
HAL Id: tel-01151262
https://theses.hal.science/tel-01151262

Submitted on 12 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Divergence Awareness in Distributed Multi-Synchronous
Collaborative Systems

Khaled Aslan-Almoubayed

To cite this version:
Khaled Aslan-Almoubayed. Divergence Awareness in Distributed Multi-Synchronous Collaborative
Systems. Web. Université de Nantes, 2012. English. �NNT : �. �tel-01151262�

https://theses.hal.science/tel-01151262
https://hal.archives-ouvertes.fr

Thèse de Doctorat

Khaled Aslan Almoubayed
Mémoire présenté en vue de l’obtention du
grade de Docteur de l’Université de Nantes
sous le label de l’Université de Nantes Angers Le Mans

Discipline : Informatique
Spécialité : Informatique
Laboratoire : Laboratoire d’informatique de Nantes-Atlantique (LINA)

Soutenue le 26 novembre 2012

École doctorale : 503 (STIM)
Thèse n° : 000000000

Divergence Awareness in Distributed
Multi-Synchronous Collaborative Systems

JURY

Rapporteurs : M. Bruno Defude, Professeur, TELECOM SudParis
M. Nicolas Roussel, Directeur de Recherche, INRIA Lille

Examinateurs : M. Marc Gelgon, Professeur, Université de Nantes
M. Gérald Oster, Maître de Conferences, Université de Lorraine

Directeur de thèse : M. Pascal Molli, Professeur, Université de Nantes

Co-directrice de thèse : Mme Hala Skaf-Molli, Maître de Conferences, Université de Nantes

Contents

1 Introduction 7
1.1 Topic and Motivation of this Thesis 8
1.2 Contributions of this Thesis . 9
1.3 Outline of this Thesis . 10
1.4 Publications . 11

2 Background 15
2.1 Multi-Synchronous Collaboration Model 18

2.1.1 Multi-Synchronous Collaboration Model and Software
Engineering . 19

2.1.2 Multi-Synchronous Collaboration Model and Distributed
Systems . 22

2.1.3 Multi-Synchronous Collaboration Scenarios 23
2.1.4 Multi-Synchronous Collaboration Model Issues 27

2.2 Divergence Awareness . 28
2.2.1 Awareness in CSCW . 29
2.2.2 Divergence Awareness Systems 32

2.3 Synthesis . 41

3 SCHO: Shared Causal History Ontology 43
3.1 Introduction . 43
3.2 Semantic Web and Ontologies 44
3.3 SCHO: Shared Causal History Ontology 48

3.3.1 Unified Shared Causal History Model 49
3.3.2 Unified Shared Causal History Algorithms 51

3.4 Divergence Awareness in SCHO 53
3.4.1 State Treemap Divergence Awareness Using SCHO . . . 54
3.4.2 Palantir Divergence Awareness Using SCHO 56
3.4.3 Concurrency Awareness Using SCHO 57
3.4.4 Validation . 59

3.5 Local Social Network and Trust in SCHO 62
3.5.1 From Causal History to Social Relations 64
3.5.2 Validation . 66

3.6 Summary and Discussion . 67

4 Network Discovery 69
4.1 Introduction . 69
4.2 Distributed Version Control Systems 71
4.3 Linking SCHO to the Linked Open Data 72
4.4 Validation . 76

1

2 CONTENTS

4.5 Summary and Discussion . 78

5 GroupDiv: Group Divergence Awareness Formal Model 81
5.1 Introduction . 81
5.2 GroupDiv Definition . 83
5.3 Computing Divergence Awareness on Causal Histories 88
5.4 Computing Group Divergence Awareness in Real-Time 92
5.5 Simulating Real-Time Divergence Metrics Computation 96
5.6 Related work . 98
5.7 Summary . 103

6 Conclusion and Perspectives 105
6.1 Perspectives . 107

A SCHO Ontology described in OWL 109

List of Figures

2.1 The CSCW matrix . 16
2.2 Synchronous/asynchronous same place collaborative systems . . 16
2.3 Synchronous collaboration in different place with hangout of

GooglePlus . 17
2.4 Asynchronous collaboration in different place with Wikipedia . . 19
2.5 Copy-Modify-Merge paradigm (source [57]) 20
2.6 Muti-synchronous collaboration in DVCS 20
2.7 Collaboration Scenario in DVCS 21
2.8 Convergence/Divergence in GoogleDoc scenario with two par-

ticipants . 24
2.9 Synchronous and Multi-synchronous Collaboration in GoogleDoc 25
2.10 Multi-Synchronous Collaboration in Dropbox 26
2.11 Conflict Detection in Dropbox 27
2.12 Three developers collaboration scenario 27
2.13 Alan Dix’s Collaboration model (source [21]) 29
2.14 Awareness according to Dix (source [22]) 29
2.15 GTextField from the MAUI toolkit 30
2.16 Telepointers, participant list, and chat tool from the MAUI toolkit 30
2.17 Workspace awareness as Radar View 31
2.18 Change awareness . 31
2.19 Edit profile (source [63]) . 33
2.20 Concurrency Awareness (source [3]) 34
2.21 Crystal setting for DVCS (source [15]) 34
2.22 Crystal widget for divergence awareness (source [15]) 35
2.23 State Treemap (source [57]) . 36
2.24 Operational Transformation divergence awareness (source [58]) . 37
2.25 Ghost operations Divergence awareness (source [46]) 38
2.26 Palantir divergence awareness (source [73]) 39
2.27 FASTDash visualization tool (source [12]) 40

3.1 The Semantic Web stack . 44
3.2 RDF graph representation . 45
3.3 Shared Causal History Ontology 49
3.4 A sample project git history . 53
3.5 A sample project equivalent RDF graph 54
3.6 A sample project equivalent RDF graph without the concepts . 55
3.7 Divergence awareness for sample project 56
3.8 Divergence awareness results for gollum project (git) 58
3.9 Divergence awareness results for mongoDB project (git) 58

3

4 LIST OF FIGURES

3.10 Divergence awareness results for AllTray project (Bazaar) 59
3.11 Divergence awareness results for Anewt project (Bazaar) 59
3.12 Divergence awareness results for hgview project (Mercurial) . . . 60
3.13 Divergence awareness results for Murky project (Mercurial) . . . 60
3.14 General approach illustration for extracting local social network 62
3.15 Collaboration scenario . 63
3.16 Social network extraction . 64
3.17 Degree centrality . 65
3.18 Betweenness and closeness centrality 66

4.1 Multi-synchronous Collaboration using different DVCS 70
4.2 Causal history in git . 72
4.3 Shared Causal History Ontology Extension 73
4.4 Push/Pull Network . 74
4.5 Site2 RDF graph . 75
4.6 Scenario example RDF files . 76
4.7 Network discovery . 77

5.1 Multi-synchronous collaboration scenario 85
5.2 GD(Site1) computation at each step of the scenario of figure 5.1 86
5.3 Max causal history and group divergence for three sites 87
5.4 A causal history . 88
5.5 Extraction of HSi

and Hmax at step t from the causal history
described in figure 5.4 . 89

5.6 GDtot results for Murky project: Mercurial, sliced by day 91
5.7 GDtot results for hgview project: Mercurial, sliced by day 91
5.8 GDtot results for Anewt project: Bazaar, sliced by day 92
5.9 GDtot results for allTray project: Bazaar, sliced by day 92
5.10 GDtot results for mongoDB project: git, sliced by month 93
5.11 GDtot results for gollum project: git, sliced by day 93
5.12 Overlay network for exchanging divergence awareness information 94
5.13 GDtot computation time in ms for setup 1: 4 nodes, 2 edges/node 96
5.14 AGDtot computation time in ms for setup 2: Erdös-Rényi net-

work, 100 nodes, 50 edges/node 97
5.15 AGDtot computation time in ms for setup 3: Erdös-Rényi, 500

nodes, 250 edges/node . 98
5.16 AGDtot computation time in ms for setup 4:Erdös-Rényi, 1000

nodes, 10 edges/node . 99
5.17 AGDtot computation time in ms for setup 5: Barabási-Albert,

100 nodes, 10 edges/node . 100
5.18 AGDtot computation time in ms for setup 6: Barabási-Albert,

500 nodes, 10 edges/node . 101
5.19 AGDtot computation time in ms for setup 7: Barabási-Albert,

1000 nodes, 10 edges/node . 102

List of Tables

2.1 Palantir divergence awareness states 39

3.1 Divergence awareness results for the sample project 57
3.2 Execution time and general statistics 57

4.1 Network discovery time results for different network setups . . . 78

5.1 Divergence between each two sites in the system 88
5.2 Execution time and general statistics 90
5.3 A sample execution of the PushSum protocol for calculating

optot for scenario of figure 5.1 95
5.4 Multi-synchronous collaboration networks configurations 96

5

1
Introduction

Collaborative systems allow people distributed in time and space to achieve
common goals. The Computer Supported Cooperative Work (CSCW) Matrix
introduced by Johansen [47] classified collaborative systems according to time
and space dimensions. Collaboration can be synchronous i.e. at the same time
either in the same physical space, such as; meeting rooms, conference rooms or
common workspaces; or in distant spaces such as; videoconference rooms, col-
laborative editors or shared whiteboards. Collaboration can be asynchronous
i.e. at different time either in the same place or in different places.

Multi-synchronous collaboration is another collaboration model that can
not fit in the Matrix [78]. According to Dourish [23], multi-synchronous
collaboration is defined as:

Working activities proceed in parallel (multiple streams of ac-
tivity), during which time the participants are disconnected (di-
vergence occurs); and periodically their individual efforts will be
integrated (synchronization) in order to achieve a consistent state
and progress the activity of the group.

In contrast to synchronous and asynchronous collaboration, multi-synchronous
collaboration does not give the illusion of single, global stream of activity
over the shared data. Muti-synchronous collaborative systems support paral-
lel stream of activities on replicated data. In multi-synchronous collaborative
system, it is possible for participants to work at the same time, in the same
place but on different copies. In such case, the interaction is not synchronous.

When working disconnected, streams have different views of the data, diver-
gence occurs. Participants have to resynchronize their copies at reconnection
to reach a consistent state. Collaboration goes through cycles of convergence
and divergence.

All collaborative systems with replication and synchronization function-
alities are multi-synchronous collaborative systems. Examples include Dis-
tributed Version Control Systems (DVCS) [2] with git 1, Mercurial 2 and

1http://git-scm.com/
2http://www.selenic.com/mercurial/

7

http://git-scm.com/
http://www.selenic.com/mercurial/

8 CHAPTER 1. INTRODUCTION

Bazaar 3, synchronization tools such as Dropbox 4 or GoogleDrive, collabo-
rative editors such as Distributed Wikis [77] or GoogleDoc.

Multi-synchronous collaboration model can potentially reduce completion
time. However, solving conflicts generated by merging concurrent work can
overwhelm the expected gain [17, 64, 66].

Different approaches exist to manage divergence. Planning and coordina-
tion can be used to avoid conflicts [20, 28] but fine grained planning can be
very costly, and it is not always possible to define disjoint tasks. Divergence
awareness is another possible solution to limit divergence and reduce conflicts
in multi-synchronous collaboration. Awareness allows participants to estab-
lish a mutual understanding to perform joint actions. In multi-synchronous
collaboration, divergence is explicit, participants work isolated on their copies
and synchronize from time to time. Without awareness, they generate blind
modifications [46] leading later to synchronization conflicts and more work to
solve these conflicts.

Divergence awareness is important in multi-synchronous collaboration, it
can reduce conflicts and allows to avoid blind modifications. Divergence aware-
ness [58] makes participants aware of the quantity and the location of diver-
gence in shared objects. Participants are informed about potential risk of fu-
ture conflicts. Divergence awareness answers the following questions: is there
any divergence? With whom? Where? And how much? Divergence aware-
ness is an implicit coordination mechanism [39, 34], it incites participants to
coordinate their actions to reduce divergence.

1.1 Topic and Motivation of this Thesis
In this thesis, we are interested in divergence awareness in decentralized multi-
synchronous collaborative systems. Multi-synchronous collaboration allows
people to work concurrently on copies of a shared document which generates
divergence. Divergence awareness allows to localize where divergence and es-
timate how much divergence exists among the copies.

Divergence awareness has been provided by different systems, relying on
different metrics with different ad-hoc visualizations like: State Treemap [57],
Operational Transformation Divergence [58], Palantir [73], Edit Profile [63],
Concurrent modifications [3], and Crystal [15].

However, existing divergence awareness metrics are highly coupled to their
original applications and can not be used outside their original scope. Is it
possible to define divergence metrics in an abstract multi-synchronous collabo-
ration model? This allows to reuse, compare and maybe combine metrics.

Divergence metrics are computed for a group of participants. This group
has to be defined and maintained through membership. However, decentral-
ized multi-synchronous collaboration model is an editing social network where
each participants follows the changes of others. This collaboration model does
not provide a membership functionality and hides social relations. There-
fore, it is not possible to navigate in the social network. Maintaining group
membership in a distributed collaborative system is not easy. Decentralized

3http://bazaar.canonical.com/
4http://www.dropbox.com

http://bazaar.canonical.com/
http://www.dropbox.com

1.2. CONTRIBUTIONS OF THIS THESIS 9

multi-synchronous collaborative systems provide collaboration services with-
out a dedicated service provider. Therefore, there is no central point with a
global vision of the systems. Each participant in the system has only a local
view of the social network. How to manage group membership and to discover
the collaboration network in decentralized multi-synchronous collaborative sys-
tem?

Another topic is related to the interpretation of the computed metrics. Dif-
ferent approaches exist for computing divergence. This can be done through
the estimating of the size of conflicts [58], estimating the difference between
users’ copies and a reference copy [57], or estimating divergence according to
multiple copies of reference [15]. Most of these metrics estimate some edit-
ing distance between users workspaces and a copy of reference. They do not
really try to quantify the divergence for the whole of the group without a
copy of reference. Is it possible to define group divergence? How this group
divergence can be computed in a decentralized multi-synchronous collaborative
system? Computing this global metric in a real-time is very challenging since it
requires a distributed computation with all related distributed problems such
as scalability, availability and privacy preservation.

1.2 Contributions of this Thesis
We propose a formal model to define divergence in an abstract multi-synchronous
collaboration model and to compute group divergence awareness in a fully dis-
tributed collaborative system. Before proposing this model, we started by
studying and analyzing existing divergence awareness in multi-synchronous
distributed collaborative systems.

We observed that all existing distributed multi-synchronous collaborative
systems rely on the same concepts of sharing causal history [67]. The edit-
ing social network is built by exchanging fragments of causal histories among
participants. In spite of this, by analyzing existing systems, we observed that
these systems define their own divergence metrics without a common formal
definition. These metrics are coupled with their applications and cannot be
used outside their original scope. The contributions of this thesis are :

1. The first contribution is the definition of the SCHO ontology; a unified
formal ontology for constructing and sharing the causal history in a dis-
tributed collaborative system. We redefined existing divergence metrics
in a declarative way based on this ontology and validate this contribu-
tion by using real data extracted from software engineering development
projects.

2. The second contribution proposes a membership service for collaborative
systems. We extend the SCHO ontology in order to link participants and
objects by using FOAF/DOAP vocabularies to be part of linked data ini-
tiative. Participants can extract informations from their local workspace
and generate RDF datasets. Therefore, each participant can run queries
to discover the collaboration social network using Link Traversal Based
Query Execution. The advantage of this approach that it does not re-
quire a beforehand knowledge of the sites that it will seek for getting the

10 CHAPTER 1. INTRODUCTION

data to evaluate the query result, which is compatible with the multi-
synchronous collaboration model.

3. The third contribution is a formal definition for multi-synchronous col-
laborative system based on causal histories. We also propose an original
group divergence metric that computes global metric for a group. It is
the number of operations to integrate by the group to reach a conver-
gence state. This metric allows each group member to know exactly her
distance to the next convergence point.

4. As a fourth contribution, we propose an algorithm to compute the group
divergence metric for causal histories. The metric is expressed as seman-
tic queries thanks to the SCHO ontology. We validate this algorithm
by computing group divergence metric on real histories extracted from
different distributed version control systems.

5. As a fifth contribution, we propose a distributed algorithm to compute
group divergence metric efficiently using gossiping protocols in a fully
decentralized network. We validate the distributed computation of di-
vergence metrics with simulations on a peer-to-peer network.

1.3 Outline of this Thesis
In the following, we detail the structure of this thesis :

Chapter 2: Background. This chapter gives definitions and illustra-
tions of multi-synchronous collaboration model. Next, it describes existing
divergence awareness systems and raises the issues that are handled in this
thesis.

Chapter 3: SCHO: Shared Causal History Ontology. In this chapter
we introduce our formal ontology for sharing causal histories. We use seman-
tic web technologies to define the SCHO ontology for constructing and sharing
the causal history in a distributed collaborative system. Then, we define the
existing divergence metrics in a declarative way as semantic queries over this
ontology. Finally, we validate our approach using real data extracted from
software engineering development projects.

Chapter 4: Network Discovery. In this chapter, we introduce the mem-
bership problem of multi-synchronous collaborative systems. Decentralized
multi-synchronous collaboration model does not define membership service,
this is an obstacle to compute divergence metrics in a distributed collabora-
tive systems. Then we show how we can use semantic web technologies and
transform any multi-synchronous collaboration system into a social semantic
web tool. In these systems, participants can perform semantic queries using
Link Traversal Based Query Execution to navigate through the social net-
work. Finally, we run simulations to evaluate the approach, the results show
an extremely poor performance, this approach does not scale and makes it
impossible to rely on it for computing divergence awareness.

1.4. PUBLICATIONS 11

Chapter 5: GroupDiv: Group Divergence Awareness Formal Model.
In this chapter, we propose a formal model for multi-synchronous collabora-
tive systems and we define an original group divergence metric. This metric
addresses specifically the "how much?" question. It makes users aware of the
distance of the group to the next potential convergence point. Then, we pro-
pose an algorithm to compute group divergence metric on logs and validates
the algorithm with real data from different development projects. Finally, we
propose an original approach to compute group divergence metric in real-time
in a fully decentralized network and validates the approach with simulations.

Chapter 6: Conclusion and Perspectives. This chapter concludes the
thesis and provides related future research lines.

1.4 Publications
This thesis is based on the following publications:

1. Khaled Aslan, Nagham Alhadad, Hala Skaf-Molli, and Pascal Molli.
SCHO: An Ontology Based Model for Computing Divergence Awareness in
Distributed Collaborative Systems. In The Twelfth European Conference on
Computer-Supported Cooperative Work (ECSCW2011), September, 2011, Aarhus,
Denmark.
Multi-synchronous collaboration allows people to work concurrently on copies
of a shared document which generates divergence. Divergence awareness allows
to localize where divergence is located and estimate how much divergence
exists among the copies. Existing divergence awareness metrics are highly
coupled to their original applications and can not be used outside their original
scope. In this paper, we propose the SCHO ontology: a unified formal ontology
for constructing and sharing the causal history in a distributed collaborative
system. Then we define the existing divergence metrics in a declarative way
based on this model. We validate our work using real data extracted from
software engineering development projects.

2. Khaled Aslan, Hala Skaf-Molli, and Pascal Molli. From Causal History
to Social Network in Distributed Social Semantic Software. In Web Science
Conference: Extending the Frontiers of Society On-Line (WebSci2010), 2010,
Raleigh, North Carolina, USA.
Web 2.0 raises the importance of collaboration powered by social software.
Social software clearly illustrated how it is possible to convert a community
of strangers into a community of collaborators producing all together valu-
able content. However, collaboration is currently supported by collaboration
providers such as Google, Yahoo, etc. following "Collaboration as a Service
(CaaS)" approach. This approach raises privacy and censorship issues. Users
have to trust CaaS providers for both security of hosted data and usage of col-
lected data. Alternative approaches including private peer-to-peer networks,
friend-to-friend networks, distributed version control systems and distributed
peer-to-peer groupware; support collaboration without requiring a collabora-
tion provider. Collaboration is powered with the resources provided by the
users. If it is easy for a collaboration provider to extract the complete so-
cial network graph from the observed interactions. Obtaining social network
informations in the distributed approach is more challenging. In fact, the

12 CHAPTER 1. INTRODUCTION

distributed approach is designed to protect privacy of users and thus makes
extracting the whole social network difficult. In this paper, we show how it
is possible to compute a local view of the social network on each site in a
distributed collaborative system approach.

3. Khaled Aslan, Hala Skaf-Molli, and Pascal Molli. Connecting Dis-
tributed Version Control Systems Communities to Linked Open Data. In Pro-
ceedings of the 2012 International Conference on Collaboration Technologies
and Systems (CTS 2012), 2012, Denver, Colorado, USA. (Nominated for out-
standing paper award).
Distributed Version Control Systems (DVCS) such as git or Mercurial allow
community of developers to coordinate and maintain well known software
such as Linux operating system or Firefox web browser. The Push-Pull-Clone
(PPC) collaboration model used in DVCS generates PPC social network where
DVCS repositories are linked by push/pull relations. Unfortunately, DVCS
tools poorly interoperate and are not navigable. The first issue prevents the
development of generic tools and the second one prevents network analysis.
In this paper, we propose to reuse semantic web technologies to transform
any DVCS system into a social semantic web one. To achieve this objective,
we propose to extend the SCHO ontology. This ontology allows each node of
the PPC social network to publish semantic datasets. Next, these semantic
datasets can be queried with link transversal based query execution for metrics
computation and PPC social network discovery. We experimented PPC net-
work discovery and divergence metrics on real data from some representative
projects managed by different DVCS tools.

4. Khaled Aslan, Hala Skaf-Molli, and Pascal Molli. GroupDiv: For-
malizing and Computing Group Divergence Awareness in Multi-Synchronous
Distributed Collaborative Systems. In Future Generation Computer Systems
(FGCS). Special Issue on Advances in Computer Supported Collaboration Tech-
nologies and Systems, Vol. XXX, pp. xxx-xxx, 2012 (Submitted - major revi-
sion).
Collaboration can be synchronous, asynchronous or multi-synchronous. In
multi-synchronous collaboration, participants work in parallel on their own
copies and synchronize periodically to build a consistent state. A multi-
synchronous collaboration introduces divergence between copies of shared ob-
jects. Working in parallel can potentially reduce completion time, however, it
introduces blind modifications and the overhead of solving conflicts introduced
by concurrent modifications can overwhelm the expected gain. Divergence
awareness quantifies divergence and answers the following questions: is there
any divergence? With whom? Where? And how much? This paper presents
a generic formal model for defining divergence metrics and demonstrates how
existing metrics can be expressed in this model. It proposes also an efficient
algorithm to compute divergence metrics in a fully decentralized network and
validate through simulations.

5. Khaled Aslan, Pascal Molli, Hala Skaf-Molli, and Stephane Weiss. C-
Set: a Commutative Replicated Data Type for Semantic Stores. In Fourth In-
ternational Workshop on Resource Discovery (RED) 2011, Heraklion, Greece.
Web 2.0 tools are currently evolving to embrace semantic web technologies.
Blogs, CMS, Wikis, social networks and real-time notifications; integrate ways
to provide semantic annotations and therefore contribute to the linked data,

1.4. PUBLICATIONS 13

and more generally to the semantic web vision. This evolution generates a lot
of semantic datasets of different qualities, different trust levels and partially
replicated. This raises the issue of managing the consistency among these repli-
cas. This issue is challenging because semantic data-spaces can be very large,
they can be managed by autonomous participants and the number of replicas
is unknown. A new class of algorithms called Commutative Replicated Data
Type are emerging for ensuring eventual consistency of highly dynamic content
on P2P networks. In this paper, we define C-Set a CRDT specifically designed
to be integrated in Triple-stores. C-Set allows efficient P2P synchronization of
an arbitrary number of autonomous semantic stores.

2
Background

Contents
2.1 Multi-Synchronous Collaboration Model 18

2.1.1 Multi-Synchronous Collaboration Model and Soft-
ware Engineering . 19

2.1.2 Multi-Synchronous Collaboration Model and Dis-
tributed Systems . 22

2.1.3 Multi-Synchronous Collaboration Scenarios 23
2.1.4 Multi-Synchronous Collaboration Model Issues . . . 27

2.2 Divergence Awareness 28
2.2.1 Awareness in CSCW 29
2.2.2 Divergence Awareness Systems 32

2.3 Synthesis . 41

A widely accepted definition of collaborative systems (also refereed as
Groupware) is the definition given by Ellis [26]: Computer-based systems
that support groups of people engaged in a common task (or goal) and that
provide an interface to a shared environment.

Many collaborative systems exist such as decision rooms, group calendars,
video conferences, workflow and collaborative editors. These systems have dif-
ferent functions and different synchronization periods. The collaboration in
these systems can be synchronous, asynchronous or multi-synchronous. Ac-
cording to Ellis et al. [26], synchronous interaction means same time or real-
time interaction and asynchronous interaction means different time or not
real-time interaction. The Computer Supported Cooperative Work (CSCW)
Matrix introduced by Johansen [47] classifies the collaborative system accord-
ing to the time and place dimensions as shown in the figure 2.1. The place axis
considers the spatial distance between participants and the time axis considers
the temporal distance.

• The time axis is divided as follows:

15

16 CHAPTER 2. BACKGROUND

Figure 2.1: The CSCW matrix

1. Same time or synchronous: This corresponds to the situation where
group members interact with the collaborative system simultane-
ously.

2. Different time or asynchronous: This corresponds to the situation
where group members interact with collaborative system at different
moments.

• The place axis is divided as follows:

1. Same place: This corresponds to the situation where group mem-
bers are co-located in the same place when they interact with the
collaborative system.

(a) Synchronous collaboration using Microsoft
surface 2.0

(b) Asynchronous collaboration in
NASA Control Room

Figure 2.2: Synchronous/asynchronous same place collaborative systems

17

Figure 2.3: Synchronous collaboration in different place with hangout of
GooglePlus

2. Different place: This corresponds to the situation where group
members are geographically distributed.

This matrix allows to classify the collaborative systems to: co-located or
distributed, synchronous or asynchronous. Four different regions are repre-
sented by the matrix:

1. "same time" and "same place", as in a face to face synchronous interaction
with single display groupware [80]. In a single display groupware, users
interact through a shared screen. For instance, the figure 2.2a shows
the touch table of Microsoft which allows different persons at the same
place to interact together.

2. "different time" and "same place", here we find asynchronous interaction
in the same place using a large public display [60] or a control room.
Figure 2.2b shows the NASA mission control center 1 where a room has
different computers connected to large displays, this allows the continu-
ous task control. The idea is to allow people in the room to control the
applications projected in the room at different time.

3. "same time" and "different place", this region is characterized by geo-
graphical distribution, participants are located in different places (in dif-
ferent offices, different places in the same city, different cities or different
countries) but they interact with the system at the same time. Exam-
ples include Skype, and hangout of GooglePlus, where people can be in
different places, they communicate synchronously using video and voice.
Many real-time collaborative editors such as Grove [26] and GroupKit[70]

1http://en.wikipedia.org/wiki/Control_room

http://en.wikipedia.org/wiki/Control_room

18 CHAPTER 2. BACKGROUND

are classified in this region. Figure 2.3 shows a video/audio conference
using hangout of GooglePlus. Two persons participate in this confer-
ence, they are in different place, they are collaborating to edit a shared
GoogleDoc as shown in the top of the screen.

4. "different time" and "different place", systems in this region support dis-
tributed asynchronous collaboration, participants do not work simulta-
neously. The interaction can be produced in different time between ge-
ographically distributed participants. Examples include communication
systems such as electronic mails and online forums, coordination systems
such as workflow [84] and shared agendas. Many Web 2.0 systems such
as Wikis and blogs are classified in this category. Wikis are online editors
that allow people to edit a wiki page while they are distributed in time
and in space. Figure 2.4a shows an example of a Wikipedia page. This
page describes the city of Nantes. In figure 2.4b, we can see the history
of modifications of this page, this helps users to understand what hap-
pened to this page. Different contributors from different places around
the world can edit this page at different time.

2.1 Multi-Synchronous Collaboration Model
Dourish [23] introduced the multi-synchronous collaboration model and defined
it as:

Working activities proceed in parallel (multiple streams of ac-
tivity), during which time the participants are disconnected (di-
vergence occurs); and periodically their individual efforts will be
integrated (synchronization) in order to achieve a consistent state
and progress the activity of the group.

Multi-synchronous collaborative systems do not fit in the CSCWmatrix [78].
For instance, it is possible for two participants to work at same time, in same
place but on different copies with divergence i.e. workspaces share the same
objects but are not equal at the same time. Divergence between worskpaces
is the fundamental difference between synchronous, asynchronous and multi-
synchronous collaboration models.

Multi-synchronous collaboration model can be seen as a general collabo-
ration model where synchronous and asynchronous collaborations are special
cases of this general model [23]. The type of the specialization is defined by the
period of synchronization. The period of the synchronization is the regularity
with which two streams are synchronized, this determines the length of time
that two streams will remain divergent. This can varying from milliseconds to
periods of weeks or more. When the period is very small, the synchronization
happens frequently and therefore divergence before reaching a consistent state
is small. This is similar to the characteristic of "real-time" or synchronous
groupware where participants work simultaneously in the some workspace and
communicate their actions as they happen. When the period of divergence
is measured in hours, days or weeks i.e. synchronization is less frequent in
comparison with user activity, the divergence will increase, this is similar to
asynchronous interaction.

2.1. MULTI-SYNCHRONOUS COLLABORATION MODEL 19

(a) Nantes’s page in Wikipedia (b) A sample of Nantes editors

Figure 2.4: Asynchronous collaboration in different place with Wikipedia

All collaborative systems with replication and synchronization function-
alities are multi-synchronous collaborative systems. Examples include Dis-
tributed Version Control Systems (DVCS) [2] with git 2, Mercurial 3 and
Bazaar 4, synchronization tools such as Dropbox 5 or GoogleDrive, collabo-
rative editors such as Distributed Wikis [77] or GoogleDoc.

Multi-synchronous collaboration models are related to copy-modify-merge
paradigm in software engineering and optimistic-replication (or lazy replica-
tion) in distributed systems.

2.1.1 Multi-Synchronous Collaboration Model and Soft-
ware Engineering

Copy-Modify-Merge paradigm [16] in software engineering is a way to enable
multi-synchronous collaboration model. It is mainly used in Version Control
Systems.

According to this paradigm, there is a shared repository that stores multi-
version shared object and each participant has private workspace (see fig-
ure 2.5).

1. First, each developer creates a workspace and copies a configuration of
2http://git-scm.com/
3http://www.selenic.com/mercurial/
4http://bazaar.canonical.com/
5http://www.dropbox.com

http://git-scm.com/
http://www.selenic.com/mercurial/
http://bazaar.canonical.com/
http://www.dropbox.com

20 CHAPTER 2. BACKGROUND

Figure 2.5: Copy-Modify-Merge paradigm (source [57])

files using a "checkout" command. A configuration corresponds to an
aggregate of files where, for each file, one version is selected. This corre-
sponds to the creation of a stream of activity in the multi-synchronous
collaboration model.

2. Then, each developer can make local changes to these files. This cor-
responds to parallel activities in multi-synchronous collaboration model.
As workspaces are isolated, divergence occurs between workspaces.

3. Next, developers publish their changes, by "committing" local changes.
Commit fails if the local copy is not up-to-date with the shared reposi-
tory i.e. concurrent changes have been committed to the repository. In
this case, developers need to update local copy and merge manually con-
flicts that can occur during this merge process. It clearly corresponds
to the synchronization stage of multi-synchronous collaboration model.
We must note that merge is performed locally. Once up-to-date, commit
will succeed.

Figure 2.6: Muti-synchronous collaboration in DVCS

With the raise of Distributed Version Control models [2] such as git, Mer-
curial, Bazaar, copy-modify-merge evolved to a new paradigm that we will call

2.1. MULTI-SYNCHRONOUS COLLABORATION MODEL 21

push-pull-clone. In this paradigm, a workspace can follow the changes pub-
lished in any other workspace. This "follow your change" relations between
two workspaces allow developers to create a social network oriented for multi-
synchronous editing (see figure 2.6). Users of DVCS interact thanks to three
main operations: clone/push/pull.

1. The clone operation allows users to create a local repository of an existing
repository. This corresponds to the creation of a stream of activity in
multi-synchronous collaboration model.

2. Developers can work isolated on their local repository. In this stage
divergence occurs between workspaces.

3. The push operation allows to make public the local modifications. Unlike
the commit operation in copy-modify-merge paradigm, the push opera-
tion always succeed. In pure DVCS, only the current workspace can
push, so no concurrent pushes can occur.

4. Finally the pull operation allows to integrate remote modifications. This
operation calls merge operators and generates conflicts. This corresponds
to the synchronization stage of multi-synchronous collaboration model.

Figure 2.7: Collaboration Scenario in DVCS

Concretely, when developers use a DVCS software they can work as in the
scenario depicted in figure 2.7. In this scenario, two developers bob and alice
working on two different sites.

0. bob initializes his private repository.

1. bob clones his private repository into a public one so he can publish his
local modifications on it.

2. bob modifies his private repository locally.

3. bob publishes his modification into his public repository.

4. alice wants to collaborate with bob on the same project. She clones bob
public repository into her own private repository.

5. alice modifies her private repository locally.

22 CHAPTER 2. BACKGROUND

6. alice creates a public repository by cloning her private repository to
publish her modifications.

7. alice communicates her public repository URL to bob (by email for ex-
ample).

8. alice pushes the modifications done on her private repository to her pub-
lic repository.

9. bob pulls the modifications done on the public repository of alice into his
private repository. This allows to maintain the two repositories synchro-
nized and reduces the divergence.

Copy-modify-merge and push-pull-clone have important differences:

1. Copy-modify-merge is centralized and supposes one copy of reference if
versioning is linear. Multiple reference copies are possible through the
notion of branches. Anyway, all branches are available in the shared
repository. Push-pull-clone is decentralized and multiple copies of refer-
ence are available.

2. In copy-modify-merge, all developers are known from the central repos-
itory i.e. the membership is established. In push-pull-clone, there is
no global knowledge about participants i.e. a developer just known his
neighbors. Membership is not required to enable multi-synchronous in-
teractions.

For this thesis, we focus on decentralized multi-synchronous collaboration
models i.e. collaboration where a central shared repository is not required.

2.1.2 Multi-Synchronous Collaboration Model and Dis-
tributed Systems

Multi-synchronous collaboration can be supported by optimistic replication
models [71]. An optimistic replication model considers multiple sites hosting
copies of shared objects. We can say that a site corresponds to a stream of
activity. Objects can be modified anytime, anywhere by applying an update
operation locally. According to the optimistic replication model:

1. Objects are modified on a site; in isolation; by generating local opera-
tions. This is the disconnection phase of the multi-synchronous collaboration.

2. Sites broadcast operations using different dissemination strategies: broad-
cast [29], anti-entropy [18], pairwise synchronization, or gossiping. We make
the hypothesis that broadcast operations are eventually delivered.

3. Finally, sites integrate remote operations with local ones. This is the
synchronization phase of the multi-synchronous collaboration; synchronization
phase can generate conflicts of integration of concurrent operations.

The correctness of distributed collaborative systems belongs to weak consis-
tency models. Some collaborative systems just ensure causal consistency [51]
such as version control systems, other ensure CCI consistency such as Opera-
tional Transformation (OT) based systems [81]. The CCI consistency model
is defined as:

2.1. MULTI-SYNCHRONOUS COLLABORATION MODEL 23

• Causality: This criterion ensures that all operations ordered by a prece-
dence relation, in the sense of the Lamport’s happened-before relation [51],
and they will be executed in same order on every site.

• Convergence: The system converges if all replicas are identical when
the system is idle (eventual consistency).

• Intention and Intention preservation: The intention of an operation
is the effects observed on the state when the operation was generated.
The effects of executing an operation at all sites are the same as the
intention of the operation.

Many algorithms that verify the CCI model have been developed and imple-
mented [62, 79, 85]. Recently, more efficient classes of algorithms called Com-
mutative Replicated Data Type (CRDT) have been developed [86]. Defining
consistency of multi-synchronous systems is fundamental to determine what
is the expected convergence state after divergence phases. Causal consistency
does not force workspaces equality after synchronization but causal histories
will be the same on all sites. Eventual consistency ensures workspace equality
but some operation effects can be lost. Intention preservation ensures more
properties on convergence state, but all intentions cannot be preserved.

Compared to software engineering models, neither copy-modify-merge nor
push-pull-clone define consistency. After merge, it is not required that all
workspaces are equal. Optimistic replication models can be centralized or de-
centralized depending on the underlying algorithms used for maintaining con-
sistency. In next section, we describe different scenarios of multi-synchronous
interactions in different domains. We illustrate how divergence occurs, how
conflicts are managed and which consistency is ensured.

2.1.3 Multi-Synchronous Collaboration Scenarios
Divergence, synchronization, conflicts and consistency are important concepts
of multi-synchronous collaboration model. To illustrate theses concepts, we
will present three different scenarios of multi-synchronous collaboration in dif-
ferent contexts: collaborative edition, file synchronization and software engi-
neering.

Multi-Synchronous Editing with GoogleDoc. Divergence can be easily
observed in current well known collaborative editing systems such as Google-
Doc. In the following scenario, we show how participants can generate diver-
gence in GoogleDoc. Imagine two persons p1 and p2 editing a shared Google-
Doc document. Each participant has a copy of the shared document. At the
beginning their copies are identical, they have the text: "Divergence allows
parallel stream of activities." The two copies are convergent, later, p1 decides
to work disconnected, while p2 continues to edit the document online. While
disconnected p1 inserts the text "Divergence awareness is important." at the
end of his copy of the shared document. At the same time p2 inserts the text
"Divergence metrics quantifies divergence" at the end of the document. p1 and
p2 edit concurrently the shared document. During this period, p1 and p2 will
not see the same text, divergence occurs, as shown in the figure 2.8. During

24 CHAPTER 2. BACKGROUND

p1 p2

Divergence allows parallel
stream of activities.

Divergence allows parallel
stream of activities.

Disconnect()

op1=Insert("Divergence awareness
is important.")

��

op2= Insert("Divergence metrics
quantifies divergence.")

��

Divergence allows parallel
stream of activities.
Divergence awareness

is important.

Divergence allows parallel
stream of activities.
Divergence metrics

quantifies divergence.

Reconnect()

Divergence allows parallel
stream of activities.
Divergence awareness

is important.
Divergence metrics

quantifies divergence.

Divergence allows parallel
stream of activities.
Divergence awareness

is important.
Divergence metrics

quantifies divergence.

Figure 2.8: Convergence/Divergence in GoogleDoc scenario with two partici-
pants

the disconnection of p1, his modifications will not be visible to p2 and vice-
versa. This means that the two copies do not have the same value, they are
divergent. Divergence can be seen as the editing distance between the copies
of p1 and p2.

When p1 reconnects, the two copies will be synchronized. In GoogleDoc
synchronization is done by using OT based algorithm [81, 56]. Transformation
functions will find a convergent state without conflict stage solving. OT algo-
rithm will also preserve CCI consistency. However, the convergent state might
not fit users’ expectations. In our scenario, modifications done by p1 and p2
will be integrated as shown in the figure 2.8. The two copies are convergent
and the activity of the group will progress.

The same scenario of collaboration can be generalized to a group of three
or more participants. Some members of the group can work connected and
others can work disconnected. Imagine three persons are sharing a Google-
Doc document. Each participant has a copy of the shared document. At the
beginning their copies are identical, they have the text: "Divergence allows
parallel streams of activities." as in the previous scenario. p1 decides to work
disconnected while p2 and p3 decide to continue to work connected. During
the disconnection of p1 his copy will diverge with respect to the copies of the
other group member. Whereas the copy of p2 and p3 still convergent. Modifi-
cations done by p2 are immediately propagated and integrated into the copy of
p3 and vice-versa as shown in the figure 2.9. The period of synchronization is
too small, divergence is negligible. The group can reach convergent state only
after the connection of p1. This scenario demonstrates how multi-synchronous
collaboration model can integrate synchronous and multi-synchronous interac-
tions smoothly.

2.1. MULTI-SYNCHRONOUS COLLABORATION MODEL 25

p1 p2 p3

Divergence allows parallel
stream of activities.

Divergence allows parallel
stream of activities.

Divergence allows parallel
stream of activities.

Disconnect()

op1=Insert("Divergence awareness
is important.")

�� ##

op2= Insert("Divergence metrics
quantify divergence.")

%%

��

op3= Insert(”Different metrics
are defined”)

yy

{{

Divergence allows parallel
stream of activities.
Divergence awareness

is important.

Divergence allows parallel
stream of activities.
Divergence metrics
quantify divergence.

Divergence allows parallel
stream of activities.
Different metrics

are defined

Divergence allows parallel
stream of activities.
Divergence metrics
quantify divergence.
Different metrics

are defined

Divergence allows parallel
stream of activities.
Divergence metrics
quantify divergence.
Different metrics

are defined

Reconnect()

Divergence allows parallel
stream of activities.
Divergence awareness

is important.
Divergence metrics
quantify divergence.
Different metrics

are defined

Divergence allows parallel
stream of activities.
Divergence awareness

is important.
Divergence metrics
quantify divergence.
Different metrics

are defined

Divergence allows parallel
stream of activities.
Divergence awareness

is important.
Divergence metrics
quantify divergence.
Different metrics

are defined

Figure 2.9: Synchronous and Multi-synchronous Collaboration in GoogleDoc

Multi-synchronous editing with Dropbox. Imagine two persons p1 and
p2 use Dropbox to edit a shared file called "1_1background.tex" (see fig-
ure 2.10). At the beginning the file contains the line: "Rules of Acquisition."
Each person has her own copy of the document.

1. At the beginning both copies are identical.

2. Next, p1 and p2 disconnect their workspaces and concurrent modifications
are realized in each workspace.

3. Later, workspaces are reconnected and synchronization takes place. Drop-
box will keep in "1_1background.tex" modifications of of p1 and moves
into "1_1background.tex (copy of p2) in conflict 2012-07-06.tex" concur-
rent modification of p2 as shown in the figure 2.11. Both workspaces are
converging to this state and users can perform manual merge later.

Compared to the previous scenario, we can observe that Dropbox synchro-
nizes files at the file system level and does not try to merge file content. It gen-
erates conflicts that can be very costly to manage. In comparison, GoogleDoc
manages documents at character level and don’t generate conflicts. Dropbox
ensures eventual consistency i.e. all workspace will always finish to converge
even if they contain many conflicts.

26 CHAPTER 2. BACKGROUND

p1 p2

1_1background.tex
Rules of Acquisition.

1_1background.tex
Rules of Acquisition.

Disconnect() Disconnect()

1_1background.tex
Rules of Acquisition.

More is good,

%%

1_1background.tex
Rules of Acquisition.

All is better.

yy

Reconnect() Reconnect()

1_1background.tex
Rules of Acquisition.

More is good,
1_1background (copy of p2)

Rules of Acquisition.
All is better.

1_1background.tex
Rules of Acquisition.

More is good.
1_1background (copy of p1)

Rules of Acquisition.
All is better.

Figure 2.10: Multi-Synchronous Collaboration in Dropbox

Multi-synchronous editing with Version Control Systems. The last
scenario [46] is in the domain of software engineering and Version Control
Systems (VCS). Imagine three software developers collaborating on the source
code of the same project using git orMercurial. Each developer has a workspace
and works on an individual copy of the source code files. Each developer re-
peatedly makes changes to her local copy of the files, share this changes with
the team, and incorporates changes from other team members.

Although at the beginning they divide their work according to predefined
tasks, their modifications will overlap later on during their isolated work since
their tasks involve some common classes. In step1 of the scenario presented
in figure 2.12, developer1 decides to remove the method isReal() from the
class Integer, for instance, in the file Integer.java. Concurrently, developer2
modifies her copy of the file Integer.java, she updates the method isReal()
from class Integer such that it returns false instead of real. developer3 tests
the class Integer by creating the test class IntegerTest. One of the added
methods in that class is the test method for isReal(). In step2, developer2
and developer3 receive the delete operation of developer1. The integration of
the delete operation with the local changes of developer2 and developer3 will
generate conflicts. The integrated file contains block of conflicts that indicate
the name and the location of conflicting operations. Consequently, developer2
and developer3 have to work to resolve the conflicts manually.

developer2 decides to (re)insert the method isReal(), and developer3 de-
cides to remove the test method since the isReal() has been deleted. In step3,
developer3 receives the operation of insertion from developer2. A block of con-
flict is generated now developer3 has to (re)write the test method for isReal().

Finally, there is a lot of conflict resolution and a lot of wasted work:
developer1 deleted the method isReal() which was reinserted by developer2.
His work was useless and produced side-effects for the tasks of other devel-
opers. developer2 modified the method isReal() but due to its removal by
developer1 he needed to re-perform his initial change. developer3 wrote the
test for method isReal() and was obliged to remove it. Then again he had to
re-write it again, he performed his work twice.

2.1. MULTI-SYNCHRONOUS COLLABORATION MODEL 27

Figure 2.11: Conflict Detection in Dropbox

This scenario demonstrates issues related to blind modifications. Working
without any knowledge about concurrent activities can lead to lost work and
complex conflict resolution.

2.1.4 Multi-Synchronous Collaboration Model Issues
Multi-synchronous collaborative systems aim to reduce task completion time
with parallelization. However, if conflicts are difficult to resolve, then the
expected benefits of tasks’ parallelization can be lost.

Several approaches exist to limit divergence and reduce conflicts in multi-
synchronous collaboration system:

developer1 developer2 developer3

delete isReal() update isReal() create TestIsReal()

** ,,
step1

create isReal()

))vv

delete TestIsReal()
step2

create TestIsReal()
step3

Figure 2.12: Three developers collaboration scenario

28 CHAPTER 2. BACKGROUND

• Planning and coordination can be used to avoid conflicts [20, 28]. By
good planning, one can create different parallel tasks that will modify
disjoint and independent objects. But fine grained planning can be very
costly, and it is not always possible to define disjoint tasks. Further-
more, in the open source development communities, people often col-
laborate without knowing each other. The development environment is
open for any contributor and it is not possible to plan and coordinate in
advance. Commit often policy is a best practice for reducing the proba-
bility of conflicts [88]. Commit often is not always possible because users
commit their modifications after they complete the requested tasks, this
means that commit depends on the task completion time. Even if plan-
ing and commit policies are good practices, conflicts still exist as detailed
in [89, 15]. Zimmermann [89] analyzed CVS repositories, and concluded
that, 23% to 47% of all merges had textual conflicts. A textual conflict
arises when two developers make concurrent changes to the same part
of the source code. For instance, in the scenario 2.12, there is a textual
conflict between the developer1 and developer2. Brun et al. [15] found
that conflicts between developers’ copies are rather the norm, they per-
sist on average ten days and they often result in compile, build and test
failures.

• Divergence awareness [58] can be used with planning and coordination.
Awareness allows participants to establish a mutual understanding to
perform joints actions. The hypothesis of divergence awareness is that
if participants are aware about divergence in the group, they can avoid
complex conflicts solving situation. Divergence awareness helps to pre-
vent blind modifications that can lead to complex conflicts solving and
useless work. Divergence awareness measures divergence and visualize
it in order to help users answering the following questions: is there any
divergence? With whom? Where? And how much?

In this thesis, we focus on divergence awareness for decentralized multi-
synchronous collaborative systems.

2.2 Divergence Awareness
According to Alan Dix [22, 21] a cooperative work involves: participants and
artifacts. Participants are the individuals that are working, and artifacts are
the objects on which the participants work. Participants can perform direct
communication between each other and they can control artifacts and get feed-
back from these artifacts. They can also communicate indirectly through the
artifacts, as shown in figure 2.13. The communication and understanding con-
cepts are linked to each other. It is necessary to communicate when performing
an action using a groupware to manage task execution. It is essential too for
each participant to be aware of others’ actions, running or completed tasks, in
order to coordinate her actions and tasks in accordance to the other partici-
pants of this groupware. Direct and indirect communication help participants
to establish a mutual understanding. This allows participants to perform joint
actions and to progress the group activity. This mutual understanding is called

2.2. DIVERGENCE AWARENESS 29

(a) Communication and control (b) Feedback and feedthrough

Figure 2.13: Alan Dix’s Collaboration model (source [21])

Figure 2.14: Awareness according to Dix (source [22])

awareness. According to Dix [22], awareness as shown in figure 2.14, tries to
inform the participant about who else is there? What has happened to an
artifact? And how did it happen? Dourish [24] proposed another definition
for awareness. Awareness is an understanding of the activities of others, which
provides a context for your own activity. Using the context allows to ensure
that individual actions are compatible with the collaboration goals.

Providing awareness about individual and group activities is essential for
successful collaboration. Awareness is commonly supported in CSCW systems
by gathering information explicitly generated and separated from the shared
object or passively collected and presented in the shared collaborative space
as the object of collaboration.

2.2.1 Awareness in CSCW
Awareness plays a number of key roles:

1. First, high-level awareness of the character of others’ actions allows par-
ticipants to structure their activities and avoid duplication of work.

2. Second, lower-level awareness of the content of others’ actions allows
fine-grained shared working and synergistic group behavior which needs
to be supported by collaborative applications.

30 CHAPTER 2. BACKGROUND

Figure 2.15: GTextField from the MAUI toolkit

Figure 2.16: Telepointers, participant list, and chat tool from the MAUI toolkit

Awareness can be delivered to participants using special widgets like the
ones proposed by Hill et al. [44] in the MAUI toolkit. MAUI shows people’s ac-
tivities as they manipulate the application interface. This is what Dix [22, 21]
called feedthrough-feedback to the single user that also helps others under-
stand the activity. For example, watching another person navigate through
the items in a menu gives valuable clues about what they intend to do next.
In figure 2.15, we have an example of a textfield for group where the text is
shared, but selections in that text are multi-user, and are shown as colored
transparent overlays. This means that the text has a single state for all mem-
bers of the group, and modification by any person changes the state of the
text for everyone. However, each person can select different parts of the text.
MAUI provides also telepointers, participant lists, and a chat tool. These
components show a variety of awareness information including who is in the
session, where they are working, and how active they are. Participants’ names
can be added to the pointer representation. In figure 2.16, telepointers gives
the users two sources of information about others’ activities and intentions in
the interface: the feedthrough information provided by the widgets, and the
embodiment information provided by the telepointer. In addition, MAUI pro-
vides participant list, a simple component that shows the names and colors of
all connected users. It also provides communication support. Finally, the chat
tool allows messages to be directed to specific participants or broadcast to all.

Different kinds of awareness are supported by CSCW systems such as
workspace awareness [24], change awareness [82], and Divergence awareness [58].

2.2. DIVERGENCE AWARENESS 31

Figure 2.17: Workspace awareness as Radar View

Figure 2.18: Change awareness

Workspace awareness [40]: is awareness about people and how they inter-
act with shared workspace. It was originally designed for real-time groupware,
it delivers information about "who, what and where". Who is currently present
in the shared workspace? What are they currently doing? Where are they cur-
rently working or looking? Awareness is delivered to participants through spec-
ified widgets such as radar views, telepointers and multi-user scrollbars [32].
An example of workspace awareness delivered through radar views is shown
in the figure 2.17. Radar views, as defined by [40], are secondary windows
used with a detailed view of the shared workspace; they show miniatures of
the artifacts in a shared workspace, and can also be used to show awareness
information about the participants in the session. Figure 2.17 presents three
versions of the GroupKit radar views, the first one shows the object movement
only; the second one adds location information by showing each person’s main
view as a shaded rectangle; the last one adds photographs for participant iden-
tification. As we can see, these radar views allow to answer questions about:
Who? What? Where?

Change awareness [82]: is related to workspace awareness for past inter-
actions. It provides information about past events in the workspace. It allows
to answer the question: is anything different since the last time I looked at the
work? The online collaborative editors; such as wikis; provide change aware-

32 CHAPTER 2. BACKGROUND

ness, this awareness is presented as a wiki page. For each wiki page, there is
a corresponding page that maintains the history of the modifications of the
page. Figure 2.18 shows an example of the recent changes to a wiki page in
Wikipedia, this page shows change awareness. The wiki system monitors user
edition and records the date of the modifications, the modification and the
responsible of this modification in a special page.

Divergence awareness [58]: is designed for multi-synchronous collabora-
tive systems. If the system is idle; at every site, there is no local operations
to publish nor remote ones to integrate at every site; divergence is null in the
system. Otherwise, divergence can be quantified using ad-hoc metrics based
on the number of operations produced, disseminated or integrated in the sys-
tem. Divergence awareness allows to answer the questions [58]: is there any
divergence? With whom I diverge? Where is the divergence is located? And
how much?.

We distinguish two kinds of divergence awareness: divergence awareness
for the past and real-time divergence awareness:

1. Divergence awareness for the past checks objects states and consistency
after the synchronization and integration phase. Divergence metrics are
computed for past interactions. This awareness can be seen as a kind of
change awareness for multi-synchronous collaboration.

2. Real-time divergence awareness informs participants about modifications
in progress on other sites and consequently participants are fully aware
about conflicts risks. This awareness prevents complex conflicts and
preserves the natural benefits of multi-synchronous collaboration. Di-
vergence metrics are computed for real-time interactions, they alert the
participants of potential conflicts. Only this awareness prevents blind
modifications [46]. This awareness can bee seen as a kind of workspace
awareness for multi-synchronous collaboration. In workspace awareness
divergence is nearly invisible, however, in multi-synchronous collabora-
tion, divergence is explicit, participants work isolated on their copies and
synchronize from time to time.

Computing divergence metrics after synchronizations relies on data that
can be accessed locally. While computing divergence metrics before synchro-
nization is more challenging and requires a distributed computation with all
related distributed problems such as scalability, availability and privacy preser-
vation.

In the following section, we detail some existing divergence awareness sys-
tems.

2.2.2 Divergence Awareness Systems
Divergence occurs when there are more than one copy of a shared document
and participants can modify their copies in parallel. Existing divergence aware-
ness systems are characterized by their basic multi-synchronous collaboration
model, divergence metrics, when, and how they are computed.

2.2. DIVERGENCE AWARENESS 33

Figure 2.19: Edit profile (source [63])

Edit Profile [63] is a multi-synchronous collaborative editor extended with
awareness about activity of users. Edit profile makes users aware of "hot
areas" and also who is or has been active in various parts of the document as
shown in the figure 2.19. The different contributions of users are quantified
and distributed at different levels: document, paragraph, sentence, word, and
character. The participant has the possibility to choose at which level she needs
to be aware of the changes on a document. So the metrics are calculated based
on the participant choice of details. The participant also has the possibility
to choose which type of operations she is interested in. For example; insert or
delete operations. The system assigns a different color for each participant to
distinguish his/her contribution from the others. It is possible to observe who
contributed where, and how much. Edit Profile metrics can be customized
according to the document structure to deliver more readable awareness.

Even, if Edit Profile quantifies and displays contributions of different users,
it does not quantify divergence i.e. it does not quantify concurrent operations.
Edit Profile is more related to change awareness than divergence awareness.

Concurrency awareness [3] is designed for a peer-to-peer network of syn-
chronized wikis. A peer-to-peer network of wikis follows the optimistic repli-
cation model described in section 2.1.2 and consequently, behaves as multi-
synchronous collaborative editor. In such network, a wiki page can be edited
anywhere, anytime on any wiki server. In case of concurrent changes, auto-
matic merge is performed when operations are received on each site. Conse-
quently, a wiki page can be the result of an automatic merge with no human
reviews. Concurrency awareness aims to make users aware about wiki pages
that have been merged automatically and to locate the effects of the merge on
the page. Concurrency awareness relies on plausible clocks [83] to detect con-
currency a posteriori. This helps users to quickly find where automatic merges
have been performed. Figure 2.20 shows an example of concurrency awareness
in Wooki [85], a peer-to-peer wiki system. In this example, we see the wiki
server Wooki2, in this server, a server-produced wiki page is requested by a
user, an awareness visualization mechanism delivers awareness information to

34 CHAPTER 2. BACKGROUND

Figure 2.20: Concurrency Awareness (source [3])

the user by highlighting the effects of the concurrent part of the history in
the page it returns. In the above example, the red square indicates that an
automatic merge holds on this page i.e. this page has been merged and no
human user reviewed it. The line 3 of the initial page has been updated. So
line 3 appears two times: the first occurrence corresponds to the old value and
appears overridden with a thin line, while the second occurrence correspond-
ing to the new value appears with a colored background. Two other lines have
been inserted, these lines appear also with a colored background. The last
line is deleted so it is overridden with a thin line. The other lines: lines 1
and 2 appear normally since they are not impacted by the concurrent history
at this stage. Concurrency awareness primary objective is not to avoid blind
modifications but to alert people where concurrency occurred. Concurrency
awareness metrics are calculated on already integrated operations, therefore,
it is a divergence awareness of the past.

Figure 2.21: Crystal setting for DVCS (source [15])

2.2. DIVERGENCE AWARENESS 35

Figure 2.22: Crystal widget for divergence awareness (source [15])

Crystal [15] is a set of metrics built on top of a version control system. It
aims to give advice about pending conflicts while remaining largely unobtru-
sive. It can be used in the context of both centralized and distributed version
control systems. For distributed version control systems, it considers a single
master repository and local developers’ repositories as shown in figure 2.21. In
this example, there is a single master repository and four developers: George,
Paul, Ringo, and John. At the beginning, each developer makes a local repos-
itory by cloning the master. Each local repository contains a complete and
independent history of the master repository at the time it was cloned. In
addition, each local repository has a working copy in which code is edited.
Different commands enable developers to publish their local changes to the
master, or to consume other published changes. Crystal provides a developer
with information on his development state and the relationships between his
repository and collaborators’ repositories. It shows the developer if he’s in
advance over the other’s i.e. her changes are integrated in the master or if he
is behind i.e. changes have been made to the shared project and he did not
consume them yet. It also alerts the developer of the potential conflicts in
case he consumes the remote operations (see figure 2.22). Figure 2.22 shows
the Crystal view of George. George is involved in two development projects:
"Let it be" and "Handle with care". The first project has four collaborators:
George, Paul, Ringo and John; the second one has five collaborators: George,
Jeff, Roy, Bob and Tom. The figure shows George’s local state and his rela-
tionships with the master repository and the other collaborators, as well as
guidance based on that information. The color of each relationship icon rep-
resents the type of relationship. For instance, the green arrow informs the
developer that his changes can be published without conflict to the master
repository. The red merge symbol indicates to the developer that publishing
his changes will generate conflicts. Crystal needs access to that developer’s
repository and the locations of the all other collaborators’ repositories. Actu-
ally Crystal creates a dedicated repository for awareness computation and it
integrates all the collaborators’ modifications into it. Although Crystal results
can be applied in distributed version control system, divergence awareness in

36 CHAPTER 2. BACKGROUND

Crystal is computed with respect to a reference copy i.e. the master copy.
Crystal provides divergence awareness: it helps to locate where divergence

is located and with who. However, divergence is not really quantified, it is
impossible to measure the total amount of divergence in the system. Crystal
track divergence by checking the state of all workspaces according to a master
copy. If multiple reference copy are required, it will be assimilated to different
projects and can produce confusions for users.

Figure 2.23: State Treemap (source [57])

State Treemap [57] is a divergence awareness widget for the copy-modify-
merge paradigm (see section 2.1.1). It informs participants about states of
shared documents in their workspace according to a shared repository. Devel-
opers start by copying files from the shared repository, they make local changes
to these files and then they commit their changes to the shared repository if
they are up-to-date. They have to synchronize local workspace with last ver-
sion of the shared repository otherwise. State Treemap define different states
for each document in the local workspace:

• Locally Modified enables the participant to know that her own copy was
modified where the others are not.

• Remotely Modified makes the participant aware of the changes that occur
in the remote workspaces.

• Need Update means that a new version of the document is available.

• Potential Conflict means that more than one participant are updating
the same document.

When a document is modified by a participant, it will be marked as Local-
lyModified in her own workspace, where in the others participants’ workspaces
it will be marked as RemotelyModified. Divergence awareness is delivered as
a treemap where each rectangle is colored with the state of the shared object
(see figure 2.23). For instance, if the whole treemap is white, this means that
there is no divergence in the system. If some parts are colored, then users
know who changed the file i.e. owner "foo" in figure 2.23. The treemap itself
helps users to know where divergence is located. The number of rectangles of
different colors can be seen as a quantification of divergence in the system. In

2.2. DIVERGENCE AWARENESS 37

State Treemap, different users do not see the same treemap (see figure 2.23).
The quantification of divergence as the number of rectangle of different colors
will be different. The quantity of divergence in the global system depends on
the workspace of the user.

Although State Treemap clearly belongs to divergence awareness; it helps
users to locate divergence and with whom. Quantification of divergence is
not the primary objective of State Treemap. There is no clear definition that
help to compute the total amount of divergence in the system. Uncommitted
changes are handled through the "remotely modified" state. However, if local
workspace is not up-to-date, the "need update" state will mask the "remotely
modified" state. As Crystal, State Treemap relies on a reference copy and
gives no guidelines on how to evaluate divergence in a decentralized multi-
synchronous system.

Figure 2.24: Operational Transformation divergence awareness (source [58])

OT Divergence Awareness [58] aims to quantify divergence in multi-
synchronous collaborative editor based on operational transformation [81] . For
convenience, we will call it OT divergence awareness. This approach follows the
optimistic replication approach with one exception: local operations are sent
on demand but representatives of local operations are sent immediately in real-
time. When these fake operations are received, an operational transformation
algorithm that simulates the integration computes conflict objects. The size of
all conflict objects determines the quantity of divergence on each site. Next,
this quantification can projected on objects as shown in figure 2.24. Users can
know the total amount of divergence in the system and where it is located.

Unlike Crystal or State Treemap, OT divergence awareness is not defined
according to a reference copy. However, one important issue with operational
transformation approach is that it should guarantee that all sites will compute
the same conflict objects and next will give the same size on each site. It
requires to develop quite complex transformation functions and prove conver-
gence properties on them. In addition, a system can be divergent even with
no conflicts. In this case, a conflict based metric will not capture it.

38 CHAPTER 2. BACKGROUND

(a) developer1 interface after integrating ghost
operation of developer2

(b) developer2 interface after integrating
ghost operation of developer1

Figure 2.25: Ghost operations Divergence awareness (source [46])

Ghost operations [46] authors introduced ghost operations to deliver real-
time divergence awareness following a version control system approach in
Eclipse IDE. Ghost operations represent real unpublished operations, some
parameters of operations can be blurred according to user’s preferences to bet-
ter preserve privacy. To illustrate this divergence awareness, we will use the
scenario given in figure 2.12, where three software developers collaborate on the
same source code of a project. developer1 and developer2 decide to send ghost
operations describing their activity while working in isolation and developer3
decides to apply a strong privacy policy and does not send any ghost opera-
tions on his activity. developer1 sends the full content of his modifications as
ghost operations. developer2 decides to apply the privacy policy that hides
the content of his changes but shares their location. Figure 2.25a shows the
divergence awareness at the site of developer1 after receiving the ghost oper-
ation of developer2. The ghost operation of developer2 contains information
about the target file, and the position of the modification. Therefore, the class
Integer is tagged as concurrently modified and the position of the modified
line is computed by using the line number indicated by the ghost operation.
Figure 2.25b shows the divergence awareness at the site of developer2 after
receiving the ghost operation of developer1. developer2 is notified that the
method isReal() is deleted. The lines composing this method are annotated.
Knowing that the method isReal() had been deleted by the developer1 will
prevent developer2 to do useless work.

Ghost operations aims to prevent blind modifications while preserving pri-
vacy. It can locate divergence and with whom. Ghost operations have been
designed for quantifying divergence. As OT divergence awareness, Ghost op-
erations are not dependent on a copy of reference.

Palantir [73] is a divergence awareness tool for version control system that
provides software developers with insight into others’ workspaces. It is de-
signed for configuration management systems such as CVS. It enhances aware-
ness by continuously sharing information regarding operations performed by
all developers. The tool specifically informs a developer about who changes

2.2. DIVERGENCE AWARENESS 39

Figure 2.26: Palantir divergence awareness (source [73])

Event Meaning
Populated Artifact has been placed in a workspace
Synchronized Artifact has been synchronized with reposi-

tory
ChangesInProgress Artifact has changed in the workspace
ChangesReverted Artifact has been returned to it’s original

state
ChangesCommitted New version of artifact has been stored in the

repository
SeverityChanged Amount of changes to an artifact

Table 2.1: Palantir divergence awareness states

which artifacts (see figure 2.26), focusing on the concept of conflicts. Conflicts
can be direct i.e. concurrent changes on the same artifact or indirect through
dependencies between files. Furthermore, Palantir provides a measure of the
severity of those changes and graphically displays the information in a con-
figurable manner. Severity of changes are based on ratio of lines changed,
added or deleted according to total number of lines. Palantir is built on top
of an event system, where some events are representing operations performed
by users in their respective workspaces.

changesInProgress= {
artifactID= [cvsroot/Store/src/
store/Payment.java:1.2::00-0D-56-F6-
10-7C:Ellen:003987::cvsroot/ .../store

diffXML= [XML...]
max_sev= 500
actual_sev= 15 }

40 CHAPTER 2. BACKGROUND

The above event represents an unpublished operation, with severity set
at 15, artifactID contains causality information representing version number
in CVS (1.2). Different projections according to various meta-data can be
performed locally such as conflict interpretation and impact analysis. Palantir
does not really define a distance, it tries to estimate the size of direct or indirect
conflict as in operational transformation divergence awareness [58]. Table 2.1
summarizes the awareness states defined in Palantir proposal.

Palantir can locate divergence and with whom. It is quite similar to State
Treemap and Crystal approaches with its dependency to copy-modify-merge
paradigm. It also tries to quantify divergence through measuring the conflicts
as in OT divergence awareness. However, divergence should be quantified
without conflicts and Palantir will not capture this case.

Figure 2.27: FASTDash visualization tool (source [12])

FASTDash [12] is a visualization tool that seeks to improve team activity
awareness using spatial representation of the shared code base that highlights
team members’ current activity. Figure 2.27 visualizes a project runtime en-
vironment. It shows the active file and source code of the project and the
two active programmers. As we can see, FASTDash provides many aware-
ness information, for instance, it can answer the questions: Who is opening
the file? Who is editing the file? Did the file has been modified after it has
been checked? FASTDash is designed for project teams of 3-8 collaborating
programmers and can enable obtainment of contextual awareness information
such as which code files are changing, who is changing them and how they are
being used.

FASTDash raises possible divergence between the different copies of the
source code file, it does not quantify this divergence and in addition the aware-
ness mechanism does not scale for large-scale decentralized systems.

2.3. SYNTHESIS 41

2.3 Synthesis

Multi-synchronous collaborative systems are able to support complex interac-
tions. They can reduce tasks completion time if conflicts or wasted work are
managed. Planning and coordination can be completed with divergence aware-
ness systems to avoid blind modification and complex conflict solving. Many
divergence awareness for multi-synchronous systems have been proposed and
implemented. They rely on different models, some relies on optimistic replica-
tion models and other rely on paradigms such as copy-modify-merge or push-
pull-clone. Some require a copy of reference, others do not. This illustrates the
lack of a clear abstract, formal, multi-synchronous model where it is possible
to reason about divergence. The next issue concerns the lack of clear definition
of divergence itself. If many systems are able to locate divergence and give
some informations about who is involved, they poorly answer the "how much?"
question. Is it the size of conflicts in the system? The sum of all editing dis-
tance between all workspaces and a reference copy? What if there is many
reference copy as in decentralized multi-synchronous collaborative systems?

We address the issues related to define a model for writing divergence
metrics in Chapter 3. We define a common ontology for multi-synchronous
collaborative system, called SCHO. Then we rewrite all existing divergence
awareness metrics as semantic queries over this ontology. Divergence aware-
ness metrics are not embedded in the system, they are defined declaratively
as queries on this ontology. Consequently, divergence metrics are no more
dependent of application models.

Divergence awareness computation requires to know a priori unpublished
operations on all the sites participating in the collaborative activities. This
means that we need to run distributed queries on all those sites. The discov-
ery of all sites involved in collaboration is an issue in decentralized multi-
synchronous collaboration models. This membership issue is addressed in
Chapter 4, where we propose the extension of SCHO ontology to take in con-
sideration membership by linking the different "rdf files" generated on each
site and adding new inference rules. Each site publishes its network informa-
tion to its collaborators (or neighbors). Then we can run a distributed query
using the Link Traversal Query Based Execution. The advantage of this ap-
proach that it does not require a beforehand knowledge of the sites that it
will seek for getting the data to evaluate the query result, which is compatible
with the multi-synchronous collaboration model. Unfortunately, after experi-
menting with the Link Traversal Query Based Execution approach we found
that it does not scale for a large distributed collaborative system. We need
to find an alternative to compute divergence awareness efficiently. In order to
achieve this, firstly, we need to formally define what is divergence awareness
for a group of collaborators. Secondly, we need an efficient algorithm to com-
pute the group divergence awareness metrics. Divergence awareness has not
been formalized before, all existing proposals are ad-hoc implementations for
certain collaboration software. Existing divergence metrics rely on different
interpretation of editing distance between copies in the system, counting num-
bers of unpublished operations, concurrent operations, concurrent conflicting
operations, etc. They do not formally define what they calculate which make
them incomparable and we can not infer the properties that they guarantee.

42 CHAPTER 2. BACKGROUND

Computing divergence awareness in real-time is very challenging, it requires to
query remote states of all participants and next aggregates information to com-
pute a global metric. This raises severe problems of performances, reliability
and dynamism of participants. The definition of a formal model and efficient
computation algorithms are addressed in Chapter 5. In this chapter, we pro-
pose a formal model GroupDiv to define formally divergence awareness. Then
we propose efficient algorithms to calculate the group divergence awareness.

3
SCHO: Shared Causal History
Ontology

Contents
3.1 Introduction . 43
3.2 Semantic Web and Ontologies 44
3.3 SCHO: Shared Causal History Ontology 48

3.3.1 Unified Shared Causal History Model 49
3.3.2 Unified Shared Causal History Algorithms 51

3.4 Divergence Awareness in SCHO 53
3.4.1 State Treemap Divergence Awareness Using SCHO . 54
3.4.2 Palantir Divergence Awareness Using SCHO 56
3.4.3 Concurrency Awareness Using SCHO 57
3.4.4 Validation . 59

3.5 Local Social Network and Trust in SCHO 62
3.5.1 From Causal History to Social Relations 64
3.5.2 Validation . 66

3.6 Summary and Discussion 67

3.1 Introduction
Many previous work have addressed the measurement and the visualization
of divergence in multi-synchronous collaborative systems. Divergence aware-
ness is provided in different systems with ad-hoc visualizations, such as State
Treemap [57], Palantir [72], Edit Profile [63], and Wooki [3].

Existing systems define their own divergence metrics without a common
formal definition. Metrics are coupled with the application and cannot be

43

44 CHAPTER 3. SCHO: SHARED CAUSAL HISTORY ONTOLOGY

htb]

Figure 3.1: The Semantic Web stack

used outside their original scope. There is no previous work that tried to build
a unified formal model for divergence awareness. A unified model for com-
puting divergence opens the opportunity to build a middleware for distributed
collaborative systems.

Multi-synchronous collaborative systems rely on an optimistic replication
model [67]. The optimistic replication model is based on history sharing which
is application independent. We propose to conceptualize and formalize the
sharing of causal history in multi-synchronous collaborative systems. This
allows to compute divergence metrics in a declarative way independently of
the application.

In this work, we use semantic web technologies to define an ontology for
constructing and sharing the causal history in a distributed collaborative sys-
tem. Then, we define the existing divergence metrics in a declarative way as
semantic queries over this ontology. Finally, we validate our work using real
data extracted from software engineering development projects.

3.2 Semantic Web and Ontologies
The Semantic Web [10, 75] is an effort to extend the current web so that
the presented information can be better processed by machines and software
agents which, subsequently, will allow improvements of current functionalities
provided on the web. The underlying idea of the Semantic Web is to rep-
resent knowledge on the web in a machine-processable form which explicitly
captures the meaning of the presented information. To achieve that, the exist-
ing information sources such as web pages, images or videos are extended with
explicit statements which specify the meaning of the presented information.
Such statements need to be expressed in some formal language suitable for
knowledge representation.

3.2. SEMANTIC WEB AND ONTOLOGIES 45

Figure 3.2: RDF graph representation

As part of the Semantic Web effort several languages for annotating in-
formation on the web have been developed. Among these languages, the Re-
source Description Framework (RDF) [53], the RDF Schema (RDFS) [13] and
the Web Ontology Language (OWL) [35] have a prominent role. All these
three languages are part of a stack of W3C recommendations, shown in fig-
ure 3.1. Building on shared common principles, such as identifying resources
and objects by Unified Resource Identifiers (URIs), or supporting an XML
serialization. Such principles allows an easy integration with other existing
W3C web standards.

The Resource Description Framework describes resources by introducing
statements called triples, where each statement has a form of a simple triple
consisting of a subject, a predicate and an object, as shown in listing 3.1.
By using triples it is possible to describe resources in terms of properties and
property values. A set of triples can be represented as a graph with nodes
and arcs representing resources and their properties with values, as shown in
figure 3.2.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix example: <http://url.com/firends#> .

example:Jimmy rdf:type example:Person .
example:Jimmy example:name "Jimmy␣Wales" .
example:Jimmy example:mbox <mailto:jwales@bomis.com> .

Listing 3.1: RDF n3 representation

<?xml version="1.0"?>
<rdf:RDF xmlns:example="http://url.com/firends#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<example:Person rdf:about="http://url.com/firends#Jimmy">
<example:name>Jimmy Wales</example:name>
<example:mbox rdf:resource="mailto:jwales@bomis.com" />
</example:Person>
</rdf:RDF>

Listing 3.2: RDF/XML representation

RDF defines both a graph-based data model based on subject, predicate,
and object triples, and the RDF/XML format through which an RDF graph
of one or more triples can be serialized as an XML document, as shown in
listing 3.2. The subject of any RDF triple must be a URI or a ’blank node’,
the predicate must be a URI, and the object can be either a URI, a Literal or
a blank node.

46 CHAPTER 3. SCHO: SHARED CAUSAL HISTORY ONTOLOGY

Publishing data in RDF conveys a number of benefits: data is machine-
readable, easily integrated for querying or other forms of processing, and easily
linked across disparate sources. Traditional data formats such as Comma Sep-
arated Values (CSV), XML and even HTML can all be described as machine-
readable, as data can be represented in these formats and parsed reliably by
software applications. However, data represented in RDF is machine-readable
in a different way. Not only it is machine-readable at a syntactic level (i.e. it
can be parsed reliably) but also at a semantic level, in that the meaning of
RDF data is made explicit. The meaning of data described in RDF is indicated
by the use of classes and properties (relations) taken from shared ontologies
available on the Web and identified by a URI.

The RDF Schema extends RDF with mechanisms for specification of RDF
vocabularies. RDF Schema defines classes and properties that may be used
to describe classes, properties and other resources. Specifically, classes and
properties might be defined in terms of a subclass relation between classes, a
sub-property relation between properties, and domain and range constraints
for properties. RDFS presents a very basic language for terminology specifi-
cation. An example is shown in listing 3.3.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix example: <http://myurl.com/firends#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

example:person rdf:type rdfs:Class .
example:man rdf:type rdfs:Class .
example:man rdfs:subClassOf example:person .
example:woman rdf:type rdfs:Class .
example:woman rdfs:subClassOf example:person .
example:mother rdf:type rdfs:Property .
example:mother rdfs:domain example:person .
example:mother rdfs:range example:woman .
example:father rdf:type rdfs:Property .
example:father rdfs:domain example:person .
example:father rdfs:range example:man .

Listing 3.3: RDFS example

RDF triplets are usually stored in special databases called triplestores,
such as (Apache Jena 1, Sesame 2, and Virtuoso 3). To retrieve and manipu-
late data stored in a triplestore a W3C recommendation was adopted in 2008
called SPARQL 4. SPARQL allows for a query to consist of triple patterns,
conjunctions, disjunctions, and optional patterns. For example the query in
listing 3.4, searches for all the subjects of type Person, and return their names
and emails.

1jena.apache.org
2www.openrdf.org
3virtuoso.openlinksw.com
4www.w3.org/TR/rdf-sparql-query/

jena.apache.org
www.openrdf.org
virtuoso.openlinksw.com
www.w3.org/TR/rdf-sparql-query/

3.2. SEMANTIC WEB AND ONTOLOGIES 47

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?email
WHERE {
?person rdf:type foaf:Person.
?person foaf:name ?name.
?person foaf:mbox ?email.

}

Listing 3.4: SPARQL query example

The Web Ontology Language (OWL) provides much stronger mechanisms
for terminology definitions along with a formal semantics. In addition to classes
and properties definitions supported in RDFS, OWL introduces constructs for
definition of complex class descriptions based on logical operations such as
intersection, union and negation. OWL also supports additional properties
characteristics such as cardinality restrictions, value constraints, and so on.
OWL defines three increasingly-expressive sub-languages: OWL-Lite, OWL-
DL, and OWL-Full. OWL-Lite and OWL-DL impose constraints on the lan-
guage constructs which allows to guarantee a computational completeness and
decidability and also allows the underlying language semantics to be directly
based on Description Logics [8]. On the other hand, while OWL-Full is the
most expressive sub-language, reasoners are not guaranteed to be complete for
OWL-Full.

The majority of Semantic Web languages have their roots in research of
ontologies. An ontology can be defined as a formal specification of conceptu-
alization [36] or, more precisely, an ontology is a formal explicit specification
of terms in the domain of interest and relations among them [61]. Another
definition of ontology is proposed by Guarino et al. [37] as: a logical theory
which gives an explicit, partial account of a conceptualization. They insist on
the fact that an ontology can not be considered as representation of the reality,
in the sense where this reality might be perceived differently depending on the
point of view, the culture, etc. All the definitions of ontology introduce the no-
tion conceptualization. Guarino et al. [37] define a conceptualization as: an
intensional semantic structure which encodes the implicit rules constraining
the structure of a piece of reality. In another definition a conceptualiza-
tion [38] is considered as an abstract and a simplified view of the world that
we want to represent to achieve a certain goal. An ontology is not a knowledge
base [43], it defines the vocabulary and the formal specification that permits
the construction of a knowledge base.

Ontologies serve for knowledge representation purposes where terms are
typically called concepts or classes, while relations are usually referred to as
roles or properties. Concepts with relations between them constitute the do-
main terminology (often referred to as an intensional knowledge), while in-
stances of introduced concepts describe specific individuals in the domain of
interest (often referred to as an extensional knowledge). As stated in [61],
ontologies allow to:

• share common understanding among people or software agents,

• reuse domain knowledge,

• make domain assumptions explicit,

48 CHAPTER 3. SCHO: SHARED CAUSAL HISTORY ONTOLOGY

• separate domain knowledge from the operational knowledge, and

• reason about concepts.

There are many languages for defining ontologies with the above men-
tioned Semantic Web languages presenting the most recent ones. For exam-
ple, the OWL language has evolved from the DARPA Agent Markup Language
(DAML 5) and the Ontology Interference Layer (OIL). The Knowledge Inter-
change Format (KIF 6) is another knowledge representation language which
was primarily developed for the interchange of knowledge among disparate
computer systems. From the formal point of view, the formal semantics of
these ontology languages usually relies on some logic formalism such as First-
Order Logic, Frame Logic [50], or Description Logic [36].

3.3 SCHO: Shared Causal History Ontology
Divergence occurs when there are more than one copy of a shared document.
Optimistic replication model [71] considers (N) sites sharing copies of shared
document. A document is modified by executing an operation on it. Any
operation has the following life cycle:

1. Generated on one site and executed locally immediately,

2. broadcasted to the other sites,

3. received by other sites and re-executed.

The causality property is essential in a collaborative system to avoid users’
confusion [81]. Causality ensures that all operations are ordered by a prece-
dence relation in the sense of the Lamport’s happened-before relation [51].
Therefore they will be executed in same order on every site. Broadcasting
operations is not fully determined in the general optimistic replication frame-
work. But it is assumed that all operations should be eventually delivered to
all sites. The causality and broadcasting are application independent.

We observed that divergence metrics on a document can be computed re-
lying on the state of its operations according to the operation life cycle in the
optimistic replication model. Our approach is to define an ontology to formal-
ize concepts and relations that allow to build and to share causal histories.
This ontology allows the formal definition of existing divergence metrics and
to calculate them as semantic queries.

The broadcast is represented using the general approach of publish/sub-
scribe that can be used by any distributed collaborative system [67]. The
model is not application dependent. Consequently, we have to determine the
underlying concepts required to exchange patches i.e. set of operations. The
publish/subscribe model works as follows:

• When a document is modified on a site, patches are generated. A patch
is a set of operations related to one document.

5http://www.daml.org/
6http://logic.stanford.edu/kif/dpans.html

http://www.daml.org/
http://logic.stanford.edu/kif/dpans.html

3.3. SCHO: SHARED CAUSAL HISTORY ONTOLOGY 49

• Several patches can be combined in one changeset that can be published
into one or several channels called PushFeeds.

• An authorized site can create a PullFeed corresponding to an exist-
ing PushFeed and pull changesets. Then the patches contained in the
changesets can be re-executed locally. If needed, the integration process
merges this modification with concurrent ones, generated either locally
or received from a remote site.

Figure 3.3: Shared Causal History Ontology

3.3.1 Unified Shared Causal History Model
The Shared Causal History Ontology (SCHO7) [5] shown in Figure 3.3 rep-
resents all the concepts of SCHO: changesets, patches, push and pull feeds.
This ontology enables the SCHO users to query the current state of the doc-
ument and its complete history using semantic queries. SCHO ontology is
populated through users’ interactions with the system using five basic opera-
tions: createPatch, createPush, push, createPull and pull. These operations are
inspired by the Push-Pull-Clone model used in distributed version control sys-
tems such as git, Mercurial and Bazaar [2]. These operations create instances
of the SCHO ontology. The details and the algorithms of each operation are
presented in the following section.

Each site can perform five operations:

• createPatch: Generates operations,
7http://kolflow.univ-nantes.fr/mediawiki/images/scho+.owl

http://kolflow.univ-nantes.fr/mediawiki/images/scho+.owl

50 CHAPTER 3. SCHO: SHARED CAUSAL HISTORY ONTOLOGY

• createPush: Creates a feed in the Push-Pull-Clone model,

• push: Publishes local operations on the feed,

• createPull: Subscribes to a remote feed,

• pull: Consumes remote operations.

These five operations enable the building and sharing of causal history.
The OWL file for the Shared Causal History Ontology (SCHO) is provided

in Appendix A.
The SCHO ontology defines basic concepts common to Push-Pull-Clone

model such as ChangeSet, Patch, Previous, Operation, etc. It also defines
more precise concepts such as PullFeed and PushFeed. These concepts allow
the distinction between published/unpublished operations and consumed/un-
consumed operations which is essential for computing divergence awareness.
The advantage of using SCHO ontology is that we have a unified minimal on-
tology for representing and managing the shared causal history of any Push-
Pull-Clone system. Divergence awareness metrics are now calculated using
declarative queries independent from the application and not hard-coded into
it. This will make it easier to develop universal tools and plug-ins for any Push-
Pull-Clone based system that adopts this ontology for managing its causal
history or what is commonly called log.

• Site: This concept has the following attributes and properties:

– siteID: This attribute contains the identifier of the site.
– hasPull and hasDoc : The range of these properties are respectively

a PullFeed and a Document. A site has several PullFeeds and several
Documents.

• Document: This concept has the following attributes and properties:

– docID: This attribute contains the identifier of the document.
– head: This property points to the last Patch applied to the docu-

ment.

• Operation: This concept represents a change in a document. An opera-
tion has the following attributes:

– operationID: This attribute contains the unique identifier of the
operation.

• Patch: A set of operations. A patch is calculated during the save of
document. A patch has the following properties:

– patchID: A unique identifier of the patch.
– onDoc: The range of this property is the Document where the patch

was applied.
– hasOp: This property points to the Operations generated when the

document was saved.

3.3. SCHO: SHARED CAUSAL HISTORY ONTOLOGY 51

– previous: This property points to the precedent executed Patch on
the local site.

• ChangeSet: This concepts is defined as a set of patches. It is important
to support transactional changes. It allows to group patches generated
on multiple documents. Therefore, it is possible to push modifications
on multiple documents. It has the following attributes and properties:

– changSetID: A unique identifier of a ChangeSet.

– hasPatch: This property points to the Patches generated since the
last push.

– previousCS: This property points to the precedent ChangeSet.

– inPushFeed: The range of this property is a PushFeed. This prop-
erty indicates the PushFeed that publishes the ChangeSet.

– inPullFeed: The range of this property is a PullFeed. This property
indicates the PullFeed that pulls a ChangeSet.

• PushFeed: This concept is used to publish changes made on a site. It
has the following properties:

– pushID: A unique identifier of the PushFeed.

– onSite: The range of this property is a Site.

– hasPushHead: This property points to the last published Change-
Set.

• PullFeed: This concept is used to receive the changes made on a remote
Site. It has the following attributes and properties:

– pullID: A unique identifier of the PullFeed.

– hasPullHead: This property points to the last pulled ChangeSet.

The SCHO ontology is managed by the five operations mentioned earlier.
The algorithms for these operations are presented in the following section.
These algorithms ensure that each site implements a causal reception [67].
Consequently, the proposed framework ensures causality.

3.3.2 Unified Shared Causal History Algorithms

The createPatch operation is called when a document is modified. It calls a
diff function that computes the operations related to a particular type of doc-
ument. The diff function is an application dependent function.

52 CHAPTER 3. SCHO: SHARED CAUSAL HISTORY ONTOLOGY

createPatch (int docID, int modDocID) {
Patch pid = new Patch(concat(site.siteID,

site.logicalClock++));
foreach op ∈ diff(docID, modDocID) do {

Operation opid = new Operation
(concat(site.siteID, site.logicalClock++));
opid.content=op;
hasOp(pid, opid);

}
previous(pid, doc.head);
head(doc, pid);
onDoc(pid, doc);

}

Listing 3.5: createPatch operation

The communication between sites is made through feeds. The createPush
operation creates a PushFeed. A PushFeed is used to publish the changes.

createPush (String pushName) {
PushFeed PF=new PushFeed(pushName);
hasPush(site, pushName);
Push(pushName);

}

Listing 3.6: createPush operation

The push operation creates a ChangeSet corresponding to the documents
and adds it to the PushFeed.

Push (String pfName) {
ChangeSet csid= new ChangeSet(concat(site.siteID,

site.logicalClock++));
inPushFeed(csid, pusName);
published = set(Patch x : Changeset(y)

&& inPushFeed(y,pusName) && hasPatch(y,x));
patches = set(Patch x : Document(p) && onDoc(p,x));
foreach patch ∈ {patches - published } do

hasPatch(csid,patch);
endfor
previousChangeSet(csid, pushName.hasPushHead);
setPushHead(pusName, csid);

}

Listing 3.7: Push operation

PullFeeds are created to consume changes from PushFeeds on remote sites
into the local site. A PullFeed has a corresponding PushFeed. In the sense
that it is impossible to pull unpublished data. The createPull operation per-
form this task.

createPull (int pullID)
{

PullFeed PF= new PullFeed(pullID);
hasPull(site, PF);
Pull(PF);

}

Listing 3.8: createPull operation

3.4. DIVERGENCE AWARENESS IN SCHO 53

The pull operation fetches the published ChangeSets that have not been
pulled yet. It adds these ChangeSets to the PullFeed and integrate them into
the documents on the pulled site.

pull (PullFeed pullName) {
ChangeSet cs = get(pullName.headPullFeed);
while (cs != null) do {

CS = set(ChangeSet x : inPushFeed(x,pullName));
if (cs 6∈ CS) {

inPullFeed(cs, pullName);
integrate(cs);

}
cs = cs.previousChangeSet;

}
}

Listing 3.9: Pull operation

The "integrate" function in the pull algorithm implements a Commutative
Replicated Data Type (CRDT) algorithm [87, 65, 76]. In the following section,
we detail the queries that allow each user to compute divergence awareness
metrics.

3.4 Divergence Awareness in SCHO

Figure 3.4: A sample project git history

This section details the formal definition of existing divergence awareness
metrics based on SCHO ontology. We give a formal interpretation of: State
Treemap, Palantir and Concurrency awareness metrics, described in the previ-
ous chapter in section 2.2.2. Other existing divergence awareness metrics can
be formalized in the same way.

Divergence awareness metrics are calculated on a site for a given document.
We use the following notations: LS to denote a local site on which divergence
metrics are calculated. RS : to denote a remote site.

We define the following formulas:

Definition 1 (onSite(P,D,S)) This means that a patch P belongs to a doc-

54 CHAPTER 3. SCHO: SHARED CAUSAL HISTORY ONTOLOGY

Figure 3.5: A sample project equivalent RDF graph

ument D was generated on a site S.

onSite(P,D, S) ≡∃P∃D∃S :
Patch(P) ∧Document(D) ∧ Site(S)∧
onDoc(P,D) ∧ hasDoc(S,D)

Definition 2 (inPushFeed(P,S)) This means that a patch P is published by
the site S.

inPushFeed(P, S) ≡∃P∃PF∃S :
Patch(P) ∧ PushFeed(PF) ∧ Site(S)∧
hasPush(S, PF) ∧ inPushFeed(P, PF)

Definition 3 (inPullFeed(P,S)) This means that a patch P is consumed by
the site S.

inPullFeed(P, S) ≡∃P∃PF∃S :
Patch(P) ∧ PullFeed(PF) ∧ Site(S)∧
hasPull(S, PF) ∧ inPullFeed(P, PF)

3.4.1 State Treemap Divergence Awareness Using SCHO
To calculate the State Treemap metrics using the SCHO model, we made the
following interpretations and defined the corresponding formulas.

3.4. DIVERGENCE AWARENESS IN SCHO 55

Figure 3.6: A sample project equivalent RDF graph without the concepts

Definition 4 (Locally Modified (LM)) There are new patches in a local
site which are not published in its PushFeeds.

LM(D,LS) ≡∃P∃D∃LS :
Patch(P) ∧Document(D) ∧ Site(LS)∧
onSite(P,D,LS) ∧ ¬inPushFeed(P,LS)

Definition 5 (Remotely Modified (RM)) There are new patches in re-
mote sites which are not in the PullFeeds of the current site.

RM(D,LS) ≡∃P∃D∃LS∃RS :
Patch(P) ∧Document(D) ∧ Site(LS) ∧ Site(RS)∧
(LS 6= RS) ∧ onSite(P,D,RS) ∧ ¬inPullFeed(P,LS)

Definition 6 (Potential Conflict (PC)) It is the state where the document
is Locally Modified and Remotely Modified. This is the intersection of the two
previous states.

PC(D,LS) ≡∃D∃LS∃RS :
Document(D) ∧ Site(LS) ∧ Site(RS)∧
(LS 6= RS) ∧ LM(D,LS) ∧RM(D,LS)

Definition 7 (Need Update (LNU)) There are patches in remote sites’

56 CHAPTER 3. SCHO: SHARED CAUSAL HISTORY ONTOLOGY

Figure 3.7: Divergence awareness for sample project

PushFeed that were not pulled locally.

LNU(D,LS) ≡∃P∃D∃LS∃RS :
Patch(P) ∧Document(D) ∧ Site(LS) ∧ Site(RS)∧
(LS 6= RS) ∧ inPushFeed(P,RS) ∧ ¬inPullFeed(P,LS)

Definition 8 (Will Conflict (WC))

WC(D,LS) ≡∃D∃LS :
Document(D) ∧ Site(LS) ∧ LNU(D,LS) ∧ LM(D,LS)

Definition 9 (Locally Up To Date (UTD))

UTD ≡∀D∀S :
Document(D) ∧ Site(S) ∧ ¬LM(D,S) ∧ ¬RM(D,S)

3.4.2 Palantir Divergence Awareness Using SCHO
We define Palantir’s divergence awareness metrics using the SCHO ontology.

Definition 10 (Populated (Pop)) A document has been created on a site.

Pop ≡∃D∃LS∀RS :
Document(D) ∧ Site(LS) ∧ Site(RS)∧
(LS 6= RS) ∧ hasDoc(LS,D) ∧ ¬hasDoc(RS,D)

Definition 11 (Change in progress (CP)) This state is similar to the Locally-
Modified or Remotely-Modified states already mentioned in State Treemap.

CP ≡∃D∃S :
Document(D) ∧ Site(S) ∧ (LM(D,S) ∨RM(D,S))

3.4. DIVERGENCE AWARENESS IN SCHO 57

ChangeSet No. State Treemap Palantir
1 Locally Modified Populated
2 Up to Date Changes Committed
3 Remotely Modified Change in Progress
4 Remotely Modified Change in Progress
5 Potential Conflict Change in Progress
6 Remotely Modified Changes Committed
7 Remotely Modified Change in Progress
8 Remotely Modified Change in Progress
9 Potential Conflict Change in Progress
10 Potential Conflict Change in Progress
11 Potential Conflict Change in Progress
12 Locally Modified Synchronized
13 Locally Modified Change in Progress

Table 3.1: Divergence awareness results for the sample project

Project name DVCS #CS #Users #Triples Time (sec)
Gollum git 613 37 2851 12
MongoDB git 13636 91 68186 158
AllTray Bazaar 389 3 2168 5
Anewt Bazaar 1980 13 9433 44
hgview Mercurial 595 15 3257 12
murky Mercurial 198 17 1111 5

Table 3.2: Execution time and general statistics

Definition 12 (Change Reverted) The document has returned to its orig-
inal state.

ChangeReverted ≡ ∃UndoOperation(LS)

Definition 13 (Severity Changed) The number of patches has been done
on a document.

SeverityChanged = |P1|+ |P2|where
P1 = {∀p : Patch(p) ∧Document(D) ∧ Site(LS)
∧ onSite(p,D, LS) ∧ ¬inPushFeed(p, LS)}

P2 = {∀p : Patch(p) ∧Document(D) ∧ Site(LS) ∧ Site(RS)
∧ (LS 6= RS) ∧ onSite(p,D,RS) ∧ ¬inPullFeed(p, LS)}

It is interesting to notice that the SCHO model allows to use State Treemap
metrics to calculate Palantir metrics. This was not possible without the formal
ontology.

3.4.3 Concurrency Awareness Using SCHO
The patches which were made locally in parallel with the patches which were
made remotely. If we know the causal relation between patches on a document

58 CHAPTER 3. SCHO: SHARED CAUSAL HISTORY ONTOLOGY

Figure 3.8: Divergence awareness results for gollum project (git)

Figure 3.9: Divergence awareness results for mongoDB project (git)

we could know the concurrent patches. The multi-synchronous environment
satisfies the causality which ensures that all the operations are ordered by a
previous relation. This means that the operations will be executed in same
order on every site. The history in this approach will be causal graph.

Definition 14 (Concurrent Modification (CM)) The number of concur-
rent patches.

CM ≡∃D∃S∃P1∃P2 :
Document(D) ∧ Site(S) ∧ hasDoc(S,D)∧
onDoc(P1, D) ∧ onDoc(P2, D) ∧ ¬previous(P1, P2)

3.4. DIVERGENCE AWARENESS IN SCHO 59

Figure 3.10: Divergence awareness results for AllTray project (Bazaar)

Figure 3.11: Divergence awareness results for Anewt project (Bazaar)

3.4.4 Validation

In order to validate our approach, we populated the SCHO ontology with
causal history data from different DVCS. We used git, Mercurial and Bazaar
repositories. These repositories have rich sets of data of different size that can
be used to compute divergence awareness.

To use the DVCS data, first we had to inject the log data into a triple
store to populate our ontology. We used the Jena TDB 8 triple store, then we
implemented a parser called dvcs2lod 9. dvcs2lod is responsible for the mapping
between the concepts defined in the DVCS log and the SCHO ontology. It can
handle git, Mercurial and Bazaar repositories.

We made the following assumptions when we parsed the causal history:

8http://jena.apache.org/documentation/tdb/index.html
9 https://github.com/kmobayed/dvcs2lod

http://jena.apache.org/documentation/tdb/index.html
https://github.com/kmobayed/dvcs2lod

60 CHAPTER 3. SCHO: SHARED CAUSAL HISTORY ONTOLOGY

Figure 3.12: Divergence awareness results for hgview project (Mercurial)

Figure 3.13: Divergence awareness results for Murky project (Mercurial)

• We considered the project as one shared object, so any changeset we find
is a modification to this object.

• Whenever we find a branch in the history we create a PushFeed and the
corresponding Site.

• Whenever we find a merge change set we create a PullFeed and the
corresponding Site.

• Each site represents one user.
For simplicity, we will explain the above assumption on a sample project

in git . Figure 3.4 shows the history log of this project.
For the sample project we will have: three Sites, two PullFeeds, two Push-

Feeds and thirteen ChangeSets. Figure 3.5 shows the populated ontology re-
sulting from parsing the git history. Figure 3.6 shows the same RDF graph
but without the concepts for the sake of clarity.

3.4. DIVERGENCE AWARENESS IN SCHO 61

Based on the assumptions mentioned above we were able to find the dif-
ferent sites and the push/pull interactions between the sites as it is shown in
Figure 3.6.

Now, we can use the metrics defined earlier which are generic divergence
awareness metrics, and we can apply them on different open source projects
that use different DVCS.

We use SPARQL 10 queries to calculate divergence awareness. For exam-
ple the query shown in listing 3.10 returns the state Remotely Modified for a
ChangeSet CSid.

SELECT ?pf WHERE {
scho:CSid scho:inPullFeed ?pf .
scho:CSid scho:date ?date .
?pf scho:hasPullHead ?CSHead
scho:?CSHead scho:date ?headDate .
NOT EXISTS scho:CSid scho:published "true".
FILTER (xsd:dateTime(?headDate) <= xsd:dateTime(?date))
}

Listing 3.10: Remotely Modified ChangeSet SPARQL Query

The following query returns the state Published for a ChangeSet CSid.
SELECT ?pf ?date WHERE {

scho:CSid scho:inPushFeed ?pf .
scho:CSid scho:date ?date .
FILTER (xsd:dateTime(?headDate) <= xsd:dateTime (?date))
}

Listing 3.11: Published ChangeSet SPARQL Query

If a ChangeSet is not in one of these states i.e. not Published and not
Remotely Modified then it will be in the state Locally Modified Table 3.1 shows
the resulted states for State Treemap and Palantir for our sample project.

We plotted the corresponding divergence graph. Figure 3.7 shows the re-
sults we found for the sample git project. We can observe clearly the divergence
and convergence phases.

Then we used real projects to validate the approach, such as: gollum 11,
HgView 12, Murky 13, AllTray 14, Anewt 15, and MongoDB 16. These projects
use different DVCS such as git, Mercurial and Bazaar. Table 3.2 shows the
details of each project and the execution time for populating the ontology with
the causal history of these projects. In addition, we calculate the number of
ChangeSets, Users, Merges and the number of triples generated based on the
SCHO ontology.

Figures 3.8-3.13 show the results obtained after calculating the divergence
awareness metrics on the selected projects. The Y-axis represents the number
of changesets, while the X-axis represents the time. In each graph, we see the
number of locally modified changesets (LM) and the number of the remotely

10http://www.w3.org/TR/rdf-sparql-query/
11https://github.com/github/gollum.git
12http://www.logilab.org/project/hgview/
13https://bitbucket.org/snej/murky/
14http://alltray.trausch.us/
15http://anewt.uwstopia.nl/
16http://www.mongodb.org/

http://www.w3.org/TR/rdf-sparql-query/
https://github.com/github/gollum.git
http://www.logilab.org/project/hgview/
https://bitbucket.org/snej/murky/
http://alltray.trausch.us/
http://anewt.uwstopia.nl/
http://www.mongodb.org/

62 CHAPTER 3. SCHO: SHARED CAUSAL HISTORY ONTOLOGY

modified changesets (RM) at a given time. We can clearly observe the periods
of convergence and divergence. This clearly demonstrates that the same diver-
gence awareness metrics can be represented and computed on data produced
by different DVCS.

Figure 3.14: General approach illustration for extracting local social network

3.5 Local Social Network and Trust in SCHO
Decentralized multi-synchronous collaborative systems provide collaboration
services without a dedicated service provider. For instance, Distributed Ver-
sion Control Systems (DVCS) [2] demonstrated that it is possible to commu-
nicate and share data without the need for a collaboration provider. This
allows to overcome problems related to the approach collaboration as a service
(CaaS), where a service provider offers collaborative and social network ser-
vices. The social service provider has access to all the data this raises privacy
and censorship issues [33], the provider can exploit the whole social network

3.5. LOCAL SOCIAL NETWORK AND TRUST IN SCHO 63

Figure 3.15: Collaboration scenario

relations and interactions among the users. However, the social relations pro-
vided by the social services are important to push further the collaboration
between people. It is important to evaluate the location of actors in the net-
work in order to understand networks and their participants; measuring the
network location is essential. These measures give us insight into the various
roles and groupings in a network: where are the clusters and who is in them,
who is in the core of the network, and who is on the periphery.

Although decentralized systems provide the required collaborative services,
they do not provide the social services offered by centralized systems. In these
systems there is no central point with a global vision of the social network
which is able to build and reflect the social relations among people.

Some approaches use private peer-to-peer networks [69] where the resources
and the infrastructure are provided by the users participating in the network.
Groove [55] is a groupware for collaborative editing which consists of isolated
local networks. This system provides group-based network service which allows
direct connections between the users of the group. Multi-synchronous semantic
wiki [67] is another approach which allows direct connections between sites who
know one another i.e. friend-to-friend network [11].

However, the collaboration model is very different from CaaS approach.
With CaaS software, users mainly collaborate through read-write operations
in one shared space provided by the collaboration provider. While in dis-
tributed social software, collaboration occurs by replicating shared data and
synchronizing multiple workspaces continuously.

The previous model hides the social relations among sites participating in
the network. Synchronizing workspace requires exchanging causal histories of
operations. By analyzing the causal history on each site, we are able to reveal
the social relations and reconstruct on each site a social network graph. So we
can see our friends of friends.

This graph represents a local view of the social network and not the whole
social network. Users can see their locations in their own local graphs. This
approach can enrich the collaboration among the sites with new social services,
while at the same time preserving the sites’ privacy, since every site has a local
vision of the network, and they do not rely on a service provider to maintain
the social network.

The collaboration model in a multi-synchronous collaborative system hides

64 CHAPTER 3. SCHO: SHARED CAUSAL HISTORY ONTOLOGY

SCHO:Patch1
SCHO:hasSite SCHO:Site1 ;
SCHO:onPage SCHO:lesson1 .

SCHO:Patch2
SCHO:hasSite SCHO:Site2 ;
SCHO:onPage SCHO:lesson1 ;
SCHO:previous SCHO:Patch1 .

SCHO:Patch3
SCHO:hasSite SCHO:Site3 ;
SCHO:onPage SCHO:lesson1 ;
SCHO:previous SCHO:Patch1 .

SCHO:Patch4
SCHO:hasSite SCHO:Site4 ;
SCHO:onPage SCHO:lesson1 ;
SCHO:previous SCHO:Patch3 .

SCHO:Patch5
SCHO:hasSite SCHO:Site5 ;
SCHO:onPage SCHO:lesson1 ;
SCHO:previous SCHO:Patch4 .

SCHO:Patch6
SCHO:hasSite SCHO:Site2 ;
SCHO:onPage SCHO:lesson1 ;
SCHO:previous SCHO:Patch5 .

(a) Site2 causal history (b) site2’s local social network

Figure 3.16: Social network extraction

the social relations among the sites. We will reveal these relations by trans-
forming the previous relation between the patches into social relations among
the sites participating in this network. Figure 3.14 shows an illustration of our
approach. We show how we are going to discover the friend-of-friend relations.
In this example we see the interaction between the sites participating in the
network. It should be noted that in reality this interaction is not known by
any site. This interaction generated a causal history on site2 for instance.
This site has pulled from two sites only (site1 and site4) so it has a direct
friend relation with these two sites. But it does not know the existence of the
other sites in the network. By investigating its own causal history site2 will
find patches generated on site3 and these patches has been pulled by site4. So
now site2 knows the existence of site3 and the existence of a relation between
site4 and site3. The deduced knowledge is represented by the dotted arrows
in figure 3.14, this knowledge does not apply that site2 can pull from site3
since it does not have the capability required to pull from it.

In the next section, we will use the SCHO ontology to reconstruct the social
network among the sites, visualize those relations and furthermore calculate
the network centrality measures.

3.5.1 From Causal History to Social Relations
Although there is no direct friendship relation defined in a multi-synchronous
collaborative system, users can manage their relations with others implicitly

3.5. LOCAL SOCIAL NETWORK AND TRUST IN SCHO 65

(a) inDegree centrality (b) outDegree centrality

Figure 3.17: Degree centrality

by controlling from whom to accept modifications and to whom send or publish
their modifications. This interaction is recorded in the causal history which
is stored at each user’s site. Each site participating in a multi-synchronous
collaborative system keeps a complete causal history of all the operations it
has received or generated locally.

According to SCHO ontology, a patch is a collection of operations generated
at one site, and it is linked to other patches by the previous transitive relation.
In order to be able to build the social relation among the sites, we extend
SCHO ontology as follows:

• We define hasSite object property from Patch to Site as follows:

hasSite ≡
∃(hasPull−1).∃(inPullFeed).∃(hasPatch−1).Patch

• We add an object property knows that checks if one site knows another
site. We check if we have a previous relation between patch P1 generated
on site S1 and patch P2 generated on site S2, if that is the case then
this means that S1 pulled P2 from S2 which eventually means that S1
knows S2. This is calculated using the following inference rule:

knows(S1, S2) v
∃P1.hasSite(P1, S1) u ∃P2.hasSite(P2, S2)
uprevious(P2, P1)

Where P1, P2 are both patches, and S1, S2 are both sites.

By taking the previous modifications into account we can rebuild a "FOAF:knows"
relation [14] between the sites based on the push/pull feeds with a simple in-
ference from the history using a semantic reasoner.

66 CHAPTER 3. SCHO: SHARED CAUSAL HISTORY ONTOLOGY

(a) Betweenness centrality (b) Closeness centrality

Figure 3.18: Betweenness and closeness centrality

The example in figure 3.15 shows the interaction between five sites. site1
creates a document, then site2 and site3 pull form site1; eventually site2
modifies the page; at the same time site3 makes some modifications too, then
site4 pulls from site3; by its turn site4 modifies the page, then site5 pulls
from site4 and modifies the page too. Finally site2 pulls from site5.

By investigating site2’s history shown in figure 3.16(a). We can see some
patches generated by site1, site3, site4 and site5 although it has only the
capabilities from site1 and site5. Now site2 knows the existence of site3 and
site4, moreover it can deduce the following: site3 knows site1, site4 knows
site3 and site5 knows site4.

Now we can construct the local social graph of site2 as in figure 3.16(b).
Where the solid-line arrows represent the direct relations between sites (by
exchanging capabilities) while the dotted-line arrows represent the deduced
relations which do not imply the ability to pull from these sites, since site2
has not the capabilities of these sites.

By applying this approach on all the sites, each site will have a local vision
of his friend-of-friend network. We should take into consideration that the
causal history keeps on growing and it will not delete previous entries. This
means that the local vision at one site of the network keeps on growing as much
as the site consumes from other sites. In the following section we present our
validation and discuss the obtained results.

3.5.2 Validation
In order to compute the social network metrics with high confidence, we need
a large dataset so we populated the SCHO ontology with the causal history
of Mercurial repository for the Adium project [74], which follows the multi-
synchronous collaboration model. The causal history that we analyzed is com-
posed of 3128 patches (changesets in Mercurial terms) generated by 31 devel-
opers contributing to this project, over a period of 18 months. We were able

3.6. SUMMARY AND DISCUSSION 67

to reveal 588 knows relations between the developers of this project. We cal-
culated the key parameters of the social network graph, in order to compare it
with a real social network graph parameters. In the following we will explain
the obtained results.

A graph is considered small-world, if its average clustering coefficient is
significantly higher than a random graph constructed on the same vertex set,
and if the graph diameter is much smaller than the order of the graph [4]. The
calculated parameters show that the extracted social network graph follow the
small-world hypothesis.

Social network parameter Calculated value
Network diameter 3

Clustering coefficient 0.634
Graph density 0.632

We also computed the centrality measures identified by [30] and illustrated
the results using Gephi [9]. First we calculate the degree centrality which
considers nodes with higher degrees as more central, highlighting the local
popularity of an actor in its neighborhood. The way that we used to generate
the social network graph created a directed graph so we have to calculate
the inDegree centrality as shown in figure 3.17(a) (the number of incoming
connections) and outDegree centrality as shown in figure 3.17(b) (the number
of outgoing connections).

Then we calculated the betweenness centrality which focuses on the capac-
ity of a node to be an intermediary between any two other nodes. The results
are illustrated in figure 3.18(a). This figure shows clearly that we have one
special actor in the network (most probably the project coordinator).

Finally we calculated the closeness centrality of the graph nodes which
represents the node capacity to be reached by any other node in the network.
Figure 3.18(b) shows the calculated closeness centrality.

From the results shown above we clearly see that we have extracted the
local social network and based on the data we used, we see that the social
network characteristics follow the small-world model, and we can see that we
have some important actors in our network.

We extended the collaborative services offered by multi-synchronous col-
laborative system with new social services by exploiting the causal history
using semantic queries. Therefore, each site participating in this collaborative
network can have a local view of its social network without the need for a
third-party service provider, and using its own resources. We validated the
approach using data from a software engineering application. We also found
that the extracted network follows the small-world model.

3.6 Summary and Discussion
Existing divergence awareness systems such as State Treemap, Palantir, Edit
Profile and Concurrency awareness define their own divergence metrics without
a common formal definition. Metrics are coupled with the application and
cannot be used outside their original scope. We proposed a unified ontology
for conceptualizing multi-synchronous collaborative systems. This way we can
compute all existing divergence awareness metrics as queries on a common
ontology. These queries are performed on the causal history of the system,

68 CHAPTER 3. SCHO: SHARED CAUSAL HISTORY ONTOLOGY

on each participant workspace, this means that the result will be divergence
awareness of the past. This raises the problem of how to compute divergence
awareness in real-time? In order to answer this question we need to fulfill two
requirements:

1. Who is participating in the system? This means we should provide and
maintain a membership service.

2. What are the concurrent operations among the participants in the sys-
tem? This means we need to access unpublished information on remote
sites.

In the following chapter, we will extend the SCHO ontology to provide a mem-
bership service using semantic queries, and discover the collaboration network.

4
Network Discovery

Contents
4.1 Introduction . 69
4.2 Distributed Version Control Systems 71
4.3 Linking SCHO to the Linked Open Data 72
4.4 Validation . 76
4.5 Summary and Discussion 78

4.1 Introduction
Multi-synchronous collaboration model does not define membership service,
this implies that the collaboration networks are not navigable. Distributed
Version Control Systems [2] (DVCS) are the most used systems that follow the
multi-synchronous collaboration model. DVCS use a push-pull-clone paradigm
described in section 2.1. In this paradigm, there is no standard way for a
repository to advertise their push/pull relations, we can not navigate the social
network generated by the users’ interactions with each others. Actually the
push/pull relations are private and not even published to others. This prevent
the discovery of the DVCS social network. This is not a requirement for DVCS
i.e. every user is free to pull changes from any source she wants, she is also
free to keep this information private.

This issue has important consequences for software developers involved in
software projects. For example: i) clustering can occur within the collaboration
social network if one developer shuts down her repository; ii) estimating the
global activity of the collaboration social network is also important for project
management, awareness and coordination.

Navigability of collaboration social network can be achieved if all DVCS
repositories for a software project are hosted within a single software forge such
as github (https://github.com), launchpad (https://launchpad.net), and

69

https://github.com
https://launchpad.net

70 CHAPTER 4. NETWORK DISCOVERY

sourceforge (https://sf.net). github allows navigation between git reposi-
tories hosted on github. Of course, this approach is very restrictive i.e. navi-
gability of collaboration social networks should not rely on service providers.

Another approach is to use semantic web technologies and transform any
DVCS into a social semantic web tool. Semantic web technologies are inher-
ently distributed and offer strong support for interoperability.

We propose a lightweight ontology SCHO+. SCHO+ is based on the ob-
servation that existing DVCS follow the optimistic replication model [71].
SCHO+ conceptualizes causal histories and push/pull relations. Based on
SCHO+, we give the opportunity to actors to extract information from their
local DVCS repositories and generate RDF datasets. These data are clearly
targeted for the linked data and reuse FOAF [14]/DOAP [25] vocabularies.
Next, each actor can perform queries on the collaboration social network using
Link Traversal Based Query Execution [41]. In order to validate collabora-
tion social network requests, we experiment the discovery of the collaboration
network for a group of developers.

A motivating example is shown in figure 4.1, outlines the problems of in-
teroperability and membership in DVCS.

Figure 4.1: Multi-synchronous Collaboration using different DVCS

In this scenario, we have different groups of developers collaborating to
build a software. The green links are made using git push/pull operations,
while the blue links are made using Mercurial push/pull operations. "HIM"
is the Mercurial team leader and "ME" is the git team leader. There is a red
link between "HIM" and "ME" that is made using the hg-git 1 tool. From this
scenario we see that it is crucial for "HIM" to maintain a connection with the
git group, to advance the collaboration. This connection is currently assured
by "ME", but what if "ME" goes down? The other way around is also valid,
since "ME" needs to maintain a connection with the Mercurial group. This
clearly shows the need for a membership and network discovery service. So

1http://hg-git.github.com/

https://sf.net
http://hg-git.github.com/

4.2. DISTRIBUTED VERSION CONTROL SYSTEMS 71

in case of a failure, collaborators can switch to other ones to maintain their
collaboration activity.

The push/pull interactions in the DVCS are not recorded in standard for-
mat. Currently there is no way to run queries to explore the collaboration
social network. Or even to calculate a common metric to capture the network
activity.

4.2 Distributed Version Control Systems
Version control systems (VCS) [2] such as RCS 2, CVS 3 and Subversion 4

are used by software developers to maintain source code, documentation and
configuration files for their projects. RCS is suitable for single-user scenarios,
while CVS and Subversion are based on centralized approaches. Newer ver-
sion control systems such as git (http://git-scm.com/), Mercurial (http://
www.selenic.com/mercurial/), Bazaar (http://bazaar.canonical.com/)
and Darcs (http://www.darcs.net/) are distributed version control systems
(DVCS) [2]. The main characteristics of DVCS compared to traditional VCS
are decentralization and autonomous participants. DVCS are one of the most
used systems that follows the multi-synchronous collaboration model.

DVCS are social tools largely used in open source software development.
They allow huge community of developers to coordinate and maintain software
such as the Linux kernel project 5 and Mozilla Firefox 6.

Every new developer involved in a software project can set up her own code
repository by cloning an existing one and start contributing by advertising
new updates. We will refer to this model of collaboration as Push-Pull-Clone
(PPC). The PPC collaboration model generates networks of DVCS reposito-
ries linked by push/pull relations. These networks are very similar to social
networks where a user can follow messages of other users. The main differ-
ence comes from the nature of exchanged messages i.e. in a DVCS, messages
contain operations that can be applied on local files or directories.

Although existing DVCS rely on the PPC model and have the same basic
concepts, they suffer from interoperability problems. Working using the PPC
model creates a network of collaborators, but there is no standard way for
the DVCS to publish the push/pull relationships. Nowadays, this network is
hidden and we can not run any query on it. Discovering the collaboration
relations is important to push further the collaboration between people. It
is also important to evaluate the location of actors in the network [30]. This
will give us insight on the collaboration activity which is crucial for project
management.

The correctness of the system is defined by properties such as causality,
eventual consistency, and intention preservation [81]. All DVCS ensure at least
causal consistency [51]. A system ensures causal consistency if all sites execute
the same set of operation in the same order of generation. The traditional
way to implement causal consistency is to implement a causal reception i.e.

2http://www.gnu.org/software/rcs/
3http://savannah.nongnu.org/projects/cvs
4http://subversion.apache.org/
5http://www.kernel.org/
6http://www.mozilla.com/

http://git-scm.com/
http://www.selenic.com/mercurial/
http://www.selenic.com/mercurial/
http://bazaar.canonical.com/
http://www.darcs.net/
http://www.gnu.org/software/rcs/
http://savannah.nongnu.org/projects/cvs
http://subversion.apache.org/
http://www.kernel.org/
http://www.mozilla.com/

72 CHAPTER 4. NETWORK DISCOVERY

Figure 4.2: Causal history in git

an operation is delivered to the local processes if all causal operations have
been delivered before. In distributed systems, causal reception is implemented
traditionally with vector clocks [54]. The eventual consistency property [48]
ensures that all replicas are identical when the system is idle. Thomas write
rule [48] was the first algorithm to ensure eventual consistency in duplicated
databases. However, Thomas write rule requires the knowledge of the number
of participants (in order to provide a safe garbage collection scheme).

DVCS follow the optimistic replication model:

1. Each repository is a site where objects i.e. files and directories are repli-
cated.

2. Object can be modified anytime, anywhere by applying operations. In
DVCS, this is achieved by generating "commit objects" that can be in-
terpreted as a set of operations updating several objects.

3. Operations are broadcasted to other sites. In DVCS, broadcast is achieved
through push/pull operations. This can be interpreted as an anti-entropy
mechanism that is part of epidemic protocols [19]. Anti-entropy proto-
cols ensure causal delivery of operations.

4. Causal relationships are not represented with vector clocks that require
join and leave procedure, but with explicit "previous relations" between
"commit objects". These relations can be observed in the graph of fig-
ure 4.2. This figure presents a fragment of the causal history of the Linux
kernel.

5. DVCS ensure at least causal consistency i.e. all repositories execute the
same operations respecting the same causal order. As causal order is a
partial order, it does not mean that all sites have the same execution
history, but they will all converge to the same causal graph.

4.3 Linking SCHO to the Linked Open Data
The Shared Causal History Ontology (SCHO) [5] is an ontology for sharing
and managing causal history. SCHO ontology defines all the basic concepts
common to DVCS such as ChangeSet, Patch, Previous, Operation, etc. It also
defines more precise concepts such as PullFeed and PushFeed to support the
PPC model. The existence of a PullFeed on Site1 that consumes operations

4.3. LINKING SCHO TO THE LINKED OPEN DATA 73

Figure 4.3: Shared Causal History Ontology Extension

from a PushFeed on Site2 can be interpreted as follow relation between the
two sites, i.e. Site1 follow Site2.

We will extend the SCHO ontology in order to link participants and ob-
jects by using FOAF/DOAP vocabularies and links the DVCS community
to the LOD cloud. The extended ontology is called: SCHO+. We add
a new class User presented in listing 4.1. We link it to the FOAF pro-
file of changesets’ authors using an owl:DatatypeProperty foafProfile. We
add a new class Project presented in listing 4.2. We link it to the DOAP
description for each project using an owl:DatatypeProperty doapDesc. We
also add a new owl:ObjectProperty relatedPush presented in listing 4.3. This
owl:ObjectProperty links the PullFeed to its corresponding PushFeed. We also
modify the CreatePull algorithm to take this into consideration, as it is shown
in listing 4.4. This will enable us to extract the follow relation between the
sites that generated these feeds. We will use this follow relation to discover the
PPC social network between the different sites. Figure 4.3 shows the SCHO+
ontology7.

<owl:Class rdf:about="#User">
<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>
<owl:DatatypeProperty rdf:about="#foafProfile">

<rdfs:domain rdf:resource="#User"/>
<rdfs:range rdf:resource="&xsd;anyURI"/>

</owl:DatatypeProperty>

Listing 4.1: New class User

7http://kolflow.univ-nantes.fr/mediawiki/images/scho+.owl

http://kolflow.univ-nantes.fr/mediawiki/images/scho+.owl

74 CHAPTER 4. NETWORK DISCOVERY

<owl:Class rdf:about="#Project">
<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>
<owl:DatatypeProperty rdf:about="#doapD">

<rdfs:domain rdf:resource="#Project"/>
<rdfs:range rdf:resource="&xsd;anyURI"/>

</owl:DatatypeProperty>

Listing 4.2: New class Project

<owl:ObjectProperty rdf:about="#relatedPush">
<rdfs:range rdf:resource="#PullFeed"/>
<rdfs:domain rdf:resource="#PushFeed"/>

</owl:ObjectProperty>

Listing 4.3: Related Push Property

createPull (int pullID, int pushID)
{

PullFeed PF= new PullFeed(pullID);
relatedPush(pullID, pushID);
hasPull(site, PF);
Pull(PF);

}

Listing 4.4: createPull operation

Figure 4.4: Push/Pull Network

Generating RDF 8 triples and linking the RDF graphs of the different sites
will enable us to query and discover the PPC social network as shown in
figure 4.4. In this scenario, four sites are using DVCS and are connected to
each other with push/pull links. These links can be seen as an ad-hoc P2P
network. In this scenario :

• Site1 and Site2 are engaged in a push/pull from each other. This means
that Site1 is pushing its modifications to Site2 and Site2 is accepting
these modifications, and vice versa.

8http://www.w3.org/TR/rdf-primer/

http://www.w3.org/TR/rdf-primer/

4.4. VALIDATION 75

Figure 4.5: Site2 RDF graph

• Site3 pushes modifications to Site4 and pulls from Site1.

• Site4 pushes modifications to Site1 and pulls from Site3.

The push/pull interactions in the DVCS generate triples based on a com-
mon ontology at each site. These triples are stored in an RDF file that have
an accessible URI. This way a user on a given site can run a distributed
SPARQL query to explore the PPC social network. Or she can run a diver-
gence awareness metric query to capture the network activity. A user can link
her foaf:profile and the project description doap:project. So her data will be
available to the whole LOD community.

We expect each DVCS user to run a script that will publish some informa-
tion about the current state of his personal workspace. This information will
be published as an RDF file conform to the SCHO+ ontology. Next each user
can run semantic queries relying on Link Traversal Based Query Execution.

The advantages of using SCHO+ ontology are:

• First we have a unified minimal ontology for representing and managing
the shared causal history of any DVCS. This will make it easier to develop
universal tools and plug-ins for any DVCS software that adopts this on-
tology for managing its log. So we can run queries directly on any DVCS
system that uses SCHO+ ontology without the need to import/export
histories between different DVCS tools.

• Furthermore we can have generic analysis tools which can be run over this
log to discover the underlying dynamics of the corresponding network.
We have also linked the ontology to the LOD using the DOAP and FOAF
ontologies. This will permit to link the DVCS communities with LOD
and will give them a higher visibility. In order to be included in the
analysis and statistics done on the LOD.

Figure 4.5 shows the corresponding RDF graph of Site2 from the scenario
presented in figure 4.4. In the following section, we detail the queries that
allow each user to extract the PPC social network.

76 CHAPTER 4. NETWORK DISCOVERY

:Site1 a scho:Site;
scho:hasPull :F2,

:F4 .
:Site2 a scho:Site;

rdfs:seeAlso <site2_RDF_URI> .
:Site3 a scho:Site;

rdfs:seeAlso <site3_RDF_URI> .
:Site4 a scho:Site;

rdfs:seeAlso <site4_RDF_URI> .
:F1 a scho:PushFeed;

scho:onSite :Site1 .
:F2 a scho:PullFeed;

scho:relatedPush :F5 .
:F3 a scho:PushFeed;

scho:onSite :Site1 .
:F4 a scho:PullFeed;

scho:relatedPush :F8 .
:F5 a scho:PushFeed;

scho:onSite :Site2 .
:F8 a scho:PushFeed;

scho:onSite :Site4 .

(a) Site1 RDF file

:Site2 a scho:Site;
scho:hasPull :F6 .

:Site1 a scho:Site;
rdfs:seeAlso <site1_RDF_URI> .

:F5 a scho:PushFeed;
scho:onSite :Site2 .

:F6 a scho:PullFeed;
scho:relatedPush :F1 .

:F1 a scho:PushFeed;
scho:onSite :Site1 .

(b) Site2 RDF file

Figure 4.6: Scenario example RDF files

4.4 Validation
Linking the RDF graphs using the SCHO+ ontology will allow the discovery
of the PPC social network without the need for a centralized node or a social
service provider. The social service provider has access to all the data which
raises privacy and censorship issues [33], since it can exploit the whole PPC so-
cial network relations and interactions among the users. In order to overcome
these issues, new decentralized approaches were proposed. They provide col-
laborative services without a dedicated service provider. Users can create their
own collaborative network and share the collaborative services offered by the
system using their own resources. If it is easy for a centralized node to extract
the complete social network graph from the observed interactions. Obtaining
social network information in the distributed approach is more challenging. In
fact, the distributed approach is designed to protect privacy of users and thus

4.4. VALIDATION 77

(a) Site2 PPC social network
without linking the RDF files

(b) Site2 PPC social network
with linking the RDF files

Figure 4.7: Network discovery

makes extracting the whole social network difficult.
We will show how linking the RDF graphs would make the PPC social

network discovery easier. On one hand, this social network is independent of
the project that the user is working on. On the other hand, this social network
is also independent of the used DVCS. i.e. the we will have a higher level of
abstraction for this PPC social network. We add a semantic annotation using
the rdfs:seeAlso property to each site. This annotation will include the URI of
the RDF file of each site.

SELECT DISTINCT ?site1 ?site2 WHERE {
?site1 a scho:Site .
?site2 a scho:Site .
?pull a scho:PullFeed .
?push a scho:PushFeed .
?pull scho:relatedPush ?push .
?push scho:onSite ?site1 .
?site2 scho:hasPull ?pull .
FILTER (?site1 != ?site2)
}

Listing 4.5: SPARQL Query for Network Discovery

In fact, using the SCHO+ ontology renders discovering the network, no
more than executing a SPARQL query. We will use the Link Traversal Based
Query Execution approach [41] to execute this query. The advantages of this
approach are: There is no need to know all the data sources in advance,
the queried data will be up-to-date, and it is independent of the existence of
SPARQL endpoints provided by the data sources. Listing 4.5 shows this query.

We will take the previous example presented in figure 4.4. In this example,
we have Site2 collaborates with Site1 but it has no direct knowledge about the
whole network. Figure 4.6 shows snapshots of the RDF files present on Site1
and Site2. We will extract the PPC social network using the SPARQL query
in Listing 4.5. This query will give us a list of sites that have a collaboration
link among them. We visualize the output using graphviz 9 graph visualization
software. First, we run the query over Site2 RDF file without the rdfs:seeAlso

9http://www.graphviz.org/

http://www.graphviz.org/

78 CHAPTER 4. NETWORK DISCOVERY

annotation, see figure 4.7a. Next, we run the same query over Site2 RDF file
but this time with the rdfs:seeAlso annotation, see figure 4.7b.

We evaluate the performance of the Link Traversal Based Query Execu-
tion approach [41] by simulating various network settings. We generate differ-
ent configurations of multi-synchronous collaboration networks where sites are
linked according to different graph models. We made the hypothesis that there
is no isolated sites in the system. We used the Erdös-Rényi [27] random graph
model and Barabási-Albert [1] scale-free networks that better represents social
graphs. Table 4.1 shows the different characteristics of the generated networks.
We generated graphs up to 500 sites. The third column represents the number
of nodes in the network, the fourth column represents the average number of
edges per node, and the last column represents the network discovery execu-
tion time. We used Cytoscape10 to generate the different graphs. Simulations
demonstrate the poor performance of the Link Traversal Based Query Execu-
tion approach. This approach does not scale for large distributed collaborative
systems.

Setup Network model #Nodes #Edges Query execution time (ms)
1 Erdos-Renyi 100 10 77296
2 Erdos-Renyi 100 50 487289
3 Erdos-Renyi 500 250 12083689
4 Barabasi-Albert 100 10 18837
5 Barabasi-Albert 500 10 1849033

Table 4.1: Network discovery time results for different network setups

4.5 Summary and Discussion
In this chapter we proposed a membership service for multi-synchronous col-
laborative systems which is essential for divergence awareness computation.
The membership service relies on the the Link Traversal Query Based Ex-
ecution approach. The advantage of this approach that it does not require
a beforehand knowledge of the sites that it will seek for getting the data to
evaluate the query result, which is compatible with the multi-synchronous col-
laboration model. But after running simulations for evaluating the approach,
we found out an extremely poor performance, this approach does not scale and
makes it impossible to rely on it for computing divergence awareness. To find
an efficient algorithm to compute divergence awareness we need to formally
define what is divergence awareness for a group of collaborators. Divergence
awareness has not been formalized before, all existing proposals are ad-hoc im-
plementations for certain collaboration software. Existing divergence metrics
rely on different interpretation of editing distance between copies in the sys-
tem. Computing divergence awareness is very challenging, it requires to query
remote states of all participants and next aggregates information to compute a
global metric. This raises severe problems of performances, reliability and dy-
namism of participants. In the following chapter we formally define divergence

10An Open Source Platform for Complex Network Analysis and Visualization:http://
www.cytoscape.org/

http://www.cytoscape.org/
http://www.cytoscape.org/

4.5. SUMMARY AND DISCUSSION 79

awareness using the GroupDiv model. Then we propose efficient algorithms to
calculate group divergence awareness for the past and in realtime.

5
GroupDiv: Group Divergence
Awareness Formal Model

Contents
5.1 Introduction . 81
5.2 GroupDiv Definition 83
5.3 Computing Divergence Awareness on Causal His-

tories . 88
5.4 Computing Group Divergence Awareness in Real-

Time . 92
5.5 Simulating Real-Time Divergence Metrics Com-

putation . 96
5.6 Related work . 98
5.7 Summary . 103

5.1 Introduction
In multi-synchronous collaboration, participants work in parallel on their own
copies and synchronize periodically to build a consistent state. Version control
systems (CVS, SVN, git) and synchronizers (Dropbox, isync) are examples of
multi-synchronous collaboration software. The multi-synchronous collabora-
tion introduces divergence between copies of shared objects. If working in par-
allel can potentially reduce completion time, it induces blind modifications [46].
The overhead of solving conflicts introduced by concurrent modifications can
overwhelm the expected gain [17, 64, 66]. Divergence awareness [58] makes
participants conscious of the quantity and the location of divergence in shared
objects. Participants are informed about potential risk of future conflicts. Di-
vergence awareness answers the following questions: is there any divergence?
With whom? Where? And how much? Divergence awareness is an implicit

81

82CHAPTER 5. GROUPDIV: GROUP DIVERGENCE AWARENESS FORMAL MODEL

coordination mechanism [39, 34], it incites participants to coordinate their ac-
tions to reduce divergence. It can be provided by different systems, relying on
different metrics with different ad-hoc visualizations like: State Treemap [57],
Operational Transformation Divergence [58], Palantir [73], Edit Profile [63],
Concurrent modifications [3], and Crystal [15].

Different approaches exist for computing divergence: estimating the size
of conflicts [58], estimating the difference between users’ copies and a refer-
ence copy [57], or estimating divergence according to multiple copies of refer-
ence [15]. Some systems only consider published operations [63], therefore, we
can talk about divergence awareness of the past. Others consider unpublished
operations [46], in this case, we have real-time divergence awareness. In both
cases, metrics can be projected according to different perspectives such as the
structure of documents, the users, or across the time. This generates different
kinds of visualization.

A first issue concerns divergence quantification. Even if existing divergence
metrics are able to notify users about the presence of divergence and where it is
located, it is more difficult to understand how they really quantify divergence.
Most of the metrics estimates some editing distance between users’ workspaces
and a copy of reference. They do not really try to quantify the group diver-
gence. In this chapter, we focus on the quantification of the divergence of
a group. A group divergence metric makes all members of the group aware
of the minimal distance of the group to reach the next potential convergence
point. It is possible for each member to know her contribution to this distance,
therefore, any member is aware of her own position in the group. This way, a
reference copy is defined virtually according to the current global state of the
group.

Once a group divergence metric is defined, a second issue arises concern-
ing the computation of this metric. Group divergence metrics require some
global knowledge about the state of system. Multi-synchronous collaborative
systems can be centralized such as CVS or Dropbox. In this case, divergence
information can be exchanged through a central server or simple notification
systems as in [57, 73]. It can also be fully distributed as in distributed version
control systems or P2P wikis [67] and organized as a social network. In this
case, the number and the list of sites are unknown which makes any group
divergence metric computation more complex as described in [7].

In this chapter, we define a simple formal model for divergence metrics and
we propose an original group divergence metric as the number of operations
to integrate by the group to reach a convergence state. We propose an algo-
rithm to compute this group divergence metric for causal histories. The metric
is expressed as semantic queries on a conceptualization of our formal model.
We validate this approach by computing group divergence metric on real his-
tories extracted from different distributed version control systems. We also
define a distributed algorithm to compute group divergence metric efficiently
using gossiping protocols in a fully decentralized network. We validate the dis-
tributed computation of divergence metrics with simulations on a peer-to-peer
network.

5.2. GROUPDIV DEFINITION 83

5.2 GroupDiv Definition
We observed that existing multi-synchronous collaborative systems behave like
optimistic replication systems [71]. An optimistic replication model considers
N sites where any kind of objects are replicated. We can say that a site cor-
responds to a stream of activity in Dourish definition [23]. Objects can be
modified anytime, anywhere by applying an update operation locally. Accord-
ing to the optimistic replication models, every operation follows the following
lifecycle:

1. An operation is generated in one site, in isolation. It is executed im-
mediately without any locking, even if the local site is off-line. This is the
disconnection phase of the multi-synchronous collaboration. An operation can
be decorated with meta-data such as author, date, operation identifier, etc.

2. It is broadcasted to all other sites. The broadcast is supposed to be
reliable. All generated operations will eventually arrive to all sites. Pairwise
synchronization of sites is a way to broadcast operations to all sites. There is
no constraint about how operations are disseminated (broadcast, anti-entropy,
pairwise synchronization, gossiping, etc.). We just suppose that a graph of
dissemination exists between sites. This graph represents a collaboration net-
work.

3. Received operations are integrated and re-executed. This is the synchro-
nization phase of the multi-synchronous collaboration model. Integration relies
on merge algorithms such as those used in operational transformation[81]. We
suppose that the merge algorithm is deterministic, commutative, and associa-
tive i.e. merging operations produce the same state in all sites whatever the
order of reception of concurrent operations.

Different consistency models can be applied at this stage, causal consis-
tency, eventual consistency, intention preservation, etc. We made no hypoth-
esis about the consistency model used. However, divergence awareness relies
on concurrent operations analysis and two operations are concurrent if there
is no causal relation between them. Causal relations aka "happened-before"
relations are defined in [51], we use these definitions for multi-synchronous
collaboration systems.

The general idea of the group divergence awareness is :

• Following the optimistic replication model, each site builds a history of
operations. These operations are partially ordered using causal relations.
The local history is "grow only", we call it the causal history of a site.

• If all these causal histories are merged, we obtain a maximal causal
history, we call it Hmax.

• If every local causal history is equal to Hmax, then the convergence is
achieved.

• Otherwise, there is a divergence in the system. This divergence is the
number of operations to be integrated by the group to reach convergence
i.e. the number of operations that belongs to Hmax and not in the local
history of all sites. Consequently, our vision of divergence has to be
understood as a group divergence and not as an editing distance between
two members of this group. This divergence metric makes all members

84CHAPTER 5. GROUPDIV: GROUP DIVERGENCE AWARENESS FORMAL MODEL

aware of the minimal distance for the group to reach the next potential
convergence point represented by Hmax. It is possible for each member
to know how she contributes to this distance, so any member is aware of
her own position in the group.

• Building such divergence metric requires to determine the membership;
who is in the group? Answering this question is challenging because
multi-synchronous models have no clear procedure for joining and leaving
the group. Next, computing the number of operations to be integrated
by the group to reach convergence requires a global knowledge of the
state of all sites. Membership and global knowledge are not a problem
for building a divergence model, however, they are challenging for metric
computation at run-time.

In the following, we define S as the set of sites in the system at the di-
vergence awareness computation time, and N = |S| as the number of sites.
Each site is uniquely identified by a unique identifier Siteid, and it maintains
a logical clock ClkSiteid

[54, 68] that increments when the site generates a new
operation. An operation op is uniquely identified by the pair (Siteid, ClkSiteid

),
where Siteid is the generating site identifier and ClkSiteid

is its logical clock
when it generated the operation. We note H as the global causal history of the
system, it is the set of all existing operations in the system at the computation
time.

An operation op2 is causally dependent on op1 if they are related by the
happened-before relation [51, 81].

Definition 15 (happened-before →) Given op1, op2 ∈ H, generated respec-
tively at sites: Site1 and Site2: op1 → op2 iff (i) Site1 = Site2 and the gen-
eration of op1 happened before the generation of op2; or (ii) Site1 6= Site2
and the execution of op1 at Site2 happened before the generation of op2, or
(iii) ∃op3 ∈ H : (op1 → op3) ∧ (op3 → op2)

The happened-before relation defines a partial order on the set of the oper-
ations in the system H. The happened-before relation is transitive, irreflexive
and antisymmetric. From the happened-before definition, we can define con-
current operations as:

Definition 16 (Concurrent operations ‖) ∀op1, op2 ∈ H : op1 ‖ op2 ⇔
¬(op1 → op2) ∧ ¬(op2 → op1)

We associate a local causal history HS with every site S in the system.
This corresponds to all operations generated and received by the site S at
divergence awareness computation time. The definition implies that if an op-
eration belongs to the local history, then all operations that happened before
this operation belongs also to the local history. Consequently, the history is
complete.

Definition 17 (Local Causal history) ∀S ∈ S : ∃HS ⊆ H such that ∀op ∈
HS, {opx : opx → op} ⊆ HS

5.2. GROUPDIV DEFINITION 85

Site1 Site2 Site3

op2,1
++tt op2,2
++uu

step1

op1,1

**

op3,1

step2

op1,2

step3

HSi

after
step3

op1,2

op1,1

OO

op2,2

OO

op2,1

OO

op2,2

op2,1

OO

op1,1 op3,1

op2,2

??__

op2,1

OO

Figure 5.1: Multi-synchronous collaboration scenario

The scenario in figure 5.1 shows three sites collaborating using multi-
synchronous collaboration model. The local causal history HSi

for each site
appears at the end of the figure. Every site maintains a logical clock ClkSi

and a causal history HSi
. The causal history is modeled as a directed acyclic

graph with the operations as nodes and the happened-before relations as arcs.
At the beginning Site2 generates two operations op2,1 and op2,2, then it broad-
casts these operations to the other sites (step1). Site1 and Site3 generate op1,1
and op3,1 respectively after receiving Site2’s operations (step2). Site1 sends its
operation to Site3, then it generates new operation op1,2 (step3). After receiv-
ing the operation op1,1, Site3 can deduce that: op2,1 → op2,2, op2,2 → op1,1,
op2,2 → op3,1, op1,1 ‖ op3,1 and by transitivity op2,1 → op1,1, op2,1 → op3,1.

A site has only one function to manipulate its causal history, this function
inserts new operations into the causal history. There is no function that deletes
an operation from the causal history.

Definition 18 (HS is incremental) When a site S receives or generates a
new operation op then HS = HS ∪ {op}; HS ⊆ HS ⊆ H

In order to compute the group divergence awareness, we need to calculate
the maximal causal history Hmax of the sites participating in the system at the
computation moment. From Hmax we can deduce the total number of unique
operations in the system.

Definition 19 (Maximal causal history in the system)

Hmax =
⋃
i

HSi
: ∀Si ∈ S

Definition 20 (The total number of operations in the system) optot =
|Hmax|

86CHAPTER 5. GROUPDIV: GROUP DIVERGENCE AWARENESS FORMAL MODEL

Hmax HS1
GD(Site1)

= |Hmax \HS1 |

step1

op2,2

op2,1

OO
op2,2

op2,1

OO 0

step2

op1,1 op3,1

op2,2

??__

op2,1

OO

op1,1

op2,2

OO

op2,1

OO
1

step3

op1,2

op1,1

OO

op3,1

op2,2

__ ??

op2,1

OO

op1,2

op1,1

OO

op2,2

OO

op2,1

OO

1

Figure 5.2: GD(Site1) computation at each step of the scenario of figure 5.1

We define the global divergence of a site Si as the the sum of operations
in Hmax that are not in Si’s causal history, GD(Si). It corresponds to the
number of concurrent operations that site Si has to integrate to reach the next
potential convergence state represented by Hmax.

Definition 21 (Global divergence of a site) GD(Si) = |Hmax \HSi
|

We can compute GD(Site1) for the scenario of figure 5.1. At step1, Hmax

is equal to HS1 , so GD(Site1) = 0. At step2 and step3, only one operation is
missing for Site1, so GD(Site1) = 1.

The group divergence GDtot is the sum of operations in Hmax that are not
in HSi

of every site Si in the system. The system is idle when divergence is
null i.e. when all HSi

are equal to Hmax.

Definition 22 (Group divergence)

GDtot =
∑
i

|Hmax \HSi
| : ∀Si ∈ S

Figure 5.3 shows the results of calculating Hmax and the group divergence
GDtot. For example, at step 3, every user knows that the group divergence is
GDtot = 5. This represents the distance for next potential convergence state.
Every user knows her own contribution to this distance. Site1 has to integrate
op3,1, Site2 has to integrate op3,1, op1,1 and op1,2, Site3 has to integrate op1,2.

GDtot as defined in definition 22 requires to compute the difference between
sets. However, given HSi

⊆ Hmax we can rewrite global divergence GD(Si) for
a site Si as follows:

5.2. GROUPDIV DEFINITION 87

Hs1 Hs2 Hs3 Hmax

step1

op2,2

op2,1

OO
op2,2

op2,1

OO
op2,2

op2,1

OO
op2,2

op2,1

OO

GD(S1) = 0 GD(S2) = 0 GD(S3) = 0 GDtot = 0

step2

op3,1

op2,2

OO

op2,1

OO

op2,2

op2,1

OO

op3,1

op2,2

OO

op2,1

OO

op1,1 op3,1

op2,2

??__

op2,1

OO

GD(S1) = 1 GD(S2) = 2 GD(S3) = 1 GDtot = 4

step3

op1,2

op1,1

OO

op2,2

OO

op2,1

OO

op2,2

op2,1

OO

op1,1 op3,1

op2,2

??__

op2,1

OO

op1,2

op1,1

OO

op3,1

op2,2

__ ??

op2,1

OO

GD(S1) = 1 GD(S2) = 3 GD(S3) = 1 GDtot = 5

Figure 5.3: Max causal history and group divergence for three sites

Definition 23 (Aggregate global divergence for a site)

optot =
N∑
k=1

ClkSk
: ∀Sk ∈ S

AGD(Si) = optot − |HSi
|

Consequently, we can rewrite the computation of group divergence GDtot

in the system as follows:

Definition 24 (Aggregate group divergence)

AGDtot = optot ×N −
N∑
i=1
|HSi
|

This definition only requires aggregation functions for computation. To
better understand GDtot definition, suppose we define divergence between two
sites as the number of missing operations in their respective local causal histo-
ries. We note divergence between two sites ∇. This corresponds to the editing
distance between the two sites.

Definition 25 (Divergence between two sites) ∇ : S×S→ N, ∇(S1, S2) =
|(HS1 \HS2) ∪ (HS2 \HS1)|

Definition 26 (∇ is commutative) ∀S1, S2 ∈ S : ∇(S1, S2) = ∇(S2, S1)

We calculate the divergence between the sites in the scenario in figure 5.1,
the results are shown in the table 5.1.

88CHAPTER 5. GROUPDIV: GROUP DIVERGENCE AWARENESS FORMAL MODEL

Step ∇(Site1, Site2) ∇(Site1, Site3) ∇(Site2, Site3)
step1 0 0 0
step2 1 2 1
step3 2 2 2

Table 5.1: Divergence between each two sites in the system

In order to calculate the group divergence, it is incorrect to only rely on
∇. As it is shown in figure 5.1, Site3 has consumed op1,1 from Site1. op1,1
will be calculated twice: 1) in ∇(Site1, Site2) and 2) in ∇(Site2, Site3) this is
incorrect.

From this example, we can easily deduce that:

GDtot 6=
∑
i,j

∇(Si, Sj)

This illustrates that group divergence awareness cannot rely on distance be-
tween sites. GDtot prevents overlapping while counting operations to integrate
and keeps the group divergence metric safe.

5.3 Computing Divergence Awareness on Causal
Histories

op1,4

op1,3

OO

op3,2

jj

op2,4

ee

step t

op2,3

OO

op1,2

99

OO

op3,1

OO

op1,1

OO

op2,2

ee

CC

op2,1

OO

Figure 5.4: A causal history

In this section, we show how we computed GDtot on real data extracted
from different software projects managed by different distributed version con-
trol systems (DVCS). First, we built extractors to populate the SCHO ontology
defined in [7, 5], SCHO conceptualizes causal histories. This demonstrates that
different multi-synchronous collaborative systems rely on common abstraction
and this abstraction is enough to compute group divergence awareness, as we
will see later. Next, we designed an algorithm that performs a bottom-up scan

5.3. COMPUTING DIVERGENCE AWARENESS ON CAUSAL HISTORIES89

HS1 HS2 HS3 Hmax

op1,2

op1,1

OO

op2,2

OO

op2,1

OO

op2,3

op1,2

OO

op1,1

OO

op2,2

OO

op2,1

OO

op3,1

op2,2

OO

op2,1

OO

op2,3

op1,2

<<

op3,1

op1,1

OO

op2,2

bb

EE

op2,1

OO

Figure 5.5: Extraction of HSi
and Hmax at step t from the causal history

described in figure 5.4

of the causal histories in order to compute GDtot. This algorithm allows to
replay the evolution of GDtot on existing causal histories. This helps the anal-
ysis of project history in terms of frequency of convergence and the maximal
amplitude of divergence.

Computing group divergence metric on existing causal histories requires a
posteriori an interpretation of a causal history. We have to determine what
is Hmax and what are HSi

. Figure 5.4 presents a causal history from which
group divergence metrics will be computed. By hypothesis, we consider that
all sites are present in this history. The algorithm for computing divergence
awareness metric is detailed in listing 5.1. The algorithm has three steps:

1. Starting from the bottom of causal history, we have to decide when to
perform computation. We choose a cut point (step t in figure 5.4). Different
strategies can be applied: operations can be annotated with received times-
tamp and slicing can be done on intervals, or the causal history is considered as
a lattice and every slice corresponds to a level in the lattice. In this algorithm,
we choose to use operations’ timestamps to determine the cut.

2. Once the cut is determined (step t in figure 5.4), we have to determine
the set of HSi

and Hmax. Hmax is composed of all operations from the bottom
to step t. Next, we have to determine the number of sites involved in Hmax.
As operations are uniquely identified by the pair (Siteid, ClkSiteid

), N is the
number of different Siteid present in Hmax. HSi

contains the last operation
produced by Sitei: op(Sitei,max(ClkSitei

)) and the transitive closure of this
operation according to the "happened-before" relation. Figure 5.5 shows the
result of extraction the sets of HSi

and Hmax from the causal history described
in figure 5.4.

3. Once HSi
and Hmax are determined, the group divergence metric can be

computed.
For example, we can compute GDtot =

3∑
i=1
|Hmax \HSi

| = 2 + 1 + 3 = 6

90CHAPTER 5. GROUPDIV: GROUP DIVERGENCE AWARENESS FORMAL MODEL

Project name DVCS #ChangeSet #User #Merge #Triple Time (s)
Reddit git 481 26 6 2444 4
Gollum git 613 37 41 2851 12
MongoDB git 13636 91 1992 68186 158
AllTray Bazaar 389 3 25 2168 5
Anewt Bazaar 1980 13 45 9433 44
hgview Mercurial 595 15 32 3257 12
murky Mercurial 198 17 19 1111 5
anyvc Mercurial 430 7 4 2172 7

Table 5.2: Execution time and general statistics

1: Let Hmax = {op ∈ H : op.timestamp ≤ t}
2: Let Sites = {Sitei : op(Sitei, ∗) ∈ Hmax}
3: foreach Sitei ∈ Sites do
4: Let maxClk = max{Clk : op(Sitei, Clk) ∈ Hmax}
5: Let HSi = {op ∈ Hmax : op→ op(Sitei, maxClk)}

Listing 5.1: Calculating Hmax and HSi
for each site starting from a time t

We applied the above algorithm on real software development projects pre-
sented in table 5.2. We chose projects managed by different tools (Mercurial,
git, Baazar), with different history size (the number of ChangeSets), with dif-
ferent number of users, and different number of merges. The number of merges
is an indicator of concurrent activities. We first retrieved the public reposi-
tories of these projects to extract HS for each repository. As these projects
extracted from different tools, we transformed their corresponding repositories
into causal histories using the SCHO ontology proposed in [7, 5]. We made
the following assumptions when parsing the repositories logs:

1. We considered the project as one shared object, so any changeset we find
is a modification to this object.

2. We considered each branch in the log as a site.

3. We considered that each site represents one user.

Transformed histories are stored in the JENA semantic triple store 1. The
SCHO ontology allows to implement metrics as SPARQL 2 queries as detailled
in [5]. The sixth column of table 5.2 gives the number of triples created by
this transformation. The transformation itself is performed by dvcs2lod3 tool;
that we developed. This tool handles git, Mercurial and Bazaar repositories.

We implemented a tool called: DAtool4 that slices the history and computes
at every step the divergence awareness metric.

Figures 5.6-5.11 show the results obtained after computing group diver-
gence awareness metric on a subset of projects presented in table 5.2.

We sliced the different histories using different time intervals. For small
project, we sliced by days, and for big projects, we sliced by months. The

1Open source Semantic Web framework for Java: http://openjena.org/
2SPARQL Query Language for RDF: http://www.w3.org/TR/rdf-sparql-query/
3 https://github.com/kmobayed/dvcs2lod
4 https://github.com/kmobayed/DAtool

http://openjena.org/
http://www.w3.org/TR/rdf-sparql-query/
https://github.com/kmobayed/dvcs2lod
https://github.com/kmobayed/DAtool

5.3. COMPUTING DIVERGENCE AWARENESS ON CAUSAL HISTORIES91

104 219 335 451
Time (days)

0

5

10

15

20

25

30

G
D

to
t

Figure 5.6: GDtot results for Murky project: Mercurial, sliced by day

20 136 251 367 483 599 714 830
Time (days)

0

20

40

60

80

100

G
D

to
t

Figure 5.7: GDtot results for hgview project: Mercurial, sliced by day

Y-axis represents the number of ChangeSets, while the X-axis represents time
intervals.

Every figure presents, for a given site, the global divergence (GDtot) at a
given time. The graphs display what a user could see during project develop-
ment if she activated divergence awareness. Displaying such metrics reveal a
posteriori how much divergence users are tolerating.

For Murky project (see figure 5.6), it is interesting to notice how many
times GDtot = 0. This means there is no divergence in the system. For this
project, it happens only two times on day 2 and day 15 and the maximum
divergence concerns 30 ChangeSets.

For Anewt project (see figure 5.8), which is ten times bigger than Murky
in term of ChangeSets, divergence average is 100 ChangeSets and maximum
of 300 ChangeSets. Convergence is rare, 2 times on analysis time.

For MongoDB project (see figure 5.10), which is ten times bigger than

92CHAPTER 5. GROUPDIV: GROUP DIVERGENCE AWARENESS FORMAL MODEL

167 398 630 861 1093 1324 1556 1787 2019
Time (days)

0

100

200

300

400

500

G
D

to
t

Figure 5.8: GDtot results for Anewt project: Bazaar, sliced by day

110 226 341 457 573
Time (days)

0

10

20

30

40

50

G
D

to
t

Figure 5.9: GDtot results for allTray project: Bazaar, sliced by day

Anewt in term of ChangeSets, divergence stays between 10 to 30 Changesets
and convergence is much more regular. It seems that divergence is managed.

The experimentations demonstrate how group divergence metric can be
defined and computed on real histories for analyzing past interactions in multi-
synchronous distributed collaborative systems.

5.4 Computing Group Divergence Awareness
in Real-Time

In section 5.3, we computed divergence metric on logs i.e. for past interac-
tions. Users can know how much divergence was in the system. Divergence
awareness has to make users aware about how much divergence is currently
in the system. This requires to access ongoing unpublished operations for all

5.4. COMPUTING GROUP DIVERGENCE AWARENESS IN REAL-TIME93

3 10 18 26 34
Time (months)

0

5

10

15

20

25

30

G
D

to
t

Figure 5.10: GDtot results for mongoDB project: git, sliced by month

1 59 117 175 233 291 349 406
Time (days)

0

20

40

60

80

G
D

to
t

Figure 5.11: GDtot results for gollum project: git, sliced by day

the sites involved in multi-synchronous collaboration. A simple solution for
a distributed multi-synchronous collaborative system is to elect a leader and
each site publishes and maintains on this central site the number of produced
and received operations. The central site computes AGDtot and sends back
the results. This approach re-introduces a central site with single point of fail-
ure although some distributed multi-synchronous collaborative system such as
DVCS or P2P wikis do not require it.

These new distributed multi-synchronous collaborative system can be con-
sidered as a social network where each participant follows the updates of the
others. A good analogy is to think about a social network such as twitter
where messages contain operations that can be executed locally. In such sys-
tems, the number and the list of participants are unknown which prevents the
computation of AGDtot.

An interesting approach for computing metrics in this context has been

94CHAPTER 5. GROUPDIV: GROUP DIVERGENCE AWARENESS FORMAL MODEL

Figure 5.12: Overlay network for exchanging divergence awareness information

developed in [7]. The idea is to discover the topology of the multi-synchronous
collaborative system by following the synchronization links between sites. Next,
every participant is free to publish some RDF data about its own state, and
most important, publish the list of sites it is following. Under these conditions,
a distributed semantic query engine such as in [41] can dynamically traverse
the multi-synchronous collaborative network, collect informations and compute
functions such as AGDtot. This approach can potentially compute AGDtot but
it depends on the traversal of the network; failures can stop traversal, it will
only work if the network graph is connected.

Another partial approach [52] relies on an overlay network and gossiping
algorithms [31]. The idea is to build an overlay network on top of distributed
multi-synchronous collaborative system in order to avoid partitioning of the
multi-synchronous distributed system (see figure 5.12). In case of failure of one
site in the "chain" of followers, the overlay network can repair broken chains and
maintain connectivity. This approach does not allow to compute AGDtot, how-
ever, it allows to reach every sites in a fully decentralized multi-synchronous
collaborative system whatever the basic topology of the social network. The
overlay network has probabilistic guarantees to avoid partitioning.

In order to compute AGDtot with the overlay network approach, we will
take advantage of the aggregate gossiping algorithm [49]. This family of pro-
tocols allows to compute aggregate function on an overlay network without
knowing the size of the network. This means that if each site makes available
the number of operations it has published and the total number of operations
it has received, then AGDtot is computable on the overlay network.

Different algorithms are available for computing aggregate functions with
gossiping, we chose the PushSum algorithm [49] to compute AGDtot. PushSum
works as follows: At all times t, every node imaintains a sum sumt,i, initialized
to a local value, and a weight wt,i, initialized to w0,i := 1 for the node that
initiated the protocol while all others start with weight 0. At time 0, it sends
the pair (sum0,i, w0,i) to itself, and in each subsequent round t, each node i
follows the protocol given in listing 5.2. The relative error in the approximation
of the sum drops to within ε with probability at least 1−δ, in at most O(logn+
log 1

ε
+ log 1

δ
) rounds.

5.4. COMPUTING GROUP DIVERGENCE AWARENESS IN REAL-TIME95

Site1 Site2 Site3
round st,1 wt,1 optot,1 st,2 wt,2 optot,2 st,3 wt,3 optot,3

0 2.00 1.00 2.00 2.00 0.00 2.00 1.00 0.00 1.00
1 2.50 0.75 3.33 1.00 0.00 1.00 1.50 0.25 6.00
2 1.25 0.37 3.33 2.12 0.31 6.80 1.62 0.31 5.20
3 1.68 0.34 4.90 2.18 0.40 5.38 1.12 0.25 4.50
4 2.35 0.46 5.11 2.07 0.41 5.01 0.56 0.12 4.50
...
8 2.46 0.49 5.00 1.68 0.33 4.99 0.84 0.16 4.98

Table 5.3: A sample execution of the PushSum protocol for calculating optot
for scenario of figure 5.1

1: Let {(sumr, wr)} be all pairs sent to i in round t− 1
2: Let sumt,i :=

∑
r sumr, wt,i :=

∑
r wr

3: Choose a target ft(i) uniformly at random
4: Send the pair (1

2sumt,i,
1
2wt,i) to ft(i) and i (yourself)

5: sumt,i

wt,i
is the estimate of the average in round t

Listing 5.2: PushSum protocol

PushSum protocol can compute an estimation ofAGDtot with two PushSum
rounds. The first round will calculate the total number of unique operations
in the system optot, by initializing every sum0,i := Clki. The second round

will calculate the total number of operations present on all the sites
N∑
i=1
|HSi
|,

by initializing every sum0,i := |HSi
|. Then we can directly compute AGDtot

using the formula defined in definition 24.

The scenario in figure 5.1 presented a theoretical computation of optot = 5
at step 3. Table 5.3 illustrates the execution of the PushSum protocol for the
same scenario. In the initial round, site1 and site2 generated two operations
(sum0,1 = 2, sum0,2 = 2), site3 generated one operation (sum0,3 = 1). We sup-
pose that site1 initiates the algorithm, so w0,1 = 1, while others are initialized
to w0,2 = 0 and w0,3 = 0. In every round, the PushSum algorithm is executed.
We observe that optot converges quickly in all sites to the expected value 5. We
must notice that in some rounds, the PushSum algorithm can compute value
greater than expected value e.g. round 4 on site1, AGDtot = 5.11.

This approach computes AGDtot without computing Hmax on every site,
making real-time divergence computation efficient in a fully decentralized de-
ployment of a multi-synchronous distributed collaborative system. This ap-
proach does not take into consideration offline sites, since offline sites are un-
reachable and therefore cannot participate in real-time divergence awareness.
Their divergence will be available as soon as they will be online again.

In the next section, we generated different topologies of distributed multi-
synchronous collaborative systems and compared the performance of the link
traversal and the overlay approach for computing AGDtot.

96CHAPTER 5. GROUPDIV: GROUP DIVERGENCE AWARENESS FORMAL MODEL

1000 2000 3000 4000
Time (ms)

0

50

100

150

200

250

G
lo

ba
l D

iv
er

ge
nc

e

PushSum
Link Traversal
Real Value

Figure 5.13: GDtot computation time in ms for setup 1: 4 nodes, 2 edges/node

Setup Network model #Nodes #Edges
1 Sample Network 4 8
2 Erdös-Rényi 100 5000
3 Erdös-Rényi 500 125000
4 Erdös-Rényi 1000 10000
5 Barabási-Albert 100 1000
6 Barabási-Albert 500 5000
7 Barabási-Albert 1000 10000

Table 5.4: Multi-synchronous collaboration networks configurations

5.5 Simulating Real-Time Divergence Metrics
Computation

We evaluate the performance of PushSum algorithm for real-time divergence
metric computation on various settings and compare it with traditional ap-
proach based on distributed query evaluation. We deployed the architecture
presented in figure 5.12 in the PeerSim simulator [59].

We generate different configurations of multi-synchronous collaboration
networks where sites are linked according to different graphs models. We
made the hypothesis that there is no isolated sites in the system. We used
the Erdös-Rényi [27] random graph model and Barabási-Albert [1] scale-free
networks that better represents social graphs. Table 5.4 shows the different
characteristics of the generated networks. We generated graphs up to 1000
sites. The third column represents the number of nodes in the network and
the last one represents the total number of synchronization links in the system.
We used Cytoscape5 to generate the different graphs.

We compute group divergence AGDtot for every setup in table 5.4 using
two methods:

5An Open Source Platform for Complex Network Analysis and Visualization:http://
www.cytoscape.org/

http://www.cytoscape.org/
http://www.cytoscape.org/

5.5. SIMULATING REAL-TIME DIVERGENCE METRICS COMPUTATION97

1. PushSum protocol described in section 5.4.

2. Distributed semantic queries using the Link Traversal Based Query Ex-
ecution [41]. Link Traversal Based Query Execution approach tries to
find relevant data for the query on remote sites by following the syn-
chronization links of every site in the network. AGDtot is represented
as a SPARQL query that propagates across the graphs of sites gather-

ing numbers and computes optot and
N∑
i=1
|HSi
|. This approach is relevant

because the topology of sites in the multi-synchronous collaboration net-
work is unknown. Link traversal allows to run a semantic query in these
extreme conditions.

For every setup, AGDtot is computed off-line to set the absolute value of
group divergence. Next, we can observe how much time in ms is needed by
each method to approximate the absolute AGDtot value.

Figure 5.13 shows the results of setup 1: 4 nodes, 2 edges/node. In this
network every site is connected to all other sites. Both approaches found the
absolute value in less than 3s. However, the PushSum algorithm approximates
the expected value in less than 1.5s.

0 10000 20000 30000 40000 50000 60000 70000
Time (ms)

0

5000

10000

15000

20000

G
lo

ba
l D

iv
er

ge
nc

e

PushSum
Link Traversal
Real Value

Figure 5.14: AGDtot computation time in ms for setup 2: Erdös-Rényi network,
100 nodes, 50 edges/node

Figure 5.14 shows the results of setup 2: random graph with 100 nodes
and 50 edges/node. Both approaches reached a stable value at the same time
but the Link Traversal Based Query Execution value is far from the absolute
divergence value and it does not succeed in calculating the global divergence.
This is because Link Traversal Based Query Execution needs to get the data
from all sites, starting from one site, then following the collaboration links in
the network. If it cannot reach all sites from this site then result of divergence
computation is incorrect. The Link Traversal approach depends on the topol-
ogy of the multi-synchronous collaboration network, the PushSum approach
rebuilds an overlay network on the top of the multi-synchronous collaboration
network and consequently does not depend of the internal organization of the

98CHAPTER 5. GROUPDIV: GROUP DIVERGENCE AWARENESS FORMAL MODEL

0 10000 20000 30000 40000 50000 60000 70000
Time (ms)

0

100000

200000

300000

400000

G
lo

ba
l D

iv
er

ge
nc

e

PushSum
Link Traversal
Real Value

Figure 5.15: AGDtot computation time in ms for setup 3: Erdös-Rényi, 500
nodes, 250 edges/node

multi-synchronous collaboration network. This makes the computation of the
divergence metric reliable.

Figure 5.15 shows the results of setup 3: a random graph of 500 nodes with
250 edges/nodes. In this setup, every site is connected to half number of total
sites. Here, Link Traversal Based Query Execution is seven times more than
the PushSum algorithm to reach the stable value, and even after reaching this
value it is still far from the real divergence value. We can also observe that
PushSum gets the value quickly but overestimate the value.

Figure 5.16 shows the results of setup 4: a random graph of 1000 nodes
with 10 edges/node. As expected, the performance of Link Traversal decreases
while PushSum still approximates the good value in 3s.

Figures 5.17,5.18,5.19 show the results of setup 5,6,7: a scale-free network
of 100 to 1000 nodes with 10 edges/nodes. It confirms the previous obser-
vations on the relation between the network connectivity and the success of
the Link Traversal Based Query. It also confirms that the PushSum algorithm
approximates the right value of divergence in less than 4s in all experiments.

Simulations demonstrate that it is possible to approximate in few seconds
group divergence in large decentralized multi-synchronous collaboration net-
work. The Link Traversal approach is limited by the connectivity of the col-
laboration network. Maintaining an overlay network independent of the topol-
ogy of collaboration network and using PushSum algorithm allow to compute
the group divergence efficiently. AGDtot can be calculated reliably with the
PushSum algorithm while the Link Traversal approach gives no guarantee on
the obtained result.

5.6 Related work
In this section, we compare GroupDiv with existing divergence awareness sys-
tems described in the section 2.2.2 of the background chapter.

Concurrency awareness [3] is divergence awareness of the past, it detects

5.6. RELATED WORK 99

1000 2000 3000 4000 5000 6000
Time (ms)

0

10000

20000

30000

40000

G
lo

ba
l D

iv
er

ge
nc

e

PushSum
Link Traversal
Real Value

Figure 5.16: AGDtot computation time in ms for setup 4:Erdös-Rényi, 1000
nodes, 10 edges/node

concurrency a posteriori to help users to quickly find where automatic merges
have been performed in peer-to-peer wikis. If we compare concurrency aware-
ness to group divergence metric, concurrency awareness will be workspace cen-
tric i.e. it does not try to compute the number of concurrent operations for all
workspaces involved in multi-synchronous collaboration. Even if concurrency
awareness can be extended, it relies on plausible clocks that can return false
positives.

Crystal [15] is a real-time divergence awareness. It provides developers
with concrete information and advice about pending conflicts while remaining
largely unobtrusive. Crystal needs access to that developer’s repository and
the locations of the all other collaborators’ repositories. Actually Crystal cre-
ates a dedicated repository for awareness computation and integrates all the
collaborators’ modifications into this repository. Having this centric reposi-
tory is not compatible with decentralized collaborative systems. Decentralized
means that multiple copies of reference can exist. So how to determine a copy
of reference. GroupDiv, in some way, determines a virtual copy of reference
automatically and measures the distance that leads to this copy.

Concurrency awareness and Crystal divergence awareness systems do not
formally define the underlying formula they use to calculate their metrics.

Divergence awareness of the past uses the same metrics as real-time diver-
gence awareness. However, computing real-time metrics is much more chal-
lenging. It raises the issue of accessing remote information to compute the
metrics in efficient way. It also raises issues related to privacy preservation.

State Treemap [57] is a real-time divergence awareness described in section
2.2.2. In State Treemap the underlying metrics are not precisely defined,
there is no formula to compute how much divergence exists in the system.
In addition, different users do not see the same treemap. The quantification
of divergence as the number of rectangle of different colors will be different.
The quantity of divergence in the global system should not depend on the
workspace the user is working in, it should estimate the entropy relative to
global state of the system with all its workspaces.

100CHAPTER 5. GROUPDIV: GROUP DIVERGENCE AWARENESS FORMAL MODEL

1000 2000 3000 4000
Time (ms)

0

1000

2000

3000

4000

G
lo

ba
l D

iv
er

ge
nc

e

PushSum
Link Traversal
Real Value

Figure 5.17: AGDtot computation time in ms for setup 5: Barabási-Albert,
100 nodes, 10 edges/node

Divergence awareness is delivered as a treemap where each rectangle is
colored with the state of the shared object. State Treemap defines the fol-
lowing divergence awareness states: Locally Modified: enables the participant
to know that her own copy was modified where the others are not. Remotely
Modified: makes the participant aware of the changes that occur in the remote
workspaces. Potential Conflict: means that more than one participant are
updating the same document. Locally Uptodate: means that there is no new
modifications in all remote workspaces.

We can formally declare the previous states for one object using GroupDiv
model as follows:

Definition 27 (Locally-modified) The site Si is in a locally-modified state
if LM(Si) = ∃op ∈ HSi

, ∀Sj 6=i ∈ S : op /∈ HSj

Definition 28 (Remotely-modified) The site Si is in a remotely modified
state if RM(Si) = ∃Sj 6=i ∈ S,∃op ∈ HSj

: op /∈ HSi

Definition 29 (Potential-conflict) The site Si is in a potential-conflict state
if PC(Si) = LM(Si) ∧RM(Si)

This formalization demonstrates that State Treemap only relies on causal
histories for computing its states. Suppose, there is only one shared object
and we run State Treemap on the scenario shown in figure 5.1 (at step3). We
will obtain:

State Site1 Site2 Site3

Locally Modified true false true
Remotely Modified true true true
Potential Conflict true false true
Locally Up-to-date false false false

5.6. RELATED WORK 101

1000 2000 3000 4000 5000 6000
Time (ms)

0

1000

2000

3000

4000

G
lo

ba
l D

iv
er

ge
nc

e

PushSum
Link Traversal
Real Value

Figure 5.18: AGDtot computation time in ms for setup 6: Barabási-Albert,
500 nodes, 10 edges/node

At the same state, the group divergence metric will give a distance GDtot =
1 + 3 + 1 = 5. This clearly demonstrates that State Treemap allows user to
perceive divergence and where it is located, but not really to quantify it.

OT divergence awareness [58] is a real-time divergence awareness, in this
system sites are synchronized on demand but they exchange unpublished op-
erations in real-time. An OT algorithm simulates the integration of remote
operations in real-time and computes conflict objects. The size of all conflict
objects determines the quantity of divergence on each site.

Operational transformation relies on the sharing of causal histories as for
group divergence metric. One important issue with OT approach is that it
should guarantee that all sites will compute the same conflict objects and next
will give the same size on each site. It requires to develop quite complex trans-
formation functions and prove convergence properties on them. The group
divergence metric defined in this thesis ensures that all sites will see the same
value of the metric. In addition, a system can be divergent even with no con-
flicts (as for site2 in figure 5.1). In this case, a conflict based metric will not
capture it. Finally, we think that defining a divergence metric as a distance to
next convergence point is more meaningful than the size of conflict to solve.

Ghost operations divergence awareness [46] is a real-time divergence aware-
ness that preserves privacy. Ghost operations are representing real unpub-
lished operations, some parameters of operations can be blurred according to
user preferences to better preserve privacy. Ghost operations do not define
metrics, they can be considered as an overlay network on top of an exist-
ing multi-synchronous collaboration network that deliver ghost operations for
each real operation of the system. However, we can observe that computing
group divergence metric do not imply sending operations to other sites. The
metric computation only requires for each site to publish total number of oper-
ations produced (including unpublished ones) and total number of operations
received. Sites are not releasing informations on where it is located and what
has been done as in ghost operations. Other users can only perceive that an
activity exists.

102CHAPTER 5. GROUPDIV: GROUP DIVERGENCE AWARENESS FORMAL MODEL

0 2000 4000 6000 8000 10000
Time (ms)

0

50000

100000

150000

200000

G
lo

ba
l D

iv
er

ge
nc

e

PushSum
Link Traversal
Real Value

Figure 5.19: AGDtot computation time in ms for setup 7: Barabási-Albert,
1000 nodes, 10 edges/node

Palantir [73] is a divergence awareness tool that provides software devel-
opers with insight into others’ workspaces. It specifically informs a developer
about who changes which artifacts focusing on the concept of conflicts. Con-
flicts can be direct i.e. concurrent changes on the same artifact or indirect
through dependencies between files. Palantir [73] as State Treemap rely on a
central server for performing metrics computations. Users must open a ses-
sion on this server and send in real-time all local changes in order to get
awareness. This kind of architecture can hardly be transposed to more decen-
tralized multi-synchronous collaborative systems with no group membership.
Sites just follow the updates of other sites as in social network and generate
complex networks of synchronization. In such conditions, it is not possible to
deliver divergence awareness that needs to build a global knowledge about the
system.

If we interpret Palantir system with GoupDiv defined in section 5.2, shar-
ing events containing operations between all participants in real-time is like
building Hmax in each workspace. Different projections according to various
meta-data can be performed locally such as conflict interpretation and impact
analysis. However, compared to Palantir, we defined formally a group diver-
gence metric as distance to the next potential convergence state. Palantir does
not really define a distance, it tries to estimate size of direct or indirect conflict
as in OT divergence awareness [58]. In addition, we proposed an efficient algo-
rithm to compute the group metric that does not require to flood the network
to build Hmax in each workspace.

In section 3.3, we proposed SCHO [5] an ontology for constructing and
sharing the causal history in a distributed collaborative system. SCHO en-
ables defining existing divergence metrics in a declarative way using SPARQL
queries. It also makes awareness metrics computation independent of the un-
derlying collaborative system. Different systems can export their histories us-
ing SCHO ontology, this makes it possible to compute any existing divergence
metric on these logs. In GroupDiv, we used this feature of SCHO to compute
group divergence metric for past interactions. As the formal model presented

5.7. SUMMARY 103

in section 5.2 is more general than SCHO model, it was possible to express
GDtot as a semantic query on the SCHO ontology. More precisely, SCHO rep-
resents explicitly the "broadcast” stage of optimistic replication model using
PushFeed and PullFeed concepts. Theses feeds represent a publish-subscribe
mechanism that allows to ensure causal reception of operations. The GroupDiv
model is more general, it makes no difference between published and unpub-
lished operations. Somehow this is important, the metric only depends on local
histories and how they were shared. Finally, if we want to apply the SCHO
approach to compute metrics in real-time, this means that semantic queries
that compute metrics have to be distributed semantic queries. This is what we
did in section 5.5 by using the Link traversal approach. The main issue raised
by this approach is the discovery of all sites composing the multi-synchronous
collaborative system. Link traversal has no guarantee to find all the network,
consequently GDtot cannot be safely computed.

5.7 Summary
Existing divergence awareness systems keep users aware of the presence of
divergence, potential conflicts and where conflicts are located, but they poorly
quantify divergence in a multi-synchronous collaborative system and they are
not suitable for fully decentralized systems. Our proposal complete existing
divergence metrics with a group divergence metric. This original metric is
formally defined and can be efficiently computed for past interaction and in
real-time fully decentralized systems.

6
Conclusion and Perspectives

Multi-synchronous collaborative systems support parallel stream of activities
on replicated data. This enables workspaces to diverge. Divergence allows
participants to have different views of shared replicated data. If divergence
can help to reduce completion time, it can also generate important overhead
through conflicts solving. Divergence awareness is one approach that aims
to limit conflicts by making users aware of divergence. It can be seen as an
implicit coordination mechanism. Divergence awareness aims to answer the
following questions: is there any divergence? With whom? Where? And how
much?

Most of existing divergence awareness systems answer the first three ques-
tions. Only few ones answer the question related to: How much? More-
over, existing metrics do not estimate a global state of the system with all its
workspaces in a fully distributed way.

In this thesis, we focused on quantifying group divergence in decentralized
multi-synchronous collaborative systems.

First work on divergence awareness started in 2001 [57]. Many tools, met-
rics, visualization have been provided later. However, we raised up two main
issues about divergence awareness :

1. There is no a common model for understanding, comparing and reasoning
on divergence awareness.

2. There is no computation model for computing divergence awareness for
the past and in real-time.

In this thesis, we proposed a first model of divergence through the SCHO
ontology. In this contribution, we observed that all divergence metrics rely on
causality and, next we formalized these causal relations and how this causal
graph can be shared between participants using this ontology. We defined
algorithms to describe how this ontology is instantiated when users interact
following the multi-synchronous collaboration model. This ontology allows
a separation of functions between the collaboration tool and the divergence
awareness engine. In opposite with existing tools where divergence metrics

105

106 CHAPTER 6. CONCLUSION AND PERSPECTIVES

are part of the application, the SCHO ontology allows metrics to be written
as semantic queries on an abstraction of the interactions. We validated this
approach by computing existing divergence metrics on existing traces extracted
from different incompatible tools. We also demonstrated how new metrics can
be easily defined using the SCHO ontology by computing trust metrics.

However, if the SCHO ontology allows to express divergence metrics as
queries, this is just a partial answer for issues concerning common model for
understanding and computation of divergence metrics. The SCHO ontology
does not provide a clear definition of what is group divergence and it does
not define how metrics can be computed in real-time in order to avoid blind
modifications.

Next, we pointed out that divergence metrics make sense only within a
group and this group has to be defined and maintained through membership
management. However, decentralized multi-synchronous collaboration model
is clearly an editing social network where each user follows the changes of
others. Establishing the membership of divergence metrics requires this social
network to be navigable. The SCHO+ ontology is an extension of the SCHO
ontology that allows navigation through the editing social network. After that,
Link traversal queries can be used both for network discovery and distributed
computation of metrics. We simulated network discovery in various setups
and demonstrated severe performance issues when the size of the network is
growing. If the approach works, it does not scale.

At this point, we proved that divergence metrics can be expressed as queries
over an abstraction of a multi-synchronous collaboration model. A decentral-
ized multi-synchronous model can be understood as a editing social network
with the "follow your change" relation. We are still lacking of an intuitive
definition of group divergence. If it is quite easy to answer is there any diver-
gence ? With who? and Where? The "how much?" question has still unclear
definition .

We pointed out that existing metrics are quantifying divergence from a
workspace perspective rather than a group perspective i.e. a distance edition
from the workspace to a reference copy. We defined an original group diver-
gence metric that measures the distance of the group to the next potential
convergence state. The reference copy is now virtual. Each user is able to
know her own contribution to this distance. All elements of the metric have
been formally defined using an original abstract multi-synchronous collabora-
tive model.

We described how group divergence metric can be computed for past in-
teractions. So participants can know how much divergence was in the system.
We were able to compute group divergence metric based on real data coming
from different distributed version control systems.

We detailed how group divergence metric can be computed in real-time
by taking advantage of an overlay network on top of the multi-synchronous
collaborative system. The overlay network allows to manage membership is-
sues and to compute aggregate functions. As the group divergence metric
can be rewritten with aggregate functions, we obtain an efficient way to com-
pute group divergence metric; each site just maintains the total number of
operations it has produced and it has consumed. We built a simulation that
compares two approaches for computing group divergence; the first is based

6.1. PERSPECTIVES 107

on gossip protocol, the second is based on distributed semantic queries. The
simulation demonstrates that aggregate gossip protocols approximate the ex-
pected result quickly and reliably. The main problem for distributed semantic
queries was related to the membership discovery.

6.1 Perspectives
This work opens several perspectives:

In this thesis, we focused mainly on defining and computing the group
divergence metric. In the future, we need to propose widgets to visualize
this metric and to conduct usage studies to see how this metric can be really
understood and interpreted by users and how users will react to divergence.

Maintaining an overlay network on top of the multi-synchronous collab-
orative systems opens interesting perspectives. In this thesis, we used it for
membership and metrics computations. In the overlay network, each site store
only the number of the operations it produced and the number of the opera-
tions it consumed. However, it could be also possible also to store references
to operations relevant to metric computations, and consequently makes the
bridge with existing divergence metrics and on the other hand computing these
metrics in a fully distributed system.

In the current proposal, inactive users are handled in the same way as
actives ones. However, inactive users will cause group divergence metric to
increase till they synchronize their workspaces. It could be interesting to define
different type of users and compute the divergence metric with different users
projection and compare results. We believe we should detect inactive users
to eliminate them from group divergence computation. We can cluster users
of the system and determine which users are evolving and group them. The
metaphor can be the "tour de france" where distance between groups can be
established.

GroupDiv formal model is developed for multi-synchronous collaborative
systems. In the future, we want to extend the formal model and make it more
suitable for the semantic web world more specially for the Linked Data [42].
We want to develop new divergence awareness metrics for live modification
of the linked data. We developed metrics mainly in file synchronization and
collaborative text editing. Metrics are not linked to textual data, they are just
linked to multi-synchronous collaboration model. In [6, 45], we developed the
live linked data approach where we apply multi-synchronous to linked data
in semantic web. GroupDiv can help in this context to measure divergence
between semantic store replicas and load-balance semantic requests among
these replicas. For instance, we are looking to define new metric for Live
DBpedia 1. Once we have these metrics, we can use divergence awareness as
an indicator of data freshness in multiple sources or semantic stores during
query execution. Divergence awareness metrics will give an indication on the
query result accuracy that was executed on a given source.

The missing of the central authority in the decentralized multi-synchronous
collaborative system allows to preserve privacy. However, computing diver-
gence awareness requires divulging information that was not originally avail-

1http://live.dbpedia.org/

http://live.dbpedia.org/

108 CHAPTER 6. CONCLUSION AND PERSPECTIVES

able for the system’s users. This can be seen as a privacy breach. Users should
be aware of this privacy concern, and work should be done to meet their pri-
vacy requirements. For instance, it could be possible to filter the information
delivered to divergence awareness engine according to the user privacy rules
and it could be possible to use ghost operations as in [46].

A
SCHO Ontology described in
OWL

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [
<!ENTITY owl "http://www.w3.org/2002/07/owl#" >
<!ENTITY swrl "http://www.w3.org/2003/11/swrl#" >
<!ENTITY swrlb "http://www.w3.org/2003/11/swrlb#" >
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY owl2xml "http://www.w3.org/2006/12/owl2-xml#" >
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
<!ENTITY scho "http://www.semanticweb.org/ontologies/2009/4/scho.owl#" >

]>

<rdf:RDF xmlns="http://www.semanticweb.org/ontologies/2009/4/scho.owl#"
xml:base="http://www.semanticweb.org/ontologies/2009/4/scho.owl"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:swrl="http://www.w3.org/2003/11/swrl#"
xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:scho="http://www.semanticweb.org/ontologies/2009/4/scho.owl#">
<owl:Ontology rdf:about=""/>

<!--
//
//
// Classes
//
//
-->

<owl:Class rdf:about="&owl;Thing"/>

109

110 APPENDIX A. SCHO ONTOLOGY DESCRIBED IN OWL

<owl:Class rdf:about="#Site">
<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>

<owl:Class rdf:about="#Document">
<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>

<owl:Class rdf:about="#ChangeSet">
<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>

<owl:Class rdf:about="#Patch">
<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>

<owl:Class rdf:about="#Operation">
<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>

<owl:Class rdf:about="#PullFeed">
<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>

<owl:Class rdf:about="#PushFeed">
<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>

<!--
///
//
// Object Properties
//
///
-->

<owl:ObjectProperty rdf:about="#hasOp">
<rdfs:domain rdf:resource="#Patch"/>
<rdfs:range rdf:resource="#Operation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasDoc">
<rdfs:domain rdf:resource="#Site"/>
<rdfs:range rdf:resource="#Document"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasPatch">
<rdfs:domain rdf:resource="#ChangeSet"/>
<rdfs:range rdf:resource="#Patch"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasPull">
<rdfs:domain rdf:resource="#Site"/>
<rdfs:range rdf:resource="#PullFeed"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasPullHead">

111

<rdfs:domain rdf:resource="#PullFeed"/>
<rdfs:range rdf:resource="#ChangeSet"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasPush">
<rdfs:domain rdf:resource="#Site"/>
<rdfs:range rdf:resource="#PushFeed"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasPushHead">
<rdfs:domain rdf:resource="#PushFeed"/>
<rdfs:range rdf:resource="#ChangeSet"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#head">
<rdfs:domain rdf:resource="#Document"/>
<rdfs:range rdf:resource="#Patch"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#inPullFeed">
<rdfs:domain rdf:resource="#ChangeSet"/>
<rdfs:range rdf:resource="#PullFeed"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#inPushFeed">
<rdfs:domain rdf:resource="#ChangeSet"/>
<rdfs:range rdf:resource="#PushFeed"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#onDoc">
<rdfs:domain rdf:resource="#Patch"/>
<rdfs:range rdf:resource="#Document"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#previous">
<rdfs:domain rdf:resource="#Patch"/>
<rdfs:range rdf:resource="#Patch"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#previousChangeSet">
<rdfs:domain rdf:resource="#ChangeSet"/>
<rdfs:range rdf:resource="#ChangeSet"/>

</owl:ObjectProperty>

</rdf:RDF>

Bibliography

[1] R. Albert and A.L. Barabasi. Statistical mechanics of complex networks.
Reviews of modern physics, 74(1):47, 2002. 78, 96

[2] Larry Allen, Gary Fernandez, Kenneth Kane, David B. Leblang, De-
bra Minard, and John Posner. ClearCase MultiSite: Supporting
Geographically-Distributed Software Development. In Software Config-
uration Management, SCM’95, pages 194–214. Springer, 1995. 7, 19, 20,
49, 62, 69, 71

[3] Sawsan Alshattnawi, Gérôme Canals, and Pascal Molli. Concurrency
awareness in a P2P wiki system. In International Symposium on Col-
laborative Technologies and Systems, pages 285–294. IEEE, May 2008. 3,
8, 33, 34, 43, 82, 98

[4] L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley. Classes of
small-world networks. Proceedings of the National Academy of Sciences,
97(21):11149–11152, October 2000. 67

[5] Khaled Aslan, Nagham Alhadad, Hala Skaf-Molli, and Pascal Molli.
SCHO: An Ontology Based Model for Computing Divergence Awareness
in Distributed Collaborative Systems. In The Twelfth European Con-
ference on Computer-Supported Cooperative Work, ECSCW2011, pages
373–392. Springer, September 2011. 49, 72, 88, 90, 102

[6] Khaled Aslan, Pascal Molli, and Hala Skaf-Molli. C-Set: a Commuta-
tive Replicated Data Type for Semantic Stores. In Fourth International
Workshop on Resource Discovery, Heraklion, Greece, 2011. 107

[7] Khaled Aslan, Hala Skaf-molli, and Pascal Molli. Connecting Distributed
Version Control Systems Communities to Linked Open Data. In The
2012 International Conference on Collaboration Technologies and Systems
(CTS 2012), Denver, Colorado, USA, 2012. 82, 88, 90, 94

[8] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider, editors. The description logic handbook:
theory, implementation, and applications. Cambridge University Press,
New York, NY, USA, 2003. 47

[9] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: An
Open Source Software for Exploring and Manipulating Networks. In In-
ternational AAAI Conference on Weblogs and Social Media. AAAI, 2009.
67

113

114 BIBLIOGRAPHY

[10] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web.
Scientific American, 284(5):34–43, May 2001. 44

[11] Peter Biddle, Paul Engl, Marcus Peinado, and Bryan Willman. The dark-
net and the future of content distribution. In In Proceedings of the 2002
ACM Workshop on Digital Rights Management, 2002. 63

[12] Jacob T. Biehl, Mary Czerwinski, Greg Smith, and George G. Robertson.
Fastdash: a visual dashboard for fostering awareness in software teams.
In Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 1313–1322. ACM, 2007. 3, 40

[13] Dan Brickley and Ramanathan V. Guha. Rdf vocabulary description
language 1.0: Rdf schema. http://www.w3.org/TR/rdf-schema/, 2004.
45

[14] Dan Brickley and Libby Miller. Foaf: The friend of a friend project.
http://www.foaf-project.org/. 65, 70

[15] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. Proactive
detection of collaboration conflicts. In ESEC/FSE 2011: The 8th joint
meeting of the European Software Engineering Conference (ESEC) and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering
(FSE), pages 168–178, 2011. 3, 8, 9, 28, 34, 35, 82, 99

[16] Reidar Conradi and Bernhard Westfechtel. Version models for software
configuration management. ACM Computer Survey, 30(2):232–282, June
1998. 19

[17] C.R.B. de Souza, D. Redmiles, and P. Dourish. Breaking the code, moving
between private and public work in collaborative software development.
In Proceedings of the 2003 International ACM SIGGROUP conference on
Supporting group work, pages 105–114. ACM, 2003. 8, 81

[18] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott
Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic
Algorithms for Replicated Database Maintenance. In Proceedings of the
ACM Symposium on Principles of Distributed Computing, pages 1–12,
Vancouver, British Columbia, Canada, August 1987. ACM Press. 22

[19] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott
Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic al-
gorithms for replicated database maintenance. In Proceedings of the sixth
annual ACM Symposium on Principles of distributed computing, PODC
’87, pages 1–12. ACM, 1987. 72

[20] Prasun Dewan and R. Hegde. Semi-synchronous conflict detection and
resolution in asynchronous software development. In The Sixth European
Conference on Computer-Supported Cooperative Work, ECSCW2007,
pages 159–178. Springer, 2007. 8, 28

[21] A. Dix, J. Finlay, G. Abowd, and R. Beale. Human-Computer Interaction.
Prentice Hall, 1997. 3, 28, 29, 30

BIBLIOGRAPHY 115

[22] Alan Dix. Challenges for cooperative work on the web: An analytical
approach. Computer Supported Cooperative Work (CSCW), 6:135–156,
1997. 3, 28, 29, 30

[23] Paul Dourish. The Parting of the Ways: Divergence, Data Management
and Collaborative Work. In 4th European Conference on Computer Sup-
ported Cooperative Work, pages 215–230. Kluwer Academic Publishers,
1995. 7, 18, 83

[24] Paul Dourish and Victoria Bellotti. Awareness and coordination in shared
workspaces. In Proceedings of ACM conference on Computer-Supported
Cooperative Work, pages 107–114. ACM Press, 1992. 29, 30

[25] Edd Dumbill. Doap: Description of a project.
http://trac.usefulinc.com/doap. 70

[26] Clarence A. Ellis, Simon J. Gibbs, and Gail Rein. Groupware: some issues
and experiences. Communication of the ACM, 34(1):39–58, January 1991.
15, 17

[27] P. Erdos and A. Rényi. On the evolution of random graphs. Akad. Kiadó,
1960. 78, 96

[28] Jacky Estublier and Sergio Garcia. Process model and awareness in SCM.
In Proceedings of the 12th international workshop on Software configura-
tion management, volume 12, pages 59–74. ACM, 2005. 8, 28

[29] Patrick T. Eugster, Rachid Guerraoui, Sidath B. Handurukande, Petr
Kouznetsov, and Anne-Marie Kermarrec. Lightweight Probabilistic
Broadcast. ACM Transactions on Computer Systems, 21(4):341–374,
November 2003. 22

[30] L Freeman. Centrality in social networks conceptual clarification. Social
Networks, 1(3):215–239, 1979. 67, 71

[31] Ayalvadi J. Ganesh, Anne-Marie Kermarrec, and Laurent Massoulié. Peer-
to-peer membership management for gossip-based protocols. IEEE Trans.
Comput., 52(2):139–149, February 2003. 94

[32] Saul Greenberg, Carl Gutwin, and Mark Roseman. Semantic Telepoint-
ers for Groupware. In Proceedings of the 6th Australian Conference on
Computer-Human Interaction, page 54. IEEE Computer Society, 1996.
31

[33] Ralph Gross, Alessandro Acquisti, and H. John Heinz, III. Information
revelation and privacy in online social networks. In WPES ’05: Proceed-
ings of the 2005 ACM workshop on Privacy in the electronic society, pages
71–80, 2005. 62, 76

[34] Tom Gross, Chris Stary, and Alex Totter. User-centered awareness in
computer-supported cooperative work-systems: Structured embedding of
findings from social sciences. International Journal of Human-Computer
Interaction, 18(3):323–360, July 2005. 8, 82

116 BIBLIOGRAPHY

[35] W3C OWL Working Group. Owl 2 web ontology language.
http://www.w3.org/TR/owl2-overview/, 2009. 45

[36] Thomas R. Gruber. A translation approach to portable ontology specifi-
cations. Knowledge Acquisition, 5(2):199–220, June 1993. 47, 48

[37] N. Guarino and P. Giaretta. Ontologies and knowledge bases: Towards
a terminological clarification. In N. Mars, editor, Towards Very Large
Knowledge Bases: Knowledge Building and Knowledge Sharing, pages 25–
32. IOS Press, 1995. 47

[38] Nicola Guarino, Daniel Oberle, and Steffen Staab. What is an ontology?
In Steffen Staab and Rudi Studer, editors, Handbook on Ontologies, Inter-
national Handbooks on Information Systems, pages 1–17. Springer Berlin
Heidelberg, 2009. 47

[39] Carl Gutwin and Saul Greenberg. Effects of awareness support on group-
ware usability. In Proceedings of the SIGCHI conference on Human fac-
tors in computing systems, pages 511–518. ACM Press/Addison-Wesley
Publishing Co., 1998. 8, 82

[40] Carl Gutwin and Saul Greenberg. A descriptive framework of workspace
awareness for real-time groupware. Computer Supported Cooperative
Work, 11(3):411–446, November 2002. 31

[41] Olaf Hartig, Christian Bizer, and Johann Christoph Freytag. Executing
SPARQL Queries over the Web of Linked Data. In International Semantic
Web Conference, pages 293–309. Springer Berlin, Heidelberg, 2009. 70,
77, 78, 94, 97

[42] Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a
Global Data Space. Synthesis Lectures on the Semantic Web. Morgan &
Claypool Publishers, 2011. 107

[43] Martin Hepp, Pieter De Leenheer, and Aldo de Moor. Ontologies: State
of the Art, Business Potential, and Grand Challenges. Ontology Manage-
ment: Semantic Web, Semantic Web Services, and Business Applications,
pages 3–22, 2007. 47

[44] Jason Hill. The MAUI toolkit: Groupware widgets for group awareness.
Computer Supported Cooperative Work (CSCW), 13(5-6):539–571, 2004.
30

[45] Luis Daniel Ibáñez, Hala Skaf-Molli, Pascal Molli, and Olivier Corby.
Synchronizing semantic stores with commutative replicated data types.
In Alain Mille, Fabien L. Gandon, Jacques Misselis, Michael Rabinovich,
and Steffen Staab, editors, WWW (Companion Volume), pages 1091–
1096. ACM, 2012. 107

[46] Claudia-Lavinia Ignat, Gérald Oster, Pascal Molli, and Hala Skaf-Molli. A
Collaborative Writing Mode for Avoiding Blind Modifications. In Ninth
International Workshop on Collaborative Editing Systems, GROUP’07,
pages 1–6, 2007. 3, 8, 26, 32, 38, 81, 82, 101, 108

BIBLIOGRAPHY 117

[47] Robert Johansen. Groupware: Computer Support for Business Teams.
The Free Press, 1988. 7, 15

[48] P. Johnson and R. Thomas. RFC677: The maintenance of duplicate
databases. 1976. 72

[49] David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based compu-
tation of aggregate information. In Proceedings of the 44th Annual IEEE
Symposium on Foundations of Computer Science, FOCS ’03, pages 482–
491, Washington, DC, USA, 2003. IEEE Computer Society. 94

[50] Michael Kifer, Georg Lausen, and James Wu. Logical foundations of
object-oriented and frame-based languages. J. ACM, 42(4):741–843, July
1995. 48

[51] Leslie Lamport. Times, Clocks, and the Ordering of Events in a Dis-
tributed System. Communications of the ACM, 21(7):558–565, 1978. 22,
23, 48, 71, 83, 84

[52] E. Le Merrer and Gilles Straub. Distributed Overlay Maintenance with
Application to Data Consistency. In Globe 2011, 4th International Con-
ference on Data Management in Grid and P2P Systems, pages 25–36,
2011. 94

[53] Frank Manola and Eric Miller. Rdf primer. http://www.w3.org/TR/rdf-
primer/, 2004. 45

[54] Friedemann Mattern. Virtual time and global states of distributed sys-
tems. In International Workshop on Parallel and Distributed Algorithms,
pages 215–226, 1989. 72, 84

[55] Microsoft. Microsoft office groove. http://office.microsoft.com/en-
us/groove/, 2005. 63

[56] Pascal Molli, Gérald Oster, Hala Skaf-Molli, and Abdessamad Imine. Us-
ing the transformational approach to build a safe and generic data syn-
chronizer. In Kjeld Schmidt, Mark Pendergast, Marilyn Tremaine, and
Carla Simone, editors, GROUP, pages 212–220. ACM, 2003. 24

[57] Pascal Molli, Hala Skaf-Molli, and Christophe Bouthier. State Treemap:
an awareness widget for multi-synchronous groupware. In Seventh Inter-
national Workshop on Groupware - CRIWG, pages 106–114. IEEE Com-
puter Society, 2001. 3, 8, 9, 20, 36, 43, 82, 99, 105

[58] Pascal Molli, Hala Skaf-Molli, and Gérald Oster. Divergence awareness
for virtual team through the web. In Integrated Design and Process Tech-
nology, IDPT 2002, pages 1–10, Pasadena, CA, USA, June 2002. Society
for Design and Process Science. 3, 8, 9, 28, 30, 32, 37, 40, 81, 82, 101, 102

[59] Alberto Montresor and Mark Jelasity. PeerSim: A scalable P2P sim-
ulator. In 2009 IEEE Ninth International Conference on Peer-to-Peer
Computing, pages 99–100. Ieee, September 2009. 96

118 BIBLIOGRAPHY

[60] Sean A. Munson, Emily Rosengren, and Paul Resnick. Thanks and tweets:
comparing two public displays. In Pamela J. Hinds, John C. Tang, Jian
Wang, Jakob E. Bardram, and Nicolas Ducheneaut, editors, CSCW ’11:
Proceedings of the ACM 2011 conference on Computer supported cooper-
ative work, pages 331–340. ACM, 2011. 17

[61] Natalya F. Noy and Deborah L. McGuinness. Ontology Development 101:
A Guide to Creating Your First Ontology. Stanford Knowledge Systems
Laboratory Technical Report KSL-01-05, 2001. 47

[62] Gérald Oster, Pascal Urso, Pascal Molli, and Abdessamad Imine. Data
Consistency for P2P Collaborative Editing. In Conference on Computer-
Supported Cooperative Work, 2006. 23

[63] Stavroula Papadopoulou, Claudia Ignat, Gerald Oster, and Moira Norrie.
Increasing Awareness in Collaborative Authoring through Edit Profiling.
In IEEE Conference on Collaborative Computing: Networking, Applica-
tions and Worksharing - CollaborateCom 2006, pages 1–9, 11 2006. 3, 8,
33, 43, 82

[64] D.E. Perry, H.P. Siy, and L.G. Votta. Parallel changes in large-scale
software development: an observational case study. ACM Transactions on
Software Engineering and Methodology (TOSEM), 10(3):308–337, 2001. 8,
81

[65] Nuno Preguica, Joan Manuel Marques, Marc Shapiro, and Mihai Letia.
A Commutative Replicated Data Type for Cooperative Editing. In The
29th IEEE International Conference on Distributed Computing Systems,
pages 395–403. IEEE, June 2009. 53

[66] João Gustavo Prudêncio, Leonardo Murta, Cláudia Werner, and Rafael
Cepêda. To lock, or not to lock: That is the question. Journal of Systems
and Software, 85(2):277–289, February 2012. 8, 81

[67] Charbel Rahhal, Hala Skaf-Molli, Pascal Molli, and Stéphane Weiss.
Multi-synchronous Collaborative Semantic Wikis. In 10th International
Conference on Web Information Systems Engineering - WISE ’09, volume
5802 of LNCS, pages 115–129. Springer, October 2009. 9, 44, 48, 51, 63,
82

[68] Michel Raynal. About logical clocks for distributed systems. SIGOPS
Operating Systems Review, 26(1):41–48, January 1992. 84

[69] Michael Rogers and Saleem Bhatti. How to disappear completely: A
survey of private peer-to-peer networks. In Sustaining Privacy in Au-
tonomous Collaborative Encironments (SPACE 2007), 2007. 63

[70] Mark Roseman and Saul Greenberg. Building real-time groupware with
groupkit, a groupware toolkit. ACM Transactions on Computer-Human
Interaction, 3(1):66–106, March 1996. 17

[71] Yasushi Saito and Marc Shapiro. Optimistic replication. ACM Computing
Surveys, 37(1):42–81, March 2005. 22, 48, 70, 83

BIBLIOGRAPHY 119

[72] Anita Sarma, Zahra Noroozi, and André van der Hoek. Palantir: raising
awareness among configuration management workspaces. In Proceedings
of the 25th International Conference on Software Engineering, ICSE ’03,
pages 444–454. IEEE Computer Society, 2003. 43

[73] Anita Sarma, David Redmiles, and André Van der Hoek. Palantir: Early
Detection of Development Conflicts Arising from Parallel Code Changes.
IEEE Transactions on Software Engineering, 99, 2011. 3, 8, 38, 39, 82,
102

[74] Evan Schoenberg and Zachary West. Adium : Instant messaging client.
http://www.adium.im/, 2001. 66

[75] N. Shadbolt, Tim Berners-Lee, andW. Hall. The Semantic Web Revisited.
IEEE Intelligent Systems, 21(3):96–101, May 2006. 44

[76] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
Conflict-free Replicated Data Types. In The 13th International Sympo-
sium on Stabilization, Safety, and Security of Distributed Systems, pages
386–400. Springer, 2011. 53

[77] Skaf and et al. Dsmw : Distributed semantic media wiki.
http://momo54.github.com/DSMW/, 2009. 8, 19

[78] Hala Skaf-Molli, Claudia-Lavinia Ignat, Charbel Rahhal, and Pascal
Molli. New Work Modes for Collaborative Writing. In Enterprise In-
formation Systems and Web Technologies, pages 176–182, 2007. 7, 18

[79] Hala Skaf-Molli, Charbel Rahhal, and Pascal Molli. Peer-to-peer seman-
tic wikis. In 20th International Conference on Database and Expert Sys-
tems Applications- DEXA 2009, Lecture Notes in Computer Science 5690,
Springer, volume 5690 of Lecture Notes in Computer Science, Linz, Aus-
tria, August 2009. Springer. 23

[80] Jason Stewart, Benjamin B. Bederson, and Allison Druin. Single display
groupware: a model for co-present collaboration. In Proceedings of the
SIGCHI conference on Human factors in computing systems: the CHI is
the limit, CHI ’99, pages 286–293, New York, NY, USA, 1999. ACM. 17

[81] Chengzheng Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achieving con-
vergence, causality preservation, and intention preservation in real-time
cooperative editing systems. ACM Transactions on Computer-Human In-
teraction (TOCHI), 5(1):63–108, 1998. 22, 24, 37, 48, 71, 83, 84

[82] J. Tam and S. Greenberg. A framework for asynchronous change aware-
ness in collaborative documents and workspaces. International Journal of
Human-Computer Studies, 64(7):583–598, 2006. 30, 31

[83] Francisco J. Torres-Rojas and Mustaque Ahamad. Plausible clocks: con-
stant size logical clocks for distributed systems. Distributed Computing,
12:179–195, 1999. 33

120 BIBLIOGRAPHY

[84] Wil van der Aalst and Kees van Hee. Workflow Management: Mod-
els, Methods, and Systems (Cooperative Information Systems). The MIT
Press, 2002. 18

[85] Stéphane Weiss, Pascal Urso, and Pascal Molli. Wooki: a P2P Wiki-
based Collaborative Writing Tool. In Proceedings of the 8th International
Conference on Web Information Systems Engineering, pages 503–512.
Springer, 2007. 23, 33

[86] Stéphane Weiss, Pascal Urso, and Pascal Molli. Logoot : a Scalable Opti-
mistic Replication Algorithm for Collaborative Editing on P2P Networks.
In International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2009. 23

[87] Stéphane Weiss, Pascal Urso, and Pascal Molli. Logoot-Undo: Distributed
Collaborative Editing System on P2P Networks. IEEE Transactions on
Parallel and Distributed Systems, 21(8):1162 – 1174, 2010. 53

[88] Jan Wloka, Barbara Ryder, Frank Tip, and Xiaoxia Ren. Safe-commit
analysis to facilitate team software development. In Proceedings of the
31st International Conference on Software Engineering, ICSE ’09, pages
507–517, Washington, DC, USA, 2009. IEEE Computer Society. 28

[89] Thomas Zimmermann. Mining Workspace Updates in CVS. In Proceed-
ings of the Fourth International Workshop on Mining Software Reposito-
ries, ICSE Workshops MSR’07, pages 11–11, May 2007. 28

Thèse de Doctorat

Khaled Aslan Almoubayed
Divergence Awareness in Distributed Multi-Synchronous Collaborative Systems

Résumé
Les systèmes collaboratifs peuvent être synchrones,
asynchrones, ou multi-synchrones. Dans les
systèmes collaboratifs multi-synchrones, les
participants travaillent en parallèle sur des copies
locales d’objets partagés. Ils synchronisent leurs
modifications de temps-en-temps pour assurer un
état cohérent. Le modèle de collaboration
multi-synchrone introduit la notion de divergence
entre copies d’objets partagés. Travailler en parallèle
peut potentiellement réduire le temps de réalisation
des tâches. Cependant, il introduit des modifications
à l’aveugle et le coût de résolution des conflits
introduits par les modifications concurrentes peut
surpasser le gain attendu. Divergence awareness
quantifie la divergence et répond aux questions
suivantes : y a-t-il divergence ? avec qui ? où ? et
combien ? Les mesures existantes quantifient la
divergence du point de vue de l’utilisateur et non du
groupe. Je vais adresser le problème de divergence
de groupe qui répond spécifiquement à la question
"combien ?". Cela permet aux utilisateurs de
devenir conscients de la distance du groupe au
prochain point de convergence potentiel.
Ce travail présente un modèle générique pour définir
une abstraction des systèmes multi-synchrones. Et
propose une métrique de divergence de groupe et
montre comment les métriques existantes peuvent
être exprimées dans ce modèle. Il propose également
un algorithme efficace pour calculer la métrique de
divergence de groupe dans un réseau entièrement
décentralisé.

Abstract
Multi-synchronous collaborative systems support
parallel streams of activities on replicated data.
They allow streams of activities to diverge. If
divergence can help to reduce completion time, it
can also generate important overhead when solving
conflicts. Divergence awareness is one approach that
aims to limit conflicts by making users aware of
divergence. It aims to answer the following
questions: is there any divergence? With whom?
Where? And how much?
Existing divergence awareness metrics are highly
coupled to their original applications and can not be
used outside their original scope. In addition,
existing divergence awareness do not estimate a
global state of the system with all its workspace in a
fully distributed way.
In this thesis, I propose a formal model to express
existing divergence awareness metrics. I propose also
an original group divergence metric that addresses
specifically the "how much?" question. This metric
makes users aware of the distance of the group to
the next potential convergence point. I define
formally the group divergence awareness metric.
Next, I propose an algorithm to compute group
divergence metric on logs and validates the
algorithm with real data from different development
projects. Finally, I propose an original approach
based on overlay network to compute group
divergence metric in real-time in a fully
decentralized network and validate the approach
with simulations.

Mots clés
systèmes distribués, systèmes collaboratifs, web
sémantique, awareness.

Key Words
Multi-synchronous Collaboration, Divergence
Awareness, Distributed System, Semantic Web.

L’UNIVERSITÉ NANTES ANGERS LE MANS

BIBLIOGRAPHY 123

	Introduction
	Topic and Motivation of this Thesis
	Contributions of this Thesis
	Outline of this Thesis
	Publications

	Background
	Multi-Synchronous Collaboration Model
	Multi-Synchronous Collaboration Model and Software Engineering
	Multi-Synchronous Collaboration Model and Distributed Systems
	Multi-Synchronous Collaboration Scenarios
	Multi-Synchronous Collaboration Model Issues

	Divergence Awareness
	Awareness in CSCW
	Divergence Awareness Systems

	Synthesis

	SCHO: Shared Causal History Ontology
	Introduction
	Semantic Web and Ontologies
	SCHO: Shared Causal History Ontology
	Unified Shared Causal History Model
	Unified Shared Causal History Algorithms

	Divergence Awareness in SCHO
	State Treemap Divergence Awareness Using SCHO
	Palantir Divergence Awareness Using SCHO
	Concurrency Awareness Using SCHO
	Validation

	Local Social Network and Trust in SCHO
	From Causal History to Social Relations
	Validation

	Summary and Discussion

	Network Discovery
	Introduction
	Distributed Version Control Systems
	Linking SCHO to the Linked Open Data
	Validation
	Summary and Discussion

	GroupDiv: Group Divergence Awareness Formal Model
	Introduction
	GroupDiv Definition
	Computing Divergence Awareness on Causal Histories
	Computing Group Divergence Awareness in Real-Time
	Simulating Real-Time Divergence Metrics Computation
	Related work
	Summary

	Conclusion and Perspectives
	Perspectives

	SCHO Ontology described in OWL

