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Abstract 

 

 

  In this thesis, we study the validity of few nonlocal models of the dielectric permittivity 

in the calculation of the radiative heat transfer coefficient between two semi-infinite parallel 

dielectric planes separated by a vacuum gap of width d.  

In past theoretical studies, it has been shown that upon considering a local model of the 

dielectric permittivity, near field radiative heat transfer between two dielectric materials 

follows a 1/d
2
 law when d is of the order or less than few hundreds of nanometers. This 

nonphysical diverging increase has been the bottleneck of the local model. Overwhelming 

efforts have been deployed in order to come up with a new model in which the nonlocal 

effects of the dielectric permittivity are taken into account. To the best of our knowledge, no 

nonlocal correction to the near field radiative heat transfer has been addressed in the past in 

the case of dielectrics. In the case of metals however, an important and complete work has 

been performed using the Lindhard−Mermin nonlocal dielectric permittivity model. 

      Our work focuses on studying four different nonlocal models of the dielectric permittivity 

and on using them in the calculation of the radiative heat transfer coefficient between two 

solid semi-infinite parallel planes of 6H-SiC. For the case of doped semiconductors, we 

studied the Lindhard−Mermin nonlocal model of the dielectric permittivity to calculate the 

radiative heat transfer coefficient between two n-doped Si planes. We show that the radiative 

heat transfer coefficient saturates as the separation distance d tend to zero. The distance at 

which saturation starts to take place depends on key parameters involved in each model. 

 

 

 

 



Résumé 

  

 

        Dans ce mémoire de thèse, nous étudions la validité de quelques modèles non locaux de 

la permittivité diélectrique dans le calcul du coefficient de transfert de chaleur par 

rayonnement entre deux matériaux diélectriques, semi−infinies, plans et parallèles, et séparés 

par un espace vide de largeur d. 

      Dans les études théoriques antérieures, il a été montré que lorsque l'on considère un 

modèle local de la permittivité diélectrique, le transfert de chaleur par rayonnement en champ 

proche suit une loi 1/d² quand d devient de l'ordre ou inférieure à quelques centaines de 

nanomètres. Cette divergence non physique constitue la faille majeure du modèle local. 

Plusieurs efforts ont été fournis afin de développer un nouveau modèle de la permittivité 

diélectrique qui tient compte des effets nonlocaux. Aucune correction non locale pour le 

transfert de chaleur par rayonnement en champ proche n’a été abordée dans le passé dans le 

cas des diélectriques. Cependant dans le cas des métaux, un travail complet a été effectué en 

utilisant le modèle non local de Lindhard−Mermin de la permittivité diélectrique. 

      Nos travaux portent sur l'étude de quatre modèles différents de la permittivité diélectrique 

nonlocale. Nous exploitons ces modèles pour le calcul du coefficient de transfert de chaleur 

par rayonnement entre deux plans de 6H-SiC. Pour le cas des semi−conducteurs dopés, nous 

avons étudié le modèle non local de Lindhard−Mermin pour calculer le coefficient de transfert 

de chaleur par rayonnement entre deux plans de Si n−dopée. Nous montrons que le coefficient 

de transfert de chaleur par rayonnement sature quand d tend vers zéro. La distance du début 

de saturation dépend grandement des paramètres clés de chaque modèle. 
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Introduction 
 

 

      This thesis is devoted to the study of the influence of the nonlocal effects on the near-field 

radiative heat transfer. Conducting this study for a system consisting of two semi-infinite 

parallel solid dielectric planes, we present the consequences of accounting for the nonlocal 

effects in the dielectric permittivity model on the exchanged radiative heat flux. One of the 

major consequences is the saturation of the radiative heat transfer coefficient, which replaces 

the non-physical divergence obtained upon using a local model of the dielectric permittivity.  

        The originality of this work consists in three main points. The first point is suggesting 

four different nonlocal models of the dielectric permittivity for dielectrics, which take into 

consideration the spatial dispersion and the nonlocal effects. Throughout the past few 

decades, most of the theoretical studies of the radiative heat transfer between two objects 

involved local models of the dielectric permittivity and nonlocal effects were not included. 

Obtaining some results that could not be considered physical, such as the infinity diverging 

radiative heat transfer coefficient as the inter-planar distance decreases, the authors 

conducting these studies suggested that considering a nonlocal model of the dielectric 

permittivity could be the solution. As far as we know, the nonlocal models of the dielectric 

permittivity that were suggested after that were complicated as to be handled analytically and 

numerically. For this reason, the second point that constitutes the originality of our work is the 

simplicity of our suggested nonlocal models of the dielectric permittivity. We will show 

throughout the different aspects of our work the simple mathematical and analytical treatment 

of these models, as well as the clarity of the different physical notions portrayed in their 

expressions. The third point would definitely relate to the results; obtaining saturation of the 

radiative heat transfer coefficient as the inter-planar distance decreases between the dielectric 

planes constitutes one main original point. Our suggested nonlocal dielectric models lead to 

replacing the nonphysical divergence with a finite saturation, backed up with the analytical 

calculations, the numerical simulations, the physical interpretations and the supporting 

references.  

This work is detailed and presented in five chapters: 
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- Chapter 1 presents an introduction to the different aspects of our work. Starting with 

the description of the thermal energy and the radiative heat transfer, we demonstrate 

the characteristics of the far-field radiative heat transfer and the near-field radiative 

heat transfer, along with their physical differences. Showing the importance of the 

near-field radiative heat transfer in the different technological domains, and explaining 

the physical phenomena dominating this transfer, we highlight the physical bases 

needed to conduct our work. We then present the detailed near-field radiative heat 

transfer study for a system of two semi-infinite parallel 6H-SiC planes using a local 

model of the dielectric permittivity. We show how the radiative heat transfer diverges 

as the inter-planar distance decreases. 

- Chapter 2 is dedicated to studying the near-field radiative heat transfer for a system of 

two semi-infinite parallel metallic planes using a local model of the dielectric 

permittivity. We then proceed by repeating the complete work of Chapuis et al. to 

perform the same study as the previous section, using a nonlocal model of the 

dielectric permittivity.  

- Chapter 3 includes the detailed study of three of our suggested nonlocal models of the 

dielectric permittivity for dielectrics. Considering the same system as in the local 

study in chapter 1, we present each model along with the validity conditions and the 

related results. We also compare between the different results and features. We show 

that saturation of the radiative heat transfer coefficient is attained in the three models. 

- Chapter 4 presents the fourth suggested nonlocal model of the dielectric permittivity 

for dielectrics. It is based on the macroscopic theory of Halevi and Fuchs. This theory 

considers spatial dispersion and electromagnetic excitation at the surface of the 

dielectrics. We will show that the latter of these assumptions necessitates some 

additional boundary conditions. We will consider five different sets of these ABC and 

use them in the study of the near-field radiative heat transfer for the same 6H-SiC 

system. Saturation and other different interesting physical features are obtained, and 

consequently explained throughout the chapter. 

- Chapter 5 is devoted to studying the near-field radiative heat transfer for a system of 

two n-doped silicon planes. We start with preforming this study using a local model of 

the dielectric permittivity. The nonphysical divergence is obtained, and for this reason 

we repeat in the second section the same study using a nonlocal model of the dielectric 

permittivity. The model used is the same one considered in chapter 2 for the metallic 

planes case. We will show that the saturation of the radiative heat transfer coefficient 
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is obtained. Different physical features are presented and interpreted with respect to 

the variation of the doping concentration, and the average temperature of the system. 

The last part is dedicated to the conclusions and the future perspectives; followed by 

the appendices A, B, C, D and E demonstrating in details the necessary derivations 

mentioned throughout the report.  
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Chapter 1 

1. Introduction to Radiative Heat Transfer 
 

 

Introduction 

 

       Thermal radiation is a well-known physical phenomenon that was described since the 

beginning of the last century by Planck [1] and Einstein [2,3]. It is defined as the radiant 

energy emitted by a medium and that is due solely to the temperature of this medium, i.e. it is 

the temperature of the medium that governs the emission of thermal radiation. We refer by 

thermal radiation or radiative heat transfer (RHT) to the phenomenon describing the heat 

transfer due to the propagation of electromagnetic (EM) waves. Unlike the other two 

mechanisms of energy transfer, conduction and convection, RHT requires no intervening 

medium to propagate which makes it of great importance for many applications in different 

fields [4−6]. Very often, the RHT from cooler bodies can be neglected in comparison with 

convection and conduction; but heat transfer processes that occur at high temperature, or with 

conduction or convection suppressed by evacuated insulations (different kinds of insulations 

evacuated from gas), usually involve a significant fraction of radiation. RHT plays an 

important role in the transfer of heat in the furnaces and the combustion chambers; as well as 

in the energy emission of nuclear explosions.  In general, heat transfer considerations are 

important in almost all the domains of technology; heat transfer involves a great variety of 

physical phenomena and engineering systems [7]. 

        In the EM radiation spectrum, the thermal radiation at usual temperatures lies in the  

intermediate portion extending from 0.1 𝜇𝑚 to 100 𝜇𝑚 including a part of the ultraviolet 

(UV) range, all the visible range and all the infrared (IR) range; see Fig. 1.1 [4]. Thermal 

radiation exhibits the same wavelike properties as light or radio waves where each quantum of 

radiant energy has a wavelength “λ” and a frequency “ν” associated with it.  

       Any material of finite temperature emits and absorbs continuously heat radiation in all 

directions due to the molecular and atomic motions associated with its internal energy.  
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Figure 1.1: The electromagnetic spectrum [4]. 

 

The strength of the emission depends on the temperature and all real bodies emit and absorb 

heat less than a blackbody at the same temperature. The blackbody is considered as the 

standard against which the behavior of all real radiating materials is estimated and compared; 

and its properties are well-defined in theory. In general, it is defined as a surface or volume 

that absorbs all incident radiation at every wavelength and from any direction, and it is 

considered also as the best possible emitter of radiation, at every wavelength and in every 

direction. As a consequence, any real material will reflect some of the incident radiation and 

therefore it will absorb energy less than that absorbed by the ideal blackbody; similarly, a real 

body will emit energy less than emitted by the ideal blackbody [4−6]. 

       Since the end of the nineteenth century, scientists had tried for many years to predict the 

spectrum of the blackbody emission, starting from Wilhelm Wien 1896 [8] who used 

thermodynamic arguments along with some experimental data to propose a spectral 

distribution of the blackbody emissive power; a large part of this spectrum was accurately 

correct. Lord Rayleigh and Sir Jeans derived a spectral distribution of the blackbody emissive 

power based on the assumption that the equipartition theorem of energy is valid [7,9]; they 

expressed the energy density as the product of the number of standing waves, which were 

considered as oscillators, and the average energy of an oscillator. They found the average 

energy of an oscillator of temperature T to be independent of the frequency and equal to 𝑘𝐵𝑇, 

where 𝑘𝐵 = 1.380648 × 10−23𝐽. 𝐾−1 is Boltzmann constant. This Rayleigh−Jeans law 

agreed well with the experimental observations for small frequencies, but for large 
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frequencies, i.e. for the ultraviolet range, this law gave results that were very different from 

the experimental results. This error in the values of Rayleigh−Jeans law is known as the 

ultraviolet catastrophe. 

 In 1900, based on his work on quantum statistics, Planck [1] published the correct spectral 

emissive power spectrum of a blackbody where he assumed that a molecule can emit photons 

only at distinct energy levels. The spectral emissive power (in W/m².μm) is given by the 

following equation [1, 4−6]:  

𝐸λ,𝑏(, 𝑇) =
𝐶1

𝜆5[𝑒𝐶2 𝑇⁄ − 1]
               (1.1) 

 is the wavelength, T is the absolute temperature, 𝐶1 = 2𝜋ℎ𝑐2 = 3.742 × 108 𝑊. 𝜇𝑚4/𝑚2 

and 𝐶2 = ℎ𝑐 𝑘𝐵⁄ = 1.439 × 104𝜇𝑚. 𝐾 are the first and the second radiation constants, 

respectively. ℎ = 6.626069 × 10−34𝐽. 𝑠 is Planck’s constant and 𝑐 = 2.998 × 108𝑚. 𝑠−1 is 

the speed of light in vacuum. 

Wien’s displacement law [8] published in 1891 independently and well before Planck’s law 

allows calculating at any temperature T, the wavelength 𝑚𝑎𝑥 at which the emitted power of 

the blackbody is maximal. This law is given by the following equation [4,5,6,10,11]: 

𝑚𝑎𝑥 =
𝐶3

𝑇
             (1.2) 

 where 𝐶3 = 2898 𝜇𝑚. 𝐾 is the third radiation constant. In Fig. 1.2 we present the emissive 

power spectrum obtained from Planck’s equation Eq. (1) along with the locus of Wien’s 

equation Eq. [2], where we observe that the power increases and  𝑚𝑎𝑥 shifts to smaller 

values as the temperature increases [4]. 

      Followed by the work of Einstein [2,3] in 1907 and 1916 that generalized Plank’s law and 

gave clear definitions, the notions associated to thermal radiation were well presented and 

thus well-understood since then.   

     One of the typical studies of the RHT phenomenon is the study of the energy transfer 

exchanged between two bodies of different temperatures. When the bodies are separated by a 

vacuum gap of width d, the heat flux exchanged between them is only due to RHT. 

Classical RHT between two semi-infinite bodies does not depend on the distance between 

them, but on the optical properties of the bodies. More recently, it has been shown that the 

radiative heat flux (RHF) transferred between two bodies increases and reaches values of 

several orders of magnitude larger than the classical RHT as the gap distance decreases.  
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Figure 1.2: The spectral emissive blackbody power as given by Planck’s law [4]. The straight 

line connecting the peaks of the graphs corresponds to the locus of the wavelength given by 

Wien’s displacement law. 

 

This happens when the typical gap distance becomes much smaller than the thermal 

wavelength 𝑚𝑎𝑥; i.e. this typical wavelength separates the far-field range where the classical 

RHT is valid, from the near-field range where the wave effects come into play [12,13].          

     In the past years the importance of studying and evaluating the heat transfer in the near-

field has significantly increased due to particular technological challenges [14]. The recent 

development of micro and nanotechnologies posed new fundamental and technological 

problems as the dissipated power per unit volume in these devices is becoming increasingly 

important due to the reduced size and the increased performance of such systems. 

Nevertheless, the evacuation of this power is also increasingly difficult leading to undesired 

consequences as the heating of many electronic or optoelectronic components affects their 

performance and their life span [15]. The need to solve these problems or at least to limit their 

consequences had led to the importance of measuring and controlling the temperature and the 

radiated energy at micro and nano-scales. 

        We start by recalling the far-field radiative heat transfer (FFRHT) using the classical 

theory of heat radiation. For a system consisting of two bodies of temperatures 𝑇1and 𝑇2 

separated by a vacuum gap of width 𝑑 ≫ 𝑚𝑎𝑥, the heat radiation exchanged between them is 

due to the EM waves travelling through the vacuum gap. When the two bodies are considered 
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as perfect absorbers, i.e. when they act as blackbodies [1, 16], the RHT flux between them is 

maximal and by Stefan−Boltzmann law it is given as follows [17]: 

𝐽𝑏𝑏 = 𝜎(𝑇1
4 − 𝑇2

4)     (1.3) 

where 𝜎 = 𝜋2𝑘𝐵
4 60ћ3𝑐2⁄ = 5.67 × 10−8𝑊𝑚−2𝐾−4 is the Stefan−Boltzmann constant and 

ћ = 1.054571 × 10−34𝐽. 𝑠 is the reduced Planck constant (or Dirac constant). We notice from 

Eq. (1.3) that the RHT flux density is independent of the gap distance d between the bodies 

and it depends on the difference of their absolute temperatures each raised to the fourth 

power. For real opaque bodies the Stefan−Boltzmann law is modified and the RHT flux 

density is given as follows: 

𝐽 = 𝜎𝜖12(𝑇1
4 − 𝑇2

4)     (1.4) 

where  𝜖12 is effective emissivity that depends on the emissivities of the bodies 𝜖1and 𝜖2 and 

a corrective factor called the view factor 𝐹12. The emissivity of a body is defined as its ability 

to emit radiation compared to the ideal emission of a blackbody at the same temperature. This 

implies that for real bodies, the values acquired by 𝜀 are given by: 0 < 𝜖 < 1. For the special 

case where the opaque bodies are two semi-infinite parallel plates, Eq. (1.4) reduces to the 

following form:  

𝐽 = 𝜎
𝜖1𝜖2

1 − 𝜌1𝜌2

(𝑇1
4 − 𝑇2

4)     (1.5) 

where 𝜌 is the reflectivity of the body defined as the fraction of the incident radiative energy 

reflected by this body.   

     For the near−field radiative heat transfer (NFRHT), the classical theory does not apply as 

in this case the gap distance d considered is of the order of or smaller than Wien’s wavelength 

𝑚𝑎𝑥. It had been shown by many studies that the near-field radiation allows heat to 

propagate across a small vacuum gap at rates several orders of magnitude higher than that of 

the far-field blackbody radiation [12,13,17−23].  

      Cravalho et al. [12] and Polder and Van Hove [13] presented the pioneering work of 

studying the radiative heat transfer in the near-field by showing the RHF significant increase 

when the bodies are approached, until this flux reaches values of many orders higher than that 

between two blackbodies [1,24]. This increase in the NFRHF was interpreted to be due to 

different complex physical wave phenomena [9,13,18−21,24,25] taking place at small 
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distances. The phenomena playing the most important role are the interference effects in the 

waves between the two surfaces and the tunneling evanescent waves. 

      Evanescent waves are EM waves that dominate the RHT at small distances. They tunnel 

between two surfaces, and their contribution increases as the separation distance decreases, 

and they decay exponentially as the distance increases [12,13,21−26]. In general, the first 

recognition of the existence of evanescent electromagnetic waves was probably the analysis 

of the skin depth effect at metallic surfaces [17−31]. Years later, following the work of 

Cravalho et al. [12] and Polder and VanHove [13], a lot of theoretical and experimental 

research had been devoted to the study of NFRHT between bodies of different materials and 

different geometrical configurations as this heat transfer mechanism exhibits complex wave 

phenomena [12,13,21,24−28]. As it is shown in Fig. 1.3 [30], when two surfaces are 

approached to each other, some of the photons tunnel between the two mediums; new 

channels of transfer are open corresponding to modes of large wavevectors parallel to the 

surface by which heat transfer is enhanced. 

 
Figure 1.3: Evanescent waves decay exponentially away from the surface and play 

important role when two planes approach each other as they tunnel between the 

surfaces of the two planes and contribute effectively to the heat transfer at small 

separation distances [32]. 

 

        The science of the EM evanescent waves had drawn a lot of attention because of the 

different promising technological enhancements that could be achieved using the properties of 

these waves. As an example, some researchers at the Massachusetts Institute of Technology 
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(MIT) had proposed a plan for wireless power transfer based on the idea that evanescent wave 

coupling describes how electromagnetic energy can be sent from one device to another by the 

way of a decaying electromagnetic field. They were driven by their interest in using wireless 

technology to charge or power devices which led them to greater understanding of the 

principles of wireless evanescent coupling. They demonstrated a way to wirelessly send and 

receive power from a local transmitter to a receiver that is in the vicinity of the device, and in 

2007 they showed how a 60 Watt light bulb could be powered up from a distance of 2 meters. 

They used a technology termed “WiTricity” as an abbreviation of “wireless electricity” to 

describe this phenomenon of evanescent wave coupling at resonance [33]. 

The practical exploitations of the evanescent waves, their decaying characteristic and the 

exponential nature of their wavefunction were undeveloped for a long time until the 

emergence of local probe-based methods (Scanning Tunneling Microscopy (STM), Scanning 

Force Microscopy (SFM), and Near-field Scanning Optical Microscopy (NSOM/SNOM)) in 

the early 1980s with the beginning of the actual investigation of the near-field physics 

[34−37]. This was followed by many studies at subnanoscale resolution that were achieved 

due to the evanescent waves effects [38]. Almost two decades later, the research team of A. 

Zewail exploited the characteristics of the evanescent waves to invent a new type of imaging 

technique that combines the best qualities from electron microscopy and light microscopy; 

they called it photon−induced near−field electron microscopy (PINEM) [39].  Nevertheless, 

superluminal effects of evanescent waves have been revealed in photonic tunneling 

experiments in both the optical and the microwave domains [39−47]. 

On the other hand, and due to its different characteristics, NFRHT became crucial in the 

development of potential applications in numerous technologies such as solar cells and 

thermophotovoltaic sources [26,49−51], nanolithography [51,52] and sub-wavelength light 

sources [53]. 

A lot of theoretical studies were carried out for systems consisting of two semi-infinite 

plane-parallel solid surfaces. These studies aimed to calculate the NFRHT between the two 

planes using a local dielectric permittivity function, as the optical response of the material was 

considered local i.e. 𝜀 = 𝜀(𝜔), where 𝜔 is the angular frequency of the EM wave. These 

studies have shown different behaviors according to the type of the considered material.  

For dielectrics, the NFRHT follows a 1 𝑑2⁄  law starting at distances as large as few 

hundreds of nm [13,21,24,26]. 
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For metals, it was shown that the transfer seems to saturate at distances below the material 

skin depth and then diverges with a 1 𝑑2⁄  law at extremely small separation distance d below 

1 nm [28,54,55]. We will present in chapter 2 our study of the RHT between two semi-infinite 

parallel metallic planes where we demonstrate and discuss these results. 

Following these theoretical predictions, some experimental studies were carried out to 

study the RHT between different bodies as the separation distance decreases [55−59]. The 

obtained results confirmed the enhancement of the RHTF in the nanometer regime due to the 

tunneling of evanescent waves at the surfaces. Nevertheless, some of the experimental studies 

have roughly confirmed the 1 𝑑2⁄  law mostly at micrometric distances [58]. In the following 

sections (and chapters) we will present these studies, their results and their discussions in 

details. 

The 1 𝑑2⁄  diverging law as the separation distance d is reduced cannot be followed at 

extremely small distances as no heat transfer can become infinite. Moreover, the continuous 

behavior of matter does not exist at the atomic scale so that matter response inevitably 

changes for high spatial frequency. This leads to the need of a nonlocal description of the 

matter response as suggested by various authors [21,24,61]. In this case, the dielectric 

permittivity function will be not only frequency dependent but also wavevector dependent. 

This constitutes the main subject of this thesis, as we study the validity of few nonlocal 

models of the dielectric permittivity in the calculation of the radiative heat transfer coefficient 

(RHTC) between two semi-infinite parallel dielectric planes. For the case of two metallic 

planes, Chapuis et al. [54] have studied the Lindhard−Mermin nonlocal dielectric permittivity 

function model and showed that the NFRHT saturated at distances of the order of the 

Thomas−Fermi length and also suppressed the 1 𝑑2⁄  divergence that occurred at extremely 

small distances. In chapter 2 we present these results along with their detailed explanation. 

        In the following sections we will present in details the study of the RHT between two 

solid semi-infinite parallel planes. We will start by presenting the main ideas that allow 

treating the RHT in electromagnetism in sections 1.1 and 1.2: the Fluctuation-dissipation 

theorem, the thermodynamic equilibrium and the correlation equation of the fluctuating 

currents needed in the derivation of the RHTC equation. In section 1.3 we show our 

calculations of the RHTC between two 6H-type Silicon Carbide semi-infinite parallel planes 

as the distance between them approaches zero, using a local model of the dielectric 

permittivity. Section 1.4 will be devoted to the conclusions of this chapter. 
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1.1 Fluctuation-Dissipation Theorem  

 

In the far-field the emitted electromagnetic field is well described using radiometry theory 

that is based on the geometrical optics, while in the near-field this theory ceases to be valid as 

it does not take into consideration the evanescent waves that play an important role in the 

NFRHT. This leads to the necessity of deriving a formalism that describes well the EM field 

at small distances. Therefore, one has to use Maxwell equations to calculate the EM field 

emitted by a body of temperature T. This is the aim of the Fluctuational Electrodynamics 

formalism, first suggested by Rytov [21, 27,62]. 

 

The Fluctuational Electrodynamics states that a body of temperature 𝑇 > 0 𝐾 in local thermo-

dynamical equilibrium radiates thermal energy due to the fluctuations of random currents 

generated by the random thermal motion of the charges of the body. These charges are 

electrons in metals and ions in polar materials. The properties of these currents are given by 

the fluctuation-dissipation theorem (FDT) relating the currents correlation function to the 

medium radiative losses. These currents radiate an EM field related to the currents by the 

Green’s tensors of the system. This implies that knowing the properties of the random 

currents and the radiation of a volume element below the interface is essential to determine 

the statistical properties of the radiated field. Defining the density of the fluctuating current at 

any point in the medium and substituting it in Maxwell’s equations enable us to treat the 

thermal radiation in electromagnetism [21]. 

Formalism  

The overall current correlation function is a non-zero average and is given by the FDT. 

We consider a nonmagnetic material body described from an electromagnetic point of view 

by its dielectric constant 𝜀(𝜔). We assume that the dielectric permittivity is local, i.e. the 

polarization at a certain point of the medium is directly proportional to the electric field at this 

point , and does not directly depend on the field of other points.  Moreover, the body is 

assumed to be in local thermodynamic equilibrium, i.e. at any instant the temperature of any 

point of the material is T.  

Considering these assumptions as basic, we define the two current densities at points r and 

r’ situated in the medium by  𝑗(𝒓, 𝜔) and 𝑗(𝒓′, 𝜔′), oscillating at frequencies 𝜔 and 𝜔′ 

respectively, as shown in Fig.1.4.  
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Figure 1.4: A schematic diagram of the geometry of the system. 

 

 

 The FDT then defines the correlation equation of the currents as follows: 

〈𝑗𝑘(𝒓, 𝜔)𝑗𝑙
∗(𝒓′, 𝜔′)〉 =

𝜔𝜀0

𝜋
𝐼𝑚(𝜀(𝜔))Ѳ(𝜔, 𝑇)𝛿𝑘,𝑙𝛿(𝒓 − 𝒓′)𝛿(𝜔 − 𝜔′)    (1.6) 

where 〈… 〉 indicate an ensemble average. 𝑘, 𝑙 = 𝑥, 𝑦, 𝑧 correspond to the different spatial 

components (in Cartesian coordinates) of the currents. 𝜀0 = 8.85417 × 10−12 𝐹. 𝑚−1 is the 

dielectric permittivity of vacuum and 𝐼𝑚(𝜀(𝜔)) is the imaginary part of the material’s 

dielectric permittivity. 𝛿𝑘,𝑙 is Kronecker symbol and 𝛿 is Dirac delta function. Ѳ(𝜔, 𝑇) =

{(ћ𝜔 2⁄ ) + [ћ𝜔 (𝑒ћ𝜔 𝑘𝐵𝑇⁄ − 1)⁄ ]} is the mean energy of the harmonic oscillator of frequency 

𝜔 at temperature T and ћ𝜔 2⁄  represents the vacuum energy, called the zero-point energy. 

The latter term vanishes from the final results in the case of radiative energy transfer [21]. A 

simple interpretation would be that we suppose that the medium considered is the only source 

of fluctuating fields. However the fluctuations of vacuum exist in the presence and absence of 

the medium, and whether the temperature is zero or not. Therefore, we consider that at any 

instant, the zero-point energy emitted by a volume element is compensated by an absorbed 

flux coming from the rest of the space, leading to equilibrium [21].   

From Eq. (1.4) we deduce that the fluctuating currents are 𝛿-correlated in space (spatial 

locality of the dielectric constant) and the fluctuation amplitude is directly related to the losses 

in the system given by the term 𝐼𝑚(𝜀(𝜔)). Furthermore, understanding how the medium 

radiates EM waves into space is achieved when the dielectric permittivity of the medium is 

known. Propagation of waves from the sources (currents) to the observation point is given by 

the knowledge of the Green function depending on the geometry and the optical properties 

(𝜀(𝜔)). 
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The FDT is considered the starting point for the derivation of the RHTC exchanged 

between two bodies, as it will be presented in the following section. 

1.2 Radiative heat transfer coefficient  

 

In this section we will use the FDT to derive the equation of the RHTC exchanged 

between two semi-infinite parallel planes of temperatures T1 and T2 [13,17,18,21,23,63−65], 

see Fig. 1.5. 

The system considered is divided into three media subspaces: the first subspace corresponding 

to z < 0 is occupied by medium (1) whose properties are described by the dielectric 

permittivity 𝜀1 and similarly, the second subspace corresponding to z > d is occupied by 

medium (2) and described by the dielectric permittivity 𝜀2; subspace (3) corresponds to 0 < z 

< d and is occupied by vacuum described by the dielectric permittivity 𝜀3. At this stage of our 

study the nature of the media (metals, dielectrics …) does not affect the derivation and so it 

will not be specified. 

 
Figure 1.5: Two parallel semi-infinite material planes separated by a vacuum gap of width d. 

 
 

 In the most general sense, constitutive relations in a medium that relate bound charges to the 

electric field depend on the wave vector and the frequency so that for example 𝑫(𝒌, 𝜔) =

𝜀(𝒌, 𝜔)𝑬(𝒌, 𝜔), where 𝑫(𝒌, 𝜔) is the displacement vector and 𝑬(𝒌, 𝜔) is the electric field. 

When the EM field varies on a spatial scale larger than the microscopic characteristic lengths 

of the propagation medium, the medium is referred to as local so that the characteristic 

quantities of the medium are frequency-dependent only, i.e. 𝑫(𝒓, 𝜔) = 𝜀(𝒓, 𝜔)𝑬(𝒓, 𝜔). When 

this is not the case, the medium is said to be nonlocal, i.e. the optical properties depend on the 
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wavevector of the EM field [21,24]. In other words, we can say that in the case of nonlocality, 

the polarization at one point in the nonlocal medium depends not only on the electric field at 

that point, but also on the electric fields at the surrounding points. To illustrate this condition 

clearly, for the case of dielectrics for example, a so-called single-oscillator nonlocal model of 

the dielectric permittivity 𝜀(𝒌, 𝜔) [66] is used (this model is represented in details in chapter 

4) where the spatial dispersion, and eventually the nonlocality condition, is presented 

schematically in Fig. 1.6. We will discuss the nonlocality case in details in the following 

chapters. 

 
Figure 1.6: A schematic diagram of a dielectric medium when spatial dispersion is neglected 

(a) and when spatial dispersion is taken into consideration (b) [66]. 

1.2.1 Brief recall of the radiometric approach 

 

     This approach is based on two main concepts: the geometrical optics and the luminous ray 

nature of the radiation. The exchanged energy flux originates due to the multiple reflections of 

the radiation in vacuum at the interfaces of planes 1 and 2. Performing few simple algebraic 

steps we obtain finally the following expression for the exchanged RHF between the two 

planes separated by vacuum [21,67]: 

1,2 = ∫ cos 𝜃 𝑑

2𝜋

0

∫ 𝑑𝜔

∞

0

𝜖1𝜔
′ 𝜖2𝜔

′

1 − 𝜌1𝜔
′ 𝜌2𝜔

′ [𝐿𝜔
0 (𝑇1) − 𝐿𝜔

0 (𝑇2)]       (1.7) 

where  is the solid angle considered to study the radiation in a direction of angle 𝜃 with 

respect to the z axis. 𝜖1𝜔
′ and 𝜖2𝜔

′  are the directional monochromatic emissivities of media (1) 
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and (2), respectively. 𝐿𝜔
0 (𝑇) = ћ𝜔3 [4𝜋3𝑐2(𝑒ћ𝜔 𝑘𝐵𝑇⁄ − 1)]⁄  is the monochromatic specific 

intensity of radiation of  a blackbody of temperature 𝑇 as given by Planck’s law.  

      For the study of the radiation in the near field, this approach is not valid anymore. 

Regarding the concept, this approach does not take into account the wave nature of the 

radiation which leads to neglecting the interference phenomena in the studies.  Another 

important negative point of this approach is the total neglecting of the role of the tunneling 

evanescent waves between the two interfaces because tunneling is a consequence of the wave 

behavior of radiation. The role of evanescent waves becomes dominant in the small distance 

range, and neglecting their role in the near-field leads to huge error in the study of the RHT.  

      This imposed the importance of having a different approach taking into consideration the 

different phenomena appearing at small distances, in addition to the tunneling EM evanescent 

waves. The EM approach presented in the following section solves these problems and 

accounts for the different near-field properties.    

1.2.2 Electromagnetic approach 

 

The emitted radiative flux is given by the Poynting vector 

〈𝛱(𝒓, 𝜔)〉 = 4 ×
1

2
𝑅𝑒[〈𝑬(𝒓, 𝜔) × 𝑯∗(𝒓, 𝜔)〉] [21, 51,65] , where 𝑬(𝒓, 𝜔) and 𝑯(𝒓, 𝜔) are the 

electric field and magnetic field Eqs. (6) and (7), respectively [37,53]. The factor “4” comes 

from the fact that the signals considered here have positive frequencies only, so that the fields 

are analytic signals [21]. 

𝑬(𝑟, 𝜔) = 𝑖𝜔𝜇0 ∫ 𝑮⃡  𝐸(𝒓, 𝒓′, 𝜔) ∙ 𝒋𝑓 (𝒓′, 𝜔)𝑑3𝒓′    (1.8) 

 

𝑯(𝑟, 𝜔) = ∫ 𝑮⃡  𝐻(𝒓, 𝒓′, 𝜔) ∙ 𝒋𝑓 (𝒓′, 𝜔)𝑑3𝒓′     (1.9) 

r’ corresponds to the “source point” situated in the plane (2) and r is the observation point 

situated in plane (2). 𝑮⃡  𝐸(𝒓, 𝒓′, 𝜔) and 𝑮⃡  𝐻(𝒓, 𝒓′, 𝜔) are the Green tensors of the medium. 

The Green function equations are used to link the EM field at the point r to the current density 

at point r’. Their expressions along with the explanations are given in Appendix A.  

It follows that  

〈𝐸𝑥𝐻𝑦
∗〉 = ∬ 𝐺𝐸

12𝑥𝛼(𝒓, 𝒓′, 𝜔)𝐺𝐻∗
12𝑦𝛽(𝒓, 𝒓′′, 𝜔) 〈𝑗𝑓𝛼(𝒓′, 𝜔)𝑗𝑓𝛽

∗ (𝒓′′, 𝜔)〉𝑑3𝒓′𝑑3𝒓′′     (1.10) 
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where 〈𝑗𝑓𝛼(𝒓′, 𝜔)𝑗𝑓𝛽
∗ (𝒓′′, 𝜔)〉 is given by the FDT.  

Proceeding with the derivation we obtained the final form of the pointing vector Eq. (1.11) 

(the detailed derivation steps are given in Appendix A).  

〈𝜋𝑧(𝑑, 𝜔)〉 = 𝜋𝐿𝜔
0 (𝑇1) {∫

𝐾𝑑𝐾

𝜔2 𝑐2⁄

𝜔
𝑐

0

[
(1 − |𝑟31

𝑠 |2)(1 − |𝑟32
𝑠 |2)

|1 − 𝑟31
𝑠 𝑟32

𝑠 𝑒2𝑖𝛾3𝑑|2

+
(1 − |𝑟31

𝑝 |
2
) (1 − |𝑟32

𝑝 |
2
)

|1 − 𝑟31
𝑝 𝑟32

𝑝 𝑒2𝑖𝛾3𝑑|
2 ]         

+ ∫
𝐾𝑑𝐾

𝜔2 𝑐2⁄

∞

𝜔
𝑐

[
4 𝐼𝑚(𝑟31

𝑠 )𝐼𝑚(𝑟32
𝑠 )𝑒−2𝛾3

′′𝑑

|1 − 𝑟31
𝑠 𝑟32

𝑠 𝑒−2𝛾3
′′𝑑|

2

+
4 𝐼𝑚(𝑟31

𝑝 )𝐼𝑚(𝑟32
𝑝 )𝑒−2𝛾3

′′𝑑

|1 − 𝑟31
𝑝 𝑟32

𝑝 𝑒−2𝛾3
′′𝑑|

2 ]}           (1.11) 

𝑟3𝑚
𝑠  and 𝑟3𝑚

𝑝  
are the reflection factors for the EM waves of polarization α=s ,p incident from 

medium 3 and reflected on media m=1 and m=2, respectively. 𝐾 and 𝛾3 = √𝜔2 𝑐2⁄ − 𝐾2 are 

the wavevector components parallel and normal to the surface in vacuum, respectively. 𝛾3
′′ 

denotes the imaginary part of 𝛾3. 

When the temperature difference is small  1 2 1 1T T T  , the density of the radiative heat 

flux (DRHF) 𝜙 Eqs. (10) can be linearized and written as a RHTC ℎ𝑟𝑎𝑑 multiplied by the 

temperature difference [21, 67] 

 

{
 
 

 
 

𝜙(𝑇, 𝑑) = ℎ𝑟𝑎𝑑𝛿𝑇      

ℎ𝑟𝑎𝑑 = ∫ 𝑑𝜔 ℎ𝜔
𝑅 (𝑇, 𝑑)

∞

0

 ℎ𝜔
𝑅 (𝑇, 𝑑) = lim

𝑇2→𝑇1

〈𝛱(𝑑, 𝜔)〉 (𝑇1 − 𝑇2)⁄
}
 
 

 
 

    (1.12) 

 

 where  ℎ𝜔
𝑅 (𝑇, 𝑑) is the monochromatic RHTC. 

Proceeding with the derivation and considering 𝑘0
2 = 𝜔2 𝑐2⁄ , we obtain finally the expression 

of the RHTC Eqs. (1.13): 

 



18 
 

{
 
 
 
 

 
 
 
 

ℎ𝑟𝑎𝑑(𝑇, 𝑑) = ∑ ∫ 𝑑𝜔[ℎ𝑝𝑟𝑜𝑝
𝛼 (𝑇, 𝑑, 𝜔) + ℎ𝑒𝑣𝑎𝑛

𝛼 (𝑇, 𝑑, 𝜔)]

+∞

0𝛼=𝑆,𝑃

ℎ𝑝𝑟𝑜𝑝(𝑇, 𝑑, 𝜔) = ℎ0(𝑇, 𝜔) × ∫
𝐾𝑑𝐾

𝑘0
2

(1 − |𝑟31
𝛼 |2)(1 − |𝑟32

𝛼 |2)

|1 − 𝑟31
𝛼 𝑟32

𝛼 𝑒2𝑖𝛾3𝑑|2

𝑘0

0

ℎ𝑒𝑣𝑎𝑛(𝑇, 𝑑, 𝜔) = ℎ0(𝑇, 𝜔) × ∫
𝐾𝑑𝐾

𝑘0
2

4𝐼𝑚(𝑟31
𝛼 )𝐼𝑚(𝑟32

𝛼 )𝑒2𝑖𝛾3𝑑

|1 − 𝑟31
𝛼 𝑟32

𝛼 𝑒2𝑖𝛾3𝑑|2

+∞

𝑘0 }
 
 
 
 

 
 
 
 

  𝛼 = 𝑠 , 𝑝     (1.13) 

where ℎ0(𝑇, 𝜔) is the derivative of the black body specific intensity of radiation with respect 

to temperature (Planck's law) given by the following equation: 

ℎ0(𝑇, 𝜔) =
ћ𝜔3

4𝜋2𝑐2

ћ𝜔

𝑘𝐵𝑇2
[2 sinh (

ћ𝜔

2𝑘𝐵𝑇
)]

−2

   (1.14) 

Eqs. (1.13) show that the RHTC is the sum of the contributions of propagative (𝐾 < 𝑘0) and 

evanescent (𝐾 > 𝑘0) waves of s and p polarizations. The propagative waves have small 

wavevectors and dominate in the far field while the evanescent waves acquire large 

wavevectors and dominate in the near field and decay exponentially away from the surface.  

As we saw previously, these transmission coefficients can be identified with an emissivity 

[21]. It is worth mentioning here that the formula of the flux for the propagating EM waves 

and the classical expression for the radiative flux between two semi-infinite materials are 

similar, even though the denominator seems different. Upon considering a small range of the 

frequency, the exponential function 𝑒2𝑖𝛾3𝑑 varies with ω much faster than the Fresnel factors. 

Therefore, the integration over this range would lead to obtaining an average value of 

|1 − 𝑟31
𝛼 𝑟32

𝛼 𝑒2𝑖𝛾3𝑑|
2
 which is equal to 1 − |𝑟31

𝛼 |2|𝑟32
𝛼 |2 [23].Then, by identifying the 

reflectance with the squared modulus of the Fresnel reflection factor, it follows that the 

expression for the classical radiative transfer between media 1 and 2 Eq. (1.5) is equal to the 

contribution of the propagating waves to this transfer [21]. 

Another important feature shown by Eqs. (1.13) is their dependence on the separation distance 

d through an exponential term. This d dependence is one of the major differences between the 

RHF in the near field and the far field and this emphasizes the concept of different behaviors 

of the RHT in the near and the far fields. 

     The reflection factors are given by the general equations Eqs. (1.15) and they depend on 

the surface impedances 𝑍𝑚
𝑝 = 𝐸𝑥(0+) 𝐵𝑦(0+)⁄  and 𝑍𝑚

𝑠 = −𝐸𝑦(0+) 𝐵𝑥(0+)⁄  between media 3 

and m which are defined as the ratio of the parallel component of the electric field on the 

parallel component of the magnetic field Eqs. (1.16) [52,66]. 
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{
 
 

 
 𝑟3𝑚

𝑝
=

𝛾3 − 𝜀3 𝜔 𝑍𝑚
𝑝

𝛾3 + 𝜀3 𝜔 𝑍𝑚
𝑝

𝑟3𝑚
𝑆 =

𝑐2𝛾3 𝑍𝑚
𝑆 − 𝜔

𝑐2𝛾3 𝑍𝑚
𝑆 + 𝜔}

 
 

 
 

    (1.15)    

{
 
 

 
 

𝑍𝑚
𝑝 =

2𝑖

𝜋𝜔
∫

𝑑𝑞

𝑘2
[

𝑞2

𝜀𝑡(𝑘, 𝜔) − (𝑐𝑘 𝜔⁄ )2
+

𝐾2

𝜀𝑙(𝑘, 𝜔)
]

+∞

0

𝑍𝑚
𝑠 =

2𝑖

𝜋𝜔
∫

𝑑𝑞

𝜀𝑡(𝑘, 𝜔) − (𝑐𝑘 𝜔⁄ )2

+∞

0 }
 
 

 
 

    (1.16)    

where 𝑘2 = 𝐾2 + 𝑞2, 𝜀𝑡(𝑘, 𝜔) and 𝜀𝑙(𝑘, 𝜔) are the transverse and longitudinal components of 

the dielectric permittivity of the medium. 

1.3 Theory of the local dielectric permittivity of dielectrics 

 

We proceed with the RHT calculations by considering two semi-infinite 6H-type 

Silicon Carbide (6H-SiC) parallel planes of temperatures 𝑇1 = 299.5 𝐾 and 𝑇2 = 300.5 𝐾 so 

that the average temperature of the system is 𝑇 = 300 𝐾.  

6H-SiC is a non-magnetic polar material characterized by a hexagonal crystal structure and a 

lattice constant ratio 𝑐/𝑎 ≈ 4.9 where c and a are the lattice parameters; c is the tetrahedron 

height and a is the length of the Si−Si bond or the C−C bond. The crystallographic 

configuration of SiC is widely used in research and studied especially at high temperatures. It 

had received a lot of attention in theoretical and experimental research due to its different 

physical, semiconducting and heat-resistant properties [69]. The optical properties of SiC 

have been studied since the late fifties [70−72]. Many investigations concentrated on its 

electronic structure [73] while Raman spectroscopy experiments were performed to better 

understand its phonon-related properties and its polytypism [74,75].  The most significant 

properties of SiC are the high thermal conductivity [76], the excellent thermo-stability [77] 

and its mechanical stability [78]. All these characteristics lead SiC to be a very promising 

material for future work in different domains of high-temperature devices [30], electronic and 

optoelectronic devices [77]. 

1.3.1 Formalism 

 

In this section we will calculate the RHTC as a function of the distance d by 

considering the theory of the local dielectric permittivity. As we mentioned previously, when 
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the medium is referred to as being local, the dielectric permittivity is of frequency dependence 

only, i.e. 𝜀 = 𝜀(𝜔). 

For the case of dielectrics, and specifically SiC, the optical response in the local case is 

well described by a single oscillator model and presented by Lorentz−Drude local dielectric 

function Eq. (1.17) [21,72].  

𝜀(𝜔) = 𝜀∞ (1 +
𝜔𝑝

2

𝜔𝑇
2 − 𝜔2 − 𝑖𝜈𝜔

)      (1.17) 

where 𝜀∞ = 6.7 is the infinite frequency permittivity representing the contribution of the ions 

of the crystal lattice to the polarization. 𝜔𝑝 = 1.049 × 1014𝑟𝑎𝑑. 𝑠−1 is the plasma frequency 

defined as 𝜔𝑝
2 = 𝜔𝐿

2 − 𝜔𝑇
2 ,  where 𝜔𝐿 = 1.821 × 1014𝑟𝑎𝑑. 𝑠−1 and  𝜔𝑇 = 1.495 ×

1014𝑟𝑎𝑑. 𝑠−1  are the optical longitudinal angular frequency and the optical transverse 

angular frequency of phonons, respectively. 𝜈 = 8.972 × 1011𝑟𝑎𝑑. 𝑠−1 is the damping factor 

accounting for the losses in the medium [71]. 

We substituted with the dielectric permittivity equation in the general equations of the surface 

impedances Eqs. (1.16) by assuming that the longitudinal and the transverse components of 

the dielectric function are equal in the static limit 

(𝜀(𝜔) = lim𝑘→0 𝜀𝑡(𝑘, 𝜔) = lim𝑘→0 𝜀𝑙(𝑘, 𝜔)). For the surface impedance of waves of 

s−polarization we obtained 𝑍𝑚
𝑠 =

2𝑖𝜔

𝜋𝑐2 ∫
𝑑𝑞

𝛾𝑚
2 −𝑞2

∞

0
 which gives finally 𝑍𝑚

𝑠 = 𝜔 𝛾𝑚𝑐2⁄ , where 

𝛾𝑚 = √𝜀𝑚𝜔2 𝑐2⁄ − 𝐾2 is the wavevector component normal to the surface of this medium, 

and  𝜀𝑚 = 𝜀(𝜔) represents the dielectric permittivity of the medium..  

For the surface impedance of p-polarized waves, the expression is developed to  𝑍𝑚
𝑝 =

2𝑖

𝜋𝜔
{∫

𝑞2𝜔2 𝑐2⁄ 𝑑𝑞

(𝑞2+𝐾2)(𝛾𝑚
2 −𝑞2)

∞

0
+ ∫

𝐾2𝑑𝑞

𝜀𝑚(𝑞2+𝐾2)

∞

0
} and by using the residue theorem we obtain finally 

𝑍𝑚
𝑝 = 𝛾𝑚 𝜔𝜀𝑚⁄ . 

By substituting the final expressions obtained for the surface impedances in the expressions of 

the reflection factors as given by Eqs. (1.15), we obtain straightforwardly the classical Fresnel 

reflection factors for the waves of s and p polarizations: 

{

𝑟3𝑚
𝑝 =

𝜀𝑚𝛾3 − 𝜀3𝛾𝑚

𝜀𝑚𝛾3 + 𝜀3𝛾𝑚

𝑟3𝑚
𝑆 =

𝛾3 − 𝛾𝑚

𝛾3 + 𝛾𝑚

}     𝐸𝑞𝑠. (1.18)    
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This result was expected because the Fresnel reflection factors are local and they are standard 

local reflection factors describing a local plane interface. 

1.3.2 Calculation of the radiative heat transfer coefficient 

 

To calculate the RHTC, we replace Eqs. (1.16) into the expression given by Eqs. (1.13) to 

obtain the RHTC as function of the separation distance 𝑑. By numerically calculating the 

obtained equation, we plot in Fig. 1.7 the different contributions of the waves of s and p 

polarization to the RHTC. 

Figure 1.7: Variation of the radiative heat transfer coefficient (contributions of the 

evanescent and propagative EM waves of s and p polarizations) between two semi-infinite 

6H-SiC parallel planes of average temperature T=300K, for the local model case. 

 

Fig. 1.7 shows the graphs of the contributions of the evanescent and propagative EM waves of 

sand p polarization to the RHTC. We also plotted the total contribution which is the sum of all 

the four contributions as to compare between the graphs. 

From these graphs, we observe that the contributions of the propagative EM waves of both s 

and p polarizations dominate at large distances and did not change a lot for submicronic 

distances as they saturate for small distances. Propagative waves dominate at large distances 

because in the far field the evanescent waves rapidly decrease as the separation distances is 

large compared to 𝜆𝑚𝑎𝑥, and by this the value of the RHTC is limited to the contribution of 

propagative waves and is somewhat less than the value 4𝜎𝑇3 [9,10,20,21] which is the 

standard heat transfer coefficient for a blackbody. This is due to the fact that SiC is highly 

absorbing over a wide spectral range, except around 10.6µ𝑚 where it is reflective. We also 
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notice in Fig. 1.6 that the contribution of the p polarized propagative waves gives values 

slightly higher than those of the s polarized propagative waves; this is explained as being due 

to the existence of the Brewster angle for which the reflection contribution of the p polarized 

waves is zero and thus allows for a greater absorption. 

  To better interperet the obtained results, it is essential to emphasize that the heat 

transfer is mainly governed by the product of the mean energy of an oscillator at frequency 𝜔 

and at temperature T and by the density of EM states. It follows that the propagative 

contributions of s and p polarizations did not change significantly at small distances because 

the density of EM propagative states at these distances scales does not change significantly 

[21]. Regarding the contributions of the evanescent EM waves, we observe that at large 

distances they are negligible compared to the contributions of the propagative waves. This is 

due to the fact that the evanescent waves decay exponentially away from the surface so that at 

large distance their decaying rate is large. At sub-wavelength distances, evanescent waves 

decaying rate is small so that these waves can tunnel between the surfaces and their 

contributions to the RHTC become dominant. The evanescent contribution of s polarization 

shows negligible contribution in the far-field and saturates when the distance is smaller than 

the skin depth [54].This contribution of the s-polarized evanescent waves could be attributed 

to the presence of eddy currents on a typical distance equal to the skin depth. When the 

distance is smaller than the skin depth, the transfer saturates to a value given by a distribution 

of the current in all the material.  

To better understand the results obtained for the evanescent waves contributions it is 

important to highlight the role of the imaginary part of the reflection factor in the RHTC 

equation. From Eqs. (1.13) we notice that the evanescent term is proportional to the square of 

the imaginary part of the reflection factor for identical materials which leads to the 

importance of studying the variation of the latter to interpret the variation of the RHTC. Thus, 

to explain the saturation of the evanescent term of s polarization at small distances and for 

large K, we derived the electrostatic limit of the reflection factor for large K. The latter limit is 

valid when the separation distance becomes much smaller than the dominant wavelength. In 

this case, the retardation effects become negligible [21]. Starting with the expression given in 

Eqs. (1.18) we obtained 𝑟3𝑚
𝑆 = (𝜀 − 1) 4(𝐾 𝑘0⁄ )2⁄  which tends to zero for  𝐾 ≥ 𝑘0 ; and 

since the skin depth is defined as 𝛿 ≈ 1 𝑘0𝐼𝑚(𝜀)⁄ , we deduce that the contribution of 

s−polarized evanescent waves to the RHTC saturate at distances smaller than the skin depth 

[21,54]. 
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The evanescent p term is the only term that did not saturate as d decreased but on the 

contrary it showed the well-known divergence behaving as 1/𝑑2. This increase in the 

magnitude of the evanescent p contribution had been described in many articles starting from 

the first studies that concentrated on the RHT in the near field [21, 54,56,61]. It had been 

shown that the presence of surface phonon-polaritons that contribute to the transfer lead to the 

increase of the density of the EM energy Eq. (1.19) close to the surface  and consequently to 

the divergence of the RHTC [21]. We derived the expression of the EM energy density for the 

p−polarized waves (check appendix B for details) and we obtained the following equation:   

𝑢𝐸𝑀
𝑒𝑣𝑎𝑛 𝑝(𝑑, 𝜔, 𝑇) =

𝜔2Θ(𝜔, 𝑇)

𝜋2𝑐3
{4 ∫

𝐾3𝑑𝐾

𝑘0
3|𝛾3|

[
𝐼𝑚(𝑟31

𝑝 )

2
]

∞

𝑘0

𝑒−2𝛾3
′′𝑑}    (1.19) 

From this equation we notice that at small distances and large K, 𝐾 ≈ 1 𝑑⁄  and |𝛾3| ≈ 𝐾 lead 

to the increase of 𝑢𝐸𝑀(𝑑, 𝜔, 𝑇) as 1/d². This fact explains the asymptotic increase of the 

RHTC as 1/d².  

We also studied the electrostatic limit of the reflection factor 𝑟3𝑚
𝑃  where for large K we 

obtained 𝑟3𝑚
𝑃 ≈ (𝜀 − 1) (𝜀 + 1)⁄  which gives a finite non-zero value, and reaches very large 

values when 𝜀 = −1; this corresponds to the resonance frequency of the surface waves [20]. 

These two limits of the EM energy density and the reflection factor explain the sharp 

divergence obtained for the graph of the p-polarized evanescent waves’ contribution to the 

RHTC shown in Fig. 1.6. 

An important step in our interpretation of the obtained results is to study the variation of the 

EM spectral energy density Eq. (1.19) and the spectral flux energy density Eq. (1.20) of the p-

polarized evanescent waves as the frequency varies.  

𝛷𝜔
𝑒𝑣𝑎𝑛 𝑝 = ℎ0(𝑇, 𝜔) × ∫

𝐾𝑑𝐾

𝑘0
2

4[𝐼𝑚(𝑟31
𝑝 )]

2
𝑒2𝑖𝛾3𝑑

|1 − (𝑟31
𝛼 )2𝑒2𝑖𝛾3𝑑|2

+∞

𝑘0

    (1.20)    

Fig. 1.8 shows the plot of the variations of 𝛷𝜔
𝑒𝑣𝑎𝑛 𝑝

 and  𝑢𝐸𝑀
𝑒𝑣𝑎𝑛 𝑝

 as a function of the frequency 

at two distances d1=10
5

 m and d2=10
7

 m. 

The plots of Fig. 1.8 represent the radiative transfer spectrum (a) and the EM energy density 

spectrum (b). As the distance decreases three main features are revealed, where we observe 

that around the specific frequency  𝜔𝑠 which is equal to  𝜔𝑠 = 1.784 × 1014𝑟𝑎𝑑. 𝑠−1 (the 

solution of the equation 𝜀 = −1), the spectra show a strong peak, their magnitudes increase 

by few orders and the thermal emission becomes monochromatic. As  𝜔𝑠 is related to the 

surface waves, we deduce that the formation of the peak is due to the excitation of surface 
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phonon-polariton waves which emphasizes the fact that the increase of the RHT is due to the 

contribution of surface waves.  

 

 
Figure 1.8: Behaviors of the spectral energy flux (a) and the spectral EM energy density (b) 

of the p-polarized evanescent EM waves as function of the angular frequency at different 

distances d, for the local model of the dielectric permittivity of 6H-SiC planes of average 

temperature T=300K. 
 

1.4 Surface waves 

 

     The surface waves appear at the interface between two media; in our case they appear at 

the planar interface (interface-vacuum). They are solutions of Maxwell's equations 

corresponding to waves propagating parallel to the interface acquiring exponentially decaying 

amplitude as the distance from the interface increases in the perpendicular direction; for this 

reason these waves are often called surface waves as they are known to exist in the vicinity of 

the interface [21]. Surface waves exist due to a coupling between the EM field and a resonant 

polarization oscillation in the material. 
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When the material considered is a metal, the surface waves at its interface are charge density 

waves or plasmons; they are therefore called surface-plasmon polaritons. When the 

considered material is a dielectric, the surface waves are due to the coupling of optical 

phonons with the EM field; they are called surface-phonon polaritons.  

For the case where the interface considered is a material-vacuum one, the dispersion relation 

for the p-polarization is given by [21]: 

𝐾 =
𝜔

𝑐
√

𝜀𝑚(𝜔)

𝜀𝑚(𝜔) + 1
 (1.21) 

 

where 𝜀𝑚(𝜔) is the dielectric permittivity function of the material. From this equation we 

conclude that the wavevector is larger than 𝑘0 = 𝜔 𝑐⁄  when 𝜀𝑚(𝜔) < −1. By considering the 

interface SiC-vacuum, Eq. (1.19) represents then the dispersion relation for the surface 

phonon-polaritons and the previous equality implies that K is large for 𝜔𝑠 = 1.784 ×

1014 𝑟𝑎𝑑. 𝑠−1. Plotting equation (1.19) shows that the light line 𝜔 = 𝑐𝐾 separates between 

the upper region where the propagative waves (𝐾 < 𝑘0) exist and the lower region where the 

evanescent waves exist (𝐾 > 𝑘0) , see Fig 1.9.  

 

 
Figure 1.9: Dispersion relation for surface phonon-polaritons at a SiC−vacuum interface.  

The real part of K is represented. The horizontal asymptote is situated at  𝜔𝑠 = 1.784 ×
1014 𝑟𝑎𝑑. 𝑠−1. The oblique line represents the light line above which a wave is propagative 

(𝐾 < 𝑘0) and below which a wave is evanescent (𝐾 > 𝑘0). 
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We would like to end this chapter by recalling that the infinite divergence of the 

evanescent p polarization contribution cannot be physical at extremely small distances at 

which the EM fields begin to feel the microscopic variations of the matter properties. As few 

authors did before, This led us to take into account the nonlocal behavior of matter by 

introducing a nonlocal dielectric permittivity function in order to overcome this problem 

[17,21,23,25]. 
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Conclusions 

 

In this chapter we described the thermal energy and the RHT and we showed their 

importance in the different applications of the physical and the technological domains. We 

presented also the different historical attempts that aimed to predict the blackbody spectrum. 

We showed that Planck’s law predicts correctly this spectrum and we defined Wien’s law that 

allows calculating the wavelength at which the spectrum reaches its maximum, at any 

temperature T.  

We continued by highlighting the importance of studying the RHT between two 

bodies separated by a distance d. We showed that in the far-field, i.e. when d is much larger 

than Wien’s wavelength, the RHT is dependent on the difference of the temperatures of the 

bodies, to the power four. Classically, this heat transfer is maximal when the bodies act as 

blackbodies.  

In the near-field different physical phenomena come into play and dominate the 

transfer, such as the tunneling evanescent waves that exist at the surface and decay in the 

perpendicular direction away from the surface. A consequence, the RHT between the bodies 

depends in this case on the separating distance d and the formula obtained for the far-field is 

no longer valid. Due to the different applications in the technological domains, the studies of 

the near-field radiative heat transfer have gained an increasing attention during the last years. 

We proceeded by deriving the radiative heat flux using the radiometry approach in the 

far field. Then we derived the formula of the RHTC between two semi-infinite parallel planes 

using the fluctuation dissipation theorem. We showed that the obtained formula in the near 

field consists of two terms related to the contributions of the evanescent and propagative EM 

waves.  

        We then studied the variation of the RHTC between two semi-infinite parallel planes of 

6H-SiC using Lorentz-Drude local model of the dielectric permittivity.  We showed that the 

RHTC due to the p-polarized EM evanescent waves diverged as 1/d² when the distance d 

decreases; which represents a non-physical result. We also studied the variation of the spectral 

energy flux and the spectral EM energy density of the p-polarized EM evanescent waves and 

we showed that the spectra exhibit a strong peak around the specific frequency of the surface 

waves, their magnitudes increase by few orders and the thermal emission becomes 

monochromatic as the distance d decreases. We deduced that this peak is due to the excitation 

of surface phonon-polariton waves which lead to the increase of the RHT.  
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Chapter 2 

2. Theory of the nonlocal model of the dielectric 

permittivity for metals 
 

 

Introduction 

 

      In this chapter, we recall the calculations performed by Chapuis et al. [1] to study the 

RHT between two metallic semi-infinite parallel planes using a nonlocal dielectric model as 

the inter-planar distance tends to zero. 

     In the first section we recall the calculations of the RHTC between two aluminum (Al) 

semi-infinite parallel planes separated by a gap distance d, upon using a local model of the 

dielectric permittivity (Drude model). We show that the contribution of the p-polarized 

evanescent waves to the RHTC diverges as 1 𝑑2⁄  when d tends to zero. The contribution of 

the s-polarized evanescent waves to the RHTC is dominant and saturates starting from 

distances of the order of the skin depth. These obtained results are in agreement with those 

obtained from the experimental studies carried by Kittel et al. [2].  These experiments studied 

the near field radiation transfer between a tip and a metallic plane and showed that for metals 

the RHTC saturates at a distance of the order of some tens of nanometer. This confirms the 

dominance of the contribution of the s polarization. 

     In the second section we will repeat the calculations using the Lindhard-Mermin nonlocal 

model of the dielectric permittivity that account for the spatial dispersion.  We show that the 

contribution of the p-polarized evanescent waves to the RHTC deviates from the diverging 

graph of the local model at distances of the order of the Thomas−Fermi length; after which 

saturation takes place. 
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2.1 Recall of the Local dielectric permittivity: Drude model 

 

        The early studies of the RHT between two metallic materials had shown divergence of 

the radiative flux as the distance between the materials decreases. Similar to the dielectrics 

case, local models of the dielectric permittivity of metals were considered and the large 

increase of the RHT was attributed to the tunneling evanescent waves between the surfaces of 

the considered metallic materials.  

       Polder and Van Hove [3] were among the first to study theoretically the RHT in the near-

field especially for the case of two macroscopic metallic bodies separated by a distance d. 

They followed the same formalism of Rytov [4,5] i.e. the fluctuational electrodynamics and 

their study showed that the RHT between closely spaced bodies differs significantly from that 

when the separation distance is large; they also showed that for metallic bodies the dominant 

mechanism of energy transfer is the tunneling evanescent waves giving rise to a strong 

increase of RHT as d decreases. Polder and Van Hove compared their results to the 

experimental results obtained by C. M. Hargreaves [6] as their measurements show the 

existence of a proximity effect on the RHT between two Chromium coated plates due to the 

dominance of the near-field coupling over cut-off effects at small distances. 

     Loomis and Maris [7] have shown that for sufficiently small distances d the heat flow is 

enhanced by the contribution of the tunneling evanescent waves, and varies as 1/d² in the limit 

of very small d. Volokitin and Persson [8] studied the RHT between two bodies and its 

dependence on the dielectric properties of the media and they found that the RHF 

significantly enhanced at short distances between bodies, as compared to the blackbody 

radiation. As for metals, they showed that the radiated flux is enhanced when the metallic 

surfaces support low-frequency surface plasmons. Mulet et al. [9] and Joulain et al. [10] had 

shown that in the near-field the RHT is enhanced due to the tunneling of the EM evanescent 

waves. The density of the EM energy increases in the near field due to the contribution of 

surface waves and the local treatment of the NFRHT leads to obtaining the infinitely 

diverging RHTC between two bodies. Francoeur et al. [11] have shown that the NFRHT is 

enhanced around resonance of surface phonon polaritons for thin film emitters due to the 

surface wave coupling and consequently the total radiative heat flux increases in a very 

narrow spectral range as compared to a bulk emitter.  

    Kittel et al. [2] studied the NFRHT experimentally using the scanning thermal microscope 

(STM). They measured the NFHT between a metallic tip and a metallic planar surface as they 
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varied the distance between them. They showed that for distances larger than 10 nanometers 

their results were in good agreement with theoretical predictions of the RHT using the 

macroscopic theory based on fluctuational electrodynamics. For distances below 10−8𝑚, their 

results differed significantly from the predictions of the macroscopic theory as their 

measurements showed saturation of the RHT in the extreme near-field limit, contrary to the 

infinite divergence obtained by the macroscopic theory. They explained that these differences 

are due to the existence of a material−dependent small length scale below which the 

macroscopic description of the dielectric properties fails; they mentioned that nonlocal effects 

should be taken into consideration by representing them in a nonlocal model of the dielectric 

permittivity. Few years later it was shown by Chapuis et al. [1] that the contribution of the s-

polarized EM waves to the RHTC between two metallic planes had saturated in a behavior 

and at a scale similar to those reported by Kittel et al. [2] experimental results. Chapuis et al. 

showed that this saturation occurred upon considering local model of the dielectric 

permittivity, i.e. nonlocal effects are not important to obtain these results.  

Narayanaswamy et al. [12] presented another sensitive technique of measuring near-field 

radiative transfer between a Silica microsphere and a flat substrate, which was considered a 

glass microscope slide. Their measurements lead to concluding that strong near-field effects 

result in the enhancement of the heat transfer over the predictions of the Planck blackbody 

radiation theory.  

Rousseau et al. [13] conducted an experimental work involving a sphere-plane geometry of 

two dielectric polar materials that allows measuring the conductance for gaps varying 

between 30 nm and 2.5 mm. They have shown that their obtained results agreed well with the 

theory in the considered gap range, which confirms the significant enhancement of the 

radiative heat transfer at nano-scaled distances. 

These results supported the fact that the RHT is enhanced in the near field and diverged till 

exceeding the far-field limit by many orders of magnitude. This also provoked the idea that 

the infinite divergence of the RHTC between two planes obtained at extremely small 

distances should be investigated with an appropriate theoretical model in order to obtain a 

physical finite saturation. Therefore, saturation of the RHTC between two parallel metallic 

planes could be attained upon considering a nonlocal model of the dielectric permittivity in 

the theoretical study. This will be done in section two; in this section, we study the RHTC 

between two Al semi-infinite parallel planes separated by a gap distance d, using the local 

Drude model for the dielectric permittivity expression. We will show via this study the huge 
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increase of the RHF between the two planes as the distance decreases below the thermal 

wavelength. 

2.1.1 Formalism 

 

    We will carry on our study of the RHT by considering two semi-infinite parallel Aluminum 

planes separated by a vacuum gap of width d (see Fig. 1.5) where the average temperature of 

the system is  T=300K (𝑇1 = 300.5𝐾 and 𝑇2 = 299.5𝐾). 

Similar to the case of dielectrics, considering the medium to be local implies using a 

frequency-dependent dielectric permittivity function that describes the local optical response 

of the medium. 

From a classical point of view, the frequency-dependent dielectric permittivity of metals can 

be described with a Drude model which determines the material’s dielectric response by 

considering the motion of the free electrons with respect to a background of positive ion 

cores. The dielectric permittivity is then expressed as [1,10,14]: 

𝜀(𝜔) = 𝜀𝑏 −
𝜔𝑝

2 

𝜔(𝜔 + 𝑖)
           (2.1) 

where 𝜔𝑝 = 2.24 × 1016𝑠−1 is the plasma frequency which is a material property that is 

based on the density of conduction electrons. 𝜀𝑏 is a corrective constant that accounts for the 

background electron screening at high frequency and in the case of Aluminum it is equal to 2. 

 = 1.22 × 1014𝑠−1  is the damping factor accounting for losses as it represents the scattering 

frequency of the electron as it travels through the metal [1]. 

 2.1.2 Calculation of the radiative heat transfer coefficient 

 

        Calculating the RHTC requires the substitution with the equations of the reflection 

factors of the EM waves at the interfaces. The surface impedances and the reflection factors 

general expressions are given in chapter one by Eqs. (1.16) and Eqs. (1.15), respectively. As 

we showed in the local case of dielectrics in the previous chapter, these equations are 

simplified due to the locality condition considering the static limit 

(𝜀(𝜔) = lim𝑘→0 𝜀𝑡(𝑘, 𝜔) = lim𝑘→0 𝜀𝑙(𝑘, 𝜔)). This will eventually lead to obtaining Fresnel 

reflection factors Eqs. (1.18). Substituting with the reflection factor equations and the 

dielectric permittivity equation in the RHTC expression Eq. (1.13), we obtained the graphs 

representing the different contributions of s and p polarized EM waves to the RHTC. 



36 
 

In Fig. 2.1 we present the different contributions of the EM waves of both s and p 

polarizations to the RHTC for the local case. 

 

Figure 2.1: Variation of the radiative heat transfer coefficient (contributions of evanescent and 

propagative EM waves of s and p polarizations) between two semi-infinite Al parallel planes of 

average temperature T=300K, for the local model case. The contribution of the s-polarized 

evanescent waves saturates at a distance d of the order of the skin depth 𝛿 ≈ 𝑐 𝜔𝑝⁄ = 13 𝑛𝑚. 

 

We observe in Fig. 2.1 that the contributions of the propagative waves of both s and p 

polarizations saturate as the distance decreases. At large distances, the transmission factor  of 

these waves 
(1−|𝑟31

𝛼 |2)(1−|𝑟32
𝛼 |2)

|1−𝑟31
𝛼 𝑟32

𝛼 𝑒2𝑖𝛾3𝑑|
2  is independent of d, and for small distances where the 

wavelength is much larger than d, 𝛾3 ≈ 𝑅𝑒(𝛾3) which implies that 𝑒2𝑖𝛾3𝑑 ≈ 𝑒−2𝛾3
"𝑑 ≈ 1 and 

their contribution saturate with values relatively small, compared to the evanescent waves 

contribution. 

           On the other hand, we observe in this figure that the contribution of the s-polarized 

evanescent waves dominates the transfer till reaching distances as short as 0.01 nm below 

which the contribution of the evanescent EM waves of p-polarization dominates. The former 

saturated at short distances, while the latter diverged. To interpret these results, we derived the 

limits of the reflection factors as K increases because the RHTC is dominated by the 

imaginary parts of the reflection factors. Starting with Fresnel reflection equation of the s-
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polarized waves we obtained 𝑟3𝑚
𝑆 ≈ 𝜔2𝜔𝑝

2 [4𝑐2𝐾2𝜔(𝜔2 + 2)]⁄  which shows the same 

dependence on K (at large K) as the general limit obtained in chapter 1: 

𝑟3𝑚
𝑆 = (𝜀 − 1) 4(𝐾 𝑘0⁄ )2⁄  (see Appendix C for derivation). From this expression we deduce 

that the imaginary part of 𝑟𝑠 tends to zero as 1/K² which explains the saturation of the 

contribution of the s-polarized evanescent waves to the RHTC at small distances. We notice 

in Fig 2.1 that this saturation starts at a distance d of the order of the skin depth 𝛿 ≈ 𝑐 𝜔𝑝⁄ =

13 𝑛𝑚 [1]. This could be deduced analytically by considering the general equation of the 

parallel wavevector in the medium: 𝐾2 + 𝛾1
2 = 𝜖(𝜔)𝑘0

2. There exists a cutoff value of K after 

which saturation of the RHTC takes place, and by denoting it as 𝐾𝑐, saturation takes place for 

all wavevectors  𝐾 ≥ 𝐾𝑐. As we mentioned before, at small distances the waves with large 

wavevectors K dominate the transfer, i.e.  𝐾2 ≈ 𝜀(𝜔)𝑘0
2, so that 𝐾𝑐 ≈ 𝑘0√|𝜀(𝜔)| leading 

finally to obtaining 𝐾𝑐 ≈
𝜔𝑝

𝑐
√𝜔 |𝜔 + 𝑖|⁄  . From this equation we deduce that the cutoff  

wavevector value after which saturation of the contribution of the s-polarized waves takes 

place for all larger wavevectors, is proportional to the inverse of the skin depth 𝛿 and the 

distance at which this saturation starts is of the order of the skin depth i.e. 𝑑𝑐 ≈ 𝛿. This result 

is consistent with the experimental result obtained by Kittel et al. [2] where the distances at 

which a cutoff of the diverging RHT was observed are of the order of the skin depth.  

       Furthermore, to interpret the divergence of the contribution of the p−polarized evanescent 

waves, we calculate the limit of the reflection factor r
P
 for large K. We obtained 𝑟3𝑚

𝑝 ≈

𝜔 𝜔𝑠𝑝
2 (𝑅 + 1) [(𝜔𝑠𝑝

2 − 𝜔2)
2

+ 𝜔22]⁄  where 𝜔𝑠𝑝 = 𝜔𝑝 √2⁄  is the surface plasmon− 

polariton excitation frequency, 𝑅 = (𝜀𝑏 − 𝜀3) (𝜀𝑏 + 𝜀3)⁄  and 𝜀3 = 1 in our case. From this 

expression we deduce that the reflection factor is finite for large K. It follows eventually that 

the imaginary part of this reflection factor is also finite, and since it dominates the 

transmission factor of the p−polarized evanescent waves, their contribution to the RHTC 

diverges at small distances. 

2.2 Lindhard−Mermin nonlocal model for metals 

 

        In this section we will follow the same procedure of section 2.1.1 but with a nonlocal 

model of the dielectric permittivity accounting for spatial dependence in the medium in which 

the dielectric permittivity function is of frequency and wavevector dependence i.e. 𝜀 =

𝜀(𝜔, 𝑘) . 
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      The model used is the Lindhard−Mermin nonlocal model extended by Mermin [15] from 

the longitudinal dielectric constant derived by Lindhard [16]. This longitudinal term is 

considered collisionless, and that’s what drove Mermin to use the relaxation-time 

approximation to account for the collisions in the electron gas. The longitudinal term 

expression obtained by Mermin combined with the transverse term derived by Ford and 

Weber [17] form the nonlocal dielectric model used in this chapter. 

       Ford and Weber [17] then showed how this model is suitable to describe the nonlocality 

of a metallic medium when they applied it in their study of the EM interactions of molecules 

with metal surfaces. They showed that the expression of the dielectric permittivity given by 

this nonlocal model is deduced when considering the quantum infinite barrier model of the 

metal in their studies. It is a generalized extension of the semi-classical infinite barrier model 

in which the equations of the latter are obtained from those of the former by considering the 

semi-classical limit (k 0).  

      We will show that the unphysical divergence of the RHTC at small distances obtained in 

the local case is removed in the nonlocal case as saturation is obtained for all the contributions 

of the waves of s and p polarizations. 

2.2.1 Formalism  

 

        Considering the classical EM theory in their study, Ford and Weber [17] aimed to 

describe the EM interactions of molecules with metal surfaces.  In their discussion of the 

reflection of EM waves at a plane interface, they imposed the necessity of extending the 

classical Fresnel formulas to the case of a nonlocal medium, which is considered as the basic 

theoretical concept in the discussion of different various phenomena explained in their review.  

To calculate the surface response of a metal, they considered first the semi-classical infinite 

barrier model, in which the electron density is uniform up to the barrier, where it abruptly 

goes to zero. In this model, specular reflection of the conduction electrons at the metal surface 

is considered, as well as the anomalous skin effect. The conduction electrons are then treated 

as a classical ideal gas, but with Fermi−Dirac statistics. The behavior of a metal with 

conditions of purity and low temperature that the high-frequency oscillations of the electric 

field and current are confined within a surface layer of thickness much smaller than the mean 

free path of electrons is called the anomalous skin effect.  The field strength decays steadily 

within a depth called the skin depth and is denoted by δ. The value of  differs from one metal 

to the other [18,19].  
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 Due to this nonlocal model, they needed to derive the appropriate generalized formulas of the 

classical Fresnel formulas by introducing the concept of surface impedances, which are then 

used to construct the reflection coefficients suitable for the nonlocal model of a metal. Ford 

and Weber used the surface impedances defined by Landau and Lifshitz [20] and by 

Garcia−Moliner and Flores [21] that depend on the description of the considered nonlocal 

medium. To continue their calculations, it was essential to use nonlocal equations of the 

dielectric permittivity in which they chose the Lindhard−Mermin equations simplified in the 

semi−classical limit.  

Extending their study to the quantum infinite barrier model, in which the electron density 

undergoes Friedel−type oscillations near the surface and goes smoothly to zero at the barrier, 

they used the general equations of the Lindhard−Mermin nonlocal dielectric permittivity 

model as to well describe the system. Friedel−type oscillations take place due to localized 

perturbations in a metallic system caused by a defect in the Fermi gas or Fermi Liquid, where 

the decay of the oscillations density is induced by the defect. They could be defined as being 

the formation of a rippling pattern of electrons around a stationary charge. They can be 

observed on metal surfaces using STM [22].   

    The Lindhard−Mermin nonlocal model of the dielectric permittivity consists of two 

separate components, longitudinal and transversal, both of spatial and temporal dependence. 

By following Ford and Weber notations [17] they are defined as: 

{
 
 

 
 𝜀𝐿𝑀

𝑙 (𝜔, 𝑧) = 𝜀𝑏 +
3 𝜔𝑝

2 

𝜔 + 𝑖
 

𝑢2

{𝜔 + 𝑖 [𝑓𝑙(𝑧, 𝑢) 𝑓𝑙(𝑧, 0)⁄ ]}

𝜀𝐿𝑀
𝑡 (𝜔, 𝑧) = 𝜀𝑏 −

𝜔𝑝
2 

𝜔2(𝜔 + 𝑖)
{𝜔[𝑓𝑡(𝑧, 𝑢) − 3𝑧2𝑓𝑙(𝑧, 𝑢)] + 𝑖[𝑓𝑡(𝑧, 0) − 3𝑧2𝑓𝑙(𝑧, 0)]}

}
 
 

 
 

   (2.2) 

 

 with   

 

{
 
 
 
 
 

 
 
 
 
 

𝑧 = 𝑘 2𝑘𝐹⁄

𝑢 = (𝜔 + 𝑖) 𝑘𝜐𝐹⁄

𝑓𝑙(𝑧, 𝑢) = 1
2⁄ + [1 − (𝑧 − 𝑢)2 8𝑧⁄ ] ln(𝑧 − 𝑢 + 1 𝑧 − 𝑢 − 1⁄ ) +

[1 − (𝑧 + 𝑢)2 8𝑧⁄ ]ln(𝑧 + 𝑢 + 1 𝑧 + 𝑢 − 1⁄ )

𝑓𝑡(𝑧, 𝑢) = 3
8⁄ (𝑧2 + 3𝑧2 + 1) − {3 [1 − (𝑧 − 𝑢)2]2 32𝑧⁄ }ln(𝑧 − 𝑢 + 1 𝑧 − 𝑢 − 1⁄ ) −

{3 [1 − (𝑧 + 𝑢)2]2 32𝑧⁄ }ln(𝑧 + 𝑢 + 1 𝑧 + 𝑢 − 1⁄ )

𝑓𝑙(𝑧, 0) = 1
2⁄ + (1 − 𝑧2 4𝑧⁄ )ln|𝑧 + 1 𝑧 − 1⁄ |

𝑓𝑡(𝑧, 0) = 3
8⁄ (𝑧2 + 1) − [3(1 − 𝑧2)2 16𝑧⁄ ]ln|𝑧 + 1 𝑧 − 1⁄ | }

 
 
 
 
 

 
 
 
 
 

    (2.3) 

http://en.wikipedia.org/wiki/Fermi_gas
http://en.wikipedia.org/wiki/Fermi_liquid
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Where 𝑘𝐹 and 𝜐𝐹 are the Fermi wavevector and the Fermi velocity, respectively. For the case 

of Al, 𝑘𝐹 ≈ 1010𝑚−1 and 𝜐𝐹 ≈ 2.03 × 106𝑚. 𝑠−1 (
𝑐

𝜐𝐹
= 148) [1,23]. These equations were 

first obtained by Lindhard [16] for the special case v = 0 and 𝜀𝑏 = 1. 

       We note here that for small k limit, the Lindhard−Mermin equations give the local 

equations in which we retrieve the local Drude model given in section 2.1.1 Eq. (2.1) as the 

spatial dependence is eliminated in this case. 

2.2.2 Calculation of the radiative heat transfer coefficient  

 

     The equations of the impedances and the reflection factors needed to perform the 

calculations of the RHTC, are those considered in chapter 1 (Eqs. (1.15) and Eqs. (1.16), 

respectively), as they are the general equations including temporal and spatial dependence and 

accounting for the specular reflection of the conduction electrons. 

By substituting these equations in the expression of the RHTC Eqs. (1.13) we calculated the 

different contributions of s and p polarizations to the RHTC between the two semi-infinite 

parallel Al planes as the distance between them tends to zero.  

In Fig. 2.2 we present the contributions of the evanescent EM waves of s and p polarizations to 

the RHTC using the nonlocal Lindhard−Mermin dielectric permittivity model. The first thing to 

notice in this figure is that both evanescent contributions saturate to a finite value. The 

contribution of the evanescent waves of s polarization saturates as in the local case with almost 

no change in values. This implies that the nonlocality imposes no significant changes on the s-

polarized evanescent waves as they are dominant at relatively large distances. The saturation 

obtained for the p-polarized evanescent waves replaces the infinite divergence obtained in the 

local case, as we showed in Fig. 2.1, and this result is considered the most important feature 

revealed by Fig. 2.2. Before we interpret this result, we will examine the differences between 

the graphs obtained in the local and the nonlocal cases by plotting them in the same figure, Fig 

2.3.  
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Figure 2.2: Variation of the radiative heat transfer coefficient (contributions of the evanescent 

EM waves of s and p polarizations) between two semi-infinite Al parallel planes of average 

temperature T=300K, for the Lindhard−Mermin nonlocal model case. 

 

  
Figure 2.3: Variation of the radiative heat transfer coefficient (contributions of evanescent 

EM waves of s and p polarizations) between two semi-infinite Al parallel planes of average 

temperature T=300K, for the local and the nonlocal model cases. The graphs of both models 

overlap up to a distance d of the order of 1.5 𝑛𝑚, and the graph of the nonlocal model 

saturates starting from a distance of the order of the Thomas−Fermi length 𝑙𝑇𝐹 = 0.905 Å. 
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It is important to note that representing our results for distances as small as 10−12𝑚 is just to 

show that our nonlocal model would lead mathematically to saturation at these small distances 

scales. We are aware that from a physical point of view, for distances of the order of few 

angstroms and less where quantum effects appear [24], a correct study must take these effects 

into consideration. Regarding this thesis, we are only interested in the EM approach that is 

sufficient for distances larger than few angstroms. We notice in Fig. 2.3 that up to a distance d 

of the order of 1.5 nm the graphs of the contributions of the evanescent EM waves of p-

polarization of both the local and the nonlocal models overlap, after which the graph of the 

nonlocal model deviates from the local graph and it saturates starting from a distance of the 

order of the Thomas−Fermi length 𝑙𝑇𝐹 = 𝜐𝐹 𝜔𝑝⁄ = 0.905 Å.   

To give a better interpretation of the obtained results, we study the plot of the transmission 

coefficient of the p-polarized EM evanescent waves 4(𝐼𝑚(𝑟31
𝑃 ))2𝑒2𝑖𝛾3𝑑 |1 − (𝑟31

𝑃 )2𝑒2𝑖𝛾3𝑑|
2

⁄  

in the local and the nonlocal cases at a distance 𝑑 = 10−12𝑚 Fig. 2.4. 

 

 Figure 2.4:  Plot of the transmission coefficient 4(𝐼𝑚(𝑟31
𝑃 ))2𝑒2𝑖𝛾3𝑑 |1 − (𝑟31

𝑃 )2𝑒2𝑖𝛾3𝑑|
2

⁄  of 

the p-polarized EM evanescent waves in the plane (,K) for the local model case (a) and the 

nonlocal case of Lindhard−Mermin model (b) at a separation distance 𝑑 = 10−12𝑚. 

 

From Fig. 2.4, we notice in the local case that the graph is wide and as K increases its values 

increase. This implies that as K increases, the number of modes contributing to the transfer 

increases also. The transmission factor acquires high values even for relatively very large 

wavevectors K. This explains the divergence of the RHTC due to the contribution of the p-

polarized EM evanescent waves at small distances. In the nonlocal case we notice that the 
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graph is relatively narrow and it shows an increase in the values as K increases, but when K is 

of the order of the inverse of the Thomas−Fermi length (𝐾 ≅ 2 × 102𝑘0 ≈ 𝐾𝑇𝐹 ≈ 1.105 ×

1010 𝑚−1), a cutoff removes the continuous increase of the transmission factor spectrum. For 

further increase in the values of K, the spectrum acquires negligible values. This cutoff 

confirms the saturation of the RHTC shown in Fig 2.3 starting from distances of the order of 

𝑙𝑇𝐹. 
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Conclusions  

 

 

We presented in this chapter the study of the RHTC between two semi−infinite parallel 

aluminum planes separated by a vacuum gap of width d. 

       In the first section, we considered the local Drude model in which the dielectric 

permittivity is of temporal dependence and we showed that by substituting with this equation 

in the RHTC expression, the evanescent term of p polarization diverges as 1/d² in an 

unphysical infinite tendency while all other contributions saturate as the distance d decreased. 

The saturation of the contribution of the evanescent waves of s polarization starts at a distance 

of the order of the skin depth. 

     In the second section, we repeated the calculations using the Lindhard−Mermin nonlocal 

model for the dielectric permittivity. This model is of temporal and spatial dependence and by 

applying it to the study of the RHTC, we obtained saturation of the evanescent p term while 

all other terms showed no significant change in values. We observed that the nonlocal 

contribution of the p−polarized evanescent waves coincides with that of the local contribution 

until reaching a distance of the order of 1.5 nm, and the saturation takes place for distances 

smaller than Thomas−Fermi length.  

     We compared also between the plots of the transmission factors of the evanescent p terms 

in both the local and the nonlocal cases to better examine the differences. We observed a 

continuous increase of the spectrum in the local case whereas the nonlocal spectrum increases 

until it reaches a cutoff at a K value of the order of the inverse of the Thomas−Fermi length 

which explains the saturation obtained for the RHTC at distances of the order of 

Thomas−Fermi length. 
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Chapter 3 

3. Nonlocal models of the dielectric permittivity for 

semiconductors 
 

 

Introduction 

 

      In Chapter 1, we presented the study of the RHT between two semi−infinite parallel solid 

6H-SiC planes separated by a vacuum gap of width d, using a local model of the dielectric 

permittivity. We showed that as the separation distance decreases till reaching few 

nanometers, the RHTC diverged as 1/d². As we explained in chapter 1, this infinite divergence 

of the RHTC as d tends to zero is considered nonphysical because the transfer of energy 

between two bodies could not be infinite. We have also shown that this infinite divergence is 

obtained due to the local model of the dielectric permittivity used; which leads us to consider 

applying a nonlocal model of the dielectric permittivity as to obtain saturation of the RHTC. 

     This is therefore the aim of the work presented in this chapter, where we present three 

different nonlocal models of the dielectric permittivity of relatively simple nonlocality 

concepts. We then show that applying these models in the calculation of the RHTC between 

the two 6H-SiC planes leads to the saturation of the RHTC in the three different cases.   

     For the case of dielectrics, only few nonlocal models of the dielectric permittivity were 

suggested, and as far as we know, our proposed models are the first to well apply in the RHT 

study and to lead to a RHT saturation. Our models are the first to be based on simple physical 

nonlocal concepts, and the first to be handled in a simple algebraic and analytic way. 

     The authors who worked on proposing a suitable nonlocal model of the dielectric 

permittivity for dielectrics aimed in the first place to include the spatial dispersion effects in 

the equations of the dielectric permittivity or the inverse of the dielectric permittivity; thus the 

concluded expressions were of  and k dependences [1−6]. Different basis were set for these 

different proposed nonlocal models such as the random phase approximation (RPA) [2,3] 

where the Lindhard dielectric equation is used throughout some modelings [1], and the 
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quantum mechanical perturbation theory [4], etc. Some of these models have not been given a 

clear derivation, while one common thing among all of them is the complexity of their 

structure which led to the difficulty of handling them algebraically and numerically in our 

study. For this reason, we aimed to suggest simple nonlocal models of the dielectric 

permittivity, which allow us to calculate in an easy numerical and analytical way the RHTC 

between two dielectric semi-infinite parallel planes in general and in particular the case of our 

study, the 6H-SiC planes. 

     This chapter will be divided into three sections; each one will be devoted to the study of 

the RHTC between two semi-infinite parallel planes of 6H-SiC using one of the three 

suggested nonlocal models of the dielectric permittivity function. 
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3.1 A suggested nonlocal model of the dielectric permittivity  

 

     This model is relatively simple and it was inspired from the nonlocal model derived by 

Kliewer and Fuchs [5]. 

      In their review, Kliewer and Fuchs considered the surface of the semi−infinite medium to 

scatter the field specularly and they aimed in the first place to analyze the dispersion relation 

of surface optical phonons of semi-infinite ionic crystals Eq. (3.1).  

𝜔 = 𝜔𝑇𝑂√𝐴 + 𝐵 (cos (
𝜋𝑞

𝑞𝐵
) − 1)         (3.1) 

where 𝜔𝑇𝑂 = 1.49 × 1014𝑟𝑎𝑑. 𝑠−1 is the transverse optical phonon frequency, 𝑞𝐵 = 𝜋 𝑟0⁄  is 

the value of the perpendicular wavevector at the limit of the first Brillouin zone (FBZ) and 

𝑟0 ≈ 1.5 𝑛𝑚 is the lattice constant. The plot of the dispersion relation Eq. (3.1) is shown in 

Fig 3.1.  

 
Figure 3.1: The dispersion relation of surface optical phonons of semi-infinite ionic crystals 

as given by Kliewer and Fuchs [5]. 

3.1.1 Formalism 

 

      Considering the dielectric permittivity of the semi−infinite medium to consist of two 

terms, longitudinal and transverse, they suggested the following model, Eqs. (3.2), from 

which the dispersion equation is deduced.  
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{
 
 

 
 𝜀𝑡(𝜔) = 𝜀𝑙𝑜𝑐𝑎𝑙 = 1 +

𝐴 − 1

1 − 𝛺(𝛺 + 𝑖)

𝜀𝑙(𝑘, 𝜔) = 1 +
𝐴 − 1

1 − 𝛺(𝛺 + 𝑖) + 𝐵 (cos (
𝜋𝑞
𝑞𝐵

) − 1)

    ∀  𝑞 ≤ 𝑞𝐵

}
 
 

 
 

   (3.2) 

where 𝛺 = 𝜔 𝜔𝑇𝑂⁄ ,  =  𝜈 𝜔𝑇𝑂⁄  is the normalized damping factor, A=1.522 and B=0.185 are 

two constants adjusted by this model.  We obtained their values by fitting the dispersion 

equation to experimental values given in reference [6]. We should note here that by expanding 

the expression of the local dielectric permittivity (𝜀𝑙𝑜𝑐𝑎𝑙) given Eq. (3.2), we end up with the 

Lorentz−Drude expression of the dielectric permittivity model (Eq. (1.17)), defined using 

𝜔𝑝, 𝜔𝑇𝑂 and 𝜔𝐿𝑂.  

Eqs. (3.2) show that the transverse term is local, as it is of frequency dependence only, while 

the longitudinal term is considered nonlocal as it is dependent on the frequency and the 

wavevector. 

We notice that the longitudinal term is valid as long as the value of the total wavevector k is 

inferior or equal to the value 𝑞𝐵; and since these conditions that are set on the range of values 

of k as to ensure the validity of the model do not apply in our calculations, this model failed to 

suit our study of the NFRHT between two 6H-SiC. In our study, as we explained before, we 

aim to obtain saturation of the RHTC at small distance where the dominant contribution to the 

RHTC is due to EM waves of large wavevectors, i.e. wavevectors larger than 𝑞𝐵; which 

implies that in the range of k values that we are interested in, the model is not valid. For this 

reason, we continue our work by modifying the model as to reflect the characteristics and the 

limits of our system more accurately. And for this, we defined the following model: 

{
 

 𝜀𝑡(𝜔)  = 1 +
𝐴 − 1

1 − 𝛺(𝛺 + 𝑖)
 ∀ 𝑞

𝜀𝑙(𝜔) = { 
𝜀𝑡(𝜔) 𝑓𝑜𝑟 q ≤ 𝑞𝐵

1        𝑓𝑜𝑟 𝑞 > 𝑞𝐵
 }

}
 

 
        (3.3) 

     We kept the same expression for the transverse term as it is local and defined for every 

value of the z-component of the wavevector, q. We modified the longitudinal term by 

changing its expression and dividing it into two different terms depending on the range of q. 

For all values of q inferior to 𝑞𝐵, the longitudinal term is given by the same local term as the 

transverse component. For all values of q equal to or larger than 𝑞𝐵, the longitudinal 

component is equal to 1. To suggest this model we rely on the fact that as long as the spatial 
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wavelength of the plane wave is large compared to the lattice constant, the plane wave is 

described over distances spatially larger than the lattice constant; the optical response of the 

medium may then be considered as continuous and local and for this reason we represent it by 

the local equation of the dielectric permittivity. When the spatial wavelength approaches the 

lattice constant, the plane wave is considered sensitive to the lattice structure and this implies 

that for large wavevectors, i.e. larger than 𝑞𝐵, the medium might, grossly approximated of 

course, regarded as vacuum for the longitudinal waves. 

3.1.2 Calculation of the radiative heat transfer coefficient  

 

       To proceed in calculating the RHTC, we should follow the same steps as in the previous 

chapters, where we have to substitute the expressions of the dielectric permittivity in the 

equations of the surface impedances. Then we use the surface impedances equations to 

calculate the reflection factors needed to calculate the RHTC. The surface impedances and the 

reflection factors are given by the general equations Eqs. (1.16) and Eqs. (1.15) defined in 

chapter 1. As we mentioned before, these expressions are general and they will be applied in 

the different models. For the EM waves of s polarization, the surface impedance 𝑍𝑚
𝑠  is 

dependent on the transverse component of the dielectric permittivity 𝜀𝑡(𝜔). As we showed in 

section 1.3 in chapter 1, upon substituting the local dielectric equation in 𝑍𝑚
𝑠  and performing 

some simple algebraic steps we obtain finally 𝑍𝑚
𝑠 = 𝜔 𝛾𝑚𝑐2⁄ . Substituting the final form of 

𝑍𝑚
𝑠  in the general equation of 𝑟3𝑚

𝑆  will lead finally to the Fresnel reflection factor Eqs. (1.18) 

as explained in section 1.3.  

     The general expression of the surface impedance of the p-polarized EM waves 𝑍𝑚
𝑝

 is 

dependent on both the longitudinal and the transversal components of the dielectric 

permittivity. Taking into consideration the different values of the longitudinal component 

𝜀𝑙(𝜔), we divided the range of the integral into two regions q < 𝑞𝐵and 𝑞 ≥ 𝑞𝐵 : 

𝑍𝑚
𝑝 =

2𝑖

𝜋𝜔
∫

𝑑𝑞

𝑘2
[

𝑞2

𝜀𝑡(𝑘, 𝜔) − (𝑐𝑘 𝜔⁄ )2
+

𝐾2

𝜀𝑙(𝑘, 𝜔)
]

+∞

0

= 

2𝑖

𝜋𝜔
∫

𝑑𝑞

𝑘2

𝑞2

𝜀𝑡(𝑘, 𝜔) − (𝑐𝑘 𝜔⁄ )2

+∞

0

+
2𝑖

𝜋𝜔
∫

𝑑𝑞

𝑘2

𝑞𝐵

0

𝐾2

𝜀𝑙(𝑘, 𝜔)
+

2𝑖

𝜋𝜔
∫

𝑑𝑞

𝑘2

+∞

𝑞𝐵

𝐾2

𝜀𝑙(𝑘, 𝜔)
       (3.4) 
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To simplify this expression we will proceed by calculating each term separately where we 

consider 𝑍𝑚
𝑝 = 𝑍𝑚

𝑝1𝑠𝑡

+ 𝑍𝑚
𝑝2𝑛𝑑

+ 𝑍𝑚
𝑝3𝑟𝑑

. The first term on the right hand-side would give the 

following expression:  

𝑍𝑚
𝑝1𝑠𝑡

=
2𝑖𝑘0

2

𝜋𝜔
{∫

𝑞2𝑑𝑞

(𝑞2 + 𝐾2)(𝛾𝑚
2 − 𝑞2)

∞

0

}     (3.5) 

By applying the residue theorem, we obtain finally: 

𝑍𝑚
𝑝1𝑠𝑡

=
𝛾𝑚

𝜔𝜀𝑡(𝜔)
−

𝑖𝐾

𝜔𝜀𝑡(𝜔)
   (3.6) 

In the second term 𝑍𝑚
𝑝2𝑛𝑑

 we will replace 𝜀𝑙(𝑘, 𝜔) with 𝜀𝑡(𝜔) as given by Eq. (3.3) for the 

range q < 𝑞𝐵. Since 𝜀𝑡(𝜔) is local and independent of the wavevector, 𝑍𝑚
𝑝2𝑛𝑑

 reduces to the 

following expression: 

𝑍𝑚
𝑝2𝑛𝑑

=
2𝑖

𝜋𝜔𝜀𝑡(𝜔)
∫

𝐾2𝑑𝑞

𝑞2 + 𝐾2

𝑞𝐵

0

        (3.7) 

The final expression of 𝑍𝑚
𝑝2𝑛𝑑

 is then given by the following equation:  

𝑍𝑚
𝑝2𝑛𝑑

=
2𝑖𝐾

𝜋𝜔𝜀𝑡(𝜔)
Arctan [

𝑞𝐵

𝐾
]      (3.8) 

In the third expression of 𝑍𝑚
𝑝

 and due to the range of the q values 𝑞 ≥ 𝑞𝐵, the longitudinal 

component of the dielectric permittivity is equal to 1 and by this the third expression of the 

surface impedance is simplified to the following reduced equation : 

𝑍𝑚
𝑝3𝑟𝑑

=
2𝑖

𝜋𝜔
∫

𝐾2𝑑𝑞

𝑞2 + 𝐾2

∞

𝑞𝐵

       (3.9) 

which is easily calculated and so the final form of this term is given as: 

𝑍𝑚
𝑝3𝑟𝑑

=
2𝑖𝐾

𝜋𝜔
(
𝜋

2
− Arctan [

𝑞𝐵

𝐾
])     (3.10) 

Combining the final three terms we obtain the simplified total expression of the surface 

impedance of the p-polarized EM waves: 
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𝑍𝑚
𝑝

=
𝛾1

𝜀𝑡(𝜔)𝜔
−

𝑖𝐾

𝜀𝑡(𝜔)𝜔
+

2𝑖𝐾

𝜋𝜔
[(

1

𝜀𝑡(𝜔)
− 1) Arctan [

𝑞𝐵

𝐾
] +

𝜋

2
]     (3.11) 

We then substitute this equation in the general equation of the reflection factor 𝑟3𝑚
𝑝

, which 

will remain in this case nonlocal as it is of frequency and wavevector dependence. By 

substituting with the obtained expressions of the reflection factors in the RHTC equation 

given in chapter 1 Eqs. (1.15), we calculated and plotted in Fig. 3.2 the different contributions 

of the EM waves of s and p polarization to the RHTC between the two 6H-SiC semi-infinite 

parallel planes.   Fig. 3.2 shows the propagative and evanescent contributions of the waves of 

s and p polarizations to the RHTC for the nonlocal model considered above. 

Figure 3.2: Variation of the radiative heat transfer coefficient (contributions of evanescent 

and propagative EM waves of s and p polarizations) between two semi-infinite 6H-SiC 

parallel planes of average temperature T=300K, for the 1
st
 suggested nonlocal model case. 

 

Regarding the contributions of propagative contributions of s and p polarizations, the same 

argument given in section 1.4 in chapter 1 applies in this case also. As we mentioned before, 

this is due to the fact that the propagative terms of the RHTC dominate at large distances as 

they acquire small wavevectors, and their behaviors are unaffected by the nonlocality of the 

system presented in the nonlocal dielectric permittivity equations. On the other hand, the 

evanescent term of the s-polarized waves is also relatively not affected by the nonlocality as it 
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saturates in the local and the nonlocal cases, with slight insignificant difference in the values 

between the two cases. This was also explained in the discussion given in section 1.4.  

The important result obtained is thus the change in the shape of the graph of the contribution 

of the evanescent p−polarized waves, which has shown infinite divergence in the local case. 

We observe that the infinite divergence is replaced by a “logarithmic-like” divergence, or an 

incomplete saturation, as d decreases. We should note here that this logarithmic increase 

could not be shown analytically as the equations employed in this model did not simplify to a 

simple analytical expression reflecting the logarithmic behavior of the obtained plot. To 

compare between the local and the nonlocal cases, we plot the total contribution (sum of all 

different contributions of s and p polarizations) for both cases on the same graph Fig. 3.3. 

Figure 3.3: Variation of the total radiative heat transfer coefficient (summation of the 

evanescent and propagative contributions of s and p polarizations) between two semi-

infinite 6H-SiC parallel planes of average temperature T=300K, for the local and the first 

suggested nonlocal model cases. 

 

We should note that as in the case of metals, our results are represented for distances as small 

as 10−12𝑚 just to show that mathematically the nonlocal model leads to this incomplete 

saturation as these distances scales. Physically, at sub-nm scale quantum effects should be 

taken into consideration in the full heat transfer study as it was reported that they dominate at 
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such scales in semiconductors. [7−10]. As this work limits itself to radiative heat transfer, this 

quantum treatment is beyond the scope of this thesis. 

In Fig. 3.3, we observe that at large distances the curves of the local and the nonlocal cases 

coincided and their values were equal to those given by the propagative contributions. This is 

not surprising, because at large distances the contributions of the propagative waves of both s 

and p polarizations dominate and their summation constitutes almost the total contribution, as 

the contributions of the evanescent waves of both s and p polarizations are negligible. At 

small distances where the contributions of the evanescent waves dominate, the magnitude of 

the plots increase by few orders compared to the values at larger distances. We notice that at 

distances of the order of the lattice constant 𝑟0, the curve of the nonlocal model deviates from 

the 1/d² diverging slope of the local graph and the graph continues to increase in a logarithmic 

way which is considered as an incomplete saturation. 

As we mentioned before, the behavior of the curve of the RHTC could be deduced from the 

values of the imaginary part of the reflection factor for large K values and small distances d. 

We examined then the variation of  𝐼𝑚(𝑟3𝑚
𝑃 ) as K increases by plotting the graph of the 

imaginary parts of the reflection factors for the local and the nonlocal cases Fig. 3.4.  

 
Figure 3.4: Variation of 𝐼𝑚(𝑟3𝑚

𝑃 )  as a function of 𝐾 𝑘0⁄  for 𝜔 = 𝜔𝑇𝑂 for the local model 

case and the first suggested nonlocal model case. The curve of the local case acquires 

constant value as K increases while the curve of the nonlocal case shows a continuous 

decrease which explains the saturation of the RHTC. 

 

Fig. 3.4 compares between the variations of 𝐼𝑚(𝑟3𝑚
𝑃 ) as K increases for the local and the 

nonlocal cases. We observe that in the local case the curve remained constant with the 

increase of the wavevector K values, and this explains the steep divergence of the RHTC as 
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the distance decreases. We showed in section 1.4 in chapter 1 that the limit of the expression 

of 𝐼𝑚(𝑟3𝑚
𝑃 ) tends to a finite value in the local case, which explains the constant value 

acquired at large K in Fig. 3.4.  The curve of the nonlocal model coincided with that of the 

local model for all 𝐾 𝑘0 <⁄ 5 × 102 and when K is of the order of the inverse of the lattice 

constant, i.e. 𝐾 ≈ 6 × 108𝑚−1, the curve deviates in a decreasing manner to become of 

negligible values as the wavevector continues to increase in magnitude. This interprets the 

deviation of the RHTC graph in the nonlocal case from the infinite diverging manner starting 

at distances of the order of the lattice constant.   

     An important step in the interpretation of the results is the study of the variation of the 

transmission coefficient of the p-polarized EM evanescent waves 

𝑓(𝐾, 𝜔) = 4(𝐼𝑚(𝑟31
𝑃 ))2 |1 − (𝑟31

𝑃 )2|2⁄  and for this reason we analyzed its variation for d=0. 

We plot 𝑓(𝐾, 𝜔) then in the (𝐾, 𝜔) plane for the local and the nonlocal cases Fig. 3.5.   

Figure 3.5:  Plot of the transmission coefficient 𝑓(𝐾, 𝜔) = 4(𝐼𝑚(𝑟31
𝑃 ))2 |1 − (𝑟31

𝑃 )2|2⁄  of the 

p-polarized EM evanescent waves in the plane (,K) by considering d=0,  for the local case 

(a) and the first suggested nonlocal case (b). 

 

Fig. 3.5 shows that as 𝜔 increases, the values of the spectrum of the local model increase till 

reaching the maximum for 𝜔 = 𝜔𝑇𝑂, after which the values decrease. The spectrum reaches 

its maximum again for 𝜔 = 𝜔𝐿𝑂, above which the values of the transmission coefficient 

decrease gradually. On the other hand, as K increases, the values and the width of the 

spectrum remain constant. In the spectrum of the nonlocal model, the maximum values are 

attained for 𝜔 = 𝜔𝑇𝑂 and 𝜔 = 𝜔𝐿𝑂, and starting from 𝐾 ≈ 1000𝑘0 the width of the spectrum 

decreases and its values decreased in a slow rate as K increases which is coherent with the 
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results observed in the RHTC graph. Therefore, it is clear from Fig. 3.5 that in the local case 

the number of modes contributing to the transfer increases, which explains the divergence of 

the RHTC, while in the nonlocal case the number of modes that are able to well couple to the 

transfer decreases as K increases and as the distance decreases explaining by that the 

deviation of the RHTC plot from the infinite diverging curve of the local case.  

     We wanted to study the variation of the transmission factor at a specific frequency so we 

plot 𝑓(𝐾, 𝜔) for 𝜔 = 𝜔𝑇𝑂 as K increases Fig. 3.6.  

Fig. 3.6 shows that 𝑓(𝐾, 𝜔 = 𝜔𝑇𝑂) varies and increases in value until reaching a maximum 

value when K is of the order of the inverse of the lattice constant (𝐾~ 1 𝑟0⁄ ), after which the 

graph decreases till reaching very small values for large K values. This behavior of the 

transmission factor is coherent with the behavior of the RHTC observed in Fig. 3.2. 

  
Figure 3.6: Variation of the transmission coefficient of the p-polarized EM evanescent 

waves for 𝑓(𝐾, 𝜔 = 𝜔𝑇𝑂) = 4(𝐼𝑚(𝑟31
𝑃 ))2 |1 − (𝑟31

𝑃 )2|2⁄  by considering d=0, for the first 

suggested nonlocal case. 

 

Through this model we have shown that the nonphysical infinite divergence of the RHTC 

between two parallel SiC planes is not obtained upon considering different optical responses 

of the medium depending on the spatial scale considered. When the wavelength of the plane 

wave vary on a scale larger than the lattice constant, the medium is seen continuous and 

reflecting by this wave; when the wavelength is of the order of the lattice constant, the 

discrete nature of the medium dominates and the medium is thus seen as transparent to this 
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wave, leading to a huge reduction of its reflectivity as the wavelength decreases compared to 

the lattice constant scale.  

Since we do not obtain a complete saturation by using the above model, we suggested another 

nonlocal model of the dielectrics permittivity and we present it in the following section. 

3.2 A suggested nonlocal model of the dielectric permittivity  

 

     In this section we present our study of the RHTC between two 6H-SiC planes (same as 

those considered in the previous section) using a second nonlocal model of the dielectric 

permittivity. We will be following the same procedure as before. We will show that 

incomplete saturation of the RHTC is attained in this case also; the obtained results are quite 

similar to those presented in the previous section. 

3.2.1 Formalism 

 

     This model is also a simplified version of the model presented by Kliewer and Fuchs [5], 

where we consider in this case that the longitudinal and transverse components of the 

dielectric permittivity are equal for any value of the z-component of the wavevector q. We 

define the dielectric permittivity 𝜀 as follows: 

𝜀𝑡(𝜔) = 𝜀𝑙(𝜔) = {
1 +

𝐴 − 1

1 − 𝛺(𝛺 + 𝑖)
    ∀  q ≤ 𝑞𝐵

      1             ∀  𝑞 > 𝑞𝐵

}    (3.12) 

Eqs. 3.12 show that the range of the values of q is divided with respect to the value of the 

wavevector at the edge of the first Brillouin zone, i.e. 𝑞𝐵 . We consider the optical response of 

the medium to be local for every q less than or equal to 𝑞𝐵, and to be equal to 1 for all q larger 

than 𝑞𝐵. This model is more general than the one proposed in the previous section as we 

generalized the condition on q for both the transverse and the longitudinal components of 𝜀. 

3.2.2 Calculation of the radiative heat transfer coefficient  

 

       The surface impedances equations needed to calculate the RHTC, are those defined in 

chapter 1, i.e. Eqs. (1.16) and their general forms will be definitely modified upon substituting 

with the expressions of the dielectric permittivity. The integrals of the surface impedances 
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will be divided into two terms depending on the range of the q values. The surface impedance 

of the EM waves of s polarization will be given as: 

𝑍𝑚
𝑠 =

2𝑖

𝜋𝜔
∫

𝑑𝑞

𝜀𝑡(𝑘, 𝜔) − (𝑘 𝑘0⁄ )2

𝑞𝐵

0

+ ∫
𝑑𝑞

𝜀𝑡(𝑘, 𝜔) − (𝑘 𝑘0⁄ )2

∞

𝑞𝐵

       (3.13) 

Upon substituting with the expressions of the dielectric permittivity, 𝑍𝑚
𝑠  reduces to the 

following form: 

𝑍𝑚
𝑠 =

2𝑖𝑘0
2

𝜋𝜔
∫

𝑑𝑞

𝛾𝑚
2 − 𝑞2

𝑞𝐵

0

+
2𝑖𝑘0

2

𝜋𝜔
∫

𝑑𝑞

𝛾3
2 − 𝑞2

∞

𝑞𝐵

       (3.14) 

The term on the right-hand side cannot be solved analytically as depending on the frequency 

, the poles of the denominators might lie within the integration interval. Therefore the s-

polarized surface impedance equation could not be further modified and it will be calculated 

numerically.  

The general expression of the surface impedance of the p-polarized EM waves on the other 

hand is also modified by dividing the integrals according to the range of the q values. It is 

then given by: 

𝑍𝑚
𝑝 =

2𝑖

𝜋𝜔
∫

1

𝑘2

𝑞2𝑑𝑞

𝜀𝑡(𝜔) − (𝑘 𝑘0⁄ )2
+

2𝑖

𝜋𝜔
∫

1

𝑘2

𝑞2𝑑𝑞

𝜀𝑡(𝜔) − (𝑘 𝑘0⁄ )2

∞

𝑞𝐵

𝑞𝐵

0

+
2𝑖

𝜋𝜔
∫

𝑑𝑞

𝑘2

𝑞𝐵

0

𝐾2

𝜀𝑙(𝑘, 𝜔)

+
2𝑖

𝜋𝜔
∫

𝑑𝑞

𝑘2

+∞

𝑞𝐵

𝐾2

𝜀𝑙(𝑘, 𝜔)
     (3.15) 

Upon substituting with the dielectric permittivity expressions, 𝑍𝑚
𝑝

 becomes:  

𝑍𝑚
𝑝 =

2𝑖𝑘0
2

𝜋𝜔
{∫

1

(𝐾2 + 𝑞2)
 

𝑞2𝑑𝑞

(𝛾𝑚
2 − 𝑞2)

𝑞𝐵

0

+ 𝑘0
2 ∫

1

(𝐾2 + 𝑞2)
 

𝑞2𝑑𝑞

(𝛾3
2 − 𝑞2)

∞

𝑞𝐵

 + ∫
1

(𝐾2 + 𝑞2)
 

𝐾2𝑑𝑞

𝜀𝑙(𝑘, 𝜔)

𝑞𝐵

0

+ ∫
𝐾2𝑑𝑞

(𝐾2 + 𝑞2)

∞

𝑞𝐵

}     (3.16) 
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The first two terms on the right-hand side could not be solved analytically and we will 

calculate them numerically while the third and fourth terms are solved analytically and the 

final form of the surface impedance is thus given by: 

𝑍𝑚
𝑝 =

2𝑖𝑘0
2

𝜋𝜔
{∫

1

(𝐾2 + 𝑞2)
 

𝑞2𝑑𝑞

(𝛾𝑚
2 − 𝑞2)

𝑞𝐵

0

+ ∫
1

(𝐾2 + 𝑞2)
 

𝑞2𝑑𝑞

(𝛾3
2 − 𝑞2)

∞

𝑞𝐵

 }

+
2𝑖𝐾

𝜋𝜔
{(

1

𝜀𝑡(𝜔)
− 1) 𝐴𝑟𝑐𝑡𝑎𝑛 [

𝑞𝐵

𝐾
] +

𝜋

2
}          (3.17) 

By substituting these equations in the general equations of the reflection factors Eqs. (1.15) 

we obtain the nonlocal expressions of the reflection factors that we then substitute in the 

RHTC equations Eqs. (1.13) to calculate the different contributions of the EM waves of s and 

p polarizations. 

      Fig. 3.7 shows the evanescent and propagative contributions of the EM waves of s and p 

polarizations to the RHTC using the nonlocal model proposed above. With respect to the 

contributions of the propagative EM waves of s and p polarizations and the evanescent waves 

of s polarization, the discussion presented in sections 1.4 and 2.3 applies here also. We will 

focus then on the contribution of the evanescent EM waves of p-polarization. We plot in Fig. 

3.8 the total contribution to the RHTC in the local and the nonlocal models as to compare 

between them. We notice from this figure that the graph of the second nonlocal model 

deviated from the infinite diverging graph as the distance decreased and the non-infinite 

divergence obtained in the local case was no more attained. The deviation of the graph of the 

nonlocal model started at a distance of the order of the lattice constant 𝑟0, and a logarithmic-

like divergence or an incomplete saturation starts to take place. This is thus consistent with 

the argument given in the first model. To better interpret the “logarithmic-like” behavior we 

should derive the analytic expression supporting it. The deviation of the RHTC from the 

infinitely diverging graph indicates that the imaginary part of the p-polarized evanescent 

waves tends to zero upon using the nonlocal equations of the dielectric permittivity and to 

check this tendency we derive the limit of this factor for large K values. To do so, we start by 

deriving a simplified form of 𝑍𝑚
𝑝

 for large K values. 
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Figure 3.7: Variation of the radiative heat transfer coefficient (contributions of the evanescent 

and propagative EM waves of s and p polarizations) between two semi-infinite 6H-SiC 

parallel planes of average temperature T=300K, for the second suggested nonlocal model case. 

 

Figure 3.8: Variation of the total radiative heat transfer coefficient (summation of the 

contributions of the evanescent and propagative EM waves of s and p polarizations) between 

two semi-infinite 6H-SiC parallel planes of average temperature T=300K, for the local and 

the second suggested nonlocal model cases. 
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Taking into consideration that for large K, the first term on the right-hand side of Eq. (3.17) 

will become: 

𝑍𝑚
𝑝1𝑠𝑡

≈
2𝑖𝑘0

2

𝜋𝜔
∫

−𝑞2𝑑𝑞

(𝐾2 + 𝑞2)2

𝑞𝐵

0

     (3.18) 

solving the integral will give:  

𝑍𝑚
𝑝1𝑠𝑡

=
𝑖𝜔

𝜋𝑐2
{

𝑞𝐵

𝐾2 + 𝑞𝐵
2 −

𝐴𝑟𝑐𝑡𝑎𝑛[𝑞𝐵 𝐾⁄ ]

𝐾
}      (3.19 ) 

Taking the expansion limit of the Arctan function, 𝑍𝑚
𝑝1𝑠𝑡

 will reduce to the following form: 

𝑍𝑚
𝑝1𝑠𝑡

=
𝑖𝜔

𝜋𝑐2
{

𝑞𝐵

𝐾2 + 𝑞𝐵
2 −

𝑞𝐵

𝐾2
+

𝑞𝐵
3

𝐾4
}      (3.20 ) 

Following the same procedure with second term on the right-hand side of Eq. (3.17): 

𝑍𝑚
𝑝2𝑛𝑑

≈
2𝑖

𝜋𝜔
∫

1

𝑘2

𝑞2𝑑𝑞

1 − (𝑘 𝑘0⁄ )2

∞

𝑞𝐵

          (3.21) 

 we obtain the following reduced form:  

𝑍𝑚
𝑝2𝑛𝑑

≈
𝑖𝜔

𝜋𝑐2
{
−𝜋

2𝐾
−

𝑞𝐵

𝐾2 + 𝑞𝐵
2 +

𝑞𝐵

𝐾2
−

𝑞𝐵
3

𝐾4
}        (3.22) 

For the third term on the right-hand side of Eq. (3.17) we use the expansion form of the 

Arctan function: 

𝑍𝑚
𝑝3𝑟𝑑

=
2𝑖𝐾

𝜋𝜔
{(

1

𝜀𝑡(𝜔)
− 1) 𝐴𝑟𝑐𝑡𝑎𝑛 [

𝑞𝐵

𝐾
] +

𝜋

2
}      ( 3.23) 

we obtain the reduced form given by Eq. (3.24) 

𝑍𝑚
𝑝3𝑟𝑑

=
2𝑖𝐾

𝜋𝜔
{

𝑞𝐵

𝐾𝜀𝑡(𝜔)
−

𝑞𝐵
3

𝐾3𝜀𝑡(𝜔)
−

𝑞𝐵

𝐾
+

𝑞𝐵
3

𝐾3
+

𝜋

2
}       ( 3.24) 

Adding the obtained terms, we obtain the final simplified form of 𝑍𝑚
𝑝

 for the limit of large K: 

𝑍𝑚
𝑝 ≈

−𝑖𝜔

2𝐾𝜋𝑐2
+

𝑖𝐾

𝜔
+

2𝑖𝐾

𝜋𝜔
{

𝑞𝐵

𝐾𝜀𝑡(𝜔)
−

𝑞𝐵
3

𝐾3𝜀𝑡(𝜔)
−

𝑞𝐵

𝐾
+

𝑞𝐵
3

𝐾3
}    (3.25) 
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Substituting Eq. 3.25 in the general equation of the reflection factor, we obtain for large K 

limit: 

𝑟3𝑚
𝑝 ≈

𝑖𝜔
2𝐾𝜋𝑐2 −

2𝑖𝑞𝐵

𝜋𝜔 (
1

𝜀𝑡(𝜔)
− 1)

2𝑖𝐾
𝜋𝜔 −

𝑖𝜔
2𝐾𝜋𝑐2 +

2𝑖𝑞𝐵

𝜋𝜔 (
1

𝜀𝑡(𝜔)
− 1)

    (3.26) 

Performing few trivial simplifying steps we finally obtain the following reduced form of 𝑟3𝑚
𝑝   

for the large K limit: 

𝑟3𝑚
𝑝

≈
𝑞𝐵(𝜀𝑡(𝜔) − 1)

𝜀𝑡(𝜔)𝐾𝜋
   (3.27) 

From this expression we notice that the reflection factor varies as 1/K and tends to zero for 

large K which leads to the deviation of the RHTC graph from the infinitely divergent graph of 

the local model as shown in Figs. 3.7 and 3.8. From Eq. (3.27) we can deduce that the 

imaginary part of the reflection factor is: 

𝐼𝑚(𝑟3𝑚
𝑝 ) ≈

𝑞𝐵 𝐼𝑚(𝜀𝑡(𝜔))

𝐾𝜋|𝜀𝑡(𝜔)|2
     (3.28) 

It follows that by using Eqs. (1.13) we can write in the electrostatic limit: 

ℎ𝑒𝑣𝑎𝑛(𝑇, 𝑑, 𝜔) ≈ ℎ0(𝑇, 𝜔) ×
4

𝑘0
2 ∫

𝐼𝑚(𝑟3𝑚
𝑝 )𝑒−2𝐾𝑑𝐾𝑑𝐾

|1 − (𝑟3𝑚
𝑝

)
2
𝑒−2𝐾𝑑|

2

+∞

𝑘0

   (3.29) 

Considering Eq. (3.29) and (𝑟3𝑚
𝑝 )

2
~ 1 𝐾2⁄ , we obtain finally: 

ℎ𝑒𝑣𝑎𝑛(𝑇, 𝑑, 𝜔) ≈ ℎ0(𝑇, 𝜔) ×
4𝑞𝐵

2[𝐼𝑚(𝜀𝑡(𝜔))]
2

𝜋2|𝜀𝑡(𝜔)|2𝑘0
2 ∫

𝑒−2𝐾𝑑𝑑𝐾

𝐾

+∞

𝑘0

    (3.30) 

Therefore, the obtained integral of the exponential function of K in the expression of the 

contribution of the p-polarized evanescent waves leads to a plot acquiring a logarithmic-like 

behavior, as shown in plots of the RHTC. To compare between the results obtained in this 

nonlocal model and the previous nonlocal model, we plot the total contribution to the RHTC 

for the two cases in Figure 3.9. From this figure we notice that the two curves totally overlap. 

This leads us to conclude that the two suggested models of the dielectric permittivity give the 

same results regardless of the difference in the conditions on the dielectric permittivity 
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expressions. In other words, the nonlocality condition of the transverse component of the 

dielectric permittivity leads to no change in the RHTC and it is all due to the nonlocality of 

the longitudinal component that the infinite divergence is replaced by the logarithmic−like 

divergence.    

Figure 3.9: Variation of the total radiative heat transfer coefficient (summation of the 

contributions of the evanescent and propagative EM waves of s and p polarizations) 

between two semi-infinite 6H-SiC parallel planes of average temperature T=300K, for the 

first suggested nonlocal model (dotted blue curve) and the second suggested nonlocal model 

(red curve).  

 

Similar to the previous cases, we are interested in studying the variation of the transmission 

factor for d=0,  𝑓(𝐾, 𝜔) = 4(𝐼𝑚(𝑟31
𝑃 ))2 |1 − (𝑟31

𝑃 )2|2⁄  so we plotted it in the (ω,K) plane for 

the nonlocal case and we compared it to that of the local case, as shown in Fig. 3.10. 

From Fig. 3.10 we notice that the width and magnitude of the spectrum of the transmission 

factor for d=0 in the nonlocal model decrease as K increases which leads to the logarithmic 

divergence of the RHTC, while in the local case the magnitude of the spectrum remained 

constant as K increases and showed no decrease which explains the infinite divergence shown 

by the RHTC graph. In fact, the detailed discussion given in the previous section of the 

chapter for the spectrum of the 1
st
 suggested nonlocal model applies for the spectrum of this 

model as well. We also plotted 𝑓(𝐾, 𝜔) for 𝜔 = 𝜔𝑇𝑂 as K increases in Fig. 3.11, where we 

noticed that the graph increased and reached its maximum when 𝐾 𝑘0⁄ ≈ 3 × 101, after which 

it decreased as K continues to increase. The variations of the graphs obtained in Figs. 3.10 and 

3.11 are coherent with the variation of the RHTC. 
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Figure 3.10: Plot of the transmission coefficient for d=0,  

𝑓(𝐾, 𝜔) = 4(𝐼𝑚(𝑟31
𝑃 ))2 |1 − (𝑟31

𝑃 )2|2⁄  of the p-polarized EM evanescent waves in the 

plane (,K) for the local case (a) and the second suggested nonlocal case (b). 

 

 
Figure 3.11: Variation of the transmission coefficient of the p-polarized 

EM evanescent waves 𝑓(𝐾, 𝜔 = 𝜔𝑇𝑂) = 4(𝐼𝑚(𝑟31
𝑃 ))2 |1 − (𝑟31

𝑃 )2|2⁄  by 

considering d=0, as function of K for the second suggested nonlocal 

model.  

 

We wanted to check the effect of changing the value of q at which the dielectric permittivity 

components change their values, on the cutoff value of K at which the transmission factor 

deviates from the infinitely diverging graph. For this reason, in the limit d=0 we considered, 

for one case, the limiting value of q to be 𝑞 = 5𝑞𝐵. For another case, we considered the 

limiting value to be 𝑞 = 10𝑞𝐵. For each case, we calculated the transmission factor 𝑓(𝐾, 𝜔) 

for d=0 by considering 𝐾 = 𝑛𝑞𝐵. In Fig. 3.12 we show the plots of 𝑓(𝐾 𝑞𝐵⁄ , 𝜔 = 𝜔𝑇𝑂) along 

with the original case considered, i.e. 𝑞 = 𝑞𝐵. We observe from this figure that in each case 
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the graph starts to decay and decreases drastically in magnitude when the wavevector K is 

equal to the limiting value of q. This emphasizes our obtained results and our conclusions that 

the limit at which the optical response of the medium changes from being local to nonlocal 

sets the limit to the infinite divergence of the RHTC and leads to its logarithmic divergence. 

 
Figure 3.12: Plot of the transmission factor of the p-polarized EM evanescent 

waves 𝑓(𝐾, 𝜔 = 𝜔𝑇𝑂) = 4(𝐼𝑚(𝑟31
𝑃 ))2 |1 − (𝑟31

𝑃 )2|2⁄  by considering d=0 and 

𝐾 = 𝑛𝑞𝐵. The green plor corresponds to the model considered where 𝜀𝑙 changes 

values at 𝑞 = 𝑞𝐵 and the cutoff occurs at 𝐾 = 𝑞𝐵. The red plot corresponds to the 

case where the longitudinal component of the dielectric permittivity 𝜀𝑙 changes 

values for 𝑞 = 5𝑞𝐵. We notice that the cutoff shifts to 𝐾 = 5𝑞𝐵. The blue plot 

corresponds to the case where 𝜀𝑙 changes values at 𝑞 = 10𝑞𝐵; we notice that the 

cutoff occurs at 𝐾 = 10𝑞𝐵. 

 

3.3 A phenomenological model of the dielectric permittivity  

 

        The nonlocal model proposed in this section and used in our calculation of the RHTC 

between the two 6H-SiC planes is inspired from the work of Henkel and Joulain [11]. Based 

on the idea that the coherence length of the thermal EM field near a planar surface is related 

to the nonlocal dielectric response of the material, Henkel and Joulain [11] defined a 

parameter l as being the minimum coherence length of the EM field. The minimum value of 

this parameter is related to the nature of the considered material (polar or metallic) and its 

different physical parameters. By introducing this parameter in the equations, they calculated 

the local density of states (LDOS) and the field’s degree of spatial coherence above a polar 

material surface and a metallic surface and they showed that these quantities depend on the 

coherence length l.  
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      Henkel and Joulain [11] carried out their calculations using the Lindhard−Mermin 

nonlocal dielectric model of the dielectric permittivity for metals, and for the polar materials 

they posed a nonlocality condition by introducing l as a correlation distance in the correlation 

equation Eq. (1.4) of the fluctuating currents that generate the radiation field in the medium. 

       One condition on the value of l is that it is not considered physical for it to be smaller 

than the lattice constant, and so it was chosen to be of the order of or higher than the lattice 

constant of the dielectric material; indeed, the source or currents in dielectrics being the ions 

in the crystals, the currents can hardly be uncorrelated at distances smaller than the lattice 

constant. Introducing the parameter l and proceeding in calculating the RHTC and the density 

of EM waves at the surface along with some explicit asymptotic formulas allowed Henkel and 

Joulain to identify in a semi-quantitative way the scale for the coherence length of the EM 

field above the surface supporting surface waves. 

For metals, they showed that the field’s coherence length is limited by the Thomas–Fermi 

screening length, even though significant deviations from the local description occur already 

on a scale of the order or larger than the electron mean free path. For polar materials, they 

showed through the performed calculations that the radiation generated outside the surface 

acquires a minimum coherence length given by l, which cuts off the 1/d² divergence of the 

RHTC and the LDOS obtained in the local description of the material. 

      As in our work we are considering systems of 6H-SiC planes, we will be more interested 

in the calculations performed for the polar materials. We will use the modified correlation 

equation of the currents proposed by Henkel and Joulain [11] to repeat the derivation of the 

RHTC. Then, using the local dielectric function 𝜀(𝜔) Eq. (1.17) we will proceed to calculate 

the different contributions of s and p polarized EM waves to the RHTC between two semi-

infinite parallel planes of 6H-SiC as functions of their separation distance d. We will show 

that saturation of the RHTC is obtained upon performing these calculations, and the distance 

at which this saturation starts to occur is related directly to the value of the correlation length 

l.   

     Our results will lead us to conclude that defining a finite correlation length for the sources 

of the EM field will set this length as a minimum for the coherence length of the field and will 

impose a cutoff on the RHTC and the LDOS. 
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3.3.1 Formalism 

 

The correlation length l is introduced in the correlation equation of the fluctuating currents 

Eq. (1.4) given in chapter 1, this equation is modified and becomes: 

〈𝑗𝑚(𝒓′, 𝜔)𝑗𝑛
∗(𝒓′′, 𝜔′)〉

= 2 𝜔𝜀0𝐼𝑚(𝜀(𝜔)) [𝑒−(𝒓′−𝒓′′)
2

𝑙2⁄ 𝜋
3

2⁄ 𝑙3⁄ ] 𝛩(𝜔, 𝑇1)𝛿𝑘𝑙𝛿(𝜔′ − 𝜔′′)   (3.28) 

Comparing this equation with Eq. (1.4) we notice that the authors introduced an exponential 

term decaying as function of l² and they smoothed the spatial delta function into a Gaussian. 

The modified correlation equation of the fluctuating currents is dependent on l through two 

terms, one to the power three of l, and the other to the power two in the argument of the 

exponential function in the numerator. It is important to note here that upon considering l=0, 

the Gaussian reads as a delta function so that we retrieve. (1.4). The Gaussian expresses the 

fact that the currents are not completely spatially correlated, but exhibit on the contrary a 

distance on which the currents are correlated. 

3.3.2 Calculation of the radiative heat transfer coefficient 

 

   Starting from the modified equation on the spatial correlation function of the currents Eq. 

(3.28), we proceed in the derivation of the RHTC following the same steps as the derivation 

performed before (see Appendix for complete derivation steps).  We obtain an equation 

similar to Eqs. (1.13) but with an additional term (𝑒−[𝑅𝑒2(𝛾2)+𝐾2]𝑙2 4⁄ )  found in the 

numerators of the transmission factors of the propagative and the evanescent terms consisting 

of the multiplication of two exponential terms depending on the square of the correlation 

length l: 

{
 
 
 
 

 
 
 
 

ℎ𝑟𝑎𝑑(𝑇, 𝑑) = ∑ ∫ 𝑑𝜔[ℎ𝑝𝑟𝑜𝑝
𝛼 (𝑇, 𝑑, 𝜔) + ℎ𝑒𝑣𝑎𝑛

𝛼 (𝑇, 𝑑, 𝜔)]

+∞

0𝛼=𝑆,𝑃

ℎ𝑝𝑟𝑜𝑝(𝑇, 𝑑, 𝜔) = ℎ0(𝑇, 𝜔) × ∫
𝐾𝑑𝐾

𝑘0
2

(1 − |𝑟31
𝛼 |2)(1 − |𝑟32

𝛼 |2) × 𝑒−[𝑅𝑒2(𝛾2)+𝐾2]𝑙2 4⁄

|1 − 𝑟31
𝛼 𝑟32

𝛼 𝑒2𝑖𝛾3𝑑|2

𝑘0

0

ℎ𝑒𝑣𝑎𝑛(𝑇, 𝑑, 𝜔) = ℎ0(𝑇, 𝜔) × ∫
𝐾𝑑𝐾

𝑘0
2

4𝐼𝑚(𝑟31
𝛼 )𝐼𝑚(𝑟32

𝛼 )𝑒2𝑖𝛾3𝑑 × 𝑒−[𝑅𝑒2(𝛾2)+𝐾2]𝑙2 4⁄

|1 − 𝑟31
𝛼 𝑟32

𝛼 𝑒2𝑖𝛾3𝑑|2

+∞

𝑘0 }
 
 
 
 

 
 
 
 

           (3.29) 
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 It is important to mention that by assuming l=0, we retrieve the equation obtained in chapter 

1, i.e. Eqs. (1.13). 

The presence of the additional term in the numerators of the transmission factors assures the 

dependence of the RHF on the correlation length l where we expect that the behavior and the 

tendencies of graphs should show dependence on l. To calculate the RHTC as function of the 

separation distance d and since we consider that the nonlocality is included in the correlation 

equation of the fluctuating currents, we use in this case the Fresnel reflection factors, i.e. the 

local equations of the reflection factors Eqs. (1.18). 

One important step in our calculations is specifying a value for the correlation l. As we 

mentioned in the introduction , the minimum value of l should be that of the lattice constant, 

and for this reason we assign different values for l:  𝑙 = (1,2, … 10)𝑟0, where 𝑟0 ≈ 1.5𝑛𝑚 is 

the lattice constant of 6H-SiC.  We then substitute with the Fresnel reflection factors in Eq. 

(3.29) to calculate in each case and for each value of l the different contributions to the RHTC 

of the EM waves of s and p polarizations as functions of d. 

We present in Fig. 3.13 the different contributions to the RHTC for the case of 𝑙 = 𝑟0. We 

notice that the saturation of the evanescent contribution of the p-polarized EM waves was 

obtained, replacing by that the infinite divergence obtained in the local case. We also notice 

that the propagative contributions of s and p-polarized EM waves and the contribution of the 

s-polarized evanescent EM waves were similar to those obtained in the local case, and their 

interpretations given in section 1.4 still apply here. To compare the variations of the graphs of 

the contributions of the evanescent waves for the different cases with the local case, we plot in 

Fig. 3.14 the total contribution of the nonlocal and the local cases; and in Fig. 3.15 we plot the 

total contributions for the nonlocal cases corresponding to the different values of l ( 𝑙 =

(1,2, … 10)𝑟0) along with the total contribution of the local case. We observe in Fig.3.14 that 

at large distances the graphs coincide and at distances of the order of the lattice constant 𝑟0 the 

nonlocal graph deviates from the diverging slope of the local case and saturation starts to take 

place as 1/K. On the other hand, in Fig. 3.15 we observe that for all l, the saturation occurs in 

a tendency sharper than that obtained in the first and the second models. As the value of l 

increases, the saturation value decreases and the distance at which the graph deviates from 

that of the local case, increases. By examining the distances at which saturation in each case 

occurs we found that they are of the order of the values of the coherence parameter l. This 

lead us to conclude that the coherence parameter l acts as a cutoff to the RHF exchanged 
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between the two 6H-SiC planes; it hence defines a finite value of the maximum RHF 

exchanged. The results of Henkel and Joulain [11] had led to the same conclusion. 

Figure 3.13: Variation of the radiative heat transfer coefficient (contributions of evanescent 

and propagative EM waves of s and p polarizations) between two semi-infinite 6H-SiC 

parallel planes of average temperature T=300K, for the third suggested nonlocal model case 

when 𝑙 = 𝑟0. 

 

Figure 3.14: Variation of the total radiative heat transfer coefficient (summation of the 

contributions of evanescent and propagative EM waves of s and p polarizations) between two 

semi-infinite 6H-SiC parallel planes of average temperature T=300K, for the local case and 

the third suggested nonlocal model case when 𝑙 = 𝑟0. 
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Figure 3.15: Variation of the total radiative heat transfer coefficient (summation of the 

contributions of evanescent and propagative EM waves of s and p polarizations) between two 

semi-infinite 6H-SiC parallel planes of average temperature T=300K, for the local case and 

the third suggested nonlocal model case when  𝑙 = (1,2, … 10)𝑟0. The arrow indicates the 

increasing order of the value of l, as well as the order of the corresponding graphs. 

 

Since the arguments of all the cases are similar, we will give the full interpretation of the 

results obtained only for the case 𝑙 = 𝑟0. Mathematically, the saturation is caused by the cutoff 

imposed by the additional exponential term 𝑒−𝐾2𝑙2 4⁄  which converges as K increase. From a 

physical point of view, the correlation length for the currents sets a cutoff for the divergence 

of the RHTC at K of the order of the inverse of this correlation length. This is due to the fact 

that the correlation of the currents at a certain scale leads to the correlation of the EM fields at 

a similar scale and the saturation of the RHF starting from distances of the order of and 

smaller than this correlation length. This implies that the contribution of the EM evanescent 

waves of large wavevectors such that  𝐾 ≥ 1 𝑙⁄   saturates and leads to the saturation of the 

total RHTC.  

The radiative transfer spectrum shows a behavior similar to that of the EM energy density 

spectrum (and specifically the electric energy density spectrum) since the latter diverges as 

1/d² as d decreases Eq. (1.19). This implies that in the nonlocal case saturation is expected. 

Henkel and Joulain [11] studied the variation of the electric energy density and they showed 

that it saturated upon introducing the coherence length l. In the local case (also corresponds to 
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the case l=0) the electric energy density is given by the following equation (see Appendix D 

for full derivation steps):  

𝑢𝐸(𝑧, 𝜔, 𝑇) =
𝜔2Θ(𝜔, 𝑇)

𝜋2𝑐3
{∫

𝐾𝑑𝐾

𝑘0|𝛾3|
[
(1 − |𝑟31

𝑠 |2) + (1 − |𝑟31
𝑝 |

2
)

2
]

𝑘0

0

+ 4 ∫
𝐾3𝑑𝐾

𝑘0
3|𝛾3|

[
𝐼𝑚(𝑟31

𝑠 ) + 𝐼𝑚(𝑟31
𝑝 )

2
] 𝑒−2𝛾3

′′𝑧
∞

𝑘0

}   (3.30) 

By assuming that l is different from zero, we repeat the derivation of the electric density 

starting from the correlation equation of the fluctuating currents given by Eq. (3.28) where we 

obtain finally the following form (see Appendix D for full derivation):  

𝑢𝐸(𝑧, 𝜔, 𝑇, 𝑙) =
𝜔2Θ(𝜔, 𝑇)

𝜋2𝑐3
{∫

𝐾𝑑𝐾

𝑘0|𝛾3|
[
(1 − |𝑟31

𝑠 |2) + (1 − |𝑟31
𝑝 |

2
)

2
] × 𝑒−[𝑅𝑒2(𝛾2)+𝐾2]𝑙2 4⁄  

𝑘0

0

+ 4 ∫
𝐾3𝑑𝐾

𝑘0
3|𝛾3|

[
𝐼𝑚(𝑟31

𝑠 ) + 𝐼𝑚(𝑟31
𝑝 )

2
]

∞

𝑘0

𝑒−2𝛾3
′′𝑧 × 𝑒−[𝑅𝑒2(𝛾2)+𝐾2]𝑙2 4⁄  }   (3.31) 

By comparing Eq. (3.30) and Eq. (3.31) we notice that they only differ by the presence of the 

term 𝑒−[𝑅𝑒2(𝛾2)+𝐾2]𝑙2 4⁄  as in Eq. (3.29). This additional term ensures the dependence of the 

electric energy density on the coherence length l. We note that by considering l=0 in Eq. 

(3.31) we retrieve Eq. (3.30) corresponding to the local case.  

To study the variation of 𝑢𝐸(𝑧, 𝜔, 𝑇, 𝑙) for large K and at small distances we derive the limit of 

Eq. (3.31) for these conditions. For large K, the limit of the electric energy density is 

dominated by the contribution of the evanescent waves, and the following limits should be 

considered: 

{
  
 

  
 lim

𝐾→∞
𝑟31

𝑠 =
𝜀1 − 1

4(𝐾 𝑘0⁄ )2

lim
𝐾→∞

𝑟31
𝑝 =

𝜀1 − 1

𝜀1 + 1
|𝛾3| ≈ 𝐾

 𝑒−2𝛾3
′′𝑧 ≈ 1 }

  
 

  
 

    (3.32) 

where the limits of the exponential functions in Eqs. (3.32) are obtained upon considering 

Taylor’s expansion. By substituting Eqs. (3.32) in Eq. (3.31), the electric energy density 

reduces into the following form:  
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𝑢𝐸(𝑧, 𝜔, 𝑇, 𝑙) =
Θ(𝜔, 𝑇)

𝜋2𝜔
𝐼𝑚 (

𝜀1 − 1

𝜀1 + 1
) ∫ 𝐾2𝑒−𝐾2𝑙2 4⁄ 𝑑𝐾

∞

𝑘0

        ( 3.33) 

Considering now the following equalities:  

{
 
 

 
 ∫ 𝐾2𝑒−𝐾2𝑙2 4⁄ 𝑑𝐾 → ∫ 𝑥2𝑒−𝑎𝑥2

𝑑𝑥 =
1

4
√

𝜋

𝑎3
𝑒𝑟𝑓(𝑥√𝑎) 

𝑎 =
𝑙2

4
𝑒𝑟𝑓(∞) = 1 }

 
 

 
 

       (3.34) 

We obtain finally the following form of the electric energy density for large K values and 

small gap distances: 

𝑢𝐸(𝑧, 𝜔, 𝑇, 𝑙) =
2Θ(𝜔, 𝑇)

𝜋2𝜔 𝑙3  
𝐼𝑚 (

𝜀1 − 1

𝜀1 + 1
)     (3.35) 

From Eq. (3.35) we notice the inverse dependence on  𝑙3 which leads us to conclude that the 

electric energy density will saturate as 1  𝑙3⁄  at short distances.  

To better interpret the obtained results, we plot the function 

𝑓(𝜔, 𝐾) = 4𝐼𝑚(𝑟31
𝑃 )2𝑒−[𝑅𝑒2(𝛾2)+𝐾2]𝑙2 4⁄  |1 − (𝑟31

𝑃 )2|2⁄  by considering d=0 for the local case 

(l=0) and the cases where 𝑙 = 1𝑟0, 3𝑟0, 6𝑟0, 8𝑟0 𝑎𝑛𝑑 10𝑟0, as shown in Fig. 3.16. We note that 

the case when l=0 corresponds to the local case. Comparing the graph of the local case and that 

of the case when 𝑙 = 𝑟0, we notice that for both spectrums the maximum values are obtained 

for 𝜔 = 𝜔𝑇𝑂 and 𝜔 = 𝜔𝐿𝑂. As K increases, the spectrum of the local case increases while that 

of the nonlocal case (𝑙 = 𝑟0) decreases in magnitude as K increases explaining by that the 

saturation obtained by the RHTC graph. Examining the other curves we notice that for any l, 

the maximum values of the spectrum are always obtained for 𝜔 = 𝜔𝑇𝑂 and 𝜔 = 𝜔𝐿𝑂 and the 

spectrum decrease as K increases. On the other side, we also notice that as l increases the range 

of values of the spectrum’s magnitude decreases; this  implies that the saturation takes place at 

smaller K and larger distances, which explains  the increase of the distance at which saturation 

of the RHTC starts (Fig. 3.15).  

As we have shown above, the saturation of the RHTC depends on the value of l where the 

distance at which the saturation started is of the order of the value of l. In order to check the 

relation between the value of the RHTC at saturation and the coherence length l, we plot the 

variation of the saturation values of the RHTC as l varies Fig. 3.17. 



73 
 

Figure 3.16:  Plot of the function 𝑓(𝜔, 𝐾) = 4𝐼𝑚(𝑟31
𝑃 )2𝑒−[𝑅𝑒2(𝛾2)+𝐾2]𝑙2 4⁄  |1 − (𝑟31

𝑃 )2|2⁄  of 

the p-polarized evanescent EM waves in the plane (,K) for the local case (l=0) and the third 

suggested nonlocal cases (𝑙 = 1𝑟0, 3𝑟0, 6𝑟0, 8𝑟0 𝑎𝑛𝑑 10𝑟0). 

 

From the plot of  Fig. 3.17 we are able to deduce a relation between the saturation value of the 

RHTC and l, depending on the inverse of l²: 

ℎ𝑟𝑎𝑑 ≈ 5.25 × 10−13 𝑙2⁄         (3.36 ) 

We notice from Fig. 3.17 that the saturation value decreases as l increases. This would lead us 

to conclude that the coherence length would not only affect the distance at which the 

saturation of the RHTC occurs, but it also affects the value of this saturation.  
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Figure 3.17: Variation of the saturation value of the RHTC between two semi-infinite parallel 

6H-SiC planes of average temperature T=300K, as function of the coherence parameter l. 

 

We are interested in the study of the variation of the RHTC of the contribution of the 

evanescent EM waves of p polarization in the large K limit. For this reason we derived 

analytically the limit of this coefficient for large K values as to finally obtain a simplified 

expression depending on the temperature parameter T and the coherence length l.  Starting 

from Eq. (3.29): 

ℎ𝑒𝑣𝑎𝑛
𝑝 (𝑇, 𝜔, 𝑑, 𝑙) = ℎ0(𝑇, 𝜔) × ∫

𝐾𝑑𝐾

𝑘0
2

4[𝐼𝑚(𝑟3𝑚
𝑝 )]

2
𝑒2𝑖𝛾3𝑑 × 𝑒−[𝑅𝑒2(𝛾2)+𝐾2]𝑙2 4⁄  

|1 − (𝑟3𝑚
𝑝

)
2
𝑒2𝑖𝛾3𝑑|

2

+∞

𝑘0

    (3.37) 

and taking into account the following limits: 

{
 
 

 
 

𝑑 ≈ 0
𝐾 ≫ 𝑘0

𝑅𝑒2(𝛾2) ≪ 𝐾

𝑟3𝑚
𝑝 ≈

𝜀𝑚 − 1

𝜀𝑚 + 1}
 
 

 
 

       (3.38) 

Eq. (3.37) becomes: 

ℎ𝑒𝑣𝑎𝑛
𝑝 (𝑇, 𝜔, 𝑙) ≈ ℎ0(𝑇, 𝜔) ×

4[𝐼𝑚(𝑟3𝑚
𝑝 )]

2

𝑘0
2 |1 − (𝑟3𝑚

𝑝
)

2
|
2 ∫ 𝐾𝑑𝐾𝑒−𝐾2𝑙2 4⁄

+∞

0

         (3.39 ) 



75 
 

Solving the integral we obtain: 

ℎ𝑒𝑣𝑎𝑛
𝑝 (𝑇, 𝑙) ≈ ∫ 𝑑𝜔

+∞

0

ℎ0(𝑇, 𝜔) ×
8[𝐼𝑚(𝑟3𝑚

𝑝 )]
2

𝑙2𝑘0
2 |1 − (𝑟3𝑚

𝑝
)

2
|
2      (3.40) 

Substituting with the expression of the reflection factor:  

ℎ𝑒𝑣𝑎𝑛
𝑝 (𝑇, 𝜔, 𝑙) ≈

8

𝑙2
∫ 𝑑𝜔

+∞

0

ℎ0(𝑇, 𝜔)

𝑘0
2 ×

[𝐼𝑚 (
𝜀𝑚 − 1
𝜀𝑚 + 1)]

2

|1 − (
𝜀𝑚 − 1
𝜀𝑚 + 1)

2

|

2      (3.41) 

To simplify the term involving the dielectric permittivity expression, we assume that 

generally  

𝜀𝑚 is given as a complex expression defined as 𝜀𝑚 = 𝜀𝑅𝑒 + 𝑖𝜀𝐼𝑚. This lead us to obtain: 

[𝐼𝑚 (
𝜀𝑚 − 1
𝜀𝑚 + 1)]

2

|1 − (
𝜀𝑚 − 1
𝜀𝑚 + 1)

2

|

2 =
[𝐼𝑚(𝜀𝑚)]2

4|𝜀𝑚|2
      (3.42) 

The final form obtained for the RHTC of the contribution of the EM evanescent waves of p 

polarization, for the limits of large K and zero distance is: 

ℎ𝑟𝑎𝑑
𝑒𝑣𝑎𝑛 𝑝(𝑇, 𝑙) ≈

8

𝑙2
∫ 𝑑𝜔

+∞

0

ℎ0(𝑇, 𝜔)

𝑘0
2 ×

[𝐼𝑚(𝜀𝑚)]2

4|𝜀𝑚|2
            (3.43) 

Eq. (3.43) shows that the simplified form of the saturation value of the RHTC depends on the 

average temperature of the system T and the coherence length l. In Fig. 3.18, we show the plot 

of ℎ𝑟𝑎𝑑
𝑒𝑣𝑎𝑛 𝑝(𝑇, 𝑙) expressed in 𝑊 𝑚−2𝐾−1 as function of the temperature average T for the 

cases where 𝑙 = 1𝑟0, 5𝑟0 𝑎𝑛𝑑 10𝑟0. From this figure, we note that for a certain value of l, 

ℎ𝑟𝑎𝑑
𝑒𝑣𝑎𝑛 𝑝(𝑇, 𝑙) increases as the temperature increases. Comparing the plots for different values 

of l, we note that for the same range of temperature variation, the magnitude of ℎ𝑟𝑎𝑑
𝑒𝑣𝑎𝑛 𝑝(𝑇, 𝑙) 

decreases as the value of the coherence length l increases. This result is expected as we can 

see in Eq. (3.43) that ℎ𝑟𝑎𝑑
𝑒𝑣𝑎𝑛 𝑝(𝑇, 𝑙) is inversely proportional to 𝑙2. 
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Figure 3.18: Variation of 𝒉𝒓𝒂𝒅
𝒆𝒗𝒂𝒏 𝒑(𝑻, 𝒍) as function of the average temperature T for the cases 

when 𝑙 = 1𝑟0, 5𝑟0 𝑎𝑛𝑑 10𝑟0. 
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Conclusions 

 

      We have shown in this chapter that applying a nonlocal model of the dielectric 

permittivity in the study of the RHTC between two semi-infinite parallel planes of 6H-SiC 

would lead to incomplete saturation that replaces the 1/d² nonphysical infinite divergence 

obtained using the local model as the separation distance d decreases. The first and the second 

nonlocal models were inspired from the model of Kliewer and Fuchs [5]. We considered in 

the first model that the transverse component of the dielectric permittivity is local, while the 

longitudinal term is local for all wavevectors smaller than the limit of the first Brillouin zone 

(FBZ), and for larger wavevectors, the longitudinal response was considered equal to one. In 

the second model a similar formalism was considered in which the transverse and the 

longitudinal components were considered equal and local for all wavevectors smaller than the 

limit of the FBZ, and considered equal to one for larger wavevectors.  

The results of these models were similar and the graph of the RHTC due to the contribution of 

the evanescent EM waves of p−polarization deviated from the infinite diverging graph 

obtained in the local case, but it showed a logarithmic divergence as the distance d decreases. 

We noticed that the limit of the FBZ affects the distance at which this deviation takes place 

where in the first model it starts at distances of the order of the lattice constant, and in the 

second model it starts at distances just before the lattice constant. The plots of the 

transmission factors in the (𝜔, 𝐾) plane for d=0 confirmed the obtained results and showed 

that the number of modes contributing to the transfer decreases (in a slow rate) as K increases 

in the nonlocal cases. We also showed that upon changing the value of the limiting 

perpendicular wavevector q after which the optical response changes from local to nonlocal, 

the value of the wavevector at which the transmission factor for d=0 decreases drastically, 

shifts in a way that it is always equal to this limiting value of q.  

      The third nonlocal model was inspired from the work of Henkel and Joulain [11] where it 

is supposed that the EM field above the dielectric medium acquires a coherence length l of the 

order or larger than the lattice constant. We showed that upon introducing this length in the 

correlation equation of the fluctuating currents, the derived RHF equation was dependent on l 

and the RHTC between the two 6H-SiC planes saturated at distances of the order of the 

coherence length l. Upon changing the value of l the saturation distance changed but in all 

cases it was equal to l. We showed that the value of the saturated RHTC decreases as the 
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value of l increases. We derived also an analytic simplified form of the saturation value of the 

RHTC due mainly to the contribution of the evanescent EM waves of p polarization. We 

found that this saturation value is inversely proportional to l² with a T-dependent coefficient. 

We found that as l increases, the values attained by the spectrum as function of T decrease. On 

the other hand, we showed that the electric energy density is dependent on l and saturates as 

1/l
3 

at very small distances. 
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Chapter 4 

4. Nonlocal model of the dielectric permittivity for 

dielectrics: Halevi−Fuchs theory 
 

 

Introduction  

 

       In this chapter we present a fourth nonlocal model of the dielectric permittivity for dielectrics. 

We study the RHT between two semi-infinite 6H-SiC parallel planes using a macroscopic nonlocal 

dielectric permittivity theory suggested by Halevi and Fuchs [1]. According to this theory, the 

nonlocal dielectric function is described by a Lorentz−Drude like single oscillator model, in which 

the spatial dispersion effects are represented by an additional term depending on the square of the 

total wave vector k. The theory takes into account the scattering of the EM excitation at the surface 

of the dielectric material, which leads to the need of additional boundary conditions (ABC) in order 

to solve Maxwell’s equations and treat the EM transmission problem. These ABC lead to the 

introduction of additional surface scattering parameters (SSP) in the expressions of the surface 

impedances. Different sets of the SSP were suggested by different authors and used in the derivation 

of the expressions of the surface impedances and the reflection factors of the EM at the surface of 

the dielectrics.  By using these derived expressions, we will show that the nonlocal modeling 

deviates from the classical 1/d
2
 law in the nanometer range at distances larger than the ones where 

quantum effects are expected to come into play. It is shown that at ultimately small distances the 

flux saturates. 

      In the first section we will explain the foundation of this model and we will present in details 

its formalism. The following section will be devoted to the results obtained along with the 

interpretations and the discussions. The conclusions will be presented in the last section. 
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4.1 Nonlocal macroscopic dielectric permittivity function theory 

 

The theory proposed by Halevi and Fuchs is based on two main physical phenomena: the 

spatial dispersion and the EM excitation at the surface of the dielectric medium. Each of these 

phenomena imposes different conditions on the equations applied in this model.  

The spatial dispersion effects affect in a direct way the expression of the dielectric 

permittivity considered in the study. One of the simplest modeling of the latter is to use the 

single oscillator model in combination with the so-called hydrodynamic model [2,3]. The 

latter model has been used in a large variety of forms and in the case considered by Halevi 

and Fuchs the dielectric permittivity is expressed as a sum over resonances, each resonance 

occurring at a particular frequency; the spatial dispersion effects, i.e. the nonlocal dielectric 

behavior, are considered as the effect of the wave-vector dependence of the resonant 

frequencies on optical properties. By this, the spatial dispersion effects were represented in 

the dielectric function expression as an additional term dependent on the square of the total 

wavevector 𝑘 (Eq. 4.1). In Halevi−Fuchs modeling, a spatial dispersion parameter 𝐷 =

ħ𝜔𝑇 (𝑚𝑒 + 𝑚ℎ)⁄  is introduced, where  𝜔𝑇 is the frequency of an isolated transition (for 

example an exciton), and  𝑚𝑒 and 𝑚ℎ are the electron and hole masses, respectively. D is 

typically related to a diffusion phenomenon of the carriers in the medium and it is 

homogeneous to the square of a velocity.  Under these assumptions, the nonlocal dielectric 

permittivity equation is given as: 

𝜀(𝜔, 𝑘) = 𝜀∞ (1 +
𝜔𝑝

2

𝜔𝑇
2 − 𝜔2 − 𝑖𝜈𝜔 + 𝐷𝑘2

)       (4.1) 

where 𝜀∞ = 6.7 is the infinite frequency permittivity representing the contribution of the ions 

of the crystal lattice to the polarization for SiC. 𝑘 is the total wavevector such that 𝑘2 = 𝐾2 +

𝑞2, K and q are, respectively,  the parallel and perpendicular wavevector components to the 

dielectric material interface. The frequency 𝜔𝑝 is a measure of the oscillator strength and 𝜈 

represents the losses parameter. In the case of 6H-SiC, the parameters in Eq. (4.1) are 

assigned the following values: 𝐷 = 1.77 × 1010𝑚2. 𝑠−2,  𝜔𝑝 = 1.049 × 1014 𝑟𝑎𝑑. 𝑠−1 , 

𝜔𝑇 = 1.49 × 1014 𝑟𝑎𝑑. 𝑠−1  and 𝜈 = 8.97 × 1011 𝑟𝑎𝑑. 𝑠−1 [4]. 

Taking into consideration the EM excitation at the surface and the nonlocality, Halevi and 

Fuchs showed that an incoming transverse EM wave gives birth not only to a single transverse 

wave in the material, as in the local case, but also to a second transverse wave and a 

supplementary longitudinal wave (Fig. 4.1). In this case, the usual boundary conditions on the 
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continuity of the tangential components of the electric field E and the magnetic field H, are 

not sufficient to solve the transmission problem of Maxwell’s equations [1,5].  To better 

explain this idea, we will discuss both the local and the nonlocal cases separately as it is first 

considered that the solutions of Maxwell's equations in the nonlocal medium are plane waves, 

and the fields depend on the vertical distance z above the nonlocal medium through the 

exponential term exp(iqz) . 

 

Figure 4.1: A schematic diagram showing the incidence of an EM wave on the interface 

separating the local medium (vacuum) from the local dielectric medium (a), and the nonlocal 

dielectric medium (b). In the former case where D=0, the incident EM wave gives birth to 

one transmitted transverse wave. In the latter case where D≠0, the incident wave gives birth 

to two transmitted transverse wave and one additional longitudinal wave (if the incident 

wave is p-polarized). 

 

In the local case, where D=0 in Eq. 4.1, there is only one solution for q corresponding to a 

transverse wave with  𝛁. 𝑬 = 0; and therefore solving for the amplitudes of the reflected and 

the  transmitted waves is done using the very known Maxwell boundary conditions, i.e. the 

continuity of the tangential components of 𝑬 and 𝑯 across the interface. 

 In the nonlocal case where D≠0, two transverse waves are born in the non-local medium, and 

if the incident wave is p-polarized there is in addition a longitudinal wave with 𝛁 × 𝑬 = 0.  In 

this case, Maxwell boundary conditions considered in the local case are insufficient to solve 

for the unknown amplitudes of the reflected wave and the three transmitted waves. This leads 

to the importance of having additional relations between the amplitudes. These relations are 

then given as ABC. 
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4.2 Formalism 

 

      In the literature, several ABC have been proposed. Halevi and Fuchs [1] have suggested a 

theory in which all ABC, typically conditions on the component of polarization or its 

derivatives at the boundary, developed by different authors are included. The advantage of 

this theory is that it includes the main nonlocal modeling developed in literature. The ABC 

take the following forms as conditions on the polarization 𝝆 at the interface [1] which allows 

obtaining relations between the amplitudes of the waves (three transmitted waves and one 

reflected wave). For the p−polarized EM, waves the ABC are given (in SI units) by: 

{𝛼𝑗ℙ(0+) + 𝛽𝑗

 ℙ𝑗(0
+)

 𝑧
= 0    𝑗 = 𝑥, 𝑧    

ℙ = 𝝆 − 𝜀0(𝜀∞ − 1)𝑬

}     (4.2) 

where  ℙ denotes the excitation polarization (for example an exciton or any resonance). It 

represents the scattered polarization components, excluding the dielectric polarization of the 

background. For s−polarized EM wave, one has a similar equation for 𝜌𝑦(𝑧). These ABC 

therefore necessitate a choice of the ratio 𝛼𝑖/𝛽𝑖 of the parameters 𝛼𝑖 and 𝛽𝑖. Different choices 

correspond to different SSP, imposed in the expressions of the surface impedances and the 

reflection factors coefficients of the system Eq. (4.3).  These parameters are related to the 

complex reflection amplitude from the surface, and they depend on the nature of the 

polarization of the EM field where 𝑈𝑦 is defined for the EM waves of s polarization, while  𝑈𝑥 

and 𝑈𝑧 are defined for the EM waves of p polarization. The U parameters have a direct 

physical interpretation as they are considered complex numbers that describe the way in 

which the excitation is reflected by the surface. Halevi and Fuchs have made a 

correspondence between the SSP values and the ABC given by different authors (see Table 1 

on page 97). 

{

𝛼𝑗

𝛽𝑗
= 𝑖 

1 − 𝑈𝑗

1 + 𝑈𝑗
         𝑗 = 𝑥, 𝑧

 = [(𝜔2 − 𝜔𝑇
2 + 𝑖ν𝜔 − 𝐷𝐾2) 𝐷⁄ ]1 2⁄

}   (4.3) 

The importance of these suggested SPP lies in the dependence of the expressions of the 

reflection factors and the surface impedances on their values. 

We proceed now to derive these expressions by first defining the wave equation given by:  

𝛁 × (𝛁 × 𝑬) + 𝜇0

2𝑫

 𝑡2
= 0        (4.4) 

with its plane-wave solution given by  
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𝑬 = 𝐸0𝑒[𝑖(𝒌.𝒓−𝜔𝑡)]            (4.5) 

while the frequency and the wavevector must satisfy the following dispersion relations for the 

transverse waves (𝑬. 𝒌 = 0) and the longitudinal waves (𝑬 × 𝒌 = 0), respectively: 

{
𝜀(𝜔, 𝒌) =

𝑘2

𝑘0
2 =

𝐾2 + 𝑞2

𝑘0
2

𝜀(𝜔, 𝒌) = 0

}             (4.6) 

In the local case where D=0 , only the transverse mode is excited so that the transverse waves 

equation will give one solution for q and the longitudinal waves equation will give no 

solutions. In this case and as we mentioned before, Maxwell’s continuity conditions are 

sufficient for the calculation of the electric field amplitude. In the nonlocal case where D≠0, 

the first equation gives two solutions, 𝑞1 and 𝑞2, while the second equation gives an 

additional third solution 𝑞3. The electric field in the non-local medium is thus given as a 

linear combination of three partial waves with 𝑞1, 𝑞2 and 𝑞3: 

𝑬(𝒓, 𝑡) = [𝑬(1)𝑒𝑖𝑞1𝑧 + 𝑬(2)𝑒𝑖𝑞2𝑧 + 𝑬(3)𝑒𝑖𝑞3𝑧]𝑒[𝑖(𝐾𝑥−𝜔𝑡)]      (4.7) 

In this case Maxwell’s continuity conditions are insufficient to calculate the ratios of the 

amplitudes needed for the calculation of the reflection factors. This leads to the need of 

proposing ABC.  

As we mentioned in the introduction, the proposed ABC and the nonlocality are presented in 

the equations as SSP on which the amplitudes of the electric field depend. To define these 

SSP, we first substitute in the wave equation Eq. (4.4) with the displacement vector using the 

following equation 𝝆 = 𝑫 − 𝜀0𝑬: 

∇2𝑬 −
1

𝑐2

2𝑬

 𝑡2
= 𝜇0

2𝝆

 𝑡2
      (4.8) 

The linear response relation between E and 𝝆 is given by:  

{
 
 
 
 

 
 
 
 𝝆(𝑧) = ∫ 𝜀0̃(𝑧, 𝑧′)

∞

0

𝑬(𝑧′)𝑑𝑧′

̃
𝑖𝑗

(𝑧, 𝑧′) = [(𝑧 − 𝑧′) + 𝑈𝑖  (𝑧 + 𝑧′)]𝛿𝑖𝑗

(𝜁) =
1

2𝜋
∫ (𝑞)𝑒𝑖𝑞𝜁

∞

−∞

𝑑𝑞       𝜁 = 𝑧 ± 𝑧′ 

(𝑞) =
𝜀(𝜔, 𝒌)

𝜀0
− 1

}
 
 
 
 

 
 
 
 

               (4.9) 

where ̃(z, z′) is the explicit form of the susceptibility tensor. It depends on the model 

considered in the study and for this model it is defined as a function of the Fourier transforms 

of the bulk susceptibility (q), (z − z′) and (z + z′). 
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(z − z′) depends only on the distance between the points r and r’ and it refers to the non-

local bulk response where the surface shows no effect when an excitation propagates directly 

from r’ to r. (z + z′) on the other hand refers to the nonlocal response of the surface as it 

depends on the distances from the surface to r and r’.  In this case the excitation propagates 

from the point r’ towards the surface, where it is reflected, and then continues to the point r, 

as illustrated in Fig. 4.2 [1]. 

 

 

      (a)                                     (b) 

Figure 4.2: A schematic diagram showing that an excitation at a point r’ produces a response 

at a point r. The bulk response (a) is direct and depends on  𝒛 − 𝒛′. The surface response (b) 

is indirect and depends on 𝒛 + 𝒛′ [1]. 

 

Eqs. (4.9) reflect the physical interpretation of the SSP and their contribution to the formalism 

as they appear in the susceptibility ̃
𝑖𝑗

 and the dependence of the amplitudes needed on the 

values of these parameters U. 

Using the nonlocal expression of the dielectric permittivity Eq. (4.1) allows calculating easily 

𝑞1, 𝑞2 and 𝑞3 , and simplifying the expressions of  (𝑞) and (𝜁):  

{
 
 

 
 (𝑞) = (

𝜀∞

𝜀0
− 1) +

𝜔𝑝
2𝜀∞ 𝜀0𝐷⁄

𝑞2 −  2

(𝜁) = (
𝜀∞

𝜀0
− 1) 𝛿(𝜁) +

𝑖𝜔𝑝
2 𝜀∞ 𝜀0⁄

2𝐷
𝑒𝑖 |𝜁|

}
 
 

 
 

        (4.10) 

We proceed now in the calculations to derive the reflection factors, of both the waves of s and 

p polarization.  

p-polarized EM wave 

 

For the EM waves of p-polarization the following conditions apply: 

{

𝐸𝑥 ≠ 0
𝐸𝑦 = 0

𝐸𝑧 ≠ 0
}    (4.11) 
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Substituting these equations in the expression of Eq. (4.7) and calculating then 𝝆 of Eq. (4.9) 

using Eq. (4.10) we obtain : 

𝜌𝑗(𝑧) = ∫ [𝜀0 (
𝜀∞

𝜀0
− 1) 𝛿(𝑧 − 𝑧′) +

𝑖𝜔𝑝
2𝜀∞

2𝐷
𝑒𝑖 |𝑧− 𝑧′| + 𝑈𝑗

𝑖𝜔𝑝
2𝜀∞

2𝐷
𝑒𝑖 |𝑧+ 𝑧′|]

∞

0

× ∑ 𝐸𝑗
()

𝑒𝑖𝑞𝑧′
𝑑𝑧′

3

=1

    𝑗 = 𝑥, 𝑧     (4.12)  

For the second term on the left-hand side we split the range of integration into two parts: from 

0 to z, and from z to . This allows us to obtain: 

𝜌𝑗(𝑧) = ∑ (𝜀∞ − 𝜀0 +
𝜔𝑝

2 𝐷⁄

𝑞2 −  2)

3

=1

𝐸𝑗
()

𝑒𝑖𝑞𝑧 −
𝜔𝑝

2𝜀∞

2𝐷
∑ (

1

𝑞 − 
+

𝑈𝑗

𝑞 + 
)

3

=1

𝐸𝑗
()

𝑒𝑖𝑧       𝑗

= 𝑥, 𝑧     (4.13)      

We continue by substituting Eqs. (4.7) and (4.13) in Eq. (4.8) while taking into consideration 

that the coefficient of the exponential term 𝑒𝑖𝑧 must vanish as for Eq. (4.8) to be satisfied for 

any z, we obtain the following equation representing the ABC allowing to calculate the 

amplitude ratios 𝐸𝑗
()

:  

∑ (
1

𝑞 − 
+

𝑈𝑗

𝑞 + 
)

3

=1

𝐸𝑗
()

= 0           𝑗 = 𝑥, 𝑧            (4.14) 

The polarization Eq. (4.13) and the excitonic polarization Eq. (4.2) could be then written as:  

{
 
 

 
 𝝆(𝑧) = ∑ 𝜀0(𝑞)

3

=1

𝑬()𝑒𝑖𝑞𝑧

ℙ(𝑧) = 𝜀∞(1 − 𝜀0) ∑ 𝑬()𝑒𝑖𝑞𝑧

3

=1

+
𝜀∞𝜔𝑝

2

𝐷
∑

1

𝑞2 −  2

3

=1

𝑬()𝑒𝑖𝑞𝑧

}
 
 

 
 

            (4.15) 

By using these equations we can easily deduce the following alternative form of the ABC 

equations:  

𝑖(1 − 𝑈𝑗)ℙ𝑗(0
+) + (1 + 𝑈𝑗)

𝑑ℙ𝑗(0
+)

𝑑𝑧
= 0     𝑗 = 𝑥, 𝑧         (4.16) 

To proceed in our derivation it is important to mention that the surface impedance of the p-

polarized waves is defined as being the ratio of the electric field and the magnetic field at the 

interface:  

𝑍𝑝 =
𝐸𝑥(0+)

𝐵𝑦(0+)
          (4.17) 
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Substituting Eqs. (4.7) and the expression of 𝜌(𝑧) given by Eq. (4.15) in the wave equation 

Eq. (4.8) we obtain its x and z components given as:  

  

{
 
 

 
 ∑ {[𝑘0

2 (1 + (𝑞)) − 𝑞
2] 𝐸𝑥

()
+ 𝐾𝑞𝐸2

()
}

3

=1

𝑒𝑖𝑞𝑧 = 0

∑ {[𝑘0
2 (1 + (𝑞)) − 𝐾2] 𝐸𝑧

()
+ 𝐾𝑞𝐸𝑥

()
} 𝑒𝑖𝑞𝑧 = 0

3

=1 }
 
 

 
 

            (4.18) 

Taking into account that these equations must be valid for any z and making use of the 

relation Eq. (4.19) between the dielectric permittivity and the susceptibility, Eqs. (4.18) are 

simplified as follows:  

𝜀

𝜀0
≡

𝜀(𝑞)

𝜀0
= 1 + (𝑞)         = 1,2,3        (4.19) 

 

{

(𝑘0
2

𝜀

𝜀0
− 𝑞

2) 𝐸𝑥
()

+ 𝐾𝑞𝐸𝑧
()

= 0

𝐾𝑞𝐸𝑥
()

+ (𝑘0
2

𝜀

𝜀0
− 𝐾2) 𝐸𝑧

()
= 0

              = 1,2,3}    (4.20) 

For each value of  the determinant of Eqs. (4.20) must vanish since 𝐸𝑥
()

and 𝐸𝑧
()

are 

nonzero:  

𝜀 (𝑘0
2

𝜀

𝜀0
− 𝐾2 − 𝑞

2) = 0             = 1,2,3                  (4.21) 

Taking into account that in this model the dielectric permittivity is given by Eq. (4.1):  

{
𝑘0

2
𝜀

𝜀0
− 𝐾2 − 𝑞

2 = 0      = 1,2 

𝜀3 = 0
}           (4.22) 

Using Eqs. (4.22) we simplify Eqs. (4.20) into the following forms:  

{
 𝐸𝑧

()
= −

𝐾

𝑞
𝐸𝑥

()
 

𝐸𝑧
(3)

=
𝑞3

𝐾
𝐸𝑥

(3)
  = 1,2}         (4.23) 

which correspond to the following conditions for the transverse waves and the longitudinal 

waves, respectively:  

{
𝒒(). 𝑬() = 0     = 1,2

𝒒(3) × 𝑬(3) = 0
}         (4.24) 

Using the Faraday law (Eq. (4.25) we calculate the magnetic field, and since for p-polarized 

waves the y-component is the only non-vanishing term given by Eq. (4.26): 
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𝛁 × 𝑬 = −
 𝑩

 𝑡
       (4.25) 

𝐵𝑦(𝑧) = −
𝑖

𝜔
(

𝑑𝐸𝑥(𝑧)

𝑑𝑧
− 𝑖𝐾𝐸𝑧(𝑧))       (4.26) 

Using Eqs. (4.7), (4.22) and (4.23) we obtain:  

𝐵𝑦(𝑧) =
𝑘0

2

𝜀0𝜔
∑

𝜀

𝑞

2

=1

𝐸𝑥
()

𝑒𝑖𝑞𝑧               (4.27) 

Since the longitudinal wave is not accompanied by a magnetic field the term  = 3 is not 

given in Eq. (4.27). Substituting Eqs. (4.7) and (4.27) in the expression of the surface 

impedance Eq. (4.18) we obtain:  

𝑍𝑝 =
𝐸𝑥

(1)
+ 𝐸𝑥

(2)
+ 𝐸𝑥

(3)

𝜀1

𝜀0
(
𝑘0

𝑞1
) 𝐸𝑥

(1)
+

𝜀2

𝜀0
(
𝑘0

𝑞2
) 𝐸𝑥

(2)
     (4.28) 

Eq. (4.28) is the general form of the surface impedance. In the local medium where only 

transverse waves are found 𝐸𝑥
(2)

= 𝐸𝑥
(3)

= 0, which implies: 

𝑍𝑝
𝑙𝑜𝑐𝑎𝑙 =

𝑞1

𝑘0
𝜀𝑙𝑜𝑐𝑎𝑙

𝜀0

=

(
𝜀𝑙𝑜𝑐𝑎𝑙

𝜀0
−

𝐾2

𝑘0
2)

1 2⁄

𝜀𝑙𝑜𝑐𝑎𝑙 𝜀0⁄
      (4.29) 

where  𝜀𝑙𝑜𝑐𝑎𝑙 = 𝜀(𝑘 = 0, 𝜔). To calculate 𝑍𝑝 for the nonlocal medium, we substitute Eqs. 

(4.23) in the ABC equations Eq. (4.14) as to first express 𝐸𝑥
(2)

 and 𝐸𝑥
(3)

 in terms of 𝐸𝑥
(1)

 to 

obtain finally: 

{
 
 

 
 ∑ 𝑎

3

=1

𝐸𝑥
()

= 0

∑ 𝑏

3

=1

𝐸𝑥
()

= 0
}
 
 

 
 

          (4.30) 

where 

{
  
 

  
 𝑎 =

1

𝑞 − Γ
+

𝑈𝑥

𝑞 + Γ

𝑏 = (
1

𝑞 − Γ
+

𝑈𝑧

𝑞 + Γ
) 𝜇          𝑙 = 1,2,3

𝜇1 = −
𝐾

𝑞1
, 𝜇2 = −

𝐾

𝑞2
 , 𝜇3 =

𝑞3

𝐾
 

}
  
 

  
 

    (4.31) 

Solving Eqs. (4.30) for the field ratios we obtain: 
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{
  
 

  
 𝐸𝑥

(2)

𝐸𝑥
(1)

=
(3,1)

(2,3)

𝐸𝑥
(3)

𝐸𝑥
(1)

=
(1,2)

(2,3)

(𝑖, 𝑗) = 𝑎𝑖𝑏𝑗 − 𝑏𝑖𝑎𝑗}
  
 

  
 

     (4.32) 

Substituting these equations in Eq. (4.28) we obtain the following form of the nonlocal 

surface impedance of p-polarized EM waves: 

𝑍𝑝 =
(1,2) + (2,3) + (3,1)

𝜀1

𝜀0
(
𝑘0

𝑞1
) (2,3) +

𝜀2

𝜀0
(
𝑘0

𝑞2
) (3,1)

     (4.33)   

The reflection factor of the p-polarized EM waves is given by the following expression: 

𝑟𝑝 =
𝑍𝑝 − 𝑍𝑝

𝐿𝑜𝑐𝑎𝑙

𝑍𝑝 + 𝑍𝑝
𝐿𝑜𝑐𝑎𝑙              (4.34) 

By substituting Eqs. (4.29) and (4.33) in Eq. (4.34) we are able to calculate the reflection 

factor at the surface of the nonlocal medium. 

s-polarized EM waves 

 

For the EM waves of s polarization we repeat the same procedure as for the p-polarized EM 

waves except that we should consider j=y and  = 1,2 and we obtain the following 

expressions for the ABC:  

{
 
 

 
 ∑ (

1

𝑞 − 
+

𝑈𝑦

𝑞 + 
)

2

=1

= 0

𝑖(1 − 𝑈𝑦)ℙ𝑦(0+) + (1 + 𝑈𝑦)
𝑑ℙ𝑦(0+)

𝑑𝑧
= 0}

 
 

 
 

      (4.35) 

To proceed in the derivation of the surface impedance expression, we should mention first 

that longitudinal waves are absent for s polarization which implies that 𝐸(3) = 0. Taking into 

consideration Eqs. (4.36), the magnetic field is given as follows:  

{

𝐸𝑥 = 0
𝐸𝑦 ≠ 0

𝐸𝑧 = 0
}    (4.36) 

𝐵𝑥(𝑧) =
𝑖

𝜔

𝑑𝐸𝑦(𝑧)

𝑑𝑧
= −

𝑞1

𝜔
𝐸𝑦

(1)
𝑒𝑖𝑞1𝑧 −

𝑞2

𝜔
𝐸𝑦

(2)
𝑒𝑖𝑞2𝑧         (4.37) 

Using Eqs. (4.7) and (4.37), the surface impedance is given by:  
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𝑍𝑠 = −
𝐸𝑦(0+)

𝐵𝑥(0+)
=

𝑘0(𝐸𝑦
(1)

+ 𝐸𝑦
(2)

)

𝑞1𝐸𝑦
(1)

+ 𝑞2𝐸𝑦
(2)

           (4.38) 

In the local medium 𝐸𝑦
(2)

= 0, this implies that:  

𝑍𝑠
𝐿𝑜𝑐𝑎𝑙 =

𝑘0

𝑞1
       (4.39) 

Using the ABC equation we calculated the needed amplitude ratio: 

𝐸𝑦
(2)

𝐸𝑦
(1)

= −
𝑎1

𝑎2
          (4.40) 

Substituting this equation in Eq. (4.38) we obtain the general form of the surface impedance 

of the nonlocal medium Eq. (4.41) which we substitute then in the expression of the reflection 

factor Eq. (4.42) to calculate its value:  

𝑍𝑠 =
𝑘0(𝑎1 − 𝑎2)

𝑞2𝑎1 − 𝑞1𝑎2
       (4.41) 

𝑟𝑠 =
𝑍𝑠 − 𝑍𝑠

𝐿𝑜𝑐𝑎𝑙

𝑍𝑠 + 𝑍𝑠
𝐿𝑜𝑐𝑎𝑙          (4.42) 

4.3 Calculation of the radiative heat transfer coefficient  

 

      As we obtained the expressions of the reflection factors of the EM waves of s and p 

polarizations in the previous section, we substitute them in Eqs. (1.13) to calculate the 

different contributions to the RHTC between two solid semi-infinite parallel planes of 6H-SiC 

as the distance between them decreases. In our calculations, we substituted with the SSP 

values given in Table 1. This table gathers the different values proposed by the different 

authors mentioned in the review paper of Halevi and Fuchs [1]. Then we repeat the RHTC 

calculation for each set of values.  

In figures 4.3−4.7 we present the plots obtained for the different contributions to the RHTC 

using the five ABC sets proposed by the different authors, and the plots of the total 

contribution to the RHTC for each ABC set in comparison with the plot of the local model. 

 

   



91 
 

Table 1 : Five different sets of surface scattering parameters proposed in literature. 

ABC 𝑼𝒙 𝑼𝒚 𝑼𝒛 

Kliewer and Fuchs [6−10]   1      1 −1 

Rimbey and Mahan [11−15] −1 −1     1 

Pekar [16−19] −1 −1 −1 

Ting et al. [9] 1 1     1 

Agarwal et al. [20−29] 0 0     0 

 

 

 

Figure 4.3: Variation of the RHTC (contributions of the evanescent and propagative EM 

waves of s and p polarizations) between two semi-infinite 6H-SiC parallel planes of average 

temperature T=300K, for the nonlocal model of Rimbey−Mahan ABC. Inset: variation of the 

total RHTC for the nonlocal model of Rimbey−Mahan ABC in comparison with the local 

model. 
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Figure 4.4: Variation of the RHTC (contributions of the evanescent and propagative EM 

waves of s and p polarizations) between two semi-infinite 6H-SiC parallel planes of average 

temperature T=300K, for the nonlocal model of Agarwal ABC. Inset: variation of the total 

RHTC for the nonlocal model of Agarwal ABC in comparison with the local model. 

 

Figure 4.5: Variation of the radiative heat transfer coefficient (contributions of the evanescent 

and propagative EM waves of s and p polarizations) between two semi-infinite 6H-SiC 

parallel planes of average temperature T=300K, for the nonlocal model of Ting ABC. Inset: 

variation of the total RHTC for the nonlocal model of Ting ABC in comparison with the local 

model. 
 



93 
 

Figure 4.6: Variation of the radiative heat transfer coefficient (contributions of the evanescent 

and propagative EM waves of s and p polarizations) between two semi-infinite 6H-SiC 

parallel planes of average temperature T=300K, for the nonlocal model of Kliewer−Fuchs 

ABC. Inset: variation of the total RHTC for the nonlocal model of Kliewer−Fuchs ABC in 

comparison with the local model. 

 

Figure 4.7: Variation of the radiative heat transfer coefficient (contributions of the evanescent 

and propagative EM waves of s and p polarizations) between two semi-infinite 6H-SiC 

parallel planes of average temperature T=300K, for the nonlocal model of Pekar ABC. Inset: 

variation of the total RHTC for the nonlocal model of Pekar ABC in comparison with the 

local model. 
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From these figures we observe that the saturation of the contribution of the p-polarized 

evanescent EM waves was attained in the five different models. We note here that as for the 

previous models, the ultimately small values of the separation distance (10
-12 

m) taken in the 

plots are nonphysical but they are considered just to show that the nonlocal matter description 

mathematically leads to a saturation value in the radiative heat transfer when the separation 

distance tends to zero. 

As we mentioned before, the contributions of the propagative waves of both s and p 

polarizations dominate at large distances only and the discussion presented in the previous 

chapters applies here also. The s-polarized evanescent term saturates in all cases and acquires 

values similar to those of the local case. 

 We will be focusing on the behavior of the evanescent p term which dominates the transfer at 

small distances and for this reason we present in Fig. 4.8 the graphs obtained of the total 

contribution term for the five different sets of the ABC as to compare between them, and in 

Fig. 4.9 we plot these graphs along with the graph of the total contribution in the local case.  

 

 

Figure 4.8: Variation of the total radiative heat transfer coefficient (RHTC) between two 

semi-infinite 6H-SiC parallel planes of average temperature T=300K, for the nonlocal model 

with the five different sets of the ABC; (1): Rimbey−Mahan, (2): Agarwal et al., (3): Ting et 

al., (4): Kliewer−Fuchs, (5): Pekar. 
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We observe from Fig. 4.8 that in the far field, i.e. at large distances (𝑑 > 200 𝑛𝑚) the graphs 

of the five nonlocal models overlap, and from Fig. 4.9 we observe that for the same distance 

range the nonlocal graphs coincide with that of the local case.  

 

Figure 4.9: Variation of the total RHTC between two semi-infinite 6H-SiC parallel planes of 

average temperature T=300K for the nonlocal model with the five different sets of the ABC, 

in comparison with the local model. 

 

This behavior is expected in this distance range as it is the domain of the local regime of the 

RHT, where a nonlocal dielectric function has the same behavior as the local one. For 

distances 10 𝑛𝑚 < 𝑑 < 200 𝑛𝑚 we observe that the RHTC increases as the curves of Ting et 

al. and Kliewer−Fuchs ABC sets no more coincide with the other graphs. At distances of the 

order of 10−8𝑚, the nonlocal graphs deviate from the 1 𝑑2⁄  asymptote and saturate at finite 

values. We observe that starting from this distance the graphs of Rimbey−Mahan, Agarwal et 

al., and Ting et al. coincide and reach the same saturation values, while those of Kliewer and 

Fuchs and Pekar coincide to saturate at smaller values. Obtaining saturation at small distances 

implies that for sufficiently large k, the reflection coefficient will tend to zero contrary to the 

local case, and by this we can say that the transfer is controlled by a critical wavevector limit 

and not by the inverse of the separation distance.  Let us consider 𝑘 ∼ 2𝜋/𝑑 at a certain 
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distance d and the condition 𝐷𝑘2 ≫ 𝜔𝑇
2  in the denominator of Eq. (4.1), we find a critical 

distance 𝑑𝑐 ∼ √𝐷4𝜋2/𝜔𝑇
2 approximately equal to 5 𝑛𝑚 for which the nonlocal behavior will 

be dominant. This distance can be seen as the distance travelled by the resonant heat carriers 

during an oscillation period at 𝜔𝑇. By studying the variation of the real and the imaginary 

parts of the dielectric permittivity function 𝜀(𝜔, 𝐾) in the (𝜔, 𝐾) plane (see Fig. 4.10), we 

notice that their values are maximum for all frequencies of the order of 𝜔𝑇. The spectrums 

obtained show no change in values as K increases until reaching a wavevector value of the 

order of  the inverse of the critical distance 𝐾 ≈ 1 𝑑𝑐⁄ ≈ 2 × 10−8 𝑚−1 where a cutoff takes 

place. We therefore conclude two main points from this discussion. The first point is that the 

diffusion parameter D and more precisely the additional term  𝐷𝑘2 act as a cutoff for the 

infinite divergence of the RHTC; in other words, the 1 𝑑2⁄  divergence was replaced by a 

saturation depending on 1 𝐷⁄ . As a matter of fact, one can show that the distance at which 

saturation of the contribution to the RHTC of the p-polarized evanescent waves start to occur 

is of the order of the distance for which the high spatial frequencies would make 𝐷𝑘2 

dominant in the denominator of the expression of the nonlocal dielectric function (see Eq. 

(4.1)). The second point is that the nonlocal behavior occurs at distances of few nanometers, 

for which in principle quantum effects are still non dominant since these effects have been 

reported at sub nanometer scale [30-33]. In this modeling, the discrete nature of the atoms is 

not taken into account which will appear for typical sizes of the order of the atomic size i.e. in 

the angstrom range. This implies that the modeling will lose its pertinence for spatial 

frequencies larger that 2𝜋/10−10 or separation distances smaller than a fraction of a 

nanometer. In the graphs representing the nonlocal model with the ABC of Ting et al. and 

Kliewer and Fuchs, we note two bumps in the graphs at distances 𝑑1 ≈ 10 𝑛𝑚 and  𝑑2 =

2 0 𝑛𝑚, respectively. It is not trivial to link these distances to the optical parameters. We 

intended then to study the influence of varying the values of the plasmon frequency, the 

diffusion parameter and the losses parameter on the bump. For this reason, we increased and 

decreased the values of these parameters by few percentages and we recalculated the 

contribution of the p-polarized EM evanescent wave to the RHTC in each case, using Kliewer 

and Fuchs, and Ting et al. ABC sets. Figs. 4.11−4.16 show the curves obtained in each case. 
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Figure 4.10: Plot of the real part (a) and the imaginary part (b) of the nonlocal dielectric 

permittivity function 𝜀(𝜔, 𝐾) in the plane (𝜔, 𝐾).The cutoff of the spectrums take place at 

𝐾 ≈ 1 𝑑𝑐⁄ . 

 

 

Figure 4.11: Variation of the bump in the curve of the contribution of the p-polarized 

evanescent EM waves to the RHTC between two semi-infinite 6H-SiC parallel planes of 

average temperature T=300K, as the value of 𝜔𝑝 changes for the nonlocal model of 

Kliewer−Fuchs ABC. Inset: zoom of the plot for 10−9𝑚 ≤ 𝑑 ≤ 10−6𝑚. 
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Figure 4.12: Variation of the bump in the curve of the contribution of the p-polarized 

evanescent EM waves to the RHTC between two semi-infinite 6H-SiC parallel planes of 

average temperature T=300K, as the value of 𝜔𝑝 changes for the nonlocal model of Ting ABC. 

Inset: zoom of the plot for 10−9𝑚 ≤ 𝑑 ≤ 10−6𝑚. 

 

Figure 4.13: Variation of the bump in the curve of the contribution of the p-polarized 

evanescent EM waves to the RHTC between two semi-infinite 6H-SiC parallel planes of 

average temperature T=300K, as the value of the diffusion parameter D changes for the 

nonlocal model of Kliewer−Fuchs ABC. The arrow indicates the increasing order of the value 

of D, as well as the order of the corresponding graphs. Inset: zoom of the plot for 5 ×
10−9𝑚 ≤ 𝑑 ≤ 5 × 10−7𝑚. 
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Figure 4.14: Variation of the bump in the curve of the contribution of the p-polarized 

evanescent EM waves to the RHTC between two semi-infinite 6H-SiC parallel planes of average 

temperature T=300K, as the value of the diffusion parameter D changes for the nonlocal model 

of Ting ABC. The arrow indicates the increasing order of the value of D, as well as the order of 

the corresponding graphs. Inset: zoom of the plot for 5 × 10−9𝑚 ≤ 𝑑 ≤ 5 × 10−7𝑚. 

 

Figure 4.15: Variation of the bump in the curve of the contribution of the p-polarized 

evanescent EM waves to the RHTC between two semi-infinite 6H-SiC parallel planes of 

average temperature T=300K, as the value of the losses parameter ν change for the nonlocal 

model of Kliewer−Fuchs ABC. The arrow indicates the increasing order of the value of ν, as 

well as the order of the corresponding graphs. Inset: zoom of the plot for 10−9𝑚 ≤ 𝑑 ≤
5 × 10−7𝑚. 
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Figure 4.16: Variation of the bump in the curve of the contribution of the p-polarized 

evanescent EM waves to the RHTC between two semi-infinite 6H-SiC parallel planes of 

average temperature T=300K, as the value of the losses parameter ν change for the nonlocal 

model of Ting ABC. The arrow indicates the increasing order of the value of ν, as well as the 

order of the corresponding graphs. Inset: zoom of the plot for 1 × 10−9𝑚 ≤ 𝑑 ≤ 5 × 10−7𝑚. 

 

Figs. 4.11 and 4.12 show that for the ABC of Kliewer and Fuchs and Ting et al., the bump 

position and width are closely related to the value of 𝜔𝑝. It is clear that as the value of 𝜔𝑝 

increases, the width of the bump decreases and its position shifts to smaller distances. On the 

other hand, when the value of 𝜔𝑝 decreases, the width of the bump increases and its position 

shifts to larger distances. Figs. 4.13 and 4.14 show that when the value of D increases, the 

position of the bump shifts to larger distances and its width increases. On the other hand, Figs. 

4.15 and 4.16 show that the width of the bump increases as the value of the losses parameter 

increases and decrease as the values of the latter decreases.  We notice also that the position 

of the bump is almost insensitive to the value of the losses parameter except for the case 

where ν decreases by 50 %, the bump shifts significantly to larger distances.  

As we mentioned above, Fig. 4.7 shows that at sub-nanometric separation distances, the 

calculated RHTC obtained with different ABC exhibit very similar behaviors. They all 

saturate to a certain value that can be considered as the ultimate radiative conductance 

between two semi-infinite parallel planes of 6H-SiC. This conductance is around 

106 𝑊𝑚−2𝐾−1, which is much smaller than the one obtained in conduction if we make a 

“rough approximation” by calculating  the ratio of the thermal conductivity of SiC (κ =
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400 𝑊𝑚−2𝐾−1) on the size of the typical distance between atoms in SiC (Si − C ≈

1.88 Å, Si − Si ≈ 2.5 Å). This means that heat transfer by radiation is always smaller than 

conduction heat transfer in the matter. This also means that when the distances are going to 

reduce as small as 1 nm, other effects such as quantum effects, that are completely different 

from EM effects described here have to be taken into account to describe the full  heat transfer 

process. As this work limits itself to radiative heat transfer, this quantum treatment is beyond 

the scope of this thesis. 

The saturation value of the thermal radiation can also be interpreted in terms of the number of 

modes coupled. Heat transfer can actually be written using Landauer formalism as a 

summation over the system eigenmodes of the product of the number of modes by the mean 

energy carried by each mode and by the transmission coefficient of the mode through the 

cavity.  Each mode of the system is determined by the angular frequency and the parallel 

wavevector and the summation is performed over these two quantities. The transmission 

coefficients are given by the following equations for the propagative and evanescent 

contributions, respectively. 

{
 
 
 

 
 
 

ℎ𝑟𝑎𝑑(𝑇, 𝑑) = ∑ ∫ 𝑑𝜔ℎ0(𝑇, 𝜔)

+∞

0𝛼=𝑆,𝑃

∫
𝐾𝑑𝐾

𝑘0
2

∞

0

𝜏(𝜔, 𝐾)

𝜏(𝜔, 𝐾 < 𝜔/𝑐) =
(1 − |𝑟31

𝛼 |2)(1 − |𝑟32
𝛼 |2)

|1 − 𝑟31
𝛼 𝑟32

𝛼 𝑒2𝑖𝛾3𝑑|2

𝜏(𝜔, 𝐾 > 𝜔/𝑐) =
4𝐼𝑚(𝑟31

𝛼 )𝐼𝑚(𝑟32
𝛼 )𝑒2𝑖𝛾3𝑑

|1 − 𝑟31
𝛼 𝑟32

𝛼 𝑒2𝑖𝛾3𝑑|2 }
 
 
 

 
 
 

    (4.43) 

Finally, after integration over 𝜔 and K, the RHTC can be seen as the total number of coupled 

modes per surface unit multiplied by the quantum of the thermal conductance
2 2

0 3bg k T h ; 

this value represents the rate at which heat is transported by a bosonic carrier channel. 

Therefore the number of modes per surface unit at 300 K can be estimated and is around 3 

x10
15

 coupled modes per m
2
. 

In order to understand which modes contribute to the RHT when the two SiC surfaces are 

approached one to another, we plot the transmission coefficient for the evanescent EM waves 

of p polarization 4(𝐼𝑚(𝑟31
𝑃 ))2𝑒2𝑖𝛾3𝑑 |1 − (𝑟31

𝑃 )2𝑒2𝑖𝛾3𝑑|
2

⁄  at different separation distances for 

the local model and the nonlocal models with the five different ABC sets. The transmission 

coefficient plots in the (𝜔, 𝐾) plane are reported in Figs., 4.17−4.21. We observe from the 

above figures that all the curves of the nonlocal models show similar behavior.  For a 

separation distance of 100 nanometers, the transmission coefficients in the nonlocal cases and 
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the local case have similar tendencies. The modes very well coupled (𝜏 = 1) are the ones 

corresponding to coupled surface phonon-polaritons of SiC in the cavity. For the local 

dielectric modeling case, the transmission coefficient map has a similar shape when the 

separation distance is reduced except that more and more modes contribute to the transfer. We 

see that the same map shape is obtained as long as we increase the parallel wavevector scale 

as the inverse of the separation distance. This explains why the transfer increases as 1/d
2
 and 

why the spectral contributions to the transfer are always occurring at the same frequencies. 

Indeed, as the separation distance decreases, the shape of the transfer spectrum does not 

change except that the scale increases as 1/d
2
 which explains the infinite divergence obtained 

of the
 
plot of the RHTC. This spectrum is narrow and the transfer occurs around surface-

polaritons frequencies. 

On the other hand, the cases of the nonlocal modeling of the dielectric function show a 

somewhat different behavior. We note that most of the transfer still occurs around phonon-

polariton angular frequencies. However, by decreasing the distance, the transmission 

coefficient map starts to show a clear cut-off in the parallel wavevector. Contrary to the local 

case, for separation distances below 1 nanometer, the transmission coefficient maps do not 

change. We note that the angular frequency domain at which the transfer occurs broadens. 

Moreover, there are no modes able to well couple for parallel wavevector larger than few 

hundreds of k0. 
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Figure 4.17:  Plot of the transmission coefficient 4(𝐼𝑚(𝑟31
𝑃 ))2𝑒2𝑖𝛾3𝑑 |1 − (𝑟31

𝑃 )2𝑒2𝑖𝛾3𝑑|
2

⁄  of 

the p-polarized evanescent EM waves in the plane (ω,K) for the local model (a) and the 

nonlocal model of Rimbey−Mahan ABC (b) at different separation distances 𝑑. 



104 
 

Figure 4.18:  Plot of the transmission coefficient 4(𝐼𝑚(𝑟31
𝑃 ))2𝑒2𝑖𝛾3𝑑 |1 − (𝑟31

𝑃 )2𝑒2𝑖𝛾3𝑑|
2

⁄  of 

the p-polarized evanescent EM waves in the plane (ω,K) for the local model (a) and the 

nonlocal model of Agarwal ABC (b) at different separation distances 𝑑. 
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Figure 4.19:  Plot of the transmission coefficient 4(𝐼𝑚(𝑟31
𝑃 ))2𝑒2𝑖𝛾3𝑑 |1 − (𝑟31

𝑃 )2𝑒2𝑖𝛾3𝑑|
2

⁄  of 

the p-polarized evanescent EM waves in the plane (ω,K) for the local model (a) and the 

nonlocal model of Ting ABC (b) at different separation distances 𝑑. 
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Figure 4.20:  Plot of the transmission coefficient 4(𝐼𝑚(𝑟31
𝑃 ))2𝑒2𝑖𝛾3𝑑 |1 − (𝑟31

𝑃 )2𝑒2𝑖𝛾3𝑑|
2

⁄  of 

the p- polarized evanescent EM waves in the plane (ω,K) for the local model (a) and the 

nonlocal model of  Kliewer and Fuchs ABC (b) at different separation distances 𝑑. 
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Figure 4.21:  Plot of the transmission coefficient 4(𝐼𝑚(𝑟31
𝑃 ))2𝑒2𝑖𝛾3𝑑 |1 − (𝑟31

𝑃 )2𝑒2𝑖𝛾3𝑑|
2

⁄  of 

the p-polarized evanescent EM waves in the plane (ω,K) for the local model (a) and the 

nonlocal model of Pekar ABC (b) at different separation distances 𝑑. 
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4.4 Study of the radiative transfer spectrum and the electromagnetic energy 

density 

   

       We studied the variation of the radiative transfer spectrum and the EM energy density 

(the 1−surface case) for each case of the nonlocal model, Figs. 4.22−4.26. From these figures 

we observe that the spectra broaden and saturate as the distance is reduced, contrary to the 

plots obtained for the local case in chapter 1 (Fig. 1.8) where the width of the graph shortens 

and shows a narrow peak around the angular frequency of the surface waves. We also show 

that the radiative heat transfer spectrum is very similar to the energy density spectrum. This is 

not surprising since this last quantity is directly proportional to the local density of EM states 

(LDOS) and the radiative heat transfer spectrum is also related to the LDOS [5]. For the 

nonlocal models of Kliewer and Fuchs and Ting et al. ABC, the plot of the spectral energy 

flux at distances 𝑑 = 10−9𝑚 and 10−12𝑚, show a bump at an angular frequency less than 

that of the surface waves. This feature is definitely related to the bump obtained in the curves 

of the RHTC.   By comparing the spectra of the different nonlocal models with the ones of the 

local model, one may advance that taking into account the nonlocality of the dielectric 

permittivity function decreases the degree of coherence of the radiated EM field in the near 

field. After showing the importance of the parameter D in the saturation of the RHTC at small 

distances where it acts as a cutoff of the divergence, we aimed to study the effects of changing 

the value of the D on the energy density spectra. We present in Figs. 4.27− 4.31 the plots of 

the spectral energy flux and the spectral EM energy density of the p-polarized evanescent EM 

waves at distance 𝑑 = 10−12𝑚 as D changes values for the nonlocal cases of the five 

different ABC.  

By comparing the magnitudes and the widths of the obtained graphs of the spectral energy 

flux, we note that for all the ABC, the spectral energy density is inversely proportional to D. 

In other words, as the value of D increases, the magnitude and the width of the spectral flux 

decrease. We also notice that for any D, the bump shown in the plots of the RHTC and the 

Kliewer−Fuchs and Ting et al. ABC is shown in the plots of the spectral energy flux for any 

D, which is consistent with the results shown in Figs. 4.12 and 4.13.   The same argument 

applies for the spectral EM energy density for all the ABC sets considered. By normalizing 

the magnitudes of the graphs of the spectral energy flux of Kliewer and Fuchs ABC, we are 

able to retrieve one single graph corresponding to the original value of D. This means that the 

heat transfer saturation value is also inversely proportional to D. 
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Figure 4.22: Plots of the spectral energy flux (a) and the spectral EM energy density (b) of 

the p-polarized evanescent EM waves as function of the angular frequency for the nonlocal 

model of Rimbey−Mahan ABC at different distances d and average temperature T=300K. 
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Figure 4.23: Plots of the spectral energy flux (a) and the spectral EM energy density (b) of 

the p-polarized evanescent EM waves as function of the angular frequency for the nonlocal 

model of Agarwal ABC at different distances d of average temperature T=300K. 
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Figure 4.24: Plots of the spectral energy flux (a) and the spectral EM energy density (b) of 

the p-polarized evanescent EM waves as function of the angular frequency for the nonlocal 

model of Ting ABC at different distances d and average temperature T=300K. 
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Figure 4.25: Plots of the spectral energy flux (a) and the spectral EM energy density (b) of 

the p-polarized evanescent EM waves as function of the angular frequency for the nonlocal 

model of Kliewer−Fuchs ABC at different distances d and average temperature T=300K. 
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Figure 4.26: Plots of the spectral energy flux (a) and the spectral EM energy density (b) of 

the p-polarized evanescent EM waves as function of the angular frequency for the nonlocal 

model of Pekar ABC at different distances d and average temperature T=300K. 
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Figure 4.27: Plots of the spectral energy flux (a) and the spectral EM energy density (b) of 

the p-polarized evanescent EM waves as functions of the angular frequency, at 𝑑 = 10−12𝑚 

and T=300K, for different values of the parameter D for the nonlocal model of 

Kliewer−Fuchs ABC. The curves show that the energy densities are inversely proportional to 

D. The arrow indicates the increasing order of the value of D, as well as the order of the 

corresponding curves. 

 

Figure 4.28: Plots of the spectral energy flux (a) and the spectral EM energy density (b) of 

the p-polarized evanescent EM waves as functions of the angular frequency, at 𝑑 = 10−12𝑚 

and T=300K, for different values of the parameter D for the nonlocal model of 

Rimbey−Mahan ABC. The graphs show that the energy densities are inversely proportional to 

D. The arrow indicates the increasing order of the value of D, as well as the order of the 

corresponding curves. 
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Figure 4.29: Plots of the spectral energy flux (a) and the spectral EM energy density (b) of 

the p-polarized evanescent EM waves as functions of the angular frequency, at 𝑑 = 10−12𝑚 

and T=300K, for different values of the parameter D for the nonlocal model of Pekar ABC. 

The curves show that the energy densities are inversely proportional to D. The arrow indicates 

the increasing order of the value of D, as well as the order of the corresponding curves. 

 

 

Figure 4.30: Plots of the spectral energy flux (a) and the spectral EM energy density (b) of 

the p-polarized evanescent EM waves as functions of the angular frequency, at 𝑑 = 10−12𝑚 

and T=300K, for different values of the parameter D for the nonlocal model of Ting ABC. 

The curves show that the energy densities are inversely proportional to D. The arrow indicates 

the increasing order of the value of D, as well as the order of the corresponding curves. 
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Figure 4.31: Plots of the spectral energy flux (a) and the spectral EM energy density (b) of 

the p-polarized evanescent EM waves as functions of the angular frequency, at 𝑑 = 10−12𝑚 

and T=300K, for different values of the parameter D for the nonlocal model of Agarwal ABC. 

The curves show that the energy densities are inversely proportional to D. The arrow indicates 

the increasing order of the value of D, as well as the order of the corresponding curves. 
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Conclusions 

 

 

We have studied in this chapter RHT between two semi-infinite parallel dielectric 6H-SiC 

planes taking into account the nonlocal corrections in the material optical properties.  We 

chose to follow Halevi and Fuchs nonlocal dielectric permittivity function theory that 

considers scattering of the EM excitation at the surface of the dielectric material. This 

assumption leads to defining additional boundary conditions (ABC) needed to solve the 

transmission problem in Maxwell’s equations. Different ABC were considered and they 

appear as additional surface scattering parameters in the derived expressions of the surface 

impedances and reflection factors.  

Taking into account the spatial dispersion that is given as an additional term depending on 

the square of the total wavevector and multiplied by a diffusion parameter D in the dielectric 

permittivity function, we studied the different nonlocal cases to calculate the RHTC between 

the 6H-SiC planes. We showed that for separation distances between few nanometers and few 

hundreds of nanometers, the RHTC follows a 1/d
2 

dependence law identical for both nonlocal 

and local material optical responses. On the other hand, at distances of few nanometers, the 

RHTC calculated with nonlocal modeling deviates from the 1/d
2
 law and saturation starts 

taking place. The heat transfer spectrum is also broadened when compared to the local case 

and we were able to show that the diffusion parameter D acts as a cutoff for the divergence of 

the RHTC obtained using the local model case. 

      Different features are revealed from the RHTC plots, as two bumps appeared for the 

cases of Kliewer and Fuchs and Ting et al. ABC. We studied the effects of varying the values 

of the different parameters of the model on the position and the width of these bumps by 

demonstrating the related plots. We showed that as the value of 𝜔𝑝 increases, the width of the 

bump decreases and its position shifts to smaller distances; while as the value of 𝜔𝑝 

decreases, the width of the bump increases and its position shifts to larger distances. On the 

other hand, when the value of D increases, the position of the bump shifts to larger distances 

and its width increases. We also showed that the width of the bump increases as the value of 

the losses parameter increases, and decreases as the values of the latter decreases. We noticed 

also that the value of the losses parameter did not affect the position of the bump, except for 

the case where ν decreases by 50 %, the bump shifts significantly to larger distances. One of 

the most important features of our study is that the saturation of the radiative heat flux in the 
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nonlocal case is obtained for distances much smaller than the atomic size where the modeling 

presented here more likely ceases to be valid. At sub nanometer scale, heat transfer by 

electromagnetic waves probably ceases to be the dominant transfer modes and quantum 

effects enter into play leading to a transition between radiation and conduction.  

We also studied the variation of the spectral energy flux and the EM energy density at 

different distances for the nonlocal models of the five different sets of the ABC considered 

and we showed that the energy densities increase as the distances decreases and the transfer 

spectrum broadens; the transfer is proportional to the LDOS. On the other hand, we studied 

the effect of varying the value of the diffusion parameter D on the variation of the energy 

densities by demonstrating their plots for each case. We showed that the energy densities are 

inversely proportional to the diffusion parameter. 

In future works, we will have to compare our theoretical results with experimental 

measurements of near field thermal radiation. This would allow us to determine at the same 

time the distance at which the RHT stops to be the dominant heat transfer mode (below 1 

nanometer) as well as the distance where local medium approximation becomes not valid (few 

nanometers). Experimental measurements could also be a way to choose between the different 

ABC that are suggested in the literature. The existence or non-existence of “bumps” could 

eliminate some of the modeling approaches and suggest a consistent nonlocal model for the 

dielectric permittivity function of dielectric materials. 
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Chapter 5 

5. Lindhard−Mermin nonlocal model for n-doped 

semiconductors 

 

 

Introduction 

 

       In this chapter we study the RHTC between two semi-infinite parallel solid planes of n-

doped Si when the distance between them tends to zero. We conduct this study by using first 

the local model of the dielectric permittivity where we show, as shown and discussed in 

previous chapters, that the infinite divergence is obtained due to the contribution of the p-

polarized evanescent EM waves. Then we will repeat our calculations by considering a 

nonlocal model of the dielectric permittivity and for this reason, we will apply the Lindhard-

Mermin nonlocal theory of the dielectric permittivity to our system. We will show that 

saturation of the RHTC is obtained at very small distances, in contrary to the results obtained 

for the local case. 

        One particular characteristic acquired by the n−doped Si material is the possibility of 

tuning its dielectric permittivity by modifying the carrier concentration N [1]. This allows to 

tune the plasma frequency and therefore the frequency where the material enters into 

resonance, leading to important different applications in different technological domains. 

Being n−doped, this Si material acquires extra electrons in its conduction band resulting in 

changing its properties to approach those of metals.  

       Due to the fact that the n-doped Si characteristics are very close to those of metals, we 

apply the same dielectric permittivity model we apply to metals (Chapter 2) in our study of 

the RHTC between two semi-infinite parallel planes of n−doped Si as the distance between 

them tends to zero. By repeating the study for different doping levels, our results show 

saturation of the RHTC upon applying this nonlocal model which lead us to conclude that the 

radiation is driven by the plasmons at the surface and the saturation starts at distances of the 

order of the Thomas−Fermi length.  
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5.1 Theory of the local model of the dielectric permittivity 

 

       In this section, we present the theory of the local dielectric permittivity used in the study 

of the RHT between the two heavily n-doped Si planes (see Fig. 1.5) of average temperature 

T=300K (𝑇1 = 300.5𝐾 and 𝑇2 = 299.5𝐾 ). In the infrared domain, the local dielectric 

permittivity of n-doped Si is given by the well-known Drude expression [1]: 

𝜀(𝜔) = 𝜀∞ (1 −
𝜔𝑝

2 

𝜔(𝜔 + 𝑖
𝜏⁄ )

)    (5.1) 

𝜀∞ = 11.7 is the static permittivity, 𝜔𝑝 is the plasmon frequency given by 𝜔𝑝
2 =

𝑁𝑒2 𝑚∗𝜀∞𝜀0⁄  , where 𝜀0 = 8.854 × 10−12𝐹. 𝑚−1 is the vacuum permittivity, N is the doping 

concentration, 𝑚∗ = 0.27 × 𝑚0 is the electron effective mass, 𝑚0 = 9.109 × 10−31𝐾𝑔 is the 

free electron mass, 𝑒 = 1.602 × 10−19 𝐶 is the electron charge. 𝜏 is the relaxation time or the 

inverse of the loss factor  defined as   = 1 𝜏⁄ = 𝑁𝑒2𝜌 𝑚∗⁄  where  𝜌 is the electric 

resistivity of the doped Si [1]. 

5.1.1 Formalism 

 

         In our calculations we considered three different values of the doping concentration: 

𝑁 = 1019𝑐𝑚−3, 1020𝑐𝑚−3 and 1021𝑐𝑚−3 , and the values of the electric resistivity 𝜌 were 

obtained graphically from the graphs given by references [1,2] as the resistivity depends on 

the value of N. We therefore deduced the value of 𝜏 for each concentration Fig. 5.1. 

To calculate the RHTC between the two n-doped Si given by Eq. (1.13), we should first 

substitute with the expressions of the reflection factors at the surface. As we did in all the 

local theories we studied, we consider the reflection factors given by Fresnel equations and 

defined in chapter 1: Eqs. (1.18).  

5.1.2 Calculation of the radiative heat transfer coefficient 

 

        For each value of N, we substituted with the equations of the dielectric permittivity Eq. 

(5.1) and the reflection factors Eqs. (1.15)  in Eqs. (1.13) to calculate the RHTC for both s and 

p-polarized EM waves. In Figs. 5.2, 5.3, and 5.4 we show the plots of the different 

contributions to the RHTC between the two n-doped Si semi-infinite parallel planes. 
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Figure 5.1: Resistivity of Si at T=300K as a function of acceptor and donor concentration [2]. 

 

 

Figure 5.2: Variation of the RHTC (contributions of the evanescent and propagative EM 

waves of s and p polarizations) as function of the distance between two semi-infinite n-doped 

Si parallel planes of doping concentration 𝑁 = 1019𝑐𝑚−3 and average temperature T=300K, 

for the local model case. 
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Figure 5.3: Variation of the RHTC (contributions of the evanescent and propagative EM 

waves of s and p polarizations) as function of the distance between two semi-infinite n-doped 

Si parallel planes of doping concentration 𝑁 = 1020𝑐𝑚−3 and average temperature T=300K, 

for the local model case. 

 

Figure 5.4: Variation of the RHTC (contributions of the evanescent and propagative EM 

waves of s and p polarizations) as function of the distance between two semi-infinite n-doped 

Si parallel planes of doping concentration 𝑁 = 1021𝑐𝑚−3 and average temperature T=300K, 

for the local model case. 



125 
 

From these figures we notice that the evanescent contribution of the EM waves of p-

polarization increases infinitely as d decreases in all the cases, and it dominates the transfer at 

very short distances. The values reached by this contribution at short distances decrease, as 

the value of the doping concentration increases.  Concerning interpretation of the behavior of 

this contribution, as well as the other contributions (and the distance ranges at which they 

dominate), the argument given for the case of Aluminum (chapter 1) applies for them with the 

note here that the resonance frequency at which the surface plasmon-polaritons are excited is 

≈ 𝜔𝑝 . By comparing the variations of the propagative s and p-polarized contributions in the 

different cases, we notice that their values decrease as N increases. The evanescent 

contribution of the s-polarized EM waves showed relatively equal magnitudes for the cases 

𝑁 = 1019𝑐𝑚−3𝑎𝑛𝑑 1020𝑐𝑚−3, but it increased by almost an order for ten for the case 

𝑁 = 1021𝑐𝑚−3. These results show the dependence of the RHTC on the value of the doping 

concentration which could be also concluded from the dependence of 𝜔𝑝 on N.  The 

contribution of the evanescent waves of p-polarization also varied with the doping 

concentration N and since this contribution dominates the transfer at small distances, we plot 

in Fig. 5.5 the total contributions to the RHTC for the different values of N.  

Figure 5.5: Variation of the total RHTC (summation of the contributions of the evanescent 

and propagative EM waves of s and p polarizations) as function of the distance between two 

semi-infinite n-doped Si parallel planes of average temperature T=300K and of doping 

concentration  𝑁 = 1019cm−3, 1020cm−3and 1021cm−3, for the local model case. 
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We notice in Fig. 5.5 that at large distances the total contribution to the RHTC decreased as N 

increased in value. As the distance decreased we notice that the maximum contribution was 

attained for the case where 𝑁 = 1019cm−3, and the minimum contribution was attained for 

the case where 𝑁 = 1021𝑐𝑚−3. We interpret these observations by examining the dependence 

of the plasmon frequency on the doping level N. For each value of N corresponds a different 

value of 𝜔𝑝. It is clear from the relation between them that 𝜔𝑝 increases as the value of N 

increases. This implies that as the value of 𝜔𝑝 vary within the Planck range, the corresponding 

spectrum shows a similar behavior as Planck spectrum; i.e. the spectrum will increase as the 

value of 𝜔𝑝 increases, until reaching a maximum, after which it decreases in magnitude. For 

this reason, we observed that the highest values of the RHT are attained for the doping 

level 𝑁 = 1020cm−3 , after which the spectrum decreases as N increases in values. 

5.2.3 Study of the contribution of the surface-plasmon polaritons 

 

     Rousseau et al. [3,4] studied the contribution of the surface-plasmon polaritons to the 

RHTC between two highly n-doped Si planes ℎ𝑟𝑎𝑑
𝑠𝑝𝑝

, and they were able to derive an accurate 

asymptotic expression of this contribution at nanometric distances where the electrostatic 

limit is valid Eqs. (5.2) [3,4]. They were also able to specify the doping concentration N 

needed to maximize the RHTC between the two planes [4].  

{
 
 

 
 ℎ𝑟𝑎𝑑

𝑠𝑝𝑝(𝑢, 𝑇, 𝑑) =
𝛿𝐺(𝑇, 𝑁)

𝑑2

𝛿𝐺(𝑇, 𝑁) =
𝑘𝐵

2𝑇

2𝜋ℎ
∫ 𝑑𝑢

𝑢2𝑒𝑢

(𝑒𝑢 − 1)2

∞

0

𝐼𝑚(𝑟̃31
𝑝 )𝐼𝑚(𝑟̃32

𝑝 )

𝐼𝑚(𝑟̃31
𝑝 𝑟̃32

𝑝 )
𝐼𝑚[𝐿𝑖2(𝑟̃31

𝑝 𝑟̃32
𝑝 )]

}
 
 

 
 

(5.2) 

where 𝐿𝑖2 is the polylogarithm function of second order (check Appendix E), and 

{
 
 

 
 𝑢 =

ћ𝜔

𝑘𝐵𝑇

𝑟̃3𝑚
𝑝

=
𝜀(𝑢) − 1

𝜀(𝑢) + 1}
 
 

 
 

   (5.3) 

Since our system consists of two identical planes, 𝛿𝐺(𝑇, 𝑁) becomes: 

𝛿𝐺(𝑇, 𝑁) =
𝑘𝐵

2𝑇

2𝜋ℎ
∫ 𝑑𝑢

𝑢2𝑒𝑢

(𝑒𝑢 − 1)2

∞

0

[𝐼𝑚(𝑟̃3𝑚
𝑝 )]

2

𝐼𝑚(𝑟̃3𝑚
𝑝 )

2 𝐼𝑚 [𝐿𝑖2(𝑟̃3𝑚
𝑝 )

2
]    (5.4) 

Since the dielectric permittivity, and consequently the reflection factor are dependent on the 

doping concentration N, Rousseau et al. [4] plotted the variation of 𝛿𝐺(𝑇, 𝑁) as a function of 
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N and T. We also plotted the behavior of 𝛿𝐺(𝑇, 𝑁) as T varies for different N (Fig. 5.6) and  

as N varies for different T (Fig. 5.7). 

 

Figure 5.6:  Variation of 𝛿𝐺(𝑇, 𝑁) as the average temperature T varies for the three different 

doping concentrations considered in the calculation of the RHTC between the n-doped Si 

semi-infinite parallel planes. 

 

 

Figure 5.7:  Variation of 𝛿𝐺(𝑇, 𝑁) as the doping concentration varies for different average 

temperatures T. 
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Fig. 5.6 shows the variation of 𝛿𝐺(𝑇) as a function of the temperature T for the cases where 

𝑁 = 1019 𝑐𝑚−3, 1020 𝑐𝑚−3 and 1021 𝑐𝑚−3. By comparing the curves we notice that for each 

doping concentration, 𝛿𝐺(𝑇, 𝑁) increases as T increases until reaching a maximum value after 

which it starts to decrease. We notice that the maximum point shifts to the right as the doping 

concentration increases, i.e. the temperature at which the maximum of 𝛿𝐺(𝑇, 𝑁) occurs 

increases with the increase of N. We observe for the case 𝑁 = 1021 𝑐𝑚−3 that the magnitude 

of the graph is less than those of the other graphs. 

 In Fig. 5.7 we observe that for temperature T=100K and 300K,  𝛿𝐺(𝑇, 𝑁) decreases as N 

increases. For the case where T=500K, the graph increases in values till reaching its 

maximum at 𝑁 ≈ 5 × 1019𝑐𝑚−3, after which it decreases. The same behavior is observed for 

the graph corresponding to the case where T=800K, except that the maximum of this graph is 

reached at 𝑁 ≈ 2 × 1020𝑐𝑚−3. For the case where T=1000K, the curve increases till reaching 

its maximum at large doping concentration, 𝑁 ≈ 5 × 1020𝑐𝑚−3, after which the values 

decrease only slightly.   Rousseau et al. [4] plotted such a curve for the case where T=300K 

and our results are similar. We notice that the concentration at which 𝛿𝐺(𝑇, 𝑁) attains its 

maximum value shifts to the right, i.e. to higher values as the temperature increases. We can 

therefore conclude that for any temperature T and doping level N, corresponds a plasmon 

frequency that lies in the spectral range, and relates to the optimum resonance and the 

maximum transfer.  

      We have shown in this section that the RHTC between two n-doped Si semi-infinite 

parallel planes diverges at small distances upon considering a local model of the dielectric 

permittivity; and for this reason, we will repeat our calculations in the following section by 

considering a nonlocal model of the dielectric permittivity.  

5.2 Theory of the nonlocal model of the dielectric permittivity: 

Lindhard−Mermin nonlocal model 

 

       In this section, we aim to repeat the calculation of the RHTC between two n-doped Si 

semi-infinite parallel planes by considering a nonlocal model of the dielectric permittivity in 

our study. As we mentioned in the introduction, the highly n-doped Si acquire characteristics 

similar to those of metals, and for this reason, we chose to apply the Lindhard-Mermin 

nonlocal model of the dielectric permittivity [5-8].  
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5.2.1 Formalism 

 

     In chapter 2 we mentioned that the Lindhard-Mermin model of the nonlocal dielectric 

permittivity is the most studied nonlocal model for the case of metals and we used it in the 

studying the case of Aluminum.  

For our system consisting of two semi-infinite parallel solid n-doped Si planes, the equations 

of the longitudinal and transverse components of the nonlocal dielectric permittivity are given 

as follows: 

{
 
 

 
 𝜀𝐿𝑀

𝑙 (𝜔, 𝑧) = 𝜀∞ +
3 𝜀∞𝜔𝑝

2 

𝜔 + 𝑖
 

𝑢2

{𝜔 + 𝑖 [𝑓𝑙(𝑧, 𝑢) 𝑓𝑙(𝑧, 0)⁄ ]}

𝜀𝐿𝑀
𝑡 (𝜔, 𝑧) = 𝜀∞ −

𝜀∞𝜔𝑝
2 

𝜔2(𝜔 + 𝑖)
{𝜔[𝑓𝑡(𝑧, 𝑢) − 3𝑧2𝑓𝑙(𝑧, 𝑢)] + 𝑖[𝑓𝑡(𝑧, 0) − 3𝑧2𝑓𝑙(𝑧, 0)]}

}
 
 

 
 

   (5.5) 

With   

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝑧 = 𝑘 2𝑘𝐹⁄

𝑢 = (𝜔 + 𝑖) 𝑘𝜐𝐹⁄

𝜐𝐹 = √
2

𝑚∗
𝑘𝐵𝑇 log

𝑁

𝑁𝑐

𝑁𝑐 = 2(𝑚∗𝑘𝐵𝑇 2𝜋ћ2⁄ )3 2⁄

𝑘𝐹 = 𝑚∗𝜐𝐹 ћ⁄

𝑓𝑙(𝑧, 𝑢) = 1
2⁄ + [1 − (𝑧 − 𝑢)2 8𝑧⁄ ] ln(𝑧 − 𝑢 + 1 𝑧 − 𝑢 − 1⁄ ) +

[1 − (𝑧 + 𝑢)2 8𝑧⁄ ]𝑙𝑛(𝑧 + 𝑢 + 1 𝑧 + 𝑢 − 1⁄ )

𝑓𝑡(𝑧, 𝑢) = 3
8⁄ (𝑧2 + 3𝑧2 + 1) − {3 [1 − (𝑧 − 𝑢)2]2 32𝑧⁄ }𝑙𝑛(𝑧 − 𝑢 + 1 𝑧 − 𝑢 − 1⁄ ) −

{3 [1 − (𝑧 + 𝑢)2]2 32𝑧⁄ }𝑙𝑛(𝑧 + 𝑢 + 1 𝑧 + 𝑢 − 1⁄ )

𝑓𝑙(𝑧, 0) = 1
2⁄ + (1 − 𝑧2 4𝑧⁄ )𝑙𝑛|𝑧 + 1 𝑧 − 1⁄ |

𝑓𝑡(𝑧, 0) = 3
8⁄ (𝑧2 + 1) − [3(1 − 𝑧2)2 16𝑧⁄ ]𝑙𝑛|𝑧 + 1 𝑧 − 1⁄ | }

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 (5.6)    

where 𝜐𝐹 is the Fermi velocity, 𝑘𝐹 is the Fermi wavevector, and 𝑁𝑐  is the density of the 

carriers in the conduction band. For T=300K, 𝑁𝑐 ≈ 3.5 × 1018𝑐𝑚−3. It is important to note 

here that the main difference between applying the Lindhard−Mermin model for metals and 

applying it for n-doped Si is the dependence of the Fermi velocity 𝜐𝐹 on the doping 

concentration N in the case of Si, where for metals it is a constant. This constitutes the main 

reason for us to predict the strong dependence of the results we obtain on the concentration 

level N.  
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5.2.2 Calculation of the radiative heat transfer coefficient  

 

      The reflection factors needed to calculate the RHTC in this case, are given by the general 

equations Eqs. (1.15), and the equations of the surface impedances are also given by the 

general forms Eqs. (1.16). By substituting these equations in the RHTC equations (Eqs. 

(1.13)), we obtained the different contributions to the RHTC as the distance d decreases, for 

the cases where 𝑁 = 1019 𝑐𝑚−3, 1020 𝑐𝑚−3 and 1021 𝑐𝑚−3. The results are reported in Figs. 

5.8, 5.9, and 5.10. The most significant result shown in these figures is the saturation of the 

contribution of the evanescent p-polarized EM waves at small distances. The contributions of 

the propagative waves were the same in the local and the nonlocal cases, and this is expected 

because, as we mentioned in all our previous studies, these contributions dominate in the far-

field regime where nonlocal effects are not important. In the near-field regime the evanescent 

contributions dominate; and as for the s-polarized contribution, we notice that for the cases 

where 𝑁 = 1019 𝑐𝑚−3 and 1020 𝑐𝑚−3 it was the same for both the local and the nonlocal 

case. For the case where 𝑁 = 1021 𝑐𝑚−3, this contribution changed significantly in the 

nonlocal case where the values dropped by a factor of ten, in comparison with the values 

obtained in the local case. We notice also from these plots that the values attained by the 

saturating contribution of the p-polarized EM evanescent waves are not equal.  

To better compare between them we plot the curves of the total contribution to the RHTC for 

all the cases in Fig. 5.11. We observe in this figure that the saturation values attained by the 

curves are not equal, and they increase as the value of the doping concentration N increases 

from 1019 𝑐𝑚−3 to 1020𝑐𝑚−3. However for the case where 𝑁 = 1021 𝑐𝑚−3, the saturation 

value decreased. We added to this figure the values of the Thomas-Fermi screening length 

calculated for each value of N and given by 𝑙𝑇𝐹 = 𝜗𝐹 𝜔𝑝⁄  , where it is clear from this formula 

the dependence of 𝑙𝑇𝐹 on N as both 𝜗𝐹 and 𝜔𝑝 are dependent on N. For each curve, we notice 

that the distance at which its saturation starts to take place is smaller than the value of 𝑙𝑇𝐹. In 

other words, the deviation of each curve from the infinite sharp divergence takes place at 

distances of the order of  𝑙𝑇𝐹, after which saturation takes place. This is also shown clearly in 

Fig. 5.12 where we compare between the curves of the total contributions to the RHTC in the 

local and the nonlocal cases.  
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Figure 5.8: Variation of the radiative heat transfer coefficient (contributions of the 

evanescent and propagative EM waves of p and s polarizations) as function of the distance 

between two semi-infinite n-doped Si parallel planes of doping concentration  𝑁 = 1019cm−3 

and average temperature T=300K, for the nonlocal model case. 

 

Figure 5.9: Variation of the radiative heat transfer coefficient (contributions of the evanescent 

and propagative EM waves of p and s polarizations) as function of the distance between two 

semi-infinite n-doped Si parallel planes of doping concentration  𝑁 = 1020cm−3 and average 

temperature T=300K, for the nonlocal model case. 
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Figure 5.10: Variation of the radiative heat transfer coefficient (evanescent and propagative 

contributions of p and s polarizations) as function of the distance between two semi-infinite n-

doped Si parallel planes of doping concentration  𝑁 = 1021cm−3 and average temperature 

T=300K, for the nonlocal model case. 

 

Figure 5.11: Variation of the total radiative heat transfer coefficient (summation of the 

contributions of the evanescent and propagative EM waves of s and p polarizations) as 

function of the distance between two semi-infinite n-doped Si parallel planes of doping 

concentration  𝑁 =  1019cm−3, 1020cm−3and 1021cm−3, for the nonlocal model case. The 

inset shows the values of the Thomas-Fermi length calculated for each value of the doping 

concentration N. For each graph, we notice that the distance at which its saturation starts to 

take place is smaller than the value of 𝑙𝑇𝐹. 
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Figure 5.12: Variation of the total radiative heat transfer coefficient (summation of the 

contributions of the evanescent and propagative EM waves of s and p polarizations) as 

function of the distance between two semi-infinite n-doped Si parallel planes of doping level 

𝑁 = 1019𝑐𝑚−3, 1020𝑐𝑚−3 and 1021𝑐𝑚−3 and average temperature T=300K, for the local and 

the nonlocal model cases. The graphs of the nonlocal model saturate at distances of the order 

of the Thomas-Fermi length 𝑙𝑇𝐹, below which saturation takes place. 

 

From Fig. 5.12 we notice that the curves of the nonlocal model deviate from the diverging 

slope at distances of the order of the Thomas-Fermi length and saturation then takes place for 

smaller distances. Since for metals, and eventually for highly doped materials that exhibit 

metallic-like characteristics, nonlocal effects appear at distances smaller than the Thomas-

Fermi length [9], it is expected that the saturation takes place at distances smaller than 𝑙𝑇𝐹. 

Taking into account the nonlocal effects in the dielectric permittivity equations allows to 

represent correctly the optical response at small distances and lead finally to the saturation of 

the RHTC. We wanted to study the variation of the saturation values of the contribution of the 

p-polarized EM evanescent waves to the RHTC as the doping level N varies, and for this 

reason we plotted in Fig. 5.13 the obtained saturation values of the RHTC as N takes the 

values between 1019 𝑐𝑚−3 and 1021 𝑐𝑚−3 where the average temperature of the system was 

considered T=300 K. 



134 
 

 
Figure 5.13: Variation of the saturation value of the RHTC graph as the 

doping concentration varies between 1019 𝑐𝑚−3 and 1021 𝑐𝑚−3 for the 

nonlocal model case where the average temperature of the system is 

considered T=300K. 

 

We observe in Fig. 5.13 that the saturation value of the RHTC increases as N increases until 

reaching its maximum value for about 𝑁 = 9 × 1019𝑐𝑚−3, after which it decreases for further 

increase of the doping concentration level N. This emphasizes the discussion we presented in 

the previous section. We explained that since for any N, corresponds a plasmon frequency that 

lies in the Planck range, we obtain a spectrum that varies in a way that mimics the Planck 

spectrum. This means that the spectrum increases in values until reaching a maximum, after 

which it decreases. For this reason we observe in Fig. 5.13 that the saturation value of the 

RHTC increases as N increases until reaching a maximum, apparently for about 𝑁 = 9 ×

1019𝑐𝑚−3, after which it starts to decrease as the value of N continues to increase.  

We also study the variation of the transmission factor 4(𝐼𝑚(𝑟31
𝑃 ))2𝑒2𝑖𝛾3𝑑 |1 − (𝑟31

𝑃 )2𝑒2𝑖𝛾3𝑑|
2

⁄  

of the p-polarized EM evanescent waves, for the local and the nonlocal models, by plotting it 

in the (,K) plane for different doping concentrations, and at different distances (Figs. 5.14, 

5.15, and 5.16). We notice from the spectrums of the local model (a) that at any d, the 

transmission factor increases in magnitude as K increases, and as the distance decreases the 

maximum is reached at larger K values. This implies that more modes are able to couple well 

to the transmission as K increases, which explains the infinite increase attained by the RHTC 

in the previous figures. From the figures of the nonlocal model (b), we notice that the 

transmission factor increases as K increases until reaching a cutoff after which the 

transmission factor tends to zero where no modes are able to be transmitted. 
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Figure 5.14: Plot of the transmission coefficient 4(𝐼𝑚(𝑟31
𝑃 ))2𝑒2𝑖𝛾3𝑑 |1 − (𝑟31

𝑃 )2𝑒2𝑖𝛾3𝑑|
2

⁄  of 

the p-polarized EM evanescent waves in the plane (ω,K) for the local case (a) and the 

nonlocal case (b) for the doping level 𝑁 = 1019 𝑐𝑚−3 and at different separation distances d. 
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Figure 5.15: Plot of the transmission coefficient 4(𝐼𝑚(𝑟31
𝑃 ))2𝑒2𝑖𝛾3𝑑 |1 − (𝑟31

𝑃 )2𝑒2𝑖𝛾3𝑑|
2

⁄  of 

the p-polarized EM evanescent waves in the plane (,K) for the local case (a) and the 

nonlocal case (b) for the doping level 𝑁 = 1020 𝑐𝑚−3 and at different separation distances 𝑑. 
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Figure 5.16: Plot of the transmission coefficient 4(𝐼𝑚(𝑟31
𝑃 ))2𝑒2𝑖𝛾3𝑑 |1 − (𝑟31

𝑃 )2𝑒2𝑖𝛾3𝑑|
2

⁄  of 

the p-polarized EM evanescent waves in the plane (ω,K) for the local case (a) and the 

nonlocal case (b) for the doping level 𝑁 = 1021 𝑐𝑚−3 and at different separation distances 𝑑. 
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We also notice that as the distance decreases, the transmission factor attains its maximum at 

higher K values, and in each case the cutoff takes place at K value larger than the inverse of 

the Thomas-Fermi length 1 𝑙𝑇𝐹⁄  . This result is consistent with the results obtained in the 

previous figures where we noticed that the saturation of the RHTC starts to take place at 

distances just below the Thomas-Fermi length. By comparing the plots of the transmission 

factors of the nonlocal case for different N with the graphs of the local case, we notice that at 

large distances, i.e. 𝑑 = 10−7𝑚, the curves are quite similar. This is expected as for large 

distances, i.e. in the far-field regime the nonlocal effects are negligible and the results 

obtained in the local and the nonlocal case would be the same. As the separation distance 

decreases we notice that the local plots do not saturate and they reach their maximum values 

at K values larger in many orders than the K values of the nonlocal graphs. This demonstrates 

the difference between the infinite divergence observed at small distances in the local case, 

and the saturation obtained in the nonlocal cases. We would like to note that the differences 

observed in the interferences range of the spectrum (at very small K values) of the local model 

and the nonlocal models seem to be due to an artifact in the used simulation code. 

5.2.3  Study of the spectral radiative heat transfer flux 

 

      We present in Fig. 5.17 the variation of the spectral radiative heat transfer flux   of the 

p-polarized EM evanescent waves for Lindhard−Mermin nonlocal model at 𝑑 = 10−12𝑚.  

Figure 5.17:  Variation of the spectral radiative heat transfer flux   of the p-polarized EM 

evanescent waves as  varies for the different doping concentrations N considered in the 

calculation of the RHTC in the nonlocal model case and for a separation distance 𝑑 =
10−12𝑚 and average temperature T=300K. 
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We observe in Fig. 5.17 that for any doping concentration N, the spectral radiative heat 

transfer flux   increases and reaches a maximum value for 𝜔 ≈ 𝜔𝑝 where a relatively wide 

peak is obtained, after which it decreases. This corresponds to the enhancement of the 

radiative heat transfer due to the excitation of the surface plasmon polaritons.  We also notice 

that the peak values attained by  is the highest for  𝑁 = 1020𝑐𝑚−3 and the least for 𝑁 =

1021𝑐𝑚−3.  This is consistent with the variation of the values of the saturating RHTC at 

extremely small distances, where we noticed a small difference in the saturation value that 

was the highest for 𝑁 = 10−20 𝑐𝑚−3 and the least for 𝑁 = 10−21 𝑐𝑚−3. The features 

observed emphasize the results obtained before,i.e. the relation between the variation of the 

RHTC and the variation  of the corresponding plasmon frequency in the Planck range. We 

would like to note that the peaks of the plots obtained for the metallic-like materials are not as 

sharp as those obtained for the dielectric materials. 
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Conclusions 

 

 

       In this chapter we studied the RHTC between two n-doped Si semi-infinite parallel planes 

as the distance between them decreases. We divided our study into two parts where in the first 

part we used the local Drude model of the dielectric permittivity upon considering different 

values of the doping concentration 𝑁 = 1019cm−3, 1020cm−3and 1021cm−3. The results 

obtained in this study show non-physical divergence of the contribution of the p-polarized 

evanescent EM waves as the distance decreases, due to the presence of the surface-plasmon 

polaritons. We noticed that the variation of the RHT spectrum shows a maximum as a 

function of N. This is due to the corresponding plasmon frequency that depends on the value 

of N and that is found in the Planck range and leads to the optimization of the resonance and 

the radiative transfer at a certain value.   Rousseau et al. [13 ] have studied the RHT between 

similar planes and they derived a general specific form of the surface-plasmon polaritons 

contribution to the RHTC depending on the distance d, the temperature T and the doping 

concentration N: ℎ𝑟𝑎𝑑
𝑠𝑝𝑝(𝑇, 𝑑) = 𝛿𝐺(𝑇, 𝑁) 𝑑2⁄ . They also studied the variation of 𝛿𝐺(𝑇, 𝑁) as 

N and T vary, respectively and they plotted the corresponding graphs. We plotted the variation 

of 𝛿𝐺(𝑇, 𝑁) as T varies and we showed that for any N, 𝛿𝐺(𝑇, 𝑁)  increases in value as T 

increases and reaches a maximum after which the values of 𝛿𝐺(𝑇, 𝑁) decrease. This 

maximum point shifts to higher temperatures as N increases. Similarly, the plot of  𝛿𝐺(𝑇, 𝑁) 

for any T as N varies showed that 𝛿𝐺(𝑇, 𝑁) increases as N increases and reaches a maximum 

point after which it decreases; and this maximum point shifts to higher densities as the 

temperature increases. These studies show that for any system considered of specified N (or 

specified T) there is a specific temperature (and specific concentration) that maximizes the 

value of 𝛿𝐺(𝑇, 𝑁). 

        In the second part we repeated the calculation of the RHTC between the n-doped Si 

planes by applying the Lindhard-Mermin nonlocal dielectric model [15-17]. This is the same 

model we used in our study of the Aluminum planes in chapter 2. We showed that the 

contribution of the evanescent p-polarized waves saturates as the distance decreases, in 

contrary to the divergence obtained in the local case. We showed that the saturation in each 

case starts to occur at distances smaller than the Thomas-Fermi screening length 𝑙𝑇𝐹. This is 

consistent with the fact that for metals and materials with metallic-like properties the nonlocal 

effects appear at distances smaller than 𝑙𝑇𝐹. Therefore, the nonlocality of the dielectric 
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permittivity equations, lead to saturation of the RHTC at these distance scales. Studying the 

variation of the saturation value shows that it increases as N increases and it reaches its 

maximum for the value 𝑁 = 2 × 1019𝑐𝑚−3, after which it decreases. This implies that for 

this doping level and its corresponding value of the plasmon frequency the resonance is 

optimized and the radiative spectrum is maximized. We also studied the plot of the 

transmission factor in the plane (ω, K) for the local and the nonlocal cases when considering 

𝑑 = 10−7𝑚, 10−9𝑚 and 10−12𝑚. By comparing the obtained curves we noticed that in the 

local case the values of the transmission factor increase as K increases while the curves of the 

nonlocal case showed saturation at K values larger than the inverse of the Thomas-Fermi 

length for small distances. At large distances they showed the same the behavior as the local 

curves, as in the far-field the nonlocal effects are negligible. 
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Conclusions 
 

 

In this thesis, we studied the validity of four nonlocal models of the dielectric permittivity 

in the calculation of the RHTC between two semi-infinite parallel dielectric planes separated 

by a vacuum gap of width d.  

Starting with the description of the thermal energy and the radiative heat transfer, we 

shed the light on the importance of studying the RHT between two bodies separated by a 

distance d. We then showed that in the far-field study where d is much larger than Wien’s 

wavelength, the RHT is dependent on the difference of the temperatures of the bodies, to the 

power four. On the other hand, in the near-field, the RHT depends on the distance d due to the 

existence and domination of different physical phenomena at these distance scales, such as the 

tunneling evanescent waves that exist at the surface and decay exponentially in the 

perpendicular direction away from the surface. To better highlight the difference between the 

two studies, we derived the expression of the radiative heat flux using the radiometry 

approach in the far field, and the expression of the RHTC between two semi-infinite parallel 

planes using the fluctuation dissipation theorem. We showed that the latter consists of two 

terms related to the contributions of the evanescent and propagative EM waves. We then 

showed that studying the variation of the RHTC between two semi-infinite parallel planes of 

6H-SiC using Lorentz-Drude local model of the dielectric permittivity leads to a non-physical 

result as the contribution of the p-polarized EM evanescent waves diverged as 1/d² when the 

distance d decreases. Studying the variation of the spectral energy flux and the spectral EM 

energy density of the p-polarized EM evanescent waves showed us that the excitation of 

surface phonon-polariton waves is responsible of the increase of the RHT. 

       We repeated the study of the RHTC for two semi-infinite parallel aluminum planes 

separated by a vacuum gap of width d. When we considered the local Drude model, the 

evanescent term of p polarization diverged as 1/d² in an unphysical infinite tendency while all 

other contributions saturated as the distance d decreased. The saturation of the contribution of 

the evanescent waves of s polarization started at a distance of the order of the skin depth. 

When we used the Lindhard-Mermin nonlocal model for the dielectric permittivity, we 

obtained saturation of the evanescent p term at distances smaller than Thomas-Fermi length; 

while all other terms showed no significant change in values. The comparison between the 
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plots of the transmission factors of the evanescent p terms in both the local and the nonlocal 

cases highlighted the differences between them. The spectrum of the local model increases as 

K increases because the number of modes contributing to the transfer continually increases 

while the spectrum of the nonlocal model increases till reaching a cutoff at a K value of the 

order of the inverse of the Thomas-Fermi length. 

For the case of 6H-SiC planes, we suggested three different nonlocal models of the dielectric 

permittivity and we used them in calculating the RHTC for a system of two semi-infinite 

parallel 6H-SiC planes. The first and the second nonlocal models were inspired from the 

model of Kliewer and Fuchs. The value of the longitudinal and the transverse components of 

the dielectric permittivity differed, depending on the value of the wavevector with respect to 

the limit of the first Brillouin zone (FBZ).  The results of these models were similar and the 

values of the RHTC due to the contribution of the evanescent EM waves of p-polarization 

deviated from the infinite divergence obtained in the local case, as it showed a logarithmic 

divergence as the distance d decreases. We noticed that the limit of the FBZ affects the 

distance at which this deviation takes place where in the first model it starts at distances of the 

order of the lattice constant, and in the second model it starts at distances just smaller than the 

lattice constant. The plots of the transmission factors in the (𝜔, 𝐾) plane for d=0 confirmed 

the obtained results. The third suggested nonlocal model was inspired from the work of 

Henkel and Joulain [11] where we considered the EM field above the dielectric medium to 

acquire a coherence length l of the order of or larger than the lattice constant. We showed that 

introducing this length in the correlation equation of the fluctuating currents leads to a RHTC 

equation that depends on l. We then showed that the RHTC saturated at distances of the order 

of this coherence length l. Upon changing the value of l the saturation distance changed but in 

all cases it was equal to l. We deduced also that this saturation value is inversely proportional 

to l² with a T-dependent coefficient. On the other hand, we showed that the EM energy 

density is dependent on l and saturates as 1/l
3 

at very small distances. 

      We continued by suggesting a fourth nonlocal model of the dielectric permittivity for 

dielectrics. Considering Halevi−Fuchs nonlocal dielectric permittivity function theory, we 

repeated the study of the RHT for the 6H-SiC system. In this theory, the spatial dispersion is 

given as an additional term depending on the square of the total wavevector and multiplied by 

a diffusion parameter D in the dielectric permittivity function; the nonlocal corrections in the 

material optical properties are accounted for, and scattering of the EM excitation at the 

surface of the dielectric material is considered. This leads to defining additional boundary 
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conditions (ABC) needed to solve the transmission problem in Maxwell’s equations. Different 

ABC were considered and they appear as additional surface scattering parameters (SSP) in the 

derived expressions of the surface impedances and reflection factors. We showed that at 

distances of few nanometers, the RHTC calculated with this nonlocal model deviates from 

1/d
2
 law and saturation takes place. We also found that the heat transfer spectrum is 

broadened as compared to the local model, and the diffusion parameter D acts as a cutoff for 

the divergence of the RHTC obtained using the local model. Even though the saturation of the 

RHTC in the nonlocal case is obtained for distances much smaller than the atomic size, we are 

aware that at sub nanometer scale, heat transfer by EM waves probably ceases to be the 

dominant transfer modes and quantum effects must be taken into consideration as to assure a 

complete study of the RHT. One of the features observed in this nonlocal study is the 

appearance of two bumps for the cases of the ABC modelled by Kliewer and Fuchs and Ting 

et al. We studied the effects of varying the values of the different parameters of the model on 

the position and the width of these bumps by performing a parametric study. On the other 

hand, we showed that the EM energy densities are inversely proportional to the diffusion 

parameter D. 

     The last part of our work involved studying the RHT between two highly n-doped 

dielectric planes. By using the local Drude model of the dielectric permittivity upon 

considering different values of the doping concentration 𝑁 = 1019cm−3, 1020cm−3and 

1021cm−3, we showed that  the contribution of the p-polarized evanescent EM waves 

diverged as the distance decreases, due to the presence of the surface-plasmon polaritons. The 

variation of the RHT spectrum showed a maximum as a function of N. This is due to the 

corresponding plasmon frequency that depends on the value of N and that is found in the 

Planck range and leads to the optimization of the resonance and the radiative transfer at a 

certain value.  By studying as function of N and T, the variations of the general form of the 

surface-plasmon polaritons contribution to the RHTC derived by Rousseau et al., we showed 

that for any system considered there exists a specific temperature (and specific concentration) 

that maximizes the value of this contribution. We then repeated the calculation of the RHTC 

between the n-doped Si planes by applying the Lindhard-Mermin nonlocal dielectric model. 

We showed that the contribution of the evanescent p-polarized waves saturated, and that for 

any N, the saturation starts to take place at distances smaller than the Thomas-Fermi screening 

length 𝑙𝑇𝐹. We explained that this is expected due to the fact that for metals and materials 

with metallic-like properties, the nonlocal effects appear at distances smaller than 𝑙𝑇𝐹. We 
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also showed that for a fixed T, the saturation value shows a maximum at a certain value of N 

which implies that for this doping level and its corresponding value of the plasmon frequency 

the resonance is optimized and the radiative spectrum is maximized. The plots of the 

transmission factor in the plane (ω, K) for the local and the nonlocal cases supported our 

results. 

In future works, we will have to compare our theoretical results with experimental 

measurements of near field thermal radiation. This would allow us to determine at the same 

time the distance at which the radiative heat transfer stops to be the dominant heat transfer 

process (below 1 nm) as well as the distance where local medium approximation becomes not 

valid (few nanometers). Experiment measurement could also be a way to choose between the 

different ABC that are suggested in the literature. The existence or non-existence of “bumps” 

could eliminate some of the modeling approaches and suggest a consistent nonlocal dielectric 

permittivity function model for dielectrics. 
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Appendix A 

A. Derivation of the radiative heat transfer 

coefficient of a system of two interfaces 
 

 

A.1 Geometry of the system 

 

We consider our system to consist of two semi-infinite parallel solid planes (1) and (2) of 

temperatures 𝑇1 and 𝑇2. They are characterized by dielectric permittivities 𝜀1(𝜔) and 𝜀2(𝜔), 

respectively. They are separated by a third medium of width d and dielectric permittivity 

𝜀3(𝜔) (in our work it will considered as vacuum) Fig. A.1. 

 

Figure A.1: Geometry if the system considered. 

 

The three media are considered linear, homogeneous, isotropic and non-magnetic. Since 

medium (3) is considered vacuum, 𝜀3(𝜔) = 1. 

A.2 Sipe formalism for a system of two interfaces: Vectors and notations 
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Figure A.2: Presentation of the different vectors of the EM waves of s and p polarizations, 

introduced in the formalism of Sipe in 1987 for the considered system. 
 

Using the formalism of Sipe introduced in 1987, we define the unitary vectors: 

{
 
 
 
 

 
 
 
 𝒙̂ = (

1
0
0
)

𝒚̂ = (
0
1
0
)

𝒛̂ = (
0
0
1
)

}
 
 
 
 

 
 
 
 

   (𝐴. 1) 

The (total) wavevector is defined as: 

𝒌𝑙
± = (𝑲, ±𝛾𝑙)      𝑙 = 1,2,3    (𝐴. 2) 

where 𝑲and 𝛾𝑙 are the parallel wavector and the perpendicular wavevector, respectively. They 

are defined as: 

{

𝑲 = 𝐾𝑥𝒙̂ + 𝐾𝑦𝒚̂

𝛾𝑙 = √𝑘0
2𝜀𝑙 − 𝐾2

}     (𝐴. 3) 
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where 𝑘0
2 = 𝜔2 𝑐2⁄  is the velocity of light in vacuum, and 𝐾 = |𝑲|. 

It follows that the unit vector of 𝑲 is defined as: 

𝑲̂ = (
𝐾𝑥 𝐾⁄

𝐾𝑦 𝐾⁄

0

)    (𝐴. 4) 

We continue by defining the following unit vectors of the s and p-polarized EM waves: 

{
𝒔̂ = 𝑲̂ × 𝒛̂

𝒑̂𝒍
± =

1

𝑘0𝑛𝑙
(|𝑲|𝒛̂ ∓ 𝛾𝑙𝑲̂)

}    (𝐴. 5) 

where 𝑛𝑙 = √𝜀𝑙 is the optical index of medium l.  

A.3  Fresnel reflection and transmission factors 

 

     According to the system and the geometry presented in Figs. A.1 and A.2, we consider a 

plane wave incident on the interface between media (1) and (3) to be defined by the 

wavevector 𝒌1
+ = (𝑲, 𝛾1). This wave is transmitted into medium (3) with the wavevector 

𝒌𝟑 = (𝑲, 𝛾3). It propagates till reaching the interface of media (3) and (2), after which it is 

transmitted in medium (2) with the wavevector 𝒌2
+ = (𝑲, 𝛾2). If the incident wave in medium 

(1) is s-polarized, the transmitted wave in medium (2) will have a transmission amplitude 

denoted by 𝑡12
𝑠  ; similarly if the incident wave is p-polarized, the transmitted wave will have a 

transmission amplitudes denoted by 𝑡12
𝑝

. These amplitudes are given as:  

{
 
 

 
 𝑡12

𝑠 =
𝑡13

𝑠 𝑡32
𝑠 𝑒2𝑖𝛾3𝑑

1 − 𝑟13
𝑠 𝑟32

𝑠 𝑒2𝑖𝛾3𝑑

𝑡12
𝑝 =

𝑡13
𝑝 𝑡32

𝑝 𝑒2𝑖𝛾3𝑑

1 − 𝑟13
𝑝 𝑟32

𝑝 𝑒2𝑖𝛾3𝑑}
 
 

 
 

     (𝐴. 6) 

where 𝑟𝑙𝑚
𝑠 and 𝑟𝑙𝑚

𝑝
 are Fresnel reflection factors between media l and m,  𝑡𝑙𝑚

𝑠  and 𝑡𝑙𝑚
𝑝

 are 

Fresnel transmission factors between media l and m. 

{
 
 

 
 𝑟𝑙𝑚

𝑠 = (𝛾𝑙 − 𝛾𝑚) (𝛾𝑙 + 𝛾𝑚)⁄

𝑟𝑙𝑚
𝑝 = (𝜀𝑚𝛾𝑙 − 𝜀𝑙𝛾𝑚) (𝜀𝑚𝛾𝑙 + 𝜀𝑙𝛾𝑚)⁄

𝑡𝑙𝑚
𝑠 = (2𝛾𝑙) (𝛾𝑙 + 𝛾𝑚)⁄

𝑡𝑙𝑚
𝑠 = (2𝑛𝑙𝑛𝑚𝛾𝑙) (𝜀𝑚𝛾𝑙 + 𝜀𝑙𝛾𝑚)⁄

         𝑙, 𝑚 = 1,2,3

}
 
 

 
 

     (𝐴. 7) 
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A.4 Green tensors of a system of two interfaces 

 

       As shown in Fig. A.2, we consider 𝒓′(𝑹′, 𝑧′) as a “source point” situated in the plane (1) 

and 𝒓(𝑹, 𝑧) an observation point situated in plane (2). For the electric field E and the 

magnetic field H,  𝑮⃡  𝐸(𝒓, 𝒓′, 𝜔) and 𝑮⃡  𝐻(𝒓, 𝑟′, 𝜔) denote the Green tensors of the medium. 

Therefore, the Green function equations of transmission from medium (1) to medium (2), 

used to link the EM field at the point 𝒓 to the current density at point 𝒓′ are defined as 

follows: 

{
 
 

 
 𝑮⃡  𝐸

12(𝒓, 𝒓′, 𝜔) = ∫
𝑑2𝑲

4𝜋2
𝒈⃡  𝐸

12
(𝑲, 𝑧, 𝑧′, 𝜔)𝑒𝑥𝑝[𝑖𝑲 ∙ (𝑹 − 𝑹′)]

𝑮⃡  𝐻
12(𝒓, 𝒓′, 𝜔) = ∫

𝑑2𝑲

4𝜋2
𝒈⃡  𝐻

12
(𝑲, 𝑧, 𝑧′, 𝜔)𝑒𝑥𝑝[𝑖𝑲 ∙ (𝑹 − 𝑹′)]

}
 
 

 
 

    (𝐴. 8) 

where 

{
 

 𝒈⃡  𝐸
12

(𝑲, 𝑧, 𝑧′) =
𝑖

2𝛾1
(𝒔̂𝑡12

𝑠 𝒔̂ + 𝒑̂2
+𝑡12

𝑝 𝒑̂1
+)𝑒𝑥𝑝[𝑖{𝛾2(𝑧 − 𝑑) − 𝛾1𝑧′}]

𝒈⃡  𝐻
12

(𝑲, 𝑧, 𝑧′) =
𝑘0𝑛2

2𝛾1
(𝒑̂2

+𝑡12
𝑠 𝒔̂ − 𝒔̂𝑡12

𝑝 𝒑̂1
+)𝑒𝑥𝑝[𝑖{𝛾2(𝑧 − 𝑑) − 𝛾1𝑧′}]

}
 

 

    (𝐴. 9) 

 

A.5 Derivation of the Poynting vector from medium (1) to medium (2) and 

the radiative heat transfer coefficient 

 

      We start by the main assumption where we consider that the EM radiation at the point 

𝒓 due to an ensemble of fluctuating currents sources at point 𝒓′ characterized by the current 

volume density 𝑗𝑓(𝒓′, 𝜔). By this, 𝑬(𝒓, 𝜔) and 𝑯(𝒓, 𝜔) denote the electric and the magnetic 

fields, respectively, radiated at the point 𝒓 with angular frequency 𝜔. These fields are related 

to the fluctuating current density 𝑗(𝒓′, 𝜔) through the following relations: 

{
𝑬(𝑟, 𝜔) = 𝑖𝜔𝜇0 ∫ 𝑮⃡  𝐸(𝒓, 𝒓′, 𝜔) ∙ 𝒋𝑓 (𝑟′, 𝜔)𝑑3𝒓′

𝑯(𝑟, 𝜔) = ∫ 𝑮⃡  𝐻(𝒓, 𝒓′, 𝜔) ∙ 𝒋𝑓 (𝑟′, 𝜔)𝑑3𝒓′
}    (𝐴. 10) 

The Poynting vector is defined as: 
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〈𝜋(𝒓, 𝜔)〉 = 4 × {
1

2
𝑅𝑒[𝑬(𝒓, 𝜔)𝑯∗(𝒓, 𝜔)]}      (𝐴. 11) 

where the symbol 〈… 〉 indicates  that we are considering a statistical ensemble average over 

all realizations of the system. It is worth mentioning here that this definition of the Poynting 

vector is four times greater than the usual definition, as we are considering analytical signals 

in our work. 

The RHTC is defined as: 

ℎ𝜔
𝑅 (𝑑, 𝑇1) = lim

𝑇2→𝑇1

𝑃(𝑑, 𝜔, 𝑇1, 𝑇2)

𝑇2 − 𝑇1
    (𝐴. 12) 

where  

𝑃(𝑑, 𝜔, 𝑇1, 𝑇2) = 〈𝜋𝑧(𝑑+, 𝜔) − 𝜋𝑧(0−, 𝜔)〉    (𝐴. 13) 

〈𝜋𝑧(𝑑+, 𝜔)〉  is the z component of the Poynting vector calculated in the plane z=d of medium 

(2). It represents the thermal radiation radiated from medium (1) towards medium (2), where 

in this case point 𝒓′ is situated in medium (1), and 𝒓 in medium (2). Similarly, we should 

calculate 〈𝛱𝑧(0−, 𝜔)〉, the z component of the Poynting vector calculated in the plane  z=0 of 

medium (1). It represents the thermal radiation radiated from medium (2) towards medium 

(1), where in this case 𝒓′  is situated in medium (2), and 𝒓 in medium (1).  

We will proceed by calculating  〈𝜋𝑧(𝑑+, 𝜔)〉 in details, and the calculation of 〈𝜋𝑧(0−, 𝜔)〉 

would be done in a similar way. 

The developed form of the Poynting vector is given by: 

〈𝛱𝑧(𝒓, 𝜔)〉 = 2〈𝑅𝑒[𝐸𝑥(𝒓, 𝜔)𝐻𝑦
∗(𝒓, 𝜔) − 𝐻𝑥

∗(𝒓, 𝜔)𝐸𝑦(𝒓, 𝜔)]〉     (𝐴. 14) 

Using eqs. (A.10): 

〈𝐸𝑥𝐻𝑦
∗〉

= 〈{𝑖𝜔𝜇0 ∫ 𝑮⃡  12𝑥𝛼
𝐸 (𝒓, 𝒓′, 𝜔) ∙ 𝒋𝑓𝛼 (𝒓′, 𝜔)𝑑3𝒓′} × {∫ 𝑮⃡  12𝑦𝛽

𝐻 (𝒓, 𝒓′′, 𝜔) ∙ 𝒋𝑓𝛼 (𝒓′′, 𝜔)𝑑3𝒓′′}
∗

〉

= ∬ 𝐺12𝑥𝛼
𝐸 (𝒓, 𝒓′, 𝜔)𝐺12𝑦𝛽

𝐻∗ (𝒓, 𝒓′′, 𝜔) 〈𝑗𝑓𝛼(𝒓′, 𝜔)𝑗𝑓𝛽
∗ (𝒓′′, 𝜔)〉𝑑3𝒓′𝑑3𝒓′′   (𝐴. 15)          

where 𝛼, 𝛽 = 𝑥, 𝑦, 𝑧  and Einstein convention on repeated indices is applied. 
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Using the fluctuation-dissipation theorem for the fluctuating currents in medium (1) which is 

considered at local thermodynamic equilibrium:  

〈𝑗𝑓𝛼(𝒓′, 𝜔)𝑗𝑓𝛽
∗ (𝒓′′, 𝜔)〉 =

𝜔𝜀𝑜

𝜋
𝜀1

′′(𝜔)Θ(𝜔, 𝑇1)𝛿𝛼𝛽𝛿(𝒓′ − 𝒓′′)    (𝐴. 16) 

where 〈… 〉 indicate an ensemble average,. 𝜀0 = 8.85417 × 10−12 𝐹. 𝑚−1 is the dielectric 

permittivity of vacuum and 𝜀1
′′(𝜔) is the imaginary part of the material’s dielectric 

permittivity. 𝛿𝑘,𝑙 is Kronecker symbol and 𝛿 is Dirac delta function. Ѳ(𝜔, 𝑇) =
ћ𝜔

2
+

ћ𝜔

(𝑒ћ𝜔 𝑘𝐵𝑇⁄ −1)
 is the mean energy of the harmonic oscillator of frequency 𝜔 at temperature T and 

ћ𝜔

2
 is the vacuum energy, called the zero-point energy.  

Using this equation, we obtain: 

〈𝐸𝑥𝐻𝑦
∗〉 =

𝑖𝜔2𝜀1
′′(𝜔)Θ(𝜔, 𝑇1)

𝜋𝑐2
∫ 𝐺12𝑥𝛼

𝐸 (𝒓, 𝒓′, 𝜔)𝐺12𝑦𝛼
𝐻∗ (𝒓, 𝒓′, 𝜔)𝑑3𝒓′    (𝐴. 17) 

with   

∫ 𝐺12𝑥𝛼
𝐸 (𝒓, 𝒓′, 𝜔)𝐺12𝑥𝛼

𝐻∗ (𝒓, 𝒓′, 𝜔)𝑑3𝒓′

= ∫
𝑑2𝑘

4𝜋𝑐2
{ ∫ 𝑑𝑧′

0

−∞

𝑔12𝑥𝛼
𝐸 (𝑲, 𝑧, 𝑧′, 𝜔)𝑔12𝑦𝛼

𝐻∗ (𝑲, 𝑧, 𝑧′, 𝜔)}    (𝐴. 18) 

Taking into consideration that: 

{
𝑔12𝑥𝛼

𝐸 (𝑲, 𝑧, 𝑧′, 𝜔) = 𝑔12𝑥𝛼
𝐸 (𝑲, 𝑧, 𝜔)𝑒𝑥𝑝(−𝑖𝛾1𝑧′)

𝑔12𝑦𝛼
𝐻∗ (𝑲, 𝑧, 𝑧′, 𝜔) = 𝑔12𝑦𝛼

𝐻∗ (𝑲, 𝑧, 𝜔){𝑒𝑥𝑝(−𝑖𝛾1𝑧′)}∗}      (𝐴. 19) 

this implies that: 

𝑔12𝑥𝛼
𝐸 (𝑲, 𝑧, 𝑧′, 𝜔)𝑔12𝑦𝛼

𝐻∗ (𝑲, 𝑧, 𝑧′, 𝜔)

= 𝑔12𝑥𝛼
𝐸 (𝑲, 𝑧, 𝜔)𝑔12𝑦𝛼

𝐻∗ (𝑲, 𝑧, 𝜔)𝑒𝑥𝑝[(−𝑖𝛾1
′ + 𝛾1

′′)𝑧′](𝑒𝑥𝑝[(𝑖𝛾1
′ + 𝛾1

′′)𝑧′])

= 𝑔12𝑥𝛼
𝐸 (𝑲, 𝑧, 𝜔)𝑔12𝑦𝛼

𝐻∗ (𝑲, 𝑧, 𝜔)𝑒𝑥𝑝(2𝛾1
′′𝑧′)     (𝐴. 20) 

where 𝛾1
′  and 𝛾1

′′ denote the real and the imaginary parts of 𝛾1, respectively. 

The integral on the right-hand side of Eq. (A.18) becomes: 
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∫ 𝑑𝑧′

0

−∞

𝑔12𝑥𝛼
𝐸 (𝑲, 𝑧, 𝑧′, 𝜔)𝑔12𝑦𝛼

𝐻∗ (𝑲, 𝑧, 𝑧′, 𝜔)

= ∫ 𝑑𝑧′

0

−∞

𝑔12𝑥𝛼
𝐸 (𝑲, 𝑧, 𝜔)𝑔12𝑦𝛼

𝐻∗ (𝑲, 𝑧, 𝜔)𝑒𝑥𝑝(2𝛾1
′′𝑧′)

=
1

2𝛾1
′′ 𝑔12𝑥𝛼

𝐸 (𝑲, 𝑧, 𝜔)𝑔12𝑦𝛼
𝐻∗ (𝑲, 𝑧, 𝜔)      (𝐴. 21) 

It follows that:  

〈𝐸𝑥𝐻𝑦
∗〉 =

𝑖𝑘0
2𝜀1

′′(𝜔)Θ(𝜔, 𝑇1)

𝜋
∫

𝑑2𝑲

4𝜋

1

2𝛾1
′′ 𝑔12𝑥𝛼

𝐸 (𝑲, 𝑧, 𝜔)𝑔12𝑦𝛼
𝐻∗ (𝑲, 𝑧, 𝜔)      (𝐴. 22) 

and   

〈𝜋𝑧(𝑑+, 𝜔)〉 = 2𝑅𝑒 {
𝑖𝑘𝑜

2𝜀1
′′(𝜔)Θ(𝜔, 𝑇1)

𝜋
∫

𝑑2𝑲

4𝜋2

1

2𝛾1
′′ [𝑔12𝑥𝛼

𝐸 (𝑲, 𝑑+, 𝜔)𝑔12𝑦𝛼
𝐻∗ (𝑲, 𝑑+, 𝜔)

− 𝑔12𝑥𝛼
𝐻∗ (𝑲, 𝑑+, 𝜔)𝑔12𝑦𝛼

𝐸 (𝑲, 𝑑+, 𝜔)]}      (𝐴. 23) 

We continue by calculating the term:  

𝑔12𝑥𝛼
𝐸 (𝑲, 𝑑+, 𝜔)𝑔12𝑦𝛼

𝐻∗ (𝑲, 𝑑+, 𝜔) − 𝑔12𝑥𝛼
𝐻∗ (𝑲, 𝑑+, 𝜔)𝑔12𝑦𝛼

𝐸 (𝑲, 𝑑+, 𝜔)

= 𝑔𝑥𝑥
𝐸 𝑔𝑦𝑥

𝐻∗ + 𝑔𝑥𝑦
𝐸 𝑔𝑦𝑦

𝐻∗ + 𝑔𝑥𝑧
𝐸 𝑔𝑦𝑧

𝐻∗ − 𝑔𝑥𝑥
𝐻∗𝑔𝑦𝑥

𝐸 + 𝑔𝑥𝑦
𝐻∗𝑔𝑦𝑦

𝐸 + 𝑔𝑥𝑧
𝐻∗𝑔𝑦𝑧

𝐸       (𝐴. 24) 

We now use the definition: 

{
 
 

 
 𝑔12

𝐸 =
𝑖

2𝛾1
(𝒔̂𝑡12

𝑠 𝒔̂ + 𝒑̂𝟐
+𝑡12

𝑝 𝒑̂𝟏
+) =

𝑖

2𝛾1
(𝑡12

𝑠 𝒔̂𝒔̂ + 𝑡12
𝑝 𝒑̂𝟐

+𝒑̂𝟏
+)

𝑔12
𝐻∗ = {

𝑘0𝑛2

2𝛾1
(𝒑̂𝟐

+𝑡12
𝑠 𝒔̂ − 𝒔̂𝑡12

𝑝 𝒑̂𝟏
+)}

∗

=
𝑘0𝑛2

∗

2𝛾1
∗ (𝑡12

𝑠∗𝒑̂𝟐
+∗𝒔̂∗ − 𝑡12

𝑝∗𝒔̂∗𝒑̂𝟏
+∗)

}
 
 

 
 

     (𝐴. 25) 

Using the vectors given in Sipe notation and defined in section A.1 we obtain: 
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{
 
 
 
 

 
 
 
 

𝒔̂ = (
    𝐾𝑦 𝐾⁄

− 𝐾𝑥 𝐾⁄
   0

)

𝒑̂𝟏
+ =

1

𝑘0𝑛1
(

   − 𝛾1𝐾𝑥 𝐾⁄  

− 𝛾1𝐾𝑦 𝐾⁄

   𝐾

)

𝒑̂𝟐
+ =

1

𝑘0𝑛2
(

   − 𝛾2𝐾𝑥 𝐾⁄  

− 𝛾2𝐾𝑦 𝐾⁄

   𝐾

)
}
 
 
 
 

 
 
 
 

      (𝐴. 26) 

This leads to the following expressions: 

𝑔12
𝐸 =

𝑖

2𝛾1
{𝑡12

𝑠 (

𝐾𝑦
2 |𝐾|2⁄ −𝐾𝑥𝐾𝑦 |𝐾|2⁄ 0

−𝐾𝑥𝐾𝑦 |𝐾|2⁄ 𝐾𝑥
2 |𝐾|2⁄ 0

0 0 0

)

+
𝑡12

𝑝

𝑘0
2𝑛1𝑛2

(

𝛾1𝛾2𝐾𝑥
2 |𝐾|2⁄ 𝛾1𝛾2𝐾𝑥𝐾𝑦 |𝐾|2⁄ −𝛾1𝐾𝑥

𝛾1𝛾2𝐾𝑥𝐾𝑦 |𝐾|2⁄ 𝛾1𝛾2𝐾𝑦
2 |𝐾|2⁄ −𝛾2𝐾𝑦

−𝛾1𝐾𝑥 −𝛾1𝐾𝑦 |𝐾|2
)}        (𝐴. 27) 

𝑔12
𝐻∗ =

𝑘0𝑛2
∗

2𝛾1
∗ {

𝑡12
𝑠∗

𝑘0𝑛2
∗ (

−𝛾2
∗𝐾𝑥𝐾𝑦 |𝐾|2⁄ 𝛾2

∗𝐾𝑥
2 |𝐾|2⁄ 0

− 𝛾2
∗𝐾𝑦

2 |𝐾|2⁄ 𝛾2
∗𝐾𝑥𝐾𝑦 |𝐾|2⁄ 0

𝐾𝑦 −𝐾𝑥 0

)

−
𝑡12

𝑝∗

𝑘0𝑛1
∗ (

−𝛾1
∗𝐾𝑥𝐾𝑦 |𝐾|2⁄ −𝛾1

∗𝐾𝑦
2 |𝐾|2⁄ 𝐾𝑦

𝛾1
∗𝐾𝑦 |𝐾|2⁄ 𝛾1

∗𝐾𝑥𝐾𝑦 |𝐾|2⁄ −𝐾𝑥

0 0 0

)}       (𝐴. 28) 

Using these equations and performing trivial simplifying steps, we arrive at the following 

equation: 

𝑔𝑥𝛼
𝐸 𝑔𝑦𝛼

𝐻∗ − 𝑔𝑥𝛼
𝐻∗𝑔𝑦𝛼

𝐸 =
−𝑖𝑛2

∗

4|𝛾1|2
[
𝛾2

∗

𝑛2
∗ |𝑡12

𝑠 |2 +
𝛾2(|𝛾1|2 + |𝐾|2)

𝑘0
2𝑛2|𝑛1|2

|𝑡12
𝑝 |

2
]      (𝐴. 29) 

Using eq. (A.29) and the following equation: 

∫
𝑑2𝑲

4𝜋2
= ∬

𝑑𝐾𝑥𝑑𝐾𝑦

(2𝜋)2
= ∫ ∫

𝐾𝑑𝐾 𝑑𝜃

(2𝜋)2

2𝜋

2

∞

0

→ ∫
𝐾𝑑𝐾

2𝜋

∞

0

     (𝐴. 30) 

We obtain:  



155 
 

〈𝜋𝑧(𝑑+, 𝜔)〉 =
Θ(𝜔, 𝑇1)

8𝜋2
∫ 𝐾𝑑𝐾 𝑅𝑒 [

𝑘0
2𝜀1

′′(𝜔)𝛾2
∗

𝛾1
′′|𝛾1|2

|𝑡12
𝑠 |2

+
𝜀1

′′(𝜔)𝑛2
∗𝛾2(|𝛾1|2 + |𝐾|2)

𝛾1
′′|𝛾1|2𝑛2|𝑛1|2

|𝑡12
𝑝 |

2
]      (𝐴. 31) 

Using now the following relations:  

{
𝑘0

2𝜀′′ = 2𝛾′𝛾′′

|𝛾1|2 + |𝐾|2 = 𝑘0
2(𝜀𝛾∗)′ 𝛾′⁄

}     (𝐴. 32) 

Eq. (A.31) becomes: 

〈𝜋𝑧(𝑑+, 𝜔)〉 =
Θ(𝜔, 𝑇1)

4𝜋2
∫ 𝐾𝑑𝐾 [𝛾1

′𝛾2
′
|𝑡12

𝑠 |2

|𝛾1|2
+ (𝜀1𝛾1

∗)′(𝜀2𝛾1
∗)′

|𝑡12
𝑝 |

2

|𝛾1|2|𝑛1|2|𝑛2|2
]     (𝐴. 33) 

The integration over K is divided into two domains: the first domain is for all values 𝐾 ≤ 𝑘0 

i.e. propagative waves, and the second domain is for all 𝐾 > 𝑘0, i.e. evanescent waves.  

We taking into consideration that  

Θ(𝜔, 𝑇)

4𝜋2
=

𝜋𝐿𝜔
0 (𝑇)

𝑘0
2       (𝐴. 34) 

where 𝐿𝜔
0 (𝑇) = ћ𝜔3 [4𝜋3𝑐2(𝑒ћ𝜔 𝑘𝐵𝑇⁄ − 1)]⁄  is the monochromatic specific intensity of 

radiation of a blackbody of temperature 𝑇 as given by Planck’s law.  

For propagative waves : 

{
 
 

 
 𝛾1

′𝛾2
′
|𝑡12

𝑠 |2

|𝛾1|2
=

(1 − |𝑟31
𝑠 |2)(1 − |𝑟32

𝑠 |2)

|1 − 𝑟31
𝑠 𝑟32

𝑠 𝑒2𝑖𝛾3𝑑|2

(𝜀1𝛾1
∗)′(𝜀2𝛾1

∗)′
|𝑡12

𝑝 |
2

|𝛾1|2|𝑛1|2|𝑛2|2
=

(1 − |𝑟31
𝑝 |

2
) (1 − |𝑟32

𝑝 |
2
)

|1 − 𝑟31
𝑝 𝑟32

𝑝 𝑒2𝑖𝛾3𝑑|
2

}
 
 

 
 

      (𝐴. 35) 

while for evanescent waves: 

{
 
 

 
 𝛾1

′𝛾2
′
|𝑡12

𝑠 |2

|𝛾1|2
=

4 𝐼𝑚(𝑟31
𝑠 )𝐼𝑚(𝑟32

𝑠 )𝑒−2𝛾3
′′𝑑

|1 − 𝑟31
𝑠 𝑟32

𝑠 𝑒−2𝛾3
′′𝑑|

2

(𝜀1𝛾1
∗)′(𝜀2𝛾1

∗)′
|𝑡12

𝑝 |
2

|𝛾1|2|𝑛1|2|𝑛2|2
=

4 𝐼𝑚(𝑟31
𝑝 )𝐼𝑚(𝑟32

𝑝 )𝑒−2𝛾3
′′𝑑

|1 − 𝑟31
𝑝 𝑟32

𝑝 𝑒−2𝛾3
′′𝑑|

2
}
 
 

 
 

      (𝐴. 36) 
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We obtain the following final form of 〈𝜋𝑧(𝑑+, 𝜔)〉 : 

〈𝜋𝑧(𝑑+, 𝜔)〉 = 𝜋𝐿𝜔
0 (𝑇1) {∫

𝐾𝑑𝐾

𝑘0
2

𝑘0

0

[
(1 − |𝑟31

𝑠 |2)(1 − |𝑟32
𝑠 |2)

|1 − 𝑟31
𝑠 𝑟32

𝑠 𝑒2𝑖𝛾3𝑑|2
+

(1 − |𝑟31
𝑝 |

2
) (1 − |𝑟32

𝑝 |
2
)

|1 − 𝑟31
𝑝 𝑟32

𝑝 𝑒2𝑖𝛾3𝑑|
2 ]

+ ∫
𝐾𝑑𝐾

𝑘0
2

∞

𝑘0

[
4 𝐼𝑚(𝑟31

𝑠 )𝐼𝑚(𝑟32
𝑠 )𝑒−2𝛾3

′′𝑑

|1 − 𝑟31
𝑠 𝑟32

𝑠 𝑒−2𝛾3
′′𝑑|

2

+
4 𝐼𝑚(𝑟31

𝑝 )𝐼𝑚(𝑟32
𝑝 )𝑒−2𝛾3

′′𝑑

|1 − 𝑟31
𝑝 𝑟32

𝑝 𝑒−2𝛾3
′′𝑑|

2 ]}       (𝐴. 37) 

Following the same procedure to calculate 𝜋𝑧(0−, 𝜔) and replacing 𝐿𝜔
0 (𝑇1) by 𝐿𝜔

0 (𝑇2), we 

obtain: 

𝑃(𝑑, 𝜔, 𝑇1, 𝑇2) = 𝜋[𝐿𝜔
0 (𝑇1)

− 𝐿𝜔
0 (𝑇2)] {∫

𝐾𝑑𝐾

𝑘0
2

𝑘0

0

[
(1 − |𝑟31

𝑠 |2)(1 − |𝑟32
𝑠 |2)

|1 − 𝑟31
𝑠 𝑟32

𝑠 𝑒2𝑖𝛾3𝑑|2
+

(1 − |𝑟31
𝑝 |

2
) (1 − |𝑟32

𝑝 |
2
)

|1 − 𝑟31
𝑝 𝑟32

𝑝 𝑒2𝑖𝛾3𝑑|
2 ]

+ ∫
𝐾𝑑𝐾

𝑘0
2

∞

𝑘0

[
4 𝐼𝑚(𝑟31

𝑠 )𝐼𝑚(𝑟32
𝑠 )𝑒−2𝛾3

′′𝑑

|1 − 𝑟31
𝑠 𝑟32

𝑠 𝑒−2𝛾3
′′𝑑|

2

+
4 𝐼𝑚(𝑟31

𝑝 )𝐼𝑚(𝑟32
𝑝 )𝑒−2𝛾3

′′𝑑

|1 − 𝑟31
𝑝 𝑟32

𝑝 𝑒−2𝛾3
′′𝑑|

2 ]}        (𝐴. 38)  

Therefore: 

ℎ𝜔
𝑅 (𝑑, 𝑇) = 𝜋

𝜕𝐿𝜔
0 (𝑇)

𝜕𝑇
{∫

𝐾𝑑𝐾

𝑘0
2

𝑘0

0

[
(1 − |𝑟31

𝑠 |2)(1 − |𝑟32
𝑠 |2)

|1 − 𝑟31
𝑠 𝑟32

𝑠 𝑒2𝑖𝛾3𝑑|2
+

(1 − |𝑟31
𝑝 |

2
) (1 − |𝑟32

𝑝 |
2
)

|1 − 𝑟31
𝑝 𝑟32

𝑝 𝑒2𝑖𝛾3𝑑|
2 ]

+ ∫
𝐾𝑑𝐾

𝑘0
2

∞

𝑘0

[
4 𝐼𝑚(𝑟31

𝑠 )𝐼𝑚(𝑟32
𝑠 )𝑒−2𝛾3

′′𝑑

|1 − 𝑟31
𝑠 𝑟32

𝑠 𝑒−2𝛾3
′′𝑑|

2

+
4 𝐼𝑚(𝑟31

𝑝 )𝐼𝑚(𝑟32
𝑝 )𝑒−2𝛾3

′′𝑑

|1 − 𝑟31
𝑝 𝑟32

𝑝 𝑒−2𝛾3
′′𝑑|

2 ]}      (𝐴. 39) 

where 

𝜋
𝜕𝐿𝜔

0 (𝑇)

𝜕𝑇
= ℎ0(𝑇, 𝜔) =

1

𝑇

ћ𝜔

𝑘𝐵𝑇

ћ𝜔3

4𝜋2𝑐2

𝑒ћ𝜔 𝑘𝐵𝑇⁄

(𝑒ћ𝜔 𝑘𝐵𝑇⁄ − 1)
     (𝐴. 40) 
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The final form of the RHTC is: 

{
 
 
 
 

 
 
 
 

ℎ𝑟𝑎𝑑(𝑇, 𝑑) = ∑ ∫ 𝑑𝜔[ℎ𝑝𝑟𝑜𝑝
𝛼 (𝑇, 𝑑, 𝜔) + ℎ𝑒𝑣𝑎𝑛

𝛼 (𝑇, 𝑑, 𝜔)]

+∞

0𝛼=𝑆,𝑃

ℎ𝑝𝑟𝑜𝑝(𝑇, 𝑑, 𝜔) = ℎ0(𝑇, 𝜔) × ∫
𝐾𝑑𝐾

𝑘0
2

(1 − |𝑟31
𝛼 |2)(1 − |𝑟32

𝛼 |2)

|1 − 𝑟31
𝛼 𝑟32

𝛼 𝑒2𝑖𝛾3𝑑|2

𝑘0

0

ℎ𝑒𝑣𝑎𝑛(𝑇, 𝑑, 𝜔) = ℎ0(𝑇, 𝜔) × ∫
𝐾𝑑𝐾

𝑘0
2

4𝐼𝑚(𝑟31
𝛼 )𝐼𝑚(𝑟32

𝛼 )𝑒2𝑖𝛾3𝑑

|1 − 𝑟31
𝛼 𝑟32

𝛼 𝑒2𝑖𝛾3𝑑|2

+∞

𝑘0 }
 
 
 
 

 
 
 
 

  𝛼 = 𝑠 , 𝑝    (𝐴. 41)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



158 
 

Appendix B 

B. The electromagnetic energy density above an 

interface 
 

B.1 Geometry of the system 

 

      We consider our system to consist of a semi-infinite parallel solid planes (1) of 

temperature 𝑇 > 0 and dielectric permittivity 𝜀2(𝜔) , above which vacuum is situated with 

dielectric permittivity 𝜀2(𝜔) = 1 Fig. B.1. 

 
Figure B.1: Geometry if the system considered. 

 

B.2 Sipe formalism for a system of one interface: vectors and notations 

 

 
Figure B.2: Presentation of the different vectors introduced in the formalism 

of Sipe in 1987 for the considered system. 
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The vectors shown in Fig. B.2 introduced by Sipe 1987 for this 1-interface system are defined 

in the same way as in Appendix A.2, i.e. Eqs. (A.1), (A.2), (A.3), (A.4) and (A.5) will be used 

in this section also. 

B.3  Fresnel reflection and transmission factors  

 

      According to the system and the geometry presented in Fig. B.2, we consider a plane 

wave of amplitude 𝐸𝑖𝑛𝑐, incident on the interface between media (1) and (2), to be defined by 

the wavevector 𝒌1
+ = (𝑲, 𝛾1). This wave will be reflected in medium (1) with a wavevector 

𝒌1
− = (𝑲, −𝛾1) and an amplitude 𝐸𝑟𝑒𝑓

𝑠 = 𝑟12
𝑠 𝐸𝑖𝑛𝑐 if the incident wave is s-polarized (𝐸 =

𝐸𝑖𝑛𝑐𝒔̂), or with an amplitude 𝐸𝑟𝑒𝑓
𝑝

= 𝑟12
𝑝

𝐸𝑖𝑛𝑐 if the incident wave is p-polarized, i.e. 𝐸 =

𝐸𝑖𝑛𝑐𝒑̂𝟏
+. On the other hand, this wave is also transmitted inside medium (2) with the 

wavevector 𝒌𝟐 = (𝑲, 𝛾2) with an amplitude 𝐸𝑡𝑟𝑎𝑛
𝑠 = 𝑡12

𝑠 𝐸𝑖𝑛𝑐 if the incident wave is s-

polarized, or with an amplitude if the incident wave is p-polarized 𝐸𝑡𝑟𝑎𝑛
𝑝 = 𝑡12

𝑝 𝐸𝑖𝑛𝑐. The 

different Fresnel reflection and transmission factors are defined as follows, for both the s and 

p polarizations: 

{
 
 

 
 𝑟12

𝑠 = (𝛾1 − 𝛾2) (𝛾1 + 𝛾2)⁄

𝑟12
𝑝 = (𝜀2𝛾1 − 𝜀1𝛾2) (𝜀2𝛾1 + 𝜀1𝛾2)⁄

𝑡12
𝑠 = (2𝛾1) (𝛾1 + 𝛾2)⁄

𝑡12
𝑝 = (2𝑛1𝑛2𝛾1) (𝜀2𝛾1 + 𝜀1𝛾2)⁄ }

 
 

 
 

       (𝐵. 1) 

B.4 Green tensors of a system of one interface 

 

       As shown in Fig. B.2, we consider 𝒓′(𝑹′, 𝑧′) as a “source point” situated in medium (1) 

and 𝒓(𝑹, 𝑧) an observation point situated in medium (2), i.e. vacuum. Similarly to the 

definitions presented in Appendix A.4, for the electric field E and the magnetic field H,  

𝑮⃡  𝐸(𝒓, 𝒓′, 𝜔) and 𝑮⃡  𝐻(𝒓, 𝑟′, 𝜔) denote the Green tensors of the medium. 

Therefore, the Green function equations of transmission from medium (1) to medium (2), 

used to link the EM field at the point 𝒓 to the current density at point 𝒓′ are defined as given 

by Eqs. (A.8), (A.9) and (A.10). 

B.5 Deriving the EM energy density above an interface 

 

      The EM energy density, denoted by 𝑢𝐸𝑀(𝒓, 𝜔, 𝑇) and associated with an EM field 

represented by the fields 𝑬(𝒓, 𝜔) and 𝑯(𝒓, 𝜔) at point r, is given by:  
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𝑢𝐸𝑀(𝒓, 𝜔, 𝑇) = 2 × [
𝜀0

2
〈𝑬(𝒓, 𝜔) ∙ 𝑬(𝒓, 𝜔)∗〉 +

𝜇0

2
〈𝑯(𝒓, 𝜔) ∙ 𝑯(𝒓, 𝜔)∗〉]      (𝐵. 2) 

where the factor 2 is due to the fact that we consider analytic signals.  

The EM energy density is consisted of two contributions. The first is the electric contribution 

represented by the following electric term, and the second is the magnetic contribution 

represented by the magnetic term. They are denoted 𝑢𝐸(𝒓, 𝜔, 𝑇) and 𝑢𝑀(𝒓, 𝜔, 𝑇), 

respectively : 

{
𝑢𝐸(𝒓, 𝜔, 𝑇) = 2 ×

𝜀0

2
〈𝑬(𝒓, 𝜔) ∙ 𝑬(𝒓, 𝜔)∗〉

𝑢𝑀(𝒓, 𝜔, 𝑇) = 2 ×
𝜇0

2
〈𝑯(𝒓, 𝜔) ∙ 𝑯(𝒓, 𝜔)∗〉

}     (𝐵. 3) 

Where 𝑬(𝒓, 𝜔) and 𝑯(𝒓, 𝜔) are given by Eqs. (A.10).  

In what follows, we will derive the 𝑢𝐸(𝒓, 𝜔, 𝑇) in details and the derivation of 𝑢𝑀(𝒓, 𝜔, 𝑇) 

would be done in a similar way.  

〈𝑬(𝒓, 𝜔) ∙ 𝑬(𝒓, 𝜔)∗〉 = 〈|𝑖𝜔𝜇0 ∫ 𝑑3𝒓′𝑮⃡  13
𝐸  (𝒓, 𝒓′, 𝜔) ∙ 𝒋𝑓 (𝒓′, 𝜔)|

2

〉

= 𝜔2𝜇0
2 ∫ 𝑑3𝒓′ ∫ 𝑑3𝒓′′ ∑ 𝐺13𝑙,𝑚

𝐸 (𝒓, 𝒓′, 𝜔)

𝑙,𝑚,𝑛

𝐺13𝑙,𝑛
𝐸∗ (𝒓, 𝒓′′, 𝜔)

× 〈𝑗𝑚
𝑓 (𝒓′, 𝜔)𝑗𝑛

𝑓∗(𝒓′′, 𝜔)〉            𝑙, 𝑚, 𝑛 = 𝑥, 𝑦, 𝑧         (𝐵. 4) 

The currents correlation function is given by the fluctuation-dissipation theorem as explained 

in Appendix A.5: 

〈𝑗𝑚
𝑓 (𝒓′, 𝜔)𝑗𝑛

𝑓∗(𝒓′′, 𝜔)〉 =
2𝜔𝜀0

𝜋
𝜀′′(𝜔)Θ(𝜔, 𝑇)𝛿𝑚𝑛𝛿(𝒓′ − 𝒓′′)     𝑙, 𝑚, 𝑛 = 𝑥, 𝑦, 𝑧    (𝐵. 5)   

Using Eq. (B. 5) and the relation  𝜇0𝜀0𝑐2 = 1: 

𝜀0〈𝑬(𝒓, 𝜔) ∙ 𝑬(𝒓, 𝜔)∗〉 =
2𝜔3𝜀′′(𝜔)

𝜋𝑐4
Θ(𝜔, 𝑇) ∫ 𝑑3𝒓′ 𝐺13𝑙,𝑚

𝐸 (𝒓, 𝒓′, 𝜔)𝐺13𝑙,𝑚
𝐸∗ (𝒓, 𝒓′, 𝜔)     (𝐵. 6) 

To calculate the volume integral on the right-hand side of Eq.(B.6),we substitute with Eqs. 

(A.8):  
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∫ 𝑑3𝒓′ 𝐺13𝑙,𝑚
𝐸 (𝒓, 𝒓′, 𝜔)𝐺13𝑙,𝑚

𝐸∗ (𝒓, 𝒓′, 𝜔)

= ∬
𝑑2𝑲

4𝜋2

𝑑2𝑲′

4𝜋2
𝑒𝑥𝑝[𝑖(𝑲 − 𝑲′) ∙ 𝑹]

× ∫ 𝑑𝑧′

0

−∞

𝑔13𝑙,𝑚
𝐸 (𝑲, 𝑧, 𝑧′, 𝜔)𝑔13𝑙,𝑚

𝐸∗ (𝑲, 𝑧, 𝑧′, 𝜔) ∫ 𝑑2𝑹′ 𝑒𝑥𝑝[−𝑖(𝑲 − 𝑲′)

∙ 𝑹′]          (𝐵. 7) 

Taking into consideration that : 

∫ 𝑑2𝑹′ 𝑒𝑥𝑝[−𝑖(𝑲 − 𝑲′) ∙ 𝑹′] = 4𝜋2𝛿(𝑲 − 𝑲′)      (𝐵. 8) 

Eq. (B.7) becomes: 

∫ 𝑑3𝒓′ 𝐺12𝑙,𝑚
𝐸 (𝒓, 𝒓′, 𝜔)𝐺13𝑙,𝑚

𝐸∗ (𝒓, 𝒓′, 𝜔)

= ∫
𝑑2𝑲

4𝜋2
∫ 𝑑𝑧′

0

−∞

𝑔12𝑙,𝑚
𝐸 (𝑲, 𝑧, 𝑧′, 𝜔)𝑔12𝑙,𝑚

𝐸∗ (𝑲, 𝑧, 𝑧′, 𝜔)     (𝐵. 9) 

Considering: 

𝒈⃡  𝐸
12

(𝑲, 𝑧, 𝑧′, 𝜔) = 𝒈⃡  𝐸
12

(𝑲, 𝜔)𝑒𝑥𝑝[𝑖(𝛾2𝑧 − 𝛾1𝑧′)]        (𝐵. 10) 

and since medium (2) is vacuum, 𝛾2 will be denoted by 𝛾0, we deduce that: 

{
𝑔12𝑥𝛼

𝐸 (𝑲, 𝑧, 𝑧′, 𝜔) = 𝑔12𝑥𝛼
𝐸 (𝑲, 𝜔)𝑒𝑥𝑝[𝑖(𝛾0𝑧 − 𝛾1𝑧′)]

𝑔12𝑦𝛼
𝐸∗ (𝑲, 𝑧, 𝑧′, 𝜔) = 𝑔12𝑦𝛼

𝐸∗ (𝑲, 𝜔)𝑒𝑥𝑝[−𝑖(𝛾0𝑧 − 𝛾1𝑧′)]
}    (𝐵. 11) 

and 

𝑔12𝑥𝛼
𝐸 (𝑲, 𝑧, 𝑧′, 𝜔)𝑔12𝑦𝛼

𝐸∗ (𝑲, 𝑧, 𝑧′, 𝜔)

= 𝑔12𝑥𝛼
𝐸 (𝑲, 𝑧, 𝜔)𝑔12𝑦𝛼

𝐸∗ (𝑲, 𝑧, 𝜔)𝑒𝑥𝑝(−2𝛾0
′′𝑧)𝑒𝑥𝑝(2𝛾1

′′𝑧′)      (𝐵. 12) 

Therefore: 

∫ 𝑑3𝒓′ 𝐺13𝑙,𝑚
𝐸 (𝒓, 𝒓′, 𝜔)𝐺13𝑙,𝑚

𝐸∗ (𝒓, 𝒓′, 𝜔)

= ∫
𝑑2𝑲

4𝜋2
𝑔12𝑙,𝑚

𝐸 (𝑲, 𝜔)𝑔13𝑙,𝑚
𝐸∗ (𝑲, 𝜔)𝑒𝑥𝑝(−2𝛾3

′′𝑧) ∫ 𝑑𝑧′

0

−∞

𝑒𝑥𝑝(−2𝛾1
′′𝑧′)     (𝐵. 13) 
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It follows that : 

∫ 𝑑𝑧′

0

−∞

𝑒𝑥𝑝(−2𝛾1
′′𝑧′) =

1

𝛾1
′′        (𝐵. 14) 

Then :  

∫ 𝑑3𝒓′ 𝐺12𝑙,𝑚
𝐸 (𝒓, 𝒓′, 𝜔)𝐺12𝑙,𝑚

𝐸∗ (𝒓, 𝒓′, 𝜔)

= ∫
𝑑2𝑲

4𝜋2

𝑒𝑥𝑝(−2𝛾0
′′𝑧)

2𝛾1
′′ 𝑔12𝑙,𝑚

𝐸 (𝑲, 𝜔)𝑔12𝑙,𝑚
𝐸∗ (𝑲, 𝜔)       (𝐵. 15) 

We should now proceed by calculating 𝑔12𝑙,𝑚
𝐸 (𝑲, 𝜔)𝑔12𝑙,𝑚

𝐸∗ (𝑲, 𝜔). 

Using Eqs. (A.9): 

𝑔12
𝐸 =

𝑖

2𝛾1
(𝒔̂𝑡12

𝑠 𝒔̂ + 𝒑̂𝟑
+𝑡13

𝑝 𝒑̂𝟏
+) =

𝑖

2𝛾1
(𝑡13

𝑠 𝒔̂𝒔̂ + 𝑡13
𝑝 𝒑̂𝟑

+𝒑̂𝟏
+)

=
𝑖

2𝛾1
{𝑡13

𝑠 (

𝐾𝑦
2 𝐾2⁄ −𝐾𝑥𝐾𝑦 𝐾2⁄ 0

−𝐾𝑥𝐾𝑦 𝐾2⁄ 𝐾𝑥
2 𝐾2⁄ 0

0 0 0

)

+
𝑡13

𝑝

𝑘0
2𝑛1𝑛3

(

𝛾1𝛾3𝐾𝑥
2 𝐾2⁄ 𝛾1𝛾3𝐾𝑥𝐾𝑦 𝐾2⁄ −𝛾1𝐾𝑥

𝛾1𝛾3𝐾𝑥𝐾𝑦 𝐾2⁄ 𝛾1𝛾3𝐾𝑦
2 𝐾2⁄ −𝛾3𝐾𝑦

−𝛾3𝐾𝑥 −𝛾1𝐾𝑦 𝐾2

)}     (𝐵. 16) 

Consequently : 

𝑔13
𝐸∗ =

𝑖

2𝛾1
∗ {𝑡13

𝑠∗ (

𝐾𝑦
2 𝐾2⁄ −𝐾𝑥𝐾𝑦 𝐾2⁄ 0

−𝐾𝑥𝐾𝑦 𝐾2⁄ 𝐾𝑥
2 𝐾2⁄ 0

0 0 0

)

+
𝑡13

𝑝∗

𝑘0
2𝑛1

∗𝑛3
∗ (

𝛾1
∗𝛾3

∗𝐾𝑥
2 𝐾2⁄ 𝛾1

∗𝛾3
∗𝐾𝑥𝐾𝑦 𝐾2⁄ −𝛾1

∗𝐾𝑥

𝛾1
∗𝛾3

∗𝐾𝑥𝐾𝑦 𝐾2⁄ 𝛾1
∗𝛾3

∗𝐾𝑦
2 𝐾2⁄ −𝛾3

∗𝐾𝑦

−𝛾3
∗𝐾𝑥 −𝛾1

∗𝐾𝑦 𝐾2

)}      (𝐵. 17) 

Taking into consideration that 𝑛2 = 1, we obtain: 

𝑔13𝑙,𝑚
𝐸 (𝑲, 𝜔)𝑔13𝑙,𝑚

𝐸∗ (𝑲, 𝜔) =
1

4
{
|𝑡13

𝑠 |2

|𝛾1|2
+ [

(|𝛾1|2 + 𝐾2) + (|𝛾3|2 + 𝐾2)

𝑘0
4|𝑛1|2

]
|𝑡13

𝑝 |
2

|𝛾1|2
}      (𝐵. 18) 

Therefore Eq. (B.3) becomes: 
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𝑢𝐸(𝑧, 𝜔, 𝑇) =
2𝜔3𝜀1

′′(𝜔)Θ(𝜔, 𝑇)

𝜋𝑐4
∫

𝑑2𝑲

4𝜋2

𝑒𝑥𝑝(−2𝛾3
′′𝑧)

2𝛾1
′′

×
1

4
{
|𝑡13

𝑠 |2

|𝛾1|2
+ [

(|𝛾1|2 + 𝐾2) + (|𝛾3|2 + 𝐾2)

𝑘0
4|𝑛1|2

]
|𝑡13

𝑝 |
2

|𝛾1|2
}     (𝐵. 19) 

Taking into consideration equation (A.30) and the following equations: 

{
 

 𝜀′′ =
2

𝑘0
2 𝛾′𝛾′′

𝑢𝜔
0 (𝑇) =

𝜔2Θ(𝜔, 𝑇)

𝜋2𝑐3 }
 

 

    (𝐵. 20) 

We obtain : 

𝑢𝐸(𝑧, 𝜔, 𝑇) =
𝑢𝜔

0 (𝑇)

4
∫

𝐾𝑑𝐾

𝑘0

∞

0

𝛾1
′ {

|𝑡13
𝑠 |2

|𝛾1|2

+ [
(|𝛾1|2 + 𝐾2) + (|𝛾3|2 + 𝐾2)

𝑘0
4|𝑛1|2

]
|𝑡13

𝑝 |
2

|𝛾1|2
} 𝑒𝑥𝑝(−2𝛾3

′′𝑧)     (𝐵. 21) 

The integration over K is divided into two domains: the first domain is for all values 𝐾 ≤ 𝑘0 

i.e. propagative waves, and the second domain is for all 𝐾 > 𝑘0, i.e. evanescent waves.  

Considering:   

|𝛾1|2 + 𝐾2 =
𝑘0

2(𝜀1𝛾1
∗)′

𝛾1
′         (𝐵. 22) 

And for the propagative waves: 

{
  
 

  
 

|𝛾3|2 + 𝐾2 = 𝑘0
2

𝛾3 ≈ 𝛾3
′ ≈ |𝛾3|

𝛾1
′
|𝑡13

𝑠 |2

|𝛾1|2
=

1 − |𝑟13
𝑠 |2

|𝛾3|

(𝜀1𝛾1
∗)′|𝑡13

𝑝 |
2

|𝑛1|2|𝛾1|2
=

1 − |𝑟13
𝑝 |

2

|𝛾3| }
  
 

  
 

      (𝐵. 23) 

while for the evanescent waves: 
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{
 
 
 
 

 
 
 
 |𝛾3|2 + 𝐾2 = (

2𝐾2

𝑘0
2 − 1)

𝛾3 ≈ 𝑖𝛾3
′′ ≈ 𝑖|𝛾3|

𝛾1
′
|𝑡13

𝑠 |2

|𝛾1|2
=

2 𝐼𝑚(𝑟13
𝑠 )

|𝛾3|

(𝜀1𝛾1
∗)′|𝑡13

𝑝 |
2

|𝑛1|2|𝛾1|2
=

2 𝐼𝑚(𝑟13
𝑝 )

|𝛾3| }
 
 
 
 

 
 
 
 

       (𝐵. 24) 

We obtain the final form of the electric energy density: 

𝑢𝑒(𝑧, 𝜔, 𝑇) =
𝜔2Θ(𝜔, 𝑇)

𝜋2𝑐3
{

1

2
∫

𝐾𝑑𝐾

𝑘0|𝛾3|
[
(1 − |𝑟31

𝑠 |2) + (1 − |𝑟31
𝑝 |

2
)

2
]

𝑘0

0

+
1

2
∫

𝐾𝑑𝐾

𝑘0|𝛾3|
[𝐼𝑚(𝑟31

𝑠 ) + (
2𝐾2

𝑘0 
2 − 1) 𝐼𝑚(𝑟31

𝑝 )]
∞

𝑘0

𝑒−2𝛾3
′′𝑧}        (𝐵. 25) 

Following the same procedure for the magnetic energy density we obtain finally: 

𝑢𝑚(𝑧, 𝜔, 𝑇) =
𝜔2Θ(𝜔, 𝑇)

𝜋2𝑐3
{

1

2
∫

𝐾𝑑𝐾

𝑘0|𝛾3|
[
(1 − |𝑟31

𝑠 |2) + (1 − |𝑟31
𝑝 |

2
)

2
]

𝑘0

0

+
1

2
∫

𝐾𝑑𝐾

𝑘0|𝛾3|
[(

2𝐾2

𝑘0 
2 − 1) 𝐼𝑚(𝑟31

𝑠 ) + 𝐼𝑚(𝑟31
𝑝 )]

∞

𝑘0

𝑒−2𝛾3
′′𝑧}      (𝐵. 26) 

By adding the two contributions to the energy density we obtain the following final form of 

the EM energy density: 

𝑢𝐸𝑀(𝑧, 𝜔, 𝑇) =
𝜔2Θ(𝜔, 𝑇)

𝜋2𝑐3
{∫

𝐾𝑑𝐾

𝑘0|𝛾3|
[
(1 − |𝑟31

𝑠 |2) + (1 − |𝑟31
𝑝 |

2
)

2
]

𝑘0

0

+ 4 ∫
𝐾3𝑑𝐾

𝑘0
3|𝛾3|

[
𝐼𝑚(𝑟31

𝑠 ) + 𝐼𝑚(𝑟31
𝑝 )

2
]

∞

𝑘0

𝑒−2𝛾3
′′𝑧}      (𝐵. 27) 
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Appendix C 

C. Electrostatic limits of Fresnel reflection factors 

 

C.1 The general case 

 

      The system considered is that of Appendix B, where medium (1) in this section is 6H-SiC, 

and medium (2) is vacuum. The geometry is similar to the one presented in Fig. (B.1) 

The general equation of Fresnel factors are that 𝑟12
𝑆  is that given in Eqs. (B.).  

C.1.1  s-polarized EM waves 

 

Starting from Eqs.(B.1) we obtain the following developed form of Fresnel reflection factor of 

s-polarized EM waves: 

𝑟12
𝑆 =

𝛾1 − 𝛾2

𝛾1 + 𝛾2
=

𝛾1
2 − 𝛾2

2

(𝛾1 + 𝛾2)2

=
(𝜀1𝑘0

2 − 𝐾2) − (𝑘0
2 − 𝐾2)

(𝜀1𝑘0
2 − 𝐾2)2 + 2√(𝜀1𝑘0

2 − 𝐾2)(𝑘0
2 − 𝐾2) + (𝑘0

2 − 𝐾2)2
     (𝐶. 1) 

In the electrostatic limit 𝐾 ≫ 𝑘0, which implies that: 

𝑟12
𝑆 ≈

𝜀1 − 1

(𝜀1 − 1) + 2
𝐾2

𝑘0
2 + 2

𝐾2

𝑘0
2

      (𝐶. 2) 

Therfore we obtain finally : 

𝑟12
𝑆 ≈

𝜀1 − 1

4(𝐾 𝑘0⁄ )2
     (𝐶. 3) 

C.1.2  p-polarized EM waves  

 

     Starting from Eqs. (B.1), we obtain the following developed form of Fresnel reflection 

factor of p-polarized EM waves: 
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𝑟12
𝑝

=
𝜀1𝛾2 − 𝜀2𝛾1

𝜀1𝛾2 + 𝜀2𝛾1
=

𝜀1√𝑘0
2 − 𝐾2 − 𝜀2√𝜀1𝑘0

2 − 𝐾2

𝜀1√𝑘0
2 − 𝐾2 + 𝜀2√𝜀1𝑘0

2 − 𝐾2

=

𝜀1 − 𝜀2√[𝐾2 (
𝜀1𝑘0

2

𝐾2 − 1)] [𝐾2 (
𝑘0

2

𝐾2 − 1)]⁄

𝜀1 + 𝜀2√[𝐾2 (
𝜀1𝑘0

2

𝐾2 − 1)] [𝐾2 (
𝑘0

2

𝐾2 − 1)]⁄

        (𝐶. 4) 

In the electrostatic limit where 𝐾 ≫ 𝑘0: 

𝑟12
𝑝 ≈

𝜀1 − 𝜀2

𝜀1 + 𝜀2
     (𝐶. 5) 

For the case where medium (2) is vacuum, i.e. 𝜀2 = 1, Eq . (C.5) reduces to: 

𝑟12
𝑝 ≈

𝜀1 − 1

𝜀1 + 1
     (𝐶. 6) 

C.2 Case of aluminum  

 

  The local dielectric permittivity of aluminum is that of Drude’s model: 

𝜀(𝜔) = 𝜀𝑏 −
𝜔𝑝

2 

𝜔(𝜔 + 𝑖)
           (𝐶. 7) 

where 𝜔𝑝 is the plasma frequency which is a material property that is based on the number 

density of conduction electrons. 𝜀𝑏 is a corrective constant that accounts for the background 

electron screening at high frequency and  = 1.22 × 1014𝑠−1  is the damping factor 

accounting for losses as it represents the scattering frequency of the electron as it travels 

through the metal. 

C.2.1  s-polarized EM waves 

 

The electrostatic limit of Fresnel reflection factor is given by Eq. (C.3). Starting from this 

equation, we substitute with the expression of the dielectric permittivity: 

𝑟12
𝑠 ≈

𝑘0
2

4𝐾2
(𝜀𝑏 −

𝜔𝑝
2 

𝜔(𝜔 + 𝑖)
)    (𝐶. 8) 

By developing we obtain : 
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𝑟12
𝑠 ≈

𝑘0
2

4𝐾2
[
(𝜀𝑏 − 𝜔𝑝

2 − 𝜔2) + 𝑖(𝜀𝑏𝜔 − 𝜔)

𝜔2 + 𝑖𝜔
]      (𝐶. 9) 

Then : 

𝑟12
𝑠 ≈

𝑘0
2

4𝐾2
[
(𝜀𝑏 − 𝜔𝑝

2 − 𝜔2)(𝜔2 − 𝑖𝜔) + 𝑖(𝜀𝑏𝜔− 𝜔)(𝜔2 − 𝑖𝜔)

𝜔4 + 𝜔2𝜈2
]     (𝐶. 10) 

Therefore the imaginary part of 𝑟12
𝑠  is: 

𝐼𝑚(𝑟12
𝑠 ) ≈

𝑘0
2

4𝐾2

𝜔𝑝
2

𝜔(𝜔2 + 𝜈2)
      (𝐶. 11) 

C.2.2  p-polarized EM waves 

 

     Starting from the final form of the electrostatic limit of Fresnel reflection factor of p-

polarized EM waves Eq. (C.5), we substitute with the expression of the dielectric permittivity: 

𝑟12
𝑝 ≈

(𝜀𝑏 −
𝜔𝑝

2 

𝜔(𝜔 + 𝑖)
) − 𝜀2

(𝜀𝑏 −
𝜔𝑝

2 

𝜔(𝜔 + 𝑖)
) − 𝜀2

          (𝐶. 12) 

By developing we obtain : 

𝑟12
𝑝 ≈

(𝜀𝑏𝜔2 − 𝜔𝑝
2 − 𝜀2𝜔2) + 𝑖(𝜔 𝜀𝑏 − 𝜔𝜀2)

(𝜀𝑏𝜔2 − 𝜔𝑝
2 + 𝜀2𝜔2) + 𝑖(𝜔 𝜀𝑏𝜔𝜀2)

     (𝐶. 13) 

It follows that by developing, the imaginary part of 𝑟12
𝑝

 is: 

𝐼𝑚(𝑟12
𝑝 ) ≈

2𝜔 𝜔𝑝
2(𝜀𝑏 − 𝜀2)

𝜔4(𝜀𝑏 + 𝜀2)2 + 𝜔2[−2𝜔𝑝
2 + 2(𝜀𝑏 + 𝜀2)2] + 𝜔𝑝

4
        (𝐶. 14) 

which implies that : 

𝐼𝑚(𝑟12
𝑝 ) ≈

2𝜔 𝜔𝑝
2 (𝜀𝑏 − 𝜀2) (𝜀𝑏 + 𝜀2)2⁄

[
𝜔𝑝

2

(𝜀𝑏 + 𝜀2)
− 𝜔2] + 𝜔22

     (𝐶. 15) 

Therefore we obtain finally: 
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{
 
 

 
 𝐼𝑚(𝑟12

𝑝
) ≈

𝜔 𝜔𝑠𝑝
2 (𝑅 − 1)

(𝜔𝑠𝑝
2 − 𝜔2)

2
+ 𝜔22

𝜔𝑠𝑝
2 = 𝜔𝑝

2 (𝜀𝑏 + 𝜀2)⁄

𝑅 = (𝜀𝑏 − 𝜀2) (𝜀𝑏 + 𝜀2)⁄ }
 
 

 
 

     (𝐶. 16) 

For the special case where medium (2) is vacuum: 

{
 
 

 
 𝐼𝑚(𝑟12

𝑝 ) ≈
𝜔 𝜔𝑠𝑝

2 (𝑅 − 1)

(𝜔𝑠𝑝
2 − 𝜔2)

2
+ 𝜔22

𝜔𝑠𝑝
2 = 𝜔𝑝

2 (𝜀𝑏 + 1)⁄

𝑅 = (𝜀𝑏 − 1) (𝜀𝑏 + 1)⁄ }
 
 

 
 

     (𝐶. 17) 
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Appendix D 

D. Henkel−Joulain approach 

 

D.1 The correlation equation of the fluctuating currents 

 

      In this section the system and the geometry considered are those of Appendix A (Fig. A.1 

and A.2). 

The work presented in section 3 of chapter 3 is inspired from Henkel and Joulain approach 

[11]. This approach is based on the idea that the minimum value of the coherence length of 

the thermal EM field near a planar surface is related to the nonlocal dielectric response of the 

material. Therefore, Henkel and Joulain [11] defined a parameter l as being the coherence 

length of the EM field. This parameter is introduced l as a correlation distance in the 

correlation equation Eq. (A.16) of the fluctuating currents that generate the radiation field in 

the medium: 

〈𝑗𝑓𝛼(𝒓′, 𝜔)𝑗𝑓𝛽
∗ (𝒓′′, 𝜔′)〉 = 2 𝜔𝜀0𝜀1

′′(𝜔)
𝑒−(𝒓′−𝒓′′)

2
𝑙2⁄

𝜋
3

2⁄ 𝑙3
𝛩(𝜔, 𝑇1)𝛿𝑘𝑙𝛿(𝜔′ − 𝜔′′)     (𝐷. 1) 

where it is clear that this equation differs from Eq. (A.16) by the additional multiplied term, 

𝑒−(𝒓′−𝒓′′)
2

𝑙2⁄

𝜋
3

2⁄ 𝑙3
. This term is replacing the spatial delta function in the fluctuation-dissipation 

theorem. It introduces a spatial correlation length for the currents below which the currents 

are indeed correlated  

D.2 Derivation of the Poynting vector from medium (1) to medium (2) and 

the radiative heat transfer coefficient 

 

      We aim to repeat the derivation of the Poynting vector as to obtain at the end the RHTC 

for this system. We will carry out this derivation in a general way, i.e. using general notations 

so as to focus on the impact of the additional term (which is a function of l) throughout this 

calculation,; and eventually throughout any other derivation (Poynting vector, EM energy 

density,…). 
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In the local case, i.e. in the case where l=0, upon using Green’s Functions we were required 

to solve integrals of the form (as we saw in Appendices A and B): 

𝐴𝑖𝐵𝑗
∗ = 𝑐𝑠𝑡 ∫ 𝑑3𝒓′ ∫ 𝑑3𝒓′′ ∫ 𝑑2𝑲 𝑑2𝑲′𝐴𝑖𝑘𝐵𝑗𝑘

∗ 𝑒𝑖𝑲∙(𝑹−𝑹′)

× 𝑒𝑖𝛾1(𝑧−𝑑)𝑒−𝑖𝛾2𝑧′
𝑒−𝑖𝑲′∙(𝑹−𝑹′′)𝑒−𝑖𝛾1

′∗(𝑧−𝑑)𝑒+𝑖𝛾2
′∗𝑧′′

   (𝐷. 2) 

where A and B denote Green tensors (of the electric field E and/or the magnetic field H). 

In the nonlocal case, i.e. for l≠0, we obtain: 

𝐴𝑖𝐵𝑗
∗ = 𝑐𝑠𝑡 ∗

2 𝜔𝜀0𝜀1
′′(𝜔)

𝜋

1

𝜋
1

2⁄ 𝑙3
∫ 𝑑3𝒓′ ∫ 𝑑3𝒓′′ ∫ 𝑑2𝑲 𝑑2𝑲′𝐴𝑖𝑘𝐵𝑗𝑘

∗ 𝑒−(𝒓′−𝒓′′)
2

𝑙2⁄ 𝑒𝑖𝑲∙(𝑹−𝑹′) × 

𝑒𝑖𝛾1(𝑧−𝑑)𝑒−𝑖𝛾2𝑧′
𝑒−𝑖𝑲′∙(𝑹−𝑹′′)𝑒−𝑖𝛾1

′∗(𝑧−𝑑)𝑒+𝑖𝛾2
′∗𝑧′′

   (𝐷. 3) 

where 

∫ 𝑑3𝒓′′ 𝑒−(𝒓′−𝒓′′)
2

𝑙2⁄ 𝑒−𝑖𝑲′∙(𝑹−𝑹′′)𝑒+𝑖𝛾2
′∗𝑧′′

= ∫ 𝑑2𝑹′′ 𝑒−(𝑹′−𝑹′′)
2

𝑙2⁄ 𝑒−𝑖𝑲′∙(𝑹′−𝑹′′) ∫ 𝑑𝑧′′ 𝑒−(𝑧′−𝑧′′)
2

𝑙2⁄ 𝑒+𝑖𝛾2
′∗𝑧′′

   (𝐷. 4) 

and  

∫ 𝑑2𝑹′′ 𝑒−(𝑹′−𝑹′′)
2

𝑙2⁄ 𝑒−𝑖𝑲′∙(𝑹′−𝑹′′)

= ∫ 𝑑𝑥′′ 𝑒−(𝑥′−𝑥′′)
2

𝑙2⁄ 𝑒−𝑖𝐾𝑥
′(𝑥′−𝑥′′) ∫ 𝑑𝑦′′ 𝑒−(𝑦′−𝑦′′)

2
𝑙2⁄ 𝑒−𝑖𝐾𝑦

′ (𝑦′−𝑦′′)    (𝐷. 5) 

We will start by solving the on the right hand side, which we denote by: 

𝑋 = ∫ 𝑑𝑥′′ 𝑒−(𝑥′−𝑥′′)
2

𝑙2⁄ 𝑒−𝑖𝐾𝑥
′(𝑥′−𝑥′′) = 𝑒−𝑖𝐾𝑥

′𝑥 ∫ 𝑑𝑥′′ 𝑒−(𝑥′−𝑥′′)
2

𝑙2⁄ 𝑒𝑖𝐾𝑥
′𝑥′′

     (𝐷. 6) 

Using the change of variable 𝑢 = 𝑥′ − 𝑥′′, we obtain: 

𝑋 = −𝑒−𝑖𝐾𝑥
′𝑥 ∫ 𝑑𝑢 𝑒−𝑢2 𝑙2⁄ 𝑒𝑖𝐾𝑥

′(𝑥′−𝑢) = −𝑒−𝑖𝐾𝑥
′(𝑥′−𝑥) ∫ 𝑑𝑢 𝑒

−
1
𝑙2(𝑢2+𝑖𝐾𝑥

′ 𝑙2𝑢)
=

= −𝑒𝑖𝐾𝑥
′(𝑥′−𝑥)𝑒−𝐾𝑥

′2𝑙2 4⁄ ∫ 𝑑𝑢 𝑒
(𝑢+

𝑖𝐾𝑥
′ 𝑙2

2
)

2

𝑙2⁄
     (𝐷. 7) 
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Using the change of variable 𝑏 = (𝑢 + 𝑖𝑎) 𝑙⁄  where 𝑎 = 𝑖𝐾𝑥
′ 𝑙2 2⁄ , and the Gaussian integral 

given by: 

∫ 𝑑𝑦𝑒−𝑦2

+∞

−∞

= √𝜋     (𝐷. 8) 

Eq. (D.7) becomes: 

𝑋 = −𝑙√𝜋 𝑒𝑖𝐾𝑥
′(𝑥′−𝑥)𝑒−𝐾𝑥

′2𝑙2 4⁄       (𝐷. 9) 

Solving the second integral on the right-hand side of Eq. (D.5) with similar steps, we obtain: 

𝑌 = ∫ 𝑑𝑦′′ 𝑒−(𝑦′−𝑦′′)
2

𝑙2⁄ 𝑒−𝑖𝐾𝑦
′ (𝑦′−𝑦′′) = −𝑙√𝜋 𝑒𝑖𝐾𝑦

′ (𝑦′−𝑦)𝑒−𝐾𝑦
′2𝑙2 4⁄     (𝐷. 10) 

which imply that: 

∫ 𝑑2𝑹′′ 𝑒−(𝑹′−𝑹′′)
2

𝑙2⁄ 𝑒−𝑖𝑲′∙(𝑹′−𝑹′′) = 𝑙2𝜋 𝑒𝑖𝐾𝑥
′(𝑥′−𝑥) 𝑒𝑖𝐾𝑦

′ (𝑦′−𝑦)𝑒−
𝑙2

4
(𝐾𝑥

′2+𝐾𝑦
′2)    (𝐷. 11) 

Therefore Eq. (D.3) becomes: 

𝐴𝑖𝐵𝑗
∗ = 𝑐𝑠𝑡 ∗

2 𝜔𝜀0𝜀1
′′(𝜔)

𝜋
∗

𝑙2𝜋

𝜋
1
2𝑙3

∫ 𝑑3𝒓′ ∫ 𝑑2𝑲 𝑑2𝑲′ ∫ 𝑑𝑧′′ 𝐴𝑖𝑘𝐵∗
𝑗𝑘𝑒−𝐾2𝑙2 4⁄ 𝑒𝑖𝑲∙(𝑹−𝑹′)

× 𝑒𝑖𝛾1(𝑧−𝑑)𝑒−𝑖𝛾2𝑧′
𝑒−𝑖𝑲′∙(𝑹−𝑹′′)𝑒−𝑖𝛾1

′∗(𝑧−𝑑)𝑒+𝑖𝛾2
′∗𝑧′′

     (𝐷. 12) 

Now, the volume integral: 

∫ 𝑑3𝒓′ 𝑒𝑖𝑹′∙(𝑲−𝑲′) = ∫ 𝑑2𝑹′ ∫ 𝑑𝑧′ 𝑒𝑖𝑹′∙(𝑲−𝑲′) = 2𝜋 ∫ 𝑹′𝑑𝑹′ ∫ 𝑑𝑧′ 𝑒𝑖𝑹′∙(𝑲−𝑲′)

= 4𝜋2𝛿(𝑲 − 𝑲′) ∫ 𝑑𝑧′    (𝐷. 13) 

It follows that : 

𝐴𝑖𝐵𝑗
∗ = 𝑐𝑠𝑡 ∗

2 𝜔𝜀0𝜀1
′′(𝜔)

𝜋
∗

𝑙2𝜋

𝜋
1
2𝑙3

∗ 4𝜋2 ∫ 𝑑𝑧′𝑑𝑧′′ ∫ 𝑑2𝑲 𝐴𝑖𝑘𝐵𝑗𝑘
∗ 𝑒−𝐾2𝑙2 4⁄ 𝑒−𝑖𝛾2𝑧′

𝑒−𝑖(𝑧′−𝑧′′)
2

𝑙2⁄ 𝑒+𝑖𝛾2
∗𝑧′′

     (𝐷. 14) 

We should proceed by solving the integral: 

𝑍 = ∫ 𝑑𝑧′𝑑𝑧′′ 𝑒−𝑖𝛾2𝑧′
𝑒+𝑖𝛾2

∗𝑧′′
𝑒−𝑖(𝑧′−𝑧′′)

2
𝑙2⁄      (𝐷. 15) 
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Using the following change of variables: 

{
𝑢 = 𝑧′ − 𝑧′′

𝑣 =
𝑧′ + 𝑧′′

2

}       (𝐷. 16) 

We obtain: 

𝑍 = ∫ 𝑑𝑣

+∞

−∞

𝑒2𝛾2
′′𝑣 ∫ 𝑑𝑢

+∞

−∞

𝑒−𝑖𝛾2
′𝑢𝑒−𝑢2 𝑙2⁄      (𝐷. 17) 

Again, using Gaussian integral Eq. (D.8): 

𝑍 = 𝑙√𝜋𝑒−(𝛾2
′)

2
𝑙2⁄ ∫ 𝑑𝑣

+∞

−∞

𝑒2𝛾2
′′𝑣 =

𝑙√𝜋𝑒−(𝛾2
′)

2
𝑙2⁄

2𝛾2
′′       (𝐷. 18) 

Therefore: 

𝐴𝑖𝐵𝑗
∗ = 𝑐𝑠𝑡 ∗

2 𝜔𝜀0𝜀1
′′(𝜔)

𝜋
∗

𝑙2𝜋

𝜋
1
2𝑙3

∗ 4𝜋2 ∫ 𝑑𝑣

0

−∞

𝑒2𝛾2
′′𝑣 𝑙 𝜋

1
2𝑒−𝑅𝑒2(𝛾2)𝑙2 4⁄ ∫ 𝑑2𝑲 𝐴𝑖𝑘𝐵𝑗𝑘

∗ 𝑒−𝐾2𝑙2 4⁄      (𝐷. 19) 

It follows that the final form of Eq. (D.3) is: 

𝐴𝑖𝐵𝑗
∗ = 𝐶 ∗

1

2𝛾2
′′ ∫ 𝑑2𝑲 𝐴𝑖𝑘𝐵𝑗𝑘

∗ ∗ 𝑒−𝑅𝑒2(𝛾2)𝑙2 4⁄ 𝑒−𝐾2𝑙2 4⁄      (𝐷. 20) 

From this equation we conclude that we would obtain the same expression as in the local case, 

multiplied by the exponential term 𝑒−𝑅𝑒2(𝛾2)𝑙2 4⁄ 𝑒−𝐾2𝑙2 4⁄ . This implies that the RHTC 

equation in this nonlocal case would be given as follows: 

{
 
 
 
 

 
 
 
 

ℎ𝑟𝑎𝑑(𝑇, 𝑑) = ∑ ∫ 𝑑𝜔[ℎ𝑝𝑟𝑜𝑝
𝛼 (𝑇, 𝑑, 𝜔) + ℎ𝑒𝑣𝑎𝑛

𝛼 (𝑇, 𝑑, 𝜔)]

+∞

0𝛼=𝑆,𝑃

ℎ𝑝𝑟𝑜𝑝(𝑇, 𝑑, 𝜔) = ℎ0(𝑇, 𝜔) × ∫
𝐾𝑑𝐾

𝑘0
2

(1 − |𝑟31
𝛼 |2)(1 − |𝑟32

𝛼 |2) × 𝑒−[𝑅𝑒2(𝛾2)+𝐾2]𝑙2 4⁄

|1 − 𝑟31
𝛼 𝑟32

𝛼 𝑒2𝑖𝛾3𝑑|2

𝑘0

0

ℎ𝑒𝑣𝑎𝑛(𝑇, 𝑑, 𝜔) = ℎ0(𝑇, 𝜔) × ∫
𝐾𝑑𝐾

𝑘0
2

4𝐼𝑚(𝑟31
𝛼 )𝐼𝑚(𝑟32

𝛼 )𝑒2𝑖𝛾3𝑑 × 𝑒−[𝑅𝑒2(𝛾2)+𝐾2]𝑙2 4⁄

|1 − 𝑟31
𝛼 𝑟32

𝛼 𝑒2𝑖𝛾3𝑑|2

+∞

𝑘0 }
 
 
 
 

 
 
 
 

    (𝐷. 21) 

Similarly, the expressions of the EM energy density, and any of the electric and the magnetic 

contributions to it in the nonlocal case, will be the same as obtained in Appendix B, multiplied 

by the exponential term  𝑒−[𝑅𝑒2(𝛾2)+𝐾2]𝑙2 4⁄ . 
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Appendix E 

E. The polylogarithm function 𝑳𝒊𝒔(𝒛) 
 

 

The polylogarithm 𝐿𝑖𝑠(𝑧) is the function defined as follows: 

 

{
 
 

 
 𝐿𝑖𝑠(𝑧) = ∑

𝑧𝑘

𝑘𝑠

∞

𝑘=1

𝐿𝑖𝑠+1(𝑧) = ∫
𝐿𝑖𝑠(𝑡)

𝑡

𝑧

0

𝑑𝑡
}
 
 

 
 

    (𝐸. 1) 

Therefore the polylogarithm function of second order is defined as: 

𝐿𝑖2(𝑧) = ∫
𝐿𝑖1(𝑡)

𝑡

𝑧

0

𝑑𝑡     (𝐸. 2) 

where 

𝐿𝑖1(𝑧) = 𝑧 + 𝑧2 + ⋯      (𝐸. 3) 

 


