|Tl|+pl for l ∈ K, such that q = ρb

and r = ρa + λM (where r = (r1, r2, ..., r|K|) with ri ∈ Rm, i = 1, ..., |K| and M is

the matrix of equations defined above). Note here that a = (a1, a2, ..., a|K|) is such

that ai ∈ Rm, i = 1, ..., |K| with ai = 0 for i ∈ {1, ..., |K|} \ {k}, ake 6= 0 for every

e ∈ δGk,j (W) and ake′ = 0 for every e′ ∈ E \ δGk,j (W). Remark also that b = 0.

First, we prove that q = 0.

Consider the solution (U0, I0) and let e ∈ E \ I0 be an arbitrary edge. Let (U1, I1) be

the solution given by I1 = I0 ∪ {e} and U1 = U0. Both (U0, I0) and (U1, I1) induce

vectors that are in F k,j
W . This implies that their incidence vectors satisfy equation

4.2 Associated polytope 91

rx + qy = β. Consequently, rxU0

+ qyI
0

= rxU1

+ qyI
1

= qxU0

+ qyI
0

+ qe, implying

that qe = 0. Since e is arbitrarily chosen in E \ I0, we have

qe = 0 for all e ∈ E \ I0. (4.58)

Now, consider the solution (U2, I2) obtained as follows. Consider a demand l ∈ K

and let e = titi+1 be an edge between two successive terminals ti and ti+1 of Tl. Let

U2
l = (U0

l \ {e}) ∪ {tis, sti+1} where s ∈ Sl is a Steiner node of demand l. In addition,

let U2
j = U0

j , j = 1, ..., |K|, j 6= l, and I2 =
⋃

j∈K U2
j . Now, let us define the solution

(U3, I3) given by U3 = U2 and I3 = I2 ∪ {e}. Both are feasible solutions for the

MSOND problem and hence satisfy equation rx+ qy = β. As a consequence, we have

rxU2

+ qyI
2

= rxU3

+ qyI
3

= rxU2

+ qyI
2

+ qe, which implies that qe = 0. Recall that

I0 is the set of edges between the consecutive terminals of all the demands. As e is

arbitrary in I0, this yields

qe = 0 for all e ∈ I0. (4.59)

By (4.58) and (4.59) we then have

qe = 0 for all e ∈ E. (4.60)

Next, we will establish some relations between the components of vector r.

First, we consider the edges between Steiner nodes.

Let l ∈ K \ {k} and s and s′ be two Steiner nodes of Sl. Consider the solution

(U0, I0) and let (U4, I4) be the solution defined by U4
l = U0

l ∪ {ss
′}, U4

p = U0
p for all

p ∈ {1, ..., K} \ l and I4 =
⋃

p∈K U4
p . Clearly, (x

U0

, yI
0

) and (xU4

, yI
4

) are both in F k,j
W

and thus in F . This implies that (xU0

, yI
0

) and (xU4

, yI
4

) satisfy rx + qy = β. Since

q = 0, we have rxU0

= rxU4

= rkxU0

+ rlss′, which yields rlss′ = 0. As demand l and

nodes s and s′ are all arbitrary, we have

rlss′ = 0 for all s, s′ ∈ Sl, l ∈ K \ {k}. (4.61)

Now, suppose that s and s′ are Steiner nodes of Sk such that ss′ /∈ δGk,j (W). That

is s and s′ are both either in W or W . Let (U5, I5) be the solution defined as follows,

U5
k = U0

k ∪ {ss
′}, U5

p = U0
p for all p ∈ {1, ..., K} \ {k} and I5 =

⋃

p∈K U5
p . Obviously

(xU5

, yI
5

) is in F k,j
W and hence in F . As a consequence, the incidence vectors of (U0, I0)

and (U5, I5) satisfy equation rx + qy = β. Since q = 0, we have rxU0

= rxU5

=

rxU0

+ rkss′ implying that rkss′ = 0. As s and s′ are arbitrary, we have

rkss′ = 0 for all s, s′ ∈ Sk, ss
′ /∈ δGk,j(W). (4.62)

92 Cut formulation and polyhedra

The case where ss′ ∈ δGk,j(W) will be studied at the end of the proof.

Now, we will consider the edges between terminals.

Consider a demand l ∈ K \ {k} and let ti and ti+1 be two terminals of Tl. Let s be

a Steiner node of Sl. Consider the solution (U6, I6) given by U6
l = (U0

l \ {titi+1}) ∪

{tis, sti+1}, U
6
p = U0

p , for each p ∈ {1, ..., K} \ l and I6 =
⋃

p∈K U6
p . As (x

U6

, yI
6

) is in

F k,j
W and hence in F , it follows that rxU0

= rxU6

= rxU0

−rltiti+1
+ rltis+ rlsti+1

, implying

that rltiti+1
= rltis + rlsti+1

. Demand l as well as nodes s, ti and ti+1 are all arbitrary,

therefore,

rltiti+1
= rltis + rlsti+1

for all ti, ti+1 ∈ Tl, s ∈ Sl, l ∈ K \ {k}. (4.63)

Now, suppose that ti and ti+1 are terminals of Tk such that titi+1 6= tjtj+1. As we

did for the previous case, we can also prove that

rktiti+1
= rktis + rksti+1

for all ti, ti+1 ∈ Tk, s ∈ Sk, titi+1 6= tjtj+1. (4.64)

Consider now two Steiner nodes s and s′ of Sk such that s ∈ W and s′ ∈ W (recall

that W ∩ Sk 6= ∅ and W ∩ Sk 6= ∅). Let (U7, I7) be the solution defined as follows:

U7
k = (U0

k \ {tjtj+1}) ∪ {tjs, ss
′, s′tj+1}, U7

p = U0
p , for each p ∈ {1, ..., K} \ k and

I7 =
⋃

p∈K U7
p . As (xU0

, yI
0

) and (xU7

, yI
7

) are both in F k,j
W and thus in F , we have

rxU0

= rxU7

= rxU0

−rktjtj+1
+ rktjs+ rkss′ + rks′tj+1

, yielding to rktjtj+1
= rktjs+ rkss′ + rks′tj+1

.

Hence, we have

rktjtj+1
= rktjs + rkss′ + rks′tj+1

for all s, s′ ∈ Sk, s ∈ W and s′ ∈ W. (4.65)

In what follows, we will look at the coefficients of edges between terminals and Steiner

nodes.

To this end, consider first a demand l ∈ K \ {k} and let (U8, I8) be the solution

obtained from (U6, I6) as follows, U8
l = (U6

l \ {sti+1}) ∪ {ss
′, s′ti+1}, U

8
p = U6

p for each

p ∈ {1, ..., K} \ l and I8 =
⋃

j∈K U8
j , where s and s′ are Steiner nodes of Sl. Since

(xU6

, yI
6

) and (xU8

, yI
8

) are both in F k,j
W and thus in F , this implies rxU6

= rxU8

=

rxU6

− rlsti+1
+ rlss′ + rl

s′tki+1

. By (4.61) it follows that rlsti+1
= rls′ti+1

. As demand l and

nodes s, s′ and ti are all arbitrary , we have

rlsti = rls′ti = λl
1(ti)

for all ti ∈ Tl, s, s
′ ∈ Sl, l ∈ K \ {k},

for some λl
1(ti) ∈ R.

(4.66)

If l = k, along the same way we obtain that

rksti = rks′ti = λk
1(ti)

for all ti ∈ Tk \ {tj, tj+1}, s, s
′ ∈ Sk,

for some λk
1(ti) ∈ R.

(4.67)

4.2 Associated polytope 93

Suppose now that s and s′ are Steiner nodes of Sk such that ss′ /∈ δGk,j (W). Consider

the solution (U9, I9) defined as follows, U9
k = (U0

k \ {tjtj+1}) ∪ {tjs, stj+1}, U
9
p = U0

p ,

for each p ∈ {1, ..., K} \ k and I9 =
⋃

p∈K U9
p . We also define (U10, I10) by: U10

k =

(U9
k \ {tjs}) ∪ {tjs

′, ss′}, U10
p = U9

p , for each p ∈ {1, ..., K} \ k and I10 =
⋃

p∈K U10
p .

Solutions (xU9

, yI
9

) and (xU10

, yI
10

) are both in F k,j
W and thus in F . As a consequence,

we have rxU9

= rxU10

= rxU10

− rktjs + rktjs′ + rkss′, yielding rktjs = rktjs′ + rkss′. By (4.62),

it follows that rktjs = rktjs′. Similarly, we can show that rktj+1s
= rktj+1s′

. And since s and

s′ are arbitrary in Sk, we have

rktis = rktis′ = λk
1(ti)

for all s, s′ ∈ Sk, ss
′ /∈ δGk,j (W), ti ∈ {tj, tj+1},

for someλk
1(ti) ∈ R.

(4.68)

Now, suppose that ss′ ∈ δGk,j (W) with s′ ∈ W and s ∈ W . Along the same line, we

can prove that rktjs = rktjs′ + rkss′ and rktj+1s
= rktj+1s′

+ rkss′. As s and s′ are arbitrary, we

have the following

rktis = rktis′ + rkss′
for all s, s′ ∈ Sk, s

′ ∈ W, s ∈ W,

ti ∈ {tj , tj+1}.
(4.69)

Now, we will go back to the case that we left in the beginning of the proof, concerning

edges between Steiner nodes of Sk that belong to δGk,j(W).

Consider demand k and let s1, s2, s3 and s4 be Steiner nodes of Sk such that, s1 and s3
are in W , and s2 and s4 are inW (s1 and s3, s2 and s4 may be the same). By (4.69) and

as s1s2 ∈ δGk,j (W) and s3s4 ∈ δGk,j (W), we have the following, rktj+1s1
= rktj+1s2

+ rks1s2
and rktj+1s3

= rktj+1s4
+ rks3s4 . Moreover, by (4.68) and since s1s3 /∈ δGk,j (W) and s2s4 /∈

δGk,j (W), it follows that rktj+1s1
= rktj+1s3

and rktj+1s2
= rktj+1s4

, yielding rks1s2 = rks3s4 . As

s1, s2, s3 and s4 are all arbitrary in Sk, we then have

rks1s2 = rks3s4 = ρ

for all s1, s2, s3, s4 ∈ Sk,

s1s2 ∈ δGk,j (W) and s3s4 ∈ δGk,j (W)

for some ρ ∈ R.
(4.70)

Now, let ρ ∈ R be as given by (4.70) and λl = (λl
1, λ

l
2), l ∈ K such that λl

1 =

(λl
1(ti), ti ∈ Tk) where λl

1(ti) is as given by (4.66), (4.67), (4.68) and (4.69). λl
2 =

(λl
2(uv), u, v ∈ Tk, uv /∈ U0

l) such that λl
2(uv) = rluv − λl

1(u)− λl
1(v), l ∈ K.

Overall, the coefficients rluv for all uv ∈ E and l ∈ K can then be expressed in terms

94 Cut formulation and polyhedra

of ρ, λl
1 and λl

2 as follows

rluv =

λl
1(u) + λl

1(v) if l 6= k, uv = titi+1, ti, ti+1 ∈ Tl,

λk
1(u) + λk

1(v) if l = k, uv = titi+1, ti, ti+1 ∈ Tk, uv 6= tjtj+1,

ρ+ λk
1(u) + λk

1(v) if l = k, uv = tjtj+1,

λl
1(u) if l 6= k, u ∈ Tl, v ∈ Sl,

λk
1(u) if l = k, u ∈ Tk \ {tj, tj+1}, v ∈ Sk,

ρ+ λk
1(u) if l = k, u ∈ Tk \ {tj, tj+1}, v ∈ Sk, uv ∈ δGk,j (W),

λl
2(uv) + λl

1(u) + λl
1(v) if uv = titi′, ti, ti′ ∈ Tl, i

′ > i,

0 if l 6= k and uv = sisi′ , si, si′ ∈ Sl, i
′ 6= i,

0 if l = k and uv = sisi′ , si, si′ ∈ Sk, sisi′ /∈ δGk,j (W),

ρ if l = k and uv = sisi′ , si, si′ ∈ Sk, sisi′ ∈ δGk,j (W).

Clearly, rl = ρal + λl
1M

l
1 + λl

2M
l
2, for all l ∈ K. As a consequence, r = ρa + λM and

the proof is complete. �

4.2.2.3 Disjunction inequalities

In this section, we examine the facial structure of the disjunction inequalities (4.2).

The following theorem gives a necessary and sufficient condition under which inequal-

ities (4.2) define facets for the MSOND(G,K, T) polytope.

Theorem 4.15 Inequality
∑

e∈δ(w)

xk
e ≤ 2 defines a facet for MSOND(G,K, T) if and

only if w is not a terminal of Tk.

Proof Let F k
w define the face induced by the disjunction inequality

∑

e∈δ(w)

xk
e ≤ 2, that

is

F k
w = {(x, y) ∈ MSOND(G,K, T) :

∑

e∈δG(w)

xk
e = 2}.

The necessity follows from Proposition 4.6.

Suppose now that w ∈ Sk, that is to say w is a Steiner node of demand k. This

demand has |Tk| terminals that will be denoted by t1, t2, t3, ..., t|Tk|. We prove that

inequalities (4.2) are facet defining by exhibiting dim(MSOND(G,K, T)) points in F k
w

that are affinely independent. These will be determined in two steps.

4.2 Associated polytope 95

We first exhibit p1 = (|K|+1)|E|−
∑

j∈K
|Tj |(|Tj |−1)

2
−|Tk|+1 solutions of MSOND(G,K, T)

that are in F k
w. These can be obtained as follows. Consider, without loss of general-

ity, the first section of demand k, that is (t1, t2) ∈ Tk (see Figure 4.2). Remark that

Figure 4.2 shows the edges e1, e2, . . . , e|Tk|−1, e|Tk|. These are the edges linking the

different terminals of Tk to the node w. Now, consider all the possible solutions of

MSOND(G,K, T) that are obtained by inserting the Steiner node w between t1 and

t2. Note that these solutions all use edges e1 and e2. Note also that, since w always

appears in these solutions, w can be considered as a terminal for demand k. Hence,

the incidence vectors of these solutions are all in F k
w and may be considered as the

possible solutions of the problem with w added as terminal of Tk between t1 and t2.

Note that all these solutions do not use any of the edges e3, e4, . . . , e|Tk|−1, e|Tk| since

these edges are between non-successive terminals in the new problem. Hence, all the

solutions built this way are also solutions of the polytope MSOND(G,K, T ′), where

T ′ = (T \ Tk) ∪ T
′

k with T
′

k = Tk ∪ {w}, is the new set of terminals of demand k. By

Theorem 4.11, there are dim(MSOND(G,K, T ′)) + 1 solutions affinely independent in

MSOND(G,K, T ′). As all these solutions are in F k
w and |T ′

k| = |Tk|+1, we then obtain

(|K|+ 1)|E| −
∑

j∈K
|Tj |(|Tj |−1)

2
− |Tk|+ 1 solutions affinely independent in F k

w.

t|Tk|−1

t|Tk|

e|Tk|−1 e3

e2

e1

e|Tk|

ej

w

t2

t3

tj

t1

v

Figure 4.2:

Now, we will exhibit p2 = |Tk| − 1 further solutions in F k
w.

Consider a Steiner node v ∈ Sk \ {w} and let (U j , Ij), j = 2, ..., |Tk|, be the solution

given by U j
k = (U0

k \ {tjtj+1}) ∪ {tjw,wv, vtj+1}, U
j
p = U0

p for each p ∈ K \ {k}, and

Ij =
⋃

p∈K U j
p . Observe that solution (U j , Ij) is nothing but (U0, I0) for which we

delete edge tjtj+1 and insert the Steiner nodes w and v respectively, between tj and

tj+1. Also note that exactly two edges related to demand k are incident to w in each

of these solutions. Hence, the incidence vectors of these solutions all belong to F k
w.

Furthermore, it is clear that their incidence vectors are affinely independent.

96 Cut formulation and polyhedra

e|Tk|

m2m1

e3 e4 eje1 e2

0 0

0 0

1

100

0 0

1

0 0 0 1

p2

p1 A1

B

0

0

0

0

0

1

1

1

1

1

t1t2

A2

0

0

L =

Figure 4.3:

Let L be the matrix whose rows are the incidence vectors of all the solutions ob-

tained above (see Figure 4.3). Matrix L is organized as follows. The first m1 columns

of L correspond to all the variables ye, e ∈ E and xl
e, e ∈ E, l ∈ K except the vari-

ables xk
e1
, xk

e2
, ..., xk

e|Tk|
. The last m2 columns of L are associated with the variables

xk
e1
, xk

e2
, ..., xk

e|Tk |
. The first p1 rows of L correspond to the solutions obtained in the

first step of the proof. The ones built in the second step correspond to the last p2 rows

of L.

Observe that the first p1 solutions use only edges among e1 and e2 and do not use

the m2− 2 last edges of matrix L, that are edges between w and terminals t3, . . . , t|Tk|.

Moreover, these solutions do not use the edge t1t2. The other p2 solutions uses each

time only one of the m2 last edges that is different from e1. Remark also that, in

contrast with the first p1 solutions, all the last p2 solutions use the edge t1t2. As the

first p1 solutions are affinely independent, it can be easily seen that the p1+p2 solutions

are affinely independent.

Thus, we obtain p1 + p2 = (|K|+ 1)|E| −
∑

j∈K
|Tj |(|Tj |−1)

2
= dim(MSOND(G,K, T))

affinely independent solutions of F k
w, which ends the proof. �

4.3 Valid inequalities and facets

In this section, we introduce several families of valid inequalities for the MSOND(G,K, T)

polytope. We also study their facial aspect and give necessary conditions and sufficient

4.3 Valid inequalities and facets 97

conditions for these inequalities to define facets.

4.3.1 Steiner cut inequalities

The first family of valid inequalities is a straight consequence related to the connectivity

requirements of the problem.

Consider the graph of Figure 4.4 which consists of four nodes, three terminals num-

bered 1, 2 and 3 and a Steiner node, namely node 4. The instance consists of a demand

between terminals 1 and 2 routed by the paths L′
1 = (1, 2) and L′

2 = (1, 3, 2). Figure 4.4

shows a fractional solution for this instance. Let x̄ be the solution given by x̄ei =
1
2
for

i = 1, ..., 6. Clearly, x̄ satisfies all the constraints of the linear relaxation of (4.6).

3

1

e2

e6

e4 e5

4

e3e1

2

1
2

Figure 4.4: First fractional solution

However, x̄ violates the inequality

xe1 + xe2 + xe3 ≥ 2,

which is valid for the MSOND(G,K, T) polytope.

In the following proposition, we prove that this inequality belongs to a more general

class of valid inequalities for MSOND(G,K, T) that we call the Steiner cut inequalities.

Proposition 4.16 Consider a demand k ∈ K and let W ⊂ V such that W ∩Tk 6= ∅ 6=

W ∩ Tk. Then

∑

e∈δ(W)

xk
e ≥ 2 (4.71)

is valid for MSOND(G,K, T).

98 Cut formulation and polyhedra

Proof Recall that the SC-MSOND problem considered for demand k consists in find-

ing a cycle going in order through the terminals Tk. Consider, without loss of generality,

two arbitrary terminals ti and tj of Tk. Since the cycle must go through ti and tj , this

can be seen as 2 node-disjoint paths between ti and tj . By Menger’s theorem, each

titj-cut must contain at least 2 edges, and the result follows. �

In what follows, we discuss the facial structure of inequalities (4.71). The following

theorem gives necessary and sufficient conditions under which inequalities (4.71) define

facets for the MSOND(G,K, T) polytope.

Theorem 4.17 Inequality
∑

e∈δ(W) x
k
e ≥ 2 defines a facet of MSOND(G,K, T) if and

only if the following conditions hold.

1) W and W do not contain non-successive terminals of Tk,

2) If |W ∩ Tk| ≥ 3 (resp. |W ∩ Tk| ≥ 3), then Sk ⊂W (resp. Sk ⊂W),

3) If |W ∩ Tk| = 2 (resp. |W ∩ Tk| = 2), then W ∩ Sk 6= ∅ (resp. W ∩ Sk 6= ∅).

Proof Let F k
W be the face induced by inequality (4.71) corresponding to k and W ,

that is

F k
W = {(x, y) ∈ MSOND(G,K, T) :

∑

e∈δ(W)

xk
e = 2}.

Neccessity.

1) First, assume that condition 1) of the previous theorem is not satisfied. Suppose

for instance that W contains non-successive terminals or non-successive sequences of

terminals of Tk. Suppose for example that W contains two non-successive terminals

of Tk, say ti and tj (see Figure 4.5). Consider a solution (U, I) of MSOND. By (4.1),

ti must be linked to ti−1 and ti+1 by two disjoint paths. Denote by Pi,1 and Pi,2 these

paths. Similarly, there are two disjoint paths Pj,1 and Pj,2 linking terminal tj to its

predecessor and successor, respectively. As ti and tj are non-successive terminals, this

implies that the paths Pi,1, Pi,2, Pj,1 and Pj,2 all intersect cut δ(W). Thus, xk(δ(W)) ≥ 4

and therefore (xU , yI) does not belong to F k
W . But this implies that F k

W = ∅, and hence

it can not define a facet of MSOND(G,K, T).

4.3 Valid inequalities and facets 99

W W

tj

ti

Pi,1

Pj,2

Pi,2

Pj,1

Figure 4.5:

2) Now, suppose that condition 1) is satisfied, however condition 2) is not satisfied.

Suppose for instance that |W ∩ Tk| ≥ 3 and W ∩ Sk 6= ∅. Consider, without loss of

generality, the case where |W ∩ Tk| = 3. Denote the terminals of Tk that are in W by

t1, t2 and t3 (see Figure 4.6).

W W

t1

t3

t2

P4

s

P2

e

P3

P1

Figure 4.6:

Consider a solution (U, I) of MSOND, with U = (U1, U2, ..., U|K|), such that (xU , yI) ∈

F k
W . Let e = t2s be the edge between the terminal t2 ∈ W and the Steiner node

s ∈ W (see Figure 4.6). Suppose that e ∈ Uk. From constraints (4.1), it follows that

Uk contains two paths linking each terminal of Tk to its predecessor and successor. In

particular, there exist a path P1 between t1 and its successor inW , a path P3 between t3
and its predecesor in W and a path P4 between t2 and t3. Moreover, as e ∈ Uk, by (4.6),

it follows that e must belong to the path joining t1 and t2. Therefore, there must exist a

path between the Steiner node s and the terminal t1. This path is denoted P2. Notice

that P1, P2, P3 and {e} all intersect cut δ(W) (see Figure 4.6). As a consequence,

xk(δ(W)) ≥ 4 and hence (xU , yI) does not belong to F k
W . This implies that every

100 Cut formulation and polyhedra

solution of MSOND such that (xU , yI) ∈ F k
W satisfies xk

e = 0. Hence F k
W ⊂ F k

e , where

F k
e = {(x, y) ∈ MSOND(G,K, T) : xk

e = 0}. Here, e is not between non-successive

terminals. By Theorem (4.12), it follows that F k
e define a facet of MSOND(G,K, T).

Moreover, inequality (4.71) cannot be obtained as a combination of xk
e ≥ 0 and the

equations of MSOND(G,K, T), i.e. 4.7 and 4.8. Consequently, F k
W cannot define a

facet of MSOND(G,K, T).

3) Now, we will suppose that conditions 1) and 2) are satisfied. Assume however

conditions 3) is not satisfied. Suppose, for example, that |W ∩Tk| = 2 but W ∩Sk = ∅.

W W

t2

t1

Figure 4.7:

Consider a solution (U, I) of MSOND with U = (U1, U2, ..., U|K|) such that t1t2 /∈ Uk.

As xk(t1) = 2 and xk(t2) = 2 hold, it follows that xk(δ(W)) = 4, and hence (xU , yI) /∈

F k
W . But this implies that F k

W is contained in the face induced by xk
t1t2
≤ 1. Hence F k

W

cannot define a facet of MSOND(G,K, T).

Sufficiency.

In the sequel, we suppose that both conditions 1), 2) and 3) are satisfied.

Denote inequality (4.71) corresponding to k and W by ax+ by ≤ α. Let rx+ qy ≤ β

be a valid inequality defining a facet F of MSOND(G,K, T). In the following, we prove

that there exist ρ ∈ R and λ = (λl, l ∈ K), λl ∈ R|Tl|+pl for l ∈ K, such that q = ρb

and r = ρa + λM (where r = (r1, r2, ..., r|K|) with ri ∈ Rm, i = 1, ..., |K| and M is

the matrix of equations defined above). Notice here that a = (a1, a2, ..., a|K|) such that

ai ∈ Rm, i = 1, ..., |K| with ai = 0 for i ∈ {1, ..., |K|} \ {k}, ake 6= 0 for every e ∈ δ(W)

and ake′ = 0 for every e′ ∈ E \ δ(W). Remark also that b = 0.

First, we prove that q = 0.

Consider the solution (U0, I0) and let e ∈ E \ I0 be an arbitrary edge. Consider also

4.3 Valid inequalities and facets 101

the solution (U1, I1) such that I1 = I0∪{e} and U1 = U0. Both induce vectors that are

in F k
W and thus in F . This implies that the incidence vectors of these solutions satisfy

equation rx + qy = β. Consequently, rxU0

+ qyI
0

= rxU1

+ qyI
1

= qxU0

+ qyI
0

+ qe,

implying that qe = 0. Since e is arbitrarily chosen in E \ I0, we have

qe = 0 for all e ∈ E \ I0. (4.72)

Now, consider the solution (U2, I2) obtained as follows. Consider a demand l ∈ K

and let e = titi+1 be an edge between two successive terminals ti and ti+1 of Tl. Let

U2
l = (U0

l \{e})∪{tis, sti+1} where s ∈ Sl is a Steiner node of demand l. In addition, let

U2
j = U0

j , j = 1, ..., K, j 6= l, and I2 =
⋃

j∈K U2
j . Now, let us define the solution (U3, I3)

given by U3 = U2 and I3 = I2 ∪ {e}. Both are feasible solutions of MSOND inducing

vectors that are in F k
W and hence satisfy equation rx+ qy = β. As a consequence, we

have rxU2

+ qyI
2

= rxU3

+ qyI
3

= rxU2

+ qyI
2

+ qe, which implies that qe = 0. Recall

that I0 is the set of edges between the consecutive terminals of all the demands. As e

is arbitrary in I0, this yields

qe = 0 for all e ∈ I0. (4.73)

By (4.72) and (4.73) we then have

qe = 0 for all e ∈ E. (4.74)

In what follows, we will establish some relations between the components of vector

r.

First, we will determine the coefficients of edges between Steiner nodes.

Consider a demand l ∈ K \ {k} and let s and s′ be two Steiner nodes of Sl. Consider

the solution (U0, I0) defined above and let (U4, I4) be the pair defined by U4
l = U0

l ∪

{ss′}, U4
p = U0

p for all p ∈ {1, ..., K} \ {l} and I4 =
⋃

p∈K U4
p . It is clear that (x

U0

, yI
0

)

and (xU4

, yI
4

) are both in F k
W and thus in F . This implies that (xU0

, yI
0

) and (xU4

, yI
4

)

satisfy rx + qy = β. Since q = 0, we have rxU0

= rxU4

= rkxU0

+ rlss′, which implies

rlss′ = 0. As demand l and Steiner nodes s and s′ are arbitrary, we have

rlss′ = 0 for all s, s′ ∈ Sl, l ∈ K \ {k}. (4.75)

Now, consider demand k and suppose that s and s′ are Steiner nodes of Sk such that

ss′ /∈ δ(W). That is, ss′ is an edge between two Steiner nodes situated in either W or

W . Let (U5, I5) be the solution defined as follows U5
k = U0

k ∪ {ss
′}, U5

p = U0
p for all

102 Cut formulation and polyhedra

p ∈ {1, ..., K} \ {k} and I5 =
⋃

p∈K U5
p . Obviously, (xU5

, yI
5

) is in F k
W and hence in F .

As a consequence, rxU0

= rxU5

= rxU0

+ rkss′, implying that rkss′ = 0. Hence, we have

rkss′ = 0 for all s, s′ ∈ Sk, ss
′ /∈ δ(W). (4.76)

The case where ss′ ∈ δ(W) for s, s′ ∈ Sk will be treated at the end of the proof.

Next, we will examine the coefficients of edges between terminals.

Consider a demand l ∈ K \ {k} and let ti and ti+1 be two terminals of Tl. Let s be

a Steiner node of Sl. Consider the solution (U6, I6) given by U6
l = (U0

l \ {titi+1}) ∪

{tis, sti+1}, U
6
p = U0

p , for each p ∈ {1, ..., K} \ {l} and I6 =
⋃

p∈K U6
p . As (xU6

, yI
6

)

is in F k
W and hence in F , it follows that rxU0

= rxU6

= rxU0

− rltiti+1
+ rltis + rlsti+1

,

implying that rltiti+1
= rltis + rlsti+1

. Therefore

rltiti+1
= rltis + rlsti+1

for all ti, ti+1 ∈ Tl, s ∈ Sl, l ∈ K \ {k}. (4.77)

Now, suppose that ti and ti+1 are terminals of Tk such that titi+1 /∈ δ(W). Suppose,

without loss of generality, that ti and ti+1 are inW . Consider a Steiner node s ∈ Sk∩W .

Along the same line, we can prove that rktiti+1
= rktis + rksti+1

. Hence,

rktiti+1
= rktis + rksti+1

for all ti, ti+1 ∈ Tk ∩W (resp. Tk ∩W),

s ∈ Sk ∩W (resp. Sk ∩W).
(4.78)

Suppose now that titi+1 ∈ δ(W) such that ti ∈ W and ti+1 ∈ W . Consider two

Steiner nodes s and s′ of Sk such that s ∈ W and s′ ∈ W . Let (U7, I7) be the solution

given by U7
k = (U0

k \ {titi+1}) ∪ {tis, ss
′, s′ti+1}, U

7
p = U0

p , for each p ∈ {1, ..., K} \ {k}

and I7 =
⋃

p∈K U7
p . As (x

U0

, yI
0

) and (xU7

, yI
7

) are both in F k
W and thus in F , we have

rxU0

= rxU7

= rxU0

− rktiti+1
+ rktis + rkss′ + rks′ti+1

, yielding rktiti+1
= rktis + rkss′ + rks′ti+1

.

As nodes ti, ti+1, s and s′ are all arbitrary, we then have

rktiti+1
= rktis + rkss′ + rksti+1

for all ti, ti+1 ∈ Tk, ti ∈ W, ti+1 ∈ W,

for all s, s′ ∈ Sk, s ∈ W, s′ ∈ W.
(4.79)

In the following, we will look at the coefficients of edges between a terminal and

Steiner nodes.

To this end, consider a demand l ∈ K \ {k} and let (U8, I8) be the pair obtained

from (U7, I7) as follows: U8
l = (U7

l \ {sti+1}) ∪ {ss
′, s′ti+1}, U

8
p = U7

p for each p ∈

4.3 Valid inequalities and facets 103

{1, ..., K} \ {l} and I8 =
⋃

j∈K U8
j , where s and s′ are Steiner nodes of Sl. Since

(xU7

, yI
7

) and (xU8

, yI
8

) are both in F k,j
W and thus in F , this implies rxU7

= rxU8

=

rxU7

− rlsti+1
+ rlss′ + rl

s′tki+1

. By (4.75), it follows that rlsti+1
= rls′ti+1

. As demand l, and

nodes ti, s and s′ are arbitrary, we have

rlsti = rls′ti = λl
1(ti)

for all ti ∈ Tl, s, s
′ ∈ Sl, l ∈ K \ {k},

for some λl
1(ti) ∈ R.

(4.80)

Now, consider demand k. Here, we distinguish 3 cases.

First, consider a terminal ti of Tk, say in w, and let s and s′ be two Steiner nodes of

Sk. Consider the solution (U9, I9) defined as follows: U9
k = (U0

k \{titi+1})∪{tis, sti+1},

U9
p = U0

p , for p ∈ {1, ..., K} \ {k} and I9 =
⋃

p∈K U9
p . We also define (U10, I10) by

U10
k = (U9

k \ {tis}) ∪ {tis
′, ss′}, U10

p = U9
p , for each p ∈ {1, ..., K} \ {k} and I10 =

⋃

p∈K U10
p . Note that (xU9

, yI
9

) and (xU10

, yI
10

) are both in F k
W and thus in F . As a

consequence, we have rxU9

= rxU10

= rxU10

− rktis + rktis′ + rkss′. As by (4.76) rkss′ = 0,

we have rktis = rktis′. And since ti, s and s′ are arbitrary, we obtain that

rktis = rktis′ = λl
1(ti)

for all ti, ti+1 ∈ Tk ∩W (resp. Tk ∩W),

for all s, s′ ∈ Sk ∩W (resp. Sk ∩W),

for someλl
1(ti) ∈ R.

(4.81)

Now, we will consider the case where ti and s′ are in W and s ∈ W . Similarly, we

can have the following relation rktis = rktis′ + rkss′. And since ti, s and s′ are arbitrary,

we have

rksti = rks′ti + rkss′
for all ti ∈ Tk, s, s

′ ∈ Sk,

sti ∈ δ(W) and s′ti /∈ δ(W).
(4.82)

Now, we will go back to the case that we left in the beginning of the proof, concerning

edges between Steiner nodes of Sk that belong to δ(W).

Consider demand k, a terminal t1 of Tk and let s1, s2, s3 and s4 be Steiner nodes

of Sk such that, s1 and s3 are in W , and t1, s2 and s4 are in W (s1 and s3, resp. s2
and s4,may be the same). By (4.82) and as s1s2 ∈ δ(W) and s3s4 ∈ δ(W), we have

the following, rkt1s1 = rkt1s2 + rks1s2 and rkt1s3 = rkt1s4 + rks3s4. Moreover, by (??) and since

s1s3 /∈ δ(W) and s2s4 /∈ δ(W), it follows that rkt1s1 = rkt1s3 and rkt1s2 = rkt1s4 , yielding

rks1s2 = rks3s4. As s1, s2, s3 and s4 are all arbitrary in Sk, we then have

rks1s2 = rks3s4 = ρ

for all s1, s2, s3, s4 ∈ Sk,

s1, s3 ∈ W and s2, s4 ∈ W,

for some ρ ∈ R.
(4.83)

104 Cut formulation and polyhedra

Now, let ρ ∈ R be as given by (4.83) and λl = (λl
1, λ

l
2), l ∈ K such that λl

1 =

(λl
1(ti), ti ∈ Tk) where λ

l
1(ti) is as given by (4.80), (4.81) and (??). λl

2 = (λl
2(uv), u, v ∈

Tk, uv /∈ U0
l) such that λl

2(uv) = rluv − λl
1(u)− λl

1(v), l ∈ K.

Overall, the coefficients rluv for all uv ∈ E and l ∈ K can then be expressed in terms

of ρ, λl
1 and λl

2 as follows

rluv =

λl
1(u) + λl

1(v) if l 6= k, uv = titi+1, ti, ti+1 ∈ Tl,

λk
1(u) + λk

1(v) if l = k, uv = titi+1, ti, ti+1 ∈ Tk, uv /∈ δ(W),

ρ+ λk
1(u) + λk

1(v) if l = k, uv ∈ δ(W),

λl
1(u) if l 6= k, u ∈ Tl, v ∈ Sl,

λk
1(u) if l = k, u ∈ Tk, v ∈ Sk, uv /∈ δ(W)

ρ+ λk
1(u) if l = k, u ∈ Tk, v ∈ Sk, uv ∈ δ(W)

λl
2(uv) + λl

1(u) + λl
1(v) if uv = titj , ti, tj ∈ Tl, j > i,

0 if l 6= k and uv = sisj, si, sj ∈ Sl, j 6= i,

0 if l = k and uv = sisj, si, sj ∈ Sk, uv /∈ δ(W),

ρ if l = k and uv = sisj, si, sj ∈ Sk, uv ∈ δ(W).

Clearly, rl = ρal + λl
1M

l
1 + λl

2M
l
2, for all l ∈ K. As a consequence, r = ρa+ λM and

the result follows.

�

4.3.2 Steiner non-successive terminals inequalities

In this section, we introduce a new family of valid inequalities for the MSOND problem.

These come enhancing the constraints related to disjunction and order between the

terminals of a given demand.

In Figure 4.8, is presented a graph consisting of six nodes, four terminals (nodes

1, 2, 3 and 4) and two Steiner nodes (nodes 5 and 6). Figure 4.8 shows a solution for

an instance containing a demand between terminals 1 and 3. This is routed using the

paths L′
1 = (1, 2, 3) and L′

2 = (1, 4, 3). Remind that, as mentioned in Chapter 3, the

MSOND problem for a demand reduces to looking for a cycle going in order through

the terminals of the demand. In the case of Figure 4.8, this amounts to calculating a

cycle visiting the terminals 1, 2, 3 and 4, and respecting the order (1 2 3 4 1).

Figure 4.8 shows a fractional solution for this instance. Let x̄ be the solution given by

x̄ei =
1
2
for i = 1, ..., 8 and x̄ei = 1 for i = 9, 10. Clearly, x̄ satisfies all the constraints

of (4.6) as well as the Steiner cut inequalities (4.71) previously introduced.

4.3 Valid inequalities and facets 105

1

5

e1

e2

e3

6

3

2

e6

4

1

1
2

e5

e10

e9

e4

e7

e8

Figure 4.8: Second fractional solution

Observe that, in this solution, the Steiner node 5 has three incident edges e7, e8 and

e9 such that x̄e7 = 1
2
, x̄e8 = 1

2
and x̄e9 = 1. This implies that the Steiner node 5

is used to route two sections, namely section (1, 2) and section (2, 3), violating hence

the sections’ disjunction constraint. To cut this fractional point and strengthen the

disjunction aspect of problem, one can add the inequality

xe8 ≥ xe9,

which is valid for MSOND(G,K, T). This inequality express the fact that if edge e9
is considered in a solution, it should be used to route only one among the sections

adjacent to terminal 1, that is to say either section (1 2) or section (4 1). As in this

case the Steiner node 5 can be used to route section (1, 2), this means that if edge e9
is considered, then edge e8 must also be taken in the solution.

This can be generalized as follows. Consider a demand k ∈ K and let tj be a terminal

of Tk. Consider a Steiner node s of Sk and denote f = stj. Denote the edges linking

the Steiner node s with the terminals of Tk not successive to tj by e1, e2, ..., ep (see

Figure 4.9).

ep

e1

tj−2

tj−1

tj tj+1

tj+2s

e2

f

Figure 4.9:

Remark that if the edge f is considered in a solution S, it can be used to route only

106 Cut formulation and polyhedra

one among the sections (tj−1 tj) and (tj tj+1). Thus, none of the edges e1, e2, ..., ep could

be considered in the solution S.

This can be expressed by the inequality

∑

e∈δ′(s)

xk
e ≥ xk

f , (4.84)

where δ′(s) = δ(s) \ {f, e1, e2, ..., ep}.

Note that inequality (4.84) can be viewed otherwise. Indeed, one could say that the

flow entering from terminal tj to the steiner s must be conserved when leaving the

Steiner node s, and must be used to route only sections (tj−1 tj) and (tj tj+1).

In the following, we propose a generalization of inequality (4.84).

Consider a demand k ∈ K such that |Tk| ≥ 4 and let tj be a terminal of Tk. Consider

a subset of Steiner nodes S ∈ Sk and let Π = (V0, V1, ..., Vp), p ≥ 4 be a partition of V

(see Figure 4.10) such that:

1) V0 = S,

2) V1∩Tk = {tj−l, ..., tj−2, tj−1}, that is V1 contains a sequence of successive terminals

ending by tj−1,

3) V2 = {tj},

4) V3 ∩ Tk = {tj+1, tj+2, ..., tj+l′}, that is V1 contains a sequence of successive termi-

nals ending by tj+l′,

5) V4, ..., Vp are such that Vi ∩ Tk 6= ∅ and Vi ∩ Sk = ∅, i = 5, ..., p.

Denote Fj−1, Fj , Fj+1 and Ej the sets of edges of E given by:

• Fj−1 = [V0, V1],

• Fj = [V0, V2],

• Fj+1 = [V0, V3],

• Ej =
p
⋃

i=4

([V0, Vi]).

4.3 Valid inequalities and facets 107

Ej

Fj−1 ∪ Fj+1

Fj
tj−1 tj+1

tj

V3

V2

V0

V4 Vp

V1

tj+l′tj−l

Figure 4.10:

With partition Π and the sets of edges Fj−1, Fj , Fj+1 and Ej , we associate the following

inequality
∑

e∈δ′(S)

xk
e ≥

∑

e∈Fj

xk
e , (4.85)

where δ′(S) = Fj−1 ∪ Fj+1 = δ(S) \ {Ej , Fj}.

Inequality (4.85) implies the following. The flow going from tj to a subset of Steiner

nodes S ⊆ Sk must be conserved in S and used only to route sections that are adjacent

to tj .

Inequalities of type (4.85) will be called Steiner non-successive terminals inequalities.

Proposition 4.18 Inequality (4.85) is valid for MSOND(G,K, T).

Proof Case 1.

We will first prove the validity for the case where V1∩Tk = {tj−1} and V3∩Tk = {tj+1}.

Let (U, I) be a solution of the MSOND problem, with U = (U1, . . . , U|K|. Let Fj−1,Uk
,

Fj,Uk
, Fj+1,Uk

and Ej,Uk
be the intersection of Uk with the sets Fj−1, Fj , Fj+1 and Ej,

respectively.

108 Cut formulation and polyhedra

• if Fj,Uk
= ∅, that is |Fj,Uk

| = 0, then trivially (xU , yI) satisfies (4.85).

• if Fj,Uk
6= ∅, this implies that there is some flow going from V2 to V0. Moreover,

by (4.2), we know that Fj,Uk
contains at most 2 edges, that is to say |Fj,Uk

| ≤ 2.

Suppose by contradiction that |Fj−1,Uk
∪ Fj+1,Uk

| < |Fj,Uk
|.

– if |Fj,Uk
| = 1, this implies that Fj−1,Uk

= ∅ and Fj+1,Uk
= ∅, which is

impossible since every edge leaving V2 to V0 must be used in a path linking

tj either to tj−1 or to tj+1. As a consequence, |Fj−1,Uk
∪ Fj+1,Uk

| ≥ 1.

– if |Fj,Uk
| = 2, we have three cases. Either |Fj−1,Uk

| = 0 and |Fj,Uk
| = 0, or

|Fj−1,Uk
| = 1 and |Fj,Uk

| = 0, or |Fj−1,Uk
| = 0 and |Fj,Uk

| = 1. As the two

edges incident to tj must be used to link tj to tj−1 via two node-disjoint

paths not intersecting Tk \ {tj−1, tj, tj+1}, this is impossible. Consequently,

|Fj−1,Uk
∪ Fj+1,Uk

| ≥ 2.

As a conclusion, |Fj−1,Uk
∪ Fj+1,Uk

| ≥ |Fj,Uk
|, and hence (xU , yI) satisfies (4.85).

Case 2.

Now suppose that V1 and V3 may intersect Tk in more than one terminal. Let us denote

by Tj−1 the super node obtained by contracting the terminals tj−l, ..., tj−2, tj−1. Simi-

larly, let Tj+1 be the super node obtained by contacting the terminals tj+1, tj+2, ..., tj+l′.

Along the same line of Case 1., by considering the terminals Tj−1, tj and Tj+1, we obtain

the validity of inequality (4.85).

�

Theorem 4.19 Inequality (4.85) defines a facet of MSOND(G,K, T) if and only if

V1 ∩ Tk = {tj−1} and V3 ∩ Tk = {tj+1}.

Proof Let F k
j,S be the face induced by inequality (4.85) correponding to demand k,

the terminal tj of Tk and the set of Steiner nodes S ⊆ Sk, that is

F k
j,S = {(x, y) ∈ MSOND(G,K, T) :

∑

e∈Fj−1∪Fj+1

xk
e =

∑

e∈Fj

xk
e}.

Necessity

First, assume that the condition of Theorem 4.19 is not satisfied, that is V1 contains

terminals predecessor to tj−1 and/or V3 contains terminals successor to tj+1. Consider

4.3 Valid inequalities and facets 109

the partition Π′ = (V ′
0 , V

′
1 , ..., V

′
p), where

V ′
1 = V1 \ {tj−l, . . . , tj−2},

V ′
4 = V4 ∪ {tj−l, . . . , tj−2},

V ′
i = Vi, otherwise.

It is clear that the left hand side of inequality (4.85) with respect to partition Π′ is

less or equal than that of partition Π. Moreover, the right hand side of inequality (4.85)

is the same for both partitions Π and Π′. This implies that inequality (4.85) written

for partition Π′ dominates the one written for partition Π. As a consequence, F k
j,S is

not a facet defining of MSOND(G,K, T).

Sufficiency

In what follows, we will assume that V1 ∩ Tk = {tj−1} and V3 ∩ Tk = {tj+1}. Note

here that V1 and V3 could contain Steiner nodes of Sk.

Denote inequality (4.85) by ax + by ≤ α. Let rx + qy ≤ β be a valid inequality

defining a facet F of MSOND(G,K, T) such that F k
j,S ⊆ F . In the following, we will

prove that there exist ρ ∈ R and λ = (λl, l ∈ K), λl ∈ R|Tl|+pl for l ∈ K, such that

q = ρb and r = ρa+λM (where r = (r1, r2, ..., r|K|) with ri ∈ Rm, i = 1, ..., |K| and M

is the matrix of equations defined above). Notice here that a = (a1, a2, ..., a|K|) such

that ai ∈ Rm, i = 1, ..., |K| with ai = 0 for i ∈ {1, ..., |K|} \ {k}, ake 6= 0 for every

e ∈ Fj−1 ∪ Fj ∪ Fj+1 and ake′ = 0 for every e′ ∈ E \ (Fj−1 ∪ Fj ∪ Fj+1). Remark also

that b = 0.

First, we prove that q = 0.

Consider the solution (U0, I0) and let e ∈ E \ I0 be an arbitrary edge. Consider the

solution (U1, I1) given by U1 = U0 and I1 = I0 ∪ {e}. Note that the incidence vectors

of solutions (U0, I0) and (U1, I1) are in F k
j,S. This means that (xU0

, yI
0

) and (xU1

, yI
1

)

satisfy equation rx+qy = β. Consequently, rxU0

+qyI
0

= rxU1

+qyI
1

= qxU0

+qyI
0

+qe,

implying that qe = 0. Since e is arbitrarily chosen in E \ I0, we have

qe = 0 for all e ∈ E \ I0. (4.86)

Now, consider the solution (U2, I2) obtained as follows. Consider a demand l ∈ K

and let e = titi+1 be an edge between two successive terminals ti and ti+1 of Tl. Let

U2
l = (U0

l \ {e}) ∪ {tis, sti+1} where s ∈ Sl is a Steiner node of demand l (if l = k

s could be either in S or in Sk \ S). In addition, let U2
j = U0

j , j = 1, ..., K, j 6= l,

110 Cut formulation and polyhedra

and I2 =
⋃

j∈K U2
j . Now, let us define the solution (U3, I3) given by U3 = U2 and

I3 = I2∪{e}. The incidence vectors of both solutions (U2, I2) and (U3, I3) are in F k
j,S,

and hence they satisfy equation rx+ qy = β. As a consequence, we have rxU2

+ qyI
2

=

rxU3

+ qyI
3

= rxU2

+ qyI
2

+ qe, which implies that qe = 0. Recall that I0 is the set of

edges between the consecutive terminals of all the demands. As e is arbitrary in I0,

this yields

qe = 0 for all e ∈ I0. (4.87)

By (4.86) and (4.87) we then have

qe = 0 for all e ∈ E. (4.88)

In what follows, we will establish some relations between the components of vector

r.

First, we will examine the coefficients between Steiner nodes.

Consider a demand l ∈ K \ {k} and let s and s′ be two Steiner nodes of Sl. Consider

the solution (U0, I0) defined above and let (U4, I4) be the pair defined by U4
l = U0

l ∪

{ss′}, U4
p = U0

p for all p ∈ {1, ..., K} \ {l} and I4 =
⋃

p∈K U4
p . Clearly (xU0

, yI
0

) and

(xU4

, yI
4

) are both in F k
j,S and thus in F . This implies that (xU0

, yI
0

) and (xU4

, yI
4

)

satisfy eqaution rx+ qy = β. Since q = 0, we have rxU0

= rxU4

= rkxU0

+ rlss′, which

implies rlss′ = 0. As demand l and Steiner nodes s and s′ are arbitrary, we have

rlss′ = 0 for all s, s′ ∈ Sl, l ∈ K \ {k}. (4.89)

Now, consider demand k and suppose that s and s′ are Steiner nodes of Sk such that

ss′ /∈ δ(S). That is, ss′ is an edge between two Steiner nodes which are both either in

S or in Sk \S. Let (U
5, I5) be the solution defined as follows U5

k = U0
k ∪{ss

′}, U5
p = U0

p

for all p ∈ {1, ..., K}\{k} and I5 =
⋃

p∈K U5
p . Obviously, (xU5

, yI
5

) is in F k
j,S and hence

in F . As a consequence, the incidence vectors of (U0, I0) and (U5, I5) satisfy equation

rx + qy = β. Since q = 0, we have rxU0

= rxU5

= rxU0

+ rkss′ implying that rkss′ = 0.

As s and s′ are arbitrary in Sk, we have

rkss′ = 0 for all s, s′ ∈ Sk, ss
′ /∈ δ(S). (4.90)

Now, consider four Steiner nodes of demand k denoted s1, s2, s3 and s4 such that

s1, s3 ∈ V0 and s2, s4 ∈ V1 (resp. s2, s4 ∈ V3). Note that s1 may coincide with s3, and

similarly s2 may coincide with s4. Let (U
6, I6) be the solution defined as follows U6

k =

4.3 Valid inequalities and facets 111

U0
k \ tjtj+1∪{tjs1, s1s2, s2tj+1}, U

6
p = U0

p for all p ∈ {1, ..., K} \ {k} and I6 =
⋃

p∈K U6
p .

Consider also the solution (U7, I7) given by U7
k = U0

k \ tjtj+1 ∪ {tjs3, s3s4, s4tj+1},

U7
p = U0

p for all p ∈ {1, ..., K} \ {k} and I7 =
⋃

p∈K U7
p . It is clear that (xU6

, yI
6

) and

(xU7

, yI
7

) are in F k
j,S and hence in F . Since q = 0, this implies that rxU6

= rxU7

=

rxU6

− rks1s2 + rks1s3 + rks3s4 + rks4s2. As s1s3 /∈ δ(S) and s4s2 /∈ δ(S), by (4.90) we obtain

rks1s2 = rks3s4. As Steiner nodes s1, s2, s3 and s4 are chosen arbitrarily in Sk, we have

rks1s2 = rks3s4 = ρ

for all s1, s2, s3, s4 ∈ Sk,

s1s2 ∈ δ(S) and s3s4 ∈ δ(S)

for some ρ ∈ R.
(4.91)

Next, we will determine the coefficients between terminals.

Consider a demand l ∈ K and let ti and ti+1 be two terminals of Tl. Let s be a Steiner

node of Sl and consider the solution (U8, I8) given by U8
l = (U0

l \{titi+1})∪{tis, sti+1},

U8
p = U0

p , for each p ∈ {1, ..., K} \ {l} and I8 =
⋃

p∈K U8
p . It is clear that when l 6= k,

the incidence vector of solution (U8, I8) is in F k
j,S. Note here that when l = k, one can

also easily check that (xU8

, yI
8

) is in F k
j,S for all choice of the Steiner node s (either

s ∈ S or s ∈ Sk \ S) and for every choice of terminals ti and ti+1 (in particular titi+1

can be equal to tjtj+1 or tj−1tj). As (x
U8

, yI
8

) is in F k
j,S and hence in F , it follows that

rxU0

= rxU8

= rxU0

− rltiti+1
+ rltis + rlsti+1

, implying that rltiti+1
= rltis + rlsti+1

. Demand

l and nodes s, ti and ti+1 are all arbitrary. Therefore

rltiti+1
= rltis + rlsti+1

for all ti, ti+1 ∈ Tl, s ∈ Sl, l ∈ K. (4.92)

In what follows, we will look at the coefficients of edges between terminals and Steiner

nodes.

Consider a demand l ∈ K \ {k} and let (U9, I9) be the pair obtained from (U8, I8)

as follows, U9
l = (U8

l \ {sti+1}) ∪ {ss
′, s′ti+1}, U

9
p = U8

p for all p ∈ {1, ..., K} \ {l} and

I9 =
⋃

j∈K U9
j , where s and s′ are Steiner nodes of Sl. Since (x

U8

, yI
8

) and (xU9

, yI
9

) are

both in F k
j,S and thus in F , this implies that rxU8

= rxU9

= rxU8

− rlsti+1
+ rlss′ + rls′ti+1

.

By (4.89), it follows that rlsti+1
= rls′ti+1

. As demand l, and nodes ti, s and s′ are

arbitrary, we have

rlsti = rls′ti = λl
1(ti)

for all ti ∈ Tl, s, s
′ ∈ Sl, l ∈ K \ {k},

for some λl
1(ti) ∈ R.

(4.93)

Now, consider demand k. Consider two Steiner nodes s and s′ of Sk such that

ss′ /∈ δ(S). Let (U10, I10) be the solution defined as follows U10
k = (U0

k \ {titi+1}) ∪

112 Cut formulation and polyhedra

{tis, sti+1}, U
10
p = U0

p , for all p ∈ {1, ..., K} \ {k} and I10 =
⋃

p∈K U9
p . We also define

(U11, I11) by U11
k = (U10

k \ {tis}) ∪ {tis
′, ss′}, U11

p = U10
p , for all p ∈ {1, ..., K} \ {k}

and I11 =
⋃

p∈K U11
p . Note that (xU10

, yI
10

) and (xU11

, yI
11

) are both in F k
j,S and thus

in F . As a consequence, we have rxU10

= rxU11

= rxU11

− rktis+ rktis′ + rkss′. as by (4.90)

rkss′ = 0, we have rktis = rktis′ . And since ti, s and s′ are arbitrary, we can write

rktis = rktis′ = λk
1(ti)

for all ti ∈ Tk, s, s
′ ∈ Sk, ss

′ /∈ δ(S),

for someλl
1(ti) ∈ R.

(4.94)

Now, we will consider the case where ss′ ∈ δ(S). Similarly, we can have the following

relation rktis = rktis′ + rkss′. And since ti, s and s′ are arbitrary, we have

rksti = rks′ti + rkss′ = λl
1(ti) + ρ

for all ti ∈ Tk, s, s
′ ∈ Sk, ss

′ /∈ δ(S),

for some λl
1(ti) ∈ R, ρ ∈ R.

(4.95)

Now, let ρ ∈ R be as given by (4.91) and λl = (λl
1, λ

l
2), l ∈ K such that λl

1 =

(λl
1(ti), ti ∈ Tk) where λ

l
1(ti) is as given by (4.93), (4.94) and (4.95). λl

2 = (λl
2(uv), u, v ∈

Tk, uv /∈ U0
l) such that λl

2(uv) = rluv − λl
1(u)− λl

1(v), l ∈ K.

Overall, the coefficients rluv for all uv ∈ E and l ∈ K can then be expressed in terms

of ρ, λl
1 and λl

2 as follows

rluv =

λl
1(u) + λl

1(v) if l 6= k, uv = titi+1, ti, ti+1 ∈ Tl,

λl
1(u) if l 6= k, u ∈ Tl, v ∈ Sl,

λk
1(u) if l = k, u ∈ Tk, v ∈ Sk, uv /∈ δ(S)

ρ+ λk
1(u) if l = k, u ∈ Tk, v ∈ Sk, uv ∈ δ(S)

λl
2(uv) + λl

1(u) + λl
1(v) if uv = titj , ti, tj ∈ Tl, j > i,

0 if l 6= k and uv = sisj, si, sj ∈ Tl, j 6= i,

0 if l = k and uv = sisj, si, sj ∈ Sk, uv /∈ δ(S),

ρ if l = k and uv = sisj, si, sj ∈ Sk, uv ∈ δ(S).

It is clear that rl = ρal + λl
1M

l
1 + λl

2M
l
2, for all l ∈ K. We then deduce that r =

ρa + λM and the result follows.

�

4.3.3 Steiner F-partition inequalities

In this section, we show that the so-called F -partition inequalities may arise as valid

inequalities in an appropriate form. The F -partition inequalities were first introduced

4.3 Valid inequalities and facets 113

by Mahjoub in 1994 [95]. Further works have shown the efficiency of this class of

inequalities to solve different variants of the survivable network design problem (see

for instance [76, 99, 22]).

In what follows, we discuss the F -partition inequalities for the MSOND problem.

First, we show a fractional solution which is cut by an F -partition inequality.

In Figure 4.11 is shown a graph that consists of six nodes, three terminals 1, 2 and

3, and three Steiner nodes 4, 5 and 6.

1
2

1

2

4

5

e1

e7 e8

e9

e2 e3

1

e4 e5

e6

3

6

Figure 4.11: Third fractional solution

The instance consists of a demand between terminals 1 and 2 routed by the paths

L′
1 = (1, 2) and L′

2 = (1, 3, 2). Let x̄ be the solution given by x̄ei = 1 for i = 1, 2, 3 and

x̄ei =
1
2
for i = 4, ..., 9.

It is not hard to see that x̄ satisfies all the constraints of the linear relaxation of (4.6)

and all the valid inequalities previously introduced, namely the 2-connectivity inequal-

ities (4.71) and the Steiner non-successive terminals inequalities (4.85).

However, the fractional solution of Figure 4.11 violates a valid inequality as it will

be shown in the following.

Consider the partition Π = (V0, V1, V2, V3) of V given by V0 = {4, 5, 6}, V1 = {1},

V2 = {2} and V3 = {3}. Let F = {e1, e2, e3} (see Figure 4.12).

It is not hard to check that x violates the inequality xe4 + xe5 + xe6 ≥ 3−
⌊ |F |

2

⌋

= 2,

which is valid for MSOND(G,K, T).

In the following, we show that this inequality is a special case of a more general class

of inequalities.

proposition we state the general form of this violated inequality.

114 Cut formulation and polyhedra

V1

2

1

4

65

V2 V3

e4 e5

e6

F

3

V0

e1

e3e2

Figure 4.12:

Proposition 4.20 Consider a demand k ∈ K and let Π = (V0, ..., Vp), p ≥ 2 be a

partition of V such that |Vi ∩ Tk| ≥ 1, i = 1, ..., p. Let F ⊆ δ(V0) such that |F | is odd.

Then

xk(δ(V0, ..., Vp) \ F) ≥ p−
⌊ |F |

2

⌋

(4.96)

is valid for MSOND(G,K, T).

Inequalities (4.96) will be called Steiner F-partition inequalities.

Proof We prove the validity of the inequality (4.96) for the MSOND(G,K, T) poly-

tope using the Chvátal-Gomory procedure.

The following inequalities are valid for MSOND(G,K, T)

xk(δ(Vi)) ≥ 2 for all i = 1, ..., p,

−xk(f) ≥ −1 for all f ∈ F,

xk(g) ≥ 0 for all g ∈ δ(W) \ F.

By summing these inequalities, we obtain

2xk(δ(V0, ..., Vp) \ F) ≥ 2p− |F |

4.3 Valid inequalities and facets 115

Terminal of TkF

V2

V0

V3

Vj

Vp

V1

Figure 4.13: Steiner F-partition

By dividing by 2 and rounding up the right-hand side, we obtain

xk(δ(V0, ..., Vp) \ F) ≥ p−
⌊ |F |

2

⌋

.

�

Observe that if we denote |F | = 2q + 1, inequality (4.96) can also be written as

xk(δ(V0, ..., Vp) \ F) ≥ p− q (4.97)

Now, we will study the facial aspect of these inequalities.

First, we give necessary conditions for these inequalities to be facet defining.

Theorem 4.21 Inequality (4.96) defines a facet for MSOND(G,K, T) only if

1) each Vi, i ∈ {1, ..., p} is such that

i) Vi does not contain non-successive terminals of Tk,

116 Cut formulation and polyhedra

ii) if |Vi ∩ Tk| ≥ 3, then Sk ⊂ Vi,

iii) if |Vi ∩ Tk| = 2, then Vi ∩ Sk 6= ∅.

2) F does not contain any edge between non-successive terminals of Tk,

3) if s and s′ are two Steiner nodes of Sk such that s ∈ Vi and s′ ∈ Vj, i, j ∈ {1, ..., p}

and i 6= j, then Vi and Vj must contain successive terminals.

Proof Let F k
Π,F be the face induced by inequality (4.96), that is

F k
Π,F = {(x, y) ∈ MSOND(G,K, T) : xk(δ(V0, ..., Vp) \ F) = p−

⌊ |F |

2

⌋

},

1) Suppose that condition 1) is not satisfied. This means that there exists some

i ∈ {1, ..., p} such that Vi satisfies one of the following statements,

a. Vi contains non-successive terminals of Tk,

b. Vi contains at least 3 successive terminals but not all the Steiner nodes of Sk,

c. Vi contains exactly 2 successive terminals but no Steiner nodes of Sk.

Case a.

Suppose that Vi contains non-successive terminals of Tk. Then, the following hold for

any solution of MSOND(G,K, T)

xk(δ(Vi)) ≥ 4

xk(δ(Vj)) ≥ 2 for all j ∈ {1, ..., p} \ {i},

−xk(f) ≥ −1 for all f ∈ F,

xk(g) ≥ 0 for all g ∈ δ(W) \ F.

By summing these inequalities, we obtain

2xk(δ(V0, ..., Vp) \ F) ≥ 2p+ 2− |F |

By dividing by 2, we obtain

xk(δ(V0, ..., Vp) \ F) ≥ p+ 1−
|F |

2
.

4.3 Valid inequalities and facets 117

Now let us replace |F | by 2q + 1. This yields to

xk(δ(V0, ..., Vp) \ F) ≥ p− q +
1

2
> p− q,

which means that any solution of MSOND(G,K, T) does not belong to F k
Π,F . Hence,

F k
Π,F is not facet defining for MSOND(G,K, T).

Case b.

Now, suppose that Vi contains 3 successive terminals, say t1, t2 and t3 and that Sk * Vi.

Consider a Steiner node s ∈ V0 (s can also be chosen in any other Vj, j 6= i such that

Vj ∩ Sk 6= ∅). Let f = st2 be the edge between the terminal t2 and the Steiner node s.

Obviously, the edge f can never be considered in any solution of the face F k
Π,F . Indeed,

if we require the use of edge f , the left hand side of inequality (4.96) rises however

the right hand side is unchanged (the proof can be done similarly to Case a., since by

the use of edge f we have xk(δ(Vi)) ≥ 4). Consequently, every solution of MSOND

inducing a vector in F k
Π,F satisfies xk

f = 0, which implies that F k
Π,F is not facet defining

for MSOND(G,K, T).

Case c.

Now, assume that Vi contains exactly 2 successive terminals, say t1 and t2, but no

Steiner nodes. Observe that, in this case, to route the section (t1 t2), we have two

possibilities. The first is to route (t1 t2) by inserting a Steiner node between t1 and

t2. The second is to route by using the edge f = t1t2. Observe that in the first

case, inserting a Steiner node between t1 and t2 will increase the left hand side of

inequality (4.96) with an unchanged right hand side (along the same line as Case b.).

This implies that the only possibility to route section (t1 t2) is to use the edge f . As a

consequence, every solution of F k
Π,F would satisfy xk

f = 0. But this implies that F k
Π,F is

contained in the face defined by xk
f ≥ 0 and cannot define a facet for MSOND(G,K, T).

2) In the sequel, one can suppose that condition 1) is satisfied. Now, we prove

the necessity of condition 2). To this end, consider an edge e = titj between two

non-successive terminals ti and tj and suppose that e ∈ F . Clearly, the following

inequalities are valid for MSOND(G,K, T)

xk(δ(Vi)) ≥ 2 for all i = 1, ..., p,

−xk(f) ≥ −1 for all f ∈ F \ {e},

xk(g) ≥ 0 for all g ∈ δ(W) \ F,

−xk(e) = 0 .

By summing these inequalities, we obtain

2xk(δ(V0, ..., Vp) \ F) ≥ 2p− (|F | − 1).

118 Cut formulation and polyhedra

As |F | = 2q + 1, we then have

2xk(δ(V0, ..., Vp) \ F) ≥ 2p− 2q.

By dividing by 2, we obtain

xk(δ(V0, ..., Vp) \ F) ≥ p− q.

As a consequence, F k
Π,F cannot be facet defining.

3) Suppose that there exist two sets Vi and Vj (i 6= j) such that Vi and Vj contains

non-successive terminals. Consider two Steiner nodes s and s′ of Sk such that s ∈ Vi

and s′ ∈ Vj and denote f = ss′. In what follows, we will prove that f can never be

considered in any solution of F k
Π,F . First, we state the following result.

Claim 4.22 If edge f is considered in some solution whose incidence vector is in F k
Π,F ,

then xk(δ(Vi)) + xk(δ(Vj)) ≥ 6.

Proof If edge f is considered in some solution, there are two possible configurations.

• The first configuration corresponds to the case where we consider the edge f

as an extra edge, that is not necessary used to route some section of demand

k. Consider solution (U1, I1) defined as follows: U1
k = U0 ∩ f and U1

j = U0
j ,

j = 1, ..., K, j 6= k, and I1 =
⋃

j∈K U1
j . In this case, it is not hard to see that

xU1,k(δ(Vi)) ≥ 3 and xU1,k(δ(Vj)) ≥ 3 and hence xU1,k(δ(Vi)) + xU1,k(δ(Vj)) ≥ 6.

• The second possible configuration is when the edge f is used to route some section

of demand k. Suppose, without loss of generality, that this section is (ti, ti+1),

where ti ∈ Vi and ti+1 /∈ (Vi ∩ Vj). Consider solution (U2, I2) defined as follows:

U2
k = U0 \ titi+ 1 ∩ {tis, ss

′, s′ti+1} and U2
j = U0

j , j = 1, ..., K, j 6= k, and

I2 =
⋃

j∈K U1
j . Clearly, the following hold for solution (U2, I2): xU2,k(δ(Vi)) ≥ 2

and xU2,k(δ(Vj)) ≥ 4. And this implies that xU2,k(δ(Vi)) + xU1,k(δ(Vj)) ≥ 6.

�

Using Claim 4.22 and the results developed in the previous sections, the following

inequalities are valid for MSOND(G,K, T)

xk(δ(Vi)) + xk(δ(Vj)) ≥ 6

xk(δ(Vl)) ≥ 2 for all l ∈ {1, ..., p} \ {i, j},

−xk(f) ≥ −1 for all f ∈ F,

xk(g) ≥ 0 for all g ∈ δ(W) \ F.

4.3 Valid inequalities and facets 119

The sum of these inequalities implies

2xk(δ(V0, ..., Vp) \ F) ≥ 2(p− 2) + 6− |F | = 2p+ 2− |F |

By dividing by 2, we obtain

xk(δ(V0, ..., Vp) \ F) ≥ p+ 1−
|F |

2
.

This implies that

xk(δ(V0, ..., Vp) \ F) ≥ p− q +
1

2
,

which means that xk(δ(V0, ..., Vp) \ F) can never be equal to p− q.

Consequently, every incidence vector of F k
Π,F satisfies xk

f = 0, yielding that F k
Π,F does

not define facet for MSOND(G,K, T). �

Next, we will give sufficient conditions for inequalities (4.96) to be facet defining.

Theorem 4.23 Inequality (4.96) defines a facet for MSOND(G,K, T) if

1) every Vi, i = 1, . . . , p is such that |Vi ∩ Tk| = 1,

2) V0 is such that V0 ∩ Tk = ∅ and |V0 ∩ Sk| ≥ ⌈
|F |
2
⌉,

3) F is such that

i) |F | = p if p is odd and |F | = p− 1 if p is even,

ii) |F ∩ δ(Vi)| ≤ 1 for each i ∈ {1, . . . , p},

iii) for each sj ∈ V0, if F ∩ δ(sj) = {sju, sjv}, where u ∈ Vi and v ∈ Vj, i 6= j,

then Vi and Vj must contain successive terminals.

Proof Recall that F k
Π,F denotes the face induced by inequality (4.96).

Denote inequality (4.96) by ax + by ≤ α. Let rx + qy ≤ β be a valid inequality

defining a facet F of MSOND(G,K, T) such that F k
Π,F ⊆ F . In what follows, we prove

that there exist ρ ∈ R and λ = (λl, l ∈ K), λl ∈ R|Tl|+pl for l ∈ K, such that q = ρb and

r = ρa + λM . Notice here that a = (a1, a2, ..., a|K|) such that ai ∈ Rm, i = 1, ..., |K|

with ai = 0 for i ∈ {1, ..., |K|} \ {k}, ake 6= 0 for every e ∈ δ(Π) \ F and ake′ = 0 for

every e′ ∈ E \ (δ(Π) \ F). Note also that b = 0.

120 Cut formulation and polyhedra

Throughout the proof, we will suppose that the conditions of the theorem are sat-

isfied. In addition, for convenience, we will assume that the edges of F are linking

Steiner nodes of V0 to terminals of Vi, i = 1, . . . , p. Moreover, we will restrict ourselves

to the case where p is odd since the case of p even is very similar. Remark that, under

these hypothesis, we have an odd-wheel configuration shown in Figure 4.14.

Terminal of Tk

Vp

F

V1

V2

V0

Figure 4.14: An odd wheel configuration

In the sequel, we will suppose that the terminals of V1, V2, . . . , Vp are successive. We

will refer to the terminals of these sets by t1, t2, . . . , tp. In addition, denote the edges

of F by f1, f2, . . . , fp, where fi = tisi, i = 1, . . . , p.

First, we prove that q = 0.

Consider the solution (U0, I0) and denote e1, e2, . . . , ep the edges between successive

terminals (ei = titi+1, with tp+1 = t1). Note that U0 = {e1, . . . , ep}.

Let (U1, I1) be the solution given by

U1
k = {e1, e2, f3, s3s4, f4, e4, f5, . . . , ep−1, fp, sp−1sp, f1} and U1

j = U0
j , j = 1, ..., K, j 6=

k, and I1 =
⋃

j∈K U1
j (note here that one can have s3 = s4 and/or sp−1 = sp). Consider

now an edge g ∈ E \ I1 and let (U2, I2) be the solution defined by U2 = U1 and

I2 = I1 ∪ {g}. It is not hard to see that the incidence vectors of solutions (U1, I1)

and (U2, I2) are in F k
Π,F . This means that (xU1

, yI
1

) and (xU2

, yI
2

) satisfy equation

rx + qy = β. Consequently, rxU1

+ qyI
1

= rxU2

+ qyI
2

= qxU1

+ qyI
1

+ qe, implying

4.3 Valid inequalities and facets 121

that qe = 0. Since e is arbitrarily chosen in E \ I1, we have

qe = 0 for all e ∈ E \ I1. (4.98)

Now consider an edge g1 of I1 and a demand l ∈ K.

Here we distinguish two cases.

First suppose that l 6= k. This means that g1 ∈ U0
l . Denote g1 = titi+1 and let (U3, I3)

be the solution defined by U3
l = (U1

l \{g1})∪{tis, sti+1}, where s ∈ Sl is a Steiner node of

demand l. In addition, let U3
j = U1

j , j = 1, ..., K, j 6= l, and I3 =
⋃

j∈K U3
j . Now, let us

define the solution (U4, I4) given by U4 = U3 and I4 = I3∪{g1}. The incidence vectors

of both solutions (U3, I3) and (U4, I4) are in F k
Π,F , and hence they satisfy equation

rx+ qy = β. As a consequence, we have rxU3

+ qyI
3

= rxU4

+ qyI
4

= rxU3

+ qyI
3

+ qg1,

which implies that qg1 = 0.

Suppose now that l = k. Here also, we distinguish two subcases. The first subcase

is when g1 ∈ I1 ∪ I0 and is similar to the previous one. The second subcase is when

g1 ∈ I1 \ I0, that is in our case, g1 ∈ I1 ∩ F . Suppose, without loss of generality, that

g1 = f1. Let (U
5, I5) be the solution defined by U5

l = (U1
l \ {f1, e2}) ∪ {spt1, f2, s1s2}.

Also, let U5
j = U1

j , j = 1, ..., K, j 6= l, and I5 =
⋃

j∈K U5
j . Now, let us define the

solution (U6, I6) given by U6 = U5 and I6 = I5 ∪ {f1}. It is clear that (xU5

, yI
5

) and

(xU6

, yI
6

) are in F k
Π,F and hence in F . Thus they satisfy equation rx+ qy = β. Then,

we have rxU5

+ qyI
5

= rxU6

+ qyI
6

= rxU5

+ qyI
5

+ qf1 , which implies that qf1 = 0.

As in all cases, g1 is arbitrary in I1, this implies that

qe = 0 for all e ∈ I1. (4.99)

By (4.98) and (4.99) we then have

qe = 0 for all e ∈ E. (4.100)

In what follows, we will establish some relations between the components of vector

r.

First, we will determine the coefficients of edges between Steiner nodes.

Consider a demand l ∈ K \ {k} and let s and s′ be two Steiner nodes of Sl. Consider

the solution (U1, I1) defined above and let (U7, I7) be the solution defined by U7
l =

U1
l ∪{ss

′}, U7
p = U1

p for all p ∈ {1, ..., K}\{l} and I7 =
⋃

p∈K U7
p . Clearly (xU1

, yI
1

) and

122 Cut formulation and polyhedra

(xU7

, yI
7

) are both in F k
Π,F and thus in F . This implies that (xU1

, yI
1

) and (xU7

, yI
7

)

satisfy equation rx + qy = β. Since q = 0, we have rxU1

= rxU7

= rxU1

+ rlss′, which

implies rlss′ = 0. As demand l and Steiner nodes s and s′ are arbitrary, we have

rlss′ = 0 for all s, s′ ∈ Sl, l ∈ K \ {k}. (4.101)

Now consider demand k and suppose that s and s′ are Steiner nodes of Sk. Here, we

shall distinguish different cases. First, suppose that ss′ ∈ Vj for a given j ∈ {1, . . . , p}.

Along the same line, we can prove that rkss′ = 0.

Similarly, we can also prove that rkss′ = 0 for every s and s′ of Sk ∩ V0 such that

|δ(s) ∩ F |+ |δ(s′) ∩ F | ≤ 1.

Now suppose that s and s′ are in Sk∩V0 but δ(s)∩F 6= ∅ and δ(s′)∩F 6= ∅. Suppose,

without loss of generality that s = sp and s′ = s1. Consider again solution (U1, I1)

and define solution (U8, I8) as follows, U8
k = U1

k ∪ {sps1, sps2, s2s1}, U
8
p = U1

p for all

p ∈ {1, ..., K} \ {k} and I8 =
⋃

p∈K U8
p . It is clear that (xU1

, yI
1

) and (xU8

, yI
8

) are

both in F k
Π,F and thus in F . This implies that they satisfy equation rx+ qy = β and

hence rxU1

= rxU8

= rxU0

− rksps1 + rksps2 + rks2s1 . This implies that rksps1 = rksps2 + rks2s1.

By symmetry on all the Steiner nodes in Sk ∩ V0 whose incident edges intersect F , we

have

rks1s2 = rks2s3 + rks3s1,

rks2s3 = rks3s4 + rks4s2,

...

rksps1 = rksps2 + rks2s1,

yielding to rkss′ = 0 for all Steiner nodes s and s′ in Sk ∩ V0 whose incident edges

intersect F .

Overall, we have

rkss′ = 0 for all s, s′ ∈ Sk, ss
′ /∈ δ(Π). (4.102)

Now, suppose that s and s′ are two Steiner nodes such that s ∈ Vj and s′ ∈ Vj+1 for

some j ∈ {1, . . . , p}. Suppose also that there is a Steiner node s′′ ∈ Vj+1. Notice that

ss′ and ss′′ are both in δ(Π) \ F .

Suppose, without loss of generality, that j = 1 (the result can be found by symmetry

for all the sets Vi). Consider solution (U1, I1) given above and define solution (U9, I9)

4.3 Valid inequalities and facets 123

as follows, U9
k = U1

k \ {e1} ∪ {t1s, ss
′, s′t2}, U

9
p = U0

p for all p ∈ {1, ..., K} \ {k} and

I9 =
⋃

p∈K U9
p . Let (U

10, I10) be the solution defined by U10
k = U9

k \ {ss
′} ∪ {ss′′, s′′s′},

U10
p = U9

p for all p ∈ {1, ..., K} \ {k} and I10 =
⋃

p∈K U10
p . Clearly, (xU9

, yI
9

) and

(xU10

, yI
10

) are both in F k
Π,F and then satisfy equation rx + qy = β. Since q = 0, we

have rxU9

= rxU10

= rkxU9

− rkss′ + rkss′′ + rks′′s′. By (4.102), we have rks′′s′ = 0, which

implies that rkss′ = rkss′′. As Steiner nodes s, s
′ and s′′ are arbitrary of Sk, we have

rkss′ = rkss′′ = ρ
for all s, s′, s′′ ∈ Sk, ss

′, ss′′ ∈ δ(Π) \ F,

for some ρ ∈ R.
(4.103)

Now, we will determine the coefficients of edges between terminals.

Consider a demand l ∈ K \ {k} and let ti and ti+1 be two terminals of Tl. Let s be a

Steiner node of Sl and consider the solution (U11, I11) given by U11
l = (U1

l \ {titi+1})∪

{tis, sti+1}, U
11
p = U1

p , for each p ∈ {1, ..., K} \ {l} and I11 =
⋃

p∈K U11
p . Clearly,

the incidence vector of solution (U11, I11) is in F k
Π,F and hence in F . It follows that

rxU1

= rxU11

= rxU1

− rltiti+1
+ rltis+ rlsti+1

, implying that rltiti+1
= rltis+ rlsti+1

. Demand

l and nodes s, ti and ti+1 are all arbitrary. Therefore

rltiti+1
= rltis + rlsti+1

for all ti, ti+1 ∈ Tl, s ∈ Sl, l ∈ K \ {k}. (4.104)

Now consider demand k and suppose that ti and ti+1 are terminals of Tk, such that ti
and ti+1 are in Vi and Vi+1, respectively. Suppose, without loss of generality, that ti = t1
and ti+1 = t2. Consider solution (U1, I1) and let (U12, I12) be the solution defined as

follows, U12
k = (U1

k \ {t1t2}) ∪ {t1s2, s2t2}, U
12
p = U1

p , for each p ∈ {1, ..., K} \ {k}

and I12 =
⋃

p∈K U12
p . (xU1

, yI
1

) and (xU12

, yI
12

) are both in F k
Π,F and hence in F .

Therefore, they satisfy equation rx + qy = β. This implies that rxU1

= rxU12

=

rxU1

− rktiti+1
+ rktis2 + rks2ti+1

. Hence rktiti+1
= +rktis2 + rks2ti+1

. As a consequence, we have

rktiti+1
= rktis + rksti+1

for all ti, ti+1 ∈ Tk, s ∈ Sk,

titi+1, tis ∈ δ(Π), and sti+1 ∈ F.
(4.105)

In what follows, we will look at the coefficients of edges between terminals and Steiner

nodes.

Consider a demand l ∈ K \{k} and two Steiner nodes s and s′ of Sl. Let (U
13, I13) be

the solution obtained from (U7, I7) as follows, U13
l = (U7

l \{sti+1})∪{ss
′, s′ti+1}, U

13
p =

U7
p for each p ∈ {1, ..., K} \ {l} and I13 =

⋃

j∈K U13
j . Since (xU7

, yI
7

) and (xU13

, yI
13

)

are both in F k
Π,F and thus in F , this implies rxU7

= rxU13

= rxU7

−rlsti+1
+ rlss′ + rls′ti+1

.

124 Cut formulation and polyhedra

By (4.101), it follows that rlsti+1
= rls′ti+1

. As demand l, and nodes ti, s and s′ are

arbitrary, we have

rlsti = rls′ti = λl
1(ti)

for all ti ∈ Tl, s, s
′ ∈ Sl, l ∈ K \ {k},

for some λl
1(ti) ∈ R.

(4.106)

Now, consider demand k. Consider a terminal ti of Tk and Steiner nodes s and s′ of

Sk such that ti, s and s′ belong to the same set, say Vi.

Along the same line, we can prove that

rksti = rks′ti = λk
1(ti)

for all ti ∈ Tk, s, s
′ ∈ Sk,

sti, s
′ti /∈ δ(Π),

for some λk
1(ti) ∈ R.

(4.107)

Now, suppose that ti, s and s′ are such that tis /∈ δ(Π) and tis
′ ∈ δ(Π) \ F . With-

out loss of generality, we will suppose that ti = t1 and s′ = s2. Consider solution

(U14, I14) defined as follows. U14
k = (U1

k \ {t1t2}) ∪ {t1s2, s2t2}, U
14
p = U1

p , for each

p ∈ {1, ..., K} \ {k} and I14 =
⋃

p∈K U14
p . Define also solution (U15, I15) given by

U15
k = (U14

k \ {t1s2}) ∪ {t1s, ss2}, U15
p = U14

p , for each p ∈ {1, ..., K} \ {k} and

I15 =
⋃

p∈K U15
p . Since (xU14

, yI
14

) and (xU15

, yI
15

) are both in F k
Π,F and thus in F ,

this implies rxU14

= rxU15

= rxU14

− rkt1s2 + rkt1s + rkss2. As ti, s and s′ are all arbitrary,

we have

rksti = rks′ti + rkss′ = λl
1(ti) + ρ

for all ti ∈ Tk, s, s
′ ∈ Sk,

tis
′ /∈ δ(Π), and tis, ss

′ ∈ δ(Π) \ F,

for someλk
1(ti) ∈ R, ρ ∈ R.

(4.108)

Now, let ρ ∈ R be as given by (4.103) and λl = (λl
1, λ

l
2), l ∈ K such that λl

1 =

(λl
1(ti), ti ∈ Tk) where λ

l
1(ti) is as given by (4.106), (4.107) and (4.108). λl

2 = (λl
2(uv), u, v ∈

Tk, uv /∈ U0
l) such that λl

2(uv) = rluv − λl
1(u)− λl

1(v), l ∈ K.

Overall, the coefficients rluv for all uv ∈ E and l ∈ K can then be expressed in terms

4.3 Valid inequalities and facets 125

of ρ, λl
1 and λl

2 as follows

rluv =

λl
1(u) + λl

1(v) if l ∈ K, uv = titi+1, ti, ti+1 ∈ Tl,

λl
1(u) if l 6= k, u ∈ Tl, v ∈ Sl,

λk
1(u) if l = k, u ∈ Tk, v ∈ Sk, uv /∈ δ(Π),

λk
1(u) if l = k, u ∈ Tk, v ∈ Sk, uv ∈ F,

ρ+ λk
1(u) if l = k, u ∈ Tk, v ∈ Sk, uv ∈ δ(Π) \ F,

λl
2(uv) + λl

1(u) + λl
1(v) if uv = titj , ti, tj ∈ Tl, j > i,

0 if l 6= k and uv = sisj , si, sj ∈ Tl, j 6= i,

0 if l = k and uv = sisj , si, sj ∈ Sk, uv /∈ δ(Π),

ρ if l = k and uv = sisj , si, sj ∈ Sk, uv ∈ δ(Π) \ F.

It is clear that rl = ρal + λl
1M

l
1 + λl

2M
l
2, for all l ∈ K. We then deduce that r =

ρa + λM and the result follows.

�

4.3.4 Generalized Steiner partition inequalities

The partition inequalities have got a particular interest and arise as valid inequalities

for several well-known problems. Introduced by Nash-Williams for the spanning tree

problem in the beginning of the 60’s [103], these inequalities have been later widely

studied [24]. In the beginning of the 90’s, Grötschel and Monma use partitions for the

connected subgraph polytope [68]. Later, Stoer [126] introduces partition inequalities

for both kECON (k Edge Connected) and kNCON (k Node Connected) subgraph

problems. The author investigates necessary conditions and sufficient conditions for

these inequalities to be facet defining for the kECON and the kNCON polytopes.

The partition inequalities have also been efficient to model the Steiner tree problem.

In [27, 26], Chopra and Rao introduce the Steiner partition inequalities and study their

facial aspect for the the Steiner tree polytope. In [15], Barahona and Mahjoub show

that the partition inequalities, together with bound, cut and odd-wheel inequalities

give a complete description of the 2NCON for Halin graphs. In a further work, Bäıou,

Barahona and Mahjoub [10] propose a separation algorithm for these inequalities based

on submodular functions.

For more results related to partition inequalities, the reader is referred to [11].

Thus it seems to be interesting to look for an adaptation of partition inequalities to

our prolem. In what follows, we give a suitable form of these inequalities that we will

call Generalized Steiner Partition Inequalities.

126 Cut formulation and polyhedra

Proposition 4.24 Consider a demand k ∈ K and let Π = (V1, ..., Vp) be a partition

of V such that |Vi ∩ Tk| ≥ 1, i = 1, ..., p (p ≥ 2). Suppose that V1, ..., Vr, r ≤ p contain

respectively qi ≥ 2, i = 1, ..., r non-successive terminals (or sequences of terminals).

Let S ⊆ Sk be a subset of Steiner nodes of demand k. Then

xk(δG\S(V1, V2, ..., Vp)) ≥ (p+
r

∑

i=1

qi − r)− |S| (4.109)

is valid for MSOND(G,K, T).

Proof The idea of the proof is to replace each time the subset Vi of the partition Π

by qi equivalent independent subsets. The proof is done by induction on r.

First, notice that if |S| ≥ p +
∑r

i=1 qi − r, inequalities (4.109) are redundant with

respect to the trivial inequalities (4.4).

In the sequel, we assume that |S| < p+
∑r

i=1 qi − r.

If r = 0, this means that all the sets Vi, i = 1, ..., p contains either only one terminal

or a sequence of successive terminals. In this case, inequalities (4.109) are equivalent

to the following inequalities

xk(δG\S(V1, V2, ..., Vp)) ≥ p− |S| (4.110)

Consider a solution (U, I)of the problem with U = (U1, . . . , U|Tk|). If Uk does not use

any node of S, then Uk uses ate least p edges from δG\S(V1, . . . , Vp). As any node of S

can be used to route at most one section titi+1, then Uk must intersect δG\S(V1, . . . , Vp)

in at least p− |S|, and thus inequality 4.110 is satisfied.

Now, suppose that (4.109) are valid for r = h > 0 and let us prove its validity for

r = h+ 1.

We know that r (r = h+1) subsets of the partition contain non-successive terminals

(or sequences of terminals). Recall that these sets are the r first sets of the partition Π,

denoted V1, V2, ..., Vr. This means that the node sets Vr+1, ...Vp contains only successive

terminals (or sequences of successive terminals). Suppose, without loss of generality,

that the terminals (or sequences of terminals) of the sets Vr−1 and Vr are pairwise

non-successive. Note that this hypothesis is not restrictive since we can always obtain

it by a suitable numbering of the sets V1, V2, ..., Vr.

Consequently, if we combine the sets Vr−1 and Vr in one set called W , we get exactly

qr−1 + qr non-successive terminals (or sequences of terminals) in W .

4.3 Valid inequalities and facets 127

Now, consider the new partition Π′ = (V ′
1 , ..., V

′
p′) where p′ = p− 1, obtained from Π

by combining the two node sets Vr−1 and Vr. That is, Π
′ is defined as follows,

V ′
j =

Vj if j ∈ {1, ..., r − 2},

Vr−1 ∪ Vr if j = r − 1,

Vj+1 if j ∈ {r, ..., p′}.

Observe that by construction, partition Π′ contains exactly r′ = r − 1 node sets

V ′
1 , V

′
2 , ..., V

′
r′ such that V ′

i , i = 1, ...r′ contains q′i, i = 1, ...r′ non-successive terminals

(or sequences of terminals). Remark also that q′i = qi for all i = 1, ...r′ − 1 and

q′r′ = qr−1 + qr. Since by hypothesis, (4.109) is assumed to be valid for the rank h and

r′ = r − 1 = h+ 1− 1 = h, we can write

xk(δG\S(V
′
1 , V

′
2 , ..., V

′
p′)) ≥ (p′ +

r′
∑

i=1

q′i − r′)− |S| (4.111)

Recall that by construction, the terminals of Vr−1 and Vr are pairwise non-successive.

This means that there are no edges linking Vr−1 to Vr in any solution, and hence

xk(δG\S(Vr−1, Vr)) = 0. We can deduce, in consequence, that :

xk(δG\S(V
′
1 , V

′
2 , ..., V

′
p′)) = xk(δG\S(V1, V2, ..., Vp)) (4.112)

Moreover we know that

(p′ +

r′
∑

i=1

q′i − r′)− |S| = (p− 1 +

r−2
∑

i=1

qi + q′r−1 − (r − 1))− |S|

= (p− 1 +

r−2
∑

i=1

qi + (qr−1 + qr)− r + 1)− |S|

= (p +
r

∑

i=1

qi − r)− |S|.

consequently,

(p′ +
r′
∑

i=1

q′i − r′)− |S| = (p+
r

∑

i=1

qi − r)− |S|. (4.113)

The result follows from (4.112) and (4.113). �

Notice that the Generalized Steiner Partition inequalities written for particular values

of p, r and |S|, coincide with some known inequalities in the literature.

128 Cut formulation and polyhedra

• If p = 2, r = 0 and |S| = 1, denote W = V1 (W = V2) and S = {s}. The

Generalized Steiner Partition inequalities (4.109) are hence equivalent to

xk(δG\s(W)) ≥ 1. (4.114)

Inequalities (4.114) are known as the node cut constraints for the 2NCON problem

[126].

• If p > 2 and r = 0, the Generalized Steiner Partition inequalities (4.109) are

equivalent to

xk(δG\S(V1, V2, ..., Vp)) ≥ p− |S| (4.115)

Inequalities (4.115) known as the node partition constraints for the kNCON prob-

lem [126].

Proposition 4.25 Consider a demand k ∈ K and let Π = (V1, ..., Vp) be a partition

of V such that |Vi ∩ Tk| ≥ 1, i = 1, ..., p (p ≥ 2). Suppose that V1, ..., Vr, r ≤ p contain

respectively qi ≥ 2, i = 1, ..., r non-successive terminals (or sequences of terminals).

Let S ⊆ Sk be a subset of Steiner nodes of demand k.

Inequalities (4.109) are redundant with respect to inequalities (4.71), (4.2) and (4.4).

Proof Denote by Vi,j, i = 1, ..., p and j = 1, ..., qi, the jth component of the set Vi

consisting of only one terminal or a sequence of successive terminals. Clearly, the

following inequalities are valid for MSOND(G,K, T)

xk(δ(Vi,j)) ≥ 2 for all i = 1, ..., p, j = 1, ..., qi

−xk(δ(s)) ≥ −2 for all s ∈ S,

xk(e) ≥ 0 for all e ∈ E(Sk) \ E(S).

Remark that there are exactly p+
∑r

i=1 qi−r Steiner cut inequalities and |S| disjunction

inequalities.

By summing these inequalities, together with (4.8), we obtain

2xk(δG\S(V1, V2, ..., Vp)) ≥ 2((p+

r
∑

i=1

qi − r)− |S|),

and by dividing by 2, we obtain

xk(δG\S(V1, V2, ..., Vp)) ≥ (p+

r
∑

i=1

qi − r)− |S|,

which ends the proof.

�

4.3 Valid inequalities and facets 129

4.3.5 Generalized disjunction inequalities

In this section, we introduce further valid inequalities which, as inequalities (4.2) and

inequalities (4.85), come from the disjunction constraint in the problem.

Proposition 4.26 Consider a demand k ∈ K. Let W ⊂ V and F ⊆ δ(W) such that

|F | is odd. Then

xk(E(W)) + xk(F) ≤ |W |+
⌊ |F |

2

⌋

(4.116)

is valid for MSOND(G,K, T).

Proof We prove the validity of inequalities (4.116) for MSOND(G,K, T) using a

Chvátal-Gomory procedure.

Clearly, the following inequalities are valid for MSOND(G,K, T)

xk(δ(vi)) ≤ 2 for all vi ∈ W,

xk(f) ≤ 1 for all f ∈ F,

−xk(g) ≤ 0 for all g ∈ δ(W) \ F.

By summing these inequalities, we obtain

2(xk(E(W)) + xk(F)) ≤ 2|W |+ |F |

Now, by dividing by 2 and rounding up the right-hand side, we obtain

xk(E(W)) + xk(F) ≤ |W |+
⌊ |F |

2

⌋

.

�

Inequalities (4.116) will be called generalized disjunction inequalities.

Similarly to the Steiner F-partition inequalities, inequalities (4.116) enable to cut the

fractional solution of Figure 4.11. This solution is given in Figure 4.15.

It is not hard to check that the fractional solution of Figure 4.15 violates an inequality

of type (4.116). In fact, by considering W = {1, 2, 3} and F = {e1, e2, e3}, one can see

that xe1 + xe2 + xe3 + xe4 + xe5 + xe6 = 3 + 3
2
> 4, where 4 = 3 + 1 = |W |+

⌊

|F |
2

⌋

.

130 Cut formulation and polyhedra

e1

e6

e4 e5

2 3

W

5 6

4

1

e9

e7 e8

e3

F

e2

Figure 4.15:

Notice that these inequalities look like the blossom inequalities for the TSP which

coincide with the 2-matching inequalities introduced by Edmonds (1965) in the con-

text of matching problems [45]. And this, is just not strange, because of the tight

relationship of our problem with the TSP.

In the following section, we will get more profit from this relationship and propose

to our problem an analogue of the well known Comb inequalities of the TSP.

4.3.6 Steiner comb inequalities

Comb inequalities have been first discovered by Chvátal [28] in the mid-1970s. After

that, Grötschel and Padberg [71] proposed a generalization of these inequalities.

The name of ”comb” come from the form of these inequalities. Indeed, the vertices of

the graph are partitioned in subsets H and T1, ..., T2k+1, where H is called the handle

and T1, ..., T2k+1 are the teeth.

This type of inequalities have interested many researchers who show that they are a

powerful source of cutting planes for some classical problems and particularly the TSP.

The efficiency of the combs was first shown Grötschel [65] by finding the optimal tour

through 120 German cities,using a very small number of inequalities. Comb inequalities

have been also shown effective for survivable network design problems. In [126], Stoer

introduces several classes of comb inequalities for 2NCON, 2ECON and the kNCON

4.3 Valid inequalities and facets 131

problems. A deep facial investigation of the proposed inequalities is also held by the

author.

Proposition 4.27 Consider a demand k ∈ K. Consider a family of subsets of V , H

called the handle and Tth1
, Tth2

, ..., Tthp
called the teeth such that

1) p ≥ 3 and odd,

2) for every two disjoint teeth Tthi
and Tthj

, Tthi
∩ Tthj

= ∅,

3) for each tooth Tthj
, |Tthj

∩ Tk| ≥ 2,

4) for each tooth Tthj
, H ∩ Tthj

6= ∅, Tthj
\H 6= ∅, and one of the following conditions

is satisfied

i) if (H ∩Tthj
)∩Tk = ∅, then Tthj

\H contains at least 2 non successive terminals

(or sequences of terminals),

ii) if (Tthj
\H)∩Tk = ∅, then H ∩Tthj

contains at least 2 non successive terminals

(or sequences of terminals),

iii) (H ∩ Tthj
) ∩ Tk 6= ∅ and (Tthj

\H) ∩ Tk 6= ∅.

Then

xk(δ(H)) +

p
∑

i=1

xk(δ(Tthj
)) ≥ 3p+ 1 (4.117)

is valid for MSOND(G,K, T).

Proof The proof of the validity here is in the same spirit as the one given for the

general comb inequalities for the TSP [8].

Let us define for each i = 1, ..., p the parameter ci as follows:

ci =

{

1 ifxk contains an edge betweenH ∩ Tthj
andTthj

\H

0 otherwise

By condition 2) the teeth are pairwise disjoint and we have xk(δ(H)) ≥
∑p

i=1 ci. In

addition, by definition of parameter ci, we have
∑p

i=1 ci ≤ p. Since xk(δ(H)) is even

and p is odd, we conclude that:

xk(δ(H)) ≥ 2

p
∑

i=1

ci − p+ 1 (4.118)

132 Cut formulation and polyhedra

Tthp

Tth1

Tth2

Tthj

H

Figure 4.16: Steiner Comb inequalities

Moreover, by conditions 3) and 4), we can write for each tooth Tthj

xk(δ(Tthj
)) ≥ 4− 2ci (4.119)

By (4.119) for all i = 1, ..., p together with (4.118), we obtain

xk(δ(H)) +

p
∑

i=1

xk(δ(Tthj
)) ≥ 2

p
∑

i=1

ci − p+ 1 +

p
∑

i=1

(4− 2ci).

Notice that the parameter ci will disappear since quantity 2
∑p

i=1 ci will be simplified.

This yields

xk(δ(H)) +

p
∑

i=1

xk(δ(Tthj
)) ≥ −p+ 1 +

p
∑

i=1

4 = 3p+ 1.

�

4.4 Concluding remarks

In this chapter, we have proposed an integer programming formulation for the MSOND

problem. We then discussed the associated polytope, described its dimension and stud-

ied the facial aspect of the basic constraints of the formulation. We have also identified

new classes of valid inequalities for the MSOND(G,K, T) polytope and discussed nec-

essary and sufficient conditions for these inequalities to be facet defining. Using this,

4.4 Concluding remarks 133

we propose to devise a Branch-and-Cut algorithm in the next chapter. The aim of this

algorithm is to discuss algorithmic consequences of the results presented in this chap-

ter. Separation procedures of the valid inequalities will be discussed and an extensive

computational study will be presented.

Chapter 5

Branch-and-Cut algorithm

Contents

5.1 Branch-and-Cut algorithm 136

5.1.1 Description . 136

5.1.2 Test of feasibility . 138

5.1.3 Separation of cut inequalities 138

5.1.4 Separation of Steiner cut inequalities 139

5.1.5 Separation of Steiner non-successive terminals inequalities . . 139

5.1.6 Separation of Steiner F-partition inequalities 144

5.1.7 Implementation’s features . 144

5.1.8 Branching strategy . 145

5.2 Computational study . 146

5.2.1 Computations’ context . 146

5.2.2 Description of instances . 146

5.2.3 Experimental results . 148

5.2.4 A French instance . 153

5.3 Concluding remarks . 154

In this chapter, we devise a Branch-and-Cut algorithm for the cut formulation. Our

aim is to perform algorithmic applications of the polyhedral results described in the

previous chapter and discuss strategic choices made in order to solve the MSOND

problem. First, we give an overview of the algorithm. Then, we describe the routines

136 Branch-and-Cut algorithm

of separation of some valid inequalities. Overall, the Branch-and-Cut algorithm is used

to prove the efficiency of the valid inequalities for a powerful resolution of random as

well as realistic instances.

5.1 Branch-and-Cut algorithm

5.1.1 Description

Since the cut formulation (4.6) is given with a huge number of cut inequalities, we first

consider a restricted version of the corresponding linear program. A restricted number

of cut inequalities is then generated in the first LP. In our case, we generate only degree

inequalities associated with terminals in each reduced graph. Therefore, the initial

linear program LPini that we solve in the first step is given by the inequalities (4.1)

written for terminals, the disjunction inequalities (4.2), the linking inequalities (4.3)

as well as the trivial inequalities (4.4) and (4.5), that is

min
∑

e∈E

c(e)ye

∑

e∈δ
Gk,j (v)

xk
e ≥ 1

for all k ∈ K, qkj = (wk
j , w

k
j+1) ∈ Tk,

v ∈ {wk
j , w

k
j+1},

(5.1)

∑

e∈δ(w)

xk
e ≤ 2 for allw ∈ V, k ∈ K, (5.2)

xk
e ≤ ye for all e ∈ E, k ∈ K, (5.3)

0 ≤ xk
e for all e ∈ E, k ∈ K, (5.4)

ye ≤ 1 for all e ∈ E. (5.5)

Denote by (x, y) ∈ RK×E × RE the solution of the cut formulation’s linear relax-

ation (4.6) for the MSOND problem. The obtained solution (x, y) is optimal for the

restricted LP if and only if it satisfies all the cut inequalities (4.1). In general, this is

not the case. Therefore, violated cut inequalities are added to the restricted LP, by

solving a subproblem called separation problem. The process is repeated until no more

violated inequality is found. The final solution, is hence optimal for the linear relax-

ation of (4.6). If the solution is integral then it is optimal for the MSOND problem.

If not, then we create new subproblems by branching on a fractional variable. The

separation routine is then considered at each node of the tree and the process continue.

Algorithm 4 gives the main phases of our Branch-and-Cut algorithm.

5.1 Branch-and-Cut algorithm 137

This algorithm uses some of the valid inequalities described in Chapter 4, whose

separations are performed in the following order:

1) Cut inequalities,

2) Steiner cut inequalities,

3) Steiner non-successive terminals inequalities,

4) Steiner F-partition inequalities.

Algorithm 4: Branch-And-Cut Algorithm

Data: An undirected graph G = (V,E), a set K of demands, 2 node-disjoint

paths routing each demand k ∈ K

Result: Optimal solution for the cut formulation (4.6)

LP ← LPini;1

Solve the linear program LP and denote by (x, y) the optimal solution of LP;2

if for all k ∈ K,q ∈ Tk no (Cut,Steiner cut,Steiner non-successive, Steiner3

F-partition) inequality is violated by (x, y) then

go to 8;4

else5

Add all possible violated inequalities by (x, y);6

go to 2;7

if (x, y) is integer then8

(x, y) is an optimal solution for MSOND. Stop ;9

else10

Create two sub-problems by branching on a fractional variable.11

forall open sub-problem do12

go to 2;13

return the best optimal solution of all the sub-problems.14

One can here remark that the inequalities to be separated are all global, that is they

are valid in the whole Branch-and-Cut tree. In our Branch-and-Cut algorithm, we

choose the following strategy of separation. At each separation procedure, we can add

more than one violated inequality if there is any. Moreover, when separating the valid

inequalities given above, we move to the separation of a new class of inequality only if

no more violated inequalities of the current one is detected. We also choose to apply

the cutting plane process for all the nodes of the Branch-and-Cut tree in order to get

138 Branch-and-Cut algorithm

the best possible lower bound, and then limit the number of generated nodes in the

tree. Furthermore, violated inequalities are added by sets of 200 or fewer at each time.

In what follows, we describe the separation routines used to separate the inequalities

mentioned above. Depending on the class of the valid inequality, we devise exact

or heuristic procedures of separation. All the separations are carried out on graphs

G′
k = (V ′

k, E
′
k), k ∈ K, where (xk

e , e ∈ Ek) are the weights associated with the edges

of E ′
k. In particular, as some valid inequalities are defined in reduced graphs, they are

separated in the graphs G′
k,j = (V ′

k,j, E
′
k,j), k ∈ K, qkj = (wk

j , w
k
j+1) ∈ Tk, where xk,j

e is

the restriction of vector xk
e to the reduced graph G′

k,j.

Before giving the separation procedures, we first present the test of feasibility of a

solution (x, y) ∈ RK×E × RE described in the following section.

5.1.2 Test of feasibility

The cut formulation of the MSOND problem is given with an exponential number of

inequalities. In practice, these inequalities are not enumerated and are not all present

in the initial LP (LPini). As a consequence, an optimal solution of LPini, even if it

is integer, is not necessary feasible for the original problem’s formulation (4.6). This

solution should, in fact, satisfy all the cut inequalities. To check if it is feasible for (4.6),

one should solve the separation problem for the basic cut inequalities (4.1), which is

detailed in the following section.

5.1.3 Separation of cut inequalities

The problem is to find one or more cut inequality (4.1) that is violated by the current

solution (x, y). For each demand k ∈ K and each section qkj = (wk
j , w

k
j+1) ∈ Tk, this

can be done exactly using the algorithm of Gomory-Hu [61] applied to the graph G′
k,j

whose edges are weighted by xk,j. This algorithm gives back the so-called Gomory-

Hu tree having the property that between two nodes s, t ∈ V ′
k,j, the minimum cut

separating s and t in the graph G′
k,j is nothing but the minimum cut separating s and

t in the cut tree. To compute Gomory-Hu tree, we use the efficient implementation of

Gusfield [73, 74]. recall that, for a graph G = (V,E), this implementation consists of

|V | − 1 maximum flow problems in G. Therefore, in our case, we compute |V ′
k,j| − 1

maximum flow problems in G′
k,j.

5.1 Branch-and-Cut algorithm 139

Recall that, by the maximum flow - minimum cut theorem (Ford and Fulkerson [50]),

the minimum cut problem can be solved in polynomial time. Thus, in our Branch-and-

Cut algorithm, for all the problems of minimum cut (and hence maximum flow), we use

the algorithm of Goldberg and Tarjan [60], which is one of the most powerful imple-

mentations of this problem. This algorithm has a complexity of O(m′
jn

′
jlog

n′2
j

m′
j
), where

m′
j = |E

′
k,j| and n′

j = |V
′
k,j| are the number of edges and nodes in G′

k,j, respectively. As

the total separation algorithm is carried out for each demand k ∈ K and each section

qkj = (wk
j , w

k
j+1) ∈ Tk, this implies that at most we compute n′ = |V ′

k| minimum cuts.

As a consequence, the whole separation routine of inequalities (4.1) can be done in

O(m′n′2plog n′2

m′), where p = |K| and n′ is an upper bound on the number of terminals

(and hence sections) of each demand.

5.1.4 Separation of Steiner cut inequalities

The separation of inequalities (4.71) can be performed using a procedure similar to

the one we use to separate cut inequalities (4.1). It is thus an exact separation al-

gorithm based on the implementation of the Gusfield [73, 74] of the algorithm of

Gomory-Hu [61], using Goldberg and Tarjan’s algorithm [60] to calculate maximum

flows. However, the separation of the Steiner cut inequalities is slightly different from

the previous one, since we apply the algorithm of Gusfield [73, 74] once for each de-

mand. This implies that in terms of complexity, the separation of the Steiner cut

inequalities can be done in O(m′n′plog n′2

m′).

Moreover, in our computations and in order to improve the lower bound of the root

node, we choose to generate, together with inequalities (5.1)- (5.5), degree inequalities

for the terminals of each demand. The generated inequalities have the following form,
∑

e∈δ(v)

xk
e ≥ 2 for all k ∈ K, for all v ∈ Tk. (5.6)

The computations show that these terminals’ degree inequalities help improving the

linear relaxation of the problem and hence limit the number of generated nodes of the

Branch-and-Cut tree.

5.1.5 Separation of Steiner non-successive terminals inequal-

ities

In this section, we discuss the separation of Steiner non-successive terminals inequali-

ties (4.84). As it was shown in Theorem 4.19, an inequality of type (4.84) defines a facet

140 Branch-and-Cut algorithm

of MSOND(G,K, T) if and only if the sets V1 and V3 are such that V1 ∩ Tk = {tj−1}

and V3 ∩ Tk = {tj+1}. As a consequence, in what follows, we restrict ourselves to this

case.

Consider a facet-defining configuration of inequality (4.84) as it is shown in Figure 5.1.

Figure 5.1 represents a restricted graph in which only terminals tj−1, tj and tj+1 as

well as the Steiner nodes Sk are kept. Let us denote by V
k,j

the set of these nodes.

In what follows, we maintain the same sets’ notations given in Section 4.3.2, namely

Fj−1 = [V0, V1], Fj = [V0, V2] and Fj+1 = [V0, V3].

Fj

Fj−1 ∪ Fj+1

V2

tj

tj−1
tj+1

V1 V3
V0

Figure 5.1: Facet-defining configuration of the Steiner non-successive terminals inequal-

ities

Consider the reduced graph G
k,j

= (V
k,j
, Fj−1∪Fj ∪Fj+1), whose edges are weighted

by the corresponding restriction of vector xk (i.e. the fractional solution that we want

to separate). The Steiner non-successive terminals inequality corresponding to this

configuration can be written as follows
∑

e∈Fj−1∪Fj+1

xk
e ≥

∑

e∈Fj

xk
e . (5.7)

The separation problem of inequalities (4.84) in the graph G
k,j

is equivalent to the

following optimization problem

min
∑

e∈Fj−1∪Fj+1

xk
e −

∑

e∈Fj

xk
e . (5.8)

5.1 Branch-and-Cut algorithm 141

Remember that V0 = S (see Section 4.3.2). Let us denote by p(S) =
∑

si∈S

pi, where

pi = xk
tjsi

. Also, denote by Γ(S) = xk(δ(S))− p(S).

It is not hard to see that solving the problem (5.8) is equivalent to

min
∑

S⊆Sk

Γ(S). (5.9)

In the sequel, we will show that problem (5.9) can be solved in polynomial time. To

this end, let us first present some useful results.

Definition 5.1 Given a finite set S, a function f : 2S → R is said to be submodular

if the following is true

f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B) for all subsets A,B ⊆ S. (5.10)

Examples of submodular functions include cut capacity functions, matroid rank func-

tions and entropy functions. For additional examples of submodular functions and for

applications, the reader is referred to [49, 55, 101, 78].

One of the most important result concerning submodular functions is the one re-

lated to their minimization. In fact, such a problem can be solved in polynomial

time. Grötschel, Lovasz and Schrijver [66] were the first to give a polynomial time and

strongly polynomial time algorithms for minimizing a submodular function using the

ellipsoid method. Schrijver [122] and Iwata et al. [79] develop independently strongly

polynomial time algorithms for minimizing a submodular function. Both algorithms

are based on the work of Cunningham [33], who develop a pseudo-polynomial time

algorithm for minimizing a submodular function. Recently, Orlin [104] and Iwata et

al. [80] propose algorithms that improve the previous best strongly polynomial algo-

rithm’s running time.

All the proposed algorithms have a complexity that is for the best around O(n5), where

n is the number of elements of set S.

Proposition 5.2 Γ is a submodular function.

Proof Consider A ⊆ S and B ⊆ S. It is not hard to see that

p(A) + p(B) = p(A ∪ B) + p(A ∩ B). (5.11)

142 Branch-and-Cut algorithm

Moreover, as the cut function is submodular, this implis that

xk(δ(A)) + xk(δ(B)) ≥ xk(δ(A ∪B)) + xk(δ(A ∩B)). (5.12)

By (5.11) and (5.12), we obtain

Γ(A) + Γ(B) ≥ Γ(A ∪B) + Γ(A ∩B), (5.13)

and the result follows. �

From Proposition 5.2 and as it was mentioned above that minimizing submodular

functions can be performed in polynomial time, we deduce the following theorem.

Theorem 5.3 Inequalities (4.19) can be separated exactly in polynomial time.

By Theorem 5.3, we know that we can separate exaclty the Steiner non-successive

terminals inequalities in polynomial time. However, as the complexity of the minimiza-

tion of a submodular function is around O(n5), separating exactly inequalities (4.19)

would be time consuming. As a consequence, in our Branch-and-Cut algorithm, we

will rather use a heuristic separation for Steiner non-successive terminals inequalities.

To this end, we propose two heuristics.

The first heuristic is detailed in Algorithm 5 and can be described as follows. Consider

a demand k ∈ K. We first go through the current solution (whose incident vector is

denoted (x, y)). During this step, we mark all the Steiner nodes that have been used to

route demand k. Denote by Sk,+ the set of those nodes (see step 3 of Algorithm 5). We

then consider a terminal tj ∈ Tk and consider the reduced graph G
k,j

defined above.

Recall that G
k,j

= (V
k,j
, Fj−1 ∪ Fj ∪ Fj+1), where V

k,j
= {tj−1, tj , tj+1} ∪ Sk. In a

second step, we fix V0 = S = Sk,+ and calculate the value of Γ(S). If this value is less

than 0, then there exists a violated inequality (see steps 9-11 of Algorithm 5). If no

violated inequality is detected, we change the set of Steiner nodes S as follows. We

choose one of the most weighted edges of Fj−1 ∪ Fj+1. Denote by sv this edge, where

s ∈ V0 and v ∈ V1 ∪ V3. We then remove s from V0 and put it in V1 ∪ V3 (i.e. we

contract edge sv). We hence obtain a new set S = S \ {s}. Given this, we go back to

step 8 of the algorithm and calculate the new value of Γ(S). The procedure is repeated

until no Steiner node remains in S. The overall heuristic requires |Tk|× |Sk| operations

for each demand k ∈ K. As n′ is an upper bound for both |Tk| and |Sk| (recall that

n′ = |V ′
k|), this implies that the whole heuristic runs in O(pn′2), where p = |K|.

5.1 Branch-and-Cut algorithm 143

Algorithm 5: Separation of the SNST inequalities

Data: Fractional Solution (x, y)

Result: Violated SNST inequalities

Let I ← ∅ ;1

/* denotes the set of SNST inequalities violated by (x, y) */

forall k ∈ K do2

Sk,+ ← ∅ ;3

/* the set of marked Steiner nodes, used in the current solution

to route demand k */

forall tj ∈ Tk do4

Let G
k,j

= (V
k,j
, Fj−1 ∪ Fj ∪ Fj+1), where V

k,j
= {tj−1, tj , tj+1} ∪ Sk;5

Let S ← Sk,+;6

while |S| ≥ 1 do7

Calculate the value of Γ(S);8

if Γ(S) < 0 then9

/* there is a violated SNST inequality */

Denote Ik,jS the violated inequality;10

I ← I ∪ Ik,jS11

else12

Choose one of the most weighted edges of Fj−1 ∪ Fj+1;13

Denote sv this edge;14

/* where s ∈ V0 = S and v ∈ V1 ∪ V3 */

S ← S \ {s};15

Fj−1 ∪ Fj+1 ← Fj−1 ∪ Fj+1 ∪ {s}16

return the detected violated SNST inequalities I ;17

/* I = ∅ if no violated SNST inequalities are detected */

We also devise a second heuristic to separate the Steiner non-successive terminals

inequalities. This heuristic is based on the calculation of minimum cuts. Given a

demand k and a terminal tj of Tk, we calculate the minimum cut between tj and

the supernode formed by tj−1 and tj+1. Denote this cut by δ(W), where tj ∈ W

and tj−1, tj+1 ∈ W . Based on the calculated cut, we build our partition as follows.

V0 = W ∩ Sk, V1 = tj−1, V2 = tj and V3 = tj+1 ∪ (W ∩ Sk). Once the sets fixed,

we calculate the value of Γ(S), which is equal to xk(δ(W)) − xk(δ(tj)). To calculate

the minimum cut we use the procedure described in the previous sections. As the

complexity of minimum cut is O(m′n′log n′2

m′), and we calculate for each demand k ∈ K

exactly |Tk| minimum cuts, the complexity of the heuristic is hence O(m′n′2plog n′2

m′).

144 Branch-and-Cut algorithm

5.1.6 Separation of Steiner F-partition inequalities

In what follows, we consider the separation of the Steiner F-partition inequalities (4.96).

To this end, we propose a heuristic approach to detect Steiner F-partition inequalities

violated by (x, y). Our heuristic consists for a demand k in determining an odd cycle

passing through terminals of Tk and whose edges have fractional values. In particular,

this is the case when the cycle visits all the terminals of the considered demand, since

there are no possible edges between non-successive terminals (mainly after separating

the valid inequalities mentioned above). The nodes of the cycle will then define the

sets V1, . . . , Vp and hence V0 will contain only Steiner nodes of Sk. Moreover, the set

F will be chosen in δ(V0) such that |F | is odd. These observations lead us to think

about the heuristic of separation given by Algorithm 6, and which can be described as

follows.

Consider a demand k ∈ K. We first start by marking the Steiner nodes that have been

used to route demand k in solution (x, y). We then delete the Steiner nodes Sk \ Sk,+.

In the resulting graph, we contract all the edges between successive terminals tj, tj+1

of Tk having a value equal to 1 (i.e. xk
tjtj+1

= 1). We denote by T ′
k = {t

′
1, . . . , t

′
p} the set

of the remaining terminals. Then, we construct the partition Π = (V0, V1, . . . , Vp) by

considering the following sets, V0 = Sk,+ and Vi = t′i, i = 1, . . . , p. Once the partition

Π is built, we choose the set F . The edges of F are chosen among those of δ(V0) having

the highest values and such that |F | is odd (if such an edge set F is empty, we move

to the next demand). We then calculate the value xk(δ(Π) \ F) and compare it to the

quantity p−
⌊ |F |

2

⌋

to check if the Steiner F -partition induced by Π and F is violated or

not. The heuristic here described, runs in a linear time for each demand. The overall

complexity is then O(pn′).

5.1.7 Implementation’s features

During the separation procedure, to efficiently deal with the violated inequalities that

are added, we create particular data structures called pools whose size increases dy-

namically. All the generated inequalities are dynamic and stored in a specific pool,

that is to say that they are removed from the current linear program if they are not

active. At each iteration, the separation procedure begins first by detecting violated

inequalities in the pool. If no such inequality exits, then we carry out our separation

procedure on the valid inequalities in the order given above.

5.1 Branch-and-Cut algorithm 145

Algorithm 6: Separation of the SFP inequalities

Data: Fractional Solution (x, y)

Result: Violated SFP inequalities

Let J ← ∅ ;1

/* denotes the set of SFP inequalities violated by (x, y) */

forall k ∈ K do2

Sk,+ ← ∅ ;3

/* the set of marked Steiner nodes, used in the current solution

to route demand k */

Delete the Steiner nodes of Sk \ Sk,+;4

In the resulting graph, contract all the edges tjtj+1 between two successive5

terminals of Tk such that xk
tjtj+1

= 1;

Denote T ′
k = {t

′
1, . . . , t

′
p} the resulting set of terminals.;6

V0 ← Sk,+;7

/* constitute the sets V1, . . . , Vp as follows */

Vi ← {t
′
i}, i = 1, . . . , p Choose the set of edges F ⊆ δ(V0) such that |F | is8

odd and having values greater than 1
2
;

Given Π = (V0, V1, . . . , Vp) and F ⊆ δ(V0), calculate xk(δ(Π) \ F);9

if xk(δ(Π) \ F) < p−
⌊ |F |

2

⌋

then10

/* there is a violated SFP inequality */

Denote Jk
π,F the violated inequality;11

J ← J ∪ Jk
π,F12

return the detected violated SFP inequalities J ;13

/* J = ∅ if no violated SNST inequalities are detected */

5.1.8 Branching strategy

Let (P) denote the linear program of a given node in the Branch-and-Cut tree. Suppose

that the optimal solution of the linear relaxation of (P) is fractional. Denote by (x, y)

this fractional solution. The branching phase consists in choosing a fractional variable

xk
e (resp. ye), e ∈ E, k ∈ K, and then create two subproblems (P1) and (P2) by adding

respectively the constraints xk
e ≤ ⌊x

k
e⌋ and xk

e ≥ ⌈x
k
e⌉ (resp. ye ≤ ⌊ye⌋ and xye ≥ ⌈ye⌉).

As the decision variables for the MSOND problem are binary, this reduces to fix the

variable xk
e (resp. ye) either to 0 or to 1.

There are several strategies used to select the fractional variable on which we choose

to branch. In our case, we have chosen the strategy introduced by Padberg and Ri-

naldi [107] for the Symmetric Travelling Salesman Problem. This strategy consists in

146 Branch-and-Cut algorithm

choosing the most fractional variable, that is the fractional variable which is the nearest

to 0.5. If there exist many variables having the same fractional value, and satisfying

this condition, then we choose the most weighted one in the objective function.

5.2 Computational study

5.2.1 Computations’ context

Before giving the experimental results, we first present the tools that we have used for

the implementation. The Branch-and-Cut algorithm described in the previous section

has been implemented in C++ using ABACUS 3.2 (A Branch-And-CUt System) [1]

to manage the Branch-and-Cut framework. To solve the linear programs, ABACUS

uses CPLEX 12.5 [2]. The Branch-and-Cut algorithm was tested on Bi-Xeon quad-core

E5507 2.27GHz with 8Go of RAM, running under Linux.

The tests have been done on two types of instances: random instances and realistic

instances described in the following section.

5.2.2 Description of instances

Experimentations for MSOND problem are based on two types of instances: random

and realistic ones. Both family of instances is euclidian. They are characterized by:

• the number of nodes V in the optical layer (graph G);

• the number of nodes V ′ in the logical layer (graph G′). This number constitutes

the maximum number of node in G that can be terminals;

• the number K of demands.

5.2.2.1 Random instances

These instances are generated from the TSP-Library [3]. We particularly generate our

instances based on data from a280, bier127, eil101, lin105 and tsp225. According to

the size of the instance, we choose the first V nodes of the basic TSP instance. Then,

5.2 Computational study 147

we choose among these nodes, the V ′ nodes corresponding to the possible terminals.

We then constitutes the K demands as follows. Based on the number of the demands,

the choice of the origins and destinations of these demands is completely random.

To generate after the two paths routing the demands, we first begin by choosing the

number of terminals of the first path and after we randomly generate this number from

the nodes of the graph (except the origin and destination). We do the same for the

second path. We choose the number of terminals and generate these ones from the

nodes that have not been yet used in the first path. Here the random aspect is first

ensured by the number of terminals but also by the choice of terminals themselves. For

each size of the instance, we generate five examples of instances based on the previously

chosen TSP basic instances.

5.2.2.2 Realistic instances

The realistic instances are instances that we generate so as to be the nearest to the

real instances. We generate two kinds of instances described in what follows.

Gravity model instances

These instances are based on geographic data taken from a web data base [4]. We choose

V as the most populated cities and among them the most populated V ′ cities as well.

In a second step, we calculate for all the possible demands (all possible combinations of

pairs of nodes V ′) a quantity indicating its volume. The volume of a demand between

two cities is calculated using a gravity model [23] that uses the distance between the

considered cities and the population of each city. The gravity model is based on spatial

interactions. its general formula for a demand k = (ok, dk, vk) ∈ K is
Pα
ok

P
β
dk

Dok,dk

, where

Pok , Pdk are the populations of the origin and destination cities, respectively. Dok,dk

is the distance between the two cities. We also fix α = 1.2 and β = 0.8. We then

choose among the calculated demands the K most important ones. After this step, to

generate the two paths, we forbid the direct edge between the origin and destination

as well as some edges of the graph. We then calculate two shortest paths routing each

demand to stay the nearest to reality.

148 Branch-and-Cut algorithm

SNDlib-based instances

These instances are realistic and based on the SNDlib [5]. We particularly choose

to test on the following basic instances: dfn-bwin, nobel-us, newyork, geant, cost266,

pioro40 and germany50. For these instances, we choose to set V = V ′, equal to the

original number of nodes of the instances. For the demands, we choose among the

demands of the original instances of SND the K most important demands (according

to the quantity of the demands). After this step, to generate the two paths, we forbid

the direct edge between the origin and destination as well as some edges of the graph to

avoid generating trivial instances. We then calculate two shortest paths routing each

demand to stay the nearest to reality.

5.2.3 Experimental results

We have tested the Branch-and-Cut algorithm on the instances described in the pre-

vious sections. We have fixed the maximum CPU time to 5 hours. The results are

reported in the tables that will be presented in the sequel. The entries of the various

tables are the following:

5.2 Computational study 149

Instance : name of the instance (for realistic instances);

V : number of node in graph G;

V ′ : number of node in graph G′ (for random instances);

K : number of demands;

Term : average number of terminals;

Nsub : number of subproblems (nodes);

Nsub-basic : number of subproblems for the basic formulation;

Ncut : number of generated cut inequalities;

NScut : number of generated Steiner cut inequalities;

NSNST : number of generated Steiner non-successive;

terminals inequalities;

NSFP : number of generated Steiner F -partition inequalities;

Gap(%) : the relative error between the best upper bound

(the optimal solution if the problem has been solved

to optimality) and the lower bound obtained at the root;

Gap-basic(%) : the gap of the basic formulation;

Opt : number of instances solved to optimality (for random instances);

TT : total CPU time (in seconds for random instances

and hh:mm:ss for realistic ones);

TT-basic : total CPU time (in seconds).

5.2.3.1 Efficiency of the valid inequalities

Before giving the series of experimentations, we propose, in this section, to evaluate

the impact of the valid inequalities that we separate in the Branch-and-Cut algorithm.

Consider, for this purpose, the instances of the TSPlib [?] previously described, and let

show the results we obtain by computing the algorithm first with the basic formulation

and then considering the valid inequalities. The results are reported in Table 5.1.

In Table 5.1, we present the results obtained for instances having up to 12 nodes in

G and for which the demands range from 6 to 10. It appears from this table that

the formulation with valid inequalities performs better than the basic one for all the

instances. In fact, from Table 5.1, we notice that the number of the Branch-and-Cut

tree’s nodes for the basic formulation is more important than the one of the formulation

with valid inequalities. See, for example, instance (a, 12, 10, 8) for which the Branch-

and-Cut tree explored 8593 nodes with the basic formulation and only 589 when adding

valid inequalities. For the same instance, the gap and the total time of execution were

much more important using the basic formulation. And this remark can be generalized

for all the tested instances, for which we can clearly note that the gap and the total

150 Branch-and-Cut algorithm

time of execution were always better with the formulation using the valid inequalities.

Notice also that, using the basic formulation, some of the instances like (tsp, 8, 6, 10)

have not been solve to optimality within 3 hours. However, the optimum for the same

instance have been found within some seconds when adding the valid inequalities.

All these observations lead us to conclude about the importance of the added valid

inequalities for a better resolution of the MSOND problem. In fact, these inequalities

allow a significant improvement of the number of the Branch-and-Cut tree’s nodes the

gap and the total time of execution.

In the next sections, we will get profit from this to efficiently solve random and

realistic instances.

5.2.3.2 Random instances

Our first series of experiments concerns random instances. The instances we have

considered have graphs with 6 up to 20 nodes in G and 4 up to 18 nodes in G′. The

number of demands for each size of graph ranges from 2 to 10 with an average number

of terminals varying between 3 and 6.50. For each triplet (V, V ′, K), we tested over 5

TSPlib-based instances previously described. The results are reported in Table 5.2. It

appears from Table 5.2 that, in average (i.e. Opt = 5/5), 24 over 35 groups of instances

have been solved to optimality within the time limit. In addition, among the remaining

groups of instances, only 6 groups did not reach any optimal solution over the 5 tested

instances. Moreover, 13 over 24 of the groups solved to optimality have a gap that does

not exceed 3%. For the other groups of instances, this value reaches at most 6.49% for

the group of instances having 12 nodes in G and 10 demands.

Table 5.2 shows also that the difficulty of solving an instance depends not only on its

size (i.e. size of the graph and number of demands), but also on the average number

of its terminals. Remark for example that the group of instances (14, 12, 2) have a gap

less than the one obtained for the group of instances (12, 10, 2). In fact, the former

has an average number of terminals equal to 6.50, whereas the same number is equal

to only 4.50 for the latter.

Note also, that for the majority of group of instances we generate a significant number

of cut, Steiner cut and Steiner non-successive terminals inequalities. This means that

these inequalities are helpful for the random instances. However, only small numbers

of the Steiner F -partition inequalities have been separated. This can be explained by

the structure of random instances. In fact, from experimentations we have noticed that

these inequalities are as more efficient as the number of terminals is low.

5.2 Computational study 151

Instance V V ′ K Nsub-basic Gap-basic(%) TT-basic(s) Nodes-2 Gap(%) TT(s)

a 8 6 6 21 7.50 0.69 11 4.31 0.58

bier 8 6 6 43 10.03 1.40 37 6.82 0.63

eil 8 6 6 7 3.34 0.32 1 0.00 0.51

lin 8 6 6 5 1.08 0.36 1 0.00 0.5

tsp 8 6 6 17 3.31 0.53 13 1.65 0.64

a 8 6 8 45 7.85 257.91 19 3.01 30.76

bier 8 6 8 25 8.38 3578.49 3 0.49 15.12

eil 8 6 8 3 0.26 35.59 1 0.00 19.99

lin 8 6 8 19 2.38 50.71 3 0.27 16.69

tsp 8 6 8 17 3.04 16.85 11 1.50 14.70

a 8 6 10 17 5.18 120.81 3 1.73 1.22

bier 8 6 10 19 5.39 3063.59 15 2.23 0.96

eil 8 6 10 7 1.90 2533.11 7 0.72 0.61

lin 8 6 10 17 5.86 10800.00 5 1.64 1.10

tsp 8 6 10 21 5.25 10800.00 15 4.20 1.80

a 10 8 6 161 9.89 7.60 41 5.95 2.16

bier 10 8 6 23 4.18 1.27 7 1.09 4.16

eil 10 8 6 37 4.80 1.61 23 2.91 0.64

lin 10 8 6 133 11.66 5.30 3 0.70 0.49

tsp 10 8 6 209 7.26 9.70 49 5.09 2.88

a 10 8 8 29 7.53 7.14 21 5.16 3.15

bier 10 8 8 17 4.71 7.18 7 2.60 1.8

eil 10 8 8 107 7.37 24.75 23 4.67 0.54

lin 10 8 8 13 5.22 13.40 1 0.00 0.82

tsp 10 8 8 19 5.36 10.76 23 3.20 2.16

a 10 8 10 79 8.54 7.10 25 4.38 0.88

bier 10 8 10 83 7.16 6.82 47 6.11 1.87

eil 10 8 10 43 7.37 6.42 21 5.85 0.92

lin 10 8 10 43 8.38 3.63 9 2.52 1.16

tsp 10 8 10 163 11.03 15.88 25 7.78 3.12

a 12 10 6 5877 13.08 785.59 225 6.16 15.26

bier 12 10 6 937 11.63 98.76 153 8.59 3.39

eil 12 10 6 259 7.15 20.39 33 4.11 3.6

lin 12 10 6 2609 14.24 290.74 55 5.01 2.1

tsp 12 10 6 813 10.53 10800.00 41 3.48 22.37

a 12 10 8 8593 14.58 2333.51 589 7.52 3.55

bier 12 10 8 259 8.59 50.82 85 6.47 2.35

eil 12 10 8 1729 10.92 365.69 207 8.64 4.77

lin 12 10 8 1117 15.62 259.12 113 5.82 0.84

tsp 12 10 8 161 7.94 33.13 19 3.35 5.68

a 12 10 10 3899 12.97 1218.84 153 6.41 3.92

bier 12 10 10 1479 11.63 398.21 161 8.37 7.23

eil 12 10 10 489 8.22 128.49 59 6.05 4.58

lin 12 10 10 1845 13.56 10800.00 181 7.10 1.78

tsp 12 10 10 457 11.06 10800.00 83 7.64 5.52

Table 5.1: The impact of valid inequalities

152 Branch-and-Cut algorithm

5.2.3.3 Realistic instances

Our second series of experiments concerns realistic SNDlib-based instances. The tested

instances have a graph whose number of nodes varies from 10 (instances dfn-bwin) to 50

(instances germany), and a number of demands ranging from 2 to 45 at most. Overall,

we tested 92 instances and reported the results in Table 5.3 and Table 5.4. It appears

from Table 5.3 and Table 5.4 that 72 over 92 of the instances have been solved to

optimality within the time limit of execution. The remaining instances, often having

more than 30 demands and/or more than 40 nodes, have not reached the optimal

value within 5 hours. Moreover, for all the instances, except the two last instances of

newyork, the gap does not exceed 6%. We also notice that, 30 instances have been

solved at the root node, which proves the efficiency of the Branch-and-Cut algorithm to

solve realistic instances in comparison with the random ones. In addition, we remark

that the CPU time for the solved instances is relatively small. In fact, 62 instances

have been solved to optimality in at most 10 minutes.

Like the random instances, the difficulty of solving the realistic instances does not

depend only on its seize (i.e. the number of nodes of the graph and the number

of demands) but also on the average number of terminals. However, these only can

not explain the evolution of resolution for some instances. Look for example to the

instances newyork, in particular (newyork,16,16) and (newyork,16,18). Note that, in

spite of being smaller in terms of graph, number of demands and terminals, the former

took almost 5 hours to be solved to the optimality, when the latter has reached the

optimum within only 10 minutes. This strange behaviour, is in reality caused by

some conflicts that can be created between the demands, related mainly to the order

between terminals. In fact, moving from instance (newyork,16,14) to (newyork,16,16),

by adding only two demands, have brutally augmented the difficulty of resolution.

Notice, however, that this difficulty disappears strangely with instance (newyork,16,18),

which means that adding demands could sometimes make the problem easier to solve.

A deeper analysis of a similar situation encountered for the Branch-and-Price algorithm

can be found in Chapter 6.

5.2 Computational study 153

5.2.4 A French instance

In this section, we present the result that we have obtained for a realistic french in-

stance, generated along the gravity model previously described. The instance consists

of 30 nodes representing some french cities for which we look for a routing of 20 de-

mands.

The instance have been solved by the Branch-and-Cut algorithm within 20 minutes

and the optimal solution that we have obtained is given in Figure 5.2.

Lyon

La Rochelle

Pau

Montpellier

Perpignan

Marseille

Besancon

Strasbourg

Nancy
Paris

Dijon

Clermont_Fd

Limoges

Orleans

Rouen
Amiens

Lille

Metz

Toulouse

Brest

Nice

Grenoble

Annecy

Nantes

Rennes

Poitiers

Bordeaux

Caen

Tours

Le_Mans

Figure 5.2: Solution for a french instance with 30 nodes and 20 demands

154 Branch-and-Cut algorithm

5.3 Concluding remarks

In this chapter, we have devised a Branch-and-Cut algorithm to solve the cut for-

mulation introduced in Chapter 4. We have first presented the different steps of the

algorithm and discussed the separation problems associated with some valid inequali-

ties. In particular, we have proposed exact algorithms of separation for both the section

cut inequalities (4.1) and the Steiner cut inequalities (4.71). We then proved that the

separation problem of the Steiner non-successive terminals inequalities (4.84) reduces

to the minimization of a submodular function and hence can be done in polynomial

time. For convenience, we have chosen to separate them with a heuristic procedure. We

have also proposed a heuristic to separate the Steiner F -partition inequalities (4.96).

Based on this, we have then tested the Branch-and-Cut algorithm on random and

realistic instances. The computational results have shown the efficiency of the valid

inequalities to improve the lower bound and reduce the time of execution. It has been

also shown that the difficulty of an instance does not depend only on its size (i.e. the

size of the graph, the number of demands and the average number of terminals), but

that it is highly correlated to the order constraints of the demands. In fact, we have

proved that an instances that presents conflicting order constraints between its demand

is harder to solve than an instance without conflicts. The experiments have also shown

that the Branch-and-Cut algorithm performs better for realistic instances with respect

to random ones.

5.3 Concluding remarks 155

V V ′ K Term Nsub Ncut NScut NSNST NSFP Gap Opt TT

6 4 2 3.00 1.0 16.6 10.8 0.0 0.0 0.00 5/5 0.17

6 4 4 3.00 1.0 30.8 21.6 0.0 0.0 0.00 5/5 0.49

6 4 6 3.00 1.0 46.4 32.8 0.0 0.0 0.00 5/5 0.18

8 6 2 4.50 1.0 19.6 9.0 31.0 0.0 0.00 5/5 0.72

8 6 4 4.50 15.4 49.2 84.0 62.4 0.2 3.35 5/5 0.90

8 6 6 4.17 17.8 81.8 138.6 78.0 0.8 2.45 5/5 0.66

8 6 8 4.12 21.8 120.8 227.4 110.8 0.2 3.38 5/5 19.45

8 6 10 4.10 16.2 130.4 249.4 125.2 1.8 4.72 5/5 1.14

10 8 2 4.50 13.4 30.2 23.4 49.0 0.0 1.44 5/5 0.47

10 8 4 4.25 36.6 77.8 172.2 74.6 0.0 2.81 5/5 2.27

10 8 6 4.67 112.6 214.6 751.6 123.6 0.6 3.56 5/5 5.10

10 8 8 4.75 37.0 191.2 551.6 144.2 0.4 3.04 5/5 12.65

10 8 10 5.10 82.2 314.4 999.0 189.0 1.0 4.53 5/5 7.97

12 10 2 6.50 173.0 114.0 317.0 71.8 0.0 3.04 5/5 2.39

12 10 4 5.50 447.8 293.0 187.6 138.0 0.0 3.46 5/5 39.64

12 10 6 5.50 702.0 881.0 658.4 205.4 0.0 4.33 5/5 252.13

12 10 8 5.62 371.8 1200.2 471.4 277.2 0.6 5.53 5/5 608.45

12 10 10 5.70 633.8 1650.2 663.8 347.8 0.8 6.49 5/5 476.78

14 12 2 4.50 194.0 77.7 158.6 85.6 0.0 1.04 5/5 6.22

14 12 4 4.00 805.0 1374.0 804.4 125.0 0.0 2.19 5/5 9045.32

14 12 6 4.50 752.4 1933.2 417.8 218.4 0.0 - 4/5 6133.47

14 12 8 4.87 1251.2 561.4 673.4 306.0 0.0 - 1/5 13000.47

14 12 10 4.90 976.7 527.2 864.0 394.2 0.0 - 3/5 10413.94

16 14 2 4.50 37.0 83.2 111.8 103.4 0.0 2.76 5/5 2.96

16 14 4 4.50 227.4 1257.2 208.0 163.8 0.0 3.39 5/5 2417.54

16 14 6 4.83 809.6 3632.0 622.6 278.6 0.0 - 0/5 18000.00

16 14 8 4.87 661.6 863.4 1127.4 386.0 0.0 - 0/5 18000.00

18 16 2 5.00 697.8 324.8 658.4 128.4 0.0 2.90 5/5 70.94

18 16 4 4.75 305.8 1243.2 1053.4 160.0 0.0 - 3/5 8618.60

18 16 6 4.83 362.6 702.8 2938.2 277.2 0.0 - 0/5 18000.00

18 16 8 5.00 655.7 883.2 1056.6 357.0 0.0 - 0/5 18000.00

20 18 2 4.50 930.0 677.7 883.0 139.6 1.0 4.14 5/5 464.21

20 18 4 4.25 162.0 3673.2 1737.8 214.2 0.0 - 2/5 15346.05

20 18 6 4.83 291.3 2175.0 1236.4 382.0 0.0 - 0/5 18000.00

20 18 8 5.12 904.3 2942.6 1805.6 542.2 0.0 - 0/5 18000.00

Table 5.2: Branch-and-Cut results for random instances

156 Branch-and-Cut algorithm

Instance V K Term Nsub Ncut NScut NSNST NSFP Gap TT

dfn-bwin 10 2 3.50 1 15 7 0 0 0.00 0:00:00.21

dfn-bwin 10 4 3.26 1 29 13 0 0 0.00 0:00:00.28

dfn-bwin 10 6 3.15 1 53 19 0 0 0.00 0:00:00.32

dfn-bwin 10 8 3.50 1 69 28 37 0 0.00 0:00:00.37

dfn-bwin 10 10 3.40 1 94 34 15 0 0.00 0:00:00.46

dfn-bwin 10 12 3.34 1 153 40 73 0 0.00 0:00:00.58

dfn-bwin 10 14 3.28 1 178 46 59 0 0.00 0:00:00.74

dfn-bwin 10 16 3.32 1 240 59 128 0 0.00 0:00:01.35

dfn-bwin 10 18 3.38 19 415 707 145 0 3.98 0:00:08.66

dfn-bwin 10 20 3.45 47 541 1609 193 4 2.21 0:00:41.63

dfn-bwin 10 25 3.48 367 142 403 265 0 3.77 0:05:59.12

dfn-bwin 10 30 3.50 143 1108 761 337 3 3.83 0:03:13.75

dfn-bwin 10 40 3.52 917 451 749 458 8 4.48 4:12:43.08

dfn-bwin 10 45 3.55 581 906 502 531 17 3.36 1:04:33.10

nobel-us 14 2 3.50 1 14 7 40 0 0.00 0:00:00.25

nobel-us 14 4 4.00 1 33 16 56 0 0.00 0:00:00.36

nobel-us 14 6 3.66 15 117 134 76 1 2.39 0:00:02.82

nobel-us 14 8 3.50 15 146 210 125 0 3.38 0:00:04.96

nobel-us 14 10 3.40 15 183 254 98 0 4.70 0:00:08.36

nobel-us 14 12 3.50 17 202 330 205 5 3.74 0:00:08.44

nobel-us 14 14 3.64 19 243 653 253 3 4.54 0:00:22.52

nobel-us 14 16 3.62 71 377 902 293 3 5.92 0:01:21.52

nobel-us 14 18 3.66 31 818 534 373 1 3.87 0:00:51.65

nobel-us 14 20 3.75 63 874 853 458 0 4.18 0:02:13.26

nobel-us 14 25 3.76 5 533 754 618 2 1.56 0:00:24.28

nobel-us 14 30 3.70 525 785 975 698 0 5.79 0:52:36.75

nobel-us 14 40 3.62 447 953 879 858 7 5.97 4:38:19.42

newyork 16 2 3.00 1 22 6 0 0 0.00 0:00:00.28

newyork 16 4 3.00 1 34 12 0 0 0.00 0:00:00.34

newyork 16 6 3.17 1 89 19 18 0 0.00 0:00:00.53

newyork 16 8 3.25 859 1381 526 96 3 1.80 0:30:50.13

newyork 16 10 3.20 363 422 474 74 4 2.18 0:29:33.83

newyork 16 12 3.16 325 609 540 96 6 3.81 0:42:55.89

newyork 16 14 3.35 823 1305 685 199 1 3.42 0:34:31.09

newyork 16 16 3.37 2953 2322 892 345 13 5.32 4:42:27.43

newyork 16 18 3.44 187 174 322 302 5 3.19 0:10:24.59

newyork 16 20 3.50 503 258 878 398 7 5.76 1:16:00.66

newyork 16 25 3.56 451 297 411 590 2 4.27 1:05:44.96

newyork 16 30 3.63 1089 309 432 746 10 4.26 5:00:00.00

newyork 16 40 3.60 779 995 1120 986 8 7.81 5:00:00.00

newyork 16 45 3.55 1092 357 1166 1034 17 7.14 5:00:00.00

geant 22 2 3.50 1 15 7 16 0 0.00 0:00:00.36

geant 22 4 3.75 1 167 15 56 0 0.00 0:00:01.38

geant 22 6 3.67 1 351 22 73 0 0.00 0:00:02.42

geant 22 8 3.50 3 829 252 157 0 0.01 0:00:16.52

geant 22 10 3.40 3 198 206 229 0 0.01 0:00:19.93

Table 5.3: Branch-and-Cut results for realistic instances (1)

5.3 Concluding remarks 157

Instance V K Term Nsub Ncut NScut NSNST NSFP Gap TT

geant 22 12 3.33 1 837 164 264 0 0.00 0:00:14.63

geant 22 14 3.43 15 884 722 373 0 0.40 0:01:37.37

geant 22 16 3.50 31 886 498 517 0 0.31 0:02:50.41

geant 22 18 3.56 91 218 384 531 0 1.56 0:25:27.80

geant 22 20 3.50 101 482 726 602 0 1.56 0:33:20.98

geant 22 25 3.44 89 115 364 674 0 1.45 0:51:01.46

geant 22 30 3.53 116 624 1260 916 4 5.83 5:00:00.00

geant 22 40 3.55 68 752 1293 289 2 4.70 5:00:00.00

geant 22 45 3.60 73 951 1182 531 7 5.91 5:00:00.00

cost266 37 2 3.50 1 18 7 28 0 0.00 0:00:01.04

cost266 37 4 3.25 1 30 13 37 0 0.00 0:00:03.98

cost266 37 6 3.17 1 48 19 66 0 0.00 0:00:05.34

cost266 37 8 3.37 1 69 27 58 2 0.00 0:00:11.46

cost266 37 10 3.30 1 132 61 396 0 0.00 0:00:22.59

cost266 37 12 3.33 1 138 40 258 0 0.00 0:00:24.12

cost266 37 14 3.35 1 296 47 660 0 0.00 0:00:34.78

cost266 37 16 3.37 1 201 54 792 0 0.00 0:00:32.52

cost266 37 18 3.33 3 861 230 628 1 0.03 0:03:11.10

cost266 37 20 3.35 3 862 251 924 0 0.03 0:04:04.78

cost266 37 25 3.44 106 556 778 1452 9 2.67 5:00:00.00

cost266 37 30 3.57 62 151 781 1034 14 3.47 5:00:00.00

cost266 37 40 3.60 20 357 856 1854 3 4.81 5:00:00.00

cost266 37 45 3.53 23 244 741 1231 1 3.92 5:00:00.00

pioro40 40 2 3.50 1 260 55 144 0 0.00 0:00:11.01

pioro40 40 4 3.75 17 155 375 432 0 1.73 0:04:07.92

pioro40 40 6 3.50 7 175 393 432 0 1.94 0:03:57.54

pioro40 40 8 3.50 5 307 270 576 0 0.72 0:06:45.67

pioro40 40 10 3.50 25 370 1111 720 0 1.40 0:19:54.46

pioro40 40 12 3.50 125 326 596 864 0 1.58 3:32:44.09

pioro40 40 16 3.53 207 265 662 1039 1 2.06 5:00:00.00

pioro40 40 18 3.53 97 249 617 1183 1 1.85 5:00:00.00

pioro40 40 20 3.45 79 897 636 1355 1 1.85 5:00:00.00

pioro40 40 25 3.56 26 674 825 903 1 3.38 5:00:00.00

pioro40 40 30 3.57 33 756 790 822 2 4.17 5:00:00.00

pioro40 40 40 3.57 6 910 601 973 3 5.83 5:00:00.00

germany50 50 2 3.50 1 14 7 184 0 0.00 0:00:02.41

germany50 50 4 3.75 1 404 27 552 0 0.00 0:01:07.01

germany50 50 6 3.67 7 221 176 736 1 0.21 0:10:51.68

germany50 50 8 3.65 59 159 413 920 0 2.66 0:37:55.66

germany50 50 10 3.60 57 300 556 1104 1 2.35 1:07:04.18

germany50 50 12 3.58 159 331 1729 1288 8 2.24 3:09:31.40

germany50 50 14 3.64 51 275 1401 656 5 2.21 1:54:45.51

germany50 50 16 3.68 72 463 697 1024 16 2.74 5:00:00.00

germany50 50 18 3.62 57 524 467 1024 1 2.39 5:00:00.00

germany50 50 20 3.60 32 596 476 1208 10 2.72 5:00:00.00

germany50 50 25 3.64 15 802 915 944 21 4.65 5:00:00.00

Table 5.4: Branch-and-Cut results for realistic instances (2)

Chapter 6

Path formulation and

Branch-and-Price algorithm

Contents

6.1 Path formulation . 160

6.1.1 Section formulation . 160

6.1.2 Dantzig-Wolf decomposition 161

6.1.3 Path formulation . 162

6.2 Cut versus path formulation 164

6.2.1 Relation between variables 164

6.2.2 Relation between linear relaxations 165

6.3 Branch-and-Price algorithm 168

6.3.1 Initial solution . 168

6.3.2 Pricing algorithm . 170

6.3.3 Branching scheme . 172

6.3.4 Primal heuristic . 174

6.4 Computational results . 175

6.5 Concluding remarks . 182

In this chapter, we propose to formulate the MSOND problem with a polynomial num-

ber of constraints, yet an exponential number of variables. First, we present an integer

programming formulation in terms of path variables. We start from an original section

160 Path formulation and Branch-and-Price algorithm

formulation and deduce by a Dantzig-Wolfe decomposition a path formulation. Sec-

ond, we compare the path formulation to the cut formulation introduced in Chapter 4,

and prove that the former has a tighter linear relaxation. We then devise a Branch-

and-Price algorithm to solve the path formulation. We particularly describe the way

to find an initial feasible solution, discuss the pricing problem and propose a suitable

branching rule for the Branch-and-Price algorithm. We also present a primal heuristic

used to prune some uninteresting branches of the Branch-and-Price tree. Finally, we

show some computational results obtained by the application of the Branch-and-Price

algorithm on random and realistic instances.

6.1 Path formulation

In this section, we propose a formulation based on path variables. For this purpose,

we first begin by giving a formulation whose variables are associated with sections of

the demands. This will be detailed in the following section.

6.1.1 Section formulation

Let xq,k
e be a binary variable associated with demand k ∈ K, section q ∈ Tk and edge

e ∈ E. xq,k
e are called section variables and we have xq,k

e equal to 1 if edge e is used to

route section q of demand k and 0 otherwise. ye, e ∈ E are the design variables and

we have ye equal to 1 if e is installed and 0 otherwise.

Consider the following integer programming formulation.

min
∑

e∈E

c(e)ye

∑

e∈δ
Gq,k (W)

xq,k
e ≥ 1

for all k ∈ K, q = (wj, wj+1) ∈ Tk,

for all W ⊂ V, wj ∈ W andwj+1 ∈ W,
(6.1)

∑

q∈Tk

∑

e∈δG(w)

xq,k
e ≤ 2 for all w ∈ V, k ∈ K, (6.2)

xq,k
e ≤ ye for all e ∈ E, k ∈ K, (6.3)

0 ≤ xq,k
e ≤ 1 for all e ∈ E, k ∈ K, q ∈ Tk, (6.4)

0 ≤ ye ≤ 1 for all e ∈ E, (6.5)

xq,k
e ∈ {0, 1} for all e ∈ E, k ∈ K, q ∈ Tk, (6.6)

ye ∈ {0, 1} for all e ∈ E. (6.7)

6.1 Path formulation 161

Inequalities (6.1) are section st-cut inequalities. These inequalities ensure a path for

each section q of a demand k and hence two paths for the demand k. Inequalities

(6.2) are called the node-disjunction inequalities. They guarantee the node-disjunction

between the different sections of the demand. This makes sure that the two paths

routing the demand are node-disjoint. Inequalities (6.3) are the linking inequalities.

Inequalities (6.3) indicate that an edge e which is not installed, can not be used to route

any section q of a demand k. Inequalities (6.4) and (6.5) are the trivial inequalities

and inequalities (6.6) and (6.7) are integrity inequalities.

It is not hard to see that the integer linear programming formulation (6.1)- (6.7)

is equivalent to the MSOND problem. Formulation (6.1)- (6.7) will be called section

formulation.

The section formulation will serve as a base to obtain a path formulation. To this

end, we apply on it a Dantzig-Wolf decomposition. Details are given in the following

section.

6.1.2 Dantzig-Wolf decomposition

The Dantzig-Wolf decomposition as applied to an integer program is a specific form

of the problem reformulation that aims at providing a tighter linear programming

relaxation bound. The reformulation gives rise to an integer master problem with a

typically large number of variables [131].

In this section we propose a Dantzig-Wolf decomposition of the integer linear program

given by (6.1)-(6.7).

Let us define P q
k the set of paths routing the section q of demand k calculated in the

reduced graph Gq,k. Define also the variables zq,kp for each p ∈ P q
k . The binary variable

zq,kp takes 1 if p ∈ P q
k is selected to route section q of demand k and 0 otherwise.

These variables are called path variables and are linked to the section variables by the

following relation

xq,k
e =

∑

p∈P q

k
:p∋e

zq,kp . (6.8)

162 Path formulation and Branch-and-Price algorithm

When replacing variables xq,k
e by the right hand side of equation (6.8), we obtain a new

for of formulation (6.1)- (6.7) given by the following integer linear program.

min
∑

e∈E

c(e)ye

∑

p∈P q
k

zq,kp ≥ 1 for all k ∈ K, q ∈ Tk, (6.9)

∑

q∈Tk

∑

e∈δG(w)

∑

p∈P q
k
:p∋e

zq,kp ≤ 2 for all w ∈ V, k ∈ K, (6.10)

∑

p∈P q
k
:p∋e

zq,kp ≤ ye for all e ∈ E, k ∈ K, q ∈ Tk, (6.11)

0 ≤ ye ≤ 1, ye ∈ {0, 1} for all e ∈ E, (6.12)

0 ≤ zq,kp ≤ 1, zq,kp ∈ {0, 1} for all k ∈ K, q ∈ Tk, p ∈ P q
k . (6.13)

Inequalities (6.9) are equivalent to inequalities (6.1) (by Menger’s Theorem).

Inequalities (6.9)-(6.13) give a path formulation for the MSOND problem. In the

following section, we propose an improved version of this formulation.

6.1.3 Path formulation

To simplify notations, we first introduce some definitions that will be used in the

sequel. We define coefficient aq,kp (w), k ∈ K, q ∈ Tk, p ∈ P q
k , w ∈ V that characterizes

the degree of a vertex w in path p routing section q of demand k. It is equal to 1 if

w is one of the extremities of section q, 2 if w belongs to p and 0 otherwise. We also

define coefficient bq,kp (e), k ∈ K, q ∈ Tk, p ∈ P q
k , e ∈ E that indicates if or not an edge

e belongs to the path p routing section q of demand k. It is equal to 1 if e belongs p

and 0 otherwise.

The integer linear program given by (6.9)-(6.13) gives a path formulation for the

MSOND problem. However, this formulation can be improved to get a tighter linear

relaxation bound. In fact, Figure 6.1 illustrates a fractional solution for the linear

relaxation of the integer program (6.9)-(6.13). In Figure 6.1 is given a solution for the

demand 1− 3 routed on the node-disjoint paths (1, 3) and (1, 2, 3). All the inequalities

(6.9)-(6.11) are satisfied. However, we can easily point out that the sections’ disjunction

constraints are violated. In fact, the Steiner node 4 is a common node the sub-paths

routing the sections (1, 3) and (2, 3) of the demand.

To better see this, consider the incidence vector corresponding to the fractional point

of Figure 6.1 given as follows,

6.1 Path formulation 163

1

32

4

e6
0.5

e1 1

e2 0.5

e3 0.5

e4
0.5

e5 0.5

Figure 6.1: Example of fractional solution for the initial path formulation

z
(1−3),k
p1 = 0.5, p1 = (e3),

z
(1−3),k
p2 = 0.5, p2 = (e2, e5),

z
(1−2),k
p1 = 1, p1 = (e1),

z
(2−3),k
p1 = 0.5, p1 = (e6),

z
(2−3),k
p2 = 0.5, p2 = (e4, e5),

and ye1 = 1, ye2 = ye3 = ye4 = ye5 = ye6 = 0.5.

Clearly, vector z satisfy all the inequalities of formulation (6.9)- (6.13). However,

remark that path p2 routing section (1, 3) and path p2 routing section (2, 3) both go

through the Steiner node 4, which violates the sections disjunction.

To enhance disjunction between the different sections, we add a sum on the different

sections in inequalities (6.11) linking the decision variables, as it will be shown in the

following integer program.

min
∑

e∈E

c(e)ye

∑

p∈P q
k

zq,kp ≥ 1 for all k ∈ K, q ∈ Tk, (6.14)

∑

q∈Tk

∑

p∈P q

k

aq,kp (w)zq,kp ≤ 2 for all w ∈ V, k ∈ K, (6.15)

∑

q∈Tk

∑

p∈Pk

bq,kp (e)zq,kp ≤ ye for all e ∈ E, k ∈ K, (6.16)

0 ≤ ye ≤ 1, ye ∈ {0, 1} for all e ∈ E, (6.17)

0 ≤ zq,kp ≤ 1, zq,kp ∈ {0, 1} for all k ∈ K, q ∈ Tk, p ∈ P q
k . (6.18)

Remark that inequality (6.11) is satisfied by vector (z, y) given above for the frac-

tional solution of Figure 6.1. However, the equivalent constraint in the ILP given

by (6.14)- (6.18), namely inequality (6.16) is no more satisfied by the same vector

164 Path formulation and Branch-and-Price algorithm

(z, y). To prove this, consider edge e5. By inequality (6.16) applied for e5, we have the

following
∑

q∈Tk

∑

p∈Pk
bq,kp (e5)z

q,k
p = z

(1−3),k
p2 + z

(2−3),k
p2 = 0.5 + 0.5 = 1, which is greater

than ye5 = 0.5. This implies that, with the new form of coupling inequality (6.16), we

cut the fractional point of Figure 6.1, which means that the integer program given by

(6.14)-(6.18) constitutes a tight path formulation for the MSOND problem.

Notice that this formulation contains an exponential number of variables. To solve

the linear relaxation of this formulation, it is necessary to use a column generation

procedure. Next sections will be devoted to detail the pricing problem of formula-

tion (6.14)- (6.18), as well as other features to be used among a Branch-and-Price

algorithm.

But before discussing the Branch-and-Price algorithm’s features, we propose a com-

parison of the cut and path linear relaxations.

6.2 Cut versus path formulation

To compare the cut and path formulations, we first set relations between their corre-

sponding variables.

6.2.1 Relation between variables

Consider the demand variables xk
e defined in Chapter 4. It is not hard to see that these

variables can be linked to the section variables xq,k
e introduced in Section 6.1 as follows

xk
e =

∑

q∈Tk

xq,k
e . (6.19)

Moreover, from (6.8) we know that

xq,k
e =

∑

p∈P q

k
;p∋e

zq,kp =
∑

p∈P q

k

bq,kp (e)zq,kp . (6.20)

Similarly, we can write

∑

e∈δ(w)

xq,k
e =

∑

p∈P q
k

aq,kp (w)zq,kp . (6.21)

To set up relation (6.21), we distinguish two cases.

6.2 Cut versus path formulation 165

1) Consider a section q = (wj, wj+1) of demand k and consider a Steiner node w

(i.e. w 6= wj and w 6= wj+1).

wj+1wj

δ(w)

w

Figure 6.2: Degree of a Steiner node in a path

From 6.20, we have
∑

e∈δ(w) x
q,k
e =

∑

e∈δ(w)

∑

p∈P q
k
;p∋e z

q,k
p . Since w is crossed by

two edges of p for all p ∈ P q
k then we have

∑

e∈δ(w) x
q,k
e =

∑

p∈P q
k
;p∋w 2zq,kp (see

figure 6.2). Obviously, this is equivalent to (6.21) when w is a Steiner node.

2) Assume now that w = wj (or by symmetry that w = wj+1). Note here that

w is crossed only once by every path p ∈ P q
k . This implies that

∑

e∈δ(w) x
q,k
e =

∑

p∈P q
k
;p∋w zq,kp (see figure 6.3). Clearly, this is equivalent to (6.21) when w is an

extremity of the considered section.

δ(w)

wi wj

Figure 6.3: Degree of a section’s extremities in a path

Based on these relations, we will discuss in the next section the relationship between

cut and path linear relaxations.

6.2.2 Relation between linear relaxations

Proposition 6.1 A solution for the linear relaxation of cut formulation is not neces-

sarily a solution for the linear relaxation of path formulation

Proof To prove the proposition, we give a counterexample.

166 Path formulation and Branch-and-Price algorithm

Consider the fractional point illustrated in Figure 6.4. This point represents a solu-

tion for the demand 1−2 routed on the node-disjoint paths (1, 2) and (1, 3, 2). Denote

k this demand, and let xk be the corresponding incidence demand vector. We have

xk = (0.5, 0.5, 0.5, 0.5, 0.5, 0.5). Clearly, xk satisfies all the inequalities of the linear

relaxation of the cut formulation (4.6).

1

32

4

e6
0.5

e1 0.5

e2 0.5

e3 0.5

e4
0.5

e5 0.5

Figure 6.4: Example of fractional solution for the cut formulation

Now, let xq,k be the section vector corresponding to the point of Figure 6.4. We have

x(1−2),k = (0.5, 0.5, 0, 0.5, 0, 0),

x(1−3),k = (0, 0.5, 0.5, 0, 0.5, 0),

x(3−2),k = (0, 0, 0, 0.5, 0.5, 0.5).

In addition, let zq,kp represents the corresponding path vector. Remark that the only

possible values of path variables routing demand k are the following.

z
(1−2),k
p1 = 0.5, p1 = (e1),

z
(1−2),k
p2 = 0.5, p2 = (e2, e4),

z
(1−3),k
p1 = 0.5, p1 = (e3),

z
(1−3),k
p2 = 0.5, p2 = (e2, e5),

z
(3−2),k
p1 = 0.5, p1 = (e6),

z
(3−2),k
p2 = 0.5, p2 = (e5, e4).

Observe that vector zq,kp satisfy all the constraints of the path formulation excepted

inequalities (6.15) corresponding to the disjunction requirement. To see this, let us

write inequality (6.15) for the Steiner node 4.

∑

q∈Tk

∑

p∈P q
k
aq,kp (4)zq,kp = 2 ∗ (0 + 0.5 + 0 + 0.5 + 0 + 0.5) = 2 ∗ 1.5 = 3 > 2, which

violates the disjunction constraint.

This implies that the solution of Figure 6.4 can not induce a path vector that sat-

isfy (6.14)- (6.18). �

6.2 Cut versus path formulation 167

Proposition 6.2 Every solution for the linear relaxation of path formulation is a so-

lution for the linear relaxation of cut formulation

Proof Consider a feasible solution for the path formulation (6.14)- (6.18). Denote the

incidence vector induced by this solution by (z, y), where z are the paths variables and

y are the design variables. Let (x, y) ∈ {0, 1}(|K|+1)|E| be the incidence vector defined

as follows, xk
e =

∑

q∈Tk

∑

p∈Pk
bq,kp (e)zq,kp =

∑

q∈Tk
xq,k
e , k ∈ K, e ∈ E. These variables

are called demand variables. ye, e ∈ E are called design variables and are equal to the

design variables corresponding to the path formulation.

In what follows, we will show that (x, y) defines a feasible solution for cut formulation.

First, we prove that x satisfies inequality (4.1). Consider a section q = (wk
j , w

k
j+1) ∈

Tk. Let W ⊂ V ; wk
j ∈ W andwk

j+1 ∈ W . Consider the cut defined over W in the

reduced graph Gq,k and written in terms of section variables. By relation (6.19) we

have

∑

e∈δ
Gq,k (W)

xq,k
e =

∑

e∈δ
Gq,k (W)

∑

p∈P q
k
;p∋e

zq,kp . (6.22)

Remark that all the paths p ∈ P q
k uses mandatory edges that belong to the cut

δGq,k(W). This implies that

∑

e∈δ
Gq,k (W)

∑

p∈P q
k
;p∋e

zq,kp =
∑

p∈P q
k

zq,kp . (6.23)

Recall that as (z, y) is feasible for the path formulation, we have
∑

p∈P q
k
zq,kp ≥ 1 by

(6.14).

Hence by (6.22) and (6.23), we can write
∑

e∈δ
Gq,k (W)

xq,k
e ≥ 1. Moreover, as by (6.19)

xk
e =

∑

q∈Tk
xq,k
e , this implies that xk

e ≥ xq,k
e . Then

∑

e∈δ
Gq,k (W)

xk
e ≥

∑

e∈δ
Gq,k (W)

xq,k
e ≥ 1,

and the result follows.

Now, we show that inequality (4.2) is satisfied by vector x. By inequalities (6.15) and

relation (6.21), we have
∑

q∈Tk

∑

p∈P q
k
aq,kp (w)zq,kp =

∑

q∈Tk

∑

e∈δ(w) x
q,k
e =

∑

e∈δ(w)

∑

q∈Tk
xq,k
e ≤

2. By relation (6.19), we can then deduce that
∑

e∈δ(w) x
k
e ≤ 2.

Consider now inequality (4.3) and let us prove that they are satisfied by vector x.

By (6.19), (6.20) and (6.16) we have xk
e =

∑

q∈Tk

∑

p∈Pk
bq,kp (e)zq,kp ≤ ye. Knowing that

∑

p∈Pk
bq,kp (e)zq,kp = xq,k

e , we can write that xk
e ≤ ye.

168 Path formulation and Branch-and-Price algorithm

Finally, by (6.17), we can write xk
e ≤ 1 and by (6.18) zq,kp ≥ 0 yielding xk

e ≥ 0.

In conclusion, (x, y) is a feasible solution for the cut formulation, and this ends the

proof. �

Corollary 6.3 Any solution of the linear relaxation of path formulation implies a fea-

sible one for the linear relaxation of cut formulation (the converse is not true).

This means that Zpath ≥ Zcut.

Recall that the path formulation (6.14)- (6.18) has a huge number of variables. To

deal with this, we devise an algorithm called a Branch-And-Price algorithm that we

present in details in the next section.

6.3 Branch-and-Price algorithm

To solve the integer linear programming formulation (6.14)- (6.18), it is necessary to

use a column generation method combined with a branch-and-Bound algorithm. Such

an algorithm is called Branch-and-Price algorithm. Algorithm 7 summarizes the steps

of this algorithm.

6.3.1 Initial solution

Since the path formulation contains a huge number of variables (columns), it is nec-

essary to begin with a restricted version that contains only a subset of these columns.

We generate an initial feasible solution as follows. For each section q of a demand k,

we generate the following feasible paths: the first path is given by the edge between

the extremities of q. The other paths are given by inserting Steiner nodes between the

extremities of section q.

To illustrate the procedure of the initial solution’s generation, consider a section

q = (t1, t2) of a demand k ∈ K. The paths that we generate for section q are the

following:

1) Consider the edge between the successive terminals t1 and t2, yielding to path

p1 = (t1, t2),

6.3 Branch-and-Price algorithm 169

Algorithm 7: Branch-And-Price Algorithm

Data: An undirected graph G = (V,E), a set K of demands, 2 node-disjoint

paths routing each demand k ∈ K

Result: Optimal solution for MSONDpath

LP ← LPini;1

Solve the linear program LP and denote by (z∗, y∗) the optimal solution of LP;2

Consider the dual variables and solve the pricing problem ;3

if for all k ∈ K,q ∈ Tk the optimal value of the pricing problem is positive then4

go to 9;5

else6

Add the optimal solution with the most negative reduced cost;7

go to 2;8

if (z∗, y∗) is integer for MSOND then9

(z∗, y∗) is an optimal solution. Stop ;10

else11

Create two sub-problems using a specific branching rule.12

forall open sub-problem do13

go to 2;14

return the best optimal solution of all the sub-problems ;15

2) Choose a Steiner node of Sk, say s1, and insert it between terminals t1 and t2
thus resulting in the path p2 = (t1, s1, t2),

3) Choose two Steiner nodes of Sk, say s1 and s2, and generate the paths inserting the

two Steiner nodes s1 and s2 between t1 and t2 while considering the two possible

permutations, so as to obtain the paths p3 = (t1, s1, s2, t2) and p4 = (t1, s1, s2, t2).

Note that using this procedure, the number |Sq,k
i | of initial solutions for section q of

demand k ∈ K, is given by |Sq,k
i | = 1 + C1

|Sk|
+ 2 × C2

|Sk|
= 1 + |Sk| + 2 |Sk|!

2!(|Sk|−2)!
=

1 + |Sk|+ |Sk|(|Sk| − 1) = 1 + |Sk|(1 + |Sk| − 1), implying that |Sq,k
i | = 1 + |Sk|

2.

Remark that generating other paths by inserting 3 Steiner nodes or more between the

extremities of each section is also possible. However, in our computations, we restricted

ourselves to 2 Steiner nodes. This choice was is not arbitrary. In fact, experimentations

show that generating initial solutions by inserting at most 2 Steiner nodes gives the

best trade-off between resolution’s efficiency and time of execution for the majority of

instances.

170 Path formulation and Branch-and-Price algorithm

Overall, by the way we generate our initial solution, we are sure that there exists

at least one feasible solution. This can be for instance the one given by all the edges

between successive terminals of each demand. Indeed, this solution is satisfying all the

path formulation inequalities and in particular the node disjunction constraint (6.15).

6.3.2 Pricing algorithm

As it has been mentioned above, we begin by a restricted version of the problem

involving only an initial subset of variables. Additional columns will then be generated

only when they are needed. The restricted version of the LP form is called restricted

master problem (RMP).

Denote by πq,k, λk
w and βk

e the dual variables associated respectively with inequalities

(6.14), (6.15) and (6.16), with respect to primal variable zq,kp . The reduced cost of the

variable zq,kp is given by Rq,k
p = −(πq,k +

∑

w∈V aq,kp (w)λk
w +

∑

e∈E bq,kp (e)βk
e). Here, the

pricing problem consists in finding, for each section q of a demand k, a path of P q
k such

as Rq,k = minp′∈P q
k
Rq,k

p′ and Rq,k < 0.

Observe that Rq,k
p contains a fixed term −πq,k and a sum of terms on vertices λk

w

and a sum of terms related to edges βk
e . To calculate Rq,k = minp′∈P q

k
Rq,k

p′ , we can

hence calculate the minimum only on the sums, that is minp′∈P q
k
− (

∑

w∈V aq,kp (w)λk
w

+
∑

e∈E bq,kp (e)βk
e). Since this quantity contains node-related terms and edge-related

ones, we then can resort to the graph structure to solve our pricing problem.

Consider the reduced graph Gq,k corresponding to variables zq,kp , p ∈ P q
k and let us

put on each vertex w the weight −aq,kp (w)λk
w (such that aq,kp (w) = 1 if w is a section’s

extremity and 2 if it is a Steiner node). Let us also put on each edge e the weight

−bq,kp (e)βk
e (such that bq,kp (e) = 1). The pricing problem can thus be seen as a shortest

path problem in a reduced graph Gk,q with weights −aq,kp (w)λk
w on vertices and −βk

e

on edges. λk
w can be after split and put on edges incident to w to hence obtain weights

only on the edges of Gk,q.

As dual variables λk
w and βk

e are negative, edge weights are non negative and the

shortest path pricing problem can be solved in polynomial time. In our Branch-and-

Price algorithm, we solve the pricing problem using Dijkstra Algorithm [41].

If the value of the shortest path is such that −(
∑

w∈V aq,kp (w)λk
w +

∑

e∈E bq,kp (e)βk
e) <

πq,k then Rq,k < 0 and hence at least one column has to be added to the RMP. If not,

then Rq,k ≥ 0 for all k ∈ K and q ∈ Tq, which means that the optimal solution of the

current linear program is optimal for the linear relaxation of the path formulation.

6.3 Branch-and-Price algorithm 171

To illustrate the pricing procedure, we consider the example given by Figure 6.5.

v1 v2

v4 v3

G

G′

w2w1

w4

w7w6

e3 e5

e6

e2

e1

e4

e7

e9e8

w5

Figure 6.5: Reduced graph for section (1, 4)

Figure 6.5 shows a demand in G′ between (v1, v3) routed on paths (v1, v3) and

(v1, v4, v3). Suppose that we are looking for a candidate column z
(w1,w4),k
p to insert

in the LP for the section (w1, w4) of the demand. To see if such column exists or

not, one should solve the corresponding pricing problem. Consider the reduced graph

G(w1,w4),k illustrated in graph G. Recall that this reduced graph is obtained by deleting

all the terminals of the demand and their incident edges, excepted the extremities of

section (w1, w4). In this case, we delete the terminal w3 as well as its incident edges.

To solve the corresponding pricing problem, we insert the dual values as shown in Fig-

ure 6.6. Observe that in the graph of Figure 6.6, there are weights on edges given by

−βk
e and weights on vertices given by −aq,kp (w)λk

w. Solving the pricing problem here,

is no more than looking for a shortest path between w1 and w4. To bring this to the

classical shortest path problem, we propose to split the weights on the Steiner nodes as

illustrated in figure 6.7. We also delete weights on terminals w1 and w4. These values

(−λk
w1

and −λk
w4
) will be added after to the resulting value of the shortest path.

The solution of the LP relaxation solved by column generation could not be integral,

and hence not a solution for the MSOND problem. In this case, to obtain the optimal

solution for the MSOND problem, we must proceed to a branching phase. This will be

detailed in next section.

172 Path formulation and Branch-and-Price algorithm

w2w1

w7w6

−λk
w1

w4
−λk

w4

−2λk
w3

−βk
e8

−βk
e3

−2λk
w5

−βk
e9

−2λk
w6

−2λk
w7

−βk
e4

−βk
e2

−βk
e5

−βk
e7

−βk
e6

−βk
e1

w5

Figure 6.6: Dual values on the reduced graph

w2w1

w7w6

w4

−βk
e1
−λk

w2

w5

−βk
e8
−λk

w6

−βk
e7
−λk

w5
− λk

w7
−βk

e6
−λk

w6
− λk

w5

−βk
e9
−λk

w5

−βk
e3
−λk

w5
−βk

e5
−λk

w2
− λk

w7
−βk

e2
−λk

w6
−βk

e4
−λk

w2
− λk

w5

Figure 6.7: Reduced graph with weights only on edges

6.3.3 Branching scheme

6.3.3.1 Examples of branching rules

At each node of the Branch-and-Price tree, if no more interesting column is found

and if the solution is not integer, we manage the branching phase. The difficulty in

incorporating column generation with branch-and-bound is that conventional integer

programming branching may not be effective because fixing variables can destroy the

structure of the pricing problem. In fact, when the satellite problem is a shortest

path problem, at a given level of the tree, the pricing problem could change to the kth

shortest path problem.

The challenge is hence to identify a branching rule that eliminates the current frac-

tional solution without compromising the tractability of the pricing problem. In [16],

Barnhart et al develop branching rules for a number of different master problem struc-

tures.

In general, the branching rules for path-based formulation are defined on original edge

(arc) variables. In [17], Barnhart et al propose a genereliazed Ryan and Foster [117]

branching rule for origin-destination integer multicommodity flow problems. Their

6.3 Branch-and-Price algorithm 173

branching rule is based on forbidding the use of specific arcs. At a divergence point,

the idea is to divide in a specified way the leaving arcs from this point and forbid in a

branch a subset of this arcs and on the other branch the other subset. In [47], Feillet

gives a branching on the arc variables as follows. Forbidding the arc (i0, j0) consists

in removing this arc when calculating the shortest path problem. Imposing the arc

(i0, j0) can be seen also as forbidding some arcs. Imposing the use of (i0, j0) amounts

to forbid all the arcs leaving i0 and entering to j0 but the arc (i0, j0).

6.3.3.2 Our branching strategy

For the path formulation, the branching rule can be described as follows. Given a

fractional LP solution (z̄, ȳ), we select the most fractional design variable, say ȳe, and

we branch by setting the variable to 0 or 1. Notice here that when branching on the

design variables, the structure of the pricing problem does not change. At a certain

level of the tree, we may have integrity for all the design variables and no optimal

solution is yet found. Here, a branching on the path variables is necessary to get the

optimal solution. To maintain the same structure of the pricing problem, we choose to

branch by imposing to go through edge e on one hand and forbidding the use of e on the

other. A possible procedure is to branch by adding constraints
∑

p∈P q,k bq,kp (e)zq,kp = 1

for the first branch and
∑

p∈P q,k bq,kp (e)zq,kp = 0 for the second. When adding these

constraints, the reduced cost changes inducing the appearance of negative costs and

eventually negative cycles in the shortest path problem. And hence the pricing problem

can no longer be solved with a polynomial algorithm. In our case, this difficulty can

be overcome using the following procedure.

As all the design variables ȳe are integer, we choose the most fractional path variable,

say z̄q,kp . Assume that this variable is such that q = (t0, t1) and p = (t0s1, s1s2, ..., sjt1).

The idea is to choose in a clever way the edge for branching. For this purpose, we opt

for the first edge of the selected path p, say e0 (observe here that e0 = (t0, s1)). On the

first branch, the use of e0 is forbidden. This can be done by deleting the edge e when

calculating the shortest path pricing problem. On the second branch, e0 is imposed in

the path. Since the first extremity of e coincides with t0, the pricing problem reduces

to a shortest path calculated in the reduced graph Gq,k between s1 (second extremity of

e) and t1 (destination of section q). At a given depth of the Branch-and-Price tree, one

could have to branch again on (q, k). In this case, e1 = (s1, s2) constitues the current

edge of branching, for which the process described above is similarly applied. By this

way of branching, at each branching on (q, k), a sequence of edges that is nothing but a

sub-chain originating in t0, is imposed. The pricing problem remains always a shortest

path problem calculated for each section of a demand in a reduced graph and such that

174 Path formulation and Branch-and-Price algorithm

the origin of the shortest path changes depending on wether the section in question

has been considered before in the branching tree or not.

6.3.4 Primal heuristic

To accelerate the Branch-and-Price algorithm and enable a fast pruning of uninteresting

branches of the tree, we propose a primal heuristic. Given a fractional solution, we

deduce a feasible solution for the MSOND problem as shown in algorithm 8. The idea

of the primal heuristic we suggest is the following. We start from a feasible fractional

solution. After, for each demand k and for each section q of the considered demand,

we retain a fractional feasible path routing the section q. If this path is using Steiner

nodes of the demand k, we mark the used Steiners, and we continue the procedure.

The Steiner nodes that are marked once, could not be used in the other sub-paths

routing the remaining sections of the demand. When no possible solution is found for

the section q, we look back into the pool of variables already generated for section q

and we fix the most suitable path.

Based on these features, we devise a Branch-and-Price algorithm that we tested

on random as well as realistic instances. The results we obtain are discussed in the

following section.

6.4 Computational results 175

Algorithm 8: Primal Heuristic

Data: Fractional Solution (z, y)

Result: Integer Feasible Solution (z, y)

forall k ∈ K do1

Sk,+ = ∅ ;2

/* the set of marqued Steiner nodes for the demand k */

Let q = (ti, tj) = (t0, t1) ∈ Tk the first section of the demand k ;3

repeat4

let the path variable zq,kpi
= (ti, Spi, tj) be the nearest to 1 ;5

/* where Spi ⊆ Sk is the set of Steiner nodes used in the

path zq,kpi
*/

/* if there are so many paths with the same fractional value,

choose the one that uses the most edges already used by

the other demands or choose the one with the minimum

distance length */

zq,kpi
← 1 ;6

Sk,+ = Sk,+ ∪ Spi ;7

q = (ti, tj)← (ti+1, tj+1) ;8

until Sk,+ = Sk or tj+1 = t0 ;9

/* end when all the Steiner nodes are marqued or when all the

sections of the demand k are routed */

if Sk,+ = Sk and tj+1 6= t0 then10

repeat11

look over the pool of path variable routing section j +1 of demand k ;12

choose the best path variable zq,kpj+1
routing (tj+1, tj+2) ;13

zq,kpj+1
← 1 ;14

/* We choose the path variable that passes through the

edges already used by the other demands unless the

direct edge */

until tj+1 = t0 ;15

update design variables y ;16

return the integer feasible solution z, y) ;17

6.4 Computational results

The Branch-and-Price algorithm described in the previous section has been imple-

mented in C++ using ABACUS 3.2 [1] to manage the Branch-and-Price tree and

176 Path formulation and Branch-and-Price algorithm

CPLEX 12.0 [2] as LP solver. It was tested on a Bi-Xeon quad-core E5507 2.27GHz

with 8Go of RAM, running under Linux.

The algorithm was tested on two types of instances: random instances and realistic

instances that have been described in Section 5.2.2. In the sequel, the entries of the

different tables are :

V ′ : number of node in the logical layer (graph G′);

V : number of node in the optical layer (graph G);

K : number of demands;

Path-ini : number of columns generated in the initial solution;

Path-gen : number of columns generated during the pricing;

Nodes : number of nodes in the tree;

Relaxations : number of solved linear relaxations;

Gap : the relative error between the best upper bound

(the optimal solution if the problem has been solved

to optimality) and the lower bound obtained at the

root node of the Branch-and-Price tree;

Gap-Y : the relative error between the best upper bound

obtained only by branching on the design variables y

and the lower bound obtained at the

root node of the Branch-and-Price tree;

Opt : number of instances solved to optimality over 5 tested ones;

TR : the time spent to find the lower bound at the root node;

TB : the time necessary to find the best feasible solution;

TT : total CPU time.

The CPU times are given in h:mm:ss for realistic instances and in seconds for the

random instances since for these later we calculate the average over 5 instances. Some

rows of the result tables are preceded by a star *. This refers to instances that could

not be solved to optimality within the time limit of 3 hours.

Our first series of experiments concern the random instances. Tables 6.1 and 6.2

report, for each size of the instances, the average results obtained over the TSP-based

instances. The reported results concern 78 instances with a number of nodes in the

higher layer (graph G′) varying from 6 to 55, a number of nodes in the optical layer

(graph G) ranging from 4 to 50 and a number of demands going from 2 to 16. For

each group of instance, the row of the table represents the average value over 5 tested

instances based on a280, bier127, eil101, lin105 and tsp225 and having the same size,

but with different composition of the demand. In table 6.1, 5 over 5 of all the tested

size of instances were be solved to optimality with at maximum V ′ = 14, V = 12 and

6.4 Computational results 177

K = 16. Moreover, the instances were solved to optimality within at most 1 hour and

many instances took only few seconds to reach the optimal value. This means that for

small instances, our algorithm performs very well. In table 6.1, for big-sized instances,

the problems become much more difficult to solve. In particular, for the biggest graph,

only 2 demands could be considered. Notice that the difficulty in solving the instances

is mainly related to their sizes. We remark that, the greatest the instance is, the

most difficult the resolution become. The difficulty of these instances is also related

to their random aspect. In fact, only 2 of instances V ′ = 16, V = 14 and K = 8 were

solved to optimality. Remark that the instances here are of the same size. However,

someones could be solved optimally, the others not. This is due to the composition

of the demands and the random aspect of the instances. In fact, when generating

randomly the demands, one demand could be routed using very distant intermediair

terminals between the source and the destination and this make the demands difficult

to route.

Tables 6.1 and 6.2 show also that 49 groups of instances was solved with a root lower

bound situated at most at 10% from the optimum value and the necessary time to

obtain these bounds didn’t exceed some seconds. However, for the remaining groups of

instances the gap become very important and could reach 46% for the instances with

V ′ = 20, V = 18 and K ≥ 15. This is due mainly to the difficulty of the random

instances.

The same tables show that for small instances, branching only on the design variables

was sufficient to get an optimal solution. However, when instances become greater,

a branching involving the path variables was necessary to have an integer optimal

solution.

From tables 6.1 and 6.2, we can see that the number of generated paths during the

pricing procedure (Path − gen) is not very huge in particular for small instances for

which we could obtain the optimal solution just after some iterations. In fact, for 23

groups of instances, we reached the optimum solving less than 50 linear relaxations and

generating in average less than 30 columns. This is thanks to the good quality of the

initial solution given by Path − ini. Recall that for each section of each demand, we

generated a first solution by inserting up to two Steiner nodes between the terminals

extremities of the section, and this gives a very good initial base. For the remaining

instances, the number of generated paths become more important as the size of the

instance increases. In particular, we notice a very huge number of generated paths for

the group of instances that could not be solved to optimality within 3 hours.

Tables 6.1 and 6.2 also show that the number of nodes of the Branch-and-Price tree

178 Path formulation and Branch-and-Price algorithm

V ′ V K Path-ini Path-gen Nodes Relaxations Gap Gap-Y Opt TR TB TT

6 4 2 60 0,2 1 1,2 0 0 5/5 0 0 0,6

6 4 4 120 0,6 1 1,4 0 0 5/5 0 0 0,6

6 4 5 150 1 1 1,4 0 0 5/5 0 0 0,6

6 4 6 180 0,6 1 1,6 0 0 5/5 0 0 0,6

8 6 2 118 0,4 1 1,4 0 0 5/5 0 0 0,6

8 6 4 236 2,6 8,6 10,2 7,33 0 5/5 0 0 0,5

8 6 5 314 5,4 9,8 14,2 7,33 0 5/5 0 0 0,3

8 6 6 382 6,6 12,6 15 5,01 0 5/5 0 0 0,2

8 6 8 518 6,8 7,4 9,6 0,39 0 5/5 0 0 0,3

8 6 10 646 5,2 9 10,2 2,14 0 5/5 0 0 0,4

8 6 12 782 3,8 7 8,4 2,14 0 5/5 0 0 0,4

8 6 15 986 4,6 13 13,2 4,35 0 5/5 0 0 0,0

10 8 2 278 1,8 1 1,8 0 0 5/5 0 0 0,6

10 8 4 558 78,6 10,2 42,6 3,23 0 5/5 0 0 3,3

10 8 5 660 60,2 17 47,6 1,14 0 5/5 0 0 3,0

10 8 6 790 78,2 24,6 79,6 1,26 0 5/5 0 2,8 7,5

10 8 8 1010 20,2 15 24,8 2,11 0 5/5 0 0 0,2

10 8 10 1182 15,8 25,4 30,4 5,32 0 5/5 0 0 0,0

10 8 12 1478 20,2 28,6 34,6 5,32 19,16 5/5 0 0 0,0

10 8 15 1858 50,2 75 108,2 8,37 3,11 5/5 0 10,4 15,4

10 8 16 1960 47,2 63,8 94 8,57 1,93 5/5 0 5,2 19,2

12 10 2 404 16,8 17,8 29,4 3,6 0 5/5 0 0 0,3

12 10 4 914 272,2 45,4 202,2 3,91 0 5/5 0 10,6 21,9

12 10 5 1096 313 112,6 351,4 7,24 0 5/5 0 17,2 40,2

12 10 6 1356 453,2 101,4 397,6 7,4 19,6 5/5 0 18 50,9

12 10 8 1800 366,4 202,6 509,6 6,23 19,61 5/5 0 57 74,4

12 10 10 2232 269,2 127,4 331 7,97 3,9 5/5 0 33 54,4

12 10 12 2590 288,2 302,6 572,8 7,37 19,63 5/5 0 75,2 120,3

12 10 15 3204 536,8 935 1841 8,86 13,98 5/5 0 209 595,8

12 10 16 3426 582 1201,8 2204,6 8,86 19,62 5/5 0 180,4 837,3

14 12 2 814 46 1 17,4 0 0 5/5 0 0 0,0

14 12 4 1584 327,6 1,8 69,6 0 0 5/5 0 0 4,0

14 12 5 1974 7585,8 480,2 6184,2 5,08 21,58 5/5 0 567,4 2042,8

14 12 6 2384 4676,6 235 2969,6 3,59 19,66 5/5 2,8 437 903,1

14 12 8 3084 3839,4 303,8 2444,2 7,1 14,15 5/5 0 299,8 604,6

14 12 10 3878 5405 545,8 3804,8 6,4 55,6 5/5 2,6 697,6 1371,9

14 12 12 4698 6009,4 887,4 5008,8 6,69 50,51 5/5 2,8 704 2643,9

14 12 15 5770 3362,6 871 3190,6 8,08 19,68 5/5 2,6 1525 1954,9

14 12 16 6174 3431 886,6 3218,4 8,08 4,64 5/5 3 1736,4 2206,4

Table 6.1: Branch-and-Price results for random instances (1)

is not huge. This is thanks to the primal heuristic that enabled a fast convergence of

our algorithm.

6.4 Computational results 179

V ′ V K Path-ini Path-gen Nodes Relaxations Gap Gap-Y Opt TR TB TT

16 14 2 1190 74,8 1 21,6 0 0 5/5 0 0 0,0

16 14 4 2306 847,2 7 226 0,39 0 5/5 6,6 11 28,8

16 14 5 2912 9263 450,2 6207 3,87 13,89 5/5 0 567,2 2334,2

16 14 6 3522 11858,6 533 7090,2 6,3 19,12 5/5 0 1723 3403,1

16 14 8 4708 14177,4 764,6 8749,6 7,11 42,25 2/5 8 2334,4 7156,1

16 14 10 5802 11848,2 1174,2 9540,2 11,08 22,57 2/5 0 4094,8 7959,9

*16 14 12 6982 12233 1306 10555,2 24,17 0 0/5 11,6 8387,2 10800

*16 14 15 8628 7406,2 1211,2 7573,4 29,87 0 0/5 18,8 3548,6 10800

*16 14 16 9138 6993 1050,8 6762,4 26,48 0 0/5 20,2 5739,8 10800

18 16 2 1658 125 1,4 31,6 0 0 5/5 0 0 0,0

18 16 4 3206 2642,4 14,6 1032,6 1,29 0 5/5 22,6 80,8 221,6

18 16 5 4060 14849 327,6 7680,6 5,97 38,63 3/5 14,8 3152,8 6533,9

18 16 6 4738 14295 255 6897 6,01 38,63 2/5 27 4417,4 6564,3

*18 16 8 6224 17655,4 382,4 8202,4 13,62 15,84 1/5 39,6 7383,2 8829,9

*18 16 10 7948 17216,4 529,6 8646,8 21,43 15,98 0/5 31,2 6869,4 10800

*18 16 12 9672 13843,4 558,6 7364,4 25,29 0 0/5 31,2 5986,8 10800

*18 16 15 12008 11597,8 369,2 5382,4 32,63 0 0/5 52,6 8020,6 10800

*18 16 16 12878 11041,2 316,2 4835,8 32,06 0 0/5 58,2 8166 10800

20 18 2 2158 166,6 1 39 0 0 5/5 0 0 0,0

20 18 4 4158 2789,8 9,4 740,2 0,01 0 5/5 39 192,6 246,3

20 18 5 5340 18493,4 156,4 7285,6 2,89 19,54 2/5 57,6 3373,2 7549,8

20 18 6 6522 21695,2 126,4 7150,6 7,3 0 1/5 100,6 4801,4 9429,5

*20 18 8 8710 23298,2 101,8 6280,8 13,18 19,08 0/5 212,2 5804 10800

*20 18 10 11060 19414,8 257,2 6408,8 30,21 0 0/5 67,8 6084,4 10800

*20 18 12 13432 16025,2 175,4 4560 34,01 0 0/5 104,4 6971 10800

*20 18 15 16874 14645,2 123,6 3659,8 46,8 0 0/5 162,6 7261,2 10800

*20 18 16 18004 14225 106,6 3404,2 46,7 0 0/5 189,2 4616,4 10800

25 20 2 3627 241,6 1 70,2 0 0 5/5 0 0 5,5

25 20 4 7357 7672,6 52,2 2977,4 0,53 0 4/5 147,8 325,8 3257,7

30 25 2 6592 6052,4 44,6 3043,4 0,67 0 5/5 14,8 460,4 2043,8

*30 25 4 12762 10374 7,6 1418,6 2,92 0 0/5 3309,4 7619,6 10800

35 30 2 10000 7576,4 59,8 3360 0,12 0 3/5 105,2 2628,4 4554,9

35 30 4 19343 8535,6 1,8 833,4 15,04 0 0/5 5087,8 8372,6 10800

40 35 2 13760 7037,8 31,2 2310,6 0,3 0 3/5 646,8 2365 6441,9

*40 35 4 26578 10098,4 1,2 776,2 27,42 0 0/5 5678,6 6404,8 10800

45 40 2 18120 5239 6,8 1016,2 1,05 0 1/5 5140,2 6583,8 10582,4

*45 40 4 34963 19170,6 1 1286,2 28,47 0 0/5 3561,8 7393,2 10800

50 45 2 23080 3403,8 1,2 440,4 2,84 0 2/5 2188,8 3759,2 10640,4

*55 50 2 28640 4457,6 1,6 615,6 3,26 0 0/5 5893,8 6003,8 10800

Table 6.2: Branch-and-Price results for random instances (2)

Our second series of experiments concern realistic SNDlib-based instances. The re-

sults for these instances are reported in tables 6.3 and 6.4 report results of the Branch-

and-price algorithm for the realistic instances. Results are given for 88 instances with

a number of nodes ranging from 10 to 65 and a number of demands going from 2 to

30. The tables show that only 18 over the 88 instances where not solved to optimality

within the time limit. All the remaning have reached the optimal solution before 3

180 Path formulation and Branch-and-Price algorithm

hours and 62 among them were solved to optimality in less than 10 minutes. In par-

ticular, all the instances of dfn− bwin with 10 nodes and demands from 2 to 30 have

been solved to optimality within at most 2 minutes. Remark also that for a graph

with 12 nodes (instances polska), we could solve to the optimum up to 30 demands.

However, with random instances having the same number of nodes, we are limited to

16 demands. This proves that realistic instances are easier to solve than the random

ones. This is logic since demands in the realistic instances are generated by calculating

shortest paths and are in contrast randomly generated for the random instances.

As long as the number of nodes of the graph increases, the number of variables

increases as well, yielding to much difficult instances to solve. This is the example of

the instances of more than 30 nodes in the graph. Notice that half of the instances

pioro40 and germany50 have not been solved to optimality within the time limit. The

execution time depends also on the number of the demands in the instances. Instances

with restricted number of demands are generally solved faster than the ones with a

greater number of commodities. However, this remains not sufficient to explain the

behaviour of some instances. See for example the instances of newyork. For these

instances, passing from 6 to 8 demands leads to a sudden augmentation of the difficulty

of the instances which could not be solved to optimality before 3 hours. This difficulty

persists also for the instances with 10 and 12 demands which are not solved optimally

within the time limit. An unexpected behaviour begins with instances of more than 14

demands that reach the optimum within less than 2 hours. Notice here that instances

with 8, 10 and 12 demands are more difficult to solve than the greater ones. This leads

us to think about another aspect causing the difficulty of the instances which is the

composition of the demands.

Recall that each demand is characterized by a number of terminals that must be

visited in a predefined order. This induces that when two or more demands share

a number of terminals with conflicting order constraints, the instance become more

difficult to solve. This is, in particular, the case of the instance newyork with 8

demands. In fact, this instance contains 2 conflicting asymmetric demands: (13, 14)

routed by paths (13, 6, 14) and (13, 0, 14) and (14, 13) routed by paths (14, 13) and

(14, 0, 6, 13).

Remark in this case that, while the first demand requires that terminals 6 and 0

are visited independently in different paths, the second demand is forcing the passage

through 0 and 6 in the same path and successively. This leads to a conflict between

the two demands and hence to a difficult instance to solve.

Surprisingly, such a situation could be unblocked when adding other demands. In

6.4 Computational results 181

fact, when adding one or more demands, new nodes and edges of the graph become

necessary to visit, offering hence the possibility to be used by the previous demands

since the cost of installation does not depend on the number of demands routed on

an edge. This explains why instances newyork with 14 demands and more, have been

solved optimally within 3 hours. In fact, when we add demand (0, 8) routed on paths

(0, 6, 8) and (0, 7, 8), the contradictory situation between the previous demands disap-

pears since new edges and nodes come into play. Hence, depending on the composition

of the demands, adding new demands to an instance could make the problem easier

to solve. Let us also take the example of instances newyork with 16 demands solved

within about 2 hours and newyork with 18 demands which became easier and is solved

to optimality within 17 minutes.

The tables show also two other kind of times: the time passed to get the lower

bound at the root of the tree and the necessary time to get the best feasible solution.

Notice that for 70 instances over the 88 tested, the bound of the root is obtained

within less than 10 minutes. Moreover, for these instances, the root’s bound has a

gap which does not exceed 10%. The same remark is valid for the necessary time to

have the best feasible solution. In fact, for all the instances of less than 22 nodes in

the graph, we got the best feasible solution in less than 3 hours and with a good gap

not exceeding 12% except for the instances of geant with 25 and 30 demands. For

the instances containing more than 22 nodes (the cost266, pioro40, germany50, zib54

and ta2 based instances), 11 instances over 18 took only few minutes to get the best

feasible solution. The remaining instances, pioro40 (5, 6 and 8 demands), germany50

(4, 5 and 6 demands) and ta2 (6 demands) exhaust all the 3 hours (or a bit more in the

experiments) without even terminating the resolution of the relaxations at the root.

For these instances, the calculation of the gaps was not possible and this is why we

put ” − ” in the corresponding columns. Notice that for the mentioned instances, an

important number of linear relaxations is solved, only at the root of the tree, reaching

5444 for the instance germany50 with 5 demands. This means that, at this stage,

an introduction of a cutting plane procedure could improve the linear relaxation and

yields to a faster resolution of the instances. Tables 6.3 and 6.4 also report the number

of generated paths in the column generation procedure. Remark that this number is

not very huge. In fact, it does not exceed 3 times the number of constraints for each

instances. This is thanks to the initialisation procedure that seems to be good.

182 Path formulation and Branch-and-Price algorithm

6.5 Concluding remarks

In this chapter, we have introduced a second formulation for the MSOND problem. In

contrast with the cut formulation developed in Chapter 4, the new formulation, called

path formulation, uses a polynomial number of constraints but an exponential number

of variables. We have discussed the pricing problem for this formulation and we prove

that it reduces to a shortest path problem. We have devised a Branch-and-Price al-

gorithm to solve this formulation and propose a specific branching scheme. Moreover,

we have presented a primal heuristic that aims at enhancing the convergence of the

Branch-and-Price algorithm. Finally, we have given some computational results. These

results show that our Branch-and-Price algorithm performs well for the resolution of

random as well as realistic instances. However, for some large instances, the algorithm

does not success to reach the optimal solution within the time limit. A very interesting

perspective to overcome this shortage is to get profit from the valid inequalities identi-

fied in Chapter 4 and combine the column generation with a row generation, yielding

to an efficient Branch-and-Price-and-Cut algorithm.

6.5 Concluding remarks 183

Instance V K Path-ini Path-gen Nodes Relaxations Gap Gap-Y TR TB TT

dfn-bwin 10 2 298 4 1 3 0 0 0:00:00 0:00:00 0:00:00

dfn-bwin 10 4 598 2 1 2 0 0 0:00:00 0:00:00 0:00:00

dfn-bwin 10 5 748 12 1 9 0 0 0:00:00 0:00:00 0:00:01

dfn-bwin 10 6 898 48 1 11 0 0 0:00:01 0:00:01 0:00:01

dfn-bwin 10 8 1176 65 1 27 0 0 0:00:02 0:00:02 0:00:03

dfn-bwin 10 10 1476 155 1 53 0 0 0:00:05 0:00:05 0:00:05

dfn-bwin 10 12 1776 523 1 96 0 0 0:00:10 0:00:10 0:00:10

dfn-bwin 10 14 2076 615 1 115 0 0 0:00:15 0:00:15 0:00:15

dfn-bwin 10 15 2224 483 1 79 0 0 0:00:10 0:00:10 0:00:11

dfn-bwin 10 16 2374 542 1 77 0 0 0:00:02 0:00:02 0:00:11

dfn-bwin 10 18 2670 1086 5 347 2,13 0 0:00:26 0:00:26 0:00:50

dfn-bwin 10 20 2966 971 23 457 5,39 0,83 0:00:02 0:00:02 0:01:12

dfn-bwin 10 25 3710 1201 63 575 6,31 2,28 0:00:08 0:01:23 0:02:15

dfn-bwin 10 30 4454 916 37 437 6,14 0 0:00:02 0:00:06 0:01:50

polska 12 2 492 56 1 24 0 0 0:00:02 0:00:02 0:00:02

polska 12 4 1002 155 1 57 0 0 0:00:00 0:00:00 0:00:05

polska 12 5 1262 573 7 224 2,96 0 0:00:04 0:00:09 0:00:23

polska 12 6 1508 580 3 133 1,68 0 0:00:00 0:00:12 0:00:14

polska 12 8 1976 2259 63 1084 4,5 1,66 0:00:06 0:00:00 0:02:33

polska 12 10 2472 2358 61 1098 4,5 0 0:00:10 0:00:00 0:02:32

polska 12 12 2978 3174 51 1296 5,92 1,64 0:00:00 0:01:26 0:03:49

polska 12 14 3470 4130 51 1752 5,92 1,64 0:00:00 0:00:08 0:06:23

polska 12 15 3716 4668 55 2120 5,92 1,13 0:00:00 0:00:42 0:08:06

polska 12 16 3976 5323 47 2036 4,66 2,41 0:00:11 0:00:11 0:08:34

polska 12 18 4496 3092 17 911 3,46 0 0:00:15 0:00:04 0:03:33

polska 12 20 4988 4334 21 1531 3,46 0 0:00:05 0:01:37 0:06:48

polska 12 25 6232 4384 21 1313 3,46 0 0:00:24 0:01:17 0:09:48

polska 12 30 7490 7205 55 3017 5,71 4,38 0:00:41 0:00:45 0:32:02

nobel-us 14 2 770 25 1 8 0 0 0:00:00 0:00:00 0:00:01

nobel-us 14 4 1584 102 1 20 0 0 0:00:00 0:00:00 0:00:02

nobel-us 14 5 1950 58 1 14 0 0 0:00:00 0:00:00 0:00:02

nobel-us 14 6 2316 124 1 32 0 0 0:00:04 0:00:04 0:00:04

nobel-us 14 8 3048 379 1 64 0 0 0:00:09 0:00:09 0:00:09

nobel-us 14 10 3780 812 1 206 0 0 0:00:02 0:00:02 0:00:24

nobel-us 14 12 4588 1044 1 235 0 0 0:00:02 0:00:02 0:00:32

nobel-us 14 14 5344 824 11 363 4,18 0 0:00:12 0:00:23 0:00:55

nobel-us 14 15 5710 590 11 276 4,18 0 0:00:13 0:00:23 0:00:44

nobel-us 14 16 6114 1172 19 566 5,18 2,56 0:00:17 0:00:21 0:01:47

nobel-us 14 18 6922 1948 17 548 2,62 0 0:00:57 0:02:30 0:02:55

nobel-us 14 20 7736 2294 17 547 1,91 1,91 0:01:29 0:02:29 0:03:31

nobel-us 14 25 9718 1579 1 134 0 0 0:01:43 0:01:43 0:01:43

*nobel-us 14 30 11624 19299 69 6225 3,44 0 0:01:26 2:08:33 3:00:00

newyork 16 2 1020 128 1 72 0 0 0:00:00 0:00:00 0:00:06

newyork 16 4 2040 53 1 29 0 0 0:00:01 0:00:01 0:00:03

newyork 16 5 2550 139 1 59 0 0 0:00:06 0:00:06 0:00:06

newyork 16 6 3130 983 1 182 0 0 0:00:25 0:00:25 0:00:25

*newyork 16 8 4220 24366 263 13570 8,02 5,56 0:01:00 0:18:37 3:00:00

Table 6.3: Branch-and-Price results for realistic instances (1)

184 Path formulation and Branch-and-Price algorithm

Instance V K Path-ini Path-gen Nodes Relaxations Gap Gap-Y TR TB TT

*newyork 16 10 5240 23602 211 12149 7,57 5,65 0:02:05 1:24:03 3:00:00

*newyork 16 12 6260 22721 142 10573 7,35 5,42 0:03:33 2:22:59 3:00:00

newyork 16 14 7450 14599 83 5803 4,94 3,96 0:01:32 0:15:14 1:12:02

newyork 16 15 8030 16625 97 6694 5,03 0,72 0:02:38 1:23:55 1:47:26

newyork 16 16 8540 18103 131 6661 5,03 1,4 0:02:02 1:33:01 2:05:26

newyork 16 18 9660 6919 31 1931 1,35 0 0:02:22 0:17:41 0:17:42

newyork 16 20 10820 10277 27 4027 4,05 0 0:03:01 0:14:35 0:37:41

newyork 16 25 13650 8849 31 1569 2,97 0 0:03:08 0:30:19 0:31:00

newyork 16 30 16436 7688 51 1693 3,28 3,28 0:04:48 0:45:07 0:46:13

geant 22 2 2386 33 1 12 0 0 0:00:02 0:00:02 0:00:01

geant 22 4 4922 186 1 25 0 0 0:00:04 0:00:04 0:00:06

geant 22 5 6008 835 1 115 0 0 0:00:21 0:00:21 0:00:23

geant 22 6 7308 1120 1 108 0 0 0:01:09 0:01:09 0:01:09

geant 22 8 9480 4932 1 2308 0 0 0:10:43 0:10:43 0:10:44

geant 22 10 11652 9319 1 5362 0 0 0:30:13 0:30:13 0:30:13

geant 22 12 13824 11491 1 1860 0 0 1:46:30 1:46:30 1:46:31

*geant 22 14 16424 16133 5 2185 11,38 0 1:22:15 1:33:08 3:00:00

*geant 22 15 17724 17207 3 2327 10,16 0 2:24:42 2:11:09 3:00:00

*geant 22 16 19024 17861 3 2866 7,01 0 2:39:22 2:52:46 3:00:00

*geant 22 18 21560 28849 3 5308 6,67 0 1:45:07 2:10:10 3:00:00

*geant 22 20 23732 33268 3 7391 6,92 0 2:04:22 2:46:08 3:00:00

*geant 22 25 29376 14769 1 953 21,78 0 2:15:12 2:36:36 3:00:00

*geant 22 30 35748 49111 1 6782 27,41 0 0:26:01 2:30:19 3:00:00

cost266 37 2 7831 144 1 82 0 0 0:00:03 0:00:03 0:00:11

cost266 37 4 14773 443 1 246 0 0 0:00:08 0:00:08 0:00:38

cost266 37 5 18244 453 1 367 0 0 0:00:51 0:00:51 0:00:51

cost266 37 6 21715 18 1 6 0 0 0:00:28 0:00:28 0:00:28

cost266 37 8 30435 64 1 34 0 0 0:01:09 0:01:09 0:01:09

pioro40 40 2 9298 630 1 162 0 0 0:00:15 0:00:15 0:00:29

pioro40 40 4 19674 4314 1 1026 0 0 2:05:03 2:05:03 2:05:03

*pioro40 40 5 23784 6784 1 764 - - 3:00:00 3:00:00 3:00:00

*pioro40 40 6 27894 11233 1 2441 - - 3:00:00 3:00:00 3:00:00

*pioro40 40 8 37192 29181 1 3065 - - 3:00:00 3:00:00 3:00:00

germany50 50 2 15098 61 1 28 0 0 0:00:00 0:00:00 0:00:11

*germany50 50 4 32034 7443 1 1424 - - 3:00:00 3:00:00 3:00:00

*germany50 50 5 38664 14159 1 5444 - - 3:00:00 3:00:00 3:00:00

*germany50 50 6 47132 13412 1 2761 - - 3:00:00 3:00:00 3:00:00

zib54 54 2 20008 4209 1 3195 0 0 0:00:15 0:00:15 0:07:02

zib54 54 4 35620 2958 1 1610 0 0 0:04:30 0:04:30 0:04:30

zib54 54 5 43426 253 1 91 0 0 0:01:41 0:01:41 0:01:41

zib54 54 6 53430 5461 1 4330 0 0 0:19:01 0:19:01 0:19:01

ta2 65 2 26423 506 1 248 0 0 0:00:33 0:00:33 0:01:06

ta2 65 4 49493 87 1 36 0 0 0:01:35 0:01:35 0:02:24

ta2 65 5 61028 2 1 2 0 0 0:03:19 0:03:19 0:03:20

*ta2 65 6 72563 7017 1 740 - - 3:00:00 3:00:00 3:00:00

Table 6.4: Branch-and-Price results for realistic instances (2)

Chapter 7

Natural and Extended Formulations

Contents

7.1 Natural formulation . 186

7.1.1 Natural formulation and difficulty 186

7.1.2 Case of three terminals . 191

7.1.3 Case of four terminals and more 195

7.2 Extended formulation . 196

7.2.1 The MSOND problem: a view in layers 196

7.2.2 Extended compact formulation 199

7.2.3 Experimental results . 201

7.2.4 Fractional solutions and valid inequalities 203

7.3 Concluding remarks . 211

In this chapter, we propose further integer linear programming formulations to the

MSOND problem. The chapter is divided in two main parts. In the first part, we pro-

pose a formulation using only the design variables. We prove that this formulation,

called also natural formulation, is valid when the number of terminals for each demand

is equal to three. For demands with four terminals and more, we show that the for-

mulation of the problem using only natural variables is as difficult as finding a natural

formulation for the vertex disjoint paths problem. In the second part, we propose an

extended compact formulation using extra families of variables for each demand. The

extended formulation is based on a layered view for each demand of the MSOND prob-

lem. Depending on the number of its sections (and hence terminals), each demand is

represented by layers, where each layer stands for a section of the demand. We give

186 Natural and Extended Formulations

some experimental results for the extended formulation and propose a method to cut

its fractional solutions. We also prove by a column generation procedure that valid in-

equalities coupling two or more demands are the most efficient to cut fractional points

for the extended formulation.

7.1 Natural formulation

7.1.1 Natural formulation and difficulty

As it was said in Chapter 1, the most natural way to formulate a combinatorial opti-

mization problem P is to define integer variables ye for each e ∈ E and find a suitable

set of constraints to represent F. Recall that E represents the basic set of P and F is a

family of subsets of E, defining the possible solutions of problem P. However, finding

a natural formulation is in some cases difficult and can even be impossible. And this is

mainly due to the underlying difficulty caused by some constraints and requirements

of the problem.

This was actually the case of the MSOND problem, for which finding a natural formu-

lation was a hard task. The principle difficulty of the MSOND problem is the sections’

disjunction requirement for each demand. This constraint can be easily managed if we

choose to bound the degree of each node of the graph by 2 using a family of binary

variables for each demand (see the disjunction inequality (4.2)). However, it is difficult

to formulate using only the so-called design variables ye, e ∈ E.

In what follows, we try to overcome this difficulty and propose a natural integer linear

programming formulation for the MSOND problem. Consider the binary design vari-

ables ye, e ∈ E previously introduced. Recall that ye = 1 if the edge e is installed and

0 otherwise. To formulate the MSOND problem, one of the most intuitive procedures

consists in translating its constraints using ”known” inequalities from the literature.

Recall that the first requirement of the MSOND problem consists in ensuring, for

each demand k ∈ K, two paths routing it and respecting a given order on the terminals

of Tk. Note that this amounts to finding a path joining each successive terminals of

every demand, which can be formulated using an inequality similar to (4.1), yet written

in terms of the design variables ye (see (7.1)).

∑

e∈δ
Gk,j (W)

ye ≥ 1
for all k ∈ K, qkj = (wk

j , w
k
j+1) ∈ Tk,

W ⊂ V k,j : wk
j ∈ W andwk

j+1 ∈ W.
(7.1)

7.1 Natural formulation 187

Then, to guarantee the node-disjunction constraint between the sections of a demand,

one can think of writing some classical inequalities that have been used to model similar

problems in the literature [126]. The first step, is to ensure the edge-disjunction by the

following inequality

∑

e∈δG(W)

ye ≥ 2
for all k ∈ K, for all W :

W ∩ Tk 6= ∅ 6= W ∩ T k.
(7.2)

Remark that inequalities (7.2) guarantees two edge-disjoint paths between any pair

of terminals of Tk.

Then, we write the inequality that guarantees the sections’ node-disjunction require-

ment. This can be expressed by the following inequality that ensures node-disjoint

paths between any pairs of terminals of Tk.

∑

e∈δG\u(W)

ye ≥ 1

for all k ∈ K, for all u ∈ Sk,

for all W :

W ∩ Tk 6= ∅ 6= W ∩ Tk.

(7.3)

Consider moreover the trivial inequality on the design variables given by

0 ≤ ye ≤ 1 for all e ∈ E. (7.4)

Now, consider the formulation given by

min{cy | y ∈ {0, 1}m : y satisfies (7.1)− (7.4)}. (7.5)

Intuitively, one can think that formulation (7.5) is sufficient to guarantee a feasible

solution for the MSOND problem since it perfectly translates all the problem’s re-

quirements. Unfortunately, this is not the case and this what we will show in what

follows.

Consider the example of Figure 7.1.1. This figure illustrates a graph with 6 nodes,

three terminals 1, 3 and 5 and three Steiner nodes 0, 2 and 4. The graph represents

an integer solution obtained by applying formulation (7.5) for several demands among

them demand 1 5 (1 5) (1 3 5).

It is not hard to see that inequalities (7.1), (7.2) and (7.3) are all satisfied (for

the considered demand). However, the example represented in Figure 7.1.1 does not

constitute a feasible solution for the MSOND problem. In fact, to route demand 1 5

188 Natural and Extended Formulations

0

2

4

3

1

5

Figure 7.1: Integer non-feasible solution for the MSOND problem

we have two possibilities for each path. The first path can indeed be routed either by

(1, 2, 5) or (1, 0, 4, 5) and the second either by (1, 0, 4, 3, 2, 5) or (1, 2, 3, 4, 5). Obviously,

all the possible combinations of the two paths lead to an infeasible solution for the

problem, since the two paths are not disjoint.

This leads us to think about adding another inequality that enhance the sections’

disjunction. To this end, consider a demand k ∈ K and let S ⊆ Sk be a subset of

Steiner nodes of the demand k. Consider a terminal node ti ∈ Tk and define the

subset Wti ⊂ V such that terminal node ti ∈ Wti and its predecessor and successor

tki−1, ti+1 ∈ Wti . We define the Steiner multi-cuts inequality as follows

∑

ti∈Tk

∑

e∈δG\S(Wti
)

ye ≥ 2(|Tk| − |S|). (7.6)

Proposition 7.1 The Steiner multi-cuts inequality is valid for the MSOND problem.

Proof Consider a demand k ∈ K, a terminal node ti ∈ Tk and let S ⊆ Sk be a subset

of Steiner nodes of the demand k. Let us denote by Wti ⊂ V the subset of nodes of

V containing the terminal node ti, and by Wti its complementary in V such that Wti

contains the super node consisted of the predecessor and successor of ti, namely ti−1

and ti+1. Notice here that, in every feasible solution of the MSOND problem, each

terminal is connected by a sub-path to its predecessor and successor. This induces a

degree at least equal to 2 for each terminal. And in consequence, each (ti, {ti−1, ti+1})-

cut calculated in the original graph G must contain at least 2 edges. In particular, each

7.1 Natural formulation 189

minimum (ti, {ti−1, ti+1})-cut contains exactly 2 edges. In this proof, all the considered

(ti, {ti−1, ti+1})-cuts represent minimum cuts.

• If |S| ≥ |Tk|, inequality (7.6) is valid and are redundant regarding the trivial

inequality (7.4).

• If S = ∅, this means that |S| = 0 and that all the (ti, {ti−1, ti+1})-cuts are

calculated in the original graph G. In this case, inequality (7.6) can be written

as given by (7.7). Since each (ti, {ti−1, ti+1})-cut has at least 2 edges, summing

over all the terminals Tk, gives a quantity that contains at least 2|Tk| edges and

hence inequality (7.7) is valid.

∑

ti∈Tk

∑

e∈δG(Wti
)

ye ≥ 2|Tk|. (7.7)

• If 0 < |S| < |Tk|, the proof of validity is given by an induction on |S|.

(i) |S| = 1 means that the (ti, {ti−1, ti+1})-cuts are calculated in a graph from

which we delete only one Steiner node, say s. Due to the sections’ disjunction

requirement, we know that the Steiner node s is visited just once. This

means that s is situated inevitably in the sub-path linking two successive

terminals of demand k, say tj and tj+1 (see Figure 7.2). Consequently, when

deleting the Steiner node s, we will disconnect the terminals tj and tj+1 and

loose 2 from the right hand side of inequality (7.7). Remark here that the

value 2 comes from the minimum cuts (tj , {tj−1, tj+1}) and (tj+1, {tj, tj+2}),

since both contains only 1 edge after deleting the steiner s.

tj+1

tj+2

tj

tj−1

s

Figure 7.2: Sub-path between tj and tj+1 using the Steiner node s

190 Natural and Extended Formulations

(ii) Now, assume that inequality (7.6) is valid for |S| = p−1 and let us prove its

validity for |S| = p. Let us denote S = S̃∪{s} such that |S̃| = p−1. We first

begin by deleting the Steiner node s and assume that this disconnect the

two successive terminals tj and tj+1. Then, we contract the two terminals

tj and tj+1 so as to get a super terminal that we will call t̃kj . Denote by T̃k

the new set of terminals, T̃k = Tk \ {tj, tj+1} ∪ t̃kj . Notice that by deleting

the Steiner node s, the left hand side of inequality (7.7), regarding always

minimum cuts, is the same before and after contraction of the terminals tj
and tj+1 (see (7.8)).

∑

ti∈Tk

∑

e∈δG\S(Wti
)

ye =
∑

t̃ki ∈T̃k

∑

e∈δ
G\S̃(Wt̃k

i
)

ye. (7.8)

Now, consider the set of terminals T̃k and let us delete the set of Steiner

nodes S̃. By the induction hypothesis, we can write

∑

t̃ki ∈T̃k

∑

e∈δ
G\S̃(Wt̃k

i
)

ye ≥ 2(|T̃k| − |S̃|) = 2((|Tk| − 1)− (|S| − 1))

and hence
∑

t̃ki ∈T̃k

∑

e∈δ
G\S̃(Wt̃k

i
)

ye ≥ 2(|Tk| − |S|). (7.9)

Finally, combining (7.8) and (7.9) prove the validity of (7.6) for minimum

(ti, {ti−1, ti+1})-cuts.

Since the result is proved for minimum (ti, {ti−1, ti+1})-cuts, it remains al-

ways true for the general case of (ti, {ti−1, ti+1})-cuts, and the result follows.

�

As a consequence, the natural integer linear programming formulation that we pro-

pose to the MSOND problem is given as follows

min{cy | y ∈ {0, 1}m : y satisfies (7.1)− (7.6)}. (7.10)

In the following, we prove that formulation (7.10) is equivalent to the MSOND prob-

lem in case of 3 terminals per demand.

7.1 Natural formulation 191

7.1.2 Case of three terminals

Consider the case when each demand has exactly three terminals. We have the following

result.

Theorem 7.2 If |Tk| = 3 for all k ∈ K, then the ILP given by (7.10) is equivalent to

the MSOND problem.

Proof In this proof, we will consider the case of only one demand. The result can be

after generalized for the other demands.

First, it is not hard to see that every solution of the MSOND problem satisfy all the

inequalities of formulation (7.10).

Conversely, consider a solution S inducing an incidence vector that satisfies (7.10).

In what follows, we prove that S is a solution for the MSOND problem.

To this end, we will distinguish different cases based on the combinatorial signifi-

cation of the inequalities (7.1)-(7.6). Let us consider inequalities (7.6). Inequalities

(7.6) implies the existence of 3 node-disjoint paths, say P1, P2 and P3, joining pairs of

consecutive terminals and not passing through the remaining terminals of the demand.

Denote by Π the set representing the union of those paths, Π = {P1, P2, P3}. This

can be represented by one of the configurations of Figure . This figure illustrates three

possibilities:

(a) the three paths are parallel, i.e. they join the same pair of terminals. Without loss

of generality, we suppose those terminals to be 2 and 3 (case (a)).

(b) There are two parallel paths. Without loss of generality, we assume that the parallel

paths are between 2 and 3 and that the remaining path join 1 to 2(case (b)) .

(c) There are no parallel paths (case (c)).

Consider now inequalities (7.1)-(7.3). These inequalities say that for each terminal

ti, there exists node-disjoint paths between (ti−1, ti) and (ti, ti+1). Denote Π′ the set

representing the union of all those paths. Now, we will consider the different possible

configurations for paths Π represented in Figure and introduce the paths Π′ ensured by

inequalities (7.1)-(7.3) in the same graph. Paths Π′ will be represented in the following

figures by dotted lines.

192 Natural and Extended Formulations

(c)(b)(a)

1

32 2 3

1 1

2 3

Π

Figure 7.3: Different configurations of paths Π due to inequalities (7.6)

1) Case (a): The three paths are parallel

In this configuration, we know that by inequalities (7.6), there are 3 paths con-

necting 2 and 3 and so to have a solution, we must ensure one path between 1 and

2 and one path between 1 and 3. Here, one should distinguish three subcases:

• First, suppose that the two paths connecting (1, 2) and (1, 3) intersect both

the originals paths between 2 and 3 as shown in Figure 1. The new paths

(dotted line) can intersect both the same original path (case (a-2)) or dif-

ferent original paths (case (a-1)). In both cases, we can check that paths Π

and paths Π′ induce a feasible solution for the MSOND problem.

(a−1) (a−2)

1

32

1

32

Π

Π′

Figure 7.4: All paths in Π are parallel (1)

• Second, suppose now that one of the paths Π′ is joining directly two succes-

sive terminals and the other intersect one of the original paths Π between

2 and 3. Case (a-3) of Figure 1 shows a direct path between 1 and 2 and

a path between 1 and 3 intersecting one of the original paths Π between 2

and 3. It is not hard to see that this case implies a feasible solution of the

MSOND problem.

7.1 Natural formulation 193

• Finally, suppose that the new paths are both joining directly two successive

terminals, connecting for instance (1, 2) and (1, 3) (see Figure 1 case (a-4)).

In this case, we can trivially check that Π and Π′ give a feasible solution for

the MSOND problem.

(a−3) (a−4)

Π

Π′

1

32

1

32

Figure 7.5: All paths in Π are parallel (2)

2) Case (b): Only two from the three original paths Π are parallel

In this case, we distinguish two subcases for the paths Π′ due to inequalities

(7.1)-(7.3).

• Only one of the new paths Π′ does not intersect the original paths (case

(b-1)).

In this case, it is evident that we easily get a solution for the MSOND

problem.

• The paths Π′ both intersect the original paths Π in different ways (case (b-

2),(b-3)).

Consider the intersections’ points between the paths Π and paths Π′ as

shown in Figure 7.6. Consider in particular the last leaving intersection’s

points between the paths Π′ leaving node 1 and the path Π between 1 and

2. These points are called c and d, respectively (see Figure 7.6). Consider

also the first reaching intersections’ points between the paths Π′ reaching

nodes 2 and 3, respectively. These points are called e and f in the figure.

Now, based on those information, we will construct a feasible solution for

the MSOND problem.

Lemma 7.3 A feasible solution for the MSOND must use both last leaving

points but only one of the first reaching points.

Proof Suppose that the solution uses only one of the last leaving point,

represented in case (b-2) by points c and d. This means that only one path

194 Natural and Extended Formulations

(b−1)

e

c

(b−2)

a
b

d

f
(b−3)

ec

f

d

1

2 32

1

2

1

3

Π

Π′

3

Figure 7.6: Two parallel paths of Π

is leaving node 1 and hence 1 is disconnected from 2 or 3 (depending on the

considered path) and so no feasible solution can be obtained.

Now assume that the solution uses both the first reaching points, represented

in case (b-2) by points e and f . This means that the path between terminals

1 and 2 is given by (1, b, d, e, 2) (respectively (1, a, c, 2)) and the one between

1 and 3 is given by (1, a, c, f, 3) (respectively (1, b, d, e, 3)) and hence no more

path is connecting 2 and 3, which is infeasible for the MSOND problem. �

By lemma 7.3, to have a feasible solution for the MSOND problem, one must

use both leaving points and only one reaching point. Two feasible solution

can be considered ((1, b, d, 2); (1, a, c, f, 3); (2, e, 3)) and

((1, a, c, 2); (1, b, d, e, 3); (2, f, 3)). A similar reasoning, applied for other pos-

sible configurations such as the case (b-3) of Figure 7.6, implies a feasible

solution for the MSOND problem.

Overall, in this case a feasible solution of the MSOND problem can be easily

obtained by the combination of paths Π and Π′.

3) Case (c): No parallel edges are considered

This means that the three paths of Π are connecting the different pairs of ter-

minals. Clearly, these paths satisfy also inequalities (7.1)-(7.3). Moreover, it is

obvious that Π define a solution for the MSOND problem

As a conclusion, we can deduce that every solution of the formulation (7.10) is a

solution for the MSOND problem, and the result follows.

�

In this section, we have restricted ourselves to the case of 3-terminals’ demands. In

the following section, we will be interested to the case of 4 or more terminals.

7.1 Natural formulation 195

7.1.3 Case of four terminals and more

In this section, we will prove that it is difficult to formulate the MSOND problem for

a demand having 4 or more terminals.

We first, begin by showing that formulation (7.10) which is equivalent to the MSOND

problem in the case of 3-terminal demands, is unfortunately no more sufficient to

formulate the problem for demands with 4 terminals and more. For this purpose,

consider the example of Figure 7.1.3. This figure 7.1.3 depicts a graph with seven

vertices, 4 terminals (numbered 1, 2, 3 and 4) and three Steiner nodes (nodes 5, 6 and

7). The graph represents a feasible solution for formulation (7.10). In fact, it is not

hard to verify that all the inequalities of this formulation are satisfied by the solution.

However, this example does not define a feasible solution for the MSOND problem. In

fact, all the combinations of the different possibilities of paths routing the demands’

sections imply a violation of the disjunction requirement that must be guaranteed

between these sections.

5

6

1 2

34

7

Figure 7.7: Counterexample for Sections Disjunction

Consequently, formulation (7.10) is not sufficient to formulate the MSOND problem.

And this show, the difficulty of formulating the MSOND problem using only natural

variables when demands have more than 4 terminals.

In the following proposition, we state a result detailing more this difficulty.

Proposition 7.4 Formulating the single commodity MSOND problem using natural

variables is as difficult as formulating the vertex disjoint paths problem.

Proof Consider the case of single commodity MSOND (i.e. |K| = 1) and assume

that this demand consists of 4 terminals, say s1, s2, t2 and t1, that must be visited in

that order. Suppose also that we know two paths routing sections (s1 s2) and (t2 t1). In

particular, we assume that these paths are given by the edges s1s2 and t2t1, respectively.

196 Natural and Extended Formulations

In this case, the MSOND problem is equivalent to the problem of looking for two node-

disjoint paths between the pairs of nodes (s1 t1) and (s2 t2). Consequently, finding

an integer linear programming formulation for the MSOND problem is equivalent to

formulating the 2-vertex disjoint problem. Such a formulation can be easily found

using flow or path variables for example. However, to the best of our knowledge, this

remains a very hard task using only natural variables. �

Motivated by this difficulty, we tried to find other possible formulations for the

MSOND problem, mainly with thinking of new families of variables. We hence propose

an integer linear programming formulation given in terms of cuts (see Chapter 4) and

a path-based formulation having an exponential number of variables (see Chapter 6).

We also think of adding other extra variables to the design variables yielding hence

to an extended formulation for the problem. Thinking of extended formulations was

motived by other reasons, mainly because these formulations have been proved very

efficient in the resolution of huge-sized combinatorial optimization problems. In the

next section, we propose an extended formulation for the MSOND problem.

7.2 Extended formulation

To tighten the linear relaxation of an integer linear programming formulation, one of

the most efficient techniques is to identify and add new families of valid inequalities.

These inequalities help cut fractional points and improve thus the resolution of the

problem. Another easier way that generally provides high quality bounds for combi-

natorial optimization problems is to add extra variables to the original formulation, so

as to obtain the so-called extended formulation. Moreover, when the addition of poly-

nomial number of new variables allows a formulation with polynomially many linear

inequalities, we say that the problem has a compact extended formulation. In this sec-

tion, we propose a compact extended formulation for the MSOND problem and show

that it performs well for its resolution.

7.2.1 The MSOND problem: a view in layers

The idea of the extended formulation came to us from the definition itself of the

MSOND problem. As each demand is characterized by independent sections whose

routing paths must be node-disjoint, we thought about a formulation across each sec-

tion. The idea was then to view the single demand as a union of layers (called also

7.2 Extended formulation 197

levels) of demands. Each level is associated with a section of a demand and represents

itself a demand that has to be routed between the extremities of the corresponding

section.

In this section, we consider the asymmetric version of the MSOND problem, called

Asymmetric Multilayer Optical Network Design Problem, AMSOND problem. The

AMSOND problem can be defined as follows. Let G = (V,E) be an edge weighted

undirected graph and let A be the set of arcs corresponding to the edges’ set E,

such that with each e = uv ∈ E are associated two arcs (u, v) and (v, u) in A. We

suppose given a set K of demands such that for each demand k ∈ K, we know two

dipaths routing it in G′ = (V ′, E ′) (the IP layer). These dipaths, denoted by L′
k,1 =

(v1k,1, ..., v
j
k,1, ..., v

lk,1
k,1) and L′

k,2 = (v1k,2, ..., v
j
k,2, ..., v

lk,2
k,2), are node-disjoint.

The AMSOND problem consists in finding a subgraph of G that contains for each

demand k ∈ K two dipaths Lk,1 and Lk,2 routing it in G (the optical layer). Lk,1 and

Lk,2 must be node-disjoint and respect the order of passing through the vertices of G

that correspond to the ones visited in L′
k,1 and L′

k,2 in G′.

Proposition 7.5 From every solution of the MSOND problem, we can construct a

solution for the AMSOND problem and vice versa.

Proof Easy. �

In the sequel, we consider the AMSOND problem, and we propose an extended

formulation using variables associated with arcs, so as to get better bounds for the

MSOND problem. Before introducing the extended formulation, we briefly explain its

principle.

The idea of the extended formulation is to consider each demand k ∈ K as a union

of subdemands. Each subdemand is associated with a section q ∈ Tk of demand k.

Clearly, to route demand k ∈ K, one must route independently every subdemand

subject to some constraints. This gives a layered view for the problem that can be

explained as follows. For each section q ∈ Tk of demand k, we associate a layer (or

level), corresponding to a reduced graph in which section q has to be routed. The

routing of these subdemands is considered as flow problems and the aggregation of the

different layers will then define a routing for demand k.

To better illustrate this concept, consider the example of Figure 7.8. On the left side

of the figure is shown an example of a demand between the origin O and the destination

198 Natural and Extended Formulations

O

t1

t3
s1 s2

s3

t2

t1
s1 s2

s3

D

t3
s1 s2

s3

Layer 1

Layer 3

Layer 2

t2

−2

−1

−1
−1

1

2

1

1

O

D

t2

t1

t3
s1 s2

s3

−2

1

1

1

2

−1

−1

−1

Figure 7.8: Examples of layers of a demand

D. This demand is routed through the dipaths (O, t1, t2, D) and (O, t3, D). The nodes

s1, s2 and s3 are Steiner for the considered demand.

As a consequence, the sections of the demand are the following (O, t1),(t1, t2),(t2, D),(O, t3)

and (t3, D). From the description given above, we conclude that we will associate 5

subdemands to the demand between O and D. Each subdemand represents a sec-

tion and is treated as a flow problem. Remark however that the sections adjacent to

the origin O and to the destination D can be considered together, allowing hence the

diminution of the number of levels. This can be justified as follows. First, recall that

each section’s routing problem correspond to a flow problem. Note also that near to

each terminal, we put two numbers corresponding to the quantities of flow entering

and leaving the corresponding terminal, respectively. Normally, for the origin O (resp.

the destination D), there is a quantity of 1 leaving it to t1 (resp. entering to it from

t2) and a quantity of 1 leaving it to t3 (resp. entering to it from t3). This can be seen

as a whole quantity leaving the origin O (resp. the destination D), of a value exactly

equal to 2. Consequently, the sections adjacent to O (resp. D) will be combined in

one layer, and we finally get the layered decomposition of the demand on the right side

7.2 Extended formulation 199

of Figure 7.8. Note, in addition, that for a demand k, each level associated with the

section q = (wj, wj+1) ∈ Tk corresponds to the reduced graph Gk,j. Recall that this

graph is obtained from G by deleting all the terminals of Tk except the extremities wj

and wj+1.

Overall, the concept of the extended formulation’s layers is the following. The first

layer corresponds to the flow going from the origin to the first terminals of the first

and second paths respectively. It is hence constituted by the origin O and the two first

terminals of each path (here t1 and t3). The following layers corresponds to the flow

between each two successive terminals of each path (here for instance t1 and t2), until

arriving to the last layer. This layer is composed of the two last terminals of the paths

and the destination D and corresponds to the flow leaving these two terminals and

entering to the destination. Note that each layer has a copy of all the Steiner nodes of

the corresponding demand.

Routing the demand on two paths is thus no more than a flow problem for each

layer of the demand. To the flow problem (flow conservation constraint) we will add

inequalities ensuring disjunction of the different sections of the demand (disjunction

between layers) and inequalities coupling the flow variables and the design ones. This

will be detailed in the next section.

7.2.2 Extended compact formulation

In this section, we propose to give a linear programming formulation of the AMSOND

problem. This formulation is obtained using a large, yet polynomial, number of vari-

ables and constraints.

For this purpose, we define the following decision variables. Let ye be the design

variable associated with edge e = ij ∈ E. ye is a binary variable equal to 1 if edge e is

installed and 0 otherwise. Define also the binary variable xk,l
i,j for each demand k ∈ K,

each layer of the demand l ∈ Lk and for each arc (i, j) ∈ A. Variable xk,l
i,j indicates the

quantity of flow of the demand k in layer l going from the node i to the node j.

Recall that Tk represents the set of terminals of the demand k, Ok andDk respectively

its origin and destination. We denote by Lk the set of layers of the demand k and by

Tk,l the set of terminals of demand k in the layer l ∈ Lk.

In addition, we define the flow quantity bk,lv given as follows

200 Natural and Extended Formulations

bk,lv =

0 if v ∈ Sk,l,

−1 if v ∈ Tk,l , v 6∈ {O
k, Dk} and v is an origin,

1 if v ∈ Tk,l , v 6∈ {O
k, Dk} and v is a destination,

−2 if v = Ok,

2 if v = Dk.

Now consider the following ILP.

min
∑

e∈E

c(e)ye

∑

i:(i,v)∈A

xk,l
i,v −

∑

j:(v,j)∈A

xk,l
v,j = bk,lv for all k ∈ K, l ∈ Lk, v ∈ V, (7.11)

∑

l∈Lk

∑

j:(j,v)∈A

xk,l
j,v ≤ 1 for all k ∈ K, v ∈ Sk, (7.12)

∑

l∈Lk

(xk,l
i,j + xk,l

j,i) ≤ ye for all k ∈ K, e = ij ∈ E, (7.13)

0 ≤ xk,l
i,j ≤ 1 for all k ∈ K, l ∈ Lk, i ∈ V, j ∈ V, (7.14)

0 ≤ ye ≤ 1 for all e ∈ E (7.15)

xk,l
i,j ∈ {0, 1} for all k ∈ K, l ∈ Lk, i ∈ V, j ∈ V, (7.16)

ye ∈ {0, 1} for all e ∈ E. (7.17)

Inequalities (7.11) are the flow conservation inequalities for each layer and each de-

mand. These inequalities ensure the routing of the demands through two paths. In-

equalities (7.12) are the disjunction inequalities between the different layers. These

inequalities ensure the elementariness and disjunction of the two paths of the demand.

Inequalities (7.13) are the coupling inequalities, defining the relation between the design

and flow variables. These inequalities force the flow variables to be equal to 0, if the

design variables are equal to 0 as well. And finally, the inequalities (7.14), (7.25) are

the trivial inequalities and (7.16) and (7.17) are integrality inequalities of the decision

variables.

Theorem 7.6 The integer linear program (7.11)-(7.17) is equivalent to the AMSOND

problem.

Proof By the development above, it is clear that the incidence vector of any solution

of the AMSOND problem satisfies inequalities (7.11)-(7.17).

7.2 Extended formulation 201

No let, (x, y) ∈ {0, 1}|K||Lk||V |2,|E| that does not induce a feasible solution for the AM-

SOND problem. Assume that (x, y) satisfies inequalities (7.11) and (7.13). In what

follows, we prove that there is at least one inequality of type (7.12) that is violated

by (x, y). Consider a demand k. By inequalities (7.11), we know that for each layer

l ∈ Lk, we guarantee the constraint of flow conservation. This means that we route

all the sections of demand k, which yields to the construction of two dipaths passing

through the terminals of demand k. Moreover, as the layers are represented by reduced

graphs, this implies that the calculated dipaths satisfy the order of passing through

the terminals Tk. (x, y) is not feasible for the AMSOND problem implies that there

is at least two sections of demand k whose routing paths are not node-disjoint. As

each section is represented by a layer, we deduce that there is a Steiner node v ∈ Sk

that is visited in two different layers (or twice for the origin and destination layers

grouping two sections). But this means that inequalities (7.12) are violated and the

result follows. �

We also identify some valid equations that can strengthen the linear relaxation of the

ILP given above.

xk,l
v,j = xk,l

i,v = 0 for all k ∈ K, l ∈ Lk, v ∈ Tk \ Tk,l. (7.18)

xk,l
v,j = 0

for all k ∈ K, l ∈ Lk ; |Lk| = 3,

for all v ∈ Tk,l; b
k,l
v = 1,

for all j ∈ V.

(7.19)

xk,l
i,v = 0

for all k ∈ K, l ∈ Lk : |Lk| = 3,

for all v ∈ Tk,l; b
k,l
v = −1, i ∈ V.

(7.20)

Equations (7.18) ensure that the flow entering and leaving a terminal which is not a

terminal of the layer is equal to 0. Equations (7.19) guarantee that the flow leaving a

”destination” terminal of a layer is 0. And along the same line, equations (7.20) ensure

that the flow entering to an ”origin” terminal of a layer is equal to 0.

7.2.3 Experimental results

We tested the extended compact formulation introduced in the previous section on

realistic instances generated from the SNDlib [5] as described in section 5.2.2.2. The

202 Natural and Extended Formulations

implementation has been done on VBA/Excel using UFF-LP framework ?? as a mod-

eller and Cplex 12.5 as the MIP solver. We set a time limit of execution equal to 3

hours, that is 10800 seconds. Results are reported in Tables 7.2,7.3, 7.4.

The entries of the tables are :

Instance : name of the instance;

V : number of node in graph G;

K : number of demands;

Terminals : average number of terminals;

Nsub : number of subproblems (nodes);

Opt : value of the best upper bound obtained at the root;

Relaxation : value of the lower bound;

Gap(%) : the relative error between the best upper bound

(the optimal solution if the problem has been solved

to optimality) and the lower bound obtained at the root;

TT : total CPU time (in seconds).

Tables 7.2, 7.3 and 7.4 represent the results obtained by testing the extended for-

mulation on instances with graphs having at least 14 nodes and at most 54 nodes

(corresponding to the original nodes of the SNDlib instances). For all the instances we

generate demands whose number ranges from 6 to 50. Overall, we tested 110 instances.

It appears from these tables that almost all the tested instances have been solved to

optimality within the time limit of execution. In fact, only 18 over 110 (correspond-

ing to only 15%) of the instances did not reach the optimal solution within 3 hours.

Moreover, the majority of the instances has a CPU time that does not exceed 1 hour.

In particular, 96 over 110 were solved in less than 1 minute. And this proves the effi-

ciency of the extended compact formulation for a fast resolution of instances that may

take hours to be solved with other formulations. Furthermore, the tested formulation

provides a good bound for linear relaxation, and this bound often coincides with the

optimal solution of the AMSOND problem, mainly for ”small” instances. In fact, 73

among the instances (about 70%) have been solved to optimality at the root of the

Branch-and-Bound tree (i.e. Nsub = 0 and gap=0%). Besides, the remaining instances

have a good gap between the best upper bound and the lower bound obtained at the

root of the Branch-and-Bound tree. Observe that all the instances that have been

solved to optimality within the time limit have a gap that does not exceed 6%. And

this argue for the high quality of bounds the extended formulation is providing. In

addition, we remark that the majority of the instances have been solved along a small

Branch-and-Bound tree (i.e. Nsub ≤ 665), and this also proves the efficiency of our

formulation.

7.2 Extended formulation 203

From tables 7.2, 7.3 and 7.4, we can also see that the difficulty of an instance is

generally related to its size. This first depends on the size of the graph. In fact, the

instances of 35 demands have been solved to optimality only for graphs whose number

of nodes does not exceed 37. The difficulty of an instance depends also on the number

of demands. Look for example to the instances polska and remark that as the number

of demands increases, the time of execution grows as well (except instances plska with

20 and 50 demands).

As a consequence, we can deduce that this formulation gives very interesting results

and can solve many instances that could not be solved with formulations tested in

Chapter 5 and Chapter 6. However, even if the formulation behaves well with ”small”

instances, when the instances’ sizes grow, the resolution become more difficult and

sometimes impossible. This leads us to think about adding new valid inequalities to

improve our linear relaxation, and this what we will develop in the next sections.

7.2.4 Fractional solutions and valid inequalities

In this section, we study the structure of some fractional points obtained from the

resolution of random instances using formulation 7.11- 7.17.

7.2.4.1 First fractional solution

Consider the example illustrated in Figure 7.9. This figure shows a graph with 8 nodes

on which are reported the values of a fractional solution. This solution is obtained from

the resolution of the linear relaxation of formulation 7.11- 7.17 on an instance defined

by 2 demands. The first demand is (1, 4) and is routed by paths (1 3 4) and (1 2 0 4).

The second demand is (1, 5) and is routed by (1 2 5) and (1 4 3 5).

The example of Figure 7.9 can be simplified, mainly by doing some operations of

contraction of edges. These operations lead to a simplified fractional point illustrated

in Figure 7.10. In the following, we choose to restrict ourselves to the study of the

first demand of Figure 7.9. Moreover, as a matter of simplification, we choose to

renumber the nodes of the original graph. The equivalent demand of Figure 7.10 is

hence between nodes 1 and 3, routed by (1 2 3) and (1 4 3). This is also equivalent to

a demand defined by the circuit (1 2 3 4 1). Note here that nodes 1, 2, 3 and 4 are the

terminal nodes. Nodes 5, 6 and 7 are however Steiner nodes for the demand.

204 Natural and Extended Formulations

6

7

0

5

32

4

1

0.25

0.75

0.5

1

Figure 7.9: First fractional solution

demand : (1 2 3 4 1)

7

0.5

0.5
0.5

0.5

0.5

0.5

6
2

1

4

3

1

0.5
0.5

1

5

0.5

Figure 7.10: Simplification of the first fractional Solution

The fractional solution represented in Figure 7.10 shows an example that violates the

sections’ disjunction inequality. In fact, all the combinations of the different possibilities

7.2 Extended formulation 205

of the sections’ routing paths generate infeasible solutions for the AMSOND problem.

As a consequence, we thought about cutting this fractional point and ameliorate thus

our linear relaxation. Unfortunately, this is not an easy task. In fact, the solution of

Figure 7.10 satisfy all the valid inequalities defined in Chapter 4, and that have been

proved efficient to cut many fractional solutions (see results of Chapter 5).

This implies that to cut the fractional point of Figure 7.10, one must change the

method of separation and make some strategic choices, mainly by answering the fol-

lowing questions:

• Which type of inequality should we generate to cut this fractional point ?

• How to detect easily such a type of violated inequality ?

In the next sections, we try to give some elements of answer to these questions.

7.2.4.2 Types of valid inequalities

The valid inequalities for the extended formulation can be classified according to two

criteria. The first one concerns demands and the second is related to variables. Overall,

we distinguish the following possible configurations of inequalities.

1) Single demand inequalities: inequalities that are written for each demand inde-

pendently from the others,

2) Multiple demand inequalities: inequalities that result from considering more than

one demand,

3) Extended variables inequalities: inequalities written in terms of x variables,

4) Design variables inequalities: inequalities written in terms of y variables.

In the coming sections, we will try to see if there exists a single demand / design

variables violated inequality for the previous fractional solution. To achieve this, we

will use a specific technique that we detail in the following paragraphs.

206 Natural and Extended Formulations

7.2.4.3 Cut finder LP and lifting procedure

Cut finder LP

To cut the fractional solution given above, we use the polarity theory [121]. This tech-

nique allows to find the most violated facet-defining inequality that cuts the considered

fractional point. This can be done using a linear program defined as follows. Denote

the fractional solution by y. To detect the most violated facet-defining inequality, it

suffices to look for an inequality having the form αy ≥ 1 and which is violated by y.

This can be seen as a linear program in whose decision variables are the components

of vector α.

min y.α

p.α ≥ 1 for all solution p (7.21)

α ≥ 0

The previous linear program 7.21 looks for coefficients α that allows to cut y and such

that all the solutions p of the problem satisfy the inequality αy ≥ 1. The resolution

of the linear program 7.21 using the values of the fractional point of Figure 7.10 gives

the following violated constraint y34 ≥ 1, represented in Figure 7.11.

demand : (1 2 3 4 1)

7

0.5

0.5

0.5

0.5

0.5

6
2

1

4

3

1

0.5
0.5

1

5

0.5

y3,4 ≥ 1

Figure 7.11: Violated constraint

Notice that the valid inequality illustrated in Figure 7.11 appears to be intuitive. In

fact, if we remove the edge 34, and try to look for a cycle routing the demand, we can

7.2 Extended formulation 207

not find a solution satisfying the sections’ disjunction. Moreover, this is completely

consistent with the theorem of Thomassen and Seymour (see page 65 of [54]).

Theorem 7.7 (Thomassen,Seymour) (see page 65 of [54]) Let G be a graph such

that no single vertex separates si1 from si3 and si2 from si4. There are no vertex-disjoint

paths joining si1 to si3 and si2 to si4 if and only if G arises from a planar graph G′

where these four vertices are on the outer face in order si1 , si2, si3, si4, by placing an

arbitrary graph into some faces of G′ bounded by 3 edges.

In the following, we will propose a lifting procedure to have the general form of this

inequality. This enables finding the coefficients of the other edges in the identified

constraint.

Lifting procedure

To generalize the valid inequality obtained in the previous section and obtain a cutting

constraint, we use the sequential lifting procedure. The idea of this procedure can be

described as follows. To the previous fractional solution, we add the missing edge one

by one. Each time we insert a new edge, we check if when deleting the edge (3, 4) we

can have a feasible solution or not. We apply this procedure by first adding edges (6, 7),

(1, 3), (2, 4), (3, 7) and then the other missing edges of the graph. We therefore obtain

the following violated inequality which cut the fractional solution of Figure 7.10.

y34 + y12 + y27 + y35 + y46 + y47 ≥ 1

This lifting procedure allows us hence to detect a violated inequality for the previous

fractional solution.

However, detecting and generalizing such an inequality seems not to be an easy task.

This lead us to think about the quality of this kind of inequalities. More precisely, one

can ask if it is really interesting to investigate on the single demand/design variables

cuts. To answer this question, we develop a column generation linear program that

will be detailed in the following section.

7.2.4.4 Impact of the different types of valid inequalities

In order to see the impact of the different types of possible valid inequalities on the

extended formulation, we implement a column generation process that can be described

208 Natural and Extended Formulations

as follows. The idea of this process is based on the decomposition of the problem having

k demands solved by the extended formulation to k subproblems solved each one by

the extended formulation and managed by a master problem optimizing the all. In the

sequel, in order to simplify notations, we refer to the demands of K as circuits .

The master problem

Let us denote by λk
j the circuit j routing demand k (k ∈ K, j ∈ Jk) and by ye the

design variable (e ∈ E). We will assume that every circuit j ∈ Jk generated to route

demand k ∈ K satisfy all the constraints of the AMSOND problem for a single demand.

That is to say it passes well in order through the terminals Tk of demand k and that

it guarantees the sections’ disjunction requirement.

The master program is given by the following LP.

min
∑

e∈E

c(e)ye

∑

j∈Jk

λk
j = 1 for all k ∈ K, (7.22)

∑

j∈Jk

akj (e)λ
k
j ≤ ye for all e ∈ E, k ∈ K, (7.23)

λk
j ≥ 0 for all k ∈ K, j ∈ Jk, (7.24)

ye ≥ 0 for all e ∈ E. (7.25)

Inequalities (7.22) are the called circuit inequalities and they guarantee that for

each demand we select a circuit through which this demand will be routed. Inequali-

ties (7.22) are the linking inequalities. These inequalities define the relationship that

exists between the two types of variables. In particular they say that if an edge e will

not be installed (i.e. ye = 0) then it is not possible to select any circuit using this edge

to route the demands. Finally, inequalities (7.24) and (7.25) are the trivial inequalities

corresponding to the decision variables.

It is not hard to see that the linear program defined by (7.22)- (7.25) is equivalent to

the AMSOND problem.

The subproblems

Denote by πk the dual variables associated with inequalities (7.22) and βk
e the dual

variables associated with inequalities (7.23). The reduced cost for a variable λk
j , k ∈

7.2 Extended formulation 209

K, j ∈ Jk is given by the following formula.

ReducedCost(λk
j) = −π

k −
∑

j∈Jk

akj (e)β
k
e . (7.26)

The subproblem consists hence in finding an interesting circuit variable for a demand

k whose reduced cost is negative and subject to some constraints. These constraints

should translate the fact that the circuit j ∈ Jk must pass in order through the terminals

of demand k and that the paths routing all the sections of the demand are node-disjoint.

As a consequence, the subproblem associated with a demand k ∈ K is given by the

following ILP.

min
∑

e∈E

βk
e ye (7.27)

∑

i:(i,v)∈A

xl
i,v −

∑

j:(v,j)∈A

xl
v,j = blv for all l ∈ Lk, v ∈ V, (7.28)

∑

l∈Lk

∑

j:(j,v)∈A

xl
j,v ≤ 1 for all v ∈ Sk, (7.29)

0 ≤ xl
i,j ≤ 1 for all l ∈ Lk, i ∈ V, j ∈ V, (7.30)

0 ≤ ye ≤ 1 for all e ∈ E, (7.31)

xl
i,j ∈ {0, 1} for all l ∈ Lk, i ∈ V, j ∈ V, (7.32)

ye ∈ {0, 1} for all e ∈ E. (7.33)

Observe that given a current solution represented by the primal vector y and the

dual vector (π, β), the pricing problem consists in minimizing the function (7.26). As

the term πk is fixed, the pricing reduces to the minimization of (7.27). Moreover,

the variable (circuit) that price out (with a negative reduced cost) must satisfy some

constraints. These constraints are reproduced in inequalities (7.28)- (7.33), which

correspond to the inequalities of the extended formulation written for a single demand.

Recall that inequalities (7.28) ensure the routing of demand k passing in order through

its terminals and that inequalities (7.29) guarantee the sections’ disjunction constraint.

In the following section, we use this decomposition to show some interesting results.

Computational results

We carry out an experimental study using the extended formulation on one hand,

and the formulation described in the previous section on the other hand. Our goal

210 Natural and Extended Formulations

is to see the impact of using the extended formulation to route each demand on its

own in a first step, and compare the result to the one we obtain when we apply the

extended formulation to the aggregation of all the demands. Experimentations are hold

on random instances generated from the TSPlib ??. The extended formulation and

column generation formulation are both implemented on VBA/Excel using UFF-LP

framework ?? as modeller and Ceplex 12.5 ?? as a LP solver. Results are reported in

Table 7.1. The entries of Table 7.1 are the following, the instance name and size, the

values of the linear relaxations of the extended formulation and the column generation

respectively, the optimum solution and the gaps of the extended formulation and the

column generation relatively to the optimum.

instance LR-EF LR-CG Opt gap-EF(%) gap-CG(%)

berlin6 4 2 4180.02 4180.02 4221.71 0.99 0.99

berlin9 6 2 5120.24 5120.86 5175.28 1.06 1.05

berlin11 6 2 3697.04 3815.61 3936.16 6.07 3.06

berlin6 4 4 5076.06 5076.06 5101.13 0.49 0.49

berlin9 6 4 4683.19 4683.19 4945.58 5.31 5.31

berlin11 6 4 5801.60 5830.97 5904.04 1.74 1.24

berlin9 6 6 4531.69 4531.69 4840.85 6.39 6.39

berlin11 6 6 6097.49 6100.29 6379.63 4.42 4.38

berlin13 8 6 4985.67 4991.96 5428.73 8.16 8.05

Table 7.1: Column generation experimentations

The comparison of the two gaps shows that for almost all the instances (except for

some instances reported in italic in the table), the gaps of the two tested formula-

tions are equal. This implies that the linear relaxation of the extended formulation for

the aggregation of |K| demand is very close to the linear relaxation of the formula-

tion considering each demand separately. And hence we can conclude that to cut the

fractional points of the extended formulation, it is better to investigate on the multi-

ple demand/design variables inequalities, instead of multiple demand/design variables

ones.

7.2.4.5 Second fractional solution

In the previous section, we proved that the multiple demand/design variables inequal-

ities are more efficient to cut fractional solutions than the single demand/design vari-

7.3 Concluding remarks 211

ables ones. This observation can be endorsed by the example of Figure 7.12. This

example illustrates a fractional solution obtained by the linear relaxation of the ex-

tended formulation to route two demands.

2

1

4

3

0.5 0.5

0.5

0.5

0.5

0.5

0.5

6

5

0.5

1

1

demands : (1 2 3 4 1), (1 3 2 4 1)

Figure 7.12: Second fractional Solution

Experimentations show that the value of this linear relaxation is exactly the same of

the one obtained by the column generation LP previously described. Hence, example

of Figure 7.12 can not be cut using the single demand/design variables inequalities.

And as a consequence, to cut it one should look for violated multiple demand/design

variables inequalities.

Such inequalities are not easy to detect and a deeper investigation of their form is

one of the interesting perspectives to this work.

7.3 Concluding remarks

In this chapter, we have studied two linear programming formulations for the MSOND

problem. The first one is called natural formulation. We have proved its validity

for 3-terminal demands. We have also shown that finding a natural formulation of

the MSOND problem become harder with demands having 4 and more terminals.

Moreover, finding such a formulation is as difficult as the formulating the notoriously

212 Natural and Extended Formulations

hard vertex disjoint problem. The second formulation is an extended compact one.

Based on an experimental study, we have proved that this formulation gives a high-

quality bound for the linear relaxation of the MSOND problem. We have also shown

by a column generation procedure that new classes of valid inequalities relating many

demands at a time are in many cases needed to cut fractional solutions.

7.3 Concluding remarks 213

Instance V K Terminals Nsub Opt Relaxation Gap(%) TT

dfnbwin 10 6 3.29 1 13.134 13.134 0.00 0.04

dfnbwin 10 8 3.33 1 19.878 19.878 0.00 0.06

dfnbwin 10 10 3.31 1 21.249 21.249 0.00 0.05

dfnbwin 10 12 3.39 1 23.214 23.214 0.00 0.06

dfnbwin 10 14 3.50 1 23.214 23.214 0.00 0.09

dfnbwin 10 15 3.45 1 23.766 23.766 0.00 0.20

dfnbwin 10 16 3.48 1 23.766 23.766 0.00 0.40

dfnbwin 10 18 3.50 1 25.699 25.699 0.00 0.39

dfnbwin 10 20 3.25 1 28.535 28.535 0.00 1.33

dfnbwin 10 25 3.53 65 31.04 30.111 2.99 3.53

dfnbwin 10 30 3.56 27 31.04 29.907 3.65 3.04

dfnbwin 10 35 3.20 1 34.038 34.038 0.00 1.93

dfnbwin 10 40 3.56 69 34.844 33.592 3.59 5.13

dfnbwin 10 45 3.53 25 34.844 33.984 2.47 5.19

dfnbwin 10 50 3.17 121 35.315 34.356 2.72 9.13

polska 12 6 3.71 1 24.382 24.382 0.00 0.29

polska 12 8 3.67 1 29.857 29.857 0.00 0.39

polska 12 10 3.69 31 30.791 29.917 2.84 2.13

polska 12 12 3.72 61 32.781 31.375 4.29 3.12

polska 12 14 3.00 63 32.781 31.487 3.95 3.40

polska 12 15 3.65 63 32.781 31.409 4.19 4.96

polska 12 16 3.56 83 33.825 32.487 3.96 5.24

polska 12 18 3.53 65 33.825 33.192 1.87 5.51

polska 12 20 3.75 35 33.825 33.126 2.07 4.34

polska 12 25 3.53 49 33.825 33.187 1.89 9.56

polska 12 30 3.53 167 35.643 34.031 4.52 12.93

polska 12 35 3.80 225 35.643 34.142 4.21 16.96

polska 12 40 3.60 243 37.042 35.268 4.79 22.20

polska 12 45 3.55 253 37.042 34.974 5.58 29.60

polska 12 50 3.67 169 42.711 40.26 5.74 19.45

nobelus 14 6 3.64 1 70.415 70.415 0.00 0.10

nobelus 14 8 3.60 1 70.415 70.415 0.00 0.12

nobelus 14 10 3.63 1 70.415 70.415 0.00 0.15

nobelus 14 12 3.67 1 71.158 71.158 0.00 0.21

nobelus 14 14 3.50 1 85.998 85.998 0.00 1.05

nobelus 14 15 3.75 19 85.998 83.298 3.14 1.71

nobelus 14 16 3.76 11 92.625 89.515 3.36 1.23

nobelus 14 18 3.70 1 129.708 129.708 0.00 2.30

Table 7.2: Extended Formulation results (1)

214 Natural and Extended Formulations

Instance V K Terminals Nsub Opt Relaxation Gap(%) TT

nobelus 14 20 4.00 11 134.125 132.46 1.24 3.22

nobelus 14 25 3.63 1 134.468 134.468 0.00 1.4

nobelus 14 30 3.64 205 155.204 150.456 3.06 15.44

nobelus 14 35 3.80 169 176.383 171.318 2.87 26.18

nobelus 14 40 3.68 53 176.922 172.34 2.59 38.33

nobelus 14 45 3.67 235 177.456 171.847 3.16 50.85

nobelus 14 50 3.67 27 178.633 172.935 3.19 49.19

newyork 16 6 3.36 1 1999.857 1999.857 0.00 0.13

newyork 16 8 3.40 249 2305.955 2156.418 6.48 4.07

newyork 16 10 3.38 113 2316.952 2195.958 5.22 6.82

newyork 16 12 3.44 161 2316.952 2194.895 5.27 9.1

newyork 16 14 3.00 41 2374.92 2282.748 3.88 4.52

newyork 16 15 3.50 81 2416.135 2326.154 3.72 9.32

newyork 16 16 3.56 139 2416.135 2316.453 4.13 10.32

newyork 16 18 3.63 1 2441.615 2441.615 0.00 2.83

newyork 16 20 3.00 73 2510.208 2433.66 3.05 12.19

newyork 16 25 3.60 21 2570.391 2533.927 1.42 23.31

newyork 16 30 3.56 65 2830.762 2797.525 1.17 16.44

newyork 16 35 3.00 11 2830.762 2783.958 1.65 21.57

newyork 16 50 3.52 11 2830.762 2777.96 1.87 66.55

cost266 37 6 3.36 1 38.731 38.731 0.00 1.09

cost266 37 8 3.40 1 38.791 38.791 0.00 1.05

cost266 37 10 3.38 1 47.242 47.242 0.00 2.24

cost266 37 12 3.33 1 47.425 47.425 0.00 3.12

cost266 37 15 3.50 1 65.032 65.032 0.00 6.79

cost266 37 16 3.35 1 65.032 65.032 0.00 10.9

cost266 37 18 3.44 1 84.706 84.706 0.00 15.08

cost266 37 20 3.57 1 84.706 84.706 0.00 27.96

cost266 37 30 3.25 425 105.424 103.368 1.95 2316.31

cost266 37 35 3.60 371 113.084 109.33 3.32 10800

cost266 37 50 3.53 81 119.061 109.313 8.19 10800

pioro40 40 6 3.43 1 1887.779 1887.779 0.00 2.68

pioro40 40 8 3.53 1 2233.211 2233.211 0.00 4.93

pioro40 40 10 3.50 1 2365.621 2365.621 0.00 20.97

pioro40 40 12 3.50 47 2573.226 2519.782 2.08 204.09

pioro40 40 14 3.50 429 2786.349 2700.343 3.09 1225.47

pioro40 40 15 3.45 33 2791.43 2752.096 1.41 634.06

Table 7.3: Extended Formulation results (2)

7.3 Concluding remarks 215

Instance V K Terminals Nsub Opt Relaxation Gap(%) TT

pioro40 40 16 3.56 453 2893.117 2852.252 1.41 1738.25

pioro40 40 18 3.57 199 3006.622 2978.419 0.94 1686.38

pioro40 40 20 3.75 29 3006.622 2979.993 0.89 1988.64

pioro40 40 25 3.57 163 3661.68 3197.421 12.68 10800

pioro40 40 30 3.51 53 4026.504 3492.195 13.27 10800

pioro40 40 35 3.60 49 4108.156 3653.95 11.06 10800

pioro40 40 40 3.52 21 4287.488 3658.278 14.68 10800

pioro40 40 45 3.47 3 4398.286 3777.991 14.10 10800

pioro40 40 50 3.50 11 4466.091 3804.168 14.82 10800

germany50 50 6 3.67 1 16.724 16.724 0.00 3.65

germany50 50 10 3.68 1 20.643 20.643 0.00 30.26

germany50 50 14 3.61 11 28.765 28.477 1.00 382.37

germany50 50 15 3.50 0 28.958 28.958 0.00 213.52

germany50 50 16 3.60 0 30.747 30.747 0.00 794.19

germany50 50 18 3.64 11 31.276 31.222 0.17 1200.15

germany50 50 20 3.57 45 33.576 33.459 0.35 3234.87

germany50 50 25 3.75 101 36.03 34.247 4.95 10800

germany50 50 30 3.60 49 42.131 36.736 12.81 10800

germany50 50 35 3.56 21 45.872 42.302 7.78 10800

germany50 50 40 3.60 17 51.256 44.549 13.09 10800

germany50 50 45 3.54 7 48.105 44.918 6.63 10800

zib54 54 6 3.43 1 634.364 634.364 0.00 2.13

zib54 54 8 3.47 1 1392.408 1392.408 0.00 15.93

zib54 54 10 3.56 1 1886.05 1886.05 0.00 20.13

zib54 54 12 3.61 1 1895.839 1895.839 0.00 24.68

zib54 54 14 4.00 1 2063.327 2063.327 0.00 40.94

zib54 54 15 3.60 1 2127.207 2127.207 0.00 48.62

zib54 54 16 3.52 1 2237.833 2237.833 0.00 98.1

zib54 54 18 3.50 39 2407.716 2395.114 0.52 642.33

zib54 54 20 3.50 483 2495.751 2453.184 1.71 9409.76

zib54 54 25 3.60 665 2907.574 2821.139 2.97 10800

zib54 54 30 3.62 65 3319.497 2931.859 11.68 10800

zib54 54 35 3.4 11 3696.209 3187.12 13.77 10800

zib54 54 40 3.62 3 3851.323 3271.347 15.06 10800

zib54 54 45 3.58 3 3711.031 3324.196 10.42 10800

zib54 54 50 3.50 27 49.659 46.219 6.93 10800

Table 7.4: Extended Formulation results (3)

Conclusion

In this thesis, we have studied a survivability problem in the multilayer IP-over-WDM

networks. The problem, called the Multilayer Survivable Optical Network Design prob-

lem (MSOND problem), consists in determining a survivable topology for the optical

WDM layer networks given a secure topology for the logical IP layer.

First, we have considered the Single Commodity Multilayer Survivable Optical Net-

work Design problem (SC-MSOND problem), that is the MSOND problem with only

one demand. We have shown that the problem in this case is closely related to the

Steiner Travelling Salesman Problem, and is equivalent to the well known k-Vertex

Disjoint Paths Problem (k-VDPP). We have then investigated the complexity of the

SC-MSOND problem and proved that it is NP-hard when the number of terminals as

well as that of Steiner nodes are part of the input. As a consequence, we have obtained

that the MSOND problem is NP-hard except for some special cases.

Afterwards, through the thesis, we have studied four integer programming formula-

tions for the MSOND problem. First, we have presented a cut formulation. We have

studied the associated polytope, introduced new classes of valid inequalities and given

necessary and sufficient conditions under which these inequalities define facets for the

polytope. We have also devised separation routines for some of these inequalities. Using

these results, we have devised a Branch-and-Cut algorithm. We have then presented a

substantial computational study using random and realistic instances. The experimen-

tal results show the efficiency of the inequalities and the separation algorithms used in

the Branch-and-cut algorithm.

After that, we have discussed a path formulation for the problem. We have shown

that the linear relaxation of this formulation is tighter than the one of the cut formula-

tion. We have also shown that the pricing problem reduces to a Shortest Path Problem

and can be solved in polynomial time. A suitable branching rule was also discussed and

a primal heuristic was then proposed to enhance the resolution of the problem. Using

this, we have devised a Branch-and-Price algorithm. The experimental results show

218 Conclusion

that this algorithm performs very well for the tested instances, especially the realistic

ones.

Furthermore, we have discussed two further integer linear programming formulations.

The first one uses only the design variables. We prove that this formulation is valid

when all the demands have exactly 3 terminals. In the case of 4 terminals and more,

we have given some insight on how it is difficult to model the sections’ disjunction

requirements using only the design variables. The second one is an extended formula-

tion. This formulation considers every demand of the MSOND problem as the union of

levels. Each level is associated with a section of the demand, and constitutes a demand

to be routed as a flow problem. The experimental results show that this formulation

gives a tighter linear relaxation for the MSOND problem and that new classes of valid

inequalities, involving several demands at a time, are needed to cut fractional solutions.

Now, some questions related to this work deserve to be considered.

From an algorithmic point of view, it would be interesting to improve the separation

procedures introduced in this work. One may also investigate the separation problems

associated with the TSP-related valid inequalities, i.e., the generalized disjunction in-

equalities and the Steiner comb inequalities.

From a polyhedral point of view, it would be interesting to better exploit the strong

relationship between the MSOND problem and the Steiner TSP. In fact, as the polytope

associated with the latter has been completely described for series-parallel graphs [12],

one can expect that such a result remains valid also for the MSOND problem. Moreover,

thanks to the equivalence with the k-VDPP, an interesting perspective of the current

work is to propose an integer linear programming formulation for the k-VDPP and

k-EDPP (k-Edge Disjoint Paths Problem). In fact, in spite of being widely studied in

terms of complexity and approximation, to the best of our knowledge, these interesting

problems have never been studied from a polyhedral point of view. Hence, finding a

valid natural formulation for the MSOND problem could be, in this context, exploited

to model both the k-VDPP and the k-EDPP and lead a polyhedral investigation on

the associated polytopes.

From a practical point of view, many interesting extensions can be considered for

the problem. First, it would be interesting to consider the dimensioning of equipments

and capacities on the network’s nodes and links, respectively. Also, as our problem

concerns IP-over-WDM networks, additional technical constraints, dealing with the

multilayer aspect, may be considered in further versions of the problem. Moreover,

other engineering requirements, related mainly to the quality of service (QoS) and to a

better usage of the networks’ resources could be interesting to consider in future works.

Bibliography

[1] http://www.informatik.uni-koeln.de/abacus/.

[2] http://www.ilog.com/products/cplex/.

[3] http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.

[4] http://www.tageo.com/index.htm.

[5] http://sndlib.zib.de/home.action.

[6] C. Alves and J. M. Valério de Carvalho. A stabilized branch-and-price-and-cut

algorithm for the multiple length cutting stock problem. Computers & Operations

Research, 35(4):1315–1328, 2008.

[7] V. Alwayn. Optical network design and implementation. Cisco Systems, 2004.

[8] D. L. Applegate, R. E. Bixby, V. Chvatal, andW. J. Cook. The traveling salesman

problem: a computational study. Princeton University Press, 2007.

[9] N. Ascheuer, M. Jnger, and G. Reinelt. A branch & cut algorithm for the asym-

metric traveling salesman problem with precedence constraints. Computational

Optimization and Applications, 17(1):61–84, 2000.

[10] M. Bäıou, F. Barahona, and A. R. Mahjoub. Separation of partition inequalities.

Mathematics of Operations Research, 25(2):243–254, 2000.

[11] M. Bäıou, F. Barahona, and A. R. Mahjoub. Progress in combinatorial optimiza-

tion. In A. R. Mahjoub, editor, Partition inequalities: Separation, Extensions,

and Network Design, pages 1–39. ISTE, Wiley, 2011.

[12] M. Bäıou and A. R. Mahjoub. Steiner 2-edge connected subgraph polytopes on

series-parallel graphs. SIAM Journal on Discrete Mathematics, 10(3):505–514,

1997.

220 BIBLIOGRAPHY

[13] C.P. Bajaj. Some constrained shortest-route problems. Mathematical Methods of

Operations Research, 15(1):287–301, 1971.

[14] E. Balas, M. Fischetti, andW. R. Pulleyblank. The precedence-constrained asym-

metric traveling salesman polytope. Mathematical Programming, 68(1-3):241–

265, 1995.

[15] F. Barahona and A. R. Mahjoub. On two-connected subgraph polytopes. Discrete

Mathematics, 147(1-3):19–34, 1995.

[16] C. Barnhart, C. A. Hane, E. L. Johnson, and G. Sigismondi. A column generation

and partitioning approach for multi-commodity flow problems. Telecommunica-

tion Systems, 3(3):239–258, 1994.

[17] C. Barnhart, C. A. Hane, and P. H. Vance. Using Branch-and-Price-and-Cut

to solve origin-destination integer multicommodity Flow problem. Operations

Research, 48(2):318–326, 2000.

[18] C. Barnhart, E. L. Johnson, G. L. Nemhauser, G. L. Savelsberg, and P. H.

Vance. Branch-and-price: Column generation for solving huge integer programs.

Operations Research, 46(3):316–329, 1998.

[19] R. Bellman. On a routing problem. Technical report, DTIC Document, 1956.

[20] P. Belotti, A. Capone, G. Carello, and F. Malucelli. Multi-layer MPLS network

design: The impact of statistical multiplexing. Computer Networks, 52(6):1291–

1307, 2008.

[21] W. Ben-ameur, A. R. Mahjoub, and J. Neto. Paradigms of combinatorial opti-

mization. In V. Th. Paschos, editor, The Maximum Cut Problem, pages 131–164.

ISTE-WILEY, 2010.

[22] F. Bendali, I. Diarrassouba, A.R. Mahjoub, M. Didi Biha, and J. Mailfert. A

branch-and-cut algorithm for the k-edge connected subgraph problem. Networks,

55(1):13–32, 2010.

[23] S. Borne. Sécurisation et dimensionnement de réseaux multicouches : modèles

et polyèdres. PhD thesis, Université Blaise Pascal-Clermont-Ferrand II, 2006.

[24] S. Chopra. On the spanning tree polyhedron. Operations Research Letters,

8(1):25 – 29, 1989.

[25] S. Chopra. The k-edge connected spanning subgraph polyhedron. SIAM Journal

on Discrete Mathematics, 7(2):245–259, 1994.

BIBLIOGRAPHY 221

[26] S. Chopra and M. R. Rao. The steiner tree problem II: Properties and classes of

facet. Mathematical Programming, 64(1-3):231–246, 1994.

[27] S. Chopra and M.R. Rao. The steiner tree problem I: Formulations, compositions

and extension of facets. Mathematical Programming, 64(1-3):209–229, 1994.

[28] V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems.

Discrete Mathematics, 4(4):305–337, 1973.

[29] M. Conforti, G. Cornuéjols, and G. Zambelli. Extended formulations in combi-

natorial optimization. 4OR, 8(1):1–48, 2010.

[30] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of

the third annual ACM symposium on Theory of computing, pages 151–158. ACM,

1971.

[31] G. Cornuéjols, J. Fonlupt, and D. Naddef. The traveling salesman problem on a

graph and some related integer polyhedra. Mathematical Programming, 33(1):1–

27, 1985.

[32] F. R. B. Cruz, G. R. Mateus, and J. M. Smith. A branch-and-bound algorithm

to solve a multi-level network optimization problem. Journal of Mathematical

Modelling and Algorithms, 2(1):37–56, 2003.

[33] W. H. Cunningham. On submodular function minimization. Combinatorica,

5(3):185–192, 1985.

[34] G. Dahl, A. Martin, and M. Stoer. Routing through virtual paths in layered

telecommunication networks. Operations Research, 47(5):693–702, 1999.

[35] G. Dahl and M. Stoer. A Cutting Plane Algorithm for Multicommodity Surviv-

able Network Design Problems. INFORMS Journal on Computing, 10(1):1–11,

1998.

[36] G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Oper-

ations research, 8(1):101–111, 1960.

[37] C. De Verdière and A. Schrijver. Shortest vertex-disjoint two face paths in planar

graphs. in STACS, pages 181–192, 2008.

[38] G. Desaulniers, J. Desrosiers, and M. M. Solomon. Column generation, volume 5.

Springer-Verlag New York Incorporated, 2005.

222 BIBLIOGRAPHY

[39] H. Diarrassouba, I.and Kutucu and A. R. Mahjoub. Two node-disjoint hop-

constrained survivable network design and polyhedra. Technical report, Cahier

de Recherche LAMSADE 332, France, 2013.

[40] M. Didi Biha and A. R. Mahjoub. k-edge connected polyhedra on series-parallel

graphs. Operations Research Letters, 19(2):71–78, 1996.

[41] E. W. Dijkstra. A note on two problems in connection with graphs. Numerische

Mathematik, 1:269–271, 1959.

[42] S.E. Dreyfus. An appraisal of some shortest-path algorithms. Operations Re-

search, 17(3):395–412, 1969.

[43] I. Dumitrescu, S. Ropke, J.F. Cordeau, and G. Laporte. The traveling sales-

man problem with pickup and delivery: polyhedral results and a branch-and-cut

algorithm. Mathematical Programming, 121(2):269–305, 2010.

[44] J. Edmonds. Covers and packings in a family of sets. Bulletin of the American

Mathematical Society, 68(5):494–499, 1962.

[45] J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Journal of

Research of the National Bureau of Standards (B), 69:125–130, 1965.

[46] T. Eilam-Tzoreff. The disjoint shortest paths problem. Discrete Applied Mathe-

matics, 85(2):113–138, 1998.

[47] D. Feillet. A tutorial on column generation and branch-and-price for vehicle

routing problems. 4OR: Quartery Journal of Operational Research, 8(4):407–

424, 2010.

[48] B. Feng, A-G. Karasen, P. T. Huth, and B. Slagsvold. State-of-the-art of IP

routing. Telektronikk, 97(2/3):130–144, 2001.

[49] L. Fleischer. Recent progress in submodular function minimization. Optima 64.

Mathematical Programming Society Newletter, 2000.

[50] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian

Journal of Mathematics, 8(3):399–404, 1956.

[51] S. Fortune, J. E. Hopcroft, and J. Wyllie. The directed subgraph homeomorphism

problem. Theoretical Computer Science, 10(2):111–121, 1980.

[52] B. Fortz, T. McCormick, A. R. Mahjoub, and P. Pesneau. Two-edge connected

subgraphs with bounded rings: Polyhedral results and Branch-and-Cut. Mathe-

matical Programming, 105(1):85–111, 2006.

BIBLIOGRAPHY 223

[53] B. Fortz and M. Poss. An improved benders decomposition applied to a multi-

layer network design problem. Operations Research Lettrs, 37(5):359–364, 2009.

[54] András Frank. Packing paths, circuits and cuts: a survey. Forschungsinst. für

Diskrete Mathematik, 1988.

[55] S. Fujishige. Submodular functions and optimization, volume 58. Elsevier Science,

2005.

[56] M. R. Garey and D. S. Johnson. Computers and intractability, volume 174.

freeman New York, 1979.

[57] N. Ghani, S. Dixit, and T. Wang. On IP-over-WDM integration. Communications

Magazine, IEEE, 38(3):72–84, 2000.

[58] P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-

stock problem. Operations research, 9(6):849–859, 1961.

[59] P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting

stock problem-part II. Operations Research, 11(6):863–888, 1963.

[60] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem.

Journal of the Association for Computing Machinery, 35(4):921–940, 1988.

[61] R. E. Gomory and T. C. Hu. Multi-terminal network flows. Journal of the Society

for Industrial and Applied Mathematics, 9(4):551–570, 1961.

[62] L. Gouveia, P. Patŕıcio, and A. de Sousa. Hop-constrained node survivable net-

work design: An application to MPLS over WDM. Networks and Spatial Eco-

nomics, 8(1):3–21, 2008.

[63] L. Gouveia, P. Patŕıcio, A. de Sousa, and R. Valadas. MPLS over WDM network

design with packet level QoS constraints based on ILP models. In INFOCOM,

2003.

[64] L. Gouveia and P. Pesneau. On extended formulations for the precedence con-

strained asymmetric traveling salesman problem. Networks, 48(2):77–89, 2006.

[65] M. Grötschel. On the symmetric travelling salesman problem: solution of a

120-city problem. Mathematical Programming Study, 12:61–77, 1980.

[66] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its conse-

quences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

224 BIBLIOGRAPHY

[67] M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combina-

torial optimization. Berlin [u.a]: Springer4060 XII, 362 S, 1988.

[68] M. Grötschel and C. L. Monma. Integer polyhedra arising from certain net-

works design problems with connectivity constraints. SIAM Journal of Discrete

Mathematics, 3(4):502–523, 1990.

[69] M. Grötschel, C. L. Monma, and M. Stoer. Polyhedral approaches to network

survivability. In F. Hwang F. Roberts and C. Monma, editors, Reliability of Com-

puter and Communication Networks, volume 5 of Series Discrete Mathematics

and Computer Science, pages 121–141. AMS/ACM, 1991.

[70] M. Grötschel, C. L. Monma, and M. Stoer. Facets for polyhedra arising in the

design of communication with low-connectivity constraints. SIAM Journal on

Optimisation, 2(3):474–504, 1992.

[71] M. Grötschel and M. W. Padberg. On the symmetric travelling salesman problem

i: inequalities. Mathematical Programming, 16(1):265–280, 1979.

[72] Q.P. Gu and S. Peng. Algorithms for node disjoint paths in incomplete star

netwoks. In Proceedings of the 1994 International Conference on Parallel and

Distributed System, pages 296–303, 1994.

[73] D. Gusfield. Very simple algorithms and programs for all pairs network flow

analysis. Technical report, Computer Science Division, University of California,

Davis, 1987.

[74] D. Gusfield. Very simple methods for all pairs network flow analysis. SIAM

Journal of Computing 19, 19(1):143–155, 1990.

[75] D. Huygens, M. Labbé, A. R. Mahjoub, and P. Pesneau. The two-edge connected

Hop-constrained network design problem: Valid inequalities and branch-and-cut.

Networks, 40(1):116–133, 2007.

[76] D. Huygens, A. Mahjoub, and P. Pesneau. Two edge-disjoint hop-constrained

paths and polyhedra. SIAM Journal on Discrete Mathematics, 18(2):287–312,

2004.

[77] T. Ibaraki. Algorithms for obtaining shortest paths visiting specified nodes.

SIAM, 15(2):309–317, 1973.

[78] S. Iwata. Submodular function minimization. Mathematical Programming,

112(1):45–64, 2008.

BIBLIOGRAPHY 225

[79] S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial

algorithm for minimizing submodular functions. Journal of the ACM (JACM),

48(4):761–777, 2001.

[80] S. Iwata and J. B. Orlin. A simple combinatorial algorithm for submodular func-

tion minimization. In Proceedings of the twentieth Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, pages 1230–1237. Society for Industrial and Applied

Mathematics, 2009.

[81] T. Jensen. Internet protocol and transport protocols. Telektronikk, 97(2/3):20–

38, 2001.

[82] R. Kalaba. On some communication network problems. Technical report, DTIC

Document, 1959.

[83] R. M. Karp. Reducibility among combinatorial problems. Springer, 1972.

[84] R. M. Karp. On the computational complexity of combinatorial problems. Net-

works, 5:45–68, 1975.

[85] K. Kawarabayashi, Y. Kobayashi, and B. Reed. The disjoint paths problem in

quadratic time. Journal of Combinatorial Theory, Series B, 102(2):424 – 435,

2012.

[86] H. Kerivin and A. R. Mahjoub. Design of survivable networks: A survey. Net-

works, 46(1):1–21, 2005.

[87] A. Knippel and B. Lardeux. The multi-layered network design problem. European

Journal of Operational Research, 183(1):87–99, 2007.

[88] Y. Kobayashi and C. Sommer. On shortest disjoint paths in planar graphs.

Discrete Optimization, 7(4):234–245, 2010.

[89] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling

salesman problem. Proceedings of the American Mathematical Society, 7(1):48–

50, 1956.

[90] G. Laporte, H. Mercure, and Y. Nobert. Optimal tour planning with specified

nodes. RAIRO, Recherche Opérationnelle, 18(3):203–210, 1984.

[91] A. N. Letchford, S. D. Nasiriy, and D. O. Theisz. Compact formulations of the

steiner traveling salesman problem and related problems. Online Draft, March

2012.

226 BIBLIOGRAPHY

[92] C. L. Li, T. McCormick, and D. Simchi-Levi. The complexity of finding two

disjoint paths with min-max objective function. Discrete Applied Mathematics,

26(1):105–115, 1990.

[93] K. H. Liu. IP Over WDM. Wiley, 2003.

[94] M. E Lübbecke and J. Desrosiers. Selected topics in column generation. Opera-

tions Research, 53(6):1007–1023, 2005.

[95] A. R. Mahjoub. Two edge connected spanning subgraphs and polyhedra. Math-

ematical Programming, 64(1-3):199–208, 1994.

[96] A. R. Mahjoub. On perfectly two-edge connected graphs. Discrete Mathematics,

170(1-3):153–172, 1997.

[97] A. R. Mahjoub. Polyhedral approaches. In Concepts of Combinatorial Optimiza-

tion, Volume 1, pages 261–324. Wiley Online Library, 2010.

[98] A. R. Mahjoub and C. Nocq. On the linear relaxation of the 2-node connected

subgraph polytope. Discrete Applied Mathematics, 95(1-3):389–416, 1999.

[99] A. R. Mahjoub and P. Pesneau. On the steiner 2-edge connected subgraph poly-

tope. RAIRO - Operations Research, 42(3):259–283, 2008.

[100] E. Mannie. Generalized multi-protocol label switching (GMPLS) architecture.

Interface, 501:19, 2004.

[101] S. T. McCormick. Submodular function minimization. In The Handbook on

Discrete Optimization, Elsevier, K; Aardal, G; Nemhauser, and R. Weismantel,

eds., 321-391. 2008.

[102] K. Menger. Zur allgemeinen kurventheorie. Fundamanta Mathematicae, 10(1):96–

115, 1927.

[103] C. St. J. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. Journal

of the London Mathematical Society, s1-36(1):445–450, 1961.

[104] J. B. Orlin. A faster strongly polynomial time algorithm for submodular function

minimization. Mathematical Programming, 118(2):237–251, 2009.

[105] S. Orlowski and M. Pióro. Complexity of column generation in network design

with path-based survivability mechanisms. Networks, 59(1):132–147, 2012.

BIBLIOGRAPHY 227

[106] S. Orlowski, C. Raack, A. M. C. A. Koster, G. Baier, T. Engel, and P. Be-

lotti. Branch-and-cut techniques for solving realistic two-layer network design

problems. In Arie Koster and Xavier Muoz, editors, Graphs and Algorithms in

Communication Networks, Texts in Theoretical Computer Science. An EATCS

Series, pages 95–118. Springer Berlin Heidelberg, 2010.

[107] M. W. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution

of large-scale symmetric traveling salesman problems. SIAM Review 33, pages

60–100, 1991.

[108] IETF. 1981. J. Postel. Internet Protocol. DARPA Internet Program Protocol

Specification, (RFC791).

[109] IETF. 1981. J. Postel. Transmission Control Protocol. DARPA Internet Program

Protocol Specification, (RFC793).

[110] R. C. Prim. Shortest connection networks and some generalization. Bell System

Technical Journal, 36:1389–1401, 1957.

[111] S. Raghavan and D. Stanojevic. Branch and price for wdm optical networks with

no bifurcation of flow. INFORMS Journal on Computing, 23(1):56–74, 2011.

[112] S. Ramamurthy and B. Mukherjee. Survivable WDM mesh networks. II. restora-

tion. In Communications, 1999. ICC’99. 1999 IEEE International Conference

on, volume 3, pages 2023–2030. IEEE, 1999.

[113] S. Ramamurthy, L. Sahasrabuddhe, and B. Mukherjee. Survivable WDM mesh

networks. Journal of Lightwave Technology, 21(4):870, 2003.

[114] N. Robertson and P. D. Seymour. Graph minors. XIII. the disjoint paths problem.

Journal of Combinatorial Theory, Series B, 63(1):65–110, 1995.

[115] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label switching archi-

tecture. 2001. Network Working Group. RFC 3031.

[116] K.S. Ruland and E.Y. Rodin. The pickup and delivery problem: Faces and

branch-and-cut algorithm. Computers & amp; Mathematics with Applications,

33(12):1 – 13, 1997.

[117] D.M. Ryan and B.A. Foster. An integer programming approach to scheduling.

In A. Wren, editor, Computer Scheduling of Public Transport Urban Passenger

Vehicle and Crew Scheduling. North-Holland, Amsterdam, 1981.

228 BIBLIOGRAPHY

[118] J.P. Saksena and S. Kumar. The routing problem with ’k’ specified nodes. Op-

erations Research, 14(5):909–913, 1966.

[119] J. J. Salazar-González. The steiner cycle polytope. European Journal of Opera-

tional Research, 147(3):671–679, 2003.

[120] S. Salsano, F. Ricciato, M. Listanti, and A. Belmonte. Off-line configuration of

a MPLS over WDM network under time-varying offered traffic. In INFOCOM,

2002.

[121] A. Schrijver. Theory of linear and integer programming. Wiley, 1998.

[122] A. Schrijver. A combinatorial algorithm minimizing submodular functions in

strongly polynomial time. Journal of Combinatorial Theory, Series B, 80(2):346–

355, 2000.

[123] A. Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24.

Springer Verlag, 2003.

[124] S. Sengupta, V. Kumar, and D. Saha. Switched optical backbone for cost-effective

scalable core ip networks. Communications Magazine, IEEE, 41(6):60–70, 2003.

[125] M. Steinová. Approximability of the minimum steiner cycle problem. Computing

And Informatics, 29(6):1349–1357, 2010.

[126] M. Stoer. Design of survivable networks. Lectures Notes in Mathematics 1531.

Springer-Verlag, 1992.

[127] T. Tholey. Improved algorithms for the 2-vertex disjoint paths problem. M.

Nielsen et al. (Eds.): SOFSEM, LNCS 5404, pages 546–557, 2009.

[128] E. Uchoa. Progress in combinatorial optimization. In A. R. Mahjoub, editor,

Cuts over Extended Formulations by Flow Discretization, pages 255–279. ISTE,

Wiley, 2011.

[129] P. H. Vance, C. Barnhart, E. L. Johnson, and G. L. Nemhauser. Airline crew

scheduling: A new formulation and decomposition algorithm. Operations Re-

search, 45(2):188–200, 1997.

[130] F. Vanderbeck. Decomposition and column generation for integer programming.

PhD thesis, Université Catholique de Louvain, Belgium, 1994.

[131] F. Vanderbeck. On dantzig-wolfe decomposition in integer programming and

ways to perform branching in a branch-and-price algorithm. Operations Research,

48(1):111–128, 2000.

BIBLIOGRAPHY 229

[132] F. Vanderbeck. Implementing mixed integer column generation. In Guy De-

saulniers, Jacques Desrosiers, and Marius M. Solomon, editors, Column Genera-

tion, pages 331–358. Springer US, 2005.

[133] T. Volgenant and R. Jonker. On some generalizations of the traveling-salesman

problem. Journal of Operational Research Society, 38(11):1073–1079, 1987.

[134] J. Y. Wei. Advances in the management and control of optical internet. Selected

Areas in Communications, IEEE Journal on, 20(4):768–785, 2002.

[135] P. Winter. Generalized Steiner problem in series-parallel networks. Journal of

Algorithms, 7(4):549–566, 1986.

[136] P. Zhang and W. Zhao. On the complexity and approximation of the min-sum

and min-max disjoint paths problems. Combinatorics, Algorithms, Probabilistic

and Experimental Methodologies. LNCS 4614, pages 70–81, 2007.

BIBLIOGRAPHY 231

	Table of Contents
	Introduction
	Preliminary notions
	Combinatorial optimization
	Algorithmic and complexity theory
	Polyhedral approach and Branch-and-Cut
	Elements of the polyhedral theory
	Cutting plane method
	Branch-and-Cut algorithm

	Column generation and Branch-and-Price
	Column generation method
	Branch-and-Price algorithm
	Primal heuristics

	Extended Formulations
	Graph theory: definitions and notations

	Multilayer telecommunication networks
	Telecommunication networks: toward a multilayer structure
	Evolution of networks' architecture
	The IP layer
	The WDM layer
	Interactions between the IP and WDM layers

	Survivability concepts in multilayer networks
	Restoration
	Protection
	Survivability in multilayer networks

	Multilayer network design and survivability
	The general survivable network design problem
	Multilayer survivable network design

	MSOND Problem: context and complexity
	The MSOND problem
	Problem presentation
	Notations and examples
	Sections' disjunction

	Theoretical context
	Shortest Path Problem with Specified Nodes
	Travelling Salesman Problem and its variants
	The k-Vertex Disjoint Paths Problem

	Complexity results
	Single commodity MSOND problem
	Multi-commodity MSOND problem
	Summary table

	Concluding remarks

	Cut formulation and polyhedra
	Cut formulation
	Associated polytope
	Dimension
	Facial investigation

	Valid inequalities and facets
	Steiner cut inequalities
	Steiner non-successive terminals inequalities
	Steiner F-partition inequalities
	Generalized Steiner partition inequalities
	Generalized disjunction inequalities
	Steiner comb inequalities

	Concluding remarks

	Branch-and-Cut algorithm
	Branch-and-Cut algorithm
	Description
	Test of feasibility
	Separation of cut inequalities
	Separation of Steiner cut inequalities
	Separation of Steiner non-successive terminals inequalities
	Separation of Steiner F-partition inequalities
	Implementation's features
	Branching strategy

	Computational study
	Computations' context
	Description of instances
	Experimental results
	A French instance

	Concluding remarks

	Path formulation and Branch-and-Price algorithm
	Path formulation
	Section formulation
	Dantzig-Wolf decomposition
	Path formulation

	Cut versus path formulation
	Relation between variables
	Relation between linear relaxations

	Branch-and-Price algorithm
	Initial solution
	Pricing algorithm
	Branching scheme
	Primal heuristic

	Computational results
	Concluding remarks

	Natural and Extended Formulations
	Natural formulation
	Natural formulation and difficulty
	Case of three terminals
	Case of four terminals and more

	Extended formulation
	The MSOND problem: a view in layers
	Extended compact formulation
	Experimental results
	Fractional solutions and valid inequalities

	Concluding remarks

	Conclusion
	Bibliography

