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Chapter 1

1. Introduction

This work deals with the topic of sensitivity analysis for computer experiments. In

the situation that statistical experiments are too expensive, time-consuming, might

harm lives, or are simply impossible to perform, computer simulations can sometimes

be used as a replacement. These computer experiments are complex mathematical

models constructed from known physical relations, e.g. in engineering or environmen-

tal problems, or chemical and medical experiments, where computer experiments are

also known as in silico experiments. Specific examples for computer experiments are

traffic simulation models (Punzo and Ciuffo, 2011), where the interest lies in observing

those effects that lead to congestions, models of manufacturing processes like the deep

drawing model which motivated this work, or highly complex weather models, used in

the climate impact research (Katz, 2002). Computer experiments have become every-

day procedures in those fields and are also rising in other areas like social sciences and

economics. None the less, it has to be kept in mind that computer experiments are

only approximations of the real process and should be validated by real experiments

whenever possible.

From the statistical point of view, computer experiments have to be treated specially

since they are usually deterministic, contain a high number of input variables and

are highly complex in terms of nonlinear relations and interactions. The inherent

mathematical equations are most often solved numerically which results in long-lasting

1



2 Introduction

computations, so computer experiments can be very time-consuming. Methods have

been developed for the design of computer experiments, above all space-filling designs

like Latin hypercubes, maximin design, or entropy design (Santner et al., 2003). For

deterministic modeling and prediction, advanced interpolation methods exist which

respect the high complexity, with the most popular being the Gaussian process emula-

tor, also called Kriging. Finally, there are also optimization procedures for computer

experiments, which make use of the prediction models, one popular method being the

Kriging-based EGO algorithm, which utilizes the fact that Kriging provides an estima-

tion of the uncertainty of unobserved points.

In this work, the focus lies on a further broad field in the analysis of computer ex-

periments, sensitivity analysis, which has importance in all steps beginning with the

building of the computer experiment over its use and understanding to model building

and model validation. It analyzes how sensitive the computer experiment responds to

variations in the input.

The analysis of the response’s sensitivity is of interest on its own, e.g. to answer the

question what happens in a car crash simulation when the tire friction changes. Based

on Saltelli et al. (2000), five further points of sensitivity analysis application can be

named:

(1) To check, if a model resembles the real process, i.e. if sensitivities reflect expec-

tations,

(2) to determine the most important input variables and optimal regions in the space

of input variables for calibration studies,

(3) to select and rank input variables by importance,

(4) to detect regions in the space of input variables for which the model variation is

maximum, and

(5) to detect (groups of) input variables that interact with each other.
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This work presents new sensitivity analysis methods, motivated by and framed around

applications in the analysis of shape accuracy in sheet metal forming. Shape defor-

mation after the removal of the forming punch is a serious problem in production

processes, but can be simulated by finite elements methods (FEM).

With regard to point (5), the total interaction index (TII) for the analysis of computer

experiments is presented, an extension to the usual Sobol indices. Defined for two input

variables at a time, it gives the sum of Sobol indices of any order interaction containing

both input variables. If we estimate the TII for all combinations of the two input

variables, we can get an overview of the complete interaction structure of the computer

experiment, a difficult task with Sobol indices due to the curse of dimensionality. The

structure can be intuitively drawn in a so-called FANOVA graph (Mühlenstädt et al.,

2012). Furthermore, similar to the input variable screening by Sobol indices, we can

use TIIs for interaction screening. This leads to a block-additive decomposition of the

computer experiment. An inactive interaction indicates that the two input variables

come from two groups of variables that have no interaction in common and thus are

additive. This knowledge about a block-additive structure in the computer experiment

can be applied in subsequent procedures. Metamodels like Kriging can be adapted to

follow the block-additive structure and optimization can be simplified and parallelized

when being performed in each block separately. We present several estimation methods

for the TII and analyze their statistical properties. Methods for interaction screening,

including a suitable thresholding algorithm for inactive interactions, are developed. In

addition, derivative-based indices, which provide a faster-to-compute upper bound for

the TII, are presented.

Usually the process parameters are kept on a constant level during the computer exper-

iment. For the deep drawing analysis, finite element simulations have been developed

that allow the user to change parameters during the forming process in order to further

improve the accuracy of the analysis. Here new methods are necessary for the sensi-

tivity analysis of those temporal changeable parameters. This work presents an idea
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for an effective sensitivity analysis of functional input including design and graphical

representation of the functional influences of the inputs. To keep the number of func-

tion evaluations as low as possible, a sequential algorithm is introduced that increases

the accuracy of the functional sensitivity analysis with every step. The points (1), (2)

and (3) can be handled by the methods for functional input variables.

The ideas of the sequential algorithm are further developed for the analysis of the

support of scalar input variables, the support analysis. Regarding point (4) the aim is

to analyze the sensitivity of the different regions of the variables’ distribution support.

This information gives closer insight into the impact of the variables in the process

and can furthermore help in finding optimal support settings for screening, modeling,

and sensitivity analysis. In this work, support index functions as well as visualization

methods are suggested and their relations to other indices are derived.

The thesis is structured as follows. Chapter 2 gives an introduction to sensitivity

analysis together with a panorama of the current state of research in the field with

special focus on variance-based global sensitivity indices. Chapter 3 introduces the

TII along with the complete methodology for sensitivity analysis of the interaction

structure. Chapter 4 presents the approach of sensitivity analysis for functional input

and in Chapter 5 the developed technique for support analysis is presented. All methods

are then applied in deep drawing simulations in Chapter 6. The work is concluded with

a summary and outlook in Chapter 7.



Chapter 2

2. Sensitivity Analysis

2.1 Background

In the field of computer experiments, sensitivity analysis generally explores the rela-

tionships between information flowing in and out of the experiment. More specifically,

it studies how the uncertainty in the output of the computer experiment can be appor-

tioned to different sources of uncertainty in the inputs with the direct aim of process

understanding and input variable screening, but also calibration, metamodel building

and finally optimization. An elaborate overview can be found in the standard work of

sensitivity analysis by Saltelli et al. (2000) and in the comparison of sensitivity analysis

techniques by Confalonieri et al. (2010). This chapter starts with a brief outline of the

background of sensitivity analysis.

In the beginning, sensitivity analysis was based on standard statistical methods like

scatter plots. There, the influence of a variable can be read from plots of the output

against each input variable. Further methods were regression analysis, where regres-

sion coefficients qualify the linear sensitivity of each input (e.g. Kleijnen (1997)) and

correlation analysis. A next step were one-at-a-time methods (e.g. Daniel (1973)).

Here, one input variable is changed while keeping all other at a constant level, thus

information can be obtained only for that particular region in the input space. A sim-

ilar approach came from chemical modeling (e.g. Chapter 5 of Saltelli et al. (2000)),

5



6 Sensitivity Analysis

which uses partial derivatives around a nominal value as local sensitivities. In con-

trast to those local methods, Schaibly and Shuler (1973) developed a global sensitivity

analysis method called FAST (Fourier amplitude sensitivity test), which allows for all

input variables to be varied at the same time. Here, the input variables are sampled

in such a way that the amplitudes obtained by a Fourier analysis of the output can

be interpreted as sensitivity indices of the input variables. Later on, Sobol’ (1993)

introduced indices, which are now called Sobol indices, global sensitivity indices, which

have been proved by Saltelli and Bolado (1998) to predict the same quantities as the

FAST indices. Because of their clear interpretation, unbiased estimation and their

access to interactions, Sobol indices have been widely used and are being further de-

veloped continuously. Parallel to that, alternative sensitivity analysis methods were

introduced like derivative-based indices (Kucherenko et al., 2009) and, based on one-

at-a-time methods, very effective screening designs have been developed with the most

important being Morris screening (Morris, 1991).

2.2 The role of metamodels

The estimation of sensitivity indices usually requires a high number of model evalu-

ations, as crude discrete integration methods are applied. Time-consuming computer

experiments are therefore often replaced by a faster-to-evaluate second model, which

is called a metamodel, surrogate model, emulator or response surface. Possible meta-

models come from the large field of the modeling of computer experiments (e.g. Fang

et al., 2006), a popular one being the Gaussian process model described below, but

also polynomials, Polynomial Chaos Expansion, splines, or Neural Networks. As the

metamodel is only an approximation of the real experiment, a metamodel error has to

be taken into account and the accuracy of the model has to be assessed carefully, e.g.

by leave-one-out cross validation.
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Throughout this thesis, there will be no distinction between the true computer exper-

iment and the metamodel. The term underlying model, symbolized by f , can either

refer to the direct computer experiment or to a metamodel with negligible error. The

underlying model f will be regarded as a black-box function, whose specific shape is

inaccessible. However, there are some approaches that are able to utilize the specific

properties of a metamodel. Blatman and Sudret (2010) compute Sobol indices analyti-

cally from Sparse Polynomial Chaos Expansion models and Marrel et al. (2009) define

indices for the Gaussian process model that use the Gaussian process directly instead

of the prediction function.

The Gaussian process model, also called Kriging as it was proposed by Krige (1951), is

a standard tool in computer experiments for various reasons. It interpolates the data,

which is important for deterministic computer codes. In addition, the Kriging model

performs well in predicting, even for highly complex functions, and it gives a measure

of uncertainty at unobserved points (Fang et al., 2006). The basic idea is to assume

that the function is a realization of a Gaussian process with a linear trend as mean,

Y (x) =

p∑
`=1

β`f`(x) + Z(x), (2.1)

where x = (x1, . . . , xd) represents the vector of d input variables, f1(x), . . . , fp(x)

are p known regression functions with β1, . . . , βp the corresponding parameters, and

Z(.) is a Gaussian process with zero mean and covariance function, or kernel k. A

particular class for the covariance kernel is the stationary family, which implies that

k depends only on the difference between two different locations, k(x(1) − x(2)) with

k(.) = σ2R(.;θ), where σ2 is the process variance, R the correlation function and θ a

vector of covariance parameters.

As the Gaussian process model in (2.1) returns a Gaussian process instead of a function,

the predictor has to be defined separately,

ŷ(x∗) =

p∑
`=1

β`f`(x
∗) + k(x∗)′K−1(y − Fβ), (2.2)
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with x∗ a new point at which to predict, K the covariance matrix at all data points,

k(x∗) the covariance vector between the data and x∗, and F the experimental matrix

containing the trend values at all data points. Usually, the parameters βk, σ
2 and θ

are estimated by numerical maximization of the likelihood and inserted into Equation

(2.2).

In practice, the kernels are often modeled as tensor products of one-dimensional kernels,

k(h) = σ2

d∏
`=1

g`(h`; θ`), (2.3)

where popular one-dimensional covariance functions are the Gaussian,

g(h; θ) = exp

(
− h2

2θ2

)
,

and the Matérn 5/2,

g(h; θ) =

(
1 +

√
5|h|
θ

+
5h2

3θ2

)
exp

(
−
√

5|h|
θ

)
.

An overview of possible covariance functions and their properties can be found in

Rasmussen and Williams (2006). In the one-dimensional covariance functions, the

parameter to be estimated, θi, controls the covariance in the direction of input variable

xi. If all input variables are scaled equally, the estimates of θi can be used as a first

impression of the influence of the variables. A high covariance indicates a flat curve

and thus a small influence of the variable whereas a low covariance indicates a higher

fluctuation and a stronger influence.

2.3 Variance-based indices

The most popular global sensitivity analysis method, the so-called Sobol indices, is

based on the variance of the function, decomposed into additive terms. One of the first
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to mention this decomposition was Hoeffding (1948), who used it to obtain independent

random variables to study properties of U-statistics. Efron and Stein (1981) showed

the uniqueness of the decomposition and Sobol’ (1993) revisited it in the context of sen-

sitivity analysis. A generalization of the decomposition, the so-called high-dimensional

model representation (HDMR), was introduced by Rabitz et al. (1999), who aimed at

representing functions as a sum of low-dimensional components. Basing on so many

(and more) contributors, the decomposition is known under a variety of names. In

this work, it will be referred to as functional ANOVA (FANOVA) decomposition as it

provides an ANOVA decomposition of the variance of the function.

Let us consider a black-box function Y = f(X), where X = (X1, . . . , Xd)
′ is a vector

of independent random variables with distribution µ = µ1 ⊗ · · · ⊗ µd, and f is a d-

dimensional function f : ∆ → R with f(X) ∈ L2(µ), where L2(µ) denotes the space

of square-integrable functions with respect to the measure µ. The function can be

decomposed into additive terms,

f(X) = f0 +
d∑
i=1

fi(Xi) +
∑
i<j

fi,j(Xi, Xj) + · · ·+ f1,...,d(X1, . . . , Xd). (2.4)

The terms represent first-order effects (fi(Xi)), second-order interactions (fi,j(Xi, Xj)),

and all higher combinations of input variables. The decomposition is unique if all terms

fI(XI), I ⊂ {1, . . . , d} have zero mean,

E(fI(XI)) = 0, I ⊆ {1, . . . , d} (2.5)

and the conditional expectations fulfill the non-simplification conditions

E(fI(XI) |XJ) = 0, J ⊂ I ⊆ (1, . . . , d) . (2.6)

From (2.5) and (2.6), it follows that the terms also have zero correlation,

E(fI(XI)fI′(XI′)) = 0, I 6= I ′.

The decomposition can be obtained by recursive integration,

f0 = E(f(X)),
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fi(Xi) = E(f(X)|Xi)− f0,

fi,j(Xi, Xj) = E(f(X)|Xi, Xj)− fi(Xi)− fj(Xj)− f0,

and so on. By computing the variance of (2.4), an ANOVA-like variance decomposition

is obtained, where each part quantifies the impact of the input variables on the response,

D = Var(f(X)) = Var(f0) +
d∑
i=1

Var(fi(Xi)) +
∑
i<j

Var(fi,j(Xi, Xj))

+ · · · + Var(f1,...,d(X1, . . . , Xd)). (2.7)

2.3.1 Definition of various variance-based indices

The variances

DI = Var(fI(XI)) (2.8)

are known as unscaled Sobol indices (Sobol’, 1993). The first-order Sobol index (for I ∈

{1, . . . , d}) is widely used as a sensitivity measure for quantifying the influence of first-

order effects. When I contains more than one input variable, the Sobol index quantifies

the pure interaction influence of the variables indexed in I. As the estimation of the

interactions of all possible variable combinations is usually laborious, other indices

presented in the following have been developed for the assessment of interactions.

The Sobol index is often divided by the overall variance D, leading to the scaled Sobol

index

SI =
Var(fI(XI))

D
=
DI

D
. (2.9)

By this division by the overall variance, the index is normalized to fall between 0 and 1

and thus is easier to assess. The same applies for all indices introduced in the following.

For the sake of brevity, they will however be introduced in their unscaled versions since

the scaling is equal for all methods considered.
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An important extension of the Sobol index is the total sensitivity index DT
I (Homma

and Saltelli, 1996). Defined for a group of input variables XI for any I ⊆ {1, . . . , d},

it describes the influence of the variables including all interactions of any order that

contain at least one of them. Thus, the influence on all orders instead of only the first

is measured, which makes it more useful for the screening of input variables. The total

sensitivity index is defined as the sum of all partial variances that contain at least one

of the variables,

DT
I =

∑
J∩I 6=∅

DJ . (2.10)

Another way to describe the influence of a group of input variables is the closed sensi-

tivity index DC
I , see e.g. Sobol’ (1993),

DC
I =

∑
J⊆I

DJ = Var (E[f(X)|XI ]) . (2.11)

In contrast to total indices, interactions with variables not in XI are not included in

this index, but all effects, first-order effects as well as interactions, caused by subsets of

it. It is equal to the variance of the conditional expectation and is therefore also known

under this name (or shorter VCE) in the literature (McKay, 1995). In its first-order

version, it matches the Sobol index.

Sobol indices of higher order can be obtained as a sum of closed sensitivity indices of

this order and lower,

DI =

|I|∑
M=1

(−1)|I|−M
∑
J⊆I,
|J |=M

DC
J . (2.12)

The total and the closed sensitivity index are related by

D = DC
−I +DT

I , (2.13)

where −I denotes the complement of the set I. Through the formula of total variance,

this leads to a further representation of the total sensitivity index,

DT
I = E (Var[f(X)|X−I ]) .
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2.3.2 Monte Carlo estimation

As the computer experiments considered here are treated as black-box functions, the

different indices cannot be computed directly, but have to be estimated. The most

forward way to estimate the indices, that is the expected values resulting from (2.4), is

by crude Monte Carlo integration. A high number n – typically not less than 1 000× d

– of random or quasi-random sampled Monte Carlo runs x(1), . . . ,x(n) is drawn from

µ, the distribution of X, to approach the integral,

1

n

n∑
k=1

f(x(k))
n→∞−−−→

∫
f(X) dµ(X) = E(f(X)). (2.14)

The size of the Monte Carlo sample is denoted by n throughout this work, except when

its specific role is of interest. The approximation is unbiased and, following the strong

law of large numbers, convergent with probability one (Caflisch, 1998).

To estimate the closed sensitivity indices, and via them through (2.12) the Sobol in-

dices, we need a representation of the index that can directly be adapted to Monte Carlo

integration. A common way, sometimes called the pick-and-freeze (or just pick-freeze)

formula, is given by Sobol’ (1993),

DC
I = E [f(X)f(XI ,Z−I)]− f 2

0 , (2.15)

where here as well as in the following, Z stands for an independent copy of X. The

constant term and overall variance can be obtained by

f0 = E(f(X)) and D = Var(f(X)).

The corresponding Monte Carlo estimate for two n× d-Monte Carlo samples x and z

drawn from µ is straightforward.

pf
D̂C
I =

1

n

n∑
k=1

f(x(k))f(x
(k)
I , z

(k)
−I )− f̂

2
0 , (2.16)

f̂0 =
1

n

n∑
k=1

f(x(k)), (2.17)

D̂ = V̂ar (f(x)) . (2.18)
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Alternative expressions, which also take the evaluations f(XI ,Z−I) into account in

the estimation of f0 and D and thus enable greater numerical stability, have been

introduced by Monod et al. (2006, p. 86),

f0 = E

[
f(X) + f(XI ,Z−I)

2

]
,

*
f̂0 =

1

n

n∑
k=1

f(x(k)) + f(x
(k)
I , z

(k)
−I )

2
,

(2.19)

and

D = E

[
f(X)2 + f(XI ,Z−I)

2

2

]
−
(

E

[
f(X) + f(XI ,Z−I)

2

])2

,

*
D̂ =

1

n

n∑
k=1

f(x(k))2 + f(x
(k)
I , z

(k)
−I )

2

2
−

*
f̂ 2

0 .

(2.20)

One problem of the pick-freeze estimator (2.16) is that its variance gets very large

when f 2
0 is large in comparison to DC

I . Sobol’ (1993) therefore suggests to shift f by

an amount close to f0. Another possibility is to avoid the subtraction of f 2
0 . In Owen

(2013a), two such estimation strategies called Correlation 1 (Mauntz, 2002, Formula

18) and Correlation 2 are compared. They are based on the representations

DC
I = E [f(X) (f(XI ,Z−I)− f(Z))]

= E [(f(X)− f(ZI ,X−I)) (f(XI ,U−I)− f(U ))] ,

with U a further independent copy of X. The corresponding estimates, using Monte

Carlo samples x, z, and u from µ, are much more accurate for small closed sensitivity

indices.

Cor1
D̂C
I =

1

n

n∑
k=1

f(x(k))
(
f(x

(k)
I , z

(k)
−I )− f(z(k))

)
,

Cor2
D̂C
I =

1

n

n∑
k=1

(
f(x(k))− f(z

(k)
I ,x

(k)
−I )
)(

f(x
(k)
I ,u

(k)
−I )− f(u(k))

)
.

(2.21)

Though they require more — 3 and 4 — vectors of function evaluations in the integral,

no additional evaluations are necessary when applying the strategy of simultaneous

estimation of all indices by Saltelli (2002), described later in this Section.
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index by Sobol

indices

by variances computation

D (overall variance)
∑
J
DJ Var(f(X)) E

[
f (X)2

]
− f20

E

[
f(XI )

2+f(XI ,Z−I )
2

2

]
− f20

DI (Sobol index) DI Var(fI(XI))
|I|∑

M=1
(−1)|I|−M

∑
J⊆I,
|J|=M

DC
I

DC
I (closed sensitivity index)

∑
J⊆I

DJ Var (E[f(X)|XI ]) E [f(X)f(XI ,Z−I)]− f20 ,

E [f(X) (f(XI ,Z−I)− f(Z))] ,

E [(f(X)− f(ZI ,X−I)) (f(XI ,U−I)− f(U))]

DT
I (total sensitivity index)

∑
J∩I 6=∅

DJ E (Var[f(X)|X−I ]) D −DC
I , 1

2
E
[
(f(X)− f(X−I ,ZI))2

]

Table 2.1: Overview of (unscaled) variance-based indices and their computations.

The total sensitivity index can on the one hand be obtained via the pick-freeze formula

using the relation between closed and total sensitivity indices (2.13),

DT
I = D −DC

−I

= D − E [f(X)f(ZI ,X−I)] + f 2
0 . (2.22)

Another way, sometimes called the Jansen formula, which avoids the outer sum was

first mentioned in Sobol’ (1993) and later improved in Jansen (1999),

DT
I =

1

2
E
[
(f(X)− f(ZI ,X−I))

2] . (2.23)

The corresponding estimator

Jan
D̂T
I =

1

2n

n∑
k=1

(
f(x(k))− f(z

(k)
I ,x

(k)
−I )
)2

.

is proved to be more efficient than (2.22) in Sobol’ (2001, Theorem 4). A proof of its

asymptotical efficiency will follow in Chapter 3.

An overview of all presented variance-based indices together with their estimation

methods can be found in Tab. 2.1.
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Estimation of a full set of indices

Saltelli (2002) presents a strategy to recycle runs when the full set of all d indices shall

be estimated simultaneously, which is usually the case in applications. They exploit

the fact that the two input data sets x and z can be used in more than one way in the

estimation of an index. For instance the two pick-freeze formulas

1

n

n∑
k=1

f(x(k))f(x
(k)
i,j , z

(k)
−{i,j})− f̂

2
0 and

1

n

n∑
k=1

f(z
(k)
i ,x

(k)
−i )f(x

(k)
j , z

(k)
−j )− f̂ 2

0

are both estimators for DC
i,j, as they both freeze the variables corresponding to {i, j}.

Only the names are changed from xi and xj in the first formula to zi and xj in the

second one. Saltelli (2002) shows in his Theorem 1 that, using n(d + 2) evaluations

f(x), f(z), f(x1, z−1), . . . , f(xd, z−d), it is possible to compute

a) each first-order Sobol index D̂i = 1
n

∑n
k=1 f(x(k))f(x

(k)
i , z

(k)
−i )− f̂ 2

0 ,

b) each total sensitivity index D̂T
i = D̂ − 1

n

∑n
k=1 f(z(k))f(x

(k)
i , z

(k)
−i ) + f̂ 2

0 ,

c) each (d− 2)-order closed effect D̂C
−{i,j} = 1

n

∑n
k=1 f(x

(k)
i , z

(k)
−i )f(x

(k)
j , z

(k)
−j )− f̂ 2

0 .

D and f 2
0 can be estimated from the evaluations as well, e.g. by (2.19) and (2.20). The

method further allows for the estimation of all second-order total sensitivity indices

and all the corresponding scaled indices.

If in addition n×d more evaluations f(z1,x−1), . . . , f(zd,x−d) are available, it is possi-

ble to obtain second-order closed sensitivity indices as well as double estimates, which

allow for more efficient estimation by taking the mean of both estimates. More pre-

cisely, we can compute

a) an additional estimate of each first-order Sobol index

D̂i = 1
n

∑n
k=1 f(z(k))f(z

(k)
i ,x

(k)
−i )− f̂ 2

0 ,

b) an additional estimate of each total sensitivity index

D̂T
i = D̂ − 1

n

∑n
k=1 f(x(k))f(z

(k)
i ,x

(k)
−i ) + f̂ 2

0 ,

c) an additional estimate of each (d− 2)-order closed effect

D̂C
−{i,j} = 1

n

∑n
k=1 f(z

(k)
i ,x

(k)
−i )f(z

(k)
j ,x

(k)
−j )− f̂ 2

0 ,
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d) double estimates of each second-order closed effect

D̂C
i,j = 1

n

∑n
k=1 f(x

(k)
i , z

(k)
−i )f(z

(k)
j ,x

(k)
−j )− f̂ 2

0 and

D̂∗Ci,j = 1
n

∑n
k=1 f(z

(k)
i ,x

(k)
−i )f(x

(k)
j , z

(k)
−j )− f̂ 2

0 ,

which further allows again for the estimation of all scaled indices, second-order total

sensitivity indices and second-order Sobol indices. Although not mentioned there, it

is obvious that the same applies for the total indices estimated by the Jansen formula

instead of pick-freeze, which needs the same function evaluations.

Properties of Monte Carlo estimators

To assess the error coming from the Monte Carlo estimation, a straightforward idea is

to use bootstrap (Archer et al., 1997). To do this, in the Monte Carlo estimation of an

index of interest, the n summands in formula (2.14) are resampled with replacement for

a high number of times (≈ 10 000). Each time, the corresponding index is computed

and confidence intervals can be constructed from the resulting bootstrap sample. No

new evaluations of f are necessary, as only the already present evaluations are used.

On the other hand, some theoretical results are sometimes available. Janon et al.

(2013) discover asymptotic properties of two estimators for the closed sensitivity index

(2.11) scaled by the overall variance,
DC

I

D
. Both estimators use formula (2.16) for the

estimation, but f0 and the overall variance D are estimated differently. The first

estimator, Ŝ1
n, uses the straightforward expressions f̂0 (2.17) and D̂ (2.18),

Ŝ1
n =

1
n

n∑
k=1

f(x(k))f(x
(k)
I , z

(k)
−I )−

(
1
n

n∑
k=1

f(x(k))

)2

1
n

n∑
k=1

f(x(k))2 −
(

1
n

n∑
k=1

f(x(k))

)2 , (2.24)
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whereas in the second, Ŝ2
n, the more stable estimators

*
f̂0 (2.19) and

*
D̂ (2.20) are

applied,

Ŝ2
n =

1
n

n∑
k=1

f
(
x(k)

)
f
(
x

(k)
I , z

(k)
−I

)
−
(

1
n

n∑
k=1

f(x(k))+f
(
x(k)

I ,z(k)
−I

)
2

)2

1
n

n∑
k=1

f(x(k))
2
+f
(
x(k)

I ,z(k)
−I

)2
2

−
(

1
n

n∑
k=1

f(x(k))+f
(
x(k)

I ,z(k)
−I

)
2

)2 . (2.25)

Janon et al. (2013) show that both estimators are consistent,

Ŝ1
n

a.s.−→
n→∞

DC
I

D
, Ŝ2

n
a.s.−→
n→∞

DC
I

D
,

and that they are asymptotically normal in the form of

√
n

(
Ŝ1
n −

DC
I

D

)
d−→

n→∞
N
(
0, σ2

1

)
,
√
n

(
Ŝ2
n −

DC
I

D

)
d−→

n→∞
N
(
0, σ2

2

)
.

See Janon et al. (2013, Prop. 3.3) for the specification of the variances σ2
1 and σ2

2.

In their main result, they show that Ŝ2
n is asymptotically efficient for the estimation of

DC
I /D in the notion of van der Vaart (1998, Chapter 25) in a framework with exchange-

able variables.

2.3.3 Frequency-based estimation

Beside direct Monte Carlo estimation, there is a further class of estimation methods,

the frequency-based estimation, which is computationally cheaper than Monte Carlo

estimation, but also slightly biased.

The first method introduced is the Fourier amplitude sensitivity test (FAST) by Cukier

et al. (1978), which allows for the estimation of first-order Sobol indices. Sample points

of X are chosen such that the indices can be interpreted as amplitudes obtained by

Fourier analysis of the function. More precisely, the design of nFAST points is such that

x
(k)
i = Gi(sin(ωisk)), i = 1, . . . , d, k = 1, . . . , nFAST, sk =

2π(k − 1)

nFAST

,
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with Gi functions to ensure that the sample points follow the distribution of X. The

set of integer frequencies {ω1, . . . , ωd}, associated to the input variables, is chosen to

be as free of interferences as possible, where free of interferences up to the order M

means that
∑p

i=1 aiωi 6= 0 for
∑p

i=1 |ai| ≤M + 1 (Tissot and Prieur, 2012). In practice

M = 4 or M = 6 are used.

For a weight ω, the Fourier coefficients for each input variable can then be numerically

estimated by

Âω =
1

nFAST

nFAST∑
j=1

f(x(sj)) cos(ωsj),

B̂ω =
1

nFAST

nFAST∑
j=1

f(x(sj)) sin(ωsj),

(2.26)

and the first-order Sobol indices can be estimated by the sum of the corresponding

amplitudes up to the order M ,

FAST
D̂i = 2

M∑
p=1

(Â2
pωi

+ B̂2
pωi

). (2.27)

An estimate of the overall variance is given by the sum of all amplitudes,

FAST
D̂ = 2

nFAST/2∑
n=1

(Â2
n + B̂2

n). (2.28)

Extended FAST (EFAST), first presented in Saltelli et al. (1999), is a method to also

compute total sensitivity indices for single input variables using FAST. Here, a high

frequency ωi is assigned to the variable in question Xi and low frequencies, e.g. ω−i = 1,

are assigned to all other variables. Then the total sensitivity index of Xi is estimated

over the amplitude for the low frequencies,

EFAST
D̂

T

i = D − 2
M∑
p=1

(Â2
pω−i

+ B̂2
pω−i

).
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A similar method, which avoids the problem of interferences, is RBD-FAST, where the

RBD stands for random balanced design. RBD-FAST is a group of modifications of

FAST, which use random permutations of design points to avoid interferences. The

original idea by Tarantola et al. (2006) is to assign the same frequency to all input

variables, but to randomize their values independently before evaluating f . The first-

order Sobol index of Xi can then be estimated by reordering the evaluations in the way

Xi was permuted, so that the amplitude at the frequency returns the sensitivity of Xi

only. This works because the order of the evaluations is important in (2.26). Thus, all

first-order Sobol indices can be estimated simultaneously with one set of evaluations.

In the same work a further RBD-FAST method called Hybrid is mentioned by which

second-order and second-order closed sensitivity indices can be estimated.

Mara (2009) suggests a RBD-FAST method to compute the total sensitivity index of

a group of variables D̂T
I . Here, simple frequencies like ω = {1, . . . , d} are assigned to

the variables. Then nRBD = 2(Md + L) design points are generated over a periodic

curve, with L > 100 a tunable integer number, which regulates the sample size. The

values of all variables in I are then randomly permuted, either differently per variable

or identically, and the experiment is evaluated at the points. The total sensitivity index

is estimated by

RBD
D̂T
I =

nRBD

L

nRBD/2∑
p=dM+1

(Â2
p + B̂2

p). (2.29)

The EASI algorithm by Plischke (2010) is a further frequency-based method for the

estimation of first-order Sobol indices. It has the advantage that no specific sampling

scheme is necessary, which makes it possible to use already available data. It can be

seen as a reverse RBD-FAST approach. The evaluations are reordered so that the xi

are approximately triangular-shaped, which corresponds to the frequency ω = 1. Then

the first-order Sobol index can be estimated as for RBD-FAST.
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2.4 Derivative-based methods

This section shows different sensitivity analysis methods that, in contrast to variance-

based methods, use the partial derivative of an input variable as an indicator of its

influence. As the derivative quantifies the change in the output when the variable is

changed, it can be used as a sensitivity measure.

2.4.1 Morris screening by elementary effects

In the field of input variable screening in computer experiments, that is finding the

important variables out of a large number of variables using a minimal number of

runs, Morris screening is one of the most popular methods (Morris, 1991). Among

the advantages of the method over common screening methods are that it covers the

entire input space and that it is not restricted to linear influences. Partial differences

at different points in the input space, so-called elementary effects, are computed

di(x) =
|y(x1, . . . , xi + ∆p, . . . , xk)− y(x)|

∆p

,

where the values of x are sampled on a grid with p levels for each input and ∆p is a

predetermined multiple of 1/(p − 1). The distribution of the di provides information

on the behavior of Xi. The mean, the so-called Morris Importance Measure, indicates

the overall influence. The standard deviation indicates the linearity of the influence. A

value close to 0 suggests linear behavior, a high value nonlinear or interaction behavior.

To obtain the distribution of elementary effects, the values of x are sampled randomly

or by a more elaborate design that uses trajectories in the space of the input variables,

starting from random points on the grid. This reduces the number of necessary runs

almost by half compared to random sampling, resulting in a total number of r(d + 1)

runs, with r the number of elementary effects per variable.
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2.4.2 DGSM

A more accurate method based on Monte Carlo integration was introduced by

Kucherenko et al. (2009). They use indices they call derivate-based global sensitivity

measures (DGSM), first presented by Sobol’ and Gershman (1995) as an interpretation

of variance-based indices. In contrast to Morris screening, the square of the partial

derivative is used,

νi =

∫ (
∂f(X)

∂Xi

)2

dµ(X). (2.30)

Like variance-based indices, the DGSM quantify the influence of the input variables and

they share with the total sensitivity indices the ability that, (under the mild assumption

that µ is continuous and its support is equal to the domain ∆ of X), if νi = 0, then f(x)

does not depend on xi. Indeed, Sobol’ and Kucherenko (2009) could show a connection

between the two sensitivity methods for the uniform and normal distributions, which

was extended by Lamboni et al. (2013) for general continuous distributions. It states

that

DT
i ≤ C(µi)νi, (2.31)

provided that µ belongs to a class of distributions that satisfy a Poincaré inequality,∫
g(X)2 dµ(X) ≤ C(µ)

∫
‖∇g(X)‖2 dµ(X), (2.32)

for all functions g in L2(µ) such that
∫
g(X) dµ(X) = 0, and ‖∇g‖ ∈ L2(µ). A

Poincaré constant C(.) is a characteristic of the corresponding distribution µ. The best

possible constant for a given distribution, the optimal Poincaré constant, is denoted

by Copt(µ). When C(µ) = Copt(µ), there can exist certain functions fopt for which the

Poincaré inequality is an equality. See Lamboni et al. (2013) or Roustant et al. (2014)

for a comprehensive summary.

Formula (2.31) implies that the DGSM can be used as upper boundaries for the total

sensitivity indices and thus can serve as a cheaper method for the screening of non-

influential input variables since, after Lamboni et al. (2013), the DGSM seems to be
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computationally more tractable than variance-based measures, especially for problems

with higher numbers of inputs. This applies especially when the computer experiment

additionally provides the partial derivatives. Then, the Monte Carlo integration can be

performed directly. If not, the derivatives can be approximated numerically by finite

differences. The DGSM for a n × d data set x and a small real number δ∗ can be

estimated by

ν̂i =
1

n

n∑
k=1

(
f(x

(k)
i + δ∗,x

(k)
−{i})− f(x(k))

δ∗

)2

.

To explore the difference between the DGSM and variance-based indices, let us compare

two one-dimensional case functions,

f1(x) =
1

1 + 49 exp(−2 log(49)x)
,

f2(x) =
1

2
sin(50x) +

1

2
.

(2.33)

Plots are shown in Fig. 2.1. In this one-dimensional situation, the total index, the

main index, and the overall variance coincide, the variance-based index reduces to

D1 = DT
1 = D =

1∫
0

f(x)2 dx−

 1∫
0

f(x) dx

2

,

and for the DGSM we have

ν1 =

1∫
0

(f ′(x))
2
dx.

When computing these values for the two functions, we see that the DGSM is much

higher for function f2 (≈ 310.9) than for f1 (≈ 1.3), as it visibly varies much more.

Nevertheless, the overall variance is for both functions almost the same (≈ 0.126), as

the function evaluations over the space of x share a similar variance. The variance-

based index ignores the local variance. This highlights the difference of the notion

sensitivity for variance-based indices and DGSM. In an hypothetical underlying model

y = f1(x1)+f2(x2), the DGSM would rank the second variable much higher whereas the
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Figure 2.1: Plot of f1 and f2 of Equation (2.33).

variance-based indices would see both variables as equally important. The variance-

based indices return the variance of the output evoked by the input, the DGSM sum-

marize the local variation.

2.5 Ongoing developments in sensitivity analysis

To complete the overview of methods in sensitivity analysis, we want to show some

interesting topics of current research in order to give a little insight into the progression

of the field.

Owen (2013b) creates a general framework for variance-based indices by using linear

combinations of Sobol indices. The various possible estimators for the different indices

are summarized and categorized, which leads to some new estimators. Among others,

it supplies a bias-corrected pick-freeze estimator and estimators for Sobol indices with

a reduced number of necessary function evaluations.
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For the case of multivariate output, several ideas exist that incorporate correlations

between output variables to global sensitivity analysis. Indices were introduced by

Lamboni et al. (2011) and studied further by Gamboa et al. (2013) that extend sensi-

tivity indices to multivariate output, which – relating to the FANOVA decomposition

– base on the decomposition of the covariance of the output. An overview of different

approaches to the analysis of multivariate output can be found in Garcia-Cabrejo and

Valocchi (2014).

Control variates is a technique to reduce the variance in Monte Carlo integration.

Applying control variates to the estimation of total sensitivity indices via the Jansen

formula, Kucherenko et al. (2014) find the formula

DT
i =

1

2
E [f(X)− fi(Xi)− (f(Zi,X−i)− fi(Zi))]2 +Di,

which can indeed improve the estimators efficiency. It requires the FANOVA decom-

position term fi as well as the first-order Sobol index Di. If not known analytically,

these terms have to be extracted from metamodels.

A further interesting idea is an extension to Sobol indices that takes the goal of further

analysis into consideration (Fort et al., 2014). The idea is that the estimation of a

mean or a median could involve different input variables than the estimation of extreme

quantiles. They set up a framework they call Goal Oriented Sensitivity Analysis, where

new sensitivity indices for each statistical purpose are defined by applying contrast

functions. When considering the estimation of α-quantiles, a function of indices over

α is returned.

This chapter presented the basic sensitivity analysis techniques used for the exploration

of input variables in computer experiments. The following chapter will present and

examine methods that focus on the exploration of interactions between variables.



Chapter 3

3. Sensitivity Analysis for Interaction

Screening

The total interaction index (TII) is a sensitivity index for interaction screening in

computer experiments, which can further be used for visualization and block-additive

decomposition of the computer model. As the total sensitivity index, introduced in

Chapter 2, is ideal for input screening, since it sums up the total influence of the input

variables, the screening of interactions can be done by the TII. It contains, for any

pair of input variables, the influence of the interaction of the pair plus all interactions

containing the pair. Thus, corresponding to the total sensitivity index where a value

close to zero is a strong indicator that a variable can be excluded (Saltelli et al.,

2006), a TII close to zero indicates that the two variables do not interact. It has

been used but not investigated closer in Mühlenstädt et al. (2012) in order to set up

so-called FANOVA graphs and Kriging models with block-additive kernels. Liu and

Owen (2006) introduced a more general index for uniform distributions as a measure

of importance of interactions, which was also used in Hooker (2004) in the data mining

framework.

This chapter starts with an example that gives a direct motivation to the TII. Then,

several variance-based estimation methods for the TII are introduced. Their properties

are analyzed theoretically as well as on simulations. The problem of finding a threshold

is addressed as well as the implementation within the statistical software programming

25
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environment R (R Core Team, 2014). In addition, crossed DGSM, extensions of the

DGSM to second-order interactions, are presented, which provide upper bounds for the

TII.

Some results from this chapter are published in the contributions “Total interaction

index: a variance-based sensitivity index for second-order interaction screening” (Fruth

et al., 2014b) and “Crossed-derivative based sensitivity measures for interaction screen-

ing” (Roustant et al., 2014).

Motivational example

With the TII, it is possible to discover the block-additive structure of the underlying

function, that is we can identify a decomposition into groups of input variables such

that variables between groups do not interact. As an illustration, we analyze the

following function,

f(X1, . . . , X6) = cos([1, X1, X3, X5]α) + sin([1, X2, X4, X6] γ),

with Xi
i.i.d.∼ U [−1, 1], i = 1, . . . , 6, α = [−0.8,−1.1, 1, 1.1]′ and γ =

[−0.51, 0.9,−1.1]′, where the prime ′ stands for the transpose.

Clearly, the variables in the group {X1, X3, X5} do not interact with the variables in

the group {X2, X4, X6}, which induces a block-additive structure of the form f(x) =

f135(x1, x3, x5) + f2,4,6(x2, x4, x6). This, however, cannot be seen from the common

first-order and total sensitivity indices (Fig. 3.1, left). We only see that all variables

have first-order and total effects, but do not know how variables interact with each

other.

If we now estimate the TII for each combination of input variables, we obtain such

information, which can be conveniently plotted in a so-called FANOVA graph in Fig. 3.1

on the right (Mühlenstädt et al., 2012). The TII of the two variables is represented by
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Figure 3.1: Sensitivity analysis of the motivational example. First-order Sobol and

total sensitivity indices (left), FANOVA graph of total interaction indices (right).

the thickness of the edge between the two corresponding vertices. With the graph, the

partition into the two additive groups is clearly visible.

This information about the block-additive interaction structure of a function can be

exploited in several fields of computer experiment analysis. Mühlenstädt et al. (2012)

show that it can be used to improve Kriging model predictions by adapting the Kriging

kernel to the block-additive structure. For the example above that would mean to

modify the kernel k from Equation (2.3) as follows,

k(h) = k1(h2, h4, h6) + k2(h1, h3, h5).

Furthermore, the block-additive structure can be exploited to simplify and parallelize

optimization, as described in Ivanov and Kuhnt (2014). There, the idea is to optimize

the separate groups independently, which reduces the optimization dimensions and

enables parallelization, an important property as optimization techniques are usually

sequential. For the example above, the six-dimensional optimization problem of mini-

mizing f simplifies into two three-dimensional ones, where the c1, . . . , c6 are constants,



28 Sensitivity Analysis for Interaction Screening

which are not varied in the optimization,

min
x1,...,x6

f(x1, . . . x6) = min
x1,x3,x5

f(x1, c2, x3, c4, x5, c6) + min
x2,x4,x6

f(c1, x2, c3, x4, c5, x6).

3.1 Total interaction indices

The TII measures the total influence of a second-order interaction between two input

variables. It contains, for any pair of input variables, the influence of their interaction

plus all interactions containing both indices. This is different from the second-order

Sobol index (2.8), which does not contain higher interactions, and from the second-

order total sensitivity index (2.10), which additionally contains first-order effects as

well as higher-order interactions of only one of the two variables.

Definition 3.1. The total interaction index (TII) of two input variables Xi and Xj is

defined by

Di,j = Var

 ∑
I ⊇{i,j}

fI(XI)

 =
∑

I ⊇{i,j}

DI . (3.1)

The TII is a special second-order version of the more general superset importance,

which was introduced by Liu and Owen (2006) for uniform distributions (Υ2
u) as a

measure of importance of interactions and their supersets. It was also investigated by

Hooker (2004) in the data mining framework (σ2
u). The superset importance Υ2

u is

defined for any subset u ⊆ {1, . . . , d} as

Υ2
u = σ2

u =
∑
I⊇u

DI . (3.2)

One important property of the TII is its link to total sensitivity indices and closed

indices respectively.
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Proposition 3.1.

Di,j = DT
i +DT

j −DT
i,j, (3.3)

Di,j = D +DC
−{i,j} −DC

−i −DC
−j. (3.4)

Proof. The proof of (3.3) is obtained by simple set transformation. Since

∑
I⊇{i}∨I⊇{j}

DI =
∑
I⊇{i}

DI +
∑
I⊇{j}

DI −
∑

I⊇{i,j}

DI ,

it holds that

∑
I⊇{i,j}

DI =
∑
I⊇{i}

DI +
∑
I⊇{j}

DI −
∑

I⊇{i}∨I⊇{j}

DI .

Equation (3.4) then can be deduced from (3.3) using the connection between total and

closed indices (2.13),

Di,j = DT
i +DT

j −DT
i,j

= (D −DC
−i) + (D −DC

−j)− (D −DC
−{i,j})

= D +DC
−{i,j} −DC

−i −DC
−j.

From the connection to the superset importance, another representation of the TII is

given by Liu and Owen (2006).

Proposition 3.2. Liu and Owen’s formula

Di,j =
1

4
E
[(
f(Xi, Xj,X−{i,j})− f(Xi, Zj,X−{i,j})

−f(Zi, Xj,X−{i,j}) + f(Zi, Zj,X−{i,j})
)2
]
,

(3.5)

where Zi (resp. Zj) is an independent copy of Xi (resp. Xj).



30 Sensitivity Analysis for Interaction Screening

Proof. A proof is given in Liu and Owen (2006). In addition, (3.5) can be connected

to (3.4). When expanding the squared sum in (3.5), of the 10 resulting terms the four

squared terms are simply equal to E(f(X)2) = D+f 2
0 . The six double products gather

two by two, and result in the pick-freeze formula (2.15)

• E[f(Zi, Xj,X−{i,j})f(Zi, Zj,X−{i,j})]

= E[f(Xi, Xj,X−{i,j})f(Xi, Zj,X−{i,j})] = DC
−j + f 2

0

• E[f(Xi, Zj,X−{i,j})f(Zi, Zj,X−{i,j})]

= E[f(Xi, Xj,X−{i,j})f(Zi, Xj,X−{i,j})] = DC
−i + f 2

0

• E[f(Zi, Xj,X−{i,j})f(Xi, Zj,X−{i,j})]

= E[f(Xi, Xj,X−{i,j})f(Zi, Zj,X−{i,j})] = DC
−{i,j} + f 2

0

Finally, combining all the terms gives (3.4).

Remark: Connection to ANOVA Liu and Owen (2006) state that formula (3.5)

“can also be obtained through the classical formulas for expected mean squares in

the discrete ANOVA as established by Cornfield and Tukey (1956)”. This connection

becomes evident when looking at the formula for the interaction Sum of Squares in an

ANOVA with two input variables A and B (Cornfield and Tukey, 1956, p. 916),

SSAB = n
a∑
i=1

b∑
j=1

(ȳij· − ȳi·· − ȳ·j· + ȳ···)
2 ,

with a and b the number of levels and yijk, i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , n the

realized output values with n the number of repetitions.

For a further TII computation notion, say we keep all variables other than Xi and Xj

fixed and look at the Liu and Owen formula for the resulting two-dimensional function

ffixed(Xi, Xj),

Di,j =
1

4
E
[
(ffixed(Xi, Xj)− ffixed(Xi, Zj)− ffixed(Zi, Xj) + ffixed(Zi, Zj))

2] .
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Then we see that the TII of the original function can be computed as the expected

value over this second-order interaction index of the two-dimensional function obtained

by fixing all variables except Xi and Xj. Thus, the Liu and Owen formula is a so-called

fixing method, introduced by Mühlenstädt et al. (2012).

Proposition 3.3. (Fixing method). For any x−{i,j}, define ffixed as the two-dimensional

function ffixed : (xi, xj) → f(x) obtained from f by fixing all input variables except xi

and xj. Let D
i,j|X−{i,j}

denote the second-order Sobol index of ffixed(Xi, Xj), which

depends on the fixed variables X−{i,j}. Then the TII of Xi and Xj is obtained by

integrating D
i,j|X−{i,j}

with respect to X−{i,j},

Di,j = E
(
D
i,j|X−{i,j}

)
. (3.6)

Proof. Since the function ffixed is two-dimensional, it has only one interaction, which is

a second-order one, and coincides with its TII. Hence, this interaction can be computed

by applying (3.5) to ffixed,

D
i,j|X−{i,j}

=
1

4
E [ffixed(Xi, Xj)− ffixed(Xi, Zj)− ffixed(Zi, Xj) + ffixed(Zi, Zj)]

2 .

Now we can rewrite the right hand side by using conditional expectations,

D
i,j|X−{i,j}

=
1

4
E
[[
f(Xi, Xj,X−{i,j})− f(Xi, Zj,X−{i,j})

−f(Zi, Xj,X−{i,j}) + f(Zi, Zj,X−{i,j})
]2 |X−{i,j}] .

Taking the expectation with respect to X−{i,j} gives the result.

3.2 TII estimation

The different representations of the TII derived in the last section and the estima-

tion methods of the common indices from Section 2.3 are now combined to construct

estimation methods for the TII, followed by remarks on their properties.
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Estimation via total sensitivity indices

To apply the link between the TII and total sensitivity indices from Prop. 3.1, formula

(3.3), estimators for the total sensitivity index of first- and second-order are required.

Thus, either the Monte Carlo estimator via the Jansen formula (2.23) or the RBD-

FAST method (2.29) can be used, resulting in the TII estimators Jansen TII estimator

and RBD-FAST TII estimator,

Jan
D̂i,j =

Jan
D̂T
i +

Jan
D̂T
j −

Jan
D̂T
{i,j} (3.7)

RBD
D̂i,j =

RBD
D̂T
i +

RBD
D̂T
j −

RBD
D̂T
{i,j} (3.8)

For the Jansen TII estimator, evaluations can be saved by computing the last term
Jan
D̂T
{i,j} via f(x−i, zi) and f(x−j, zj), which have been evaluated in the computation

of the previous terms, rather than via f(x) and f(x−{i,j}, z{i,j}). The approach is

discussed further in Section 3.4.

Estimation via closed sensitivity indices

The second link from Prop. 3.1 between the TII and the closed sensitivity indices (3.4)

requires the estimation of high-order closed indices DC
−i and DC

i,j. To this point, no

reliable FAST or RBD-FAST method exists, so Monte Carlo integration is considered.

As the required closed indices are of high order, they are expected to be large. Thus,

the estimator based on the pick-freeze formula (2.15, 2.16) is more suitable here than

the one based on the strategies from Correlation 1 and Correlation 2 (2.21) since they

are not recommended when the index to be estimated is rather large (Owen, 2013a).

The pick-freeze TII estimator of the TII is constructed as

pf
D̂i,j = D̂ +

pf
D̂C
−{i,j} −

pf
D̂C
−i −

pf
D̂C
−j. (3.9)
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As for the Jansen TII estimator, evaluations can be reused in the second-order term

by using f(x−i, zi) and f(x−j, zj) rather than f(x) and f(x−{i,j}, z{i,j}).

Estimation via Liu and Owen’s formula

Another TII estimation method is directly obtained by Liu and Owen’s formula in

Prop. 3.2, the Liu and Owen TII estimator

LO
D̂i,j =

1

4
× 1

n

n∑
k=1

[
f(xki , x

k
j ,x

k
−{i,j})− f(xki , z

k
j ,x

k
−{i,j})

−f(zki , x
k
j ,x

k
−{i,j}) + f(zki , z

k
j ,x

k
−{i,j})

]2
. (3.10)

Estimation via fixing method

Following Prop. 3.3, the TII can be computed by averaging the second-order interaction

of two-dimensional functions in the way it has been done in Mühlenstädt et al. (2012)

by the following scheme:

Let us consider a couple of integers (i, j), with i < j. For k = 1, . . . , nMC carry out the

following steps.

1. Simulate xk−{i,j} from the distribution of X−{i,j}, that is take a single sample of

all input variables except Xi and Xj.

2. Create the two-dimensional function ffixed by fixing f on xk−{i,j}

ffixed(Xi, Xj) = f(xk1, . . . , Xi, . . . , Xj, . . . , x
k
d).

3. Using the FAST estimator (Section 2.3.3), compute the second-order Sobol index

of ffixed, denoted D̂k

i,j|X−{i,j}
, by

D̂k

i,j|X−{i,j}
=

FAST
D̂k

|X−{i,j}
−

FAST
D̂k

i|X−{i,j}
−

FAST
D̂k

j|X−{i,j}
,
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TII estimator derived from formula

Jansen Prop. 3.1 (3.3)
Jan

D̂i,j =
Jan
D̂T
i +

Jan
D̂T
j −

Jan
D̂T
{i,j}

RBD-FAST Prop. 3.1 (3.3)
RBD

D̂i,j =
RBD

D̂T
i +

RBD
D̂T
j −

RBD
D̂T
{i,j}

pick-freeze Prop. 3.1 (3.4)
pf
D̂i,j =

pf
D̂ +

pf
D̂C
−{i,j} −

pf
D̂C
−i −

pf
D̂C
−j

Liu and Owen Prop. 3.2
LO

D̂i,j = 1
4 ×

1
n

n∑
k=1

[
f(xki , x

k
j ,x

k
−{i,j})− f(xki , z

k
j ,x

k
−{i,j})

−f(zki , x
k
j ,x

k
−{i,j}) + f(zki , z

k
j ,x

k
−{i,j})

]2

fixing method Prop. 3.3
fix
D̂i,j = 1

nMC

nMC∑
k=1

D̂k
i,j|X−{i,j}

Table 3.1: Overview of considered TII estimators.

where D̂k

|X−{i,j}
denotes the overall variance of ffixed and D̂k

i|X−{i,j}
and D̂k

j|X−{i,j}

the first-order indices of Xi and Xj, respectively.

After carrying out the three points for all k = 1, . . . , nMC, compute the fixing method

TII estimator by

fix
D̂i,j =

1

nMC

nMC∑
k=1

D̂k

i,j|X−{i,j}
. (3.11)

A summary of all considered TII estimators can be found in Tab. 3.1.

3.3 Theoretical properties of TII estimators

In the following, the introduced TII estimators are compared according to different

statistical properties.
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Nonnegativity

As the indices measure the sum of variances, the estimates should be nonnegative.

This holds for the Liu and Owen TII estimator (3.10) which is a sum of squares.

However, negative estimates can occur for the Jansen (3.7), the pick-freeze (3.9) and

the RBD-FAST TII estimator (3.8). For the fixing method TII estimator (3.11), there

is a sufficient condition, which results from the following proposition:

Proposition 3.4. Let f be a two-dimensional function, and consider its second-order

interaction D12 = D−D1−D2. Denote by D̂12 =
FAST

D̂−
FAST

D̂1−
FAST

D̂2 its FAST

estimate (see Section 2.3.3) and assume that:

(i) ω1 and ω2 are free of interference up to order 2M ,

(ii) N ≥ 2M ×max(ω1, ω2).

Then D̂12 ≥ 0.

Proof. Denote the sets Wωi,M = {pωi, p = 1, . . . ,M} for i = 1, 2, and WN =

{1, . . . , N/2}. With (2.27) and (2.28), we have

D̂12/2 =
∑
n∈WN

(Â2
n + B̂2

n)−
∑

n∈Wω1,M

(Â2
n + B̂2

n)−
∑

n∈Wω2,M

(Â2
n + B̂2

n).

Now, the condition (i) ensures that Wω1,M ∩Wω2,M = ∅ while (ii) implies that Wωi,M ⊆

WN , for i = 1, 2. Hence,

D̂12/2 =
∑
n∈WN

−(Wω1,M
∪Wω2,M

)

(Â2
n + B̂2

n) ≥ 0.

It is a direct consequence of Prop. 3.4 that if (i) and (ii) are satisfied, then (3.11)

returns positive values. In practice, one can use for instance ω1 = 11, ω2 = 35 (Mara,

2009), which are free of interferences up to 2M for the usual orders M = 4, 6. Then

the minimal value of N is 2× 6×max{11, 35} = 420.
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Bias

The methods based on direct Monte Carlo estimation, Jansen and Liu and Owen TII

estimator, are unbiased since only direct mean estimators are used for the conditional

expectations. This is especially remarkable in combination with the positivity of the Liu

and Owen TII estimator, as it implies that when the true value is zero, the estimator

is identical to zero as well.

Proposition 3.5. If Di,j = 0, then the Liu and Owen TII estimator is equal to zero:

LO
D̂i,j ≡ 0.

Proof. Starting with the FANOVA decomposition (2.4), if Di,j = 0, then all of the

terms containing both xi and xj vanish. So the decomposition reduces to

f(x) =
∑

i/∈I∧j /∈I

fI(xI) +
∑

i∈I∧j /∈I

fI(xI) +
∑

i/∈I∧j∈I

fI(xI)

= a0(x−{i,j}) + ai(xi,x−{i,j}) + aj(xj,x−{i,j}).

Inserting this representation of f into the squared term of the Liu and Owen TII

estimator (3.10) returns zero,

f(xki , x
k
j ,x

k
−{i,j})− f(xki , z

k
j ,x

k
−{i,j})− f(zki , x

k
j ,x

k
−{i,j}) + f(zki , z

k
j ,x

k
−{i,j})

= ai(x
k
i ,x

k
−{i,j})− ai(xki ,xk−{i,j})− ai(zki ,xk−{i,j}) + ai(z

k
i ,x

k
−{i,j})

+ aj(x
k
j ,x

k
−{i,j})− aj(zkj ,xk−{i,j})− aj(xkj ,xk−{i,j}) + aj(z

k
j ,x

k
−{i,j}) = 0.

In the pick-freeze TII estimator, the estimation of f 2
0 is necessary in the estimation of

the closed sensitivity indices (2.16). If we estimate f 2
0 by taking the square of f̂0 (2.17)

or
*
f̂0 (2.19), we introduce a bias of −Var(f0), as was noted by Owen (2013b),

[E(f0)]2 = E
[
(f0)2]− Var(f0).
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However, as long as E(f(X)4) <∞, the bias is asymptotically negligible. Owen (2013b)

remarks that the bias may be important in the case of small closed sensitivity indices,

but those are not expected in the estimation of
pf
D̂i,j, as mentioned in Section 3.2. To

nonetheless ensure unbiasedness, unbiased estimators for the closed sensitivity index

can be used such as
Cor1

D̂C
I or

Cor2
D̂C
I or (2.21), which do not need an estimate of f 2

0 ,

or the estimator τ̃ 2 proposed in Section 7 of Owen (2013b).

Frequency-based estimators are generally prone to bias (Tissot and Prieur, 2012). This

bias might even be enhanced here through the use of a combination of FAST estimators

for the fixing method TII estimator and RBD-FAST estimators for the RBD-FAST TII

estimator.

Asymptotic properties of the Liu and Owen TII estimator

Corresponding to the asymptotic properties of the pick-freeze estimator of closed sen-

sitivity indices (end of Section 2.3.2), it is possible to derive asymptotic properties of

the Liu and Owen TII estimator (3.10). To do this, the estimator for a pair of input

variables {Xi, Xj} is written as

Tn =
LO

D̂i,j =
1

n

n∑
k=1

(
∆k
i,j

)2

4
,

with

∆k
i,j = f(Xk

i , X
k
j ,X

k
−{i,j})− f(Xk

i , Z
k
j ,X

k
−{i,j})− f(Zk

i , X
k
j ,X

k
−{i,j})

+ f(Zk
i , Z

k
j ,X

k
−{i,j}).

Proposition 3.6. Let P be the set of all cumulative distribution functions of exchange-

able random vectors in L2(R2), that is for a P ∈ P it holds for any random vectors X

and X
′

that P (X,X
′
) = P (X

′
, X). Then the following propositions hold for the Liu

and Owen TII estimator Tn.
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a) Tn is consistent for Di,j,

Tn
a.s.−→
n→∞

Di,j.

b) Tn is asymptotically normally distributed,

√
n (Tn −Di,j)

d−→
n→∞

N
(

0,
Var[(∆1

i,j)
2]

16

)
.

c) Tn is asymptotically efficient in the notion of van der Vaart (1998) for estimating

Di,j for P ∈ P.

Proof. The results a) and b) are a direct application of the law of large numbers and

the central limit theorem, applied to the variables (∆k
i,j)

2.

Result c) follows from the fact that estimators with symmetrical expressions are asymp-

totically efficient in the framework of exchangeable variables, as proved by Janon et al.

(2013) in their Lemma 2.6 (2):

Let Φ2 : R2 → R be a symmetric function in L2(P ) and f a deterministic function on

R ⊂ Rp1+p2 of independent random input variables X ∈ Rp1 and Z ∈ Rp2. Z ′ denotes

an independent copy of Z and Xk,Zk,Z
′
k, k = 1, . . . , n denote independent samples

of the corresponding variables. The sequence {Φ2
n}n∈N given by

Φ2
n =

1

n

n∑
k=1

Φ2

(
f(Xk, Zk), f(Xk, Z

′

k)
)

is asymptotically efficient for estimating E(Φ2(f(X,Z), f(X,Z
′
))) for P ∈ P .

More precisely, denote X k = (Xk
j , Z

k
j ,X

k
−{i,j}), Zk = Xk

i , Z ′k = Zk
i , and let g be the

function defined over Rd × R by

g(a, b) = f(b, a1, a3, . . . , ad)− f(b, a2, a3, . . . , ad).

Then

∆k
i,j = g(X k,Zk)− g(X k,Z

′

k).
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Therefore

Tn =
1

n

n∑
k=1

Φ2(g(X k,Zk), g(X k,Z
′

k)),

and

Di,j = E(Φ2(g(X 1,Z1), g(X 1,Z
′

1))),

where Φ2 is the two-dimensional function defined over R2

Φ2(u, v) =
(u− v)2

4
.

Remark that Zk and Z ′k are independent copies of each other, both independent of X k,

and that Φ2 is a symmetric function. With the following change in notation

i← k, X ← X , Z ← Z, Z ′ ← Z ′
, f ← g

the result follows from the Lemma of Janon et al. (2013) named above.

The two last propositions can be extended to the general superset importance (3.2),

including the case of the total sensitivity index of one input variable.

Proposition 3.7. Let ΥI =
∑

J⊇I DJ be the superset importance for a set I. Define

TI,n =
1

n

n∑
k=1

(∆k
I )

2

2|I|
,

with ∆k
I =

∑
J⊆I(−1)|I−J |f(Zk

J ,X
k
−J), where |.| stands for the number of elements in

a set and A−B = {x|x ∈ A and x /∈ B} denotes the difference of two sets A and B.

Then TI,n is asymptotically normal and asymptotically efficient for ΥI .

Proof. Note that TI,n is the sample version of the formula (10) given by Liu and Owen

(2006) for ΥI (with suitable change of notations). The proof of asymptotic normality

is thus a direct consequence of the central limit theorem. For asymptotic efficiency,

the proof relies on arguments similar to Prop. 3.6.
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• When I = {i} is a single input variable, we have

∆k
I = f(Zk

i ,X
k
−i)− f(Xk

i ,X
k
−i),

which is of the form g(X k,Zk)− g(X k,Z
′

k) with Zk = Zk
i , Z ′k = Xk

i , X k = Xk
−i,

and g(a, b) = f(b,a).

• When |I| ≥ 2, let us choose i ∈ I. Then, by splitting the subsets of I into two

parts, depending whether they contain {i}, we have

∆k
I =

∑
J⊆I−{i}

(−1)|I−J |f(Zk
J ,X

k
−J)

+
∑

J⊆I−{i}

(−1)|I−(J∪{i})|f(Zk
J∪{i},X

k
−(J∪{i}))

=
∑

J⊆I−{i}

(−1)|I−J |f(Zk
J , X

k
i ,X

k
−(J∪{i}))

−
∑

J⊆I−{i}

(−1)|I−J |f(Zk
J , Z

k
i ,X

k
−(J∪{i})),

which is also of the form g(X k,Zk)− g(X k,Z
′

k) with Zk = Xk
i , Z ′k = Zk

i , X k =

(Xk
I−{i},Z

k
I−{i},X

k
−I), and a suitable g since the second term in the difference is

obtained from the first one by exchanging Xk
i and Zk

i .

The result is then obtained by applying Lemma 2.6 in Janon et al. (2013) to the

symmetric function Φ2(u, v) = (u−v)2

2|I|
, remarking that Zk and Z ′k are independent

copies of each other, both independent of X k.

Corollary 3.1. It follows from Prop. 3.7 that the Jansen estimator of the total sensi-

tivity index of a single variable DT
i is asymptotically efficient.
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3.4 Estimating the full set of TIIs

In most of the practical applications, the full set of d(d−1)
2

TIIs, that is the TII of

each possible pair of the d input variables, is required simultaneously. The function

evaluations, especially in the case without a metamodel, where f represents the actual

computer experiment, are usually the most time-consuming part of the estimation.

Table 3.2 therefore gives an overview of the number of evaluations N that are required

by each method for the estimation of the full set of TIIs, depending on the different

parameter settings for each method.

In each of the n Monte Carlo runs, the Liu and Owen TII estimator requires one es-

timate corresponding to f(x), d estimates corresponding to f(zi,x−i) — and at the

same time to f(zj,x−j) — and
(
d
2

)
estimates corresponding to f(zi, zj,x−{i,j}). Simi-

larly, the RBD-FAST TII estimator requires d estimates of
RBD

D̂T
i and

(
d
2

)
estimates of

RBD
D̂T
{i,j}, and each estimate requires a number of 2(Md+L) runs. The fixing method

TII estimator requires for each of the
(
d
2

)
indices a number of nMC FAST estimates.

For the Jansen and the pick-freeze TII estimator, strategies that reuse computations

corresponding to the strategy by Saltelli (2002) (Section 2.3.2) can be applied, as

addressed in their definitions (3.7) and (3.9). In the estimation of the first- and second-

order total indices for the Jansen TII estimator as well as in the estimation of the

(d − 1)- and (d − 2)-order closed indices for the pick-freeze TII estimator, only the

(d + 1)n samples f(xk) and the f(zki ,x
k
−i), 1 ≤ k ≤ n, 1 ≤ i ≤ d are required for the

estimation of all TII indices. In addition, those function evaluations can be used to

estimate the full set of first-order total sensitivity indices using either (2.22) or (2.23).

By adding only the n samples f(zk), 1 ≤ k ≤ n, all first-order Sobol indices (2.16) can

be estimated as well.

Table 3.2 clearly shows that in contrast to the other estimators, the Jansen as well

as the pick-freeze TII estimator are scalable in the sense that the number of required

runs increases linearly with the number of input variables d.
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TII estimator number of function evaluations

Jansen N = (d+ 1)× n

RBD-FAST N =
((
d
2

)
+ d
)
× 2(Md+ L)

pick-freeze N = (d+ 1)× n

Liu and Owen N =
((
d
2

)
+ d+ 1

)
× n

fixing method N =
(
d
2

)
× nMC × nFAST

Table 3.2: Number of function evaluations for the considered TII estimators.

3.5 Simulation study

In the following, the behavior of the different estimators is investigated in simulations

on known analytical real-valued functions. In order to cover a wide range of functions,

functions are chosen that fall in different categories according to different properties

based on Kucherenko et al. (2009). The complexity of the function is considered in

two different categories, the interaction order and the functional form. For the latter,

simple forms like low-order polynomial functions are considered as of low and complex

nonlinear forms as of high complexity. In detail, the categories are

• the number of input variables: low (d ≤ 5) or high (d ≥ 10),

• interaction behavior: low (only low-order terms are dominant) or high (important

high-order interactions),

• functional form: simple (simple functional form like low-order polynomial) or

complex (complex nonlinear behavior).

See Tab. 3.3 for an overview of the functions used in the simulation. The functions

are listed along with an identification and the distribution of their inputs. Function

function 1 is taken from Fruth et al. (2014b), Ishigami from Ishigami and Homma

(1990), and Branin4 from Lehman et al. (2004). Table 3.4 shows how the functions

are classified into the defined categories.
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name function µ(X)

function 1 sin(X1 +X2) + 0.4 cos(X3 +X4) U [−1, 1]4

Ishigami sin(X1) + 7 sin2(X2) + 0.1X4
3 sin(X1) U [−π, π]3

pure 3rd order
√

33
3∏
i=1

Xi U [−1, 1]3

Branin4 1
30f

Branin(X1, X2)fBranin(X3, X4) + (X1 − π)2

with fBranin(X1, X2) =
(
X2 − 5.1

4π2X
2
1 + 5

πX1 − 6
)2

+10
(
1− 1

8π

)
cos(X1) + 10

X1, X3 ∼ U [−5, 10],

X2, X4 ∼ U [0, 15]

high 2nd order 3(
7∑
i=1

Xi)(
∑14

j=8Xj) U [−1, 1]14

high 14th order
√

314
14∏
i=1

Xi U [−1, 1]14

Table 3.3: Overview of test functions.

d ≤ 5 d ≥ 10

form = simple form = complex

interaction = low function 1 Ishigami high 2nd order

interaction = high pure 3rd order Branin4 high 14th order

Table 3.4: Classification of test functions.

For each of the functions, the TIIs are estimated a hundred times by all 5 methods. For

each estimation, 2 000 Monte Carlo draws per index are used, 2 000×
(
d
2

)
draws in total.

The parameters of each method are determined using the connections in Tab. 3.2.

Boxplots of the respective 100 estimates give an impression of the performance in terms

of bias and variance for the different classes of functions and are presented in the figures

3.2 - 3.4. The detailed numerical results can be found in the Appendix in Tab. B.1 -

B.6.
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Figure 3.2 shows the boxplots of the simulation results of the two test functions with

low dimension and only second-order interactions. As expected in Section 3.3, negative

results are observed for the RBD-FAST, Jansen, and pick-freeze estimates, but not for

the Liu and Owen and the fixing method. Overall, the Liu and Owen and the fixing

method TII estimator outperform the other estimators clearly, especially for influences

close to zero. That means that the Liu and Owen TII estimator enables a precise

detection of inactive interactions, an important task for interaction screening. The

RBD-FAST TII estimator shows a rather large variance for the case with low complex

functional form function 1 and a severe bias for the more complex Ishigami function.

One reason for this might be the bias for RBD-FAST methods, mentioned in Section

3.3. This problematic behavior of the RBD-FAST TII estimator continues in the other

four simulations. The other four estimators perform well in terms of bias, confirming

the results of Section 3.3. The described bias of the pick-freeze TII estimator is not

noticable, the deviations from the true mean are comparable to the Jansen and the

Liu-Owen TII estimator.

Simulation boxplots for functions with high order interactions but a rather small num-

ber of input variables are shown in Fig. 3.3. Here, the Liu and Owen and the fixing

method TII estimator show a stronger variance than before. The reason for this lies

in the variance of the estimates D̂k

i,j|X−{i,j}
in the basic fixing method formula (3.6),

which applies for both methods. For second-order interactions, those estimates do not

depend on the fixed values X−{i,j} and thus vary only slightly while for higher inter-

actions the estimates should differ with the fixed variables included in the interaction.

The much larger variance of the fixing method TII estimator can be additionally ex-

plained by the fact that the two steps, second-order interaction estimation and overall

expectation, are performed separately, and the values for X−{i,j} are kept constant

in each second-order index estimation, whereas in the Liu and Owen method both

steps are performed simultaneously and thus are more efficient. Generally, for complex
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Figure 3.2: Simulation study on TII estimators, boxplots of 100 estimations for func-

tions with low interactions, low number of input variables.

functions, the methods Jansen, Liu and Owen and pick-freeze TII estimator seem to

perform equally well.

In the simulation study of the two high-dimensional test functions, a 10 times higher

number, 20 000, of Monte Carlo draws is necessary due to numerical problems for the

extremely complex case of a 14th order interaction. As the RBD-FAST TII estimator
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Figure 3.3: Simulation study on TII estimators, boxplots of 100 estimations for func-

tions with high interactions, low number of input variables.

showed a severe bias as well as a large variance, it is not studied any further. The

same observations as from the low-interaction cases can be made for the high 2nd

order function, the Liu and Owen and the fixing method TII estimator outperform the

other estimators. Thus, for low interactions, those estimators still work well in high

dimensions. Only for the complex high 14th order function, the Jansen and the pick-
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Figure 3.4: Simulation study on TII estimators, boxplots of 100 estimations of the TIIs

of selected interactions for functions with high number of input variables.

freeze TII estimator outperform the Liu and Owen TII estimator in terms of variance.

This is due to the strategy to reuse computations, which makes those two methods

scalable (see Section 3.4). The fixing method TII estimator shows a bias, perhaps

caused by the bias in FAST described e.g. in Tissot and Prieur (2012).



48 Sensitivity Analysis for Interaction Screening

To get an impression of the asymptotic behavior, Fig. 3.5 shows exemplarily the es-

timates of the four reliable estimators Jansen, Liu and Owen, pick-freeze and fixing

method TII estimator for index D13 of the pure 3rd order function. For each method,

the index is estimated starting with the lowest number of evaluations possible and

then evaluations are added step by step. The estimate of the asymptotically efficient

estimator by Liu and Owen is the fastest to come close the true value followed by the

pick-freeze and the Jansen TII estimator while the estimate of the fixing method TII

estimator does not reach it within the 50 000 evaluations.

The simulation study shows that the Liu and Owen TII estimator indeed provides good

results for almost all situations and can thus be recommended as method of choice. The

only exception are situations with a high number of variables and strong interactions.

There, the pick-freeze TII estimator is rather preferable.

3.6 Threshold decision

Errors in the initial metamodel and in the index estimation usually perturb the TII

estimation so that, when applying them to interaction screening, inactive indices are

not necessarily zero. Therefore, a threshold needs to be introduced to separate active

from inactive interactions. The decision rule is then to include the interaction if

D̂i,j

D̂
> δ. (3.12)

If the TII estimation is further used for adapted modeling (Mühlenstädt et al., 2012) or

parallelized optimization (Ivanov and Kuhnt, 2014), it is more problematic to cut off an

active interaction than to falsely accept an inactive interaction as active. For modeling,

Mühlenstädt et al. (2012, p. 735) mention that the first case can lead to substantial

modeling error whereas the second leads to a higher number of parameters, but still

the true structure is contained in the model. In the optimization application, Ivanov

and Kuhnt (2014, pp. 8-9) report that the first case of cutting an active interaction can
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Figure 3.5: Simulation study on TII estimators, asymptotical exploration on the pure

3rd order function.

lead to a wrong optimum as the assumption of additivity is crucial in the parallelization

whereas the keeping of an inactive interaction makes the procedure less efficient but

does not effect the optimum. Finding at least all active interactions therefore is an

important property of a good threshold.

In the following, a simple graphical method to support the threshold decision is intro-

duced as well as a data-driven approach, which uses block-additive Kriging kernels.

Delta jump plot

As decision plots are a simple and clear way to help the user to find data dependent

values, we suggest a plot, the delta jump plot, which helps to find suitable candidates
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Figure 3.6: Delta jump plot of an artificial example (left) and corresponding FANOVA

graph (right).

for the threshold value δ. An artificial example of such a plot can been seen in Fig. 3.6

on the left. The corresponding full FANOVA graph, where the TIIs are represented by

graph edges, is shown on the right.

The delta jump plot consists of two parts. In the bottom part, it shows the ordered

values of all
(
d
2

)
estimated TIIs. High jumps point to big differences between successive

indices. In a situation with moderate perturbation, the difference between inactive

and active indices should be high and thus be revealed by a jump. High jumps are

additionally highlighted by shading of the relevant interval, the darker the shading the

higher the jump, so that values of delta that lie inside dark intervals indicate good

choices for the threshold. Simultaneously, the upper part of the plot shows the number

of cliques of the corresponding FANOVA graph a threshold would lead to. A small

number of cliques might be preferable in order to obtain a clearer structure. For the
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artificial case in Fig. 3.6, we see that a suitable δ lies between 0.0038 and 0.0196, for

example 0.01, because the jump to the right of this interval is the highest and the

number of cliques is very low. Another possible candidate would is 0.04.

Kriging kernel comparison

One method to compare different candidates for the threshold, possibly found by look-

ing at the delta jump plot, is to compare the performance of Kriging models with

corresponding block-additive structures.

As described in Mühlenstädt et al. (2012) and already mentioned in Section 3, Kriging

kernels can be adapted to mimic the interaction structure given from the TII interac-

tion screening. Instead of a product kernel (compare (2.3)), a block-additive kernel is

applied. Basing on the cliques C1, . . . , CL of the FANOVA graph, it is constructed as

the sum of kernels kC1 , . . . , kCL
, where each kCl

is chosen to be a tensor-product kernel

in dimension |Cl|,

k(h) =
L∑
l=1

kCl
(hCl

).

Kernels adapted to the true interaction structure of the underlying model are supposed

to be more suited to represent the underlying model and thus lead to better predictions.

The idea for the threshold decision is to set up Kriging models according to some

candidate thresholds and compare their leave-one-out prediction performance. See

below for the precise approach.

• Choose a (low) number c of possible candidate thresholds and add 0 and 1 for

the extreme cases of all input variables interacting and no interaction: δ =

(0, δ1, . . . , δc, 1).

• For each threshold δi ∈ δ:

– Determine the according active interactions following rule (3.12).

– Set up the FANOVA graph and determine the cliques C1, . . . , Cl.
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– Construct the adapted Kriging model with block-additive kernel,

k(h) =
L∑
l=1

kCl
(hCl

).

– Predict available original evaluations of the underlying model via leave-one-

out cross-validations and compute the resulting RMSE value.

• Compare the leave-one-out RMSE values for each threshold candidate and choose

the threshold with the smallest RMSE. It is also possible to plot scatterplots

of predicted versus true values to get an impression of the precision of each

prediction.

Simulation study

The performance of the threshold decision methods shall be presented in a small sim-

ulation study with four input variables (d = 4). Five different interaction structures

(str1 to str5 ) are studied, here represented as sets of cliques of the corresponding graph

structure. The goal is to find the threshold that rediscovers the corresponding graph.

• str1: {1}, {2}, {3}, {4} (pure additivity),

• str2: {1, 2}, {3}, {4} (two variables interacting),

• str3: {1, 2}, {3, 4} (two pairs of variables interacting),

• str4: {1, 2, 3}, {4} (three variables interacting, one additive),

• str5: {1, 2, 3, 4} (full graph).

For each structure, a number of 100 simulations are performed via the following steps,

using mainly the R package fanovaGraph, described in the next chapter. A maximin

distance design within the class of Latin hypercubes (Morris and Mitchell, 1995) is

constructed for a number of 50 runs using the R package DiceDesign (Franco et al.,

2014). As underlying model f , a Gaussian process with block-additive kernel corre-

sponding to one of the interaction structures str1,. . . , str5 is simulated at the design

points. See Fruth et al. (2013) for the simulation of block-additive processes. On the
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interaction structure str1 str2 str3 str4 str5

complete graph identified 0.99 0.68 0.50 0.85 0.60

all active interactions identified 1.00 0.98 0.81 0.95 0.60

Table 3.5: Proportions of correctly identified graphs in threshold simulation.

simulated data, an initial metamodel is fit. We use a Gaussian process model with a

special ANOVA kernel (Durrande et al., 2013) since it is assumed to be more adapted

to block-additive situations than the standard product kernel (2.3), which a priori as-

sumes a full graph. For each interaction, the TII is estimated via the Liu and Owen

TII estimator on a number of 20 000 evaluations for the whole set. The Kriging kernel

comparison procedure described above is then executed. The candidate thresholds for

the procedure are obtained from the three biggest jumps in the delta jump plot.

The results can be seen in Tab. 3.5. In the first row, the proportion of all correctly

identified graphs is shown. The second row shows the proportion of those situations

where all active interactions are identified correctly but not necessary all inactive ones.

As described before, this property is crucial for subsequent methods. A threshold

that identifies all active interactions does at least not disturb subsequent analysis.

For str1 and str5, the results of the second row are obvious due to their interation

structure. The simulation results show that the performance depends on the interaction

structure. Situations with few interactions are better discovered than complex ones.

The interaction structure str3 with two similar interactions seems to be more difficult

to predict than the unbalanced one str4. The results show that the Kriging kernel

comparison leads to the right decision in the majority of the simulations and, except

for the most complex case of a full graph, the active interactions are identified in more

than 4 out of 5 simulations.

The simulations are repeated using the standard product kernel instead of the ANOVA

kernel in the initial model in order to study the impact of the initial kernel on the
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interaction structure str1 str2 str3 str4 str5

complete graph identified 0.99 0.40 0.03 0.18 0.87

all active interactions identified 1.00 0.97 0.79 0.87 0.87

Table 3.6: Proportions of correctly identified graphs in threshold simulation using the

standard product kernel as initial kernel.

performance. The results can be seen in Tab. 3.6. As assumed, the performance stays

behind the performance of the ANOVA kernel, especially for the cases with two cliques,

str3 and str4, for which only a very small proportion of the simulation is identified

correctly. An exception is the full graph str5, which was identified well. Despite the

worse performance in the graph identification, the kernel lead to satisfactory results in

the identification of all active interactions. This shows that with the standard kernel the

procedure tends to identify too much interactions as active, explainable by the product

structure of the kernel, which assumes a full graph. Thus, in this simulation study on

simulated block-additive kernels, the ANOVA kernel performed generally better than

the standard product kernel.

3.7 Implementation

As part of this work, the methods presented in this chapter are implemented in the R

package fanovaGraph (Fruth et al., 2013), which is online available on the repository

CRAN (Comprehensive Archive Network). It includes the TII estimators of Section 3.2,

the threshold decision methods of Section 3.6, and the FANOVA graph visualization

mentioned in the motivational example together with Kriging model adaption. The

package is explained in detail in the manual by Fruth et al. (2013).
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Figure 3.7 shows a diagram of the structural setup of the package. The TII estimation

is done via the function estimateGraph. If the computer experiment can be incor-

porated into the R environment, it can be used directly. Otherwise a metamodel can

be inserted as described in Section 2.2. The function allows for the four TII estima-

tion methods RBD-FAST, pick-freeze, Liu and Owen, and fixing method TII estimator

(compare Tab. 3.1). Its input and output behavior matches with the corresponding

functions in the comprehensive package for sensitivity analysis, sensitivity (Pujol

et al., 2014). The package can thus easily be included into a broader study. The

function estimateGraph returns an S3 object named graphlist, which contains the

TII values and further information necessary to set up the FANOVA graph. Apply-

ing the generic functions print or plot to the object results in a printed output of

the estimated TII values or a plot of the FANOVA graph via package igraph (Csárdi

and Nepusz, 2006), respectively. Corresponding to Section 3.6, a threshold cut can

be performed by function threshold that takes the graphlist object as input and

returns a new graphlist object, whose TII values below a given threshold are set to

zero and thus not printed in the FANOVA graph plot. The two methods that support

the threshold decision are implemented via the functions plotDeltaJumps for the delta

jump plot and thresholdIdentification for the Kriging kernel comparison. Finally,

the graphlist object can be used to adapt Kriging models as described in Mühlenstädt

et al. (2012) and mentioned in the motivational example. The function kmAdditive

takes a data set coming from the computer experiment under study as well as the given

block-additive structure in the graphlist object and returns a block-additive Kriging

model by use of the popular Kriging package DiceKriging (Roustant et al., 2012).

This block-additive Kriging model can then again be used to predict new data via the

function predictAdditive.
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Figure 3.7: Structural setup of R package fanovaGraph. Functions are represented

by rectangles (with double vertical lines if defined externally), data by parallelograms,

and output by circles. Arrows represent information transfer.

3.8 Crossed DGSM

Similar to the total sensitivity index and the DGSM, the notion of the TII can as well

be formulated as a derivative-based index, which provides a faster-to-compute index,

which serves as an upper bound for the TII. In the context of statistical learning,

Friedman and Popescu (2008) introduced a quantity that generalizes the DGSM to
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interactions by using cross-partial derivatives and that we propose to denote by crossed

DGSM,

νi,j =

∫ (
∂2f(x)

∂xi∂xj

)2

dµ(x). (3.13)

It is assumed that f fulfills ∂f(x)
∂xi∂xj

∈ L2(µ). From the definition, it is apparent that if

νi,j = 0, no term of the FANOVA decomposition (2.4) that contains xi and xj can be

active at the same time, i.e. νi,j = 0⇒ Di,j = 0. The crossed DGSM can thus be used

for interaction screening.

Link to the TII

In Roustant, Fruth, Iooss, and Kuhnt (2014) it is shown that the crossed DGSM provide

upper bounds for the TII like the DGSM for the total sensitivity index.

Proposition 3.8. Let us consider n distributions µ1, . . . , µn on the real line R, and

µ = µ1 ⊗ · · · ⊗ µn. Assume that all µi (i = 1, . . . , n) satisfy the Poincaré inequality

(2.32). Let g : Rn → R be a function in L2(µ), such that all first-order and crossed

second-order partial derivatives are in L2(µ). Then for all pairs {i, j} (1 ≤ i, j ≤ n),

Di,j ≤ C(µi)C(µj)νi,j. (3.14)

Furthermore, Copt(µi)Copt(µj) is the best constant: If equalities can be achieved in the

Poincaré inequalities satisfied by each distribution, then the inequality (3.14) reaches

equality as well.

Two different proofs are given in Roustant et al. (2014), one via sequential application

of Poincaré inequalities and one using the crossed finite difference in the Liu and Owen

formula (3.5).
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Estimation

As the crossed DGSM serve as upper boundaries for the TII, they can be used as

a cheaper method for the screening of interactions, especially if the Hessian of the

underlying model is available. As this is rarely the case, the necessary second-order

derivatives usually have to be approximated, e.g. by finite differences. With x a

n× d-data set and δ∗ a small real number, an estimator is given by

ν̂i,j =
1

n

n∑
k=1

(
∆ν

(δ∗)2

)2

,

with ∆ν =

f(x
(k)
i +δ∗, x

(k)
j +δ∗,x

(k)
−{i,j})−f(x

(k)
i +δ∗, x

(k)
j ,x

(k)
−{i,j})−f(x

(k)
i , x

(k)
j +δ∗,x

(k)
−{i,j})+f(x(k)).

Analytical examples as well as practical applications can again be found in Roustant

et al. (2014).

Conclusion

This chapter introduced a complete methodology for sensitivity analysis of the interac-

tion structure of a black-box function as extension to a classical sensitivity analysis of

first-order and total effects. The total interaction index (TII) was introduced, which,

in the same way as the total sensitivity index screens out the most influential input

variables, provides a screening of interactions. It reveals the way the input variables

interact, which can be visualized in the FANOVA graph. The resulting information on

the block-additive interaction structure can further be employed in adapted modeling

or parallelized optimization.

Five possible estimators were presented together with their properties. The Liu and

Owen TII estimator was proven to have good properties to estimate a single TII, as

it is unbiased, nonnegative, and asymptotically efficient. Its superiority was confirmed
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in simulations on analytical functions. Only for complex functions with a high number

of inputs, the pick-freeze TII estimator performed better. There, the increase of costs

when the dimension increases is linear instead of quadratic as for the Liu and Owen

TII estimator. Furthermore, an approach to find a threshold for interaction screening

was presented, a combination of a graphical decision and Kriging model comparison.

The corresponding R package fanovaGraph was presented. Finally, crossed DGSM

were introduced as extensions of the DGSM to interaction analysis, and the inequality

between total effects and DGSM was generalized in the context of interaction screening.

So far, all input variables were assumed to be continuous scalar variables. The next

chapter presents a method to explore the sensitivity of additional functional input

variables.





Chapter 4

4. Sensitivity Analysis for Functional Input

The complexity of the input settings of computer experiments is usually not limited

to scalar numbers. Examples are industrial processes, where parameters can be varied

over the process time or parameters in geological simulations, which have a spatial dis-

tribution. The inputs in these examples can be considered as functional input variables,

dependend on time or space, respectively. They introduce an additional dimension to

computer experiments and make new methods for the analysis necessary. For sensitivity

analysis, it is especially interesting to explore the influence over the functional domain

in order to find out about the inputs influence at different regions of the domain.

Usually, data with functional input is studied by functional linear regression (see Ram-

say and Silverman (1997)), a framework that allows for approximation, modeling and

prediction of data with functional input. Applied as a technique for sensitivity analysis,

it has some drawbacks. In the functional linear regression framework, data is usually

assumed as already provided so that no statistical design techniques are required. In

addition, the interpretation of the influence of different regions of the functional domain

is not easy (see e.g. James et al. (2009)) and it is restricted to linear behavior. Non-

linear modeling, however, is possible by functional Gaussian process frameworks as for

instance presented by Morris (2012) and, specifically for scalar output, by Mühlenstädt

et al. (2014). These methods also allow for functional space-filling design, but are not

constructed for sensitivity analysis. Iooss and Ribatet (2009), Lilburne and Taran-

61
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tola (2009), and Fort et al. (2013) eventually present several ideas for the sensitivity

analysis of computer experiments with functional inputs. The methods result in one

uncertainty index for each functional input as a whole and thus do not give insight into

the sensitivity with respect to changes at specific intervals of the functional domain.

This chapter presents a general method for the performance of sensitivity analysis in

computer experiments that can take functions as input variables, and return a scalar

value as output. The aim is not only to discover the sensitivity of those functional

variables as a whole but to identify relevant regions in the functional domain. A very

economical sequential approach is presented, which reduces the functional space to a

scalar one and makes use of methods from the so-called group factor screening. It

results in a descriptive graphical representation of the functional sensitivities. The

chapter starts with a motivational example. Then the methodology is presented, fol-

lowed by properties and graphical presentation. Afterwards, the sequential design

strategy for functional input is described. The chapter is finished with some advise

on the practical implementation, including the R implementation as well as a detailed

presentation of the procedure on an analytical example.

The results of the chapter are based on the contribution “Sequential designs for sensi-

tivity analysis of functional inputs in computer experiments” by Fruth, Roustant, and

Kuhnt (2014a).

Motivational example

To illustrate the problem, an application in sheet metal forming is introduced, which

originally motivated this research as part of the PhD thesis. The complete analysis

of the problem along with a detailed description follows later in Chapter 6.2. Here, it

suffices to say that the aim is to analyze the sensitivity of a scalar output, springback,

for two inputs that can be changed during the forming process: friction and blankholder
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force. The corresponding computer experiment is very time-consuming, which is even

enhanced through the functional variation of the two parameters.

A few questions arise at this point. Does the effort of varying blankholder force and

friction during the process indeed change anything in the outcome? For example, might

it be that only the area under each input curve, and thus the mean of the settings over

the time, has an influence? In this case, the functional approach would be useless as

it would not give more information than the scalar analysis, where each input variable

is kept constant during the run.

To check this issue, a small preview study on a few simple runs is executed (Fig. 4.1).

Each row shows the setting of the parameter friction of one run of the computer exper-

iment. No other parameter is changed over the runs, so that the functional behavior of

the friction can be analyzed exclusively. In the first two runs, the friction is constant

over the 15 seconds of the punch travel, leading to a springback of 7.1 for a low and

2.2 for a high value. In the following 4 runs, varying curves are chosen such that the

area below each curve is the same in each run. It can be seen that varying the fric-

tion can dramatically reduce springback. In addition, although the four last runs have

equal mean friction over time, very clear differences in the springback results are ob-

tained. This indicates the potential that lies in the functional approach and motivates

an exploration of the function influence of the parameters.

Notation and situation

For the handling of functional inputs, the notation is slightly modified. An underlying

model f is considered with dscal scalar input variables xi ∈ [−1, 1], i = 1, . . . , dscal

and dfun functional input variables gj : Dj 7→ [−1, 1], j = 1, . . . , dfun. The output

stays scalar, Y ∈ R. The input parameters, scalar as well as functional, are bounded

to fall into [−1, 1]. The input functions are defined on the domain Dj = [0, 1] for

each j = 1, . . . , dfun and depend on a single argument, not necessarily the same for all
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Figure 4.1: Preview runs. Comparison of different functional friction settings.

functional inputs. There are no further conditions on the functions, that is they can be

designed freely with no assumptions on the shape or the smoothness of the functions.

The input parameters are connected to Y by f via f : [−1, 1]dscal ×Fdfun[0,1] 7→ R,

Y = f (x1, . . . , xdscal , g1, . . . , gdfun) ,

where F[0,1] denotes the space of all functions on [0, 1].

4.1 Sequential functional sensitivity analysis

Modeling of input functions

With functional inputs, the input dimension becomes infinite dimensional while at the

same time the computer experiment becomes more time-consuming. The functions
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Figure 4.2: Visualization of the piecewise constant representation of functional inputs.

shall therefore be constructed within a flexible framework that reduces the input space

considerably, and that eventually allows for the identification of important regions

of the functional domain. The idea is to use piecewise constant functions as shown

in Fig. 4.2, that is to restrict the input functions to the space of piecewise constant

functions. Say we have a decomposition of the domain of each functional input gj into

pj ∈ N+ subintervals at splitting points aj = (a0
j , . . . , a

pj
j ) with 0 = a0

j < a1
j < · · · <

a
pj−1
j < a

pj
j = 1,

Dj = [a0
j , a

1
j [ ∪ [a1

j , a
2
j [ ∪ . . . ∪ [a

pj−1
j , a

pj
j ].

We restrict each gj to belong to Vaj
, the space of piecewise constant functions over the

subintervals defined by aj,

Vaj
=

{
Z

(1)
j 1[0,a1j [(t) + · · ·+ Z

(pj)
j 1

[a
pj−1

j ,1]
(t), with Z

(k)
j ∈ [−1, 1] , 1 ≤ k ≤ pj

}
.

(4.1)

The specific procedure of how to choose the split points is provided later in Section 4.3.

With this representation, every functional input gj ∈ Vaj
is identified by the random

variables Z
(1)
j , . . . , Z

(pj)
j . Hence, the input dimension is transformed from functional to

scalar space,

Y =f (x1, . . . , xdscal , g1, . . . , gdfun)

=f̃a1,...,apdfun

(
x1, . . . , xdscal , Z

(1)
1 , . . . , Z

(p1)
1 , . . . , Z

(1)
dfun

, . . . , Z
(pdfun )

dfun

)
.
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The piecewise constant representation can be viewed in the context of functional rep-

resentation, see e.g. Ramsay and Silverman (1997), Chapter 3. B-Splines, piece-

wise polynomial functions with certain knots as breakpoints, are a popular basis to

model functions (de Boor, 2001). They cover various types of functions and are always

bounded. Our functional framework (4.1) can be regarded as a B-spline of order 1, a

linear combination of piecewise constant functions. In addition, the transformation is

connected to wavelet theory, more precisely to Haar Wavelets (see e.g. Walker (1999)),

where again the basis functions are piecewise constant functions but scaled and shifted

to the desired functional form. Wavelets and our framework resemble each other also

in the sequential splitting procedure described later in Section 4.3, where sequences

of embedded spaces Vaj
⊆ Va′j ⊆ Va′′j ⊆ . . . are considered. However, the objec-

tives of this sequential splitting are different, as in our approach, the interest lies in the

time localization, the identification of influential time points, not in the time-frequency

localization.

Remark: Scalar inputs The design of scalar inputs does not have to be mentioned

separately, as the space of piecewise constant functions also includes scalar inputs. A

scalar input can be considered as a functional input over only one interval [0, 1] which

is never split. Thus, from now on, d = dscal + dfun is simply used to denote the number

of inputs.

Sensitivity Indices

The defined framework allows to perform sensitivity analysis on the values Z
(k)
j in

Y = f̃a1,...,apd
(
Z

(1)
1 , . . . , Z

(p1)
1 , . . . , Z

(1)
d , . . . , Z

(pd)
d

)
,

leading to a clear and easily understandable sensitivity analysis of intervals. The spe-

cific sensitivity method can be chosen according to the evaluation costs and complexity
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of the problem from the methods described in Chapter 2. However, since the functional

computer experiment is assumed to be expensive, regression analysis as a very econom-

ical method for sensitivity analysis is recommended and explored further in this work.

The following linear model is considered,

Y = α +
d∑
j=1

pj∑
k=1

β
(k)
j Z

(k)
j + ε, (4.2)

with α and β
(k)
j the coefficients to be estimated using a design matrix Z on the values

of Z
(k)
j sufficient for estimation, i.e. such that Z ′Z is invertible (see e.g. Saltelli et al.

(2000), p. 124). The estimates α̂ and β̂
(k)
j are obtained by the Least Squares formula

(Z ′Z)−1Z ′y, with y the vector of the output realizations. As the underlying computer

experiment is deterministic, no assumptions are made about ε, the difference between

response and regression model and the Least Squares approach is interpreted as simple

curve fitting. The coefficients β̂
(k)
j can then be used as sensitivity indices as they

indicate the linear influence of the corresponding functional interval on the output.

Additionally, higher order effects of interest can be estimated. One might be especially

interested in the second-order interactions between intervals of the same functional

input, which leads to the model

Y = α +
d∑
j=1

pj∑
k=1

β
(k)
j Z

(k)
j +

d∑
j=1

∑
1≤k<k′≤pj

β
(k,k′)
j Z

(k)
j Z

(k′)
j + ε. (4.3)

Graphical representation and normalization

The functional indices can be represented by plotting them over the functional domain

of each functional input, which visualizes the functional behavior of each input in a

compact way. An artificial example of such a visualization is depicted in Fig. 4.3 (top

left). It shows the regression coefficients of a single functional input, the bar colors

highlight direction and size of the index. A positive bar size indicates that a raise of

the input at this interval causes an increase in the mean output, a negative size causes
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a decrease. In the specific plot, a small negative influence is visible for the first half

of the functional domain and a larger positive influence in the second half. In a study

with more than one functional input, one such plot is drawn for each input. Scalar

inputs can be depicted as single bars.

The drawback of using β̂ directly as functional sensitivity index is that the index

values are not independent of the current splitting aj = (a0
j , . . . , a

pj
j ). If we change

the splitting so that the last two intervals are gathered, this larger interval now has

a much stronger influence than the two single intervals before, since a larger part of

the functional input is varied, which leads to a larger change in the output. Figure 4.3

(top right) shows this situation. In contrast to the previous plot, the plots indicates

an increasing influence towards the end of the functional domain.

Independence of the chosen decomposition can be achieved by normalization through

the interval size.

Definition 4.1. Consider a set of splitting points a1, . . . ,apd and assume that gj ∈

Vaj
, j = 1, . . . , d : gj(t) =

∑
Z

(k)
j 1[ak−1

j ,akj [(t). Denote by β̂kj and β̂
(k,k′)
j the estimated

first-order and second-order regression coefficients, then the normalized regression index

of Z
(k)
j is defined by

Ĥk
j =

β̂
(k)
j

akj − ak−1
j

,

and the normalized interaction regression index of Z
(k)
j and Z

(k′)
j by

Ĥk,k′

j =
β̂

(k,k′)
j

(akj − ak−1
j )(ak

′
j − ak

′−1
j )

for j ∈ {1, . . . , d}, 1 ≤ k < k′ ≤ pj.

In Fig. 4.3, the plot at the bottom shows the corresponding normalized regression

indices to the artificial example. The behavior at the end now corresponds to the
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Figure 4.3: Graphical representation of the functional sensitivity of an artificial exam-

ple, via regression coefficients β̂ (top and bottom left, for different splittings) and via

normalized regression coefficients Ĥ (bottom right). The bar colors highlight size and

direction of the indices. Unnormalized, the regression coefficients are sensitive to the

splitting.

picture on the top. In addition, the bar of the first interval is now smaller, as its size

is larger and thus was not comparable to the other intervals in the upper plots.

As a regression coefficient β̂ can be interpreted as the change in the output when the

functional input is increased over the corresponding interval, Ĥ can be interpreted as

the change in the output when increasing the functional input over one unit of the

functional domain, e.g. one time unit for temporal inputs. Yet, care has to be taken in

the interpretation. In an extreme case, the joint interval of two intervals with influences
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of different signs could show zero influence when the intervals cancel each other out.

Any interpretation of the indices can only relate to the mean influence of the interval,

as can be seen in the following test cases.

4.2 Error-free test cases

In order to show that the normalized indices fulfill desirable properties, their perfor-

mance on some error-free test cases for the underlying model f shall be examined. Each

test case depends on only one functional input g and follows a purely linear behavior.

Proposition 4.1. Let f be the integral over the functional input g weighted by an

integrable function w : [0, 1] 7→ R

f(g) = α +

1∫
0

w(t)g(t) dt,

with α ∈ R. Then, for any splitting a = (a0, . . . , ap) of the functional domain of g, the

normalized regression indices return the mean values of the weight function over the

intervals, and each interaction index is zero,

Ĥk =

∫ ak
ak−1 w(t) dt

ak − ak−1
and Ĥk,k′ = 0, k, k′ = 1, . . . , p.

Asymptotically, if the interval size goes to zero, the normalized regression indices return

the exact value of the weight function,

lim
∆→0

∫ t+∆

t
w(u) du

∆
= w(t).

Proof. As g is bounded and w is integrable, wg is integrable. When we insert the

piecewise constant function representation

g(t) =

p∑
k=1

Z(k)
1[ak−1,ak[(t)
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into f(g), we obtain

f(g) =α +

1∫
0

w(t)

p∑
k=1

Z(k)
1[ak−1,ak[(t) dt

=α + Z(1)

a1∫
a0

w(t) dt+ · · ·+ Z(p)

ap∫
ap−1

w(t) dt

=(1, Z(1), . . . , Z(p))η,

with η =

(
1,

a1∫
a0
w(t) dt, . . . ,

ap∫
ap−1

w(t) dt

)′
. Now in the experiments, recalling that the

design matrix Z on the values of Z(1), . . . , Z(p) is such that (Z ′Z) is invertible, and

denoting by y the corresponding output, we get y = Zη. The Least Squares coefficients

are then given by

β̂ = (Z ′Z)−1Z ′y = η,

which leads to

Ĥk =

∫ ak
ak−1 w(t) dt

ak − ak−1
.

As there are no interaction terms in Z, we get Ĥk,k′ = 0, k, k′ = 1, . . . , p..

In the same way it can be shown that interactions are recovered.

Proposition 4.2. Let f be the product of two integrals of g over two different intervals

[ai
∗−1, ai

∗
] and [aj

∗−1, aj
∗
] with c, α ∈ R

f(g) = α + c

ai
∗∫

ai∗−1

g(t) dt×
aj
∗∫

aj∗−1

g(t) dt.

Then for any splitting a of the functional domain of g with
{
ai
∗−1, ai

∗
, aj

∗−1, aj
∗} ∈ a,

the estimates of the indices and the interaction indices recapture the interactions as

they hold

Ĥk = 0, k = 1, . . . , p and Ĥk,k′ =

c, k = i∗, k′ = j∗,

0, otherwise.
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Proof. Similarly to the proof of Prop. 4.1 we get

f(g) =α + c

ai
∗∫

ai∗−1

g(t) dt×
aj
∗∫

aj∗−1

g(t) dt

=α + c

ai
∗∫

ai∗−1

p∑
k=1

Z(k)
1[ak−1,ak[(t) dt×

aj
∗∫

aj∗−1

p∑
k=1

Z(k)
1[ak−1,ak[(t) dt

=α + c× Z(i∗)(ai
∗ − ai∗−1)× Z(j∗)(aj

∗ − aj∗−1).

Then the Least Squares estimation returns β̂k = 0, k = 1, . . . , p and

β̂k,k
′
=

c(a
i∗ − ai∗−1)(aj

∗ − aj∗−1), k = i∗, k′ = j∗,

0, otherwise

leading to

Ĥk = 0, k = 1, . . . , p and Ĥk,k′ =

c, k = i∗, k′ = j∗,

0, otherwise.

Furthermore it can be shown that the normalized regression index is robust against

nonlinear transformations of the input g in the computer model.

Proposition 4.3. If g is transformed by a not necessarily linear, but strictly mono-

tonically increasing function ζ : [0, 1] 7→ R

f(g) = α +

1∫
0

w(t)ζ(g(t)) dt

then for a two-level design the values Ĥk are linear in the mean values of the weight

function, and the weighting function still determines the importance of the intervals

compared to each other. Thus, there exists a fix λ > 0 such that

Ĥk = λ

∫ ak
ak−1 w(t) dt

ak − ak−1
, k = 1, . . . , p.
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Proof.

f(g) =α +

1∫
0

w(t)ζ(g(t)) dt,

=α + ζ(Z(1))

a1∫
a0

w(t) dt+ · · ·+ ζ(Z(p))

ap∫
ap−1

w(t) dt.

Now for a design on two levels {-1,1}, we can define λ and κ ∈ R, such that

ζ(z) = λz + κ for the two values z = −1, z = 1.

Since ζ is increasing, we have λ > 0. It follows for all Z(k) ∈ {−1, 1}, k = 1, . . . , p that

f(g) =α + (λZ(1) + κ)

a1∫
a0

w(t) dt+ · · ·+ (λZ(p) + κ)

ap∫
ap−1

w(t) dt

=

α + κ

p∑
k=1

ak∫
ak−1

w(t) dt

+

p∑
k=1

λ ak∫
ak−1

w(t) dt

Z(k).

Then in the computations of the coefficients, we obtain

β̂k =λ

ak∫
ak−1

w(t) dt, k = 1, . . . , p

⇒ Ĥk =λ

∫ ak
ak−1 w(t) dt

ak − ak−1
, k = 1, . . . , p.

We have now described the functional shape for the design of the input functions, the

way to perform sensitivity analysis, and its visualization. In the following, the missing

part on how to choose the splitting into the intervals and appropriate design techniques

are presented.
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4.3 Splitting and design

If a desired splitting is available, the method can be performed right away, using a

suitable design matrix Z, e.g. full or fractional factorial design. If not, one aims

at discovering the functional domain while investing as few as possible model evalua-

tions. Therefore an economical splitting approach is proposed which is performed in

consecutive steps. In each step preceding information is used for the splitting.

For the sake of readability, only one functional input g : D 7→ [−1, 1] as sole input is

considered in this section, i.e. d = 1. The approach is easily extended to more inputs

by considering them as additional groups. For a specific iteration step r, we slightly

change the notation of the splitting points to

ar = (a0,r, . . . , ap
r,r), 0 = a0,r < a1,r < · · · < ap

r−1,r < ap
r,r = 1

the space of piecewise constant functions to

Var =
{
Z(1,r)1[0,a1,r[(t) + · · ·+ Z(pr,r)1[apr−1,r,1](t), Z

(k,r) ∈ [0, 1]
}
,

and the normalized indices to

Ĥk r, k = 1, . . . , pk and Ĥk,k′ r
j , 1 ≤ k ≤ k′ ≤ pk.

Sequential splitting approach

The approach is based on a family of methods called group factor screening (see Wat-

son, G. S. (1961) or for an overview Morris (2006)), a very economical method to screen

influential input variables in experiments with a high number of input variables. The

basic idea is to group variables, explore the influence of the groups as a whole, and

sequentially divide only those groups that are influential. In the literature on group fac-

tor screening, there are various ways on how to design the groups at the different steps,
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which differ e.g. in their assumptions, orthogonality, the treatment of interactions, or

the way of reusing evaluations.

The idea can be transferred to functional sensitivity analysis by interpreting the (in-

finite) points in the functional domain as individual input variables and the splitting

intervals as groups of them. The approach is then to start with a very low number p1

of intervals a1 = (a0,1, . . . , ap
1,1), perform sensitivity analysis by choosing a suitable de-

sign for the corresponding variables Z(1,1), Z(2,1), . . . , Z(p1,1), perform the experiments,

and compute the corresponding indices Ĥ1 1, . . . , Ĥp1 1. Then, for the second step,

only those intervals that show a considerable influence on the output are examined

further. So the vector of splitting points of the second step a2 includes all points of

a1 plus the point ak−1,1+ak,1

2
for each interval

[
ak−1,1, ak,1

]
to be examined. This proce-

dure of estimation and splitting is repeated until the functional domain is sufficiently

explored or the maximum budget is reached. The split decisions should be taken in

close cooperation with experts. Generally, an interval should be seen as important if

its index is bigger than an assumed approximation error.

Remark: Interpretation care It has to be kept in mind that the indices are only

mean values over a given interval, as it could be seen in Prop. 4.1. Intervals, even if the

sensitivity index is small, should be explored further if a change in sign is suspected.

Design by sequential bifurcation

The application of a specific group factor screening method, the sequential bifurcation

(Bettonvil, 1995), shall be presented in detail here. In this method, the evaluations

of the different steps are effectively reused in the subsequent steps, resulting in a very

economical procedure.

Adapted to functional sensitivity analysis, the procedure is the following. The variables

are designed on two extreme levels, encoded with −1 and 1. It starts with only one
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t
0 1

Z(1,1) = −1run 1 → y1

Z(1,1) = +1run 2 → y2

Z(1,2) = +1 Z(2,2) = −1run 3 → y3

Z(1,3) = +1 Z(2,3) = −1 Z(3,3) = −1 Z(4,3) = −1run 4 → y4

Z(1,3) = +1 Z(2,3) = +1 Z(3,3) = +1 Z(4,3) = −1run 5 → y5

...
...

...

Figure 4.4: Scheme for the design based on sequential bifurcation. White and gray

shading indicate the setting to +1 and −1.

interval, corresponding to a constant curve, which is set to −1 and, in a second run,

to +1. Using the results of these two runs, y1 and y2, the normalized regression index

of the whole function can be estimated by Ĥ1 1 = 0.5(y2−y1)
1

. The domain is then split

in the middle, resulting in two intervals in the second step. Only one additional run

is required to estimate the coefficients of both intervals in which the first interval is

set to +1 and the second interval to −1, resulting in y3. Values for (+1,+1), (−1,−1)

are already known from the previous step, so that the indices of both intervals can be

estimated by Ĥ1 2 = 0.5(y3−y1)
0.5

and Ĥ2 2 = 0.5(y2−y3)
0.5

. Generally, for each split, only

one additional run is required to estimate the influence of both new intervals, the one

with +1 up to the cut and −1 from there. The approach is depicted in Fig. 4.4. It

shows three sequential steps requiring a total of 5 runs.

When the presence of interactions has to be considered, additional mirror runs are

suggested by Bettonvil (1995), i.e. adding a new run for each run in the design that

contains the same settings but with opposite signs. By this, unbiased estimates of the

first-order effect coefficients are obtained.

Different designs may be necessary if orthogonality and/or the possibility to estimate

interactions are required. Then factorial or fractional factorial designs are good design

options. A new such design is then constructed in each step r on all variables of interest
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Z(1,r), . . . , Z(pr,r), all noninteresting intervals are set to a constant value, e.g. 0, in the

design and thus are not regarded in the sensitivity analysis any more. Here again, runs

from former steps can be reused. It is easy to show that for full factorial designs in

a step where all intervals have been split half of the required runs can be reused. For

fractional factorial designs, the reuse possibilities depend strongly on the confounding.

4.4 Implementation

The presented methodology is implemented in the R package seqSAFI (Fruth and Jas-

trow, 2014). The package allows for all described steps of sequential design, modeling

and plotting of the functional sensitivities. See Fig. 4.5 for an overview of the package

structure. Its core is an object, safidesign. It contains the current design, which can

be enhanced to get to the next step of the sequential procedure. The splitting can be

performed following the sequential bifurcation algorithm or by any desired design given

manually. Mirror runs can be added. At any step, the object can be accessed to obtain

a transferable design matrix, and also be plotted. A model can be fit to corresponding

output from the computer experiment. The resulting safimodel object contains the

normalized regression indices computed according to the chosen design. Applying the

function plot to this object leads to the graphical representation by barplots as shown

in Fig. 4.3.

4.5 Analytical example

To show how the method can practically be applied, a small analytical test example is

analyzed in this section. For the unknown and expensive to evaluate underlying model,

we choose the following function which depends on two functional inputs, g1 and g2,
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safidesign
object

splitSafiDesign

createSafiDesign

plot.safidesign

accessSafiDesign

safiModel

safimodel
objectplot.safimodel

barplot of
sensitivities

plot of input
functions

accessable
design

data set
computer

experiment

Figure 4.5: Structural setup of R package seqSAFI. Functions are represented by rect-

angles (with double vertical lines if defined externally), data by parallelograms, and

output by circles. Arrows represent information transfer.

and one scalar input x.

f(g1, g2, x) =

1∫
0

[
(3− 9t)1[0, 13 ](t) + Z(t)

]
g1(t) dt

−
1∫

0

[
1

30
1[ 3

10
,1](t)g2(t) + 3

]3

dt

+
8

10
sin(x),

(4.4)

with Z(.) a simulation of a Gaussian process with zero mean, a small variance of 0.05,

and Matérn 5/2 covariance function with parameter θ = 0.1. The process Z(.) as well

as the third power and the sine function are disturbances meant to achieve a more

realistic example. The aim is to discover the linear effects of each input, that is

• the decreasing positive influence of g1 over
[
0, 1

3

]
,

• the constant negative influence of g2 over
[

3
10
, 1
]
,

• the positive influence of x.
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The computations are performed using the R package seqSAFI, presented before. At

first, a starting design has to be created. As we want to use as little evaluations as

possible and we say that we do not assume active interactions, we use a sequential

bifurcation design without mirror runs. Not having any previous knowledge about the

functional influence, we start with two equidistant intervals per functional input, i.e

with the decompositions

a1 = a2 =

(
0,

1

2
, 1

)

for g1 and g2 respectively. The scalar input x is treated as a functional input on the

sole interval a3 = (0, 1) in all steps. Thus, a starting design is set up that contains

six runs, the initial bifurcation runs (all +1 and all –1) plus one run for each splitting

which makes two for the splitting into three variables and two for the splitting of each

of the two functional domains. The design can be seen on the top in Fig. 4.6. The six

runs are executed via Equation (4.4) and the normalized regression indices of Def. 4.1

are computed as described in Section 4.3. They are visualized in the bottom of Fig. 4.6.

The first functional input g1 shows only negligible influence in its second interval. Thus,

only the first interval shall be explored further and is split into three intervals. For g2,

no intervals can be screened out, so that both intervals are split up. This results in

four new runs depicted in the top of Fig. 4.7. The resulting indices can be seen in the

bottom of the same figure.

The intervals with visible influence of the second step are split again to gain a more

detailed look in the functional influence, leading to two new runs for g1 and three

for g2. They are shown in Fig. 4.8 together with the resulting indices. We stop the

procedure at this point, making Fig. 4.8 the final result. Though they are disturbed

and do not show the exact influences, the main linear behavior of the three parameters

is revealed in the 15 runs. We can see the decreasing influence of g1 at the beginning

of the domain, though not exactly at the first third, the constant influence of g2 in the

last part, and the positive influence of the scalar input x.
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input g1 g2 x

interval
[
0, 1

2

] [
1
2
, 1
] [

0, 1
2

] [
1
2
, 1
]

([0, 1])

run 1 +1 +1 +1 +1 +1

run 2 –1 –1 –1 –1 –1

run 3 +1 +1 –1 –1 –1

run 4 +1 +1 +1 +1 –1

run 5 +1 –1 –1 –1 –1

run 6 +1 +1 +1 –1 –1
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Figure 4.6: Analytical example, step 1, design and normalized regression indices.

Chapter discussion

In this chapter a methodology was presented to perform sensitivity analysis for time-

consuming computer codes that take, additional to scalar inputs, functions as input

variables. The focus was not only on discovering the sensitivity of the function as a

whole but also on exploring the behaviour over the functional domain. The method

comprises sequential group factor screening of piecewise constant functions and spe-

cially normalized regression indices.

Due to the infinite functional dimension and the small budget of evaluations, a very

economical method has been developed that has several limitations. Independence as

well as only linear behaviour over the intervals is assumed. Another limitation concerns

the interpretation of the indices, as theoretically influences of opposite sign could get
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input g1 g2 x

interval
[
0, 1

6

] [
1
6
, 1
3

] [
1
3
, 1
2

] [
1
2
, 1
] [

0, 1
4

] [
1
4
, 1
2

] [
1
2
, 3
4

] [
3
4
, 1
]

([0, 1])

run 7 +1 –1 –1 –1 –1 –1 –1 –1 –1

run 8 +1 +1 –1 –1 –1 –1 –1 –1 –1

run 9 +1 +1 +1 +1 +1 –1 –1 –1 –1

run 10 +1 +1 +1 +1 +1 +1 +1 –1 –1
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Figure 4.7: Analytical example, step 2, design and normalized regression indices.

g1 g2 x[
0, 1

12

] [
1
12
, 2
12

] [
2
12
, 3
12

] [
3
12
, 4
12

] [
4
12
, 6
12

] [
6
12
, 1
] [

0, 2
8

] [
2
8
, 3
8

] [
3
8
, 4
8

] [
4
8
, 5
8

] [
5
8
, 6
8

] [
6
8
, 7
8

] [
7
8
, 1
]

([0, 1])

run 11 +1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1

run 12 +1 +1 +1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1

run 13 +1 +1 +1 +1 +1 +1 +1 +1 –1 –1 –1 –1 –1 –1

run 14 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 –1 –1 –1 –1

run 15 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 –1 –1
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Figure 4.8: Analytical example, step 3, design and normalized regression indices.
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canceled out. The method, however, was shown to be robust against some nonlinear

transformations and proves to work well in the application in Chapter 6.

The basic idea of this chapter, to explore single intervals and reduce their size more

and more, can be transferred to another application of sensitivity analysis, the analysis

of the support of input variables, which is presented in the next chapter.



Chapter 5

5. Support Analysis

Minimum and maximum of the input variable distribution are usually specified by the

practitioner as extreme values of the parameter in question. Those values are often

chosen vaguely, but can have an important impact. As an example, the total effects

of the Ishigami function with the usual distributions Xi ∼ U [−π, π] are DT
1 = 7.72,

DT
2 = 6.13, and DT

3 = 3.37. If we reduce the support of the distribution of X3

by 10 percent, X∗3 ∼ U [−π + π/10, π − π/10], we get DT∗
1 = 4.05, DT∗

2 = 6.13, and

DT∗
3 = 1.45. The first and the last variable have clearly lost influence in comparison to

the second one. This can be explained by the interaction between X1 and X3, which is

much stronger at the borders than in the rest of the function. The index of X2 stays

unchanged as it does not interact with X3. The change in the output when changing

X2 stays the same.

As very cheap-to-evaluate metamodels are often used in practice (Section 2.2), it is

possible to compute more than the common one or two simple numbers, the Sobol

and the total sensitivity index, for each input variable. In this chapter, an index that

extends the traditional global sensitivity analysis is defined and examined. It explores

the influence of different parts of the support of the input variables by applying the

ideas of functional sensitivity analysis from Chapter 4 to a regular scalar situation. In

a way, this method is a turn back to local sensitivity analysis (see Section 2.1), where,

out of necessity, only the local influence of parameters is studied. The main difference is

83
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that in local sensitivity analysis the influence of a variable is studied in a local space of

the other inputs whereas the following method studies the local influence of a variable,

but in a global space of the other variables. In addition, the local influences are studied

over the whole input space, so no space is ignored. This idea, more specifically the idea

to use sensitivity analysis to determine regions in the input space for which the model

variation is maximum, is mentioned in Saltelli et al. (2000, p. 6), but to our knowledge

not pursued further.

The following method presents a way to show the behavior of the sensitivity for different

parts of the input support, so that the effects of the choice of an input distribution

can be visible. In addition, it gives further insight into the function by presenting a

function of sensitivities as extension to Sobol and total sensitivity indices. Following

the definition of the support index functions, we show that they are connected to

classical indices when the variable in question is restricted to an interval whose size

goes to zero. Then, the method is applied to the Ishigami function, followed by a study

of their expected value over the support.

5.1 Support index functions

Consider again the standard situation of a black-box function Y = f(X), where X =

(X1, . . . , Xd) is a vector of independent random variables with distribution µ = µ1 ⊗

· · · ⊗ µd and f a d-dimensional function f : ∆→ R. In addition we assume that ∆ =

[0, 1]d compact, f of class C1, and that X1, . . . , Xd have continuous density functions

with support [0, 1]. Notice that since f is of class C1 on the compact set [0, 1]d, f and

all its first-order derivatives are bounded, ensuring that f(X) and ∂f
∂x•

(X) are in L2.

The support index functions are then defined as follows.

Definition 5.1. Support index functions

The first-order support index Di(t) of an input variable Xi at a point t, t ∈ [0, 1], is
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defined as the square of the expected value of the first derivative of f ,

Di(t) =

(
E

(
∂f

∂xi
(t,X−i)

))2

.

The total support index DT
i (t) of an input variable Xi at a point t, t ∈ [0, 1], is defined

as the expected value of the squared derivative of f ,

DT
i (t) = E

((
∂f

∂xi
(t,X−i)

)2
)
.

The support variance DXi(t) corresponding to a support index of an input variable Xi

at a point t, t ∈ [0, 1], is defined as the overall variance for Xi = t,

DXi(t) = Var(f(t,X−i)).

The functions can be evaluated and plotted for a sufficiently large number of discrete

points t = 0, . . . , 1 over the support. If the gradient of f is known the functions can

be calculated directly. If not, the gradient can be approximated by finite differences.

For instance the first-order support index of Xi at point t using Monte Carlo samples

of X−i, x
(1)
−i , . . . ,x

(n)
−i , and a small value of δ∗ can be estimated by

D̂i(t) =

(
1

n

n∑
k=1

f(t+ δ∗,x
(k)
−i )− f(t− δ∗,x(k)

−i )

2δ∗

)2

.

An interpretation of the support functions can be obtained, when we look at the first-

order and total influence of the specific point in the support of the variable. Indeed,

the functions are connected to the classical index estimation when we restrict Xi to

vary only over a small interval around t and let the size of the interval go to zero.

Proposition 5.1. Let X1, . . . , Xd be independent random variables with continuous

density functions with support [0, 1]. Let f be a function defined on ∆ = [0, 1]d compact

and assume that f is of class C2, ensuring that f(X), ∂f
∂x•

(X), ∂2f
∂x•∂x•

(X) are in

L2. Now let one of the random variables, say Xi, be restricted to Xh
i ∼ Xi|Xi ∈

[t− h/2, t+ h/2] for t ∈]0, 1[ and h > 0.
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Then we have for the overall variance, the Sobol index of Xh
i , and the total sensitivity

index of Xh
i that

1. Var(f(Xh
i ,X−i))

h→0−−→ Var(f(t,X−i)) = DXi(t),

2. Var
(
E
[
f(Xh

i ,X−i)|Xh
i

])
/h2 h→0−−→ 1

12

(
E

(
∂f

∂xi
(t,X−i)

))2

= Di(t)/12,

3. E
(
Var

[
f(Xh

i ,X−i)|X−i
])
/h2 h→0−−→ 1

12
E

((
∂f

∂xi
(t,X−i)

)2
)

= DT
i (t)/12.

Proof. Let us first show that

V ar(Xh
i − t)

h2

h→0−−→ 1

12
.

Let g be the density function of Xi − t, g(x) = fXi
(x + t). By assumption, g is

continuous in 0, g(0) > 0. Consider the density of the truncated variable Xh
i − t,

gh(x) = g(x)∫ h
2

−h
2

g(t) dt
1[−h

2
,h
2 ](x).

Let `h = inf
x∈[−h

2
,h
2 ]
g(x) and uh = sup

x∈[−h
2
,h
2 ]
g(x). With continuity of f in 0, we have

uh
h→0−−→ g(0) and `h

h→0−−→ g(0). By standard integral computations we get

h`h ≤
∫ h

2

−h
2

g(x) dx ≤ huh and
h3

12
`h ≤

∫ h
2

−h
2

g(x)x2 dx ≤ h3

12
uh

so that for E
((
Xh
i − t

)2
)

=

∫ h
2

−h
2

g(x)x2 dx

∫ h
2

−h
2

g(x) dx
it holds that

`h
uh

h3/12

h
≤ E

((
Xh
i − t

)2
)
≤ uh
`h

h3/12

h
.

By dividing by h2 this leads to

E
((
Xh
i − t

)2
)

h2

h→0−−→ 1

12
.

It remains to show that
E(Xh

i −t)
h

h→0−−→ 0. As∫ h
2

−h
2

g(x)x dx =

∫ h
2

0

(g(x)− g(−x))x dx
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it holds that

|E(Xh
i − t)| ≤

1

`hh

∫ h
2

0

|g(x)− g(−x)|x dx ≤ 1

`hh

∫ h
2

0

(uh − `h)x dx

=
uh − `h
`hh

∫ h
2

0

x dx =
uh − `h
`hh

h2

8
.

Thus

|E(Xh
i − t)|
h

≤ uh − `h
8`h

h→0−−→ 0.

In the following, denote Bi =
Xh

i −t
h

. Remark that Bi is bounded by |Bi| ≤ 1
2

and that

Var(Bi)
h→0−−→ 1

12
.

Proof of 1. Write the mean value theorem between a real number xi ∈ [t−h/2, t+h/2] ⊆

[0, 1] and t

f(x) = f(xi,x−i) = f(t,x−i) + (xi − t)
∂f

∂xi
(c,x−i)

for a c between xi and t, thus c ∈ [t − h/2, t + h/2]. Replacing by random variables,

we get

f(Xh
i ,X−i) = f(t,X−i) + (Xh

i − t)
∂f

∂xi
(C,X−i),

where C is a random variable such that C ∈ [t − h/2, t + h/2]. Denoting Q =

Bi
∂f
∂xi

(C,X−i), we then have

f(Xh
i ,X−i) = f(t,X−i) + hQ.

Now remark that Q is bounded since both Bi and ∂f
∂xi

are bounded (by continuity of

∂f
∂xi

on the compact set [0, 1]d). This implies that E(f(Xh
i ,X−i))

h→0−−→ E(f(t,X−i))

by the Lebesgue dominated convergence theorem as well as E
(
f(Xh

i ,X−i)
2
) h→0−−→

E (f(t,X−i)
2). The result follows.

Proof of 2. The proof is similar to the one of 1. Write the Taylor-Lagrange expansion

of f between a real number xi ∈ [t− h/2, t+ h/2] ⊆ [0, 1] and t

f(x) = f(xi,x−i) = f(t,x−i) + (xi − t)
∂f

∂xi
(t,x−i) +

1

2
(xi − t)2∂

2f

∂x2
i

(c,x−i)



88 Support Analysis

for a c between xi and t, thus c ∈ [t − h/2, t + h/2]. Replacing by random variables,

we have

f(Xh
i ,X−i) = f(t,X−i) + hBi

∂f

∂xi
(t,X−i) + h2R̃,

with R̃ = 1
2
B2
i
∂2f
∂x2i

(C,X−i), where C is a random variable, C ∈ [t−h/2, t+h/2]. Then,

using the independence between Xh
i and X−i, we have

E
[
f(Xh

i ,X−i)|Xh
i

]
= β0 + hβ1Bi + h2R,

with β0 = E (f(t,X−i)), β1 = E
(
∂f
∂xi

(t,X−i)
)

, and R = E
[
R̃|Xh

i

]
. Finally

Var
(
E
[
f(Xh

i ,X−i)|Xh
i

])
= h2β2

1Var(Bi) + 2h3β1Cov(Bi, R) + h4Var(R).

Now remark that R̃ is a bounded random variable by continuity of ∂2f
∂x2i

on the compact

set [0, 1]d, and thus R is bounded as well. This implies that Var(R) = O(1) and

Cov(Bi, R) = O(1), and the result follows.

Proof of 3. With the same notations as in the proof of 2., we have

E
[
f(Xh

i ,X−i)|X−i
]

= f(t,X−i) + hE(Bi)
∂f

∂xi
(t,X−i) + h2E

[
R̃|X−i

]
and thus

f(Xh
i ,X−i)− E

[
f(Xh

i ,X−i)|X−i
]

= h(Bi − E(Bi))
∂f

∂xi
(t,X−i) + h2S,

with S = R̃ − E
[
R̃|X−i

]
. Since S is centered, we have by independence of Bi and

∂f
∂xi

(t,X−i)

E
((
f(Xh

i ,X−i)− E
[
f(Xh

i ,X−i)|X−i
])2
)

=

β2Var(Bi)h
2 + 2h3Cov

(
(Bi − E(Bi))

∂f

∂xi
(t,X−i), S

)
+ h4Var(S),

with β2 = E

((
∂f
∂xi

(t,X−i)
)2
)

. The result follows in the same way as in the proof of

2. by using that ∂f
∂xi

(t,X−i) and S are bounded random variables.
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5.2 Analytical example

Applying the described support analysis to the Ishigami function, sin(X1)+7 sin2(X2)+

0.1X4
3 sin(X1), reveals the effect observed in the introduction. For the estimation, the

finite element estimators D̂i(t) and D̂T
i (t) were computed at 40 regularly spaced points

in ]−π, π[ for Monte Carlo samples of size n = 5 000. See Fig. 5.1 for the result. The

influence of the input variable X3 is increasing strongly at the borders, which explains

the observed strong change in the total effect, when the support size is changed. Beside

this the sinusoidal behavior of X1 and X2 can be observed as well as the facts already

known from the standard analysis that X1 and X3 interact and that the main influence

of X2 is the strongest.

5.3 Expected values

Taking the expected value over the support index functions reveals interesting connec-

tions to other indices, which give a little more insight into the interpretation of the

functions.

For the total support index DT
i (t), the expected value is equal to the DGSM νi (Sec-

tion 2.4.2),

E
[
DT
i (Xi)

]
= E

[
E

((
∂f

∂xi
(Xi,X−i)

)2
∣∣∣∣∣Xi

)]
= νi.

It follows that the expected value of the total support index serves as an upper bound

for the total sensitivity index,

C(µi)E
[
DT
i (Xi)

]
≥ DT

i ,

with C(µi) the Poincaré constant of µi as before.

On the other hand, the expected value over the first-order support index function

can be connected to variance-based indices. Denote the global mean of the derivative
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Figure 5.1: Support analysis of the Ishigami function.

function ∂f
∂xi

(.) by

(
∂f

∂xi

)
0

= E

(
∂f

∂xi
(X)

)
.

Now compute the first-order Sobol index of ∂f
∂xi

(.) corresponding to the input variable

xi by using the pick-freeze formula,

Di

(
∂f

∂xi
(X)

)
=E

[
∂f

∂xi
(Xi,X−i)

∂f

∂xi
(Xi,Z−i)

]
−
(
∂f

∂xi

)2

0

=E

[(
E

[
∂f

∂xi
(Xi,X−i)

∣∣∣∣Xi

])2
]
−
(
∂f

∂xi

)2

0

.
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Thus we obtain

E [Di(Xi)] = Di

(
∂f

∂xi
(X)

)
+

(
∂f

∂xi

)2

0

,

the expected value over the first-order support index function can be obtained as first-

order index of the derivative function plus its global mean.

Chapter discussion

Two new indices, the first-order support index and the total support index, have been

presented that extend the Sobol index and the total sensitivity index, respectively.

They return a function of sensitivities that give insight into the local behavior of input

variables, and can be especially helpful in the specification of the input distribution.

It was shown that the support index functions are connected to the limits of their

corresponding scalar indices when the support approaches zero. A link to DGSM and

variance-based indices was made.





Chapter 6

6. Application to a Sheet Metal Forming

Process

The industrial process of deep drawing is a fundamental procedure for forming sheet

metal into desired shapes. It is for example extensively applied in the automotive

industry in the production of car bodies. In the deep drawing process, a flat sheet

metal is pressed with a punch into a die while so-called blankholders keep the metal

fixed at the metal borders. Three time points of the forming process are illustrated in

Fig. 6.1.

The applications are performed within the Collaborative Research Center SFB 708

at the “Institute of Forming Technology and Lightweight Construction” (IUL) at TU

Dortmund University. Several presses are employed in the research, one shown in

sheet

punch

blank-
holder

1 2 3

Figure 6.1: Illustration of the deep drawing forming process at three time points.
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springbackreference

Figure 6.2: Sheet metal forming press at IUL (left), formed parts without and with

springback (right).

Fig. 6.2 on the left. Examples of the target workpiece, inspired by the shape of B-pillar,

can be seen in Fig. 6.2 on the right. One of the main problems to investigate in the deep

drawing analysis is the shape accuracy of the formed part. Tearing or wrinkling can

occur during the forming process. Another serious problem is springback, the reforming

of the flange after the removal of the punch, which can lead to strong difficulties in the

assembly. Such inaccuracy is exemplarily depicted in Fig. 6.2 on the right, springback

can be observed in the right piece. The task of analyzing and optimizing the shape

accuracy is growing in importance and complexity with the increasing requirements on

the formed parts, especially in the automotive industry. In addition, advanced high

strength steels are used more and more due to their advantages of light weight and

higher strength, which are even more prone to springback.

The forming process can be adjusted by several parameters, which concern for instance

the specific properties of the formed material, like thickness or strength, parameters

that can be adjusted during the process like the blankholder force or the speed of

the punch, or the geometry of the die. It is common practice to adjust and study the

process on Finite-Element models, for instance by the popular Software tool AutoForm

(AutoForm, 2004). In this work, the more specialized Software LS-DYNA (Livermore
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Software Technology Corporation, 2005) is used for the deep drawing simulations. All

other computations in the study are performed by the software R (R Core Team, 2014).

The aim of the study is to show how the forming process can be analyzed by the

methods presented in this work, how they help to gain a deeper insight into the process

and improve subsequent analysis techniques.

6.1 Thickness reduction

The first application aims at analyzing the influence of several input parameters on the

thickness reduction of the formed part. A high thickness reduction at a region of the

sheet metal means a strong local thinning, which can lead to structural deformations or

actual tearing. Is it thus of interest to know, which parameters influence the thinning

and in which way as well as modeling and optimization. The part under study is

the demonstrator part already shown in Fig. 6.2 on the right. Eight input variables

are varied in this study, listed in Tab. 6.1 together with their ranges. The variables

flow stress, initial sheet thickness, hardening exponent and sheet layout concern the

material, blankholder force and friction can be varied during the process. In practice,

friction can be changed during the process by adding or removing lubricant with high

pressure air and oil removing agents. To roughly integrate this change of friction over

the process time, friction is modeled as three independent variables corresponding to

three stages of the process time over which friction is kept constant. The more elaborate

approach to the analysis of functional inputs of Chapter 4 is applied later in Section 6.2.

The output value is the maximal thickness reduction, that is the thickness reduction

of the point of the formed part with the strongest thinning. It is given as the ratio

between thickness reduction and initial thickness which leads to a scalar value between

0 and 1.



96 Application to a Sheet Metal Forming Process

input variable feasible region

X1 flow stress 100-200 MPa

X2 initial sheet thickness 0.5-1.7 mm

X3 blankholder force 50-200 kN

X4 friction; 1st third of process time 0-0.14

X5 friction: 2nd third of process time 0-0.14

X6 friction: 3rd third of process time 0-0.14

X7 hardening exponent 0.1-0.3

X8 sheet layout 100-150%

Table 6.1: Input variables of the thickness reduction application.

As the duration of the simulation lies between 2 and 6 hours per run, it is out of the

scope of a direct analysis. Instead, a Latin hypercube design with 50 runs is applied as

initial design for metamodeling. The design and the corresponding thickness reduction

results can be found in the Appendix in Tab. B.7. It shows that the output values fall

indeed into [0, 1] and are quite well spread over this interval. For the further analysis,

the input variables are scaled to lie between 0 and 1. While this does not affect the

sensitivity analysis, it simplifies computations and is necessary for the comparisons

in the support analysis. On the results, a Kriging metamodel (2.1) with a standard

product kernel, a single constant trend, and Matérn 5/2 covariance functions is fit using

the R package DiceKriging (Roustant et al., 2012). Its prediction function is used as

a metamodel.

The first-order Sobol and total sensitivity indices are calculated by the frequency-based

methods FAST and EFAST (Section 2.3.3) using a number of nFAST = 2 000 sample

points. For the computation and visualization the R package sensitivity (Pujol et al.,

2014) is used. The results are shown in Fig. 6.3. According to this, variable X8, the

sheet layout, has the strongest influence followed by the two last parts of the friction



6.1 Thickness reduction 97

X1 X2 X3 X4 X5 X6 X7 X8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

first-order Sobol index
total sensitivity index

Figure 6.3: Thickness reduction application, first-order Sobol and total sensitivity

indices.

and the flow stress. The variables X2, X4, and X7 — the initial sheet thickness, the first

third of the friction, and the hardening exponent — show only negligible influence and

can thus be removed from the analysis. Nevertheless, X4, the first third of friction, is

kept in order to be consistent in keeping friction as a parameter. The total sensitivity

indices show strong interactions for all active parameters. A new Kriging model on the

same data but without X2 and X7 is set up as updated metamodel.

As we are working with the very fast-to-evaluate Kriging metamodel, we can explore

this main effect analysis further by looking at the support indices presented in Chap-

ter 5. This analysis can in particular check if the chosen input ranges influence the

results critically. Support indices are estimated for the six remaining variables of in-

terest at 40 equally distributed points t = 0, . . . , 1 over the normalized domain via
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Figure 6.4: Thickness reduction application, support analysis. Note that the vertical

axes are not equally scaled in order to visualize the behavior of less influential input

variables.

finite differences with a Monte Carlo sample of size 2 000 for each point. The resulting

support functions are drawn in Fig. 6.4. The plots show that for the most influen-

tial variables X8, X6, X5, and X1 the specific range indeed does not affect the result

strongly, as the output variation is not strong at the borders of the input support. The

wavy shape of the support index function of variable X8 reveals strong nonlinearities

in the relation between this variable and the thickness reduction. The two friction pa-

rameters X5 and X6 show similar support functions, underlining that both describe the

same parameter. For X3 and X2, the function of the input influence over the domain

does not change much, possibly due to their small overall influence. For all variables,

the interactions seem to be rather equally spread over the support.
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threshold cut 0.000 0.010 0.030 0.050 0.100 1.000

RMSE 0.793 0.585 0.780 0.735 0.786 0.860

Table 6.2: Thickness reduction application, threshold identification with standard

product kernel as initial kernel, leave-one-out RMSE values for different thresholds.

In terms of interaction, the analysis so far has shown that the variables do interact,

but not in which way. Thus, the specific structure of the interactions shall be exam-

ined closer using the methods presented in Chapter 3 via R package fanovaGraph. A

FANOVA graph is set up with the TII estimated by the Liu and Owen method. A total

number of 20 000 evaluations is used. The resulting FANOVA graph can be seen in

Fig. 6.5 (b). All interactions are active, although the majority to a very small, possibly

negligible, amount. The strongest interaction can be seen between X5 and X8, and

generally, X5, X6 and X8 seem to interact the most.

To apply the graph in subsequent analysis, a threshold to pick out the relevant interac-

tions has to be determined. The delta jump plot (see Section 3.6) is shown in Fig. 6.5

(a). It reveals four main jumps around the values 0.01, 0.03, 0.05, and 0.1. The

threshold decision procedure by Kriging kernel comparison is performed for those four

threshold candidates and 0 and 1, first by using the standard product kernel as initial

kernel. The resulting leave-one-out RMSE values can be seen in Tab. 6.2. The table

shows that the smallest RMSE can be achieved when removing all interactions with

a TII lower than 0.01. Figure 6.5 (c) shows the corresponding FANOVA graph. The

variables X3, the blankholder force, and X4, the first third of friction, are separated,

while the other variables fully interact, except for X1 and X5.

The threshold determination procedure is repeated with the ANOVA kernel by Dur-

rande et al. (2013) as initial kernel, which showed superiority in the simulation study

in Section 3.6. The results can be seen in Fig. 6.6. With this kernel, the initial

unthresholded FANOVA graph only shows three active interactions, with the interac-
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kernel. Delta jump plot (a). FANOVA graphs of the complete interaction structure

(b) and the thresholded values (c).
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threshold cut 0.000000 0.000003 0.000200 1.000000

RMSE 0.792732 0.725182 0.723123 0.859808

Table 6.3: Thickness reduction application, threshold identification with ANOVA ker-

nel as initial kernel, leave-one-out RMSE values for different thresholds.

tion between X5 and X8 being by far the strongest, indicated by a huge jump in the

delta jump plot. The threshold identification procedure on Kriging kernel comparison

(Tab. 6.3) even leads to an emptier graph which contains the interaction between X5

and X8 only.

The results of the two kernels differ clearly but at least are consistent in identifing the

interaction between X5 and X8 as strongest. The ANOVA kernel showed superiorty in

the simulation study, but in this application, the graph based on the standard product

kernel lead to a smaller leave-one-out RMSE value (Tab. 6.2). To obtain more reliable

results on the block-additive structure, a larger study on a new test data set seems to

be necessary.

Conclusion

A complete sensitivity analysis of the thickness reduction was performed where the

newly developed methods of interaction screening, support analysis, and threshold

determination were applied. A strong total interaction was found between the sheet

layout and the friction of the second third of the process time. Smaller interactions

were identified between the sheet layout and the friction of the last third of the process

time and also between both friction variables. For the identification of a thresholded

FANOVA graph for subsequent studies, a deeper investigations is necessary.
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6.2 Functional input application

Adjustments to the deep drawing press and to the simulation tools at the IUL allow the

variation of the process parameters blankholder force and friction during the forming

process, a possibility to further improve the shape accuracy of the formed part by

more specialized parameter settings. The effect of functional friction has already been

roughly examined in the thickness reduction application where it was separated in

three parts considered as independent variables. This analysis shall be extended to

a detailed functional sensitivity analysis of friction and blankholder force that gives

insight into the functional behavior of both parameters and screens out negligible time

intervals for further analysis and optimization. A small previous study showing the

usefulness of the functional examination has already been shown in the motivational

example in the beginning of Chapter 4. A part of the results is published in ul Hassan

et al. (2013).

We apply the methods presented in Chapter 4 for functional sensitivity analysis to

a situation with two functional inputs (friction and blankholder force) and no scalar

input. This time, the scalar output is represented by the mean springback as a measure

of the geometrical accuracy. Three steps of functional sensitivity analysis are performed

following the design based on sequential bifurcation (Section 4.3). Mirror runs are

added to ensure unbiased estimates, which results in 24 runs in total. See the Appendix

for the complete design (Tab. B.8). Figure 6.7 shows the normalized regression indices

of the three steps. At first, two intervals are considered for both input variables,

which reveals a stronger influence of friction than blankholder force as well as a general

tendency towards a positive influence in the first half and negative influence in the

second half. At this point, all intervals are interesting to the engineers and thus are

split for the second step. There, the last intervals of each half show to have the greatest

impact whereas the first and third intervals have relatively small influence. Therefore,

in the third step of the sequential analysis, these intervals are not explored further, but
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Figure 6.7: Functional input application, normalized regression indices of three steps

(top, middle, bottom). The bar color references sign and amplitude of the bar.

each second and fourth interval is split again. After these three steps, the functional

sensitivities are explored sufficiently for the engineers.

To confirm the result, a further analysis using factorial designs is conducted, which

requires a higher number of runs than sequential bifurcation but allows for the esti-

mation of interactions. For the first step, a full factorial 24-design with 16 runs is

chosen. The second and the third step are both performed on a 28−3-design with 32

runs, in which the confounding structure is chosen such that the counfounding of in-

fluential time intervals is avoided. The plot of normalized regression indices in Fig. 6.8
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shows only a few dissimilarities compared to the sequential bifurcation analysis which

overall confirms the chosen model. Table B.9 in the Appendix shows the estimated

interaction indices together with the confounding structure. Generally, interactions

are stronger for friction than for blankholder force and generally close intervals in-

teract stronger than remote ones. The largest interaction can be observed between

the intervals [11.25, 13.125] and [13.125, 15] of friction, which are directly consecutive

and which are the two intervals with the strongest main effects. The second largest

interaction influence is shared by the interactions between the intervals [3.75, 5.625]

and [5.625, 7.5] and the intervals [11.25, 13.125] and [13.125, 15], both corresponding to

blankholder force. These intervals are again consecutive and comparatively strong.

When interpreting the general results, at first an overall similar behavior of both vari-

ables can be clearly seen, which confirms a presumption of the engineers as both pa-

rameters affect the springback in the similar way. A clear break in about half of the

time can be observed. It can also be noted that the magnitude of the influence increases

towards the end of both halves. These intervals are most important for the springback

behavior.

Conclusion

For the essential task of springback compensation in sheet metal forming a functional

sensitivity analysis was performed. To the best of our knowledge, this is the first

time that the influence of time intervals is systematically investigated in sheet metal

forming. From the engineering point of view, the main conclusion is that a high value

of blankholder force and friction coefficient for the last 15 percent of the punch travel

can strongly reduce springback in the final part. This effect can be explained by the

increase in the plastic strains in the part at the end of the process, which reduces the

springback. A further insight is that the parameters should have a small value during

50-60 percent of the punch travel as the sheet is being formed over the larger radius
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Figure 6.8: Functional input application in three steps via factorial designs. First step

(top). Second step (middle). Third step (bottom). The bar color references sign and

amplitude of the bar.
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of the punch at that time. The input setting that resulted in the lowest springback

of 0.47 mm, run 21 of the factorial design, is pictured in Fig. 6.9. The best run with

constant settings, run 2 of the sequential bifurcation design in Tab. B.8, resulted in

a springback of 0.74 mm. This reduction of the springback by around 35 percent

underlines the benefits of the functional variation approach and gives an impression of

its possibilities for subsequent springback optimization.





Chapter 7

7. Conclusion and Outlook

The general field of this thesis was sensitivity analysis for black-box functions. Three

different concepts that extend the basic sensitivity analysis have been presented. They

all share the ability to give deeper insight into the function’s behavior on different

levels, be it interactions, the domain of functional inputs, or the distribution support

of inputs.

The sensitivity analysis for interaction screening enables a user to explore the inter-

action structure of the function and to find inactive interactions. This provides a

block-additive decomposition of the black-box function, which in turn can be of use,

for instance in prediction modeling and optimization.

The sensitivity analysis for functional inputs gives insight into the influence of the

inputs on the functional domain level. The method explores the influence of differ-

ent parts of the functional domain, possibly leading to enhanced insights about the

influence of the input variables compared to scalar analysis. The screening of inactive

parts of the functional domain can again serve as a starting point for modeling and

optimization.

The support analysis, finally, provides an extension from single sensitivity indices to

sensitivity functions by returning a sensitivity for each point of the distribution support

of the input. An insight into the influence of the inputs for different supports can be

gained, showing the potential consequences of input distribution choices.

109
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The presented methods were applied in two forming process studies, concerning the

thickness of the formed metal and the springback, respectively. They helped to improve

the understanding of the forming process and gave more insight into the way input

sources influence the deformation yielding an important prerequisite to subsequent

research in the field of sheet metal forming.

All three methods provide complete procedures for the exploration of computer exper-

iments, which can lead to new insights and can substantially support further analy-

ses. There are, nevertheless, several possibilities for improvement. For the sensitivity

analysis of interaction screening, several extensions are imaginable, e.g. to allow for

the employment of dependent variables or to explore metamodels that enable the di-

rect computation of the TIIs, possibly via ANOVA zero-mean kernels or Polynomial

Chaos Expansion. In the sensitivity analysis for functional input, aims for future re-

search could be to develop methods that allow for smooth design functions, non-linear

influences, and models that avoid the problem of canceling out variables of opposite

sign. However, those will be challenging tasks due to the necessary strong dimension

reduction and the focus on sensitivity analysis. One further point of improvement is

to consider not only the value of the input at the time points but also how the values

between the time points evolve, and thus to set up models that incorporate this evo-

lution in time. A straightforward outlook is the extension to spatial input variables.

One idea could be to treat each spatial dimension as a functional input and thus lead

the problem back to functional analysis. Another idea is to split the input space into

simplices similar to the splitting of intervals in the functional analysis.
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A. Notations
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symbol description

mathematical notations

Lp(µ) space of functions that are p times integrable with respect to

measure µ

Ck class of functions with continuous derivatives up to order k

‖x‖ Euclidean norm over vector x

∇f(X) gradient of f

|Q| for a set Q, number of elements in Q

A−B {x|x ∈ A and x /∈ B}, difference of sets A and B

F[0,1] space of functions with domain [0, 1]

C(µ) Poincaré constant of a measure µ

defined variable names (general)

n size of Monte Carlo sample

d number of input variables

x = (x1, . . . , xd)
′ vector of input setting (for one run)

X = (X1, . . . , Xd)
′ random vector input variables

k(h) Kriging covariance kernel for input distance h (2.3)

δ∗ small real-valued spacing, e.g. in finite differences

I set of variable indices, subset of {1, . . . , d}

xI ,XI input setting and variable for all input variables in I

x−I ,X−I input setting and variable for all input variables but the ones

in I

y, Y specific output value and corresponding random variable

f underlying function, either computer experiment or metamodel

µ = µ1 ⊗ · · · ⊗ µd probability measure of X

∆ domain of f

fI additive term of f in FANOVA decomposition (2.4)
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D overall variance of Y (2.7)

DI , SI unscaled (2.8) and scaled (2.9) standard Sobol index

DT
I , DC

I total (2.10) and closed (2.11) sensitivity index
pf
D̂C
I ,

Cor1
D̂C
I ,

Cor2
D̂C
I

closed sensitivity index estimators (Section 2.3.2)

Jan
D̂T
I total sensitivity index estimator by Jansen formula (3.7)

Ŝ1
n, Ŝ2

n normalized closed sensitivity index estimators considered by

Janon et al. (2013) (2.24,2.25)
FAST

D̂i,
FAST

D̂,
EFAST

D̂T
i,

RBD
D̂T

I

frequency-based estimators (Section 2.3.3)

νi DGSM (2.30)

defined variable names in Chapter 3

Di,j total interaction index (3.1)
Jan

D̂i,j,
RBD

D̂i,j,
pf
D̂i,j,

LO
D̂i,j,

fix
D̂i,j

proposed TII estimators (Section 3.2)

δ threshold cut (3.12)

νi,j crossed DGSM (3.13)

defined variable names in Chapter 4

dscal, dfun number of scalar and functional input variables

g1, . . . , gdfun functional input variables

pj number of intervals of the domain decomposition of input gj

aj = (a0
j , . . . , a

pj
j ) splitting points of the domain decomposition of input gj

Vaj
space of piecewise constant functions (4.1)

Z
(k)
j level of functional input gj over interval [ak−1, ak] (4.1)

β
(k)
j regression coefficients corresponding to Zk

j (4.2)
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β
(k,k′)
j regression coefficient corresponding to the interaction between

Z
(k)
j and Z

(k′)
j (4.3)

Ĥk
j , Ĥk,k′

j normalized regression index of Zk
j and normalized interaction

regression index of Z
(k)
j and Z

(k′)
j (Def. 4.1)

defined variable names in Chapter 5

Di(.), D
T
i (.) first-order and total support index function (Def. 5.1)

DXi(.) support variance (Def. 5.1)
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116 Data

method interaction true Di,j mean(D̂i,j) sd(D̂i,j) RMSE

Jansen X1*X2 0.01050 0.01048 0.00775 0.00775

Jansen X1*X3 0.00000 -0.00026 0.00191 0.00193

Jansen X1*X4 0.00000 0.00005 0.00190 0.00190

Jansen X2*X3 0.00000 -0.00008 0.00201 0.00202

Jansen X2*X4 0.00000 0.00015 0.00192 0.00193

Jansen X3*X4 0.01196 0.01203 0.00071 0.00071

RBD-FAST X1*X2 0.01050 0.01080 0.00556 0.00557

RBD-FAST X1*X3 0.00000 0.00078 0.00462 0.00469

RBD-FAST X1*X4 0.00000 0.00041 0.00465 0.00467

RBD-FAST X2*X3 0.00000 0.00010 0.00537 0.00537

RBD-FAST X2*X4 0.00000 0.00007 0.00520 0.00520

RBD-FAST X3*X4 0.01196 0.01370 0.00063 0.00185

Liu-Owen X1*X2 0.01050 0.01045 0.00067 0.00067

Liu-Owen X1*X3 0.00000 0.00000 0.00000 0.00000

Liu-Owen X1*X4 0.00000 0.00000 0.00000 0.00000

Liu-Owen X2*X3 0.00000 0.00000 0.00000 0.00000

Liu-Owen X2*X4 0.00000 0.00000 0.00000 0.00000

Liu-Owen X3*X4 0.01196 0.01200 0.00087 0.00087

pick-freeze X1*X2 0.01050 0.01099 0.00571 0.00573

pick-freeze X1*X3 0.00000 0.00039 0.00347 0.00349

pick-freeze X1*X4 0.00000 0.00020 0.00416 0.00416

pick-freeze X2*X3 0.00000 0.00041 0.00380 0.00383

pick-freeze X2*X4 0.00000 0.00035 0.00375 0.00377

pick-freeze X3*X4 0.01196 0.01230 0.00382 0.00384

fixing method X1*X2 0.01050 0.01065 0.00004 0.00016

fixing method X1*X3 0.00000 0.00072 0.00035 0.00080

fixing method X1*X4 0.00000 0.00072 0.00034 0.00080

fixing method X2*X3 0.00000 0.00068 0.00030 0.00075

fixing method X2*X4 0.00000 0.00068 0.00031 0.00075

fixing method X3*X4 0.01196 0.01280 0.00044 0.00096

Table B.1: Simulation study on TII estimators (Section 3.5), simulation results of test

function function 1.



method interaction true Di,j mean(D̂i,j) sd(D̂i,j) RMSE

Jansen X1*X2 0.00000 -0.00982 0.34844 0.34858

Jansen X1*X3 3.37400 3.37224 0.40906 0.40907

Jansen X2*X3 0.00000 -0.03654 0.24399 0.24671

RBD-FAST X1*X2 0.00000 0.09898 0.57583 0.58428

RBD-FAST X1*X3 3.37400 4.45408 0.32655 1.12836

RBD-FAST X2*X3 0.00000 0.11056 0.36745 0.38373

Liu-Owen X1*X2 0.00000 0.00000 0.00000 0.00000

Liu-Owen X1*X3 3.37400 3.36829 0.26011 0.26018

Liu-Owen X2*X3 0.00000 0.00000 0.00000 0.00000

pick-freeze X1*X2 0.00000 0.01049 0.28169 0.28189

pick-freeze X1*X3 3.37400 3.31536 0.38642 0.39084

pick-freeze X2*X3 0.00000 0.00154 0.31470 0.31471

fixing method X1*X2 0.00000 0.04436 0.03331 0.05547

fixing method X1*X3 3.37400 3.29961 0.01244 0.07543

fixing method X2*X3 0.00000 0.05403 0.01874 0.05719

Table B.2: Simulation study on TII estimators (Section 3.5), simulation results of test

function Ishigami.



method interaction true Di,j mean(D̂i,j) sd(D̂i,j) RMSE

Jansen X1*X2 1.00000 1.00967 0.09440 0.09489

Jansen X1*X3 1.00000 0.99815 0.09823 0.09824

Jansen X2*X3 1.00000 1.00765 0.08971 0.09004

RBD-FAST X1*X2 1.00000 0.94694 0.07075 0.08844

RBD-FAST X1*X3 1.00000 0.72957 0.06419 0.27795

RBD-FAST X2*X3 1.00000 1.25540 0.07165 0.26526

Liu-Owen X1*X2 1.00000 1.01280 0.11338 0.11410

Liu-Owen X1*X3 1.00000 1.00429 0.09689 0.09699

Liu-Owen X2*X3 1.00000 1.01740 0.11797 0.11925

pick-freeze X1*X2 1.00000 0.99508 0.09425 0.09438

pick-freeze X1*X3 1.00000 0.99953 0.08953 0.08953

pick-freeze X2*X3 1.00000 1.00055 0.08620 0.08620

fixing method X1*X2 1.00000 0.93073 0.45798 0.46319

fixing method X1*X3 1.00000 0.97158 0.42273 0.42368

fixing method X2*X3 1.00000 1.03120 0.44287 0.44396

Table B.3: Simulation study on TII estimators (Section 3.5), simulation results of test

function pure 3rd order.



method interaction true Di,j mean(D̂i,j) sd(D̂i,j) RMSE

Jansen X1*X2 9971.73000 10263.77293 1539.20775 1566.66831

Jansen X1*X3 4294.61400 4545.41228 1185.94330 1212.17214

Jansen X1*X4 4959.11800 5073.41172 1231.87397 1237.16472

Jansen X2*X3 4959.11800 5138.66469 1242.35094 1255.25809

Jansen X2*X4 5726.43900 5795.54286 1315.01195 1316.82640

Jansen X3*X4 9971.73000 10071.57890 1378.60814 1382.21931

RBD-FAST X1*X2 9971.73000 10598.93981 2019.91567 2115.05354

RBD-FAST X1*X3 4294.61400 3342.48113 3546.85770 3672.43197

RBD-FAST X1*X4 4959.11800 5810.18917 2760.52452 2888.73982

RBD-FAST X2*X3 4959.11800 5485.89458 2499.24078 2554.15309

RBD-FAST X2*X4 5726.43900 4125.33919 3479.07869 3829.81842

RBD-FAST X3*X4 9971.73000 9650.29305 2215.92131 2239.11343

Liu-Owen X1*X2 9971.73000 9920.99781 1819.17274 1819.88000

Liu-Owen X1*X3 4294.61400 4280.11606 615.13594 615.30677

Liu-Owen X1*X4 4959.11800 4943.35961 638.60851 638.80291

Liu-Owen X2*X3 4959.11800 4903.13648 612.90229 615.45361

Liu-Owen X2*X4 5726.43900 5698.02040 621.84855 622.49758

Liu-Owen X3*X4 9971.73000 9882.87512 1460.01897 1462.72027

pick-freeze X1*X2 9971.73000 9970.56641 1450.59069 1450.59116

pick-freeze X1*X3 4294.61400 4200.28742 1183.28793 1187.04163

pick-freeze X1*X4 4959.11800 4949.93453 968.12614 968.16969

pick-freeze X2*X3 4959.11800 4929.59915 1057.96011 1058.37184

pick-freeze X2*X4 5726.43900 5803.13487 976.65760 979.66439

pick-freeze X3*X4 9971.73000 9966.71909 1508.54626 1508.55458

fixing method X1*X2 9971.73000 11119.07447 8750.83738 8825.73250

fixing method X1*X3 4294.61400 4409.87390 2427.35963 2430.09457

fixing method X1*X4 4959.11800 4996.25926 2424.93445 2425.21887

fixing method X2*X3 4959.11800 4749.06173 2510.49126 2519.26378

fixing method X2*X4 5726.43900 5662.63647 2633.24417 2634.01701

fixing method X3*X4 9971.73000 9755.53576 7674.47413 7677.51869

Table B.4: Simulation study on TII estimators (Section 3.5), simulation results of test

function Branin4.



method interaction true Di,j mean(D̂i,j) sd(D̂i,j) RMSE

Jansen X1*X2 0.00000 -0.00782 0.06759 0.06804

Jansen X1*X14 1.00000 0.99866 0.04249 0.04251

Jansen X3*X4 0.00000 -0.01102 0.05985 0.06086

Jansen X4*X7 0.00000 0.00446 0.05697 0.05715

Jansen X5*X11 1.00000 0.99753 0.04346 0.04353

Jansen X7*X9 1.00000 1.00381 0.04263 0.04280

Jansen X9*X11 0.00000 -0.00709 0.07341 0.07375

Jansen X13*X14 0.00000 -0.00481 0.06506 0.06523

Liu-Owen X1*X2 0.00000 0.00000 0.00000 0.00000

Liu-Owen X1*X14 1.00000 0.99587 0.01759 0.01807

Liu-Owen X3*X4 0.00000 0.00000 0.00000 0.00000

Liu-Owen X4*X7 0.00000 0.00000 0.00000 0.00000

Liu-Owen X5*X11 1.00000 0.99780 0.01618 0.01632

Liu-Owen X7*X9 1.00000 0.99960 0.01740 0.01740

Liu-Owen X9*X11 0.00000 0.00000 0.00000 0.00000

Liu-Owen X13*X14 0.00000 0.00000 0.00000 0.00000

pick-freeze X1*X2 0.00000 0.01848 0.08117 0.08325

pick-freeze X1*X14 1.00000 1.01468 0.08102 0.08234

pick-freeze X3*X4 0.00000 0.01082 0.10426 0.10482

pick-freeze X4*X7 0.00000 0.00862 0.09628 0.09666

pick-freeze X5*X11 1.00000 1.01237 0.08412 0.08502

pick-freeze X7*X9 1.00000 1.00725 0.08367 0.08399

pick-freeze X9*X11 0.00000 0.00675 0.09844 0.09867

pick-freeze X13*X14 0.00000 0.02495 0.10254 0.10553

fixing method X1*X2 0.00000 0.01132 0.00590 0.01276

fixing method X1*X14 1.00000 1.00831 0.00594 0.01022

fixing method X3*X4 0.00000 0.01053 0.00508 0.01169

fixing method X4*X7 0.00000 0.01056 0.00448 0.01147

fixing method X5*X11 1.00000 1.00837 0.00558 0.01006

fixing method X7*X9 1.00000 1.00810 0.00510 0.00958

fixing method X9*X11 0.00000 0.01058 0.00534 0.01186

fixing method X13*X14 0.00000 0.01035 0.00519 0.01158

Table B.5: Simulation study on TII estimators (Section 3.5), simulation results of test

function high 2nd order.



method interaction true Di,j mean(D̂i,j) sd(D̂i,j) RMSE

Jansen X1*X2 1.00000 1.00588 0.27857 0.27863

Jansen X1*X14 1.00000 0.99121 0.26777 0.26792

Jansen X3*X4 1.00000 0.95553 0.20567 0.21043

Jansen X4*X7 1.00000 0.99382 0.26330 0.26337

Jansen X5*X11 1.00000 0.98963 0.25441 0.25462

Jansen X7*X9 1.00000 0.99583 0.25962 0.25965

Jansen X9*X11 1.00000 1.01066 0.29777 0.29796

Jansen X13*X14 1.00000 0.94978 0.21423 0.22004

Liu-Owen X1*X2 1.00000 0.94861 0.49732 0.49997

Liu-Owen X1*X14 1.00000 0.87443 0.40832 0.42720

Liu-Owen X3*X4 1.00000 0.89585 0.34816 0.36340

Liu-Owen X4*X7 1.00000 0.94836 0.38186 0.38533

Liu-Owen X5*X11 1.00000 1.02137 0.50280 0.50325

Liu-Owen X7*X9 1.00000 0.98915 0.50674 0.50686

Liu-Owen X9*X11 1.00000 0.98524 0.60291 0.60309

Liu-Owen X13*X14 1.00000 0.90036 0.37902 0.39190

pick-freeze X1*X2 1.00000 0.97192 0.20759 0.20948

pick-freeze X1*X14 1.00000 0.98727 0.20220 0.20260

pick-freeze X3*X4 1.00000 0.98420 0.19992 0.20055

pick-freeze X4*X7 1.00000 0.96162 0.18369 0.18766

pick-freeze X5*X11 1.00000 1.01061 0.22877 0.22902

pick-freeze X7*X9 1.00000 0.98123 0.23393 0.23468

pick-freeze X9*X11 1.00000 1.00763 0.23578 0.23590

pick-freeze X13*X14 1.00000 1.00515 0.20535 0.20541

fixing method X1*X2 1.00000 0.30138 0.97913 1.20282

fixing method X1*X14 1.00000 0.34203 1.38163 1.53031

fixing method X3*X4 1.00000 0.40942 1.30499 1.43240

fixing method X4*X7 1.00000 0.58874 3.65648 3.67954

fixing method X5*X11 1.00000 0.54546 2.43655 2.47859

fixing method X7*X9 1.00000 0.63975 3.04218 3.06343

fixing method X9*X11 1.00000 0.43615 1.46912 1.57361

fixing method X13*X14 1.00000 0.53907 1.92319 1.97765

Table B.6: Simulation study on TII estimators (Section 3.5), simulation results of test

function high 14th order.



X1 X2 X3 X4 X5 X6 X7 X8 y

1 175.5102 0.9898 50.0000 0.0000 0.0914 0.0314 0.2102 134.6939 0.2821

2 100.0000 1.5286 147.9592 0.1171 0.0371 0.0429 0.2225 104.0816 0.5137

3 151.0204 0.8429 151.0204 0.0257 0.0857 0.0371 0.1000 102.0408 0.2536

4 153.0612 1.1367 77.5510 0.0029 0.0429 0.0714 0.1082 121.4286 0.6289

5 118.3674 1.5776 92.8571 0.0514 0.0686 0.0914 0.2878 143.8776 0.8150

6 157.1429 1.6510 187.7551 0.0743 0.0743 0.1200 0.2796 138.7755 0.8278

7 112.2449 0.7939 126.5306 0.0371 0.0571 0.0286 0.2918 110.2041 0.4281

8 148.9796 1.0878 175.5102 0.1000 0.0286 0.1343 0.1694 112.2449 0.7314

9 200.0000 1.7000 181.6327 0.0771 0.1000 0.1086 0.1449 129.5918 0.8185

10 120.4082 1.4061 184.6939 0.0714 0.1171 0.1000 0.1367 148.9796 0.8804

11 185.7143 1.3082 74.4898 0.0314 0.0971 0.1371 0.1531 119.3878 0.8598

12 155.1020 1.5041 59.1837 0.0914 0.0829 0.0771 0.2020 106.1225 0.4078

13 138.7755 1.3326 193.8776 0.0571 0.0800 0.0143 0.2388 131.6327 0.6437

14 130.6122 0.9653 53.0612 0.1057 0.0629 0.1286 0.1490 137.7551 0.7054

15 161.2245 1.6020 65.3061 0.1400 0.1229 0.1400 0.1122 118.3674 0.8476

16 122.4490 1.2347 154.0816 0.0171 0.1200 0.1057 0.2592 132.6531 0.8787

17 106.1225 1.4306 120.4082 0.1314 0.1114 0.0600 0.1163 130.6122 0.8080

18 177.5510 1.0143 172.4490 0.0057 0.1371 0.0343 0.2265 123.4694 0.8563

19 197.9592 0.9163 157.1429 0.0400 0.0171 0.1171 0.1326 101.0204 0.4143

20 183.6735 1.1857 141.8367 0.0600 0.0029 0.0629 0.2061 125.5102 0.5995

21 171.4286 1.5531 132.6531 0.0800 0.0400 0.0400 0.1204 150.0000 0.6777

22 140.8163 0.6714 80.6122 0.0829 0.0000 0.0743 0.1735 113.2653 0.4457

23 167.3469 1.0388 56.1225 0.1143 0.0229 0.0229 0.2714 122.4490 0.4120

24 114.2857 1.6755 105.1020 0.0657 0.0143 0.0971 0.1571 126.5306 0.5424

25 189.7959 1.6265 114.2857 0.0429 0.1029 0.0057 0.1776 120.4082 0.6269

26 134.6939 0.8918 102.0408 0.0629 0.0543 0.0086 0.1408 136.7347 0.7283

27 146.9388 1.2837 135.7143 0.1086 0.1314 0.0800 0.2837 116.3265 0.8093

28 128.5714 0.5735 200.0000 0.0486 0.1343 0.0943 0.2184 114.2857 0.8677

29 136.7347 1.0633 111.2245 0.0943 0.0314 0.1257 0.3000 108.1633 0.6944

30 191.8367 0.5000 178.5714 0.1114 0.0457 0.0457 0.2755 139.7959 0.4572

31 195.9184 0.5490 68.3674 0.1257 0.0600 0.0200 0.1653 124.4898 0.3742

32 159.1837 1.2102 117.3469 0.1343 0.0086 0.0029 0.1245 115.3061 0.5054

33 104.0816 1.3571 144.8980 0.0686 0.1400 0.0829 0.1816 107.1429 0.4304

34 173.4694 0.6224 83.6735 0.0143 0.0114 0.0657 0.2633 140.8163 0.4466

35 181.6327 1.1122 166.3265 0.0114 0.0714 0.1143 0.1857 142.8571 0.8553

36 193.8776 0.8184 108.1633 0.0543 0.1257 0.1114 0.2306 100.0000 0.2416

37 126.5306 0.7449 98.9796 0.0886 0.1143 0.0686 0.2959 146.9388 0.8804

38 142.8571 0.9408 71.4286 0.1286 0.1286 0.0171 0.1980 141.8367 0.8622

39 110.2041 0.5980 89.7959 0.0857 0.1057 0.0886 0.2551 111.2245 0.6971

40 116.3265 0.6959 95.9184 0.0229 0.0943 0.0857 0.1041 147.9592 0.8663

41 102.0408 1.1612 138.7755 0.0086 0.1086 0.0257 0.1612 127.5510 0.8061

42 179.5918 0.7204 169.3878 0.0457 0.0514 0.0114 0.2429 105.1020 0.3377

43 163.2653 1.2592 190.8163 0.0343 0.0057 0.0000 0.1286 117.3469 0.4839

44 132.6531 0.7694 196.9388 0.1229 0.0657 0.0514 0.2143 103.0612 0.4160

45 169.3878 1.4551 62.2449 0.1371 0.0200 0.1029 0.1898 133.6735 0.4775

46 187.7551 1.4796 123.4694 0.1200 0.0771 0.0543 0.2469 144.8980 0.7633

47 144.8980 1.3816 163.2653 0.0200 0.0343 0.0571 0.2673 109.1837 0.5016

48 108.1633 0.8673 160.2041 0.0971 0.0257 0.0486 0.2347 145.9184 0.7730

49 124.4898 0.6469 129.5918 0.0286 0.0486 0.1229 0.1939 128.5714 0.4776

50 165.3061 0.5245 86.7347 0.1029 0.0886 0.1314 0.2510 135.7143 0.8165

Table B.7: Thickness reduction application (Section 6.1), Latin hypercube design.



step run time intervals: friction time intervals: blankholder force y

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 1 – – – – – – – – – – – – – – – – 6.2

2 + + + + + + + + + + + + + + + + 0.7

3 + + + + + + + + – – – – – – – – 2.1

4 – – – – – – – – + + + + + + + + 4.7

5 + + + + – – – – – – – – – – – – 9.1

6 – – – – + + + + + + + + + + + + 0.7

7 + + + + + + + + + + + + – – – – 2.3

8 – – – – – – – – – – – – + + + + 4.3

2 9 + + – – – – – – – – – – – – – – 6.8

10 – – + + + + + + + + + + + + + + 0.7

11 + + + + + + – – – – – – – – – – 6.9

12 – – – – – – + + + + + + + + + + 0.5

13 + + + + + + + + + + – – – – – – 2.2

14 – – – – – – – – – – + + + + + + 4.7

15 + + + + + + + + + + + + + + – – 1.9

16 – – – – – – – – – – – – – – + + 4.5

3 17 + + + – – – – – – – – – – – – – 6.8

18 – – – + + + + + + + + + + + + + 0.7

19 + + + + + + + – – – – – – – – – 4.2

20 – – – – – – – + + + + + + + + + 0.5

21 + + + + + + + + + + + – – – – – 2.2

22 – – – – – – – – – – – + + + + + 4.4

23 + + + + + + + + + + + + + + + – 0.7

24 – – – – – – – – – – – – – – – + 4.2

Table B.8: Functional input application (Section 6.2), sequential bifurcation design in

three steps. Settings: 0.05 (–) and 0.2 (+) for friction and 67.5 (–) and 125 (+) for

blankholder force. Mirror runs are shaded.



step 1 Ĥ step 2 Ĥ step 3 Ĥ confounding

Z
(1,1)
F × Z(2,1)

F -0.018 Z
(1,2)
F × Z(2,2)

F -0.007 Z
(1,3)
F × Z(2,3)

F -0.031 1

Z
(1,1)
F × Z(1,1)

B 0.006 Z
(1,2)
F × Z(3,2)

F 0.008 Z
(1,3)
F × Z(3,3)

F -0.008 –

Z
(1,1)
F × Z(2,1)

B -0.005 Z
(1,2)
F × Z(4,2)

F 0.003 Z
(1,3)
F × Z(4,3)

F -0.018 –

Z
(2,1)
F × Z(1,1)

B -0.009 Z
(1,2)
F × Z(1,2)

B -0.023 Z
(1,3)
F × Z(1,3)

B -0.023 2

Z
(2,1)
F × Z(2,1)

B 0.008 Z
(1,2)
F × Z(2,2)

B -0.022 Z
(1,3)
F × Z(2,3)

B -0.021 3

Z
(1,1)
B × Z(2,1)

B -0.005 Z
(1,2)
F × Z(3,2)

B 0.023 Z
(1,3)
F × Z(3,3)

B 0.014 4

Z
(1,2)
F × Z(4,2)

B 0.005 Z
(1,3)
F × Z(4,3)

B -0.004 5

Z
(2,2)
F × Z(3,2)

F -0.034 Z
(2,3)
F × Z(3,3)

F -0.028 –

Z
(2,2)
F × Z(4,2)

F -0.038 Z
(2,3)
F × Z(4,3)

F -0.043 –

Z
(2,2)
F × Z(1,2)

B 0.005 Z
(2,3)
F × Z(1,3)

B -0.004 5

Z
(2,2)
F × Z(2,2)

B 0.023 Z
(2,3)
F × Z(2,3)

B 0.014 4

Z
(2,2)
F × Z(3,2)

B -0.022 Z
(2,3)
F × Z(3,3)

B -0.021 3

Z
(2,2)
F × Z(4,2)

B -0.023 Z
(2,3)
F × Z(4,3)

B -0.023 2

Z
(3,2)
F × Z(4,2)

F 0.026 Z
(3,3)
F × Z(4,3)

F 0.241 –

Z
(3,2)
F × Z(1,2)

B -0.022 Z
(3,3)
F × Z(1,3)

B -0.021 –

Z
(3,2)
F × Z(2,2)

B -0.005 Z
(3,3)
F × Z(2,3)

B 0.005 –

Z
(3,2)
F × Z(3,2)

B 0.013 Z
(3,3)
F × Z(3,3)

B -0.023 –

Z
(3,2)
F × Z(4,2)

B 0.012 Z
(3,3)
F × Z(4,3)

B 0.009 –

Z
(4,2)
F × Z(1,2)

B -0.008 Z
(4,3)
F × Z(1,3)

B -0.008 –

Z
(4,2)
F × Z(2,2)

B -0.025 Z
(4,3)
F × Z(2,3)

B -0.029 –

Z
(4,2)
F × Z(3,2)

B -0.001 Z
(4,3)
F × Z(3,3)

B 0.036 –

Z
(4,2)
F × Z(4,2)

B 0.013 Z
(4,3)
F × Z(4,3)

B 0.021 –

Z
(1,2)
B × Z(2,2)

B 0.028 Z
(1,3)
B × Z(2,3)

B 0.075 6

Z
(1,2)
B × Z(3,2)

B -0.006 Z
(1,3)
B × Z(3,3)

B 0.006 7

Z
(1,2)
B × Z(4,2)

B -0.007 Z
(1,3)
B × Z(4,3)

B -0.031 1

Z
(2,2)
B × Z(3,2)

B -0.007 Z
(2,3)
B × Z(3,3)

B -0.031 1

Z
(2,2)
B × Z(4,2)

B -0.006 Z
(2,3)
B × Z(4,3)

B 0.006 7

Z
(3,2)
B × Z(4,2)

B 0.028 Z
(3,3)
B × Z(4,3)

B 0.075 6

Table B.9: Functional input application, normalized interaction indices of friction (F )

and blankholder force (B). The superscripts stand for the following intervals: step 1

(1, 1), (2, 1): [0, 7.5], [7.5, 15], step 2 (1, 2), . . . , 4, 2): [0, 3.75], [3.75, 7.5], [7.5, 11.25],

[11.25, 15], and step 3 (1, 3), . . . , (4, 3): [3.75, 5.625], [5.625, 7.5], [11.25, 13.125],

[13.125, 15]. The confounding structure of the fractional factorial designs in steps two

and three is given in the last column: confounded interactions are indicated by the

same number, no confounding is indicated by –. The strongest interactions are in bold

characters.



Bibliography

Archer, G. E. B., A. Saltelli, and I. M. Sobol’ (1997). Sensitivity measures, ANOVA-

like techniques and the use of bootstrap. Journal of Statistical Computation and

Simulation 58 (2), 99–120.

AutoForm (2004). AutoForm users manual. AutoForm Inc.

Bettonvil, B. (1995). Factor screening by sequential bifurcation. Communications in

Statistics-Simulation and Computation 24 (1), 165–185.

Blatman, G. and B. Sudret (2010). Efficient computation of global sensitivity in-

dices using sparse polynomial chaos expansions. Reliability Engineering & System

Safety 95 (11), 1216–1229.

Caflisch, R. E. (1998). Monte Carlo and quasi-Monte Carlo methods. Acta numerica 7,

1–49.

Confalonieri, R., G. Bellocchi, S. Bregaglio, M. Donatelli, and M. Acutis (2010). Com-

parison of sensitivity analysis techniques: A case study with the rice model warm.

Ecological Modelling 221, 1897–1906.

Cornfield, J. and J. W. Tukey (1956). Average values of mean squares in factorials.

The Annals of Mathematical Statistics , 907–949.

Csárdi, G. and T. Nepusz (2006). The igraph software package for complex network

research. InterJournal, Complex Systems 1695.

125



Cukier, R. I., H. B. Levine, and K. E. Shuler (1978). Nonlinear sensitivity analysis of

multiparameter model systems. Journal of Computational Physics 26 (1), 1–42.

Daniel, C. (1973). One-at-a-time plans. Journal of the American Statistical Associa-

tion 68 (342), 353–360.

de Boor, C. (2001). A practical guide to splines, Volume 27 of Applied mathematical

sciences. New York: Springer.

Durrande, N., D. Ginsbourger, O. Roustant, and L. Carraro (2013). ANOVA kernels

and RKHS of zero mean functions for model-based sensitivity analysis. Journal of

Multivariate Analysis 115, 57–67.

Efron, B. and C. Stein (1981). The jackknife estimate of variance. The Annals of

Statistics 9 (3), 586–596.

Fang, K., R. Li, and A. Sudjianto (2006). Design and modeling for computer ex-

periments. Computer science and data analysis series. Boca Raton and London:

Chapman & Hall/CRC.

Fort, J.-C., T. Klein, A. Lagnoux, and B. Laurent (2013). Estimation of the Sobol

indices in a linear functional multidimensional model. Journal of Statistical Planning

and Inference 143 (9), 1590–1605.

Fort, J.-C., T. Klein, and N. Rachdi (2014). New sensitivity analysis subordinated to

a contrast. Preprint . arXiv:1305.2329 [stat.ME].

Franco, J., D. Dupuy, O. Roustant, G. Damblin, and B. Iooss. (2014). DiceDesign:

Designs of Computer Experiments. R package version 1.4.

Friedman, J. H. and B. E. Popescu (2008). Predictive learning via rule ensembles. The

Annals of Applied Statistics 2 (3), 916–954.



Fruth, J. and M. Jastrow (2014). seqSAFI: sequential sensitivity analysis for

functional inputs. R package version 1.0, available on http://www.statistik.tu-

dortmund.de/1552.html.

Fruth, J., O. Roustant, and S. Kuhnt (2014a). Sequential designs for sensitivity analysis

of functional inputs in computer experiments. Reliability Engineering & System

Safety , doi: 10.1016/j.ress.2014.07.018.

Fruth, J., O. Roustant, and S. Kuhnt (2014b). Total interaction index: A variance-

based sensitivity index for second-order interaction screening. Journal of Statistical

Planning and Inference 147, 212–223.
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