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de doctorat ha passat a ser important per mi, m’agradaria agrair la feina
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alèrgic.

Tampoc voldria oblidar-me d’en Ricard Prados, qui es pensa que l’he
estat putejant amb estima durant quatre anys quan, en realitat, majori-
tariament tot han estat maniobres molt ben estructurades per n’Albert i
executades per en Quintana. I sabeu que puc demostrar-ho perquè en tinc
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Abstract

Breast cancer is the second most common cancer (1.4 million cases per
year, 10.9% of diagnosed cancers) after lung cancer, followed by colorectal,
stomach, prostate and liver cancers [1]. In terms of mortality, breast cancer
is the fifth most common cause of cancer death. However, it place as the
leading cause of cancer death among females both in western countries and
in economically developing countries [2].

Medical imaging plays an important role in breast cancer mortality re-
duction, contributing to its early detection through screening, diagnosis,
image-guided biopsy, treatment follow-up and suchlike procedures [3]. Al-
though Digital Mammography (DM) remains the reference imaging modal-
ity, Ultra-Sound (US) imaging has proven to be a successful adjunct image
modality for breast cancer screening [3], [4], specially as a consequence of
the discriminative capabilities that US offers for differentiating between solid
lesions that are benign or malignant [5] so that the amount of unnecessary
biopsies, which is estimated to be between 65 ∼ 85% of the prescribed biop-
sies [6], can be reduced [7] in replacing them by short-term US screening
follow-up [8].

Regardless of the clinical utility of the US images, such image modal-
ity suffers from different inconveniences due to strong noise natural of US
imaging and the presence of strong US artifacts, both degrading the over-
all image quality [9] which compromise the performance of the radiologists.
Radiologists infer health state of the patients based on visual inspection of
images which by means of some screening technique (e.g. US) depict physi-
cal properties of the screened body. The radiologic diagnosis error rates are
similar to those found in any other tasks requiring human visual inspection,
and such errors, are subject to the quality of the images and the ability of
the reader to interpret the physical properties depicted on them[10].

Therefore the major goals of medical imaging researchers in general, and
also in particular for breast lesion assessment using US data, has been to
provide better instrumentation for improving the image quality, as well as,
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methodologies and procedures in order to improve the interpretation of the
image readings. In image interpretation unified terms for characterizing, de-
scribing and reporting the lesions have been developed [5], [11]–[13] in order
to reduce diagnosis inconsistencies among readers [14]. Such unifying terms
so called lexicons are proven to be a useful framework for the radiologists
when analyzing Breast Ultra-Sound (BUS) images. The Positive Predic-
tive Value (PPV) and Negative Predictive Value (NPV) which represent the
percentage of properly diagnosed cases [15] achieved when describing lesions
with these lexicon tools turned them into the standard for human reading
and diagnosis based on BUS images.

A common framework allows managing the US imaging inconveniences
such as strong noise or artifacts by allowing the comparison of double read-
ings done by several specialized observers. The major inconvenience for
double reading is the elevated time required from the radiologists. Thus,
since a single observer using Computer Aided Diagnosis (CAD) as a second
opinion has been proven to achieve comparable results [16], CAD systems
are used to aliviate the time demand from the radiologists. However these
descriptors are subject to an accurate delineation of the lesion which when
read by an expert radiologist is instantly understood but in a CAD system
a computerized system is required.

This thesis analyzes the current strategies to segment breast lesions in
US data and proposes a fully automatic methodology for generating accurate
segmentations of breast lesions in US data with low false positive rates. The
proposed approach targets the segmentation as a minimization procedure for
a multi-label probabilistic framework that takes advantage of min-cut/max-
flow Graph-Cut (GC) minimization for inferring the appropriate label from
a set of tissue labels for all the pixels within the target image. The image is
divided into contiguous regions so that all the pixels belonging to a particular
region would share the same label by the end of the process. From a training
image dataset stochastic models are build in order to infer a label for each
region of the image. The main advantage of the proposed framework is that
it splits the problem of segmenting the tissues present in US the images into
subtasks that can be taken care of individually.



Resum

Amb 1,4 milions de casos anuals i comptabilitzant el 10,9% del total de
diagnòstics, el càncer de mama és el segon càncer més comú darrere del
càncer de pulmó, seguit del càncer de colon, d’estómac, de pròstata i de
fetge. En termes de mortalitat en tota la població, el càncer de pit és
la cinquena causa de mortalitat. Si només es té en compte la població
femenina, el càncer de mama lidera la mortalitat per càncer tant en päısos
desenvolupats com en päısos en desenvolupament.

La imatge mèdica juga un paper crucial a l’hora de combatre la mortal-
itat per càncer de mama, i en facilita, entre d’altres, les tasques de detecció
precoç, diagnosis, biòpsies guiades per imatge o seguiment de l’evolució de
les lesions. Tot i que la Mamografia Digital (MD) segueix essent la princi-
pal modalitat d’imatge, les imatges d’ultrasò s’han convertit en una valuosa
modalitat d’imatge per complementar les exploracions mèdiques. La seva
principal vàlua és que aquestes imatges aporten informació que permet de-
terminar la benignitat o malignitat de les lesions sòlides, que no es poden
determinar només amb MD. Com a conseqüència de complementar MD amb
imatges d’ultrasó, s’estima que entre un 65% i un 85% de les biòpsies pre-
scrites es podrien evitar, tot canviant-les per un seguiment periòdic basat
en imatges d’ultrasò.

Malgrat la utilitat mèdica de les imatges d’ultrasó, aquest tipus d’imatges
són molt sorolloses i pateixen artefactes que comprometen les capacitats de
diagnosis per part dels radiòlegs que han d’interpretar l’estat de salut del pa-
cient a partir d’aquestes imatges. Els errors de diagnosi basats en la lectura
d’imatges mèdiques són similars als de qualsevol altra tasca que requereixi
inspecció visual i es troben subjectes a la qualitat de les imatges, aix́ı com
a les habilitats dels radiòlegs per interpretar-les correctament.

Per aquestes raons, dins la comunitat que investiga imatge mèdica de
forma general, aix́ı com en el cas particular del càncer de mama, s’intenta
desenvolupar tant maquinària i/o processos que millorin la qualitat de les
imatges, com metodologies per millorar-ne i sistematitzar-ne la lectura i
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interpretació. A fi de millorar la interpretació de les imatges, la comuni-
tat mèdica ha desenvolupat un lèxic comú per reduir inconsistències entre
les lectures dels radiòlegs. S’ha demostrat que la utilització d’aquest tipus
d’eines, consistents en un conjunt d’atributs concrets (lèxic) que són assig-
nats a les imatges per tal de descriure-les, millora el percentatge de lesions
correctament diagnosticades, fet que les ha convertit en l’estàndard a l’hora
de llegir imatges per part dels radiòlegs.

El fet d’utilitzar un lèxic comú permet comparar múltiples lectures de
diversos radiòlegs per millorar, aix́ı, la diagnosi final. Tot i que dur a
terme aquest tipus de lectures múltiples és d’una pràctica habitual, no
deixa de ser molt costosa, ja que diversos especialistes han d’analitzar les
imatges. Per aquesta raó, dins el camp mèdic s’han introdüıt els sistemes
CAD d’assistència computaritzada per la diagnosi per obtenir una segona
opinió. S’ha demostrat que la diagnosi final prodüıda per un radiòleg util-
itzant un sistema CAD és equiparable a la decisió consensuada per múltiples
radiòlegs, fet que permet elleugerir el volum de tasques dels radiolegs. El
principal problema en el desenvolupament de sistemes CAD acurats rau en
què aquest lèxic depén d’una delineació fidel de les lesions, que un lector ex-
pert pot dur a terme de forma intüıtiva i natural però que un sistema CAD
necessita d’un proces que realitzi aquesta tasca. D’aqúı la importància de
desenvolupar sistemes acurats de delineació de lesions en imatges de mama
en ultrasò.

En aquest treball, es proposa un sistema automàtic per generar delinea-
cions acurades de les lesions de mama en imatges d’ultrasò. El sistema pro-
posat planteja el problema de trobar la delineació corresponent a la minim-
ització d’un sistema probabiĺıstic multiclasse mitjançant el tall de mı́nim
cost del graf que representa la imatge. El sistema representa la imatge com
un conjunt de regions i infereix una classe per cada una d’aquestes regions a
partir d’uns models estad́ıstics obtinguts d’unes imatges d’entrenament. El
principal avantatge del sistema és que divideix la tasca en subtasques més
fàcils d’adreçar i després soluciona el problema de forma global.



Resumen

Con 1,4 millones de casos anuales que contabilizan el 10,9% del total de
diagnósticos, el cáncer de mama es el segundo cáncer más común detrás del
cáncer de pulmón, seguido por el cáncer de colon, de estómago, de próstata y
del cáncer de h́ıgado. En términos de mortalidad respecto toda la población,
el cáncer de mama es la quinta causa de mortalidad. Considerando sola-
mente la población femenina, el cáncer de mama lidera la mortalidad por
cáncer en páıses desarrollados y también en páıses en v́ıas de desarrollo.

La imagen médica es crucial para combatir la mortalidad por cáncer
de mama ya que facilita su detección precoz, diagnosis, biopsias guiadas o
seguimiento de la evolución de las lesiones. Aunque la Mamograf́ıa Dig-
ital (MD) sigue siendo la principal modalidad de imagen médica para la
visualización de la mama, las imagenes de ultrasonido se han convertido en
una valiosa modalidad de imagen para complementar dichas exploraciones
médicas. Su principal valua es que las imágenes de ultrasonido aportan
información que permite determinar la benignidad o malignidad de las le-
siones sólidas, que no se puede determinar usando únicamente MD. Como
consecuencia de complementar MD con imágenes de ultrasonida, se estima
que entre un 65% y un 85% de las biopsias prescritas se podŕıan evitar, cam-
biandolas por un seguimiento periódico basado en imágenes de ultrasonido.

A pesar de la valua médica de las imágenes de ultrasonido, este tipo
de imagenes padecen de mucho ruido y artefactos que comprometen las
capacidades de diagnóstico por parte de leso radiologos. Los errores de
diagnosis debidos a una mala lectura de las imágenes médicas son similares a
los errores producidos en cualquier otra tarea que requiera inspección visual.
Dichos errores están sujetos a la calidad de las imagenes y a las habilidades
de los radiólogos en interpretarlas.

Por las razones mencionadas, en la comunidad que investiga la imagen
médica de forma general, aśı como para el caso particular del cáncer de
mama, intenta desarrollar maquinaria y/o procesos que mejoren la calidad
de las imagenes, como metodoloǵıas para mejorar y sistematizar la lectura
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e interpretación de las imagenes. Con el fin de mejorar la interpretación de
las imagenes, la comunidad médica ha desarrollado un léxico común para
reducir inconsistencias entre lecturas de radiólogos. Está demostrado que
la utilización de este tipo de herramientas, que consisten en un conjunto de
atributos concretos (léxico) que debe ser asignado a las imagenes a modo de
descripción, mejora el porcentaje de lesiones correctamente diagnosticadas.
Hecho que ha convertido estas herramientas en el procedimiento estándar
de lectura de las imagenes por parte de los radiólogos.

La utilización de un léxico común permite comparar las lecturas de varios
radiólogos permitiendo mejorar el diagnosis final. Aunque la práctica de
lecturas múltiples es una práctica habitual, no deja de ser muy costosa,
ya que varios especialistas deben analizar las imagenes. Por esta razón,
se han introducido los sistemas de asistencia computarizada a la diagnosis
(CAD) que facilitan una segunda opinión al radiólogo. Esta demostrado que
el diagnosis final producido por un radiólogo utilizando un sistema CAD
es equiparable al diagnosis consensuando lecturas de múltiples radiólogos,
hecho que permite reducir la carga de trabajo de los radiólogos. El principal
problema al desarrollar sistemas CAD fiables radica en que dichos léxicos
dependen de una correcta delineación de las lesiones. Un lector experto es
capaz de visualizar dichas delineaciones de una forma natural e intuitiva,
pero un sistema CAD necessita de procesos computarizados para realizar
una delineación acurada. De ah́ı la importancia de desarrollar sistemas
fiables para la delineación acurada de lesiones en imagenes ultrasonicas de
mama.

En el trabajo aqúı presentado, se propone un sistema automático para
generar delineaciones acuradas de las lesiones de mama en imágenes de ul-
trasonido. El sistema propuesto plantea el problema de la delineación como
la minimización de un sistema probabiĺıstico multiclase mediante el corte
de coste mı́nimo del graf representando la imagen. El sistema representa la
imagen como un conjunto de regiones y infiere una clase para cada una de
las regiones presentes en base a unos modelos estad́ısticos obtenidos durante
un proceso de entrenamiento. La principal ventaja del sistema propuesto es
que divide el problema en subtareas más fáciles de solventar y finalmente
soluciona la segmentación de forma global.



Résumé

Le cancer du sein est le type de cancer le plus répandu ( 1,4 millions de
cas par an, 10,9% des cancers diagnostiqués) après le cancer du poumon. Il
est suivi par le cancer du colon, le cancer de l’estomac, celui de la prostate
et le cancer du foie . Bien que parmi les cas mortels, le cancer du sein soi
classé cinquième type de cancer le plus meurtrier, il reste néanmoins la cause
principale de mortalité chez les femmes aussi bien dans les pays occidentaux
que dans les pays en voie de développement .

L’imagerie médicale joue un rôle clef dans la réduction de la mortalité
du cancer du sein, en facilitant sa première détection par le dépistage, le
diagnostic, la biopsie guidée par l’image et le suivi de traitement et des
procédures de ce genre.

Bien que la Mammographie Numérique (DM) reste la référence pour les
méthodes d’examen existantes, les échographies ont prouvé leur place en
tant que modalité complementaire. Les images de cette dernière fournissent
des informations permettant de différencier le caratère bénin ou malin des
lésions solides, ce qui ne peut être détecté par MD. On estime que 65 à 85%
des biopsies prescrites pourraient être évitées par la mise en place d’un suivi
régulier basé sur des images échographiques. Malgré leur utilité clinique, ces
images sont bruitées et la présence d’artefacts compromet les diagnostiques
des radiologues interprètant l’état de santé du patient à partir de celles ci.
Les erreurs de diagnostic basées sur la lecture des images médicales sont sim-
ilaires à toute autre tâche qui exige une inspection visuelle et sont soumises
à la qualité des images ainsi qu’aux compétences des radiologistes. C’est
pourquoi un des objectifs premiers des chercheurs d’imagerie médicale a été
de fournir une meilleure instrumentation dans le but d’améliorer la qualité
d’image et des méthodologies permettant d’améliorer et de systématiser la
lecture et l’interprétation de ces images. Pour améliorer l’interprétation
des images, la communauté médicale a mis au point un lexique commun
réduisant les incohérences entre radiologues.

Il a été démontré que l’utilisation de ces outils, composé d’un ensem-
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ble spécifique de caractéristiques (lexique) qui sont affectés à des images
pour les décrire, en améliorant le pourcentage de lésions correctement di-
agnostiquées [15], est devenu la norme lors de la lecture des images par les
radiologues.

L’utilisation d’un lexique commun permet de comparer plusieurs lec-
tures de différents radiologues afin d’améliorer le diagnostic. Un telle pra-
tique est énormément couteuse en temps. Etant donné qu’il a été prouvé
que l’utilisation de Computer Aided Diagnosis CAD en tant que deuxième
observateur permet l’obtention de résultats comparables, ces système sont
donc utilisés pour améliorer l’exactitude des diagnostics.

Si pour un lecteur qualifié, la délineation fidèle des lésions peut être
éffectuée de manière intuitive et naturelle, le CAD nécessite le développement
d’un système de délimitation précis pour l’utilisation du lexique.

Le problème principal dans le développement d’un CAD précis vient du
fait que ce lexique dépend d’une délineation fidèle des lésions qui, même si
pour un lecteur qualifié peut être effectuée de manière intuitive et naturelle.
D’où l’importance du développement de systèmes de délimitation précise
des lésions dans les images de l’échographie du sein.

La méthode proposée considere le processus de segmentation comme
la minimisation d’une structure probabilistique multi-label utilisant un al-
gorithme de minimisation du Max-Flow/Min-Cut pour associer le label
adéquat parmi un ensemble de labels figurant des types de tissus, et ce,
pour tout les pixels de l’image. Cette dernière est divisée en régions adja-
centes afin que tous les pixels d’une même régions soient labelisés de la même
manière en fin du processus. Des modèles stochastiques pour la labellisa-
tion sont crées à partir d’une base d’apprentissage de données. L’avantage
principal de la méthodologie proposée est le découpage de l’opération de
segmentation de tissu en sous tâches indépendentes les unes des autres.



Chapter 1

Introduction

The soul cannot think without a picture

Aristotle

1.1 Breast cancer

Breast cancer is the second most common cancer (1.4 million cases per year,
10.9% of diagnosed cancers), after lung cancer and followed by colorectal,
stomach, prostate and liver cancers [1]. In terms of mortality, breast cancer
is the fifth most common cause of cancer death. However, it is the lead-
ing cause of cancer death among females both in western countries and in
economically developing countries [2].

In general, breast cancer incidence rates are higher in western countries
not only because of incidence factors like reproductive patterns, such as
late age at first birth and hormone therapies, either contraceptives or pro-
longed, but also, due to the aging of the population, which raises the overall
incidence rates even if the age-specific rates remain constant [17], [18].

In contrast to the rising incidence rate of breast cancer over the last two
decades in western countries, studies such as Autier et al [19] report that
breast cancer mortality has been declining in many countries. This decrease
is attributed to the combined effects of breast screening, which allows the
detection of the cancer at its early stages, and to the improvements made
in breast cancer treatment.

1
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1.2 Image diagnostic techniques applied to breast
cancer

Medical imaging refers to the techniques and processes used to create im-
ages depicting physical properties of the human body or animals (or parts
thereof) in order to infer health state for clinical purposes or medical ther-
apy. In an editorial by Angell et al. published in the New England Journal of
Medicine [20], the medical imagine discipline is qualified as one of the most
important medical developments of the past thousand years since medical
imaging provides physicians with in vivo images describing physiology and
functionality of organs.

Without exception, medical imaging plays the most important role in
breast cancer mortality reduction, contributing to its early detection through
screening, diagnosis, image-guided biopsy, treatment follow-up and suchlike
procedures [3].

Digital Mammography (DM) is, and remains, the preferred screening
technique for early detection and diagnosis of breast cancer [21]. It is esti-
mated that a 15 to 35% reduction in mortality in breast cancer deaths is due
to the wide implementation of screening mammography. However, almost
25% of cancers still go undetected under mammography screening [22], typ-
ically in nonfatty breasts where the dense tissue shields the lesions. This is
an important limitation in mammography screening, since about 40% of the
female population have some dense breast tissue, and dense tissue is a risk
factor for developing breast cancer. Patients with dense tissue in 75% or
more of the breast have a four to six times higher probability of developing
breast cancer compared to patients with dense tissue in 10% or less of the
breast [23]. In addition, a large number of mammographic abnormalities
(between 65 ∼ 85%) turn out to be benign after biopsy [6].

Therefore, it is recommended to use other image modalities like US and
Magnetic Resonance Image (MRI) screening as complementary images since
they are more sensitive than mammography in a dense breast scenario [4]. In
some cases these techniques also offer higher specificity than mammography
allowing doctors to distinguish benignant and malignant signs which can
then be used to reduce the amount of unnecessary biopsies [3], [5], [24].

In spite of these mammography screening drawbacks, mammography
remains the gold standard screening technique due to the greater ability
mammography has over US or MRI imagery in depicting small non-palpable
lesions (always in a non-dense breast scenario) [25]. Also, the fact that mi-
crocalsifications, which are a clear sign of malignancy, are usually mistaken
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(a) (b) (c)

Figure 1.1: Mammography Medio-Lateral Oblique (MLO) and Cranio-
Caudal (CC) view points: (a) illustrates the projection of the two most
used view points (image from [27]), which produces images like the Medio-
Lateral Oblique (MLO) in (b) and the Cranio-Caudal (CC) in (c). Notice
the presence of the pectoral muscle in the upper-left corner of the MLO
example (b).

as artifacts in US or MRI imaginary [26]; or the fact that most ductal
carcinoma in situ are missed under sonography [11] plays in favor of mam-
mography screening.

However, combining clinical examination with multiple modality imaging
is more sensitive than any individual image modality [4].

1.2.1 X-ray screening, Mammography and Tomosynthesis

Full-Field Digital Mammography and Screen-Film Mammography

Mammography is a two-dimensional image modality that captures electro-
magnetic waves of an X-ray band passing through a compressed breast.
Depending on the compression deformation of the breast, the images are
classified into different categories. Figure 1.1 shows the two most used view-
points for extracting mammograms: the Medio-Lateral Oblique (MLO) view
and Cranio-Caudal (CC) view. Figure 1.1(a) illustrates the projection of the
breast into the views and fig. 1.1(b,c) show an example of each mammogra-
phy view of the same breast with a visible mass.

DM is the natural evaluation of screening the breast using X-rays and has
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levels and subtracted from one another. The subtraction increas-
es visibility of the contrast agent. 

In the temporal subtraction approach, a pre-injection mask
image is taken, the contrast agent is administered, several post-
contrast images are taken at specific intervals and subtraction
images (post-contrast images minus the mask image) are
processed and evaluated. 

Clinical studies are underway in the U.S. to evaluate the
effectiveness of contrast-enhanced mammography. Some
researchers believe this modality may become an alternative to
breast MRI in evaluating difficult-to-interpret mammograms or
for high-risk screening. It may also be useful in evaluating multi-
centric disease in newly diagnosed patients. 

Full-Field Digital Tomosynthesis6

Tomosynthesis is a method of performing 3D x-ray mam-
mography at doses similar to conventional 2D x-ray mammog-
raphy. Tomosynthesis acquisition involves acquiring multiple
images of a stationary compressed breast at different angles dur-
ing a short scan. The individual images
are then reconstructed into a 3D series
of thin high-resolution slices. The slices
can be displayed individually or in a
dynamic ciné mode. The individual
slices reduce tissue overlap and structure
noise relative to standard 2D projection
mammography, with a total dose com-
parable to that required for standard
screening mammography. 

The digital tomosynthesis device
offers a number of exciting opportuni-
ties, including the possibility of reduced
breast compression, improved diagnos-
tic and screening accuracy, 3D lesion
localization, and contrast enhanced 3D
imaging. Conventional x-ray mammog-
raphy is a 2D imaging modality. The
signal detected receptor is dependent upon the total attenuation
of all the tissues above the location. This is illustrated in Figure
3. The two objects (ellipse and star) individually attenuate x-rays
passing through them on the way to the image receptor; howev-
er, the signal detected represents a summation of their attenua-
tion. In mammography, pathologies of interest are more difficult
to visualize because of the clutter of signals from objects above
and below. Tomosynthesis is a method of 3D imaging which can
reduce this tissue overlap effect. 

The basics of tomosynthesis acquisition theory are illustrat-
ed schematically in Figure 4. While holding the breast station-
ary, a number of images are acquired at different x-ray source
angles. It can be seen from the figure that the objects at different
heights in the substance being x-rayed project differently in the
different projections. In this example, the two objects superim-
pose when the x-rays are at 0º, but the ±15º acquisitions shift the

object’s shadows relative to one another in the images. 
The final step in the tomosynthesis procedure is recon-

structing the data to get 3D information. This is illustrated in
Figure 5. In the example on the right side of the figure, the pro-
jection images are summed, shifting one relative to another in a
specific way that reinforces the ellipsoidal object and reduces the
contrast of the starred object by blurring it out. Similarly, in the
example on the left side, the same set of acquired projection data
can be reconstructed differently, using different shifts of the pro-
jection data, to reinforce the star object and blur the ellipse. This
method can be used to generate images that enhance objects
from a given height by appropriate shifting of the projections
relative to one another. Note that additional acquisitions are not
required to achieve this; the single set of acquired data can be
reprocessed to generate the entire 3D volume set. 

Figure 4 . Tomosynthesis Imaging.
With tomosynthesis imaging, images acquired from different angles separate structures at differing heights.
Conventional mammography would acquire only the central image.  

Figure 3. Signal Detection.
With conventional mammography, the signal detected at the location on the
image receptor is dependent upon the total attenuation of all the tissues above
the location.

(a)
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(b)

Figure 1.2: Mammography and Tomosynthesis image takes. (a) A mammog-
raphy single image take illustrating the tissue overlap problem that shows
that breast cancer can be shielded by dense normal breast tissue. (b) A mul-
tiple image take for tomosynthesis showing how the relative position between
two targets vary depending on the X-ray’s illumination angle. The views
in (b) can be used to unfold the tissue overlap by composing a 3D-volume
from the multiple views. The images illustrating this figure are taken from
Smith et al. [26].

become the image screening of reference when diagnosing breast cancer [21],
[28]. DM can either be digitized Screen-Film Mammography (SFM) when
the image is obtained as the digitization of an analogical film or Full-Field
Digital Mammography (FFDM) when the image is directly generated in a
digital sensor instead of a sensible film.

Although no difference in cancer detection rates between FFDM and
SFM [29] have been yet observed, FFDM has become the standard mam-
mography screening due to its obvious advantages in a digitized environ-
ment.

Advances in X-ray screening of the breast, Breast Tomosynthesis

This technique tries to overcome the effect of tissue overlap present in regular
mammograms. The screening technique is similar to mammography, the
breast is compressed between two plates and X-ray attenuation is measured.
The difference is that instead of using a single viewpoint, multiple images of
the breast are taken at different angles and further combined to reconstruct
them into cross-sectional slices. Figure 1.2 illustrates the effect of taking
images at different angles, and figure 1.3 shows an example of taking different
images of the same breast (fig. 1.3(a-c)) and the resultant cross-sectional
slices from synthesizing the 3D-volume (fig. 1.3(d-f)).
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(a) (b) (c) (d) (e) (f)

Figure 1.3: Tomosynthesis image acquisition and reconstruction example.
Images (a-c) correspond to the X-ray images at different angles of the same
take, and images (d-f) correspond to different cross-sectional slices of the
reconstructed 3D-volume of the same breast. The images illustrating this
figure are taken from A. Smith [30].

1.2.2 Sonography

Ultra-Sound (US) imaging uses high-frequency mechanical waves (sound
waves typically within the 1 ∼ 20Mhz range) in order to insonify the area to
inspect and capture the waves reflected at boundaries between tissues with
different acoustic properties [9]1. The most common sonography screen-
ing technique applied to breast cancer screening is the hand-held realtime
B-mode US imaging system.

B-mode imaging equipment generates two-dimensional images by means
of a beam that travels through the tissue. The amplitude of the reflection
caused by tissue interfaces is represented as brightness. The depth of the
depicted boundaries is proportional to the interval of the reflection arrivals.

Despite the advantages that US screening offers, images lack in quality
and suffer from severe artifacts. Another inconvenience of US screening is
that regular equipment uses a hand-held probe run over the breast surface by
the physician in order to take an arbitrary slice of the breast. This approach
strongly relates the acquisition to the ability of the user. Further discussion
of these topics can be found throughout Section 1.3 of this document.

1We refer the reader to Ensminger and Stulen [9] for a deeper understanding of US
physics and image formation.
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Real time spatial compound imaging (or sonoCT )

In order to improve the image quality, real time spatial compound imaging,
or sonoCT, at every acquisition deflects the US beam and takes three to
nine samples at different angles instead of a single take (see fig.1.4a,b) [31].
The sonoCT acquisition procedure of taking multiple views somehow recalls
the acquisition process carried out in tomosynthesis. The difference is that
sonoCT does not use the extra information to synthetise a 3D-volume, but
uses the data redundancy for reducing the artifacts and noise, and to obtain
an improved overall image, providing better tissue differentiation [32]. Its
main drawback is the bluring effect caused by scene changes between takes.
These scene changes can be caused by unintentional movements of the ac-
quisition probe in a hand-held US device or due to movement by the patient.
Figure 1.4 intuitively compares the sonoCT acquisition process with regular
US imaging and also shows the outcome difference. For further details on
this technology, the reader is referred to the works of Entrekin et al. [31],
[33].

Automated whole Breast Ultra-Sound (ABUS)

Other advances in US acquisition address the dependency of the physician’s
skills for taking proper images. In Automated whole Breast Ultra-Sound
(ABUS) a much larger transducer is used for exhaustive-scanning of the
breast in an automatic manner with no dependency on the user. Then all
the acquired slices are combined to generate a three-dimensional volume
of the breast, overcoming the limitation of scanning only the focal area of
concern as happens in hand-held US screening [34]. Figure 1.5 illustrates
both hand-held US and ABUS acquisition systems to intuitively understand
the differences between both systems.

Doppler Imaging

Sonographic Doppler imaging or the M-mode sonogram uses the well known
Doppler shift effect. When the radiating energy cuts through a moving
object, the received signal shifts its frequency depending on the relative
velocity between the moving object and the moving observer.

The frequency shift captured by the Doppler effect is displayed as a
color overlay in a B-mode image. Doppler imaging supposes a functional
image used to visualize the blood flow which is representative of the lesion’s
metabolism.
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(a) (b) (c) (d)

(e) (f)

Figure 1.4: Comparison between conventional B-mode US imaging and real
time spatial compound US imaging (sonoCT). (a,b) linear transducer com-
parison: in the conventional acquisition (illustrated in a) a single beam is
used, whereas for compound imaging (b) several beams, at different angles,
are used. (c,d) illustrates the insonifying advantages of conventional US (c)
and sonoCT (d). Finally, (e) and (f) are examples of the same fibroadenoma
using conventional screening and sonoCT. Notice that the lateral shadows
caused by the fibroadenoma in (e) disappear in (f). Also, a proper hyper-
echoic boundary in the fibroadenoma’s upper left hand corner appears in
(f), depicting high reflection at the interface between the regular adipose
tissue and the lesion which can not be appreciated in (e). The overall image
quality of (f) is far superior to (e), supporting the foundings in [32]. All the
images used in this figure are taken from Entrekin et al. [33]
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(a) (b)

Figure 1.5: Conventional hand-held US and ABUS acquisition devices com-
parison. (a) Conventional hand-held US imaging acquisition device. (b)
ABUS acquisition device.

Sonoelastography

Sonoelastography can be seen as a highly sensitive ultrasonic palpation col-
oring the stiffness of the tissues over B-Mode sonogram [9]. In order to
generate the data, pressure is applied over the tissue through mechanical vi-
brations (sound wave < 10Hz). Then the Doppler effect is used to measure
the movement of the tissues. The stiffer the tissue, the lesser the vibration
present compared to softer tissues.

1.2.3 Magnetic Resonance Image (MRI)

Although early efforts of using Magnetic Resonance Image (MRI) imaging to
screen breasts were discouraging due to low spatial resolution [35], further
studies combined with the use of contrast agents proved MRI to be an
effective screening technique to assess breast lesions [4].

MRI screening technologies expose the tissue to a strong magnetic field
to excite and align the nuclear particles within the tissue. Then the decay
signal of the polarization state of each particle is recorded to generate a
three-dimensional image. According to the tissue type, the decay signal
shows different characteristics allowing technicians to distinguish the tissue
type. Figure 1.6 exemplifies an MRI take of a patient.

The main advantage of using MRI is its capability of capturing functional
behavior of the breast using a contrast agent to highlight areas containing
a dense blood vessel network (known as angiogenesis areas), a typical char-
acteristic of tumor structures.
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(a)

3. Evaluation: Material 

• 50 T1-weighted coronal MRI 

• Manual segmentations as reference standard 

• Evaluation measure: Dice Similarity Coefficient (DSC) 
 

(b)

Figure 1.6: Magnetic Resonance Image (MRI) example. (a) generic Gen-
eral Electric healthcare resonance unit (image taken from their catalog) (b)
transverse MRI image slice from a patient’s chest, in which the breast and
its structures can be clearly identified.

1.2.4 Other breast imaging techniques

In spite of DM being the principal screening technique for breast cancer and
both B-mode US imaging and MRI are considered a beneficial and comple-
mentary adjunct to mammography, these modalities are far from perfect.
Although the use of Full-Field DM has many advantages and commodi-
ties [29], its functioning principles are the same as the first proposals of
Screen-Film Mammography in the 1960s [36]. In addition, US and MRI
have their own limitations, otherwise mammography wouldn’t remain the
preferred breast screening modality.

Therefore, improving the current imaging technologies and exploring
new imaging modalities is being investigated [21], [26]. Here, some of these
modalities are named.

Bioelectric Imaging

This is based on the different electrical properties between normal and ma-
lignant breast tissue. These differences are measured with a probe capturing
the low level electricity patterns applied to the breast’s surface.

Breast Thermography

An infrared camera is used to identify areas of angiogenesis by tracking the
temperature of the blood as it flows into the breast.
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Near Infrared Optical Imaging

This technique measures the transmission of near infrared light through the
breast so that areas of vascular development (angiogenesis) and/or areas
saturated with hemoglobin and oxygen (hyper-metabolism) are highlighted.

Contrasts Developing

Contrast agents are being developed to produce contrast-enhanced mam-
mographies and functional MRI, where areas with a particular behavior are
highlighted during the screening.

Positron Emission Tomography (PET)

This technique is a nuclear imaging technique in the same category as scin-
timammography used to restating and evaluating recurrent breast cancer.
In Position Emission Tomography (PET), a radioactive glucose, usually 18-
fluoro-2deoxyglucose (FDG), is injected into the patient and areas of high
tracer uptake are visualized with a gamma camera. A number of breast
specific PET scanners are currently in development and being tested in clin-
ical trails to demonstrate their efficiency. However, PET examinations are
extremely expensive and are not widely available [26].

Scintimammoraphy

This technique is also a nuclear imaging technique which uses a gamma
camera to visualize a radioactive tracer. Although recent advances have
been made in high-resolution cameras designed specially for breast imaging,
the resolution of scintimammography is still low compared to PET [26].

1.3 Ultra-Sound imaging and its role in Breast
Cancer

Although US applied to breast cancer screening was expected to surpass
mammography since its initial studies in the early 50s carried out by Wild
and Reid [37], and the variety of advances that sonography has under-
gone [38], Digital Mammography (DM) is, and remains, the preferred screen-
ing technique when diagnosing breast lesions [21], [39]–[41]. However, it is
widely accepted that extensive mammography density is strongly associ-
ated with the risk of breast cancer and that mammographic scanning has
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a low specificity in such a scenario [22], [23]. Therefore, the convenience of
using alternative screening techniques (US, MRI, PET, and suchlike) is ob-
vious, since there is the urgent need to increase the detection of unnoticeable
cancers during physical examination [3], [4], [6], [42]–[45]. Although there
is great controversy in using alternatives to mammography as a primary
screening tool since in retrospective review lesion signs can be found in the
mammography screenings [39]; it is easily understood that multi-modality
readings are more sensitive than any individual test alone [3], [4], [6].

Despite the fact that some studies report that other modalities, such as
MRI, have higher sensitivity compared to US [4], sonography is the most
common image modality adjunct to mammography because it is widely avail-
able and inexpensive to perform [3], [34], [46]. Moreover, US, apart from
its detection capabilities, has the ability to discern the typology of solid
lesions [5], [11]–[13], [40], which can be used to reduce the number of unnec-
essary biopsies prescribed by DM [7], [8], which are estimated to be between
65 ∼ 85% [6]. Eventhough data suggest unnecessary biopsies can be re-
placed by short-term US screening follow-up, further studies are needed in
order to determine whether this conclusion holds [47].

Figure 1.7 illustrates a case taken from Hines et al. [48] where DM and
US images of a lactating patient who presented a palpable lesion were taken.
In the MLO DM image (fig. 1.7a) and its magnified lateral view (fig. 1.7b),
it is hard to spot the lesion, while the lesion is clearly visible when using US
screening (fig. 1.7c). The findings in the US data reveal a complicated cyst,
which is nothing more than a benign lesion. The patient was declined for
aspiration.

1.3.1 Screening of the breast using Ultra-Sound images

The most common US screening technique used for depicting the breast is
Hand-Held 2D B-Mode ultrasound imaging. A manually driven transducer
(see fig:1.5a) emits high-frequency mechanical waves and captures the reflec-
tion of the tissue interfaces to compose a 2D image where the brightness of
each spot represents the amount of reflection for that particular position [9].

However, understanding such images is not easy. Therefore, operators
and readers must have a thorough knowledge of normal breast anatomy
and architecture, which has considerable variability, in order to perform an
accurate diagnosis of abnormalities, since the appearance of the lesions are
not specific [5], [40], [46].

Since the transducer is driven by the technician, any arbitrary slice plane
of the breast can be screened. Figure 1.8 roughly illustrates the topology
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(a) (b) (c)

Figure 1.7: Example of lesion shield under DM screening and distinguishable
under US screening taken from Hines et al. [48]. Image (a) corresponds
to a Medio-Lateral Oblique (MLO) Digital Mammography (DM), (b) is a
magnification and (c) corresponds to a Breast Ultra-Sound (BUS) image.

of a breast, indicates a possible slice, and shows two US acquisitions of two
healthy breasts to illustrate the structures present within the image. As
can be observed in figure 1.8, several structures within the breast can be
revealed when screening: skin layers, adipose tissue, fibro-glandular tissue,
fibrous tissue, muscle tissue and the chest-wall to name the most important.

The specific appearance of the breast structures depend on physiological
particularities of the breast depicted, as well as the acquisition instrument
and its configuration, which is readjusted for every patient/image to obtain
a clear view in order to perform a diagnosis through visual assessment of
the images [49]. With this pretext, US systems manufacturers incorporate
image processing techniques to improve the visualization for better visual
reading. However, such image modifications might compromise the comput-
erized analysis, since the image modifications are unknown and some of the
operations to improve human perception cannot be undone.

Despite the variability in the appearance of breasts, some relationship
between tissues hold true, especially the structural ones.

Skin is the most anterior element therefore is depicted at the top of
the image, appearing as a bright layer of approximately 3mm or less, often
containing a dark central line [40]. The contour and thickness of the skin
layer can vary due to inflammation or disease [49].

The chest-wall, when depicted, appears as bright (highly echogenic)
arched blobs, which correspond to the anterior part of the ribs and pleura.
The chest-wall is the bottom structure in the image, since it corresponds
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Lungs (air)

Pectoral muscle
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Fibro-glandular
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Skin layers Cooper’s
ligament
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(a) (b)

(c) (d)

Figure 1.8: Breast structure screening appearance when using ultrasound.
The illustration in (a) gives an intuitive idea of the structures present in
a breast and their disposition, while illustration (c) represents how those
structures are screened by a US device. Images (b) and (d) are two US
images taken from healthy breasts to illustrate how the structures present
in a breast are seen under US screening.
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to most posterior depicted structure when screening. Just above the lungs,
which appear as a noisy black area with no structure, as if it were back-
ground.

Just above the chest-wall, the pectoral muscle can easily be identified
under sonography as bright elongated streams in the direction of the fibers
over a dark background parallel to the skin [49].

The area compressed between the skin and the pectoral muscle corre-
sponds to the breast structure, made up of fat lobes (along with the Cooper
ligaments) and fibro-glandular tissue in a fairly variable relative amount.
The normal appearance of the breast might vary from a completely fatty
breast with only a few fibro-glandular structures, to a completely fibro-
glandular breast with little or no fat. When a mixture of adipose and fibro-
glandular tissue is present in a US screening, they normally appear in a
layered fashion and adipose tissue can be found anterior (above) to fibro-
glandular tissue (see fig. 1.8). It is also normal that the glandular tissue of
the breast contains variable amounts of adipose infiltrations.

Figure 1.9 illustrates several breast topologies which are rated accord-
ingly to the American College of Radiology (ACR) density rates from one
to four; one being a completely fatty breast and four a completely dense
breast.

When analyzing US images, the terms black, white, dark or bright are
not used. Instead, terms like anechoic, hypo-echoic, iso-echoic, hyper-echoic
or highly echoic are preferred. Anechoic areas are black areas with no tex-
ture due to the lack of scatterers within the tissue. As example, cystic
structures show anechoic appearance, since the presence of homogeneous
liquid produces no scattering (see fig.. 1.8a,b). As echogenicity reference,
adipose tissue (fat) is used so that the structures depicted are denominated
hypo-, iso- or hyper-echoic according to their appearance relative to normal
breast adipose tissue, since adipose tissue appears near to the middle of the
echogenicity spectrum. Although there are other tissues in the middle of
the echogenicity spectrum, like periductal elastic tissue or terminal ductal-
lobular units, adipose tissue is chosen as a reference because fat lobes are
uniformly present in the population and can clearly be identified.

It is worth mentioning here the recommendation of setting the acquisi-
tion parameters of the sonographic devices so that adipose tissue appears
gray rather than black. Otherwise there is not enough dynamic range to
distinguish structures from tissues with a lower echoenicity response such as
structures present within some solid nodules resulting in a cyst-like appear-
ance [5].

Fat lobes appear as soft uniform, scattered textured blobs usually grayish
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(a) (b)

(c) (d)

Figure 1.9: Breast Ultra-Sound (BUS) image examples of different adipose
and fibro-glandular topologies with the presence of lesions. Image (a) shows
a fatty breast rated as class 1 where the fat lobes are present from the skin
layer all the way down to the pectoral muscle. In this image, a carcinoma
intra ductal is spotted as a hypo-echogenic breast region between the skin
and the pectoral muscle. The oval shaped dark area below the pectoral
muscle corresponds to a rib. Image (b) illustrates a breast rated as class
2. In the image, the subcutaneous fat and fibro-glandular area beneath
it can be clearly identified. An anechoic mass can be found within the
fibro-glandular tissue, consistent with a cyst. In image (c), the proportion
of subcutaneous fat over fibro-glandular tissue is very little. However, the
darkness and uneven aspect of the fibro-glandular tissue indicates infiltrated
fat combined with the fibro-glandular tissue giving an overall class 3 of breast
density. Notice that within the fibro-glandular tissue, there is a completely
anechoic oval spot producing slightly posterior enhancement, corresponds to
a cyst. Image (d), rated as a class 4, shows a dense and homogeneous fibro-
glandular pattern despite the presence of subcutaneous fat. The hypo-echoic
region, with an appearance similar to an isolated fat lobe, corresponds to a
fibroadenoma.



16 CHAPTER 1. INTRODUCTION

in color, (since adipose must be set as the center of the spectrum), suspended
from the skin by Cooper’s ligaments, which are imaged as highly-echogenic
curvilinear lines extending from the breast tissue to the superficial fascial
layer [40].

Fibro-glandular tissue has more scatterers, which are distributed in more
locally uniform fashion compared to adipose tissue, appearing as a denser
hyper-echoic textured region posterior to (under) the fat lobes. The denser
the fiber, the higher the presence of scatterers within the tissue, hence the
denser and brighter the texture becomes. When screened in US, fibro-
glandular tissues have no apparent distribution filling the empty space be-
tween the fat lobes, or the lobes and the pectoral muscle.

1.3.2 Elements degrading Breast Ultra-Sound (BUS) images

Regardless of the clinical use of these images, they suffer from various in-
conveniences such as poor quality and imaging artifacts. This section tries
to familiarize the reader with the elements degrading US images by com-
menting on their presence within example images.

The first thing that needs to be taken into account is that these images
are taken by an expert user, usually a radiologist. Therefore, the objects
of interest are present and some enhancement procedures have already been
applied to the image by the acquisition machinery to obtain a better visu-
alization. All preprocessing image transformations are unknown and differ
between acquisition equipment since they are proprietary.

Field of View and Zooming

The structures depicted in a US breast image are quite variable, mainly due
to breast topology differences between individuals, and also due to the capa-
bilities of sonographers to focus and zoom in on different areas. Figure 1.10
represents different BUS images where, apart from pathology diversity, the
structural elements visualized in the images vary, giving a totally different
images.

Weak Edges

Weak edges are produced when adjacent tissues have similar acoustic prop-
erties. An insufficient difference between speed propagation of the sound
waves in two adjacent tissues yields a feebly back-reflected echo at the tis-
sue interface, degrading the edges of US images.
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(a) (b) (c)

Figure 1.10: A partial view of the structural elements of the breast. (a)
shows a fatty breast with all the structural elements and an intraductal
carcinoma seen as a spicular hypo-echoic region surrounded by fibrous tissue,
which appears hyper echoic, producing a slightly posterior shadow in the
center of the image. (b) corresponds to a zooming in on a ductal infiltrating
carcinoma. Although some Cooper ligaments can be seen in the image
showing that the cancer is placed in the subcutaneous fat, there’s no breast
structure revealed in the image. (c) shows a large hematoma with internal
structure preventing the depiction of any other breast structure.

Illumination Inconsistency (shadowing and posterior enhancement
artifacts)

Low dynamic is the consequence of the US wave attenuation by the tissue
media. As the mechanical wave travels along the tissue, the dynamic range
resolution decreases, producing a lack of contrast as wave energy is dissi-
pated. Shadowing effects occur when the signal has not got enough power
to depict any further tissue due to severe attenuation. Nodules with curved
surfaces may give rise to lateral refractive edge shadowing. This is seen at
the edge of the lesion, not posterior to the mass [40].

Posterior acoustic enhancement has the opposite effect where posterior
structures appear brighter mainly due to coherent scattering produced by
fairly uniform cellularity structures or cystic lesions.

Figure 1.11 illustrates some posterior acoustic artifacts.

Speckle

Speckle is an unwanted collateral artifact coming from a coherent interface
of scatterers located throughout the tissue, so that, even in uniform tissue,
speckle appears as a granular structure superimposed on the image. Speckle
is an artifact degrading target visibility and limits the ability to detect lower
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(a) (b)

(c) (d)

Figure 1.11: Illumination inhomogeneities. (a) Shadow artifact (located on
the right of the image) produced by inadequate contact of the hand-held
probe with the breast. (b) Posterior shadow produced by a solid mass.
(c) Posterior enhancement example. (d) Combined pattern of posterior en-
hancement and refractive edge shadow produced by a round cyst.
In the following other image examples that qualified for the same categories
can be found.
Solid mass shadow as in (b): 1.16d.
Posterior enhancment as in (c): 1.13b, 1.19b,c, & 1.15d.
Combined pattern as in (d): 1.16b,c.
No posterior pattern, neither posterior shadow nor enhancement, can be
found in: 1.10a-c, 1.13a,c,d, 1.19a, 1.14a,b, 1.16a,e, 1.17a,b, 1.15a-c,e
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contrast lesions in US images.
In order to illustrate speckle, figure 1.12 shows a breast screening, a

physical phantom screening and a synthetic phantom image in order to show
that this unwanted granular texture called speckle is characteristic of US
images.

(a) (b) (c)

Figure 1.12: Speckle noise characteristic of Ultra-Sound (US) images. (a)
A breast screening image. (b) Screening of a physical phantom of a clean
simple cyst. (c) Synthetic phantom computed using Field II ultrasound
simulator [50] (image taken from tool documentation).

Observe that when shadow is present, due to a solid lesion for instance,
most often there is no presence of speckle beneath the total signal attenua-
tion, making it impossible to determine the real extension of the lesion but
at the same time, reveals physical information that the absence of speckle
can be used for diagnosis (see fig.1.11b).

1.3.3 Breast lesion assessment based on Ultra-Sound imag-
ing

One of the problems of interpreting medical images is that they are subject
to subjectivity that lead to inconsistent diagnoses due to the lack of unifor-
mity among the readings (intra- and inter-observer variability) [14]. There-
fore, efforts were made to build up a set of lexicon tools [11]–[13] which are
standardized descriptors that set up a common framework facilitating BUS
image interpretation and allowing easy comparison and interpretation by ex-
perts. Although some indeterminate categories still persist, the development
of these interpretive criteria has improved the ability to differentiate benign
from malignant masses to the point that these lexicons are considered one
of the most important advances in breast US [40].
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Stavros et al. [5] collected the features describing the lesions that had
been used previously and proposed a preliminary lexicon to describe the
lesions and set the bases to perform diagnosis of solid lesions rather than
just discriminate between cyst and solid lesion. In order to increase the con-
sistency and reproducibility when assessing breast lesions using US screen-
ing, the ACR society published the US Breast Imaging-Reporting and Data
System (BI-RADS) [12] lexicon as an extension of the existing and widely
accepted BI-RADS standard descriptors for mammography screening.

The diagnosis criteria was designed using primary signs referred to char-
acteristics of the mass itself, and secondary signs referring to produced
changes in the tissues surrounding the mass [11].

Another example is the work carried out by Hong et al. [51] studying
the correctness of the diagnosis based on the lexicon descriptors proposed in
[13] and [12] and comparing both lexicons in terms of PPV and NPV which
represent the percentage of properly diagnosed cases based on a particular
test (lexicon descriptions in this case) [15]. In the experiment, 403 images
with single lesions were analyzed by one of the three experts participating
in the experiment, using both lexicons to describe the images in order to
compare the lexicons. The results proved the usefulness of using these lexi-
cons for assessing solid masses and also reported the highly predictive value
when using BI-RADS descriptors for assessing solid lesions. The results
supporting the usefulness of the lexicon are a consensus from the medical
community [52], [53].

Once the BUS imagery power of diagnosis was established, along with
the development of reliable lexicons that facilitate the diagnosis, recent stud-
ies, such as Calas et al.[54], analyzed the repeatability and inter-obeserver
variability in the diagnosis. In this paper, a set of 40 images is reviewed by
14 expert radiologists with 4 to 23 years experience who have all been using
the BI-RADS lexicon since 2005. This study corroborates the utility and
stability in the assessment of using these descriptiors for describing lesions to
perform a diagnosis. However, the study reveals the increasing disagreement
among the experts when the lesion size is small since it is more difficult to
properly describe the lesion in the lexicon terms; an issue that would need
to be addressed by reviewing and improving the lexicon in the future. The
study also confirms how challenging it is to perform a diagnosis based only
on a single US image. They found that some experts (8 out of 14), for a par-
ticular image sample, miss-classified a meullary carnicoma as benign, since
this type of carcinoma is characterized by a partially circumscribed contour
and a discrete posterior acoustic enhancement that can be confused with a
complicated cyst.
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Figure 1.18 illustrates the BI-RADS lexicon proposed by ACR and how
those findings are distributed across different lesion types used as examples.
For each feature, a single attribute must be chosen; the one which best
describes the scenario. Figures 1.13-1.15, try to familiarize the reader with
how similar the interpretative features of the lexicon are. These features
can force the reader to analyze primary signs (those characterizing the mass
itself) and secondary signs which describe the tissues surrounding the lesions.

As a primary sign, the shape, orientation and internal echo-patterns of
the mass are analyzed along with the interface between the mass and the
surrounding tissue. Figure 1.13 illustrates the mass shape criteria, where
an oval indicates elliptical or egg-shaped lesions, A round shape indicates
spherical, ball-like, circular or globular lesions. A lobular shape indicates
that the lesion has two or three ondulations and an irregular shape is for
any lesion that can not be classified in the previous categories.

(a) (b) (c) (d)

Figure 1.13: Mass shape examples: (a) Oval shaped lesion. (b) Round
masses. (c) Irregular shaped masses. (d) Lobular masses.
In the following other image examples that qualified for the same categories
can be found.
Oval shaped lesion (a): 1.10c, 1.19c, 1.16a, 1.17a, 1.15a,c,e.
Round masses (b): 1.11d, 1.10a, 1.13b, 1.19a,b, 1.17b & 1.15b.
Irregular shaped masses (c): 1.11a, 1.10b, 1.14b, &1.16b,c,e.
Lobular masses (d): 1.11c, 1.14a, 1.16d & 1.15d.

Figure 1.14 illustrates mass orientation which can be parallel when the
long axis of the lesion keeps the same orientation of the fibers so that the
lesion doesn’t cross tissue layers (“wider than tall” criteria). Non-parallel
(“taller than wide”) indicates a growth across the tissue layers.

Figure 1.15 illustrates the internal echo pattern criteria, which describes
the mass echogenity with respect to fat.

Figure 1.16 illustrates the mass margin criteria, describing the shape of
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(a) (b)

Figure 1.14: Mass orientation: (a) Parallel to the skin. (b) Non-parallel to
the skin.
In the following other image examples that qualified for the same categories
can be found.
Parallel to the skin (a): 1.11c 1.10c, 1.13a,d, 1.19a-c, 1.14a, 1.16a,d, 1.17a,
& 1.15a-c,e.
Non-parallel to the skin (b): 1.11a,d 1.10a,b, 1.13b,c, 1.14b, 1.16b,c,e, 1.17b,
& 1.15d also qualify as non-parallel oriented lesions.
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(a) (b) (c) (d) (e)

Figure 1.15: Interior echo-pattern of the mass: (a) Anechoic. (b) Hypo-
echoic. (c) Hyper-echoic. (d) Complex. (e) Iso-echoic.
In the following other image examples that qualified for the same categories
can be found.
Anechoic (a): 1.13b, 1.19a-c, & 1.14a also qualify as anechoic lesions.
Hypo-echoic (b):1.11a,d 1.10a,b, 1.13c,d, 1.14b, 1.16a-e, 1.17a,b, & 1.15b
also qualify as lesions with an abrupt interface.
Complex (d): 1.11c, 1.10c & 1.15d also qualify as masses with complex
internal echopattern.
Iso-echoic (e): 1.13a & 1.15e also qualify as masses with iso-echoic internal
echopattern.

the interface between the lesion and the tissue which can be circumscribed
when the interface is smooth and distinguishable, even if the rim is thick,
thin or non-perceptible. Indistinct is used in cases where delineating a proper
boundary would be difficult since the lesion fades within the surrounding
tissue. Angular is when part of the margin is formed by linear intersections
that form acute angles. Microlobulated is when the margin is characterized
by more than 3 small ondulations. Spiculated is applied when the margin
is characterized by sharp projecting lines.

Figure 1.17 illustrates the lesion boundary criteria describing the tran-
sition between the mass and the surrounding tissue. Abrupt is used when
there is a sudden change in contraposition of the echogenic halo which hap-
pens when the lesions develop a fibrous layer covering them.

The secondary signs describing the surrounding tissue are composed by
the background echo-texture and the posterior acoustic pattern (see fig. 1.19
and 1.11).
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(a) (b) (c) (d) (e)

Figure 1.16: Mass Margin description: (a) Circumscribed. (b) Indistinct.
(c) Angular. (d) Microlobulated. (d) Sipiculated.
In the following other image examples that qualified for the same categories
can be found.
Circumscribed (a): 1.11c,d 1.10c, 1.13a,b, 1.19a-c, 1.14a, 1.17a, & 1.15a-c,e
also qualify as circumscribed lesions.
Angular (c): 1.10b, 1.13c, & 1.14b also qualify as lesions with an angular
margin.
Microlobulated (d):1.10a, 1.13d, 1.17b, & 1.15d also qualify as microlobu-
lated lesions.
Spiculated (e): 1.11a & 1.16e also qualify as spiculated lesions.

(a) (b)

Figure 1.17: Lesion Boundary: (a) Abrupt interface. (b) Echogenic halo.
In the following other image examples that qualified for the same categories
can be found.
Abrupt interface (a): 1.11c,d 1.10c, 1.13a,b,d, 1.19a-c, 1.14a, 1.16a,b,d,
1.17a, & 1.15a-e also qualify as lesions with an abrupt interface.
Echogenic halo (b): 1.11a, 1.10a,b, 1.13c, 1.14b, 1.16c,e, & 1.17b also qualify
as lesions surrounded by an echogenic halo.
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Figure 1.18: Breast Imaging-Reporting and Data System (BI-RADS) de-
scriptors for assessing breast lesions in US images and their occurrences
across several lesion types.
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(a) (b) (c)

Figure 1.19: Background echo-texture: (a) Homogeneous adipose-
echotexture. (b) Homogeneous fibro-glandular-echotexture. (c) Heteroge-
nous echo-texture.
In the following other image examples that qualified for the same categories
can be found.
Homogeneous adipose-echotexture (a): 1.11a,c, 1.10a-c, 1.13a,c, 1.14b,
1.16a,b, & 1.15b,c,d’ also qualify as masses surrounded by homogeneous
adipose echotexture.
Homogeneous fibro-glandular-echotexture (b): 1.11d, 1.13d, 1.14a, 1.16c-e,
1.17b, & 1.15a,e also qulify as masses surrounded by homogenoeus figro-
glandular echotexture.
Heterogenous echo-texture (c): 1.13b, 1.19c, & 1.17a also qualify as masses
in a heterogeneous background.
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1.4 Computer Aided Diagnosis (CAD)

Radiologists infer the patients’ state of health based on visual inspection
of images depicting the existing conditions of the patient captured with a
screening technique such as X-Ray radiography, Ultra-Sound (US), MRI,
etc. Radiologic diagnosis error rates are similar to those found in any other
task requiring human visual inspection, and such errors are subject to the
quality of the images and the ability of the reader to interpret the physical
properties depicted in them[10].

Providing better instrumentation in order to improve the quality of the
images as well as methodologies and procedures in order to improve the
interpretation of the readings have been the major goal of researchers and
developers in the medical imaging field. Although the idea of using com-
puter systems to analyze radiographic abnormalities has been around since
the mid-1950s [55], the development of such ideas is still undergoing and
unsolved due to technological limitations in computational power since the
volume of the data within the images and the nature of the procedures for
analyzing the data are in some cases intractable. Studies such as Chan et
al. [56] support those thesis that state that the use of a computer, in this case
for spotting microcalsification clusters in mammography images, produces
statistically significant improvement in radiologists’ performance. Since the
goal of medical imaging is to provide information to the radiologists that
reduces the diagnosis uncertainty by either reducing the errors when search-
ing abnormalities, reducing interpretation errors or reducing the variation
among observers.

Anything that helps the radiologists to perform a diagnosis can be con-
sidered as CAD, from a data visualization system to a fully integrated sys-
tem that, from an input, image outputs a final diagnosis that can be taken
as a second reading. Despite the wide coverage of CAD, such techniques
and systems can be broadly categorized into two types: Computer Aided
Detection (CADe) and Computer Aided Diagnosis (CADx) [16].

CADe implies that radiologists use computer outputs of the locations of
suspect regions, leaving the characterization, diagnosis, and patient
management to be done manually.

CADx extends the computer analyses to yield output on the characteri-
zation of a region or lesion, initially located by either a human or a
CADe system.
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1.4.1 Image segmentation applied to BUS segmentation for
CADx applications

As stated earlier, the lexicon descriptors proposed in [13] and [12] have
proven to be a useful framework for radiologists when analyzing BUS images.
The PPV and NPV when describing lesions with these tools turned them
into the standard for human reading and diagnosis based on BUS images.

One of the advantages of using CAD systems is that computerized sys-
tems can take advantage of other low-level information that is usually hid-
den to a human reader. Although there are some designs based only on
low-level features, such as the approach proposed by Liu et al. [57], most
of them combine both low- and high-level features. High-level cognitive
features, like lexicons, are subject to an accurate delineation of the lesions
so that features can be extracted. Moreover, the use of high-level features
based on segmentations similar to lexicons brings the CAD system closer to
the radiologist routines, facilitating the decision making which is the final
goal of a CAD system.

Therefore, segmentation is a key step for CAD systems that might be
seen as a CADe procedure or as an intermediate step between CADe and
CADx if this segmentation is somehow guided by the user. However, seg-
mentation is not an easy task to perform.

Image segmentation is the process of partitioning an image into multiple
meaningful segments which simplifies the further analysis of the image. Any
segmentation procedure needs to address two aspects: targeting the struc-
tures that one wants to identify, and dealing with the noise present in the
image. In our case, we are aiming for an accurate delineation of lesions with
a low false positive rate without mistaking similar structures as a lesions.

1.5 Thesis Objectives

Summing up, US imagery automatized analysis is challenging in general,
and in particular for breast lesion assessment since it is one of the most
difficult tasks to perform due to all the aforesaid drawbacks. However, the
clinical value of assessing breast lesions in US data [5], [12], [13], [51], [54],
justifies the growing interest within the medial imaging field of address-
ing BUS-CAD systems. Moreover, the lexicon tools developed to improve
the understanding among radiologists have proven to be useful for assessing
breast lesions. However, these descriptors are subject to an accurate delin-
eation of the lesion which when read by an expert radiologist is instantly
understood.
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Our goal is to propose a fully automatic segmentation procedure able to
delineate the lesions as well as fully partition tissues of interest within the
image so that high-cognitive features can be extracted for driving CADx
systems. Although various projects have addressed the problem of breast
lesion segmentation in US data, such as as [58]–[61], the segmentation task
remains unsolved.

1.6 Thesis Organization

This thesis is structured as follows: This first chapter introduces US imaging
modality for assessing breast lesions, the importance of CAD systems for ac-
curate readings of breast ultrasound imagery, and the role of segmentation
in order to obtain high-level information that can be used to develop more
accurate CAD systems. A description of the objectives of this thesis and
this organization summary can also be found in the first chapter. Chapter 2
analyses the state-of-the-art of image segmentation techniques applied to
automatic breast lesion delineation in ultrasound data. Chapter 3 proposes
an easy to modify framework not only to delineate the lesions but also to
delineate other structures of interest present in the images. The proposed
framework, consists of building up an objective function that is further min-
imized. This chapter covers all the parts of the proposed framework as well
as reporting the experiments carried out and a discussion of the outcome.
Finally, the thesis ends with some conclusions wrapping up the work exposed
here and proposes research lines for further work.
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Chapter 2

A review of current
methodologies for
segmenting breast lesions in
Ultra-Sound images

B. Watterson

US imaging has proven to be a successful adjunct image modality for
breast cancer screening [3], [4], especially in view of the discriminative ca-
pabilities that US offers for differentiating between benign or malignant
solid lesions [7]. As a result, the number of unnecessary biopsies, which
is estimated to be between 65 ∼ 85% of all prescribed biopsies [6], can be
reduced [7] with the added advantage of a close follow-up with sequential
scans [8].

However, the noisy nature of the US image modality and the presence of
strong artifacts, both degrading the overall image quality [9], raise diagnosis
error rates as would happen in any other human visual inspection task [10].
Therefore, uniform terms in order to reduce diagnosis inconsistencies among

31
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readers [14] characterizing, describing and reporting the lesions have been
developed [5], [11]–[13] so that double readings can be performed and a more
accurate diagnosis achieved. The main inconvenience of double readings is
cost, justifying the use of CAD systems, which have also proven to improve
diagnosis accuracy [16].

BUS CADx, as mentioned earlier, can take advantage of either low-level
features, high-level features or both [62]. However, in order to take advan-
tage of high-level features or descriptors similar to the lexicon descriptors
proposed in [12], [13], an accurate segmentation is needed (see section 1.3.3).

2.1 The role of segmentation within a Breast ul-
trasound Computer Aided Diagnosis (CAD)
system

Segmentation is a fundamental procedure for a CAD system. Figure 2.1
illustrates the idea that procedures for segmentating breast lesions in US
data can be found within a CAD system workflow as part of CADe, as part
of CADx or as a stand alone step using detection information and providing
further information that can be used for conducting a diagnosis.

CADe CADe CADe

CADx CADx CADx

Segmentation

Figure 2.1: Illustrative idea of the role of segmentation within a CAD frame-
work showing that it can either be a separate process between a CADe and
a CADx or it can belong to any of the two CAD typologies: CADe, CADx

Segmentation procedures integrated within CAD systems can either be
manual, interactive or automatic depending on the amount of effort or data
supplied by the user. CADx systems needing high-level descriptors supplied
by a user or a non-aided manual delineation also fall into the manual cat-
egory and therefore, are not extensively reviewed. As an example of this
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category, we cite the work presented by Hong et al. [51], which describes a
system working on BI-RADS descriptors supplied by an expert based on the
reading of images.

Figure 2.2 compiles methodologies of interest and categorizes them ac-
cording to the following groups and subgroups:

Interactive Segmentation: methodologies requiring any kind of user in-
teraction to drive the segmentation.

• Fully-Guided are those methodologies where the user is asked to
accompany the method through the desired delineation.
• Semi-Automatic are those methodologies where the segmentation

is conditioned by the user by means of labeling the regions instead
of the delineation path.

Automatic Segmentation: methodologies with no user interaction.

• Auto-Guided are an evolution of Semi-Automatic methodologies
so that user interaction has been substituted by an automatic
procedure (usually as an automatic initialization of the original
Semi-Automatic procedure).
• Fully-Automatic are ad-hoc automatic procedures designed in

such a manner that no user interaction can be incorporated.

2.1.1 Interactive Segmentation

While fully automatic segmentation still remains unsolved, it is obvious that
manual delineations are unacceptably laborious and the results suffer from
huge inter- and intra-user variability, which reveals its inherent inaccuracy.
Thus, interactive segmentation is rising as a popular alternative alleviat-
ing the inherent problems in fully automatic or manual segmentation by
taking advantage of the user to assist the segmentation procedure. Interac-
tive methodologies are mainly designed as general purpose techniques since
the segmentation is controlled by a skilled user who supplies the knowledge
regarding the application domain. Depending on the typology of informa-
tion the user provides the system in order to govern the segmentation, two
distinct strategies can be differentiated: fully-guided and semi-automatic.

For a fully-guided strategy, the user indicates the boundary of the desired
segmentation and accompanies the procedure along the whole path. Some
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Fully-Guided
JetStream [63]

Semi-Automatic
GCS, ARD [58]
GCS[61]
GCS, watershed [64]
MAP-MRF, EM [65], [66]
Grabcut, watershed [67]
ACM, gradient LevelSet, geodesic snake [68]
RGI variation, k-means (k=2), snake [69]
GVF-LevelSets [70]

Auto-Guided
GCS, RGI [71]
MAP,texture, GCS [61], [72], [73]
MAP, texture, RG, snake [60]
Th[74], application criteria, snake [75]
ML detection, ML segmentation [76]
ML detection, ML segmentation [77]
Th[74], application criteria[78] for cropping, ML segmentation [79]

Fully-Automatic
watershed, texture merging, GVF-snake [80]
unsupervised ML, graph representation, merging, snake [81]
NC, graph representaiton, merging, morphology [82]
Objective function, GC, DPM[83],GLCM [84]
Watershed [59]
ML [57]
Model driven LevelSet [85]
Inpainting [86]

Interactive
Segmentation

Automatic
Segmentation

Figure 2.2: List of breast lesion segmentation methodologies and their high-
lights. The methodologies are groped in two categories: interactive and
automatic; with four subcategories: Fully-Guided, Semi-Automatic, Auto-
Guided and Fully-Automatic.
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successful general purpose techniques that require this kind of user interac-
tion, and just to name a couple, are: intelligent-scissors [87], or Jetstream
segmentation [88], both deriving from the live-wire technique [89], which
requires the user to indicate roughly the path of the desired boundary and
the segmentation procedure automatically adjusts to the underlying desired
partition in an interactive manner.

For a semi-automatic strategy, the user constrains or initializes the seg-
mentation procedure by indicating parts or elements belonging to each ob-
ject to be segmented (i.e. foreground/background). The segmentation pro-
cedure generates the final delineation from this information. Two popular
general purpose interactive segmentation techniques falling in this category
are: lazy snapping [90] and grabcut [91] both based on the work proposed by
Boykov and Jolly [92] which takes advantage of GC and a naive indication
of the elements present within the image to find a proper delineation of the
object of interest.

Although interactive segmentation procedures are designed in a general
manner, due to the difficulties present in US images, some interactive seg-
mentation procedures especially designed for delineating breast lesions in
US data have been developed. The remainder of this section compiles these
procedures in terms of the aforementioned fully-guided and semi-automatic
terms.

Fully-guided interactive segmentation applied to Breast Ultra-
sound images

Due to the quantity of knowledge extracted from the user when segmenting
with a fully-guided interactive procedure, it is rare to find a fully-guided
segmentation designed for a particular application. However, Angelova and
Mihaylova [63], [93] implemented a jetstream [88] especially designed to be
applied to segment breast lesions in US data images.

It can be argued that their proposal is not a fully-guided procedure as
the authors have limited the user interactivity since it is not allowed to
condition the segmentation along the whole path. The method is initialized
by four point locations indicating the center of the lesion, an inner bound,
an outer bound, and a point lying within the desired boundary. These four
locations drive the whole segmentation that takes advantage of intensity
and position information. In this sense the methodology can be categorized
as semi-automatic. However, it has been considered fully-guided since it is
based on a fully-guided procedure, namely jet stream. Implementation of
multiple reinitialization of the boundary location in order to achieve fully-
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guidance is straight forward despite not being covered in the original work.
The evaluation of the method is done in a qualitative manner using a

dataset of 20 images. No quantitative results are reported.

Semi-automatic segmentation applied to Breast Ultrasound im-
ages

In this section we consider semi-automatic segmentation methods; those
methods requiring the user to impose certain hard constraints like indicating
that certain pixels (seeds) belong to a particular object (either lesion or
background).

Horsch et al. [58] propose using a Gaussian Constraining Segmenta-
tion (GCS) consisting of combining a Gaussian shape totally or partially
defined by the user with an intensity dependent function. The final seg-
mentation consists of finding the contour resulting from thresholding the
Gaussian constrained function that maximizes the Average Radial Deriva-
tive (ARD) measure. The maximization is done in an exhaustive manner.
The segmentation performance was tested on a 400 image dataset achieving
a mean Area Overlap (AOV) of 0.73 when compared to manual delineation
by an expert radiologist. Massich et al. [61] proposed a methodology inspired
by GCS with different user interactability levels that fall into the interactive
and semi-automatic procedures category when manually initialized with a
single click. The difference between this work and the original GCS method-
ology lies in the intensity dependent function and the manner in which the
final threshold is chosen since a disparity measure is minimized instead of
maximizing the ARD coefficient. In this proposal, the intensity dependent
function used is robust to the thresholding so that if, instead of dynamically
choosing a thresholding based on the error measure or ARD, a fixed thresh-
old (properly tuned for the dataset) is preferred, the segmentation results
are consistent. Although a slightly lower performance in terms of mean is
reported, 0.66 compared to 0.73 obtained by the original GCS methodology,
there is no difference statistically when comparing the result distribution in
a common dataset [61], and the methodology proposed by Massich et al.
demands less user interaction. Another work based on GCS [58] is the work
proposed by Gomez et al. [64] where watershed transform is used to con-
dition the intensity dependent function. As in the original GCS proposal,
ARD maximization is used in order to find the adequate threshold that leads
to the final segmentation. Although a larger dataset should be used in order
to corroborate the improvement and the fact that the multivariate Gaussian
is determined by 4 points supplied by the user, a mean overlap of 0.85 is
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reported using a 20 image dataset.

In Xiao et al. [65], the user is required to determine different Regions Of
Interest (ROIs) placed inside and outside the lesion in order to extract the
intensity distribution of both. Then, these distributions are used to drive
an Expectation Maximization (EM) procedure over the intensity spectrum
of the image incorporating a Markov Random Field (MRF) used for both
smoothing the segmentation and estimating the distortion field. Although
in [65] the method is only qualitatively evaluated in a reduced set of synthetic
and real data, further studies reducing the user interaction from different
ROIs to a single click [66] reported results using two larger datasets of 212
and 140 images obtaining an AOV of 0.508 for the original method and 0.55
for the less interactive proposal, and a Dice Similarity Coefficient (DSC)
score of 0.61 and 0.66 respectively.

Other examples of semi-automatic procedures addressing segmentation
of breast lesions in US images are: the implementation of the grab-cut
methodology proposed by Chiang et al. [67] or the various manually ini-
tialized implementations of the popular Active Contour Models (ACMs)
technique [68]–[70]. These ACM methodologies reported really good results
achieving a mean AOV of 0.883 for the implementation presented in [68].
Within the group of methodologies using ACM, Alemán-Flores et al. [68]
connected two completely different ACM procedures in a daisy-chain man-
ner. First, the image is simplified by applying a modified Anisotropic Diffu-
sion Filter (ADF) that takes texture into account, using the Gabor filter re-
sponses to drive the amount of diffusion. Then, a manual seed is used to ini-
tialize a gradient regularized LevelSet method as if it were a region growing
procedure growing in the simplified image. Finally, the pre-segmentation1

obtained is used to initialize a geodesic snake ACM that evolves using in-
tensity information from the inner and outer parts. In a similar way, Cui
et al. [69] evolves two ACMs in a daisy chain manner. However, in this
case the ACMs are identical, differing only in their initialization. Finally,
the best solution from the two ACMs is selected. A mean AOV of 0.74
was reported on a large dataset of 488 images. Gao et al. [70] tested on a
small dataset of 20 images the use of a GVF-based LevelSet ACM that also
took into account the phase congruency texture [94] along with the gradient
information, achieving a mean AOV of 0.863.

1The segmentation obtained from the first ACM procedure.
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2.1.2 Automatic Segmentation

Although automatic segmentation of breast lesions in ultrasound images
remains unsolved, huge efforts to obtain lesion delineations with no user in-
teraction have been made in the last few years. In order to categorize the
automatic segmentation methodologies, two distinct strategies when design-
ing the methodologies have been adopted for classification: methodologies
automatizing semi-automatic procedures so that no user interaction is re-
quired, and ad-hoc methodologies designed in a manner that no element can
be substituted by user supplied information.

The former has been named auto-guided procedures since for this case
the information supplied by the user has been substituted by an automatic
methodology that guides the semi-automatic segmentation, while the latter
have been identified as fully automatic procedures.

Notice that for this work, only methodologies outputting a segmentation
are reviewed. Therefore, CADe procedures that can be used to initialize a
semi-automatic procedure are out of the study unless there is explicitly
paired work such as in (Drukker et al. [71] , Horsch et al. [58]) or (Shan et
al. [78], (Shan et al. [79]).

Auto-guided Segmentation

Listed here are segmentation methodologies that consist of automatizing
semi-automatic procedures or methodologies conceived as a two step prob-
lem: lesion detection and further segmentation of any detected lesions;
methodologies that in some sense can be seen as a decoupled CADe and
further segmentation.

A clear example of this group is the work proposed by Drukker et al. [71]
where an automatic detection procedure is added to the original GCS seg-
mentation [58] eliminating user interaction.

In order to properly detect the lesion to successfully delineate it using
GCS, several rough GCS segmentations are performed in a sparse regular
grid. Every position on the grid is constrained (one at a time) with a
constant bivariate Gaussian function. The resulting Gaussian constrained
image depending function is thresholded at several levels in order to generate
a set of delineations. The Radial Gradient Index (RGI)2 is calculated for
all the delineations of every delineation set. The maximum RGI reward of
every delineation set is used to generate a low resolution image which is

2This differs from the GCS procedure used for the final delineation since ARD index
is used.
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thresholded to determine an approximation of the lesion’s boundaries. This
approximation is used to determine a seed point in order to control the final
segmentation as proposed in [58]. The method was evaluated solely as a
detection in a 757 image dataset achieving a TPR of 0.87 and a FPR of
0.76.

Massich et al. [61] also proposed a methodology based on GCS as [71]
with several levels of user interaction contemplating the no user interaction
scenario. The method consists of a 4 step procedure: seed placement proce-
dure (CADe), a fuzzy region growing, a multivariate gaussian determination,
and finally, a GCS. The seed placement produces an initial region that is
further expanded. Once expanded, the final region is used to determine a
multivariate Gaussian which can have any orientation. This is an improve-
ment with respect to the original GCS formulation in [58] allowing better
description of oblique lesions since, in the original work, only Gaussian func-
tions orthogonal to the image axis were considered. Similar to the original
work, this constraining Gaussian function is used to constrain an intensity
dependent function that is thresholded in order to obtain the final delin-
eation. The intensity dependent function and the manner of determining
the most appropriate threshold differ in the two proposals. The method is
evaluated using a dataset of 25 images with multiple Ground Truth (GT) an-
notations. For evaluation purposes, the multiple annotations are combined
using Simultaneous Truth and Performance Level Estimation (STAPLE) [95]
in order to obtain the Hidden Ground Truth (HGT). Then the methodol-
ogy is assessed in terms of area overlap with the merging of the delineations
weighted by the HGT saliency, achieving a reward coefficient of 0.64 with
no user interaction. Those results are comparable to the results achieved
by [58] since segmentations obtained from missed or wrongly detected le-
sions were also taken into account to produce the assessing results. Further
details on the exact seed placement algorithm can be found in [72], [73].
This seed placement is based on a multi-feature Bayesian Machine Learn-
ing (ML) framework to determine whether a particular pixel in the image
is a lesion or not. From the learning step, a Maximum A Posteriori (MAP)
probability plane of the target image is obtained and thresholded with cer-
tain confidence (0.8 as reported in [73]). Then the largest area is selected as
the candidate region for further expansion. Due to the sparseness of the data
within the feature space, Independent and Identically Distributed (IID) is
assumed so that MAP can be calculated from the marginals of each feature,
a fact that does not always hold indicates that more complex models are
needed.

Madabhushi and Metaxas [60] proposed using the Stavros Criteria [13]
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to determine which pixels are most likely to be part of a lesion. The Stavros
Criteria integrate the posterior probability of intensity and texture (also
assuming IID) constraining it with a heuristic taking into account the posi-
tion of the pixel. The best scoring pixel is used to initialize a region growing
procedure outputting a preliminary segmentation of the lesion. This pre-
liminary delineation is then sampled for initializing an ACM procedure that
takes into account the gradient information of the image to deform the pre-
liminary segmentation into the final segmentation. A dataset of 42 images
is used in order to evaluate the methodology in terms of boundary error and
area overlap. The average mean boundary error between the automated and
the GT is reported to be 6.6 pixels. Meanwhile, the area overlap is reported
in terms of False Positive (FP) area (0.209), False Negative (FN) area (0.25)
and True Positive (TP) area (0.75) which can be used to calculate an area
overlap coefficient of 0.621 in order to compare with the other methodolo-
gies. As an alternative, Huang et al. [75] proposed using a LevelSet ACM
using a rather heuristic initialization and also evolving using intensity gradi-
ent. The initialization is obtained by simplifying the image using Modified
Curvature Diffusion Equation (MCDE), which has been demonstrated to
be more aggressive than ADF, then the Otsu automatic thresholding pro-
cedure [74] is used to generate candidate blobs with the bounding box ROI
of the selected one is used as initialization for the LevelSet procedure. The
selection of the best blob is done by taking into account application domain
information such as preference for larger areas not in contact with the image
borders similar to the recall measure proposed by Shan et al. [78]. A DSC
of 0.876 is reported using a dataset of 118 images.

Zhang et al. [76] and Jiang et al. [77] proposed using a two step ML
procedure. The first step is a database driven supervised ML procedure for
lesion detection. Detected regions with high confidence of being lesion and
non-lesion are further used to learn the appearance model of the lesion within
the target image. The second step consists of a supervised ML segmentation
procedure trained on the target image using the previously detected regions.
Both methods fall into the category of auto-guided procedures because the
first ML step is used to substitute the detection information which can be di-
rectly exchanged by a user interaction. Under this hypothesis of exchanging
lesion detection by user interaction, the resulting methodologies reassemble
to the semi-automatic methodology proposed by Xio et al. [65]. In contrast,
if the statistical models used to drive the second ML step producing the
final segmentation in [76], [77] were inferred from dataset annotations, then
both methodologies would be considered fully-guided and would resemble
the work proposed by Hao et al. [84] since the first step is usually provided
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by user interaction.
If the models for the second step are determined from the database

instead of the image, then the possibility of obtaining such information from
the user would not exist and the methods would no longer belong tho the
auto-guided category.

Unlike all previous works, Shan et al. [79] proposed using the detection
just to simplify the following segmentation procedure. The lesion detection
procedure described in [78] is used to crop the image into a subset of the
image containing the lesion. Then a database driven supervised ML segmen-
tation procedure is carried out in the sub image to determine a lesion/non-
lesion label for all the pixels. The segmentation stage takes advantage of
intensity, texture [61], energy-based phase information [96] and distance to
the initially detected contour [78] as features. Notice that despite this seg-
mentation algorithm being a database driven ML process, the crop proce-
dure is needed to reduce the variability of labeling and such cropping can be
performed by a user. Therefore the method proposed by Shan et al. [79] has
been considered auto-guided, but it could be argued to be a fully automatic
procedure since the distance to the initial contour is needed as a feature for
the segmentation process.

In general, auto-guided procedures have been considered those automatic
segmentation procedures that, at some point, could be substituted by a
process involving the user. These methodologies are usually designed in two
steps where lesions are detected and further segmented.

Fully Automatic

In opposition to auto-guided methodologies, fully automatic methodologies
are considered those methods such that, at no point, can be substituted by
some user interaction.

Huang and Cheng [80] proposed using an ACM to perform the final seg-
mentation [97] operating on the gradient image. In order to initialize an
ACM, a preliminary segmentation is obtained, over-segmenting the image
and merging similar regions. The watershed transform [98], [99] is applied to
the image intensities to obtain an over-segmentation of the image, and then,
the regions are merged, depending on the region intensities and texture fea-
tures extracted from Gray-Level Co-occurrence Matrix (GLCM). Although
the work does not cover how to select the proper segment to use as an initial
segmentation among the segments resulting after the merging, any kind of
machine learning to elect the best candidate can be assumed. Similarly,
Huang et al. [81] and Liu et al. [82] also split the image into regions or seg-
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ments as a first step for further analysis. To determine the image segments,
Huang et al. [81] use unsupervised learning and Liu et al. [82] use normalized
cuts [100] in order to achieve an image over-segmentation as that obtained
when applying the watershed transform in [80]. The difference between the
three works lies in how the segments are managed once determined since
both [81], [82] utilize a graph representation to merge similar regions. In
this graph, each node represents a segment, and the edges connecting con-
tiguous segments are defined according to some similitude criteria in the
contiguous segments. Finally, the weaker edges are merged forming larger
regions in an iterative manner. Notice that even when using a graph rep-
resentation, the operation performed is not a graph cut minimization [92].
The graph is only a representation used to keep track the merging schedule.

Further ideas using image segments as building blocks were explored for
general image understanding applications [101] and have also been applied to
breast lesion segmentation in US data [84]. The most common form for such
approaches consists of an objective function minimization framework where
the basic atomic element representing the images are those image segments
which receive the name of superpixels and the goal is to assign them either a
lesion or a non-lesion label in order to perform the segmentation. The most
common form of objective function usually takes into account the datamodel
driving the segmentation as the output of an ML stage and combines them
with regularization (or smoothing) term which imposes labeling constrains
in the form of Conditional Random Field (CRF) or MRF.

In this research line, Hao et al. [84] proposed automatically segmenting
breast lesions using an objective function combining Deformable Part Model
(DPM) [83] detection with intensity histograms, a GLCM based texture
descriptor and position information using a Graph-Cut minimization tool
and normalized cuts [100] as image segments. The proposed methodology
reported an average AOV of 0.75 of a 480 image database.

In contrast, Huang and Chen [59] only performed the spliting of the
image using watershed transform, while Liu et al. [57] only classified image
patches arguing that inaccurate delineations of the lesions also lead to good
diagnosis results when using appropriated low-level features.

Liu et al. [85] incorporated a learnt model of the lesions’ appearance
to drive a region based LevelSet formulation. The model is obtained by
fitting a Rayleigh distribution to training lesion samples and the LevelSet
evolves to fit the model into the target image. The LevelSet initialization
corresponds to a centered rectangle with a size of one third of the target
image. Despite its naive initialization, the reported average AOV using a
dataset of 76 images is 0.88. The correctness of use Rayleigh distribution in
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order to model the data can be argued regardless of its popularity and the
results achieved. J.A. Noble [102] questions the usage of Rayleigh models
to characterize tissue in US data images since, in the final images provided
by US equipment, the Rayleigh distribution of the data no longer holds.

A completely different approach is proposed by Yeh et al. [86], where
a method for inpainting degraded characters is adapted to segment breast
lesions in US images. The idea consists of performing local thresholding and
produces a binary image and reconstructs the larger blobs as if they were
degraded. Despite the originality of the method and having been tested in a
rather small dataset (6 images), the reported results achieve results of AOV3

0.73.

2.2 Segmentation methodologies and features

Despite interaction or information constraints needed to drive segmenta-
tions, a large variety of segmentation algorithms have been proposed for
general image segmentation including the particular application of breast
lesion segmentation in US data. As Cremers et al. [103] pointed out, ear-
lier segmentation approaches were often based on a set of rather heuristic
processing, while optimization methods became established as straighter
and more transparent methods where segmentations of a given image are
obtained by standardized methods minimizing appropriate cost function-
als [103]. Although the chronological difference cannot be appreciated for
breast lesion segmentation since early applications such as Xio et al. [65]
were already taking advantage of optimization methods. A tendency to
move towards optimization methodologies, as can be seen [77], in lieu of
methodologies driven by obscure heuristics in a full manner such as in [58],
[61], [71] or partially like [60].

Within the optimization methods, spatially discrete and spatially con-
tinuous categories can be found. For the discrete case, the segmentation
problem is formulated as a labeling problem where a set of observations
(usually pixels) and labels are given, and the goal is to designate a proper
label for all the observations. These problems are usually formulated as met-
ric labeling problems [104] so that smoothing regularizations can be imposed
to encourage neighboring elements to have similar labels. Further informa-
tion in segmentation procedures posted as a labeling problem can be found
in Delong et al. [105] as a continuation of the work started by Boykov et
al. [104] in their seminal paper of Graph-Cut (GC).

3this value has been calculated from the TP, FN and FP values reported in [86]
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In spatially continuous approaches, the segmentation of the image is con-
sidered an infinite-dimensional optimization problem and is solved by means
of variational methods. These methods became popular with the seminal
paper on Snakes by Kass et al. [106] where finding boundaries becomes an
optimization process. Snakes consists of a propagating contour defined as a
set of control points (explicit formulation) that evolves in accordance with
the gradient of an arbitrary energy function. These functions are formu-
lated as a set of Partial Differential Equations (PDEs) specifically designed
for each application to bound an object of interest, ensuring a smooth de-
lineation.

The same problem can also be formulated in an implicit manner where
the evolving contour or surface is defined as the zero level set of a one dimen-
sion expanded function [107]. This new formulation (named LevelSet) over-
comes limitations of Snakes such as naturally handling topological changes
and initialization relaxation. Extension to other segmentation criteria rather
than just using an intensity gradient such as color, texture or motion, which
was not straight-forward in Snakes formulation, can easily be done.

Both formulations of the spatially continuous approaches LevelSets and
Snakes compose the segmentation procedures called ACM. Although Snakes
and LevelSets are intended to work with gradient information, there are
geodesic extensions allowing the contour evolution to depend on region in-
formation instead of gradients [85].

Figure 2.3 maps the methodologies presented in section 2.1 (see fig. 2.2)
regarding its usage of ML, ACM, and other strategies.

2.2.1 Active Contour Models (ACMs)

ACM segmentation techniques are widely applied in US applications such as
organ delineation [108] or breast lesion segmentation [60], [68]–[70], [75], [80],
[81], [85]. Notice in figures 2.2 and 2.3 that most of the ACM methodologies
correspond to the gradient driven ACM techniques (7 out of 8). Two of
them are formulated as implicit contour (LevelSet), while the remaining
are formulated in an explicit manner (snakes). A known limitation of these
methodologies is that the results are highly dependent on the initial estimate
of the contour. Therefore, ACM has been used as a post processing step
that allows an initial segmentation to be attracted towards the boundary
and control the smoothness of the curve simultaneously.

Jummat et al. [109] compare some of the multiple strategies to condition
and model the evolution of the snakes applied to segment breast lesions
in US 3D data. In this comparison, Ballon-snakes [110] reported better
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Figure 2.3: Conceptual map of the segmentation strategy used in the
methodologies reported in figure 2.2. The methods have been grouped ac-
cording to the segmentation methodology: ML,ACM or others. Each circle
has its own iconography representing the sub-strategies that can be found
in each class. The color here is used to represent user interactability being:
fully guided (dark-green), semi-automatic (light-green), auto-guided(light-
Blue), and fully automatic(dark-blue).

performance than GVF-Snakes [111].
However, taking everything into consideration, the segmentation results

when using ACM are highly dependent on the correctness of the contour
initialization. In contrast, Liu et al. [85] proposed using a model driven
LevelSet approach which can use an arbitrary initialization. In this case,
the initial contour is a centered arbitrary rectangle. The contour evolves,
forcing the intensity distribution of the pixels of the inner part of the contour
to fit a model Probability Density Function (PDF) obtained from a training
step. Since it uses region information, a rather naive initialization can be
used.

2.2.2 The role of Machine Learning (ML) in breast lesion
segmentation

When addressing the lesion segmentation problem, two subproblems arise:
a) properly detecting the lesions; and b) properly delineating the lesion. In
the literature, ML has proven to be a useful and reliable tool, widely used
to address either one of those two subproblems or both (either in a daisy-
chain manner or at once). ML uses elements with a provided ground truth
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(i.e. lesion/non-lesion) to build up a model for predicting or inferring the
nature of elements with no ground truth provided within the models. The
stochastic models built up from a training procedure can be used to drive
optimization frameworks for segmenting.

ML techniques, strategies and features applied to image processing, im-
age analysis or image segmentation are countless even when restricting them
to breast lesion segmentation. Therefore, a deep discussion on this topic is
beyond the scope of this work, since any ML proposal is valid regardless of
its particular advantages and disadvantages. However, it is our interest to
analyze the nature of the training data used to build the stochastic models
and is our goal since it conditions the nature of the overall segmentation.

When segmenting a target image using ML, two training strategies arise
in order to build the stochastic models:
• use relevant information obtained from annotated images to drive the

segmentation of the target image [79], [84].

• use information from the target image itself to drive the segmenta-
tion [76], [77].

Notice that in order to drive the segmentation from information from the
target image itself, this information must be supplied by the user leading
to an interactive procedure [65], [66]; or the information must be provided
by another automatic procedure leading to an auto-guided procedure such
as [76]. However, for detection application, only information from other
images with accompanying GTs are used [60], [72], [73], since user interac-
tion would already solve the detection problem. Taking this into account,
figure 2.4 illustrates the 5 possible scenarios.

Database Trained Detection: generates statistic models from a training
dataset to detect lesions in a target image using any sort of ML and
features [60], [61], [72], [73], [76], [77], [84].

Image Trained Segmentation: from information supplied by the user,
an ML procedure is trained from the target image in order to produce
a segmentation [65], [66].

Database Trained Segmentation: the statistic models generated from
the dataset are not used for localizing the lesion but rather to per-
form the segmentation itself. These methodologies produce image seg-
mentation with no user interaction [57], [79]. In such a scenario, the
features for constructing the models need to be robust to significative
differences between the images.
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Figure 2.4: Supervised Machine Learning (ML) training and goals, ending up
with a combination of 5 different strategies. The references are colored indi-
cating the user interaction: semi-automatic (light-green), auto-guided(light-
Blue), and fully automatic(dark-blue).

Database Trained Detection and Image Trained Segmentation:
detection and segmentation are performed in a daisy chain manner like
the models from a training dataset facilitate the detection of lesions
within a target image. Once the suspicious areas are detected, they are
used to train another ML procedure within the target image to drive
the final segmentation. Although the errors in the detection step are
propagated, this approach has the advantage that the statistical model
driving the final segmentation has been specially built for every tar-
get image. The main drawback is that building this statistical model
involves a training stage which is computationally very expensive [76],
[77].

Integrated Methodology: trying to take advantage of the detection with-
out building a specific model for the target image. Since there is no
need to make the final detection decision whether there is a lesion or
not, the posterior probability of the decision process can be used as
another feature like a filter response of the image and integrated with
the ML procedure [84].

2.2.3 Others

Here are listed other methods or parts of methods that are neither explicitly
ACM nor ML procedures, nor are they basic image processing or image
analysis techniques such as thresholding or region growing. In this sense,
three main groups can be identified:
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• Gaussian Constraining Segmentation (GCS) based methods

• unsupervised learning and over segmentation

• disk expansion for image inpainting

Methods using GCS for segmenting breast lesions in US data [58], [61],
[64], [71] are inspired by the work of Kupinski et al. [112] which was initially
adapted to US data by Horsch et al.[113]. They are based on constrain-
ing a multivariate Gaussian function with an image dependent function so
that, when the resulting function is thresholded, a possible delineation is
generated. Although these methodologies are not posted in the ACM form,
they are equivalent to a fast marching LevelSet procedure [114]. Threshold-
ing can be seen as a contour propagation, while the Gaussian constraining
forces the direction of the propagation to be constant.

Some methods split the image or over-segment them for further opera-
tions like contour initialization [80], [81] or higher level features extraction
from a coherent area so that it can be used in ML procedures [67], [84]. In
order to carry out such an operation from a ML point of view, several un-
supervised learning techniques have to be used in order to group the pixels:
fuzzy C-means, K-means [69], and robust graph based clustering [81]. From
an image analysis point of view, the grouping of similar contiguous pixels
is equivalent to performing an over-segmentation of the image. Watershed
transform [59], [67], [80] and Normalized Cuts (NC) [82], [84], [100] are pop-
ular techniques used to obtain an over-segmentation, also known as super
pixels [115].

Finally, Yeh et al. [86] proposed a totally different approach for breast
lesion segmentation based on inpainting of degraded typology. The image is
transformed into a binary image using local thresholding and then the largest
object within the binary image is reconstructed as the final segmentation.

2.2.4 Features

Intensity remains the most used feature within the methods analyzed. A
feasible explanation might be found in the difficulty of incorporating other
features rather than intensity or its gradient in the ACM procedures. A way
to incorporate features other than intensity, such as texture, within the pro-
cess is proposed by Aleman-Flores et al. [68]. The segmentation is carried
out as two ACMs connected in a daisy chain manner. The second ACM
evolves through the target image, whereas the first ACM used to obtain a



2.3. SEGMENTATION ASSESSMENT 49

preliminary segmentation evolves using a generated image encoding the tex-
ture. This image is obtained by processing the target image using a modified
anisotropic smoothing driven by texture features. The ACM evolves towards
the gradient of this generated image already encoding texture information.

Texture descriptors have been more widely explored for methodologies
incorporating ML since these methodologies naturally deal with multiple
features. However, texture description is highly dependent on the scale of
the features and seeing speckle as image texture is arguable since speckle
is an unwanted effect that depends on the characteristics of the screening
tissue, the acquisition device and its configuration [9]. However, images
does look like a combination of texture granularities depending on the tis-
sue which has encouraged the exploration of texture descriptors [60], [61],
[72], [73], [80], [84], [116]. However, the use of a naive descriptor, like the
one used in [60], [61], [72], cannot represent the large variability in texture
present throughout the images. This can be qualitatively observed by com-
paring the MAP of the intensity and texture features, as shown in figure 2.5,
where the latent information contained in the texture (fig. 2.5b) is less than
that contained in the intensity feature (fig. 2.5a). A solution to cope with
such texture variability consists of exploring multiple texture descriptors at
multiple scales at the expense of handling larger feature sets resulting in a
higher computation complexity and data sparsity that need to be handled.

On the other hand, texture can be seen as a filter response, so it per-
forms the posterior of a classification process. Therefore, more sophisticated
textures can be seen as the outcome of an ML process. Hao et al. [84] pro-
pose synthesizing texture from a lesion detection process (DPM) that takes
advantage of Histogram of Gradients (HOG) taken at different scales. Fig-
ure 2.5c illustrates the feature plane inferred from the DPM process.

2.3 Segmentation assessment

Comparing all the methodologies reviewed in section 2.1 is rather cumber-
some. The lack of a common framework for assessing the methodologies re-
mains unaddressed, especially due to the absence of a public image dataset
despite its being highly demanded by the scientific community [62], [102],
[108]. However, the lack of a common dataset is not the only aspect com-
plicating the comparisons. Here is a list of some of the feasible aspects
complicating direct comparison of the works reviewed.

• Uncommon database
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(a) (b)

Combining CRF and Multi-hypothesis Detection 505

Fig. 1. An overview of the system. The process is depicted anticlockwise. The yellow
contours show the groundtruth of lesion. Rectangles in the lower middle image show
the detection windows, where the red one has the maximal confidence.

2 Motivations

A sound wave is sent by the sonographic transducer into the human breast, ab-
sorbed in or scattered from tissues and structures in it. The reflected wave is
captured and processed into a sonogram by the ultrasonic instrument. Intensive
research has been done in both fields of radiology and biomedicine [2] to dis-
tinguish lesions (both the benign and the cancerous) in ultrasound images from
normalities and shadowing artifacts.

The diagnostic criteria can be generalized into the following terms [1]. First,
the different echogenicity that nodule and the surrounding area show. A portion
of fibrous lesions are hyperechoic with respect to isoechoic fat, while another
portion of benign lesions and most of the malignant are markedly hypoechoic.
And also, distinguishable internal echotexture can be observed in many cases.
Second, the border and the shape of nodule. Benign nodules usually have a thin
echogenic pseudocapsule with an ellipsoid shape or several gentle lobulations, and
malignant nodules could show radially with spiculations and angular margins.
Third, the position of the nodule. Most lesions appear in the middle mammary
layer and shadows are produced under the nodules.

These criteria have been translated into computer vision language in many
different ways for the design of computer-aided diagnosis system [2]. In [3], Mad-
abhushi and Metaxas build probability distribution models for intensity and
echotexture of lesion, based on which they estimate the seed point followed by a
region growing procedure. To eliminate the spurious seeds, spatial arrangement
together with other rules are then used. At last, the boundaries are located and
shaped successively. In [4], Liu etc. divide the image into lattices and classify

(c)

Figure 2.5: Qualitative assessment of feature planes: (a) Maximum A Pos-
teriori (MAP) of intensity feature, (b) MAP of texture feature used in [60],
[61] and (c) quantized DPM feature [84](image taken from the original work
in [84]).

• Uncommon assessing of criteria and metrics

• Different degrees of user interaction

• Inability to quantify the user effort when interacting with a method

• Correctness of the GT used when assessing

• Uncommon treatment of missegmentation due to improper detection

The dificulty of comparing the methodologies using distinct datasets,
distinct assessing criteria and distinct metrics is clear. Section 2.3.1 an-
alyzes the criteria and metrics used to analyze the different methodology
proposals. In order to conduct a discussion comparing the methodologies in
section 2.4, when enough information is available, the reported results are
set to a common framework for comparison purposes despite being assessed
with different datasets. The assessment regarding user interaction is not fur-
ther analyzed other than the already described interactive and automatic
classification along with their respective subcategories (see section 2.1 and
fig. 2.2). The correctness of the GT for assessing the segmentations refers
to the huge variability of the delineations found when analyzing intra ex-
pert and inter expert variability on the segmentations [66]. In this regard,
later in this chapter (see section: 2.3.2), a short discussion about the work
that took intra and inter-observer delineation variability into account for as-
sessing segmentation proposals can be found. Finally, the frontier between
segmentation errors and errors due to the detection process is unclear and a
proper criteria is not set. Massich et al. [61] take all the segmentations into
account even if the segmentation has been wrongly initialized by the auto-
matic detection procedure. Meanwhile, Zhang et al. [76] only use 90% of the
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best segmentations to perform the segmentation assessment, arguing that
the remaining segmentations suffered poor detection and that segmentation
result assessment should not be subject to wrong initializations.

The rest of this section describes different area and boundary metrics
collected from the works cited above, comments on the correctness of the
assessing GT, based on intra- and inter-observer GT, variability and dis-
cusses the results reported.

2.3.1 Evaluation criteria

Although multiple criteria arise when assessing segmentations, this criteria
can be grouped into two families depending on whether they are area or
distance based metrics as illustrated in figure 2.6. Area based metrics assess
the amount of area shared (Area Overlap (AOV)) between the obtained
segmentation and the reference. On the other hand, distance based metrics
quantify the displacement or deformation between the obtained and the
desired delineations.

For the sake of simplicity, the name of the reported similarity indexes
has been unified.

Area based segmentation assessment metrics

When analyzing the areas described by the segmented region to be assessed,
A and the manually delineated reference region M (see fig. 2.6b), 4 areas
become evident: True Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN); corresponding to the regions of the confusion
matrix in figure 2.6a.

True Positive (TP) is found as the area in common (A∧M) between the
two delineations A, M . The TP area corresponds to the correctly segmented
areas belonging to the lesion.

True Negative (TN) is found as the area (A∧M) not belonging to either
of the delineations A nor M . The TN area corresponds to the correctly
segmented areas belonging to the background of the image.

False Positive (FP) is found as the area (A ∧M) belonging to the as-
sessing segmentation A and not as a part of the reference delineation M .
FP corresponds to the area wrongly labeled as a lesion since this area does
not belong to the reference delineation.
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True Positive (TP) False Positive (FP)

True Negative (TN)False Negative (FN)

Positive Negative

Positive

Negative

Segmentation
Outcome
(prediction)

Segmentation Ground Truth (GT) (reference)

(a)

TP FNFP

TN A M

(b)

A M

(c)

Figure 2.6: Methodology evaluation. (a) Statistical hypothesis test errors
confusion matrix. (b) Graphic representation of the statistical hypothesis
test errors for assessing the performance in terms of area. (c) Graphical
representation of the boundary distance performance measures.
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False Negative (FN) is found as the area (A∧M) corresponding to the
reference delineation M but not as a part of the assessing segmentation A.
FN corresponds to the areas of the true segmentation that have been missed
by the segmentation under assessment.

Area metrics (or indexes) for assessing the segmentation are defined as
a dimensionless quotient relating the 4 regions (TP, FP, FN and TN) de-
scribed by the segmentation outcome being assessed (denoted A in fig:2.6a)
and the reference GT segmentation (denoted M). Most of the indexes are
defined within the interval [0, 1] and some works report their results as a
percentage.

Area Overlap (AOV), also known as overlap ratio, the Jaccard Sim-
ilarity Coefficient (JSC) [70] or Similarity Index (SI) [79]4, is a common
similarity index representing the percentage or amount of area common to
the assessed delineation A and the reference delineation M according to
equation 2.1. The AOV metric has been used to assess the following works:
[58], [61], [64], [68], [69], [79], [84], [85]

AOV = TP

TP + FP + FN
= |A ∧M |
|A ∨M |

∈ [0, 1] (2.1)

Dice Similarity Coefficient (DSC), also found under the name of SI [75],
[80]5, is another widely used overlap metric similar to AOV. The difference
between DSC and AOV is that DSC takes into account the TP area twice,
one for each delineation. The DSC index is given by equation 2.2 and the
relation between AOV or JSC and the DSC similarity indexes is expressed
by equation 2.3. Notice that the DSC similiarity index is expected to be
greater than the AOV index [66]. The DSC metric has been used to assess
the following works:[66], [75], [76], [80]

DSC = 2 · TP
2 · TP + FP + FN

= 2|A ∧M |
|A|+ |M | ∈ [0, 1] (2.2)

DSC = 2 ·AOV
1 +AOV

(2.3)

4Notice that Similarity Index (SI) is also used formulated as the Dice Similarity Coef-
ficient (DSC) in [75], [80] which differs from the SI definition in [79].

5Notice that Similarity Index (SI) is also used formulated as the Area Overlap (AOV)
in [79] which differs from the SI definition in [75], [80].
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True-Positive Ratio (TPR), also known as the recall rate, sensitivity
(at pixel level) [66], [77] or Overlap Fraction (OF) [75], quantifies the amount
of properly labeled pixels as lesion with respect to the amount of lesion pixels
from the reference delineation (eq: 2.4). Notice that like the DSC, this
value always remains greater than AOV (or equal when the delineations are
identical). The TPR metric has been used to assess the following works: [60],
[75], [77], [79]–[81], [85], [86]

TPR = TP

TP + FN
= TP

|M |
= |A ∧M |

|M |
∈ [0, 1] (2.4)

Positive Predictive Value (PPV) corresponds to the probability that
the pixel is properly labeled when restricted to those with positive test. It
differentiates from TPR since here the TP area is regularized by the assessing
delineation and not the reference, as can be seen in equation 2.5. PPV is
also greater than AOV. The PPV metric is also used to assess the work
in [66].

PPV = TP

FP + TP
= TP

|A|
= |A ∧M |

|A|
∈ [0, 1] (2.5)

Normalized Residual Value (NRV), also found as the Precision Ra-
tio(PR) [59], corresponds to the area of disagreement between the two de-
lineations regularized by the size of the reference delineation, as described
in equation: 2.6. Notice that the NRV coefficient differs from 1−AOV since
it is regularized by the reference delineation and not the size of the union
of both delineations. The NRV metric has been used to assess the following
works: [59], [64], [82].

NRV = |A⊕M |
|M |

∈
[
0, 1 + A

|M |

]
(2.6)

False-Positive Ratio’ (FPR’), as reported in the presented work, is the
amount of pixels wrongly labeled as lesion with respect to the area of the
lesion reference, as expressed in equation 2.7. The FPR’ metric has been
used to assess the following works:[60], [79], [81], [85], [86] The FPR’ has also
been found in its complementary form 1 − TPR under the name of Match
Rate (MR) [59].
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FPR′ = FP

TP + FN
= FP

|M |
= |A ∨M −M |

|M |
∈
[
0, A

|M |

]
(2.7)

Notice that the FPR’ calculated in equation 2.7 differs from the classic
False-Positive Ratio (FPR) obtained from the table in figure 2.6a, which
corresponds to the ratio between FP and its column marginal (FP + TN),
as indicated in equation 2.8. The FPR, when calculated according to equa-
tion 2.8, corresponds to the complement of specificity (described below).

FPR = FP

FP + TN
= 1− SPC ∈ [0, 1] (2.8)

False-Negative Ratio (FNR) corresponds to the amount of pixels be-
longing to the reference delineation that are wrongly labeled as background,
as expressed in equation 2.9. Notice that it also corresponds to the comple-
ment of the TPR since TP ∪ FN = M . The FNR metric has been used to
assess the following works: [60], [81], [86]

FNR = FN

|M |
= |A ∨M −A|

|M |
= 1− TPR ∈ [0, 1] (2.9)

Specificity corresponds to the amount of background correctly labeled.
Specificity is described in equation 2.10 and is usually given as complemen-
tary information on the sensitivity (TPR). Specificity corresponds to the
complementary of the FPR when calculated according to equation 2.8. The
specificity index is also used to assess the work in [66], [77].

SPC = TN

TN + FP
= |A ∧M |

|M |
= 1− FPR ∈ [0, 1] (2.10)

Boundary based segmentation assessment metrics

Although the boundary assessment of the segmentations is less common
than area assessment, it is present in the following works: [60], [64], [68],
[70], [76], [79], [81]. Like when assessing the segmentations in terms of area,
the criteria for assessing disagreement between outlines are also heteroge-
neous which makes the comparison between works difficult. Unlike the area
indexes, with the exception of the further introduced Average Radial Er-
ror (ARE) coefficient, which is also a dimensionless quotient, the rest of
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the boundary indexes or metrics are physical quantitative error measures
and are assumed to be reported in pixels. Although some of the reported
measures are normalized, they are not bounded by any means.

Zhang et al. [76] propose using average contour-to-contour distance (Ecc)
for assessing their work. However, no definition or reference is found on it.
Huang et al. [81] propose using ARE, defined in equation 2.11, where a set
of n radial rays are generated from the center of the reference delineation
C0 intersecting both delineations. The ARE index consists of averaging the
ratio between the distance of the two outlines |Cs(i)−Cr(i)| and the distance
between the reference outline and its center |Cr(i)− C0|.

ARE = 1
n

n∑
i=1

|Cs(i)− Cr(i)|
|Cr(i)− C0|

(2.11)

The rest of the works base their similitude indexes on the analysis of the
Minimum Distance (MD) coefficients. The MD is defined in equation 2.12
and corresponds to the minimum distance between a particular point ai
within the contour A (so that ai ∈ A) and any other point within the
delineation M .

MD(ai,M) = min
mj∈M

‖ai −mj‖ (2.12)

Hausdorff Distance (HD), or Hausdorff error, measures the worst pos-
sible discrepancy between the two delineations A and M as defined in 2.13.
Notice that it is calculated as the maximum of the worst discrepancy be-
tween (A,M) and (M,A) since MD is not a symmetric measure, as can be
observed in figure 2.7. The HD as defined in equation 2.13 has been used
for assessing the segmentation results in Gao et al. [70]. Meanwhile, Mad-
abhushi and Metaxas [60] and Shan et al. [79] only take into account the
discrepancy between the assessed delineation A with reference delineation
M , here denoted as HD’ (see eq. 2.14). In [60], [79], the HD’ is also reported
in a normalized form HD′

η , where η is the length of the contour of reference
M .

HD(A,M) = max
{

max
ai∈A

MD(ai,M), max
mi∈M

MD(mi, A)
}

(2.13)

HD’(A,M) = max
ai∈A

MD(ai,M) (2.14)
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A M

(a)

A M

(b)

Figure 2.7: Illustration of the non-symmetry property of the Minimum Dis-
tance (MD) metric. (a) MD(ai,M), (b) MD(mi, A)

Average Minimum Euclidian Distance (AMED), defined in equa-
tion 2.15, is the average MD between the two outlines. [70]. Similar to the
case of the HD’ distance, Madabhushi and Metaxas [60] and Shan et al. [79]
only take into account the discrepancy between the assessed delineation A
with reference to the delineation M to calculate the AMED’ index (see
eq. 2.16). The AMED index can be found under the name of Mean Error
(ME) in [60] and Mean absolute Distance (MD) in. [79].

AMED(A,M) = 1
2 ·
[∑

ai∈A MD(ai,M)
|A|

+
∑
mi∈M MD(mi, A)

|M |

]
(2.15)

AMED’(A,M) =
∑
ai∈A MD(ai,M)

|A|
(2.16)

Proportional Distance (PD), used in [64], [68], takes into account the
AMED regularized with the area of the reference delineation according to
equation 2.17

PD(A,M) = 1

2
√

Area(M)
π

·
[∑

ai∈A MD(ai,M)
|A|

+
∑
mi∈M MD(mi, A)

|M |

]
∗ 100

(2.17)
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2.3.2 Multiple grader delineations ( Study of inter- and intra-
observer segmentation variability)

Assessing the true performance of a medical imaging segmentation proce-
dure is, at least, difficult. Although method comparison can be achieved by
assessing the methodologies with a common dataset and metric, true conclu-
sions about the performance of the segmentation are questionable. Assessing
segmentations of medical images is challenging because of the difficulty of
obtaining or estimating a known true segmentation for clinical data. Al-
though physical and digital phantoms can be constructed so that reliable
GT are known, such phantoms do not fully reflect clinical imaging data.
An attractive alternative is to compare the segmentations to a collection of
segmentations generated by expert raters.

Pons et al. [66] analyzed the inter- and intra-observer variability of man-
ual segmentations of breast lesions in US images. In the experiment, a subset
of 50 images is segmented by an expert radiologist and 5 expert biomedical
engineers with deep knowledge of a breast lesion appearance in US data.
The experiment reported an AOV rate between 0.8 and 0.852 for the 6 ac-
tors. This demonstrates the large variability between GT delineations; a
fact that needs to be taken into account in order to draw proper conclusions
about the performance of a segmentation methodology. However, having
multiple GT delineations to better assess the segmentations performance is
not always possible. When possible, several strategies have been used to
incorporate such information.

Cui et al. [69] tested the segmentation outcome against 488 images
with two delineations provided by two different radiologists. The dataset
is treated as two different datasets and the performance on both is reported.
Yeh et al. [86] used a reduced dataset of 6 images with 10 different delin-
eations accompanying each image. The performance for each image was
studied in terms of reward average and variation of the 10 reference delin-
eations. Aleman-Flores et al. [68], where a dataset of 32 image dataset with
4 GT delineations provided by 2 radiologists (2 each) was available, assessed
the segmentation method as if there were 128 (32× 4) images.

A more elaborate idea to estimate the underlying true GT is proposed
by Massich et al. [61] and Pons et al. [66]. Both works propose the use of
STAPLE in order to determine the underlying GT from the multiple expert
delineations. STAPLE states that the ground truth and performance levels
of the experts can be estimated by formulating the scenario as a missing-data
problem, which can be subsequently solved using an EM algorithm. The EM
algorithm, after convergence, provides the Hidden Ground Truth (HGT) es-
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timation that has been inferred from the segmentations provided by the
experts as a probability map. Massich et al. [61] propose to assess the seg-
mentation against a thresholded HGT and weight the AOV index with the
HGT. The authors in [61] argued that apart from comparing the segmen-
tation resulting from binarizing the greaders segmentation agreement, the
amount of agreement the needs to be taken into account. This way, prop-
erly classifying a pixel with large variability within the graders produces less
reward and miss classifying a pixel with great consensus penalizes.

2.4 Discussion

As has been said all along in section 2.3, accurate comparison of the segmen-
tation methodologies from their proposal works is not feasible. The major
inconveniencies are uncommon assessing datasets and inhomogeneous as-
sessing criteria, but the fact that all the indexes for assessing segmentations
seen in section 2.3 are made at the image level can also be added. Therefore,
the statistics used for reporting the performance of segmentation method-
ologies at the dataset level might vary as well. Most of the works report their
dataset performance as an average of the image assessment reward. Some
works complement such information with minimal and maximal value [64],
the standard deviation [68], [69], [76], [81], [84], [85], or median [68], [84].
Some other works prefer to report the distribution of their results graphi-
cally [61], [70], [86]. Finally, in [75], [79], it is not specified which statistic
has been used, although mean is assumed.

Despite all the mentioned inconveniences, information regarding perfor-
mance of all the works presented here is gathered in table 2.1 and graphically
displayed in figure 2.8 in order to analyze some trends. In table 2.1, the
works presented are grouped depending on the user interaction according
to the 4 categories described in section 2.1: interactive segmentation (fully-
guided and semi-automatic) and automatic segmentation (auto-guided and
fully-automatic). For each method the size of the dataset, the number of
different GT delineations per image used to assess the methodology and the
results in the original work are reported. If the assessment index is found
under another name rather than the name used in section 2.3, the name
used here as a reference appears in brackets to homogenize the nomencla-
ture in order to facilitate comparison. Finally, when enough information is
available, an inferred AOV value, also to facilitate comparing the works is
shown in the last column of the table.

Figure 2.8 displays only those methods where AOV was available or
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could be inferred from the reported data. These representations synthesize
the methods’ performance and the datasets used for the assessment in a
single view. The different works are radially placed according to different
criteria and the references are colored in terms of the user interaction cate-
gories defined in section 2.1.The AOV appears in blue in percentage as well
as graphically within a score circle. In this score circle, there is also pre-
sented the intra- and inter-observer variability segmentation results reported
in [66] as a blue colored swatch within two dashed circles that represent the
minimum and the maximum disagreement reported in the experiment. The
size of the dataset used for assessing the segmentation performance appears
in red. In the center of the radial illustration, a 3 class categorization of
the size of the dataset has been carried out. The 3 classes correspond to
small (less than 50 images), medium (between 50 and 250 images) and large
(more than 250 images).

Figure 2.8a arranges the works presented according to the categories
shown in figure 2.3; ACM, ML, others, and their combination. This rep-
resentation in sectors facilitates ascribing the importance of a particular
segmentation type at a glance, since combinations of these are placed con-
tiguous to the unaccompanied type. For readability purposes, methodologies
combining aspects of these three categories ([60], [69]) have been chosen to
belong to the combination of the two categories best describing the method.
So, Madabhushi and Metaxas [60] is treated as a combination of ML and
ACM, and Cui et al. [69] as an ACM and other methodology combinations.
Figure 2.8b arranges the presented works according to the user interaction.
Figure 2.8c only takes into account the presented works that make use of
ML and are arranged according to the criteria exposed in section 2.2.2 (see
fig:2.4) plus the unsupervised methods. Finally, Figure 2.8d represents the
methodologies belonging to the ACM class, arranged by type (see fig:2.3
and section 2.2.1).

When analyzing the figures, an already stated observation arises while
comparing the methodologies against the swatch representing the inter- and
intra-observer variability: some works surpass the performance of trained
human observers. A feasible explanation is that the complexity of the
datasets used for assessing the methodologies and the dataset used for assess-
ing the observers variability differ. This would also explain the unfavorable
results of the methodology proposed by Xio et al. [65] when quantitatively
assessed in [66], using the same dataset used for assessing the inter- and
intra-observer variability. This observation corroborates the need of a pub-
lic dataset of breast US images with annotated information.

Despite the fact that any conclusion will be biased due to uncommon
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assessing datasets, some observations can still be made. Although ACM
methodologies have been tested mostly in rather small datasets, a trend
to achieve better results when using ACM methodologies can be seen in
figure 2.8a and corroborated when comparing the areas of the plots in
figures 2.8b and 2.8c. This shows that the combining image information
with structural regularizing forces produce accurate results. Although more
methodologies implementing similar technologies are needed to draw proper
conclusions, a tendency to obtain lower results when using the Snakes ACM
formulation can be seen in figure 2.8d. Such a tendency is explained by the
influence that initialization has when using Snakes.

The segmentation performance reported for methodologies based on ML
varies from the most unsatisfactory results to results comparable to human
performance, as can be seen in figure 2.8. This figure also indicates that these
methodologies have been tested mainly in large datasets. Of the methods
within this category, the methodology proposed by Xio et al. [65] reports
the most unsatisfactory results. Despite the difficulties due to a challenging
dataset aside, other reflections can be done based on the reported results
and the nature of the methodology. Such a bad performance is surprising
from the point of view of the classification, since the proposed ML proce-
dure is trained using information supplied by a user from the same target
image. In it, a combination of EM and MRF procedures fit two model
lesion/non-lesion extracted from several ROIs specified by the user in order
to perform the segmentation. The results obtained indicate that there is a
strong overlapping in appearance between lesions and non lesion areas in the
image, which for the application of breast screening in US images is true.
This indicates that more elaborate features than intensity at pixel level are
needed. This hypothesis is supported by the results obtained in [76], [79]
where more elaborate features are used, producing results which are within
the range of a human observer.

Methodologies categorized as other methodologies perform within the
range of the state-of-the-art. As an observation, Gomez et al. [64] proposed
a methodology based on the popular GCS [58], which has been reported to
obtain the best results within the other methodologies category achieving an
AOV of 85.0%. On the other hand, Massich et al. [61] proposed a method-
ology also based on GCS reporting the most unsatisfactory results (64.0%)
but with the advantage of allowing less user interaction.

Notice that similar to the fact of using an uncommon image dataset,
distinct consideration of the detection errors also bias the comparison. For
instance, the AOV of 84.0% reported in [76] is obtained once the worst 10%
of the segmentations are discarded arguing that such bad results are not
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due to the segmentation procedure but due to a wrong detection instead.
In contrast, the lower results reported by Madabhushi and Metaxas [60]
when comparing them to the rest of the methodologies using ACM can be
explained due to wrong initialization of the ACM step.

Despite the bias subject to analyze the segmentation performance of
the reviewed methodologies from the results compiled in table 2.1, some
of the general trends observed are summarized here. Methodologies using
ACM reported good results, although they have been tested mainly in small
datasets. Moreover, when using ACM methodologies, the correctness of the
results are subject to the initialization of the ACM step with the exception
of the LevelSet proposal in [85], since the proposed LevelSet implementa-
tion allows a naive initialization. Methodologies using ML have been tested
mainly on larger datasets. Methodologies using more sophisticated features
produce results comparable to those achieved when using ACM.
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Table 2.1: Performance reported with the works presented. In the table, the
overall size of dataset used for testing, the number of delineations per image,
the results reported and, when possible, the inferred Area Overlap (AOV)
coefficient can be found.

work DB size GT Reported Metric AOV
[63] 20 1 ∼ ∼
[58] 400 1 AOV 0.73 73.0%
[64] 50 1 AOV 85%, NRV 16%, PD 6.5% 85.0%

[65], [66] 352 6 Sensitivity(TPR) 0.56, Specificity 0.99, 50.8%
PPV 0.73, AOV 0.51, DSC 0.61

[66] 352 6 Sensitivity(TPR) 0.61, Specificity 0.99, 54.9%
PPV 0.80, AOV 0.55, DSC 0.66

[67] 16 1 ∼ ∼
[68] 32 4 AOV 0.88, PD 6.86% 88.3%
[69] 488 2 AOV 0.73±0.14 74.5%

AOV 0.74±0.14
[70] 20 1 TPR>0.91, FPR 0.04, JSC(AOV) 0.86, 86.3%

DSC 0.93, AMED 2pix., HD=7pix.
[71] 757 1 Results reported as detection ∼
[61] 25 7 AOV 0.64 64.0%
[60] 42 1 FPR 0.20, FNR 0.25, TPR 0.75 ME(AMED’) 6.6pix. 62.0%
[75] 118 SI(DSC) 0.88 OF(TPR) 0.86 77.6%
[76] 347 AOV 0.84±0.1, ECC 3.75±2.85pix. 84.0%
[77] 112 1 ∼ ∼
[79] 120 1 TPR 0.92, FPR 0.12, SI(AOV) 0.83, HD’ 22.3pix., 83.0%

MD(AMED’) 6pix. (when using SVM classifier)
TPR 0.93, FPR 0.12, SI(AOV) 0.83, HD’ 22.3pix., 83.1%
MD(AMED’) 6pix. (when using ANN classifier)

[80] 20 SI(DSC) 0.88, OF(TRP) 0.81 78.6%
[81] 20 1 TPR 0.87, FP 0.03, FN 0.13, ARE 9.2% (benign) 85.2%

TPR 0.88, FP 0.02, FN 0.13, ARE 9.2% (malignant)
[82] 40 1 NRV 0.96 (benign); NRV 0.92 (malignant) ∼
[84] 480 1 JSC(AOV) 0.75±0.17 75%
[59] 60 1 PR(NRV) 0.82, MR(FPR) 0.95 ∼
[57] 112 Diagnosis results reported only ∼
[85] 76 1 TPR 0.94, FPR 0.07, AOV 0.88 88.1%
[86] 6 10 TPR>0.85, FNR<0.15, FP<0.16 73.3%
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Figure 2.8: Graphical comparison of the methods presented that reported
Area Overlap (AOV) or enough data to be inferred. The inner part of
the plot illustrates the size of the dataset used in terms of small, medium,
large. The blue swatch illustrates the inter- and intra-observer experiment
results carried out in [66]. The coloring of the reference indicates the user
interacthability: semi-automatic (light-green), auto-guided(light-Blue), and
fully automatic(dark-blue).



Chapter 3

Objective Function
Optimization Framework for
Breast Lesion Segmentation

Reality is the murder of a beautiful theory by a
gang of ugly facts.

R. Glass

3.1 Introduction

Despite the inherent bias in the analysis carried out in section 2.4, good re-
sults are reported when using optimization procedures. Optimization meth-
ods offer a standardized manner to approach segmentation by minimizing an
application-driven cost function [103]. Obviously the segmentation results
are subject to the correctness of the cost function design. Although this cost
function can be adapted from one optimization scheme to another, some par-
ticularities of every optimization framework need to be taken into account
since different facilities are offered when modeling depending on the chosen
framework. These optimization methodologies include ACM methodologies
and ML procedures solving the metric labeling problem [104] such as [76],
[84].

Table 3.1 summarizes some of the characteristics of the optimization
methodology families. Despite the possibility of finding particular instances
and implementations contradicting this summary (table 3.1) due to the vast

65
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Table 3.1: Optimization methods characteristics

ML+MRF ACM
Snakes LevelSets ACWE

Spatially continuous X X X

discrete X

Contour control or modeling X X X

Data model X

Need of initialization X X

Topology changes X X X

and extensive work carried out by the scientific community in this field, the
table pretends only to illustrate and highlight some differences in order to
present a short discussion of these families.

Both ACM and the combination of ML and MRF address the same
problem in different manners: the former using a spatially continuous for-
mulation whereas the latter uses a discrete formulation. ACM offers full
control of the forces pulling the contour. These forces deform the contour
based on the image information and forces constraining the contour inter-
act to find an equilibrium state. Contour constraining forces allow us to
impose shape or smoothness on the delineation. This is not the case for
the ML and MRF combination where no restriction of the contour can be
easily made. In contrast, it offers great facilities to fit complex models due
to the use of ML where high level features can be used to drive the seg-
mentation. The possibility of fitting high level models when using ACM
procedures is limited despite some attempts made in that sense. The Active
Contour Without Edges (ACWE) [117], where a Levelset segmentation is
driven by region information should be mentioned. In this regard, Liu et
al. [85] propose to using, as region information, an error measure between
the data inside the delineation and a Rayleigh model inferred from training
data. Most ACM procedures require an accurate initialization. Differences
in ACM formulation allows topology changes within the contour enabling
the delineation of multiple objects, which is a desirable capability. However,
its downside is that some false positive delineations might arise, as in the
case of combining ML and MRF, where no restrictions of any kind are made
on the segmentation topology.
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This chapter is devoted to the presentation of a discrete optimization
framework based on ML and MRF for segmenting breast lesions in US im-
ages. However, this chapter also reports some insights to our previous at-
tempts to address the same goal but, in this case, using Gaussian Constrain-
ing Segmentation (GCS) instead of a discrete optimization framework. The
similarities between GCS and ACM are quite extensive since GCS can be
assimilated as a fast-marching procedure [114], a type of LevelSet where the
direction of the contour propagation remains constant. Therefore, adding
more details of our previous work is used here to illustrate some of the in-
conveniences reported in table 3.1 when using these methodologies applied
to breast lesion segmentation in US images and how this limitations are
commonly overcome using our work as illustration case.

3.2 GCS-based segmentation

When applying GCS or ACM to segment breast lesion US images with no
user interaction, common strategies to overcome their limitations arise. The
main inconveniences are:

• the need of an accurate initialization.

• the lack of a manipulable data model to introduce high level features
for the contour to evolve.

The need of an accurate initialization is overcome mainly by generating a
preliminary segmentation usually using ML procedures [60], [81]. The use of
ML allows us to take advantage of high level features to localize the lesions
but, most of the time, there is no need to introducing high level features
within the contour evolution when the initialization is close enough to the
solution. A practical way to introduce high level features into the evolution
of the ACM consists of generating an image from those high level features
and let the ACM evolve in the synthesized image [68].

In our GCS-based segmentation proposal, both strategies, generating a
preliminary segmentation taking advantage of ML, and letting the segmen-
tation evolve on a synthesized image, are used to perform the segmentation.

3.2.1 General outline of the GCS-based segmentation frame-
work

Figure 3.1 shows the basic operations for the proposed GCS-based segmen-
tation framework: after an initial region R0(x, y) is determined, it is con-
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  GCS-based segmentation 

R(x, y)

R0(x, y)

Seed Placement

Region Growing

Determine the Best 
Fitting Gaussian

Gaussian Constraining 
Segmentation

I(x, y)

GµΣ(x, y)

St(x, y) ∈ [0, 1]

I(x, y)user defined
R0(x, y)

user defined
R(x, y)

Figure 3.1: Block diagram for the Gaussian Constraining Segmentation
(GCS) framework for segmenting breast lesions.

verted into a preliminary lesion delineation R(x, y) by means of a region
growing algorithm. This lesion delineation is used to obtain a multivariate
Gaussian function describing the shape, position and orientation of the le-
sion (GµΣ(x, y)). Finally, the Gaussian Constraining Segmentation (GCS)
procedure refines the segmentation by thresholding an intensity dependent
function Ψ(x, y) constrained by the multivariate Gaussian function describ-
ing the lesion.

3.2.2 Seed Placement

In order to obtain an accurate initialization, either information from the
user is supplied or ML procedures are used in order to infer this knowledge
from annotated data. In this case, the adopted solution has been to use a
basic ML to integrate the information in the same manner that the Stavros
Criteria spots breast lesions. The Stavros Criteria state that intensity and
texture exhibit high specificity [13] and in [118] this information can be
found in combination with a tendency that radiologists have of placing the
lesions in the center of the image using an ad-hoc heuristic.

Figure 3.2 outlines the working scheme of our proposal to combine the
Intensity Texture and Geometric (ITG) constraints in a more generic manner
complying with the Bayesian framework described in equation 3.1 in order to
obtain a posterior or total probability plane. This probability plane is then
thresholded and the largest area from the foreground is selected as the seed
region R0(x, y). The threshold has been empirically set and kept constant
for all the images at 0.8 as a good tradeoff between large foreground regions
and low lesion recall.

P (Lesion|I, T ) = P (I, T |Lesion) · P (Lesion)
P (I, T ) (3.1)
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Texture probabilityIntensity probability

Joint probability

Seed Region Selection

I(x, y)

T (x, y)
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R0(x, y)

Γ(x, y)

P (T (x, y)|Lesion)

P (I(x, y)|Lesion)

Figure 3.2: Block diagram for the Intensity Texture and Geometric (ITG)
based seed placement proposal.

In equation 3.1, notice that the denominator P (I, T ), which is difficult to
obtain, can be ignored since it is common to the two classes {Lesion, Lesion}
and therefore it cancels out. The term referred to as the prior knowledge of
a pixel being a lesion P (Lesion) is assumed to be a centered multivariate
Gaussian distribution proportional to the image. Figure 3.3 shows the spa-
tial distribution of lesion pixels from an annotated dataset indicating the
validity of assuming that the lesions are placed in a normal manner with re-
spect to the image’s center. P (I, T |Lesion) corresponds to the multivariate
distribution of pixels being a lesion based on intensity and texture features.
The main disadvantage of this term is that the sparsity of the data leads
to bad results. Therefore, IID needs to be assumed in order to be able to
estimate the multivariate distribution from its marginals at the expense of
some inaccuracy (see eq:3.2).

P (I, T |Lesion) iid= P (I|Lesion) · P (T |Lesion) (3.2)
With all this in mind, the final posterior probability can be calculated

accordingly to equation 3.3, where P (I|Lesion) and P (T |Lesion) are non-
parametric estimations of the intensity and texture PDF determined from
training data by performing a occurrence quantification, followed by Gaus-
sian smoothing and posterior normalization to guarantee that the total ac-
cumulated probability remains equal to 1.

P (Lesion|I, T ) = P (I|Lesion) · P (T |Lesion) · P (Lesion|x, y) (3.3)

The texture measure used here is given by equation 3.4 which corre-
sponds to the difference between the pixel intensity I(x, y) and the mean
intensity of its N nearest neighbors. For this implementation an eight pixel
neighborhood is used.
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Figure 3.3: Lesion pixel occurrence in a normalized image P (x, y|Lesion)
obtained from an annotated dataset

T (x, y) = I(x, y)− 1
N

N−1∑
δ=0

Iδ(x, y) (3.4)

Wrapping up, the seed placement methodology proposed here to initialize
the segmentation makes use of five inputs to automatically determine a seed
region: the intensity image, the texture image, the intensity and texture
Probability Density Functions, and the seed location prior along with a fixed
parameter to split the probability plane into foreground and background.

3.2.3 Preliminary lesion delineation using region growing

The growth of the initial region R0(x, y) into the preliminary lesion delin-
eation R(x, y) is done in an iterative manner where at each iteration, the
pixel candidates are tested in order to be aggregated to the next iteration
region Ri+1.

To generate the candidate pixels, a morphological operation with a struc-
tural element consisting of a 3 pixels radius disc is performed. This expan-
sion methodology is preferred over using only the pixels connected to the
current region Ri to perform a larger exploration that cope with the noise
nature of the images. Conversely, to compensate the loose policy of the
exploration step, a restrictive criterion is needed for aggregating a pixel to
next iteration’s region. The criterion used to aggregate a position is based
on the mean µ(·) and the standard deviation σ(·) of the pixels’ intensity
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from the current region Ri, as described in equation 3.5. Where in order to
aggregate a candidate position (x, y) to the next iteration region Ri+1, its
intensity value must not be further than 0.5σ of the current region mean
intensity.

I(x, y) ∈ Ri+1 ⇐⇒ I(x, y) ∈ µ(I(Ri))±
σ(I(Ri))

2 (3.5)

The final region R(x, y) is obtained by applying a dilatation using the
same 3 pixels radius disc structural element.

3.2.4 Gaussian Constrain Segmentation (GCS)

In order to integrate image characteristics such as homogeneity, texture, etc.,
a synthesized image (Ψ(x, y)) taking into account all these characteristics
is generated to drive the segmentation. This work-around, to incorporate
high level features or image constraints, can also be observed when utilizing
ACM (see. [68]).

For this particular application synthesized image is obtained from the in-
tensity image by applying in the following order: brightness inversion, three
stages of median filtering with a 5x5 kernel and a gray-scale morphological
opening operation.

Figure 3.4 illustrates the image dependent function. Figure 3.4b, cal-
culated from the original image (fig. 3.4a), and fig. 3.4c shows how this
function reshapes the original multivariate Gaussian to fit the lesion. The
function used in this case inverts the image intensity, performs multiple
median filtering stages in order to obtain piecewise constant regions to pre-
serve edges, and uses morphological operations to fill the holes to ensure a
constant direction of the propagating contour.

In order to finally generate a segmentation, the function representing the
lesion is finally thresholded, as illustrated by the GCS working scheme shown
in figure 3.5. In our proposal, this thresholding can be determined in two
different manners: by training a dataset tune up or dynamically determining
the threshold best suited to each image. For an initial proposal, the space of
possible thresholds was sampled and the threshold that minimizes the sum
of the variance inside and outside the delineation is selected.

3.2.5 Qualitative results

In order to accompany the quantitative results reported in section 2.4, fig-
ure 3.6 illustrates some qualitative results. Here, several overlaid color lines
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(a) (b) (c)

Figure 3.4: Ψ(x, y) construction for Gaussian Constraining Segmentation
(GCS) segmentation purposes. (a) original image, (b) image dependent
function, (c) Gaussian constrained function.

Figure 3.5: Gaussian Constraining Segmentation (GCS) outline.

illustrating possible thresholds at different levels in a color scheme in which-
cold colors represent low value thresholds and warm colors represent high
value thresholds. The white dashed line illustrates the final lesion delineation
produced by the methodology when using the proper threshold. Notice that
approximately all the segmentations are found at a similar threshold level.
Therefore, the thresholding step can be substituted by a tune up threshold.

3.3 Optimization framework for segmenting breast
lesions in Ultra-Sound data

The use of supervised ML has long been prevalent in lesion segmentation
[119] to train a classifier using a database of training images with the ground
truth provided, so that the segmentation of lesions in test images with no
such ground truth may be predicted. During the training phase, features
are extracted from some elements within the training images and provided
along with information on their ground truth to the training model of the
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(a) (b)

(c) (d)

Figure 3.6: Qualitative results achieved using Gaussian Constraining Seg-
mentation (GCS) segmentation as proposed in [61] complementing the quan-
titative results from chapter 2. Colored lines represent possible thresholds
at different levels and the white dashed line outlines the final segmentation.
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classifier. This enables a relationship between the features and their class to
form. The testing of an image is performed by extracting the same features
from compatible elements within the target image and passing them to the
trained classifier, which then provides a prediction of the class and/or a
probability of the matching to a class.

Optimization frameworks solving the labeling metric problem adds spa-
tial coherence to the class prediction obtained by the classifier according to
equation 3.6. Spatial coherence is a standard regularization used in com-
puter vision, imposing the condition that the majority of the signal com-
ponents forming an image correspond to a low frequency, thus contiguous
elements should be encouraged to have similar label.

U(ω) =
∑
s∈S

Ds(ωs) +
∑
s

∑
r∈Ns

Vs,r(ωs, ωr) (3.6)

Just before analyzing equation 3.6, let some terms be defined. Let’s
define an image as a set of sites, S, and let the goal of labeling be the
assignation of a particular label from a defined set of possible labels L to
every site s ∈ S. Now, let ω be defined as a particular configuration (or
labeling) within all the possible label configurations (ω ∈ W ). Thus, ωs
corresponds to the labeling of the current configuration ω for the particular
site s, so that ωs = l, l ∈ L.

In equation 3.6, U(ω) corresponds to the cost of a particular configura-
tion ω and is defined as the combination of two independent cost functions.
The former term, Ds(ωs), is referred to as the data term, while the latter,∑
r∈Ns Vs,r(ωs, ωr), is indistinctly referred to as the pairwise or smoothing

term. The data term is the cost of assigning a particular label l (also de-
noted ωs) to the site s based on the image data of s, whereas the pairwise or
smoothing term represents the cost of the assignation ωs taking into account
the labels of its neighbor sites, ωr, r ∈ Ns.

Figure 3.7 corresponds to a toy example of a 4 site image. The total cost
for every possible configuration ω along with the contribution of each of the
terms, the data term as well as the smoothing term, is represented.

Notice that function U(·) is defined within the labeling space rather than
in the image data. Therefore, the underlying true segmentation of the image
must be estimated as ω̂ = arg min

ω
U(ω). The image information shapes the

functions D(·) and V (·, ·), corresponding to the data and the pairwise terms.
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W

U(ω) data term cost
smoothing term cost

Figure 3.7: Toy example illustrating data and pairwise costs and how the
overall minimal segmentation is selected.

3.3.1 System Outline

The basic structure of the algorithm developed to implement the optimiza-
tion framework described in equation 3.6 is outlined in figure 3.8. Although
further details of all the elements composing the figure can be found through-
out this chapter, a brief description is given here in order to conduct an
overview of the segmentation scheme proposed.

Each image is first converted into a set S of arbitrary elements denoted
sites used here to represent images consisting of groups of contiguous pixels
sharing some characteristic. These pixel groups are called superpixels. On
one hand, a set of features used to characterize each superpixel are extracted
from the images and then used to train a classifier if the superpixels are from
the training set images, or for classification if they are from the images to
be segmented. From this classification, the class reward of each superpixel
is used to build up the data term Ds(·) of every site s.

On the other hand, relationships between the sites in S are established
in order to impose spatial coherence within the vicinity Ns of a particular
site s, so that Vs,r |r ∈ Ns, ∀s ∈ S. Determining a proper criterion to define
Ns is also part of the design process.

Both the data and smoothing terms are combined within the last step
where the set of all possible labeling solutions W is explored in order to
determine ωs ∈ L for all s ∈ S by simultaneously minimizing both terms.

3.3.2 Pre-processing

As already stated, there are several elements that degrade the quality of US
images (see section 1.3.2). Pre-processing procedures are usually used be-
fore applying segmentation methodologies in order to minimize the effect of
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Image Partition

Feature Description
Classification

Cost Minimization

Pairwise or Smoothing
cost

S

S

Vs,r(·, ·)

Ds(·)

Figure 3.8: Conceptual representation of the optimization framework pro-
posed for segmenting breast lesions in Ultra-Sound (US) data.

these image degrading elements. In order to get an idea of the pre-processing
methodologies used for breast ultrasound for further segmentation of lesions,
the reader is referred to [62], [108]. The use of a pre-processing step before
segmenting may be appropriate for algorithms with a high reliance on the
intensity of pixels, such as region growing algorithms [60] or gradient based
ACM [80]. However, based on the fact that unsupervised tissue character-
ization can be done based on speckle signatures [120] indicating that some
tissue discriminative information encoded within the speckle which therefore
can be used to maximum advantage in the classification process. As such,
global pre-processing to remove the speckle noise or other artifacts from the
ultrasound images was not implemented. Instead, the task of conditioning
the data is done at the feature description stage allowing every descriptor
to perform specialized pre-processing operations.

3.3.3 Image Partition

The goal of labeling procedures is to divide the image into elements and
use supervised ML in order to infer a label for each element based on a
training stage. In this statement, a clear key part is the designation of these
elements. Some examples of such elements can be pixels, regular patches
or any collection of pixels sharing some characteristics. Actually, virtually
anything associated with a set features in order to apply a classification
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procedure is a feasible element to be used. The inconvenience of performing
supervised ML in order to label a pixel-based representation of the image
is that the information from a single element is rather meager, limited to
the pixel depth or some filter response for that particular position. We can
overcome these limitations by taking advantage of richer information present
in more complex structures such as patches [121], sliding windows [122] or
pixel clusters with similar spatial and intensity/color information [115] all
of which have been used for over a decade in a multitude of Computer
Vision (CV) applications, including the top-performing submissions to the
multi-class object segmentation PASCAL VOC Challenge [123], [124].

Despite this wide usage, patches and sliding windows have several in-
conveniences. When using disjunct patches, the images are partitioned into
subimages in such a way that there is no pixel belonging to two different
subimages. The effect of describing the image as a collection of patches al-
low high level descriptors to be associated to the elements now forming the
image. However, assigning a label to each of these patch elements produces
gross results due to the severe discretization of the data. A direct solution
consists of producing a finer sampling by reducing the size of the patches,
yet the advantage of using patches declines when there are not enough pix-
els forming the patch to produce valuable information. On the other hand,
and in the intent to overcome this drawback, a sliding window is used which
extracts patches from a denser grid, allowing those patches to overlap, giv-
ing the resulting space of subimages such a large volume of data that it
makes the problem, at least, difficult to handle, even if the sliding window is
taken in a singular scale [125]. Another inconvenience of using regular patch
structures is their inflexibility, which leads to taking into account undesired
pixels within the descriptors extracted from those patches that subsequently
introduce noise into the classification stage, creating the need of more ro-
bust classification techniques able to handle noisy environments. A common
work-around is to use only patches and windows fully contained within the
objects to ensure a more homogeneous characteristic [122], supposing a loss
of possible elements that can be used for training purposes within the object
boundaries.

Superpixels overcome some of the limitations mentioned by relaxing the
shape of the patches in favor of irregular patches adapted to the underlying
characteristics of the images. In this manner, at the expense of an unsu-
pervised learning stage or a conservative over-segmentation of the image to
generate such irregular patches, superpixels capture image redundancy and
reduce the required complexity of the image processing tasks which follow,
and provide appropriate regions for extracting local features from through-
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out the image [115].
The underlying idea is that superpixel algorithms grip pixels into percep-

tually meaningful atomic regions, which can then be used to replace the rigid
structure of the pixel grid. To fulfill such a goal, two equivalent approaches
can be adopted:

• a conservative over-segmentation of the image [98], [100], [126], [127]

• an unsupervised learning technique taking into account the pixels ap-
pearance and its location [115], [128], [129].

Although it is difficult to determine which superpixel generation best
suits a particular application, some characteristics of the superpixel method-
ology, such as boundary fastening, lattice regularization or computational
cost, might be hints for a particular application. The best way to understand
these characteristics is by visually comparing different superpixel procedure
outcomes. Figure 3.9, extracted from Achanta et al. [115], where a review
of some of the superpixel techniques based on clustering pixels used in the
literature is given, allowing visual comparison of the strength, weakness
and compromise trade-off regarding the aforesaid desirable characteristics
of several superpixel approaches.

Summing up, our inclination to use superpixel technologies lies in re-
ducing the complexity in computational terms due to the reduction of the
sites set S, the possibility of extracting high-level features compared to us-
ing pixel elements, and, the fact that the final delineation gets decoupled
from the classification step and linked to the partition boundaries of the su-
perpixels. From all the work regarding superpixels or techniques that could
lead to the use of superpixels, the following have been highlighted and taken
into account in regard to our application of segmenting breast lesions in US
data.

Quick-shift

Quick-shift [130] is a mode seeking algorithm equivalent to Mean-Shift [131]
but outperforms the Mean-Shift technique in terms of computational cost
producing reasonable superpixels. Mode seeking is applied to superpixel
extraction to generate arbitrarily shaped clusters with no particular spacial
disposition by clustering the paired data (p, f(p)), p ∈ Ω where p ∈ Ω are
the image pixels and f(p) their intensity or color coordinates. Both [131]
and [130] share the same f(p) representation term.
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Fig. 7: Visual comparison of superpixels produced by various methods. The average superpixel size in the upper left of each image is 100 pixels,
and 300 in the lower right. Alternating rows show each segmented image followed by a detail of the center of each image.
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Figure 3.9: Visual comparison of super pixels produced by different meth-
ods. From left to right: a graph-based approach proposed by Felzenszwalb
and Huttenlocher [127], a normalized cut proposed by Shi and Malik [100],
Turbopixels proposed by Levishtein et al. [129], Quick-shift proposed by
Vedaldi and Soatto [130], compact global optimization proposed by Vek-
sler et al. [128], constant-intensity global optimization proposed by Vek-
sler et al. [128], and Simple Linear Iterative Clustering (SLIC) proposed by
Achanta et al. [115]. In the full view of the images, the overall distribution
of the superpixels can be observed, and on the detail, boundary fastening
or regularity can be observed. Image obtained from [128].
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Figure 3.10 illustrates in a qualitative manner how the quick-shift su-
perpixel technique fastens to the structures present within the images using
some image examples.

Simple Linear Iterative Clustering (SLIC)

SLIC [115] also falls into the category of mode seeking algorithms clustering
paired data of pixels and their appearance (p, f(p)), p ∈ Ω similar to Quick-
shift. However, in SLIC, the treatment of the pixel and intensity/color in-
formation is different in order to generate a fairly homogeneous distribution
of superpixels across the image. Despite the fact that SLIC is becoming the
reference of the superpixel state-of-the-art, it has been dismissed since SLIC
is unable to adhere to weak edges in a noisy environment such as found in US
images due to its homogeneity sampling condition that makes it outstanding
for natural imaging environments but unsuitable for our application.

Global Probability Boundary (gPb)

gPb [132] is not a superpixel technique per se. Instead, gPb is one of best
performing techniques within the state-of-the-art of edge or boundary de-
tection. gPb couples multiscale local brightness, color, and texture cues to
a powerful globalization framework using spectral clustering to obtain con-
tours and a significance description in a weighted boundary map form. This
boundary detection can be used to extract superpixels, since performing a
thresholding procedure at any level leads to an over-segmentation of the
image that can be used as a superpixel.

Figure 3.11 illustrates the gPb detection and the superpixel delineations
obtained when thresholding the gPb descriptor at different levels.

3.3.4 Feature descriptors

Feature description is a key step to generate the data-model since the cor-
rectness of the cost resulting from the classification stage directly depends
on the features describing the superpixels. Features are nothing more than
measures on the image carried out at each superpixel. The features from
superpixels in the images in the training set are later used with their ground
truth information to train the classifier on the characteristics of superpix-
els belonging to any target tissue: lesions, fat, fibroglandular, etc. The
same features need to be extracted from the superpixels in the images to be
tested, to be passed on to the classifier for a prediction of their probability
of belonging to each learned class.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: Qualitative analysis of Quick-shift [130] based superpixels. Left
column represents the original image, while the right column’s overlay in
white shows the superpixels’ boundaries.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11: Qualitative analysis of using Global Probability Boundary
(gPb) [132] as a superpixel. The top row shows the original images, the
middle row the gPb value in gray scale and the bottom row illustrates the
different superpixel sets obtained using different threshold values as a dif-
ferent color overlay delineation on the original image.
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The main advantage of using superpixels to carry out feature description
is that high level features can be designed to discriminate between differ-
ent tissues. Defining the proper feature descriptors is crucial for the final
discriminative power of the data model since the better the separability
the feature offers, the better the classification performance of any classifier.
When designing feature descriptors, two aspects arise: the conceptual idea
of what needs to be measured and the actual measure to compare entities.
As already mentioned, breast intensity and texture are highly discrimina-
tive as compiled by the Stavros Criteria [13] and, in one way or another,
those characteristics drive all the segmentation procedures mentioned here.
To give another reason in favor of these characteristics, three out of seven
BI-RADS descriptors are based on quantifying these attributes by a human
reader. Apart from appearance features, the tendency in placing the lesions
at the center of the image by the radiologists has also proved to be a valu-
able information either for driving the segmentation procedure [60], [61] or
for correcting the obtained segmentations [81], [85].

Here follows the feature descriptors proposed to describe the superpixels
in order to segment breast lesions by labeling the superpixels based on these
feature descriptors.

Describing the Brightness of the regions

US image brightness of a region is related to two aspects: the acoustic
impedance difference of two tissues at their interface producing a back re-
flexion of the wave and the amount of scatterers within the tissue also re-
flecting the wave back [9]. When a radiologist assesses a breast US image in
BI-RADS terms, there are two terms that refer to the bright appearance of
the lesion:

Echo Pattern: Anechoic, Hypoechoic, Hyperechoic, Complex, Isoechoic.

Posterior Acoustic Pattern: No posterior acoustic pattern, Enhance-
ment, Shadowing, Combined pattern.

Therefore, there is information encoded within the global brightness of the
regions and, as stated in section 1.3.3, this information is used in relation to
the elements present in the image. The amount of brightness of a region has
no meaning unless it is compared with the elements present in the image.
It is difficult to take advantage of the posterior acoustic pattern, since it
fulfills more diagnostic purposes. However, trying to encode the echo pattern
term makes sense since Anechogenity, Hypoechogenity, Isoechogenity and
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Hyperechogenity characterize the tissues. Usually those terms refer to the
bright appearance of the region with respect to a region of adipose tissue
which is usually in the middle of the range offering a grayish aspect.

However, using the brightness directly, or categorizing the regions with
respect to their position within the possible intensity spectrum does not
work, since the brightness representation depends on the imaging system’s
characteristics and configuration and therefore, is inhomogeneous across the
entire dataset. Instead, we propose two possible features, Bµ and BMd, to
describe the region’s brightness as a quadruple that compares a statistic of
the superpixel’s intensity distribution with four statistics of the intensity
distribution of the entire image, as described in equations 3.7, 3.8.
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Where µ(I(s)) corresponds to the superpixel’s mean intensity value,
Md(I(s)) corresponds to the superpixel’s median intensity value, min(I(S))
corresponds to the image’s minimum intensity value, max(I(S)) corresponds
to the image’s maximum intensity value, µ(I(S)) corresponds to the image’s
mean intensity value, and Md(I(S)) corresponds to the image’s median in-
tensity value. The superpixel’s quadruples are normalized by a value such
that the furthest element within the features has distance 1. The equa-
tion 3.9 illustrates the normalization factor for Bµ. The factor normalizing
BMd is constructed in a similar manner.

Bµ normalization factor = max
i∈[1,4]; s∈S

{
Bµ

i(s)
}

(3.9)

Figure 3.12b illustrate these features for a set of superpixels, shown in
fig. 3.12a, selected to analyze how the descriptor captures the intuitive idea
of echo pattern in the BI-RADS assessment. Each element of the feature
term is represented on an axis in order to easily analyze the feature sig-
natures of some superpixel examples. The two statistics of the superpixel
proposed to use here (µ(·),Md(·)) are represented in different colors. Fig-
ure 3.12 shows how hypoechoic regions: s1,s5; isoechoic regions: s3,s4; and
hyperechoic regions: s2,s7; share distinguishable class signatures. Notice
how the signature evolves from an almost trianglular shape pointing down-
wards corresponding to an anechoic region like s1, is transformed to a dia-
mond shape for hypoechoic regions like s5, until it collapses for the isoechoic
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regions (s3, s4), then opens into a rhombus shape for hypoechoic regions
(s2, s6, s7) to end up as an inverted diamond corresponding to highly hyper-
echoic streams which usually correspond to Cooper’s ligaments or the pleura
(s8).

The differences between using µ(·) and Md(·) as an intensity statistic
describing the superpixel (see s1 and s2 signatures in fig. 3.12b) indicate
that it might be interesting to use both features since there are signature
variations between the two, especially in the anechoic case (s1), where the
median fully captures the fact that there are no scatters in the superpixel.

Figure 3.13 shows a qualitative representation of the brightness feature
mentioned visualizing every part of the feature as an image. The images
are scaled for visualization purposes since the dynamic range of the im-
ages corresponding to |µ(s) − µ(I(S))| and |µ(s) − Md(I(S))| is smaller
than the dynamic range of images corresponding to |µ(s)−min(I(S))| and
|µ(s)−max(I(S))|. Figures 3.14 and 3.15 replicate the study for a different
image example, this time using quick-shift superpixels to show that, de-
spite some differences within the shapes, the pattern remains constant. It is
worth saying that every system should be trained and tested based on their
superpixels, therefore, slight shape differences within the signatures do not
influence one another.

Describing the overall appearance of the regions

Collapsing all the information present in the brightness spectrum of the su-
perpixels into a quadruple, as is the case of the just described brightness fea-
ture, supposes a severe discretization of the brightness information present
in each superpixel. Here, it is proposed to analyze the whole brightness
spectrum of the superpixel rather than just some statistics in order to build
up a feature based on similitudes of the superpixels’ brightness distribution.
Bear in mind that for ML procedures it is good to keep the dimensionality
of the final descriptor as low as possible. Therefore, despite the possibility
of using the whole histogram as a feature, this is undesirable due to the
dimensionality added to the final feature (even when taking advantage of
down-sampling the histogram).

We propose to generate a feature in the form of n-tuple where n is
the number of tissue classes present in the GT and each element within the
tuple represents the Quadratic-Chi (QC) distance [133] between superpixel’s
brightness spectrum and the Median Absolute Deviation (MAD) [134] model
brightness spectrum build up for each of tissue class.

In order to set all the superpixel’s brightness spectrum in a common
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Figure 3.12: Brightness appearance feature based on comparing super-
pixel and image statistics. (a) example image illustrating the following re-
gion types: anechoic (1), hypoechoic (5), isoechoic (3,4) and hyperechoic
(2,6,7,8). (b) illustrates the feature’s signature of the regions highlighted in
(a).
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(a) (b)

(c) (d)

Figure 3.13: Qualitative examination of the brightness features of the ex-
ample image used in fig. 3.12, where (a) corresponds to |µ(s)−min(I(S))|,
(b) corresponds to |µ(s) − µ(I(S))|, (c) corresponds to |µ(s) −Md(I(S))|,
and, (d) corresponds to |µ(s)−max(I(S))|. The intensity of the images has
been stretched for visualization purposes.
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Figure 3.14: Brightness appearance feature based on comparing super-
pixel and image statistics. (a) example image illustrating the following re-
gion types: anechoic (3), hypoechoic (8), isoechoic (2,4) and hyperechoic
(1,5,6,7). (b) illustrates the feature’s signature of the regions highlighted in
(a).



3.3. OPTIMIZATION FRAMEWORK 89

(a) (b)

(c) (d)

Figure 3.15: Qualitative examination of the brightness features of the ex-
ample image used in fig. 3.14, where (a) corresponds to |µ(s)−min(I(S))|,
(b) corresponds to |µ(s) − µ(I(S))|, (c) corresponds to |µ(s) −Md(I(S))|,
and, (d) corresponds to |µ(s)−max(I(S))|. The intensity of the images has
been stretched for visualization purposes.
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reference, the histogram of every and each superpixel is re-sampled using
100 beams equally spaced between its lowest and highest intensity value,
and further normalized to ensure that the area of each histogram is one. To
build up the models for each and every one of the tissue classes in the GT
(i.e: air, fat, fibro-glandular, lesion, etc.), the histograms of the superpixels
belonging to each tissue class are grouped together to calculate the MAD
model of each class accordingly to equation 3.10.

MADc
i = median

(
histi(s)−median(histi(s), s ∈ Sc); s ∈ Sc

)
(3.10)

Where c represents every tissue class in the GT and i represents the
beam index of the model. For this case i ∈ [1, 100] since the histograms
have been re-sampled using 100 beams. histi(s) corresponds to the value of
the ith beam of the re-sampled and normalized histogram. Sc represents the
set of superpixels that share the same GT label c. Finally, the model needs
to be normalized so that the sum of all the beams forming the model add 1.

Once determined the tissues’ appearance model, in order to determine
the feature describing a superpixel s, the superpixel’s brightness spectrum
is re-sampled an normalized. The QC histogram distance is now used to
compare this histogram with all the normalized MAD models in order to
build up the current superpixel feature. The process finalizes by normalizing
the feature such that the sum of all the distances to the MAD models adds
1.

Describing the texture appearance of the regions

Texture is a widespread phenomenon, easy to recognize and hard to de-
fine [135]. Texture of a point is undefined, it is simply a property of the
area that can be related to spatial repetition of structures, similar statisti-
cal properties of the area, or both. The texture in US images is produced
by speckle (see section 1.3.2), an undesired artifact produced by aleatory
backscatter from particles within the tissues depicted that give US images
their distinctive appearance [9]. Despite being an unwanted artifact, the
texture produced by speckle brings relevant information that helps to dis-
cern tissues as reported in Stavros criteria [13], BI-RADS assessment [12],
and other related work segmenting breast lesions in US data [61], [81], [118].

Due to the aleatory nature of the texture, a stochastic description of the
data is preferred over a repetition analysis. Taking into account that US
images depict a quantity of acoustic reflection as a result of tissue interfaces
and tissue inhomogeneities, producing images with an abundance of high
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frequencies, so a stochastic descriptor describing gradient information has
been adopted. The solution adopted here consists of using a multi level
gradient descriptor, Self-Invariant Feature Transform (SIFT), extracted in
a dense grid (one descriptor for every pixel) which wraps up these SIFT
descriptors using Bag-of-Words (BoW) as a global texture descriptor at the
superpixel level. An equivalent feature to encode information similar to the
information encoded in the SIFT descriptors is HOG. HOG has already
been used in combination with DPM [83] in [136] to detect and segment
breast lesions in an optimization framework similar to the one proposed
here. However, Lazebnik et al. [137] established that well-designed BoW
methodologies can out-perform more sophisticated methodologies based on
parts and relations.

Self-Invariant Feature Transform (SIFT) [138] transforms key-points into
scale-invariant coordinates relative to local features. Dense SIFT uses every
pixel in the image as a key-point in order to map the whole image in this
space. The SIFT descriptor was inspired by a biological vision model pro-
posed by Edelman et al. [139]. Initially, the key-point scale and orientation
are determined. The image gradient’s magnitude and orientation are then
sampled in a search window of sampling regions according to the key-point
scale and rotated according to its orientation to achieve rotation invariance.
The typical search window is 16x16 sampling regions. These samples are
weighted by a Gaussian window to ensure smoothness transition and give
more weight to the gradients found close to the key-point. Figure 3.16 illus-
trates this process and how the final descriptor is generated using a search
window of 8x8 sampling regions for illustrative purposes. In order to gen-
erate the final descriptor, groups of 4x4 sampling regions are used to group
the samples into orientation histograms of 8 bins, leading to a 4x4x8=128
element feature vector when using a 16x16 search window, which is reported
to achieve the best performance [138].

The Bag-of-Words (BoW) technique is a well known technique solving
the document classification problem consisting of correctly classifying text
documents into different categories and analyzing the occurrence of a set
of keywords [140]. In recent years, the BoW technique has been intro-
duced to CV applications [141] where it can also have the name Bag-of-
Features (BoF). During these years, BoF has been widely tested showing
remarkable success in texture and object recognition. The idea remains the
same: perform an occurrence study of a keywords set in order to correctly
classify an image, subimage, patch, etc. The only difference is that in CV
applications, there is no direct occurrence of keywords in the images. There-
fore, the images need to be represented in terms of these keywords often
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Image gradients Keypoint descriptor

Figure 7: A keypoint descriptor is created by first computing the gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradient magnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

6.1 Descriptor representation

Figure 7 illustrates the computation of the keypoint descriptor. First the image gradient mag-
nitudes and orientations are sampled around the keypoint location, using the scale of the
keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function with σ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
weight of 1 − d for each dimension, where d is the distance of the sample from the central
value of the bin as measured in units of the histogram bin spacing.

15

Figure 3.16: Self-Invariant Feature Transform (SIFT) descriptor illustration
extracted from [138].

referred to as a visual dictionary. Figure 3.17 illustrates the process. From
an image training set, N dimensional local visual features are determined.
In our case, the images are transformed by SIFT descriptors, constituting
a 128 dimension feature space. The large set of visual features from all the
training data is then used to generate a visual dictionary, using an unsu-
pervised learning technique to cluster the visual features data. In our case,
k-means is used to generate this visual dictionary. Up to this point, the
BoF is building offline. Then, for a test image, this is represented in the
feature space and every feature is assigned to the nearest cluster. In this
manner the target image is represented in terms of visual words belonging
to the defined dictionary so that a histogram word occurrence can be gen-
erated and used as the new feature. In our case, a 36 beams histogram is
generated for every superpixel to determine the words occurrence from a 36
SIFT word dictionary previously generated. Those histograms are further
used to determine the data model.

The selection of the dictionary’s size is carried out empirically, such value
has to be large since it would condition the separability of the data but it
has to remain bounded since it determines the length of the feature and
low dimension features are preferred. During the designing process the size
of the dictionary has been set to 36 since it complies with the mentioned
criteria.

As an illustration of the procedure, figure 3.18 visually represents, in two
different ways, a SIFT descriptor further used to interpret a 36 word SIFT
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Clustered training
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Local features of
testing images
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of-Features (BoF)

Generate the dicctionary Keyword assignation Feature generation
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Final feature .6 .1 .3

Training local feature Class A Class B Class C Testing local feature

Figure 3.17: Representation of the Bag-of-Features (BoF) procedure. This
process is also found in the bibliography under the name Bag-of-Words
(BoW).

dictionary (example illustrated in figures 3.19 and 3.20). Figure 3.20 also il-
lustrates the similitude of the words comprising the dictionary and projects
the centroids onto a plain using Principal Component Analysis (PCA) in
order to visualize the relationship between the clusters. Each word is asso-
ciated with a color in order to interpret the SIFT descriptors in figure 3.22
extracted from the original US images in figure 3.21. Notice that a dictio-
nary of 36 words already allows texture patterns to be revealed keeping a
fairly reduced feature dimension.

Describing the location of the regions

Taking into account the acquisition process of breast US images and the
architecture of the breast, (see section 1.3.1) some areas in the images are
more likely to present certain tissues or structures. Taking advantage of this
information is not unusual [60], [61], [73], [78], [116] and can be found either
as a feature or a domain application criteria used to refine the segmentation.
The choice preferred for this work was to use spatial information as a feature
to drive the segmentation rather than use it to refine the results.

Directly providing superpixel position to the classifier is a valid approach
to incorporate the spatial information in the data model. However, this
approach implies that the classifier has to be trained with a fair number
of samples covering the whole space. Therefore in this application, the
generation and use of an atlas has been chosen. The atlas option allows using
all the training data to build up a model of the tissue distribution similar
to the posterior probability distribution of the lesion’s position shown in
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(a) (b)

Figure 3.18: Self-Invariant Feature Transform (SIFT) descriptor visualiza-
tion corresponding to a word within the dictionary example from figures 3.19
and 3.20.

figure 3.3 in section 3.2.2.

Multi-resolution

Multi-resolution offers a natural, hierarchical representation of the informa-
tion. Such ideas are not new, and they have been around for quite a while
inspiring ideas in many fields like mathematics, physics, data analysis, signal
processing, etc. [142]. A classical way to exploit multi-resolution in CV and
image processing is to incorporate features based on wavelet transform [143]
which has already been applied to breast imaging in US data, for lesion
detection [144] and lesion diagnosis [145] purposes.

What is here proposed as multi-resolution differs from the multi-resolution
aforesaid, since in our case the description of the image information at dif-
ferent scales is somehow already been taken into account when describing
the image texture using SIFT, due to the fact that in SIFT, the gradients’
analysis is carried out already at multiple scales. The multi-resolution here
proposed consists on recompute the statistics (or features) of the superpixel
but instead of using only the elements forming the current superpixel, the
elements within the neighboring superpixels n-steps further are also used to
compute the current superpixel’s statistics (or features).

Figures 3.23 to 3.26 qualitatively illustrate for a particular image and
superpixel type, how the brightness appearance feature evolves while in-
creasing the step of neighboring superpixels involved in the calculation of
the current superpixel’s descriptor. As aforesaid, the feature proposed to
capture the brightness feature of the superpixels is a quadruple (see eq. 3.8).
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(a)

Figure 3.19: Self-Invariant Feature Transform (SIFT) oriented histogram
bins visualization of a 36 words SIFT dictionary generated from a training
dataset of US images of the breast
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Figure 3.20: SIFT dictionary interpretation. (a) Color coding of the dic-
tionary used in figure 3.18. (b) Illustrates the distances between the words
forming the dictionary. (c) Words distance reinterpretation by mapping (b)
2D grid. The colors associated to each word are used to interpret the SIFT
features in figure 3.22
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(a) (b)

(c) (d)

Figure 3.21: Breast ultrasound image examples used to illustrate the SIFT
texture in figure 3.22
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(a) (b)

(c) (d)

Figure 3.22: Self-Invariant Feature Transform (SIFT) texture image inter-
pretation. Each position has been colored according to the color associated
to each cluster of the SIFT descriptors extracted from the images in fig-
ure 3.21. The color association can be found in figure 3.20c.
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In this regard, figure 3.23 illustrates the element of the feature computed
as the distance between the superpixel’s median intensity value and the im-
age’s minimum intensity value; figure 3.24 between the superpixel’s median
and the image’s mean; figure 3.25 between the superpixel’s and the image’s
median; and figure 3.26 shows the distance between the superpixel’s median
and the maximum intensity value of the image.

Any other multi-resolution feature used here would be calculated in the
same exact manner.

3.3.5 Classification or data model generation

The data term (or data cost) is the associated cost based on the data when
assigning a concrete label to a particular superpixel. There are many ways
to link this cost to the data, however, using ML or Pattern Recognition (PR)
techniques offers standard stochastic frameworks to determine the cost based
on feature observations (x̄ ∈ X ) and their occurrence within a training set
(D) as expressed in equation 3.11.

(x̄,D)→ R (3.11)

In ML and PR there is a rich body of work offering a wide range of
techniques that are able to infer or map a cost term from a training data
and a set of features (eq: 3.11). The election criteria to determine which
is the most adequate technique for a particular application is diverse, and
includes among others:

• The need of incremental training.

• Data typology regarding if it is categorical, numeric or mixed.

• The need of a discrete classification output or a continuous probability
or reward.

• The presence of correlation within the features describing the data.

• Linear separability of the data.

• Accuracy.

• The presence of outliers within the training data or poor separability
of the data.

• Computational and time requirements or restrictions during the train-
ing stage.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.23: Multi-resolution example for a given image and Global Proba-
bility Boundary (gPb) superpixel. (a) original image with the superpixel’s
delineation as overlay. (b-f) represent the distance between the minimum
intensity value of the image and the median intensity value of the differ-
ent superpixel groups based on their neighboring distance: (b) 0 distance,
only the current superpixel is used to compute the group statistic; (c) using
neighbors at distance 1; (d) at 2; (e) at 3; and (f) at 4.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.24: Multi-resolution example for a given image and Global Proba-
bility Boundary (gPb) superpixel. (a) original image with the superpixel’s
delineation as overlay. (b-f) represent the distance between the mean in-
tensity value of the image and the median intensity value of the different
superpixel groups based on their neighboring distance: (b) 0 distance, only
the current superpixel is used to compute the group statistic; (c) using
neighbors at distance 1; (d) at 2; (e) at 3; and (f) at 4.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.25: Multi-resolution example for a given image and Global Proba-
bility Boundary (gPb) superpixel. (a) original image with the superpixel’s
delineation as overlay. (b-f) represent the distance between the median in-
tensity value of the image and the median intensity value of the different
superpixel groups based on their neighboring distance: (b) 0 distance, only
the current superpixel is used to compute the group statistic; (c) using
neighbors at distance 1; (d) at 2; (e) at 3; and (f) at 4.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.26: Multi-resolution example for a given image and Global Proba-
bility Boundary (gPb) superpixel. (a) original image with the superpixel’s
delineation as overlay. (b-f) represent the distance between the maximum
intensity value of the image and the median intensity value of the differ-
ent superpixel groups based on their neighboring distance: (b) 0 distance,
only the current superpixel is used to compute the group statistic; (c) using
neighbors at distance 1; (d) at 2; (e) at 3; and (f) at 4.
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• Computational and time requirements or restrictions during the test-
ing stage.

Once a subset of suitable techniques has been determined, a common
practice is to test all the different techniques and configurations against the
training dataset to determine the best classifier and configuration. Up to
a certain point, it is normal to perform a brute force search to determine
which methodology leads to the best results based on the training samples
available.

Among the different classification architectures that could be used in this
particular problem, Support Vector Machine (SVM) in conjunction with
a Radial Basis Function (RBF) kernel has been chosen. The need of a
continuous class belonging probability to be used as the data term, the non-
linear separability nature of the data, the presence of outliers within the
training data as well as the need of accuracy have been specific criteria to
lead to that choice. Although other classification architectures have been
considered, it has been demonstrated that SVM is a very well-known non-
probabilistic framework that can be trained as a MAP solver offering a
computational advantage over probabilistic methods [140].

In order to implement the SVM architecture for the optimization frame-
work, the very well-known LIBSVM library [146] has been used. The library,
apart from outputting the classification of each testing sample, offers a class
belonging probability which is directly used to build up the data term cost.
In order to cope with non-linear separable data, such in the present case,
the SVM needs classifier needs to be provided with a RBF kernel which
has a parameter corresponding to its bandwidth. Following the library au-
thor’s recommendations, when constructing a RBF-SVM classifier based on
F features, this parameter corresponding to the kernel’s bandwidth is set as
1
F .

3.3.6 Pairwise or smoothing modeling

The pairwise or smoothing term is used to incorporate biases and assump-
tions in order to overcome the ambiguity and unreliability of the data-models
caused by the same ambiguity, unreliability and incompleteness of the data
observed. The pairwise term introduces low-level regularization based on
MRF in order to impose a coherent labeling similar to that in GT. Fig-
ure 3.27 illustrates several GT delineations in order to observe the presence
of large homogeneous label regions.

In order to implement the aforesaid homogeneity, the pairwise term in
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(a) (b) (c)

(d) (e) (f)

Figure 3.27: Multilabel Ground Truth (GT) examples illustrating label co-
herence. (a-c) original images, (d-f) GT tissue labeling.

equation 3.6 takes the form of equation 3.12. Where β is a small value that
ensures that the smoothing term doesn’t take over the data term.

Vs,r(ωs, ωr) =
{
β, if ωs 6= ωr

0, otherwise
(3.12)

3.3.7 Cost minimization

Determining how to search for the optimal solution within the solution space
is as important as defining the elements used to build the optimization func-
tion, and defining either of the cost terms determining the goodness or cost
of the solution. Two major concerns while designing the minimization are
(1) proper management of the local minima present in nonconvex functions,
and (2) the space and time efficiency of the minimization algorithm. These
two essential aspects of the minimization procedure design are fairly contra-
dictory since avoiding local minima within a noneconvex arbitrary function
requires an exhaustive search throughout the solution space.

Although there is no algorithm to guarantee a global minimum with
good efficiency [147], there is an extensive bibliography of methodologies
and strategies to overcome the trap of local minima and reach, suboptimal
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solutions at a fairly computational cost [105], [148]–[150]. This field of re-
search is not particular to image segmentation, therefore, cost minimizing
techniques come from extremely varied historical backgrounds and follow
different paradigms and philosophies [148]. This leads to a multitude of
minimization algorithms: deterministics, stochastic, heuristics, inspired by
physic events, biological behaviors, etc. (see [150]).

Despite any cost optimization being valid to Computer Vision (CV) ap-
plications, historically Iterated Conditional Modes (ICM) [151], Simulated
Annealing (SA) [152] and Graph-Cut (GC) [104] have been the most com-
monly used in this field. Szeliski et al. [149] conducted an exhaustive review
in terms of solution quality and runtime of the most common energy mini-
mization algorithms used in CV and proposed a set of energy minimization
benchmarks drawn from published CV applications. From that review, it
was concluded that the state-of-the-art in energy minimization has advanced
significantly since the early ICM or SA methods.

Although an extensive review of energy minimization methodologies is
beyond the scope of this work, the methods named in this section are briefly
described here to complete the idea of searching through the solution space
to find the underlying labeling. No further discussion regarding the choice
of using GC for our application is carried out, we simply state the fact that
GC is the most popular energy minimization technique in the state-of-the-
art applied to CV.

Iterated Conditional Modes (ICM)

ICM [151] is a deterministic minimization performing a local search using
a greedy policy to iteratively reach a local minimum. Using an estimate of
the labeling (ω0) for every site s ∈ S, the label ωk+1

s is chosen to obtain the
largest decrease of the energy function U(ωk{S−s} ∪ ωk+1

s ). This process is
repeated until convergence is reached, which is reported to be guaranteed
and very rapid [149].

Unfortunately, the results are extremely sensitive to the initial estimate
(ω0), especially for high-dimensional spaces with nonconvex energy functions
as happens in CV applications. A common practice leading to acceptable
results is to use the labeling producing the lowest data cost as initial esti-
mate [149].

A way to avoid local minima is to randomize multiple initializations and
apply ICM to perform a local search from the different initial solutions. A
procedure with this characteristics would fall into the Greedy Randomized
Adaptive Search Procedures (GRASPs) category [153] where problems of
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how to correctly randomize the space arise.

Simulated Annealing (SA)

SA [152] is a stochastic methodology that performs a randomized sampling
of the search space. This algorithm is motivated from an analogy with the
annealing process used to find low-energy states of solids.

For this algorithm, a cooling criteria in order to simulate the annealing
is needed. The algorithm starts with an arbitrary labeling ω0,T0 . At every
iteration, ωk,Tk is randomly perturbed. A site s ∈ S is randomly selected
as well as a new label for ωk′,Tk

s . This new possible configuration ωk
′,Tk is

either accepted (ωk+1,Tk = ωk
′,Tk) or declined (ωk+1,Tk = ωk,Tk), according

to a Metropolis criterion. If the perturbation implies an overall reduction of
the cost U(ωk′,Tk) < U(ωk,Tk) , then the perturbation is accepted. However,
the perturbation can still be accepted based on a random event where the
acceptance probability is related to the magnitude of the cost increase (4U)
and the current state of the parameter temperature. Basically, a move is
more likely to be accepted if the temperature is high and the cost increase
is low. Once stability has been reached for the current temperature, it is
lowered according to the cooling criteria. The cooling criteria or schedule
along with the temperature stage criteria stability conditions the goodness
of the solution reached and its computational cost. As opposed to other
methodologies, SA asymptotically converges to the global minimum when
assuming an infinite number of iterations, otherwise the global minimum is
not guaranteed.

Figure 3.28 intuitively illustrates the behavior of an SA procedure. Fig-
ure 3.28a shows a toy energy function defined in a single continuous di-
mension space W and a current labeling ωk. Illustrated in two different
colors are the elements in the space that would be accepted when randomly
sampled. Each color represents a different acceptance policy and is sub-
ject to the current temperature of the system. The higher the temperature,
the wider the range of accepted transitions. All the random samplings in
the labeling space causes the function cost to be expressed across the time
(or iterations k) behavior as in figure 3.28b where large increases in energy
cost are allowed at the initial stages and restricted in further stages until
convergence.

Improvements for this minimization technique, among others, include:
variations and more general forms of the acceptance rule rather than the
Metropolis criteria [154], or algorithm parallelization [155]. For more details,
the reader is referred to [154].
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Figure 3.28: Simulated Annealing (SA) behavior. (a) Eligible state evolu-
tion for a particular configuration at different temperature stages. (b) Cost
evolution.

Graph-Cut (GC)

The use of graphs in order to mathematicaly formulate or solve certain
problems dates from Euler’s 1736 paper on the bridges of Königsberg, de-
spite the fact that there is no mention of graphs in this early paper [156].
But since then, Graph Theory has provided a wide range of techniques and
strategies to solve problems and is particularly useful for problems with pair-
wise relationships within the elements. The main problem consists of how
to represent a particular problem as a graph and determine which graph
particularity or property corresponds to the goal pursued.

Boykov et al. [104] introduced the use of graph-theory in order to solve
the metric labeling problem (see eq. 3.6). The algorithms introduced were
the swap-move and the expansion-move. Both algorithms repeatedly com-
pute the global minimum of a binary labeling problem in their inner loops,
rapidly converging in a strong local minima guaranteeing that no labeling
with lower energy can be found [149].

Details of the exact functioning of the swap-move and expansion-move
GC algorithms are not covered here. The reader is refereed to the energy
minimization comparative study carried out by Szeliski et al. [149] for a
consise description, to Boykov et al. [104] to review the original proposal or
to Delong et al. [105] for further work carried out by the same team that
proposed the methods.

However, it is in our interest to understand how the metric labeling prob-
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lem posted in equation 3.6 is represented as a graph and which graph solution
or property leads to the estimated labeling ω̂, so that ω̂ = arg min

ω
U(ω).

Let’s consider a binary case of the type segmenting foreground vs. back-
ground (L = {f, b}) and only the data term is considered (Vs,r = 0 |∀{s, r} ∈
S). Also let the data term be defined as the posterior probability of a
Bayesian procedure Ds(ωs = f) = P (f |x̄s), Ds(ωs = b) = P (b|x̄s), so that
P (f |x̄s) + P (b|x̄s) = 1, where x̄s represents the data describing the site s.
Figure 3.29a illustrates how the graph is constructed. The sites are repre-
sented as nodes in the graph and two extra nodes, illustrated as a squares,
denoting source (s) and sink (s′) are added. (In some works the sink is
denoted as t.) s and s′ are each assigned to one of the possible labels; fore-
ground or background. Usually, s is assigned to the foreground and s′ to
the background, but this is irrelevant, since the solution is the same. Source
is connected to each of the nodes in S with the associated cost P (f |x̄s).
Similarly, the sink is also connected to all the nodes with the cost P (f |x̄s).
In order to find the labeling ω̂, the min-cut/max-flow technique consisting of
passing the maximum amount of flow from s to s′ is used. For the case con-
sidered here, where only the data term is taken into account, the maximum
amount of flow corresponds to ∑s min(P (f |x̄s), P (b|x̄s)) since the amount
of flow passing through every node is limited by the weakest posterior prob-
ability. The saturated edges conditioning the maximum amount possible of
flow correspond to those edges needed to partition the graph into two sets
with a minimal cost. Once the graph has been partitioned, the nodes still
connected to the source are labeled as foreground, while those connected to
the sink are labeled as background (see fig. 3.29b). Notice for the case with
no pairwise term, the output of the graph-cut corresponds to assigning the
label producing the greatest posterior probability.

When adding the pairwise term, connections between sites are made, as
can be seen in figure 3.30. This allows flow transfer between the sites so
that connections between the sites and the sink (s′) that previously were
not saturated can now be, if the flow needed to saturate the link to the sink
is provided by the connected sites. Notice that the amount of flow is limited
by the strength between the source and the sites. If there is not enough
flow to saturate the link to the sink, then the link to the source is saturated,
unless the links between the sites have already been saturated. If the link to
the source is saturated, then the sites are labeled with the label associated
to the sink. If the connections between sites are not big enough, they are
easily saturated and the solution is the same as the solution minimizing the
data term.
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s s′
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s s′

(b)

Figure 3.29: Data term graph construction to solve the data part of the
labeling problem using min-cut/max-flow. (a) Graph construction. (b) Data
term solution.

s s′

(a)
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s s′

(c)

s s′

(d)

Figure 3.30: Data and pairwise terms graph construction to solve the com-
plete labeling problem using min-cut/max-flow. (a) Graph construction.
(b-d) Multiple configurations leading to different solutions.
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Figure 3.31: Multi-class graph construction example using three sites exam-
ple.

For the multi-label case, sites are all connected to a node representing
each label, as can be seen in figure 3.31. All the possible pairing combi-
nations of labels are assigned as source and sink. The system is flooded
repeatedly for each combination pair labels until convergence. Figure 3.31
represents an intuitive idea of a system with three sites and three labels.
The links from the labels are colored differently from the links between the
sites for better comprehension.

3.3.8 Post-processing

Post-processing is a common practice in breast lesion segmentation in the
ultrasound image application. Reducing the amount of false positive seg-
mentations or refining the delineation for a more accurate segmentation can
be found in common practices. ML procedures are a common choice to
reduce false positive segmentations used as the outlier rejection step [157].
Another common practice is to impose strong criteria from the application
domain so that the lesions do not touch the border of the image, to elim-
inate undesired segmentations [78], [116]. In order to improve the lesion
delineation, a common strategy is to use ACM to obtain smooth segmenta-
tions [60].

For this work, no post-processing is applied. The outlier rejection is im-
posed as homogeneity in the pairwise term, application domain constraints
are enforced in the data term and the accuracy achieved in the delineation
is given by the superpixel ability to attach to the true tissue interface.
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3.4 Case of Study

3.4.1 Gathered dataset

The dataset used for this work comes from the collaboration between the
University of Girona and the UDIAT Diagnostic Centre of Parc Tauĺı in
Sabadell (Catalunya) where an image database from UDIAT is being col-
lected and cataloged in order to make it available to the researchers. The
collected database consists of a collection of screenings including DM, US,
or both, which exceeds the 2300 images.

The resulting US image dataset once discarded US images with burned
in overlays coming from the acquisition system consists of 700 B-mode US
images screened using the following devices:

• Siemens ACUSONTM Sequoia equipped with the linear transducer
17L5 HD )(17− 5MHz).

• Siemens ACUSONTM S2000TM equipped with the linear transducer
18L6 HD (18− 6MHz).

• Siemens ACUSONTM Antares R© equipped with the linear transducer
VF13-5 (13− 5MHz).

• SonoSite R© MicroMaxx R©.

• SonoSite R© Titan R©.

• Supersonic-Imagine Aixplorer R©.

• Toshiba PowerVision SSA-380A.

• Toshiba AplioTM 500.

The overall dataset is composed of Digital Imaging and Communica-
tions in Medicine (DICOM) formated images with anonymized metadata-
information and an heterogeneous accompanying GT. All the images have,
at least, one lesion and a delineation of the lesion structures of each image,
provided by an experienced radiologist from UDIAT. Figure 3.32a illustrates
the different sub-datasets that appear depending on the GT provided:

276 image dataset constitutes the original dataset from clinical cases ac-
quired by the doctor radiologists at UDIAT. All the images contain
a single lesion which their delineation and pathology description and
lesion delineation has been provided by radiologists.
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150 image dataset consisting of a subset of the previous dataset. Each
image is linked with the associated BI-RADS description. This subset
has been used to illustrate the BI-RADS image description in sec-
tion 1.3.3.

115 image dataset consisting of a subset of the 150 images dataset. Each
image is linked with seven different manual delineations of lesion car-
ried out by trained experts and technicians from University of Girona
and the UDIAT Diagnositc Centre. All the delineations have been
validated by two doctor radiologists with a dilated experience.

700 image dataset with a subset of 424 images pulled out from patients
history, complements the original 276 image dataset constituting an
entire dataset of 700 images. The advantage of complementing the
original database in this way allows to perform further temporal stud-
ies and increases the variability in the quality of the images. All the
images have been reviewed by a doctor radiologist from UDIAT in or-
der to ensure that there is at least one lesion per image and also to
provide an accurate delineation of any lesion present in each image.

16 image dataset it is composed by a randomly sampled subset of the
entire dataset for software developing purposes. Some images from this
subset are provided with the delineation of all the tissues present in
the image, for training purposes. These tissue multi-label delineations
have been carried out by a technician an validated by doctor radiologist
with dilated experience, members from UDIAT.

In terms of pathology, our data is distributed accordingly to figure 3.32b,
where the are of each rectangle represents the amount of lesions presenting
a particular pathology. The collected pathologies are distributed as follows:

Benign: 90 Cysts, 69 Fibroadenomas, 8 Ganglions, 6 Hermatomas, and 10
benign lesions categorized as other, with pathologies like: Papillomas,
Lipomas, fat necrosis, etc.

Malignant: 67 Ductal Infiltrating Carcinoma (DIC), 12 Infiltrating Lob-
ular Carcinoma (ILC), 7 Intra-Ductal Carcinoma (IDC), and 8 ma-
lignant lesions categorized as other, with pathologies like: Mucinous
Carcinoma, Lifoma, etc.
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Figure 3.32: B-mode breast US image dataset collection. (a) Represents the
datasets collected from an undergoing collaboration between the Univer-
sity of Girona and the UDIAT Diagnositc Centre of Parc Tauĺı in Sabadell
(Catalunya). In (a) the data is grouped in terms of the GT available. (b)
Represents the pathology distribution from the 276 image subset. The high-
lighted areas in (b) represent the amount of elements of each class forming
the 115 images subset.
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3.4.2 Experimentation and results

The experimentation has been carried out using the smallest dataset in order
to keep the computational cost bounded while exploring to combine all the
proposed features. The tested system features are:

• Superpixel type:

– Quick-Shift (QS) superpixel.
– Global Probability Boundary (gPb) superpixel.

• Feature description:

– Superpixel brightness:
∗ using mean as superpixel descriptor, Bµ.
∗ using median as superpixel descriptor, BMd.
∗ BoW-SIFT

– Superpixel overall appearance distance to the appearence of the
tissue models.

– Superpixel BoW representation from a 36 words dictionary of
SIFT.

– Atlas information.
– Superpixel multi-resolution feature description:
∗ Brightness, Bµ.
∗ Brightness, BMd.
∗ BoW-SIFT

• Data model generation using SVM with a RBF kernel in order to
compute the MAP.

• Pairwise modelling:

– No model.
– Smoothing, homogeneity model set as 10% of the overall data

cost1.
1The cost of every and each pairwise link is set as 10% of the total data term for a site,

consisting of the cost from the source to the site plus the cost from the site to the sink,
which is constant for all the sites.
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Figure 3.33: Randomized sampling for classifier training from the pool of
superpixels. The values represent the amount of superpixels and the cir-
cle illustrate the random selection for a training round. The supperpixels’
pool correspond to case of: (a) Quick-Shift (QS), (b) Global Probability
Boundary (gPb).

Quantitative results

From figure 3.34 to 3.39 it is shown the quantitative results obtained by
applying the cross-validation procedure. The classic cross-validation, when
analyzing image segmentation, consists of splitting the data into K-image
subsets named folds and use K − 1 folds to train the system for testing
with the fold unused in the training. The extreme case of cross-validation
is known as Leave-One-Out Cross-Validation (LOOCV), where every and
each image is considered a fold by itself, so that all the images but one are
used to train the system for further testing in this one. The training/testing
is repeated k-times, so that every image is used once as testing. However,
in our case and taking advantage of the fact that the system is based in
superpixels, the cross-validation is carried out at the level of superpixels.
In our system, all the superpixels are seen as samples of a larger dataset
and the cross-validation is carried out as a as multiple randomized sam-
pling of such a pool of superpixels. Since the size of the pool is orders of
magnitude larger than the size of the training set, it is unlikely to over-fit
the classifier. Figure 3.33 illustrates this idea. Although all the superpix-
els belonging to the training images have been used to generate the models
needed for computing the features, in the figure it can be observed how only
two lesion/non-lesion balanced subsets are used for a training round of the
classifier. At each round all the images (and hence all the superpixels) are
used for testing. All the testing results are collected together as independent
instances to conduct the results analysis.

Figure 3.34 shows a quantitative general analysis of the system. Each
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and every one of the boxplots present in figure 3.34 represents an experi-
ment where the superpixels and the pairwise model vary depending upon
the experiment (the experiment details are summarized in table 3.2). The
elements building up the boxplots are the mean Area Overlap (AOV) (in
fig. 3.34a), the mean False Positive (FP) rate (in fig. 3.34b) , and the mean
False Negative (FN) rate (in fig. 3.34c) achieved across the entire dataset
for a particular configuration of the features used to describe the images.
Details about lesion detection are beyond the scope of this work, further
than to illustrate the improvement that supposes incorporating the pairwise
term, so then justifying the need of such a pairwise or smoothing term (see
fig. 3.34b). In figure 3.34a some AOV references are represented. Since the
segmentation is achieved by labeling superpixels, the final delineation is sub-
ject to the underlying superpixels’ delineation therefore an AOV of 1 cannot
be achieved and the ceiling for each superpixel is represented in the figure.
Notice that the ceiling for gPb superpixel is higher than the ceiling for QS
superpixel, which is explained by the fact that gPb superpixels are smaller
than QS superpixels. In addition to the superpixels’ AOV ceiling, the AOV
reward achieved by manual segmentations done by trained technicians and
expert radiologists is also represented by a swatch compressing the inter-
val between best and lowest performance, as reported in [66]. Finally, for
comparison purposes, the AOV results reported by Massich et al. [61] and
Pons et al. [66] on their respective proposals are displayed, since the subsets
used to test both methodologies come from the same dataset. Due to the
difference in the size of the superpixels, two FP rate references are needed
in figure 3.34b.

In order to facilitate the comparison between the proposed methodology
and the methodologies reviewed in chapter 2, despite the bias of being tested
in different datasets, the figure 2.8a is replicated here in figure 3.35 this time
showing an extra ring in black at 0.623 representing the best performance
in fig. 3.34a, so that it can be easily compared to the previously reviewed
methodologies.

All the boxplot pairs in figure 3.34a and figure 3.34b correspond to the
same experiment with and without applying the smoothing term, so that
odd elements within these figures (1,3,5,7) represent the data model results
with no pairwise model applied whereas even elements (2,4,6,8) represent
the results once the pairwise model is applied. Notice that in most cases,
although there is no statistical difference in terms of segmentation perfor-
mance when applying the smoothing term, a tiny decrease of the results can
be observed even if this is not enough to be considered statistically different.
However the improvement in terms of FP reduction justifies to assume the
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Figure 3.34: Quantitative results. (a) Area Overlap (AOV) distribution
depending on the feature descriptions configuration of the system for the set
of experiments described in table 3.2. (b) dataset average False Positive (FP)
rate distribution. (c) dataset average False Negative (FN) rate distribution.
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Table 3.2: Configuration details of the experiments

Superpixel Regular
features

Multi-resolution feat. [1,2,3] Pairwise
termQS gPb BMd Bµ BoW+SIFT

1 X X X X
2 X X X X X
3 X X X X
4 X X X X X
5 X X X X
6 X X X X X
7 X X X X
8 X X X X X
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Figure 3.35: AOV comparison between our proposal and the methodolo-
gies reported in section 2.4. The figure replicates fig. 2.8a adding a circle
representing the top AOV performance achieved 0.6231 to facilitate the com-
parison against all methods despite the bias of not being tested on the same
dataset.
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decrease in AOV terms, in favor of a much lower FP rates when combining
both the data and the smoothing terms. As downside, encouraging homo-
geneity, by combining these two terms, also increases the FN rate. However
both images still show, represented as gray elements in the figures, a large
amount of feature configurations with no FN. The incorporation the multi-
resolution feature of BoW-SIFT also produce a FP rate reduction, as can be
observed in figure 3.34b. Finally, despite not being a substantial improve-
ment, the configuration best scoring in 3 improves its AOV reward from
0.607 to 0.61 achieving the best performance for the QS superpixel in that
particular configuration.

In terms of superpixels, gPb produce better results than QS but it also
needs to be taken into account that the AOV ceiling of both superpixel
types differ whereas the performance difference is not as large as the ceiling
differences.

Figures 3.36 and 3.37 show some screen-shots of the software we use to
qualitatively explore the quantitative results achieved for different feature
combinations. Both figures represent the experiments where the tested fea-
tures are: Bµ , BMd, overall appearance, BoW+SIFT, atlas, multi-resolution
Bµ and multi-resolution BoW-SIFT. Figure 3.36 represents the case of QS
superpixels , which corresponds to experiments 3 and 4, and figure 3.37
represents the case of gPb superpixels, which corresponds to experiments
7 and 8. In the figures, pairs (a,b) correspond to AOV, (c,d) correspond
to FP rate, and (e,f) correspond to FN rate. In addition the mentioned
pairs, the triplets (a,c,e) in the figures correspond to the experiments 3 and
7 respectively where no pairwise cost is applied whereas the (b,d,f) tripled
correspond tho the experiments 4 and 8 respectively where pairwise cost
is applied. Every pixel within the figure represents the average reward ob-
tained across the dataset for a particular feature combination. The average
value is color coded. For the AOV values the color code is such that an AOV
of 0 is represented in blue while an AOV of 1 is represented in red. For the
rest of the figure every pair hare the same scale where strict 0 is represented
as gray and the rest of the values are coded in a linear manner where the
lower bound is represented as blue and the upper bound is represented in
red (the limits can be found on the figure captions). On a general view,
both figures show some repetitive patterns corresponding to the usage or
not of certain features. On the figures it can be observed that when apply-
ing the pairwise cost, despite the performance of some configurations do not
decrease, the general tendency is that most feature configurations experi-
ment a reduction of the AOV obtained when introducing the pairwise cost.
In figure 3.37 the effect of the AOV reduction when applying the pairwise
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cost produce a regular patter showing that certain configurations are more
affected than others since the color patterns present in (b) are not that clear
in (a). Those configurations that get more affected by pairwise term corre-
spond to configurations were a limited amount of features are used. Similar
conclusions can be drawn for the (b,c) and (e,f) pairs, which also corroborate
the conclusions drawn from figure 3.34. The reduction of the FP is general
when applying the pairwise cost where still exist configurations with no FN.

In order to perform a more guided discussion, similar information is
represented in figures 3.38 and 3.39 where instead of representing the ex-
periments as a colored table, the experiments are placed in a disc where a
binary code illustrates the presence or not of a particular feature, and the
obtained results are displayed as a polar plot. From the inner to the outer
part, the displayed information is organized as follow: the most inner part
in red represents the amount of FP segmentations in a logarithmic way in
order to obtain better resolution for cases with low FP rates. Notice that
the amount of false positives is given as the average across the entire dataset
and it needs to be taken into account that when an image suffers from FP
segmentations usually there is more than one FP. The second polar plot, in
blue, represents the AOV reward for every particular system configuration.
In gray, follows a binary coding illustrating which feature descriptors are
active at every time. It needs to be mention that the two less significant
bits have been merged for displaying purposes. Finally, the plot offers a
degree wheel for easy reference to a particular configuration.

In terms of features, in general, incorporating BoW-SIFT multi-resolution
increases the performance in terms of AOV and, as aforesaid, reduces the FP
rate. In order to be able to further look to the influence of each feature to
the overall performance of the system, the reader is referred to figures 3.36
to 3.39. Figure 3.36 and 3.37 show a set of colored tables where every cell
represents a system configuration. Figure 3.36 compares experiments 3 and
4 whereas figure 3.37 compares experiments 7 and 8. Both figures show, at
a glance, that some patterns arise in the AOV performance which are re-
lated to the features used to describe the superpixels showing the preference
for some description configuration. While comparing the experiments with
and without smoothing term a small change in color can also be observed
as expected. However, what is interesting, is to observe patterns produced
by the system configuration regarding the reduction of the FP rate and the
increasing of the FN rate.

Once familiarized with the overall behavior of the system depending on
its feature description configuration, a deeper analysis can be carried out
in figures 3.38 and 3.39 where the AOV, FP and FN rates are displayed at
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(a) (b)

(c) (d)

(e) (f)

Figure 3.36: Qualitative inspection of the quantitative results obtained by
different feature descriptors combination. (a,b) Represent the AOV where
the scale 0 to 1 is represented from blue to red. (c,d) Represent the FP rate
where dark blue corresponds to nearly 0 values and red corresponds to an
average FP rate of 23.4 FP per image. (e,f) Represent the FN rate where
dark blue corresponds to nearly 0 values and red corresponds to an average
FP rate of 0.6 FP per image. (a,c,e) correspond to experiment 3 and (b,d,f)
to experiment 4.
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Figure 3.37: Qualitative inspection of the quantitative results obtained by
different feature descriptors combination. (a,b) Represent the AOV where
the scale 0 to 1 is represented from blue to red. (c,d) Represent the FP rate
where dark blue corresponds to nearly 0 values and red corresponds to an
average FP rate of 175.6 FP per image. (e,f) Represent the FN rate where
dark blue corresponds to nearly 0 values and red corresponds to an average
FP rate of 0.5 FP per image. (a,c,e) correspond to experiment 7 and (b,d,f)
to experiment 8.
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once, along with the system configuration.

Figure 3.38 shows the details of the boxplot in fig. 3.34a and 3.34b for
the experiment 4. In it can be observed that the recommendable feature
description configuration lies between angles 90◦ to 167◦ and 270◦ to 315◦
which produce higher results with less FP rates. In the figure is also notice-
able the AOV drop at every 90◦ which is explained by the low amount of
descriptors. The fact that the glitches at 0◦ and 180◦ are smaller compared
to those in 90◦ and 270◦ is due to the usage of the atlas feature. The usage
of the atlas feature, also explains the increase in AOV and the reduction
of FP for the quarters from 90◦ to 180◦, and from 270◦ to 365◦. The at-
las feature also gives an overall stability of the results since the AOV plot
shows less jitter in the quarters where atlas has been used. This reaffirms
the usefulness of the position information. Similar configurations with a
reduced set of features such in 45◦ and 225◦ despite not producing large
drop in terms of AOV the rise of the FP is quite substantial. Again, the
presence of position information from the atlas contains the spike in 135◦
and 315◦ but a small increase in the FP rate can still be observed. In such
FP peaks at 135◦ and 315◦, a decrease of the AOV rate can also be observed
which repeats in some of the other peaks of the FP plot discouraging, even
more, to use configurations that produce high amount of FP. The AOV plot
offers a crescendo tendency at every quarter, which can also be observed at
the overall AOV plot if read counterclockwise from 90◦, indicating that the
feature descriptors designed properly capture the lesions.

Similar conclusions can be drawn from figure 3.39 which replicates the
same experiment but this time using gPb superpixels. The influence of the
atlas is also clear specially the fact that atlas produce more stable results
since the high jitter is present in the AOV present in the configurations
compressed from 0◦ to 90◦, and from 180◦ to 270◦ where the atlas feature
is not used. A difference between 3.38 and 3.39 is that now the presence
of less features which happens at every 45◦ is more noticeable. The AOV
drops close to angles 326◦, 331◦, 338◦, and 342◦ are subject to not using
neither of the BoW+SIFT multi-resolution features at neighboring level of
2 and 3. This pattern, despite not being as clear as in such examples, can
be found all over the disc which indicates that at least for capturing the
texture larger superpixels are recommendable. Specially since the gain of
using BoW+SIFT (regions 0−45◦, 90−135◦, 180−225◦, and 270−315◦) is
minimal compared to their counterparts shifted 45◦ but the increase of FP
is notable. For this particular experiments configurations within the ranges
between 135◦ to 165◦, and 315◦ to 345◦ would be preferred.
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Figure 3.38: Experiment 4 detailed results where each angle represents a
particular configuration. From inner to outer part: False Positive (FP) rate
(in red), AOV rate (in blue), active feature swatch (gray when active), and
degree wheel for rapid referencing.
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Figure 3.39: Experiment 8 detailed results where each angle represents a
particular configuration. From inner to outer part: False Positive (FP) rate
(in red), AOV rate (in blue), active feature swatch (gray when active), and
degree wheel for rapid referencing.
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Qualitative results

Figures 3.40 to 3.42 show few qualitative results complementing the quan-
titative results shown already. Apart from the discussion regarding if the
three lowest superpixels labeled as lesion should belong or not to the lesion
in figure 3.40, the figure shows the dissimilarities between a perfect segmen-
tation produced by the system and the GT, which leads to the performance
ceilings represented in figure 3.34a. Figure 3.41 illustrates the effect of apply-
ing homogeneity in the pairwise term for reducing the FP rate. Figure 3.42
illustrates the particular cases of FN cases where the lesion cannot be prop-
erly represented due to the fact that the superpixels are larger than the
lesion. In such cases, there is no way to properly characterize the superpixel
containing the lesion and therefore missclassification is inevitable. In such
a cases when the superpixel containing the lesion is labeled as such, a large
amount of FP is present (see fig. 3.42c) otherwise the lesion is missed like
in figure 3.42d.
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(a)

(b)

Figure 3.40: Qualitative result example from experiment 4. (a) Original
image with GT overlay in red and superpixels’ boundaries overlay in black.
(b) Segmentation obtained using: Appearance model, Atlas, BoW+SIFT
multi-resolution (1,2,3) and mean Brightness multi-resolution (1,2,3) fea-
tures. This feature set is close to 163◦ in fig. 3.38.
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(a)

(b) (c)

Figure 3.41: Qualitative result example from experiment 7 and 8 to illus-
trate the effect of the homogeneous pairwise term. (a) Original image with
GT overlay in red and superpixels’ boundaries overlay in black. (b) Segmen-
tation obtained without using the pairwise term. (c) Segmentation obtained
with pairwise term. The Segmentations in (b) and (c) are obtained using:
Atlas, mean Brightness, median Brightness, BoW+SIFT multi-resolution
(1,2,3) and mean Brightness multi-resolution (1) features. This feature set
is close to 315.5◦ in fig. 3.39.
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(a) (b)

(c) (d)

Figure 3.42: Qualitative result from experiment 3 and 4. (a) Original image
with the GT overlay in red. (b) Original image with superpixels’ bound-
aries overlay in red. (c) segmentation obtained from experiment 3. (d)
segmentation obtained from experiment 4.



Chapter 4

Conclusions and further
work

On ne termine pas un poème, on l’abandonne

Paul Valéry

Automatic analysis of US images is challenging specially in the case of
breast US imaging. However, it is of our interest to address such a prob-
lematic in order to automatize massive screening since it has been proved
that early detection decreases the breast cancer mortality which remains the
leading cause of cancer death among females.

First chapter introduces the imaging modalities used in breast screen-
ing placing special emphasis in US screening of the breast. This chapter
is used to familiarize the reader with the US images of the breast spotting
its strengths for diagnosis purposes, as well as, describing its limitations
and reading difficulties such as its strong noise and artifacts. This introduc-
tory chapter is also used to analyze standardized procedures that radiologist
doctors use to carry out the image readings. Such standard procedures for
analyzing US breast images rely in the fact than when read by an expert
radiologist the delineation of the lesion is instantly understood. Therefore
the need to improve automatic procedures for accurately delineate lesions
to be able to extract high level features similar to those already proven to
be useful for the doctors in order to improve CAD systems.

Second chapter is devoted to survey the state-of-the-art in segmentation
of breast lesions in US data. This chapter reviews the methodologies along
with the manner their results are reported in order to set them all in a com-
mon framework for comparison. However, the lack of a common dataset to
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test all the methodologies with makes impossible a fair comparison between
methods. This is easily observed when comparing the segmentation results
reported from automatic methodologies those outperform manual segmen-
tations done by trained expert radiologists.

Finally, in chapter three the bulk of work carried out is reported. In
it, a novel segmentation scheme based on an optimization framework is
presented, and the methodology based in GCS presented in [61] is reviewed.
Although the new segmentation technique achieves results are comparable
only to some of the results published in the bibliography (see fig. 3.35), the
proposed methodology has large room for improvement compared to our
previous proposal which was pretty tuned up already (see section 3.2). In
this last affirmation it needs to be taken into account such methodologies
against the rest of the methodologies in the literature is unfeasible due to
the lacking common dataset.

The main advantage of the proposed framework is that it splits the prob-
lem of segmenting the tissues present in US the images into subtasks that
can be taken care of individually. The correctness of the final delineation
is relative to the correctness achieved during the partitioning of the image
while generating the superpixels. The characterization and proper labeling
of the superpixels with the desired tissue label becomes a ML problem that
can take advantage of the large range of solutions in that field. Finally the
obtained results from the classification stage can be improved by elaborated
pairwise cost functions allowing an inhomogeneous severe smoothing.

As a summary, the main contribution is not in term of results yet but in
facilitating a framework that splits the segmentation task in concrete sub-
tasks allowing easily testing them. Another contribution is the collection
of dataset of US images with large amount of annotation information re-
garding both medical and image information to put in use for the scientific
community.

4.1 Short term perspective

In short term perspective, the system is set and ready to be tested in larger
datasets of the data gathered and cataloged from the collaboration between
the University of Girona and the UDIAT Diagnositc Centre of Parc Tauĺı.
Data that at the same time are ready to be published to make it available to
the scientific community in order to take advantage of data and the GT that
has been already collected in addition to the GT which is being completed
under the undergoing collaboration between the institutions mentioned.
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Regarding the proposed framework, short term efforts should be placed
in improving the the data term where feature extraction procedures can be
applied at any time. However, before that, there exists still room to improve
the current feature descriptors of the images. Here are some ideas to improve
each and every one of the features reported:

Brightness feature A naive segmentation, as a presegmentations, of the
tissue can be made in order to condition the brightness reference only
to the part anterior to the chest-wall, or have multiple references rather
than the statistics of the whole image.

Overall appearance Instead of creating superpixels’ appearance models
to compare with, based on the GT classes, a spatial clustering in order
to obtain more sparse models arises as a plausible way to improve the
results. However, it needs to be taken into account that if a large
set of models is generated there exist a growth in the feature space
which suggest that a feature extraction procedure such as PCA might
be recommended.

BoW+SIFT During the assignation of the local feature SIFT to is closes
visual word, and even when generating such visual words, these pro-
cesses are done without taking into account the continuous nature of
the visual data by using a hard quantization methodology such as k-
means and nearest neighbor assignation. This is a known drawback
an there are several solutions in order to reduce such quantization er-
rors (see van Gemet et al. [158] for further details). New approaches
are arising in order to improve BoW by including spatial information
within the features and generate dictionaries based on both the fea-
tures and their spatial relation [159].

Atlas Similarly to the improvement suggested for the brightness feature,
a naive pre-segmentation of the lungs in order to modify the atlas
feature based on lungs location. Another solution to explore is to
perform registration of the atlas in order to build up a more reliable
prior for driving the data term since it causes a huge influence on it
when used.

Multi-resolution it is desirable to compare gathering the superpixels in a
inheritance fashion with respect to the current multi-resolution based
on neighboring.
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Also, as a short term perspective, a larger set of configurations regarding
the superpixels is recommendable in order to find the best parameters to
describe the images in terms of superpixels.

4.1.1 Long term perspective

The encouraging of smoothness by the pairwise term has been demonstrated
important, however it seems reasonable to apply it in a heterogeneous man-
ner encouraging severe smoothing in some areas and no smoothing in other
areas of the image in order to take a greater advantage of the pairwise term.
Therefore it is recommended to explore more sophisticated ways to deter-
mine the cost of the link between superpixels. A plausible solution in order
to do that is to apply a supervised ML procedure in order to determine the
MAP cost of the link based on the GT information.

And last but not least, a system in order to efficiently explore the sys-
tem configuration space, rather than the brute force applied here, is also
desirable.
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