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Les fonctions analytiques généralisées sont dénies par des séries convergentes de monômes à coecients réels et exposants réels positifs. Nous étudions l'extension de la géométrie analytique réelle associée à ces algèbres de fonctions. Nous introduisons pour cela la notion de variété analytique réelle généralisée. Il s'agit de variétés topologiques à bord munies de la structure du faisceau des fonctions analytiques réelles généralisées. Notre résultat principal est un théorème de monomialisation locale de ces fonctions.
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Introduction

Resolution of Singularities is an important subject in many elds of mathematics, being a fundamental tool in the resolution of lots of important problems as well as a set of elaborated techniques resulting very useful in full of dierent contexts. This explain that, even if it is a classical discipline, it is gaining in importance and constantly progressing.

The general setting is well known: given an object that we want to study (manifolds, varieties, functions, foliations, vector elds, dieomorphisms, families) it may present singularities making it non trivial. The strategy to understand the richness behind these singularities consists on modify the ambient space by terms of compositions of a particular kind of well known transformations (blowing-ups) given rise to an object with "simpler singularities" easier to study. The problem is then translated to the understanding of the combination of the blowing-up transformations and the relation between the geometry of the object obtained and the initial one.

This method was applied to the classical case of algebraic varieties by using algebro-geometric techniques by Zariski and the Italian School which constituted the foundations of modern Algebraic Geometry. The Hironaka's work of 1964 suppose an inection point in the resolution of singularities theory. It shows resolution of singularities on algebraic varieties of characteristic zero. Since then, many of the important progress in resolution of singularities has been based on this work: resolution of singularities on real and complex analytic manifolds, the eective resolution, embedded resolution of singularities, local uniformization, monomialization, resolution of singularities on complex foliations of codimension one, resolution of singularities on vector elds, rectiliniarization of subanalytic sets,... The framework of this doctoral thesis is resolution of singularities on real analytic sets. One of the vicissitudes of this resolution of singularities is that of monomialization of germs of real analytic functions, consisting on the process to transform such a germ f on a function f which can be locally expressed as

f (x 1 , . . . , x m ) = x a 1 1 • • • x am m g, with g(0) = 0,
that is, the product of a monomial times a function which does not vanish (we say that f is a locally monomial function). In this way, the set of zeroes of f is locally very simple: it consists on the coordinate hyperplanes with respect to a given coordinate system. For instance, the process of monomialization of germs of real analytic functions is well known. As we can see in [START_REF] Bierstone | Milman Semianalytic and subanalytic sets[END_REF], which serve us as a model for our work, there are two crucial arguments to show this result: rst one is the Noetherianity of the ring of analytic germs and the other one is Weierstrass Preparation Theorem.

Monomialization of wider classes of germs is proved in more general contexts where neither Noetherianity nor Weierstrass Preparation Theorem holds. For instance, [START_REF] Rolin | Quasianalytic Denjoy-Carleman Classes and ominimality[END_REF] about quasi-analytic Denjoy-Carleman classes or [START_REF] Rolin | Quasi-analytic solutions of analytic ordinary dierential equations and o-minimal structures[END_REF] about quasi-analytic classes appearing as formal solutions of a certain kind of dierential equations. They are quite important classes on the framework of o-minimal structures and model theory. In these cases, the germs considered admit usual formal series (with natural exponents) as asymptotic expansions with the property of quasi-analyticity, or uniqueness of such an expansion, which is essential for the adaptation of the proof in the analytic setting to this more general case.

In this work we remain inside the class of real generalized power series R[[X * ]]. These are series of the form

s = α∈[0,∞) m s α X α 1 1 • • • X αm m
with s α ∈ R such that the support Supp(s) = {α/s α = 0} is contained in a cartesian product S 1 × • • • × S m where S j ⊂ [0, ∞) is a well ordered subset for the usual order in R. We focus on the subclass R{X * } of real convergent generalized power series for the usual notion of convergence of innite sums of functions (see denition 1.2.3) which are, so to speak, the smallest quasi-analytic subclass of R[[X * ]]. It follows, from the denition, that we do not have Noetherianity on these classes. For instance, if m = 1, the ideal generated by {X α : α > 0} is not nitely generated.

Formal generalized power series as well as convergent, appear associated to natural problems on dierential or functional equations. By example, the function

x → ζ(-log x) = ∞ n=1
x log n : [0, e -2 ] -→ R where ζ is the Riemann zeta function,

ζ(z) = ∞ n=1 1 n z
Elements in R X * give rise to real functions by passing to the limit, which, being the exponents of the variables not necessary integers, are not dened in a whole neighborhood of the origin in R m . Those functions are then dened on the hyper-cube [0, ε] m where they are continuous, and as we will see, in the interior of [0, ε] m they are analytic. We will call them real generalized analytic functions or, for short, G-functions.

This kind of functions has been deeply studied by Van den Dries and Speissegger in [START_REF] Van Den Dries Y | The real eld with convergent generalized power series[END_REF] from the point of view of o-minimal properties: roughly speaking, sets dened by equalities and inequalities using these functions and the linear projections of these sets have the same geometrical behavior as real (global) subanalytic sets: nitude of the number of connected components, nite analytic stratications, triangulations, etc. The condition on the well ordered support replace, in some way, Noetherianity in the proof of those nitude results. An other crucial ingredient, proved also in [START_REF] Van Den Dries Y | The real eld with convergent generalized power series[END_REF], is the version of the Weierstrass Preparation Theorem with respect to regular "analytic variables" (appearing only with integer exponents).

Using as a thread the mentioned work [START_REF] Van Den Dries Y | The real eld with convergent generalized power series[END_REF] and the techniques on resolution of singularities appearing in [START_REF] Bierstone | Milman Semianalytic and subanalytic sets[END_REF] and [START_REF] Rolin | Quasianalytic Denjoy-Carleman Classes and ominimality[END_REF] we present in this work the local monomialization of real generalized analytic functions.

In order to present it in a general geometrical context we construct the category of real generalized analytic manifolds. We use the generalized power series analogously to the power series in the classical case of analytic manifolds. One of the main peculiarities is that generalized analytic manifolds will be manifolds with boundary and corners. This is a geometrical consequence of the existence of non analytic variables in the generalized case: a function like x λ for a non integer λ is only dened for positive values of the variable x.

For a better comprehension of the dierences with the classical analytic case, we will use analytic manifolds with boundary and corners. We present at the beginning of chapter two a brief recall of these objects and their properties in the language of subsheaves on R-algebras of continuous functions (called locally ringed spaces).

The Appendix is devoted to a brief exposition of the general concepts and basic properties in this theory. In a few words, we consider the category C where an object of C is a pair X = (|X|, C X ) where |X| is a topological space and C X is a sheaf of R-algebras of continuous functions over |X| such that, for each p ∈ |X|, the stalk C X,p is a local R-algebra. 

(f ) = f • ϕ ∈ ϕ * C X (V ) = C X (ϕ -1 (V )).
We will dene G the category of real generalized analytic manifolds and O the category of real analytic manifolds with boundary and corners as subcategories of C. In both cases O and G, an object will be a locally ringed space on R-algebras of continuous functions whose underlying topological space is a topological manifold with boundary of pure dimension, all of them locally homeomorphic to a local model R k ≥0 for some k. By a convenient choice of the second component of the object (that is the sheaf of continuous functions), objects in the subcategory O will be the (standard) real analytic manifolds with boundary and corners, when the chosen sheaf is such that it is locally isomorphic to the sheaf of analytic functions in the local model (those which are sums of standard real convergent power series). Objects of the subcategory G, on the contrary, are dened with the property that the sheaf is locally isomorphic to the sheaf of generalized analytic functions on the local model. They will be called generalized real analytic manifolds.

Once the geometrical context is given, we concentrate on the statement and the proof of the main result, Theorem 3.4.2.

Local Monomialisation of G-analytic functions.-Let M be a generalized analytic manifold and f ∈ G(M ) a G-analytic function. Given p ∈ |M | there exists a nite family Σ = {π j : W j → M, L j } j∈J where 1. each π j is the composition of a sequence of nitely many local blowing-ups (with admissible centers) π j : W j = W j,n j π j,n j → W j,n j -1

π j,n j -1 → W j,n j -2 • • • π j,1 → W j,0 = M 2. each L j is a compact subset of |W j | such that ∪ j∈J π j (L j ) is a compact neighborhood of p in |M |.
such that for all j ∈ J, f • π j : W j → R is locally monomial at any point of L j (i.e. it writes in certain coordinates as a monomial times a nowhere vanishing function). We can furthermore take such a family Σ such that any of the local blowing-ups involved in it is with an admissible center of codimension ≤ 2.

Let us explain the terminology involved in the statement of the main theorem. First, an admissible center of a generalized or standard manifold is a submanifold of the ambient space (a similar notion to that of a smooth analytic submanifold of an analytic manifold without boundary) which is locally given by the zeros of some local coordinates. Geometrically, it has normal crossings with the boundary of the ambient manifold.

Let us now get into the denition of blowing up morphism with closed admissible center in the category of generalized analytic manifolds. We can proceed as follows.

First, we recall what a blowing-up morphism is in the category of (standard) real analytic manifolds with boundary and corners. This is a quite well known notion in the category of analytic manifolds without boundary. Essentially, it is a proper analytic morphism that replaces the center of blowing-up by an hypersurface taking account of the set of lines in a normal bundle of the center, inducing an isomorphism outside this hypersurface, called the exceptional divisor of the blowing-up. In our point of view, since the analytic manifolds that we consider have boundary and corners, we follow the suitable approach of considering the so called oriented real blowing-up, in contrast with the (relatively more usual) projective real blowing-up. The main dierence is that, in the former case, points of the center of blowing-ups are replaced by the set of half-lines, normal to the center, dened by means of a system of coordinates; while for the projective blowing-up, points are replaced by the set of normal lines through them. At boundary points, we have no entire but half-lines, thus showing the convenience of the use of oriented blowing-up.

As a consequence, the exceptional divisor (the inverse image of the center) always becomes a new boundary component to the blown-up space even if the center of blowing-up is contained in the interior of the standard analytic manifold (where normal entire lines are dened). The choice for this kind of blowing-up also at interior points is based only on consideration of coherency.

In compensation, we do not alter the properties of orientability of the manifold, although in these pages, where we only use local blowing-ups (that is, whose center is just a closed "subvariety" on some open domain), this point does not give us an advantage.

In order to introduce the concept of blowing-up morphism in the category of generalized analytic manifolds, we notice rst a (a priori unexpected) peculiarity that does not occur in the standard case: if we proceed dening directly the blowing-up for the local model (as we may do in the standard case) by "gluing" the local charts, we could obtain dierent (non-isomorphic) blowing-up morphisms for dierent choices of local coordinates. Thus, our concept of blowing-up morphism is not only attached to an admissible center of blowing-up, but relative also to the choice of coordinates.

A convenient procedure to dene blowing-ups in the category of generalized manifolds uses the concept of standardization. In few words, a generalized manifold is said to be standardizable if it is isomorphic (the isomorphism will be called a standardization) to a generalized analytic manifold obtained from a standard analytic manifold (with boundary and corners) by enriching its structure of analytic functions by the procedure of adding to the sheaf of analytic functions in a coordinate atlas those generalized analytic functions in the same coordinate atlas, just in a similar way as we consider an algebraic variety as having an analytic structure by adding analytic functions to the algebraic ones. The theory of enrichments and standardizable manifolds is developed in section 2.4.

Once we have a standardizable generalized manifold M and a xed standardization φ to the enrichment of some standard manifold A, we can translate blowing-ups with admissible centers in A (in the standard setting) to corresponding admissible centers in the generalized manifold M via the standardization. The details of this denition are presented in section 3.3.

As we can expect, the peculiarity noticed above on the dependence on the coordinates is reected in the fact that the blowing-up so dened depends on the considered standardization φ of M .

The term local blowing-up in the statement of the main theorem stands, as usual, for blowingup with an admissible center which is locally closed, that is, closed in some open subset of the ambient space considered. The existence of such local blowing-ups is guaranteed by the Proposition 3.1.10 below where we prove that any point in a generalized manifold has a neighborhood which is standardizable (this is just given by the existence of local coordinates).

However, the global situation is not that easy. We show in 2.4.2 concrete examples of general-ized analytic manifolds which are not standardizable. Such examples are interpreted as exotic examples that could complicate the theory of generalized analytic manifolds in its full generality.

In fact, with this peculiarity in mind, no good notion of blowing-up is possible when the closed admissible center to be blown-up has not a neighborhood which admits a standardization. This is the case of the example in 2.3.5: it consists of a three dimensional generalized manifold whose boundary consists of a circle which has no standardizable open neighborhood. The geometric interpretation of this pathological example is that this center has not a good "global normal bundle" of half-lines.

The existence of such pathological examples of non-standardizable generalized manifolds may constitute an essential point of diculty on the attempt to prove a Global Resolution of Singularities of generalized functions.

This problem is, roughly speaking, as follows. Start with M a neighborhood of a given x point of the manifold. Can we improve our statement of Local Monomialization Theorem so that the family Σ consists of a single sequence of blowing-ups ( |J| = 1)

π : M n πn → M n-1 π n-1 → M n-2 • • • π 1 → M 0 = M
and such that, moreover, each π j is a global blowing-up; that is, a blowing-up with respect to a closed admissible center of the whole manifold M j-1 ?

A global resolution of singularities in the category of generalized manifolds and generalized functions is a desirable result which we have not attacked and a natural continuation of the subject that we present in this text. It remains as an open question of, in our modest opinion, great interest.

Chapter 1

Generalized power series.

In this chapter we introduce the algebra of generalized power series both in the formal and convergent setting. Most of the basic properties on these series are presented and proved in the work of Van den Dries and Speissegger [START_REF] Van Den Dries Y | The real eld with convergent generalized power series[END_REF]. We prove here a new property, proposition 1.1.20, which will be fundamental for our purposes.

1.1 Formal generalized power series.

1.1.1 Basic denitions.

Let [0, ∞) denote the set of non-negative real numbers and (0, ∞) the set of positive real numbers. For reasons to be clear below, once we have xed a natural number m, elements in [0, ∞) m will be called exponents and they will be usually denoted by α, β, etc. On the other hand, elements of (0, ∞) m will be called weight vectors and they will be usually denoted by ρ, τ , etc.

For exponents α = (α 1 , α 2 , . . . , α m ) and β = (β 1 , β 2 , . . . , β m ) and a weight vector ρ = (ρ 1 , ρ 2 , . . . , ρ m ) we put as usual α + β = (α 1 + β 1 , α 2 + β 2 . . . , α m + β m ) and |α| ρ = ρ 1 α 1 + ρ 2 α 2 + . . . + ρ m α m . When ρ = (1, ..., 1), sometimes we use the standard notation |α| = α 1 + • • • + α m for |α| ρ .

We partially order [0, ∞) m as follows. For exponents α and β, α = (α 1 , . . . , α m ) ≤ β = (β 1 , . . . , β m ) ⇔ α i ≤ β i ∀i ∈ {1, . . . , m}

We call the order given the division order. Denition 1.1.1. A subset of [0, ∞) m will be called good if it is contained in a cartesian product of well ordered subsets of [0, ∞).

Proposition 1.1.2. Let m ∈ N and let S, T ⊆ [0, 1) m be good subsets of [0, ∞) m and ρ be a weight vector. Then i) S is countable.

ii) The set {(ρ 1 α 1 , ρ 2 α 2 , . . . , ρ m α m ) : α ∈ S} is good.

iii) The set S min of minimal elements of S for the division order is nite, and each element β ∈ S is greater or equal to some element of S min .

iv) The set S ∪ T is a good subset of [0, ∞) m .

v) The set (S) := {α 1 + . . . + α k : k ∈ N and α 1 , . . . , α k ∈ S} is a good subset of [0, ∞) m . In particular, by iv), S + T := {s + t : s ∈ S, t ∈ T } is a good subset of [0, ∞) m too, since S + T ⊆ (S ∪ T ).

vi) The set {|α| ρ : α ∈ S} is a well ordered subset of [0, ∞) and for any c ∈ [0, ∞) the set S ρ (c) := {α ∈ S : |α| ρ = c} is nite.

Proof. For i), it is enough to show the result for m = 1, but this is a well known result : given

x ∈ S there exists its successor, x + dened by

x + := min{y ∈ S : y > x} and we can nd a rational number q x ∈ Q between x and x + .

For ii), as S is good,

S ⊆ S 1 ×S 2 ו••×S m with S i ⊆ [0, ∞) well ordered for all i ∈ {1, 2, . . . , m}. Then, {(ρ 1 α 1 , ρ 2 α 2 , . . . , ρ m α m ) : α ∈ S} ⊆ ρ 1 S 1 × ρ 2 S 2 × • • • × ρ m S m .
iii), iv) and v) are proved in lemma 4.2 and 4.3 in [START_REF] Van Den Dries Y | The real eld with convergent generalized power series[END_REF]. vi) is proved in the same paper, for the special case of ρ = (1, ..., 1). The proof for general ρ ∈ (0, ∞) m goes in the same lines: If {|α| ρ : α ∈ S} is not well ordered we can take an innite sequence {α n } n∈N in S such that the sequence {|α n | ρ } n∈N is strictly decreasing. This implies that at least one of the projections {α n j } n∈N must contain a strictly decreasing subsequence against the fact that S is good.

Assume now that we can take an innite sequence {α n } n∈N such that |α n | ρ = c. As it is innite there must be one innite projection. If there are no strictly decreasing subsequences in this projection, there must be an increasing subsequence. As the value of |α n | ρ is constant, there must exists a strictly decreasing sequence in other projection, which is impossible because S is good.

Let X = (X 1 , X 2 , . . . , X m ) be variables and let X * denote the multiplicative monoid whose elements are the monomials

X α := X α 1 1 X α 2 2 • • • X αm m with α = (α 1 , α 2 , . . . , α m ) ∈ [0, ∞) m multiplied according to X α • X β = X α+β . The identity element of X * is X 0 = 1
, where 0 = (0, . . . , 0). Denition 1.1.3. Let A be a commutative ring with 1 = 0. A formal generalized power series in the variables X with coecients in A is a map s : [0, ∞) m -→ A, that we write as the formal series

s = s(X) := α∈[0,∞) m s α X α ,
where s α = s(α), such that the set Supp (s

) := {α ∈ [0, ∞) m : s α = 0}, called the support of s, is a good subset of [0, ∞) m . Let A[[X * ]
] denote the set of generalized power series in the variables X with coecients in A.

If the support of s is nite we say that s is a generalized polynomial on X * , and we write A[X * ] for the set of generalized polynomials on X * with coecients in A. We consider the power series ring A[[X]] also as subset of A[[X * ]], namely as the subset of all series s as above for which Supp(s) ⊆ N m . (Note that N m is a good subset of [0, 1) m .)

The operations of sum and product on A[[X * ]] are dened as usually : Given a ∈ A and s, t Notice also that for every α ∈ [0, ∞) m we have the inclusion

∈ A[[X * ]] with s = α∈[0,∞) m s α X α and t = α∈[0,∞) m t α X α as := α∈[0,∞) m (as α )X α s + t := α∈[0,∞) m (s α + t α )X α st := α∈[0,∞) m ( β+γ=α s β t γ )X α It is obvious that as ∈ A[[X * ]].
{β + γ ∈ Supp(s) + Supp(t) : β + γ = α} ⊆ {δ ∈ Supp(s) + Supp(t) : |δ| = |α|}
So, by proposition 1.1.2, for each α ∈ [0, ∞) m there are only a nite number of β ∈Supp(s) and γ ∈Supp(t) such that β + γ = α, so β+γ=α s β t γ is a nite sum in the ring A and then a well dened element of A. Hence the series st as above is well dened as a map from [0, ∞) m to A. Moreover, since Supp(st) ⊆ Supp(s)+Supp(t), by proposition 1.1.2 again, st is an element in A[[X * ]].

The set A[[X * ]] with these operations is an A-algebra. Notice also that these operations are compatible with the standard operations in the ring A[X]: considering a variable X i as the series with support equal to {(0, . . . , 0, 1 (i) , 0, . . . , 0)}, taking a natural power X n i is just the series with support {(0, ..., 0, n (i) , ..., 0)}. Moreover, the generalized polynomials A[X * ] and the formal power series A[[X]] with their standard operations, are subalgebras

of A[[X * ]]. The constant term of a series s = s α X α ∈ A[[X * ]] is the element s 0 = s(0) ∈ A. Notice that the map s = s α X α ∈ A[[X * ]] -→ s 0 ∈ A sending a series to its constant term is an A-algebra homomorphism. Fix a weight vector ρ = (ρ 1 , . . . , ρ m ) ∈ (0, ∞) m . Let s = α∈[0,∞) m s α X α ∈ A[[X * ]]. The ρ-order of s is dened as: ord ρ (s) =    min{|α| ρ : s α = 0} if s = 0. ∞ if s = 0.
In the special case of weight vector ρ = (1, . . . , 1), the ρ-order of a series s will be called simply order of s and denoted by ord(s).

Given

s 1 , s 2 ∈ A[[X * ]] we have that i) ord ρ (s 1 + s 2 )≥ min{ord ρ (s 1 ),ord ρ (s 2 )}
ii) ord ρ (s 1 s 2 )≥ord ρ (s 1 )+ord ρ (s 2 ), with equality if A is an integral domain.

As a consequence, we obtain that A[[X * ]] is an integral domain if A is an integral domain.

Denition 1.1.4. Given a weight vector ρ and a series s

= s α X α ∈ A[[X * ]] we dene the initial part of s (relative to ρ) as In ρ (s) = |α|ρ=ordρ(s) s α X α
The series s ∈ A[[X * ]] will be called ρ-homogeneous if it is equals to its initial part relative to ρ.

A series is quasi-homogeneous if it is ρ-homogeneous for a weight vector ρ.

Finally, for any series s ∈ A[[X * ]] and any weight vector ρ we write:

s = In ρ (s) + res ρ (s)
where res(s) ρ = |α|ρ>ordρ(s) s α X α , is called the ρ-residual part of s. It is a series whose ρ-order is strictly greater than that of the series s. i) For each α ∈ [0, ∞) m there are only nitely many j ∈ J such that α ∈Supp(s j ), and ii) j∈J Supp(s j ) is a good subset of [0, ∞) m .

In this case, if we put s j = α∈[0,∞) m s jα X α for every j ∈ J, we dene the sum of {s j } j∈J denoted by j∈J s j to be the map from [0, ∞) m to A which we write in series notation as j∈J

s j := α∈[0,∞) m ( j∈J s jα )X α .
Notice that it is well dened by condition i). We claim that j∈J

s j ∈ A[[X * ]] : The support of j∈J s j is the set Supp( j∈J s j ) = {α ∈ [0, ∞) m : j∈J s jα = 0}.
If α ∈Supp( j∈J s j ), j∈J s jα = 0 so there exists at least some j ∈ J such that s jα = 0. Thus Supp( j∈J s j ) ⊆ j∈J Supp(s j ). As j∈J Supp(s j ) is a good subset by condition ii), then so is Supp( j∈J s j ).

Notice that if s = α s α X α is a generalized power series then the family {s α X α } α∈Supp(s) is summable and that its sum is nothing but s.

The following lemma (cf. 4.2 of [START_REF] Van Den Dries Y | The real eld with convergent generalized power series[END_REF]) characterize the set of units in A[[X * ]]. We reproduce here its proof in order to start getting familiar with the kind of arguments that we use repeatedly in the sequel.

Lemma 1.1.

7. Let s = α∈[0,∞) m s α X α ∈ A[[X * ]]. Then s is a unit in A[[X * ]] if and only if its constant term s 0 is a unit in A.
Proof. . If ss = 1 with s = β∈[0,∞) m s β X β , then s 0 s 0 = 1, so s 0 is a unit in A. 

s n ∈ A[[X * ]]. As 1 = (1 -s ) n∈N s n , we have that 1 = bs( n∈N s n ) so s is a unit in A[[X * ]]. Remark 1.1.8. In the proof of 1.1.7 it is proved implicitly that if s ∈ A[[X * ]] with ord(s) > 0 then {s n } n∈N is a summable family. Denition 1.1.9. Given s ∈ A[[X * ]],
we dene the minimal support of s as the set Supp min (s) := {α ∈ Supp(s) : α is minimal for the division order} Notice that, dierently of the classical formal setting, the algebra A[[X * ]] is not Noetherian: the ideal generated by {X 1/N 1 : N ∈ N} is not nitely generated. If it was the case, take the generator with smallest order in the variable X 1 , say s with ord X 1 (s) > 0. We can nd N ∈ N such that 1/N <ord X 1 (s), so s does not divide X 1/N . Nevertheless, we have the following niteness property, which is a consequence of property iii)

of proposition 1.1.2. Proposition 1.1.10. Given s ∈ A[[X * ]
] its minimal support is nite and the series s can be written as

s = α∈Supp min (s) X α u α (1.1)
where u α ∈ A[[X * ]] satises u α (0) = 0 for any α ∈ Supp min (s).

The expression (1.1) is called a monomial presentation for s. It is unique up to a change on the elements u α , for instance, taking s(X, Y ) = X + Y + XY we have two possible choices, 

X(1 + Y ) + Y and X + Y (1 + X). Denition 1.1.11. A series s ∈ A[[X * ]] will be called of monomial type if s = X α u where u ∈ A[[X * ]] with u(0) = 0. A
s = s 1 s 2 ∈ R[[X * ]] is the product of two series s 1 , s 2 ∈ R[[X * ]
] and s is of monomial type, then s 1 and s 2 are both of monomial type. Proof. Put s 1 s 2 = X α u where u ∈ A[[X * ]] with u(0) = 0. Write a monomial presentation for s 1 and s 2 :

s 1 = α 1 ∈Supp min (s 1 ) X α 1 u α 1 ; s 2 = α 2 ∈Supp min (s 2 ) X α 2 v α 2 Since s 1 s 2 = X α u there exists β 1 ∈Supp(s 1 ), β 2 ∈Supp(s 2 ) such that α = β 1 + β 2 ≤ α 1 + α 2 for any α 1 ∈Supp(s 1
) and α 2 ∈Supp(s 2 ). Suppose that there exists α 1 ∈Supp(s 1 ) such that β 1 ≤ α 1 . This implies that there exists j ∈ {1, . . . , m} such that

β 1 j > α 1 j . Then, α j = β 1 j + β 2 j > α 1 j + β 2 j , an so α ≤ α 1 + β 2 , contradiction. Thus β 1 ≤ α 1 for any α 1 ∈Supp(s 1 ) so s 1 is of monomial type. Similar for s 2 . Mixed series. Let (X, Y ) = (X 1 , . . . , X m , Y 1 , . . . , Y n ) be a tuple of (m + n) distinct variables. Let s = (α,β)∈[0,∞) m+n s αβ X α Y β ∈ A[[(X, Y ) * ]]
From now on we put Supp X (s

) := {α ∈ [0, ∞) m : exists β ∈ [0, ∞) n with (α, β) ∈ Supp(s)} = pr X (Supp(s)) Supp Y (s) := {β ∈ [0, ∞) n : exists α ∈ [0, ∞) m with (α, β) ∈ Supp(s)} = pr Y (Supp(s)).
where pr X (respectively pr Y ) denotes the projection onto the rst m coordinates (respectively last n coordinates) of R m+n .

We consider for β ∈Supp Y (s), the following series in the X-variables s

•,β (X) := α∈Supp Y (s) s αβ X α
Recall that Supp(s •,β (X)) ⊆Supp X (s) for each β which is good because is the projection of a good subset, so s

•,β (X) ∈ A[[X * ]].
If we dene for β ∈Supp Y (s), s β := s 

s β = β∈Supp Y (s) ( α∈Supp X (s) s αβ X α )Y β as an element in A[[(X, Y ) * ]] or in (A[[X * ]])[[Y * ]].
Notice that in the former case, this gives nothing but s. This procedure permits to identify

A[[(X, Y ) * ]] with a subring of (A[[X * ]])[[Y * ]] via the injective ring homomorphism A[[(X, Y ) * ]] → (A[[X * ]])[[Y * ]] s αβ X α Y β → β ( α s αβ X α )Y β
Note that this homomorphism is not surjective in general: with m, n > 0, the series ∞ k=1 X

1/k 1 Y k 1 is in (A[[X * ]])[[Y * ]], but not in (the image of ) A[[(X, Y ) * ]]. Notice, however, that we have a natural inclusion, (A[[X * ]])[Y * ] ⊆ A[[(X, Y ) * ]].
We shall also work with the subring A

[[X * , Y ]] of A[[(X, Y ) * ]], consisting of those s ∈ A[[(X, Y ) * ]]
in which the Y -variables have only natural numbers as exponents, that is whose support is included in R m ≥0 × N n , i.e., such that Supp Y (s) ⊆ N n . Similarly to the above, we identify

A[[X * , Y ]] with the corresponding subring of A[[X * ]][[Y ]]; notice again that the example above shows that A[[X * , Y ]] (A[[X * ]])[[Y ]]. On the other hand, we have the equality A[[X * , Y ]] = (A[[Y ]])[[X * ]].
As a matter of terminology, in the ring A[[X * , Y ]], variables X will be called generalized (or non-analytic) and variables Y will be called analytic. 1.1.2 Newton polyhedron of generalized series.

Partial derivatives. The operation s → ∂s ∂X

i ∈ A[[X]] does not extend naturally to A[[X * ]], but the modied operation s → X i ∂s ∂X i on A[[X]] does have a good extension ∂ i to A[[X * ]]: given s = s α X α ∈ A[[X * ]], we dene ∂ i s := α i s α X α ∈ A[[X * ]]
In this paragraph, let us use the following quite well known terminology about polyhedron that can be found in the modern book [START_REF] Peter | Convex and discrete geometry[END_REF], for instance.

A subset ∆ of a real ane space E is called a (nite) convex polyhedron of E if it is a nite intersection of closed half-spaces in E (a closed half-space is the closure of one of the two connected components of E \ H where H is an ane hyperplane in E). The dimension of ∆ is the minimum dimension of an ane subspace of E containing ∆. It has dimension equal to that of E if and only if ∆ has a non-empty interior in E.

An ane hyperplane H in R n is called a supporting hyperplane for ∆ if ∆ is contained in one of the two closed half-spaces determined by H. A face of ∆ is the intersection of ∆ with a supporting hyperplane. It is easy to see that there are only nitely many faces of a convex polyhedron ∆ and that a face is a convex polyhedron in the supporting hyperplane. A face of a face of ∆ is called a subface of ∆. A face which is not equal to the whole ∆ is called a proper face. A face of dimension 0 is called a vertex and a face of dimension one is called an edge .

It is a well known result that a bounded convex polyhedron is nothing more than the convex hull of its vertices and, reciprocally, the convex hull of nitely many points in E is a bounded convex polyhedron in E.

Finally, a (nite) polyhedral complex in E is a nite union of convex polyhedra in E such that the intersection of two of them is either empty or a common face of both. For example, if ∆ is a convex polyhedron in E with non-empty interior, then its frontier is a polyhedral complex, equal to the union of all proper faces of ∆.

Now, given s ∈ A[[X * ]],
we can dene its Newton polyhedron in the usual way. Consider N (s) :=Supp(s) + R m ≥0 and dene the Newton Polyhedron ∆(s) as ∆(s) = convex hull of (N (s))

Using the property of nite monomial presentation of s (cf. Proposition 1.1), we have that Supp min (s) is nite and that N (s) = Supp min (s) + R m ≥0 .

In this situation, we can assure that the Newton polyhedron ∆(s) is a nite convex polyhedron as we have dened above, which justies the given name.

(1, 3)

( 9 2 , 1) (4, 8 3 ) 
Figure 1.1: Newton polygon and minimal support.

Notice that every vertex of the polyhedron is an element of the minimal support of s but not reciprocally (see Fig. 1.1). By property iii) of 1.1.2 we conclude that the Newton polyhedron of a generalized power series has nitely many vertices.

Given a weight vector ρ ∈ (0, ∞) m , the initial part In ρ (s) of a given series with respect to ρ can be determined geometrically using the Newton polyhedron of s in the usual way. For any non negative constant c ∈ R ≥0 , we dene the hyperplane of R m

H ρ,c := {(x 1 , x 2 , . . . , x m ) ∈ R m : ρ 1 x 1 + ρ 2 x 2 + . . . + ρ m x m = c} Lemma 1.1.13. Fix ρ ∈ (0, ∞) m a weight vector. Given a series s ∈ A[[X * ]],
i) The ρ-order of s is given by ord ρ (s

) = sup{c ∈ R ≥0 : H ρ,c ∩ ∆(s) = ∅} ii) We have that H ρ,ordρ(s) ∩ Fr(∆(s)) = Convex Hull(Supp(In ρ (s))) Proof. First notice that if c ∈ R ≥0 is such that H ρ,c ∩∆(s) = ∅ then for all c > c, H ρ,c ∩∆(s) = ∅
by denition of ∆(s). On the other hand, H ρ,ordρ(s) ∩ N (s) = ∅, by denition of ord ρ (s). Thus ord ρ (s) is an upper bound of {c ∈ R ≥0 :

H ρ,c ∩ N (s) = ∅}. Let c = sup{c ∈ R ≥0 : H ρ,c ∩ N (s) = ∅}.
Notice that, since ∆(s) is connected, for any c for which H ρ,c ∩∆(s) = ∅, the hyperplane H ρ,c is a supporting hyperplane of the polyhedron ∆(s). By continuity, we must have also that H ρ,c is a supporting hyperplane and, moreover,

H ρ,c ∩∆(s) = ∅. But then H ρ,c ∩∆(s) = H ρ,c ∩Fr(∆(s))
which is a face of the polyhedron. This face contains at least one vertex of ∆(s), that is an element α ∈ ∆(s). Since α ∈ H ρ,c , we have |α| ρ = c and thus, by denition of the ρ-order, we obtain ord ρ (s) ≤ c , giving the required equality.

For the second part of the lemma, notice that we have proved that H ρ,ordρ(s) is a supporting hyperplane of ∆ and thus it cuts the polyhedron in a face F of it. This face contains no line parallel to a coordinate axis, so F is a bounded face and hence, F is the convex hull of its vertices. Being this set of vertices included in the hyperplane H ρ,ordρ(s) , it is contained in Supp(In ρ (s)) and thus H ρ,ordρ(s) ∩ ∆(s) ⊂ Convex Hull(Supp(In ρ (s))). The other inclusion is obvious since Supp(In ρ (s)) ⊂ F and F is convex. 

t(W ) ∈ A[[W ]] n , the map s → s(t(W )) from A[[Y ]] to A[[W ]] is an A-algebra homomorphism.
We can proceed similarly in the situation of mixed power series, already studied in [START_REF] Van Den Dries Y | The real eld with convergent generalized power series[END_REF], page 4393, when we just substitute analytic variables by formal series. More precisely, let s

∈ A[[X * , Y ]],
where X is m-dimensional and Y is n-dimensional, and let t = (t

1 , t 2 , . . . , t n ) ∈ A[[W ]] n with t 1 (0) = . . . = t n (0) = 0. Since A[[X * , Y ]] ⊆ A[[X * ]][[Y ]]
, we may substitute t for Y in s and obtain an element s(X, t(W

)) ∈ A[[X * ]][[W ]]. One easily checks that in fact s(X, t(W )) ∈ A[[X * , W ]] (see part i) of Proposition 1.1.14 below). Again, once t(W ) is xed, the map s ∈ A[[X * , Y ]] → s(X, t(W )) ∈ A[[X * , W ]] is an algebra homomorphism.
However, the general problem of composition of generalized power series is much more delicate.

Take for instance just the simple example s = Y 

X = (X 1 , X 2 , . . . , X m ), Y = (Y 1 , Y 2 , . . . , Y n ), Z = (Z 1 , Z 2 , . . . , Z r ) and W = (W 1 , W 2 , . . . , W l ) denote multi-variables. i) Let s = (α,I)∈[0,∞) m ×N n s (α,I) X α Y I ∈ A[[X * , Y ]] and let t = (t 1 , t 2 , . . . , t n ) ∈ A[[W ]] n with t 1 (0) = . . . = t n (0) = 0. The family {s (α,I) X α t i 1 1 t i 2 2 • • • t in n } α∈Supp X (s) I=(i 1 ,i 2 ,...,in)∈N n
is summable and its sum, denoted by s(X, t 1 , t 2 , . . . , t n ), or for short, s(X, t(W

)), is in A[[X * , W ]]. Moreover, the map s → s(X, t(W )) is an A-algebra homomorphism from A[[X * , Y ]] to A[[X * , W ]]. ii) Let s = (α,I)∈[0,∞) m ×N n s (α,I) X α Y I ∈ A[[X * , Y ]] and let t = (t 1 , t 2 , . . . , t n ) ∈ A[[Z * ]] n with t 1 (0) = . . . = t n (0) = 0. The family {s (α,I) X α t i 1 1 t i 2 2 • • • t in n } α∈Supp X (s) I=(i 1 ,i 2 ,...,in)∈N n
is summable and its sum, denoted by s(X, t 1 , t 2 , . . . , t n ), or for short, s(X, t

(Z)), is in A[[X * , Z * ]]. Moreover, the map s → s(X, t(Z)) is an A-algebra homomorphism from A[[X * , Y ]] to A[[X * , Z * ]]. iii) If u = α∈[0,∞) m u α X α ∈ R[[X * ]
] is such that u 0 > 0, the family{(u -u 0 ) k } k∈N is summable and then we can dene for every a > 0

u a := k∈N a k u a-k 0 (u -u 0 ) k ∈ R[[X * ]] iv) Let s = s α X α ∈ R[[X * ]] and t = (t 1 , t 2 , . . . , t m ) ∈ R[[Z * ]] m . If t i = Z β i u i , with β i = (0, ..., 0), u i ∈ R[[Z * ]] and u i (0) > 0 for all i ∈ {1, 2, . . . , m} (that is, t i is of monomial type), the family {s α t α 1 1 t α 2 2 • • • t αm m } α∈Supp(s) is summable and its sum, denoted by s(t 1 , t 2 , . . . , t n ) is in R[[Z * ]]. Moreover, the map s → s(t 1 , . . . , t n ) is an R-algebra homomorphism from R[[X * ]] to R[[Z * ]].
Proof. For i), let us call for any α ∈ Supp X (s) and I = (i

1 , i 2 , . . . , i n ) ∈ N n q (α,I) := s (α,I) X α t i 1 1 t i 2 2 • • • t in n Notice that if (γ, J) ∈ [0, ∞) m × N l , (γ, J) ∈Supp(q (α,I) ) if γ = α. Since t 1 (0) = . . . = t n (0) = 0,
for any 1 ≤ i ≤ n there exists J i ∈ N l with J i = 0 such that W J i divides t i . Then, for

I = (i 1 , i 2 , . . . , i n ) ∈ N n , W i 1 J 1 +i 2 J 2 +•••+in Jn divides t i 1 1 t i 2 2 • • • t in n .
As there are only nitely many

I = (i 1 , i 2 , . . . , i n ) ∈ N n such that i 1 J 1 + i 2 J 2 + • • • + i n J n ≤ J we have condition i) of 1.1.6
summable family. On the other hand, α∈Supp X (s) I=(i 1 ,i 2 ,...,in)∈N n Supp(q (α,I) ) ⊆ Supp X (s) × N l which is a good set.

We can reason analogously for ii), but in this case, using the analogous notation, α∈Supp X (s)

I=(i 1 ,i 2 ,...,in)∈N n Supp(q (α,I) ) ⊆ Supp X (s) × (∪ n i=1 Supp(t i ))
which is a good set by properties 1.1.2.

Part iii) is an immediate consequence of remark 1.1.8.

For part iv), we write

t i = Z β i (u i (0) + ε i )
where ε i (0) = 0 and β i = (β i 1 , β i 2 , . . . , β i r ) = 0 for i = 1, 2, . . . , m. We dene for any α = (α 1 , α 2 , . . . , α m ) ∈ Supp(s),

q α := s α Z α 1 β 1 +α 2 β 2 +•••+αmβ m (u 1 (0) + ε 1 ) α 1 (u 2 (0) + ε 2 ) α 2 • • • (u m (0) + ε m ) αm (1.2) By part iii), q α ∈ R[[Z * ]
] for any α ∈ Supp(s). We have to prove that the family {q α } α∈Supp(s) is summable. For i ∈ {1, 2, . . . , m},

(u i (0) + ε i ) α i = k∈N α i k u i (0) α i -k ε k i Let γ = (γ 1 , γ 2 , . . . , γ r ) ∈ [0, ∞) r . If γ ∈Supp(q α ), γ = α 1 β 1 + α 2 β 2 + • • • + α m β m + δ(α) (1.3)
where δ(α) = (δ(α) 1 , δ(α) 2 , . . . , δ(α) r ) ∈ (∪ m i=1 Supp(ε i )). Suppose that there are innitely many α = (α 1 , α 2 , . . . , α m ) ∈ Supp(s) such that γ ∈Supp(q α ). Take a sequence {α n } n∈N of dierent elements in Supp(s) such that γ ∈Supp(q α n ) for n ∈ N. As Supp(s) is good, there exists j ∈ {1, 2, . . . , m} such that {α n j } n∈N is strictly increasing. Take k ∈ {1, 2, . . . , m} such that

β j k = 0. Since γ k = α n 1 β 1 k + α n 2 β 2 k + • • • + α n m β m k + δ(α n ) k
and all the terms involved are non-negative, either {δ(α n ) k } n∈N or {α n i } n∈N for at least one i = j should be strictly decreasing which is impossible because (∪ m i=1 Supp(ε i )) and Supp(s) are good.

On the other hand, by (1.3),

α∈Supp(s) Supp(q α ) ⊆ (∪ m i=1 Supp X i (s)β i ∪ Suppε i ))
where Supp X i (s) is the projection on the i th -component of Supp(s), and by proposition 1.1.2

(∪ m i=1 Supp X i (s)β i ∪ Suppε i )) is good. Remark 1.1.15. Let s = s α X α ∈ R[[X * ]], M 1 , M 2 , . . . , M m ∈ R[[Z * ]] be monomials (M i = Z β i with β i = 0), W = (W 1 , W 2 , . . . , W m ) be variables and λ 1 , λ 2 , . . . , λ m ∈ R >0 . If we dene for any α = (α 1 , α 2 , . . . , α m ) ∈ Supp(s) t α := s α M α 1 1 (λ 1 + W 1 ) α 1 M α 2 2 (λ 2 + W 2 ) α 2 • • • M αm m (λ m + W m ) αm by part iii) of proposition 1.1.14 above, t α ∈ R[[Z * , W ]].
In fact, the sum of the family

{t α := s α M α 1 1 (λ 1 + W 1 ) α 1 M α 2 2 (λ 2 + W 2 ) α 2 • • • M αm m (λ m + W m ) αm } α=(α 1 ,α 2 ,...,αm)∈Supp(s) (summable in R[[Z * , W * ]] by part iv)), belongs to R[[Z * , W ]]
. This is a consequence of the proof of part iv). We denote this sum by s(M

α 1 1 (λ 1 +W 1 ) α 1 , M α 2 2 (λ 2 +W 2 ) α 2 , . . . , M αm m (λ m +W m ) αm ).
Examples 1.1.16. i) Let G m+n denote the group of permutations of m + n elements, and G m,n the subgroup of G m+n permuting on the one hand the rst m elements between them and the n last elements on the other. Then if σ ∈ G m,n , it induces an A-algebra

automorphism of A[[X * , Y ]] by putting σ( s α,β X α Y β ) = s α,β σ(X α Y β ) where σ(X α Y β ) := X α 1 σ(1) • • • X αm σ(m) Y β 1 σ ( m+1)-m • • • Y βn σ(m+n)-m .
We usually write σs for σ(s), where s ∈ A[[X * , Y ]]. Also corresponding to σ we dene a map σ : R m+n → R m+n by σ(x, y) = (x σ(1) , . . . , x σ(m) , y σ(m+1)-m . . . , y σ(m+n)-m ). (For a polyradius r = (r 1 , . . . , r m ) the case n = 0 applies, so that σ(r) = (r σ(1) , . . . , r σ(m) ).)

ii) Assume m ≥ 2. Given distinct i, j ∈ {1, 2, . . . , m} and γ > 0, we dene an injective monoid homomorphism ς γ ij :

X * → X * such that ς γ ij (X k ) = X k for k = i and ς γ ij (X i ) = X i X γ j , as follows: ς γ ij (X α ) := X α 1 1 X α 2 2 • • • X α j-1 j-1 X γα i +α j j X α j+1 j+1 • • • X αm m = X α X γα i j It extends to an injective A-algebra endomorphism of A[[X * ]] by putting ς γ ij ( s α X α ) := s α ς γ ij (X α ).
To avoid too many nested parentheses, we will write ς γ ij s instead of ς γ ij (s). 

s = (s N ) N = (In ρ (s N ) + res ρ (s N )) N = (In ρ (s N )) N + N k=1 N k In ρ (s N ) N -k res ρ (s N ) k Since ord ρ (In ρ (s N )) <ord ρ (res ρ (s N )), ord ρ ((In ρ (s N )) N ) <ord ρ (In ρ (s N ) N -k res ρ (s N ) k ) for all k ∈ {1,
N th -root s N ∈ R[[X * , Y ]] of s, that is (s N ) N = s. Then s = X α u, where α ∈ [0, ∞) m and u ∈ R[[X * , Y ]] is a unit such that u(0, 0) > 0.
Proof. If m = 0, the result is well know :

If s = s(Y ) ∈ R[[Y ]
] is a usual formal power series with all N -roots then s is a unit. Otherwise, any N th -root of s is not a unit. Thus ord(s

N ) ≥ 1, because s N ∈ R[[Y ]],
and then the order of s would be greater or equal to N for all N ∈ N and thus s = 0. In addition, s(0) > 0 because s 2 (0) 2 = s(0).

If m > 0. Consider s as an element of (R[[Y ]])[[X * ]]. Suppose that the Newton polyhedron of s (as an element of (R[[Y ]])[[X * ]]) has only one vertex, that is, s = X α u(X, Y ) with u(0, Y ) = 0.
If ord(u(0, Y )) = 0, u(0, 0) = 0 and in particular u(0, 0) > 0. If not, (s N ) N = s = X α u; if X α/N does not divide s N , there exists i ∈ {1, 2, . . . , m} such that X α i /N i does not divides s, that is, such that α i /N < min(Supp X i (s N )) which implies that α i < min(Supp X i (s N N = s)), contradiction. Thus, X α/N divides s N , so s N = X α/N t N and X α (t N ) N = (s N ) N = s = X α u. Then u has all the N th -roots which implies that u(0, Y ) is 0 or it is a unit by the case m = 0, n ∈ N. Now we prove that the Newton polyhedron of s (as an element of (R[[Y ]])[[X * ]]) can not have more that one vertex. Suppose that it has at least two dierent vertices. Then, the Newton polyhedron has at least one edge [α, β] with α = β which is not parallel to a coordinate axis. Then there exists a weight vector ρ = (ρ 1 , . . . , ρ m ) ∈ (0, ∞) m and a supporting hyperplane of ∆(s) of the form H ρ,c = {ρ 1 x 1 + ρ 2 x 2 + . . . + ρ m x m = c} with c ≥ 0 that cuts the Newton polyhedron exactly in the edge [α, β].

Write s as the sum s =p ρ (s)+r ρ (s) where p ρ (s) is the ρ-homogeneous part of s and r ρ (s) is the residual part, whose ρ-order is strictly bigger than µ =ord ρ (s). Recall that p ρ is a polynomial in R[[Y ]][X * ] (see properties 1.1.2). Moreover, our choice of ρ implies that Supp(p ρ ) is contained in the segment [α, β] and that its extremities α and β both belong to Supp(p ρ )

For any N ∈ N, let s N be a N th -root of s. As we have seen in Corollary 1.1.19, the ρ-initial part p ρ,N =In ρ (s N ) of s N is an N th -root of p ρ . Notice also that p ρ,N is ρ-homogeneous of degree ord ρ (s)/N . Thus, our proposition will be nished once we prove the following claim, which is a particular case of the proposition: Claim: Suppose that Supp X (s) is contained in the segment [α, β] where α = β, non parallel to any of the coordinate axis, and that α, β ∈Supp X (s). Then s can not have an N th -root in R[[X * , Y ]] for any natural number N .

Proof of the Claim.-Assume that s has an N th -root s N ∈ R[[X * , Y ]] for any N . Consider m -1 independent weight vectors ρ 1 , . . . , ρ m-1 such that the line containing the segment [α, β] is the intersection of hyperplanes of the form H ρ j ,c j with c j ≥ 0, for j = 1, . . . , m -1. Then s is ρ j -homogeneous for any j and, by Lemma 1.1.18, the N th -root s N is ρ j -homegeneous too; that is, its support is contained in the hyperplane of the form H ρ j ,d j (in fact d j = c j /N ). Therefore Supp X (s N ) is contained in a line which is parallel to [α, β] (in fact in the line containing the segment [α/N, β/N ]). We can write

s = λ∈[0,1] s λ X (1-λ)α+λβ
Notice that this sum is nite since s N is a quasi-homogeneous polynomial.

Let us call Supp * (s) := {λ ∈ [0, 1] : s λ = 0}. Recall that our hypothesis that α, β ∈Supp X (s) implies that 0, 1 ∈Supp * (s). As (s N ) N = s, we have that for λ ∈ R,

s λ = λ 1 +λ 2 +•••+λ N =N λ,λ j ∈Supp * (s N ) s N,λ 1 s N,λ 2 • • • s N,λ N (1.4)
Let λ 0 := min(Supp * (s N )) and λ 1 := max(Supp * (s N )). Let us show that λ 0 = 0 and that λ 1 = 1. In fact, taking λ = λ 0 in the expression (1.4), we see that there is just a summand in that expression which is (s N,λ 0 ) N = 0. We can also see that if λ < λ 0 then s λ = 0 in the expression (1.4) by the denition of λ 0 . Since s λ = 0 for λ < 0 and s 0 = 0, this shows that λ 0 = 0. Analogously, we show that λ 1 = 1.

Let N big enough such that if λ ∈ Supp * (s), then λ = 0 or λ > 1/N (this is possible because Supp * (s) is nite). For λ = 1/N , we have in the expression (1.4) the summands corresponding to the tuples of the form (λ 1 , λ 2 , . . . , λ N ) = (0, . . . , 1 (j th ) , . . . , 0) for j = 1, 2, . . . , N . Each of them gives rise to the same coecient (s N,1 )(s N,0 ) N -1 = 0 because s N,1 = 0 = s N,0 . On the other hand, since λ = 1/N ∈ Supp * (s) there must exist other N -tuples

(λ 1 , λ 2 , . . . , λ N ) ∈ [[0, 1] ∩ Supp * (s)] N
which are dierent of the N -tuples (0, . . . , 1 (j th ) , . . . , 0) and such that λ

1 + λ 2 + • • • + λ N = 1.
Since all λ j ≥ 0, there exists λ 1 ∈Supp * (s N ) with 0 < λ 1 < 1. Now, for λ = λ 1 /N we have in (1.4) the summands corresponding to the tuples (λ 1 , λ 2 , . . . , λ N ) = (0, . . . , j th λ 1 , . . . , 0) for j = 1, 2, . . . , N . They give rise to the same summand (s N,λ 1 )(s N,0 ) N -1 = 0

As λ 1 /N ∈Supp * (s), there must be N -tuples

(λ 1 , λ 2 , . . . , λ N ) ∈ [Supp * (s)] N dierent from (0, . . . , j th λ 1 , . . . , 0) with λ 1 + λ 2 + • • • + λ N = λ 1 .
Since all λ j ≥ 0, there exist λ 2 ∈Supp * (s N ) with 0 < λ 2 < λ 1 < 1. We construct in this way a strictly decreasing sequence in Supp * (s N ) which is impossible.

The b invariant

Let us introduce here a numerical invariant, that will be used in the proof of the main theorem in chapter 3, associated to a series that measures how far it is a series from being of monomial type.

Below, we will see how does this invariant behaves under some specic transformations of the type of example ii) in 1.1.16 (those corresponding to the local expression of certain blowing-up morphism to be dened in chapter 3). Both the invariant and its behavior is already introduced and discussed in the paper [START_REF] Van Den Dries Y | The real eld with convergent generalized power series[END_REF]; we just reproduce here the same arguments since they are crucial to our purposes. Let α, β ∈ [0, ∞) m be exponents. Put inf(α, β) := (min{α 1 , β 1 }, . . . , min{α m , β m }). If inf(α, β) ∈ {α, β}, then put d(α, β) = 0. If inf(α, β) ∈ {α, β}, there are two possibilities: i) inf(α, β) = 0. Let a := |{j ∈ {1, . . . , m} : α j = 0}| and b := |{j ∈ {1, . . . , m} :

β j = 0}|. Then, d(α, β) = a + b. ii) inf(α, β) = 0. Then, d(α, β) := d(α -inf(α, β), β -inf(α, β)).
Finally, write X α |X β or "X α divides X β " i α ≤ β, gcd(X α , X β ) := X inf(α,β) and d(X α , X β ) := d(α, β).

The mapping d : [0, ∞) m → N measures how far is {α, β} to be totally ordered by the division order.

For m ≥ 2, dierent i, j ∈ {1, . . . , m} and γ > 0 let ς γ ij denote the morphism given in example ii) of 1.1.16.

Lemma 1.1.21. i) d(X α , X β ) = 0 if and only {α, β} is totally ordered by the division order, or equivalently, either

X α | X β or X β | X α . ii) If m = 1, d(X α , X β ) = 0. iii) If m ≥ 2 and d(X α , X β ) = 0, then d(ς γ ij (X α ), ς γ ij (X β
)) = 0 for any dierent i, j ∈ {1, . . . , m} and γ > 0.

iv) d(X α , X β ) = d(X β , X α ).
v) If d(X α , X β ) = 0, then there exists dierent i, j ∈ {1, . . . , m} and γ > 0 such that

d(ς γ ij (X α ), ς γ ij (X β )) < d(X α , X β ) and d(ς 1/γ ji (X α ), ς 1/γ ji (X β )) < d(X α , X β )
Proof. We reproduce the proof given in [START_REF] Van Den Dries Y | The real eld with convergent generalized power series[END_REF] of point v) because of the relevance of that point on the proof of the main result of this work. Suppose d(X α , X β ) = 0. Suppose rst that gcd(X α , X β ) = 1. Then we can choose dierent i, j ∈ {1, . . . , m} such that α i = 0 and β j = 0.

Let γ := β j /α i . Then ς γ ij (X α ) = X α X β j j and ς γ ij (X β ) = X β . Dividing X β and X α X β j j by its gcd, X β j j , we obtain d(ς γ ij (X α ), ς γ ij (X β )) < d(X α , X β ). Analogously, d(ς 1/γ ji (X α ), ς 1/γ ji (X β )) < d(X α , X β ).
For the general case, take i, j ∈ {1, . . . , m} and γ > 0 such that

d(ς γ ij (X α-ω ), s γ ij (X β-ω )) < d(X α , X β ) and d(ς 1/γ ji (X α-ω ), ς 1/γ ji (X β-ω )) < d(X α , X β ) where ω = inf(α, β). The identity ς γ ij (X α ) = ς γ ij (X α-ω )ς γ ij (X ω ) then implies d(ς γ ij (X α ), ς γ ij (X β )) = d(ς γ ij (X α-ω ), ς γ ij (X β-ω )); hence, d(ς γ ij (X α ), ς γ ij (X β )) < d(X α , X β ). The case of s 1/γ ji is again similar. Denition 1.1.22. Given s ∈ A[[X * ]], we dene b(s) = (b 1 (s), b 2 (s)) := (#Supp min (s) -1, b 2 (s)) ∈ N 2 (1.5) where b 2 (s) =    0 if b 1 (s) = 0 min{d(α, β) : α, β ∈ Supp min (s), α = β} if b 1 (s) = 0.
Notice that b(s) = (0, 0), if and only if s is of monomial type. Consequently, if m = 1, b(s) = (0, 0)

for any s ∈ A[[X * ]].
We order N 2 lexicographically in what follows.

Proposition

1.1.23. Let s ∈ A[[X * ]]. i) If b(s) = (0, 0) and m ≥ 2, then for any dierent i, j ∈ {1, . . . , m} and γ > 0 b(ς γ ij (s)) = (0, 0)
ii) If b(s) = (0, 0), then there exists dierent i, j ∈ {1, . . . , m} and γ > 0 such that b(ς γ ij (s)) < b(s) and b(ς

1/γ ji (s) < b(s)
Proof. It follows from the denition of b and lemma 1.1.21. For a detailed proof see [START_REF] Van Den Dries Y | The real eld with convergent generalized power series[END_REF], proposition 4.14. 

s ∈ A[[X * , Y ]] is called regular in Y n of order d if s(0, 0, Y n ) = uY d n + terms of higher degree in Y n with u a unit in A. Put Y := (Y 1 , . . . , Y n-1 ). Theorem 1.1.25. Let n > 0 and let s ∈ A[[X * , Y ]] be regular in Y n of order d. 1. There is for each s ∈ A[[X * , Y ]] a unique pair (Q, R) with Q ∈ A[[X * , Y ]] and R ∈ A[[X * , Y ]][Y n ], such that s = Qs + R and deg Yn (R) < d.
2. s factors uniquely as s = uP , where

u is a unit in A[[X * , Y ]] and P ∈ A[[X * , Y ]][Y n ] is a monic polynomial of degree d in Y n .
Note that the polynomial P has the form

P = Y d n + a 1 (X, Y )Y d-1 n + . . . + a d (X, Y )
with a i (0, 0) non units in A for 1 ≤ i ≤ d because it is monic and s is regular in Y n of order d (if there exists i such that a i (0, 0) is a unit, s would be regular of order smaller or equal than i < d).

Implicit functions. We obtain as a corollary an Implicit Functions Theorem:

Corollary 1.1.26. Let s = (s 1 , s 2 , . . . , s k ) ∈ A[[X * , Y, W ]] k where X = (X 1 , X 2 , . . . , X m ), Y = (Y 1 , Y 2 , . . . , Y n ) and W = (W 1 , W 2 , . . . , W k ).
Suppose that s j (0) = 0 for j = 1, 2 . . . , k and that the matrix

∂s j ∂W i (0) 1≤i,j≤k
is not singular. Then there exists t 1 , t 2 , . . . ,

t k ∈ A[[X * , Y ]] with t i (0) = 0 such that s j (X, Y, t 1 (X, Y ), t 2 (X, Y ), . . . , t k (X, Y )) ≡ 0 for j = 1, 2 . . . , k.
Proof. By induction on k.

If k = 1, since ∂s 1 ∂W 1 (0) = 0, s 1 is regular of order 1 in W 1 . By Weierstrass preparation, s 1 = (W 1 -a(X, Y, W 2 , W 3 , . . . , W k ))u 1
We take t 1 = a, which solves the problem.

Let k ≥ 2 and suppose the result true for k -1. We can suppose ∂s 1 ∂W 1 (0) = 0 and ∂s j ∂W 1 (0) = 0 for j = 2, 3 . . . , k (if this is not the case, change the order of the s i to have ∂s 1 ∂W 1 (0) = 0 and then pick s 1 := s 1 and s j := s j -

∂s j ∂W 1 (0) ∂s 1 ∂W 1 (0)
s 1 for j = 2, 3 . . . , k. If the result is proved for the s j we obtain

t 1 , t 2 , . . . , t k ∈ A[[X * , Y ]] with t i (0) = 0 such that s j (X, Y, t 1 (X, Y ), t 2 (X, Y ), . . . , t k (X, Y )) ≡ 0.
Notice that the same t i solve the initial problem.)

Since

∂s 1 ∂W 1 (0) = 0, s 1 is regular of order 1 in W 1 . By Weierstrass preparation, s 1 = (W 1 -a(X, Y, W 2 , W 3 , . . . , W k ))u 1
We dene for j = 2, 3 . . . , k, [START_REF] Guaraldo | Topics on Real Analytic Spaces[END_REF]. On the other hand,

s j := s j (X, Y, a(X, Y, W 2 , W 3 , . . . , W k ), W 2 , W 3 , . . . , W k ) which are in A[[X * , Y, W 2 , W 3 , . . . , W k ]] because a(0) = 0 (see proposition 1.1.
∂s j ∂W i (0) = ∂s j ∂W 1 (a(0)) ∂a ∂W i (0) + ∂s j ∂W i (0) = ∂s j ∂W i (0)
for 1 ≤ i, j ≤ k. Then, the matrix

∂s j ∂W i (0) 2≤i,j≤k = ∂s j ∂W i (0) 2≤i,j≤k
which is not singular because ∂s j ∂W 1 (0) = 0 for j ∈ {2 . . . , k}, so by the induction assumption, there exits t 2 , . . . ,

t k ∈ A[[X * , Y ]] with t i (0) = 0 such that s j (X, Y, a(t 2 (X, Y ), . . . , t k (X, Y )), t 2 (X, Y ), . . . , t k (X, Y )) = s j (X, Y, t 2 (X, Y ), . . . , t k (X, Y )) ≡ 0 for j = 2, 3 . . . , k. Take t 1 = a(t 2 (X, Y ), . . . , t k (X, Y )).

Convergent generalized power series

In this section, we consider the subring of convergent series in the ring of formal generalized power series, where convergence is dened in a very natural way. The most part of the concepts and results are already given in the paper [START_REF] Van Den Dries Y | The real eld with convergent generalized power series[END_REF] but we reproduce here some of them when the arguments are useful for our purposes.

Convergent generalized power series give rise, passing to the limit in the partial sums, to functions in their domains of convergence, as much as the convergent standard power series give rise to the analytic functions. We will call those functions "generalized analytic functions". They will be our objects of study during the rest of this text.

Basic denitions.

Given any family {c j } j∈J of positive real numbers, we can consider its sum

j∈J c j ∈ [0, ∞]
With this notation we mean, as usual, that j∈J c j is equal to c ∈ [0, ∞) if for any > 0 there exists a nite set J( ) ⊂ J such that for any nite subset J of J containing J( ) we have,

| j∈J c j -c| < .
If j∈J c j is not equal to c for any c ∈ [0, ∞) we say that j∈J c j is equal to ∞. The reader familiarized with this concept can go directly to Denition 1.2.5.

We recall a property about interchanging index of summation in these kind of innite sums. Lemma 1.2.1. Let {c i,j } (i,j)∈I×J be a family of positive real numbers, c i,j > 0 for any (i, j) ∈

I × J. It is equivalent: i) (i,j)∈I×J c i,j = C < ∞. ii) For each i ∈ I, j∈J c i,j = C i < ∞ and i∈I C i = C. iii) For each j ∈ J, i∈I c i,j = C j < ∞ and j∈J C j = C.
Proof. Let us show the equivalence between i) and ii), being the equivalence between i) and iii)

analogous.

i) ⇒ ii). Suppose that there exists C ∈ R >0 such that (i,j)∈I×J c i,j = C. Let i ∈ I, and J 0 a nite subset of J. Since the c i,j are positif and

(i,j)∈I×J c i,j = C, j∈J 0 c i,j ≤ C. Let C i := sup J 0 ⊆J J 0 nite { j∈J 0 c i,j } Notice that C i ≤ C, for any i ∈ I. We claim that C i = j∈J c i,j : rst, if J 1 ⊆ J is nite, j∈J 1 c i,j ≤ C i by denition of C i . Let > 0. Since C i -is not an upper bound of de family { j∈J 0 c i,j } J 0 ⊆J J 0 nite , there exists J 0 ⊆ J nite such that C i -< j∈J 0 c i,j , which implies that C i -j∈J 0 c i,j < . Thus, C i = j∈J c i,j .
Let us prove now that

i∈I C i = C. Notice that if I 0 ⊆ I is nite, i∈I 0 C i ≤ C (if not, there should exist a nite I 0 ⊆ I such that i∈I 0 C i = C + with > 0. Let, for i ∈ I 0 , J 0 (i) ⊆ J nite such that C i -j∈J 0 (i) c i,j < I 0 , where I 0 denotes the number of elements in I 0 . Let J 0 = ∪ i∈I 0 J 0 (i). Then, C + - (i,j)∈I 0 ×J 0 c i,j = i∈I 0 C i - (i,j)∈I 0 ×J 0 c i,j < which implies that C < (i,j)∈I 0 ×J 0 c i,j . Contradiction.) If > 0, there exists I 0 × J 0 ⊆ I × J nite such that C -(i,j)∈I 0 ×J 0 c i,j < . But, (i,j)∈I 0 ×J 0 c i,j = i∈I 0 ( j∈J 0 c i,j ) ≤ i∈I 0 C i Then, C - i∈I 0 C i ≤ C - (i,j)∈I 0 ×J 0 c i,j < So, C = i∈I C i . ii) ⇒ i). Let us show rst that if Λ ⊆ I × J is nite, then (i,j)∈Λ c i,j ≤ C. Suppose Λ = I 0 × J 0 with I 0 and J 0 nite, then (i,j)∈Λ c i,j = i∈I 0 ( j∈J 0 c i,j ) ≤ i∈I 0 C i ≤ C. Let > 0. As i∈I C i = C, there exists I 0 ⊆ I nite such that C -i∈I 0 C i < 2 . For each i ∈ I 0 let J 0 (i) ⊆ J nite such that C i -j∈J 0 (i) c i,j < 2 I 0 where I 0 denotes the number of elements in I 0 . Let J 0 := ∪ i∈I 0 J 0 (i). It is nite and for any i ∈ I 0 , C i -j∈J 0 c i,j < 2 I 0 . Then, i∈I 0 C i -(i,j)∈I 0 ×J 0 c i,j < 2 . Thus, C -(i,j)∈I 0 ×J 0 c i,j < . Now, if A is a normed ring with norm | • |, we
can generalize the concept of the sum of a family of elements in A.

Lemma 1.2.2. Given any family {a j } j∈J of elements of A, there is at most one element a ∈ A such that for each >0 there is a nite subset J( ) ⊆ J with | j∈ J a j -a| < for any nite set J ⊆ J that contains J( ).

(1.6) Proof. Suppose a, b ∈ A satisfying (1.6). For > 0, there exists J a ( ), J b ( ) ⊆ J nite such that | j∈Ja( ) a j -a| < 2 and | j∈J b ( ) a j -b| < 2 . Then, with J( ) = J a ( ) ∪ J b ( ), |a -b| ≤ |a -j∈J( ) a j | + | j∈J( ) a j -b| < for any > 0.
Denition 1.2.3. With the notation of Lemma 1.2.2 above, if a ∈ A has property (1.6), we say that j∈I a j exists in A and dene j∈I a j := a.

We show here some properties of these kind of sums which will be useful for the rest of the chapter. Lemma 1.2.4. Let {a j } j∈J be a family of elements of A. i) If j∈J a j exists in A, then, for any nite subset J ⊆ J, j ∈ J a j exists in A and j ∈ J a j = j∈J a j -j∈ J a j .

ii) If j∈J a j exists in A, then, for any > 0 there exists a nite subset J( ) ⊆ J, such that | j ∈ J a j | < for any J ⊆ J nite containing J( ).

iii

) If A is complete and j∈I |a j | < ∞, j∈I a j exists in A. iv) If j∈J a j exists in A and j∈J |a j | < ∞, then, | j∈J a j | ≤ j∈J |a j |.
Proof. For i), let J ⊆ J be a nite subset of J. Let > 0 and J( ) ⊆ J be nite such that

| j∈J a j -j∈ J a j | < for any J ⊆ J nite containing J( ). Let J * ( ) := J( ) ∩ (J \ J). If J * is a nite subset of J \ J with J * ( ) ⊆ J * , J( ) ⊆ J ∪ J * , so |( j∈J a j - j∈ J a j ) - j∈J * a j | = | j∈J a j - j∈ J∪J * a j | < For ii), let > 0 and J( ) ⊆ J be nite such that | j∈J a j -j∈ J a j | < for J ⊆ J nite containing J( ). By part i), | j ∈ J a j | = | j∈J a j -j∈ J a j |.
For iii), we claim that under these hypothesis, a j = 0 for only countably many j ∈ J. For that, it suces to prove that if X is a subset of strictly positive real numbers and C > 0 a constant such that for any nite subset Y ⊆ X, x∈Y x ≤ C, then X is countable. Suppose that there exists {x n } n∈N a strictly increasing sequence of elements of X. Then, for any N ∈ N, N x 1 < N i=1 x i ≤ C, which is impossible. So given x ∈ X there exists its antecessor, x -dened by

x -:= max{y ∈ X : y < x} and we can nd a rational number q x ∈ Q between x -and x. So we can suppose J = N. The sequence

{S n := n j=1 a j } n∈N is a Cauchy sequence in A, because for m < n, |S n -S m | ≤ n k=m |a k | n,m→∞ G G 0 . Since A is complete, n∈N a n exists in A. For iv), let > 0. Let J( ) ⊆ J be nite such that | j∈J a j -j∈ J a j | < for J ⊆ J nite containing J( ). Thus | j∈J a j - j∈ J a j | ≥ | j∈J a j |-| j∈ J a j | ≥ | j∈J a j |-| j∈ J a j | ≥ | j∈J a j |- j∈ J |a j | ≥ | j∈J a j |- j∈J |a j | which implies | j∈J a j | -j∈J |a j | < for any > 0.
From now on, unless indicated otherwise, we let A denote a normed ring with norm | • |. We let r, l ∈ (0, ∞) m denote polyradii, and we write r ≤ l if r i ≤ l i for all i, and r < l if r i < l i for all i (notice that r < l does not mean r ≤ l and r = l).

Also if α ∈ [0, ∞) m , we put r α = r α 1 1 • • • r αm m . Denition 1.2.5. For s = α∈[0,∞) m s α X α ∈ A[[X * ]
] and a polyradius r we dene

s r := α∈[0,∞) m |s α |r α ∈ [0, ∞]
We have, for s, t ∈ A[[X * ]] and polyradii r, l ∈ (0, ∞) m (see [START_REF] Van Den Dries Y | The real eld with convergent generalized power series[END_REF], page 4391):

1.

s r = 0 if and only if s = 0;

2. s + t r ≤ s r + t r ; 3. st r ≤ s r t r ; 4. if r ≤ l, then s r ≤ s l .
We now dene

A{X * } r := {s ∈ A[[X * ]] : s r < ∞} Note that A{X * } r is a normed ring with norm • r . It is clearly a subring of A[[X * ]] containing A[X * ]. We put A{X * } := r A{X * } r Since A{X * } r ⊇ A{X * } l if r ≤ l, A{X * } is also a subring of A[[X * ]]. Put also, for mixed variables X = (X 1 , . . . , X m ) and Y = (Y 1 , . . . , Y n ), A{X * , Y } := A[[X * , Y ]] ∩ A{(X, Y ) * },
and

A{X * , Y } (r,l) := A[[X * , Y ]] ∩ A{(X, Y ) * } (r,l)
for polyradii r = (r 1 , . . . , r m ), l = (l 1 , . . . , l n ).

Now, always for a normed ring A, we generalize the concept of summable family (cf. 1.1.6) of formal generalized power series in the following way (see 5.7 of [START_REF] Van Den Dries Y | The real eld with convergent generalized power series[END_REF]):

Denition 1.2.6. Let J be any index set and assume that {s

j = α s j,α X α } j∈J is a family in A[[X * ]] such that i) for each α ∈ [0, 1) m we have j∈J |s j,α | < ∞ and j∈J s j,α exists in A ii) ∪ j∈J Supp(s j ) is a good subset of [0, 1) m .
Then, if we dene

j∈J s j := α ( j∈J s j,α )X α , j∈J s j ∈ A[[X * ]].
Proposition 1.2.7. Let {s j = α s j,α X α } j∈J be a family in A[[X * ]] satisfying i) and ii) of Denition 1.2.6. Suppose that j∈J s j r < ∞. Then j∈J s j r ≤ j∈J s j r and we obtain that i) j∈J s j actually belongs to A{X * } r and ii) j∈J s j is also the sum of the family {s j } j∈J in the normed ring (A{X * } r , • r ).

Proof. By lemma 1.2.1,

j∈J s j r = j∈J ( α |s j,α |r α ) = α ( j∈J |s j,α |)r α
On the other hand, j∈J

s j r = α | j∈J s j,α |r α
Thus, by part iv) of Lemma 1.2.4, j∈J s j r ≤ j∈J s j r < ∞ which implies consequence i). For ii), let > 0. Since j∈J s j r < ∞, by i) and ii) of Lemma 1.2.4 there exists J( ) ⊆ J nite such that j ∈J( ) s j r < . Then, j∈J s j -j∈J( )

s j r = j ∈J( ) s j r ≤ j ∈J( ) s j r < Remark 1.2.8. Let s = α s α X α ∈ A{X * } r . Let for any Λ ∈ P F ([0, ∞) m ), s Λ := α∈Λ s α X α ,
where P F ([0, ∞) m ) denotes the set of nite subsets of [0, ∞) m . Then, by Lemma 1.2.4, for any > 0 there exists a Λ( )

∈ P F ([0, ∞) m ) such that s -s Λ r = α ∈Λ s α X α r < for any Λ ∈ P F ([0, ∞) m ) with Λ( ) ⊆ Λ.

Properties of convergent series

We show here those properties of formal series with an analogous statement in the convergent setting: composition morphisms, Weierstrass preparation and implicit functions. We need the following lemma Lemma 1.2.9

. If s = s α X α ∈ A{X * }, then lim r→0 s r = |s(0)|.
Proof. (see [START_REF] Van Den Dries Y | The real eld with convergent generalized power series[END_REF], 5.5) It suces to show that lim r→0 s -s(0) r = 0, so replacing s by s -s(0) we may as well assume that s(0) = 0. Take l such that s l < ∞, and x > 0. Let J ⊆Supp(s)

be nite such that α ∈J |s α |l α < /2 (Lemma 1.2.4), and let l ≤ l be a polyradius such that α∈J |s α | lα < /2 . Then for every r ≤ l (Lemma 1.2.4),

s r = α ∈J s α X α + α∈J s α X α r ≤ α ∈J s α X α r + α∈J s α X α r ≤ α ∈J |s α |r α + α∈J |s α | lα <
Since was arbitrary, this proves the lemma.

Using the same notation as in Proposition 1.1.14 the following "convergent version" of the properties of composition of series holds:

Proposition 1.2.10. Let X = (X 1 , X 2 , . . . , X m ), Y = (Y 1 , Y 2 , . . . , Y n ), Z = (Z 1 , Z 2 , . . . , Z µ ) and W = (W 1 , W 2 , . . . , W l ) denote multi-variables. i) Let s = (α,I)∈[0,∞) m ×N n s (α,I) X α Y I ∈ A{X * , Y } and let t = (t 1 , t 2 , . . . , t n ) ∈ A{W } n with t 1 (0) = . . . = t n (0) = 0. Then s(X, t(W )) is in A{X * , W }. Moreover, the map s → s(X, t(W )) is an A-algebra homomorphism from A{X * , Y } to A{X * , W }. ii) Let s = (α,I)∈[0,∞) m ×N n s (α,I) X α Y I ∈ A{X * , Y } and let t = (t 1 , t 2 , . . . , t n ) ∈ A{Z * } n with t 1 (0) = . . . = t n (0) = 0. Then, s(X, t(Z)), is in A{X * , Z * }. Moreover, the map s → s(X, t(Z)) is an A-algebra homomorphism from A{X * , Y } to A{X * , Z * }. iii) Let a > 0. If u = α∈[0,∞) m u α X α ∈ R{X * } is such that u 0 > 0, u a := k∈N a k u a-k 0 (u -u 0 ) k ∈ R{X * } iv) Let s = s α X α ∈ R{X * } and t = (t 1 , t 2 , . . . , t m ) ∈ R{Z * } m . If t i = Z β i u i , with β i = (0, ..., 0), u i ∈ R{Z * } and u i (0) > 0 for all i ∈ {1, 2, . . . , m} (that is, t i is of monomial type), s(t 1 , t 2 , . . . , t m ) is in R{Z * }. Moreover, the map s → s(t 1 , . . . , t m ) is an R-algebra homomorphism from R{X * } to R{Z * }.
Proof. We use Proposition 1.2.7 to prove the convergence of the formal series obtained in Proposition 1.1.14 For i), let us call for any α ∈ Supp X (s) and I = (i

1 , i 2 , . . . , i n ) ∈ N n q (α,I) := s (α,I) X α t i 1 1 t i 2 2 • • • t in n
Then, it suces to prove that there exists polyradius r ∈ (0, ∞) m and l ∈ (0, ∞) n such that (α,I) q (α,I) (r, l) < ∞. Take polyradius (r, l) ∈ (0, ∞) m+n such that s ∈ R X * , Y (r,l) and t 1 , . . . , t n ∈ R{W } l . Now, take l < l such that t i l < l i (which is possible by Lemma 1.2.9 because t i (0) = 0 for i = 1, 2, . . . , n.) Thus, (α,I)

q (α,I) (r, l) = (α,I) |s (α,I) |r α t 1 i 1 l1 t 2 i 2 l2 • • • t n in ln < (α,I) |s (α,I) |r α l I = s (r,l) < ∞
The same argument is valid for ii). For iii), if we put ε := u -u(0) ∈ R X * , ε(0) = 0. So it is enough to prove that there exists a polyradius r ∈ (0, ∞) m such that k ε k r < ∞. Notice that this is a particular case of ii).

For iv), we dene for any α = (α 1 , α 2 , . . . , α m ) ∈ Supp(s),

q α := s α t α 1 1 t α 2 2 • • • t αm m By part iii), q α ∈ R{Z * } for any α ∈ Supp(s). Let δ = (δ 1 , δ 2 , . . . , δ m ) ∈ (0, ∞) m be a polyradius such that s ∈ R X * δ . Since t 1 (0) = t 2 (0) = . . . = t m (0) = 0, by Proposition 1.2.9 there exists a polyradius r ∈ (0, ∞) µ such that t i r < δ i for i = 1, 2, . . . , m. Then, q α r ≤ |s α | t 1 α 1 r t 2 α 2 r • • • t m αm r < |s α |δ α for any α ∈Supp(s) which implies that α q α r < α |s α |δ α = s δ < ∞ Remark 1.2.11. Let s = s α X α ∈ R{X * }, M 1 , M 2 , . . . , M m ∈ R{Z * } be monomials (M i = Z β i with β i = 0), W = (W 1 , W 2 , . . . , W m ) be variables and λ 1 , λ 2 , . . . , λ m ∈ R >0 . If we dene for i = 1, 2, . . . , m, t i := M i (λ i + W i ), by remark 1.1.15, s(t 1 , t 2 , . . . , t m ) ∈ R[[Z * , W ]].
Analogously to the proof of part iv) we obtain that in fact s(t 1 , t 2 , . . . , t m ) ∈ R{Z * , W }.

Example 1.2.12. Notice that in particular, with the notation of the example 1.

1.16, if s ∈ A{X * , Y } and σ ∈ G m,n , σs ∈ A{X * , Y }. Corollary 1.2.13. Let s ∈ A{X * }. Then s is a unit in A{X * } if and only if s(0) is a unit in A.
Proof. The necessity is clear. Suppose then s(0) = 0 and write s = s(0

)(1-t) for some t ∈ A{X * } with t(0) = 0. Then 1-t has inverse 1+t+t 2 +. . . ∈ A[[X * ]]. The series s := k∈N W k ∈ A{W }. By part ii) of Proposition 1.2.10, 1 + t + t 2 + . . . = s(t) ∈ A{X * }.
The Weierstrass Preparation Theorem is also true in the convergent case (see 5.10 of [START_REF] Van Den Dries Y | The real eld with convergent generalized power series[END_REF]). Theorem 1.2.14. Let n > 0 and let s ∈ A{X * , Y } be regular in Y n of order d.

1. There is for each s ∈ A{X * , Y } a unique pair (Q, R) with Q ∈ A{X * , Y } and R ∈ A{X * , Y }[Y n ], such that s = Qs + R and deg Yn (R) < d.
2. s factors uniquely as s = U P , where

U ∈ A{X * , Y } is a unit and P ∈ A{X * , Y }[Y n ] is monic of degree d in Y n . Corollary 1.2.15. Let s = (s 1 , s 2 , . . . , s k ) ∈ A{X * , Y, W } k where X = (X 1 , X 2 , . . . , X m ), Y = (Y 1 , Y 2 , . . . , Y n ) and W = (W 1 , W 2 , . . . , W k ).
Suppose that s j (0) = 0 for j = 1, 2 . . . , k and that the matrix

∂s j ∂W i (0) 1≤i,j≤k is not singular. Then there exists t 1 , t 2 , . . . , t k ∈ A{X * , Y } with t i (0) = 0 such that s j (X, Y, t 1 (X, Y ), t 2 (X, Y ), . . . , t k (X, Y )) ≡ 0 for j = 1, 2 . . . , k. Proof. By induction on k. If k = 1, since ∂s 1 ∂W 1 (0) = 0, s 1 is regular of order 1 in W 1 . By Weierstrass preparation, s 1 = (W 1 -a(X, Y, W 2 , W 3 , . . . , W k ))u 1
We take t 1 = a, which solves the problem.

Let k ≥ 2 and suppose the result true for k -1. We can suppose ∂s 1 ∂W 1 (0) = 0 and ∂s j ∂W 1 (0) = 0 for j = 2, 3 . . . , k (if this is not the case, change the order of the s i to have ∂s 1 ∂W 1 (0) = 0 and then pick s 1 := s 1 and s j := s j -

∂s j ∂W 1 (0) ∂s 1 ∂W 1 (0)
s 1 for j = 2, 3 . . . , k. If the result is proved for the s j we obtain

t 1 , t 2 , . . . , t k ∈ A{X * , Y } with t i (0) = 0 such that s j (X, Y, t 1 (X, Y ), t 2 (X, Y ), . . . , t k (X, Y )) ≡ 0.
Notice that the same t i solve the initial problem.)

Since

∂s 1 ∂W 1 (0) = 0, s 1 is regular of order 1 in W 1 . By Weierstrass preparation, s 1 = (W 1 -a(X, Y, W 2 , W 3 , . . . , W k ))u 1
We dene for j = 2, 3 . . . , k, [START_REF] Guaraldo | Topics on Real Analytic Spaces[END_REF]. On the other hand,

s j := s j (X, Y, a(X, Y, W 2 , W 3 , . . . , W k ), W 2 , W 3 , . . . , W k ) which are in A{X * , Y, W 2 , W 3 , . . . , W k } because a(0) = 0 (see proposition 1.1.
∂s j ∂W i (0) = ∂s j ∂W 1 (a(0)) ∂a ∂W i (0) + ∂s j ∂W i (0) = ∂s j ∂W i (0) 
for 1 ≤ i, j ≤ k. Then, the matrix

∂s j ∂W i (0) 2≤i,j≤k = ∂s j ∂W i (0) 2≤i,j≤k
which is not singular because ∂s j ∂W 1 (0) = 0 for j ∈ {2 . . . , k}, so by the induction assumption, there exits t 2 , . . . , t k ∈ A{X * , Y } with t i (0) = 0 such that

s j (X, Y, a(t 2 (X, Y ), . . . , t k (X, Y )), t 2 (X, Y ), . . . , t k (X, Y )) = s j (X, Y, t 2 (X, Y ), . . . , t k (X, Y )) ≡ 0 for j = 2, 3 . . . , k. Take t 1 = a(t 2 (X, Y ), . . . , t k (X, Y )).
Notice that in Corollary 1.2.15 we do not ask the partial derivatives of the s j to be convergent. However, one can ask if the formal partial derivative (dened in 1.1.1) of a convergent series is convergent too. Paragraph 5.9 of [START_REF] Van Den Dries Y | The real eld with convergent generalized power series[END_REF] answer armatively this question: Lemma 1.2.16. (cf. 5.9 [START_REF] Van Den Dries Y | The real eld with convergent generalized power series[END_REF]) Let s ∈ R X * , Y . If i ∈ {1, . . . , m}, then the partial derivative

(∂s/∂X i ) ∈ R X * , Y , and if j ∈ {1, . . . , n}, (∂s/∂Y j ) ∈ R X * , Y .

Functions dened by convergent series.

From now on we are only interested in the case A = R, with the norm on R given by the usual absolute value. Note that Corollary 1.2.13 implies that R X * is a local ring with maximal ideal {s ∈ R X * : s(0) = 0}, and if m = 1, then R X * is a valuation ring.

Given a polyradius ξ = (ξ 1 , . . . , ξ m+n ) ∈ (0, ∞) m+n , we put ,l) where r = (ξ 1 , . . . , ξ m ) and l = (ξ m+1 , . . . , ξ m+n ). If n = 0 we write I m,ξ instead of I m,0,ξ .

I m,n,ξ := [0, ξ 1 ) × • • • × [0, ξ m ) × (-ξ m+1 , ξ m+1 ) × • • • × (-ξ m+n , ξ m+n ); and Clos(I m,n,ξ ) := [0, ξ 1 ] × • • • × [0, ξ m ] × [-ξ m+1 , ξ m+1 ] × • • • × [-ξ m+n , ξ m+n ] we will denote [0, ∞) m × R n by I m,n,∞ . We also write R X * , Y ξ instead of R X * , Y (r
Most of the time we will consider polyradius whose components have all the same value, usually > 0 or δ > 0. In that case (respectively δ, etc.) will denote a positif constant or polyradius = ( , . . . , ) with dierent length, and its signicant will be deduced by the context. Finally, to emphasize the length of the multi-variables involved X

= (X 1 , X 2 , . . . , X m ), Y = (Y 1 , Y 2 , . . . , Y n ), etc. we put R X * , Y m,n . Then, for instance, if > 0, to denote the R-algebra of convergent series in the variables Z = (Z 1 , Z 2 ), W = (W 1 , W 2 , W 3 )
, where the variables Z are generalized and the variables W are analytic and the polyradius of converge is , we put R{Z * , W } 2,3, . Denition 1.2.17. Let m, n ∈ N and ξ ∈ (0, ∞) m+n a polyradius. To an element s =

s α,β X α Y β ∈ R X * , Y m,
n,ξ we associate a function on I m,n,ξ as follows. Given (x, y) ∈Clos(I m,n,ξ ), the series s α,β x α y β converges absolutely to a real number. Thus we can dene the function S ξ (s) :

Clos(I m,n,ξ ) -→ R S ξ (s)(x, y) := s α,β x α y β Lemma 1.2.18. Let s ∈ R X * , Y ξ . If ξ < ξ, S ξ (s) is equal to the restriction of S ξ (s) to the polyinterval I m,n, ξ , that is S ξ (s) = S ξ (s)| I m,n, ξ .
Proof. Immediate by denition of the sum morphism.

For a real valued function f :

X → R we let f ∞ denote its uniform norm, that is f ∞ = sup{|f (x)| : x ∈ X} ∈ [0, ∞] Lemma 1.2.19. Let s = (α,β) s α,β X α Y β ∈ R X * , Y m,n,ξ . Then, S ξ (s) ∞ ≤ s ξ .
In particular, with the notation of Remark 1.2.8, for any Λ ∈ P F (Supp(s)), since S ξ (s)

-S ξ (s Λ ) = S ξ (s -s Λ ), S ξ (s) -S ξ (s Λ ) ∞ ≤ s -s Λ ξ .
Proof. Let (x, y) ∈Clos(I m,n,ξ ). Then, 

|S ξ (s)(x, y)| = | (α,β) s α,β x α y β | ≤ (α,β) |s α,β ||x α ||y β | ≤ s ξ Let C 0 (Clos(I m,n,ξ ); R)
S ξ : R X * , Y m,n,ξ -→ C 0 (Clos(I m,n,ξ ); R) s → S ξ (s) is an R-algebra homomorphism. Proof. For each Λ ∈ P F ([0, ∞) m × N n ), the series s Λ = (α,β)∈Λ s α,β X α Y β ∈ R X * , Y m,n,ξ . Since Λ is nite the corresponding associated function S ξ (s Λ ) : (x, y) ∈Clos(I m,n,ξ ) → s Λ (x, y) ∈ R is continuous. Let > 0. By Remark 1.2.8, there exists Λ ⊆ [0, ∞) m × N n nite such that s -s Λ ξ < 3 . Let (x, y) ∈Clos(I m,n,ξ ). Then, |S ξ (s)(x, y) -S ξ (s Λ )(x, y)| = | (α,β) ∈Λ s α,β x α y β | ≤ s -s Λ ξ < 3 Since S ξ (s Λ ) is continuous on Clos(I m,n,ξ ), there exists δ > 0 such that if |(x, y) -(z, w)| < δ, then |S ξ (s Λ )(x, y) -S ξ (s Λ )(z, w)| < 3 . Thus, if (z, w) ∈Clos(I m,n,ξ ) with |(x, y) -(z, w)| < δ, |S ξ (s)(x, y) -S ξ (s)(z, w)| ≤ |S ξ (s)(x, y) -S ξ (s Λ )(x, y)|+ |S ξ (s Λ )(x, y) -S ξ (s Λ )(z, w)| + |S ξ (s Λ )(z, w) -S ξ (s)(z, w)| < Now let us prove that S ξ is an R-algebra homomorphism. Let s, t ∈ R X * , Y m,
Λ = Λ( ) ∈ P F ([0, ∞) m × N n ) such that cs -(cs) Λ ξ < 2 and |c| s -s Λ ξ < 2 . By Lemma 1.2.19, S ξ (cs) -cS ξ (s) ∞ = S ξ (cs) -cS ξ (s) ± cS ξ (s Λ ) ∞ ≤ ≤ S ξ (cs) -S ξ ((cs) Λ ) ∞ + cS ξ (s) -cS ξ (s Λ ) ∞ ≤ ≤ cs -(cs) Λ ξ + |c| s -s Λ ξ =< Since was arbitrary, S ξ (cs) = cS ξ (s).
Analogously for the sum, if > 0, let Λ = Λ( )

∈ P F ([0, ∞) m ×N n ) such that (s+t)-(s+t) Λ ξ < 3 , s -s Λ ξ < 3 and t -t Λ ξ < 3 . By Lemma 1.2.19, S ξ (s + t) -(S ξ (s) + S ξ (t)) ∞ = S ξ (s + t) -(S ξ (s) + S ξ (t)) ± S ξ ((s + t) Λ ) ∞ ≤ ≤ S ξ (s + t) -S ξ ((s + t) Λ ) ∞ + S ξ (s Λ ) -S ξ (s) ∞ + S ξ (t Λ ) -S ξ (t) ∞ ≤ ≤ (s + t) -((s + t) Λ ) ξ + s Λ -s ξ + t Λ -t ξ < Since was arbitrary, S ξ (s + t) = S ξ (s) + S ξ (t).
Analogously for the product, if > 0, let Λ = Λ( )

∈ P F ([0, ∞) m ×N n ) such that (st)-(st) Λ ξ < 3 , s ξ t -t Λ ξ < 3 and t ξ s -s Λ ξ < 3 . By Lemma 1.2.19, S ξ (st) -S ξ (s)S ξ (t) ∞ = S ξ (st) -S ξ (s)S ξ (t) ± S ξ ((st) Λ ) ∞ = = S ξ (st) -S ξ ((st) Λ ) + S ξ (s Λ )S ξ (t Λ ) -S ξ (s)S ξ (t) ∞ ≤ ≤ S ξ (st) -S ξ ((st) Λ ) ∞ + S ξ (s)S ξ (t) -S ξ (s Λ )S ξ (t Λ ) ± S ξ (s)S ξ (t Λ ) ∞ = ≤ S ξ (st) -S ξ ((st) Λ ) ∞ + S ξ (s)(S ξ (t) -S ξ (t Λ )) + S ξ (t Λ )(S ξ (s Λ ) -S ξ (s)) ∞ ≤ ≤ S ξ (st) -S ξ ((st) Λ ) ∞ + S ξ (s) ∞ S ξ (t) -S ξ (t Λ ) ∞ + S ξ (t Λ ) ∞ S ξ (s Λ ) -S ξ (s) ∞ ≤ ≤ st -(st) Λ ξ + s ξ t -t Λ ξ + t Λ ξ s Λ -s ξ < Since was arbitrary, S ξ (st) = S ξ (s)S ξ (t).
We call S ξ the sum morphism. Using the same notation as in Proposition 1.1.14: Proposition

1.2.21. Let X = (X 1 , X 2 , . . . , X m ), Y = (Y 1 , Y 2 , . . . , Y n ), Z = (Z 1 , Z 2 , . . . , Z µ ) and W = (W 1 , W 2 , . . . , W k ) denote multi-variables. i) Let s ∈ R{X * , Y } and let t = (t 1 , t 2 , . . . , t n ) ∈ R{W } n with t 1 (0) = . . . = t n (0) = 0. Then, for convenient strictly positif , S (s(X, t(W ))(x, w) = S (s)(x, S (t 1 )(w), S (t 2 )(w), . . . , S (t n )(w))
for any (x, w) ∈Clos(I m,k, ).

ii

) Let s ∈ R{X * , Y } and let t = (t 1 , t 2 , . . . , t n ) ∈ R{Z * } n with t 1 (0) = . . . = t n (0) = 0. Then, for convenient strictly positif , S (s(X, t(Z))(x, w) = S (s)(x, S (t 1 )(z), S (t 2 )(z), . . . , S (t n )(z))
for any (x, z) ∈Clos(I m+µ, ).

iii

) Let s = s α X α ∈ R{X * } and t = (t 1 , t 2 , . . . , t m ) ∈ R{Z * } m . If t i = Z β i u i , with β i = (0, ..., 0), u i ∈ R{Z * } and u i (0) > 0 for all i ∈ {1, 2, . . . , m} (that is, t i is of monomial type), there exists > 0 such that S (s(t 1 , t 2 , . . . , t m )) = S (S (t 1 )(z), S (t 2 )(z), . . . , S (t m )(z))
for any z ∈Clos(I µ, ). iv) If s ∈ R X * , Y m,n and j ∈ {1, 2, . . . , n} there exists > 0 such that for each (x, y) ∈ I m,n, the partial derivative (∂(S (s))/∂y j )(x, y) exists and

S (∂s/∂Y j )(x, y) = (∂(S (s))/∂y j )(x, y) v) If s ∈ R X * , Y m,
n and i ∈ {1, 2, . . . , m} there exists > 0 such that for each interior point (x, y) of I m,n, , the partial derivative (∂(S (s))/∂x i )(x, y) exists and

x i (∂(S (s))/∂x i )(x, y) = S (∂s i )(x, y) vi) If s ∈ R X * , Y m,n and σ ∈ G m,n (see 1.1.16) then there exists > 0 such that S (σs)(x, y) = S (s)(σ(x, y)) for all (x, y) ∈ I m,n, .
Proof. The result is immediate if all the series involved have nite support. For general series, we apply Remark 1.2.8 and Lemma 1.2.19 as in the proof of 1.2.20. Proposition 1.2.22. Given ν ∈ (0, ∞) m and ξ ∈ (0, ∞) m+n , the sum morphisms Proof. We reproduce the proof given in [START_REF] Van Den Dries Y | The real eld with convergent generalized power series[END_REF] for the rst morphism, being analogous the proof for the mixed case.

Let s = s α X α ∈ R X * ξ
and assume s = 0; we will show that S ξ (s) cannot vanish identically on any I m, ξ with ξ < ξ small enough (which is more than what we need). By induction on m: if m = 1 then X = X 1 and, assuming s has order δ, we can write s = X δ (s δ + α>δ s α X α-δ ) with s δ = 0. Put t := s δ + α>δ s α X α-δ . It follows from Lemma 1.2.9 that S ξ (t)(x) = 0 for all x ∈ (0, ξ], where ξ > 0 is small enough.

Let m > 1; assume our claim holds for R{(X

) * } ξ (X = (X 1 , X 2 , . . . , X m-1 ), ξ = (ξ , ξ m ) ∈ (0, ∞) m ). Write a nonzero s ∈ R X * ξ as s = αm≥0 s αm X αm m ∈ (R{(X ) * } ξ ){X * m } ξm , and note that {α m : s αm = 0} is a well ordered subset of [0, ∞). Hence s ξ = s αm ξ ξ αm m and S ξ (s)(x) = S ξ (s αm )(x )
x αm m for all x = (x , x m ) ∈ I m,ξ . Fix some α m ∈ [0, ∞) with s αm = 0; by the inductive assumption there are x ∈ I m-1,ξ arbitrarily close to the origin such that S ξ (s αm )(x ) = 0. For such x we have shown above (case m = 1) that S ξ (s)(x , x m ) = S ξ (s αm )(x m ) αm is nonzero for all suciently small x m ∈ (0, ξ m ].

Taylor expansion. Let s

= (α,J) s α,J X α Y I ∈ R X * , Y m,n,ξ . Let (a, b) = (a 1 , . . . , a m , b 1 , . . . , b n ) ∈ I m,n,ξ . Let s((a, b) + (Z, W ))
denote the sum of the family (summable by 1.2.10)

{s α,J (a 1 + Z 1 ) α 1 • • • (a m + Z m ) αm (b 1 + W 1 ) j 1 • • • (b n + W n ) jn } (α,J)∈[0,∞) m ×N n Notice that s((a, b)+(Z, W ))(0) = (α,J) s α,J a α b I which is a real number because (a, b) ∈ I m,n,ξ .
Recall that s((a, b) + (Z, W )) ∈ R{Z * , W } and that for any i ∈ {1, . . . , m} such that a i = 0, the variable Z i is analytic on s((a, b) + (Z, W )). Put m := |{i ∈ {1, . . . , m} : a i = 0}|. Then, if σ is a permutation of {1, . . . , m} such that σ({i ∈ {1, . . . , m} :

a i = 0}) = {1, . . . , m }, T (a,b) (s) := σs((a, b) + (Z, W )) ∈ R{(Z 1 , . . . , Z m ) * , Z m +1 , . . . , Z m , W }.
On the other hand, suppose that f

∈ C 0 (I m,n,ξ ; R) is in the image of the sum morphism S ξ , that is, there exists s ∈ R X * , Y m,n,ξ such that f = S ξ (s). Let (a, b) ∈ I m,n,ξ . Put m := |{i ∈ {1, . . . , m} : a i = 0}|
, and let σ be a permutation of {1, . . . , m} such that σ({i ∈ {1, . . . , m} :

a i = 0}) = {1, . . . , m }. We consider the map (z, w) = θ (a,b),σ (x, y) := (σ(x), y) -(σ(a), b). If > 0 there exists δ > 0 such that if (x, y) close enough to (a, b) ( (x, y) -(a, b) < δ), (z, w) = θ (a,b),σ (x, y) ∈ I m ,(m-m )+n, . Let us call f (a,b) := f • θ (a,b),σ . The next proposition assures that f (a,b) is the sum of a convergent series, in fact of the series T (a,b) (s): Proposition 1.2.23. Given s ∈ R X * , Y m,n,ξ and (a, b) ∈ I m,n,ξ there exists 0 < < ξ such that S (T (a,b) (s)) = f (a,b) R X * , Y m,n,δ S δ G G T (a,b) C 0 (I m,n,ξ → R) θ (a,b),σ R{Z * , W } m ,(m-m )+n, S G G C 0 (I m ,(m-m )+n, → R)
We obtain as a consequence that the sum of a convergent series is analytic on the interior of its domain of denition.

Proof. See 6.7 of [START_REF] Van Den Dries Y | The real eld with convergent generalized power series[END_REF].

Chapter 2

Generalized analytic manifolds.

In this chapter we introduce the concept of Generalized Analytic Manifold. We use the generalized power series analogously to the power series in the classical case of analytic manifolds. One of the main peculiarities is that Generalized Analytic Manifolds will be manifolds with boundary and corners. This is a geometrical consequence of the existence of non analytic variables in the generalized case: a function like x λ for a non integer λ is only dened for positive values of the variable x.

For a better comprehension of the dierences with the classical analytic case, we will use analytic manifolds with boundary and corners. We present in the rst section a brief recall of these objects and their properties in the language of subsheaves on R-algebras of continuous functions (called locally ringed spaces).

The Appendix is devoted to a brief exposition of the general concepts and basic properties in this theory. In a few words, we consider the category C where an object of C is a pair X = (|X|, C X ) where |X| is a topological space and C X is a sheaf of R-algebras of continuous functions over |X| such that, for each p ∈ |X|, the stalk C X,p is a local R-algebra. 

; that is, if f ∈ C Y (V ) is a section over the open set V of |Y |, then ϕ (f ) = f • ϕ ∈ ϕ * C X (V ) = C X (ϕ -1 (V )).
In what follows, we are interested in two specic subcategories, O and G of C. Their objects are objects in C and the morphisms between two objects are exactly those morphisms when considered as objects in C (briey, they are full subcategories of C, see denition B.0.22 of the appendix).

In both cases O and G, an object will be a locally ringed space on R-algebras of continuous functions whose underlying topological space is a topological manifold with boundary of pure dimension, all of them locally homeomorphic to a local model R k ≥0 for some k. By a convenient choice of the second component of the object (that is the sheaf of continuous functions), objects in the subcategory O will be the (standard) real analytic manifolds with boundary and corners, when the chosen sheaf is such that it is locally isomorphic to the sheaf of analytic functions in the local model (those which are sums of standard real convergent power series). Objects of the subcategory G, on the contrary, are dened with the property that the sheaf is locally isomorphic to the sheaf of generalized analytic functions on the local model (to be dened below by means of convergent generalized power series). They will be called generalized real analytic manifolds.

At the end of this chapter, we introduce the concept of standardizable generalized analytic manifold which will permit to consider some generalized analytic manifolds as a standard real analytic manifolds with an enrichment of the structure. Certain well known operations in standard analytic manifolds such as blowing-ups with smooth centers could be translated to standardizable generalized analytic manifolds (and this will be the purpose of the next chapter). 

2.1

Analytic manifolds with boundary and corners.

For k ∈ N, R k ≥0 denotes the topological subspace of R k consisting on those points p = (p 1 , p 2 , . . . , p k ) in R k such that p i ≥ 0 for i = 1, 2, . . . , k.

Denition 2.1.1. The local model of (real) analytic manifold with boundary and corners of dimension k is the locally ringed space A k

+ := (R k ≥0 , O A k + ) whose underlying topological space is R k ≥0 and the sheaf O A k + is dened by the assignment, for any open subset V ⊂ R k ≥0 : V → O A k + (V )
where O A k + (V ) consists on the set of real functions f : V → R for which there exists an open neighborhood of V in R k , W ⊇ V , and f : W → R an analytic function on W whose restriction to V is equal to f . We will simply say that f is analytic on V for such a function.

Notice that O A k + together with the restriction of functions as restrictions morphisms, certainly 

dene a sheaf on R k ≥0 . Moreover, it is clear that for every open set V ⊂ R k ≥0 , O A k + (V ) is a sub-R-algebra of the
C to A k + | V := (V, O A k + | V ) for some V open subset of R k ≥0 .
In other words, a locally ringed space A = (|A|, O A ) ∈ Objets(C) is a k-dimensional analytic manifold with boundary and corners if for any p ∈ |A| there exits an open neighborhood U of p, an open V ⊆ R k ≥0 and an isomorphism (ϕ :

A| U → A k + | V ) ∈ Morphisms C (A| U , A k + | V ). In particular, if
U is an open subset of A, the sections of O A over U are exactly those continuous functions f : U → R such that for any p ∈ U there exists W an open neighborhood of p and an homeomorphism ϕ : 

U ∩ W → ϕ(U ∩ W ) ⊆ R k ≥0 such that f • ϕ -1 is analytic (that is, it admits an analytic extension to a neighborhood of ϕ(p) in R k ). Remark 2.1.3. If α > 0 is not integer, then the map x ∈ R ≥0 → x α ∈ R ≥0 is not a section of
: if V is an open subset of |B| and f ∈ O B (V ), ϕ (f ) = f • ϕ ∈ O A (ϕ -1 (V )) (
ϕ p : O B,ϕ(p) -→ O A,p ϕ p (f ϕ(p) ) = (f • ϕ) p
is an isomorphism. We will denote frequently a morphism (ϕ, ϕ ) simply by the underlying continuous map ϕ, the associated sheaf morphism ϕ being completely determined by ϕ. 

ϕ ∈Morph O (A k 1 + | V 1 , A k 2 + | V 2 ), there exists an open neighborhood W of V 1 in R k 1
and an analytic mapping φ : W → V 2 (in the sense that each component of φ = ( φ1 , . . . , φk 2 ) is an analytic function on W ) such that φ| V 1 = ϕ. This is a consequence of the denition of O and the fact that the projection functions π j :

p = (p 1 , p 2 , . . . , p k 2 ) ∈ V 2 → p j ∈ R are sections of O A k 2 + | V 2 for any j = 1, 2, . . . , k 2 . Hence π j • ϕ = ϕ j ∈ O A k 1 + | V 1 which implies that for any j = 1, 2, . . . , k 2
there exists an open neighborhood W j of V 1 and an analytic function φj :

W j → R such that φj | V 1 = ϕ j . We take W = ∩ k 2
j=1 W j and φ = ( φ1 , . . . , φk 2 ). Notice that by the identity principle for analytic functions φ is the unique analytic function satisfying φ|

V 1 = ϕ. In particular, if p ∈ V 1 we can dene the dierential of ϕ at p, d p ϕ := d p φ, a linear map from R k 1 to R k 2 . As a consequence, if (ϕ, ϕ ) is an isomorphism, rst of all ϕ : V 1 → V 2 is an homeo- morphism so k 1 = k 2 = k, and the inverse of ϕ, ϕ -1 : V 2 → V 1 induces a morphism too. So there exists ψ analytic on U an open neighborhood of V 2 in R k with ψ| V 2 = ϕ -1 . As ψ| V 2 = φ-1 | V 2
by the identity principle for analytic functions ψ = φ-1 so for any p ∈ V 1 , if we put q = ϕ(p), d q (ϕ -1 ) = (d p ϕ) -1 , that is, d p ϕ is a linear isomorphism.

We have seen that if ϕ ∈Morph

O (A k 1 + | V 1 , A k 2 + | V 2 )
, the components of the continuous map (ϕ 1 , . . . , ϕ k 2 ) are analytic functions. Conversely, if we have k 2 analytic functions on a neighborhood of

V 1 in R k 2 , ϕ 1 , . . . , ϕ k 2 such that ϕ j (p) ≥ 0 for any p ∈ V 1 , the continuous map ϕ = (ϕ 1 , . . . , ϕ k 2 ) : V 1 → ϕ(V 1 ) ⊆ R k 2 ≥0 induces a morphism (ϕ, ϕ ) : A k 1 + | V 1 → A k 2 + | ϕ(V 1 ) .
Examples 2.1.6. Some examples of standard analytic manifolds are

i) Let O R k denote the sheaf of analytic functions over R k . Then (R k , O R k ) is a standard analytic manifold. To see that, remark that the homeomorphism ϕ : R k → R k >0 ⊆ R k ≥0
dened by ϕ(y 1 , . . . , y k ) = (e y 1 , . . . , e y k ) induces an isomorphism (of locally ringed spaces)

from (R k , O R k ) to A k + | R k >0 = (R k >0 , O A k + | R k >0 ). Then, in particular, for V open subset of R k , if we let O V denote the sheaf of analytic functions on V , (V, O V ) is a standard analytic manifold.
ii) More generally, if M = (|M |, O M ) is a real analytic manifold (with the sheaf-theoretic interpretation; that is, that O M is the sheaf of real analytic function on the underlying variety |M |), then M is a standard analytic manifold. This is an immediate consequence of example above.

iii) For any k, an example of k dimensional standard analytic manifold is the local model

A k + = (R k ≥0 , O A k + ). iv) Consider R m ≥0 × R n with the product topology. Let Φ : R m ≥0 × R n → R m ≥0 × R n >0 ⊂ R m+n ≥0 be the map dened by (x, y) ∈ R m ≥0 × R n Φ -→ (x, ϕ(y)) = (x, e y 1 , . . . , e y k ) ∈ R m ≥0 × R n >0
It is a homeomorphism. We can endow a structure of standard analytic manifold to R m ≥0 × R n via this homeomorphism: just consider the sheaf O m,n dened by assigning to each

open set V ⊂ R m ≥0 × R n the R-algebra of functions f : V → R such that f • Φ -1 | Φ(V ) ∈ A m+n + (Φ(V )), that is there exists W an open neighborhood of Φ(V ) in R m+n ≥0 and an analytic function g on W such that g| Φ(V ) = f • Φ -1 | Φ(V ) .
For reasons that will be clear below, we call the standard analytic manifold 

A m + × R n := (R m ≥0 × R n , O m,n ) the (m, n) mixed
w : U -→ V w(q) =(w 1 (q), . . . , w k (q))
is a homeomorphism which induces an isomorphism of standard analytic manifolds

A| U = (U, O A | U ) and A k + | V = (V, O A k + | V ).
The components w 1 , . . . , w k will be called local coordinates at p. We say that a local chart is centered at p if it sends p to the origin.

If p = (p 1 , . . . , p k ) ∈ R k ≥0 , we put A(p) := {i ∈ {1, . . . , k} : p i = 0}, m p :=number of elements in A(p), n p := k -m p and for > 0,

I A(p), := B 1 × B 2 × • • •B k ⊆ R k , where the B i is either the interval [0, ) ⊂ R if i ∈ A(p) or the interval (-, ) if i ∈ A(p). Notice that for any p ∈ R k ≥0 , the set {(p + I A(p), ) ∩ R k ≥0 : > 0} is a fundamental system of neighborhoods of p in R k ≥0 . Proposition 2.1.7. The map p ∈ R k ≥0 -→ m p ∈ N is upper semi-continuous. Proof. Let p = (p 1 , . . . , p k ) ∈ R k ≥0 and 0 < < min i ∈A(p) {p i }. Hence p + I A(p)
, is an open neighborhood of p in R k ≥0 and if q ∈ p + I A(p), with q i = 0, then p i = 0 (since |q i | ≥ p i -> 0 for any i ∈ A(p)) which implies that A(q) ⊆ A(p) and so m q ≤ m p .

Let p ∈ R k ≥0 , and σ a permutation of {1, . . . , k} such that σ(A(p)) = {1, . . . , m p }. We denote by θ p,σ the ane map θ p,σ (q 1 , . . . , q k ) = p + (q σ(1) , . . . , q σ(k) )

Let > 0 be such that for any q ∈ (p+I A(p), ), m q ≤ m p . Then θ p,σ restricts to a homeomorphism from [0, ) mp ×(-, ) np to V p := p+I A(p), . We claim that its inverse θ -1

p,σ induces an isomorphism from A k + | Vp to (A mp + × R np )| [0, ) mp ×(-, ) np : consider the diagram V p Φ • θ -1 p,σ θ -1 p,σ B B f • θ -1 p,σ 8 8 [0, ) mp × (-, ) np Φ t t f G G R Φ([0, ) mp × (-, ) np ) f •Φ -1 V V Then it suces to prove that Φ • θ -1 p,σ induces an isomorphism between A k + | Vp and A k + | Φ([0, ) mp ×(-, ) np ) .
This follows from the fact that 

+ × R np )| [0, ) mp ×(-, ) np . Corollary 2.1.9. Let A k + | V be an open submanifold of A k + . Then any point p ∈ V has an open neighborhood isomorphic to A mp + × R np .
Proof. By proposition above it suces to notice that the map 

ϕ : [0, ) m × (-, ) n → R m ≥0 × R n ϕ(x 1 , . . . , x m , y 1 , . . . , y n ) = ( x 1 -x 1 , . . . , x m -x m , y 1 -(y 1 ) 2 , . . . , y n -(y n ) 2 ) induces an isomorphism between (A mp + × R np )| [0, ) mp ×(-, ) np and (A mp + × R np ).
A| int(A) = (int(|A|), O A | int(|A|) )
is a real analytic manifold because any section of O A | int(|A|) is an analytic function. This implies that at points in the interior of the manifold, the dimension is the only local invariant by isomorphisms. As we show below, this is not the case for points at the boundary ∂|A|: looking at the standard local model A k + , although any two points in the boundary have topologically equivalent neighborhoods, they would not have necessarily isomorphic neighborhoods in the category O.

In fact, the number of coordinate hyperplanes ("boundary components"), passing through the point will be invariant for local isomorphisms.

Let p ∈ |A| and (U, y) be a local chart at p and dene m p := |{i ∈ {1, . . . , k} : y i (p) = 0}|. We are going to prove that m p does not depend on the local chart chosen but only on the point p.

We need the following proposition Proposition 2.1.10. Let V 1 and V 2 two open subsets of R k ≥0 and suppose that the standard

analytic manifolds A k + | V 1 = (V 1 , O A k + | V 1 ) and A k + | V 2 = (V 2 , O A k + | V 2 ) are isomorphic via ϕ. Then for each p ∈ V 1 , m p = m ϕ(p) . Proof. Suppose A k + | V 1 = (V 1 , O A k + | V 1 ) and A k + | V 2 = (V 2 , O A k + | V 2 ) isomorphic via ϕ.
In particular, by Remark 2.1.5, the dierential d p ϕ is a linear isomorphism for any p ∈ V 1 .

Claim.-If i ∈ A(p) and e i = (0, ..., 0, 1 (i th ) , 0, ..., 0) is the i th vector of the canonical basis of R k then, for any j ∈ A(ϕ(p)), the j th -coordinate of d p ϕ(e i ) is equal to zero.

Once the claim proved, we obtain that m ϕ(p) ≤ m p because in M p , the jacobian matrix of d p ϕ, there are k -m p columns (d p ϕ(e l ) for any l ∈ A(p)) c i = (c 1,i , . . . c k,i ), 1 ≤ i ≤ k -m p , with c j,i = 0 for at least m ϕ(p) positions j. Since M p is invertible, the columns c 1 , . . . , c k-mp as vectors in R k are linearly independent but all of them lie in the k -m ϕ(p) dimensional subspace

j∈A(ϕ(p)) {(x 1 , . . . , x k ) ∈ R k : x j = 0}, so necessary k -m p ≤ k -m ϕ(p) , i.e. m ϕ(p) ≤ m p .
Proof of the claim.-Denote by φ the extension of ϕ to an analytic mapping from a neighborhood of p in R k . Write Taylor's formula of order one:

φ(p + te i ) = φ(p) + td p ϕ(e i ) + o(t).
(2.1)

Since i ∈ A(p), we have that p + te i ∈ V 1 for every t ∈ R suciently small and thus φ(p

+ te i ) = ϕ(p+te i ) ∈ V 2 .
Suppose that the j th -coordinate of d p ϕ(e i ) is equal to λ j = 0, for instance λ j > 0.

Then, for every t < 0 with |t| suciently small, taking into account that the j th -coordinate of ϕ(p) is equal to zero, the formula (2.1) above gives that the j th -coordinate of ϕ(p + te i ) has the sign of tλ j , i.e., negative which is impossible since

V 2 ⊂ R k ≥0 .
Since (ϕ, ϕ ) is an isomorphism, we can prove symmetrically that if i ∈ A(ϕ(p)) and e i = (0, ..., 0, 1 (i th ) , 0, ..., 0) is the i th vector of the canonical basis of R k then, for any j ∈ A(p), the j th -coordinate of d ϕ(p) ϕ -1 (e i ) is equal to zero and hence m p ≤ m ϕ(p) . Let {D(j) i } i∈I j be the connected components of D(j). We consider the partition of the underlying space |A| by these sets

|A| = k j=0 (∪ i j ∈I j D(j) i j ) Since α i : A → V i , i = 1, 2, are morphisms and p i (U ) is an open subset of V i , α i • ϕ -1 ∈ O A m + (ϕ(α -1 i (p i (U )))). Thus α i • ϕ -1 have an analytic expansion on a neighborhood of ϕ(a). As f ∈ O A k + (U ), f has an analytic expansion on a neighborhood of (α 1 (a), α 2 (a)) ∈ U , which implies that f (α 1 • ϕ -1 , α 2 • ϕ -1
) has an analytic expansion on a neighborhood of ϕ(a) as was to be proved.

Finally, just notice that if W i is an open subset of V i and g i ∈ O A k i + (W i ), g i • p i ∈ O A k + (p -1 i (W i )) because for any (v i,1 , v i,2 ) ∈ p -1 i (W i ), g i • p i (v i,1 , v i,2 ) = g i (v i,i
) which has an analytic expansion on a neighborhood of (v i,1 , v i,2 ) since g i has an analytic expansion on a neighborhood of v i,i . Now, let A 1 and A 2 be two standard analytic manifolds of dimension k 1 and k 2 respectively. We start by constructing a triplet P = (|P |, p 1 : P → A 1 , p 2 : P → A 2 ) as a candidate to be the product of A 1 and A 2 .

It is logical to pick as underlying topological space for P the cartesian product

|P | = |A 1 | × |A 2 |
with the product topology and as morphisms p 1 : P → A 1 , p 2 : P → A 2 the morphisms induced by the projections maps

p 1 = pr 1 : |P | = |A 1 | × |A 2 | → |A 1 | p 2 = pr 2 : |P | = |A 1 | × |A 2 | → |A 2 |
We construct now the sheaf O P that will determine the structure of standard manifold for P .

In 

B = {U 1 × U 2 ⊆ |A 1 | × |A 2 | : U i ⊂ |A i | is the domain of a coordinate chart , i = 1, 2} Let U 1 × U 2 ∈ B. Then A i | U i is isomorphic to A k i + | V i via ϕ i for i = 1, 2. Let Φ be the map Φ = (ϕ 1 , ϕ 2 ) : U 1 × U 2 → V 1 × V 2 ⊆ R k 1 ≥0 × R k 2 ≥0 = R k 1 +k 2 ≥0 Put k = k 1 + k 2 . Then Φ is an homeomorphism and V 1 × V 2 is an open subset of R k ≥0 . Let us dene Γ Φ (U 1 × U 2 , O P ) = {f : U 1 × U 2 → R/f • Φ -1 ∈ Γ(V 1 × V 2 , O A k + )}
First of all let us prove that this denition does not depend on the morphisms ϕ 1 , ϕ 2 such that (U 1 , ϕ 1 ), (U 2 , ϕ 2 ) are local charts which will endow the topological product with a well dened structure of standard analytic manifold. Let

ϕ i : U i → V i be isomorphisms between A i | U i and A k i + | V i and we dene Φ = (ϕ 1 , ϕ 2 ) : U 1 × U 2 → V 1 × V 2 then Γ Φ = Γ Φ . We can illustrate the situation with the diagram V 1 × V 2 Φ•Φ -1 8 8 f •Φ -1 8 8 U 1 × U 2 f Φ G G Φ o o V 1 × V 2 Φ •Φ -1 Ó Ó f •Φ -1 x x

R

The result is clear once we notice that Φ • Φ -1 and Φ • Φ -1 are morphisms of standard analytic manifolds (thus both isomorphisms), which can be seen using the denition of product and that there exists the product of open submanifolds of the local model. So A 1 r 

A 1 × A 2 = (|A 1 | × |A 2 |, O A 1 ×A 2 ) ∈Obj(O).
A 1 | U 1 h i 1 G G A 1 B ϕ 2 9 9 ϕ 1 U U ϕ 1 7 7 ϕ 2 W W A 2 | U 2 i 2 G G A 2 Notice that h = ϕ 2 • ϕ 1 -1 : A 1 | U 1 → A 2 | U 2 is
7 7 7 7 α 1 ( ( |A 1 | |A 2 | π G G |A| A 2 , W W W W α 2 f f Then we have that α i is continuous, that its image W i = α i (|A i |) is an open set of |A|, that α i : |A i | → W i
V ⊂ W 1 ∩ W 2 , we have O W 1 (V ) = O W 2 (V ): explicitly, O A will be given by O A (U ) = {f : U → R : f • α i ∈ O A i (α -1 i (U )), i = 1, 2} Dene if V ⊆ W i is open, O W i (V ) = {f : V → R : f • α i ∈ O A i (α -1 i (V ))}. With this denition, A i is isomorphic (in C) to W i via α i . Now, let V ⊂ W 1 ∩ W 2 be an open set. The homeomorphism α -1 1 • α 2 induces an isomorphism (of standard analytic manifolds) between the open submanifold α -1 2 (V ) of A 2 and α -1 1 (V ) of A 1 . Thus, if f : V → R is continuous, we have f • α 1 ∈ O A 1 (α -1 1 (V )) ⇔ f • α 2 ∈ O A 1 (α -1 2 (V )) which shows O W 1 (V ) = O W 2 (V ), as required. We claim that A = (|A|, O A ) is the gluing of A 1 , A 2 with respect
to the open immersions ϕ 1 , ϕ 2 . To see this, let (β 1 , β 2 , T ) be a triplet where T = (|T |, O T ) is a standard analytic manifold and β i :

A i → T are open immersions such that β 1 • ϕ 1 = β 2 • ϕ 2 .
We have to show that there exists an unique morphism f : A → T such that β i = f • α i for i = 1, 2. Uniqueness of f comes from the fact that |A| is the solution of the same universal problem in the category of topological spaces: the map f : |A| → |T | must be dened by

f (p) = α -1 1 (p) for p ∈ W 1 and f (p) = α -1 2 (p) for p ∈ W 2
We just have to prove that f is a morphism of standard analytic manifolds. This is a property that we can check locally. But f is locally dened either by

β 1 • α -1 1 on W 1 or by β 2 • α -1 2 on
W 2 , both morphisms in the category of standard analytic manifolds.

Local expression of morphisms.

Let A = (|A|, O A ) and B = (|B|, O B ) be standard analytic manifolds and ϕ : |A| → |B| a continuous map which induces a morphism from A to B. Let p ∈ |A| and ϕ(p) ∈ |B|. We want to investigate how is the local expression of the morphism ϕ when we take local coordinates centered at p and at ϕ(p).

More precisely, consider a local chart at p, i.e. an isomorphism φ :

A| Up → A mp + × R np | U 0 where U p is a neighborhood of p in |A| and U 0 is a neighborhood of 0 in R mp ≥0 × R np ,
and consider, correspondingly, a local chart ψ : B| V ϕ(p) → V 0 at ϕ(p) (one can chose U 0 and V 0 to be the whole space, according to corollary 2.1.9).

A| Up

(ϕ,ϕ ) G G (φ,φ ) B| V ϕ(p) (ψ,ψ ) A mp + × R np A m ϕ(p) + × R n ϕ(p)
Then, the map h

:= ψ • ϕ • φ -1 : R mp ≥0 × R np → R m ϕ(p) ≥0
× R n ϕ(p) has an analytic extension to a neighborhood of 0 ∈ R mp+np .

Reciprocally, any such continuous map h : U 0 → V 0 that induces a morphism (resp. isomorphism) h : In the following proposition, we just describe the conditions for a continuous map h to give rise to a morphism or an isomorphism between the corresponding open submanifolds of the local

A mp + × R np | U 0 → A m ϕ(p) + × R n ϕ(p) | V 0 gives
models A m + × R n = (R m ≥0 × R n , O m,n ).
Proposition 2.1.18. Let m, n, m , n be natural numbers, k = m+n and k = m +n . Let U , V be open neighborhoods of the origin in R m ≥0 ×R n and in R m ≥0 ×R n respectively. Let h : U → V be a continuous map with h(0) = 0, and h = (h 1 , ..., h k ) be the components of h as a map ranging in R k . Denote by (x, y) = (x 1 , . . . , x m , y 1 , . . . , y n ) and (z, w) = (z 1 , . . . , z m , w 1 , . . . ,

w n ) the coordinates in R m ≥0 × R n and R m ≥0 × R n . Then i) h induces a morphism (h, h ) : A m + × R n | U 0 → A m + × R n | V 0
where U 0 and V 0 are open neighborhoods of the origin in R m ≥0 × R n and R m ≥0 × R n respectively, if and only if each h j has an analytic extension on a neighborhood of the origin in R k .

ii) Assume that k = k and that h induces a morphism (h, h ) :

A m + × R n | U → A m + × R n | V . Then (h, h
) is an isomorphism in the category O if and only if m = m , n = n , h is an homeomorphism and for any j = 1, 2, . . . , m, z j = h j (x, y) = x i(j) g j (x, y) where g j an analytic function at 0 such that g j (x, y) = 0 for any (x, y) ∈ W for W a desirable neighborhood of 0 in R m ≥0 × R n and j → i(j) a permutation of {1, . . . , m}.

Proof. Necessity of part i) follows from the fact that the projections functions pr j : (p 1 , . . . ,

p k ) ∈ R m ≥0 ×R n → p j ∈ R are sections of O m ,n
over any open neighborhood of the origin in R m ≥0 ×R n , so if h induces a morphism, each pr j • h = h j is a section of O m,n over an open neighborhood of the origin in R m ≥0 × R n which implies that they admit an analytic extension to a neighborhood of the origin in R k . Conversely, suppose that each h j admits an analytic extension to U 0 ⊆ U an open neighborhood of the origin in R k . In particular, by the open mapping theorem for analytic functions, h is an open map, so

V 0 := h(U 0 ) is an open subset of V . Let W be an open subset of V 0 and f a section of O m ,n over W . Then f • h ∈ O m,n (h -1 (W )
) because it admits an analytic extension for any p ∈ h -1 (W ).

For ii), suppose that the continuous map h :

U 0 → V 0 induces an isomorphism of standard manifolds (h, h ) : A m + × R n | U 0 → A m + × R n | V 0 Since h(0) = 0, by proposition 2.1.10 m = m and hence n = n . Notice that h is an homeomor- phism, so h(∂(R m ≥0 × R n )) = ∂(R m ≥0 × R n ) = m i=1 {(z, w) ∈ R m ≥0 × R n : z i = 0} (2.2)
Condition (2.2) implies that for any j = 1, 2, . . . , m there exists α j = (α j 1 , . . . , α j m ) ∈ N m with α j = 0 such that

h j (x, y) = x α j g j (x, y) = x α j 1 1 • • • x α j m m g j (x, y) (2.3)
with g j analytic at 0, and g j (0, y) = 0 for any y = 0 close enough to 0 ∈ R n . Suppose g j (0, 0) = 0. Then, there exists i j ∈ {1, . . . , n} such that y i j divides g j and then y i j divides h j . This is not possible, because then we could take (x 0 , y 0 ) an interior point of {(x, y) ∈ R m ≥0 × R n :

y i j = 0} such that h(x 0 , y 0 ) ∈ {(z, w) ∈ R m ≥0 × R n : z i j = 0}, against (2.2).
Each of the rst m lines of the jacobian matrix of the dierential at 0 ∈ R m ≥0 × R n , d 0 h, is given by ∇(h j )(0, 0). By (2.3)

x α j 1 -1 1 x α j 2 -1 2 • • • x α j m -1 m divides ∇(h j )(x, y) (2.

4)

As h induces an isomorphism, d 0 ϕ is a linear isomorphism of R k . Then, there are not lines of zeroes on its jacobian matrix. Since α j = 0 and (2.4), for any j ∈ {1, . . . , m} there exists a unique i(j) ∈ {1, . . . , m} such that α j i(j) = 1 being the other components of α j equal to zero. We have then for any j = 1, 2, . . . m, h j (x, y) = x i(j) g j (x, y) Now, we prove that the map j → i(j) is a permutation of {1, . . . , m}. This follows from the fact that if we make the same construction for h -1 ,

h -1 (z, w) = (z l(1) f 1 (z, w), . . . , z l(m) f m (z, w), f m+1 (z, w), . . . , f k (z, w)), since h • h -1 (z, w) = (z, w) and h -1 • h(x, y) = (x, y), for 1 ≤ j ≤ m, z j = z l(i(j)) f i(j) (z, w)g j (h -1 (z, w))
x j = x i(l(j)) g l(j) (x, y)f j (h(x, y)) hence i : j ∈ {1, . . . , m} → i(j) ∈ {1, . . . , m} is a permutation of {1, . . . , m} (with inverse l). Denition 2.1.19. Let A = (|A|, O A ) be a standard analytic manifold and p ∈ |A|. Given a local chart (U, ϕ = (x 1 , . . . , x k )) of A at p and f ∈ O(U ) we say that f is monomial at p with respect to the local chart (U, ϕ) (or with respect to the coordinates x) if the Taylor expansion of the germ f p with respect to the coordinates x is of monomial type. In other words, that we can write locally f in the coordinates x as

f (x) = x α 1 1 • • • x αm m g(x), x ∈ U,
where g ∈ O(U ), vanishes nowhere in U , and each α i ∈ N. We say that f is monomial at the point p if it is monomial with respect to some local chart at p. Finally, we say that f is (locally) monomial if it is monomial at every point of A.

Denition 2.1.20. Let ϕ : A → B be a morphism of standard analytic manifolds. We say that ϕ is locally monomial if for any p ∈ |A| there exists local coordinates (U, φ = (x 1 , . . . , x k ))

centered at p such that all the components of ϕ are monomial at p with respect to these coordinates.

Examples 2.1.21. i) The morphism (x, y) ∈ L × R → (x, x + y) ∈ A + × R is locally monomial because with respect to the new coordinates (x , y ) = (x, x + y) its components are monomial.

ii) As a consequence of proposition 2.1.18 the morphism (x, y)

∈ A + × R → (x, x 2 (x 2 + y 2 )) ∈ L × R is not locally monomial.

2.2

G-analytic functions.

In this section we dene the concept of generalized analytic function. These are the functions on open subsets of quadrants R k ≥0 which can be represented locally by real convergent generalized power series, in the same way as the classical real analytic functions are those locally described by convergent power series. The principal dierence is that depending on the position of the point with respect to the boundary of the quadrant we are considering, the series will have a number of analytic or generalized variables. We need some notation.

Let k, m, n ∈ N, A ⊆ {1, . . . , k} and ξ = (ξ 1 , . . . , ξ k ) ∈ (0, ∞) k be a polyradius. We put

I A,ξ := B 1 × B 2 × • • •B k ⊆ R k ,
where the B i is either the interval [0,

ξ i ) ⊂ R if i ∈ A or the interval (-ξ i , ξ i ) if i ∈ A.
For a positive real number , we also write I A, for I A,( ,..., ) . Notice that, if m + n = k and A = {1, . . . , m}, then we have, according to the rst chapter, a second notation I A,ξ = I m,n,ξ which will be also used here.

Let G k denote the group of permutations of {1, . . . , k} and G m,n the subgroup of G m+n consisting on those permutations of {1, . . . , m + n} such that they induce separately permutations of {1, . . . , m} and {m + 1, . . . , m

+ n}. Given σ ∈ G k , σ : R k → R k σ(w 1 , . . . , w k ) = (w σ(1) , . . . , w σ(k) )
With this notation, σ denotes a permutation of {1, ..., k} or a map from R k to R k . We will deduce the meaning of σ from the context.

From now on, consider A ⊆ {1, . . . , k} and put m = m(A) = |A| and n = n(A) = k -m. Let G A denote the subset of permutations of {1, ..., k} sending A to {1, . . . , m}.

Remark 2.2.1. Given σ, τ ∈ G A , σ • τ -1 ∈ G m(A),n(A) .
Notice that if δ > 0 is suciently small, then, σ restricts to an homeomorphism σ : I A,δ → I m,n,δ (notice the abuse, again, of notation) whose inverse is also the restriction of a linear automorphism of R k induced by a permutation of {1, ..., k}, the inverse σ -1 , of σ.

If p = (p 1 , . . . , p k ) ∈ R k ≥0 , we put A(p) := {i ∈ {1, . . . , k} : p i = 0} m p = m(A(p)) := |A(p)| n p = n(A(p)) := k -m p G p := G A(p)
Notice that the family of sets {p + I A(p), } , where > 0 is suciently small, is a fundamental system of neighborhoods of p in R k ≥0 . By 2.1.7 the map

p ∈ R k ≥0 -→ m p ∈ N
is upper semi-continuous so for > 0 small enough, if q ∈ p + I A(p), , then A(q) ⊆ A(p), and therefore m q ≤ m p . (2.5)

Coordinates in R mp ≥0 × R np will be denoted, more conveniently, by (x 1 , . . . , x mp , y 1 , . . . , y np ),

reecting the number and position of factors which are half real lines and those which are real lines.

Notice that for any small δ > 0, θ p,σ restricts to an homeomorphism from I mp,np,δ to p + I A(p),δ sending 0 ∈ I mp,np,δ to p ∈ p + I A(p),δ .

Graphically,

θ p I mp,np,δ p + I A(p),δ 0 θ p (0) = p = (p 1 , 0) x 1 y 1 (x 1 , y 1 ) -→ (p 1 + y 1 , x 1 ) z 1 z 2
Denition 2.2.2. Let V be an open set in R k ≥0 and let p ∈ V . A function f on V is said to be generalized analytic or, shortening, G-analytic at p if there exists δ > 0, a convergent series

s ∈ R X * , Y mp,np and σ ∈ G p such that i) (p + I A(p),δ ) ⊆ V ii) s ∈ R X * , Y mp,np,δ iii) S δ (s)| I mp,np,δ = f | (p+I A(p),δ ) • θ p,σ
We say that f is G-analytic on V if it is G-analytic at every point p of V . Remark 2.2.3. The denition above does not depend on the choice of σ in the following sense: if δ, s and σ are as in that denition satisfying i), ii) and iii), then for any τ ∈ G p there exists t ∈ R X * , Y mp,np,δ (which depends on τ ) such that S δ (t)| I mp,np,δ = f | (p+I A(p),δ ) • θ p,τ . To prove this claim, take τ ∈ G p and let η = σ -1 • τ , a permutation of {1, ..., k}. Denote by ηs the series in R{(X, Y ) * } obtained by the morphism of substitution (see Proposition 1.2.10) of the variable X i by X η(i) and of the variable Y i by Y η(i+m)-m . Notice that this series belongs actually to R{X * , Y } mp,np,δ because η induces a permutation of the generalized variables X j and a permutation of the analytic ones Y j . The remark follows from the observation that θ p,σ = θ p,τ • η and the fact that S δ (ηs

) = S δ (s) • η, from Proposition 1.2.21. Denition 2.2.4. Let V be an open subset of R k ≥0 . We let G L k (V ) denote the set of G-analytic functions on V : G L k (V ) := {f : V → R : f is G-analytic on V } Then G L k (V )
is a R-subalgebra of the algebra of continuous functions on V with respect to the natural inclusion R → G L k (V ) that identies a real number with the corresponding constant function. It is a straightforward computation, as a consequence of the fact that the sum of convergent series is an algebra homomorphism (see Proposition 1.2.20), to check that G L k (V ) is a sub R-algebra of the algebra of real functions on V .

Theorem 2.2.5. i) A G-analytic function f at a point p is continuous at that point.

ii

) A G-analytic function at a point in the interior of R k ≥0 in R k (that is, a point p = (p 1 , . . . , p k ) ∈ R k ≥0 such that p i = 0 for all 1 ≤ i ≤ k) is analytic at this point. iii) Let V be an open subset of R k ≥0 , p a point in V and f : V → R a function which is G-analytic at p. Then there exists a neighborhood of p, W ⊆ V , such that f is G-analytic on W . As a consequence, if V is an open subset of R k ≥0 and f : V → R is G-analytic on V , f is continuous on V and analytic on the interior in R k of V .
Proof. Part i) follows from the fact that f coincides with the sum of a convergent generalized power series in a neighborhood of p and such a sum is continuous by 1.2.20. Part ii) follows from denition of G-analytic function.

For iii), if f is analytic at p then, by denition there exists δ > 0, s ∈ R X * , Y mp,np and σ ∈ G p such that

(p + I

A(p),δ ) ⊆ V and s ∈ R X * , Y mp,np,δ 2. S δ (s)| I mp,np,δ = f | (p+I A(p),δ ) • θ p,σ
Take δ > 0 such that δ ≤ min i ∈A(p) {p i }. Then, for all q ∈ p + I A(p),δ , A(q) ⊆ A(p) and therefore m q ≤ m p (see 2.1.7). We claim that f is G-analytic on p + I A(p),δ . Let q = (q 1 , . . . , q k ) be a point in p + I A(p),δ and consider a = (a 1 , . . . , a k ) := θ -1 p,σ (q) ∈ I mp,np,δ . Put m = |{i ∈ {1, . . . , m p } : a i = 0}| and n = k -m .

By Proposition 1.2.23 given a permutation τ of {1, . . . , k} such that τ (A(a)) = {1, . . . , m } and > 0 such that a + τ (w) ∈ I mp,np,δ whenever w ∈ I m ,n , , there exists a unique T a s ∈ R{U * , V } m ,n , such that

S (T a s)(w) = S δ (s)(a + τ (w))
for all w ∈ I m ,n , .

Consider the composition of permutations η = τ σ. We have, in one hand, that η ∈ G A(q) : If j ∈ A(q) then the j th -coordinate q j of q is equal to zero. But q j = p j + a σ(j) and, since A(q) ⊆ A(p), p j = 0 and thus a σ(j) = 0. This implies that σ(j) ∈ A(a) and then that η(j) = τ (σ(j)) ∈ {1, . . . , m }.

On the other hand, we have that θ a,τ (I m ,n , ) ⊂ a + τ (I m ,n , ) ⊂ I m,n,δ , so that the composition θ p,σ • θ a,τ is well dened in I m ,n , . But this composition is nothing more than the map θ q,τ σ , obtaining nally

S (T a s) = S δ (s) • θ a,τ = f • θ p,σ • θ a,τ = f • θ q,τ σ
which shows that f is G-analytic at the point q, as was to be proved.

For p ∈ R k ≥0 we consider the R-algebra of germs of G-analytic functions at p in the usual way: it is the quotient of the set {(V, f ) : p ∈ V, V open and f : V → R G-analytic at p} by the equivalence relation (V, f ) ∼ (U, g) if and only if there exists an open neighborhood of p, W ⊂ U ∩ V such that f | W = g| W . Let G L k ,p denote the R-algebra of germs of G-analytic functions at p. Proposition 2.2.6. For any p ∈ R k ≥0 the R-algebra G L k ,p is isomorphic to R X * , Y mp,np . As a corollary, the R-algebra of germs of generalized analytic functions G L k ,p is a local R-algebra whose maximal ideal consists of those germs of functions which take the value zero at p. Proof. Let p ∈ R k ≥0 . As in the beginning of this section, let A(p) = {i ∈ {1, ..., k} : p i = 0} and let G p be the set of permutations of {1, . . . , k} that send A(p) into {1, . . . , m p }. Fix σ ∈ G p and denote by θ p,σ the map dened in R mp ≥0 × R n p by θ(w) = p + σ(w).

Let s ∈ R X * , Y mp,np,δ be a given convergent generalized series and denote, as in 1.2.20 by S δ (s) its sum, a G-analytic function on I mp,np,δ ⊂ R k ≥0 . By its very denition, the composition S δ (s) • θ -1 p,σ is a G-analytic function in some neighborhood of p. We can then consider the map

F σ : R X * , Y mp,np → G L k ,p (2.6) 
assigning to an element s ∈ R X * , Y mp,np,δ the germ at p of S δ (s) • θ -1 p,σ , which is well dened (the germ of such a composition does not depend on the polyradius δ as long as the series has radius of convergence greater or equal to δ). The fact that the sum operator S δ is an algebra homomorphism between R X * , Y mp,np and C 0 (I A(p),δ ; R), gives directly the result that F σ is an R-algebra homomorphism.

Let us see nally that F is a bijection. It is injective thanks to the fact that the sum morphism S δ is injective. Surjectivity of F σ comes from denition: if f p ∈ G L k ,p is the germ of some G-

analytic function f ∈ G L k (U )
, by denition of G L k (U ) (and Remark 2.2.3) there exists δ > 0 and s ∈ R X * , Y mp,np,δ such that S δ (s) = f • θ p,σ . Then, F σ (s) = f p .

Notice that we have proved that the morphism F σ in (2.6) is an isomorphism for any σ ∈ G p . Following Remark 2.2.1, if σ, τ ∈ G p , we obtain that given a germ f p , the two series F -1 σ (f p ), F -1 τ (f p ), are obtained one from the other by the permutation σ • τ -1 (or its inverse) of the variables X, Y . This permutation belongs to the subgroup G mp,np of permutations of the k variables which induce separate permutations, one on the generalized variables X and another permutation on the analytic ones Y . Thus we can dene Denition 2.2.7. Given p ∈ R k i

≥0 and f p ∈ G L k ,p , the series F -1 σ (f p ) ∈ R X * ,
) If V is an open subset of R k ≥0 and f : V → R is a function which is the restriction to V of a real analytic function on an open set of R k containing V , then f is G-analytic on V .
This is an easy consequence of the fact that, given variables X and Y , we have naturally the inclusion R{X,

Y } ⊂ R{X * , Y }. ii) If s ∈ R X * , Y m,n,δ , then its sum is G-analytic on I m,n,δ . iii) sin(x λ y µ ) in R 2 ≥0 iv) log(1 + x λ ) in R ≥0 v) Let ζ denote the Riemann zeta function. Then, ζ(-log x) = ∞ n=1 x log(n) : [0, e -2 ) → R is G-analytic.

2.3

Generalized analytic manifolds.

We are going to dene a subcategory G of C that will be called the category of generalized analytic manifolds.

In order to dene G we proceed as follows. First of all we construct a particular object L k in G for each k ∈ N called the Standard Local Model of dimension k. Then objects of G are those objects in the category C which are locally isomorphic to some L k as ringed spaces. Morphisms in G will be the morphism in C when consider the objects of G as objects in C so that G will be a full subcategory of C.

We consider R k ≥0 as a topological space with the topology of subspace of 

R k . If U is an open set of R k ≥0 the assignment U → G L k (U ) of G-
G L k (U ) → G L k (V ), f → f | V each time that V ⊂ U , is a sheaf on R k ≥0 .
Moreover, by 2.2.4 and theorem 2.2.5, it is a subsheaf of local R-algebras of the sheaf of continuous functions. We dene the standard local model of generalized analytic manifold of dimension k as 

L k = (R k ≥0 , G L k ).
V ⊂ R k ≥0 such that the restrictions M | U = (U, G M | U ) and L k | V = (V, G L k | V ) are isomorphic in the category C. Denition 2.3.2. If M = (|M |, G M ) is a G-manifold, an open submanifold of M is the locally ringed space M | U = (U, O M | U )
ϕ : G N,ϕ(p) -→ G M,p ϕ(f | ϕ(p) ) = (f • ϕ)| p is an isomorphism of R-algebras.
Examples 2.3.3. We give some examples of generalized analytic manifolds to illustrate the denition. Most of them will be used through this work.

i) Let O R k denote the sheaf of analytic functions over R k . Then (R k , O R k ) is a generalized
analytic manifold. To see that, remark that the homeomorphism ϕ :

R k → R k >0 ⊆ R k ≥0
dened by ϕ(y 1 , . . . , y k ) = (e y 1 , . . . , e y k ) induces an isomorphism (of locally ringed spaces)

from (R k , O R k ) to L k | R k >0 = (R k >0 , G L k | R k >0 ). Then, in particular, for V open subset of R k , if we let O V denote the sheaf of analytic functions on V , (V, O V ) is a generalized analytic manifold.
ii) More generally, if M = (|M |, O M ) is a real analytic manifold (with the sheaf-theoretic interpretation; that is, that O M is the sheaf of real analytic function on the underlying variety |M |), then M is a generalized analytic manifold. This is an immediate consequence of example above.

iii) The local model

L k = (R k ≥0 , G L k ) is a generalized analytic manifold of dimension k. iv) Consider R m ≥0 × R n with the product topology. Let Φ : R m ≥0 × R n → R m ≥0 × R n >0 ⊂ R m+n ≥0
be the map dened by

(x, y) ∈ R m ≥0 × R n Φ -→ (x, ϕ(y)) = (x, e y 1 , . . . , e y k ) ∈ R m ≥0 × R n >0
It is a homeomorphism. We can endow an structure of generalized analytic manifold to

R m ≥0 × R n via this homeomorphism: just consider the sheaf G m,n dened by assigning to each open set V ⊂ R m ≥0 × R n the R-algebra of functions f : V → R such that f • Φ -1 is a G-function on the open set Φ(V ) of R m+n ≥0 .
For reasons that will be clear below, we call the generalized analytic manifold 

L m × R n := (R m ≥0 × R n , O m,n ) the (m, n) mixed (
z : U -→ V z(q) =(z 1 (q), . . . , z k (q))
is a homeomorphism which induces an isomorphism of generalized analytic manifolds 

M | U = (U, G M | U ) and L k | V = (V, G L k | V ).
(L mp × R np )| [0, ) mp ×(-, ) np . As a consequence, given L k | V , an open submanifold of L k , any point p ∈ V has an open neighborhood isomorphic to L mp × R np .
Proof. Let p ∈ R k ≥0 , A(p) ⊂ {1, ..., k} and σ ∈ G p as dened in 2.2. For δ > 0 suciently small, the map θ p,σ as in equation (2.5) restricts to a homeomorphism from the neighborhood I mp,np,δ of (0, ..., 0) in R k ≥0 to the neighborhood I A(p),δ of p in R k ≥0 . Then we have that its inverse θ -1 p,σ induces an isomorphism between L k | I A(p),δ and (L mp × R np )| I mp,np,δ . In this way we can see θ -1 p,σ as a local chart at p, centered at p. Now, it suces to notice that the map

ϕ : [0, ) m × (-, ) n → R m ≥0 × R n ϕ(x 1 , . . . , x m , y 1 , . . . , y n ) = ( x 1 -x 1 , . . . , x m -x m , y 1 -(y 1 ) 2 , . . . , y n -(y n ) 2 ) induces an isomorphism between (A mp + × R np )| [0, ) mp ×(-, ) np and (A mp + × R np ). Denition 2.3.6. Let M = (|M |, G M ) be a k-dimensional generalized analytic manifold. Let U
be an open subset of |M | and f : U → R a continuous function on U . Let p ∈ U . We just say that f is G-analytic at p if the germ of f at p belongs to the local algebra G M,p . The function f will be called a G-analytic function on U if it is G-analytic at every point of U . Equivalently, since G M is a sheaf, f is G-analytic on U if it belongs to the algebra G M (U ) of sections of the structural sheaf.

By the very denition of G-analytic manifold, we deduce that f is G-analytic at a point p ∈ U if and only if there exists a local chart at the point p, z :

U p → V ⊆ R k ≥0 such that the function f • z -1 : V → R is G-analytic at ϕ(p). If f is G-analytic at p for all p ∈ U we say that f is G-analytic on U .
Remark that this property does not depend on the choice of the local chart z. If U 1 , U 2 are open neighborhoods of p and z i :

U i → V i are isomorphisms from M | U i to L k | V i , we have the diagram V 1 z 2 •z -1 1 z -1 1 5 5 f •z -1 1 0 0 U 1 ∩ U 2 f G G R V 2 z -1 2 Y Y f •z -1 2 d d then if f • z -1 1 is G-analytic at z 1 (p) it is G-analytic on a neighborhood V of z 1 (p) (see 2.2.5), that is f • z -1 1 ∈ G L k (V ). As z 1 • z -1 2 is an isomorphism, f • z -1 1 • z 1 • z -1 2 = f • z -1 2 ∈ G L k (W ) where W = z 2 • z -1 1 (V ). In particular f • z -1 2 is G-analytic at z 2 (p).
Denition 2.3.7. Given f a G-analytic function over M and p ∈ M , let (U, ϕ = (x 1 , . . . , x k )) be a local chart of M at p. The Taylor expansion of f at p with respect to these coordinates is the series in R{X * }, X = (X 1 , ..., X k ) which is the Taylor expansion of the the germ of f • ϕ -1 at ϕ(p) ∈ R k ≥0 (It is well dened up to a permutation of the generalized variables (those X j such that x j (p) = 0) and a permutation of the analytic ones (those X j such that x j (p) = 0). 

(U λ , ϕ λ )} λ∈Λ is an G-atlas of |M | if i) For any λ ∈ Λ, U λ is an open subset of |M | and ϕ λ : U λ → ϕ λ (U λ ) ⊆ R k ≥0 is an homeo- morphism. ii) X = λ∈Λ U λ iii) For any λ, µ ∈ Λ, ϕ λ • ϕ -1 µ : ϕ µ (U µ ∩ U λ ) → ϕ λ (U µ ∩ U λ ) is an isomorphism in G.
Let U an open subset of |M |. We denote by G M (U ) the set of continuous functions f : U → R such that for any p ∈ U , there exists an open

V ⊆ U such that f • ϕ -1 λ : ϕ λ (V ∩ U λ ) → R is G-analytic at ϕ(p) ∈ R k ≥0 for any λ ∈ Λ such that p ∈ U λ . Proposition 2.3.9. The pair X = (|X|, O X ) is a generalized analytic manifold. Proof. By denition, X ∈Obj(C). Let p ∈ |X|. Let λ ∈ Λ such that p ∈ U λ . Then, ϕ -1 λ induces a morphism from L k | ϕ λ (U λ ) to X| U λ by denition of X. Moreover, ϕ λ : U λ → ϕ λ (U λ ) induces a morphism from X| U λ to L k | ϕ λ (U λ ) : let V be an open subset of ϕ λ (U λ ) and g : V → R a section of G L k over V . Then, g •ϕ λ ∈ G X (ϕ -1 λ (V )) because if q ∈ ϕ -1 λ (V ), and µ ∈ Λ is such that q ∈ U µ , f • ϕ λ • ϕ -1 µ ∈ G L k (ϕ µ • ϕ -1 λ (V )) since by condition iii) of 2.3.8 g ∈ G L k (V ) → g • ϕ λ • ϕ -1 µ ∈ G L k (ϕ µ • ϕ -1 λ (V )
) is an isomorphism. The Theorem above shows that at points in the interior of the manifold, the dimension is the only local invariant by isomorphisms. As we show below, this is not the case for points at the boundary ∂|M |: looking at the standard local model R k ≥0 , although any two points in the boundary have topologically equivalent neighborhoods, they would not have necessarily isomorphic neighborhoods in the category of generalized analytic manifolds. In fact, the number of coordinate hyperplanes ("boundary components"), passing through the point will be invariant for local isomorphisms.

Stratication by the number of boundary components.

Let (U, z) be a local chart at p and dene m p := |{i ∈ {1, . . . , k} : z i (p) = 0}|. We are going to prove that m p does not depend on the local chart chosen but only on the point p. We need the following proposition Proposition 2.3.11. Let U and V two open sets of R k ≥0 and suppose that the generalized ana-

lytic manifolds L k | U = (U, G L k | U ) and L k | V = (V, G L k | V ) are isomorphic via the homeomorphism ϕ : U → V . Then for each p ∈ U , m p = m ϕ(p) and so n p = n ϕ(p) .
Proof. Assume that m p ≥ m ϕ(p) (otherwise, take the inverse of ϕ). To say that L k | U and L k | V are isomorphic via ϕ means that, for any q ∈ U the induced local homomorphism on the stalks

ϕ q : G L k ,ϕ(q) -→ G L k ,q f ϕ(q) → (f • ϕ) q is an isomorphism. Let p ∈ U . By lemma 2.2.6 G L k ,ϕ(p) is isomorphic to R X * , Y m ϕ(p) ,nϕ(p)
and G L k ,p is isomorphic to R Z * , W mp,np . It is important to recall what are the isomorphisms considered in that proposition: they are given by the maps

F := F σ,ϕ(p) : R X * , Y m ϕ(p) ,n ϕ(p) → G L k ,ϕ(p) G := F τ,p : R{Z * , W } mp,np → G L k ,p
where F (and similarly for G)

sends a series s ∈ R X * , Y m ϕ(p) ,n ϕ(p) to the germ of S δ (s)•θ -1 ϕ(p),σ
at ϕ(p), σ being a permutation in G ϕ (p) and θ ϕ(p),σ is dened as in (2.5) We have the diagram

G L k ,ϕ(p) ϕp G G G L k ,p R X * , Y m ϕ(p) ,n ϕ(p) F y y φ:=G -1 •ϕp•F G G R Z * , W mp,np G y y
As Z j has all N th -roots in R Z * , W mp,np , and φ is an algebra homomorphism, we have that φ(Z j ) also have all N th -roots and then, by Proposition 1.1.20 φ(Z j ) = X α j U j for all j ∈ {1, . . . , m p } where the U j are units. Notice that α j = 0 because Z j is not a unit and an isomorphism send non units to non units. Consider at ϕ(p) the local chart z = ( z1 , . . . , zk ) = θ -1 ϕ(p),σ and at p the local chart z = ( z1 , . . . , zk ) = θ -1 p,τ (cf. proposition 2.3.5). Denote by zj the germ of zj at ϕ(p), etc. By the way we have dened the isomorphism F , we have F (Z j ) = zj for j = 1, ..., m ϕ(p) and F (W j ) = zj+m ϕ(p) for j = 1, ..., n. Write then z = (z, w) where z are the rst m ϕ(p) components of z and w are the last n ϕ(p) components. Similarly we put x = (x, y) where x are the rst m p components of x and y are the last n p components.

Write the map ϕ in these coordinates as ϕ(x, y) = (ϕ 1 (x, y), . . . , ϕ k (x, y))

where ϕ j = zj • ϕ. By denition, the germ of ϕ j is the image by the isomorphism ϕ p of zj . Using the commutative diagram above, we obtain, in a neighborhood of p, the expression

ϕ(x, y) = (x α 1 u 1 (x, y), . . . , x αm ϕ(p) u m ϕ(p) (x, y), ϕ m ϕ(p) +1 (x, y), . . . , ϕ k (x, y))
where u j denotes the sum of the convergent series U j (X, Y ) ∈ R X * , Y mp,np . Thus we have ϕ j (0, y) = 0 for j ∈ {1, . . . , m ϕ(p) } and every small y. Together with the assumption m p ≥ m ϕ(p) , this implies that ϕ restricts to a map from {(x, y)/x = 0} into {(z, w)/z = 0}. This two sets being open subsets of R np and R n ϕ(p) respectively, and ϕ being injective, the Invariance of the Domain Theorem implies that n p = n ϕ(p) as was to be proved.

Remark 2.3.12. A natural question that arises from the proof of the Proposition above is whether two algebras of convergent mixed generalized series R X * , Y m,n and R{Z * , W } m ,n are isomorphic if and only if m = m and n = n . This is easily the case for m or m is equal to 0 because it is the only case where such an algebra is noetherian. In our proof we have only shown that the number of analytic or non-analytic variables are the same if the isomorphism, φ, is given by a morphism on the sheaf structure, that is, by "composing" series under a homeomorphism. Let {D(j) i } i∈I j be the connected components of D(j). We consider the partition of the underlying space |M | by these sets

|M | = k j=0 (∪ i j ∈I j D(j) i j )
Proposition 2.3.14. For each j ∈ {0, ..., k} and each i ∈ I j , D(j) i is a locally closed set and the restricted sheaf (D(j) i , G M | D(j) i ) gives rise to a (standard) real analytic manifold of dimension k -j. More precisely, consider a local chart at p, i.e. an isomorphism φ :

M | Up → L mp × R np | U 0 where U p is a neighborhood of p in |M | and U 0 is a neighborhood of 0 in R mp ≥0 × R np ,
and consider, correspondingly, a local chart ψ : N | V ϕ(p) → V 0 at ϕ(p) (one can chose U 0 and V 0 to be the whole space, according to proposition 2.3.5).

M |

Up (ϕ,ϕ ) G G (φ,φ ) N | V ϕ(p) (ψ,ψ ) L mp × R np L m ϕ(p) × R n ϕ(p)
Then, the map h

:= ψ • ϕ • φ -1 : R mp ≥0 × R np → R m ϕ(p) ≥0 × R n ϕ(p) is G-analytic at 0 ∈ R mp+np .
Reciprocally, any such continuous map h : U 0 → V 0 that induces a morphism (resp. isomorphism) h :

L mp × R np | U 0 → L m ϕ(p) × R n ϕ(p) | V 0
gives rise, by reversing the charts φ and ψ to a morphism (resp. isomorphism) from an open submanifold of M containing p to an open submanifold of N containing ϕ(p).

In the following proposition, we just describe the conditions for a continuous map h to give rise to a morphism or an isomorphism between the corresponding open submanifolds of the local

models L m × R n = (R m ≥0 × R n , G m,n ). Proposition 2.3.15. Let m, n, m , n be natural numbers, k = m+n and k = m +n . Let U , V
be open neighborhoods of the origin in R m ≥0 ×R n and in R m ≥0 ×R n respectively. Let h : U → V be a continuous map with h(0) = 0, and h = (h 1 , ..., h k ) be the components of h as a map ranging in R k . Denote by (x, y) = (x 1 , . . . , x m , y 1 , . . . , y n ) and (z,

w) = (z 1 , . . . , z m , w 1 , . . . , w n ) the coordinates in R m ≥0 × R n and R m ≥0 × R n . Then i) h induces a morphism (h, h ) : L m × R n | U 0 → L m × R n | V 0 where U 0 and V 0 are open neighborhoods of the origin in R m ≥0 × R n and R m ≥0 × R n respectively, if and only if each h j is G-analytic at the origin in R m ≥0 × R n , and for j = 1, 2, . . . , m , h j (x, y) = x α j g j (x, y) = x α j 1 1 • • • x α j m m g j (x, y)
for a certain α j ∈ [0, ∞) m and g j a section of G m,n with g j (x, y) > 0 for any (x, y) close enough to the origin in R m ≥0 × R n , and the map y → (h m+1 (0, y), . . . , h k (0, y)) induces an analytic morphism from R n to R n .

ii) Assume that k = k and that h induces a morphism (h, h ) :

L m × R n | U → L m × R n | V .
Then (h, h ) is an isomorphism in the category G if and only if m = m , n = n , h is an homeomorphism, y → (h m+1 (0, y), . . . , h k (0, y)) induces an analytic automorphism of R n and for any j = 1, 2, . . . , m,

z j = h j (x, y) = x a j i(j) g j (x, y)
being a j > 0, g j an analytic function at 0 such that g j (x, y) > 0 for any (x, y) ∈ W for W a desirable neighborhood of 0 in R m ≥0 × R n and j → i(j) a permutation of {1, . . . , m}.

Proof. For i), suppose that h induces a morphism (h, h ) :

L m × R n | U 0 → L m × R n | V 0 where U 0 and V 0 are open neighborhoods of the origin in R m ≥0 × R n and R m ≥0 × R n respectively. Since the projection maps pr j : (p 1 , . . . , p k ) ∈ R m ≥0 × R n → p j ∈ R are sections of G m ,n over any open neighborhood of the origin, h j = pr j • h = h (pr j ) are G-analytic at 0. We have the diagram G m ,n ,0 h 0 G G G m,n,0 R Z * , W m ,n F y y φ:=G -1 •h 0 •F G G R X * , Y m,n G y y
where F and G are dened as in 2.2.6. Notice that with the notations of 2.2.6 we can take θ equal to the identity for F and G. Thus, for 1 ≤ j ≤ m , F (Z j ) is the germ at 0 of the projection map pr j , which implies that φ(Z j ) is the Taylor expansion of h j at 0. By proposition 1.1.20, since φ(Z j ) has an N th -root for any N ∈ N (φ(Z 1/N j )), there exists α j ∈ [0, ∞) m and a unit U j ∈ R X * , Y m,n with U j (0, 0) > 0 such that φ(Z j ) = X α j U j . Let g j denote the sum of U j , then for any (x, y) close enough to the origin in R m ≥0 × R n g j (x, y) > 0 and by construction of G, h j (x, y) = x α j g j (x, y).

For m +1 ≤ j ≤ k , h j (0, y) = S (F -1 (h j ))(0, y) = S (F -1 (h j )(0, Y )) for an > 0 small enough, which implies that y → h j (0, y) is analytic. Then, the map y → (h m+1 (0, y), . . . , h k (0, y)) induces an analytic morphism form R n to R n .

To prove the reciprocal of part i), let U 0 be an open neighborhood of the origin in R m ≥0 × R n such that g j (x, y) > 0 for any (x, y) ∈ U 0 and any j with 1 ≤ j ≤ m ; such that the map y → h m +j (0, y) is analytic at any y ∈ pr R n (U 0 ) for any j ∈ {1, . . . , n } where pr R 

n : (x, y) ∈ R m ≥0 × R n → y ∈ R n ; and such that h j is G-analytic at any (x, y) ∈ U 0 . Put V 0 := h(U 0 ). Notice that by the hypothesis h j (x, y) = x α j g j (x, y), for 1 ≤ j ≤ m , V 0 ⊆ R m ≥0 × R n . If W is an open subset of V 0 and f ∈ G m ,n | V 0 (W ),
(x, y) ∈ h -1 (W ), so f • h ∈ G m,n | U 0 (h -1 (W )).
To prove part ii), if h induces an isomorphism, h is an homeomorphism so k = k , and since h(0) = 0, by proposition 2.3.11, m = m and so n = n . By part i), the coordinates x and z are related via h by the equations

       z 1 = x α 1 g 1 (x, y) z 2 = x α 2 g 2 (x, y) . . . z m = x αm g m (x, y)        x 1 = z β 1 f 1 (z, w) x 2 = z β 2 f 2 (z, w) . . . x m = z βm f m (z, w) (2.7)
Dene the matrices A := (α j i ) 1≤i,j≤m and B := (β j i ) 1≤i,j≤m . Since h • h -1 = id, the product of the matrices AB is equal to the identity matrix Id m . In particular the matrix A is invertible so, for all j ∈ {1, . . . , m}, (α j 1 , . . . , α j m ) = (0, . . . , 0).

Now we claim that

α j i = 0 ⇒ α k i = 0 (2.8)
for all i ∈ {1, . . . , m} and j = k, j, k ∈ {1, . . . , m}: if there existed i ∈ {1, . . . , m} and j = k, such that α j i = 0 = α k i we would have, by 2.7, that the homeomorphism h| (R m ≥0 ) sends {x i = 0} to {z k = 0 = z l } which is not possible because the Invariance of domain theorem.

Then, by (2.8), the columns of A have only one component not equal to zero. As A is invertible, the rows too. This implies that for any j ∈ {1, . . . , m}, there exists a unique i(j) ∈ {1, . . . , m} such that α j i(j) = 0 and that if j = k, i(j) = i(k), so j → i(j) is a permutation of {1, . . . , m}. The rest of the properties and the reciprocal follow from part i) and the implicit functions theorem

1.2.15. Denition 2.3.16. Let M = (|M |, G M ) be a G-analytic manifold and p ∈ |M |. Given a local chart (U, ϕ = (x 1 , . . . , x k )) of M at p and f ∈ G(U )
we say that f is monomial at p with respect to the local chart (U, ϕ) (or with respect to the coordinates x) if the Taylor expansion of the germ f p with respect to the coordinates x (see denition 2.3.7) is of monomial type. In other words, that we can write locally f in the coordinates x as

f (x) = x α 1 1 • • • x αm m g(x), x ∈ U,
where g ∈ G(U ), vanishes nowhere in U , and each α i ∈ [0, ∞). We say that f is monomial at the point p if its monomial with respect to some local chart at p. Finally, we say that f is (locally) monomial if it is monomial at every point of M . Remark 2.3.17. i) f is monomial at any point p ∈ M such that f (p) = 0 (by denition).

ii) f is monomial at p if and only if there exists local coordinates such that the Taylor expansion of f at p with respect to these coordinates (see 2.3.7) is of monomial type. However, we can chose dierent local coordinates for which the Taylor expansion of f at p is not of monomial type. For instance y 1 ∈ R{y 1 , y 2 } is of monomial type but the change of coordinates y 1 = z 1 + z 2 , y 2 = z 2 makes it not monomial.

iii) f is locally monomial if and only if {f = 0} has normal crossing, that is, at any point p of {f = 0} there are local coordinates such that {f = 0} is locally at p the union of some coordinate planes.

iv) As a consequence of Lemma 1.1.12, if f = hg and f is locally monomial, then so are h and g.

v

) If f j = x α j u j (x) is locally monomial for j = 1, 2, 3, then either α 1 ≤ α 2 or α 2 ≤ α 1 (see, for instance Lemma 4.7 of [2]). Proposition 2.3.18. If f ∈ G(M
) is monomial at a point p ∈ M then there exists a neighborhood U of p such that f is monomial at any point of U .

Proof. By denition there are coordinates around p, (U, ϕ = (x 1 , x 2 , . . . , x mp , y 1 , y 2 , . . . , y np ))

such that the function f :

U → R is given by f (x, y) = x α y β h(x, y) where h ∈ G(U ) vanishes nowhere in U and α ∈ [0, ∞) mp , β ∈ N np . We can moreover assume that f • ϕ -1 ∈ G L k (ϕ(U ))
is the sum of a convergent series of monomial type

s(X, Y ) = X α Y β H(X, Y ) ∈ R{X * , Y }
where H is a unit, and that ϕ(U ) is contained in the domain of convergence of s. We can see that the Taylor expansion T a s of s at any point a ∈ U is again a series of monomial type. The proof is consequence then of Theorem 1.2.23.

Denition 2.3.19. Let ϕ : M → N be a morphism of G-manifolds. We say that ϕ is locally monomial if for any p ∈ |M | there exists local coordinates (U, φ = (x 1 , . . . , x k )) centered at p such that all the components of ϕ are monomial at p with respect to these coordinates.

Examples 2.3.20. i) The morphism (x, y) ∈ L × R → (x, x + y) ∈ L × R is locally monomial because with respect to the new coordinates (x , y ) = (x, x + y) its components are monomial.

ii) As a consequence of proposition 2.3.15 the morphism (x, y)

∈ L × R → (x, x 2 (x 2 + y 2 )) ∈ L × R is not locally monomial.

Products

Proposition 2.3.21. G is a category with product.

In order to prove this proposition, we state rst the version for open submanifolds of the local

models L k : Lemma 2.3.22. Let V 1 ⊂ R k 1 ≥0 and V 2 ⊂ R k 2 ≥0 be open sets and let V = V 1 × V 2 ⊂ R k ≥0 , where k = k 1 + k 2 . Considering V 1 , V 2 and
V as open submanifolds of L k 1 , L k 2 and L k respectively, we have that V , together with the usual projections p i :

V → V i , i = 1, 2, is a product of V 1 and V 2 .
Proof. Let A be a G-manifold and α i : 

A → V i morphisms. Since V is the topological product of V 1 and V 2 , there exists a unique continuous map Φ : A → V such that p i • Φ = α i . Let
f Φ (a) ∈ G V,Φ(a) of a G-analytic function f at Φ(a) ∈ V , the germ of the composition f • Φ belongs to G A,a . Put Φ(a) = (b 1 , b 2 ) where b i ∈ V i .
The induced map on the stalks α i : G V i ,b i → G A,a by the morphism α i can be seen, taking local coordinates at b i ∈ V i and a ∈ A, as a morphism between algebras of convergent generalized power series αi : R{(

X (i) ) * , Y (i) } m(b i ),n(b i ) → R{Z * , T } m(a),n(a) , i = 1, 2.
Since X

j has all N th -roots, its image by αi has also all N th -roots and, by proposition 1.1.20, it is of monomial type as a series in R{T }{Z * }, namely αi (X

(i) k = M (i) k U (i) k (2.9) where M (i) k is a monomial in the Z variables and U (i) k (0) = 0.
On the other hand, if we put X = (X (1) , X (2) ), Y = (Y (1) , Y (2) ), then G V,Φ(a) is isomorphic to R{X * , Y } and under this isomorphism, the morphism induced by p i on the corresponding stalks

G V i ,b i and G V,Φ(a) is just the inclusion R{(X (i) ) * , Y (i) } ⊂ R{X * , Y } that assigns a series in variables (X (i) ) * , Y (i) to the same series but considered in variables X * , Y . Now, if f ∈ G V,Φ(a) is a G-analytic germ,
it is the germ of the sum of its Taylor expansion s = T Φ(a) f ∈ R{X * , Y } (up to a permutation of variables, see 2.2.7). Using Proposition 1.2.10 and (2.9), the series

t(Z, T ) = s(M (1) 1 U (1) 1 , ..., M (1) 
m(b 1 ) U (1) m(b 1 ) , M (1) 1 
U (1) 1 , ..., M (2) 
m(b 2 ) U (2) m(b 2 ) , T )
belongs to R{Z * , T }. By construction, the germ of its sum is the composition f • Φ viewed in the local chart that we have considered for A at a. Thus, this composition is G-analytic as was to be proved.

Proof of Proposition 2.3.21.-Let M 1 and M 2 be two generalized analytic manifolds of dimension k 1 and k 2 respectively. We start by constructing a triplet P = (P, p 1 : P → M 1 , p 2 : P → M 2 ) as a candidate to be the product of M 1 and M 2 .

It is logical to pick as underlying topological space for P the cartesian product

|P | = |M 1 | × |M 2 |
with the product topology and as morphisms p 1 : P → M 1 , p 2 : P → M 2 ∈Morph(G) the morphisms induced by the projections maps

p 1 = pr 1 : |P | = |M 1 | × |M 2 | → |M 1 | p 2 = pr 2 : |P | = |M 1 | × |M 2 | → |M 2 |
We construct now the sheave G P that will determine the structure of a G-manifold for P . In order to dene the sheaf G P as a subsheaf of the sheaf of continuous functions, it is enough to associate to any element of a basis of open sets of the topology of |P | a R-subalgebra of continuous functions with. After that, we need to show that with this structure, |P | is locally

isomorphic to L k 1 +k 2 .
As a basis of open sets of the topological product |M 1 | × |M 2 |, we can consider the set

B = {U 1 × U 2 ⊆ |M 1 | × |M 2 | : U i ⊂ |M i | is the domain of a coordinate chart , i = 1, 2} Let U 1 × U 2 ∈ B. Then M i | U i is isomorphic to L k i | V i via ϕ i for i = 1, 2. Let Φ be the map Φ = (ϕ 1 , ϕ 2 ) : U 1 × U 2 → V 1 × V 2 ⊆ R k 1 ≥0 × R k 2 ≥0 = R k 1 +k 2 ≥0 Put k = k 1 + k 2 . Then Φ is an homeomorphism and V 1 × V 2 is an open subset of R k ≥0 . Let us dene Γ Φ (U 1 × U 2 , G P ) = {f : U 1 × U 2 → R/f • Φ -1 ∈ Γ(V 1 × V 2 , G L k )}
First of all let us prove that this denition does not depend on the morphisms ϕ 1 , ϕ 2 such that (U 1 , ϕ 1 ), (U 2 , ϕ 2 ) are local charts which will endow the topological product with a well dened structure of generalized analytic manifold. Let

ϕ i : U i → V i be isomorphisms between M i | U i and L k i | V i and we dene Φ = (ϕ 1 , ϕ 2 ) : U 1 × U 2 → V 1 × V 2 then Γ Φ = Γ Φ . We can illustrate the situation with the diagram V 1 × V 2 Φ•Φ -1 8 8 f •Φ -1 8 8 U 1 × U 2 f Φ G G Φ o o V 1 × V 2 Φ •Φ -1 Ó Ó f •Φ -1 x x

R

The result is clear once we notice that Φ • Φ -1 and Φ • Φ -1 are morphisms of G-manifolds (thus both isomorphisms), which can be seen using the denition of product and Lemma 2.3.22.

So M 1 × M 2 = (|M 1 | × |M 2 |, G M 1 ×M 2 ) ∈Obj(G).
Remark that the natural projections p i :

|M 1 | × |M 2 | → |M i | are morphisms from M 1 × M 2 to M i .
To nish, we have to prove that (M 1 × M 2 , p 1 , p 2 ) is a solution of the universal problem. But this is easy: if A is a G-manifold and α i : A → M i are morphisms for i = 1, 2, the map Φ :

A → M 1 × M 2 dened by Φ = (α 1 , α 2 )
is continuous and induce a morphism of G-manifolds since this property is a local one and locally M 1 × M 2 has the structure of product, by denition.

2.3.5 An example of an exotic generalized manifold.

Let N = L 1 ×R\{0}, D 1 = D 2 = L 1 ×R and φ 1 : N → D 1 , φ 2,α : N → D 2 be dened respectively by φ 1 (x, y) = (x, y) and φ 2,α (x, y) = (x, 1/y) if y > 0, φ 2,α (x, y) = (x α , 1/y) if y < 0. Notice that φ 1 and φ 2,α are open immersions so we can dene C α as the gluing of D 1 and D 2 with respect to φ 1 and φ 2,α .

Remark 2.3.24. Notice that C 1 is nothing but is the usual cylinder with the product structure

C := R ≥0 × S 1 in O.
Then, the underlying topological space of C α is homeomorphic to the usual cylinder, the underlying topological space of C 1 .

We are going to show now that the generalized manifolds C α and C β are not isomorphic if α = β, although they have homeomorphic underlying spaces. For the shake of simplicity, we just consider β = 1 and α = 1.

Suppose that there exists an isomorphism

f : C α → C = C 1
By the very construction of the space |C α | = C α as the quotient space of D 1 D 2 by the relation

∼ α , if π α : D 1 D 2 → C α denotes the quotient map, then U α,j = π α (D j ), j = 1, 2, is an open set, C α = U α,1 ∪ U α,2 and we have local charts φ α,j = (x α,j , y α,j ) : U α,j → R ≥0 × R where x α,j = φ α,j • pr R ≥0 ∈ G| U α,j (U α,j ) and y α,j = φ α,j • pr R ∈ G| U α,j (U α,j ) for j = 1, 2. Change of coordinates is given in U α,1 ∩ U α,2 by φ α,1 • φ -1 α,2 (a, b) = (a, 1/b) if b > 0 (a α , 1/b) if b < 0 Remark that in C there exists two open subsets U 1,1 , U 1,2 covering C isomorphic to R ≥0 × R : φ 1,j = (x 1,j , y 1,j ) : U 1,j → R ≥0 × R where x 1,j = φ 1,j • pr R ≥0 ∈ O| U 1,j (U 1,j ) and y 1,j = φ j • pr R ∈ O| U 1,j (U 1,j ) for j = 1, 2 such that, in U 1,1 ∩ U 1,2 , the change of coordinates is given by φ 1,1 • φ -1 1,2 (a, b) = (a, 1/b)
Denote by the same letter the underlying homeomorphism f :

C α = |C α | → C = |C 1 |. Let p ∈ ∂C α . Then f (p) ∈ ∂C.
Suppose for instance that p ∈ U α,1 and that f (p) ∈ U 1,1 . Using Proposition 2.3.15 on local expressions of isomorphisms between G-manifolds, we can express f in these charts (in a neighborhood of p) as:

φ 1,1 • ϕ • φ -1 α,1 | Ωp (x α,1 , y α,1 ) = ((x α,1 ) β u(x α,1 , y α,1 ), h(x α,1 , y α,1 )) (2.10) 
where β > 0 and u, h are G-functions in a neighborhood of φ α,1 (p) = (0, y α,1 (p)) such that u(0, y α,1 (p)) > 0 and y → h(0, y) is an analytic isomorphism from a neighborhood of y α,1 (p) to a neighborhood of y 1,1 (f (p)) in R.

U α,1 f G G φ α,1 U 1,1 φ 1,1 R ≥0 × R x α,1 { { y α,1 5 
5 ψ=φ 1,1 •f •φ -1 α,1 G G ≥0 × R x 1,1 { { y 1,1 5 5 R R R R
Notice that the exponent β > 0 in the expression (2.10) above depends a priori on p and on the charts (U α,1 , φ α,1 ) at p and (U 1,1 , φ 1,1 ) at f (p) chosen in order to express locally the isomorphism f . We should write then (momentarily):

β = β(f, p, U α,1 → U 1,1, ). (2.11) 
Claim. β is locally constant.

Proof of the claim.-Consider the Taylor expansion of the rst coordinate (x α,1 ) β u in (2.10) at the point (0, y α,1 (p)); i.e. a series s ∈ R X * , Y for some variables X, Y (notice that there is no ambiguity of the Taylor expansion here as was discussed in 2.2.7 since X and Y are 1-dimensional variables). Then s is of the form

s = X β U (X, Y )
where U is a unit. This observation, together with Proposition 1.2.23 gives the proof of the claim.

Notice now that, if p ∈ U α,1 and that f (p

) ∈ U 1,1 ∩ U 1,2 is in the domain of the two charts, then, β(f, p, U α,1 → U 1,1 ) = β(f, p, U α,1 → U 1,2
) because in that domain we have y 1,1 = y 1,2 for the second components of these chart, by construction of C 1 . So we have proved that β(f, p, U α,1 →

U 1,i ) does not depend on i = 1, 2 as long as f (p) ∈ U 1,1 ∩ U 1,2 .
We simply use the notation β(f, p, U α,1 ) for this number. Dene analogously β(f, p, U α,2 ). Let now p 0 := φ α,1 (0, 0). Note that p 0 ∈ U α,2 . Let β 0 := β(f, p 0 , U α,1 ).

By construction of C α , if p ∈ U α,1 ∩ U α,2 ∩ ∂C α β(f, p, U α,1 ) = β(f, p, U α,2 ) if y α,1 (p) > 0 αβ(f, p, U α,2 ) if y α,2 (p) < 0 (2.12) 
Let for > 0 suciently small, p + := φ -1 α,1 (0, ), p -:= φ -1 α,1 (0, -) ∈ U α,1 ∩ U α,2 ∩ ∂C α . Then β 0 = β(f, p + , U α,1 ) = β(f, p -, U α,1 ) because β is locally constant. On the other hand, by (2.12), β 0 = β(p + , U α,1 ) = β(p + , U α,2 ). Also, β(p -, U α,1 ) = β(p + , U α,2 ) = β 0 because they are connected in U 2 but, again by the formula (2.12) above, β(p -, U α,1 ) = αβ(p -, U α,2 ) which implies that β 0 = αβ 0 . Contradiction.

2.4

Standardizations.

Notice that O A k + is a subsheaf of G L k over R k ≥0 : if a function is the restriction of an analytic
function to an open subset of R k ≥0 its germ at any point is the germ of the sum of a convergent power series, thus a generalized power series; this shows that this function is also G-analytic.

In other words, the identity map Id :

R k ≥0 → R k ≥0 induces a morphism from L k = (R k ≥0 , G L k ) → A k + = (R k ≥0 , O A k +
) in the category C of locally ringed spaces. We can also interpret this as saying that we have "enriched" the structure of the model of analytic manifold with boundary and corners A k + to an structure of G-analytic manifold by "adding" the generalized analytic functions to the (standard) analytic ones.

In this section we describe and analyze this "enrichment" process for any analytic manifold with boundary and corners.

Proposition-denition 2. 

(f : U → R) ∈ G A (U ) ⇔ f | U ∩ U i • ϕ -1 i | ϕ i (U ∩ U ij ) ∈ G L k (ϕ i (U ∩ U i )) ∀i ∈ I with U ∩ U i = ∅. f | U ∩ U i : U ∩ U i ϕ i f G G R ϕ i (U ∩ U i ) ⊆ V i f i =f •ϕ -1 i ∈G L k (V i ) S S
does not depend on the chosen atlas U and endows |A| with a structure of G-analytic manifold A e = (|A|, G A ) such that the identity in |A| induces a morphism

(Id |A| , Id |A| ) : A e → A
in the category C of locally ringed spaces.

We will say that the G-manifold A e is the enrichment of the (standard) manifold A.

Proof 

(f : U → R) ∈ G A (U ) ⇔ f | U ∩ W j • ψ -1 j | ψ j (U ∩ W j ) ∈ G L k (V j ) for all j ∈ J such that U ∩ W j = ∅ is
ψ j (U ∩ U i ∩ W j ) f •ψ -1 j 8 8 f | U ∩ U i ∩W j : U ∩ U i ∩ W j ψ j R R ϕ i B B f G G R ϕ i (U ∩ U i ∩ W j ) f •ϕ -1 i V V Since f • -1 i = f • ψ -1 j • ψ j • ϕ -1 i and f • ψ -1 j = f • ϕ -1 i • ϕ i • ψ -1 j we only have to show that the homeomorphism ϕ i • ψ -1 j induces an isomorphism between the open G-submanifolds L k | ψ j (U i ∩W j ) to L k | φ i (U i ∩W j )
. But, it induces, by denition of atlas, an isomorphism between A k + | V j and A k + | V i so by proposition 2.1.18 it is locally monomial. By Proposition 2.3.15 we deduce that it induces a morphism between L k | V j and L k | V i , thus an isomorphism by taking its inverse.

On the other hand, similar arguments show that we can dene alternatively Lemma 2.4.2. f ∈ Γ(U, G A ) if and only if for every p ∈ U there exists some i ∈ I with p ∈ U i

such that f • ϕ -1 i is G-analytic at the point ϕ i (p) ∈ R k ≥0 .
This implies that the homeomorphisms ϕ i induce isomorphisms of locally ringed spaces between G A | U i and L k | ϕ i (U i ) , which shows that A e is a G-manifold.

Remark 2.4.3. For A a standard analytic manifold we could give the denition of enrichment as a generalized analytic manifold à with the same underlying topological space and such that the identity map induces a morphism à → A. But with this denition, we would have several dierent G-manifolds as possible enrichments of the same standard analytic manifold. As an example, consider

L 2 = (R 2 ≥0 , G L 2 ) with global coordinates (y 1 , y 2 ) on R 2 ≥0 . Let φ : (R 2 ≥0 ) (y 1 ,y 2 ) → (R 2 ≥0 ) (x 1 ,x 2 )
be the map dened by φ(y 1 , y 2 ) = (y 2 1 (y 2 1 + y 2 2 ), y 2 )

It is an homeomorphism with inverse

φ -1 (x 1 , x 2 ) = ( x 4 2 + 4x 1 -x 2 2 2 , x 2 ) For V ⊆ R 2 ≥0 an open subset of R 2 ≥0 we dene G (V ) := φ * G(φ -1 (V )) = {g : V → R : g • φ| φ -1 (V ) ∈ G L 2 (φ -1 (V ))} With this denition, (L 2 ) = (R 2 ≥0 , G ) ∈Obj(C)
, that is, it is a locally ringed space on local algebras of continuous functions, and the homeomorphism φ : R 2 ≥0 → R 2

≥0 induces an isomor- phism of locally ringed spaces, because if g ∈ G (V ), g • φ ∈ G L 2 (φ -1 (V )), and if h ∈ G L 2 (U ), h • φ -1 ∈ G (φ(U )) because h • φ -1 • φ = h ∈ G L 2 (φ -1 (φ(U ))
). This implies that (L 2 ) is a generalized analytic manifold.

Notice that the sections on open sets of the quadrant R 2 ≥0 for the sheaf G contains the analytic functions; i.e. that the identity map of the quadrant induces a morphism (L 2 ) → A 2 + . However, G = G L 2 , i.e., these sections do not consist on the generalized analytic functions on open sets (moreover, the identity map on the quadrant does not induce a morphism L 2 → (L 2 ) ). In fact, if G = G L 2 then the function y 2 1 (y 2 1 + y 2 2 ) = x 1 • φ which is a section of G , would have all its N th -roots which is not the case. This implies that L 2 and (L 2 ) are two dierent objects and that the identity map of R 2 ≥0 does not induce an isomorphism. However, given an analytic series s(X 1 , X 2 ) ∈ R{X 1 , X 2 } convergent on a neighborhood of the origin of (R 

2 ), Y 2 ) ∈ R{Y 1 , Y 2 }. Which implies that S (s) ∈ G . This shows that the germs at the origin on (L 2 ) contains the germs of analytic functions at zero on the usual sense. That is, R{X 1 , X 2 } ⊆ G (0,0) . 

Standardizable generalized manifolds.

Enrichments of standard analytic manifolds are good candidates of generalized manifold to extend those operations that we know already to be well behaved for standard manifolds. In the next chapter we will follow this line of reasoning for the operation of blowing-up. This motivates the following denition. Denition 2.4.7. Let M = (|M |, G M ) be a generalized analytic manifold. We say that M is standardizable if it is isomorphic to the enrichment of an standard analytic manifold; that is, if there exists a standard analytic manifold with boundary and corners A and an isomorphism φ e : M → A e of G-manifolds where A e is the enrichment of A. Notice that then the composition φ = id • φ e : M → A: Proof. Since φ is an homeomorphism, the dimension of M , A and A e is the same, k. Let p ∈ |A|.

Put ψ = φ -1 , m = m p and m = m ψ(p) . Since ψ = (ψ 1 , . . . , ψ k ) induces a morphism from A e to M , by proposition 2.3.15 there are local coordinates (x, y) centered at p and (z, w) at ψ(p) such that the components of ψ are expressed in those coordinates as ψ j (x, y) = x α j g j (x, y) with α j ∈ [0, ∞) m , g j G-analytic at 0 and g j (0, 0) > 0 for any j ∈ {1, . . . , m } and for j ∈ {m + 1, . . . , k}, ψ j is G-analytic at 0 and the map y → (ψ m +1 (0, y), . . . , ψ k (0, y)) induces an analytic morphism from R k-m to R k-m . Since φ : M → A is a morphism, in particular y → (φ m+1 (0, w), . . . , φ k (0, w)) induces an analytic morphism from R k-m to R k-m . Then, m = m and y → (ψ m +1 (0, y), . . . , ψ k (0, y)) induces an analytic isomorphism from R k-m to R k-m . As ψ is an homeomorphism, if there exists j ∈ {1, . . . , m} with α j i = 0 = α j l for i = l, ψ({x i = 0 = x l }) ⊆ {z j = 0}, against the Invariance of domain theorem. Thus, by proposition 2.3.15, ψ induces an isomorphism.

As it is the case for enrichments, standardizations do not behave always functorially; i.e. morphisms between standard manifolds which are standardizations of generalized manifolds do not "lift" to a morphism between these generalized manifolds. But, using Proposition 2.4.6, we can say Proposition 2.4.9. -Let M , N be standardizable G-manifolds and let (A, φ), (B, φ ) be standardizations of M and N respectively. Given a morphism π : B → A, there exists a morphism

π : N → M such that φ • π = π • φ M φ 3 3 φ e G G A e id B e id π e o o N φ } } (φ ) e o o π A B π o o
if and only if π is locally monomial. We say that in this case also that π lifts to N and that φ is the lifting (notice that it is unique).

Proof. Using Proposition 2.4.6, π lifts to the enrichments π e : B e → A e i π is locally monomial.

But π e exists i π = (φ e ) -1 • π e • φ e exists.

2.4.2 An example of a non-standardizable manifold.

We want to prove here nally that there are generalized analytic manifolds which are not stan- Proof. Assume the same notations as in 2.3.5. Fix α > 0 and suppose that there exists a standardization (A, φ) of the G-manifold C α . Denote also by φ the underlying homeomorphism φ : Proof of claim 1.-We take an analytic coordinate chart (x i , y i ) centered at some point q i ∈ D i such that D i = {x i = 0} and we consider h i as the analytic continuation in V i (simply connected domain) of the coordinate function x i , locally dened and analytic in a neighborhood of q i . Given a point q ∈ V i , the function h i writes in analytic coordinates (x, y) at q for which x = 0 is the boundary as h i (x, y) = x γ(q) H(x, y), where γ i (q) ∈ N ≥1 and H(0, y) ≡ 0.

C α = |C α | → |A|. Let V i = φ(U α,i ) for i = 1, 2, an open subset of |A| homeomorphic to R ≥0 × R. Let D i = V i ∩
The fact that the change of coordinates (x, y) and (x , y ) centered at two points in the boundary satises x = xU (x, y), where U is a unity (see Proposition 2.1.18), implies that the exponent γ i (q) is well dened independently of the chosen coordinates at q. Moreover, it is locally constant with respect to q and thus constant for every q ∈ V i . Since γ i (q i ) = 1 we have the same exponent, 1, for every point of the whole boundary ∂|A|. This gives the desired condition about the quotients

h 1 /h 2 and h 2 /h 1 in the intersection V 1 ∩ V 2 .
Proof of Claim 2.-Suppose that h i is a G-analytic function in a neighborhood of ∂C α ∩ U α,i for i = 1, 2 whose zero locus is equal to the boundary. Consider the coordinates (x α,i , y α,i ) globally dened in U α,i (see the notations in 2.3.5). Then we can write h i globally in its domain of denition as:

h i (x α,i , y α,i ) = x β i α,i H i ,
where β i ∈ R >0 and H i is a G-analytic function in a neighborhood of ∂C α ∩ U α,i such that the restriction H i | ∂Cα to the boundary does not vanishes identically (thus, since this restriction is analytic, its zero locus is a discrete subset of ∂C α ∩U α,i ). Now, consider an open set Ω , for = + or -, contained in ∂C α ∩ { y α,1 > 0} where neither H 1 or H 2 vanishes. Taking into account the expression of the change of variables between (x α,1 , y α,1 ) and (x α,2 , y α,2 ), we can write

h 1 = x β α,1 H 1 = x β 1 α,2 H 1 in Ω + , h 1 = x β α,1 H 1 = x αβ 1 α,2 H 1 in Ω -.
If the condition about the quotients h 1 /h 2 and h 2 /h 1 is true in both open sets Ω + and Ω -then we must have

β 2 = β 1 = αβ 1 , which is impossible if α = 1.
Chapter 3

Local monomialisation.

We attack in this chapter the main result in this work: to transform a given G-analytic function in a neighborhood of a point into locally monomial functions by means of local blowing-ups with admissible centers. This is a kind of result that can be untitled as Local Monomialisation of generalized analytic functions, since this is the name of the analogous (well known) result on real analytic functions (see [START_REF] Hironaka | Resolution of singularities of an algebraic variety over a eld of characteristic zero[END_REF] or [START_REF] Bierstone | Milman Semianalytic and subanalytic sets[END_REF] for instance). It can be considered inside the frame of the theory of reduction of singularities in the category of generalized analytic manifolds. In order to state correctly the Theorem of Local Monomialisation, we need rst to dene what a blowing-up morphism is.

The plan is as follows. First we dene the kind of "admissible" centers to be blown-up, both in the category of standard and generalized analytic manifolds. These centers are closed "subvarieties" locally given at any point by the annihilation of several coordinate functions.

Second, we recall what a blowing-up morphism is in the category of (standard) real analytic manifolds with boundary and corners. This a quite well known notion in the category of analytic manifolds without boundary. In our point of view, since the analytic manifolds that we consider have boundary and corners, we follow the suitable approach of considering the so called oriented real blowing-up, in contrast with the (relatively more usual) projective real blowing-up. The main dierence is that, in the former case, points of the center of blowing-ups are replaced by the set of half-lines, normal to the center, dened by means of a system of coordinates; while for the projective blowing-up, points are replaced by the set of normal lines through them. At boundary points, we have no entire but half-lines, thus showing the convenience of the use of oriented blowing-up.

As a consequence, the exceptional divisor (the inverse image of the center) always becomes a new boundary component to the blown-up space even if the center of blowing-up is contained in the interior of the standard analytic manifold (where normal entire lines are dened). The choice for this kind of blowing-up also at interior points is based only on consideration of coherency.

In compensation, we do not alter the properties of orientability of the manifold, although in these pages, where we only use local blowing-ups (that is, whose center is just a closed "subvariety" on some open domain), this point does not give us an advantage.

Third, we introduce the concept of blowing-up morphism in the category of generalized analytic manifolds. This notion has a (a priori unexpectable) peculiarity that does not occur in the standard case: if we proceed dening directly the blowing-up for the local model (as we may do in the standard case) by "gluing" the local charts of a standard blowing-up and then take the enrichments, we could obtain dierent (non-isomorphic) blowing-up morphisms for dierent choices of local coordinates. Thus, our concept of blowing-up morphism is not only attached to an admissible center of blowing-up, but relative also to a standardization of the manifold.

With this peculiarity in mind, no good notion of blowing-up is possible when the center to be blown-up has not a neighborhood which admits a standardization. A concrete example of this situation can be constructed using the example of the exotic cylinder C α with α = 1 (cf. 2.3.5): put D α = C α × L 1 , whose boundary ∂C α × {0} is a curve isomorphic to the circle S 1 (an admissible center of codimension 2) with no open standardizable neighborhood. The geometric interpretation of this pathological example is that this center has not a good "global normal bundle" of half-lines: once you start at a point with half-lines in some given coordinates you return, after a turn in the circle, with a "non-compatible" family of half-lines with respect to another system of coordinates.

Admissible centers.

We give here the denition of regular submanifold both in the category O of standard real analytic manifolds with boundary and corners and in the category G of generalized real analytic manifolds. Admissible centers to be considered below for blowing-up are among regular submanifolds of a very specic nature (those having also normal crossings with the boundary of the manifold).

The lack of dierentiability of a morphism in the later case prevents to dene immersions in the usual way. However, as it is dened in the book of Gunning & Rossi [START_REF] Gunning | Analytic functions of several complex variables[END_REF], the immersion condition is replaced by the fact that the morphism induced on the stalks is surjective.

In this section, the notation A stands either for the standard category A = O or for the generalized one A = G.

3.1.1 Submanifolds and regular subsubmanifolds. ii) For any a ≥ 0 the morphism induced by Proof. For any p 

t ∈ [0, 1] → (a, t, 1 -t) ∈ R 3
∈ |Y | put l p = k -#J p , V p := |Y | ∩ U p , π p : (x 1 , . . . , x k ) ∈ R k → (x j ) j ∈Jp ∈ R lp and ψ p = π p • ϕ p V p = |Y | ∩ U p ϕp G G ψp 7 7 R k ≥0 πp R lp ≥0 ( 
G M,p i p G G G Y,p R{X } φ G G F y y R{(X(p)) } G y y
where is equal to an asterisque * in the generalized category (and nothing in the standard one), X(p) = (X j ) j ∈Jp . We have that φ = G -1 • i p • F is given by substituting those variables X j such that j ∈ J p by a constant (equal to zero if X j is a boundary variable). Thus, φ is surjective and consequently i p too. 

(U p , x) with p ∈ U p such that M | Up is isomorphic to Y | Up × L m p × R n p in the generalized case (and to Y | Up × A m p + × R n p in the standard case) where m p = |{j ∈ J p : j ∈ A(ϕ p (p))}| and n p = |{j ∈ J p : j ∈ A(ϕ p (p))}|. We call U p together with the isomorphism M | Up ∼ = Y | Up × L m p × R n p a
normalizing chart for Y . We have that m p and n p does not depend on the normalizing chart and that dim(Y ) = k -m p -n p . In a normalizing chart, we have that Y is described as the zeros of the last m p + n p coordinates and that the restriction of the rst k -m p -n p coordinates to Y gives a chart for the structure A Y of Y as a regular subvariety of M . Example 3.1.7. The numbers m p and n p may depend on the point p ∈ |Y | (although its sum, equal to the codimension of Y in M is independent of p). Take for instance for M = L 2 , with coordinates (x, y), the admissible center whose underline space is

|Y | = {(x, y) ∈ R 2 ≥0 : x + y = 1}

Standardizable admissible centers.

Let A be a standard analytic manifold and let Y ⊂ A be an admissible center. By its very denition, the inclusion i : Y → A is a morphism which is locally of monomial type. Thus, using 2.4.6, it lifts to a morphism i e : Y e → A e , which is, moreover, an admissible center.

We have not, however, the reciprocal of the above situation.

Example 3.1.8. Consider the G-manifold L 1 × R with coordinates (x, y). Let Y → L 1 × R be the regular submanifold where |Y | = {(x, y) ∈ R ≥0 × R : y = x α } where α > 0 is not rational. Then Y ⊂ L 1 × R is an admissible center (in the category G). However, if we consider the standardization φ : 

L 1 × R → A 1 + × R induced by the identity (that is, so that L 1 × R is the enrichment of A 1 + × R),
(R ≥0 × R) (R ≥0 × R) (R ≥0 × R) (R ≥0 × R) by the relation (x 1 , y 1 ) ∼ (x 2 , y 2 ) ⇔ y 1 > 0, y 2 < 0, x 1 = -x 2 y 2 and x 1 y 1 = x 2 (x 1 , y 1 ) ∼ (x 4 , y 4 ) ⇔ y 1 < 0, y 4 > 0, x 1 = x 4 y 4 and x 1 y 1 = -x 4 (x 2 , y 2 ) ∼ (x 3 , y 3 ) ⇔ y 2 > 0, y 3 < 0, x 2 y 2 = x 3 and x 2 = -x 3 y 3 (x 3 , y 3 ) ∼ (x 4 , y 4 ) ⇔ y 3 > 0, y 4 < 0, -x 3 = x 4 y 4 and x 3 y 3 = x 4
Then the four copies of R ≥0 × R embed as open coordinate domains of B giving rise to a structure of O-manifold to this quotient topological space. Together with the map π : B → R 2 which is well dened in these charts as

π(x 1 , y 1 ) = (x 1 , x 1 y 1 ); π(x 2 , y 2 ) = (-x 2 y 2 , x 2 ); π(x 3 , y 3 ) = (-x 3 , -x 3 y 3 ); π(x 4 , y 4 ) = (x 4 y 4 , -x 4 )
the pair (B, π) is a blowing-up of R 2 at the origin. ≥0 embed as open coordinate domains of B giving rise to a structure of O-manifold to this quotient topological space. Together with the map π : B → R 2 ≥0 which is well dened in these charts as π(x 1 , y 1 ) = (x 1 , x 1 y 1 ), π(x 2 , y 2 ) = (x 2 y 2 , y 2 ), the pair (B, π) is a blowing-up of A 2 + at the origin. Now we want to dene the blowing-up at a point in any standard analytic manifold with boundary and corners. In a natural way, we use the fact that any point has a neighborhood U which is isomorphic to one of the models A m + × R n and then consider the blowing-up as dened in this model which can be carried to the blowing-up on U . But this involves the ambiguity of the chosen isomorphism. So we need to prove rst the following result: Proposition 3.2.5. Let θ : A m + × R n → A m + × R n an isomorphism sending the origin to the origin. Then there exists an isomorphism θ : R m,n → R m,n such that π m,n 0

• θ = θ • π m,n 0 R m,n π m,n 0 θ G G R m,n π m,n 0 A m + × R n θ G G A m + × R n
Proof. Considering A m + × R n as a regular submanifold of R m+n , and taking into ac account that the blowing-up morphism π m,n 0 is dened as the restriction of the blowing-up of R m+n at 0 to the corresponding spaces, it is enough to prove the case where m = 0. This is a quite well known result: the isomorphism θ is unambiguously determined at any point outside the exceptional divisor D

0 = (π 0,n 0 ) -1 (0) = {0} × S n-1 ⊆ A 1 + × S n-1 = R 0,n . If we write θ = (θ 1 , . . . , θ n ) the components of the map θ : R n → R n , the explicit expression is, for (r, x) ∈ R ≥0 × S n-1 with r = 0: θ : (r, x) -→ (ρ = θ 1 (rx) 2 + • • • + θ n (rx) 2 , ( θ 1 (rx) ρ , . . . , θ n (rx) ρ ))
Use now the Taylor expansion of θ of order 1 at the origin

θ(w) = L(w) + O( w 2 )
where L is a linear isomorphism, to conclude that the expression above extends to a local isomorphism at any point of the exceptional divisor.

Dene π

A Z (U ) := (id, π A m(U ) + ×R n(U ) 0 ) : Z| U × A m(U ) + × R n(U ) → Z| U × A m(U ) + × R n(U ) (and analo- gously π A Z (V )), where the second component is the blowing-up of A m (U ) + × R n (U ) at the origin. Assume that U ∩ V = ∅. Then m (U ) = m (V ), n (U ) = n (V ). In this case, there exists a unique isomorphism θ : (π A Z (U )) -1 (ϕ U (U ∩ V )) → (π A Z (V )) -1 (ϕ V (U ∩ V )) such that ϕ -1 U • π A Z (V ) • θ = ϕ -1 V • π A Z (U ).
Proof. The rst claim follows from the fact that if q ∈ U ∩ V then m (U ) = m p = m (V ) and n (U ) = n p = n (V ) because of the invariance of the number of boundary components of an O-manifold at a point.

The change of normalizations

θ = ϕ V •ϕ -1 U is an isomorphism between an open submanifold W 1 of Y | U ×A m + ×R n and an open submanifold W 2 of Y | V ×A m + ×R n such that Y | W 1 = Y | W 2 = Y | U ∩V . Using Proposition 2.1.
18, the isomorphism θ writes (with evident notations) as θ : (q, (x , y )) → (q, (z (q, x , y ), w (q, x , y ))), where q ∈ |Y | ∩ U ∩ V , z , w are analytic in all arguments, each component of z is divisible by some of the variables x and, moreover, for any xed q, the jacobian matrix of (z , w ) with respect to the variables (x , y ) is non singular. We proceed similarly as in the proof of Lemma 2.4.6 (this time as a parametric version with parameter q ∈ Y ) to lift the isomorphism θ to an isomorphism θ to the blown-up spaces.

Theorem-denition 3. 

| A| = U normalizing chart |U ∩ Z| × A m(U ) + × R n(U ) ∼
where the equivalence relation is dened for p = (a, x)

∈ |U ∩Z|× A m(U ) + × R n(U ) and q = (b, y) ∈ |V ∩ Z| × A m(V ) + × R n(V ) as p ∼ q ⇔ θ(a, x) = (b, y)
where θ : 

Z U ∩V × A m(U ) + × R n(U ) → Z U ∩V × A m(V ) + × R n(V ) is the isomorphism given in lemma 3.2.7. For any U normalizing chart of Z, let U(U ) be an O-atlas of A m(U ) + × R n(U ) . Then, {|Z ∩ U | × U(U )} U normalizing chart is
à \ (π A Z ) -1 (Z) onto A \ Z.
Any pair (B, π) where B is an O-manifold and π : B → A is a morphism for which there exists an isomorphism θ : B → Ã such that π A Z • θ = π will be called a blowing-up of A with center Z. The inverse image π -1 (Z) will be called the exceptional divisor of the blowing-up π. It is a regular subvariety of B of codimension one (in fact an admissible center).

The denition above of blowing-up with an admissible center in an analytic manifold is of global nature. In fact, the Theorem above shows that for any closed admissible center Y ⊂ A there always exists a blowing-up of A with center Y . This is a result which will be untrue in the category of generalized manifolds.

For our purposes later, we will not need to make blowing-ups repeatedly with global closed admissible centers in the whole manifold, but only with centers that are locally closed, i.e., closed in some open submanifold. Denition 3.2.9. Let A be a standard analytic manifold with boundary and corners. A local blowing-up on A (with locally closed admissible center) is a pair (B, π) where B is an O-manifold and π : B → A is a morphism obtained as the composition 

π = i • τ : B → U → A,
Y | U × A m + × R n is a normalizing chart and ( Rm ,n , π m ,n ) is the blowing up on A m + × R n at the origin, the composition π = i U • ϕ -1 • (id, π m n ) : Y | U × Rm ,n → A is a local blowing-up.
All of this kind of examples with codimension of Y less or equal than two (that is, m +n ≤ 2) can be made explicit with the use of Examples 3.2.4 with the role of m, n there as m , n here. In order to give precise expressions in local charts, we just take the expressions already presented in those corresponding examples and take the cartesian product with the identity for local coordinates on the subvariety Y .

Recall once more that blowing-up a center of codimension one may produce some eect, contrary to the case of standard projective blowing-up in analytic manifolds without boundary: if for instance we have m = 0, n = 1, the local blowing-up writes as

π : Y | U × A 1 + Y | U × A 1 + → Y | U × R; π(q, y) = (q, ±y), for (q, y) ∈ Y | U × A 1 + ,
where the sign + ordepends if the point is in the rst or the second of the copies Y | U × A 1 + .

Geometrically, we add a new boundary component, {y = 0}, of codimension one so that the non-boundary normal-to-Y variable y becomes a boundary variable after the blowing-up.

3.3

Blowing-up on generalized analytic manifolds.

In this paragraph, we dene the notion of blowing-up generalized manifolds with admissible centers.

The same approach as in the case of standard manifolds (i.e. dene the blowing-up of a point in the local models and then use coordinates in a general manifold) does not work. The problem is that the analogous of Proposition 3.2.5, that permits to dene the blowing-up independently of the used coordinates, does not hold.

Example 3.3.1. Let M = L 2 be the quadrant in the plane, as the local model of G-manifold, with coordinates (x, y). A (a priori) good candidate for the blowing-up of M can be constructed as follows (analogously as in example iv) in 3.2.4): consider the G-manifold

M = (| M |, G M )
where | M | is the quotient space from the disjoint union of two copies of L 2 with coordinates (x 1 , y 1 ) and (x 2 , y 2 ), respectively, by the equivalence relation

x 1 = 0, y 2 = 0, x 1 = x 2 y 2 and y 2 = x 1 y 1 ,
and where the sheaf G M is obtained by the consideration of the two systems of coordinates (x 1 , y 1 ) and (x 2 , y 2 ) as a G-atlas. Then we consider π 0 : M → M as the G-morphism induced by the map dened by π 0 (x 1 , y 1 ) = (x 1 , y 1 ) and π 0 (x 2 , y 2 ) = (x 2 y 2 , y 2 ). This morphism π 0 has the required properties analogous to those in Denition-Theorem 3.2.6. Consider now the isomorphism

θ : M → M, θ(x, y) = (x α , y),
where α > 0 is dierent from 1. Then there is no isomorphism θ : M → M with the property

π 0 • θ = θ • π 0 . (3.3) 
(There is no even a local isomorphism dened in a neighborhood of the exceptional divisor π -1 0 (0)

satisfying (3.3)).
The reason is obvious: the isomorphism θ gives a correspondence between the family of "halflines" {y = λx} λ inside the quadrant into the family of curves (regular submanifolds) {y = λx α } λ . The morphism π 0 has the eect of "opening" the family of half-lines so that each element accumulate to a single point in the exceptional divisor, whereas it does not open the later family so that the inverse image of each member of that family accumulate to a unique point in the exceptional divisor. As a consequence, any morphism θ satisfying (3.3) would not be 1 : 1 in restriction to the exceptional divisor.

The above example makes necessary in the category of generalized manifolds to speak, not about a blowing-up with an admissible center, but about a blowing-up with an admissible center relatively to some coordinates.

When we want to precise what does it mean relatively to some coordinates we nd out that a more convenient terminology is that of the standardizations.

Theorem-denition 3. A particular case that we will use repeatedly is when Y is of codimension two (m + n = 2).

Denote by (x i , x j ) the variables of L m × R n they can be generalized or analytic variables). Consider the closed admissible center Y = {x i = x j = 0} inside U . Let γ > 0 and consider the standardization of the pair (U, Y ) given by φ γ : U → A m + × R n , φ γ (x, y) = (x 1 , . . . , x γ i , . . . , x j , y).

Let π : M → U → M the local blowing-up with center Y relatively to the standardization φ γ . Then M is covered by two charts (x , y ) and (x , y ), both with values in R m ≥0 × R n , such that the expression of the blowing-up morphism is π(x , y ) = (x 1 , . . . , x i , . . . , (x i ) γ x j , . . . , y ), π(x , y ) = (x 1 , . . . , x j , . . . , (x j ) 1/γ x i , . . . , y ),

We notice again that the denition of blowing-up on a generalized manifold with a closed ad- π j : W j = W j,n j π j,n j → W j,n j -1

π j,n j -1 → W j,n j -2 • • • π j,1
→ W j,0 = M 2. each L j is a compact subset of |W j | such that ∪ j∈J π j (L j ) is a compact neighborhood of p in |M |.

Theorem 3.4.2. (Local Monomialisation of G-analytic functions) Let M be a generalized analytic manifold and f ∈ G(M ) a G-analytic function. Given p ∈ |M | there exists a proper é-neighborhood Σ = {π j : W j → M, L j } j∈J of p such that for all j ∈ J, f • π j : W j → R is locally monomial at any point of L j . We can furthermore take such a proper é-neighborhood such that any of the local blowing-ups involved in it is with an admissible center of codimension ≤ 2.

The following result about "composition" of proper é-neighborhoods is an easy consequence of the denitions Special case.-We consider rst the special case where we can furthermore write f (x, y) = y d + x α 2 u 2 (x)y d-2 + . . . + x α d u d (x)

such that the set of vectors {α l /l} l=2,...,d is totally ordered (by the division order). Take r such that α r /r ≤ α j /j for all j, 2 ≤ j ≤ d. Take l such that α r,l = 0. Consider the admissible center Y = {y = x l = 0} ⊂ U , closed in U and of codimension 2, together with the standardization of the pair (U, Y ) given by φ : U → R k-1 ≥0 × R, φ = (x 1 , . . . , x l-1 , x α r,l /r l , x l+1 , . . . , x -1 , y).

The corresponding (local) blowing-up π U Y : Ũ → M with center Y and with respect to this standardization is such that Ũ is covered by two charts (x , y ) and (x , y ), both with values in R m ≥0 × R n , so that the exceptional divisor (π U Y ) -1 (Y ) has equations {x l = 0} and {y = 0} and such that the morphism π U Y writes π U Y (x , y ) = (x , (x l ) α r,l /r y ), π U Y (x , y ) = (x 1 , . . . , (y ) r/α r,l x l , . . . , y ).

Let q ∈ (π U Y ) -1 (Y ). There are 3 cases 1. q is the origin of the chart (x , y ).

We obtain (y ) d + . . . + (x ) α j u j (x )(y ) and the expression in brackets is a unit 2. q is the domain of the chart (x , y ) but it is not the origin of this chart.

In order to simplify notations, put (x, y) instead of (x , y ). Then, locally around q we have coordinates (x, λ + y) where λ = -y(q). We obtain x α j u j (x)(λ + y) d-j + . . . (notice that here x α j means x α 1,j 1

• • • x α j,l-1 l-1 x α j,l+1 l+1 • • • x α j,m m 
)). As α r /r ≤ α j /j for all 2 ≤ j ≤ d, α j,l -jα r,l /r ≥ 0 and we can factor out x dα r,l /r l x α j u j (x)(λ + y) d-j + . . .)

by the Tschirnhausen transformation the coecient of y d-1 is λ = 0 so the expression in brackets is regular of order less or equal to d -1 in y and by Weierstrass preparation we can assume that is a Weierstrass polynomial of degree less or equal to d -1.

3. q is the origin of the chart (x , y ).

Again, we put (x, y) instead of (x , y ). We obtain x α j u j (x)y d-j + . . . As α r /r ≤ α j /j for all 2 ≤ j ≤ d, α j,l -jα r,l /r ≥ 0 and we can factor out x dα r,l /r l x d α r,l r l (y d + . . . + x α j,l -j α r,l r l x α j u j (x)y d-j + . . .)

If α r,i = 0 for all i = l then the expression in brackets is regular of order d -l, and by Weierstrass preparation we can assume that is a W. polynomial of degree d -r. If there exists i = l such that α r,i = 0 we proceed by making a local blowing-up with the corresponding center of codimension two relatively to a suitable standardization such that the morphism has the expression in two charts (x , y ), (x , y ) π U Y (x , y ) = (x , (x l ) α r,i /r y ), π U Y (x , y ) = (x 1 , . . . , (y ) r/α r,i x l , . . . , y ).

This works analogously because we have chosen r such that α r /r ≤ α j /j for all j, 2 ≤ j ≤ d, which means that α r,s /r ≤ α j,s /j for all j, 2 ≤ j ≤ d and 1 ≤ s ≤ k -1. The "bad" case will be again at the origin of the chart (x , y ) but we will have the same polynomial with less variables x appearing in the monomial of the coecient of y d-r . After at most k -1 steps we have nished.

General case.-Let b ∈ G(M ) denote the G-analytic function obtained as the product of all non-zero functions among the b i as well as their non-zero dierences. By the hypothesis that Theorem 3.4.2 is true for dimension smaller than k, there exists a proper é-neighborhood σ = {π j : W j → M , L j } of p in M (where the centers for the local blowing-ups involved are of codimension ≤ 2) such that b • π j is monomial at any point of L j , for any j. Fix some δ > 0 such that (-δ, δ) is contained in the range of values of the coordinate y. Consider, for each j, the morphism obtained by "bering" π j on the variable y; precisely: π j : W j = W j × (-δ, δ) → M, π j (q, t) = ϕ -1 (x(π j (q)), t).

Then π j is a composition of local blowing-ups with admissible centers (as in 3.3.3). We conclude that Σ = {π j : W j → M, L j = L j × [-δ/2, δ/2]} is an é-neighborhood of the point p (with centers of codimension ≤ 2). Using Lemma 3.4.4, it suces to prove Theorem 3.4.2 for the transform, f • π j ∈ G(W j ), of f by π j at any (xed but arbitrary) point in L j , in fact, taking δ suciently small, at any point of L j × {0} ⊂ W j . Fix some of these points (q, 0). By construction, there exist local coordinates x at q ∈ W j such that b • π j is locally monomial at q with respect to x . Consequently, using iv) of Remark 2.3.17, the transformation b l • π j of each of the coecients b l is locally monomial with respect to the same coordinates at q. Moreover, considering b also as a function in M and, since b • π j does not depend on the second component of W j = W j × (-δ, δ), we conclude that it is locally monomial at the point (q, 0) ∈ L j with respect to the coordinates (x , t) in W j = W j × (-δ, δ) (where t is the usual coordinate in R). Write locally at (q, 0), b l • π j = (x ) α l u l (x , t) where u l does not vanish at (q, 0). Then we have a local expression of f • π j at (q, 0) as

f • π j = t d + (x ) α 2 u 2 t d-2 + • • • + (x ) α d u d .
The proposition is nished, thanks to the special case considered above, once we prove the following Claim.-Up to a further composition of local blowing-ups with admissible centers of codimension ≤ 2, we can suppose that the set of vectors {α l /l} l=2,...,d is totally ordered (by the division order).

Proof of the Claim.-First, after performing blowing-ups with centers at the coordinate planes set V ⊆ Y , and the restrictions maps ρ V W := ρ ϕ -1 (V )ϕ -1 (W ) for any open set W ⊆ V where ρ is the restriction map of F. For any sheaf H on Y , we dene the inverse image sheaf ϕ -1 H on X to be the sheaf associated to the presheaf U → lim V ⊇ϕ(U ) H(U ), where U is any open set in X, and the limit is taken over all open set V of Y containing ϕ(U ). As a particular case, if Z is a subset of X, regarded as a topological subspace with the induced topology, i : Z → X is the inclusion map, and if F is a sheaf on X, then we call i -1 F the restriction of F to Z, and we often denote it by F| Z . Note that the stalk of F| Z at any point p ∈ Z is just F p .

Denition A.0.17. A ringed space is a pair (X, F X ) consisting of a topological space X and a sheaf of rings F X on X.

Then, if X is a topological space the pair (X, C C(X) ) is a ringed space.

A morphism of ringed spaces from (X, F X ) to (Y, F Y ) is a pair (ϕ, ϕ ) of a continuous map ϕ : X → Y and a morphism ϕ : F Y → ϕ * F X of sheaves of rings on Y .

The ringed space (X, F X ) is a locally ringed space if for each point p ∈ X, the stalk F X,p is a local ring. Notice that if X is a topological space the pair (X, C C(X) ) is in fact a locally ringed space, because for any p ∈ X, M p := {f p ∈ C C(X),p : f (p) = 0} is the unique maximal ideal of C C(X),p .

A morphism of locally ringed spaces is a morphism (ϕ, ϕ ) of ringed spaces, such that for each point p ∈ X, the induced map (see below) of local rings ϕ p : F Y,ϕ(P ) → ϕ * F X,p is a local homomorphism of local rings. We explain this last condition. First of all, given a point p ∈ X, the morphism of sheaves ϕ :

F Y → ϕ * F X induces a homomorphism of rings F Y (V ) → F X (ϕ -1 (V )),
for every open set V in Y . As V ranges over all open neighborhoods of ϕ(p), ϕ -1 (V ) ranges over a subset of the neighborhoods of p. Taking direct limits we obtain a map F Y,ϕ(p) = lim -→ V F Y (V ) → lim -→ V F X (ϕ -1 (V ))

and the latter limit maps to the stalk F X,p .

Thus we have an induced homomorphism ϕ p : F Y,ϕ(p) → F X,p . We require that this be a local homomorphism: if A and B are local rings with maximal ideals M A and M B respectively, a homomorphism φ : A → B is called a local homomorphism if φ -1 (M B ) =, or equivalently, if φ(M A ) ⊆ M B . An isomorphism of local ringed spaces is a morphism with a two-sided inverse.

Thus a morphism (ϕ, ϕ ) is an isomorphism if and only if ϕ is a homeomorphism of the underlying topological spaces, and ϕ is an isomorphism of sheaves.

Example A.0.18. Let X and Y be topological spaces and consider the locally ringed spaces Product.

C C(Y ) (V ) ϕ (V ) G G ρ V W C C(X) (ϕ -1 (V )) ρ ϕ -1 (V )ϕ -1 (W ) C C(Y ) (W ) ϕ (W ) G G C C(X) (ϕ -1 (W ))
Denition B.0.23. Let S be a subcategory of C. Given two objets of the category, X, Y ∈Obj(S), a product of X, Y in S is a triple (P, p X , p Y ) where P is an object P ∈Obj(S) and p X : P → X and p Y : P → Y are morphisms such that for every triplet A = (A, α X : A → X, α Y : A → Y )

with A ∈Obj(S) and α X , α Y ∈Morph(S) there exists an unique morphism, Φ :

A → P such that α X = p X • Φ and α Y = p Y • Φ A α Y " " α X Ø Ø Φ P p X x x p Y 8 8

X Y

By denition the product is unique up to unique isomorphism in the category (in the sense that if (A, α X , α Y ) is another product then Φ in the diagram above is an isomorphism).

If for any X, Y ∈Obj(S) there exists a product of X, Y in S, we say that S is a category with product.

Similar denitions apply for the product of a nite family of objects in the category. We use it without any more description of the details.

Gluing. 

X 1 | U 1 h i 1 G G X 1 Y ϕ 2 9 9 ϕ 1 U U ϕ 1 7 7 ϕ 2 W W X 2 | U 2 i 2 G G X 2 Then h = ϕ 2 • ϕ 1 -1 : X 1 | U 1 → X 2 | U 2 is an isomorphism.
Denition B.0.26. Given two objets of the category, X, Y ∈Obj(S) and open immersions ϕ 1 : Y → X 1 , ϕ 2 : Y → X 2 , we dene the gluing of X 1 and X 2 with respect to the open immersions ϕ 1 and ϕ 2 as a triplet (X, α 1 , α 2 ) where X ∈Obj(S), α i : X i → X are open immersions for i = 1, 2 satisfying α 1 • ϕ 1 = α 2 • ϕ 2 and such that for any other triplet (T, β 1 , β 2 ) where T ∈Obj(S) and β i : X i → T are open immersions such that β 1 • ϕ 1 = β 2 • ϕ 2 there exists an unique morphism f : X → T such that β i = f • α i for i = 1, 2.

X 1 | U 1 h i 1 G G X 1 α 1 2 2 β 1 & & Y ϕ 1 ` ϕ 2 4 4 X ∃!f G G T X 2 | U 2 i 2 G G X 2 α 2 b b β 2 h h
If for any X, Y ∈Obj(S) and open immersions ϕ 1 : Y → X 1 , ϕ 2 : Y → X 2 , there exists the gluing of X 1 and X 2 with respect to the open immersions ϕ 1 and ϕ 2 , we say that the category S is a category with gluing.

Similar denitions apply for the gluing of a nite (or even more generally innite) family of open immersions {ϕ i : Y → X i } i∈I . However, we do not use it in this text so we omit the details.

  The morphisms between two objects X = (|X|, C X ) and Y = (|Y |, C Y ) are pairs (ϕ, ϕ ) where ϕ : |X| → |Y | is a continuous map and ϕ : C Y → ϕ * C X is the associated morphism of sheaves determined by ϕ by composition; that is, if f ∈ C Y (V ) is a section over the open set V of |Y |, then ϕ

  On the other hand, considering s ∈ A[[X * , Y ]] as an element of A[[X * ]][[Y ]], the partial derivatives ∂s/∂Y j dened as usual belong to A[[X * , Y ]], and in fact Y j ∂s/∂Y j = ∂ m+j s.

S

  ξ : R X * m,ν -→ C 0 (Clos(I m,ν ); R) and S ξ : R X * , Y m,n,ξ -→ C 0 (Clos(I m,n,ξ ); R) are injective.

  The morphisms between two objects X = (|X|, C X ) and Y = (|Y |, C Y ) are pairs (ϕ, ϕ ) where ϕ : |X| → |Y | is a continuous map and ϕ : C Y → ϕ * C X is the associated morphism of sheaves determined by ϕ by composition

A 1 +

 1 , because it has not an analytical extension to an open neighborhood of 0 in R. Denition 2.1.4. If A = (|A|, O A ) is a standard analytic manifold, an open submanifold of A is the locally ringed space A| U = (U, O A | U ) where U is an open subset of |A| (see the appendix for the notation). It is clear that an open submanifold is also a standard analytic manifold with boundary and corners. Given two analytic manifolds A, B with boundary and corners a morphism between them is by denition a morphism ϕ : A → B of the category C (we will usually call it an analytic morphism). In this way we dene the category of analytic manifolds with boundary and corners, denoted by O by objects(O) := {A ∈ objects(C) : A is an analytic manifold with border and corners} morphisms(O) := {(ϕ : A → B) ∈ morphisms(C) : A, B ∈ objects(O)} Thus, by denition, O is a full subcategory of C. Recall that a morphism (ϕ, ϕ ) between two analytic manifolds with border and corners A = (|A|, O A ) and B = (|B|, O B ) is determined by a continuous map between the topological spaces ϕ : |A| → |B| (but not any continuous map!) because the associated morphism of sheaves ϕ is given by composition with ϕ

Remark 2 . 1 . 5 . 1 ≥0 and R k 2 ≥0 , and

 21512 Notice that if V 1 and V 2 are respectively open subsets of R k

2. 1 . 1

 11 Stratication by the number of boundary components. Let, for the rest of the section, A = (|A|, O A ) denote a k dimensional standard analytic manifold. A direct consequence of the denition is that the underlying space |A| is a topological manifold of dimension k with boundary, because each point in |A| has an open neighborhood homeomorphic to an open subset of R k ≥0 , a topological manifold of dimension k with boundary (see the annex for details). Another consequence is that if int(|A|) denotes the interior of this manifold then the open submanifold

Remark 2 . 1 . 11 .

 2111 We obtain as a corollary of proposition 2.1.10 and corollary 2.1.9 that given a standard analytic manifold A = (|A|, O A ), any point p ∈ |A| has an open neighborhood U in |A| such that the open submanifold A| U is isomorphic to A mp + × R np . By denition, each p ∈ |A| is in the domain of a chart (U, φ) where the range of φ is an open subset of R k ≥0 . By Proposition 2.1.10, we can choose such a chart centered at p, i.e., such that φ(p) = (0, ..., 0) if and only if m p = k. If we want to have always a chart centered at any given point, we can think that there is not a single local model for standard analytic manifold of a given dimension k, namely A k + , but several ones, A m + × R n with m + n = k. Denition 2.1.12. Let A = (|A|, O A ) be a standard analytic manifold. The function m : |A| → N dened by m(p) := m p = |{i ∈ {1, . . . , k} : w i (p) = 0}|, where w = (w 1 , . . . , w k ) is a local chart on p is well dened. Moreover, m is an upper semicontinuous function. Given a point p, we will say also that m p is the number of boundary components of the point p.

For j ∈ {0, 1 ,

 1 . . . , k} let D(j) := {p ∈ |A| : m p = j} Let j 0 := max{j ∈ {0, 1, . . . , k} : D(j) = ∅}. We call D(j 0 ) the lime of A.

1 )

 1 an isomorphism. Let |A| be the topological space obtained by the quotient of the topological disjoint union |A 1 | |A 2 | by the equivalence relation a 1 ∼ a 2 if a 1 = a 2 or a 1 ∈ U 1 , a 2 ∈ U 2 and a 2 = h(a Denote by π : |A 1 | |A 2 | → |A| the quotient map. For i = 1, 2 dene α i : |A i | → |A| as the composition of the inclusion |A i | ⊂ |A 1 | |A 2 | with the quotient map.

  rise, by reversing the charts φ and ψ to a morphism (resp. isomorphism) from an open submanifold of A containing p to an open submanifold of B containing ϕ(p).

  Given p ∈ R k ≥0 and σ ∈ G p we dene θ p,σ as the restriction to R mp ≥0 × R np of the ane map given by (w 1 , . . . , w k ) → p + σ(w 1 , . . . , w k ) = (p 1 + w σ(1) , ..., p k + w σ(k) ).

Denition 2 . 3 . 1 .

 231 A generalized analytic manifold or, for short, G-manifold of dimension k is a locally ringed space M = (|M |, G M ) ∈ Objects(C), where |M | is a Hausdor topological space with a countable open basis, such that for every p ∈ |M | there exists an open neighborhood U of p and an open set

  where U is an open subset of |M | (see the appendix for the notation). It is clear that an open submanifold is also a G-analytic manifold. Given two generalized analytic manifolds M = (|M |, G M ) and N = (|N |, G N ) a morphism between them is, by denition, a morphism of the category C. The category G of generalized analytic manifolds is then dened by setting objects(G) := {M ∈ objects(C) : M is a generalized analytic manifold} morphisms(G) := {(ϕ : M → N ) ∈ morphisms(C) : M, N ∈ objects(G)} Recall that a morphism ϕ between two generalized analytic manifolds M = (|M |, G M ) and N = (|N |, G N ) is determined by a continuous map between the topological spaces ϕ : |M | → |N | (but not every continuous map between the underlying topological spaces induces a morphism between the ringed spaces !), and that such a morphism is an isomorphism if and only if ϕ : |M | → |N | is an homeomorphism and for all p ∈ |M | the induced homomorphism in the stalk

Denition 2 . 3 . 8 .

 238 Let |M | be a Hausdor topological space with a countable open basis. We say that a family {

Fix a k

  dimensional generalized analytic manifold M = (|M |, G M ). The rst consequence of the denition is the following Theorem 2.3.10. i) The underlying space |M | is a topological manifold of dimension k with boundary.ii) If int(|M |) denotes the interior of this manifold then the restricted sheaf int(M ) = (int(|M |), G M | int(|M |) ) is a real analytic manifold. Proof. i) follows from the fact that each point in |M | has an open neighborhood homeomorphic to an open subset of R k ≥0 , a topological manifold of dimension k with boundary. ii) follows from the fact that each point p in int(|M |) has an open neighborhood U p such that the restriction M | Up = int(|M |)| Up is isomorphic to the restriction of L k to some open set contained in the interior R k >0 of R k ≥0 . After this remark, use theorem 2.2.5 that asserts that a G-analytic function at an interior point of R k ≥0 is analytic at that point.

Denition 2 . 3 . 13 .

 2313 Let M = (|M |, G M ) be a G-manifold. The function m : |M | → N dened by m(p) := m p = |{i ∈ {1, . . . , k} : z i (p) = 0}|,where z = (z 1 , . . . , z k ) is a chart on p is well dened. Moreover, m is an upper semi-continuous function. Given a point p, we will say also that m p is the number of boundary components of the point p.Let M be a G-manifold of dimension k. For j ∈ {0, 1, . . . , k} let D(j) := {p ∈ |M | : m p = j} Let j 0 := max{j ∈ {0, 1, . . . , k} : D(j) = ∅}. We call D(j 0 ) the lime of M .

  4.1. Let A = (|A|, O A ) be an analytic manifold with boundary and corners. Let U = {(U i , ϕ i )} i∈I be an O-atlas of A. Then the subsheaf G A of the sheave of continuous functions over |A|, whose sections over an open of |A|, U ⊆ |A| are

  exactly the sheaf G A : let U ⊆ |A| open. Then we have the following commutative diagram

Example 2 . 4 . 4 .

 244 For any k ∈ N, (A k + ) e = L k . Remark 2.4.5. The enrichment is not a functor. In other words, given A = (|A|, O A ) and B = (|B|, O B ) two analytic manifolds with border and corners and ϕ : A → B a morphism, then the underlying continuous map ϕ : |A| → |B| does not induce in general a morphism between A e and B e . Take for instance the morphism ϕ : A 2 + → A 1 + given by the map (x, y) → x + y. This map does not induce a morphism between the enrichments L 2 → L 1 . In fact, using Proposition 2.3.15, we can state: Proposition 2.4.6. Let A = (|A|, O A ) and B = (|B|, O B ) be standard analytic manifolds and let π : B → A be a morphism. Then its underlying continuous map induces a morphism π e : B e → A e of G-manifolds if and only if π is locally monomial.

M φ 3 3 φ

 33 e G G A e id A is a morphism of locally ringed spaces whose underlying continuous map φ : |M | → |A| is a homeomorphism.In this situation we say that the pair (A, φ :M → A) is a standardization of M . Notice that if M = (|M |, G M ) is a generalized analytic manifold, A = (|A|, O A ) astandard analytic manifold and φ : M → A a morphism whose underlying continuous map φ : |M | → |A| is a homeomorphism, then, in general φ -1 : |A e | → |M | does not induce a morphism from A e to M . Consider for instance M = A = R = (R, O R ) and φ : x → x 3 . We have, however the following: Proposition 2.4.8. Let M = (|M |, G M ) be a generalized analytic manifold, A = (|A|, O A ) a standard analytic manifold and φ : M → A a morphism whose underlying continuous map φ : |M | → |A| is a homeomorphism. Then, if φ -1 : |A e | → |M | induces a morphism from A e to M it is in fact an isomorphism so that (A, φ) is a standardization of M .

≥0 is a closed admissible center. Proposition 3 . 1 . 6 .( 3 . 1 )

 31631 Let M = (|M |, A M ) be a A-manifold and |Y | a connected subset of |M |. Suppose that for any p ∈ |Y | there exists (U p , ϕ p = (x 1 , . . . , x k )) a A-local chart at p and J p ⊆ {1, . . . , k} such that ϕ p (|Y | ∩ U p ) = {q ∈ U p : x j (q) = x j (p) for any j ∈ J p } Then there exists a unique structure of A-manifold over |Y |, say Y = (|Y |, G Y ) such that the morphism induced by the inclusion map i : |Y | → |M | is an admissible center. Reciprocally, if ϕ : N → M is an admissible center, then |Y | = ϕ(|N |) has the above property.

  Uniqueness of the structure A Y comes from the following observation: if (U p , ϕ) is a local chart of M at p satisfying the condition (3.1) and if π p stands for the same meaning as in the diagram (3.2) then ψ = π p • ϕ is a local chart of the A-manifold Y . In the sequel, we will just use the expression "Y is an admissible center of M " or "Y ⊂ M is an admissible center" if Y = (|Y |, A Y ) is in the conditions of Proposition 3.1.6 with |Y | ⊂ |M |. With the notations of proposition 3.1.6 above, for each p ∈ |Y |, there exists a local chart

  then the image φ(|Y |) = |Y | does not satisfy the property (3.1) in Proposition 3.1.6.In view of this example we give the following denition.

2

 2 Take m = 2, n = 0. Consider two copies of A 2 + with coordinates (x 1 , y 1 ) and (x 2 , y 2 ) respectively. Let B be the quotient space obtained from the disjoint union R 2 ≥0 R ≥0 by the relation (x 1 , y 1 ) ∼ (x 2 , y 2 ) ⇔ x 1 y 2 = 0, x 1 = x 2 y 2 and y 2 = x 1 y 1 Then the two copies of R 2

1

 1 Blowing up points in analytic manifolds.

2 . 8 .

 28 Let A = (|A|, O A ) be a standard analytic manifold and Z = (|Z|, O Z ) an admissible center. Consider the topological space

  an O-atlas of | A| because the change of charts are analytic. Then we can endow | Ã| with an structure of O-manifold à = (| Ã|, O Ã). The map π A Z : | Ã| → |A| dened by the restriction of the blowing-up morphism π A Z (U ) for any normalizing domain is a well dened continuous, surjective, proper map that induces a morphism from à to A. Moreover, it restricts to an isomorphism from the open submanifold

  where i : U → A is an open submanifold and τ : B → U is a blowing-up on U with an admissible center Y ⊂ U closed in U . Example 3.2.10. As an example, if Y ⊂ A is an admissible center of an analytic manifold A, ϕ : U

3 . 2 .

 32 Let M be a G-manifold and let Y ⊂ M be a closed(connected) admissible center in M such that the pair (M, Y ) is standardizable by means of a standardization φ : M → A. Let Z = φ(Y ) ⊂ A, by denition of standardization, a (closed and connected) admissible center in A. Let ( Ã, π A Z ) be a blowing-up on A with center Z. Then there exists a triple( M , π M Y , φ) where M is a G-manifold, π M Y : M → M is a morphism of G-manifolds and φ : M → à is a standardization of M such that ( Ã, π A Z ) is a blowing-up of A with center Z = φ(Y ) and the diagram ( Ã, π A Z )is another blowing-up on A with center Z and ( M , π M Y , φ) is the corresponding triple, then there exist isomorphisms θ : à → à and ψ : M → M and a standardization φ : M → à such triple so constructed will be called a blowing-up of M with center Y relatively to the standardization φ. For any such blowing-up, the inverse image D = (π M Y ) -1 (Y ) is a regular submanifold of codimension 1, called the exceptional divisor of the blowing-up and π M Y is a proper, surjective morphism which restricts to an isomorphism from M \ D to M \ Y . Proof. The existence of such a triple ( M , π M Y , φ) is given as follows. Given a blowing-up ( Ã, π A Z ) with center Z, we consider just M as the enrichment Ãe of the analytic manifold à and φ : M → à as the morphism induced by the identity map in the underlying spaces. The morphism of blowing-up π M Y : M → M is given by using Proposition 2.4.6: the blowing-up morphism π A Z is locally monomial by Theorem-Denition 3.2.8. The second claim about the commutativity of the diagram (3.4) is proved similarly: the existence of the isomorphism θ : à → à is guaranteed by Theorem-Denition 3.2.8. This isomorphism, being locally monomial, lifts to an isomorphism ψ : M → M with the required properties of commutativity. The rest of the properties come easily from the corresponding properties on the bottom row of the standard analytic manifolds: In one hand, any topological property of the underlying map, π A Y , of the blowing-up of A with center Z is directly translated to the map π M Y since the standardizations φ and φ are homeomorphisms. On the other hand, if p is a point of M not in the exceptional divisor D of π M Y then φ(p) is not in the exceptional divisor of π A Z and, since the later is a local isomorphism at that point, the same occurs for π M Y at p. Denition 3.3.3. Let M be a generalized analytic manifold. A local blowing-up on A (with locally closed admissible center) is a pair (N, π, φ) where N is a G-manifold, π : N → M is a morphism obtained as the composition π = i • τ : N → U → M, where i : U → M is an open submanifold and τ : N → U is a blowing-up morphism on U with an admissible center Y ⊂ U closed in U with respect to some standardization φ : U → V of the pair (U, Y ). Example 3.3.4. Using Proposition 3.1.10, if Y ⊂ M is an admissible center of generalized manifold M and ϕ : U Y | U × L m × R n is a normalizing chart, then we can assume that Y | U ⊂ U is standardizable.

  missible center requires also to specify a standardization of the manifold (or at least of an open submanifold containing the center). If such a standardization does not exists then, a priori, we have not the possibility to blow-up this center.The example of the exotic cylinder (cf. Example 2.3.5) gives an example. Consider C α one of those exotic cylinders with α = 1 and put M = C α × L 1 . Then Y = ∂C α × {0} is an admissible center of M of codimension two. It has no standardizable open neighborhood in M so it can no be used as a center of blowing-up with the meaning of Theorem-Denition 3.3.2. Geometrically, there is no good "generalized normal bundle along Y ". Very roughly speaking, if we start at some point p ∈ |Y | with a family of (local) regular surfaces of the form {x = z γ } γ , where (x, y, z) ∈ C α × L 1 are coordinates at p, then the exponent γ transforms into another one and the corresponding surfaces locally dened do not match.

3 . 4

 34 Local Monomialisation Theorem. Before the statement of the main result, we consider the following useful denition. Denition 3.4.1. Let M be a generalized analytic manifold and p a point in M . A proper étoilé-neighborhood (or é-neighborhood) of p (the name is taken from what Hironaka calls "voûte étoilé") is a nite family Σ = {π j : W j → M, L j } j∈J where 1. each π j is the composition of a sequence of nitely many local blowing-ups (with admissible centers)

  l + . . . As α r /r ≤ α j /j for all 2 ≤ j ≤ d, rα j,l α r,l -j ≥ 0 and we can factor out (y ) d (y ) d (1 + . . . + (x ) α j u j (x )(y )

  y) d + . . . + x (d-j) α r,l r +α j,l l

  y) d + . . . + x α j,l -j α r,l r l

  y d + . . . + x (d-j) α r,l r +α j,l l

(

  X, C C(X) ) and (Y, C C(Y ) ). Let ϕ : X → Y a continuous function. Dene, for any V open subset of Y , ϕ (V ) : f ∈ C C(Y ) (V ) → f • ϕ ∈ C C(X) (ϕ -1 (V )). Notice that ϕ (V ) is a well dened ring homomorphism because ϕ -1 (V ) is an open subset of X and f • ϕ is a continuous function on ϕ -1 (V ) whenever f is a continuous function on V since ϕ is continuous, and for any f, g ∈ C C(Y ) (V ), (f + g) • ϕ = (f • ϕ) + (g • ϕ), (f g) • ϕ = (f • ϕ)(g • ϕ), and the diagram

  is commutative for every open W ⊆ V . Hence ϕ : C C(Y ) → ϕ * C C(X) given by ϕ (V ) : f ∈ C C(Y ) (V ) → f • ϕ ∈ C C(X) (ϕ -1 (V )) for anyDenition B.0.22. Let S = (Obj(S),Morph(S)) be a subcategory of C. If for any X, Y ∈ S, Morph X,Y (S) =Morph X,Y (C) we say that S is a full subcategory of C.

  Denition B.0.24. Let S be a subcategory of C. Let X, Y ∈Obj(S). An open immersion on X is a morphism ϕ : Y → X for which there exists an open set U ⊂ |X| such that ϕ decompose in ϕ = i • ϕ : Y ϕ -→ X| U i → X where ϕ is an isomorphism. Remark B.0.25. Let Y, X 1 , X 2 ∈Obj(S) and ϕ i : Y → X i open immersions decomposing in

  On the other hand, notice that Supp(s + t) ⊆Supp(s)∪Supp(t). So, by proposition 1.1.2, Supp(s + t) is good and s + t is a well dened element in A[[X

* ]].

  Remark 1.1.5. Notice that, by property vi) in 1.1.2, the initial part In ρ (s) is in fact a polynomial. Denition 1.1.6. We say that a family {s j } j∈J in A[[X * ]] is sumable if :

  series is of monomial type if and only if its minimal support has only one element.

	Lemma 1.1.12. If

  that in the classical framework of formal power series, the composition of series makes sense: we can change variables by series with no constant term. Formally, if s ∈ A[[Y ]], and t = (t 1 , t 2 , . . . , t n ) ∈ A[[W ]] n , where W = (W 1 , . . . , W n ), with t 1 (0) = . . . = t n (0) = 0 we may substitute t for Y in s and obtain an element s(t(W )) ∈ A[[W ]]. This operation of substitution satises the following natural property: for any xed n-tuple of series

1.1.3 Composition morphisms.

Recall

  Proposition 1.1.14 shows that, in the context of real generalized power series, substitution of variables X i by other series t i is possible if the substitute series t i are of monomial type. In the following proposition we prove a reciprocal result, that is, if a real generalized power series t, in any given number of variables, can be the "substitute" of a variable in any generalized power series, then t must be of monomial type. A correct statement of this reciprocal property makes use of the special series X 1/N , for N ∈ N, where to substitute the variable X by t; that is, existence of N th -roots of t for any N . For our purposes, we state this result in the slightly more , . . . , X m ), Y = (Y 1 , . . . , Y n ) are respectively the generalized and the analytic variables. Suppose that s ≡ 0. For N ∈ N ≥0 we say that s has has an N th -root if there exists sN ∈ R[[X * , Y ]] such that (s N ) N = s. Lemma 1.1.18. Let s ∈ R[[X * ]].Suppose that s ≡ 0 and that s has an N th -root for any N ∈ N. Then, for any weight vector ρ ∈ (0, ∞) m , the initial part of s, In ρ (s) have an N th -root for any N ∈ N. Moreover, any N th -root of In ρ (s) is ρ-homogeneous whose ρ-degree is equal to ord ρ (s)/N . Proof. Put s = In ρ (s)+res ρ (s) where res ρ (s) is the residual part of s with respect to ρ. Let s N ∈ R[[X * , Y ]] be an N th -root of s and put s N =In ρ (s N )+res ρ (s N ). We have

	general context of mixed series.
	Denition 1.1.17. Let s ∈ R[[X * , Y ]] be a formal generalized real power series where X =
	(X 1

  2, . . . , N } which implies that In ρ (s) =(In ρ (s N )) N . This argument also shows that any N throot of In ρ (s) is ρ-homogeneous and its ρ-degree is equal to ord ρ (s)/N by property 2 of the order Suppose that s ≡ 0 and that s has an N th -root for any N ∈ N. Let, for all N ∈ N, s N ∈ R[[X * ]] be an N th -root of s, that is (s N ) N = s. Then, for any weight vector ρ, In ρ (s) = (In ρ (s N )) N and so ord ρ (In(s N )) =ord ρ (In(s))/N . , . . . , X m ), Y = (Y 1 , . . . , Y n ) are respectively the generalized and the analytic variables. Suppose that s ≡ 0 and that for any integer N ∈ N ≥0 there exists a

	function ord ρ .
	Corollary 1.1.19. Let s ∈ R[[X Proposition 1.1.20. Let s ∈ R[[X * , Y ]] be a formal generalized real power series where X =
	(X 1

* ]].

  n,ξ and c ∈ R. First notice that if s or t have nite support, S ξ (cs) = cS ξ (s), S ξ (s + t) = S ξ (s) + S ξ (t) and S ξ (st) = S ξ (s)S ξ (t). The result then follows from Remark 1.2.8 and Lemma 1.2.19: Let > 0.

	By Remark 1.2.8 there exists

  However, we show in 2.4.2 that there exist examples of generalized analytic manifolds which are not standardizable. Such examples are interpreted as exotic examples that could complicate the theory of generalized analytic manifolds in its full generality.

  Thus A k + is a locally ringed space on local R-algebras of continuous functions, that is, an element of the category C (see the Appendix for the details). Denition 2.1.2. A (real) analytic manifold with boundary and corners, or for short, a standard analytic manifold of dimension k is a locally ringed space on R-algebras of continuous functions A = (|A|, O A ) ∈ Objects(C), where |A| is a Hausdor topological space with a countable open basis, such that any point of |A| has an open neighborhood isomorphic in

R-algebra of real continuous functions on V and that the stalk O A k + ,p is a local R-algebra for any p.

  see proposition B.0.21 in the appendix). Such a morphism is an isomorphism if and only if ϕ : |A| → |B| is an homeomorphism and for all p ∈ |A| the R-algebras homomorphism induced in the stalk

  local model. Notice that by the moment A m + × R n is just a notation. We show in proposition 2.1.16 below that the category O has product. In particular the product of the standard analytic manifolds A m + and R n has sense and it agrees with the given here.

Let A = (|A|, O A ) be a standard analytic manifold and p ∈ |A|. A local chart at p will be a pair (U, w) where U is an open neighborhood of p in |A| and

  Φ • θ -1p,σ (p + (x 1 , . . . , x mp , y 1 , . . . y np )) = (x σ(1) , . . . , x σ(mp) , e y σ(mp+1)-mp , . . . , e y σ(k)-mp )

	Hence we have proved	
	Proposition 2.1.8. For any point p ∈ R k ≥0 there exists neighborhood (depending on ) isomorphic to (A mp	> 0 small enough and an open

  order to dene the sheaf O P as a subsheaf of the sheaf of continuous functions, it is enough to associate to any element of a basis of open sets of the topology of |P | a R-subalgebra of continuous functions with. After that, we need to show that with this structure, |P | is locally isomorphic to A k 1 +k 2

+ . As a basis of open sets of the topological product |A 1 | × |A 2 |, we can consider the set

  Remark that the natural projections p i :|A 1 | × |A 2 | → |A i | are morphisms from A 1 × A 2 to A i .To nish, we have to prove that (A 1 × A 2 , p 1 , p 2 ) is a solution of the universal problem. But this is easy: if B is a standard analytic manifold and β i : B → A i are morphisms for i = 1, 2, the map Φ :B → A 1 × A 2 dened by Φ = (β 1 , β 2 ) iscontinuous and induce a morphism of standard analytic manifolds since this property is a local one and locally A 1 × A 2 has the structure of product, by denition. Proposition 2.1.17. O is a category with gluing. Proof. Let B, A 1 , A 2 be standard analytic manifolds and ϕ i : B → A i be open immersions (see appendix B) decomposing in

  is a homeomorphism and that |A| = W 1 ∪ W 2 . Now we want to dene a sheaf of continuous functions (on local algebras) O A on |A| such that A = (|A|, O A ) is a standard analytic manifold and α i is a morphism of standard analytic manifolds. Using a general construction of gluing ringed spaces (see Appendix for details), it suces to dene such a sheaf O W i on W i for

i = 1, 2 such that, for any open set

  Y mp,np is called the Taylor expansion of the germ f p . It is well dened modulo the action of G mp,np on the series.

Examples 2.2.8. Let us give some examples of G-analytic functions.

  generalized) local model. Notice that by the moment L m × R n is just a notation. We show in proposition 2.3.21 below that the category G has product. In particular the product of the standard analytic manifolds L m and R n has sense and it agrees with the given here. Denition 2.3.4. Let p ∈ |M |. A local (generalized) chart at p will be a pair (U, z) where U is an open neighborhood of p in |M | and

  The components z 1 , . . . , z k will be called local coordinates at p. We say that a local chart is centered at p if it sends p to the origin.

Proposition 2.3.5. For any point p ∈ R k ≥0 there exists > 0 small enough and an open neighborhood (depending on ) isomorphic to

  The family D M = {D(j) i j } i j ∈I j Proof. All stated properties are true if they are true locally at each point of the manifold. Thus the proof follows from the denition of M as being locally isomorphic to open submanifolds of the local standard model L k after checking that proposition is true for the (nite) straticationD L k of R k M ) be a G-manifold.By denition, each p ∈ |M | is in the domain of a chart (U, φ) where the range of φ is an open subset of R k ≥0 . As a consequence of Proposition 2.3.11, we can choose such a chart centered at p, i.e., such that φ(p) = (0, ..., 0) if and only if m p = k. , by proposition 2.3.5, if we want to have always a chart centered at any given point, we can think that there is not a single local model for standard analytic manifold of a given dimension k, namely L k , but several ones, L m × R n with m + n = k. M = (|M |, O M ) and N = (|N |, O N ) be standard analytic manifolds and ϕ : |M | → |N | a continuous map which induces a morphism from M to N . Let p ∈ |M | and ϕ(p) ∈ |N |. We want to investigate how is the local expression of the morphism ϕ when we take local coordinates centered at p and at ϕ(p).

	≥0 .
	2.3.2 Local expression of morphisms
	However
	is a locally nite stratication of |M |; that is, for
	j∈{0,...,k}

every stratum D(j) i , its boundary ∂D(j) i = D(j) i \ D(j) i is a locally nite union of strata of dimension not greater than the dimension of D(j) i . Moreover, the boundary ∂|M | of |M | is the union of all strata of dimension strictly smaller than k. Let M = (|M |, G Let

  by proposition 1.2.21 we can compose the Taylor expansions of f and h at any

  us see that Φ is a morphism in the category of G-manifolds. It suces to see that for every a ∈ |A| and for every germ

  . If {(W j , ψ j )} j∈J is another analytic atlas of A let us see that the sheaf over |A|, G A dened over any open of |A|, U ⊆ |A| by

  ∂|A| be the boundary inside this open set. The proof is nished once we show the two following claims. Claim 1.-For i = 1, 2 there exists an analytic function h i in a neighborhood of D i in V i (thus a G-analytic function for the structure of the enrichment A e ) such that D i is the zero locus of h i and, in the intersection V 1 ∩ V 2 , the quotients h 1 /h 2 and h 2 /h 1 (both dened outside the boundary) remain bounded in a neighborhood of any point of the boundary ∂|A|∩V 1 ∩V 2 , except possibly for a discrete subset of points. Claim 2.-If α = 1, the analogous claim 1 for C α is not true: there are no G-analytic functions h i on a neighborhood of ∂C α ∩ U α,i for i = 1, 2, having the boundary ∂C α as the zero locus and such that h 1 /h 2 and h 2 /h 1 remain bounded in a neighborhood of each point of the boundary except for a discrete subset of them.

  If in addition, ϕ(|N |) is a closed subset of |M | we say that the submanifold ϕ :N → M is closed. A submanifold ϕ : N → M is said to be a regular submanifold of M if moreover ϕ : |N | → ϕ(|N |) is an homeomorphism.Remark 3.1.2. Notice that the condition that ϕ is injective and continuous implies (by the Theorem of Invariance of the Domain) that dim(N ) ≤dim(M ). On the other hand, it can be shown, though we will not make use of, that in the standard category A = O, the condition ii) is equivalent to the usual condition for immersions, that is, that the dierential dϕ p at the point p is injective. Let m, n ∈ N. Consider the O-manifold product A m + × R n . Then the morphism i :A m + × R n → R m+n induced by the inclusion mapping i : R m ≥0 × R n → R m+n is a regular submanifold. Let m, n ∈ N.Consider the G-manifold product L m ×R n . Then the morphism i : L m ×R n → R m+n induced by the inclusion mapping i : R m ≥0 × R n → R m+n is a regular submanifold. 3.1.4. A regular submanifold ϕ : N → M between A-manifolds is said to be an admissible center if for every p ∈ |N |, there exist A-coordinates x and y, centered at p and at ϕ(p), respectively, such that, up to permutation of the target variables y, ϕ writes locally as

	3.1.2 Admissible centers.
	ϕ(x) = (x, 0).
	Example 3.1.5. i) The morphisms induced by the map
	t ∈ R 1 ≥0 → (t, t, 0) ∈ R 3 ≥0
	are not admissible (neither in the standard or generalized category).
	Examples 3.1.3. i) The morphism induced by the map

Denition 3.1.1. Let M = (|M |, A M ) and N = (|N |, A N ) be A-manifolds. A morphism ϕ : N → M is a submanifold if i) ϕ is injective ii) for each p ∈ |N |, the induced homomorphism in the ring of germs

ϕ p : G M,ϕ(p) → G N,p is surjective. t ∈ R 1 ≥0 → (t, t, 0) ∈ R 3

≥0 is a closed regular submanifold (of A 3 + in the standard category O and of L 3 in the G category).

ii)

iii)

Denition

  3.2)Since l p is locally constant on |Y | and |Y | is connected l p is constantly equals to l. We check easily that {(V p , ψ p )} p∈|Y | is a A-atlas of |Y | (the change of variables between two such local charts comes from considering some components of a change of variables x → y for two local charts of the ambient manifold M where some of the variables between the x are substituted by (V p , ψ p = (x j ) j ∈Jp ) at p we have the isomorphisms F and G, (as in Proposition 2.2.6 for the generalized category and the analogous for the standard category):

a constant). We can consider Y = (|Y |, A Y ) the A-manifold associated to this atlas as in 2.3.8. Now we prove that i : Y → M is a closed regular submanifold. Let p ∈ |Y | and i p : G M,p → G Y,p the induced homomorphism in the stalks. Taking local coordinates (U p , ϕ p = (x 1 . . . , x k )) at i(p) and

  If m = 0, n = 2, we take four copies of R ≥0 × R with coordinates (x 1 , y 1 ), (x 2 , y 2 ), (x 3 , y 3 ) and (x 4 , y 4 ) respectively. Let B be the quotient space obtained from the disjoint union

	x2	
		B
	y2	
	y3	y1
	x3	x1
	iv)	

Denition 3.1.9. Let M be a G-manifold and let Y ⊂ M be an admissible center. We say that Y is standardizable inside M or that the pair (M, Y ) is standardizable if there exists a

été possible sans l'aide nancière

Proposition 2.1.13. For each j ∈ {0, ..., k} and each i ∈ I j , D(j) i is a locally closed set and the restricted sheaf (D(j) i , O A | D(j) i ) gives rise to a real analytic manifold of dimension k -j. The family D M = {D(j) i j } i j ∈I j j∈{0,...,k} is a locally nite stratication of |A|; that is, for every stratum D(j) i , its boundary ∂D(j) i = D(j) i \ D(j) i is a locally nite union of strata of dimension not greater than the dimension of D(j) i . Moreover, the boundary ∂|A| of |A| is the union of all strata of dimension strictly smaller than k.

Proof. All stated properties are true if they are true locally at each point of the manifold. Thus the proof follows from the denition of A as being locally isomorphic to open submanifolds of the local standard model A k + after checking that proposition is true for the (nite) stratication

Denition 2.1.14. Let |X| be a k dimensional Hausdor topological space with a countable open basis. We say that a family {(U λ , ϕ λ )} λ∈Λ is an O-atlas of |X| if i) For any λ ∈ Λ, U λ is an open subset of |X| and ϕ λ :

Let U an open subset of |X|. We denote by O X (U ) the set of continuous functions f : U → R such that for any p ∈ U , there exists an open V ⊆ U such that f • ϕ -1 λ : ϕ λ (V ∩ U λ ) → R has an analytic extension to an open neighborhood of ϕ(p) in R k for any λ ∈ Λ such that p ∈ U λ . Proposition 2.1.15. The pair X = (|X|, O X ) is a standard analytic manifold.

Proof. By denition, X ∈Obj(C). Let p ∈ |X|. Let λ ∈ Λ such that p ∈ U λ . Then, ϕ -1 λ induces a morphism from A k + | ϕ λ (U λ ) to X| U λ by denition of X. Moreover, ϕ λ : U λ → ϕ λ (U λ ) induces a morphism from X| U λ to A k + | ϕ λ (U λ ) : let V be an open subset of ϕ λ (U λ ) and g :

) is an isomorphism.

Proposition 2.1.16. O is a category with product.

Proof. We show rst that given

≥0 open sets, there exists a product of the open submanifolds of the local model

Considering V as open submanifold of A k + we claim that V , together with the usual projections p i :

Let A be a standard manifold and α i : A → V i morphisms of O. Since V is the topological product of V 1 and V 2 , there exists a unique continuous map Φ : A → V such that p i • Φ = α i . Let us see that Φ is a morphism in the category O. + | ϕ(W ) . Thus, for any q ∈ ϕ(W ) 

Denote by π :

) )

Then we have that α i is continuous, that its image 

We have to show that there exists an unique morphism f : 

We just have to prove that f is a morphism of G-manifolds. This is a property that we can check locally. But f is locally dened either by

has the property (??); thus |Z| is the underlying space of an admissible center Z ⊂ A. If such a standardization φ exists, we will say that φ is a standardization of the pair (M, Y ).

As we have seen in Example 2.4.2, the regular subvariety ∂C α of the exotic cylinder C α is an admissible center of C α but the pair (C α , ∂C α ) is not standardizable if α = 1 (in fact there exists no open neighborhood of ∂C α which is a standardizable G-manifold. This is an example of a non standardizable admissible center of codimension 

3.2

Blowing-up on standard analytic manifolds.

In this section we recall the notion of blowing-up with a closed admissible center in a standard analytic manifold (with boundary and corners). We will proceed by dening explicit models and explicit charts of blowing-up morphisms, although the notion could be given in categorical terms as a solution of a universal problem inside the category of these manifolds (this is the way the blowing-up morphisms are dened for instance in Hironaka's paper [START_REF] Hironaka | Introduction to real-analytic sets and real-analytic maps[END_REF] for the category of complex analytic spaces).

We start with the very well known case of the (polar) blowing-up of a point in the model R k of analytic manifold without boundary.

Then, the map π R k 0 is continuous and proper. Moreover, it induces a morphism form R k to R k , (π R k 0 ) -1 (0) = {0} × S 1 is a closed regular submanifold of R k (in fact an admissible center), and the restriction π

Moreover, the morphism π R k 0 is locally of monomial type.

The pair ( R k , π R k 0 ) will be called the blowing up of R k with center the origin. If p ∈ R k is any point and T p : R k → R k is the translation of the point p to the origin, totally analogous properties as above are true for the morphism π

In all the cases, we call, as usual, (π R k p ) -1 (p) the exceptional divisor of the (corresponding) blowing-up. Now we can dene the blowing up at any point in each of the mixed models A m + × R n for analytic manifolds with boundary and corners.

Let m, n ∈ N. 

is a regular subvariety of R m+n (by set-theoretic inclusion) and the restriction induces an analytic morphism

which is proper and a local isomorphism at any point except for those in (π m,n p ) -1 (p), which is a regular subvariety of R m,n p of codimension 1 (in fact an admissible center). The pair ( R m,n p , π m,n p )

is called the blowing-up of A m + × R n at the point p and (π m,n p ) -1 (p) is called the exceptional divisor of the blowing-up.

The denition of blowing-up at a point as we have stated above gives explicitly the blown-up space together with the blowing-up morphism. But it is one of the possibilities to consider a blowing-up morphism. We need not to be attached to a concrete form of a blowing-up, mostly if we have the aim to dene it in general analytic manifolds. So we dene:

where B is a standard analytic manifold with boundary and corners and π p : B → A m + ×R n is an analytic morphism such that there exists an analytic isomorphism θ :

Examples 3.2.4. i) Consider two copies of R ≥0 with coordinates x 1 and x 2 respectively.

Let B be the disjoint union R ≥0 R ≥0 . Then the two copies of R ≥0 embed as open coordinate domains of B giving rise to a structure of O-manifold to B. Together with the map π : B → R which is well dened in these charts as

ii) The pair (A + , id A + ) is a blowing-up of A + at the origin.

iii) If m = 1 = n, we take two copies of R 2 ≥0 and R 1 ≥0 × R with coordinates (x 1 , y 1 ), (x 3 , y 3 ) and (x 2 , y 2 ) respectively. Let B be the quotient space obtained from the disjoint union

) by the relation

Then the two copies of R 2 ≥0 and R ≥0 × R embed as open coordinate domains of B giving rise to a structure of O-manifold to this quotient topological space. Together with the map π : B → R ≥0 × R which is well dened in these charts as 

where ψ 1 is the set-theoretic inclusion and

Let A(ϕ) be the gluing manifold associated to these immersions and π A p (ϕ) : A(ϕ) → A the corresponding projection onto A.

Theorem-denition 3.2.6. i) The morphism π A p (ϕ) is proper and surjective and it induces an isomorphism from the open submanifold

A blowing up of A at p is any pair ( A, π A p ) where A is an O-manifold and π A p (ϕ) : A → A is a morphism such that there exists an isomorphism θ : A → A(ϕ).

Blowing-up an admissible center.

In the previous paragraph we have dened the blowing-up of a standard analytic manifold at a point (an admissible center of dimension zero). Here we dene the blowing-up with center a closed admissible center of any dimension.

Let A = (|A|, O A ) be a standard analytic manifold with boundary and corners and let Z = (|Z|, O Z ) ⊂ A be a closed (connected) admissible center of A. Recall from the paragraph 3.1.2 that for any point p ∈ |A| we have an open neighborhood U of p in A which is a normalizing domain for the subvariety Y , that is, that

We can moreover assume that the isomorphism above restrict to the identity between U ∩ Y and Y | U × {0}. The natural numbers may depend on the point p but not in the neighborhood U (cf. Example 3.1.7).

The following Lemma generalizes Lemma 3.2.6 Lemma 3.2.7. Let U and V be two normalizing domains of Y :

Remark 3.4.3. Let p ∈ M and Σ = {π j : W j → M, L j } j∈J a proper é-neighborhood of p.

Suppose that for every q ∈ L = ∪ j∈J L j there exists a proper é-neighborhood Σ q = {π q,j : W q,j → W j , L q,j } j∈J(q) of q. Then since V q := ∪ j∈J(q) π q,j (L q,j ) is a neighborhood of q, by compactness of L (in the disjoint union of the topological spaces |W j |), there exists nitely many points q 1 , q 2 , . . . , q l ∈ L, such that L ⊆ V q 1 ∪ V q 2 ∪ . . . ∪ V q l . Then, the set l i=1 {π j • π q i ,j : W q i ,j → M, L q i ,j } j∈J(q i ) is a proper é-neighborhood.

We will make use of the remark above several times during the proof of Theorem 3.4.2. Notably in order to reduce the proof to every point of the exceptional divisor after a local blowing-up with an admissible center that passes through the point p. Proof. For any q ∈ |D p |, let Σ q = {π q,j : W q,j → Ũ , L q,j } be a é-neighborhood of q for which Theorem 3.4.2 is true. Denote by V q = ∪ j π q,j (L q,j ), a (compact) neighborhood of q in Ũ , and consider a smaller compact neighborhood Ṽq of q such that Ṽq is contained in the interior int(V q ) of V q . Notice that Σ q is also a proper é-neighborhood of any point in Ṽq . Since the blowing- up is a proper mapping (see 3.3.2), there exists nitely many points q 1 , ..., 

with a i ∈ G(U ) is independent of the coordinate y and a i (p) = 0 for all i. Then Theorem 3.4.2 is true for f at p. x i = 0 (of codimension 1), we can suppose that the number of boundary components of q in W j is maximal, equal to m(q) = k -1. In this case, (b l • π j ) 1/l = (x ) α l /l (u )

1/l l is a G-analytic function. Now, consider the function b obtained as the product of all non-zero functions and of the non-zero dierences among the family {(b l • π j ) 1/l } l . Repeating the argument, Theorem [main] being by hypothesis true for b, up to further local blowing-ups, b and all its factors can be considered as a locally monomial function (with respect to the same system of coordinates). Now v) of Remark 2.3.17 gives the desired result about the exponents α l /l. Proof. Let (V, ψ = (z, w)) be another local chart at p. Denote by s ϕ ∈ R X * , Y and s ψ ∈ R{Z * , W } respectively the Taylor expansion of f at p with respect to the coordinates (x, y) and (z, w). Denote by φ : R{Z * , W } → R X * , Y the isomorphism induced by the change of coordinates as in 2.3.11. Notice that up to a permutation σ ∈ G mp,np , we can suppose φ(s ψ ) = s ϕ . By 2.3.15, for 1 ≤ j ≤ m p , z j = x a j i(j) g j (x, y) with a j > 0, g j (0, 0) > 0 and i a permutation of the index {1, . . . , m}. Thus, φ(Z j ) = X The following result permits to prove theorem 3.4.2 by induction in the invariant I(f, p) in lexicographic order when b 2 (f, p) > 0.

Theorem 3.4.7. Let f ∈ G(M ) and p ∈ |M | and assume that b 2 (f, p) > 0. Then there exists a local blowing-up π : M → M with admissible center Y through p, of codimension 2, such that for any point q in the ber π -1 (p) of the exceptional divisor, the transformed function + × R n , φ(x, y) = (x 1 , . . . , x γ i , . . . , x j , y).

Let π : M → U → M the local blowing-up with center Y and associated to the standardization φ. Then, as in the example 3.3.4, M is covered by two charts (x , y ) and (x , y ), both with values in R m ≥0 × R n , such that the expression of the blowing-up morphism is π(x , y ) = (x 1 , . . . , x i , . . . , (x i ) γ x j , . . . , y ), π(x , y ) = (x 1 , . . . , x j , . . . , (x j ) 1/γ x i , . . . , y ).

Thus, we see that the Taylor expansion of f at the origin p 1 of the rst (respectively p 2 the origin of the second) chart with respect to (x , y ) (respectively with respect to (x , y )) is just ς γ ij (s) (respectively ς 1/γ ji (s)). Moreover, m p 1 = m p 2 = m and thus the Theorem is proved at those two points by our choice of the admissible center using Lemma 1.1.23.

Finally, for any point q ∈ π -1 (p) dierent from p 2 in in the domain of the rst chart we can use the local chart ((x ) q , y ) centered at q where (x ) q l = x l if l = j and (x ) q j = x j -x j (q). Assuming that q = p 1 we have x j (q) = 0 and thus (x ) q j becomes an analytic variable (it takes positive an negative values in a neighborhood of the point q). The rest of coordinates remaining unchanged, we obtain that m q = m p -1 and thus also I( f , q) < I(f, p) and we are done.

In order to nish the proof of theorem 3.4.2 it remains the case b 2 (f, p) = 0. In this situation, there are two possibilities:

1. n p = 0. Then f is already locally monomial at p.

with g(0, y) ≡ 0 in ϕ(U ). Then, there exist a suitable change of coordinates involving only the y variables making y np regular in g. By Weierstrass Preparation Theorem, g is under the hypothesis of Proposition 3.4.5 and the result follows.

Appendix A Sheaves and ringed spaces.

We reproduce the denitions and results from the sheaves theory that we need as they appear in [START_REF] Hartshorne | Algebraic geometry[END_REF].

Denition A.0.8. Let X be a topological space. A presheaf F of rings on X consists of the data (a) for every open subset U ⊆ X, a ring F(U ) and (b) for every inclusion V ⊆ U of open subsets of X, a morphism of rings ρ U V :

As a matter of terminology, if F is a presheaf on X, we refer to F(U ) as the sections of the presheaf F over the open set U , and we sometimes use the notation Γ(U, F) to denote the ring F(U ). We call the maps ρ U V restrictions maps, and we sometimes write s| V instead of ρ U V (s)

A sheaf is roughly speaking a presheaf whose sections are determinated by local data. To be precise, we give the following denition.

Denition A.0.9. A presheaf F on a topological space X is a sheaf if it satises the following supplementary conditions:

(

for each i, with the property that for each i, j, s i | V i ∩V j = s j | V i ∩V j , then there is an element s ∈ F(U ) such that s| V i = s i for each i. (Note condition (3) implies that s is unique).

Example A.0.10. Let X be a topological space. For each open set U ⊆ X, let C 0 (U ; R) be the ring of continuous real-valued functions on U , and for each V ⊆ U , let ρ U V : C 0 (U ; R) → C 0 (V ; R) be the restriction map (in the usual sense). Then the assignment U → C 0 (U ; R) for any U open subset of X together with the restriction of maps as restrictions morphisms is a sheaf of rings on X that we call the sheaf of continuous functions on X and denote by C C(X) . It is clear that C C(X) is a presheaf of rings. To verify the conditions (3) and (4), we note that a function which is 0 locally is 0, and a function which is continuous locally is continuous. In the same way we can dene the sheaf of real analytic functions on a real analytic manifold. If M is a real analytic manifold we denote by O M the sheaf of real analytic functions on M .

A directed set is a partially ordered set (I, ≤) with the additional property that every pair of elements has a lower bound. Let (I, ≤) be a directed set. Let {A i : i ∈ I} be a family of rings indexed by I and f ji : A j → A i be a ring homomorphism for all i ≤ j with the following properties:

1. f ii : A i → A i is the identity of A i for all i ∈ I, and

Then the pair A i , f ij is called a direct system over I. The underlying set of the direct limit, A, of the direct system A i , f ij is dened as the disjoint union of the A i 's modulo an equivalence relation ∼ :

One naturally obtains from this denition canonical morphisms φ i : A i → A sending each element to its equivalence class. The ring operations on A are dened via these maps in the obvious manner.

Let F be a presheaf on X, and p a point of X. Let E X (p) be the set of all open neighborhoods of p on X. We order partially E X (p) with the inclusion order. Actually (E

and is a lower bound of U and V . We construct a direct system over E X (p) considering the family of rings {F(U ) : U ∈ E X (p)} and the ring homomorphisms ρ U V :

Denition A.0.11. If F is a presheaf on X, and if p is a point of X, we dene the stalk F p of F at p to be the direct limit of the rings F(U ) for all open sets U containing p via the restriction maps ρ.

Thus an element of F p is represented by a pair U, s , where U is an open neighborhood of p, and s is an element of F(U ). Two such pairs U, s and V, t dene the same element of F p if and only if there is an open neighborhood W of p with W ⊆ U ∩ V , such that s| W = t| W . Thus we may speak of elements of the stalk F p as germs of sections of F at the point p. In the case of topological space X and its sheaf of continuous functions (example A.0.10) C C(X) , the stalk C C(X),p at a point p is just the local ring of germs of continuous functions at p.

Denition A.0.12. If F and H are presheaves on X, a morphism ϕ : F → H consists of a morphism of rings ϕ (U ) :

is commutative, where ρ and ρ are the restriction maps in F and H. If F and H are sheaves on X, we use the same denition for a morphism of sheaves. An isomorphism is a morphism which has a two-sided inverse.

Note that a morphism ϕ : F → H of presheaves on X induces a morphism ϕ p : F p → H p on the stalks, for any point p ∈ X, given by ϕ p ( U, s

The following proposition (which would be false for presheaves) illustrates the local nature of a sheaf.

Proposition A.0.13. Let ϕ : F → H be a morphism of sheaves on a topological space X.

Then ϕ is an isomorphism if and only if the induced map on the stalk ϕ p : F p → H p is an isomorphism for every p ∈ X.

Proof. If ϕ is an isomorphism it is clear that each ϕ p is an isomorphism. Conversely, assume ϕ p is an isomorphism for all p ∈ X. To show that ϕ is an isomorphism, it will be sucient to show that ϕ (U ) : F(U ) → H(U ) is an isomorphism for all U , because then we can dene an inverse morphism ψ by ψ (U ) = (ϕ ) If we suppose i), every arrow in (B.2) is an isomorphism. We have that M C X,p ⊆ M C C(X),p ∩ C X,p since i is local. Conversely, if f p ∈ C X,p is such that f (p) = 0, i(f p ) ∈ M C C(X),p . Following the diagram anticlockwise, f p ∈ M C X,p .

Suppose ii). Then, C X,p i -→ C C(X),p is local and the injective homomorphism R → C X,p is surjective because given f p + M C X,p either f (p) = 0, which implies by ii) that f p ∈ M C X,p or f (p) = 0, so it is the germ of the function constantly equals to f (p). If X, Y satisfy one of the equivalent conditions of proposition B.0.20, then the morphism of sheaves ϕ is given by composition with ϕ; that is, for any V open subset of |Y |,

Proof. Let V be an open subset of |Y |. We have to prove that ϕ (V )(f ) = f • ϕ for any f ∈ C Y (V ). So let f ∈ C Y (V ) and p ∈ ϕ -1 (V ). We want the equality ϕ (V )(f )(p) = (f • ϕ)(p). Put a = f (ϕ(p)) and dene g : V → R by g(q) = f (q) -a. As a question of notation, as the morphism of sheaves ϕ is completely determined by the continuous mapping ϕ, we will use frequently the same letter ϕ for the underlying continuous mapping and the morphism itself, so saying simply that ϕ : X → Y is a morphism of locally ringed spaces or in the category C.

We have that a morphism (ϕ, ϕ ) ∈Morph C (X, Y ) is an isomorphism if and only if ϕ is a homeomorphism of the underlying topological spaces, and ϕ is an isomorphism of sheaves, or equivalently the homomorphisms induced on the stalks are isomorphisms for any point.